
Pedro Lopez-Garcia
John P. Gallagher
Roberto Giacobazzi (Eds.)

Analysis, Verification and Transformation
for Declarative Programming
and Intelligent Systems

Fe
st

sc
hr

ift
LN

CS
 1

31
60

Essays Dedicated to Manuel Hermenegildo
on the Occasion of His 60th Birthday

Lecture Notes in Computer Science 13160
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Pedro Lopez-Garcia · John P. Gallagher ·
Roberto Giacobazzi
Editors

Analysis, Verification and Transformation
for Declarative Programming
and Intelligent Systems

Essays Dedicated to Manuel Hermenegildo
on the Occasion of His 60th Birthday

Editors
Pedro Lopez-Garcia
IMDEA Software Institute
Pozuelo de Alarcón, Madrid, Spain

Roberto Giacobazzi
Università di Verona
Verona, Italy

John P. Gallagher
Roskilde University
Roskilde, Denmark

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-31475-9 ISBN 978-3-031-31476-6 (eBook)
https://doi.org/10.1007/978-3-031-31476-6

© Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-1092-2071
https://orcid.org/0000-0002-9582-3960
https://orcid.org/0000-0001-6984-7419
https://doi.org/10.1007/978-3-031-31476-6

Preface

This volume is published in honour of Manuel Hermenegildo, on the occasion of his
60th birthday. Throughout his career, Manuel has been at the forefront of the fields of
logic programming, constraint programming, parallel programming, program analysis,
program transformation, and programming environment design. Many of these areas are
reflected in the papers in this Festschrift and in the presentations made at the AVERTIS
symposium, held in Madrid on November 29, 2019, and at the MH60 workshop, held
in Porto on October 8, 2019.

Manuel grew up in Madrid and received a degree in Electrical Engineering from
the Universidad Politécnica de Madrid (UPM). He moved to the University of Texas at
Austin (UT Austin) and obtained a masters in Electrical and Computer Engineering, fol-
lowed by a Ph.D. from the same university. He established himself early as a researcher
who was comfortable at all levels of the computing stack, from electronics and com-
puter architecture to very high-level programming languages and their semantics. He
undertook his Ph.D. at UT Austin while also at the Microelectronics and Computer
Technology Corporation (MCC), a joint industry/academy research centre established
in response to the Japanese 5th Generation project. Declarative programming and paral-
lel computing were major topics at MCC, and Manuel combined them in his own work
on AND-parallel execution of logic programs. After three more years at MCC, he spent
three more years in Texas, both as a researcher at MCC and as (adjunct) assistant and
later associate professor at UT Austin. Following this, he returned to Spain in 1990 to
take up a faculty position at UPM, where he founded the CLIP (Computational Logic,
Implementation, and Parallelism) research group and where he became full professor in
1994.

During the years following his Ph.D., he exploredmodels for the parallel and concur-
rent execution of more expressive variants of logic programming languages including,
for example, constraints. At the same time, and motivated by the need to detect oppor-
tunities for parallelism at compile time, instead of through expensive run-time tests,
his interests widened to include the static analysis of (constraint) logic programs. He
devised a generic algorithm for the abstract interpretation of logic programs, into which
different abstract domains could be plugged. This seminal work was very influential
in other researchers’ efforts to perform static analysis of logic programs, and became
the core of the advanced programming environment developed at the CLIP group, the
Ciao logic programming system, which uses program analysis and transformation as the
core techniques to optimise, debug, and verify programs. Always an engineer at heart,
Manuel continuously and actively participated in the design and implementation of the
Ciao logic programming system, including its analysis and transformation tools and its
programming environment.

Manuel has always been a strong advocate of logic programming, arguing that its
declarative semantics, coupledwithflexible procedural semantics, offered thebest frame-
work for realising the vision of an advanced development environment. Expressiveness,

viii Preface

efficiency, and usefulness in real-world tasks were (and are) the driving forces behind his
research. He was an active member of the Association for Logic Programming (ALP)
and was first elected to the ALP executive committee in 1993 and later as ALP President,
from 2005 to 2009. To this day, he continues to be involved with the ALP as Secretary
and Director.

He has also been a member of the editorial boards of different journals as well as
program chair of many conferences and workshops on implementation, analysis, and
verification of logic programming, such as ICLP, LOPSTR, FLOPS, PADL, and PPDP –
always focussing on ensuring the quality of the scholarlyworks presented at these venues.
Apart from logic programming events, he has been involved in leading conferences
on programming languages, analysis, and verification more generally, including being
program chair of SAS and VMCAI and general chair of POPL.

As a relatively young science, computing has sometimes struggled to obtain public
research funding in competition with the established disciplines. Manuel has worked
tirelessly to raise the profile of computer science in Spain, taking on the job of Director
of the Spanish National Research Directorate for two years in 2000, while somehow
maintaining his research activities. As an extension to his national activities, Manuel
was deeply involved in representing Spain in European Union funding programs.

In 2003 Manuel returned partly to the USA to take on the Prince of Asturias Chair
in Information Science and Technology at the University of New Mexico, where he
extended his research activities and group, all of which gave rise to many collabora-
tions and results, including three Ph.D. theses, in addition to laying new avenues for
collaboration between Spain and the USA.

In the early 2000s, the Madrid regional government began to plan a network of
research institutes of the highest international stature. Manuel’s research achievements
and his experience in research policy was vital in ensuring that Computer Science was
adequately represented in these plans. In 2007, he was appointed as the Founding Sci-
entific Director of the IMDEA Software Institute, a position he held for 10 years, during
which the Institute was established and grew to be the world-class research institution
it is now.

Manuel has been given many awards, including the National “Aritmel” Prize for
Scientific Merit in Computer Science, 2005, and the National “Julio Rey Pastor” Prize
for Research in Mathematics and Information and Communication, 2006. He has been
appointed to many other positions of high responsibility, clearly showing the trust he has
within the research community: Electedmember of the Academia Europæa; President of
the Scientific Advisory Board of Inria; President of the Association for Logic Program-
ming; andMember of the ScientificAdvisoryBoard of the SchloßDagstuhl International
Center. In 2022hewas elected aFellowof theACMfor contributions to programanalysis,
verification, parallelism, logic programming, and the IMDEA Software Institute.

Throughout his scientific career, Manuel has had hundreds of research collabora-
tors. All of them know his amazing capacity for detailed work, thoroughness, and expert
contributions at all the stages of a piece of work, from its inception to the final prod-
uct. Manuel has in abundance all the skills needed for successful collaboration: exten-
sive knowledge, innovative ideas, interpersonal skills, a positive attitude, capacity for
encouragement, a sense of humour, and the ability to turn a potential conflict into a

Preface ix

constructive discussion. In short, working with him is a pleasure and a source of inspira-
tion. Those who perhaps know this best are his 15 Ph.D. students: Kalyan Muthukumar,
Yow-YanLin,MaríaGarcía de laBanda, FranciscoBueno,GermánPuebla, PedroLópez-
García,Manuel Carro, Daniel Cabeza, JorgeNavas, Amadeo Casas,MarioMéndez, José
Francisco Morales, Pablo Chico de Guzmán, Nataliia Stulova, and Isabel García.

To Manuel Hermenegildo, the scholar, teacher, engineer, manager, administrator,
leader, and friend, with deep admiration, gratitude, and affection. Happy birthday!

July 2022 Pedro Lopez-Garcia
John Gallagher

Roberto Giacobazzi

Organization

Editors

Pedro López-García IMDEA Software Institute and Spanish Council
for Scientific Research, Spain

John P. Gallagher Roskilde University, Denmark, and IMDEA
Software Institute, Spain

Roberto Giacobazzi University of Verona, Italy

Contents

Strategies in Conditional Narrowing Modulo SMT Plus Axioms 1
Luis Aguirre, Narciso Martí-Oliet, Miguel Palomino, and Isabel Pita

Optimizing Maude Programs via Program Specialization . 21
María Alpuente, Demis Ballis, Santiago Escobar, Jose Meseguer,
and Julia Sapiña

Automated Synthesis of Software Contracts with KindSpec 51
María Alpuente and Alicia Villanueva

Abstract Interpretation of Graphs . 72
Patrick Cousot

Applications of Muli: Solving Practical Problems with Constraint-Logic
Object-Oriented Programming . 97

Jan C. Dageförde and Herbert Kuchen

Grammar Induction for Under-Resourced Languages: The Case of Ch’ol 113
Veronica Dahl, Gemma Bel-Enguix, Velina Tirado, and Emilio Miralles

Answer Set Programming Made Easy . 133
Jorge Fandinno, Seemran Mishra, Javier Romero, and Torsten Schaub

The Role of Abstraction in Model Checking . 151
María-del-Mar Gallardo, Pedro Merino, and Laura Panizo

Justifications and a Reconstruction of Parity Game Solving Algorithms 170
Ruben Lapauw, Maurice Bruynooghe, and Marc Denecker

SMT-Based Test-Case Generation and Validation for Programs
with Complex Specifications . 188

Ricardo Peña, Jaime Sánchez-Hernández, Miguel Garrido,
and Javier Sagredo

Layerings of Logic Programs - Layer Decomposable Semantics
and Incremental Model Computation . 206

Alexandre Miguel Pinto and Luís Moniz Pereira

Modularization of Logic Programs . 222
Alexandre Miguel Pinto and Luís Moniz Pereira

xiv Contents

Proof-Theoretic Foundations of Normal Logic Programs . 233
Elmer Salazar and Gopal Gupta

A Discourse on Guessing and Reasoning . 253
Enric Trillas

Reversible Debugging in Logic Programming . 266
Germán Vidal

Towards Systematically Engineering Autonomous Systems Using
Reinforcement Learning and Planning . 281

Martin Wirsing and Lenz Belzner

Strand Spaces with Choice via a Process Algebra Semantics 307
Fan Yang, Santiago Escobar, Catherine Meadows, Jose Meseguer,
and Sonia Santiago

Author Index . 351

Strategies in Conditional Narrowing
Modulo SMT Plus Axioms

Luis Aguirre , Narciso Mart́ı-Oliet(B) , Miguel Palomino, and Isabel Pita

Departamento de Sistemas Informáticos y Computación, Facultad de Informática,
Universidad Complutense de Madrid, Madrid, Spain
{luisagui,narciso,miguelpt,ipandreu}@ucm.es

Abstract. This work presents a narrowing calculus that uses strategies
to solve reachability problems in order-sorted conditional rewrite theories
whose underlying equational logic is composed of some theories solvable
via a satisfiability modulo theories (SMT) solver plus some combination
of associativity, commutativity, and identity. Both the strategies and the
rewrite rules are allowed to be parameterized, i.e., they may have a set
of common constants that are given a value as part of the solution of a
problem. A proof tree based interpretation of the strategy language is
used to prove the soundness and weak completeness of the calculus.

Keywords: Narrowing · Strategies · Reachability · Rewriting logic ·
SMT · Unification

1 Introduction

Rewriting logic is a computational logic that was developed thirty years ago [11].
The semantics of rewriting logic [2] has a precise mathematical meaning, allowing
mathematical reasoning for proving properties, providing a flexible framework
for the specification of concurrent systems.

A system is specified in rewriting logic as a rewrite theory R = (Σ,E,R),
with (Σ,E) an underlying equational theory, which in this work will be order-
sorted equational logic, where terms are given as an algebraic data type, and R
is a set of rules that specify how the system can derive one term from another.

Strategies allow modular separation between the rules that specify a system
and the way that these rules are applied. In this work we will use a subset of
the Maude strategy language [5,10,20], and we will give an interpretation of its
semantics.

A reachability problem has the form ∃x̄(t(x̄) →∗ t′(x̄)), with t, t′ terms with
variables in x̄, or a conjunction ∃x̄

∧
i(ti(x̄) →∗ t′i(x̄)). In the general case where

Partially supported by projects TRACES (TIN2015-67522-C3-3-R), ProCode (PID
2019-108528RB-C22), and by Comunidad de Madrid as part of the program S2018/
TCS-4339 (BLOQUES-CM) co-funded by EIE Funds of the European Union.

c© Springer Nature Switzerland AG 2023
P. Lopez-Garcia et al. (Eds.): Hermenegildo Festschrift 2022, LNCS 13160, pp. 1–20, 2023.
https://doi.org/10.1007/978-3-031-31476-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31476-6_1&domain=pdf
http://orcid.org/0000-0001-5119-8262
http://orcid.org/0000-0002-6576-762X
http://orcid.org/0000-0003-4915-5452
https://doi.org/10.1007/978-3-031-31476-6_1

2 L. Aguirre et al.

t(x̄) is not a ground term, a technique known as narrowing [7] that was first
proposed as a method for solving equational problems (unification), has been
extended to cover also reachability problems [15]. One of the weaknesses of nar-
rowing is the state space explosion associated to any reachability problem where
arithmetic equational theories are involved. Satisfiability modulo theories (SMT)
solvers [17] may mitigate this state space explosion.

This paper extends our previous work [1], where we developed a sound and
weakly complete, i.e., complete with respect to normalized answers, narrowing
calculus when R = (Σ,E0 ∪ B,R), with E0 a subset of the theories handled
by SMT solvers and B a set of axioms for the other algebraic data types. Here
we introduce: (i) the use of strategies to further reduce the state space, and (ii)
the support for parameters in the specifications, i.e., a subset of the variables in
them, either SMT or not, to be considered as common constants that need to be
given a value in the reachability problem. We have defined a strategy language
suitable for narrowing, given a proof tree based interpretation of the semantics
of the strategy language, and developed a completely new narrowing calculus
that includes the strategy language and the use of parameters. Under certain
requirements, the calculus is proven to be sound and weakly complete.

The work is structured as follows: Sect. 2 presents basic definitions and prop-
erties for order-sorted equational deduction and unification. Section 3 presents
rewriting modulo built-in subtheories and axioms (R/E). In Sect. 4 the concepts
of built-in subtheory, abstraction, B-extension, and rewrite theory closed under
B-extensions are introduced. Also, the relation →R,B is presented. This rela-
tion is closely related to the narrowing calculus to be developed in Sect. 7. Then
the equivalence of R/E-rewriting and R,B-rewriting, for rewrite theories closed
under B-extensions, is proved. In Sect. 5 the strategy language and its semantics
are presented; then, an interpretation of this semantics is proved. In Sect. 6 we
define the concept of parameterized reachability problem and its solution. In
Sect. 7 the narrowing calculus for reachability is introduced. Then the soundness
and weak completeness of the calculus are proved, as well as its completeness for
some rewrite theories. Section 8 shows an example of the use of the calculus. In
Sect. 9, related work, conclusions, and future lines of investigation for this work
are presented. The technical report TR-02/2021, with more definitions, expla-
nations, examples, and all the related proofs, together with the prototype with
the running example, can be found at http://maude.ucm.es/cnarrowing.

2 Preliminaries

Familiarity with term rewriting and rewriting logic [2] is assumed. Several def-
initions and results from [19] are included in this section. The technical report
TR-02/2021 holds other definitions, required in the proofs.

2.1 Running Example

Example 1. Toast cooking will be used as a running example. A toast is well-
cooked if both sides of the toast have been cooked for exactly cookTime (abbre-

http://maude.ucm.es/cnarrowing

Strategies in Conditional Narrowing Modulo SMT Plus Axioms 3

Fig. 1. Running example. Toast cooking

viated to ct) seconds. No overcooking is allowed. Fresh toasts are taken from a
toast bag, and they are cooked using a frying pan that can toast up to two toasts
simultaneously, well-cooking one side of each toast in the pan. There is a bin,
where fresh toasts are put when taken from the bag. A toast in the pan can be
returned to the bin, being flipped in this process. Finally, there is a dish where
well-cooked toasts can be output. There is a limit of failTime (ft) seconds to
reach the desired final state. In this example, ct and ft will be the parameters,
i.e., they are the variables that represent the common constants of the specifi-
cation that must be given a value either by the conditions of the problem or by
its solution (Fig. 1).

A Toast (abbreviated to t) can be either a RealToast (rt), represented as
an ordered pair of natural numbers, each one with sort Integer (i), storing the
seconds that each side has already been toasted, or an EmptyToast (et) which
has a constant zt, representing the absence of Toasts; a Pan (p) is an unordered
pair of Toasts; a Kitchen (k) has a timer, represented by a natural number, and
a Pan; a Bin (b) is a multiset of Toasts; the bag and the dish are represented
by natural numbers, the number of RealToasts in each one; the System (s) has
a bag, a Bin, a Kitchen, and a dish. When a RealToast is in the pan, the side
being toasted is represented by the first integer of the ordered pair. We will use
two auxiliary functions, cook and toast (in lowercase).

2.2 Order-Sorted Equational Logic

Definition 1 (Kind completion). A poset of sorts (S,≤) whose connected
components are the equivalence classes corresponding to the least equivalence
relation ≡≤ containing ≤ is kind complete iff for each s ∈ S its connected
component has a top sort, denoted [s], called the kind of s.

Definition 2 (Order-sorted signature). An order-sorted (OS) signature is
a tuple Σ = (S,≤, F) where: (1) (S,≤) is a kind complete poset of sorts; (2)
F = {Σs1...sn,s}(s1...sn,s)∈S∗xS is an S∗ xS-indexed family of sets of function
symbols, where for each function symbol f in Σs1...sn,s there is a function symbol
f in Σ[s1]...[sn],[s]; and (3) Σ is sensible, i.e., if f is a function symbol in Σs1...sn,s,
f is also a function symbol in Σs′

1...s′
n,s′ , and [si] = [s′

i] for i = 1, . . . , n then
[s] = [s′].

When each connected component of (S,≤) has exactly one sort, the signature
is many-sorted. When f ∈ Σε,s, ε being the empty word, we call f a constant
with type s and write f ∈ Σs instead of f ∈ Σε,s.

4 L. Aguirre et al.

Example 2. In the cooking example, omitting the implied kind for each con-
nected component of S, Σ = (S,≤, F) is:
S = {Integer, RealToast, EmptyToast, Toast, Pan, Kitchen, Bin, System},
≤ = {(RealToast, Toast), (EmptyToast, Toast), (Toast, Bin)},
F = {{[,]}i i,rt, { }t t,p, { ; }b b,b, { ; }i p,k, {cook}k i,[k], {toast}t i,[t],

{ / / / }i r k i,s, {zt}et}.
The notation used in F has the following meaning: {[,]}i i,rt means that

[,] is a mix-fix function symbol such that if i1 and i2 are terms with sort
Integer then [i1, i2] is a term with sort RealToast.

A function symbol f in Σs1...sn,s is displayed as f : s1 . . . sn → s, its rank
declaration. An S-sorted set X = {Xs}s∈S of variables satisfies s �= s′ ⇒ Xs ∩
Xs′ = ∅, and the variables in X are disjoint from all the constants in Σ. Each
variable in X has a subscript indicating its sort, i.e., xs has sort s.

The sets TΣ,s and TΣ(X)s denote, respectively, the set of Σ-terms with sort
s and the set of Σ-terms with sort s when the variables in X are considered
extra constants of Σ. The notations TΣ and TΣ(X) are used as a shortcut for⋃

s∈S TΣ,s and
⋃

s∈S TΣ(X)s respectively. It is assumed that Σ has non-empty
sorts, i.e., TΣ,s �= ∅ for all sorts s in S. We write vars(t) to denote the set of
variables in a term t in TΣ(X). This definition is extended in the usual way to
any other structure, unless explicitly stated. If vars(A) = ∅, where A is any
structure, then A is said to be ground. A term where each variable occurs only
once is said to be linear.

Positions in a term t: when a term t is expressed in functional notation as
f(t1, . . . , tn), it can be pictured as a tree with root f at position ε and children
ti at position i, for 1 ≤ i ≤ n. The inner positions of t are referred as lists of
nonzero natural numbers separated by dots. The set of positions of t is written
pos(t). The set of non-variable positions of t is written posΣ(t). t|p is the subtree
of t below position p. t[u]p is the replacement in t of t|p with u. t[]p is a term
with hole that is equal to t except that in the position p there is a special symbol
[], the hole. For positions p and q, we write p ≤ q if there is a position r such
that q = p.r. Given any ordered list ū = u1, . . . , un, we call û = {u1, . . . , un}.

Definition 3 (Preregularity). Given an order-sorted signature Σ, for each
natural number n, for every function symbol f in Σ with arity n, and for every
tuple (s1, . . . , sn) in Sn, let Sf,s1...,sn

be the set containing all the sorts s′ that
appear in rank declarations in Σ of the form f : s′

1 . . . s′
n → s′ such that si ≤ s′

i,
for 1 ≤ i ≤ n. If whenever Sf,s1,...,sn

is not empty it is the case that Sf,s1,...,sn

has a least sort, then Σ is said to be preregular.

Preregularity guarantees that every Σ-term t has a least sort, denoted ls(t),
i.e., for any rank declaration f : s1 . . . sn → s that can be applied to t it is true
that ls(t) ≤ s.

A substitution σ : X → B, where B ⊆ TΣ(X) is a superset of the range
of σ, defined below, is a function that matches the identity function in all X
except for a finite set called its domain, dom(σ). We represent the application
of a substitution σ to a variable x in X as xσ. Substitutions are written as

Strategies in Conditional Narrowing Modulo SMT Plus Axioms 5

σ = {x1
s1

→t1, · · ·, xn
sn

→tn}, where dom(σ) is {x1
s1

, . . ., xn
sn

} and the range of σ
is ran(σ) =

⋃n
i=1 vars(ti). If ran(σ) = ∅ then σ is ground. We write σ : D → B,

where D ⊂ X is finite, to imply that dom(σ) = D. The identity substitution,
where dom(σ) = ∅, is displayed as none. A substitution σ where dom(σ) =
{x1

s1
, . . . , xn

sn
} (n ≥ 0), xi

si
σ = yi

si
∈ X , for 1 ≤ i ≤ n, and yi

si
�= yj

sj
for

1 ≤ i < j ≤ n is called a renaming. The restriction σV of σ to a set of variables
V is defined as xσV = xσ if x ∈ V and xσV = x otherwise. The deletion σ\V ,
where V ⊆ X is defined as xσ\V = xσ if x ∈ dom(σ)\V and xσ\V = x otherwise.
Substitutions are homomorphically extended to terms in TΣ(X) and also to any
other syntactic structures. The composition of σ and σ′ is denoted by σσ′, with
x(σσ′) = (xσ)σ′ (left associativity). Their closed composition, denoted by σ·σ′,
is defined as σ·σ′ = (σσ′)\ran(σ). If σσ = σ then we say that σ is idempotent.

A context C is a λ-term of the form λx1
s1

· · · xn
sn

.t, with t ∈ TΣ(X) and
{x1

s1
, . . . , xn

sn
} ⊆ vars(t). A Σ-equation has the form l = r, where l ∈ TΣ(X)sl

,
r ∈ TΣ(X)sr

, and sl ≡≤ sr. A conditional Σ-equation has the form l = r if C
with l = r a Σ-equation and C a conjunction of Σ-equations. We call a Σ-
equation l = r: regular iff vars(l) = vars(r); sort-preserving iff for each substi-
tution σ and sort s, lσ in TΣ(X)s implies rσ in TΣ(X)s and vice versa; left (or
right) linear iff l (resp. r) is linear; linear iff it is both left and right linear.

A set of equations E is said to be regular, or sort-preserving, or (left or right)
linear, if each equation in it is so.

2.3 Order-Sorted Equational Theories

Definition 4 (OS equational theory). An OS equational theory is a pair
E = (Σ,E), where Σ is an OS signature and E is a finite set of (possibly
conditional) Σ-equations of the forms l = r or l = r if

∧n
i=1 li = ri. All the

variables appearing in these Σ-equations are interpreted as universally quantified.

Example 3. The OS equational theory for the toast example has Σ = (S,≤, F)
and E is the set E0 of equations for integer arithmetic (not displayed), together
with the equations:
(xb; yb); zb = xb; (yb; zb), xb; yb = yb;xb, xb; zt = xb, xtyt = ytxt

stating that Bin is a multiset of Toasts and that the position of the Toasts in
the Pan is irrelevant.

Definition 5 (Equational deduction). Given an OS equational theory E =
(Σ,E) and a Σ-equation l = r, E � l = r denotes that l = r can be deduced
from E using the rules in [12].

An OS equational theory E = (Σ,E) has an initial algebra (TΣ/E or TE),
whose elements are the equivalence classes [t]E of ground terms in TΣ identified
by the equations in E.

We denote by TΣ/E(X), or TE(X), the algebra whose elements are the equiv-
alence classes of terms in TΣ(X) identified by the equations in E.

6 L. Aguirre et al.

The deduction rules for OS equational logic specify a sound and complete
calculus, i.e., for all Σ-equations l = r, E � l = r iff l = r is a logical consequence
of E (written E � l = r) [12]; then we write l =E r.

A theory inclusion (Σ,E) ⊆ (Σ′, E′) is called protecting iff the unique Σ-
homomorphism TΣ/E −→ TΣ′/E′ |Σ to the Σ-reduct of the initial algebra TΣ′/E′ ,
i.e., the elements of TΣ′/E′ that consist only in function symbols from Σ, is a
Σ-isomorphism, written TΣ/E � TΣ′/E′ |Σ .

2.4 Unification

Given an OS equational theory (Σ,E), the E-subsumption preorder �E on
TΣ(X) is defined by t �E t′ if there is a substitution σ such that t =E t′σ. For
substitutions σ, ρ and a set of variables V we write ρV �E σV , and say that σ
is more general than ρ with respect to V, if there is a substitution η such that
dom(σ) ∩ dom(η) = ∅, ran(ρV) = ran((ση)V), and ρV =E (ση)V . When V is not
specified, it is assumed that V = dom(ρ) and ρ =E σ·η. Then σ is said to be
more general than ρ. When E is not specified, it is assumed that E = ∅.

Given an OS equational theory (Σ,E), a system of equations F is a conjunc-
tion of Σ-equations

∧n
i=1 li = ri. An E-unifier for F is a substitution σ such

that liσ =E riσ, for 1 ≤ i ≤ n.

Definition 6 (Complete set of unifiers [18]). For F a system of equations
and vars(F) ⊆ W, a set of substitutions CSU W

E (F) is said to be a complete set
of E-unifiers of F away from W iff each substitution σ in CSU W

E (F) is an E-
unifier of F , for any E-unifier ρ of F there is a substitution σ in CSU W

E (F) such
that ρW �E σW , and for each substitution σ in CSU W

E (F), dom(σ) ⊆ vars(F)
and ran(σ) ∩ W = ∅.

The notation CSUE is used when W is the set of all the variables that have
already appeared in the current calculation.

3 Conditional Rewriting Modulo Built-Ins and Axioms

Definition 7 (Signature with built-ins [19]). An OS signature Σ = (S,≤,
F) has built-in subsignature Σ0 = (S0,≤, F0) iff (i) Σ0 ⊆ Σ, (ii) Σ0 is many-
sorted, (iii) S0 is a set of minimal elements in (S,≤), and (iv) if f : w → s ∈ F1,
where F1 = F\F0, then s /∈ S0 and f has no other typing in Σ0.

We let X0 = {Xs}s∈S0 , X1 = X\X0, S1 = S\S0, Σ1 = (S,≤, F1), HΣ(X) =
TΣ(X)\TΣ0(X0), and HΣ = TΣ\TΣ0 .

The restriction of TΣ/E to HΣ is denoted by HΣ/E or HE , and the restriction
of TΣ/E(X) to HΣ(X) is denoted by HΣ/E(X) or HE(X).

Definition 8 (Rule). Given an OS signature (Σ,S,≤) with built-in subsigna-
ture (Σ0, S0), a rule is an expression with the form c : l → r if

∧n
i=1 li → ri | φ,

where: (i) c is the alphanumeric label of the rule, (ii) l, the head of the rule, and
r are terms in HΣ(X), with ls(l) ≡≤ ls(r), (iii) for each pair li, ri, 1 ≤ i ≤ n,

Strategies in Conditional Narrowing Modulo SMT Plus Axioms 7

li is a term in HΣ(X)\X and ri is a term in HΣ(X), with ls(li) ≡≤ ls(ri),
and (iv) φ ∈ QF (X0), the set of quantifier free formulas made up with terms
in TΣ0(X0), the comparison function symbols = and �=, and the connectives ∨
and ∧.

The symbol ¬ (that can be defined with respect to =, �=, ∨, and ∧) will also
appear in this work. All the variables in vars(c) are interpreted as universally
quantified. Three particular cases of the general form are admitted: c : l →
r if

∧n
i=1 li → ri, c : l → r if φ, and the unconditional case c : l → r.

Definition 9 (B-preregularity). Given a set of Σ-equations B, a preregular
OS signature Σ is called B-preregular iff for each Σ-equation u = v in B and
substitution σ, ls(uσ) = ls(vσ).

Definition 10 (Conditional rewrite theory with built-in subtheory).
A conditional rewrite theory R = (Σ,E,R) with built-in subtheory and axioms
(Σ0, E0) consists of: (1) an OS equational theory (Σ,E) where: (i) Σ = (S,≤, F)
is an OS signature with built-in subsignature Σ0 = (S0,≤, F0), (ii) E = E0 ∪ B,
where E0 is the set of Σ0-equations in E, the theory inclusion (Σ0, E0) ⊆ (Σ,E)
is protecting, B is a set of regular and linear equations, called axioms, each
equation having only function symbols from F1 and kinded variables, (iii) there
is a procedure that can compute CSUB (F) for any system of equations F , (iv)
Σ is B-preregular, and (2) a finite set of uniquely labeled rules R.

Condition number 2 will be relaxed, but not totally removed, later in this
work. From now on, we will write “rewrite theory” as a shortcut for “conditional
rewrite theory with built-in subtheory and axioms”.

The transitive (resp. transitive and reflexive) closure of the relation →1
R,

inductively defined below, is denoted →+
R (resp. →∗

R).

Definition 11 (R-rewriting). Given a rewrite theory R = (Σ,E0 ∪ B,R), a
term t in HΣ, a position p in Pos(t), a rule c : l → r if

∧n
i=1 li → ri | φ in R,

and a substitution σ : vars(c) → TΣ, the one-step transition t →1
R t[rσ]p holds

iff t = t[lσ]p, liσ →∗
R riσ, for 1 ≤ i ≤ n, and E0 � φσ.

We write t −−−→
c,p,σ

1

R

t[rσ]p when we need to make explicit the rule, position, and

substitution. Any of these items can be omitted when it is irrelevant. We write
t −−→

cσ

1

R
v to express that there exists a substitution δ such that t −−−→

c,σ·δ
1

R

v.

Example 4. In the toast example, E0 is the theory for integer arithmetic, B is
the set of axioms in Example 3, and R is:
[kitchen] : yi;hrt vt → cook(yi;hrt vt, zi) if zi > 0
[cook] : cook(yi;hrt vt, zi) → yi + zi;h′

rt v′
t if

toast(hrt, zi) → h′
rt ∧ toast(vt, zi) → v′

t

[toast1] : toast(zt, zi) → zt
[toast2] : toast([ai, bi], zi) → [ai + zi, bi] if ai ≥ 0 ∧ ai + zi = cti
[bag] : ni/xb/gk/oki → (ni − 1)/[0, 0];xb/gk/oki if ni > 0

8 L. Aguirre et al.

[pan] : ni/hrt;xb/yi; zt vt/oki → ni/xb/yi;hrt vt /oki

[bin] : ni/xb/yi; [ai, bi] vt/oki → ni/[bi, ai];xb/yi; zt vt /oki

[dish] : ni/xb/yi; [cti, cti] vt/oki → ni/xb/yi; zt vt/oki + 1

The transitive closure of the relation →1
R/E , inductively defined below, is

denoted →+
R/E . The relation →R/E is defined as →R/E=→+

R/E ∪ =E .

Definition 12 (R/E-rewriting). Given a rewrite theory R = (Σ,E0 ∪B,R),
terms t, u, and v in HΣ, and a rule c : l → r if

∧n
i=1 li → ri | φ in R, if

there exist a position p in Pos(u), and a substitution σ : vars(c) → TΣ such that
t =E u = u[lσ]p, u[rσ]p =E v, liσ →R/E riσ, for 1 ≤ i ≤ n, and E0 � φσ then
we say that the one-step modulo transition t →1

R/E v holds.

We write t −−−−→
c,u,p,σ

1

R/E

v when we need to make explicit the rule, matching term,

position, and substitution. Any of these items can be omitted.
Rewriting modulo is more expressive than rewriting (see example 3.9 in [1]).

4 Abstractions, B-extensions, and R,B-Rewriting

Two simpler relations, →1
R,B and →R,B [13] are defined in this section which,

under several requirements, are equivalent to →1
R/E and →R/E , allowing us to

solve reachability problems using a narrowing calculus based on →R,B .

4.1 Abstractions

Definition 13 (Abstraction of built-in [19]). If Σ is a signature with built-in
subsignature Σ0, then an abstraction of built-in is a context C = λx1

s1
· · · xn

sn
.t◦,

with n ≥ 0, such that t◦ ∈ TΣ1(X) and {x1
s1

, . . . , xn
sn

} = vars(t◦) ∩ X0. For pairs
of terms we write abstractΣ1((u, v)) = 〈λ(x̄, ȳ).(u◦, v◦); (θ◦

u, θ◦
v); (φ◦

u, φ◦
v)〉.

Lemma 1 shows that there exists an abstraction that provides a canonical
decomposition of any term in TΣ(X).

Lemma 1 (Existence of a canonical abstraction [19]). Let Σ be a sig-
nature with built-in subsignature Σ0. For each term t in TΣ(X) there exist an
abstraction of built-in λx1

s1
· · · xn

sn
.t◦ and a substitution θ◦ : X0 → TΣ0(X0) such

that (i) t = t◦θ◦ and (ii) dom(θ◦) = {x1
s1

, . . . , xn
sn

} are pairwise distinct and
disjoint from vars(t); moreover, (iii) t◦ can always be selected to be S0-linear
and with {x1

s1
, . . . , xn

sn
} disjoint from an arbitrarily chosen finite subset Y of X0.

Definition 14 (Abstract function [19]). Given a term t in TΣ(X) and a
finite subset Y of X0, define abstractΣ1(t,Y) as 〈λx1

s1
· · · xn

sn
.t◦; θ◦;φ◦〉 where the

context λx1
s1

· · · xn
sn

.t◦ and the substitution θ◦ satisfy the properties (i)-(iii) in
Lemma 1 and φ◦ =

∧n
i=1(x

i
si

= xi
si

θ◦). If t ∈ TΣ1(X\X0) then abstractΣ1(t,Y) =
〈λ.t;none; true〉. We write abstractΣ1(t) when Y is the set of all the variables
that have already appeared in the current calculation, so each xi

si
is a fresh

variable. For pairs of terms we use the compact notation abstractΣ1((u, v)) =
〈λ(x̄, ȳ).(u◦, v◦); (θ◦

u, θ◦
v); (φ◦

u, φ◦
v)〉.

Strategies in Conditional Narrowing Modulo SMT Plus Axioms 9

Definition 15 (Set of topmost Σ0-positions [1]). Let R = (Σ,E0∪B,R) be
a rewrite theory with built-in subtheory (Σ0, E0), and t a term in HΣ(X). The
set of topmost Σ0 positions of t, topΣ0

(t), is topΣ0
(t) = {p | p ∈ Pos(t) ∧ t|p ∈

TΣ0(X0) ∧ ∃i ∈ N, q ∈ Pos(t) s.t . p = q.i ∧ t|q ∈ HΣ(X)}.

4.2 B-Extensions

The concept of B-extension, together with its properties, has been studied in [13].
Now, we allow for repeated labels in rules; later we will restrict this repetition.
We will use subscripts or apostrophes, e.g. c1 or c′, when we need to refer to a
specific rule with label c.

Definition 16 (Rewrite theory closed under B-extensions). Let R =
(Σ,E0 ∪ B,R) be a rewrite theory, where R may have repeated labels, and
let c : l → r if C be a rule in R. Assume, without loss of generality, that
vars(B) ∩ vars(c) = ∅. If this is not the case, only the variables of B will be
renamed; the variables of c will never be renamed. We define the set of B-
extensions of c as the set:
ExtB(c) = {c : u[l]p → u[r]p if C | u = v ∈ B ∪ B−1 ∧ p ∈ PosΣ(u) − {ε} ∧
CSU B(l, up) �= ∅} where, by definition, B−1 = {v = u | u = v ∈ B}.

All the rules in ExtB(c) have label c. Given two rules c : l → r if C and
c1 : l′ → r′ if C, c subsumes c1 iff there is a substitution σ such that: (i)
dom(σ) ∩ vars(C) = ∅, (ii) l′ =B lσ, and (iii) r′ =B rσ.

We say that R is closed under B-extensions iff for any rule with label c in
R, each rule in ExtB(c) is subsumed by one rule with label c in R.

Meseguer [13] shows an algorithm that given a rewrite theory R = (Σ,E0 ∪
B,R) constructs a superset R that is finite and closed under B-extensions, called
a finite closure under B-extensions of R.

Definition 17 (Finite closure under B-extensions of a rule). Given an
equational theory (Σ,E0 ∪ B), with built-in subtheory (Σ0, E0), and a rule with
label c, we denote by cB the set of rules in any finite closure under B-extensions
of the rewrite theory R = (Σ,E0 ∪ B, {c}).

Definition 18 Associated rewrite theory closed under B-extensions).
Given a rewrite theory R1 = (Σ,E0 ∪ B,R) with no repeated rule labels, its
associated rewrite theory closed under B-extensions is any rewrite theory R2 =
(Σ,E0 ∪ B,

⋃
c∈R cB) .

Rewriting modulo does not change if we use a rewrite theory or any of its
associated rewrite theories closed under B-extensions.

Lemma 2 (Equivalence of R/E-rewriting and RB/E-rewriting). If RB =
(Σ,E0 ∪ B,RB) is an associated rewrite theory of R = (Σ,E0 ∪ B,R) closed
under B-extensions, then →1

R/E=→1
RB/E and →R/E=→RB/E.

10 L. Aguirre et al.

Our definition of the relation →1
R,B will require the use of a single represen-

tative for all the instances of each E0-equivalence class that may appear in the
topΣ0

positions of the subterm that we are rewriting.

Definition 19 (Representative of a Σ0-term over a set of Σ0 terms). Let
t be a term in TΣ0 and let û = {u1, . . . , un} ⊆ TΣ0 such that t ∈ û. We define
the Σ0-representative of t over û as rep◦

û(t) = umin({i|ui=E0 t)}).

Definition 20 (Representative of a term over a set of Σ0 terms). Let t
be a term in TΣ, where topΣ0

(t) = p̂, and let û ⊆ TΣ0 such that t|p̂ ⊆ û. We
define the representative of t over û, as repû(t) = t[rep◦

û(t|p̄)]p̄.
Definition 21 (Representative of a term). Let t be a term in TΣ, where
topΣ0

(t) = p̂. We define the representative of t as rep(t) = rept|p̂(t).

The transitive closure of the relation →1
R,B , inductively defined below, is

denoted →+
R,B. The relation →R,B is defined as →R,B=→+

R,B ∪ =E .

Definition 22 (R,B-rewriting). Given a rewrite theory R = (Σ,E0 ∪B,R),
terms t, v in HΣ, and a rule c : l → r if

∧n
i=1 li → ri | φ in R, if abstractΣ1(l) =

〈λx̄.l◦; θ◦;φ◦〉 and there exist a position p in posΣ1
(t) and a substitution σ :

x̄ ∪ vars(c) → TΣ such that rep(t|p) =B l◦σ, v =E t[rσ]p, liσ →R,B riσ, for
1 ≤ i ≤ n, and E0 � (φ ∧ φ◦)σ, then we say there is a one-step transition
t →1

R,B v.

We write t −−→
c,p,σ

1

R,B

v when we need to make explicit the rule, position, and

substitution. Any of these items can be omitted when it is irrelevant.

Definition 23 (Normalized substitution). Given a rewrite theory R =
(Σ,E,R) with built-in subtheory (Σ0, E0), a substitution σ is R/E-normalized
(resp. R,B-normalized) iff for each variable x in dom(σ) there is no term t in
TΣ(X) such that xσ →1

R/E t (resp. xσ →1
R,B t).

Theorem 1 (Equivalence of R/E and R,B-rewriting). If R = (Σ,E0 ∪
B,R) is an associated rewrite theory of R0 = (Σ,E0 ∪ B,R0) closed under
B-extensions, then →1

R,B=→1
R/E and →R,B=→R/E.

5 Strategies

In this section we present the combinators of a strategy language suitable for
narrowing, which is a subset of the Maude strategy language for rewriting [5,
10,20], a set-theoretic semantics for the language, and an interpretation of this
semantics.

A call strategy is a name given to a strategy to simplify the development of
more complex strategies. A call strategy definition is a user-defined association
of a strategy to one call strategy.

A rewrite theory R = (Σ,E,R) and a set of call strategy definitions for R,
written CallR, have an associated set of derivation rules DR,CallR that will be
defined and used in the following.

Strategies in Conditional Narrowing Modulo SMT Plus Axioms 11

5.1 Goals, Derivation Rules and Proof Trees

Definition 24 (Goals). An open goal has the form t → v/ST, where t, its
head, and v are terms in HΣ, and ST is a strategy; a closed goal has the form

G , with G an open goal.

Definition 25 (Derivation rule). A derivation rule, has the form G or
G1···Gn

G , where G, its head, and each Gi, 1 ≤ i ≤ n, are open goals.

Definition 26 (Proof tree). Given a rewrite theory R = (Σ,E,R) and a set
of call strategy definitions CallR, a proof tree T is inductively defined as either:
(i) an open or closed goal, G or G , or (ii) a derivation tree T1···Tn

G , constructed
by application of the derivation rules in DR,CallR , where each Ti, 1 ≤ i ≤ n, is
a proof tree. The head of T is G in all cases, and we write head(T) = G. T is
said to be closed if it has no open goals on it. We denote by VR the set of all the
variables appearing in R and B, VCallR the set of all the variables appearing in
CallR, and VR,CallR = VR ∪ VCallR .

Definition 27 (Application of a derivation rule to an open goal). Given
any open goal t → v/ST in a proof tree and a derivation rule with head t′ →
v′/ST such that t =E t′ and v =E v′, the application of the rule to the open goal
consists in putting the derivation rule in place of the open goal, but replacing t′

with t and v′ with v anywhere in the rule.

5.2 Strategies and Their Semantics

The semantics that defines the result of the application of a strategy to the
equivalence class of a term is given by a function (in mix-fix notation) @ :
StratR,CallR × HΣ/E −→ P(HΣ/E), with R = (Σ,E0 ∪ B,R) and E = E0 ∪ B,
where [v]E is an element of ST @ [t]E if and only if a closed proof tree, c.p.t.
from now on, with head t → v/ST can be constructed using the derivation rules
in DR,CallR , also defined below. We will use this set of strategies for narrowing,
which is a subset of the Maude strategy language for rewriting [5,10,20]:

1. Idle and fail. These are constant strategies that always belong to
StratR,CallR . While the first one always succeeds, returning the same equiv-
alence class, the second one always fails. For each [t]E ∈ HΣ/E there is a
derivation rule t→t/idle ∈ DR,CallR . There are no derivation rules for fail.

2. Rule application. If c : l → r if
∧m

j=1 lj → rj | ψ is a rule in R, m ≥ 0,
γ is a substitution such that dom(γ) ⊆ vars(c), and ST = ST 1, . . . ,STm

is an ordered list of strategies then RA = c[γ]{ST} is a rule application in
StratR,CallR . For each substitution δ : vars(cγ) → TΣ such that E0 � ψγδ,
each term u in HΣ , and each position p in pos(u) such that u|p = lγδ there
is a derivation rule l1γδ→r1γδ/ST1δ···lmγδ→rmγδ/STmδ

u→u[rγδ]p/RA in DR,CallR .
3. Top. It is possible to restrict the application of a rule in R only to the top

of the term. This is useful for structural rules, that are applied to the whole
state, or for the strategies applied on the conditional part of a rule.

12 L. Aguirre et al.

If c : l → r if
∧m

j=1 lj → rj | ψ is a rule in R, m ≥ 0, γ is a substitution, such
that dom(γ) ⊆ vars(c), ST = ST 1, . . . ,STm is an ordered list of strategies,
and we call RA = c[γ]{ST}, then top(RA) is a strategy in StratR,CallR . For
each substitution δ : vars(cγ) → TΣ such that E0 � ψγδ, there is a derivation
rule l1γδ→r1γδ/ST1δ···lmγδ→rmγδ/STmδ

lγδ→rγδ/top(RA) in DR,CallR .
4. Call strategy. Call strategy definitions allow the use of parameters and

the implementation of recursive strategies. We list the semantics for their
invocations, for any pair of terms t and v in HΣ such that ls(t) ≡≤ ls(v):

– If sd CS (x̄) := ST ∈ CallR, where x̄ = x1
s1

, . . . , xn
sn

, n ≥ 0, are the
parameters of CS , t1, . . . , tn are terms in TΣ(X\VR,CallR), with sorts
s1, . . . , sn respectively, and we call t̄ = t1, . . . , tn, then the call strategy
invocation CS (t̄) is a strategy in StratR,CallR . If ρ = {x̄ → t̄} then for
every renaming γ such that dom(γ) ∩ \x̂ = ∅ there is a derivation rule
t→v/ST(γ∪ρ)

t→v/CS(t̄) in DR,CallR .
– If csdCS (x̄) := ST if C ∈ CallR, where everything is as in the previous

case, C =
∧m

j=1(lj = rj) ∧ φ, m ≥ 0, and δ : vars(C(γ ∪ ρ)) → TΣ is a
substitution such that l̄(γ ∪ ρ)δ =E r̄(γ ∪ ρ)δ and E0 � φ(γ ∪ ρ)δ, then
there is a derivation rule t→v/ST(γ∪ρδ)

t→v/CS(t̄) in DR,CallR .

5. Tests. A test strategy TS has the form match u s.t.
∧m

j=1(lj = rj) ∧ φ. It
checks a property on an equivalence class [t]E in HΣ/E . The test returns
{[t]E} if the property holds, else ∅. For each equivalence class [t]E in HΣ/E

and ground substitution δ such that t =E uδ, l̄δ =E r̄δ, and E0 � φδ, there
is a derivation rule t→t/TS in DR,CallR .

6. If-then-else. An if-then-else strategy IS has the form match u s.t. φ ? ST 1 :
ST 2. It uses the quantifier-free formula φ as test. For each pair of equivalence
classes [t]E and [v]E in HΣ/E and each substitution δ : vars(u)∪vars(φ) → TΣ

such that t =E uδ, if E0 � φδ, then t→v/ST1δ
t→v/IS ∈ DR,CallR , and if E0 � ¬φδ

then t→v/ST2δ
t→v/IS ∈ DR,CallR . The restriction to SMT conditions will ensure

the completeness of the narrowing calculus since, in general, a reachability
condition cannot be proved false.

7. Regular expressions. Another way of combining strategies is the use of
regular expressions: ; (concatenation), | (union), and + (iteration). ST∗ is
defined as idle | ST+. Let ST and ST ′ be strategies, and let t, v and u
be terms in HΣ such that ls(t) ≡≤ ls(u) ≡≤ ls(v). Then, we have rules
t→u/ST1 u→v/ST2

t→v/ST1 ; ST2
, t→v/ST1

t→v/ST1 | ST2
, t→v/ST2

t→v/ST1 | ST2
, t→v/ST

t→v/ST+ , and t→v/ST ; ST+
t→v/ST+

in DR,CallR . The scope of this work is restricted to concatenated strategies
that have no variables in common.

8. Rewriting of subterms. The matchrew combinator allows the selection
of a subterm to apply a rule. Matchrew strategies have the form MS =
matchrew u s.t.

∧m
j=1(lj = rj) ∧ φ by x1

s1
using ST 1, . . . , x

n
sn

using STn,
where x̄ = x1

s1
, . . . , xn

sn
are the match parameters of MS . We will also use

the short-form MS = matchrew u s.t. l̄ = r̄ ∧ φ by x̄ using ST . For each n-
tuple (t1, . . . , tn) of terms in Hn

Σ such that ls(t̄) ≤ s̄, and each substitution

Strategies in Conditional Narrowing Modulo SMT Plus Axioms 13

δ such that uδ ∈ TΣ , {ljδ, rjδ}m
j=1 ⊂ TΣ , l̄δ =E r̄δ, φδ ∈ TΣ , and E0 � φδ,

there is a derivation rule
x1

s1
δ→t1/ST1δ···xn

sn
δ→tn/STnδ

uδ→uδ[t̄]p̄/MS in DR,CallR .

5.3 Interpretation of the Semantics

We enumerate some of the properties of the semantics for each c.p.t. T formed
using the rules in DR,CallR , with head t → v/ST :

1. This is the main property: t →R/E v.
2. If ST = idle then [t]E = [v]E .
3. If ST = c[γ] then t −−→

cγ

1

R/E

v.

4. If ST = CS , where sd CS := ST 1 ∈ CallR, then [v]E ∈ ST 1@[t]E .
5. If ST = c[γ]{ST 1, . . . ,STm}, with c : l → r if

∧m
j=1 lj → rj | ψ a rule

in R, then there is a substitution δ such that [riγδ]E ∈ ST iδ @ [liγδ]E , for
1 ≤ i ≤ m, and t −−→

c,γδ

1

R/E

v.

6. If ST = matchrew u s.t. l̄ = r̄ ∧ φ by x̄ using ST , where u = u[x1
s1

, . . . , xn
sn

]p̄
then there exist a substitution δ, where δVu,φ,l̄,r̄

is ground, and terms t1, . . . , tn
in HΣ such that t =E uδ, l̄δ =E r̄δ, E0 � φδ, [ti]E ∈ ST iδ @ [xi

si
δ]E , for

1 ≤ i ≤ n, and v =E uδ[t̄]p̄.

6 Reachability Problems

In this section we present the concept of reachability problem, together with its
solutions and the properties that a solution to one of these problems has. From
now on, we will consider as valid those rewrite theories R = (Σ,E0 ∪ B,R)
whose axioms B are any combination of associativity, commutativity, and
identity (ACU rewrite theories).

Definition 28 (Reachability problem). Given a rewrite theory R =
(Σ,E0∪B,R) and a set of call strategy definitions CallR, a reachability problem
is an expression P with the form

∧n
i=1 ui → vi/ST i | φ | V, ν, where ui and vi

are terms in HΣ(X), ST i is a strategy in StratR,CallR , φ ∈ QF (X0), V ⊂ X is
the finite set of parameters of the problem, i.e., variables that have to be given a
ground value, and ν is a substitution such that dom(ν) ⊆ V and ran(ν) consists
only of new variables. We define vars(P) = vars(ū, v̄, φ). V must always verify:
(1) vars(P) ⊆ V , vars(B) ∩ V = ∅, and VR ∩ VCallR ⊆ V , (2) concatenated
and iterated strategies may have in common only variables from V , and (3) V
cannot contain: (i) any variable in dom(γ) for any strategy c[γ] that may appear
in CallR or ST i, 1 ≤ i ≤ n, (ii) any variable in x̂ for any call strategy defi-
nition sd C(x̄) or csd C(x̄) that may appear in CallR, or (iii) any variable in
matchParam(ST) ∪ matchParam(CallR).

14 L. Aguirre et al.

Definition 29 (Instances). Given a rewrite theory R = (Σ,E0 ∪ B,R), a
set of call strategy declarations CallR, and a substitution σ such that vars(B) ∩
(dom(σ) ∪ ran(σ)) = ∅, the instance Rσ of R is the rewrite theory that results
from the simultaneous replacement of every instance in R of any variable x ∈
dom(σ) with xσ, CallσR is the set of call strategy declarations that results from the
simultaneous replacement of every instance in CallR of any variable x ∈ dom(σ)
with xσ, and Stratσ

R,CallR is their set of associated strategies. For every strategy
ST in StratR,CallR we denote by STσ its corresponding strategy in Stratσ

R,CallR .
We denote by Dσ

R,CallR the associated set of derivation rules.

Although the label, say c, of an instantiated rule remains the same, we will
use superscripts, say cσ, to distinguish the instances of a rule.

Definition 30 (Solution of a reachability problem). Given a rewrite theory
R = (Σ,E0 ∪ B,R) and a set of call strategy definitions CallR, a solution of
the reachability problem P =

∧n
i=1 ti → vi/ST i | φ | V, ν is a substitution

σ : V → TΣ such that σ = ν · σ′ for some substitution σ′, E0 � φσ, and
[viσ]E ∈ STσ

i @[tiσ]E (hence tiσ →Rσ/E viσ), for 1 ≤ i ≤ n.

7 Strategies in Reachability by Conditional Narrowing
Modulo SMT and Axioms

In this section, the narrowing calculus for reachability with strategies is intro-
duced, and its soundness and weak completeness are stated.

Definition 31 (Instance of a set of variables). Given a set of variables V
and a substitution ν, we call V ν = (V \dom(ν)) ∪ ran(νV).

Definition 32 (Reachability goal and instantiation). Given a rewrite the-
ory R = (Σ,E0∪B,R) and a set of call strategy definitions CallR, a reachability
goal G is an expression with the form (1) (

∧n
i=1 u′

i → v′
i/ST i | φ′)ν�ν | V, ν,

or (2) (u′
1|p →1 xk, u′

1[xk]p → v′
1/ST 1 ∧

∧n
i=2 u′

i → v′
i/ST i | φ′)ν�ν | V, ν,

where ν and �ν are substitutions, dom(ν) ⊆ V , dom(�ν) ∩ (V ∪ V ν) = ∅,
V ⊂ X is finite, call (ū, v̄, φ) = (ū′, v̄′, φ′)ν�ν , n ≥ 1, u′

i and v′
i are terms

in HΣ(X), ST i ∈ StratR,CallR , for 1 ≤ i ≤ n, and φ ∈ QF (X0); also, in
the second case, p ∈ pos(u1), k = [ls(u1|p)], the kind of the least sort of u1|p,
xk /∈ Vū′,v̄′,φ′,ST ∪V ∪ran(ν)∪dom(�ν)∪ran(�ν), and ST 1 has the form RA;ST,
with RA a rule application.

In the first case, each one of the elements in the conjunctions is an open
goal, for which we define Vu→v/ST = Vu,v, and VG = Vū,v̄,φ ∪ V ν ; in the second
case, we say that xk is the connecting variable of the goal and we define VG =
{xk} ∪ Vū,v̄,φ ∪ V ν . We will write ‘goal’ as a synonym of ‘reachability goal’.

Definition 33 (Instance of a goal). If G is a goal of the form (
∧n

i=1 Si |
φ)ν�ν | V, ν and σ is a substitution such that dom(σ) ∩ V ν �= ∅, then we define
the instance Gσ of G, where μ = (νσ)V and �μ = (�νσ)VG\V , as Gσ = (

∧n
i=1 Si |

φ)μ�μ | V, μ.

Strategies in Conditional Narrowing Modulo SMT Plus Axioms 15

When dom(σ) ∩ V ν = ∅, σ is directly applied to every term and formula in
G thus avoiding circularity in this definition.

Definition 34 (Admissible goals). Only two types of goals are admitted in
our work: (a) those goals coming from a reachability problem

∧n
i=1 ui → vi/ST i |

φ | V, ν, which is transformed into the goal
∧n

i=1 uiν → viν/ST ν
i ; idle | φν | V, ν,

with �ν = none, and (b) those goals generated by repeatedly applying the inference
rules for reachability (see excerpt in Fig. 2) to one goal of type (a).

The notation G �[r],σ G′, a narrowing step, will be used to indicate that
rule [r] has been applied with substitution σ to G, yielding G′.

Definition 35 (Solution of a goal). Given a rewrite theory R = (Σ,E0 ∪
B,R), a set of call strategy definitions CallR for R, and a goal G, a substitution
σ : vars(G) → TΣ, where ν′ = (νσ)V and �ν′ = (�νσ)\V , is a solution of G iff:

1. if G =
∧n

i=1 ui → vi/ST ν
i �ν | φ | V, ν then E0 � φσ and [viσ]E ∈

ST ν′
i �ν′@[uiσ]E (hence uiσ →Rν′ /E viσ), for 1 ≤ i ≤ n, and

2. if G = u1|p →1 xk, u1[xk]p → v1/ST ν
1�ν ∧

∧n
i=2 ui → vi/ST ν

i �ν | φ | V, ν,
where ST 1 = RA;ST, then E0 � φσ, [xkσ]E ∈ RAν′

�ν′ @ [u1σ|p]E, [v1σ]E ∈
ST ν′

�ν′@[u1[xk]pσ]E, and [viσ]E ∈ ST ν′
i �ν′@[uiσ]E, for 2 ≤ i ≤ n.

We call nil | φ | V, ν, where φ is satisfiable and ν : X → TΣ(X) such
that dom(ν) ⊆ V , an empty goal. Given R and RB , a reachability prob-
lem P =

∧n
i=1 ui → vi/ST i | φ | V, ν is solved by applying the inference

rules for reachability (see excerpt in Fig. 2), starting with G =
∧n

i=1 uiν →
viν/(ST ν

i ; idle) | φν | V, ν in a top-down manner, until an empty goal is
obtained.

Figure 2 is an excerpt of the calculus rules. We briefly explain rule [w]
(matchrew): we rename the matching parameters from z̄ to the fresh variables x̄
with γ. Once abstracted u and t[x̄]p̄ to u◦ and t◦ and B-unified u◦ and t◦ with
σ, we search for a unifier of l̄γσ and r̄γσ, say α, using the idle strategy. Once
found, the open goals (x̄σ → ȳ/STγσ)α, where ȳ is fresh, will find a substitution
β that makes [yiβ]E an element of ST iγσαβ@[xiσαβ]E , for 1 ≤ i ≤ n, and go
on trying to find solutions for the open goal (t[ȳ]p̄ → v/ST)σαβ.

Definition 36 (Narrowing path and computed answer). Given RB =
(Σ,E0∪B,RB), an associated rewrite theory of R = (Σ,E0∪B,R) closed under
B-extensions, , and a reachability goal G with set of parameters V and substitu-
tion ν0, if there is a narrowing path G �σ1 G1 �σ2 · · · �σn−1 Gn−1 �σn

nil |
ψ | V, ν then we write G �∗

σ nil | ψ | V, ν, where σ = σ1 · · · σn, and we call ν | ψ
a computed answer for G.

Theorem 2 (Soundness of the Calculus for Reachability Goals). Given
an associated rewrite theory R = (Σ,E0∪B,R) closed under B-extensions and a
reachability goal G, if ν | ψ is a computed answer for G then for each substitution
ρ : V ν → TΣ such that ψρ is satisfiable, ν · ρ is a solution for G.

16 L. Aguirre et al.

Fig. 2. Inference rules for reachability modulo SMT plus B with strategies (excerpt)

Strategies in Conditional Narrowing Modulo SMT Plus Axioms 17

Theorem 3 (Weak Completeness of the Calculus for Reachability
Goals). Given an associated rewrite theory R = (Σ,E0 ∪ B,R) closed under
B-extensions and a reachability problem P =

∧n
i=1 ui → vi/ST i | φ | V, μ, where

μ is R/E-normalized, if σ : V → TΣ is a R/E-normalized solution for P then
there exist a formula ψ ∈ QF (X0) and two substitutions, say λ and ρ, such that∧n

i=1 uiμ → viμ/STμ
i ; idle | φμ | V, μ �+

λ nil | ψ | V, ν, σ =E ν·ρ, and ψρ is
satisfiable, where ν = (μλ)V .

The proof of both theorems can be found in the technical report TR-02/2021
at http://maude.ucm.es/cnarrowing.

8 Example

In this example, where ct = 20 (cooktime) and ft = 61 (failtime), from an
initial system with an empty toaster, an empty dish, and at most one toast in
the bin, we want to reach a final system where there are three toasts in the dish
and all the remaining elements are empty. We choose CallR to consist of the
following call strategy definitions:

– sd test := match N/B/Y ;V W/OK s.t. Y < ft
– sd cook1 := matchrew N/B/K/OK s.t. K = Y ;RV by K using kitchCook
– sd kitchCook := top(kitchen[none]) ; top(cook[none]{toasts, toasts})
– sd toasts := top(toast1[none]) | top(toast2[none])
– sd noCook := top(bin[none]) | top(pan[none]) | top(dish[none])
– sd loop := (noCook | (cook1 ; test ; noCook))+
– sd solve := top(bag[none]) ; top(bag[none]); (top(bag[none])|idle); loop.
The (symbolic) reachability problem is: P = N / T / 0 ; zt zt / 0 →
0 / zt / Y ; zt zt / 3 / solve | N > 0 ∧N < 3 | {ct, ft, N, T, Y }, {ct �→ 20, ft �→ 61}.

In P we use the strategy solve. As there must be either two or three toasts
in the bag, we impose the application of the rule bag twice, followed by the
nondeterministic strategy top(bag[none]) |idle, and we use the variable T with
sort Toast to represent the bin, since both EmptyToast and RealToast are
subsorts of Toast, subsort of Bin, so T covers both initial cases: the one without
toasts in the bin and the one with one toast in the bin. The concatenation of
the strategy test after each invocation of cook1, comparing the timer against
ft, renders the search state space finite.

Among the answers returned by the prototype we have:

a - ct → 20, ft → 61, N → 3, Y → 60, T → zt,
b - ct → 20, ft → 61, N → 2, Y → 60, T → [0, 0],
c - ct → 20, ft → 61, N → 2, Y → 40, T → [20, 20], and
d - ct → 20, ft → 61, N → 2, Y → 40 + U + V, T → [C,D] such that

C + U = 20 ∧ D + V = 20 ∧ U + V ≤ 20 ∧ U > 0 ∧ V > 0,

stating that we need 60 s when (a) 3 toasts are in the bag or (b) 2 toasts are in
the bag and one fresh toast is in the bin. The required amount of time can be
smaller: (c) 40 s if the toast in the bin is well-cooked or, if it is not, (d) 40 s plus
the remaining toasting time for the toast in the bin, as long as this remaining
time is not above 20 s.

http://maude.ucm.es/cnarrowing

18 L. Aguirre et al.

9 Conclusions and Related Work

In our previous work [1], we extended the admissible conditions in [19] by: (i)
allowing for reachability subgoals in the rewrite rules and (ii) removing all restric-
tions regarding the variables that appear in the rewrite rules. A narrowing calcu-
lus for conditional narrowing modulo E0 ∪B when E0 is a subset of the theories
handled by SMT solvers, B are the axioms not related to the algebraic data
types handled by the SMT solvers, and the conditions in the rules in the rewrite
theory are either rewrite conditions or quantifier-free SMT formulas, was pre-
sented, and the soundness and weak completeness of the calculus, as well as the
completeness of the calculus for topmost rewrite theories was proved.

The current work extends the previous one by adding two novel features: (1)
the use of strategies, to drive the search and reduce the state space, and (2)
the support for parameters both in the rewrite theories and in the strategies,
that allows for the resolution of some reachability problems that could not be
specified in the previous calculi that we had developed. A calculus for conditional
narrowing modulo E0 ∪ B with strategies and parameters has been presented,
and the soundness and weak completeness of the calculus have been proved.
To the best of our knowledge, a similar calculus did not previously exist in the
literature.

The strategy language that we have proved suitable for our narrowing cal-
culus in this work is a subset of the Maude strategy language [5,10,20]. This
strategy language and a connection with SMT solvers have been incorporated
into the latest version of the Maude language [4], which is being used to develop
the prototype for the calculus in this work.

Conditional narrowing without axioms for equational theories with an order-
sorted type structure has been thoroughly studied for increasingly complex cat-
egories of term rewriting systems. A wide survey can be found in [16]. The
literature is scarce when we allow for extra variables in conditions (e.g., [8]) or
conditional narrowing modulo axioms (e.g., [3]).

Narrowing modulo order-sorted unconditional equational logics is covered
by Meseguer and Thati [15], being currently used for cryptographic protocol
analysis.

The idea of constraint solving by narrowing in combined algebraic domains
was presented by Kirchner and Ringeissen [9], where the supported theories had
unconstrained equalities and the unconditional rewrite rules had constraints from
an algebraic built-in structure.

Escobar, Sasse, and Meseguer [6] have developed the concepts of variant and
folding variant narrowing, a narrowing strategy for order-sorted unconditional
rewrite theories that terminates on those theories having the finite variant prop-
erty, but it has no counterpart for conditional rewrite theories and it does not
allow the use of constraint solvers or strategies.

Foundations for order-sorted conditional rewriting have been published by
Meseguer [13]. Cholewa, Escobar, and Meseguer [3] have defined a new hierar-
chical method, called layered constraint narrowing, to solve narrowing problems
in order-sorted conditional equational theories, an approach similar to ours, and

Strategies in Conditional Narrowing Modulo SMT Plus Axioms 19

given new theoretical results on that matter, including the definition of con-
strained variants for order-sorted conditional rewrite theories, but with no spe-
cific support for SMT solvers.

Order-sorted conditional rewriting with constraint solvers has been addressed
by Rocha et al. [19], where the only admitted conditions in the rules are
quantifier-free SMT formulas, and the only non-ground terms admitted in the
reachability problems are those whose variables have sorts belonging to the SMT
sorts supported.

In [14], Meseguer studies reachability in Generalized Rewrite Theories, that
include constructors and variants, using equational theories beyond our setup of
E0 ∪ B (that only asks for strict B-coherence), but with no rewrite conditions
in the rules. Frozenness is used as a type of strategy.

Future work will focus in broadening the applicability of the calculus. One line
of work will involve the development of a narrowing calculus for E0 ∪ (E1 ∪ B)
unification with strategies, where E1 is a non-SMT equational theory; another
line of work will study the extension of the strategies and reachability problems
supported by the calculus.

References

1. Aguirre, L., Mart́ı-Oliet, N., Palomino, M., Pita, I.: Conditional narrowing mod-
ulo SMT and axioms. In: Vanhoof, W., Pientka, B. (eds.) Proceedings of the
19th International Symposium on Principles and Practice of Declarative Pro-
gramming, Namur, Belgium, 09–11 October 2017, pp. 17–28. ACM (2017).
http://doi.acm.org/10.1145/3131851.3131856

2. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theor. Comput. Sci. 360(1-3), 386–414 (2006). http://dx.doi.org/10.1016/j.tcs.
2006.04.012

3. Cholewa, A., Escobar, S., Meseguer, J.: Constrained narrowing for conditional
equational theories modulo axioms. Sci. Comput. Program. 112, 24–57 (2015).
https://doi.org/10.1016/j.scico.2015.06.001

4. Durán, F., et al.: Programming and symbolic computation in Maude. J. Log.
Algebr. Meth. Program. 110, 100497 (2020). https://doi.org/10.1016/j.jlamp.2019.
100497

5. Eker, S., Mart́ı-Oliet, N., Meseguer, J., Verdejo, A.: Deduction, strategies,
and rewriting. In: Archer, M., de la Tour, T.B., Muñoz, C. (eds.) Proceed-
ings of the 6th International Workshop on Strategies in Automated Deduc-
tion, STRATEGIES 2006, Seattle, WA, USA, 16 August 2006. Electronic Notes
in Theoretical Computer Science, vol. 174, no. 11, pp. 3–25. Elsevier (2007).
http://dx.doi.org/10.1016/j.entcs.2006.03.017

6. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and opti-
mal variant termination. J. Logic Algebraic Program. 81(7-8), 898–928 (2012).
http://dx.doi.org/10.1016/j.jlap.2012.01.002

7. Fay, M.: First-order unification in an equational theory. In: Proceedings of the 4th
Workshop on Automated Deduction, Austin, pp. 161–167. Academic Press (1979)

8. Giovannetti, E., Moiso, C.: A completeness result for E-unification algorithms
based on conditional narrowing. In: Boscarol, M., Carlucci Aiello, L., Levi, G.
(eds.) Foundations of Logic and Functional Programming. LNCS, vol. 306, pp.
157–167. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-19129-1 7

http://doi.acm.org/10.1145/3131851.3131856
http://dx.doi.org/10.1016/j.tcs.2006.04.012
http://dx.doi.org/10.1016/j.tcs.2006.04.012
https://doi.org/10.1016/j.scico.2015.06.001
https://doi.org/10.1016/j.jlamp.2019.100497
https://doi.org/10.1016/j.jlamp.2019.100497
http://dx.doi.org/10.1016/j.entcs.2006.03.017
http://dx.doi.org/10.1016/j.jlap.2012.01.002
https://doi.org/10.1007/3-540-19129-1_7

20 L. Aguirre et al.

9. Kirchner, H., Ringeissen, C.: Constraint solving by narrowing in combined alge-
braic domains. In: Hentenryck, P.V. (ed.) Logic Programming, Proceedings of the
Eleventh International Conference on Logic Programming, Santa Marherita Ligure,
Italy, 13–18 June 1994, pp. 617–631. MIT Press (1994)

10. Mart́ı-Oliet, N., Meseguer, J., Verdejo, A.: Towards a strategy language for Maude.
In: Mart́ı-Oliet, N. (ed.) Proceedings of the Fifth International Workshop on
Rewriting Logic and its Applications, WRLA 2004, Barcelona, Spain, 27 March–4
April 2004. Electronic Notes in Theoretical Computer Science, vol. 117, pp. 417–
441. Elsevier (2004). https://doi.org/10.1016/j.entcs.2004.06.020

11. Meseguer, J.: Rewriting as a unified model of concurrency. In: Baeten, J.C.M.,
Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 384–400. Springer, Heidel-
berg (1990). https://doi.org/10.1007/BFb0039072

12. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-64299-4 26

13. Meseguer, J.: Strict coherence of conditional rewriting modulo axioms. Theor.
Comput. Sci. 672(C), 1–35 (2017). https://doi.org/10.1016/j.tcs.2016.12.026

14. Meseguer, J.: Generalized rewrite theories, coherence completion, and symbolic
methods. J. Log. Algebraic Meth. Program. 110 (2020). https://doi.org/10.1016/
j.jlamp.2019.100483

15. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its
application to verification of cryptographic protocols. Higher-Order and Symbolic
Comput. 20(1-2), 123–160 (2007). http://dx.doi.org/10.1007/s10990-007-9000-6

16. Middeldorp, A., Hamoen, E.: Completeness results for basic narrowing. Appl.
Algebra Eng. Commun. Comput. 5, 213–253 (1994). http://dx.doi.org/10.1007/
BF01190830

17. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

18. Plotkin, G.: Building in equational theories. Mach. Intell. 7, 73–90 (1972)
19. Rocha, C., Meseguer, J., Muñoz, C.A.: Rewriting modulo SMT and open system

analysis. J. Log. Algebr. Meth. Program. 86(1), 269–297 (2017). https://doi.org/
10.1016/j.jlamp.2016.10.001

20. Rubio, R., Mart́ı-Oliet, N., Pita, I., Verdejo, A.: Parameterized strategies specifi-
cation in Maude. In: Fiadeiro, J.L., Tutu, I. (eds.) WADT 2018. LNCS, vol. 11563,
pp. 27–44. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23220-7 2

https://doi.org/10.1016/j.entcs.2004.06.020
https://doi.org/10.1007/BFb0039072
https://doi.org/10.1007/3-540-64299-4_26
https://doi.org/10.1016/j.tcs.2016.12.026
https://doi.org/10.1016/j.jlamp.2019.100483
https://doi.org/10.1016/j.jlamp.2019.100483
http://dx.doi.org/10.1007/s10990-007-9000-6
http://dx.doi.org/10.1007/BF01190830
http://dx.doi.org/10.1007/BF01190830
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1016/j.jlamp.2016.10.001
https://doi.org/10.1016/j.jlamp.2016.10.001
https://doi.org/10.1007/978-3-030-23220-7_2

Optimizing Maude Programs via Program
Specialization

María Alpuente1, Demis Ballis2, Santiago Escobar1, Jose Meseguer3,
and Julia Sapiña1(B)

1 VRAIN, Universitat Politècnica de València, Valencia, Spain
{alpuente,sescobar,jsapina}@upv.es

2 DMIF, Università degli Studi di Udine, Udine, Italy
demis.ballis@uniud.it

3 University of Illinois at Urbana-Champaign, Urbana, IL, USA
meseguer@illinois.edu

Abstract. We develop an automated specialization framework for rewrite theo-
ries that model concurrent systems. A rewrite theory R = (Σ,E �B,R) consists
of two main components: an order-sorted equational theory E = (Σ,E �B) that
defines the system states as terms of an algebraic data type and a term rewriting
system R that models the concurrent evolution of the system as state transitions.
Our main idea is to partially evaluate the underlying equational theory E to the
specific calls required by the rewrite rules of R in order to make the system com-
putations more efficient. The specialization transformation relies on folding vari-
ant narrowing, which is the symbolic operational engine of Maude’s equational
theories. We provide three instances of our specialization scheme that support dis-
tinct classes of theories that are relevant for many applications. The effectiveness
of our method is finally demonstrated in some specialization examples.

1 Introduction

Maude is a high-performance, concurrent functional language that efficiently imple-
ments Rewriting Logic (RWL), a logic of change that unifies a wide variety of models
of concurrency [38]. Maude is endowed with advanced symbolic reasoning capabilities
that support a high-level, elegant, and efficient approach to programming and analyz-
ing complex, highly nondeterministic software systems [24]. Maude’s symbolic capa-
bilities are based on equational unification and narrowing, a mechanism that extends
term rewriting by replacing pattern matching with unification [49], and they provide
advanced logic programming features such as unification modulo user-definable equa-
tional theories and symbolic reachability analysis in rewrite theories. Intricate comput-
ing problems may be effectively and naturally solved in Maude thanks to the synergy of

This work has been partially supported by the EC H2020-EU grant agreement No.
952215 (TAILOR), grants RTI2018-094403-B-C32 and PID2021-122830OB-C42 funded by
MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”, by Generali-
tat Valenciana under grant PROMETEO/2019/098, and by the Department Strategic Plan (PSD)
of the University of Udine—Interdepartmental Project on Artificial Intelligence (2021-25).

c© Springer Nature Switzerland AG 2023
P. Lopez-Garcia et al. (Eds.): Hermenegildo Festschrift 2022, LNCS 13160, pp. 21–50, 2023.
https://doi.org/10.1007/978-3-031-31476-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31476-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-31476-6_2

22 M. Alpuente et al.

these recently developed symbolic capabilities and classical Maude features, such as: (i)
rich type structures with sorts (types), subsorts, and overloading; (ii) equational rewrit-
ing modulo various combinations of axioms such as associativity (A), commutativity
(C), and identity (U); and (iii) classical reachability analysis in rewrite theories.

Partial evaluation (PE) is a program transformation technique that automatically
specializes a program to a part of its input that is known statically (at specialization
time) [23,33]. Partial evaluation conciliates generality with efficiency by providing
automatic program optimization. In the context of logic programming, partial evalu-
ation is often called partial deduction and allows to not only instantiate input variables
with constant values but also with terms that may contain variables, thus providing
extra capabilities for program specialization [35,36]. Early instances of this framework
implemented partial evaluation algorithms for different narrowing strategies, including
lazy narrowing [12], innermost narrowing [15], and needed narrowing [2,16].

The Narrowing-driven partial evaluation (NPE) scheme for functional logic pro-
gram specialization defined in [14,15] and implemented [1] in is strictly more power-
ful than the PE of both logic programs and functional programs thanks to combining
functional reduction with the power of logic variables and unification by means of nar-
rowing. In the Equational narrowing-driven partial evaluation (EQNPE) scheme of
[7], this enhanced specialization capability was extended to the partial evaluation of
order-sorted equational theories. Given a signature Σ of program operators together
with their type definition, an equational theory E = (Σ,E � B) combines a set E of
equations (that are implicitly oriented from left to right and operationally used as sim-
plification rules) on Σ and a set B of commonly occurring axioms (which are implicitly
expressed in Maude as operator attributes using the assoc, comm, and id: keywords)
that are essentially used for B-matching1. To be executable in Maude, the equational
theory E is required to be convergent (i.e., the equations E are confluent, terminating,
sort-decreasing, and coherent modulo B). This ensures that every input expression t has
one (and only one) canonical form t↓�E,B up to B-equality.

This paper addresses the specialization of rewrite theoriesR = (Σ,E�B,R) whose
system transitions are specified by rewrite rules R on top of an underlying equational
theory E = (Σ,E � B). Altogether, the rewrite theory R specifies a concurrent sys-
tem that evolves by rewriting states using equational rewriting, i.e., rewriting with the
rewrite rules in R modulo the equations and axioms in E [38]. In Maude, rewrite theo-
ries can also be symbolically executed by narrowing at two levels: (i) narrowing with the
(typically non-confluent and non-terminating) rules of R modulo E = (Σ,E �B); and
(ii) narrowing with the (explicitly) oriented equations �E modulo the axioms B. They
both have practical applications: (i) narrowing with R modulo E = (Σ,E �B) is useful
for solving reachability goals [43] and logical model checking [29]; and (ii) narrow-
ing with �E modulo B is useful for E -unification and variant computation [31]. Both
levels of narrowing should meet some conditions: (i) narrowing with R modulo E is
performed in a “topmost” way (i.e., the rules in R rewrite the global system state) and
there must be a finitary equational unification algorithm for E ; and (ii) narrowing with
�E modulo B requires that B is a theory with a finitary unification algorithm and that

1 For example, assuming a commutative binary operator ∗, the term s(0)∗0 matches within the
term X ∗ s(Y) modulo the commutativity of symbol ∗ with matching substitution {X/0,Y/0}.

Optimizing Maude Programs via Program Specialization 23

E is convergent. When (Σ,E �B) additionally has the property that a finite complete
set of most general variants2 exists for each term, known as the finite variant property
(FVP), E -unification is finitary and topmost narrowing with R modulo the equations
and axioms can be effectively performed.

For variant computation and (variant-based) E -unification, the folding variant nar-
rowing (or FV-narrowing) strategy of [31] is used in Maude, whose termination is guar-
anteed for theories that satisfy the FVP (also known as finite variant theories). Another
important class of rewrite theories are those that satisfy the so-called constructor finite
variant property (CFVP), i.e., they have a finite number of most general constructor
variants [40]. Many relevant theories have the FVP, including theories of interest for
Boolean satisfiability and theories that give algebraic axiomatizations of cryptographic
functions used in communication protocols, where FVP and CFVP are omnipresent.
CFVP is implied by FVP together with sufficient completeness modulo axioms (SC);
that is, all function calls (i.e., input terms) reduce to values (i.e., ground constructor
terms [27,32]).

Given the rewrite theory R = (Σ,E �B,R), the key idea of our method is to spe-
cialize the underlying equational theory E = (Σ,E �B) to the precise use that the rules
of R make of the operators that are defined in E . This is done by partially evaluating
E with respect to the maximal (or outermost) function calls that can be retrieved from
the rules of R, in such a way that E gets rid of any possible over-generality and the
functional computations given by E are thus greatly compacted. Nevertheless, while
the transformation highly contracts the system states, we deliberately avoid making any
states disappear since both reachability analysis and logical model checking generally
require the whole search space of rewrite theories to be searched (i.e., all system states).

Our specialization algorithm follows the classic control strategy of logic specializ-
ers [36], with two separate components: 1) the local control (managed by an unfolding
operator [13]) that avoids infinite evaluations and is responsible for the construction
of the residual equations for each specialized call; and 2) the global control (managed
by an abstraction operator) that avoids infinite iterations of the partial evaluation algo-
rithm and decides which specialized functions appear in the transformed theory. A post-
processing compression transformation is finally performed that highly compacts the
functional computations occurring in the specialized rewrite theory while keeping the
system states as reduced as possible.

We provide three different implementations of the unfolding operator based on FV-
narrowing that may include some distinct extra control depending on the FVP/CFVP
behavior of the equational theory E . More precisely, we distinguish the following three
cases:

1. E does not fulfill the finite variant property: a subsumption check is performed at
each FV-narrowing step that compares the current term with all previous narrowing
redexes in the same derivation. The subsumption checking relies on the order-sorted
equational homeomorphic embedding relation of [8] that ensures all infinite FV-
narrowing computations are safely stopped;

2 A variant [22] of a term t in the theory E is the canonical (i.e., irreducible) form of tσ in E
for a given substitution σ ; in symbols, it is represented as the pair (tσ↓�E,B,σ).

24 M. Alpuente et al.

2. E satisfies the finite variant property: FV-narrowing trees are always finite for any
input term, and therefore they are completely deployed; and

3. E satisfies the finite variant property and is also sufficiently complete: we supple-
ment unfolding with an extra “sort downgrading” transformation in the style of [41]
that safely rules out variants that are not constructor terms. This means that all
specialized calls get totally evaluated and the maximum compression is achieved,
thereby dramatically reducing the search space for the construction of the special-
ized theories.

It is worth noting that our specialization system is based on the Maude’s narrowing
engine and, hence, it respects the limitations and applicability conditions of the cur-
rent narrowing implementation. In particular, Maude’s narrowing (and thus our special-
izer) does not support conditional equations, built-in operators and special equational
attributes (e.g., owise). However, advances in narrowing and unification for Maude will
enlarge the class of rewrite theories that our specialization technique handles.

It is a great pleasure for us to honor Manuel Hermenegildo in this Festschrift.
Many of the themes and techniques we present—beginning with partial evaluation, and
including as well the solving of constraints in user-definable algebraic domains—are
themes to which Manuel and his collaborators have made outstanding contributions.
More broadly, we share also with him the passion for logically-based programming
language design, so as to integrate within a solid mathematical framework various pro-
gramming paradigms. Science is, should be, a dialogue. We look forward to continue
the pleasure of such a dialogue with Manuel—which some of us initiated with him
decades ago—and to his new outstanding contributions in the years to come.

Plan of the Paper. In Sect. 2, we introduce a leading example that illustrates the opti-
mization of rewrite theories that we can achieve by using our specialization technique,
which we formalize in Sect. 3. In Sect. 4, we focus on finite variant theories that are suf-
ficiently complete and we demonstrate that both properties, SC and FVP, are preserved
by our transformation scheme. In Sect. 5, we instantiate the specialization scheme for
the three classes of equational theories already mentioned: theories whose terms may
have an infinite number of most general variants, or a finite number of most general
variants, or a finite number of most general constructor variants. The proposed method-
ology is illustrated in Sect. 6 by describing several specializations of the bank account
specification of Sect. 2 and by presenting some experiments with the partial evaluator
Presto that implements our technique. In Sect. 7, we discuss some related work and we
conclude. The complete code of a non-trivial specialization example together with its
computed optimizations are given in Appendix.

2 A Leading Example

Let us motivate the power of our specialization scheme by optimizing a simple rewrite
theory that is inspired by [41]. The considered example has been engineered to ful-
fill the conditions for the applicability of all the three instances of our specialization
framework.

Optimizing Maude Programs via Program Specialization 25

Example 1. Consider a rewrite theory that specifies a bank account system with man-
aged accounts. The system automates a simple investment model for the beginner
investor that, whenever the account balance exceeds a given investment threshold, the
excess balance is automatically moved to investment funds. The system allows deposits
and withdrawals to occur non-deterministically, where each withdrawal occurs in two
steps: the withdrawal is initiated through a withdrawal request provided that the amount
to be withdrawn is less than or equal to the current account balance. Later on, the actual
withdrawal is completed. On the contrary, deposits are single-step operations that need
to consume explicit deposit messages to be performed. This asymmetric behaviour is
due to the fact that the amount in a deposit operation is unbounded, while a withdrawal
request is always limited by the account balance. For simplicity, the external operation
of the investment portfolio is not considered in the model.

A managed account is modelled as a term

< bal: n pend: x overdraft: b threshold: h funds: f >

where n is the current balance, x is the amount of money that is currently pending to
be withdrawn, b is a Boolean flag that indicates whether or not the account is in the red,
h is a fixed upper threshold for the account balance, and funds represents the amount
to be invested by the account manager. Messages of the form d(m) and w(m) specify
deposit and withdrawal operations, where m is the amount of money to be, respectively,
deposited and withdrawn. A bank account state (or simply state) is a pair act # msgs,
where act is an account and msgs a multiset of messages. Monetary values in a state are
specified by natural numbers in Presburger’s style3. State transitions are formalized by
the three rewrite rules in Fig. 1 (namely, w-req, w, and dep) that respectively implement
withdrawal requests, (actual) withdrawals, and deposits.

Fig. 1. Rewrite rules that model a simple bank account system.

The intended semantics of the three rules is as follows. The rule w-req non-
deterministically requests to draw money whenever the account balance covers the
request. The requested amount m is added to the amount of pending withdraw requests
and the withdraw message w(m) is generated. The rule w implements actual withdrawal
of money from the account. When the balance is not enough, the account is blocked by

3 In [40], natural numbers are encoded by using two constants 0 and 1 and an ACU operator +
so that a natural number is either the constant 0 or a finite sequence 1 + 1 ... + 1.

26 M. Alpuente et al.

setting overdraft to true and the withdrawal attempt fails (for simplicity, the excess
of balance that is moved to investment funds is never moved back). If not in overdraft,
money can be deposited in the account by processing the deposit message d(m) using
rule dep.

The auxiliary functions that are used by the three rules implement the pre-agreed,
automated investment policy for a given threshold. They update the account’s state by
means of an equational theory whose operators and equations are shown in Fig. 2. The
equational theory extends Presburger’s arithmetic with the operators over natural num-
bers _>_ and _-_, together with the if-then-construct [_,_, _] and an auxiliary version
«...» of the operator <...> that ensures that the current balance n is below the current
threshold h; otherwise, it sets the balance to n mod h and increments the funds by n
div h, where div is the division for natural numbers and mod is the remainder of the
division; both operations are encoded by successive subtractions. Roughly speaking,
this operator allows money to be moved from the bal attribute to the funds attribute,
whenever the balance exceeds the threshold h. Note that the amount of money in the
investment funds is measured in h units (1, 2, . . .), which indicate the client’s wealth
category (the higher the category, the greater the investment advantages). The attribute
variant is used to identify the equations to be considered by the FV-narrowing strat-
egy.

The considered equational theory has neither the FVP nor the CFVP since, for
instance, the term « bal: n pend: x overdraft:false threshold: h funds: f »
has an infinite number of (incomparable) most general (constructor) variants

Fig. 2. Companion equational theory for the bank account system.

Optimizing Maude Programs via Program Specialization 27

(< bal: n’ pend: x overdraft: false threshold: h funds: f + 1 >,{n/(n’ + h)})
...

(< bal: n’ pend: x overdraft: false threshold: h funds: f + 1 + ...+ 1 >,{n/(n’ + h +...+ h)})

Fig. 3. Specialized bank account system.

Nonetheless, this is not an obstacle to applying our specialization technique as it can
naturally handle theories that may not fulfill the FVP, whereas the total evaluation
method of [41] can only be applicable to theories that satisfy both, FVP and SC. Actu-
ally, in this specific case, the application of our technique generates the highly opti-
mized rewrite theory that is shown in Fig. 3, which improves several aspects of the input
bank account theory. First, the specialized equational theory is much more compact (3
equations vs 8 equations); indeed, all of the original defined functions are replaced by
a much simpler, newly introduced function f0 that is used to update bank accounts.
Furthermore, f0 exhibits an optimal performance since any call is normalized in just
one reduction step, thereby providing fast bank account updates. Actually, the partially
evaluated equational theory runs one order of magnitude faster than the original one, as
shown in Sect. 6. This happens because the right-hand sides of the equations defining
f0 are constructor terms; hence, they do not contain any additional function call that
must be further simplified.

Second, the specialized equational theory satisfies the FVP, which enables E -
unification, complete variant generation, and also symbolic reachability in the special-
ized bank account system via narrowing with rules modulo E while they were not fea-
sible in the original rewrite theory.

Third, the original rewrite rules have also been simplified: the new deposit
rule dep-s gets rid of the operator «bal:_ pend:_ overdraft:_ threshold:_
funds:_ », while the rewrite rule w-s replaces the complex nested call structure in the
right-hand side of the rule w with a much simpler and equivalent call to function f0.

A detailed account of the specialization process for this example is given in Sect. 6.

28 M. Alpuente et al.

3 Specialization of Rewrite Theories

In this section, we briefly present the specialization procedure NPERU
A , which allows

a rewrite theory R = (Σ,E�B,R) to be optimized by specializing the underlying equa-
tional theory E = (Σ,E �B) with respect to the calls in the rewrite rules R. The pro-
cedure NPERU

A extends the equational, narrowing-driven partial evaluation algorithm
EQNPEU

A of [7], which applies to equational theories and is parametric on an unfolding
operator U that is used to construct finite narrowing trees for any given expression, and
on an abstraction operator A that guarantees global termination.

3.1 Narrowing and Folding Variant Narrowing in Maude

Equational, (R,E �B)-narrowing computations are natively supported by Maude ver-
sion 3.0 for unconditional rewrite theories. Before explaining how narrowing compu-
tations are handled within our framework, let us introduce some technical notions and
notations that we need.

Let Σ be a signature that includes typed operators (also called function symbols) of
the form f : s1 . . .sm → s where si, and s are sorts in a poset (S,<) that models subsort
relations (e.g. s < s′ means that sort s is a subsort of s′). Σ is assumed to be preregular,
so each term t has a least sort under <, denoted ls(t). Binary operators in Σ may have
an axiom declaration attached that specifies any combinations of algebraic laws such
as associativity (assoc), commutativity (comm), and identity (id). By ax(f), we denote
the set of algebraic axioms for the operator f . By TΣ(X), we denote the usual non-
ground term algebra built over Σ and the set of (typed) variables X . By TΣ, we denote
the ground term algebra over Σ. By notation x : s, we denote a variable x with sort s.
Any expression tn denotes a finite sequence t1 . . . tn, n ≥ 0, of terms. A position w in a
term t is represented by a sequence of natural numbers that addresses a subterm of t (Λ
denotes the empty sequence, i.e., the root position). Given a term t, we let Pos(t) denote
the set of positions of t. We denote the usual prefix preorder over positions by ≤. By
t|w, we denote the subterm of t at position w. By root(t), we denote the operator of t at
position Λ.

A substitution σ is a sorted mapping from a finite subset of X to TΣ(X). Substi-
tutions are written as σ = {X1 	→ t1, . . . ,Xn 	→ tn}. The identity substitution is denoted
by id. Substitutions are homomorphically extended to TΣ(X). The application of a
substitution σ to a term t is denoted by tσ . The restriction of σ to a set of variables
V ⊂ X is denoted σ|V . Composition of two substitutions is denoted by σσ ′ so that
t(σσ ′) = (tσ)σ ′.

A Σ-equation (or simply equation, where Σ is clear from the context) is an unori-
ented pair t = t ′, where t, t ′ ∈ TΣ,s(X) for some sort s ∈ S. An equational theory is
a pair (Σ,E �B) that consists of a signature Σ, a set E of Σ-equations, and a set B of
equational axioms (e.g., associativity, commutativity, and identity) declared for some
binary operators in Σ. The equational theory E induces a congruence relation =E on
TΣ(X).

A term t is more (or equally) general than t ′ modulo E , denoted by t ≤E t ′, if there
is a substitution γ such that t ′ =E tγ . A substitution θ is more (or equally) general than
σ modulo E , denoted by θ ≤E σ , if there is a substitution γ such that σ =E θγ , i.e.,

Optimizing Maude Programs via Program Specialization 29

for all x ∈ X ,xσ =E xθγ . Also, θ ≤E σ [V] iff there is a substitution γ such that, for
all x ∈V,xσ =E xθγ . An E -unifier for a Σ-equation t = t ′ is a substitution σ such that
tσ =E t ′σ .

Similarly to equational rewriting, where syntactic pattern-matching is replaced with
matching modulo E (or E -matching), in equational narrowing syntactic unification is
replaced by equational unification (or E -unification). More precisely, in a topmost4

rewrite theory R=(Σ,E�B,R), with E =(Σ,E�B), equational narrowing is supported
in Maude by means of a three-layer machinery [21]:

1. An (R,E �B)-narrowing step from s to t with a rule l ⇒ r in R can be performed iff
there is a E -unifier θ of the equation s= l such that t = rθ .

2. In turn, each E -unification problem s =?
E l of Point 1 is solved by using folding

variant narrowing in the equational theory E that computes a finite, minimal and
complete set of E -unifiers for s= l under suitable requirements [31]. Following [44],
this is done by equationally narrowing the term s =?= l (that encodes the unification
problem s =?

E l) to an extra constant tt for denoting success in the rewrite theory
R0 = (Σ∪{=?=, tt},B,�E∪{ε}), where the extra5 rewrite rule ε = (X =?= X ⇒ tt)
has been added to �E in order to mimic unification of two terms (modulo B) as a
narrowing step6 that uses ε .

3. For each folding variant narrowing step using a rule in �E modulo B in Point 2,
B-unification algorithms are employed, allowing any combination of symbols that
satisfy any combination of associativity, commutativity, and identity axioms [25].

Example 2. Consider the (partial) specification of integer numbers defined by the equa-
tions E = {X+0= X,X+s(Y) = s(X+Y),p(s(X)) = X,s(p(X)) = X}, where variables
X, Y are of sort Int, operators p and s respectively stand for the predecessor and succes-
sor functions, and B contains the commutativity axiom X+Y= Y+X. Also consider that
the program signature Σ contains a binary state constructor operator‖_,_‖ : Int Int →
State for a new sort State that models a simple network of processes that are either
performing a common task (denoted by the first component of the state) or have finished
the task (denoted by the second component). The system state t =‖s(0),s(0)+p(0)‖
can be rewritten to ‖0,s(0)‖ (modulo the equations of E and the commutativity of +)
using the following rule that specifies the system dynamics:

‖A,B‖ ⇒ ‖p(A),s(B)‖, where A and B are variables of sort Int (1)

Also, a (topmost) narrowing reachability goal from ‖V+ V,0+ V‖ to ‖p(0),s(0)‖
succeeds (in one step) with computed substitution {V 	→ 0}, which is essentially cal-
culated by first computing an E -unifier σ of the input term ‖V+V,0+V‖ and the left-
hand side‖A,B‖of rule (1), σ = {A/(V+V),B/V}. Second, an E -unifier σ ′ is computed

4 Besides the topmost assumption for R, we also consider the classical executability restriction
that the set R of rules is coherent with E modulo B (intuitively, this ensures that a rewrite step
with R can always be postponed in favor of deterministically rewriting with E modulo B).

5 In an order-sorted setting, multiple equations are actually used to cover any possible sort in R.
6 For example, by using ε , the term s(0) ∗ 0 =?= U ∗ s(V) FV-narrows to tt (modulo commu-

tativity of ∗), and the computed narrowing substitution does coincide with the unifier modulo
commutativity of the two argument terms, i.e., {U 	→ 0,V 	→ 0}.

30 M. Alpuente et al.

between the instantiated right-hand side‖p(V+V),s(V)‖and the target state‖p(0),s(0)‖,
σ ′ = {V 	→ 0}. Third, the composition σσ ′ = {A 	→ 0+0,B 	→ 0,V 	→ 0} is simplified
into {A 	→ 0,B 	→ 0,V 	→ 0} and finally restricted to the variable V in the input term,
yielding {V 	→ 0}. Note that this narrowing derivation might signal a possible program-
ming error in rule (1) since the number of processes in the first component of the state
becomes negative.

The main idea of folding variant narrowing is to “fold” the search space of all
FV-narrowing computations by using subsumption modulo B. That is, folding variant
narrowing avoids computing any variant that is a substitution instance modulo B of a
more general variant. Note that this notion is quite different from the classical folding
operation of Burstall and Darlington’s fold/unfold transformation scheme [20], where
unfolding is essentially the replacement of a call by its body, with appropriate substitu-
tions, and folding is the inverse transformation, i.e., the replacement of some piece of
code by an equivalent function call. In [31], folding variant narrowing was proved to be
complete and minimal for variant generation w.r.t. (�E,B)-normalized substitutions and
it terminates for all inputs provided that the theory has the FVP.

FV-narrowing derivations correspond to sequences t0 �σ0,�e0,B t1 �σ1,�e1,B

. . . �σn,�en−1,B tn, where t �σ ,�e,B t ′ (or simply t �σ t ′ when no confusion can arise)
denotes a transition (modulo the axioms B) from term t to t ′ via the variant equation e
(i.e., an oriented equation �e that is enabled to be used for FV-narrowing thanks to the
attribute variant) using the equational unifier σ . Assuming that the initial term t is
normalized, each step t �σ ,�e,B t

′ (or variant narrowing step) is followed by the simpli-
fication of the term into its normal form by using all equations in the theory, which may
include not only the variant equations in the theory but also (non-variant) equations
(e.g., built-in equations in Maude). The composition σ0σ1σn−1 of all the unifiers along
a narrowing sequence leading to tn (restricted to the variables of t0) is the computed
substitution of this sequence. The set of all FV-narrowing computations for a term t
in E can be represented as a tree-like structure, denoted by VN�

E (t), that we call the
FV-narrowing tree of t in E .

An equational theory has the finite variant property (FVP) (or it is called a finite
variant theory) iff there is a finite and complete set of most general variants for
each term. Intuitively, the (�E,B)-variants of t are the “irreducible patterns” (tσ)↓�E,B

to which t can be narrowed, with computed substitution σ , by applying the ori-
ented equations �E modulo B. For instance, there is an infinite number of variants
for the term (0 + Y:Int) in the equation theory of Example 2; e.g., (Y:Int, id),
(0,{Y:Int 	→ 0}), (s(0),{Y:Int 	→ s(0)}), (s(Z:Int),{Y:Int 	→ s(Z:Int)}),
(p(0),{Y:Int 	→ p(0)}), . . .

A preorder relation of generalization between variants provides a notion of most
general variant and also a notion of completeness of a set of variants. Formally, a
variant (t,σ) is more general than a variant (t ′,σ ′) w.r.t. an equational theory E (in
symbols, (t,σ) ≤E (t ′,σ ′)) iff t ≤E t ′ and σ ≤E σ ′. For the term 0+Y:Int, the most
general variant is (Y : Int, id) since any other variant can be obtained by equational
instantiation.

Optimizing Maude Programs via Program Specialization 31

Example 3. Consider the definition of the (associative and commutative) Boolean con-
junction operator ∧ given by E = {X ∧ true = X, X ∧false = false}, where vari-
able X belongs to sort Bool and constants true and false stand for the correspond-
ing Boolean values. There are five most general variants modulo associativity and
commutativity for the term X∧ Y, which are: {(X∧ Y,id),(Y,{X 	→ true}),(X,{Y 	→
true}),(false,{X 	→ false}),(false,{Y 	→ false})}.

The theory of Example 3 satisfies the FVP, whereas the equational theory of Exam-
ple 2 does not have the FVP since there is an infinite number of most general variants
for the term X : Int+ Y : Int. It is generally undecidable whether an equational the-
ory has the FVP [19]; a semi-decision procedure is given in [39] (and implemented in
[9]) that works well in practice and another technique based on the dependency pair
framework is given in [31]. The procedure in [39] works by computing the variants of
all flat terms f (X1, . . . ,Xn) for any n-ary operator f in the theory and pairwise-distinct
variables X1, . . . ,Xn (of the corresponding sort); the theory does have the FVP iff there
is a finite number of most general variants for every such term [39].

3.2 Partial Evaluation of Equational Theories

Given a convergent equational theory E = (Σ,E �B) and a set Q of terms (henceforth
called specialized calls), we define a transformation EQNPEU

A that derives a new equa-
tional theory E ′ which computes the same answers (and values) as E for any input term
t that is a recursive instance (modulo B) of the specialized calls in Q. This means that
all of the subterms of t (including itself) are a substitution instance of some term in
Q. The transformation EQNPEU

A has two parameters, an unfolding operator U and an
abstraction operator A , whose precise meaning is clarified below.

The equational theory E to be specialized is decomposed as a simple rewrite theory
�E = (Σ,B,�E) (henceforth �E is called a decomposition of E), whose only equations
are the equational axioms in B and where the equations in E are explicitly oriented
from left to right as the set �E of rewrite rules. The axioms B satisfy the following extra
assumptions [30]: 1) regularity, i.e., for each t = t ′ in B, we have that the set of variables
in t and t ′ is the same, 2) linearity, i.e., for each t = t ′ in B, each variable occurs only
once in t and in t ′; 3) sort-preservation, i.e., for each t = t ′ in B and substitution σ ,
ls(tσ) = ls(t ′σ), and furthermore, all variables in t and t ′ have a common top sort; and
4) B has a finitary and complete unification algorithm, which implies that B-matching
is decidable.

The transformation consists of iterating two consecutive actions:

i) Symbolic execution (Unfolding). A finite, possibly partial folding variant narrowing
tree for each input term t of Q7 is generated. This is done by using the unfolding
operator U (Q, �E) that determines when and how to stop the derivations in the FV-
narrowing tree.

7 For simplicity, we assume that Q is normalized w.r.t. the equational theory E . If this were not
the case, for each t ∈ Q that is not in canonical form such that t ↓�E,B=C(ti), where C() is the
(possibly empty) constructor context of t ↓�E,B and ti are the maximal calls in t ↓�E,B, we would
replace t in Q with the normalized terms ti and add a suitable “bridge” equation t = C(ti) to
the resulting specialization.

32 M. Alpuente et al.

ii) Search for regularities (Abstraction). In order to guarantee that all calls that may
occur at runtime are covered by the specialization, every (sub-)term in any leaf of
the tree must be equationally closed w.r.t. Q. This notion extends the classical PD
closedness by:
1) considering B-equivalence of terms;
2) considering a natural partition of the signature as Σ = D � Ω, where Ω are the

constuctor symbols, which are used to define the (irreducible) values of the
theory, and D = Σ \ Ω are the defined symbols, which are evaluated away by
equational rewriting.

3) recursing over the term structure (in order to handle nested function calls).
Roughly speaking, a term u is equationally closed modulo B w.r.t. Q iff either:
(i) it does not contain defined function symbols of D , or (ii) there exists a sub-
stitution θ and a (possibly renamed) q ∈ Q such that u =B qθ and the terms
in θ are recursively Q-closed. For instance, given a defined binary symbol •
that does not obey any structural axioms, the term t = a• (Z •a) is equationally
closed w.r.t. Q = {a •X ,Y • a} or {X •Y}, but it is not with Q being {a •X};
however, it would be closed if • were commutative.

Given the set L of leaves in the FV-narrowing trees for the partially evaluated calls
in Q, in order to properly add to Q the non-closed (sub-)terms occurring in the terms
of L , an abstraction operator A(Q,L ,B) is applied that yields a new set of terms
which may need further evaluation. The abstraction operator A(Q,L ,B) ensures
that the resulting set of terms “covers” (modulo B) the calls previously special-
ized and that equational closedness modulo B is preserved throughout successive
abstractions.

Steps i) and ii) are iterated as long as new terms are generated, and the abstraction
operator A guarantees that only finitely many expressions are evaluated, thus ensuring
global termination.

Note that the algorithm does not explicitly compute a partially evaluated equa-
tional theory. It does so implicitly, by computing a (generally augmented) set Q′ of
partially evaluated terms that unambiguously determine the desired partial evaluation
of the equations in E as the set E ′ of resultants tσ = t ′ associated with the deriva-
tions in the narrowing tree from a root t ∈ Q′ to a leaf t ′ with computed substitution σ ,
such that the closedness condition modulo B w.r.t. Q′ is satisfied for all function calls
that appear in the right-hand sides of the equations in E ′. We assume the existence of
a function GENTHEORY(Q′,(Σ,E �B)) that delivers the partially evaluated equational
theory E ′ = (Σ′,E ′ �B′) univocally determined by Q′ and the original equational theory
E = (Σ,E �B), with Σ′ = Σ and B′ = B.

3.3 The NPERU
A Scheme for the Specialization of Rewrite Theories

The specialization of the (topmost) rewrite theory R = (Σ,E�B,R) is achieved by par-
tially evaluating its underlying equational theory E = (Σ,E�B) w.r.t. the rules R, which
is done by using the partial evaluation procedure EQNPEU

A of Sect. 3.2. By providing
suitable unfolding (and abstraction) operators, different instances of the specialization
scheme can be defined.

Optimizing Maude Programs via Program Specialization 33

Algorithm 1. Symbolic Specialization of Rewrite Theories NPERU
A(R)

Require:
A rewrite theory R = (Σ,E �B,R), an unfolding operator U

1: function NPERU
A (R)

2: R′ ← {(l ↓�E,B) ⇒ (r↓�E,B) | l ⇒ r ∈ R}
3: Q ← mcalls(R′)

Phase 1. Partial Evaluation
4: Q′ ← EQNPEU

A ((Σ,E �B),Q)
5: (Σ,E ′ �B) ← GENTHEORY(Q′,(Σ,E �B))

Phase 2. Compression
6: Let ρ be an independent renaming for Q in
7: Σ′′ ← (Σ\{ f | f occurs in E \E ′})∪{root(ρ(t)) | t ∈ Q}
8: B′′ = {ax(f) ∈ B | f ∈ Σ∩Σ′′}
9: E ′′ ← ⋃

t∈Q{ρ(t)θ = RNρ (t ′) | tθ = t ′ ∈ E ′}
10: R′′ ← {RNρ (l) ⇒ RNρ (r) | l ⇒ r ∈ R′}

where RNρ (t) =

⎧
⎪⎨

⎪⎩

c(RNρ (tn)) if t = c(tn) with c : sn → s ∈ Σ s.t. c ∈ Ω, ls(t) = s, n ≥ 0

ρ(u)θ ′ if ∃θ ,∃u ∈ Q′ s.t. t =B uθ and θ ′ = {x 	→ RNρ (xθ) | x ∈ Dom(θ)}
t otherwise

11: return R ′ = (Σ′′,E ′′ �B′′,R′′)

The NPERU
A procedure is outlined in Algorithm 1. Roughly speaking, the proce-

dure consists of two phases.

Phase 1) Partial Evaluation. It applies the EQNPEU
A algorithm to specialize the equa-

tional theory E = (Σ,E �B) w.r.t. a set Q of specialized calls that consists of
all of the maximal functions calls that appear in the (�E,B)-normalized version
R′ of the rewrite rules of R. We must normalize the rules in R before initial-
izing Q because, for each t in Q, the FV -narrowing tree for t is not rooted
by t but by t↓�E,B; hence, we would lose the connection between the partially
evaluated functions and the rules of R if the rules were not correspondingly
normalized.
Given Σ = (D �Ω), a maximal function call in a term t is any outermost sub-
term of t that is rooted by a defined function symbol appearing in the equa-
tions of E. Given a rewrite rule s ⇒ t of R, by mcalls(s ⇒ t), we denote the
set of all the maximal function calls that occur in s and t. By abuse, mcalls(R)
is the set of all maximal calls in the rewrite rules of R.
This phase produces the new set of specialized calls Q′ from which the partial
evaluation E ′ = (Σ′,E ′ �B′) of E w.r.t. Q is univocally derived by executing
GENTHEORY(Q′,(Σ,E �B)).

Phase 2) Compression. It consists of a refactoring transformation that computes a new,
much more compact equational theory E ′′ = (Σ′′,E ′′ �B′′) where the equa-
tions of E ′ are simplified by renaming similar expressions w.r.t. an indepen-
dent renaming function ρ that is derived from the set of specialized calls Q′
so that unused symbols, unneeded axioms, and unnecessary repetition of vari-
ables are removed.

34 M. Alpuente et al.

More precisely, for each t of sort s in Q′such that its root symbol is f , we define
ρ(t) = ft(xn : sn), where xn are the distinct variables in t in the order of their first occur-
rence and ft : sn → s is a new function symbol that does not occur in Σ or Q′ and is
different from the root symbol of any other renamed term ρ(t ′), for t ′ ∈ Q′.

Given the renaming ρ , the compression algorithm computes a new equation set E ′′
by replacing each call in E ′ by a call to the corresponding renamed function according
to ρ . Note that, while the independent renaming suffices to rename the left-hand sides
of the equations in E ′ (since they are mere instances of the specialized calls), the right-
hand sides must be renamed by recursively replacing each call in the given expression
by a call to the corresponding renamed function (according to ρ). This is done by means
of the function RNρ .

Furthermore, a new rewrite rule set R′′ is also produced by consistently applying
RNρ to the (�E,B)-normalized rewrite rules of R′. Specifically, each rewrite rule l ⇒ r
in R′ is transformed into the rewrite rule RNρ(l) ⇒ RNρ(r), in which every maximal
function call t in the rewrite rule is recursively renamed according to the independent
renaming ρ taking into account the term equivalences given by B.

Given the rewrite theory R = (Σ,E�B,R) and its specialization R ′ = NPERU
A(R),

all of the executability conditions that are satisfied by R are also satisfied by R ′ =
(Σ′,E ′ � B′,R′), including the fact that �E ′ = (Σ′,B′, �E ′) is a decomposition and that
R′ is (ground) coherent w.r.t. E ′ modulo B′. Also, because of the correctness and
completeness of EQNPEU

A , which states a strong correspondence between the vari-
ant computations of E and E ′ [7], the renaming function ρ that is used to gener-
ate R ′ is a bisimulation between the transition systems (TΣ/(E�B),→R/(E�B)) and
(TΣ′/(E ′�B′),→R′/(E ′�B′)).

4 Total Evaluation and Constructor Variants

In [41], a theory transformation R 	→ RΩ
l,r is defined that relies on the division of Σ as

D �Ω together with the notion of most general constructor variant that we describe in
the following. Roughly speaking, RΩ

l,r is obtained from R by transforming each rewrite
l ⇒ r in R into a totally evaluated rule l′ ⇒ r′, where l′ and r′ are constructor Ω-terms.
More precisely, any call appearing in l (resp. r) to a function that is defined in E is
replaced in l′ (resp. r′) by its constructor normal form w.r.t. E .

4.1 Constructor Term Variants, Sufficient Completeness, and the CFVP

In order-sorted equational logic, the notion of constructor symbols and constructor
terms are more intricate and essential than in standard term rewriting. Let us denote
by [t]B the B-equivalence class of t, i.e., terms t ′ that are B-equivalent to t, in symbols
t ′ =B t for all t ′ ∈ [t]B. Given a decomposition (Σ,B,�E), quite often the signature Σ has
a natural division as a disjoint union Σ = D � Ω, where the elements of the canonical
algebra C�E,B = {[t↓�E,B]B | t ∈TΣ} (that is, the values computed by �E,B-simplification)
are Ω-terms, whereas the function symbols f ∈D are viewed as defined functions which
are evaluated away by �E,B-simplification. The subsignature Ω (with same poset of sorts
as Σ) is then called a constructor subsignature of Σ. We call a decomposition (Σ,B,�E)

Optimizing Maude Programs via Program Specialization 35

sufficiently complete with respect to the constructor subsignature Ω iff for each t ∈ TΣ
we have: (i) t↓�E,B∈ TΩ; and (ii) if u ∈ TΩ and u =B v, then v ∈ TΩ. Condition (ii)
ensures that if any element in a B-equivalent class is a Ω-term, all other elements in the
class are also Ω-terms. We also say that (Σ,B,�E) is sufficiently complete w.r.t. Ω and
input term t ∈TΣ if conditions (i) and (ii) hold for t. In the following, the ctor operator
attribute of Maude is used to highlight the constructor symbols of an equational theory
so that the constructor subsignature can be easily read off the Maude code.

A decomposition �E = (Σ,B,�E) protects another decomposition �E0 = (Σ0,B0,�E0) iff
E0 ⊆E , i.e., Σ0 ⊆ Σ, B0 ⊆B, E0 ⊆E, and for all t, t ′ ∈TΣ0

(X) we have: (i) t =B0 t
′ ⇐⇒

t =B t ′, (ii) t = t↓�E0,B0
⇐⇒ t = t↓�E,B, and (iii) C�E0,B0

= C�E,B|Σ0 , where C�E,B|Σ0 agrees
with C�E,B in the interpretation of all sorts and operations in Σ0 and discards everything

in Σ\Σ0. The decomposition �EΩ = (Ω,BΩ, �EΩ) is a constructor decomposition of �E =
(Σ,B,�E) iff 1) �E protects �EΩ; and 2) �E is sufficiently complete w.r.t. its constructor
subsignature Ω.

Throughout the paper, we assume that the set B of axioms respects the constructors
in any decomposition �E = (Σ,B,�E). In other words, if an axiom in B can be applied to
a constructor term, then the result is a constructor term.

Example 4. Consider the following Maude functional module that encodes an equa-
tional theory E = (Σ,E �B) for natural numbers modulo 2, with an equation that col-
lapses natural numbers into the canonical forms 0 and s(0).

fmod OS-NAT/2 is
sorts Nat Zero One .
subsort Zero One < Nat .
op 0 : -> Zero [ctor] .
op s : Zero -> One [ctor] .
op s : Nat -> Nat .
eq s(s(0)) = 0 [variant] .

endfm

Let us denote by �E = (Σ,B,�E) the decomposition of the considered theory. The
signature Σ can be naturally decomposed into D �Ω, where

D = {s : Nat → Nat} and Ω = {0 :→ Zero,s : Zero → One}.

Then, the decomposition (Ω, /0, /0) is a constructor decomposition of �E .

Given Σ = D � Ω, it is possible to strengthen the notion of term variants to that of
constructor variants [40].

Definition 1 (Constructor Variant [40]). Let �E = (Σ,B,�E) be a decomposition and let
(Ω,BΩ,�EΩ) be a constructor decomposition of �E . Given a term t ∈TΣ(X), we say that
a variant (t ′,θ) of t is a constructor variant if t ′ ∈ TΩ(X) (i.e., the set of non-ground
constructor terms).

The following example illustrates the notion of constructor variant in Maude.

36 M. Alpuente et al.

Example 5. Consider the functional module OS-NAT/2 of Example 4 and the term
s(X), with X:Nat. There exist only two most general variants for s(X) in the equational
theory E encoded by OS-NAT/2: namely, (0,{X 	→ s(0)}) and (s(X),id). The former
is also a constructor variant since the constructor 0 belongs to the constructor subsig-
nature Ω of E . Conversely, the latter is not a constructor variant since s : Nat → Nat
in s(X) is a defined symbol. Nonetheless, note that there exists the constructor vari-
ant (s(Y),X 	→ Y : Zero), where the sort of variable X:Nat is downgraded to sort Zero,
which is a constructor variant that is less general than (s(X),id).

The notion of most general variant can be trivially extended to constructor variants.
By [[t]]Ω�E,B

, we denote the set of most general constructor variants for the term t. Given

an equational theory E = (Σ,E �B), we say that E = (Σ,E �B) has the constructor
finite variant property (CFVP) (or it is called a finite constructor variant theory) iff
for all t ∈ TΣ(X), [[t]]Ω�E,B

is a finite set. By abuse, we often say that a decomposition

(Σ,B,�E) has the FVP (resp. CFVP) when E = (Σ,E�B) is a finite variant theory (resp.
a constructor finite variant theory).

An algorithm for computing the complete set of most general constructor variants
[[t]]Ω�E,B

is provided in [40] for a decomposition (Σ,B,�E) that satisfies the FVP, has a

constructor decomposition (Ω,EΩ,BΩ), and satisfies the extra preregular-below con-
dition [40], which essentially ensures that Σ does not contain any overloaded symbol
with a constructor typing that lies below a defined typing for the same symbol. Roughly
speaking, the algorithm has two phases. First, the signature Σ of (Σ,B,�E) is refined into
a new signature Σc that introduces a new sort �s for each sort s in the sort poset of Σ.
Also, this sort refinement is extended to subsort relations, and constructor operators to
precisely identify the constructor terms of the decomposition. Two functions, (_)• and
its inverse (_)•, are respectively used to map sorts of Σ to sorts of Σc and sorts of Σc to
sorts of Σ. These functions are homomorphically extended to terms and substitutions in
the usual way. Then, [[t]]Ω�E,B

is distilled from the set of most general variants [[t]]�E,B by

using unification modulo B in the following way:

[[t]]Ω�E,B
= {(t ′τ•,(στ•)|Var(t)) | (t ′,σ) ∈ [[t]]�E,B,τ ∈ CSUB(t

′ = x:(ls(t ′))•)}

where CSUB(t = t ′) denotes the complete set of unifiers of t = t ′ modulo B.

Example 6. Consider the FVP functional module OS-NAT/2 of Example 4. Its asso-
ciated decomposition has a constructor decomposition as shown in Example 4, and
also meets the preregular below condition. Indeed, although the successor operator in
OS-NAT/2 is overloaded, its constructor typing s : Zero → One is below the defined
typing s : Zero → One, since Zero < Nat and One < Nat. Hence, the algorithm in
[40] can be used to compute [[t]]Ω�E,B

.

The complete set of most general constructor variants for s(X:Nat)

[[s(X)]]Ω�E,B
= {{(0,X 	→ s(0)),(s(X′),X 	→ X′ : Zero)}

is derived from [[s(X)]]�E,B = {{(0,X 	→ s(0)),(s(X),id)} as follows.

Optimizing Maude Programs via Program Specialization 37

The constructor variant (0,X 	→ s(0)) is a variant in [[s(X)]]�E,B and the (trivial) unifi-
cation problem 0= Y : �Zero provides a unifier τ• that leaves (0,X 	→ s(0)) unchanged.

The constructor variant (s(X′),X 	→ X′ : Zero) derives from the variant
v = (s(X),id) ∈ [[s(X)]]�E,B by solving the unification problem s(X) = Y : �Nat

which yields the computed unifier τ = {X 	→ X′:�Zero,Y 	→ s(X′)}; hence,
τ• = {X 	→ X′:Zero,Y 	→ s(X′)}, and finally by applying τ• to v, we get
(s(X′),{X 	→ X′:Zero}).

For any decomposition (Σ,B,�E), note that FVP implies CFVP when there exists a
constructor decomposition of (Σ,B,�E).

The following result establishes that the FVP and/or SC nature of an input equa-
tional theory is preserved by the NPERU

A transformation.

Theorem 1 (FVP and SC preservation). Let R = (Σ,E �B,R) be a rewrite theory
with E = (Σ,E �B) such that �E = (Σ,B,�E) is a decomposition. Let R ′ = NPERU

A(R)
be a specialization of R under the renaming ρ such that R ′ = (Σ′,E ′ � B′,R′). Let
Q= {t|s 	→ t ∈ ρ} so that E ′ = (Σ′,E ′ �B′) is Q-closed modulo B′. Then, it holds that

1. If �E satisfies the FVP, then �E ′ satisfies the FVP;
2. Given Σ = D � Ω, if �E satisfies SC w.r.t. Ω, then �E ′ satisfies SC w.r.t. Ω for every

input term that is Q-closed modulo B′.

4.2 Total Evaluation of Rewrite Theories

The total evaluation transformation R 	→ RΩ
l,r is achieved by computing the set of most

general constructor variants [[〈l,r〉]]Ω�E,B
, for each l ⇒ r in R. More specifically, R is

transformed into RΩ
l,r by replacing the set of rewrite rules of R with

RΩ
l,r = {l′ → r′ | l → r ∈ R∧ (〈l′,r′〉,σ) ∈ [[〈l,r〉]]Ω�E,B

}

Correctness of the transformation R 	→ RΩ
l,r (or more precisely, the isomorphism

between the ground canonical algebras of R and RΩ
l,r) is established in [41] and is

ensured when the equational theory E = (Σ,E �B) in R satisfies the FVP, has a con-
structor decomposition (Ω,BΩ,EΩ), and satisfies the preregular below condition.

Example 7. Consider a rewrite theory R that includes a single rewrite rule

rl [Y:Nat] => [s(Y:Nat)] .

and the finite variant equational theory E = (Σ ∪ {[_] : Nat → State},E � B)
that extends the equational theory of Example 4 with the constructor operator
[_] : Nat → State. Note that the decomposition �E = (Σ∪{[_] : Nat → State},B,�E)
of E has a constructor decomposition (Ω, /0, /0) where Σ=Ω�D with Ω= {[_] : Nat→
State,s : Zero→ One,0 :→ Zero} and D = {s : Nat→ Nat}, and clearly satisfies the
preregular below condition for the very same argument exposed in Example 6. Hence,
the transformation R 	→ RΩ

l,r can be applied to R thereby specializing the original rule
into the two following rewrite rules

38 M. Alpuente et al.

rl [s(0)] => [0] .
rl [X:Zero] => [s(X:Zero)] .

which are obtained from the computation of [[〈[Y : Nat], [s(Y : Nat)]〉]]Ω�E,B
.

In Sect. 5, we show how the R 	→ RΩ
l,r transformation can be mimicked as an instance

of our NPERU
A scheme and we formulate two additional instances of the generic algo-

rithm that can deal with a rewrite theory that does not satisfy the FVP and/or SC. Fur-
thermore, sometimes we can transform a theory that satisfies SC but not FVP into a
specialized theory that satisfies both SC and FVP so that the above transformation can
be applied.

5 Instantiating the Specialization Scheme for Rewrite Theories

Given a rewrite theory R = (Σ,E �B,R), with E = (Σ,B,�E) being a decomposition of
(Σ,E �B), the equational theory E in R may or may not meet sufficient completeness
(SC) or the finite variant property (FVP). In this section, we particularize the special-
ization scheme of Sect. 3 by considering the following three8 possible scenarios:

1. E meets SC and the FVP (hence, it has the CFVP);
2. E does not meet SC but it meets the FVP;
3. E does not meet the FVP.

Recall the parameterized NPERU
A algorithm of Sect. 3.3 relies on two generic oper-

ators: an unfolding operator U that defines the unfolding rule used to determine when
and how to terminate the construction of the narrowing trees; and an abstraction opera-
tor A that is used to guarantee that the set of terms obtained during partial evaluation
(i.e., the set of deployed narrowing trees) is kept finite and progressively covers (modulo
B) all of the specialized calls. The instantiation of the scheme requires particularizing
these two parameters in order to specify a terminating, correct and complete partial
evaluation for E . In the following, we provide three different implementations for the
tandem U /A , and we show how they work in practice on some use cases that cover
all three scenarios.

5.1 Unfolding Operators

Let us first provide three possible implementations of the unfolding operator U that
are respectively able to deal with: (a) equational theories that satisfy the SC and FVP
(hence, satisfy the CFVP); (b) any equational theory that satisfies the FVP; and (c)
equational theories that do not satisfy the FVP. Since (Σ,B,�E) is a decomposition of
(Σ,E�B), all the considered implementations adopt the folding variant narrowing strat-
egy to build the narrowing trees which are needed to specialize the input theory.

8 The case when E satisfies SC but not the FVP is not considered because there is no technique
to compute the finite set of most general constructor variants in this case, which is a matter for
future research.

Optimizing Maude Programs via Program Specialization 39

(a) Consider the case when E = (Σ,E �B) satisfies all of the conditions required for
the correctness of the transformation R 	→ RΩ

l,r. In particular, E is SC and has the
FVP. Let Σc be the sort-refinement of the signature Σ presented in Sect. 4.1, where
(_)• (resp., (_)•) is the function that maps the sorts of Σ into the sorts of Σc (resp.,
the sorts of Σc into the sorts of Σ). Then, we define the following unfolding operator
that totally evaluates Q in the decomposition �E

Ucfvp(Q, �E) =
⋃

t∈Q
{(x : s)σ• | t �∗

σ ,�E,B
x : (s•)∧ tσ �= xσ ∧ s= ls(t)}

(b) When the equational theory E does not satisfy SC but does satisfy the FVP, FV-
narrowing trees are always finite objects that can be effectively constructed in finite
time. Therefore, in this specific case, we define the following unfolding operator
that constructs the complete FV-narrowing tree for any possible call.

Ufvp(Q, �E) =
⋃

t∈Q
{t ′ | t �!

σ ,�E,B
t ′ ∈ VN�

�E
(t)}

where t �!
σ ,�E,B

t ′ denotes a FV-narrowing derivation from t to the term t ′ to which

no FV-narrowing steps can be applied.
(c) Finally, when E does not meet the finite variant property, U fvp(Q, �E) cannot be

applied since the FVN strategy may lead to the creation of an infinite narrowing
tree for some specialized calls in Q. In this case, the unfolding rule must imple-
ment a form of local control that stops the expansion of infinite derivations in the
FV-narrowing tree. A solution to this problem has already been provided in [7]
by means of an unfolding operator that computes a finite (possibly partial) FV-
narrowing tree fragment for every specialized call t in Q. Narrowing derivations
in the tree are stopped when no further FV-narrowing step can be performed or
potential non-termination is detected by applying a subsumption check at each FV-
narrowing step. The subsumption check is based on an equational order-sorted
extension of the classical homeomorphic embedding relation [8] that is commonly
used to ensure termination of symbolic methods and program optimization tech-
niques.
Roughly speaking, a homeomorphic embedding relation is a structural preorder
under which a term t is greater than (i.e., it embeds) another term t ′, written as t � t ′,
if t ′ can be obtained from t by deleting some parts, e.g., s(s(X +Y) ∗ (s(X)+Y))
embeds s(Y ∗ (X +Y))). Embedding relations have become very popular to ensure
termination of symbolic transformations because, provided the signature is finite,
for every infinite sequence of terms t1, t2, . . . , there exist i < j such that ti � t j. In
other words, the embedding relation is a well-quasi order (wqo) [34]. Therefore,
when iteratively computing a sequence t1, t2, . . . , tn, finiteness of the sequence can
be guaranteed by using the embedding as a whistle: whenever a new expression
tn+1 is to be added to the sequence, we first check whether tn+1 embeds any of
the expressions already in the sequence. If that is the case, we say that � whis-
tles, i.e., it has detected (potential) non-termination and the computation has to be

40 M. Alpuente et al.

stopped. Otherwise, tn+1 can be safely added to the sequence and the computation
can proceed.
By Ufvp(Q, �E), we denote this unfolding operator whose full formalization is given
in [7].

5.2 Abstraction Operators

We consider two implementations of the abstraction operator: the first one deals with
equational theories that are sufficiently complete and satisfy the finite variant property,
while the second one covers the other two possible scenarios that we highlighted at the
beginning of Sect. 5.

(a) When the equational theory E satisfies SC and has the FVP so that the unfold-
ing operator Ucfvp(Q, �E) is applied, there is no need for an abstraction process.
By construction of the Ucfvp(Q, �E) operator, the leaves of the tree are construc-
tor terms; hence, they do not include any uncovered function call that needs to
be abstracted by a further iteration of the partial evaluation process as constructor
terms are trivially B-closed w.r.t. Q. Therefore, in this case, we can simply define
Acfvp(Q,L ,B) = Q, thus returning the very same set of specialized calls Q.

(b) As for the remaining cases, there is no guarantee that the leaves of the narrowing
trees are B-closed w.r.t. the specialized calls in Q. Indeed, when the equational the-
ory E does not satisfy either sufficient completeness or the finite variant property,
the operators U fvp(Q, �E) and U fvp(Q, �E) might deliver uncovered function calls
to be abstracted. To overcome this problem, we simply resort to the abstraction
procedure of [7], which relies on an equational order sorted extension of the pure,
syntactical least general generalization algorithm [10] so that not too much preci-
sion is lost despite the abstraction.
Roughly speaking, the syntactic generalization problem for two or more expres-
sions, in a pure syntactic and untyped setting, means finding their least general
generalization, i.e., the least general expression t such that all of the given expres-
sions are instances of t under appropriate substitutions. For instance, the expres-
sion sibling(X,Y) is a generalizer of both sibling(john,sam) and sibling(tom,sam),
but their least general generalizer is sibling(X,sam).
In [10], the notion of least general generalization is extended to the order-sorted
modulo axioms setting, where function symbols can obey any combination of
associativity, commutativity, and identity axioms (including the empty set of such
axioms). For instance, the least general generalizer of sibling(sam,john) and sib-
ling(tom,sam) is still sibling(X,sam), when sibling is a commutative symbol. In
general, there is no unique lgg in the framework of [10], due to both the order-
sortedness and to the equational axioms. Nonetheless, for the case of modular
combinations of associativity and commutativity axioms, there is always a finite,
minimal, and complete set of equational lggs (E-lggs) so that any other generalizer
has at least one of them as a B-instance.

Therefore, in the case when the equational theory E does not satisfy either suffi-
cient completeness or the finite variant property, we consider the abstraction operator

Optimizing Maude Programs via Program Specialization 41

AElgg(Q,L ,B), which returns a set Q′ of specialized calls that abstracts the set Q∪L
by using the generalization process formalized in [7] that ensures that Q′ is B-closed
w.r.t. Q∪L .

The use of folding variant narrowing in the definition of the three unfolding opera-
tors Ufvp, Ufvp, and Ucfvp, together with the abstraction operators Acfvp and AElgg, pro-
vides good overall behavior regarding both the elimination of intermediate data struc-
tures and the propagation of information.

6 Specializing the Bank Account System

In this section, we describe the precise specialization process that obtains the special-
ized bank account system of Example 1. For convenience, we denote by Rb the rewrite
theory that specifies the bank account system. Rb includes the three rewrite rules of
Fig. 1 and the equational theory Eb of Fig. 2. The theory Eb also contains algebraic
axioms associated with two operators: 1) the associative and commutative, construc-
tor operator _+_ : Nat Nat -> Nat with identity 0 (used to model natural num-
bers); and 2) the associative and commutative, constructor operator _,_: MsgConf
MsgConf -> MsgConf with identity mt (used to model multisets of deposit and with-
drawal messages). The whole Maude specification of the bank account system is given
in Appendix A.

As shown in Example 1, Eb is not a finite variant theory; therefore, the specialization
of Rb can only be performed by using the unfolding operator Ufvp despite the fact that
it is sufficiently complete. Indeed, the other two operators (namely, Ufvp and Ucfvp) are
only applicable to equational theories that satisfy the finite variant property. In other
words, the specialization of Rb is achieved by using the NPERU

A scheme instance with
U =Ufvp and A =AElgg.

The specialization algorithm starts Phase 1 by normalizing the rewrite rules of Rb

(Line 2 of Algorithm 1) w.r.t. Eb. In this specific case, normalization only affects the
dep rewrite rule, while w-req and w rules are left unchanged. The normalized version
of dep is

rl [dep-n] : < bal: n pend: x overdraft: false threshold: n + m + h funds: f > # msgs,d(m)
=> < bal: n + m pend: x overdraft: false threshold: n + m + h funds: f > # msgs .

Rule normalization allows a first optimization to be achieved since the dep rule is
simplified into dep-n by removing the operator « bal:_ pend:_ overdraft:_
threshold:_funds:_ » from the right-hand side of the dep rule. At this point, all
the maximal function calls are extracted from the normalized rules and stored in the set
Q (Line 3 of Algorithm 1). Note that only the right-hand side of the w rule contains calls
to the underlying equational theory Eb. More precisely, the set Q of maximal function
calls is Q= {rhs(w)}, where rhs(w) is the right-hand side of w. The algorithm proceeds
by partially evaluating Eb w.r.t.Q by an instance of the EQNPEU

A scheme with Ufvp
(in tandem with AElgg) (Line 4 of Algorithm 1) and Phase 1 terminates by generating
a rather complex and textually large specialized equational theory E ′

b that contains 17
equations as shown in Appendix B. In Phase 2, the algorithm compresses the computed

42 M. Alpuente et al.

equational theory E ′
b into a more compact theory E ′′

b that just contains four newly intro-
duced functions (namely, f1, f2, f3, f4) that rename common nested calls and remove
unused symbols. Furthermore, it propagates the computed renaming to the rewrite rules
to let them access the new functions of E ′′

b . The resulting specialization R ′
b for Rb is

shown in Appendix C.
It is worth noting that the equational theory E ′′

b in R ′
b has the finite variant property.

This can be automatically proven by using the FVP checker in [9] on E ′′
b , or by simply

observing that the functions f1, f2, f3, f4 are all defined by non-recursive equations
and do not contain nested function calls in their left-hand sides, which suffices to ensure
the FVP for E ′′

b [11]. Furthermore, the constructor decomposition of E ′′
b has a signature

which is trivially preregular below the signature of E ′′
b , since there are no overloaded

operators with both a constructor typing and a defined typing. Additionally, by Theorem
1 E ′′

b is sufficiently complete.
Therefore, R ′

b can be further specialized by applying the NPERU
A scheme instanti-

ated with U = Ucfvp and A =Acfvp. The final outcome is the optimized and extremely
compact specialization R ′′

b shown in Example 1 (Fig. 3) that only includes three equa-
tions modeling the new invented function f0.

As a final remark, R ′′
b can be further optimized by a simple post-processing unfold-

ing transformation that achieves the very same total evaluation of [41]. It suffices to
encode each rewrite rule l ⇒ r in R ′′

b with a term l | r (where _ | _ is a fresh opera-
tor not appearing in the equational theory) and solve the reachability goal l | r �σ (x :
ls(l)• | y : ls(r)•). The instantiated leaves l′ | r′ are constructor terms (x : s)σ• | (y : s)σ•
that correspond to the totally evaluated rules l′ ⇒ r′.

For instance, the w-s rewrite rule in R ′′
b can be totally evaluated by solving the

reachability goal with initial state

< bal: n pend: x overdraft: false threshold: n + h funds: f > # msgs,w(m) | f0(m,n,x,h,msgs)

that yields the specialized and totally evaluated withdrawal rules:
rl [w-s-1] : < bal: n + m + x pend: m overdraft: false threshold: n + m + x + h funds: f >

msgs, w(m + x)
=> < bal: n pend: 0 overdraft: false threshold: n + m + x + h funds: f > # msgs .

rl [w-s-2] : < bal: n + m pend: m + x overdraft: false threshold: n + m + h funds: f > # msgs, w(m)
=> < bal: n pend: x overdraft: false threshold: n + m + h funds: f > # msgs .

rl [w-s-3] : < bal: n pend: y overdraft: false threshold: n + h funds: f > # msgs, w(1 + n + x)
=> < bal: n pend: y overdraft: true threshold: n + h funds: f > # msgs .

The transformation leaves w-req-s and dep-s unchanged because these rules do not
contain any function call to be unfolded.

Our specialization framework has been implemented in the Presto system [46],
which provides all the functionality previously described in this paper. Table 1 con-
tains some experiments that we have performed with an extension of the rewrite theory
of Example 1 that is given by the Maude module Fully-Managed-Account, where
deposits are fully automated by increasing balance accounts with a huge amount in a
single step. Therefore there is no need to explicitly provide deposit messages in the
input terms. By doing so, we avoid to feed Presto with huge input terms (with millions

Optimizing Maude Programs via Program Specialization 43

Table 1. Benchmarks for the fully managed bank account system.

Size Fully-Managed-Account FMA-Specialized FMA-Specialized-FVP FMA-Specialized-CFVP FMA-Specialized-TE
Rls/Eqs T (ms) Rls/Eqs T (ms) Speedup Rls/Eqs T (ms) Speedup Rls/Eqs T (ms) Speedup Rls/Eqs T (ms) Speedup

100K 3/14 1,398 3/17 65 21.51 3/3 63 22.19 3/3 63 22.19 5/0 96 14.56

500K 7,175 337 21.29 308 23.30 308 23.30 483 14.86

1M 14,472 680 21.28 602 24.04 599 24.16 998 14.50

5M 72,096 3,469 20.78 3,068 23.50 3,053 23.61 5,049 14.28

10M 141,919 6,805 20.86 6,149 23.08 6,127 23.16 10,162 13.97

of deposits) whose parsing time might heavily affect the overall performance of the
specialization process, thereby providing a more precise and fair experimental analysis.

Specifically, four distinct specializations of the rewrite theory under examina-
tion have been computed. Since the original specification Fully-Managed-Account
does not satisfy the FVP, we first computed the specialized rewrite theory
FMA-Specialized by using the tandem Ufvp/AElgg. The obtained specialization does
satisfy all of the conditions that are required to be further specialized by using either the
tandem Ufvp/AElgg or Ucfvp/Acfvp (in particular, it satisfies SC and has the FVP); hence,
we have also independently computed the two corresponding (re-)specializations,
FMA-Specialized-FVP and FMA-Specialized-CFVP. Also, we derived the total
evaluation FMA-Specialized-TE from FMA-Specialized-CFVP.

For each experiment, we recorded the execution time TR′ of each specialization for
five rewrite sequences with an increasing number of rewrite rule applications (from 100
thousands to 10 millions of applications). The considered sequences originate from the
very same input term, hence input processing impacts on each experiment in the same
way. Then, we compared TR′ with the execution time TR in the original specification.
These parameters allow us to precisely measure the degree of equational optimization
achieved by Presto for a given rewrite theory. Indeed, the relative speedups for each
specialization are computed as the ratio TR/TR′ . We also measured the size of each
specialization as the number of its rewrite rules and equations.

Our figures show an impressive performance improvement in all of the considered
experiments, with an average speedup of 20.52. In the worst case, we get a totally
evaluated rewrite theory FMA-Specialized-TE that runs 13.97 times faster than the
original system, while the highest speedup (24.16) is achieved by the (doubly special-
ized) theory FMA-Specialized-CFVP. Interestingly, the totally evaluated specification
FMA-Specialized-TE is the most compact one (5 rules and 0 equations), nonetheless
it provides the smallest, yet significant (∼14%), optimization. This happens because all
the equations have been removed from FMA-Specialized-TE so that all of the equa-
tional computations are now embedded into system computations that are performed by
applying rewrite rules, which is notoriously less efficient in Maude than the determinis-
tic rewriting with equations. We also note that, since FMA-Specialized satisfies both
SC and the FVP, for this particular benchmark the rewrite theories that are obtained
by (re-)specializing FMA-Specialized using U f vp and Uc f vp essentially achieve the
same optimization.

Full details of these benchmarks together with further experiments are available at
http://safe-tools.dsic.upv.es/presto.

http://safe-tools.dsic.upv.es/presto

44 M. Alpuente et al.

7 Related Work and Conclusion

In the related literature, there are very few semantic-preserving transformations for
rewrite theories. Since Maude is a reflective language, many tools are built in Maude
that rely on theory transformations that preserve specific properties such as invariants or
termination behavior. Full-Maude [21], Real-Time Maude [45], MTT [26], and Maude-
NPA [28] are prominent examples. Equational abstraction [17,42] reduces an infinite
state system to a finite quotient of the original system algebra by introducing some
extra equations that preserve certain temporal logic properties. Explicit coherence [50]
between rules, equations and axioms is necessary for executability purposes and also
relies on rewrite theory transformations [41]. Also the semantic K-framework [47] and
the model transformations of [48] are based on sophisticated program transformations
that both preserve the reduction semantics of the original theory. Nonetheless they do
not aim to program optimization.

It is worth noting that our first transformation (for sufficiently complete, finite vari-
ant theories) must not be seen as a simple recast, in terms of partial evaluation, of the
theory transformation of [41] since it has at least two extra advantages: 1) it seamlessly
integrates the transformation of [41] within a unified, automated specialization frame-
work for rewrite theory optimization; and 2) we have shown how we can automatically
transform an equational theory that does not satisfy the FVP into a CFVP theory that
can then be totally evaluated, while the original theory could not.

Our specialization technique can have a tremendous impact on the symbolic anal-
ysis of concurrent systems that are modeled as rewrite theories in Maude. The main
reason why our technique is so effective in this area is that it not only achieves huge
speedup for relevant classes of rewrite theories, but it can also cut down an infinite fold-
ing variant narrowing space to a finite one for the underlying equational theory E . By
doing this, any E -unification problem can be finitely solved and symbolic, narrowing-
based analysis with R modulo E can be effectively performed. Moreover, in many cases,
the specialization process transforms a rewrite theory whose operators obey algebraic
axioms, such as associativity, commutativity, and unity, into a much simpler rewrite
theory with no structural axioms so that it can be run in an independent rewriting infras-
tructure that does not support rewriting or narrowing modulo axioms. This allows some
costly analyses that may require significant (or even unaffordable) resources, both in
time and space, to be effectively performed.

Finally, further applications could benefit from the optimization of variant gener-
ation that is achieved by Presto. For instance, an important number of applications
(and tools) are currently based on narrowing-based variant generation: for example, the
protocol analyzers Maude-NPA [28], Tamarin [37], AKiSs [18], Maude debuggers and
program analysers [3–6], termination provers, model checkers, variant-based satisfiabil-
ity checkers, coherence and confluence provers, and different applications of symbolic
reachability analysis [24].

Optimizing Maude Programs via Program Specialization 45

A Full Specification of the Bank Account System

fmod NAT-PRES-MONUS is
pr TRUTH-VALUE .
sorts Nat NzNat Zero .
subsort Zero NzNat < Nat .
op 0 : -> Zero [ctor] .
op 1 : -> NzNat [ctor] .
op _+_ : NzNat Nat -> NzNat [ctor assoc comm id: 0] .
op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .
vars n m : Nat .
vars b b’ : Bool .
op _>_ : Nat Nat -> Bool .
eq m + n + 1 > n = true [variant] .
eq n > n + m = false [variant] .
op _>=_ : Nat Nat -> Bool .
eq m + n >= n = true [variant] .
eq n >= m + n + 1 = false [variant] .
op _-_ : Nat Nat -> Nat .
eq n - (n + m) = 0 [variant] .
eq (n + m) - n = m [variant] .

endfm

mod MANAGED-ACCOUNT is
pr NAT-PRES-MONUS .
sorts Account Msg MsgConf State .
subsort Msg < MsgConf .
op < bal:_pend:_overdraft:_threshold:_funds:_ > : Nat Nat Bool Nat Nat -> Account [ctor] .
op << bal:_pend:_overdraft:_threshold:_funds:_ >> : Nat Nat Bool Nat Nat -> Account .
op mt : -> MsgConf [ctor] .
op w : Nat -> Msg [ctor] .
op d : Nat -> Msg [ctor] .
op _,_ : MsgConf MsgConf -> MsgConf [ctor assoc comm id: mt] .
op _#_ : Account MsgConf -> State [ctor] .
op [_,_,_] : Bool State State -> State .
vars n m x h : Nat .
var b : Bool .
vars s s’ : State .
var msgs : MsgConf .
eq [true,s,s’] = s [variant] .
eq [false,s,s’] = s’ [variant] .
eq << bal: (n + h) pend: m overdraft: b:Bool threshold: h funds: f >>
= << bal: n pend: m overdraft: b:Bool threshold: h funds: f + 1 >> [variant] .

eq << bal: n pend: m overdraft: b:Bool threshold: n + h funds: f >>
= < bal: n pend: m overdraft: b:Bool threshold: n + h funds: f > [variant] .

rl [w-req] : < bal: n + m + x pend: x overdraft: false threshold: n + h funds: f > # msgs
=> < bal: n + m + x pend: x + m overdraft: false threshold: n + h funds: f >

w(m),msgs .

rl [w] : < bal: n pend: x overdraft: false threshold: n + h funds: f > # w(m),msgs
=> [m > n,

< bal: n pend: x overdraft: true threshold: n + h funds: f > # msgs,
< bal: (n - m) pend: (x - m) overdraft: false threshold: n + h funds: f > # msgs] .

rl [dep] : < bal: n pend: x overdraft: false threshold: n + m + h funds: f >
d(m),msgs

=> << bal: (n + m) pend: x overdraft: false threshold: n + m + h funds: f >> # msgs .
endm

46 M. Alpuente et al.

B Specialization of the Bank Account SystemRb

eq [$5 > $1,
< bal: $1 pend: $5 + $6 overdraft:true limit: $1 + $2 funds: $3 > # $4,
< bal: $1 - $5 pend: ($5 + $6) - $5 overdraft: false limit: $1 + $2 funds: $3 > # $4]

= [$5 > $1,
< bal: $1 pend: $5 + $6 overdraft: true limit: $1 + $2 funds: $3 > # $4,
< bal: $1 - $5 pend: $6 overdraft: false limit: $1 + $2 funds: $3 > # $4] [variant] .

eq [$5 > $5,
<bal: $5 pend: $1 + $5 overdraft:true limit: $5 + $2 funds: $3 > # $4,
< bal: 0 pend: $1 overdraft: false limit: $5 + $2 funds: $3 > # $4]

= < bal: 0 pend: $1 overdraft: false limit: $5 + $2 funds: $3 > # $4 [variant] .

eq [$5 > $1 + $5,
< bal: $1 + $5 pend: $5 + $6 overdraft:true limit: $1 + $5 + $2 funds: $3 > # $4,
< bal: ($1 + $5) - $5 pend: ($5 + $6) - $5 overdraft: false limit: $1 + $5 + $2

funds: $3 > # $4]
= < bal: $1 pend: $6 overdraft: false limit: $1 + $5 + $2 funds: $3 > # $4 [variant] .

eq [$5 > $5 + $6,
< bal: $5 + $6 pend: $1 + $5 overdraft: true limit: $5 + $6 + $2 funds: $3 > # $4,
< bal: ($5 + $6) - $5 pend: $1 overdraft: false limit: $5 + $6 + $2 funds: $3 > # $4]

= < bal: $6 pend: $1 overdraft: false limit: $5 + $6 + $2 funds: $3 > # $4 [variant] .

eq [($4 + $5) > $4,
< bal: $4 pend: $4 + $5 + $6 overdraft: true limit: $4 + $1 funds: $2 > # $3,
< bal: $4 - $4 + $5 pend: ($4 + $5 + $6) - $4 + $5 overdraft: false limit: $4 + $1

funds: $2 > # $3]
= [($4 + $5) > $4,

< bal: $4 pend: $4 + $5 + $6 overdraft: true limit: $4 + $1 funds: $2 > # $3,
< bal: 0 pend: $6 overdraft: false limit: $4 + $1 funds: $2 > # $3] [variant] .

eq [($4 + $5) > $4 + $5,
< bal: $4 + $5 pend: $4 overdraft: true limit: $4 + $5 + $1 funds: $2 > # $3,
< bal: 0 pend: 0 overdraft: false limit: $4 + $5 + $1 funds: $2 > # $3]

= < bal: 0 pend: 0 overdraft: false limit: $4 + $5 + $1 funds: $2 > # $3 [variant] .

eq [($4 + $5) > $4 + $5 + $6,
< bal: $4 + $5 + $6 pend: $4 overdraft: true limit: $4 + $5 + $6 + $1 funds: $2 > # $3,
< bal: ($4 + $5 + $6) - $4 + $5 pend: 0 overdraft: false limit: $4 + $5 + $6 + $1

funds:$2 > # $3]
= < bal: $6 pend: 0 overdraft: false limit: $4 + $5 + $6 + $1 funds: $2 > # $3 [variant] .

eq [($5 + $6) > $1,
< bal: $1 pend: $5 overdraft: true limit: $1 + $2 funds: $3 > # $4,

< bal: $1 - $5 + $6 pend: $5 - $5 + $6 overdraft: false limit: $1 + $2 funds: $3 > # $4]
= [($5 + $6) > $1,

< bal: $1 pend: $5 overdraft: true limit: $1 + $2 funds: $3 > # $4,
< bal: $1 - $5 + $6 pend: 0 overdraft: false limit: $1 + $2 funds: $3 > # $4] [variant] .

eq [($5 + $6) > $1 + $5 + $6,
< bal: $1 + $5 + $6 pend: $5 overdraft: true limit: $1 + $5 + $6 + $2 funds: $3 > # $4,
< bal: ($1 + $5 + $6) - $5 + $6 pend: $5 - $5 + $6 overdraft: false limit: $1 + $5 + $6 + $2

funds: $3 > # $4]
= < bal: $1 pend: 0 overdraft: false limit: $1 + $5 + $6 + $2 funds: $3 > # $4 [variant] .

rl [dep] : < bal: n pend: x overdraft: false threshold: n + m + h funds: f > # msgs,d(m)
=> < bal: n + m pend: x overdraft: false threshold: n + m + h funds: f > # msgs.

rl [w] : < bal: n pend: x overdraft: false threshold: n + h funds: f > # msgs,withdraw(m)
=> [m > n,< bal: n pend: x overdraft: true threshold: n + h funds: f >

msgs, < bal: n - m pend: x - m overdraft: false threshold: n + h funds: f >
msgs] .

rl [w-req] : < bal: n + m + x pend: x overdraft: false threshold: n + m + x + h funds: f > # msgs
=> < bal: n + m + x pend: m + x overdraft: false threshold: n + m + x + h funds: f > # msgs,w(m) .

Optimizing Maude Programs via Program Specialization 47

C Specialization of the Bank Account System Rb
with Compression

eq f0($5, $5 + $6, $1, $2, $3, $4)
= < bal: $6 pend: $1 overdraft: false threshold: $5 + $6 + $2 funds: $3 > # $4 [variant] .

eq f0(1 + $1 + $6, $1, $2, $3, $4, $5)
= < bal: $1 pend: 1 + $1 + $2 + $6 overdraft: true threshold: $1 + $3 funds: $4 > # $5 [variant] .

eq f1($5, $1, $5 + $6, $2, $3, $4) = f0($5, $1, $6, $2, $3, $4) [variant] .

eq f1($5, $1 + $5, $5 + $6, $2, $3, $4)
= < bal: $1 pend: $6 overdraft: false threshold: $1 + $5 + $2 funds: $3 > # $4 [variant] .

eq f1($4 + $5, $4, $4 + $5 + $6, $1, $2, $3) = f2($4, $5, $6, $1, $2, $3) [variant] .

eq f1($5 + $6, $1, $5, $2, $3, $4) = f3($5, $6, $1, $2, $3, $4) [variant] .

eq f1($5 + $6, $1 + $5 + $6, $5, $2, $3, $4)
= < bal: $1 pend: 0 overdraft: false threshold: $1 + $5 + $6 + $2 funds: $3 > # $4 [variant] .

eq f1(1 + $1 + $6, $1, $2, $3, $4, $5)
= < bal: $1 pend: $2 overdraft: true threshold: $1 + $3 funds: $4 > # $5 [variant] .

eq f1($4 + $5 + $6 + $7, $4 + $5, $4 + $6, $1, $2, $3)
= f4($4, $5, $6, $7, $1, $2, $3) [variant] .

eq f2($1, 1 + $6, $2, $3, $4, $5)
= < bal: $1 pend: 1 + $1 + $2 + $6 overdraft: true threshold: $1 + $3 funds: $4 > # $5 [variant] .

eq f2($5, 0, $1, $2, $3, $4)
= < bal: 0 pend: $1 overdraft: false threshold: $5 + $2 funds: $3 > # $4 [variant] .

eq f3($4, $5, $4 + $5 + $6, $1, $2, $3)
= < bal: $6 pend: 0 overdraft: false threshold: $4 + $5 + $6 + $1 funds: $2 > # $3 [variant] .

eq f3($4 + $6, 1 + $5 + $7, $4 + $5, $1, $2, $3)
= < bal: $4 + $5 pend: $4 + $6 overdraft: true threshold: $4 + $5 + $1 funds: $2 > # $3 [variant] .

eq f3(1 + $4 + $6, $5 + $7, $4 + $5, $1, $2, $3)
= < bal: $4 + $5 pend: 1 + $4 + $6 overdraft: true threshold: $4 + $5 + $1 funds: $2 > # $3 [variant] .

eq f4($4, $5, $6, 1 + $7, $1, $2, $3)
= < bal: $4 + $5 pend: $4 + $6 overdraft: true threshold: $4 + $5 + $1 funds: $2 > # $3 [variant] .

eq f4($4, $5, 0, 0, $1, $2, $3)
= < bal: 0 pend: 0 overdraft: false threshold: $4 + $5 + $1 funds: $2 > # $3 [variant] .

eq f4($4, $5, 1 + $6, $7, $1, $2, $3)
= < bal: $4 + $5 pend: 1 + $4 + $6 overdraft: true threshold: $4 + $5 + $1 funds: $2 > # $3 [variant] .

rl [w] : < bal: n pend: x overdraft: false threshold: n + h funds: f > # msgs,w(m)
=> f1(m, n, x, h, f, msgs) .

rl [dep] : < bal: n pend: x overdraft: false threshold: n + m + h funds: f > # msgs,d(m)
=> < bal: n + m pend: x overdraft: false threshold: n + m + h funds: f > # msgs.

rl [w-req] : < bal: n + m + x pend: x overdraft: false threshold: n + m + x + h funds: f > # msgs
=> < bal: n + m + x pend: m + x overdraft: false threshold: n + m + x + h funds: f > # msgs,w(m) .

References

1. Albert, E., Alpuente, M., Falaschi, M., Vidal, G.: Indy User’s Manual. Technical report
DSIC-II/12/98, Department of Computer Systems and Computation, Universitat Politècnica
de València (1998)

2. Albert, E., Alpuente, M., Harms, M., Vidal, G.: A partial evaluation framework for curry pro-
grams. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS (LNAI),

48 M. Alpuente et al.

vol. 1705, pp. 376–395. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48242-
3_23

3. Alpuente, M., Ballis, D., Baggi, M., Falaschi, F.: A fold/unfold transformation framework
for rewrite theories extended to CCT. In: Gallagher, J., Voigtländer, J. (eds.) ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation (PEPM 2010), pp. 43–52. ACM.
https://doi.org/10.1145/1706356.1706367

4. Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Assertion-based analysis via slicing with
ABETS (system description). Theory Pract. Logic Program. 16(5–6), 515–532 (2016)

5. Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Debugging Maude programs via runtime
assertion checking and trace slicing. J. Log. Algebr. Methods Program. 85, 707–736 (2016)

6. Alpuente, M., Ballis, D., Romero, D.: A rewriting logic approach to the formal specification
and verification of web applications. Sci. Comput. Program. 81, 79–107 (2014)

7. Alpuente, M., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: A partial evaluation framework
for order-sorted equational programs modulo axioms. J. Log. Algebr. Methods Program. 110,
1–36 (2020)

8. Alpuente, M., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: Order-sorted homeomor-
phic embedding modulo combinations of associativity and/or commutativity axioms. Fund.
Inform. 177(3–4), 297–329 (2020)

9. Alpuente, M., Cuenca-Ortega, A., Escobar, S., Sapiña, J.: Inspecting Maude variants with
GLINTS. Theory Pract. Logic Program. 17(5–6), 689–707 (2017)

10. Alpuente, M., Escobar, S., Espert, J., Meseguer, J.: A modular order-sorted equational gen-
eralization algorithm. Inf. Comput. 235, 98–136 (2014)

11. Alpuente, M., Escobar, S., Iborra, J.: Termination of narrowing revisited. Theoret. Comput.
Sci. 410(46), 4608–4625 (2009)

12. Alpuente, M., Falaschi, M., Julián, P., Vidal, G.: Specialization of lazy functional logic
programs. In: Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM 1997), pp. 151–162. Association for Com-
puting Machinery (1997)

13. Alpuente, M., Falaschi, M., Moreno, G., Vidal, G.: Safe folding/unfolding with conditional
narrowing. In: Hanus, M., Heering, J., Meinke, K. (eds.) ALP/HOA -1997. LNCS, vol. 1298,
pp. 1–15. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0026999

14. Alpuente, M., Falaschi, M., Vidal, G.: A unifying view of functional and logic program
specialization. ACM Comput. Surv. 30(3es), 9es (1998)

15. Alpuente, M., Falaschi, M., Vidal, G.: Partial evaluation of functional logic programs. ACM
Trans. Program. Lang. Syst. 20(4), 768–844 (1998)

16. Alpuente, M., Lucas, S., Hanus, M., Vidal, G.: Specialization of functional logic programs
based on needed narrowing. Theory Pract. Logic Program. 5(3), 273–303 (2005)

17. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-state sys-
tems using narrowing. In: Proceedings of the 24th International Conference on Rewriting
Techniques and Applications (RTA 2013). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 21, pp. 81–96. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2013)

18. Baelde, D., Delaune, S., Gazeau, I., Kremer, S.: Symbolic verification of privacy-type prop-
erties for security protocols with XOR. In: Proceedings of the 30th International Symposium
on Computer Security Foundations (CSF 2017), pp. 234–248. IEEE Computer Society Press
(2017)

19. Bouchard, C., Gero, K.A., Lynch, C., Narendran, P.: On forward closure and the finite vari-
ant property. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS
(LNAI), vol. 8152, pp. 327–342. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40885-4_23

20. Burstall, R.M., Darlington, J.: A transformation system for developing recursive programs.
J. ACM 24(1), 44–67 (1977)

https://doi.org/10.1007/3-540-48242-3_23
https://doi.org/10.1007/3-540-48242-3_23
https://doi.org/10.1145/1706356.1706367
https://doi.org/10.1007/BFb0026999
https://doi.org/10.1007/978-3-642-40885-4_23
https://doi.org/10.1007/978-3-642-40885-4_23

Optimizing Maude Programs via Program Specialization 49

21. Clavel, M., et al.: Maude Manual (Version 3.0). Technical report, SRI International Computer
Science Laboratory (2020). http://maude.cs.uiuc.edu

22. Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some algebraic
properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-32033-3_22

23. Danvy, O., Glück, R., Thiemann, P.: Partial Evaluation, International Seminar, Dagstuhl Cas-
tle, Germany. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61580-6

24. Durán, F., et al.: Programming and symbolic computation in Maude. J. Log. Algebr. Methods
Program. 110, 100497 (2020)

25. Durán, F., Eker, S., Escobar, S., Martí-Oliet, N., Meseguer, J., Talcott, C.: Associative uni-
fication and symbolic reasoning modulo associativity in Maude. In: Rusu, V. (ed.) WRLA
2018. LNCS, vol. 11152, pp. 98–114. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-99840-4_6

26. Durán, F., Lucas, S., Meseguer, J.: MTT: the Maude termination tool (system description).
In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195,
pp. 313–319. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_27

27. Durán, F., Meseguer, J., Rocha, C.: Ground confluence of order-sorted conditional specifica-
tions modulo axioms. J. Log. Algebr. Methods Program. 111, 100513 (2020)

28. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol analysis mod-
ulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007-2009.
LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
03829-7_1

29. Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using narrow-
ing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73449-9_13

30. Escobar, S., Meseguer, J., Sasse, R.: Variant narrowing and equational unification. Electron.
Notes Theor. Comput. Sci. 238(3), 103–119 (2009)

31. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termina-
tion. J. Logic Algebraic Program. 81(7–8), 898–928 (2012)

32. Gnaedig, I., Kirchner, H.: Computing constructor forms with non terminating rewrite pro-
grams. In: Proceedings of the 8th ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming (PPDP 2006), pp. 121–132. Association for Computing Machin-
ery (2006)

33. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program Genera-
tion. Prentice-Hall, Hoboken (1993)

34. Leuschel, M.: Improving homeomorphic embedding for online termination. In: Flener, P.
(ed.) LOPSTR 1998. LNCS, vol. 1559, pp. 199–218. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48958-4_11

35. Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. J. Logic Program.
11(3–4), 217–242 (1991)

36. Martens, B., Gallagher, J.: Ensuring global termination of partial deduction while allowing
flexible polyvariance. In: Proceedings of the 12th International Conference on Logic Pro-
gramming (ICLP 1995), pp. 597–611. The MIT Press (1995)

37. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the symbolic
analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8_48

38. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Com-
put. Sci. 96(1), 73–155 (1992)

http://maude.cs.uiuc.edu
https://doi.org/10.1007/978-3-540-32033-3_22
https://doi.org/10.1007/3-540-61580-6
https://doi.org/10.1007/978-3-319-99840-4_6
https://doi.org/10.1007/978-3-319-99840-4_6
https://doi.org/10.1007/978-3-540-71070-7_27
https://doi.org/10.1007/978-3-642-03829-7_1
https://doi.org/10.1007/978-3-642-03829-7_1
https://doi.org/10.1007/978-3-540-73449-9_13
https://doi.org/10.1007/3-540-48958-4_11
https://doi.org/10.1007/3-540-48958-4_11
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

50 M. Alpuente et al.

39. Meseguer, J.: Variant-based satisfiability in initial algebras. In: Artho, C., Ölveczky, P.C.
(eds.) FTSCS 2015. CCIS, vol. 596, pp. 3–34. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-29510-7_1

40. Meseguer, J.: Variant-based satisfiability in initial algebras. Sci. Comput. Program. 154, 3–41
(2018)

41. Meseguer, J.: Generalized rewrite theories, coherence completion, and symbolic methods. J.
Log. Algebr. Methods Program. 110, 100483 (2020)

42. Meseguer, J., Palomino, M., Martí-Oliet, N.: Equational abstractions. Theoret. Comput. Sci.
403(2–3), 239–264 (2008)

43. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its application
to verification of cryptographic protocols. Higher-Order Symb. Comput. 20(1–2), 123–160
(2007)

44. Middeldorp, A., Hamoen, E.: Counterexamples to completeness results for basic narrowing
(extended abstract). In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS, vol. 632, pp. 244–
258. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0013830

45. Ölveczky, P.C., Meseguer, J.: The real-time Maude tool. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 332–336. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3_23

46. The Presto Website (2020). http://safe-tools.dsic.upv.es/presto
47. Roşu, G.: K: a semantic framework for programming languages and formal analysis tools.

In: Dependable Software Systems Engineering. NATO Science for Peace and Security Series
- D: Information and Communication Security, vol. 50, pp. 186–206. IOS Press (2017)

48. Rodríguez, A., Durán, F., Rutle, A., Kristensen, L.M.: Executing multilevel domain-specific
models in Maude. J. Object Technol. 18(2), 4:1–4:21 (2019)

49. Slagle, J.R.: Automated theorem-proving for theories with simplifiers, commutativity, and
associativity. J. ACM 21(4), 622–642 (1974)

50. Viry, P.: Equational rules for rewriting logic. Theoret. Comput. Sci. 285(2), 487–517 (2002)

https://doi.org/10.1007/978-3-319-29510-7_1
https://doi.org/10.1007/978-3-319-29510-7_1
https://doi.org/10.1007/BFb0013830
https://doi.org/10.1007/978-3-540-78800-3_23
https://doi.org/10.1007/978-3-540-78800-3_23
http://safe-tools.dsic.upv.es/presto

Automated Synthesis of Software
Contracts with KindSpec

Maŕıa Alpuente and Alicia Villanueva(B)

Valencian Research Institute for Artificial Intelligence, VRAIN,
Universitat Politècnica de València, Valencia, Spain

{alpuente,alvilga1}@upv.es

Abstract. In this paper, we describe KindSpec, an automated tool
that synthesizes software contracts from programs that are written in a
significant fragment of C that supports pointer-based structures, heap
manipulation, and recursion. By relying on a semantic definition of the
C language in the K semantic framework, KindSpec leverages the sym-
bolic execution capabilities of K to axiomatically explain any program
function. This is done by using observer routines in the same program
to characterize the program states before and after the function execu-
tion. The generated contracts are expressed in the form of logical axioms
that specify the precise input/output behavior of the C routines, includ-
ing both general axioms for default behavior and exceptional axioms for
the specification error behavior. We summarize the main services pro-
vided by KindSpec, which also include a novel refinement facility that
improves the quality and accuracy of the synthesized contracts. Finally,
we provide an experimental evaluation that assesses its effectiveness.

Keywords: Contract inference · Symbolic execution · Abstract
subsumption · Exceptions

1 Introduction

Software contracts provide mathematical specification for the terms of the service
that software components can provide. Contracts on software are essentially
written by using program preconditions and postconditions, which are similar to
Hoare formulas that formalize the mutual obligations and benefits of the software
units or routines [34]. Contract checking can improve software reliability but
requires contracts to always be guaranteed to be consistent with the program
code, which places a heavy burden on programmers and hinders its applicability.
Moreover, while exceptional (or error) behavior specification should be integral
to the contract, error specification is highly prone to introduction of mistakes
and oversight.

This research was partially supported by TAILOR, a project funded by EU Horizon
2020 research and innovation programme under GA No 952215, grant RTI2018-094403-
B-C32 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making
Europe”, and by Generalitat Valenciana PROMETEO/2019/098.

c© Springer Nature Switzerland AG 2023
P. Lopez-Garcia et al. (Eds.): Hermenegildo Festschrift 2022, LNCS 13160, pp. 51–71, 2023.
https://doi.org/10.1007/978-3-031-31476-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31476-6_3&domain=pdf
http://orcid.org/0000-0002-9268-1178
http://orcid.org/0000-0003-1090-5009
https://doi.org/10.1007/978-3-031-31476-6_3

52 M. Alpuente and A. Villanueva

This paper presents KindSpec, an automated contract synthesis tool that
is based on abstract symbolic execution for a significant fragment of C called
KernelC [18]. KernelC supports recursive function and data structure defi-
nition, pointers, and dynamic memory allocation and deallocation (malloc and
free routines), but it lacks pointer arithmetic and the possibility to import exter-
nal code. The contracts that we synthesize essentially consist of logical assertions
that characterize the behavior of a program function in terms of what can be
observed in the states before and after the function execution. The inferred
axioms include default (general) rules and exceptions to these rules that spec-
ify exceptional (or error) behavior; e.g., undesirable use cases or execution side
effects.

The overall quality of programs and specifications can be fairly improved
by systematically dealing with errors and exceptions. While several mainstream
languages such as C++ and Java provide built-in support for exception handling,
the C ANSI/ISO standard does not foresee any high-level way to define, throw,
and catch exceptions [1]. The usual way for handling errors in C is to define
special error return values through program constants, with the caller’s duty
being to check the returned value and to take appropriate action [21]. A known
disadvantage of this practice is that it obscures the program control flow and is
highly prone to oversight. Since exception failures can account for up to 2/3 of
system crashes and 50% of security vulnerabilities [22], the capability to infer
exceptional axioms from program code can be very helpful in this regard.

KindSpec implements an extension of the contract-discovering technique
developed in [2,3], which is based on symbolic execution, a well-known program
analysis technique that runs programs by using symbolic input values rather than
actual (concrete) values [5,30]. By abstractly representing inputs as symbols,
symbolic execution can simultaneously explore multiple paths that a program
could take, resorting to constraint solvers to construct actual instances that
would exercise the path. Roughly speaking, in the discovery methodology of [2],
given a function f of a program P , and a root-to-leaf path from the pre-state s to
the post-state s′ in the symbolic execution tree for f in P , an implicative axiom
(p ⇒ q) is synthesized that explains the symbolic path from s to s ′. Essentially,
the antecedent p (resp. consequent q) of the axiom consists of a sequence of
equations of the form o(x1, . . . xm) = vs (resp. o(x1, . . . xm) = vs′) where each
vs (resp. vs′) is the result of applying the m-ary observer function o of P to
s (resp. s ′). For example, for the case of a classical function push(x,t) that
piles up an element x at the top of a given bounded stack t, the inferred logical
axiom describes the expected behavior that, provided t was not full, the new top
element is x and the stack size is increased by one: size(t)=n ∧ isfull(t)=0
∧ top(t)=?e ⇒ size(t)=n+1 ∧ isfull(t)=?b ∧ top(t)=x, where ?e and ?b
stand for symbolic values.

The symbolic infrastructure of KindSpec is built on top of the rewriting-
based, programming language definitional framework K, which facilitates the
development of executable semantics of programming languages and related for-
mal analysis techniques and tools, such as type inferencers or program verifiers

Automated Synthesis of Software Contracts with KindSpec 53

[38]. In [2], the recent symbolic execution capabilities of K –that are available
from K 3.4 on– were enriched with two new features not provided by K: 1) lazy
initialization, to effectively handle symbolic memory objects; and 2) abstract
subsumption, to ensure termination without imposing fixed depth bounds. Due
to abstraction, some of the inferred axioms cannot be guaranteed to be correct
and are kept apart as candidate (or overly general) axioms.

KindSpec builds upon a previous, preliminary prototype presented in [2]
and improves it in several ways: 1) we have fairly improved the maturity and
robustness of the tool, giving support to more precise abstract domains that
allow us to deal more accurately with complex dynamic allocated data structures
such as linked lists and doubly-linked lists (including circular/cyclic lists); 2)
we improved the accuracy of the inferred contracts by extending the original
refinement process implemented in KindSpec that gets rid of less general axioms
with new functionality for supporting axiom trusting and falsification; 3) we
have extended the coverage of the analysis with the capability to infer axioms
that express exceptional behavior; this not only improves the quality of the
specification but may also suggest suitable program fixes that prevent execution
failures to occur due to the faults. The KindSpec tool is publicly available at
http://safe-tools.dsic.upv.es/kindspec2 2.

Manuel’s pioneering work on concurrent logic programming with assertions
has been a source of inspiration for our research on semantics of concurrent
languages and symbolic execution since we met in the 1990s. The aim of this
work is to honor Manuel with this paper that contributes to further advancing
the intertwining between these areas.

2 Inferring Software Contracts with KindSpec

The wide interest in formal specifications as helpers for a variety of analy-
sis, validation, and verification tools has resulted in numerous approaches for
(semi-)automatically computing different kinds of specifications that can take
the form of contracts, snippets, summaries, process models, graphs, automata,
properties, rules, interfaces, or component abstractions. In this work, we focus
on input-output relations; given a precondition for the state, we infer which
modifications in the state are implied, and we express the relations as logical
implications that reuse the program functions themselves. In order to achieve
this, the inference technique of KindSpec relies on a classification scheme for
program functions where a function may be a modifier or an observer, or it can
play both roles. As defined in [31], observers are operations that can be used to
inspect the state of an object, while modifiers change it. Since the C language
does not enforce data encapsulation, we cannot presume purity of any function.
Hence, we do not assume the traditional premise that observer functions do not
modify the program state and we consider as observer any function whose return
type is different from void.

Symbolic execution of a function call can be represented as a tree-like struc-
ture where each branch corresponds to a set of possible execution paths. At any

http://safe-tools.dsic.upv.es/kindspec2_2

54 M. Alpuente and A. Villanueva

time of the execution, KindSpec’s symbolic execution engine maintains a state
s = (pc, stmt, σ, h, φ), where pc (the program counter), stmt (the next statement
to evaluate), σ (the symbolic program store that associates program variables
with symbolic expressions), and h (the symbolic heap used to store dynami-
cally allocated objects) are akin to standard configurations used in operational
semantics. As for the path constraint φ, it is a formula that expresses a set of
assumptions that are generated whenever a branching condition on primitive
fields is taken in the execution to reach stmt. Intuitively, when symbolic exe-
cution reaches a conditional control flow statement, the logical condition that
enables each branch is conjuncted to the accumulated path constraint of each
diverging path. When the executed path ends, the associated path constraint
represents the condition that input values must satisfy in order for the execu-
tion to reach the current program point.

To provide for contract discovering, we enriched the symbolic states sup-
ported by the symbolic K framework with a new component ι (called the initial
heap) that is aimed to keep track of the heap constraints that are generated dur-
ing lazy initialization. Roughly speaking, when an instruction performs a first
access to an uninitialized object reference field, the symbolic execution forks the
current state with three different heap configurations, in which the field is respec-
tively initialized with: (1) null, (2) a reference to a new object with all symbolic
attributes, and (3) a previously introduced concrete object of the desired type.

In order to synthesize a contract for the function of interest f , a symbolic
call to f is executed with a sequence x1, . . . xn of fresh variables (simply denoted
by xn) as arguments and initial path constraint true, yielding as a result a
set F of final states. Then, for each state F in F , an instantiated initial state
I = (0, f(xn), ∅, ι, φ) which stands for the program state before executing f , is
built by joining together the initial call f(xn) with the path constraint φ and
the lazy initialization constraint ι that are both retrieved from the final state
F . The symbolic execution path from I to F is then described by means of an
axiom (p ⇒ q), which is obtained by:

1. symbolically running every (feasible) m-ary program observer o on both states
I and F , over any subsequence of m arguments taken from xn and all its
possible permutations. The feasible observers are those having a subset of f ’s
arguments as parameters. Each observer execution contributes an equational
explanation o(xm) = vI (resp. o(xm) = vF) to the premise p (resp. the
consequent q) of the synthesized axiom.

2. Adding to q a last equation ret = v, where v is the value returned by the
function f at the final symbolic execution state F .

The expectation that observation functions exist or can easily be written is
reasonable. Observer calls are independently executed on I (resp. F) so that they
cannot contaminate each other. Those observer calls that are found out to modify
the given state are disregarded since the observation could have corrupted the
observed behavior. Also, we note that lazy initialization is never applied during
the symbolic execution of observer functions since they would be exploring fresh
states beyond the analyzed symbolic execution configurations. When it is not the

Automated Synthesis of Software Contracts with KindSpec 55

case that all of the symbolic execution branches for o(xm) return the same value,
the observation is inconclusive and a symbolic equation o(xm) =?v is built, for
fresh symbolic variable ?v.

Specification of Exceptional Behavior. Error specification and handling has tra-
ditionally been a challenge to the theory of abstract data types [36], which
is considered a major tool for writing hierarchical, modular, implementation-
independent specifications [24]. The main reason for this is that initial algebra
semantics considers errors just as ordinary data and then spends much effort
to discriminate errors from correct data. Our error handling approach borrows
some ideas from order-sorted semantics, which supports many different styles for
dealing with errors [26]. Roughly speaking, at the semantic level we provide the
semantic definition of the language with an explicit error supersort (supertype)
S for each program type T , such that error handling is naturally achieved by
overloading every program operator f : T1, T2, . . . Tn → T in the corresponding
error supertypes, i.e., f : S1, S2, . . . Sn → S. By this means, error return values
belong to the supertype S and are valid results for the evaluation of operator
f although they are not compatible with correct data return values of T . This
is comparable in a sense to the handling of errors in the ACSL contract speci-
fication language [6], where special error return values are introduced in the C
semantics.

In [25], Goguen suggests including all exceptional behaviors and error mes-
sages directly in the specifications by providing as much information as is helpful
about what is wrong or exceptional. In order to identify exceptional state behav-
ior and errors directly from the program code, we have enriched the symbolic
execution of [2] so that exceptional behavior is integral to the inferred con-
tract specification. First, we have identified the most common undesirable (or
erroneous) behaviors that may occur while running a KernelC1 program and
provided each of them with an error code, as shown in Table 1. Then, we cre-
ated a new predefined KernelC data type (universal supertype) consisting of
the set of error codes, and we redefined the KernelC semantic rules such that
error return values of the form (errorCode, pc) are allowed for all types, where
the program counter pc aims to identify the precise statement of the program
code that caused the error. Finally, we provided overloaded definitions of the
program functions as explained in Sect. 1. By this means, every circumstance
where an exception is triggered is witnessed by the corresponding error return
value, which is not only useful for debugging purposes but can also be used to
ascertain suitable program patches that avoid the errors. KindSpec internally
represents each error e (e.g., null dereference, division by zero, etc.) as the repair
problem (e, pc,V), with V being the set of affected variables, whose solutions
would represent a particular program fix. By the time being, such a fix just con-
sists of suggesting the insertion of safety checks on the variables of V at the right
program points to avoid e. The general problem of automated program repair

1 Some standard C syntactic errors such as IRT are not statically detected by K, thus
they show up at (symbolic) execution time.

56 M. Alpuente and A. Villanueva

Table 1. Most common exceptions added to the KindSpec definition of KernelC.

Error Exception Description

code

NPE Null Pointer Error Null dereferencing

DBZ Division By Zero Division of any number by 0

VVA Void Value Access Access to a non-pointer value of type void

NMS Non-valid Malloc Size Calling malloc with a negative or zero object
size

NOD Null Object Destruction Calling free over a null reference

UMA Undefined Memory Access Access to an undefined memory segment (e.g.,
immediately after a pointer declaration)

OOS Out Of Scope Access to a variable that is out of scope

IRT Incorrect Return Type Type of return value does not match the
function profile

IAT Incompatible Assign Types Mismatch between type of variable and
assigned value

NEF Non-Existing Function The called function is not defined or declared

UAC Unsuitable Call Arguments Function call does not match the function
profile

for heap-manipulating programs is another major endeavour that has received
increasing attention (see, e.g., [20,41]) and we left for future work.

In [8], exception handling and error recovery cases are specified by means
of “declarations” that separate the correct values and the error values into two
different subsets of their carrier sets. The semantic approach that we adopt is
more akin to [36], which differentiates compile-time sorts from run-time types,
where compile-time sorts are used to agglutinate both error and correct values
(with the error values being interpreted as meta-level data) while run-time types
are restricted to correct values. Similarly, our approach allows errors to be dealt
with at inference time (at symbolic execution level) even if the generated logical
axioms are unsorted.

The Inferred Contract. Given the set IA = {p1 ⇒ q1 , . . . , pn ⇒ qn} of inferred
axioms and the subset EA ⊆ IA of exceptional axioms, let us denote as DA
the set of default axioms, DA = (IA − EA). The resulting contract is given
by <Pre, Post , Loc>, where: 1) Pre is the function precondition given by
(
∨

p | (p ⇒ q) ∈ DA) that represents the admissible program input data; 2)
Post is the function postcondition given by IA; and 3) Loc is a set of references
to memory locations (function parameters and data-structure pointers and fields)
whose value might be affected by the function execution. The Loc component
of the contract is comparable to the assignable clause in standard contract
specification languages such as ACSL or JML, while the Pre and Post compo-
nents are similar to the ACSL pre- and post-conditions in contracts with named
behaviors [6].

Automated Synthesis of Software Contracts with KindSpec 57

Since we are using abstraction, some inferred axioms for function f cannot be
guaranteed to be correct and are kept apart as candidate axioms. A refinement
post-processing is implemented in KindSpec that 1) allows the user trust that a
candidate axiom is, in fact, true, and then adds the axiom to the final contract;
2) provides support for semi-automated (testing-based) candidate axiom falsifi-
cation, removing those candidate axioms for which an instance is refuted; and
3) filters out some redundant elements from the surviving axioms by detecting
axiom subsumption. In order to deal with arithmetic, we adopt a constrained
representation p ∧ c ⇒ p′ ∧ c′ of axioms, where p and p′ are conjunctions of
equations of the form o(xm) = y, and c and c′ are integer arithmetic constraints
(e.g., y = z + 1 ∧ z ≥ 1). This constrained representation is easily achieved
by flattening each equation o(xm) = t, with t being a nonvariable term, to the
constrained form o(xm) = y ∧ y = t. Then we check axioms for constraint sub-
sumption [35]: a constraint c1 is said to subsume2 c2 if c2 implies c1 (e.g., the
constraint y = z + 1 ∧ z ≥ 1 subsumes y = 2). The notion of constraint sub-
sumption is naturally extended to constrained axioms in the obvious way: we say
that a constrained axiom p1 ∧ c1 ⇒ p′

1 ∧ c′
1 subsumes another constrained axiom

p2 ∧ c2 ⇒ p′
2 ∧ c′

2, if p1 ∪ p′
2 is a subset of p′

1 ∪ p2 modulo renaming γ, and the
constraint (c1 ∧ c′

2)γ subsumes (c2 ∧ c′
1)γ (by abuse we consider any conjunction

p of equations e1 ∧ . . . ∧ en as the equation set {e1, . . . , en}). Although checking
for subsumption is not generally an easy task, we are able to make most com-
mon cases run fast by applying standard heuristics that can detect failures early
[39]. Also, in some cases KindSpec further simplifies the final set of axioms by
applying some simple, commonly occurring constraint generalization patterns to
compute more general axioms under constraint subsumption.

3 KindSpec at a Glimpse

In this section, we outline the main features of the KindSpec tool. A starting
guide that contains a complete description of all the settings and detailed sessions
can be found at the tool homepage.

The granularity of the specification units (contracts) that can be generated
by KindSpec is at the level of one function, as in many state-of-the-art contract
specification approaches.

Given a program file and selected program function, the output of KindSpec
is a structured Java object that represents the inferred contract. The contract
can be either exported into a human-readable text file through the Save option of
the File menu) or saved in serialized format (through the Export contract option)
that can be then processed automatically by other techniques or tools.

Let us describe the graphical user interface (GUI) of the tool, as shown in
Fig. 1. In the upper part of the right-hand side section of the input panel, a
KernelC program can be uploaded from the computer or selected from a drop-
down list of built-in program examples. In the lower part of this section, all of
2 From a model-theoretic viewpoint, this is to say that the solution set of c1 contains

the solution set of c2.

58 M. Alpuente and A. Villanueva

Fig. 1. Graphical interface of KindSpec.

the functions from the considered program are automatically loaded so that the
user can select the function for which the contract is to be inferred. Two extra
inference options are provided for enabling/disabling aliasing and/or abstract
subsumption (explained in the following subsections). Once everything is set, the
contract inference process is triggered by pressing the INFER! button. All of the
process details are available through several tabs at the Console that is shown on
the left-hand side section of the input panel: 1) the input Program; 2) the inferred
Contract; 3) Execution intermediate outcomes (e.g., the symbolic execution tree
for the considered function and the raw axiom set that is generated prior to
any subsequent refinement); 4) the candidate axioms that can be selected for
the Refinement process that admits trusting (i.e., explicitly marking as correct
some candidate axioms), gets rid of many redundant and spurious axioms, and
achieves in some cases falsification (i.e., disproving a candidate axiom); 5) some
Statistics of interest, including the elapsed symbolic execution time, inference
time, and number of inferred axioms; and 6) any eventual Errors that might
have arisen during KindSpec execution. Note that the Refinement tab does not
only show information, but also offers interactive entry points (through buttons)
to the axiom refinement features of KindSpec.

3.1 A Running Example

Figure 2 shows a fragment of a KernelC program that implements an abstract
data type for representing single-linked cyclic lists. The program code is com-
posed of five functions: 1) the function collapseC(c) implicitly assumes c is a

Automated Synthesis of Software Contracts with KindSpec 59

singly-linked cyclic list (i.e., either a circular list or a lasso) and deletes all of
the elements in the cycle except the first one, which becomes a self-cycle; 2) the
function isN(c) returns 1 if the pointer c references to NULL memory; 3) isE(c)
returns 1 if c points to an empty list (i.e., c->elems is NULL); 4)lenC(c) counts
up the number of elements in the circular segment of c; and 5) the auxiliary
function isPrec(c, n, t) that is used to identify the beginning of a cycle and
proceeds by checking whether the node referenced by the pointer n precedes the
node pointed by t in c.

Fig. 2. KernelC implementation of a cyclic list data type.

Since C does not ensure purity of functions, any program function can be
chosen for contract generation. We have selected collapseC for the running
example.

Setting the Inference Options. Let us describe the inference options that
are available in the right-hand side section of the panel.

Aliasing on Lazy Initialization. As we previously discussed in Sect. 2, when a
symbolic address is accessed for the first time, three lazy initialization cases are
considered: 1) null; 2) a reference to a new object of its respective type, and 3)
a reference to an already existing object in the heap, which allows cyclic data

60 M. Alpuente and A. Villanueva

structures to be dealt with. This avoids requiring any a priori bound size for
symbolic input structures. In the third case, lazy initialization generates a new
path for each object of the same type that already exists in the heap. In order
to avoid state blow-up, the Apply aliasing on Lazy Initialization option can be
enabled on demand, with a due loss of precision on cyclic data structures, in
exchange for efficiency, when disabled.

Abstract Subsumption. Symbolic execution of code containing loops or recursion
may result in an infinite number of paths if the termination condition depends
on symbolic data. A classical solution is to establish a bound to the depth of the
symbolic execution tree by specifying the maximum number of unfoldings for
each loop and recursive function. As a better approach, KindSpec implements
the abstract subsumption technique of [4] that determines the length of the
symbolic execution paths in a dynamic way by using abstraction.

Following the classical abstract interpretation approach, programs are (sym-
bolically) executed in KernelC by using abstract (approximated) data and
operators rather than concrete ones. With regard to the data abstraction, when
dealing with linked lists and trees we consider summary nodes for approximating
a number of nodes in the list or tree [4]. For system states, the state abstraction
function α is defined as a source-to-source transformation that approximates
both primitive data and heaps. The abstract value of a primitive type object
field e in an abstract (summary) node nα is the set {v1, . . . vk} that contains
the k distinct valuations vi, i = 1 . . . k, of e in the m individual nodes that are
approximated by nα, with k ≤ m. A relation �α between abstract states is nat-
urally induced such that, given two abstract states s and s′, s′ �α s whenever
the set of concrete states represented by s′ is included in the set of concrete
states that are represented by s. Checking �α generally implies reasoning about
logical subsumption (implication) for constraints involving primitive data, for
which the Z3 SMT solver is used.

In the abstract symbolic execution of a program function, before entering a
loop at the current (abstract) state s′, s′ �α s is checked for every comparable
predecessor (abstract) state s of s′ in the same branch. If the check succeeds,
the execution of the loop stops.

With regard to the program functions, and particularly the observers, for
each observer function a corresponding abstract version operates on summary
nodes and preserves the original behavior. For instance, consider an observer
neg(c,n) that returns 1 when n points to a node of the list c that contains
a negative number in the value field, and returns 0 otherwise. The abstract
version of this observer may access an abstract list that contains a summary
node at the position pointed to by n. In such a case, it returns 1 only if all the
concrete values in the abstract value field of the summary node are negative, 0
when all of them are positive, and a symbolic value ?v otherwise.

Automated Synthesis of Software Contracts with KindSpec 61

3.2 KindSpec Output

KindSpec provides two main outputs: 1) the contract <Pre, Post , Loc> for the
selected function; and 2) a list of (not necessarily correct) Candidate axioms.

Figure 3 shows the synthesized contract and candidate axioms for our running
example (with enabled aliasing and abstract subsumption) as they are displayed.

Fig. 3. Inferred contract for the collapseC function in Fig. 2.

First, the precondition is shown as the disjunction of all the initial scenarios
for which the contract is defined (admissible inputs). Following the C convention,
note that the value 0 is used to represent the boolean value false, whereas the
value 1 stands for true. The postcondition consists of the generated axioms
that describe all (successful and exceptional) inferred program behaviors. We
note that one single axiom might correspond to a number of branches in the
symbolic execution tree of the function. The third contract component is the set
of overwritten program locations in the final symbolic states, which are identified
and harvested as a by-product of the symbolic execution.

Every axiom (p ⇒ q) that describes exceptional behavior can be easily iden-
tified since it contains (in either p or q) at least one equation l = (errorCode, pc),
where errorCode is an error identifier (see Table 1) and pc is the last executed
instruction that triggered the exception. In Fig. 3, the exceptional axiom A1
describes an execution scenario where, starting from a list c that is neither null
nor empty, both the observer lenC and the target function collapseC itself
return an exception. The associated program counters, 56 and 24, correspond
to individual instructions n = n->next attempting to access the next field of

62 M. Alpuente and A. Villanueva

a null pointer n. In fact, this may happen in the case when c is not cyclic,
although cyclicity of c was taken for granted in the data type implementation.
The exceptional axiom A3 characterizes the case when the input argument is a
reference that points to a null position, which causes isE to trigger an excep-
tion. As for the axiom A2, it specifies that, whenever the input list is empty,
nothing is deleted and the list is still empty after the execution. Axioms A4 to
A6 specify the cases when the list contained a cycle (whose length is respectively
equal to 1, 2, and 3) and it was actually collapsed.

With regard to the (overly-general) candidate axioms C1 and C2, they result
from cutting down an infinite loop by means of abstract subsumption and can
be later refined as follows: 1) First, for those candidate axioms that are suspi-
cious to have spurious instances, a falsification subprocess can be triggered. This
process is undertaken by i) building initial configurations that satisfy the axiom
antecedent; ii) running the modifier function on those initial configurations; and
iii) checking if the results comply with the axiom consequent. The initial config-
urations (input values) are currently generated interactively (with specific values
provided by the user). If the falsification check succeeds, the axiom is considered
to be falsified and is consequently left out. 2) However, some candidate axioms
might be indeed correct (hence they cannot be falsified). To deal with this, users
are allowed to mark trusted candidates as correct, so that they become a part
of the contract. 3) Finally, redundant axioms are removed by means of a sub-
sumption checking process that gets rid of duplicate axioms and less general
instances. In our leading example, candidate C1 is spurious and can be trivially
falsified for any input list, whereas C2 is correct and can be trusted. Moreover, a
generalization of C2 can then be computed that subsumes A4-6. Generalizations
are achieved by recognizing families of axioms such as C2 and A4-6, which are
sets of axioms where all observer equations of the antecedent and consequent are
equal modulo renaming except for one observer (arithmetic constraints can differ
too), and then hypothesizing a more general axiom that can be used to replace
all of the family axioms. This is done by simply trying some frequent patterns
for constraint generalization; e.g., the constraint ?l0>= 1 generalizes a series of
constraints ?l0=1; . . . ; ?l0=i; ?l0>i, with i >=2, when these constraints appear
in the antecedent of i different axioms. However, since generalization for arith-
metic constraints is still an open problem, some of our constraint generalization
patterns might not lead to correct generalizations and Z3 is queried to check if
the involved constraints are actually equivalent. In the case when the verification
fails, the user is prompted to either accept or reject the generated hypothesis.
In the example, after simplifying (lenC(c)=?l0+2 ^ ?l0>=2) in the antecedent
of C2 into (lenC(c)=?l0 ^ ?l0>3), and flattening the equations lenC(c)=v of
A4-6 as (lenC(c)=?l0 ^ ?l0=v), for v=1 to v=3, we can recognize the pattern
?l0=1; ?l0=2; ?l0=3; ?l0>3 that is logically equivalent to ?l0>=1. Then, the
following hypothesis H1 is generated that subsumes C2 and A4-A6:

(isN(c)=0^lenC(c)=?l0^isE(c)=0^?l0>= 1) =>

(isN(c)=0^lenC(c)=1^isE(c)=0^ret=1).

Automated Synthesis of Software Contracts with KindSpec 63

At the end of the process, the final contract hence consists of axioms A1-3 and
H1.

The errors reported by the exceptional axioms A1 and A3 may be later
used for providing provisional program patches by using the program counter
pc to determine the right program point to insert the patch. In our lead-
ing example, regarding the exception (NPE, 56) in axiom A1, a simple
patch may consist in guarding the offending memory access with an appro-
priate check so that the guarded access is safe. This can be easily done
replacing the sentence n = n->next; on line 56 by the guarded assignment
if(n != NULL) {n = n->next;} else {break;}

4 System Architecture

The architecture of the KindSpec tool is depicted in Fig. 4. It essentially con-
sists of a main module that orchestrates the inference by invoking a number of
specialized components as follows:

Fig. 4. Architecture of the KindSpec system.

1. The K interpreter (named krun) symbolically executes the compiled K specifi-
cation of the KernelC language and relies on the SMT Solver Z3 for pruning
infeasible execution branches. Z3 is also used to simplify the path conditions
and optimize the process. The K interpreter runs in Linux and MacOS X.

2. The inference module builds the axioms that explain the initial and final
states of the symbolic execution paths and generates the inferred contract by
piecing together the function pre-condition, post-condition, and affected pro-
gram locations. Since the elapsed time for each execution of the K interpreter
is rather high (15–20 s each, on average), in order to improve performance,
our implementation exploits multithreading, with an independent thread for
each symbolic execution path.

64 M. Alpuente and A. Villanueva

3. The refinement module applies the refinement post-processing, which consists
in duplicate elimination, trusting, (test-based) falsification of overly general
axioms, and axiom subsumption checking to get rid of less general axioms.

KindSpec is currently able to infer contracts for KernelC programs with
the summary node abstraction for linked data structures such as lists. Never-
theless, the implemented infrastructure has been designed to support further
abstract domains and other languages for which a K semantics is given.

The implementation of KindSpec contains about 7500 lines of Java source
code for the back-end and 2300 lines of K code for the extended, abstract
KernelC language specification. The abstract domain and operators have been
integrated into the abstract KernelC semantic definition written in K. Since
summary nodes occur in the memory heap during symbolic execution, this means
that abstractions are directly handled by K’s symbolic engine.

5 Experiments

We evaluated KindSpec on a set of classical contract inference benchmark pro-
grams that size in the hundreds or tens of lines of code. Our test platform was an
Intel Core2 Quad CPU Q9300(2.50 GHz) with 6 GB of RAM running K v3.4 on
Maude v2.6. Table 2 summarizes the figures that we obtained for programs that
contain (both cyclic and acyclic) data structures. The specific feature that we
test within each example is described in the Program column. The LOC column
shows the program size (in lines of code). The Function column indicates the
name of the target function. The #Obs column is the number of observer pro-
gram functions. The #Paths column shows the number of root-to-leaf symbolic
paths in the deployed trees, while the #Axms column reflects how many different
axioms are retrieved from the final states of the paths. The #Cand ax column
indicates the number of overly general axioms, and the Final contract column
indicates the final number of correct axioms that are distilled as a result of the
whole process. It might happen that this number is smaller than #Axms due
to the reduction given by generalized candidate axioms subsuming more specific
axioms.

With respect to the time cost, specification inference is known to be expensive
for accurate and strong properties. We distinguish between the amount of time
taken for the symbolic execution of methods performed by K and the elapsed
time of the processing applied by our inference algorithm. The time spent in K’s
symbolic execution ranges from 1 min. to 5 min. depending on the quantity and
complexity of the method definitions and the number of cores in the user’s CPU.
On the other hand, the time taken for actual inference of contracts (once the
symbolic execution trees have been deployed) ranges from approximately 150
ms to 300 ms. Our results are very encouraging since they show that KindSpec
can infer compact and general contracts for programs that deal with common
data structures without fixing the size of dynamic data structures or limiting
the number of iterations to ensure termination. The tool infers contracts for

Automated Synthesis of Software Contracts with KindSpec 65

Table 2. Experimental results for KindSpec on programs manipulating lists.

Program LOC Function #Obs #Paths #Axms #Cand
ax

Final
contract

cyclic lists.c
(running example)

95 collapseC 3 22 8 2 4

insert.c (linked
lists)

120 insert 5 17 10 3 5

insert excp.c
(version with
errors)

90 insert 5 16 9 3 4

deallocate.c
(reduction of heap
size)

59 deallocate 2 5 5 1 2

reverse.c (heap
mutation)

70 reverse 4 7 6 1 3

del circular.c
(circular lists)

69 delCircular 3 13 7 1 4

append.c (2
symbolic lists,
1 loop)

60 append 3 32 32 10 4

challenging programs that have recursive predicates, linked and doubly-linked
lists, and circular/cyclic lists. Assuming the program contains an appropriate
set of observers, KindSpec is able to infer accurate contracts for all of our
benchmarks.

Let us provide a brief discussion of relative benefits w.r.t. existing tools for
related tasks. Most of the tools that implement contract inference techniques that
are described in the related literature are no longer publicly available for use or
experimentation. In the following, we compare KindSpec with the three avail-
able tools Daikon [19] (which is based on testing), AngelicVerifier [16] (which
implements a weakest precondition calculus), and the commercial tool for prov-
ing memory safety of C code Infer [10] (which infers separation logic assertions3

aimed to ease the identification of program bugs).
Table 3 illustrates a comparison of key features of the considered tools. There

is a column for each tool, and the nine rows stand for the accepted input lan-
guage(s); the artifacts that have to be provided as tool input ; the specifica-
tion type (either full contracts or just function preconditions) and its nature,
i.e., whether it is described at function-level (meaning that it is expressed in

3 In separation logic [37], heap predicates are constituted by “separated” sub-formulae
which hold for disjoint parts of the heap. They represent either individual memory
cells, which are encoded by using points-to heap predicates (i.e., e1 �→ e2 represents
that the heap contains a cell at address e1 with contents e2), or sub-heaps (heaplets),
which are encoded by predicates that collapse various heap locations.

66 M. Alpuente and A. Villanueva

Table 3. Comparison between KindSpec and other competing tools.

KindSpec Daikon AngelicVerifier Infer

Input
language

C C, .NET, Java,
Perl, Eiffel

C, Java C, .NET, Java

Tool input Source code (C)
+ function
name

Source code
(Daikon)+ test
cases

Intermediate
code (Boogie)
+ input
specification

Intermediate
code (SIL)

Specification
type

Function-level
contracts

Heap-level
contracts

Function-level
preconditions

Heap-level
contracts

Error cases Yes No No No

Technology Abst. Symb.
Exec. in K

Instrumentation
+ Testing

Weakest prec.
calculus

Abst. interp. +
Bi-abduction

GUI Yes (desktop) No No Yes (online)

Last update 2020 2021 2018 2021

Operating
system

Linux,
MacOS X

Windows,
Linux,
MacOS X

Windows,
Linux

Windows,
Linux,
MacOS X

Standalone Yes No No Yes

terms of the observer program functions) or at heap-level (that strictly capture
the heap assignments); whether error (or exception) cases are captured in the
specification; the underlying inference technology ; the availability of a GUI ; the
date of the last update of the tool; operating system compatibility;4 and finally,
whether it is a standalone artifact. As shown in Table 3, KindSpec leverages
symbolic execution infrastructure to generate meaningful specifications for heap-
manipulating C code. Actually, only KindSpec delivers high (function-)level
whole contracts, easier to read by the user, that moreover cope with exceptional
behavior in an explicit way.

Daikon [19] (and the no longer available DySy [14]) aims to obtain (heap-
level) properties by extensive testing. Daikon works by running an instrumented
program over a given test suite, then storing all the values taken by the pro-
gram variables at both the start and the end of these runs.5 Microsoft’s Angelic
Verifier [16] applies a weakest precondition calculus to infer likely (function-
level) preconditions from a given set of program traces that failed to be verified
(and thus were considered as uncertain), aimed to retry the verification task.
The contract discovery tool Infer applies to very large programs that can be
written in several source languages (C, .NET languages, and Java) but focuses

4 We tested the tools in Windows (versions 7 and 10), Linux (Ubuntu 18.04) and
MacOS X (10.13 High Sierra).

5 In contrast, DySy relied in concolic execution (a combination of symbolic execution
with dynamic testing) to obtain more precise (heap-level) axiomatic properties for
non-instrumented programs.

Automated Synthesis of Software Contracts with KindSpec 67

on pointer safety properties concerning the heap. Unlike KindSpec, it reasons
over a semantic, analysis-oriented Smallfoot Intermediate Language (SIL) that
represents source programs in a simpler instruction set describing the program’s
effect on symbolic heaps [41]. This is similar to AngelicVerifier, which relies
on the intermediate language Boogie, designed for verification. While several
compilers translate to Boogie programs that are written in high-level languages
supporting heap manipulation (e.g., C), the inferred preconditions are expressed
in terms of Boogie, thus lacking a direct correspondence to the source language.

While Infer synthesizes Hoare triples that imply memory safety and can
identify potential flaws (which is indeed its main feature), no precondition is
synthesized for failing attempts to establish safety; these findings are simply
returned to the user in the form of a bug report. Also, the contracts generated
by Infer are not accessible to users through the web interface of the tool. A last
distinguished feature of our tool is the refinement functionality that provides
interactive support, through a graphical user interface, for axiom falsification
and trusting.

6 Conclusion and Related Work

Let us briefly discuss those strands of research that have influenced our work
the most, independently of the current availability of a companion automated
tool. Our axiomatic representation is inspired by Axiom Meister [40] (currently
unavailable), which relied on a model checker for (bounded) symbolic execution
of .NET programs and generates either Spec# specifications or parameterized
unit tests. Similarly to [40], we aim to infer rich, function-level characterizations
that are easily understandable; however, we generate simpler and more accurate
formulas that avoid reasoning with the global heap because the different pieces
of the heap that are reachable from the function argument addresses are also
kept separate in K. Moreover, our approach is generic, and thus potentially
transferable with reasonable effort to other programming languages for which a
semantic definition is formalized in K.

Besides Daikon [19] and DySy [14], other approaches based on testing led
to the development of AutoInfer [42] for inferring heap-level postconditions, the
invariant discovery tool DIDUCE [28], the QuickSpec tool [13] that distils equa-
tional laws concerning Haskell functions, and the (never released) experimental
prototype of Henkel and Diwan [29] that generalizes the results of running tests
on Java class interfaces as an algebraic specification.

An alternative approach to software specification discovery is based on induc-
tive machine learning (ML) such as the PSYCO project for Java Pathfinder [23]
(that combines ML with symbolic execution to synthesize temporal interfaces for
Java classes in the form of finite-state automata), and Adabu [15] (that mines
state-machine models of object behavior from runs of Java programs).

Regarding the specific thread of research that concerns the inference of spec-
ifications for heap-manipulating programs with dynamic data structures, special
mention deserve angelic verification [16] and the distinct separation logic-based

68 M. Alpuente and A. Villanueva

approaches, from the early footprint analysis technique that discovers program
preconditions [11] to the automatic deep-heap analysis tool Infer [9]. Typical
properties that can be inferred by these tools regard safe memory access or the
absence of memory leaks. No longer maintained are Infer’s predecessor, Abduc-
tor [12], and the shape analysis tool SpInE that synthesizes heap summaries à
la Hoare [27]. Also based on separation logic are [32,33], which rely on symbolic
execution with abstraction to provide verified program repair and (heap-level)
invariant generation, respectively.

This work improves existing approaches and tools in several ways besides
those mentioned in Sect. 5. While testing-based approaches and learning-based
approaches are limited to ascertain properties that have not been previously fal-
sified by a (finite) number of examples or tests, KindSpec is able to guarantee
correctness/completeness under some conditions in many practical scenarios [2];
moreover, the correctness of the delivered specifications can also be ensured by
using the existing K formal analysis tools. In comparison to classical symbolic
methods, we do not need to fix the size of arrays and dynamic structures or limit
the number of iterations to ensure termination in the presence of loops; instead,
we handle unbounded structures by means of lazy initialization and ensure ter-
mination of symbolic execution procedures by using abstraction. Finally, our
experiments in Sect. 5 show that KindSpec infers rich contracts for challenging
programs having recursive predicates and complex, dynamically allocated nested
data structures such as singly/doubly linked lists, being them circular/cyclic or
not, which are handled by few competing tools. In order to improve accuracy
and applicability of our tool, in future work we plan to extend the supported
abstract domains to cope with more sophisticated data structures [7,17] and
provide support for automated verification.

References

1. ANSI/ISO IEC 9899:1999 Standard for C Language (C99), Technical Corrigendo
3 (2007)

2. Alpuente, M., Pardo, D., Villanueva, A.: Symbolic abstract contract synthesis in
a rewriting framework. In: Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR
2016. LNCS, vol. 10184, pp. 187–202. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63139-4 11

3. Alpuente, M., Pardo, D., Villanueva, A.: Abstract contract synthesis and verifica-
tion in the symbolic K framework. Fundam. Inform. 177(3–4), 235–273 (2020)

4. Anand, S., Păsăreanu, C.S., Visser, W.: Symbolic execution with abstraction.
STTT 11(1), 53–67 (2009). https://doi.org/10.1007/s10009-008-0090-1

5. Baldoni, R., Coppa, E., D’Elia, D., Demetrescu, C., Finocch, I.: A survey of sym-
bolic execution techniques. ACM Comput. Surv. 51(3), 1–39 (2018)

6. Baudin, P., et al.: ACSL: ANSI/ISO C Specification Language, version 1.4 (2010).
https://frama-c.com/download/acsl 1.4.pdf

7. Berdine, J., et al.: Shape analysis for composite data structures. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73368-3 22

https://doi.org/10.1007/978-3-319-63139-4_11
https://doi.org/10.1007/978-3-319-63139-4_11
https://doi.org/10.1007/s10009-008-0090-1
https://frama-c.com/download/acsl_1.4.pdf
https://doi.org/10.1007/978-3-540-73368-3_22

Automated Synthesis of Software Contracts with KindSpec 69

8. Bidoit, M.: Algebraic specification of exception handling and error recovery by
means of declarations and equations. In: Paredaens, J. (ed.) ICALP 1984. LNCS,
vol. 172, pp. 95–108. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-
13345-3 8

9. Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety
of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 459–465. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20398-5 33

10. Calcagno, C., et al.: Moving fast with software verification. In: Havelund, K., Holz-
mann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 3–11. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-17524-9 1

11. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Footprint analysis: a shape
analysis that discovers preconditions. In: Nielson, H.R., Filé, G. (eds.) SAS 2007.
LNCS, vol. 4634, pp. 402–418. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74061-2 25

12. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26:1–26:66 (2011). https://doi.org/
10.1145/2049697.2049700

13. Claessen, K., Smallbone, N., Hughes, J.: QuickSpec: guessing formal specifications
using testing. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143, pp.
6–21. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13977-2 3

14. Csallner, C., Tillmann, N., Smaragdakis, Y.: DySy: dynamic symbolic execution for
invariant inference. In: Proceedings of the ICSE 2008, pp. 281–290. ACM (2008).
https://doi.org/10.1145/1368088.1368127

15. Dallmeier, V., Lindig, C., Wasylkowski, A., Zeller, A.: Mining object behavior with
ADABU. In: Proceedings of the WODA 2006, pp. 17–24. ACM (2006). https://
doi.org/10.1145/1138912.1138918

16. Das, A., Lahiri, S.K., Lal, A., Li, Y.: Angelic verification: precise verification mod-
ulo unknowns. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol.
9206, pp. 324–342. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 19

17. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006). https://doi.org/10.1007/11691372 19

18. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In:
Proceedings of the POPL 2012, pp. 533–544. ACM (2012). https://doi.org/10.
1145/2103656.2103719

19. Ernst, M.D., et al.: The daikon system for dynamic detection of likely invariants.
Sci. Comput. Prog. 69(1–3), 35–45 (2007). https://doi.org/10.1016/j.scico.2007.
01.015

20. Gazzola, L., Micucci, D., Mariani, L.: Automatic software repair: a survey. IEEE
Trans. Soft. Eng. 45, 34–67 (2018). https://doi.org/10.1109/TSE.2017.2755013

21. Gehani, N.H.: Exceptional C or C with exceptions. Softw.: Pract. Exp. 22(10), 827–
848 (1992). https://doi.org/10.1002/spe.4380221003, https://onlinelibrary.wiley.
com/doi/abs/10.1002/spe.4380221003

22. Gherghina, C., David, C.: A specification logic for exceptions and beyond. In:
Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 173–187.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15643-4 14

23. Giannakopoulou, D., Rakamarić, Z., Raman, V.: Symbolic learning of component
interfaces. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 248–
264. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33125-1 18

https://doi.org/10.1007/3-540-13345-3_8
https://doi.org/10.1007/3-540-13345-3_8
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-540-74061-2_25
https://doi.org/10.1007/978-3-540-74061-2_25
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1007/978-3-642-13977-2_3
https://doi.org/10.1145/1368088.1368127
https://doi.org/10.1145/1138912.1138918
https://doi.org/10.1145/1138912.1138918
https://doi.org/10.1007/978-3-319-21690-4_19
https://doi.org/10.1007/978-3-319-21690-4_19
https://doi.org/10.1007/11691372_19
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1002/spe.4380221003
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380221003
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380221003
https://doi.org/10.1007/978-3-642-15643-4_14
https://doi.org/10.1007/978-3-642-33125-1_18

70 M. Alpuente and A. Villanueva

24. Gogolla, M., Drosten, K., Lipeck, U.W., Ehrich, H.D.: Algebraic and opera-
tional semantics of specifications allowing exceptions and errors. Theor. Com-
put. Sci. 34(3), 289–313 (1984). https://doi.org/10.1016/0304-3975(84)90056-2,
http://www.sciencedirect.com/science/article/pii/0304397584900562

25. Goguen, J.: Abstract errors for abstract data types. In: Formal Description of
Programming Concepts, pp. 491–522. North-Holland (1979)

26. Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theor. Com-
put. Sci. 105(2), 217–273 (1992). https://doi.org/10.1016/0304-3975(92)90302-V,
http://www.sciencedirect.com/science/article/pii/030439759290302V

27. Gulavani, B.S., Chakraborty, S., Ramalingam, G., Nori, A.V.: Bottom-up shape
analysis using LISF. TOPLAS 2011 33(5), 17:1–17:41 (2011). https://doi.org/10.
1145/2039346.2039349

28. Henkel, J., Diwan, A.: Discovering algebraic specifications from java classes. In:
Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 431–456. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45070-2 19

29. Henkel, J., Reichenbach, C., Diwan, A.: Discovering documentation for java con-
tainer classes. IEEE Trans. Softw. Eng. 33(8), 526–543 (2007). https://doi.org/10.
1109/TSE.2007.70705

30. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976). https://doi.org/10.1145/360248.360252

31. Liskov, B., Guttag, J.: Abstraction and Specification in Program Development.
MIT Press, Cambridge (1986)

32. Logozzo, F., Ball, T.: Modular and verified automatic program repair. In: Proceed-
ings of the OOPSLA 2012, pp. 133–146. ACM (2012). https://doi.org/10.1145/
2384616.2384626

33. Magill, S., Nanevski, A., Clarke, E., Lee, P.: Inferring invariants in separation
logic for imperative list-processing programs. In: Proceedings of the 3rd SPACE
Workshop (2006)

34. Meyer, B.: Applying ‘design by contract’. Computer 25(10), 40–51 (1992). https://
doi.org/10.1109/2.161279

35. Padmanabhuni, S., Ghose, A.K.: Inductive constraint logic programming: an
overview. In: Antoniou, G., Ghose, A.K., Truszczyński, M. (eds.) PRICAI 1996.
LNCS, vol. 1359, pp. 1–8. Springer, Heidelberg (1998). https://doi.org/10.1007/3-
540-64413-X 25

36. Poigné, A.: Partial algebras, subsorting, and dependent types. In: Sannella, D.,
Tarlecki, A. (eds.) ADT 1987. LNCS, vol. 332, pp. 208–234. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-50325-0 11

37. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of the LICS 2002, pp. 55–74 (2002). https://doi.org/10.1109/LICS.
2002.1029817

38. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Logic
Algebraic Program. 79(6), 397–434 (2010). https://doi.org/10.1016/j.jlap.2010.03.
012, http://www.sciencedirect.com/science/article/pii/S1567832610000160

39. Schulz, S.: Simple and efficient clause subsumption with feature vector indexing.
In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS (LNAI), vol. 7788, pp. 45–67. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36675-8 3

40. Tillmann, N., Chen, F., Schulte, W.: Discovering likely method specifications. In:
Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 717–736. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11901433 39

https://doi.org/10.1016/0304-3975(84)90056-2
http://www.sciencedirect.com/science/article/pii/0304397584900562
https://doi.org/10.1016/0304-3975(92)90302-V
http://www.sciencedirect.com/science/article/pii/030439759290302V
https://doi.org/10.1145/2039346.2039349
https://doi.org/10.1145/2039346.2039349
https://doi.org/10.1007/978-3-540-45070-2_19
https://doi.org/10.1109/TSE.2007.70705
https://doi.org/10.1109/TSE.2007.70705
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/2384616.2384626
https://doi.org/10.1145/2384616.2384626
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/3-540-64413-X_25
https://doi.org/10.1007/3-540-64413-X_25
https://doi.org/10.1007/3-540-50325-0_11
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
http://www.sciencedirect.com/science/article/pii/S1567832610000160
https://doi.org/10.1007/978-3-642-36675-8_3
https://doi.org/10.1007/978-3-642-36675-8_3
https://doi.org/10.1007/11901433_39

Automated Synthesis of Software Contracts with KindSpec 71

41. van Tonder, R., Goues, C.: Static automated program repair for heap properties.
In: Proceedings of the ICSE 2018, pp. 151–162. ACM (2018). https://doi.org/10.
1145/3180155.3180250

42. Wei, Y., Furia, C.A., Kazmin, N., Meyer, B.: Inferring better contracts. In: Pro-
ceedings of the ICSE 2011, pp. 191–200. ACM (2011). https://doi.org/10.1145/
1985793.1985820

https://doi.org/10.1145/3180155.3180250
https://doi.org/10.1145/3180155.3180250
https://doi.org/10.1145/1985793.1985820
https://doi.org/10.1145/1985793.1985820

Abstract Interpretation of Graphs

Patrick Cousot
Courant Institute of Mathematical Sciences, New York University

Visiting IMDEA Software, Madrid, Spain
pcousot@cims.nyu.edu

Dedicated to Manuel Hermenegildo
for his 60th birthday and many years of friendship

Abstract. Path problems in graphs can be solved by abstraction of a
fixpoint definition of all paths in a finite graph. Applied to the Roy-Floyd-
Warshall shortest path algorithm this yields a naïve 𝑛4 algorithm where
𝑛 is the number of graph vertices. By over-approximating the elementary
paths and cycles and generalizing the classical exact fixpoint abstraction,
we constructively derive the classical 𝑛3 Roy-Floyd-Warshall algorithm.

1 Introduction

1.1 Objectives

[2,9,11,14,15] observed that various graph path algorithms can be designed and
proved correct based on a common algebraic structure and then instantiated
to various path problems up to homomorphisms. We show that this structure
originates from the fixpoint characterization of the set of graph paths using the
set of graph edges, the concatenation and union of sets of paths as basic oper-
ations. The common algebraic structure of graph path algorithms follows from
the fact that these primitives and the fixpoint are preserved by abstraction with
Galois connections. For example [19] designs Bellman–Ford–Moore algorithm [1,
Sect. 2.3.4] by abstraction of a fixpoint definition of all graph paths (where a
path is a vertex or a path concatenated with an arc).

The same approach for the Roy-Floyd-Warshall algorithm [1, Sect. 2.3.5],
[12, p. 26–29], [13], and [18, p. 129] (where a path is an arc or the concatenation
of a path with a path) yields a naïve algorithm in O(𝑛4) where 𝑛 is the number
of vertices of the weighted finite graph (assumed to have no cycle of strictly
negative weight). The derivation of the original Roy-Floyd-Warshall algorithm
in O(𝑛3) is tricky since it is based on the abstraction of an over-approximation
of the elementary paths which is an under-approximation of all graph paths.
It requires a generalization of the classical complete fixpoint abstraction to a
different abstraction for each iterate and the limit.

© Springer Nature Switzerland AG 2023
P. Lopez-Garcia et al. (Eds.): Hermenegildo Festschrift 2022, LNCS 13160, pp. 72–96, 2023.
https://doi.org/10.1007/978-3-031-31476-6_4

https://orcid.org/0000-0003-0101-9953
https://doi.org/10.1007/978-3-031-31476-6_4
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-31476-6_4&domain=pdf

1.2 Content

Fixpoint transfer theorems state the equality of the abstraction of a least fix-
point and the least fixpoint of an abstract function, under hypotheses such as
the commutation of the abstraction function and the iterated function. Sect. 2
presents a new fixpoint transfer theorem that generalizes the well-known theo-
rem on CPOs [6] to the case where, at each iterate, a different concrete function,
abstract function, and abstraction function are used. Sect. 3 introduces directed
graphs and their classic terminology (finite paths, subpaths, etc.), as well as
the totally ordered group of weights. Sect. 4 expresses the (generally infinite)
set of (finite) paths of a graph as least fixpoints, using four different possible
formulations. Sect. 5 applies the (non extended) fixpoint transfer theorem to
these fixpoints, thus exhibiting the common algebraic structure of path prob-
lems. Sect. 6 presents an application where the function associating to each pair
of vertices the set of paths between them is presented in fixpoint form using a
Galois isomorphism. Sect. 7 introduces path weights and a Galois connection be-
tween sets of paths and their smallest weight. Sect. 8 applies the (non extended)
fixpoint transfer theorem to this Galois connection to find a (greatest) fixpoint
characterization of the shortest path between every pair of vertices. However,
the function iterated must consider, at each step, every vertex. As each step is
performed for every pair of vertices and the number of steps equals the number
of vertices, this leads to a O(𝑛4) cost. Sect. 9 defines elementary (i.e., cycle-free)
paths, and Sect. 10 provides four least fixpoint characterizations of them (sim-
ilar to Sect. 4). Sect. 11 is the crux of the article. It applies the new fixpoint
transfer theorem from Sect. 2 to further simplify the functions iterated to only
elementary path. It exploits the fact that each iteration step 𝑘 uses a slightly
different abstraction, that only considers paths using vertices up to vertex 𝑘.
The commutation condition leads to especially lengthy proofs. The functions
iterated in Sect. 11 remain costly as they take care to exactly enumerate el-
ementary paths, pruning any other path. Sect. 12 considers iterating simpler,
more efficient functions that do not perform the elementary path check after each
concatenation and show that they compute an over-approximation of the set of
elementary paths. Sect. 13 presents this fixpoint in a simple algorithmic form
by computing iterations through a chaotic iteration scheme. Finally, Sect. 14
applies the path weight abstraction to convert the path enumeration algorithm
from Sect. 13 into a shortest-patch algorithm, effectively retrieving exactly the
cubic-time Roy-Floy-Warshall algorithm by calculational design. Sect. 15 con-
cludes.

2 Fixpoint abstraction

We write lfp⊑ 𝑓 (respectively lfp⊑𝑎 𝑓) for the ⊑-least fixpoint of 𝑓 (resp. greater
than or equal to 𝑎), if any. In fixpoint abstraction, it is sometimes necessary to
abstract the iterates and their limit differently (similar to the generalization of
Scott induction in [5]), as in the following

Abstract Interpretation of Graphs 73

Theorem 1 (exact abstraction of iterates) Let ⟨C, ⊑, ⊥, ⨆⟩ be a cpo,
∀𝑖 ∈ N . 𝑓𝑖 ∈ C→C be such that ∀𝑥, 𝑦 ∈ C . 𝑥 ⊑ 𝑦 ⇒ 𝑓𝑖(𝑥) ⊑ 𝑓𝑖+1(𝑦) with
iterates ⟨𝑥𝑖, 𝑖 ∈ N∪{𝜔}⟩ defined by 𝑥0 = ⊥, 𝑥 𝑖+1 = 𝑓𝑖(𝑥 𝑖), 𝑥𝜔 = ⨆𝑖∈N 𝑥 𝑖. Then
these concrete iterates and 𝑓 ≜ ⨆̇𝑖∈N 𝑓𝑖 are well-defined.

Let ⟨A, ≼, 0, ⋎⟩ be a cpo, ∀𝑖 ∈ N . 𝑓𝑖 ∈ A→A be such that ∀𝑥, 𝑦 ∈ A .
𝑥 ≼ 𝑦 ⇒ 𝑓𝑖(𝑥) ≼ 𝑓𝑖+1(𝑦) with iterates ⟨𝑥 𝑖, 𝑖 ∈ N ∪ {𝜔}⟩ defined by 𝑥0 = 0,
𝑥 𝑖+1 = 𝑓𝑖(𝑥

𝑖), 𝑥𝜔 =⋎𝑖∈N 𝑥 𝑖. Then these abstract iterates and 𝑓 ≜ ⋎̇𝑖∈N 𝑓𝑖 are
well-defined.

For all 𝑖 ∈ N∪{𝜔}, let 𝛼𝑖 ∈ C→A be such that 𝛼0(⊥) = 0, 𝛼𝑖+1 ∘ 𝑓𝑖 = 𝑓𝑖 ∘ 𝛼𝑖,
and 𝛼𝜔(⨆𝑖∈N 𝑥𝑖) = ⋎𝑖∈N 𝛼𝑖(𝑥𝑖) for all increasing chains ⟨𝑥𝑖 ∈ C, 𝑖 ∈ N⟩. It
follows that 𝛼𝜔(𝑥𝜔) = 𝑥𝜔.

If, moreover, ∀𝑖 ∈ N . 𝑓𝑖 ∈ C 𝑢𝑐⟶ C is upper-continuous then 𝑥𝜔 = lfp⊑ 𝑓.
Similarly 𝑥𝜔 = lfp≼ 𝑓 when the 𝑓𝑖 are upper-continuous. If both the 𝑓𝑖 and 𝑓𝑖
are upper-continuous then 𝛼𝜔(lfp⊑ 𝑓) = 𝛼𝜔(𝑥𝜔) = 𝑥𝜔 = lfp≼ 𝑓.

–

–

A trivial generalization is to have a different (concrete and) abstract domain at
each iteration and the limit (like e.g. in cofibered domains [20]).

Proof (of Th. 1) 𝑥0 ≜ ⊥ ⊑ 𝑥1 since ⊥ is the infimum and if 𝑥𝑖 ⊑ 𝑥𝑖+1 then,
by hypothesis, 𝑥𝑖+1 ≜ 𝑓𝑖(𝑥𝑖) ⊑ 𝑓𝑖+1(𝑥𝑖+1) ≜ 𝑥𝑖+2. Its follows that ⟨𝑥𝑖, 𝑖 ∈ N⟩ is an
⊑-increasing chain so that its lub 𝑥𝜔 ≜ ⨆𝑖∈N 𝑥𝑖 is well-defined in the cpo ⟨C, ⊑⟩.
The concrete iterates ⟨𝑥𝑖, 𝑖 ∈ N ∪ {𝜔}⟩ are therefore well-defined.

For 𝑥 ∈ C, reflexivity 𝑥 ⊑ 𝑥 implies 𝑓𝑖(𝑥) ⊑ 𝑓𝑖+1(𝑥) so ⟨𝑓𝑖(𝑥), 𝑖 ∈ N⟩ is an
increasing chain which limit 𝑓(𝑥) ≜ ⨆𝑖∈N 𝑓𝑖(𝑥) is well-defined in the cpo ⟨C, ⊑⟩.

Similarly, the abstract iterates ⟨𝑥𝑖, 𝑖 ∈ N ∪ {𝜔}⟩ and 𝑓 are well-defined.
Let us prove by recurrence on 𝑖 that ∀𝑖 ∈ N . 𝛼𝑖(𝑥𝑖) = 𝑥𝑖.

For the basis, 𝛼0(𝑥0) = 𝛼0(⊥) = 0 = 𝑥0.
Assume, by induction hypothesis, that 𝛼𝑖(𝑥𝑖) = 𝑥𝑖. For the induction step,
𝛼𝑖+1(𝑥𝑖+1)

= 𝛼𝑖+1(𝑓𝑖(𝑥𝑖)) Hdef. concrete iterates of the 𝑓𝑖I
= 𝑓𝑖(𝛼𝑖(𝑥𝑖)) Hcommutation 𝛼𝑖+1 ∘ 𝑓 = 𝑓𝑖 ∘ 𝛼𝑖I
= 𝑓𝑖(𝑥

𝑖) Hind. hyp.I
= 𝑥 𝑖+1 Hdef. abstract iterates of the 𝑓𝑖I
It follows that 𝛼𝜔(𝑥𝜔) = 𝛼𝜔(⨆𝑖∈N 𝑥 𝑖) = ⋎𝑖∈N 𝛼𝑖(𝑥 𝑖) = ⋎𝑖∈N 𝑥 𝑖 = 𝑥𝜔.

If, moreover, ∀𝑖 ∈ N . 𝑓𝑖 ∈ C 𝑢𝑐⟶ C is upper-continuous, then we have
𝑓(𝑥𝜔)

= ⨆
𝑗∈N
𝑓𝑗(⨆
𝑖∈N
𝑥 𝑖) Hdef. 𝑓 and 𝑥𝜔I

= ⨆
𝑗∈N
⨆
𝑖∈N
𝑓𝑗(𝑥 𝑖) H⟨𝑥𝑖, 𝑖 ∈ N⟩ is an ⊑-increasing chain and 𝑓𝑖 is upper-continuousI

= ⨆
𝑗∈N
(⨆
𝑖<𝑗
𝑓𝑗(𝑥 𝑖) ⊔⨆

𝑗=𝑖
𝑓𝑗(𝑥 𝑖) ⊔⨆

𝑖>𝑗
𝑓𝑗(𝑥 𝑖)) Hcase analysisI

P. Cousot74

= ⨆
𝑗∈N
(𝑓𝑗(𝑥𝑗) ⊔⨆

𝑖>𝑗
𝑓𝑗(𝑥 𝑖))

Hsince, by recurrence using 𝑥𝑖 ⊑ 𝑥𝑖+1 ⇒ 𝑓𝑖(𝑥𝑖) ⊑ 𝑓𝑖+1(𝑥𝑖+1), we have 𝑖 < 𝑗
⇒ 𝑥𝑖 ⊑ 𝑥𝑗 ⇒ 𝑓𝑖(𝑥𝑖) ⊑ 𝑓𝑗(𝑥𝑗) ⇒ ⨆𝑖<𝑗 𝑓𝑗(𝑥 𝑖) ⊑ 𝑓𝑗(𝑥𝑗) and so, by def. lub ⨆,
⨆𝑖<𝑗 𝑓𝑗(𝑥 𝑖) ⊔ ⨆𝑗=𝑖 𝑓𝑗(𝑥 𝑖) = 𝑓𝑗(𝑥𝑗)I

= (⨆
𝑗∈N
𝑓𝑗(𝑥𝑗)) ⊔ (⨆

𝑗∈N
⨆
𝑖>𝑗
𝑓𝑗(𝑥 𝑖)) Hdef. lub ⨆I

= (⨆
𝑗∈N
𝑓𝑗(𝑥𝑗)) ⊔ ⨆

𝑗∈N
⨆
𝑖⩾𝑗
𝑓𝑖(𝑥 𝑖))

Hsince, 𝑗 < 𝑖 ⇒ 𝑥𝑗 ⊑ 𝑥𝑖 ⇒ 𝑓𝑗(𝑥𝑗) ⊑ 𝑓𝑖(𝑥𝑖) so (⨆𝑗∈N⨆𝑖>𝑗 𝑓𝑗(𝑥 𝑖)) ⊑
(⨆𝑗∈N⨆𝑖>𝑗 𝑓𝑖(𝑥 𝑖)) = (⨆𝑗∈N⨆𝑖⩾𝑗 𝑓𝑖(𝑥 𝑖))I

= (⨆
𝑗∈N
𝑓𝑗(𝑥𝑗))

H(⨆𝑗∈N⨆𝑖>𝑗 𝑓𝑗(𝑥 𝑖)) = (⨆𝑗∈N 𝑓𝑗(𝑥𝑗)) by ⨆ associative, commutative, and
idempotentI

= ⨆
𝑖∈N
𝑥 𝑖+1 = 𝑥0 ⊔ ⨆

𝑗∈N∗
𝑥𝑗 Hdef. 𝑥 𝑖+1 and 𝑗 = 𝑖 + 1 is positiveI

= ⨆
𝑖∈N
𝑥 𝑖 = 𝑥𝜔 H𝑥0 = ⊥ is the infimum and def. 𝑥𝜔I

Therefore 𝑥𝜔 is a fixpoint of 𝑓. Assume that 𝑦 ∈ C is a fixpoint of 𝑓. Let us
prove by recurrence that ∀𝑖 ∈ N . 𝑥𝑖 ⊑ 𝑦. For the basis 𝑥0 = ⊥ ⊑ 𝑦, by def. of the
infimum ⊥. Assume that 𝑥𝑖 ⊑ 𝑦 by induction hypothesis. Then
𝑥𝑖+1

= 𝑓𝑖(𝑥𝑖) Hdef. abstract iteratesI
⊑ 𝑓𝑖(𝑦) Hind. hyp. 𝑥𝑖 ⊑ 𝑦 and 𝑓𝑖 upper-continuous hence increasingI
⊑ ⨆
𝑖∈N
𝑓𝑖(𝑦) Hdef. lub, if it existsI

= 𝑓(𝑦) H⟨𝑓𝑖(𝑦), 𝑖 ∈ N⟩ is increasing with well-defined limit 𝑓(𝑦) ≜ ⨆𝑖∈N 𝑓𝑖(𝑦)I
= 𝑦 Hfixpoint hypothesisI
It follows that 𝑥𝜔 ≜ ⨆𝑖∈N 𝑥𝑖 ⊑ 𝑦 proving that 𝑥𝜔 = lfp⊑ 𝑓 is the ⊑-least fixpoint
of 𝑓. ⊓⊔

Observe that the 𝑓𝑖 can be chosen to be all identical equal to 𝑓 ∈ C 𝑢𝑐⟶ C in
which case 𝑥 ⊑ 𝑦 ⇒ 𝑓𝑖(𝑥) ⊑ 𝑓𝑖+1(𝑦) follows from 𝑓 being upper-continuous hence
monotonically increasing. Then 𝛼𝜔(lfp⊑ 𝑓) = 𝛼𝜔(𝑥𝜔) = 𝑥𝜔. Similarly, the choice
𝑓𝑖 = 𝑓 ∈ A

𝑢𝑐⟶ A yields 𝛼𝜔(𝑥𝜔) = 𝑥𝜔 = lfp≼ 𝑓. If, moreover, all 𝛼𝑖 are identical,
we get the classical [6, theorem 7.1.0.4(3)]

Corollary 1 (exact fixpoint abstraction) Let ⟨C, ⊑, ⊥, ⨆⟩ and ⟨A, ≼,
0, ⋎⟩ be cpos, 𝑓 ∈ C 𝑢𝑐⟶ C, 𝑓 ∈ A 𝑢𝑐⟶ A, and 𝛼 ∈ C 𝑢𝑐⟶ A be upper-
continuous, such that 𝛼(⊥) = 0 and 𝛼 ∘ 𝑓 = 𝑓 ∘ 𝛼. Then 𝛼(lfp⊑ 𝑓) = lfp≼ 𝑓 =
𝑥𝜔 where 𝑥0 ≜ 0, 𝑥𝑖+1 ≜ 𝑓𝑖(𝑥

𝑖), and 𝑥𝜔 ≜⋎𝑖∈N 𝑥𝑖.

–

–

Abstract Interpretation of Graphs 75

By considering ⟨C, ⊑⟩ = ⟨A, ≼⟩, 𝑓 = 𝑓, and the identity abstraction 𝛼(𝑥) = 𝑥,
we get Tarski-Kleene-Scott’s fixpoint theorem. Th. 1 and Cor. 1 easily extend
to fixpoint over-approximation 𝛼(lfp⊑ 𝑓) ≼ lfp≼ 𝑓.

3 Weighted graphs

3.1 Graphs

A (directed) graph or digraph 𝐺 = ⟨𝑉, 𝐸⟩ is a pair of a set 𝑉 of vertices (or nodes
or points) and a set 𝐸 ∈ ℘(𝑉 ×𝑉) of edges (or arcs). A (directed) edge ⟨𝑥, 𝑦⟩ ∈ 𝑉
has origin 𝑥 and end 𝑦 collectively called extremities (so the graphs we consider
are always directed). A graph is finite when the set of 𝑉 of vertices (hence 𝐸) is
finite.

A path 𝜋 from 𝑦 to 𝑧 in a graph 𝐺 = ⟨𝑉, 𝐸⟩ is a finite sequence of vertices
𝜋 = 𝑥1…𝑥𝑛 ∈ 𝑉𝑛, 𝑛 > 1, starting at origin 𝑦 = 𝑥1, finishing at end 𝑧 = 𝑥𝑛, and
linked by edges ⟨𝑥𝑖, 𝑥𝑖+1⟩ ∈ 𝐸, 𝑖 ∈ [1, 𝑛[. Let 𝑉>1 ≜ ⋃𝑛>1 𝑉𝑛 be the sequences of
vertices of length at least 2. Formally the set Π(𝐺) ∈ ℘(𝑉>1) of all paths of a
graph 𝐺 = ⟨𝑉, 𝐸⟩ is

Π(𝐺) ≜ ⋃
𝑛>1
Π𝑛(𝐺) (1)

Π𝑛(𝐺) ≜ {𝑥1…𝑥𝑛 ∈ 𝑉𝑛 ∣ ∀𝑖 ∈ [1, 𝑛[. ⟨𝑥𝑖, 𝑥𝑖+1⟩ ∈ 𝐸} (𝑛 > 1)

The length |𝜋| of the path 𝜋 = 𝑥1…𝑥𝑛 ∈ 𝑉𝑛 is the number of edges that is
𝑛 − 1 > 0. We do not consider the case 𝑛 = 1 of paths of length 0 with only one
vertex since paths must have at least one edge. A subpath is a strict contiguous
part of another path (without holes and which, being strict, is not equal to that
path).

The vertices of a path 𝜋 = 𝑥1…𝑥𝑛 ∈ Π𝑛(𝐺) of a graph 𝐺 is the set V(𝜋) =
{𝑥1…𝑥𝑛} of vertices appearing in that path 𝜋.

A cycle is a path 𝑥1…𝑥𝑛 ∈ Π𝑛(𝐺) with 𝑥𝑛 = 𝑥1, 𝑛 > 1. Self-loops i.e. ⟨𝑥,
𝑥⟩ ∈ 𝐸 yield a cycle 𝑥𝑥 of length 1.

3.2 Totally ordered groups

A totally (or linearly) ordered group ⟨𝔾, ⩽, 0, +⟩ is a group ⟨𝔾, 0, +⟩ with a total
order ⩽ on 𝔾 satisfying the translation-invariance condition ∀𝑎, 𝑏, 𝑐 ∈ 𝔾 . (𝑎 ⩽
𝑏) ⇒ (𝑎 + 𝑐 ⩽ 𝑏 + 𝑐). An element 𝑥 ∈ 𝔾 of a totally ordered group ⟨𝔾, ⩽, 0, +⟩ is
said to be strictly negative if and only if 𝑥 ⩽ 0 ∧ 𝑥 ≠ 0.

If 𝑆 ⊆ 𝔾 then we define min 𝑆 to be the greatest lower bound of 𝑆 in 𝔾 or
−∞:

min 𝑆 = 𝑚 ⇔ 𝑚 ∈ 𝔾 ∧ (∀𝑥 ∈ 𝑆 . 𝑚 ⩽ 𝑥 ∧ (∀𝑦 ∈ 𝑆 . 𝑦 ⩽ 𝑥 ⇒ 𝑦 ⩽ 𝑚)
= −∞ ⇔ ∀𝑥 ∈ 𝑆 . ∃𝑦 ∈ 𝑆 . 𝑦 < 𝑥 (where −∞ ∉ 𝔾)
= ∞ ⇔ 𝑆 = ∅ (where ∞ ∉ 𝔾)

P. Cousot76

So if 𝔾 has no infimum min𝔾 = max∅ = −∞ ∉ 𝔾. Similarly, max 𝑆 is the least
upper bound of 𝑆 in 𝔾, if any; −∞ otherwise, with max𝔾 = min∅ = ∞ ∉ 𝔾
when 𝔾 has no supremum. Extending + by 𝑥 + ∞ = ∞ + 𝑥 = ∞ +∞ = ∞ and
𝑥+−∞ = −∞+𝑥 = −∞+−∞ = −∞ for all 𝑥 ∈ 𝔾, we have min{𝑥+𝑦 ∣ 𝑥 ∈ 𝑆1 ∧𝑦 ∈
𝑆2} = min 𝑆1 +min 𝑆2.

3.3 Weighted graphs

We now equip graphs with weights e.g. to measure the distance between vertices.
A weighted graph on a totally ordered group ⟨𝔾, ⩽, 0, +⟩ is a triple ⟨𝑉, 𝐸, 𝛚⟩ of a
set 𝑉 of vertices and a set 𝐸 ∈ ℘(𝑉 ×𝑉) of edges of a graph ⟨𝑉, 𝐸⟩, and a weight
𝛚 ∈ 𝐸→𝔾 mapping edges ⟨𝑥, 𝑦⟩ ∈ 𝐸 to values 𝛚(⟨𝑥, 𝑦⟩) ∈ 𝔾 taken in the totally
ordered group 𝔾.

4 Fixpoint characterization of the paths of a graph

The concatenation of sets of finite paths is

𝑃⦾ 𝑄 ≜ {𝑥1…𝑥𝑛𝑦2…𝑦𝑚 ∣ 𝑥1…𝑥𝑛 ∈ 𝑃 ∧ 𝑦1𝑦2…𝑦𝑚 ∈ 𝑄 ∧ 𝑥𝑛 = 𝑦1}. (2)

We have the following well-defined fixpoint characterization of the paths of a
graph [7, Sect. 4].

Theorem 2 (Fixpoint characterization of the paths of a graph) The
paths of a graph 𝐺 = ⟨𝑉, 𝐸⟩ are
Π(𝐺) = lfp⊆𝓛Π, 𝓛Π(𝑋) ≜ 𝐸 ∪ 𝑋⦾ 𝐸 (Th.2.a)
= lfp⊆𝓡Π, 𝓡Π(𝑋) ≜ 𝐸 ∪ 𝐸⦾𝑋 (Th.2.b)
= lfp⊆𝓑Π, 𝓑Π(𝑋) ≜ 𝐸 ∪ 𝑋⦾𝑋 (Th.2.c)
= lfp⊆𝐸𝓟Π, 𝓟Π(𝑋) ≜ 𝑋 ∪ 𝑋⦾𝑋 (Th.2.d) ⊓⊔

–

–

𝓛Π stands for a forward definition of paths using a left-recursive transformer;
𝓡Π stands for a backward definition of paths using a right-recursive transformer;
𝓑Π stands for a bidirectional definition of paths using a right- and left-recursive
transformer; 𝓟Π stands for a recursive transformer using paths only which iter-
ations are initialized by edges.

Proof (of Th. 2) We observe that ⋃𝑖∈Δ(𝑋𝑖⦾𝐸) = ⋃𝑖∈Δ{𝜋𝑥𝑦 ∣ 𝜋𝑥 ∈ 𝑋𝑖 ∧⟨𝑥, 𝑦⟩ ∈ 𝐸}
= {𝜋𝑥𝑦 ∣ 𝜋𝑥 ∈ ⋃𝑖∈Δ𝑋𝑖 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐸} = (⋃𝑖∈Δ𝑋𝑖)⦾ 𝐸 so that the transformer 𝓛Π
preserves non-empty joins so is upper-continuous. Same for 𝓡Π.

Let ⟨𝑋𝑖, 𝑖 ∈ N⟩ be a ⊆-increasing chain of elements of ℘(𝑉>1). ⦾ is com-
ponentwise increasing so ⋃𝑖∈N(𝑋𝑖 ⦾ 𝑋𝑖) ⊆ (⋃𝑖∈N𝑋𝑖 ⦾ ⋃𝑖∈N𝑋𝑖). Conversely if
𝜋 ∈ (⋃𝑖∈N𝑋𝑖 ⦾ ⋃𝑖∈N𝑋𝑖) then 𝜋 = 𝜋𝑖𝑥𝜋𝑗 where 𝜋𝑖𝑥 ∈ 𝑋𝑖 and 𝑥𝜋𝑗 ∈ 𝑋𝑗. Assume
𝑖 ⩽ 𝑗. Because 𝑋𝑖 ⊆ 𝑋𝑗, 𝜋𝑖𝑥 ∈ 𝑋𝑗 so 𝜋 = 𝜋𝑖𝑥𝜋𝑗 ∈ 𝑋𝑗 ⦾𝑋𝑗 ⊆ ⋃𝑘∈N𝑋𝑘 ⦾𝑋𝑘 proving

Abstract Interpretation of Graphs 77

that ⋃𝑖∈N(𝑋𝑖 ⦾ 𝑋𝑖) ⊇ (⋃𝑖∈N𝑋𝑖 ⦾ ⋃𝑖∈N𝑋𝑖). We conclude, by antisymmetry, that
𝓑Π and 𝓟Π are upper-continuous.

It follows, by Tarski-Kleene-Scott’s fixpoint theorem, that the least fixpoints
do exist.

We consider case (Th.2.c). By upper continuity, we can apply Cor. 1. Let us
calculate the iterates ⟨𝓑Π𝑘, 𝑘 ∈ N⟩ of the fixpoint of transformer 𝓑Π.

𝓑Π0 = ∅, by def. of the iterates.
𝓑Π1(∅) = 𝓑Π(𝓑Π0) = 𝐸 = Π2(𝐺) contains the paths of length 1 which are

made of a single arc. If the graph has no paths longer than mere arcs, all paths
are covered after 1 iteration.

Assume, by recurrence hypothesis on 𝑘, that 𝓑Π𝑘 = ⋃2
𝑘−1

𝑛=2 Π𝑛(𝐺) contains
exactly all paths of 𝐺 of length less than or equal to 2𝑘−1. We have
𝓑Π𝑘+1 ≜ 𝓑Π(𝓑Π𝑘) Hdef. iteratesI

= 𝐸 ∪𝓑Π𝑘 ⦾𝓑Π𝑘 Hdef. 𝓑ΠI
= 𝐸 ∪ {𝑥1…𝑥𝑛𝑦2…𝑦𝑚 ∣ 𝑥1…𝑥𝑛 ∈𝓑Π𝑘 ∧ 𝑥𝑛𝑦2…𝑦𝑚 ∈𝓑Π𝑘} Hdef. ⦾I
= 𝐸 ∪ {𝑥1…𝑥𝑛𝑦2…𝑦𝑚 ∣ 𝑥1…𝑥𝑛 ∈

2𝑘−1

⋃
𝑛=2
Π𝑛(𝐺) ∧ 𝑥𝑛𝑦2…𝑦𝑚 ∈

2𝑘−1

⋃
𝑛=2
Π𝑛(𝐺)}

Hind. hyp.I
= 𝐸 ∪

2𝑘

⋃
𝑛=3
Π𝑛(𝐺)

H(⊆) the concatenation of two paths of length at least 1 and at most 2𝑘−1
is at least of length 2 and at most of length 2 × 2𝑘−1 = 2𝑘.
(⊇) Conversely, any path of length at most 2𝑘 has either length 1 in 𝐸
or can be decomposed into two paths 𝜋 = 𝑥1…𝑥𝑛 and 𝜋′ = 𝑥𝑛𝑦2…𝑦𝑚
of length at most 2𝑘−1. By induction hypothesis, 𝜋, 𝜋′ ∈ ⋃2

𝑘−1

𝑛=2 Π𝑛(𝐺) I
By recurrence on 𝑘, for all 𝑘 ∈ N∗, 𝓑Π𝑘 =

2𝑘−1

⋃
𝑛=2
Π𝑛(𝐺) contains exactly all paths

from 𝑥 to 𝑦 of length less than or equal to 2𝑘−1.
Finally, we must prove that the limit lfp⊆𝓑Π = ⋃

𝑘∈N
𝓑Π𝑘 is Π(𝐺) that is con-

tains exactly all paths of 𝐺.
Any path in Π(𝐺) has a length 𝑛 > 0 such that 𝑛 ⩽ 2𝑘−1 for some 𝑘 > 0 so

belongs to 𝓑Π𝑛(∅) hence to the limit, proving Π(𝐺) ⊆ lfp⊆𝓑Π.
Conversely any path in lfp⊆𝓑Π = ⋃

𝑘∈N
𝓑Π𝑘 belongs to some iterate 𝓑Π𝑘 which

contains exactly all paths of length less than or equal to 2𝑘 so belongs to Π2𝑘(𝐺)
hence to Π(𝐺), proving lfp⊆𝓑Π ⊆ Π(𝐺). By antisymmetry Π(𝐺) = lfp⊆𝓑Π.

The equivalent form 𝓟Π follows from lfp⊑ 𝑓 = lfp⊑ 𝜆𝑥 .𝑥⊔𝑓(𝑥) and lfp⊑ 𝜆𝑥 . 𝑎⊔
𝑓(𝑥) = lfp⊑𝑎 𝑓 when 𝑎 ⊑ 𝑓(𝑎). The proofs for (Th.2.a,b) are similar with the 𝑘th-

iterate of the form
𝑘
⋃
𝑛=2
Π𝑛(𝐺). ⊓⊔

P. Cousot78

5 Abstraction of the paths of a graph

A path problem in a graph 𝐺 = ⟨𝑉, 𝐸⟩ consists in specifying/computing an
abstraction 𝛼(Π(𝐺)) of its paths Π(𝐺) defined by a Galois connection

⟨℘(𝑉>1), ⊆, ∪⟩ −−−−→←−−−−𝛼
𝛾
⟨𝐴, ⊑, ⊔⟩.

A path problem can be solved by a fixpoint definition/computation.

Theorem 3 (Fixpoint characterization of a path problem) Let 𝐺 =
⟨𝑉, 𝐸⟩ be a graph with paths Π(𝐺) and ⟨℘(𝑉>1), ⊆, ∪⟩ −−−−→←−−−−𝛼

𝛾
⟨𝐴, ⊑, ⊔⟩.

𝛼(Π(𝐺)) = lfp⊑𝓛♯Π, 𝓛♯Π(𝑋) ≜ 𝛼(𝐸) ⊔ 𝑋⦾ 𝛼(𝐸) (Th.3.a)
= lfp⊑𝓡♯Π, 𝓡♯Π(𝑋) ≜ 𝛼(𝐸) ⊔ 𝛼(𝐸)⦾𝑋 (Th.3.b)
= lfp⊑𝓑♯Π, 𝓑♯Π(𝑋) ≜ 𝛼(𝐸) ⊔ 𝑋⦾𝑋 (Th.3.c)
= lfp⊑𝛼(𝐸)𝓟♯Π, 𝓟♯Π(𝑋) ≜ 𝑋 ⊔ 𝑋⦾𝑋 (Th.3.d)

where 𝛼(𝑋)⦾ 𝛼(𝑌) = 𝛼(𝑋⦾ 𝑌). ⊓⊔

–

–

Proof (of Th. 3) All cases are similar. Let us check the commutation for (Th.3.c).
𝛼(𝓑Π(𝑋))

= 𝛼(𝐸 ∪ 𝑋⦾𝑋) Hdef. (Th.2.c) of 𝓑Π(𝑋)I
= 𝛼(𝐸) ⊔ 𝛼(𝑋⦾𝑋)Hthe abstraction of Galois connections preserves existing joinsI
= 𝛼(𝐸) ⊔ 𝛼(𝑋)⦾ 𝛼(𝑋) Hby hyp.I
= 𝓑♯Π(𝛼(𝑋)) Hdef. (Th.3.c) of 𝓑♯ΠI
We conclude by Th. 2 and exact least fixpoint abstraction Cor. 1. The equivalent
form 𝓟♯Π follows from lfp⊑ 𝑓 = lfp⊑ 𝜆𝑥 .𝑥 ⊔ 𝑓(𝑥) and lfp⊑ 𝜆𝑥 . 𝑎 ⊔ 𝑓(𝑥) = lfp⊑𝑎 𝑓
when 𝑎 ⊑ 𝑓(𝑎). ⊓⊔

An essential remark is that the fixpoint definitions of the set of paths in
℘(𝑉>1) of a graph 𝐺 = ⟨𝑉, 𝐸⟩ in Th. 2 based on the primitives 𝐸, ∪, and ⦾
are preserved in Th. 3 by the abstraction ⟨℘(𝑉>1), ⊆, ∪⟩ −−−−→←−−−−𝛼

𝛾
⟨𝐴, ⊑, ⊔⟩ for the

primitives 𝛼(𝐸), ⊔, and ⦾ on 𝐴, which explains the origin of the observation by
[2,14,15,9,11] that path problems all have the same algebraic structure.

6 Calculational design of the paths between any two
vertices

As a direct application of Th. 3, let us consider the abstraction of all paths
Π(𝐺) into the paths between any two vertices. This is p ≜ 𝛼⧟(Π(𝐺)) with the
projection abstraction

Abstract Interpretation of Graphs 79

𝛼⧟(𝑋) ≜ 𝜆 (𝑦, 𝑧) . {𝑥1…𝑥𝑛 ∈ 𝑋 ∣ 𝑦 = 𝑥1 ∧ 𝑥𝑛 = 𝑧}
𝛾⧟(p) ≜ ⋃

⟨𝑥, 𝑦⟩∈𝑉×𝑉
p(𝑥, 𝑦)

such that
⟨℘(𝑉>1), ⊆, ∪⟩ −−−−−−→←−−−−−−𝛼⧟

𝛾⧟
⟨𝑉 × 𝑉→℘(𝑉>1), ⊆̇, ∪̇⟩ (3)

where p ⊆̇ p′ ⇔ ∀𝑥, 𝑦 ∈ 𝑉 . p(𝑥, 𝑦) ⊆ p′(𝑥, 𝑦) and (⋃̇
𝑖∈Δ

p𝑖)(𝑥, 𝑦) ≜ ⋃
𝑖∈Δ
(p𝑖(𝑥, 𝑦)) are

defined pointwise.
By (1) and the abstraction in Galois connections preserves existing joins, we

have

p(𝑦, 𝑧) ≜ ⋃
𝑛∈N∗

p𝑛(𝑦, 𝑧) (4)

p𝑛(𝑦, 𝑧) ≜ {𝑥1…𝑥𝑛 ∈ Π𝑛(𝐺) ∣ 𝑦 = 𝑥1 ∧ 𝑥𝑛 = 𝑧}
= {𝑥1…𝑥𝑛 ∈ 𝑉𝑛 ∣ 𝑦 = 𝑥1 ∧ 𝑥𝑛 = 𝑧 ∧ ∀𝑖 ∈ [1, 𝑛[. ⟨𝑥𝑖, 𝑥𝑖+1⟩ ∈ 𝐸}.

p(𝑥, 𝑥) is empty if and only if there is no cycle from 𝑥 to 𝑥 (which requires, in
particular, that the graph has no self-loops i.e. ∀𝑥 ∈ 𝑉 . ⟨𝑥, 𝑥⟩ ∉ 𝐸). We define
the concatenation of finite paths

𝑥1…𝑥𝑛 ⊙ 𝑦1𝑦2…𝑦𝑚 ≜ 𝑥1…𝑥𝑛𝑦2…𝑦𝑚 if 𝑥𝑛 = 𝑦1 (5)
≜ undefined otherwise

As a direct application of the path problem Th. 3, we have the following fixpoint
characterization of the paths of a graph between any two vertices [7, Sect. 5],
which, by Kleene-Scott fixpoint theorem, yields an iterative algorithm (converg-
ing in finitely many iterations for graphs without infinite paths).

Theorem 4 (Fixpoint characterization of the paths of a graph be-
tween any two vertices) Let 𝐺 = ⟨𝑉, 𝐸⟩ be a graph. The paths between
any two vertices of 𝐺 are p = 𝛼⧟(Π(𝐺)) such that

p = lfp ⊆̇𝓛⧟Π, 𝓛⧟Π(p) ≜ �̇� ∪̇ p ⧟̇⦾ �̇� (Th.4.a)

= lfp ⊆̇𝓡⧟Π, 𝓡⧟Π(p) ≜ �̇� ∪̇ �̇�
⧟̇⦾ p (Th.4.b)

= lfp ⊆̇𝓑⧟Π, 𝓑⧟Π(p) ≜ �̇� ∪̇ p ⧟̇⦾ p (Th.4.c)

= lfp ⊆̇̇𝐸𝓟⧟Π, 𝓟⧟Π(p) ≜ p ∪̇ p ⧟̇⦾ p (Th.4.d)

where �̇� ≜ 𝜆 𝑥, 𝑦 . (𝐸 ∩ {⟨𝑥, 𝑦⟩}) and p1
⧟̇⦾ p2 ≜ 𝜆𝑥, 𝑦 . ⋃

𝑧∈𝑉
p1(𝑥, 𝑧)⦾ p2(𝑧, 𝑦).

⊓⊔

–

–

Proof (of Th. 4) We apply Th. 3 with 𝛼⧟(𝐸) = 𝜆 𝑥, 𝑦 . (𝐸 ∩ {⟨𝑥, 𝑦⟩}) = �̇� and
𝛼⧟(𝑋⦾ 𝑌)

= 𝜆 (𝑥, 𝑦) . {𝑧1…𝑧𝑛 ∈ 𝑋⦾ 𝑌 ∣ 𝑥 = 𝑧1 ∧ 𝑧𝑛 = 𝑦} Hdef. (3) of 𝛼⧟I

P. Cousot80

= 𝜆 (𝑥, 𝑦) . {𝑧1…𝑧𝑛 ∈ {𝑥1…𝑥𝑘𝑦2…𝑦𝑚 ∣ 𝑥1…𝑥𝑘 ∈ 𝑋 ∧ 𝑥𝑘𝑦2…𝑦𝑚 ∈ 𝑌} ∣ 𝑥 =
𝑧1 ∧ 𝑧𝑛 = 𝑦} Hdef. (2) of ⦾I

= 𝜆 (𝑥, 𝑦) . ⋃
𝑧∈𝑉
{𝑥𝑥2…𝑥𝑘−1𝑧𝑦2…,𝑦𝑚−1𝑦 ∣ 𝑥𝑥2…𝑥𝑘−1𝑧 ∈ 𝑋 ∧ 𝑧𝑦2…𝑦𝑚−1𝑦 ∈ 𝑌}

Hdef. ∈ and ∪ with 𝑥 = 𝑥1, 𝑦𝑚 = 𝑦, and 𝑧 = 𝑥𝑘I
= 𝜆 (𝑥, 𝑦) . ⋃

𝑧∈𝑉
{𝑥𝑥2…𝑥𝑘−1𝑧 ⊙ 𝑧𝑦2…𝑦𝑚−1𝑦 ∣ 𝑥𝑥2…𝑥𝑘−1𝑧 ∈ 𝑋 ∧ 𝑧𝑦2…𝑦𝑚−1𝑦 ∈ 𝑌}

Hdef. (5) of ⊙I
= 𝜆 (𝑥, 𝑦) . ⋃

𝑧∈𝑉
{𝑝 ⊙ 𝑝′ ∣ 𝑝 ∈ 𝛼⧟(𝑋)(𝑦, 𝑧) ∧ 𝑝′ ∈ 𝛼⧟(𝑌)(𝑧, 𝑦)}

Hdef. 𝛼⧟(𝑋) with 𝑝 = 𝑥𝑥2…𝑥𝑘−1𝑧 and 𝑝′ = 𝑧𝑦2…𝑦𝑚−1𝑦I
= 𝛼⧟(𝑋) ⧟̇⦾ 𝛼⧟(𝑌)

by defining 𝑋 ⧟̇⦾ 𝑌 ≜ 𝜆 (𝑥, 𝑦) . ⋃𝑧∈𝑉{𝑝 ⊙ 𝑝′ ∣ 𝑝 ∈ 𝑋(𝑦, 𝑧) ∧ 𝑝′ ∈ 𝑌(𝑧, 𝑦)} =
𝜆 (𝑥, 𝑦) . ⋃𝑧∈𝑉𝑋(𝑦, 𝑧)⦾ 𝑌(𝑧, 𝑦) by (2) and (5). ⊓⊔

7 Shortest distances between any two vertices of a
weighted graph

We now consider weighted graphs ⟨𝑉, 𝐸, 𝛚⟩ on a totally ordered group ⟨𝔾, ⩽, 0,
+⟩ and extend weights from edges to paths. The weight of a path is

𝛚(𝑥1…𝑥𝑛) ≜
𝑛−1
∑
𝑖=1
𝛚(⟨𝑥𝑖, 𝑥𝑖+1⟩) (6)

which is 0 when 𝑛 ⩽ 1 and
𝑛−1
∑
𝑖=1
𝛚(⟨𝑥𝑖, 𝑥𝑖+1⟩) when 𝑛 > 1, in particular 𝛚(⟨𝑥1, 𝑥2⟩)

when 𝑛 = 2. The (minimal) weight of a set of paths is

𝛚(𝑃) ≜ min{𝛚(𝜋) ∣ 𝜋 ∈ 𝑃}. (7)

We have 𝛚(⋃
𝑖∈Δ
𝑃𝑖) = min

𝑖∈Δ
𝛚(𝑃𝑖) so a Galois connection

⟨℘(⋃
𝑛∈N∗
𝑉 𝑛), ⊆⟩ −−−−−→←−−−−−𝛚

𝛾𝛚 ⟨𝔾 ∪ {−∞,∞}, ⩾⟩

between path sets and the complete lattice ⟨𝔾∪ {−∞,∞}, ⩾, ∞, −∞, min, max⟩
and 𝛾𝛚(d) ≜ {𝜋 ∈ ⋃𝑛∈N∗ 𝑉

𝑛 ∣ 𝛚(𝜋) ⩾ d}.
Extending pointwise to 𝑉 × 𝑉→℘(⋃𝑛∈N∗ 𝑉

𝑛) with �̇�(p)⟨𝑥, 𝑦⟩ ≜ 𝛚(p(𝑥, 𝑦)), d ⩽̇
d′ ≜ ∀𝑥, 𝑦 . d⟨𝑥, 𝑦⟩ ⩽ d′⟨𝑥, 𝑦⟩, and ⩾̇ is the inverse of ⩽̇, we have

⟨𝑉 × 𝑉→℘(⋃
𝑛∈N∗
𝑉 𝑛), ⊆̇⟩ −−−−−→←−−−−−�̇�

̇𝛾𝛚 ⟨𝑉 × 𝑉→𝔾 ∪ {−∞,∞}, ⩾̇⟩. (8)

Abstract Interpretation of Graphs 81

The distance d(𝑥, 𝑦) between an origin 𝑥 ∈ 𝑉 and an extremity 𝑦 ∈ 𝑉 of a
weighted finite graph 𝐺 = ⟨𝑉, 𝐸, 𝛚⟩ on a totally ordered group ⟨𝔾, ⩽, 0, +⟩ is the
length 𝛚(p(𝑥, 𝑦)) of the shortest path between these vertices

d ≜ �̇�(p)

where p has a fixpoint characterization given by Th. 4.

8 Calculational design of the shortest distances between
any two vertices

The shortest distance between vertices of a weighted graph is a path problem
solved by Th. 3, the composition of the abstractions and (8) and (3), and the
path abstraction Th. 3. Th. 5 is based on (Th.3.d), (Th.3.a—c) provide three
other solutions.

Theorem 5 (Fixpoint characterization of the shortest distances
of a graph) Let 𝐺 = ⟨𝑉, 𝐸, 𝛚⟩ be a graph weighted on the totally ordered
group ⟨𝔾, ⩽, 0, +⟩. Then the distances between any two vertices are
d= �̇�(p)=gfp ⩽̇𝐸𝛚𝓟𝛿𝐺 where (Th.5)
𝐸𝛚 ≜ 𝜆 (𝑥, 𝑦) . (⟨𝑥, 𝑦⟩ ∈ 𝐸 ? 𝛚(𝑥, 𝑦) :∞)

𝓟𝛿𝐺(𝑋)≜ 𝜆 (𝑥, 𝑦) . min{𝑋(𝑥, 𝑦),min
𝑧∈𝑉
{𝑋(𝑥, 𝑧) + 𝑋(𝑧, 𝑦)}} ⊓⊔

–

–

Proof (of Th. 5) We apply Th. 3 with abstraction �̇� ∘ 𝛼⧟ so that we have
to abstract the transformers in Th. 4 using an exact fixpoint abstraction of
Cor. 1. The initialization and commutation condition yield the transformers by
calculational design.
�̇� ∘ 𝛼⧟(𝐸)(𝑥, 𝑦)

= 𝛚(𝐸 ∩ {⟨𝑥, 𝑦⟩}) Has proved for Th. 4 and def. �̇�I
= (⟨𝑥, 𝑦⟩ ∈ 𝐸 ? 𝛚(𝑥, 𝑦) : min∅) Hdef. ∩, conditional, and 𝛚I
= (⟨𝑥, 𝑦⟩ ∈ 𝐸 ? 𝛚(𝑥, 𝑦) :∞) Hdef. minI
�̇� ∘ 𝛼⧟(𝑋⦾ 𝑌)(𝑥, 𝑦)

= �̇�(𝛼⧟(𝑋) ⧟̇⦾ 𝛼⧟(𝑌))(𝑥, 𝑦) Has proved for Th. 4I
= 𝛚(𝛼⧟(𝑋) ⧟̇⦾ 𝛼⧟(𝑌))(𝑥, 𝑦)) Hpointwise def. (8) of �̇�I
= 𝛚(⋃
𝑧∈𝑉
𝛼⧟(𝑋)(𝑥, 𝑧)⦾ 𝛼⧟(𝑌)(𝑧, 𝑦))) Hdef. ⧟̇⦾ in Th. 4I

= min
𝑧∈𝑉
𝛚(𝛼⧟(𝑋)(𝑥, 𝑧)⦾ 𝛼⧟(𝑌)(𝑧, 𝑦))) HGalois connection (7)I

= min
𝑧∈𝑉
𝛚({𝑥1…𝑥𝑛𝑦2…𝑦𝑚 ∣ 𝑥1…𝑥𝑛 ∈ 𝛼⧟(𝑋)(𝑥, 𝑧) ∧ 𝑥𝑛𝑦2…𝑦𝑚 ∈ 𝛼⧟(𝑌)(𝑧, 𝑦)})Hdef. (2) of ⦾I

= min
𝑧∈𝑉
{𝛚(𝑥1…𝑥𝑛𝑦2…𝑦𝑚) ∣ 𝑥1…𝑥𝑛 ∈ 𝛼⧟(𝑋)(𝑥, 𝑧) ∧ 𝑥𝑛𝑦2…𝑦𝑚 ∈ 𝛼⧟(𝑌)(𝑧, 𝑦)})

P. Cousot82

Hdef. (7) of 𝛚I
= min
𝑧∈𝑉
{𝛚(𝑥1…𝑥𝑛) + 𝛚(𝑥𝑛𝑦2…𝑦𝑚) ∣ 𝑥1…𝑥𝑛 ∈ 𝛼⧟(𝑋)(𝑥, 𝑧) ∧ 𝑥𝑛𝑦2…𝑦𝑚 ∈
𝛼⧟(𝑌)(𝑧, 𝑦)}) Hdef. (6) of 𝛚I

= min
𝑧∈𝑉
{𝛚(𝑥1…𝑥𝑛) + 𝛚(𝑦1𝑦2…𝑦𝑚) ∣ 𝑥1…𝑥𝑛 ∈ 𝛼⧟(𝑋)(𝑥, 𝑧) ∧ 𝑦1𝑦2…𝑦𝑚 ∈
𝛼⧟(𝑌)(𝑧, 𝑦)}) Hdef. 𝛼⧟ so that 𝑥1 = 𝑥, 𝑥𝑛 = 𝑦1 = 𝑧, and 𝑦𝑚 = 𝑦I

= min
𝑧∈𝑉

min{𝛚(𝑥1…𝑥𝑛) ∣ 𝑥1…𝑥𝑛 ∈ 𝛼⧟(𝑋)(𝑥, 𝑧)}+min{𝛚(𝑦1𝑦2…𝑦𝑚) ∣ 𝑦1𝑦2…𝑦𝑚 ∈
𝛼⧟(𝑌)(𝑧, 𝑦)} Hmin of a sumI

= min
𝑧∈𝑉

min{𝛚(𝜋1) ∣ 𝜋1 ∈ 𝛼⧟(𝑋)(𝑥, 𝑧)} +min{𝛚(𝜋2) ∣ 𝜋2 ∈ 𝛼⧟(𝑌)(𝑧, 𝑦)}Hletting 𝜋1 = 𝑥1…𝑥𝑛 and 𝜋2 = 𝑦1𝑦2…𝑦𝑚I
= min
𝑧∈𝑉
𝛚(𝛼⧟(𝑋)(𝑥, 𝑧)) + 𝛚(𝛼⧟(𝑌)(𝑧, 𝑦)) Hdef. (7) of 𝛚I

= min
𝑧∈𝑉
�̇� ∘ 𝛼⧟(𝑋)(𝑥, 𝑧) + �̇� ∘ 𝛼⧟(𝑌)(𝑧, 𝑦) Hpointwise def. (8) of �̇�I

By Th. 3 and (Th.4.d), we get the transformer 𝓟𝛿𝐺. ⊓⊔

Of course the greatest fixpoint in Th. 5 is not computable for infinite graphs.
For finite graphs, there is a problem with cycles with strictly negative weights.
As shown by the graph ⟨{𝑥}, {⟨𝑥, 𝑥⟩, 𝛚⟩ with 𝛚(⟨𝑥, 𝑥⟩) = −1, the minimal distance
between the extremities 𝑥 and 𝑥 of the paths {𝑥𝑛 ∣ 𝑛 > 1} is −∞. It is obtained
as the limit of an infinite iteration for the greatest fixpoint in Th. 5. Following
Roy-Floyd-Warshall, we will assume that the graph has no cycle with negative
weight in which case the iterative computation of the greatest fixpoint in Th. 5
does converge in finite time to the shortest distance between any two vertices.

For a finite graph of 𝑛 vertices, the computation of gfp ⩽̇𝐸𝛚𝓟𝛿𝐺 in (Th.5) has to
consider all pairs of vertices in 𝑛2, for each such pair ⟨𝑥, 𝑦⟩ the 𝑛 vertices 𝑧 ∈ 𝑉,
and 𝑛 iterations may be necessary to converge along an elementary path (with
no cycles) going through all vertices, so considering elementary paths only, the
computation would be in O(𝑛4).

However, the iteration in Roy-Floyd-Warshall algorithm is much more effi-
cient in O(𝑛3), since it does not consider all elementary paths in the graph but
only simple paths that over-approximate elementary paths, which simplifies the
iterated function (from linear to constant time for each pair of vertices). Let us
design the Roy-Floyd-Warshall algorithm by calculus.

9 Elementary paths and cycles

A cycle is elementary if and only if it contains no internal subcycle (i.e. subpath
which is a cycle). A path is elementary if and only if it contains no subpath
which is an internal cycle (so an elementary cycle is an elementary path). The
only vertices that can occur twice in an elementary path are its extremities in
which case it is an elementary cycle.

Abstract Interpretation of Graphs 83

Lemma 1 (elementary path) A path 𝑥1…𝑥𝑛 ∈ Π𝑛(𝐺) is elementary if
and only if

elem?(𝑥1…𝑥𝑛) ≜ (∀𝑖, 𝑗 ∈ [1, 𝑛] . (𝑖 ≠ 𝑗) ⇒ (𝑥𝑖 ≠ 𝑥𝑗)) ∨ (Lem.1)
(𝑥1 = 𝑥𝑛 ∧ ∀𝑖, 𝑗 ∈ [1, 𝑛[. (𝑖 ≠ 𝑗) ⇒ (𝑥𝑖 ≠ 𝑥𝑗)) (case of a cycle)

is true.

–

–

Proof (of Lem. 1)
The necessary condition (i.e. 𝑥1…𝑥𝑛 ∈ Π𝑛(𝐺) is elementary implies that

elem?(𝑥1…𝑥𝑛)) is proved contrapositively.
¬(elem?(𝑥1…𝑥𝑛))

= ¬((∀𝑖, 𝑗 ∈ [1, 𝑛] . (𝑖 ≠ 𝑗) ⇒ (𝑥𝑖 ≠ 𝑥𝑗)) ∨ (𝑥1 = 𝑥𝑛 ∧ elem?(𝑥1…𝑥𝑛))) Hdef. elem?I
= (∃𝑖, 𝑗 ∈ [1, 𝑛] . 𝑖 ≠ 𝑗 ∧ 𝑥𝑖 = 𝑥𝑗) ∧ ((𝑥1 = 𝑥𝑛) ⇒ (∃𝑖, 𝑗 ∈ [1, 𝑛[. 𝑖 ≠ 𝑗 ∧ 𝑥𝑖 ≠ 𝑥𝑗))HDe Morgan lawsI
By ∃𝑖, 𝑗 ∈ [1, 𝑛] . 𝑖 ≠ 𝑗 ∧ 𝑥𝑖 = 𝑥𝑗 the path 𝑥1…𝑥𝑛 must have a cycle, but this is
not forbidden if 𝑥1 = 𝑥𝑛. In that case, the second condition (𝑥1 = 𝑥𝑛) ⇒ (∃𝑖, 𝑗 ∈
[1, 𝑛[. 𝑖 ≠ 𝑗 ∧ 𝑥𝑖 ≠ 𝑥𝑗) implies that there is a subcycle within 𝑥1…𝑥𝑛−1, so the
cycle 𝑥1…𝑥𝑛−1𝑥1 is not elementary.

Conversely, the sufficient condition (elem?(𝑥1…𝑥𝑛) ⇒ 𝑥1…𝑥𝑛 ∈ Π𝑛(𝐺) is
elementary) is proved by reductio ad absurdum. Assume elem?(𝑥1…𝑥𝑛) and
𝑥1…𝑥𝑛 ∈ Π𝑛(𝐺) is not elementary so has an internal subcycle.

– If 𝑥1 = 𝑥𝑛, the internal subcycle is 𝑥1…𝑥𝑛−1 = 𝜋1𝑎𝜋2𝑎𝜋3 so ∃𝑖, 𝑗 ∈ [1, 𝑛[. 𝑖 ≠
𝑗 ∧ 𝑥𝑖 ≠ 𝑥𝑗 in contradiction with elem?(𝑥1…𝑥𝑛).

– Otherwise 𝑥1 ≠ 𝑥𝑛 and the internal subcycle has the form 𝑥1…𝑥𝑛 = 𝜋1𝑎𝜋2𝑎𝜋3
where, possibly 𝜋1𝑎 = 𝑥1 or 𝑎𝜋3 = 𝑥𝑛, but not both, so ∃𝑖, 𝑗 ∈ [1, 𝑛] . 𝑖 ≠ 𝑗 ∧𝑥𝑖 ≠
𝑥𝑗 in contradiction with elem?(𝑥1…𝑥𝑛).

⊓⊔

10 Calculational design of the elementary paths between
any two vertices

Restricting paths to elementary ones is the abstraction

𝛼

e

(𝑃) ≜ {𝜋 ∈ 𝑃 ∣ elem?(𝜋)}
𝛾

e

(𝑃) ≜ 𝑃 ∪ {𝜋 ∈ ℘(𝑉>1) ∣ ¬elem?(𝜋)}

Notice that, by (Lem.1), cycles (such as 𝑥, 𝑥 for a self-loop ⟨𝑥, 𝑥⟩ ∈ 𝐸) are not
excluded, provided it is through the path extremities. This exclusion abstraction
is a Galois connection.

⟨℘(𝑉>1), ⊆⟩ −−−−−→←−−−−−
𝛼

e

𝛾

e

⟨℘(𝑉>1), ⊆⟩

which extends pointwise between any two vertices

P. Cousot84

⟨𝑉 × 𝑉→℘(𝑉>1), ⊆̇⟩ −−−−−→←−−−−−
�̇�

e

̇𝛾

e

⟨𝑉 × 𝑉→℘(𝑉>1), ⊆̇⟩

The following Lem. 2 provides a necessary and sufficient condition for the con-
catenation of two elementary paths to be elementary.

Lemma 2 (concatenation of elementary paths) If 𝑥𝜋1𝑧 and 𝑧𝜋2𝑦 are
elementary paths then their concatenation 𝑥𝜋1𝑧⊙𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋2𝑦 is elemen-
tary if and only if
elem-conc?(𝑥𝜋1𝑧, 𝑧𝜋2𝑦) ≜ (𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ∧V(𝑥𝜋1𝑧) ∩V(𝜋2𝑦) = ∅) (Lem.2)

∨ (𝑥 = 𝑦 ≠ 𝑧 ∧V(𝜋1𝑧) ∩V(𝜋2) = ∅)
is true.

–

–

Proof (of Lem. 2) Assuming 𝑥𝜋1𝑧 and 𝑧𝜋2𝑦 to be elementary, we must prove
that elem-conc?(𝑥𝜋1𝑧, 𝑧𝜋2𝑦) is true ⇔ 𝑥𝜋1𝑧 ⊙ 𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋2𝑦 is elementary.

We prove the necessary condition (𝜋1⊙𝜋2 is elementary⇒ elem-conc?(𝜋1, 𝜋2))
by contraposition (¬elem-conc?(𝜋1, 𝜋2) ⇒ 𝜋1 ⊙𝜋2 has an internal cycle). We have
¬((𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ∧V(𝑥𝜋1𝑧) ∩V(𝜋2𝑦) = ∅) ∨ (𝑥 = 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ∧V(𝜋1𝑧) ∩
V(𝜋2) = ∅))

= (𝑥 = 𝑧∨𝑦 = 𝑧∨(V(𝑥𝜋1𝑧)∩V(𝜋2𝑦) ≠ ∅)∧(𝑥 ≠ 𝑦∨𝑥 = 𝑧∨𝑦 = 𝑧∨V(𝜋1𝑧)∩V(𝜋2) ≠
∅)) Hde Morgan lawsI

– If 𝑥 = 𝑧 then 𝑥𝜋1𝑥𝜋2𝑦 has a cycle and is not elementary;
– else, if 𝑦 = 𝑧 then 𝑥𝜋1𝑦𝜋2𝑦 has a cycle and is not elementary;
– else 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧, and then
• either 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ∧ 𝑥 = 𝑦 so V(𝜋1𝑧) ∩V(𝜋2) ≠ ∅. There are two cases

∗ either V(𝜋1) ∩ V(𝜋2) ≠ ∅ so 𝜋1 = 𝜋′1𝑎𝜋″1 and 𝜋2 = 𝜋′2𝑎𝜋″2 and therefore
𝜋1 ⊙ 𝜋2 = 𝑥𝜋1𝑧𝜋2𝑦 = 𝑥𝜋′1𝑎𝜋″1𝑧𝜋′2𝑎𝜋″2𝑥 has an internal cycle 𝑎𝜋″1𝑧𝜋′2𝑎,

∗ or 𝑧 ∈ V(𝜋2) so 𝜋2 = 𝜋′2𝑧𝜋″2 and therefore 𝜋1⊙𝜋2 = 𝑥𝜋1𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋′2𝑧𝜋″2𝑥
has an internal cycle 𝑧𝜋′2𝑧;

• otherwise 𝑥 ≠ 𝑧∧𝑦 ≠ 𝑧∧𝑥 ≠ 𝑦 and we have V(𝑥𝜋1𝑧)∩V(𝜋2𝑦) ≠ ∅. By cases.
∗ If 𝑥 appears in 𝜋2𝑦 that is in 𝜋2 since 𝑥 ≠ 𝑦 we have 𝜋2 = 𝜋′2𝑥𝜋″2 and then
𝑥𝜋1𝑧 ⊙ 𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋′2𝑥𝜋″2𝑦 has an internal cycle 𝑥𝜋1𝑧𝜋′2𝑥;

∗ Else, if V(𝜋1) ∩V(𝜋2𝑦) ≠ ∅ then
· Either V(𝜋1) ∩V(𝜋2) ≠ ∅ so 𝜋1 = 𝜋′1𝑎𝜋″1 and 𝜋2 = 𝜋′2𝑎𝜋″2 and therefore
𝑥𝜋1𝑧⊙𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋2𝑦 = 𝑥𝜋′1𝑎𝜋″1𝑧𝜋′2𝑎𝜋″2𝑥 has an internal cycle 𝑎𝜋″1𝑧𝜋′2𝑎,

· Or 𝑦 ∈ V(𝜋1) so 𝜋1 = 𝜋′1𝑦𝜋″1 and then 𝑥𝜋1𝑧 ⊙ 𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋2𝑦 =
𝑥𝜋′1𝑦𝜋″1𝑧𝜋2𝑦 has an internal cycle 𝑦𝜋″1𝑧𝜋2𝑦;

∗ Otherwise, 𝑧 ∈ V(𝜋2𝑦) ≠ ∅ and then
· Either 𝑧 ∈ V(𝜋2) so 𝜋2 = 𝜋′2𝑧𝜋″2 and 𝑥𝜋1𝑧⊙𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋′2𝑧𝜋″2𝑦

has an internal cycle 𝑧𝜋′2𝑧,
· Or 𝑧 = 𝑦 and 𝑥𝜋1𝑧 ⊙ 𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋2𝑧 has an internal cycle
𝑧𝜋2𝑧.

Abstract Interpretation of Graphs 85

We prove that the condition is sufficient (elem-conc?(𝜋1, 𝜋2) ⇒ 𝜋1 ⊙ 𝜋2 is
elementary) by reductio ad absurdum. Assume 𝑥𝜋1𝑧, and 𝑧𝜋2𝑦 are elementary,
elem-conc?(𝑥𝜋1𝑧, 𝑧𝜋2𝑦) holds, but that 𝑥𝜋1𝑧⊙ 𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋2𝑦 is not elementary.

– if the internal cycle is in 𝑥𝜋1𝑧 then, by hypothesis, 𝑥 = 𝑧 so elem-conc?(𝑥𝜋1𝑧,
𝑧𝜋2𝑦) does not hold, a contradiction;

– else, if the internal cycle is in 𝑧𝜋2𝑦 then, by hypothesis, 𝑧 = 𝑦 so elem-conc?(𝑥𝜋1𝑧,
𝑧𝜋2𝑦) does not hold, a contradiction;

– otherwise, the internal cycle is neither in 𝑥𝜋1𝑧 nor in 𝑧𝜋2𝑦 so V(𝑥𝜋1𝑧) ∩
V(𝜋2𝑦) ≠ ∅. Since elem-conc?(𝜋1, 𝜋2) holds, it follows that 𝑥 = 𝑦 ≠ 𝑧 ∧
V(𝜋1𝑧) ∩V(𝜋2) = ∅ in contradiction with the existence of an internal cycle
𝑎𝜋″𝜋′2𝑎 requiring 𝜋1𝑧 = 𝜋′𝑎𝜋″ and 𝜋2 = 𝜋′2𝑎𝜋″2 so 𝑎 ∈ V(𝜋′𝑎𝜋″) ∩V(𝜋′2𝑎𝜋″2) =
V(𝜋1𝑧) ∩V(𝜋2) ≠ ∅.

⊓⊔

We have the following fixpoint characterization of the elementary paths of a
graph (converging in finitely many iterations for graphs without infinite paths).

Theorem 6 (Fixpoint characterization of the elementary paths of
a graph) Let 𝐺 = ⟨𝑉, 𝐸⟩ be a graph. The elementary paths between any two
vertices of 𝐺 are p

e

≜ 𝛼⧟ ∘ 𝛼

e

(Π(𝐺)) such that
p

e

= lfp ⊆̇𝓛 e

Π, 𝓛 e

Π(p) ≜ �̇� ∪̇ p ⦾̇

e

�̇� (Th.6.a)
= lfp ⊆̇𝓡 e

Π, 𝓡 e
Π(p) ≜ �̇� ∪̇ �̇� ⦾̇

e
p (Th.6.b)

= lfp ⊆̇𝓑 e

Π, 𝓑 e

Π(p) ≜ �̇� ∪̇ p ⦾̇

e

p (Th.6.c)
= lfp ⊆̇̇𝐸𝓟

e

Π, 𝓟 e

Π(p) ≜ p ∪̇ p ⦾̇

e

p (Th.6.d)

where �̇� ≜ 𝜆 𝑥, 𝑦 . (𝐸 ∩ {⟨𝑥, 𝑦⟩}) in Th. 4 and p1 ⦾̇

e

p2 ≜ 𝜆𝑥, 𝑦 . ⋃
𝑧∈𝑉
{𝜋1 ⊙ 𝜋2 |

𝜋1 ∈ p1(𝑥, 𝑧) ∧ 𝜋2 ∈ p2(𝑧, 𝑦) ∧ elem-conc?(𝜋1, 𝜋2)}. ⊓⊔

–

–

The definition of p

e

in Th. 6 is left-recursive in case (a), right recursive in case
(b), bidirectional in case (c), and on paths only in case (d).

Proof (of Th. 6) We apply Th. 3 with abstraction �̇�

e

∘ 𝛼⧟ so that we have to
abstract the transformers in Th. 4 using an exact fixpoint abstraction of Cor. 1.
The commutation condition yields the transformers by calculational design.

�̇�

e

(p1
⧟̇⦾ p2)

= �̇�

e

(𝜆 𝑥, 𝑦 . ⋃
𝑧∈𝑉

p1(𝑥, 𝑧)⦾ p2(𝑧, 𝑦)) Hdef. ⧟̇⦾ in Th. 4I
= 𝜆𝑥, 𝑦 .𝛼 e

(⋃
𝑧∈𝑉

p1(𝑥, 𝑧)⦾ p2(𝑧, 𝑦)) Hpointwise def. �̇�

eI
= 𝜆𝑥, 𝑦 .⋃

𝑧∈𝑉
𝛼

e

(p1(𝑥, 𝑧)⦾ p2(𝑧, 𝑦))

Hjoin preservation of the abstraction in a Galois connectionI

P. Cousot86

= 𝜆𝑥, 𝑦 . ⋃
𝑧∈𝑉
𝛼

e

({𝜋1 ⊙ 𝜋2 ∣ 𝜋1 ∈ p1(𝑥, 𝑧) ∧ 𝜋2 ∈ p2(𝑧, 𝑦)})

Hdef. (2) of ⦾ and (5) of ⊙I
= 𝜆𝑥, 𝑦 . ⋃

𝑧∈𝑉
𝛼

e

({𝜋1 ⊙ 𝜋2 ∣ 𝜋1 ∈ 𝛼

e

(p1(𝑥, 𝑧)) ∧ 𝜋2 ∈ 𝛼

e

(p2(𝑧, 𝑦))})

Hsince if 𝜋1 or 𝜋2 are not elementary so is their concatenation 𝜋1 ⊙ 𝜋2I
= 𝜆𝑥, 𝑦 . ⋃

𝑧∈𝑉
{𝜋1 ⊙ 𝜋2 ∣ 𝜋1 ∈ 𝛼

e

(p1(𝑥, 𝑧)) ∧ 𝜋2 ∈ 𝛼

e

(p2(𝑧, 𝑦)) ∧ elem-conc?(𝜋1, 𝜋2)}

Hsince, by Lem. 2, 𝜋1 and 𝜋2 being elementary, their concatenation 𝜋1⊙𝜋2
is elementary if and only if elem-conc?(𝜋1, 𝜋2) is trueI

= 𝜆𝑥, 𝑦 . ⋃
𝑧∈𝑉
{𝜋1 ⊙ 𝜋2 ∣ 𝜋1 ∈ �̇�

e

(p1)(𝑥, 𝑧) ∧ 𝜋2 ∈ �̇�

e

(p2)(𝑧, 𝑦) ∧ elem-conc?(𝜋1, 𝜋2)}Hpointwise def. �̇�

eI
= �̇�

e

(p1) ⦾̇

e

�̇�

e

(p2) Hdef. ⦾̇

e

in Th. 6I ⊓⊔
11 Calculational design of the elementary paths between

vertices of finite graphs

In finite graphs 𝐺 = ⟨𝑉, 𝐸⟩ with |𝑉| = 𝑛 > 0 vertices, elementary paths in 𝐺 are of
length at most 𝑛+1 (for a cycle that would go through all vertices of the graph).
This ensures that the fixpoint iterates in Th. 6 starting from ∅̇ do converge in
at most 𝑛 + 2 iterates.

Moreover, if 𝑉 = {𝑧1…𝑧𝑛} is finite, then the elementary paths of the 𝑘 + 2nd

iterate can be restricted to {𝑧1,… , 𝑧𝑘}. This yields an iterative algorithm by
application of the exact iterates multi-abstraction Th. 1 with1

𝛼

e

0 (p) ≜ p (9)
𝛼

e

𝑘(p) ≜ 𝜆 𝑥, 𝑦 . {𝜋 ∈ p(𝑥, 𝑦) ∣ V(𝜋) ⊆ {𝑧1,… , 𝑧𝑘} ∪ {𝑥, 𝑦}}, 𝑘 ∈ [1, 𝑛]
𝛼

e

𝑘(p) ≜ p, 𝑘 > 𝑛

By the exclusion abstraction and pointwise extension, these are Galois connec-
tions

⟨𝑉 × 𝑉→℘(𝑉>1), ⊆̇⟩ −−−−−→←−−−−−
𝛼

e

𝑘

𝛾

e

𝑘 ⟨𝑉 × 𝑉→
𝑛+1
⋃
𝑗=2
𝑉𝑗, ⊆̇⟩. (10)

with 𝛾

e

𝑘(p) ≜ p for 𝑘 = 0 or 𝑘 > 𝑛 and 𝛾

e

𝑘(p) ≜ p ∪̇ 𝜆 𝑥, 𝑦 . {𝑥𝜋𝑦 ∣ V(𝑥𝜋𝑦) ⊈
{𝑧1,… , 𝑧𝑘} ∪ {𝑥, 𝑦}} when 𝑘 ∈ [1, 𝑛].

Applying Th. 1, we get the following iterative characterization of the ele-
mentary paths of a finite graph. Notice that ⦾̇𝑧 in (Th.7.a) and (Th.7.b) does
not require to test that the concatenation of two elementary paths is elemen-
tary while ⦾̇

e

𝑧 in (Th.7.c) and (Th.7.d) definitely does (since the concatenated
elementary paths may have vertices in common). Notice also that the iteration
⟨𝓛 e

𝜋
𝑘, 𝑘 ∈ [0, 𝑛 + 2]⟩ in (Th.7.a) is not the same as the iterates ⟨𝓛 e

Π
𝑘(∅̇), 𝑘 ∈ N⟩

1 This is for case (Th.7.d). For cases (a–c), we also have 𝛼

e

1 (p) ≜ p while the second
definition is for 𝑘 ∈ [2, 𝑛 + 2].

Abstract Interpretation of Graphs 87

of 𝓛 e

Π from ∅̇, since using ⦾̇𝑧 or ⦾̇

e

𝑧 instead of ⦾̇

e

is the key to efficiency. This
is also the case for (Th.7.b—d).

Theorem 7 (Iterative characterization of the elementary paths
of a finite graph) Let 𝐺 = ⟨𝑉, 𝐸⟩ be a finite graph with 𝑉 = {𝑧1,… , 𝑧𝑛},
𝑛 > 0. Then

p

e

= lfp ⊆̇𝓛 e

Π =𝓛

e

𝜋
𝑛+2 where (Th.7.a)

𝓛 e

Π(p) ≜ �̇� ∪̇ p ⦾̇

e

�̇� in (Th.6.a) and 𝓛 e

𝜋
0 ≜∅̇, 𝓛 e

𝜋
1 ≜ �̇�,

𝓛 e

𝜋
𝑘+2 ≜ �̇� ∪̇𝓛 e

𝜋
𝑘+1 ⦾̇𝑧𝑘+1 �̇�, 𝑘 ∈ [0, 𝑛], 𝓛 e

𝜋
𝑘+1 =𝓛 e

𝜋
𝑘, 𝑘 ⩾ 𝑛 + 2

= lfp ⊆̇𝓡 e

Π =𝓡

e

𝜋
𝑛+2 where (Th.7.b)

𝓡 e

Π(p) ≜ �̇� ∪̇ �̇� ⦾̇

e

p in (Th.6.b) and 𝓡 e

𝜋
0 ≜∅̇, 𝓡 e

𝜋
0 ≜ �̇�,

𝓡 e

𝜋
𝑘+2 ≜ �̇� ∪̇ �̇� ⦾̇𝑧𝑘+1 𝓡

e

𝜋
𝑘+1, 𝑘 ∈ [0, 𝑛], 𝓡 e

𝜋
𝑘+1 =𝓡 e

𝜋
𝑘, 𝑘 ⩾ 𝑛 + 2

= lfp ⊆̇𝓑 e

Π =𝓑

e

𝜋
𝑛+2 where (Th.7.c)

𝓑 e

Π(p) ≜ �̇� ∪̇ p ⦾̇

e

p in (Th.6.c) and 𝓑 e

𝜋
0 ≜∅̇, 𝓑 e

𝜋
1 ≜ �̇�,

𝓑 e

𝜋
𝑘+2 ≜ �̇� ∪̇𝓑 e

𝜋
𝑘+1 ⦾̇

e

𝑧𝑘+1𝓑

e

𝜋
𝑘+1, 𝑘 ∈ [0, 𝑛], 𝓑 e

𝜋
𝑘+1 =𝓑 e

𝜋
𝑘, 𝑘 ⩾ 𝑛 + 2

= lfp ⊆̇̇𝐸𝓟

e

Π =𝓟

e

𝜋
𝑛+1 where (Th.7.d)

𝓟 e

Π(p) ≜ p ∪̇ p ⦾̇

e

p in (Th.6.d), 𝓟 e

𝜋
0 ≜ �̇�,

𝓟 e

𝜋
𝑘+1 ≜𝓟 e

𝜋
𝑘 ∪̇𝓟 e

𝜋
𝑘 ⦾̇

e
𝑧𝑘+1 𝓟

e

𝜋
𝑘, 𝑘 ∈ [0, 𝑛], 𝓟 e

𝜋
𝑘+1 =𝓟 e

𝜋
𝑘, 𝑘 ⩾ 𝑛 + 2

p1 ⦾̇𝑧 p2 ≜ 𝜆𝑥, 𝑦 . {𝜋1 ⊙ 𝜋2 | 𝜋1 ∈ p1(𝑥, 𝑧) ∧ 𝜋2 ∈ p2(𝑧, 𝑦) ∧ 𝑧 ∉ {𝑥, 𝑦}}, and
p1 ⦾̇

e

𝑧 p2 ≜ 𝜆𝑥, 𝑦 . {𝜋1 ⊙ 𝜋2 | 𝜋1 ∈ p1(𝑥, 𝑧) ∧ 𝜋2 ∈ p2(𝑧, 𝑦) ∧ elem-conc?(𝜋1, 𝜋2)}.
⊓⊔

–

–

Proof (of Th. 7) The proofs in cases (Th.7.c) and (Th.7.d) are similar.
Let us consider (Th.7.d). Assume 𝑉 = {𝑧1…𝑧𝑛} and let 𝓟 e

Π
𝑘+1 = 𝓟 e

Π(𝓟

e

Π
𝑘)

be the iterates of 𝓟 e

Π from 𝓟 e

Π
0 = �̇� in (Th.6.d). To apply Th. 1, we consider

the concrete cpo ⟨C, ⊆̇⟩ and the abstract cpo ⟨A, ⊆̇⟩ to be ⟨C, ⊆̇, �̇�, ⋃̇⟩ with
C ≜ 𝑥 ∈ 𝑉 × 𝑦 ∈ 𝑉→{𝑥𝜋𝑦 ∣ 𝑥𝜋𝑦 ∈ 𝐸 ∪ ⋃𝑛+1𝑘=3 𝑉𝑘 ∧ 𝑥𝜋𝑦 is elementary}, and the
functions 𝓟 e

𝜋𝑘(𝑋) ≜ 𝑋 ∪̇ 𝑋 ⦾̇

e

𝑧𝑘+1 𝑋, 𝑘 ∈ [1, 𝑛], and 𝓟 e

𝜋𝑘(𝑋) ≜ 𝑋, 𝑘 = 0 or
𝑘 > 𝑛 which iterates from the infimum �̇� are precisely ⟨𝓟 e

Π
𝑘, 𝑖 ∈ Z ∪ {𝜔}⟩ where

𝓟 e

𝜋
𝜔 = ⋃̇
𝑖∈Z

𝓟 e

𝜋
𝑖 =𝓟 e

𝜋
𝑛+1 =𝓟 e

Π
𝑘, 𝑘 > 𝑛.

For the infimum 𝓟 e

𝜋0 = �̇� the paths 𝑥𝜋𝑦 ∈ �̇�(𝑥, 𝑦) of 𝐺 which are elementary
and have all intermediate states of 𝜋 in ∅ = {𝑧1,… , 𝑧0} since 𝜋 is empty.

For the commutation, the case 𝑘 > 𝑛 is trivial. Otherwise let 𝑋 ∈ A so
𝑥𝜋𝑦 ∈ 𝑋(𝑥, 𝑦) is elementary and has all states of 𝜋 in {𝑧1,… , 𝑧𝑘}
𝛼

e

𝑘+1(𝓟

e

Π(𝑋))
= 𝛼

e

𝑘+1(𝑋 ∪̇ 𝑋 ⦾̇

e

𝑋) Hdef. (Th.6.d) of 𝓟 e

ΠI

P. Cousot88

= 𝛼

e

𝑘+1(𝑋) ∪̇ 𝛼

e

𝑘+1(𝑋 ⦾̇

e

𝑋) H𝛼 e

𝑘+1 preserves joins in (10)I
= 𝛼

e

𝑘(𝑋) ∪̇ 𝛼

e

𝑘+1(𝑋 ⦾̇

e

𝑋)Hdef. (9) of 𝛼

e

𝑘+1 and hypothesis that all paths in 𝑋 have all intermediate
states in {𝑧1,… , 𝑧𝑘}I

= 𝛼

e

𝑘(𝑋) ∪̇ 𝜆 𝑥, 𝑦 . {𝜋 ∈ 𝑋 ⦾̇

e

𝑋(𝑥, 𝑦) ∣ V(𝜋) ⊆ {𝑧1,… , 𝑧𝑘+1} ∪ {𝑥, 𝑦}} Hdef. 𝛼

e

𝑘+1 in
(9)I
= 𝛼

e

𝑘(𝑋)∪̇𝜆 𝑥, 𝑦 . {𝜋 ∈ ⋃
𝑧∈𝑉
{𝜋1⊙𝜋2 | 𝜋1 ∈ 𝑋(𝑥, 𝑧)∧𝜋2 ∈ 𝑋(𝑧, 𝑦)∧elem-conc?(𝜋1, 𝜋2)} ∣

V(𝜋) ⊆ {𝑧1,… , 𝑧𝑘+1} ∪ {𝑥, 𝑦}} Hdef. ⦾̇

e

in Th. 6I
= 𝛼

e

𝑘(𝑋) ∪̇ 𝜆 𝑥, 𝑦 . ⋃
𝑧∈𝑉
{𝜋1 ⊙ 𝜋2 | 𝜋1 ∈ 𝑋(𝑥, 𝑧) ∧ 𝜋2 ∈ 𝑋(𝑧, 𝑦) ∧ elem-conc?(𝜋1, 𝜋2) ∧

V(𝜋1 ⊙ 𝜋2) ⊆ {𝑧1,… , 𝑧𝑘+1} ∪ {𝑥, 𝑦}} Hdef. ∈I
= 𝛼

e

𝑘(𝑋) ∪̇ 𝜆 𝑥, 𝑦 . ⋃
𝑧∈𝑉
{𝑥𝜋1𝑧𝜋2𝑦 | 𝑥𝜋1𝑧 ∈ 𝑋(𝑥, 𝑧) ∧ 𝑧𝜋2𝑦 ∈ 𝑋(𝑧, 𝑦) ∧

elem-conc?(𝑥𝜋1𝑧, 𝑧𝜋2𝑦) ∧V(𝜋1) ∪V(𝜋2) ∪ {𝑧} ⊆ {𝑧1,… , 𝑧𝑘+1} ∪ {𝑥, 𝑦}} Hdef. ⊙,
V, and ind. hyp.I
= 𝛼

e

𝑘(𝑋) ∪̇ 𝜆 𝑥, 𝑦 . {𝑥𝜋1𝑧𝑘+1𝜋2𝑦 | 𝑥𝜋1𝑧𝑘+1 ∈ 𝛼

e

𝑘(𝑋)(𝑥, 𝑧𝑘+1) ∧ 𝑧𝑘+1𝜋2𝑦 ∈
𝛼

e

𝑘(𝑋)(𝑧𝑘+1, 𝑦) ∧ elem-conc?(𝑥𝜋1𝑧𝑘+1, 𝑧𝑘+1𝜋2𝑦)}H(⊇) follows from taking 𝑧 = 𝑧𝑘+1;
(⊆) For 𝑧 ∈ {𝑧1,… , 𝑧𝑘}, the paths in 𝛼

e

𝑘(𝑋) are elementary through
{𝑧1,… , 𝑧𝑘}, so if there exist paths 𝑥𝜋1𝑧 ∈ 𝑋(𝑥, 𝑧) and 𝑧𝜋2𝑦 ∈ 𝑋(𝑧, 𝑦)
then either 𝑥𝜋1𝑧𝜋2𝑥 is also elementary through {𝑧1,… , 𝑧𝑘} and already
therefore belongs to 𝛼

e
𝑘(𝑋) or it is not elementary and then does not pass

the test elem-conc?(𝑥𝜋1𝑧𝑘+1, 𝑧𝑘+1𝜋2𝑦);
Otherwise, if 𝑧 ∈ {𝑧𝑘+2,… , 𝑧𝑛}, then the path 𝑥𝜋1𝑧𝑘+1𝜋2𝑦 is eliminated
by V(𝜋1) ∪V(𝜋2) ∪ {𝑧} ⊆ {𝑧1,… , 𝑧𝑘+1} ∪ {𝑥, 𝑦};
Finally, the only possibility is 𝑧 = 𝑧𝑘+1, in which case all paths have
the form 𝑥𝜋1𝑧𝑘+1𝜋2𝑦, are elementary, and with V(𝜋) ⊆ {𝑧1,… , 𝑧𝑘+1}, as
required by the def. ofA. It also holds for 𝛼

e

𝑘(𝑋) which is equal to 𝛼

e

𝑘+1(𝑋).I

(11)

= 𝛼

e

𝑘(𝑋) ∪̇ 𝜆 𝑥, 𝑦 . {𝑥𝜋1𝑧𝑘+1 ⊙ 𝑧𝑘+1𝜋2𝑦 | 𝑥𝜋1𝑧𝑘+1 ∈ 𝛼

e

𝑘(𝑋)(𝑥, 𝑧𝑘+1) ∧ 𝑧𝑘+1𝜋2𝑦 ∈
𝛼

e

𝑘(𝑋)(𝑧𝑘+1, 𝑦) ∧ elem-conc?(𝑥𝜋1𝑧𝑘+1, 𝑧𝑘+1𝜋2𝑦)} Hdef. ⊙I
= 𝛼

e

𝑘(𝑋) ∪̇ 𝜆 𝑥, 𝑦 . {𝜋1 ⊙ 𝜋2 | 𝜋1 ∈ 𝛼

e

𝑘(𝑋)(𝑥, 𝑧𝑘+1) ∧ 𝜋2 ∈ 𝛼

e

𝑘(𝑋)(𝑧𝑘+1, 𝑦) ∧
elem-conc?(𝜋1, 𝜋2)} Hby ind. hyp. all paths in 𝑋(𝑥, 𝑦) have the form 𝑥𝜋𝑦I
= 𝛼

e

𝑘(𝑋) ∪̇ 𝛼

e

𝑘(𝑋) ⦾̇

e

𝑧𝑘+1 𝛼

e

𝑘(𝑋) Hdef. ⦾̇

e

𝑧𝑘+1 in (Th.7.d)I
= 𝓟 e

𝜋𝑘(𝛼

e

𝑘(𝑋)) H(Th.7.d)I
We conclude by Th. 1.

In cases (Th.7.a) and (Th.7.b), ⦾̇

e

𝑧𝑘+1 can be replaced by ⦾̇𝑧𝑘+1 since in
these cases the paths are elementary by construction. To see this, observe that
for (Th.7.a), the iterates ⟨𝓛 e

𝜋
𝑘(∅̇), 𝑘 ∈ N ∪ {𝜔}⟩ are those of the functions

Abstract Interpretation of Graphs 89

𝓛 e

𝜋0(𝑋) ≜ ∅̇, 𝓛 e

𝜋1(𝑋) ≜ �̇�, and 𝓛 e

𝜋𝑘(𝑋) ≜ �̇� ∪̇ 𝑋 ⦾̇

e

𝑧𝑘−1 �̇�, 𝑘 ∈ [2, 𝑛 + 2], and
𝓛 e

𝜋𝑘(𝑋) ≜ 𝑋, 𝑘 > 𝑛, so that we can consider the iterates from 1 to apply Th. 1.
By (Th.6.a), the initialization is 𝓛 e

Π(∅̇) ≜ �̇� ∪̇ ∅̇ ⦾̇

e

�̇� = �̇� such that all paths
𝑥𝜋𝑦 in �̇�(𝑥, 𝑦) are elementary with 𝜋 empty so V(𝜋) ⊆ ∅ = {𝑧1,… , 𝑧0}.

For the commutation, let 𝑋 ∈ A such that all 𝑥𝜋𝑦 ∈ 𝑋(𝑥, 𝑦) are elementary
and have all states of 𝜋 in {𝑧1,… , 𝑧𝑘}. Then
𝛼

e

𝑘+2(𝓛

e

Π(𝑋)) Hdef. iteratesI
= 𝛼

e

𝑘+2(�̇� ∪̇ 𝑋 ⦾̇

e

�̇�) Hdef. (Th.6.a) of 𝓛 e

ΠI
= 𝛼

e

𝑘+2(�̇�) ∪̇ 𝛼

e

𝑘+2(𝑋 ⦾̇

e

�̇�) H𝛼 e

𝑘+2 preserves joins in (10)I
= �̇� ∪̇ 𝜆 𝑥, 𝑦 . {𝜋 ∈ 𝑋 ⦾̇ e

�̇� ∣ V(𝜋) ⊆ {𝑧1,… , 𝑧𝑘+2} ∪ {𝑥, 𝑦}} Hdef. 𝛼

e

𝑘+2 in (9)I
= �̇� ∪̇ 𝜆 𝑥, 𝑦 . {𝜋 ∈ ⋃

𝑧∈𝑉
{𝜋1 ⊙ 𝜋2 | 𝜋1 ∈ 𝑋(𝑥, 𝑧) ∧ 𝜋2 ∈ �̇�(𝑧, 𝑦) ∧ elem-conc?(𝜋1, 𝜋2)} ∣

V(𝜋) ⊆ {𝑧1,… , 𝑧𝑘+2} ∪ {𝑥, 𝑦}} Hdef. ⦾̇

e

in Th. 6I
= �̇� ∪̇ 𝜆 𝑥, 𝑦 . ⋃

𝑧∈𝑉
{𝜋1 ⊙𝜋2 | 𝜋1 ∈ 𝑋(𝑥, 𝑧) ∧ 𝜋2 ∈ �̇�(𝑧, 𝑦) ∧ elem-conc?(𝜋1, 𝜋2) ∧V(𝜋1 ⊙

𝜋2) ⊆ {𝑧1,… , 𝑧𝑘+2} ∪ {𝑥, 𝑦}} Hdef. ∈I
= �̇� ∪̇ 𝜆 𝑥, 𝑦 . ⋃

𝑧∈𝑉
{𝑥𝜋1𝑧𝑦 | 𝑥𝜋1𝑧 ∈ 𝑋(𝑥, 𝑧) ∧ 𝑧𝑦 ∈ �̇�(𝑧, 𝑦) ∧ elem-conc?(𝑥𝜋1𝑧, 𝑧𝑦) ∧

V(𝜋1) ∪ {𝑧} ⊆ {𝑧1,… , 𝑧𝑘+2} ∪ {𝑥, 𝑦}} Hdef. ⊙, V, �̇� in Th. 4, and ind. hyp.I
= �̇�∪̇𝜆 𝑥, 𝑦 . {𝑥𝜋1𝑧𝑘+2⊙𝑧𝑘+2𝜋2𝑦 | 𝑥𝜋1𝑧𝑘+2 ∈ 𝛼

e
𝑘+1(𝑋)(𝑥, 𝑧𝑘+2)∧𝑧𝑘+2𝜋2𝑦 ∈ �̇�(𝑧𝑘+2, 𝑦)∧

elem-conc?(𝑥𝜋1𝑧𝑘+2, 𝑧𝑘+2𝜋2𝑦)} Hby an argument similar to (11)I
= �̇� ∪̇ 𝜆 𝑥, 𝑦 . {𝑥𝜋1𝑧𝑘+2 ⊙ 𝑧𝑘+2𝑦 | 𝑥𝜋1𝑧𝑘+2 ∈ 𝛼

e

𝑘+1(𝑋)(𝑥, 𝑧𝑘+2) ∧ ⟨𝑧𝑘+2, 𝑦⟩ ∈ 𝐸 ∧
elem-conc?(𝑥𝜋1𝑧𝑘+2, 𝑧𝑘+2𝑦)} Hdef. (9) of 𝛼

e

𝑘+1 and �̇� in Th. 4I
= �̇� ∪̇ 𝜆 𝑥, 𝑦 . {𝑥𝜋1𝑧𝑘+2 ⊙ 𝑧𝑘+2𝑦 | 𝑥𝜋1𝑧𝑘+2 ∈ 𝛼

e

𝑘+1(𝑋)(𝑥, 𝑧𝑘+2) ∧ ⟨𝑧𝑘+2, 𝑦⟩ ∈ 𝐸}Hsince 𝑧𝑘+2 ∉ V(𝜋1) by induction hypothesis path so that the path
𝑥𝜋1𝑧𝑘+2𝑦 is elementaryI

= �̇� ∪̇ 𝛼

e

𝑘+1(𝑋) ⦾̇𝑧𝑘+2 �̇� Hdef. ⦾̇

e

𝑧𝑘+2 in Th. 7I
= 𝓛 e

𝜋𝑘+2(𝛼

e

𝑘+1(𝑋)) H(Th.7.a)I ⊓⊔
12 Calculational design of an over-approximation of the

elementary paths between vertices of finite graphs

Since shortest paths are necessarily elementary, one could expect that Roy-Floyd-
Warshall algorithm simply abstracts the elementary paths by their length. This
is not the case, because the iterations in (Th.7.c) and (Th.7.d) for elementary
paths are too expensive. They require to check elem-conc? in ⦾̇

e

to make sure
that the concatenation of elementary paths does yield an elementary path. But
we can over-approximate by replacing ⦾̇

e

by ⦾̇ since

P. Cousot90

Lemma 3 The length of the shortest paths in a graph is the same as the length
of the shortest paths in any subset of the graph paths provided this subset contains
all elementary paths.

Proof (of Lem. 3) If 𝜋1𝑥𝜋2𝑥𝜋3 is a non-elementary path with an internal cycle
𝑥𝜋2𝑥 of the weighted graph ⟨𝑉, 𝐸, 𝛚⟩ then 𝜋1𝑥𝜋3 is also a path in the graph
with a shorter weight, that is, by (6), 𝛚(𝜋1𝑥𝜋3) < 𝛚(𝜋1𝑥𝜋2𝑥𝜋3). Since elementary
paths have no internal cycles, it follows by definition of min and (7) that, for
any subset 𝑃 of the graph paths, we have 𝛚(𝑃) = 𝛚(𝑃′) whenever 𝛼

e

(𝑃) = {𝜋 ∈ 𝑃 ∣
elem?(𝜋)} ⊆ 𝑃′ ⊆ 𝑃. ⊓⊔

Corollary 2 (Iterative characterization of an over-approximation
of the elementary paths of a finite graph) Let 𝐺 = ⟨𝑉, 𝐸⟩ be a finite
graph with 𝑉 = {𝑧1,… , 𝑧𝑛}, 𝑛 > 0. Then

p

e

= lfp ⊆̇𝓑 e

Π ⊆̇𝓑𝑛+2𝜋 (Cor.2.c)
where 𝓑0𝜋 ≜∅̇, 𝓑1𝜋 ≜ �̇�, 𝓑𝑘+2𝜋 ≜ �̇� ∪̇𝓑𝑘+1𝜋 ⦾̇𝑧𝑘+1𝓑

𝑘+1
𝜋

= lfp ⊆̇̇𝐸𝓟

e

Π ⊆̇𝓟𝑛+1𝜋 (Cor.2.d)
where 𝓟0𝜋 ≜ �̇�, 𝓟𝑘+1𝜋 ≜𝓟𝑘𝜋 ∪̇𝓟𝑘𝜋 ⦾̇𝑧𝑘 𝓟

𝑘
𝜋 ⊓⊔

–

–

Proof (of Cor. 2) Obviously ⦾̇

e

𝑧 ⊆̇ ⦾̇𝑧 so the iterates ⟨𝓑𝑘𝜋, 𝑘 ∈ [0, 𝑛 + 2]⟩ of
(Cor.2.c) over-approximate those ⟨𝓑 e

𝜋
𝑘, 𝑘 ∈ [0, 𝑛 + 2]⟩ of (Th.7.c). Same for

(Th.7.d). ⊓⊔

13 The Roy-Floyd-Warshall algorithm over-ap-
proximating the elementary paths of a finite
graph

The Roy-Floyd-Warshall algorithm does not compute elementary paths in (Th.7.d)
but the over-approximation of the set of elementary paths in (Cor.2.d), thus
avoiding the potentially costly test in Th. 7 that the concatenation of elemen-
tary paths in ⦾̇

e

𝑧 is elementary.

Abstract Interpretation of Graphs 91

Algorithm 12 (Roy-Floyd-Warshall algorithm over-approximating
the elementary paths of a finite graph) Let 𝐺 = ⟨𝑉, 𝐸⟩ be a graph with
|𝑉| = 𝑛 > 0 vertices. The Roy-Floyd-Warshall algorithm

for 𝑥, 𝑦 ∈ 𝑉 do
p(𝑥, 𝑦) := 𝐸 ∩ {⟨𝑥, 𝑦⟩}

done;
for 𝑧 ∈ 𝑉 do

for 𝑥, 𝑦 ∈ 𝑉 ⧵ {𝑧} do
p(𝑥, 𝑦) := p(𝑥, 𝑦) ∪ p(𝑥, 𝑧) ⊙ p(𝑧, 𝑦)

done
done

computes an over-approximation of all elementary paths p of 𝐺.

–

–

Proof (of Algorithm 12) The first for iteration computes 𝓟0𝜋 ≜ �̇� in (Cor.2.d).
Then, the second for iteration should compute 𝓟𝑘+1𝜋 ≜ 𝓟𝑘𝜋 ∪̇𝓟𝑘𝜋 ⦾̇𝑧𝑘 𝓟

𝑘
𝜋 in

(Cor.2.d) since p1 ⦾̇𝑧 p2 = ∅̇ in (Th.7.d) when 𝑧 ∈ {𝑥, 𝑦}, in which case, 𝓟𝑘+1𝜋 =
𝓟𝑘𝜋, which is similar to the Jacobi iterative method. However, similar to the

Gauss-Seidel iteration method, we reuse the last computed p(𝑥, 𝑧) and p(𝑧, 𝑦),
not necessarily those of the previous iterate. For the convergence of the first 𝑛
iterates of the second for iteration of the algorithm, the justification is similar
to the convergence for chaotic iterations [4]. ⊓⊔

14 Calculational design of the Roy-Floyd-Warshall
shortest path algorithm

The shortest path algorithm of Bernard Roy [16,17], Bob Floyd [10], and
Steve Warshall [21] for finite graphs is based on the assumption that the graph
has no cycles with strictly negative weights i.e. ∀𝑥 ∈ 𝑉 . ∀𝜋 ∈ p(𝑥, 𝑥) . 𝛚(𝜋) ⩾ 0.
In that case the shortest paths are all elementary since adding a cycle of weight
0 leaves the distance unchanged while a cycle of positive weight would strictly
increase the distance on the path. Otherwise, if the graph has cycles with strictly
negative weights, the convergence between two vertices containing a cycle with
strictly negative weights is infinite to the limit −∞.

The essential consequence is that we don’t have to consider all paths as in
Th. 4 but instead we can consider any subset provided that it contains all ele-
mentary paths. Therefore we can base the design of the shortest path algorithm
on Cor. 2. Observe that, although p may contain paths that are not elementary,
d is precisely the minimal path lengths and not some strict over-approximation
since

– p contains all elementary paths (so non-elementary paths are longer than
the elementary path between their extremities), and

P. Cousot92

– no arc has a strictly negative weight (so path lengths are always positive and
therefore the elementary paths are the shortest ones).

We derive the Roy-Floyd-Warshall algorithm by a calculation design applying
Th. 1 for finite iterates to (Cor.2.d) with the abstraction �̇� (or a variant when
considering (Cor.2.c)).

for the infimum �̇� in (Cor.2.d), we have
�̇�(�̇�)⟨𝑥, 𝑦⟩

= 𝛚(�̇�(𝑥, 𝑦)) Hpointwise def. �̇�I
= 𝛚((⟨𝑥, 𝑦⟩ ∈ 𝐸 ? {⟨𝑥, 𝑦⟩} : ∅)) Hdef. �̇� in Th. 4I
= (⟨𝑥, 𝑦⟩ ∈ 𝐸 ? 𝛚({⟨𝑥, 𝑦⟩}) : 𝛚(∅)) Hdef. conditionalI
= (⟨𝑥, 𝑦⟩ ∈ 𝐸 ? min{𝛚(𝜋) ∣ 𝜋 ∈ {⟨𝑥, 𝑦⟩}} :∞) H(7)I
= (⟨𝑥, 𝑦⟩ ∈ 𝐸 ? 𝛚(𝑥, 𝑦) :∞) H(6)I

for the commutation with 𝓟 𝜋𝑘+1(𝑋) ≜ 𝑋 ∪̇ 𝑋 ⦾̇𝑧𝑘 𝑋, we have
�̇�(𝓟 𝜋𝑘+1(𝑋))⟨𝑥, 𝑦⟩

= �̇�(𝑋 ∪̇ 𝑋 ⦾̇𝑧𝑘 𝑋)⟨𝑥, 𝑦⟩ H(Cor.2.d)I
= min(�̇�(𝑋)⟨𝑥, 𝑦⟩, �̇�(𝑋 ⦾̇𝑧𝑘 𝑋)⟨𝑥, 𝑦⟩)Hthe abstraction �̇� of Galois connection (8) preserves existing joinsI

Let us evaluate
�̇�(𝑋 ⦾̇𝑧𝑘 𝑋)⟨𝑥, 𝑦⟩

= 𝛚((𝑋 ⦾̇𝑧𝑘 𝑋)(𝑥, 𝑦)) Hpointwise def. �̇�I
= 𝛚({𝜋1 ⊙ 𝜋2 | 𝜋1 ∈ 𝑋(𝑥, 𝑧𝑘) ∧ 𝜋2 ∈ 𝑋(𝑧𝑘, 𝑦) ∧ 𝑧𝑘 ∉ {𝑥, 𝑦}}) Hdef. ⦾̇𝑧𝑘 in Th. 7I
= min{𝛚(𝜋1 ⊙ 𝜋2) | 𝜋1 ∈ 𝑋(𝑥, 𝑧𝑘) ∧ 𝜋2 ∈ 𝑋(𝑧𝑘, 𝑦) ∧ 𝑧𝑘 ∉ {𝑥, 𝑦}} H(7)I
= min{𝛚(𝜋1) + 𝛚(𝜋2) | 𝜋1 ∈ 𝑋(𝑥, 𝑧𝑘) ∧ 𝜋2 ∈ 𝑋(𝑧𝑘, 𝑦) ∧ 𝑧𝑘 ∉ {𝑥, 𝑦}} Hdef. (6) of 𝛚I
= (𝑧𝑘 ∈ {𝑥, 𝑦} ? ∞ : min{𝛚(𝜋1) | 𝜋1 ∈ 𝑋(𝑥, 𝑧𝑘)} +min{𝛚(𝜋2) | 𝜋1 ∈ 𝑋(𝑥, 𝑧𝑘) ∧ 𝜋2 ∈
𝑋(𝑧𝑘, 𝑦)}) Hdef. minI

= (𝑧𝑘 ∈ {𝑥, 𝑦} ?∞ : min(�̇�(𝑋)(𝑥, 𝑧𝑘)) +min(�̇�(𝑋)(𝑧𝑘, 𝑦))) H(7) and pointwise def.
�̇�I

so that �̇�(𝓟 𝜋𝑘+1(𝑋)) = 𝓟 𝛿𝑘(�̇�(𝑋)) with 𝓟 𝛿𝑘(𝑋)(𝑥, 𝑦) ≜ (𝑧𝑘 ∈ {𝑥, 𝑦} ? 𝑋(𝑥, 𝑦) :
min(𝑋(𝑥, 𝑦), 𝑋(𝑥, 𝑧𝑘) + 𝑋(𝑧𝑘, 𝑦))).

We have proved

Abstract Interpretation of Graphs 93

Theorem 8 (Iterative characterization of the shortest path length
of a graph) Let 𝐺 = ⟨𝑉, 𝐸, 𝛚⟩ be a finite graph with 𝑉 = {𝑧1,… , 𝑧𝑛}, 𝑛 > 0
weighted on the totally ordered group ⟨𝔾, ⩽, 0, +⟩ with no strictly negative
weight. Then the distances between any two vertices are
d= �̇�(p)=𝓟𝑛+1𝛿 where (Th.8)

𝓟0𝛿(𝑥, 𝑦)≜ (⟨𝑥, 𝑦⟩ ∈ 𝐸 ? 𝛚(𝑥, 𝑦) :∞),
𝓟𝑘+1𝛿 (𝑥, 𝑦)≜ (𝑧𝑘 ∈ {𝑥, 𝑦} ? 𝓟𝑘𝛿(𝑥, 𝑦)

: min(𝓟𝑘𝛿(𝑥, 𝑦),𝓟𝑘𝛿(𝑥, 𝑧𝑘) +𝓟𝑘𝛿(𝑧𝑘, 𝑦))) ⊓⊔

–

–

and directly get the Roy-Floyd-Warshall distances algorithm.

Algorithm 13 (Roy-Floyd-Warshall shortest distances of a graph)
𝐺 = ⟨𝑉, 𝐸, 𝛚⟩ be a finite graph with |𝑉| = 𝑛 > 0 vertices weighted on the
totally ordered group ⟨𝔾, ⩽, 0, +⟩. Let d ∈ 𝑉 × 𝑉→𝔾 ∪ {−∞,∞} be computed
by the Roy-Floyd-Warshall algorithm

for 𝑥, 𝑦 ∈ 𝑉 do
d(𝑥, 𝑦) := if ⟨𝑥, 𝑦⟩ ∈ 𝐸 then 𝛚(𝑥, 𝑦) else ∞

done;
for 𝑧 ∈ 𝑉 do

for 𝑥, 𝑦 ∈ 𝑉 do
d(𝑥, 𝑦) := min(d(𝑥, 𝑦), d(𝑥, 𝑧) + d(𝑧, 𝑦))

done
done.

The graph has no cycle with strictly negative weight if and only if ∀𝑥 ∈ 𝑉 .
d(𝑥, 𝑥) ⩾ 0, in which case d(𝑥, 𝑦) is the length of the shortest path from 𝑥

to 𝑦.

–

–

Proof (of Algorithm 13) Instead of calculating the next iterate 𝓟𝑘+1𝛿 as a function
of the previous one 𝓟𝑘𝛿 (à la Jacobi), we reuse the latest assigned values (à la
Gauss-Seidel), as authorized by chaotic iterations [4]. ⊓⊔

15 Conclusion

We have presented a use of abstract interpretation which, instead of focusing
on program semantics, focuses on algorithmics. It has been observed that graph
algorithms have the same algebraic structure [3,9,11,14]. Abstract interpretation
explains why.

Graph path algorithms are based on the same algebraic structure (e.g. [9,
Ch. 2], [3, Table 3.1]) because they are abstractions of path finding algorithms
which primitive structure ⟨℘(𝑉>1), 𝐸, ∪, ⦾⟩ is preserved by the abstraction.

P. Cousot94

Some algorithms (e.g. based on (Th.6.a–b)) exactly abstract elementary paths
and cycles and can therefore be designed systematically by exact fixpoint ab-
straction [6, theorem 7.1.0.4(3)] of the path finding fixpoint definitions. Other
algorithms (such as the Roy-Floyd-Warshall or Dantzig [8] shortest path algo-
rithms) consider fixpoint definitions of sets of paths over approximating the set
of all elementary paths and cycles. We have seen for the Roy-Floyd-Warshall
algorithm that the derivation of the algorithm is more complex and requires a
different abstraction at each iterations (Th. 1 generalizing [6, theorem 7.1.0.4(3)])
based on a particular choice of different edges or vertices at each iteration plus
chaotic iterations [4]. So from the observation of similarities, their algebraic for-
mulation, we move to an explanation of its origin and its exploitation for the
machine-checkable calculational design of algorithms.

Acknowledgement. I thank Antoine Miné and Jan Midtgaard for debugging a
first version of this paper. I thank the anonymous referee to whom I borrowed
the content section 1.2.

This work was supported in part by NSF Grant CCF-1617717. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of the National
Science Foundation.

References
1. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications.

Springer (2000)
2. Berge, C.: Théorie des graphes et ses applications. Dunod (1958)
3. Carré, B.: Graphs and Networks. Clarendon Press, Oxford (1979)
4. Cousot, P.: Asynchronous iterative methods for solving a fixed point system of

monotone equations in a complete lattice. R.R. 88, Laboratoire IMAG, Université
scientifique et médicale de Grenoble, Grenoble, France (Sep 1977), 15 p.

5. Cousot, P.: On fixpoint/iteration/variant induction principles for proving total
correctness of programs with denotational semantics. In: LOPSTR 2019. Lecture
Notes in Computer Science, vol. 12042, pp. 3–18. Springer (2019)

6. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL. pp. 269–282. ACM Press (1979)

7. Cousot, P., Cousot, R.: Basic concepts of abstract interpretation. In: Jacquard, R.
(ed.) Building the Information Society, pp. 359–366. Springer (2004)

8. Dantzig, G.B.: On the shortest route through a network. Manage. Sci. 6(2), pp.
187–190 (Jan 1960)

9. Derniame, J.C., Pair, C.: Problèmes de cheminement dans les graphes. Dunod
(1971)

10. Floyd, R.W.: Algorithm 97: Shortest path. Commun. ACM 5(6), 345 (1962)
11. Gondran, M.: Algèbre linéaire et cheminement dans un graphe. Revue française

d’automatique, informatique, recherche opérationnelle (R.A.I.R.O.) Recherche
opérationnelle, tome 9 (V1), pp. 77–99 (1975)

12. Hansen, P., de Werra, D.: Connectivity, transitivity and chromaticity: The pio-
neering work of Bernard Roy in graph theory. In: Aiding Decisions with Multiple
Criteria: Essays in Honor of Bernard Roy. pp. 23–44. Springer (2002)

Abstract Interpretation of Graphs 95

13. Naur, P.: Proof versus formalization. BIT Numerical Mathematics 34(1), pp. 148–
164 (1994)

14. Pair, C.: Sur des algorithmes pour les problèmes de cheminement dans les graphes
finis, pp. 271–300. Dunod Paris, Gordon and Breach, New York (Jul 1966)

15. Pair, C.: Mille et un algorithmes pour les problèmes de cheminement dans les
graphes. Revue Française d’Informatique et de Recherche opérationnelle (R.I.R.O.)
B-3, pp. 125–143 (1970)

16. Roy, B.: Transitivité et connexité. C. R. Acad. Sci. Paris 249, pp. 216–218 (1959)
17. Roy, B.: Cheminement et connexité dans les graphes, application aux problèmes

d’ordonnancement. Metra, Paris, 2 edn. (1965)
18. Schrijver, A.: Combinatorial Optimization, Polyhedra and Efficiency, Algorithms

and Combinatorics, vol. 24. Springer (2003)
19. Sergey, I., Midtgaard, J., Clarke, D.: Calculating graph algorithms for dominance

and shortest path. In: MPC. Lecture Notes in Computer Science, vol. 7342, pp.
132–156. Springer (2012)

20. Venet, A.J.: Automatic analysis of pointer aliasing for untyped programs. Sci.
Comput. Program. 35(2), pp. 223–248 (1999)

21. Warshall, S.: A theorem on Boolean matrices. J. ACM 9(1), pp. 11–12 (1962)

P. Cousot96

Applications of Muli: Solving Practical
Problems with Constraint-Logic
Object-Oriented Programming

Jan C. Dageförde and Herbert Kuchen(B)

ERCIS, Leonardo-Campus 3, 48149 Münster, Germany
{dagefoerde,kuchen}@uni-muenster.de

Abstract. The Münster Logic-Imperative Language (Muli) is a
constraint-logic object-oriented programming language, suited for the
development of applications that interleave constraint-logic search with
deterministic, imperative execution. For instance, Muli can generate
graph structures of neural networks using non-deterministic search, inter-
leaved with immediate evaluation of each generated network regarding
its fitness. Furthermore, it can be used for finding solutions to planning
problems. In this paper, we explain and demonstrate how these applica-
tion problems are solved using Muli.

Keywords: constraint-logic object-oriented programming · artificial
neural networks · planning problems · applications

1 Motivation

Constraint-logic object-oriented programming augments object-oriented pro-
gramming with concepts and features from constraint-logic programming [5].
As a result, logic variables, constraints, and non-deterministic application exe-
cution become available in an object-oriented context, facilitating the search for
solutions to constraint-logic problems from an object-oriented application in an
integrated way.

The Muenster Logic-Imperative language (Muli) is such a constraint-logic
object-oriented language. Earlier publications on Muli focused on developing the
language and its runtime environment, using artificial examples and constraint-
logic puzzles for the purpose of demonstration and evaluation. With the current
work, we demonstrate that Muli can be used for solving practical problems as
well. We present and discuss the following application scenarios:
– The generation of graph structures for simple feed-forward neural networks

designed to solve the pole balancing problem (see Sect. 3).
– Solving vehicle routing problems with dynamic constraint systems (see

Sect. 4).

To start off, Sect. 2 introduces concepts of constraint-logic object-oriented
programming with Muli. Concluding the paper, Sect. 5 presents related work,
followed by final remarks in Sect. 6.

c© Springer Nature Switzerland AG 2023
P. Lopez-Garcia et al. (Eds.): Hermenegildo Festschrift 2022, LNCS 13160, pp. 97–112, 2023.
https://doi.org/10.1007/978-3-031-31476-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31476-6_5&domain=pdf
http://orcid.org/0000-0001-9141-7968
http://orcid.org/0000-0002-6057-3551
https://doi.org/10.1007/978-3-031-31476-6_5

98 J. C. Dageförde and H. Kuchen

2 Constraint-Logic Object-Oriented Programming

As a rather novel paradigm, constraint-logic object-oriented programming lan-
guages feature the benefits of object-oriented programming while offering logic
variables, constraints, and search, as known from constraint-logic programming.
In this paper we use Muli, a constraint-logic object-oriented programming lan-
guage based on Java [5].

Muli uses the free keyword to declare variables as logic variables. For example,

int operation free;

declares a logic variable with an integer type. Instead of assigning a constant
value to operation, the logic (or free) variable will be treated symbolically,
unless it is sufficiently constrained such that it can be safely substituted by a
constant. Logic variables can be used interchangeably with other variables of the
same type, so that they can be used in the formulation of arithmetic expressions
or conditions [4]. Furthermore, they can be passed to methods as parameters.

Logic variables are used as part of constraints. For simplicity, Muli does not
provide a dedicated language feature for imposing constraints. Instead, a con-
straint is derived from relational expressions, whenever their evaluation results
in branching execution flows. As an abstract example, consider the following
condition that involves the logic variable operation:

if (operation == 0) { s1 } else { s2 }.

Since operation is not sufficiently constrained, the condition can be evalu-
ated to true as well as to false (but not both at the same time). Conse-
quently, evaluating the condition causes the runtime environment to make a
non-deterministic choice. From that point on, the runtime environment eval-
uates the available alternatives non-deterministically. When an alternative is
selected, the runtime environment imposes the corresponding constraint. In the
example above, when the runtime environment selects s1 for further evaluation
it imposes operation == 0, ensuring that later evaluations cannot violate the
assumption that is made regarding the value of operation.

Search problems are specified in Muli by non-deterministic methods. In the
sequel, we will call such methods search regions. Consider a problem that looks
for integers e that can be expressed in two different ways as the sum of two
positive integer cubes, including the smallest such number, which is the Hardy-
Ramanujan number 1729. In fact, with our default search strategy the solution
1729 will be found first. The corresponding constraint is:

e = a3 + b3 = c3 + d3

∧ a �= c ∧ a �= d

∧ a, b, c, d, e ∈ N − {0}
A Muli search region that calculates e using this constraint is implemented by
the method solve() as depicted in Listing 1, assuming that there is a method
cube(n) = n3 and another method positiveDomain(x1, . . . , xn) that imposes
the constraint xi ∈ N − {0} ∀1 ≤ i ≤ n.

Constraint-Logic Object-Oriented Programming for Practical Problems 99

class Taxicab {
int solve() {

int a free, b free, c free, d free, e free;
positiveDomain(a, b, c, d, e);
if (a != c && a != d &&

cube(a) + cube(b) == e &&
cube(c) + cube(d) == e) {

return e; }
else throw Muli.fail(); } }

Listing 1. Muli search region that calculates numbers which can be expressed in two
different ways as sums of cubes, including the Hardy-Ramanujan number.

The runtime environment realizes search transparently: It takes non-
deterministic decisions at choices. Once a solution has been found, the run-
time environment backtracks until the most recent choice is found that offers
an alternative decision. Afterwards, it takes that alternative decision and con-
tinues execution accordingly. In the backend, the runtime environment leverages
a constraint solver for finding appropriate values for logic variables that sat-
isfy all imposed constraints. Furthermore, when a branch of a choice is selected,
the solver checks whether the current constraint system has become inconsis-
tent in order to cut off infeasible execution branches early. Found solutions are
collected by the runtime environment and made available to the invoking appli-
cation. Conceptually, following a sequence of decisions at choices, in combination
with backtracking to take different decisions, produces a search tree that repre-
sents execution paths. In such a search tree, inner nodes are the choices whereas
the leaves represent ends of alternative execution paths [7]. Execution paths
in Muli end with a solution, e.g., a return value, or with a failure, e.g., if an
execution path’s constraint system is inconsistent. Moreover, applications some-
times require an explicit failure denoting the end of an execution path without
a solution. An explicit failure is expressed by throw Muli.fail(), which is
specifically interpreted by the runtime environment to end search and backtrack
to the next alternative.

In Muli, execution of the main program is deterministic. In contrast, all non-
deterministic search is encapsulated, thus giving application developers control
over search. Muli.muli() accepts a search region, i.e. either a lambda expression
or a reference to a method, and returns a stream of Solution objects. The search
region that is passed to Muli.muli() is the method that will be executed non-
deterministically. For instance, search for the Hardy-Ramanujan number from
the example in Listing 1 is started with

Stream<Solution> solutions = Muli.muli(Taxicab::solve);,

thus offering a stream of solutions that can be consumed from the solutions

variable. Muli uses the Java Stream API in order to evaluate solutions non-
strictly, thus allowing applications to assess a returned solution individually
before continuing search to obtain additional solutions [6]. This is made possible

100 J. C. Dageförde and H. Kuchen

with the help of an adaptation of the trail structure of the Warren Abstract
Machine (WAM) [27]. In contrast to the WAM trail, the Muli trail records
changes to all elements of the execution state in order to be able to revert them.
Furthermore, Muli features an inverse trail (or forward trail) that is leveraged
when search at a specific point is resumed, i.e., when the consumer of the stream
queries another element.

3 Generation of Graph Structures for Neural Networks

A current research trend in artificial neural networks (ANN) is that not only
the weights of the inputs of each neuron are corrected via back-propagation, but
also the structure of the network is adapted [18]. Thus, the goal is to find the
smallest ANN producing an acceptable output quality. An application imple-
mented in Muli can generate structures of directed acyclic graphs that define an
ANN. In this section, we implement the application NNGenerator that demon-
strates how the non-deterministic evaluation of Muli search regions can be used
to systematically generate a set of feed-forward ANNs. Each generated ANN is
then trained against a specific problem; in our case balancing a single pole on
a moving cart as illustrated in Fig. 1 [2]. Every time that a network is gener-
ated, NNGenerator assesses the network’s fitness in order to decide whether
its output quality is acceptable, and continues the search for better ANN graph
structures otherwise.

Fig. 1. The pole balancing problem as simulated by the CartPole-v1 implementation
from OpenAI.

For the generated ANNs we use Python, because PyTorch [19] is a powerful
Python-based library for the implementation of ANNs and because the OpenAI
Gym collection of reinforcement learning tasks [17] provides a simulation envi-
ronment for the pole balancing problem, namely CartPole-v1, implemented in
Python. Moreover, this provides us with the opportunity to demonstrate that
Muli applications can integrate applications written in other programming lan-
guages as well.

Constraint-Logic Object-Oriented Programming for Practical Problems 101

The CartPole-v1 simulation provides a so-called environment that our appli-
cation will interact with. As long as the pole is in balance, the environment
accepts one of two actions, left and right (as illustrated in Fig. 1), that move
the pole-balancing cart into a specific direction. As a result of an action, the
environment updates its state and returns four observations:

– The position of the cart ∈ [−2.4, 2.4],
– the velocity of the cart ∈ [−∞, ∞],
– the angle of the pole, and ∈ [−41.8 ◦, 41.8 ◦], and
– the velocity of the tip of the pole ∈ [−∞, ∞].

These observations can be used to make a decision about a subsequent action.
We generate feed-forward neural networks with reinforcement learning. Of these
networks, two parameters are fixed: The input layer contains four nodes, one per
observation, whereas the output layer contains two nodes, namely the probability
of selecting the left action and that of selecting the right action, accordingly. The
next step is decided by comparing the output nodes and choosing the action with
the highest probability. The step is then passed to the environment. The struc-
ture of the hidden layer(s) is not fixed and will be generated by NNGenerator.
The general structure of the intended ANNs is illustrated in Fig. 2a, and a con-
crete instance is exemplarily given in Fig. 2b.

Fig. 2. Feed-forward neural networks for solving the pole balancing problem.

We first describe the Muli application NNGenerator that generates graph
structures for the hidden layers of ANNs, followed by a subsection with details on
the neural network implementation using PyTorch. Afterwards, we experiment
with NNGenerator and present the results.

102 J. C. Dageförde and H. Kuchen

3.1 Generating Neural Network Graph Structures from a Muli
Application

The goal of the NNGenerator Muli application is to search for directed acyclic
graphs that will constitute the hidden layers of the final neural networks, with
the aim of producing the simplest graph structure. The simplest network has
no hidden layer; i.e., all input nodes are directly connected to all output nodes.
Starting from the simplest network, two operations that modify the graph are
possible:

1. AddLayer Add a hidden layer (with one node as a starting point), or
2. AddNode add a node to one of the existing hidden layers.

We can implement NNGenerator as a Muli search region that enumerates
graphs by non-deterministically choosing one of these operations and, for the
AddNode operation, by non-deterministically selecting one of the existing layers.
As an implementation detail we add a third operation, Return, that returns
the current graph structure as a solution. The other two operations recursively
invoke the generation method in order to select the next operation. Listing 2
shows the recursive implementation of the generation method and exhibits the
use of the free variable int operation free in conditions, thus implement-
ing the non-deterministic choice for one of the three operations, as well as
int toLayer free for selecting a layer in the AddNode case.

As the search region of Listing 2 does not have a termination criterion, an
infinite number of solutions is found (i.e., infinitely many graphs with all numbers
and sizes of layers). Returning all of them in a fixed array is impossible. However,
Muli offers an encapsulated search operator that delivers solutions lazily and
returns immediately after a solution has been found, while maintaining state
such that search can be resumed for additional solutions on demand [6]. For our
application, the operator is invoked as

Stream<Solution<Network>> solutions =

Muli.muli(NNGenerator::generateNetwork);

As a result, individual solutions can be obtained from the solutions stream.
Another caveat of the application is the selected search strategy. Even though

the Muli runtime environment takes non-deterministic decisions at choices, the
decisions are not random. Instead, it will systematically traverse the choices of
the search region. With a depth-first search strategy, this means that the gen-
erated graphs are probably bad solutions: First, a graph with no hidden layers;
second, a graph with one hidden layer with a single node; third, a graph with
two hidden layers and one node each, and so on. Under a depth-first search
assumption and with the presented search region, there would never be layers
with more than one node except for the input and output layers. Rewriting the
search region does not help either, as that would only generate graphs with a
single layer and an ever-increasing number of nodes on that layer. As a remedy,
Muli offers the well-known iterative deepening depth-first search (IDDFS) strat-
egy [7] ensuring that every number of layers and every size of each layer can

Constraint-Logic Object-Oriented Programming for Practical Problems 103

Network generateNetwork() {
return generateNetwork(new Network(4, 2)); }

Network generateNetwork(Network network) {
int operation free;
switch (operation) {

case 0: // Return current network.
return network;

case 1: // Add layer.
network.addLayer();
return generateNetwork(network);

default: // Add node. But where?
if (network.numberOfLayers > 0) {

int toLayer free;
for (int layer = 0; layer < network.numberOfLayers;

layer++) {
if (layer == toLayer) {

network.addNode(layer);
return generateNetwork(network);

} else {
// Add at a different layer!

} }
throw Muli.fail();

} else {
throw Muli.fail(); } } }

Listing 2. Muli search region that systematically generates graph structures by non-
deterministic selection of operations.

eventually be considered. In order to use IDDFS we have to slightly modify the
encapsulated search operator call:

Stream<Solution<Network>> solutions =

Muli.muli(NNGenerator::generateNetwork,

SearchStrategy.IterativeDeepening);

Listing 3 shows how the solution stream is used. The forEach consumer
demands and obtains individual solutions from the stream. n.toPyCode() cre-
ates Python code that implements an ANN according to the generated graph
(for details on what the code looks like see Sect. 3.2), and the helper method
writeAndRun() writes the generated code into a .py script. Afterwards, the
script is run via Runtime.getRuntime().exec(). We assume that the gener-
ated Python application prints the network’s fitness after training and use to
standard output, so that output is captured and stored in the fitness variable.
In Listing 3 we consider a solution “good enough” (thus ending search) if its
cumulative fitness value is greater than 400.

104 J. C. Dageförde and H. Kuchen

solutions.forEach(solution -> {
Network n = solution.value;

// Execute python script.
String fitness = NNGenerator.writeAndRun(n.toPyCode());
// Quit if a working neural network is found.
if (Float.parseFloat(fitness) > 400) {

System.out.println(n.toString());
System.exit(0); } });

Listing 3. Processing the solution stream in Muli.

3.2 Using Generated Neural Networks to Solve the Pole Balancing
Problem

In our feed-forward ANNs we assume that all layers are linear ones. In addition
to that, between every layer we use dropout [24] to randomly cancel the effect of
some nodes with a probability of 0.6, in combination with a rectified linear unit
activation function ensuring that values are positive [10]. Finally, the output
layer values are rescaled using the softmax activation function, ensuring that
each output is in the range [0, 1] and that the sum of the two outputs is 1.
Initially, the edge weights assume the default values provided by PyTorch for
nn.Linear layers. Afterwards, the network is trained in order to learn weights
such that the network can balance the pole for as long as possible. To that
end, we use the Adam optimizer [11] with a learning rate of 0.01 and train the
network using a monte-carlo policy gradient method for 500 episodes, each for
a maximum of 500 steps. We process an entire episode and learn new weights
based on the rewards obtained in throughout that episode, before continuing
with the next episode.

The toPyCode() method of NNGenerator will generate Python code that
implements ANNs according to the above specification of the network and to
the structure that was generated. In the end, we do not want to generate full
implementations of ANNs for every found graph. After all, major parts of the
resulting programs are static and could therefore be implemented once and then
be used as a library by all generated networks. We implement a Python class
ENN that implements the ANN itself using PyTorch, and we provide two methods
train() and use() that each accept an instance of ENN in order to work with
it. The Muli application NNGenerator can generate small Python programs
that import ENN, train(), and use(). The generated programs then instantiate
the ENN class according to the parameters found by Muli and use the provided
methods. Listing 4 provides an example of the code that is generated from the
NNGenerator application, demonstrating that implementation details of the
ANN are abstracted away into the library. Subsequently, we provide more details
about the class and the methods.

In its constructor, the ENN class accepts three parameters: The number of
input nodes, an ordered list containing the numbers of nodes on the inner layers,

Constraint-Logic Object-Oriented Programming for Practical Problems 105

net = ENN(ins = 4, hidden = [100, 50], out = 2)
train(net)
fitness = use(net)
print(fitness)

Listing 4. Structure of the Python program as generated by the NNGenerator Muli
application. Note that the constructor parameters of ENN are shown exemplarily; they
need to be substituted according to a specific configuration.

and the number of output nodes. For instance, the network illustrated in Fig. 2b
is instantiated by invoking ENN(ins = 4, hidden = [2, 4, 3], outs = 2).
Since the number of inner layers and the number of nodes on each layer is
expressed as an array, ENN is able to construct an ANN with arbitrary hidden
layers, allowing NNGenerator to specify the hidden layer. Listing 5 demonstrates
how the constructor parameters, and the list of hidden layers in particular, are
used to represent the network. In Listing 5, the forward() method specifies the
sequential model, inserting the additional layers as described above.

class ENNPolicy(nn.Module):
def __init__(self, ins, hidden, outs):

< some initialization omitted >
lastnodes = ins
for nodes in hidden:

newlayer = nn.Linear(lastnodes, nodes, bias=False)
self.layers.append(newlayer)
lastnodes = nodes

Final layer:
newlayer = nn.Linear(lastnodes, outs, bias=False)
self.layers.append(newlayer)
self.layerout = newlayer

def forward(self, x):
args = []
for layer in self.layers[:-1]:

args.append(layer)
args.append(nn.Dropout(p=0.6))
args.append(nn.ReLU())

args.append(self.layers[-1])
args.append(nn.Softmax(dim=-1))
model = torch.nn.Sequential(*args)
return model(x)

Listing 5. Python class ENN that creates hidden layers dynamically from the construc-
tor parameters.

106 J. C. Dageförde and H. Kuchen

The train() method accepts the ENN instance and creates an Open AI Gym
environment using the CartPole implementation. It then starts a training loop
with 500 episodes. At the beginning of every episode, the environment is reset
to an initial state. An episode ends either when the pole is out of balance, or
when the maximum of 500 steps is reached. As soon as an episode ends, the
network weights are learned according to the description above, thus preparing
the network for the next episode.

The trained network is passed to the use() method that creates a new Ope-
nAI Gym environment and performs a single simulation of the pole balancing
problem, up to a maximum of 500 steps. In order to allow NNGenerator to
judge the quality of a final, i.e., generated and trained, network, we define a
fitness function based on the position of the cart that is applied after every step
and summed over all steps that the pole is in balance:

f(position) = −0.1736 ∗ position2 + 1

f(position) is 1 when the cart is at the centre and decreases to 0 when the
cart is nearing one of the edges at −2.4 or 2.4. As a consequence, solutions that
keep the pole near the centre, with just minor movement, are favoured. A perfect
solution would keep the pole balanced for all 500 steps and

∑500
i=1 f(positioni) is

approximately 500. We augment the use() method to record the fitness values
throughout all steps and to return the cumulative fitness value. The last two
lines of Listing 4 demonstrate how the sum is printed to the standard output,
so that it can be read and judged by NNGenerator.

3.3 Experiments

Table 1. Graph structures generated before the smallest neural network that solves the
problem is found. For each network, the time spent on its generation (in milliseconds)
and training (in seconds) are indicated as well as its fitness.

Nodes on Generation time [ms] Training time [s] Fitness Solved
first layer
1 115.712 6.898 14.987 no
2 14.832 8.402 9.992 no
3 2.446 8.117 76.888 no
4 2.350 10.662 14.987 no
5 2.426 15.710 125.005 no
6 1.930 18.086 75.889 no
7 1.991 18.825 125.491 no
8 2.488 38.483 52.977 no
9 2.351 17.703 371.425 no
10 2.240 50.963 499.623 yes

Constraint-Logic Object-Oriented Programming for Practical Problems 107

We conducted two experiments with NNGenerator in order to evaluate Muli’s
ability to generate directed acyclic graphs. In the first experiment we were inter-
ested in the smallest ANN that is able to solve the pole balancing problem, i.e.,
whose cumulative fitness is greater than 400. The IDDFS search strategy ensures
that the smallest ANN is found first. Incidentally, the structures that were gen-
erated until finding an adequate ANN all only have a single hidden layer. The
smallest network capable of solving the problem has just ten nodes on a single
hidden layer (Table 1). The generation of the first network takes longer than that
of the other, larger ones. This can be attributed to the just-in-time compilation
of the JVM that increases the speed of generating subsequent solutions. More-
over, it was also the first network to be generated at all, so that the generation
time includes some initialization effort for the virtual machine and the search
region. In contrast, subsequent graphs are created by local backtracking and/or
by applying minor modification operations, so generating those is quicker.

Table 2. Times spent on generating (in milliseconds) and training (in seconds) the
first 15 generated large neural networks that were able to solve the problem.

Hidden layers Generation time [ms] Training time [s] Fitness
[400] 155.547 80.583 499.952
[350, 50] 0.044 35.114 499.390
[300] 0.060 94.019 499.653
[300, 100] 2.224 47.930 499.899
[250] 0.040 77.497 499.704
[250, 150] 1.474 126.405 499.569
[250, 50] 0.031 52.727 499.508
[200, 150] 0.042 98.520 499.298
[200, 100] 0.027 112.001 498.324
[200, 50, 100] 0.036 115.636 483.321
[150] 0.025 76.728 499.223
[150, 200] 0.025 73.006 498.517
[150, 150, 50] 0.028 80.517 498.564
[150, 50] 0.028 87.862 499.916
[100, 100, 50, 100] 0.036 101.163 499.540

In the second experiment we are interested in the ability to generate larger
hidden layers. To that end, we multiply the number of nodes added in the
AddNode step by 50. Moreover, we switch the order in which IDDFS takes deci-
sions, thus favouring larger networks over smaller ones first. The first generated
ANN is already able to solve the pole balancing problem. Therefore, execution
could already be stopped after that according to the termination criterion in
Listing 3. However, we are curious about additional solutions, so we remove

108 J. C. Dageförde and H. Kuchen

that criterion. Table 2 exemplarily shows the first 15 generated networks that
were able to solve the problem, i.e., whose cumulative fitness is greater than
400 each. In fact, all these networks exhibit a value of over 483, and most of
them are able to reach a cumulative fitness greater than 499. Not shown in
Table 2 are networks that are unable to solve the pole balancing problem. As an
additional finding, both experiments indicate that the generation of graph struc-
tures with NNGenerator is faster than training the ANNs afterwards. This is
expected since the structural modifications between two graph structures are
minor, whereas each generated ANN has to be trained from scratch.

4 Solving a Dynamic Scheduling Problem
with Constraint-Logic Object-Oriented Programming

Fig. 3. Class structure that models our logistics planning problem.

Another application which can benefit from interleaved deterministic object-
oriented computation and non-deterministic search can be found in logistics.
Imagine a logistics company which runs a large number of trucks carrying goods
from various sources to destinations. New orders arrive on the fly while trucks
are running. Each order has a quantity of a certain good (that has a specific size
and weight), a source location, a destination, an earliest and latest pick-up time,
a latest delivery time, and so on. Moreover, the trucks have a maximum capac-
ity w.r.t. volume and weight of goods that are transported at the same time.
Consequently, the current set of orders imposes a set of constraints. The current
schedule is based on a solution that satisfies these constraints and, optionally,
on an optimal solution that maximizes the revenues of the accepted orders.

The described problem is transferred into a class structure as illustrated in
Fig. 3. Dispatching new orders to trucks results in additional constraints regard-
ing size and weight, ensuring that trucks are not over capacity after schedul-
ing. For an array of trucks, the constraints can be formulated with Muli using

Constraint-Logic Object-Oriented Programming for Practical Problems 109

boolean dispatch(Truck[] trucks, Order[] newOrders) {
for (Order o : newOrders) {

int selection free;
domain(truck, 0, trucks.length-1);
int orderWeight = o.quantity * o.good.weight;
int orderVolume = o.quantity * o.good.volume;
for (int truck = 0; truck < trucks.length; truck++) {

if (truck == selection) {
if (orderWeight <= trucks[truck].remainingWeight() &&

orderVolume <= trucks[truck].remainingVolume()) {
trucks[truck].addOrder(o);

} else {
throw Muli.fail(); } } } }

// All orders dispatched; good to go.
return true;

}

Listing 6. Muli code snippet to dispatch orders to trucks with non-deterministic search,
modelling weight and volume constraints.

the code presented in Listing 6. Capacity violations result in an explicit fail-
ure, whereas a successful dispatch of all goods will result in the return value
true and Truck-Order relationships are set via addOrder() accordingly. Con-
straints w.r.t. location and pickup/delivery timing are formulated analogously.
The method domain(a, min, max) imposes constraints over a such that min

≤ a ≤ max.
The solution can be found by non-deterministic search and constraint solving,

e.g., using the Muli.muli() encapsulated search operator. However, the encap-
sulated search does not only deliver a solution. It also delivers a representation
of the search space for potential later use. After the solution has been found,
deterministic computations are required for instance for keeping track of the
current positions of the trucks and for communicating the determined schedule
with truck drivers.

As soon as new orders arrive, a new solution of the now extended scheduling
problem has to be found. As a consequence, this is a dynamic problem in which
the entire set of constraints is not known prior to the start of an application.
Instead, the set of constraints develops over time. Now, the additional constraints
caused by the new order can be added to the saved representation of the search
space and a new encapsulated search can be started producing a new solution
(and a new representation of the search space). The possibility to continue search
based on the previous solution facilitates faster search, as opposed to solving the
constraint problem from scratch.

110 J. C. Dageförde and H. Kuchen

5 Related Work

There are several approaches that extend object-oriented (OO) programming or
imperative programming with concepts from constraint-logic programming, see
e.g. [8,14,21,25]. The integration of the two paradigms that these approaches
achieve is not as smooth as the integration provided by Muli. Typically, these
approaches show a clear syntactic and semantic separation of the imperative and
object-oriented part. Moreover, none of these approaches provides encapsulated
search.

An alternative to using Muli is to just call a constraint solver from an OO
language, such as JaCoP or Choco from Java [12,20]. However, this also does
not lead to a seamless integration of both paradigms. In particular, alternating
deterministic OO computations and non-deterministic search are more cumber-
some.

There are also approaches adding object-orientation to (constraint) logic lan-
guages [15,16,22,23,26]. However here, the object orientation is just syntactic
sugar and constraint-logic features are used to simulate the object orientation.
This typically causes some performance penalty compared to pure OO languages.
Also, these languages keep the declarative flavour and do not provide assign-
ments. Thus, they will hardly be considered by object-oriented programmers,
whereas Muli is very close to Java and hence easier to use for developers who
are used to object-oriented languages.

The general idea of Muli’s encapsulated search was taken from the functional-
logic programming language Curry [1,3,9,13]. However, in contrast to Curry, our
encapsulated search can deal with side-effects, which causes the implementation
to be quite different.

6 Conclusion and Outlook

With the present work we use the Muli programming language for the develop-
ment of applications that solve practical search problems. As the first example,
the NNGenerator application leverages non-deterministic execution for the sys-
tematic generation of directed acyclic graphs that are used to describe the struc-
ture of PyTorch-based ANNs. The networks generated by NNGenerator solve
the pole balancing problem; this problem can be substituted for different ones
as the ANNs are problem-agnostic. Moreover, NNGenerator runs and evalu-
ates each generated network, judging whether one of them is good enough or
whether to proceed search in order to find additional networks. As the second
example, we discuss how to apply Muli to a scheduling problem from logistics,
demonstrating how to model constraints in an constraint-logic object-oriented
way.

The presented applications demonstrate the practical applicability of Muli.
Compiler and runtime environment are publicly available as open source soft-
ware on GitHub,1 inviting others to use Muli in research or for their practical
1 https://github.com/wwu-pi/muli.

https://github.com/wwu-pi/muli

Constraint-Logic Object-Oriented Programming for Practical Problems 111

applications. Future work will use Muli for further planning problems, refining
the language and the runtime environment in the process.

References

1. Antoy, S., Jost, A.: A new functional-logic compiler for curry: sprite. In: LOPSTR
2016 (2016). https://doi.org/10.1007/978-3-319-63139-4_6

2. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Trans. Syst. Man Cybern. 13(5),
834–846 (1983). https://doi.org/10.1109/TSMC.1983.6313077

3. Kuchen, H. (ed.): LNCS, vol. 6816. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22531-4

4. Dageförde, J.C., Kuchen, H.: An operational semantics for constraint-logic impera-
tive programming. In: Seipel, D., Hanus, M., Abreu, S. (eds.) WFLP/WLP/INAP
-2017. LNCS (LNAI), vol. 10997, pp. 64–80. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00801-7_5

5. Dageförde, J.C., Kuchen, H.: A compiler and virtual machine for constraint-
logic object-oriented programming with Muli. J. Comput. Lang. 53, 63–78 (2019).
https://doi.org/10.1016/j.cola.2019.05.001

6. Dageförde, J.C., Kuchen, H.: Retrieval of individual solutions from encapsulated
search with a potentially infinite search space. In: Proceedings of the 34th ACM/SI-
GAPP Symposium on Applied Computing, pp. 1552–1561. Limassol, Cyprus
(2019). https://doi.org/10.1145/3297280.3298912

7. Dageförde, J.C., Teegen, F.: Structured traversal of search trees in constraint-logic
object-oriented programming. In: Hofstedt, P., Abreu, S., John, U., Kuchen, H.,
Seipel, D. (eds.) INAP/WLP/WFLP -2019. LNCS (LNAI), vol. 12057, pp. 199–214.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46714-2_13

8. Doyle, J., Meudec, C.: IBIS: an interactive bytecode inspection system, using sym-
bolic execution and constraint logic programming. In: 2nd PPPJ, pp. 55–58 (2003).
https://doi.org/10.1145/957289.957307

9. Hanus, M., Kuchen, H., Moreno-Navarro, J.J.: Curry: a truly functional logic lan-
guage. In: Workshop on Visions for the Future of Logic Programming (ILPS 1995),
pp. 95–107 (1995)

10. Hara, K., Saito, D., Shouno, H.: Analysis of function of rectified linear unit used
in deep learning. In: 2015 International Joint Conference on Neural Networks, pp.
1–8 (2015). https://doi.org/10.1109/IJCNN.2015.7280578

11. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd Inter-
national Conference on Learning Representations, ICLR 2015 - Conference Track
Proceedings, pp. 1–15 (2015). https://arxiv.org/abs/1412.6980

12. Kuchcinski, K.: Constraints-driven scheduling and resource assignment. ACM
Trans. Des. Autom. Electron. Syst. 8(3), 355–383 (2003). https://doi.org/10.1145/
785411.785416

13. Lux, W., Kuchen, H.: An efficient abstract machine for curry. In: Beiersdörfer, K.,
Engels, G., Schäfer, W. (eds.) Informatik 1999. Informatik aktuell, pp. 390–399.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-662-01069-3_58

14. Majchrzak, T.A., Kuchen, H.: Logic Java: combining object-oriented and logic
programming. In: WFLP, pp. 122–137 (2011). https://doi.org/10.1007/978-3-642-
22531-4_8

https://doi.org/10.1007/978-3-319-63139-4_6
https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.1007/978-3-642-22531-4
https://doi.org/10.1007/978-3-642-22531-4
https://doi.org/10.1007/978-3-030-00801-7_5
https://doi.org/10.1007/978-3-030-00801-7_5
https://doi.org/10.1016/j.cola.2019.05.001
https://doi.org/10.1145/3297280.3298912
https://doi.org/10.1007/978-3-030-46714-2_13
https://doi.org/10.1145/957289.957307
https://doi.org/10.1109/IJCNN.2015.7280578
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/785411.785416
https://doi.org/10.1145/785411.785416
https://doi.org/10.1007/978-3-662-01069-3_58
https://doi.org/10.1007/978-3-642-22531-4_8
https://doi.org/10.1007/978-3-642-22531-4_8

112 J. C. Dageförde and H. Kuchen

15. McCabe, F.G.: Logic and Objects. Prentice-Hall International Series in Computer
Science, Prentice Hall (1992)

16. Moss, C.: Prolog++ - the power of object-oriented and logic programming. Inter-
national Series in Logic Programming, Addison-Wesley (1994)

17. OpenAI: CartPole-v1 (2020). https://gym.openai.com/envs/CartPole-v1/
18. Palnitkar, R.M., Cannady, J.: A review of adaptive neural networks. In: IEEE

SoutheastCon 2004. Proceedings, pp. 38–47 (2004). https://doi.org/10.1109/
SECON.2004.1287896

19. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp.
8024–8035. Curran Associates, Inc. (2019)

20. Prud’homme, C., Fages, J.G., Lorca, X.: Choco documentation. TASC - LS2N
CNRS UMR 6241, COSLING S.A.S. (2017). https://www.choco-solver.org

21. Renshaw, D.: Seer: symbolic execution engine for rust (2018). https://github.com/
dwrensha/seer

22. Scott, R.: A Guide to Artificial Intelligence with Visual Prolog. Outskirts Press,
Parker, Colorado (2010)

23. Shapiro, E., Takeuchi, A.: Object oriented programming in concurrent prolog. New
Gener. Comput. 1(1), 25–48 (1983). https://doi.org/10.1007/BF03037020

24. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958 (2014)

25. Beckert, B., Hähnle, R. (eds.): LNCS, vol. 4966. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-79124-9

26. Van Roy, P., Brand, P., Duchier, D., Haridi, S., Schulte, C., Henz, M.: Logic
programming in the context of multiparadigm programming: the Oz experi-
ence. Theory Pract. Log. Program. 3(6), 717–763 (2003). https://doi.org/10.1017/
S1471068403001741

27. Warren, D.H.D.: An abstract prolog instruction set. Tech. rep., SRI International,
Menlo Park (1983)

https://gym.openai.com/envs/CartPole-v1/
https://doi.org/10.1109/SECON.2004.1287896
https://doi.org/10.1109/SECON.2004.1287896
https://www.choco-solver.org
https://github.com/dwrensha/seer
https://github.com/dwrensha/seer
https://doi.org/10.1007/BF03037020
https://doi.org/10.1007/978-3-540-79124-9
https://doi.org/10.1017/S1471068403001741
https://doi.org/10.1017/S1471068403001741

Grammar Induction for Under-Resourced
Languages: The Case of Ch’ol

Veronica Dahl1, Gemma Bel-Enguix2(B), Velina Tirado2, and Emilio Miralles1

1 Simon Fraser University, Burnaby, Canada
{veronica dahl,emilio miralles}@sfu.ca

2 Universidad Nacional Autónoma de México, Mexico City, Mexico
gbele@iingen.unam.mx, velina.tiradoz@enallt.unam.mx

Abstract. We apply to the under-resourced language Ch’ol the Womb
Grammar Model of grammar induction (WGM), thus called because
given appropriate input it can generate grammars for different languages,
much as human wombs can generate different races. The WGM is infer-
ential, works for more than just specific tasks and needs neither a pre-
specified model family, nor parallel corpora, nor any of the typical mod-
els of machine learning. It generates an understudied language’s gram-
mar using representative and correct input sentences in that language,
together with its lexicon relevant to that input, all of which is parsed
with respect to the correct grammar of a well-studied language, or alter-
natively, of a “universal” grammar. The errors that inevitably result
serve to guide the production of the desired grammar. We present the
main framework describing the model and the results of our experiments,
inferring Ch’ol grammar from English grammar and suggest some future
lines of research in the area.

Keywords: Grammatical inference · Under-resourced languages ·
Ch’ol · Prolog · Property Grammars (PG) · Constraint Handling Rule
Grammars (CHRG)

1 Introduction and Related Work

Language diversity is being eroded at alarming speed: over 7,000 languages are
spoken in the world, of which according to Ethnologue1, 2895 are endangered.
This means that 40% of the world’s languages can disappear in a near future.
Many of them are under-studied, because the number of linguists who can study
them is notably insufficient and most of their efforts pour moreover into main-
stream languages. Consequently, it is of utmost importance to develop efficient

1 https://www.ethnologue.com/.

This paper has been supported by projects PAPIIT-UNAM TA400121, CONACYT CB
A1-S-27780 and by V. Dahl’s research grant from the Natural Sciences and Engineering
Research Council of Canada NSERC grant 31611021.

c© Springer Nature Switzerland AG 2023
P. Lopez-Garcia et al. (Eds.): Hermenegildo Festschrift 2022, LNCS 13160, pp. 113–132, 2023.
https://doi.org/10.1007/978-3-031-31476-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31476-6_6&domain=pdf
https://www.ethnologue.com/
https://doi.org/10.1007/978-3-031-31476-6_6

114 V. Dahl et al.

and affordable methods to automatically generate the unknown grammars of
under-resourced languages.

In the present state-of-the-art, most grammar induction models involve prob-
abilities (so that learning a grammar amounts to selecting a model from a pre-
specified model family) or statistical models of machine learning. With respect to
precision, reliability and explanatory power, such models are inferior to inference-
based models: they are prone to catastrophic failure, the only question being
when, rather than if, they will fail; it is not technically feasible to produce from
them, if required, an explanation that is understandable by a human; and they
rely crucially upon extensive search on voluminous data sets, which typically
vary dynamically, so results may be unstable. At such a cost, they can achieve
impressive results when what matters is only to simulate linguistic understand-
ing in the Turing test sense, but even in such cases, their reliance on Big Data
requires computational and storage power which is not readily available in coun-
tries where languages are under-resourced, and hence their grammars are most
needed.

Even in the developed world we would greatly benefit from methods that
require more minimalistic machinery, since the tendency to under-fund universi-
ties and research institutions is becoming widespread everywhere, placing expen-
sive methods out of their reach.

This status-quo was the motivation for developing Womb Grammars2 [11], a
purely inferential method for automatically learning the grammar of a (typically)
under-resourced language from the known grammar of another language whose
correct grammar we do have access to.

A first proof-of-concept with a real language in existence was provided in [1,
2], where a language was chosen – Yorùbá – whose grammar is in fact reasonably
studied, so as to be able to verify the correctness of our results by comparing
them with what Yorùbá scholars have established is the correct grammar of
Yorùbá.

Other applications of Womb grammars to related but different problems have
been studied: to language acquisition [5,12], to second Language Tutoring [4],
and to interactions with ontologies [14].

In this article we report our results in a new application of the Womb Gram-
mar method, this time to Ch’ol [3]. Although some grammars have been pub-
lished about this Mayan language spoken in Chiapas [17,19], Ch’ol has not yet
been fully studied. Therefore, we have followed a corpus-based strategy to test
the results of our experiments. We have carried out a manual search of nominal
phrases in a corpus of Ch’ol to finally take into account only those structures
2 The name Womb Grammars came to Dahl’s mind after chancing upon a quote by

Churchill that praised Canadians as “virile people” (sic). The thought that such fal-
lacies of composition could be repeated unblushingly, and that there were no female
equivalents of expressions such as “seminal contribution”, suggested to her that
it was time to create praising associations with female-specific terms too. “Womb
Grammars” hints at the analogy between human wombs, which can generate dif-
ferent races given appropriate input, and the system she was naming, which can
generate different languages’ grammars given appropriate linguistic input.

Grammar Induction for Under-Resourced Languages: The Case of Ch’ol 115

that have been found in such collection of texts. Additionally, we have tested
their correctness with some native speakers.

With this work we hope to stimulate further work in resourcing, in the very
cost-effective manner we show here, many more of the under-resourced languages
that exist – in particular those in danger of quick disappearance.

The paper is structured as follows. In Sect. 2, we explain the linguistic and
computational theories this work is based on. Section 3 explains the main fea-
tures and working process of Womb Grammars. Section 4 is dedicated to Ch’ol
and provides some rules that define the structure of NP in this language. The
parameters and results of our experiments are shown in Sect. 5. The paper ends
in Sect. 6 with conclusions and future work.

2 Linguistic and Computational Framework

In this section we present our linguistic and our computational framework before
describing what Womb Grammars do, what they require and how they work.

2.1 Linguistic Framework: Property Grammars (PG)

Property grammars, or PG [6,7], conceive of parsing as a process of testing
whether properties that should hold for a given constituent or between a pair of
constituents are satisfied or not – e.g., a noun phrase containing just an adjective
would fail the noun phrase property that says that a noun must contain a nominal
head – namely a noun, a proper noun, or a pronoun; a determiner preceding a
noun satisfies the property of normal ordering of such constituents in English,
whereas one following it, as in “politicians the” would fail it. We can also think of
properties as constraints – and extend this thinking into implementation tools for
PG, as we have done for instance in [10], and as we do for the present application
of PG into Womb Grammars. Parse trees can still be obtained as side effect of
parsing, but in PG they are not essential, so some implementations don’t even
bother calculating them. Instead, PGs characterize the parse of a given input
phrase in terms of which properties that input satisfies, and which properties it
fails to satisfy. It follows that incorrect phrases can also be informatively parsed.

More specifically: in Womb Grammar parsing, both our input and our out-
put grammars are described in terms of properties either of a single node (unary
properties) or between pairs of sister nodes (binary properties) under a com-
mon mother node [6,7]. The allowable properties are just a handful, which we
exemplify for English noun phrases as follows [15]:

1. Constituency. Identifies all the possible categories that can be immediate part
of a syntactic linguistic structure (in graph theory terms, all possible children
of a node). For an NP, since its possible immediate daughters are: determiner,
noun, pronoun, proper name..., constituency will be satisfied for each of these,
so we will list the unary properties constituency(det), constituency(pronoun),
etc.

116 V. Dahl et al.

2. Precedence. Establishes an order between two constituents A and B that have
the same parent, C. For C = NP, a determiner must precede a noun, an
adjective must precede a noun... We note these as precedence(det,noun), etc.

3. Obligatority. A phrase’s obligatory constituents are those that need to exist as
immediate child for the phrase to be well-formed. In English, the obligatory
constituents of a noun phrase are either a noun, a proper name or a pronoun.
We note the alternative with ‘;’, e.g. obligatory([n;pn;pron]).

4. Requirement. Used to express that if a constituent A is a child of C, then a
constituent B must also be a child of C. For example, in a noun phrase, a
noun requires a determiner, which is noted requirement(noun,det).

5. Exclusion. Used to express that if a constituent A is a child of C, then B
cannot also be a child of C. In the structure of NP, nouns, pronouns and
proper names exclude each other, so we note for instance exclusion(n,pn).

6. Unicity. Used to express that there can be only one constituent belonging to
a given class A as a child of C. For instance, an NP cannot have more than
one noun or pronoun or proper name – noted e.g. unicity(n).

The output, i.e., the result of parsing a phrase, is no longer a parse tree,
but a list of satisfied properties together with a list of unsatisfied properties for
a sample input phrase. This means in particular that where more traditional
parsing schemes, such as Prolog grammars with their rewriting rules, used to
silently fail faced to imperfect input, PGs succeed, and yield (in the list of sat-
isfied properties) those results that were reachable, while pointing out (through
the list of unsatisfied properties) the imperfections. PG grammars are therefore
much more robust that traditional rewriting grammars.

2.2 Computational Framework: CHRG

CHRG, or Constraint Handling Rule Grammars [8], are the grammatical incar-
nation of CHR [16]. They provide syntactic sugar in the same way that DCG
provide it to Prolog (i.e., by invisibly adding and handling boundaries between
symbols to express symbol contiguity), plus extra functionalities, such as assump-
tive and abductive reasoning capabilities as developed by Dahl, Tarau and Chris-
tiansen [9,13] – however these will not occupy us here. Constituents can be
skipped over with “...”.

As in CHR, CHRG has three types of rules:

1. Propagation rules, such as a,b::>c, unify adjacent occurrences in the con-
straint store of grammar symbols a and b, and add c to the store, affected by
the same unification.

2. Simplification rules, such as a,b<:>c, are similar to propagation but a and b
will be deleted from the store.

3. Simpagation rules are similar to simplification rules except that symbols which
are prefixed with ! are not deleted. E.g a,!b<:>c means a will be deleted
but b and c stay.

Grammar Induction for Under-Resourced Languages: The Case of Ch’ol 117

3 The Womb Grammar Methodology

Womb Grammars are a method for inferring the grammar of a language know-
ing the grammar of another language. It transforms a given Property Grammar
Description of a source language S (in this case, English) into the (PG Descrip-
tion of) a grammar for the target language T (in our case, Ch’ol).

This is done through grammar analysis plus transformation, starting from
an imperfect initial grammar. We need to provide the system with:

1. A representative sample of correct input phrases for the subset of targeted
language to be covered,

2. the pre-terminal lexical rules corresponding to the words used in that sample,
and

3. the correct syntactic constraints of another language, stated in Property
Grammar terms. They will serve as an imperfect model of the desired gram-
mar.

For this initial, imperfect model, we can use either an existing language’s
correct grammar, or that of a “universal” grammar formed by listing all possible
properties – even if contradicting – between pairs of daughters of a phrase in the
target language. The former case defines the hybrid model of Womb Grammars;
the latter, the universal model.

3.1 Analysis and Transformation

By analysing the failed properties resulting from parsing input in T, the WG
model infers how to transform them so that they won’t fail. The result is a
grammar that accepts all representative phrases of the target language.

To do that, the source grammar must be correct and complete (for the subset
of language covered) and the target ‘corpus’ must be correct and representative.

More specifically, the method consists of:

1. Replacing the lexical rules of the correct grammar by those of the target
language, so that the syntactic rules for S (source language) call the lexicon
of language T (the target).

2. Running the correct input phrases of language T by this curious grammar
which is a hybrid of the syntax of S plus the lexicon of T.

3. Examining the errors that will be inevitably produced, and modifying the
syntactic rules of the grammar so that no more errors are produced.

In other words, the WG method perfects the imperfect model we started from
by correcting its syntactic properties informed by the errors produced, until the
grammar contains only correct rules.

118 V. Dahl et al.

3.2 Implementing a PG Parser Through CHRG

We are now able to show some fragments of a PG parser for English noun phrases,
to illustrate our above concepts.

Lexicon fragment:
[a]::>word(det,a).
[book]::>word(noun,book).
[blue]::>word(adjective,blue).

Grammar fragment:
g(np(precedence(adj,noun)).

Input Phrase:
[a,blue,book]

English Parser Fragment: (detects correct word ordering)
word(C1,):(N1,),...,word(C2,):(,N4),
g(np(precedence(C1,C2))), all(A,B) ::>
succeeds(np(precedence(C1,C2)),N1,N4,A,B).

3.3 Implementing a Hybrid-Model WG Parser Through CHRG

Since Ch’ol words will likely not evoke as much in readers’ minds as those of a
more familiar language, without loss of generality we exemplify implementation
concepts here for a hypothetical case in which the source language is English
and the target language is Spanish, just to illustrate our methodology in easier-
to-understand terms.

For the sake of clarity, here we leave out a third argument that records fea-
tures, such as number and gender.

Spanish lexicon fragment:
[libro] ::> word(noun,libro).
[azul] ::> word(adjective,azul).

English grammar fragment:
g(np(precedence(adj,noun)).

Spanish input phrase:
[libro,azul]

English parser fragment (rule detecting word mis-ordering):
word(C2,):(N1,),...,word(C1,):(, N4),
g(np(precedence(C1,C2))), all(A, B) ::>
fail(np(precedence(C1,C2)),N1,N4,A,B).

Grammar Induction for Under-Resourced Languages: The Case of Ch’ol 119

3.4 Heuristics for Analysing and Transforming Failed Properties

Since we have designed the input corpus to represent all possible structures of
the phrases we cover (in our case, noun phrases), our analysis of the output
will be indicative of precisely how we need to modify the starting grammar’s
properties in order to arrive at our desired grammar.

This analysis needs to involve all input phrases, and counts the number of
times in which, for phrases relevant to a given property, that property fails. To
exemplify, if the target language were Spanish, (where we would say: el libro
azul – the book blue), the property that an adjective must precede the noun
can be inferred from the failure *in all input phrases that contain the relevant
constituents* of the property np(precedence(adj,noun)). However, a representa-
tive sample of Spanish noun phrases must include examples in which the order
is actually reversed, because it is the case that when the adjective is short, it
can precede the noun (e.g. un buen libro – a good book).

Features (such as number of syllables, tonality for languages that exhibit
it, gender, number, ...) that can affect our properties are stored in the lexicon,
and the system consults them when exceptions to a rule show up in the corpus.
If some regularity can be found, it will be signalled in the output grammar. Of
course this relies on the features that can affect properties having been identified
when the lexicon is input. For this, we rely on our informants in the case of under-
studied languages such as Ch’ol. Should informants be unable to identify some of
such features, they won’t be included in the lexicon and the system will therefore
be unable to correctly apply this heuristic to them.

However, even linguists unfamiliar with the language will, upon examining
the output themselves, be able to notice under which regularities properties that
succeed in general fail in a few examples, since all failed and succeeded properties
will have been laid out, ready for manual examination too. (N.B. This does not
mean that our system relies on humans manually implementing heuristics: we
only point out the availability of manual examination as a last resort safeguard
in case informants have been unable to identify crucially needed features in their
language – a situation no automated system can be expected to automatically
correct).

In short, our heuristic’s implementation automatically transforms a property
into its converse if it fails for all examples in the corpus, deletes it altogether if
it is satisfied in some cases and not others, but no regularity that could explain
it can be found among those examples for which it fails, and in the case in which
a regularity can be found, describes the property in conditional terms: “P holds
if it is the case that...” (e.g. np(precedence(noun,adj) holds unless the noun has
no more syllables than the adjective).

Exceptions to a property can alternatively be expressed in terms of the Prop-
erty Grammar primitive “relax”, which serves to relax a property under certain
conditions. For Ch’ol we have chosen to simply add a condition in the prop-
erty’s description itself, which makes the description more self contained: all the
relevant elements are visible in the same description.

120 V. Dahl et al.

4 Ch’ol

Ch’ol is part of the western branch of the Mayan family, which is divided into
a) Cholan-tseltal languages and b) Tseltalan languages. Ch’ol belongs to the
former. It is spoken mainly in the state of Chiapas, in Mexico, where it has
251,800 speakers.

There are two identified dialects of Ch’ol, that have morphological and phono-
logical differences. But, according to Vazquez (2011), the main differences are
lexical.

In what follows, we introduce a short explanation of the main traits of the
language that can be of some interest for this work. We will be formulating the
property rules that will be used to check the correctness of the results.

4.1 Writing System

There is an agreement on an alphabet among writers: a, b, ch, ch’, e, i, j, k, k’,
l, m, ñ, o, p, p’, r, s, t, ts, ts’, ty, ty’, u, w, x, y, ä, -. This alphabet simplifies
some of the graphemes used before, like ‘k’ instead of ‘qu’. It also includes ‘ty’
and its plosive form ‘ty’. For simplicity, and to avoid codification problems, all
the graphemes have been simplified in our program. This does not affect the
performance of the system, at least at this initial level.

4.2 Morphology and Parts of Speech

Parts of Speech in Ch’ol do not exactly correspond to the ones in the indo-
european languages. To build a general grammar of Ch’ol, the following parts
of the speech: nouns (n), verbs (v), adjectives (adj), adverbs (adv), prepositions
(prep), pronouns (pron), numerals (num), classifiers (class), determinants (det),
person markers (poss) and quantifiers (quant) are commonly considered.

For the work in property grammars, some classes need clarification or small
adaptations.

As for nouns, there is a clear distinction for proper nouns (pn), that show a
very specific behavior, which differs from the rest of nouns. Therefore, n and pn
will be treated differently in this work.

Two of the categories do not have a clear correspondence in indo-european
languages: classifiers (class) and person markers (poss).

Classifiers (class) are always affixed either to the nouns or to the interroga-
tive form jay and they indicate some properties of the word they are attached
to. Their graphical treatment is not clear; orthographically, classifiers are not
independent. Some researchers do consider them as affixes, more than parts of
speech [19]. Therefore, classifiers are not considered to be part of the property
grammar of Ch’ol NP in this paper.

Mayan languages use two different sets of person markers commonly known as
Set A and Set B [19], which are mainly attached to verbs to show grammatical
relations. Set A is also used with noun roots to indicate the possessor [16].
Most linguistic studies have considered Set A as prefixes; although some others

Grammar Induction for Under-Resourced Languages: The Case of Ch’ol 121

describe them as proclitics, since they can attach to the modifiers. There even are
texts where they are written as independent words. Considering this, we separate
them in order to have a correspondence between Set A and the possessives in
indo-european languages that we are using in this paper. Therefore, Set A are
identified as poss, while Set B are considered as affixes.

The constituency order of Ch’ol is VOS (namely, verb, object, subject),
although this is not a rigid order. This means there are several factors, as top-
icality, animacy, etc., that can have an influence in the order of the three main
constituents. NPs with function of subject are not necessarily explicit because
the verbs provide enough information to understand the sentence [18].

4.3 NP Structure

The present paper is focused on the analysis of the basic structure of the NP. This
means that we deal only with simple NP structures that not include PP, NP and
S as complements. Conjoined constituents (e.g. n → n conj n) are not considered
either. Only the categories that are listed in the constituency properties will be
taken into account.

In what follows, we present a property grammar for Ch’ol following the
parameters introduced in Sect. 2.1. Ch’ol does not have a totally explicitly
defined grammar. Therefore, the following properties have been inferred from
a corpus.

The constituency properties for Ch’ol noun phrases are the following:

g(constituency(n)),
g(constituency(pn)),
g(constituency(pron)),
g(constituency(det)),
g(constituency(quant)),
g(constituency(adj)),
g(constituency(num)),
g(constituency(poss)).

There is only an obligation property:

g(obligatory([n;pn;pron])).

The following unicity properties have been formulated:

g(unicity(n)),
g(unicity(pn)),
g(unicity(pron)),
g(unicity(poss)).

122 V. Dahl et al.

We have inferred several exclusion properties:

g(exclusion(n,pn)),
g(exclusion(n,pron)),
g(exclusion(pron,pn)),
g(exclusion(pron,det)),
g(exclusion(pron,quant)),
g(exclusion(pron,adj)),
g(exclusion(pron,num)),
g(exclusion(pron,poss)),
g(exclusion(pn,quant)),
g(exclusion(pn,adj)),
g(exclusion(pn,num)),
g(exclusion(pn,poss)),
g(exclusion(num,quant)).

The properties of precedence establish the order of the constituents:

g(precedence(quant,n)),
g(precedence(num,n)),
g(precedence(adj,n)),
g(precedence(det,n)),
g(precedence(poss,n)),
g(precedence(det,pn)),
g(precedence(adj,poss)),
g(precedence(adj,quant)),
g(precedence(det,adj)),
g(precedence(det,poss)),
g(precedence(det,num)),
g(precedence(num,adj)),
g(precedence(quant,det)),
g(precedence(quant,poss)).

Finally, we formulated some properties of requirement:

g(requirement(adj,n)),
g(requirement(det,[n;pn])),
g(requirement(poss,n)),
g(requirement(num,n)),
g(requirement(quant,n)).

5 Experiments and Results

We have performed two different experiments. In the first one, which uses the
hybrid system, Ch’ol – the target language – must be inferred from English – the

Grammar Induction for Under-Resourced Languages: The Case of Ch’ol 123

source language. The second one uses the universal system, where the grammar
of the target language (Ch’ol) is inferred from a universal grammar. The latter
method had not been tried yet to infer the grammar of a real language.

5.1 Hybrid Womb Grammar

For this experiment we design a program with the following elements: a) a correct
grammar of the source language (English) NPs, b) a set of correct NP examples
from the target language (Ch’ol), with a PoS label.

Tables 1 and 2 show the results of the program. The correct property gram-
mar of English that is provided to the system is shown in the first column.
Table 1 contains the satisfied results that the system obtains for the grammar of
Ch’ol, according to the correct Ch’ol phrase examples provided to the program,
that can be found in Appendix Table 5. For example, “kolem kabäl xajlel” –
adj, quant, n – translated as “many big stones”. Table 2 contains the unsatisfied
properties. The second column of both give the examples (or counter-examples)
that illustrate the decision of the system.

There are six English properties that are violated by some of the phrase sam-
ples, whereas the others are satisfied in all the Ch’ol cases tested. The unsatisfied
properties are all consistent with our expectations based on common English
usage and the properties identified for Ch’ol. They are each violated by at least
one of the counter examples from the second column of Table 2.

This implies for the precedence properties that the converse may be true.
For example from precedence(poss,adj) being unsatisfied we know that an
adjective can come before a possessive in a simple noun phrase. To infer that
precedence(adj,poss) is a valid property in Ch’ol, we would need to ensure
that it is never violated in a corpus sufficiently large to remove doubt.

The violation of the exclusion properties simply implies that those categories
can coexist in a Ch’ol simple noun phrase.

Some expected properties for Ch’ol are missing from the resulting grammar.
For example, based on the English grammar in which we have exclusion(det,
pn), we are unable to infer either precedence(det, pn) or precedence(pn,
det); the English grammar does not have either precedence property, so they
never enter the system.

Therefore, the method has been able to analyze a set of examples according
to the rules of a grammar (S) and generate the new grammar for them (T).

5.2 Universal Womb Grammar

The Universal Womb Grammar does not use the known grammar of a lan-
guage S to infer the grammar of a language T. Instead, the program includes
every possible property over the terminal vocabulary of T belonging to each of
the six categories explained in Sect. 2.1: constituency, precedence, obligatority,
requirement, exclusion and unicity. For our work, we only consider the properties
involving the constituents we have defined.

124 V. Dahl et al.

Table 1. Results obtained with the Hybrid English method. First column: English
grammar given to the system. Second column: examples for satisfied properties.

English grammar property
satisfied by Ch’ol

Examples

g(obligatory(n;pn;pron))

g(constituency(det))

g(constituency(quant))

g(constituency(adj))

g(constituency(num))

g(constituency(n))

g(constituency(pn))

g(constituency(pron))

g(constituency(poss))

g(precedence(det,n)) jiñidet men

g(precedence(adj,n)) jupemadj lakñan

g(precedence(num,n)) jotikilnum sokon

g(precedence(quant,n)) kabälquant xinichn

g(precedence(poss,n)) iposs yijñamn

g(precedence(num,adj)) juñtikilnum jumpeadj lakñan

g(precedence(det,adj)) jiñidet jumpeadj lakñan

g(precedence(det,num)) jiñidet uxtikilnem reyobn

g(requirement(num,[n])) jotikilnum sokon

g(requirement(poss,[n])) kposs weeln

g(requirement(adj,[n])) iikadj chuchn

g(requirement(det,[n;pn])) jiñidet tsin

g(requirement(quant,[n])) kabälquant kixtañujobn

g(exclusion(pron,pn))

g(exclusion(num,quant))

g(exclusion(pn,quant))

g(exclusion(pn,poss))

g(exclusion(pron,n))

g(exclusion(pron,adj))

g(exclusion(pron,num))

g(exclusion(pron,poss))

g(exclusion(pron,det))

g(exclusion(pron,quant))

g(exclusion(n,pn))

g(exclusion(pn,adj))

g(exclusion(pn,num))

g(unicity(n)) jan

g(unicity(pron)) joñoñpron

g(unicity(pn)) Juanpn

g(unicity(poss))

Grammar Induction for Under-Resourced Languages: The Case of Ch’ol 125

Table 2. Results obtained with the Hybrid English method. First column: English
grammar given to the system. Second column: English grammar property Unsatisfied
by Ch’ol.

English grammar property
Unsatisfied by Ch’ol

Counterexamples

g(precedence(poss,adj)) tyamadj awposs okn

g(precedence(det,quant)) kabälquant jiñidet jan

g(precedence(quant,adj)) kolemadj kabälquant xajleln

g(precedence(poss,quant)) kabälquant tyakquant kposs wakaxn

g(exclusion(det,pn)) jiñi Tila

g(exclusion(det,poss)) jiñidet iposs yumm

The list of correct examples of the language T with which we test the Uni-
versal Womb Grammar model is the same that has been given to the program
in the hybrid model (See Appendix Table 5).

Since the universal grammar contains all combinations of properties, the
result can contain the complete set of properties for the target language, unlike
the Hybrid English parser with the more restricted input grammar. We see this
in column 1 of Table 3, where the recall, the number of rules of Ch’ol the program
was able to capture, was 100%. Every one of the properties described in Sect. 4.3
was in the output.

There are additional unexpected properties inferred. In many cases exclusion
between categories invalidates precedence rules; if a phrase cannot have both
pronoun and proper name, there cannot be any precedence property between
them. Pruning these cases, there are three additional unexpected properties for
unicity of adj, num, and det, shown in column two. In each of the phrase samples
where any of these appear, they appear alone. Therefore, they are inferred from
the Universal grammar because they were never violated in the Ch’ol phrase
samples. These can be accepted as valid Ch’ol properties until a counterexample
is found to be added to the testing corpus.

This over-generation of properties and the resulting uncertainty highlights a
key aspect of the Womb Grammars approach: a substantial, representative set of
test phrases must be used to bolster confidence in the output grammar. For some
less used languages this can be challenging, and a very limited set of examples
may be given to the program. This leads to many combinations of constituents
not being represented, and to the chance of missing counterexamples that would
otherwise refine the result.

These results show that Universal Womb Grammars need some more devel-
opment to prune the rules retrieved as valid but that cannot be inferred from
the rules.

5.3 Comparative Results Hybrid vs. Universal

Although every property satisfied by the Hybrid Grammar corresponds to a
property of the grammar that has been designed in Sect. 4.3, this formalism is

126 V. Dahl et al.

Table 3. Results obtained with the Universal method. First column: Properties inferred
and expected based on independent study. Second column: Additional properties
inferred, but not anticipated.

Ch’ol grammar property Additional Inferred property

g(obligatory(n;pn;pron)) g(unicity(adj))

g(constituency(quant)) g(unicity(num))

g(constituency(adj)) g(unicity(det))

g(constituency(num))

g(constituency(poss))

g(constituency(det))

g(constituency(pn))

g(constituency(pron))

g(constituency(n))

g(precedence(quant, n))

g(precedence(num, n))

g(precedence(adj, n))

g(precedence(det, n))

g(precedence(poss, n))

g(precedence(det, pn))

g(precedence(adj, poss))

g(precedence(adj, quant))

g(precedence(det, adj))

g(precedence(det, poss))

g(precedence(det, num))

g(precedence(num, adj))

g(precedence(quant, det))

g(precedence(quant, poss))

g(requirement(num,[n]))

g(requirement(poss,[n]))

g(requirement(adj,[n]))

g(requirement(det,[n;pn]))

g(requirement(quant,[n]))

g(exclusion(pron,pn))

g(exclusion(num,quant))

g(exclusion(pn,quant))

g(exclusion(pn,poss))

g(exclusion(pron,n))

g(exclusion(pron,adj))

g(exclusion(pron,num))

g(exclusion(pron,poss))

g(exclusion(pron,det))

g(exclusion(pron,quant))

g(exclusion(n,pn))

g(exclusion(pn,adj))

g(exclusion(pn,num))

g(unicity(n))

g(unicity(pron))

g(unicity(pn))

g(unicity(poss))

Grammar Induction for Under-Resourced Languages: The Case of Ch’ol 127

not able to capture every property. However, the Universal Womb Grammar is
able to infer a number of properties that have not been formulated by the hybrid
version. Table 4 shows the comparative outcome:

Table 4. Set of rules of Ch’ol inferred by the program that do not belong to English

UWG HWG Defined in
Ch’ol Grammar

g(precedence(adj,quant)) unsatisfied the reverse Yes

g(precedence(adj,poss)) unsatisfied the reverse Yes

g(precedence(det,pn)) not covered Yes

g(precedence(det,poss)) not covered Yes

g(precedence(quant,det)) unsatisfied the reverse Yes

g(precedence(quant,poss)) unsatisfied the reverse Yes

g(unicity(adj)) not covered No

g(unicity(num)) not covered No

g(unicity(det)) not covered No

As the table shows, while HWG are not able to decide if an unsatisfied
property of the source language can be reversed, in those examples, it seems
that UWG are able to infer them. This seems to indicate that a possible future
improvement for HWG is to add a component of analysis of the unsatisfied
properties.

6 Conclusions and Future Work

We have contributed to the automatic induction of grammars that can be incor-
porated into modern technological and educational tools in order to help under-
resourced languages acquire the resources needed, and thus help endangered
languages survive. The process of inducing a target language’s grammar pro-
ceeds mostly in automatic fashion, where the only human intervention required
(other than running the program) is to enter an informant’s representative sam-
ple of lexical categories in the target language, together with their features, as
well as the (known) grammar which will be used as an imperfect starting model.

First, we have manually generated a grammar for a restricted but important
subset of Ch’ol noun phrases. The fact that no full description of Ch’ol grammar
exists may be a disadvantage because, at some point, it was not clear what the
definition of the categories and structures had to be. However, this has made
our work also more useful and relevant.

To complete our work, we have fine tuned our source grammar around the
specific needs of Ch’ol. In a first stage, we took the same approach as was taken
for Yorùbá, i.e., we used the Hybrid version of Womb Grammars, using English
as the source language. This yielded reasonable results, but since the constituents

128 V. Dahl et al.

of English and Ch’ol don’t coincide exactly, we had to make appropriate adjust-
ments, such as defining for Ch’ol the category of possessives that appears in the
grammar of English. This may indicate that, in order to make the hybrid version
of this system work in every not well-known language, we may need to make our
source grammar very granular.

We then turned, in a second stage, to experimenting with the Universal
Womb Grammar system, where all properties between all possible pairs of con-
stituents of the target language are included as our starting point source “gram-
mar” (note that this “universal grammar”, while being highly useful, is not
correct in theory, since it must include, by definition, properties that contradict
each other).

In our experiments, we have seen that Universal Womb Grammars still need
some adjustments to be able to restrict the results to the features that are
represented in the examples. However, we think that this formalism is more
adequate because of three reasons: a) constituents that are in the source but not
in the target language can be safely ignored, which means we do not have to deal
with extraneous constituents; b) constituents that are in the target language but
not in the source are (most appropriately) taken into account right away when
the target language’s lexicon is entered, and c) the process of deriving properties
that include all constituents of the target language is highly mechanizable when
we proceed, as we do, phrase by phrase. We are at present studying the process
of developing a front end to mechanize the development of a universal grammar
from the given lexicon of a target language, in the hope that it can serve as a
start point for all future applications of universal WG. Ultimately we would like
to have a useful general toolkit that can be applied to fairly arbitrary target
languages with as little necessary adaptations as possible.

As mentioned, we have studied only one of the two main dialects of Ch’ol,
but since the differences between them are mostly lexical, our work stands to be
almost directly applicable to the other dialect too. While we have not yet tested
this hypothesis, if it proves as reasonable as is to be expected, our approach
multiplies its promise, as it is likely the case that in many other different dialects
of a same language, most differences may relate mainly to the lexicon.

Although Universal Womb Grammars have been already defined earlier [11],
and their application embrionically studied for language acquisition, this paper
presents the first real-language rendition of the working of this formalism for
inducing unknown grammars. Ch’ol has been the first language whose simple
NP structure has been inferred by using a Universal WG.

To check the performance of the system, we have been assisted by a linguist
native speaker of Ch’ol. In Sect. 4, we have explained the main features of the
NP in Ch’ol, formulating some property features that will help us to validate
the results.

This being only our first approach to grammatical inference from Womb
Grammar to a Mexican indigenous Language, there is of course room for
improvement. First, we plan to extend our present coverage of Ch’ol nominal
phrases by adding PP and NP as complements. In a second step, prepositional
phrases, verb phrases and the whole sentence structure should be tackled. Ch’ol

Grammar Induction for Under-Resourced Languages: The Case of Ch’ol 129

will give us many clues on how to collect elements for a universal grammar that
can help to define the mechanisms to automatically infer the structure of Mayan
languages and, in further steps, languages belonging to other families.

Regarding the choice of a source language, other considerations than whether
we have an existing grammar for the source language are relevant, e.g.:

– Common sense would suggest that using source and target languages from
the same linguistic family would tend to work best. Yet one of the results of
our research that was surprising to us is how well English worked as a source
language for a target language as dissimilar from English as Ch’ol. Obvi-
ously, conclusions from punctual experiments cannot be elevated to general
conclusions about our method. It would be useful to compare what types of
languages would perform best as providers of a source grammar for a given
target language. This could be done empirically by running many tests, or
through conceptual linguistic analyses, such as theoretically analysing the
compatibility of the (known) linguistic constraints (perhaps within a theory
other than Property Grammars) in a given source language, with respect to
those (typically, unknown a priori) inferred by our method and corroborated
as correct by native speakers or linguists – an approach that could at least
throw light on the choice of other under-resourced languages in the same
family as the already targeted one. As a side effect, it might also throw an
empirically useful comparative light between Property Grammars and any
other linguistic theory used for the said conceptual analysis.

– Meanwhile, when considering what target language to choose, we can reason-
ably speculate that languages with similar main characteristics might lend
themselves better to the task. For instance, if we target a non-agglutinative
language, using an agglutinative one as source might require the extra step of
separating the different morphemes contained in a single lexical item so that
we can more easily recognize them as parallel to the separate constituents
that the target language represents them with. On the other hand, doing this
extra step may not be prohibitive if we use one of the many agglutinative
languages in which morphemes tend to remain unchanged after their unions.

– In general, the fact that for Womb Grammars, lexical items are the most
important input required to infer the grammar of a source language would
suggest that languages with the same, or similar set of constituents would be
among the most promising to be used as source languages. It might also be
helpful to choose a language from the same linguistic family, e.g. if the target
language is a romance language, taking a romance language as source might
be a good option. However, the method as we have so far tested it showed to
be resilient in this respect: English worked well as source language not only
for Ch’ol but for Yorùbá as well – i.e. for two target languages with quite
different linguistic genealogies.

We hope this work will motivate more applications of Womb Grammars to
the induction of other under-resourced languages, in the final aim of significantly
increasing the survival chances for endangered languages, with obvious positive
socio-economic potential impact.

130 V. Dahl et al.

Appendix I: Examples of Ch’ol Given to the Program,
with the PoS Tagging and the English Translation

Table 5. Examples provided to the system

Ch’ol phrase PoS Translation

joñoñ pron I

lu pron everything

ja n water

xchumtälob n inhabitans

jiñi me det, n the deer

ili wits det, n this hill

jiñi Juan det, pn that Juan

jiñi Tila det, pn that Tila

yambä kin adj, n another day

iik chuch adj, n black squirrel

junkojt xwax det, n a vixen

jumpe xchumtäl, det, n an inhabitant

i bak, poss, n its bone

k weel, poss, n my meat

kabäl xiñich quant, n many ants

kabäl kixtañujob quant, n many people

sumukjax k waj adj, poss, n my delicious tortillas

tyam aw ok adj, poss, n your large feet

kolem kabäl xajlel adj, quant, n many big stones

jiñi jupem lakña det adj n that fat woman

jiñi k mut det, poss, n my chicken

jiñi i yum det, poss, n its owner

juntikil jupem lakña num, adj, n a fat woman

uxtikil i yalobilob num, poss, n his three children

i yuxpejlel, klesiaji poss, num, n his third temple

kabäl jiñi ja quant, det, n a lot of water

jiñi uxtikil reyob det, num, n, these three kings

jiñi uxpejl estado det, num, n, these three states

juan pn juan

kabäl tyak k wakax quant, quant, poss, n many some my cows

Grammar Induction for Under-Resourced Languages: The Case of Ch’ol 131

References

1. Adebara, I.: Using womb grammars for inducing the grammar of a subset of Yorùbá
noun phrases. Ph.D. thesis, Department of Computing Science, Simon Fraser Uni-
versity, Burnaby, Canada (2015)

2. Adebara, I., Dahl, V.: Grammar induction as automated transformation between
constraint solving models of language. In: Proceedings of the Workshop on
Knowledge-based Techniques for Problem Solving and Reasoning Co-located with
25th International Joint Conference on Artificial Intelligence (IJCAI 2016), New
York City, USA, 10 July 2016 (2016). https://ceur-ws.org/Vol-1648/paper6.pdf

3. Alejos, J., Mart́ınez, N.: Ch’oles, 3rd edn., pp. 19–33. Comisión nacional para el
desarrollo de los pueblos ind́ıgenas, México (2007). iSBN 0 471 40300

4. Becerra Bonache, L., Dahl, V., Miralles, J.E.: On second language tutoring through
womb grammars. In: Rojas, I., Joya, G., Gabestany, J. (eds.) IWANN 2013. LNCS,
vol. 7902, pp. 189–197. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38679-4 18

5. Becerra-Bonache, L., Dahl, V., Miralles, J.E.: The role of universal constraints in
language acquisition. In: Duchier, D., Parmentier, Y. (eds.) CSLP 2012. LNCS,
vol. 8114, pp. 1–13. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-41578-4 1

6. Blache, P.: Property grammars and the problem of constraint satisfaction. In:
ESSLLI-2000 Workshop on Linguistic Theory and Grammar Implementation
(2000)

7. Blache, P.: Property grammars: a fully constraint-based theory. In: Christiansen,
H., Skadhauge, P.R., Villadsen, J. (eds.) CSLP 2004. LNCS (LNAI), vol. 3438, pp.
1–16. Springer, Heidelberg (2005). https://doi.org/10.1007/11424574 1

8. Christiansen, H.: CHR grammars (2004)
9. Christiansen, H., Dahl, V.: V.: Assumptions and abduction in prolog. In: Workshop

on Multiparadigm Constraint Programming Languages (MultiCPL 2004), Saint-
Malo, France (2004). Workshop notes (2004)

10. Dahl, V., Blache, P.: Extracting selected phrases through constraint satisfaction.
In: Proceedings of the Constraint Satisfaction and Language Processing SLP 2005
(2005)

11. Dahl, V., Miralles, E.: Womb grammars: Constraint solving for grammar induction.
In: Sneyers, J., Frühwirth, T. (eds.) Proceedings of the 9th Workshop on Constraint
Handling Rules. Technical report CW 624, pp. 32–40. Department of Computer
Science, K.U. Leuven (2012)

12. Dahl, V., Miralles, E., Becerra, L.: On language acquisition through womb gram-
mars. In: CSLP, pp. 99–105 (2012)

13. Dahl, V., Tarau, P., Li, R.: Assumption grammars for processing natural language.
In: ICLP (1997)

14. Dahl, V., Tessaris, S., De Sousa Bispo, M.: Parsing as semantically guided con-
straint solving: the role of ontologies. Ann. Math. Artif. Intell. 82(1), 161–185
(2018). https://doi.org/10.1007/s10472-018-9573-2

15. Duchier, D., Dao, T., Parmentier, Y.: Model-theory and implementation of prop-
erty grammars with features. J. Log. Comput. 24(2), 491–509 (2014). https://doi.
org/10.1093/logcom/exs080

16. Frühwirth, T.: Theory and practice of constraint handling rules. J. Log. Program.
37(1), 95–138 (1998). https://doi.org/10.1016/S0743-1066(98)10005-5

https://ceur-ws.org/Vol-1648/paper6.pdf
https://doi.org/10.1007/978-3-642-38679-4_18
https://doi.org/10.1007/978-3-642-38679-4_18
https://doi.org/10.1007/978-3-642-41578-4_1
https://doi.org/10.1007/978-3-642-41578-4_1
https://doi.org/10.1007/11424574_1
https://doi.org/10.1007/s10472-018-9573-2
https://doi.org/10.1093/logcom/exs080
https://doi.org/10.1093/logcom/exs080
https://doi.org/10.1016/S0743-1066(98)10005-5

132 V. Dahl et al.

17. Warkentin, V., Scott, R.: Gramática ch’ol. Instituto Lingǘıstico de verano, México
(1980)

18. Nichols, J.: Head-marking and dependent-marking grammar. Language 62(1), 56–
119 (1986). https://www.jstor.org/stable/415601

19. Vázquez Álvarez, J.: A grammar of Chol, a Mayan language. Ph.D. thesis, Univer-
sity of Texas (2011)

https://www.jstor.org/stable/415601

Answer Set Programming Made Easy

Jorge Fandinno1,2 , Seemran Mishra2 , Javier Romero2 , and Torsten Schaub2(B)

1 University of Nebraska at Omaha, Omaha, USA
2 University of Potsdam, Potsdam, Germany

smishra@uni-potsdam.de , torsten@cs.uni-potsdam.de

Abstract. We take up an idea from the folklore of Answer Set Programming
(ASP), namely that choices, integrity constraints along with a restricted rule for-
mat is sufficient for ASP. We elaborate upon the foundations of this idea in the
context of the logic of Here-and-There and show how it can be derived from the
logical principle of extension by definition. We then provide an austere form of
logic programs that may serve as a normalform for logic programs similar to con-
junctive normalform in classical logic. Finally, we take the key ideas and propose
a modeling methodology for ASP beginners and illustrate how it can be used.

1 Introduction

Many people like Answer Set Programming (ASP [20]) because its declarative app-
roach frees them from expressing any procedural information. In ASP, neither the order
of rules nor the order of conditions in rule antecedents or consequents matter and thus
leave the meaning of the overall program unaffected. Although this freedom is usually
highly appreciated by ASP experts, sometimes laypersons seem to get lost without any
structural guidance when modeling in ASP.

We address this issue in this (preliminary) paper and develop a methodology for
ASP modeling that targets laypersons, such as biologists, economists, engineers, and
alike. As a starting point, we explore an idea put forward by Ilkka Niemelä in [25],
although already present in [10,16] as well as the neighboring area of Abductive Logic
Programming [7,9]. To illustrate it, consider the logic program encoding a Hamiltonian
circuit problem in Listing 1.1. Following good practice in ASP, the problem is sepa-
rated into the specification of the problem instance in lines 1–3 and the problem class in
lines 5–10. This strict separation, together with the use of facts for problem instances,
allows us to produce uniform1 and elaboration tolerant2 specifications. Building upon
the facts of the problem instance, the actual encoding follows the guess-define-check
methodology of ASP. A solution candidate is guessed in Line 5, analyzed by auxil-
iary definitions in Line 6 and 7, and finally checked through integrity constraints in
lines 8–10.

A closer look reveals even more structure in this example. From a global perspec-
tive, we observe that the program is partitioned into facts, choices, rules, and integrity

1 A problem encoding is uniform, if it can be used to solve all its problem instances.
2 A formalism is elaboration tolerant if it is convenient to modify a set of facts expressed in the
formalism to take into account new phenomena or changed circumstances [24].

c© Springer Nature Switzerland AG 2023
P. Lopez-Garcia et al. (Eds.): Hermenegildo Festschrift 2022, LNCS 13160, pp. 133–150, 2023.
https://doi.org/10.1007/978-3-031-31476-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31476-6_7&domain=pdf
http://orcid.org/0000-0002-3917-8717
http://orcid.org/0000-0002-9659-4549
http://orcid.org/0000-0001-5546-9939
http://orcid.org/0000-0002-7456-041X
https://doi.org/10.1007/978-3-031-31476-6_7

134 J. Fandinno et al.

1 node(1..4). start(1).
2 edge(1,2). edge(2,3). edge(2,4). edge(3,1).
3 edge(3,4). edge(4,1). edge(4,3).
4
5 { hc(V,U) } :- edge(V,U).
6 reached(V) :- hc(S,V), start(S).
7 reached(V) :- reached(U), hc(U,V).
8 :- node(V), not reached(V).
9 :- hc(V,U), hc(V,W), U!=W.
10 :- hc(U,V), hc(W,V), U!=W.

Listing 1.1. A logic program for a Hamiltonian circuit problem

constraints, and in this order. From a local perspective, we note moreover that the pred-
icates in all rule antecedents are defined beforehand. This structure is not arbitrary and
simply follows the common practice that concept formation is done linearly by building
concepts on top of each other. Moreover, it conveys an intuition on how a solution is
formed. Importantly, such an arrangement of rules is purely methodological and has no
impact on the meaning (nor the performance3) of the overall program. From a logical
perspective, it is interesting to observe that the encoding refrains from using negation
explicitly, except for the integrity constraints. Rather this is hidden in Line 5, where the
choice on hc(V,U) amounts to the disjunction hc(V,U)∨ ¬hc(V,U), an instance
of the law of the excluded middle. Alternatively, hc(V,U) can also be regarded as an
abducible that may or may not be added to a program, as common in Abductive Logic
Programming.

Presumably motivated by similar observations, Ilkka Niemelä already argued in [25]
in favor of an ASP base language based on choices, integrity constraints, and stratified
negation.4 We also have been using such an approach when initiating students to ASP
as well as teaching laypersons. Our experience has so far been quite positive and we
believe that a simple and more structured approach helps to get acquainted with posing
constraints in a declarative setting.

We elaborate upon this idea in complementary ways. First of all, we lift it to a
logical level to investigate its foundations and identify its scope. Second, we want to
draw on this to determine a syntactically restricted subclass of logic programs that still
warrants the full expressiveness of traditional ASP. Such a subclass can be regarded
as a normalform for logic programs in ASP. This is also interesting from a research
perspective since it allows scientists to initially develop their theories in a restricted
setting without regarding all corner-cases emerging in a full-featured setting. And last
but not least, inspired by this, we want to put forward a simple and more structured
modeling methodology for ASP that aims at beginners and laypersons.

3 Shuffling rules in logic programs has an effect on performance since it affects tie-breaking
during search; this is however unrelated to the ordering at hand.

4 This concept eliminates the (problematic) case of recursion through negation.

Answer Set Programming Made Easy 135

2 Background

The logical foundations of ASP rest upon the logic of Here-and-There (HT [17]) along
with its non-monotonic extension, Equilibrium Logic [26].

We start by defining the monotonic logic of Here-and-There (HT). Let A be a set of
atoms. A formula ϕ over A is an expression built with the grammar:

ϕ ::= a | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ

for any atom a ∈ A. We also use the abbreviations: ¬ϕ def= (ϕ → ⊥), � def= ¬⊥, and
ϕ ↔ ψ def= (ϕ → ψ)∧(ψ → ϕ). Given formulas ϕ,α and β, we write ϕ[α/β] to denote
the uniform substitution of all occurrences of formula α in ϕ by β. This generalizes to
the replacement of multiple formulas in the obvious way. As usual, a theory over A is a
set of formulas over A. We sometimes understand finite theories as the conjunction of
their formulas.

An interpretation over A is a pair 〈H,T 〉 of atoms (standing for “here” and “there”,
respectively) satisfying H ⊆ T ⊆ A. An interpretation is total whenever H = T .
An interpretation 〈H,T 〉 satisfies a formula ϕ, written 〈H,T 〉 |= ϕ, if the following
conditions hold:

〈H,T 〉 |= p if p ∈ H
〈H,T 〉 |= ϕ ∧ ψ if 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ
〈H,T 〉 |= ϕ ∨ ψ if 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ
〈H,T 〉 |= ϕ→ψ if 〈H ′, T 〉 �|= ϕ or 〈H ′, T 〉 |= ψ for both H ′ ∈ {H,T}

A formula ϕ is valid, written |= ϕ, if it is satisfied by all interpretations. An interpre-
tation 〈H,T 〉 is a model of a theory Γ, written 〈H,T 〉 |= Γ, if 〈H,T 〉 |= ϕ for all
ϕ ∈ Γ.

Classical entailment is obtained via the restriction to total models. Hence, we define
the classical satisfaction of a formula ϕ by an interpretation T , written T |= ϕ, as
〈T, T 〉 |= ϕ.

A total interpretation 〈T, T 〉 is an equilibrium model of a theory Γ if 〈T, T 〉 is a
model of Γ and there is no other model 〈H,T 〉 of Γ with H ⊂ T . In that case, we also
say that T is a stable model of Γ. We denote the set of all stable models of Γ by SM [Γ]
and use SM V [Γ] def= {T ∩V | T ∈ SM [Γ] } for their projection onto some vocabulary
V ⊆ A.

Since ASP is a non-monotonic formalism, it may happen that two different formulas
share the same equilibrium models but behave differently in different contexts. The
concept of strong equivalence captures the idea that two such formulas have the same
models regardless of any context. More precisely, given two theories Γ and Π and a set
V ⊆ A of atoms, we say that Γ and Π are V -strongly equivalent [2], written Γ ∼=V Π ,
if SM V [Γ ∪ Δ] = SM V [Π ∪ Δ] for any theory Δ over A′ such that A′ ⊆ V . For
formulas ϕ and ψ, we write ϕ ∼=V ψ if {ϕ} ∼=V {ψ}.

A rule is a (reversed) implication of the form

l1 ∨ · · · ∨ lm ← lm+1 ∧ · · · ∧ ln (1)

136 J. Fandinno et al.

where each li is a literal, that is, either an atom or a negated atom, for 1 ≤ i ≤ n. If
n = 1, we refer to the rule as a fact and write it as l1 by dropping the trailing implication
symbol. A rule is said to be normal whenever m = 1 and l1 is an atom. A negation-
free normal rule is called definite. An integrity constraint is a rule with m = 0 and
equivalent to ⊥ ← lm+1 ∧ · · · ∧ ln. Finally, the law of the excluded middle a ∨ ¬a
is often represented as {a} and called a choice. Accordingly, a rule with a choice on
the left-hand side is called a choice rule. A logic program is a set of rules. It is called
normal, if it consists only of normal rules and integrity constraints, and definite if all its
rules are definite.

3 Logical Foundations

We begin by investigating the logical underpinnings of the simple format of logic pro-
grams discussed in the introductory section. Although the discussion of the exemplary
logic program has revealed several characteristic properties, not all of them can be cap-
tured in a logical setting, such as order related features. What remains is the division
of the encoding into facts, rules, choices, and integrity constraints. In logical terms,
the first two amount to negation-free formulas, choices are instances of the law of the
excluded middle, and finally integrity constraints correspond to double-negated formu-
las in HT. While the first two types of formulas are arguably simpler because of their
restricted syntax, the latter’s simplicity has a semantic nature and is due to the fact that
in HT double negated formulas can be treated as in classical logic.

In what follows, we show that any formula can be divided into a conjunction of cor-
responding subformulas. This conjunction is strongly equivalent (modulo the original
vocabulary) to the original formula and the translation can thus also be applied to sub-
stitute subformulas. Interestingly, the resulting conjunction amounts to a conservative
extension of the original formula and the underlying translation can be traced back to
the logical principle of extension by definition, as we show below.

To this end, we associate with each formula ϕ over A a new propositional atom xϕ.
We then consider defining axioms of the form (xϕ ↔ ϕ). We can now show that replac-
ing any subformula ϕ by xϕ while adding a corresponding defining axiom amounts to
a conservative extension of ψ.5

Proposition 1. Let ψ and ϕ be formulas over A and xϕ �∈ A.
Then, ψ ∼=A (ψ[ϕ/xϕ] ∧ (ϕ ↔ xϕ)).

Moreover, we get a one-to-one correspondence between the stable models of both for-
mulas.

Proposition 2. Let ψ and ϕ be formulas over A and xϕ �∈ A.

1. If T ⊆ A is a stable model of ψ, then T ∪ {xϕ | T |= ϕ} is a stable model of
(ψ[ϕ/xϕ] ∧ (ϕ ↔ xϕ)).

2. If T ⊆ (A ∪ {xϕ}) is a stable model of (ψ[ϕ/xϕ] ∧ (ϕ ↔ xϕ)), then T ∩ A is a
stable model of ψ.

5 An extended version of the paper including all proofs can be found here: https://arxiv.org/abs/
2111.06366.

https://arxiv.org/abs/2111.06366
https://arxiv.org/abs/2111.06366

Answer Set Programming Made Easy 137

Clearly, the above results generalize from replacing and defining a single subformula ϕ
to several such subformulas.

With this, we can now turn our attention to negated subformulas: Given a formula ψ,
letN (ψ) stand for the set of all maximal negated subformulas occurring in ψ. This leads
us to the following variant of Proposition 1.

Corollary 1. Let ψ be a formula over A and xϕ �∈ A.
Then, ψ ∼=A ψ

[
ϕ/xϕ | ϕ ∈ N (ψ)

] ∧ ∧
ϕ∈N (ψ)(ϕ ↔ xϕ).

Given that we exclusively substitute negated subformulas, we can actually treat the
defining axiom as in classical logic. This is because in HT, we have 〈H,T 〉 |= ¬ϕ iff
(classically) T |= ¬ϕ. The classical treatment of the defining axiom is then accom-
plished by replacing (ϕ ↔ xϕ) by ¬¬(ϕ ↔ xϕ) and (¬xϕ ∨ xϕ). This results in the
following decomposition recipe for formulas.

Definition 1. Let ψ be a formula over A and xϕ �∈ A.
Then, we define

ψ� = ψ
[
ϕ/xϕ | ϕ ∈ N (ψ)

] ∧
∧

ϕ∈N (ψ)

(¬xϕ ∨ xϕ) ∧
∧

ϕ∈N (ψ)

¬¬(ϕ ↔ xϕ) .

Example 1. Let ψ be ¬a → b ∨ ¬¬(c ∧ ¬d). Then,

N (ψ) = {¬a,¬¬(c ∧ ¬d)}
ψ� = (x¬a → b ∨ x¬¬(c∧¬d)) ∧

(x¬a ∨ ¬x¬a) ∧ (x¬¬(c∧¬d) ∨ ¬x¬¬(c∧¬d))
¬¬(¬a ↔ x¬a) ∧ ¬¬(¬¬(c ∧ ¬d) ↔ x¬¬(c∧¬d))

With the translation from Definition 1, we obtain an analogous conservative exten-
sion result as above.

Theorem 1. Let ψ be a formula over A.
Then, we have ψ ∼=A ψ�.

In analogy to Proposition 2, we get a one-to-one correspondence between the stable
models of both formulas.

Theorem 2. Let ψ be a formula over A.

1. If T ⊆ A is a stable model of ψ, then T ∪ {xϕ | ϕ ∈ N (ψ) and T |= ϕ} is a stable
model of ψ�.

2. If T ⊆ (A ∪ {xϕ | ϕ ∈ N (ψ)}) is a stable model of ψ�, then T ∩ A is a stable
model of ψ.

For instance, {b} is a stable model of the formula ψ = ¬a → b ∨ ¬¬(c ∧ ¬d) from
Example 1. From Theorem 1, {x¬a, b} is a stable model of ψ�. Conversely, from the
stable model {x¬a, b} of ψ�, we get the stable model {b} of ψ by dropping the new
atoms.

138 J. Fandinno et al.

4 Austere Answer Set Programming

In this section, we restrict the application of our formula translation to logic programs.
Although we focus on normal programs, a similar development with other classes of
logic programs, like disjunctive ones, can be done accordingly.

For simplicity, we write ā instead of x¬a for a ∈ A and let {ā} stand for ā ∨ ¬ā.
Note that, for a rule r as in (1), the set N (r) consists of negative literals only. The next
two definitions specialize our translation of formulas to logic programs.

Definition 2. Let r be a rule over A as in (1) with m ≥ 1.
Then, we define

r� = r
[¬a/ā | ¬a ∈ N (r)] ∪ ⋃

¬a∈N (r) {{ā} ←} ∪ ⋃
¬a∈N (r)

{← a ∧ ā
← ¬a ∧ ¬ā

}

Definition 3. Let P be a logic program over A. Then, P � =
⋃

r∈P r�.

This translation substitutes negated literals in rule bodies with fresh atoms and adds a
choice rule along with a pair of integrity constraints providing an equivalence between
the eliminated negated body literals and the substituted atoms.

By applying the above results in the setting of logic programs, we get that a logic
program and its translation have the same stable models when restricted to the original
vocabulary.

Corollary 2. Let P be a logic program over A.
Then, we have P ∼=A P �

In other words, every stable model of a logic program can be extended to a stable model
of its translation and vice versa.

Corollary 3. Let P be a logic program over A.

1. If T ⊆ A is a stable model of P , then T ∪ {ā | ¬a ∈ N (P) and a �∈ T} is a stable
model of P �.

2. T ⊆ (A ∪ {ā | ¬a ∈ N (P)} is a stable model of P �, then T ∩ A is a stable model
of P .

For illustration, consider the following example.

Example 2. Consider the normal logic program P :

a ←
b ← ¬c
c ← ¬b
d ← a ∧ ¬c

Then, P � is:
a ← {b̄} ← {c̄} ←
b ← c̄ ← b ∧ b̄ ← c ∧ c̄
c ← b̄ ← ¬b ∧ ¬b̄ ← ¬c ∧ ¬c̄
d ← a ∧ c̄

The stable models of P are {a, b, d} and {a, c} and the ones of P � are {a, b, d, c̄} and
{a, c, b̄}, respectively.

Answer Set Programming Made Easy 139

The example underlines that our translation maps normal rules to definite ones along
with choices and pairs of integrity constraints. In other words, it can be seen as a means
for expressing normal logic programs in the form of programs with facts, definite rules,
choice rules and integrity constraints over an extended vocabulary. We call this class of
programs austere logic programs, and further elaborate upon them in the following.

4.1 Austere Logic Programs

We define austere logic programs according to the decomposition put forward in the
introduction.

Definition 4 (Austere logic program). An austere logic program is a quadruple
(F,C,D, I) consisting of a set F of facts, a set C of choices,6 a set D of definite rules,
and a set I of integrity constraints.

A set of atoms is a stable model of an austere logic program, if it is a stable model of
the union of all four components.

In view of the above results, austere logic programs can be regarded as a normalform
for normal logic programs.

Corollary 4. Every normal logic program can be expressed as an austere logic pro-
gram and vice versa.

The converse follows from the fact that choice rules are expressible by a pair of normal
rules [27].

In fact, the (instantiation of) Listing 1.1 constitutes an austere logic program. To see
this observe that

– lines 1–3 provide facts, F , capturing the problem instance, here giving the specifica-
tion of a graph;

– Line 5 provides choices, C, whose instantiation is derived from facts in the previous
lines. Grounding expands this rule to several plain choice rules with empty bodies;

– lines 5–6 list definite rules, D, defining (auxiliary) predicates used in the integrity
constraints;

– finally, integrity constraints, I , are given in lines 7–9, stating conditions that solu-
tions must satisfy.

This example nicely illustrates a distinguishing feature of austere logic programs,
namely, the compartmentalization of the program parts underlying ASP’s guess-define-
check encoding methodology (along with its strict separation of instance and encoding):
The problem instance is described by means of

– the facts in F

and the problem encoding confines

– non-deterministic choices to C,
– the deterministic extension of the taken decisions to D, and

6 That is, choice rules without body literals.

140 J. Fandinno et al.

– the test of the obtained extension to I .

This separation also confines the sources of multiple or non-existing stable models to
well-defined locations, namely, C and I , respectively (rather than spreading them over
several circular rules; see below). As well, the rather restricted syntax of each compart-
ment gives rise to a very simple operational semantics of austere logic programs, as we
see in the next section.

4.2 Operational Semantics

In our experience, a major factor behind the popularity of the approach sketched in
the introductory section lies in the possibility to intuitively form stable models along
the order of the rules in a program. In fact, the simple nature of austere logic pro-
grams provides a straightforward scheme for computing stable models by means of the
well-known immediate consequence operator, whose iteration mimics this proceeding.
Moreover, the simplicity of the computation provides the first evidence of the value of
austere logic programs as a normalform.

The operational semantics of austere logic programs follows ASP’s guess-define-
check methodology. In fact, the only non-determinism in austere logic programs is com-
prised of choice rules. Hence, once choices are made, we may adapt well-known deter-
ministic bottom-up computation techniques for computing stable models. However, the
results of this construction provide merely candidate solutions that still need to satisfy
all integrity constraints. If this succeeds, they constitute stable models of the austere
program.

Let us make this precise for an austere logic program (F,C,D, I) in what follows.
To make choices and inject them into the bottom-up computation, we translate the entire
set of choices, C, into a set of facts:

FC = {a ← | {a} ← ∈ C}
A subset of FC , the original facts F , along with the definite program D are then passed
to a corresponding consequence operator that determines a unique stable model candi-
date. More precisely, the TP operator of a definite program P is defined for an interpre-
tation X as follows [23]:

TP (X) = {l1 | (l1 ← lm+1 ∧ · · · ∧ ln) ∈ P, X |= lm+1 ∧ · · · ∧ ln}
With this, the candidate solutions of an austere program can be defined.

Definition 5. Let (F,C,D, I) be an austere logic program over A.
We define a set X ⊆ A of atoms as a candidate stable model of (F,C,D, I), if X

is the least fixpoint of TF∪C′∪D for some C ′ ⊆ FC .

The existence of the least fixpoint is warranted by the monotonicity of TF∪C′∪D [23].
Similar to traditional ASP, several candidate models are obtained via the different
choices of C ′.

While the choice of C ′ constitutes the guess part and the definite rules in D the
define part of the approach, the check part is accomplished by the integrity constraints
in I .

Answer Set Programming Made Easy 141

Proposition 3. Let (F,C,D, I) be an austere logic program over A and X ⊆ A.
Then, X is a stable model of (F,C,D, I) iff X is a candidate stable model of

(F,C,D, I) such that X |= I .

We illustrate the computation of stable models of austere logic programs in the
following example.

Example 3. Consider the austere logic program P

a ←
{b} ←

c ← b
← a ∧ ¬c

We get the candidate stable models {a, b, c} and {a} from the first three rules depending
on whether we choose b to be true or not, that is, whether we add the fact b ← or not.
Then, on testing them against the integrity constraint expressed by the fourth rule, we
see that {a, b, c} is indeed a stable model, since it satisfies the integrity constraint, while
set {a} is not a stable model since checking the integrity constraint fails.

A major intention of austere logic programs is to confine the actual guess and check
of an encoding to dedicated components, namely, the choices in C and constraints in I .
The definite rules in D help us to analyze and/or extend the solution candidate induced
by the facts F and the actual choices in C ′. The emerging candidate is then evaluated
by the integrity constraints in I . This stresses once more the idea that the extension
of a guessed solution candidate should be deterministic; it elaborates the guess but
refrains from introducing any ambiguities. This is guaranteed by the definite rules used
in austere programs.

Observation 1 For any austere logic program (F,C,D, I) and C ′ ⊆ FC , the logic
program F ∪ C ′ ∪ D has a unique stable model.

This principle is also in accord with [25], where stratified logic programs are used
instead of definite ones (see below).

5 Easy Answer Set Programming

Austere logic programs provide a greatly simplified format that reflects ASP’s guess-
define-check methodology [20] for writing encodings. Their simple structure allows
for translating the methodology into an intuitive process that consists of making non-
deterministic choices, followed by a deterministic bottom-up computation, and a final
consistency check.

In what follows, we want to turn the underlying principles into a modeling method-
ology for ASP that aims at laypersons. To this end, we leave the propositional setting
and aim at full-featured input languages of ASP systems like clingo [14] and dlv [19].
Accordingly, we shift our attention to predicate symbols rather than propositions and
let the terms ‘logic program’, ‘rule’, etc. refer to these languages without providing a
technical account (cf. [5,12]). Moreover, we allow for normal rules instead of definite

142 J. Fandinno et al.

ones as well as aggregate literals in bodies in order to accommodate the richness of
existing ASP modeling languages.

The admission of normal rules comes at the expense of losing control over the origin
of multiple or non-existing stable models as well as over a deterministic development
of guessed solutions. In fact, the idea of Easy Answer Set Programming (ezASP) is to
pursue the principles underlying austere logic programs without enforcing them through
a severely restricted syntax. However, rather than having the user fully absorb the loss in
control, we shift our focus to a well-founded development of ASP encodings, according
to which predicates are defined on top of previously defined predicates (or facts). This
parallels the structure and the resulting operational semantics of austere logic programs.

To this end, we start by capturing dependencies among predicates [3].

Definition 6. Let P be a logic program.

– A predicate symbol p depends upon a predicate symbol q, if there is a rule in P with
p on its left-hand side and q on its right-hand side.
If p depends on q and q depends on r, then p depends on r, too.

– The definition of a predicate symbol p is the subset of P consisting of all rules with
p on their left-hand side.

We denote the definition of a predicate symbol p in P by def (p) and view integrity
constraints as rules defining ⊥.

Our next definition makes precise what we mean by a well-founded development of
a logic program.7

Definition 7. Let P be a logic program.
We define a partition (P1, . . . , Pn) of P as a stratification of P , if

1. def (p) ⊆ Pi for all predicate symbols p and some i ∈ {1, . . . , n} and
2. if p depends on q, def (p) ⊆ Pi, and def (q) ⊆ Pj for some i, j ∈ {1, . . . , n}, then

(a) i > j unless q depends on p, and
(b) i = j otherwise

Any normal logic program has such a stratification. One way to see this is that mutually
recursive programs can be trivially stratified via a single partition. For instance, this
applies to both programs {a ← b, b ← a} and {a ← ¬b, b ← ¬a} in which a and
b mutually depend upon each other. Accordingly, similar recursive structures in larger
programs are confined to single partitions, as required by (2b) above.

With it, we are ready to give shape to the concept of an easy logic program.

Definition 8 (Easy logic program). An easy logic program is a logic program having
stratification (F,C,D1, . . . , Dn, I) such that F is a set of facts, C is a set of choice
rules, Di is a set of normal rules for i = 1, . . . , n, and I is a set of integrity constraints.

As in traditional ASP, we often divide a logic program into facts representing a problem
instance and the actual encoding of the problem class. For easy programs, this amounts
to separating F from (C,D1, . . . , Dn, I).

7 The term stratification differs from the one used in the literature [3].

Answer Set Programming Made Easy 143

Clearly, an austere logic program is also an easy one.
Thus, the program in Listing 1.1 is also an easy logic program having the stratifica-

tion
({1, 2, 3}, {5}, {6, 7}, {8, 9, 10})

where each number stands for the rules in the respective line.
Predicates node/1, edge/2, and start/1 are only used to form facts or occur in

rule bodies. Hence, they do not depend on any other predicates and can be put together
in a single component, F . This makes sense since they usually constitute the problem
instance. Putting them first reflects that the predicates in the actual encoding usually
refer to them. The choices in C provide a solution candidate that is checked by means
of the rules in the following components. In our case, the guessed extension of predicate
hc/2 in Line 5 is simply a subset of all edges provided by predicate edge/2. Tests for
being a path or even a cycle are postponed to the define-check part: The rules in {6, 7},
that is, D1, define the auxiliary predicate reached/1, and aim at analyzing and/or
extending our guessed solution candidate by telling us which nodes are reachable via
the instances of hc/2 from the start node. The actual checks are then conducted by
the integrity constraints, I , in the final partition {8, 9, 10}. At this point, the solution
candidate along with all auxiliary atoms are derived and ready to be checked. Line 8
tests whether each node is reached in the solution at hand, while lines 9 and 10 make
sure that a valid cycle never enters or leaves any node twice.

Finally, it is instructive to verify that strata {5} and {6, 7} cannot be reversed or
merged. We observe that

– hc/2 depends on edge/2 only,

while

– reached/1 depends on hc/2, edge/2, start/1, and itself,

and no other dependencies. The rules defining hc/2 and reached/1 must belong
to the same partition, respectively, as required by (2a) above. Thus, {5} ⊆ Pi and
{6, 7} ⊆ Pj for some i, j. Because reached/1 depends on hc/2 and not vice versa,
we get i < j. This dependency rules out an inverse arrangement, and the fact that it is
not symmetric excludes a joint membership of both definitions in the same partition, as
stipulated by (2b) above.

5.1 Modeling Methodology

The backbone of easy ASP’s modeling methodology is the structure imposed on its
programs in Definition 8. This allows us to encode problems by building concepts on
top of each other. Also, its structure allows for staying in full tune with ASP’s guess-
define-check methodology [20] by offering well-defined spots for all three parts.

Easy logic programs tolerate normal rules in order to encompass full-featured
ASP modeling languages. Consequently, the interplay of the guess, define, and check
parts of an easy logic program defies any control. To tame this opening, we pro-
pose to carry over Observation 1 to easy logic programs: For any easy logic program

144 J. Fandinno et al.

(F,C,D1, . . . , Dn, I) and C ′ ⊆ FC , the logic program F ∪C ′ ∪D1 ∪ · · · ∪Dn should
have a unique stable model. Even better if this can be obtained in a deterministic way.

This leads us to the following advice on easy ASP modeling:

1. Compartmentalize a logic program into facts, F , choice rules, C, normal rules, D1∪
· · · ∪ Dn, and integrity constraints I ,
such that the overall logic program has stratification (F,C,D1, . . . , Dn, I).

2. Aim at defining one predicate per stratum Di and avoid cycles within each Di for
i = 1, . . . , n.

3. Ensure that F ∪ C ′ ∪ D1 ∪ · · · ∪ Dn has a unique stable model for any C ′ ⊆ FC .

While the first two conditions have a syntactic nature and can thus be checked automat-
ically, the last one refers to semantics and, to the best of our knowledge, has only suffi-
cient but no known necessary syntactic counterparts. One is to restrict D1 ∪ · · · ∪Dn to
definite rules as in austere programs, the other is to use stratified negation, as proposed
in [25] and detailed in the next section.

Our favorite is to stipulate that F ∪ C ′ ∪ D1 ∪ · · · ∪ Dn has a total well-founded
model [28] for any C ′ ⊆ FC but unfortunately, we are unaware of any syntactic class
of logic programs warranting this condition beyond the ones mentioned above.

5.2 Stratified Negation

The purpose of stratified negation is to eliminate the (problematic) case of recursion
through negation. What makes this type of recursion problematic is that it may eliminate
stable models and that the actual source may be spread over several rules. To give some
concise examples, consider the programs {a ← ¬a} and {a ← ¬b, b ← ¬c, c ← ¬a}
admitting no stable models. Following the dependencies in both examples, we count
one and three dependencies, respectively, all of which pass through negated body lit-
erals. More generally, cyclic dependencies traversing an odd number of negated body
literals (not necessarily consecutively) are known sources of incoherence. Conversely,
an even number of such occurrences on a cycle is not harmful but spawns alterna-
tives, usually manifested in multiple stable models. To see this, consider the program
{a ← ¬b, b ← ¬a} producing two stable models. Neither type of rule interaction is
admitted in austere logic programs. Rather the idea is to confine the sources of multiple
and eliminated stable models to dedicated components, namely, choices and integrity
constraints. The same idea was put forward by Niemelä in [25] yet by admitting a more
general setting than definite rules by advocating the concept of stratified negation.

To eliminate the discussed cyclic constellations, stratified negation imposes an addi-
tional constraint on the stratification of a logic program: Given the prerequisites of
Definition 7, we define:

3. If a predicate symbol q occurs in a negative body literal of a rule in Pi, then def (q) ⊆
Pj for some j < i.

In other words, while the definitions of predicates appearing positively in rule bodies
may appear in a lower or equal partition, the ones of negatively occurring predicates are
restricted to lower components. Although this condition tolerates positive recursion as

Answer Set Programming Made Easy 145

in {a ← b, b ← a}, it rules out negative recursion as in the above programs. Since using
programs with stratified negation rather than definite programs generalizes austere logic
programs, their combination with choices and integrity constraints is also as expressive
as full ASP [25].

An example of stratified negation can be found in Listing 1.3. The negative literal
in Line 5 refers to a predicate defined—beforehand—in Line 8.

An attractive feature of normal logic programs with stratified negation is that they
yield a unique stable model, just as with austere programs (cf. Observation 1). Hence,
they provide an interesting generalization of definite rules maintaining the property of
deterministically extending guessed solution candidates.

5.3 Complex Constraints

As mentioned, we aim at accommodating complex language constructs as aggregates
in order to leverage the full expressiveness of ASP’s modeling languages. For instance,
we may replace lines 9 and 10 in Listing 1.1 by

9 :- { hc(U,V) } >= 2, node(U).
10 :- { hc(U,V) } >= 2, node(V).

without violating its stratification.
More generally, a rule with an aggregate ‘#op{l1, . . . , lm} ≺ k’ in the consequent

can be represented with choice rules along with an integrity constraint, as shown in [27].
That is, we can replace any rule of form

#op{l1, . . . , lm} ≺ k ← lm+1 ∧ · · · ∧ ln

by8

{li} ← lm+1 ∧ · · · ∧ ln for i = 1, . . . , m and

⊥ ← ¬(#op{l1, . . . , lm} ≺ k) ∧ lm+1 ∧ · · · ∧ ln .

This allows us to integrate aggregate literals into easy logic programs without sacrificing
expressiveness.

In fact, many encodings build upon restricted choices that are easily eliminated by
such a transformation. A very simple example is graph coloring. Assume a problem
instance is given in terms of facts node/1, edge/2, and color/1. A corresponding
encoding is given by the following two rules:

1 { assign(X,C) : color(C)} = 1 :- node(X).
2 :- edge(X,Y), assign(X,C), assign(Y,C).

Note that the aggregate in the consequent of Line 1 is a shortcut for a #count aggregate.
To eliminate the restricted choice from the consequent in Line 1, we may apply the

above transformation to obtain the following easy encoding:

8 In practice, a set of such choice rules can be represented by a single one of form
{l1, . . . , lm} ← lm+1 ∧ · · · ∧ ln.

146 J. Fandinno et al.

1 { assign(X,C) } :- node(X), color(C).
2 :- not { assign(X,C) : color(C)} = 1, node(X).
3 :- edge(X,Y), assign(X,C), assign(Y,C).

Given some set of facts, F , this encoding amounts to the easy logic programs
(F, {1}, {2}, {3}).

The decomposition into a choice and its restriction may appear unnecessary to the
experienced ASP modeler. However, we feel that such a separation adds clarity and is
preferable to language constructs combining several aspects, at least for ASP beginners.
Also, it may be worth noting that this decomposition is done anyway by an ASP system
and hence brings about no performance loss.

Two further examples of easy logic programs are given in Listing 1.2 and 1.3, solv-
ing the Queens and the Tower-of-Hanoi puzzles both with parameter n.9 While the

1 { queen(1..n,1..n) }.
2
3 d1(I,J,I-J+n) :- I = 1..n, J = 1..n.
4 d2(I,J,I+J-1) :- I = 1..n, J = 1..n.
5
6 :- { queen(I,1..n) } != 1, I = 1..n.
7 :- { queen(1..n,J) } != 1, J = 1..n.
8
9 :- { queen(I,J) : d1(I,J,D) } > 1, D=1..n*2-1.
10 :- { queen(I,J) : d2(I,J,D) } > 1, D=1..n*2-1.

Listing 1.2. An easy logic program for the n-Queens puzzle

easy logic program for the n-Queens puzzle has the format

(∅, {1}, {3, 4}, {6, 7}, {9, 10}),

the one for the Tower-of-Hanoi puzzle can be partitioned into

({1, 2, 3, 4}, {6}, {8}, {10, 11, 12}, {14, 15}, {17, 19, 20, 21, 23}) .

5.4 Limitations

The methodology of ezASP has its limits. For instance, sometimes it is convenient to
make choices depending on previous choices. Examples of this are the combination of
routing and scheduling, as in train scheduling [1], or the formalization of frame axioms
in (multi-valued) planning advocated in [18]. Another type of encodings escaping our
methodology occurs in meta programming, in which usually a single predicate, like
holds, is used and atoms are represented as its arguments. Thus, for applying the

9 This parameter is either added from the command line via option --const or a default added
via directive #const (see [13] for details).

Answer Set Programming Made Easy 147

1 peg(a;b;c).
2 disk(1..4).
3 init_on(1..4,a).
4 goal_on(1..4,c).
5
6 { move(D,P,T) : disk(D), peg(P) } :- T = 1..n.
7
8 move(D,T) :- move(D,_,T).
9
10 on(D,P,0) :- init_on(D,P).
11 on(D,P,T) :- move(D,P,T).
12 on(D,P,T+1) :- on(D,P,T), not move(D,T+1), T < n.
13
14 blocked(D-1,P,T+1) :- on(D,P,T), T < n.
15 blocked(D-1,P,T) :- blocked(D,P,T), disk(D).
16
17 :- { move(D,P,T) : disk(D), peg(P) } != 1, T = 1..n.
18
19 :- move(D,P,T), blocked(D-1,P,T).
20 :- move(D,T), on(D,P,T-1), blocked(D,P,T).
21 :- not 1 { on(D,P,T) } 1, disk(D), T = 1..n.
22
23 :- goal_on(D,P), not on(D,P,n).

Listing 1.3. An easy logic program for a Towers-of-Hanoi puzzle (for plans of length n)

ezASP methodology, one had to refine the concept of stratification to access the term
level in order to capture the underlying structure of the program. And finally, formal-
izations of planning and reasoning about actions involve the formalization of effect and
inertia laws that are usually self-referential on the predicate level (sometimes resolved
on the term level, through situation terms or time stamps). A typical example of circular
inertia laws is the following:

holds(F,T) :- holds(F,T-1), not -holds(F,T).
-holds(F,T) :- -holds(F,T-1), not holds(F,T).

Here, ‘-’ denotes classical negation, and F and T stand for (reified) atoms and time
points. On the other hand, the sophistication of the given examples illustrates that they
are usually not addressed by beginners but rather experts in ASP for which the strict
adherence to ezASP is less necessary.

6 Related Work

Apart from advocating the idea illustrated in the introduction, Ilkka Niemelä also
showed in [25] that negative body literals can be replaced by a new atom for which
a choice needs to be made whether to include it in the model or not; and such that a
model cannot contain both the new atom and the atom of the replaced literal but one

148 J. Fandinno et al.

of them needs to be included. This technique amounts exactly to the transformation
in Definition 2 and traces back to Abductive logic programming [7,9]. Indeed, it was
already shown in [16] that for DATALOG queries the expressive power of stable model
semantics can be achieved via stratified negation and choices.

We elaborated upon this idea in several ways. First, we have shown that the full
expressiveness of normal logic programs can even be achieved with definite rules rather
than normal ones with stratified negation. Second, we have provided a strong equiva-
lence result that allows for applying the transformation in Definition 2 to selected rules
only. Third, we have generalized the idea by means of the logic of Here-and-There,
which made it applicable to other fragments of logic programs. And finally, this investi-
gation has revealed that the roots of the idea lie in the logical principle of extension by
definition.

Over the last decades many more related ideas were presented in the literature.
For instance, in [10], normal logic programs are translated into positive disjunctive
programs by introducing new atoms for negative literals. Also, strong negation is usu-
ally compiled away via the introduction of new atoms along with integrity constraints
excluding that both the original atom and the atom representing its strong negation
hold [15]. The principle of extension by definition was also used in [11] to prove prop-
erties about programs with nested expressions. EzASP is closely related to the paradigm
of IDP [6], where the program parts F , C and I are expressed in first-order logic, while
the Di’s form inductive definitions. Finally, in [8], the authors propose an informal
semantics for logic programs based on the guess-define-check methodology, that are
similar to the easy logic programs that we introduce in this paper.

7 Conclusion

We have revisited an old idea from the literature on logic programming under stable
model semantics and elaborated upon it in several ways. We started by tracing it back
to the principle of extension by definition. The resulting formalization in the setting of
the logic of Here-and-there provides us with a logical framework that can be instantiated
in various ways. Along these lines, we have shown that normal logic programs can be
reduced to choices, definite rules, and integrity constraints, while keeping the same
expressiveness as the original program. A major advantage of this austere format is that
it confines non-determinism and incoherence to well-defined spots in the program. The
resulting class of austere logic programs could play a similar role in ASP as formulas
in conjunctive normal form in classical logic.

Drawing on the properties observed on austere logic program, we put forward the
modeling methodology of ezASP. The idea is to compensate for the lacking guaran-
tees provided by the restricted format of austere programs by following a sequential
structure when expressing a problem in terms of a logic program. This makes use of
the well-known concept of stratification to refine ASP’s traditional guess-define-check
methodology. Although the ordering of rules may seem to disagree with the holy grail
of full declarativeness, we evidence its great value in introducing beginners to ASP.
Also, many encodings by experienced ASP users follow the very same pattern.

Moreover, the ezASP paradigm aligns very well with that of achievements [21] that
aims not only at easily understandable but moreover provably correct programs. To

Answer Set Programming Made Easy 149

this end, formal properties are asserted in between a listing of rules to express what
has been achieved up to that point. Extending ezASP with achievements and automat-
ically guiding the program development with ASP verifiers, like anthem [22], appears
to us as a highly interesting avenue of future research. In this context, it will also be
interesting to consider the components of an easy logic program as modules with an
attached input-output specification, so that the meaning of the overall program emerges
from the composition of all components. This would allow for successive refinements
of programs’ components, while maintaining their specification.

References

1. Abels, D., Jordi, J., Ostrowski, M., Schaub, T., Toletti, A., Wanko, P.: Train scheduling with
hybrid ASP. In: Balduccini et al. [4], pp. 3–17

2. Aguado, F., Cabalar, P., Fandinno, J., Pearce, D., Pérez, G., Vidal, C.: Forgetting auxiliary
atoms in forks. Artif. Intell. 275, 575–601 (2019)

3. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In: Minker, J. (ed.)
Foundations of Deductive Databases and Logic Programming, chap. 2, pp. 89–148. Morgan
Kaufmann Publishers (1987)

4. Balduccini, M., Lierler, Y., Woltran, S. (eds.): Logic programming and nonmonotonic rea-
soning. In: Proceedings of the Fifteenth International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR 2019), LNAI, vol. 11481. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-20528-7

5. Calimeri, F., et al.: ASP-Core-2 input language format. Theory Pract. Log. Program. 20(2),
294–309 (2019)

6. De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate logic as a
modeling language: the IDP system, pp. 121–177. ACM/Morgan, Claypool (2018)

7. Denecker, Marc, Kakas, Antonis: Abduction in logic programming. In: Kakas, Antonis C..,
Sadri, Fariba (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI),
vol. 2407, pp. 402–436. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45628-
7 16

8. Denecker, M., Lierler, Y., Truszczyński, M., Vennekens, J.: The informal semantics of answer
set programming: A Tarskian perspective. CoRR abs/1901.09125 (2019). http://arxiv.org/
abs/1901.09125

9. Eshghi, K., Kowalski, R.: Abduction compared with negation by failure. In: Levi, G.,
Martelli, M. (eds.) Proceedings of the Sixth International Conference on Logic Programming
(ICLP 1989), pp. 234–255. MIT Press (1989)

10. Fernández, J., Lobo, J., Minker, J., Subrahmanian, V.: Disjunctive LP + integrity constraints=
stable model semantics. Ann. Math. Artif. Intell. 8(3–4), 449–474 (1993)

11. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory Pract. Log. Pro-
gram. 5(1–2), 45–74 (2005)

12. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract Gringo.
Theory Pract. Log. Program. 15(4–5), 449–463 (2015). https://doi.org/10.1017/
S1471068415000150

13. Gebser, M., et al.: Potassco user guide. University of Potsdam, 2 edn. (2015). http://potassco.
org

14. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. Theory Pract. Log. Program. 19(1), 27–82 (2019). https://doi.org/10.1017/
S1471068418000054

https://doi.org/10.1007/978-3-030-20528-7
https://doi.org/10.1007/3-540-45628-7_16
https://doi.org/10.1007/3-540-45628-7_16
http://arxiv.org/abs/1901.09125
http://arxiv.org/abs/1901.09125
https://doi.org/10.1017/S1471068415000150
https://doi.org/10.1017/S1471068415000150
http://potassco.org
http://potassco.org
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054

150 J. Fandinno et al.

15. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Warren, D., Szeredi,
P. (eds.) Proceedings of the Seventh International Conference on Logic Programming (ICLP
1990), pp. 579–597. MIT Press (1990)

16. Greco, S., Saccà, D., Zaniolo, C.: Extending stratified datalog to capture complexity classes
ranging from P to QH. Acta Informatica 37(10), 699–725 (2001)

17. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte der
Preussischen Akademie der Wissenschaften, pp. 42–56. Deutsche Akademie der Wis-
senschaften zu Berlin (1930)

18. Lee, J., Lifschitz, V., Yang, F.: Action language BC: preliminary report. In: Rossi, F. (ed.)
Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence
(IJCAI 2013), pp. 983–989. IJCAI/AAAI Press (2013)

19. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–
562 (2006)

20. Lifschitz, V.: Answer set programming and plan generation. Artif. Intell. 138(1–2), 39–54
(2002)

21. Lifschitz, V.: Achievements in answer set programming. Theory Pract. Log. Program. 17(5–
6), 961–973 (2017)

22. Lifschitz, V., Lühne, P., Schaub, T.: Verifying strong equivalence of programs in the input
language of GRINGO. In: Balduccini et al. [4], pp. 270–283

23. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987). https://doi.
org/10.1007/978-3-642-83189-8

24. McCarthy, J.: Elaboration tolerance (1998). http://jmc.stanford.edu/articles/elaboration/
elaboration.pdf

25. Niemelä, I.: Answer set programming without unstratified negation. In: Garcia de la Banda,
M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 88–92. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89982-2 15

26. Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1–2), 3–41 (2006). https://doi.org/
10.1007/s10472-006-9028-z

27. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artif. Intell. 138(1–2), 181–234 (2002)

28. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs.
J. ACM 38(3), 620–650 (1991)

https://doi.org/10.1007/978-3-642-83189-8
https://doi.org/10.1007/978-3-642-83189-8
http://jmc.stanford.edu/articles/elaboration/elaboration.pdf
http://jmc.stanford.edu/articles/elaboration/elaboration.pdf
https://doi.org/10.1007/978-3-540-89982-2_15
https://doi.org/10.1007/s10472-006-9028-z
https://doi.org/10.1007/s10472-006-9028-z

The Role of Abstraction in Model
Checking

Maŕıa-del-Mar Gallardo(B) , Pedro Merino , and Laura Panizo

Andalućıa Tech, ITIS Software, Universidad de Málaga,
C/ Arquitecto Francisco Peñalosa, 18, 29010 Málaga, Spain

{mdgallardo,pmerino,laurapanizo}@uma.es

Abstract. The intimate relationship between model checking and
abstract interpretation has been shown in a large number of relevant
papers in literature. Maybe the use of abstract interpretation to reduce
the well-known state space explosion problem in model checking was the
first and most successful combination of these two techniques. However,
this is not the only possible way both methods can collaborate to improve
the software reliability. Along these last 20 years, our contributions in this
area have been focussed on the practical application of abstract interpre-
tation in the context of model checking tools. From our point of view,
model checking tools such as spin can be hardly improved in terms of
efficiency. Thus, we have concentrated on applying abstraction to com-
pletely reuse the underlying model checkers. We have applied our ideas
to different modelling and programming languages, tools and real appli-
cations. In this paper, we summarize some of these contributions.

1 Introduction

As it is well known the process of applying model checking [6] consists of three
main activities: (1) the modelling phase involves the construction of a formal
model containing the behaviors of the original system (M); (2) in the speci-
fication phase, the desirable properties of the system are written using some
variant of temporal logic (f), (3) the analysis phase makes use of an automatic
tool (the model checker) to verify whether the model behavior conforms to the
specifications, written as M |= f .

Modelling languages such as promela (the input of spin [22]) are defined
using the notion of transition system, i.e., M = 〈Σ,→, s0〉, where Σ is the
set of states, →⊆ Σ × Σ is the transition relation and s0 is the initial state.
Transition systems are both a simple and a powerful starting point for giv-
ing semantics to modelling languages, since they make it possible the descrip-
tion of sequential/concurrent systems, deterministic/non deterministic behav-
iors, finite/infinite state systems.

This work has been supported by the Spanish Ministry of Science, Innovation and
Universities project RTI2018-099777-B-I00 and the European Union’s Horizon 2020
research and innovation programme under grant agreement No 815178 (5GENESIS).

c© Springer Nature Switzerland AG 2023
P. Lopez-Garcia et al. (Eds.): Hermenegildo Festschrift 2022, LNCS 13160, pp. 151–169, 2023.
https://doi.org/10.1007/978-3-031-31476-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31476-6_8&domain=pdf
http://orcid.org/0000-0003-3481-5307
http://orcid.org/0000-0003-2456-4946
http://orcid.org/0000-0002-6399-6162
https://doi.org/10.1007/978-3-031-31476-6_8

152 M.-M. Gallardo et al.

Although, in model checking, the set of states Σ from which the whole state
space of systems is built must be finite, it may be huge, preventing tools from
completely analyzing the whole model. For instance, in explicit model checking,
where the reachability graph produced by the model is stored in memory, this
usually occurs when the model contains complex data structures. This is why
abstract interpretation is naturally used to reduce the computational charge of
model checking algorithms, aiming to achieve feasible state spaces. The appli-
cation of abstract interpretation to reduce the state space in model checking
is called abstract model checking. In terms of transition systems, this abstrac-
tion process can be seen as the construction of an abstract transition system
Mα = 〈Σα,→α, sα

0 〉 that simulates the original one M .
In Sect. 2, we discuss our particular approach to abstract model checking

which is based on the idea that since model checker tools (such as spin) are
very efficient, it is preferable to reuse them even though they have to deal
with abstract models. The way of explicit model checking algorithms work
will lead us to the need to also abstract the properties (fα) to achieve the
desired property preservation between the abstract and the original models
(Mα |= fα ⇒ M |= f). In that section, we describe the two dual methods
for abstracting models and properties that can be utilized and how they affect
the property preservation.

Usually, the input models for model checkers are written in the so-called
modelling languages, such as promela in the case of spin, which are simpler
than standard programming languages as C or java. Modelling languages make
it possible the efficient handling of the state spaces produced by models since
they used to limit the data types and syntax constructors. However, it possible
to break the gap between the modelling and programming languages in model
checking. For instance, in Sect. 3, we present the use of abstraction techniques
to analyze concurrent software written in programming languages (such as C)
making use of well defined apis. In this line, Sect. 4 goes further and shows how
abstraction may be also useful to carry out testing of programming languages
as java. We finalize in Sect. 5 pointing out other applications of the interaction
between model checking and abstraction in which we have worked.

2 Abstracting promela Models and ltl Formulae
by Source-to-Source Transformation

In this section, we summed up several papers devoted to the application of
abstract interpretation to promela models aiming to carry out the so-called
automatic source-to-source transformation [10,13,14] to reuse the model checker
spin. The key point in these works is to find algorithms to transform a promela
model M into a sound abstract model Mα written also in promela.

Assuming that M = 〈Σ,→, s0〉 is a transition system, the small step oper-
ational semantics of transition system M (written as O(M)) is built from the
single computations of the form s → s′ as the set of all maximal (in the sense
they cannot be extended) execution paths π = s0 → · · · defined by M .

The Role of Abstraction in Model Checking 153

The abstraction of M is carried out via the construction of an abstract
transition system Mα = 〈Σα,→α, sα

0 〉, where 〈Σα,≤α〉 is an ordered lattice
related with the original set of states Σ by means of an abstraction func-
tion α : ℘(Σ) → Σα which, with the corresponding concretization function
γ : Σα → ℘(Σ), form the Galois connection (℘(Σ), α, γ,Σα).

Abstraction soundness is achieved if relation →α is a simulation of →, that
is, for all s1, s2 ∈ Σ, sα

1 ∈ Σα such that s1 → s2 and α({s1}) ≤α sα
1 , there exists

sα
2 with α({s2}) ≤α sα

2 and sα
1 →α sα

2 . In practice, this means that Mα is an
over-approximation of M , since it is easy to prove that for each execution trace
π = s0 → s1 · · · of O(M), there exists an abstract execution path πα = sα

0 →
sα
1 · · · of O(Mα) such that for all i ≥ 0.α({si}) ≤α sα

i . This simulation relation
induces an abstraction relation � between the concrete and abstract small step
semantics such as O(M) � O(Mα) meaning that the abstract model is a sound
approximation of the original one.

Relation � is key to transfer the analysis carried out on the abstract mod-
els to the original ones. Most abstract model checking approaches construct
over-approximations of the behavior models, that is, abstract models are simpli-
fications displaying more possible behaviors than the original models. However,
as it will be explained later, it is also possible to follow a dual approach and use
abstraction to construct under-approximated models. In this case, the relation
between M and Mα is formalized as O(Mα) � O(M). In fact, we will show that
it is possible to construct an abstract model Mα such that O(Mα) ⊆ O(M) in
Sect. 3.

2.1 Model Abstraction

promela [21,22] is a modelling language, with a syntax similar to that of C, suit-
able to specify non-trivial communication systems. Synchronization is embodied
in the language using Boolean expressions that suspend the process in execution
when they are evaluated to false. It contains non-deterministic selection and
iteration along with synchronous and asynchronous process communication via
channels. Figure 1 shows an example of a promela program with some language
instructions. For instance, channel c is a synchronous channel that implements
process communication via rendezvous. The code contains two processes that
are initially alive thanks to the reserved word active. Process p1 contains a do
iteration with two branches starting at symbols “::”. The first instruction of
each branch behaves as a guard, i.e., the branch is only selected to continue the
execution if the guard is executable, which, in the case of Boolean expressions,
means that the expression is true. In the example, guards exclude themselves
but it is possible to have non-deterministic selection if several guards are simul-
taneously true. It is also worth noting the use of the atomic instruction that
impedes the process interleaving. The code also shows the intensive use of the
goto and label statements in promela. This is because the language is thought
to model transition systems where gotos naturally represent transitions. In the
code, some other promela instructions appear such as the a unless b construc-
tor, whose semantics makes the system evolve by executing a whenever b is not

154 M.-M. Gallardo et al.

Fig. 1. An example of promela code

executable. When b becomes executable the execution of a finishes. Instructions
c!i and c?j correspond to writing/reading to/from channel c using the csp syn-
tax. In this case, since c is a synchronous channel, both writing and reading
instructions execute at the same time. In the case of bounded channels, c!i and
c?j are asynchronously executed. The spin model checker may carry out random
(interleaving processes arbitrarily, when it is possible) and guided system simu-
lations. In addition, it can also make deadlock and assertion verification along
with verification of ltl formulae.

The source-to-source transformation of promela models guided by abstrac-
tion presented in [14] is based on two main ideas. The first one is that the
promela semantics may be organized in different levels of structured opera-
tional semantic (sos) rules. From the lowest level, we have: the process-level
rules that define the behavior of a process without taking into account the rest of
system processes; the interaction rules that carry out the interleaving and other
instructions that involve the evolution of several processes such as rendezvous;
the execution mode-based rules that implement different execution constraints
to be taken into account to avoid, for instance, the interleaving when a process
is executing an atomic instruction. With these three levels, the so-called simu-
lation rules can be defined, which formally establish the behavior of spin when
simulating a promela model.

The second idea is that all these levels of rules are supported by a given
interpretation of the data that only affects the low-level promela instructions
that deal directly with them, that is, the Boolean and arithmetic expressions.
In consequence, we can say that the semantics of a promela model can be
generalized with respect to the data interpretation, and so, changing the data
interpretation does not change the rest of instructions. Thus, the source-to-
source transformation is based on the substitution of Boolean and arithmetic
expressions by their corresponding abstract versions that must observe some
natural correctness conditions (see [14] for details). For instance, the code of
Fig. 1 could be transformed into the one of Fig. 2 with the well-known even-odd
abstraction for variables i and j.

The Role of Abstraction in Model Checking 155

Fig. 2. An example of an abstract promela code

Observe that the code of Figs. 1 and 2 are very similar, we have only changed
the type for variables i and j which are now mtypes (the enumerated type in
promela) and the Boolean and arithmetic operations on these variables. Thus,
for instance, increment i = i + 1 in the original code has been transformed into
a selection depending on the actual value of i is even or odd. Similarly, guards
i ≤ N and i > N have been converted into true, the top of the even-odd lattice
since, as we have lost the information about the particular value of variable i,
we cannot know if the guard is true or false. The substitution of guards by
true guarantees that the simulation condition described above is preserved by
the transformation, that is, if it is possible to go through a given branch in the
original model, then, it is also possible to go in this branch in the abstract model.
Of course, the abstract model have many more behaviors than the original one.
These are called spurious traces and are inevitable due to the loss of information
intrinsic to the abstraction process. It is important to underline that the source-
to-source transformation explicitly makes use of the non-determinism supported
by the do/od and if /fi promela sentences. If the language did not include them,
the transformation would be more complicated.

2.2 LTL Abstraction

Assume we have abstracted the data of a promela model M to construct an
abstraction Mα following the methodology explained above. Now, if we want
to prove whether M satisfy a ltl formula f by analyzing Mα, we also need to
abstract the data in f to match their representation in Mα.

As in the case of models, the abstraction of formulae only affects the atomic
propositions in the formulae and not the modal and logic operators. In [13],
the authors show that unlike models, which are usually over-approximated in
the context of abstract model checking, properties can be abstracted following
two dual approaches, i.e., formulae may be over or under-approximated. The

156 M.-M. Gallardo et al.

way formulae are abstracted determines the preservation of results. Thus, if a
ltl formula f is under-approximated (which we will write as fα

u from now on),
meaning that it is more difficult for an abstract model to satisfy it, we obtain
the preservation of universal properties: Mα |= ∀fα

u implies that M |= ∀f . We
write quantifier ∀ to emphasize that f and fα

u have to be satisfied by all behav-
iors displayed by M and Mα, respectively. Under-approximation of formulae is
needed in the preservation of universal properties to someway compensate the
loss of information in the model. Given a model M , an abstraction of M , Mα,
and an atomic proposition a, the abstract formula aα

u is an under-approximation
of a iff given an abstract state sα satisfying aα

u , then for all concrete state s such
that α({s}) ≤α sα, s satisfies a. For example, for the code of Fig. 1, we could
prove that “i is even infinitely often” written as �♦(i%2 == 0) in ltl, by ana-
lyzing the abstract under-approximated formula �♦(i == even) on the abstract
model of Fig. 2. The key point here is that all concrete values i abstracted by
even satisfy property i%2 == 0. However, property “i takes value 0 infinitely
often” written as �♦(i == 0) cannot be proved on the abstract model using
�♦(i == even) because this abstract formula is not an under-approximation of
�♦(i == 0) as there exist many concrete values i abstracted by even that do
not satisfy property i == 0.

Over-approximation of formulae is dually defined. Intuitively, it is easier for
an abstract model to satisfy an over-approximated formula. In consequence, the
preservation of results between a concrete model M and its abstract version
Mα, when the formula f is over-approximated as fα

o refers to the refutation of
existential properties, that is, Mα �|= ∃fα

o implies that M �|= f . Here, we use
the existential quantifier ∃ to denote that no behavior of M/Mα satisfies f/fα

o .
For instance, for the model of Fig. 1, we can prove that property “variable i is
always 0” written as �(i == 0) is not satisfied since the abstract model of Fig. 2
does not satisfy the over-approximated formula �(i == even).

The preservation results Mα |= ∀fα
u ⇒ M |= ∀f and Mα �|= ∃fα

o ⇒ M �|= ∃f
hold for each ltl formula f , independently of the modal operators nested in f ,
such as it is proved in [13]. It is worth noting that both results are dual, the
two sides of the same coin. Intuitively, since fα

u is harder to hold than f , if all
executions of Mα satisfy fα

u then all executions of M satisfy f . Inversely, since
fα

o is simpler to hold than f , if no execution of Mα satisfies fα
o then no execution

of M satisfies f . In addition, it is important to remark that the inverse results
do not hold, i.e., M |= ∀f �⇒ Mα |= ∀fα

u and M �|= ∃f �⇒ Mα �|= ∃fα
o .

For the case of spin, the distinction between under and over approximation
of properties is of utmost importance, since spin works by refuting properties.
That is, given a model M and a formula f , spin constructs the negation of the
formula ¬f and tries to prove that no behavior of M satisfies ¬f or, written
more formally, that M �|= ∃¬f . If it finds a trace satisfying ¬f , this is a counter-
example for the original formula f . spin may make this transformation from f
to ¬f because, in the concrete scenario, expressions M |= ∀f and M �|= ¬∀f (or
M �|= ∃¬f) are equivalent. But, as it has been discussed above, in the abstract
setting, we cannot indistinctly use the same formula abstraction to prove and

The Role of Abstraction in Model Checking 157

Fig. 3. One view of αspin

refute a property. In consequence, in order to reuse spin to analyze a formula
over abstract models, we have to over-approximate it. Anyway, this involves
no much work, because we can apply the same abstraction approach used to
abstract models.

We implemented an automatic tool αspin [10], including all the function-
alities described in this section. The user only has to introduce the abstract
setting, and the tool automatically constructs the abstract model and is able to
prove abstract over-approximated properties reusing the same original tool spin.
Figure 3 shows a view of the new tool. αspin interface adds a new button with
the label “guided abstraction” to spin that allows user to select the variables to
be abstracted and introduce how this abstraction should work. Observe that the
tool contains some predefined abstractions such as the zero or point abstractions.

3 Abstraction of Concurrent Software with Well Defined
APIs

Model checking can be used beyond modelling languages using the “model-
extraction” approach, where the programs are translated into modelling lan-
guages of an existing model checker (see Feaver [24], JPF [20] and Bandera [7]).
In this approach, translation usually involves some abstraction to produce a
model with only the relevant aspects for the properties to be analyzed. As far
as the model should be self-contained, calls to external functions in the operat-
ing system through apis should also be abstracted. The abstraction of the apis
also prevents the model checker to be suspended or stopped in case of execution
errors. Ensuring the correctness of all the abstractions to preserve the results
is the key aspect in model extraction. In [3,5,15], we developed translation and
abstraction schemes and tools for concurrent C programs with apis like Berkeley
sockets, dynamic memory management and apex interface for onboard avion-
ics software, respectively. In [5] and [15], the correctness of the apis models is
granted thanks to the formalization of the operational semantics of the apis to

158 M.-M. Gallardo et al.

Fig. 4. C to promela mapping

drive the modelling process. In [3], we also followed a conformance testing app-
roach, thanks to an existing battery of reference C based avionics applications
with well-known expected results. Furthermore, beyond these works to ensure
correctness in the translation, we developed abstract matching, a novel opti-
mization technique that is compatible with abstracting apis. Abstract matching
dramatically reduces the state space of the program model thanks to different
variants of the so-called influence static analysis.

In order to introduce abstract matching, we give an overview of the whole
translation approach. Figure 4 shows the general mapping scheme from concur-
rent C programs with well defined apis to promela. We use promela exten-
sions to work with embedded C code. To this end, the following primitives are
added to promela: c decl allows us to declare C data types and global vari-
ables; c state is used to declare C variables and decide on the kind of visibility
for spin (e.g. local, global or hidden). The primitive c expr is used to express
guard conditions to be evaluated in a side-effect free manner. Finally, the prim-
itive c code supports the use of embedded C code blocks inside the promela
model.

Fig. 5. Hiding part of the state with c track

The Role of Abstraction in Model Checking 159

We should mention that spin makes use of two main structures to explore
the state space produced by a model: the search stack that stores the states
of the current trace which is being analyzing, and state space (the heap) that
contains all states visited, and is used to backtrack when an already visited state
is found during the current search. One of the most interesting extensions for
our purpose is c track. This construction allows the user to declare variables
as UnMatched in order to be only stored into the spin stack (without registering
into the heap). The effect of this mechanism is shown in Fig. 5, which represents
the main data structures employed during verification (see [2] for details). Note
that states in the stack contain all the information, whereas the store of visited
states contains only part of the information. We exploit this mechanism to create
abstract matching.

3.1 Abstract Matching and Influence Analysis

The technique to include abstract matching in spin and the problem of how to
ensure the validity of abstract matching functions was originally presented by
Holzmann and Joshi in [23]. The idea is to avoid starting a new search from
a given state if an essentially equal state has been visited before. Thus, given
a global state s, abstraction consists on replacing the usual operation “add s
to States”, that stores it as a visited state in the heap, by the new opera-
tion “add f(s) to States”, where f() represents the abstraction function. It
is worth noting that function f() is only used to cut the search tree, but the
exploration is actually realized with the concrete state s, without losing infor-
mation. Using this abstraction during the model checking process as explained
above, we explore a subset of the original state space. Thus, in this case, abstrac-
tion produces an under-approximation of the original model, and similarly to
the approach followed in Sect. 2, to assure that the explored tree via abstract
matching is a correct under-approximation of the original one, function f() has
to satisfy some correctness conditions. In [23], the authors do not address any
particular method to generate f(), however, they present necessary conditions
to define sound abstract functions that preserve ctl∗ properties. We contribute
with implementable methods to produce abstraction functions, which are sound
and oriented to the ltl property to be checked. In our scheme, abstraction func-
tions are implemented in such a way that they can identify the variables to be
hidden from the state-vector1 in every global state, after the execution of every
verification step. For instance, in the code of Fig. 6 variables x and y are vis-
ible in the state-vector. If we extract the model assuming, by default, that C
variables do not influence the verification of the ltl property (i.e., their values
are irrelevant for the evaluation of the property), then both variables x and y
are declared as hidden (UnMatched) as represented in Fig. 7. However, if we also
want to verify this code against a different property that needs the precise value
of x after executing the code at L1, the model extracted must keep variable x

1 The state-vector is the spin structure where each state is stored.

160 M.-M. Gallardo et al.

Fig. 6. Initial promela code generated from C

Fig. 7. promela code to read from the system and to build states for spin

visible after executing the instruction at L1. This is why, in Fig. 7, f() is called
at any point where the global state should be stored.

Function f() uses its argument to check the current execution point in the
model. The function updates the variables to be hidden or updated before match-
ing them with the current set of visited states, depending on the current label.
For instance, variable x can be hidden until it is updated in L1. In contrast, it
is made visible at L2 because it will be used to update y, and it is again hidden
after updating y. The extra variables x and y are used to store the values of
the real (hidden) variables or a representation of their values. We propose to
construct f() using the information provided by a static analysis of the model.

Let us denote with Mα
u the under-approximated abstraction of a concur-

rent C program M following the approach described above. Mα
u is an under-

approximation of M in the sense that each execution trace produced by Mα
u is

also an execution trace of M , i.e., O(Mα
u) ⊆ O(M). Given f is an ltl formula

to be analyzed by spin, we need to assure the preservation of results written as
Mα

u |= ∀f ⇒ M |= ∀f .2 This condition is guaranteed thanks to four variants of
the so-called influence analysis (IA). IA is a data flow analysis [25] similar to the
live variable analysis that calculates for each program point the set of variables
that will be used in the future. IA is a more precise analysis oriented to annotate
each program point with a set of significant variables to become visible for a
given property to build the abstraction function f() (see [4]), that is, for IA a
variable is alive if its current value will be used to evaluate f(). In short, we say
that variable x influences variable y at a given program point, if there exists an

2 Observe that f does not have to be abstracted due to execution traces of Mα
u are

execution traces of M .

The Role of Abstraction in Model Checking 161

Fig. 8. Two promela processes

execution path in M from this point to an assignment y = exp and the current
value of x is used to calculate exp, that is, if the current value of x is needed to
construct the value of y in the future. The way to build the four variants impacts
on different preservation of results as follows.

IA1 calculates the visible variables in each program point in order to preserve
the reachability tree of the original promela model. This analysis produces
the best abstract matching function, i.e., the one inducing the best state space
reduction. Since global variables must be dealt with very carefully, IA1 assumes
that the model under analysis has only local variables. The left diagram of Fig. 9
shows an example of the application of IA1 to process p1 of Fig. 8.

IA2 preserves state properties specified using the assert sentence. For
instance, to analyze assertion x1 == 2 of process p2 in Fig. 8, we need to store
not only the variables influencing the Boolean expressions in the code in order
to completely simulate the reachability tree, but also those that influence the
variables in the assert sentence (x1 in the example). The right diagram of Fig. 9
shows the result of IA2 for process p2. Observe that variable x1 is attached to
some labels of the process, since its value is needed at label L12. The third
analysis IA3 extends IA2 to address models with global variables. And, finally,
IA4 focusses on the global variables present in the ltl formulae. More details of
these analysis may be found in [4].

4 Abstracting Executions of Real Systems

The use of abstraction in previous sections relies on analyzing all the execution
traces provided by a model written in a modelling language such as promela.
In [1,9,27], we showed how model checking tools like spin can also be used to
carry out testing on traces produced by the execution of a real system such as, for

162 M.-M. Gallardo et al.

Fig. 9. Result of IA1 for process p1 (left) and IA2 for process p2 (right)

instance, a java program. In this case, the real execution trace π to be analyzed
is transformed using an abstraction/projection function ρ to generate a new
trace ρ(π) conveniently reduced. Thus, given S = 〈Σ,→, s0〉 a transition system
describing the behavior of a real system, we instrument the model checker with
two goals: (1) to consider each trace π produced by S as an independent model
to analyze; and (2) to abstract the real states of S using a projection function ρ.
In consequence, the model checker takes a simplified representation ρ(π) of the
original trace π as the model to be analyzed and works as it normally does with
the usual algorithms for checking duplicate states, deadlock or ltl formulae. The
use of real execution traces as models opens new applications for spin. Our work
for testing java programs using spin as the testing engine in the tool tjt [1]
is the most ambitious case because we consider infinite execution traces. The
explanation in this section refers to the tool tjt for java.

4.1 Building spin’s Traces from Real Executions of java Programs

Each possible execution of a java program S may be represented as an infinite
sequence of states π = σ0 −→ σ1 −→ σ2 −→ . . .3. However, the internal repre-
sentation of the states in spin is done with projections ρ(σi) of such states as
illustrated in the green box in Fig. 10 that shows the architecture of tool tjt.
3 If the sequence is finite, we assume that the last state is infinitely repeated.

The Role of Abstraction in Model Checking 163

Fig. 10. TJT architecture and workflow

The tool is divided into three modules: the model checking module, the runtime
monitoring module and the Eclipse plug-in. The programmer must supply two
inputs in this workflow (left side of Fig. 10): the java program being analyzed
and an xml file with the test specification that includes the correctness require-
ment written in a formalism supported by spin, such as an ltl formula. This
specification also contains additional information for carrying out the tests, like
the program parameters, and their ranges, for generating test inputs.

In general, to produce the traces, the system S should be instrumented,
for instance, using the jdi interface for jvm. spin is driven by a promela code
(shown in Fig. 11) that interacts with S to produce traces. The promela code in
Fig. 11 also provides the main logic that allows spin to backtrack and to exploit
non-determinism to generate a new trace when the analysis of the current one
has finished. The C code is used to communicate with the real system (connected
via sockets to jdi) and to store part of the states in internal C structures. The
code in Fig. 11 is the main entry point, where the inline function explore()
launches the external system execution to produce traces. This function calls
to analyzeSystem() displayed in Fig. 12. The most important function of this
code is contained in the analyzeExecution() inline. We have omitted some
details from this inline, including checking assertions, and left only the trace
reconstruction core. This core is pretty simple: a loop that will retrieve the next
state and update spin’s global state accordingly, while there are more states
available. The nextState() function hides the origin of this state: it may be a
new state σi from the system execution trace π, or it may be an already visited
state because spin backtracked during the analysis of the current trace (due
to the non-determinism included in process never claim)4. The currentState
variable, which is stored in the state vector, has the index of the current state.
When spin requests the state that follows the current one, it is first checked
whether the stack contains it. If not, the stack is updated first with a new state
from the execution trace, keeping the values of the variables that did not change.

4 never claim is the promela process that implements the non-deterministic Büchi
automata of the ltl formula.

164 M.-M. Gallardo et al.

Fig. 11. Main promela code to build the execution traces

Fig. 12. promela code to read from the system and to build states for spin

Then, the variables in the spin’s state vector are updated from the values of the
corresponding state in the state stack.

4.2 The Abstraction Projection

The main drawback when applying model checking to programming languages
is the state space explosion. Apart from taking advantage of some of the spin
optimization methods, one practical approach consists of abstracting/projecting
the java states σi to be sent to the model checking module. We only send those
states produced after relevant events in the java execution (exceptions, dead-
locks, update of designated variables, method entry and exit, interactions with
monitors, breakpoints, and program termination). In addition, we only take some
visible variables from the original state to be part of the projection, as shown in
Fig. 13. In order to define a projection, if Var is the set of program variables and
A and D are the set of possible memory references and the set of all possible
values of java primitive data types, a state of a java program is a function
σ : Var → A ∪ D that associates each variable with its value. The projection of
a state σ onto V ⊆ Var can be defined as the function ρV (σ) : V → A ∪ D such
that ∀v ∈ V.ρV (σ)(v) = σ(v). Given a java trace π = σ0 −→ σ1 −→ σ2 −→ . . ., the
projection of π onto V ⊆ Var is ρV (t) = ρV (σ0) −→ ρV (σ1) −→ ρV (σ2) −→ . . .

The Role of Abstraction in Model Checking 165

Fig. 13. Trace projection with selected variables and states

Fig. 14. Trace projection with state counting

Fig. 15. Trace projection with state hashing

The effect of this projection is similar to that of the “cone of influence”
technique [6]. The result is that when using a temporal formula f , if Var(f) is
the set of variables in f , and assuming that Var(f) ⊆ V , we can obtain the
desired preservation relation π |= f ⇐⇒ ρV (π) |= f .

However, such initial projection is not always suitable. Due to the elimination
of most program variables in the projected states, it is very likely that a projected
trace ρV (π) contains many consecutive repeated states and makes the model
checker to erroneously detect cycles5. To eliminate consecutive repeated states
in traces, we propose the counter projection and the hash projection represented
in Figs. 14 and 15, respectively.

Adding a new counter variable count to the set of visible variables V that
is increased for every new state removes the possibility that spin erroneously
find a non-existing cycle. The counter projection of a state σ : V → A ∪ D is
ρi

V (σ) : V ∪ {count} → A ∪ D defined as ρi
V (σ)(v) = ρV (σ)(v), for all v ∈ V ,

and ρi
V (σ)(count) = i. Variable count is called state counter of ρi

V (σ). Now,
given a java trace π = σ0 −→ σ1 · · · we define the counter projection of π
onto V , ρc

V , by projecting each state σi with the i-th counter projection, that
is, ρc

V (π) = ρ0V (σ0) −→ ρ1V (σ1) · · · . We can keep the following result: given a
temporal formula f in negation normal form using only the eventually “♦” and
until “U” temporal operators, if V = var(f) ⊆ Var then ρc

V (π) |=s f =⇒ π |= f ,
where |=s represents the evaluation algorithm implemented by spin.

5 Note that this does not contradict the previous satisfaction result, since in this result
we do not assume any particular algorithm to evaluate the property on the projected
trace.

166 M.-M. Gallardo et al.

Counter projection ρc
V does not permit spin to detect cycles in the projected

trace. Thus, properties that do not require the detection of cycles (i.e., those that
use only operators eventually “♦” and until “U”)6 can be properly checked over
this projection. In contrast, since properties that use the always “�” temporal
operator are checked by spin by searching for cycles, they cannot be analyzed
over ρc

V (π). So, we extend the notion of state projection onto V by adding the
codification of the whole state σ (including the non-visible part) as ρh

V (σ) using
the hash function h as ρh

V (σ) : V ∪ {hash} → A ∪ D defined as ρh
V (σ)(v) =

ρV (σ)(v), for all v ∈ V , and ρh
V (σ)(hash) = h(σ).

Now, given a java trace π = σ0 −→ σ1 · · · , we define the hash projection
of π onto V , ρh

V , by projecting each state σi with the hash projection, that is,
ρh

V (π) = ρh
V (σ0) −→ ρh

V (σ1) · · · . And we keep the result ρh
V (π) |=s f =⇒ π |= f

with the degree of probability allowed by h.
This section has summarized paper [1] by highlighting the contributions in

(1) the implementation of tool tjt regarding the extraction of traces from a
java program and their handling by spin; and (2) the simplification of traces
using different projection functions that preserve the correctness results.

5 Conclusions

In this paper, we highlight some contributions in the area of abstraction for
model checking developed by the morse team at ITIS Software-University of
Málaga. The first contribution is going deeper in the duality of over/under-
approximation of models/properties wrt the usual over-approximation method
in the classic papers on abstract model checking. The way we implement over-
approximation of properties by source-to-source transformation allows us to
reuse existing explicit model checkers like spin to support the analysis of ltl for-
mulae. A second contribution is the method to inject real execution traces in the
model checkers, opening many application areas, like model checking of concur-
rent programming languages. The third contribution is a new set of abstraction
functions like projection, counter, hash projection, as well as the general abstract
matching technique based on influence analysis.

The combination of these contributions allows us to apply model checking to
complex systems. In the paper, we have provided some examples: infinite traces
in java programs and concurrent C programs using well-defined apis. In par-
ticular, we have applied this last methodology to socket-based communication
software in C [5], dynamic memory management in C programs [15,19], avionics
software with apex interface [3], apps for mobile networks [8] or models of com-
munication network for simulation [27]. In addition, variants of the same ideas
have been successfully applied in other areas, like building decision support sys-
tems for water management [11,12], model checking of hybrid systems [18,26] or
extending the cadp framework to deal with well defined apis based software [16].

We believe that mobile networks is one of the more relevant application areas
in the near future due to the size of the market, the impact in society and the
6 This is because spin transforms these properties into their corresponding negations.

The Role of Abstraction in Model Checking 167

increasing requirements in terms of reliability, latency and throughput. As an
example, the work with execution traces in the project triangle [9] conducted
us to detect potential underperformance scenarios in Spotify application [8].
Our current interest is to use abstraction and model checking for software based
communication networks, like the 5G mobile networks as we proposed in [17].
This is part of the work to be done in the context of the 5Genesis project
funded under H2020 EC framework.

Acknowledgements. The three of us are very honoured to have had the opportu-
nity to participate in this volume devoted to celebrating the Manuel Hermenegildo’s
achievements in research. In particular, the first author is very grateful for his advice
early in her research career and for introducing her to the exciting field of abstract
interpretation.

Finally, we want to recognize the contributions of former members of morse team,
specially to Jesús Mart́ınez, David Sanán, Alberto Salmerón, Pedro de la Cámara,
Christophe Joubert, Ana Rosario Espada and Damián Adalid.

References

1. Adalid, D., Salmerón, A., Gallardo, M., Merino, P.: Using SPIN for automated
debugging of infinite executions of java programs. J. Syst. Softw. 90, 61–75 (2014).
https://doi.org/10.1016/j.jss.2013.10.056

2. Bosnacki, D.: Enhancing state space reduction techniques for model checking.
Ph.D. thesis, Department of Mathematics and Computer Science (2001). https://
doi.org/10.6100/IR549628

3. de la Cámara, P., Castro, J.R., Gallardo, M., Merino, P.: Verification support
for ARINC-653-based avionics software. Softw. Test. Verif. Reliab. 21(4), 267–298
(2011). https://doi.org/10.1002/stvr.422

4. de la Cámara, P., del Mar Gallardo, M., Merino, P.: Abstract matching for software
model checking. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 182–200.
Springer, Heidelberg (2006). https://doi.org/10.1007/11691617 11

5. de la Cámara, P., Gallardo, M., Merino, P., Sanán, D.: Checking the reliability of
socket based communication software. Int. J. Softw. Tools Technol. Transf. 11(5),
359–374 (2009). https://doi.org/10.1007/s10009-009-0112-7

6. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (2000)

7. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby,
Zheng, H.: Bandera: extracting finite-state models from java source code. In:
Ghezzi, C., Jazayeri, M., Wolf, A.L. (eds.) Proceedings of the 22nd International
Conference on on Software Engineering, ICSE 2000, Limerick Ireland, 4–11 June
2000, pp. 439–448. ACM (2000). https://doi.org/10.1145/337180.337234

8. Espada, A.R., Gallardo, M., Salmerón, A., Merino, P.: Performance analysis of
spotify R© for android with model-based testing. Mob. Inf. Syst. 2017, 67–77 (2017).
https://doi.org/10.1155/2017/2012696

https://doi.org/10.1016/j.jss.2013.10.056
https://doi.org/10.6100/IR549628
https://doi.org/10.6100/IR549628
https://doi.org/10.1002/stvr.422
https://doi.org/10.1007/11691617_11
https://doi.org/10.1007/s10009-009-0112-7
https://doi.org/10.1145/337180.337234
https://doi.org/10.1155/2017/2012696

168 M.-M. Gallardo et al.

9. Espada, A.R., Gallardo, M., Salmerón, A., Panizo, L., Merino, P.: A formal app-
roach to automatically analyse extra-functional properties in mobile applications.
Softw. Test. Verification Reliab. 29(4–5), e1699 (2019). https://doi.org/10.1002/
stvr.1699

10. Gallardo, M.M., Mart́ınez, J., Merino, P., Pimentel, E.: aSPIN: a tool for abstract
model checking. Softw. Tools Technol. Transf. 5(2–3), 165–184 (2004)

11. Gallardo, M.M., Merino, P., Panizo, L., Linares, A.: Developing a decision support
tool for dam management with SPIN. In: Alpuente, M., Cook, B., Joubert, C.
(eds.) FMICS 2009. LNCS, vol. 5825, pp. 210–212. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04570-7 20

12. Gallardo, M.M., Merino, P., Panizo, L., Linares, A.: A practical use of model
checking for synthesis: generating a dam controller for flood management. Softw.
Pract. Exp. 41(11), 1329–1347 (2011)

13. Gallardo, M.M., Merino, P., Pimentel, E.: Refinement of LTL formulas for abstract
model checking. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol.
2477, pp. 395–410. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45789-5 28

14. Gallardo, M.M., Merino, P., Pimentel, E.: A generalized semantics of PROMELA
for abstract model checking. Formal Aspects Comput. 16(3), 166–193 (2004)

15. Gallardo, M.M., Merino, P., Sanán, D.: Model checking dynamic memory allocation
in operating systems. J. Autom. Reasoning 42(2–4), 229–264 (2009)

16. Gallardo, M., Joubert, C., Merino, P., Sanán, D.: A model-extraction approach
to verifying concurrent C programs with CADP. Sci. Comput. Program. 77(3),
375–392 (2012). https://doi.org/10.1016/j.scico.2011.10.003

17. Gallardo, M.–M., Luque-Schempp, F., Merino-Gómez, P., Panizo, L.: How formal
methods can contribute to 5G networks. In: ter Beek, M.H., Fantechi, A., Semini,
L. (eds.) From Software Engineering to Formal Methods and Tools, and Back.
LNCS, vol. 11865, pp. 548–571. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30985-5 32

18. Gallardo, M., Panizo, L.: Extending model checkers for hybrid system verification:
the case study of SPIN. Softw. Test. Verif. Reliab. 24(6), 438–471 (2014). https://
doi.org/10.1002/stvr.1505

19. Gallardo, M., Sanán, D.: Verification of complex dynamic data tree with mu-
calculus. Autom. Softw. Eng. 20(4), 569–612 (2013). https://doi.org/10.1007/
s10515-012-0113-8

20. Havelund, K., Pressburger, T.: Model checking JAVA programs using JAVA
pathfinder. Int. J. Softw. Tools Technol. Transf. 2(4), 366–381 (2000). https://
doi.org/10.1007/s100090050043

21. Holzmann, G.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

22. Holzmann, G.: The SPIN Model Checker?: Primer and Reference Manual. Addison-
Wesley Professional, Boston (2003)

23. Holzmann, G. J., Joshi, R.: Model-driven software verification. In: Model Checking
Software: 11th International SPIN Workshop, Barcelona, Spain, 1-3 April 2004.
Proceedings 11, pp. 76-91. Springer, Berlin (2004). https://doi.org/10.1007/b96721

24. Holzmann, G.J., Smith, M.H.: Software model checking: extracting verification
models from source code. Softw. Test. Verification Reliab. 11(2), 65–79 (2001)

https://doi.org/10.1002/stvr.1699
https://doi.org/10.1002/stvr.1699
https://doi.org/10.1007/978-3-642-04570-7_20
https://doi.org/10.1007/3-540-45789-5_28
https://doi.org/10.1007/3-540-45789-5_28
https://doi.org/10.1016/j.scico.2011.10.003
https://doi.org/10.1007/978-3-030-30985-5_32
https://doi.org/10.1007/978-3-030-30985-5_32
https://doi.org/10.1002/stvr.1505
https://doi.org/10.1002/stvr.1505
https://doi.org/10.1007/s10515-012-0113-8
https://doi.org/10.1007/s10515-012-0113-8
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/b96721

The Role of Abstraction in Model Checking 169

25. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Berlin (1998)

26. Panizo, L., Gallardo, M.: An extension of Java PathFinder for hybrid systems.
ACM SIGSOFT Softw. Eng. Notes 37(6), 1–5 (2012)

27. Salmerón, A., Merino, P.: Integrating model checking and simulation for pro-
tocol optimization. SIMULATION 91(1), 3–25 (2015). https://doi.org/10.1177/
0037549714557054

https://doi.org/10.1177/0037549714557054
https://doi.org/10.1177/0037549714557054

Justifications and a Reconstruction
of Parity Game Solving Algorithms

Ruben Lapauw , Maurice Bruynooghe , and Marc Denecker(B)

Department of Computer Science, KU Leuven, 3001 Leuven, Belgium
{ruben.lapauw,maurice.bruynooghe,marc.denecker}@cs.kuleuven.be

Abstract. Parity games are infinite two-player games played on
directed graphs. Parity game solvers are used in the domain of formal
verification. This paper defines parametrized parity games and intro-
duces an operation, Justify, that determines a winning strategy for a
single node. By carefully ordering Justify steps, we reconstruct three
algorithms well known from the literature.

1 Introduction

Parity games are games played on a directed graph without leaves by two players,
Even (0) and Odd (1). A node has an owner (a player) and an integer priority.
A play is an infinite path in the graph where the owner of a node chooses which
outgoing edge to follow. A play and its nodes is won by Even if the highest
priority that occurs infinitely often is even and by Odd otherwise. A parity
game is solved when the winner of every node is determined and proven.

Parity games are relevant for boolean equation systems [8,17], temporal logics
such as LTL, CTL and CTL* [13] and μ-calculus [13,30]. Many problems in
these domains can be reduced to solving a parity game. Quasi-polynomial time
algorithm for solving them exist [7,12,24]. However, all current state-of-the-
art algorithms (Zielonka’s algorithm [31], strategy-improvement [27], priority
promotion [1–3] and tangle learning [28]) are exponential.

We start the paper with a short description of the role of parity game solvers
in the domain of formal verification (Sect. 2). In Sect. 3, we recall the essentials
of parity games and introduce parametrized parity games as a generalization
of parity games. In Sect. 4 we recall justifications, which we introduced in [20]
to store winning strategies and to speed up algorithms. Here we introduce safe
justifications and define a Justify operation and proof its properties. Next, in
Sect. 5, we reconstruct three algorithms for solving parity games by defining
different orderings over Justify operations. We conclude in Sect. 6.

c© Springer Nature Switzerland AG 2023
P. Lopez-Garcia et al. (Eds.): Hermenegildo Festschrift 2022, LNCS 13160, pp. 170–187, 2023.
https://doi.org/10.1007/978-3-031-31476-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31476-6_9&domain=pdf
http://orcid.org/0000-0001-8190-8296
http://orcid.org/0000-0002-6881-1462
http://orcid.org/0000-0002-0422-7339
https://doi.org/10.1007/978-3-031-31476-6_9

Justifications and a Reconstruction of Parity Game Solving Algorithms 171

Fig. 1. A reduced parity game. Fig. 2. The resulting Mealy machine
with two states, alternating ¬eatA, eatB
and eatA, ¬eatB regardless of the input
of hungryA and hungryB .

2 Verification and Parity Game Solving

Time logics such as LTL are used to express properties of interacting systems.
Synthesis consists of extracting an implementation with the desired properties.
Typically, formulas in such logics are handled by reduction to other formalisms.
LTL can be reduced to Büchi-automata [18,29], determinized with Safra’s con-
struction [26], and transformed to parity games [25]. Other modal logics have
similar reductions, CTL* can be reduced to automata [4], to μ-calculus [9], and
recently to LTL-formulae [5]. All are reducible to parity games.

One of the tools that support the synthesis of implementations for such for-
mulas is Strix [21,22], one of the winners of the SyntComp 2018 [15] and Synt-
Comp 2019 competition. This program reduces LTL-formulae on the fly to parity
games pitting a machine against the (uncontrollable) environment. A game has
three possible outcomes: (i) the parity game needs further expansion, (ii) the
machine wins the game, i.e., an implementation is feasible, (iii) the environment
wins, i.e., no implementation exists. Strix also extracts an implementation with
the specified behaviour, e.g., as a Mealy machine.

Consider a formula based on the well-known dining philosophers problem:

G(hungryA ⇒ F eatA)∧ If A is hungry, he will eventually eat
G(hungryB ⇒ F eatB)∧ If B is hungry, he will eventually eat
G(¬eatA ∨ ¬eatB) A and B cannot eat at the same time.

(1)

Here (Gφ) means φ holds in every future trace and (Fφ) means φ holds in some
future trace where a trace is a succession of states.

With a complex procedure, Strix transforms the LTL-formula 1 into the
optimised parity game shown in Fig. 1. The machine (Even) plays in the square
nodes and the environment (Odd) in the diamond nodes. By playing in state b
to d, and in state f to h, Even wins every node as 2 is then the highest priority
that occurs infinitely often in every play. From the solution, Strix extracts a 2-
state Mealy machine (Fig. 2). Its behaviour satisfies Formula 1: both philosophers
alternate eating regardless of their hunger.

3 Parametrized Parity Games

A parity game [11,23,30] is a two-player game of player 0 (Even) against 1 (Odd).
We use α ∈ {0, 1} to denote a player and ᾱ to denote its opponent. Formally,

172 R. Lapauw et al.

we define a parity game as a tuple PG = (V,E,O, Pr) with V the set of nodes,
E the set of possible moves represented as pairs (v, w) of nodes, O : V → {0, 1}
the owner function, and Pr the priority function V → N mapping nodes to
their priority; (V,E) is also called the game graph. Each v ∈ V has at least one
possible move. We use Oα to denote nodes owned by α.

A play (in node v1) of the parity game is an infinite sequence of nodes
〈v1, v2, . . . , vn . . . 〉 where ∀i : vi ∈ V ∧ (vi, vi+1) ∈ E. We use π as a mathe-
matical variable to denote a play. π(i) is the i-th node vi of π. In a play π, it is
the owner of the node vi that decides the move (vi, vi+1). There exists plays in
every node. We call the player α = (n mod 2) the winner of priority n. The win-
ner of a play is the winner of the highest priority n through which the play passes
infinitely often. Formally: Winner(π) = limi→+∞ max {Pr(π(j))|j ≥ i} mod 2.

The key questions for a parity game PG are, for each node v: Who is the
winner? And how? As proven by [11], parity games are memoryless determined:
every node has a unique winner and a corresponding memoryless winning strat-
egy. A (memoryless) strategy for player α is a partial function σα from a subset
of Oα to V . A play π is consistent with σα if for every vi in π belonging to the
domain of σα, vi+1 is σα(vi). A strategy σα for player α is a winning strategy for
a node v if every play in v consistent with this strategy is won by α, i.e. regard-
less of the moves selected by ᾱ. As such, a game PG defines a winning function
WPG : V �→ {0, 1}. The set WPG,α or, when PG is clear from the context, Wα

denotes the set of nodes won by α. Moreover, for both players α ∈ {0, 1}, there
exists a memoryless winning strategy σα with domain Wα ∩ Oα that wins in all
nodes won by α. A solution of PG consists of a function W ′ : V → {0, 1} and
two winning strategies σ0 and σ1, with dom(σα) = W ′

α ∩ Oα, such that every
play in v ∈ W ′

α consistent with σα is won by α. Solutions always exist; they may
differ in strategy but all have W ′ = WPG , the winning function of the game. We
can say that the pair (σ0, σ1) proves that W ′ = WPG .

In order to have a framework in which we can discuss different algorithms
from the literature, we define a parametrized parity game. It consists of a parity
game PG and a parameter function P , a partial function P : V ⇀ {0, 1} with
domain dom(P) ⊆ V . Elements of dom(P) are called parameters, and P assigns
a winner to each parameter. Plays are the same as in a PG except that every
play that reaches a parameter v ends and is won by P (v).

Definition 1 (Parametrized parity game). Let PG = (V,E,O, Pr) be a
parity game and P : V ⇀ {0, 1} a partial function with domain dom(P) ⊆ V .
Then (PG, P) is a parametrized parity game denoted PGP , with parameter set
dom(P). If P (v) = α, we call α the assigned winner of parameter v. The sets
P0 and P1 denote parameter nodes with assigned winner 0 respectively 1.

A play of (PG, P) is a sequence of nodes 〈v0, v1, . . . 〉 such that for all i: if
vi ∈ Pα then the play halts and is won by α, otherwise vi+1 exists and (v, vi+1) ∈
E. For infinite plays, the winner is as in the original parity game PG.

Every parity game PG defines a class of parametrized parity games (PPG’s),
one for each partial function P . The original PG corresponds to one of these
games, namely the one without parameters (dom(P) = ∅); every total function
P : V → {0, 1} defines a trivial PPG, with plays of length 0 and P = WPGP

.

Justifications and a Reconstruction of Parity Game Solving Algorithms 173

Fig. 3. A parametrized parity game with nodes a, . . . , f , P0 = {d} and P1 = {a}, and
winning strategies for 0 and 1. The two parameter nodes are in bold. Square nodes are
owned by Even, diamonds by Odd. The labels inside a node are the name and priority;
the label on top of a node is the winner. A bold edge belongs to a winning strategy (of
the owner of its start node). A slim edge is one starting in a node that is lost by its
owner. All remaining edges are dotted.

Fig. 4. A parametrized parity game and strategy, after withdrawing d from the param-
eter list.

A PPG PGP can be reduced to an equivalent PG G: in each parame-
ter v ∈ dom(P) replace the outgoing edges with a self-loop and the priority
of v with P (v). We now have a standard parity game G. Every infinite play
〈v0, v1, . . . 〉 in PGP is also an infinite play in G with the same winner. Every
finite play 〈v0, v1, . . . , vn〉 with winner P (vn) in PGP corresponds to an infinite
play 〈v0, v1, . . . , vn, vn, . . .〉 with winner P (vn) in G. Thus, the two games are
equivalent. It follows that any PPG PGP is a zero-sum game defining a win-
ning function W and having memory-less winning strategies σα with domain
(Wα \ Pα) ∩ Oα (for α = 0, 1).

PPG’s allow us to capture the behaviour of several state of the art algorithms
as a sequence of solved PPG’s. In each step, strategies and parameters are mod-
ified and a solution for one PPG is transformed into a solution for a next PPG
and this until a solution for the input PG is reached.

Example 1. Figure 3 shows a parametrized parity game and its winning strate-
gies. The parameter nodes a and d are won by the assigned winners, respectively
1 and 0. Player 1 owns node c and wins its priority. Hence, by playing from c to
c, 1 wins in this node. Node b is owned by 0 but has only moves to nodes won by
1, hence it is also won by 1. Player 0 wins node e by playing to node d; 1 plays
in node f but playing to f results in an infinite path won by 0, while playing to
node e runs into a path won by 0, so f is won by 0.

Based on this PPG, we can construct a solved PPG where node d is removed
from the parameters. The strategy is adjusted accordingly: Odd wins in d by
playing to c. However, changing the winner of d breaks the strategies and winners
of the nodes e and f . Figure 4 shows one way to obtain a solved PPG with further
adjustments: nodes e and f are turned into parameters won by 1. Many other
solutions exist, e.g., by turning e into a parameter won by 0.

174 R. Lapauw et al.

4 Justifications

In Fig. 3 and Fig. 4, the solid edges form the subgraph of the game graph that
was analysed to confirm the winners of all nodes. We formalize this subgraph
as a justification, a concept introduced in [14] and described below. In the rest
of the paper, we assume the existence of a parity game PG = (V,E,O, Pr) and
a parametrized parity game PGP = (PG, P) with P a parameter function with
set of parameters dom(P). Also, we use H : V → {0, 1} as a function describing
a “hypothesis” of who is winning in the nodes.

Definition 2 (Direct justification). A direct justification dj for player α
to win node v is a set containing one outgoing edge of v if O(v) = α and all
outgoing edges of v if O(v) = ᾱ.

A direct justification dj wins v for α under hypothesis H if for all (v, w) ∈ dj,
H(w) = α. We also say: α wins v by dj under H.

Definition 3 (Justification). A justification J for PG is a tuple (V,D,H)
such that (V,D) is a subgraph of (V,E). If a node has outgoing edges in D, it is
justified in J , otherwise it is unjustified.

Definition 4 (Weakly winning). A justification (V,D,H) is weakly winning
if for all justified nodes v ∈ V the set of outgoing edges Outv is a direct justifi-
cation that wins v for H(v) under H.

We observe that any justification J = (V,D,H) determines a PPG PGPJ

where the parameter function PJ is the restriction of H to unjustified nodes.
If J is weakly winning, the set of edges {(v, w) ∈ D | O(v) = H(v) = α} is a

partial function on Oα, i.e., a strategy for α. We denote it as σJ,α.

Proposition 1. Assume a weakly winning justification J = (V,D,H). Then,
(i) For every path π in D, all nodes v on π have the same hypothetical winner
H(v). (ii) All finite paths π starting in node v in D are won in PGPJ

by H(v).
(iii) Every path in D with nodes hypothetically won by α is consistent with σJ,α.
(iv) Every play starting in v of PGPJ

consistent with σJ,H(v) is a path in D.

Proof. (i) Since any edge (v, w) ∈ D belongs to a direct justification that wins v
for H(v), it holds that H(v) = H(w). It follows that every path π in D consists
of nodes with the same hypothetical winner. (ii) If path π in v is finite and ends
in parameter w, then H(v) = H(w). The winner of π in PGPJ

is PJ(w) which is
equal to H(v) as H expands PJ . (iii) Every path in D with hypothetical winner
α, follows σJ,α when it is in a node v with owner α. (iv) Let H(v) = α and π be a
play in v of PGP consistent with σJ,α. We can inductively construct a path from
v = v1 in D. It follows from (i) that the n’th node vn has H(vn) = H(v1) = α.
For each non-parameter node vn, if O(vn) = α, then vi+1 = σJ,α(vi) which is in
D. If O(vn) = ᾱ then D contains all outgoing edges from vn including the one
to vn+1. ��

Justifications and a Reconstruction of Parity Game Solving Algorithms 175

Definition 5 (Winning). A justification J = (V,D,H) is winning if (i) J is
weakly winning and (ii) all infinite paths 〈v1, v2, . . . 〉 in D are plays of PG won
by H(v1).

Observe that, if J is winning and H(v) = α, all plays in PGPJ
starting in v

and consistent with σ(V,D,H),α are paths in (V,D) won by α. Hence:

Theorem 1. If J = (V,D,H) is a winning justification for PGPJ
then H is

WPGPJ
, the winning function of PGPJ

, with corresponding winning strategies
σJ,0 and σJ,1.

The central invariant of the algorithm presented below is that its data structure
J = (V,D,H) is a winning justification. Thus, in every stage, H is the winning
function of PGPJ

and the graph (V,D) comprises winning strategies σJ,α for
both players. In a sense, (V,D) provides a proof that H is WPGPJ

.

4.1 Operations on Weakly Winning Justifications

We introduce an operation that modifies a justification J = (V,D,H) and hence
also the underlying game PGPJ

. Let v be a node in V , α a player and dj either
the empty set or a direct justification. We define J [v : dj, α] as the justification
J ′ = (V,D′,H ′) where D′ is obtained from D by replacing the outgoing edges
of v by the edges in dj, and H ′ is the function obtained from H by setting
H ′(v) := α. Modifications for a set of nodes are independent of application
order. E.g., J [v : ∅,H ′(v) | v ∈ S] removes all out-going edges of v and sets
H ′(v) for all v ∈ S. Multiple operations, like J [v : dj, α][v′ : dj′, α′], are applied
left to right. Some useful instances, with their properties, are below.

In the proposition, a cycle in J is a finite sequence of nodes following edges
in J that ends in its starting node.

Proposition 2. For a weakly winning justification J and a node v with direct
justification dj the following holds:

(i) If H(v) = ᾱ, v has no incoming edges and dj wins v for α under H, then
J [v : dj, α] is weakly winning and there are no cycles in J ′ with edges of dj.

(ii) Let S be a set of nodes closed under incoming edges (if v ∈ S and
(w, v) ∈ D, then w ∈ S), let Hf be an arbitrary function mapping nodes of S
to players. It holds that J [v : ∅,Hf (v) | v ∈ S] is weakly winning. There are no
cycles in J ′ with edges of dj.

(iii) If H(v) = α and dj wins v for α under H, then J [v : dj, α] is weakly
winning. There are no new cycles when (v, v) �∈ dj and no w ∈ range(dj) can
reach v in J . Otherwise new cycles pass through v and have at least one edge in
dj.

Proof. We exploit the fact that J and J ′ are very similar.

(i) The direct justification dj cannot have an edge ending in v since H(v) �=
H(w) for (v, w) ∈ dj and no w ∈ dj can reach v in J since v has no incoming
edges, hence J ′ has no cycles through dj. As J is weakly winning and H is
updated only in v, the direct justification of a justified node w �= v in J is
still winning in J ′. Since also dj wins v for α, J ′ is weakly winning.

176 R. Lapauw et al.

(ii) Setting H(v) arbitrary cannot endanger the weak support of J ′ as v has no
direct justification and no incoming edges in J ′. Hence J ′ is weakly winning.
Also, removing direct justifications cannot introduce new cycles.
(iii) Let H(v) = α and dj wins v for α under H. Let J ′ = J [v : dj, α]. We
have H ′ = H so the direct justifications of all nodes w �= v in J ′ win w for
H ′(w). Since dj wins v for H ′(v), J ′ is weakly winning. Also, new cycles if
any, pass through dj and v.

4.2 Constructing Winning Justifications

The eventual goal of a justification is to create a winning justification without
unjustified nodes. Such a justification contains a solution for the parity game
without parameters. To reach this goal we start with an empty winning justifi-
cation and iteratively assign a direct justification to one of the nodes.

However, haphazardly (re)assigning direct justifications will violate the
intended winning justification invariant. Three problems appear: First, chang-
ing the hypothesis of a node may violate weakly winning for incoming edges.
The easiest fix is to remove the direct justification of nodes with edges to this
node. Yet removing direct justifications decreases the justification progress. Thus
a second problem is ensuring progress and termination despite these removals.
Third, newly created cycles must be winning for the hypothesis. To solve these
problems, we introduce safe justifications; we start with some auxiliary concepts.

Let J be a justification. The set of nodes reaching v in J, including v, is
closed under incoming edges and is denoted with J↓v. The set of nodes reach-
able from v in J , including v, is denoted with J↑v. We define ParJ(v) as the
parameters reachable from the node v, formally ParJ(v) = J↑v ∩ dom(P). The
justification level jlJ (v) of a node v is the lowest priority of all its parameters
and +∞ if v has none. The justification level jlJ (dj) of a direct justification
dj = {(v, w1), . . . , (v, wn)} is min{jlJ (w1), . . . , jlJ (wn)}, the minimum of the
justification levels of the wi. We drop the subscript J when it is clear from the
context and write Par(v), jl(v) and jl(dj) for the above concepts. The default
winner of a node v is the winner of its priority, i.e., Pr(v) mod 2; the default
hypothesis Hd assigns default winners to all nodes, i.e., Hd(v) = Pr(v) mod 2.

Definition 6 (Safe justification). A justification is safe iff (i) it is a winning
justification, (ii) all unjustified nodes v have H(v) = Hd(v), that is, the winners
of the current parameters of the PPG are their default winners, and (iii) ∀v ∈
V : jl(v) ≥ Pr(v), i.e., the justification level of a node is at least its priority.

Fixing the invariants is easier for safe justifications. Indeed, for nodes w on
a path to a parameter v, Pr(v) ≥ jl(w) ≥ Pr(w), so when v is given a direct
justification to w then Pr(v) is the highest priority in the created cycle and H(v)
correctly denotes its winner. Furthermore, the empty safe justification (V, ∅,Hd)
will serve as initialisation of the solving process.

Justifications and a Reconstruction of Parity Game Solving Algorithms 177

4.3 The Operation Justify

To progress towards a solution, we introduce a single operation, namely Justify.
Given appropriate inputs, it can assign a direct justification to an unjustified
node or replace the direct justification of a justified node. Furthermore, if needed,
it manipulates the justification in order to restore its safety.

Definition 7 (Justify). The operation Justify(J, v, dj) is executable if

– Precondition 1: J = (V,D,H) is a safe justification, v is a node in V , there
exists a player α who wins v by dj under H.

– Precondition 2: if v is unjustified in J then jl(dj) ≥ jl(v) else jl(dj) > jl(v).

Let Justify(J, v, dj) be executable. If H(v) = α then Justify(J, v, dj) = J [v :
dj,H(v)], i.e., dj becomes the direct justification of v.

If H(v) = ᾱ, then Justify(J, v, dj) = J [w : ∅,Hd(w) | w ∈ J↓v][v : dj, α],
i.e., α wins v by dj, while all other nodes w that can reach v become unjus-
tified, and their hypothetical winner H(w) is reset to their default winner.

If Justify(J, v, dj) is executable, we say that v is justifiable with dj or justi-
fiable for short; when performing the operation, we justify v.

Observe, when Justify modifies the hypothetical winner H(v), then, to pre-
serve weak winning, edges (w, v) need to be removed, which is achieved by remov-
ing the direct justification of w. Moreover, to preserve (iii) of safety, this process
must be iterated until fixpoint and to preserve (ii) of safety, the hypothetical win-
ner H(w) of w needs to be reset to its default winner. This produces a situation
satisfying all invariants. Furthermore, when Justify is applied on a justified v, it
preserves H(v) but it replaces v’s direct justification by one with a strictly higher
justification level. As the proof below shows, this ensures that no new cycles are
created through v so we can guarantee that all remaining cycles still have the
correct winner. So, cycles can only be created by justifying an unjustified node.

Lemma 1. An executable operation Justify(J, v, dj) returns a safe justification.

Proof. Assume Justify(J, v, dj) is executable, J ′ = Justify(J, v, dj) and let α be
the player that wins v by dj. First, we prove that J ′ is also a winning justification,
i.e., that J ′ is weakly winning and that the winner of every infinite path in J ′ is
the hypothetical winner H(w) of the nodes w on the path.

The operations applied to obtain J ′ are the ones that have been analysed in
Proposition 2 and for which it was proven that they preserve weakly winning.
Note that, in case H(v) = ᾱ, the intermediate justification J [v : ∅,Hd(v) | v ∈
J↓v] removes all incoming edges of v. By case (ii) of Proposition 2, J ′ is weakly
winning and all nodes v, w connected in J have H ′(v) = H ′(w) (*). If no edge
in dj belongs to a cycle, then every infinite path 〈v1, v2, . . . 〉 in J ′ has an infinite
tail in J starting in w �= v which is, since J is winning, won by H(w). By (*),
this path is won by H(v1) = H(w) and J ′ is winning.

178 R. Lapauw et al.

If J ′ has cycles through edges in dj, then, by (i) of Proposition 2, H(v) must
be α and we use case (iii) of Proposition 2. We analyse the nodes n on such a
cycle. By safety of J , Pr(n) ≤ jlJ(n); as n reaches v in J , jlJ(n) ≤ jlJ (v). If
v is unjustified in J then jlJ (v) = Pr(v) ≥ Pr(n), hence Pr(v) is the highest
priority on the cycle and H(v) wins the cycle. If v is justified in J and (v, w) ∈ dj
is on the new cycle, then jlJ (w) ≥ jlJ (dj) > jlJ (v) (Precondition 2 of Justify).
But w reaches v so jlJ (w) ≤ jlJ (v) , which is a contradiction.

Next, we prove that J’ is a safe justification (Definition 6). (i) Before, we
proved that J ′ is a winning justification. (ii) For all unjustified nodes v of J ′,
it holds that H(v) = Hd(v), its default winner. Indeed, J has this property and
whenever the direct justification of a node w is removed, H ′(w) is set to Hd(w).

(iii) We need to prove that for all nodes w, it holds that jlJ ′(w) ≥ Pr(w).
We distinguish between the two cases of Justify(J, v, dj).

(a) Assume H(v) = α = H ′(v) and J ′ = J [v : dj,H(v)] and let w be an
arbitrary node of V . If w cannot reach v in J ′, the parameters that w reaches
in J and J ′ are the same and it follows that jlJ ′(w) = jlJ(w) ≥ Pr(w). So,
(iii) holds for w. Otherwise, if w reaches v in J ′, then w reaches v in J and any
parameter x that w reaches in J ′ is a parameter that w reaches in J or one that
an element of dj reaches in J . It follows that jlJ ′(w) is at least the minimum of
jlJ (w) and jlJ(dj). As w reaches v in J , jlJ (w) ≤ jlJ (v). Also, by Precondition
2 of Justify, jlJ (v) ≤ jlJ (dj). It follows that jlJ ′(w) ≥ jlJ(w) ≥ Pr(w). Thus,
(iii) holds for w.

(b) Assume H ′(v) �= H(v) = ᾱ and J ′ = J [w : ∅,Hd(w) | w ∈ J↓v][v :
dj, α] then for nodes w that cannot reach v in J , ParJ ′(w) = ParJ(w) hence
jlJ ′(w) = jlJ (w) ≥ Pr(w) and (iii) holds for w. All nodes w �= v that can reach
v in J are reset, hence jlJ ′(w) = Pr(w) and (iii) holds. As for v, by construction
jlJ ′(v) = jlJ (dj) ≥ jlJ (v); also jlJ (v) ≥ Pr(v) hence (iii) also holds. ��
Lemma 2. Let J be a safe justification for a parametrized parity game. Unless J
defines the parametrized parity game PG∅ = PG, there exists a node v justifiable
with a direct justification dj, i.e., such that Justify(J, v, dj) is executable.

Proof. If J defines the parametrized parity game PG∅ then all nodes are justified
and J is a solution for the original PG. Otherwise let p be the minimal priority
of all unjustified nodes, and v an arbitrary unjustified node of priority p and
let its owner be α. Then either v has an outgoing edge (v, w) to a node w with
H(w) = α, thus a winning direct justification for α, or all outgoing edges are
to nodes w for which H(w) = ᾱ, thus v has a winning direct justification for
ᾱ. In both cases, this direct justification dj has a justification level larger or
equal to p since no parameter with a smaller priority exist, so Justify(J, v, dj)
is executable. ��

To show progress and termination, we need an order over justifications.

Definition 8 (Justification size and order over justifications). Let
1, . . . , n be the range of the priority function of a parity game PG (+∞ > n) and
J a winning justification for a parametrized parity game extending PG. The size

Justifications and a Reconstruction of Parity Game Solving Algorithms 179

Fig. 5. Above, in solid line the edges of the justification graph of the winning but
unsafe justification of Fig. 3 and below the result of justifying node a, a non-winning
justification.

of J , s(J) is the tuple (s+∞(J), sn(J), . . . s1(J)) where for i ∈ {1, . . . , n,+∞},
si(J) is the number of justified nodes with justification level i.

The order over justifications is the lexicographic order over their size: with i
the highest index such that si(J) �= si(J ′), we have J >s J ′ iff si(J) > si(J ′).

The order over justifications is a total order which is bounded as Σisi(J) ≤ |V |.
Example 2. Let us revisit Example 1. The winning justification J of Fig. 3 is
shown at the top of Fig. 5. For the justified nodes of J , we have jl(b) = 3,
jl(c) = +∞, jl(e) = 2 and jl(f) = 2. The justification is not safe as, e.g., jl(b) =
3 < Pr(b) = 4. Both unjustified nodes a and d have a winning direct justification,
the direct justification {(a, b)} wins a for player 1 and the direct justification
{(d, c)} wins d for 1. The figure at the bottom shows the justification resulting
from inserting the direct justification winning a. There is now an infinite path
〈a, b, a, b, . . .〉 won by Even but with nodes with hypothetical winner Odd. The
justification Justify(J, a, {(a, b)}) is not winning. This shows that condition (iii)
of safety of J is a necessary precondition for maintaining the desired invariants.

Lemma 3. Let J be a safe justification with size sJ , v a node justifiable with
dj and J ′ = Justify(J, v, dj) a justification with size sJ ′ . Then sJ ′ > sJ .

Proof. In case v is unjustified in J and is assigned a dj that wins v for H(v), v
is not counted for the size of J but is counted for the size of J ′. Moreover, other
nodes keep their justification level (if they cannot reach v in J) or may increase
their justification level (if they can reach v in J). In any case, sJ ′ > sJ .

In case v is justified in J and is assigned a dj that wins v for H(v), then
jlJ(dj) > jlJ (v), so jl′J (v) > jlJ (v). Other nodes keep their justification level
or, if they reach v, may increase their justification level. Again, sJ ′ > sJ .

Finally, the case where dj wins v for the opponent of H(v). Nodes can be
reset; these nodes w have jlJ(w) ≤ Pr(v). As a node cannot have a winning
direct justification for both players, v is unjustified in J . Hence, by precondition
(2) of Justify, jlJ (dj) ≥ Pr(v). In fact, it holds that jlJ (dj) > Pr(v). Indeed, if
some w ∈ dj would have a path to a parameter of v’s priority, that path would
be won by Hd(v) = H(v) while H(w) is its opponent. Thus, the highest index i
where si changes is jlJ (dj), and si increases. Hence, sJ ′ > sJ . ��

180 R. Lapauw et al.

Theorem 2. Any iteration of Justify steps from a safe justification, in partic-
ular from (V, ∅,Hd), with Hd the default hypothesis, eventually solves PG.

Proof. By induction: Let PG = (V,E,O, Pr) be a parity game. Clearly, the
empty justification J0 = (V, ∅,Hd) is a safe justification. This is the base case.

Induction step: Let J i be the safe justification after i successful Justify steps
and assume that J i = (V,Di,Hi) contains an unjustified node. By Lemma 2,
there exists a pair v and dj such that v is justifiable with dj. For any pair v and
dj such that Justify(J i, v, dj) is executable, let J i+1 = Justify(J i, v, dj). By
Lemma 1, J i+1 is a safe justification. By Lemma 3, there is a strict increase in
size, i.e., s(J i+1) > s(J i).

Since the number of different sizes is bounded, this eventually produces a
safe Jk = (V,Dk,Hk) without unjustified nodes. The parametrized parity game
PGP

Jk
determined by Jk is PG. Hence, Hk is the winning function of PG, and

Jk comprises winning strategies for both players. ��
Theorem 2 gives a basic algorithm to solve parity games. The algorithm has

three features: it is (1) simple, (2) nondeterministic, and (3) in successive steps
it may arbitrarily switch between different priority levels. Hence, by imposing
different strategies, different instantiations of the algorithm are obtained.

Existing algorithms differ in the order in which they (implicitly) justify nodes.
In the next section we simulate such algorithms by different strategies for select-
ing nodes to be justified. Another difference between algorithms is in computing
the set R of nodes that is reset when dj wins v for the opponent of H(v). Some
algorithms reset more nodes; the largest reset set for which the proofs in this
paper remain valid is {w ∈ V | jl(w) < jl(dj)}. To the best of our knowledge,
the only algorithms that reset as few nodes as Justify(J, v, dj) are the ones
we presented in [20]. As the experiments presented there show, the work saved
across iterations by using justifications results in better performance.

5 A Reformulation of Three Existing Algorithms

In this section, by ordering justification steps, we obtain basic versions of differ-
ent algorithms known from the literature. In our versions, we represent the parity
game G as (V,E,O, Pr) and the justification J as (V,D,H). All algorithms start
with the safe empty justification (V, ∅,Hd). The recursive algorithms operate on
a subgame SG determined by a set of nodes VSG. This subgame determines the
selection of Justify(J, v, dj) steps that are performed on G. For convenience of
presentation, G is considered as a global constant.

Nested Fixpoint Iteration [6,10,20] is one of the earliest algorithms able
to solve parity games. In Algorithm 1, we show a basic form that makes use
of our Justify(J, v, dj) action. It starts from the initial justification (V, ∅,Hd).
Iteratively, it determines the lowest priority p over all unjustified nodes, it selects
a node v of this priority and justifies it. Recall from the proof of Lemma 2, that
all unjustified nodes of this priority are justifiable. Eventually, all nodes are

Justifications and a Reconstruction of Parity Game Solving Algorithms 181

1 Fn Fixpoint(G):
2 J←(V, ∅, Hd) the initial safe

justification
3 while J has unjustified nodes

do
4 p←min {Pr(v) | v is unjustified}
5 v← an unjustified node with

Pr(v) = p
6 dj← a winning direct

justification for v under H
7 J←Justify(J, v, dj)

8 return J
Algorithm 1: A fixpoint algo-
rithm for justifying nodes

input: A parity game G
1 J←Zielonka((V, ∅, Hd), V)
2 Fn Zielonka(J, VSG):
3 p←max {Pr(v) | v ∈ VSG}
4 α←p mod 2
5 while true do
6 while ∃v ∈ VSG, dj : v is

unjustified, v is justifiable with dj
for α with jl(dj) ≥ p do

7 J←Justify(J, v, dj)
8 VSSG←{v ∈ VSG|Pr(v) < p,
9 v is unjustified}

10 if VSSG = ∅ then return J ;
11 J←Zielonka(J, VSSG)
12 while ∃v ∈ VSG, dj : v is

unjustified, v is justifiable with dj
for ᾱ with jl(dj) ≥ p + 1 do

13 J←Justify(J, v, dj)
Algorithm 2: A Justify variant of
Zielonka’s algorithm.

justified and a solution is obtained. For more background on nested fixpoint
algorithms and the effect of justifications on the performance, we refer to our
work in [20].

A feature of nested fixpoint iteration is that it solves a parity game bottom
up. It may take many iterations before it uncovers that the current hypothesis
of some high priority unjustified node v is, in fact, wrong and so that playing to
v is a bad strategy for α. The next algorithms are top down, they start out from
nodes with the highest priority.

Zielonka’s Algorithm [31], one of the oldest algorithms, is recursive and starts
with a greedy computation of a set of nodes, called attracted nodes, in which the
winner α of the top priority p has a strategy to force playing to nodes of top
priority p. In our reconstruction, Algorithm 2, attracting nodes is simulated at
Line 6 by repeatedly justifying nodes v with a direct justification that wins v
for α and has a justification level ≥ p. Observe that the while test ensures that
the preconditions of Justify(J, v, dj) on the justification level of v are satisfied.
Also, every node can be justified at most once.

The procedure is called with a set VSG of nodes of maximal level p that
cannot be attracted by levels > p. It follows that the subgraph determined by
VSG contains for each of its nodes an outgoing edge (otherwise the opponent of
the owner of the node would have attracted the node at a level > p) , hence this
subgraph determines a parity game. The main loop invariants are that (1) the
justification J is safe; (2) the justification level of all justified nodes is ≥ p and
(3) ᾱ has no direct justifications of justification level > p to win an unjustified

182 R. Lapauw et al.

node in VSG. The initial justification is safe and it remains so as every Justify
call satisfies the preconditions.

After the attraction loop at Line 6, no more unjustified nodes of VSG can be
attracted to level p for player α. Then, the set of VSSG of unjustified nodes of
priority < p is determined. If this set is empty, then by Lemma 2 all unjustified
nodes of priority p are justifiable with a direct justification dj with jl(dj) ≥ p,
hence they would be attracted to some level ≥ p which is impossible. Thus,
there are no unjustified nodes of priority p. In this case, the returned justifica-
tion J justifies all elements of VSG. Else, VSSG is passed in a recursive call to
justify all its nodes. Upon return, if ᾱ was winning some nodes in VSSG, their
justification level will be ≥ p + 1. Now it is possible that some unjustified nodes
of priority p can be won by ᾱ and this may be the start of a cascade of resets
and attractions for ᾱ. The purpose of Line 12 is to attract nodes of VSG for ᾱ.
Note that Justify(J, v, dj) resets all nodes that depend on nodes that switch to
ᾱ. When the justification returned by the recursive call shows that α wins all
nodes of VSSG, the yet unjustified nodes of VSG are of priority p, are justifiable
by Lemma 2 and can be won only by α. So, at the next iteration, the call to
Attrα will justify all of them for α and VSSG will be empty. Eventually the initial
call of Line 1 finishes with a safe justification in which all nodes are justified thus
solving the game G.

Whereas fixpoint iteration first justifies low priority nodes resulting in low
justification levels, Zielonka’s algorithm first justifies nodes attracted to the high-
est priority. Compared to fixpoint iteration, this results in large improvements in
justification size which might explain its better performance. However, Zielonka’s
algorithm still disregards certain opportunities for increasing justification size as
it proceeds by priority level, only returning to level p when all sub-problems at
level < p are completely solved. Indeed, some nodes computed at a low level
i << p may have a very high justification level, even +∞ and might be useful to
revise false hypotheses at high levels, saving much work, but this is not exploited.
The next algorithm, priority promotion, overcomes this limitation.

Priority Promotion [1–3] follows the strategy of Zielonka’s algorithm except
that, when it detects that all nodes for priority p are justified, it does not make
a recursive call but returns the set of nodes attracted to priority p nodes as a
set Rp to a previous level q. There Rp is added to the attraction set at level
q and the attraction process is restarted. In the terminology of [2], the set Rp

is a closed p-region that is promoted to level q. A closed p-region of VSG, with
maximal priority p, is a subset Rp ⊆ VSG that includes all nodes of VSG with
priority p and for which α = p mod 2 has a strategy winning all infinite plays in
Rp and for which ᾱ cannot escape from Rp unless to nodes of higher q-regions
won by α. We call the latter nodes the escape nodes from Rp denote the set of
them as Escape(Rp). The level to which Rp is promoted is the lowest q-region
that contains an escape node from Rp. It is easy to show that q is a lower bound
of the justification level of Rp. In absence of escape nodes, Rp is promoted to
+∞.

Justifications and a Reconstruction of Parity Game Solving Algorithms 183

input: A parity game G
1 J←(V, ∅, Hd)
2 while ∃v ∈ VG : v is unjustified

do
3 R+∞← {v | jl(v) = +∞}
4 VSG←V \ R+∞
5 (J, ,)←Promote(VSG, J)
6 while ∃v ∈ VSG, dj : v is

justifiable with dj and
jl(dj) = +∞ do

7 J←Justify(J, v, dj)
Algorithm 3: A variant of prior-
ity promotion using Justify.

1 Fn Promote(VSG, J):
2 p←max {Pr(v) | v ∈ VSG}
3 α←p mod 2
4 while true do
5 while ∃v ∈ VSG, dj : v is unjustified

or jl(v) < p, v is justifiable with dj
for α with jl(dj) ≥ p do

6 J←Justify(J, v, dj)
7 Rp← {v ∈ VSG | jl(v) ≥ p}
8 if Closed(Rp, VSG) then
9 l←min{q|Rq contains an escape

node of Rp}
10 return (J, Rp, l)

11 VSSG←VSG \ Rp

12 (J, Rp′ , l)←Promote(VSSG, J)
13 if l > p then
14 return (J, Rp′ , l)

Our variant of priority promotion (PPJ) is in Algorithm 3. Whereas Zielonka
returned a complete solution J on VSG, Promote returns only a partial J on
VSG; some nodes of VSG may have an unfinished justification (jl(v) < +∞).
To deal with this, Promote is iterated in a while loop that continues as long
as there are unjustified nodes. Upon return of Promote, all nodes attracted
to the returned +∞-region are justified. In the next iteration, all nodes with
justification level +∞ are removed from the game, permanently. Note that when
promoting to some q-region, justified nodes of justification level < q can remain.
A substantial gain can be obtained compared to the original priority promotion
algorithm which does not maintain justifications and loses all work stored in J .

By invariant, the function Promote is called with a set of nodes VSG that
cannot be justified with a direct justification of level larger than the maximal
priority p. The function starts its main loop by attracting nodes for level p.
The attraction process is identical to Zielonka’s algorithm except that leftover
justified nodes v with jl(v) < p may be rejustified. As before, the safety of J is
preserved. Then Rp consists of elements of VSG with justification level ≥ p. It
is tested (Closed) whether Rp is a closed p-region. This is provably the case if
all nodes of priority p are justified. If so, J , Rp and its minimal escape level are
returned. If not, the game proceeds as in Zielonka’s algorithm and the game is
solved for the nodes not in Rp which have strictly lower justification level. Sooner
or later, a closed region will be obtained. Indeed, at some point, a subgame is
entered in which all nodes have the same priority p. All nodes are justifiable
(Lemma 2) and the resulting region is closed. Upon return from the recursive
call, it is checked whether the returned region (Rp′) promotes to the current
level p. If not, the function exits as well (Line 14). Otherwise a new iteration
starts with attracting nodes of justification level p for α. Note that contrary to
Zielonka’s algorithm, there is no attraction step for ᾱ: attracting for ᾱ at p is
the same as attracting for α′ = ᾱ at p′ = p + 1.

184 R. Lapauw et al.

Discussion. Our versions of Zielonka’s algorithm and priority promotion use
the justification level to decide which nodes to attract. While maintaining justi-
fication levels can be costly, in these algorithms, it can be replaced by selecting
nodes that are “forced to play” to a particular set of nodes (or to an already
attracted node). In the first attraction loop of Zielonka, the set is initialised
with all nodes of priority p, in the second attraction loop, with the nodes won
by ᾱ; In Promote, the initial set consists also of the nodes of priority p.

Observe that the recursive algorithms implement a strategy to reach as soon
as possible the justification level +∞ for a group of nodes (the nodes won by the
opponent in the outer call of Zielonka, the return of a closed region—for any
of the players—to the outer level in Promote). When achieved, a large jump
in justification size follows. This may explain why these algorithms outperform
fixpoint iteration.

Comparing our priority promotion algorithm (PPJ) to other variants, we see
a large overlap with region recovery (RR) [1] both algorithms avoid resetting
nodes of lower regions. However, RR always resets the full region, while PPJ can
reset only a part of a region, hence can save more previous work. Conversely,
PPJ eagerly resets nodes while RR only validates the regions before use, so it can
recover a region when the reset escape node is easily re-attracted. The equivalent
justification of such a state is winning but unsafe, thus unreachable by apply-
ing Justify(J, v, dj). However, one likely can define a variant of Justify(J, v, dj)
with modified safety invariants that can reconstruct RR. Delayed priority pro-
motion [3] is another variant which prioritises the best promotion over the first
promotion and, likely, can be directly reconstructed.

Tangle learning [28] is another state of the art algorithm that we have stud-
ied. Space restrictions disallow us to go in details. We refer to [20] for a ver-
sion of tangle learning with justifications. For a more formal analysis, we refer
to [19]). Interestingly, the updates of the justification in the nodes of a tangle
cannot be modelled with a sequence of safe Justify(J, v, dj) steps. One needs an
alternative with a precondition on the set of nodes in a tangle. Similarly as for
Justify(J, v, dj), it is proven in [19] that the resulting justification is safe and
larger than the initial one.

Justification are not only a way to explicitly model (evolving) winning strate-
gies, they can also speed up algorithms. We have implemented justification vari-
ants of the nested fixpoint algorithm, Zielonka’s algorithm, priority promotion,
and tangle learning. For the experimental results we refer to [19,20].

Note that the data structure used to implement the justification graph mat-
ters. Following an idea of Benerecetti et al. [2], our implementations use a single
field to represent the direct justification of a node; it holds either a single node,
or null to represent the set of all outgoing nodes. To compute the reset set R of
a node, we found two efficient methods to encode the graph J : (i) iterate over
all incoming nodes in E and test if their justification contains v, (ii) store for
every node a hash set of every dependent node. On average, the first approach
is better, while the second is more efficient for sparse graphs but worse for dense
graphs.

Justifications and a Reconstruction of Parity Game Solving Algorithms 185

6 Conclusion

This paper explored the use of justifications in parity game solving. First, we
generalized parity games by adding parameter nodes. When a play reaches a
parameter it stops in favour of one player. Next, we introduced justifications
and proved that a winning justification contains the solution of the parametrized
parity game. Then, we introduced safe justifications and a Justify operation
and proved that a parity game can be solved by a sequence of Justify steps.
A Justify operation can be applied on a node satisfying its preconditions, it
assigns a winning direct justification to the node, resets—if needed—other nodes
as parameters, preserves safety of the justification, and ensures the progress of
the solving process.

To illustrate the power of Justify, we reconstructed three algorithms: nested
fixpoint iteration, Zielonka’s algorithm and priority promotion by ordering appli-
cable Justify operations differently. Nested fixpoint induction prefers operations
on nodes with the lowest priorities; Zielonka’s algorithm starts on nodes with
the maximal priority and recursively descends; priority promotion improves upon
Zielonka with an early exit on detection of a closed region (a solved subgame).

A distinguishing feature of a justification based algorithm is that it makes
active use of the partial strategies of both players. While other algorithms, such
as region recovery and tangle learning, use the constructed partial strategies
while solving the parity game, we do not consider them justification based algo-
rithms. For region recovery, the generated states are not always weakly winning,
while tangle learning applies the partial strategies for different purposes. As
shown in [20] where justifications improve tangle learning, combining different
techniques can further improve parity game algorithms.

Interesting future research includes: (i) exploring the possible role of jus-
tifications in the quasi-polynomial algorithm of Parys [24], (ii) analysing the
similarity between small progress measures algorithms [12,16] and justification
level, (iii) analysing whether the increase in justification size is a useful guide
for selecting the most promising justifiable nodes, (iv) proving the worst-case
time complexity by analysing the length of the longest path in the lattice of
justification states where states are connected by Justify(J, v, dj) steps.

References

1. Benerecetti, M., Dell’Erba, D., Mogavero, F.: Improving priority promotion for
parity games. In: Bloem, R., Arbel, E. (eds.) HVC 2016. LNCS, vol. 10028, pp.
117–133. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49052-6 8

2. Benerecetti, M., Dell’Erba, D., Mogavero, F.: Solving parity games via priority
promotion. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
270–290. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 15

3. Benerecetti, M., Dell’Erba, D., Mogavero, F.: A delayed promotion policy for parity
games. Inf. Comput. 262, 221–240 (2018). https://doi.org/10.1016/j.ic.2018.09.005

4. Bernholtz, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking (Extended abstract). In: Dill, D.L. (ed.) CAV 1994.

https://doi.org/10.1007/978-3-319-49052-6_8
https://doi.org/10.1007/978-3-319-41540-6_15
https://doi.org/10.1016/j.ic.2018.09.005

186 R. Lapauw et al.

LNCS, vol. 818, pp. 142–155. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58179-0 50

5. Bloem, R., Schewe, S., Khalimov, A.: CTL* synthesis via LTL synthesis. In: Fis-
man, D., Jacobs, S. (eds.) Proceedings Sixth Workshop on Synthesis, SYNT@CAV
2017, Heidelberg, Germany, 22nd July 2017. EPTCS, vol. 260, pp. 4–22 (2017).
https://doi.org/10.4204/EPTCS.260.4

6. Bruse, F., Falk, M., Lange, M.: The fixpoint-iteration algorithm for parity games.
In: Peron, A., Piazza, C. (eds.) Proceedings Fifth International Symposium on
Games, Automata, Logics and Formal Verification, GandALF 2014, Verona, Italy,
10–12 September 2014. EPTCS, vol. 161, pp. 116–130 (2014). https://doi.org/10.
4204/EPTCS.161.12

7. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: Hatami, H., McKenzie, P., King, V. (eds.) Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, 19–23 June 2017, pp. 252–263. ACM (2017). https://
doi.org/10.1145/3055399.3055409

8. Cranen, S., et al.: An overview of the mCRL2 toolset and its recent advances. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 15

9. Cranen, S., Groote, J.F., Reniers, M.A.: A linear translation from CTL* to the
first-order modal μ -calculus. Theor. Comput. Sci. 412(28), 3129–3139 (2011).
https://doi.org/10.1016/j.tcs.2011.02.034

10. van Dijk, T., Rubbens, B.: Simple fixpoint iteration to solve parity games. In: Ler-
oux, J., Raskin, J. (eds.) Proceedings Tenth International Symposium on Games,
Automata, Logics, and Formal Verification, GandALF 2019, Bordeaux, France,
2–3rd September 2019. EPTCS, vol. 305, pp. 123–139 (2019). https://doi.org/10.
4204/EPTCS.305.9

11. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy
(extended abstract). In: 32nd Annual Symposium on Foundations of Computer
Science, San Juan, Puerto Rico, 1–4 October 1991, pp. 368–377. IEEE Computer
Society (1991). https://doi.org/10.1109/SFCS.1991.185392

12. Fearnley, J., Jain, S., Schewe, S., Stephan, F., Wojtczak, D.: An ordered approach
to solving parity games in quasi polynomial time and quasi linear space. In: Erdog-
mus, H., Havelund, K. (eds.) Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, Santa Barbara, CA, USA, 10–14
July 2017, pp. 112–121. ACM (2017). https://doi.org/10.1145/3092282.3092286

13. Grädel, E., Thomas, W., Wilke, T. (eds.): LNCS, vol. 2500. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36387-4

14. Hou, P., Cat, B.D., Denecker, M.: FO(FD): extending classical logic with rule-
based fixpoint definitions. TPLP 10(4–6), 581–596 (2010). https://doi.org/10.
1017/S1471068410000293

15. Jacobs, S., et al.: The 5th reactive synthesis competition (SYNTCOMP 2018):
Benchmarks, participants & results. CoRR (2019). http://arxiv.org/abs/1904.
07736

16. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46541-3 24

17. Kant, G., van de Pol, J.: Efficient instantiation of parameterised Boolean equa-
tion systems to parity games. In: Wijs, A., Bosnacki, D., Edelkamp, S. (eds.)
Proceedings First Workshop on GRAPH Inspection and Traversal Engineering,

https://doi.org/10.1007/3-540-58179-0_50
https://doi.org/10.1007/3-540-58179-0_50
https://doi.org/10.4204/EPTCS.260.4
https://doi.org/10.4204/EPTCS.161.12
https://doi.org/10.4204/EPTCS.161.12
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1016/j.tcs.2011.02.034
https://doi.org/10.4204/EPTCS.305.9
https://doi.org/10.4204/EPTCS.305.9
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1145/3092282.3092286
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1017/S1471068410000293
https://doi.org/10.1017/S1471068410000293
http://arxiv.org/abs/1904.07736
http://arxiv.org/abs/1904.07736
https://doi.org/10.1007/3-540-46541-3_24

Justifications and a Reconstruction of Parity Game Solving Algorithms 187

GRAPHITE 2012, Tallinn, Estonia, 1st April 2012. EPTCS, vol. 99, pp. 50–65
(2012). https://doi.org/10.4204/EPTCS.99.7

18. Kesten, Y., Manna, Z., McGuire, H., Pnueli, A.: A decision algorithm for full
propositional temporal logic. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697,
pp. 97–109. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56922-7 9

19. Lapauw, R.: Reconstructing and Improving Parity Game Solvers with Justifica-
tions. Ph.D. thesis, Department of Computer Science, KU Leuven, Leuven, Bel-
gium (2021). [To appear]

20. Lapauw, R., Bruynooghe, M., Denecker, M.: Improving parity game solvers with
justifications. In: Beyer, D., Zufferey, D. (eds.) VMCAI 2020. LNCS, vol. 11990, pp.
449–470. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39322-9 21

21. Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of reactive systems
from LTL specifications via parity games. Acta Inf. 57(1), 3–36 (2020). https://
doi.org/10.1007/s00236-019-00349-3

22. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: explicit reactive synthesis strikes
back! In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp.
578–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 31

23. Mostowski, A.: Games with forbidden positions. University of Gdansk, Gdansk.
Technical report, Poland (1991)

24. Parys, P.: Parity games: Zielonka’s algorithm in quasi-polynomial time. In: Ross-
manith, P., Heggernes, P., Katoen, J. (eds.) 44th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2019, August 26–30, 2019,
Aachen, Germany. LIPIcs, vol. 138, pp. 10:1–10:13. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.MFCS.2019.10

25. Piterman, N.: From nondeterministic Buchi and Streett automata to deterministic
parity automata. In: 21th IEEE Symposium on Logic in Computer Science (LICS
2006), 12–15 August 2006, Seattle, WA, USA, Proceedings, pp. 255–264. IEEE
Computer Society (2006). https://doi.org/10.1109/LICS.2006.28

26. Safra, S.: On the complexity of omega-automata. In: 29th Annual Symposium on
Foundations of Computer Science, White Plains, New York, USA, 24–26 October
1988, pp. 319–327. IEEE Computer Society (1988). https://doi.org/10.1109/SFCS.
1988.21948

27. Schewe, S.: An optimal strategy improvement algorithm for solving parity and
payoff games. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp.
369–384. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87531-
4 27

28. Dijk, T.: Attracting tangles to solve parity games. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 198–215. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96142-2 14

29. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: Proceedings of the Symposium on Logic in
Computer Science (LICS 1986), Cambridge, Massachusetts, USA, 16–18 June 1986,
pp. 332–344. IEEE Computer Society (1986)

30. Walukiewicz, I.: Monadic second order logic on tree-like structures. In: Puech,
C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 399–413. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-60922-9 33

31. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998). https://
doi.org/10.1016/S0304-3975(98)00009-7

https://doi.org/10.4204/EPTCS.99.7
https://doi.org/10.1007/3-540-56922-7_9
https://doi.org/10.1007/978-3-030-39322-9_21
https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.4230/LIPIcs.MFCS.2019.10
https://doi.org/10.1109/LICS.2006.28
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1007/978-3-540-87531-4_27
https://doi.org/10.1007/978-3-540-87531-4_27
https://doi.org/10.1007/978-3-319-96142-2_14
https://doi.org/10.1007/3-540-60922-9_33
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

SMT-Based Test-Case Generation and
Validation for Programs with Complex

Specifications

Ricardo Peña(B) , Jaime Sánchez-Hernández , Miguel Garrido,
and Javier Sagredo

Complutense University of Madrid, Madrid, Spain
{ricardo,jaime}@sip.ucm.es, migarr01@ucm.es

Abstract. We present a system which automatically generates an
exhaustive set of black-box test-cases, up to a given size, for units under
test requiring complex preconditions. The key of the approach is to trans-
late a formal precondition into a set of constraints belonging to the decid-
able logics of SMT solvers. By checking the satisfiability of the constraints,
then the models returned by the solver automatically synthesize the cases.
We also show how to use SMT solvers to automatically check the valid-
ity of the test-case results, by using the postcondition as an oracle, and
also how to complement the black-box cases with white-box ones auto-
matically generated. Finally, we use the solver to perform what we call
automatic partial verification of the program. In summary, we present a
system in which exhaustive black-box and white-box testing, result vali-
dation, and partial verification, can all be done automatically. The only
extra effort required from programmers is to write formal specifications.

Keywords: Black-box testing · SMT solvers · Test-case generation

1 Introduction

Testing is very important for increasing program reliability. Thorough testing
ideally exercises all the different situations described by the specification, and
all the instructions and conditions of the program under test, so that it achieves
a high probability of finding bugs, if they are present in the code. Unfortunately,
thorough testing is a time consuming activity and, as a consequence, less testing
than the desirable one is performed in practice.

There is a general agreement that automatic tools can alleviate most of the
tedious and error prone activities related to testing. One of them is test-case gen-
eration (TCG). Traditionally (see, for instance [1]), there are two TCG variants:
black-box TCG and white-box TCG. In the first one, test-cases are based on
the program specification, and in the second one, they are based on a particular

Work partially funded by the Spanish Ministry of Economy and Competitiveness, under
the grant TIN2017-86217-R, and by the Madrid Regional Government, under the grant
S2018/TCS-4339, co-funded by the European Union EIE funds.

c© Springer Nature Switzerland AG 2023
P. Lopez-Garcia et al. (Eds.): Hermenegildo Festschrift 2022, LNCS 13160, pp. 188–205, 2023.
https://doi.org/10.1007/978-3-031-31476-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31476-6_10&domain=pdf
http://orcid.org/0000-0001-5387-8931
http://orcid.org/0000-0002-8940-5543
https://doi.org/10.1007/978-3-031-31476-6_10

SMT-Based Test-Case Generation and Validation 189

reference implementation. Each one complements each other, so both are needed
if we aim at performing thorough testing.

On white-box testing there is much literature, and sophisticated techniques
such as symbolic and concolic TCG, have been proposed [5,6,10,17,20]. One of
the problems arising when using the implementation as the basis to generate
test-cases, is that less attention is paid to program specification, that usually
is even not formalized. As a consequence, test cases can be generated that do
not meet the input requirements expected by the program. Generating cases
satisfying a given precondition may be not so easy when that precondition is
complex. For instance, some programs require as input sorted arrays, sorted
lists, or sophisticated data structures satisfying complex invariants such as red-
black trees or binary heaps. When this happens, usually auxiliary boilerplate
code is created to build these structures in order to generate valid input for the
program under test. This approach increments the testing effort and may also
introduce new errors in the boilerplate code.

Another problem related to testing automation is checking for validity the
results returned by the program under test for each test-case. If this checking
is done by humans, then again the testing effort and the possibility of errors
increase. In order to automate this process, programmers must write formal
postconditions, or formal assertions, and have executable versions of them, as it
is done for instance in property-based testing [8,11]. Again, having executable
assertions require programming effort and open more possibilities of introducing
errors. Our group presented some years ago a tool [2] that transformed assertions
written in a logic language supporting sets, multisets, sequences and arrays, into
executable Haskell code, so that no extra code was needed in order to create
executable versions of program postconditions. This system was used as an ora-
cle for validating test results and could also be used to generate cases satisfying
a complex precondition. The approach consisted of automatically generating a
huge number of structures of the appropriate type, then executing the precon-
dition on each of them, and then filtering out those satisfying it. For instance,
if a precondition required a tree to be an AVL one, then all possible trees up
to a given size were generated and only those satisfying the executable isAVL
predicate were kept. The approach was fully automatic, but not very efficient,
as sometimes less then 1% of the generated cases were kept.

In this work, we use an SMT solver [3] to directly generate test-cases satisfy-
ing a complex precondition, without needing a trial and error process, such as the
above described one. The key idea is to transform the formal precondition into a
set of constraints belonging to the logics supported by the SMT solver. This has
been possible thanks to a recent facility introduced in such solvers: the theory of
algebraic types and the support given to recursive function definitions on those
types. If the constraints are satisfiable, then every model returned by the SMT
solver can be easily converted into a test-case satisfying the precondition. In
this way, we have been able to synthesise sorted arrays, sorted lists, AVL trees,
red-black trees, and some other complex data structures. We apply the same
approach to the postconditions: the result returned by the program under test is

190 R. Peña et al.

converted into an SMT term, and then the postcondition constraints are applied
to it. If the resulting SMT problem is satisfiable, then the result is correct.

In many programs, the conditions occurring in if statements and while loops
are simple enough to be converted into constraints supported by the SMT log-
ics. If this is the case, then we can use SMT solvers to also generate white-box
test-cases, as it is done in the symbolic testing approach. The execution paths
along the program are converted into appropriate constraint sets, and then they
are given to the solver. In this work, we add to these path constraints the pre-
condition constraints, so we synthesise test-cases which are guaranteed to satisfy
the precondition, and also to execute a given path.

A final contribution of this work is to use the SMT solver to do ‘effortless’
program verification. We call the approach partial automatic verification and
consists of giving the solver formulas to be checked for validity instead of for
satisfiability. Each formula expresses that all test-cases satisfying the precondi-
tion, satisfying the constraints of a given path, and returning some result in that
path, must also satisfy the postcondition for the returned result. If the solver
checks the validity of this formula, this is equivalent to proving that all valid
inputs exercising that path are correct. If we apply this procedure to an exhaus-
tive set of paths covering all the program under test up to a given depth, then
we would be verifying the correctness of a high number of test-cases at once,
without even executing the program.

Summarizing, we present a system in which exhaustive black-box and white-
box testing, result validation, and partial verification, can all be done auto-
matically. The only extra effort to be done by programmers is writing formal
specifications for their programs. This may seem to be a big effort, since usu-
ally programmers are not very found of writing formal specifications. But our
work has been performed in the context of our verification platform CAVI-ART1

[14,15], where formal assertions are anyway mandatory because the platform
has been specifically designed to assist in the formal verification of programs.
Someone may wonder why testing is needed in a verification platform, since
verification gives in general more guarantees than testing. The answer to this
question is that, when forced to write formal specifications, programmers usu-
ally write incomplete ones in their first attempts. So, automatic testing may help
them to debug, not only the code, but also their initially weak specifications,
before embarking themselves into formal verification, which usually requires a
bigger effort in the form of intermediate assertions and auxiliary lemmas. So, we
propose automatic testing as a cheap alternative for removing the most obvious
code and specification errors.

The plan of the paper is as follows: in Sect. 2, we explain how to program com-
plex preconditions in the SMT language; Sect. 3 shows how to generate exhaus-
tive black-box test-cases by only using the precondition; Sect. 4 explains the
generation of exhaustive white-box test-cases, and Sect. 5 details the partial ver-
ification approach; Sect. 6 presents some experiments with the system, and draws
some conclusions. Finally, Sect. 7 surveys some related and future work.

1 Acronym of Computer Assisted Validation by Analysis, Transformation and Proof.

SMT-Based Test-Case Generation and Validation 191

2 Specifying Pre- and Postconditions by Using the SMT
Language

In the last fifteen years, SMT solvers have evolved very quickly. There has been
a very much profitable feedback between SMT developers and SMT users. The
latter have been asking for more and more complex verification conditions to
be automatically proved by SMTs, and the former have improved the SMT
heuristics and search strategies in order to meet these requirements. The result
has been that SMT solvers support today a rich set of theories, and that more
complex programs can be verified by using them.

Up to 2015, the available SMTs essentially supported the boolean theory,
several numeric theories, and the theory of uninterpreted functions. With the
addition of a few axioms, the latter one was easily extended in order to support
arrays, set and multiset theories. This state of the art is reflected in the language
described in the SMT-LIB Standard, Version 2.5.2

After that, in the last few years, SMT solvers have incorporated algebraic
datatypes and the possibility of defining recursive functions on them. Reynolds
et al. [19] proposed a strategy for translating terminating recursive functions
into a set of universally quantified formulas. In turn, several techniques have
been developed to find models for a large set of universally quantified formulas.
From the user point of view, a satisfiability problem can be posed to a modern
SMT solver in terms of a set of recursive function definitions. The SMT-LIB
Standard, Version 2.6, of Dec. 2017, reflects this state of affairs.

It happens that many useful preconditions and postconditions of algebraic
datatype manipulating programs can be expressed by means of recursively
defined predicates and functions. For instance, the function that inserts an ele-
ment into an AVL tree, needs as a precondition the input tree to be an AVL.
An AVL is defined as either the empty tree, or as a non-empty tree whose two
children are both AVL trees. Additionally, the tree must be a Binary Search Tree
(i.e. a BST predicate holds), and the difference in height of the children should
be at most one. Also, in each node there is an additional field containing the
tree height. In turn, the BST property can be recursively defined, and so can
it be the height function on trees. In Fig. 1, we show some of these definitions
written in the SMT language. There, the predefined function ite has the same
meaning as the if-then-else expression of functional languages. As it can be
seen, the SMT language for writing recursive definitions is not very different
from a functional language, except by the fact of using an uncomfortable prefix
syntax. In a similar way, predicates for defining sorted lists, or invariants of data
structures such as skew heaps, leftlist heaps, or red-black trees, can be defined.

The same idea applies to postconditions. For instance, after inserting an
element in an AVL tree, we would like to express that the result is also an AVL
tree, and that the set of elements of this result is the union of the set of elements
of the input tree, and the element being inserted. The function giving the set of
elements of a tree, or the multiset of elements of a heap, can also be recursively

2 http://smtlib.cs.uiowa.edu/language.shtml.

http://smtlib.cs.uiowa.edu/language.shtml

192 R. Peña et al.

Fig. 1. Definition of the predicate isAVL and the function heightA in the SMT language

Fig. 2. Definition of the function setA giving the set of elements of an AVL tree

SMT-Based Test-Case Generation and Validation 193

defined in the SMT-LIB language, as we show in Fig. 2. There, a set of elements is
modeled as an infinite array of boolean values, i.e. as the characteristic function
of the set. Having defined such predicates and functions, the specification of the
insertion function for AVLs, can be written as follows:

{isAVL(t)} (1)
define insertAVL (x :: int , t ::AVL int)::(res ::AVL int)
{isAVL (res) ∧ setA (res) = set-union (setA (t), unit (x))} (2)

3 Synthesizing Black-Box Test-Cases

The purpose of defining preconditions as a set of constraints written in the SMT-
LIB language is to let solvers to check the satisfiability of these constraints and
to generate models for their variables. Each model satisfying the constraints is
then easily transformed into a test-case, since the generated values satisfy the
precondition.

In our context, the Unit Under Test (UUT in what follows) is a set of related
pure functions, of which only one is visible from outside the unit. The functions
do not share any variable or object. The only allowed interaction between them is
that the visible one may call any of the other functions, and the latter ones may
call each other in a mutually recursive way. The visible top-level UUT function
is specified by means of a formal precondition and postcondition.

Modern SMT solvers are very clever in finding models for constraints involv-
ing algebraic datatypes and recursive functions on them. In our experiments, we
used the Z3 SMT solver [16], version 4.8.8, published in May 2020. When giving
the following constraint to Z3:

(assert (= 3 (heightA t)))

it synthesizes a binary tree t having height 3. Previous versions of this solver were
not able to process this constraint. They entered an endless loop when trying to
solve it. This means that the search strategies of SMT solvers are continuously
evolving, and that each time they can solve more complex problems.

Our preconditions are conjunctions of predicates usually involving recursive
definitions, as those shown in Fig. 1. Our aim is to generate an exhaustive set
of black-box test-cases so, in order to have a finite number of them, the user
should fix a maximum size for each argument of the UUT. In the cases of trees
and lists, their height and their length would be suitable sizes. In the case of
integers, the user should specify a finite interval for them. If tree nodes and list
elements consist of integer values, this latter constraint has the additional effect
of limiting the values which will populate the nodes, so contributing to getting
a finite number of models for the arguments.

194 R. Peña et al.

In the example shown in Fig. 3, we have forced the tree t to satisfy the pred-
icate isAVL(t), to have 3 as its height, and to contain integer values comprised
between −6 and +6. The solver generated the model shown in the drawing,
which is just one of all the possible models. The annotation h = xx in each node
is the value of its height field.

Fig. 3. AVL tree synthesized with the constraint (assert (and (= 3 (heightA t))

(isAVL t))).

The next step is to be able to generate many different test cases. The most
popular solvers, such as Z3 [16], only return one model for every satisfiable
problem. There exist the so called All-SAT solvers, which give as a result all the
models satisfying a set of constraints (see for instance [21]), but these only solve
pure SAT problems, i.e. they lack the rich set of theories supported by SMT
solvers. A common solution to force the SMT to give more models is adding
constraints which negate the prior obtained models. This is what we did: we
called the solver in a loop, by adding at each iteration a constraint forcing the
result to be different from the previous one. For instance, for AVL trees having
less than or equal to 7 nodes, and populated with values between 1 and 10,
we obtained 3 353 trees. The solver entered an infinite loop trying to get the
model number 3 354. In fact, our hand calculations gave us that there exist only
3 353 correct AVLs within the above restrictions. This means that the solver
was trying to solve an unsatisfiable problem and got lost while searching new
models. Getting timeouts in SMT problem solving is a frequent situation when
the set of constraint reaches a high complexity, as it is the case here.

Then, summarizing our strategy for generating black-box test-cases, it con-
sists of first fixing a maximum size for the data structure, then fixing an inter-
val of values for populating the elements of the structure, and then letting the
solver to find all the models satisfying the constraints. This amounts to perform
exhaustive testing up to a given size. We consider the set of cases generated in
this way to have a high probability of finding bugs, if they are present in the
program. Successfully passing these tests will give us a high confidence in the
UUT reliability, since it is infrequent for programmers to build programs that
successfully pass exhaustive testing for small size test-cases, and still contain
bugs, only showing up for bigger sizes.

SMT-Based Test-Case Generation and Validation 195

The last step consists of checking that the result computed by the UUT for
each test-case is really the correct one. Given the high number of test-cases we
may generate, ideally this should be automatically done by the system. The result
could be a value of a simple type, such as an integer or a boolean value, or it could
be a term of an algebraic type, such as a list or a tree. Our system translates the
returned term from the executable language to the solver language, and then
uses the postcondition to check whether the term satisfies it. For instance, if res
is the tree returned for the function inserting a value x into an AVL tree t, then
the SMT solver performs a satisfiability check for the following constraint (see
Eq. 2 above):

(assert (and (isAVL res) (= (setA res) (set-union (setA t) (unit x)))))

where t, x, and res, are instantiated variables. If the solvers returns sat, then
the result is correct. Otherwise, it is not.

4 Synthesizing White-Box Test-Cases

The black-box test-cases are independent of the possible implementations of the
UUT. Given a particular implementation, it may be the case that, after running
an exhaustive set of black-box test-cases up to a given size, there still exist non
exercised paths in the UUT. The usual testing strategies recommend to addition-
ally generate implementation-based test-cases which complement the black-box
ones. A common exhaustiveness criterium is to generate cases exercising all the
paths in the UUT. When paths through loops are considered, then a bound on
the number of iterations through the loop is set. For instance, a bound of 1
means that paths exercising at most one iteration of each loop are considered.

Our implementation language is a sort of core functional language which
supports mutually recursive function definitions. It is the internal language (we
call it IR, acronym of Intermediate Representation) of our verification platform
CAVI-ART [14,15], to which real-life languages such as Java and Haskell are
translated. In Fig. 4 we show its abstract syntax. Notice that all expressions
are flattened in the sense that all the arguments in function and constructor
applications, and also the case discriminants, are atoms. An additional feature
is that IR programs are in let A-normal form [9], and also in SSA3 form, i.e. all
let bound variables in a nested sequence of let expressions are distinct, and also
different to the function arguments, and to the case bound pattern variables.

As the abstract IR of Fig. 4 is the target and/or the origin of the many
transformations available in our platform CAVI-ART, it also has a textual rep-
resentation in order to store it in files. We call CLIR to this textual format,
acronym of Common Lisp IR, because it has some resemblance with Lisp. In
Fig. 5 we partially show the specification and the code of the insertAVL function
written in this format.

3 Static Single Assignment.

196 R. Peña et al.

Fig. 4. CAVI-ART IR abstract syntax

In Fig. 6 we show a more sweetened IR code for function insertAVL. In the
letfun main expression, the code for functions height, compose, leftBalance and
rightBalance is not shown. The first one computes the height of an AVL with a
time cost in O(1), by just getting the value stored in its root node. The second
one just joins two trees and a value received as arguments to form an AVL tree.
The other two are responsible for performing the LL, LR, RL and RR rotations
that reestablish the height invariant of AVLs. In what follows, we will use the
insertAVL function, together with all its auxiliary functions defined in the letfun
expression, as a running example of UUT.

We define a static path through a set of mutually recursive functions defined
together in an UUT, as a potential execution path starting at the top level
function, and ending when this function produces a result. Not all static paths
correspond to actual execution paths, since some static paths may be unfeasible.
We define the depth of a static path, as the maximum number of unfoldings that a
recursive function may undergone in the path. When all the recursive functions
in the UUT are tail recursive, this definition of depth essentially corresponds
to the number of iterations in imperative loops. Depth 1 corresponds to none
iteration in all loops, depth 2 corresponds to at most one iteration, and so on.
When there is at least one non-tail recursive function in the UUT, the depth
of the path is the depth of the call tree deployed during the path execution,
considering only the calls to the non-tail recursive function. Depth 1 means that
each recursive function executes one of its base cases, depth 2 corresponds to
that at least one recursive function has executed a recursive case, and then this
recursive call has executed its base case, and so on. More details about how
exhaustive static paths are generated can be found in [18].

In the insertAVL example there are two paths with depth 1. In the first one,
the input tree is empty and the internal function ins immediately terminates
by creating a new node with the value x and with height 1. In the second one,

SMT-Based Test-Case Generation and Validation 197

Fig. 5. The function insertAVL written in the CLIR syntax.

the value x being inserted is already present at the root of the input tree, and
the ins function terminates without inserting anything. With depth 2, there
are at least 4 paths through the function ins: two of them recursively call to
ins with the left subtree as an argument, and another two call to ins with the
right one as an argument. The rest of the path inside these recursive calls is
one of the depth 1 paths. After inserting the value, the static paths go on with
a call to function equil, and there are two paths in this function. Combined
with the other 4, this gives 8 paths. Then, we should consider paths through
leftBalance or rightBalance, depending on the branch taken by equil, and so on.
The combinatorics soon produces an exponential number of paths when the UUT
is as complex as in our example. Notice however, that many of these paths are
unfeasible. For instance, when inserting a new node in the left subtree, it may
not happen that equil takes the branch calling to rightBalance: if any unbalance
arises after inserting to the left, it should be in the left subtree.

Given an UUT written in the IR language, and the user having fixed a max-
imum depth, our system generates all the static paths having a depth smaller
than or equal to this maximum depth. For each static path, it collects all the
equalities occurring in the let bindings traversed by the path, and the conditions
holding in each traversed case expression forcing the path to follow one of the
branches. These equalities and conditions are converted into restrictions for the

198 R. Peña et al.

Fig. 6. CAVI-ART IR for function insertAVL

SMT solver. For instance, for the insertAVL depth-1 path in which the inserted
element is already in the tree, the following constraints are collected:

(t = nodeA y h l r) ∧ (b1 = x < y) ∧ (b1 = false)∧
(b2 = x > y) ∧ (b2 = false) ∧ (res = t)

Then, the solver is given the set of constraints corresponding to the UUT pre-
condition, together with the set of constraints corresponding to a static path.
If the solver finds a model, it means that it satisfies the precondition, and that
the path is feasible. Then, the model assignment for the input arguments (in our
example, for the tree t and for the value x) constitutes a test-case that, when
run, it does not violate the precondition and exactly exercises that path.

In Fig. 7 we show the beginning of the set of constraints generated by our
system for a path of depth 1 that inserts an element to the left of the input
tree. As there are two calls to function ins, its variables must be renamed in
each call. For instance, ins 2 t stands for argument t of the second call to ins.
For this path, the solver finds the model t = nodeA 3 1 leafA leafA, x = 2 and
res = nodeA 3 2 (nodeA 2 1 leafA leafA) leafA, which corresponds to a path
inserting the value x = 2 to the left of the tree t, being its left subtree an empty
tree.

SMT-Based Test-Case Generation and Validation 199

Fig. 7. Constraints for a path of depth 1 in insertAVL

5 Partial Automatic Verification

In prior sections, we have illustrated the use of SMTs for generating an exhaus-
tive set of black-box test-cases up to a given size, and an exhaustive set of
white-box ones covering all the UUT paths up to a given depth. Also, we have
explained how to use SMTs to automatically check the validity of the results
returned by the UUT.

By using the same strategy as that of black-box test-case generation, we could
improve a bit the exhaustiveness of white-box cases by generating all models for
every satisfiable path. This would probably result in generating a huge number
of cases. We have not followed this idea, but instead have followed an equivalent
solution involving much less computational effort. We call it partial automatic
verification.

The idea consists of adding to each satisfiable path a constraint expressing
that the result returned in that path must satisfy the postcondition. Let us call
Q(x) to the precondition applied to the input arguments x, path(x, y) to the set
of constraints collected by the path, which may depend on the input arguments
and on some intermediate variables y, and R(z) to the postcondition applied to
the result z returned by the path, where z is a subset of x∪ y. Then, we ask the
solver to check whether the formula

(Q(x) ∧ path(x, y)) ⇒ R(z)

200 R. Peña et al.

is valid, i.e. all possible models satisfy it. Equivalently, we ask the solver to check
whether the formula

Q(x) ∧ path(x, y) ∧ ¬R(z)

in unsatisfiable, because ¬(A → B) ≡ ¬(¬A ∨ B) ≡ A ∧ ¬B. If it were so,
then we would have proved that all the test-cases covering this path are correct.
If we proved this kind of formulas for all the satisfiable paths up to a given
depth, we would have proved the correctness of the UUT for all the possible
executions exercising the UUT up to that depth. Since all this work is done
without executing the UUT, in fact we are doing formal verification. And, as
the automatic testing above described, by just pressing a button. In case we
could automatically prove these formulas, we would forget about invariants,
intermediate assertions, auxiliary lemmas, and all the effort usually implied by
doing formal verification by hand.

If one of these formulas were satisfiable, then the models given by the SMT
would constitute counter examples of correctness, i.e. test-cases for which the
UUT will return an incorrect result. In this case, we would be doing debugging
of our program at a very low cost.

We have applied this idea to the 10 satisfiable paths of insertAVL with
depth ≤ 2. The result has been that the formulas corresponding to the two
depth-1 paths are unsat, the ones of two of the eight depth-2 paths are also
unsat, and for the remaining formulas, the solver gives unknown as a result.
That is, at least for 4 of these paths, the solver can prove their correctness. For
the other 6, we conclude that the formulas are too complex for the current SMT
technology. To return unsat is clearly more costly for the solver, since it must
explore all the proof space. We remind that the recursive functions and pred-
icates are internally transformed to universally quantified first order formulas,
and that first order logic is undecidable in general. We did also the experiment of
introducing a bug in the program by returning nodeA x 0 leafA leafA in the base
case of insertAVL, instead of nodeA x 1 leafA leafA. Then the solver returned
sat for the path formula, and returned the model t = leafA, which is in fact a
failing test-case.

6 Experiments

A picture of our integrated testing system, named CAVI-TEST, is shown in
Fig. 8. The input to the tool is a CLIR file containing the UUT code written
in the IR language, and its formal specification, written in the IR specification
language. The CAVI-ART IR was thought as an intermediate representation for
the platform, and it is not directly executable. In order to get an executable
version, there is a translation from the IR code to Haskell, shown in the bottom
part of the tool. The Test Driver is also Haskell code, and it is responsible for

SMT-Based Test-Case Generation and Validation 201

Fig. 8. A picture of CAVI-TEST, the CAVI-ART integrated testing system.

interacting with the UUT. It delivers the tests-cases to the UUT, and receives
and checks the results the latter produces. The left part of the tool is the TCG. It
receives from the user the desired size parameters and the desired depths for the
static paths, converts the specifications and the paths into SMT constraints, and
interacts with the SMT solver. Then, it translates the SMT results into Haskell
test-cases. There is an inverse translation in the Test Driver from the Haskell
results returned by the UUT to the SMT syntax, in order to check whether the
postcondition is satisfied, again with the help of the SMT solver.

Fig. 9. Black-box cases generated for a suit of UUTs.

202 R. Peña et al.

Fig. 10. White-box paths generated for a suit of UUTs.

We have prepared a UUT suit for our CAVI-TEST system, including func-
tions dealing with a variety of data structures, such as sorted arrays, sorted lists,
binary search trees, AVL trees, leftist heaps, and red-black trees. In Fig. 9 we
show the results obtained for black-box test-cases. The column size, depending
on the function, refers to the maximum size of the synthesized arrays, the max-
imum length of the lists, or the maximum height of the trees or heaps. Columns
min Int and max Int show the limits used for integer values. Finally, column #
cases shows the number of cases generated under the given constraints. These
cases are exhaustive in the sense that they are all the cases satisfying the con-
straints. Notice that, even with these small sizes, we get a significant number
of test-cases. Slightly increasing them leads very soon to thousands of cases. Of
course, since running and checking the cases is also fully automatic, the user
may always choose bigger sizes and let the system run thousands or millions of
cases overnight.

In Fig. 10 we show the results obtained for white-box test-cases. The sizes
used in the preconditions are the same shown in Fig. 9. The path depth was set
to 3 for most of the examples, except for the simplest ones, such as insertList
and deleteList, for which it was set to 4, and for insertAVL, which generated
10 306 paths for a path depth of 2, and a two million lines constraint file for
depth 3. For complex UUTs such as this one, for the quicksort algorithm, and
for the union of two leftist heaps, the number of unfeasible paths is very high.
The insertion in a leftist heap is in fact a wrapper for the union function, and
also gives a high number of unfeasible paths. Notice also that some unknown
results are obtained for the most complex examples. We interpret this as an
evidence of the complexity and size of the constraints associated to some paths
and of the corresponding formulas given to the SMT solver. For each satisfiable
path, our system produces a test-case that exercises that path. Notice that,
within the depth constraints given here, together with the size constraints given

SMT-Based Test-Case Generation and Validation 203

in the precondition, the number of feasible paths obtained is rather small. If
more (deeper) paths were desired, the sizes given in the precondition should be
adjusted correspondingly. For instance, if we wish 5-depth paths in the insertList
function, that means that at least 4 recursive calls should be performed, and then
lists of at least size 4 should be allowed in the precondition.

For programs evaluating complex conditions in let bindings or in case expres-
sions, it may happen that the solver cannot find a model, even if the set of con-
straints is satisfiable. In this situation, we would obtain neither sat nor unsat
as the solver answer, but unknown. If the SMT answered sat for all the UUT
feasible paths, then we would obtain a test suit covering all the UUT execution
paths up to the given depth.

After running all the cases generated by the system, we found half a dozen
of failing UUTs. For each failing case, the system reports the input arguments
given to the UUT and the results obtained. As the cases were usually very
small, it was easy to locate the error. In two of them, they were actual errors
in the implementation and, in the remaining four, the code was correct, but the
specification was not: some postconditions were wrong, or so were the definitions
of some predicates.

As we anticipated in the Introduction section, the effort of writing formal
specifications pays off. Thanks to them, our system was able to automatically
generate, run, and validate a high number of test-cases, which helped us to refine
both the specification and the implementation before embarking in a formal
verification effort.

7 Related and Future Work

We have not found much literature for synthesizing test-cases from a precon-
dition. The system Korat [4] was able to create relatively complex Java data
structures such as binary search trees satisfying an executable JML assertion.
The idea is similar to our previously cited work [2]: the system generates all
possible trees and then filter out those satisfying the assertion. A more recent
work [7] generates test-cases from Prolog predicates used as assertions in pre-
conditions. Prolog predicates can be regarded both as executable assertions and
as test-case generators. In the latter case, the logical variables used as argu-
ments are not instantiated, so the predicate generates—if there are no cuts—all
the ground terms satisfying it. The depth-first search is replaced by a random-
search in order to generate a random set of test-cases.

A closer approach to the one presented here is the use of the Alloy system
[12,13] for syntesizing complex data structures. The system uses an specification
language based on the language Z, and translates these specifications into a SAT
formula. The language gives neither support for recursion nor for quantified
formulas, but it includes sets, relations, and regular expressions. Integers are
encoded in the SAT formula as bit sequences. With some specification effort,
they have been able to synthesize red-black trees. Given the lack of support of
SAT solvers for complex theories, the generated formulas need a huge number of
boolean variables, so only small cases could be synthesized in a reasonable time.

204 R. Peña et al.

We have not found any literature on using SMT solvers and formal postcon-
ditions to validate the results returned by the program under test.

As future work, we plan to make the system more generic in the sense that
it could process definitions of new datatypes and predicates, and could generate
test-cases for them. For the moment, we can deal with a fix set of datatype defi-
nitions for arrays, lists, and a number of different trees. The recursive functions
and predicates for these datatypes are currently directly defined in the SMT
language.

References

1. Anand, S., et al.: An orchestrated survey of methodologies for automated software
test case generation. J. Syst. Softw. 86(8), 1978–2001 (2013). https://doi.org/10.
1016/j.jss.2013.02.061

2. Aracil, M., Garćıa, P., Peña, R.: A tool for black-box testing in a multilanguage
verification platform. In: Proceedings of the XVII Jornadas sobre Programación y
Lenguajes, PROLE 2017, Tenerife, Spain, September 2017, pp. 1–15 (2017)

3. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of
Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp.
825–885. IOS Press (2009). https://doi.org/10.3233/978-1-58603-929-5-825

4. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on Java
predicates. In: Frankl, P.G. (ed.) Proceedings of the International Symposium on
Software Testing and Analysis, ISSTA 2002, Roma, Italy, 22–24 July 2002, pp. 123–
133. ACM (2002). https://doi.org/10.1145/566172.566191, http://doi.acm.org/10.
1145/566172.566191

5. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Draves, R., van Renesse,
R. (eds.) 8th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2008(December), pp. 8–10, 2008. San Diego, California, USA, Proceed-
ings, pp. 209–224. USENIX Association (2008). http://www.usenix.org/events/
osdi08/tech/full papers/cadar/cadar.pdf

6. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013). https://doi.org/10.1145/2408776.2408795

7. Casso, I., Morales, J.F., López-Garćıa, P., Hermenegildo, M.V.: An integrated app-
roach to assertion-based random testing in prolog. In: Gabbrielli, M. (ed.) LOPSTR
2019. LNCS, vol. 12042, pp. 159–176. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45260-5 10

8. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Odersky, M., Wadler, P. (eds.) Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming (ICFP 2000),
Montreal, Canada, 18–21 September 2000, pp. 268–279. ACM (2000). https://
doi.org/10.1145/351240.351266, http://doi.acm.org/10.1145/351240.351266

9. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compil-
ing with continuations. In: Cartwright, R. (ed.) Proceedings of the Conference
on Programming Language Design and Implementation (PLDI 1993), pp. 237–
247. ACM (1993). https://doi.org/10.1145/155090.155113, http://doi.acm.org/10.
1145/155090.155113

https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1145/566172.566191
http://doi.acm.org/10.1145/566172.566191
http://doi.acm.org/10.1145/566172.566191
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1007/978-3-030-45260-5_10
https://doi.org/10.1007/978-3-030-45260-5_10
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
http://doi.acm.org/10.1145/351240.351266
https://doi.org/10.1145/155090.155113
http://doi.acm.org/10.1145/155090.155113
http://doi.acm.org/10.1145/155090.155113

SMT-Based Test-Case Generation and Validation 205

10. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Sarkar, V., Hall, M.W. (eds.) Proceedings of the ACM SIGPLAN 2005 Confer-
ence on Programming Language Design and Implementation, Chicago, IL, USA,
12–15 June 2005, pp. 213–223. ACM (2005). https://doi.org/10.1145/1065010.
1065036

11. Hughes, J.: Software testing with QuickCheck. In: Horváth, Z., Plasmeijer, R.,
Zsók, V. (eds.) CEFP 2009. LNCS, vol. 6299, pp. 183–223. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17685-2 6

12. Jackson, D., Schechter, I., Shlyakhter, I.: Alcoa: the Alloy constraint analyzer. In:
Ghezzi, C., Jazayeri, M., Wolf, A.L. (eds.) Proceedings of the 22nd International
Conference on on Software Engineering, ICSE 2000, Limerick Ireland, 4–11 June
2000, pp. 730–733. ACM (2000). https://doi.org/10.1145/337180.337616

13. Khurshid, S., Marinov, D.: TestEra: specification-based testing of Java programs
using SAT. Autom. Softw. Eng. 11(4), 403–434 (2004). https://doi.org/10.1023/
B:AUSE.0000038938.10589.b9

14. Montenegro, M., Nieva, S., Peña, R., Segura, C.: Liquid types for array invariant
synthesis. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 289–306. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 20

15. Montenegro, M., Peña, R., Sánchez-Hernández, J.: A generic intermediate rep-
resentation for verification condition generation. In: Falaschi, M. (ed.) LOPSTR
2015. LNCS, vol. 9527, pp. 227–243. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-27436-2 14

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

17. Pasareanu, C.S., Visser, W.: A survey of new trends in symbolic execution for
software testing and analysis. STTT 11(4), 339–353 (2009)

18. Peña, R., Sánchez-Hernández, J.: White-box path generation in recursive pro-
grams. In: Byrski, A., Hughes, J. (eds.) TFP 2020. LNCS, vol. 12222, pp. 121–135.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57761-2 6

19. Reynolds, A., Blanchette, J.C., Cruanes, S., Tinelli, C.: Model finding for recursive
functions in SMT. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI),
vol. 9706, pp. 133–151. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40229-1 10

20. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C.
In: Wermelinger, M., Gall, H.C. (eds.) Proceedings of the 10th European Soft-
ware Engineering Conference held jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2005, Lisbon, Portugal, 5–
9 September 2005, pp. 263–272. ACM (2005). https://doi.org/10.1145/1081706.
1081750

21. Toda, T., Soh, T.: Implementing efficient all solutions SAT solvers. ACM J. Exp.
Algorithmics 21(1), 1.12:1–1.12:44 (2016). https://doi.org/10.1145/2975585

https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1007/978-3-642-17685-2_6
https://doi.org/10.1145/337180.337616
https://doi.org/10.1023/B:AUSE.0000038938.10589.b9
https://doi.org/10.1023/B:AUSE.0000038938.10589.b9
https://doi.org/10.1007/978-3-319-68167-2_20
https://doi.org/10.1007/978-3-319-68167-2_20
https://doi.org/10.1007/978-3-319-27436-2_14
https://doi.org/10.1007/978-3-319-27436-2_14
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-57761-2_6
https://doi.org/10.1007/978-3-319-40229-1_10
https://doi.org/10.1007/978-3-319-40229-1_10
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/2975585

Layerings of Logic Programs - Layer
Decomposable Semantics and Incremental

Model Computation

Alexandre Miguel Pinto1 and Luı́s Moniz Pereira2(B)

1 Signal AI, London, UK
alexandre.pinto@signal-ai.com

2 Department of Computer Science, Universidade Nova de Lisboa, Lisbon, Portugal
lmp@fct.unl.pt

Abstract. Model calculation of Logic Programs (LPs) is a computational task
that depends both on the size of the LP and the semantics considered for it. With
ever growing size and diversity of applications using logic programs as repre-
sentations of knowledge bases, there is a corresponding growing need to opti-
mize the efficiency of model computation. In this paper we define two graph-
theoretical structures, which we dub the Rule Layering and the Atom Layering,
induced by the LP’s syntactic dependencies that allow us to develop an algorithm
for incremental, and possibly distributed, model computation. This algorithm is
parameterizable by the semantics considered for the LP, but because it relies on
the Layerings notions it is suitable only for a certain family of semantics, which
includes the Stable Models and the Well-Founded Semantics. We conclude the
paper with some preliminary complexity results and a characterization of the fam-
ily of semantics our approach captures.

Keywords: Logic Programs · Layerings · Model Computation · Stratification

1 Introduction

Logic Programs (LPs) are commonly used as one of the knowledge representation and
reasoning formalisms for the development of knowledge bases, deductive databases and
intelligent software agents in general. During the last decades the tools and results of
this formalism have been continuously growing mature, and as a consequence LPs have
been successfully used to model increasingly larger and more complex domains with
accompanying growing complexity of reasoning tasks. Some of the most common rea-
soning tasks with LPs are skeptical reasoning, which corresponds to checking whether
a conjunction of literals is true in all models of the LP, and credulous reasoning, which
corresponds to checking whether a conjunction of literals is true in some model of
the LP. Hence the computational complexity and performance of the reasoning tasks
is highly dependent on the model computation task, and it is the role of the partic-
ular semantics chosen for the LP to dictate which interpretation(s) is (are) accepted
as model(s). On the other hand, it is both the specific kinds of applications an LP is

c© Springer Nature Switzerland AG 2023
P. Lopez-Garcia et al. (Eds.): Hermenegildo Festschrift 2022, LNCS 13160, pp. 206–221, 2023.
https://doi.org/10.1007/978-3-031-31476-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31476-6_11&domain=pdf
http://orcid.org/0000-0003-0577-0939
http://orcid.org/0000-0001-7880-4322
https://doi.org/10.1007/978-3-031-31476-6_11

Layerings of Logic Programs - Layer Decomposable Semantics 207

being used for, and the overall properties required of the whole LP-based system, that
determine which semantics one should choose for the LP. With ever growing size and
diversity of applications using LP there is a corresponding growing need to optimize
the efficiency of model computation.

In this paper we contribute to the optimization of model computation by devising a
generic method and a distributable and incremental algorithm for model computation of
LPs which is parameterizable by the particular semantics chosen by the user. We do so
by first identifying and taking advantage of the graph-theoretical structure induced by
the syntactic dependencies in an LP. As a consequence, we introduce two new graph-
theoretical structural properties of LPs, the Rule Layering and the Atom Layering; and
our generic method and algorithm for incremental model computation and show it can
be used to compute the Stable Models [8], the Well-Founded Model [7], and also models
of other semantics. Indeed, our approach allows us to define and characterize the family
of semantics our method can capture, and we do so in the paper before presenting
preliminary complexity results and conclusions and future work.

1.1 Background and Notation

We consider here the usual notions of alphabet, language, atom, literal, rule, and
(logic) program. A literal is either an atom A or its default negation not A. We
dub default literals those of the form not A. Without loss of generality we con-
sider only ground normal logic programs, consisting of normal rules of the form
H ← B1, . . . ,Bn,not C1, . . . ,not Cm, (with m,n ≥ 0 and finite) where H, the Bi and the
Cj are ground atoms. In conformity with the standard convention, we write rules of the
form H ← also simply as H (known as “facts”). An LP P is called definite if none of its
rules contain default literals. If r is a rule we denote its head H by head(r), and body(r)
denotes the set {B1, . . . ,Bn,not C1, . . . ,not Cm} of all the literals in its body. We write
HP to denote the Herbrand Base of P.

We abuse the ‘not’ default negation notation applying it to sets of literals too: we
write not S to denote {not s : s ∈ S}, and confound not not a ≡ a. When S is an arbi-
trary, non-empty set of literals S= {B1, . . . ,Bn,not C1, . . . ,not Cm} we use the following
notation:

– S+ denotes the set {B1, . . . ,Bn} of positive literals in S
– S− denotes the set {not C1, . . . ,not Cm} of negative literals in S
– |S| denotes the set {B1, . . . ,Bn,C1, . . . ,Cm} of atoms of S

Besides containing normal rules as above, LPs may also include rules with a non-
empty body and where the head is the special symbol ⊥ which are known as a type
of Integrity Constraints (ICs), specifically denials, and they are normally used to prune
out unwanted models of the normal rules part. We write heads(P) to denote the set of
heads of non-IC rules of an LP P, and f acts(P) to denote the set of facts of P.

2 Layerings of Logic Programs

We aim at devising an incremental algorithm for model computation which should be
parameterizable by a chosen semantics and it should allow some degree of paralleliza-
tion. In order to develop such a generic and parameterizable method, we resort to a

208 A. M. Pinto and L. M. Pereira

divide-and-conquer approach using the syntactic features of the LP: first we identify its
syntactic components dividing the LP into, as much as possible, independent modules;
then we use the chosen semantics to compute individual models for each component
and module; and finally we combine the individual models to obtain a global one for
the whole LP. As we will see, this approach is suitable only for a restricted family
of semantics, which includes, among others, the Stable Models (SMs), and the Well-
Founded Semantics (WFS), but not, e.g., the Minimal Models semantics.

2.1 The Structure of Logic Programs

The traditional approach to identify the knowledge structure in an LP considers the
atom dependency graph of the LP.

Definition 1. Atom graph. DG(P) is the atom dependency (directed) graph of the LP
P where the atoms of P are the vertices of DG(P), and there is a directed edge from a
vertex A to a vertex B iff there is a rule in P with head B such that A appears in its body.

But as the author of [2] puts it, relating the Dependency Graph with the Answer Set
semantics [8,11], “it is well-known, the traditional Dependency Graph (DG) is not able
to represent programs under the Answer Set semantics: in fact, programs which are
different in syntax and semantics, have the same Dependency Graph.” Here we define a
generic method and algorithm for model computation which, while encompassing SMs,
is not limited to it and so the “traditional” atom DG is also not enough for our purposes.
In the literature, we find also the rule graph, introduced in [4].

Definition 2. Rule graph (Definition 3.8 of [4]). Let P be a reduced negative NLP
(i.e., there are only negative literals in the bodies of rules). RG(P) is the rule graph of
P where the rules of P are the nodes of RG(P), and there is an arc from a node r1 to a
node r2 iff the head of rule r1 appears in the body of the rule r2.

But, as the author of [2] says, “in our opinion it would be difficult to define any practical
programming methodology on the basis of the rule graph, since it does not graphically
distinguish among cases which are semantically very different.” This sentence assumes
not only that the underlying semantics is the SMs, but also that the arcs in the rule graph
are supposed to contain all the semantic information of the program. Besides, the rule
graph, as defined in [4], presupposes reduced negative programs. As we shall see below,
our approach to rule graphs considers its structural information as a crucial necessary
part in determining the semantics of the program, but not a sufficient one. Thus, we will
be able to define a practical programming methodology on the basis of the rule graph,
plus other semantic constructs, namely, hypotheses assumption, as per the sequel.

The next definition extends the rule graph one (Definition 2), in the sense that it is
applicable to all LPs and not just to reduced negative logic programs.

Definition 3. Complete Rule Graph. The complete rule graph of an LP P (denoted by
CRG(P)) is the directed graph whose vertices are the rules of P, and there is a directed
edge from vertex r1 to vertex r2 in CRG(P) iff the head of rule r1 appears, possibly
default negated, in the body of r2.

Layerings of Logic Programs - Layer Decomposable Semantics 209

In the rest of the paper we assume P is a Logic Program and CRG(P) denotes its
Complete Rule Graph. In order to identify and take advantage of the graph-like syntactic
structure of an LP we need to introduce all the syntactic dependencies notions we will
be using.

Definition 4. Dependencies in a program. A rule r2 directly depends on r1 (written as
r2 ← r1) iff there is a direct edge in CRG(P) from r1 to r2; we say r2 depends on r1

(r2 � r1) iff there is a directed path in CRG(P) from r1 to r2.
We also consider the other combinations of (direct) dependencies amongst atoms

and rules, and use the same graphical notation (←,�) to denote (direct, indirect)
dependency. Rule r directly depends on atom a iff a ∈ |body(r)|; and r depends on a iff
either r directly depends on atom a or r depends on some rule r′ which directly depends
on a. An atom a directly depends on rule r iff head(r) = a; and a depends on r iff either
a directly depends on r or a directly depends on some rule r′ such that r′ depends on
r. An atom b directly depends on atom a iff a appears (possibly default negated) in the
body of a rule with head b, and b depends on a iff either b directly depends on a, or b
directly depends on some rule r which depends on a.

Alongside with the graph perspective of logic programs is the classical notion of
stratification, usually associated with the atom dependency graph.

Definition 5. Stratification [15]. A program P is stratified if and only if it is possible to
decompose the set S of all predicates of P into disjoint sets S1, . . . ,Sr, called strata, so
that for every clause A ← B1, . . . ,Bm,not C1, . . . ,not Cn, in P, where A’s, B’s and C are
atoms, we have that: ∀istratum(Bi) ≤ stratum(A) and ∀ jstratum(Cj)< stratum(A)
where stratum(A) = i, if the predicate symbol of A belongs to Si. Any particular decom-
position {S1, . . . ,Sr} of S satisfying the above conditions is called a stratification of
P.

This notion fails to capture all the structural information of a program since it
focuses only on the atoms’, thereby confounding the specific dependencies for each
particular rule. Moreover, there are cases of programs which have no stratification what-
soever, in particular ones with loops over negation. We now put forward the Layerings
notions of LPs; these are applicable to all programs and capture all the structural infor-
mation in each one.

Definition 6. Rule Layering. Let P be an LP with no infinitely long descending chains
of dependency. A rule layering function L f/1 of P is a function mapping each vertex of
CRG(P) (a rule r of P) to a non-zero ordinal such that

∀r1,r2∈P
{
L f (r1) = L f (r2) ⇐ (r1 � r2) ∧ (r2 � r1)
L f (r1)> L f (r2) ⇐ (r1 � r2) ∧ ¬ (r2 � r1)

A rule layering of P is thus a partition . . . ,Pi, . . . of P such that Pi contains all rules
r having L f (r) = i. We write P<α as an abbreviation of

⋃
β<α Pβ , and P≤α as an

abbreviation of P<α ∪Pα , and define P0 = P≤0 = /0. It follows immediately that P =⋃
α Pα =

⋃
α P≤α , and also that the ≤ relation between layers is a total-order in the

sense that Pi ≤ Pj iff i ≤ j.

210 A. M. Pinto and L. M. Pereira

Amongst the several possible rule layerings of P we can always find the least one,
i.e., the rule layering with least number of layers, where the ordinals of the layers are
the smallest possible, and where the ordinals of L f (r), for each rule r, are also the
smallest possible, whilst respecting the rule layering function assignments. This least
rule layering is easily seen to be unique.
N.B.: In the following, when referring to the program’s “layering”, we mean just such
least rule layering. Likewise, there is also a least stratification. We address the relation-
ship between strata and layers in the sequel.1

The Rule Layering definition above states that two rules are placed in the same
layer if they depend on each other. This is an if, not an if and only if. I.e., according
to Rule Layering, two rules can be placed in the same layer when, e.g., they have no
dependencies amongst them. In the following example, the rules x ← not x and e ← e
are placed in the same layer despite there being no dependencies whatsoever between
them.

Example 1. Rule Layering example. Consider the following program P, depicted
along with the layer numbers for its least layering:

Program P with its rules distributed along the layers.

b ← not b d ← not c c ← not d,not y,not a P3 — Layer 3
b ← not x y ← not x z ← f P2 — Layer 2
x ← not x e ← e f P1 — Layer 1
/0 P0 — Layer 0

Atom f has a fact rule: its body is empty (it depends on no other rule), and therefore
it is placed in the lowest possible layer: P1. The unique rule for x is also placed in Layer
1 in the least layering of P because it depends only on itself. Likewise for rule e ← e.
Rules b ← not x and y ← not x are necessarily placed strictly above Layer 1 because
they both depend directly on the rule for x, which in turn does not depend on any
of them. So, both these rules for y and for b are placed in Layer 2, P2, in the least
layering of P. For the same reason, rule z ← f is placed in Layer 2, because it depends
on the (fact) rule for f which is in Layer 1. Notice this important difference between
Layering and Stratification: the Layering does not distinguish between positive and
negative dependencies nor does it treat such cases differently, as the Stratification does
(cf. Definition 5). For the Layering notion the only important factor is the existence

1 The layers notion in [10] have some similarities with the ones presented in Definition 6 when
applied toCRG(P), but the former (Definition 6.2 of [10]) has the limited role of providing the
scaffolding of a transfinite inductive definition of the weakly perfect model which is a subset
of the Well-Founded Model (as per Corollary 6.9 of [10]). The layering notion presented here,
although similar to [13], is not equivalent to it and has a standing of its own as an important
syntactical ordering, besides its structuring influence inducing certain desirable characteristics
of models of a semantics, as we shall see later.

Layerings of Logic Programs - Layer Decomposable Semantics 211

of, or lack thereof, syntactic dependency, regardless of it being through a positive or
negative literal. This is the reason why the Layering puts rule z ← f in a layer strictly
above that of the fact f (because z ← f depends on fact f and not vice-versa), whereas
Stratification would allow atom z to be in the same stratum as atom f (because z ← f
depends positively on fact f). I.e., Layering and the Stratification use different criteria
to assign layer/stratum ordinal indices.

Rule b ← not b is placed strictly above all other rules for b that do not depend on
b, i.e., on Layer 3, P3. The rule for c is placed strictly above the rule for y because it
depends on not y and no rule for y depends on any rule for c. The rule for d is placed in
the same Layer as the rule for c because they depend on each other. Hence, both rules
for c and d are placed in Layer 3, P3.

The Rule Layering tries to capture the ordo cognoscendi implicit in the knowledge
expressed by the program. The algorithm we present in the sequel takes advantage of
this ordering to incrementally construct models of the program. Building upon the (rule)
layering we can now define the Atom Layering—a notion similar to that of stratification.

Definition 7. Atom-Layering of a Logic Program P. Let L f/1 be a rule layering func-
tion of P. An atom layering function AL f/1 is defined over the atoms of P, assigning
each a ∈ HP an ordinal, s.t.

AL f (a) =
{
lubr∈P:head(r)=a(L f (r)) if ∃r∈Phead(r) = a

0 otherwise

where lub stands for the least upper bound—in this case, the least upper bound of all
the rule layer ordinals for layers containing a rule with the atom a as head.

An atom layering of program P is a partition . . . ,Ai
P, . . . of HP s.t. Ai

P contains

all atoms a having AL f (a) = i. We write A<α
P as an abbreviation of

⋃
β<α Aβ

P, and

A≤α
P as an abbreviation of A<α

P ∪Aα
P , and define A<0

P = /0. It follows immediately that
HP =

⋃
α Aα

P =
⋃

α A≤α
P , and also that the ≤ relation between layers of atoms is a

total-order in the sense that Ai
P ≤ Aj

P iff i ≤ j.
Amongst the several possible atom layerings of a program P we can always find

the least one corresponding to the definition of “atom layering function” AL f/1 based
upon the program’s least rule layering function L f/1. In the following, when referring
to the program’s “atom layering”, we mean just such least atom layering, and we will
explicitly mention “atom”, as in “atom layering” to make the distinction from (rule)
layering.

This notion of atom layering is a level-mapping [9,10] because, as explained in [10],
“Level mappings are mappings from Herbrand bases to ordinals, i.e. they induce order-
ings on the set of all ground atoms while disallowing infinite descending chains” and
the atom layering does induce such an ordering while disallowing infinite descending
chains. Moreover, the atom layering also exists for programs with loops, where in such
cases there are no stratifications, and in that sense the atom layering is more general than
the stratification notion. Also, due to the definition of dependency, in general, atom lay-
erings do not coincide with stratifications [1], nor do rule layers coincide with the layers
definition of [14]. When a program is not stratified there are nonetheless atom layerings.

212 A. M. Pinto and L. M. Pereira

However, when the program at hand is stratified (according to [1]) it can easily be seen
that there is a relation between its atom layerings and its stratifications. A stratification,
applicable to atoms, may put two atoms in the same stratum if one of them only depends
through positive arcs on the other (without any reciprocal dependency), whereas, under
the same conditions, an atom layering would put them in different layers—cf. Example
2 below concerning rule z ← f . So, for each stratification there is an atom layering,
possibly with more layers than the strata there are in the stratification. On the other
hand, assuming the program is stratified, for each atom layering there is a stratification.
Moreover, there is a clear correspondence between a stratification and the least atom
layering for acyclic programs—in this case the only difference relates to the atoms
whose rules have only positive dependencies on some other atom. The motivation for
this difference between layering and stratification, in what positive dependencies are
concerned, is mainly a matter of uniformity and simplicity of the definition of layering,
specifically regarding distinguishing reciprocal from non-reciprocal dependencies and
layer/stratum ordinal assignment.

Example 2. Atom Layering example. Consider again the program from Example 1,
now depicted along with both its least rule layering and least atom layering: Atom a
has no rules, therefore it is placed in atom-layer 0: A0

P. Atoms x,e, f have only one rule
in Layer 1; they are placed in atom-layer 1: A1

P. Atoms y,z have only one rule in Layer
2; they are placed in atom-layer 2: A2

P. Atom b has two rules: one in Layer 2 and the
other in Layer 3, therefore it is placed in atom-layer 3 which is the maximum of its
rules’ layers: A3

P. Atoms c,d only have rules in Layer 3: they go in A3
P.

NLP’s rules and atoms distributed along the program’s Rule and Atom least Layerings.

Rule Layer Atom Layer Layer Index
P3 = {b ← not b d ← not c c ← not d,not y,not a} A3

P = {b,c,d} 3
P2 = {b ← not x y ← not x z ← f} A2

P = {y,z} 2
P1 = {x ← not x e ← e f} A1

P = {x,e, f} 1
P0 = /0 A0

P = {a} 0

The following, results immediately from the previous definitions of (least) atom
layering and (least) rule layering—the interested reader can find their formalizations
and proofs in appendix.

Result: The least atom layering of an atom identifies the highest layer with rules for
the atom; and a rule’s layer is greater than or equal to each of the body’s literals’ atom-
layering.

Result: Considering the Strongly Connected Components [12] (SCCs) of rules in the
CRG(P), rules in the same SCC are in the same layer.

Layerings of Logic Programs - Layer Decomposable Semantics 213

Result: If SCC1 and SCC2 are two distinct SCCs of rules in CRG(P), and some rule
r2 ∈ SCC2 depends on some rule r1 ∈ SCC1 then all rules in SCC2 are in layers strictly
above that of the rules in SCC1.

2.2 Layers and Strongly Connected Components of Rules

The mutual syntactic dependencies among rules are a central factor in the definitions
of the Layerings notions. A parameterizable incremental (“layer-wise”) algorithm to
compute models according to a user-chosen semantics must be as general as possible, in
what the particular chosen semantics is concerned. In that regard, the specific semantics
might interpret the rules of the program in loop (in an SCC inCRG(P)) differently from
the rules in non-circular dependencies. To that effect, our algorithm will need to be able
to distinguish the parts of the bodies of rules which are in loop with the rule, i.e., which
literals in the body of a rule have corresponding atoms appearing as heads of rules,
depending on the considered rule.

Layers and Bodies of Rules. The (least) atom layering of a program allows to partition
the body of any given rule into atom-layer indexed subsets.

Definition 8. Atom-layer partition of a rule’s body. The body(r) of a rule r of an LP
P can be partitioned into subsets . . . ,body(r)α , . . . such that each

body(r)α = {Bi ∈ body(r)+ : AL f (Bi) = α}∪{not Cj ∈ body(r)− : AL f (Cj) = α}

It follows immediately from previous results and this definition that:

Result: A rule’s layer index is greater than or equal to each of the body’s subsets
indices, i.e.,
∀body(r)α⊆body(r)L f (r) ≥ α , and also that:

Result: A rule’s body literals in a loop have atom-layering equal to the rule’s layer, i.e.,
∀a∈HP

r∈P
(a ∈ |body(r)L f (r)| ⇒ AL f (a) = L f (r)).

body(r)L f (r) is then the set of literals of body(r) which are in loop with r, and
body(r)\body(r)L f (r) the literals of body(r) not in loop with r. In the sequel we write
simply body(r) as an abbreviation of body(r)\body(r)L f (r), which represents the subset
of literals in the body of r whose corresponding atoms have all their rules, if any, in
layers strictly below that of r.

2.3 Transfinite Layering

Layering also copes with programs with a transfinite number of layers as long as there
is no infinitely long descending chain of dependencies. In practice, all useful programs
have a finite number of layers, but for theoretical completeness we show that this layer-
ing notion also deals with the transfinite case.

214 A. M. Pinto and L. M. Pereira

Example 3. Program with transfinite number of layers. Let P=

p(s(X)) ← p(X)
p(0)

The ground (layered) version of this program, assuming there is only one constant 0
(zero) is:

... ← ...
p(s(s(0))) ← p(s(0))

p(s(0)) ← p(0)
p(0)

This program has a layering even though it has an infinite chain of dependencies. This
is the case since that infinite chain is ascending—this program has a transfinite number
of layers.

A typical case of a program with no layering (representing a whole class of pro-
grams with real theoretical interest) has an infinitely long descending chain of depen-
dencies, and was presented by François Fages in [6]:

Example 4. Program with no layering [6].

p(X) ← p(s(X)) p(X) ← not p(s(X))

Its ground version, assuming only one constant 0 (zero), is:

p(0) ← p(s(0)) p(0) ← not p(s(0))
p(s(0)) ← p(s(s(0))) p(s(0)) ← not p(s(s(0)))

p(s(s(0))) ← p(s(s(s(0)))) p(s(s(0))) ← not p(s(s(s(0))))
... ← ...

... ← ...

3 Layer-Decomposable Semantics and Incremental Model
Computation

With the Layerings notions presented we have captured all the structural information
behind the knowledge represented within an LP. We now argue that every semantics
for LPs should comply with this structure in the sense that a model for the whole
LP should be decomposable into mutually consistent individual models for each layer.
Assuming this premise, we propose a bottom-up, and layer-wise incremental, algo-
rithm that allows us to calculate the models of every semantics complying with this
layer-decomposability principle. We show that, among others, the Stable Models and
the Well-Founded Model can be computed in this way. Finally, we characterize the
members of this Layer-Decomposable family of semantics.

Intuitively, we say a semantics for LPs is Layer-Decomposable iff all its models are
decomposable into a partition of subsets, each of which is a model for an individual
layer, containing all the atoms determined necessarily true in that layer, and the default

Layerings of Logic Programs - Layer Decomposable Semantics 215

negation of all atoms necessarily false, and, what is more, also compliant with all the
models for the other layers, where compliance can be achieved by requiring consistency
of the union of individual layers’ models. The unique model for layer 0 is the set of
default negated literals corresponding to the atoms of P with no rules.

As model computation is concerned, a pure guess-and-check algorithm, in the sense
that we guess individual interpretations for each layer, and check if their union is a
model (according to the chosen semantics) of the global program, would be too naı̈ve.
Instead, we propose an incremental layer-wise bottom-up algorithm where we progres-
sively restrict the freedom of the guesses for each layer, by beforehand enforcing in
that layer the truthfulness of the sub-model chosen for the layers below it. As pointed
out before in Sect. 2.2, in order to build an algorithm that is correct also for computing
models of semantics that distinguish circular dependencies from non-circular ones, we
must have a syntactic method of restricting the freely available guesses in each layer,
which is sensitive to circular dependencies. For comparison with classical approaches
that do not make such a syntactic distinction, we also define a (classical) method of
restricting the guesses regardless of circularity or otherwise of dependencies. We dub
these, respectively, Layer Division and Classical Division.

Definition 9. Classical Division. Let I be a 3-valued interpretation of the LP P. The
classical division of P by I, denoted by P :: I, is the program we get after deleting
from P all the rules r with body(r) inconsistent with I, and deleting all literals in I
from the bodies of the remaining rules. I.e., P :: I = {head(r) ← (body(r) \ I) : r ∈
P∧ (not body(r))∩ I = /0}.
Definition 10. Layer Division. Let I be a 3-valued interpretation of the LP P. The
layer division of P by I, denoted by P : I, is the program we get after deleting all the
rules r from P with body(r) inconsistent with I and deleting all literals in I from the
parts of bodies not in loop of the remaining rules. I.e., P : I = {head(r) ← (bodyL f (r) ∪
(body(r)\ I)) : r ∈ P∧ (not body(r))∩ I = /0}.
In both Definitions 9 and 10, the interpretation I is a set of assumed hypotheses.

We can now use the syntactic scaffolding of layers, along with the correspond-
ing Layer Division, to define the Layer-Decomposable semantics family. Intuitively, a
model M is Layer-Decomposable iff it can be decomposed into a set of sub-models
{M≤0, . . . ,M≤α , . . . ,M≤ω}, each of which referring to the set of layers ≤ α of P, i.e., to
P≤α . Each sub-model M≤α takes as assumed hypotheses the truth values for all atoms in
M<α , which include A<α

P . We then enforce M<α , in a Layer-support-consistent fashion,
in the rules of Pα via Layer Division.

Definition 11. Layer Decomposable Model. Let P be an LP, and M a model of P
according to semantics Sem. M is Layer Decomposable in P iff there is a Layer Decom-
position {M≤0, . . . ,M≤α , . . . ,M≤ω} of M in P, i.e., M =

⋃
α≥0M≤α such that every Mα

is a model of Pα : M<α according to Sem, where M<0 =M+
≤0 = /0. If Sem is a 2-valued

semantics, then Mα =M+
α and M+

≤α =M+
α ∪M+

<α and M−
≤α = not (A≤α

P \M+
≤α). If Sem

is 3-valued, then M+
≤α =M+

α ∪M+
<α and M−

≤α =M−
α ∪M−

<α .

Each M≤α is a 3-valued interpretation of P where M+
≤α states which atoms are believed

to be true considering only the rules up to P≤α , and for 2-valued semantics, M−
≤α

216 A. M. Pinto and L. M. Pereira

states that all the atoms that were not determined true in M≤α and that have no
more rules in layers above Pα are necessarily determined false. It follows immedi-
ately that ∀α≤β M≤α ⊆ M≤β ; i.e. ({M≤α : α ≥ 0},⊆) is a total order with M≤0 and
M =

⋃
α≥0M≤α as its lower and upper bound, respectively. Sem is said Layer Decom-

posable iff all of its models are Layer Decomposable.
The Layer Division is more conservative than Classical Division, in the sense that it

deletes less rules and less literals from the bodies of the remaining rules. In this sense,
we can also define a Classically-Decomposable (CD) family of semantics, in every way
equal to the Layer-Decomposable one, except for that the CD family uses Classical
Division to restrict the available guesses instead of Layer Division, i.e., where Mα is
a model of Pα :: M<α . In this regard, every CD model is also an LD model. Classi-
cal Division closely follows the Gelfond-Lifschitz program division [8], and so every
model that complies with the GL division, like the SMs and the WFM, is also a CD
model, and in turn an LD model. The LD family is not trivial, in the sense that not all
semantics are LD; e.g., the Minimal Models are not LD. The program consisting of just
the rule a ← not b has two minimal models: {a} and {b}, where the second one is not
LD – since there are no rules for b it must be false in all LD models, which is not the
case with the minimal model {b}. Also, Layer Division is necessary for any 2-valued
semantics enjoying the Cumulativity property [5]—we illustrate this with example 5.
This is also the reason why the SM semantics is not Cumulative: because it does Clas-
sical Division, and not Layer Division.

4 Constructive Method for Computing Layer Decomposable
Models

From the above we now define a sound and complete constructive method, which is
guaranteed to terminate, for obtaining all the LD models of a finite ground program.

Definition 12. Constructive Method for Layer Decomposable models. Let P be an
NLP with a finite number n of layers. Then, since by definition P<α+1 = P≤α , all the
LD models of P can be constructed in the following manner

For a 2-valued semantics Sem, the guessing step only guesses the positive part of
the model for Pi+1

M≤i
. The guessed positive part is then complemented with the negation

of all atoms that have all the rules where they appear as head in layers up to i+ 1—
if the atom was not determined, or chosen, to be true, and there are no more rules in
the layers above that can render it true, then it must be assumed false right away and
henceforth. If, on the other hand, Sem is 3-valued, then the guessing step guesses both
a positive part M+

i+1 and a negative M−
i+1, where all the remaining atoms that still have

no truth-value guessed/assigned remain undefined (Fig. 1).
This iterative algorithm performs an incremental computation of a model, accord-

ing to the chosen Sem of the given program. By taking advantage of the layerings, the
algorithm can split what would otherwise be a single guess of a model for the whole
program, into a sequence of smaller guesses for the subsets of rules of the program in
individual layers, and use previously computed sub-models to restrict the still available
guesses in layers above. This method can also be modified to allow the parallelization

Layerings of Logic Programs - Layer Decomposable Semantics 217

Fig. 1. Algorithm BOTTOM-UP CONSTRUCT AN LDM PARAMETERIZED BY A SEMANTICS

of the computation of models for individual SCCs of rules within each layer, as they are
necessarily syntactically independent. This parallelization will allow for further reduc-
tion of the combinatorics of each guess.

The complexity of identifying the Rule Layering is dominated by detecting the
SCCs of rules in CRG(P) which is known to be a polynomial task [12]. The Atom
Layering can be computed in polynomial time from the Rule Layering. In our algo-
rithm, apart from the non-deterministic step of guessing a model of Pi+1

M≤i
, every step

in computable in polynomial time. So the overall complexity of the algorithm is poly-
nomial if guessing a model according to Sem is at most polynomial. Otherwise, the
complexity of the algorithm is the complexity of the guessing step.

5 Conclusions and Future Work

We have analyzed the syntactic structure of Logic Programs and have presented the
novel notions of Rule Layering and Atom Layering, which always exist for programs
with no infinitely long descending chains, even if there is no Stratification. Our new
notion of Layer Division allows us to define the Layer-Decomposable family of seman-
tics, of which the Stable Models and the Well-Founded Semantics are members, and we
present an incremental, and parallelizable, algorithm for bottom-up computation of LD
models. We show the Layer Division is a crucial ingredient in defining 2-valued seman-
tics that enjoy Cumulativity. Future work includes exploiting the semantic characteriza-
tion possibilities opened up by layered decomposability, implementing its parameteriz-
able LD model algorithm, and comparing its performance against current SM and WFS
implementations.

Acknowledgements. L.M.P. is supported by NOVA LINCS (UIDB/04516/2020) with the finan-
cial support of FCT- Fundação para a Ciência e a Tecnologia, Portugal, through national funds.

218 A. M. Pinto and L. M. Pereira

A Auxiliary Definitions, Results and Proofs

Proposition 1. The least atom layering of an atom identifies the highest layer with
rules for the atom. Let P be an LP, L f/1 its least rule layering function, and AL f/1 its
least atom layering function; then

∀a∈HPAL f (a) = α ⇔ (∀r∈P:head(r)=ar ∈ P≤α ∧ (α �= 0 ⇔ ∃r′∈Pαhead(r′)=a)
)

Proof. ⇒:
Assume a ∈ HP and AL f (a) = α . If a has rules then, by definition of

least atom layering function, we have AL f (a) = maxr∈P:head(r)=a(L f (r)), i.e., α =
maxr∈P:head(r)=a(L f (r)). This means that all rules r ∈ P having head(r) = a have
L f (r) ≤ α , and there is at least one rule r′ such that L f (r′) = α . I.e. ∀r∈P:head(r)=ar ∈
P≤α ∧∃r′∈Pαhead(r′)=a.

On the other hand, if a has no rules then, by definition of least atom layering func-
tion, we have AL f (a) = 0, i.e., α = 0. Thus, ∀r∈P:head(r)=ar ∈ P≤α becomes vacuously
true because, by hypothesis, a has no rules.

⇐:
Assume a∈HP and ∀r∈P:head(r)=ar∈P≤α . If a has rules then they are all in layers ≤

α . The layers ordinals’ maximum is thus α . I.e. maxr∈P:head(r)=a(L f (r))=α =AL f (a).
If a has no rules then, ∀r∈P:head(r)=ar ∈ P≤α vacuously holds for whichever ordinal.

In particular, ∀r∈P:head(r)=ar ∈ P≤0 holds, i.e., α = 0. Since a has no rules, by definition
of atom least layering AL f (a) = α = 0 also holds.

Proposition 2. A rule’s layer is greater than or equal to each of the body’s literals’
atom-layering.
∀ r∈P
a∈|body(r)|

L f (r) ≥ AL f (a).

Proof. Assume P an LP, r a rule of P and a an atom of HP such that a ∈ |body(r)|.
If a has no rules then, by definition of atom-layering function AL f (a) = 0, and since
by definition of rule-layering function ∀r∈PL f (r) ≥ 0 we conclude ∀ r∈P

a∈|body(r)|
L f (r) ≥

AL f (a).
If a has rules then, because r depends on a we know that r depends on every rule

ra such that head(ra) = a. By definition of rule-layering it must be either the case that
ra also depends on r—in which case L f (r) = L f (ra)— or that ra does not depend on
r—in which case L f (r) > L f (ra). Either way, L f (r) ≥ L f (ra) always holds for every
rule ra. In particular, L f (r) ≥ maxra∈P:head(ra)=a(L f (ra)), i.e., L f (r) ≥= AL f (a).

Proposition 3. Rules in the same SCC are in the same layer. ∀r,r′∈P(r � r′ ∧ r′ �
r) ⇒ L f (r) = L f (r′).

Proof. By definition of SCC, two rules r and r′ are in the same SCC iff r � r′ and
r′ � r hold; and by Definition 6, in that case, L f (r) = L f (r′) holds. Two rules in the
same SCC must also necessarily depend on each other, and, hence, be placed in the
same layer.

Layerings of Logic Programs - Layer Decomposable Semantics 219

Proposition 4. Layering of SCCs. If there is an edge from SCC1 to SCC2, with SCC1 �=
SCC2, in the SCCG(P) then ∀r1∈SCC1

r2∈SCC2

L f (r2)> L f (r1).

Proof. From Proposition 3 we know that all rules in SCC1 are in the same layer. Like-
wise, all rules in SCC2 are in the same layer. There is an arc from SCC1 to SCC2 in
the Directed Acyclic Graph (DAG) of SCCs of CRG(P) iff SCC2 depends on SCC1.
Since all rules of SCC2 depend on each other, they all also depend on SCC1, i.e., all the
rules of SCC2 depend on all the rules of SCC1. Since SCC1 and SCC2 are non-mutually-
dependent (otherwise they would form a unique SCC) and SCC2 depends on SCC1, it
must be the case, by Definition 6, that

∀r1∈SCC1
r2∈SCC2

L f (r2)> L f (r1)

Proposition 5. A rule’s body literals in a loop have atom-layering equal to the rule’s
layer.

∀a∈HP
r∈P

(a ∈ |body(r)L f (r)| ⇒ AL f (a) = L f (r))

Proof. It follows trivially from Definition 8.

Our focus on Layer-Decomposable Semantics stems also from the importance of
Layer Division (and, naturally, Layer Decomposability) versus Classical Division (and
Classical Decomposability) which is tied to the Cumulativity property [5]. In [3] the
authors stress the importance of the Cumulativity property and define an alternative
more credulous version of this property (dubbing it Extended Cumulativity, ECM, for
short). They also show that the SM semantics enjoys ECM although it does not enjoy
cumulativity. A 2-valued semantics for NLP can only enjoy Cumulativity if all its mod-
els are compatible with Layer Division.

Example 5. Layer Division is necessary for Cumulativity. Let P be

b ← a
a ← not b,c
c ← not a

which has no stable models. All the rules depend on each other, so they are all
in the same layer 1. This program has three classical models: M1 = {a,b,not c},
M2 = {not a,b,c}, and M3 = {a,b,c}. b is true in all models. If a semantics enjoys
Cumulativity then we can add b as a fact to P and the resulting semantics will remain
unchanged. P∪{b} is

b ← a
a ← not b,c
c ← not a
b

where the fact b is in layer 1 of P∪ {b} while the other three original rules are now
in layer 2 of P∪{b}. The unique model for layers up to 0 is M≤0 = /0, and the unique
model for layers up to 1 is M≤1 = {b}.

220 A. M. Pinto and L. M. Pereira

If we take a Classical Division then P2 :: M≤1 has the unique SM {b,c}. But now,
after adding b as a fact to the program, c becomes also true in every (just one) model—
the semantics has changed by the addition of an atom that was true in the semantics,
i.e., the semantics is not Cumulative.

If instead we take the Layer Division, then P2 : M≤1 = P2 and its semantics remains
unchanged, i.e., the semantics can enjoy Cumulativity. Let us see why: in this Layer
Division case the rule a ← not b,c is not deleted because, although b is a fact, there is
also another rule b ← a that depends on a ← not b,c, i.e., body(a ← not b,c) = /0.

The Layer Division is a crucial ingredient for Cumulativity exactly because it pre-
vents facts (that are always placed in layer 1) from deleting rules involved in loops and
depending on negation of the fact, and from deleting the facts from the bodies of rules
when they are in loop through that atom. Layer Division thus guarantees that loops are
not “broken” by facts, and so facts can safely be added to layer 1 without the risk of
changing the semantics of loops of rules.

References

1. Apt, K.R., Blair, H.A.: Arithmetic classification of perfect models of stratified programs.
Fundam. Inform. 14(3), 339–343 (1991)

2. Costantini, S.: Comparing different graph representations of logic programs under the answer
set semantics. In: Provetti, A., Son, T.C. (eds.) Answer Set Programming, Towards Efficient
and Scalable Knowledge Representation and Reasoning, Proc. of the 1st Intl. ASP’01 Work-
shop (2001)

3. Costantini, S., Lanzarone, G.A., Magliocco, G.: Layer supported models of logic programs.
In: Maher, M. (ed.) Procs. 1996 Joint International Conference and Symposium on Logic
Programming (JICSLP 1996), pp. 438–452, MIT Press, Cambridge, USA (1996)

4. Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and default theo-
ries. Theor. Comput. Sci. 170(1–2), 209–244 (1996)

5. Dix, J.: A classification theory of semantics of normal logic programs: I. strong properties.
Fundam. Inform. 22(3), 227–255 (1995)

6. Fages, F.: Consistency of Clark’s completion and existence of stable models. J. Methods Log.
Comput. Sci. 1, 51–60 (1994)

7. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic pro-
grams. J. ACM 38(3), 620–650 (1991)

8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Procs.
ICLP 1988, pp. 1070–1080 (1988)

9. Hitzler, P., Schwarz, S.: Level mapping characterizations of selector generated models for
logic programs. In: Wolf, A., Frühwirth, T.W., Meister, M. (eds.) W(C)LP. volume 2005–01
of Ulmer Informatik-Berichte, pp. 65–75. Universität Ulm, Germany (2005)

10. Hitzler, P., Wendt, M.: A uniform approach to logic programming semantics. TPLP 5(1–2),
93–121 (2005)

11. Lifschitz, V.: Answer set planning. In: Proceedings of the International Conference on Logic
Programming, pp. 23–37 (1999)

12. Nuutila, E., Soisalon-Soininen, E.: On finding the strongly connected components in a
directed graph. Inf. Process. Lett. 49, 9–14 (1994)

13. Pereira, L.M., Pinto, A.M.: Layer supported models of logic programs. In: Erdem, E., Lin,
F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI), vol. 5753, pp. 450–456. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-04238-6 41

https://doi.org/10.1007/978-3-642-04238-6_41

Layerings of Logic Programs - Layer Decomposable Semantics 221

14. Przymusinski, T.C.: Every logic program has a natural stratification and an iterated least
fixed point model. In: PODS, pp. 11–21. ACM Press (1989)

15. Przymusinski, T.C.: On the declarative and procedural semantics of logic programs. J.
Autom. Reason. 5(2), 167–205 (1989)

Modularization of Logic Programs

Alexandre Miguel Pinto1 and Lúıs Moniz Pereira2(B)

1 Signal AI, London, UK
alexandre.pinto@signal-ai.com

2 Department of Computer Science, Universidade Nova de Lisboa, Lisbon, Portugal

lmp@fct.unl.pt

Abstract. Standard software and knowledge engineering best practices
advise for modularity because, amongst other benefits, it facilitates
development, debugging, maintenance, composition and interoperability.
Knowledge bases written as Logic Programs are no exception, and their
corresponding semantics should enable such modularity. In this paper
we formally define several new syntactical notions and semantics prop-
erties that capture the notions of modularity and separation of concerns
applied to the LPs domain. Furthermore, we set forth other notions nec-
essary for top-down, call-graph oriented existential query answering with
2-valued semantics for LPs with Integrity Constraints.

Keywords: Modularization · Logic Programs · Credulous Reasoning ·
Properties · Semantics

1 Introduction

1.1 Context

Both in the academia and in the industry, development of intelligent software
systems is becoming increasingly more frequent due to the need to offer systems
and services that deliver more value to the end user. Larger and more distributed
teams collaborate in the development of such systems, including the Knowledge
Bases (KBs) they are built upon. In this paper we focus on the usage of Logic
Programs (LPs) as the means to encode the KBs and the usual credulous and
sceptical reasoning tasks as the mechanisms to solve the computational problem
the system is intended to. LPs have been used successfully to represent and solve
several kind of problems including combinatorial search, planning, abduction,
diagnosis, constraint solving and many others.

The different kinds of problems and the respectively distinct intended usages
of the LP-based systems require different reasoning mechanisms. Whenever the
LP-based system is intended to allow the user to explore alternative scenarios
a 2-valued semantics, e.g., Stable Models (SMs) [5], is the adequate choice for
the LP as, in general, these allow for more than one model. Under this setting
the individual models can represent the different scenarios. Credulous reasoning
can then be used to find one, or more, of the individual models that satisfy a

c© Springer Nature Switzerland AG 2023
P. Lopez-Garcia et al. (Eds.): Hermenegildo Festschrift 2022, LNCS 13160, pp. 222–232, 2023.
https://doi.org/10.1007/978-3-031-31476-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31476-6_12&domain=pdf
http://orcid.org/0000-0003-0577-0939
http://orcid.org/0000-0001-7880-4322
https://doi.org/10.1007/978-3-031-31476-6_12

Modularization of Logic Programs 223

user’s query. On the other hand, if the intended usage of the LP-base system
is to provide irrefutable answers, and warranted knowledge to the user, then a
3-valued semantics, like the Well-Founded Semantics (WFS) [4], may be more
adequate as these usually provide exactly one model—sceptical reasoning allows
the user to find out what consequences necessarily follow from the KB and is
commonly implemented as checking if the user’s query is entailed by the single
3-valued (sceptical) model, and where Integrity Constraints (ICs), in the form
of denials, can then be satisfied when their bodies are false but also if undefined
[7].

Basic notions: We consider here the usual notions of alphabet, language, atom,
literal, rule, and (logic) program. A literal is either an atom A or its default
negation not A. We dub default literals (or default negated literals—DNLs, for
short) those of the form not A. Without loss of generality we consider only ground
Normal Logic Programs (NLPs), which are sets of Normal Logic Rules (NLRs)
of the form H ← B1, . . . , Bn, not C1, . . . , not Cm, (with m,n ≥ 0 and finite)
where H, the Bi and the Cj are ground atoms. In conformity with the stan-
dard convention, we write rules of the form H ← also simply as H (known as
“facts”). An NLP P is called definite if none of its rules contain default literals.
If r is a rule we denote its head H by head(r), and body(r) denotes the set
{B1, . . . , Bn, not C1, . . . , not Cm} of all the literals in its body. We write HP to
denote the Herbrand Base of P .

Besides containing normal rules as above, LPs may also include rules with a
non-empty body and where the head is the special symbol ⊥ which are known as
a type of Integrity Constraints (ICs), specifically denials, and they are normally
used to prune out unwanted models of the normal rules part. An LP is thus the
union of a set of normal rules with a (possibly empty) set of ICs.

1.2 Motivation

The development of LP-based intelligent systems are software engineering
projects and as these, their teams, and the KBs developed grow larger, the
adoption of the best practices and principles of the software engineering disci-
pline become indispensable if one wishes to guarantee certain qualities of the
overall intelligent system. In particular, the development and usage of the LP-
based KB part must itself be subject to compliance with those guidelines. In
this paper we focus on the assurance of the principles of Modularity and Sep-
aration of Concerns in LP-based KBs. We will see in the sequel that adopting
these principles and ensuring those qualities in an LP-based KB has a number
of implications regarding the properties the particular LP semantics must com-
ply with, depending on whether it is a 3-valued or a 2-valued one. Our main
goal within this paper is precisely to contribute with the definitions of those
formal properties of semantics for LPs which ensure Modularity and Separation
of Concerns, and to provide with mechanisms to define such semantics.

The approach we follow in the remainder of the paper goes as follows. First,
we recap the most common properties of semantics in the literature [3] that are

224 A. M. Pinto and L. M. Pereira

related to the principles of Modularity and Separation of Concerns. Since the
concept of Modularity is intrinsically related to the notion of modules, or com-
ponents, and their interdependencies, we translate these dependencies notions
to the domain of LPs and in that regard we recap the definitions in the litera-
ture, define two new notions of syntactic structure of an LP and compare them
to the standard ones. We translate the concept of Separation of Concerns into
the LP domain by making explicitly distinct the role of Normal Logic Rules
and Integrity Constraints and show how this explicit distinction implies certain
properties of the semantics for the Normal Logic Rules part. Then we character-
ize the family of semantics complying with the properties we defined, compare
them to SMs, and show an algorithm to compute models of these semantics.
Final remarks and future work conclude the paper.

2 Background Review

2.1 Modularity and Separation of Concerns

Modularity and Separation of Concerns (henceforth abbreviated as Mod. and
SoC, respectively) are two of the central qualities required of software systems
developed according to the best practices of software engineering. Amongst other
benefits, a modular, i.e., a component-based, system is easier to develop, test,
debug, maintain, to compose, and to interoperate with others. According to [8]

Component-based software engineering is a reuse-based approach to defin-
ing, implementing, and composing loosely coupled independent components
into systems. A component is a software unit whose functionality and
dependencies are completely defined by a set of public interfaces. Compo-
nents can be composed with other components without knowledge of their
implementation and can be deployed as an executable unit.

From this definitions we can infer a module, or component, in such a “component-
based” system, should be easily replaceable by another with the same functional-
ity, as long as its interface and externally observable behavior remain the same;
modules can also be independently developed and later put together to form
the entire system. When translating these notions to LP-based KBs we need to
define what the modules are so that they exhibit these high (internal) cohesion
and low (external) coupling [6] characteristics. In Sect. 3 we present new seman-
tical properties and syntactic structure notions that will allows us to define such
modules in LPs.

Also from [8] we learn that

The separation of concerns is a key principle of software design and imple-
mentation. It means that you should organize your software so that each
element in the program (. . .) does one thing and one thing only. You can
then focus on that element without regard for the other elements in the
program. You can understand each part of the program by knowing its con-
cern, without the need to understand other elements. When changes are
required, they are localized to a small number of elements.

Modularization of Logic Programs 225

From this definition it follows immediately that, in the LP domain (remember
we are considering a LP to be the union of a NLP with a set of ICs), the normal
rules in the NLP and the ICs are reifications of two very distinct Concerns:
that of generating alternative scenarios, and that of filtering out the undesired
candidates, respectively. Since it is the job of the ICs part to reject the bad
candidates, by the SoC principle, the NLP part, or any subset of it, must not be
allowed to prevent the existence of said candidates. Thus, compliance with the
SoC principle implies the semantics for the NLP must guarantee model existence;
to allow otherwise is to violate the SoC.

2.2 Semantics and Models

Taking the classical notions of (Herbrand) interpretation and model, [2] defines
(def. 2.4) a semantics of LPs as follows:

A semantics SEM is a mapping from the class of all programs into the
powerset of the set of all 3-valued Herbrand structures. SEM assigns to
every program a set of 3-valued Herbrand models of P

and also a sceptical entailment relation (def. 2.5) as:

Let P be a program and U a set of atoms. Any semantics SEM induces
a sceptical entailment relation SEMscept as follows:

SEMscept(U) :=
⋂

M∈SEMP (U)

{L : L is a pos. or neg. literal with M |= L}

where SEMP (U) = SEMP∪U , the set of models of P ∪U according to SEM . In
the following we write SEM(P) to denote the set of all models of P according
to SEM , whereas SEMscept(P) still denotes the intersection of all such models.
For LPs including ICs, every model M ∈ SEM(P) is such that ⊥ /∈ M .

In [2], and its subsequent paper [3], the author defines several properties
of semantics, including Relevance, Cumulativity, Modularity, and many others,
but all of these regard SEMscept, i.e., the intersection of all models of P ∪ U
according to SEM . When SEM is a 3-valued semantics, e.g., the WFS, SEM
already provides a single model, so in that case the intersection of all models
coincides with the unique model. When SEM is a 2-valued semantics this means
those properties pertain to the literals in the intersection of all 2-valued models
of the semantics; not to each individual 2-valued model. However, when we are
interested in using the individual 2-valued-models, e.g. for answering existential
queries, we need properties analogous to that of Relevance and Cumulativity, but
pertaining to individual models and not to their intersection. We have found no
such properties in the literature and so we provide them below as part of our
contribution. In [1] the authors stress the importance of the Cumulativity prop-
erty and define an alternative more credulous version of this property (dubbing it
Extended Cumulativity, ECM for short). They also show that the SM semantics
enjoys ECM although it does not enjoy cumulativity.

226 A. M. Pinto and L. M. Pereira

2.3 Syntactic Dependencies

In [3] the author introduced a notion of Modularity (def. 5.7) as a formal property
of semantics for LPs. We recap it here for self-containment, but first we need to
include other auxiliary syntactic notions.

Definition 1. Dependencies in a program. In a LP P , a rule r2 directly
depends on r1 (written as r2 ← r1) iff the head of r1 appears, possibly negated,
in the body of r2; we say r2 depends on r1 (r2 � r1) iff either r2 directly depends
on r1 or r2 directly depends on some other rule r3 which in turn depends on r1.

We also consider the other combinations of (direct) dependencies amongst
atoms and rules, and use the same graphical notation (←,�) to denote (direct,
indirect) dependency. Rule r directly depends on an atom a iff a appears, possibly
negated, in the body of r; and r depends on a iff either r directly depends on a
or r depends on some rule r′ which directly depends on a. An atom a directly
depends on rule r iff head(r) = a; and a depends on r iff either a directly depends
on r or a directly depends on some rule r′ such that r′ depends on r. An atom
b directly depends on atom a iff a appears (possibly default negated) in the body
of a rule with head b, and b depends on a iff either b directly depends on a, or b
directly depends on some rule r which depends on a.

In [3] Dix introduces the notion of relevant rules, which we restate here
adapted to our notation.

Definition 2. Sub-program Relevant for Atom. Let P be a NLP and a an
atom of P . We write RelP (a) to denote the set of rules of P which are relevant
and enough for determining a’s truth value. Formally, RelP (a) = {r ∈ P :
a depends on r}.

Also in [3] we find the notion of Program Reduction (def. 3.8) which is similar,
but not exactly equal, to the Gelfond-Lifschitz program division, and which will
be necessary to the Modularity notion.

Definition 3. P reduced by M (def. 3.8 of [3], adapted to our notation).
Let P be a program and M be a set of literals. “P reduced by M” is the program
PM := {rM : r ∈ P and (body(r) ∪ M) is a consistent set of literals}, where
body(rM) = body(r) \ M .

Now that we have the notions of Relevant Part and P reduced by M we can
recap the notion of Modularity from [3].

Definition 4. Modularity (def. 5.7 of [3] adapted to meet our nota-
tion). Let P = P1 ∪ P2 be instantiated and for every A ∈ H2 : RelP (A) ⊆ P2.
The principle of Modularity is: SEMscept(P) = SEMscept(PSEMscept(P2)

1 ∪P2).

These syntactical and semantical notions do not capture all the various
aspects of the Modularity and Separation of Concerns of software engineering
principles applied to LPs. For this reason we now introduce, as part of our con-
tribution, the new ones we find necessary for that purpose.

Modularization of Logic Programs 227

3 New Notions and Properties

The concept of Modularity is intrinsically related to the notion of modules, or
components, and their interdependencies, and in order to provide a rendering
of that concept in the LP domain we need to translate these dependencies into
syntactic features of LPs. The relevant rules (Definition 2) syntactic notion does
part of this job but it still does not capture all the characteristics of a module. We
introduce below the formal notion of a Module as well as some of its syntactic
properties. Also, the semantical notion of modularity in Definition 4, besides
being insufficient to fully grasp the Modularity concept applied to LPs, and like
all other semantical properties in [2] and [3], regards only the intersection of
models, and for that reason is suitable only for sceptical reasoning purposes.
Since in our work we are especially interested in existential query answering
with 2-valued semantics, we also provide new definitions of credulous reasoning
oriented semantical properties that capture the various aspects of Modularity.

As stated before, regarding the concept of Separation of Concerns, it trans-
lates into the LP domain by making explicitly distinct the role of Normal Logic
Rules from that of Integrity Constraints, and noticing this explicit distinction
entails the property of guarantee of model existence for the semantics for the
Normal Logic Rules part.

Finally, we introduce new notions supporting existential query answering
with LPs, both syntactic and semantical, which allow us to formally compose a
comprehensive framework for credulous reasoning with LPs (including ICs) with
semantics that comply with both the Modularity and Separation of Concerns
principles.

3.1 Modularity in Logic Programs

In a modular system, the components, or modules, have high internal cohesion
(the elements inside the module are tightly related), and low external coupling
(the elements from two distinct modules are lightly, if at all, related). The modu-
larity semantical property in Definition 4 does not capture all these requirements
associated with the Modularity principle.

In LPs we only have logic rules and the only dependency notion we can find is
a syntactical one. By taking the transitive closure over this syntactic dependency,
the relevance in Definition 2 captures a part of the module concept according
to the description above, but not all of it. For this reason, we set forth a more
encompassing notion of module and examine some of its properties.

Definition 5. Modules of a Logic Program. Let P and P1 be LPs such that
P1 ⊆ P . P1 is said to be a module of P iff ∀a∈HP1

RelP (a) ⊆ P1. I.e., a module
of P is any subset of rules of P that contains all, and only, the rules relevant to
the atoms inside the module.

Let P1 and P2 be modules of P . We say P1 is nested inside P2 iff P1 ⊆ P2.
In this case we also say P1 is a sub-module of P2.

We say two modules P1 and P2 of P are independent iff they do not share
any atoms, i.e., HP1 ∩ HP2 = ∅.

228 A. M. Pinto and L. M. Pereira

It follows from this definition that if modules P1 and P2 are independent,
then every sub-module of P1 is independent from every sub-module of P2. From
a system-wide analysis perspective, it might be of interest to identify the unique
set of maximal (w.r.t. set-inclusion) independent modules of a given program
P—we denote this set by MIM(P).

With the above definition, the “components” inside modules (the individual
rules) are necessarily highly correlated, by virtue of syntactic dependency, thus
embodying the high internal cohesion demanded of modules. On the other hand,
the independent modules notion fully captures the low external coupling by
virtue of their syntactical independence.

Example 1. Modules in a program. Let P be

c ← not a
a ← not b
b ← not a
x ← y

The pair of rules a ← not b and b ← not a form a module P1 of P . P2 = P1∪{c ←
not a} is another module, P3 = {x ← y} is yet another module, and the whole
program is also considered to be a module. P1 is nested inside P2, and every
module of P is nested inside P . In this example, P2 and P3 are independent, and
so are necessarily P1 and P3 as well.

As stated above, the Modularity property defined in [3] pertains to the scep-
tical entailment of a semantics SEM , i.e., when taking a 2-valued semantics, this
property is defined only over the intersection of all its models for a given pro-
gram. In our work, since we are intent on performing credulous reasoning with
a 2-valued semantics, we need a corresponding credulous version of modularity,
one that concerns each indvidual 2-valued-model, and not just the intersection
of all models. Hence, we introduce now several new semantical properties that
will be used to build our credulous modularity property.

Definition 6. Credulous Module Replaceability. Let P1, P2 and Px be LPs
such that P1 is a module of Px ∪ P1 and P2 is a module of Px ∪ P2, with
HP1 = HP2 , and let SEM be a 2-valued semantics for LPs. When SEM(P1) =
SEM(P2)—in which case we say P1 and P2 are SEM−equivalent—we say SEM
enjoys Credulous Module Replaceability iff SEM(Px ∪ P1) = SEM(Px ∪ P2).

Intuitively this means one can replace one module of a program with another as
along as they have exactly the same models, all the while preserving the models
of the global program. This notion intends to capture the idea of functional
implementation independence of modules as far as interface and meaning are
preserved, which is characteristic of modular systems.

The following two notions (Credulous Monotony and Cartesian Product)
capture the black-box view on modules which allows the rapid composition of a
prototypical system by knowing the possible behaviors of its composing modules.

Modularization of Logic Programs 229

Definition 7. Credulous Monotony. Let P be an LP and P1 a module of P .
A 2-valued semantics SEM is said to enjoy Credulous Monotony iff

∀
M1∈SEM(P1)

{M : M ∈ SEM(P) ∧ M ⊇ M1} = SEM((P \ P1) ∪ M1)

Intuitively this means one can replace one module of the program by any one
of its models, and rest assured that the models of the resulting program are
exactly those models of the original program that set-included the model which
was used to replace the module.

The Stable Models semantics fails this property as the following example
shows.

Example 2. Stable Models fail Credulous Monotony. Let P be

a ← not b
b ← not a
c ← not c, not a

P has {a} as its unique SM. The rules for a and b form a module P1 of P which
has two SMs: {a}, and {b}. If we replace P1 by its model {b} we obtain the
program P ′ =

b
c ← not c, not a

which has no SMs at all, thus showing the failure of SM semantics regarding
Credulous Monotony.

Definition 8. Cartesian Product. Let P1 and P2 be independent modules of
P1 ∪ P2, and SEM a 2-valued semantics for LPs. SEM is said to enjoy the
Cartesian Product property iff

SEM(P1 ∪ P2) = {M1 ∪ M2 : M1 ∈ SEM(P1) ∧ M2 ∈ SEM(P2)}

I.e., models of unions of independent modules are unions of models of the individ-
ual modules. If #SEM(P1) = n and #SEM(P2) = m then #SEM(P1 ∪P2) =
nm, hence the name Cartesian Product.

Definition 9. Credulous Modularity. SEM is said to enjoy Credulous Mod-
ularity iff it enjoys all four properties of Credulous Module Replaceability, Cred-
ulous Monotony, Cartesian Product, and Model Existence (i.e., #SEM(P) ≥ 1
for any given NLP P).

This definition considers the concept of Credulous Modularity as including the
notion of Separation of Concerns (by demanding Model Existence for NLPs) as
one of its characteristics.

230 A. M. Pinto and L. M. Pereira

3.2 A Framework for Credulous Reasoning with LPs

Credulous reasoning with LPs amounts to finding if there is some model M
of the program P at hand that satisfies some user-specified criteria Q. This
can either take the form of finding/computing one such model (if it exists), or
finding/computing one sub-model of it (i.e. subset of a model) sufficient to answer
the user’s query. The former is a common way to, e.g., address combinatorial
search problems, while the latter is more commonly used in top-down query-
answering a la Prolog.

In our work we focus on the latter approach which is only realizable with
semantics where the truth value of atoms in any given model depends only on
their relevant rules. The Relevance notion in Definition 2 pertains only to the
atoms in the intersection of all models. What we need here is a “per-model”
version of the Relevance notion. We put if forward now.

Definition 10. Credulous Relevance. Let P be an NLP. SEM is Credulously
Relevant iff

∀
a∈HP

(
∀

M∈SEM(P)
a ∈ M ⇒ (∃

Ma∈SEM(RelP (a))
Ma ⊆ M ∧ a ∈ Ma)

)

∧
(

∀
Ma∈SEM(RelP (a))

∃
M∈SEM(P)

Ma ⊆ M
)

I.e., in a Credulously Relevant semantics, an atom is true in some model of
the whole program iff it is true in some sub-model of the part of the program
relevant to the atom, where that sub-model is a subset of a model for the whole
program where the atom is true.

This notion, however, is applicable only to NLPs, but not whole LPs (which
may include ICs). When finding an existential answer to a query in a LP, it
might be the case that a candidate answer found may turn out to be rejected by
some IC. This means we need another notion of relevance that is applicable to
LPs with ICs. We now present this notion, preceded by other auxiliary ones.

Definition 11. Sub-program Influenced by Atom. Let P be a LP. We say
atom a ∈ HP influences rule r ∈ P iff r depends on a. We write InflP (a) to
denote the set of such r, i.e., InflP (a) = {r ∈ P : r � a}.
Definition 12. Constraint Directly Relevant Atoms. Let P = NLP ∪ICs
be a LP composed of the set of normal rules NLP and the set of ICs ICs, and
S ⊆ HP a subset of atoms of P . The set of atoms of P which are Constraint
Directly Relevant for S contains exactly all the atoms relevant for the ICs in P
which are influenced by the atoms in the Relevant part of P for any atom in S.

Due to its complexity, we breakdown this definition in intermediate steps as
follows. First we take each atom a of S and obtain the Relevant part of P for it.
Taking the union over all such atoms of S we obtain all the atoms of P relevant
for any atom in S, i.e., ⋃

a∈S

RelP (a)

Modularization of Logic Programs 231

Let us abuse notation are denote this set by RelP (S). Next we take all the atoms
in RelP (S), i.e., HRelP (S), and for each we find the rules of P which it influences,
thus obtaining ⋃

b∈HRelP (S)

InflP (b)

We abuse notation again and denote this set by InflP (S), and now we find which
ICs are included in this set of influenced rules, i.e., InflP (S) ∩ ICs, denoted
by ICInflP (S). Finally, we take all atoms in the rules of P which are relevant
to the atoms in ICInflP (S), to obtain the set of Constraint Directly Relevant
Atoms,

ICDirRelP (S) = H(
⋃

c∈HICInflP (S)
RelP (c))

Definition 13. Constraint Relevant Atoms. Let P = NLP ∪ ICs be a LP
composed of the set of normal rules NLP and the set of ICs ICs, and S ⊆ HP

a subset of atoms of P . The set of atoms of P which are Constraint Relevant
for S, denoted by ICRelP (S) is Sω, where

S0 = S
Si+1 = Si ∪ ICDirRelP (Si)
Sα =

⋃
β<α Sβ

Definition 14. Credulous Constraint Relevance. Let P be a LP. SEM is
Credulously Constraint Relevant iff

∀
a∈HP

M∈SEM(P)

a ∈ M ⇒ (∃
Ma∈SEM(RelP (ICRelP ({a}))∪ICInflP ({a}))

Ma ⊆ M ∧ a ∈ Ma)
)

I.e., in a Credulously Constraint Relevant semantics, if an atom is true in some
model of the whole program then it is true in some sub-model of the part of the
program constraint relevant to the atom, where that sub-model is a subset of a
model for the whole program where the atom is true.

These definitions set forth a theoretical framework upon which formal exis-
tential query answering methods can be developed for LPs, including ICs, with
a 2-valued semantics.

Definition 15. Credulous Constraint Relevant Knowledge Existential
Answer to a Query. Let P = NLP ∪ ICs be a LP composed of the set of
normal rules NLP and the set of ICs ICs, and Q a set of literals formed with
atoms from HP dubbed the user’s query.

MQ is a credulous constraint relevant knowledge existential answer to query
Q according to SEM iff

MQ ∈ SEM(RelP (ICRelP (|Q|)) ∪ ICInflP (|Q|)) and MQ ⊇ Q

where |Q| denotes the set of atoms in the literals in Q, i.e.,

|Q| = {q : q ∈ Q ∨ not q ∈ Q}

232 A. M. Pinto and L. M. Pereira

The existence of a Credulous Constraint Relevant Knowledge Existential
Answer to a Query MQ does not necessarily guarantee the existence of a model
M of P such that M ⊇ MQ, but only because independent ICs might prevent
model existence at all. However, the credulous constraint relevance property still
ensures yet another local degree of modularity which might be used to focus the
scope of rules considered when answering an existential query.

4 Conclusions and Future Work

We have taken the concepts of Modularity and Separation of Concerns from the
software engineering discipline and applied them to the Logic Programs domain.
As a result we devised a set of semantical properties, and auxiliary syntactical
notions, that a 2-valued semantics for LPs must comply with in order to ensure
the LP respects those Modularity and SoC principles. We have provided new
notions of relevance and modularity that extend the ones in the literature in two
ways: by being applicable to individual models of a 2-valued semantics instead
of just to their intersection, and by taking into account also the possible ICs in
the LP. Future work includes the definition of a 2-valued semantics complying
with all these properties, and respective implementations.

Acknowledgements. L.M.P. is supported by NOVA LINCS (UIDB/04516/2020)
with the financial support of FCT- Fundação para a Ciência e a Tecnologia, Portugal,
through national funds.

References

1. Costantini, S., Lanzarone, G.A., Magliocco, G.: Layer supported models of logic
programs. In: Maher, M. (ed.) Proceedings of the 1996 Joint International Con-
ference and Symposium on Logic Programming (JICSLP 1996), pp. 438–452. MIT
Press. Cambridge, USA (1996)

2. Dix, J.: A classification theory of semantics of normal logic programs: I. strong
properties. Fundam. Inform. 22(3), 227–255 (1995)

3. Dix, J.: A classification theory of semantics of normal logic programs: II. weak
properties. Fundam. Inform. 22(3), 257–288 (1995)

4. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. J. ACM 38(3), 620–650 (1991)

5. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, pp. 1070–1080. MIT Press (1988)

6. Papazoglou, M., Yang, J.: Design methodology for web services and business pro-
cesses. Technol. E-Serv. 2444, 175–233 (2002)

7. Pereira, L.M., Aparicio, J.N., Alferes, J.J.: Hypothetical reasoning with well founded
semantics. In: Mayoh, B. (ed.) Scandinavian Conference on Artificial Intelligence:
Proceedings of the SCAI 1991, pp. 289–300. IOS Press, Amsterdam (1991)

8. Sommerville, I.: Software Engineering 9. Pearson Education, London (2011)

Proof-Theoretic Foundations of Normal
Logic Programs

Elmer Salazar and Gopal Gupta(B)

Department of Computer Science, University of Texas at Dallas, Richardson, USA
gupta@utdallas.edu

Abstract. There are several semantics in logic programming for nega-
tion as failure. These semantics can be realized with a combination of
induction and coinduction, and this realization can be used to develop
a goal-directed method of computing models. In essence, the difference
between these semantics is how they resolve the unstratified portions of
a program. In this paper, restricting ourselves to the propositional case,
we show how the semantics of normal logic programs is a mixture of
induction and coinduction, and how we can use coinduction to resolve
the cycles (or loops) formed by the rules in a program. We present deno-
tational semantics based on a fixed point of a function and show its
equivalence to the use of induction and coinduction. We take a look at
the different ways a semantics may resolve cycles, and show how to imple-
ment two popular semantics, well-founded and stable models, as well as
co-stable model semantics. Finally, we present operational semantics as a
parametrized goal-directed execution algorithm that allows us to deter-
mine how cycles are resolved.

1 Introduction

Considerable amount of research has been done on adding negation to logic pro-
gramming over the last 40 years [2,23]. Many semantics have been proposed:
well-founded semantics, Fittings 3-valued semantics, the stable model seman-
tics, perfect model semantics, etc. Dix [8,9] has done a systematic study of these
semantics, proposing a number of properties that can be used to characterize a
semantics. In this paper we show that various semantics of negation can be more
elegantly characterized via a combination of induction and coinduction. Induc-
tion captures well-founded computations—well-founded in the sense of Russell
and Whitehead’s characterization, i.e., terminating in a base case—while coin-
duction captures cyclical (non well-founded), consistent computations. Various
semantics are a combination of the two. They differ in what value they assign
to cyclically dependent computations. For example, given a cycle of calls where
p calls q and q calls p, then the well-founded semantics of Van Gelder, Ross and

Dedicated to Professor Manuel Hermenegildo on the occasion of his 60th birthday.
Authors are grateful for support from US NSF and US DoD.

c© Springer Nature Switzerland AG 2023
P. Lopez-Garcia et al. (Eds.): Hermenegildo Festschrift 2022, LNCS 13160, pp. 233–252, 2023.
https://doi.org/10.1007/978-3-031-31476-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31476-6_13&domain=pdf
https://doi.org/10.1007/978-3-031-31476-6_13

234 E. Salazar and G. Gupta

Schlipf assigns p and q the value false, the Fitting 3-valued semantics assigns ⊥
(unknown), the stable model semantics false, and the co-stable model semantics
will produce two models: one in which both p and q are assigned true and one
in which both are assigned false. Note that in this paper we use the term cycle
and loop interchangeably.

Induction and coinduction [1] both have an operational semantics, based on
recursion and co-recursion, respectively [28]. Thus, our characterization of these
semantics based on induction and coinduction also results in elegant, query-
driven execution strategies discussed later. The ultimate benefit of this insight is
that practical goal-directed execution strategies have been designed for predicate
answer set programming [3,21].

In this paper we give the declarative and operational semantics for various
semantics of normal logic programs in a unifying, systematic manner. We con-
sider four semantics for normal logic programs: Fitting’s 3-valued semantics,
well-founded semantics, stable model semantics, and co-stable model semantics.
Our systematic, unifying characterization not only increases our understand-
ing of various semantics of normal logic programs, it also allows us to produce
efficient, query-driven implementation of these semantics.

The intuition for our work, from a high level perspective, is the following.
During execution of a query with respect to a logic program, the execution can
be well-founded or it can contain cycles that can keep unfolding forever. If the
execution is well-founded then all the goals will get resolved during a successful
top-down execution of a query g, with the final goal in the final resolvent match-
ing a fact. This case will result in successful execution of the goal g. Alternatively,
the terminal call will be of the form not p with no matching rules for p. In such
a case, not p will succeed and query will be resolved successfully. Essentially, if
the execution is well-founded, i.e., there are no infinitely unfolding cycles, then
there is a single, unique model for the program [2]. All semantics of negation
will find this single, unique model. If the execution of g is not well-founded,
then loops (possibly over negation) will arise. In such a case, different semantics
of negation (well-founded semantics of Van Gelder, Ross and Schlipf [29], sta-
ble model semantics [11], Fitting’s 3-valued semantics [10], and co-stable model
semantics [12]) will make different choices in different situations. If we have goal
g, and during execution, a recursive call to g is encountered again, resulting in
a potentially infinitely unfolding computation, then there can be multiple pos-
sibilities (in all cases, we assume that the program is completed [7,18] and that
only supported models [4] are considered):

1. There are no intervening negative calls between the query g and the recursive
call g: Multiple possibilities exist in such a case and so multiple values for g
are possible: ⊥ (Fitting’s 3-valued semantics), False (well-founded semantics,
stable model semantics, and co-stable model semantics), or True (co-stable
model semantics).

2. There are even number of intervening negations between g and its recursive
call: In such a case, multiple models are possible. Indeed, the well-founded
semantics and Fitting’s 3-valued semantics will assign ⊥, while the stable and

Proof-Theoretic Foundations of Normal Logic Programs 235

co-stable model semantics will assign true to g in one world and will assign
false in another.

3. Query g leads to a recursive call to g with odd number of intervening nega-
tions: in such a case, the values possible for g are ⊥ (Fitting’s 3-valued and
well-founded semantics) or False (stable model and co-stable model seman-
tics). In the latter case, the conjunction of goals leading from the query g
to recursive call should be false. If this conjunction evaluates to true, then a
model cannot exist.

Fig. 1. Commonalities Among Semantics

The above intuition is summarized in Fig. 1. Note that we only give a brief
overview here of proof-theoretic semantics of normal logic programs. Detailed
discussion can be found elsewhere [25,26]. The rest of the paper is organized as
follows: In Sect. 2 we provide a review of negation-as-failure, CoSLD resolution,
and various semantic definitions that are of interest for this paper. We will also
formally define the language we will be working with. Section 3 presents the
declarative semantics, and in Sect. 4 we give the operational semantics in the
form of a query-driven algorithm. Finally, Sect. 5 briefly describes Dix’s work
[8,9], Seki’s work [27] and founded semantics [17], and how they are related to
our work.

Finally, we should add that goal-directed execution methods that have been
designed and implemented thus far [3,21] are not as fast as state-of-the-art imple-
mentations (especially, those based on SAT solvers). Program analysis [15] can
help in improving the execution speed. The declarative fixpoint semantics as
well as the operational semantics we present in this paper will help in the design
of static analyses tools needed to help speed up the implementation of various
semantics of negation (Fittng’s 3-valued, well-founded, stable model, and co-
stable model). We hope that presentation of this research at the workshop to

236 E. Salazar and G. Gupta

celebrate 60th birthday of Professor Manuel Hermenegildo, a pioneer in static
analysis of logic programs, will also spur research in static analysis of normal
logic programs.

2 Background

2.1 Negation-as-Failure and the Language

Negation-as-failure is an interpretation of negation stemming from the closed
world assumption and adds a new global axiom: if a proposition is unable to be
proved, assume it is false. The completion of a program is a way of identifying
supported models and handling negation-as-failure [7,18]. Throughout this paper
we will represent the negation of a proposition p as not p to indicate we are
working with negation-as-failure.

Definition 1. A literal is a proposition or its negation. For some literal L,
prop(L) is the proposition the literal is constructed from. If prop(L) = L then we
say L is positive. Otherwise, L is negative and not L = prop(L).

Definition 2. A normal logic program is a set of rules R of the following form:

H:−B1, B2, · · · , Bn,not Bn+1,not Bn+2, · · · ,not Bn+m.

where n,m ≥ 0, and H,B1, B2, · · · , Bn+m are propositions.
In addition, for convenience we define the following functions:

– head(R) = H,
– pos(R) = {B1, B2, · · · , Bn},
– neg(R) = {Bn+1, Bn+2, · · · , Bn+m},
– props(R) = {H} ∪ pos(R) ∪ neg(R),
– body(R) = pos(R) ∪ {not p | p ∈ neg(R)}
– for some program P , props(P) = {p | R ∈ P, p ∈ props(R)}, and
– for some program P , lit (P) = props(P) ∪ {not p | p ∈ props(P)}.
A fact is a rule (written as p.) for which no Bi exists, i.e., pos(R)∪neg(R) = {}.

We will be focusing on semantics that agree with the completion. In Horn clause
logic, a rule is interpreted as an implication where the body implies the head.
The completion of a program interprets a set of rules with the same head as a
bi-implication with the head on one side and the disjunction of the bodies on
the other. This agrees with the axiom: if a proposition cannot be proved assume
it is false.

Definition 3. Let P be a program. We can represent all facts as having a body
of true and any proposition that is not the head of some rule we can imagine
a rule with a body of false. Then, for all propositions p ∈ props(P), let B be
a disjunction of conjunctions such that each conjunction in B is the body of
some rule in P with p as the head, and B contains all such conjunctions. Then,
p ⇐⇒ B is the completion rule for p. The completion of P is the set of all
such completion rules. In addition, we will assume ⊥ ⇐⇒ ⊥ is true.

Proof-Theoretic Foundations of Normal Logic Programs 237

Definition 4. Let S be some semantics. Then S is said to be a completion
semantics if and only if for all programs P , every model with respect to S is also
a model of the completion of P .

The completion of a program can be simulated by adding new rules called
dual rules to the program. For each proposition p in a program we can add a
new symbol not p and rules for not p so that not p is true if and only we cannot
prove p. The resulting program is called the extended program.

Definition 5. For some program P , the extended program, ext(P), is defined
by extending P as follows: For each proposition p ∈ props(P):

– If p is not the head of any rule in P , then add a fact for not p.
– If there is a fact for p in P , then ignore p.
– Otherwise, take the body of the Clark’s Completion rule for p, negate it, and

use De Morgan’s Law and distribution until it is a disjunction of conjunctions.
For each conjunction, add a rule with not p as the head and the conjunction
as it’s body.

As an example consider the program below:

p :− s .
p :− not q .
q :− not p .
r :− p .

The extended (completed) program is generated by adding the dual rules below:

not p :− not s , q .
not q :− p .
not r :− not p .
not s .

As can be seen, the only difference between how a program and an extended
program are defined is the fact that extended programs have negated literals in
the head. We will extend our representation for programs to account for that.

Definition 6. Let P be a program. For each rule r ∈ ext(P) with a negative
literal in the head, r is of the form:

not H:−B1, B2, · · · , Bn,not Bn+1,not Bn+2, · · · ,not Bn+m

where n,m ≥ 0, and H,B1, B2, · · · , Bn+m are propositions. In addition,

– head(r) = not H,
– pos(r) = {B1, B2, · · · , Bn},
– neg(r) = {Bn+1, Bn+2, · · · , Bn+m},
– props(r) = {not H} ∪ pos(r) ∪ neg(r), and
– body(r) = pos(r) ∪ {not p | p ∈ neg(r)}.

All other rules are in P , and therefore follow our previous definition.

238 E. Salazar and G. Gupta

Note that we are only interested in supported models.

Definition 7. A set M of atoms is supported by a normal logic program P , if for
every B ∈ M, there is a rule (Definition 2) such that B = H,B1, B2, ..., Bn ∈ M
and Bn+1, Bn+2, . . . Bn+m �∈ M

We have defined the language, and can now define what a semantics is. A
semantics can be viewed as a function that maps programs to sets of models,
and we will use this definition throughout this paper.

Definition 8. A semantics, S, is a function mapping programs to sets of mod-
els. If for some model M and some program P , M ∈ S(P) then we say that M
is a model of P with respect to S.

2.2 Coinduction

Our approach is based on coinductive logic programming. Coinductive logic pro-
gramming is based on the concept of coinduction (the dual of induction) from
category theory [13]. Category theory is an abstraction of mathematical ideas
such a sets, groups and rings [16]. A good introduction to the concepts of induc-
tion and coinduction that does not rely heavily on category theory can be found
elsewhere [14].

2.3 SLD and CoSLD Resolution

SLD resolution can be viewed as an inductive proof method based on resolu-
tion theory. CoSLD resolution [22,28] is likewise a coinductive proof method
and can be considered a form of circular coinduction [24]. It is our observation
that the non-monotonic completion semantics require a combination of induction
and coinduction. A modified CoSLD resolution algorithm is presented by Kyle
Marple et al. [19] that incorporates induction to realize stable-model semantics.
This modification uses the standard CoSLD resolution to detect cycles during
execution, and decides to succeed or fail based on what is correct for the stable-
model semantics. Due to space constraints this paper will not go into details,
but they can be found in the original paper [19,25].

2.4 The Semantics

Given the call graph of a normal logic program, this paper divides cycles into
three types: positive, even, and odd. Positive cycles contain no negations, odd
and even cycles contain an odd and even number of negations, respectively. An
odd (even) cycle is nothing but an odd (even) loop over negation [4]. A rule may
be part of multiple types of cycles. For example, in the code below, rule (1) is
part of an even cycle (1-2-1) as well as an odd cycle (1-3-4-1).

p :– not q. . . . (1)
q :– not p. . . . (2)

Proof-Theoretic Foundations of Normal Logic Programs 239

q :– not r. . . . (3)
r :– not p. . . . (4)

We will take a look at some semantics that have been devised for normal
logic programs. We will present a brief review of how models are computed, and
then discuss how the cycles are handled in each case. For this section we will
be using the traditional definition of an interpretation. That is, we will assume
interpretations are sets of propositions with the assumption that any missing
propositions are false. Starting in Sect. 3 we will use a different definition.

Fitting’s 3-Valued Semantics: Fitting’s 3-value semantics [10] is a way to
compute the value of predicates(or in our case propositions) that are locally
stratified but in a program that is not stratified. Essentially, Fitting’s 3-value
semantics solves the problem by assigning ⊥ (Unknown) to any proposition in
a cycle. Due to the complexity of the computation method it is not formally
reviewed in this paper, but can be found in Fitting’s original paper [10].

Well-Founded Semantics. Well-founded semantics solve the same problem
as Fitting’s 3-value semantics, but to agree with traditional logic programs it
handles positive cycles differently [29].

Definition 9. For some program P with interpretation I , A ⊆ lit (P) is an
unfounded set with respect to I if for all p ∈ A and all rules, R, of P with p as
the head, at least on of the following holds:

– Some literal in the body of R is false in I,
– Some positive literal in the body of R is in A.

Definition 10. UP (I), the union of all unfounded sets for P with respect to I,
is called the greatest unfounded set of P with respect to I.

Definition 11. Let WP (I) = TP (I) ∪ ¬ · UP (I). Then, the least fixed-point of
WP is the well-founded partial model of P . TP is the standard least fixed-point
operator used to compute the inductive meaning of a logic program [18].

If a proposition is in a positive cycle, it will be in the greatest unfounded
set, and thus assigned the value false. If the value of a proposition depends on
a cycle containing a negation, it will not appear in the partial model (and thus
assigned ⊥). It can be seen that neither Tp nor Up will add the proposition (as
a positive or negative literal) to the model.

Stable Model Semantics: Stable models uses multiple worlds, rather than
assigning ⊥, to stratify a program [11].

Definition 12. Let P be a program, and I be an interpretation. The residual
program of P is the Horn clause logic program computed by the Gelfond-Lifshitz
transformation as follows:

– for all propositions p ∈ I and rules in P , R, remove R if not p is in the body.
– remove all negative literals from the resulting program.

240 E. Salazar and G. Gupta

Definition 13. Let P be a program, and I ⊆ props(P). Then I is a stable model
if and only if I equals the least-fixed point semantics of the residual program for
P and I.

If a positive cycle exists in the program, and the truth value of the propo-
sitions in the cycle depend only on that cycle then the least fixed-point of the
residual program will not contain those propositions. Thus, positive cycles in
stable-model semantics are resolved by assigning false to all propositions in the
cycle. For even cycles, two worlds are created. One world for each possible assign-
ment of truth values. For odd cycles if the value a proposition depends on its
negation, no model will be found. This can be seen by looking at two different
cases. In the first case we guess p is true. All rules containing not p will be
removed in the residual program. Since p depended on its negation and the rule
that it depend on was removed, p will be false in the least-fixed point semantics
of the residual program. Thus, p cannot be true in any model.

For the second case we guess p is false. Since p depends on its negation there
exists a rule with not p in the body with all other literals in the body being in
the least-fixed point of the residual program, and p is in the least-fixed point of
the residual program if and only if the body of that rule is true. If this were not
the case then the value of p could not depend on its negation. But, if it is the
case, not p will be removed from the rule, and since all other literals are in the
least-fixed point then p must be in the least-fixed point. This does not match
our guess, so no model can assign false to p.

Co-stable Model Semantics. Co-stable model semantics is a semantics based
on a generalization of stable model semantics presented at the Co-LP 2016 work-
shop [12].

Definition 14. The co-residual program of a program P for an interpretation
I is computed by the following steps:

– for all propositions p ∈ I and rules R ∈ P , remove R if not p is in the body.
– for all propositions p �∈ I and rules R ∈ P , remove R if p is in the body.
– Remove all literals from the body of the rules in the resulting program.

Definition 15. For some program P , a set of proposition I ⊆ props(P) is a
co-stable model of P if and only if I is the least fixed-point of the coresidual
program of P and I.

Co-stable model semantics is similar to stable model semantics – except how
it handles positive cycles. It uses multiple worlds to allow a positive cycle to be
true or false. If a set of propositions do not contain any of the propositions that
are part of a positive cycle then all rules that form that cycle will be removed
from the coresidual program and all such propositions will not be in the least
model of the coresidual program. On the other hand if all of the propositions in
a positive cycle is in the set then they will have facts in the coresidual program.
Thus, given the program “p :- p.”, the co-stable model semantics will generate
two models {} (i.e., p false) and {p} (i.e., p true).

Proof-Theoretic Foundations of Normal Logic Programs 241

We can divide all the propositions in an even cycle into two sets A and B
such that for all p ∈ A and for all q ∈ B, p depends on not q. In addition we
can interchange A and B and the property still holds. By choosing A or B to
be a subset of the co-stable model candidate we can create multiple worlds one
where one half is true and one where the other half is true.

Finally, there can be no odd cycles just like stable model semantics.

3 Fixed-Point Formalization Overview

In this section we present a generalized fixed-point semantics. In the interest of
space, this will be a short summary. Since we are working with both 2-value and
3-value logics, and our goal is to create a proof theoretic, goal directed algorithm
that computes partial models, we must change the way we define interpretations.

An interpretation is a set of literals (both positive and negative). For some
proposition, p:

If p is in the interpretation, but not p is not, then p is true in that inter-
pretation.

If not p is in the interpretation, but p is not, then p is false in that inter-
pretation.

If both p and not p are not in the interpretation, then p is ⊥ (unknown)
in that interpretation.

If both p and not p are in the interpretation, then p is unresolved in that
interpretation.

Furthermore, we say that an interpretation is unresolved if it contains a
proposition that is unresolved in it. Now that we can specify interpretations we
must be able to decide which interpretations are models. This will, of course,
depend on the specific semantics we wish to view the interpretation in. Which,
in turn, depends on how we handle the cycles.

We will identify these cycles using cycle sets. Cycle sets can be thought of as
a minimal subset of the program such that each rule in that subset depends on
some other rule in the subset. This allows us to filter out the non-cyclic portion of
the program, but a cycle set in and of itself does not guarantee a cycle. Consider
the program “p :− p,q.”. This one rule forms a cycle set, but it is not a cycle.
Since q does not have a rule it must be false. So, the body of the rule must be
false, and therefore p must be false.

If a cycle actually exists, then we need to break the cycle. We will do this
through cycle resolutions. A cycle resolution for a particular cycle set can be
viewed as a consistent assignment of truth values to the head of each rule in
that cycle set. Cycle resolutions can take care of the coinductive part of the
program. After resolving all cycles, the rest of the program is inductive.

For a fixed-point semantics, we need to specify a function that inductively
assign truth values, and when cycles block our progress, resolve them. A particu-
lar semantics is specified by specifying how to generate cycle resolutions. This is
done with four functions. Two of these functions are cycle resolution functions.

242 E. Salazar and G. Gupta

A cycle resolution function maps an interpretation to a set of cycle resolutions.
One of these cycle resolution functions is limited to resolving positive cycles, and
the second is limited to resolving even cycles. The last two function are called
filter functions. The first is the local filter function and maps an interpretation
to another interpretation. The intention is to resolve unresolved propositions or
add an unresolved proposition. Adding an unresolved proposition is equivalent
to specifying the interpretation is not a model.

For this paper, a semantics will define two local filters The local filter func-
tion LWF filters interpretations by assigning all unresolved literals ⊥. This cor-
respond to how well-founded semantics handles odd loops. As stated earlier, we
assume all positive and even cycles will be resolved by the time the local filter
function is used. So, all unresolved propositions must depend on an odd cycle.
LSM is an identity function for interpretation. Since the only unresolved literals
in an interpretation given to LSM should be part of an odd cycle, we can just
keep them and it will be eliminated as a possible model (as will be described
below). This is for semantics such as stable models that cannot have odd cycles.

The second type of filter function, is the global filter function. The global
filter function maps a set of interpretation to a set of interpretations. In this
paper we will only consider the identity function for a set of interpretations.

Overall, what we want is a function that maps a set of interpretations to
a new set of interpretations with a fixed-point that is the set of models. Some
decisions, however, cannot be made until we have made all the other decisions.
In resolution form, these decisions are made with the filter functions. So, our
final function will have three stages. First, starting with the set containing the
interpretation where every proposition is unresolved we step-by-step apply the
extended TP operator to each interpretation and then resolve any positive or
even cycles halting progress. The extended TP operator is like the standard
TP operator of logic programming [18], but operates on the extended program
[25,26]. Recall that a cycle resolution function gives a set of cycle resolutions.
So, each interpretation can be replaced with several “resolved” interpretations.
This processes is continued until a fixed point is reached, and at this point there
may be unresolved interpretations or interpretations that are not models and
need to be filtered out. The second stage is applying the local filter function to
each interpretation, remove any unresolved interpretation, and then apply the
extended TP operator until we reach a fix point. The last step is needed since
it is possible that some propositions may be indirectly affected by the changes
made. A good example of this is the well-founded semantics. Odd cycles at this
step will not be resolved. So the filter function must resolve it by assigning ⊥
to the involved propositions. This will, in turn, require propositions dependent
on that cycle to also be assigned ⊥ . The final stage is to apply the global filter
function. After applying the global filter function, any interpretations in the
resulting set which contain unresolved propositions are removed. The final set
of interpretations are the set of models for the program.

Proof-Theoretic Foundations of Normal Logic Programs 243

4 Proof-Theoretic Formalization

4.1 3-Value Modified CoSLD Resolution

Since we will be working with 3-value logics such as well founded semantics we
must modify the algorithm from [19] further. To do this we must differentiate
between the truth value of a proposition and the success/failure of its proof. We
will say that a query succeeds if there exists a model such that the query is not
false in that model.

Definition 16. 3-value Modified CoSLD resolution can be defined by modifying
the original algorithm (from [19]) as follows.

– On success, the literals on the call stack are assigned a value in reverse order.
– On coinductive success, the last literal on the call stack is not assigned a value,

and all others are assigned a value in reverse order.
– If a literal is to be assigned ⊥, it is assigned the value temporarily and exe-

cution continues to the next branch (as if it had failed). If a success assigns
true to the literal the previous ⊥ value is overwritten and true is assigned to
the literal. Otherwise it stays ⊥.

4.2 Restrictions

Besides the obvious restrictions that the semantics must use negation-as-failure
and be a completion semantics, we impose some additional restrictions for the
proof-theoretic method: (i) All semantics that require a filter function besides
the three defined in Sect. 3 are unsupported. It is important to note that this
is not a technical restriction, but one of convenience. All such semantics can
be implemented by computing the consistency constraint imposed by the filter
functions and appending it to the query as we do for LSM [25]; and, (ii) We will
assume that no semantics will allow a cycle to be resolved as both true/false and
⊥. This restriction can be lifted by non-deterministically selecting a resolution
rule and trying again if needed.

4.3 Preprocessing

The goal directed algorithm presented in this paper is a generalization of the
algorithm for stable model semantics presented in [19] and demonstrated in [20].
More details on preprocessing a program can be found in those papers.

Internal IDs: The method we describe will require modifying the original pro-
gram internally. This includes the generation of the consistency check as well
as the creation of the extended program. This will sometimes require the use
of new propositions. We want to hide these new propositions so that when the
algorithm is viewed as a black box the modification is not apparent. So, we will
need a means of marking these propositions. For the purpose of this paper we will

244 E. Salazar and G. Gupta

surround a normal proposition name with “〈” and “〉” to represent an internal
name. It is important to note that sample and 〈sample〉 are considered different
propositions.

Dual Rule Generation: The method for generating the dual rules to be added
to the extended program presented in Sect. 2.1 of this paper is not suitable for
practical applications. For the proof-theoretic algorithm we will use the method
presented in [19].

To generate the extended program we add rules as follows:

Definition 17. Let P be some program. Then, for all propositions p ∈ props(P):

– Collect all rules r ∈ P for which head(r) = p.
– If no such rules exist add the rule “not p.” otherwise:

• for each rule r collected and each literal L ∈ body(r),
add a rule “〈not_pr〉:− not L.”, and

• add a rule r′ with head(r′) = not p and the conjunction of all 〈not_pr〉
generated in the above rule.

Consistency Check: The filter functions defined in Sect. 3, can disqualify an
interpretation from being a model or make an unresolved interpretation a model.
The local filter functions make use of information about the entire interpretation
and the global filter function makes use of information about the entire set of
interpretations. There is no guarantee that the goal-directed execution provided
in this paper will explore an entire interpretation, and it is very unlikely it will
explore the set of all possible interpretations.

Since we are only considering the identity function as our global filter func-
tion, we do not need to worry about it. It makes no changes to the set of possible
models. Likewise, we do not need to worry about the local filter function LWF .
However, the local filter function LSM may leave odd cycles unresolved. In such
situations, to capture the decisions made in the filter functions we need to explic-
itly write a rule that ensures the generated partial model would not have been
invalidated by the local filter function. The consistency check is the head of this
rule. This head is appended to all queries to make sure that the partial model
found conforms to any constraints imposed by the filter functions.

If we assume all positive and even cycles are resolved before reaching the filter
function, then the only unresolved propositions that can be present in an interpre-
tation are those that are dependent on an odd cycle. This is consistent with the
fixed-point form discussed int Sect. 3 and [19], and the same consistency check
proposed in [19] (also called an NMR check) can be used when a semantics uses
LSM .

To generate the check we must first construct a call graph for the program,
and decide what rules in the program form odd cycles. Each rule that is part of
an odd cycle is called an OLON (Odd loop over negation) rule.

Definition 18. Let P be some program.

– For each OLON rule r :h:−L1, L2, . . . , Ln create a new proposition 〈chk_hr〉
and for each literal Li, such that Li �= not h, add a new rule
“〈chk_hr〉:−notLi”. Then, add rule “〈chk_hr〉:− h”.

Proof-Theoretic Foundations of Normal Logic Programs 245

– Create a new rule, r′, with head(r′) = 〈chk〉 and the conjunction of all
〈chk_hr〉’s from the previous step as the body.

4.4 The Rules

A specific semantics is specified by three rules. Each rule decides how to resolve
a cycle when detected.

Definition 19. A cycle resolution rule can be one of three possible rules:

– SUCCESS(True) means a goal that results in a cycle will succeed with intended
value true.

– SUCCESS(⊥) means a goal that results in a cycle will succeed with the intended
value ⊥.

– FAIL means a goal that results in a cycle will fail.

In addition to the above rules, odd cycle resolutions rules must also specify
whether or not a consistency check is needed. This will be represented in this
paper as CHK and NOCHK.

Definition 20. A cycle resolution rule can be fixed or symmetric. A fixed cycle
resolution rule applies to both the positive and negative goals. A symmetric cycle
resolution rule will invert the truth value for negative goals.

In this paper will specify a cycle resolution rule to be fixed by accompanying it
with FIX. All rules are assumed to be symmetric unless accompanied by FIX. FAIL
and SUCCESS(True) are symmetric of each other and SUCCESS(⊥) is symmetric
of itself.

We will assume that if a FAIL is FIXed there will be some sort of consistency
check to ensure that the model does not have any cycles of that type. For our
work we will only allow FAIL to be FIXed for odd cycles for which we already have
a consistency check. With the current restrictions there is no way to determine
if an even cycle should fail or if its negation should fail. So, we will also require
even cycle rules to be FIXed.

Semantics Positive
Cycles

Even Cycles Odd Cycles

Fittings 3-Val SUCCESS(⊥) SUCCESS(⊥)
FIX

SUCCESS(⊥)
NOCHK

Well-Founded FAIL SUCCESS(⊥)
FIX

SUCCESS(⊥)
NOCHK

Stable-Models FAIL SUCCESS(True)
FIX

FAIL
FIX,CHK

co-stable Models SUCCESS(True)
FIX

SUCCESS(True)
FIX

FAIL,FIX,CHK

246 E. Salazar and G. Gupta

4.5 The Algorithm

The following algorithm assumes that the program had already been transformed
with dual rules and the consistency check, and that cycle resolutions rules for
positive, even, and odd cycles have been defined. We present the algorithm in
a top-down manner, with the mutually recursive functions prove_goals and
prove_goal as the core. Given some list of goals Q, query(Q) computes the
partial model, for which each member of Q is not false , if it exists and fails
otherwise. Note that CoSLD resolution maintains a coinductive hypothesis set
(CHS) where it keeps the list of all literals that are either true or hypothesized
to be true. The algorithm produces a partial model, which is determined by the
CHS at the time the query succeeds. Multiple partial models can be generated
by extending the algorithm to backtrack after a success. Each partial model is
part of a complete model for the program [25,26], and multiple partial models
could be associated with the same model.

prove_goals(Goals,CallStack,CHS) begin
Let [L1, L2, . . . , Ln] for some n ≥ 0 be a permutation of Goals;
if n = 0 then

return (True , CHS)
else

for x ∈ CHS do
if x = (L1, T) then return (T, CHS) ;
if x = (not L1,⊥) then return (⊥, CHS) ;
if x = (not L1,True) then return (False, CHS) ;

end
Let T = prove_cycle(L1, CallStack);
if T �= NOCYCLE then

return (T, CHS)
else

Let (T, CHS2) = prove_goal(L1, CallStack, CHS);
if T = False then

return (T, {}, {})
else

Let (T2, CHS2) ← prove_goals([L2, . . . , Ln], CallStack, CHS2);
if T2 = True then

return (T, CHS2)
else

return (T2, CHS2)
end

end
end

end
end

Proof-Theoretic Foundations of Normal Logic Programs 247

The function prove_goals tries to find a proof for a conjunction of goals while
constructing the partial candidate model. The prove_cycle function is the coin-
ductive portion of the algorithm. It searches the call stack to see if the current
goal (or its negation) is already in it, signaling a cycle. If the current proof
depends on a cycle, prove_cycle also detects what kind of cycle it is and applies
the proper rule to resolve it.

The apply_*_cycle_rule function calls in prove_cycle function represent
assigning a truth value based on the rule for the cycle. False is used to represent
FAIL. If the argument to the function is negative and the rule is not FIXed then
the symmetric value is used. Next, prove_goal tries to find a proof for a single
goal by expanding rules.

prove_cycle(L,CallStack) begin
Let CS ← CallStack;
Let NegCycle ← False;
while CS �= [] do

Let CS = [L′ | CS2];
if L′ is positive and L is negative then

Let NegCycle ← True;
else if L′ is negative and L is positive then

Let NegCycle ← True;
end
if L′ = L then

if NegCycle then
Let X ← apply_even_cycle_rule(L);

else
Let X ← apply_positive_cycle_rule(L);

end
return X

else if L′ = not L then
Let X ← apply_odd_cycle_rule(L);
return X

end
Let CS ← CS2;

end
return NOCYCLE

end

When computing a model, the proof-theoretic algorithm is essentially com-
puting the results of applying the extended TP operator as we do in the fixed-
point semantics. Coinductive success is essentially applying the cycle resolution
rules. Any literals not in the resulting partial model can be computed indepen-
dently and added to the partial model to form a model for the program. It is
important to note that with our current restrictions, the only way to invali-
date a potential model is if there exists an odd cycle. This is checked with the
consistency constraint, so the result must be a model of the program.

248 E. Salazar and G. Gupta

prove_goal(L,CallStack,CHS) begin
Let RS be a list of the bodies of all rules with L as the head;
Let Unknown ← False;
while RS �= [] do

Let RS = [R | RS2];
Let (T,CHS2) ← prove_goals(R,[L|CallStack],CHS);
if T = True then

if L is an internal id then return (True, CHS2) ;
else return (True, CHS2 ∪ {(L,True)}) ;

else if T = ⊥ then
Let Unknown ← True;
Let CHS ← CHS2;

end
end
if Unknown then

if L is an internal id then return (⊥, CHS) ;
else return (⊥, CHS ∪ {(L,⊥)}) ;

else
return (False, CHS)

end
end

Our algorithm generates partial models, which have a different format from
interpretations as presented in this paper. So we will present some tools for
working with them.

Definition 21. Let M1 and M2 be partial models. M1 conflicts with M2 if there
exists a pair (L1, T1) ∈ M1 and pair (L2, T2) ∈ M2 such that

– L1 = not L2 and either T1 �= ⊥ or T2 �=⊥, or
– L1 = L2 and T1 �= T2.

L1 and L2 are called conflicting literals, and we say L1 conflicts with M2

and L2 conflicts with M1.

To prove the correctness of our algorithm we must show that the query can
be extended until a full model is generated. We must also show that model is a
superset of the original partial model and that it is a model with respect to the
semantics.

Lemma 1. Let S be a semantics represented by cycle resolution rules. Let P be
a program with at least one model with respect to S, M a partial model of P ,
and L a coinductive literal of P that succeeds. If for all partial models, D, that
is generated when L succeeds(ignoring any consistency check) there exists some
proposition p that is assigned different values by D and M then not L can succeed
and there exists a partial model D′ generated when not L succeeds(ignoring any
consistency check) such that D′ does not conflict M .

Proof-Theoretic Foundations of Normal Logic Programs 249

Theorem 1. Let Q be a list of literals to be proved, and P be a program. Let S
be the semantics represented by cycle resolution rules. Then,

1. query(Q) succeeds with partial model M implies the literals in Q are in M
and there exists a model M ′ of P with respect to S such that M ⊆ M ′, and

2. if there exists a model M ′ of P with respect to S with the literals of Q are
in M ′ there exists M ⊆ M ′ with the literals of Q in M such that query(Q)
succeeds with partial model M .

5 Related Work

Jürgen Dix has studied properties of semantics for normal logic programs quite
extensively [8,9]. The multiple semantics examined in his papers include the
semantics considered in this paper plus many others. Dix’s work does not try
to generalize semantics as we do. Instead it looks at how different semantics are
similar and dissimilar and how the various properties enable or restrict the use
of a semantics.

Seki has considered application of non-stratified co-LP to Answer Set Pro-
gramming (ASP) and the well-founded semantics [27]. He has given iterated
fixed-point characterizations of stable models as well as the well-founded seman-
tics via dual programs in a spirit similar to ours. Some of Seki’s work was in
collaboration with the authors of this paper and therefore there are common
grounds between his work and ours. However, the main thrust of Seki’s work is
to show that Horn µ-calculus can be used as an extension of co-logic program-
ming for handling “non- stratified” co-LPs.

More recently, Liu and Stoller have done work in unifying the semantics
discussed in this paper, but have taken a different approach. They designed two
new semantics (founded semantics and constraint semantics) that subsume the
other semantics. Instead of a parametrized algorithm for computing models, their
semantics make use of metalogical properties that are assigned to predicates to
determine how they are handled. This allows them to simulate the behavior of
the other semantics, and can even simulate other semantics not covered by our
work [17]. It is our belief, however, that with some modifications to our algorithm
and assumptions, such as allowing metalogical properties and modifying T′

p to
use dual rules only for complete (a metalogical property) predicates instead of
all predicates, we can compute models for the semantics in [17]. Given that
we define the semantics of normal logic programs as a mixture of induction
and coinduction, then, as demonstrated, we can derive efficient query-driven
implementations with ease.

6 Conclusion

In this paper we demonstrated that normal logic program semantics, for which
the models of a program is a subset of its completion, can be expressed as a com-
bination of induction and coinduction. We explored the role of both induction

250 E. Salazar and G. Gupta

and coinduction, and showed that the major difference between such semantics
is in how they assign values to cyclic dependent computations. We then pre-
sented the declarative and operational semantics of four semantics of normal
logic programs in a unifying, systematic manner (Fitting’s 3-valued semantics,
well-founded semantics, stable model semantics, and co-stable model semantics).

We presented a fixed-point declarative semantics. This fixed-point formaliza-
tion constructs the set of all models for a program by starting from the set of all
its positive and negative literals (representing having no information about the
model) and removing literals (ignoring literals that form an odd cycle) in each
iteration when we know that cannot be true. Multiple worlds such as those gen-
erated by even cycles in stable model semantics are represented by creating two
models in the next step. One will have the proposition removed and the other
will have its negation removed. Finally when a fixed point is reached, odd cycles
are resolved before any remaining models that do not conform to the current
semantics based on all cycles or even other models are removed.

Finally, we gave a parametric goal-directed algorithm for computing partial
models of these semantics. The psuedocode for the algorithm, example execu-
tions, and proof of correctness was also presented.

The main significance of our work is that goal-directed, i.e., query-driven,
implementations of normal logic programs with predicates and terms can be
realized, e.g., the s(ASP) and s(CASP) systems [3,21]. Such implementations
allow us to develop applications that are not possible otherwise, for example,
to natural language question answering [5] and medical expert systems that
outperform doctors [6].

References

1. Aczel, P.: Non-well-founded sets, CSLI lecture notes series, vol. 14. CSLI (1988)
2. Apt, K.R., Bol, R.N.: Logic programming and negation: a survey. J. Log. Program.

19(20), 9–71 (1994). https://doi.org/10.1016/0743-1066(94)90024-8
3. Arias, J., Carro, M., Salazar, E., Marple, K., Gupta, G.: Constraint answer set

programming without grounding. TPLP 18(3–4), 337–354 (2018)
4. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press, Cambridge (2003)
5. Basu, K., Shakerin, F., Gupta, G.: AQuA: ASP-based visual question answering.

In: Komendantskaya, E., Liu, Y.A. (eds.) PADL 2020. LNCS, vol. 12007, pp. 57–72.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39197-3_4

6. Chen, Z., Marple, K., Salazar, E., Gupta, G., Tamil, L.: A physician advisory
system for chronic heart failure management based on knowledge patterns. Theory
Pract. Log. Program. 16(5–6), 604–618 (2016)

7. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293–322. Springer, Boston, MA (1978). https://doi.org/10.1007/978-1-
4684-3384-5_11

8. Dix, J.: A classification theory of semantics of normal logic programs: I. strong
properties. Fundam. Inform. 22(3), 227–255 (1995)

9. Dix, J.: A classification theory of semantics of normal logic programs: II. weak
properties. Fundam. Inform. 22(3), 257–288 (1995)

https://doi.org/10.1016/0743-1066(94)90024-8
https://doi.org/10.1007/978-3-030-39197-3_4
https://doi.org/10.1007/978-1-4684-3384-5_11
https://doi.org/10.1007/978-1-4684-3384-5_11

Proof-Theoretic Foundations of Normal Logic Programs 251

10. Fitting, M., Ben-Jacob, M.: Stratified and three-valued logic programming seman-
tics. In: Logic Programming, Proceedings of the Fifth International Conference and
Symposium, Seattle, Washington, 15–19 August 1988 (2 Volumes), pp. 1054–1069
(1988)

11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: Logic Programming, Proceedings of the Fifth International Conference and
Symposium, Seattle, Washington, 15–19 August 1988 (2 Volumes), pp. 1070–1080
(1988)

12. Gupta, G., Marple, K., Others: Coinductive answer set programming or
consistency-based computing (2012). Co-LP 2012 - A workshop on Coinductive
Logic Programming, https://utdallas.edu/~gupta/coasp.pdf

13. Gupta, G., Saeedloei, N., DeVries, B., Min, R., Marple, K., Kluźniak, F.: Infinite
computation, co-induction and computational logic. In: Proceedings of the Coal-
gebra and Algebra in Computer Science (CALCO), pp. 40–54 (2011)

14. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. EATCS Bull.
62, 62–222 (1997)

15. Klemen, M., Stulova, N., López-García, P., Morales, J.F., Hermenegildo, M.V.:
Static performance guarantees for programs with runtime checks. In: Sabel, D.,
Thiemann, P. (eds.) Proceedings of the PPDP, pp. 13:1–13:13. ACM (2018)

16. Leinster, T.: Basic Category Theory. Cambridge University Press, Cambridge
(2016)

17. Liu, Y.A., Stoller, S.D.: Founded semantics and constraint semantics of logic rules.
J. Log. Comput. 30(8), 1609–1668 (2020)

18. Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin, Heidelberg
(1987). https://doi.org/10.1007/978-3-642-83189-8

19. Marple, K., Bansal, A., Min, R., Gupta, G.: Goal-directed execution of answer set
programs. In: Principles and Practice of Declarative Programming, PPDP 2012,
Leuven, Belgium - 19–21 September 2012, pp. 35–44 (2012)

20. Marple, K., Gupta, G.: Galliwasp: a goal-directed answer set solver. In: Logic-Based
Program Synthesis and Transformation, 22nd International Symposium, LOPSTR
2012, Leuven, Belgium, 18–20 September 2012, Revised Selected Papers, pp. 122–
136 (2012)

21. Marple, K., Salazar, E., Gupta, G.: Computing stable models of normal logic pro-
grams without grounding (2017). arXiv preprint arXiv:1709.00501

22. Min, R.K.: Predicate Answer Set Programming with Coinduction. Ph.D. thesis,
University of Texas at Dallas, Richardson, TX, USA (2009)

23. Minker, J. (ed.): Foundations of Deductive Databases and Logic Programming.
Morgan Kaufmann Publishers Inc., Burlington (1988)

24. Roşu, G., Lucanu, D.: Circular coinduction: a proof theoretical foundation. In:
Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 127–
144. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03741-2_10

25. Salazar, E.E.: NAF-Based Logic Semantics: Proof-Theoretic Generalization and
Non-Ground Extension. Ph.D. thesis, Dept of Computer Science, UT Dallas (2019)

26. Salazar, E.E., Gupta, G.: Proof-theoretic foundations of normal logic programs,
Technical report, dept of comp. sci., UT Dallas (2017). https://utdallas.edu/
~gupta/prooftheoretic.pdf

27. Seki, H.: On dual programs in co-logic programming. In: Falaschi, M. (ed.) LOP-
STR 2015. LNCS, vol. 9527, pp. 21–35. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-27436-2_2

https://utdallas.edu/~gupta/coasp.pdf
https://doi.org/10.1007/978-3-642-83189-8
http://arxiv.org/abs/1709.00501
https://doi.org/10.1007/978-3-642-03741-2_10
https://utdallas.edu/~gupta/prooftheoretic.pdf
https://utdallas.edu/~gupta/prooftheoretic.pdf
https://doi.org/10.1007/978-3-319-27436-2_2
https://doi.org/10.1007/978-3-319-27436-2_2

252 E. Salazar and G. Gupta

28. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-logic programming: extending
logic programming with coinduction. In: Arge, L., Cachin, C., Jurdziński, T., Tar-
lecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472–483. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73420-8_42

29. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. J. Assoc. Comput. Mach. 38(03), 620–650 (1991)

https://doi.org/10.1007/978-3-540-73420-8_42

A Discourse on Guessing and Reasoning

Enric Trillas(B)

European Centre for Soft Computing, Mieres, Spain

etrillas@gmail.com

Abstract. Computer Science studies the possibility of mechanizing rea-
soning, an activity of the human brain often confused with thinking, but
more or less distinguished from guessing. This paper is devoted to con-
sidering, at not too much length, the links between thinking, guessing
and reasoning.

Keywords: Reasoning · Thinking · Commonsense Reasoning

1 Introduction

1.1 Thinking, Guessing and Reasoning

Computer Science studies the possibility of mechanizing reasoning, an activity
of the human brain often confused with thinking, but more or less distinguished
from guessing [5,6], and this paper is devoted to considering, at not too much
length, the links between thinking, guessing and reasoning. The first is seldom
linguistic, the second is often linguistically expressed, but the third is almost
always so; actually, reasoning and language are interwoven. If thinking can be
spontaneous, both guessing and reasoning require the thinker’s will [4].

Thinking is an activity of the brain in which guessing and reasoning are
grounded, and it is produced as soon as the thinker’s attention directs to some
goal departing from some previous and linguistically expressed information or
knowledge; that is, expressing everything by means of statements she/he tries
to get a conclusion. Both guessing and reasoning are “directed thinking”. The
reasoning’s goal is, in turn, usually guessed before a correct reasoning can estab-
lish it, and is also linguistically expressed; reasoning’s correctness is essential
for finally accepting whether what was previously guessed can be effectively
obtained and consequently believed [6–8].

Thinking is, in itself, a natural phenomenon whose scientific study, including
how a person recognizes and expresses it, corresponds to neuroscience. In prin-
ciple, thinking is independent of correction and will; it only ceases with death,
when the electroencephalogram stops. As far as guessing and reasoning, which
require the will of the thinker, are concerned, they can be, at least partially,

To professor Manuel Hermenegildo. Dear Manuel, Pax et Bonum!.

c© Springer Nature Switzerland AG 2023
P. Lopez-Garcia et al. (Eds.): Hermenegildo Festschrift 2022, LNCS 13160, pp. 253–265, 2023.
https://doi.org/10.1007/978-3-031-31476-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31476-6_14&domain=pdf
https://doi.org/10.1007/978-3-031-31476-6_14

254 E. Trillas

studied from a formal point of view; that is, by means of a mathematical model.
It should be noticed that if p is the starting statement or premise, reasoning is
essentially understood as either establishing a consequence q of p, or an expla-
nation or hypothesis h for p. Statements p, q, h, etc., are not always elemental
(that is, of the type subject-predicate, “x is P”); they often are complex, com-
posed from other statements. Consider, for instance, the statement serving to
define Natural Numbers, namely the conjunction of the three axioms of Peano,
as well as the conclusions reached from them, namely the theorems expressing
the properties of Natural Numbers that, “hidden” in the axioms, are revealed by
inference from them. If thinking can be seen as a free neural activity, reasoning
is, up to some level, rule-governed and it is just what permits the analysis of its
correctness as well as its study through formal models.

Reasoning is done thanks to the binary relation <, the inference or illation
relation. It is produced through conditional statements “If p, then q”, shortened
by p < q, and only required to universally comply with the reflexive law p < p,
for all statements p. Consequences of p are those statements q such that p < q,
and hypotheses for p those statements h such that h < p. When trying to
reach consequences, reasoning is known as deduction, and when trying to reach
hypotheses as abduction; the first is forwards inference, and the second backwards
inference. It should be noticed that conditional statements p < q, are not always
understood in the same way [6–8]; this point will be considered later on.

1.2 The Universal Laws Relation

The question on the universal laws relation < can be required to comply with,
is certainly relevant. It is so since ordinary or natural reasoning and language,
cannot be supposed to constantly enjoy the same properties. For instance, con-
junction “and”, symbolized by a dot (·), representing “p and q” by p · q, is
not always commutative, p · q = q · p, as it is shown by “Cries and runs”, not
necessarily the same as “Runs and cries”. Analogously, disjunction “or”, sym-
bolized by a cross (+), representing “p or q” by p + q, is not always associative
[p + (q + r) = (p + q) + r] since “moving commas” easily can change what is
understood by a linguistic statement, as it is shown by the fact that “(Stand up
or fall) or cry” and “Stand up or (fall or cry)”, are not necessarily the same.
Often, sequencing is important in language, and, in it, these properties are not
purely syntactic but semantic; meaning plays an essential role in language, and
hence in reasoning [11].

Both in ordinary language and reasoning, almost every statement is situa-
tional, that is, depends on the context and usually also on its purpose; all is
context-dependent and purpose-driven. It is at least for this reason that, when
trying to represent a complex statement by a formula, every part of it should be
carefully designed, and, for instance, it can’t be supposed that all appearances of
“and”, “or”, and “not”, can be represented in the same way. Great care should
be taken regarding the way in which connectives, linguistic hedges, quantifiers,
etc., are used [6,11].

A Discourse on Guessing and Reasoning 255

For instance, the statement “(x is big, and y is small), and z is big”, cor-
responds to the fuzzy proto-form T1(T2(mbig(x),msmall(y)),mbig(z)), where T1

and T2 are suitable functions for “and”, and mbig, msmall the corresponding
membership functions for the attributes “big” and “small” [6,11]. If the universe
of discourse is the interval [0, 10], mbig(x) = x/10 and msmall(y) = 1−y/10, then
the proto-form will be T1(T2(x/10, 1−y/10), z/10); only the functions T1 and T2

remain to be specified in it. If the contextual information consists of T1 = prod
and T2 = min, the final equation will be min((x/10)(1 − y/10), z/10), repre-
senting a surface in R4 and thus given x = 10, y = 5, z = 2, corresponds the
value min(1/2, 1/5) = 1/5 as the degree up to which the statement holds at
point (10, 5, 2). Such specifications can come, for instance, from knowing that
both functions are commutative, that T1 represents an interactive conjunction
(p ·p is not p), but T2 represents an idempotent one (p ·p is just p). Obviously, if
the contextual information consisted of different functions T1 and T2, the final
result will be different [11].

It should also be remarked that “and” is not always idempotent, for instance,
sometimes “stupid and stupid” is understood as “very stupid” and not as simply
“stupid”; capturing such linguistic but relevant nuances requires attending both
the context and the use of the statements in it. Ordinary language and reasoning
are situational [6–8].

1.3 Thinking

As regards thinking, it is often relational, and a difference with reasoning is that
this is based on the single relation <, but on the other hand, thinking manages
many relations several of which may be imprecise, in a simultaneous form and
without necessarily trying to reach a conclusion. For this reason, building up a
mathematical model of thinking is difficult; the difficulty is usually increased by
a lack of previous information, and because many times thinking is not directed
by the thinker, and is helped by analogy with what lies in her/his memory. Often,
thinking appears in blurred images, incomplete and distorted situations, old and
unconsciously forgotten sensations, etc. Thinking is pervasive, it always works
and not always in the same direction, moves from one to another direction;
even during reasoning, thinking continues either in parallel, or together with
reasoning [8].

In what follows we will limit ourselves to consider a general but näıve model
for reasoning, departing from the primitive relation < that, being in language, is
considered a primitive relation analogously to how “point”, “line” and “plane”
are seen in Euclid’s “Elements” [7,8].

2 A Näıve Formal Model of Reasoning

§2.1. As previously mentioned, given two statements p (taken as the premise)
and q, it can be p < q, or q < p, or neither the first, nor the second. In the first
case, q is a consequence of p, in the second q is a hypothesis for p. In the third, q

256 E. Trillas

is said to be inferentially orthogonal to p, and it is written p♦q [⇔ p ≮ q & q ≮

p]. Whenever both the first and the second hold, it is said that p and q are
inferentially equivalent, and it is written p ∼ q [⇔ p < q & q < p]. Notice that if
h were both a hypothesis for p and a consequence of p, from p < h and h < p,
it follows that h ∼ p. Usually, hypotheses are presumed not to be equivalent to
the premise, that is h < p and p ≮ h; hypotheses equivalent to the premise are
avoided. Thus, reasoning leads to conclusions being either a consequence of p,
or a hypothesis for p, or orthogonal to p.

Relation ∼ is, obviously, symmetrical and reflexive, and ♦ is symmetrical but
not reflexive.

§2.2. Each q is supposed to have a unique linguistic negation q′, satisfying
the law: p < q ⇒ q′ < p′; negation just inverts relation <. There are some q
occurring in language with opposite statements, also called antonyms, written qa

and assumed to satisfy the law of coherence qa < q′. As it is shown by examples
such as, “if the bottle is not full, it is not empty”, it is not always the case
that q′ < qa; usually it is not qa ∼ q′. Negation bounds opposites by above;
inferentially, is their superior limit [6]. When a statement q does not have an
opposite, it is called “irregular”, and it is assumed that qa ∼ q′, that is, its
negation is “defined” as its unique antonym.

As regards negation, it can be of the following four types for each statement
q: 1) q < (q′)′; 2) (q′)′ < q; 3) q ∼ (q′)′; 4) q♦(q′)′. In the first, negation is weak
at q, in the second intuitionistic at q, in the third strong at q, and in the fourth
wild at q; negation’s character is “local”. By definition, opposites are always
supposed strong, (qa)a ∼ q, except if q is irregular in which case its character
depends on its negation’s character.

It is important to notice the singularity of statement q′; if q is in the dictio-
nary, all its opposites qa are also in it, but its negation q′ is not as, for instance,
“young” is in the dictionary, “old” is also in the dictionary, but neither “not
young” nor “not old” is in it. That is, if statement q can be considered a linguis-
tic term, also qa is a linguistic term, but q′ is not so. Hence and in principle, if
it makes sense to consider (qa)′, it is doubtful to consider (q′)a; nevertheless, if
the latter exists, it will verify (q′)a < (q′)′, provided negation is intuitionistic or
strong at q, (q′)′ < q, and < transitive, implies (q′)a < q. Notice that if p were
an elemental statement subject-predicate, “x is P”, p′ is the statement “x is
P ′ (= not P)”, simply meaning that x does not exhibit the property named by
the word P ; instead, “x is P a” means that x exhibits a concrete property, that
specified by the antonym of the word P a. In a non irregular case, the meanings
of words P ′ and P a are not coincidental.

§2.3. The transitive property of < is not always valid in language, as it is shown
by examples like “The light is red < I stop my car”, “I stop my car < A car
crosses the orthogonal street”, does not necessarily imply “The light is red < A
car crosses the orthogonal street” when lacking knowledge of the car’s driver. We
will see soon the relevance of being < transitive, a property that, like negation,
only can be locally considered, and that examples like the former can motivate

A Discourse on Guessing and Reasoning 257

its substitution by forms like: [p < q, and q < r ⇒ p·q < r], a form of transitivity
weaker than the usual: [p < q, and q < r ⇒ p < r], as will be seen shortly. In the
former example, the conclusion will be “The light is red and I stop my car < A
car crosses the orthogonal street”, which seems more reasonable since a driver
(“I”) observes the fact.

Concerning linguistic concepts conjunction (and, ·), and disjunction (or, +),
they are just assumed to satisfy the universal laws:

1. p · q < p, p · q < q; both p and q are consequences of “p and q”;
2. p < p + q, q < p + q; both p and q are hypotheses for “p or q”,

for all statements p, q. It is just from law 1 that the above-mentioned weaker
character of the former type of transitivity follows: If p < q and q < r, since it
is p · q < q then, under the usual type of transitivity, it follows that p · q < r.

§2.4. It is said that q contradicts p, or refutes p whenever p < q′. In particular,
p is said to be self-contradictory if it is p < p′, if contradicts, refutes itself.
Self-contradiction is considered a “Mortal Sin” in reasoning, and neither self-
contradictory premises are accepted as conveying departing sensory information,
nor are self-contradictory conclusions taken into account but avoided.

Theorem 1. Provided < is transitive in the involved corresponding statements,
no two consequences of a non self-contradictory premise p (p ≮ p′) can be con-
tradictory.

Proof. If p < q and p < r and it were q < r′, since p < r ⇒ r′ < p′, it will follow
from p < q, q < r′, and r′ < p′, the absurd p < p′. Notice that the transitive
character of < in the triplet (p, q, r′) suffices. �

No analogous “theorem” can be proven for hypotheses; it is a matter of
experience that contradictory hypotheses do exist, and were such a result proven,
the confidence in the above definitions would suggest serious doubts [7,8].

§2.5. Let’s now enter in what is an actually distinctive part of commonsense,
ordinary or everyday reasoning, that on which people usually ground their deci-
sions for daily actions. For instance, why do people buy lottery tickets? Of
course, they don’t buy a lottery ticket because of “If I buy this ticket, it will be
rewarded”, but because of “If I buy this ticket, I cannot state that it will not
be rewarded”, that is, the reasoning for the decision of buying a lottery’s ticket
is not p < q, with p = “I buy a ticket” and q = “This ticket will be rewarded”,
but p ≮ q′. Since q is not contradictory with the premise p, the conclusion does
not refute the premise; that is, q can be conjectured from p.

Definition 1. Given a premise p, p ≮ p′, it is said that q is a conjecture from
p if p ≮ q′, if q does not refute p.

Hence, regarding reasoning from a not self-contradictory premise, it only can
consist in either refuting or conjecturing. Notice that premises are statements
supposed to be both consequences and conjectures of itself, p < p and p ≮ p′.
But, what about consequences and hypotheses?

258 E. Trillas

Theorem 2. If < is transitive in the involved statements, then p < q ⇒ p ≮ q′,
consequences are conjectures; deducing is a particular case of conjecturing.

Proof. If p < q′, since p < q ⇒ q′ < p′, the transitivity of < leads to the absurd
p < p′. Notice that transitivity in the triplet (p, q′, p′) suffices. �

Theorem 3. If < is transitive in the involved statements, then h < p ⇒ p ≮ h′,
provided h ≮ h′; abducing is a particular case of conjecturing.

Proof. If p < h′, from h < p it will follow that h < h′, which is absurd. Notice
that the transitivity of < in the triplet (h, p, h′) suffices. �

Thus, in presence of local transitivity, both consequences and not self-refuting
hypotheses are conjectures; but in total absence of transitivity there can exist
consequences and hypotheses that are not conjectures. Transitivity simplifies the
classification of conjectures; under that assumption, reasoning just consists in
refuting, deducing, abducing, and in finding orthogonal conjectures.

A forwards chain of elemental steps like p < q, q < r, r < t allows us to
conclude p < t, provided < is transitive in the involved statements; if it is not,
the only thing that can be immediately stated is 1) q is a consequence of p; 2) r
is a consequence of q, and 3) t is a consequence of r, but the possibility of p < t
should be directly checked. Analogously, with a backwards chain p > q > r >
t (p > q ⇔ q < r), transitivity allows us to conclude p > t; without transitivity
such conclusion is undecided and it should be directly checked.

Notwithstanding this, in general, conjectures are not only consequences or
hypotheses; there can exist conjectures that are orthogonal to the premise, that
is, those statements s such that p ≮ s′ and p♦s. They are called speculations
from p, and these belong to the two disjoint families of those, namely: 1) p♦s and
s′ < p, called weak speculations, and 2) p♦s and p♦s′, called strong speculations.
Hence, under transitivity, reasoning just consists in refuting, deducing, abducing
and speculating [5–8,10].

§2.6. Weak speculations can be obtained deductively provided the negation is
not wild in them. In fact, from s′ < p, s′ can be backwards attained from p, and
once s′ is known, its negation (s′)′, the double negation of s, allows forwards
reaching s when it is (s′)′ < s, and backwards when s < (s′)′; such a result is
undecided if the negation is wild. Of course, if negation is strong, (s′)′ ∼ s, a
single step from s′ to reach s suffices. As well as this, strong speculations cannot
be attained directly from p because of being p♦s, and p♦s′.

Reaching strong speculations, or weak ones with a wild negation, is just
guessing, inducing ; thus, guessing is a particular but extreme type of reasoning.
Nevertheless, it does not obviously mean the non-existence of chains of elemental
steps p < q, some forwards and some backwards, allowing us to reach speculation
s from p; what is actually impossible is to arrive from p to s through either
only forwards, or only backwards chains. What is sure is that at the end of
such mixed chains there neither will be consequences, nor hypotheses, but some

A Discourse on Guessing and Reasoning 259

element orthogonal to p. Let us show an example in a finite Boolean Algebra
with five atoms a, b, c, d, e, 32 = 25 elements, and with p = a + b.

In this case, since s = a+c+d (s′ = b+e) verifies p♦s and p♦s′, s is a strong
speculation, and the mixed chain p > a < s leads from p to s. Analogously,
s = b+e+d (s′ = a+ c), verifies p♦s and s′♦p is a strong speculation attainable
through the mixed chain p > b < s. On the other hand, s = c+d+e (s′ = a+b),
verifies p♦s and p = s′, is a weak speculation attainable by p > a < s′ and
passing from s′ to (s′)′ = c + d + e = s.

All this corresponds to a general result in finite Boolean Algebras [10]. Hence,
in such an extremely rigid structure, speculations can be attained by a computer
program even at the risk of a combinatorial explosion (consider a large number
of atoms). Given p, it suffices to find all the elements orthogonal to p, and then
selecting among them those that are speculations of both types. Perhaps what
can be surprising is just the possibility of attaining strong speculations by means
of a computer program; it is but just a first step towards mechanizing induc-
tion, guessing. It can be said that strong speculations are in the border between
directed thinking and reasoning; in general, the thinker obtains them by reflect-
ing on what she/he guesses will follow from p and, perhaps, by analogy with a
former and similar case. Sometimes, such reflection is done by a retrocession, a
kind of backwards chaining, from the final guess up to the premise.

§2.7. Let us finally show how speculations can help to obtain consequences and
hypotheses, how guessing helps deducing and abducing. Obviously, p · q < q and
q < p+ q, show that for all statements q, its conjunction with the premise p is a
hypothesis, and its disjunction a consequence. Both conclusions are independent
of transitivity.

When directing the thinking to some question concerning the information
conveyed by p, that is, when reflecting on such a question or problem, and
if it leads to a speculation s from p, a consequence p + s, and a hypothesis
p · s, are obtained. Of course, their suitability for the current problem is not at
all guaranteed, and it is the thinker who should decide to stop or to continue
the search; if the decision were to continue, what was reached counts as new
knowledge that can help such a continuation. That is, by respectively departing
from p · s, or from p + s.

Any researcher can recognize these results from his or her own experiences
when searching for something new. Guessing, inducing, or speculating, is a vari-
ety of reasoning that is at the heart of creativity. If it were finally confirmed
that all speculations can always be attained through a computer program, the
mystery around creativity will disappear or, at least, reduced [7]. It should be
noticed that tracking pa instead of s, the obtained hypothesis p · pa plays an
important role in Dialectic Synthesis [12], provided it is not self-contradictory.

3 Additional Remarks

§3.1. Relation ∼ is not always transitive, and, as is obvious, the transitivity of <
suffices for being ∼ transitive also. In this case, ∼ is not only reflexive and sym-

260 E. Trillas

metric, but also transitive, and thus it is an equivalence relation, whose classes
are the sets of statements {q; q ∼ p} = [p], usually known as “propositions”
and mainly considered by logicians. Nevertheless, language and ordinary reason-
ing manage statements but not always propositions that can reveal something
out of language; it is, for instance, that inferential equivalence p ∼ q translates
into identity [p] = [q], which can cause some confusion when, as is usual, state-
ments p and q are not actually identical but expressed in different words and,
consequently, possibly showing some nuances that don’t permit their full iden-
tification. Language is not as simple as logic seems to be, and, as has already
been said, ordinary reasoning is interwoven with it.

§3.2. It was supposed that premises are single statements p, but usually the
initial information is conveyed by a set of statements {p1, . . . , pn} with n > 1.
Such statements can be aggregated into a résumé p, usually consisting in their
conjunction even if it can be done through some “packages” of the pi [3]. A com-
ment is needed in regard to this, since in ordinary language conjunction neither
can be always considered commutative, nor associative; notice, for instance, that
with n = 3, the statements p1 · (p2 · p3) and (p2 · p3) · p1, can be actually differ-
ent. Hence, when lacking the commutative and the associative laws, the thinker
should decide, in advance, a suitable ordering for the pi; a decision based on
some criteria coming from his/her contextual knowledge on the “n premises”,
or by considering, for instance, their complexity. Once the premises are ordered,
p1, . . ., pn, its résumé can be defined by p = p1 · (p2 · (p3 · (. . .) ·pn)))), which can
then be written without parentheses, p = p1 · p2 · p3 . . . pn, provided conjunction
is associative. When, in addition, conjunction is commutative the order in which
the pi appear in the former expression does not matter [6,7].

Notice that without these laws, we have p ·(q ·r) < p, and p ·(q ·r) < q ·r, from
which, since q · r < q and q · r < r, can only be continued to give p · (q · r) < q,
and p · (q · r) < r if < is transitive.

§3.3. The näıve model presented above allows, with local transitivity, the proof
of the Aristotle’s old “principles” of Non Contradiction and Excluded Middle
as “theorems”. The first proof below contradicts Aristotle’s statement, “this
principle cannot be submitted to proof” [4].

1. Theorem of Non Contradiction: p · p′ < p implies p′ < (p · p′)′. Hence, since
it is also p · p′ < p′, by transitivity in the triplet (p · p′, p′, (p · p′)′), it follows
that p ·p′ < (p ·p′)′. That is, the statement “p and not p” is self-contradictory
for all p.

2. Theorem of Excluded Middle: p < p + p′ implies (p + p′)′ < p′. Since it is
also p′ < p + p′, by transitivity in the triplet ((p + p′)′, p′, p + p′), it follows
(p + p′)′ < p + p′, and (p + p′)′ < ((p + p′)′)′. That is, the statement “not (p
or not p)” is self-contradictory for all p.

Thus, it suffices to accept the equivalence [impossible ∼ self-contradictory],
to have the principles in the old form presented by Aristotle: “p and not p is

A Discourse on Guessing and Reasoning 261

impossible”, and “p or not p is sure” (just accepting that “sure” is equivalent to
“not impossible”). It should be remarked that both theorems hold for any kind
of negation, their proofs are independent of the negation’s character.

Notice that, in Ortho-lattices, these “principles” reduce, respectively, to
p·p′ = 0, and p+p′ = 1, since in them p < p′ ⇔ p = 0, the only self-contradictory
element is its lattice’s minimum (0): In Ortho-lattices, the “principles” appear
among its axioms, as it is in the particular cases of Ortho-modular lattices
and Boolean algebras. The situation is different in De Morgan algebras, where
p ·p′ = 0 and p + p′ = 1 are not axioms, there can be more self-contradictory ele-
ments than just 0, and such two properties only hold for its “Boolean elements”;
nevertheless, since the former proofs also hold in these algebras, the principles
are valid in them as just stated by the former two theorems.

Notice also that in all those lattices [1], and since in them the laws of duality
hold, (p + q)′ = p′ · q′ and (p · q)′ = p′ + q′, one equivalent to the other, both
“principles” are equivalent. For instance, p · p′ < (p · p′)′ = p′ + (p′)′ = p′ + p =
p + p′ ⇒ (p + p′)′ < (p · p′)′ = p′ + p = ((p + p′)′)′ since, in addition, negation
is strong (⇔ (r′)′ = r, for all r). Just as the commutative and associative laws
of conjunction are not always admissible, the laws of duality are not always
admissible; in ordinary language and reasoning, their validity is, like that of
transitivity, a local property; furthermore, they are not equivalent and it may be
that none holds, or that one holds but not the other [6]. It was in the setting of
Ortho-lattices that conjectures were defined by the first time [9], and introduced
the idea of speculation.

Anyway, given a conjunction (·) its “dual disjunction” expressed by p ∨ q =
(p′ · q′)′ exists; similarly, given a disjunction (+) there exists its “dual con-
junction” p ∧ q = (p′ + q′)′. In fact, and provided the negation is weak or
strong, and transitivity holds, the first verifies p < p ∨ q and q < p ∨ q, since
p′ · q′ < p′ ⇒ (p′)′ < (p′ · q′)′ = p∨ q, and p < (p′)′ implies p < p∨ q; analogously
it follows q < p ∨ q, as well as it is proven that p ∧ q < p and p ∧ q < q.

Concerning the algebras of fuzzy sets [11], which are lattices only when
conjunction is represented by the function min, and disjunction by max, in
which case are De Morgan-Kleene algebras [6,11], the two former theorems
hold in all cases. It is a fact leaving out the usual affirmation that fuzzy
sets don’t verify the two “principles”, an affirmation that is also not true for
some representations of “not”, “and”, “or”, and as it is, for instance, with
W (x, y) = max(0, x + y − 1) for “and”, W ∗(x, y) = min(1, x + y) for “or”, and
N(x) = 1 − x for “not”, functions verifying W (x, 1 − x) = max(0, x+ 1 − x− 1)
= 0, and W ∗(1, 1 − x) = min(1, x + 1 − x) = 1.

Actually, the former two theorems are very general, since they hold in very
different situations. Both theorems only can fail in absence of local transitivity.
Thus, if the principle of Non Contradiction is considered essential for having
one’s feet on solid ground (as it was, and still is, believed by most thinkers), it
seems that the given definitions of conjunction and disjunction, as well as the
law of inversion of negation, should be preserved jointly with the existence of

262 E. Trillas

some type of transitivity that differentiates, at the end, formal from ordinary
reasoning.

§3.4. As it was said at the start of this paper, people don’t uniformly understand
the illation conditional statements p < q. It depends on the context and the use
and purpose of <. There is not a single way of understanding p < q in language.
Perhaps the most usual form of understanding p < q is identifying it with the
unconditional statement “not p or q”, p′ + q. In this form, “If it rains, then I
take an umbrella” means “It does not rain, or I take an umbrella”, a statement
that seems to hide the possibility of going with an umbrella with rain. For this
reason, the equivalence with “It does not rain or (it rains and I take an umbrella)”
seems more suitable, that is, identifying p < q with the unconditional statement
p′+(p·q), coincidental in Ortho-lattices with p′ ·(q+q′)+(p·q), and making clear
that the umbrella is taken when raining but leaving it open in the case of not
raining. Notice that, provided < is transitive, and the negation weak or strong,
p · q and p′ are contradictory since p · q < p, and p < (p′)′ imply p · q < (p′)′,
something that is not with p′ and q in the first form p′ + q. Hence, the form
p′ + p · q consists of the disjunction of two contradictory statements; a kind of
“partition” of p < q.

Notice that in the Ortho-lattices, p′ · (p · q) = (p′ · p) · q = 0 · q = 0, and in the
particular case of Boolean algebras, p′+p·q = (p′+p)·(p′+q) = 1·(p′+q) = p′+q,
thanks to the distributive law; that is, in these algebras both expressions p′ + q
and p′ + p · q are identical. The first is typically used in the so called Logic of
Quantum Physics and the second in the classical Propositional Calculus [1]. If in
the second, statements are represented by subsets of a universe of discourse, in
the first are represented by vector subspaces of an infinite dimensional Hilbert
space, whose respective models are Boolean algebras and Ortho-modular lattices.
In the case of Quantum Physics the expression q + (p′ · q′) is also considered to
mean p < q; this form also reduces in Boolean algebras to p′ + q : q + (p′ · q′) =
(q + p′) · (q + q′) = (q + p′) · 1 = q + p′ = p′ + q.

The large amount of laws in Boolean algebras make indistinguishable many
“forms” that, without them, are different [2]; for instance, there is the “contra-
diction” (p < q′) indistinguishable from “incompatibility” (p · q = 0), since: 1) If
p and q are contradictory ⇔ p < q′, then by the monotony of (·) respect to <,
it is p · q < q′ · q = 0; thus p · q = 0; 2). If p and q are incompatible ⇔ p · q = 0,
and since it always holds the law of “perfect repartition”, p = p · q + p · q′, it
follows that p = 0 + p · q′ = p · q′ ⇔ p < q′. It should be noticed that in Boolean
algebras the law of perfect repartition is a direct consequence of the distributive
law: p = p · 1 = p · (q + q′) = p · q + p · q′.

Let us mention yet another form appearing in ordinary language. It is the
understanding of p < q as “p and q”, p·q, a form requiring that the conjunction is
not commutative, since p < q is different from q < p. Remember that p′ + q (p <
q) is different from q′ + p (q < p), as well as that p′ + p · q does not coincide with
q′ + q · p. This conjunctive interpretation is the preferred one in Fuzzy Logic’s
applications in Control Theory [11], but there are more forms of understanding
the statement p < q; for instance, in Fuzzy Logic more than forty of them are

A Discourse on Guessing and Reasoning 263

used. At least and as far as the author knows, the use of the forms p′+q, p′+p·q,
and p · q, are present, registered in ordinary language.

§3.5. It is important to realize that relation < should be “effective”, that is,
once statements p and p < q are known, q should be also known. This is what
is translated by the formal expression [(p · (p < q)) < q], called the Modus
Ponens Rule (MP) by shortening the old Latin expression “Modus Ponendo
Ponens”, the mode of posing q after posing p. MP is the fundamental rule of
inference, and from it follows the Modus Tollens Rule (MT), by shortening the
old Latin “Modus Tollendo Tollens”, the mode of removing p after removing q:
[(q′·(p < q)) < p′]. MT follows from MP because of the inversion p < q ⇒ q′ < p′,
since from (q′ · (p < q) follows (q′ · (q′ < p′) that, by MP, allows to arrive at p′.

When the “calculus” accepts more laws than the few presumed in the model
presented in Sect. 2, the adopted representations by unconditional statements
can be checked to satisfy MP. For instance, in Boolean algebras p · (p′ + q) =
(p ·p′)+ (p · q) = p · q < q holds. In the same vein, in Ortho-modular lattices it is
proven that p · (p′ + p · q) < q, and p · (q+ p′ · q′) < q. With the model’s few laws,
and provided that conjunction is associative, p · (p · q) = (p · p) · q < q; that is,
MP holds. It happens analogously with MT; for instance, in Boolean algebras,
q′ · (p′ + q) = q′ · p′ < p′, and q′ · (p · q) = p · (q′ · q) = p · 0 = 0 < p′ hold.

Nevertheless, Rules MP and MT can show limitations due to the necessity
that their reasoning’s premises, p · (p < q) in MP, and q′ · (p < q) in MT, should
be not self-contradictory. In Boolean algebras, as it was proven, that means that
both expressions should be different from 0. Hence, in Boolean algebras, MT
with the conjunctive interpretation of p < q by p · q is not effective and hence
it can’t be used. In these algebras, the expression p · (p < q) < q, allows the
proof that the interpretation of p < q as p′ + q is the “maximum” possible in the
lattice order of the Boolean algebra; it implies that p′ + p · (p < q) < p′ + q ⇔
(p < q) < p′ + (p < q) < p′ + q. In the Ortho-modular lattices it can be proven
that a greatest expression for p < q does not exist, but that both p′ + p · q and
q + p′ · q′ are maximal.

As regards Fuzzy Logic, if “x is P < y is Q” is represented by means of a
function J : [0, 1] × [0, 1] → [0, 1], such that mP<Q(x, y) = J(mP (x),mQ(y)),
for all x and y, then there exists a function T : [0, 1] × [0, 1] → [0, 1], rep-
resenting conjunction, such that T (mP (x), J(mP (x),mQ(y)) ≤ mQ(y), for all
x and y. For instance, if < were represented by a function J , then and pro-
vided that the former T is a left-continuous t-norm [11], such an inequality is
proven to be equivalent to J(mP (x),mQ(y)) ≤ JT (mP (x),mQ(y)) = max{z ∈
[0, 1];T (z,mP (x)) ≤ mQ(y)}. In addition, JT reduces to the form p′ + q when
membership functions mP and mQ only take the values 0 or 1, that is, reduces
to the classical or crisp case. A similar result to that in Boolean algebras is
obtained, that is, with classical or crisp sets [6,11].

264 E. Trillas

4 Conclusion

A model able to represent ordinary language and reasoning cannot be endowed
with too many “universal laws”; the rigidity of the model increases with the
number of presumed laws or axioms, and rising to a maximum in Boolean alge-
bras. Instead, language and reasoning (which everyone relies on for everything)
needs to cover all situations; both usually lack too much rigidity and, in part, by
the pervasive appearance of imprecision and uncertainty; language will always
resist any attempt to enclose it in any “axiomatic setting” [8].

In any case, the model presented in Sect. 2 and called the “Skeleton” of
Commonsense Reasoning [4], permits, with very few universal laws, the proof of
some results that are considered relevant in reasoning as it is, for instance as it
was reclaimed by William Whewell in the 19th Century, when consequences are
conjectures [8]. In addition it manifests the importance of local transitivity, and
allows the study of Hegel’s Dialectic Synthesis [12]. Of course, for each case of
reasoning more suitable laws can be added to the few presumed in the model. It
is a model just following the Ockham-Menger’s Razor: neither more hypotheses
should be presumed than those strictly necessary, nor less than those sufficient
for reaching significant results [8]. In addition, the model not only reveals when
reasoning is reduced to conjecturing and refuting, but shows the existence of
speculations, the not purely deductive but inductive conclusions, whose relevance
for ordinary reasoning is now not doubted, even if speculations are not generally
recognized in the literature on logic. All this tries to further the old maxim of
Leibniz: Instead of discussing, let’s compute!, inspired in the Middle Age’s work
of Ramon Llull on the way towards seeing reasoning as a “calculus” [7,8].

Acknowledgements. The author thanks the referees whose corrections did improve
this paper.

References

1. Birkhoff, G.: Lattice Theory. American Mathematical Society, Colloquium Publi-
cations (1967)

2. Bodiou, G.: Théorie dialectique des probabilités, englobant leurs calculs classique
et quantique. Gauthier-Villars (1964)

3. Trillas, E., Castiñeira, E., Cubillo, S.: Averaging premises. Mathware Soft Comput.
8(2), 83–91 (2001)

4. Trillas, E., Termini, S., Tabacchi, M.E.: Reasoning and Language at Work. A
Critical Essay. Springer, Cham (2022)

5. Trillas, E.: Glimpsing at guessing. Fuzzy Sets Syst. 281, 32–43 (2015)
6. Trillas, E.: On the Logos: A Näıve View on Ordinary Reasoning and Fuzzy

Logic. SFSC, vol. 354. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56053-3

7. Trillas, E.: El desaf́ıo de la creatividad. Universidade de Santiago de Compostela,
Servizo de Publicacións e Intercambio Cient́ıfico (2018)

8. Trillas, E.: Narrar, conjeturar y computar. Editorial Universidad de Granada, El
pensamiento (2020)

https://doi.org/10.1007/978-3-319-56053-3
https://doi.org/10.1007/978-3-319-56053-3

A Discourse on Guessing and Reasoning 265

9. Trillas, E., Cubillo, S., Castiñeira, E.: On conjectures in orthocomplemented lat-
tices. Artif. Intell. 117(2), 255–275 (2000)

10. Trillas, E., de Soto, A.R.: On the search of speculations. New Math. Nat. Comput.
18(1), 9–18 (2022)

11. Trillas, E., Eciolaza, L.: Fuzzy Logic. SFSC, vol. 320. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-14203-6

12. Trillas, E., Garćıa-Honrado, I.: A reflection on the dialectic synthesis. New Math.
Nat. Comput. 15(1), 31–46 (2019)

https://doi.org/10.1007/978-3-319-14203-6

Reversible Debugging in Logic
Programming

Germán Vidal(B)

MiST, VRAIN, Universitat Politècnica de València, Valencia, Spain

gvidal@dsic.upv.es

Abstract. Reversible debugging is becoming increasingly popular for
locating the source of errors. This technique proposes a more natural
approach to debugging, where one can explore a computation from the
observable misbehaviour backwards to the source of the error. In this
work, we propose a reversible debugging scheme for logic programs. For
this purpose, we define an appropriate instrumented semantics (a so-
called Landauer embedding) that makes SLD resolution reversible. An
implementation of a reversible debugger for Prolog, rever, has been devel-
oped and is publicly available.

This paper is dedicated to Manuel Hermenegildo on his 60th birthday,
for his many contributions to logic programming as well as his energetic
leadership within the community. I wish him many springs more to come.

1 Introduction

Reversible debugging allows one to explore a program execution back and forth.
In particular, if one observes a misbehaviour in some execution (e.g., a variable
that takes a wrong value or an unexpected exception), reversible debugging
allows us to analyse the execution backwards from this point. This feature is
particularly useful for long executions, where a step-by-step forward inspection
from the beginning of the execution would take too much time, or be even
impractical.

One can already find a number of tools for reversible debugging in different
programming languages, like Undo [12], rr [9] or CauDEr [6], to name a few.
In this work, we consider reversible debugging in logic programming [7]. In this
context, one has to deal with two specific features that are not common in other
programming languages: nondetermism and a bidirectional parameter passing
mechanism (unification).

Typically, the reversibilization of a (reduction) semantics can be obtained by
instrumenting the states with an appropriate Landauer embedding [5], i.e., by

This work has been partially supported by grant PID2019-104735RB-C41 funded
by MCIN/AEI/ 10.13039/501100011033, by the Generalitat Valenciana under grant
Prometeo/2019/098 (DeepTrust), and by the COST Action IC1405 on Reversible Com-
putation - extending horizons of computing.

c© Springer Nature Switzerland AG 2023
P. Lopez-Garcia et al. (Eds.): Hermenegildo Festschrift 2022, LNCS 13160, pp. 266–280, 2023.
https://doi.org/10.1007/978-3-031-31476-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31476-6_15&domain=pdf
http://orcid.org/0000-0002-1857-6951
https://doi.org/10.1007/978-3-031-31476-6_15

Reversible Debugging in Logic Programming 267

introducing a history where the information required to undo the computation
steps is stored. Defining a Landauer embedding for logic programming is a chal-
lenging task because of nondetermism and unification. On the one hand, in order
to undo backtracking steps, a deterministic semantics that models the complete
traversal of an SLD tree is required (like the linear operational semantics intro-
duced in [10]). On the other hand, unification is an irreversible operation: given
two terms, s and t, with most general unifier σ, we cannot obtain s from t and
σ (nor t from s and σ).

Let us note that, in this work, we aim at reversibility in the sense of being
able to deterministically undo the steps of a computation. In general, (pure) logic
programs are invertible (e.g., the same relation can be used for both addition
and subtraction), but they are not reversible in the above sense.

This paper extends the preliminary results reported in the short paper [13].
In particular, our main contributions are the following:

– First, we define a reversible operational semantics for logic programs that
deals explicitly with backtracking steps. In particular, we define both a for-
ward and a backward transition relation that model forward and backward
computations, respectively.

– Moreover, we state and prove some formal properties for our reversible seman-
tics, including the fact that it is indeed a conservative extension of the stan-
dard semantics, that it is deterministic, and that any forward computation
can be undone.

– Finally, we present the design of a reversible debugger for Prolog that is based
on our reversible semantics, and discuss some aspects of the implemented tool,
the reversible debugger rever.

We consider that our work can be useful in the context of existing techniques for
program validation in logic programming, like run-time verification (e.g., [11])
or concolic testing (e.g., [8]), in order to help locating the bugs of a program.

The paper is organised as follows. After introducing some preliminaries in
the next section, we introduce our reversible operational semantics in Sect. 3.
Then, Sect. 4 presents the design of a reversible debugger based on the previous
semantics. Finally, Sect. 5 compares our approach with some related work and
Sect. 6 concludes and points out some directions for further research.

2 Preliminaries

In this section, we briefly recall some basic notions from logic programming (see,
e.g., [1,7] for more details).

In this work, we consider a first-order language with a fixed vocabulary of
predicate symbols, function symbols, and variables denoted by Π, Σ and V,
respectively, with Σ ∩ Π = ∅ and (Σ ∪ Π) ∩ V = ∅. Every element of Σ ∪ Π
has an arity which is the number of its arguments. We write f/n ∈ Σ (resp.
p/n ∈ Π) to denote that f (resp. p) is an element of Σ (resp. Π) whose arity is

268 G. Vidal

n ≥ 0. A constant symbol is an element of Σ whose arity is 0. We let T (Σ,V)
denote the set of terms constructed using symbols from Σ and variables from V.

An atom has the form p(t1, . . . , tn) with p/n ∈ Π and ti ∈ T (Σ,V) for
i = 1, . . . , n. A query is a finite conjunction of atoms which is denoted by a
sequence of the form A1, . . . , An, where the empty query is denoted by true. A
clause has the form H ← B1, . . . , Bn, where H (the head) and B1, . . . , Bn (the
body) are atoms, n ≥ 0 (thus we only consider definite logic programs, i.e., logic
programs without negated atoms in the body of the clauses). Clauses with an
empty body, H ← true, are called facts, and are typically denoted by H. In the
following, atoms are ranged over by A,B,C,H, . . . while queries (possibly empty
sequences of atoms) are ranged over by A,B, . . .

Var(s) denotes the set of variables in the syntactic object s (i.e., s can be a
term, an atom, a query, or a clause). A syntactic object s is ground if Var(s) = ∅.
In this work, we only consider finite ground terms.

Substitutions and their operations are defined as usual; they are typically
denoted by (finite) sets of bindings like, e.g., {x1/s1, . . . , xn/sn}. We let id
denote the identity substitution. Substitutions are ranged over by σ, θ, . . . In
particular, the set Dom(σ) = {x ∈ V | σ(x) �= x} is called the domain of a
substitution σ. Composition of substitutions is denoted by juxtaposition, i.e.,
σθ denotes a substitution γ such that γ(x) = θ(σ(x)) for all x ∈ V. We follow
a postfix notation for substitution application: given a syntactic object s and a
substitution σ the application σ(s) is denoted by sσ. The restriction θ |̀V of a
substitution θ to a set of variables V is defined as follows: xθ |̀V = xθ if x ∈ V
and xθ |̀V = x otherwise. We say that θ = σ [V] if θ |̀V = σ |̀V .

A syntactic object s1 is more general than a syntactic object s2, denoted
s1 � s2, if there exists a substitution θ such that s2 = s1θ. A variable renaming
is a substitution that is a bijection on V. Two syntactic objects t1 and t2 are
variants (or equal up to variable renaming), denoted t1 ≈ t2, if t1 = t2ρ for some
variable renaming ρ. A substitution θ is a unifier of two syntactic objects t1 and
t2 iff t1θ = t2θ; furthermore, θ is the most general unifier of t1 and t2, denoted
by mgu(t1, t2) if, for every other unifier σ of t1 and t2, we have that θ � σ.

A logic program is a finite sequence of clauses. Given a program P , we say
that A,B′ �P,σ (B,B′)σ is an SLD resolution step1 if H ← B is a renamed
apart clause (i.e., with fresh variables) of program P , in symbols, H ← B << P ,
and σ = mgu(A,H). The subscript P will often be omitted when the program
is clear from the context. An SLD derivation is a (finite or infinite) sequence
of SLD resolution steps. As is common, �∗ denotes the reflexive and transitive
closure of �. In particular, we denote by A0 �∗

θ An a derivation

A0 �θ1 A1 �θ2 . . . �θn
An

where θ = θ1 . . . θn if n > 0 (and θ = id otherwise).
An SLD derivation is called successful if it ends with the query true, and

it is called failed if it ends in a query where the leftmost atom does not unify
1 In this paper, we only consider Prolog’s computation rule, so that the selected atom
in a query is always the leftmost one.

Reversible Debugging in Logic Programming 269

with the head of any clause. Given a successful SLD derivation A �∗
θ true,

the associated computed answer, θ |̀Var(A), is the restriction of θ to the variables
of the initial query A. SLD derivations are represented by a (possibly infinite)
finitely branching tree, which is called SLD tree. Here, choice points (queries
with more than one child) correspond to queries where the leftmost atom unifies
with the head of more than one program clause.

Example 1. Consider the following (labelled) logic program:2

�1 : p(X, Y) :- q(X), r(X, Y).
�2 : q(a). �5 : r(b, b).
�3 : q(b). �6 : r(b, c).
�4 : q(c). �7 : r(c, c).

Given the query p(X, Y), we have, e.g., the following (successful) SLD derivation:

p(A, B) �{X/A,Y/B} q(A), r(A, B)
�{A/b} r(b, B)
�{B/c} true

with computer answer {A/b, B/c}.

3 A Reversible Semantics for Logic Programs

In this section, we present a reversible semantics for logic programs that consti-
tutes a good basis to implement a reversible debugger for Prolog (cf. Sect. 4).
In principle, one of the main challenges for defining a reversible version of SLD
resolution is dealing with unification, since it is an irreversible operation. E.g.,
given the SLD resolution step

p(X, a), q(a) �{X/a,Y/a} q(a), q(a)

using clause p(a, Y) :- q(Y), there is no deterministic way to get back the query
p(X, a), q(a) from the query q(a), q(a), the computed mgu {X/a, Y/a}, and the
applied clause. For instance, one could obtain the query p(X, X), q(X) since the
following SLD resolution step

p(X, X), q(X) �{X/a,Y/a} q(a), q(a)

is also possible using the same clause and computing the same mgu.
In order to overcome this problem, [13] proposed a reversible semantics where

– computed mgu’s are not applied to the atoms of the query, and
– the selected call at each SLD resolution step is also stored.

2 We consider Prolog notation in examples (so variables start with an uppercase letter).
Clauses are labelled with a unique identifier of the form �i.

270 G. Vidal

Queries are represented as pairs 〈A; [(An,Hn,mn), . . . , (A1,H1,m1)]〉, where the
first component is a sequence of atoms (a query), and the second component
stores, for each SLD resolution step performed so far, the selected atom (Ai),
the head of the selected clause (Hi), and the number of atoms in the body of
this clause (mi). Here, mgu’s are not stored explicitly but can be inferred from
the pairs (Ai,Hi). The number mi is used to determine the number of atoms in
the current query that must be removed when performing a backward step. A
reversible SLD resolution step has then the form3

〈A,B;H〉 ⇀ 〈B1, . . . , Bm,B; (A,H,m) :H〉

if there exists a clause H ← B1, . . . , Bm << P and mgu(Aσ,H) �= fail, where σ
is the substitution obtained from H by computing the mgu’s associated to each
triple (Ai,Hi,m) in H and, then, composing them. A simple proof-of-concept
implementation that follows this scheme can be found at https://github.com/
mistupv/rever/tree/rc2020.

The proposal in [13], however, suffers from several drawbacks:

– First, it is very inefficient, since one should compute the mgu’s of each SLD
resolution step once and again. This representation was chosen in [13] for
clarity and, especially, because it allowed us to easily implement it without
using a ground representation for queries and programs, so that there was no
need to reimplement all basic operations (mgu, substitution application and
composition, etc.).

– The second drawback is that the above definition of reversible SLD resolution
cannot be used to undo a backtracking step, since the structure of the SLD
tree is not explicit in the considered semantics.

In the following, we introduce a reversible operational semantics for logic pro-
grams that overcomes the above shortcomings.

3.1 A Deterministic Operational Semantics

First, we present a deterministic semantics (inspired by the linear operational
semantics of [10]) that deals explicitly with backtracking.

Our semantics is defined as a transition relation on states. In the following,
queries are represented as pairs 〈A; θ〉 instead of Aθ, where θ is the composition
of the mgu’s computed so far in the derivation. This is needed in order to avoid
undoing the application of mgu’s, which is an irreversible operation.

Definition 1 (state). A state is denoted by a sequence Q1 |Q2 | . . . |Qn, where
each Qi is a (possibly labelled) query of the form 〈B; θ〉. In some cases, a query
Q is labelled with a clause label, e.g., Q�, which will be used to denote that the
query Q can be unfolded with the clause labelled with � (see below).

A state will often be denoted by 〈B; θ〉 |S so that 〈B; θ〉 is the first query of the
sequence and S denotes a (possibly empty) sequence of queries. In the following,
an empty sequence is denoted by ε.
3 Here, (A, H, m) :H denotes a list with head element (A, H, m) and tail H.

https://github.com/mistupv/rever/tree/rc2020
https://github.com/mistupv/rever/tree/rc2020

Reversible Debugging in Logic Programming 271

Fig. 1. A deterministic operational semantics

In this paper, we consider that program clauses are labelled, so that each
label uniquely identifies a program clause. Here, we use the auxiliary function
clauses(A,P) to obtain the labels of those clauses in program P whose heads
unify with atom A, i.e.,

clauses(A,P) = {� | � : H ← B << P ∧ mgu(A,H) �= fail}

and cl(�, P) to get a renamed apart variant of the clause labelled with �, i.e.,
cl(�, P) = (H ← B)ϑ if � : H ← B ∈ P and ϑ is a variable renaming with fresh
variables.

The rules of the semantics can be found in Fig. 1. An initial state has the
form 〈A,B; id〉, where A is an atom, B is a (possibly empty) sequence of atoms,
and id is the identity substitution. Initially, one can either apply rule choice
or choice fail. Let us assume that A unifies with the head of some clauses, say
�1, . . . , �m. Then, rule choice derives a new state by replacing 〈A,B; id〉 with m
copies labelled with �1, . . . , �m:

〈A,B; id〉 → 〈A,B; id〉�1 | . . . | 〈A,B; id〉�m

Now, let assume that cl(�1, P) returns H ← B1, . . . , Bn. Then, rule unfold applies
so that the following state is derived:

〈B1, . . . , Bn,B;σ〉 | 〈A,B; id〉�2 | . . . | 〈A,B; id〉�m

Let us consider now that B1σ does not match any program clause, i.e., we have
clauses(B1σ, P) = ∅. Then, rule choice fail applies and the following state is
derived:

〈fail, B2, . . . , Bn,B;σ〉 | 〈A,B; id〉�2 | . . . | 〈A,B; id〉�m

Then, rule backtrack applies so that we jump to a choice point with some pending
alternative (if any). In this case, we derive the state

〈A,B; id〉�2 | . . . | 〈A,B; id〉�m

so that unfolding with clause �2 is tried now, and so forth.

272 G. Vidal

Here, we say that a derivation is successful if the last state has the form
〈true; θ〉 | S. We have also included a rule called next to be able to reach all
solutions of an SLD tree (which has a similar effect as rule backtrack). Therefore,
θ is not necessarily the first computed answer, but an arbitrary one (as long as
it is reachable from the initial state after a finite number of steps).

A computation is failed if it ends with a state of the form 〈fail,B; θ〉, so no
rule is applicable (note that rule backtrack is not applicable when there is a single
query in the state).

Example 2. Consider the program of Example 1 and the same initial query:
〈p(X, Y); id〉. In order to reach the same computed answer, {A/b, B/c}, we now
perform the following (deterministic) derivation:4

〈p(A, B); id〉 →choice 〈p(A, B); id〉�1

→unfold 〈q(A), r(A, B); id〉
→choice 〈q(A), r(A, B); id〉�2 | 〈q(A), r(A, B); id〉�3 | 〈q(A), r(A, B); id〉�4

→unfold 〈r(A, B); {A/a}〉 |〈q(A), r(A, B); id〉�3 | 〈q(A), r(A, B); id〉�4

→choice fail 〈fail; {A/a}〉 |〈q(A), r(A, B); id〉�3 | 〈q(A), r(A, B); id〉�4

→backtrack 〈q(A), r(A, B); id〉�3 | 〈q(A), r(A, B); id〉�4

→unfold 〈r(A, B); {A/b}〉 |〈q(A), r(A, B); id〉�4

→choice 〈r(A, B); {A/b}〉�5 | 〈r(A, B); {A/b}〉�6 | 〈q(A), r(A, B); id〉�4

→unfold 〈true; {A/b, B/b}〉 |〈r(A, B); {A/b}〉�6 | 〈q(A), r(A, B); id〉�4

→next 〈r(A, B); {A/b}〉�6 | 〈q(A), r(A, B); id〉�4

→unfold 〈true; {A/b, B/c}〉 |〈q(A), r(A, B); id〉�4

with computer answer {A/b, B/c}.

Clearly, the semantics in Fig. 1 is deterministic. In the following, we assume that
a fixed program P is considered for stating formal properties.

Theorem 1. Let S be a state. Then, at most one rule from the semantics in
Fig. 1 is applicable.

Proof. The proof is straightforward since the conditions of the rules do not
overlap:

– If the leftmost query is not headed by true nor fail and the query is not
labelled, only rule choice and choice fail are applicable, and the conditions
trivially do not overlap.

– If the leftmost query is labelled, only rule unfold is applicable.
– Finally, if the leftmost query is headed by fail (resp. true) then only rule
backtrack (resp. next) is applicable.

Now, we prove that the deterministic operational semantics is sound in the sense
that it explores the SLD tree of a query following Prolog’s depth-first search
strategy:
4 For clarity, we only show the bindings for the variables in the initial query. Moreover,
the steps are labelled with the applied rule.

Reversible Debugging in Logic Programming 273

Theorem 2. Let 〈A; id〉 be an initial state. If 〈A; id〉 →∗ 〈true; θ〉 | S, then
A �∗

θ true, up to variable renaming.

Proof. Here, we prove a more general claim. Let us consider an arbitrary query,
〈A;σ〉 with 〈A;σ〉 →∗ Q1 | . . . | Qm, where Qi is either 〈Bi;σθi〉 or 〈Bi;σθi〉�i ,
i = 1, . . . , m. Then, we have Aσ �∗

θi
Biσθi for all i = 1, . . . ,m such that

Bi �= (fail,B′) for some B′, up to variable renaming. We exclude the queries
with fail since failures are not made explicit in the definition of SLD resolution
(this is just a device of our deterministic semantics to point out that either a
backtracking step should be performed next or the derivation is failed).

We prove the claim by induction on the number n of steps in the former
derivation: 〈A;σ〉 →∗ Q1 | . . . | Qm. Since the base case (n = 0) is trivial, let
us consider the inductive case (n > 0). Here, we assume a derivation of n + 1
steps from 〈A;σ〉. By the induction hypothesis, we have Aσ �∗

θi
Biσθi for all

i = 1, . . . ,m such that Bi �= (fail,B′) for some B′. We now distinguish several
possibilities depending on the applied rule to the state Q1 | . . . |Qm:

– If the applied rule is backtrack or next, we have

Q1 |Q2 | . . . |Qm → Q2 | . . . |Qm

and the claim trivially holds by the induction hypothesis.
– If the applied rule is choice, we have

Q1 | . . . |Qm → Q�1
1 | . . . |Q�k

1 |Q2 | . . . |Qm

for some k > 0, and the claim also follows trivially from the induction hypoth-
esis.

– If the applied rule is choice fail, the claim follows immediately by the induction
hypothesis since a query of the form (fail,B′) is not considered.

– Finally, let us consider that the applied rule is unfold. Let Q1 = 〈A,B;σθ1〉�1 .
Then, we have

〈A,B;σθ1〉�1 |Q2 | . . . |Qm → 〈B′,B;σθ1θ
′〉 |Q2 | . . . |Qm

if cl(�1, P) = H ← B′ and mgu(Aσθ1,H) = θ′. Then, we also have an SLD
resolution step of the form (A,B)σθ1 �θ′ (B′,B)σθ1θ

′ using the same clause5

and computing the same mgu and, thus, the claim follows from the induction
hypothesis.

Note that the deterministic semantics is sound but incomplete in general since
it implements a depth-first search strategy.

5 For simplicity, we assume that the same renamed clauses are considered in both
derivations.

274 G. Vidal

Fig. 2. Forward reversible semantics

3.2 A Reversible Semantics

Now, we extend the deterministic operational semantics of Fig. 1 in order to
make it reversible. Our reversible semantics is defined on configurations:

Definition 2 (configuration). A configuration is defined as a pair S•Π where
S is a state (as defined in Definition 1) and Π is a list representing the history
of the configuration. Here, we consider the following history events:

– ch(n): denotes a choice step with n branches;
– unf(A, θ, �): represents an unfolding step where the selected atom is A, the

answer computed so far is θ, and the selected clause is labelled with �;
– fail(A): is associated to rule choice fail and denotes that the selected atom A

matches no rule;
– exit(A): denotes that the execution of atom A has been completed (see below);
– bck(B, θ): represents a backtracking step, where 〈fail,B; θ〉 is the query that

failed;
– next(θ): denotes an application of rule next after an answer θ is obtained.

We use Haskell’s notation for lists and denote by s :Π a history with first element
s and tail Π; an empty history is denoted by [].

The reversible (forward) semantics is shown in Fig. 2.6 The rules of the
reversible semantics are basically self-explanatory. They are essentially the same
as in the standard deterministic semantics of Fig. 1 except for the following dif-
ferences:

– First, configurations now keep a history with enough information for undoing
the steps of a computation.

6 The subscripts of some configurations: call, exit, fail, redo, and answer, can be ignored
for now. They will become useful in the next section.

Reversible Debugging in Logic Programming 275

– And, secondly, unfolding an atom A now adds a new call of the form ret(A)
after the atoms of the body (if any) of the considered program clause. This is
then used in rule exit in order to determine when the call has been completed
successfully (ret(A) marks the exit of a program clause). This extension is
not introduced for reversibility, but it is part of the design of our reversible
debugger (see Sect. 4, where the reversible debugger rever is presented). Here,
and in the following, we assume that programs contain no predicate named
ret/1.

We note that extending our developments to SLD resolution with an arbitrary
computation rule (i.e., different from Prolog’s rule, which always selects the
leftmost atom) is not difficult. Basically, one would only need to extend the unf
elements as follows: unf(A, θ, i, �), where i is the position of the selected atom in
the current query.

Example 3. Consider again the program of Example 1 and the initial query:
〈p(X, Y); id〉 • []. In order to reach the first computed answer, {A/b, B/b}, we
perform the derivation shown in Fig. 3.

It is worthwhile to observe that the drawbacks of [13] mentioned before are now
overcome by using substitutions with the answer computed so far, together with
a deterministic semantics where backtracking is dealt with explicitly.

Trivially, the instrumented semantics of Fig. 2 is a conservative extension
of the deterministic semantics of Fig. 1 since the rules impose no additional
condition. The only difference is the addition of atoms ret(A) that mark the exit
of a program clause. In the following, given two states, S, S′, we let S ∼ S′ if
they are equal after removing all atoms of the form ret(A).

Theorem 3. Let Q be an initial state. Then, Q →∗ S iff Q • [] ⇀∗ S′ • Π such
that S ∼ S′ for some history Π, up to variable renaming.

Let us now consider backward steps. Here, our goal is to be able to explore
a given derivation backwards. For this purpose, we introduce a backward oper-
ational semantics that is essentially obtained by switching the configurations in
each rule of the forward semantics, and removing all unnecessary premises. The
resulting backward semantics is shown in Fig. 4. Let us just add that, in rule
unfold, we use the auxiliary function body(�, P) to denote the body of clause
labelled with � in program P , and, thus, |body(�, P)| represents the number of
atoms in the body of this clause.7 This information was stored explicitly in our
previous approach [13].

Example 4. If we consider the configurations of Fig. 3 from bottom to top, they
constitute a backward derivation using the rules of Fig. 4.

The following result states the reversibility of our semantics:

7 As is common, |S| denotes the cardinality of the set or sequence S.

276 G. Vidal

Fig. 3. Example derivation with the reversible (forward) semantics.

Reversible Debugging in Logic Programming 277

Fig. 4. Backward reversible semantics

Lemma 1. Let C, C′ be configurations. If C ⇀ C′, then C′ ↽ C, up to variable
renaming.

Proof. The claim follows by a simple case distinction on the applied rule and the
fact that the backward semantics of Fig. 4 is trivially deterministic since each
rule requires a different element on the top of the history.

In principle, one could also prove the opposite direction, i.e., that C′ ↽ C implies
C ⇀ C′, by requiring that C′ is not an arbitrary configuration but a “legal” one,
i.e., a configuration that is reachable by a forward derivation starting from some
initial configuration.

The above result could be straightforwardly extended to derivations as fol-
lows:

Theorem 4. Let C, C′ be configurations. If C ⇀∗ C′, then C′ ↽∗ C, up to variable
renaming.

4 A Reversible Debugger for Prolog

In this section, we present the design of a reversible debugger for Prolog. It is
based on the standard 4-port tracer introduced by Byrd [2,3]. The ports are call
(an atom is called), exit (a call is successfully completed), redo (backtracking
requires trying again some call), and fail (an atom matches no clause). In con-
trast to standard debuggers that can only explore a computation forward, our
reversible debugger allows us to move back and forth.

The implemented debugger, rever, is publicly available from https://github.
com/mistupv/rever. It can be used in two modes:

– Debug mode. In this case, execution proceeds silently (no information is
shown) until the execution of a special predicate rtrace/0 is reached (if any).
The user can include a call to this predicate in the source program in order
to start tracing the computation (i.e., it behaves as trace/0 in most Prolog

https://github.com/mistupv/rever
https://github.com/mistupv/rever

278 G. Vidal

Fig. 5. Trace Example with rever

systems). Tracing also starts if an exception is produced during the evalua-
tion of a query. This mode is invoked with a call of the form rdebug(query),
where query is the initial query whose execution we want to explore.

– Trace mode. In this mode, port information is shown from the beginning. One
can invoke the trace mode with rtrace(query). Note that it is equivalent to
calling rdebug((rtrace, query)).

Our reversible debugger essentially implements the transition rules in Figs. 2
and 4. As the reader may have noticed, some configurations in Fig. 2 are labeled
with a subscript: it denotes the output of a given port. Moreover, there is an
additional label in rule next which denotes that, at this point, an answer must
be shown to the user.

In tracing mode, every time that a configuration with a subscript is reached,
the execution stops, shows the corresponding port information, and waits for the
user to press some key. We basically consider the following keys: ↓ (or Enter)
proceeds with the next (forward) step; ↑ performs a backward step; s (for skip)
shows the port information without waiting for any user interaction; t enters the
tracing mode; q quits the debugging session.

For instance, given the initial call rtrace(p(A, B)), and according to the for-
ward derivation shown in Fig. 3, our debugger displays the sequence shown in
Fig. 5 (a). Now, if one presses “↑” repeatedly, the sequence displayed in Fig. 5 (b)
is shown. Note that ports are prefixed by the symbol “ˆ” in backward derivations.
Of course, the user can move freely back and forth.

Reversible debugging might be especially useful when we have an execution
that produces some exception at the end. With our tool, one can easily inspect
the execution backwards from the final state that produced the error.

Let us mention that, in order to avoid the use of a ground representation and
having to implement all basic operations (mgu, substitution application and
composition, etc.), substitutions are represented in its equational form. E.g.,
substitution {A/a, B/b} is represented by A = a, B = b. This equational rep-
resentation of a mgu can be easily obtained by using the predefined predicate

Reversible Debugging in Logic Programming 279

unify/3. This representation is much more efficient than storing pairs of atoms
(as in [13]), that must be unified once and again at each execution step.

Finally, let us mention that, despite the simplicity of the implemented system
(some 500 lines of code in SWI Prolog), our debugger is able to deal with medium-
sized programs (e.g., it has been used to debug the debugger itself).

5 Related Work

The closest approach is clearly the preliminary version of this work in [13]. There
are, however, several significant differences: [13] presents a reversible version of
the usual, nondeterministic SLD resolution. Therefore, backtracking steps can-
not be undone. This is improved in this paper by considering a deterministic
semantics that models the traversal of the complete SLD tree. Moreover, [13]
considers a simple but very inefficient representation for the history, which is
greatly improved in this paper. Finally, we provide proofs of some formal prop-
erties for our reversible semantics, as well as a publicly available implementation
of the debugger, the system rever.

Another close approach we are aware of is that of Opium [4], which introduces
a trace query language for inspecting and analyzing trace histories. In this tool,
the trace history of the considered execution is stored in a database, which is
then used for trace querying. Several analysis can then be defined in Prolog
itself by using a set of given primitives to explore the trace elements. In contrast
to our approach, Opium is basically a so-called “post-mortem” debugger that
allows one to analyze the trace of an execution. Therefore, the goal is different
from that of this paper.

6 Concluding Remarks and Future Work

We have proposed a novel reversible debugging scheme for logic programs by
defining an appropriate Landauer embedding for a deterministic operational
semantics. Essentially, the states of the semantics are extended with a history
that keeps track of all the information which is needed to be able to undo
the steps of a computation. We have proved a number of formal properties
for our reversible semantics. Moreover, the ideas have been put into practice
in the reversible debugger rever, which is publicly available from https://github.
com/mistupv/rever. Our preliminary experiments with the debugger have shown
promising results.

As for future work, we are currently working on extending the debugger in
order to cope with negation and the cut. Also, we plan to define a more compact
representation for the history, so that it can scale up better to larger programs
and derivations.

Acknowledgements. The author gratefully acknowledges the editors, John Gal-
lagher, Roberto Giacobazzi and Pedro López-Garćıa, for the opportunity to contribute
to this volume, dedicated to Manuel Hermenegildo on the occasion of his 60th birthday.

https://github.com/mistupv/rever
https://github.com/mistupv/rever

280 G. Vidal

References

1. Apt, K.R.: From Logic Programming to Prolog. Prentice Hall, London (1997)
2. Byrd, L.: Understanding the control flow of prolog programs. In: Tarnlund, S.A.

(ed.) Proceedings of the 1980 Logic Programming Workshop, pp. 127–138 (1980)
3. Clocksin, W.F., Mellish, C.S.: Programming in PROLOG, 4th edn. Springer, Cham

(1994)
4. Ducassé, M.: Opium: an extendable trace analyzer for prolog. J. Log. Program.

39(1–3), 177–223 (1999). https://doi.org/10.1016/S0743-1066(98)10036-5
5. Landauer, R.: Irreversibility and heat generation in the computing process. IBM

J. Res. Develop. 5, 183–191 (1961)
6. Lanese, I., Palacios, A., Vidal, G.: Causal-consistent replay debugging for message

passing programs. In: Pérez, J.A., Yoshida, N. (eds.) FORTE 2019. LNCS, vol.
11535, pp. 167–184. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21759-4 10

7. Lloyd, J.W.: Foundations of Logic Programming, 2nd Edition. Springer, Cham
(1987). https://doi.org/10.1007/978-3-642-83189-8

8. Mesnard, F., Payet, É., Vidal, G.: Concolic testing in logic programming. The-
ory Pract. Log. Program. 15(4–5), 711–725 (2015). https://doi.org/10.1017/
S1471068415000332

9. O’Callahan, R., Jones, C., Froyd, N., Huey, K., Noll, A., Partush, N.: Engi-
neering record and replay for deployability: Extended technical report. CoRR
abs/1705.05937 (2017). http://arxiv.org/abs/1705.05937

10. Ströder, T., Emmes, F., Schneider-Kamp, P., Giesl, J., Fuhs, C.: A linear opera-
tional semantics for termination and complexity analysis of ISO Prolog. In: Vidal,
G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 237–252. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32211-2 16

11. Stulova, N., Morales, J.F., Hermenegildo, M.V.: Assertion-based debugging of
higher-order (C)LP programs. In: Chitil, O., King, A., Danvy, O. (eds.) Proceed-
ings of the 16th International Symposium on Principles and Practice of Declarative
Programming (PPDP 2014), pp. 225–235. ACM (2014). https://doi.org/10.1145/
2643135.2643148

12. Undo Software: Increasing software development productivity with
reversible debugging (2014). https://undo.io/media/uploads/files/Undo
ReversibleDebugging Whitepaper.pdf

13. Vidal, G.: Reversible computations in logic programming. In: Lanese, I., Rawski,
M. (eds.) RC 2020. LNCS, vol. 12227, pp. 246–254. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-52482-1 15

https://doi.org/10.1016/S0743-1066(98)10036-5
https://doi.org/10.1007/978-3-030-21759-4_10
https://doi.org/10.1007/978-3-030-21759-4_10
https://doi.org/10.1007/978-3-642-83189-8
https://doi.org/10.1017/S1471068415000332
https://doi.org/10.1017/S1471068415000332
http://arxiv.org/abs/1705.05937
https://doi.org/10.1007/978-3-642-32211-2_16
https://doi.org/10.1145/2643135.2643148
https://doi.org/10.1145/2643135.2643148
https://undo.io/media/uploads/files/Undo_ReversibleDebugging_Whitepaper.pdf
https://undo.io/media/uploads/files/Undo_ReversibleDebugging_Whitepaper.pdf
https://doi.org/10.1007/978-3-030-52482-1_15
https://doi.org/10.1007/978-3-030-52482-1_15

Towards Systematically Engineering
Autonomous Systems Using

Reinforcement Learning and Planning

Martin Wirsing1(B) and Lenz Belzner2

1 Ludwig-Maximilians-Universität München, Munich, Germany
wirsing@lmu.de

2 Technische Hochschule Ingolstadt, Ingolstadt, Germany

lenz.belzner@thi.de

Abstract. Autonomous systems need to be able dynamically adapt to
changing requirements and environmental conditions without redeploy-
ment and without interruption of the systems functionality. The EU
project ASCENS has developed a comprehensive suite of foundational
theories and methods for building autonomic systems. In this paper we
specialise the EDLC process model of ASCENS to deal with planning
and reinforcement learning techniques. We present the “AIDL” life cycle
and illustrate it with two case studies: simulation-based online planning
and the PSyCo reinforcement learning approach for synthesizing agent
policies from hard and soft requirements. Related work and potential
avenues for future research are discussed.

1 Introduction

An autonomous system is able to adapt at runtime to uncertain and dynami-
cally changing environments and to new requirements. Autonomous systems can
be single autonomous entities or collective ones that consist of several collab-
orating entities. Classical examples are intelligent agents [67], and autonomic
systems [26], more recent are ensembles [28,64], and collective adaptive sys-
tems [33].

Reinforcement learning [53] and online planning are methods for automati-
cally computing sequential controllers - so-called policies - of autonomous sys-
tems. Given an uncertain probabilistic environment, reinforcement learning is
about learning from interactions with the environment. It is an interactive pro-
cess with the goal to learn a policy that maximises the sum of future rewards.
Planning requires a (simulation) model and is a “computational process that
takes a model as input and produces or improves a policy for interacting with
the modelled environment”.

Systematic engineering approaches for intelligent agents and multi-agent sys-
tems such as Gaia [68], Tropos [14] support a sequential development process

Dedicated to Manuel Hermenegildo.

c© Springer Nature Switzerland AG 2023
P. Lopez-Garcia et al. (Eds.): Hermenegildo Festschrift 2022, LNCS 13160, pp. 281–306, 2023.
https://doi.org/10.1007/978-3-031-31476-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31476-6_16&domain=pdf
https://doi.org/10.1007/978-3-031-31476-6_16

282 M. Wirsing and L. Belzner

or focus on software architecture such as IBM’s MAPE-K architecture [30] for
autonomic systems.

The modern industrial agile development approaches MLOps [3] and AIOps
[2] aim at machine learning methods for big data applications and IT operations.
[22] proposes an engineering process exhibiting the central activities necessary
for the successful application of machine learning.

The EU project ASCENS [1,65] has developed a comprehensive suite of foun-
dational theories and methods for building autonomic systems. The ASCENS
methods cover system specification and development as well as monitoring and
dynamic system adaptation. Also machine-learning approaches have been stud-
ied in ASCENS but they were not systematically related to the software develop-
ment life cycle. In particular, the ASCENS project has proposed the Ensemble
Development Life Cycle EDLC [27] for engineering adaptive and autonomous
systems. The EDLC is an agile process covering the whole software life cycle
including development and runtime phases and provides mechanisms for enabling
system changes at runtime.

In this paper we review the EDLC life cycle and specialise it to the con-
struction of autonomous policies using planning and reinforcement learning tech-
niques. We call this life cycle “AIDL” and illustrate it with two existing case stud-
ies: simulation-based online planning for autonomously adapting the behaviour
of a robot [10] and the PSyCo reinforcement learning approach for synthesizing
agent policies from hard and soft requirements [12]. Related work and future
directions for research are discussed.

Personal Note. Martin has known Manuel for almost 20 years when they met
and contributed to initiatives of the Future Emerging Technologies section of
the European Commission, e.g. in 2005 at the “Beyond-the-Horizon” Workshop
on Anticipating Future and Emerging Information Society.

In 2007 Manuel invited Martin to become a member of the Scientific Board of
IMDEA Software and later in 2011, to be a guest researcher at IMDEA Software
for three months. In this way, Martin had the chance in participating in the extra-
ordinary raise of IMDEA Software to one of Europe’s leading research institutes.
Cooperating and discussing with Manuel is a very pleasant experience. He is not
only an outstanding scientist and an excellent coordinator of scientific work; he
is also a warm-hearted and kind friend and colleague. We are looking forward to
many further inspiring exchanges with him.

Outline. In Sect. 2 we shortly review reinforcement learning, planning, and the
EDLC life cycle. In Sect. 3 we present the AIDL Life Cycle. Section 4 illustrates
AIDL by two case studies. Finally, Section 5 presents related work and Section
6 concludes the paper.

Towards Systematically Engineering Autonomous Systems 283

2 Preliminaries: Reinforcement Learning, Planning,
and the Life Cycle EDLC

2.1 Reinforcement Learning and Planning

Reinforcement learning and (online-) planning are well-suited methods for com-
puting optimising goals in a probabilistic domain. The standard case is that the
domain is given by a Markov decision process (MDP) (for a formal definition see
Appendix A) and the goal is to compute a policy which maximises an expected
reward.

Model-Free and Model-Based Reinforcement Learning. Reinforcement learning is
an interactive process between an agent and the environment. The goal is to learn
a policy for maximising the discounted cumulative return the agent receives over
time (for definitions see Appendix A). In each step the agent makes an action and
receives an immediate reward. Typically, positive values express good actions,
negative values express bad actions.

There is a rich family of reinforcement learning algorithms. For small or
middle size state and action spaces classical algorithms such as value iteration,
policy iteration, and temporal difference learning are widely used. If the state
space is large one can only hope to find approximate solutions and thus uses so-
called function approximation methods such as gradient-descent over artificial
neural networks (see e.g. [53,54]).

The latter algorithms are model-free in that they do not have any knowledge
of the domain and thus start from an arbitrary distribution. Model-based algo-
rithms have access to or learn a (probabilistic) digital twin1 of the environment
which predicts state transitions and rewards. This allows the algorithm to plan
its next steps based on a range of possible choices. In many cases this consider-
ably improves the learning efficiency; however, if the model does not faithfully
match the reality the algorithm may behave badly in the real environment.

Some modern algorithms combine model-free with model-based learning. E.g.
AlphaGo combines a model-free reinforcement learning algorithm with (model-
based) Monte Carlo tree search; it was the first program to win the game Go
against a human champion [51]. Reinforcement learning algorithms are also com-
bined with evolutionary methods in order to improve stability and quality of the
results [20].

[54] gives an overview on classical reinforcement learning algorithms (until
2010). For a taxonomy of reinforcement learning algorithms see [4], an excellent
survey on model-based reinforcement learning is given in [40].

Safe Learning. In the algorithms above, learning is used for optimizing the
system behavior but not for guaranteeing the safety of the system. But in many
applications, the system requirements comprise different kinds of goals including
achieve goals that optimize behaviours, and maintain goals that restrict the space
of feasible solutions.
1 also called internal model or simulation model in the literature.

284 M. Wirsing and L. Belzner

There are three broad classes for dealing with such situations: shielding [6],
safe exploration [24], and reward-shaping methods [12,47]. Shielding ensures at
runtime that the chosen action is safe whereas in safe exploration, the learn-
ing process is restricted to learn only safe actions. Reward-shaping methods
are based on Constrained Markov Decision Processes (CMDP) [7] (see also
Appendix A) and try to balance optimization of return and costs incurred by
constraint violation. E.g. [12] uses a Lagrangian for transforming the costs of the
safety constraints and the rewards into a single optimizing problem. The safety
of the solution is ensured by runtime Bayesian model checking.

Non-stationary Environments. In non-stationary environments the probability
transition function and/or the reward change over time. Main approaches are
transfer learning, and meta-learning (see e.g. [40]).

Transfer learning [55,59] explores the idea that experience gained in learning
to perform one task can help improve learning performance in a related, but
different, task. Meta-learning [56] is concerned with accumulating experience
on the performance of multiple applications of a learning system. Typically, an
adaptation space is given by a distribution of environments and a shared common
structure that can be exploited for fast learning. For fast online adaptation in
dynamic environments, [18] uses an distribution of MDPs whereas [42] meta-
trains a global model.

Planning. Planning is a large and longtime established field. In “classical” offline-
planning algorithms the policy is constructed for the entire state space before
the system is interacting with the environment. This is only feasible for small
and mid-size problems. Instead, an online algorithm is computing a near-optimal
action for the current state. When interacting with the environment an online-
algorithm encounters only a small subset of the entire state space and has to
tune its decisions only for a single time step.

The key idea of online planning is to perform planning and execution of an
action iteratively at runtime. At each planning step, the agent performs forward
search on a digital twin, e.g. by Monte Carlo Tree Search [15,34] (in discrete
domain) or by Cross Entropy Open Loop Planning [62] (in continuous state and
action spaces). Online planning is suitable for MDPs as well as for partially
observable MDPs (POMDPs) (see formal def. in Appendix A). A survey of
classical online POMDP methods is given in [49]. For the trade-off between
online planning and model-based reinforcement learning see [41].

2.2 The Ensemble Development Life Cycle EDLC

The “Ensemble Development Life Cycle” EDLC [27] is an agile software process
model that explicitly deals with autonomous systems, in particular with ensem-
bles and collective adaptive systems. EDLC has been used in the development of
several autonomic systems such as swarm robots [44,66], peer-to-peer cloud [38],
and e-mobility applications [17,25]. The construction of autonomous systems

Towards Systematically Engineering Autonomous Systems 285

using EDLC is supported by eight engineering principles [11]. System construc-
tion according to EDLC emphasises mathematically well-founded approaches to
validate and verify the properties of the collective autonomic system and enable
the prediction of the behaviour of such complex software.

The EDLC life cycle is arranged in three cycles (see Fig. 1). In the devel-
opment cycle Dev (called “design time cycle” in [27]) the classical development
phases - requirements engineering, modelling and programming, verification and
validation - are iterated; in the operations cycle Ops (called “runtime cycle”
in [27]), the entities of the ensemble iterate a “runtime feedback control loop”
comprising the monitoring, awareness, and (self-) adaptation mechanisms. They
consist of observing the running system and the environment, reasoning on
such observations and using the results of the analysis for adapting the sys-
tem and providing feedback data that can be used in the development activities
for improving the system. The connection between the two cycles is established
by a third evolutionary cycle consisting of system deployment or hot update to
the operations and providing feedback data from runtime to the development
cycle.

Fig. 1. Ensemble Development Life Cycle EDLC.

Development Cycle Dev. The phases of the Dev cycle rely on mathematically
well-founded approaches that support the correct construction and the analysis
of autonomic systems.

Requirements. EDLC supports two goal-oriented methods - SOTA [5] and ARE
[58] - for elicitating and specifying the requirements. In both cases the final
requirements specification consists of a model of the domain together with hard
goals that the system has to satisfy and soft goals that describe behaviours that
should be optimised.

The notion of adaptation domain [29,66] describes the “borders of validity” of
an autonomous system. The adaptation domain determines the variety of differ-
ent environments, goals, and adverse system states the system should be able to
tolerate and in which it should be able to continue working “correctly.” In some

286 M. Wirsing and L. Belzner

cases the adaptation space is complemented by so-called “resilience goals” which
determine those environments and system states outside the adaptation space
the system should be able to recover from and return back into the adaptation
space.

Modelling and Programming. For this task, the EDLC relies on well-known meth-
ods for modelling and implementing adaptation and autonomy. This ranges from
a method for stepwise refinement and the development of high-level modelling
languages (such as SCEL [19]) to classical adaptation techniques (such as pro-
gramming using modes and dynamic reconfiguration) as well as AI adaptation
techniques (such as swarm algorithms as well as planning, learning, and reason-
ing).

A main ingredient are pattern catalogues [21,45,63] to help developers to
make appropriate design choices for models and implementations. For example,
architectural patterns such as “knowledge-equipped component” describe the
architecture of a system or a component, and adaptation patterns such as “cen-
tralised autonomic manager” are concerned with adaptation mechanisms [27,45].

Validation and Verification. Analysis techniques for adaptive and autonomous
systems have to cover the “normal” system behaviour as well as essential aspects
such as adaptive behaviour and changing environments. This comprises quali-
tative methods ensuring that the system behaves without any flaw, and quan-
titative analyses that target non-functional properties and evaluate expected
performances according to predefined metrics.

Qualitative methods range from reviews and testing to the automated verifi-
cation of invariants and security properties. Quantitative methods are well-suited
for performance analysis and studying the behaviour of a system in different envi-
ronments and under changing requirements (for a comprehensive collection of
papers see [13]). Main techniques are statistical modelchecking (see e.g. [36]),
simulation tools (see e.g. [37]) and the analysis of Markov chains using differential
equations (see e.g. [57,66]).

Operations Cycle Ops. In the operations cycle, the entities of the autonomic
system iterate a “runtime feedback control loop” consisting of monitoring, aware-
ness, and self-adaptation activities.

Montoring. The task of monitoring is to collect data at runtime for providing
information about the environment (e.g. by the collecting sensor data) and the
functional and non-functional properties of the system (e.g. by instrumenting
the code and collecting runtime data). The monitoring information is passed to
the awareness mechanism and may also give feedback to developers about the
state of the system and the environment.

Awareness. Conventional systems can react directly to the data obtained by
the monitor but autonomous systems often need a deeper analysis. The aware-
ness mechanism uses reasoning, planning and learning methods to determine the
current situation of the system and to prepare the subsequent system behaviour.

Towards Systematically Engineering Autonomous Systems 287

Self-adaptation. The adaptation mechanism implements the results of the aware-
ness deliberations. In case of weak adaptation some control parameters of the
system are modified or new functions are added or existing functions are modi-
fied. Strong adaptation means to modify the architecture of the system.

Deployment and Feedback Data. The evolutionary loop connects the devel-
opment cycle and the operations cycle. During deployment the system is pre-
pared it for its execution. This involves installing, configuring and launching the
application. The deployment may also involve executable code generation and
compilation/linking.

The feedback data are collected by monitoring and in the awareness process.
They may trigger a new Dev cycle and are used to provide information for system
redesign, validation, verification, and redeployment.

3 The AIDL Life Cycle for Autonomous Systems

The AIDL life cycle specialises EDLC to techniques for systematically construct-
ing autonomous policies that are based on reinforcement learning and planning
techniques. We focus here on the specific issues of learning and planning. For
simplicity, we restrict ourselves in this paper to systems with a single agent in
an uncertain and possibly changing environment which may be noisy but is fully
observable.

In AIDL, the modelling and programming phase of EDLC is extended by
activities for constructing a digital twin. The use of a digital twin, i.e. a gener-
ative model of the environment dynamics, enables modeling of highly complex
transition dynamics that would be unfeasible to capture by closed-form specifi-
cation. Note that components of the twin (e.g. environment dynamics) can be
learned from or adjusted to data collected from the environment.

At development time, the twin is used for training the system using learn-
ing algorithms. Validation is leveraging simulation for performing quantitative,
sample-based statistical evaluation of a trained system. At runtime, the aware-
ness mechanism is enriched with the twin for online planning.

Figure 2 shows the adjusted life cycle. The three new, small runtime cycles
representing the digital twin are very similar to the operations cycle. In each
of these cycles, the entities of the system iterate a “runtime feedback control
loop” consisting of monitoring, awareness, and self-adaptation activities. The
difference is that typically the additional cycles operate on the digital twin and
not directly on the system.

The digital twin is not present in the requirements engineering phase. This
is a natural choice, since the twin itself is specified here: It should comprise all
relevant information about the application domain and cannot possibly inform
itself.

Note that leveraging a digital twin could also be possible for further learn-
ing/training online at runtime, and simulation-based runtime verification in the

288 M. Wirsing and L. Belzner

monitoring phase. We do not treat these two applications of simulation at run-
time in the following, and think that integrating them into AIDLE is an inter-
esting avenue for future research.

Fig. 2. AIDL life cycle.

3.1 Requirements

For engineering the system requirements we follow the ASCENS ideas and pro-
pose a goal-oriented approach where e.g. requirements elicitation can be per-
formed using the ARE ontology. The requirement specification is the end product
of the requirements elicitation process; it is defined by descriptions of the envi-
ronment and of the domain of the envisaged system, adaptation requirements,
and by a set of goals.

Domain Description. For systems which have to take autonomous decisions
about the actions of the system, the environment and the required reliability of
the system play an important role.

Often there is uncertainty on the behaviour of the environment which may
also change dynamically. If the system contains embedded or IoT components,
then it may not be fully reliable and certain system actions or components
may fail. Such uncertain environments and systems are expressed by probability
distributions. Formally, they form a kind of an MDP.

In many applications, in the beginning neither the initial distribution nor the
transition distribution are known to the agent but they have to be learned based
on the observations of the agent. In the case of a changing environment, or a
changing system reliability, or changing goals, these distributions may change as
well. Then the adaptation domain consists of a set of goals and MDPs, or of a
probability distribution over goals and MDPs.

Towards Systematically Engineering Autonomous Systems 289

Goals. A goal represents a desirable system state or property that a software
systems should achieve. For an autonomic system this is not always possible but
one rather “strives to achieve” such a property, in spite of uncertainties and
obstacles.

We distinguish optimisation goals and safety goals. Optimisation goals are
soft goals that strive to achieve a property. Typically they are expressed with
the help of an objective function and their goal is to find values that maximize
or minimize this function.

Safety goals are hard goals which require that certain properties have to be
preserved; in KAOS these are called maintain goals (if a property must always
to hold) or avoid goals (if a property should never hold). For “classical” software
systems such goals can be expressed by temporal logic formulae of the form
“φ =⇒ �ψ” (where φ and ψ are linear temporal logic formulae). But in
presence of uncertainties, these safety properties cannot be universally true.
They must consider probabilities for expressing the aleatoric uncertainty. It is
also recommendable to estimate the epistemic uncertainty, i.e. the confidence
in the validity of the result. Formally, we choose a probabilistic temporal logic
such as PCTL [23] and express “soft” safety properties by formulas of the form
“P≥p(ψ) and C≥c” which state that the goal ψ holds with at least probability p
and at least confidence c (p, c ∈ (0, 1)).

3.2 Modelling and Programming

In this phase the system design and the implementation are developed. We focus
here on the specific issues of learning and planning, i.e. the choice of the appro-
priate domain model and of the learning and planning algorithms, their imple-
mentation and the training of the agent.

Choice of Domain Model. The choice of the domain model depends on the
kind of uncertainty of the environment and on the translation of goals into
rewards and costs.

Aleatoric Uncertainty of the Environment. In the standard case of an (aleatoric)
uncertainty, the environment can be described by a probability distribution, pos-
sibly depending on the current state and the action of the agent. Then the system
can be modelled by (a variant of) a Markov decision process. For a specification
comprising optimising and safety goals constrained Markov decision processes
[7] are a good choice whereas for a specification with only one optimising goal
a classical MDP is sufficient. If the application has noisy or unreliable sensors
and the autonomic entity may not be able to determine the current state with
complete reliability one may resort to Partially Observable Markov decision pro-
cesses (POMDP) [32] as system model.

Changing Environment. A more difficult situation arises if the changes of envi-
ronment are not stationary. Then one can try to model this by a probability

290 M. Wirsing and L. Belzner

distribution over the set of possible environments or - if also the goals and the
system may change - one may model the adaptation domain as a probability
distribution over MDPs [18].

Specification of Rewards and Costs. Another issue is the definition of of the
immediate rewards and costs. Often their values can be directly derived from
the corresponding optimization and safety goals but the correspondence is not
always obvious. In this case one can explore different reward and cost functions
or try to adjust the rewards and costs in a next round of the development cycle.

Choice of Algorithm. There is a wealth of learning and planning algorithms;
none of them is known to outperform the others. The choice depends on several
factors including the kind of domain model and goals, the size of the state and
action space, the real-time performance requirements, and the availability of a
digital twin. For a more detailed set of criteria see [39].

Kind of Domain Model and Goals. For MDPs with only one optimising goal,
there is wide selection of model-free reinforcement learning algorithms, model-
based reinforcement learning algorithms, and online planning algorithms. For
applications with safety constraints a scalarisation approach can be followed
if during training and learning a policy, actions are not required to be always
safe. Otherwise shielding and safe exploration algorithms can be used. Partially
Observable Markov Decision Processes (POMDPs) can be solved by online plan-
ning algorithms or by combinations of reinforcement learning with planning [40]).

The case of complex adaptation domains with changing environments can be
tackled by meta-learning and online planning. Meta-learning algorithms are well-
suited for dealing with non-stationary environments that can be described as a
probability distribution over a set of environments. Online planning methods are
able to react to non-stationary changes of the environment as well as to changes
of goals and to noisy actions.

Size of State and Action Space. For small state and action spaces classical tabu-
lar model-free algorithms can be used, e.g. Q-learning and Temporal Difference
learning for discrete sets of actions or Gaussian processes in the continuous case.
Also planning algorithms use tabular representation methods. When the state
space becomes too large, one has to resort to approximate representations of the
value function. These function approximations can be linear (such as Fourier
transform) or nonlinear (such as deep or forward neural networks). Also com-
bining function approximation and local tabular methods as in [52] is promising.

Because of the computational intractability of belief states, algorithms for
POMDPs are mostly only applicable to small and mid size problems. These issues
can by partially resolved by factorisation of the state space or by exploiting full
observability whenever possible [43].

Towards Systematically Engineering Autonomous Systems 291

Performance and Availability of a Digital Twin. By using function approxima-
tion, model-free methods scale to complex tasks (such as robotics and motion
animation) but they need large amounts of samples and training. Instead, model-
based algorithms and pure online planning require less training but need to rely
on a faithful model of the environment. Errors in the model undermine the qual-
ity of the solutions but recent methods such as uncertainty estimation of the
learned models can mitigate the model-bias [18].

The real-time performance of model-based algorithms such as PETS may
be another issue, e.g. in case that action selection of the algorithm needs more
time than a default time-step of the environment. In [61] T. Wang et al. provide
benchmarks for several state-of-the-art reinforcement learning algorithms and
show that model-based and model-free algorithms can achieve similar perfor-
mances. Benchmarks for algorithms with safety constraints are given in [47].

Implementation and Training. The task of implementing an autonomous
agent by reinforcement learning is twofold: (1) implementing the model, the
algorithm and the training pipeline and (2) synthesis of the policy via training
(i.e. execution of the training cycle).

Implementation. For implementing the model and algorithm one needs to define
a software architecture for the appropriate variant of Markov Decision Processes,
the learning algorithm, and the application. E.g. this can be an object-oriented
architecture, differential equations, or a neural network architecture. For stan-
dard applications a reinforcement learning framework can be used such as the
Reinforcement Learning Toolbox of MathWorks2 or Gym of OpenAI3. Neural
networks for function approximation can be implemented with the help of deep
learning frameworks such as PyTorch4 and TensorFlow5.

Training. The objective of training is to synthesize a policy which achieves the
required optimizing goals and safety goals constraints.

Training is executed in a training cycle in which the learning agent interacts
with the environment through a repeated trial-and-error process. A certain num-
ber of finite episodes are performed and the parameters of the policy are tuned
for maximizing the cumulative reward, minimizing the loss, and for ensuring
the required probability and confidence of the safety goals. Typically, after each
episode the parameters of the policy are updated and - if possible - the environ-
ment is reset. Training options comprise the length of an episode, the maximum
number of episodes, the individual or the average rewards and costs.

Training can be performed in the real environment or by simulations on a
digital model. The latter has the advantage that typically many more training
cycles are possible and that it is reversible, i.e. that the environment can be

2 https://de.mathworks.com/products/reinforcement-learning.html.
3 https://gym.openai.com/.
4 https://pytorch.org/.
5 https://www.tensorflow.org/.

https://de.mathworks.com/products/reinforcement-learning.html
https://gym.openai.com/
https://pytorch.org/
https://www.tensorflow.org/

292 M. Wirsing and L. Belzner

reset. For many applications, training consists of two parts, a simulation on a
digital twin of the application and training of the autonomous agent in the real
environment.

A good training practice is to start with a simplified setting consisting of
a simple simulated environment and a simple reinforcement learning algorithm.
The algorithm and environment are then refined until the desired setting is
achieved. Note that this approach means to iteratively run through deployment,
operations cycle, feedback, validation, and re-adjustment of requirements and
design until the model is accepted and then can be deployed for operation. For
comparing the learning algorithms and choosing the most suitable one, a good
practice is to deploy and train different algorithms in parallel.

3.3 Validation and Verification

Because of the large size of and the uncertainties about the environment, the
construction of policies for autonomic systems requires extensive validation and
verification. This is includes the validation and verification methods of ASCENS
as well as all classical verification and testing methods such as unit, integration,
system, and user testing, static analysis, and runtime verification.

A key issue is the statistical analysis of the training results such as the analy-
sis of cumulative and average episode return. Statistical model checking [36] and
Bayesian model checking [69] are the main tools for verifying safety constraints.
Both methods use a runtime cycle for performing simulations and statistical
analysis. In statistical model checking, finitely many randomised simulations of
the system are executed and statistical methods are used for deciding whether
the samples provide a statistical evidence for the satisfaction or violation of the
specification. Bayesian model checking is a variant of statistical model checking
which - instead of randomised sampling - incorporates prior information about
the model being verified. The advantage is that it this often requires a signifi-
cantly smaller number of sampled episodes.

The operation of autonomous systems has also to be validated in the real
environment. This leads to several additional problems such as recognizing an
environment which is different from the training environment, guaranteeing safe
exploration of the real environment, and avoiding actions which disturb the real
environment. For a discussion and possible solutions see [8].

3.4 Deployment and Feedback Data

Deployment. Deployment is used in three phases of the AIDL life cycle: for
connecting the development cycle with the operations cycle, for executing the
training cycle, and during validation and verification. During deployment the
system is prepared for execution in a simulated (“in vitro”) or in a real envi-
ronment (“in vivo”). This involves the choice of the runtime infrastructure and
the choice of the real environment and in case of simulation, the choice of the
parameters of the digital twin.

Towards Systematically Engineering Autonomous Systems 293

Other tasks are compilation, linking, and generation of executable code.
Microcontrollers and GPUs are typical infrastructures for autonomous systems
operating in real environments. Simulations are deployed into GPUs, clouds and
clusters of cpus, the latter two for executing in parallel to improve training per-
formance.

Feedback. Feedback is based on the data collected by monitoring and in the
awareness process. The feedback data are used for validation and verification and
for evaluating and improving the design, the implementation, and the require-
ments.

3.5 The Operations Cycle

The Ops cycle of AIDL is almost the same as the one of EDLC. It can run in the
real environment or in a digital model. The only change is that it emphasizes an
additional Ops cycle for simulations which are executed in the awareness phase.

Monitoring. As in EDLC, monitoring employs mechanisms such as sensor infor-
mation and code instrumentation for collecting data about the state of the envi-
ronment, of some components of the autonomous system or of the whole sys-
tem. In the context of MDPs, monitoring comprises also runtime validation of
design assumptions about MDP by observing statistical properties and simu-
lation results and their relations with other factors. This includes uncertainty
quantification and detecting non-functional changes such as drift and anomalies.

An important task is MDP identification, i.e. in case the agent is able to work
in several environment the current environment is monitored and if a change of
the environment is detected, the adaptation mechanism of the agent is triggered;
using feedback, also a new development cycle may be activated.

For systems with several digital twins, monitoring can check the status of
these twins and inform the awareness mechanism. Another use of monitoring
is to survey the learning results in case the system continues learning during
operation.

Awareness. In this phase reasoning and planning is carried out. The monitored
data are evaluated and analysed w.r.t. required (functional) properties. Often
simulations on the digital twin are performed for predicting the behaviour of
system and environment. The results can then be used e.g. for online planning
and deciding on the next steps of the agent.

Adaptation. Based on the awareness results, different forms of adaptation are
possible. Weak adaptation amounts simply to execute the action selected by the
policy or to change some control parameters of the algorithm such as the change
of the direct reward. Strong adaptation means e.g. to change the dynamic model
(MDP) by updating the direct reward or the transition distribution. Also the
system may be reconfigured, e.g. by exchanging system components or sensor
functions.

294 M. Wirsing and L. Belzner

4 Case Studies

In this section we illustrate AIDL by two existing case studies: a simple search-
and-rescue case study [10] and a so-called particle dance case study [12]. The
search-and-rescue scenario is solved by online planning whereas the particle
dance illustrates the systematic development of a reinforcement learning solu-
tion. In Subsects. 4.1 and 4.2 the two case studies are presented along the
phases of the AIDL life cycle. Subsection 4.3 gives a short comparison of both
approaches.

4.1 Case Study: Engineering Adaptation by Simulation-Based
Online Planning

The first example [10] is a simple search-and-rescue scenario which is solved by
online planning. The experimental results shows that the generated planning
policy of the agent is able to act autonomously and is robust w.r.t. unexpected
events and changes of system goals at runtime.

Search-and-Rescue Scenario. A robot is deployed in a damaged area and
must rescue victims by bringing them to an ambulance. If the robot encounters
a fire, it has first extinguish the fire, and only then it can continue its way.

Requirements. The domain model consists of victims, fires, and ambulances
in an environment with an unknown topology which is represented by a finite
graph. The rescue robot can move (to a neighbor position), load or drop a victim
(at its position), do nothing, and extinguish a fire (at a neighbor position). The
robot has two goals. Its achieve goal is to find the victims and bring them to an
ambulance. The safety constraint requires the agent to ignite all fires that are
adjacent to its current position.

Goal Achieve SaveVictims2Amb : �(
∧

i=1,...,n

victimi at ambulance) (1)

Goal Constraint IgniteFire : �(∀Firef : adjacent(f) ⇒ ignite(f)) (2)

There are also several adaptation requirements. First, the environment and
the system may change: fires probabilistically ignite and cease; the actions of the
robot are not reliable and may fail with a certain probability. The robot may
also inadvertently drop the victim it is bringing to the ambulance. Moreover,
the goals of the robot may change: the goal of saving victims from fire may
change to the SaveVictims2Amb goal of “saving victims and bringing them to
an ambulance.”

Towards Systematically Engineering Autonomous Systems 295

Modelling and Programming. For modelling and implementing the search-
and-rescue scenario, an object-oriented domain model of the scenario and a
generic framework, called OnPlan, were developed. Then the domain model was
plugged into OnPlan. Figure 3 shows the class diagram of the domain model.

OnPlan is a framework for modelling autonomous systems based on online
planning [10]. it has a generic object-oriented architecture which realises an arbi-
trary MDP. It comprises components for states, actions, rewards, and also for
the transition probabilities that define the policy (called strategy in [10]) of
the robot. In addition, the architecture has a monitoring component for observ-
ing the environment and an abstract planning component which has a concrete
simulation-based online planning component as realisation.

The latter makes use of a digital twin of the application domain for gath-
ering information about potential system episodes. During the planning steps,
future episodes are simulated at runtime. Simulation provides information about
probability and value of the different state space regions, thus guiding system
behaviour execution. After simulating possible choices of actions and behavioural
alternatives, the transition probabilities of the MDP are updated and the agent
executes an action (in reality) that performed well in simulation.

The dynamic model of OnPlan realises the behaviour of an Operations cycle
(see below) and performs monitoring of the environment and planning and exe-
cution of actions iteratively at runtime.

Training is not necessary for OnPlan but the digital twin has to be a true
model of the real environment.

OnPlan comes with two instantiations for online planning, Monte Carlo Tree
Search [34] for discrete domains and the Gaussian approach of Cross Entropy
Open Loop Planning [62] for continuous state and action spaces. For the search-
and-rescue scenario, the former was used and plugged into the OnPlan architec-
ture.

Validation. Validation is performed by statistical model checking using the
MultiVesta tool [50]. Measurements include the estimation of the mean expected
future reward.

A main aspect is the validation of the quality of the autonomous behaviour
and of the robustness to changes. Concerning the autonomous behaviour, we test
the system in an environment exhibiting aleatoric uncertainty: fires probabilisti-
cally ignite and cease and the actions of the robot are not reliable and may fail
with a certain probability. Figure 4 shows that the planning component is able
to generate a policy for transporting victims to safe positions autonomously.

Figures 5 and 6 address the adaptability and robustness of the system.
Figure 5 shows the robot is able to recover from the unexpected events effi-
ciently. The transportation of victims to safety is only marginally impaired by
the sudden unexpected changes of the situation. The framework is also able to
react adequately to a re-specification of system goals. In Fig. 6 before step 40,
the robot was given a reward for keeping the number of fires low resulting in a

296 M. Wirsing and L. Belzner

reduction of the number of burning victims. On-wards from step 40, reward was
instead provided for victims that have been transported to safety.

In all three Figs. 4, 5, and 6 the blue line indicates the percentage of saved
victims, the red line the percentage of victims in fire, and the green line the
percentage of positions in fire. Dotted lines indicate 0.95 confidence intervals.

Fig. 3. Class diagram of search-and-
rescue domain.

Fig. 4. Autonomous agent performance.
Reward is given for victims at safe posi-
tions.

Operations Cycle. Monitoring of the environment is performed by OnPlan
through an operation “observe” which senses the whole graph including the
current position of the robot, the victims and fires. In addition, it counts the
fires and victims, and monitors the success of the rescue actions.

By simulating iteratively future episodes at runtime, the robot becomes aware
of the current situation.

Short term weak self-adaptation is achieved by online planning. The policy
is iteratively updated according to the results of the Monte Carlo Search and to
the observations of the robot action.

Deployment, Feedback, and New Development Cycle. Deploying the
OnPlan scenario is standard and consists of packaging the software and deploying
it on the infrastructure. Feedback comes from the monitoring data which inform
the developers about the current status of fires and victims as well the (victim
saving and fire fighting) performance of the agent. Strong adaptation arises in
case of goal revision. If e.g. the current agent goal was to extinguish fires but
new victims are detected, then a new development cycle is initiated for changing
the goal and giving rewards for saving the victims.

Towards Systematically Engineering Autonomous Systems 297

Fig. 5. Autonomous agent performance
despite unexpected events at runtime.
Every 20th step, all victims carried by
the agent fall to the ground, and the
number of fires raises to 10.

Fig. 6. Autonomous agent performance
with a re-specification of system goal
at runtime. Before step 40, the agent
is given a reward for keeping the num-
ber of fires low, resulting in a reduc-
tion of the number of burning victims.
Onwards from step 40, reward is pro-
vided for victims that have been trans-
ported to safety.

4.2 Case Study Safe Learning: Policy SYnthesis with Safety
Constraints (PSyCo)

In line with the AIDL life cycle, the PSyCo approach is a systematic method
for specifying and implementing agents that shape rewards dynamically over the
learning process based on their confidence in requirement satisfaction [12]. It is
centered around a safe reinforcement learning algorithm which combines evolu-
tionary learning with Bayesian model checking. The basic idea is to emphasize
return optimization when the learner is confident, and to focus on satisfying
given constraints otherwise. This enables to explicitly distinguish requirements
wrt. aleatoric uncertainty that is inherent to the domain, and epistemic uncer-
tainty arising from an agent’s learning process based on limited observations.

Particle Dance Scenario. In the Particle Dance scenario, an agent has to
learn to follow a randomly moving particle as closely as possible.

Requirements. The domain is modelled as an MDP with an unknown transi-
tion distribution. State and action space are bounded continuous subsets of R.
The reward computes the negative distance between particle and agent.

Minimising the distance means maximizing the reward. Thus the optimising
goal is to maximise the expectation of the cumulative return R:

Goal Optimize Return : maxE(R) (3)

298 M. Wirsing and L. Belzner

The safety constraint requires the agent to keep a minimum distance of the
particle except in a fixed small number of cases. We require that the particle
satisfies this requirement with a high probability and a high confidence.

Goal Constraint BoundedCollisions : P≥preq(�φ) and C≥creq (4)

Here the formula φ expresses that the distance between particle and agent is
greater than the minimum distance. Typically, we set the required probability
for satisfying the constraint preq = 0.85 and the required confidence creq = 0.98.

Modelling, Programming, and Training. For dealing with the safety con-
straint, the MDP domain model of the Particle Dance is extended to form a
Constrained MDP over continuous state and action spaces. The safety require-
ment �φ is transformed into a notion of cost Cφ which (for each episode of
Particle Dance) counts the number of violations of the safety property φ. The
transformed goal is the following constrained optimization problem.

maxE(R) s.t. P≥preq(Cφ = 0) and C≥creq (5)

To solve this goal, we developed the so-called Safe Neural Evolutionary
Strategies (SNES) reinforcement learning algorithm. As usual in deep learn-
ing, SNES models a policy as neural network. SNES synthesises such policies by
combining a safe evolutionary learning algorithm with an algorithm for Bayesian
model checking. The basis of the safe learning algorithm is the Lagrangian app-
roach for solving constrained MDPs [7] where the constrained problem

max R s.t. Cφ = 0 (6)

is transformed to a Lagrange formulation:

max R − (1 − λ)Cφ (7)

where λ ∈ R
+ is a Lagrangian multiplier [9].

The resulting optimisation algorithm adaptively weights return and cost such
that the resulting policy is likely to be positively verified. The algorithm does
not ensure safety while learning, but only when converging to a solution of the
Lagrangian. Bayesian model checking serves for modelling the epistemic uncer-
tainty about the satisfaction probability of the results. We use it in two ways: To
guide the learning process towards feasible solutions and to verify synthesized
policies. The learning procedure of SNES is based on an evolutionary algorithm,
called Evolutionary strategies (ES). This is a gradient free, search-based opti-
mization algorithm that has shown competitive performance in reinforcement
learning tasks.

Function approximation for SNES is realised by a feedforward neural network
with one hidden layer. Training is performed over 60000 episodes (of length 50).
Every 1000 episodes, Bayesian model checking is performed for a maximum
of 1000 episodes (outside the learning loop of SNES) to evaluate the policy
synthesized by SNES up to that point.

Towards Systematically Engineering Autonomous Systems 299

Validation. Validation is performed by Bayesian model checking and an anal-
ysis of e.g. the proportion of constraint satisfaction and the confidence in the
results. For example, we can observe that the SNES agent learns to follow the
particle closely. Figure 7 illustrates this by sample trajectories of the particle and
the agent (color gradients denote time).

Figure 8 shows the proportion of episodes that satisfy the given requirement.
We can see that the proportion closely reaches the defined bound of preq = 0.85,
shown by the dashed vertical line. Note that the satisfying proportion is closely
above the required bound.

Fig. 7. Sample trajectories of the par-
ticle (light to dark blue, color gradient
denotes time) and the agent (light to
dark red). (Color figure online)

Fig. 8. Proportion of episodes satisfying
cost requirement.

Figure 9 shows the confidence of the learning agent in its ability to satisfy
the given requirement based on the observations made in the learning process.
Note that the confidence is mostly kept above the confidence requirement creq =
0.98 given in the specification. This shows SNES is effectively incorporating
observations, probability requirements, and confidence into its learning process.

Operations Cycle. Monitoring consists in sensing the distance of the agent to
the particle and in recording the number of distance violations and the cumu-
lative reward. Since the policy is synthesised the operations cycle consists of
monitoring and executing the policy. Thus there is no explicit adaptation and
awareness phase in this loop.

Deployment, Feedback and New Development Cycle. As for OnPlan,
deployment is standard and consists of packaging the software and deploying it
on the infrastructure.

Feedback is given e.g. in case the monitor detects that the particle behaviour
is changing or the agent behaviour is degrading so that the agent is not following
closely the particle. Then a new development cycle is initiated for revising the
requirements and the algorithm, new training and validation rounds, and finally
the deployment of a revised policy.

300 M. Wirsing and L. Belzner

Fig. 9. Confidence csat in satisfying specification based on observations in the course
of learning.

4.3 Comparison

The above results show that although the requirements are similar the two solu-
tions are complementary in many ways.

Both case studies have goals requiring a high level of confidence. The search-
and-rescue scenario is modelled as an MDP whereas as the particle dance is
modelled as a CMDP. The sets of states and actions are discrete and finite for
the search-and-rescue case but infinite and continuous for the particle dance.

Reinforcement learning is model-free; but it needs many training cycles and
thus is “slow” at “programming” time. Online planning is model-based; but it
does not need any training and thus is fast at “programming” time. During the
Ops cycle, the synthesised reinforcement policy is directly executed and thus is
fast, whereas online planning uses runtime simulation which may be too slow for
real-time applications.

Adaptation of the synthesised policy requires a new Dev cycle, whereas the
online planning policy is able to act autonomously and is robust w.r.t. unex-
pected events at runtime. For a change of system goals, also online planning
requires an adjustment of the rewards and thus a new development cycle.

5 Related Work

Systematic engineering approaches for intelligent agents and multi-agent systems
such as Gaia [68], Tropos [14] support a sequential development process starting
with the collection of goal-oriented requirements and the model of the environ-
ment and then proceeding with architectural design, detailed design, and imple-
mentation. Gaia follows an organisational metaphore where agents play roles

Towards Systematically Engineering Autonomous Systems 301

whereas Tropos is founded on the BDI (Belief, Desire, and Intention) agent
architecture [46]. The AgentComponent approach [35] proposes a component-
based software development process fully based on UML models. IBM’s app-
roach to autonomic systems is based on the MAPE-K architecture [30] built
around an “autonomic manager” that iterates a feedback control loop consisting
of four activities: Monitoring, Analysing, Planning, and Executing. The “generic
life cycle for context-aware adaptive systems” based on MAPE-K addresses fore-
seen and unforeseen evolution of the environment [31].

More recent development approaches for autonomous systems focus on spe-
cialised goal-oriented requirements (such as SOTA [5], GEM [29], and ARE [58])
and on feedback control loops (such as [16,60]). The SOTA [5] approach is an
extension of existing goal-oriented requirements engineering that integrates ele-
ments of dynamic systems modelling. Semantically, SOTA is built on the General
Ensemble Model GEM [29]. The Autonomous Requirements Engineering app-
roach ARE [58] focusses on systematically eliciting so-called autonomy require-
ments.

Similar to AIDL and EDLC, DevOps [48] is an agile software development
method which connects software development with runtime management based
on a software life cycle. DevOps does not specialize on autonomous systems and
its life cycle consists of only one life cycle instead of three. MLOps [3] instantiates
DevOps to the development of machine learning applications but different from
AIDL, it focusses on big data applications. AIOps [2] aims at automating and
enhancing IT operations through analytics and machine learning, but it does
not consider software development.

The engineering process [22] for machine learning is closely related to AIDL.
It follows a different life cycle and addresses adaptive instead of autonomous
systems, but as AIDL it proposes central activities necessary for developing
machine learning applications.

The FRAP framework [39] does not aim for a full engineering life cycle;
instead it identifies fine grain design decisions for reinforcement learning and
planning algorithms. In addition to computational effort and function represen-
tation, criteria such as trial selection, return estimation, update procedure, and
back-up are considered.

6 Concluding Remarks

In this paper we proposed a systematic development process, called AIDL, for
constructing/synthesizing policies of autonomous systems using planning and
reinforcement learning techniques. AIDL can be seen as an instance of the EDLC
development process for collective autonomic systems. It emphasizes the partic-
ular issues of machine learning techniques such as training, digital environment
and agent models, and additional runtime cycles in almost all phases of devel-
opment. We illustrated AIDL with two existing complementary case studies for
reinforcement learning and online planning.

302 M. Wirsing and L. Belzner

AIDL is not yet complete. Our two case studies address autonomic systems
with single agents; a next step will be to refine and extend AIDL to AIDL-
E for engineering collective autonomic systems. Also further learning/training
online at runtime, simulation-based runtime verification in the monitoring phase,
and additional non-functional requirements such as reliability, robustness, and
security of policies should be discussed and integrated into our development
approach. An ambitious mid term objective is to build an integrated development
environment for AIDL.

An interesting methodical research question is how to use abstraction and
refinement for stepwise learning of digital twin and how abstraction can help to
learn policies. Also the relationship between aleatoric and epistemic uncertainty
is not always straightforward and deserves further investigation.

Acknowledgement. We thank the anonymous reviewer for constructive criticisms
and helpful suggestions.

A Markov Decision Processes

A Markov Decision Process (MDP) M defines a domain as a set S of states
consisting of all states of the environment and the agent, a set of A of agent
actions, and a probability distribution T : p(S|S,A) describing the transition
probabilities of reaching some successor state when executing an action in a
given state. For expressing optimisation goals the labelled transition system is
extended by a reward function R : S × A × S → R which gives the expected
immediate reward gained by the agent for taking each action in each state.
Moreover, an initial state distribution ρ : p(S) is given.

An episode e ∈ E is a finite or infinite sequence of transitions (si, ai, si+1, ri),
si, si+1 ∈ S, ai ∈ A, ri = R(si, a, si+1) in the MDP. For a given discount param-
eter γ ∈ [0, 1] and any finite or infinite episode e, the cumulative return R is the
discounted sum of rewards R =

∑|e|
i=1 γiri. Depending on the application, the

agent behaves in an environment according to a memoryless stationary policy
π : S → p(A) or according to a deterministic memoryless policy π : S → A with
the goal to maximise the expectation of the cumulative return E(R).

A partially observable Markov Decision Process (POMDP) [32] is a Markov
decision process together with a set Ω of observations and an observation prob-
ability distribution O : p(Ω|S,A).

A Constrained Markov Decision Process (CMDP) has an additional cost
function C : S × A × S → R which can be used for expressing constraints and
safety goals.

References

1. ASCENS: Autonomic Component Ensembles. Integrated Project, 01 Oct 2010–31
Mar 2015, Grant agreement no: 257414, EU 7th Framework Programme. http://
www.ascens-ist.eu/. Accessed 21 April 2020

http://www.ascens-ist.eu/
http://www.ascens-ist.eu/

Towards Systematically Engineering Autonomous Systems 303

2. Gartner Inc.: Market Guide for AIOps Platforms (2019). https://www.bmc.com/
forms/tools-and-strategies-for-effective-aiops.html. Accessed 07 Oct 2020

3. Google Cloud Solutions: MLOps: Continuous delivery and automation pipelines
in machine learning. https://cloud.google.com/solutions/machine-learning/mlops-
continuous-delivery-and-automation-pipelines-in-machine-learning. Accessed 07
Oct 2020

4. OpenAI. Spinning Up in Deep RL! Part 2: Kinds of RL Algorithms (2018). https://
spinningup.openai.com. Accessed 07 July 2020

5. Abeywickrama, D., Bicocchi, N., Mamei, M., Zambonelli, F.: The SOTA approach
to engineering collective adaptive systems. Int. J. Softw. Tools Technol. Transf.
22(4), 399–415 (2020)

6. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: AAAI, pp. 2669–2678. AAAI Press (2018)

7. Altman, E.: Constrained Markov Decision Processes, vol. 7. CRC Press, Boca
Raton (1999)

8. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Con-
crete problems in AI safety. CoRR, abs/1606.06565 (2016)

9. Beavis, B., Dobbs, I.: Optimisation and Stability Theory for Economic Analysis.
Cambridge University Press, Cambridge (1990)

10. Belzner, L., Hennicker, R., Wirsing, M.: OnPlan: a framework for simulation-based
online planning. In: Braga, C., Ölveczky, P.C. (eds.) FACS 2015. LNCS, vol. 9539,
pp. 1–30. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28934-2 1

11. Belzner, L., Hölzl, M.M., Koch, N., Wirsing, M.: Collective autonomic systems:
towards engineering principles and their foundations. Trans. Found. Mastering
Chang. 1, 180–200 (2016)

12. Belzner, L., Wirsing, M.: Synthesizing safe policies under probabilistic constraints
with reinforcement learning and Bayesian model checking. Sci. Comput. Program.
206, 102620 (2021)

13. Bernardo, M., De Nicola, R., Hillston, J.: Formal Methods for the Quantitative
Evaluation of Collective Adaptive Systems, SFM 2016, vol. 9700, Lecture Notes
in Computer Science. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
34096-8

14. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: an
agent-oriented software development methodology. JAAMAS 8(3), 203–236 (2004)

15. Browne, C., et al.: A survey of Monte Carlo tree search methods. IEEE Trans.
Comput. Intell. AI Games 4(1), 1–43 (2012)

16. Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In:
Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software
Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-02161-9 3

17. Bureš, T., et al.: A life cycle for the development of autonomic systems: the e-
mobility showcase. In: SASO Workshops, pp. 71–76 (2013)

18. Clavera, I., Rothfuss, J., Schulman, J., Fujita, Y., Asfour, T., Abbeel, P.: Model-
based reinforcement learning via meta-policy optimization. In: CoRL 2018, Pro-
ceedings of Machine Learning Research, vol, 87, pp. 617–629. PMLR (2018)

19. Nicola, R. D., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. ACM Trans. Auton. Adapt. 9(2), 7:1–
7:29 (2014)

20. Drugan, M.M.: Reinforcement learning versus evolutionary computation: a survey
on hybrid algorithms. Swarm Evol. Comput. 44, 228–246 (2019)

https://www.bmc.com/forms/tools-and-strategies-for-effective-aiops.html
https://www.bmc.com/forms/tools-and-strategies-for-effective-aiops.html
https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://spinningup.openai.com
https://spinningup.openai.com
https://doi.org/10.1007/978-3-319-28934-2_1
https://doi.org/10.1007/978-3-319-34096-8
https://doi.org/10.1007/978-3-319-34096-8
https://doi.org/10.1007/978-3-642-02161-9_3

304 M. Wirsing and L. Belzner

21. Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S., Viroli, M., Arcos,
J.L.: Description and composition of bio-inspired design patterns: a complete
overview. Nat. Comput. 12(1), 43–67 (2013)

22. Gabor, T., et al.: The scenario coevolution paradigm: adaptive quality assurance
for adaptive systems. Int. J. Softw. Tools Technol. Transf. 22, 457–476 (2020)

23. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Asp. Comput. 6(5), 512–535 (1994)

24. Hasanbeig, M., Abate, A., Kroening, D.: Cautious reinforcement learning with
logical constraints. In: AAMAS, pp. 483–491. International Foundation for
Autonomous Agents and Multiagent Systems (2020)

25. Hoch, N., Bensler, H.-P., Abeywickrama, D., Bureš, T., Montanari, U.: The E-
mobility case study. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software
Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 513–533.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16310-9 17

26. Horn, P.: Autonomic computing: IBM perspective on the state of information tech-
nology. IBM T.J. Watson Labs, NY (2001)

27. Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The ensemble devel-
opment life cycle and best practices for collective autonomic systems. In: Wirsing,
M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Auto-
nomic Systems. LNCS, vol. 8998, pp. 325–354. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-16310-9 9

28. Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive sys-
tems: state of the art and research challenges. In: Wirsing, M., Banâtre, J.-P.,
Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems and New Comput-
ing Paradigms. LNCS, vol. 5380, pp. 1–44. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-89437-7 1

29. Hölzl, M., Wirsing, M.: Towards a system model for ensembles. In: Agha, G.,
Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological
Systems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-24933-4 12

30. IBM: An architectural blueprint for autonomic computing. Technical report, IBM
Corporation (2005)

31. Inverardi, P., Mori, M.: A software lifecycle process to support consistent evolu-
tions. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engi-
neering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 239–264. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-35813-5 10

32. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)

33. Kernbach, S., Schmickl, T., Timmis, J.: Collective adaptive systems: challenges
beyond evolvability. CoRR abs/1108.5643 (2011)

34. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

35. Krutisch, R., Meier, P., Wirsing, M.: The AgentComponent approach, combining
agents, and components. In: Schillo, M., Klusch, M., Müller, J., Tianfield, H. (eds.)
MATES 2003. LNCS (LNAI), vol. 2831, pp. 1–12. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-39869-1 1

36. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 11

https://doi.org/10.1007/978-3-319-16310-9_17
https://doi.org/10.1007/978-3-319-16310-9_9
https://doi.org/10.1007/978-3-319-16310-9_9
https://doi.org/10.1007/978-3-540-89437-7_1
https://doi.org/10.1007/978-3-540-89437-7_1
https://doi.org/10.1007/978-3-642-24933-4_12
https://doi.org/10.1007/978-3-642-24933-4_12
https://doi.org/10.1007/978-3-642-35813-5_10
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/978-3-540-39869-1_1
https://doi.org/10.1007/978-3-642-16612-9_11

Towards Systematically Engineering Autonomous Systems 305

37. Loreti, M., Hillston, J.: Modelling and analysis of collective adaptive systems with
CARMA and its tools. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM
2016. LNCS, vol. 9700, pp. 83–119. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-34096-8 4

38. Mayer, P., et al.: The autonomic cloud. In: Wirsing, M., Hölzl, M., Koch, N.,
Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS,
vol. 8998, pp. 495–512. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
16310-9 16

39. Moerland, T.M., Broekens, J., Jonker, C.M.: A framework for reinforcement learn-
ing and planning. CoRR, abs/2006.15009 (2020)

40. Moerland, T.M., Broekens, J., Jonker, C.M.: Model-based reinforcement learning:
a survey. CoRR, abs/2006.16712 (2020)

41. Moerland, T.M., Deichler, A., Baldi, S., Broekens, J., Jonker, C.M.: Think too fast
nor too slow: The computational trade-off between planning and reinforcement
learning. CoRR, abs/2005.07404 (2020)

42. Nagabandi, A., et al.: Learning to adapt in dynamic, real-world environments
through meta-reinforcement learning. In: ICLR 2019. OpenReview.net (2019)

43. Ong, S.C.W., Png, S.W., Hsu, D., Lee, W.S.: Planning under uncertainty for
robotic tasks with mixed observability. Int. J. Robot. Res. 29(8), 1053–1068 (2010)

44. Pinciroli, C., Bonani, M., Mondada, F., Dorigo, M.: Adaptation and awareness in
robot ensembles: scenarios and algorithms. In: Wirsing, M., Hölzl, M., Koch, N.,
Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS,
vol. 8998, pp. 471–494. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
16310-9 15

45. Puviani, M., Cabri, G., Zambonelli, F.: Patterns for self-adaptive systems: agent-
based simulations. EAI Endorsed Trans. Self-Adapt. Syst. 1(1), e4 (2015)

46. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In:
Proceedings of the Knowledge Representation and Reasoning, pp. 473–484 (1991)

47. Ray, A., Achiam, J., Amodei, D.: Benchmarking safe exploration in deep reinforce-
ment learning. Technical report, Open AI (2019)

48. Roche, J.: Adopting DevOps practices in quality assurance. Commun. ACM
56(11), 38–43 (2013)

49. Ross, S., Pineau, J., Paquet, S., Chaib-draa, B.: Online planning algorithms for
POMDPs. J. Artif. Intell. Res. 32, 663–704 (2008)

50. Sebastio, S., Vandin, A.: MultiVeStA: statistical model checking for discrete event
simulators. In: ValueTools 2013, pp. 310–315. ICST/ACM (2013)

51. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

52. Silver, D.: Mastering the game of go without human knowledge. Nature 550(7676),
354–359 (2017)

53. Sutton, R.S., Barto, A.G.: Reinforcement Learning - an Introduction. Adaptive
Computation and Machine Learning, 2nd edn. MIT Press, Cambridge (2018)

54. Szepesvári, C.: Algorithms for Reinforcement Learning. Synthesis Lectures on Arti-
ficial Intelligence and Machine Learning, vol. 4, pp. 1–103. Morgan & Claypool
Publishers, California (2010)

55. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: a
survey. J. Mach. Learn. Res. 10, 1633–1685 (2009)

56. Thrun, S., Pratt, L.Y.: Learning to learn: introduction and overview. In: Thrun, S.,
Pratt, L.Y. (eds.) Learning to Learn, pp. 3–17. Springer, Boston (1998). https://
doi.org/10.1007/978-1-4615-5529-2 1

https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-319-16310-9_16
https://doi.org/10.1007/978-3-319-16310-9_16
https://doi.org/10.1007/978-3-319-16310-9_15
https://doi.org/10.1007/978-3-319-16310-9_15
https://doi.org/10.1007/978-1-4615-5529-2_1
https://doi.org/10.1007/978-1-4615-5529-2_1

306 M. Wirsing and L. Belzner

57. Tschaikowski, M., Tribastone, M.: A unified framework for differential aggregations
in Markovian process algebra. J. Log. Alg. Meth. Prog. 84(2), 238–258 (2015)

58. Vassev, E., Hinchey, M.: Engineering requirements for autonomy features. In: Wirs-
ing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collec-
tive Autonomic Systems. LNCS, vol. 8998, pp. 379–403. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-16310-9 11

59. Vilalta, R., Giraud-Carrier, C., Brazdil, P., Soares, C.: Inductive transfer. In: Sam-
mut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning and Data Mining,
pp. 666–671. Springer, Boston (2017). https://doi.org/10.1007/978-1-4899-7687-
1 138

60. Šerbedžija, N., Fairclough, S.: Biocybernetic loop: from awareness to evolution. In:
IEEE Evolutionary Computation 2009, pp. 2063–2069. IEEE (2009)

61. Wang, T., et al.: Benchmarking model-based reinforcement learning. CoRR,
abs/1907.02057 (2019)

62. Weinstein, A., Littman, M.: Open-loop planning in large-scale stochastic domains.
In: AAI 2013. AAAI Press (2013)

63. Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems.
In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering
for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35813-5 4

64. Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A.: Software-Intensive Sys-
tems and New Computing Paradigms - Challenges and Visions, vol. 5380. Lecture
Notes in Computer Science. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-89437-7

65. M. Wirsing, M. M. Hölzl, N. Koch, and P. Mayer, editors. Software Engineering for
Collective Autonomic Systems - The ASCENS Approach, volume 8998 of Lecture
Notes in Computer Science. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-16310-9

66. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: engineering auto-
nomic service-component ensembles. In: Beckert, B., Damiani, F., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-35887-6 1

67. Wooldridge, M.J., Jennings, N.R.: Intelligent agents: theory and practice. Knowl.
Eng. Rev. 10(2), 115–152 (1995)

68. Zambonelli, F., Jennings, N.R., Wooldridge, M.J.: Developing multiagent systems:
the Gaia method. ACM Trans. Softw. Eng. Meth. 12(3), 317–370 (2003)

69. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to Simulink verification. Formal Meth. Syst. Des. 43(2), 338–367 (2013)

https://doi.org/10.1007/978-3-319-16310-9_11
https://doi.org/10.1007/978-1-4899-7687-1_138
https://doi.org/10.1007/978-1-4899-7687-1_138
https://doi.org/10.1007/978-3-642-35813-5_4
https://doi.org/10.1007/978-3-540-89437-7
https://doi.org/10.1007/978-3-540-89437-7
https://doi.org/10.1007/978-3-319-16310-9
https://doi.org/10.1007/978-3-319-16310-9
https://doi.org/10.1007/978-3-642-35887-6_1

Strand Spaces with Choice via a Process
Algebra Semantics

Fan Yang1, Santiago Escobar2(B), Catherine Meadows3, Jose Meseguer1,
and Sonia Santiago4

1 University of Illinois at Urbana-Champaign, Champaign, USA
{fanyang6,meseguer}@illinois.edu

2 VRAIN, Universitat Politècnica de València, Valencia, Spain
sescobar@upv.es

3 Naval Research Laboratory, Washington, D.C., USA
meadows@itd.nrl.navy.mil

4 ITI, Universitat Politècnica de València, Valencia, Spain
ssantiago@iti.es

Abstract. Roles in cryptographic protocols do not always have a lin-
ear execution, but may include choice points causing the protocol to
continue along different paths. In this paper we address the problem of
representing choice in the strand space model of cryptographic proto-
cols, particularly as it is used in the Maude-NPA cryptographic protocol
analysis tool.

To achieve this goal, we develop and give formal semantics to a pro-
cess algebra for cryptographic protocols that supports a rich taxonomy of
choice primitives for composing strand spaces. In our taxonomy, deter-
ministic and non-deterministic choices are broken down further. Non-
deterministic choice can be either explicit, i.e., one of two paths is chosen,
or implicit, i.e., the value of a variable is chosen non-deterministically.
Likewise, deterministic choice can be either an explicit if-then-else choice,
i.e., one path is chosen if a predicate is satisfied, while the other is chosen
if it is not, or implicit deterministic choice, i.e., execution continues only
if a certain pattern is matched. We have identified a class of choices which
includes finite branching and some cases of infinite branching, which we
address in this paper.

We provide a bisimulation result between the expected forwards exe-
cution semantics of the new process algebra and the original symbolic
backwards semantics of Maude-NPA that preserves attack reachability.
We have fully integrated the process algebra syntax and its transforma-
tion into strands in Maude-NPA. We illustrate its expressive power and

This work has been partially supported by the grants RTI2018-094403-B-
C32 and PID2021-122830OB-C42 funded by MCIN/AEI/10.13039/501100011033
and ERDF “A way of making Europe”, by the grant PROMETEO/2019/098
funded by Generalitat Valenciana, and by the grant PCI2020-120708-2 funded
by MICIN/AEI/10.13039/501100011033 and the European Union NextGenera-
tionEU/PRTR.

c© Springer Nature Switzerland AG 2023
P. Lopez-Garcia et al. (Eds.): Hermenegildo Festschrift 2022, LNCS 13160, pp. 307–350, 2023.
https://doi.org/10.1007/978-3-031-31476-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31476-6_17&domain=pdf
https://doi.org/10.1007/978-3-031-31476-6_17

308 F. Yang et al.

naturalness with various examples, and show how it can be effectively
used in formal analysis. This allows users to write protocols from now
on using the process syntax, which is more convenient for expressing
choice than the strand space syntax, in which choice can only be speci-
fied implicitly, via two or more strands that are identical until the choice
point.

1 Introduction

Formal analysis of cryptographic protocols has become one of the most successful
applications of formal methods to security, with a number of tools available and
many successful applications to the analysis of protocol standards. In the course
of developing these tools it has become clear that there are certain universal
features that can best be handled by accounting for them directly in the syntax
and the semantics of the formal specification language, e.g., unguessable nonces,
communication across a network controlled by an attacker, and support for the
equational properties of cryptographic primitives. Thus a number of different
languages have been developed that include these features.

At the same time, it is necessary to provide support for more commonly
used constructs, such as choice points that cause the protocol to continue in
different ways, and to do so in such a way that they are well integrated with
the more specifically cryptographic features of the language. However, in their
original form most of these languages do not support choice, or support it only
in a limited way.

In particular, the strand space model [12], one of the most popular models
designed for use in cryptographic protocol analysis, does not support choice in its
original form; strands describe linear sequences of input and output messages,
without any branching. One response to dealing with this limitation, and to
formalizing strand spaces in general, has been to embed the strand space model
in some other formal system that supports choice, e.g., event-based models for
concurrency [5], Petri nets [13], or multi-set rewriting [3]. However, we believe
that there are advantages in introducing choice in the strand space model itself,
while proving soundness and completeness with another formal system in order
to validate the augmented model. This allows us to concentrate on handling
the types of choices that commonly arise in cryptographic protocols. A detailed
discussion of related work can be found at Sect. 9.

We wish to honor Manuel Hermenegildo with this paper in his Festschrift vol-
ume. Besides Manuel’s landmark contributions to Declarative Programming and
Formal Methods, we wish to emphasize the close links that the work we present
—which might at first sight appear to be somewhat distant from Manuel’s
interests— has with his seminal contributions to Constraint Logic Programming.
Solving of equality and disequality constraints modulo user-definable equational
theories, and narrowing-based symbolic search using semantic unification mod-
ulo such theories are some of the key symbolic techniques that we use to formally
analyze the security of protocols modulo the equational properties of their cryp-
tographic functions. Therefore, this is a way for us to continue a dialogue with

Strand Spaces with Choice via a Process Algebra Semantics 309

Manuel that for one of us started in California in the 1980s, and to wish him
health and many more successes in the years to come.

1.1 Contributions

This paper is an extended version of the conference paper [21]. We address the
problem of representing choice in the strand space model, particularly as it is
used in the Maude-NPA cryptographic protocol analysis tool. We have iden-
tified several kinds of choices, including both finite branching and some cases
of infinite branching. At the theoretical level, we provide a bisimulation result
between the expected forwards execution semantics of the new process algebra
and the original symbolic backwards semantics of Maude-NPA. This requires
extra intermediate forwards and backwards semantics that are included in this
paper, together with all the proofs, but were not included in the conference paper
[21]. What these results make possible is a sound and complete symbolic reacha-
bility analysis method for cryptographic protocols with choice modulo equational
properties of the cryptographic functions satisfying the finite variant property
(FVP) (see [8] for a detailed explanation of how FVP theories are supported
in Maude-NPA). At the tool level, we have fully integrated the process algebra
syntax, and its transformation into strands, and have developed new methods to
specify attack states using the process notation in the recent release of Maude-
NPA 3.1.4 (see Sect. 8.1, and [8]). None of this was available at the time of the
conference paper [21]. Furthermore, we illustrate the expressive power and nat-
uralness of adding choice to strand spaces with various examples, and show how
it can be effectively used in formal analysis.

1.2 Choice in Maude-NPA

Previous to this work, Maude-NPA offered some ways of handling choice, but its
scope was limited, and a uniform semantics of choice was lacking. Several kinds
of branching could be handled by a protocol composition method in which a
single parent strand is composed with one or more child strands. Although pro-
tocol composition is intended for modular construction of protocols, with suit-
able restrictions it can also be used to express both non-deterministic branching
and deterministic branching predicates on pattern matching of output param-
eters of the parent with the input parameters of the child. However, repurpos-
ing composition to branching has its limitations. First of all, it is possible to
inadvertently introduce non-deterministic choice into what was intended to be
deterministic choice by unwise choice of input and output parameters. Secondly,
the limitation to pattern matching rules out certain types of deterministic choice
conditioned on predicates that cannot be expressed this way, e.g., disequality1

predicates. Finally, implementation of choice via composition can be inefficient,

1 As discussed in [4], a disequality is a negated equality t1 ‰ t2, whereas an inequality
is a predicate t1 ď t2, which is only meaningful if an interpretation of the ď symbol
has been given.

310 F. Yang et al.

since Maude-NPA must evaluate all possible child strands that match a parent
strand.

Maude-NPA, in common with many other cryptographic protocol analysis
tools, also offers a type of implicit choice that does not involve branching: non-
deterministic choice of the values of certain variables. For example, a strand that
describes an initiator communicating with a responder generally uses variables
for both the initiator and responder names; this represents a non-deterministic
choice of initiator and responder identities. However, the semantic implications
of this kind of choice were not that well understood, which made it difficult to
determine where it could safely be used. Clearly, a more unified treatment of
choice was necessary, together with a formal semantics of choice.

In support of this work we have developed a taxonomy of choice in which the
categories of deterministic and non-deterministic choice are further subdivided.
First of all, non-deterministic choice is subdivided into explicit and implicit non-
deterministic choice. In explicit non-deterministic choice a role2 chooses either
one branch or another at a choice point non- deterministically. In implicit non-
deterministic choice a logical choice variable is introduced which may be non-
deterministically instantiated by the role. Deterministic choice is subdivided
into (explicit) if-then-else choice and implicit deterministic choice. In if-then-
else choice a predicate is evaluated. If the predicate evaluates to true one branch
is chosen, and if it evaluates to false another branch is chosen. Deterministic
choice with more than two choices can be modeled by nesting of if-then-else
choices. In implicit deterministic choice, a term pattern is used as an implicit
guard, so that only messages matching such pattern can be chosen i.e., accepted,
by the role. Although implicit deterministic choice can be considered a special
case of if-then-else choice in which the second branch is empty, it is often simpler
to treat it separately. Classifying choice in this way allows us to represent all
possible behaviors of a protocol by a finite number of strands modeling possible
executions, while still allowing the variables used in implicit non-deterministic
and deterministic choice to be instantiated in an infinite number of ways.

1.3 A Motivating Example

In this section we introduce a protocol that we will use as a running example.
It is a simplified version of the handshake protocol in TLS 1.3 [20], a proposed
update to the TLS standard for client-server authentication. This protocol is
chosen because, like most other protocol standards, offers a number of different
alternatives and it exemplifies all the different kinds of choice considered in this
paper, although, as explained in Sect. 8.4, it produces a very deep and wide
analysis tree; see [15] for a more detailed presentation of the protocol. In order
to make the presentation and discussion manageable, we present only a subset

2 As further explained later, the behaviors of protocol participants, called principals,
e.g., sender, receiver, server, etc., are described by their respective roles. Since a
protocol may have multiple sessions, various participants may play a different role
in each session.

Strand Spaces with Choice via a Process Algebra Semantics 311

here: the client chooses a Diffie-Hellman group, and proposes it to the server. The
server can either accept it or request that the client proposes a different group.
In addition, the server has the option of requesting that the client authenticates
itself. We present the protocol at a high level similar to the style used in [20].

Example 1. We let a dashed arrow ��� denote an optional message, and an
asterisk * denote an optional field.

1. C Ñ S : ClientHello, Key Share
The client sends a Hello message containing a nonce and the Diffie-Hellman
group it wants to use. It also sends a Diffie-Hellman key share.

– 1.1 S ��� C : HelloRetryRequest
The server may optionally reject the Diffie-Hellman group proposed by
the client and request a new one.

– 1.2 C ��� S : DHGroup, Key Share
The client proposes a new group and sends a new key share.

2. S Ñ C : ServerHello, Key Share, {AuthReq*},{CertificateVerify},
{Finished}
The server sends its own Hello message and a Diffie-Hellman key share. It
may optionally send an AuthReq to the client to authenticate itself with a
public key signature from its public key certificate. It then signs the entire
handshake using its own public key in the CertificateVerify field. Finally, in
the Finished field it computes a MAC over the entire handshake using the
shared Diffie-Hellman key. The {} notation denotes a field encrypted using
the shared Diffie-Hellman key.

3. C Ñ S : {CertificateVerify*}, {Finished}
If the client received an AuthReq from the server it returns its own Certifi-
cateVerify and Finished fields.

1.4 Plan of the Paper

The rest of the paper is organized as follows. After some preliminaries in Sect. 2
and a high level introduction of the Maude-NPA tool in Sect. 3, we first define the
process algebra syntax and operational semantics in Sect. 4. In Sect. 5 we extend
Maude-NPA’s strand space syntax to include choice operators. The main bisim-
ulation results between the expected forwards semantics of the process algebra
in Sect. 4 and the original symbolic backwards strand semantics of Maude-NPA
of Sect. 3 are stated in Theorems 2 and 3. They are proved by introducing an
intermediate semantics, a forward strand space semantics originally introduced
in [9]. First, in Sect. 5 we extend the strand space model with constraints, since
strands are the basis of both the forwards semantics and the backwards seman-
tics of Maude-NPA. In Sect. 6 we augment the forwards strand space semantics
of [9] with choice operators and operational semantic rules to produce a con-
strained forwards semantics. In Sect. 6.2 we prove bisimilarity of the process
algebra semantics of Sect. 4 and the constrained forwards semantics. In [9] the
forwards strand space semantics was proved sound and complete w.r.t. the orig-
inal symbolic backwards semantics of Maude-NPA and, therefore, such proofs

312 F. Yang et al.

had to be extended to handling constraints. In Sect. 7 we augment the original
symbolic backwards semantics of Maude-NPA with choice operators and opera-
tional semantic rules to produce a constrained backwards semantics. In Sect. 7.2
we then prove that the constrained backwards semantics is sound and complete
with respect to the constrained forwards semantics. By combining the bisimula-
tion between the process algebra and the constrained forwards semantics on the
one hand (Theorem 1) and the bisimulation between the constrained forwards
semantics and the constrained backwards semantics on the other hand (The-
orems 5 and 4) we obtain the main bisimulation results (Theorems 2 and 3).
Finally, in Sect. 8 we describe how the process algebra has been fully integrated
into Maude-NPA and show some experiments that we have run using Maude-
NPA on various protocols exhibiting both deterministic and non-deterministic
choice. In Sect. 9 we discuss related and future work, in particular the poten-
tial of using the process algebra syntax as a specification language. Finally, we
conclude in Sect. 10. Proofs can be found in the Appendix.

2 Preliminaries

We follow the classical notation and terminology for term rewriting and for
rewriting logic and order-sorted notions, see [17]. We assume an order-sorted
signature Σ “ (S, ď, Σ) with poset of sorts (S, ď). We also assume an S-sorted
family X “ {Xs}sPS of disjoint variable sets with each Xs countably infinite.
TΣ(X)s is the set of terms of sort s, and TΣ,s is the set of ground terms of sort s.
We write TΣ(X) and TΣ for the corresponding order-sorted term algebras. For
a term t, Var(t) denotes the set of variables in t.

Positions are represented by sequences of natural numbers. The top or root
position is denoted by the empty sequence Λ. The set of positions of a term t is
written Pos(t), and the set of non-variable positions PosΣ(t). The subterm of t
at position p is t|p and t[u]p denotes the term t with subterm t|p replaced by u.

A substitution σ P Subst(Σ,X) is a sorted mapping from a finite subset of
X to TΣ(X). Substitutions are written as σ “ {X1 �Ñ t1, . . . , Xn �Ñ tn} where
the domain of σ is Dom(σ) “ {X1, . . . , Xn} and the set of variables introduced
by terms t1, . . . , tn is written Ran(σ). The identity substitution is denoted id.
Substitutions are homomorphically extended to TΣ(X). The application of a
substitution σ to a term t is denoted by tσ. For simplicity, we assume that every
substitution is idempotent, i.e., σ satisfies Dom(σ) X Ran(σ) “ H. This ensures
tσ “ (tσ)σ. The restriction of σ to a set of variables V is σ|V . Composition
of two substitutions σ and σ′ is denoted by σσ′. A substitution σ is a ground
substitution if Ran(σ) “ H.

A Σ-equation is an unoriented pair t “ t′, where t, t′ P TΣ(X)s for some sort
s P S. Given Σ and a set E of Σ-equations, order-sorted equational logic induces
a congruence relation “E on terms t, t′ P TΣ(X). The E-equivalence class of
a term t is denoted by [t]E and TΣ{E(X) and TΣ{E denote the corresponding
order-sorted term algebras modulo E. Throughout this paper we assume that
TΣ,s ‰ H for every sort s, because this affords a simpler deduction system. An

Strand Spaces with Choice via a Process Algebra Semantics 313

equational theory (Σ,E) is a pair with Σ an order-sorted signature and E a set
of Σ-equations. The E-subsumption preorder ĚE (or just Ě if E is understood)
holds between t, t′ P TΣ(X), denoted t ĚE t′ (meaning that t is more general
than t′ modulo E), if there is a substitution σ such that tσ “E t′; such a
substitution σ is said to be an E-match from t′ to t.

An E-unifier for a Σ-equation t “ t′ is a substitution σ such that tσ “E t′σ.
For Var(t) Y Var(t′) Ď W , a set of substitutions CSU W

E (t “ t′) is said to be a
complete set of unifiers for the equality t “ t′ modulo E away from W iff: (i) each
σ P CSU W

E (t “ t′) is an E-unifier of t “ t′; (ii) for any E-unifier ρ of t “ t′ there
is a σ P CSU W

E (t “ t′) such that σ|W ĚE ρ|W ; (iii) for all σ P CSU W
E (t “ t′),

Dom(σ) Ď (Var(t) Y Var(t′)) and Ran(σ) X W “ H. If the set of variables W
is irrelevant or is understood from the context, we write CSUE(t “ t′) instead
of CSU W

E (t “ t′). An E-unification algorithm is complete if for any equation
t “ t′ it generates a complete set of E-unifiers. A unification algorithm is said
to be finitary and complete if it always terminates after generating a finite and
complete set of solutions.

A rewrite rule is an oriented pair l Ñ r, where3 l R X and l, r P TΣ(X)s
for some sort s P S. An (unconditional) order-sorted rewrite theory is a triple
(Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and R a set
of rewrite rules.

The rewriting relation on TΣ(X), written t ÑR t′ or t Ñp,R t′ holds between
t and t′ iff there exist p P PosΣ(t), l Ñ r P R and a substitution σ, such
that t|p “ lσ, and t′ “ t[rσ]p. The subterm t|p is called a redex. The rela-
tion ÑR{E on TΣ(X) is “E ; ÑR; “E , i.e., t ÑR{E t′ iff there exists u, u′ s.t.
t “E u ÑR u′ “E t′. Note that ÑR{E on TΣ(X) induces a relation ÑR{E on
the free (Σ, E)-algebra TΣ{E(X) by [t]E ÑR{E [t′]E iff t ÑR{E t′. The transitive
(resp. transitive and reflexive) closure of ÑR{E is denoted Ñ`

R{E (resp. Ñ˚
R{E).

The ÑR{E relation can be difficult to compute. However, under the appro-
priate conditions it is equivalent to the R,E relation in which it is enough to
compute the relationship on any representatives of two E-equivalence classes. A
relation ÑR,E on TΣ(X) is defined as: t Ñp,R,E t′ (or just t ÑR,E t′) iff there
exist p P PosΣ(t), a rule l Ñ r in R, and a substitution σ such that t|p “E lσ
and t′ “ t[rσ]p.

Let t be a term and W be a set of variables such that Var(t) Ď W , the
R,E-narrowing relation on TΣ(X) is defined as t �p,σ,R,E t′ (�σ,R,E if p is
understood, �σ if R,E are also understood, and � if σ is also understood)
if there is a non-variable position p P PosΣ(t), a rule l Ñ r P R properly

3 We do not impose the requirement Var(r) Ď Var(l), since extra variables (e.g.,
choice variables) may be introduced in the righthand side of a rule. Rewriting with
extra variables in righthand sides is handled by allowing the matching substitution
to instantiate these extra variables in any possible way. Although this may produce
an infinite number of one-step concrete rewrites from a term due to the infinite
number of possible instantiations, the symbolic, narrowing-based analysis used by
Maude-NPA and explained below can cover all those infinite possibilities in a finitary
way.

314 F. Yang et al.

renamed s.t. (Var(l) Y Var(r)) X W “ H, and a unifier σ P CSU W ′
E (t|p “ l) for

W ′ “ W Y Var(l), such that t′ “ (t[r]p)σ. For convenience, in each narrowing
step t �σ t′ we only specify the part of σ that binds variables of t. The transitive
(resp. transitive and reflexive) closure of � is denoted by �` (resp. �˚). We
may write t �k

σ t′ if there are u1, . . . , uk´1 and substitutions ρ1, . . . , ρk such that
t �ρ1 u1 · · · uk´1 �ρk

t′, k ě 0, and σ “ ρ1 · · · ρk.
Maude-NPA uses backwards narrowing (i.e., uses protocol rules l Ñ r “in

reverse” as rules r Ñ l) modulo the algebraic properties of cryptographic func-
tions as a sound and complete reachability analysis method. Section 7.2 gives
a detailed proof of the soundness and completeness of this method for strands
with choice.

3 Overview of Maude-NPA

Here we give a high-level summary of Maude-NPA. For further details please see
[8].

Given a protocol P, we define its specification in the strand space model as a
rewrite theory of the form (ΣSSP , ESSP , RBP ´1), where (i) the signature ΣSSP is
split into predefined symbols ΣSS for strand syntax and user-definable symbols
ΣP based on a parametric sort Msg of messages, (ii) the algebraic properties
ESSP are also split into the algebraic properties of the strand notation ESS and
the user-definable algebraic properties EP for the cryptographic functions, and
(iii) the transition rules RBP ´1 are defined on states, i.e., terms of a predefined
sort State. They are reversed for backwards execution.

Example 2. The first action in Example 1, the hello message, contains a nonce,
the Diffie-Hellman group it wants to use, and the Diffie-Hellman key share. This
could be represented by the term “hs ; n(C, r1) ; G ; gen(G) ; keyG(G,C, r2)”
where ; is the concatenation symbol, hs is a fixed constant, C is a variable
denoting the Client identifier, n(C, r1) denotes a nonce created by the client using
a randomly generated constant r1, G is a variable denoting the chosen Diffie-
Hellman group, gen(G) is the generator associated to G, and keyG(G,C, r2) is
the key created by the client using the chosen G and another randomly generated
constant r2.

In Maude-NPA states are modeled as elements of an initial algebra
TΣSSP {ESSP

, i.e., an ESSP -equivalence class [t]ESSP P TΣSSP {ESSP
with t a

ground ΣSSP -term. A state has the form {S1 & · · · &Sn & {IK}} where & is
an associative-commutative union operator with identity symbol H. Each ele-
ment in the set is either a strand Si or the intruder knowledge {IK} at that
state.

The intruder knowledge {IK} belongs to the state and is represented as a
set of facts using the comma as an associative-commutative union operator with
identity element empty. There are two kinds of intruder facts: positive knowledge
facts (the intruder knows message m, i.e., m P I), and negative knowledge facts

Strand Spaces with Choice via a Process Algebra Semantics 315

(the intruder does not yet know m but will know it in a future state, i.e., m R I),
where m is a message expression.

A strand [12] specifies the sequence of messages sent and received by a prin-
cipal executing a given role in the protocol and is represented as a sequence
of messages [msg˘

1 ,msg˘
2 ,msg˘

3 , . . . ,msg˘
k´1,msg˘

k] with msg˘
i either msg´

i (also
written ´msgi) representing an input message, or msg`

i (also written `msgi)
representing an output message. Note that each msgi is a term of a special sort
Msg.

Strands are used to represent both the actions of honest principals (with a
strand specified for each protocol role) and the actions of an intruder (with
a strand for each action an intruder is able to perform on messages). In
Maude-NPA strands evolve over time; the symbol | is used to divide past and
future. That is, given a strand [msg˘

1 , . . . , msg˘
i | msg˘

i`1, . . . , msg˘
k], mes-

sages msg˘
1 , . . . ,msg˘

i are the past messages, and messages msg˘
i`1, . . . ,msg˘

k

are the future messages (msg˘
i`1 is the immediate future message). A strand

[msg˘
1 , . . . ,msg˘

k] is shorthand for [nil | msg˘
1 , . . . ,msg˘

k , nil]. An initial state is
a state where the bar is at the beginning for all strands in the state, and the
intruder knowledge has no fact of the form m P I . A final state is a state where
the bar is at the end for all strands in the state and there is no intruder fact of
the form m R I .

Since Fresh variables must be treated differently from other variables by
Maude-NPA, we make them explicit by writing :: r1, . . . , rk :: [m˘

1 , . . . ,mn̆],
where each ri first appears in an output message m`

ji
and can later appear in

any input and output message of m˘
ji`1, . . . ,mn̆ . If there are no Fresh variables,

we write :: nil :: [m˘
1 , . . . ,mn̆].

Example 3. For example, the Needham-Schroeder Public Key protocol is
described as follows:

1. A Ñ B : pk(B,A;NA)
2. B Ñ A : pk(A,NA;NB)
3. A Ñ B : pk(B,NB)

where ; is the concatenation symbol, pk(A,M) denotes encryption of message
M using the public key of principal A, and NA denotes a nonce generated by
principal A. Its representation using strands would be as follows:

:: rA :: [`(pk(B,A;n(A, rA))), ´(pk(A,n(A, rA);NB)), `(pk(B,NB))]

:: rB :: [´(pk(B,A;NA)), `(pk(A,NA;n(B, rB))), ´(pk(B,n(B, rB)))]

Since the number of states in TΣSSP {ESSP
is in general infinite, rather than

exploring concrete protocol states [t]ESSP P TΣSSP {ESSP
Maude-NPA explores

symbolic strand state patterns [t(x1, . . . , xn)]ESSP P TΣSSP {ESSP
(X) on the free

(ΣSSP , ESSP)-algebra over a set of variables X . In this way, a state pattern
[t(x1, . . . , xn)]ESSP represents not a single concrete state but a possibly infinite
set of such states, namely all the instances of the pattern [t(x1, . . . , xn)]ESSP
where the variables x1, . . . , xn have been instantiated by concrete ground terms.

316 F. Yang et al.

The semantics of Maude-NPA is expressed in terms of the following forward
rewrite rules that describe how a protocol moves from one state to another via
the intruder’s interaction with it.

{SS & [L | M´, L′] & {M P I , IK}} Ñ {SS & [L, M´ | L′] & {M P I , IK}} (-)
{SS & [L | M`, L′] & {IK}} Ñ {SS & [L, M` | L′] & {IK}} (+)
{SS & [L | M`, L′] & {M R I , IK}} Ñ {SS & [L, M` | L′] & {M P I , IK}} (++)
@ [l1, u

`, l2] P P : {SS & [l1| u`, l2] & {u R I , IK}} Ñ {SS & {u P I , IK}} (&)

where L and L′ are variables denoting a list of strand messages, IK is a variable
for a set of intruder facts (m P I or m R I), SS is a variable denoting a set of
strands, and l1, l2 denote a list of strand messages. The set RBP ´1 of backwards
state transition rules is defined by reversing the direction of the above set of
rules {(-), (+), (++)} Y (&). In the backwards executions of (&), (++), u R I
marks when the intruder learnt u.

One uses Maude-NPA to find an attack by specifying an insecure state pat-
tern called an attack pattern. Secrecy, authentication, and indistinguishability
properties, among others, can be specified as attack patterns in Maude-NPA
(see [8]). Maude-NPA attempts to find a path from an initial state to the attack
pattern via backwards narrowing (narrowing using the rewrite rules with the
orientation reversed). That is, a narrowing sequence from an initial state to an
attack state is searched in reverse as a backwards path from the attack state to
the initial state.

Example 4. A secrecy attack pattern for the protocol of Example 3 would be as
follows:

:: rB :: [´(pk(B, A;NA)), `(pk(A, NA;n(B, rB))), ´(pk(B, n(B, rB))) | nil]&{n(B, rB) P I }

where Bob’s strand is completed and the intruder has learnt his nonce n(B, rB).
Maude-NPA adds extra strands, e.g. for Alice and for the intruder capabilities,
along the path from the attack pattern to an initial state.

Maude-NPA attempts to find paths until it can no longer form any backwards
narrowing steps, at which point it terminates. If at that point it has not found
an initial state, the attack pattern is shown to be unreachable modulo ESSP .
Section 7.2 gives a detailed proof of the soundness and completeness of this
symbolic method for the Maude-NPA extension supporting strands with choice.
Note that Maude-NPA places no bound on the number of sessions, so reachability
is undecidable in general. Note also that Maude-NPA does not perform any data
abstraction such as a bounded number of nonces. However, the tool makes use
of a number of sound and complete state space reduction techniques that help
to identify unreachable and redundant states [10], and thus make termination
more likely.

Strand Spaces with Choice via a Process Algebra Semantics 317

4 A Process Algebra for Protocols with Choice

In this section we define a process algebra that extends the strand space model
to naturally specify protocols exhibiting choice points. Throughout the paper we
refer to this process algebra as the protocol process algebra.

The rest of this section is organized as follows. First, in Sect. 4.1 we define
the syntax of the protocol process algebra and state the requirements that a
well-formed process must satisfy. Then in Sect. 4.2, we explain how protocol spec-
ifications can be defined in this process algebra. In Sect. 4.3 we then define the
operational semantics of the protocol process algebra. Note that the operational
semantics of Maude-NPA given in Sect. 3 corresponds to a symbolic backwards
semantics, while in Sect. 4.3 we give a rewriting-based forwards semantics for
process algebra. Sections 6.2 and 7.2 will relate these two semantics using bisim-
ulations.

4.1 Syntax of the Protocol Process Algebra

In the protocol process algebra the behaviors of both honest principals and the
intruder are represented by labeled processes. Therefore, a protocol is speci-
fied as a set of labeled processes. Each process performs a sequence of actions,
namely, sending or receiving a message, and may perform deterministic or non-
deterministic choices. The protocol process algebra’s syntax is parameterized4

by a sort Msg of messages and has the following syntax:

ProcConf ::“ LProc | ProcConf & ProcConf | H
LProc ::“ (Role, I, J) Proc
Proc ::“ nilP | ` Msg | ´ Msg | Proc · Proc |

Proc ? Proc | if Cond then Proc else Proc
Cond ::“ Msg ‰ Msg | Msg “ Msg

– ProcConf stands for a process configuration, that is, a set of labeled processes.
The symbol & is used to denote set union for sets of labeled processes.

– LProc stands for a labeled process, that is, a process Proc with a label
(Role, I, J). Role refers to the role of the process in the protocol (e.g., initia-
tor or responder). I is a natural number denoting the identity of the process,
which distinguishes different instances (sessions) of a process specification. J
indicates that the action at stage J of the process specification will be the
next one to be executed, that is, the first J ´ 1 actions of the process for role
Role have already been executed. Note that we omit I and J in the protocol
specification when both I and J are 0.

– Proc defines the actions that can be executed within a process. `Msg ,
and ´Msg respectively denote sending out or receiving a message Msg . We
assume a single channel, through which all messages are sent or received

4 More precisely, as explained in Sect. 4.2, they are parameterized by a user-definable
equational theory (ΣP , EP) having a sort Msg of messages.

318 F. Yang et al.

by the intruder. “Proc · Proc” denotes sequential composition of processes,
where symbol _._ is associative and has the empty process nilP as iden-
tity. “Proc ? Proc” denotes an explicit nondeterministic choice, whereas
“if Cond then Proc else Proc” denotes an explicit deterministic choice, whose
continuation depends on the satisfaction of the constraint Cond .

– Cond denotes a constraint that will be evaluated in explicit deterministic
choices. In this work we only consider constraints that are either equalities
(“) or disequalities (‰) between message expressions.

Let PS, QS, and RS be process configurations, and P, Q, and R be protocol
processes. Our protocol syntax satisfies the following structural axioms:

PS & QS “ QS & PS (1)
(PS & QS) & RS “ PS &(QS & RS) (2)

(P · Q) · R “ P · (Q · R) (3)
PS&H “ PS (4)

P · nilP “ P (5)
nilP · P “ P (6)

Example 5. The strands of Example 3 are described using processes as follows:

(Alice) ` (pk(B?, A?;n(A?, rA))) · ´(pk(A?, n(A?, rA);NB)) · `(pk(B?, NB))

(Bob) ´ (pk(B,A;NA)) · `(pk(A,NA;n(B, rB))) · ´(pk(B,n(B, rB)))

An alternative definition, forcing conditional expressions for pattern matching
is:

(Alice) ` (pk(B?, A?;n(A?, rA))) · ´(X)·
if X “ pk(A?, n(A?, rA);NB) then ` (pk(B?, NB)) else nilP

(Bob) ´ (X)·if X “ pk(B,A;NA)
then ` (pk(A,NA;n(B, rB))) · ´(Y)·

if Y “ pk(B,n(B, rB)) then nilPelse nilP
else nilP

The specification of the processes defining a protocol’s behavior may contain
some variables denoting information that the principal executing the process
does not yet have, or that will be different in different executions. In all protocol
specifications we assume three disjoint kinds of variables:

– fresh variables: these are not really variables in the standard sense, but
names for constant values in a data type Vfresh of unguessable values such
as nonces. For instance, the randomly generated r1 and r2 of Example 2 or
rA and rB of Examples 3 and 5 are fresh variables. A fresh variable r is
always associated with a role ro P Role in the protocol. For each protocol
session i, we associate to r a unique name r.ro.i for a constant in the data
type Vfresh. What is assumed is that if r.ro.i ‰ r′.ro′.j (including the case

Strand Spaces with Choice via a Process Algebra Semantics 319

r.ro.i ‰ r.ro.j), the values interpreting r.ro.i and r′.ro′.j in Vfresh are both
different and unguessable. In particular, for role ro P Role, the interpretation
mapping I : {r.ro.i | i P N} Ñ Vfresh is injective and random. In our semantics,
a constant r.ro.i denotes its (unguessable) interpretation I(r.ro.i) P Vfresh.
Throughout this paper we will denote this kind of variables as r, r1, r2,

– choice variables: variables first appearing in a sent message `M , which
can be substituted by any value arbitrarily chosen from a possibly infinite
domain. For instance, the chosen Diffie-Hellman group G of Example 2 is
a choice variable. A choice variable indicates an implicit non-deterministic
choice. Given a protocol with choice variables, each possible substitution of
these variables denotes a possible continuation of the protocol. We always
denote choice variables by uppercase letters postfixed with the symbol “?” as
a subscript, e.g., A?, B?,

– pattern variables: variables first appearing in a received message ´M .
These variables will be instantiated when matching sent and received mes-
sages. For instance, the generator for the chosen group G of Example 2 is
received by the server using a pattern variable. Likewise, the variables used
in Example 5 for the case with conditional expressions are also pattern vari-
ables. Implicit deterministic choices are indicated by terms containing pattern
variables, since failing to match a pattern term may lead to the rejection of a
message. A pattern term plays the implicit role of a guard, so that, depending
on the different ways of matching it, the protocol can have different contin-
uations. This kind of variables will be written with uppercase letters, e.g.,
A,B,NA,

Note that fresh variables are distinguished from other variables by having
a specific sort Fresh. Choice variables or pattern variables can never have sort
Fresh.

To guarantee the requirements on different kinds of variables that can appear
in a given process, we consider only well-formed processes in Fig. 1. We make this
notion precise by defining a function wf : Proc Ñ Bool checking whether a given
process is well-formed. A labeled process is well-formed if the process it labels
is well-formed. A process configuration is well-formed if all the labeled process
in it are well-formed. The definition of wf uses an auxiliary function shVar :
Proc Ñ VarSet in Fig. 2, retrieving the “shared variables” of a process, i.e., the
set of variables that show up in all branches. Below we define both functions,
where P, Q, and R are processes, M is a message, and T is a constraint.

320 F. Yang et al.

Fig. 1. Well-formed processes

Fig. 2. Shared variables of a process

Remark 1. Note that the well-formedness property implies that if a process
begins with a deterministic choice action if T then Q else R, then all variables in
T must be instantiated, and thus only one branch may be taken. For this reason,
it is undesirable to specify processes that begin with such an action. Further-
more, note that the well-formedness property avoids explicit choices where both
possibilities are the nilP process. That is, processes containing either (if T then
nilP else nilP), or (nilP ? nilP), respectively.

We illustrate the notion of well-formed process below.

Example 6. The behavior of a Client initiating an instance of the handshake
protocol from Example 1 with the Server, where the Server may or may not
request the Client to authenticate itself, may be specified by the well-formed
process shown below:
(Client) ` (hs;n(C?, r1);G?; gen(G?); keyG(G?, C?, r2)) ·

´ (hs;N ;G?; gen(G?);E;Z(AReq, G?, E, C?, r1, S, HM)) ·
if (AReq “ authreq) then

` (e(keyE(G?, E, C?, r1),

sig(C, W (HM ,AReq, S?, G?, E, C?, r1));

mac(keyE(G?, E, , C?, r1), W (HM ,AReq, S, G?, E, C?, r1)))) ·
else

` (e(keyE(G?, E, C?, r2), mac(keyE(G?, E, C?, r2), W (HM ,AReq, S, G?, E, C?, r1))))

where keyG , Z and W are macros used to construct messages sent in the protocol.
The variables C? and G? are choice variables denoting the client and Diffie-
Hellman group respectively, and the variables r1 and r2 are fresh variables. All
other variables are pattern variables. In particular, the variable AReq is a pattern
variable that can be instantiated to either authreq or noauthreq . The Client makes
a deterministic choice whether or not to sign its next message with its digital
signature, depending on which value of AReq it receives.

Strand Spaces with Choice via a Process Algebra Semantics 321

Example 7. The behavior of a Server who may or may not request a retry from a
Client in an instance of the handshake protocol from Example 1 may be specified
as follows:

(Server) : ´ (hs;N ;G; gen(G);E)·
(((`(hs; retry)·

´ (hs;N ′;G′; gen(G′);E′)·
` (hs;n(S?, r1);G

′; gen(G′); keyG(G′, S?, r2);Z(AReq?, G
′, E′, S, r2, S?, HM)))

?

(`(hs;n(S?, r1);G; gen(G); keyG(G, S, r2);Z(AReq?, G, E, S, r2, S?, HM)))))

In this case the server nondeterministically chooses to request or not to
request a retry. In the case of a retry it waits for the retry message from the
client, and then proceeds with the handshake message using the new key infor-
mation from the client. In the case when it does not request a retry, it sends
the handshake message immediately after receiving the client’s Hello message.
The variable r2 is a fresh variable, while S? and AReq? are choice variables. S?

denotes the name of the server, and AReq? is nondeterministically instantiated
to authreq or noauthreq .

Example 8. The following process does not satisfy the well-formedness property.

(Resp) ´ (pk(B, A; NA)) · (`(pk(A, 1; n(B, r))) ? ` (pk(A, 2))) · `(pk(C?, n(B, r)))

The problem with this process is the fresh variable r appearing in
`(pk(C?, n(B, r))), since r R shVar(´(pk(B,A;NA)) · (`(pk(A, 1;n(B, r))) ? `
(pk(A, 2)))). More specifically, because it does not appear in message
`(pk(A, 2)), but r P Var(´(pk(B,A;NA)) · (`(pk(A, 1;n(B, r))) ? `
(pk(A, 2)))).

4.2 Protocol Specification in Process Algebra

Given a protocol P, we define its specification in the protocol process alge-
bra, written PPA, as a pair of the form PPA “ ((ΣPAP , EPAP), PPA), where
(ΣPAP , EPAP) is an equational theory explained below, and PPA is a term
denoting a well-formed process configuration representing the behavior of the
honest principals as well as the capabilities of the attacker. That is, PPA “
(ro1)P1 & . . . & (roi)Pi, where each rok, 1 ď k ď i, is either the role of an honest
principal or identifies one of the capabilities of the attacker. PPA cannot contain
two processes with the same label, i.e., the behavior of each honest principal, and
each attacker capability are represented by a unique process. EPAP “ EP YEPA

is a set of equations with EP denoting the protocol’s cryptographic properties
and EPA denoting the properties of process constructors. The set of equations
EP is user-definable and can vary for different protocols. Instead, the set of
equations EPA is always the same for all protocols. ΣPAP “ ΣP Y ΣPA is the
signature defining the sorts and function symbols as follows:

322 F. Yang et al.

– ΣP is an order-sorted signature defining the sorts and function symbols for
the messages that can be exchanged in protocol P. However, independently
of protocol P, ΣP must always have a sort Msg as the top sort in one of its
connected components. We call a sort S a data sort iff it is either a subsort of
Msg, or there is a message constructor c : S1...S...Sn Ñ S′, with S′ a subsort
of Msg. The specific sort Fresh for fresh variables is an example of data sort.
Choice and pattern variables have sort Msg or any of its subsorts.

– ΣPA is an order-sorted signature defining the sorts and function symbols of
the process algebra infrastructure. ΣPA corresponds exactly to the BNF def-
inition of the protocol process algebra’s syntax in Sect. 4.1. Although it has
a sort Msg for messages, it leaves this sort totally unspecified, so that differ-
ent protocols P may use completely different message constructors and may
satisfy different equational properties EP . Therefore, ΣPA will be the same
signature for any protocol specified in the process algebra. More specifically,
ΣPA contains the sorts for process configurations (ProcConf), labeled pro-
cesses (LProc), processes (Proc), constraints (Cond), and messages(Msg), as
well as the subsort relations LProc ă ProcConf. Furthermore, the function
symbols in ΣPA are also defined according to the BNF definition.

Therefore, the syntax ΣPAP of processes for P will be in the union signature
ΣPAYΣP , consisting of the protocol-specific syntax ΣP , and the generic process
syntax ΣPA through the shared sort Msg.

4.3 Operational Semantics of the Protocol Process Algebra

Given a protocol P, a state of P consists of a set of (possibly partially executed)
labeled processes, and a set of terms in the intruder’s knowledge {IK}. That is,
a state is a term of the form {LP1 & · · · &LPn | {IK}}. Given a state St of this
form, we abuse notation and write LPk P St if LPk is a labeled process in the
set LP1 & · · · &LPn.

The intruder knowledge IK models the single channel through which all
messages are sent and received. We consider an active attacker who has complete
control of the channel, i.e, can read, alter, redirect, and delete traffic as well as
create its own messages by means of intruder processes. That is, the purpose of
some LPk P St is to perform message-manipulation actions for the intruder.

State changes are defined by a set RPAP of rewrite rules, such that the
rewrite theory (ΣPAP `State , EPAP , RPAP) characterizes the behavior of protocol
P, where ΣPAP `State extends ΣPAP by adding state constructor symbols. We
assume that a protocol’s execution begins with an empty state, i.e., a state with
an empty set of labeled processes, and an empty intruder knowledge. That is,
the initial state is always of the form {H | {empty}}. Each transition rule in
RPAP is labeled with a tuple of the form (ro, i , j , a,n), where:

– ro is the role of the labeled process being executed in the transition.
– i denotes the identifier of the labeled process being executed in the transition.

Since there can be more than one process instance of the same role in a

Strand Spaces with Choice via a Process Algebra Semantics 323

process state, i is used to distinguish different instances, i.e., ro and i together
uniquely identify a process in a state.

– j denotes the process’ step number since its beginning.
– a is a ground term identifying the action that is being performed in the

transition. It has different possible values: “`m” or “´m” if the message m
was sent (and added to the intruder’s knowledge) or received, respectively;
“m” if the message m was sent but did not increase the intruder’s knowledge,
“?” if the transition performs an explicit non-deterministic choice, or “T” if
the transition performs a explicit deterministic choice.

– n is a number that, if the action that is being executed is an explicit choice,
indicates which branch has been chosen as the process continuation. In this
case n takes the value of either 1 or 2. If the transition does not perform any
explicit choice, then n “ 0.

Below we describe the set of transition rules that define a protocol’s execution
in the protocol process algebra, that is, the set of rules RPAP . Note that in the
transition rules shown below, PS denotes the rest of labeled processes of the
state (which can be the empty set H).

– The action of sending a message is represented by the two transition rules
below. Since we assume that the intruder has complete control of the network,
it can learn any message sent by other principals. Rule (PA++) denotes the
case in which the sent message is added to the intruder’s knowledge. Note
that this rule can only be applied if the intruder has not already learnt that
message. Rule (PA+) denotes the case in which the intruder chooses not to
learn the message, i.e., the intruder’s knowledge is not modified, and, thus, no
condition needs to be checked. Since choice variables denote messages that are
nondeterministically chosen, all (possibly infinitely many) admissible ground
substitutions for the choice variables are possible behaviors.

{(ro, i, j) (`M · P) & PS | {IK}}
Ñ́(ro,i,j,`Mσ,0) {(ro, i, j ` 1) Pσ & PS | {Mσ P I , IK}} if (Mσ P I) R IK

where σ is a ground substitution binding choice variables in M (PA++)

{(ro, i, j) (`M · P) & PS | {IK}}
Ñ́(ro,i,j,Mσ,0) {(ro, i, j ` 1) Pσ & PS | {IK}}

where σ is a ground substitution binding choice variables in M (PA+)

– As shown in the rule below, a process can receive a message matching a pat-
tern M if there is a message M ′ in the intruder’s knowledge, i.e., a message
previously sent either by some honest principal or by some intruder pro-
cess, that matches the pattern message M . After receiving this message the
process will continue with its variables instantiated by the matching substitu-
tion, which takes place modulo the equations EP . Note that the intruder can
“delete” a message via choosing not to learn it (executing Rule PA+ instead
of Rule PA++) or not to deliver it (failing to execute Rule PA-).

324 F. Yang et al.

{(ro, i, j) (´M · P) & PS | {M ′ P I , IK}}
Ñ́(ro,i,j,´Mσ,0) {(ro, i, j ` 1) Pσ & PS | {M ′ P I , IK}} if M ′ “EP Mσ

(PA-)

– The two transition rules shown below define the operational semantics
of explicit deterministic choices. That is, the operational semantics of an
if T then P else Q expression. More specifically, rule (PAif1) describes the
then case, i.e., if the constraint T is satisfied, the process will continue as
P . Rule (PAif2) describes the else case, that is, if the constraint T is not
satisfied, the process will continue as Q. Note that, since we only consider
well-formed processes, these transition rules will only be applied if j ě 1.
Note also that since T has been fully substituted by the time the if-then-else
is executed, and the constraints that we considered in this paper are of the
form m ‰EP m′ or m “EP m′, the satisfiability of T can be checked by
checking whether the corresponding ground equality or disequality holds.

{(ro, i, j) ((if T then P else Q) · R) & PS | {IK}}
Ñ́(ro,i,j,T,1) {(ro, i, j ` 1) (P · R) & PS | {IK}} if T (PAif1)

{(ro, i, j) ((if T then P else Q) · R) & PS | {IK}}
Ñ́(ro,i,j,T,2) {(ro, i, j ` 1) (Q · R) & PS | {IK}} if �T (PAif2)

– The two transition rules below define the semantics of explicit non-
deterministic choice P ? Q. In this case, the process can continue either
as P , denoted by rule (PA?1), or as Q, denoted by rule (PA?2). Note that
this decision is made non-deterministically.

{(ro, i, j) ((P ? Q) · R) & PS | {IK}}
Ñ́(ro,i,j,?,1) {(ro, i, j ` 1) (P · R) & PS | {IK}} (PA?1)

{(ro, i, j) ((P ? Q) · R) & PS | {IK}}
Ñ́(ro,i,j,?,2) {(ro, i, j ` 1)(Q · R) & PS | {IK}} (PA?2)

– The transition rules shown below describe the introduction of a new process
from the specification into the state, which allows us to support an unbounded
session model. Recall that fresh variables are associated with a role and an
identifier. Therefore, whenever a new process is introduced: (a) the largest
process identifier (i) will be increased by 1, and (b) new names will be assigned
to the fresh variables in the new process. The function MaxProcId(PS, ro) in
the transition rule below is used to get the largest process identifier (i) of role
ro in the process configuration PS. The substitution ρro,i`1 in the transition
rule below takes a labeled process and assigns new names to the fresh variables
according to the label. More specifically, (ro, i ` 1, 1) Pk(r1, . . . , rn)ρro,i`1 “

Strand Spaces with Choice via a Process Algebra Semantics 325

(ro, i`1, 1) Pk(r1, . . . , rn){r1 �Ñ r1.ro.i`1, . . . , rn �Ñ rn.ro.i`1}. In a process
state, a role name together with an identifier uniquely identifies a process.
Therefore, there is a unique subset of fresh names for each process in the
state. In the rest of this paper we will refer to this kind of substitutions as
fresh substitutions.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

@ (ro) Pk P PPA

{PS | {IK}}
Ñ́(ro,i`1,1,A,Num) {(ro, i ` 1, 2) P ′

k & PS | {IK′}}
IF {(ro, i ` 1, 1) Pkρro,i`1 | {IK}} Ñ́(ro,i`1,1,A,Num) {(ro, i ` 1, 2) P ′

k | {IK′}}
where ρro,i`1 is a fresh substitution, i “ MaxProcId(PS, ro)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(PA&)

Note that A denotes the action of the state transition, and can be of any of
the forms explained above. The function MaxProcId is defined as follows:

MaxProcId(H, ro) “ 0
MaxProcId((ro, i, j)P&PS, ro) “ max(MaxProcId(PS, ro), i)
MaxProcId((ro′, i, j)P&PS, ro) “ MaxProcId(PS, ro) if ro ‰ ro′

where PS denotes a process configuration, P denotes a process, and ro, ro′

denote role names.

Therefore, the behavior of a protocol in the process algebra is defined by
the set of transition rules RPAP “ {(PA++), (PA+), (PA-), (PAif1), (PAif2),
(PA?1), (PA?2)} Y (PA&).

Example 9. Continuing Example 5, a possible run of the protocol using the case
with conditional expressions is displayed in Fig. 3. We use letters a and b to
denote concrete values chosen for variables A? and B?, respectively.

Our main result is the existence of a bisimulation between the state space
generated by the transition rules RBP ´1 , associated to the symbolic backwards
semantics of Sect. 3, and the transition rules RPAP above, associated to the
forwards semantics for process algebra. This is nontrivial, since there are three
major ways in which the two semantics differ. The first is that processes “forget”
their past, while strands “remember” theirs. The second is that Maude-NPA uses
backwards search, while the process algebra proceeds forwards. The third is that
Maude-NPA performs symbolic reachability analysis using terms with variables,
while the process algebra considers only ground terms.

We systematically relate these different semantics by introducing an interme-
diate semantics, a forward strand space semantics extending that in [9]. First, in
Sect. 5 we extend the strand space model with constraints, since strands are the

326 F. Yang et al.

Fig. 3. Process Execution for Example 5

basis of both the forwards semantics and the backwards semantics of Maude-
NPA. In Sect. 6 we augment the forwards strand space semantics of [9] with
choice operators and operational semantic rules to produce a constrained for-
wards semantics. In Sect. 6.2 we prove bisimilarity of the process algebra seman-
tics of Sect. 4 and the constrained forwards semantics of Sect. 6.1. In [9] the
forwards strand space semantics was proved sound and complete w.r.t. the orig-
inal symbolic backwards semantics of Maude-NPA. But now such proofs have
to be extended to handle constraints. In Sect. 7 we also augment the original
symbolic backwards semantics of Maude-NPA with choice operators and opera-
tional semantic rules to produce a constrained backwards semantics. In Sect. 7.2,
we then prove that the constrained backwards semantics of Sect. 7.1 is sound
and complete with respect to the constrained forwards semantics of Sect. 6.1. By
combining the bisimulation between the process algebra and the constrained for-
wards semantics on the one hand, and the bisimulation between the constrained
forwards semantics and the constrained backwards semantics on the other hand,
we obtain the main bisimulation result.

Besides providing a detailed semantic account of how the strand model can be
extended with choice features, the key practical importance of these bisimulation
results is that, with the relatively modest extensions to Maude-NPA described
in Sect. 8.1 and supported by its recent 3.1 release, sound and complete analysis
of protocols with choice features specified in process algebra is made possible.

Strand Spaces with Choice via a Process Algebra Semantics 327

5 Constrained Protocol Strands with Choice

To specify and analyze protocols with choices in Maude-NPA, in this section we
extend Maude-NPA’s strand notation by adding new symbols to support explicit
choices. We refer to the strands in this extended syntax as constrained protocol
strands.

In Sect. 5.1 we describe the syntax for constrained protocol strands. Then,
in Sect. 5.2 we define a mapping from a protocol specification in the protocol
process algebra, as described in Sect. 4.2, to a specification based on constrained
protocol strands.

5.1 Constrained Protocol Strands Syntax

In this section we extend Maude-NPA’s syntax by adding constrained messages,
which are terms of the form {Cstr ,Num}, where Cstr is a constraint, and Num
is a natural number that identifies the continuation of the protocol’s execution,
among the two possibilities after an explicit choice point. More specifically, we
extend the ΣSS part of the signature ΣSSP of the Maude-NPA’s syntax we
defined in Sect. 3 as follows:

– A new sort Cstr represents the constraints allowed in constrained messages,
containing three symbols: (i) ? : Ñ Cstr, (ii) “ : Msg Msg Ñ Cstr, and
(iii) ‰ : Msg Msg Ñ Cstr.

– A new sort CstrMsg for constrained messages, such that CstrMsg ă SMsg,
where SMsg is an existing Maude-NPA sort denoting signed messages (i.e.,
messages with + or -). Therefore, now a strand is a sequence of output, input
and constrained messages.

– A new operator { , } : Cstr Nat Ñ CstrMsg constructs constrained messages.

We refer to this extended signature as ΣCstrSSP . Note that the protocol
signature ΣP is contained in ΣSSP , and therefore in ΣCstrSSP . Furthermore, in
the constrained semantics we allow each honest principal or intruder capability
strand to be labeled by the “role” of that strand in the protocol (e.g., (Client)
or (Server)). Therefore, strands are now terms of the form (ro, i)[u1, . . . , un],
where ro denotes the role of the strand in the protocol, i is a unique identifier
distinguishing different instances of strands of the same role, and each ui can be
a sent or received message, i.e., a term of the form M˘, or a constraint message
of the form {Cstr , Num}. We often omit i, or both ro and i for clarity when
they are not relevant.

5.2 Protocol Specification Using Constrained Protocol Strands

The behavior of a protocol involving choices can be specified using the syntax
presented in Sect. 5.1 as described below.

328 F. Yang et al.

Definition 1 (Constrained protocol strand specification). Given a pro-
tocol P, we define its specification by means of constrained protocol strands,
written PCstrSS , as a tuple of the form PCstrSS “ ((ΣCstrSSP , ESSP), PCstrSS),
where ΣCstrSSP is the protocol’s signature (see Sect. 5.1), and ESSP “ EP YESS

is a set of equations as we defined in Sect. 3, where EP denotes the protocol’s
cryptographic properties and ESS denotes the protocol-independent equational
properties of constructors of strands. That is, the set of equations EP may vary
depending on different protocols, but the set of equations ESS is always the same
for all protocols. PCstrSS is a set of constrained protocol strands as defined in
Sect. 5.1, representing the behavior of the honest principals as well as the capa-
bilities of the attacker. That is, PCstrSS is a set of labeled strands of the form:
PCstrSS “ {(ro1)[u1,1, . . . , u1,n1] & . . . & (rom)[um,1, . . . , um,nm

]}, where, for
each rok such that 1 ď k ď i, rok is either the role of an honest principal, or
identifies one of the capabilities of the attacker. We note that PCstrSS may con-
tain several strands with the same label, each defining one of the possible paths
of such a principal.

The protocol specification described above can be obtained by transforming
a specification in the process algebra of Sect. 4.2 as follows. Given a protocol
P, its specification in the process algebra PPA, consists of a set of well-formed
labeled processes. We transform a term denoting a set of labeled processes into
a term denoting a set of constrained protocol strands by the mapping toCstrSS.
The intuitive idea is that, since our process contains no recursion, each process
can be “deconstructed” as a set of constrained protocol strands, where each such
strand represent a possible execution path of the process.

The mapping toCstrSS is specified in Definition 2 below.

Definition 2 (Mapping labeled processes toCstrSS). Given a labeled pro-
cess LP and a process configuration LPS, we define the mapping toCstrSS :
TΣPAP (X) Ñ TΣCstrSSP (X) recursively as follows:

toCstrSS(LP & LPS) “ toCstrSS*(LP ,nilP) & toCstrSS(LPS)
toCstrSS(H) “ H

where H is the empty set of strands. toCstrSS* is an auxiliary mapping that
maps a term denoting a labeled process to a term that denotes a set of constrained
protocol strands. It takes two arguments: a labeled process, and a temporary store
that keeps a sequence of messages. More specifically, toCstrSS* : TΣPAP (X) ˆ
TΣCstrSSP (X) Ñ TΣCstrSSP (X) is defined as follows:

toCstrSS*((ro, i, j) nilP, L) “ (ro, i) [L]

toCstrSS*((ro, i, j) (`M . P), L) “ toCstrSS*((ro, i, j) P, (L, `M))

toCstrSS*((ro, i, j) (´M . P), L) “ toCstrSS*((ro, i, j) P, (L, ´M))

toCstrSS*((ro, i, j) (if T then P else Q) . R, L)

“ toCstrSS*((ro, i, j) (P . R), (L, {T, 1})) & toCstrSS*((ro, i, j) (Q . R), (L, {�T, 2}))
toCstrSS*((ro, i, j) (P ? Q) . R, L)

“ toCstrSS*((ro, i, j) (P . R), (L, {?, 1})) & toCstrSS*((ro, i, j) (Q . R), (L, {?, 2}))

Strand Spaces with Choice via a Process Algebra Semantics 329

where P , Q, and R denote processes, M is a message, T is a constraint, and L
denotes a list of messages, i.e., input, output or constraint messages.

Note that toCstrSS does not modify output and input messages, since mes-
sages are actually terms in TΣP {EP (X) in both the protocol process algebra, and
the constrained forwards semantics. toCstrSS can be used both as a map between
specifications, and as a map from process configurations and strand sets appear-
ing in states.

We illustrate the toCstrSS transformation with the example below.

Example 10. If we apply the mapping toCstrSS to the process in Example 7 we
obtain the following term which denotes a set of strands:

(Server) [{?, 1},

´ (hs;N ;G; gen(G);E),

` (hs; retry),

´ (hs;N
′
;G

′
; gen(G

′
);E

′
)),

` (hs;n(S?, r1);G
′
; gen(G

′
); keyG(G

′
, S?, r2);Z(AReq?, G

′
, E

′
, S, r2, S?,HM))] &

(Server) [{?, 2},

´ (hs;N ;G; gen(G);E),

` (hs;n(S?, r1);G; gen(G); keyG(G, S, r2);Z(AReq?, G, E, S, r2, S?,HM))]

A protocol specification in the protocol process algebra is transformed into
a specification of that protocol in the constrained protocol strands described
below using toCstrSS.

Definition 3 (Specification transformation). Given a protocol P and its
protocol process algebra specification PPA “ ((ΣPAP , EP Y EPA), PPA), with
PPA “ (ro1)P1& . . . &(ron)Pn, its specification by means of constrained pro-
tocol strands is PCstrSS “ ((ΣCstrSSP , EP Y ESS), PCstrSS) with PCstrSS “
toCstrSS(PPA).

6 Constrained Forwards Strand Semantics

In this section we extend Maude-NPA’s rewriting-based forwards semantics in
[9] by adding new transition rules for constrained messages. We refer to this
extended forwards semantics as constrained forwards strand semantics. We show
that the process algebra semantics and the constrained forwards strand semantics
are label bisimilar. Therefore, protocols exhibiting choices can be specified and
executed in an equivalent way in both semantics.

6.1 Transition Rules of the Constrained Forwards Strand Semantics

In the constrained forwards strand semantics, state changes are defined by a set
RCstrFP of rewrite rules, so that the rewrite theory (ΣCstrSSP , ESSP , RCstrFP)
characterizes the behaviors of protocol P.

330 F. Yang et al.

The set of transition rules RCstrFP is an extension of the transition rules RFP
in [9]. The transition rules are generated from the protocol specification. A state
consists of a multiset of partially executed strands and a set of terms denoting the
intruder’s knowledge. The main differences between the sets RCstrFP and RFP
are: (i) new transition rules are added in RCstrFP to appropriately deal with
constraint messages, (ii) strands are labeled with the role name, together with
the identifier for distinguishing different instances, as explained in Sect. 5.1, (iii)
transitions are also labeled, similarly as in the protocol process algebra, (iv) the
global counter for generating fresh variables is deleted from the state. Instead,
special unique names are assigned to fresh variable, which simplifies our notation.

In the constrained forwards strand semantics we label each transition rule
similarly as in Sect. 4.3, that is, using labels of the form (ro, i, j, a, n), where ro,
i, a, and n are as explained in Sect. 4.3, and j in this case is the position of the
message that is being exchanged in the state transition. Also, similar to Sect. 4.3,
for transitions that send out messages containing choice variables, all (possibly
infinitely many) admissible ground substitutions for the choice variables are pos-
sible behaviors. A similar mechanism for distinguishing different fresh variables
is used as that explained in Sect. 4.3. Since messages are introduced into strands
in the state incrementally, we instantiate the fresh variables incrementally as
well. Recall that fresh variables always first show up in a sent message. There-
fore, each time a sent message is introduced into a strand in the state, we assign
new names to the fresh variables in the message being introduced. The function
MaxStrId for getting the max identifier for a constrained strand of a certain role
is similar to MaxProcId in Sect. 4.3.

Since now messages in a strand can be sent or received messages, i.e., terms
of the form m` or m´, as well as constraint messages {Cstr ,Num}, we represent
them in the rules below simply as terms of the form ui when their exact form is
not relevant. We will use the precise form of the message when disambiguation
is needed.

Before explaining the new transition rules for constraint messages, we show
how the transition rules in [9] are labeled.

The constrained forwards strand semantics extends Maude-NPA’s forwards
semantics in [9] by adding transition rules to handle constraint messages, i.e.,
messages of the form {Cstr ,Num}, where Num can be either 1 or 2. First, we
add the two transition rules below for the cases when such a constrained message
comes from explicit choices. Note that, as a consequence of well-formedness, the
constraints introduce no new variables, and since the constraints that we consider
are of the form m ‰EP m′ or m “EP m′, the satisfiability of Cstr can be checked
by checking whether the corresponding ground equality or disequality holds.

Strand Spaces with Choice via a Process Algebra Semantics 331

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

@ (ro) [u1, . . . , uj´1, u`
j , uj`1, . . . , un] P PCstrSS ^ ją1 :

{SS & {IK}&(ro, i) [u1, . . . , uj´1]}
Ñ(ro,i,j,(ujρro,iσ)`,0)

{SS & {(ujρro,iσ) P I , IK}&(ro, i)[u1, . . . , uj´1, (ujρro,iσ)
`]}IF((ujρro,iσ) P I) R IK

where σ is a ground substitution binding choice variables in uj ,
ρro,i “ {r1 �Ñ r1.ro.i, . . . , rn �Ñ rn.ro.i} is a fresh substitution.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(F++)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

@ (ro) [u1, . . . , uj´1, u
`
j , uj`1, . . . , un] P PCstrSS ^ ją1 :

{SS & {IK} & (ro, i) [u1, . . . , uj´1]}
Ñ(ro,i,j,ujρro,iσ,0)

{SS & {IK} & (ro, i) [u1, . . . , uj´1, (ujρro,iσ)`]}
where σ is a ground substitution binding choice variables in uj ,
ρro,i “ {r1 �Ñ r1.ro.i, . . . , rn �Ñ rn.ro.i} is a fresh substitution.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(F+)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

@ (ro) [u`
1 , . . . , un] P PCstrSS :

{SS & {IK}}
Ñ(ro,i`1,j,(u1ρro,i`1 σ)`,0)

{SS & (ro, i ` 1) [(u1ρro,i`1σ)`] & {u1ρro,i`1σ P I , IK}} IF (u1ρro,i`1σ P I) R IK

where σ is a ground substitution binding choice variables in u1,
i “ MaxStrId(SS, ro),
ρro,i`1 “ {r1 �Ñ r1.ro.i ` 1, . . . , rn �Ñ rn.ro.i ` 1} is a fresh substitution.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(F++&)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

@ (ro) [u`
1 , . . . , un] P PCstrSS :

{SS & {IK}}
Ñ(ro,i`1,j,u1ρro,i`1 σ,0)

{SS & (ro, i ` 1) [(u1ρro,i`1σ)`] & {IK}}
where σ is a ground substitution binding choice variables in u1,
i “ MaxStrId(SS, ro),
ρro,i`1 “ {r1 �Ñ r1.ro.i ` 1, . . . , rn �Ñ rn.ro.i ` 1} is a fresh substitution.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(F+&)

⎧
⎪⎨

⎪⎩

@ (ro) [u1, . . . , uj´1, u
´
j , uj`1, . . . , un] P PCstrSS ^ j ą 1 :

{SS &{uj P I , IK} & (ro, i) [u1, . . . , uj´1]}
Ñ(ro,i,j,u´

j ,0) {SS & {uj P I , IK} & (ro, i) [u1, . . . , uj´1, u
´
j]}

⎫
⎪⎬

⎪⎭
(F-)

332 F. Yang et al.

⎧
⎪⎨

⎪⎩

@(ro) [u´
1 , u2, . . . , un] P PCstrSS :

{SS & {u1 P I , IK}} Ñ(ro,i`1,1,u´
1 ,0) {SS & (ro, i ` 1) [u´

1] & {u1 P I , IK}}
where i “ MaxStrId(SS, ro)

⎫
⎪⎬

⎪⎭

(F-&)

⎧
⎪⎨

⎪⎩

@ (ro) [u1, . . . , uj´1, {Cstr ,Num}, uj`1, . . . , un] P PCstrSS ^ j ą 1 :

{SS &{IK} & (ro, i) [u1, . . . , uj´1]}
Ñ(ro,i,j,T,Num) {SS & {IK} & (ro, i) [u1, . . . , uj´1, {Cstr ,Num}]} IF Cstr

⎫
⎪⎬

⎪⎭
(Fif)

⎧
⎪⎨

⎪⎩

@ (ro) [u1, . . . , uj´1, {?,Num}, uj`1, . . . , un] P PCstrSS ^ j ą 1 :

{SS &{IK} & (ro, i) [u1, . . . , uj´1]}
Ñ(ro,i,j,?,Num) {SS & {IK} & (ro, i) [u1, . . . , uj´1, {?,Num}]}

⎫
⎪⎬

⎪⎭
(F?)

The following set of transition rules adds to the state a new strand whose
first message is a constraint message of the form {?,Num}:

⎧
⎪⎪⎨

⎪⎪⎩

@ (ro) [{?,Num}, u2, . . . , un] P PCstrSS :

{SS & {IK}}
Ñ(ro,i`1,1,?,Num) {SS & (ro, i ` 1) [{?,Num}] & {IK}}
where i “ MaxStrId(SS, ro)

⎫
⎪⎪⎬

⎪⎪⎭

(F?&)

Definition 4. Let P be a protocol with signature ΣCstrSSP and equational the-
ory ESSP . We define the constrained forwards rewrite theory characterizing P
as (ΣCstrSSP , ESSP , RCstrFP) where RCstrFP “ (F++) Y (F+) Y (F++&) Y
(F+&) Y (F-) Y (F-&) Y (Fif) Y (F?) Y (F?&).

6.2 Bisimulation Between Constrained Forwards Strand Semantics
and Process Algebra Semantics

In this section we show that the process algebra semantics and the constrained
forwards strand semantics are label bisimilar. We first define PA-State and FW-
State, the respective notions of state in each semantics.

Definition 5 (PA-State). Given a protocol P, a PA-State of P is a state in
the protocol process algebra semantics that is reachable from the initial state.
The initial PA-State is Pinit “ {H | {empty}}.

Definition 6 (FW-State). Given a protocol P, a FW-State of P is a state
in the constrained forwards strand semantics that is reachable from the initial
state. The initial FW-State is Finit “ {H & {empty}}.

Strand Spaces with Choice via a Process Algebra Semantics 333

The bisimulation relation is defined based on reachability, i.e., if a PA-State
and a FW-State are in the relation H, then they both can be reached from
their corresponding initial states by the same label sequence. Note that we only
consider states that are reachable from the initial states.

Let us first define the notation of label sequence that we will use throughout.

Definition 7 (Label Sequence). An ordered sequence α of transition labels
is defined by using . as an associative concatenation operator with nil as an
identity. The length of a label sequence α is denoted by |α|. Given a label sequence
α, we denote by α|(ro,i) the sub-sequence of labels in α that have ro as role
name, and i as identifier, i.e., labels of the form (ro, i, , ,) (is a shorthand
for denoting any term).

Definition 8 (Relation H). Given a protocol P, the relation H is defined
as: H “ {(Pst ,Fst) P PA-State ˆ FW-State | D label sequence α s.t. Pinit Ñα

Pst , Finit Ñα Fst}.

Recall that a process can be “deconstructed” by the mapping toCstrSS into a
set of constrained protocol strands, each representing a possible execution path.
If a PA-State Pst and a FW-State Fst are related by H, then an important
observation is that there is a duality between individual processes in Pst and
strands in Fst : if there is a process in the Pst describing a role’s continuation in
the future, there will be a corresponding strand in Fst describing the part of the
process that has already been executed, and vice versa. Another observation is
that, since the intruder’s knowledge is extracted from the communication history,
following the definition of H, the states Pst and Fst have the same communi-
cation history, therefore they have the same intruder’s knowledge. We formalize
these observations in Lemmas 1 and 2, which are moved to the Appendix. These
lemmas then lead us to the main result that H is a bisimulation relation.

Theorem 1 (Bisimulation). H is a bisimulation.

7 Constrained Backwards Strand Semantics

In this section we extend Maude-NPA’s symbolic backwards semantics with rules
for constrained messages of the form described in Sect. 5.1, so that it can ana-
lyze protocols exhibiting explicit choices. We refer to this extended backwards
semantics as constrained backwards strand semantics. We then show that the
constrained backwards strand semantics is sound and complete with respect to
the constrained forwards strand semantics presented in Sect. 6, and the process
algebra semantics presented in Sect. 4. This result allows us to use Maude-NPA
for analyzing protocols exhibiting choice, including both implicit and explicit
choices, and in particular any protocol specified using the protocol process
algebra.

334 F. Yang et al.

7.1 Transition Rules of the Constrained Backwards Strand
Semantics

The strand space model used in the constrained backwards strand semantics is
the same as the one already used in Maude-NPA [7], except for the following
differences:

– Maude-NPA explores constrained states as defined in [11], that is, states that
have an associated constraint store. More specifically, a constrained state is
a pair xSt, Ψy consisting of a state expression St and a constraint, i.e., a set
Ψ understood as a conjunction Ψ “ ∧n

i“1ui |“ vi of disequality constraints.
– Strands are now of the form [u1, . . . , ui | ui`1, . . . un], where each uk can be

of one of these forms: (i) m` if it is a sent message, (ii) m´ if it is a received
message, or (iii) {Cstr,Num} if it is a constrained message.

State changes are described by a set RCstrBP ´1 of rewrite rules, so that the
rewrite theory (ΣCstrSSP , ESSP , RCstrBP ´1) characterizes the behavior of pro-
tocol P modulo the equations ESSP for backwards execution. The set of rules
RCstrBP ´1 is obtained as follows. First, we adapt the set of rules RBP ´1 in Sect. 3
to constrained states, which is an embedding of rules in RBP ´1 . Their forwards
version is shown below; these rules are identical to those of Sect. 3, except that
the constraint Ψ is added:

x{SS&(ro)[L|M´, L′] & {M P I , IK}}, Ψy Ñ x{SS&(ro)[L, M´|L′] & {M P I , IK}}, Ψy
(B-)

x{SS&(ro)[L|M`, L′] & {IK}}, Ψy Ñ x{SS&(ro)[L, M`|L′] & {IK}}, Ψy (B+)
x{SS&(ro)[L|M`, L′]&{M R I , IK}}, Ψy Ñ x{SS&(ro)[L, M`|L′]&{M P I , IK}}, Ψy

(B++)
@ [l1, u`, l2] P P : x{{SS & [l1| u`, l2] & {u R I , IK}}, Ψy Ñ x{SS & {u P I , IK}}}, Ψy (B&)

where L and L′ are variables denoting a list of strand messages, IK is a variable
for a set of intruder facts (m P I or m R I), SS is a variable denoting a set of
strands, and l1, l2 denote a list of strand messages.

Then, we define new transition rules for constrained messages. That is, we
add the reversed version of the following rules; note that (Bif‰) is the only rule
adding a constraint to Ψ :

x{SS & {IK′}&(ro)[L | {?,Num}, L′]}, Ψy Ñ x{SS & {IK′}&(ro)[L, {?,Num} | L′]}, Ψy
(B?)

x{SS & {IK}&(ro)[L | {M “EP M,Num}, L′]}, Ψy
Ñ x{SS & {IK}&(ro)[L, {M “EP M,Num} | L′]}, Ψy (Bif=)

Strand Spaces with Choice via a Process Algebra Semantics 335

x{SS & {IK}&(ro)[L | {M ‰ M ′,Num}, L′]}, (Ψ ^ M ‰ M ′)y
Ñ x{SS & {IK}&(ro)[L, {M ‰ M ′,Num} | L′]}, Ψy
if (Ψ ^ M ‰EP M ′) is satisfiable in TΣCstrSSP {EP (X) (Bif‰)

Rule (B?) processes a constraint message denoting an explicit non-
deterministic choice with constant “?”. The constraint store is not changed and
no satisfiability check is required.

Rules (Bif=) and (Bif‰) deal with constrained messages associated to explicit
deterministic choices. Since the only constraints we allow in explicit deterministic
choices are equalities and disequalities, rule (Bif=) is for the case when the
constraint is an equality, rule (Bif‰) is for the case when the constraint is a
disequality. The equality constraint is solved by EP -unification. The constraint in
a constrained state is therefore a disequality constraint, i.e., Ψ “ ∧n

i“1ui ‰EP vi.
The semantics of such a constrained state, written [[xSt, Ψy]] is the set of all
ground substitution instances of the form:

[[xSt, Ψy]] “ {Stθ | θ P [X Ñ TΣP] ^ uiθ ‰EP viθ, 1 ď i ď n}

The disequality constraints are then solved the same way as in [11].

Definition 9. Let P be a protocol with signature ΣCstrSSP and equational
theory EP . We define the constrained backwards rewrite theory char-
acterizing P to be (ΣCstrSSP , ESSP , RCstrBP ´1) where ESSP is same as
explained in Sect. 3. RCstrBP ´1 is the result of reversing the rewrite rules
{(B-), (B+), (B++), (B?), (Bif=), (Bif‰)} Y (B&).

7.2 Soundness and Completeness of Constrained Backwards Strand
Semantics

The soundness and completeness proofs generalize the proofs in [9]. Recall that
the state in the constrained states of constrained backwards strand semantics
is a symbolic strand state, i.e., a state with variables. A state in the forwards
strand semantics is a ground strand state, i.e., a state without variables. The
lifting relation defines the instantiation relation between symbolic and ground
states.

We define a symbolic state and a ground state as follows.

Definition 10 (Symbolic Strand State). Given a protocol P, a symbolic
strand state S of P is a term of the form:

S “ { :: r11 , . . . , rm1 :: [u11 , . . . ui1´1 | ui1 , . . . , un1] &
...
:: r1k , . . . , rmk

:: [u1k , . . . , uik´1 | uik , . . . , unk
] & SS

{w1 P I , . . . , wm P I , w′
1 R I , . . . , w′

m′ R I , IK}}

336 F. Yang et al.

where for each 1 ď j ď k, there exists a strand [m1j , . . . mij´1,mij , . . . ,mnj
] P

PCstrSS and a substitution ρj : X Ñ TΣP (X) such that m1jρj “EP u1j , . . . ,
mnj

ρj “EP unj
, SS is a variable denoting a (possibly empty) set of strands, and

IK is a variable denoting a (possibly empty) set of intruder’s knowledge facts.

Definition 11 (Ground Strand State). Given a protocol P, a ground strand
state s of P is a term without variables of the form:

s “ {[u11 , . . . ui1´1] & · · · & [u1k , . . . , uik´1] & {w1 P I , . . . , wm P I } }

where for each 1 ď j ď k, there exists a strand [m1j , . . . mij´1,mij , . . . ,mnj
] P

PCstrSS and a substitution ρj : X Ñ TΣP such that m1jρj “EP u1j , . . . ,
mijρj “EP uij .

The lifting relation in [9] is extended with constraints and constrained mes-
sages. Note that the ui in the definition below can be sent messages, received
messages, or constrained messages.

Definition 12 (Lifting Relation). Given a protocol P, a constrained symbolic
strand state CstrS “ xS, Ψy and a ground strand state s, we say that s lifts to
CstrS, or that CstrS instantiates to s with a ground substitution θ : (Var(S) ´
{SS , IK}) Ñ TΣP , written CstrS ąθ s iff

– for each strand :: r1, . . . , rm :: [u1, . . . ui´1 | ui, . . . , un] in S, there exists a
strand [v1, . . . vi´1] in s such that @1 ď j ď i ´ 1, vj “EP ujθ.

– for each positive intruder fact w P I in S, there exists a positive intruder fact
w′ P I in s such that w′ “EP wθ, and

– for each negative intruder fact w R I in S, there is no positive intruder fact
w′ P I in s such that w′ “EP wθ.

– EP |“ Ψθ.

In the following we show the soundness and completeness of transitions in
constrained backwards strand semantics w.r.t. the constrained forwards strand
semantics by proving two lemmas (Lemmas 3 and 4 in Appendix A.2) stat-
ing the completeness and soundness of one-step transition in the constrained
backwards strand semantics w.r.t. the constrained forwards strand semantics.
The soundness and completeness results follow from these two lemmas. In the
proofs we consider only transition rules added in both semantics to deal with
explicit choices, that is, rules (Fif) Y (F?) Y (F?&) in the constrained forwards
strand semantics and rules {(B?), (Bif=), (Bif‰)} in the constrained backwards
strand semantics. The proof of the soundness and completeness of one-step tran-
sitions performed in the constrained backwards strand semantics using rules
{(B-), (B+), (B++) Y (B&) w.r.t to one-step transitions performed in the con-
strained forwards strand semantics using rules (F++) Y (F+) Y (F++&) Y
(F+&) Y (F-) Y (F-&) is the same as in [9], since in these transitions no con-
straint is involved. Note that although in [9], Choice Variables were not defined
explicitly, the proof extends to strands with choice variables naturally, since the

Strand Spaces with Choice via a Process Algebra Semantics 337

lifting relation between a ground state and a symbolic state does not need to
be changed to cover choice variables. Since the strand labels are irrelevant for
the result of this section, we will omit the strand labels to simplify the notation
from now on. Also, we include the fresh substitution in the substitutions and do
not separate the fresh substitutions explicitly.

Theorem 2 (Soundness). Given a protocol P, two constrained symbolic
strand states CstrS 0,CstrS, the initial FW-State Finit, a substitution θ, and
the initial PA-State Pinit s.t. (i) CstrS0 is a symbolic initial strand state, and
(ii) CstrS0 ø̊μ CstrS, and (iii) CstrS0 ąθ Finit. Then there exists a FW-State
Fst such that CstrS ąθ′

Fst, and therefore, there is a PA-State Pst such that
Pst H Fst.

Theorem 3 (Completeness). Given a protocol P, a PA-State Pst, a FW-
State Fst, a constrained symbolic strand state CstrS s.t. (i) Pst H Fst, (ii)
CstrS ąθ′

Fst. Then there is a backwards symbolic execution CstrS0 ø̊μ CstrS
s.t. CstrS0 is a symbolic initial strand state as defined in Sect. 3, and CstrS0 ąθ

Finit.

8 Protocol Experiments

In this section we describe some experiments5 that we have performed on pro-
tocols with choice. We have fully integrated the process algebra syntax, and its
transformation into strands, and have developed new methods to specify attack
states using the process notation in the recent release of Maude-NPA 3.1 (see
[8]).

8.1 Integration of the Protocol Process Algebra in Maude-NPA

We have fully implemented the process algebra notation in Maude-NPA. Strands
represent each role behavior as a linear sequence of message outputs and inputs
but processes represent each role behavior as a possibly non-linear sequence of
message outputs and inputs. The honest principal specification is specified in the
process algebra syntax. In order for Maude-NPA to accept process specifications,
we have replaced the section STRANDS-PROTOCOL from the protocol template by
a new section PROCESSES-PROTOCOL; see [8] for details. The intruder capabilities
as well as the states generated by the tool still use the strand syntax.

Attack patterns may be specified using the process algebra syntax, under
the label ATTACK-PROCESS, or strand syntax, under the label ATTACK-STATE. We
describe how they are specified in the process algebra syntax below. An attack
pattern describes a state consisting of zero or more processes that must have
executed, and zero or more terms in the intruder knowledge. It may also contain
never patterns, that is, descriptions of processes that must not be executed
at the time the state is reached. Never patterns can be used to reason about
5 Available at http://personales.upv.es/sanesro/Maude-NPA-choice/choice.html.

http://personales.upv.es/sanesro/Maude-NPA-choice/choice.html

338 F. Yang et al.

authentication properties, e.g., can Alice execute an instance of the protocol,
apparently with Bob, without Bob executing an instance of the protocol with
Alice.

Note that processes in an attack pattern cannot contain explicit nondeter-
minism (?) or explicit deterministic choice (if), since one and only one behavior
is provided in an attack pattern. This is achieve by requiring that any constraint
c appearing in an attack pattern must be strongly irreducible, that is, it must
not only be irreducible, but for any irreducible substitution σ to the variables of
c, σc must be irreducible as well.

That is, imagine a process i the form

´(m1) . ` (m2) . if exp1 “ exp2 then ` (m3) else ` (m4)

where each of the expressions exp1 and exp2 can evaluate to yes or no depending
on the substitutions made to them.

Then in the attack pattern one must specify one and only one of the following
possibilities

´(m1) . ` (m2) . yes “ yes . ` (m3)
´(m1) . ` (m2) . yes ‰ no . ` (m4)
´(m1) . ` (m2) . no “ no . ` (m3)

´(m1) . ` (m2) . no ‰ yes . ` (m4)

Finally, never patterns must satisfy a stronger condition: the entire never
pattern must be strongly irreducible. This condition is inherited from the original
Maude-NPA.

8.2 Choice of Encryption Type

This protocol allows either public key encryption or shared key encryption to
be used by Alice to communicate with Bob. Alice initiates the conversation by
sending out a message containing the chosen encryption mode, then Bob replies
by sending an encrypted message containing his session key. The encryption
mode is chosen nondeterministically by Alice. Therefore, it exhibits an explicit
nondeterministic choice. Below we show the protocol description: the first one
reflects the case in which public key encryption (denoted by PubKey) is chosen.

1. A Ñ B : A ; B ; PubKey
2. B Ñ A : pk(A,B ; SK)
3. A Ñ B : pk(B,A ; SK ; NA}
4. B Ñ A : pk(A,B ; NA)

The second one reflects the case in which a shared key encryption (denoted by
SharedKey) is chosen.

1. A Ñ B : A ; B ; SharedKey

Strand Spaces with Choice via a Process Algebra Semantics 339

2. B Ñ A : shk(key(A,B), B ; SK)
3. A Ñ B : shk(key(A,B), A ; SK ; NA)
4. B Ñ A : shk(key(A,B), B ; NA)

Note that A and B are names of principals, SK denotes the session key generated
by B, and NA denotes a nonce generated by A.

There are different ways of encoding this protocol as two process expressions.
We have chosen to treat the encryption mode as a choice variable which can be
either public key encryption or shared key encryption, and then the receiver will
perform an explicit deterministic choice depending on the value of this choice
variable. The process specification is as follows:

(Init) ((`(A? ; B? ; PubKey) · ´(pk(A?, B? ; SK))·
` (pk(B?, A? ; SK ; n(A?, r))) · ´(pk(A?, B? ; n(A?, r))))

?
(`(A? ; B? ; SharedKey) · ´(e(key(A?, B?), B? ; SK))·

` (e(key(A?, B?), A? ; SK ;n(A?, r))) · ´(e(key(A?, B?), B? ; n(A?, r)))))

(Resp) ´ (A ; B ; TEnc) ·
if TEnc “ PubKey then (`(pk(A,B ; skey(A,B , r ′)))·

´ (pk(B,A ; skey(A,B , r ′) ; n(A, r))) ·
` (pk(A,B ; n(A, r))))

else (`(e(key(A,B), B ; skey(A,B , r ′))))·
´ (e(key(A,B), A ; skey(A,B , r ′) ; n(A, r))) ·
` (e(key(A,B), B ; n(A, r))))

We analyzed whether the intruder can learn the session key generated by
Bob, when either the public key encryption or shared key encryption is chosen,
assuming both principals are honest. For this property, Maude-NPA terminated
without any attack being found for any of the two attack states.

8.3 Rock-Paper-Scissors

To evaluate our approach on protocols with explicit deterministic choices, we
have used a simple protocol which simulates the famous Rock-Paper-Scissors
game, in which Alice and Bob are the two players of the game. In this game,
Alice and Bob commit to each other their hand shapes, which are later on
revealed to each other after both players committed their hand shapes. The
result of the game is then agreed upon between the two players according to
the rule: rock beats scissors, scissors beats paper and paper beats rock. They
finish by verifying with each other that they both reached the same conclusion.
Thus, at the end of the protocol each party should know the outcome of the

340 F. Yang et al.

game and whether or not the other party agrees to the outcome. This protocol
exhibits explicit deterministic choice, because the result of the game depends on
the evaluation of the committed hand shapes according to the game’s rule. Note
that this protocol also exhibits implicit nondeterministic choice, since the hand
shape of the players are chosen by the players during the game.

The protocol proceeds as follows. First, both initiator and responder choose
their hand shapes and send them to each other using a secure commitment
scheme. Next, they both send each other the nonces that are necessary to open
the commitments. Each of them then compares the two hand shapes and decides
if the initiator wins, the responder wins, or there is a tie. The initiator then sends
the responder the outcome. When the responder receives the initiator’s verdict,
it compares it against its own. It responds with “finished” if it agrees with the
initiator and “cheater” if it doesn’t. All messages are signed and encrypted, and
the initiator’s and responder’s nonces are included in the messages concerning the
outcome of the game. The actual messages sent and choices made are described
in more detail below.

1. A Ñ B : pk(B, sign(A, commit(NA,XA)))
2. B Ñ A : pk(A, sign(B, commit(NB ,XB)))
3. A Ñ B : pk(B, sign(A,NA))
4. B Ñ A : pk(A, sign(B,NB))
5. if (XA beats XB) then R “ Win

else if (XB beats XA) then R “ Lose
else if (XB “ XA) then R “ Tie else nilP

6. A Ñ B : pk(B, sign(A,NA;NB ;R))
7. if (R “ Win & XA beats XB) or (R “ Lose & XB beats XA) or (R “

Tie & XA “ XB) then B Ñ A : pk(A, sign(B,NA;NB ;
finished)) else B Ñ A : pk(A, sign(B,NA;NB ; cheater))

One interesting feature of the Rock-Scissors-Paper protocol, is that, in order
to verify that the commitment has been opened successfully, i.e., that the nonce
received is the nonce used to create the commitment, one must verify that the
result of opening it is well-typed, i.e., that it is equal to “rock”, “scissors”, or
“paper”. This can be done via the evaluation of predicates. First, we create a
sort Item and declare the constants “rock”, “scissors”, and “paper” to be of sort
Item. Then we create a variable X:Item of sort Item. We then define a predicate
item? such that item? X:Item evaluates to true. Since only terms of sort Item
can be unified with X:Item, this predicate can be used to check whether or not
a term is of sort Item. We first tried to see whether the protocol can simulate the
game successfully, so we asked for different scenarios in which the player Alice
or Bob can win in a round of the game. Maude-NPA was able to generate the
expected scenarios, and it did not generate any others. We then gave Maude-NPA
a secrecy attack state, in which the intruder, playing the role of initiator against
an honest responder, attempts to guess its nonce before the responder receives
its commitment. Finally we specified an authentication attack state in which
we asked if a responder could complete a session with an honest initiator with

Strand Spaces with Choice via a Process Algebra Semantics 341

the conclusion that the initiator had carried out its rule faithfully, without that
actually having happened. For both of these attack states Maude-NPA finished
its search without finding any attacks.

8.4 TLS

In Sect. 1.3 we introduced a simplified version of the handshake protocol in TLS
1.3 [20]. Even this simplified version produced a very large search space, because
of the long list of messages and the concurrent interactions of a big amount
of choices. We are however able to check the correctness of our specification
by producing legal executions in Maude-NPA. Unlike TLS 1.3, we intentionally
introduced a “downgrade attack” in our version in which the attacker can trick
the principals into using a weaker crypto system. However, we have not yet been
able to produce this attack because of the very deep and wide analysis tree (i.e.,
long reachability sequences with many branches) that is produced. See [15] for
a more detailed specification of TLS in Maude-NPA that is able to terminate,
find attacks, and prove security against some classes of attacks.

9 Related Work

As we mentioned in the introduction, there is a considerable amount of work on
adding choice to the strand space model that involves embedding it into other
formal systems, including event-based models for concurrency [5], Petri nets [13],
or multi-set rewriting [3]. Crazzolara and Winskel model nondeterministic choice
as a form of composition, where a conflict relation is defined between possible
child strands so that the parent can compose with only one potential child. In
[13] Fröschle uses a Petri net model to add branching to strand space bundles,
which represent the concurrent execution of strand space roles. Note that we have
taken the opposite approach of representing bundles as traces of non-branching
strands, where a different trace is generated for each choice taken. Although this
results in more bundles during forward execution, it makes little difference in
backwards execution, and is more straightforward to implement in an already
existing analysis tool.

We also note that deterministic choice has been included in the applied pi
calculus for cryptographic protocols [2], another widely used formal model, based
on Milner’s pi calculus [18]. The applied pi calculus includes the rule if M “
N then P else Q, where P and Q are terms. This is similar to our syntax
for deterministic choice. However our long-term plan is to add other types or
predicates as well (e.g., M subsumes N). Indeed our approach extends to any
type of predicate that can be evaluated on a ground state. Although the applied
pi calculus in its original form does not include nondeterministic choice, both
nondeterministic and probabilistic choice have been added in subsequent work
[14].

In addition, Olarte and Valencia show in [19] how a cryptographic protocol
modeling language can be expressed in their universal timed concurrent con-

342 F. Yang et al.

straint programming (utcc) model, a framework that extends the timed concur-
rent constraint programming model to express mobility. The language does not
support choice, but utcc does. It seems that it would not be difficult to extend
the language to incorporate the utcc choice mechanisms.

The Tamarin protocol analysis tool [16] includes deterministic branching,
which was used extensively in the analysis of TLS 1.3 [6]. In particular, it includes
an optimization for roles of the form P.(if T then Q else R).S; when backwards
search is used, it is sometimes possible to capture such an execution in terms
of just one strand until the conditional is encountered, thus reducing the state
space. Our approach produces two strands, but since the process algebra seman-
tics makes it easy to tell whether or not R behaves “essentially” the same no
matter if P or Q is chosen, we believe that we have a pathway for including such
a feature if desired.

10 Conclusions

We have provided an extension to the strand space model that allows for both
deterministic and nondeterministic choice, together with an operational seman-
tics for choice in strand spaces that not only provides a formal foundation for
choice, but allows us to implement it directly in the Maude-NPA cryptographic
protocol analysis tool. In particular, we have applied Maude-NPA to several
protocols that rely on choice in order to validate our approach.

This work not only provides a choice extension to strand spaces, but extends
them in other ways as well. First of all, it provides a process algebra for strand
spaces. This potentially allows us to relate the strand space model to other
formal systems (e.g., the applied pi calculus [1]) giving a better understanding
of how it compares with other formal models. In addition, the process algebra
semantics provides a new specification language for Maude-NPA that we believe
is more natural for users than the current strand-space language.

Another contribution of this work is that it provides a means for evaluating
both equality and disequality predicates in the strand space model and in Maude-
NPA. This allows us to implement features such as type checking in Maude-
NPA, via predicates such as foocheck(X), where foocheck(0 : Foo) “ tt, that is,
foocheck(X) succeeds only if X is of sort Foo. This proved to be very helpful, for
example, in our specification of the Rock-Scissors-Paper protocol as we described
earlier. We believe the expressiveness of Maude-NPA can be further increased
at little cost by extending the types of predicates that can be evaluated, e.g.,
by including predicates for subsumption and their negations. This is another
subject for further investigation.

A Proofs

A.1 Proofs of Section 6.2

The relation H relies on the relations HLP Str and HPS FS . We define the rela-
tion HLP Str , which relates a possibly partially executed labeled process and a

Strand Spaces with Choice via a Process Algebra Semantics 343

constrained strand. This relation defines the duality relation between a labeled
process and a constrained strands. If a labeled process LP is related to a con-
strained strand Str by the relation HLP Str , then: (i) LP and Str denote the
behavior of the same role with the same identity in the same protocol, and (ii)
for any strand StrLP , StrLP denotes a possible execution path of LP iff Str
followed by StrLP forms a valid possible execution path of the protocol.

Definition 13 (Relation HLP Str). Given a protocol P, and a possibly par-
tially executed labeled process LP of P, a possibly partially executed constrained
strand Str of P, then (LP, Str) P HLP Str iff

toCstrSS(LP) “ &{(ro, i)[uj`1, . . . , un]ρro,iθ | D ground substitution θ

D(ro)[u1, . . . uj , uj`1, . . . , un] P PCstr s.t. Str “ (ro, i)[u1, . . . uj]ρro,iθ}

where &{S1, S2, . . . , Sn} is a shorthand for a term S1&S2& . . . &Sn denoting
a set of strands. ρro,i “ {r1 �Ñ r1.ro.i, . . . , rm �Ñ rm.ro.i} for fresh variables
r1, . . . , rm in [u1, . . . uj , uj`1, . . . , un].

Example 11. Following Examples 7 and 10, we show a process LP and a strand
Str that are related by the relation HLP Str . LP (resp. Str) is the labeled pro-
cess (resp. constrained strand) of the Server role after making the first explicit
nondeterministic choice.

LP “(Server , 1 , 2) σ(`(hs; retry) · ´(hs;N ′;G′; gen(G′);E′)·
` (hs;n(S?, r1);G

′; gen(G′); keyG(G′, S?, r2);Z(AReq?, G
′, E′, S, r2, S?, HM)))

Str “(Server , 1) σ[{?, 1}, ´(hs;N ;G; gen(G);E)]

where σ is a ground substitution to the pattern variables N , G, and E.

We then lift the duality relation between individual processes and strands to
a duality relation between PA-State and FW-State.

Definition 14 (Relation HPS FS). Let Pst “ {LP1& . . . &LPn | {IK}} be a
PA-State and Fst “ {Str1& . . . &Strm&{IK′}} be a FW-State, if (Pst ,Fst) P
HPS FS , then:

(i) For each labeled process LPk P Pst, 1 ď k ď n, there exists a strand Strk′ P
Fst, 1 ď k′ ď m, such that (LPk, Strk′) P HLP Str .

(ii) For each strand Strk′ P Fst, 1 ď k′ ď m, there exists a labeled process
LPk P Pst, 1 ď k ď n, such that (LPk, Strk′) P HLP Str .

The lemma below states that the relation H induces the duality relation
HPS FS .

Lemma 1. Let Pst “ {LP1& . . . &LPn | {IK}} be a PA-State and Fst “
{Str1& . . . &Strm&{IK′}} be a FW-State, if (Pst ,Fst) P H, i.e., exists a label
sequence α such that Pinit Ñα Pst, and Finit Ñα Fst, then (Pst ,Fst) P HPS FS .

344 F. Yang et al.

Proof. We first prove property (i). If |α| “ 0, since both the strand set and the
process configuration are empty, the statement is vacuously true.

Now suppose that |α| ą 0. Then, without loss of generality, assume there
exists a labeled process LPk “ ((ro, i, j) Pk) in Pst , with i, j ≥ 1. Then there is
at least one label in α of the form (ro, i, , ,) (is a short hand for any content),
therefore, there is a strand Stk′ in Fst of the form (ro, i)[v1, . . . , vj′].

We then show that the above-mentioned LPk and Strk′ are related by
HLP Str , i.e., (LPk, Strk′) P HLP Str . Since the state Fst is reachable from the
initial state by the label sequence α, and Strk′ P Fst, [v1, . . . , vj′] denotes exactly
the sequence of messages in the unique sequence of labels α|(ro,i). Moreover,
j′ “ j ´ 1.

Since the process state Pst is reachable from the initial state Pinit by label
sequence α, there exists a unique process (ro)Pspec in the specification PPA, and
LPk represents all possible behaviors of (ro)Pspec after the sequence of transitions
α|(ro,i). Therefore, toCstrSS(LPk) “

&{(ro, i)[uj , . . . , un]ρro,iθ |
D ground substitution θ

D(ro)[u1, . . . , uj´1, uj , . . . , un] P toCstrSS((ro)Pspec)
s.t. (ro, i)[u1, . . . , uj´1]ρro,iθ “ (ro, i)[v1, . . . , vj´1]}

By the correspondence between protocol specifications defined in Definition 3 ,
PCstrF “ toCstrSS(PPA). Also note that (ro)Pspec is the only process in PPA

that has ro as its role name, therefore, toCstrSS((ro)Pspec) “ {(ro)[u1, . . . , un] |
(ro)[u1, . . . , un] P PCstrF }. Therefore, toCstrSS(LPk) “

&{(ro, i)[uj , . . . un]ρro,iθ |
D ground substitution θ,

D(ro)[u1, . . . , uj´1, uj , . . . , un] P PCstrF

s.t. (ro, i)[u1, . . . , uj´1]ρro,iθ “ (ro, i)[v1, . . . , vj´1]}.

Therefore, (LPk, Strk′) P HLP Str . The proof for property (ii) is similar to the
one for property (i). ��

Lemma 2 below formalizes the observation that the equivalence of label
sequence implies the same intruder knowledge.

Lemma 2. Given a PA-State Pst and a FW-State Fst such that (Pst ,Fst) P H,
i.e., there exists a label sequence α such that Pinit Ñα Pst and Finit Ñα Fst,
then the contents of intruder knowledge in Pst and in Fst are syntactically equal.

Proof. In both semantics the only transition rules that add new elements to the
intruder’s knowledge are the ones whose label is of the form (ro, i, j, `m,n).
Therefore, given the two states Pst and Fst as described above, their intruder’s
knowledge can be computed from the sequence of labeled transitions α as
IK (Pst) “ {m P I | (, , , `m,) P α} “ IK (Fst). ��

Strand Spaces with Choice via a Process Algebra Semantics 345

Based on the lemmas above, we can now show that the relation H is a
bisimulation.

Theorem 1 (Bisimulation). H is a bisimulation.

Proof. Since Pinit Ñnil Pinit and Finit Ñnil Finit, therefore, (Pinit, Finit) P H.
We then prove that: for all PA-State Pstn, and FW-State Fstn, if (Pstn,Fstn) P
H, and there exists a PA-State Pstn`1 such that Pstn Ña Pstn`1, then there
exists a FW-State Fstn`1 such that Fstn Ña Fstn`1 and (Pstn`1,Fstn`1) P H..
If (Pstn,Fstn) P H, by definition of the relation H, there exists a label sequence
α s.t. Pinit Ñα Pstn and Finit Ñα Fstn. Suppose there exists state Pstn`1 such
that Pstn Ña Pstn`1. We prove by case analysis on label a that there exists
Fstn`1 such that Fstn Ña Fstn`1. The fact that (Pstn`1,Fstn`1) P H then
follows this by the definition of relation H.

In the rest of this proof,
Ñ́
L ,

Ñ́
L1 and

Ñ́
L2 denote lists of messages, M,M ′ and

m denote messages, P,Q and R denote processes, PS denotes a process config-
uration, SS denotes a set of constrained protocol strands, IK and IK ′ denote
the set of messages in the intruder’s knowledge.

1) a “ (ro, i, j, `m, 0) : if j ą 1, according to the semantics, Pstn Ña Pstn`1

by applying rule (PA++), the state Pstn is of the form {(ro, i, j) (`M ·
P) & PS | {IK}} s.t. there exists a ground substitution σ binding the choice
variables in M and m “ Mσ, the state Pstn`1 “ {(ro, i, j`1) Pσ & PS | {m P
I, IK}} and m P I R IK. Since Pstn H Fstn, by Lemmas 1 and 2, Fstn is of
the form {(ro, i) [

Ñ́
L] & SS & {IK}} s.t. (ro, i, j) (`M ·P) HLP Str (ro, i) [

Ñ́
L].

Let (ro) [
Ñ́
L1,

Ñ́
L2] be a constrained strand in PCstrSS s.t. there exists a ground

substitution θ s.t.
Ñ́
L1ρro,iθ “ Ñ́

L . By the definition of relation HLP Str and
mapping toCstrSS, the first message of

Ñ́
L2 is `M ′, s.t. M ′ρro,iθ “ M . Then

since Mσ “ m and m P I R IK, the rule (F++) can be applied for the rewrite
Fstn Ña Fstn`1, where Fstn`1 “ {(ro, i) [

Ñ́
L , `m] & SS & {m P I , IK}}.

If j “ 1, Pstn Ña Pstn`1 by applying rule (PA&), there exists a process
(ro) (`M · P) in PPA and a ground substitution σ s.t. Mρro,iσ “ m. Since
toCstrSS(PPA) “ PCstrSS , by the definition of toCstrSS, for all strands of
role ro in PCstrSS , the first message is `M . Without loss of generality, let
Pstn be {PS | {IK}}, and Fstn be {SS & {IK ′}}. Since the rule (PA&) can
be applied, m P I R IK. By Lemma 2, IK “ IK ′. Moreover, by Lemma 1,
MaxStrId(SS, ro) “ MaxProcId(PS, ro), and since MaxProcId(PS, ro) ` 1 “
i, by applying the rule (F++&) we get Fstn Ña Fstn`1.

2) a “ (ro, i, j,Mσ, 0): similar to case 1.
3) a “ (ro, i, j, ´m, 0): if j ą 1, according to the semantics, Pstn Ña

Pstn`1 by applying rule (PA-), Pstn is of the form {(ro, i, j) (´M ·
P) & PS | {m P I , IK}} s.t. m “EP Mσ for some ground substitution σ
and Pstn`1 “ {(ro, i, j ` 1) Pσ & PS | {m P I , IK}}. Since Pstn H Fstn,
by Lemmas 1 and 2, Fstn “ {(ro, i) [

Ñ́
L] & SS & {m P I , IK}} s.t.

(ro, i, j) (´M · P) HLP Str (ro) [
Ñ́
L]. Let (ro) [

Ñ́
L1,

Ñ́
L2] P PCstrSS s.t. there

exists a ground substitution θ s.t.
Ñ́
L1ρro,iθ “ Ñ́

L , then by definition of HLP Str

346 F. Yang et al.

and toCstrSS, the first message of
Ñ́
L2 is ´M ′ s.t. M ′ρro,iθ “ M . Since

m “EP Mσ, rule (F-) can be applied to get the transition Fstn Ña Fstn`1,
where Fstn`1 “ {(ro, i) [

Ñ́
L , ´m] & SS & {m P I , IK}}.

If j “ 1, Pstn Ña Pstn`1 by applying rule (PA&), there exists a pro-
cess (ro) (´M · P) in PPA and a ground substitution σ s.t. Mρro,iσ “ m.
Without loss of generality, let Pstn be {PS | {IK}}. Then m P I P IK.
Since toCstrSS(PPA) “ PCstrSS , by the definition of toCstrSS, for all strands
of role ro in PCstrSS , the first message is ´M . By Lemma 2, m P I is in
the intruder knowledge of Fstn. Moreover, by Lemma 1, MaxStrId(SS, ro) “
MaxProcId(PS, ro), and since MaxProcId(PS, ro) ` 1 “ i, by applying the
rule (F-&) we get Fstn Ña Fstn`1.

4) a “ (ro, i, j, T, 1): according to the transition rules, Pstn Ña

Pstn`1 by applying rule (PAif1). Therefore Pstn is of the form
{(ro, i, j) ((if c then P else Q) · R) & PS | {IK}}, Pstn`1 “ {(ro, i, j `
1) (P · R) & PS | {IK}} and c “EP true. Since Fstn H Pstn, by Lemma
1, Fstn “ {(ro) [

Ñ́
L] & SS & {IK ′}} s.t. (ro, i, j) ((if c then P else Q) ·

R) HLP Str (ro, i) [
Ñ́
L]. By the definition of the relation HLP Str and the

mapping toCstrSS, there exists (ro) [
Ñ́
L1, {C, 1},

Ñ́
L2] P PCstrSS and a ground

substitution θ s.t.
Ñ́
L “ Ñ́

L1ρro,iθ, and Cρro,iθ “ c. Since c “EP true,
the rule (Fif) can be applied for the rewrite Fstn Ña Fstn`1, where
Fstn`1 “ {{(ro) [

Ñ́
L , {t, 1}] & SS & {IK ′}}

5) a “ (ro, i, j, T, 2): similar to case 4.
6) a “ (ro, i, j, ?, 1): if j ą 1, Pstn Ña Pstn`1 by applying rule (PA?1).

Therefore Pstn is of the form {(ro, i, j) ((P ? Q) · R) & PS | {IK}} and
Pstn`1 “ {(ro, i, j ` 1) (P · R) & PS | {IK}}. Since Fstn H Pstn, by
Lemma 1, Fstn “ {(ro, i) [

Ñ́
L] & SS & {IK ′}} s.t. (ro, i, j) ((P ? Q) ·

R) HLP Str (ro, i) [
Ñ́
L]. By the definition of HLP Str and toCstrSS, there

is a strand (ro, i) [
Ñ́
L1, {?, 1},

Ñ́
L2] P PCstrSS s.t.

Ñ́
L “ Ñ́

L1θ. Therefore, rule
(F?) can be applied for the rewrite Fstn Ña Fstn`1, and Fstn`1 “
{(ro, i) [

Ñ́
L , {?, 1}] & SS & {IK ′}}.

If j “ 1, Pstn Ña Pstn`1 by applying rule (PA&). Therefore, there exists
a process (ro) ((P ? Q) · R) in PPA. Since toCstrSS(PPA) “ PCstrSS , by the
definition of toCstrSS, there is a strand of role ro whose first message is (?, 1)
in PCstrSS . Moreover, by Lemma 1, MaxStrId(SS, ro) “ MaxProcId(PS, ro),
and since MaxProcId(PS, ro) ` 1 “ i, by applying the rule (F?&) we get
Fstn Ña Fstn`1.

7) a “ (ro, i, j, ?, 2) similar to case 6.

Similarly, we can prove that for all PA-State Pstn, and FW-State Fstn, if
(Pstn,Fstn) P H, and there exists a FW-State Fstn`1 such that Fstn Ña

Fstn`1, then there exists a PA-State Pstn`1 such that Pstn Ña Pstn`1 and
(Pstn`1,Fstn`1) P H ��

Strand Spaces with Choice via a Process Algebra Semantics 347

Fig. 4. Lemma 3 Fig. 5. Lemma 4

A.2 Proofs of Section 7.2

Extending the proofs in [9], we first prove how the lifting of a ground state to
a symbolic state induces a lifting of a forwards rewriting step in the forwards
semantics to a backwards narrowing step in the backwards semantics, i.e., the
completeness of one-step transition. The lemma below extends the lifting lemma
in [9] to strands with constrained messages.

Lemma 3 (Lifting Lemma). Given a protocol P, two ground strand states s
and s′, a constrained symbolic strand state CstrS ′ “ xS′, Ψ ′y and a substitution θ′

s.t. s Ñ s′ and CstrS ′ ąθ′
s′, then there exists a constrained symbolic strand state

CstrS “ xS, Ψy and a substitution θ s.t. CstrS ąθ s and either CstrS μø CstrS ′

or CstrS “ CstrS ′.

The Lifting Lemma is illustrated by Fig. 4.

Proof. As has been explained before, we only need to consider the new rules:
(Fif), (F?), (F?&). The proof in [9] is structured by cases, some of which hav-
ing specific requirements on intruder knowledge, or involve changes made to the
intruder knowledge. Since all the new rules we are considering do not have spe-
cific requirements on the intruder knowledge, and do not change the intruder
knowledge either, the cases that we need to consider are the following (cases e
and f in the proof in [9]), which involve the appearance or non-appearance of
certain strand(s):

e: There is a strand [u1, . . . , uj´1, uj , . . . , un] in PCstrSS , n ě 1, 1 ď j ď n,
and a substitution ρ such that [u1, . . . , uj´1, uj]ρ is a strand in s′ and
[u1, . . . , uj´1, uj | uj`1, . . . , un]ρ is a strand in S′θ′.

f: There is a strand [u1, . . . , uj´1, uj , . . . , un] in PCstrSS , n ě 1, 1 ď j ď n,
and a substitution ρ such that [u1, . . . , uj´1, uj]ρ is a strand in s′ but
[u1, . . . , uj´1, uj | uj`1, . . . , un]ρ is not a strand in S′θ′.

Now we consider for the forward rewrite rule application in the step s Ñ s′.

– Given ground states s and s′ s.t. s Ñ s′ using a rule in set (Fif), then there
exists a ground substitution τ , variables SS’ and IK’, and strand [u1, . . . , uj´1,
{T,Num}, uj`1, . . . , un] in PCstrSS , such that s “ {SS′τ&{IK ′τ}&(ro)
[u1τ, . . . , uj´1τ]}, and s′ “ {SS′τ&{IK ′τ}&[u1τ, . . . , uj´1τ, {Tτ,Num}]}
and Tτ “EP true. Since there exists a substitution θ′ s. t. CstrS ′ ąθ′

s′,
we consider the following two cases:

348 F. Yang et al.

• Case e) The strand appears in S′θ′. More specifically, [u1σ,
. . . , uj´1σ, {Tσ,Num} | uj`1σ, . . . , unσ] is a strand in S′ s.t. σθ′ “EP τ . If
the constraint T is an equality constraint, since Tτ “EP Tσθ′ “EP true,
and by the lifting relation, EP |“ Ψ ′θ′, rule (Bif=) can be applied
for the backwards narrowing CstrS ′ μø CstrS , and CstrS ąθ s such
that μθ “EP θ′. If the constraint T is a disequality constraint, since
Tτ “EP Tσθ′ “EP true, and by the lifting relation, EP |“ Ψ ′θ′, we
have EP |“ Tσθ′ ^ Ψ ′θ′. Therefore, rule (Bif‰) can be applied for the
backwards narrowing, and CstrS ąθ s.

• Case f) The strand does not appear in S′θ′. Then θ′ makes S′ as a valid
symbolic strand state of s, i.e., S “ S′ and CstrS ′ ąθ′

s.
– Given ground strand states s and s′ s.t. s Ñ s′ using a rule in set (F?), then

we consider the following two applicable cases:
• Case e) The strand appears in S′θ′ and thus we can perform a back-

wards narrowing step from CstrS ′ with rule (B?), i.e., CstrS ′ � CstrS ,
and CstrS ąθ′

s.
• Case f) The strand does not appear in S′θ′. Then θ′ makes CstrS ′ as a

valid constraint symbolic state of s, i.e., CstrS “ CstrS ′ and CstrS ąθ′
s.

– Given states s and s′ s.t. s Ñ s′ using a rule in set (F?&), the proof is similar
with using a rule in the set (F?).

��

The Completeness Theorem below shows that the backwards symbolic reach-
ability analysis is complete with respect to the forwards rewriting-based strand
semantics.

Theorem 4 (Completeness). Given a protocol P, two ground strand states
s, s0, a constrained symbolic strand state CstrS and a substitution θ s.t. (i) s0
is an initial state, (ii) s0 Ñn s, and (iii) CstrS ąθ s. There exists a constrained
symbolic initial strand state CstrS0, two substitutions μ and θ′, and k ď n, s.t.
CstrS0

køμ CstrS, and CstrS0 ąθ′
s0.

The Soundness Theorem from [9] can also be extended to constrained back-
wards and forwards strand semantics. We first show that Lemma 2 in [9], which
states the soundness of one-step transition, still holds after extending to con-
strained states. The Soundness Theorem then follows straightforwardly.

Lemma 4. Given a protocol P, two constrained symbolic states CstrS “ xS, Ψy
and CstrS ′ “ xS′, Ψ ′y, a ground strand state s and a ground substitution θ, if
CstrS μø CstrS ′ and CstrS ąθ s, then there exists a ground strand state s′ and
a ground substitution θ′ such that s Ñ s′, and CstrS ′ ąθ′

s′.

Lemma 4 is illustrated by Fig. 5.

Proof. We only need to consider the new rules: rule (Bif=), (Bif‰) and (B?).

Strand Spaces with Choice via a Process Algebra Semantics 349

1) If CstrS μø CstrS ′ using rule (B?), then there are associated rules in the sets
(F?) and (F?&).

2) If CstrS μø CstrS ′ using rule (Bif=), there is a strand [u1σ, . . . , uj´1σ |
{(u “ v)σ,Num}, uj`1σ, . . . , unσ] in S, [u1σ

′, . . . , uj´1σ
′, {(u “ v)σ′, Num} |

uj`1σ
′, . . . , unσ′] in S′ s.t. σ “EP σ′μ, Ψ “EP Ψ ′μ and uσ “EP vσ,

where [u1, . . . , uj´1, {u “ v,Num}, uj`1, . . . , un] is a strand in PCstrSS . Since
CstrS ąθ s, there is a ground strand [u1σθ, . . . , uj´1σθ] in s, and EP |“ Ψθ.
Therefore, EP |“ Ψ ′μθ and uσθ “EP vσθ. By rule (Fif), s Ñ s′, and
CstrS ′ ąμθ s′.

If CstrS μø CstrS ′ using rule (Bif‰), there is a strand [u1σ, . . . , uj´1σ |
{(u ‰ v)σ,Num}, uj`1σ, . . . , unσ] in S , [u1σ

′, . . . , uj´1σ
′, {(u ‰ v)σ′, Num} |

uj`1σ
′, . . . , unσ′] in S′ s.t. σ “EP σ′μ and Ψ “EP Ψ ′μ ^ (u ‰ v)σ′μ, where

[u1, . . . , uj´1, {u ‰ v,Num}, uj`1, . . . , un] is a strand in PCstrSS . Since CstrS ąθ

s, there is a ground strand [u1σθ, . . . , uj´1σθ] in s, and EP |“ Ψθ. Therefore,
EP |“ Ψ ′μθ ^ (u ‰ v)σ′μθ. By rule (Fif), s Ñ s′, and CstrS ′ ąμθ s′. ��

The Soundness Theorem below shows that the backwards symbolic reach-
ability analysis is sound with respect to the forwards rewriting-based strand
semantics.

Theorem 5 (Soundness). Given a protocol P, two constrained symbolic
strand states CstrS 0,CstrS ′, an initial ground strand state s0 and a substitu-
tion θ s.t. (i) CstrS0 is a symbolic initial state, and (ii) CstrS0 ø̊ CstrS ′ , and
(iii) CstrS0 ąθ s0. Then there exists a ground strand state s′ and a substitution
θ′, s.t. (i) s0 Ñ˚ s′, and (ii) CstrS ′ ąθ′

s′.

The soundness and completeness results in Theorems 5 and 4 together with
the bisimulation proved in Theorem 1 show that the backwards symbolic reach-
ability analysis is sound, Theorem 2, and complete, Theorem 3, with respect to
the process algebra semantics.

References

1. Abadi, M.: Leslie Lamport’s properties and actions. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Principles of Distributed Computing, PODC
2001, p. 15 (2001)

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Conference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 104–115 (2001)

3. Cervesato, I., Durgin, N.A., Mitchell, J.C., Lincoln, P., Scedrov, A.: Relating
strands and multiset rewriting for security protocol analysis. In: Proceedings of
the 13th IEEE Computer Security Foundations Workshop, CSFW 2000, pp. 35–51
(2000)

4. Comon, H.: Disunification: a survey. In: Lassez, J.-L., Plotkin, G.D. (eds.) Com-
putational Logic - Essays in Honor of Alan Robinson, pp. 322–359. The MIT Press
(1991)

350 F. Yang et al.

5. Crazzolara, F., Winskel, G.: Composing strand spaces. In: Agrawal, M., Seth, A.
(eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 97–108. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36206-1 10

6. Cremers, C., Horvat, M., Scott, S., van der Merwe, T.: Automated analysis and
verification of TLS 1.3: 0-RTT, resumption and delayed authentication. In: IEEE
Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, 22–26 May
2016, pp. 470–485. IEEE Computer Society (2016)

7. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R.
(eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03829-7 1

8. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA manual version 3.1 (2017).
http://maude.cs.illinois.edu/w/index.php?title=Maude Tools: Maude-NPA

9. Escobar, S., Meadows, C., Meseguer, J., Santiago, S.: A rewriting-based forwards
semantics for Maude-NPA. In: Proceedings of the 2014 Symposium and Bootcamp
on the Science of Security, HotSoS 2014. ACM (2014)

10. Escobar, S., Meadows, C., Meseguer, J., Santiago, S.: State space reduction in the
Maude-NRL protocol analyzer. Inf. Comput. 238, 157–186 (2014)

11. Escobar, S., Meadows, C., Meseguer, J., Santiago, S.: Symbolic protocol analysis
with disequality constraints modulo equational theories. In: Bodei, C., Ferrari, G.-
L., Priami, C. (eds.) Programming Languages with Applications to Biology and
Security. LNCS, vol. 9465, pp. 238–261. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-25527-9 16

12. Thayer Fabrega, F.J., Herzog, J., Guttman, J.: Strand spaces: what makes a secu-
rity protocol correct? J. Comput. Secur. 7, 191–230 (1999)

13. Fröschle, S.B.: Adding branching to the strand space model. Electr. Notes Theor.
Comput. Sci. 242(1), 139–159 (2009)

14. Goubault-Larrecq, J., Palamidessi, C., Troina, A.: A probabilistic applied pi–
calculus. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 175–190. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76637-7 12

15. Lluch-Palop, J.: Verificación automática del protocolo TLS 1.3 usando Maude-
NPA. Master’s thesis, Universitat Politècnica de València (2019). http://hdl.
handle.net/10251/130041

16. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

17. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

18. Milner, R.: Communicating and Mobile Systems - The Pi-Calculus. Cambridge
University Press, Cambridge (1999)

19. Olarte, C., Valencia, F.D.: The expressivity of universal timed CCP: undecidability
of monadic FLTL and closure operators for security. In: 2008 Proceedings Principles
and Practice of Declarative Programming, pp. 8–19 (2008)

20. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. Technical
report draft-ietf-tls-tls13-12, IETF (2016)

21. Yang, F., Escobar, S., Meadows, C.A., Meseguer, J., Santiago, S.: Strand spaces
with choice via a process algebra semantics. In: Cheney, J., Vidal, G. (eds.) Pro-
ceedings of the 18th International Symposium on Principles and Practice of Declar-
ative Programming, Edinburgh, UK, 5–7 September 2016, pp. 76–89. ACM (2016)

https://doi.org/10.1007/3-540-36206-1_10
https://doi.org/10.1007/978-3-642-03829-7_1
http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools:_Maude-NPA
https://doi.org/10.1007/978-3-319-25527-9_16
https://doi.org/10.1007/978-3-319-25527-9_16
https://doi.org/10.1007/978-3-540-76637-7_12
http://hdl.handle.net/10251/130041
http://hdl.handle.net/10251/130041
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

Author Index

A
Aguirre, Luis 1
Alpuente, María 21, 51

B
Ballis, Demis 21
Bel-Enguix, Gemma 113
Belzner, Lenz 281
Bruynooghe, Maurice 170

C
Cousot, Patrick 72

D
Dageförde, Jan C. 97
Dahl, Veronica 113
Denecker, Marc 170

E
Escobar, Santiago 21, 307

F
Fandinno, Jorge 133

G
Gallardo, María-del-Mar 151
Garrido, Miguel 188
Gupta, Gopal 233

K
Kuchen, Herbert 97

L
Lapauw, Ruben 170

M
Martí-Oliet, Narciso 1
Meadows, Catherine 307

Merino, Pedro 151
Meseguer, Jose 21, 307
Miralles, Emilio 113
Mishra, Seemran 133

P
Palomino, Miguel 1
Panizo, Laura 151
Peña, Ricardo 188
Pereira, Luís Moniz 206, 222
Pinto, Alexandre Miguel 206, 222
Pita, Isabel 1

R
Romero, Javier 133

S
Sagredo, Javier 188
Salazar, Elmer 233
Sánchez-Hernández, Jaime 188
Santiago, Sonia 307
Sapiña, Julia 21
Schaub, Torsten 133

T
Tirado, Velina 113
Trillas, Enric 253

V
Vidal, Germán 266
Villanueva, Alicia 51

W
Wirsing, Martin 281

Y
Yang, Fan 307

© Springer Nature Switzerland AG 2023
P. Lopez-Garcia et al. (Eds.): Hermenegildo Festschrift 2022, LNCS 13160, p. 351, 2023.
https://doi.org/10.1007/978-3-031-31476-6

https://doi.org/10.1007/978-3-031-31476-6

	 Preface
	 Organization
	 Contents
	Strategies in Conditional Narrowing Modulo SMT Plus Axioms
	1 Introduction
	2 Preliminaries
	2.1 Running Example
	2.2 Order-Sorted Equational Logic
	2.3 Order-Sorted Equational Theories
	2.4 Unification

	3 Conditional Rewriting Modulo Built-Ins and Axioms
	4 Abstractions, B-extensions, and R,B-Rewriting
	4.1 Abstractions
	4.2 B-Extensions

	5 Strategies
	5.1 Goals, Derivation Rules and Proof Trees
	5.2 Strategies and Their Semantics
	5.3 Interpretation of the Semantics

	6 Reachability Problems
	7 Strategies in Reachability by Conditional Narrowing Modulo SMT and Axioms
	8 Example
	9 Conclusions and Related Work
	References

	Optimizing Maude Programs via Program Specialization
	1 Introduction
	2 A Leading Example
	3 Specialization of Rewrite Theories
	3.1 Narrowing and Folding Variant Narrowing in Maude
	3.2 Partial Evaluation of Equational Theories
	3.3 The NPERUA Scheme for the Specialization of Rewrite Theories

	4 Total Evaluation and Constructor Variants
	4.1 Constructor Term Variants, Sufficient Completeness, and the CFVP
	4.2 Total Evaluation of Rewrite Theories

	5 Instantiating the Specialization Scheme for Rewrite Theories
	5.1 Unfolding Operators
	5.2 Abstraction Operators

	6 Specializing the Bank Account System
	7 Related Work and Conclusion
	A Full Specification of the Bank Account System
	B Specialization of the Bank Account System Rb
	C Specialization of the Bank Account System Rb with Compression
	References

	Automated Synthesis of Software Contracts with KindSpec
	1 Introduction
	2 Inferring Software Contracts with KindSpec
	3 KindSpec at a Glimpse
	3.1 A Running Example
	3.2 KindSpec Output

	4 System Architecture
	5 Experiments
	6 Conclusion and Related Work
	References

	Abstract Interpretation of Graphs
	1 Introduction
	1.1 Objectives
	1.2 Content

	2 Fixpoint abstraction
	3 Weighted graphs
	3.1 Graphs
	3.2 Totally ordered groups
	3.3 Weighted graphs

	4 Fixpoint characterization of the paths of a graph
	5 Abstraction of the paths of a graph
	6 Calculational design of the paths between any two vertices
	7 Shortest distances between any two vertices of a weighted graph
	8 Calculational design of the shortest distances between any two vertices
	9 Elementary paths and cycles
	10 Calculational design of the elementary paths between any two vertices
	11 Calculational design of the elementary paths between vertices of finite graphs
	12 Calculational design of an over-approximation of the elementary paths between vertices of finite graphs
	13 The Roy-Floyd-Warshall algorithm over-approximating the elementary paths of a finite graph
	14 Calculational design of the Roy-Floyd-Warshall shortest path algorithm
	15 Conclusion
	References

	Applications of Muli: Solving Practical Problems with Constraint-Logic Object-Oriented Programming
	1 Motivation
	2 Constraint-Logic Object-Oriented Programming
	3 Generation of Graph Structures for Neural Networks
	3.1 Generating Neural Network Graph Structures from a Muli Application
	3.2 Using Generated Neural Networks to Solve the Pole Balancing Problem
	3.3 Experiments

	4 Solving a Dynamic Scheduling Problem with Constraint-Logic Object-Oriented Programming
	5 Related Work
	6 Conclusion and Outlook
	References

	Grammar Induction for Under-Resourced Languages: The Case of Ch'ol
	1 Introduction and Related Work
	2 Linguistic and Computational Framework
	2.1 Linguistic Framework: Property Grammars (PG)
	2.2 Computational Framework: CHRG

	3 The Womb Grammar Methodology
	3.1 Analysis and Transformation
	3.2 Implementing a PG Parser Through CHRG
	3.3 Implementing a Hybrid-Model WG Parser Through CHRG
	3.4 Heuristics for Analysing and Transforming Failed Properties

	4 Ch'ol
	4.1 Writing System
	4.2 Morphology and Parts of Speech
	4.3 NP Structure

	5 Experiments and Results
	5.1 Hybrid Womb Grammar
	5.2 Universal Womb Grammar
	5.3 Comparative Results Hybrid vs. Universal

	6 Conclusions and Future Work
	References

	Answer Set Programming Made Easy
	1 Introduction
	2 Background
	3 Logical Foundations
	4 Austere Answer Set Programming
	4.1 Austere Logic Programs
	4.2 Operational Semantics

	5 Easy Answer Set Programming
	5.1 Modeling Methodology
	5.2 Stratified Negation
	5.3 Complex Constraints
	5.4 Limitations

	6 Related Work
	7 Conclusion
	References

	The Role of Abstraction in Model Checking
	1 Introduction
	2 Abstracting promela Models and ltl Formulae by Source-to-Source Transformation
	2.1 Model Abstraction
	2.2 LTL Abstraction

	3 Abstraction of Concurrent Software with Well Defined APIs
	3.1 Abstract Matching and Influence Analysis

	4 Abstracting Executions of Real Systems
	4.1 Building spin's Traces from Real Executions of java Programs
	4.2 The Abstraction Projection

	5 Conclusions
	References

	Justifications and a Reconstruction of Parity Game Solving Algorithms
	1 Introduction
	2 Verification and Parity Game Solving
	3 Parametrized Parity Games
	4 Justifications
	4.1 Operations on Weakly Winning Justifications
	4.2 Constructing Winning Justifications
	4.3 The Operation Justify

	5 A Reformulation of Three Existing Algorithms
	6 Conclusion
	References

	SMT-Based Test-Case Generation and Validation for Programs with Complex Specifications
	1 Introduction
	2 Specifying Pre- and Postconditions by Using the SMT Language
	3 Synthesizing Black-Box Test-Cases
	4 Synthesizing White-Box Test-Cases
	5 Partial Automatic Verification
	6 Experiments
	7 Related and Future Work
	References

	Layerings of Logic Programs - Layer Decomposable Semantics and Incremental Model Computation
	1 Introduction
	1.1 Background and Notation

	2 Layerings of Logic Programs
	2.1 The Structure of Logic Programs
	2.2 Layers and Strongly Connected Components of Rules
	2.3 Transfinite Layering

	3 Layer-Decomposable Semantics and Incremental Model Computation
	4 Constructive Method for Computing Layer Decomposable Models
	5 Conclusions and Future Work
	A Auxiliary Definitions, Results and Proofs
	References

	Modularization of Logic Programs
	1 Introduction
	1.1 Context
	1.2 Motivation

	2 Background Review
	2.1 Modularity and Separation of Concerns
	2.2 Semantics and Models
	2.3 Syntactic Dependencies

	3 New Notions and Properties
	3.1 Modularity in Logic Programs
	3.2 A Framework for Credulous Reasoning with LPs

	4 Conclusions and Future Work
	References

	Proof-Theoretic Foundations of Normal Logic Programs
	1 Introduction
	2 Background
	2.1 Negation-as-Failure and the Language
	2.2 Coinduction
	2.3 SLD and CoSLD Resolution
	2.4 The Semantics

	3 Fixed-Point Formalization Overview
	4 Proof-Theoretic Formalization
	4.1 3-Value Modified CoSLD Resolution
	4.2 Restrictions
	4.3 Preprocessing
	4.4 The Rules
	4.5 The Algorithm

	5 Related Work
	6 Conclusion
	References

	A Discourse on Guessing and Reasoning
	1 Introduction
	1.1 Thinking, Guessing and Reasoning
	1.2 The Universal Laws Relation
	1.3 Thinking

	2 A Naïve Formal Model of Reasoning
	3 Additional Remarks
	4 Conclusion
	References

	Reversible Debugging in Logic Programming
	1 Introduction
	2 Preliminaries
	3 A Reversible Semantics for Logic Programs
	3.1 A Deterministic Operational Semantics
	3.2 A Reversible Semantics

	4 A Reversible Debugger for Prolog
	5 Related Work
	6 Concluding Remarks and Future Work
	References

	Towards Systematically Engineering Autonomous Systems Using Reinforcement Learning and Planning
	1 Introduction
	2 Preliminaries: Reinforcement Learning, Planning, and the Life Cycle EDLC
	2.1 Reinforcement Learning and Planning
	2.2 The Ensemble Development Life Cycle EDLC

	3 The AIDL Life Cycle for Autonomous Systems
	3.1 Requirements
	3.2 Modelling and Programming
	3.3 Validation and Verification
	3.4 Deployment and Feedback Data
	3.5 The Operations Cycle

	4 Case Studies
	4.1 Case Study: Engineering Adaptation by Simulation-Based Online Planning
	4.2 Case Study Safe Learning: Policy SYnthesis with Safety Constraints (PSyCo)
	4.3 Comparison

	5 Related Work
	6 Concluding Remarks
	A Markov Decision Processes
	References

	Strand Spaces with Choice via a Process Algebra Semantics
	1 Introduction
	1.1 Contributions
	1.2 Choice in Maude-NPA
	1.3 A Motivating Example
	1.4 Plan of the Paper

	2 Preliminaries
	3 Overview of Maude-NPA
	4 A Process Algebra for Protocols with Choice
	4.1 Syntax of the Protocol Process Algebra
	4.2 Protocol Specification in Process Algebra
	4.3 Operational Semantics of the Protocol Process Algebra

	5 Constrained Protocol Strands with Choice
	5.1 Constrained Protocol Strands Syntax
	5.2 Protocol Specification Using Constrained Protocol Strands

	6 Constrained Forwards Strand Semantics
	6.1 Transition Rules of the Constrained Forwards Strand Semantics
	6.2 Bisimulation Between Constrained Forwards Strand Semantics and Process Algebra Semantics

	7 Constrained Backwards Strand Semantics
	7.1 Transition Rules of the Constrained Backwards Strand Semantics
	7.2 Soundness and Completeness of Constrained Backwards Strand Semantics

	8 Protocol Experiments
	8.1 Integration of the Protocol Process Algebra in Maude-NPA
	8.2 Choice of Encryption Type
	8.3 Rock-Paper-Scissors
	8.4 TLS

	9 Related Work
	10 Conclusions
	A Proofs
	A.1 Proofs of Section6.2
	A.2 Proofs of Section7.2

	References

	Author Index

