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Abstract. The visual quality of the images gets decreased due to badweather con-
ditions. The image captured under hazy weather conditions have serious attenua-
tion in terms of color and saturation. In addition, these hazy images have very low
contrast and the visual quality will be drastically poor. Moreover, object detection
in hazy environment is too challenging. So, single image dehazing is a demanding,
challenging and ill-posed problem. In this paper, we propose a 9-layer convolu-
tional neural network with deep dilated filters of different dilation rates to achieve
an end-to-end mapping from haze image to haze free image. Exponential expan-
sion of receptive field is possible with the dilated filters without increasing the
model complexity. Furthermore, the dilated convolutional layers help for efficient
model compactness. We did experiments on synthetic dataset and on naturally
obtained hazy images. The results show that our network achieves outstanding
performance over the existing algorithms in terms of PSNR, SSIM and visual
quality.
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1 Introduction

The visual quality of the image’s acquired outdoors is decreased due to dust, smoke and
other small particles accumulated in atmosphere. This type of traditional atmospheric
situation is known as haze and it attenuates the light reflected by the objects along its
path towards the camera. Haze causes a serious problem in terrestrial photography, as it
becomes difficult to image distant objects because the light penetration of dense atmo-
sphere is necessary. The light scattered by the hazy particles results in the visual effect
of a loss of contrast in the subject. This poor visual quality can inhibit the performance
of computer systems which are intended to operate on clear conditions. It also obscures
the visual amicability of image contents for the users who use standard cameras. Hazy
weather also affects variety of systems such as aerial photography systems [1], image
classification [2], satellite remote sensing systems [3] and target recognition systems that
depend on optical imaging instruments. In recent years, the need for restoring the quality
of the visually degraded images due to poor weather conditions has been increasingly
gaining the attention.
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It is hard to detect haze because concentration of the haze differs from place to place.
Haze is a depth dependent phenomenon. So, image dehazing is thus an ill-posed problem.
The existing techniques of image processing which uses a variety of visual information
to capture both statistical and deterministic properties of hazy images such as histogram
based [4, 5] contrast based and saturation-based image dehazing methods are used by
the early researchers to obtain hazy free image from a single image. Later, researchers
try to achieve the same performance with multiple images. In [6], polarization-based
image dehazing methods are used. In polarization based dehazing, multiple images are
taken with different degrees of polarization. In [7], multiple images of the same scene are
captured under distinct weather conditions. These are multi constraint based dehazing
methods. Dehazing has been carried out based on the depth information from the user
inputs. But practically, multiple hazy images or information related to depth are not
always available. To overcome this difficulty, single image dehazing approaches were
introduced. In recent years, single image dehazing based on the physical model achieved
significant progress. It was carried out under the assumption that the local contrast of
the haze-free image is very much higher than that in the image captured under haze.
Recently, convolutional neural network (CNN) shows promising solutions on many
vision tasks, including dehazing. CNNs have shown an explosive popularity because of
capability in producing state-of-the-art performance. DehazeNet [8] has been proposed
for single image haze removal with bilateral rectified linear unit as nonlinear activation
function. The DehazeNet [9] models mapping functions between hazy image and their
medium transmissions. The DehazeNet [9] assumed the atmospheric light as a global
constant which must be learned along with medium transmission. Recently, Artificial
Multiple Exposure Fusion (AMEF) [9] has been proposed for haze removal. The AMEF
method [9] used two steps to remove haze. First of all, a sequence of gamma correction
operations is used to artificially under-expose the hazy image. Secondly, a multi-scale
Laplacian blending scheme is used to merge the resulting set of under-exposed images
to yield haze-free image.

The DehazeNet [8] was modeled only using the information of medium transmis-
sions and assumed the atmospheric scattering as a global constant, but in this paper
both medium transmission and atmospheric scattering are considered and the network
is trained in an end-to-end manner using deep dilated filters. The end-to-end training
between hazy image and haze free image learns a single and unique mapping function
which is able to remove haze from any real-world hazy image.

The major contributions of the proposed work are as follows.

• A novel 9-layer convolutional neural network is proposed for robust dehazing in
an end-to-end manner by considering both medium transmissions and atmospheric
scattering.

• The layers are constructed in symmetrical structure with respect to dilation rates. The
dilation rate increases the receptive field thereby giving networkmore scope to exploit
contextual information efficiently.

• The network is compactlymodeled by selecting proper dilatation rateswithout causing
gridding effect in the produced haze-free images.
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The rest of this paper is summarized as follows. Section 2 provides the work related
to dehazing. Section 3 presents the proposed methodology adopted to achieve image
dehazing. Experimental analysis is presented in Sect. 4. The concluding remarks of the
proposed work are provided in Sect. 5.

2 Related Work

Although wide variety of Image dehazing literature is available, it is still an open topic
to investigate. There are three types of dehazing methods seen in current research:
image enhancement-based methods, image fusion-based methods and image restoration
methods based on physical modelling. The image enhancement-based method does not
consider the specific cause of the image degradation. Fog is not removed from the image
to restore the original appearance. So, these methods cannot be adaptable for different
scenes and images. Image restoration methods based on physical modelling analyses the
specific causes of image degradation. This method also establishes a deteriorate model
of images degraded under fog. The physical modelling image restoration methods are
based on the atmospheric scattering theory. According to this theory, the scattering of
atmosphere is divided into two parts: one is due to the attenuation of light reflected
from the surface of the object to the camera; and the second one is due to the air-
light scattering reaching to the camera. To describe how a hazy image is formed, the
atmospheric scattering model, which is proposed in 1976 [10], is mainly used in image
processing and in computer vision [7]. Image fusion based methods maximize beneficial
information from multiple sources to finally form a high quality image. These methods
do not need a physical model, but the fusion strategy for multiple sources of information
is complex. Image fusion is the process of combining relevant information frommultiple
source channels into a high quality image. Fusion strategies extract the information from
each channel to improve the utilization of image information. These methods have also
been used in image dehazing in recent years. A single image dehazing algorithm that
removes the visual degradation due to haze is described in [9]. It does not depend on the

Fig. 1. Architecture of the proposed network
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inversion of a physical model of haze formation but considered a few main underlying
assumptions to get a haze-free image. A trainable end-to-end model to estimate medium
transmission calledDehazeNet has been proposed in [8]. It takes a degraded image due to
haze as its input, and outputs its transmission matrix. It estimates the global atmospheric
light by some empirical rules and haze-free image is recovered using the atmospheric
scattering model.

3 Method

In this section, we present the architecture of the deep learning model used for dehazing
and the benefits of dilated convolutions. The training procedure and model complexity
are also explained.

3.1 Architecture

The deep dilated network used for dehazing is shown in Fig. 1. The proposed network
contains 9 convolutional layers. The first two and the last two convolutional layers
perform standard convolutions. All remaining layers have specified dilation rates (d)
as shown in Fig. 1. Starting layers learns low-level features especially edges and blobs
from the hazy image. Dilated convolution with rate d introduces (d − 1) spaces between
the adjacent pixels while performing convolution operation. The early layers especially,
first layer will learn high frequency information like edges. While applying dilated
convolution some of the information about edges may be lost. So, we used normal
convolutional filters in the first layer. Similarly, to reconstruct dehazed image accurately,
we used normal convolution in reconstruction layer. After each convolutional layer the
haze is removed step-by step and at the final layer the dehazed image is produced.
Different from the works in [8, 9], our proposed network learns an end-to-end mapping
function (F) directly from hazy image to haze-free image. As the deep learning model
learns features automatically, there might be a possibility of feature redundancy. Same
features may be learned by network in different layers. To avoid feature redundancy, we
used dilated filters with different dilation.

Fig. 2. Dilated convolution operation

rates (d). All the convolutional layers in the proposed network have 64 filters. Each
filter has a size of 3 × 3. The first layer learns 64 feature maps from the hazy color
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image. In the second layer these 64 features are mapped to another feature space. In the
third layer, the d of 2 is used. So, the effective filter size (fe) becomes 5. Therefore, the
third layer can exploit more information by expanding receptive field.

3.2 Dilated Convolution

The benefit of using dilated convolution is three folds. First, the dilated convolution can
exploit more contextual information. Secondly, by using dilated filters computational
complexity will not increase but receptive field can be increased. Thirdly, model can
be designed as compactly as possible with a smaller number of convolutional layers.
Basically, in low-level vision, exploiting more contextual information is essential to
yield better performance. This is possible only with filters of large sizes. Employing
large size filters will increase the computational complexity of the model. The dilated
filters will consider spaces between each pixel in the image while doing convolution
operation. The dilated convolution operation is shown in Fig. 2.

Figure 2(a) represents the standard convolution with filter of size 3 × 3. Figure 2(b)
represents dilated convolution with d = 2. A single space is considered while doing
convolution operation between each pixel. So, the dilated convolution introduces corre-
sponding spaces (d− 1 spaces) between pixels depending upon d and performs standard
convolution thereafter. Similarly, Fig. 2(c) represents dilated convolution with d = 7.
So, the effective filter size becomes 15. We generalize the effective filter size (fe) with d
as follows:

Table 1. Proposed Network Specifications

Layer Index (l) F d fe RF

1 3 1 3 3

2 3 1 3 5

3 3 2 5 9

4 3 3 7 15

5 3 4 9 23

6 3 3 7 29

7 3 2 5 33

8 3 1 3 35

9 3 1 3 37

fe = f + (f − 1)(d − 1) (3)

where f is the standard filter size. Similarly, the receptive field (RF) of the network can
be formulated based on the depth (D) of the network as follows:

RF = f + (f − 1)(D − 1) (4)
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(a) (b)

Fig. 3. Visualization of different layers

Equation 4 represents the RF for fully convolutional neural network. If dilated filters
are used in the network, then the Eq. 4 is modified as follows:

RF = fe + (fe − 1)(D − 1) (5)

In the proposed network, total 9 convolutional layers are used. The dilation rate (d ),
filter size (f )effective filter size (fe) and receptive field (RF) are tabulated as shown in
Table 1. The total receptive field of the proposed network is 37. So, we cropped patches
of size 37 × 37 from the hazy and haze free images to generate training samples.
From Table 1, 9 layers are enough to exploit the whole content in the 37 × 37 image
patch. Adding extra layers will increase the model complexity. Moreover, performance
improvement is also marginal. So, we used only 9-layers in the proposed network for
dehazing.

3.3 Computational Complexity

Computational complexity is one of the key factors while designing any network. It will
decide the real time deployment of the network. Theoretically, computational complexity
is the number of parameters that the network must be optimized.

The computational complexity of any fully convolutional neural network is calcu-
lated by using the following formulation:

C =
∑D

l=1
nl−1 × f 2 × nl × S2l (6)

where l is the layer index, D is the depth of the network and nl is the number of filters
in lth layer. Here, n0 is equals to number of channels (3 color channels) in input patch.
S is the size of the image to be dehazed. The practical computational complexity varies
from the theoretical complexity as it depends on the hardware and type of framework
used for implementation.
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3.4 Loss Function

Let {Hi, Di} represents the training samples. Where i stands for the ith training sample.
Similarly, let l = {Wl, Bl} represents the network parameters of individual layers. We
minimize the Mean Squared Error (MSE) L(�) as follows:

L(�) = 1

K

∑K

i=1
‖f

(
Hi,�

)
− Di‖2 + λ‖�‖2 (7)

where λ denotes the regularization factor.We used Adam optimizer [12] with the param-
eters β1, β2 and ε are set to 0.9, 0.999 and 10−8 respectively.We used standardmini-batch
gradient descent with each batch size of 64. The gradients with respect to lth layer are
computed as:

gt = ∇�t L(�t − 1) (8)

The momentum vectors are formulated as below:

mt = β1mt−1 + (1 − β1)gt

vt = β2vt−1 + (1 − β2)g
2
t (9)

Finally, the parameter update is as follows:

�t = �t−1 − ηm
∧

t√
v
∧

t + ε
(10)

where mˆt and vˆt are used to counteract the occurrence of zero vectors due to zero
initialization of mt and vt and computed as:

m
∧

t = mt

1 − β t
1

v
∧

t = vt
1 − β t

2
(11)

3.5 Visualization of the Network

The proposed network adopts standard and dilated convolution operations in different
layers, we analyzed the features learned by different convolutional layers in this subsec-
tion. In Fig. 3(a), we show the features learned by first convolutional layer. It contains
mostly the edges and colors which are required for later convolutional layers in removing
haze efficiently. Figure 3(b) represents the features learned in convolutional layer with d
= 4. These features are combination of lower layer features, and the representations are
very complicated as shown in Fig. 3(b). The high-level features can be seen as features
that are encoded by higher levels of visual cortex. The size of the features learned in
both the layers is same (i.e., 3 × 3) but the layer with dilated filter exploited contextual
information of size 9 × 9 by inserting d − 1 spaces (i.e., 3) between each pixel. The
number of parameters of each filter in both the layers are the same.
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4 Experiments

In this section, we explain the experimental analysis for dehazing. The datasets, network
parameters, comparison with latest dehazing methods and finally, the quantitative and
qualitative analysis are also the part of this section.

4.1 Dataset

For training, validation and testing, we used the RESIDE [11] benchmark dehaze dataset.
The RESIDE dataset contain synthesized images from depth and stereo datasets as large-
scale training and testing hazy image pairs. We considered 100 images for training from
the training pairs of RESIDE dataset. A total of 18960 training samples each with a
size of 37 × 37 is cropped from the 100 images. 20 separate images are cropped to
produce validation set. Two different datasets test1 and test2 with 100 and 500 images
respectively from [11] are considered for testing.

4.2 Training Details

In each layer 64 filters of size 3 × 3 is used. Initial learning rate is set to 10−4. The
learning rate is reduced by 10% after 50 epochs. We trained our network for 100 epochs.
The validation error is constant after 50 epochs. So, we reduced learning rate by 10%
and terminated learning after 100 epochs. The validation error plateaus after 100 epochs.
The regularization factor (λ) is set to 10−5. Gradient clipping is not used as there is no
chance of gradient explosion because of using low learning rate. The network is trained
on amachine with 32 GBRAM, Intel core I5 processor and NVIDIAGeForce 710 GPU.
MATLAB is used for both training and testing.

4.3 Metrics and Compared Methods

The widely used peak signal to noise ratio (PSNR) and Structural SIMilarity (SSIM)
index measure are used for quantitative performance comparison. AMEF [9] and
DehazeNet [8] methods are used for comparison.

PSNR(IG, ID) = 10log10
I2Gmax

1
N

∑N
i=1(IGi − ID)

2 (12)

SSIM (IG, ID) = (2μIGμID + C1)(2σIGID + C2)

(μ2
IG

+ μ2
ID

+ C1)(σ
2
IG

+ σ 2
IG

+ C2)
(13)

whereμIG , μID , σ 2
IG

, σ 2
ID

, σIGID are localmean, variance and cross-covariance for images
IG and ID respectively.
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4.4 Quantitative Metrics

Tables 2 and 3 represents the quantitative metrics comparison on two different test sets
with test1 and test2 containing 100 and 500 test images respectively. The proposed
method is consistently the top performer for both the metrics PSNR and SSIM. An
improvement of 1.69 dB PSNR is achieved with the proposed method when compared
to the next best DehazeNet [8]. AMEF [9] and DehazeNet [10] are the state of-the-art
methods for dehazing. Moreover, for fair comparison with AMEF [9] and DehazeNet
[10], the proposed network is trained with the same training dataset.

4.5 Qualitative Analysis

Figures 4 and 5 represents the visual comparison of dehazed images with different
methods. The visual quality of the image produced with the proposed method is good
when compared to the images produced with other methods. As one can see from Figs. 4
and 5, the AMEF restored images contain color artifacts.

Table 2. Average Performance Analysis on Test1

Metrics Hazy AMEF [9] DehazeNet [8] Proposed
Method

PSNR (dB) 15.97 17.68 23.48 25.17

SSIM 0.7992 0.8349 0.8915 0.9393

Table 3. Average Performance Analysis on Test2

Metrics Hazy AMEF [9] DehazeNet [8] Proposed Method

PSNR (dB) 14.77 17.32 22.92 24.87

SSIM 0.7932 0.8149 0.8715 0.9182

Original Hazy AMEF DehazeNet Proposed

Fig. 4. Qualitative comparison with different methods for sample image 1
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Original Hazy AMEF DehazeNet Proposed

Fig. 5. Qualitative comparison with different methods for sample image 2

4.6 Run Time

For real time applications, the run time is as important as performance. In this subsection,
we present the testing times of compared methods on an image of size 512 × 512 in
Table 4. The testing is performed on CPU. The proposed method is≈ 1.8 and 2.57 times
faster than the AMEF [9] and DehazeNet [8] respectively.

Table 4. Testing Time (In Seconds) for a 512 × 512 Image

Method AMEF [8] DehazeNet [7] Proposed method

Run time 2.65 3.78 1.47

5 Conclusion

In this paper, we proposed a novel deep dilated convolutional neural network for single
image dehazing. Furthermore, we considered dilated convolutions in different layers
to exploit more image content without increasing the network complexity. We avoided
adopting higher dilation rates (e.g., 5, 6 etc.) to overcome the gridding effect caused due
to leavingmore spaces between pixel elements. The proposedmethod produced superior
performance in terms of quantitative metrics and perceptual quality when compared to
other competitive methods in terms of quantitative metrics like PSNR and SSIM. In
future, the proposed network will be modified with dense skip connections to achieve
further improvement in the performance without increasing the network complexity.
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