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Abstract. In traditional deep learning models, latent features to the downstream
task are received only from the terminal layer of the feature extractor. The inter-
mediate layers of a feature extractor contain significant spatially salient infor-
mation which, when pooled by the interleaved pooling operations, is lost. These
intermediate latent embeddings can improve the overall performance for vision
tasks when leveraged properly. Recently, more complex combination schemes
leveraging the intermediate embeddings directly for the downstream task have
been proposed, but often require additional hyperparameters, increasing their
computational cost and have limited generalizability between datasets.

In this paper, we propose, ConvMix, a novel, learned combination scheme for
intermediate latent features of a deep convolutional neural network which can be
trained without incurring additional training cost and can be readily transferred
between datasets. ConvMix leverages features at multiple stages of a CNN to
distill spatial information in images, and create a richer embedding for the down-
stream task. Giving the network a ‘wider view’ by leveraging multi-level spatially
pooled features of the image enables better regularization by preventing learn-
ing specific indentifying features but rather focusing on the wider image itself.
We visually confirm this ‘wider view’ via GradCam and show that ConvMix
ensure that spatially salient features are prioritized in the latent embeddings. In
our experiments on CIFAR10-100, CINIC10, STL10, SVHN and TinyImageNet
datasets, we show that our approach not only achieves better performance com-
pared to state-of-the-art approaches but more importantly the percentage gain in
performance scales with the increase in model/problem complexity due to the
internal regularization effect of ConvMix.

1 Introduction

Deep Neural Networks (DNNs) leverage the underlying distributions of training data to
learn latent embeddings which are then used for downstream tasks such as classifica-
tion, detection, segmentation etc. for the computer vision domain. AlexNet [16] made
use of Convolutional Neural Networks (CNN) for image classification tasks enabling
state-of-the-art performance on the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [27]. CNNs distill spatial information in an image to an information
rich representation using stacked-layer architectures to generate latent features φ at each
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Fig. 1. Outputs of the 4 conv blocks of a Resnet18 with MNIST example. The decrease in spa-
tial dimension can be seen here. The conv blocks produce [64, 128, 256, 512] activation maps
respectively but only 4 are shown for each layer for ease of visualization.

layer which can be seen in Fig. 1. This allows the network to capture high-level features
such as shapes, color, and edges in the initial layers, followed by capturing low-level
features such as objects, patterns, etc. in later layers.

A CNN can be broken down into two parts f(g(x))where g(x) is the feature extrac-
tor for input x and f(·) is the downstream task. The feature extractor g maps inputs to
latent embeddings Φ such that g : R

h×w×c → R
M where (h,w, c) are the height,

width, and channels of the image and Φ ∈ R
M , M is the embedding size. The number

of convolutional layers L corresponds to the expressivity of the network. Increasing
L increases model expressivity but also leads to problems such as vanishing or explod-
ing gradients [4]. Furthermore, deeper CNNs require more data to prevent overfitting on
training data. The gradient issue has been addressed via different normalization schemes
[19], while training data is augmented by transformations such as flip, scale and rotate
to increase the amount of data for training. ResNets [12] were proposed to overcome
the issues with gradients in deep neural networks by suggesting a skip connection from
the input to the output of a stacked-layer architecture as seen in Eq. 1.

φl+1 = F(φl, {|Wl|}) + φl (1)

Here φl are the latent features at layer l and the function F(φl, {Wl}) represents
the weights and biases of the layer l to be learned. Closely related to the work proposed
by He et al. [2,12] presented Eq. 2 with a learnable parameter αi for the ith layer,
which when initialized to zero, transforms the network into an identity function and
encourages signal propagation.

φl+1 = αlF(φl, {|Wl|}) + φl (2)

These computationally inexpensive operations allow for deeper networks to be
trained with millions of parameters and surpassed the performance of the then state-
of-the-art methods such as the highway networks [30].

Recently, the focus has shifted to intelligent dataset augmentation techniques to
train large models, [38,40,42] propose creating proxy instances that are a linear com-
bination of two or more images. In the feature space, Manifold Mixup [35] put forth
the creation of linear interpolation of the latent features at random using a beta distri-
bution. Such methods are sensitive to the choice of hyper-parameters and add to the
training time due to the secondary task of creating these proxy images, [26] spends 2x
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Fig. 2. PCA of the latent embeddings for a ResNet18 trained of CIFAR10. Better separation
indicates the ability of network to resolve between different classes. The numbers in the legend
correspond to the classes.

time training and 1x time on validation. Overheads such as these are undesirable and
thus encourage the need for a solution that can be used within the standard network
train-test scheme.

In this work, we propose ConvMix, a novel combination scheme for latent fea-
tures from intermediate layers in a CNN to create richer latent embeddings that contain
spatially salient information of the earlier stages for better generalization and training
stability. ConvMix enables end-to-end training of CNNs without the need for hyperpa-
rameter tuning by introducing only four additional learnable scaling model parameters
that dictate the combination of intermediate latent features during training. The intuition
behind our method comes from the spatial saliency of image data which is not being
leveraged by the current CNN architectures. We argue that by using features frommulti-
ple stages of a CNN we should be able to generate well-separated embeddings and thus
perform better on the downstream tasks strictly based on these richer embeddings. In
Fig. 2 we present the Principle Component Analysis (PCA) for the learned embeddings
for a ResNet18 network trained on CIFAR10 dataset [15] using ReZero [2], Manifold
Mixup [35] and ConvMix. Figure 2 verifies our claim of a better-separated embedding
space when compared to recent similar methods. We encourage the reader to refer to
the appendix B for a detailed breakdown of this effect.

To quantitatively show ConvMix and its effect on the embeddings we use the
CIFAR10 dataset and skew the inputs as shown in Fig. 3 to train a classifier. The skewed
images result in a training situation where the images contain significant areas with no
information. The traditional latent features would be limited to a small region where
there is useful information. Furthermore, methods that rely on just the final embedding
space would be suboptimal for such scenarios and should lead to poor performance
[20]. In Fig. 3, we demonstrate that this hypothesis holds as the performance of methods
that rely on final embeddings Φ deteriorates while ConvMix reports better performance
owing to the higher scaling of earlier layers. Investigating the mixing weights for the
intermediate layer, we see that for the four blocks of ResNet18, ConvMix generates the
following normalized scaling weight values [β1 : 0.93, β2 : 0.93, β3 : 0.99, β4 : 0.1].
We see that the network learns a higher weight for the initial blocks while it down-
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Fig. 3. Skewed CIFAR10 images and performance on skewed CIFAR10 using ResNet18 (R18),
ResNet18 Manifold Mixup (R18 MM), and ResNet18 ConvMix (R18 CM) showcasing the
importance of using latent features at mutliple scales.

weighs the final block to achieve higher performance compared to the base architec-
tures. This phenomenon indicates that there is useful information contained in the out-
puts of the intermediate layers which needs to be directly leveraged to improve the
performance of the downstream tasks.

By using learnable parameters in place of manually tuned ones, our method enables
an end-to-end solution that outperforms the base architectures as well as the more
involved data augmentation-based methods without adding computational complexity
or demands for extensive data generation regimes. ConvMix is backbone agnostic and
can be readily adapted by all CNN architectures to benefit from the gains. We demon-
strate this ability of ConvMix by adapting a wide variety of networks ranging from the
simple ConvNets to the more complex ResNet-based architectures such as WideRes-
Nets [39] and ResNext [37]. We also show that ConvMix scales well across network
complexity ranging from ResNet18 to ResNet152. The main contributions of our work
are threefold:

1. We analyze and systematize existing combination schemes for input data and latent
features in CNNs while highlighting their need for hyperparameter optimization.

2. We propose a novel combination scheme for intermediate latent features that relies
on trainable model parameters and aims to maximally utilize the spatially salient
features at multiple stages of a CNN.

3. We demonstrate the consistency of our method across several backbones and empir-
ically show ConvMix outperforming the more handcrafted methods.

Using CIFAR10/100 [15], CINIC10 [10], STL10 [6], SVHN [22] and Tiny Ima-
geNet [17], we demonstrate ConvMix outperforming methods that rely on hyper-
parameters in both data and latent feature space. ConvMix achieves this without the
need for expensive dataset generation steps of [7,8,38] or hyper-parameter overhead of
[35,40].
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2 Related Work

The availability of ever more powerful hardware is enabling deeper and wider networks
to be investigated. The authors in [5] propose an autoregressive model with 175.0 Bil-
lion parameters to train. Similarly, in the architecture space we see models with tens
of millions of parameters such as EfficientNet [31], ResNet [12] and WideResNet [39]
being applied to a wide variety of machine learning tasks [14,18,25]. This increase in
network depth leads to an exponential increase in model expressivity [24]. More expres-
sivity leads to a better generalization but deeper networks come with a host of training
issues as highlighted by [11]. Exploding and vanishing gradients are a big issue that
has been mitigated with residual network [12] shown in Eq. 1. The identity mapping
proposed in [12] enabled deeper models to be trained, bringing us ResNets with 60
million parameters. A myriad of initialization schemes [21,36,41] along with covari-
ate shift mitigating normalization blocks [13] have enabled faster convergence of these
networks. In addition to enhancing the networks, data augmentation [16] has also gar-
nered a lot of attention, because these mammoth networks need a large amount of data
to prevent overfitting. Reinforcement Learning based approaches [7] have been pro-
posed to learn the best augmentation for datasets, however, such approaches come at
the cost of computational complexity. To reduce the search space for ideal augmenta-
tion [8] proposed that it is sufficient to only search for a single distortion magnitude that
jointly controls all operations, rather than searching for both magnitude and probability
of each operation independently. The two main focus areas for improving the overall
performance of deep networks are discussed going forward.

2.1 Instance-level Combination

The need for intelligent utilization of information contained in the dataset is paramount
since one cannot simply keep adding to the model complexity to hunt for gains. To this
end MixUp [40] proposed a linear interpolation on input data to create virtual training
instances x′ and labels y′ governed by a mixing parameter λ ∼ Beta(α, α) in Eq. 3,
here α is a hyper-parameter.

x′ = λxi + (1 − λ)xj

y′ = λyi + (1 − λ)yj

(3)

In the same vein, CutMix [38] has been proposed which inserts a patch of a data instance
atop another to create a proxy instance that is used to train the network. CutMix involves
pixel-level training to arrive at the ideal patch to overwrite in the original image, Cut-
Mix also updates the ground-truth labels to carry forward the patched instance label.
A similar approach termed SuperMix [9] has been proposed which creates the mixed
training instances based on the salient regions in images. These methods rely on an
expensive supervised training regimen to generate the training samples needed for a
deep network, adding a significant computational and memory overhead.

2.2 Feature-level Combination

Manifold Mixup (MM) [35] builds upon the mixup [40] idea by applying it to the latent
features. Instead of generating a mixed-up training instance and label, MM seeks to
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mix up the latent embeddings of the input instances at layer l. Effectively, MM applies
Mixup to the embedding space as shown in Eq. 4.

(g̃l, ỹ) := (Mixλ(gl(x), gl(x′)),Mixλ(y, y′)) (4)

Here gl is the latent embedding at layer l for instance x and x′ and λ is the mixing
parameter similar to Eq. 3. These approaches rely on creating a linear interpolation of
the input space or the latent features which have shown substantial improvements over
the state-of-the-art methods. Phantom Embeddings [33] proposes to create weighted
mixed-up latent embeddings for instance x and x′ to penalize the model from learn-
ing on the training data and improving generalization by maximizing the inter-class
distances of the embeddings.

ReZero [2] builds on the residual network by introducing a learnable residual weight
α for each block which is initialized to zero in order to turn the network into an identity
mapping at the start of training as in Eq. 5.

φl+1 = αl · F(φl, {Wl}) + φl (5)

Here α ∈ R
L trained along with the weights of the network. All methods in Sect. 2

fail to account for the explicit spatially salient information in the training data. They
follow the stacked-layer architecture and seek gains by augmenting the training data
to improve generalization. ConvMix proposes a novel research direction whereby the
dataset is maximally leveraged by tapping into the latent features at multiple stages of
the stacked-layer architecture to generate an embedding space that is informed by the
spatially salient features of an image.

3 ConvMix: A Novel Combination Scheme for Latent Features

Spatial information in ordered data generally and in the image domain specifically car-
ries a significant signal that needs to be leveraged maximally for the downstream tasks.
Using just the final embedding space Φ does not utilize the high-level feature informa-
tion contained in the earlier stages of the network and leaves gains on the table.

Recalling that a CNN can be broken down into f(g(x)), we can break it up further
by looking at the components inside the feature extractor g(·), represented as G =
[φ1, . . . , φL]. Here φl is the intermediate latent feature at layer l. The vanilla ResNet
in Fig. 4a can, therefore, be represented as f(gL(φL−1)) or simply as f(Φ), where Φ
is the final latent embedding used by the downstream task f(·). ConvMix aims to use
the latent features at multiple levels of the feature extractor as seen in Eq. 6 to generate
a spatially enriched embedding Φ′. The architecture of ConvMix and its comparison to
the vanilla ResNet can be seen in Fig. 4.

ConvMix = Φ′ = [β1 · φ1, . . . , βL · φL]

= BTG
(6)

HereB ∈ R
L is the set of learnable scaling weights that we introduce to combine the

latent features at all stages of the feature extractor. We allow the learned scaling weights
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Fig. 4. Standard ResNet Architecture is shown in 4a and 4b shows the architecture for our pro-
posed method, ConvMix.

B to dictate the combination of latent features to achieve desirable behaviors during
training namely richer embeddings (discussed in Sect. 3.2) and network compression
(discussed in Sect. 3.3)

We take an input x ∈ R
h×w×c and pass it through the multiple stages of the feature

extractor G, we tap into the latent features at each stage (φl) and apply Global Average
Pooling (GAP) [20]. At this point we are left with a channel-wise pooled φl which
we scale via βl ∈ B. These scaled latent embeddings are then aggregated to form
the ConvMix embedding Φ′ as seen in Eq. 6. The addition of B does not impact the
objective function because B acts as a scaling factor for the intermediate latent features
and is passed through to the cost function J(y, ŷ). We can demonstrate the scaling effect
by creating a toy residual network with L layers and identity activations. Furthermore,
the L layers share the same F{W} and B weights. The output of the feature extractor
at each level l, would be scaled by the factor βl. We can represent such a network as
in Eq. 7, where x is an input that is mapped to output ŷ through L hidden layers. We
substitute θ for F{W} for ease of notation.

ŷ(x) = f(βL(1 + θ)Lx) (7)

We have stated that βl ∈ B so βL = B. Similarly, from Eq. 1 we know that (1+θ)Lx =
φL = G and f(·) is our downstream task. We can replace these terms in Eq. 7 to arrive
at f(BTG) which from Eq. 6 is the enriched embedding Φ′. This toy example shows
how ConvMix serves to combine the intermediate latent features. Assuming a learning
rate η, the gradient descent weight update would therefore be represented by Eq. 8 and
we can see that ConvMix acts as a scaling factor.

θ ← θ − ηLxβL(1 + θ)L−1∂θJ(y, ŷ) (8)

Since B is a learnable parameter, it will be updated similar to [2] represented in Eq. 9.
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β ← −ηLθx∂θJ(y, ŷ) (9)

In order to delineate our work from Vanilla ResNet and ReZero we utilize the same
toy example, resulting in ŷResNet(x) = f((1 + θ)Lx) and ŷReZero(x) = f((1 + α ·
θ)Lx) respectively, here α is the residual weight proposed by [2]. Comparing ReZero
to Eq. 7, we can notice an important difference between ConvMix and ReZero. ReZero
performs a pixelwise scaling of the weights while ConvMix, by using multiple stages,
is a channel-wise scaling of the weights enabling us to maintain the spatial information.

The need for learnable weights B for combining latent features comes from the
undesirable alternatives. A naive way to create the Φ′ would be to average Φ =
1
L

∑L
l=1 φl where φl is the lth latent embedding from gl(φl−1). However, doing so

puts equal weight on latent features from inconsistent sizes since activation map
count increases polynomially with an increase in layers. Alternatively, we could assign
weights B ∈ R

L to G for a weighted average such that Φ = 1
L

∑L
l=1 βl · φl but that

would add more heuristics to train requiring additional hyper-parameter tuning while
not being transferable across different datasets.

3.1 Benefits of ConvMix

Having laid out the working of ConvMix, we would like to point out a few of the
positive effects of our approach on the network.

3.2 Richer Embeddings

The feature extractor output Φ directly impacts the performance of the network since it
is the input to f(·). An ideal Φ can be broken down into N specific regions correspond-
ing to each of the N labels. Capturing the latent features at multiple levels enables us
to create a richer embedding space which can be empirically demonstrated by compar-
ing the separability of embeddings for ConvMix against ReZero and Manifold mixup.
Using Eq. 10, we can calculate the separation between the embeddings of class i and j.

Dij = E
z∈i,z′∈j

[
1
M

‖z − z′‖2] (10)

Here, z and z′ are the test set latent embeddings generated from training ResNet18 on
CIFAR10 data for classes i and j. We normalize the distance metrics by the length
of the embedding M to discount for differing sizes of the embedding spaces. Using
upper triangular Dij we can calculate the expected separation as Separation =

1
N(N−1)

∑
i,j Dij . The separation for ConvMix (0.394) is better than that for Mani-

fold MixUp (0.1933) and ReZero (0.285). ConvMix generates embeddings that have
a higher expected separation thus indicating that each class is better separated in the
embedding space which leads to a higher performance on the downstream tasks which
can be seen in the experiment section. We present TSNE [34] plots in Fig. 7 for a more
qualitative look at the separability. When dealing with class clusters, we would like to
see two characteristics i-e. the centers should be well separated and the spread of the
intra-class samples should be tight. These two characteristics indicate that the method
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Fig. 5. TSNE of the latent Embeddings for a ResNet18 trained of CIFAR10. Better separation
indicates the ability of the network to resolve between different classes.

has learned unique embeddings for the different classes and therefore should be a bet-
ter classifier. The latter claim is verified in the experiment section with results on the
CIFAR10-100, CINIC10, SVHN, STL10 and Tiny ImageNet datasets using a wide
range of networks. In Fig. 7, we can see that the class centers are better separated in
our methods when compared to the baselines. Due to space constraints, we direct the
reader to the appendix for a more detailed discussion on these plots.

Table 1. KL-Divergence of the Embedding Space for the test split of CIFAR10. Trained using
ResNet18

CIFAR10 CIFAR100

Manifold Mixup 1.779358 1.030353

ReZero 1.765742 1.032229

ConvMix 1.697480 1.028727

We also report the KL-Divergence to highlight that the embedding space of Con-
vMix results in a lower KL-Divergence when compared to the baseline methods.

3.3 Network Compression

In information theory, compression of embedding space leads to better generalization
[29,32] and also has a regularization effect as shown by [1,3]. We provide empirical
proof of this compression in our method by training a CNN on the MNIST dataset and
analyzing the spectral decay using Singular Value Decomposition (SVD) for no regu-
larization, weight decay, dropout, and ConvMix at the first convolution layer. We follow
[35] and compare the maximum singular value per class label. The results show baseline
(131), weight decay (83.1), dropout (58.4), and ConvMix (48.9). The decrease in max-
imal singular value using regularization techniques can be empirically seen here. Also
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Table 2. Comparing the performance of ConvMix (CM) against Manifold Mixup (MM) and
ReZero(RZ). We present the mean and standard deviation of 5 runs. The networks we test are
ResNet18, 34 and 50 (R18, R34 and R50). Best performance is highlighted in bold

Cifar-10 Cifar-100 CINIC-10 STL10 SVHN

Prec@1 ↑
R18 MM 93.79 ± 0.16 75.15 ± 0.95 87.59 ± 0.08 86.55 ± 0.25 96.58 ± 0.06

R18 RZ 94.59 ± 0.35 75.52 ± 0.96 87.31 ± 0.14 82.01 ± 0.38 96.40 ± 0.02

R18 CM 95.25 ± 0.10 77.56 ± 0.28 87.77 ± 0.02 89.63 ± 0.26 96.65 ± 0.11

R34 MM 94.1 ± 0.62 77.27 ± 1.10 86.36 ± 0.13 86.84 ± 0.18 95.81 ± 0.30

R34 RZ 94.65 ± 0.13 75.94 ± 0.76 87.82 ± 0.02 83.18 ± 0.30 96.43 ± 0.01

R34 CM 95.34 ± 0.15 77.91 ± 0.55 87.87 ± 0.08 89.67 ±0.44 96.82 ± 0.08

R50 MM 92.38 ± 0.33 77.89 ± 0.35 85.02 ± 0.25 84.50 ± 0.46 95.10 ± 0.60

R50 RZ 95.46 ± 0.12 76.51 ± 0.60 84.67 ± 0.15 85.44 ± 0.54 96.45 ± 0.09

R50 CM 95.72 ± 0.06 79.08 ± 0.53 88.85 ± 0.10 89.45 ± 0.52 96.77 ± 0.07

highlighted here is that ConvMix leads to a higher network compression thus demon-
strating it’s regularization effect which enables us to perform better than the baseline
methods is difficult setting i-e. expressive networks and insufficient data.

4 Experiments

We verify the efficacy of our method on image classification tasks using six popu-
lar image datasets namely, CIFAR10, CIFAR100, CINIC10, STL10, SVHN and Tiny
Imagenet (100K). CIFAR10 dataset contains a total of 60K (50K train and 10K test
instances) 32× 32 color images in 10 classes, with 5K images per class. CIFAR100
dataset is similar to the CIFAR10 dataset but with 100 classes and 500 images per
class. CINIC10 is a variant of CIFAR10 sampled from the ImageNet dataset and is
a more challenging usecase since it is 4.5 times bigger than CIFAR10 with 90,000
training image per class. STL10 presents the opposite situation of CINIC10 by hav-
ing only 5000 labeled training images and 9000 test images. Tiny ImageNet is a sub-
set of the ImageNet dataset in the ILSVRC [27] and contains 100K 64× 64 images
from 200 classes, each class containing 500 images. SVHN10 contains 600,000 images
with numbers from 0 to 9 as the target. These datasets give us a range of complexity
from easy(CIFAR10) to complex(Tiny Imagenet) allowing us to empirically show Con-
vMix’s performance in different training scenarios. In addition to difficulty in terms of
the datasets, we also use the popular block-based ResNets namely, ResNet18-34-50-
101-152, Wide ResNet28-50, and ResNext50 to highlight how our method can cope
with varying model complexity. We discount methods that generate mixed-up instances
for training because our method does not rely on dataset regeneration, we take Man-
ifold Mixup and ReZero as our primary baselines because they are the closest to our
approach in that they operate on the feature level.
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Table 3. Pretrained warm-up training on Vanilla ResNet vs ConvMix. ConvMix outperforms
the baselines. The bigger gains can be seen for TinyImagetNet and the more complex networks
ResNet101-152.

Cifar-10 Cifar-100 TinyImageNet

Prec@1↑ Gain Prec@1↑ Gain Prec@1↑ Gain

Resnet18 95.59 ± 0.430 78.08 ± 1.45 70.80 ± 0.146

Resnet18 ConvMix 95.93 ± 0.246 0.34% 79.82 ± 0.419 1.74% 72.42 ± 0.101 1.62%

Resnet34 96.52 ± 0.247 81.79 ± 0.811 75.66 ± 0.206

Resnet34 ConvMix 96.61 ± 0.171 0.09% 82.34 ± 0.741 0.55% 76.97 ± 0.05 1.31%

Resnet50 96.67 ±0.141 83.26 ± 1.01 77.19 ± 0.115

Resnet50 ConvMix 97.11 ± 0.155 0.44% 83.6 ± 0.640 0.34% 79.61 ± 0.165 2.42%

Resnet101 97.06 ± 0.100 83.53 ± 0.633 79.18 ± 0.361

Resnet101 ConvMix 97.17 ± 0.012 0.19% 84.89 ± 0.104 1.36% 82.8 ± 0.269 3.6%

Resnet152 97.36 ± 0.156 84.25 ± 0.205 79.49 ± 0.105

Resnet152 ConvMix 97.44 ± 0.143 0.08% 84.83 ± 0.01 0.58% 83.34 ± 0.163 3.85%

4.1 Implementation Details

For CIFAR10 and CIFAR100 we use the data augmentation scheme as in [16]. All
experiments were run for 600 epochs with an initial learning rate of 0.1 (unless other-
wise stated) and was decreased by a factor of 10 at 50% and 75% of the total epochs.
Stochastic Gradient Descent (SGD) optimizer was used with a weight decay of 0.0001
and momentum of 0.9. All backbones networks are taken from the PyTorch Torchvision
models library [23] and then adapted using for our method. For a fair comparison, we
tune the hyper-parameters for the baselines and compare them against our method. For
Tiny Imagenet we use an initial learning rate of 0.001 as it provided the best baseline
performance, the rest of the training regime is maintained similar to the other datasets
under consideration.

4.2 ConvMix in Classification Tasks

ConvMix relies on the latent features of multiple stages of a CNN and to verify the claim
that information contained in the earlier stages is useful for the task of image clas-
sification we compare the performance of Manifold Mixup and ReZero on the above
mentioned datasets and present our findings in Table 2. We reimplemented the base-
lines and compared them against our method and note that ConvMix outperforms both
Manifold Mixup and ReZero for Prec@1 for ResNet(18-34-50) for all datasets. Con-
sidering CIFAR100, CINIC10 and STL10, the more challenging datasets, we see that
our method has substantial gains over the baselines in terms of Prec@1 for ResNet50.
The increasing performance gap between the baselines and ConvMix when the problem
complexity increases shows that our approach has an internal regularization effect that
enables better generalization and test performance, as established in Sect. 3.3.
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Table 4. Ablation study: Showcasing the impact of learning B end-to-end vs using the learned
B values as initializations. We also show how ConvMix (CM) can be used in addition to other
methods namely, ReZero(RZ)+CM and the resultantly increase in performance over ReZero.

R18
ConvMix

R18
Fixed B

R34
ConvMix

R34
Fixed B

Cifar10 95.25 92.95 95.34 94.6

Cifar100 77.56 74.2 77.91 76.5

R18
RZ

R18
RZ+CM

R34
RZ

R34
RZ+CM

Cifar10 94.59 94.99 94.65 95.23

Cifar100 75.52 76.56 75.94 76.48

In Table 3 we present the results of our model averaged over 5 runs against the stock
variants of the backbones. We use pre-trained weights learned on the ImageNet dataset,
starting with a learning rate of 0.01, and train all networks for 300 epochs. It can be
seen that our method is better in the final accuracy across the board. Furthermore, from
the standard deviation, we see that the model also performs consistently better than
the stock variant. For CIFAR10, the gains are small but consistent as it is a smaller
dataset and easy to learn with deep networks such as ResNets. CIFAR100 and Tiny
ImageNet are the more challenging datasets and ConvMix can outperform the baselines
under similar training settings. We also see an increase in %gain for ConvMix as the
complexity of the problem and the model increases.

A key item to note here; For CIFAR10 data using ResNet50 ConvMix yields an
accuracy of 97.11% while vanilla ResNet101 being a significantly bigger model is at
97.06%. The same trend can be seen for CIFAR100 used on ResNet34 and ResNet50
where our approach can close the gap between itself and the one level higher network.
This gain is attributed to the increase in embedding quality generated using our app-
roach.

4.3 Tiny ImageNet

To check the efficacy of ConvMix on challenging problem settings, we used TinyIm-
agenet with 200 classes and 500 instances per class. We make a small change to the
preprocessing where we scale the images from 64× 64 to 224× 224 pixels to use a
wider stride for the convolutions as in [12]. We also use pre-trained weights of the
complete ImageNet dataset for every backbone and use a lower learning rate (0.001).
These steps were taken to overcome the time constraints of training on bigger datasets.
To keep a fair comparison, we provide the same preprocessing pipeline to the baseline
variants as we do to the ConvMix, enabling us to see the effect of ConvMix while every
other experimental parameter is kept the same. As seen in Table 3, ConvMix categori-
cally outperforms the baselines for Tiny ImageNet. It should be noted, that our biggest
gains are seen when dealing with the most complex task i-e. TinyImageNet and for the
most expressive networks i-e. Resnet101-152. These networks are prone to overfitting,
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Table 5. Integration of ConvMix to more complex ResNets. CM represents ConvMix.

Cifar10 Cifar100

Prec@1 ↑ Prec@1 ↑
ResNext50 97.09 ± 0.379 84.18 ± 0.506

ResNext50 CM 97.29 ±0.176 84.70 ± 0.753

WideResNet28-2 94.615 ± 0.050 72.53 ± 0.064

WideResNet28-2 CM 94.66 ± 0.191 73.21 ± 0.042

WideResNet28-10 95.71 ± 0.120 78.82 ± 0.220

WideResNet28-10 CM 95.86 ± 0.106 78.88 ± 0.120

WideResNet50 96.68 ± 1.337 84.15 ± 0.400

WideResNet50 CM 97.35 ±0.250 84.72 ± 0.230

however, with ConvMix, we can see consistent and substantial gains in this challeng-
ing setting. Thus, indicating that ConvMix also has an automatic regularization effect
during training.

4.4 Ablation Study

To ascertain that the gains seen in Table 2-3, stem from the learned nature of weights
B, we create a second experiment where we initialized B with the weights learned from
a previous run and do not treat B as a learned parameter. The aim here is to prove
that by learning the weights during training we can improve the overall performance of
the network. Furthermore, with this experiment, we can discount our contribution from
being an initialization effect. The results are presented in Table 4, for CIFAR10 we were
able to achieve 92.9% and 94.6% Prec@1 for ResNet18 and ResNet34 respectively,
which is a 2.69% and 2.01% decline in the overall performance when compared to
treating B as a learned parameter. For CIFAR100, we see a similar decline of 3.36%
and 1.41% respectively. We also show the improvements ConvMix can offer to other
methods by implementing ConvMix with ReZero and showing the improvements over
vanilla ReZero. For CIFAR10, we report a 0.4% and ∼ 0.6% increase over ReZero
ResNet18 and ResNet34 respectively. For CIFAR100, we report a 1.04% and 0.54%
increase over ReZero ResNet18 and ResNet34 respectively.

Lastly, we also implement ConvMix to the more advanced variants of ResNet mod-
els such as ResNext [37], and WideResNets to show that our model outperforms or
matches the performance of these methods. WideResNets natively come with a host of
hyper-parameters and we did not do an extensive search for the optimal ones for Con-
vMix because that is not the intent of our work. We see that ConvMix leads to an over-
all improvement over the baseline variants of these advanced networks. For challeng-
ing datasets (CIFAR100) and deeper networks such as WideResNet50 and ResNext50,
ConvMix outperforms the baseline architectures significantly. This indicates that while
the baseline methods struggle to generalize for deeper networks due to limited data
and disproportionate model complexity, ConvMix, with its internal regularization using
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Fig. 6. GradCam visualizations for CIFAR10 dataset trained using ResNet18, comparing Man-
ifold Mixup, ReZero, and ConvMix. The Dark red region indicates the salient features in the
images learned by the network. GradCams for ConvMix embeddings (at layer4) indicate that our
method learns embeddings that take into account a wider area of the input. (Color figure online)

latent features of multiple stages, can improve the overall performance. We present
GradCam [28] in Fig. 6 images to highlight the generalization effect of ConvMix (more
details can be seen in appendix C). It can be seen that baselines tend to focus on a
very small region to make while ConvMix allows the model to learn from a wider area
of the image. This is a visual representation of the regularization offered by ConvMix
enabling it to outperform the baselines.

5 Conclusion

In this work, we proposed, ConvMix, a novel end-to-end combination scheme for latent
features of a CNN built upon the assumption that the current network architectures fail
to account for the salient information in images. ConvMix learns mixed latent features
aided by a learned weight B by tapping into the latent features at multiple stages of
the network. Being a learned method, ConvMix does not add any hyper-parameters to
be tuned thus, avoiding additional training time overhead. ConvMix is also backbone-
agnostic and can be readily implemented in any stacked-layer architecture. We empiri-
cally show the benefits of ConvMix in its ability to improve training behavior, network
compression, and richer embeddings allowing it to outperform the methods that fail to
account for the spatial information in images. We also provide extensive experimental
evidence of our method’s efficacy and how well it scales across network complexity.
We hope our work can drive interest in exploring the information contained within
a dataset in an end-to-end manner and bring forward more methods that reduce the
hyper-parameter overheads of the current approaches.
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A Appendix

B Richer Embeddings

Continuing our discussion about the ConvMix generating better-separated embeddings,
in Fig. 7 we present the TSNE plots on the test set embeddings of a ResNet18 trained on
CIFAR10 dataset. We have quantified the inter-class already in the main text (Table 1),
here we present qualitative proof for our claim that leveraging the latent features at
multiple stages generates better embeddings. In Fig. 7 we compare methods that work
on the latent space, namely Manifold MixUp and ReZero, against ConvMix.

Fig. 7. TSNE of the latent Embeddings for a ResNet18 trained of CIFAR10. Better separation
indicates the ability of the network to resolve between different classes.

Analysing Fig. 7, we can see that the class centers and better separated in our meth-
ods when compared to the others but a deeper inspection is needed to see how the dif-
ferent classes are represented in by our method. CIFAR10 dataset has some classes that
are frequently confused together, namely Cats-Dogs, Airplane-Ship, and the 4-legged
animals Cats-Dogs-Deers. This effect can be seen in the TSNE plots, we looking at
Manifold MixUp we can see this clearly with cats, dogs, and deers all being clustered
in relatively similar areas. This is an intuitive finding since these classes are intrinsically
close together however, this also leads to misclassification. In our method, we see that
while cats and dogs occupy a close place in the embedding space, the deer class is well
separated. This effect is caused by the earlier features of the CNN being used since in
the earlier stages of a CNN still maintains spatial saliency in the image features.

Moving on to the other troublesome classes, Airplane-Ship. We can rationalize
why they would be placed together in the embeddings space by Manifold MixUp and
ReZero. Both these classes contain a lot of blue in them due to the sea and sky. In
our method, we see a substantial separation between the two classes indicating that
using the latent features at multiple stages have enabled to model to resolve between
the shapes of the subject in the pictures and therefore, place them in well separated
embedding spaces.
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Fig. 8. GradCam visualizations for CIFAR10 dataset trained using ResNet18, comparing Man-
ifold Mixup, ReZero, and ConvMix. The Dark red region indicates the salient features in the
images learned by the network. GradCams for ConvMix embeddings (at layer4) indicate that our
method learns embeddings that take into account a wider area of the input. (Color figure online)

C GradCAM for Explainability

We argue in the main text of the paper that ConvMix has an internal regularization
effect, enabling the model to generalize better than the baseline methods (Manifold
MixUp and ReZero). We qualitatively demonstrate this effect in the final model by
presenting the gradCAMs on the CIFAR10 validation split for a fair demonstration of
the viability of our claim. In Fig. 6 we show that both Manifold Mixup and ReZero
tend to have a very narrow focus and use key areas in the image to classify the images.
However, ConvMix shows that it makes the classification by using a more holistic view
of the input. This can be seen in the last row of Fig. 6, ConvMix enables the model to
maintain a "wider view" of the input by spreading the focus on the subject as a whole
rather than just key aspects of the input.

The key benefit of this characteristic can be realized when we take the learning from
Fig. 6 andput it in the context ofFig. 7.Wehaveapeculiar situation seen in theTSNEplots
whereCats,Birds,andFrogsarelocatedclosetogetherinbothManifoldMixupandReZero
due to this focus on key areas.UsingConvMix,we can see that Cats andBirds still occupy
a similar but well-separated space, however, frogs have beenmoved away further away in
the embedding space. This shows a strength of ConvMix to be able to use the features of
frogs are multiple stages and rightly place them away from birds and Cats.

Another example we would like to point out here is the Automobile-Ship pair, which
can be seen to be closer together in the Manifold Mixup and ReZero method. We can
understand what the model is trying to do here by comparing the GradCAMs for Auto-
mobiles and Ships. With the narrow view of Manifold Mixup and ReZero, the model
sees similar features such as windows, doors, and frames. However, by looking at the
wider view offered by ConvMix, we can see the model making use of the entire image
for classification. Resultantly, we see that Automobiles and Ships are well separated in
the embedding space.
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Table 6. A random sampling of GradCAMs to showcase that the generalization effect discussed
above holds for the majority of the dataset. A wider spread is more desirable since it enables the
model to learn a more general representation of the class.

Cat Dog Airplane Ship
MM RZ CM MM RZ CM MM RZ CM MM RZ CM
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