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Abstract. Shadow removal from images and videos is an essential task
in computer vision that concentrates on detecting the shadow generated
by the obstructed light source, and obtains realistic shadow-free results.
In this paper, we present a method based on generative adversarial net-
works (GANs) for shadow removal by supervised learning. Specifically, we
train two generators and two discriminators to learn the mapping between
shadow and shadow-free image domains. We employ generative adversar-
ial constraints with cycle consistency and content constraints to learn the
mapping efficiently. We also propose an adaptive exposure correction mod-
ule to handle the over-exposure problem in the shadow area of the result.
We additionally present a method for improving the quality of bench-
mark datasets and eventually achieving better shadow removal results. We
also show ablation studies to analyze the importance of the ground-truth
data with the adaptive exposure correction module in the proposed frame-
work and explore the impact of using different learning strategies in the
presented method. We validate the approach on the available large-scale
benchmark Image Shadow Triplets dataset (ISTD), and show quantitative
and visual improvements in the state-of-the-art results.

Keywords: Shadow removal · Shadow detection · GANs · Adaptive
exposure correction · Benchmark dataset adjustment

1 Introduction

Shadow detection and removal is a fundamental and challenging task in com-
puter vision and computer graphics. In an image, a shadow is a direct result of
occluding a light source. The accuracy of several computer vision tasks, such as
object segmentation [20], object recognition [2], and object tracking [13], can be
influenced by the shadow since shadows have similar characteristics as objects,
so they can get misclassified as part of an object.

In computer vision, the problem involving shadow detection and removal
has received much attention. Early works related to this task [5,6,21,26,28,29]
used physical models of features like intensity, color, gradient, and texture. How-
ever, these hand-crafted feature-based methods suffer in understanding the high-
level features and related semantic content. In recent years, deep learning-based
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approaches for analyzing the mapping relation have made significant progress
in this field. Khan et al. [11,12] used convolutional neural networks (CNN) for
shadow detection and Bayesian model for shadow removal. The model of Qu
et al. [19] is based on an end-to-end multi-context embedding framework to
extract essential characteristics from multiple aspects and accumulate them to
determine the shadow matte. Fan et al. [4] employed a deep CNN structure con-
taining an encoder-decoder and a refinement model for extracting features with
local detail correction and learning the shadow matte. Bansal et al. [3] developed
a deep learning model to extract features and directly detect the shadow mask.
Hu et al. [7] presented a direction-aware spatial context (DSC) module, utilized
with CNNs, to detect and remove the shadow.

The generative adversarial network (GAN) [1] and its extensions, presented
in recent years, are dominant strategies for dealing with diverse image-to-image
translation challenges. Conditional GANs (CGANs) [15] are significant GAN
extensions that incorporate conditioning information into the generator and the
discriminator. Nguyen et al. [17] demonstrated the first method of shadow detec-
tion with adversarial learning and constructed a CGAN-based architecture to
output a shadow mask that can realistically correspond to the ground-truth
mask. A shadow image with an adjustable sensitivity factor is used as the con-
ditioning information to the generator and the discriminator. Wang et al. [27]
presented a supervised model based on two Stacked-CGANs to tackle shadow
detection and removal problems simultaneously in an end-to-end manner. Nagae
et al. [16] developed a model based on the method in [27], with minor changes in
the shadow removal CGAN, that estimates the illumination ratio and uses that
estimation to produce the output. Although these approaches [7,27] effectively
remove the shadow, they tend to generate artifacts and inconsistent colors in the
non-shadow area. Hu et al. [8] presented a Mask-ShadowGAN framework that
enforces cycle consistency by the guidance of masks and learns a bidirectional
mapping between the shadow and shadow-free domains. Tan et al. [24] devel-
oped a target-consistency GAN (TCGAN) for shadow removal that aims to learn
a unidirectional mapping to translate shadow images into shadow-free images.
These methods [8,24] remove the shadow by maintaining a non-shadow region
with cycle and target consistency but suffer from overexposure problems and
random artifacts. Also, they require unpaired shadow and shadow-free datasets
with the same statistical distribution for better learning.

In this paper, we propose a novel method based on GANs with cycle con-
straints, and introduce an adaptive exposure correction module for handling the
overexposure problem. Figure 1 shows a shadow removal result of the proposed
method compared with Mask-ShadowGAN [8], which suffers from over-exposure,
particularly in the shadow area. However, our approach handles that problem
and generates a result close to the ground-truth. The key contributions of this
work are as follows.

– We present a framework that removes the shadow using generative adversarial
constraints along with cycle consistency and content constraints.
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Fig. 1. Shadow removal results comparing the Mask-ShadowGAN [8] method with the
proposed method.

– We introduce an adaptive exposure correction module for handling the over-
exposure problem.

– We introduce a method for enhancing the quality of benchmark datasets and
subsequently improving the shadow removal results.

The rest of the paper is organized as follows. Section 2 describes the proposed
framework. Section 3 presents experimental results along with the ablation study,
and we conclude the work in Sect. 4.

2 Proposed Method

The overall scheme of the proposed method is depicted in Fig. 2. The method is
based on CycleGAN [30], in which each adversarial generator learns a mapping
to another domain, and the corresponding discriminator guides the learning
procedure. Apart from the adversarial and cycle constraints, we also employ
content and identity constraints as guidance for better learning. Compared to
the baseline Mask-ShadowGAN [8], which required unpaired data with an equal
statistical distribution of shadow and shadow-free domains, our method utilizes
available shadow, shadow-free, and shadow mask images to learn better mapping
for shadow removal.

2.1 Generator and Discriminator Learning

The proposed method learns from both the shadow domain Dx and the shadow-
free domain Dy. While learning from domain Dx, the generator network Gf takes
a real shadow image Is ∈ Dx as input, and generates a shadow-free image Îf∗.
The discriminator network Df is used to differentiate whether the produced
shadow-free image Îf∗ is a real shadow-free image or not. To achieve the cycle-
consistency, another generator Gs is used to reconstruct the shadow image Îs

from the generated shadow-free image Îf∗ using a ground-truth shadow mask
Mgt∗ for the image Is as a guide.

In the process of learning from the shadow-free domain Dy, the generator
network Gs takes a real shadow-free image If ∈ Dy as input and a ground-truth
shadow mask Mgt for the image If as a guide, and generates a shadow image Îs∗.
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Fig. 2. Illustration of the architecture of the proposed method.

The discriminator network Ds determines if the created shadow image Îs∗ is a
real shadow image or not. To formulate the cycle-consistency loop, the generator
Gf reconstructs the shadow-free image Îf from the generated shadow image Îs∗.

To summarize, the discriminator network Ds takes either real sample Is or
fake sample Îs∗ as input and discriminates whether the input is from Ds or not.
Similarly, discriminator Df takes either real sample If or fake sample Îf∗ as
input and discriminates whether the input is from Df or not. We shall discuss
the corresponding loss functions in Sect. 2.3.

2.2 Adaptive Exposure Correction Module

Given a shadow image, the generator network Gf is trained to produce a shadow-
free image. But in the absence of any constraints, sometimes the generated
shadow-free images are much brighter in the shadow area. To handle this over-
exposure problem in the resulting shadow-free images, we propose to use an
adaptive exposure correction module that takes the generated shadow-free image
Îf∗ and an intermediate shadow-free mask M̂∗ as inputs, and produces the final
shadow-free result Îfc∗. The shadow mask M̂∗ for the input shadow image Is

is obtained as B(Îf∗ − Is, t), where the binarization operation B is performed
on the difference between Îf∗ and the real input shadow image Is, and t is a
threshold obtained by Otsu’s algorithm [18]. B sets the value as zero or one,
where zero indicates non-shadow region (difference ≤ t) and one indicates the
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shadow region (difference > t). In the adaptive exposure correction module, we
extract the shadow and non-shadow areas using M̂∗ and apply gamma correc-
tion (power-law transformations) in the shadow area. First, we transform the
extracted shadow area to the HSV color space, then perform gamma correction
on the value channel and convert it back to RGB color space. Finally, we com-
bine the gamma-corrected shadow area with the non-shadow area to generate
Îfc∗ which is the final shadow-free image with exposure correction. To estimate
the gamma value, we calculate the mean difference between the shadow and
non-shadow areas and map that to the gamma value range 0 to 2. Ideally, for
a non-overexposed image, the gamma value will be 1, and no correction will be
done. Then the final shadow mask M̂c∗ is obtained as B(Îfc∗ − Is, t).

2.3 Objectives and Loss Functions

Adversarial Losses: The primary principle behind adversarial learning is that
the discriminator will differentiate between real and generated results for both
domains, encouraging the corresponding generator to deliver a better output
concerning image qualities. The shadow-free adversarial loss and the shadow
adversarial loss are given as:

Lgan-sf(G) = MSE(P,Df (Îf∗)),Lgan-s(G) = MSE(P,Ds(Îs∗)) (1)

Lgan-sf(D) = MSE(P,Df (If )) + MSE(Q,Df (Îf∗)),
Lgan-s(D) = MSE(P,Ds(Is)) + MSE(Q,Ds(Îs∗))

(2)

where Îf∗ (generated as (Gf (Is))) and Îs∗ (generated as (Gs (If ,Mgt)) are the
generated shadow-free and shadow images, respectively, with Is and If being
the input shadow and shadow-free images, respectively, and P = 1, Q = 0.

Cycle Consistency Losses: Cycle consistency L1 losses defined in Eq. (3) and
Eq. (4) are applied to encourage the reconstructed images to be comparable to
the original input images and to effectively improve the bidirectional mapping
in the Gf and Gs networks.

Lcyc-s = ‖Îs − Is‖1 (3)

Lcyc-sf = ‖Îf − If‖1 (4)

Here, Îs (generated as Gs(Gf (Is),Mgt∗)) and Îf (generated as Gf (Gs(If ,Mgt))
are the reconstructed shadow and shadow-free images, respectively.

Identity Losses: The identity L1 losses defined in Eq. (5) and Eq. (6) motivate
generators Gs and Gf not to change the input image (a shadow image and a
shadow-free image, respectively), and maintain color consistency.

Lidt-s = ‖Îsi − Is‖1 (5)
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Lidt-sf = ‖Îfi − If‖1 (6)

where Îsi is the generated image using Gs from Is and null mask Mx, and Îfi is
the generated image using Gf from If .

Content Losses: The L1 constraint on content losses defined in Eq. (7) and
Eq. (8) encourages generators to produce images that are closer to the ground-
truth images.

Lcont-s = ‖Îs∗ − Is∗‖1 (7)

Lcont-sf = ‖Îf∗ − If∗‖1 (8)

Here, Is∗ and If∗ are the ground-truth shadow and shadow-free images, respec-
tively, and Îf∗ (generated as (Gf (Is))) and Îs∗ (generated as (Gs (If ,Mgt)) are
the generated shadow-free and shadow images, respectively.

Loss Function for Generators: The total generator loss for the proposed
method is obtained as a weighted sum of the adversarial losses, cycle consistency
losses, identity losses, and content losses, given as:

LG = λ1(Lgan-s(G) + Lgan-sf(G)) + λ2(Lcyc-s + Lcyc-sf )
+λ3(Lidt-s + Lidt-sf ) + λ4(Lcont−s + Lcont−sf )

(9)

where λ1, λ2, λ3, λ4 are appropriately chosen weights.

Loss Function for Discriminators: The discriminator loss for the shadow-
free discriminator Df and shadow discriminator Ds in the proposed method are
given in Eq. (10) and Eq. (11), respectively.

LDf
= λ5(Lgan-sf(D)) (10)

LDs
= λ5(Lgan-s(D)) (11)

Here, λ5 is the appropriately chosen weight.

2.4 Network Architecture and Training Strategy

We use the model of Johnson et al. [10] as the generator network, which consists
of 3 convolutional layers, 9 residual blocks, and 2 deconvolution layers. After
each convolution and deconvolution operation, the network employs instance
normalization and the ReLU (rectified linear unit) activation function. For the
discriminator network, we use PatchGAN [9], which focuses on classifying image
patches as real or fake. Here, 4 convolutional layers are used with instance nor-
malization and leaky ReLU activation function (slope = 0.2). Adam optimization
[14] with a learning rate of 0.0002, with first and second order momentum as 0.5
and 0.999, is adopted during training. A zero-mean Gaussian distribution with a
standard deviation of 0.02 initializes the network parameters. For data augmen-
tation during training, images are resized to 286×286 and randomly cropped to
256× 256. The network is trained for 200 epochs keeping the mini-batch size as
1 with the PyTorch module and NVIDIA GeForce-RTX2080-Ti GPU.
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2.5 Benchmark Dataset Adjustment

Ideally, in the benchmark dataset for the shadow removal task, the non-shadow
area of the shadow and the corresponding shadow-free image should be the same.
However, there is a significant difference in the color consistency, brightness, and
contrast, since both shadow and shadow-free images were captured at different
times of the day. On the whole testing dataset of ISTD [27], the root mean
square error (RMSE) in the LAB color space between the shadow and shadow-
free images in the non-shadow area is 6.83, which should ideally be close to 0.
Figure 3 shows the sample triplets from the ISTD dataset, where the difference in
the non-shadow area is clearly visible. Supervised models are trained to produce
an output close to the ground-truth shadow-free image, and accordingly, the
loss function is defined, and models are trained. However, methods yield color,
brightness, and contrast inconsistent outputs compared to the non-shadow area
of the shadow image. Hence, it is essential to adjust those ground-truth shadow-
free images to achieve better results.

Fig. 3. ISTD triplets, showing issue in the non-shadow area.

To achieve this, we process each image individually to adjust the ground-
truth shadow-free images using the regression technique. Following are the steps
we used for this correction task.

– The non-shadow area of shadow and shadow-free images were extracted using
the shadow mask.

– A regressor makes use of that extracted non-shadow area and learns to trans-
form the non-shadow pixel values of shadow-free image into the corresponding
pixel values of the shadow image.

– Finally, the trained regressor takes the shadow-free image as input and gen-
erates an adjusted shadow-free image.

We conducted various experiments by using three well-known regressors, Lin-
ear Regressor (LR), Decision-Tree Regressor (DTR), and K-Nearest-Neighbor
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Regressor (KNNR). Further, we considered both RGB and LAB color spaces.
Also, we executed experiments by using single-output regression, where regres-
sion is performed on three individual color channels, and by using multi-output
regression, where regression is performed on three combined color channels.
Finally, we used the optimal decision-tree multi-output regressor in RGB color
space for the benchmark dataset adjustment. Following steps describe the algo-
rithm of the decision-tree regressor.

– Given a training vector x and a label vector y, the decision tree divides the
feature space in a recursive fashion, such that the samples with similar labels
are grouped together.

– Let the data at node n be denoted by Dn having mn samples. For each
candidate split δ = (i, tn), where i is feature and tn is threshold, partition the
data into Dleft

n (δ) and Dright
n (δ) subsets according to following equations.

Dleft
n (δ) = {(x, y)|xi ≤ tn} (12)

Dright
n (δ) = {(x, y)|xi > tn} (13)

– The quality of a candidate split of node n is then measured using an impurity
function G and loss function H according to Eq. (14) and Eq. (15), respec-
tively. Here, ȳn is the mean value, and the mean squared error is used as the
loss function.

H(Dn) =
1

mn

∑

y∈Dn

(y − ȳn)2, ȳn =
1

mn

∑

y∈Dn

y (14)

G(Dn, δ) =
mleft

n

mn
H(Dleft

n (δ)) +
mright

n

mn
H(Dright

n (δ)) (15)

– Parameters that minimize the impurity are selected for splitting, as follows:

δ∗ = argmin
δ

G(Dn, δ) (16)

– The algorithm is recursed for subsets Dleft
n (δ∗) and Dright

n (δ∗) until mn = 1.

3 Experimental Results

Database Description: To analyze the performance of the proposed frame-
work, we experimented with the dataset containing image shadow triplets termed
as ISTD [27] and trained models accordingly. ISTD contains 1870 triplets of
shadow, shadow mask, and shadow-free image with 1330 image triplets in the
training split and 540 in the testing split.
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Evaluation Parameters: We followed [17,25,27] and used balance error rate
(BER) for a quantitative comparison for shadow detection. Balance error rate is
calculated as:

BER = 1 − 1
2

(
TP

TP + FN
+

TN

TN + FP

)
(17)

where

– True Positive (TP ) denotes the number of pixels that the predictive model
has labeled as a shadow, and actually, it is a shadow.

– False Positive (FP ) denotes the number of pixels that the predictive model
has labeled as a shadow, and actually, it is a non-shadow.

– True Negative (TN) denotes the number of pixels that the predictive model
has labeled as a non-shadow, and actually, it is a non-shadow.

– False Negative (FN) denotes the number of pixels that the predictive model
has labeled as a non-shadow, and actually, it is a shadow.

For the quantitative assessment of shadow removal, we followed recent pro-
cedures [7,8,24,27] and used root mean square error (RMSE) in the LAB color
space computed between the ground-truth and produced shadow-free images.
We resized all images to 286 × 286 for a fair comparison. Additionally, we cal-
culated the RMSE value in the four scenarios: RMSE value by comparing the
resulting shadow-free image Îfc∗ with the ground-truth shadow-free image If∗
(i) for all pixels (represented with ‘O’), (ii) for pixels in the shadow region (repre-
sented with ‘S’), (iii) for pixels in the non-shadow region (represented with SF),
and (iv) by comparing Îfc∗ with input shadow image Is for pixels in the non-
shadow region (represented with SF-I). In the experiments, the hyper-parameters
λ1, λ2, λ3, λ4, λ5 are set as 1, 10, 5, 5, 0.5, respectively. In the tables, best and
second-best results are highlighted in bold and blue, respectively.

Evaluation on Removal: We compare the shadow removal performance of the
proposed method with the methods in [5–8,24,27,28] on the test dataset of ISTD.
The results are shown in Table 1. Our method achieves the best performance in
the O and SF scenarios, and the second-best performance in S and SF-I scenarios.
TCGAN [24] achieves the best result in SF-I, but it has poor performance in S.
Similarly, DSC [7] achieves the best result in S but performs poorly in SF and
SF-I. Our approach achieves comparable results in all aspects and yields the best
overall value O, compared to other methods. Figure 4 shows visual performance
compared to methods ST-CGAN [27] and Mask-ShadowGAN [8]. While ST-
CGAN [27] suffers from color-inconstancy and artifacts, and Mask-ShadowGAN
[8] has over-exposure, our approach handles those issues and produces better
output.

Evaluation on Detection: We evaluate the shadow detection performance
with the recent methods [8,14,17,27] on the ISTD test dataset. The quantita-
tive results are shown in Table 2. The proposed method outperforms the base-
line Mask-ShadowGAN [8] and methods CGAN [17], StackedCNN [25]. Meth-
ods SCGAN [17] and ST-CGAN [27] achieve better results since these methods
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Table 1. Quantitative results of removal with RMSE on ISTD test dataset.

Method Publication O S SF SF-I

Original - 10.97 32.67 6.83 0

Yang [28] IEEE TIP, 2012 15.63 19.82 14.83 –

Gong [5] BMVC, 2014 9.3 18.95 7.46 –

Guo [6] IEEE TPAMI, 2013 8.53 14.98 7.29 –

ST-CGAN [27] IEEE CVPR, 2018 7.47 10.33 6.93 7.45

Mask-ShadowGAN [8] IEEE, ICCV, 2019 6.99 11.41 6.17 6.75

TCGAN [24] ARXIV, 2020 6.85 11.49 5.91 6.29
DSC [7] IEEE TPAMI, 2020 6.67 9.22 6.39 6.61

Ours – 6.54 10.03 5.88 6.49

Fig. 4. Visual comparison of shadow removal results of ISTD test dataset.

specifically train their networks for the detection task. As our goal is shadow
removal, we do not train any separate network for detection; instead, we extract
the shadow mask from the final shadow-free image and input image as discussed
in Sect. 2.2. Figure 5 shows the visual performance compared to state-of-the-art
Mask-ShadowGAN [8]. Our approach produces a shadow mask result close to
the ground-truth shadow mask.

Benchmark Dataset Adjustment: To adjust ground-truth shadow-free
images, we experimented with Linear Regressor (LR), Decision-Tree Regres-
sor (DTR), and K-Nearest-Neighbor Regressor (KNNR) in RGB and LAB color
spaces. While performing regression in the LAB color space, both shadow and
shadow-free images are transformed to the LAB space from the RGB space,
and after performing regression and correction, they are again transformed back
to the RGB space. Also, we have performed experiments by using a regression
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Table 2. Quantitative results of detection with BER(%) on ISTD test dataset.

Method BER Method BER

StackedCNN [25] 8.6 ST-CGAN [27] 3.85
CGAN [17] 9.64 Mask-ShadowGAN [8] 7.66

SCGAN [17] 4.7 Ours 6.48

Fig. 5. Visual comparison of shadow detection results on ISTD test dataset.

for each individual color channel (there will be three one-input to one-output
regressor) and by using a regression for combined color-channel (multi-output
regressor) (there will be one 3-input to 3-output regressor). For implementation,
we used regression methods from the scikit-learn python library [22]. The results
of the experiments are shown in Table 3.

Table 3. Quantitative results of ISTD test dataset adjustment task with RMSE.

Original Individual Channel
RGB LAB RGB LAB RGB LAB
LR LR DTR DTR KNNR KNNR

O 10.97 8.78 8.39 8.41 7.61 11.80 8.04
S 32.67 40.67 39.54 39.63 39.26 41.55 39.23
SF 6.83 2.81 2.55 2.56 1.68 6.23 2.20

Original Combined Channel
RGB LAB RGB LAB RGB LAB
LR LR DTR DTR KNNR KNNR

O 10.97 8.67 8.23 7.56 7.57 7.95 7.92
S 32.67 40.76 39.37 39.06 39.05 39.03 38.98
SF 6.83 2.66 2.39 1.66 1.67 2.12 2.11
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Experimentally, we observed that the decision-tree combined channel regres-
sor in RGB color space has a lower RMSE value in O and SF scenarios. So
finally, we used that method and created a new adjusted ISTD training and
testing dataset. Figure 6 shows the visual output of this database adjustment
task by using the selected method.

Fig. 6. Visual results of ISTD dataset adjustment task.

Evaluation on Removal with Adjusted Benchmark ISTD Dataset:We
compare the shadow removal performance of the proposed method with the
methods [8,27], trained and tested on the adjusted dataset of ISTD. Since the
official code for the ST-CGAN method [27] is not available, we use the community
code [23] for evaluation purpose. The results are shown in Table 4. The proposed
method achieves the best performance in O, S, and SF scenarios compared to
state-of-the-art methods.

Table 4. Quantitative shadow removal results with RMSE, trained and tested on
adjusted ISTD dataset.

Method O S SF SF-I

Original 7.56 39.06 1.66 0
ST-CGAN [23,27] 8.79 11.35 8.31 4.28

Mask-ShadowGAN [8] 4.47 10.13 3.41 3.18
Ours 4.36 9.52 3.40 3.19



Integration of GAN and Adaptive Exposure Correction for Shadow Removal 173

Ablation Study: We have done an ablation study on the presented framework
by removing the exposure correction module (represented by -c) along with not
using ground-truth shadow and shadow-free images (represented by -gt) and not
using ground-truth masks (represented by -gtm). While performing an experi-
ment with -gt, we ignored content losses, and for the -gtm experiment, initially,
we generated masks by ground-truth shadow and shadow-free images according
to Sect. 2.2. Removal and detection results for all the experiments are shown in
Table 5. Visual performance for (-c) is shown in Fig. 4. Our approach achieves the
best overall performance for removal and detection, and shows the importance
of ground-truth data and correction module to achieve the best result.

Table 5. Ablation study.

Aspect Removal Detection
Method O S SF SF-I BER

Ours 6.54 10.03 5.88 6.49 6.48
Ours(-gt) 6.98 11.07 6.22 6.54 8.37
Ours(-gtm) 6.85 10.11 6.23 6.93 6.64
Ours(-c) 6.57 10.62 5.82 6.43 6.76
Ours(-gt -c) 7.03 11.68 6.15 6.47 8.41
Ours(-gtm -c) 6.93 10.63 6.24 6.94 6.76

4 Conclusion

We proposed a method based on GAN to solve the shadow removal task in
images. We used different constraints to effectively learn the bidirectional rela-
tionship between shadow and shadow-free domains under the paired setting. We
also presented a novel process to handle the over-exposure problem after the
training. As a result, the proposed method with an exposure correction mod-
ule achieves the best or comparable performance compared to existing state-
of-the-art methods, both quantitatively and visually. We explored the issue in
benchmark datasets and introduced a technique for adjusting those benchmark
datasets to additionally improve the shadow removal results. We also conducted
various experiments to analyze the importance of ground-truth data and expo-
sure correction module in generating better quality output.
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