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Abstract. StyleGAN2 was demonstrated to be a powerful image gen-
eration engine that supports semantic editing. However, in order to
manipulate a real-world image, one first needs to be able to retrieve its
corresponding latent representation in StyleGAN’s latent space that is
decoded to an image as close as possible to the desired image. For many
real-world images, a latent representation does not exist, which necessi-
tates the tuning of the generator network. We present a per-image opti-
mization method that tunes a StyleGAN2 generator such that it achieves
a local edit to the generator’s weights, resulting in almost perfect inver-
sion, while still allowing image editing, by keeping the rest of the map-
ping between an input latent representation tensor and an output image
relatively intact. The method is based on a one-shot training of a set
of shallow update networks (aka. Gradient Modification Modules) that
modify the layers of the generator. After training the Gradient Modifica-
tion Modules, a modified generator is obtained by a single application of
these networks to the original parameters, and the previous editing capa-
bilities of the generator are maintained. Our experiments show a sizable
gap in performance over the current state of the art in this very active
domain. Our code is available at https://github.com/sheffier/gani.

1 Introduction

The ability to distinguish between synthetic images and real ones has become
increasingly challenging since the introduction of Generative Adversarial Net-
works (GAN) [16]. Although the images produced by this framework are often
indistinguishable from real ones, one lacks the ability to control the specific
outcome. Most relevant to our work is the StyleGAN [23] family of generators,
which can produce, for example, realistic faces based on random input vectors.
However, for most real-world face images, one cannot find an input vector that
would result in exactly the same image.

This is a key limitation of StyleGANs (and other GANs), with far-reaching
implications at the application level. It has been repeatedly shown that the Style-
GAN latent space displays semantic properties that make it especially suited for
image editing applications, see [6] for a survey. However, without the ability to
embed real-world images within this space, these capabilities are limited mostly
to synthetic images.
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A set of techniques were, therefore, developed in order to tune the StyleGAN
generator G such that it would produce the desired image [4,23,39]. This has
to be done carefully, since performing this tuning too aggressively would lead to
the loss of the semantic properties. While being a very active research domain,
fuelled by many concrete applications, results are still lacking and the generated
copy is still distinctively different from the desired image.

Existing methods either (i) optimize one image at a time, or (ii) employ pre-
trained feedforward networks to produce a modification of G, given an input
image I. The first category is believed to be more accurate, but slower at infer-
ence time than the second.

Our work combines elements from both approaches – we propose an opti-
mization procedure for a single image, and our procedure employs trainable
networks. The role of these networks is to estimate the change one wishes to
apply to the parameters of G. By optimizing the networks to control this change
rather than applying it directly, we regularize the change being applied. The per-
layer networks we train adapt the parameters of G based on previous parameter
variations. Thus, these changes are applied in a very local manner, separately
to each layer. Through weight sharing, the capacity of these networks is limited
and ensures that this mapping is relatively simple.

In addition to a novel architecture, we also modify the loss term that is used
and show that a face-parsing network provides a strong signal, side by side with
a face-identification network that is widely used in the relevant literature.

Our results demonstrate: (i) a far more faithful inversion in comparison to
the state-of-the-art methods, (ii) a more limited effect on the result of applying
G to other vectors in its input space, (iii) a superb ability to support downstream
editing applications.

2 Related Work

We describe adversarial image generation methods and ways to control the gen-
erated image to fit an input image.

Generative Adversarial Networks. Generative Adversarial Networks
(GAN) [16] are a family of generative models composed of two neural net-
works: a generator and a discriminator. The generator is tasked with learning
a mapping from a latent space to a given data distribution, whereas the dis-
criminator aims to distinguish between generated samples and real ones. GANs
have been widely applied in many computer vision tasks, such as generating
super-resolution images [26,49], image-to-image translation [57], and face gener-
ation [22–24].

Once trained, given an input vector, the generator produces a realistic image.
Since the mapping between the input vector and the image space is not triv-
ial, it is hard to predict the generated image from the input vector. One way
of controlling the synthesis is by feeding additional information to the GAN
during the training phase, for instance, by adding additional discrete [32,35],
or continuous [12] labels as inputs. A major caveat in this approach is that it
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requires additional supervision. To bypass this limitation, other approaches con-
strain the input vector space directly, either by applying tools from information
theory [7] or by limiting this space to a non-trivial topology [41]. As a result,
the input vector space is disentangled: different entries of the input vector con-
trol a different aspect or “generative factor” of the generated image. It has been
observed [23,37] that a continuous translation between two vectors in the GAN
latent space leads to a continuous change in the generated image. Shen et al. [42]
has further expanded this observation to face generation, where it was shown
that facial attributes lie in different hyperplanes, and are therefore controllable
using vector arithmetic in the latent space. Further investigation into the latent
space structure has been performed by applying unsupervised methods, such as
Principal Component Analysis (PCA) [18] or eigenvalue decomposition [43], or
by using semantic labels [2,42]. The existence of an underlying structure, and
the presence of a semantic algebra, make it possible to edit the generated images.

StyleGAN. StyleGAN [23] is a style-based generator architecture. Unlike the
traditional GAN, which maps a noisy signal directly to images, it splits the
noisy signal into two: (i) a style generating signal z ∈ R

512 to a style latent
space, w ∈ W = R

512, which is used globally as a set of layer-wise parameters
for the GAN (ii) additional noise, which is added to the feature maps after
each convolutional layer. This design benefits from both stochastic variation
and scale-specific feature synthesis. StyleGAN2 [24] introduced a path-length
regularization term that enables smoother style mapping between Z and W ,
together with a better normalization scheme for the generator.

Image Editing. By understanding the influence of the different entries in the
latent space, image synthesis can be controlled [7]. Specifically for face gener-
ation, this mapping has been investigated in two directions, unsupervised and
supervised. The unsupervised path aims to unveil the domain’s structure by
applying PCA [18] or eigenvalue decomposition [43]. Other works directly influ-
ence this mapping by conditioning it on supervised labels [2,42]. The existence of
such an underlying structure, and the understanding of its algebra, enables the
semantic modification of generated images, for instance, for facial editing [45].
The ability to control the generated samples is a key aspect of making GANs
useful for real-life applications.

Image Inversion. In order to edit a real image using a latent space modifica-
tion, the originating point in the latent space has to be identified. The solutions
to the inverse problem can be divided into three families: (i) optimization-based
(ii) encoder-based (iii) generator-modifying. Unlike the last approach, the first two
families do not alter any of the generator parameters. In the optimization-based
approach, a latent code w∗ is evaluated given an input image, I, in an iterative
manner [10,29], such that, I ≈ G(w∗, θ), where θ are the generator’s parameters.

For the task of face generation, Karras et al. [24] proposed an optimization-
based inversion scheme for StyleGAN2, where both the latent code w and the
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injected noise are optimized together, combined with a regularization term that
minimizes the auto-correlation of the injected noise at different scales. Abdal et
al. [1] extended this direction, by expanding latent space W to W+. To accom-
plish this, instead of constraining the latent code, w ∈ W , to be identical for
all convolutional layers, each layer is now fed with a different set of parameters.
This modification extended the dimensionality of the latent code from R

512 to
R

18×512. To preserve spatial details during inversion, Zhanget al. [54] consid-
ered a spatially-structured latent space, replacing the original one-dimensional
representation, W .

The second family of solutions is encoder-based. These methods utilize an
encoder, E, that maps between the image space and the latent space, w∗ = E (I).
Unlike the iterative family, these encoders are trained on a set of samples [17,
30]. These image encoders have also been applied for face generation, where
they are employed during training, by combining the auto-encoder framework
with a GAN [36], or more commonly, on pre-trained generative models, which
require far less training data. These approaches focus on mapping an image to an
initial latent code, w ∈ W , which may later be fine-tuned using an optimization
method [56]. pSp [38] employs a different scheme, in which an additional fine-
tuning of w is not performed; instead, a pyramid-based encoder is designed for
each style vector of the StyleGAN2 framework. e4e [46] further expands on this
idea by limiting the hierarchical structure of the w codes to be of a residual
type, so that each style vector is the sum of a basis style vector and a residual
part. Further improvement was achieved for the inversion problem by iteratively
encoding the image onto the latent space and feeding the generated image back
to the encoder as an input [3].

In the last approach, an initial w latent code is evaluated using an encoder.
As a second step, the generator is tuned to produce the required image from the
w [39]. This tuning procedure has been further improved by employing hypernet-
works [4]. In this scenario, instead of directly modifying the generator weights,
a set of residual weights is evaluated using an additional neural network. The
input to this network is the target image. Therefore, given a new image, a new
set of weights is computed.

A faithful edit is also required to preserve the original identity. Liang et
al. [28] applied Neural Spline Networks to find faithful editing directions. Editing
local aspects was accomplished by manipulating specific parts of the feature maps
throughout the generation process [48].

3 Method

Our approach adapts a StyleGAN generator for one image at a time by adding
a small correction to the generator’s parameters. This correction is computed
using the novel gradient modification modules, a set of small neural networks
that map between the gradients of the loss criteria with respect to the generator’s
parameters to the parameters’ corrections. During training, only the parameters
of the gradient modification modules are optimized (the generator parameters
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are kept frozen) with respect to the loss criteria. The output of these modules
is used to update the parameters of StyleGAN’s generator, resulting in a new
generator that is capable of faithfully generating the input image. Note that the
gradient modification modules are not added to StyleGAN and that the structure
of StyleGAN is not modified at all.

Given a candidate target image I to be edited, a corresponding latent code,
w ∈ W+ = R

18×512, is estimated using the off-the-shelf encoder e4e [46]. The
latent code, w, is fed into the pre-trained generator to produce a reconstructed
image, G(w) = G(w, θ), where the right-hand side explicitly states the param-
eters θ of network G. Since w is not an exact solution to the inverse problem,
the reconstructed image is usually of poor quality. In our method, w does not
change. Instead, we tune the generator parameters θ to improve the generated
image, obtaining G(w, θ′) ∼ I, where θ′ are the tuned parameters.

Consider the following image similarity loss function,

L (I1, I2) = λ1Lrec + λ2Llpips + λ3Lsim + λ4LFP , (1)

which is the sum of four terms. The first term is a pixel-wise reconstruction loss,
the L2 or the Lsmooth

1 [15] distance between the images I1 and I2. The second
term, Llpips, is a perceptual similarity loss [55], that relies on feature maps from a
pre-trained AlexNet [44] on the ImageNet dataset. Lsim is an identity-preserving
similarity loss that is applied on a pair of real and reconstructed images. This
loss term accounts for the cosine distance of feature vectors extracted from a
pre-trained ArcFace [11] facial recognition network for the facial domain, and a
pre-trained MoCo [8] for the non-facial domains, following [4,46]. The last term
is a multi-layer face-parsing loss, LFP . Similarly to Lsim, it measures the layer-
wise aggregated cosine distance of all the feature vectors from the contracting
path of the pre-trained facial parsing network P [27], with a U-Net [40] backbone.
In total, 5 feature vectors are used for the cosine distance evaluation.

Tuning the G’s parameters, θ, involves the estimation of the modified param-
eters, θ′, using a set of feed-forward networks. Let li be the ith layer of G, and let
θi and ∂L

∂θi
be its learnable parameters and the gradients of the objective function

w.r.t to these parameters, respectively. Unlike PTI [39], which applies a regular
gradient step to update θi, the gradient updates are based on the mapping,

θ′
i = θi � (1 + Δθi) = θi �

(
1 + Mi

(
∂L
∂θi

))
, (2)

where M = {Mi} is a set of gradient modification modules, each mapping
between the original gradients, ∂L

∂θi
, and the parameter correction, Δθi.

Each module Mi contains a sequential set of l = 1 . . . L residual blocks [20].
Let yl be the input to the lth residual block. The output of block l, yl+1 is then:

r = W l
2σ

(
SNl

2

(
W l

1σ
(
SNl

1 (yl)
)))

+ bl (3)

yl+1 = yl + r , (4)

where σ is the LeakyReLU [31] activation function, with a slope of 0.01 and SN
is the Scale Normalization (SN) [34]. The learnable parameters of each block
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Fig. 1. The structure of one residual block of a gradient modification module, Mi. The
input to the first block, y0 is, ∂L

∂θi
.

reside in two linear operators, W l
1 and W l

2, in the bias term, bl, and in the scale
coefficient of the SN layer. The parameters of W l

1 and W l
2 are initialized according

to [19] from the normal distribution, with an initial standard deviation factored
by 0.1, whereas the bias, bl is sampled uniformly. All the Mi networks assigned
to convolutional layers with the number of channels, cin = cout = 512, share the

same parameters, ψi =
{

W l
1,W

l
2, b

l,SNl
1,SNl

2

}L

l=1
. During optimization, (only)

the parameters {ψi} of the set M are optimized to minimize the loss function,

Ltotal = λeL (I,G(w, θ′)) + λlL (G(f(z), θ), G(f(z), θ′)) (5)

where z ∼ N (0,1) ∈ R
512, and f is the style mapping of StyleGAN [23] so style

mapping, f(z) lies in W (and not in W+). The first term in Eq. (5) is responsible
for generating a high-quality image. It is crucial that the optimization procedure
should not dramatically alter the mapping G : w → I as a large variation in
the mapping would require the re-identification of the editing directions. The
second term in Eq. (5), a localization regularizer [33,39], prevents the generator
from drifting by forcing the generator to produce identical images for randomly
sampled latent codes. An outline of our method appears in Algorithm 1 (Fig. 1).

4 Experiments

We conduct an extensive set of experiments on various image synthesis datasets.
For all image domains, our method utilizes a pre-trained StyleGAN2. For the
facial domain, this pre-trained network was optimized for generating facial
images distributed according to the FFHQ [23] dataset, whereas the inversion
and editing capabilities of our approach are evaluated over images from the test
set of the Celeb-HQ [22] dataset. Our method is also evaluated on Church and
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Algorithm 1 Method Outline
Input: Image I, generator Gθ, encoder E, M
Output: G(w, θ′)

w ← E(I) � Obtain w from a pre-trained encoder
for i ∈ 1 . . . niterations do

Compute ∂L(I,G(w,θ))
∂θ

for Mi ∈ M do

Δθi = Mi

(
∂L
∂θi

)
� L in Eq. (1)

end for
Sample z ∼ N (0,1) ∈ R

512 � Localization
Compute ∂Ltotal

∂ψ
� Ltotal in Eq. (5)

Update the parameters ψ of M
end for

Table 1. The loss coefficients and number of running iterations that were used by our
method for each of the different datasets.

Iterations λe λl λ1 λ2 λ3 λ4

CelebA-HQ 300 1.0 0.2 1.0 0.8 0.1 1.0

AFHQ-Wild 300 1.0 0.2 1.0 0.8 0.1 1.0

Stanford Cars 400 1.0 0.2 1.0 0.8 0.1 –

LSUN Horses 800 1.0 0.2 1.0 0.8 0.1 –

LSUN Church 800 1.0 0.2 1.0 0.8 0.1 –

Horses from the LSUN [53] dataset, on automobiles from Stanford Cars [25],
and on wildlife images from AFHQ-WILD [9]. The pre-trained models for these
domains were acquired from the e4e [46] and HyperStyle [4] official GitHub
repositories. The initial inverted vectors, w ∈ W+, were also obtained using the
e4e encoders in these repositories. Since there is no pre-trained encoder to W+

space for the AFHQ-WILD dataset, our method is evaluated on this using the
W latent space.

For all experiments, the Ranger [51] optimizer was used, with a learning rate
of 0.001. The number of iterations and the loss coefficients used for our method
appears in Table 1. For the CelebA-HQ and AFHQ-Wild datasets, Lpixel-wise =
L2 and for Stanford Cars, LSUN Church, and LSUN Horses, Lpixel-wise = Lsmooth

1

with β = 0.1. The difference in the number of iterations depends on the quality
of the reconstruction of the original generator G from w. Both LSUN Church
and LSUN Horses resulted in a poor initial reconstruction and required twice as
many iterations.

Table 2 presents four evaluation criteria for reconstruction quality over the
CelebA-HQ dataset. The four metrics compare the input image I with the one
generated by the inversion method, G(w, θ′). These metrics are the pixel-wise
similarity, which is the Euclidean norm L2, the perceptual similarity, LPIPS [55],
the structural similarity score, MS-SSIM [50], and identity similarity, ID [21],
between the input image, I, and its reconstruction, G(w, θ′). Our method out-
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Table 2. Reconstruction metrics on the CelebA-HQ test set.

Method ↑ID ↑MS-SSIM ↓LPIPS ↓ L2

StyleGAN2 [24] 0.78 0.90 0.020 0.090

PTI [39] 0.85 0.92 0.090 0.015

IDInvert [56] 0.18 0.68 0.220 0.061

pSp [38] 0.56 0.76 0.170 0.034

e4e [46] 0.50 0.72 0.200 0.052

ReStylepSp [3] 0.66 0.79 0.130 0.030

ReStylee4e [3] 0.52 0.74 0.190 0.041

NP-GAN-I [14] − − 0.283 0.004

HyperStyle [4] 0.76 0.84 0.090 0.019

HFGI [5] − − 0.100 0.021

HyperInverter [13] 0.60 0.67 0.105 0.024

Feature-Style Encoder [52] 0.87 − 0.066 0.019

Ours 0.99 0.97 0.020 0.003

Table 3. Reconstruction metrics on the Stanford Cars dataset [25] test set.

Method ↑MS-SSIM ↓LPIPS ↓ L2

StyleGAN2 [24] 0.79 0.16 0.060

PTI [39] 0.93 0.11 0.010

pSp [38] 0.58 0.29 0.100

e4e [46] 0.53 0.32 0.120

ReStylepSp [3] 0.66 0.25 0.070

ReStylee4e [3] 0.60 0.29 0.090

HyperStyle [4] 0.67 0.27 0.070

NP-GAN-I [14] − 0.15 0.006

Ours 0.94 0.03 0.010

performs all other methods in all metrics except LPIPS, where the original Style-
GAN2 inversion approach matches ours.

Table 3 evaluates the reconstruction quality for the Stanford Cars dataset,
Table 4 for the AFHQ-Wild dataset, Table 5 for the LSUN church dataset
and Table 6 for the LSUN horses dataset, using three evaluation criteria: the
pixel-wise Euclidean norm, L2, the perceptual similarity, LPIPS, and the MS-
SSIM [50] score. Our method outperforms all other methods on the AFHQ-Wild
and LSUN church datasets. In the Stanford Cars and the LSUN horses datasets,
our approach surpasses other approaches in all evaluation metrics, except for the
L2 metric, where it is second to Near Perfect GAN Inversion (NP-GAN-I) [14].

Inversion Quality. We begin with a qualitative evaluation of reconstructed
images. Figure 2 demonstrates the reconstruction of facial images taken from
the CelebA-HQ [22] dataset, and Fig. 3 demonstrates the reconstruction of car
images taken from the Stanford Cars [25] dataset. We compare the reconstructed
images produced by our method with the following previous approaches: pSp [38],
e4e [46], ReStylepSp [3], ReStylee4e [3], HyperStyle [4].
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As can be seen in Fig. 2, our method is able to generate almost identical
reconstructions. The first and third rows demonstrate the reconstruction of dif-
ficult examples. Our method is able to produce near-identical reconstruction,
whereas all other methods struggle to achieve inversion of good quality. The sec-
ond row demonstrates the reconstruction of a relatively easy example. Although
all methods are able to produce meaningful reconstruction, only our method is
truly able to preserve identity and properly reconstruct fine details (such as gaze,
eye color, dimples, etc.).

As can be seen in Fig. 3, there is a large gap between our method and the other
ones. Specifically, all baseline methods struggle to reconstruct various elements
(fine or coarse). In all three rows, only our method is able to reconstruct the
coarse shape of the car properly. In the first row, we can see that only our
method is able to reconstruct the following elements properly: (i) the coarse
shape of the car, (ii) the shape of the headlight, (iii) the fact that the lights are
on, (iv) the absence of a roof, (v) the car’s logo. In the second row, only our
method is able to reconstruct the following elements properly: (i) shape of the

Table 4. Reconstruction metrics for AFHQ-Wild test set.

Method ↑MS-SSIM ↓LPIPS ↓ L2

StyleGAN2 [24] 0.82 0.13 0.030

PTI [39] 0.93 0.08 0.010

pSp [38] 0.51 0.35 0.130

e4e [46] 0.47 0.36 0.140

ReStylepSp [3] 0.57 0.21 0.050

ReStylee4e [3] 0.52 0.25 0.070

HyperStyle [4] 0.56 0.24 0.060

NP-GAN-I [14] − 0.38 0.014

Ours 0.96 0.03 0.006

Table 5. Reconstruction metrics on the LSUN churches [53] (outdoor) test set.

Method ↑MS-SSIM ↓LPIPS ↓ L2

StyleGAN2 [24] 0.4797 0.325 0.167

PTI [39] 0.6968 0.097 0.051

pSp [38] 0.4070 0.310 0.130

e4e [24] 0.3481 0.420 0.140

ReStyle [3] 0.3878 0.377 0.127

HFGI [5] − 0.220 0.090

HyperInverter [52] 0.5762 0.223 0.091

Ours 0.9479 0.015 0.014
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headlights, (ii) side-mirrors, (iii) color tone, (iv) reflection. In the third row, only
our method is able to reconstruct the following elements properly: (i) wheels, (ii)
placement and size of the passenger window, (iii) side-mirror shape and color
(Fig. 4).

To test the effect of the number of residual blocks, L, of the gradient mod-
ification modules, the image reconstruction performance of our approach was
evaluated for 200 randomly sampled images from the CelebA-HQ test set. As
Table 7 shows, adding more blocks slightly improves the image quality scores of
the MS-SSIM, LPIPS, and L2 metrics, whereas it hardly degrades the identity
preservation score.

Table 6. Reconstruction metrics for LSUN horses.

Method ↑MS-SSIM ↓LPIPS ↓L2

e4e [24] 0.25 0.431 0.1740

ReStyle [3] − 0.525 0.159

NP-GAN-I [14] − 0.141 0.005

Ours 0.94 0.016 0.010

Fig. 2. Visual comparison of image reconstruction quality on CelebA-HQ.

In order to assess the contribution of the normalization scheme utilized by
our approach our model was evaluated on the first 200 samples from the test
set of CelebA-HQ. First, we test whether the inputs to the module Mi have to
be normalized using SN, Instance Normalization (IN) [47], or kept untouched.
Additionally, we test which normalization scheme should be applied inside each
residual block. Table 8 summarizes the different normalization choices. As can
be seen, not applying normalization in the residual block harms all evaluation
metrics, whereas normalizing the inputs prior to feeding them into the gradient
modification modules, Mi, is not necessary.
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Fig. 3. Visual comparison of image reconstruction quality on the Stanford Cars.

Fig. 4. Visual comparison of image reconstruction quality on the LSUN Church. HI
stands for HyperInverter [52]

Fig. 5. Pose, smile and age editing using InterFaceGAN [42] on CelebA-HQ.

Editing Quality. The ability of our method to retain the original editing direc-
tions of StyleGAN is seen in Fig. 5 for the CelebA-HQ dataset, editing directions
and tools were taken from InterFaceGAN [42]. A visual comparison to other
approaches for Stanford Cars and LSUN Church datasets appears in Fig. 7 and
Fig. 6, respectively. For these datasets, the editing directions were taken from
GANSpace [18]. Evidently, unlike other approaches, our method is able to retain
the editing direction without harming image quality, for instance, on the automo-
tive images, it is the only approach that modifies the color uniformly, whereas in
the outdoor image in Fig. 6, it does not introduce artifacts or change the image’s
content.
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Face-Parsing Loss. Figure 8 shows the benefits of applying the face-parsing
loss to images from the CelebA-HQ and AFHQ-Wild datasets. As can be seen, for
the facial image, the reconstructed image retains the fine details in the lips when
the parsing loss is applied. Furthermore, even though the parsing loss utilizes a
pre-trained network, trained on the task of human facial semantic segmentation,
it also improves the reconstruction quality for other non-human facial domains.

Localization Regularization. The localization term prevents model drifting,
which is often manifested as additional artifacts. As seen in Fig. 9, it is helpful
in preventing the diffusion of the skin color to the teeth.

Table 7. The effect of the number of residual blocks, L, on image reconstruction. These
results are obtained on a fixed evaluation set consisting of 200 randomly sampled images
from the CelebA-HQ test set.

L # Parameters ↑ID ↑MS-SSIM ↓LPIPS ↓L2

1 1, 396, 658 0.99773 0.9739 0.0201 0.0033

2 2, 793, 316 0.99769 0.9778 0.0177 0.0028

3 4, 189, 974 0.99751 0.9785 0.0170 0.0027

4 5, 586, 632 0.99729 0.9790 0.0167 0.0026

Table 8. Different normalization schemes applied to 200 samples from the test set of
the CelebA-HQ dataset. PreNorm stands for normalizing the inputs prior to the appli-
cation of Mi, and PostNorm stands for the normalization scheme applied in each resid-
ual block. SN is the Scale Normalization [34] and IN is the one-dimensional Instance
Normalization [47].

PreNorm PostNorm ↑ID ↑MS-SSIM ↓LPIPS ↓ L2

(a) − − 0.834 0.765 0.172 0.039

(b) − IN 0.996 0.996 0.030 0.005

(c) − SN 0.998 0.998 0.020 0.003

(d) IN − 0.895 0.802 0.151 0.032

(e) IN IN 0.997 0.974 0.021 0.003

(f) IN SN 0.998 0.973 0.021 0.003

(g) SN − 0.997 0.778 0.168 0.037

(h) SN IN 0.857 0.972 0.023 0.004

(i) SN SN 0.997 0.974 0.021 0.003
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Fig. 6. Editing quality on LSUN Church using GANSpace [18]

Fig. 7. Editing quality on the Stanford Cars using GANSpace [18]
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Fig. 8. Visual comparison of the effect of training with LFP . (a) Ground truth (b)
with LFP (c) without LFP .

Fig. 9. Image reconstruction. (a) with localization. (b) without localization

5 Conclusions

The proliferation of work devoted to effectively inverting StyleGANs indicates an
acute need for such technologies, in order to perform image editing and semantic
image manipulations. In this work, we present a novel method that employs
learned mappings between the loss gradient of a layer and a suggested shift to the
layer’s parameters. These shifts are used within an iterative optimization process,
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in order to fine-tune the StyleGAN generator. The learning of the mapping
networks and the optimization of the generator occur concurrently and on a
single sample.

We conduct a set of experiments that is considerably more extensive than
what has been presented in recent relevant contributions, showing that the modi-
fied generator produces the target image more accurately than all other methods
in this very active field. Moreover, it supports downstream editing tasks more
convincingly than the alternatives.
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(grant ERC CoG 725974).

A Additional Qualitative Results

(See Figs. 10, 11, 12 and 13).

Fig. 10. Visual comparison of image reconstruction quality on the AFHQ-Wild
dataset.
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Fig. 11. Additional Pose, smile and age editing using InterFaceGAN [42] of images
from the CelebA-HQ dataset.
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Fig. 12. Additional visual comparison of editing quality (Stanford Cars). Edits were
obtained using GANSpace [18]

Fig. 13. Visual comparison of editing quality (LSUN Horses). Edits were obtained
using GANSpace [18]
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