
Prototype Softmax Cross Entropy: A New
Perspective on Softmax Cross Entropy

Qendrim Bytyqi1(B), Nicola Wolpert1, Elmar Schömer2,
and Ulrich Schwanecke3

1 Stuttgart University of Applied Sciences, Stuttgart, Germany
{qendrim.bytyqi,nicola.wolpert}@hft-stuttgart.de

2 Johannes Gutenberg-University Mainz, Mainz, Germany
schoemer@informatik.uni-mainz.de

3 RheinMain University of Applied Sciences, Wiesbaden, Germany
ulrich.schwanecke@hs-rm.de

Abstract. In this work, we consider supervised learning for image clas-
sification. Inspired by recent results in the field of supervised contrastive
learning, we focus on the loss function for the feature encoder. We show
that Softmax Cross Entropy (SCE) can be interpreted as a special kind
of loss function in contrastive learning with prototypes. This insight pro-
vides a completely new perspective on cross entropy, allowing the deriva-
tion of a new generalized loss function, called Prototype Softmax Cross
Entropy (PSCE), for use in supervised contrastive learning.

We prove both mathematically and experimentally that PSCE is supe-
rior to other loss functions in supervised contrastive learning. It only
uses fixed prototypes, so no self-organizing part of contrastive learning
is required, eliminating the memory bottleneck of previous solutions in
supervised contrastive learning. PSCE can also be used equally success-
fully for both balanced and unbalanced data.

Keywords: Deep learning · Loss function · Contrastive learning ·
Representation learning · Image classification

1 Introduction

In supervised learning, neural networks for image classification usually consist
of a feature encoder and a classifier. In a first step, the feature encoder converts
an input into a feature vector. The feature vector is then transformed into a
categorical distribution by the classifier, from which the class assignment can
be derived. For balanced data, for which all classes are equally represented in
training, the softmax cross entropy (SCE) is often used as a loss function for
training the entire network as a whole. We call this the standard setup for SCE.
This standard setup has the advantage that training can be performed with
moderate batch sizes and a relatively small number of epochs, which allows
training on affordable hardware.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-31438-4_2.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Gade et al. (Eds.): SCIA 2023, LNCS 13886, pp. 16–31, 2023.
https://doi.org/10.1007/978-3-031-31438-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31438-4_2&domain=pdf
https://doi.org/10.1007/978-3-031-31438-4_2
https://doi.org/10.1007/978-3-031-31438-4_2

Prototype Softmax Cross Entropy 17

Inspired by recent findings in the field of supervised contrastive learning (CL)
that separating the training with different settings for the feature encoder and
the classifier is more efficient [20], we focus in this paper on the loss function
for the feature encoder. The training of the feature encoder is done with a non-
linear projection network and the training of the classifier with a linear MLP.
Furthermore, a multiview batch is used by generating two augmented variants for
each object for the feature encoder training. This is necessary for CL methods
because there must be at least one positive example per object for the loss
functions. We call this setup the CL setup.

Khosla et al. [20] have successfully transferred the ideas of self-supervised
representation learning to supervised contrastive learning focussing on balanced
data. Wang et al. [32] and subsequent Li et al. [25] follow the approach of explic-
itly defining a prototype for each class towards which the objects of the same
class are pulled and from which the objects of the other classes are pushed
away. These approaches focus on unbalanced data. It has been shown (see e.g.
[20,25,32]) that CL increases class separability and hence classification accuracy
in supervised learning compared to the standard setup using SCE. The big dis-
advantage of the state-of-the-arts solutions in supervised CL for balanced [20]
and unbalanced [25] data is that the self-organization of the data requires large
batch-sizes and many training epochs. A detailed discussion ot the loss functions
used in [20,25,32] is given in Sect. 3.

In this work, we propose a new type of loss function for supervised learning.
To do so, we first show that SCE has a close similarity to the CL loss function
in [32]. Thereby, SCE implicitly uses the standard unit vectors in R

C as pro-
totypes (in the sense of prototype CL) where C is the number of classes to be
determined. Our new perspective on SCE enables two important new ways to
improve supervised CL. First, the prototypes in SCE can be chosen to make the
best use of the available space on the unit hypersphere. Second, SCE can be
embedded into the CL setup in order to take advantage of supervised CL.

We derive a new generalized loss function, which we call Prototype Softmax
Cross Entropy (PSCE), in which the prototypes can be chosen arbitrarily and for
which SCE is a special case. To make optimal use of the available space, we use
the corners of a (C −1)-simplex in R

D, D ≥ C −1, as our prototypes. We further
embed PSCE into the CL setup. We discuss the advantages of PSCE in the CL
setup, both in comparison to SCE in the standard setup and in comparison to
the loss functions previously used in supervised CL [20,25,32].

Since our solution uses only fixed prototypes, no self-organizing part of CL is
required, solving the memory bottleneck of previous solutions. Moreover, PSCE
can be used for both balanced and unbalanced data in the same way, achiev-
ing state-of-the-art results. In Sect. 5 we experimentally verify our theoretical
considerations with the balanced data sets Cifar10, Cifar100 [21] and ImageNet-
1K [28]. The experiments show that the use of PSCE improves the performance
of image classification in supervised learning compared to previous methods. For
the long-tailed setting, we use Cifar10-LT and Cifar100-LT and PSCE reaches
state-of-the-art performance.

18 Q. Bytyqi et al.

2 Previous Work

Variants of SCE. SCE is the most widely used loss function for supervised
image classification on balanced data. Some works discuss the weaknesses of
SCE and adapt SCE, for example, to reduce sensitivity to noisy labels [30] or to
improve the separation of feature vectors of the feature encoder in the case of
unbalanced data [6,12]. For unbalanced data, the output of the classifier trained
by SCE is usually biased. Some approaches, such as [17,27], aim to eliminate
this bias by applying a logit adjustment based on the label frequencies. Oth-
ers distribute sample selection evenly among classes during training [1,4,8] or
balance the loss function so that low-frequency classes contribute more than
high-frequency classes [5,6,11]. For both balanced and unbalanced data, it is
useful to separate the training of the feature encoder and classifier with different
loss functions [19,20,36]. For unbalanced data, [19] found that different sampling
methods for the training of the feature encoder and the classifier are beneficial.

Contrastive Learning. CL has achieved great success in self-supervised repre-
sentation learning [3,7,9,10,13–16,29,31,34,35]. The task is to generate semanti-
cally meaningful feature vectors (embeddings) generated by a feature encoder for
the individual objects of an unlabeled data set. The CL loss is usually not applied
directly to the embeddings of the feature encoder, but to embeddings generated
by a projection network. This is achieved by contracting the embeddings of aug-
mented variants of an object and pushing them away from the embeddings of
other objects [9,14]. Supervised contrastive learning (SCL) [20] transfers the idea
of self-supervised CL to the supervised setting. The key idea is to select positive
samples from the same class and negative samples from the other classes. SCL
focussed on balanced data on which it shows a very good performance.

Prototype CL. Prototype CL defines one prototype per class and applies the
idea of CL such that embeddings of input objects are pulled towards their respec-
tive prototypes and pushed away from the prototypes of other classes. In self-
supervised CL, this idea has been successfully pursued by determining prototypes
using mean vectors of clusters [24] or by using the mean vectors of the available
embeddings [23] in few-shot learning. Prototype supervised contrastive learning
(PSC) [32] applies this idea to supervised learning by determining prototypes
as mean embeddings for each class. To improve robustness to data imbalances,
[18] introduce k-positive contrastive learning (KCL), so that the classes have
the same number of positive pairs in a batch. Targeted supervised contrastive
learning (TSC) [25] builds on this idea and additionally ensures that the mean
embeddings of the classes are equally distributed in the feature space even for
unbalanced data. This is achieved by selecting prototypes equally distributed on
the unit hypersphere.

3 Related Methods

In this section, we shortly discuss the methods respectively loss functions that
are most related to our work and introduce our notation.

Prototype Softmax Cross Entropy 19

3.1 Supervised Contrastive Learning (SCL)

Khosla et al. [20] have shown that CL can successfully be transferred from the
self-supervised to the supervised setting. Since the data set is labeled, one can
form several positive pairs per object. They apply the CL setup with multiview
batch and separate training for feature encoder and classifier. The loss function
used in [20] is

LSCL = −
∑

y∈Bf

1
|Py|

∑

y+∈Py

log
exp

(
y

||y|| · y+

||y+||/τ
)

∑
yj∈Bf\{y} exp

(
y

||y|| · yj

||yj ||/τ
) , (1)

where Bf = {y1, . . . ,yn} is the set of embeddings of the current batch, generated
by a feature encoder followed by a projection network f , τ ∈ R

+ is a scalar
temperature hyperparameter and Py is the set of all positive examples y+ of
y ∈ Bf . It is a direct adaptation of the loss functions used in the self-supervised
case [9,14]. The major drawback of SCL is its high memory consumption, since
a large batch size relative to the number of classes is required to achieve good
results (see [32]).

3.2 Prototype Supervised Contrastive Learning (PSC)

Wang et al. [32] have transferred the idea of prototypes to the field of super-
vised contrastive learning. The prototypes ci are normalized mean embeddings
of objects belonging to class i. Their loss function,

LPSC = − log
exp

(
y

||y|| · cj/τ
)

∑
k �=j exp

(
y

||y|| · ck/τ
) (2)

is also a direct variant of the loss functions in [9,14], where the number of
negative examples is exactly C − 1. In contrast to (1), the first sum over the
elements in the batch Bf is omitted, since the positive and negative examples
no longer depend on the elements in the batch. However, Li et al. [25] have
shown that the direct adaption of loss functions from unsupervised CL leads to
an unevenly distributed feature space for unbalanced data, as the strong classes
tend to capture the feature space.

3.3 Targeted Supervised Contrastive Learning (TSC)

Since loss functions from supervised CL, such as PSC, tend to have strong classes
dominating the feature space, Li et al. [25] introduce the targeted supervised
contrastive (TSC) loss function

20 Q. Bytyqi et al.

LTSC =
−1

N(k + 1)

N∑

i=1

∑

y+∈B+
i,k

⎛

⎜⎜⎝log
exp

(
yi

||yi|| · y+

||y+||/τ
)

∑
y−∈Bf

exp
(

yi

||yi|| · y−
||y−||/τ

)

+ λ · log
exp

(
yi

||yi|| · tyi
||tyi ||/τ

)

∑
y−∈Bf

exp
(

yi

||yi|| · y−
||y−||/τ

)

⎞

⎟⎟⎠ ,

(3)

which is composed of two parts. The first component is the KCL loss used in
[18] which is similar to SCL for balanced data. The second component of TSC
attempts to ensure that all classes are evenly distributed in the embedding space
when the data is unbalanced. This is achieved by using uniformly distributed
prototypes tyi

. This second term in principle follows the idea of PSC, but with
different prototypes. As in SCL, the memory requirement of TSC is large.

3.4 Softmax Cross Entropy (SCE)

Softmax cross entropy (SCE) was designed for classification tasks [2,22]. The aim
is to optimize a categorical distribution for an object in such a way that the value
of the corresponding class is maximized. In the standard setup, the canonical
unit vectors serve as the optimal categorical distribution for the training of the
entire network as a whole. If C ∈ N is the number of classes, y = (y1, . . . , yC)
is the output of a neural network for an input x and t = (t1, . . . , tC) is the
canonical unit vector in R

C which represents the class of x, the SCE loss is
defined as

LSCE = −
C∑

i=1

ti · log exp(yi)∑C
k=1 exp(yk)

. (4)

In this standard setup, SCE has the disadvantage that its performance is not
optimal and it is useful only for balanced data.

4 Proposed Method

In this section we describe our method and derive our new loss function Prototype
Softmax Cross Entropy (PSCE). In a first step, we show that SCE has a strong
resemblance to PSC.

4.1 Softmax Cross Entropy from the Perspective of CL

Usually SCE is used in the standard setting as a loss function for training the
entire network consisting of feature encoder and classifier as a whole. However,
as mentioned before, [20] has shown that separating the training from feature

Prototype Softmax Cross Entropy 21

encoder and classifier is more efficient in the context of supervised CL for image
classification. Based on this, we analyze SCE as a loss function for the feature
encoder.

With y being in class j and t = (t1, . . . , tC) = ej , the SCE loss can be
rewritten as

LSCE = −
C∑

i=1

ti · log exp(yi)∑C
k=1 exp(yk)

= − log
exp(yj)∑C
k=1 exp(yk)

(5)

= − log
exp(y · ej)∑C
k=1 exp(y · ek)

. (6)

Comparing (6) with the prototypical contrastive loss function (2) shows that
SCE has a very similar structure. SCE implicitly uses the canonical unit vectors
in R

C as prototypes in the sense of prototype CL. This new perspective on SCE
opens two important new ways to improve supervised CL:

1) The prototypes in SCE can be chosen such that they optimally use the avail-
able space on the unit hypersphere.

2) SCE can be embedded into the CL setup to take advantage of the benefits of
supervised CL.

In the following, we discuss a direct generalization of SCE for the CL setup.

4.2 Prototype Softmax Cross Entropy (PSCE)

An obvious generalization of softmax cross entropy is to replace the prototypes
ei ∈ R

C with arbitrary pairwise different normalized prototypes pi ∈ R
D, i =

1, . . . , C, for an arbitrary dimension D. We call the resulting loss function

LPSCE = − log
exp(y · pj)∑C
k=1 exp(y · pk)

(7)

Prototype Softmax Cross Entropy (PSCE). When comparing PSCE to the CL
loss functions SCL (1), PSC (2) and TSC (3) there are two main differences:

1) The output y is not normalized in PSCE. A side effect of this change is that
in PSCE the temperature τ is not necessary.

2) The denominator in PSCE has C summands and not C − 1 as in PSC. In
PSCE additionally the prototype of the class to which y belongs is used in
the denominator.

We will discuss the effects of these two changes in the following two sections.

4.3 Omitting Normalization

When looking at the three loss functions SCL (1), PSC (2) and TSC (3), it is
noticeable that all three use normalized vectors. This is important in CL, as

22 Q. Bytyqi et al.

shown experimentally in [33] and analytically in [20]. To see how the lack of
normalization in PSCE affects the behavior of the embeddings that pull toward
or push away from the normalized prototypes, we reformulate Eq. (7) (for details
see the Supplementary) to

LPSCE = log

⎛

⎜⎜⎜⎝1 +
∑

k �=j

exp
(
||y||

(y
||y|| · pk

︸ ︷︷ ︸
=:Ak

− y
||y|| · pj

︸ ︷︷ ︸
=:B

)

⎞

⎟⎟⎟⎠ . (8)

For nomalized embeddings and prototypes, Ak and B are cosine similarities
with values in [−1, 1]. To minimize PSCE, Ck := Ak − B must be minimized.
This is achieved if B = 1 and the Ak for all k �= j are as small as possible.
Since the prototypes are pairwise distinct and B = 1, Ak < 1 holds for all k �= j.
Therefore, Ck is negative for all k �= j and the expression in (8) becomes minimal
when ||y|| becomes maximal.

This leads to the following differences in the behavior of the embeddings
during training between SCL, PSC and PSCE (see also Fig. 1), while TSC is a
combination of SCL and PSC.

b)a) c)

Fig. 1. Behavior of 2D embeddings during training using a) SCL, b) PSC and c) PSCE.

a) In SCL (see Eq. (1) and Fig. 1 a)), the embeddings are normalized and thus
all lie on the unit sphere. The embeddings of the positive pairs (blue dots)
are contracted and pushed away from the negative examples (red dots).

b) In PSC (see Eq. (2) and Fig. 1 b)), the embeddings are also normalized. Here,
the embeddings of one class are pulled towards a prototype (blue triangle) and
pushed away from the prototypes of the other classes (red triangle). Again,
all embeddings and prototypes lie on the unit sphere.

c) In contrast, in PSCE (see Eq. (7) and Fig. 1 c)) the embeddings y are not
pulled towards the corresponding prototypes on the unit sphere, but are
pulled outwards in the direction of its orange corresponding prototype vector.
What remains the same is that the embeddings y are pushed away from the
prototypes of the other classes. This gives the embeddings of different classes
the possibility to take a further distance from each other.

Prototype Softmax Cross Entropy 23

A visualization of the learned embeddings of the datasets Cifar10 (balanced)
and Cifar10-LT (unbalanced), for D = 2, is given in Fig. 2. It can be seen that
all classes are equally well separated in both scenarios.

Fig. 2. Visualization of the learned embeddings on Cifar10 and Cifar10-LT.

4.4 Adding Hard Mining Support

Our loss function PSCE differs from PSC (2) in that the denominator also con-
tains the summand k = j for the corresponding prototype pj . The importance
of this summand is shown analytically and also experimentally in the following.

As shown in the Supplementary, the gradient of the partial derivative of
PSCE with respect to y is:

∂LPSCE

∂y
= −

∑
j �=k(pj − pk) · exp(y · pk)

∑
j �=k exp(y · pk) + exp(||y|| · y

||y|| · pj

︸ ︷︷ ︸
=:A

)
. (9)

One can see that in (9) the derivative of PSCE differs from the one of PSC
by the additional term exp(A) in the denominator. The larger A is, the larger
the denominator and consequently the smaller the gradient and the smaller the
contribution of y to the loss function. This supports hard mining, because in this
case the characteristic vector y is already far towards its prototype and thus well
separated from other classes.

For PSCE the additional term for k = j in the denominator is essential for
the training. If it is removed, the loss explodes during minimization. This is
clear, since in this case Eq. (8) becomes (for details see the Supplementary)

L = log
(∑

k �=j

exp
(
||y||

(y
||y|| · pk − y

||y|| · pj

︸ ︷︷ ︸
=:Ck

)))
. (10)

As for the PSCE loss (see (8)), L becomes minimal when ||y|| becomes max-
imal and Ck < 0. Since y is unbounded, the argument of the logarithm tends

24 Q. Bytyqi et al.

to 0. Consequently, L goes to negative infinity during optimization. In PSCE
loss, however, the argument of the logarithm tends to 1 due to the additional
summand in the denominator. Therefore, PSCE is lower bounded by 0. PSC is
able to work without this additional term, because y is normalized and therefore
the loss function is lower bounded. We show this in the Supplementary.

4.5 Choice of Prototypes

In this subsection, we present two methods for selecting the prototypes in PSCE
in a meaningful way if no semantic information about the classes is available.
Already TSC [25] has shown that it is useful to choose the prototypes uniformly
distributed on a D-dimensional unit hypersphere. Our experiments will show
that it is very important that the prototypes have pairwise equal distance and
therefore build the vertices of a regular simplex. We prove in the Supplementary
that this is only possible for D ≥ C − 1, with C beeing the number of classes.
In TSC, this condition is not always fulfilled, because a fixed dimension D is
chosen. In our experiments, we investigate the effect of different values for D.

First, as in the original SCE but within the CL setup, we choose the proto-
types as the canonical unit vectors in R

D with D = C. We call this PSCEc, the
canonical version of PSCE. In PSCEc the prototypes have the pairwise Euclidean
distance

√
2 from each other.

Second, we place the C prototypes on the vertices of a regular (C − 1)-
simplex on the unit hypersphere in R

D with D = C and the origin as the
center point. Here the pairwise Euclidean distance between the prototypes is√

2C/(C − 1) >
√
2 which is optimal. For a proof consider the Supplementary.

We call this PSCEs, the simplex version of PSCE. It is easy to see that the
pairwise distance of the prototypes in PSCEs converges against

√
2 (as in PSCEc)

if the number of classes C grows.

5 Experiments

In this section, we present our experiments, details of our implementation setup,
which is the CL setup and comparable to [20] for balanced and to [25,32] for
unbalanced data, as well as information about the data sets used can be found
in the Supplementary. We also test SCE in the standard setup. For this, we use
the same implementation as for the CL methods, but only with singleview batch
(only one augmentation per object) and one stage training.

5.1 Image Classification on Balanced Data

In this section, we compare our loss functions PSCEc and PSCEs with SCE and
with SCL for balanced settings. We used the data sets Cifar10, Cifar100 [21] and
ImageNet-1K [28].

In Table 1 we compare the accuracy (%) of PSCEc and PSCEs with the ones
of SCE and SCL on the balanced data sets CIFAR-10 and CIFAR-100. To be

Prototype Softmax Cross Entropy 25

comparable, we use a batch size of 32 for all three methods and train with 300
epochs. In addition, we cite the original result from [20] with batch size 1024
and 1000 epochs. SCL needs a large batch size to achieve good results because
the positive and negative pairs are taken out of the batch. The table shows that
PSCEc and PSCEs with equal batch size and equal number of epochs clearly beat
the other methods. They are even better than the original, very computationally
intensive setup of SCL, for Cifar100 even significantly better.

Table 1. Top 1 accuracy comparison on Cifar10 and Cifar100 with ResNet-50.

SCE (BS 32) SCL (BS 32) SCL (BS 1024) PSCEc (BS 32) PSCEs (BS 32)

Cifar10 93.8 95.4 96.0 [20] 96.0 96.2
Cifar100 74.4 76.1 76.5 [20] 78.8 78.8

Besides the evaluation of Top-1 accuracy, we also perform tests with a KNN
classifier and Top-5 accuracy with a linear classifier on Cifar100 for SCE, PSCEc

and PSCEs with batch size 32. In all cases, PSCEc and PSCEs outperform SCE.
Details can be found in Table 2.

Table 2. Top 1 and Top 5 accuracy with linear evaluation and Top 1 accuracy with
KNN classifier on Cifar100 with ResNet-50.

Top-1 Accuracy Linear Top-5 Accuracy Linear KNN

SCE 74.4 92.9 74.9
PSCEc 78.8 94.7 78.7
PSCEs 78.8 94.9 78.8

On the much larger data set ImageNet-1K, we again compare the accuracy
of PSCEc and PSCEs with SCE and SCL in Table 3. For resource reasons, we
tested PSCEc and PSCEs with a singleview batch size of 416 and 120 epochs
pretraining and to ensure a fair comparison, we quote the result for SCE and
SCL presented in Fig. 4 in [20] with a batch size 512 and 700 epochs pretraining.
Again, PSCEc and PSCEs perform better than the other methods.

Table 3. Comparison on ImageNet-1K with ResNet-50.

SCE (700 E) SCL (700 E) PSCEc (120 E) PSCEs (120 E)

ImageNet-1K < 75.0 [20] < 76.0 [20] 76.6 76.7

26 Q. Bytyqi et al.

5.2 Image Classification on Unbalanced Data

For comparison on the long-tailed data, we use Cifar10-LT and Cifar100-LT. We
sample CIFAR10-LT and CIFAR100-LT with an exponential decay with different
imbalance ratios ρ. Hereby ρ is the cardinality of the most represented divided
by the least represented class. Table 4 shows that PSCEc and PSCEs are capable
of producing state-of-the-art results even for unbalanced data.

Table 4. Top 1 accuracy for different imbalance ratios ρ with ResNet-32.

Data set Cifar10-LT Cifar100-LT

Imbalance Ratio ρ 100 50 10 100 50 10
SCE [25] 70.4 74.8 86.4 38.3 43.9 55.7
BSCE-SCE [11] 72.4 78.1 86.8 38.6 44.6 57.1
Focal [26] 70.4 76.7 86.7 38.4 44.3 55.8
BSCE-Focal [11] 74.6 79.3 87.1 39.6 45.2 58.0
LDAM-DRW [6] 77.0 80.9 88.2 42.0 46.2 58.7
KCL [18] 77.6 81.7 88.0 42.8 46.3 57.6
TSC [25] 79.7 82.9 88.7 43.8 47.4 59.0
PSC [32] 78.8 83.9 90.1 45.0 48.9 62.4
PSCEc 81.5 84.4 89.1 44.6 49.0 59.5
PSCEs 81.6 84.3 89.5 44.7 48.9 59.0

5.3 Ablation on Cifar10 and Cifar100

Batch Size Since the CL setup uses a multiview batch, its batch size is always
twice the size of the SCE standard setup. To exclude that this imbalance has
an effect, we also compare PSCEc and PSCEs with SCE, where we double the
batch size for the latter, see Fig. 3. It can be seen that PSCEc and PSCEs still
achieve better accuracy than SCE overall.

Effect of the CL Setup. In the next experiment, we investigate the differ-
ence in accuracy between SCE and PSCEc. Both use the canonical unit vectors.

Fig. 3. Comparison of different batch sizes on Cifar10 and Cifar100.

Prototype Softmax Cross Entropy 27

Therefore, we examine the individual component effects of the CL setup, namely
the multiview batch and the two stage training. We use SCE as a baseline. SCE
has a singleview batch and a one stage training (i.e. 1 view and 1 stage: 1v1s).
First, we examine the effect of the multiview batch, i.e. two views but still a one
stage training (SCE2v1s). This can increase the accuracy by 1.6% for Cifar10
and by 3.2% for Cifar100. Similar improvement is achieved by the two stage
training, but a singleview (SCE1v2s). Here, the accuracy can be increased by
1.5% for Cifar10 and 3.2% for Cifar100. The greatest benefit is achieved by the
combination of both components (PSCEc), which results in an improvement of
2.2% for Cifar10 and 4.4% for Cifar100 compared to SCE.

Table 5. Effect of multiview batch and two stage training in the CL setup.

SCE SCE2v1s SCE1v2s PSCEc

Cifar10 93.8 95.4 95.3 96.0
Cifar100 74.4 77.6 77.6 78.8

Normalization and Additional Summand in the Denominator. In this
experiment we confirm our theoretical considerations from Sect. 4 (see Table 6).
For the experiments we use PSCEs on Cifar10 and Cifar100, the results for
PSCEc were comparable. Our first consideration was that PSCEs works without
normalization (discussed in 4.3). That this is useful is confirmed in our exper-
iments because, as y is normalized (notation: w/ N), the accuracy of PSCEs

decreases. Second, as in PSC, we normalize y (w/ N) but remove the additional
summand (notation: w/o S) as discussed in 4.4. In this case, the accuracy also
drops. We conclude that in the case of fixed prototypes, it is advantageous if the
embeddings are not normalized. Furthermore, the denominator should contain
all summands with the respective prototypes, which reinforces our analytical
result.

Table 6. Effect of normalized y and the additional summand in the denominator.

PSCEs PSCEs w/ N PSCEs w/ N w/o S

Cifar10 96.2 95.7 95.0
Cifar100 78.8 77.9 77.6

Selection of Prototypes and Dimension D. Next, we experimentally sup-
port our hypothesis that maximum pairwise equal distance of prototypes on
the unit hypersphere is important. For Cifar10 and Cifar100, we compare the
prototypes of PSCEs which have maximum possible pairwise distance with the

28 Q. Bytyqi et al.

canonical unit vectors of PSCEc and with randomly selected prototypes. Again,
we use D = 100 for Cifar100 and D = 10 for Cifar10. Table 7 shows that random
prototypes perform worst. The best way is to choose prototypes with pairwise
equal and maximum distance.

Table 7. Comparison of different choices of prototypes: random, canonical unit vectors
and corners of an optimal regular simplex.

Rand. PSCEc PSCEs

Cifar10 95.4 96.0 96.2
Cifar100 78.1 78.8 78.8

The distance between the prototypes for PSCEc is always
√
2. For PSCEs the

distance between the prototypes for Cifar100 is
√
200/99 =

√
2.02 and for Cifar

10 it is
√
20/9 =

√
2.2. For Cifar100, the two distances of PSCEs and PSCEc

are almost the same and one can see that also the accuracies are identical. For
Cifar10, on the other hand, the difference between the distances is noticeable
and this is also reflected in the accuracies.

Table 8. Effect of different dimensions D on the Cifar10 an Cifar100 data sets.

Cifar10

D 2 5 10 20
Acc. 94.7 95.4 96.2 96.1
Diff. Dist. 1.38 0.32 0 0

Cifar100

D 2 50 100 200
Acc. 58.1 77.5 78.8 78.8
Diff. Dist. 1.94 0.33 0 0

We then study the effect of different dimensions D on Cifar10 and Cifar100
in Table 8. We use PSCEs for D ≥ C − 1. As mentioned, for D < C − 1 there
exists no regular (C−1)-simplex in R

D. For these cases, we use a particle system
to select the points at maximum distance from each other.

We additionally specify in the table for each value of D the difference between
the largest and the smallest distance between two prototypes. This is a good mea-
sure, to what extent a regular simplex with pairwise equal distance is reached.
If the value is zero, all prototypes have the same pairwise distance and lie on
the corners of a regular simplex. The larger the value, the less the simplex is
fulfilled. The result of our experiment reinforces our assumption that pairwise
equal distance between prototypes is important: the closer the prototypes come
to a regular simplex, the higher the accuracy. Furthermore, one can see that once
a simplex is possible, increasing the dimension no longer increases the accuracy.

Prototype Softmax Cross Entropy 29

6 Conclusion and Future Work

In this work, we derive the statement that Softmax Cross Entropy (SCE) is
strongly associated with prototype contrastive learning (CL), where the canon-
ical unit vectors serve as prototypes. We present Prototype Softmax Cross
Entropy (PSCE), a generalization of SCE allowing arbitrary prototypes. We
consider the case where no information is available about the relation between
the classes and thus select prototypes with pairwise equal distance on a regular
simplex. We present two versions of PSCE, namely PSCEc and PSCEs, which
produce state-of-the-art results for both balanced and unbalanced data. Since
our solution uses fixed prototypes, no self-organizing part from CL is needed.
Our experiments show that PSCE allows smaller batch sizes and less training
epochs to achieve state-of-the-art results.

In the future, we want to investigate how semantic information about differ-
ent classes can be used to place prototypes more specifically on the unit hyper-
sphere.

Acknowledgments. This work was partially supported by the “Research at Univer-
sities of Applied Sciences” program of the German Federal Ministry of Education and
Research, funding code 13FH010IX6.

References

1. Ando, S., Huang, C.Y.: Deep over-sampling framework for classifying imbalanced
data. In: Joint European Conference on Machine Learning and Knowledge Discov-
ery in Databases (2017)

2. B., B.E., Frank, W.: Supervised learning of probability distributions by neural
networks. In: Advances in Neural Information Processing Systems (1988)

3. Bardes, A., Ponce, J., LeCun, Y.: Vicreg: Variance-invariance-covariance regular-
ization for self-supervised learning. In: International Conference on Learning Rep-
resentations (2022)

4. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance
problem in convolutional neural networks. In: Neural Networks (2018)

5. Byrd, J., Lipton, Z.: What is the effect of importance weighting in deep learning?
In: International Conference on Machine Learning (2019)

6. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets
with label-distribution-aware margin loss. In: Advances in Neural Information Pro-
cessing Systems (2019)

7. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsuper-
vised learning of visual features by contrasting cluster assignments. In: Neural
Information Processing Systems (2020)

8. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic
minority over-sampling technique. J. Artifi. Intell. Res, (2002)

9. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. arXiv preprint arXiv:2002.05709 (2020)

10. Chen, X., He, K.: Exploring simple siamese representation learning. In: Computer
Vision and Pattern Recognition (2021)

http://arxiv.org/abs/2002.05709

30 Q. Bytyqi et al.

11. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on
effective number of samples. In: Computer Vision and Pattern Recognition (2019)

12. Elsayed, G., Krishnan, D., Mobahi, H., Regan, K., Bengio, S.: Large margin deep
networks for classification. In: Advances in Neural Information Processing Systems
(2018)

13. Grill, J.B., et al.: Bootstrap your own latent a new approach to self-supervised
learning. In: Neural Information Processing Systems (2020)

14. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2020)

15. Hénaff, O.J., et al.: Data-efficient image recognition with contrastive predictive
coding. arXiv preprint arXiv:1905.09272 (2019)

16. Hjelm, R.D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Trischler, A., Bengio,
Y.: Learning deep representations by mutual information estimation and maximiza-
tion. In: International Conference on Learning Representations (2019)

17. Hong, Y., Han, S., Choi, K., Seo, S., Kim, B., Chang, B.: Disentangling label
distribution for long-tailed visual recognition. In: Computer Vision and Pattern
Recognition (CVPR) (2021)

18. Kang, B., Li, Y., Xie, S., Yuan, Z., Feng, J.: Exploring balanced feature spaces for
representation learning. In: International Conference on Learning Representations
(2020)

19. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition.
In: International Conference on Learning Representations (2017)

20. Khosla, P., et al.: Supervised contrastive learning. In: Advances in Neural Infor-
mation Processing Systems (2020)

21. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical report (2009)

22. Levin, E., Fleisher, M.: Accelerated learning in layered neural networks. Complex
Systems (1988)

23. Li, J., Zhou, P., Xiong, C., Hoi, S.C.: Prototypical networks for few-shot learning.
In: Neural Information Processing System (2017)

24. Li, J., Zhou, P., Xiong, C., Hoi, S.C.: Prototypical contrastive learning of unsuper-
vised representations. In: International Conference on Learning Representations
(2021)

25. Li, T., et al.: Targeted supervised contrastive learning for long-tailed recognition.
In: Conference on Computer Vision and Pattern Recognition (2022)

26. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: International Conference on Computer Vision (2017)

27. Menon, A.K., Jayasumana, S., Rawat, A.S., Jain, H., Veit, A., Kumar, S.: Long-tail
learning via logit adjustment. In: International Conference on Learning Represen-
tations (2020)

28. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int.
J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-
0816-y

29. Sermanet, P., et al.: Time-contrastive networks: Self-supervised learning from
video. In: International Conference on Robotics and Automation (2018)

30. Sukhbaatar, S., Bruna, J., Paluri, M., Bourdev, L., Fergu, R.: Training convolu-
tional networks with noisy labels. arXiv preprint arXiv:1406.2080 (2014)

31. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. arXiv preprint
arXiv:1906.05849 (2019)

http://arxiv.org/abs/1905.09272
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1406.2080
http://arxiv.org/abs/1906.05849

Prototype Softmax Cross Entropy 31

32. Wang, P., Han, K., Wei, X.S., Zhang, L., Wang, L.: Contrastive learning based
hybrid networks for long-tailed image classification. In: Computer Vision and Pat-
tern Recognition (2021)

33. Wu, Z., Efros, A.A., Yu, S.X.: Improving generalization via scalable neighborhood
component analysis. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
ECCV 2018. LNCS, vol. 11211, pp. 712–728. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01234-2_42

34. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-
parametric instance discrimination. In: Computer Vision and Pattern Recognition
(2018)

35. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: Self-supervised
learning via redundancy reduction. In: Proceedings of Machine Learning Research
(2021)

36. Zhou, B., Cui, Q., Wei, X.S., Chen, Z.M.: Bilateral-branch network with cumulative
learning for long-tailed visual recognition. In: Conference on Computer Vision and
Pattern Recognition (2020)

https://doi.org/10.1007/978-3-030-01234-2_42
https://doi.org/10.1007/978-3-030-01234-2_42

	Prototype Softmax Cross Entropy: A New Perspective on Softmax Cross Entropy
	1 Introduction
	2 Previous Work
	3 Related Methods
	3.1 Supervised Contrastive Learning (SCL)
	3.2 Prototype Supervised Contrastive Learning (PSC)
	3.3 Targeted Supervised Contrastive Learning (TSC)
	3.4 Softmax Cross Entropy (SCE)

	4 Proposed Method
	4.1 Softmax Cross Entropy from the Perspective of CL
	4.2 Prototype Softmax Cross Entropy (PSCE)
	4.3 Omitting Normalization
	4.4 Adding Hard Mining Support
	4.5 Choice of Prototypes

	5 Experiments
	5.1 Image Classification on Balanced Data
	5.2 Image Classification on Unbalanced Data
	5.3 Ablation on Cifar10 and Cifar100

	6 Conclusion and Future Work
	References

