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Abstract. By using the underlying theory of proper scoring rules, we
design a family of noise-contrastive estimation (NCE) methods that are
tractable for latent variable models. Both terms in the underlying NCE
loss, the one using data samples and the one using noise samples, can
be lower-bounded as in variational Bayes, therefore we call this fam-
ily of losses fully variational noise-contrastive estimation. Variational
autoencoders are a particular example in this family and therefore can
be also understood as separating real data from synthetic samples using
an appropriate classification loss. We further discuss other instances in
this family of fully variational NCE objectives and indicate differences
in their empirical behavior.

1 Introduction

Estimating the parameters of a model distribution from a training set is an
important research topic with applications in deep generative models (e.g. [5,
8,15,18,24,28]), out-of-distribution (OOD) or anomaly detection [16,17,23,32]
and representation learning [2,4,19,22]. Maximum-likelihood estimation is the
method of choice when the parametric model distribution is normalized and can
be evaluated efficiently (which is the case for “elementary” probability distribu-
tions and for normalizing flows [24]). The expressiveness of a model distribution
can be enhanced by introducing latent variables and by using an unnormalized
distribution (also known as energy-based model). Both of these modifications
prevent the maximum likelihood method from being applicable: latent variables
often lead to intractable integrals or sums when computing the marginal likeli-
hood, and likewise the normalization factor (also called the partition function)
of an unnormalized model is typically intractable.

Latent variables are usually addressed by utilizing the evidence lower bound
(ELBO) of the likelihood as in variational Bayes (e.g. [12]), and parameters
of unnormalized models can be estimated from data by methods such as score
matching [11] or noise-contrastive estimation (NCE, [9,10]). NCE can intuitively
be understood as learning a binary classifier separating training data from sam-
ples drawn from a fully known noise distribution. Variational NCE [26] aims to
enable the estimation of unnormalized latent variable models from data by lev-
erging the ELBO. It succeeds only partially, since the ELBO cannot be applied on
all terms in the NCE objective, and an intractable marginal remains. In this work
we derive modified instances of NCE that allow the application of the ELBO on
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all terms, and the resulting objective is therefore free from intractable sums (or
integrals). We call the resulting method fully variational noise-contrastive esti-
mation. Interestingly, variational autoencoders [14,25] are one particular (and
important) instance in this family of fully variational NCE methods.

2 Background

Proper scoring rules Let P ⊆ R
d, and let G : P → R be a differentiable convex

mapping. The Bregman divergence between p ∈ P and q ∈ P is defined as

DG(p‖q) def= G(p) − (
G(q) + (p − q)�∇G(q)

)
, (1)

i.e. DG(p‖q) is the error between G(p) and the linearization (first-order Taylor
expansion) of G at q. Convexity of G implies that DG(p‖q) is non-negative. If
G is strictly convex, then DG(p‖q) = 0 iff p = q.

Now let p and q be the parameters of a categorical distribution, i.e. P (X =
k|p) = pk and P (X = k|q) = qk for a categorical random variable X with values
in {1, . . . , d}. The domain P is therefore the probability simplex, P = {p ∈
[0, 1]d :

∑
k=1d pk = 1}. In this setting DG(p‖q) can be stated as

DG(p‖q) = G(p) − G(q) + EX∼p

[
d

dqX
G(q)

]
− EX∼q

[
d

dqX
G(q)

]

= G(p) + EX∼p

[
d

dqX
G(q) − G(q) − EX′∼q

[
d

dqX′ G(q)
]]

. (2)

Minimizing DG(p‖q) w.r.t. q for fixed p is equivalent to

argmin
q∈P

DG(p‖q) = argmin
q∈P

−G(q) −
∑

k
(pk − qk) ∂

∂qk
G(q)

= argmax
q∈P

EX∼p

[
∂

∂qX
G(q) + G(q) −

∑

k
qk

∂
∂qk

G(q)
]

= argmax
q∈P

EX∼p [S(X, q)] , (3)

where we defined the proper scoring rule (PSR) S as follows,

S(x, q) def= ∂
∂qx

G(q) + G(q) −
∑

k
qk

∂
∂qk

G(q). (4)

Note that maximization w.r.t. q only requires samples from p, but does not
need the knowledge of the distrbution p itself. Therefore proper scoring rules
are one method to estimate distribution parameters when only samples from an
unknown data distribution p are available.

If G is strictly convex, then the resulting PSR is a strictly PSR. If e.g. G is
chosen as the negated Shannon entropy, then S(x, q) = log qx is called the log-
arithmic scoring rule underlying maximum likelihood estimation and the cross-
entropy loss in machine learning. It is an instance of a local PSR [20], which does
not depend on any value of qx′ for x′ �= x (the score matching cost [11] being
another example). We refer to [7] and [3] for an extensive overview and further
examples of proper scoring rules.
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PSRs for binary RVs When X is a binary random variable, and therefore x ∈
{0, 1}, then we only need one parameter μ ∈ [0, 1] to characterize the correspond-
ing Bernoulli distribution. For a differentiable convex function G : [0, 1] → R the
induced Bregman divergence between μ ∈ [0, 1] and ν ∈ [0, 1] is given by

DG(μ‖ν) = G(μ) − G(ν) − (μ − ν)G′(ν) (5)

and

arg min
ν∈[0,1]

DG(μ‖ν) = arg max
ν∈[0,1]

G(ν) + (μ − ν)G′(ν)

= arg max
ν∈[0,1]

Ex∼Ber(μ) [G(ν) + (x − ν)G′(ν)] . (6)

The resulting PSR S is therefore

S(1, ν) = G(ν) + (1 − ν)G′(ν) S(0, 1−ν) = G(ν) − νG′(ν). (7)

G can be recovered via

G(ν) = νS(1, ν) + (1−ν)S(0, 1−ν) = Ex∼Ber(μ) [S(x, xν + (1−x)(1−ν))] . (8)

Noise-contrastive estimation Noise-contrastive estimation (NCE, [9,10]) ulti-
mately casts the estimation of parameters of an unknown data distribution as
a binary classification problem. Let Ω ⊆ R

n and X be a n-dimensional ran-
dom vector. Let pd the (unknown) data distrbution, pθ a model distribution
(with parameters θ) and pn a user-specified noise distribution. Let Z be a (fair)
Bernoulli RV that determines whether a sample is drawn from the data (respec-
tively model) distribution or from the noise distribution pd.1 NCE applies the
logarithmic PSR to match the posteriors,

Pd,n(Z = 1|X = x) =
pd(x)

pd(x)+pn(x)
Pθ,n(Z = 1|X = x) =

pθ(x)
pθ(x)+pn(x)

, (9)

which yields the NCE objective

JNCE(θ) = EX∼pd

[
log

pθ(X)
pθ(X) + pn(X)

]
+ EX∼pn

[
log

pn(X)
pθ(X) + pn(X)

]
. (10)

After introducing rθ(x)
def= pθ(x)/pn(x) this reads as

JNCE(θ) = EX∼pd

[− log
(
1 + rθ(X)−1

)]
+ EX∼pn

[− log
(
1 + rθ(X)

)]
, (11)

establishing the connection to logistic regression. At first glance this is superfi-
cially similar to GANs [8], but it lacks e.g. the problematic min-max structure
of GANs. In contrast to e.g. maximum likelihood estimation, NCE is applicable
even when the model distribution is unnormalized, i.e.

pθ(x) = 1
Z(θ)p

0
θ(x) (12)

for an unnormalized model p0θ(x) and an intractable partition function Z(θ) =∑
x p0θ(x).

2 NCE allows to estimate the value of the partition function Z(θ) for
1 We omit the possibility of using general Bernoulli RV for notational simplicity.
2 For brevity we use sums to refer to marginalization of RV, but these sums should

always be understood as the appropriate Lebesque integrals.
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the obtained model parameters θ by augmenting the parameter vector to (θ, Z)
and use the relation pθ(x) = p0θ(x)/Z. Extensions to the basic NCE framework
are discussed in [1,21].

NCE is not directly applicable to latent variable models, where the joint
density pθ(X,Z) is specified, but the induced marginal pθ(X) is only indirectly
given via

pθ(x) =
∑

z
pθ(x, z) =

∑

z
pθ(x|z)pZ(z), (13)

where we use a generative model for the joint pθ(X,Z).
Using latent variable models greatly enhances the expressiveness of model

distributions, but exact computation of the marginal pθ(x) is often intractable.
By noting that the term under the first expectation in Eq. 11 is concave w.r.t.
rθ(x), Variational NCE [26] proposes to apply the evidence lower bound (ELBO)
to obtain a tractable variational lower bound for the first term in Eq. 11. Unfor-
tunately, the second term in Eq. 11 is convex in rθ and the ELBO does not
apply here. Importance sampling is leveraged instead to estimate the intractable
expectation inside the second term. In the following section we show how the
ELBO can be applied on both terms in a slightly generalized version of NCE.

3 Fully Variational NCE

First, we generalize the NCE objective (Eq. 10) to arbitrary strictly proper scor-
ing rules for binary random variables,

JS-NCE(θ) = Ex∼pd

[
S

(
1, rθ(x)

1+rθ(x)

)]
+ Ex∼pn

[
S

(
0, 1

1+rθ(x)

)]
, (14)

where rθ is the density ratio, rθ(x)
def= pθ(x)/pn(x). JS-NCE is maximized w.r.t.

the parameters θ in this formulation. Recall that rθ(x)/(1+rθ(x)) is the posterior
of x being a sample drawn from the model pθ, and 1/(1+ rθ(x)) is the posterior
for x being a noise sample. Our aim is to determine a convex function G such
that both mappings

f1(r) = S(1, r/(1 + r)) and f0(r) = S(0, 1/(1 + r)) (15)

are concave. If this is the case, then

fk

(
rθ(x)

)
= fk

(
pθ(x)
pn(x)

)
= fk

(∑
z pθ(x, z)
pn(x)

)
= fk

(∑
z pθ(x, z)qk(z|x)
pn(x)qk(z|x)

)

≥
∑

z
qk(z|x)fk

(
pθ(x, z)

pn(x)qk(z|x)
)

= Ez∼qk(Z|x)

[
fk

(
pθ(x, z)

pn(x)qk(z|x)
)]

for k ∈ {0, 1}. qk(Z|X) is a posterior corresponding to the encoder part. Overall,
JS-NCE in Eq. 14 can be lower bounded as follows,

JS-NCE(θ)=Ex∼pd
[f1(rθ(x))]+Ex∼pn

[f0(rθ(x))] ≥ max
q1,q0

JS-fvNCE(θ,q1,q0) (16)
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with the r.h.s. defined as the fully variational NCE loss,

JS-fvNCE(θ, q1, q0)
def= Ex∼pd,z∼q1(Z|x)

[
f1

(
pθ(x, z)

pn(x)q1(z|x)
)]

+ Ex∼pn,z∼q0(Z|x)

[
f0

(
pθ(x, z)

pn(x)q0(z|x)
)]

.

(17)

Note that we allow in principle two separate encoders, q1 and q0, since the ELBO
is applied at two places independently. For brevity we introduce the following
short-hand notations for the joint distributions,

pd,k(x, z) def= pd(x)qk(z|x) pn,k(x, z) def= pn(x)qk(z|x), (18)

resulting in a more compact expression for JS-fvNCE,

JS-fvNCE(θ,q1,q0) = E(x,z)∼pd,1

[
f1

(
pθ(x, z)

pn,1(x, z)

)]
+E(x,z)∼pn,0

[
f0

(
pθ(x, z)

pn,0(x, z)

)]
.

(19)

From pθ(x)pθ(z|x) = pθ(x, z) we deduce that the lower bound is tight, i.e.
JS-NCE(θ) = maxq1,q0 JS-fvNCE(θ, q1, q0) when the encoders q1 and q0 are equal
to the model posterior, q1(Z|X) = q0(Z|X) = pθ(Z|X) a.e. JS-fvNCE in Eq. 17
is formulated as a population loss, but the corresponding empirical risk can be
immediately obtained by sampling from pd, pn and the encoder distributions.

Now the question is whether such concave mappings f1 and f0 satisfying
Eq. 15 for a PSR S exist. Since common PSRs such as the logarithmic and the
quadratic PSR violate these properties, existence of such a PSR is not obvious.
The next section discusses how to construct such PSRs and provides examples.

4 A Family of Suitable Proper Scoring Rules

In this section we construct a pair (f1, f0) of concave mappings, such that the
induced functions S(1, ·) and S(0, ·) in Eq. 15 form a PSR. The following result
provides sufficient conditions on such a pair (f1, f0):

Lemma 1. Let a pair of functions (f0, f1), fk : (0,∞) → R, satisfy the following:

1. Both f1 and f0 are concave,
2. f1 and f0 satisfy the compatibility condition

f ′
0(r) = −rf ′

1(r) (20)

for all r > 0,
3. the mapping G(μ) = μf1(μ/(1−μ))+(1−μ)f0(μ/(1−μ)) is convex in (0, 1).

Then S is a PSR. Such pairs (f1, f0) are said to have to double ELBO property.
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Proof. We abbreviate S1(μ) := S(1, μ) and S0(1−μ) := S(0, 1−μ) and recall the
relations between S and G:

G(μ) = μS1(μ) + (1−μ)S0(1−μ)
S0(1−μ) = G(μ) − μG′(μ)

S1(μ) = G(μ) + (1−μ)G′(μ) = S0(1−μ) + G′(μ)
(21)

and therefore G′(μ) = S1(μ) − S0(1−μ). We calculate

G′(μ) = S1(μ) − S0(1−μ) + μS′
1(μ) − (1−μ)S′

0(1−μ) (22)

Combining these relations implies that

μS′
1(μ) − (1−μ)S′

0(1−μ) = 0 ⇐⇒ S′
0(1 − μ) = μ

1−μ · S′
1(μ) (23)

Now the relation between μ and r is μ = r/(1 + r) and therefore r = μ/(1− μ),
which we use to express (f1, f0) in terms of (S1, S0),

f1(r) = S1(μ) = S1(r/(1 + r)) f0(r) = S0(1−μ) = S0(1/(1 + r)). (24)

Using dμ/dr = (1 + r)−2 and

f ′
1(r) =

1
(1+r)2 S′

1(μ) f ′
0(r) = − 1

(1+r)2 S′
0(1 − μ),

the condition can be restated as

−(1 + r)2f ′
0(r) = r · (1 + r)2f ′

1(r) ⇐⇒ f ′
0(r) = −rf ′

1(r), (25)

which is the second requirement on (f1, f0). Now if (f1, f0) satisfy Eq. 20, then
(S1, S0) satisfy the relations of a binary PSR in Eq. 21 for an induced function
G. If G is now convex, then (S1, S0) is a PSR. �

One consequence of the condition in Eq. 20 is, that f1 is increasing and f0 is
decreasing or vice versa. This further implies that S cannot be symmetric, i.e.

S(1, μ) �= S(0, 1−μ), (26)

and positive and negative samples are penalized differently in the overall loss.
This is in contrast to many well-known PSR, which are symmetric (such as the
logarithmic PSR used in NCE). The condition also implies that

f ′′
0 (r) = −f ′

1(r) − rf ′′
1 (r)

!≤ 0.

Since f1 is concave and r ≥ 0, −rf ′′
1 (r) ≥ 0. This has to be compensated

by f ′
1 increasing sufficiently fast with r. Since f ′

1(r) ≥ −rf ′′
1 (r) ≥ 0, f1 is

increasing and f0 is decreasing in R≥0. This observation yields some intuition
on JS-fvNCE in Eq. 17: the first term aims to align pθ with pd,1 by maximizing
pθ(x, z)/pn,1(x, z) for real data (and its code), whereas the second term favors
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mis-alignment between pθ and pn,0 for noise samples (by minimizing the likeli-
hood ratio pθ(x, z)/pn,0(x, z)).

Equation 20 immediately allows to establish one pair (f1, f0) satisfying the
double ELBO property: we choose f1(r) = log r, which yields f ′

0(r) = −1 and
therefore f0(r) = −r. Both f1 and f0 are concave. Further,

S1(μ) = log μ
1−μ S0(1−μ) = − μ

1−μ (27)

and therefore

G(μ) = μS1(μ) + (1−μ)S0(1−μ) = μ
(
log μ

1−μ − 1
)

, (28)

which is convex in (0, 1). Thus, we have established the existence of one PSR
allowing the ELBO being applied on both terms as in Eq. 16. This example can
be generalized to the following parametrized family of PSRs:

Lemma 2. A family of PSRs satisfying the double ELBO property is given by

f1(r) = log(r + β) f0(r) = β log(r + β) − r (29)

for any β ≥ 0,.

Proof. This follows from

f ′
0(r) = −rf ′

1(r) = − r
r+β = − r+β−β

r+β = −1 + β
r+β =⇒ f0(r) = β log(r + β) − r.

Further, G′′ can be calculated as

G′′(μ) = − 1
(1 − μ)2(βμ − μ − β)

=
1

(1 − μ)2(μ + β(1 − μ))
> 0, (30)

which establishes the convexity of G (due to (1 − μ)2 > 0 and μ + β(1 − μ) > 0
for μ ∈ (0, 1) and β ≥ 0). �

A 2-parameter family of PSRs is given next.

Lemma 3. For α ∈ (0, 1] and β ≥ 0 we choose

f1(r) = 1
α (r + β)α f0(r) = − 1

α+1 (r + β)α+1.

This pair induces a strictly PSR satisfying the double ELBO property.

Proof. Both f1 and f0 are clearly concave. We deduce

f ′
1(r) = (r + β)α−1 f ′

0(r) = −r(r + β)α−1 = −rf ′
1(r), (31)

hence (f1, f0) satisfy the condition in Eq. 20. G′′(μ) can be calculated as

G′′(μ) =
(

μ + β(1 − μ)
1 − μ

)α

· μ + β(2 − α)(1 − μ)
(1 − μ)2(μ + β(1 − μ))2

. (32)

The first factor is positive for α ∈ (0, 1], β ≥ 0 and μ ∈ (0, 1). Analogously, the
second factor is positive since the numerator is positive for the allowed values of
(μ, α, β), and the denominator is a product of squares. �
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Since

lim
α→0+

f ′
0(r;α, β) = −1 =⇒ lim

α→0+
f ′
1(r;α, β) = (r + β)−1, (33)

we deduce that the limit α → 0+ yields the pair (f1, f0) from Lemma 2 (up to
constants independent of r).

Fig. 1. Several pairs (f1, f0), in particular (f0,0
1 , f0,0

0 ), (fα,0
1 , fα,0

0 ) and (f0,β
1 , f0,β

0 ) for
α = 1/2 and β = 1 (solid curves). Both f1 and f0 are concave functions. The pair
(f1, f0) induced by the logarithmic PSR is shown for reference (dashed curve, which is
concave in (a), but convex in (b)).

For visualization purposes it is convenient to normalize f1 and f0 such that
f1(1) = f0(1) = 0 and f ′

1(1) = 1 (and therefore f ′
0(1) = −1). With such normal-

ization the above pairs are given by

f1(r;α, β) = (1+β)1−α

α

(
(r + β)α − (1 + β)α

)

f0(r;α, β) = − (1+β)1−α

α(α+1)

(
(αr − β)(r + β)α − (α − β)(1 + β)α

)
.

(34)

Few instances of (fα,β
1 , fα,β

0 ) are depicted in Fig. 1. We further introduce the
fully variational NCE loss parametrized by (α, β),

Jα,β
fvNCE(θ, q1, q0)

def= E(x,z)∼pd,1

[
f1

(
pθ(x, z)

pn,1(x, z)
;α, β

)]

+ E(x,z)∼pn,0

[
f0

(
pθ(x, z)

pn,0(x, z)
;α, β

)]
.

(35)

We would like to get a better understanding of these PSRs in terms of losses
used for binary classification. Recall that

r = p
q

μ = p
p+q

= 1
1+1/r

= r
1+r

= σ(Δ) r = μ
1−μ

= σ(Δ)
1−σ(Δ)

= σ(Δ)
σ(−Δ)

= exp(Δ).

Here Δ is the logit of the binary classifier. We minimize a classification loss,
hence we consider the negated PSRs. Thus, we obtain for the logarithmic PSR,

− log(μ) = − log(σ(Δ)) = log(1 + exp(−Δ)) = soft-plus(−Δ)
− log(1 − μ) = − log(1 − σ(Δ)) = − log(σ(−Δ)) = soft-plus(Δ),
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Fig. 2. The PSRs from Fig. 1 reinterpreted as binary classification losses in terms of
log-ratios Δ = log r. The soft-plus loss corresponds to the logarithmic PSR.

where soft-plus(u) def= log(1 + eu). Inserting f1(r) = log(r + β) and f0(r) =
β log(r + β) − r yields

−f1(r) = −log(r+β) = − log(eΔ+β)
.
= −soft-max(Δ, log β) = soft-min(−Δ, −log β)

−f0(r) = r − β log(r+β) = eΔ + β soft-min(−Δ, −log β)

Finally, f1(r) = rα/α, f0(r) = −rα+1/(α + 1) results in

−f1(r) = − 1
αrα = − 1

αeαΔ −f0(r) = 1
α+1rα+1 = 1

α+1e(α+1)Δ.

Graphically, the difference between the logistic classification loss and the double-
ELBO losses is, that the logistic loss solely penalizes incorrect predictions and
the double ELBO losses strongly favor true positives instead (as shown in Fig. 2).

We conclude this section by a noting that non-negative linear combinations
of double ELBO pairs have the double ELBO property as well:

Corollary 1. The set of pairs with the double ELBO property is a convex cone.

This follows from the linearity of the relations Eq. 20 and Eq. 8.

5 Instances of Fully Variational NCE

In this section we discuss several instances of Jα,β
fvNCE for specific choices of α and

β. For easier identification of known frameworks we focus on normalized model
distributions pθ, but the extension to unnormalized models is straightforward.

5.1 Variational Auto-Encoders: (α, β) = (0, 0)

We choose (α, β) = (0, 0) in the 2-parameter family given in Lemma 3, i.e.
f1(r) = log r and f0(r) = −r. The resulting fully variational NCE objective
therefore is given by

J0,0
fvNCE(θ,q1,q0) = E(x,z)∼pd,1

[
log

(
pθ(x, z)

pn,1(x, z)

)]
−E(x,z)∼pn,0

[
pθ(x, z)

pn,0(x, z)

]
. (36)
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We first focus on the second term:

E(x,z)∼pn,0

[
pθ(x, z)

pn,0(x, z)

]
=

∑

x,z:pn,0(x,z)>0

pθ(x, z) ≤ 1. (37)

Now if supp(pθ) ⊆ supp(pn,0), then the r.h.s. of Eq. 37 is exactly 1, otherwise it
is bounded by 1 from above.3 We assume that supp(pθ) ⊆ supp(pn,0), then the
last term in Eq. 36 is 1, and since Ex∼pd

[log pn(x)] is constant, we obtain

J0,0
fvNCE(θ, q1, q0)

.= Ex∼pd,z∼q1(Z|x)

[
log

(
pθ(x, z)
q1(z|x)

)]
. (38)

After factorizing pθ(x, z) = pθ(x|z)pZ(z) this can be identified as the variational
autoencoder loss (up to constants independent of θ and q1),

J0,0
fvNCE(θ, q1)

.= Ex∼pd

[
Ez∼q1(Z|x) [log pθ(x|z)] − DKL(q1(Z|x)‖pZ)

]

︸ ︷︷ ︸
def
= JVAE(θ,q1)

. (39)

Thus, in this setting standard VAE training can be understood as variance-
reduced implementation of J0,0

fvNCE (since the stochastic second term becomes a
closed-form constant). If supp(pθ) �⊆ supp(pn,0), then

−E(x,z)∼pn,0

[
pθ(x, z)

pn,0(x, z)

]
≥ −1 (40)

and optimizing the VAE loss JVAE is maximizing a lower bound of J0,0
fvNCE. Now

let q0(Z|X) be a deterministic encoder, i.e. q0(z|x) = 1[z = g0(x)]. In this setting

J0,0
fvNCE(θ, q1, q0)

.= JVAE(θ, q1) − Ex∼pn

[
pθ(x, g0(x))

pn(x)

]

= JVAE(θ, q1) −
∑

x
pθ(x, g0(x)). (41)

Intuitively, J0,0
fvNCE aims to autoencode real data well, but at the same time

prefers poor reconstructions for arbitrary inputs. J0,0
fvNCE uses importance weight-

ing to estimate
∑

x pθ(x, g0(x)). This term only becomes relevant in the objective
if the two encoders q1 and q0 are tied in some way (otherwise g0 may map the
input to a constant code that is unlikely to be sampled from q1).

It is interesting to note that deterministic (and tied) encoders yield somewhat
different objectives when comparing classical autoencoders, VAEs and the fully
variational NCE:

JAE(θ, g) = Ex∼pd
[log pθ(x|g(x))] (42)

JVAE(θ, g) = JAE(θ, g) + Ex∼pd
[log pZ(g(x))] − γ (43)

J0,0
fvNCE(θ, g) = JVAE(θ, g) −

∑

x
pθ(x, g(x)), (44)

3 If we use unnormalized models p0
θ, then Eq. 37 is bounded by Z(θ).
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where γ := maxz log pZ(z) is introduced to ensure log pZ(z) − γ ≤ 0,4 which
allows us to obtain the following chain of inequalities,

JAE(θ, g) ≥ JVAE(θ, g) ≥ J0,0
fvNCE(θ, g). (45)

J0,0
fvNCE can be also interpreted as a well-justified instance of regularized autoen-

coders [6]. When using tied stochastic encoders q0 = q1 satisfying supp(pθ) ⊆
supp(pn,0), using the empirical version the 2nd expectation in Eq. 36 (instead
of dropping it due to being a constant) can be beneficial in scenarios explicitly
requiring poor reconstruction of certain inputs. The downside is a higher vari-
ance in the empirical loss and its gradients. Overall, a variational autoencoder
can be generally understood as variance-reduced instance of fully variational
NCE.

5.2 “Robustified” VAEs: (α, β) = (0, 1)

Now we consider the pair f1(r) = log(1+ r) and f0(r) = log(1+ r)− r. We read

J0,1
fvNCE(θ, q1, q0) = E(x,z)∼pd,1

[
log

(
1 +

pθ(x, z)
pn,1(x, z)

)]

+ E(x,z)∼pn,0

[
log

(
1 +

pθ(x, z)
pn,0(x, z)

)
− pθ(x, z)

pn,0(x, z)

]
.

(46)

We assume supp(pθ) ⊆ supp(pn,0), then the 3rd term can be dropped (see
Sect. 5.1). With tied encoders q=q1=q0 we arrive at a near-symmetric cost

J0,1
fvNCE

.= E(x,z)∼pd,1

[
log

(
1+

pθ(x, z)
pn,1(x, z)

)]
+ E(x,z)∼pn,0

[
log

(
1+

pθ(x, z)
pn,0(x, z)

)]

= E(x,z)∼pd,1

[
log

(
1+

pθ(x, z)
pn(x)q(z|x)

)]
+ E(x,z)∼pn,1

[
log

(
1+

pθ(x, z)
pn(x)q(z|x)

)]

= E(x,z)∼pd,1 [soft-plus(Δ(x, z)] + E(x,z)∼pn,1 [soft-plus(Δ(x, z)] , (47)

where we introduced the shorthand notation Δ(x, z) = log pθ(x, z)− log pn(x)−
log q(z|x). This lower bound is tight if q(z|x) = pθ(z|x) = pθ(x, z)/pθ(x). In this
case the ratio inside the log simplifies to

pθ(x, z)
pn(x)q(z|x) =

pθ(x, z)pθ(x)
pn(x)pθ(x, z)

=
pθ(x)
pn(x)

(48)

and Δ(x, z) = log pθ(x) − log pn(x). Note that log pn(x) is expected to be small
for real samples x and large for noise samples. J0,1

fvNCE can be interpreted as a
version of VAEs aiming to reconstruct both real and noise samples well, but
is based on a robustified reconstruction error (but with different and sample
dependent truncation values for real and noise samples). In practice this cost
appears to behave similar to AEs and VAEs (see Sect. 6.2 and Table 1).
4 This is only necessary for continuous latent variables as pmf’s are always in [0, 1].
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5.3 Weighted Squared Distance: (α, β) = (1, 0)

As a last example we consider f1(r) = r and f0(r) = −r2/2:

J1,0
fvNCE(θ, q1, q0) = E(x,z)∼pd,1

[
pθ(x, z)

pn,1(x, z)

]
− 1
2
E(x,z)∼pn,0

[(
pθ(x, z)

pn,0(x, z)

)2
]

(49)

Note that the encoder q1 cancels in the first term, as

E(x,z)∼pd,1

[
pθ(x, z)

pn,1(x, z)

]
=

∑

x,z

pd(x)q1(z|x)pθ(x, z)
pn(x)q1(z|x) = Ex∼pd

z∼pZ

[
pθ(x|z)
pn(x)

]
. (50)

Therefore q1 does not appear in the r.h.s. of Eq. 49 and can be omitted. Further,
the last term in J1,0

fvNCE is the (Neyman) χ2-divergence between pθ(X,Z) and
pn(X)q0(Z|X). After some algebraic manipulations it can be shown that J1,0

fvNCE
is (up to constants) a weighted squared distance,

J1,0
fvNCE(θ, q0)

.=
1
2

∑

x,z

(pθ(x, z) − pd,0(x, z))2

pn,0(x, z)
. (51)

Overall the aim is to minimize the weighted squared distance between the gen-
erative joint model pθ(X,Z) and the data-encoder induced one pd(X)q(Z|X).
In contrary to the setting where α = 0 (or α is at least small) and therefore it
is natural to model log pθ, it seems more natural to model pθ directly (instead
of the log-likelihood) in Eq. 49. Hence, the choice α = 1 is connected to density
ratio estimation [29,30], that typically uses shallow mixture models to represent
the density ratio pθ/pn. In fact, J1,0

fvNCE in Eq. 49 is closely related to least-squares
importance fitting [13] when q0 = q1.

6 Numerical Experiments

In this section we illustrate the difference in the behavior of several instances of
Jα,β
fv-NCE—in particular in comparison with classical autoencoders and VAEs—on

toy examples.

6.1 Noise-Penalized Variational Autoencoders

First, we demonstrate the capability to steer the behavior of an 784-256-784
autoencoder (with deterministic encoder) by using J0,0

fv-NCE (Eq. 44). The noise
distribution pn is a kernel density estimate of inputs depicting the digit “1” from
a validation set. Since the cost for false positives induced by −f0,0

0 = r is higher
than the cost for false negatives (−f0,0

1 (r) = − log r), anything resembling a
digit “1” is expected to be poorly reconstructed—even when those digits appear
frequently in the training data. Figure 3 visually verifies this on test inputs. This
feature of Eq. 44 is useful when training data for OOD detection is contaminated
by outliers, but a collection of outliers is available; or when an autoencoder-based
OOD detector is required to identify certain patterns as OOD.
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Fig. 3. The impact of the 2nd term in Eq. 44 on the reconstruction of test inputs (a).
pn is chosen as a kernel-density estimator of several digits in a validation set showing
“1”, with samples shown in (b). Reconstructions of the inputs using a VAE-trained
encoder-decoder are given in (c), and (d) shows the corresponding reconstruction for a
encoder-decoder trained using J0,0

fv-NCE (Eq. 44). Input patches showing a “1” are poorly
reconstructed (as intended).

6.2 Stronger Noise Penalization Using Jα,0
fv-NCE

Since fα,0
0 penalizes false positives stronger than fα,0

1 does for false negatives,
we expect different solutions for different choices of α. With infinite data and
correctly specified models log pθ, all PSRs will return the same solution (up to
the issue of local maxima), but we only have finite training data and clearly
underspecified models.

We fix the decoder variance to σ2
dec = 1/82 and use a kernel density estimate

with bandwidth σkde = 2σdec as noise distribution pn. By setting α > 0, noise
samples (which are near the training data in this setting) force the model pθ to
explicitly concentrate on the training data. Samples x ∼ pn have a larger recon-
struction error as compared to the VAE setting (α = 0). Table 1 lists average
decoding log-likelihoods for several values of α. VAEs reconstruct noise samples
worse than standard autoencoders (AEs) due to their latent code regularization.
This behavior is generally amplified for increasing α, as the difference between
the average reconstruction error grows with α. We also include J0,1

fvNCE (Sect. 5.2)
for reference, which behaves in practice similar to VAEs. Figure 4 visualizes the
decreasing reconstruction quality of samples drawn from pn.

In order to avoid vanishing gradients when α > 0 in the initial train-
ing phase, in view of Cor. 1 we use actually a linear combination of Jα,0

fvNCE
(with weight 0.9) and J0,0

fvNCE (with weight 0.1) as training loss. Table 1 lists
the values for two ReLU-based MLP networks (trained from the same ran-
dom initial weights) obtained after 100 epochs. Since the log-ratios such as
log r = log pθ(x, z)− log pn,1(x, z) can attain large magnitudes, expressions such
as rα and rα+1 are evaluated using a “clipped” exponential function: we use the
first-order approximation eT (u − T + 1) when u > T for a threshold value T ,
which is chosen as T = 10 in our implementation.
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Table 1. Average log-likelihood log pθ(x|g(x)) in nats Higher values indicate lower
reconstruction error.

(a) 784-128-784
Method/(α, β) x ∼ pd x ∼ pn Difference
AE 766 −1138 1904
VAE 765 −1609 2374
(1/256, 0) 749 −1665 2414
(1/64, 0) 698 −1863 2561
(1/16, 0) 753 −41818 2571
(0, 1) 736 −1656 2392

(b) 784-256-128-256-784
Method/(α, β) x ∼ pd x ∼ pn Difference
AE 756 −919 1675
VAE 769 −1373 2142
(1/256, 0) 774 −1402 2176
(1/64, 0) 748 −1520 2268
(1/16, 0) 777 −1463 2240
(0, 1) 775 −41372 2147

Fig. 4. Reconstruction of samples x ∼ pn (a). VAEs (c) and Jα,0
fvNCE (d) increasingly

force such samples to be poorly reconstructed compared to AEs (b), while maintaining
a similar reconstruction error for training data x ∼ pd (see Table 1).

7 Conclusion

In this work we propose fully variational noise-contrastive estimation as a
tractable method to apply noise-contrastive estimation on latent variable mod-
els. As with most variational inference methods, the resulting empirical loss only
needs samples from the data, noise and encoder distributions. We are largely
interested in the existence and basic properties of such framework and unravel
a connection with variational autoencoders. In light of this connection, VAEs
are now justified to be steered explicitly towards poorly reconstructing samples
from a user-specified noise distribution.

The utility of our framework for improved OOD detection and enabling gen-
eral energy-based decoder models is left as future work. Further, the highly asym-
metric nature of the classification loss suggests a potential but yet-to-explore
connection with one-class SVMs [27] and support vector data description [31].
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