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Abstract. Over the last decade, Social Media has been gradually shap-
ing our world. From the Brexit to Ukraine war, passing through US elec-
tion and COVID-19, there has been increasing attention on how social
media affects our society. This attention has nowadays become an active
research field in which researchers from different fields have proposed
interdisciplinary solutions mainly aimed at fake news detection and pre-
vention. Although this task is far to be solved.

Fake news detection is intrinsically hard since we have to cope with
textual data; moreover the early detection requirement, to prevent wide
diffusion, makes things even harder. If we now add a dynamic compo-
nent to the problem definition we can easily understand why researchers
have been keeping proposing new solutions to deal with new nuances
of the problem. In this so fast-changing field, it is easy for newcomers
to get lost. The scope of this work is not to provide a comprehensive
review of the state-of-the-art approaches but instead a quick overview
of the recent trends and how current technologies try to deal with the
unresolved issues that characterize this task.
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1 Introduction

The advent of the Web2.0 [92] was introduced with a huge emphasis on collective
culture and interoperability among end-users. The key change, compared to the
previous generation, was the user-generated content which opened up endless
opportunities for interacting and sharing information. But if this new feature
has allowed the aggregation of people around common interests, facilitating the
contamination of different cultures with healthy values and ethical principles,
it also allows for the rapid dissemination of unsubstantiated rumors and incor-
rect interpretations which very often have often negatively impacted our society
[37,91].

In general, the repercussions of bad information include opinion polarization,
escalating fear and panic, weakening faith in scientific knowledge, historical nega-
tionism, or decreased access to health care. This was especially true during the
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COVID-19 pandemic since the fast spreading of misleading health information
has increased vaccine hesitancy and delays in the provision of health care within
population high-risk classes as shown in a recent WHO review [87]. The results
of this work show the presence of much evidence that, during a crisis, the quality
of the information tends to be low and that the development of adequate coun-
termeasures, such as creating and promoting awareness campaigns, increase the
amount of reliable content in mass media along with people’s digital and health
literacy, are needed. But since those policies require a huge amount of resources
and time it is common practice to target the sources: the social media platforms.

Being social media platforms poorly regulated makes them nicely suitable for
the task of spreading any kind of information. Of course not any kind of infor-
mation is harmful to our society, and in this regard, it is useful to clarify the
pieces of information we care about through the concept of information disorder.
As described in [152], the notion of information disorder divides the alteration
of information into three categories: mis-, dis-, and malinformation. With the
term misinformation, we refer to false or inaccurate pieces of information, such
as inaccurate dates, statistics, or translation errors whose degree of deliberately
intended to deceive might be sometimes hard to assess. The same cannot be said
for the idea of disinformation which is deliberately misleading or biased infor-
mation, aimed to manipulate reality with narrative artifacts such as conspiracy
theories, rumors, or simply propaganda. Finally, malinformation is explained as
genuine (private) information about a person or corporate that is deliberately
made public with the precise intent to cause harm: one famous example is the
Russians hacked the Democrats’ emails with the precise intent to unveil details
to damage Clinton’s reputation during her first presidential run.

This as many other definitions and classifications [54,132] of the possible
nature of or way to analyze the information present on social media, and more
generally on the web, are useful in the matter of enhancing our understanding;
but those concepts are hard to formalize in languages useful for the artificial
intelligence as described in [80].

In the following sections we thus report useful insights in the process of
formalizing the problem (Sect. 2), we highlight the challenges we have to deal
with (Sect. 3), and list recent works that face these issues with deep learning
techniques (Sect. 4). Finally, in Sect. 5 we try to describe what, from our point
of view, are the most evident shortcomings and possible future research trends.

2 A Socio-technological Problem

Following [107,108] the mis-/dis- information problem should be framed as a
socio-technological one. This twofold view of the problem is something uncom-
mon but it might be useful to design new operational features or indicators to
be fed into algorithms.

In those works, authors propose a conceptual model, the disinformation and
misinformation triangle, under which to capture key elements of harmful infor-
mation and its spreading and propose interventions at a different level to detect



Misinformation and Disinformation on Social Media 19

and prevent that from happening. The model explains the spread of mis-/dis-
information as the consequence of three causal factors which have to occur simul-
taneously to have a susceptible reader affected by harmful news which is propa-
gating over social media. In this conceptual model, the factors of interest are the
susceptible readers, the (un-)intentionally (false) information, and the medium
by which the information reaches the readers.

Now, to prevent the diffusion and, as a consequence, the negative effect of the
news on the readers, the authors propose three different kinds of interventions.
The first concerns the automated identification of potentially harmful infor-
mation which should support acts aimed to prevent its spreading. The second
describes proactive educational campaigns to enhance a deeper critical judg-
ment within the readers’ minds. Third, a more structured legislative regulation
of social media. But this last point should imply governments acts to push social
media companies away from common marketing strategies [48] in favor of a more
healthy society. Because of the complexity of discussing the acting at a legisla-
tive level, here we leave this aspect out in favor of a discussion about the first
two components of the triangle: readers and information.

2.1 About Readers

In a recent work [74], authors try to highlight the importance of paying more
attention to readers. The research questions posed in that study concern how the
people, exposed to harmful information, would interpret it and which would be
the right tools to intervene to prevent the negative effect. To answer those ques-
tion authors extends a previous line of work on cognitive and ideologically moti-
vated reasoning by introducing an aspect of information familiarity-vs-novelty
to explain a major vulnerability when people are exposed to novel-vs-everyday
news.

From a cognitive perspective, it seems that, in general, many individuals tend
to rely on others’ (possible famous ones’) opinions to build their opinions1 This
form of laziness in the critical judgment process has been described in [94,95].
Those works suggest a certain inclination of such people towards believing fake
news and such aspect is often exploited by mis-/dis- information makers to
strengthen individuals’ beliefs. In this regard, [31] highlights how people who
experience a long exposition to fabricated information about a certain topic are
more susceptible to strengthening their belief in that direction.

The ability to strengthen people’s beliefs in a specific direction is the key to
unlocking the real power behind mis-/dis- information. As it is shown in [60]
stronger beliefs make easier the process of spreading the fake news, via sharing
and like, as long as they match the beliefs. This in turn produces a process that
amplifies the diffusion of the message allowing for a wider polarization [140].
At the basis of this phenomenon, there is the so-called confirmation bias [88],
which is the condition in which people become more interested in the only news
that is aligned with what they believe in. Overtime then people also become less

1 Source: https://www.factcheck.org/2016/11/how-to-spot-fake-news/.
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prone to challenge their beliefs with new information and only accept that that
supports their views [82]. The analysis of this last point should however not be
restricted to the mentioned conditions but should be also understood under the
lens of ideologically motivated reasoning.

In [59] the author investigates the people’s degree of acceptance of new infor-
mation when they are exposed to a different political stimulus. In this study not
only the acceptance but also the way, people process these new pieces of informa-
tion is examined. The results show how ideological thinking lowered the people’s
acceptance level, restricting their interest to the only evidence that supports
their own beliefs. Moreover, information processing in such contexts becomes
lazier.

The discussion made so far might explain why certain people act irrationally
while they are more inclined to misleading information. But it is worth noting
that the majority of the cited works are based on exploratory studies due to
the lack of theoretical guidance on this topic. Also, the described insights, being
human-centered, do not find an easy spot within AI tools. For that reason, most
of the research in the field only considers the information which is the topic of
the next section.

2.2 About Information

In this section, we try to model the characteristics of mis-/dis-information that
people may encounter online and how such a conceptual model can be used by AI
systems. In this regard, we follow the conceptualization proposed in [80] which
is used to facilitate the distinction among different types of information.

In [80] the authors use the term fake news as an umbrella term to start their
analysis. This choice is motivated by the observation that over the years the term
“fake news” has been used to refer to different types of content online regardless
of whether it is intentional or not. This last distinction is important since the
concept of fake news is very often tied to the idea of deceitful intent [5]. An
example of that might be the results in [14] which show as reliable news outlets
such as The New York Times, The Washington Post, and Associated Press were
involved in disseminating false information. The authors of [80] thus propose a
taxonomy of online content designed to identify signature features of fabricated
news. With this taxonomy, they try to cover the nuances behind the definition of
misinformation and also to extend its coverage to contents that are not intended
for informational purposes, such as satirical expressions, commentary, or citi-
zen journalism. The taxonomy is made of eight categories for the domain of fake
news: real news, false news, polarized content, satire, misreporting, commentary,
persuasive information, and citizen journalism. Each of these categories is char-
acterized by unique features describing linguistic properties, sources, intentions,
structural components, and network characteristics. Among these categories, we
here focus on the difference between real and fake news and refer the readers to
[80] for further details.

In general, recognizing fake news is a difficult task since it requires a consis-
tent mental effort from readers who should use common-sense and background
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knowledge to assess the veracity [66]. However, although false news tries to
imitate real information in its form, they often lack the news media’s edito-
rial style and references of reliable sources. So we could be tempt to use topic-
specific characteristics, impartiality, and objectivity as indicators to understand
the message’s nature. For example, objectivity could be verified with tools for
fact-checking and quote verification, described later, whereas impartiality might
be verified by an analysis of sources and attributions [123]. Stylistic indicators,
instead, are subtler to define since they are made by particular lexical and syntac-
tical structures [7]. The real news should be written with a peculiar journalistic
style [33] and moreover, it should lack any storytelling characteristics [123].

For example, the typical false news headlines have to catch the readers’ atten-
tion straightforwardly and in a specific way, thus they are very often character-
ized by complete claims which makes them longer than real news ones [50]. This
kind of engagement is similar to the technique called click-bait in which the user
is tempted to follow/click on the link associated with the headline to read more
about a specific event. Of course, the primary goal of this technique is not to
spread misinformation but to advertise revenues. However news of that kind has
also shown a low level of veracity [126].

Other than the mentioned features also moral-emotional words can be a
suitable indicator since their presence could indicate low content veracity. As
shown in [20] messages with moral-emotional language spread much faster.

Finally, besides the employed features one last distinction could be made
on the amount of text considered in the analysis. The analysis with the least
amount of information, that is claim-level methods [23,47,96], through medium
size or article-level methods [51,98], to large amount of text that characterizes
source-level methods [53,130].

The focus of the above-mentioned studies, regardless of the amount of the
used information, is to build automated tools aimed to detect fake. We will
discuss the fact-checking problem in the next section and later what are recent
works on this topic.

3 Challenges

3.1 Fact-Checking

Without taking into account emotional and ideological aspects, we can say that
assessing whether the news is true is a cognitively laborious process. In this
process an individual, before accepting new evidence as facts, try to verify its
reliability, truthfulness, and independence [17]. This becomes even more compli-
cated in a highly dynamic environment in which new information is produced
at an unprecedented rate under the need of engaging always larger audiences
[77]. This has led to the launch of numerous fact-checking organizations, such as
FactCheck2, PolitiFact3 and NewsGuard4 and many others.
2 https://www.factcheck.org/.
3 https://www.politifact.com/.
4 https://www.newsguardtech.com/.

https://www.factcheck.org/
https://www.politifact.com/
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The majority of these examples are based on laborious manual fact-checking
which consist of a series of procedure, for example, identifying the claim, gath-
ering evidence, check source credibility, which represents the cognitive effort
required by the reader to assess the truthfulness of the news. However, manual
validation only covers a small portion of the daily-produced new information.
For this reason automatic fact-checking has been attracting attention in the con-
text of computational journalism before [32,38] and within artificial intelligence
community later [45,165]. In the AI field, especially, thanks to the advent of deep
learning techniques the research on automated fact-checking has made impor-
tant progress [40,158]. New insights in the fields of natural language processing
(NLP) and information retrieval (IR) have allowed us to process large-scale tex-
tual information with increasing accuracy to assess the truthfulness of a claim.
For example, in [141] authors design a pipeline to identify claims (to be checked),
find appropriate evidence, and produce judgments. From there many datasets,
systems, and simpler models for fact-checking were presented RumourEval [27],
CLEF CheckThat [13], and ClaimBuster [47]. Those approaches share common
components to verify web documents such as document retrieval, claim spotters,
and claim validity checker. Other systems, such as FEVER2 [138] and SCIVER
[145], are only designed to tackle claim validation under the assumption that
claims are provided and worthy to be checked.

In general, once it is provided new information, automated fact-checking can
be thought of as a four stages process, or sub-tasks:

1. Claim detection and matching: typically identified as the first step, this
sub-task aims to identify claims that require verification [46] which is similar
to the practices of journalistic fact-checking [18]. It also involves questions
related to assessing the check-worthy of a claim [86] and how this worthiness
varies over time [12]. Recently, [61] propose a model called Claim/not Claim,
built on top of InferSent embeddings [24], with which pose attention to the
question of whether or not a claim can be verifiable with the readily available
evidence. Correlated with the claim detection there is the claim matching
problem which is often framed as a ranking task and involves the retrieval of
already checked facts w.r.t. the similarity with the fact to check [119] from
some sort of database [93].

2. Evidence retrieval: its scope is to find sources supporting or refuting the
claim. First attempts to solve the fact-checking task were based only on claims
and pattern-recognition approaches without taking in account external knowl-
edge [103,143,149]. Without supporting evidence, such attempts struggled to
evaluate well-presented misinformation [116]. Nowadays, if we consider the
quality of automatic text-generation tools, it is very difficult to distinguish
between real news and fake news by only focusing on the style [157]. On the
other side, the choice made by those works were dictated by the fundamental
issue which is that not always possible to get access to trustful information.
The methods, that try to include external knowledge sources, very often to
assess the veracity of a claim postulate the access to trusted sources, such
as encyclopedias, other media, or external knowledge bases [11,122,131,135].
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This assumption were needed since, in general, assessing the trustfulness of a
source and later verify a claim is a demanding task [68].

3. Claim verification: in this step based on the retrieved/available evidences
researchers formulate the task as a classification problem. The outputs for this
classification task ranges from a simple binary classification [84,96] to multi-
class classification in which labels represent degrees of truthfulness [3,11,120].
By taking in account the well-known limitations, the multi-class setting is in
general to prefer since the challenges of supporting strong position are very
often hard to handle.

4. Justification production: this task concerns the production of human-
interpretable explanations, or at least a set of evidence, supporting the clas-
sification decision. As discussed in [139] it is important, from a journalistic
point of view, to convince readers of what the claim is saying. In the simplest
case, we can start by presenting the evidence returned by a retrieval sys-
tem. For example, in [70] authors build a justification employing an attention
signal to highlight the salient parts of the retrieved information. However,
more recent works have focused on the generation of textual justifications,
as documented in [62], in which the system produces a summary as a proxy
to explain its decision process [9]. However, although the created summary
provides useful insights about how the model works, it misses to clarify the
exact inference procedure; a possible solution to this issue might be relying
on symbolic systems in which the justification is automatically produced as
a result of the logical-inference process [1,34].

The description made so far allows us only to introduce a few concepts along
with interesting works in the field. The methods present in the literature are
much more and several works try to provide an exhaustive overview of the sub-
ject, such as [85,133], while [126,165] have more focus on social media.

3.2 Degrees of Truthfulness, Falsehood, and Subjectivity

Even with enough amount of information it could be not so easy to assess the
truthfulness or the falsehood of a claim. In general, stories may be technically
accurate but still misleading. In [8], for example, authors build a system for
detecting cherry-picking to measure the amount of support a story has since it
is not so rare to present well-chosen evidence to support misleading news. Since
not all its information might be equally trustworthy, it is better to avoid consid-
ering a claim as a whole. Works that divide the veracity check among different
sources [155] and that assess the agreement among those [161] are less prone to
misclassify a claim although they still require improvements. Furthermore, new
methods should however face a challenging problem which is subjective in the
judgment process.

The degree of truthfulness or falsehood eventually has to do with a subjective
interpretation of the reality. This interpretation is conditioned by the audience’s
social/cultural and religious system and education background. This last point
allows us to introduce the next challenge which discusses the complexity of the
annotation process while creating coherent datasets.
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3.3 Datasets Building

State-of-the-art systems for the claim-related task and misinformation detection
heavily rely on training large language models. Those models, although pre-
trained on large-scale textual corpora, still require large and high-quality labeled
datasets to be fine-tuned to the fake news task. Despite the recent research
efforts, the available datasets are often synthetic, highly imbalanced in favor of
fake news samples, and biased. For example, using crowd-sourcing based tech-
niques datasets, as discussed for the more general task of reading comprehension
in [49,153], easily conduct to biased models as documented for the related task
of natural language inference NLI5 in [43,76].

In the context of fact-checking, [117] highlighted the effect of claim-
representative keywords on the predictions of models trained upon the dataset
FEVER [136]. Adversarial training was proposed in the context of the FEVER
2 shared task [138] as an attempt to solve this issue. Other solutions to mitigate
biases are based on making models less susceptible to catastrophic forgetting
[73,134]. Finally, authors in [114] try to make models more sensitive to subtle
differences in supporting evidence by building better contrastive samples.

The imbalance of datasets is another major source of issues since models
trained on such datasets with a high chance tend to overfit. For example, [154]
tries to alleviate this issue with a resampling procedure that involve only the
samples of the minority class.

In the following of this section, we try to report a non-exhaustive list of the
most commonly used datasets in the field of misinformation and disinformation.
However, since each dataset has unique features and differences in the annotation
process synthesizing all the datasets’ nuances in a few lines would be misleading.
We prefer to report the summary in the form of a simple table and provide the
reference to the original paper to further details.

Claim-Related Dataset. For the claim-oriented datasets, we split the sum-
mary into two tables. In Table 1 on the top, we report datasets that were built
to predict check-worthy claims in which the typical input is social media post
with textual content. While in Table 1 on the bottom the datasets for claim
validation.

Multimodal Dataset. In Table 2 we report a short list of most of the existing
multi-modal datasets. Those datasets have recently become quite popular since
the evolution of social media platforms which enhanced their text-based forums
with multi-modal environments. This happened since visual modalities such as
images and videos are more favorable and attractive to the users. As consequence
misinformation producers have heavily relied on contextual correlations between
modalities such as text and image. In Table 2, WS O TRN TP stands for the
ensemble of content providers: Wall Street, Onion, TheRealNews, and ThePoke.
5 NLI is the task of determining whether a text h, the hypothesis, can (logically) be

inferred from a given text p, called premise [19].
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Table 1. In the top table, we report the claim detection datasets, where we split the
datasets into two categories: Worthy Assessment and Checkable. Below is the table of
claim validation datasets which are expressed in terms of factual verification.

Dataset for Worthy Assessment Input Size Num. Classes Sources

CredBank [79] 1k 5 Twitter

Weibo [72] 5k 2 Twitter/Weibo

Suspicious [144] 131k 2/5 Twitter

CheckThat20-T1 [13] 8k Ranking Twitter

CheckThat21-T1A [86] 17k 2 Twitter

Debate [46] 1k 3 Transcript

ClaimRank [36] 5k Ranking Transcript

Dataset for Checkable Input Size Num. Classes Sources

CitationReason [105] 4k 13 Wikipedia

PolitiTV [61] 6k 7 Transcript

SemEval19-TA[78] 2k 3 Forum

Dataset for Factual Verification Input Size Evidence Num. Classes Source

StatsProperties [142] 7k KGa Numeric Internet

CreditAssess [97] 5k Text 2 Fact Check/Wiki

PunditFact [104] 4k - 2/6 Fact Check

Liar [150] 12k Meta 6 Fact Check

Liar-Plus [4] 12k Text/Meta 6 Fact Check

FEVER [136] 185k Text 3 Wiki

NELA [52] 136k - 2 News

BuzzfeedNews [99] 1k Meta 4 Facebook

BuzzFace [111] 2k Meta 4 Facebook

FakeNewsNet [125] 23,196 Meta 2 Fact Check

Snopes [44] 6k Text 3 Fact Check

MultiFC [10] 36k Text/Meta 2-27 Fact Check

Climate-FEVER [28] 1k Text 4 Climate

SciFact [146] 1k Text 3 Science

PUBHEALTH [62] 11k Text 4 Fact Check

COVID-Fact [109] 4k Text 2 Forum

TabFact [22] 92k Table 2 Wiki

InfoTabs [42] 23k Table 3 Wiki

HOVER [56] 26k Text 2 Wiki

WikiFactCheck [112] 124k Text 2 Wiki

FakeCovid [120] 5k - 2 Fact Check

X-Fact [41] 31k Text 7 Fact Check

AnswerFact [160] 60k Text 5 Amazon

VitaminC [115] 488k Text 3 Classes Wiki

Sem-Tab-Fact [148] 5k Table 3 Wiki

FEVEROUS [6] 87k Text/Table 3 Wiki
a Stands for Knowledge Graph



26 F. Lo Scudo

Table 2. In this table we report the fake news datasets characterized by multi-modal
input.

Dataset for Factual Verification Input Size Num. Classes Modalities Source

image-verification-corpus [16] 17k 2 image,text Twitter

Fakeddit [83] 1M 2,3,6 image,text Reddit

NewsBag [57] 215k 2 image, text WS O TRN TP

NewsBag++ [57] 589k 2 image,text WS O TRN TP

MM-COVID [69] 11,173 2 image,text,social context Twitter

ReCOVery [164] 2,029 2 text,image Twitter

CoAID [25] 5,216 2 image,text Twitter

MMCoVaR [21] 2k articles+24k tweets 2 image,text,social context Twitter

N24News [151] 60k 24 image,text New York Times

MuMiN [90] 10k 3 image,text Twitter

Although over recent years there has been an increasing interest in such kinds
of multi-modal datasets there are still data-related challenges. The first, and per-
haps most important, is the lack of comprehensive datasets since many datasets
are small in size and often imbalanced in favor of fake examples. Other current
flaws are the mono-lingual nature of most of them and the limited heterogeneity
of their content (w.r.t. images and text of the articles). This last point becomes
more apparent when we consider that many datasets are built to only cover a
specific event, such as COVID-19 or elections. In this regard, only the recent
Mumin Dataset [90] tries to address some of the issues just mentioned.

The Large-Scale Multilingual Multi-modal Fact-Checked Misinformation
Social Network Dataset (MuMin) is quite large since it comprises 26 thousand
Twitter threads (roughly 20M tweets). These threads have been aligned to 13
thousand fact-checked claims which, besides the labels, provide further informa-
tion about the context than that contained in the tweets. Finally, the authors
have chosen a conservative approach for the annotation strategy: if the claim
is mostly true then it is labeled as factual, whereas when it is half true or half
false it is labeled as misinformation. In this way, they collapse the claims’ multi-
class labeling into a binary choice under the assumption that the presence of a
significant part of false information within a claim should expose the readers to
misleading content.

4 Current Research Trends

Recent trends in the field of misinformation and disinformation detection largely
rely on deep learning techniques. The common strategies can be divided into
two major categories. The first is to use a pipeline whose components could be
pre-trained large models or not. The pipeline’s components are usually trained
independently and evaluate each input separately. The second option is a joint
distribution-based approach in which the output distribution is a function of
multiple components. In the following, we discuss some solutions for the claim-
related task and the misinformation detection with multi-modal inputs.
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4.1 Claim-Related Tasks Solutions

Claim detection is an essential part of automated fact-checking systems as all
other components need to rely on the output of this stage. Its goal is to select
claims that need to be checked later in the pipeline. The task of claim detection,
like many other tasks, has however the intrinsic issue related to the volume of
data produced on a daily base. In this scenario, researchers have been trying
not to use external evidence and frame the problem as a classification task.A
binary decision is made on whether each input sentence constitutes a claim or
not. Typically, a set of sentences is given as input.

The early systems were characterized by hand-crafted platform-dependent
features such as Reddit karma and up-votes [2] or Twitter metadata [29]. Oth-
ers approach relied on linguistic features or entities recognized in the text [167],
and syntactic ones [163]. More recently, deep learning-based methods have taken
hand-crafted features over. Recurrent and Graph neural networks have over time
proved their value in this context. Especially the possibility of introducing user’s
activity context information [166] has allowed them to build more accurate mod-
els [39]. Graph Neural Networks has also provided a solid framework to model
propagation behavior of (potentially harmful) claims [81,156].

Collecting evidence supporting or undermining a claim is a task that was
typically carried out using consolidated indexing technologies, such as Lucene6,
and entity linking based on some knowledge bases [121]. For example in [137]
authors use a pipeline, made of an evidence retrieval module and a verification
module, in which a combination of TF-IDF for document retrieval and string
matching using named entities and capitalized expressions was used. Advance in
the field of embedding representations for textual input has later opened up the
possibility of employing vectors as the element on which to compute similarity
[58] and indexing [67]. Also, better methods for text generation have allowed
to [30]’s authors to use an approach based on question-generated answering to
provide information, in the form of natural language briefs about the claim
before performing the check. In [65] authors propose to use language models as
fact-checkers, but later works have shown as this approach might be prone to
propagate the biases of the language models into the new task [64].

Something missing in all the above-mentioned methods it the lack of rea-
soning over multiple pieces of evidence. Of course, introducing a reasoning com-
ponent into a differentiable system is not an easy task. The first attempt, for
example, was based on the simple concatenation of different piece of evidence
[71,89]. But more recent ones try to aggregate information from different evi-
dence in a more elaborated way. [113] uses a joint reranking-and-verification
model to fuses evidence documents, [162] uses semantic role labeling and graph
structure to re-define the relative distances of words that, along with graph
convolutional network and graph attention network, propagate and aggregate
information from neighboring nodes on the graph.

Approaches for justification production could be based on attention to high-
lighting the span within the evidence [70,124]. However, later works [55,100,118]
6 https://lucene.apache.org/.

https://lucene.apache.org/
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have shown as removing high-score tokens may sometimes leave unaltered the
final justification while low-score ones could heavily affect the results. In the
opposite direction the research in [1,34] rely on logical languages to provide more
robust methods. Those methods are essentially rule-based approaches with the
constraint of representation power of the formalism. They employ a triplet-based
format for the knowledge to guarantee scalability but, at the same time, limit the
kind of information that can be stored in the knowledge base. Finally, following
a recent trend, authors in [62] use a generative method, based on an abstractive
approach, to provide a textual justification. However, as shown in [75], there is
a chance that such an approach could generate misleading explanations due to
hallucination phenomena.

4.2 Multi-Modal Misinformation Detection

Combinations of features e.g., text and image have been recently used to enhance
the performance of misinformation detection systems. Different fusion mecha-
nisms can be implemented, but most of them can be classified into early and
late fusion. In early fusion, all the different kinds of features are fed into one
model in their original form. The result will be later passed to the classifier
as shown in [35]. Later fusion, on the other hand, performs the fusion on the
extracted features provided by different components. Often features, such as text,
images, and social networks are concatenated into a single vector that feeds the
classifier [102,106,127]. However, it seems that simple concatenation is not very
effective to build meaningful representations. In the attempt to generate better
representation attention mechanism was used.

Different variants of attention have been proposed. For example, the Hier-
archical Multi-modal Contextual Attention Networks [101] uses a hierarchical
structural bias for the attention modules to extract more meaningful information.
[110] propose a shared cross attention transformer encoder which, thanks to the
shared layers, tries to learn correlations among modalities. Another cross-modal
attention Residual system is presented in [128] aims to selectively extract the
relevant information for a target modality from other modalities while preserving
its distinctive features. Other examples of attention mechanism for misinforma-
tion detection are [63,70,147]. Besides the attention mechanism, the other most
common types of neural architecture used for fake news detection are Graph
Neural Networks (GNNs).

GNNs have gained huge success in recent years. [129] introduces a tempo-
ral propagation-based fake news detection framework in which structure, con-
tent semantics, and temporal information are used to recognize temporal evolu-
tion patterns of real-world news. By incorporating information from the medical
knowledge graph DETERRENT [26] uses a GNN and an attention mechanism
to build knowledge-guided article embeddings which are used for misinforma-
tion detection. Finally, [159] builds a deep diffusive network model to learn the
representations of news articles, creators, and subjects simultaneously. These
representations should incorporate the network structure information thanks to
the connections among news articles, creators, and news subjects.
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The last work we discuss is [15], which uses a continual learning approach
for engagement prediction of a user in spreading misinformation. The authors
propose an ego-graphs replay strategy in continual learning which is a differ-
ent perspective compared to the work mentioned before. Ego-graphs are simple
graphs composed of a single central node (an user) and its neighbors. Based on
this kind of representation and using graph neural networks authors can predict
whether users will engage in misinformation and conspiracy theories spreading.
Also, the catastrophic forgetting issue related to the dynamic nature of online
social networks is addressed with a continual learning approach.

5 Conclusion

In this study, we tried to give an updated not-exhaustive review of the state of
the mis- and disinformation research field. We framed the problem as a socio-
technological one and provided references to important works in the fields of
psychology, journalism, and cognitive science. We paid particular attention to
these aspects because any proposed solutions should take into account the way
we, as humans, process information and how that information can be affected
by deceptive intentions of other individuals.

We strongly believe that future high-quality datasets will continue to help
progress the field if they succeed to have less biased content. This can be achieved
with a multi-disciplinary approach and, of course, with some technological assis-
tance. AI tools from natural language processing (NLP) and machine learn-
ing (ML) are advancing very quickly and can help, but the adoption of any
tool should be carefully evaluated. Also corporate, such as Twitter, Facebook,
YouTube, and Instagram, plays a critical role in this context since they are very
often the medium through which potentially-dangerous information is spread.
More regulated principles should guide those platforms.

The last point, which opens up a different discussion, regards how the chal-
lenges of this automation process concerning governance, accountability, and
censorship would eventually impact our right to free speech.
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