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Abstract. In skeleton-based action recognition, graph convolutional
networks (GCN) have been applied to extract features based on the
dynamic of the human body and the method has achieved excellent
results recently. However, GCN-based techniques only focus on the spa-
tial correlations between human joints and often overlook the temporal
relationships. In an action sequence, the consecutive frames in a neigh-
borhood contain similar poses and using only temporal convolutions for
extracting local features limits the flow of useful information into the
calculations. In many cases, the discriminative features can present in
long-range time steps and it is important to also consider them in the cal-
culations to create stronger representations. We propose an attentional
graph convolutional network, which adapts self-attention mechanisms to
respectively model the correlations between human joints and between
every time steps for skeleton-based action recognition. On two common
datasets, the NTU-RGB+D60 and the NTU-RGB+D120, the proposed
method achieved competitive classification results compared to state-of-
the-art methods. The project’s GitHub page: STA-GCN.

Keywords: Computer vision · Action recognition · Graph
convolution · Attention mechanism

1 Introduction

Understanding human action plays a crucial role in many applications, such as
video surveillance, human-computer interaction, and human behavior analysis
[12,20,27,30]. Image-based methods suffer from many difficulties such as illumi-
nation changes, sensor noises, and perspective changes. One solution to overcome
these problems in human action recognition is to utilize skeleton data.

Earlier skeleton-based action recognition methods extract features using
two main approaches: hand-crafted [8,13–15,25] and deep learning. Due to the
recent development of large-scale datasets and computing power, deep learning
approaches are providing better results in action recognition [27]. Earlier meth-
ods that use RNN [11,26] and CNN [5,6] overlook the correlation between joints
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in the human skeleton, therefore limiting their expressive capability. Recently,
graph convolutional networks (GCN) are introduced into skeleton modeling to
integrate the natural human topology into the calculations [1–3,9,16,21,28,29],
and they are currently state-of-the-art in skeleton-based action recognition.
Besides, recent research often adapt the standard [9,21,28] or multi-scale dilated
1D convolution [1,2,16] to extract temporal features. However, in skeleton data,
local consecutive frames usually contain similar features which are not useful to
effectively discriminate challenging action samples. To overcome this, we could
either increase the size of convolution filters or create a very deep model to
widen the receptive field, but these methods can be computationally expensive.
Another solution is to use the self-attention mechanism [23] that has the ability
to pinpoint specific useful frames over a global receptive field, and this is the
chosen approach of the paper. Figure 1 illustrates the proposed idea.

(a) Traditional temporal modeling with convolutions.

(b) Temporal modeling with added self-attentions.

Fig. 1. Temporal self-attention can pinpoint useful information along the action
sequences by assigning weights on each frames. The red color denotes the current frame
of calculation and the green frames indicate useful information. For many samples of
human action, farther frames along the observed sequence can contain more discrimi-
nated features than the local neighborhoods. Aggregating local features is optimal for
classifying challenging actions, so it is important to consider long-range dependencies.
(Color figure online)

In this paper, a GCN-based attention method for skeleton-based action recog-
nition is presented. In particular, a self-attention mechanism is combined with
graph convolutional networks (GCN) for the spatial modeling of skeleton-based
human models. In the temporal dimension, self-attention is applied together
with multi-scale 1D convolutions to extract time-related features across the
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skeleton sequences. The proposed model is tested on two large-scale datasets:
NTU-RGB+D60 and NTU-RGB+D120, and the classification results proved to
be competitive with the current state-of-the-art methods.

2 Related Works

2.1 Deep Learning on Graphs

Standard deep learning toolboxes are optimized for either grid-like data (CNN)
or sequences (RNN), thus creating difficulties when applying them to graphs.
Recently, GNN was introduced to define the learning task on graph-structure
data [4]. Similar to traditional supervised learning methods, each skeleton
sequence is represented as a data sample with an associated action label, and the
goal is to learn the mapping from data points to labels. One of the GNN variants
is graph convolutional networks (GCN) [7]. GCN is an approximation of spectral
GNNs and is good at capturing graph features. However, the aggregation weights
of GCN are explicitly defined based on node degrees, thus limiting its represen-
tation capability. Graph attentional networks (GAT) [24] is later introduced to
address this problem by implicitly learning the connection weights through a
self-attention mechanism. Both GCN and GAT are utilized in this study.

2.2 Skeleton-based Action Recognition

Earlier deep learning approaches for skeleton-based action recognition include
RNN-based [11,26] and CNN-based [5,6] consider the skeleton graph as an uncor-
related set of features, and overlook the dynamic connectivity of the human body.
GCN-based methods, that integrate the joint connections into their spatial mod-
eling [1,2,9,16–18,21,22,28,29,31,32] record a significant boost in classification
accuracy.

Yan et al. [28] first introduced the concept of GCN into action recognition,
namely ST-GCN. The skeleton sequence is modeled from two types of edges: spa-
tial edges that express connectivity between human joints, and temporal edges
that connect the joints across time steps. Li et al. [9] proposed AS-GCN to cap-
ture richer dependencies in the spatial dimension of skeleton data. The method
presents a module for capturing action-specific latent dependency between every
human joint and extending human topology to represent higher-order dependen-
cies. Shi et al. [21] reasoned that using predetermined and fixed skeleton graph
topology for aggregating information is not optimal for diverse samples. There-
fore, they proposed 2s-AGCN that captures second-order bone information in
addition to joints’ dependencies of skeleton data.

Liu et al. [16] proposed a disentangled and unifying graph convolutional
network MS-G3D. The disentangling task removes the redundant dependen-
cies between node features when aggregating spatial information and the graph
topology is modified to directly obtain information from farther nodes. The
combination of the two proposed methods creates a powerful extractor with
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multi-scale receptive fields across spatial and temporal dimensions. Zhang et al.
[31] also consider long-range dependencies by using context-aware graph convo-
lutions (CA-GCN) based on self-attention. In addition to the local modeling of
each joint vertex, CA-GCN integrates information from all other vertices within
the sequence. Also relying on self-attention, Shi et al. [22] proposed decoupling
schemes (DSTA-Net) to model spatio-temporal interactions between joints and
frames without knowing their positions or mutual connections.

Chen et al. [1] proposed CTR-GCN that dynamically refine a shared prior
topology for each feature channel. CTR-GCN creates multi-channel attention
maps to refine the correlation between joints in each skeleton graph. This app-
roach provides an effective modeling scheme from different channels, leading to
stronger representation. Zhang et al. [32] propose a Spatial-Temporal Specialized
Transformer Encoder (STST) to model the skeleton posture of each frame and
capture changes of posture in the temporal dimension, thus providing strong
modeling of action sequences. Similarly, various approaches [17,18] also utilizes
the transformer architecture to extract spatial and temporal dependencies (ST-
TR). Recently, Chi et al. [2] adopted the information bottleneck to derive the
objective and the corresponding loss for maximum informative latent represen-
tation of skeleton-based actions.

In this paper, we explicitly combine the self-attention modeling of spatial and
temporal dependencies from skeleton-based sequences. The proposed method
consists of the strong spatial representation from the implicit interaction mod-
eling between joints, and the ability to pinpoint useful time-based information
of the temporal attention module.

3 Proposed Method

In this section, we first introduce the related notations on skeleton graphs and
graph convolution. Detailed information about our proposed Spatio-temporal
attentional graph convolutions is presented.

3.1 Preliminaries

A human action can be represented as a sequence of skeleton graphs. A graph
G = (V, E) is an ordered pair constructed by a set of N vertices (or nodes) V =
{v1, v2, ..., vN} and a set of edges E between these vertices. An edge going from
node u ∈ V to node v ∈ V is noted as (u, v) ∈ E . A graph can be conveniently
formulated by an symmetry adjacency matrix A ∈ R

N×N . The strength of
edges is presented by the value of matrix’s entries aij . The neighborhood of vi
is the set N (vi) = {vj |aij �= 0}. Action classes, represented as skeleton graph
sequences, contain a node feature set X , which can be presented in matrix form
X ∈ R

T×N×C . The relationship between nodes within a frame is described by
an adjacency matrix A.

The calculation of GCN [7] adapts the idea of symmetric normalization into
the node update function for an input skeleton feature x at layer k as:

hk = σ
(
D̃

−1/2
ÃD̃

−1/2
xkW

)
(1)
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where Ã = A + I is the adjacency matrix with added self-loop, D̃ is the degree
matrix of Ã, σ is the activation function, and W is the weight. Every entry of
Ã takes the binary form to represent connectivity.

Graph Attentional Networks (GAT) [24] relaxes the entries of the adjacency
matrix by adaptively learning it for every pair of connected nodes using the
self-attention mechanism. The update function for an input skeleton feature x
at layer k is formulated as:

hk = σ
(
MxkW

)
(2)

where M is the self-attention score matrix which follows the calculation of [23]. In
the original method, [24], the masked version of GAT is applied to only consider
connected nodes. However, in this paper, the unmasked version of GAT is used
instead to model the interactions between every pair of human joints.

3.2 Model Architecture

Our proposed feature extraction block consists of three modules connected to
each other: GCN-GAT-combined spatial self-attention, temporal self-attention,
and multi-scale temporal convolution. The proposed STA-GCN block is illus-
trated in Fig. 2. The architecture includes multiple blocks of STA-GCN, followed
by a global average pooling, a fully connected, and a softmax layer.

Fig. 2. Model architecture.

3.3 Spatial Modeling

To effectively extract features from the skeleton graphs, we combine the adja-
cency calculations from GCN and GAT into one update function:
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C = M + D̃
−1/2

ÃD̃
−1/2

hk = σ
(
CxkW

) (3)

where C is the combined adjacency matrix. By combining the two methods, we
get the benefit from both. GCN is good for capturing spatial dependency between
nodes from the given prior knowledge about human kinetics in the adjacency
matrix. Unmasked GAT is good for modeling hidden correlations between human
joints that are not visually connected.

The spatial modeling process is illustrated in Fig. 3. First, the input sequence
is globally pooled along the temporal dimension. The pooled matrix is used to
derive the query and key for computing the attention score. We then multiply the
value with matrix C to get the final embedding tensor of the skeleton sequence.
Furthermore, a multi-head version of self-attention is utilized to stabilize the
hk calculation. The combination of attention map and adjacency matrix also
happens head-wised. Therefore, each head has its own combined attention map.

Fig. 3. Spatial and temporal self-attention modeling.

3.4 Temporal Modeling

The main goal of the temporal modeling process is to complement the traditional
local extracting methods with a global aggregation approach to capture long-
range dependencies within a skeleton sequence. Similar to the spatial modeling
process, multi-head self-attention is also applied to temporally model skeleton
sequences. First, each sequence is spatially pooled at every skeleton graph. After
pooling, the data becomes a classical sequential problem. The attention map
between frames is calculated from query and key. The only difference from the
spatial modeling is no combination process with the adjacency matrix (Fig. 3).
Then, the value is multiplied by the attention map to produce the output.

By using self-attention, we can extract long-range dependencies within one
layer. The purpose of temporal self-attention is to pinpoint the most beneficial
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frames from the skeleton sequence. However, the attention module may put a
lot of weight into long-range frames and not consider local neighborhoods. As
earlier methods demonstrated, extracting local features is an effective way to
ensure a good baseline performance. While self-attentions pinpoint specific useful
frames over the whole sequence, temporal convolutions provide direct access to
neighborhood features. For this reason, we proposed combining self-attentions
with 1D temporal convolutions to complement each other. We adopt the multi-
scale dilated convolution module from [1,2,16] with minor changes to extract
local temporal features. The dilated convolutions from [16] increase the receptive
field while keeping the number of calculations unchanged. However, long-range
dependencies are already collected by self-attentions, so standard 1D temporal
convolutions are implemented instead to capture richer local dependencies.

4 Experiments

4.1 Datasets

In this study, we tested our algorithm in two datasets: NTU-RGB+D60 and
NTU-RGB+D120.

NTU-RGB+D60 [19] is a large-scale dataset for action recognition that con-
sists of 56,578 videos. The training samples are collected as skeleton sequences
from 60 action classes, 40 distinct subjects, and 3 camera view angles. Four data
modalities were provided but only 3D information of 25 body joints is used for
the action recognition task. The authors propose two accuracy metrics: Cross-
subject (Xsub) and Cross-view (Xview). In Xsub, 40 subjects are split evenly
into training and testing sets. In Xview, samples from cameras 2 and 3 are used
for training and camera 1 for testing.

NTU-RGB+D120 [10] is the extension of previous dataset. The updated ver-
sion provides the addition of 57,367 skeleton sequences over 60 extended action
classes. In total, NTU-RGB+D 120 consists of 113,945 training samples over
120 action classes, which are performed by 106 human subjects and captured
from 32 different camera setups. The authors propose two evaluation settings:
Cross-subject (Xsub) and Cross-setup (Xset). In Xsub, 106 subjects are split
evenly into training and testing sets. In Xset, 32 collection setups are split as
even-IDs for training and odd-IDs for testing.

4.2 Implementation Details

The experiment results are conducted on two NVIDIA Tesla V100 GPUs from
Finland’s CSC server with PyTorch deep learning framework. The model is
trained with SGD with momentum 0.9, weight decay 0.0004, batch size 64, and
an initial learning rate of 0.1 for 65 epochs. The learning rate is scheduled to
decay with a rate of 0.1 at epochs 35 and 55. A warm-up strategy is adopted
for the first 5 epochs to stabilize the training process. For two datasets NTU-
RGB+D 60 and NTU-RGB+D 120, the data pre-processing from [1] is used,
and all skeleton sequences are resized to 64 frames each.
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Similar to [1,21,29], multiple training with different data modalities are also
implemented. In addition to the original data of skeleton joints, bone and velocity
modalities are also utilized for training. Thus, there are a total of four different
training at each evaluation setting: joint, bone, joint-motion, and bone-motion.
The performances of all four modalities are then assembled into a final value of
accuracy.

The standard evaluation metric on human action recognition research is accu-
racy measurement. For a fair comparison, we also measured the classification
accuracy on both NTU-RGB+D60 and NTU-RGB+D120. In addition, we also
conduct F1 measurement over classes on some related methods that published
their model’s weights [1,16].

To find the best performing model for STA-GCN, an ablation experiment
was conducted. With the same training hyper-parameters, a baseline model con-
sisting of only graph convolutional networks and temporal convolutions was
tested. Then, the proposed spatial adaptive attention and temporal attention
were added respectively. All ablation study experiments were conducted in the
cross-subject setting of the NTU-RGB+D60 dataset.

4.3 Ablation Study

In this section, the proposed spatial-temporal attention graph convolution net-
work is tested on the cross-subject evaluation setting on the NTU-RGB+D60
dataset. An architecture similar to ST-GCN [28] is deployed as the starting
baseline. There are three modules that need to be studied: adaptive GCN, addi-
tional GAT, and temporal attention modeling. Also, the original 1D convolution
in ST-GCN [28] is changed to the multi-scale module for a fair comparison. The
experimental results are shown in Table 1.

Table 1. Accuracy comparison for ablation study.

Methods Params. Accuracy (%) Mean last 10 epochs (%)

Baseline 843868 87.50 87.27

Baseline w. adaptive GCN 850118 89.30 89.09

STA-GCN w/o. temp attention 1119422 89.88 89.72

STA-GCN w. temp attention 1174560 89.90 89.87

First, we tested the performance of the original baseline model with normal
GCN and multi-scale convolutions. Then, the adaptive characteristic is inte-
grated into the GCN module to observe the improvement. In the third experi-
ment, GAT and self-attentions are fused into the spatial modeling to create the
proposed STA-GCN model. Self-attentions along temporal dependencies are sep-
arately considered in the fourth experiment. It can be observed that the accuracy
of the classifiers increases gradually as more modules are added.
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With an overall accuracy of 87.50%, the baseline performs fairly well on the
NTU-RGB+D60 dataset. However, the baseline model struggles against many
difficult classes, such as: eating snack (action 02), reading (action 11), writing
(action 12), taking off shoes (action 17), playing with phone (action 29), sneez-
ing (action 41). These classes differ by small changes in arm movements, thus
creating challenges for skeleton-based action recognition. By integrating the pro-
posed modules into the baseline model, an increase in performance is recorded,
as shown in Fig. 4.

Fig. 4. Comparison of performance on difficult classes.

In addition, we measured the class-wise F1-score for the baseline and STA-
GCN. Table 2 illustrates the top five classes with the highest improvement on F1
measurement. The highest improvements was recorded on classes that include
small-gesture action samples such as reading (action 11), using a hand-fan (action
49), touching neck (action 47), or putting on glass (action 18). The action reading
(action 11) has the highest improvement when STA-GCN was applied with 8%
increment in F1-score. This demonstrates the positive impact when applying
temporal attention modules to recognize subtle gesture action samples.

Figure 5 shows the last 10 epochs of the training process. In the case of the
model without temporal attention, the accuracy oscillates between 89.6% to
89.9%, with a mean accuracy of 89.72%. While the performance of the model
with temporal attention is stable at around 89.9% and an average of 89.87%.
Therefore, though the final accuracy of the two models is the same, the one with
temporal attention proved to be more consistent and superior. Because of these
reasons, the STA-GCN module with temporal attention is chosen as the main
building block of the final skeleton-based action recognition model.
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Table 2. Top five classes with highest F1-score improvement.

STA-GCN vs baseline STA-GCN vs adaptive baseline

Rank Action Increment(%) Ation Increment(%)

Top 1 action 11 8.05 action 11 5.13

Top 2 action 49 7.47 action 47 3.20

Top 3 action 47 7.12 action 18 2.98

Top 4 action 18 5.73 action 05 2.75

Top 5 action 29 5.66 action 28 2.71

Fig. 5. Comparison between models with and without temporal attention.

4.4 Results

We adopt the same multi-stream fusion framework as [1,21], by fusing four
different modalities of data: joint, bone, joint motion, and bone motion. The
comparisons in classification accuracy of our approach with other graph-based
methods is demonstrated in Table 3.

On NTU-RGB+D60, the final STA-GCN model beats earlier methods
[6,11,25], and some recent GCN-based methods such as [9,16,21,28,29], but
cannot outperform the current state-of-the-arts [1,2] in Xsub and Xview. How-
ever, compared to other methods that also implemented self-attention on tem-
poral domain [17,18,22,31,32], our STA-GCN has a clear advantage, especially
on Xsub setting. For NTU-RGB+D 120 dataset, the evaluation quality is the
same. STA-GCN still outperforms [17,18,22,31,32] in both Xsub and Xset met-
rics. When compared to ST-TR [17], the method that is most similar to our
approach, STA-GCN achieved closed performance on the NTU-RGB+D60 but
outperforms by a large margin on the NTU-RGB+D120. Besides, STA-GCN
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under-performs CTR-GCN [1] by 0.4% and 0.2% and InfoGCN by 1.3% and
0.8% on Xsub and Xset settings of the NTU-RGB+D120.

Table 3. Classification accuracy compared with state-of-the-art methods on the NTU-
RGB+D60 and NTU-RGB+D120 datasets.

Methods Year NTU-RGB+D60 NTU-RGB+D120

Xsub (%) Xview (%) Xsub (%) Xset (%)

Lie Group [25] 2014 50.1 52.8 – –

Temporal CNN [6] 2017 74.3 83.1 – –

Ind-RNN [11] 2018 81.8 88.0 – –

ST-GCN [28] 2018 81.5 88.3 – –

AS-GCN [9] 2019 86.8 94.2 – –

2s-AGCN [21] 2019 88.5 95.1 82.9 84.9

MS-G3D [16] 2020 91.5 96.2 86.9 88.4

CA-GCN [31] 2020 83.5 91.4 – –

DSTA-Net [22] 2020 91.5 96.4 86.6 89.0

Dynamic GCN [29] 2020 91.5 96.0 87.3 88.6

STST [32] 2021 91.9 96.8 – –

ST-TR [17] 2021 89.9 96.1 81.9 84.1

CTR-GCN [1] 2021 92.4 96.8 88.9 90.6

Qin’s method [18] 2022 90.5 96.1 85.7 86.8

InfoGCN [2] 2022 93.0 97.1 89.8 91.2

STA-GCN (Net) 92.4 96.5 88.5 90.4

STA-GCN (Joint+Bone) 92.0 96.4 88.4 90.0

STA-GCN (Joint) 89.9 94.9 84.7 86.3

STA-GCN (Joint-motion) 87.4 93.3 81.4 83.1

STA-GCN (Bone) 90.3 94.9 86.3 87.8

STA-GCN (Bone-motion) 87.4 91.9 81.2 83.0

As previously mentioned, F1-score measurement is also carried out for some
related methods that published their model weights, specifically MS-G3D [16]
and CTR-GCN [1]. The measurement is shown in Table 4. Because NTU-
RGB+D60 and NTU-GRB+D120 is fairly balanced datasets, the F1-scores did
not vary much from the accuracy measurements.
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Table 4. F1-score measurement results

Methods NTU-RGB+D60 NTU-RGB+D120

Xsub-joint (%) Xsub-bone (%) Xsub-joint (%) Xsub-bone (%)

MS-G3D [16] 89.4 90.1 83.8 86.0

CTR-GCN [1] 89.9 90.5 85.2 85.7

STA-GCN 89.9 90.2 84.9 86.4

5 Conclusion

In this study, a spatio-temporal attentional graph convolution network for
skeleton-based action recognition is presented. As the results attest, the combina-
tion of GCN, self-attentions, and temporal convolutions can effectively learn fea-
tures and joint relationships from the action sequences. Compared to the state-
of-the-arts on two common datasets NTU-RGB+D60 and NTU-RGB+D120, the
proposed model STA-GCN achieved competitive classification performance. In
the future, we believe it is worthwhile to put more focus on the modeling of
micro-movements in human limbs, in order to increase the classification perfor-
mance of the model in those challenging situations.
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