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Abstract. Industrial machine-vision (MV) applications require high-
speed stitching of low-textural images from multiple high-resolution cam-
eras for Field-of-View expansion. The most vital step in the stitching pro-
cess is the effective and efficient extraction of features, which becomes
challenging for low-textural images. This paper presents a comparative
study of five popular feature descriptor algorithms for image stitching viz.
Scale Invariant Feature Transform (SIFT), Speeded Up Robust Feature
(SURF), Oriented Fast and Rotated BRIEF (ORB), Binary Robust invari-
ant scalable keypoints (BRISK), and Accelerated-KAZE (AKAZE).

The focus of this paper is to present a study of the performance compar-
ison among these feature extraction methods for low-textural images from
real-time steel surface inspection systems. Primarily, synchronized images
of steel rolled at room temperatures are obtained from a two-camera net-
work with overlapping regions. Feature descriptor algorithms extract fea-
tures from two images with an overlapping area and further match the
features using K-Nearest Neighbour (KNN) algorithm. The performance
of the five feature descriptor algorithms is evaluated using a low-textural
dataset that consists of a set of 177 images captured from two cameras
placed at a fixed distance from each other. The efficiency of these algo-
rithms is quantitatively and qualitatively evaluated using execution time,
sensitivity, and specificity. Finally, this paper provides guidelines for future
research on problems with FOV expansion in industrial scenarios.

Keywords: Feature Descriptors · Image Stitching · Low textural
imaging

1 Introduction

Some key sectors in the manufacturing industry, such as instrumentation,
quality improvement, tracking, etc., employ futuristic automation owing to
their high accuracy and precision. The most widely used technology among
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Gupta et al. (Eds.): CVIP 2022, CCIS 1777, pp. 458–473, 2023.
https://doi.org/10.1007/978-3-031-31417-9_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31417-9_35&domain=pdf
http://orcid.org/0000-0002-0804-0221
http://orcid.org/0000-0002-3381-2764
https://doi.org/10.1007/978-3-031-31417-9_35


Comparative Analysis of Feature Descriptors 459

these is machine-vision [13]. Such applications employ application-specific high-
resolution cameras and lenses. Lens selection for such applications depends on
the geometry and dimensions of the object [15]. Using a wide-angle or telephoto
lens introduces distortions that might cause deformities of the captured object.
Thus, the selection of lens impact field-of-view (FOV) and object-to-camera dis-
tance.

Limited FOV issues of cameras can be solved using either of these techniques.
The first involves Omni Directional cameras [30] arranged with reflective mirrors
for enhancing the FOV. The drawback of this technique is the non-uniformity
of the output image. The second involves employing a predefined arrangement
of multiple cameras known as distributed aperture systems (DAS) [22]. Such
DAS systems produce wider FOV outputs with a dynamic view of neighbouring
surroundings.

Numerous DAS-based inventions [8] are reported in the literature. The DAS
invented by Northrop-Grumman Corporation employs mid-wave infrared (IR)
sensors, each covering 30◦, thereby requiring six sensors to cover the complete
360◦ area around a tactical environment. An advanced DAS (ADAS) invented by
Raytheon Company [40] uses high-resolution IR sensors for 360◦ view for situa-
tional awareness. Another invention of DAS by Sarnoff Corporation [14] provides
a 180◦ view of the surroundings inside military vehicles, details of which are con-
fidential. Other inventions based on robotic vehicles [34] use numerous visible
and IR cameras to produce seamless broader FOV views. The underlying com-
mon factor among all these implementations is image stitching of the acquired
images to create a seamless output.

To understand the importance of image stitching in industrial DAS imple-
mentations, consider continuous rolling processes such as fabric manufacturing
[20] and steel manufacturing [27], [38] in which surface aberrations and their loca-
tion are captured in real-time. Expanded FOVs are created by image stitching
algorithms using a three-stage process [39]. In the first stage, the relationships
between the pixels in the overlapping areas are defined [18,37]. Alternatively,
optical flow algorithms are employed to estimate the pixel-wise motion model
[31] and thereby the relationship between the corresponding pixels of the images
[16,24,45]. Also, feature matching is another technique applied to estimate the
pixel relationships [5,6,9]. In the second stage, the images are projected onto
a common plane, so that the output view is assumed to be created by a single
camera. The projection onto the common plane is derived through transforming
and registering the images from the different cameras. The transformed images
are aligned in the common plane without ghosting effects or other artefacts.
Finally, in the third stage, the pixels in both images are blended to ensure that
the seam between the images is invisible.

Feature descriptor algorithms generally identify and match the common fea-
tures in the overlapping regions. The eight most popular feature descriptor
algorithms are Scale Invariant Feature Transform (SIFT), Speeded Up Robust
Feature (SURF), Binary Robust Independent Elementary Features (BRIEF),
Oriented Fast and Rotated BRIEF (ORB), Binary Robust invariant scalable
keypoints (BRISK), KAZE, Accelerated-KAZE (AKAZE) and Features from
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Accelerated Segment Test (FAST). This paper focuses on evaluating the qual-
itative and quantitative performance of these feature descriptor algorithms for
low-textural images of steel surface inspection systems.

The main contributions of this paper are as follows:

– A motivation from the steel industry is presented in this paper that captures
information from low-textural images of the steel sheets.

– The experimental setup for capturing the dataset of real-time low-texture
images is presented.

– Modern feature descriptor algorithms are evaluated for performance and effi-
ciency using the low-textural image dataset. In this regard,
• The efficiency of the algorithms is compared in terms of sensitivity and

specificity of the low-textural features extracted.
• The execution times of the algorithms are analysed with respect to usage

in low textural applications.
– This paper also presents the limitations of feature descriptor algorithms for

low-textural images, thereby paving the way for newer strategies for feature
extraction that can be used for low textural images in real-time industrial
scenarios.

2 Motivation

This section presents the motivation for this problem to illustrate the advantages
of stitching algorithms in machine vision systems. In steel rolling processing, steel
surface inspection for defect detection and classification uses high-resolution MV
cameras as shown in Fig. 1.

Steel rolling can be classified into hot and cold rolling processes. In hot rolling,
a slab of steel is heated and flattened to thin steel strips. Conversely, cold rolling
involves drawing hot rolled coils into thinner sections at variable speeds. Gen-
erally, the thickness of the strip is inversely proportional to the rolling speeds.

Fig. 1. Illustration of the motivation. Steel sheets are rolled continuously and the
machine vision cameras continuously inspect the sheet for detection of surface defects
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The minimum and maximum speeds in cold rolling mills are 4 and 10m per sec-
ond. Hypothetically, considering strip inspection while rolling, using a machine
vision system for surface defects. The cameras used are high-resolution line scan
cameras with an appropriate lens. Generally, the strip width is approximately
2m which would require multiple cameras to capture the total width of the strip
for inspection.

Uncaptured defects or inaccurate location information may lead to catas-
trophic degradation of product quality. For example, sheets of steel are rolled at
speeds of approximately 20m per second, and two cameras are arranged across
the width of the sheet, capturing 30 frames per second. The images captured
by the synchronized cameras are stitched together to create a digital twin of
the steel sheet. Images of the strip as captured by the cameras are shown in
Fig. 2 and the textural information available on these images is minimal. Con-
sider the scenario where the images are stitched improperly resulting in missed
defects or incorrect location information. Any mismatch in the stitching causes
missed defects or improper identification of defects. So the feature descriptor and
extraction algorithms play a crucial role in ensuring accurate stitching without
any ghosting effects or other artefacts. The above discussion aids in understand-
ing the significance of the image stitching of the images from cameras. Therefore,
it would lead to understanding the importance of feature extraction and image
stitching for industrial applications can be envisaged and the criticality of the
performance of these algorithms in stitching can be understood.

(a) Left Camera Image (b) Right Camera Image

Fig. 2. Images of steel strips captured with cameras for surface inspection system

3 Related and Relevant Work

Understanding and analysing the performance of feature-descriptors has always
been crucial to research in image registration and there have been numerous stud-
ies on the same. Performance of feature-descriptors [28] such as SIFT, Steerable
filters, PCA-SIFT, Complex Filters, GLOH, etc., have been evaluated over var-
ious image transformations such as rotation, varying illumination, compression,
blur, etc. in multiple datasets. Nonetheless, this paper deals with variation in
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the scale between 200 and 250%. In [41], various feature-detector-descriptor com-
binations such as SIFT, ORB, SURF, SURF-BinBoost, AKAZE-MSURF, etc.,
have been compared for point-cloud registrations that were obtained using ter-
restrial laser scanning methods. Moreover, various feature-detectors and feature-
descriptors were evaluated for visual tracking applications [10]. A similar quan-
titative comparison is provided for multiple feature-detectors such as BRISK,
FAST, ORB, SIFT, STAR, SURF, AGAST, and AKAZE were applied to differ-
ent image data sequences but this paper does not compare the computational
times of these algorithms [32]. Another attempt compares SIFT, SURF, ORB,
and AKAZE features in a monocular visual odometry application [7] using the
KITTI benchmark dataset. The next paper describes performance comparison
[19] for SIFT and SURF against different image deformations using the feature-
matching technique.

In the comparisons of feature descriptors available in the literature, the basic
assumption is that there are enough features to be detected. In general, the
scenes or applications used for analysing the feature descriptors for image reg-
istration have many distinct textures that can be detected as features. Low-
textural images present a distinctive challenge of finding and matching features
for feature-descriptor and in turn, image registration algorithms. There are many
real-time industrial applications such as paper processing, steel manufacturing,
etc. in which image registration and stitching do not work due to a dearth of fea-
tures. In this paper, we aim to analyse the performance and efficiency of various
feature-descriptor algorithms where the images captured have the least textural
information. Also, this analysis would aid in understanding the shortcomings of
the feature descriptor algorithms when dealing with low-textural images, thus
making it difficult for image registration in industrial applications.

4 Hardware Configuration and Experimental Setup

The hardware configuration and experimental setup used in the evaluation of the
feature descriptors are shown in Fig. 3a. The primary elements of this experi-
mental setup are:

– Sensing element: consists of monochrome line-scan cameras (Dalsa Spyder3)
combined with 30 mm focal length F-mount lens.

– Interfacing element: consists of a four-port Peripheral Component Intercon-
nect (PCI) Power-Over-Ethernet (POE) card (Adlink PCIe-GIE64+)

– Processing element: consists of a windows powered workstation using an i7
processor, 16 Gigabytes of RAM, and 4-gigabyte Nvidia graphics card

– Application software: comprises Python environment, an interpreted, high-
level, general-purpose programming language

The final hardware configuration and setup are shown in Fig. 3b.
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(a) Hardware Schematic

(b) Hardware setup

Fig. 3. Hardware Schematic and setup with Illumination system at Cold Rolling Mill,
Tata Steel

5 DataSet Preparation

Using the hardware setup mentioned in Sect. 4, images are captured in real-time
for multiple rolling sections at a frame-rate of 30 frames every second. The trigger
for image capturing starts whenever the rolling of a coil starts and then, the
captured image forms part of a data set. For preparation of the dataset, images
are collected for different types of coils that are rolled at varying speeds. Also,
the ambient lighting conditions are varied by collecting images in the morning,
noon and night. As part of these experiments, we captured images of 12 types
of coils that are rolled at different coils, during the morning, noon and night.
Hence, a total of 36 coils were captured and mapped in one day and such images
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were captured for a period of 10 days. Images of 360 coils and approximately 200
images are captured per coil, and hence, total number of images in the dataset
is 72000.

6 Understanding Feature Descriptors

The important phases of image stitching are feature descriptors, registration, and
blending [44]. Feature descriptors are algorithms that encode unique information
in images into matrices that enable differentiation between images and features.
Feature descriptor algorithms can be organized into direct, deep learning-based,
and feature-based methods

Direct methods compare the pixel intensities and thereby ensuring that the
properties depicted by each of the pixel intensities are compared with the others
in the overlapping areas of the multiple images [17]. These direct techniques gen-
erally minimize the variations in the pixel intensities and ensure optimal usage of
image details. Moreover, these techniques aid in evaluating each pixel intensities
in the image, thus making these techniques extremely complicated. Some tomog-
raphy parameters are assessed using phase correlation [4], [29]. After which, the
homography matrix is updated to minimize a specific cost function. The major
drawback of this class of techniques is that they are limited to flat scenes without
parallax, making these algorithms unsuitable for real-time industrial applications
such as surface inspection systems.

Recently developed feature descriptor algorithms based on deep learning are
detailed. Some attempts [12,36,42] utilize Convolutional Neural Network (CNN)
for feature detection replacing traditional feature descriptor algorithms. Other
variants use neural networks for feature matching [2] for estimating transfor-
mational parameters from the detected features [43]. Furthermore, few papers
attempt to design for specific criteria such as fixed views [21,35], wide-angle views
using fisheye lenses [25] etc. The major drawback of such deep learning-based
methodologies is that these techniques require very high processing times in
the order of seconds, thereby making them unusable for real-time applications.
Hence, in the purview of this paper, we do not consider deep-learning-based
methodologies for evaluation and comparison.

Feature-based techniques focus on ascertaining the relationships between the
overlapping areas in the images by comparing a few key feature descriptors
extracted from the images [11]. This class of techniques has no restrictions in
terms of the scenes and is highly reliable and fast. One of the basic requirements
of these techniques is the presence and accurate detection of feature descriptors
that are usually textural features in the images. Feature-based techniques oper-
ate on matching different features and ensure invariance to noise, scale, trans-
lation, and rotation. Some popular feature descriptors in the literature include
SIFT, SURF, ORB, BRISK, and AKAZE.
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6.1 Scale Invariant Feature Transform (SIFT)

SIFT, proposed by Lowe, extracts key points and evaluates the local descriptor
using image gradient and the direction information from the image [26]. We have
implemented the SIFT algorithm to the low-textural images shown in Fig. 2. The
results, as shown in Fig. 4a, show that the number of distinct features as required
by SIFT is unavailable in the images and hence, the algorithm detects keypoints
that are not unique and the matching is also inaccurate.

6.2 Speeded Up Robust Feature (SURF)

The SURF algorithm uses multi-dimensional space theory. Furthermore, the key-
point detection is improved by monitoring their quality, and keypoint matching
is improved by using Hessian matrix [3]. The keypoint detection and matching
using SURF for the set of low-textural images is shown in Fig. 4b. The detec-
tion and matching accuracy is much better than SIFT but still, some points
were erroneously detected and matching, thereby affecting the quality of image
stitching.

6.3 Oriented Fast and Rotated BRIEF (ORB)

ORB is a fast binary descriptor that captures the salient features of FAST and
BRIEF algorithms using key points of BRIEF and detectors of FAST [33]. The
performance of ORB is much better than SIFT and SURF in terms of speed and
efficiency. The performance of ORB is shown in Fig. 4c. It can be observed that
due to the lack of textural features, the detection accuracy of ORB is poor for
image stitching.

6.4 Binary Robust Invariant Scalable Keypoints (BRISK)

The BRISK algorithm employs the grayscale relationship between random pairs
of points in the image resulting in the binary descriptor [23]. This algorithm
is faster than other algorithms and also the storage memory is lower, but the
tradeoff is that robustness is reduced. The results of the BRISK, shown in Fig. 4d,
reveal the exact feature points, but the matching algorithm is not effective,
thereby making the stitching process inefficient.

6.5 Accelerated-KAZE (AKAZE)

AKAZE uses non-linear diffusion in multi-scale feature detection resulting in
better repeatability and performance [1]. The major drawback of this algorithm
is that it is computationally expensive. The results using the AKAZE algorithm
on low-textural images are shown in Fig. 4e. On observation, it can be seen that
the matching accuracy is poor even though, the keypoint detection accuracy is
high.
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(a) SIFT Algorithm (b) SURF Algorithm

(c) ORB Algorithm (d) BRISK Algorithm

(e) AKAZE Algorithm

Fig. 4. Keypoint Matching using various feature descriptor algorithms on Low-Textural
Images

7 Performance Comparison of Feature Descriptor
Algorithms

This section analyses the performance and efficiency of the feature descriptor
algorithms based on usability in low-textural real-time applications. The funda-
mental requirement for real-time applications is the ability to process at least 15
to 20 frames of images a second so that the digital twin covers maximum areas
at the speed of rolling. Higher frame rates are accomplished by understanding
the steps that consume the most computational time during processing. Hence,
the computational time of each process step of various algorithms is evaluated
and shown in Table 1.

The feature descriptor consumes maximum computational time (approxi-
mately 50%) of the image stitching algorithm. Moreover, the feature descriptor
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has been evolving. With each improved algorithm, there is considerable reduction
in computation time.

The fastest existing feature description algorithm consumes 39 ms with a
total computational time of 79 ms that means that the maximum number of
frames processed in a second is around 12.

Table 1. Comparison of step-wise computational time of Stitching Approaches

ALGORITHMIC
STEPS

TIME in milliseconds

SIFT SURF ORB BRISK AKAZE

Feature
Descriptor

152 128 93 65 39

Keypoint
Detection

98 67 45 23 17

Keypoint
Matching

7 8 6 8 8

Homography
Estimation

6 7 6 7 6

Warping &
Stitching

9 8 8 9 9

Total Time 272 218 158 112 79

Feature descriptor algorithms were applied to nearly 3000 images captured
from multiple cameras for conducting Monte-Carlo trials. As part of these tri-
als, estimation and statistical analysis of computation times for the five feature
descriptor algorithms were conducted to compute parameters such as mean,
median, and standard deviation shown in Table 2.

Table 2. Performance Comparison of Feature Descriptor Algorithms

Time (milliseconds)
SIFT SURF ORB BRISK AKAZE

Mean 151.47 129.96 92.53 67.60 39.03

Median 151 129 92 67 39

Standard
Deviation

4.10 5.53 5.14 5.67 3.72

The mean and median of the AKAZE algorithm are the least among all the
feature descriptor algorithms followed by BRISK, ORB, SURF, and SIFT. The
standard deviation shows that AKAZE is the least followed by SIFT, ORB,
SURF, and BRIEF. Upon analysis, the standard deviation values follow a dif-
ferent order than the mean and median. Thus, AKAZE is the best-performing
feature descriptor algorithm for low-textural images that is further ascertained
by visually studying the box plots shown in Fig. 5.
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Fig. 5. Box Plot showing the performance of the various feature descriptor algorithm

The efficiency of the algorithms is compared using the sensitivity and speci-
ficity of the matched low-textural features extracted from the images. Sensitivity,
also known as True Positive Rate (TPR), can be defined as the ratio of true pos-
itives to the total number of matched low-textural features extracted from the
images. Similarly, specificity, also known as False Positive Rate (FPR), can be
defined as the ratio of false positives to the total number of matched low-textural
features extracted from the images. Table 3 shows the comparison of TPR and
FPR for the matched low-textural features.

Table 3. Efficiency Comparison of Feature Descriptor Algorithms

TP FP TP + FP TPR FPR

SIFT 26 146 172 0.15 0.85

SURF 137 243 380 0.36 0.64

ORB 46 19 65 0.71 0.29

BRISK 11 4 15 0.73 0.27

AKAZE 78 8 86 0.91 0.09
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(a) Comparison of TPR and FPR (b) Comparison of Total number of matched
features

Fig. 6. Efficiency Comparison between feature descriptor algorithms

(a) SIFT Algorithm (b) SURF Algorithm

(c) ORB Algorithm (d) BRISK Algorithm

(e) AKAZE Algorithm

Fig. 7. Registered Images based on the various feature descriptor algorithm

The TPR increases with every new generation of feature descriptor algo-
rithm while FPR decreases. TPR is maximum and FPR is minimum for AKAZE
algorithm. Furthermore, TPR is least and FPR is highest for SIFT algorithm.
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Another important inference is that, for SIFT, SURF, ORB, and Brisk algo-
rithms, even though the TPR is increasing, the total number of matched fea-
tures keeps decreasing, thus proving that the trade-off for increasing TPR is the
reduction in the total number of matched features. Hence, the main advantage
of the AKAZE algorithm is that it has the highest TPR with a 780% increase
in the number of features as compared to the BRISK algorithm that is further
established visually in the bar graphs shown in Fig. 6.

8 Comparison of Registration Based on the Various
Feature Descriptors

Based on the matched features from the feature descriptors, the next step in
the algorithm is registration of the images, that implies that the second image
is transformed onto the plane of the first image. After this process, the homog-
raphy matrix is computed and the second image is warped to finally register the
images. The effectiveness, accuracy and efficiency of the feature descriptors can
be clearly understood. Figure 7 clearly depicts that the currently available feature
descriptors do not perform effectively for low- textural images. The major reason
for this, is that the feature descriptor algorithms are designed on the assumption
that numerous features are available in the images that can be further matched
and registered.

9 Conclusions

This paper presents a detailed comparative analysis of five popular feature
descriptors for low textural images. The primary motivation for this study is
the application of these algorithms to real-time image and video stitching appli-
cations involving low-textural images captured from multiple cameras. Also, the
performance and efficiency comparison helps to understand the improvements
made in each generation of the feature descriptor algorithms.

Based on the results comparison of the registration using the various feature
descriptor algorithms, it can be clearly understood that the currently available
descriptors fail to effectively register low-textural images. This paves the way
for future work, that is to design feature descriptors specifically for stitching of
low-textural images.
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