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Abstract. Modelling randomness in shape data, for example, the evo-
lution of shapes of organisms in biology, requires stochastic models of
shapes. This paper presents a new stochastic shape model based on a
description of shapes as functions in a Sobolev space. Using an explicit
orthonormal basis as a reference frame for the noise, the model is inde-
pendent of the parameterisation of the mesh. We define the stochastic
model, explore its properties, and illustrate examples of stochastic shape
evolutions using the resulting numerical framework.
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1 Introduction

In fields from medical imaging to biology, realistic models of shape must allow
randomness in shape evolutions. For example, in evolutionary biology, random
gene changes through evolution can be hypothesised to cause random shape
variation. Therefore, there is a need for stochastic models of shape. Moreover,
recent years have seen the rise of diffusion models in deep learning [12,15] relying
on a progressive addition of noise onto sample data which could motivate the
search for new ways to define diffusion processes in particular data spaces such as
shape spaces. In this paper, we define a stochastic process for shape spaces that
immerse a base shape in R

d, d = 2, 3. The noise is related to the shape structure
without reference to the ambient space in which the shape is embedded. Building
on related models in the case of outer shape spaces, we construct a framework
that is independent of the chosen shape representation and that gives numerically
efficient ways of simulating stochastic shape evolutions.

1.1 Motivation and Contribution

We seek to define random paths (stochastic processes) in shape spaces start-
ing from a source shape S0. The major difficulty here resides in shape spaces
generally being non-Euclidean, infinite-dimensional manifolds. Recent work has
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perturbed the momentum of Hamilton’s equations [27,28] or used stochastic
perturbations defined in the ambient space [2,3,24]. Here, we wish to define
the stochastic perturbations directly in the shape space without referring to
the ambient space. This paper explores an idea to do so through an intrinsic
description of compact surfaces as functions. Thus, it defines a framework inde-
pendent of the discretisation of the shapes. However, a guiding principle for our
work is that it should be computationally feasible to simulate from the con-
structed process. We demonstrate this with numerical simulations for which the
code is accessible at https://github.com/tbesnier/bm-shapes. The method can
efficiently integrate random shape trajectories. We highlight two distinct meth-
ods, one for shapes represented by functions and another for shapes represented
explicitly by point clouds or meshes.

1.2 Related Work

This paper fits into a body of work on the analysis of shapes in shape spaces as
follows. Shape spaces generally encompass definitions for shapes, paths between
shapes, and lengths of such paths. There are multiple methods to define shape
spaces [5]; we mention two of them here. The first approach, used in this paper,
identifies shapes as maps from an underlying manifold into IRd, with d = 2, 3.
Paths in the shape space are paths in the space of functions. In the second
approach, shapes are considered as a subset of IRd. Variations of shapes arise
from the action of the diffeomorphism group over IRd. This approach leads to
the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework
[7,30]. The metric structures appearing in the first class are often referred to as
inner metrics. The second approach correspondingly leads to outer metrics.

Inner Approach. Usually, the function space is taken to be the space of immer-
sions or embeddings. Immersions are smooth maps for which the differential map
is injective. An embedding is an injective immersion. Because embeddings are
injective, it prevents the shape from self-intersecting. Different classes of metrics
have been introduced in the literature to define distances between shapes repre-
sented as functions. One example is the square-root normal field (SRNF) [16] in
which shapes are elements of L2(S2, IR3) and the L2 distance is used to define a
(pseudo-)distance on the space of immersions. Due to their simplicity and ease
of calculation, SRNF has led to several numerical frameworks [6,20]. Other tools
have been developed with stronger Sobolev metrics (also called elastic metrics)
with additional theoretical properties [14]. One example is from Su et al. [26]:
shapes are decomposed into a spherical harmonics basis, and a framework to
find geodesics between the decomposed shapes is introduced. In this work, we
will also use spherical decompositions of shapes.

Outer Approach. The LDDMM framework applies in a matching context from
a source shape S0 to a target shape S1. An optimisation problem is solved to
find the “best” diffeomorphism acting on S0 and its ambient space to match

https://github.com/tbesnier/bm-shapes
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S1, resulting in geodesics in the shape space. A probabilistic framework can be
built around this by considering the Hamiltonian formulation of the geodesic.
That is, the geodesic equation is written in terms of a momentum and velocity
equation, and these are perturbed. In [27], the momentum map is perturbed. This
is executed in a finite setting where shapes are approximated by a finite number
of points (called landmarks). Adding noise to the momentum equation can be
interpreted as a random force acting on each landmark. In [28], the approach is
extended to the case where the number of landmarks approaches infinity. This
is similar to our approach, in that we too consider stochastic perturbations of
maps in L2-space. But, where [27,28] perturb the momentum map of the geodesic
equation, we perturb the shape directly by considering the shape as a function.
More recent work [2] has perturbed both the momentum and the velocity maps.

2 Background

2.1 Shape Space

Shapes as Immersions and Embeddings. One way of modelling shapes
is as functions from an underlying manifold M into IRd. The shape space is
usually taken as either the space of immersions or embeddings [5]. The underlying
manifold M can be chosen based on the dimension and the topological features
of the shape to be modelled [14]. A common choice is M = S2. Then, a shape
s is modelled as an immersion (or an embedding) s : S2 → R

3. In this way, the
shape s deforms the sphere. In particular, s belongs to L2(S2,R3), the Hilbert
space of square-integrable functions.

Taking shapes as immersions (resp. embeddings) gives parameterised shapes;
two shapes that have identical images in IRd with different parameterisations
are treated as different shapes. We can also consider unparameterised shapes by
taking the shape space to be the set of immersions (resp. embeddings) quotiented
by the space of diffeomorphisms Diff(M). Two shapes s, s′ are equivalent up to
a reparameterisation if there exists a diffeomorphism φ ∈ Diff(M), such that
s = s′ ◦ φ. This forms an equivalence class Imm(M, IRd)/Diff(M) over the space
of immersions (resp. embeddings). Therefore, the space of immersions (resp.
embeddings) is called the preshape space. Paths in the preshape space can be
projected to the shape space via the projection map. Equivalently, the stochastic
model defined in this paper can be mapped to the shape space by applying the
projection to the process.

Spherical Harmonic Decomposition of Shapes. Considering a shape as
an element of L2(S2,R3) enables an orthonormal expansion of the shape. We
choose spherical harmonics for the orthonormal basis as it is a natural choice for
functions over the sphere [9]; loosely speaking, it is the “spherical counterpart”
of the Fourier decomposition.
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Fig. 1. Visualisation of the three first orders of elementary functions in the spherical
harmonic basis

Let L2(S2) be the space of square-integrable functions f : S2 → R, with S2

parameterised by ω = (θ, φ) ∈ [0, 2π)× [0, π). Then L2(S2) forms a Hilbert space
when equipped with the inner product

〈f, g〉L2(S2) :=
∫
S2

f(ω)g(ω)dω =
∫ π

0

∫ 2π

0

f(θ, φ)g(θ, φ) sin(φ)dθdφ,

for f, g ∈ L2(S2).
Let ΔS2 be the Laplace-Beltrami operator on the sphere. The spherical har-

monics Y m
l : S2 → IR are defined as the eigenfunctions of ΔS2 with respective

eigenvalues −l(l + 1):
−ΔS2Y

m
l = l(l + 1)Y m

l .

The spherical harmonics (Fig. 1) form a complete orthonormal basis of L2(S2):
any function s ∈ L2(S2) can be written as

s(θ, φ) =
∞∑

l=0

∑
|m|≤l

〈s, Y m
l 〉L2(S2)Y

m
l (θ, φ) =

∞∑
l=0

∑
|m|≤l

ŝl,mY m
l (θ, φ). (1)

The spherical harmonics have an explicit formula for every l ∈ N, |m| ≤ l as

Y m
l (θ, φ) =

√
2l + 1

4π

(l − m)!
(l + m)!

Pm
l (cos(θ))eimφ (2)
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with Pm
l being the associated Legendre polynomials:

Pm
l (x) = (−1)m2l(1 − x2)m/2

l∑
k=m

k!
(k − m)!

xk−m

(
l

k

)(
(l + k − 1)/2

l

)
. (3)

The space L2(S2, IR3) is defined as triplets of functions in L2(S2). That is

L2(S2, IR3) := {f = (f1, f2, f3) | f1, f2, f3 ∈ L2(S2)}.

The spherical harmonic decomposition can therefore be extended from functions
in L2(S2, IR) to functions f = (f1, f2, f3) in L2(S2, IR3) by taking the spherical
harmonic decompositions of f1, f2 and f3.

Here we have only detailed the spherical harmonics basis. However, any
orthonormal basis {ei}∞

i=0 of L2(S2) could be used. Another potential choice
could be spherical wavelets [1,21]. Then, each shape S can be represented as the
weighted sum of basis elements S =

∑∞
i=0 αiei for some coefficients αi ∈ IR, and

orthonormal basis {ei}∞
i=0 of L2(S2).

Sobolev Spaces. Our aim is to use stochastic processes in the Hilbert space
L2(S2, IR3) to define stochastic evolutions of shapes. The advantage of working
in the L2 space is that there is an explicit basis. However, functions in L2(S2, IR3)
need not even be continuous, leading to highly irregular surfaces (see Fig. 2 for
an example). To circumvent this, we will work in the Sobolev space Hν(S2, IR3),
a subspace of L2(S2, IR3).

The Sobolev space Hν(S2) of order ν ∈ N≥0 is defined by

Hν(S2) :=

⎧⎨
⎩f ∈ L2(S2)

∣∣∣∣∣∣
∑
l∈IN

∑
|m|≤l

(l + 1)2ν |f̂l,m|2 < ∞
⎫⎬
⎭ , (4)

where f̂l,m = 〈f, Y m
l 〉L2(S2) [13]. This is a Hilbert space when endowed with the

inner product

〈f, g〉Hν(S2) := 〈f, g〉L2(S2) + 〈(−ΔS2)ν/2f, (−ΔS2)ν/2g〉L2(S2),

where ΔS2 is the Laplace-Beltrami operator on the sphere, and the fractional
power of the Laplace-Beltrami operator is defined in terms of spherical harmonics
as

(−ΔS2)ν/2f =
∑
l∈IN

∑
|m|≤l

(l(l + 1))ν/2f̂l,mY m
l .

By the embedding theorem, functions in Hν(S2) are continuous for any ν ≥ 2.
Essentially, functions in Sobolev spaces have fast-decaying spherical harmonic
coefficients. In other words, their spectral information concentrates around low
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frequencies. Moreover, this gives us a method for mapping functions from L2(S2)
into Hν(S2): If

f =
∑
l,m

f̂l,mY m
l ∈ L2(S2)

then
g =

∑
l,m

(l + 1)−ν f̂l,mY m
l ∈ Hν(S2).

2.2 Stochastic Processes in Hilbert Spaces

Throughout the rest of this paper, we assume our stochastic processes are defined
over some probability space (Ω,F , IP).

Wiener Processes in Hilbert Spaces. To define stochastic processes, we
apply the theory of stochastic processes in infinite dimensional Hilbert spaces
[10]. For this, we discuss briefly how to define a Q-Wiener process (WQ

t )t∈[0,T ],
with ending time T > 0, in a Hilbert space.

Let H be a Hilbert space and Q a non-negative, trace-class operator on H.
Then, there exists some orthonormal basis {ei}∞

i=0 of H, and values λi ∈ IR such
that

Qei = λiei, for all i ∈ IN. (5)

Define a Q-Wiener process as an H-valued stochastic process

WQ
t :=

∞∑
i=0

√
λiB

i
tei,

where t ∈ [0, T ] and {Bi
t}∞

i=0 are independent, real-valued Brownian motions on
the probability space (Ω,F , IP). The series Eq. (5) has the expected properties
of a Wiener process: it converges in L2(Ω,F , IP;C([0, T ],H)) where C([0, T ],H)
is equipped with the supremum norm, it has a continuous modification, and it
has independent increments, with Gaussian laws [10].

Real-Valued Itô Processes. We want to compute stochastic processes over
the coefficients of the spectral decompositions of shapes. To this end, we define
an Itô process and state its convergence properties (see [23] for details). A (one
dimensional) Itô process (Xt)t∈[0,T ] is defined as the solution of a stochastic
differential equation (SDE) of the form

dXt = b(t,Xt)dt + σ(t,Xt)dBt, X0 ∈ L2(IP) (6)
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where Bt is Brownian motion on IR with respect to a filtration (Ft)t∈[0,T ] and
b : [0, T ] × IR → IR and σ : [0, T ] × IR → IR satisfy the Lipschitz continuity
condition:

|b(t, x) − b(t, y)|2 + |σ(t, x) − σ(t, y)|2 ≤ LT |x − y|2,

where x, y ∈ IR, t ∈ [0, T ] and LT < ∞. We call b and σ the drift and diffusion
terms, respectively. The solution to Eq. (6) is unique for F0-measurable initial
conditions x0 ∈ L2(IP) and satisfies

E

[
sup

t∈[0,T ]

‖xt‖2
]

≤ κT · E [
(1 + |x0|)2

]
. (7)

The choice of b and σ affects the behaviour of the Itô processes.

3 Inner Approach: Spectral Diffusion

Our aim is to introduce an inner shape space approach to stochastics in shape
spaces. In order to develop stochastic evolutions of shapes, we represent shapes
via a spherical harmonic decomposition. We can consider the stochastic evolution
of shapes by adding a Q-Wiener process (or any diffusion process) directly to
the decomposition and then constraining the process to Hν(S2,R3), ν ≥ 2.

Given a shape u0 ∈ L2(S2, IR3) and an operator Q on L2(S2, IR3), we define
a Q-Wiener process in the spectral domain of a shape, uQ

t as

uQ
t = u0 + WQ

t =
∞∑

l=0

∑
|m|<l

〈u0, Y
m
l 〉Y m

l

︸ ︷︷ ︸
source shape

+
∞∑

l=0

∑
|m|<l

Bl,m
t Q1/2(Y m

l )

︸ ︷︷ ︸
Q-Wiener process

(8)

where {Bl,m
t }l,m are independent real-valued Brownian motions.

In Eq. (8), Q controls the diffusion to guarantee the convergence of the pro-
cess in H. If we choose Q to be a non-negative trace-class operator, the process
converges in L2(S2, IR3). For any basis {ei}i∈IN of L2 and any sequence of positive
real numbers {λi}i∈IN satisfying

∑
i∈IN λi < ∞, the operator

Q(·) =
∑
i∈IN

λi〈·, ei〉ei

is non-negative and of trace class. Therefore, we use a spherical harmonics basis
weighted with a positive decaying sequence {λi}i∈IN, where

∑
i λi < ∞, defining

the Q-Wiener process

WQ
t =

∑
l∈IN

∑
|m|≤l

√
λlB

l,m
t Y m

l .
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The rate of decay of the coefficients {λi}i controls the regularity of the space in
which the process converges. If

∑
l∈IN

∑
|m|≤l

λl(l + 1)2ν < ∞

the sum converges in L2(Ω;C([0, 1],Hν(S2, IR3)), where C([0, 1],Hν(S2, IR3)) is
equipped with the supremum norm.

The process in Eq. (8) can be generalised by exchanging the independent
Brownian motions {Bl,m

t }l,m with other, more general independent stochastic
processes {xl,m

t }l,m, for example, Itô processes. In this way, we have stochastic
processes on the coefficients of the shape. Letting xl,m

0 = 0 means that Eq. (7)
is bounded. When this is satisfied, the process

XQ
t :=

∑
l∈IN

∑
|m|≤l

√
λlx

l,m
t Y m

l (9)

also converges in L2(Ω,F , IP;C([0, 1],Hν(S2, IR3)) [10].

4 Numerical Experiments for Spectral Diffusions

We here aim to illustrate the constructed stochastic process. We address two
situations. The first assumes shapes are provided via a function in its spherical
harmonic decomposition, and the second assumes shapes are represented by
meshes (with vertex coordinates and face connectivity information). In the first
situation, all that remains is to simulate the real-valued stochastic process xl,m

t

from Eq. (9). For the numerical integration, we use an Euler–Maruyama scheme
[18] such that the stochastic process ut defined by

dut = b(t, ut)dt + σ(t, ut)dWt (10)

is approximated by

utk+1 ≈ utk
+ b(tk, utk

)Δtk + σ(tk, utk
)ΔWtk

(11)

with Δtk = tk+1 − tk and ΔWtk
= Wtk+1 − Wtk

∼ N (0,
√

tk+1 − tk).

4.1 Effects of Truncation and Covariance Operators

We start by illustrating the effects of different covariance operators within our
framework. To this end, we use the sphere S2, which we view as the image of

s :

{
[0, π) × [0, 2π) → IR3

(θ, φ) �→ (sin θ cos φ, sin θ sin φ, cos θ),
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and then decompose s with respect to the spherical harmonics basis

s =

⎛
⎜⎜⎝

∑
l∈IN

|m|≤l

s1l,mY m
l ,

∑
l∈IN

|m|≤l

s2l,mY m
l ,

∑
l∈IN

|m|≤l

s3l,mY m
l

⎞
⎟⎟⎠ .

The results in Fig. 2 show some processes u(t) = (u1(t), u2(t), u3(t)) defined by

ui(t) = s +
N∑

l=0

∑
|m|≤l

λlB
l,m
t Y m

l ∈ L2(S2, IR), i ∈ {1, 2, 3}

where N ∈ IN, {Bl,m
t }l,m are independent real-valued Brownian motions and

{λl}l≤N are chosen to define various operators. We also note the role the trun-
cation value N ∈ IN plays. The spectral information of the series is concentrated
around lower frequencies. Taking lower values for N results in notably smoother
shapes but also gives less detail to the surface of the shapes. We encourage the
reader to also look at the .gif files of the simulations in the GitHub repository
https://github.com/tbesnier/bm-shapes.

Fig. 2. Each row presents some frames of a Q-Wiener process starting from the unit
(discretised) sphere. 1st row: λl = 1 up to N = 25 (no decay), 2nd row: λl = 1

l+1
, 3rd

row: λl = 1
(l+1))2

and 4th row: λl = 1 up to N = 225 (no decay). We highlight the loss

of regularity in the last row when high spectral orders are not weighted down.

https://github.com/tbesnier/bm-shapes
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4.2 Simulations on Radial Projections of Meshes

3D shape data can be explicitly represented as meshes rather than as maps.
Some work [19,22] has been done on converting from mesh representations to
spherical harmonic representations. In this section, we use an easier method using
radial projection (see Fig. 3 for a visualisation) before computing a diffusion
process from the sphere as described before. Finally, we take the inverse radial
projection mapping of the deformed sphere. We used this setting because of its
simplicity regarding computations, but other types of spherical parameterisation
of meshes [4,29] can be used. When using radial projections, the topology of the
shape is no longer a problem since shapes of any genus can be projected onto
the sphere. However, using the radial projection in this way means points with
similar angular coordinates are highly correlated. For example, on the torus, it
means that the outer and inner rings behave similarly (see Fig. 4).

Fig. 3. Numerical framework of our method on mesh data. First, we project on the
sphere (with a radial projection, for instance), then, we compute the diffusion on the
sphere and transfer the diffusion back to the mesh.

Fig. 4. Simulation of a Q-Wiener process with Q = Id49. We show in this example how
the spatial correlation prevents the sides of the torus from intersecting each other.

In Fig. 5 we illustrate our framework with radial projections for assorted
meshes.
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Fig. 5. Q-Wiener processes applied on different meshes. Here, Q = (1 − ΔS2)−1 and
we take the first 25 coefficients.

4.3 Other Types of Processes

We can define and simulate any diffusion processes, as in Eq. (9), instead of using
Brownian motion. For instance, the Ornstein-Uhlenbeck process is defined by an
SDE with the drift and diffusion terms given by b(t, x) := x and σ(t, x) := C
respectively, where C is a real constant. We observe in Fig. 6 how the mesh
inflates into a sphere which is expected for this type of process.

In case a different time covariance structure is needed, we can also simulate
fractional Q-Wiener processes, which are generalisations of the Wiener process
with a covariance function Ch(s, t) = 1

2 (|t|h + |s|h − |t − s|2h) with Hurst index
h ∈ (0, 1). The covariance function of Brownian motion corresponds to h = 0.5.
A whole theory is derived from this process, and we invite the interested reader
to read [17] for more details. If h < 0.5 or h > 0.5, the process has negatively or
positively correlated increments. We show resulting paths in Fig. 7 with different
Hurst indices.

5 Limitations and Future Work

5.1 Precision of the Numerical Reconstruction

Decomposing a mesh with spherical harmonics is one of many choices for a basis
of L2(S2,R3). Wavelets could be better suited if the signal has sharp, irregu-
lar details or discontinuities (as demonstrated in Fig. 8) [25]. But, the relation
between Sobolev spaces and spherical wavelets is not as straightforward as for
spherical harmonics.
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Fig. 6. Simulation of an Ornstein-Uhlenbeck diffusion, solution to an SDE with a drift
term b(t, x) = x and diffusion term σ(t, x) = 0.1. We highlight that, as expected, the
process converges towards the sphere.

5.2 Limitations Regarding the Control of the Process

If we only have mesh data, the diffusion process is computed on the sphere and
then mapped back to the mesh. It has the advantage of keeping spatial coherence
as described before, but the spectral diffusion process has an isotropic spatial
variance because of the symmetry properties of spherical harmonics. It becomes
challenging to localise larger variance on some regions of the mesh, which could
be desirable as one can assume changes in the variability of some areas with
morphological data.

Finally, we point out that the sequence of weighting coefficients {λl}l∈N is
fixed and comes from the Laplace-Beltrami operator on the sphere S

2. Rigor-

Fig. 7. Simulation of a fractional Wiener process from the sphere with different Hurst
indices: 1st row h = 0.3, 2nd row h = 0.7, 3rd row h = 0.95. The processes are
simulated with the method described in [8]. As H increases, the mesh is less subject
to strong variations over short time intervals.
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Fig. 8. Reconstruction of a (projected) spherical signal. The original signal (on the
left) is hardly reconstructed with spherical harmonics up to order 5. On the right, also
with a resolution of 5, the wavelet (symlet 8 in [11]) reconstruction shows near-perfect
results.

ously, to apply the Bessel potential, we should recompute the eigenvalues of the
Laplacian at each time step to stay in the shape space. We chose to avoid this
extra step as it is a computationally costly operation, but it can be added in
further developments.

6 Conclusion

In this paper, we proposed a function-based approach to compute stochastic
processes (Itô diffusions) between discretised surfaces (effectively meshes) in R

3.
We can compute stochastics independently of the underlying parameterisation
by modelling the mesh through its spherical harmonic decomposition. In addi-
tion, restraining the process to a Sobolev space ensures spatial regularity at all
times. Our framework enables us to use various stochastic processes and visu-
alise their behaviour in the mesh space with publicly available code. Testing
the behaviour of our framework on more complex 3D structures with different
stochastic processes and applying it to geometry processing tasks is future work.
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Computational Evolutionary Morphometry and is partly supported by Novo Nordisk
Foundation grant NNF18OC0052000 as well as VILLUM FONDEN research grant
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