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Abstract. We initiate the study of verifiable capacity-bound function
(VCBF). The main VCBF property imposes a strict lower bound on
the number of bits read from memory during evaluation (referred to as
minimum capacity). No adversary, even with unbounded computational
resources, should produce an output without spending this minimum
memory capacity. Moreover, a VCBF allows for an efficient public veri-
fication process: Given a proof of correctness, checking the validity of the
output takes significantly fewer memory resources, sublinear in the target
minimum capacity. Finally, it achieves soundness, i.e., no computation-
ally bounded adversary can produce a proof that passes verification for a
false output. With these properties, we believe a VCBF can be viewed as
a “space” analog of a verifiable delay function. We then propose the first
VCBF construction relying on evaluating a degree-d polynomial f from
Fp[x] at a random point. We leverage ideas fromKolmogorov complexity to
prove that sampling f from a large set (i.e., for high-enough d) ensures that
evaluation must entail reading a number of bits proportional to the size
of its coefficients. Moreover, our construction benefits from existing ver-
ifiable polynomial evaluation schemes to realize our efficient verification
requirements. In practice, for a field of order O(2λ) our VCBF achieves
O((d + 1)λ) minimum capacity, whereas verification requires just O(λ).
The minimum capacity of our VCBF construction holds against adver-
saries that perform a constant number of random memory accesses during
evaluation. This poses the natural question of whether a VCBF with high
minimum capacity guarantees exists when dealing with adversaries that
perform non-constant (e.g., polynomial) number of random accesses.
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1 Introduction

Time and space complexity are functions that measure the efficiency of algo-
rithms. These two functions are related (sometimes appear in the same set-
ting) but distinct. For instance, “time” may refer to the number of memory
accesses performed by an algorithm, while “space” refers to the amount of mem-
ory needed. In general, we try to minimize these functions, i.e., an ideal algorithm
is one that is fast and tight. However, in cryptography, we are also interested in
algorithms that are deliberately slow or capacious with the idea that, if the adver-
sary must run them, the attack will be slow and costly. This has found numerous
applications, e.g., in the context of proof-of-work for distributed consensus [46],
and anti-spam mechanisms [9,27]; and password hashing or key derivations to
be used against offline brute-force [38,52].

The most prominent definitions for “space-demanding” functions proposed
in the literature are memory-hardness [2–6,19,21,49], and bandwidth-hardness
[15,54]. While they share the same initial motivation, these notions vary in their
formalization and achieved security guarantees. Memory-hardness, as originally
defined [49], guarantees a lower bound in the memory/time product required
to compute the function. Informally, a function is memory-hard if the product
of the evaluation memory cost m and time t for any adversary cannot be less
than mt ∈ Ω(n2), where O(n) is the time for an honest party. This has been
widely proposed as a countermeasure against attackers that aim to gain an unfair
advantage by using customized hardware, such as an ASIC, as it forces one
to dedicate a significant area of memory to avoid being too slow. Thus, the
cost of ASIC manufacturing would grow proportionally. Bandwidth-hardness
guarantees that the energy cost for evaluating the function does not differ much
across different platforms with variable computing energy costs (e.g., CPU vs.
ASIC). In practice, this is based on the observation that although ASICs may
have superior energy consumption for specific tasks, off-chip memory accesses
incur comparable energy costs on ASICs and CPUs. Thus, energy consumption
is enforced by ensuring a substantial amount of off-chip memory accesses.

None of these provides a strict bound on the amount of distinct bits read:
The former allows for a trade-off between memory block accesses and computing,
whereas the latter bounds the ratio of energy consumption benefits for ASIC
adversaries. A different notion, predating memory and bandwidth-hardness, is
that of memory-bound functions [1,26,28] that do impose an expected lower
bound on the number of memory accesses, expressed as cache misses.

All these notions have “symmetric” hardness in the following sense. Given a
candidate input-output pair (x, y) for function f , verifying whether f(x) = y is,
at best, achieved by evaluating f . In that sense, evaluation and checking require
the same amount of resources. In many applications, it would be desirable to
have an efficient public verification algorithm that can check the correctness of
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an evaluation using significantly fewer resources, after the party that evaluates f
provides a proof of correctness π for y. In practice, considering a cryptographic
puzzle application [27,36,43], a challenger receiving multiple candidate puzzle
solutions from different parties should be able to verify their correctness with
much less effort than it took to compute them. Even considering egalitarian
proofs of work [12], checking the validity of a proposed evaluation with con-
siderably smaller memory requirements allows for easy validation by numerous
lightweight clients.

In the context of time-demanding functions, verifiable delay functions (VDFs)
introduced by Boneh et al. [18] achieve such a property: any observer can verify
that the computation of the function was performed correctly and can do so
efficiently. The scope of this paper is to introduce an analogous function but
for capacious/space-hungry algorithms. However, “space” or memory functions
appear to be more intricate. Indeed, space-hardness does cover the memory
needed by an algorithm for instructions, data, and inputs. Still, as discussed
above, hardness often involves a trade-off between space and time, i.e., an algo-
rithm is allowed to use more time to make up for a smaller memory footprint.

This Work: Verifiable Capacity-Bound Functions. In this work, we initi-
ate the study of verifiable capacity-bound functions (VCBF). At a high level, a
VCBF guarantees: (a) a strict lower bound m in the necessary number of distinct
bits read from memory in order to evaluate the function each time (referred to
as minimum capacity complexity), (b) a public verification process that given a
proof π can check the correctness of an evaluation by reading only o(m) bits, and
(c) soundness, i.e., no computationally-bounded adversary should be able to pro-
duce a convincing proof for an incorrect evaluation. The space notion of VCBF
differs significantly from other space-related functions: It provides a strict lower
bound on the number of distinct bits read at each evaluation of the function
(minimum capacity) even if an adversary adaptively chooses its strategy after
the function is instatiated. In addition, it does not present any time/space trade-
off on evaluation, i.e., the only way to compute the VCBF’s output is to satisfy
its minimum capacity complexity unless the VCBF is heavily precomputed. Note
that every function inevitably presents a time/space trade-off under heavy pre-
computation, e.g., evaluate the function on all inputs and store the outputs into
an ordered dictionary. This differs from other space functions [1,4,6,28,54] in
which an evaluator can tune the memory usage at the price of computing the
function in more time, even if the function has not been preprocessed.

Also, unlike the notion of asymmetric hardness [13] which allows parties with
access to a secret trapdoor to evaluate f quickly, we aim for public verifiabil-
ity. Hence, a VCBF is a publicly verifiable function that does not present a
time/space trade-off on evaluation. In that sense, it can be viewed as a space-
analog of a VDF.

ComparisonBetweenVCBFandOther “Space-Demanding”Functions.
We provide a more detailed discussion of the relation between VCBFs and other
primitives that attempt to bound the resources used when evaluating a function.
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Table 1. Comparison summary between VCBF and existing space-demanding func-
tions. We exclude from the comparison any primitive that deviates from our objectives:
(i) primitives based on heuristics or enforce memory/space usage on expectation, i.e.,
no strict lower bound on the memory/space usage (e.g., [1] and puzzle-based con-
structions [26,28]) or, (ii) primitives that require interaction (e.g., [7,29,53]). Publicly
verifiable means that the correctness of the function’s output can be publicly veri-
fied with significantly fewer space-units than evaluating the function. We use the term
“memory” to denote the total space required to evaluate the function (this does not
guarantee a lower bound on the number of bits read).

Space-unit per execution Security analysis Publicly verifiable

Code-hard functions [13] Memory Ideal cipher ✗

Memory-hard functions [4,6,49] Time/Memory trade-off ROM & Pebbling ✗

Bandwidth-hard functions [54] Time/Cache-miss trade-off ROM & Pebbling ✗

VCBF (this work) Bits read Standard �

See Table 1 for a comparison summary between VCBF and the most prominent
functions and the corresponding space flavors.

Minimum Number of Computation Steps. Such primitives provide a lower bound
on the minimum number of sequential steps necessary. Notable examples include
classic time-locked puzzles [55], key-derivation function PBKDF2 [38], and the
recently proposed verifiable delay functions mentioned above [18,50,59]. Another
related notion is proof-of-sequential-work (PoSW) [23,25,42], which is similar to
VDF except PoSW is not a function. Typically, these enforce a repeated oper-
ation (hashing or squaring in the group with an unknown order). As discussed,
our VCBF shares the same spirit as VDF but for space/energy consumption.

Minimum Number of Memory Access. As explained above, memory-bound func-
tions provide an expectation of the lower bound on the number of cache misses
for any polynomial-time bounded adversary. In [1,26] a subset of a large random
table (thus incompressible) is accessed during evaluation. However, they do not
meet our requirement of the strict capacity lower bound on the number of bits
read for each evaluation (like VDF for the time setting) since their lower bound
is only a statistical expectation.

Follow-up work [28] suggests a construction with a time/space trade-off for
the process of constructing the table from a representation, but this permits us to
easily trade memory accesses for computation workload. We stress that [26,28]
leverage a puzzle-based approach: They reach the desired number of cache misses
by evaluating the function multiple times. Hence, they cannot be considered
functions due to their puzzle-based nature (similarly to the analogy between
VDF and PoW in the time setting). Lastly, [1] leverages an inner function f
whose inverse f−1 cannot be evaluated in less time than accessing the memory.
Hence, their construction presents a time/space trade-off: A malicious adversary
may choose to involve more time to reduce the number of memory accesses.
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Code-Hard Functions. Code-hard algorithms [13] require that a minimum
amount of memory is used in order to store the code (generated using
block ciphers). This has found different applications, e.g., white box encryp-
tion [11,16,17,34] or big-key encryption [10]. The key difference between a code-
hard function and VCBF is that while a large amount of memory space must be
dedicated for storing the code-hard function, it is possible that only a small frac-
tion of those stored bits must be retrieved during evaluation (i.e., using memory
does not imply reading bits). A VCBF imposes a non-trivial strict lower bound
on bits read from memory during each evaluation.

Memory and Bandwidth-Hard Functions. These functions adaptively read/write
from/in the memory to achieve two different objectives: Memory-hard functions
require evaluators to use a large amount of memory while bandwidth-hard func-
tions produce a high number of cache misses.1 These functions [4,6,49,54] allow
adversaries to dynamically trade additional computation for reduced memory
usage on evaluation (even without precomputation); thus, they do not meet our
strict lower bound guarantee.2 Moreover, the existing formalizations are highly
reliant on the random oracle model, e.g., [54] for bandwidth hardness and [4,6,49]
for memory hardness (in the parallel random oracle model). This comes natu-
rally, as many of these works use variations of a graph-pebbling game to model
their computation, heuristically estimating the energy cost for each unit compu-
tation and memory access operations. On the other hand, our VCBF definition
does not rely on the random oracle model (this does not preclude the possibility
of specific VCBFs operating in this model). Another impact of relying on the
random oracle model is that it makes it harder to design an efficient verification
algorithm as it “destroys” any algebraic structures between inputs and outputs.

We stress that a VCBF’s lower bound in memory bits accessed can be used to
infer a lower bound in energy consumption, analogous to the motivation behind
bandwidth-hard functions. E.g., considering an ASIC-based adversary with on-
chip memory of size s bits (such as a hardware cache) a VCBF that guarantees to
access m bits from main memory imposes a u(m−s) lower energy consumption,
where u is the atomic cost for reading one bit from memory.

In a recent work [31], the first memory-hard VDF construction was pro-
posed by combining a SNARK with a parallelizable prover with a memory-
hard “sequential” function. Although this result is close in spirit with what a
VCBF tries to achieve, we do not aim for an explicit time lower bound, whereas

1 We stress that, in the setting of memory-hard functions, the term “memory” is used
to denote the number of memory blocks required to correctly evaluate (in a given
time) the function. This differs from the VCBF objective of forcing the evaluator
to read a fixed number of distinct bits (requiring n memory blocks of size w on
evaluation does not imply reading nw distinct bits since multiple memory blocks
may present a redundant pattern that may be compressed).

2 We stress that memory-hard functions present a time/space trade-off on evaluation
that varies according to the notion of memory hardness considered (e.g., time-space
complexity [49], cumulative space complexity [6], sustained space complexity [4]).
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the memory-bound we achieve is strict without leaving room for time/space
trade-offs, as explained above.

Proof of Space (PoSpace). PoSpace [7,29,53] extends memory-hard functions
with efficient verification and adopts the graph pebbling framework and the
random oracle model. The prover convinces a verifier that it consumed its space
capacity to store data while allowing for efficient verification in both space and
time. Like memory-hard functions, the PoSpace constructions can only guaran-
tee a time/space trade-off, thus cannot enforce a space lower bound. Also, the
security analysis is based on the heuristic (parallel) random oracle model.

Overview of Techniques. The main challenge in building a VCBF is finding
a function that has a natural strict lower bound on the space necessary for
evaluation while still allowing for efficient verification. Past works [2,3,5,6,15,
19,21,54] achieve the first property only on expectation (i.e., expected lower
bound) by relying on assumptions such as the random oracle or ideal cipher.
Hence, this approach fails to achieve a strict lower bound and makes it harder
to achieve the second property as it dismantles structured relations between the
function’s inputs and outputs that could be used for efficient verification.

In this work, we deviate from previous techniques significantly. To model
the inability of an adaptive space-based adversary to compute an output with-
out reading enough data from memory, we turn our attention to Kolmogorov
complexity [40], which measures the complexity (in an absolute sense) of an
object in terms of the minimum number of bits necessary to represent it. Kol-
mogorov complexity is viewed as a fundamental theory of computer science and
has been shown connected with multiple areas in cryptography [41,45,56]. (The
most recent work of Liu and Pass [41] proves the equivalence of a computational
bounded version of the Kolmogorov complexity and the existence of one-way
functions.) Somewhat more formally, the Kolmogorov complexity of object x is
the minimum number of bits needed to represent any description (T, α) where
T is a Turing machine and α is a string such that T(α) outputs x. One can view
T as an adaptive decompressing algorithm and α as a “compression” computed
adaptively from x. Based on this, our first observation is that if an algorithm
depends on an object x (e.g., x could be the description of the algorithm itself or
the algorithm’s input), then its execution cannot require reading fewer bits than
the Kolmogorov complexity of x. In that sense, Kolmogorov complexity is the
right tool for us; choosing a function with high Kolmogorov complexity readily
provides an arguably loose bound for the minimum capacity of a VCBF even in
the presence of an adaptive adversary that chooses its strategy (that determines
how memory is read and organized) after the function is instatiated (see Sect. 1.1
for a discussion about adaptive security in the space setting).

On the other hand, when building our VCBF we need to identify a function
that is amenable to verification; ideally, it should preserve an efficiently check-
able (algebraic) relation between inputs and outputs. One candidate function is
polynomial evaluation for single-variable polynomial f(X) ∈ Fp[x] of degree d

of the form f(X) =
∑d

i=0 ai · xi. The good news is that there exist numerous
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works in the literature for verifiable polynomial evaluation (e.g., [30,32,48,61]).
In order to use such a scheme for a VCBF we need to ensure it is publicly ver-
ifiable (anyone can verify it using public parameters) and publicly delegatable
(anyone can query it on an evaluation point). In our construction, we use the
lightweight scheme of Elkhiyaoui et al. [30]. Its verification process requires a
constant number of operations among a constant number of elliptic curve ele-
ments. This is important for us since we want VCBF to have verification capacity
complexity sublinear in its evaluation’s minimum capacity. Using [30], the latter
is O((d + 1)λ) whereas the former is O(λ) (where λ is the security parameter),
i.e., the gap is linear in the degree of the polynomial.

The “honest” way of evaluating polynomial f(X) is by reading its coeffi-
cients ai, so by fixing |(a0, . . . , ad)| ≥ m (where |x| denotes the bit length of
x) one would hope to get a VCBF with minimum capacity m. However, this is
not the case as every polynomial has multiple alternative representations that
an adversary may try to exploit in order to bypass the memory capacity bound.
For example, all lists of the form (x0, . . . , xd), (f(x0), . . . , f(xd)), for any choice
of d+1 distinct xi, completely determine the coefficients (a0, . . . , ad) of f(X) (by
interpolating the points). Here is where Kolmogorov complexity comes in handy:
The above evaluations and points together with a Turing machine that performs
polynomial interpolation are a valid description, in terms of Kolmogorov com-
plexity, of the coefficients (a0, . . . , ad). As a consequence, it cannot be significantly
shorter than the Kolmogorov complexity C(a0, . . . , ad) of the coefficients of the
polynomial f(X) (Theorem 5).

What remains is to find a way to sample a polynomial f(X) with high Kol-
mogorov complexity. For any large-enough set, most of its elements have suffi-
ciently high Kolmogorov complexity. Since this holds for arbitrary sets, sampling
at random from a large-enough set of polynomials guarantees that the chosen
polynomial is of high Kolmogorov complexity with high-enough probability.

As discussed above, many previous works inherently adopt non-standard
models in their definitions to capture the fact that a function is memory-heavy
(e.g., random-oracle, ideal cipher, or heuristic assumptions about graph peb-
bling). Instead, we want to base our security definition in the standard setting,
and we regard our paper on VCBF as a foundational one. Our approach is to
model adversaries as Turing machines that read (at most) a fixed number of dis-
tinct bits m (whose value is estimated using the Kolmogorov complexity) from
a precomputed memory τ of size n ≥ m (Sect. 4). We stress that it is crucial to
consider the memory of size n larger than m since an adversary can leverage a
large memory to increase its advantage ε while, at the same time, minimizing
the number m of distinct bits it must read to answer a particular challenge (for
example, it can store a large dictionary containing several evaluations of the
polynomial f(X)). However, this introduces the new challenge of estimating the
adversary’s advantage ε with respect to the memory size n: A particularly chal-
lenging task when working in the standard model with black-box access to the
adversary. In more detail, it is hard to provide a strict bound on the number of
(partial) information that can be stored in a memory of size n since their space
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requirement highly depends on the precomputation strategy (e.g., the entropy
of the precomputed values) and the encoding (e.g., memory organization, mem-
ory access patterns) that can be adaptively chosen by an adversary after some
parameters are revealed (e.g., the object to compress). Still, we show that it is
possible to give a positive, meaningful estimation of ε and n when considering
adversaries that perform a constant number v ∈ O(1) of random accesses (e.g.,
conditional jumps) in order to read discontinuous bits from memory. We dis-
cuss the formulation of our definition and our results in Sect. 4 and Sect. 5.1,
respectively.

Summary of our Contributions. Our contributions in this work can be
summarized as follows:

1. We build a cryptographic framework that combines the notion of Kolmogorov
complexity and randomized Turing machines and use it to bound the mini-
mum amount of bits required in order to evaluate a polynomial (Sect. 3).

2. We propose a formal definition of verifiable capacity-bound functions VCBFs
that captures (a) a lower bound m on the number of bits read from memory
(of bounded size) for evaluation (minimum capacity), (b) efficient verification
of outputs with minimum capacity that is sublinear in m with respect to
any malicious evaluator, and (c) soundness, i.e., no computationally bounded
adversary can produce an incorrect output that passes verification (Sect. 4).
We stress that the minimum capacity definition of VCBF (Sect. 4) signifi-
cantly changes the perspective about how adversaries are usually modeled in
cryptography. In our setting, the power of an adversary is solely dependent
on the space it uses, i.e., the adversary has unbounded computational power,
but it has limitations in the space it uses.3 In a nutshell, an adversary is only
limited to the size of available (precomputed) memory and the number of bits
it reads from it. Considering space-only adversaries requires rethinking the
meaning of adaptive security. As we will discuss next, adaptiveness refers to
the ability of choosing the precomputation strategy (that sets the memory
of the adversary) and the evaluation strategy (that sets the reading strategy
during evaluation) after the VCBF’s public parameters (i.e., the coefficients
of the polynomial) are revealed. To work with such a space adaptive setting,
Kolmogorov Complexity is essential and succeeds where any other standard
entropy measure fails (see Sect. 1.1 for a detailed discussion).

3. We propose the first VCBF construction that satisfies our definition, based on
single-variable polynomial evaluation for polynomial f(X) ∈ Fp[x] of degree
d. To achieve efficient verification, we employ the publicly verifiable and pub-
licly delegatable verifiable computation scheme of [30]. For a target minimum
capacity m ∈ O((d + 1)λ), it suffices to set the size of the polynomial to

3 Considering unbounded adversaries is fundamental in order to capture the (concrete)
strict lower bound on the number of distinct bits read that a VCBF must guarantee
(i.e., a VCBF does not present any time/bits read trade-off). We provide a more
detailed discussion in Sect. 4 and Remark 2.
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(d + 1)λ, where λ is the security parameter. Hence, to achieve large capacity
bounds, we need to set d � λ, e.g., d ∈ Ω(λc) for c > 1 constant. On the other
hand the capacity complexity of the verification is O(λ), i.e., independent of
d hence verification remains efficient (Sect. 5).

4. In the full version of this work, we provide an estimation of the concrete
parameters for our construction. For an elliptic curve group of order p of
size 1024 bits, a polynomial of size 1 GB (d = 78.20 · 105 ≈ λ2.29) guaran-
tees a minimum capacity m of 0.82 GB, even with respect to an unbounded
adversary that can spend an exponential amount of computational resources.

We stress that a target minimum capacity m of a VCBF is guaranteed only
in the presence of adversaries with a limited memory size n. As explained, the
estimation of n is a major challenge when working in the standard setting (this
work). Along this line, we initiate a fine-grained study on the memory size n
estimation according to the number v of adaptive random accesses performed
by the adversary (denoted by the set Av-access). In particular, we prove (in the
concrete setting) that the evaluation of a polynomial f(X) ∈ Fp[x] guarantees a
target capacity m ∈ O((d + 1)λ) even if an adversary A ∈ A1-access has access to
a memory whose size n is proportional to the cardinality of the input space of
the polynomial f(X), i.e., super-polynomial. Our results can be extended to the
asymptotic setting for the class AO(1)-access (Corollary 1). This result implies
the security of our construction against adversarial strategies primarily used
in practice (e.g., pre-computed dictionaries) or strategies executed on limited
devices that have a bound on the number of random accesses (e.g., for energy
efficiency) that they can perform. In Sect. 4 and Sect. 5.1, we discuss our results
in more detail.

Regarding the larger class of adversaries Aω(1)-access, the minimum capac-
ity of our polynomial-based VCBF construction deteriorates when n gets closer
to d1+δλ1+o(1) for a constant δ > 0. This is due to the work of Kedlaya and
Umans [39]: They shows how to build a data structure D of size at most
d1+δλ1+o(1) (only from the coefficients of f(X) ∈ Fp[x]) that allows them to
evaluate f(X) over any of the points. This evaluation requires reading a non-
constant number of elements from D (using ω(1) random accesses) whose total
size is at most O(log(d)s1λs2) for some positive s1, s2 ∈ O(1). Hence, the plain
evaluation of a polynomial of degree d can not guarantee a minimum capacity of
m ∈ ω(log(d)s1λs2) when an adversary A ∈ Aω(1)-access has access to a memory
of size n, close to or greater than d1+δλ1+o(1) (see Sect. 5.1 for more details).

1.1 Adaptive Security and Kolmogorov Complexity (vs. Selective
Security and Other Entropy Measures)

Here, we provide an answer to two natural questions about the meaning of
adaptive security (in the space setting) and Kolmogorov complexity. These points
significantly differentiate the techniques used in this work from previous ones.
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Adaptive Security in the Space Setting. In the standard computational
time cryptographic setting, adaptive security refers to the ability of an adversary
of changing its behavior according to the scheme’s parameters with the objec-
tive of increasing its advantage in breaking the scheme’s security. An example is
the adaptive CCA security of public encryption in which an adversary wants to
increase its advantage in distinguishing between two encryptions by adaptively
choosing both the two challenge messages and the next query for the decryption
oracle after seeing the public key and the answers received from previous decryp-
tion queries. The natural question we pose is “What does adaptive security mean
for the minimum capacity definition of VCBF?”. To give a concrete answer to
this question, it is necessary to rethink the meaning of adaptive security against
adversaries whose power is measured by solely considering the memory used/read
(as done in this work). Jumping ahead, the minimum capacity of VCBF (Sect. 4)
guarantees that an adversary needs to read at least m bits from its memory τ (of
size n) when asked to correctly evaluate the function on a random point. This
must hold even if the adversary is computationally unbounded, and it is allowed
to generate/organize its memory τ by precomputing the VCBF according to its
parameters (i.e., polynomial). In such a setting, the objective of an adversary
is to break the security of VCBF by minimizing the number of distinct bits m
read from the precomputed memory. To achieve this, an adversary may think of
changing its compression/precomputation strategy after the VCBF’s parameters
(i.e., the polynomial coefficients) are revealed.4 This is analogous to the CCA
public key encryption example in which an adversary changes its two challenge
messages after seeing the public key and the answers of the decryption oracle.
To formally define the intuitive security of VCBF (i.e., a strict lower bound on
the number m of distinct bits read), it is fundamental to cover adaptive space-
based adversaries (as described above). Indeed, if an adversary can change its
precomputation/compression strategy after seeing the VCBF’s parameters and
reduce, for example, m by log(λ) bits then the strict lower bound is not strict
anymore. For this reason, the natural definition of minimum capacity (Defini-
tion 4) requires that the function remains secure for any possible space-based
adversary sampled after the instantiation of VCBF, i.e., the precomputation
and evaluation strategy (i.e., the memory and the bits read) of the adversary
can depend on the VCBF itself. Such a model of adaptive security requires the
usage of Kolmogorov complexity (see next).

Why Kolmogorov complexity? Conventional entropy measures (including
Yao entropy that leverages the notion of compression and Shannon) consider the
incompressibility of objects only on expectation. It implicitly means that the
compression strategy does not depend on the object (i.e., our polynomial of our
VCBF construction) sampled from a distribution. The typical example is on [35,
Page 10] (quoting): “Consider the ensemble consisting of all binary strings of

4 For example, a particular (hard to guess) compressible pattern may be revealed after
the polynomial coefficients are chosen. Note that this may happen (with a certain
probability) even if the polynomial is sampled at random.
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length 9999999999999999. By Shannon’s measure, we require 9999999999999999
bits on the average to encode a string in such an ensemble. However, the string
consisting of 9999999999999999 1’s can be encoded in about 55 bits by express-
ing 9999999999999999 in binary and adding the repeated pattern 1”. Note that
the above argument applies also to the Rényi family of entropies (e.g., min-
entropy).5 The Kolmogorov complexity overcomes these limitations by consider-
ing the worst-case scenario: It measures incompressibility in an absolute sense,
i.e., the compression strategy can depend on the object. Hence, lower-bounds
derived through Kolmogorov complexity are universal, and they do not hold
only on expectation. Also, quoting [58]: “The Kolmogorov complexity of an
object is a form of absolute information of the individual object. This is not
possible to do by C.E. Shannon’s information theory. Unlike Kolmogorov com-
plexity, information theory is only concerned with the average information of a
random source”.

In the VCBF setting, these concepts translate into adaptive vs. selective secu-
rity. Kolmogorov complexity allows us to bound the minimum capacity of VCBF
in the adaptive setting in which the adversarial compression/precomputation
strategy can depend on the VCBF’s parameters (this mimic the adversarial
behavior of changing strategy after the parameters are revealed). As already
discussed, this is fundamental in order to have strict (universal) lower bound
on the number of bits m that an adversary needs to read to evaluate a VCBF.
Adaptive security remains unachievable if we consider standard entropy mea-
sures: This is because Information Theory studies the average information in
objects, i.e., compression/precomputation strategies are fixed before the object
(i.e., polynomial) is revealed/sampled. Hence, Kolmogorov complexity remains
a fundamental tool in order to deal with space-based adaptive security and, in
turn, to prove the security of our polynomial-based VCBF.

1.2 Applications of VCBF

Since VCBF can be seen as a space-analog of VDF, replacing minimum sequen-
tial steps with a minimum number of bits retrieved from memory, we believe
they can find applications in various settings where memory usage needs to be
enforced. In this direction, we describe how VCBF can be used as an energy-
consumption function to achieve fairness among ASIC and CPU participants.
We then briefly discuss other promising VCBF applications. We emphasize that
the objective of this work is to lay the foundation for VCBFs, providing an initial
study about publicly verifiable asymmetric memory/space hardness in the stan-
dard model. Naturally, depending on the application, ad-hoc properties and/or
slightly different flavors of VCBF may be required, opening interesting directions
for subsequent works.

5 This can also be seen by observing that the Rényi family of entropies is equivalent
to Shannon entropy when considering uniform distributions (as considered in this
work, e.g., polynomial’s coefficients are sampled at random).
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Energy-Consumption Function. Juels and Brainard [37] proposed client-
puzzles as a solution to mitigate denial of service attacks (the concept of cryp-
tographic puzzles can be traced back to Merkle’s key exchange [43] and Dwork
and Naor’s pricing function [27]). The general idea of such puzzles is to associate
a cost to each resource allocation request by requiring the client to complete a
task before the server performs any expensive operation, thus making large-scale
attacks infeasible. Classic client-puzzles [8,20,22,37,57] will force adversaries to
consume certain CPU cycles as the cost for attacks. However, state-of-the-art
hash engines [14,54] could be 200, 000× faster and 40, 000× more energy-efficient
than a state-of-art multi-core CPU. Hence, denial-of-service attacks may still
be feasible for ASIC-equipped adversaries, even when such client puzzles are
deployed as counter-mechanisms.

Motivated by this, we propose to replace CPU cycles with alternative
resources, i.e., energy consumption using a VCBF. Classic ASIC-resistant meth-
ods follow the memory-hard function approach, i.e., ensuring that solving the
puzzle “costs” much memory. In this manner, the cost of manufacturing an
ASIC for puzzle solving would increase proportionally to the chip area devoted
to memory. However, as argued in [54], memory hardness only partially solves the
problem since it does not address the energy aspect of ASIC advantage. Indeed,
energy consumption can be more important than the one-shot ASIC manufac-
turing cost since the corresponding cost (due to electricity consumption) keeps
accumulating with time. Hence, a function with a strict lower bound on energy
consumption, due to off-chip memory accesses enforced via VCBF, could fill in
a critical but often overlooked gap in ASIC resistance.

Our VCBF can be used as an energy-consumption function in the following
protocol between a server S and a client C:

– C contacts server S, requesting permission to use some service such as estab-
lishing TLS connection [24] or accepting an email [27].

– S returns a fresh challenge x to the client C.
– C evaluates VCBF f on x, and returns the output and proof π to S.
– The server S verifies the correctness of f(x). If the verification succeeds, it

allows C to use the service.

Jumping ahead, from Theorem 7, we can easily find a set of parameters so that
an adversary needs to invest a sufficiently large amount of energy in computing
the function. Observe that the client is required to compute the VCBF f on a
(honest) challenge x chosen by the server. Another option is to allow the client
to choose multiple challenges on its own as is usually done in client-puzzles. In
this case, it is fundamental that f can not be amortized, i.e., the puzzle’s total
energy-cost increases proportionally to the number of parallel evaluations (on
different challenges) of f . We stress that this work does not study amortization
but this is not an inherent limitation of VCBF as a primitive. Non-amortizable
VCBFs can be studied in future works.

The above protocol can be extended to blockchain systems that support
smart contracts. For example, a client C may be required to evaluate the VCBF
f on input x = H(s, t) in order to trigger the execution of a smart contract S.
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Here, inside the hash function H, we place s which is the current state of the
smart contract and t a counter used to randomize the challenge x = H(s, t) (e.g.,
t is incremented after each invocation of the contract or after a block is mined).6

In this way, an adversary is desisted from monopolizing the service offered by
the smart contract S for specific malicious purposes. For instance, if the smart
contract runs a decentralized auction system, the adversary will not be able to
produce spamming bids to delay the acceptance of valid bids from competitors.
We stress that efficient public verification is essential in blockchain systems since
verifiers, that check the correctness of executions, have limited resources.

Real-Time Services (and VCBF vs. VDF). Although VCBF and VDF are
both efficiently verifiable, there are applications in which VDFs can not be used,
whereas VCBFs can. Consider a server S that offers a real-time service in which
it is a requirement to receive requests within a precise time frame (e.g., within
1 minute). Clearly, using a VDF to block denial of service attacks is not an
option since the time required to evaluate the VDF will delay all users’ requests
and affect the quality of the real-time service. A concrete example is an auction
service: Bids must be received before the end of the auction or within a given
time frame. Hence, VCBFs offer a unique solution in scenarios in which creating
a delay is not acceptable.

The Filecoin Network. Protocol Labs is working on Filecoin [51], a
blockchain-based decentralized storage system that has gathered much visibil-
ity in the last few years (it raised over $250 million through an ICO in 2017).
In Filecoin, miners earn coins by offering their storage to clients interested in
storing and replicating files. The mining power in Filecoin is proportional to the
active storage offered by a miner. Thanks to its public and capacity efficient
verification, a VCBF can play an important role in improving proof of useful
space (a fundamental primitive in the Filecoin protocol), i.e., a primitive that
allows miners to prove that they are using a significant amount of space to store
(multiple) files. In particular, Filecoin is interested in designing a proof of useful
space in the cost model [44]. However, a common problem of proof of useful space
constructions (e.g., [33]) is the possibility of trading space for computation: An
evaluator may erase some data and reconstruct it on the fly when needed. A
VCBF can tremendously improve proof of useful space by enforcing rationality
during the computation when working in the cost model (e.g., by replacing the
RO with a VCBF in graph-labeling based constructions). For example, the min-
imum capacity of VCBFs may increase the costs (e.g., energy consumption) of
regeneration of the erased data. This encourages evaluators to store the data in
its entirety. Also, the VCBF public verification does not introduce any additional
cost to verifiers with minimal resources in terms of space and energy.

6 The challenge x = H(s, t) has this format since smart contracts cannot generate
secret randomness to sample a random challenge.
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2 Preliminaries

Notation. We assume the reader to be familiar with standard cryptographic
notation.

2.1 Publicly Verifiable Computation for Polynomial Evaluation

A publicly verifiable computation scheme (VC) for polynomial evaluation allows
a client to outsource the computation of a polynomial f to an untrusted server.
We are interested in VC schemes that are both publicly delegatable and publicly
verifiable. The former allows any querier to submit input to the server, while
the latter allows any verifier to check the computation’s correctness. Formally,
a VC scheme for a family of polynomials F with input space X is composed of
the following algorithms:

Setup(1λ, f): Upon input the security parameter 1λ and a polynomial f ∈ F ,
the randomized setup algorithm returns the evaluation key ekf and the ver-
ification key vkf for the polynomial f .

ProbGen(vkf , x): Upon input the verification key vkf for a polynomial f ∈ F
and an input x ∈ X , the deterministic problem generation algorithm outputs
an encoding σx and the verification key vkx for the input x.

Compute(ekf , σx): Upon input the evaluation key ekf for a polynomial f ∈ F
and an encoding σx for input x ∈ X , the deterministic computation algo-
rithm returns a value y and a proof πy.7

Verify(vkx, y, πy): Upon input the verification key vkx for an input x ∈ X , a
value y ∈ Y, and a proof πy, the deterministic verification algorithm returns
a decisional bit b.

Correctness of a publicly VC scheme captures the fact that an honest execution
of the computation to evaluate a polynomial f ∈ F on input x ∈ X produces
the correct output y = f(x) along with a proof πy that correctly verifies. As for
security, a malicious evaluator cannot convince an honest verifier that y∗ �= f(x∗)
is the correct evaluation of f(x∗) on an arbitrary input x∗ ∈ X (soundness). For
the formal definitions, we refer the reader to [30].

In this work, we are interested in single-variable polynomials f(X) ∈ Fp[x] of
degree d of the form f(X) =

∑d
i=0 ai · xi. An example of such a VC scheme has

been proposed by Elkhiyaoui et al. [30]. It uses an asymmetric bilinear pairing
e : G1 × G2 → GT where G1,G2, and GT are groups of prime order p, and its
security follows from the (d/2)-Strong Diffie-Hellman assumption ((d/2)-SDH).

VC schemes allow verifiers to check the computation’s correctness more effi-
ciently than the work required to evaluate the polynomial honestly. By leverag-
ing the (d/2)-SDH assumption, the publicly VC scheme proposed in [30] yields
a constant time O(1) verification. This gives to our VCBF an efficient capacity
verification when using the VC scheme of Elkhiyaoui et al. [30] (see Sect. 5.1).
7 We explicitly detached y from its proof πy. Several works define the output of the

computation algorithm Compute as a singleton σy (the encoding of the output y)
defined as σy = (y, πy).
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2.2 Kolmogorov Complexity

The Kolmogorov complexity [40] aims to measure the complexity of objects in
terms of the minimum amount of bits required to represent them. We say that
(T, α) is a (possibly inefficient) description of a string x ∈ {0, 1}∗ (in terms of
algorithmic complexity) if T(α) = x. We can look at T as a decoding algorithm
and α ∈ {0, 1}∗ as an encoding of x. The minimum amount of bits needed to
represent a fixed bit string x is measured by the Kolmogorov complexity CT(x).
In more detail, the Kolmogorov complexity CT(x) of a bit string x ∈ {0, 1}∗ with
respect to a deterministic Turing machine T (called reference Turing machine)
is defined as CT(x) = min

α∈{0,1}∗
{|α| : T(α) = x}. Similarly, the conditional Kol-

mogorov complexity measures the complexity of x given some auxiliary infor-
mation y ∈ {0, 1}∗, i.e., CT(x|y) = min

α∈{0,1}∗
{|α| : T(〈α, y〉) = x} where 〈a, b〉

denotes the self-delimiting coding of strings a and b.8 The above definitions of
Kolmogorov complexity are known as plain Kolmogorov complexity. The name
comes from the fact that no constraints are put on the input α of the Turing
machine T. Another type of complexity, called prefix-free Kolmogorov complex-
ity [40, Sect. 3], focuses only on prefix-free programs, i.e., Turing machines that
only take in input strings encoded in a prefix-free fashion. In this work, we focus
on the plain version, and we refer the reader to [40, Sect. 3] for a more detailed
discussion about the prefix-free version.

The definition of plain Kolmogorov complexity can be made independent
from the reference Turing machine. Indeed, Turing machines are enumerable.
The code of any Turing machine T can be interpreted as a binary string i.9

Therefore, we can define a universal Turing machine U as U(i, α) = Ti(α). In
other words, U simulates all possible computations that Turing machines perform
by taking in input α ∈ {0, 1}∗ and the code i of the i-th Turing machine Ti and
executes the computation Ti(α). Based on this observation, it has been proved
that the Kolmogorov complexity with respect to different Turing machines is
invariant only up to a constant that depends on the reference Turing machine.

Theorem 1 (Invariance Theorem [40, Theorem 2.1.1]). There is a uni-
versal deterministic Turing machine U such that for any deterministic Turing
machine T, there is a constant cT that only depends on T, such that for any
string x, y ∈ {0, 1}∗ we have CU(x) ≤ CT(x) + cT.10

Since the choice of the reference Turing machine does not significantly change
the Kolmogorov complexity of any string, we express the Kolmogorov complexity
using the universal Turing machine U as a reference machine.

Definition 1. The Kolmogorov complexity of a string x is defined as C(x) def=
CU(x) and C(x|y) def= CU(x|y) for the universal Turing machine U.
8 As we will discuss later, Kolmogorov Complexity considers constant-size Turing

machines. This requires the use of a self-delimiting code to encode multiple inputs.
9 Note that not all binary strings are valid Turing machines.

10 The constant cT corresponds to the self-delimiting description of the Turing
machine T.
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It is fundamental to restrict the definition of Kolmogorov complexity to constant-
size Turing machines in order to rule out any ambiguity. Indeed, as mentioned
in [40, Sect. 2.1.4], by removing the size constraint of T, it is possible to assign
low complexity to any string by simply selecting a reference Turing machine with
large complexity (i.e., hardcode the string into the code of the Turing machine).
Still, the size constraint does not reduce the number of languages recognizable by
a Turing machine. For example, it was shown the existence of a universal Turing
machine with 15 states, 2 symbols, and 30 state-symbol product (transition
function) [47,60], with a polynomial slowdown of O(t6).

String Incompressibility. A crucial notion derived from the Kolmogorov com-
plexity is the incompressibility of a string [40, Definition 2.2.1] with respect to
unbounded deterministic Turing machines.

Definition 2 (Deterministic c-incompressibility [40, Definition 2.2.1]).
A string x ∈ {0, 1}∗ is c-DET-incompressible if C(x) ≥ |x| − c.

We will refer to the above definition as deterministic c-incompressibility (c-DET-
incompressibility in short) since it covers deterministic Turing machines, i.e., the
reference Turing machine of the Kolmogorov complexity is deterministic.

The following theorem provides a lower-bound on the number of c-DET-
incompressible elements in a given set X .

Theorem 2 ([40, Theorem 2.2.1]). Let c ≥ 0 be a positive constant. For each
y ∈ {0, 1}∗, every finite set X of cardinality m has at least m(1 − 2−c) + 1
elements x ∈ X such that C(x|y) ≥ log(m) − c.

By leveraging Theorem 2, we can easily calculate the probability of sampling a
c-DET-incompressible string from X . The proof is deferred to full version.

Theorem 3. Let X be a finite set of cardinality m, then the following probability
holds: Pr[x is c-DET-incompressible | x ←$ X ] ≥ 1 − 2−c + 1/m.

String Incompressibility in the Randomized Setting. In cryptography, we
deal with randomized adversaries represented by randomized Turing machines.
However, the c-DET-incompressibility only covers deterministic Turing machines
since the reference Turing machine (used to measure the Kolmogorov complex-
ity) is deterministic. Accordingly, we extend the notion of incompressibility to
randomized Turing machines.

Definition 3 (Randomized (c, �rnd)-incompressibility). A string x ∈
{0, 1}∗ is (c, �rnd)-RND-incompressible if for all constant-size unbounded ran-
domized Turing machine T with randomness space {0, 1}�rnd , for all r ∈
{0, 1}�rnd , and for all α ∈ {0, 1}|x|−c−1, we have Pr[T(α; r) = x] = 0.

Naturally, there is an obvious connection between the two definitions of incom-
pressibility. Indeed, the randomness of a randomized Turing machine can be seen
as part of the input of a deterministic one. The following Theorem 4 reports the
formal result, whose proof is deferred to full version.
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Theorem 4. Let x ∈ {0, 1}∗ be a string. If x is c-DET-incompressible (Def-
inition 2) then x is (c′, �rnd)-RND-incompressibile (Definition 3) where c′ =
c + �rnd + 2 log(�rnd) + 1 + O(1).

The factor �rnd + 2 log(�rnd) + 1 is due to the need of using a self-delimiting
δ-encoding (Elias delta coding) to encode the randomness r ∈ {0, 1}�rnd . Also,
the relation between the two incompressibility definitions is up to a constant
O(1) because of the invariance theorem (Theorem 1), i.e., any equality holds up
to a constant factor.

3 Kolmogorov-Bound for Polynomial Evaluation

At each evaluation, a VCBF scheme forces the evaluator to read at least m dis-
tinct bits from its main memory. To achieve this functionality, our construction
leverages a single variable polynomial f(X) =

∑d
i=0 ai · xi ∈ Fp[x] of degree d.

Intuitively, on receiving a challenge x ∈ {0, 1}�in , an honest evaluator needs to
read the coefficients (a0, . . . , ad) ∈ F

d+1
p that determine the polynomial f(X)

in order to compute y = f(x). In this case, we obtain the desired functional-
ity by setting |(a0, . . . , ad)| ≥ m. However, a malicious evaluator may find an
alternative strategy to compute y = f(x) and read fewer than m bits. In this
section, we prove the lower bound on the number of bits read during the poly-
nomial evaluation by leveraging the Kolmogorov complexity. Next, we provide
some examples of strategies a malicious evaluator could adopt:

1. Compress the coefficients (a0, . . . , ad) into a smaller string α. In this way, the
evaluator just needs to read α, decompress it into (a0, . . . , ad), and evaluate
f(X) on the desired point x.

2. Precompute a dictionary T
def= (f(x0), . . . , f(xn)) composed of the evaluation

of f(X) on points (x0, . . . , xn). By accessing T , the malicious evaluator can
simply read and return yi = f(xi) if the challenge xi is one of the precomputed
points. In this case, the malicious evaluator reads only |yi| ≤ |p| < m.

3. Instead of storing (a0, . . . , ad), the evaluator may choose to store d + 1 arbi-
trary points (x0, . . . , xd), the corresponding evaluations (f(x0), . . . , f(xd)),
and the prime p. These pieces of information are enough to recover a via
polynomial interpolation. As a result, if the expression of (f(x0), . . . , f(xd)),
the points (x0, . . . , xd) and the prime p could be effectively compressed, the
evaluator will read fewer bits than expected when evaluating the polynomial.

To estimate the bits that an adversary/algorithm needs to read to evaluate f(X)
correctly, we built a bridge between the Kolmogorov complexity and polynomial
evaluation. Our approach is based on two main observations.

First, any string a (of appropriate size) can be encoded into f(X) =
∑d

i=0 ai ·
xi by setting its coefficients to different sub-portions of a. Let p be a prime of
size λ+1 bits. We can interpret a string a ∈ {0, 1}(d+1)λ as a = a0|| . . . ||ad where
ai ∈ Fp (i.e., |ai| ≤ λ < |p|) and use (a0, . . . , ad) as the coefficients of f(X).

Second, if algorithm T is able to compute (f(x0), . . . , f(xd)) taking in input
a string α and the challenge d points (x0, . . . , xd), then (T, 〈α, x0, . . . , xd〉) is
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a valid description of (f(x0), . . . , f(xd)). As explained in Item 3, the tuples
(f(x0), . . . , f(xd)), (x0, . . . , xd), and the prime p, are enough to reconstruct
(a0, . . . , ad) (i.e., the prime’s size λ + 1 guarantees the encoding is injective).

By combining the above two observations, we can easily lower bound the size
of α with the Kolmogorov complexity C(a) of a. In more detail, consider a Tur-
ing machine T′ that first executes T(α, x0, . . . , xd) to compute f(x0), . . . , f(xd),
and then retrieves and return a via polynomial interpolation. This implies that
(T′, 〈p, α, x0, . . . , xd〉) is a description of a. As a consequence, the size of α (the
string that T would read to compute (f(x0), . . . , f(xd))) cannot be too small
and must be related to the complexity C(a) of a. Below, we provide the formal
result whose proof is included in the full version of this work.

Theorem 5 (Kolmogorov-bound for (adaptive) Polynomial Evalua-
tion). For any λ ∈ N, let a ∈ {0, 1}(d+1)λ be a binary string and p a prime
of size λ + 1, respectively. Fix the polynomial f(X) =

∑d
i=0 ai · xi ∈ Fp[x]

of degree d with input space {0, 1}�in where a = a0|| . . . ||ad and ai ∈ Fp

for i ∈ [d]. If a is (c′, �rnd)-RND-incompressible (Definition 3), then for
every constant-size randomized unbounded Turing machine T with randomness
space {0, 1}�rnd , every α ∈ {0, 1}m, every r ∈ {0, 1}�rnd , and every tuple
(x0, . . . , xd) such that ∀

i�=j
i, j ∈ {0, . . . , d}, xi �= xj and xi ∈ {0, 1}�in , we have

Pr[(f(x0), . . . , f(xd)) = T(α, x0, . . . , xd; r)] = 0 where m = (d + 1)(λ − �in −
2 log(�in) − 1) − c′ − λ − 2 log((d + 1)λ − c′) − 2 log(λ + 1) − 4.

An alternative way to interpret Theorem 5 is that any possible description (T, α)
of f(X) is bigger than the parameter m (defined in Theorem 5). Also, note
that Theorem 5 presents a loss factor that is proportional to (d + 1)�in. This
because each of the d + 1 points may be correlated with the coefficients of f(X)
(i.e., each point xi is equal to the first �in bits of ai). The correlation may reduce
the number of bits that must be read to compute the evaluations.

Lastly, we stress that Kolmogorov complexity permits us to prove Theorem 5
under the universal quantification of any d + 1 evaluation points and any adver-
sarial strategy (i.e., any memory α and evaluation strategy T) selected after the
polynomial. This is essential in the adaptive space-based setting (Sect. 1.1) in
which we want to estimate the size of information generated/read w.r.t. an arbi-
trary precomputation of the polynomial. Indeed, the precomputation adopted by
an adversary may depend on both the polynomial and an arbitrary distribution
of the evaluation points (e.g., dictionary attack). This aspect is fundamental to
prove the adaptive security of our VCBF (see Sect. 4 and Sect. 5.1).

4 Definition of Verifiable Capacity-Bound Functions

A VCBF forces an evaluator to read at least m distinct bits from its main
memory. Moreover, a VCBF does not permit to trade time for capacity, i.e., an
evaluator is forced to read m distinct bits independently from its computational
capabilities. As explained in [53], the number of off-chip memory accesses impacts
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the energy consumption of the machine. If the cache’s size is significantly smaller
than m, evaluating the function requires significant resources. However, on the
(honest) receiver’s side, the validity of the computation can be verified efficiently
in terms of capacity.

Formally, a VCBF scheme Π with input space {0, 1}�in is composed of the
following polynomial-time algorithms:

Setup(1λ, 1k): Upon input the security parameter 1λ and the capacity param-
eter 1k (the capacity parameter 1k regulates the actual capacity cost, i.e.,
the number of bits read by the evaluator), the randomized setup algorithm
returns the evaluation key ek and the verification key vk.

Eval(ek, x): Upon input the evaluation key ek and an input x ∈ {0, 1}�in , the
deterministic evaluation algorithm returns the output y and a proof π. In the
paper, we use the notation y = Eval(ek, x) (or simply Eval(ek, x)) to denote
solely the output y.

Verify(vk, x, y, π): Upon input the verification key vk, an input x ∈ {0, 1}�in , an
output y, and a proof π, the deterministic verification algorithm returns a
decisional bit b.

Intuitively, a VCBF scheme is correct if the output of an honest execution of
the evaluation algorithm is accepted by the verification algorithm. In addition,
a VCBF scheme should satisfy the following three basic properties: minimum
capacity, soundness and capacity efficient verification.

Adaptive Minimum Capacity. The name captures the scheme’s lower-bound
on the number of distinct bits m that must be fetched from the main memory to
evaluate the function. In more detail, on input a random challenge x ←$ {0, 1}�in ,
the adversary A is asked to return the correct output y = Eval(ek, x) while
reading at most m bits from its main memory. We assume the main memory of
A is bounded since there is a strict relationship between the memory available
and A’s advantage ε. Indeed, as discussed in Sect. 3, a viable adversarial strategy
is to precompute a relatively large dictionary τ = (Eval(ek, x1), . . . ,Eval(ek, xn))
(stored in the main memory) and return Eval(ek, x), if x has been precomputed
and included into τ . A larger memory would allow the adversary to store more
precomputed values Eval(ek, xi), thus increasing the probability of success.

More formally, let τ ∈ {0, 1}n and x ∈ {0, 1}�in be the binary string repre-
senting the memory of the adversary A and a challenge, respectively. We denote
with IA(τ,x;r) = {i1, i2, . . . , in′}n′≤n the ordered set of n′ distinct indexes read
by A during the computation of the output y = A(τ, x; r) for the corresponding
challenge x while having access to memory τ and randomness r ∈ {0, 1}�rnd .
Intuitively, on input the challenge x and randomness r, the adversary A fetches
the binary string τx,r = bi1 || . . . ||bin′ from τ (where bi represents the i-th bit of τ
and IA(τ,x;r) = {i1, i2, . . . , in′}) and then compute the output y using the knowl-
edge of τx,r, x, and r.11 A VCBF scheme is secure in the adaptive setting if for
11 Observe that τx,r can be fetched from τ in an adaptive fashion according to the

challenge x and randomness r.
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any unbounded adversary sampled after VCBF’s instiantiation (i.e., execution of
Setup) it is infeasible to compute the correct output Eval(ek, x) �= y = A(τ, x; r)
when reading |IA(τ,x;r)| = m bits.12

Definition 4 ((Adaptive) Minimum Capacity of VCBF). Fix the keys
(ek, vk) ←$ Setup(1λ, 1k). A VCBF scheme Π with input space {0, 1}�in satisfies
(ε,m, �rnd, n)-min-capacity with respect to keys (ek, vk) if for all constant-size
unbounded randomized adversaries A with randomness space {0, 1}�rnd and for
all τ ∈ {0, 1}n, we have:

Pr[Eval(ek, x) = y ∧ |IA(τ,x;r)| = m
∣
∣
∣x ←$ {0, 1}�in , y = A(τ, x; r) ] ≤ ε, (1)

where r ←$ {0, 1}�rnd .

Informally, Definition 4 states that if a VCBF scheme Π satisfies (ε,m, �rnd, n)-
min-capacity then the only way for an (exponential time) adversary A to increase
its advantage ε is to either read more than m distinct bits or have access to a
memory larger than n bits (e.g., by storing in the memory τ ∈ {0, 1}n more pre-
computed values). This guarantees the impossibility of trading time for capacity.

Note that the evaluator must return the correct output y = Eval(ek, x) and
not a verifying proof π. The infeasibility of computing a verifying proof for a
false output is defined by the soundness property (see next Definition 6). The
choice of defining these two properties independently allows us to define them
with respect to different settings, i.e., unbounded vs. computational adversaries.
As mentioned above, defining adaptive minimum capacity in the unbounded
setting is necessary to properly capture the absence of time/bits read trade-offs.
See Remark 2 for more details.

Moreover, the definition captures the adaptive space-based setting described
in Sect. 1.1. This is because the quantifiers of the security definition states that
the VCBF remains secure for any memory τ and adversary A both selected after
the VCBF’s instantiation (i.e., Setup algorithm). Intuitively, each τ (resp. A)
represents an arbitrary precomputed memory (resp. arbitrary evaluation/reading
strategy) that can depend on ek and vk (e.g., polynomial’s coefficients).
Relation between the memory size n and the advantage ε. Definition 4 is optimal
in the sense that it does not put any constraint on the indexes IA(τ,x;r) read
by the adversary A. This means that A can arbitrarily access its memory. For
example, it may perform multiple random accesses to the memory τ , i.e., perform
one or more conditional jumps into specific memory indexes to read different
portions of the memory). Hence, one (or more) couple of progressive indexes
{ij , ij+i} ⊂ IA(τ,x;r) may be not consecutive (i.e., |ij − ij+1| > 1).

The optimality of Definition 4 appears to be the primary (apparently insur-
mountable) obstacle when trying to relate the memory size n and the advan-
tage ε. To retain an advantage ε, an adversary A may choose to store (in the
12 Without loss of generality, we assume the adversary reads exactly m bits since the

higher the number of bits read, the higher the probability to compute the correct
output y = Eval(ek, x).
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memory) a precomputed data structure which contains (possibly partial) pre-
computed values, e.g., some evaluations y = Eval(ek, xi) of a subset of inputs
X ⊂ {0, 1}�in (precomputed dictionary). However, the estimation of the mem-
ory size n (required to store the data structure) highly depends on what type of
precomputation is performed (e.g., the entropy of the precomputed values, the
algorithm used, etc.) and on the type of encoding and memory access strategy
used by A when fetching the data from memory τ to answer to an incoming chal-
lenge x. Unfortunately, this turned out to be a primary challenge when having
block-box access to A and working in the standard setting (i.e., no oracles, no
idealized functionalities, no ROM).

As a foundation paper of VCBF, we initiate a fine-grained study regarding
the level of minimum capacity that can be achieved according to specific classes
of adversaries. In particular, we provide a feasibility result showing (in the con-
crete setting) the meaningful relation between parameters ε and n (using an
information-theoretic approach) when dealing with the smaller class of adver-
saries A1-access. Such a class is composed by all the adversaries that perform
exactly one (adaptive) random access to the memory τ , i.e., on input the mem-
ory τ ∈ {0, 1}n, the challenge x ∈ {0, 1}�in , and randomness r ∈ {0, 1}n, an
adversary A ∈ A1-access adaptively jumps to an index i ∈ [n − m + 1] (mem-
ory location) and reads m consecutive indexes. Formally, when dealing with
A ∈ A1-access, the indexes IA(τ,x;r) = {i1, . . . , im} read by A are consecutive, i.e.,
ij + 1 = ij+1 for j ∈ [m − 1].13 Observe that in A1-access we can identify sev-
eral adversarial strategies used mainly in practice, e.g., precomputed dictionary
attacks or any rainbow table technique that leverages a single adaptive random
access.

As we will see during the security analysis of our construction (Sect. 5.1),
by restricting the adversaries to the ones of the class A1-access, we can use a
counting argument to concretely estimate the memory size n that an adversary
A ∈ A1-access requires in order to retain a fixed advantage ε. For completeness,
we also include the results regarding the class Av-access for 1 ≤ v ≤ m, i.e., adver-
saries that perform exactly v (adaptive) random access to the memory (observe
that Definition 4 coincides with Definition 5 when A =

⋃m
i=1 Ai-access). However,

due to the limited power of counting arguments, the memory size estimation n
presents an exponential loss proportional to the number v of random accesses
that A ∈ Av-access performs. In any case, this is enough to show that there exists
a VCBF that satisfies (negl, O((d+1)λ), o((d+1)λ), ω(λs))-min-capacity (in the
asymptotic setting) with respect to the class of adversaries AO(1)-access for every
positive constant s. Regarding Aω(1)-access, the minimum capacity of our con-
struction remains unclear. What we know is that the evaluation of a polynomial
can not satisfy minimum capacity for ε ∈ negl and m ∈ ω(log(d)s1λs2) (for some
positive s1, s2 ∈ O(1)) when n is close to or greater than d1+δλ1+o(1) (for a
constant δ > 0) because of the efficient data structure for polynomial evaluation

13 Without loss of generality, we assume that reading the first m bits of τ requires the
adversary to perform a random access to the first index of τ .
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of Kedlaya and Umans [39] (see Sect. 5.1). We now provide the formal security
definition of minimum capacity with respect to a specific class of adversaries A.

Definition 5 (A-class (adaptive) minimum capacity of VCBF). A VCBF
scheme Π with input space {0, 1}�in satisfies (ε,m, �rnd, n)-min-capacity with
respect to the class of adversaries A if Π satisfies (ε,m, �rnd, n)-min-capacity
of Definition 4 where A is sampled from A.

Remark 1. The Definitions 4 and 5 give robust guarantees in terms of capacity
(according to the corresponding class of adversaries). For example, they consider
unbounded adversaries and the minimum capacity must hold for every possible
adversary A and memory τ after the instantiation of the scheme (execution of
the setup algorithm). This corresponds to the adaptive space-based security set-
ting described in Sect. 1.1. Also, there is a more fundamental aspect to consider
regarding Definitions 4 and 5: They do not rely on any heuristic assumptions,
such as the Random Oracle (RO) or the Ideal Cipher [21], to measure the num-
ber of read bits. In fact, previous definitions of bandwidth-hard or memory-hard
functions [2–6,15,19,21,54] do not directly measure the bits read by the eval-
uator. Instead, those models only calculate the number of the random oracle
queries for each step. Therefore, the gap between RO queries and the actual
number of bits read by the evaluator is artificially ignored in previous models.
Finally, we stress that both RO and Ideal Cipher definitions neglect (and do not
take into account) the adversary’s strategy in organizing and accessing specific
portions of the memory: A fundamental aspect that needs to be considered when
proving specific concrete memory bounds (in the standard model) for VCBFs.

Soundness. Soundness captures the infeasibility of convincing the verifier that
y∗ �= Eval(ek, x) is the correct output of the computation. In more detail, it is
infeasible for a malicious evaluator to compute a triple (x∗, y∗, π∗) that verifies
successfully, but y∗ is not the correct output of the computation. Soundness is
also fundamental to enforce the (ε,m, �rnd, n)-min-capacity (Definitions 4 and 5)
of a VCBF scheme. For example, if soundness does not hold, a malicious evalua-
tor can deceive the verifier by returning a proof π∗ and an output y∗ �= Eval(ek, x)
such that Verify(vk, x, y∗, π∗) = 1. In this case, the energy consumption is not
guaranteed since the value y∗ is incorrect and may have been computed without
fetching any bit from the main memory.

Definition 6 (Soundness of VCBF). A VCBF scheme Π with input space
{0, 1}�in is (ε)-sound if for all PPT adversary A we have:

Pr[
Verify(vk, x, y, π) = 1 and

Eval(ek, x) �= y

∣
∣
∣
∣
(ek, vk) ←$ Setup(1λ, 1k)
(x, y, π) ←$ A(1λ, ek, vk) ] ≤ ε.

Remark 2 (On the combination of minimum capacity and soundness). Formal-
izing adaptive minimum capacity (Definitions 4 and 5) and soundness (Defini-
tion 6) separately allows us to define these notions with respect to two distinct
settings, i.e., unbounded adversaries vs. computational bounded adversaries. In
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turn, minimum capacity with respect to unbounded adversaries is fundamen-
tal to capturing the (concrete) strict lower bound on the number of distinct
bits guaranteed by a VCBF. This is because the unbounded setting guaran-
tees that the lower bound must be satisfied independently of the running time
of the adversary, i.e., trading time for bits read is infeasible. Observe that the
computational bounded version of minimum capacity does not guarantee the
absence of a time/bits read trade-off. For example, a VCBF presenting an expo-
nential trade-off (e.g., a PPT adversary can choose not to read a few bits at the
cost of doubling its running time) may satisfy, asymptotically speaking, com-
putational minimum capacity. However, the concrete lower bound would not be
strict since the adversary can play with the gap allowed by the trade-off (this
is not allowed when considering minimum capacity w.r.t unbounded adversaries
as in our results). This is problematic when the VCBF is instantiated in prac-
tice since it makes the capacity bound less clear. For this reason, we chose to
formalize these notions separately instead of being combined into a single one
with respect to computational bounded adversaries. Naturally, since we consider
computational soundness, the final security of the VCBF holds only against
computationally bounded adversaries (unless we drop the VCBF’s efficient ver-
ification). Still, we emphasize once again that unbounded minimum capacity
is fundamental since it guarantees the absence of a trade-off with which the
(computationally bounded) adversary could play with. Lastly, it may seem that
another natural approach is to combine minimum capacity and soundness into a
single definition that considers unbounded adversaries. Unfortunately, this is not
possible since a VCBF that has a capacity efficient verification (see next Defini-
tion 7) cannot satisfy, at the same time, both minimum capacity and soundness
with respect to unbounded adversaries (soundness with respect to unbounded
adversaries is also known as perfect soundness, i.e., it does not exist a valid proof
for a false statement/output). This is because an exponential adversary always
exists that brute-forces all pairs of proofs and outputs until it finds the one
that verifies. By leveraging perfect soundness, the adversary is guaranteed that
the corresponding output is the correct VCBF’s evaluation. This attack only
requires reading the VCBF’s verification key vk, whose size must be sublinear in
the VCBF’s minimum capacity m. This is required to satisfy capacity efficient
verification (see next Definition 7).

Capacity Efficient Verification. The resource considered by VCBFs is the
capacity since an evaluator is forced to read m distinct bits from its main mem-
ory. The verifier, on the other hand, should not have the same workload. For
this reason, we require a VCBF scheme Π to be efficiently verifiable:

Definition 7 (Capacity Efficient Verification of VCBF). If Π satisfies
(ε,m, �rnd, n)-min-capacity (either Definition 4 or Definition 5) then an honest
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execution of the verification algorithm requires at most fetching o(m) bits from
the memory (i.e., sublinear in m).14

In particular, in this work, the capacity parameter is of the form m ∈ O((d+1)λ)
where d is the degree of a polynomial f(X) =

∑d
i=0 ai · xi ∈ Fp[x] and λ + 1

is the size of the prime p. As we will see, to reach high capacities (such as GB
or even TB), for a fixed λ we will have to set d ∈ O(λc) for a constant c ≥ 1.
Nevertheless, the verification will be independent of d by leveraging the publicly
VC scheme of Elkhiyaoui et al. [30]. Hence, we will obtain at least O(λc+1)
of min-capacity for the evaluation, and at most O(λ) of min-capacity for the
verification (see Sect. 5.1).15

On Energy Consumption. A motivation for VCBFs is ASIC resistance. State-
of-the-art hash engines [14,54] could be 200, 000× faster and 40, 000× more
energy efficient than multi-core CPUs. However, the energy consumption for off-
chip memory accesses is similar for CPUs and ASICs [54]. If we assume the ASIC
can hardcode only s bits, min-capacity guarantees that the ASIC will transfer at
least m − s bits from the external memory during the evaluation. If the energy
cost is u nJ per bit for external memory accesses, the evaluation of the VCBF
costs at least u(m − s) nJ.

5 VCBF from VC for Polynomial Evaluation

In this section we show how to build a VCBF from VC for polynomial evaluation.

Construction 1. Let Fλ,d,p = {fa(X) =
∑d

i=0 ai · xi mod p}a∈{0,1}(d+1)λ be
an ensemble of polynomials where a = a0|| . . . ||ad, λ ∈ N, d ∈ N, and p is a
prime of λ + 1 bits. Let VC = (SetupVC,ProbGenVC,ComputeVC,VerifyVC) be a
publicly VC scheme for the class Fλ,d,p. We build a VCBF scheme with input
space {0, 1}�in in the following way:

Setup(1λ, 1k): Without loss of generality, we assume k = (d + 1)λ. On input
the security parameter 1λ and the capacity parameter 1k, the setup algorithm
samples a0|| . . . ||ad = a ←$ {0, 1}(d+1)λ where |ai| = λ for i ∈ {0, . . . , d}.
Then, it outputs the evaluation key ek = (ekfa

, vkfa
) and the verification key

vk = vkfa
where (ekfa

, vkfa
) ←$ SetupVC(1λ, fa) and fa ∈ Fλ,d,p.

Eval(ek, x): On input the evaluation key ek = (ekfa
, vkfa

) and an input x ∈
{0, 1}�in , the evaluation algorithm returns (y, π) = ComputeVC(ekfa

, σx)
where (σx, vkx) = ProbGenVC(vkfa

, x).

14 Observe that |vk| + |x| + |y| + |π| ∈ o(m) (i.e., vk, π, y, x are “succinct”) is necessary
to obtain a capacity-efficient verification of o(m). This is because vk, π, y, x are part
of the verification algorithm Verify of VCBF.

15 In the verification, O(λ) is for reading a constant number of group elements of order p
of size at most λ+1. In the evaluation, O((d+1)λ) = O(λc+1) is for the d coefficients
(a0, . . . , ad) ∈ F

d+1
p of the polynomial f(X) ∈ Fp[x].
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Verify(vk, x, y, π): On input the verification key vk = vkfa
, an input x ∈ {0, 1}�in ,

an output y ∈ Y, and a proof π, the verification algorithm returns b =
VerifyVC(vkx, y, π) where (σx, vkx) = ProbGenVC(vkfa

, x).

In this scheme, honest evaluators need to read at least k = (d+1)λ bits to load
all the coefficients of the polynomial regardless of the cost of generating the proof
π. Correctness follows directly from the correctness of the underlying schemes.
For security and verification complexity, we establish the following results.

5.1 Security Analysis

The soundness is trivial. It simply follows from the (ε)-soundness of VC (see [30]
for the formal definition of soundness for VC).

Theorem 6 (Soundness). If VC is (ε)-sound, then the VCBF scheme Π of
Construction 1 with input space {0, 1}�in is (ε)-sound (Definition 6).

Next, we show the level of minimum capacity that our VCBF scheme Π of
Construction 1 satisfies with respect to the class of adversaries Av-access (Defini-
tion 5) for 1 ≤ v ≤ m. This is formalized by Corollary 7 whose proof is deferred
to full version. At high level, the proof is divided into two parts.

First, we prove that Construction 1 satisfies an alternative definition of
minimum capacity dubbed decomposed minimum capacity. This definition is
identical to Definition 4 except that the memory τ is decomposed into n dis-
tinct strings (τ1, . . . , τn) such that τi ∈ {0, 1}m for i ∈ [n] (intuitively, each
τi represents one possible string of length m that the adversary can read and
interpret from its main memory, i.e., (τ1, . . . , τn) is the decomposition of the
main memory). Then, the adversary succeeds if there exists i ∈ [n] such that
y = A(τi, x; ri) where ri ←$ {0, 1}�rnd and x ←$ {0, 1}�in . By leveraging Theo-
rem 5, for each string τi ∈ {0, 1}m, the adversary can compute at most d distinct
points x ∈ {0, 1}�in under the condition that the coefficients (a0, . . . , ad) of the
polynomial fa(X) ∈ Fλ,d,p are RND-incompressible.16

Second, we show that any VCBF that satisfies decomposed minimum capac-
ity w.r.t. n − m + 1 strings (τ1, . . . , τn−m+1) (each of length m), also satisfies
(ε,m, �rnd, n)-min-capacity (the standard definition) with respect to the class
of adversaries A1-access (Definition 5). The result follows by using a counting
argument: An adversary A ∈ A1-access with access to memory τ of length n can
read at most n − m + 1 different strings each of length m. This argument can
be generalized for each class Av-access for 1 ≤ v ≤ m. Unfortunately, due to the
limited power of counting arguments, the memory size n presents an exponential
loss proportional to v.

Theorem 7 (Av-access-class (adaptive) minimum capacity). Let v ∈
N and Π be a VCBF scheme with input space {0, 1}�in . Fix the keys
16 Note that the polynomial fa(X) is RND-incompressible with overwhelming prob-

ability since it is sampled at random. This follows by leveraging Theorems 3 and
4.
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(ek, vk) ←$ Setup(1λ, 1k). The VCBF scheme Π of Construction 1 with input
space {0, 1}�in satisfies (ε,m, �rnd, n)-min-capacity with respect to the class of
adversaries Av-access and keys (ek, vk) (Definition 5) where λ ∈ N, d ∈ N, c ∈
N, ε1 ∈ [0, 1],

m = (d + 1)(λ − �in − 2 log(�in) − 1) − c′

− λ − 2 log((d + 1)λ − c′) − 2 log(λ + 1) − 4,

c′ = c + �rnd + 2 log(�rnd) + 1 + O(1),

ε = ε1 +
d + 1
2�in

+
1
2c

− 1
2(d+1)λ

,

n =

⎧
⎪⎨

⎪⎩

m + ε1·2�in

d if v = 1

v

√
(

ε1·2�in

d + 1
)

/

(

v!
(

m−1
v−1

)v−1
)

· v if 1 < v ≤ m.

Recall that in the class of adversaries A1-access we find common adversarial strate-
gies (primarily used in practice) such as precomputed dictionary attacks (e.g.,
ordered dictionary in which the x-th evaluation f(x) is stored at the x-th off-
set) or limited devices that are hindered from performing non-constant random
accesses (e.g., for energy efficiency). Also, we stress that, if we consider memo-
ries of size n = m, our Construction 1 satisfies (ε,m, �rnd,m)-min-capacity with
respect to the optimal Definition 4 (i.e., security against adversaries that arbi-
trarly access its memory) where ε = d+1

2�in
+ 1

2c − 1
2(d+1)λ . This because τ ∈ {0, 1}m

only allows an adversary to answer to at most d points (Theorem 5).
The following asymptotic Corollary 1 shows that a secure VCBF exists (in

the standard model) with respect to the class of adversary AO(1)-access. We stress
that this must be interpreted as a purely theoretical result showing the feasibility
of VCBF since the constants hidden by the asymptotic notation are large.

Corollary 1. For any λ ∈ N and k = (d+1)λ ∈ N such that d ∈ N, there exists
a VCBF that satisfies (negl, O((d + 1)λ), o((d + 1)λ), ω(λs))-min-capacity with
respect to the class of adversaries AO(1)-access for every constant s ≥ 1.17

Verification Complexity. Corollary 1 shows that an evaluator needs to
read at least O((d + 1)λ) distinct bits from its main memory. We now ana-
lyze the verifier capacity complexity. By inspecting Construction 1, we observe
that the capacity complexity of Verify coincides with the ones of algorithms
ProbGenVC and VerifyVC of the underlying VC scheme. Therefore, we must con-
sider a concrete instantiation of the VC scheme. For this reason, we measured
the efficiency of our VCBF with respect to the VC scheme of Elkhiyaoui et

17 We stress that the memory size n does not need to be super-polynomial (in the
security parameter) in order to consider a VCBF secure. Indeed, in a scenario in
which a machine has at most n = λs ∈ poly bits of free memory (for a positive
constant s), it is enough to show that the VCBF satisfies (ε, m, �rnd, λs)-min-capacity
where ε is the target advantage.
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al. [30] that uses an asymmetric bilinear pairing e : G1 × G2 → GT in which
the (d/2)-SDH assumption holds. The execution of ProbGenVC(vkf , x) com-
putes and returns vkx = (vk0x, vk1x) = (gb0 · gx2

, hx
r1

· hr0) and σx = x, where
vkf = (gb0 , hr1 , hr0) ∈ G1 ×G2 ×G2, x ∈ Fp, and g the generator of G1 (observe
that the size of the verification key vkf is O(λ), i.e., does not depend on the
degree d of the polynomial). Moreover, VerifyVC(vkx, y, πy) verifies the correct-

ness of the computation by checking the equality e(g, hy) ?= e(vk0x, πy) · e(g, vk1x),
where vkx = (vk0x, vk1x) and h is a generator of G2. Hence, in the worst case, the
verification capacity complexity of our VCBF is O(λ) ∈ o((d + 1)λ), while the
verification time is O(1) in the number of group operations. This is because the
executions of ProbGenVC, VerifyVC, and the sizes of (vkf , x, y, πy) (that compose
the inputs of ProbGenVC and VerifyVC), are independent of the polynomial degree
d in terms of both capacity and time.

Improve the Memory Size Bound. For v ∈ ω(1), our VCBF construc-
tion needs to face the efficient data structure for polynomial evaluation of
Kedlaya and Umans [39]. In particular, they show that, for any constant
δ > 0, there exists a data structure D of size d1+δλ1+o(1) that can be com-
puted by preprocessing only the coefficients of f(X) ∈ Fp[X]. An evalua-
tor in Aω(1)-access can correctly evaluate f(x) on every x ∈ {0, 1}�in in time
polylog(d) · λ1+o(1), performing a non-constant number of random accesses and
reading at most polylog(d)λ1+o(1) · w bits from D (with w ∈ O(λ) we denote
bit size of the elements contained in D). Hence, our VCBF construction can
not achieve (ε,m, �rnd, n) for ε ∈ negl and m ∈ ω(log(d)s1λs2) (for some posi-
tive s1, s2 ∈ O(1)) when n is close to or greater than d1+δλ1+o(1). The above
observation poses the natural question of whether an asymptotic VCBF (in the
Aω(1)-access setting) that satisfies min-capacity for reasonably large m and n
super-polynomial in λ as in Corollary 1 (i.e., n asymptotically larger than the
size d1+δ ·λ1+o(1) of the data structure of Kedlaya and Umans [39]). The answer
to the important question requires a non-trivial and precise study that can be
undertake in future works.
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