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Abstract. Mobile Cameras capture images deftly in scenarios with
ample light and can meticulously highlight even the finest detail from
the visible spectrum. However, they perform poorly in low-light setups
owing to their sensor size, and so, a flash gets triggered to capture the
image better. Photographs taken using a flashlight have artefacts like
atypical skin tone, sharp shadow, non-uniform illumination, and specu-
lar highlights. This work proposes a conditional generative adversarial
network (cGAN) to generate ambient images with uniform illumination
from the flash photographs and mitigate other artefacts introduced by
the triggered flash. The proposed architecture’s generator has a VGG-16
inspired encoder at its core, pipelined with a decoder. A discriminator is
employed to classify patches from each image as real or generated and
penalize the network accordingly. Experimental results demonstrate that
the proposed architecture significantly outperforms the current state-of-
the-art, performing even better on facial images with homogenous back-
grounds.
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1 Introduction

Since the advent of cameras on mobile phones, there has been an increasing shift
in capturing images using them. Attributable to the limited size of their sensors,
the resolution and quality of the images captured using mobile cameras are rel-
atively low when compared to professional DSLR cameras. Despite this, these
cameras are able to capture the finest details of the objects in evenly-distributed
lighting conditions. However, due to hardware constraints, the camera lens and
aperture are relatively small and using them to capture images in low-light con-
ditions results in poor quality. As a result, these cameras employ a flashlight
to compensate for the low-light conditions. Such photographs, captured using a
flash have a number of anomalies induced in them. These include an even and
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unnatural skin tone, shadows that are more sharp than normal, areas overex-
posed to a flashlight, and specular highlights resulting in a degenerated image
[1]. Consequently, reconstructing such images into ambient ones poses a chal-
lenge. Prior work done to address this problem involved training a convolutional
neural network (CNN) to generate uniformly illuminated portraits from flash
images [2]. However, these models have been trained in studio environment with
a homogeneous background. As a result, they fail to perform on random day-to-
day images captured with flash in uncontrolled environments. Also, even though
they perform well under control setups, they fail to successfully reconstruct cer-
tain features like the hue of the face and also, have a low peak signal-to-noise
ratio.

The dataset used in this research consists of pairs of flash and no-flash images
of human faces and an array of other objects captured in an indoor setup with
diverse backgrounds, generally 0.5–1.0 s apart, with the source of illumination
being indoor lights [3]. The absence of natural light source helps in proper flash
exposure of the input images. This work seeks to investigate the prospect of tak-
ing the images captured with a flash and using a conditional generative adver-
sarial network (cGAN) to convert them into ambient images that seem to be
captured using a uniformly distributed lighting condition. The generator takes
a flash image as an input and reconstructs the output image without the flash
artifacts. The discriminator takes pairs of the input and target image as inputs
and tries to infer if it is the ground truth or a generated image, minimizing the
loss function accordingly. Finally, it learns an optimal function to map an input
flash image to the desired output image. The output image is then subtracted
from the unfiltered flash image to get the uniformly illuminated ambient image.

2 Related Work

This section provides a concise overview of the literature relevant to our problem.
Ronneberger et al. [4] demonstrate how an encoder-decoder based architecture,
trained on a few input images helps generate a corresponding segmented image
in the output. The encoder here converts the input images to a lower-dimensional
latent space representation from which the decoder generates an output. Isola et
al. [5] propose a cGAN inspired generic solution to problems where the output
image is generated from a paired input image. The authors employ a U-Net
and a Markovian discriminator to generate the output images while trying to
minimize the GAN loss and the mean absolute error between the target and
generated image. Liu et al. [6] use coupled GANs based framework for image-to-
image translation. Their model is essentially an unsupervised one and performs
well on animal and facial image translation, among others. Pertinent to mention
is that most of these methods use pairs of aligned images for training purposes.
Zhu et al. [7] attempted to solve the problem by presenting an architecture that
tries to learn a mapping from a source image to the target without depending on
paired examples. This method gives good results in photo enhancement, style
transfer, etc. Capece et al. [2] propose an encoder-decoder based CNN, to be
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Fig. 1. Samples of flash and ambient images from the dataset. For pairs of images with
faces, the foreground is extracted using MODNet [8].

used for translating pictures captured using flash into portraits with uniform
illumination. It uses a dataset of human faces captured in a studio, with and
without flash. The encoder part of this model uses the weights of a pre-trained
VGG-16 which helps in extracting low-dimensional features from the image. The
decoder is symmetric to the encoder and it up-samples the features to generate
the output image. In order to minimize the Spatial Information loss, the model
further uses skip connections between encoder and decoder layers. Although this
architecture mitigates the anomalies introduced by a flash, it fails to regenerate
the actual skin tone of the subject. Chávez et al. [1] use a conditional GAN to
generate uniformly illuminated images from flash ones. Although they are able
to generate somewhat uniform skin texture in the output and reduce the effect
of flash, their model gives a less score on the structural similarity index measure.
This indicates that even though the model removes the abnormalities that come
from flash and generate a realistic skin tone, the output image has features that
are divergent from normal. Inspired by the above-mentioned work, we propose
a conditional GAN which fixes the shortcomings and generates the output with
higher accuracy.

3 Methodology

3.1 Dataset

The dataset used in this research is acquired from the Flash and Ambient Illumi-
nations Dataset (FAID) [3]. It consists of 2775 pairs of properly aligned images
of People, Shelves, Plants, Toys, Rooms, and Objects captured with and with-
out using a flash, usually 0.5 to 1 s apart (Fig. 1). The images are captured
in an artificially illuminated indoor set up so as to give them a proper flash
exposure. The images in the FAID dataset are resized to 256 * 256 pixels and
split into two sets: the one with facial images and the other with the rest. The
dataset of facial images is further reduced to 275 images, removing images with
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less light exposure and misaligned flash-no-flash pairs. What follows is the fore-
ground extraction on such images using MODNet [8]. Afterward, the dataset is
augmented to generate a total of 1100 images, 935 of which are used to train
the network and the remaining 165 to test it. The rationale behind removing the
background from images of people is to be able to compare the accuracy with
the previous work that used a uniform studio-like background with such images.
The dataset with the rest of the pictures is used as such, with 300 of its 2000
images used for testing the model and the rest to train it.

Fig. 2. The encoder-decoder architecture of the generator. The encoder takes a
256× 256× 3 flash filtered image Bil(If ) as an input, the target being Bil(If ) - Bil(Ia)
normalized in the range [0, 1]. It gives Io as output which is then denormalized in [−1, 1].

3.2 Conditional GAN

A Conditional GAN [9] aids the creation of particular kind of images. It consists
of a Generator and a Discriminator, both of which are fully convolution networks.
In addition to a latent vector, a class label concatenated to it is provided as an
input to the generator. This class label or data from other modalities directs
the generator in terms of the image it is expected to generate. In image-to-
image translation, the encoder-decoder architecture of the generator allows it to
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extract high-level features from an input image and construct the output close
to the expected one. Afterward, the discriminator takes pairs of input and target
images as inputs and tries to determine whether the target image is real or not
while trying to minimize the discriminator loss. Here, fake corresponds to the
image generated by the generator. The purpose served by a cGAN can be put
as follows:

ηcGAN (θG, θD) = Ta,b[log θD(a, b)] + Ta,c[log(1 − θD(a, θG(a, c)))] (1)

Here, the generator θG works towards minimizing the objective function while
the discriminator θD tries to maximize it i.e.

θres
G = arg min

θG

max
θD

ηcGAN (θG, θD) (2)

3.3 Training

Problem Encoding. The proposed network may be used to tackle the problem
in a variety of ways, the most basic of which is a model that takes a flash image
If as an input and tries to generate its uniformly illuminated ambient equivalent
Ia. The discriminator can then try to distinguish it from the expected output
and learn to improvise the same. However, such a setup exhibits a decreased
efficiency while learning to decouple details that have a sharp contrast from
the surrounding features. The resultant image has visible artifacts and is faintly
blurred. In this research, a bilateral filter [10] is used to address this problem.
It is essentially a non-linear filter that smoothens an image, doing so without
altering the pixel composition of the sharp image edges. Mathematically, the
bilateral filter FBil[.] is defined as:

FBil[Im]x =
1

Wx

∑

yεS

Kσs
(||x − y||)Kσr

(|Imx − Imy|)Imy (3)

where the weighted pixel sum is ensured by Wx given as:

Wx =
∑

yεS

Gσs
(||x − y||)Gσr

(|Imx − Imy|) (4)

For an Image Im, the values of σs and σr signify the amount of filtering and
Gσs

and Gσr
are Gaussian weightings for spatial and range intensity respectively

and Imθ signifies the intensity at pixel θ.
The result is an image whose high-frequency features are replaced with the

spatially weighted average of the intensity of its surrounding pixels. The input
to the network used in this work is a bilateral flash image Bil(If ), the target
being the difference between the bilateral flash image Bil(If ) and the filtered
no-flash image Bil(Ia), normalized in the range [0, 1] (Fig. 2).
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Fig. 3. Training of a generator. Here, the generator output Io are the generated (fake)
images and the L1 loss tries to minimize the difference between Io and the target
Bil(If ) - Bil(Ia). The discriminator gets as input pairs of the expected and generated
images (Bil(If ) - Bil(Ia) and Io), both labelled as real and uses the sigmoid cross
entropy to distinguish between the two. The gradient tries to minimize both the errors
as shown in Eq. (7).

Generator. The generator [9] in this work is essentially an encoder-decoder [11],
with its encoder a VGG-16 network [12] and the decoder constructed accordingly.
A VGG-16 is composed of 16 layers, the first 13 being the convolution layers that
learn features from the input image while periodically downsampling it so that
each pixel represents a larger input image context. The rest of the layers are fully
connected and primarily, have a role in image classification. Here, the VGG-16
is pre-trained on the ImageNet dataset. We retain the 13 convolution layers of
this network, whose weights have been updated in a way that they can classify
images with high accuracy. It is called transfer learning. The activation function
used is ReLU with the kernels of size 3× 3 being used to pool features and a
stride value of 1.

After a further convolution operation, a decoder almost symmetric to the
encoder is developed. The input to the decoder is essentially this output from the
last convolution operation. Here, the aim is to reconstruct the output Io similar
to Bil(If ) - Bil(Ia). So, the data is upsampled in a way so that at each step,
it is symmetric to the corresponding encoding layer. Also, batch normalization
is performed so that the output at each layer is a valid input to the next. To
make the gradient non-zero, the activation tensor thus obtained goes through
LeakyReLU [13], a non-saturating nonlinear activation function. Lastly, skip
connections are introduced to address the degradation and vanishing gradient
problems as the proposed network has many layers. Pertinent to mention is that
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the Generator was trained on pairs of images to map its performance without
a discriminator, the output of which has been mentioned in the results section
(Fig. 3).

Loss Function. This work uses the Adam Optimizer, which is an extension
of the stochastic gradient descent to minimise the loss function. Another major
objective is to minimize the difference between the low contrast frequencies of
Bil(If ) and Bil(Ia) which we expect to retrieve later. This objective function
can be put as:

O(p, t) =
4

3N

∑

o

((to − Io) + E|Io − to|)2 (5)

where
to = Bil(If ) − Bil(Ia) (6)

and Io is the predicted output. This output is then denormalized in the range
[−1, 1] and later subtracted from If to get the reconstructed ambient image.

While trying to minimize the model loss, using both the mean absolute error
L1 and the Conditional GAN loss in the ratio of 100:1 gives reasonably good
results. Therefore, the combined loss function is given by:

θFlashGAN = arg min
θG

max
θD

ηcGAN (θG, θD) + ληL1(θG) (7)

where λ = 100 and ηL1(θG) is the L1 loss given as:

ηL1(θG) = Ta,b,c[||b − θG(a,b)||1] (8)

Discriminator. A discriminator [14] tries to distinguish an image developed
by the generator from the ground truth expected in the output. In this paper, a
PatchGAN [15] has been used as a discriminator. As opposed to classifying an
entire image, a PatchGAN discriminator convolves on an image and attempts to
determine whether each NxN patch in a picture is real or not. In the output, it
averages all such responses. Each activation in the output layer is a projection
of an area from the input image described by the receptive field [16] Rf . A
70× 70 PatchGAN is employed that convolves over each 70× 70 patch of the
input image of size 256× 256× 3. This PatchGAN produces sharp outputs, both
spatially and in color. All the ReLUs used are leaky with a slope of 0.2. The
given discriminators architecture is:

C64 − C128 − C256 − C512

where the receptive field increases from four in the output convolution layer
to seventy in the first one (C64). This receptive field maps an area from the
input image to a final activation.
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Fig. 4. Results on Segmented facial image dataset

Fig. 5. Results on the generic dataset
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4 Results

FlashGAN was trained on pairs of images of resolution 256× 256 on an Nvidia
GeForce GTX 1050 Ti GPU for about 17 h. At this point, the value of Structural
Similarity Index (SSIM) [17] was high indicating that the generated image is
highly similar to the ground truth.

Figures 4, 5 and 6 show the output generated from the test images after the
training was stopped. The generated images here are the FlashGAN outputs
denormalized in the range [−1, 1] and then subtracted from If . SSIM and Peak
signal-to-noise ratio (PSNR) [18] are the metrics used to evaluate the efficiency
of our model. SSIM measures the similarity between the ground truth Ia and
the generated image denormalized and subtracted from the flash image If − Io.

Fig. 6. Generated images along with their SSIM.

Both the segmented and the generic dataset were evaluated individually using
the given metrics. The model performed equally well on images with multiple
faces. The average SSIM and PSNR value on a sample of 70 images from the test
set of facial images is 0.951 and 29.37 dB respectively. On a similar sample for
the generic images, these values are 0.926 and 23.18 dB. A high value of PSNR
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signifies a better-reconstructed output. The results also indicate the proposed
model is significantly better than the state-of-the-art as shown in Table 1. In
this table, the SSIM and PSNR for FlashGAN is an average on a mixed sample
of facial and generic images. Also, when the generator (encoder-decoder) was
trained on the same sample, the SSIM and PSNR values obtained were 0.894 and
21.89 dB indicating that pairing it with a discriminator to make an adversarial
network significantly improves the overall performance (Fig. 7).

Fig. 7. A comparison between Guided cGAN, DeepFlash and the proposed network
(FlashGAN).
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Table 1. Mean SSIM and PSNR of DeepFlash [2], guided cGAN by J Chávez [1] and
FlashGAN (proposed network).

Method SSIM PSNR

DeepFlash 0.8878 20.58 dB

Guided cGAN 0.684 15.67 dB

FlashGAN 0.937 25.14 dB

5 Conclusion and Future Scope

The results achieved by the proposed architecture suggest that conditional GANs
outperform the other methods of image-to-image translation. In this work, it was
pivotal in reconstructing the overexposed areas, generating the exact skin tone,
and removing artifacts from the flash images with high efficiency.

Despite this, the models’ accuracy dropped when it was trained without
applying a bilateral filter on the input and target images. Filtering the images
before they are passed through FlashGAN results in increased complexity. The
attempt to reconstruct portrait images with heterogeneous background resulted
in a decreased accuracy too. Also, an attempt to generate the ambient image
as an output of the decoder (as opposed to Io, the actual output) resulted in a
decreased accuracy. In some cases, a low SSIM score was attributed to misaligned
images. Models to address these problems can be part of future work. The model
must be further optimized to remove or reconstruct the background without the
shadow artifacts generated because of the flash light.
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