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Preface

The 26th International Conference on Practice and Theory of Public-Key Cryptography
(PKC 2023) was held in Atlanta, Georgia, USA on May 7–10, 2023. It was sponsored
by the International Association for Cryptologic Research (IACR).

The conference received 183 submissions, reviewed by the Program Committee of
49 cryptography experts working with 142 external reviewers. The reviewing process
took 2.5 months and resulted in selecting 50 papers to appear in PKC 2023.

Papers were reviewed in the usual double-blind fashion. Program committee mem-
bers were limited to two submissions, and their submissions were scrutinized more
closely. The two program chairs were not allowed to submit papers.

The Program Committee recognized two papers and their authors. “The Hidden
Number Problem with Small Unknown Multipliers: Cryptanalyzing MEGA in Six
Queries and Other Applications,” by Nadia Heninger and Keegan Ryan, and “Post-
Quantum Anonymity of Kyber”, by Varun Maram and Keita Xagawa, were selected
Best Papers of the conference.

PKC 2023 welcomed Chris Peikert (University of Michigan) as the invited speaker.
The PKC Test-of-Time Award (ToT) recognizes outstanding and influential papers

published in PKC about 15 years prior. The inaugural PKC Test of Time Award was
given in PKC 2019 for papers published in the conference’s initial years of the early
2000s and late 1990s. In 2023, the ToT committee, consisting of Alexandra Boldyreva,
Goichiro Hanaoka, Vlad Kolesnikov, Moti Yung, and Yuliang Zheng, considered papers
published in PKC2006–2008 for the award. The committee selected the PKC2008 paper
“Unidirectional Chosen-Ciphertext Secure Proxy Re-encryption” by Benoît Libert and
Damien Vergnaud for the Test-of-Time award.

PKC is the main IACR-sponsored conference with an explicit focus on public-key
cryptography. It is a remarkable undertaking, only possible due to the hard work and
significant contributions of many people. We would like to express our sincere gratitude
to the authors of all submitted works, as well as to the PC and external reviewers,
session chairs and presenters. Additionally, we would like to thank the following people
and organizations for helping make PKC 2023 a success:

– Joseph Jaeger and Daniel Genkin – PKC 2023 General Chairs,
– Chris Peikert – invited speaker,
– Kay McKelly and Kevin McCurley – all things technical behind the scenes,
– Ellen Kolesnikova – design of the PKC 2023 logo,
– the team at Springer,
– Georgia Tech Hotel and Conference Center,
– Georgia Aquarium,
– School of Cybersecurity and Privacy at Georgia Tech - the academic home of the

PKC 2023 Program and General Chairs.

We would also like to thank our sponsors: Google (platinum), Starkware (silver),
Amazon AWS (silver), and Algorand (bronze). 2022 and 2023 were difficult years in the
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tech industry, making sponsors’ contributions ever more valued. Their generous support
covered several student travel stipends and helped minimize registration fees, including
half-priced registration for all students.

Lastly, a big thanks to everyone who attended PKC 2023 in Atlanta. We hope you
enjoyed the conference and the warm welcome of our city and university.

May 2023 Alexandra Boldyreva
Vlad Kolesnikov
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On Homomorphic Secret Sharing
from Polynomial-Modulus LWE

Thomas Attema1,2,3, Pedro Capitão1,2(B), and Lisa Kohl1

1 Cryptology Group, CWI, Amsterdam, The Netherlands
{pedro,lisa.kohl}@cwi.nl

2 Mathematical Institute, Leiden University, Leiden, The Netherlands
3 Cyber Security and Robustness, TNO, The Hague, The Netherlands

thomas.attema@tno.nl

Abstract. Homomorphic secret sharing (HSS) is a form of secret shar-
ing that supports the local evaluation of functions on the shares, with
applications to multi-server private information retrieval, secure compu-
tation, and more.

Insisting on additive reconstruction, all known instantiations of HSS
from “Learning with Error (LWE)”-type assumptions either have to rely
on LWE with superpolynomial modulus, come with non-negligible error
probability, and/or have to perform expensive ciphertext multiplications,
resulting in bad concrete efficiency.

In this work, we present a new 2-party local share conversion proce-
dure, which allows to locally convert noise encoded shares to non-noise
plaintext shares such that the parties can detect whenever a (potential)
error occurs and in that case resort to an alternative conversion proce-
dure.

Building on this technique, we present the first HSS for branching
programs from (Ring-)LWE with polynomial input share size which can
make use of the efficient multiplication procedure of Boyle et al. (Euro-
crypt 2019) and has no correctness error. Our construction comes at the
cost of a – on expectation – slightly increased output share size (which
is insignificant compared to the input share size) and a more involved
reconstruction procedure.

More concretely, we show that in the setting of 2-server private infor-
mation retrieval we can choose ciphertext sizes of only a quarter of the
size of the scheme of Boyle et al. at essentially no extra cost.

1 Introduction

In 1979, Shamir introduced the concept of secret sharing information in his
seminal paper How to Share a Secret [31]. In the two-party setting, secret sharing
allows to split up a secret value into two secret shares, such that each share
individually hides the secret, whereas the shares together allow to recover it. The
simplest secret-sharing scheme is additive secret sharing, where a value x in an
additive group G is split into x0, x1, such that x0, x1 are distributed uniformly
at random conditioned on x0 + x1 = x. Despite its simplicity, additive secret

c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13941, pp. 3–32, 2023.
https://doi.org/10.1007/978-3-031-31371-4_1
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sharing comes with a number of nice properties. For example, it allows the local
evaluation of linear functions on the shares.

In 2019, Boyle, Gilboa and Ishai [10] extended this notion to homomorphic
secret sharing (HSS), which allows the local evaluation of larger classes of func-
tion on the shares, while keeping the nice properties of additive secret sharing
(so far possible). More precisely, a homomorphic secret-sharing scheme for a
function class F (over some input space G) has the following properties:

– The secret shares individually hide the message (computationally).
– The secret shares are succinct, i.e., they are polynomial in the size of the

secret to be shared (in particular, they are independent of the complexity of
the function class F).

– The secret shares allow local evaluation of all functions f ∈ F . More precisely,
there exists an evaluation procedure Eval, such that given secret shares x0, x1

of x ∈ G, it holds Eval(f, x0) + Eval(f, x1) = f(x).

Note that the last condition explicitly requires additive reconstruction, i.e., eval-
uation results in an additive secret sharing of the output. While this requirement
can be relaxed to more general reconstruction functions (as we will do in this
work), it has a number of useful features, such as allowing the local postprocess-
ing with linear functions.

Since their introduction, homomorphic secret sharing has found numer-
ous applications, including 2-server private-information retrieval [9,11,19,24,32],
low-communication secure computation [8,10,12,20], and succinct generation of
correlated (pseudo-)randomness [6,7].

In [10], Boyle et al. presented a homomorphic secret-sharing scheme from
the decisional Diffie-Hellman assumption for the class of restricted multiplica-
tion straight-line (RMS) programs. These programs are restricted in that they
only allow multiplication between an input value and a memory value (where
a memory value is an intermediate value in the computation), but not a mul-
tiplication between two memory values. It can be shown that this captures the
class of polynomial-size branching programs, and circuits of constant fan-out
and logarithmic depth (i.e., circuits in the complexity class NC1).

Since then, further HSS constructions for RMS programs have been pro-
posed based on the decisional Diffie-Hellman assumption [8], the Paillier
assumption [23,28,30], and based on the learning with errors (LWE) assump-
tion [14,16,22]. All schemes, however, come with some efficiency bottleneck:
either the evaluation is computationally expensive [8,10,16,22,23,28,30] and/or
the input shares have high concrete overhead resulting in bad communication
complexity [14,16,22].

In particular, while the scheme of Boyle et al. BKS [14] comes with desirable
properties such as (plausible) post-quantum security and (comparatively) effi-
cient multiplication on ciphertexts, it inherently has to rely on LWE with (double-
)superpolynomial modulus (and thus large ciphertexts) in order to keep the error
probability negligible. The reason for their (double-)superpolynomial modulus is
a share conversion procedure to locally convert noise encoded shares modulo q to
non-noisy shares modulo q. In order to achieve negligible error probability, they
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need to choose moduli p, q with 1 � p � q, where each � denotes a superpolyno-
mial gap. The starting point for our work can thus be phrased as follows.
Is it possible to design a share-conversion procedure for polynomial-sized p, q

without introducing a non-negligible error?

1.1 Our Contribution

In this paper, we answer this question (somewhat) affirmatively and present
an HSS scheme from LWE for RMS programs with polynomial modulus, which
otherwise inherits the nice properties from BKS. Our core technique is a share
conversion which allows to locally detect and tentatively correct potential errors.
On the downside, we have to relax additive reconstruction to a more involved
reconstruction procedure, where the parties choose the output from an expected
constant-size list of potential output values. In the following we give a high-level
overview of our main results, which we discuss in more detail in the technical
overview.

Our Core Lemmas. Our core technique can be captured in the following two
lemmas for share conversion, a crucial step in the homomorphic evaluation of
multiplications. Informally, the lemma states that (for rounding) there exist local
conversion procedures that return shares flag0, z0 and flag1, z1, z

′
1, respectively,

such that either z0 = z1 mod p or z0 = z′
1 mod p, where the latter holds if and

only if flag0 = flag1 = 1. This extends the technique of BKS, who only consider
the case flag0 = flag1 = 0 and choose parameters to ensure that this holds except
with negligible probability.

Lemma 1 (Rounding with correction [Lemmas 5, 6]). Let p, q ∈ N

with p|q. Then, there exist efficient procedures Round0 : Zq → {0, 1} × Zp and
Round1 : Zq → {0, 1} × Z

2
p such that the following holds:

For any x ∈ Zp, any e ∈ Z with |e| < q/(4p), and any t0, t1 with

t0 + t1 =
q

p
· x + e mod q,

it holds

x =

{
z0 + z1 mod p if flag0 = 0 ∨ flag1 = 0 ,

z0 + z′
1 mod p if flag0 = flag1 = 1 ,

where (flag0, z0) ← Round0(t0) and (flag1, z1, z′
1) ← Round1(t1).

Further, for t0, t1 chosen at random, it holds flag0 = flag1 = 0 with probability
at least 1 − (4 · |e| · p)/q.

Similarly, we extend their lemma for lifting.

Lemma 2 (Lifting with correction [Lemmas 8, 9]). Let p, q ∈ N with p|q.
Then, there exist efficient procedures Lift0 : Zp → {0, 1} × Zq and Lift1 : Zp →
{0, 1} × Z

2
q such that the following holds:
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For any x ∈ Zp, with |x| < p/6, and any z0, z1 with

z0 + z1 = x mod p,

it holds

x =

{
v0 + v1 mod q if flag0 = 0 ∨ flag1 = 0 ,

v0 + v′
1 mod q if flag0 = flag1 = 1 ,

where (flag0, v0) ← Lift0(z0) and (flag1, v1, v′
1) ← Lift1(z1).

Further, for z0, z1 chosen at random it holds flag0 = flag1 = 0 with probability
at least 1 − (4 · |x|)/p.

Our HSS. We show that building on the core lemma, we obtain an HSS with one-
sided error correction. More precisely, P0 will follow a fixed computation path
(remembering the wires where flag0 = 1). Party P1 on the other hand, continues
the computation for z1 and z′

1 whenever flag1 = 1 for some wire. In the end,
the parties can reconstruct the value by choosing the computation path that
resorts to the alternative computation for P1 whenever flag0 = 1 and flag1 = 1
for some wire. Note that this potentially results in exponential computation time
for P1. We resolve this by choosing the parameters depending on the number
of multiplications to be performed, such that the overall number of expected
errors is 1 (or less). This means that on expectation P1 has to perform the
computation twice (from some point in the program on) and finally obtains
two output shares. We want to stress that the output shares (corresponding
to plaintext values) are typically several orders of magnitude smaller than the
input shares (corresponding to ciphertext values). The increase in output values
is therefore insignificant compared to the savings in input shares.

For instantiating our HSS, we present a trade-off between ciphertext size
(equaling the input share size) and expected number of output shares. More
precisely, instantiating the underlying public-key encryption scheme PKE with
the Ring-LWE based encryption scheme of Lyubashevsky, Peikert and Regev [27]
over the ring R = Z[X]/(XN + 1), we obtain the following.

Lemma 3 (Corollary of Lemma 11). Let γ > 1. Let P be a branching pro-
gram with multiplicative size |P | (i.e., number of load and multiplication opera-
tions) and magnitude bound Bmax (i.e., upper bound on all intermediary compu-
tation values). Then, setting p ≥ 8·Bmax ·N ·|P |/ ln γ and q ≥ 8·p·N ·|P |/ ln γ in
our HSS construction party P1 obtains at most γ output shares on expectation.

Setting γ = 1+λ−ω(log λ) (and thus obtaining 1/ ln γ ≈ λω(log λ)) we can recover
the negligible error probability at the cost of superpolynomial ciphertext sizes
of BKS.

HSS with Perfect Correctness. As a corollary of our techniques, we can obtain
an HSS for RMS programs that satisfies perfect correctness, since the parties
can always detect and correct the errors.
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Table 1. Our HSS parameters for
program size |P | = 220, γ = 2.

Bmax N log q

2 2048 71

216 2048 86

232 4096 104

264 4096 136

2128 8192 202

2256 8192 330

Table 2. BKS HSS parameters
with per gate error probability
2−40.

Bmax N log q

2 4096 137

216 4096 167

232 8192 203

264 8192 267

2128 16384 399

2256 16384 655

Concrete Efficiency. In Tables 1 and 2, we give concrete parameter sizes in com-
parison with the scheme of BKS, depending on the program size |P |. Note that
the parameters of the BKS HSS scheme also have to grow with the program
size of the underlying program |P | to ensure a fixed error probability, similarly
to our scheme. Even without taking this into account (i.e., considering an error
probability of 2−40 after one operation rather than |P |), it can be seen that our
scheme can achieve a factor 4 shorter ciphertexts.

HSS with Expected Constant-Time Evaluation. The focus of our paper are
applications where there is no privacy requirement for reconstruction, and thus
expected constant-time evaluation can be dealt with by cutting off the com-
putation after a fixed certain number of operations. We note though that the
expected running time of the evaluation algorithms imposes challenges in appli-
cations such as secure two-party computation, where party P0 can potentially
derive information about the input from the response time of P1. We leave deal-
ing with this issue as an interesting open question.

Share Reconstruction with Privacy. We note that (apart from the above
described problem concerning run-time leakage) the problem of share reconstruc-
tion with privacy can be viewed as (one-server) private information retrieval by
keywords [17] satisfying a strong notion of database privacy, where the client
(here party P0) is not allowed to learn anything about the number and content
of the database held by the server (here party P1), except for the queried entry.
This can be viewed as a special case of labelled private-set intersection [15,18]
and can be instantiated by relying on somewhat homomorphic encryption. (Note
here that the database for share reconstruction is very small on expectation, and
thus even using expensive ciphertext multiplication for the final reconstruction
would in typical applications not have a significant impact on the overall run
time.)

Impossibility of Fully Local Share Conversion. To complement our result, we
show that no direct local share conversion (i.e., not resorting to an alternative
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conversion procedure) can achieve negligible error, showing that the BKS HSS
scheme inherently requires either superpolynomial ciphertext or some postpro-
cessing on the outputs.

Limitation to 2-Party HSS. As for BKS, our techniques are inherently limited
to the two-party case, since we use some “symmetry” properties between the
two shares. More precisely, we rely on the fact that if t0 + t1 = q

p · x + e, then
the distance of t0 and t1 to the next (potentially different) multiple of q

p differs
only by |e|. This is no longer true for three or more parties, where local rounding
results in a constant error probability (independent of p and q). Going beyond
the two-party case therefore inherently requires new techniques.

Beyond HSS. A corollary of our core lemma is that the secure reconstruction of
x mod p given t0 + t1 = q

p · x + e can be performed using a single string-OT,
where party P0 acts as the sender with input-bit flag0 and P1 acts as the receiver
inputting (z1, z1) if flag1 = 0 and (z1, z′

1) else. This might have applications to
encryption with 2-party distributed decryption, as used, e.g., in lattice-based
electronic voting schemes.

HSS Rounding vs. Learning with Rounding (LWR). The rounding function which
underlies [14] and this paper is essentially the same as the rounding function used
for LWR [4]. While [4] uses non-distributed rounding to reduce the hardness of
LWR to LWE (essentially building on the fact that the LWE error is “rounded
away” with high probability), the line of work on constructing HSS via rounding
needs a stronger property on distributed rounding towards achieving correctness.
In particular, the techniques to reduce the modulus in the reduction from LWR
to LWE from super-polynomial to polynomial [2,5] do not appear to help in
reducing the modulus for LWE-based HSS constructions.

1.2 Technical Overview

In the following, we give an overview of the idea behind our core lemma and our
HSS construction. For the purpose of the technical overview, we assume R = Z,
n ∈ N, and p = p(λ), q = q(λ) ∈ N such that p|q. By writing p � q, we denote
that q/p ∈ λω(1).

Restricted Multiplication Straight-Line Programs (RMS). Recall that for RMS
programs there is a distinction between input values (inputs to the program) and
memory values (intermediary computation values) and the following operations
are supported:

– Loading an input value into memory;
– Adding two memory values;
– Multiplying an input value with a memory value;
– Outputting a memory value.
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The HSS Scheme of [14]. Our starting point is the HSS scheme of [14]. The
basis of their construction is an encryption scheme with nearly linear encryption.
More precisely, let PKE = (Gen,Enc,Dec) be a public-key encryption scheme over
message space Zp, such that the secret key and ciphertext space is Z

d
q . Recall

that PKE satisfies nearly linear decryption, if for all secret keys s, all messages
m ∈ Zp, and all encryptions c of m, it holds

〈s, c〉 ≈ q

p
· m mod q.

Further, BKS requires that s has only entries in {−1, 0, 1} (or otherwise small
bounded values). As observed in [14], these requirements are indeed satisfied by
(variants of) many lattice-based encryption schemes [3,4,25,26,29].

Now, if Bmax ∈ N with Bmax � p � q/Bmax, then an HSS for RMS programs
with magnitude bound Bmax can be obtained as follows.

Key generation. The HSS key generation generates a key pair according to
the key generation algorithm PKE.Enc and outputs secret key shares ek0 := s0
to P0 and ek1 := s1 to P1, s.t., s0 + s1 = s for the secret key s ∈ {0, 1}d.
Input and memory values. Values are stored as follows.

– Input values: Input values |x| ≤ B are encrypted as {Enc(x · si)}i∈[d],
where si is the i-th component of s. (Note that by the techniques of BKS
this is possible given knowledge only of the public key of the underlying
encryption scheme. We will give more details on this in the main body of
the paper.)

– Memory values: Memory values |y| ≤ B are secret shared as t0, t1, such
that t0 + t1 = y · s mod q.

Note that adding two memory values is straightforward by the linearity of addi-
tive secret sharing. Further, assuming that the first component of the secret
key s is always one (which is straightforward to achieve), outputting a memory
value mod q can be done by simply outputting the first entry of the correspond-
ing share. Finally, loading an input value is equivalent to multiplying an input
value by 1. We therefore restrict to describing the restricted multiplication in
the following.

To perform a multiplication of an input value x encrypted as {ci}i∈[d] with a
memory value y shared as (t0, t1), the idea is for the parties to locally compute
tpreb as tpreb,i := 〈ci, tb〉. By the property of nearly linear decryption, this yields:

tpre0,i + tpre1,i = 〈ci, y · s〉 = y · 〈ci, s〉 ≈ q

p
· x · y · si mod q,

and thus
tpre0 + tpre1 ≈ q

p
· x · y · s mod q.

The challenging part is to locally convert the shares tpreb into memory values,
i.e., tout0 + tout1 = x · y · s mod q. To that end, BKS [14] introduce the rounding
and lifting technique, which allow local share conversion. In the following, we
will focus on the rounding technique, since the lifting technique (to lift shares
modulo p to shares modulo q) can be adapted similarly.
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Fig. 1. Depiction of the local rounding procedure. If both shares are outside the area
highlighted in red, then no rounding error occurs. (Color figure online)

Lemma 4 (Rounding [BKS [14]]). Let p, q ∈ N such that p|q. Let x ∈ Zp and
let e ∈ Z with |e| � q/p. Let t0, t1 ∈ Zq be sampled uniformly at random subject
to

t0 + t1 =
q

p
· x + e mod q.

Then there exists an efficient deterministic procedure Round such that

Round(t0) + Round(t1) = x mod p

except with negligible probability.

Towards HSS from Polynomial-Modulus LWE. A straightforward approach
towards HSS with polynomial modulus is to choose p, q of polynomial-size and
handle the resulting non-negligible error with the generic error correction tech-
niques of [10] introduced towards HSS from decisional Diffie-Hellman (where a
non-negligible error is inherent [21]). These generic error correcting techniques
come with a high concrete overhead though: If the error probability is a constant,
then ω(log λ)-repetitions are necessary to achieve negligible error-probability via
a majority vote. Thus, both the evaluation time and the size of the output shares
are increased by a factor of ω(log λ).

This work: HSS from polynomial-modulus LWE with fine-grained error correc-
tion. In this work, we show that in the case of LWE – and unlike decisional
Diffie-Hellman – it is actually possible to detect (potential) errors, and therefore
only correct if an error really occurs (or is very likely to occur). In order to
outline our techniques, in the following we take a closer look at the rounding
procedure from above.

To simplify presentation, for the rounding technique we assume p = 2 and 4|q
(to ensure q

2 and q
4 are integers). We give a depiction of the rounding procedure

in Fig. 1, where Round : Zq → Z2 is defined as

Round(y) :=
⌊

2
q

· y

⌉
mod 2.
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Fig. 2. Depiction of the alternative local rounding procedure. If at least one of the
shares is inside the area highlighted in red, then no rounding error occurs. (Color
figure online)

Now, assume to be given shares t0, t1 chosen at random conditioned on

t0 + t1 =
q

2
· x + e,

where x ∈ {0, 1} and e is some error. Then, as observed in BKS [14], if at least
one of the shares t0, t1 is outside the red area

[− q
4 ± |e|] ∪ [

q
4 ± |e|],1 then no

rounding error occurs, i.e.,⌊
2
q

· t0

⌉
+

⌊
2
q

· t1

⌉
= x mod 2.

This crucially relies on the fact that for the shares it holds that t0 + t1 = e
mod q or t0 + t1 = q

2 + e mod q. Now, assume t0 is outside the red area and
Round(t0) = 0 (the other cases are similar). Then, it must hold that t0 has
distance < q

4−|e| from 0. Thus, if t0+t1 = e, it must hold that t1 has distance < q
4

from 0, and thus Round(t1) = 0 as required. On the other hand, if t0 + t1 = q
2 +e

mod q, then t1 must have distance < q
4 from q

2 , and thus Round(t1) = 1 as
required.

If |e| � q
2 , then the probability of a random element y

$← Zq lying in the red
area is negligible, and thus by the above considerations no rounding error occurs
except with negligible probability.

Towards correcting the error, we observe that – on the other hand – if at least
one of the shares t0, t1 is inside one of the bad areas, then following an alternative
procedure (depicted in Fig. 2) no rounding error occurs. The alternative rounding
procedures RoundDown,RoundUp are defined as

RoundDown(x) :=
⌊

2
q

· x

⌋
mod 2, RoundUp(x) :=

⌈
2
q

· x

⌉
mod 2.

1 Here, we consider Zq to be represented as integers in the interval
(− q

2
, q
2

]
. For y ∈{− q

4
, q
4

}
, by [y ± |e|] we denote the interval containing all z ∈ Zq having at most

distance |e| from y (considered as integer).
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Fig. 3. Depiction of the asymmetric local rounding procedure, where party P1 is fully
in charge of the error correction. (Color figure online)

In other words, party P0 rounds all negative numbers
(− q

2 ,−1
]

to −1 = 1
mod 2, and all positive number

[
1, q

2

]
to 0, and P1 rounds all negative numbers(− q

2 ,−1
]

to 0, and all positive numbers
[
1, q

2

]
to 1 (and 0 is always rounded to

0).
The idea here is that if at least one of the shares t0, t1 is inside the red

area, then the other share is also |e|-close to the red area, and therefore one
party rounding up and the other party rounding down always yields the correct
result (as long as |e| < q

4 ). More precisely, assume that t0 is in the red area
and Round′(0, t0) = 0, i.e., t0 ∈ [

q
4 ± |e|] (the other cases are similar). Now,

if t0 + t1 = e mod q, then t1 ∈ [− q
4 ± 2 · |e|], and thus Round′(1, t1) = 0. If

t0 + t1 = q
2 + e mod q, on the other hand, it holds t1 ∈ [

q
4 ± |e|] and thus

Round′(1, t1) = 1 as required.
Given these two observations, we obtain our first core lemma (Lemma 1).

We present the corresponding rounding procedures in Fig. 3. Here, P0 always
follows a fixed rounding procedure, where P0 uses the normal rounding procedure
outside the red area, and the rounding procedure RoundDown inside the red area.
If its share is within the red area, it sets flag = 1 for the corresponding wire,
and flag = 0 otherwise. If the share of P1 is outside the (now larger) red area,
it follows the standard rounding procedure, and sets flag = 0. If the share of P1

is inside the larger red area, it follows both the standard rounding procedure
(depicted by the blue arrows) and the RoundUp rounding procedure (depicted by
the dashed arrows) and sets the flags to 0 and 1, respectively. For reconstruction,
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the parties resort to the alternative (“dashed”) computation path whenever both
parties set flag = 1 on the corresponding wire.

Together with our new lifting lemma, this yields our HSS scheme. A crucial
part of our construction is carefully taking account of the gates with flag = 1,
which we explain in the main body.

2 Preliminaries

In this section we define the HSS primitive as well as the computational model
for programs supported by our construction. We begin by introducing some
notation. For n ∈ N, [n] denotes the set {1, . . . , n}. We denote by λ the security
parameter.

We will work with the ring R = Z[X]/(XN + 1), where N ≤ poly(λ) is a
power of 2. The infinity norm on R is defined as ‖x‖∞ = maxi∈[n] |xi| for x ∈ R
with coefficients x1, . . . , xn. For q ∈ N, let Rq = R/qR, where we consider
elements of Rq to have all their coefficients in the interval (−q/2, . . . , q/2].

2.1 Homomorphic Secret Sharing

We consider homomorphic secret sharing with a general decoding algorithm for
the reconstruction of shares, as defined by Boyle et al. [13], in the public-key
setting. We note that HSS is commonly defined with the stronger requirement of
additive reconstruction, which enjoys several useful properties. By considering
the more general definition, our scheme is able to forego some of those properties
for efficiency. Moreover, we show that the decoding functionality can be easily
and securely realized, depending on the application setting.

Definition 1 (Homomorphic Secret Sharing). A 2-party public-key homo-
morphic secret sharing (HSS) scheme for a class of programs P consists of algo-
rithms (Gen,Enc,Eval,Dec) with the following syntax:

– Gen(1λ) : On input a security parameter 1λ, the key generation algorithm
outputs a public key pk and a pair of evaluation keys (ek0, ek1).

– Enc(pk, x) : On input the public key pk and an input value x, the encryption
algorithm outputs a ciphertext c.

– Eval(σ, ekσ, (c1, . . . , cn), P, β) : On input a party index σ ∈ {0, 1}, evaluation
key ekσ, a vector of n ciphertexts, a program P ∈ P with n input values, and
an output modulus β, the homomorphic evaluation algorithm outputs a share
yσ.

– Dec(y0, y1, β) : On input shares y0, y1 and an output modulus β, the decoding
algorithm outputs a value y.

The algorithms (Gen,Enc,Eval,Dec) should satisfy the following correctness and
security requirements:
Perfect Correctness. For all λ ∈ N, inputs x1, . . . , xn, program P ∈ P, and
integer β ≥ 2, we have

Dec(y0, y1, β) = P (x1, . . . , xn),
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where (pk, ek0, ek1) ← Gen(1λ), ci ← Enc(pk, xi) for i ∈ [n] and yσ ←
Eval(σ, ekσ, (c1, . . . , cn), P, β) for σ ∈ {0, 1}.
Security. For all λ ∈ N and for all PPT adversaries A,

Pr

⎡
⎢⎢⎢⎢⎣A(state, pk, ekσ, c) = b

∣∣∣∣∣∣∣∣∣∣

(σ, x0, x1, state) ← A(1λ)
b ← {0, 1}
(pk, ek0, ek1) ← Gen(1λ)
c ← Enc(pk, xb)

⎤
⎥⎥⎥⎥⎦ − 1

2
≤ negl(λ).

Remark 1. We relax the definition of HSS by not requiring the Eval algorithm
to run in polynomial time, but only expected polynomial time, which will be the
case in our construction. This can be converted into polynomial time by halting
the computation after some fixed number of steps.

2.2 Restricted Multiplication Straight-Line Programs

Our HSS scheme supports homomorphic evaluation of the class of Restricted
Multiplication Straight-line (RMS) programs. These are a restricted form of
arithmetic circuits in which multiplication of intermediate values is not possible;
only multiplication of an input value by an intermediate value (or memory value)
is allowed.

Definition 2 (RMS programs). An RMS program over the ring R consists of
a magnitude bound Bmax and a sequence of instructions of the four types below,
each indicating its ingoing and outgoing wires and ordered by a unique identifier
id ∈ N.

– Load input into memory: instruction (load, id, x, w) sets input x as a memory
value in wire w (ŷw ← x̂).

– Add values in memory: instruction (add, id, u, v, w) adds the values in wires
u and v (ŷw ← ŷu + ŷv).2

– Multiply input by memory value: instruction (mult, id, x, v, w) multiplies the
input x and the memory value in wire v (ŷw ← x̂ · ŷv).

– Output from memory: instruction (out, id, w) outputs the value in wire w as
an element of Rβ.

If at any step of execution the magnitude of a memory value exceeds the bound
Bmax (i.e. ‖ŷw‖∞ > Bmax), the output of the program on the corresponding input
is defined to be ⊥. Otherwise the output is the sequence of values given by the
out instruction.

We define the multiplicative size of an RMS program P as its number of load
and mult instructions, and we denote it by |P |.
2 We assume that for every instruction (add, id, u, v, w) such that u (resp. v) is the

output wire of a previous instruction with id idu (resp. idv) we have idu < idv. This
ensures that shares corresponding to u are computed before shares corresponding to
v in our evaluation algorithm.
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Note the distinction between the magnitude bound Bmax and the output
modulus β. For example, in an RMS program computing a Boolean function
f : {0, 1}k → {0, 1}, the input values 0 and 1 would be interpreted as integers,
Bmax would be a bound on the greatest integer appearing as the result of an
operation, and the output modulus would be β = 2. Our HSS scheme will require
β ≤ Bmax < p < q, where p and q are, respectively, the plaintext modulus and
ciphertext modulus of the underlying encryption scheme.

Remark 2 The definition of RMS program in [14] includes an additional oper-
ation type which allows input values to be added. The class of functions com-
putable with this additional operation is the same, but it allows some functions
to be computed using fewer multiplications, which may result in a more efficient
homomorphic evaluation. We omit this operation from our definition, but we
note that our HSS also supports it, in identical fashion to the BKS scheme. In
both constructions this feature requires adjusting the bound on the ciphertext
noise according to the maximum number of input additions, which influences
the parameters of the scheme.

3 The Homomorphic Secret Sharing Scheme

In this section, we describe our homomorphic secret sharing scheme. Our HSS is
an adaptation of the BKS scheme [14]. It supports homomorphic evaluations of
the same class of functions: Restricted Multiplication Straight-Line (RMS) pro-
grams. Informally, we adapt the original BKS scheme by incorporating a new
error reconciliation procedure. The protocol parameters of the BKS scheme are
chosen such that correctness errors only occur with negligible probability. By
contrast, our reconciliation procedure allows for smaller protocol parameters,
since potential errors occurring during the homomorphic evaluations are cor-
rected by the error reconciliation procedure. As a result the internal protocol
parameters can to chosen to be polynomial in the security parameter, whereas
BKS scheme requires superpolynomial protocol parameters, thereby reducing
the communication complexity.

3.1 The Protocol

Both the BKS scheme and our adaptation crucially rely on a public-key encryp-
tion scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec) with nearly linear decryption,
i.e., for all key-pairs (pk, s) ← PKE.Gen(1λ), messages m ∈ Zp and ciphertexts
c ← PKE.Encpk(m), it holds that

〈c, s〉 =
q

p
· m + e mod q ,

for some “small” noise term |e| ≤ Berr.
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Fig. 4. Homomorphic Secret Sharing - Key Generation.

Since the PKE has nearly linear decryption, the decryption procedure simply
rounds the inner-product 〈c, s〉 of the ciphertext and the secret key, multiplied
by 0 < p/q < 1, to the nearest integer, i.e.,

PKE.Dec(c, s) =
⌈

p

q
· 〈c, s〉

⌋
mod p .

We assume that the first coefficient of the secret key s ∈ Z
d equals 1. This

property is crucially required by the HSS construction, and it is satisfied by
most PKE schemes with nearly linear decryption.

Further, for simplicity, we assume PKE to be defined over Z. For this reason,
our homomorphic secret sharing scheme will also be defined over Z. However,
all techniques and results have a straightforward generalization to rings of the
form R = Z[X]/(XN + 1) for N a power of 2, namely, the rounding and lifting
procedures are applied to each of the N coordinates of elements of R.

As shown in [14], if PKE has nearly linear decryption and pseudorandom
ciphertexts, there exists a Key Dependent Message (KDM) oracle PKE.OKDM
that, without knowledge of the secret key, outputs encryptions of scalar multiples
of the secret key ([14], Lemma 3). More precisely, for all j ∈ {1, . . . , d} and x ∈ Z,

cj ← PKE.OKDM(pk, x, j) s.t. 〈cj , s〉 = x · sj + e mod q ,

where s = (s1, . . . , sd) and |e| ≤ Berr. By linearity, the KDM oracle allows
encryptions of arbitrary linear combinations of the secret key to be generated.

Let us now continue to describe our 2-party homomorphic secret sharing
scheme HSS. Besides a PKE scheme with the above properties, the HSS con-
struction also requires a keyed pseudorandom function PRF. The key-generation
of our HSS scheme, described in Fig. 4, is identical to that of the BKS scheme.
The HSS public key is simply a public key for the PKE scheme and each evalu-
ation key contains an additive secret share sσ of the secret key together with a
PRF key K.

The second functionality of the HSS is encryption. It allows parties to encrypt
the inputs to the RMS program that is to be evaluated. However, an HSS encryp-
tion of an input value x ∈ Z is different from a standard PKE encryption of x.
Instead, it is an encryption of the key-dependent vector x · s ∈ Z

d
q , where s ∈ Z

d
q

is the secret key corresponding to the public key pk generated in the key gen-
eration. Hence, the HSS encryption of x is a vector of d PKE encryptions, each
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Fig. 5. Homomorphic Secret Sharing - Encryption.

to a different key-dependent message x · si for i ∈ {1, . . . , d}. Note that, since
s = (1, s2, . . . , sd) ∈ Z

d
q , the first component of an HSS encryption is a standard

PKE encryption of x · 1 = x. The HSS encryption functionality, again identical
to the one used by the BKS scheme, is described in Fig. 5. Intuitively, security
of our HSS scheme follows from the security of OKDM and from each share sσ

individually hiding s.
The reason for using this “key-dependent” encryption is that, by deploying

a distributed decryption, the two parties can take encrypted input values and
obtain additive secret shares of the vector x · s. The BKS scheme shows how to
perform certain operations on secret shares of key-dependent messages of this
form. More precisely, it shows that the following operations can be performed
locally (i.e., without requiring interaction between the two parties):

– Addition: given a secret share of x · s and a secret share y · s, obtain a secret
share of (x + y) · s.

– Multiplication by Input Value: given an HSS encryption of x and a secret
share of y · s, obtain a secret share of xy · s.

The HSS scheme thus distinguishes between (encrypted) input values and inter-
mediate computation values, also referred to as memory values. The above func-
tionalities immediately imply an HSS for RMS programs.

Our scheme deviates from BKS in how it performs the above HSS operations.
In the BKS scheme these operations involve a distributed decryption, which in
turn involves the rounding of a noisy value followed by a “lifting” of shares mod
p to shares mod q. Both of these steps may fail, causing a correctness error, and
the BKS scheme chooses its parameters such that such errors only occur with
negligible probability. In our approach, we employ procedures Round and Lift
(defined in Sect. 3.2) which indicate whether an error may have occurred and
correct it if necessary.

In more detail, for party P0, the output of Round is of the form (flag0, z0) ∈
{0, 1} × Zp. If flag0 = 0 (no error can occur), then z0 is obtained by rounding
as usual, while if flag0 = 1 (an error may occur), then z0 is the result of an
alternative “error-correcting” rounding.

Before describing the procedure for party P1, note that, since the parties can-
not communicate, there is no guarantee that their flags will coincide. Moreover,
the error-correcting requires the two parties to be in sync, i.e. correctness is not
guaranteed if one party follows the usual rounding and the other the alternative
rounding. Therefore, it may seem necessary that each party computes both the
usual and alternative values when their flag is positive, in order to use one of
them depending on the flag of the other party. However, we are able to define



18 T. Attema et al.

Fig. 6. Homomorphic Secret Sharing - Evaluation for party P0.

Round in a way such that whenever flag0 = 1 we have flag1 = 1 as well. This
allows us to define Round for P0 as described above, always computing a single
value z0, and have only P1 compute two different values when flag1 = 1.

For P1, Round either outputs flag1 = 0 and z1, or flag1 = 1 and (z1, z′
1),

where z1 and z′
1 denote the outputs of the usual and alternative rounding, respec-

tively. The following table displays the 3 different scenarios that may occur, and
whether the parties should use corrected values or not.

Similarly, errors can occur and be mitigated in the so-called lifting step, which
always follows rounding.

The homomorphic evaluation procedure for party P0 is presented in Fig. 6.
For every wire w in the RMS program P we compute a vector tw

0 ∈ Z
d
q which

is P0’s additive share of xws, where xw is the value of P at w. Throughout
this algorithm we keep track of the variable pos0 ∈ {0, 1}∗ which denotes the
sequence of flags of P0. After each “multiplicative” operation (i.e. load or mult
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Fig. 7. Homomorphic Secret Sharing - Evaluation for party P1.

instruction), the flags generated during that operation are appended to the string
pos0 ∈ {0, 1}∗. Adding a pseudorandom value PRF(K, id) before each rounding
step guarantees that the shares are always close to uniform, and therefore the
occurrences of positive flags are independent from one instruction to another.
Finally, the output of Eval consists of a compression H(pos0) of the flag sequence
of P0 and the first component of tw

0 , which is an additive share of P (x1, . . . , xn).
The compression function H simply outputs the list of indices with a flag set
to 1 (which will be constant in number). The use of H is crucial in obtaining
succinct output shares, as the size of pos0 is proportional to the size |P | of the
program.

In Fig. 7 we present the homomorphic evaluation procedure for party P1,
which is similar to that of P0 but has an added degree of complexity, since P1

generates two different possible values for its additive share whenever it gets
a positive flag, and must keep track of all possible combinations. The global
variable L1 in this algorithm is the list of binary strings which includes all
possible sequences of flags of P0 – recall that whenever P1 has flag1 = 0 it knows
that flag0 = 0, but if flag1 = 1 then flag0 can be either 0 or 1. To each wire
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Fig. 8. Algorithm Mult0, employed by party P0 on loading and multiplication instruc-
tions.

Fig. 9. Algorithm Mult1, employed by party P1 on loading and multiplication instruc-
tions.

Fig. 10. Homomorphic Secret Sharing - Decoding.
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w in P we associate a list Tw
1 of pairs of the form (pos1, tw

1 ), where tw
1 is the

additive share corresponding to the value of P at w and pos1 is the corresponding
sequence of flags. The output of the evaluation algorithm for P1 is a list of pairs
of the same form as the output for P0, one for each possible flag sequence.

Finally, in the decoding algorithm, depicted in Fig. 10, we identify the addi-
tive shares x0, x1 which correspond to the same sequence of flags and add them
to obtain P (x1, . . . , xn).

Remark 3. We omit an optimization step consisting of checking if the two values
associated with a positive flag for P1 are the same, which provides a reduction
of the flag probability by a factor of 2 in both rounding and lifting.

Remark 4. Like the BKS scheme, our protocol can also be converted into a
secret-key HSS version, which is more efficient for those applications which do
not require the public-key capabilities.

3.2 Rounding and Lifting

Below we present our rounding procedure and analyse its properties. The corre-
sponding step in the BKS protocol consists of multiplying the share v ∈ Zq by
p/q and rounding it to the nearest integer to obtain a share in Zp. This intro-
duces a correctness error with probability proportional to p/q (see Lemma 7).
Our approach solves this issue by flagging instances in which an error could occur
if both parties were to round their shares to the nearest integer and correcting
it by having one party round up and the other round down in those instances.

Recall that we consider the representation Zn = {−�(n − 1)/2�, . . . , �(n −
1)/2�} for any n ∈ N. We first define the operations RoundDown, RoundUp and
RoundNear, which map a value v from Zq to Zp by scaling and then rounding it
down, up, or to the nearest integer, respectively:

RoundDown(v) = �(p/q) · v� mod p,

RoundUp(v) = �(p/q) · v� mod p,

RoundNear(v) = �(p/q) · v� mod p.

The deterministic procedure Round, which takes as input a party identifier σ ∈
{0, 1} and a value v ∈ Zq, is defined as follows:

Round(0, v) =

{
(1,RoundDown(v)), if v ∈ badBerr ,

(0,RoundNear(v)), otherwise,

Round(1, v) =

{
(1,RoundNear(v),RoundUp(v)), if v ∈ bad2Berr ,

(0,RoundNear(v),⊥), otherwise,

where badBerr =
{
v ∈ Zq

∣∣ |v mod (q/p)| ≥ q/(2p) − Berr

}
and bad2Berr is analo-

gously defined.
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Lemma 5 (Rounding correctness). Let p, q,Berr ∈ N be such that q is a
multiple of p and Berr < q/(4p). Then, for any v0, v1 ∈ Zq, m ∈ Zp and e ∈ Z

such that |e| ≤ Berr and

v0 + v1 = (q/p) · m + e mod q,

the outputs (flag0, z0) ← Round(0, v0), (flag1, z1, z′
1) ← Round(1, v1) satisfy the

following:

(i) If flag0 = 0, then z0 + z1 = m mod p.
(ii) If flag0 = 1, then flag1 = 1 and z0 + z′

1 = m mod p.

Proof. Let v0, v1,m, e be such that v0 +v1 = (q/p) ·m+e mod q and |e| ≤ Berr,
and let (flag0, z0) ← Round(0, v0), (flag1, z1, z′

1) ← Round(1, v1). To prove the
first claim, assume that flag0 = 0. Then there exist k, r ∈ Z such that v0 =
(q/p) · k + r and |r| < q/(2p) − Berr. Therefore

v1 = (q/p) · (m − k) + e − r mod q

and |e − r| ≤ |e| + |r| < q/(2p). It follows that

z0 = �(p/q) · v0� = �k + (p/q) · r︸ ︷︷ ︸
∈(−1/2,1/2)

� = k mod p,

z1 = �(p/q) · v1� = �m − k + (p/q) · (e − r)︸ ︷︷ ︸
∈(−1/2,1/2)

� = m − k mod p,

which shows that z0 + z1 = m mod p.
We now prove the second claim. If flag0 = 1, there exist k, r ∈ Z such that

v0 = (q/p) · k + r and q/(2p) − Berr ≤ r ≤ q/(2p) + Berr. The other share is then
v1 = (q/p) ·(m−k)+e−r mod q, where q/(2p)−2Berr ≤ e−r ≤ q/(2p)+2Berr,
since |e| ≤ Berr. Therefore |v1 mod (q/p)| ≥ q/(2p) − 2Berr and flag1 = 1.
Moreover, observe that e < r and (p/q) · (r − e) < 1, since

r ≤ q/(2p) + Berr < q/p − Berr ≤ q/p + e.

It follows that

z0 = �(p/q) · v0� = �k + (p/q) · r︸ ︷︷ ︸
∈[0,1)

� = k mod p,

z′
1 = �(p/q) · v1� = �m − k + (p/q) · (e − r)︸ ︷︷ ︸

∈(−1,0]

� = m − k mod p,

and therefore z0 + z′
1 = m mod p. ��

Lemma 6 (Rounding flag probability). Let p, q,Berr ∈ N be such that q is
a multiple of p and Berr < q/(4p). Let v0, v1 ∈ Zq be uniformly random subject
to

v0 + v1 = (q/p) · m + e mod q,
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where m ∈ Zp and |e| ≤ Berr are fixed. Let also (flag1, z1, z′
1) ← Round(1, v1).

Then
Pr[flag1 = 1 and z1 �= z′

1] = 2Berr · (p/q).

Proof. Let u1 = v1 mod (q/p) and note that u1 is uniformly distributed in
Zq/p. Recall that flag1 = 1 if and only if |u1| ≥ q/(2p) − 2Berr. Moreover,
RoundNear(v1) �= RoundUp(v1) if and only if the fractional part of (p/q) · v1
is in the interval (0, 1/2), which holds if and only if 0 < u1 < q/(2p). Define the
set

S =
{
u ∈ Zq/p

∣∣ q/(2p) − 2Berr ≤ u < q/(2p)
}

.

If q/p = 2k + 1 for some k ∈ N, then S = {k − 2Berr + 1, . . . , k}, while if
q/p = 2k then S = {k − 2Berr, . . . , k − 1}. In both cases |S| = 2Berr. Therefore
Pr[flag1 = 1 and z1 �= z′

1] = Pr[u1 ∈ S] = |S| · (p/q) = 2Berr · (p/q). ��
Lemma 7 (Rounding error probability). Let p, q,Berr ∈ N be such that q is
a multiple of p and Berr < q/(4p). Let v0, v1 ∈ Zq be random subject to

v0 + v1 = (q/p) · m + e mod q,

where m ∈ Zp and |e| ≤ Berr are fixed. Then

Pr[RoundNear(v0) + RoundNear(v1) �= m mod p] ≥ (|e| − 1) · (p/q).

Proof. Define uσ = vσ mod (q/p), for σ = 0, 1, and assume first that e < 0.
Observe that, if u0, u1 ∈ (0, q/(2p)), then a rounding error occurs: since e = u0+
u1 mod (q/p) and −(q/p) < e < 0, it must be the case that e = u0 +u1 − (q/p),
and therefore RoundNear(v0)+RoundNear(v1) = m− 1. If q/p = 2k +1 for some
k ∈ N, then

Pr[u0, u1 ∈ (0, q/(2p))] = Pr[u0 ∈ {k + e + 1, . . . , k}] = |e| · (p/q).

Alternatively, if q/p = 2k, then

Pr[u0, u1 ∈ (0, q/(2p))] = Pr[u0 ∈ {k + e + 1, . . . , k − 1}] = (|e| − 1) · (p/q).

By a similar reasoning it can be seen that in the case e ≥ 0 a rounding error
occurs with probability at least |e| · (p/q), if q/p is odd, or (|e| + 1) · (p/q), if q/p
is even. ��

Now we present the lifting procedure, which always follows rounding. In the
BKS protocol this step is simply an inclusion: a share z ∈ Zq becomes z ∈ Zp.
However, as shown in Lemma 10, a correctness error occurs with probability
proportional to 1/p. Again, our new procedure overcomes this issue by predicting
and correcting possible errors to guarantee that additive shares modulo p are
always converted into shares modulo q of the same secret value.
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The deterministic procedure Lift, which takes as input a party identifier σ ∈
{0, 1} and a value z ∈ Zp, is defined as follows:

Lift(0, z) =

⎧⎪⎨
⎪⎩

(1, z), if z ∈ bad+Bmax
,

(1, z + p), if z ∈ bad−
Bmax

,

(0, z), otherwise,

Lift(1, z) =

⎧⎪⎨
⎪⎩

(1, z, z − p), if z ∈ bad+2Bmax
,

(1, z, z), if z ∈ bad−
2Bmax

,

(0, z,⊥), otherwise,

where bad+Bmax
= [p/2 − B, p/2), bad−

Bmax
= [−p/2,−p/2 + B], and bad+2Bmax

,
bad−

2Bmax
are analogously defined. The proofs of the following three lemmas can

be found in the full version of this paper.

Lemma 8 (Lifting correctness). Let p,Bmax ∈ N be such that Bmax < p/6.
Then, for any z0, z1 ∈ Zp, m ∈ Z such that |m| ≤ Bmax and

z0 + z1 = m mod p,

the outputs (flag0, v0) ← Lift(0, z0), (flag1, v1, v′
1) ← Lift(1, z1) satisfy the follow-

ing:

(i) If flag0 = 0, then v0 + v1 = m over Z.
(ii) If flag0 = 1, then flag1 = 1 and v0 + v′

1 = m over Z.

Lemma 9 (Lifting flag probability). Let p,Bmax ∈ N be such that Bmax <
p/6. Let z0, z1 ∈ Zp be random subject to

z0 + z1 = m mod p,

where m ∈ Zp. Let also (flag1, v1, v′
1) ← Lift(1, z1). Then

Pr[flag1 = 1 and v1 �= v′
1] = 2Bmax/p.

Lemma 10 (Lifting error probability). Let p,Bmax ∈ N be such that Bmax <
p/6. Let z0, z1 ∈ Zp be random subject to

z0 + z1 = m mod p,

where m ∈ Zp. Then

Pr[z0 + z1 �= m] ≥ (|m| − 1)/p.

We can now prove our main result.

Theorem 1. (HSS correctness and security). Let PKE be a public-key
encryption scheme with plaintext space Rp and ciphertext space Rd

q , satisfy-
ing the properties of nearly linear decryption (with error bound Berr) and pseu-
dorandom ciphertexts, such that Berr < q/(4p). Let also PRF be a pseudoran-
dom function taking values in Rq. Then the 2-party homomorphic secret sharing
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scheme described in Figs. 4, 5, 6, 7, 8, 9 and 10 is perfectly correct and secure,
as per Definition 1, and supports homomorphic evaluation of polynomial-sized
RMS programs with magnitude bound Bmax and output modulus β such that
β ≤ Bmax < p/6.

Proof. Security follows immediately from the security of the BKS HSS [14], as
the algorithms Gen and Enc are identical in the two schemes and the security
definition is independent of the Eval algorithm. Note that this is a consequence
of KDM security and of the fact that the evaluation keys individually hide the
secret encryption key.

We will now show that our scheme satisfies perfect correctness. Let y0 =
(H(pos0), z0) and y1 = {(H(pos(1)1 ), z(1)1 ), . . . , (H(pos(k)1 ), z(k)1 )} be the evaluated
shares corresponding to an RMS program P on input x1, . . . , xn.

Observe that, according to the definition of the algorithms Mult0 and Mult1,
there always exists i∗ ∈ [k] such that pos

(i∗)
1 = pos0. This follows from the fact

that, at any rounding or lifting step with position tag pos, party P1 always
computes a value associated to pos||0 and, by part (ii) of Lemmas 5 and 8, if
P0 has a value associated to pos||1 then so does P1. Furthermore, the index i∗

is unique, since the binary strings pos
(j)
1 are all distinct. Since the compression

function H is injective, the only index i such that H(pos(i)1 ) = H(pos0) is i∗.
We will show below that, during homomorphic evaluation of P , for all wires

w we have
tw
0 + tw

1 = xws mod q (1)

whenever (pos1, tw
1 ) ∈ Tw

1 and posw1 = posw0 , where posw0 is the flag sequence
pos0 of P0 at the time wire w is evaluated, xw ∈ R denotes the value of P at w
and s = (1, ŝ) ∈ R × Rd−1 is the PKE secret key.

The final output will be Dec(y0, y1, β) = z0 + z
(i∗)
1 mod β, where (z0, t̂0) =

tw
0 , (z(i

∗)
1 , t̂1) = tw

1 , (pos(i
∗)

1 , tw
1 ) ∈ Tw

1 for an output wire w and pos
(i∗)
1 = pos0.

If Eq. (1) holds, then by looking only at the first component of each vector in
the equation we see

z0 + z
(i∗)
1 = xw · 1 = P (x1, . . . , xn) mod q,

hence Dec(y0, y1, β) = P (x1, . . . , xn) with probability 1.3

It remains only to check that Eq. (1) holds for every instruction in P of type
load, add or mult.

– For instruction (load, id, (c1, . . . , cd), w), where ci ← PKE.OKDM(pk, y, i), by
the nearly linear decryption property we have

(tw
0 )i + (tw

1 )i = 〈s0, ci〉 + PRF(K, (id, i)) + 〈s1, cj〉 − PRF(K, (id, i))
= 〈s, ci〉 = (q/p) · y · si + ei mod q

3 We assume here that β divides q, so that shares mod q are also shares mod β. If we
wish to avoid this assumption, we can simply perform a lifting step to obtain shares
over Z before reducing them mod β.
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for some |ei| ≤ Berr.4 We can thus apply Lemma 5 followed by Lemma 8 to
conclude that, for the matching flags (i.e. posw1 = posw0 ), the corresponding
shares tw

0 , tw
1 satisfy tw

0 + tw
1 = y s mod q.

– For instruction (add, id, u, v, w), assume Eq. (1) holds for (tu
0 , tu

1 ) and (tv
0, t

v
1),

where posu1 ⊆ posv1 ⊆ posw1 and posτ0 = posτ1 for τ ∈ {u, v, w}. Then

tw
0 + tw

1 = tu
0 + tv

0 + tu
1 + tv

1 = xus + xvs = xws mod q.

– For instruction (mult, id, (c1, . . . , cd), v, w), assuming Eq. (1) holds for (tv
0, t

v
1)

we have

(tw
0 )i + (tw

1 )i = 〈tv
0, ci〉 + PRF(K, (id, i)) + 〈tv

1, cj〉 − PRF(K, (id, i))
= xv〈s, ci〉 = (q/p)xv · y · si + ei mod q

and as in the load instruction we conclude that tw
0 + tw

1 = xv y s mod q.

��

3.3 Impossibility of Local Share Conversion

The next theorem shows that the local share conversion procedure that lies at
the heart of lattice-based HSS cannot achieve perfect correctness with additive
reconstruction. Therefore one must either allow correctness error (which can only
be made negligible with a superpolynomial modulus) or relax the requirement
for reconstruction.

Theorem 2 (Correctness error of share conversion). Let m ∈ Zp and
e ∈ D, where {0, 1,−1} ⊆ D ⊆ (−q/(2p), q/(2p)). Let also v0, v1 ∈ Zq be sampled
uniformly subject to

v0 + v1 = (q/p) · m + e mod q.

Then, for any local share conversion functions g0, g1 : Zq → Zq, there exist
m ∈ Zp and e ∈ D such that

Pr[g0(v0) + g1(v1) �= m mod q] ≥ p/(3q).

Proof. We show that in each interval Ik ⊆ Zq of the form Ik := [k·q/p, (k+1)·q/p)
there exists v0 ∈ Ik such that an error g0(v0) + g1(v1) �= m occurs for at least
one of the pairs (m, e) := (0, 0), (m, e) := (1,−1) or (m, e) := (0, 1). Since there
are p disjoint intervals Ik, one of these three choices of (m, e) must have at least
p/3 values v0 in the above conditions and the result follows from the fact that
v0 is uniform.

To prove the above claim, consider v0 := k · q/p and v1 := −v0. If g0(v0) +
g1(v1) �= 0 we have found an error for (m, e) := (0, 0), as v0 + v1 = 0 and
v0 ∈ Ik. Meanwhile, v′

0 := (k + 1) · q/p − 1 satisfies v′
0 + v1 = q/p · 1 − 1, hence

4 Here we again consider the case R = Z for simplicity. For R of dimension N , the
equation applies to each coordinate of y.
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if g0(v′
0) + g1(v1) �= 1 we have found an error for (m, e) := (1,−1). Suppose

now that g0(v0) + g1(v1) = 0 and g0(v′
0) + g1(v1) = 1. Then g0(v0) �= g0(v′

0)
and there must exist ṽ0 ∈ [v0, v′

0) such that g0(ṽ0) �= g0(ṽ0 + 1). Note that
ṽ0, ṽ0 +1 ∈ Ik. Then, unless an error occurs with ṽ0 and (m, e) := (0, 0) or ṽ0 +1
and (m, e) := (0, 1), by taking ṽ1 := −ṽ0 we obtain

g0(ṽ0) + g1(ṽ1) = g0(ṽ0 + 1) + g1(ṽ1) = 0,

since ṽ0 + ṽ1 = 0 and (ṽ0 + 1) + ṽ1 = 1. This contradicts the assumption
g0(ṽ0) �= g0(ṽ0 + 1). ��

4 Efficiency and Parameters

In this section we compute concrete parameters for our HSS scheme and compare
them with the BKS scheme [14]. The next lemma gives us an expression for the
average number of elements of the list that constitutes the share y1 of party P1

after evaluating a program P . We are then able to choose parameters such that
this number is bounded by a constant. Since the running time of the evaluation
algorithm of P1 is proportional to this quantity, the lemma also implies that it
runs in expected polynomial time.

Lemma 11 (Expected share size). Consider the HSS scheme described
above, with ciphertext space Rd

q , where R = Z[X]/(XN + 1). Let P be an RMS
program of multiplicative size |P |. Denote by pround, plift the probabilities of party
P1 having a positive flag in a single rounding or lifting step, respectively. Then
the expected total number E of terminal values in the homomorphic evaluation
of P by P1 is

E =
(
(1 + pround)(1 + plift)

)dN |P |
.

We defer the proof of Lemma 11 to the full version. As a consequence of
Lemmas 6, 9 and 11, we obtain the following bound, which we can use to choose
parameters for the HSS scheme:

E ≤ (
(1 + 2Berrp/q)(1 + 2Bmax/p)

)dN |P |
.

We instantiate PKE with the Ring-LWE based encryption scheme of Lyuba-
shevsky, Peikert and Regev [27] over the ring R = Z[X]/(XN + 1), giving us
Berr = 1, d = 2. Then, if we wish to bound the expected number of terminal
values E by some value γ > 1, setting p ≥ 8BmaxN |P |/ ln γ and q ≥ 8pN |P |/ ln γ
gives

E ≤ (1 + ln γ/(4N |P |))4N |P | ≤ γ,

which justifies that γ is indeed an upper bound. For instance, if we choose γ = 2,
party P1 will have, on average, a single positive flag throughout the homomorphic
evaluation and two terminal values on which to perform reconstruction.
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Table 3. HSS parameters
for |P | = 210, γ = 2.

Bmax N log q Security

2 2048 51 147.3

216 2048 66 109.4

232 2048 82 86.0

264 4096 116 122.9

2128 8192 182 159.5

2256 8192 310 89.1

Table 4. HSS parameters
for |P | = 220, γ = 2.

Bmax N log q Security

2 2048 71 100.9

216 2048 86 81.6

232 4096 104 139.0

264 4096 136 103.0

2128 8192 202 141.7

2256 8192 330 83.6

Table 5. BKS HSS
parameters, with error
probability 2−40.

Bmax N log q Security

2 4096 137 103.3

216 4096 167 83.7

232 8192 203 142.0

264 8192 267 104.9

2128 16384 399 143.9

2256 16384 655 84.6

In Tables 3 and 4 we present parameters of our scheme in this RLWE instan-
tiation, namely the ring dimension N and the ciphertext modulus q, when we
choose the bound γ = 2 for the expected number of terminal values and maxi-
mum program sizes 210 and 220, respectively. These are given in function of the
magnitude bound Bmax of plaintexts during the computation. For comparison,
Table 5 shows the parameters for the corresponding instantiation of the BKS
HSS scheme. We observe that our scheme reduces the size of the modulus q by
nearly a factor of 2 for programs with up to 220 operations (or by a greater
factor, if we further restrict the program size) while also reducing N by a factor
of 2 and attaining similarly high estimated computational security.

The security estimates on Tables 3, 4 and 5 were obtained by computing,
for magnitude bound Bmax, the smallest pair (N, q) with at least 80 bits of
computational security, as predicted by the lattice estimator tool of Albrecht et
al. [1]. Note that the parameters of the BKS HSS scheme are also dependent on
the size of the program P . The parameters on Table 5 correspond to a correctness
error probability of 2−40 for each (multiplicative) operation in P .

The parameter γ can be adjusted to reduce the frequency of raised flags for
a relatively small cost in the size of lattice parameters. For instance, setting
γ = 1.01 boosts the probability that there are no raised flags in the entire
computation to at least 1−(γ −1) = 0.99, at the price of increasing the modulus
q by a factor of (ln 2/ ln 1.01)2 ≈ 212, compared to the choice γ = 2.

On the other hand, since the size of the input shares is much larger than the
size of the output shares, it can make sense to choose larger parameter γ for
certain applications. One should note though, that if the parties wish to execute
linear postprocessing on the output shares (e.g., a counting query over a large
database), then the total expected number of shares scales with 2γ .

5 Applications

Our scheme retains most of the standard applications of HSS, even without hav-
ing the usual property of additive reconstruction. It is particularly suited for
scenarios where there is asymmetry between the parties performing the compu-
tation (e.g. two servers of different sizes).
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Private Database Queries. We explore in detail one of the applications of the
BKS HSS scheme and show that our construction provides an overall improve-
ment in efficiency. A 2-server private database query protocol involves two non-
colluding servers, each holding a copy of a public database DB, and a client,
who can issue queries on the database. The protocol should allow the client to
obtain the answer of its query while hiding both the query and the answer from
the servers. HSS gives a simple solution to this problem with only one round
of communication: in this protocol the client sends an encryption of its query
to both servers, who then homomorphically compute shares of the answer and
return them to the client. HSS for branching programs supports many expressive
queries, such as conjunctive keyword search and pattern matching.

Remark 5. Unlike with secure 2-party computation, in this setting there are no
concerns with the security of the reconstruction procedure. We can simply have
both servers send their shares to the client, who evaluates the decoding algorithm
directly with minimal computational cost.

Linear Post-processing of Shares. There are scenarios in which the additive
reconstruction property of other HSS schemes is quite useful, such as when com-
puting a counting query. This type of query returns the number of elements of
the database satisfying some predicate Q, which can be written as

∑
x∈DB Q(x),

where Q(x) = 1 if x satisfies Q and Q(x) = 0 otherwise. Because of this addi-
tive representation, instead of homomorphically evaluating the query on the
database at once, the servers can evaluate the predicate individually on each
database element. The shares qx

σ corresponding to each element x can then be
locally summed to obtain qσ =

∑
x∈DB qx

σ and this value sent to the client, who
recovers the result of the query as q0 + q1 mod β. In the BKS HSS scheme,
this approach allows using the optimal case of Bmax = 2 on the individual HSS
evaluations, even though the query output is not bounded by 2.

Although our construction does not benefit from the additive reconstruction
property, we can employ a similar technique and show that even in this setting we
obtain a performance improvement. Recall that, in our scheme, a share evaluated
by party P0 is of the form (u, q) where u is the compression of the flag sequence
of P0 and q is the additive share of the result, while a share evaluated by P1

is a list of pairs of the same form. P0 can homomorphically evaluate Q on each
x ∈ DB to obtain (ux

0 , qx
0 ) and then send y0 = (ux1

0 , . . . , uxM
0 , q0 :=

∑
x∈DB qx

0 ) as
its final share to the client, where M = |DB| is the database size. Similarly, P1

obtains M lists from evaluating Q on every database element and its output to
the client is a list of shares of the same form as y0, one for each possible choice
of a single element from each of the M lists. The client can then reconstruct by
summing q0 and the corresponding value from P1’s share. This solution may look
terribly inefficient for the fact that the size of P1’s output is proportional to the
product of the number of elements of all M lists, but we can set the probability
of any list having more than one element to be very low.

A Concrete Example. Consider a database DB with entries of the form (x,Wx)
where x is a document and Wx is a list of keywords. Given a target list of key-



30 T. Attema et al.

words W , we wish to count the number of documents containing all the keywords
in W . That is, we consider a counting query for the predicate QW (x,Wx) = 1 if
W ⊆ Wx. Suppose the database size is M = 1024, the client’s query consists of
4 keywords, and each document has 10 keywords with 128 bits of length. This
can be achieved by an RMS program P with around |P | = 5120 multiplica-
tions. For this application the BKS scheme requires as parameters N = 4096
and log q = 137, which gives a share size of 3N log q ≈ 210 kB for each input bit,
for a total of 107 MB of communication to each server. In our scheme, choosing
γ = 1.0001 allows us to use N = 2048, log q = 81. This results in an input
share size of 60.7 kB and a total of 31 MB sent from client to server. Since the
(expected) size of the compressed flag sequence is |H(pos)| = γ log |pos| and the
output modulus of the query should be β = M , the size of the first output share
is |y0| = Mγ log(4N |P |) + log β ≈ 3.2 kB and the size of the second output
share is |y1| = γM |y0| ≈ 3.5 kB. Meanwhile, the output share size in BKS is only
log β ≈ 1.2B for both servers. Note that only a single output share is sent from
each server to the client, so the bulk of communication lies in the input sharing
step for both approaches.

A drawback of our solution is that the size of the output shares grows with
the size of the database (linearly for P0, and exponentially with base γ for P1).
However, the communication bottleneck is still the size of the input shares and
not of the output, as illustrated in the example above. For more general queries,
for which this technique relying on additive reconstruction is not applicable, our
scheme again provides an improvement over BKS HSS in both computation and
communication costs.
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Abstract. In recent history of fully homomorphic encryption, boot-
strapping has been actively studied throughout many HE schemes. As
bootstrapping is an essential process to transform somewhat homomor-
phic encryption schemes into fully homomorphic, enhancing its perfor-
mance is one of the key factors of improving the utility of homomorphic
encryption.

In this paper, we propose an extended bootstrapping for TFHE, which
we name it by EBS. One of the main drawback of TFHE bootstrapping
was that the precision of bootstrapping is mainly decided by the polyno-
mial dimension N . Thus if one wants to bootstrap with high precision,
one must enlarge N , or take alternative method. Our EBS enables to use
small N for parameter selection, but to bootstrap in higher dimension to
keep high precision. Moreover, it can be easily parallelized for faster com-
putation. Also, the EBS can be easily adapted to other known variants
of TFHE bootstrappings based on the original bootstrapping algorithm.

We implement our EBS along with the full domain bootstrapping
methods known (FDFB, TOTA, Comp), and show how much our EBS
can improve the precision for those bootstrapping methods. We provide
experimental results and thorough analysis with our EBS, and show that
EBS is capable of bootstrapping with high precision even with small N ,
thus small key size, and small complexity than selecting large N by birth.

Keywords: Homomorphic encryption · TFHE · Precision

1 Introduction

Fully homomorphic encryption (FHE) is a powerful cryptographic scheme that
allows to compute on encrypted data with unlimited depth, without leaking any
information about it. Nonetheless, performing homomorphic operations on cipher-
text accumulates noise or consumes certain amount of levels, and can only evalu-
ate circuits with bounded depth. Thus to support unlimited level of computation,
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these schemes come with an operation called bootstrapping, which follows from
the blueprint of Gentry [18]. Bootstrapping refreshes a possibly noisy, or level-
consumed ciphertext into a fresh ciphertext, and allows further computation.

The FHEW/TFHE [11,16] style bootstrapping methods are still known to
be one of the most efficient bootstrapping methods. These algorithms refers to
the blind rotation algorithm, which refreshes the noisy ciphertext, and evaluates
pre-computed lookup table at the same time. From its name, the blind rotate
algorithm rotates a polynomial of degree N , power-of-2, by certain amount blind-
folded, over 2N -th cyclotomic ring. The LUT of a function is encoded as the coef-
ficients of the polynomial, and the blind rotation homomorphically selects the
value from the encoded LUT by rotating the polynomial. The amount of rota-
tion is decided by the message encrypted inside the ciphertext, with rounding
error added due to the scaling-and-rounding of (n+1) coefficients in T into Z2N .
Due to this rounding, bootstrapping in FHEW/TFHE style can only preserve
at most (log2 N + 1)-bits of precision of the input ciphertext, and the precision
is actually much smaller in practice due to the summation of those rounding
errors, restricting the high precision usage of these schemes. Thus, it is believed
that one should select huge N to bootstrap with high precision.

To manage real world applications with low precision ciphertexts, the most
familiar, but powerful solution is to decompose the message by some base, and
encrypt each of the decomposed message in a single ciphertext. The original binary
logic of TFHE is a special case of this decomposition, where the base is 2. Clearly,
the smaller the base is, the number of bootstrapping increases for performing arith-
metic operations on decomposed ciphertexts. If larger base is used to decrease
the number of bootstrapping, the bootstrapping precision works as an upper-
bound of the size of the base, as the bootstrapping must preserve precision at least
log2(base). This forces to use larger N , where one can gain 1 bit of precision by
doubling N . Nonetheless, quasi-linear growth in bootstrapping time is accompa-
nied, and the public key size also doubles. Thus, the most efficient usage of TFHE
for large precision and corresponding parameter selection is still an open problem.

1.1 Our Contributions and Technical Overview

In this paper, we propose a large precision bootstrapping algorithm for TFHE,
which we name it by EBS. Compared to the previous literature of TFHE boot-
strapping with large precision, our EBS can bootstrap TFHE ciphertext without
enlarging the ring dimension N . Rather, we can keep N as small as possible as
long as the (bootstrapping) error doesn’t damage the message in the MSB part.
Working with small N has lots of advantage in TFHE literature since the time
complexity of bootstrapping grows quasi-linearly by N , and the public key size
grows linearly. Thus, it is recommended to use small N for efficiency, and our
EBS can solve that problem, while still preserving the precision.

Our EBS inherits the idea to use larger N to hold larger information of the
ciphertext. Nonetheless, rather than increasing N itself, we use the fact that N
is selected as a power of 2 in TFHE and its variants. We induce a homomorphism
to a larger ring from dimension N to 2νN , where we call ν ∈ N the extension
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factor. The homomorphism is actually a zero padding, and does not affect the
security, nor the information of the ciphertext. With the homomorphism, the bits
extracted from the ciphertext increases by (log2 N + 1) bits to (log2 N + ν + 1)
bits, and thus we can bootstrap with additional ν bits of precision.

For efficiency reasons, we also use the fact that our induced homomorphism
is actually a zero padding. Thanks to the zeros, the bootstrapping in dimension
2νN can be converted to 2ν times of parallel bootstrappings in dimension N .
The advantage in this is that we can perform the bootstrappings simultaneously,
where we can save much time with proper parallelization. Also, the asymptotic
complexity decreases compared to when performing the bootstrapping in dimen-
sion 2νN .

Also, we provide a proof-of-concept implementation over the TFHE library
[12] along with the three variants of the state-of-the-art full-domain functional
bootstrapping algorithms. With our implementation, we provide detailed noise
analysis, benchmarks with eight sets of parameters with N = 1024, 2048 and
4096 that achieves λ = 80 or 128 bits of security. We also evaluate functions
over the torus and provide detailed precision improvements with four sets of
parameters. With our EBS, we show that even with N = 1024 and 2048, it is
possible to achieve over 8 bits of precision, which is known to be possible with
at least N = 214 = 16386. Thus, with our EBS, we can enhance not only the
exact computation of TFHE, but also the approximate computation combined
with other homomorphic encryption schemes like in [30].

1.2 Related Works

High precision bootstrapping is a common problem throughout homomorphic
encryption literature. For approximate homomorphic encryption schemes, the
high precision bootstrapping is required to evaluate huge depth circuits such as
deep neural network training and inference [25,26], or retrieve statistical infor-
mation from a dataset. Starting from the dawn of CKKS bootstrapping of 10 to
15 bit of precision [9], many optimizations and better approximations have been
studied, and reached 90 to 110 bit of precision [27], or even higher precision of
420 bits which takes 903 seconds [2]. The bootstrapping in CKKS takes much
longer than FHEW/TFHE style bootstrappings, but their SIMD (Single Instruc-
tion, Multiple Data) structure enables them to bootstrap multiple messages, and
usually presented in terms of amortized latency.

Nonetheless, the FHEW/TFHE style bootstrapping still has its own advan-
tages, its significantly low latency, and its capability to evaluate even nonlinear
functions with lookup table evaluation. These versatility even brought bridges
to approximate homomorphic encryption schemes, to evaluate polynomial func-
tions by approximate schemes, and bring them to TFHE to evaluate nonlinear
functions [5,30]. The enhancements in the usage of FHEW/TFHE itself has also
been studied throughout many works, including the extension of binary keys to
general keys (ternary, Gaussian, etc.) [20,32], or improved FHEW bootstrapping
with ring automorphisms [28]. When it come to high precision TFHE, most of
the works select decomposition of plaintext message [15,19,22,29,34], with low
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precision TFHE bootstrapping, and no algorithm was known to bootstrap a sin-
gle ciphertext with large precision except using large N . Recently, Bergerat et al.
[3] proposed an algorithm called WoP-PBS (WithOut Padding - Programmable
BootStrapping), to extract each bit of the message as a RGSW ciphertext with
circuit bootstrapping [10] and evaluate function with vertically packed lookup
table. They did not provide any implementations or noise variance in their work,
but it is estimated that their WoP-PBS has noise variance bound larger than our
EBS by factor of at least O(κN) when they bootstrap with κ-bits of precision.
Nonetheless, their time complexity is linear to κ while our EBS is exponential.
This makes their bootstrapping more efficient when κ is sufficiently large. But
until certain level, our EBS is more efficient as the circuit bootstrapping is itself
quite costly.

2 Preliminaries

2.1 Notations

We introduce the notations used throughout this paper. The real torus T denotes
the real set R/Z, which is also interpreted as a half open interval

[− 1
2 , 1

2

)
. Each

set RN [X], ZN [X], and TN [X] denote the set R[X]/
〈
XN + 1

〉
, Z[X]/

〈
XN + 1

〉
,

and T[X]/
〈
XN + 1

〉
.

For a set S, x
$← S implies that x is sampled from S from uniform dis-

tribution. Also, for a distribution D, x ← D implies that x is sampled from
a distribution D. Next, Err (c) represents the error in the ciphertext c, and
Var (Err (c)) denotes the variance of error of the ciphertext c. The parenthe-
ses �a, b� for a, b ∈ Z denotes the set {x ∈ Z | a ≤ x ≤ b}. All indices starts with
0 unless mentioned otherwise.

2.2 TFHE Ciphertext

The security of TFHE is based on the hardness of the Learning with Errors
(LWE) problem [35] and its ring variant, Ring-Learning with Errors (RLWE)
[31,36]. More precisely, the generalization of those problems over the real torus
T.

TLWE. Let n ∈ N be the TLWE dimension, and σTLWE be the standard deviation.
Then for a discrete message space M ⊂ T, the TLWE encryption of a message
m ∈ M under the key s ∈ B

n is

TLWEs(m) = (a, b) ∈ T
n+1,

with a $← T
n, and b = 〈a, s〉 + m + e where e ← N (0, σTLWE). Given arbitrarily

many TLWE samples with the key s, the (torus) LWE problem [11] assures that if
it is λ-secure, it requires at least 2λ operations to distinguish TLWE samples from
uniform distribution over Tn+1, or to find s. We now denote that the parameter
achieves λ-bit of security if it is λ-secure.
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The decryption of a TLWE ciphertext first begins with calculating its phase

ϕs((a, b)) = b − 〈a, s〉 ,

and round it to its closest element in M.

TRLWE. For N = 2β , k ∈ N, and the standard deviation σTRLWE, the TRLWE
encryption of a message m(X) in a discrete message space M ⊂ TN [X] under
the key K ∈ BN [X]k is

TRLWEK(m(X)) = (A0(X), · · · , Ak−1(X), B(X)) ∈ TN [X]k × TN [X],

where Ai(X) $← TN [X], B(X) = 〈(A0(X), · · · , Ak−1(X)) ,K〉 + m(X) + e(X),
with each coefficients of e(X), ei ← N (0, σTRLWE). The decryption of a TRLWE
ciphertext rounds its phase ϕK((A0(X), · · · , Ak−1(X), B(X))) to the closest ele-
ment in M.

TRGSW. Given an integer base BG = 2γ ∈ N and decomposition length �G ∈ N,
first define the gadget matrix H.

Definition 1 (Gadget Matrix). For an integer base BG = 2γ ∈ N and decom-
position length �G ∈ N, we call H the gadget matrix given as

H =

1/BG · · · 0

...
. . .

...

1/B�G
G · · · 0

...
. . .

...
0 · · · 1/BG

...
. . .

...

0 · · · 1/B�G
G

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ TN [X](k+1)�G×(k+1)

The TRGSW ciphertext encrypts a integer polynomial q(X) ∈ ZN [X]. The
TRGSW encryption of q(X) under the key K ∈ BN [X]k is

TRGSWK(p(X)) = Z + H · q(X) ∈ TN [X](k+1)�G×(k+1),

where Z is a vector of (k + 1)�G-TRLWEK(0)’s. Chillotti et al. [11] defined an
external product � between TRGSWK(ma) and TRLWEK(mb) ciphertext, which
gives

TRGSWK(ma) � TRLWEK(mb) = TRLWEK(ma · mb),

for ma ∈ ZN [X], and mb ∈ TN [X].
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2.3 Bootstrapping in TFHE

The bootstrapping in TFHE is a homomorphic calculation of (discretized) phase
of the TLWE ciphertext, and aims to reduce internal noise of the ciphertext.
Moreover, it simultaneously evaluates a look-up table (LUT) of a function over
the torus, and is also known as the functional bootstrapping [4], or programmable
bootstrapping [13].

To bootstrap a ciphertext, one needs two kinds of public key, namely the
bootstrapping key, and the keyswitch key. We will denote each of them as BSK,
and KSK. For two secret keys s ∈ B

n (TLWE key), K ∈ B
k
N [X] (TRLWE,TRGSW

key), the two public keys are defined as follows:

BSK = {TRGSWK(si)}i∈�0,n−1� ,

KSK =

{

TLWEs

(
Ki

Bj
KS

· k

)}

i∈�0,N−1�,j∈�1,�KS�,k∈�0,BKS−1�

,

where BKS, �KS is the decomposition base, and the length of the keyswitch key.
Starting from TLWEs ciphertext c = (a, b), bootstrapping consists of four con-
secutive procedures.

• ModSwitch: transforms c = (a, b) ∈ T
n+1 into c̄ = (ā, b̄) ∈ Z

n+1
2N by computing

āi = �2Nai	 for i ∈ �0, n − 1�, and b̄ = �2Nb	. From [11,22], the variance
after ModSwitch comes with

Var

(
Err

(
ā

2N
,

b̄

2N

))
≤ Var (Err (a, b)) +

n + 1
48N2

,

and we denote
VMS =

n + 1
48N2

.

• BlindRotate: homomorphically rotates the (possibly noiseless) TRLWE encryp-
tion of the test polynomial tv ∈ TN [X] by −m̄ = 〈ā, s〉 − b̄ (mod 2N). This
process be viewed as a function evaluator for a function f : Z2N → T by
setting tvi = f(i) for i ∈ �0, N − 1�. The rotation is done by computing the
controlled MUX (CMux) n times:

ACC ← TRGSWK(si) � (X āi − 1) · ACC + ACC.

Each execution of the CMux multiplies X āisi to the accumulator with a cer-
tain level of noise growth. Thus, after the BlindRotate, the accumulator is mul-
tiplied by X〈ā,s〉 (mod 2N) blindfolded, and outputs the rotated TRLWE cipher-
text TRLWE(X−m̄ · tv). After BlindRotate, the variance of ACC is bounded
by

Var (Err (ACC)) ≤ Var (Err (ACCinit))

+ n

(

(k + 1)N�BS

(
BBS

2

)2

Var(Err(BSK)) +
1 + kN

4 · B2�BS
BS

)

,
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where the result comes from [11]. Note that BBS, �BS is the decomposition
base, and the length of the bootstrapping key. Usually, we start off with a
noiseless accumulator with Var (Err (ACCinit)) = 0. We now denote

VBR = n

(

(k + 1)N�BS

(
BBS

2

)2

Var(Err(BSK)) +
1 + kN

4 · B2�BS
BS

)

.

• SampleExtract: extracts TLWE ciphertext from the rotated TRLWE accumula-
tor ACC. Considering tvi as the i-th coefficient of tv, it gives TLWEK′(tvm̄) =
TLWEK′(f(m̄)) (resp. TLWEK′(−tvm̄−N ) = TLWEK′(f( ¯m − N))) if m̄ ∈
�0, N − 1� (resp. m̄ ∈ �N, 2N − 1�) under the key K′ ∈ B

kN . The
SampleExtract does not accumulate any noise to the ciphertext, so the vari-
ance maintains the same.

• KeySwitch: converts the key K′ of extracted c′ = TLWEK′(m) into s, and gives
c = TLWEs(m) that encrypts the same message. Since the KeySwitch adds
noise to the ciphertext, there have been attempts to remove the KeySwitch
error by eliminating the need for KeySwitch by using s = K′ [22], or by
moving around the KeySwitch before BlindRotate [3,6]. Here, we refer to the
TLWE-to-TLWE KeySwitch, and the error accumulation is given as

Var (Err (c)) ≤ R2Var (Err (c′)) + kN�KSVar(Err(KSK)) +
1
12

kNB−2�KS
KS ,

where R is the Lipschitz constant for functional public keyswitching (in our
work, R = 1). We now denote

VKS = kN�KSVar(Err(KSK)) +
1
12

kNB−2�KS
KS .

Algorithm 1 sums up the gate bootstrapping procedure from [11], mainly
used to refresh the ciphertext after homomorphic operations (e.g. Homomorphic
NAND). From Algorithm 1, the variance of the error of the output ciphertext c
is given by

Var (Err (c)) ≤ VBR + VKS,

and we denote VBS = VBR + VKS.

3 Modified TFHE Bootstrapping

3.1 Functional Bootstrapping

Functional bootstrapping, which is the generalization of the gate bootstrapping
in Algorithm 1, evaluates the LUT of the target function f : T → T, and gives
the TLWEs encryption of f( m̄

2N ) for m̄ ∈ [0, N − 1]. The procedure is depicted
in Algorithm 2. Here, we name it by the half-domain functional bootstrapping
since it only uses the half of the torus [0, 1

2 ) due to the negacyclic BlindRotate

(i.e., it gives the encryption of −f
(

m̄−N
2N

)
if m̄ ∈ [N, 2N −1]). Thus, the domain
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Algorithm 1: Gate Bootstrapping Algorithm (from [11])

Input: TLWE ciphertext (a, b) ∈ TLWEs

(
m · 1

2

)
with m ∈ B

Input: Bootstrapping key BSK

Input: Keyswitch key KSK

Output: Refreshed TLWE ciphertext TLWEs ((−1)m · μ)
1 āi = �2Nai	 for i ∈ �0, n − 1�, and b̄ = �2Nb	 � ModSwitch ((a, b), 2N)
2 Let tv = X

N
2 · (1 + X + · · · + XN−1) · μ for μ ∈ T

3 Let ACCinit = (0, tv) ∈ TRLWEK(tv)
4 ACCBR ← BlindRotate((ā, b̄),BSK,ACCinit)
5 c′ ← SampleExtract(ACCBR) � Extract TLWEK((−1)m · μ)
6 return c = KeySwitch(c′,KSK) � TLWEs((−1)m · μ)

Algorithm 2: Half-Domain Functional Bootstrapping (from [4,19])

Input: TLWE ciphertext (a, b) ∈ TLWEs (m) with m ∈ [
0, 1

2

)

Input: A L-Lipschitz morphism f : T → T

Input: Bootstrapping key BSK

Input: Keyswitch key KSK

Output: Refreshed TLWE ciphertext TLWEs

(
f

(
m̄
2N

))

1 (ā, b̄) = ModSwitch ((a, b), 2N) � m̄ = b̄ − 〈ā, s〉 mod 2N

2 Let tv = ΣN−1
i=0 f

(
i

2N

)
Xi

3 Let ACCinit = (0, tv) ∈ TRLWEK(tv)
4 ACCBR ← BlindRotate((ā, b̄),BSK,ACCinit) � ACCBR = TRLWE(X−m̄ · tv)
5 c′ ← SampleExtract(ACCBR) � Extract TLWEK

(
f

(
m̄
2N

))

6 return c = KeySwitch(c′,KSK) � TLWEs

(
f

(
m̄
2N

))

can be naturally extended to the full torus for any negacyclic function h(x) =
−h

(
x + 1

2

)
.

In Proposition 1, we analyze the error of the functionally bootstrapped
ciphertext with L-Lipschitz function f evaluated on an arbitrary message m ∈
[0, 1

2 ). From the result, we observe that the rounding error from the ModSwitch
affects the value of the function itself by directly changing the message of the
original ciphertext. The rounding error is thus highly related to the maximal pre-
cision a ciphertext can have, and has been pointed out to be the major reason
for the severe precision loss in TFHE based applications [13,22].

Nonetheless, this rounding error was not a serious problem for the gate boot-
strapping since it only needed 1-bit of precision after the ModSwitch to assure its
correctness. However, functional bootstrapping works on larger plaintext space
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M, which usually has the size of power of 2 (i.e., |M| = 2π). Thus, to correctly
bootstrap a ciphertext TLWEs(m) with full precision π (with high probability),
the errors should satisfy

εpre, εBS ≤ 1
2|M| ,

with high probability for pre-BootStrap and BootStrap errors εpre, εBS.

Proposition 1 (Functional Bootstrapping Error). Let c be the output of
functional bootstrapping with a L-Lipschitz morphism f : T → T. Then the
variance of the error between ϕs(c) = f(m + εr) + εBS and f(m) is bounded by

Var (ϕs(c) − f(m)) ≤ L2VMS + VBS.

Proof. During the ModSwitch, the message m is rounded into m̄
2N = m + εMS,

where εMS is the rounding error. Then during the BlindRotate, the function f is
evaluated on m̄

2N , with the BlindRotate error εBR. Thus, after the KeySwitch, the
phase of the output ciphertext c from line 6 of Algorithm 2 will be

ϕs(c) = f(m + εMS) + εBR + εKS,

where εKS is the error from the KeySwitch. Then by the L-Lipschitz condition,
we have

Var (ϕs(c) − f(m)) ≤ Var (f(m + εMS) − f(m)) + Var (εBR) + Var (εKS)
≤ Var (LεMS) + VBR + VKS

≤ L2Var (εMS) + VBS

≤ L2VMS + VBS.

3.2 Large Precision TFHE with Functional Bootstrapping

We revise the major branches of TFHE based applications which attempts to
operate with large precision. The functional bootstrapping plays an essential
role in all of these works, and sometimes appropriately modified to fulfill their
required functionality.

Radix-Based Decomposition with Multiple Ciphertexts. In this branch,
the plaintext m is decomposed into several digits (m0,m1, · · · ,md) of certain
base(s) B, and each mi’s are encrypted as a single TLWE ciphertext. Usually,
small power-of-2 integers (2π = 21, 22) are used as a base [3,7,11,15,19,37], or
decomposed by co-prime integer bases for the CRT representation [3,24].

To collaborate with the vector of ciphertexts (i.e., addition, multiplication,
function evaluation), tree-based [19] and chaining [7] method are known as two
major solutions. Both methods lookup to huge LUT (encoded in multiple TRLWE
ciphertexts) by applying the functional bootstrapping consecutively. The chain-
ing method is known to have lower complexity and output noise compared to the
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tree-based method, but can only evaluate restricted types of function. Recently,
Clet et al. [15] generalized the chaining method and enabled to evaluate any
function by the cost of larger plaintext modulus (i.e., 3 · �log2 B	 + 1 bits, or
2 · �log2 B	 + 1 bits with additional bootstrapping) to work with base B.

Using Larger N . As the variance of the rounding error was bounded by
Var (εMS) ≤ n+1

48N2 , if we double N , the bound halves [7,22,24,30]. However,
using large N brings superlinear growth in BlindRotate due to the expensive
polynomial multiplication with complexity O(N log N). Moreover by doubling
N , the size of the public key (e.g., BSK,KSK, etc.) exactly doubles which can be
a burden for both the client and the server using TFHE based applications.

Small Hamming Weight Ham(s). Similar to the case of using large N , by
restricting the hamming weight of h = Ham(s), the rounding error gets bounded
by εr ≤ h+1

4N [8,24]. Nonetheless, large TLWE dimension n is required to achieve
the same security level with small hamming weight compared to when using
uniform binary key, worsening the performance of bootstrapping as well as its
output noise.

VP-LUT Evaluation and Circuit Bootstrapping. Recent approach of
Bergerat et al. [3] employed the TLWE-to-TRGSW circuit bootstrapping from
Chillotti et al. [10]. For ciphertext(s) with total κ bit of precision, their method
extracts a single bit TLWE encryption with κ functional bootstrappings (i.e.,
m =

∑κ−1
i=0 mi · 2i extracted into TLWEs

(
mi

2κ−i

)
’s). Then the circuit bootstrap-

ping transforms each ciphertexts into TRGSWK(mi)’s. These TRGSW cipher-
texts are used to evaluate the VP-LUT (Vertical Packing LUT), which costs
2κ

N + log2 N − 1 CMux evaluations. Note that the circuit bootstrapping before
the VP-LUT is a costly operation that contains multiple functional bootstrap-
pings, and the output error of the VP-LUT evaluation can be larger than works
featured above.

Aforementioned approaches can be combined together for further improve-
ments if needed (e.g., selecting larger N to attain larger plaintext modulus for
the chaining method). However, this can reduce the overall usability of TFHE,
and should be selected with care.

3.3 Extended BlindRotate for Larger Precision

In this section, we introduce a strategy that can be adapted during the
BlindRotate that allows to attain full precision a single ciphertext can have,
even when using small N . In other words, our method can make the error from
the ModSwitch quite negligible without using larger N , and enlarge the precision
as long as it is affected the after-bootstrap error, εBS.

The main idea of our algorithm is to crank up the BlindRotate into a larger
auxiliary ring dimension of 2νN using a homomorphism, which is actually sent
back to 2ν-rings of dimension N for efficient calculation. We first investigate
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on how to crank up the BlindRotate into a larger space. Note that here, we use
an uppercase to clarify the polynomial dimension of TRLWE ciphertext. To be
specific, TRLWEN

K implies that each of the polynomial elements in this TRLWE

ciphertext is an element of TN [X], while TRLWE2νN
K̂ comes from T2νN [X].

BlindRotate in Larger Dimension. Recall that the main precision drop comes
from the ModSwitch, where the elements of TLWEs(m) = (a, b) are rounded
into Z2N . A simple intuition is to pretend we are using 2νN instead of N for
ν ∈ N ∪ {0}, and round the coefficients into Z2ν+1N . The variance of error from
the ModSwitch can now be written as

Var

(
Err

(
ā

2ν+1N
,

b̄

2ν+1N

))
≤ Var (Err (a, b)) +

n + 1
48 · 22νN2

,

where the variance decreased by VMS/22ν . What is left is on how to evaluate
the BlindRotate on dimension 2νN . Thus, we induce a module homomorphism
ι : TN [X] → T2νN [X] by

ι : TN [X] −→ T2νN [X],

p(x) =
N−1∑

i=0

piX
i −→ pext(X) =

N−1∑

i=0

piX
2ν i,

which is actually a zero padding. We now write the undercase ext to
denote the polynomials zero-padded in a similar way. By applying ι on each
torus polynomials of ciphertext, which we denote by ι (TRLWEK(p(X))) and
ι (TRGSWK(q(X))), are also extended to

ι
(
TRLWEN

K (p(X))
)

= TRLWE2νN
Kext

(pext(X)) for p(X) ∈ TN [X],

ι
(
TRGSWN

K (q(X))
)

= TRGSW2νN
Kext

(qext(X)) for q(X) ∈ ZN [X],

for extended key Kext ∈ B2νN [X]. Also, since ι does not add any noise, the
noise variance of the ciphertext stays the same. The external product � follows
naturally

TRGSW2νN
Kext

(qext(X)) � TRLWE2νN
Kext

(p(X))

= TRLWE2νN
Kext

(p(X) · qext(X)).

Thanks to the zero padding in TRGSW ciphertext, the error propagation of the
external product is exactly the same with computing the external product in
dimension N whether the TRLWE message p(X) is an extended polynomial or
not. Thus, by extending the bootstrapping key BSK with ι, we can evaluate the
BlindRotate with reduced ModSwitch error with exactly same error propagation,
i.e., VBR. Note that the test vector of the accumulator should be generated in
T2νN [X], so the accumulator is a TRLWE encryption under the key Kext, but the
message is not an extended torus polynomial.
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After the extended BlindRotate, the SampleExtract follows. However, due to
the extension, the SampleExtract now gives TLWEK′

ext
= (a, b) ∈ T

2νkN × T.
Notice that the key K′

ext ∈ B
2νkN is just a TLWE representation of the extended

key Kext, and are all 0 except for the indices multiple of 2ν . Thus we extract only
the 2νi-th coefficients from a for i ∈ �0, kN − 1� and attain TLWEK′ , which can
now be keyswitched. The full Algorithm is depicted in Algorithm 3.

Algorithm 3: Large Precision Bootstrapping (without parallelization)
Input: TLWE ciphertext (a, b) ∈ TLWEs (m) with m ∈ [

0, 1
2

)

Input: extension factor ν ∈ N ∪ {0}
Input: A L-Lipschitz morphism f : T → T

Input: Extended Bootstrapping key BSKext =
{
TRGSW2νN

Kext
(si)

}

i∈�0,n−1�

Input: Keyswitch key KSK

Output: Refreshed TLWE ciphertext TLWEs

(
f

(
m̄

2ν+1N

))

1 (ā, b̄) = ModSwitch
(
(a, b), 2ν+1N

)
� m̄ = b̄ − 〈ā, s〉 mod 2ν+1N

2 Let tv = Σ2νN−1
i=0 f

(
i

2ν+1N

)
Xi

3 Let ACC = (0, tv) ∈ TRLWE2νN
Kext

(tv)

4 ACCBR ← BlindRotate((ā, b̄),BSKext,ACC) � ACCBR = TRLWE2νN
Kext

(X−m̄ · tv)

5 c′ ← SampleExtract(ACCBR)

6 return c = KeySwitch(c′,KSK) � TLWEs

(
f

(
m̄

2ν+1N

))

Parallelization of Extended BlindRotate. Still, the extended BlindRotate
contains lots of polynomial multiplications in dimension 2νN , which is quite
costly. Therefore, we bring back the calculation of BlindRotate multiple polyno-
mial multiplications in dimension N , which can be easily parallelized. First, we
introduce a module isomorphism τ : T2νN [X] → T

2ν

N [X] defined by

τ : T2νN [X] → T
2ν

N [X]

p(x) =

2νN−1∑

i=0

piX
i 	−→

(
p(0)(X), · · · , p(2ν−1)(X)

)

=

(
N−1∑

i=0

p2ν iX
i, · · · ,

N−1∑

i=0

p2ν i+2ν−1X
i

)

.

Then for TRLWE2νN
Kext

ciphertext encrypted under extended key Kext, we apply
τ on each torus polynomial elements in T2νN [X], creating (k + 1) vectors of
torus polynomials in T

2ν

N [X]. Due to the zero padding in Kext, collecting i-th
entries from the (k + 1) vectors naturally induces a TRLWEN

K ciphertext for
i ∈ �0, 2ν − 1�. We denote the whole process by τ

(
TRLWE2νN

Kext
(m)

)
:

τ
(
TRLWE2νN

Kext
(m)

)
=

(
TRLWEN

K (m0), · · · ,TRLWEN
K (m2ν−1)

)
.
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for m ∈ T2νN [X] and τ(m) = (m0, · · · ,m2ν−1). Since τ is rearrangement of
coefficients, the noise variance of TRLWE ciphertexts generated by τ is at most
the noise variance of original ciphertext TRLWE2νN

Kext
(m).

Then with two constraints that the TRGSWN
K (z) encrypts an integer z ∈ Z

(which is quite common in TFHE literature) and that the TRGSW2νN
Kext

(z) is
extended from TRGSWN

K (z), we can perform the parallel external product on
the decomposed TRLWE ciphertext by

TRGSW2νN
Kext

(z) � TRLWE2νN
Kext

(m)

∼=
(
TRGSWN

K (z) � TRLWEN
K (m0), · · · ,

TRGSWN
K (z) � TRLWEN

K (m2ν−1)
)

∼=
(
TRLWEN

K (z · m0), · · · ,TRLWEN
K (z · m2ν−1)

)
,

where each external product in dimension N can be all performed in parallel.
Moreover, with the inverse mapping τ−1, the output exactly maps to

τ−1
(
TRLWEN

K (z · m0) , · · · ,TRLWEN
K (z · m2ν−1)

)
= TRLWE2νN

Kext
(z · m),

for z ∈ Z and m ∈ T2νN [X]. Keeping this in mind, we now suggest a parallelized
extended BlindRotate, which we now denote as ExtBlindRotate in Algorithm 4.
From our construction, the 2k external products in line 6 used to compute the
CMux gate can be computed in parallel.

Remark 1. In Algorithm 4, the rotation of the accumulator was represented by
rotating in large dimension, and sending back to its vector of dimension N
with the isomorphism τ . We used this representation for simplification, which
in practice can actually be rotated by changing the order of polynomial vector,
and rotating the polynomials.

With the parallel ExtBlindRotate, we now present our final extended boot-
strapping algorithm EBS in Algorithm 5.

Proposition 2 (EBS). The EBS in Algorithm 5 with the extension factor
ν ∈ N ∪ {0} allows to bootstrap a ciphertext with reduced ModSwitch error with
variance 1

22ν VMS. The variance of error of the bootstrapped ciphertext is exactly
same as VBS.

Proof. From line 1 and 2 of Algorithm 5, the reduced ModSwitch error variance
naturally follows

Var

(
Err

(
ā

2ν+1N
,

b̄

2ν+1N

))
≤ Var (Err (a, b)) +

n + 1
48 · 22νN2

≤ Var (Err (a, b)) +
VMS

22ν
.
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Algorithm 4: Parallel ExtBlindRotate
Input: (ā, b̄) ∈ Z

n
2ν+1N × Z2ν+1N

Input: extension factor ν ∈ N ∪ {0}
Input: A L-Lipschitz morphism f : T → T

Input: Bootstrapping key BSK

Output:
−−→
ACC with τ−1

(−−→
ACC

)
= TRLWE2νN

Kext
(X−b̄+〈ā,s〉 mod 2ν+1N · tv)

1 Let tv = Σ2νN−1
i=0 f

(
i

2ν+1N

)
Xi

2
−−→
ACC ← τ

(
TRLWE2kN

Kext
(X−b̄ · tv)

)

3 for i ∈ �0, n − 1� do

4
−−−−−→
RotACC ← τ

(
X āi · τ−1

(−−→
ACC

))

5 for j ∈ �0, 2ν − 1� do

6
−−→
ACCj ← BSKi �

(−−−−−→
RotACCj − −−→

ACCj

)
+

−−→
ACCj � Parallel comp.

7 end
8 end

9 return
−−→
ACC

Now we show the correctness of ExtBlindRotate in Algorithm 4 and analyze
its error propagation. Starting from line 4 of Algorithm 4, we see that it is a
rotation of

−−→
ACC by āi in T2νN [X] and does not add any noise since it only

rearranges the coefficients.
In line 6 of Algorithm 4, the CMux gate is evaluated on each row of the

accumulator using the external product. Thus if BSKi encrypts 1, the āi-rotated
accumulator

−−−−−→
RotACC is selected for the next accumulator. If not (i.e., if BSKi

encrypts 0),
−−→
ACC is selected. Thus after each i-th loop, the merged accumulator

τ−1
(−−→
ACC

)
is rotated by X āisi , and hence encrypts X−b̄+

∑i
p=0 āi·si · tv for i ∈

�0, n − 1�.
For the error propagation of ExtBlindRotate, the errors only comes from

the CMux evaluation. More specifically, from the decomposition of the TRLWE
ciphertext for the external product, and the external product itself. Thus the
error propagation for a single CMux evaluation is exactly the same as the
BlindRotate error VBR. After the ExtBlindRotate, the error is once more accu-
mulated from the KeySwitch in line 5 of Algorithm 5, whose variance is same as
VKS. Thus the variance of error after bootstrapping is exactly bounded by VBS.

Remark 2. The homomorphism ι and isomorphism τ was defined on module
since TN [X], T2νN [X] are not rings. Nonetheless, this can be easily associated
to rings, using the isomorphism between Zq and 1

qZq ⊂ T. Thus, our method
can naturally be used in ring-based TFHE bootstrapping implementations like
in [24,30,37].
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Algorithm 5: EBS

Input: TLWE ciphertext (a, b) ∈ TLWEs (m) with m ∈ [
0, 1

2

)

Input: extension factor ν ∈ N ∪ {0}
Input: A L-Lipschitz morphism f : T → T

Input: Bootstrapping key BSK

Input: Keyswitch key KSK

Output: Refreshed TLWE ciphertext TLWEs

(
f

(
m̄

2ν+1N

))

1 (ā, b̄) = ModSwitch
(
(a, b), 2ν+1N

)
� m̄ = b̄ − 〈ā, s〉 mod 2ν+1N

2
−−→
ACC ← ExtBlindRotate((ā, b̄), ν, f,BSK)

3 c′ ← SampleExtract(
−−→
ACC0) � Extract TLWEK′

(
f

(
m̄

2ν+1N

))

4 return c = KeySwitch(c′,KSK) � TLWEs

(
f

(
m̄

2ν+1N

))

3.4 Large Precision in Full Domain TFHE Bootstrapping

Recall that the aforementioned functional bootstrapping algorithms (including
our EBS) only works with half domain of the torus

[
0, 1

2

)
to evaluate arbitrary

function f : T → T. These algorithms consumes 1 additional bit in front of
the MSB of the message, and bootstrapping requires p + 1 bits of precision to
successfully bootstrap messages of p bit precision.

Luckily, it is always possible to evaluate arbitrary function f : T → T in
the full domain of the torus with extra operations. From the state-of-the-art
full domain functional bootstrapping algorithms, we observed that our EBS can
cooperate with most of these algorithms [14,15,24,37], as they all contain the
ModSwitch to 2N or N . The WoP-PBS from [3] uses the functional bootstrapping
for extracting bits from the ciphertext and during the circuit bootstrapping.
Nonetheless, neither the bit extraction nor the the circuit bootstrapping require
high precision. As a result, even if our EBS is adaptable, there would be no need
to adapt it to their method. Thus, we first briefly explain and compare three full
domain bootstrapping algorithms from [15,24,37].

FDFB. The idea of full domain bootstrapping of FDFB [24] is to select between
two test vectors p+, p− ∈ TN [X] based on the sign of message ct encrypts. The
selection is done by public Mux evaluation, PubMux, with the external product.
First, the sign of ct is first encrypted in a TRGSW-like ciphertext with the circuit
bootstrapping [11] (like) procedure. We refer to it as a (T)RLev ciphertext [14],
which equals to the last �PM rows of the TRGSW ciphertext. Note that the
multiplication between a torus polynomial p(X) and a TRLev encryption of
q(X) ∈ ZN [X] outputs a TRLWE encryption of q(X) · p(X).

The transformation to TRLev starts with �PM-functional bootstrappings
to extract the sign from ct. Then each ciphertexts are TLWE-to-TRLWE
keyswitched, which we denote it as RS. For specific information about the algo-
rithm, refer to Algorithm 2 of [11]. This ends the conversion to TRLev, and the
error in TRLev is bounded by
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Var (Err (TRLev(sign(ct))) ≤ VBS + VRS,

and where VRS denotes

VRS = n�RSVar(Err(RSK)) +
1
12

nB−2�RS
RS .

The TRGSW′ encrypts 1 (resp. 0) if the sign of ct is positive (resp. negative).
Then the evaluation of the PubMux follows by

ACC = (0, p+ − p−) �′ TRLev(sign(ct)) + (0, p−).

Then ACC is initialized as a TRLWEK encryption of p+ or p− according to the
sign of the input ciphertext ct. The error of ACC is given as

Var (Err (ACC)) ≤ N�PM

(
BPM

2

)2

(VBS + VRS) +
1 + kN

4 · B2�PM
PM

,

which we will now denote it as VFDFB−ACC. What is left is to bootstrap ct with
the accumulator, and the final error after bootstrap is bounded by

VFDFB−ACC + VBS.

The full algorithm of FDFB(-EBS) is shown in Algorithm 6.

TOTA. The main intuition for TOTA [37] bootstrapping is the ModSwitch to
ZN , since N is the maximal number of coefficients a test vector tv ∈ TN [X] can
hold. This makes the quadruple growth to the variance of ModSwitch (i.e., 4VMS).
Also, the decryption in Z2N during BlindRotate with elements that lied in ZN

adds unwanted term pN to the message, for p ∈ {0, 1}. Thus TOTA computes
the pN with the sign bootstrapping. The term pN is removed by subtracting the
ModSwitch-ed sign bootstrapped ciphertext, which adds additional ModSwitch
error VMS and the bootstrapping error VBS before the final bootstrapping. After
removing the pN , the ciphertext is then finally bootstrapped with the test vector
encoding the function f .

To sum up, TOTA involves two bootstrappings. First bootstrapping to cal-
culate pN with pre-bootstrapping error variance

≤ Vct + 4VMS,

followed by the second bootstrapping to evaluate the function f , with pre-
bootstrapping error variance

≤ VBS + Vct + 5VMS.

The variance of error of the output ciphertext is bounded by VBS. The full
algorithm of TOTA-EBS is shown in Algorithm 7. For the EBS in line 3 of Algo-
rithm 7, the ciphertext (ā, b̄) is already in Z2ν+1N , and we assume that ModSwitch
is skipped during the EBS in Algorithm 5.
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Algorithm 6: FDFB-EBS
Input: TLWE ciphertext (a, b) ∈ TLWEs (m)
Input: extension factor ν ∈ N ∪ {0}
Input: A L-Lipschitz morphism f : T → T

Input: Bootstrapping key BSK
Input: Keyswitch key KSK
Input: TLWE-to-TRLWE Keyswitch key RSK
Input: PubMux parameter �PM, BPM

Output: Refreshed TLWE ciphertext TLWEs

(
f

(
m̂

2ν+1N

))

1 for i ∈ �1, �PM� do
2 (ai, bi) ← EBS

(
(a, b), ν, 1

2Bi
PM

fsign,BSK,KSK)
)

+
(
0, 1

2Bi
PM

)

� (ai, bi) = TLWEs

(
sign(ct)

Bi
PM

)

3 PubACCi ← RSs→K
(
(ai, bi),RSK

)
� PubACC = TRLevK (sign(ct))

4 end

5
−−→
ACC ← PubMux

(
PubACC, f(x),−f

(
x − 1

2

))

� τ−1
(−−→
ACC

)
= TRLWE2νN

Kext
(tvsign(ct))

6 for i ∈ �0, n − 1� do

7
−−−−−→
RotACC ← τ

(
X āi · τ−1

(−−→
ACC

))

8 for j ∈ �0, 2ν − 1� do

9
−−→
ACCj ← BSKi �

(−−−−−→
RotACCj − −−→

ACCj

)
+

−−→
ACCj

10 end
11 end

12 c′ ← SampleExtract(
−−→
ACC0)

13 return c = KeySwitch(c′,KSK)

Comp. Using the fact that every function f can be written as the sum of (pseudo)
odd and even functions, the Comp method [15] decomposes a function f as the
sum of odd and even functions fg, and fh. They aim to compute odd/even
functions within 2 bootstrappings each, which can be performed in parallel, and
combine them together with simple addition. In total, they can compute any
function with 4 functional bootstrappings. The first bootstrapping contains pre-
bootstrapping error bounded by

≤ Vct + VMS,

and the second bootstrapping bounded by

≤ VBS + VMS.

Due to the addition of two ciphertexts encrypting the value of the odd/even func-
tion, the final error of the Comp method is bounded by 2VBS. The full algorithm
of Comp(-EBS) is shown in Algorithm 8.
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Algorithm 7: TOTA-EBS
Input: TLWE ciphertext (a, b) ∈ TLWEs (m)
Input: extension factor ν ∈ N ∪ {0}
Input: A L-Lipschitz morphism f : T → T

Input: Bootstrapping key BSK

Input: Keyswitch key KSK

Output: Refreshed TLWE ciphertext TLWEs

(
f

(
m̂

2νN

))

1 (ā′, b̄′) = ModSwitch ((a, b), 2νN) � m̂ = b̄′ − 〈ā′, s〉 mod 2νN

2 (ā, b̄) = ModRaise2νN→2ν+1N

(
(ā′, b̄′)

)
� m̄ = m̂ + p2νN (in Z2ν+1N )

3 ctsgn ← EBS
(
(ā, b̄), ν, 1

4fsign,BSK,KSK
)

+ (0, 1
4 ) � ctsgn = TLWEs

(
p
2

)

4 (a′, b′) ← ModSwitch
(
ctsgn, 2ν+1N

)
� b′ − 〈a′, s〉 mod 2ν+1N = p2νN

5 (a, b) = (a′, b′) + (ā, b̄) � b − 〈a, s〉 mod 2ν+1N = m̂

6 return c = EBS ((a, b), ν, f,BSK,KSK)

The whole comparison of three full domain bootstrapping algorithms is shown
in Table 1, and the functional bootstrapping is denoted as BS, and the keyswitch
as KS. Among the three full domain bootstrapping algorithms, TOTA [37] out-
performs other two works in terms of number of operations needed, and also the
error after the bootstrapping. However, the variance of error from the ModSwitch
nearly quadraples, and quintuples compared to other two. This can be effectively
mitigated by our EBS, without changing any of the structure of TOTA. Still, our
EBS can also be adapted to other two methods as they all inevitably bootstrap
with ModSwitch error added.

3.5 Probability of Correct Bootstrapping with EBS

As formerly mentioned, TFHE based applications usually works on plaintext
space of Zp, with p an integer [15,23,33]. Using the isomorphism between Zp

and 1
pZp, the elements m ∈ Zp is encoded as m

p ∈ T ( m
2p for half domain). Then,

to correctly bootstrap a ciphertext, both pre-bootstrap error and the error after
bootstrapping must be smaller than 1

2p . For a ciphertext whose error variance is
V and plaintext space Zp, the probability of correct decryption is estimated by

p

(
|Err (ct)| ≤ 1

2p

)
= erf

(
1

2p
√

2V

)
,

where erf is the error function. Thus, starting from the half-domain EBS with
extension factor ν, the probability of correct bootstrapping is given as

p(HDEBS) ≥ erf

⎛

⎝ 1

4p
√

2Vct + 1
22ν−1 VMS

⎞

⎠ · erf
(

1
4p

√
2VBS

)
,
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Table 1. Comparison of 3 full-domain functional bootstrapping algorithms. Here,
VMS = n+1

48N2 , Vct is the variance of error of input ciphertext ct. The BS denotes boot-
strapping, RS denotes the TLWE-to-TRLWE KeySwitch.

FDFB [24] TOTA [37] Comp [15]

Pre-bootstrap error Vct + VMS Vct + 4VMS

Vct+VBS+5VMS

Vct + VMS

VBS + VMS

# of operations (�PM + 1)-BS
+ �PM-RS
+ 1-PubMux

2-BS 4-BS

Error after Bootstrap VFDFB−ACC+VBS VBS 2VBS

Parallel Computing Partial ✗ ✓

Compatible with EBS ✓ ✓ ✓

as for successful bootstrapping, both the pre-bootstrap error, and the after-
bootstrap error must both be smaller than 1

2p . Thus, for other three bootstrap-
pings, FDFB-EBS, TOTA-EBS, Comp-EBS, we have

p(FDFB-EBS) ≥ erf

⎛

⎜
⎝

1

2p
√

2Vct +
1

22ν−1 VMS

⎞

⎟
⎠ · erf

(
1

2p
√

2VFDFB−ACC + 2VBS

)

,

p(TOTA-EBS) ≥ erf

⎛

⎜
⎝

1

2p
√

2Vct +
1

22ν−3 VMS

⎞

⎟
⎠ · erf

⎛

⎜
⎝

1

2p
√

2Vct + 2VBS + 5
22ν−1 VMS

⎞

⎟
⎠ · erf

(
1

2p
√

2VBS

)

,

p(Comp-EBS) ≥ erf

⎛

⎜
⎝

1

2p
√

2Vct +
1

22ν−1 VMS

⎞

⎟
⎠ · erf

⎛

⎜
⎝

1

2p
√

2VBS + 1
22ν−1 VMS

⎞

⎟
⎠

2

· erf
(

1

2p
√

4VBS

)

.

Then, the probability of failure is calculated by subtracting the success rate from
1, e.g., perr(HDEBS) ≤ 1 − p(HDEBS).

Remark 3. The above estimation is for when fixed-point arithmetic is used (in
which is IND-CPAD secure), using Zp as a plaintext space. Thus, the functions
are encoded in a staircase-like manner, i.e.,

∑
i f

(� p
2νN · i�) for f : Zp → Zp,

that works like a breakwater to prevent pre-bootstrap noise flooding out.

4 Experimental Results

We implemented our (HD)EBS along with the adaptation of EBS to three full-
domain bootstrappings, FDFB-EBS, TOTA-EBS, Comp-EBS. Our implementa-
tions were built upon TFHE library [12], where the torus elements T are rep-
resented as 32-bit integer, Z232 . Our experiments were executed with Intel i9-
13900K running at 5.80 GHz with 24 cores (8 performance cores, 16 efficient
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Algorithm 8: Comp-EBS (Modular)
Input: TLWE ciphertext (a, b) ∈ TLWEs (m)
Input: extension factor ν ∈ N ∪ {0}
Input: A L-Lipschitz morphism f : T → T

Input: Bootstrapping key BSK

Input: Keyswitch key KSK

Input: Plaintext modulus P
Output: Refreshed TLWE ciphertext TLWEs

(
f

(
m̂

2νN

))

1 c1 = EBS
(
(a, b), ν, 1

2P + 1
P �2νNPx� ,BSK,KSK

) − (
0, 1

2P
)

2 c2 = EBS
(
(a, b), ν, 1

2P + 1
4 + 1

P �2νNPx� ,BSK,KSK
) − (

0, 1
2P + 1

4

)

3 c3 = EBS
(
c1, ν,

f(x)−f(−x− 1
P )

2 ,BSK,KSK
)

4 c4 = EBS
(
c2, ν,

f(x)+f(−x− 1
P )

2 ,BSK,KSK
)

5 return c3 + c4

cores) and 32 threads, 128 GB RAM, and with 64-bit Ubuntu 22.04 environment.
We compiled our experiment with g++ 11.3.0 with flags -ltfhe-spqlios-fma
-fopenmp -lquadmath, using spqlios FFT in TFHE for fast polynomial mul-
tiplication, and multi-threading for our parallel EBS. The code we used for
experiment is publicly available at https://github.com/Stirling75/Extended-
BootStrapping.

4.1 TFHE Parameters

As the security of TFHE scheme has its roots in the hardness of (R)LWE prob-
lem, its security level is decided by the dimension of ciphertext (i.e., n, kN),
and its corresponding standard deviation of errors added during encryption (i.e.,
σTLWE, σTRLWE). The security of TRGSW is guaranteed by the security of TRLWE,
as it is a vector of TRLWE ciphertexts. We estimated the cost of attack models
for various instances (n, σTLWE), and (N,σTRLWE) with the lattice estimator [1].
For most of our instances, the cost of the dual-hybrid attack [17] were estimated
to be the cheapest.

In Table 2, we present eight TFHE parameter sets satisfying λ = 80, 128 bits
of security, which implies it requires at least 2λ operations for the attack models to
succeed their attacks. As can been seen from parameter set I1 and III1, T(R)LWE
ciphertexts with same dimension, decreasing the security parameter λ enables to
use small standard deviation for the error which decreases the error after boot-
strapping. Notice that for parameter sets (I1, I2, I3) and (III1, III2, III3), we used
exactly the same parameters except for the ring dimension N , to observe the effect
of using larger N . Nonetheless, the native TFHE library only supports FFT of
dimension 1024, and we made slight changes in their library to enable FFT on
dimension 2048 and 4096 to support fast polynomial multiplication.

https://github.com/Stirling75/Extended-BootStrapping
https://github.com/Stirling75/Extended-BootStrapping
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Table 2. TFHE parameter sets. λ indicates the security level of given parameter set.

Param
Set

λ TLWE TRLWE KSK BSK

n σTLWE

(log2)
N k σTRLWE

(log2)
�KS BKS �BS BBS

I1 80 750 −21.2 1024 1 −29.3 3 28 7 24

I2 80 750 −21.2 2048 1 −32 3 28 7 24

I3 80 750 −21.2 4096 1 −32 3 28 7 24

II 80 900 −25.7 2048 1 −32 5 26 7 24

III1 128 670 −12.4 1024 1 −20.1 3 25 8 23

III2 128 670 −12.4 2048 1 −32 3 25 8 23

III3 128 670 −12.4 4096 1 −32 3 25 8 23

IV 128 1300 −26.1 2048 1 −32 5 26 7 24

However, this modified FFT still uses 64-bit double with 53 bits of preci-
sion, accumulating non-negligible noise during polynomial multiplication when
N ≥ 2048. We found this inhibits exact noise analysis for cases where polynomial
multiplication over dimension N ≥ 2048 is used. Further details on noise accu-
mulation during FFT and polynomial multiplication can be found in Proposition
1 of [21].

We also describe FDFB parameters in Table 3. These parameters are only
used for FDFB and has no effect on other bootstrapping methods. Using these
parameters, FDFB runs with �PM + 1 = 6 (functional) bootstrappings, �PM = 5
RS and 1 PubMux operations.

Table 3. Parameters for RSK and PubMux for FDFB.

Parameter
Set

RSK PubMux

�RS BRS �PM BPM

I1, I2, I3 6 25 5 25

II 4 26

III1, III2, III3 4 26

IV 6 25

4.2 Performance Results

With the parameters we suggested in Sect. 4.1, we make a thorough analysis in
terms of public key size, latency, and noise.
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Public Key Size. Following the footsteps of [11], we measure the size of the
public keys (BSK, KSK, RSK) published for homomorphic operations. First we
measure the size of TLWE, TRLWE, TRGSW ciphertexts and then calculate the
size of each public keys. For example, the size of TLWE ciphertext of parameter
set I1 is (n + 1) × 32 = 24 032 bits ≈ 3.004 KB. Also, since KSK is composed of
N × �KS × BKS TLWE ciphertexts, the size of the KSK is 2.36 GB.

Likewise, we evaluate the key size for every parameter set and present the
result in Fig. 1. As we can observe from the result of parameter sets (I1, I2, I3) and
(III1, III2, III3), the key size doubles as N doubles. Still, with proper adjustment
of parameters, we can make the public key size ‘sufficiently small ’ (see BSK and
KSK of parameter I1 and II) even with large N .

Fig. 1. Public key (BSK, KSK, RSK) sizes for our parameters.

Noise Analysis. Next, we examine the variance of noise for our parameters. As
our work heavily relies on the noise estimates of variety of algorithms, we found it
necessary to show experimental validation of our estimations proposed in previ-
ous sections. We present our results in Table 4. We calculated (with label (c)) the
standard deviations with our variance estimations, and experimentally validated
it (with label (E)) by observing 215 samples for each case. For bootstrappings, we
set the test vector as identity function and calculated the standard deviations.
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For ModSwitch, we calculated two standard deviations with the conventional
VMS formula n+1

48N2 , and with the hamming weight of the TLWE key s, Ham(s)+1
48N2 .

Our result shows that the experimental error nearly corresponds to the standard
deviation calculated with the hamming weight for all cases. For bootstrapping
(including TOTA and Comp), we observe that for parameter sets I2, I3, II and IV,
their experimental bootstrapping error are larger than expected due to the non-
negligible FFT error accumulated during polynomial multiplication. Nonethe-
less, for parameter set III2 and III3, their main error standard deviations are
dominated by the keyswitching error and seems to follow the estimation well.
We provide detailed error analysis of BlindRotate and KeySwitch in Appendix
A.1, Table 5.

To only observe the output noise of each bootstrapping method, we first pre-
computed the rotated amount (during BlindRotate) for given ciphertext. Then
we bootstrapped the ciphertext with each bootstrapping methods, and then sub-
tracted the rotated test vector from the accumulator, thereby eliminating the
effect of the ModSwitch. From the result, FDFB shows larger noise standard devi-
ation compared to other bootstrapping methods due to the PubMux operation.
Moreover, from the result of Proposition 1, we claim that until LσMS, where L
is the Lipschitz constant of the function f , is larger than the output bootstrap-
ping noise standard deviation, there will be room for improvement with our EBS
(Fig. 2).

Table 4. Estimated noise standard deviation (with label (c)) and experimental noise
standard deviation (with label (E)) of ModSwitch and four bootstrapping methods. The
standard deviations are presented in the form of log2.

I1 I2 I3 II III1 III2 III3 IV

ModSwitch σ
(c)
MS −8.016 −9.016 −10.016 −8.885 −8.097 −9.097 −10.097 −8.620

Ham(s) 379 379 379 448 330 330 330 645
σ
(c,Ham)
MS −8.508 −9.508 −10.508 −9.387 −8.607 −9.607 −10.607 −9.125

σ
(E)
MS −8.509 −9.506 −10.507 −9.385 −8.601 −9.591 −10.544 −9.116

Bootstrap σ
(c)
BS −14.411 −14.855 −14.355 −16.614 −6.000 −6.107 −5.607 −16.364

σ
(E,id)
BS −14.882 −14.663 −14.033 −15.293 −6.369 −6.157 −5.654 −15.128

FDFB σ
(c)
FDFB −4.250 −4.194 −3.193 −5.951 4.161 4.554 5.554 −5.703

σ
(E,id)
FDFB −10.196 −10.010 −8.524 −9.882 −2.152 −1.830 −1.750 −9.753

TOTA σ
(c)
TOTA −14.411 −14.855 −14.355 −16.614 −6.000 −6.107 −5.607 −16.364

σ
(E,id)
TOTA −14.879 −14.639 −14.063 −15.628 −6.371 −6.160 −5.649 −14.992

Comp σ
(c)
Comp −13.911 −14.355 −13.855 −16.114 −5.500 −5.607 −5.107 −15.864

σ
(E,id)
Comp −14.581 −14.460 −13.611 −14.796 −6.163 −6.149 −5.645 −14.533
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Fig. 2. Latency for EBS with eight sets of parameters given in Table 2. The x-axis
represents ν + log2(N) for each parameter set, and the y-axis represents the latency in
milliseconds in logarithmic scale of base 2.

Benchmarks. We now present benchmarks for EBS, and precision growth when
adapted to full-domain bootstrapping methods. We first measure the latency
for computing a single conventional TFHE bootstrapping with EBS. Note that
when the extension factor ν = 0, the EBS becomes exactly same as original
bootstrapping. From the results, we can see that for non-parallelized settings
(depicted in dashed line), using N ′ = 2νN with ν > 0 is slower than using
EBS with dimension N and extension factor ν. Also, since the EBS increases the
number of external products by the factor of 2ν , it is easy to see the exponential
increase in latency with respect to the extension factor ν. For parallelized version
of EBS (depicted in solid line), we found that we lose full parallelization from
ν = 3 due to computational limitations. Thus, our results show exponential
growth after ν = 3.
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Precision. We finally turn to our major contribution of EBS, the precision
enhancement. For three full-domain bootstrapping methods we introduced, we
measured the output noise standard deviations for two functions, the identity
function (with Lipschitz constant L1 = 1) and f(x) = 43 sin(x/32) (with Lips-
chitz constant L2 ≈ 33.772) by matching the torus

[− 1
2 , 1

2

)
to [−64, 64). With the

three sigma rule, we measured the bit precision of the results and presented them
in Fig. 3 for four parameter sets I1, II, III1, IV. With the experimental results
from Table 4 and some additional experiments, we also calculated the (ideal)

Fig. 3. Experimental output precision of three full-domain bootstrapping methods
(FDFB,TOTA,Comp) with EBS evaluated with the four parameter sets I1, II, III1, and
IV. The id and sin stands for the identity function and the function f(x) = 43 sin(x/32),
by mapping the torus to [−64, 64). The x-axis represents the extension factor ν, and
the y-axis represents the output bit precision. The red dash-dot line represents the
maximum precision for each parameter and bootstrapping method.
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maximum precision of each parameter set and depicted it as a dash-dot line in
all of the figures. We noticed that the change of function (which changes the test
vector) introduces noticeable changes to the maximum precision to FDFB due
to their PubMux, but is quite negligible to other two full-domain bootstrapping
methods.

From our results, we can see for both parameter sets I1, II and IV, the
precision improvement is significantly clear for TOTA and Comp. Nonetheless,
due to the PubMux in FDFB, the maximum precision for their method is lower
than other two methods. For parameter set III1, due to its large noise standard
deviation (σTRLWE = 2−20.1) for TRGSW ciphertext (since they achieve 128 bits
of security), their output precision is quite lower than other parameter sets. In
this case, it is suggested to increase the size of N and use smaller standard
deviation, like in parameter set IV (N = 2048, σTRLWE = 2−32).

5 Conclusion

In this paper, we suggested a high precision TFHE bootstrapping algorithm EBS,
which can almost remove the affect of ModSwitch during bootstrapping. The
biggest advantage in our scheme is that it allows to bootstrap with large precision
with small public key size compared to when enlarging N . Also, EBS can be
naturally parallelized for fast computation, where no known algorithm is known
to parallelize TFHE bootstrapping. Thus, we can even bootstrap much faster
than previous literature of using large N . We show that our EBS is compatible
with both modular, and approximate arithmetic, as well as previously known
full domain bootstrapping algorithms. We also believe EBS can be one of the
solution for bridging other homomorphic encryption schemes with TFHE, by
allowing high precision, nonlinear function bootstrapping with small cost.

Acknowledgements. This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government (MSIT) (No.2022R1
F1A1074291).

A Appendix

A.1 Noise Analysis

We present detailed analysis of noise for the BlindRotate, KeySwitch, and
FDFB-ACC in Table 5. Due to the error added during polynomial multiplica-
tion (with FFT), the experimental error standard deviation for N ≥ 2048 is
larger than estimated results.
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Table 5. Estimated noise standard deviation (with label (c)) and experimental noise
standard deviation (with label (E)). The standard deviations are presented in the form
of log2.

I1 I2 I3 II III1 III2 III3 IV

Bootstrap σ
(c)
BR −14.620 −16.771 −16.271 −16.640 −6.406 −14.794 −14.295 −16.374

σ
(E,id)
BR −15.355 −15.539 −14.675 −15.297 −7.181 −11.539 −10.682 −15.129

σ
(c)
KS −15.407 −14.907 −14.407 −19.039 −6.607 −6.107 −5.607 −19.439

σ
(E)
KS −15.413 −14.910 −14.419 −19.068 −6.657 −6.157 −5.655 −19.472

σ
(c)
BS −14.411 −14.855 −14.355 −16.614 −6.000 −6.107 −5.607 −16.364

σ
(E,id)
BS −14.882 −14.663 −14.033 −15.293 −6.369 −6.157 −5.654 −15.128

FDFB σ
(c)
ACC −4.250 −4.194 −3.194 −5.951 4.161 4.554 5.554 −5.703

σ
(E,id)
ACC −10.207 −10.004 −8.546 −9.892 −2.155 −1.838 −1.751 −9.764

σ
(c)
FDFB −4.250 −4.194 −3.193 −5.951 4.161 4.554 5.554 −5.703

σ
(E,id)
FDFB −10.196 −10.010 −8.524 −9.882 −2.152 −1.830 −1.750 −9.753

A.2 Benchmarks

In this section, we present the benchmark results for our parallelized and non-
parallelized EBS along with the benchmarks for three full-domain bootstrapping
methods. Note that none of the operations except the EBS were parallelized for
fair comparison (Table 6).

Table 6. Benchmark results for EBS and three full-domain bootstrapping methods.
The NP is for non-parallelized, and P denotes parallelized results. All results are
presented in milliseconds (ms).

ν I1 I2 I3 II III1 III2 III3 IV

HDEBS NP 0 17.88 36.44 79.28 43.98 18.08 35.84 77.88 62.72
1 31.38 64.4 146.24 77.88 30.58 63.7 145.5 114.74
2 57.04 120.02 284 148.42 56.32 119.88 286.42 211.9
3 107 233.82 537.98 280.32 107.52 236.54 556.74 405.54
4 207.98 458.46 1050.92 550.52 207.48 457.56 1061.12 792.28
5 412.86 910.26 – 1088.24 414.1 904.76 – 1580.92
6 825.16 – – – 819.8 – – –

P 0 17.895 36.67 78.4 43.94 18.205 35.85 78.1 63.21
1 22.12 45.205 96.28 55.16 21.98 44.15 96.12 79.015
2 23.015 45.6 96.62 55.2 23.15 44.55 95.53 79.64
3 28.465 59.235 120.6 67.8 29.79 53.42 118.055 95.545
4 55.305 131.64 406.12 166.36 69.47 132.765 392.385 246.675
5 110.225 243.07 – 290.92 138.865 288.21 – 475.665
6 201.275 – – – 232.34 – – –

(continued)
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Table 6. (continued)

ν I1 I2 I3 II III1 III2 III3 IV

FDFB-EBS P 0 130.22 253.78 543.57 303.67 123.02 243.8 529.18 457.89
1 154.42 298.65 605.84 355.07 146.28 295.92 600.24 520.72
2 157.94 307.18 639.79 365.77 150.76 294.27 626.65 532.28
3 239.23 432.24 1016.78 478.13 193.35 443.41 957.79 821.15
4 410.85 854.58 2561.31 1012.06 438.65 833.93 2522.98 1484.04

TOTA-EBS P 0 37.98 75.1 162.64 92.84 37.15 74.9 166.33 134.13
1 44.06 88.56 191.68 113.51 45.33 91.87 193.88 157.56
2 46.77 91.86 196.31 113.15 46.52 91.47 196.84 159.61
3 83.1 134.62 275.54 155.91 59.89 131.12 307.76 258.35
4 153.99 273.6 827 330.39 139.47 268.45 822.79 474.7

Comp-EBS P 0 74.67 150.25 325.02 184.9 74.12 149.96 332.31 267.24
1 89.31 181.11 384.38 226.16 89.9 181.79 394.74 317.37
2 93.24 184.26 391.46 225.2 93.5 182.38 392.45 318.85
3 171.22 308.43 561.69 321.24 152.34 271.53 595.7 460.4
4 303.01 544.15 1650.39 657.29 281.76 541.95 1669.71 964.52
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Abstract. We initiate the study of verifiable capacity-bound function
(VCBF). The main VCBF property imposes a strict lower bound on
the number of bits read from memory during evaluation (referred to as
minimum capacity). No adversary, even with unbounded computational
resources, should produce an output without spending this minimum
memory capacity. Moreover, a VCBF allows for an efficient public veri-
fication process: Given a proof of correctness, checking the validity of the
output takes significantly fewer memory resources, sublinear in the target
minimum capacity. Finally, it achieves soundness, i.e., no computation-
ally bounded adversary can produce a proof that passes verification for a
false output. With these properties, we believe a VCBF can be viewed as
a “space” analog of a verifiable delay function. We then propose the first
VCBF construction relying on evaluating a degree-d polynomial f from
Fp[x] at a random point. We leverage ideas fromKolmogorov complexity to
prove that sampling f from a large set (i.e., for high-enough d) ensures that
evaluation must entail reading a number of bits proportional to the size
of its coefficients. Moreover, our construction benefits from existing ver-
ifiable polynomial evaluation schemes to realize our efficient verification
requirements. In practice, for a field of order O(2λ) our VCBF achieves
O((d + 1)λ) minimum capacity, whereas verification requires just O(λ).
The minimum capacity of our VCBF construction holds against adver-
saries that perform a constant number of random memory accesses during
evaluation. This poses the natural question of whether a VCBF with high
minimum capacity guarantees exists when dealing with adversaries that
perform non-constant (e.g., polynomial) number of random accesses.
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1 Introduction

Time and space complexity are functions that measure the efficiency of algo-
rithms. These two functions are related (sometimes appear in the same set-
ting) but distinct. For instance, “time” may refer to the number of memory
accesses performed by an algorithm, while “space” refers to the amount of mem-
ory needed. In general, we try to minimize these functions, i.e., an ideal algorithm
is one that is fast and tight. However, in cryptography, we are also interested in
algorithms that are deliberately slow or capacious with the idea that, if the adver-
sary must run them, the attack will be slow and costly. This has found numerous
applications, e.g., in the context of proof-of-work for distributed consensus [46],
and anti-spam mechanisms [9,27]; and password hashing or key derivations to
be used against offline brute-force [38,52].

The most prominent definitions for “space-demanding” functions proposed
in the literature are memory-hardness [2–6,19,21,49], and bandwidth-hardness
[15,54]. While they share the same initial motivation, these notions vary in their
formalization and achieved security guarantees. Memory-hardness, as originally
defined [49], guarantees a lower bound in the memory/time product required
to compute the function. Informally, a function is memory-hard if the product
of the evaluation memory cost m and time t for any adversary cannot be less
than mt ∈ Ω(n2), where O(n) is the time for an honest party. This has been
widely proposed as a countermeasure against attackers that aim to gain an unfair
advantage by using customized hardware, such as an ASIC, as it forces one
to dedicate a significant area of memory to avoid being too slow. Thus, the
cost of ASIC manufacturing would grow proportionally. Bandwidth-hardness
guarantees that the energy cost for evaluating the function does not differ much
across different platforms with variable computing energy costs (e.g., CPU vs.
ASIC). In practice, this is based on the observation that although ASICs may
have superior energy consumption for specific tasks, off-chip memory accesses
incur comparable energy costs on ASICs and CPUs. Thus, energy consumption
is enforced by ensuring a substantial amount of off-chip memory accesses.

None of these provides a strict bound on the amount of distinct bits read:
The former allows for a trade-off between memory block accesses and computing,
whereas the latter bounds the ratio of energy consumption benefits for ASIC
adversaries. A different notion, predating memory and bandwidth-hardness, is
that of memory-bound functions [1,26,28] that do impose an expected lower
bound on the number of memory accesses, expressed as cache misses.

All these notions have “symmetric” hardness in the following sense. Given a
candidate input-output pair (x, y) for function f , verifying whether f(x) = y is,
at best, achieved by evaluating f . In that sense, evaluation and checking require
the same amount of resources. In many applications, it would be desirable to
have an efficient public verification algorithm that can check the correctness of



Verifiable Capacity-Bound Functions: A New Primitive from Kolmogorov 65

an evaluation using significantly fewer resources, after the party that evaluates f
provides a proof of correctness π for y. In practice, considering a cryptographic
puzzle application [27,36,43], a challenger receiving multiple candidate puzzle
solutions from different parties should be able to verify their correctness with
much less effort than it took to compute them. Even considering egalitarian
proofs of work [12], checking the validity of a proposed evaluation with con-
siderably smaller memory requirements allows for easy validation by numerous
lightweight clients.

In the context of time-demanding functions, verifiable delay functions (VDFs)
introduced by Boneh et al. [18] achieve such a property: any observer can verify
that the computation of the function was performed correctly and can do so
efficiently. The scope of this paper is to introduce an analogous function but
for capacious/space-hungry algorithms. However, “space” or memory functions
appear to be more intricate. Indeed, space-hardness does cover the memory
needed by an algorithm for instructions, data, and inputs. Still, as discussed
above, hardness often involves a trade-off between space and time, i.e., an algo-
rithm is allowed to use more time to make up for a smaller memory footprint.

This Work: Verifiable Capacity-Bound Functions. In this work, we initi-
ate the study of verifiable capacity-bound functions (VCBF). At a high level, a
VCBF guarantees: (a) a strict lower bound m in the necessary number of distinct
bits read from memory in order to evaluate the function each time (referred to
as minimum capacity complexity), (b) a public verification process that given a
proof π can check the correctness of an evaluation by reading only o(m) bits, and
(c) soundness, i.e., no computationally-bounded adversary should be able to pro-
duce a convincing proof for an incorrect evaluation. The space notion of VCBF
differs significantly from other space-related functions: It provides a strict lower
bound on the number of distinct bits read at each evaluation of the function
(minimum capacity) even if an adversary adaptively chooses its strategy after
the function is instatiated. In addition, it does not present any time/space trade-
off on evaluation, i.e., the only way to compute the VCBF’s output is to satisfy
its minimum capacity complexity unless the VCBF is heavily precomputed. Note
that every function inevitably presents a time/space trade-off under heavy pre-
computation, e.g., evaluate the function on all inputs and store the outputs into
an ordered dictionary. This differs from other space functions [1,4,6,28,54] in
which an evaluator can tune the memory usage at the price of computing the
function in more time, even if the function has not been preprocessed.

Also, unlike the notion of asymmetric hardness [13] which allows parties with
access to a secret trapdoor to evaluate f quickly, we aim for public verifiabil-
ity. Hence, a VCBF is a publicly verifiable function that does not present a
time/space trade-off on evaluation. In that sense, it can be viewed as a space-
analog of a VDF.

ComparisonBetweenVCBFandOther “Space-Demanding”Functions.
We provide a more detailed discussion of the relation between VCBFs and other
primitives that attempt to bound the resources used when evaluating a function.



66 G. Ateniese et al.

Table 1. Comparison summary between VCBF and existing space-demanding func-
tions. We exclude from the comparison any primitive that deviates from our objectives:
(i) primitives based on heuristics or enforce memory/space usage on expectation, i.e.,
no strict lower bound on the memory/space usage (e.g., [1] and puzzle-based con-
structions [26,28]) or, (ii) primitives that require interaction (e.g., [7,29,53]). Publicly
verifiable means that the correctness of the function’s output can be publicly veri-
fied with significantly fewer space-units than evaluating the function. We use the term
“memory” to denote the total space required to evaluate the function (this does not
guarantee a lower bound on the number of bits read).

Space-unit per execution Security analysis Publicly verifiable

Code-hard functions [13] Memory Ideal cipher ✗

Memory-hard functions [4,6,49] Time/Memory trade-off ROM & Pebbling ✗

Bandwidth-hard functions [54] Time/Cache-miss trade-off ROM & Pebbling ✗

VCBF (this work) Bits read Standard �

See Table 1 for a comparison summary between VCBF and the most prominent
functions and the corresponding space flavors.

Minimum Number of Computation Steps. Such primitives provide a lower bound
on the minimum number of sequential steps necessary. Notable examples include
classic time-locked puzzles [55], key-derivation function PBKDF2 [38], and the
recently proposed verifiable delay functions mentioned above [18,50,59]. Another
related notion is proof-of-sequential-work (PoSW) [23,25,42], which is similar to
VDF except PoSW is not a function. Typically, these enforce a repeated oper-
ation (hashing or squaring in the group with an unknown order). As discussed,
our VCBF shares the same spirit as VDF but for space/energy consumption.

Minimum Number of Memory Access. As explained above, memory-bound func-
tions provide an expectation of the lower bound on the number of cache misses
for any polynomial-time bounded adversary. In [1,26] a subset of a large random
table (thus incompressible) is accessed during evaluation. However, they do not
meet our requirement of the strict capacity lower bound on the number of bits
read for each evaluation (like VDF for the time setting) since their lower bound
is only a statistical expectation.

Follow-up work [28] suggests a construction with a time/space trade-off for
the process of constructing the table from a representation, but this permits us to
easily trade memory accesses for computation workload. We stress that [26,28]
leverage a puzzle-based approach: They reach the desired number of cache misses
by evaluating the function multiple times. Hence, they cannot be considered
functions due to their puzzle-based nature (similarly to the analogy between
VDF and PoW in the time setting). Lastly, [1] leverages an inner function f
whose inverse f−1 cannot be evaluated in less time than accessing the memory.
Hence, their construction presents a time/space trade-off: A malicious adversary
may choose to involve more time to reduce the number of memory accesses.
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Code-Hard Functions. Code-hard algorithms [13] require that a minimum
amount of memory is used in order to store the code (generated using
block ciphers). This has found different applications, e.g., white box encryp-
tion [11,16,17,34] or big-key encryption [10]. The key difference between a code-
hard function and VCBF is that while a large amount of memory space must be
dedicated for storing the code-hard function, it is possible that only a small frac-
tion of those stored bits must be retrieved during evaluation (i.e., using memory
does not imply reading bits). A VCBF imposes a non-trivial strict lower bound
on bits read from memory during each evaluation.

Memory and Bandwidth-Hard Functions. These functions adaptively read/write
from/in the memory to achieve two different objectives: Memory-hard functions
require evaluators to use a large amount of memory while bandwidth-hard func-
tions produce a high number of cache misses.1 These functions [4,6,49,54] allow
adversaries to dynamically trade additional computation for reduced memory
usage on evaluation (even without precomputation); thus, they do not meet our
strict lower bound guarantee.2 Moreover, the existing formalizations are highly
reliant on the random oracle model, e.g., [54] for bandwidth hardness and [4,6,49]
for memory hardness (in the parallel random oracle model). This comes natu-
rally, as many of these works use variations of a graph-pebbling game to model
their computation, heuristically estimating the energy cost for each unit compu-
tation and memory access operations. On the other hand, our VCBF definition
does not rely on the random oracle model (this does not preclude the possibility
of specific VCBFs operating in this model). Another impact of relying on the
random oracle model is that it makes it harder to design an efficient verification
algorithm as it “destroys” any algebraic structures between inputs and outputs.

We stress that a VCBF’s lower bound in memory bits accessed can be used to
infer a lower bound in energy consumption, analogous to the motivation behind
bandwidth-hard functions. E.g., considering an ASIC-based adversary with on-
chip memory of size s bits (such as a hardware cache) a VCBF that guarantees to
access m bits from main memory imposes a u(m−s) lower energy consumption,
where u is the atomic cost for reading one bit from memory.

In a recent work [31], the first memory-hard VDF construction was pro-
posed by combining a SNARK with a parallelizable prover with a memory-
hard “sequential” function. Although this result is close in spirit with what a
VCBF tries to achieve, we do not aim for an explicit time lower bound, whereas

1 We stress that, in the setting of memory-hard functions, the term “memory” is used
to denote the number of memory blocks required to correctly evaluate (in a given
time) the function. This differs from the VCBF objective of forcing the evaluator
to read a fixed number of distinct bits (requiring n memory blocks of size w on
evaluation does not imply reading nw distinct bits since multiple memory blocks
may present a redundant pattern that may be compressed).

2 We stress that memory-hard functions present a time/space trade-off on evaluation
that varies according to the notion of memory hardness considered (e.g., time-space
complexity [49], cumulative space complexity [6], sustained space complexity [4]).
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the memory-bound we achieve is strict without leaving room for time/space
trade-offs, as explained above.

Proof of Space (PoSpace). PoSpace [7,29,53] extends memory-hard functions
with efficient verification and adopts the graph pebbling framework and the
random oracle model. The prover convinces a verifier that it consumed its space
capacity to store data while allowing for efficient verification in both space and
time. Like memory-hard functions, the PoSpace constructions can only guaran-
tee a time/space trade-off, thus cannot enforce a space lower bound. Also, the
security analysis is based on the heuristic (parallel) random oracle model.

Overview of Techniques. The main challenge in building a VCBF is finding
a function that has a natural strict lower bound on the space necessary for
evaluation while still allowing for efficient verification. Past works [2,3,5,6,15,
19,21,54] achieve the first property only on expectation (i.e., expected lower
bound) by relying on assumptions such as the random oracle or ideal cipher.
Hence, this approach fails to achieve a strict lower bound and makes it harder
to achieve the second property as it dismantles structured relations between the
function’s inputs and outputs that could be used for efficient verification.

In this work, we deviate from previous techniques significantly. To model
the inability of an adaptive space-based adversary to compute an output with-
out reading enough data from memory, we turn our attention to Kolmogorov
complexity [40], which measures the complexity (in an absolute sense) of an
object in terms of the minimum number of bits necessary to represent it. Kol-
mogorov complexity is viewed as a fundamental theory of computer science and
has been shown connected with multiple areas in cryptography [41,45,56]. (The
most recent work of Liu and Pass [41] proves the equivalence of a computational
bounded version of the Kolmogorov complexity and the existence of one-way
functions.) Somewhat more formally, the Kolmogorov complexity of object x is
the minimum number of bits needed to represent any description (T, α) where
T is a Turing machine and α is a string such that T(α) outputs x. One can view
T as an adaptive decompressing algorithm and α as a “compression” computed
adaptively from x. Based on this, our first observation is that if an algorithm
depends on an object x (e.g., x could be the description of the algorithm itself or
the algorithm’s input), then its execution cannot require reading fewer bits than
the Kolmogorov complexity of x. In that sense, Kolmogorov complexity is the
right tool for us; choosing a function with high Kolmogorov complexity readily
provides an arguably loose bound for the minimum capacity of a VCBF even in
the presence of an adaptive adversary that chooses its strategy (that determines
how memory is read and organized) after the function is instatiated (see Sect. 1.1
for a discussion about adaptive security in the space setting).

On the other hand, when building our VCBF we need to identify a function
that is amenable to verification; ideally, it should preserve an efficiently check-
able (algebraic) relation between inputs and outputs. One candidate function is
polynomial evaluation for single-variable polynomial f(X) ∈ Fp[x] of degree d

of the form f(X) =
∑d

i=0 ai · xi. The good news is that there exist numerous
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works in the literature for verifiable polynomial evaluation (e.g., [30,32,48,61]).
In order to use such a scheme for a VCBF we need to ensure it is publicly ver-
ifiable (anyone can verify it using public parameters) and publicly delegatable
(anyone can query it on an evaluation point). In our construction, we use the
lightweight scheme of Elkhiyaoui et al. [30]. Its verification process requires a
constant number of operations among a constant number of elliptic curve ele-
ments. This is important for us since we want VCBF to have verification capacity
complexity sublinear in its evaluation’s minimum capacity. Using [30], the latter
is O((d + 1)λ) whereas the former is O(λ) (where λ is the security parameter),
i.e., the gap is linear in the degree of the polynomial.

The “honest” way of evaluating polynomial f(X) is by reading its coeffi-
cients ai, so by fixing |(a0, . . . , ad)| ≥ m (where |x| denotes the bit length of
x) one would hope to get a VCBF with minimum capacity m. However, this is
not the case as every polynomial has multiple alternative representations that
an adversary may try to exploit in order to bypass the memory capacity bound.
For example, all lists of the form (x0, . . . , xd), (f(x0), . . . , f(xd)), for any choice
of d+1 distinct xi, completely determine the coefficients (a0, . . . , ad) of f(X) (by
interpolating the points). Here is where Kolmogorov complexity comes in handy:
The above evaluations and points together with a Turing machine that performs
polynomial interpolation are a valid description, in terms of Kolmogorov com-
plexity, of the coefficients (a0, . . . , ad). As a consequence, it cannot be significantly
shorter than the Kolmogorov complexity C(a0, . . . , ad) of the coefficients of the
polynomial f(X) (Theorem 5).

What remains is to find a way to sample a polynomial f(X) with high Kol-
mogorov complexity. For any large-enough set, most of its elements have suffi-
ciently high Kolmogorov complexity. Since this holds for arbitrary sets, sampling
at random from a large-enough set of polynomials guarantees that the chosen
polynomial is of high Kolmogorov complexity with high-enough probability.

As discussed above, many previous works inherently adopt non-standard
models in their definitions to capture the fact that a function is memory-heavy
(e.g., random-oracle, ideal cipher, or heuristic assumptions about graph peb-
bling). Instead, we want to base our security definition in the standard setting,
and we regard our paper on VCBF as a foundational one. Our approach is to
model adversaries as Turing machines that read (at most) a fixed number of dis-
tinct bits m (whose value is estimated using the Kolmogorov complexity) from
a precomputed memory τ of size n ≥ m (Sect. 4). We stress that it is crucial to
consider the memory of size n larger than m since an adversary can leverage a
large memory to increase its advantage ε while, at the same time, minimizing
the number m of distinct bits it must read to answer a particular challenge (for
example, it can store a large dictionary containing several evaluations of the
polynomial f(X)). However, this introduces the new challenge of estimating the
adversary’s advantage ε with respect to the memory size n: A particularly chal-
lenging task when working in the standard model with black-box access to the
adversary. In more detail, it is hard to provide a strict bound on the number of
(partial) information that can be stored in a memory of size n since their space
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requirement highly depends on the precomputation strategy (e.g., the entropy
of the precomputed values) and the encoding (e.g., memory organization, mem-
ory access patterns) that can be adaptively chosen by an adversary after some
parameters are revealed (e.g., the object to compress). Still, we show that it is
possible to give a positive, meaningful estimation of ε and n when considering
adversaries that perform a constant number v ∈ O(1) of random accesses (e.g.,
conditional jumps) in order to read discontinuous bits from memory. We dis-
cuss the formulation of our definition and our results in Sect. 4 and Sect. 5.1,
respectively.

Summary of our Contributions. Our contributions in this work can be
summarized as follows:

1. We build a cryptographic framework that combines the notion of Kolmogorov
complexity and randomized Turing machines and use it to bound the mini-
mum amount of bits required in order to evaluate a polynomial (Sect. 3).

2. We propose a formal definition of verifiable capacity-bound functions VCBFs
that captures (a) a lower bound m on the number of bits read from memory
(of bounded size) for evaluation (minimum capacity), (b) efficient verification
of outputs with minimum capacity that is sublinear in m with respect to
any malicious evaluator, and (c) soundness, i.e., no computationally bounded
adversary can produce an incorrect output that passes verification (Sect. 4).
We stress that the minimum capacity definition of VCBF (Sect. 4) signifi-
cantly changes the perspective about how adversaries are usually modeled in
cryptography. In our setting, the power of an adversary is solely dependent
on the space it uses, i.e., the adversary has unbounded computational power,
but it has limitations in the space it uses.3 In a nutshell, an adversary is only
limited to the size of available (precomputed) memory and the number of bits
it reads from it. Considering space-only adversaries requires rethinking the
meaning of adaptive security. As we will discuss next, adaptiveness refers to
the ability of choosing the precomputation strategy (that sets the memory
of the adversary) and the evaluation strategy (that sets the reading strategy
during evaluation) after the VCBF’s public parameters (i.e., the coefficients
of the polynomial) are revealed. To work with such a space adaptive setting,
Kolmogorov Complexity is essential and succeeds where any other standard
entropy measure fails (see Sect. 1.1 for a detailed discussion).

3. We propose the first VCBF construction that satisfies our definition, based on
single-variable polynomial evaluation for polynomial f(X) ∈ Fp[x] of degree
d. To achieve efficient verification, we employ the publicly verifiable and pub-
licly delegatable verifiable computation scheme of [30]. For a target minimum
capacity m ∈ O((d + 1)λ), it suffices to set the size of the polynomial to

3 Considering unbounded adversaries is fundamental in order to capture the (concrete)
strict lower bound on the number of distinct bits read that a VCBF must guarantee
(i.e., a VCBF does not present any time/bits read trade-off). We provide a more
detailed discussion in Sect. 4 and Remark 2.
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(d + 1)λ, where λ is the security parameter. Hence, to achieve large capacity
bounds, we need to set d � λ, e.g., d ∈ Ω(λc) for c > 1 constant. On the other
hand the capacity complexity of the verification is O(λ), i.e., independent of
d hence verification remains efficient (Sect. 5).

4. In the full version of this work, we provide an estimation of the concrete
parameters for our construction. For an elliptic curve group of order p of
size 1024 bits, a polynomial of size 1 GB (d = 78.20 · 105 ≈ λ2.29) guaran-
tees a minimum capacity m of 0.82 GB, even with respect to an unbounded
adversary that can spend an exponential amount of computational resources.

We stress that a target minimum capacity m of a VCBF is guaranteed only
in the presence of adversaries with a limited memory size n. As explained, the
estimation of n is a major challenge when working in the standard setting (this
work). Along this line, we initiate a fine-grained study on the memory size n
estimation according to the number v of adaptive random accesses performed
by the adversary (denoted by the set Av-access). In particular, we prove (in the
concrete setting) that the evaluation of a polynomial f(X) ∈ Fp[x] guarantees a
target capacity m ∈ O((d + 1)λ) even if an adversary A ∈ A1-access has access to
a memory whose size n is proportional to the cardinality of the input space of
the polynomial f(X), i.e., super-polynomial. Our results can be extended to the
asymptotic setting for the class AO(1)-access (Corollary 1). This result implies
the security of our construction against adversarial strategies primarily used
in practice (e.g., pre-computed dictionaries) or strategies executed on limited
devices that have a bound on the number of random accesses (e.g., for energy
efficiency) that they can perform. In Sect. 4 and Sect. 5.1, we discuss our results
in more detail.

Regarding the larger class of adversaries Aω(1)-access, the minimum capac-
ity of our polynomial-based VCBF construction deteriorates when n gets closer
to d1+δλ1+o(1) for a constant δ > 0. This is due to the work of Kedlaya and
Umans [39]: They shows how to build a data structure D of size at most
d1+δλ1+o(1) (only from the coefficients of f(X) ∈ Fp[x]) that allows them to
evaluate f(X) over any of the points. This evaluation requires reading a non-
constant number of elements from D (using ω(1) random accesses) whose total
size is at most O(log(d)s1λs2) for some positive s1, s2 ∈ O(1). Hence, the plain
evaluation of a polynomial of degree d can not guarantee a minimum capacity of
m ∈ ω(log(d)s1λs2) when an adversary A ∈ Aω(1)-access has access to a memory
of size n, close to or greater than d1+δλ1+o(1) (see Sect. 5.1 for more details).

1.1 Adaptive Security and Kolmogorov Complexity (vs. Selective
Security and Other Entropy Measures)

Here, we provide an answer to two natural questions about the meaning of
adaptive security (in the space setting) and Kolmogorov complexity. These points
significantly differentiate the techniques used in this work from previous ones.
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Adaptive Security in the Space Setting. In the standard computational
time cryptographic setting, adaptive security refers to the ability of an adversary
of changing its behavior according to the scheme’s parameters with the objec-
tive of increasing its advantage in breaking the scheme’s security. An example is
the adaptive CCA security of public encryption in which an adversary wants to
increase its advantage in distinguishing between two encryptions by adaptively
choosing both the two challenge messages and the next query for the decryption
oracle after seeing the public key and the answers received from previous decryp-
tion queries. The natural question we pose is “What does adaptive security mean
for the minimum capacity definition of VCBF?”. To give a concrete answer to
this question, it is necessary to rethink the meaning of adaptive security against
adversaries whose power is measured by solely considering the memory used/read
(as done in this work). Jumping ahead, the minimum capacity of VCBF (Sect. 4)
guarantees that an adversary needs to read at least m bits from its memory τ (of
size n) when asked to correctly evaluate the function on a random point. This
must hold even if the adversary is computationally unbounded, and it is allowed
to generate/organize its memory τ by precomputing the VCBF according to its
parameters (i.e., polynomial). In such a setting, the objective of an adversary
is to break the security of VCBF by minimizing the number of distinct bits m
read from the precomputed memory. To achieve this, an adversary may think of
changing its compression/precomputation strategy after the VCBF’s parameters
(i.e., the polynomial coefficients) are revealed.4 This is analogous to the CCA
public key encryption example in which an adversary changes its two challenge
messages after seeing the public key and the answers of the decryption oracle.
To formally define the intuitive security of VCBF (i.e., a strict lower bound on
the number m of distinct bits read), it is fundamental to cover adaptive space-
based adversaries (as described above). Indeed, if an adversary can change its
precomputation/compression strategy after seeing the VCBF’s parameters and
reduce, for example, m by log(λ) bits then the strict lower bound is not strict
anymore. For this reason, the natural definition of minimum capacity (Defini-
tion 4) requires that the function remains secure for any possible space-based
adversary sampled after the instantiation of VCBF, i.e., the precomputation
and evaluation strategy (i.e., the memory and the bits read) of the adversary
can depend on the VCBF itself. Such a model of adaptive security requires the
usage of Kolmogorov complexity (see next).

Why Kolmogorov complexity? Conventional entropy measures (including
Yao entropy that leverages the notion of compression and Shannon) consider the
incompressibility of objects only on expectation. It implicitly means that the
compression strategy does not depend on the object (i.e., our polynomial of our
VCBF construction) sampled from a distribution. The typical example is on [35,
Page 10] (quoting): “Consider the ensemble consisting of all binary strings of

4 For example, a particular (hard to guess) compressible pattern may be revealed after
the polynomial coefficients are chosen. Note that this may happen (with a certain
probability) even if the polynomial is sampled at random.
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length 9999999999999999. By Shannon’s measure, we require 9999999999999999
bits on the average to encode a string in such an ensemble. However, the string
consisting of 9999999999999999 1’s can be encoded in about 55 bits by express-
ing 9999999999999999 in binary and adding the repeated pattern 1”. Note that
the above argument applies also to the Rényi family of entropies (e.g., min-
entropy).5 The Kolmogorov complexity overcomes these limitations by consider-
ing the worst-case scenario: It measures incompressibility in an absolute sense,
i.e., the compression strategy can depend on the object. Hence, lower-bounds
derived through Kolmogorov complexity are universal, and they do not hold
only on expectation. Also, quoting [58]: “The Kolmogorov complexity of an
object is a form of absolute information of the individual object. This is not
possible to do by C.E. Shannon’s information theory. Unlike Kolmogorov com-
plexity, information theory is only concerned with the average information of a
random source”.

In the VCBF setting, these concepts translate into adaptive vs. selective secu-
rity. Kolmogorov complexity allows us to bound the minimum capacity of VCBF
in the adaptive setting in which the adversarial compression/precomputation
strategy can depend on the VCBF’s parameters (this mimic the adversarial
behavior of changing strategy after the parameters are revealed). As already
discussed, this is fundamental in order to have strict (universal) lower bound
on the number of bits m that an adversary needs to read to evaluate a VCBF.
Adaptive security remains unachievable if we consider standard entropy mea-
sures: This is because Information Theory studies the average information in
objects, i.e., compression/precomputation strategies are fixed before the object
(i.e., polynomial) is revealed/sampled. Hence, Kolmogorov complexity remains
a fundamental tool in order to deal with space-based adaptive security and, in
turn, to prove the security of our polynomial-based VCBF.

1.2 Applications of VCBF

Since VCBF can be seen as a space-analog of VDF, replacing minimum sequen-
tial steps with a minimum number of bits retrieved from memory, we believe
they can find applications in various settings where memory usage needs to be
enforced. In this direction, we describe how VCBF can be used as an energy-
consumption function to achieve fairness among ASIC and CPU participants.
We then briefly discuss other promising VCBF applications. We emphasize that
the objective of this work is to lay the foundation for VCBFs, providing an initial
study about publicly verifiable asymmetric memory/space hardness in the stan-
dard model. Naturally, depending on the application, ad-hoc properties and/or
slightly different flavors of VCBF may be required, opening interesting directions
for subsequent works.

5 This can also be seen by observing that the Rényi family of entropies is equivalent
to Shannon entropy when considering uniform distributions (as considered in this
work, e.g., polynomial’s coefficients are sampled at random).
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Energy-Consumption Function. Juels and Brainard [37] proposed client-
puzzles as a solution to mitigate denial of service attacks (the concept of cryp-
tographic puzzles can be traced back to Merkle’s key exchange [43] and Dwork
and Naor’s pricing function [27]). The general idea of such puzzles is to associate
a cost to each resource allocation request by requiring the client to complete a
task before the server performs any expensive operation, thus making large-scale
attacks infeasible. Classic client-puzzles [8,20,22,37,57] will force adversaries to
consume certain CPU cycles as the cost for attacks. However, state-of-the-art
hash engines [14,54] could be 200, 000× faster and 40, 000× more energy-efficient
than a state-of-art multi-core CPU. Hence, denial-of-service attacks may still
be feasible for ASIC-equipped adversaries, even when such client puzzles are
deployed as counter-mechanisms.

Motivated by this, we propose to replace CPU cycles with alternative
resources, i.e., energy consumption using a VCBF. Classic ASIC-resistant meth-
ods follow the memory-hard function approach, i.e., ensuring that solving the
puzzle “costs” much memory. In this manner, the cost of manufacturing an
ASIC for puzzle solving would increase proportionally to the chip area devoted
to memory. However, as argued in [54], memory hardness only partially solves the
problem since it does not address the energy aspect of ASIC advantage. Indeed,
energy consumption can be more important than the one-shot ASIC manufac-
turing cost since the corresponding cost (due to electricity consumption) keeps
accumulating with time. Hence, a function with a strict lower bound on energy
consumption, due to off-chip memory accesses enforced via VCBF, could fill in
a critical but often overlooked gap in ASIC resistance.

Our VCBF can be used as an energy-consumption function in the following
protocol between a server S and a client C:

– C contacts server S, requesting permission to use some service such as estab-
lishing TLS connection [24] or accepting an email [27].

– S returns a fresh challenge x to the client C.
– C evaluates VCBF f on x, and returns the output and proof π to S.
– The server S verifies the correctness of f(x). If the verification succeeds, it

allows C to use the service.

Jumping ahead, from Theorem 7, we can easily find a set of parameters so that
an adversary needs to invest a sufficiently large amount of energy in computing
the function. Observe that the client is required to compute the VCBF f on a
(honest) challenge x chosen by the server. Another option is to allow the client
to choose multiple challenges on its own as is usually done in client-puzzles. In
this case, it is fundamental that f can not be amortized, i.e., the puzzle’s total
energy-cost increases proportionally to the number of parallel evaluations (on
different challenges) of f . We stress that this work does not study amortization
but this is not an inherent limitation of VCBF as a primitive. Non-amortizable
VCBFs can be studied in future works.

The above protocol can be extended to blockchain systems that support
smart contracts. For example, a client C may be required to evaluate the VCBF
f on input x = H(s, t) in order to trigger the execution of a smart contract S.
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Here, inside the hash function H, we place s which is the current state of the
smart contract and t a counter used to randomize the challenge x = H(s, t) (e.g.,
t is incremented after each invocation of the contract or after a block is mined).6

In this way, an adversary is desisted from monopolizing the service offered by
the smart contract S for specific malicious purposes. For instance, if the smart
contract runs a decentralized auction system, the adversary will not be able to
produce spamming bids to delay the acceptance of valid bids from competitors.
We stress that efficient public verification is essential in blockchain systems since
verifiers, that check the correctness of executions, have limited resources.

Real-Time Services (and VCBF vs. VDF). Although VCBF and VDF are
both efficiently verifiable, there are applications in which VDFs can not be used,
whereas VCBFs can. Consider a server S that offers a real-time service in which
it is a requirement to receive requests within a precise time frame (e.g., within
1 minute). Clearly, using a VDF to block denial of service attacks is not an
option since the time required to evaluate the VDF will delay all users’ requests
and affect the quality of the real-time service. A concrete example is an auction
service: Bids must be received before the end of the auction or within a given
time frame. Hence, VCBFs offer a unique solution in scenarios in which creating
a delay is not acceptable.

The Filecoin Network. Protocol Labs is working on Filecoin [51], a
blockchain-based decentralized storage system that has gathered much visibil-
ity in the last few years (it raised over $250 million through an ICO in 2017).
In Filecoin, miners earn coins by offering their storage to clients interested in
storing and replicating files. The mining power in Filecoin is proportional to the
active storage offered by a miner. Thanks to its public and capacity efficient
verification, a VCBF can play an important role in improving proof of useful
space (a fundamental primitive in the Filecoin protocol), i.e., a primitive that
allows miners to prove that they are using a significant amount of space to store
(multiple) files. In particular, Filecoin is interested in designing a proof of useful
space in the cost model [44]. However, a common problem of proof of useful space
constructions (e.g., [33]) is the possibility of trading space for computation: An
evaluator may erase some data and reconstruct it on the fly when needed. A
VCBF can tremendously improve proof of useful space by enforcing rationality
during the computation when working in the cost model (e.g., by replacing the
RO with a VCBF in graph-labeling based constructions). For example, the min-
imum capacity of VCBFs may increase the costs (e.g., energy consumption) of
regeneration of the erased data. This encourages evaluators to store the data in
its entirety. Also, the VCBF public verification does not introduce any additional
cost to verifiers with minimal resources in terms of space and energy.

6 The challenge x = H(s, t) has this format since smart contracts cannot generate
secret randomness to sample a random challenge.
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2 Preliminaries

Notation. We assume the reader to be familiar with standard cryptographic
notation.

2.1 Publicly Verifiable Computation for Polynomial Evaluation

A publicly verifiable computation scheme (VC) for polynomial evaluation allows
a client to outsource the computation of a polynomial f to an untrusted server.
We are interested in VC schemes that are both publicly delegatable and publicly
verifiable. The former allows any querier to submit input to the server, while
the latter allows any verifier to check the computation’s correctness. Formally,
a VC scheme for a family of polynomials F with input space X is composed of
the following algorithms:

Setup(1λ, f): Upon input the security parameter 1λ and a polynomial f ∈ F ,
the randomized setup algorithm returns the evaluation key ekf and the ver-
ification key vkf for the polynomial f .

ProbGen(vkf , x): Upon input the verification key vkf for a polynomial f ∈ F
and an input x ∈ X , the deterministic problem generation algorithm outputs
an encoding σx and the verification key vkx for the input x.

Compute(ekf , σx): Upon input the evaluation key ekf for a polynomial f ∈ F
and an encoding σx for input x ∈ X , the deterministic computation algo-
rithm returns a value y and a proof πy.7

Verify(vkx, y, πy): Upon input the verification key vkx for an input x ∈ X , a
value y ∈ Y, and a proof πy, the deterministic verification algorithm returns
a decisional bit b.

Correctness of a publicly VC scheme captures the fact that an honest execution
of the computation to evaluate a polynomial f ∈ F on input x ∈ X produces
the correct output y = f(x) along with a proof πy that correctly verifies. As for
security, a malicious evaluator cannot convince an honest verifier that y∗ �= f(x∗)
is the correct evaluation of f(x∗) on an arbitrary input x∗ ∈ X (soundness). For
the formal definitions, we refer the reader to [30].

In this work, we are interested in single-variable polynomials f(X) ∈ Fp[x] of
degree d of the form f(X) =

∑d
i=0 ai · xi. An example of such a VC scheme has

been proposed by Elkhiyaoui et al. [30]. It uses an asymmetric bilinear pairing
e : G1 × G2 → GT where G1,G2, and GT are groups of prime order p, and its
security follows from the (d/2)-Strong Diffie-Hellman assumption ((d/2)-SDH).

VC schemes allow verifiers to check the computation’s correctness more effi-
ciently than the work required to evaluate the polynomial honestly. By leverag-
ing the (d/2)-SDH assumption, the publicly VC scheme proposed in [30] yields
a constant time O(1) verification. This gives to our VCBF an efficient capacity
verification when using the VC scheme of Elkhiyaoui et al. [30] (see Sect. 5.1).
7 We explicitly detached y from its proof πy. Several works define the output of the

computation algorithm Compute as a singleton σy (the encoding of the output y)
defined as σy = (y, πy).
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2.2 Kolmogorov Complexity

The Kolmogorov complexity [40] aims to measure the complexity of objects in
terms of the minimum amount of bits required to represent them. We say that
(T, α) is a (possibly inefficient) description of a string x ∈ {0, 1}∗ (in terms of
algorithmic complexity) if T(α) = x. We can look at T as a decoding algorithm
and α ∈ {0, 1}∗ as an encoding of x. The minimum amount of bits needed to
represent a fixed bit string x is measured by the Kolmogorov complexity CT(x).
In more detail, the Kolmogorov complexity CT(x) of a bit string x ∈ {0, 1}∗ with
respect to a deterministic Turing machine T (called reference Turing machine)
is defined as CT(x) = min

α∈{0,1}∗
{|α| : T(α) = x}. Similarly, the conditional Kol-

mogorov complexity measures the complexity of x given some auxiliary infor-
mation y ∈ {0, 1}∗, i.e., CT(x|y) = min

α∈{0,1}∗
{|α| : T(〈α, y〉) = x} where 〈a, b〉

denotes the self-delimiting coding of strings a and b.8 The above definitions of
Kolmogorov complexity are known as plain Kolmogorov complexity. The name
comes from the fact that no constraints are put on the input α of the Turing
machine T. Another type of complexity, called prefix-free Kolmogorov complex-
ity [40, Sect. 3], focuses only on prefix-free programs, i.e., Turing machines that
only take in input strings encoded in a prefix-free fashion. In this work, we focus
on the plain version, and we refer the reader to [40, Sect. 3] for a more detailed
discussion about the prefix-free version.

The definition of plain Kolmogorov complexity can be made independent
from the reference Turing machine. Indeed, Turing machines are enumerable.
The code of any Turing machine T can be interpreted as a binary string i.9

Therefore, we can define a universal Turing machine U as U(i, α) = Ti(α). In
other words, U simulates all possible computations that Turing machines perform
by taking in input α ∈ {0, 1}∗ and the code i of the i-th Turing machine Ti and
executes the computation Ti(α). Based on this observation, it has been proved
that the Kolmogorov complexity with respect to different Turing machines is
invariant only up to a constant that depends on the reference Turing machine.

Theorem 1 (Invariance Theorem [40, Theorem 2.1.1]). There is a uni-
versal deterministic Turing machine U such that for any deterministic Turing
machine T, there is a constant cT that only depends on T, such that for any
string x, y ∈ {0, 1}∗ we have CU(x) ≤ CT(x) + cT.10

Since the choice of the reference Turing machine does not significantly change
the Kolmogorov complexity of any string, we express the Kolmogorov complexity
using the universal Turing machine U as a reference machine.

Definition 1. The Kolmogorov complexity of a string x is defined as C(x) def=
CU(x) and C(x|y) def= CU(x|y) for the universal Turing machine U.
8 As we will discuss later, Kolmogorov Complexity considers constant-size Turing

machines. This requires the use of a self-delimiting code to encode multiple inputs.
9 Note that not all binary strings are valid Turing machines.

10 The constant cT corresponds to the self-delimiting description of the Turing
machine T.
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It is fundamental to restrict the definition of Kolmogorov complexity to constant-
size Turing machines in order to rule out any ambiguity. Indeed, as mentioned
in [40, Sect. 2.1.4], by removing the size constraint of T, it is possible to assign
low complexity to any string by simply selecting a reference Turing machine with
large complexity (i.e., hardcode the string into the code of the Turing machine).
Still, the size constraint does not reduce the number of languages recognizable by
a Turing machine. For example, it was shown the existence of a universal Turing
machine with 15 states, 2 symbols, and 30 state-symbol product (transition
function) [47,60], with a polynomial slowdown of O(t6).

String Incompressibility. A crucial notion derived from the Kolmogorov com-
plexity is the incompressibility of a string [40, Definition 2.2.1] with respect to
unbounded deterministic Turing machines.

Definition 2 (Deterministic c-incompressibility [40, Definition 2.2.1]).
A string x ∈ {0, 1}∗ is c-DET-incompressible if C(x) ≥ |x| − c.

We will refer to the above definition as deterministic c-incompressibility (c-DET-
incompressibility in short) since it covers deterministic Turing machines, i.e., the
reference Turing machine of the Kolmogorov complexity is deterministic.

The following theorem provides a lower-bound on the number of c-DET-
incompressible elements in a given set X .

Theorem 2 ([40, Theorem 2.2.1]). Let c ≥ 0 be a positive constant. For each
y ∈ {0, 1}∗, every finite set X of cardinality m has at least m(1 − 2−c) + 1
elements x ∈ X such that C(x|y) ≥ log(m) − c.

By leveraging Theorem 2, we can easily calculate the probability of sampling a
c-DET-incompressible string from X . The proof is deferred to full version.

Theorem 3. Let X be a finite set of cardinality m, then the following probability
holds: Pr[x is c-DET-incompressible | x ←$ X ] ≥ 1 − 2−c + 1/m.

String Incompressibility in the Randomized Setting. In cryptography, we
deal with randomized adversaries represented by randomized Turing machines.
However, the c-DET-incompressibility only covers deterministic Turing machines
since the reference Turing machine (used to measure the Kolmogorov complex-
ity) is deterministic. Accordingly, we extend the notion of incompressibility to
randomized Turing machines.

Definition 3 (Randomized (c, �rnd)-incompressibility). A string x ∈
{0, 1}∗ is (c, �rnd)-RND-incompressible if for all constant-size unbounded ran-
domized Turing machine T with randomness space {0, 1}�rnd , for all r ∈
{0, 1}�rnd , and for all α ∈ {0, 1}|x|−c−1, we have Pr[T(α; r) = x] = 0.

Naturally, there is an obvious connection between the two definitions of incom-
pressibility. Indeed, the randomness of a randomized Turing machine can be seen
as part of the input of a deterministic one. The following Theorem 4 reports the
formal result, whose proof is deferred to full version.
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Theorem 4. Let x ∈ {0, 1}∗ be a string. If x is c-DET-incompressible (Def-
inition 2) then x is (c′, �rnd)-RND-incompressibile (Definition 3) where c′ =
c + �rnd + 2 log(�rnd) + 1 + O(1).

The factor �rnd + 2 log(�rnd) + 1 is due to the need of using a self-delimiting
δ-encoding (Elias delta coding) to encode the randomness r ∈ {0, 1}�rnd . Also,
the relation between the two incompressibility definitions is up to a constant
O(1) because of the invariance theorem (Theorem 1), i.e., any equality holds up
to a constant factor.

3 Kolmogorov-Bound for Polynomial Evaluation

At each evaluation, a VCBF scheme forces the evaluator to read at least m dis-
tinct bits from its main memory. To achieve this functionality, our construction
leverages a single variable polynomial f(X) =

∑d
i=0 ai · xi ∈ Fp[x] of degree d.

Intuitively, on receiving a challenge x ∈ {0, 1}�in , an honest evaluator needs to
read the coefficients (a0, . . . , ad) ∈ F

d+1
p that determine the polynomial f(X)

in order to compute y = f(x). In this case, we obtain the desired functional-
ity by setting |(a0, . . . , ad)| ≥ m. However, a malicious evaluator may find an
alternative strategy to compute y = f(x) and read fewer than m bits. In this
section, we prove the lower bound on the number of bits read during the poly-
nomial evaluation by leveraging the Kolmogorov complexity. Next, we provide
some examples of strategies a malicious evaluator could adopt:

1. Compress the coefficients (a0, . . . , ad) into a smaller string α. In this way, the
evaluator just needs to read α, decompress it into (a0, . . . , ad), and evaluate
f(X) on the desired point x.

2. Precompute a dictionary T
def= (f(x0), . . . , f(xn)) composed of the evaluation

of f(X) on points (x0, . . . , xn). By accessing T , the malicious evaluator can
simply read and return yi = f(xi) if the challenge xi is one of the precomputed
points. In this case, the malicious evaluator reads only |yi| ≤ |p| < m.

3. Instead of storing (a0, . . . , ad), the evaluator may choose to store d + 1 arbi-
trary points (x0, . . . , xd), the corresponding evaluations (f(x0), . . . , f(xd)),
and the prime p. These pieces of information are enough to recover a via
polynomial interpolation. As a result, if the expression of (f(x0), . . . , f(xd)),
the points (x0, . . . , xd) and the prime p could be effectively compressed, the
evaluator will read fewer bits than expected when evaluating the polynomial.

To estimate the bits that an adversary/algorithm needs to read to evaluate f(X)
correctly, we built a bridge between the Kolmogorov complexity and polynomial
evaluation. Our approach is based on two main observations.

First, any string a (of appropriate size) can be encoded into f(X) =
∑d

i=0 ai ·
xi by setting its coefficients to different sub-portions of a. Let p be a prime of
size λ+1 bits. We can interpret a string a ∈ {0, 1}(d+1)λ as a = a0|| . . . ||ad where
ai ∈ Fp (i.e., |ai| ≤ λ < |p|) and use (a0, . . . , ad) as the coefficients of f(X).

Second, if algorithm T is able to compute (f(x0), . . . , f(xd)) taking in input
a string α and the challenge d points (x0, . . . , xd), then (T, 〈α, x0, . . . , xd〉) is



80 G. Ateniese et al.

a valid description of (f(x0), . . . , f(xd)). As explained in Item 3, the tuples
(f(x0), . . . , f(xd)), (x0, . . . , xd), and the prime p, are enough to reconstruct
(a0, . . . , ad) (i.e., the prime’s size λ + 1 guarantees the encoding is injective).

By combining the above two observations, we can easily lower bound the size
of α with the Kolmogorov complexity C(a) of a. In more detail, consider a Tur-
ing machine T′ that first executes T(α, x0, . . . , xd) to compute f(x0), . . . , f(xd),
and then retrieves and return a via polynomial interpolation. This implies that
(T′, 〈p, α, x0, . . . , xd〉) is a description of a. As a consequence, the size of α (the
string that T would read to compute (f(x0), . . . , f(xd))) cannot be too small
and must be related to the complexity C(a) of a. Below, we provide the formal
result whose proof is included in the full version of this work.

Theorem 5 (Kolmogorov-bound for (adaptive) Polynomial Evalua-
tion). For any λ ∈ N, let a ∈ {0, 1}(d+1)λ be a binary string and p a prime
of size λ + 1, respectively. Fix the polynomial f(X) =

∑d
i=0 ai · xi ∈ Fp[x]

of degree d with input space {0, 1}�in where a = a0|| . . . ||ad and ai ∈ Fp

for i ∈ [d]. If a is (c′, �rnd)-RND-incompressible (Definition 3), then for
every constant-size randomized unbounded Turing machine T with randomness
space {0, 1}�rnd , every α ∈ {0, 1}m, every r ∈ {0, 1}�rnd , and every tuple
(x0, . . . , xd) such that ∀

i�=j
i, j ∈ {0, . . . , d}, xi �= xj and xi ∈ {0, 1}�in , we have

Pr[(f(x0), . . . , f(xd)) = T(α, x0, . . . , xd; r)] = 0 where m = (d + 1)(λ − �in −
2 log(�in) − 1) − c′ − λ − 2 log((d + 1)λ − c′) − 2 log(λ + 1) − 4.

An alternative way to interpret Theorem 5 is that any possible description (T, α)
of f(X) is bigger than the parameter m (defined in Theorem 5). Also, note
that Theorem 5 presents a loss factor that is proportional to (d + 1)�in. This
because each of the d + 1 points may be correlated with the coefficients of f(X)
(i.e., each point xi is equal to the first �in bits of ai). The correlation may reduce
the number of bits that must be read to compute the evaluations.

Lastly, we stress that Kolmogorov complexity permits us to prove Theorem 5
under the universal quantification of any d + 1 evaluation points and any adver-
sarial strategy (i.e., any memory α and evaluation strategy T) selected after the
polynomial. This is essential in the adaptive space-based setting (Sect. 1.1) in
which we want to estimate the size of information generated/read w.r.t. an arbi-
trary precomputation of the polynomial. Indeed, the precomputation adopted by
an adversary may depend on both the polynomial and an arbitrary distribution
of the evaluation points (e.g., dictionary attack). This aspect is fundamental to
prove the adaptive security of our VCBF (see Sect. 4 and Sect. 5.1).

4 Definition of Verifiable Capacity-Bound Functions

A VCBF forces an evaluator to read at least m distinct bits from its main
memory. Moreover, a VCBF does not permit to trade time for capacity, i.e., an
evaluator is forced to read m distinct bits independently from its computational
capabilities. As explained in [53], the number of off-chip memory accesses impacts
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the energy consumption of the machine. If the cache’s size is significantly smaller
than m, evaluating the function requires significant resources. However, on the
(honest) receiver’s side, the validity of the computation can be verified efficiently
in terms of capacity.

Formally, a VCBF scheme Π with input space {0, 1}�in is composed of the
following polynomial-time algorithms:

Setup(1λ, 1k): Upon input the security parameter 1λ and the capacity param-
eter 1k (the capacity parameter 1k regulates the actual capacity cost, i.e.,
the number of bits read by the evaluator), the randomized setup algorithm
returns the evaluation key ek and the verification key vk.

Eval(ek, x): Upon input the evaluation key ek and an input x ∈ {0, 1}�in , the
deterministic evaluation algorithm returns the output y and a proof π. In the
paper, we use the notation y = Eval(ek, x) (or simply Eval(ek, x)) to denote
solely the output y.

Verify(vk, x, y, π): Upon input the verification key vk, an input x ∈ {0, 1}�in , an
output y, and a proof π, the deterministic verification algorithm returns a
decisional bit b.

Intuitively, a VCBF scheme is correct if the output of an honest execution of
the evaluation algorithm is accepted by the verification algorithm. In addition,
a VCBF scheme should satisfy the following three basic properties: minimum
capacity, soundness and capacity efficient verification.

Adaptive Minimum Capacity. The name captures the scheme’s lower-bound
on the number of distinct bits m that must be fetched from the main memory to
evaluate the function. In more detail, on input a random challenge x ←$ {0, 1}�in ,
the adversary A is asked to return the correct output y = Eval(ek, x) while
reading at most m bits from its main memory. We assume the main memory of
A is bounded since there is a strict relationship between the memory available
and A’s advantage ε. Indeed, as discussed in Sect. 3, a viable adversarial strategy
is to precompute a relatively large dictionary τ = (Eval(ek, x1), . . . ,Eval(ek, xn))
(stored in the main memory) and return Eval(ek, x), if x has been precomputed
and included into τ . A larger memory would allow the adversary to store more
precomputed values Eval(ek, xi), thus increasing the probability of success.

More formally, let τ ∈ {0, 1}n and x ∈ {0, 1}�in be the binary string repre-
senting the memory of the adversary A and a challenge, respectively. We denote
with IA(τ,x;r) = {i1, i2, . . . , in′}n′≤n the ordered set of n′ distinct indexes read
by A during the computation of the output y = A(τ, x; r) for the corresponding
challenge x while having access to memory τ and randomness r ∈ {0, 1}�rnd .
Intuitively, on input the challenge x and randomness r, the adversary A fetches
the binary string τx,r = bi1 || . . . ||bin′ from τ (where bi represents the i-th bit of τ
and IA(τ,x;r) = {i1, i2, . . . , in′}) and then compute the output y using the knowl-
edge of τx,r, x, and r.11 A VCBF scheme is secure in the adaptive setting if for
11 Observe that τx,r can be fetched from τ in an adaptive fashion according to the

challenge x and randomness r.
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any unbounded adversary sampled after VCBF’s instiantiation (i.e., execution of
Setup) it is infeasible to compute the correct output Eval(ek, x) �= y = A(τ, x; r)
when reading |IA(τ,x;r)| = m bits.12

Definition 4 ((Adaptive) Minimum Capacity of VCBF). Fix the keys
(ek, vk) ←$ Setup(1λ, 1k). A VCBF scheme Π with input space {0, 1}�in satisfies
(ε,m, �rnd, n)-min-capacity with respect to keys (ek, vk) if for all constant-size
unbounded randomized adversaries A with randomness space {0, 1}�rnd and for
all τ ∈ {0, 1}n, we have:

Pr[Eval(ek, x) = y ∧ |IA(τ,x;r)| = m
∣
∣
∣x ←$ {0, 1}�in , y = A(τ, x; r) ] ≤ ε, (1)

where r ←$ {0, 1}�rnd .

Informally, Definition 4 states that if a VCBF scheme Π satisfies (ε,m, �rnd, n)-
min-capacity then the only way for an (exponential time) adversary A to increase
its advantage ε is to either read more than m distinct bits or have access to a
memory larger than n bits (e.g., by storing in the memory τ ∈ {0, 1}n more pre-
computed values). This guarantees the impossibility of trading time for capacity.

Note that the evaluator must return the correct output y = Eval(ek, x) and
not a verifying proof π. The infeasibility of computing a verifying proof for a
false output is defined by the soundness property (see next Definition 6). The
choice of defining these two properties independently allows us to define them
with respect to different settings, i.e., unbounded vs. computational adversaries.
As mentioned above, defining adaptive minimum capacity in the unbounded
setting is necessary to properly capture the absence of time/bits read trade-offs.
See Remark 2 for more details.

Moreover, the definition captures the adaptive space-based setting described
in Sect. 1.1. This is because the quantifiers of the security definition states that
the VCBF remains secure for any memory τ and adversary A both selected after
the VCBF’s instantiation (i.e., Setup algorithm). Intuitively, each τ (resp. A)
represents an arbitrary precomputed memory (resp. arbitrary evaluation/reading
strategy) that can depend on ek and vk (e.g., polynomial’s coefficients).
Relation between the memory size n and the advantage ε. Definition 4 is optimal
in the sense that it does not put any constraint on the indexes IA(τ,x;r) read
by the adversary A. This means that A can arbitrarily access its memory. For
example, it may perform multiple random accesses to the memory τ , i.e., perform
one or more conditional jumps into specific memory indexes to read different
portions of the memory). Hence, one (or more) couple of progressive indexes
{ij , ij+i} ⊂ IA(τ,x;r) may be not consecutive (i.e., |ij − ij+1| > 1).

The optimality of Definition 4 appears to be the primary (apparently insur-
mountable) obstacle when trying to relate the memory size n and the advan-
tage ε. To retain an advantage ε, an adversary A may choose to store (in the
12 Without loss of generality, we assume the adversary reads exactly m bits since the

higher the number of bits read, the higher the probability to compute the correct
output y = Eval(ek, x).
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memory) a precomputed data structure which contains (possibly partial) pre-
computed values, e.g., some evaluations y = Eval(ek, xi) of a subset of inputs
X ⊂ {0, 1}�in (precomputed dictionary). However, the estimation of the mem-
ory size n (required to store the data structure) highly depends on what type of
precomputation is performed (e.g., the entropy of the precomputed values, the
algorithm used, etc.) and on the type of encoding and memory access strategy
used by A when fetching the data from memory τ to answer to an incoming chal-
lenge x. Unfortunately, this turned out to be a primary challenge when having
block-box access to A and working in the standard setting (i.e., no oracles, no
idealized functionalities, no ROM).

As a foundation paper of VCBF, we initiate a fine-grained study regarding
the level of minimum capacity that can be achieved according to specific classes
of adversaries. In particular, we provide a feasibility result showing (in the con-
crete setting) the meaningful relation between parameters ε and n (using an
information-theoretic approach) when dealing with the smaller class of adver-
saries A1-access. Such a class is composed by all the adversaries that perform
exactly one (adaptive) random access to the memory τ , i.e., on input the mem-
ory τ ∈ {0, 1}n, the challenge x ∈ {0, 1}�in , and randomness r ∈ {0, 1}n, an
adversary A ∈ A1-access adaptively jumps to an index i ∈ [n − m + 1] (mem-
ory location) and reads m consecutive indexes. Formally, when dealing with
A ∈ A1-access, the indexes IA(τ,x;r) = {i1, . . . , im} read by A are consecutive, i.e.,
ij + 1 = ij+1 for j ∈ [m − 1].13 Observe that in A1-access we can identify sev-
eral adversarial strategies used mainly in practice, e.g., precomputed dictionary
attacks or any rainbow table technique that leverages a single adaptive random
access.

As we will see during the security analysis of our construction (Sect. 5.1),
by restricting the adversaries to the ones of the class A1-access, we can use a
counting argument to concretely estimate the memory size n that an adversary
A ∈ A1-access requires in order to retain a fixed advantage ε. For completeness,
we also include the results regarding the class Av-access for 1 ≤ v ≤ m, i.e., adver-
saries that perform exactly v (adaptive) random access to the memory (observe
that Definition 4 coincides with Definition 5 when A =

⋃m
i=1 Ai-access). However,

due to the limited power of counting arguments, the memory size estimation n
presents an exponential loss proportional to the number v of random accesses
that A ∈ Av-access performs. In any case, this is enough to show that there exists
a VCBF that satisfies (negl, O((d+1)λ), o((d+1)λ), ω(λs))-min-capacity (in the
asymptotic setting) with respect to the class of adversaries AO(1)-access for every
positive constant s. Regarding Aω(1)-access, the minimum capacity of our con-
struction remains unclear. What we know is that the evaluation of a polynomial
can not satisfy minimum capacity for ε ∈ negl and m ∈ ω(log(d)s1λs2) (for some
positive s1, s2 ∈ O(1)) when n is close to or greater than d1+δλ1+o(1) (for a
constant δ > 0) because of the efficient data structure for polynomial evaluation

13 Without loss of generality, we assume that reading the first m bits of τ requires the
adversary to perform a random access to the first index of τ .
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of Kedlaya and Umans [39] (see Sect. 5.1). We now provide the formal security
definition of minimum capacity with respect to a specific class of adversaries A.

Definition 5 (A-class (adaptive) minimum capacity of VCBF). A VCBF
scheme Π with input space {0, 1}�in satisfies (ε,m, �rnd, n)-min-capacity with
respect to the class of adversaries A if Π satisfies (ε,m, �rnd, n)-min-capacity
of Definition 4 where A is sampled from A.

Remark 1. The Definitions 4 and 5 give robust guarantees in terms of capacity
(according to the corresponding class of adversaries). For example, they consider
unbounded adversaries and the minimum capacity must hold for every possible
adversary A and memory τ after the instantiation of the scheme (execution of
the setup algorithm). This corresponds to the adaptive space-based security set-
ting described in Sect. 1.1. Also, there is a more fundamental aspect to consider
regarding Definitions 4 and 5: They do not rely on any heuristic assumptions,
such as the Random Oracle (RO) or the Ideal Cipher [21], to measure the num-
ber of read bits. In fact, previous definitions of bandwidth-hard or memory-hard
functions [2–6,15,19,21,54] do not directly measure the bits read by the eval-
uator. Instead, those models only calculate the number of the random oracle
queries for each step. Therefore, the gap between RO queries and the actual
number of bits read by the evaluator is artificially ignored in previous models.
Finally, we stress that both RO and Ideal Cipher definitions neglect (and do not
take into account) the adversary’s strategy in organizing and accessing specific
portions of the memory: A fundamental aspect that needs to be considered when
proving specific concrete memory bounds (in the standard model) for VCBFs.

Soundness. Soundness captures the infeasibility of convincing the verifier that
y∗ �= Eval(ek, x) is the correct output of the computation. In more detail, it is
infeasible for a malicious evaluator to compute a triple (x∗, y∗, π∗) that verifies
successfully, but y∗ is not the correct output of the computation. Soundness is
also fundamental to enforce the (ε,m, �rnd, n)-min-capacity (Definitions 4 and 5)
of a VCBF scheme. For example, if soundness does not hold, a malicious evalua-
tor can deceive the verifier by returning a proof π∗ and an output y∗ �= Eval(ek, x)
such that Verify(vk, x, y∗, π∗) = 1. In this case, the energy consumption is not
guaranteed since the value y∗ is incorrect and may have been computed without
fetching any bit from the main memory.

Definition 6 (Soundness of VCBF). A VCBF scheme Π with input space
{0, 1}�in is (ε)-sound if for all PPT adversary A we have:

Pr[
Verify(vk, x, y, π) = 1 and

Eval(ek, x) �= y

∣
∣
∣
∣
(ek, vk) ←$ Setup(1λ, 1k)
(x, y, π) ←$ A(1λ, ek, vk) ] ≤ ε.

Remark 2 (On the combination of minimum capacity and soundness). Formal-
izing adaptive minimum capacity (Definitions 4 and 5) and soundness (Defini-
tion 6) separately allows us to define these notions with respect to two distinct
settings, i.e., unbounded adversaries vs. computational bounded adversaries. In
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turn, minimum capacity with respect to unbounded adversaries is fundamen-
tal to capturing the (concrete) strict lower bound on the number of distinct
bits guaranteed by a VCBF. This is because the unbounded setting guaran-
tees that the lower bound must be satisfied independently of the running time
of the adversary, i.e., trading time for bits read is infeasible. Observe that the
computational bounded version of minimum capacity does not guarantee the
absence of a time/bits read trade-off. For example, a VCBF presenting an expo-
nential trade-off (e.g., a PPT adversary can choose not to read a few bits at the
cost of doubling its running time) may satisfy, asymptotically speaking, com-
putational minimum capacity. However, the concrete lower bound would not be
strict since the adversary can play with the gap allowed by the trade-off (this
is not allowed when considering minimum capacity w.r.t unbounded adversaries
as in our results). This is problematic when the VCBF is instantiated in prac-
tice since it makes the capacity bound less clear. For this reason, we chose to
formalize these notions separately instead of being combined into a single one
with respect to computational bounded adversaries. Naturally, since we consider
computational soundness, the final security of the VCBF holds only against
computationally bounded adversaries (unless we drop the VCBF’s efficient ver-
ification). Still, we emphasize once again that unbounded minimum capacity
is fundamental since it guarantees the absence of a trade-off with which the
(computationally bounded) adversary could play with. Lastly, it may seem that
another natural approach is to combine minimum capacity and soundness into a
single definition that considers unbounded adversaries. Unfortunately, this is not
possible since a VCBF that has a capacity efficient verification (see next Defini-
tion 7) cannot satisfy, at the same time, both minimum capacity and soundness
with respect to unbounded adversaries (soundness with respect to unbounded
adversaries is also known as perfect soundness, i.e., it does not exist a valid proof
for a false statement/output). This is because an exponential adversary always
exists that brute-forces all pairs of proofs and outputs until it finds the one
that verifies. By leveraging perfect soundness, the adversary is guaranteed that
the corresponding output is the correct VCBF’s evaluation. This attack only
requires reading the VCBF’s verification key vk, whose size must be sublinear in
the VCBF’s minimum capacity m. This is required to satisfy capacity efficient
verification (see next Definition 7).

Capacity Efficient Verification. The resource considered by VCBFs is the
capacity since an evaluator is forced to read m distinct bits from its main mem-
ory. The verifier, on the other hand, should not have the same workload. For
this reason, we require a VCBF scheme Π to be efficiently verifiable:

Definition 7 (Capacity Efficient Verification of VCBF). If Π satisfies
(ε,m, �rnd, n)-min-capacity (either Definition 4 or Definition 5) then an honest
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execution of the verification algorithm requires at most fetching o(m) bits from
the memory (i.e., sublinear in m).14

In particular, in this work, the capacity parameter is of the form m ∈ O((d+1)λ)
where d is the degree of a polynomial f(X) =

∑d
i=0 ai · xi ∈ Fp[x] and λ + 1

is the size of the prime p. As we will see, to reach high capacities (such as GB
or even TB), for a fixed λ we will have to set d ∈ O(λc) for a constant c ≥ 1.
Nevertheless, the verification will be independent of d by leveraging the publicly
VC scheme of Elkhiyaoui et al. [30]. Hence, we will obtain at least O(λc+1)
of min-capacity for the evaluation, and at most O(λ) of min-capacity for the
verification (see Sect. 5.1).15

On Energy Consumption. A motivation for VCBFs is ASIC resistance. State-
of-the-art hash engines [14,54] could be 200, 000× faster and 40, 000× more
energy efficient than multi-core CPUs. However, the energy consumption for off-
chip memory accesses is similar for CPUs and ASICs [54]. If we assume the ASIC
can hardcode only s bits, min-capacity guarantees that the ASIC will transfer at
least m − s bits from the external memory during the evaluation. If the energy
cost is u nJ per bit for external memory accesses, the evaluation of the VCBF
costs at least u(m − s) nJ.

5 VCBF from VC for Polynomial Evaluation

In this section we show how to build a VCBF from VC for polynomial evaluation.

Construction 1. Let Fλ,d,p = {fa(X) =
∑d

i=0 ai · xi mod p}a∈{0,1}(d+1)λ be
an ensemble of polynomials where a = a0|| . . . ||ad, λ ∈ N, d ∈ N, and p is a
prime of λ + 1 bits. Let VC = (SetupVC,ProbGenVC,ComputeVC,VerifyVC) be a
publicly VC scheme for the class Fλ,d,p. We build a VCBF scheme with input
space {0, 1}�in in the following way:

Setup(1λ, 1k): Without loss of generality, we assume k = (d + 1)λ. On input
the security parameter 1λ and the capacity parameter 1k, the setup algorithm
samples a0|| . . . ||ad = a ←$ {0, 1}(d+1)λ where |ai| = λ for i ∈ {0, . . . , d}.
Then, it outputs the evaluation key ek = (ekfa

, vkfa
) and the verification key

vk = vkfa
where (ekfa

, vkfa
) ←$ SetupVC(1λ, fa) and fa ∈ Fλ,d,p.

Eval(ek, x): On input the evaluation key ek = (ekfa
, vkfa

) and an input x ∈
{0, 1}�in , the evaluation algorithm returns (y, π) = ComputeVC(ekfa

, σx)
where (σx, vkx) = ProbGenVC(vkfa

, x).

14 Observe that |vk| + |x| + |y| + |π| ∈ o(m) (i.e., vk, π, y, x are “succinct”) is necessary
to obtain a capacity-efficient verification of o(m). This is because vk, π, y, x are part
of the verification algorithm Verify of VCBF.

15 In the verification, O(λ) is for reading a constant number of group elements of order p
of size at most λ+1. In the evaluation, O((d+1)λ) = O(λc+1) is for the d coefficients
(a0, . . . , ad) ∈ F

d+1
p of the polynomial f(X) ∈ Fp[x].
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Verify(vk, x, y, π): On input the verification key vk = vkfa
, an input x ∈ {0, 1}�in ,

an output y ∈ Y, and a proof π, the verification algorithm returns b =
VerifyVC(vkx, y, π) where (σx, vkx) = ProbGenVC(vkfa

, x).

In this scheme, honest evaluators need to read at least k = (d+1)λ bits to load
all the coefficients of the polynomial regardless of the cost of generating the proof
π. Correctness follows directly from the correctness of the underlying schemes.
For security and verification complexity, we establish the following results.

5.1 Security Analysis

The soundness is trivial. It simply follows from the (ε)-soundness of VC (see [30]
for the formal definition of soundness for VC).

Theorem 6 (Soundness). If VC is (ε)-sound, then the VCBF scheme Π of
Construction 1 with input space {0, 1}�in is (ε)-sound (Definition 6).

Next, we show the level of minimum capacity that our VCBF scheme Π of
Construction 1 satisfies with respect to the class of adversaries Av-access (Defini-
tion 5) for 1 ≤ v ≤ m. This is formalized by Corollary 7 whose proof is deferred
to full version. At high level, the proof is divided into two parts.

First, we prove that Construction 1 satisfies an alternative definition of
minimum capacity dubbed decomposed minimum capacity. This definition is
identical to Definition 4 except that the memory τ is decomposed into n dis-
tinct strings (τ1, . . . , τn) such that τi ∈ {0, 1}m for i ∈ [n] (intuitively, each
τi represents one possible string of length m that the adversary can read and
interpret from its main memory, i.e., (τ1, . . . , τn) is the decomposition of the
main memory). Then, the adversary succeeds if there exists i ∈ [n] such that
y = A(τi, x; ri) where ri ←$ {0, 1}�rnd and x ←$ {0, 1}�in . By leveraging Theo-
rem 5, for each string τi ∈ {0, 1}m, the adversary can compute at most d distinct
points x ∈ {0, 1}�in under the condition that the coefficients (a0, . . . , ad) of the
polynomial fa(X) ∈ Fλ,d,p are RND-incompressible.16

Second, we show that any VCBF that satisfies decomposed minimum capac-
ity w.r.t. n − m + 1 strings (τ1, . . . , τn−m+1) (each of length m), also satisfies
(ε,m, �rnd, n)-min-capacity (the standard definition) with respect to the class
of adversaries A1-access (Definition 5). The result follows by using a counting
argument: An adversary A ∈ A1-access with access to memory τ of length n can
read at most n − m + 1 different strings each of length m. This argument can
be generalized for each class Av-access for 1 ≤ v ≤ m. Unfortunately, due to the
limited power of counting arguments, the memory size n presents an exponential
loss proportional to v.

Theorem 7 (Av-access-class (adaptive) minimum capacity). Let v ∈
N and Π be a VCBF scheme with input space {0, 1}�in . Fix the keys
16 Note that the polynomial fa(X) is RND-incompressible with overwhelming prob-

ability since it is sampled at random. This follows by leveraging Theorems 3 and
4.
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(ek, vk) ←$ Setup(1λ, 1k). The VCBF scheme Π of Construction 1 with input
space {0, 1}�in satisfies (ε,m, �rnd, n)-min-capacity with respect to the class of
adversaries Av-access and keys (ek, vk) (Definition 5) where λ ∈ N, d ∈ N, c ∈
N, ε1 ∈ [0, 1],

m = (d + 1)(λ − �in − 2 log(�in) − 1) − c′

− λ − 2 log((d + 1)λ − c′) − 2 log(λ + 1) − 4,

c′ = c + �rnd + 2 log(�rnd) + 1 + O(1),

ε = ε1 +
d + 1
2�in

+
1
2c

− 1
2(d+1)λ

,

n =

⎧
⎪⎨

⎪⎩

m + ε1·2�in

d if v = 1

v

√
(

ε1·2�in

d + 1
)

/

(

v!
(

m−1
v−1

)v−1
)

· v if 1 < v ≤ m.

Recall that in the class of adversaries A1-access we find common adversarial strate-
gies (primarily used in practice) such as precomputed dictionary attacks (e.g.,
ordered dictionary in which the x-th evaluation f(x) is stored at the x-th off-
set) or limited devices that are hindered from performing non-constant random
accesses (e.g., for energy efficiency). Also, we stress that, if we consider memo-
ries of size n = m, our Construction 1 satisfies (ε,m, �rnd,m)-min-capacity with
respect to the optimal Definition 4 (i.e., security against adversaries that arbi-
trarly access its memory) where ε = d+1

2�in
+ 1

2c − 1
2(d+1)λ . This because τ ∈ {0, 1}m

only allows an adversary to answer to at most d points (Theorem 5).
The following asymptotic Corollary 1 shows that a secure VCBF exists (in

the standard model) with respect to the class of adversary AO(1)-access. We stress
that this must be interpreted as a purely theoretical result showing the feasibility
of VCBF since the constants hidden by the asymptotic notation are large.

Corollary 1. For any λ ∈ N and k = (d+1)λ ∈ N such that d ∈ N, there exists
a VCBF that satisfies (negl, O((d + 1)λ), o((d + 1)λ), ω(λs))-min-capacity with
respect to the class of adversaries AO(1)-access for every constant s ≥ 1.17

Verification Complexity. Corollary 1 shows that an evaluator needs to
read at least O((d + 1)λ) distinct bits from its main memory. We now ana-
lyze the verifier capacity complexity. By inspecting Construction 1, we observe
that the capacity complexity of Verify coincides with the ones of algorithms
ProbGenVC and VerifyVC of the underlying VC scheme. Therefore, we must con-
sider a concrete instantiation of the VC scheme. For this reason, we measured
the efficiency of our VCBF with respect to the VC scheme of Elkhiyaoui et

17 We stress that the memory size n does not need to be super-polynomial (in the
security parameter) in order to consider a VCBF secure. Indeed, in a scenario in
which a machine has at most n = λs ∈ poly bits of free memory (for a positive
constant s), it is enough to show that the VCBF satisfies (ε, m, �rnd, λs)-min-capacity
where ε is the target advantage.
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al. [30] that uses an asymmetric bilinear pairing e : G1 × G2 → GT in which
the (d/2)-SDH assumption holds. The execution of ProbGenVC(vkf , x) com-
putes and returns vkx = (vk0x, vk1x) = (gb0 · gx2

, hx
r1

· hr0) and σx = x, where
vkf = (gb0 , hr1 , hr0) ∈ G1 ×G2 ×G2, x ∈ Fp, and g the generator of G1 (observe
that the size of the verification key vkf is O(λ), i.e., does not depend on the
degree d of the polynomial). Moreover, VerifyVC(vkx, y, πy) verifies the correct-

ness of the computation by checking the equality e(g, hy) ?= e(vk0x, πy) · e(g, vk1x),
where vkx = (vk0x, vk1x) and h is a generator of G2. Hence, in the worst case, the
verification capacity complexity of our VCBF is O(λ) ∈ o((d + 1)λ), while the
verification time is O(1) in the number of group operations. This is because the
executions of ProbGenVC, VerifyVC, and the sizes of (vkf , x, y, πy) (that compose
the inputs of ProbGenVC and VerifyVC), are independent of the polynomial degree
d in terms of both capacity and time.

Improve the Memory Size Bound. For v ∈ ω(1), our VCBF construc-
tion needs to face the efficient data structure for polynomial evaluation of
Kedlaya and Umans [39]. In particular, they show that, for any constant
δ > 0, there exists a data structure D of size d1+δλ1+o(1) that can be com-
puted by preprocessing only the coefficients of f(X) ∈ Fp[X]. An evalua-
tor in Aω(1)-access can correctly evaluate f(x) on every x ∈ {0, 1}�in in time
polylog(d) · λ1+o(1), performing a non-constant number of random accesses and
reading at most polylog(d)λ1+o(1) · w bits from D (with w ∈ O(λ) we denote
bit size of the elements contained in D). Hence, our VCBF construction can
not achieve (ε,m, �rnd, n) for ε ∈ negl and m ∈ ω(log(d)s1λs2) (for some posi-
tive s1, s2 ∈ O(1)) when n is close to or greater than d1+δλ1+o(1). The above
observation poses the natural question of whether an asymptotic VCBF (in the
Aω(1)-access setting) that satisfies min-capacity for reasonably large m and n
super-polynomial in λ as in Corollary 1 (i.e., n asymptotically larger than the
size d1+δ ·λ1+o(1) of the data structure of Kedlaya and Umans [39]). The answer
to the important question requires a non-trivial and precise study that can be
undertake in future works.
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Abstract. The sampling of polynomials with fixed weight is a procedure
required by round-4 Key Encapsulation Mechanisms (KEMs) for Post-
Quantum Cryptography (PQC) standardization (BIKE, HQC, McEliece)
as well as NTRU, Streamlined NTRU Prime, and NTRU LPRrime. Recent
attacks have shown in this context that side-channel leakage of sam-
pling methods can be exploited for key recoveries. While countermeasures
regarding such timing attacks have already been presented, still, there is no
comprehensive work covering solutions that are also secure against power
side channels.

To close this gap, the contribution of this work is threefold: First,
we analyze requirements for the different use cases of fixed weight sam-
pling. Second, we demonstrate how all known sampling methods can be
implemented securely against timing and power/EM side channels and
propose performance-enhancing modifications. Furthermore, we propose
a new, comparison-based methodology that outperforms existing meth-
ods in the masked setting for the three round-4 KEMs BIKE, HQC, and
McEliece. Third, we present bitsliced and arbitrary-order masked software
implementations and benchmarked them for all relevant cryptographic
schemes to be able to infer recommendations for each use case. Addition-
ally, we provide a hardware implementation of our new method as a case
study and analyze the feasibility of implementing the other approaches in
hardware.

Keywords: PQC · Fixed Weight Polynomial Sampling · Higher-order
Masking · Cortex-M4

1 Introduction

With the potential advent of large-scale quantum computers, rendering “classic”
asymmetric cryptosystems like Elliptic Curve Cryptography (ECC) insecure, wide
deployment of Post-Quantum Cryptography (PQC) has become inevitable. After
three rounds of thorough analysis and many broken cryptosystems, a first set of
algorithms has been selected for standardization. To enable further diversification
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of security assumptions, a fourth round of standardization has been launched, con-
sisting of the three code-based schemes BIKE, HQC, and McEliece.

One building block for all round-four candidates is fixed-weight polynomial
sampling. Additionally, this is also required in the three lattice-based schemes
NTRU, which may replace Kyber if potential patent issues are not resolved,
Streamlined NTRU Prime, which is currently the default algorithm in OpenSSH 9,
and NTRU LPRrime. The output of this sampling is a uniform random binary or
ternary polynomial of a specific size with a fixed number of non-zero coefficients.
Multiple algorithmic approaches have been proposed [5,9,10,15,18] for this.

Karabulut et al. presented the first power side-channel attack on fixed
weight sampling [14], targeting NTRU, Streamlined NTRU Prime, and Dilithium.
Recently, Guo et al. [12] introduced an attack on HQC and BIKE utilizing the
fixed weight polynomial sampling with variable timing depending on the seed.
Sendrier [18] seized their approach and presented suitable countermeasures for
BIKE. While this attack exploits timing differences, there is no reason to believe
that a power side channel cannot be exploited analogously.

On the defense end, however, there is no comprehensive analysis of effective
countermeasures against this type of attack. In particular, given these recent
attacks, it becomes urgent to develop also power side-channel secure methodolo-
gies for fixed-weight polynomial sampling.

Hence, we present a holistic examination of the fixed-weight polynomial sam-
pling problem with different attacker models, parameters, sampling methods,
and implementation variants. We show how power side-channel secure variants
of all suitable algorithms can be realized, propose performance-enhancing mod-
ifications, and provide bitsliced masked software implementations for arbitrary
masking order which we make publicly available1. Additionally, we develop a
new probabilistic sampling method accompanied by a hardware implementation
and a new methodology for Boolean masked comparison which is a core compo-
nent for multiple algorithms. We benchmark and evaluate our implementations
for all relevant PQC schemes.

2 Preliminaries

The two most important parameters for the fixed-weight polynomial sampling
problem are the length of the polynomial and the weight (number of non-zero
coefficients) denoted by N and W throughout the paper.

Binomial Distribution. For the Binomial probability distribution, we denote
the probability mass function as

B(k, n, p) =
(

n

k

)
pk(1 − p)n−k (1)

where k is the number of successes in n independent Bernoulli trials, each with
probability p. We know that B(k, n, p)−1 is the expected number of repetitions
of the overall experiment until exactly k out of n successes are reached.
1 https://github.com/Chair-for-Security-Engineering/maskedFWPS.

https://github.com/Chair-for-Security-Engineering/maskedFWPS
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2.1 Side-Channel Analysis

In this work, we consider timing behavior and power consumption of a target
implementation of a cryptographic algorithm as possible side channels that could
be exploited by an attacker. For timing attacks, we consider runtime differences
caused by memory or cache accesses, branching on sensitive data, or secret-
dependent arithmetic operations.

For power side-channel attacks, we distinguish between single-trace and multi-
trace attacks. In the single-trace scenario, the attacker has given only one single
trace of the cryptographic operation, i.e., the attacker cannot invoke the system
multiple times with the same secret key. However, we additionally assume that
an attacker can mount template attacks. In this case, the attack profiles a target
device to create a power template which is used to match a single trace to the cor-
rect key.

For multi-trace attacks, we assume that an attacker can collect as many
traces as possible. These traces are used for Differential Power Analysis (DPA)
including statistical analyses like Correlation Power Analysis (CPA).

2.2 Masking

Masking is a well-established countermeasure against physical Side-Channel
Analysis (SCA) and is based on the strong theoretic foundation of secret shar-
ing. A secret value x is split into d + 1 shares xi with 0 ≤ i ≤ d. To provide the
desired security, d − 1 shares are chosen uniformly at random while the remain-
ing share is determined such that x = x0 ◦x1 ◦ · · · ◦xd holds. The group operator
◦ is usually addition, either in F2 (Boolean masking) or a larger field (additive
masking). The parameter d defines the security order based on the d-probing
model [13], where an attacker is assumed to obtain the exact values of up to d
intermediate values of the target design. Hence, if the adversary does not learn
anything about the secret values using d probes, the implementation is assumed
to be secure against d-order attacks.

Functions that can be applied share-wise such that f(x) = f(x0)◦f(x1)◦· · ·◦
f(xd) are easy and efficient to mask. One of these linear functions is for example a
XOR in the Boolean masking domain. Non-linear functions, for example, an AND,
cannot be applied share-wise and need to be expressed differently. The challenge
in masking cryptographic implementations relies upon avoiding or efficiently
implementing non-linear functions.

2.3 Bitslicing

An important method for efficient Boolean-masked software implementations is
bitslicing. Bitslicing changes the representation of values. Instead of storing n
values in n distinct n-bit registers (32-bit in our case), we aggregate the i-th
bit of each value in one register. This corresponds to a matrix transposition.
If the maximum bit-length of the values is below the register width, bitslicing
allows a condensed representation and simultaneously fewer Boolean instruc-
tions. Bitslicing is especially useful for algorithms that operate on single bits at
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a time because it allows doing single-bit operations on n values simultaneously
with one instruction, comparable to Single Instruction Multiple Data (SIMD)
instructions. For masked implementations, bitslicing helps to reduce the number
of costly non-linear operations.

2.4 Random Integer Sampling from Range

Sampling a uniform random integer from a given range is not always as simple as
it seems. Both in software and hardware we can obtain uniform random bits from
e.g., a Pseudorandom Number Generator (PRNG). By concatenating l random
bits, we get a random value in the range of [0, 2l).

If we need a random value r in the range of [0, x) (which we denote with
rand(x) in the following), where x is not a power of two, we can sample r from
[0, 2l), with the smallest l such that x < 2l, and reject r if it is not smaller than
x. The closer x is to 2l, the fewer rejections occur, in the worst case, however,
the chance for rejection is almost 50%.

Instead of rejecting values, one can alternatively use a function that maps the
values from [0, 2l) to [0, x). An obvious function for this is computing r mod x.
Given l random bits stored in r and a bit width of t for the target range x one
can alternatively compute an (l + t)-bit multiplication rx and take the upper t
bits of the result, which again will be a value between 0 and x − 1.

The drawback of both of these mapping methods is that they introduce a
bias. When x is not a power of two, 2l will not divide x, therefore some values
in the output range [0, x) will be more likely than others. With increasing 2l

compared to x, the bias becomes neglectable and the output becomes close to
uniform random.

If we want to sample an integer from a range [i, x) that is not starting at 0,
we can use the previous methods and compute i + rand(x − i).

2.5 Applications

Fixed weight polynomial sampling is a part of many PQC schemes, and many
of them can potentially become (or already are) a standard determined by the
National Institute of Standards and Technology (NIST).

BIKE. Bit Flipping Key Encapsulation (BIKE) has among three other KEMs
advanced to the fourth round of NIST’s standardization process and is a code-
based scheme relying on Quasi-Cyclic Moderate-Density Parity-Check (QC-
MDPC) codes. Polynomials live in the cyclic polynomial ring R := F2[X]/
(Xr − 1), thus coefficients are either 0 or 1 and the number of coefficients is deter-
mined by the parameter r of the reduction polynomial. During key generation, two
random fixed-weight polynomials are sampled: (h0, h1) with |h0| = |h1| = W/2.
Moreover, during encapsulation and decapsulation, two fixed weight polynomi-
als e0, e1 are sampled with |e0| + |e1| = t where t is a publicly known and fixed
parameter.
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HQC. HQC also advanced to the fourth round of standardization. HQC also
deploys fixed-weight sampling in key generation, encapsulation, and decapsula-
tion. Analogously, polynomials in HQC have the polynomial ring R := F2[X]/
(Xr −1). Apart from parameters, the only difference then is that the polynomial
e0, e1 are sampled separately rather than with a joint fixed weight.

McEliece. The third remaining fourth-round candidate also uses fixed-weight
sampling, but only during encapsulation to sample the “message”. McEliece is
deemed to be the most conservative candidate during the whole standardization,
being based on the more than 40 years old original McEliece cryptosystem.

NTRU. NTRU is a lattice-based Key Encapsulation Mechanism (KEM) and
comes in two “flavors”: HRSS and HPS. For both, four polynomial rings are
deployed. Fixed-weight sampling is used only during key generation of the HPS
parameter sets. Furthermore, NTRU-HPS imposes the special requirement of
having exactly W/2 coefficients +1 and W/2 to be −1.

Streamlined NTRU Prime and NTRU LPRrime. Streamlined NTRU Prime is a
lattice-based KEM and is, together with X25519, currently the default algorithm
for OpenSSH 9. NTRU LPRrime is a merger with Streamlined NTRU Prime during
the second round of NIST standardization. Both require fixed-weight sampling
in their respective key generations, similar to NTRU with a ternary target space.
However, no requirement is set on the number of +1 and −1.

Dilithium. Dilithium is the designated PQC digital signature standard. It is based
on the Module-Learning With Errors problem and operates on polynomials in
the ring Zq[X]/(X256 + 1) with q = 8380 417. Security is scaled through the
matrix parameters. Being constructed with the help of the Fiat-Shamir with
aborts technique, it simulates the verifier by querying a random oracle to sam-
ple a challenge during signature generation. This challenge has the specific form
of a fixed-weight polynomial with ternary coefficients and no special restrictions
on the number of coefficients with value −1. Based on several abort checks, a
signature candidate may get rejected, starting over the whole signature genera-
tion including computing a new challenge c. Thus, it is not directly clear that c
from rejected iterations is public information, even though the final c is part of
the signature.

Previous work on the GLP signature scheme, which is a predecessor of
Dilithium, has found that if the rejected challenges are viewed as public infor-
mation together with their respective commitment, either one has to live with
an additional heuristic security assumption or add a statistically hiding com-
mitment scheme, tolerating the additional communication cost [3]. This is also
stated regarding Dilithium in a recent preprint [1], where they state that rejected
challenges are public and the commitment as well, but based on the Learning
with Rounding assumption. To avoid this additional assumption, in our opinion
it would be also feasible to perform the rounding masked, hashing w1 in masked
domain, obtaining a masked bit-string c̃, which is already a representation of
the challenge. This can then be unmasked (since we know that also rejected
challenges are non-sensitive) and used to perform fixed-weight sampling.
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3 Conceptual Considerations

Although the fixed weight polynomial sampling problem at is core is simple, its
application comes with multiple problem dimensions depending on the algorith-
mic scheme, and implementation target.

Attacker Model. Sampling can be used in different parts of a KEM. If it is part
of the key generation that is only executed once for one key, only single-trace
side-channel attacks are applicable. The profiled Simple Power Analysis (SPA)
is assumed as the strongest attacker model in our case.

Since in encapsulation, no secret key is used at all, usually no multi-trace
attacks are eligible. In the current setting and applications, fixed weight sam-
pling is used once during encapsulation to sample the message or an error. For
decapsulation, multi-trace attacks are possible if the KEM key is non-ephemeral.

Target Space. Some use cases require binary polynomials while others sample
ternary polynomials. For the ternary polynomials, it then can vary how the
weight must be split between the ones and the minus ones.

Target Representation. The classic representation for a polynomial is an array
of length N with one element for each coefficient (coefficient representation).
However, polynomials can also be expressed by a list of non-zero indices (index
representation). The cryptographic scheme may require different representations
and the sampling methods output different representations. It is possible to
convert one representation into the other.

Determinism. If the sampling is used in the encapsulation and decapsulation, it
is usually required to provide the same output when given the same input seed.
This can be achieved for all algorithmic approaches by using a PRNG as the
source of randomness that is initialized with the seed. Determinism is usually
not required in the key generation.

Secret Seed. In some use cases, the input seed for the PRNG is a secret value,
thus the sampling algorithm must be constant-time not only with respect to the
sampled polynomial but also with respect to the input seed. Concrete attacks
have been presented recently in [12,18].

Parameters N and W . The most important parameters that determine the
performance of the sampling methods are the number of coefficients N and the
number of non-zero coefficients W or the weight of the polynomial. In particular,
N can vary distinctly from values between 256 to 81 194.

Target Platform. Implementing hardware or software influences the performance
of an algorithm. Parallelism is important in either case, in software it can some-
times be achieved with bitslicing as introduced in Sect. 2.3, while in hardware,
more fine-grained parallelism and trade-offs are possible.
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3.1 Requirement Analysis

In Table 1 we give an overview of the most important parameters and require-
ments of each relevant scheme for the fixed-weight polynomial sampling.

The parameter sets of BIKE and HQC include relatively large N and small
to medium W , and therefore a small W/N ratio which are all important factors
for the sampling algorithms. Both schemes are also the only ones, that require

Table 1. Requirements for all potential applications

Scheme Param. Where? N W W/N Target Space Det. Sec. Seed

BIKE L1 en/decaps 24646 134 0.005 binary yes yes

BIKE L1 keygen 12323 71 0.006 binary no no

BIKE L3 en/decaps 49318 199 0.004 binary yes yes

BIKE L3 keygen 24659 103 0.004 binary no no

BIKE L5 en/decaps 81194 264 0.003 binary yes yes

BIKE L5 keygen 40973 137 0.003 binary no no

HQC 128 en/decaps 17669 75 0.004 binary yes yes

HQC 128 keygen 17669 66 0.004 binary no no

HQC 192 en/decaps 35851 114 0.003 binary yes yes

HQC 192 keygen 35851 100 0.003 binary no no

HQC 256 en/decaps 57637 149 0.003 binary yes yes

HQC 256 keygen 57637 131 0.003 binary no no

McEliece 348864 encaps 3488 64 0.018 binary no no

McEliece 460896 encaps 4608 96 0.021 binary no no

McEliece 6688128 encaps 6688 128 0.019 binary no no

McEliece 6960119 encaps 6960 119 0.017 binary no no

McEliece 8192128 encaps 8192 128 0.016 binary no no

NTRU hps2048509 keygen 509 254 0.499 W/2 ternary no no

NTRU hps2048677 keygen 677 254 0.375 W/2 ternary no no

NTRU hps4096821 keygen 821 510 0.379 W/2 ternary no no

sNTRU Prime 653 keygen 653 288 0.441 uni. ternary no no

NTRU LPRrime 653 keygen 653 252 0.386 uni. ternary no no

sNTRU Prime 761 keygen 761 286 0.376 uni. ternary no no

NTRU LPRrime 761 keygen 761 250 0.329 uni. ternary no no

sNTRU Prime 857 keygen 857 322 0.376 uni. ternary no no

NTRU LPRrime 857 keygen 857 329 0.384 uni. ternary no no

sNTRU Prime 953 keygen 953 396 0.416 uni. ternary no no

NTRU LPRrime 953 keygen 953 345 0.362 uni. ternary no no

sNTRU Prime 1013 keygen 1013 448 0.442 uni. ternary no no

NTRU LPRrime 1013 keygen 1013 392 0.387 uni. ternary no no

sNTRU Prime 1277 keygen 1277 492 0.385 uni. ternary no no

NTRU LPRrime 1277 keygen 1277 429 0.336 uni. ternary no no
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seed security and a deterministic sampling algorithm for their encapsulation and
decapsulation. Their polynomials have coefficients that are either 0 or 1, this is
also the case for McEliece. NTRU on the other hand has ternary coefficients that
are either 0, 1 or −1 and the fixed number of nonzero coefficients W must be
equally split between the 1 s and −1 s. For the ternary coefficients in Streamlined
NTRU Prime and NTRU LPRrime, this relation is uniformly random. The schemes
with ternary coefficients also have in common that the sampling is only used
during the key generation, security against single-trace side-channel attacks is
therefore sufficient.

4 Designing Masked Fixed Weight Sampling

In the following sections, we present multiple side-channel secure approaches for
fixed-weight polynomial sampling. The different approaches can be categorized
into three different groups. The rejection method in Sect. 4.4 and its bounded
variant in Sect. 4.5 solve the problem by sampling W distinct values in the range
[0, N), which represent the indices of the non-zero coefficients. The methods
based on Fisher-Yates in Sect. 4.2 and sorting in Sect. 4.3 utilize shuffling of
fixed input polynomials. ANDing in Sect. 4.7 and our comparison method in
Sect. 4.6 both sample fixed-weight polynomials by randomly setting bits.

For each approach, we start by explaining the fundamental idea, then we
clarify how to achieve a timing side-channel secure (constant-time) variant that
is a necessity for a power side-channel secure implementation. Based on this,
we explain how to realize a masked and efficient variant. In Sect. 5, we provide
more details about our implementations. We present the algorithms only for the
binary use case, in most cases they can easily be adapted for the ternary use
case. If this adoption is not obvious, we explain how it can be achieved. Some
of the algorithms have a small bias, so their output is only close to uniform
random. Before actually deploying a scheme with one of the biased methods one
needs to diligently prove that the bias does not impair the security.

Masked Sampling by Coron etal . In recent work [9], Coron et al. present an
approach of side-channel-secure fixed-weight sampling for NTRU, which proposes
the following strategy:

1. Initialize an empty polynomial with the first W/2 coefficients set to −1, the
subsequent W/2 coefficients to +1, and the remaining coefficients set to 0.

2. Generate a fresh arithmetic masking of this polynomial.
3. Shuffle each share with the same permutation.
4. Re-share the arithmetic sharing.
5. Repeat the last two steps a total of d + 1 times, every time using a new

permutation.

This high-level procedure is proven to be secure in the d-probing model. For
their proof, however, the applied permutation is assumed to be a black box. Thus,
we believe that it will be very hard, if not impossible, to instantiate securely
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in practice. Moreover, Karabulut et al. show a single-trace attack that targets
the permutation itself [14] and there is no reason to believe that an attacker
is not able to attack multiple subsequent executions of different permutations
successfully. Hence, it is reasonable to assume that this countermeasure does not
protect against SPA attackers comprehensively.

4.1 Core Operations

The masked algorithmic approaches for fixed-weight polynomial sampling that
we present in the following sections, share a small set of operations that are
repeatedly used and contribute distinctly to the overall performance. In this
section, we explain how to perform a masked conditional move and different
integer comparisons in the Boolean domain with little non-linear operations.

Conditional Move in Boolean Domain. A very important building block for
our masked algorithms is the conditional move. The semantic of cmov(d, s, c) is
that d is overwritten by s, if the condition flag c is set and d remains unchanged
if c is 0.

For non-masked, but constant-time implementations, a conditional move is
most efficiently expressed in software with a dedicated instruction, but can gen-
erally be expressed with a short sequence of arithmetic or Boolean instructions to
avoid branching on the secret condition c and thus leak c via timing differences.
A straightforward sequence would be d = (d ∧ ¬c) ∨ (s ∧ c).

This solution is, however, costly to mask, because it includes three non-linear
operations, two ANDs, and one OR. It is possible to reduce the number of non-
linear operations to one by using XOR operations: d = d⊕ ((d⊕ s)∧ c) evaluates
to d = d ⊕ d ⊕ s = s, if c is true and to d = d ⊕ 0 = d, if c is false.

Integer Comparison in Boolean Domain. Let a[l − 1 : 0], b[l − 1 : 0] be
bit vector variables representing integers in the range [0, 2l). To check whether
a < b, we can simply compute a−b and then check whether the result is negative,
in which case we know that a < b, and else, a ≥ b. Thus, in Boolean domain, we
can employ a Ripple-Carry subtractor which computes r[l : 0] = a[l − 1 : 0] −
b[l − 1 : 0]. Then, r[l] is the uppermost carry-out bit, which decides whether or
not the result is negative. The Ripple-Carry subtractor performs the following
computations:

r[0] = a[0] ⊕ b[0] (2)

c[0] = a[0] ∧ b[0] (3)
r[i] = a[i] ⊕ b[i] ⊕ c[i − 1] ∀1 ≤ i < l (4)

c[i] = (c[i − 1] ∧ (a[i] ⊕ b[i])) ⊕ (a[i] ∧ b[i]) ∀1 ≤ i < l (5)
r[l] = c[l − 1] (6)

This is usually done in Central Processing Units (CPUs), where the sub-
traction instruction is also used for integer comparison, but without writing the
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result back to the registers. In the masked case, however, we aim to achieve a
very low number of secure AND gates. Thus, as we only want to recover r[l]
rather than the full subtraction result, we propose an alternative approach.

t = a ⊕ b gives us the bits, where a and b differ. The highest set bit of t
determines the bit or rather the index g in a and b that determines which of the
two variables is greater. Because we know that a and b differ at this bit, it is
enough to look at one of them. E.g. if bg is set, b is greater than a. To perform
this concept in constant-time we iterate over all bits, starting from the lowest
bit, and update our output with bi if ti is set, which ultimately results in bg in
our output. With our output initialized with 0, it will result in 0 if a ≥ b and 1
if a < b. Algorithm 1 describes this idea formally.

At first sight, Algorithm 1 does not need any expensive AND gadgets, but for
implementing the conditional move securely we require one AND, as explained in
the previous subsection. Compared to the traditional approach via subtraction,
we can half the amount of expensive non-linear gadgets. The overall asymptotic
runtime is determined by the bit length of the inputs. In the algorithms presented
in the following, we compare values bounded by N , so the cost for one comparison
is 	log2(N)
.

Algorithm 1. Optimized Integer Comparison in Boolean Domain
Require: a =

∑l
i=0 ai2

l, b =
∑l

i=0 bi2
l

Ensure: res ← a < b ? 1 : 0
function cmpl(res, a, b)

t ← a ⊕ b
res ← 0
for i ← 0 to l do

cmov(res, bi, ti) � res := res ⊕ ((res ⊕ bi) ∧ ti)
end for

end function

Comparison with Fixed Public Input. We can simplify this further when we
have one fixed and public input b rather than two variable ones. Then, to compare
whether or not a < b, we first employ the same procedure as in Algorithm 1.
However, for each ti, we now know publicly that it is either

– ai in the case that bi = 0, or
– ¬ai in the case that bi = 1.

Thus, we have

– for bi = 0, res := res ⊕ ((res ⊕ 0) ∧ ai) = res ∧ ¬ai, and
– for bi = 1, res := res ⊕ ((res ⊕ 1) ∧ ¬ai) = res ∨ ¬ai.

This does not save non-linear gates, as we still need one per bit, but it
saves several XOR operations, which are cheap, but not free. Moreover, we can
completely omit all lower bits until the first bi = 1, since we start with res = 0,
which sets all subsequent intermediate res to zero.
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Comparison on Equality. Evaluating whether two masked values are equal
or not is even cheaper to realize in the Boolean domain. c = a⊕b is only zero if a
is equal to b. Thus we can iterate over all bits in c and condense them to one bit
with masked OR operations. After flipping the resulting bit, res will be one, if c
is zero and thus a is equal to b and zero otherwise, denoted with cmpeq(res, a, b)
in the following. The asymptotic runtime cost is again O(log2(N)).

4.2 Fisher-Yates

The Fisher-Yates shuffle is an algorithm to get a uniform random permutation of
a fixed input sequence in O(N) time. Similar to the sorting approach explained
in Sect. 4.3 it can be directly applied to a fixed polynomial with the correct
weight to get a random polynomial with the correct weight.

Alternatively, one can apply Fisher-Yates to an array with length N with
distinct integers from 0 to N and treat the first W elements of the output as
the indices respectively the coefficients of the polynomials which are non-zero.
In this case, the permutation of the elements beyond the first W elements is
irrelevant and the algorithm can be stopped after W iterations because the first
W elements are not affected by further shuffling.

In its original version, Fisher-Yates is not timing side-channel-secure, because
its memory accesses reveal the permutation and (only relevant for a secret seed)
it requires uniform random numbers from a varying range, which requires a
rejection step.

Sendrier [18] tackled these problems with two modifications. First of all, he
showed for BIKE that the security of the cryptographic scheme is not necessarily
impaired when the sampling is only close to uniform random if the parame-
ters are correctly chosen. This eliminates the need for the rejection step by
allowing a slightly biased constant-time approach as explained in Sect. 2.4. The
secret dependent memory accesses can also be circumvented, but this comes
with quadratic runtime instead of the original linear runtime. The solution for
the index sampling method is depicted in Algorithm 2.

Algorithm 2. Constant-Time Fisher-Yates [18]
Require: N , W
Ensure: W distinct elements of 0, ..., N − 1

function fisher-yates(N, W )
for i ← 0 to W − 1 do

p[i] ← i + rand(N − i)
end for
for i ← W − 1 to 0 do

for j ← i + 1 to W − 1 do
cmpeq(cond, p[j], p[i])
cmov(p[j], i, cond)

end for
end for

end function
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For masking the constant-time Fisher-Yates algorithm two components need
to be protected. The first component is sampling a random integer in the range
of [0, N − i). Sendrier [18] proposed to compute a random value r mod N − i,
but the implied division is a costly operation. Furthermore, in most CPUs, a
division is an instruction with a variable cycle count depending on the input
and thus not constant time. A modulo reduction with a constant modulo might
be translated by a compiler to a constant-time Barrett reduction, but there is
no guarantee for this.

We propose to use the faster multiplication approach as explained in Sect. 2.4
instead. Multiplication instructions are constant-time for most CPUs. In the
additive masking domain, the multiplication with the public range value and
the addition of the public index i can be efficiently performed sharewise.

The second component is the comparison of equality and the following con-
ditional move, both can the done in Boolean domain, therefore a transformation
from arithmetic to Boolean domain between the two components is necessary. The
inner loop in Algorithm 2 containing the comparison and conditional move can be
computed in parallel for multiple j, because the iterations are independent of each
other.

A masked implementation of this Fisher-Yates algorithm results in an asymp-
totic runtime of O(W 2 log2(N)), for sampling a close-to-uniform polynomial in
the index representation without leaking a secret seed.

4.3 Sorting

An alternative approach to obtain a uniformly random permutation of a set is
to attach distinct random values to each element and sort the pairs according
to the random value. Bernstein [5] suggested applying this principle to sampling
fixed-weight polynomials by starting with a polynomial with the desired weight
and then getting a random permutation by sorting.

Algorithm 3. Sort based Sampling [5]
Require: N , W , l, p[N ]
Ensure: random bitpolynomial in p[N ] with weight W

function sortsampling(N, W )
for i ← 0 to N − 1 do

if i < W then
t ← 1

else
t ← 0

end if
r ← rand(2l)
p[i] ← (r << 1) + t

end for
sort(p)
for i ← 0 to N − 1 do

p[i] ← p[i] ∧ 1
end for

end function
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To get distinct random values one can use rejection sampling, e.g., for each
new randomly sampled value one checks if it collides with one of the values sam-
pled before. If yes, the new value gets rejected and one continues until enough
distinct values are sampled. Bernstein showed that the rejection step can be
skipped if the size of the random value is big enough compared to the num-
ber of elements such that the chance of a collision becomes neglectable. With
a constant-time sorting algorithm, the entire procedure is constant-time with
respect to the sampled polynomial and the seed for the PRNG. The runtime
depends on the implementation of the sorting algorithm and the polynomial size
N as a parameter. This approach can be directly applied to sampling binary and
ternary polynomials.

Sorting algorithms can have at lowest linear asymptotic runtime, but then
usually no efficient constant-time implementation exists. A group of sorting
algorithms that can be very efficiently implemented in constant-time is sort-
ing networks, they consist only of a fixed number of comparisons and swaps.
Comparison-based sorting algorithms have at best an asymptotic runtime of
O(N log(N)). A naive masked implementation of a sorting network mainly con-
sists of a comparison and a conditional move depending on the comparison, both
can be masked efficiently in software and in hardware.

The sorting approach is deployed in NTRU and Streamlined NTRU Prime
[6] with an implementation based on Batcher’s Odd-Even mergesort [4]. For
our implementation, we opted for Batchers’s Bitonic mergesort [4], because it
is easier to parallelize in the bitsliced domain, which is critical for our efficient
masked software implementation. Both sorting algorithms have an asymptotic
runtime of O(N log2(N)). Although we use our improved comparison approach
explained in Sect. 4.1 instead of a costly subtraction, the masked comparison
and the conditional move are still the overwhelming driver in cycle costs.

A major drawback of this sampling method besides its high runtime costs
for large polynomial size N is the high amount of randomness required upfront
resulting also in high memory usage, compared to other methods. This can be
circumvented by using radixsort. Radixsort utilizes an arbitrary, stable sorting
algorithm to sort numbers e.g., bit by bit, starting from the lowest bit. The
stableness of the sorting algorithm ensures that the order according to the lower
bits is maintained when sorting according to the higher bits2. As radixsort only
works on one bit per sorting iteration, only one random bit per element needs
to be sampled and stored at a time because we are not interested in the sorted
random values, but only in the permutation the sorting provides. Stable sorting
networks exist, but they have a quadratic asymptotic runtime, which makes this
approach more costly. Radixsort combined with an unstable sorting network
does not result in correct sorting universally and coherently also not in uniform
random permutations, which we confirmed for small parameters by exhaustive
testing.

2 Stable sorting in ascending manner according to the MSB of (10, 11, 01) results in
(01, 10, 11) and not (01, 11, 10).
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4.4 Rejection Sampling

Probably the most obvious solution for fixed-weight polynomial sampling is the
rejection method. One samples a uniform random value r below N by rejecting
values from the range [0, 2l), with the smallest l such that x < 2l. Then one
iterates over the already sampled indices and checks for a collision, if a collision is
found, r gets rejected. The rejection sampling continues until W distinct indices
are sampled as presented in Algorithm 4.

The runtime of this probabilistic algorithm varies and depends on the ran-
domness, therefore it is not suitable for cryptographic schemes, where the seed
for the PRNG is secret. This restriction in application allows early termination
of loops, as soon as the rejection becomes evident. Although the result of the
comparisons for equality for the collision check is public, we cannot XOR both
arguments and then simply unmask the result and check if it is zero or not. In
this case, we would leak the bits in which r differs from p[c]. So the comparisons
themselves must be side-channel secure to protect the non-rejected values. This
can be done with the core operations presented in Sect. 4.1.

Algorithm 4. Rejection Sampling - Index
Require: N , W , 2l > N , p[W ]
Ensure: W distinct elements of 0, ..., N − 1

function rejection-index(N, W )
i ← 0
while i < W do

r ← rand(2l)
cmpl(t, r, N)
if ¬t then

continue
end if
collision ← 0
for c ← 0 to i − 1 do

cmpeq(t, p[c], r)
if t then

collision ← 1 break
end if

end for
if collision = 1 then

continue
end if
p[i] ← r
i ← i + 1

end while
end function

For this algorithm, N determines the probability for the first rejection step,
with an N only slightly greater than the closest power of two this probability
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can be close to 50%. W/N determines the probability of the second rejection
when checking for collisions. With a W/N close to 0.5, the chance for a collision
for a single value gets close to 50% for the last iterations when i reaches W ,
so on average the probability for rejection due to a collision for a single value
can be up to 25%. Drucker et al. [10] already pointed out that the fixed weight
polynomial sampling problem is symmetric such that for W/N > 0.5, one can
solve it for (N − W )/N and invert the result.

4.5 Bounded Rejection Sampling

The idea of a bounded rejection sampling algorithm as presented by Drucker
et al. [15] for the BIKE use case, is to transform the rejection sampling method
as presented in Sect. 4.4 such that it is constant-time also with respect to the
PRNG seed. This idea has also been implemented similarly by Guo et al. [12]
for HQC.

For this, the rejections must not influence the path taken in the algorithm
and therefore branches in a software implementation and the memory access
pattern must be independent of the randomness. This is done by keeping track
of the number of valid samples with a secret counter that indicates where to
input the next valid index into the array and does not get incremented if a
sample gets rejected so that the next sample can overwrite the rejected one.
Early termination of loops is not possible anymore, so with every sampled value
one has to iterate over the entire array of indices and securely check for a collision.
These comparisons can however be performed in parallel. Also, the comparison of
the current index with the counter and the conditional move can be parallelized,
as the comparison only outputs 1 for a single index for one complete iteration

Algorithm 5. Bounded Rejection Sampling - Index [15]
Require: N , W , B, 2l > N , p[W ]
Ensure: W distinct elements of 0, ..., N − 1

function bound-rejection-index(N, W, B)
cntr ← 0
for i ← 0 to B − 1 do

r ← rand(2l)
dup ← 0
for c ← 0 to W − 1 do

cmpeq(t, p[c], r)
dup ← dup ∨ t
cmpeq(f, c, cntr)
cmov(p[c], r, f)

end for
cmpl(t, r, N)
t ←!dup ∧ t
cntr ← cntr + t

end for
end function
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over the array. Thus the counter can be conditionally incremented only once
after iterating over the array and remains constant during the loop.

The second challenge for any seed-independent timing is the number of ran-
dom values that need to be sampled which can not be determined exactly
upfront, but they can be estimated. Depending on the parameters N and W
one can compute a loose upper bound B of iterations or rather samples, within
with overwhelming probability at least W valid indices are found.

The majority of the algorithm can be masked with Boolean components that
we already discussed in previous algorithms. The incrementation of the secret
counter is most efficient in the additive masking domain, however, the counter
is also required in the Boolean domain for the comparison. To avoid the costly
transformations between the domains, we propose performing the addition with
a single bit in the Boolean domain with half-adders implying 	log2(N)
 masked
ANDs.

Algorithm 5 demonstrates this approach, since B is a multiple of W the
runtime is O(W 2 log2(N)). The asymptotic view indicates a similar performance
to the Fisher-Yates algorithm, but a closer inspection reveals that first, bounded
rejection takes more than W 2 iterations compared to 1

2W 2 for Fisher-Yates
and the rejection method requires two masked comparisons for each iteration
compared to one comparison for Fisher-Yates. When the sampling rand(N − i)
of W values in Fisher-Yates does not contribute significant costs, the bounded
rejection is probably less performant when masked.

Algorithm 6. Bounded Rejection Sampling - Coefficient
Require: N , W , B, 2l > N , p[N ] initialized with zeros
Ensure: W random coefficients in p are set to 1

function bound-rejection-coeff(N, W, B)
cntr ← 0
for i ← 0 to B − 1 do

t ← 0
r ← rand(2l)
cmpeq(f0, cntr, W )
for c ← 0 to N − 1 do

cmpeq(f1, c, r)
cmpeq(f2, p[c], 0)
f ← ¬f0 ∧ f1 ∧ f2
cmov(p[c], 1, f)
t ← t ∨ f

end for
cntr ← cntr + t

end for
end function

Alternatively, the sampling of values less than N can be realized with the
biased multiplication method as we use it for Fisher-Yates. For some parameter
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sets of HQC, this might be faster, because N is close to the next lower power of
two, thus the chance of rejection when r ≥ N is high and the upper bound B
is higher. In this case, however, the runtime comparison to Fisher-Yates is even
more clear and indicates that Fisher-Yates is the faster solution.

In Algorithm 6 we show how the bounded rejection method can be adapted
to output polynomials in the coefficient representation instead of the index rep-
resentation with asymptotic runtime O(WN log2 N).

The bounded rejection sampling is only relevant for cryptographic schemes,
where the PRNG input needs to be protected as the protection comes with a
performance overhead compared to the simple rejection method.

4.6 Comparison Sampling

The idea of this novel approach is to sample each coefficient of the polynomial
individually with an approximation of the probability W/N . This can be imple-
mented efficiently by comparing a uniform random bit string of length � with a
fixed threshold t such that t/2� ≈ W/N . If t is smaller than the random �-bit
value, the coefficient is set to 1.

After performing this for each coefficient, a masked weight check of the poly-
nomial is carried out and the polynomial is accepted only if the correct weight
W is hit. Else, the whole procedure is repeated, which renders this approach
infeasible for use cases that require runtime independent of the input seed. This
method can be considered somewhat of a generalization of the RepeatedAND
method by Drucker and Gueron that we cover in Sect. 4.7.

Table 2. BIKE Comparison sampling, for number of expected repetitions and expected
random bits, see Eqs. 7 and 8

� BIKE-L1 BIKE-L3 BIKE-L5

t rep. rnd. t rep. rnd. t rep. rnd.

8 1 2439.74 240 518 881 1 31.88 6 289 754 1 169.06 55 415 054

9 3 21.30 2 362 385 2 31.88 7 075 973 2 169.06 62 341 935

10 6 21.30 2 624 872 4 31.88 7 862 192 3 92.48 37 892 643

11 12 21.30 2 887 359 9 29.10 7 892 628 7 30.30 13 658 519

12 24 21.30 3 149 847 17 25.46 7 533 925 14 30.30 14 900 203

13 47 21.10 3 379 948 34 25.46 8 161 752 27 29.73 15 833 552

14 94 21.10 3 639 944 68 25.46 8 789 579 55 29.34 16 829 906

For efficiency, the choice of �, t is decisive and the expected number of repe-
titions of the overall procedure is determined by

B(W,N, t/2�)−1 (7)

Therefore, these parameters must be chosen carefully for each potential use case.



A Holistic Approach Towards Side-Channel Secure Fixed-Weight 111

Let p = W/N be the target probability. Then, for � random bits, the best
comparison threshold t is �p2�
. Intuitively, the larger we choose �, the better we
approximate p at cost of more randomness and more secure operations. Interest-
ingly, for all applications, there exists a threshold for �, from which increasing
does not improve the success probability significantly.

Apart from minimizing the number of non-linear operations, we also want
to minimize the number of fresh random bits that are required. For a given
(N,W, �, t), we know that

B(W,N, t/2�)−1 · N� (8)

is the expected number of fresh random bits for this method, which will help
us choose �, t for each use case. On the lower layer, we can employ our effi-
cient comparison from Algorithm 1 and the optimizations for comparison with
one fixed operand, resulting in � − 1 non-linear operations per coefficient and
B(W,N, t/2�)−1 · N(� − 1) expected non-linear operations overall for a given
(N,W, �, t).

Note that these numbers refer to the unprotected instantiation. When mask-
ing this approach, we require d + 1 times as much randomness and in addition,
fresh randomness for each non-linear operation.

In the following, we give details on each potential application.

BIKE and HQC Key Generation. For BIKE and HQC, we cannot deploy this
method for encapsulation and decapsulation, due to the attack by [12,18]. Still, it
is eligible for key generation in both cases. Table 2 and Table 3 give details on the
choice of �, t for both algorithms. As can be seen there, for BIKE-L1 � = 9, t = 3
is the obvious choice, as well as � = 8, t = 1 for BIKE-L3 and � = 11, t = 7 for
BIKE-L5.

For HQC, � = 8, t = 1 is the best choice for HQC-128, � = 10, t = 3 for
HQC-196, and � = 12, t = 9 for HQC-256. Moreover, the randomness numbers
indicate that BIKE performs better with this approach.

Table 3. HQC Comparison Sampling, for number of expected repetitions and expected
random bits, see Eqs. 7 and 8

� HQC-128 HQC-196 HQC-256

t rep. rnd. t rep. rnd. t rep. rnd.

8 1 21.77 3 076 984 1 1.5e4 4 270 634 825 1 3.7e11 1.7e17

9 2 21.77 3 461 607 1 7272.20 2 346 440 182 1 120.43 62 473 484

10 4 21.77 3 846 230 3 28.33 10 155 736 2 120.43 69 414 983

11 8 21.77 4 230 853 6 28.33 11 171 310 5 40.46 25 649 983

12 15 20.62 4 371 146 11 26.90 11 572 734 9 30.89 21 361 556

13 31 20.47 4 700 992 23 25.11 11 700 990 19 29.46 22 076 057

14 61 20.36 5 036 069 46 25.11 12 601 066 37 28.75 23 201 162
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Table 4. McEliece Comparison Sampling, for number of expected repetitions and
expected random bits, see Eqs. 7 and 8

� Parameter Set

348864 460896 6688128 6960119 8192128

t rep. rnd. t rep. rnd. t rep. rnd. t rep. rnd. t rep. rnd.

6 1 44.13 923655 1 965.40 26691249 1 344.42 13820908 1 43.68 1823905 1 28.16 1383882

7 2 44.13 1077597 3 49.42 1593954 2 344.42 16124392 2 43.68 2127889 2 28.16 1614530

8 5 22.66 632174 5 29.70 1094851 5 28.88 1544999 4 43.68 2431873 4 28.16 1845177

9 9 21.11 662545 11 25.49 1057213 10 28.88 1738124 9 28.43 1780973 8 28.16 2075824

10 19 19.98 696744 21 24.62 1134475 20 28.88 1931249 18 28.43 1978859 16 28.16 2306471

Table 5. NTRU HPS Comparison Sampling, for number of expected repetitions and
expected random bits, see Eqs. 7 and 8. Note that these are the numbers for generating
a masked binary polynomial. In Sect. 4.6 we explain the transformation into a ternary.

� Parameter Set

2048509 2048677 4096821

t rep. rnd. t rep. rnd. t rep. rnd.

1 1 28.32 14 414 1 5.73e+10 3.878e+13 1 1.32e+12 1.086e+15

2 2 28.32 28 827 2 5.73e+10 7.757e+13 2 1.32e+12 2.172e+15

3 4 28.32 43 241 3 31.59 64 164 5 35.75 88 043

4 8 28.32 57 655 6 31.59 85 551 10 35.75 11 7391

5 16 28.32 72 069 12 31.59 106 939 20 35.75 146 739

6 32 28.32 86 482 24 31.59 128 327 40 35.75 176 087

7 64 28.32 100 896 48 31.59 149 715 80 35.75 205 435

8 128 28.32 115 310 96 31.59 171 103 159 34.85 228 911

Table 6. Streamlined NTRU Prime Comparison Sampling, for number of expected
repetitions and expected random bits, see Eqs. 7 and 8

� Parameter Set

653 761 857 953 1013 1277

t rnd. t rnd. t rnd. t rnd. t rnd. t rnd.

1 1 1966846 1 5.1e+14 1 1.3e+16 1 3.1e+10 1 3.5e+07 1 3.0e+19

2 2 3933692 2 1.0e+15 2 2.5e+16 2 6.3e+10 2 7.0e+07 2 6.0e+19

3 4 5900538 3 76571 3 91488 3 2945795 4 1.1e+08 3 222512

4 7 84497 6 102095 6 121985 7 371651 7 168223 6 296683

5 14 105621 12 127618 12 152481 13 215382 14 210278 12 370853

6 28 126745 24 153142 24 182977 27 235987 28 252334 25 360750

7 56 147869 48 178666 48 213473 53 255543 57 286495 49 396206

BIKE -L1 Optimization. We have � = 9, t = 3 and thus want to have a = 29−4 in
Algorithm 1 to obtain a 1 output bit in 3/29 cases for a random input b. Then,
we apply the above-described optimizations for a fixed input comparison:
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Table 7. NTRU LPRrime Comparison Sampling, for number of expected repetitions
and expected random bits, see Eqs. 7 and 8

� Parameter Set

653 761 857 953 1013 1277

t rnd. t rnd. t rnd. t rnd. t rnd. t rnd.

1 1 5.7e+11 1 1.7e+24 1 4.1e+14 1 3.3e+20 1 8.6e+15 1 1.4e+35

2 2 1.1e+12 1 6.4e+09 2 8.2e+14 1 4.1e+17 2 1.7e+16 1 1.8e+15

3 3 72090 3 2643045 3 106026 3 150085 3 160778 3 11021700

4 6 96120 5 155129 6 141368 6 200113 6 214370 5 1083789

5 12 120150 11 183384 12 176711 12 250142 12 267963 11 321266

6 25 126010 21 148387 25 199178 23 215790 25 243060 22 385519

7 49 144495 42 173118 49 214613 46 251755 50 283570 43 378276

8 99 163109 84 197849 98 245272 93 284544 99 315026 86 432315

r = ((0 ∨ b0) ∨ b1) ∧ b2 ∧ b3 ∧ b4 ∧ b5 ∧ b6 ∧ b7 ∧ b8

= (b0 ∨ b1) ∧
8∧

i=2

bi = ¬(¬b0 ∧ ¬b1) ∧
8∧

i=2

bi

Note that we convert the logical OR into a logical AND by De Morgan’s law
since this is how it is implemented with masked gadgets. Inversion is O(1), while
SecAnd is O(d2), so this does not increase asymptotic complexity. Still, we can
save two inversions, since b0, b1 are random input bits, which we can assume to
be inverted already. It follows that for BIKE-L1, the following Boolean formula
can be used to obtain a random bit with approximately the correct probability
of being one, using random input bits b0, . . . , b8.

r = ¬(b0 ∧ b1) ∧
8∧

i=2

bi (9)

BIKE -L3 and HQC -128 Optimization. With � = 8, t = 1, we fall back to the
repeated AND method and can just compute r =

∧7
i=0 bi for uniform random

bits b0, . . . , b7. Notably, we can use this approach both for BIKE-L3 and HQC-128.

BIKE -L5 Optimization. With � = 11, t = 7, we have a = 211 − 8 in Algorithm 1
with random bits b0, . . . , b10. Then, applying the analog optimizations as above,
including not inverting random input bits:

r =

(
2∨

i=0

bi

)
∧

10∧
i=3

bi = ¬
(

2∧
i=0

¬bi

)
∧

10∧
i=3

bi

∼ ¬
(

2∧
i=0

bi

)
∧

10∧
i=3

bi (10)
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HQC -196 Optimization. Using � = 10, t = 3, we set a = 210 − 4 in Algorithm
1 with random bits b0, . . . , b9. Applying the aforementioned optimizations, we
obtain

r = (b0 ∨ b1) ∧
9∧

i=2

bi = ¬(¬b0 ∧ ¬b1) ∧
9∧

i=2

∼ ¬(b0 ∧ b1) ∧
9∧

i=2

bi (11)

HQC -256 Optimization. � = 12, t = 9 implies setting a = 212 − 10 in Algorithm
1 with random bits b0, . . . , b11.

r =

((
2∧

i=0

bi

)
∨ b3

)
∧

11∧
i=4

bi = ¬
(

¬
(

2∧
i=0

bi

)
∧ ¬b3

)
∧

11∧
i=4

bi

∼ ¬
(

¬
(

2∧
i=0

bi

)
∧ b3

)
∧

11∧
i=4

bi (12)

McEliece Encapsulation. For this application, we have no special restrictions,
which renders the Comparison approach possible. As can be seen from Table 4,
there are feasible choices of �, t for each parameter set. Notably, the highest
parameter set has both N and W set to a power of two, which implies that the
Comparison method falls back effectively to the RepeatedAND method.

NTRU, Streamlined NTRU Prime, and NTRU LPRrime Key Generation.
For NTRU, Streamlined NTRU Prime and NTRU LPRrime, we have an interesting
different case, since the target space is not binary, but ternary. Additionally,
NTRU imposes the condition that exactly W/2 coefficients need to be +1 and
the remaining −1. To convert a binary polynomial to a ternary one, we employ
the following strategy, assuming that we already have sampled a Boolean masked,
weight-W polynomial:

1. Sample a uniform random, masked bit ri for each coefficient ai with 0 ≤ i <
N .

2. Compute securely the masked sign si := ri ∧ ai for each masked coefficient.
3. If there is a weight restriction on the number of −1 and +1, accumulate all

si securely, unmask the result and check whether the correct number of −1
is hit. If not so, start over from Step 1.

Note that for NTRU, the initially sampled binary weight-W polynomial is
not rejected, but only the vector of signs. This adds B(127, 254, 0.5)−1 ≈ 20
expected repetitions of the above procedure for NTRU-HPS2048{509, 677}, and
for NTRU-HPS4096821 B(255, 510, 0.5)−1 ≈ 28.3.
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The numbers for sampling binary polynomials with correct weight are pre-
sented in Table 5, Table 6, and Table 7. It stands out that compared to the code-
based schemes, a notably lower amount of randomness is required. This is due
to the smaller polynomial degrees and the more favorable ratio between W and
N . However, the very low numbers for NTRU are misleading, since they do not
include the additional randomness required for sampling the correct sign weight.

4.7 RepeatedAND

In [10], Drucker and Gueron propose ANDing random bit strings repeatedly with
subsequent dedicated correction of the weight as a method for sampling fixed
weight vectors. Starting with a zero bit string A of length N , they compute a
random bit string A of the same length by repeatedly ANDing random strings so
that the expected weight of the string is halved with each AND, until the weight
is below or equal to the target weight W . Then, A is set to A ∨ A, so that the
new weight of A is less or equal the sum off the individual weights of A and A.
As long as the weight of A is not W , a new A is computed with a target weight
of the difference between the weight of A and W and ORed with A to increase
its weight towards W .

Just like the simple rejection and our comparison sampling, this method is
not secure for the decapsulation in HQC and BIKE.

At first sight, this method can be masked in a straight-forward manner, by
checking the weight of secret intermediate vectors being the only non-trivial
component. However, it makes heavy use of computing the (secret) weight of
intermediate vectors, which is cheap in unmasked domain, but a big cost fac-
tor for masking. Experimentally, we found that for BIKE, HQC and McEliece,
the average number of required weight checks significantly exceeds the aver-
age for our Comparison method presented in Sect. 4.6, with the smallest differ-
ence being McEliece-348864 (31.02 vs. 22.66), and the biggest difference being
BIKE-L5 (60.38 vs. 30.30). In software, this masked weight check would predom-
inantly determine the performance, rendering RepeatedAND obsolete for BIKE,
HQC and McEliece. In hardware, however, the weight check could be performed
in parallel with the ANDing. For NTRU, Streamlined NTRU Prime and NTRU
LPRrime the average number of comparisons are very similar, the RepeatedAND
method, however, requires less randomness.

4.8 Conversions Between Polynomial Representations

Some implementations of the cryptographic schemes use the index representa-
tion for fast multiplications that follow the sampling process, but one can also
transform this representation to the coefficient representation in a constant-time
and masked way. For each of the W non-zero indices one iterates over all coeffi-
cients N that are initialized with 0, and if the current indices are hit one replaces
the 0 with a 1. We therefore need NW iterations with a cmpeq and a cmov. A
conversion in the other direction from coefficient to index representation can be
done similarly with comparable costs.
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5 Masked Implementation

5.1 Software

We implemented all methods presented in Sect. 4 in software generalized
for arbitrary masking order and thus secure against multi-trace power side-
channel attacks. Except for the comparison method, our implementations are
parametrized for N and W . We based our software implementations on masked
gadgets presented in [7]. These gadgets can be proven to be secure under the
assumptions provided by the d-probing model. Additionally, they fulfill certain
composability notions ensuring that a design constructed by these gadgets is still
secure in the d-probing model.

For Boolean masked software implementations, bitslicing is often a very effi-
cient methodology to improve performance. All of our implementations are bit-
sliced as far as the algorithms allow, we also bitsliced all core operations pre-
sented in Sect. 4.1.

Fisher-Yates. The first component of the Fisher-Yates algorithm is to sample
a random value with a varying range [0, N − i). We implemented this in the
additive masking domain with the biased multiplication method. To be compat-
ible with unmasked implementations we take 32-bit Boolean masked randomness
(for example from a masked Keccak) as input and transform it bitscliced to the
48-bit additive domain (modulo 248). We unbitslice the randomness and perform
the multiplication with the public value N − i by a simple sharewise unmasked
multiplication. The result is at most 48-bit wide, therefore the additive domain
modulo 248 and not e.g. 264 which saves us some costly non-linear operations in
the Boolean to arithmetic and arithmetic to Boolean conversions.

Taking the upper 16 bit from the results can be done in the Boolean domain,
which we need anyway for the second component of the algorithm. But before
transforming to the Boolean domain, we add i to the upper 16 bit, which is
cheaper in the additive domain. The additive to Boolean transformation is again
implemented bitsliced and we keep the data in the bitsliced domain for the
comparisons and conditional moves of the second component. With W padded
to the next multiple of 32, we can perform the inner loop with the comparison
and condition move on 32 values at a time.

Sorting. To evaluate the sorting approach presented in Sect. 4.3 we imple-
mented a masked bitonic sort in software. Bitonic sort for n elements performs
n/2 comparisons operating on all n elements in each iteration and each pair of
elements that are compared has the same distance during one iteration. For the
cases where the distance is greater than our register width of 32, we thus can
directly compare and conditionally swap a group of 32 consecutive values with
their respective pairs in the bitsliced domain where 32 values share a register for
each bit.

Comparisons of elements with a distance of less than 32 are also possible in
the bitsliced domain but require a transformation. When the distance is halved
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from one iteration to the next as is the case for most iterations, we need to swap
half of the bits of one group of 32 elements in one register with the respective
other half of paired group. In the non-bitsliced domain, this would correspond
to simple register swaps, in the bitsliced domain we need to swap bits by using
rotations and Boolean operators. By implementing this transformation in the
bitsliced domain, we are able to perform the entire sorting algorithm in the
bitsliced domain and save transformations between the domains.

For distances below 32, our method works on 64 consecutive elements at a
time, we therefore pad the polynomial width to the next multiple of 64 for a
clear and efficient implementation. The additional coefficients appended by the
padding get initialized with zero and not paired with random values, but with
the highest value possible so that the nonzero lower coefficients will not be sorted
to the additional indices and they can simply be cut off after sorting. Bitonic
sort originally only works on power-of-two input sizes, but can be adapted to
arbitrary sizes, as we did for our implementation.

Rejection. To be able to parallelize the comparison of r versus N we perform
the outer loop on batches of 32 values. We then iterate over the batch, if the
result of the comparison indicates that a value r is not less than N we directly
continue with the next value. If not, we compare the value to the already sampled
ones, again performing 32 bitsliced comparisons at a time. By performing 32
comparisons at a time we often perform comparisons with elements that are not
yet set by the algorithm, but are initialized with a value e.g. zero. The result
of these comparisons must not influence the rejection behavior, otherwise the
initialization value can never be included in the output which would violate the
uniform randomness requirement. We solve this by simply masking out the bits
of these comparisons.

If no collision is found r is stored in the array, in contrast to the bounded
rejection method, this condition is not a secret value, thus we do not need the
masked cmov operation. But we implemented this move in the bitsliced domain,
so that the array of indices can be kept in the bitsliced domain throughout the
entire algorithm and only converted to the non-bitsliced domain at the end.

Bounded Rejection. Similar to the simple rejection method, the implemen-
tation of the bounded rejection method for the index representation has to deal
with false collisions with the initialization values. Tracking which values are set
and thus which comparisons are valid is cumbersome in this case because the
amount of already correctly sampled values is secret. Instead, we implemented
this by initializing the array with a value that is out of bound, e.g. N . This
induces only a small overhead for the collision comparison, which now has to
operate on 	log2(N)
 + 1 bits instead of 	log2(N)
.

Again we parallelized the inner loop with bitslicing to significantly improve
the performance.

We determined the bound according to the formulas provided by Drucker
et al. [15]. Drucker et al. suggest bounds for BIKE Level 1 (B = 327) and Level 3
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(B = 488) which give a probability to fail of less than 2128. If a sampling failure
does not affect the security of the scheme, a lower bound can be chosen for better
performance. We selected a bound of 704 for BIKE Level 5 and 364, 460 and 267
for the three relevant parameter sets of HQC to reach the same probability.

Comparison. Generally, this approach can be parallelized very efficiently as
each coefficient is sampled individually. For software, this means that bitslicing
is eligible, and for hardware, an individual trade-off between area and latency
can be found.

In software, the weight check is the bottleneck of this method. Since it is hard
to accumulate single masked bits in Boolean sharing on software platforms, we
first deploy a bitsliced Boolean-to-additive masking conversion, which converts
32 masked bits to 32 arithmetically masked values modulo 2z for a sufficiently
large chosen z. Then, we unbitslice these values and accumulate the additively
masked values share-wise. Finally, when we iterated over the whole polynomial
with this procedure, we can unmask the shared accumulation value to obtain
the weight of the masked polynomial.

Optimized Masked Weight Check. To check whether the masked polynomial can-
didate has the correct weight or not, it is required to compute the weight of the
polynomial. For this operation, the intermediate weight is a sensitive information
as it could reveal the position of single coefficients. The masked weight compu-
tation itself is a secure accumulation of all masked coefficients to a value of size
	log2 N
 bits, e.g., by means of a secure 	log2 N
-plus-one-bit adder. It is worth
noting that for all three code-based applications, though, W is much smaller
than N . It follows that most of the upper bits of such a secure adder are not
required with overwhelming probability.

Since we know the expected weight of our polynomial candidate (under the
assumption that no biased randomness is used as input), we can decrease the
secure accumulator size and accept the possibility of an overflow happening.
An overflow of the accumulator is not critical as long as it does not lead to a
false-positive result, i.e., approving a polynomial that has not the correct weight.

Let z be the bit length of the secure accumulator output. Then, for a given
(N,W, �, t) as explained in Sect. 4.6, we have probability pfp of a false positive:

pfp =
�N−W

2z �∑
i=−�W

2z �
i�=0

B
(

W + i · 2z, N,
t

2�

)
(13)

Obviously, it is desirable to have a negligible pfp, but also a low z, since
this affects the efficiency of the weight check. We find that for all use cases
and parameter sets, choosing z = 8 (i.e., an 8-bit secure accumulator), yields
pfp < 2−200.
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RepeatedAND. Using the same weight check module as above, we also imple-
mented the RepeatedAND method presented in [10]. This time, however, we
cannot use the optimization shown above, since we do not check for equality,
but rather whether a weight is bigger or smaller. Thus, we use 10-bit secure
accumulation, which is enough for nearly all parameter sets of NTRU, Stream-
lined NTRU Prime, and NTRU LPRrime. For Streamlined NTRU Prime- and NTRU
LPRrime-1277, the probability that an intermediate weight is greater or equal
than 210 is negligible. This approach is not efficient for McEliece, BIKE and HQC,
because compared to the Comparison approach, significantly more and bigger
weight checks are required.

5.2 Hardware

As a case study, we implement the comparison sampling approach for BIKE in
hardware. Additionally, we give some remarks on how hardware implementations
of the other algorithms could be realized.

For hardware implementations, we generally have similar restrictions com-
pared to embedded software platforms. Most importantly, only very limited
memory is available, rendering sorting-based methods for high polynomial
degrees infeasible. As an example, the smallest BIKE parameter set already
would require 32 · 12323 · 2 = 788672 bit storage for first-order masking assum-
ing that 31 bit randomness per coefficient would be sufficient. On the other
hand, comparison-based sorting networks can be implemented very efficiently for
smaller N as in NTRU and its variants and parallelized in a more fine-grained
manner than for software platforms. This allows for precise trade-offs between
latency and area demand.

To reduce the latency of comparisons, a parallel-prefix subtractor could be
deployed by optimizing it to only obtain the uppermost carry-out bit. In return,
this would require more secure non-linear gadgets compared to our comparison
method presented in Sect. 4.1.

For Fisher-Yates, the boolean to arithmetic and vice versa transformations
could be implemented with secure Boolean adders, which is possible efficiently
and pipelined [17]. Then, the relatively big integer multiplications are a major
cost factor in hardware, as they involve many bit operations.

For the RepeatedAND method, we certainly expect a higher control overhead
due to the more complex algorithm compared to the comparison approach. Also,
an intermediate masked vector must be stored in addition to the output vector,
which results in a higher memory requirement. On the other hand, in contrast
to software implementations, where the weight check is the bottleneck, we can
execute the weight check in parallel to the secure AND operations. This could
make this method efficient for the BIKE and HQC key generations and McEliece
encapsulation.

Comparison Method. Since we aim for a masked implementation, we store
each share of the target sampled polynomial in a separate memory (for BIKE
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level 1, we instantiate one 18 KB memory for each share). Each of these memory
modules can be accessed via a 32-bit interface. As explained in Sect. 4.6, the
approach requires � bits of randomness to sample one bit. Due to the 32-bit
interface of the memory modules, our hardware design samples 32bit in parallel
which leads to � · d · 32 bits of randomness required as input to the fixed input
comparison. Since our target is to implement a side-channel resistant design, we
replace all non-linear gates by secure gadgets (in our case study, we used Domain-
Oriented Masking (DOM) gadgets [11]). As shown in Sect. 4.6, the comparison
for BIKE level 1 consists of eight secure multiplication gadgets where each gadget
requires d·(d+1)

2 bit of fresh randomness.
To track the Hamming weight of the sampled masked polynomial, we instan-

tiate a masked Hamming weight computation unit. The design follows the imple-
mentation concept of the unmasked Hamming weight unit from [16]. However,
we realize each adder stage by masked Ripple-Carry Adder (RCA) generated
from HPC2 gadgets [8]. Eventually, we obtain a masked six-bit result for each
32-bit block which is fed into an accumulation stage. The accumulator is imple-
mented by a fully pipelined masked 8-bit Sklansky adder as proposed in [2]. Since
the adder consists of eight register stages, we obtain eight masked intermediate
results that need to be accumulated to a final result. For this, we utilize the
same adder and cleverly feed in the intermediate results from the adder to its
input to add up all intermediate results. The final result is not secret and can be
unmasked in order to compare it to the desired weight W . The procedure needs
to be repeated in case the weight is not met.

6 Evaluation

6.1 Software

The target of our software implementations is the 32-bit Cortex-M4 microcon-
troller on the STM32F4 discovery board. To measure the cycle counts we set the
frequency to 24MHz to make the cycle counts independent of the memory speed.
We used the arm-none-eabigcc-10.3.1 compiler with optimization-level O3 and
report average cycle counts of 10 runs for algorithms without data-dependent
branching and average counts of 1000 runs otherwise. For comparison sampling,
we measure the non-branching execution of one iteration and report this value
multiplied by the expected number of repetitions.

We excluded the generation of randomness required by calls to rand in our
measurements so that only the performance of the fixed weight polynomial sam-
pling algorithm is measured and not the performance of the PRNG. The gener-
ation of randomness required by masked operations is however included.

Tables 8 show our measurements in kilo cycle counts for first-order masking
on the Cortex-M4.

From our measurements, we can first of all conclude that masked fixed-weight
polynomial sampling is expensive in software.

For masked sampling of fixed-weight polynomials in the index representation,
the simple rejection method is the fastest and can always be applied when there is
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no need for seed security. If seed security is required, one could alternatively use
the bounded method, which is always slower compared to the simple rejection.
We thus only benchmarked the bounded rejection for the use cases in BIKE
and HQC. Fisher-Yates also provides seed security, and outputs in the index
representation and is faster than the bounded rejection for all parameter sets
that we measured.

Table 8. Performance on the Cortex-M4 in kilo cycles for first order masking. Entries marked with
– are irrelevant combinations that we did not implement/measure.

Scheme N W Sort Fisher-Y. Reject B. Reject RepAND Comp. I2C Trans.

BIKE 24646 134 – 7128 – 34077 – – 770708

BIKE 12323 71 – 2854 647 – 101629a 45838 195945

BIKE 49318 199 – 13206 – 69140 – – 2394245

BIKE 24659 103 – 4901 1255 – 156631a 129050 592411

BIKE 81194 264 – 21680 – 131135 – – 5497931

BIKE 40973 137 – 7514 2176 – 320522a 234007 1372560

HQC 17669 75 – 3063 – 25803 – – 309894

HQC 17669 66 – 2852 620 – 185348a 63242 272707

HQC 35851 114 – 5377 – 41500 – – 999526

HQC 35851 100 – 5034 1282 – 391503a 183833 876778

HQC 57637 149 – 7808 – 28930 – – 2094589

HQC 57637 131 – 7367 2132 – 837777a 348099 1841552

McEliece 3488 64 108596 1847 462 – 19519b 12948 32246

McEliece 4608 96 160777 3326 972 – 31778b 20392 68236

McEliece 6688 128 240949 5044 1555 – 63766b 31652 131539

McEliece 6960 119 249618 4848 1386 – 59875b 34571 127568

McEliece 8192 128 300713 4591 1527 – 62867b 34609 161312

NTRU 509 254 9699 11532 4709 – 2141 1666 15342

NTRU 677 254 14958 12445 4833 – 3559 2935 22674

NTRU 821 510 18338 17737 7022 – 4140 3921 32655

sNTRU Prime 653 288 14958 15086 6345 – 3023 3033 24650

NTRU LPRrime 653 252 14958 12390 4806 – 3177 3299 21515

sNTRU Prime 761 286 16464 15063 6005 – 3699 3336 27828

NTRU LPRrime 761 250 16464 12350 4570 – 3457 3773 24264

sNTRU Prime 857 322 19848 20249 7461 – 4125 4012 34948

NTRU LPRrime 857 329 19848 20569 7805 – 4482 4650 35825

sNTRU Prime 953 396 21564 27494 11253 – 4403 6266 47664

NTRU LPRrime 953 345 21564 20867 8404 – 4496 6617 41385

sNTRU Prime 1013 448 23405 31680 14421 – 4836 5763 57395

NTRU LPRrime 1013 392 23405 27380 10843 – 5428 7015 50228

sNTRU Prime 1277 492 32361 42388 18445 – 6861 9612 85013

NTRU LPRrime 1277 429 32361 33673 13822 – 7285 9245 74318

a average over 3 executions b average over 10 executions

The sorting method required too much stack to fit into the 192-KB SRAM
of our board for the large N of BIKE and HQC, but the results of McEliece
with medium sized N already indicate high costs for large N . As the runtime
for sorting grows sub-quadratic in N , but Fisher-Yates performance is mainly
determined by its O(W 2) loop iterations, the sorting method is faster for the
higher parameter sets of Streamlined NTRU Prime and NTRU LPRrime which
have medium sized N and relatively high W .
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However, sorting is always outperformed by the two other coefficient repre-
sentation methods, the RepeatedAND and our comparison method. For BIKE,
HQC and McEliece the comparison method is superior to the RepeatedAND in
runtime costs. For NTRU the performance of both methods is very similar, for
Streamlined NTRU Prime and NTRU LPRrime, RepeatedAND is mostly faster.

In the last column of Table 8 we present the cycle counts for a masked trans-
formation from index to coefficient representation. In general, it depends on the
implementation of the scheme which representation is required for further oper-
ations, the index representation of sparse polynomials can for example be used
for efficient multiplications. The high costs for a masked transformation indicate,
that if only a single representation is required, a method that directly outputs
the correct representation is usually preferable.

To summarize the recommendations for masked software implementations
derived from our performance measurements: if no seed security is required,
the simple rejection method is the fastest index sampling method and either
RepeatedAND or our comparison method is preferable for an output in coeffi-
cient representation. For the scenarios in BIKE and HQC, where the seed must
be kept secret, Fisher-Yates yields the best performance with an output in index
representation, and one could use a masked transformation to get the coefficient
representation, or implement a less memory-consuming variant of the sorting
method, by utilizing radixsort, as explained in Sect. 4.3.

Two schemes have parameter sets that lead to a special case for some algo-
rithms. When N is a power of two which is the case for one parameter set of
McEliece, then Fisher-Yates and rejection sampling become easier because check-
ing if r < N is not necessary. We adopted our code accordingly when bench-
marking this parameter set and the effect shows clearly in the cycle numbers
of Fisher-Yates that are lower compared to the next smaller parameter set of
McEliece. The second special case is the highest parameter set for NTRU where
W > N/2. In this case, the symmetry of fixed weight sampling allows to sample
with W ′ = N − W instead.

6.2 Hardware

Table 9 shows the hardware implementation results for the comparison approach
presented in Sect. 4.6 for BIKE level 1. Therefore, we implement our design for
a Xilinx Artix-7 xc7a200 Field-Programmable Gate Array (FPGA) and report
the required resources and performance numbers. As a baseline, we first imple-
ment an unprotected design that consumes just 100 slices and finishes on aver-
age one sampling process in 33.4µs. Note, the number of required Block-RAMs
(BRAMs) is reported in 36 KB memory modules. Therefore, the unprotected
design requires only one 18 KB memory to store the final polynomial.
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Table 9. Implementation results for the comparison sampling approach for BIKE level
1 on an Artix-7 FPGA.

d Resources Performance

Logic Memory Area Cycles Frequency Latency

LUT FF BRAM Slices Cycles MHz μs

0 194 115 0.5 100 8 350 250 33.400

1 1 957 2 721 1 627 9 756 250 39.024

2 5 075 5 815 1.5 1 548 9 756 250 39.024

3 9 038 10 085 2 2 584 9 756 250 39.024

The next three lines in Table 9 show the implementation results for a first, sec-
ond, and third-order protected design. The first-order protected implementation
consumes 627 slices compared to 100 slices of the unprotected design. However,
all protected implementations of the sampler can be executed with the same
frequency, but have a slightly higher latency due to additional register stages
introduced by the masking approach.

7 Conclusion

In this work, we demonstrated how all fixed-weight polynomial sampling meth-
ods in the literature can be masked at arbitrary order. Our implementations
indicate that despite bitslicing and optimized subcomponents, the existing algo-
rithms are costly for masked software. Drucker and Gueron [10] benchmarked
a subset of our algorithms and schemes without power side-channel counter-
measures, their numbers indicate that the relative performance of the sampling
algorithms for a given scheme is equal for masked and nonmasked software imple-
mentations.

The flexibility of hardware implementations allows faster solutions, further
implementations would be an interesting target for future work. Additionally,
we identified that shuffling should be investigated for the sampling algorithms
as an efficient countermeasure against single-trace attacks.
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Abstract. Polynomial commitment schemes allow a prover to commit
to a polynomial and later reveal the evaluation of the polynomial on
an arbitrary point along with proof of validity. This object is central in
the design of many cryptographic schemes such as zero-knowledge proofs
and verifiable secret sharing. In the standard definition, the polynomial
is known to the prover whereas the evaluation points are not private. In
this paper, we put forward the notion of private polynomial commitments
that capture additional privacy guarantees, where the evaluation points
are hidden from the verifier while the polynomial is hidden from both.

We provide concretely efficient constructions that allow simultane-
ously batch the verification of many evaluations with a small addi-
tive overhead. As an application, we design a new concretely efficient
multi-party private set-intersection with malicious security and improved
asymptotic communication and space complexities.

We demonstrate the concrete efficiency of our construction via an
implementation. Our scheme can prove 210 evaluations of a private poly-
nomial of degree 210 in 157 s. The proof size is only 169 KB and the ver-
ification time is 11.8 s. Moreover, we also implemented the multi-party
private set intersection protocol and scale it to 1000 parties (which has
not been shown before). The total running time for 214 elements per
party is 2,410 s. While existing protocols offer better computational com-
plexity, our scheme offers significantly smaller communication and better
scalability (in the number of parties) owing to better memory usage.

1 Introduction

A polynomial commitment is a cryptographic building block that allows a
prover to commit to a polynomial, which can later be opened at any evalu-
ation point with proof that the evaluation is correctly computed. Polynomial
commitments, which serve as an important building block in constructing cryp-
tographic protocols, were introduced by Kate et al. [46] for the construction
of verifiable secret sharing in the synchronous and asynchronous setting [6].
c© International Association for Cryptologic Research 2023
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The scheme was generalized to multivariate polynomials by Papamanthou et
al. [51], and to zero-knowledge proofs of knowledge by Zhang et al. [69]. In
recent years, they are extensively used to build efficient zero-knowledge proof
systems [23,32,59,62,65,68], where recent new schemes without a trusted setup
were proposed in [15,47,61,62,67]. Subsequent works considered batched open-
ings for multiple evaluations [60] and multiple polynomials [37]. Another appli-
cation where polynomial commitments are utilized is “Proof of retrievability”
[45,66]. In this problem, the server wishes to prove to a verifier that all of the
client’s data is stored correctly. The polynomial commitment allow the prover to
prove the integrity of the data storage. Logarithmic and constant size polynomial
commitments are also used in constructing vector commitments [17,18,22].

To date, all concretely efficient polynomial commitments require the verifier
to know the evaluation point and the prover to know the polynomial. While such
a notion is sufficient to design succinct zero-knowledge arguments, secure multi-
party computation (MPC) requires additional privacy guarantees. In this paper,
we consider a different setting where the polynomial is unknown to the prover and
is encrypted. Moreover, the evaluation points are committed by the prover and
may not be publicly known to the verifier. This setting is very common in MPC
where both the polynomial and the evaluation points must remain private as
they are defined based on the parties’ inputs. We denote this primitive by private
polynomial commitment and show that it can be used as a building block in many
applications that arise in the secure multi-party setting; see Sects. 1.1 and 4.
Our scheme is particularly useful in batch scenarios when there are multiple
evaluation points. In this case, the proof size and verifier’s complexity grow
additively with the number of points.

1.1 Our Contributions

Our contribution is threefold. (1) abstracting the new notion of private polyno-
mial commitments and providing two constructions. (2) demonstrating its appli-
cability for MPC and (3) implementing our commitment schemes and presenting
a new multi-party private set-intersection (MPSI) protocol.

Private Polynomial Commitments. Our contribution includes two flavors
of private polynomial commitments with a hidden (encrypted) polynomial; one
where the evaluation points are public and the other where they are private. Our
schemes are built on the recent scheme of an inner product argument [16], which
generalizes the inner product argument from [14] to bilinear groups. Specifically,
we embed the ciphertexts encrypting the coefficients in the base group using an
Additively Homomorphic Encryption (AHE) scheme introduced in [13]. Working
with bilinear maps allow to publicly verify a single multiplication in the exponent
which allows any party to verify the proof. More specifically, for a polynomial of
degree d, the overhead is dominated by O(d) bilinear pairings whereas the proof
size is O(log d) and the verifier time is O(d) exponentiations. Our construction
supports batched evaluations efficiently. To open at m evaluation points, the
proof size is O(m+log d) and the verifier time is only O(m+d). The polynomial
is hidden from all parties and only an encrypted form is available to the prover.
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Our constructions rely on two different commitment schemes for committing
to the encrypted polynomial (using the pairing-based scheme from [4]) and the
evaluation points (using Pedersen commitment [52]). We further rely on the
Boneh et al. pairing-based encryption scheme [13] to be compatible with our
pairing-based commitment scheme, both of which rely on the Decisional Linear
Assumption (DLIN) and Double Pairing Problem (DPP).

Our commitment scheme uses an inner product argument [14] as a building
block (denoted by BBB-IPA) and is the first polynomial commitment scheme
where the prover does not know the actual polynomial and only has access to its
encryption. The main challenge in constructing this commitment scheme was the
integration of encrypted polynomials into the polynomial commitment scheme.
Secondly, directly constructing a scheme would not provide batching. To ensure
batching and overall small proof size, we reduce the proving of the polynomial
evaluation to multiple inner products. First, we provide a new inner product
argument that allows the prover to verify inner products on encrypted ciphertext
with the evaluation vector. Second, we prove the correct structure of multiple
evaluation vectors by verifying the linear and quadratic constraints. Both our
linear and quadratic tests reduce the multiple constraints on all different eval-
uation vectors to verify a single inner product argument, thereby ensuring the
batching feature is effective. An additional feature is that the proof can be made
non-interactive using Fiat-Shamir.

Applications. Private polynomial commitment schemes are useful for private
computations based on polynomials. We list four such applications that can
benefit from the scalability and batching of the evaluations as inherent in our
commitment scheme. Firstly, we use our new private polynomial commitment
as a building block to present a new scalable multi-party PSI protocol that is
secure against malicious adversaries. We also discuss three other applications -
Oblivious Polynomial Evaluation, Verifiable Polynomial Evaluation, and Non-
Interactive two-party PSI; for more details see Sect. 4.

Scalable Multi-party Private Set-Intersection (MPSI). PSI is a funda-
mental problem in secure computation that has been widely studied in the past
decade. In this problem a set of parties P1, . . . , Pn, holding input sets X1, . . . , Xn

of sizes m1, . . . ,mn, respectively, wish to compute X1 ∩ X2 ∩ . . . ∩ Xn. The two-
party setting has been studied extensively and continues to be a hot topic of
research owing to numerous applications such as contact discovery, dating ser-
vices, data mining, recommendation systems, and law enforcement. In a long line
of works, highly efficient two-party protocols have been designed with almost lin-
ear overhead in the set sizes (see some recent works at [21,53–55] and references
therein). Furthermore, Google has recently leveraged this technology to match
login credentials against an encrypted database.

While considerable progress has been made in the two-party setting, very few
works have explored the concrete efficiency of PSI in the multi-party setting and
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the existing works have mostly considered only the semi-honest setting. Further-
more, current approaches fail to achieve overheads as in the two-party setting
and do not scale well due to communication and space bottlenecks. Multiparty
PSI is a fundamental cryptographic primitive with a richer set of applications
beyond the two-party ones such as distributed intrusion detection, identifying
the most visited sites or watched movies, contact tracing and more.

Our starting point is the work of Freedman et al. [31] who designed a simple
two-party PSI protocol based on polynomials. Roughly speaking, P1 creates a
polynomial Q(·) whose roots correspond to its input data set and sends this poly-
nomial to P2, encrypted under an additively homomorphic encryption scheme.
P2 homomorphically evaluates a “masked” variant of the encrypted polynomial
on its data set. In more detail, for each element x in P2’s input set, P2 generates
fresh randomness r and sends an encryption of r ·Q(x)+x to P1. P1 decrypts and
identifies the elements in the set intersection. Namely, if the decrypted value x
is in P1’s set, then x is extracted from the decryption of the ciphertext. Whereas
if the item x is not in the intersection, with very low probability, there exists an
element z for which r · Q(z) + z is a false positive.

More recently, Hazay and Venkitasubramaniam [43] extended [31] to the
multi-party setting by reducing the multi-party PSI (MPSI) task among n par-
ties to n instances of two-party PSI. In this work we explore the practicality
of [43] in the malicious setting where up to n − 1 parties can be corrupted. On
a high level, in [43], parties P2, . . . , Pn create a polynomial whose roots cor-
respond to their respective inputs and send their encrypted coefficients to P1.
P1 then aggregates the polynomials and homomorphically evaluates the result-
ing encrypted polynomial on its input set. To make the protocol secure against
malicious adversaries, [43] introduced a simple mechanism for P1 to prove and
the parties to verify that P1 aggregated the polynomials correctly, and relied on
zero-knowledge proofs for the remaining steps.

The protocol presented in [43] implies an overall communication complexity
of O(n2 + n · mmax + n · mmin · log mmax) where mmax (resp. mmin) is the size of
the largest (resp. smallest) input set. The threshold key generation incurs a com-
munication cost of O(n2). The central party aggregates the input polynomials
of all the parties and returns the encrypted coefficients of the aggregated poly-
nomial. This yields a communication overhead of O(n · mmax). The main source
of overhead is due to the zero-knowledge proof applied by the central party for
proving correct evaluation, which implies an overhead of O(n · mmin · log mmax).
This phase is captured in our protocol by private polynomial commitments.

More precisely, in this work, we introduce a variant of [43] where we rely
on a new abstraction that is based on private polynomial commitments. By
leveraging the efficiency and batching features of our commitment schemes, we
manage to improve the communication and computation complexities of [43]. We
further provide an implementation of our PSI protocol and explore its concrete
efficiency. This is in contrast to [43] that had the potential of being concretely
efficient but did not provide an implementation.

The complexity of our protocol. In addition to our new abstraction, we
further improve the asymptotic complexity of [43] to O(n2+

∑n
i=1 mi+n·(mmin+



Private Polynomial Commitments and Applications to MPC 131

log mmax)). Introducing private polynomial commitments (PPC) as a building
block, the central party in our protocol does not send the encrypted aggregated
polynomial. Instead, a commitment of encrypted aggregated polynomials is sent
to the parties. This allows us to remove the O(n ·mmax) factor. To further reduce
the communication complexity, we leverage the batching feature of PPC which
allows the central party to prove the correctness of multiple evaluations on the
aggregated polynomial. The proof size, in this case, is O(mmin+log mmax) which
contributes an additive factor of O(n · (mmin +log mmax)) to the communication
complexity of our MPSI protocol. A detailed analysis is provided in Table 3
where the communication complexity is broken according to the central party
overhead and the other parties and is presented for each phase separately.

Comparison with recent work. Three recent works that design PSI pro-
tocols with malicious security are [9,33,38]. Similarly to our work, these works
also achieve linear communication complexity in the number of parties by rely-
ing on a star topology. The main advantage of these protocols is that they
rely on oblivious transfer (OT), oblivious linear evaluation (OLE) (used in [38])
and symmetric-key primitives for which we have very efficient instantiations. In
comparison to previous work [9,33,38], our protocol achieves the best commu-
nication and space complexities. Specifically, our communication complexity is
dominated by the term O(n2κ + nmκ) where the gain compared to previous
work is due to an aggregation of the encrypted input polynomials and the small
batched proof size. We compare the communication complexity in Table 1. In
the typical parameter regime, the computational security parameter κ is greater
than the statistical parameter λ satisfying the inequality λ+log m < κ where m
is the input set size. Applying this inequality to the asymptotic communication
complexity of [33] yields communication complexity that matches ours.

Most MPSI protocols (including ours) are designed for a star topology, where
a central party aggregates the other parties’ messages and therefore requires
larger space. In prior works, the space complexity of the central party is inflated
with a factor that depends both on the input and the number of parties, whereas
our space complexity only grows with O(mκ). The space complexity of the other,
“non-central” parties, is independent of the number of parties. We compare the
space complexity in Table 2.

Our paper realizes a standard MPSI functionality where a single party (typ-
ically the central party) receives the output, but can be extended to guarantee
security even when all parties receive the output. Both [38] and our protocol
achieve this standard security whereas the works of [9,33] provide a weaker secu-
rity guarantee that allows the party that first receives the output (if controlled
by the adversary) to unnoticeably remove certain elements from the output when
broadcasting it to all parties. Note that these protocols can achieve full security,
but this will require applying general-purpose zero-knowledge proofs.

On the other hand, the computational cost of [9,33,38] grows with Ω(mnκ)
field multiplications, while the dominating cost of our computation is O(m2)
exponentiations. This can be further reduced into O(m log m

log log m ) using hashing.
While for a small number of parties, our protocol is slower, the total running
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Table 1. The communication complexity analysis of MPSI in bits where κ is the
computational security parameter, λ is the statistical security parameter, n is the
number of parties, m is an upper bound on the inputs set sizes and P1 is the central
party.

P1 Pi Total

[9] O(nmκ2 + nmκ log mκ) O(mκ2 + mκ log mκ) O(nmκ2 + nmκ log mκ)

[33] O(nκ + nm(κ + λ + log m)) O(nκ + m(κ + λ + log m)) O(n2κ + nm(κ + λ + log m))

[38] O(nmκ + nλκ log m) O((n + m)κ + λκ log m) O(n2κ + nmκ + nλκ log m)

Theorem 2 O(nmκ) O((n + m)κ) O(n2κ + nmκ)

time essentially remains the same when the number of parties increases. For
instance, our experiments show that our scheme takes 9,141 s for 1000 parties
and 216 elements per party. Prior works cannot run at this scale.

We highlight some applications which require PSI for a large number of
parties and large input sizes: (1) Cache-sharing [50] involves multiple network
providers who wish to cache common elements with high access frequency in a
shared cache and require privacy of their local cache. (2) Another application is to
generate statistics over the Tor network. Prior literature e.g., [26,63] has relied
on MPC, secure aggregation and differential privacy to generate statistics on
Tor servers in a privacy-preserving manner. Large-scale MPSI can be useful here
where common features need to be extracted among the relay servers without
compromising the users’ privacy. (3) Hospitals and healthcare providers can
collaborate to analyze common features between databases which include a large
number of medical records. (4) Finally, MPSI can be applied for contact tracing.
A large group of patients can execute an MPSI protocol to find common locations
they have been to without leaking each individual’s travel history. The result can
help the actions of testing or quarantine in these areas.

Table 2. The space complexity analysis of MPSI in bits where κ is the computational
security parameter, n is the number of parties, m is an upper bound on the inputs set
sizes and P1 is the central party.

P1 Pi

[9] O(nmκ2 + mκ log mκ) O(mκ2)

[33] O(nmκ + m(κ + λ + log m)) O(m(κ + λ + log m))

[38] O(nmκ) O(mκ)

Theorem 2 O(mκ) O(mκ)

Private polynomial commitments are also useful for reusable non-interactive
two-party PSI. Non-interactive secure computation introduced in [44], considers
a “receiver” that publicly broadcasts a single message and any “sender” can
interact in a two-party secure computation protocol with the receiver by sending
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a single message to the receiver. The receiver only needs to broadcast once and
any number of interactions with the receiver can be performed. Specializing the
setting to PSI, our protocol enables non-interactive PSI which can be applied to
dating services, ride-share matching, and contact tracing. While such a protocol
may introduce high computational cost compared to existing works e.g., [57],
its communication cost is competitive as it benefits from our batching feature,
which is extremely useful in a client-server setting; see more details in Sect. 4.3.

Oblivious Polynomial Evaluation. The oblivious polynomial evaluation
(OPE) functionality is an important functionality in the field of secure two-party
computation. It considers a setting where party P2 holds a d-degree polynomial
Q(·) and party P1 holds an element t, and the goal is that P1 obtains Q(t) and
nothing else while P2 learns nothing. OPE has proven to be a useful building
block and can be used to solve numerous cryptographic problems; e.g., secure
equality of strings, set-intersection, approximation of a Taylor series, RSA key
generation, oblivious keyword search, set membership, blacklisting anonymous
users, data entanglement and more [8,30,31,35,40,49].

In this work, we consider a distributed variant of OPE, where the input
polynomial is additively secret shared amongst the parties, and the goal of the
parties is to evaluate (in the exponent) the aggregated polynomial privately and
correctly. The scenario where the polynomial is distributed naturally arises in
settings where the data cannot be stored on a single memory device due to
privacy considerations. Secret-sharing sensitive data protects it against leakage
attacks and eliminates the risk of breaching the stored memory. In some cases,
the data is distributed in order to avoid a single point of failure and to ensure
continuous access to the data.

Private polynomial commitments are useful in this context and enable secure
evaluation of the combined polynomial in the presence of n − 1 malicious cor-
ruptions, similar to our PSI protocol. The ingoing communication complexity
of P1 is linear in the size of shares, whereas the outgoing communication only
grows logarithmically in the polynomial degree plus P1’s input size (and hence
sublinear in d). The bulk of the computational overhead is attributed to P1,
which evaluates the aggregated polynomial on its input. An interesting feature
of our protocol is its usage for multi-point evaluations. Here P1 evaluates Q(·) on
multiple points t1, t2, . . . where the accumulated overhead per evaluation point
for ensuring malicious security vanishes away due to our batching property.

Verifiable Polynomial Evaluations. In this setting, computationally weak
devices (or clients) wish to outsource their computation and data to an untrusted
server in the cloud. The ultimate goal in this setting is to design efficient protocols
that minimize the computational overhead of the clients and instead rely on the
extended resources of the server. Of course, the amount of work invested by the
client for verifying the correctness of the computation is substantially smaller
than running the computation by itself. Another ambitious challenge of verifiable
computation is to minimize the communication from the cloud.
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The problem of delegating a single polynomial was studied by Benabbas et
al. [10], who introduced a new cryptographic primitive of algebraic PRFs, which
enables the generation of short authentication message to verify the server’s
reply. Followup works [7,19,20,27] improved different aspects of [10]. Neverthe-
less, all prior constructions considered a setting where a single client communi-
cates with the server. Extending these solutions to the multi-client setting is not
immediate (even in the non-private setting) since the server needs to aggregate
the shares of the polynomials and provide proof for validating the aggregation,
which is highly non-trivial. We observe that polynomial commitment schemes
directly imply a verifiable evaluation of distributed polynomials where correct-
ness is established via the proof provided by the server.

When considering verifiable computation, one can consider a setting where
the function is either public or private. Verifiable computation with function
privacy is often harder to achieve. We note that our construction follows even
if the polynomials are encrypted while the evaluation points are given in the
clear. This can capture scenarios where the polynomial represents a database
with secret payloads yet the queries are not private.

Implementation Details. To validate the concrete efficiency of our construc-
tion, we implemented our private polynomial commitment scheme and multi-
party PSI protocol. Our implementation of the private polynomial commitment
scheme demonstrates the advantage of the batch opening. For a polynomial of
degree 216, the proof size is 18.6 KB and the verifier time is 53.7 s to open one
evaluation, while they are only 6.1 MB and 757 s for 216 evaluations respectively,
which are significantly better than repeating the single opening 216 times. Our
multi-party PSI protocol with malicious security can scale to 1000 parties with
216 elements per party. The majority of the time is spent on the computation of
the proofs of our private polynomial commitment, which can be further acceler-
ated through multi-threading and hashing. The communication and the memory
usage of our protocol is an order of magnitude better than existing schemes, and
thus our protocol performs better for a large number of parties and networks with
limited bandwidth; see Sect. 5 for further details. We plan to open-source our
implementation and the source code is available at https://anonymous.4open.
science/r/PCOM-CCF4.

2 Private Polynomial Commitment Schemes

In this section, we introduce a new polynomial commitment scheme with privacy
features. Loosely speaking, such a protocol is carried out between a committer C
and a receiver R where C commits to an encrypted polynomial C, denoted by a
sequence of ciphertexts C = (c0, c1, . . . , cd) where ci is a ciphertext that encrypts
the ith coefficient of the underlying plaintext polynomial. In these schemes, upon
committing to the encrypted polynomial, C sends C to R and later evaluates it
at an evaluation point t. Following that, C proves that a ciphertext cy is a correct
evaluation of the encrypted polynomial at some private evaluation point t.

https://anonymous.4open.science/r/PCOM-CCF4
https://anonymous.4open.science/r/PCOM-CCF4
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2.1 Security Definitions

We continue with the security definition of our new polynomial commitments.

Definition 1. (Private Polynomial Commitments with Hidden Evaluation
Points) Let E = (KeyGen,Enc,Dec,Eval,Rerand) be an AHE scheme with groups
M and C. Let PK be the public key of the underlying AHE scheme and gener-
ated by E.KeyGen. A private commitment scheme PCOM w.r.t E is a tuple of
algorithms (Setup,Commit,CommitPt) and a protocol (C,R) defined as follows:

– pp ← Setup(1κ, d): takes an input κ, d where κ is the security parameter and
d is the degree of the polynomial, and outputs public parameters pp.

– comC ← Commit(pp,C; rC): takes as input a public parameters pp, a vector of
ciphertexts (representing an encrypted polynomial) C = (c0, c1, . . . , cd) where
ci ∈ C for all i and randomness rC, and outputs a commitment comC.

– comT ← CommitPt(pp, t, d; rT ) : takes as input public parameters pp, an eval-
uation point t, a randomness rT and d is the degree of the polynomial and
outputs a commitment comT .

– (C,R) is a public-coin interactive protocol between C and R. Both C and R
have common inputs, public parameters pp, a public-key PK for the underly-
ing AHE scheme, a commitment comC, another commitment comT and an
evaluation ciphertext cy,∈ C. C additionally receives as input an encrypted
polynomial C, an evaluation point t and randomness rC, rcy , rt. At the end
of the protocol execution, R either outputs accept or reject. We denote by(
C(C, t, rC, rcy , rT ),R

)
(pp,PK, ck, comC, comT , cy) the random variable rep-

resenting an execution and given an instance of the execution e, we denote
by view1(e) (resp. view2(e)) the view of the C (resp., R) and out1(e) (resp.,
out2(e)) the output of C (resp., R).

We require the following security properties to be satisfied:

Completeness: For any vector of ciphertexts C = (c0, c1, . . . , cd) generated
using PK ← E.KeyGen(1κ) and an evaluation point t, we have that:

Pr
[
pp ← PCOM.Setup(1κ, d);

comC ← PCOM.Commit(pp,C; rC);
comT ← PCOM.CommitPt(pp, t, d; rT );
cy = Eval(PK,C, t; rcy ) :
out2(C(C, t, rC, rcy , rT ),R)

(pp,PK, comC, comT , cy) = 1
]

= 1

Binding: For all PPT adversaries A, there exists a negligible function ε(·) such
that:
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Pr
[
pp ← PCOM.Setup(1κ, d);

PK ← E.KeyGen(1κ);
(C0, rC0 ,C1, rC1 , t0, rT0 , t1, rT1) ← A(1κ, n, pp,PK; rA);
comC0 = PCOM.Commit(pp,C0; rC0)
comC1 = PCOM.Commit(pp,C1; rC1)
comT0 = PCOM.CommitPt(pp, t0, d; rT0)
comT1 = PCOM.CommitPt(pp, t1, d; rT1)
(comC0 = comC1 ∧ C0 �= C1)

∨ (comT0 = comT1 ∧ t0 �= t1)
]

≤ ε(κ)

Witness-Extended Emulation: For all PPT adversaries A, there exists an
expected polynomial time emulator E and negligible function ε(·) such that:

Pr
[
pp ← PCOM.Setup(1κ, d);

PK ← E.KeyGen(1κ);
(comC, comT , cy) ← A(1κ, n, pp,PK; rA);
e ← (A(rA),R)(pp,PK, comC, comT , cy);

(C, t, rC, rcy , rT ) ← EA(pp,PK,comC,comT ,cy;rA)

(pp,PK, comC, comT , cy, e) :
(out2(e) = 1) ⇒

(comC = PCOM.Commit(pp,C; rC)
∧ comT = PCOM.CommitPt(pp, t, d; rT )

∧ cy = EvalPK(C, t; rcy ))
]

≥ 1 − ε(κ)

Honest Verifier Privacy: There exists a tuple of expected PPT algorithms S,
given any vector of coefficient of polynomial (p0, . . . , pd) and an evaluation
point t, such that the following distributions are indistinguishable:

–

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pp ← PCOM.Setup(1κ, d);
PK ← E.KeyGen(1κ);

C ← (c0, . . . , cd) = (EncPK(p0; r0), . . . ,EncPK(pd; rd)) :
comC ← PCOM.Commit(pp,C; rC);

comT ← PCOM.CommitPt(pp, t, d; rt);
cy ← EvalPK(C, t; rcy );

e ← (C(C, t, rC, rcy , rT , rA),R)
(pp,PK, comC, comT , cy) :

view2(e)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

–

⎧
⎨

⎩

pp ← PCOM.Setup(1κ, d);
PK ← E.KeyGen(1κ);

S(pp,PK, d; rS)

⎫
⎬

⎭
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2.2 Our Protocols

In this section, we present the construction of our private polynomial commit-
ment. Our construction is based on the additive homomorphic encryption (AHE)
scheme from [13] and the inner-pairing product argument from [16]. As a warm-
up, we start by considering a single point where the idea is that the evaluation
of a polynomial f(x) =

∑d
i=0 aix

i at point t can be viewed as the inner prod-
uct between the coefficients vector (a0, a1, . . . , ad) and the evaluation vector
T = (1, t, t2, . . . , td). Therefore, given the ciphertexts encrypting the coefficients
and the commitments of the evaluation vector T , the committer proves in Phase
1 that the polynomial evaluation on the ciphertext is indeed the inner product
between the two vectors using the techniques in [16]. Next, it remains to show
that the committed evaluation vector is well-formed, i.e., it is indeed the powers
of the evaluation point t. To prove this property, denoting the i-th element in
a vector T as T [i], it suffices to show that (1) the 0-th element T [0] is 1; (2)
T [i + 1] = T [i] · T [1] for i = 0, . . . , d − 1. These two conditions can further be
translated into two types of constraints: linear constraints and quadratic con-
straints. The first condition is equivalent to the inner product between T and a
public vector (1, 0, . . . , 0) is 1. For the second condition, we define three selector
matrices A,B,C ∈ F

d×(d+1) such that

X = A × T = (T [0], T [1], . . . , T [d − 1]),
Y = B × T = (T [1], T [1], . . . , T [1]),
Z = C × T = (T [1], T [2], . . . , T [d]). (1)

Finally, the committer proves that X � Y = Z, where � denotes the Hadamard
(element-wise) product. It is not hard to see that T is the correct evaluation
vector if and only if it satisfies these constraints.

We use standard techniques such as [14] to reduce the linear constraints and
the quadratic constraints to inner product arguments in Phases 2 and 3. Note
that the protocols in these two phases are independent of the ciphertexts encrypt-
ing the coefficients. The formal protocol of our private polynomial commitment
is presented in Fig. 1. This protocol uses the encryption scheme from [13], the
pairing-based commitment from [4] and the Pedersen commitment [52] as build-
ing blocks. The protocol also involves private inner product argument, linear
constraints test and quadratic constraints test, as described above in the three
phases. We present these protocols later in Figs. 3, 4 and 5 together with our
scheme for multiple evaluations.

Multiple Evaluations. The major advantage of our construction is that it
supports batched evaluations on multiple points efficiently, where the proof size
and the receiver’s time do not increase by much compared to a single evaluation.
We describe our scheme for multiple evaluations in Figs. 2. The differences from
the single evaluation variant are highlighted in purple. In particular, in Phase 1
(Steps 1 and 2 in Fig. 2), C and R check the inner products between the coefficient
vector in the ciphertext and all the evaluation vectors in the commitments using a
single private inner product argument protocol via a random linear combination.
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Setup(1κ, d): Generate the public parameters of the bilinear map and the
commitment scheme Ped and AFG. (G1,G2,Gt, p, e, w, g) ← G(1κ),
ck1 = (wr, w0, . . . , wd), a, b) ← AFG.KeyGen(S, 3d + 8).
ck2 = (vr, v0, . . . , vd) ← Ped.KeyGen(1κ, d + 2), ck3 ← Ped.KeyGen(1κ, 2),
ck4 = (xr, x0, . . . , xd) ← Ped.KeyGen(1κ, d + 2). Output pp =
(ck1, ck2, ck3, ck4, a, b).

Commit(pp,C, rC): Given the ciphertext of the coefficients C = (c0, . . . , cd), out-
put AFG.Commitck1(C, grC) = e(grC , wr) · ∏d

i=0 e(ci, wi), where rC ∈ Zp.
CommitPt(pp, t, rT , d): Given an evaluation point t, generate T = (1, t, . . . , td) and

output Ped.Commitck2(T, rT ) where rT ∈ Zp.

Protocol Πpriv(C(C, rC, t, rT ),R)(pp, comC, comT , cy):

1. C and R execute Private inner Product Argument specified in (Figs. 3)
with common input pp, comC, comT , cy and C, T as private inputs to C.

2. C → R: Let A, B, C be public selector matrices defined in Eq. 1. C computes
X = A × T = (1, t, . . . , td−1), Y = B × T = (t, . . . , t), Z = C × T =
(t, . . . , td). C commits to X, Y, Z by comX = Ped.Commitck2(X, rX), comY =
Ped.Commitck2(Y, rY ), comZ = Ped.Commitck2(Z, rZ), where rX , rY , rZ ∈ Zp.
C sends comX , comY , comZ to R.

3. C ↔ R : C and R execute Linear Constraints Test specified in Fig. 4 with
common input comT , comX and T, X as private inputs to C. Repeat the same
for Y and Z. Let D be public selector matrix defined as D × T = [1], C and
R execute Linear Constraints Test specified in Fig. 4 with common input
comT , D and T as private inputs to C.

4. C ↔ R : C and R execute Quadratic Constraint Test specified in Fig. 5
with common input comX , comY , comZ and X, Y, Z as private inputs to C.

5. R outputs 1 if all checks pass.

Fig. 1. Private Polynomial Commitments (Single Evaluation).

In Phase 2 (Step 4 in Fig. 2), the product between a selector matrix (i.e., A,B
or C) and all the evaluation vectors can be reduced to a single inner product
via two random linear combinations, as shown in Fig. 4. In Phase 3 (Step 5 in
Fig. 2), the protocol of the quadratic constraint test is more complicated. We
are not able to reduce the Hadamard product of matrices X � Y = Z to a
single inner product. Instead, we reduce the Hadamard product to the sum of
m inner products via a random linear combination in Step 1 of Fig. 5. Then we
propose a protocol (Step 3 of Fig. 5) to prove the sum of the inner products with
a proof size of only O(log d). The protocol is an extension of the scheme for the
Hadamard product in [14] in a non-black-box way.
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Protocol Πbatched
priv (C(C, rC, {ti}i∈[m], {rTi}i∈[m]),R)(pp, comC, {comTi}i∈[m],

{cyi}i∈[m]):

1. R → C : R sends S = (s1, s2, · · · , sm) ∈ Z
m
p .

2. C ↔ R : Let F =
∑m

i=1 si · Ti , comF =
∏m

i=1 com
si
Ti

and cy =
∏m

i=1 csi
yi

.
C and R execute Private inner Product Argument specified in (Figs. 3) with
common input pp, comC, comF , cy and C, F as private inputs to C

3. C → R: Let A, B, C be public selector matrices defined in Eq. 1. C com-
putes Xi = (1, ti, . . . , t

d−1
i ), Yi = (ti, . . . , ti) and Zi = (ti, . . . , t

d
i ). Let

T ∈ Z
(d+1)×m
p be the matrix with the i-th column as Ti. C commits to

each column of X, Y, Z, namely, comXi = Ped.Commitck2(Xi, rXi), comYi =
Ped.Commitck2(Yi, rYi), comZi = Ped.Commitck2(Zi, rZi) where rXi , rYi , rZi ∈
Zp and sends {comXi , comYi , comZi}i∈[m] to the R.

4. C ↔ R : C and R execute Linear Constraints Test specified in Fig. 4 with
common input pp, {comTi}i∈[m], {comXi}i∈[m] and T, X as private inputs to
C. Repeat the same for Y and Z. Let D be public selector matrix defined as
D × T = [1]m, C and R execute Linear Constraints Test specified in Fig. 4
with common input comT , D and T as private inputs to C.

5. C ↔ R : C and R execute Quadratic Constraint Test specified in Fig. 5
with common input pp, {comXi}i∈[m], {comYi}i∈[m], {comZi}i∈[m] and X, Y, Z
as private inputs to C.

6. R outputs 1 if all checks pass.

Fig. 2. Batched proof for Private Polynomial Commitments. (Color figure online)

Theorem 1. Protocol PCOM (Fig. 2) is a private polynomial commitment
scheme as in Definition 1, under the Decisional Linear (DLIN) and the Double
Pairing Problem (DPP) hardness assumptions.

Proof Sketch: To show PCOM is a private polynomial commitment scheme
(Definition 1), we show that the protocol satisfies completeness, binding, witness-
extended emulation and honest verifier privacy.

Completeness: In the private inner product argument test, there are two
phases - the masking phase and the inner product phase. In the end, R accepts if
the combined commitment of the private polynomial, evaluation vector and eval-
uation ciphertext is decommitted correctly. This essentially follows from showing
that the commitment of the private polynomial, the commitment of evaluation
vector and evaluation ciphertext are updated correctly in each round. The rest of
the protocol involving the linear constraint test, quadratic test and the BBB-IPA
follow essentially observing that the corresponding constraints are satisfied.
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Private inner Product Argument

Private Inputs: C : C = (c0, . . . , cd) ∈ G
d+1
E , F = (f0, . . . , fd) ∈ Z

d+1
p .

Public Inputs: pp = (ck1, ck2, ck3, a, b, PK), comC, comF , cy.

1. Masking Phase:
(a) C → R: C generates a random encrypted polynomial E = (e0, . . . , ed) ∈

G
d+1
E where ei = EvalPK(ri) and ri ∈ Zp. A random vector M =

(M0, . . . , Md) ∈ Z
d+1
p is also sampled and generates commitment comE =

AFG.Commitck1(E, rE) and comM = Ped.Commitck2(M, rM ) where rE, rM ∈
Zp. C also computes: cl = 〈E, F 〉, cr = 〈C, M〉, cm = 〈E, M〉 and sends
comE, comM , cl, cr, cm to R.

(b) R → C: R sends a random challenge x ∈ Zp.
(c) Both parties set com′ where: com = comC · e(comF , a) · e(cy, b), com′ =

com · comx
E · e(comM , a)x−1 · e(cx

l · cm · cx−1

r , b), and C sets C′ = C � Ex

and F ′ = F + x−1 · M where � denotes element-wise multiplication of two
vectors.

(d) Both parties update com = com′, C = C′, F = F ′.
2. Inner Product Phase: For round rnd = 1 to log d − 1:

(a) Set d′ = (d + 1)/2. C sets CL = C[: d′], CR = C[d′ :], FL = F [: d′] and
FR = F [d′ :] while both C and R sets ck1L = ck1[: d′], ck1R = ck1[d

′ :],
ck2L = ck2[: d′], and ck2R = ck2[d

′ :].
(b) C generates intermediate cross-commitments:

comCL = AFG.Commitck1R(CL, rCL), comCR = AFG.Commitck1L(CR, rCR),
comFL = Ped.Commitck2R(FL, rFL), comFR = Ped.Commitck2L(FR, rFR),
where rCL , rCR , rFL , rFR ∈ Zp.

(c) C → R: C generated L and R: cl = 〈CR, FL〉, cr = 〈CL, FR〉
L = comCR · e(comFL , a) · e(cl, b), R = comCL · e(comFR , a) · e(cr, b), where
a, b ∈ pp and sends L, R to C.

(d) R → C: R sends a random challenge x ∈ Zp.
(e) C sets C′ = CL �Cx

R and F ′ = FL +x−1 ·FR where � denotes element-wise
multiplication of two vectors while C and R both locally compute the new

keys ck′
1 = ck1L � ckx−1

1R and ck′
2 = ck2L � ckx

2R

(f) R computes new commitment com′ = Lx · com · Rx−1

(g) C and R will update C = C′, F = F ′, com = com′, and cki = ck′
i∀i ∈ [2]

In round log d:
(h) In the last round,C opens com to C′, F ′ and c′

y and R accepts if cy = 〈C′, F 〉.
(i) If all checks pass, R outputs b = 1 else output b = 0.

Fig. 3. Private Inner Product Argument.

Binding: To argue the binding property of PCOM, it can be trivially reduced
to the binding property of the Ped and AFG commitment scheme.

Witness-Extended Emulation: To argue witness-extended emulation of
PCOM, as shown in [14], it is enough to show that given (n1, . . . , nr)-tree of
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Linear constraint Test (Prove A × T = X)

– Private Inputs: C has private inputs: X ∈ Z
d×m
p , T ∈ Z

d+1×m
p .

– Public Inputs: pp = (ck1, ck2, ck3, a, b, PK), {comTi}i∈[m], {comXi}i∈[m] where
comTi , comXi ∈ G1.
1. R → C: R sends random vectors S ∈ Z

d
p and U ∈ Z

m
p . Let SA = S × A,

TU = T × U , XU = X × U . We observe that if A × T = X then for any
S ∈ Z

d
p and U ∈ Z

m
p we have:

S × A × T × U = S × X × U, i.e., 〈SA, TU 〉 − 〈S, XU 〉 = 0.

2. C → R : C computes two cross terms inner product l and r and sends
their respective commitments coml, comr to R: l = 〈SA, −XU 〉, r = 〈S, TU 〉,
coml = Ped.Commitck3(l, rl), comr = Ped.Commitck3(r, rr), where rl, rr ∈ Zp.

3. R → C: R sends a random challenge x ∈ Zp.
4. R ↔ C: C computes L = SA + x−1 · S and R = TU − x · XU . C and

R both compute comL = Ped.Commitck4(SA + x−1 · S; 0) and comR =
∏m

i=1 com
U [i−1]
Ti

· comU [i−1]·x
Xi

.C and R execute BBB-IPA on common inputs

is ck4, ck2, ck3, comL, comR, comx
l · comx−1

r and private inputs of C are ,
L, R, x · l + x−1 · r.

5. If all checks pass, R outputs b = 1 else output b = 0.
– A special case is when D × T = X where X is a known vector of dimensions

1 × m. The above test can be simplified where R sends a random vector U ∈ Z
m
p

and the check is reduced from D × T = X to 〈D, TU 〉 = d where TU = T × U
and d =

∑m−1
i=0 U [i]. C and R compute comD = Ped.Commitck4(D, 0), comTU =

∏m
i=1 com

U [i−1]
Ti

,comd = Ped.Commit(d, 0) .C and R execute BBB-IPA on common
inputs is ck4, ck2, ck3, comD, comTU , comd and private inputs of C are D, TU , d .
If all checks pass, R outputs b = 1 else output b = 0.

Fig. 4. Linear Constraint Test.

accepting transcripts, there exist a PPT extractor X which extracts the witness
for PCOM. To construct X , we first construct a witness-extraction algorithm
X1 that succeeds in extracting the witness of Private Inner Product Argument
given (n1, . . . , nr)-tree of accepting transcripts. Using the rewinding property of
the extractor and choosing different randomness in each rewinding, the extrac-
tor X1 can extract the witness. Here, the witness is the encrypted polynomial,
evaluation vector, encrypted evaluation and the randomness used to generate
the commitments. Next X extracts the evaluation vector from Linear Test and
Quadratic test to verify if the evaluation used in all three tests is the same. We
use the witness-extended emulation extractor of BBB-IPA as a subprotocol in
extracting the evaluation vector from the Linear and Quadratic tests.

Honest Verifier Privacy: To show honest verifier privacy, we construct a sim-
ulator S. Indistinguishability of the simulation essentially follows from semantic
security of the underlying encryption scheme, hiding of the commitment scheme,
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Quadratic Constraint Test (Prove X � Y = Z)

Private Inputs: C : X, Y, Z ∈ Z
d×m
p .

Public Inputs: pp = (ck1, ck2, ck3, ck4, a, b, PK), {comXi}i∈[m], {comYi}i∈[m],
{comZi}i∈[m] where comXi , comYi , comZi ∈ G1.

1. R → C: R sends a random vector S ∈ Z
m
p and a random value w. Now if

X � Y = Z, then
∑

i∈m wi(〈Xi, Yi � S〉 − 〈Zi, S〉) = 0.

2. Let Li = wi ·Xi, Li+m = wi ·Zi, Ri = Yi�S, Ri+m = −S C and R compute a new

key ck5 where ck5[j] = ck
S[j]−1

2 [j] for all j ∈ [0, d] and compute the commitments

as follows: comLi = comwi

Xi
, comLi+m = comwi

Zi
, comRi = comYi , comRi+m =

Ped.Commitck5(−S)
3. C sets d = 0 while R sets comd = 1. Also set m′ = 2m.

For round 1 to log m:
(a) C → R: Set m’ = m’/2. C computes two cross terms inner product l =

∑m′
i=1〈Li, Ri+m′〉 and r =

∑m′
i=1〈Li+m′ , Ri〉 and sends a Ped commitment of

these two (coml and comr) to R.
where rl, rr ∈ Zp.

(b) R → C : R sends a random challenge x ∈ Zp.
(c) C computes {L′

i = Li + x−1 · Li+m}i∈[m′] and {R′
i = Ri + x · Ri+m}i∈[m′]

while R updates the commitments comL′
i

= comLi · comx−1

Li+m
and comR′

i
=

comRi · comx
Ri+m

.

(d) C computes d′ = d + x · l + x−1 · r while R computes comd′ = comd · comx
l ·

comx−1

r .
(e) C updates Li = L′

i, Ri = R′
i, d = d′ while R updates comd = comd′ .

In round log m + 1:
(f) C sets L = L1 and R = R1 while R sets comL = comL1 and

comR = comR1 C and R execute BBB-IPA on instance with common input
ck2, ck5, ck3, comL, comR, comd and L, R, d as private inputs of C.

Fig. 5. Quadratic Constraint Test.

honest-verifier zero-knowledge property of the underlying BBB-IPA and stan-
dard masking techniques.

Complexity. The communication complexity of our polynomial commitments
is O(log d) for a single evaluation and O(m + log d) for m points where d is the
degree of the polynomial. Their round complexity is O(log m + log d) rounds.

The computational complexity of the committer is O(m · d) modular expo-
nentiations and O(d) bilinear pairings, while the complexity of the receiver is
O(m+d) exponentiations. The space complexity of our private polynomial com-
mitment scheme is O(m+d) for the committer as it needs to store the encrypted
polynomial and the evaluation points. The space complexity of the receiver is
O(m) (resp. O(m+log d)) in the interactive (resp. non-interactive setting). This
difference is due to the fact that in the non-interactive setting, the entire proof
is stored for validation.
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3 Scalable Multi-party PSI

Our first application is a new scalable PSI protocol that follows the blueprint of
[43]. This protocol is carried out in a star topology network with P1 being the
central party. In this work, we show that the actions of P1 can be captured by
the abstraction of a private polynomial commitment.

We broadly split our protocol description into four main phases. In the first
phase (Key Generation), the parties jointly generate a public key without dis-
closing their corresponding secret key shares, as well as the public parameters
for the two polynomial commitments. The second phase (Commitment Phase)
is executed by the central party P1 that broadcasts commitments of its input
together with a proof of knowledge. In the third phase (Aggregation), all parties
(except P1) send it an encrypted polynomial whose roots correspond to their
inputs. P1 combines these polynomials for each party and provides a commit-
ment of the encrypted aggregated polynomial while proving the correctness of
aggregation. The last phase (Intersection) concludes the protocol by extracting
the intersection, where P1 evaluates the aggregated polynomial on its input and
provides proof of correct evaluation. Once the proof is validated, the parties
decrypt each evaluation to get the intersection.

Our polynomial commitments will be useful in [43] for two purposes; proving
the correctness of aggregation by evaluating on a public point and proving the
correctness of evaluations on P1’s input finally to reveal the intersection.

We use the following primitives in our construction:

– A threshold additively homomorphic encryption scheme with protocols
(ΠGEN and ΠDecZero) to respectively sample a public-key together with the
secret key shares, and a protocol to determine if a target ciphertext decrypts
to 0. We instantiate our scheme with BBS encryption scheme [13] which relies
on DLIN assumption.

– Our polynomial commitment scheme PCOM, (that is compatible with
the threshold encryption scheme), and is instantiated with non-interactive
publicly verifiable proofs of evaluation of hidden points (in the batched
setting) and public points (in the single instance setting). We respec-
tively denote the committer and receiver algorithms for the correspond-
ing (non-interactive) proof systems by (PCOM.Cbatch

hid ,PCOM.Rbatch
hid ) and

(PCOM.Cpub,PCOM.Rpub). To construct PCOM, we require two commitment
schemes: Pederson Commitment scheme [52] which relies on the DL assump-
tion and the AFG Commitment scheme [4] which is based on bilinear pairing
and relies on the DPP assumption.

– An n-party protocol ΠCOIN to sample random coins.
– A simulation extractable non-interactive publicly verifiable proof system

ΠEXP to prove knowledge of exponent. We instantiate this with the non-
interactive variant of the classic protocol due to [58] via the Fiat-Shamir trans-
form. We denote the prover and verifier algorithms by (DL.Ppub,DL.Vpub).
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Protocol πMPSI with Malicious Security (Part 1)

Input: Party Pi is given a set Xi = {x1
i , . . . , x

mi
i } of size mi for all i ∈ [n]. All parties

are given a security parameter 1κ and a description of a group G.
The protocol:

1. Key Generation. The parties mutually generate a public key PK and the cor-
responding secret key shares (SK1, . . . , SKn) by running πGEN. P1 also runs the
setup for the polynomial commitment scheme by running PCOM.Setup(1κ, mmax).

2. Commitment phase. P1 creates commitments to its inputs {comT1 , . . . , comTn}
where comTi = PCOM.CommitPt(pp, xi

1, rTi , mmax) and rTi ∈ Zp is randomly cho-
sen and generates a proof using DL.P proving knowledge of the committed message
and broadcasts the commitment and proof to all parties.

3. Aggregation
(a) For all i ∈ [2, n], party Pi computes the coefficients of a polynomial Ai(·) =

(ai
0, . . . , a

i
mi

) of degree mi, with roots set to the mi elements of Xi. In addition,
Pi chooses a random element λi ← G and computes the product λi ·ai

j for every
coefficient within Ai. Pi sends P1 the sets of ciphertexts Ci =

(
ci
0, . . . , c

i
mi

)
,

encrypting the coefficients of λi · Ai(·).
(b) Upon receiving the ciphertexts from all parties, party P1 combines the follow-

ing ciphertexts

c0 =
∏n

i=2
ci
0, . . . , cmmax =

∏n

i=2
ci

mmax

where mmax = max(m2, . . . , mn). Note that P1 generates the ciphertexts
by encrypting the coefficients of the combined polynomial A(·) = λ2 ·
A2(·) + · · · + λn · An(·). P1 then generates and broadcasts comC which is
a commitment of the encrypted polynomial C(·) = (c0, . . . , cmmax) using
PCOM.Commit(pp,C, rC) where rC is generated randomly.

(c) Next, the parties verify whether the polynomials aggregation was done cor-
rectly. Specifically, the parties first agree on a random element u from the
appropriate plaintext domain using the coin tossing protocol πCOIN. P1 broad-
casts the encrypted evaluation λ̃ = Eval(PK,C, u) along with a proof of correct
evaluation by using PCOM.Cpub on public inputs pp, comC , u, λ̃ and private
inputs C, rC.

(d) Then, each party broadcasts the ciphertext λ̃i = Eval(PK,Ci, u), together with
a ZK proof of knowledge generated using DL.P for proving the knowledge of
the plaintext. If all the proofs are verified correctly, then the parties check that
λ̃ − ∏n

i=2 λ̃i encodes a 0-message using πDecZero.

Fig. 6. Multi-party PSI protocol (Part 1).

The protocol is split into two parts and presented in Figs. 6 and 7. The first
three phases of the protocol: Key Generation, Commitment Phase and Aggre-
gation are covered in Fig. 6 whereas the Intersection is contained in Fig. 7.

Theorem 2. The protocol πMPSI described in Figure 6 and Fig. 7 securely real-
izes FMPSI in the presence of malicious adversaries and dishonest majority
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Protocol πMPSI with Malicious Security (Part 2)

The protocol (continued):

4. Intersection.
(a) If the above verification is completed correctly, P1 evaluates the aggre-

gated polynomial that is encrypted within ciphertexts C =
(
c1, . . . , cmmax

)
,

on its input elements {xj
1}m1

j=1, and proves consistency with the commit-
ment comC. P1 forwards the encrypted evaluations cy = Eval(PK,C, t)
along with a proof generated using PCOM.Cbatch

hid on public inputs
pp, comC, {comTi}i∈[m], {cyi}i∈[m1] and private inputs C, rC, X1, {rTi}i∈[m1]

(b) All parties verify the evaluations and then decrypt the evaluations using pro-
tocol πDecZero to reveal the intersection.

Fig. 7. Multi-party PSI protocol (Part 2).

Table 3. MPSI Communication Complexity.

P1 Pi Total

KeyGen O(n) O(n) O(n2)

Commit O(n · mmin) — O(n · mmin)

Aggregate O(n · log mmax) O(mi + n) O(n2 +
∑n

i=2 mi+

n · log mmax)

Intersection O(n · (mmin + log mmax)) O(mmin) O(n · (mmin + log mmax))

MPSI O(n · (mmin + log mmax)) O(n + mmin + mi) O(n2 +
∑n

i=1 mi+

n · (mmin + log mmax))

under Decisional Linear (DLIN) and Double Pairing Problem (DPP) hardness
assumptions.

Proof Sketch: We split the analysis into two cases based on whether the set of
corrupted parties includes the central party P1 or not. Consider an adversary A
that corrupts a set of parties that includes P1. We define a simulator S and prove
that the real and simulated executions are computationally indistinguishable.
The indistinguishability between the real and simulated execution is reduced
to the privacy property of the encryption scheme, the hiding property of the
commitment schemes, and the privacy property of the polynomial commitment.
In the first case, the central party P1 is corrupted, and the input of P1 can
be extracted from P1’s input commitment in the commit phase. The input of
other corrupted parties can be extracted by rewinding the aggregation phase.
This is achieved by extracting d+1 evaluation points of every corrupted party’s
polynomial as shown in [43]. In the second case, the simulation is the same as
the previous case with the exception that it does not need to extract P1’s input.
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Complexity. The communication complexity of our protocol is linear in the
input sizes and the number of parties, where the smallest input size can be
given to P1. Naively, the communication complexity of our protocol is O(n2 +∑n

i=1 mi + n · mmin · log mmax) when the polynomial commitment is separately
used for each evaluation point. The batching feature of our scheme reduces the
communication cost of our protocol to O(n2 +

∑n
i=1 mi +n · (mmin +log mmax)).

For the central party P1, the communication cost is O(n(mmin + log mmax). P1

generates a batched evalution proof of size O(mmin+log m). The dominating cost
for P1 is sending the evaluation proof to all other parties. For all other parties,
the communication cost is O(n+mmin +mi) where O(n) is sent during the Key
Generation phase as well as verifying the aggregation. Additionally, the com-
munication cost in sending the encrypted polynomial to P1 and generating the
intersection is O(mi) and O(mmin) respectively. We provide a detailed analysis
in Table 3, providing the communication complexity of the parties individually
as well as together along every phase of the MPSI protocol. The round com-
plexity of our protocol is dominated by the round complexity of the underlying
polynomial commitments. In the random oracle model, the round complexity
is 4.

Computationally, the dominating part of the protocol is evaluating the
aggregated polynomial and executing the private polynomial commitment from
Sect. 2. The complexity of our protocol is O(mmax · mmin) exponentiations. We
further reduce the polynomial degrees and the overall workload using hashing
techniques; see below for more details. The space complexity of our protocol
in the interactive setting is O(mmax) for P1 and O(mi) for every other party
Pi, while in the non-interactive setting the complexity is O(mmax) for P1 and
O(mi + log mmax) for party Pi. We note that the space complexity of P1 is
independent of the number of parties. In particular, the polynomials received
by the parties can be aggregated on-the-fly and do not require any extra space.
Regarding the polynomial commitments, the non-interactive variant requires Pi

to store the entire proof in the memory which increases the space complexity by
an additive factor of O(log mmax).

Hashing. A notable optimization in PSI protocols is using simple hashing
to map the input into smaller sets (buckets), and running a different instance
per bucket. In our context, this enables us to reduce the workload of P1 from
quadratic to quasilinear. The idea behind simple hashing lies in splitting the
input set into bins where based on a hash function, each element is assigned
to a bin. Next, the parties sort their input into bins and run an MPSI proto-
col separately on each bin. Splitting the input into bins reduces the size of the
degree of the polynomials and improves the computation cost of the parties for
the computationally heavy tasks of polynomials interpolations and evaluations.

Simple hashing can be directly used in the malicious setting where each bin
induces a separated polynomial. Note that the adversary can only attempt to
put an item in a wrong bin but this item can be ignored by the simulator. Let h
be a hash function, mmax be the maximum number of items in an input set, B be
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the number of bins and M is the maximum of items in a bin. It is known that if a
hash function maps mmax items into B bins and mmax ≥ B log B then with very

high probability, M = mmax
B +

√
mmax log B

B [56,64]. Setting B = mmax log log mmax
log mmax

and applying the Chernoff bound implies that M = O( log mmax
log log mmax

) with negligi-
ble error in mmax. Simple hashing can be used to reduce the number of expo-
nentiations, thereby reducing the computational cost. Namely, for each bin, the
number of required exponentiations is O(M2) and the overall number of expo-
nentiations will be O(BM2). Substituting the values of B and M using the above
analysis will result in O(mmax

log m
log log m ) exponentiations. We refer to Sect. 5 for

more details regarding the concrete improvement.
The hashing techniques are not useful for improving [9] as they cannot be

broken into small instances. While the improvement for [33] will potentially be
smaller since its computational complexity is quasilinear in the input size.

4 Other Applications

In this section, we consider a list of distributed tasks in different settings, whose
realization can make use of private polynomial commitments. All applications
can benefit from the batching of our scheme while achieving malicious security.

4.1 Oblivious Polynomial Evaluation

Following the discussion from Sect. 1, in this work, we consider a distributed
variant of the oblivious polynomial evaluation functionality denoted by DOPE,
where the polynomial Qi(·) is linearly shared amongst a set of n − 1 parties.
More formally, we define the DOPE functionality as follows. The input of party
Pi for i ∈ [2, n] is a polynomial Qi(·) of degree at most d whereas the input of
P1 is an element t, and the goal is that P1 learns

∑
i∈[2,n] Qi(t).

Table 4. Comparison between different DOPE protocols where comm refers to the
communication complexity and comp refers to the computational complexity (stated
as the number of exponentiations), κ is the computational security parameter, λ is the
statistical security parameter, n is the number of parties and d is the degree of the
polynomial.

P1 comm Pi comm Total comm P1 comp Pi comp

[42] O(n(dκ) + nλ) O(dλκ) O((n + λ)dκ) O(ndλ) O(dλ)

[40] O(nκ log d) O(dκ) O(ndκ) O(nd) O(d)

Our Work O(nκ log d) O(dκ) O(ndκ) O(d) O(d)

We can realize our DOPE functionality in the presence of n − 1 malicious
corruptions based on our polynomial commitment scheme following the blueprint
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of our PSI protocol. Namely, the parties send their encrypted coefficients to P1

that aggregates the ciphertexts and evaluates Q(·) on its input t. P1 further
attaches proofs of correct aggregation and evaluation. Finally, the parties run a
distributed decryption protocol for P1 to learn Q(t). Note that, while in PSI the
inputs of the parties are extracted from the polynomials’ roots, here the inputs
are the polynomial’s shares that form Q(·).

Our scheme is further flexible regarding the level of threshold introduced by
the underlying secret sharing scheme. In particular, one may use any threshold
linear secret sharing for splitting the polynomial into shares (rather than simple
additive sharing), where the threshold parameter can be smaller than n − 1. We
also have a simple aggregation mechanism which allows the DOPE to be reduced
to a single OPE execution where n − 1 parties play the role of P2.

Two prior OPE constructions with malicious security [40,42] can be extended
to the distributed setting, where each party Pi for i ∈ [2, n] carries out an indi-
vidual OPE with P1. Compared to previous work; see Table 4, our construction
achieves better computational complexity for the central party P1 due to the fact
that the aggregation mechanism allows P1 to combine the polynomials cheaply
and then run the protocol with almost the same cost as running a two-party
instance of OPE. The overall communication complexity of our protocol is sim-
ilar to [40] and is better than [42].

Finally, we note that we can further extend our protocol to support multi-
variate polynomials to cover a broader class of functionalities.

4.2 Verifiable Polynomial Evaluations

In this setting, we focus on verifying the evaluations of a polynomial Q(·), lin-
early shared across a set of n − 1 clients, that are aggregated and stored by
a cloud server. Specifically, a set of clients outsource their shares of a d-degree
polynomial (potentially in the clear), to an untrusted server while storing a short
state. The server stores the aggregated polynomials and prepares a proof for this
computation. Next, whenever the clients provide an input x, the server computes
Q(x) and a short proof that allows the clients to verify this computation in sub-
linear time in d. We require the verification process to be public. Finally, the
clients output Q(x).

Employing our polynomial commitment by the server, the clients can non-
interactively verify the proofs it provides. Furthermore, our solution supports
the feature that the polynomial may also be kept private since the shares can
be stored on the server while encrypted, where only the evaluation points are
public. In more details, each party Pi sends the server its polynomial share Qi(·).
The server aggregates the shares and computes a proof of correct aggregation
(that can be made non-interactive by using the random oracle to choose the
random evaluated point for this test). Upon receiving an input x, the parties
forward it to the server that computes (the encryption of) Q(x) together with
a proof of correctness. Our protocol is secure in the presence of n − 2 corrupted
clients, and a colluding server. Note that the degree of Q(·) may be huge, yet
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uploading it is a one time phase whose complexity amortizes away over multiple
evaluation points. Moreover, the proofs of correct evaluations can be batched.

A related modeling is multi-clients verifiable computation where a set of
clients wish to compute some function f on their joint inputs while non-
interactively communicating only with the server over a sequence of evaluations
[11,24,39]. Such constructions have only been demonstrated in a setting where
the clients and the server do not collude [39]. Our protocol achieves full security
but requires an additional round of communication at the end due to decryption.

Verifiable Polynomial Evaluations on Encrypted Data. The second appli-
cation in this area is verifiable computation on encrypted data. The notion was
proposed by Gennaro et al. in [34] and follow-up works [12,28,29,36] proposed
constructions for computations such as linear functions and polynomial eval-
uations. These schemes provide both privacy of the outsourced data to the
untrusted server and the integrity of the results computed by the server. How-
ever, these constructions rely on fully or somewhat homomorphic encryptions
based on lattice and zero-knowledge proofs over polynomial rings, thus their
overhead is high and they have not been realized in practice. Also these proto-
cols cannot be directly extended to multi-clients.

Our scheme yields a more efficient verifiable computation on encrypted data
for polynomial evaluations. The prover’s computation only involves operations
on bilinear maps, making it one step closer to being practical. In the amortized
setting, the verifier’s time is faster than evaluating the polynomial locally for
multiple evaluations. In particular, to compute m evaluations on a degree-d
polynomial, the proof size is O(m + log d) and the verifier’s time is O(d + m).

Our model requires a setup phase for the clients prior to communicating with
the server. This setup phase is independent of the input and is only carried out
once, regardless of the number of polynomial evaluations computed later. The
clients store a short state upon concluding this phase, which is later used to
extract Q(x). In our protocol, the parties run the key generation protocol for
the underlying threshold encryption scheme, store the secret key share, and use
it to partially decrypt the ciphertext returned from the server.

4.3 Non-interactive Two-party PSI (NISI)

Ishai et al. [44] introduced the Non-interactive Secure computation (NISC) model
where, a Receiver first posts an “encryption” of its input publicly and then a
Sender can compute a function over the encrypted input along with its input and
obtain an “encryption” of the output that the Receiver can decrypt. The classic
Yao’s garbled circuit based two-party protocol in the semi-honest setting when
combined with a 2-round OT is an example of such a protocol. Several works have
explored the feasibility and concrete efficiency of such protocols in the malicious
Boolean setting [3,5,41,44,48]. Private polynomial commitments can be used
directly to implement a non-interactive secure private set-intersection protocol
by relying on a variant of the [31] protocol. Such a scheme will additionally have
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the feature of reusability where the receiver only needs to post its encrypted input
once and any number of senders can transmit the result of the set intersection to
the receiver. An important application of reusable NISI is applicable is contact
discovery in messaging services such as Signal and Telegram.

Concretely to PSI in the malicious setting, Cristofaro et al. [25] design a two-
round PSI protocol with linear communication complexity. More recently, the
work by Rosulek and Trieu [57] showed how to obtain a 2-round PSI by relying
on a variant of the Diffie-Hellman Key Agreement and an ideal permutation
oracle. This work has highly competitive communication and computation costs
for small set sizes (between 27 and 216 elements). We provide a comparison of
the communication costs in Table 5. We can see that our work is competitive in
communication because the proofs are succinct in the batch setting. Additionally
we rely on more standard assumptions. Even though our computation costs are
higher our protocol could be useful in a client-server setting where the receiver is
a lightweight client device and the sender is the server with significantly bigger
computational resources. We further point out that the reported computational
costs could be improved by further parallelizing our implementation. We leave
this as future work to explore.

5 Implementation

We implemented our encrypted polynomial commitment scheme and the multi-
party PSI scheme, and we present the experimental results in this section.

Software and Hardware. The system is implemented in C++. We use the
ate-pairing library [1] for bilinear maps and the GMP library [2] for field arith-
metic. Our experiments are executed on a BN-curve over a 254-bit prime, which
offers 128-bit of security. There are 3200 lines of code for the encrypted poly-
nomial commitment and 1000 lines for the other building blocks in the MPSI
protocol. We ran all experiments on an AWS c5.9xlarge instance with an Intel
Xeon Platinum 8000 processor and 72 GB of RAM. We report the average run-
ning time over 5 executions, except for the largest instances due to the long
running time.

5.1 Private Polynomial Commitments

Single Evaluation. We first present the performance of our encrypted polyno-
mial commitment scheme as a stand-alone primitive. Figure 8 shows the prover
and verifier times (left y-axis) and proof size (right y − axis) of one evaluation

Table 5. Communication cost of two-party PSI with set size m.

n 28 216 220

[25] 62.74 (KB) 13.33 (MB) 213 (MB)

[57] 16.38 (KB) 4.19 (MB) 67.11 (MB)

Here (est.) 49.7 (KB) 5.86 (MB) 68 (MB)
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of the variant with committed points (Sect. 2.2). We vary the degree of the poly-
nomial from 24 to 216. As shown in the figure, the prover time grows linearly
with the polynomial degree. It takes 11 s to generate the proof for d = 210 and
701 s to generate the proof for d = 216. The verifier time also grows linearly with
the degree, as it has to update the commitment key together with the prover in
our scheme. It takes 0.93 s to verify the proof for d = 210 and 53.7 s for d = 216,
which roughly matches the time on reducing the commitment key in the prover’s
time. The proof size is only logarithmic on the degree of the polynomial and is
very small in practice. It is 11.9 KB for d = 210 and 18.6 KB for d = 216.

Fig. 8. Performance of single evalua-
tion of our encrypted polynomial com-
mitment with point hiding.

Fig. 9. Performance of multiple evalua-
tions of our encrypted polynomial com-
mitment with point hiding. m = d.

Multiple Evaluations. The major advantage of our scheme is the batched
proofs for multiple evaluations and we further present the performance of eval-
uating multiple points in Fig. 9. In the figure, we set the number of evaluations
the same as the degree of the polynomial, but our implementation supports
both a larger degree and a larger number of evaluations. As shown in the figure,
the prover time grows quadratically. It takes 0.225 s to generate a proof for
m = d = 24 and 242,395 s for m = d = 216.

The proof size and the verifier time are particularly good for multiple evalu-
ations. The proof size is only 7.9 KB for m = d = 24 evaluations and 6.1 MB for
m = d = 216 evaluations, which is significantly smaller than repeating the single
evaluation protocol the same number of times. The experimental result matches
the logarithmic complexity in d and the linear complexity in m.

The verifier time only grows quasi-linearly now. It only takes 757s to verify
216 proofs of evaluations of a degree-216 polynomial, which is merely 14× larger
than verifying a single proof. The experimental result justifies that the verifier
time is amortized to O(log d) for multiple evaluations and is particularly efficient
in our application of multiparty PSI.

5.2 Performance of Multi-party PSI

In this section, we report the performance of our multiparty PSI protocol with
malicious security. We executed all parties on the single AWS instance and we
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Table 6. Total running time of our multiparty PSI scheme in seconds.

# of elements m 28 210 212 214 216

Size of bin M 28 26 26 26 26

# of bins B 1 81 334 1,366 5,487

n = 2 13.94 130.01 536.1 2,192 8,264

n = 8 13.96 130.1 536.66 2,194 8,270

n = 32 13.97 130.4 538.4 2,199 8,292

n = 128 14.02 131.7 545.56 2,220 8,376

n = 500 14.26 136.4 562.76 2,301 8,712

n = 1000 14.58 142.9 589.5 2,410 9,141

simulated a network connection using the Linux tc command, communicating
via a localhost network. We simulated a LAN setting with 10 Gbps network
bandwidth. We executed P2 to Pn on the same machine but only count the
running time of one of them in the total time. This is to better simulate the
scheme in practice where all the parties can run the computation simultaneously.

We tested our MPSI protocol for 2–1000 parties and 28–216 elements per
party (here we set mmax = mmin) and the total running time are shown in
Table 6. We applied the hashing technique described in Sect. 3 and the parame-
ters achieving 40-bit of statistical security are included in the table.

As shown in the table, our protocol is slow for a small number of parties
where it takes 13.94 s to compute a two-party intersection with 28 elements per
party. This is 55× slower than the malicious MPSI scheme based on symmetric
key primitives from [9, Table 5]. The gap is even larger on larger sets, which is
expected as our protocol relies on public-key primitives. However, our running
time hardly grew with the number of parties where it still takes 14.02 s for
128 parties with 28 elements each, and 14.58 s for 1000 parties. This is because
most of the running time is due to evaluating the aggregated polynomial and
generating the proofs using our commitment scheme, which only depends on the
maximum size of the set mmax and the size of P1’s set mmin. In contrast, the
running time of PSimple [9] grows linearly with the number of parties and is
0.8 s for 32 parties with 28 elements each, which is 17× faster than ours. We
expect that our protocol is faster than PSimple for 500 parties with 28 elements
per party.

Our protocol is also efficient in communication. The total communication is
shown in Fig. 10. As shown in the figure, the communication size for 2 parties
with 28 elements per party is 279 KB, whereas the total communication for 1000
parties with 28 elements per party is 278MB, which is not the bottleneck of our
protocol. Compared with [9], the communication size is 7.5MB for 2 parties and
7.5GB for 1000 parties respectively, which is around 27× larger than ours. The
jump in Fig. 10 for m = 210 is due to using the hashing technique for m ≥ 210.

We further show the breakdown of our total running time in Fig. 11. We fix
the size of the set per party at 212 and vary the number of parties from 2 to 1000.
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As shown in the figure, our protocol is clearly computation-heavy and most of the
time is on the evaluations of the aggregated polynomial, the proof generation and
the verification of our private polynomial commitment. Even with 1000 parties,
they contribute to 97.5% of the total running time. Due of this observation, we
could improve the total running time significantly through parallelization. Both
the polynomial evaluations and the private polynomial commitment are trivially
parallelizable. Moreover, the total running time of our scheme is not sensitive to
the bandwidth of the network. On a WAN network with 100Mbps bandwidth,
our scheme would become around two times slower for 1000 parties. By contrast,
the performance of symmetric-key-based schemes such as PSimple is limited by
the communication overhead. It cannot be improved through parallelization and
will become worse on a network with lower bandwidth.

Fig. 10. Communication of our multi-
party PSI protocol.

Fig. 11. Breakdown of the running
time in our multiparty PSI protocol.
m = 212 elements per party.

Finally, another major advantage of our protocol is memory usage and scal-
ability. As the memory usage of P1 is only O(mmax), we are able to scale up
to 1000 parties and 216 elements per party. The memory usage of P1 on this
largest instance is only 1GB. We did not test more elements per party due to
the long running time, but not have high memory usage. To compare, the PSim-
ple scheme [9] runs out of memory for 12 parties and 220 elements per party.
This is because P1 has to store random OTs for the garbled bloom filter with
each party, which leads to a high overhead on the memory.

Overall, the experimental results show that our scheme has good scalability
and communication in practice, and is particularly efficient for applications with
a large number of parties or limited bandwidth networks.
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Abstract. A private set membership (PSM) protocol allows a “receiver”
to learn whether its input x is contained in a large database DB held by
a “sender”. In this work, we define and construct credible private set
membership (C-PSM) protocols: in addition to the conventional notions
of privacy, C-PSM provides a soundness guarantee that it is hard for a
sender (that does not know x) to convince the receiver that x ∈ DB.
Furthermore, the communication complexity must be logarithmic in the
size of DB.

We provide 2-round (i.e., round-optimal) C-PSM constructions based
on standard assumptions:

– We present a black-box construction in the plain model based on
DDH or LWE.

– Next, we consider protocols that support predicates f beyond string
equality, i.e., the receiver can learn if there exists w ∈ DB such
that f(x, w) = 1. We present two results with transparent setups:
(1) A black-box protocol, based on DDH or LWE, for the class of
NC1 functions f which are efficiently searchable. (2) An LWE-based
construction for all bounded-depth circuits. The only non-black-box
use of cryptography in this construction is through the bootstrapping
procedure in fully homomorphic encryption.

As an application, our protocols can be used to build enhanced round-
optimal leaked password notification services, where unlike existing solu-
tions, a dubious sender cannot fool a receiver into changing its password.

1 Introduction

A two-party private set membership (PSM) protocol is an interactive protocol
between a receiver holding an input x and a sender holding a database DB.
The goal is that at the end of the interaction, the receiver only learns whether
x ∈ DB while the sender learns nothing about x. Similar to private information
retrieval [8], a desirable feature for PSM is efficiency of the receiver, which states
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that the communication complexity and also the computational complexity of
the receiver is sublinear (or more preferably logarithmic) in the size of DB. PSM
and its closely related variant private set intersection (PSI) have found numerous
applications such as contact discovery [17] and exposed password notification [2,
11,16].

In the exposed password notification use-case, a user and a service provider
run a PSM protocol to determine whether the user’s password is exposed in
any leaked database. An often neglected aspect in this setting is whether the
protocol provides a credible guarantee to the user that its password was actually
leaked. In fact, a dubious sender might potentially keep falsely suggesting to the
user that its password was exposed, causing the user to go through the process
of updating its password.

A potential approach to enforce credibility might be requiring the sender
to send its whole database in an encrypted format. It is plausible that such
an approach, specially when implemented through protocols based on oblivious
pseudorandom functions (OPRF) [2,11], can provide credibility. However, send-
ing the whole database would obviously make the protocol’s communication and
the receiver’s computational complexity linear in the size of the database, and
thus violates efficiency. Another approach may be using generic cryptographic
succinct zero-knowledge arguments of knowledge. Such solutions incur an unsat-
isfactory computational overhead due to the use of non-black-box techniques.
Therefore, we ask

Can we construct asymptotically efficient black-box credible PSM
protocols?

1.1 Our Contributions

Defining C-PSM. In this work we initiate the study of credibility in PSM
protocols. We define the notion of credible private set membership (C-PSM).
Informally, a C-PSM for a relation R is a two party protocol between a receiver
and a sender where both the receiver and the sender have access to a com-
mon reference string (CRS). The receiver has an input x and the sender has a
large database DB. The sender wants to convince the receiver that the database
contains a witness w such that (x,w) ∈ R. We require the following properties:

– The protocol consists of only two rounds.
– The communication and also the receiver’s computational complexity is at

most logarithmic in the size of DB.
– The receiver’s input x remains hidden from the sender.
– The sender’s database remains private, i.e., a (malicious) receiver does not

learn anything more than the fact that the database contains a valid witness.
– The protocol is sound, i.e., if the sender does not have a witness in the

database, then, it is computationally hard for it to make the receiver accept.
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We focus on black-box protocols, i.e., protocols which only make black-box use
of their underlying cryptographic tools. For the soundness property to be mean-
ingful and achievable in 2 rounds, we require the input x to have high entropy.
Otherwise, if x is predictable, the sender can always include a valid witness for
x in its database and convince the receiver. For the same reason we consider
relations R which are instance entropic. Roughly speaking, this means that any
witness only satisfies a negligible fraction of instances. For example, the string
equality relation is instance entropic.

C-PSM for String Equality. We start by considering the basic string equality
relation, where the receiver wants to check if x ∈ DB. For this relation we
construct a black-box 2-round C-PSM protocol in the plain model from either
of the DDH or LWE assumption.

Theorem 1 (Informal). Assuming the hardness of either of DDH or LWE,
there exists a black-box 2-round C-PSM protocol in the plain model for the string
equality relation.

C-PSM for Efficiently Searchable Relations. We then turn to instance
entropic relations beyond string equality. Specifically, we will consider the sce-
nario where for some function f , the receiver wants to check whether DB con-
tains c entries w1, · · · , wc such that f(x, {wi}i∈[c]) = 1. We first consider the
class of efficiently searchable functions, i.e., functions which are in NC1, and,
for any input x, searching DB for witnesses can be implemented by a branching
program of length logarithmic in DB. We construct a fully black-box 2-round
C-PSM protocol for the class of efficiently searchable functions assuming either
of DDH or LWE.

Theorem 2 (Informal). Assuming the hardness of either of DDH or LWE,
for every searchable function there exists a black-box 2-round C-PSM protocol
with transparent setup.

Next, we construct a C-PSM from LWE which is not restricted to efficiently
searchable functions and supports all bounded-depth circuits. While this con-
struction is not fully black-box, however, its non-black-use of cryptography is
limited to the bootstrapping procedure in its underlying homomorphic encryp-
tion.

Theorem 3 (Informal). Assuming the hardness of LWE, there exists a 2-
round C-PSM protocol with transparent setup for every (bounded-depth) circuit.
The only non-black-box use of cryptography in this C-PSM protocol is through
bootstrapping in homomorphic encryption.

We mention that all of our C-PSM protocols satisfy statistical sender pri-
vacy. This means that, our constructions guarantee the privacy of the sender
even against computationally unbounded malicious receivers. Additionally, in
our constructions which need a setup, receiver privacy is guaranteed even if the
CRS is maliciously generated.
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Applications. Our construction for string equality immediately gives a credible
protocol for password exposure notification. In fact, since the C-PSM protocol
in this construction only consists of two rounds, the receiver can publish its
first message and wait for senders to inform him/her of a password exposure via
C-PSM second message.

With our black-box construction for efficiently searchable relations, we can
have protocols that perform more complicated tasks. For instance, consider a sit-
uation where the sender’s database consists of pairs of usernames and candidate
passwords. A receiver wants to learn whether the database has an entry consist-
ing of its username paired with a closely matching password (closely matching
can for example mean having an edit distance no bigger than half the length of
the password). We observe that our black-box construction supports this func-
tionality. This is because given a username and password pair, the following
branching program whose length is logarithmic in the size of the database can
implement the corresponding search functionality:

1. First, search the database for an entry with a matching username. Note that
this step can be implemented by a logarithmic length branching program
through using the trie data structure.

2. Next, given an entry with a matching username, check whether the candi-
date password in the entry closely matches the input password. This step is
independent of the size of the database and can be implemented by an NC1

circuit, and consequently by a polynomial sized branching program.

1.2 Related Work

The notion of zero-knowledge sets [19] allows a sender to convince a receiver
whether an element exist in its database or not by sending a short proof.
Our work differs from zero-knowledge sets in two aspects. First, we consider
2-round protocols whereas zero-knowledge sets consist of protocols having 3
rounds, where, in the first round the sender commits to its database and pub-
lishes a digest of this commitments. Second, there is no receiver privacy in zero-
knowledge sets, i.e., the receiver sends its input in the clear.

A line of work [6,7,9] constructed concretely efficient unbalanced PSI pro-
tocols, i.e., PSI protocols where the sender’s set is considerably larger than the
receiver’s set, from FHE. The PSI protocols constructed in these works provide
sender privacy, receiver privacy and and communication sub-linear in the size
of the sender’s set. While exposed password notification seems to be one of the
main applications of the PSI protocols constructed in these works, however, they
do not provide credibility. In fact [6] considers a heuristic approach to make it
more difficult for a dubious sender to cheat. Roughly speaking, the proposal
in [6] requires a sender to include the hash of the receiver’s input in the FHE
ciphertext that it outputs. Then, it sets the FHE parameters such that it does
not support computing this hash function. Our construction for string equality
in Sect. 4 can be seen as a dual of this idea, where, we use the output of a one-
way function as the input and treat the original input as the label. Unlike [6],
we are able to formally prove the credibility of our construction.
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Another work [15] considers oblivious polynomial evaluation (OPE). In this
setting, the receiver wants to learn the image of its private input under a secret
high-degree polynomial that is held by the sender. Notice that an instance of
PSM can be converted into an instance of OPE where the degree of the polyno-
mial is equal to the size of the database. The protocol in [15] provides receiver
privacy, sender privacy and communication sub-linear in the degree of the poly-
nomial. Additionally, this construction ensures that the evaluated value that
receiver obtains truly corresponds to the polynomial that is held by the sender.
While the latter property can be viewed as credibility, however, the way [15]
enforces this property is by requiring the sender to send a commitment to its
polynomial to the receiver. Consequently, this protocol needs three rounds.

1.3 Techniques

C-PSM for String Equality. We start by providing an overview of our C-
PSM construction for the basic string equality functionality. Since we are aiming
to keep the receiver’s complexity independent of the size of the database, it
is natural to consider using homomorphic encryption (HE). However, a naive
scheme where the receiver sends its input x encrypted under FHE, and the
sender homomorphically searches its database, does not satisfy the properties of
C-PSM:

– First and foremost, this construction is not credible because the sender can
simply send a homomorphically encrypted positive answer regardless of its
database.

– Furthermore, this construction does not provide sender privacy because
homomorphic evaluation might reveal extra information about the sender’s
database.

Our insight to solve the first issue is noticing that the receiver’s input has high
entropy and therefore it is hard to invert its image under a one-way function.
Specifically, the receiver, instead of sending an encryption of its input, sends
an encryption of the image y = f(x) of its input under a one-way function
f . The sender computes the images of all entries in its database under f and
proceeds to homomorphically search these images for y. If found, the sender
can homomorphically include the pre-image x in the ciphertext it sends to the
receiver.

To add sender privacy, we will use a homomorphic encryption scheme with a
property known in the literature as malicious function privacy [21]. Informally,
this notion states that the evaluated ciphertexts reveal nothing beyond the value
they are encrypting, and in particular they hide the function that was homomor-
phically evaluated. While the malicious function private HE construction in [21]
makes extensive non-black-box use of cryptography, however, fortunately, we
can instantiate the OT-based black-box HE construction in [14] with the recent
rate-1 statistical sender private OT [1], which can be based on either LWE or
DDH, to get a black-box malicious function private HE for branching programs.
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Beyond String Equality. We now describe how we build a C-PSM support-
ing predicates beyond string equality. For the ease of exposition, we present a
4-round protocol and then briefly sketch how we compress it to 2 rounds. Recall
that in this setting, the receiver holds an input x and the sender wants to con-
vince the receiver that its database contains a witness w such that f(x,w) = 1
for a specific predicate f . Our starting idea is to use homomorphic encryption
for encrypting the receiver’s input, a black-box commit-and-prove system for
committing to the sender’s database and generating zero-knowledge proofs, and
Merkle trees [18] for creating a digest of this database. In more detail, similar
to the string quality construction, the receiver encrypts its input under HE and
sends the ciphertext to the sender. The sender then works as follows:

– First, it commits to the database using the commit and prove system, i.e., it
secret shares each entry in the database and commits to these shares.

– Next, it hashes these commitments using a Merkle tree.
– Then, it homomorphically searches the database to find a valid witness w

along with a Merkle hash opening for its corresponding commitment (or ⊥ if
the database does not contain such a witness). Note that this does not involve
any hash computations under the hood of HE. All hashes can be computed
“outside,” and then moved to under the hood of HE.

– Next, the sender homomorphically generates the first prover message in the
commit-and-prove system and sends it to the receiver.

– Finally, upon receiving a challenge from the receiver, the sender homomor-
phically opens a subset of the commitments produced in the first message
and sends them to the receiver.

While this approach has succinct communication complexity, keeps the
receiver’s input private, and is black-box thanks to the MPC-in-the-head [13]
paradigm, however, it fails to protect against a malicious sender. In fact, a mali-
cious sender whose database does not contain a valid witness can homomorphi-
cally cook up a database containing a witness and proceed to deceive the receiver.
A straightforward approach to provide security against malicious senders is to
require the sender to attach (in plain) a succinct non-interactive argument of
knowledge (SNARK), showing that the evaluated ciphertext is the result of an
honest evaluation using an actual database known by the sender. However, in
addition to relying on unfalsifiable assumptions, this approach results in a very
prohibitive solution and involves expensive non-black-box use of cryptography.
For string equality we were able to overcome this issue by using deterministic
encryption, but for richer functionalities this idea does not seem to be applica-
ble. In summary, with the goal of avoiding expensive cryptography, the main
challenge we face is “how do we tie the hands of a malicious sender to prevent
it from cooking up a database under the hood of homomorphic encryption?”

First Attempt: Attaching the Hash Root “Outside.” Our first starting
idea for tying the hands of the malicious sender is to have it send something
“outside” the homomorphic encryption wrapper. The sender could cook up stuff
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under homomorphic encryption but cannot do so outside! The receiver could
then compare the information obtained under the hood of HE and check if it is
consistent with the information provided “outside.” The hope is that given that
a malicious sender cannot cook up stuff depending on receiver’s input “outside,”
consistency is only possible if a valid witness exists in the database.

In particular, if we require the sender to include the root of the Merkle tree in
clear, then, the homomorphic database cooking up attack that we described in
the previous paragraph does not seem to work. Intuitively, the hash root seems
to bind the prover to a database in clear, and if this database (and consequently
the hash root) depends on the receiver’s input, then, a cheating prover has to
somehow break the security of HE.

However, unfortunately, it is unclear how to prove security of this strategy.
In other words, it is unclear how we could reduce the ability of the sender to
break soundness to breaking the security of HE or the Merkle hash. A key issue
is that the hash root does not have any extractable information to help with
breaking the security of HE.

Using SSB Hashing to Make a Random Point Extractable. In order
to fix the above issue, while avoiding expensive tools, we try for a very simple
approach. In particular, we replace the generic Merkle Hash with a somewhere
statistically binding (SSB) hash [12]. At a high level, SSB hash is a Merkle
tree with an additional binding property. In more detail, in a SSB hash, the
hashing key can be generated for binding to a specific position i in the input.
The guarantee is that, the hash root now statistically binds to commitments to
the value of the database at position i, which remains computationally hidden by
the index hiding property. We assume a stronger extractability guarantee from
our SSB hash. Namely, we assume that it is possible to extract the ith value given
only the hash root and a extraction trapdoor which is generated along with the
hashing key. Fortunately, these objects can be built based on any rate-1 OT
using previous known techniques [12,20].

Somewhat surprising, though with a subtle argument, this simple change
allows us to reduce a malicious sender’s ability to cheat to break the security
of HE or violate the index-hiding property of the SSB hash. We now sketch
how using extractable SSB hashing we can reduce the security of HE to the
soundness of C-PSM. Our reduction simply generates a SSB hash key binding
to a uniformally random position and puts it in the CRS. First, observe that
the index hiding property of SSB hash ensures that, during the execution, with
noticeable probability, this random position is the same position that the cheat-
ing sender opens under the hood of HE. Clearly, if the adversary can somehow
always avoid the random position encoded in the SSB hash key then that adver-
sary can be used to break the index hiding property of SSB with probability
better than a random guess. In the final step, we show a reduction that uses the
value extracted from the SSB hash root — which from the prior step we know
is correlated with the encrypted value under HE with a small probability — to
directly break the security of HE.
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Instantiating HE. Similar to our construction for string equality, we can use
the malicious circuit private HE for branching programs that can be instantiated
by combining [1] and [14]. For achieving compact communication complexity
when using this instantiation of HE, searching the database for a witness should
be implementable with a branching program whose length is logarithmic in the
size of the database. That is, the predicate should be efficiently searchable. This
is because in the [14] HE construction, the size of evaluated ciphertexts grow
linearly in the length of the evaluated branching programs.

Another option is to use the LWE-based malicious circuit private HE in [10].
With this HE, our C-PSM construction can support every instance entropic pred-
icate that can be implemented by a (bounded-depth) circuit. However, the HE
in [10] is not fully black-box as it performs bootstrapping for every evaluation.

Black-Box Commitment Generation. A delicate issue is that, the sender
algorithm, as currently described, would be non-black-box, because, generating
the first prover message for the commit-and-prove system involves generating
new commitments. We avoid this non-black-box step via the following trick: the
sender generates many fresh commitments to 0 and 1 in the clear and then,
obliviously brings these fresh commitments under HE based on the message the
prover commits to.

4-Round to 2-Round. Finally, we describe how to compress the described 4-
round C-PSM to a 2-round protocol. To do this, the receiver sends its challenge
via OT in the first round. In the second round, the sender prepares a C-PSM
sender’s message for each possible challenge and sends them to the receiver
through OT response.

2 Preliminaries

We denote the security parameter by λ. For any � ∈ N, we denote the set of the
first � positive integers by [�]. For a set S, x ← S denotes sampling a uniformly
random element x from S. For a distribution D, x ← D denotes sampling an
element x from D.

2.1 Oblivious Transfer

We review the definition of rate-1 statistical sender private oblivious transfer.

Definition 1 (Rate-1 Statistical Sender Private Oblivious Transfer).
A (string) 1-out-of-2 OT consists of three algorithms: (OT1,OT2,OT3).

– OT1(1λ, b), on input a security parameter λ ∈ N and a choice bit b ∈ {0, 1},
outputs a protocol message ot1 and a state st.

– OT2(ot1, (m0,m1)), on input ot1, and two sender inputs (m0,m1) of the same
length, outputs a response ot2.



Credibility in Private Set Membership 167

– OT3(st, ot2), on input a state st and ot2, outputs a message m.

We require the following properties:

1. Correctness, for all security parameters λ, bits b ∈ {0, 1}, and sender inputs
m0,m1 ∈ {0, 1}∗:

Pr

⎡
⎣y = mb

∣∣∣∣∣∣
(ot1, st) ← OT1(1λ, b)
ot2 ← OT2(ot1, (m0,m1))
y ← OT3(st, ot2)

⎤
⎦ = 1.

2. Receiver Security, ot
c≈ ot′, where (ot, ∗) ← OT1(1λ, 0) and (ot′, ∗) ←

OT1(1λ, 1).
3. Statistical Sender Privacy, there exists an unbounded simulator S such that

for all (not necessarily honestly generated) ot1 there exists a bit b, such that
for all sender inputs m0,m1 ∈ {0, 1}∗:

OT2(ot1, (m0,m1))
s≈ Sim(1λ, ot1,mb).

4. Rate-1: There exists a fixed polynomial poly such that for all polynomials n :=
n(λ), for all first-round messages ot1 and for all (m0,m1) ∈ {0, 1}n ×{0, 1}n,
|ot2| = n + poly(λ), where ot2 ← OT2(ot1, (m0,m1)).

Theorem 4 ([1]). Assuming either DDH or LWE, there exists a black-box con-
struction of rate-1 statistical sender private OT.

We also consider the following dual-mode variation of OT. Notice that this
variation is not rate-1.

Definition 2 (Dual-mode OT). Let C be a constant. A 1-out-of-C dual mode
OT is a tuple of algorithms (Setup,FakeSetup,Extract,OT1,OT2,OT3), with the
following syntax:

– Setup(1λ), takes as input a security parameter, and outputs a crs.
– FakeSetup(1λ), takes as input a security parameter, and outputs a crsS and

a trapdoor td that can be used to extract the sender’s input.
– Extract(td, ot2), takes as input the trapdoor td, and any OT2 message ot2,

outputs the sender’s input {mc}c∈C .
– OT1,OT2,OT3 have the same syntax as in Definition 1, except that they also

take crs as input.

The correctness, receiver security and statistical sender privacy properties
are the same as Definition 1. We additionally require the following properties:

1. CRS Indistinguishability, we have

crs
c≈ crsS ,

where crs is generated by Setup, and crsS is generated by FakeSetup.
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2. Extraction Correctness, for any receiver’s input b ∈ [C] and any unbounded
adversary A, we have

Pr
(crsS ,td)←FakeSetup(1λ),

(ot1,st)←OT1(crs,b)
ot∗

2←A(crs,ot1)

[
y ← OT3(crs, st, ot∗2), {m∗

c}c∈[C] ← Extract(td, ot∗2) : y = m∗
b

]
= 1.

Theorem 5 ([22]). Assuming hardness of either LWE or DDH, there exists a
black-box construction of dual-mode oblivious transfer.

2.2 Dual-Mode Commitments

We recall the definition of a dual-mode public key encryption system [22]. Since
in our application the default mode these crypto systems are instantiated in is
the lossy mode, we refer to them by dual-mode commitments.

Definition 3. A dual-mode commitment is a tuple of PPT algorithms Com =
(Gen,FakeGen,Commit,Extract) having the following interface

– Gen(1λ), on input a security parameter λ, outputs a common reference string
crs.

– FakeGen(1λ), on input a security parameter λ, outputs a common reference
string crs and an extraction trapdoor td.

– Commit(crs, b), on input a bit b ∈ {0, 1}, outputs a commitment com.
– Extract(td, t̃), on input an extraction trapdoor td, and a commitment com,

outputs a bit b ∈ {0, 1}.
We require the scheme to satisfy the following properties

1. Extraction Correctness, for any λ ∈ N and b ∈ {0, 1},

Pr[Extract(td, t̃) = b] = 1,

where, (crs, td) ← Gen(1λ) and t̃ ← Commit(crs, b).
2. Indistinguishable CRS Modes, we have

{crs : crs ← Gen(1λ)}λ∈N

c≈ {crs : (crs, td) ← FakeGen(1λ)}λ∈N

3. Statistical Hiding, the following two distributions are statistically indistin-
guishable

{Commit(crs, 0) : crs ← Gen(1λ)}λ∈N

s≈ {Commit(crs, 1) : crs ← Gen(1λ)}λ∈N

Theorem 6 ([22]). Assuming hardness of either LWE or DDH, there exists a
black-box construction of dual-mode commitments.
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2.3 Commit-and-Prove

We formulate the properties and the interface that we need from a commit-and-
prove system. Then, we observe that the MPC-in-the-head paradigm can be used
to build a commit-and-prove system with these properties.

Definition 4. A commit-and-prove system with challenge space C for a lan-
guage L ∈ NP, is a tuple of algorithms Π = (Setup,FakeSetup,Com,GenFresh,
P1,P2,Verify,Extract) having the following interface

– Setup(1λ), on input a security parameter λ, outputs a common reference string
crs.

– FakeSetup(1λ), on input a security parameter λ, outputs a common reference
string crs and an extraction trapdoor td.

– Com(crs, w; r) on input a bitstring w ∈ {0, 1}W outputs a commitment w̃.
– GenFresh(crs), on input a common reference string crs, outputs a sequence

of fresh commitments along with their corresponding randomness Γ .
– P1(crs, x,w, r, Γ ; rP ), on input a common reference string crs, an instance

x ∈ {0, 1}�, a witness w = {wi ∈ {0, 1}W }i∈[c], initial commitment ran-
domness r = {ri}i∈[c], fresh commitments and their randomness Γ , and the
random coins rP , outputs the first part of proof string π1.

– P2(crs, x,w, r, Γ, rP , ch), on input the same parameters of P1, the random
coins used by P1, and the challenge ch, outputs the second part of the proof
string π2.

– Verify(crs, x, {w̃i}i∈[c], ch, π1, π2), on input a common reference string crs, an
instance x ∈ {0, 1}�, a sequence of commitments {w̃i}i∈[c], a challenge ch ∈ C,
and a proof string (π1, π2), either accepts or rejects.

– Extract(td, t̃), on input an extraction trapdoor td, and a commitment t̃, outputs
a plaintext t ∈ {0, 1}W .

We further require the commit and proof system to satisfy the following
properties.

– Completeness, for any instance x ∈ L, and any tuple of strings
(w1, w2, . . . , wc) ∈ {0, 1}c×W which is a witness for x, let w̃i ← Com(crs, wi)
be commitments to wi, we have

Pr
crs←Setup(1λ)
P1(crs,x,w,r,Γ )

ch←C
π2←P2(ch,st)

[
Verify(crs, x, {w̃i}i∈[c], ch, π1, π2) accepts

]
= 1.

– Indistinguishable CRS modes, we have

crs
c≈ crs′,

where crs is generated by the genuine setup Setup(1λ), and crs′ is generated
by the fake setup FakeSetup(1λ).
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– Statistical Hiding, for any two sequences of bitstrings w0 = {w0}λ∈N, w1 =
{w1}λ∈N, the commitments are statistically indistinguishable under the gen-
uine setup, namely,

{Com(crs, w0
λ) : crs ← Setup(1λ)}λ∈N

s≈ {Com(crs, w1
λ) : crs ← Setup(1λ)}λ∈N.

– ε-Soundness, let R be the NP-relation for the language L. For any unbounded
adversary (P1∗,P2∗), after the following procedure,

• Generate the fake CRS with trapdoor (crs, td) ← FakeSetup(1λ)
• (x, {w̃i}i∈[c], π1, st) ← P1∗(crs)
• Sample a random challenge ch ← C
• π2 ← P2∗(ch, st)

we have

Pr
[R(x, {Extract(td, w̃i)}i∈[c]) �= 1 ∧ Verify(crs, x, {w̃i}i∈[c], ch, π1, π2) accepts

]
< ε.

– Special Statistical Zero-Knowledge, there exists a simulator algorithm Sim,
such that, under any crs sampled by the genuine Setup algorithm, for any
family of instances {xλ} with xλ ∈ L, any witness {wλ,i}i∈[c] for xλ, any
challenge ch ∈ C, we have

(Com(crs, {wλ,i}i∈[c]; r), π1, π2)
s≈ (c′, π′

1, π
′
2),

where π1, π2 are the outputs of the honest prover’s algorithm for the instance
xλ, witness {wλ,i}i∈[c], initial commitment randomness r, and challenge ch,
and (c′, π′

1, π
′
2) ← Sim(xλ, ch) is output by the simulator.

Theorem 7 (Black-Box Commit-and-Prove from MPC-in-the-Head).
There exists a commit-and-prove protocol with constant soundness error. Fur-

thermore, the honest prover’s algorithms (P1,P2) only use information-theoretic
building-blocks. Moreover, if the NP-relation of L can be verified by a circuit of
depth d, then the algorithms P1,P2 can also be computed by a circuit of depth
O(d).

Proof (Proof Sketch). The work [13] constructed zero-knowledge from secure
multiparty computation protocols. We use their zero-knowledge protocol to build
a commit-and-prove system, and prove that it only makes black-box use of cryp-
tography. We now describe the main algorithms.

– Com(crs, w; r): Let n = O(1) be a constant. First, it secret shares the witness
w = w1 ⊕w2 ⊕ . . . wn to n shares, and then commits to each share separately
using a dual-mode commitment scheme.

– P1(crs, x,w, r, Γ ; rP ): Let R(·, ·) be the relation circuit of the language L.
It uses a semi-honest information theoretic multiparty computation scheme
(MPC) in the dishonest majority setting [4] for n parties. For every i ∈ [n],
the ith party holds wi as its input. The prover runs the MPC “in its head”
to jointly compute R(x,w1 ⊕w2 ⊕ . . .⊕wn) = 1, and obtains the view of each
party View1,View2, . . . ,Viewn. Then, it outputs commitments to the views.
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– ch ← C: The challenge ch represent two random parties ch ← [n] × [n].
– P2(crs, x,w, r, Γ, rP , ch): The prover does the same computation as P1, and

then opens the commitment of the views specified by ch, and also opens the
commitments to the shares specified by ch.

– Verify: The verifier checks
• The openings of the commitments are correct.
• The views are consistent. Namely, the messages sent and received have

the same values.

The zero-knowledge and the soundness property follow from the security and
the correctness of the underlying MPC scheme. Now, we show that the construc-
tion only makes black-box use of cryptography. Since the MPC is information
theoretic, the only part that uses cryptography is the commitments in P1. To
make P1 information theoretic, we provide it a series of fresh commitments to
0 and 1 and their randomness in Γ . Then we have the prover choose which
commitment it needs to use. This makes P1 information theoretic.

Now we analyze the depth of P1. Let the depth of the circuit R be d. Since we
only have a constant number of parties, the secret sharing of w needs a constant
depth circuit. For each gate in R, we only need a constant depth circuit to
compute the corresponding messages in the MPC. Hence, the computation of
the views View1,View2, · · · ,Viewn can be done in depth O(d).

The depth of P2 can also be bounded by O(d). This is because it does the
same computation as P1, and an additional commitment opening in the end.
The commitment opening is selecting the commitment randomness specified by
ch. Hence, it can be computed by a constant depth circuit.

2.4 Maliciously Function Private Homomorphic Encryption

We review the definition of maliciously function private homomorphic encryp-
tion. Notice that in our abstraction of homomorphic encryption, secret keys are
generated corresponding to fresh ciphertexts, and can only decrypt the evalu-
ated versions of their corresponding fresh ciphertexts. The reason we choose this
abstraction is that we want it to be consistent with the construction in [14]. We
mention that this abstraction is sufficient for our use-case.

Definition 5 ([21]). Let F = {Fλ,L}λ,L∈N be a family of boolean functions,
where for each λ,L ∈ N, the functions in Fλ,L have input size �(λ,L). A mali-
ciously function private homomorphic encryption (HE) scheme for F is a tuple
of algorithms
HE = (Enc,Eval,Dec,Sim), where, except for Sim the rest of the algorithms are
PPT, having the following interfaces

– Enc(1λ, 1L,m), given a security parameter λ ∈ N, a function family index
L ∈ N, and a message m ∈ {0, 1}�, outputs a ciphertext ct ∈ {0, 1}�ct(λ,L)

and a private key sk.
– Eval(ct, f), given a ciphertext ct, and a boolean function f : {0, 1}� → {0, 1},

outputs an evaluated ciphertext cteval ∈ {0, 1}�eval .
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– Dec(sk, ct), given a secret key sk and a ciphertext ct, outputs a bit b ∈ {0, 1}.
– Sim(ct∗, b), on input a ciphertext ct∗ ∈ {0, 1}�ct(λ,L), and a bit b, outputs a

simulated ciphertext ctsim.

We consider HE schemes that satisfy the following properties:

1. Completeness, for every λ,L ∈ N, every function f ∈ Fλ,L and every input
m ∈ {0, 1}�,

Pr[Dec(sk, cteval) = f(m)] = 1,

where,(ct, sk) ← Enc(1λ, 1L,m), and cteval ← Eval(ct, f).
2. Compactness, there exists a fixed polynomial �eval = �eval(λ,L) such that eval-

uated ciphertexts have size �eval(λ,L), i.e., the size of evaluated ciphertexts
only depend on the index of the family of functions being evaluated.

3. Semantic Security, for every non-uniform polynomial-size adversary A, every
L ∈ N, and every two sequence of message m0 = {m0

λ ∈ {0, 1}�(λ,L)}λ∈N and
m1 = {m1

λ ∈ {0, 1}�(λ,L)}λ∈N the probabilities

Pr[A(ct) = 1], (1)

in the following two experiments differ by only negl(λ):
– in experiment 0, (ct, sk) ← Enc(1λ, 1L,m0

λ)
– in experiment 1, (ct, sk) ← Enc(1λ, 1L,m1

λ)
4. Malicious Function Privacy, for every L ∈ N, and every ciphertext ct∗ ∈

{0, 1}�ct(λ,L), there exists a m∗ ∈ {0, 1}�(λ,L) such that, for every function
f ∈ Fλ,L,

Eval(ct∗, f)
s≈ Sim(ct∗, f(m∗))

.

If we instantiate the rate-1 OT-based HE construction of [14] with the recent
rate-1 statistical sender private OT of [1] we get a malicious function private HE
for branching programs.

Theorem 8 ([1,14]). Assuming either DDH or LWE, there exists a black-box
construction of maliciously function private homomorphic encryption scheme
for the function family B = {BL}L∈N, where for each L ∈ N, BL is the set of
branching programs of length L.

If we slightly relax the black-box requirement, we can have a lattice-based leveled
maliciously function private FHE scheme, i.e., a maliciously function private HE
scheme supporting all bounded-depth polynomial circuits.

Theorem 9 ([10]). Assuming LWE, there exists a leveled maliciously function
private homomorphic encryption scheme. The non-black-box use of cryptography
in this scheme is restricted to bootstrapping (which is needed for every evalua-
tion).
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2.5 Somewhere Statistically Binding Hash

Here we define a variant of somewhere statistically binding hashes [12].

Definition 6. Fix a word size W = W (λ). A somewhere statistical binding hash
scheme is a tuple of PPT algorithms SSB = (Gen,Hash,Verify,Extract) with the
following syntax.

– Gen(1λ, N, S), on input a security parameter λ, a database size N , and a
subset of indices S ⊆ [N ], outputs a hash key hk along with a trapdoor td.

– Hash(hk,DB), on input a hash key hk and a database DB of N words of size
W , outputs a hash value h along with N openings {τi}i∈[N ].

– Verify(hk, h, i, x, τ), on input a hash key hk, a hash value h, an index i, a
word x, and an opening ρ, either accepts or rejects.

– Extract(td, h), on input a hash value h , and a trapdoor td, outputs entries
{xi}i∈S .

We require the scheme to satisfy the following properties:

1. Correctness, for all λ,N ∈ N, any subset of indices S ⊆ [N ], any index
i ∈ [N ], and any database DB of size N , we have

Pr[Verify(hk, h, i,DBi, τi) accepts] = 1,

where, (hk, td) ← Gen(1λ, N, S) and (h, {τi}i∈[N ]) := Hash(hk,DB).
2. Index Hiding, for any two sets S1, S2 of the same size, we have

crs1
c≈ crs2,

where crs1 is generated by Gen(1λ, N, S1), and crs2 is generated by
Gen(1λ, N, S2).

3. Extraction Correctness, for all λ,N ∈ N, any subset of indices S ⊆ [N ], any
index i ∈ [N ], any database DB of size N , and any hash h, we have

Pr[Verify(hk, h, i,DBi, τi) accepts ∧ xi �= DBi] = 0,

where, (hk, td) ← Gen(1λ, N, S) and {xi}i∈[S] := Extract(td, h).
4. Efficiency: any hash key hk and opening τ corresponding to size N databases

and index sets of size |S|, are of size |S| · log(N) ·poly(λ). Further, Verify can
be implemented by a circuit of size |S| · log(N) · poly(λ).

Our definition is slightly stronger than the one in [12] in that (i) our hashing
key is binding to a subset of indices instead of binding to a single index and,
(ii) we need perfect extractable binding instead of just statistical binding, i.e.,
there is a trapdoor that allows extracting the ith value for each binding index
i. We can get the former property by repeating any single-index binding scheme
multiple times in parallel. For the latter property, we notice that the HE-based
construction in [12] already achieves this property, however, it is non-black-box
due to the use of bootstrapping in the underlying HE. We observe that if we
use a rate-1 OT scheme instead of HE, then, we have a black-box construction
satisfying all the requirements in Definition 6. Please refer to the full version for
a sketch of the construction.
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Theorem 10. Assuming hardness of either DDH or LWE, there exists a black-
box construction of somewhere statistically binding hash satisfying the properties
listed in Definition 6.

3 Defining C-PSM

First, we formally define the relations we consider in our protocols.

Definition 7 (H-Instance Entropic Relations). Let X and Y be two sets.
Let R ⊆ X × Y be a relation. For any distribution D on X, we say R is H-
instance entropic with respect to D, if, for every w ∈ Y ,

Pr
x←D

[(x,w) ∈ R] ≤ 2−H .

Next, we define the search functionality.

Definition 8 (Search function). Fix parameters �, c,W,N ∈ N. The proce-
dure Search takes as input a boolean function f : {0, 1}� × {0, 1}c·W → {0, 1},
a bitstring x ∈ {0, 1}�, and a database DB consisting of N words of size W .
It either outputs the lexicographically first c indices i1, · · · , ic ∈ [N ] such that
f(x,DBi1 , · · · ,DBic

) = 1 or ⊥ if no such c indices exist.

We are now ready to define C-PSM.

Definition 9 (2-Round C-PSM). Let � = �(λ), c = c(λ),W = W (λ) and
H = H(λ) be integer parameters. Let D be a distribution on {0, 1}�. Fix a family
of H-instance entropic boolean functions f = {fλ : {0, 1}�(λ) × {0, 1}c(λ)·W (λ) →
{0, 1}} with respect to D. A credible private set membership protocol for f ,
denoted by C-PSM, is a protocol between a sender and a receiver described by a
tuple of PPT algorithms (Setup,R,S,Verify), with the following syntax:

– Setup(1λ, N), on input a security parameter λ and database size N , outputs
a CRS crs.

– R(crs, x), given a CRS crs and an input x, outputs a receiver message α and
an internal state st.

– S(crs, α,DB), on input a CRS crs, receiver message α, and database DB,
outputs a sender message β.

– Verify(β, st), on input a sender message β and internal state st, either accepts
or rejects.

We require the protocol to satisfy the following properties

1. Correctness, for every λ,N ∈ N, every input x ∈ {0, 1}�, and every database
DB of size N such that Search(f, x,DB) �= ⊥, we have

Pr
crs←Setup(1λ,N)
(α,st)←R(crs,x)
β←S(crs,α,DB)

[Verify(β, st) accepts] = 1.
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2. δ-Soundness, for every non-uniform malicious sender S∗ = {S∗
λ}λ∈N, and

every λ,N ∈ N,

Pr
crs←Setup(1λ,N)

x←D
(α,st)←R(crs,x)

β←S∗(crs,α)

[Verify(β, st) accepts] ≤ δ(λ) + 2−H(λ)

3. Receiver Privacy, for any sequence of CRS strings crs = {crsλ}λ∈N, and for
any two sequence of input strings x0 = {x0

λ}λ∈N, x1 = {x1
λ}λ∈N,

{crsλ, α : (α, st) ← R(crsλ, x0
λ)}λ∈N

c≈ {crsλ, α : (α, st) ← R(crsλ, x1
λ)}λ∈N.

4. Statistical Malicious Sender Privacy, there is a (possibly unbounded) simu-
lator algorithm Sim, such that, for every sequence of first message strings
α = {αλ}λ∈N, there exists a sequence of inputs x∗ = {x∗

λ}, such that for any
N ∈ N, and for every database DB of N records, the following two distribu-
tions are statistically indistinguishable,
– first, generate crs ← Setup(1λ, N), output Sim(crsλ, αλ, x∗

λ,Search(f,
x∗

λ,DB)),
– first, generate crs ← Setup(1λ, N), output S(crs, αλ,DB).

5. Efficiency, both R and Verify have runtime poly(λ, �, c,W, log(N)).

Remark 1. Notice that the notion of sender privacy in in Definition 9 does not
prevent leaking the indices for the witness in the database. This is W.L.O.G and
merely for the ease of exposition. To prevent this leakage, the sender can simply
randomly shuffle the entries in its database.

4 Construction for String Equality

Here we present the simplest version of our construction where the predi-
cate is simply string equality, that is, the receiver wants to learn whether its
input is in the sender’s database. The resulting protocol has 2 rounds, achieves
negl(λ)-soundness in a single repetition, and, does not depend on a CRS. For
this construction, let the input size and the database word size be equal, i.e.,
�(λ) = W (λ) ≥ λ. Also, define D to be the uniform distribution on {0, 1}�.
Observe that for strings of length �, the string equality relation is an �-instance
entropic relation with respect to D.

We new describe the ingredients in our construction.

– The first ingredient is a one-way function f : {0, 1}∗ → {0, 1}∗. We assume f
maps �(λ)-bit inputs to m(λ)-bit outputs.

– The second ingredient is a maliciously circuit private homomorphic encryp-
tion scheme HE = (Enc,Eval,Dec,Sim) for the class of branching programs
B = {BL}λ,L∈N. Where, for each L ∈ N , BL consists of all branching programs
of length L.

Construction 1. Let L := L(λ,N) be the length of the branching program
computing the function Find described in Fig. 1. The construction is as follows:
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– R(x):
• Compute the image of x under f to obtain y := f(x).
• Encrypt y under HE to produce (ct, sk) ← HE.Enc(1λ, 1L, y).
• Output α := ct and store internal state st := sk.

– S(α,DB):
• Parse α := ct.
• Apply f to every entry in DB to obtain D̃B = {D̃Bi := f(DBi)}i∈[N ].
• Homomorphically evaluate the function Find

˜DB,DB
on ct to obtain

cteval ← HE.Eval(ct,Find
˜DB,DB

, ).
• Output β := cteval.

– Verify(β, st):
• Parse β and st as β = cteval and st = sk respectively.
• Decrypt cteval to obtain x̃ := HE.Dec(sk, cteval).
• Accept iff f(x̃) equals f(x).

procedure Find
˜DB,DB(y)

if y �∈ ˜DB then
Output ⊥

else
Find the smallest index i such that ˜DBi = y.
Output DBi.

Fig. 1. Description of the labeled-PSM functionality Find

Correctness and receiver privacy of Construction 1 immediately follows from
the correctness and semantic security of HE. For efficiency, we have to argue that
the length of the branching program computing Find is logarithmic in N . To do
this, as shown in [5], we can convert the database DB to a trie, and essentially
implement Find by a branching program of length �.

We now prove the soundness of Construction 1.

Theorem 11. Assuming f is one-way, Construction 1 is negl(λ)-sound.

Proof. Let S∗ be a malicious sender. Denote the success probability of S∗ by p.
In more detail, p is defined as

p := Pr
x←D

(ct,sk)←HE.Enc(1λ,1L,f(x))
β←S∗(ct)

x̃:=HE.Dec(sk,β)

[f(x̃) = f(x)].

We use S∗ to build a PPT adversary A which breaks the one-wayness of f with
probability p. A works as follows, on input an image y, it first encrypts y by HE
to obtain (ct, sk) ← HE.Enc(1λ, 1L, y). It then runs S∗ on input ct to get cteval ←
S∗(ct). Finally, A decrypts cteval using sk and outputs x̃ := HE.Dec(sk, cteval) as
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the preimage of y. Now observe that as long as y is an image of an input chosen
from the distribution D, the view of S∗ when interacting with A is identical to
its view in the soundness game. Therefore,

Pr
x←D

y:=f(x)
x̃←A(y)

[f(x̃) = f(x)] = p.

This completes the proof.

Theorem 12. Assuming HE is maliciously circuit private, Construction 1 sat-
isfies statistical malicious sender privacy.

Proof. Let α be an arbitrary first message and DB be any database of size N ∈ N.
We only describe the simulator algorithm Sim, the theorem follows instantly from
the malicious function privacy of HE.

– Sim receives as input a first message α := ct, and a bitstring x∗.
– Using the HE simulator it computes cteval ← HE.Sim(ct, x∗).
– It outputs cteval.

5 Construction for Predicates Beyond String Equality

Now we consider richer families of predicates. Fix input length � = �(λ), word
size W = W (λ), function arity c = c(λ), distribution D on {0, 1}�, and entropy
parameter H = H(λ). Let f : {0, 1}� × {0, 1}c·W → {0, 1} be an H-instance
entropic function with respect to D.

In the rest of the paper, we construct a 2-round C-PSM protocol in three
steps.

– First, we construct a 4-round protocol satisfying a weaker notion of soundness,
where, it is only required that an adversary cannot convince a verifier for any
fixed set of indices.

– Then, using dual-mode 2-round OT, we show how to compress the 4-round
protocol to a 2-round protocol which still has weak soundness.

– Finally, we amplify the soundness of the 2-round protocol by parallel repeti-
tion to achieve a (strongly) sound 2-round protocol.

5.1 Weakly-Sound 4-Round Protocol

We first construct a weakly-sound 4-round protocol with constant soundness.
Where a weakly-sound 4-round C-PSM protocol is defined as follows:

Definition 10 (Weakly-Sound 4-Round C-PSM). A credible private set
membership protocol with challenge space C for f is a protocol between a sender
and a receiver described by a tuple of PPT algorithms (Setup,R,S1,S2,Verify),
with the following syntax:

– Setup(1λ, N), on input a security parameter λ and database size N , outputs
a CRS crs.
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– R(crs, x), given a CRS crs and an input x, outputs a receiver message α and
an internal state stR.

– S1(crs, α,DB), on input a CRS crs, a receiver message α, and a database
DB, outputs a sender message β1 and an internal state stS.

– S2(crs, ch, stS), on input a CRS crs, a challenge ch, and an internal state
stS, outputs a sender message β2.

– Verify(β1, ch, β2, stR) on input sender messages β1, β2, challenge ch, and
internal state stR, either accepts and outputs a sequence S = {ik}k∈[c] of
indices, or, rejects.

We require the protocol to satisfy the following properties

1. Correctness, for every λ,N ∈ N, every input x ∈ {0, 1}�, every database DB
of size N such that Search(f, x,DB) �= ⊥, and every challenge ch ∈ C, we
have

Pr
crs←Setup(1λ,N)
(α,stR)←R(crs,x)

(β1,stS)←S1(crs,α,DB)
β2←S2(crs,ch,stS)

[Verify(β1, ch, β2, stR) accepts] = 1.

2. Weak δ-Soundness, for every non-uniform malicious sender S∗ =
{(S1∗

λ,S2∗
λ)}λ∈N, every λ,N ∈ N, and every sequence of indices I∗ = {i∗k}k∈[c]

of size c,

Pr
crs←Setup(1λ,N)

x←D
(α,stR)←R(crs,x)

(β1,stS)←S1∗(crs,α)
ch←C

β2←S2∗(crs,ch,stS)

[Verify(β1, ch, β2, stR) = I∗] ≤ δ(λ) + 2−H(λ)

3. Receiver Privacy, for any sequence of CRS strings crs = {crsλ}λ∈N, and for
any two sequence of input strings x0 = {x0

λ}λ∈N, x1 = {x1
λ}λ∈N,

{crsλ, α : (α, st) ← R(crsλ, x0
λ)}λ∈N

c≈ {crsλ, α : (α, st) ← R(crsλ, x1
λ)}λ∈N.

4. Special Statistical Malicious Sender Privacy, there is a simulator algorithm
Sim, such that, for every sequence of first message strings α = {αλ}λ∈N,
there exists a sequence of inputs x∗ = {x∗

λ}, such that for every database
DB, and for every ch ∈ C, the following two distributions are statistically
indistinguishable
– sample crs ← Setup(1λ, N), then, output Sim(crs, x∗

λ, ch,Search(f,
x∗

λ,DB))
– sample crs ← Setup(1λ, N), then, generate (β1, st) ← S1(crs, αλ), next,

compute β2 ← S2(crs, ch, st), finally, output (β1, β2).
5. Efficiency, both R and Verify have runtime poly(λ, �, c,W, log(N)).

Our construction uses the following ingredients:

– A commit-and-prove system Π = (Setup,FakeSetup,Com,GenFresh,P,Verify,
Extract) for the language specified by f .
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– A maliciously circuit private homomorphic encryption scheme HE =
(Enc,Eval,Dec,Sim) for a class of functions F = {FL}L∈N.

– A somewhere statistically binding hash SSB = (Gen,Hash,Verify,Extract) sat-
isfying the properties in Definition 6.

Construction 2 (Weakly-Sound 4-Round C-PSM). Let L := L(λ,N) be
a function family index such that FL includes both G1 and G2 (Figs. 2 and 3)
for databases DB of size N . The construction is as follows:

– Setup(1λ, N):
• Generate a CRS for Π, crsΠ ← Π.Setup(1λ).
• Generate an SSB hash key binding to the first c indices (or any other

arbitrary sequence of c indices), (hk, td) ← SSB.Gen(1λ, N, {i}i∈[c]).
• Output crs := (crsΠ , hk).

– R(crs, x):
• Encrypt x under HE to produce (ct, sk) ← HE.Enc(1λ, 1L, x).
• Output α := ct and store internal state st := sk.

– S1(crs, α,DB):
• Parse crs and α as (crsΠ , hk) and ct respectively.
• Commit to every entry in DB to produce D̃B = {D̃Bi ← Π.Com

(crsΠ ,DBi; rcom
i )}i∈[N ].

• Hash D̃B using SSB to obtain (h, {τi}i∈[N ]) := SSB.Hash(hk, D̃B).
• Produce fresh commitments and their randomness Γ ← Π.
GenFresh(crsΠ).

• Sample random coins rP for Π.P1.
• Homomorphically evaluate the function G1 on ct to obtain

cteval,1 ← HE.Eval(crsΠ , ct, G1
DB, ˜DB,{τi}i∈[N],{rcom

i }i∈[N],Γ,rP
).

• Output β1 := (h, cteval,1) and store internal state st := (x,DB,
{rcom

i }i∈[N ], Γ, rP ).
– S2(crs, ch, st):

• Parse crs and st as (crsΠ , hk) and (x,DB, {rcom
i }i∈[N ], Γ, rP ) respectively.

• Homomorphically evaluate the function G2 on ct to obtain
cteval,2 ← HE.Eval(crsΠ , ct, G2

crsΠ ,DB,{rcom
i }i∈[N],Γ,rP ,ch).

• Output β2 := cteval,2.
– Verify(crs, β1, ch, β2, st):

• Parse crs,β1,β2 and st as (crsΠ , hk), (h, cteval,1), cteval,2 and sk respec-
tively.

• Decrypt cteval,1 to obtain ({ik}k∈[c], {w̃k}k∈[c], π1, {τk}k∈[c]) := HE.Dec
(sk, cteval,1).

• Decrypt cteval,2 to obtain π2 := HE.Dec(sk, cteval,2).
• Accept and output {ik}k∈[c] iff Π.Verify(crsΠ , x, {w̃k}k∈[c], ch, π1, π2)

accepts and
∀k ∈ [c] : SSB.Verify(hk, h, ik, w̃k, τk) accepts.

We first prove δ-soundness and special statistical malicious sender privacy
of Construction 2.
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procedure G1

crsΠ ,DB, ˜DB,{τi}i∈[N],Γ,rP
(x)

Let out := Search(x, f,DB)
if out == ⊥ then

Output ⊥
else

Parse out as out = (i1, · · · , ic).
Generate the first prover message:

π1 ← P1(crsΠ , x, {DBik}k∈[c], {rik}k∈[c], Γ ; rP ).

Output ({ik}k∈[c], { ˜DBik}k∈[c], π1, {τik}k∈[c]).

Fig. 2. Description of G1

procedure G2
crsΠ ,DB,{rcom

i }i∈[N],Γ,rP ,ch(x)

Let out := Search(x, f,DB)
if out == ⊥ then

Output ⊥
else

Parse out as out = (i1, · · · , ic).
Generate the second prover message:

π2 ← P2(crsΠ , x, {DBik}k∈[c], {rik}k∈[c], Γ, rP , ch).

Output the second prover message π2.

Fig. 3. Description of G2

Theorem 13. Assuming SSB is index-hiding, Π has indistinguishable CRS
modes, HE has semantic security, and Π is δ-sound, Construction 2 is weakly
(δ + γ)-sound for any positive constant (or any non-negligible function) γ .

Proof. Let S∗ = (S1∗,S2∗) be a malicious sender and let I∗ = {i∗k}k∈[c] be any
sequence of indices of size c. For each hybrid Hj , define the probability pj as
follows:

pj := Pr[Π.Verify(crsΠ , x, {w̃k}k∈[c], π1, ch, π2) accepts ∧ ∀k ∈ [c] : SSB.Verify(hk, h, i
∗
k, w̃k, τk) accepts].

where in each hybrid we describe how crsΠ , x, {w̃k}k∈[c], π1, ch, π2, hk, h, and
{τk}k∈[c] are defined.

Hybrid H0: This is the soundness experiment. In more detail, here,

– crsΠ ← Π.Setup(1λ),
– (hk, tdSSB) ← SSB.Gen(1λ, N, {k}k∈[c]),
– x ← D,
– (ct, sk) ← HE.Enc(1λ, 1L, x),
– ((h, cteval,1), st) ← S1∗((crsπ, hk), ct),
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– ch ← C,
– cteval,2 ← S2∗(crs, ch, st),
– ({ik}k∈[c], {w̃k}k∈[c], π1, {τk}k∈[c]) := HE.Dec(sk, ct1,eval),
– and π2 := HE.Dec(sk, cteval,2).

Hybrid H1: This is identical to H0 except that here hk is generated binding to
indices i∗1, · · · , i∗c , i.e., (hk, tdssb) ← SSB.Gen(1λ, N, {i∗k}k∈[c]). The index hiding

property of SSB implies that H0
c≈ H1. Consequently, |p0 − p1| = negl(λ).

Hybrid H2: The only difference between this hybrid and H1 is that here, crsΠ is
generated along with a trapdoor tdΠ via (crsΠ , tdΠ) ← Π.FakeSetup(1λ). Since
Π has indistinguishable CRS modes, H1

c≈ H2. Therefore, |p1 − p2| = negl(λ).

Lemma 1. Assuming HE is semantically secure, p2 − (δ + 2−H) = negl(λ).

Proof. Using S∗ we build an adversary A against the semantic security of HE.
A works as follows:

– It generates crsΠ , hk, and tdssb exactly as in H2.
– It samples two elements x0 ← D,x1 ← D.
– A sends x0, x1 to the semantic security challenger of HE.
– It receives as response an HE ciphertext ct from the HE semantic security

challenger. The ciphertext ct either encrypts x0 or x1 under an honestly
generated HE key sk.

– A runs S1∗ to obtain ((h, cteval,1), st) ← S1∗((crsΠ , hk), ct)
– A receives a random challenge ch ← C.
– A runs S2∗ to obtain cteval,2 ← S2∗((crsΠ , hk), st).
– Using tdssb it recovers commitments {w̃∗

k}k∈[c] := SSB.Extract(tdssb, h). Using
tdcom, for each k ∈ [c] it recovers w∗

k := Com.Extract(tdcom, w̃∗
k).

– If f(x0, {w∗
k}k∈[c]) = 1, it outputs 1. Otherwise, it outputs 0.

Now we analyze the success probability of A in breaking the semantic security
of HE. Let

({ik}k∈[c], {w̃k}k∈[c], π1, {τk}k∈[c]) := HE.Dec(sk, cteval,1).

First, we consider the case where ct encrypts x0. In this case with probability at
least p2,

∀k ∈ [c] : SSB.Verify(hk, h, i∗k, w̃k, τk) accepts, (2)

and
Π.Verify(crsΠ , x0, {w̃k}k∈[c], π1, ch, π2) accepts. (3)

By extractability of SSB, the former implies that ∀k ∈ [c] : w̃k = w̃∗
k. Conse-

quently, by δ-soundness of Π, with probability at least p2−δ, f(x0, {w∗
k}k∈[c]) =

1. We conclude that in this case A outputs 1 with probability at least p2 − δ.
Now we turn to the other case where ct encrypts x1. In this case, x0 maintains
all of its entropy , therefore, since f is H-instance entropic,

Pr[f(x0, {w∗
k}k∈[c]) = 1] = 2−H ,

i.e., A outputs 1 with probability 2−H . We showed that A breaks the semantic
security of HE with probability at least p2 − δ − 2−H .
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This concludes the proof.

Theorem 14. Assuming HE is maliciously circuit private, Π satisfies special
statistical zero-knowledge, and Π has statistically hiding commitments, Con-
struction 2 satisfies special statistical malicious sender privacy.

Proof. Let α be an arbitrary first message, ch ∈ C be any challenge, DB be any
database of size N ∈ N, and let crs ← Setup(1λ, N) be a crs generated through
Setup. First, we describe the simulator algorithm Sim.

– Sim receives as input a CRS parsed as crs := (crsΠ , hk), a first message
α := ct, a bitstring x∗, and indices {i∗k}k∈[c] (W.L.O.G assume that the
indices are not ⊥).

– Using the zero-knowledge simulator for Π, it computes ({w̃∗
k}k∈[c], π

∗
1 , π

∗
2) ←

Π.Sim(crsΠ , x, ch).
– For each i ∈ [N ]/{i∗k}k∈[c], Sim computes a commitment D̃Bi ←

Π.Commit(crscom,0). For each k ∈ [c] it sets the i∗kth commitment to be
equal to D̃Bik∗ := w̃∗

k.
– It hashes D̃B to obtain (h, {τi}i∈[N ]) := SSB.Hash(hk, D̃B).
– Using the HE simulator it computes

cteval,1 ← HE.Sim(ct, ({i∗k}k∈[c], {w̃∗
k}k∈[c], π

∗
1 , {τi∗

k
}k∈[c])).

– Using the HE simulator it computes

cteval,2 ← HE.Sim(ct, π∗
2)

– It outputs (h, cteval,1, cteval,2).

We now proceed via a series of hybrids to show that the output of Sim is
statistically indistinguishable from an honestly generated sender message.
Hybrid H0: This hybrid corresponds to generating the sender messages β1, β2

honestly through (β1, st) := (h, cteval) ← S1(crs, α,DB) and β2 := cteval ←
S2(crs, ch, st).

Hybrid H1: This hybrid uses HE.Sim to produce cteval,1 and cteval,2. In more
detail, given ct, we know that there exists an x∗ such that,

HE.Eval(ct, G
1
crsΠ ,DB, ˜DB,{τi}i∈[N],Γ,rP

)
s≈ HE.Sim(ct, G

1
crsΠ ,DB, ˜DB,{τi}i∈[N],Γ,rP

(x
∗
)),

and

HE.Eval(ct, G
2
crsΠ ,DB,{rcom

i
}i∈[N],Γ,rP ,ch)

s≈ HE.Sim(ct, G
2
crsΠ ,DB,{rcom

i
}i∈[N],Γ,rP ,ch(x

∗
)).

In this hybrid, cteval,1 and cteval,2 are generated as

cteval,1 ← HE.Sim(ct,G1
crsΠ ,DB, ˜DB,{τi}i∈[N],Γ,rP

(x∗)),

and
cteval,2 ← HE.Sim(ct,G2

crsΠ ,DB,{rcom
i }i∈[N],Γ,rP ,ch(x∗)).
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It follows from the malicious circuit privacy of HE that H0
s≈ H1.

Hybrid H2: The difference between this hybrid and the previous hybrid is only
syntactical. In this hybrid, to generate cteval,1 and cteval,2, first, the (lexicograph-
ically) smallest indices {i∗k}k∈[c] such that f(x∗, {DBi∗

k
}k∈[c]) = 1 are computed.

Next, π1 and π2 are computed as

π1 ← P1(crsΠ , x, {DBi∗
k
}k∈[c], {ri∗

k
}k∈[c], Γ ; rP )

and
π2 ← P2(crsΠ , x, {DBi∗

k
}k∈[c], {rik

}k∈[c], Γ, rP , ch).

Finally, cteval,1 and cteval,2 are computed as

cteval,1 ← HE.Sim(ct, ({i∗k}k∈[c], {D̃Bi∗
k
}k∈[c], π1, {τi∗

k
}k∈[c])),

and
cteval,2 ← HE.Sim(ct, π2).

As already stated H1 and H2 are identical.

Hybrid H3: In this hybrid we modify how D̃B is generated. Here, for each
k ∈ [c],

D̃Bi∗
k

← Π.Commit(crsΠ ,DBi∗
k
; rcom

i∗
k

)

as before, but the rest of the commitments are generated as

{D̃Bi ← Π.Commit(crsΠ ,0)}i∈[N ]/{i∗
k}k∈[c]

.

Notice that we don’t modify the commitments whose randomness are used in
the HE.Sim algorithm. Therefore, by the statistical hiding property of the com-
mitments in Π, H2

s≈ H3.

Hybrid H4: The difference between this hybrid and the previous hybrid is that
here {D̃Bi∗

k
}k∈[c], π1, and π2 are generated using the simulator for Π, i.e.,

({D̃Bi∗
k
}k∈[c], π1, π2) ← Π.Sim(x∗, ch).

The special zero-knowledge property of Π directly implies that H3
s≈ H4.

Observe that, H4 corresponds to generating the sender messages via Sim.

Depending on how HE is instantiated, Construction 2 can support different
classes of predicates with different trade-offs in terms of black-box usage of under-
lying cryptographic primitives. If we instantiate HE with Theorem 8, we can have
a black-box construction supporting NC1 predicates f where Search(·, f,DB) can
be implemented in by a branching program whose length is logarithmic in |DB|.
Theorem 15. Assuming hardness of either of DDH or LWE, there exists a
family of weakly-sound 4-round C-PSM protocols with the following properties:
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1. It supports all predicates f such that f can be implemented by an NC1 circuit
and also for every database DB of size N , Search(·, f,DB) can be implemented
by a branching program of length logarithmic in N .

2. It only makes black-box use of the underlying cryptographic primitives.
3. It is receiver private.
4. It is weakly δ-sound.
5. It satisfies special statistical malicious sender privacy.

Proof. We instantiate Construction 2 with the black-box maliciously circuit pri-
vate homomorphic encryption scheme of Theorem 8 for the class of branch-
ing programs {BL}L∈N

. We have already proven weak δ-soundness and spe-
cial statistical malicious sender privacy of Construction 2. Correctness follows
from the correctness of HE, correctness of Π, and correctness of SSB. Receiver
privacy follows from the semantic security of HE. For efficiency, we need to
show that both G1 and G2 can be evaluated by a branching program of length
L = poly(λ, log N). Observe that both G1 and G2 access the whole database
only through the Search functionality. Therefore, since the Search functional-
ity for f can be implemented by a branching program of length logarithmic in
N , L is also logarithmic in N . Furthermore, since f is in NC1, by Theorem 7,
both P1 and P2 are also in NC1. Consequently, by Barrington’s theorem [3], P1
and P2 can be implemented by a polynomial (in λ) length branching program.
Therefore, L = poly(λ, log N).

Alternatively, we can instantiate HE with Theorem 9 to get a construction sup-
porting all bounded depth circuits. While this construction only makes black-
box use of HE, however, the homomorphic encryption scheme constructed in
Theorem 9 is non-black-box due to relying on bootstrapping.

Theorem 16. Assuming hardness of LWE, there exists a family of weakly-sound
4-round C-PSM protocols with the following properties:

1. It supports all predicates f such that f can be implemented by bounded-depth
circuits, i.e., the C-PSM protocol is leveled.

2. Its only non-black-box use of the underlying cryptographic primitives happens
through bootstrapping.

3. It is receiver private.
4. It is weakly δ-sound.
5. It satisfies special statistical malicious sender privacy.

Proof. We instantiate Construction 2 with the maliciously circuit private homo-
morphic encryption scheme of Theorem 9 for the class of circuits {FL}L∈N

, where
for each L ∈ N, FL consists of all circuits of depth at most L. Establishing weak
δ-soundness, special statistical malicious sender privacy, correctness and receiver
privacy is identical to Theorem 15. For efficiency, it is straightforward to verify
that G1 and G2 can be evaluated by circuits of depth L = poly(λ, log N).
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5.2 4-Round to 2-Round Transformation

Here we provide a generic transformation that converts any weakly-sound 4-
round C-PSM protocol to a weakly-sound 2-round protocol. Analogously to
weakly-sound 4-round C-PSM, we define weakly-sound 2-round C-PSM as fol-
lows:

Definition 11 (Weakly Sound 2-Round C-PSM). Let �, c,W, f,H,D be
the same as Definition 9. A weakly sound C-PSM for f , is a protocol between a
sender and a receiver described by a tuple of PPT algorithms (Setup,R,S,Verify),
where the interface of Setup,R and S is identical to their interface in Definition
9 and Verify has the following syntax:

– Verify(β, st), on input a sender message β and internal state st, either accepts
and outputs a sequence I = {ik}k∈[c] of indices, or rejects.

Except for δ-soundness we require the protocol to satisfy all properties in Defi-
nition 9. Additionally, we consider the following weaker variant of soundness:

1. Weak δ-Soundness, for every non-uniform malicious sender S∗ = {S∗
λ}λ∈N,

every λ,N ∈ N, and every sequence of indices I∗ = {i∗k}k∈[c] of size c,

Pr
crs←Setup(1λ,N)

x←D
(α,st)←R(crs,x)

β←S∗(crs,α)

[Verify(β, st) = I∗] ≤ δ(λ) + 2−H(λ)

Our transformation uses the following ingredients:

– A 4-round weakly sound C-PSM protocol Σ = (Setup,R,S1,S2,Verify).
– A dual-mode statistically sender private OT scheme
OT = (Setup,FakeSetup,Extract,OT1,OT2,OT3).

Construction 3. The construction is as follows:

– Setup(1λ, N):
• Generate a CRS for Σ, crsΣ ← Σ.Setup(1λ, N).
• Generate a CRS for dual-mode OT, crsOT ← OT.Setup(1λ).
• Output crs := (crsΣ , crsOT ).

– R(crs, x):
• Generate a Σ first message for x along with an internal state, (αΣ , stΣ) ←

Σ.R(crsΣ , x).
• Sample a random challenge ch ← C from the challenge space of Σ.
• Generate an OT first message for ch along with an internal state,

(ot1, stOT ) ← OT.OT1(crsOT , ch).
• Output first message α := (αΣ , ot1) and internal state st =

(x, ch, stΣ , stOT ).
– S(crs, α,DB):

• Parse crs and α as (crsΣ , crsOT ) and (αΣ , ot1) respectively.
• Compute (β1, st) ← Σ.S1(crsΣ , αΣ ,DB).
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• For each ch ∈ C compute β2,ch ← Σ.S2(crsΣ , st, ch,DB).
• Compute OT second message ot2 ← OT.OT2(ot1, {β2,ch}ch∈C).
• Output β := (β1, ot2).

– Verify(β, st):
• Parse β and st as (β1, ot2) and (x, ch, stΣ , stOT ) respectively.
• Recover β2,ch as β2,ch := OT.OT3(ot2, stOT ).
• Output whatever Σ.Verify(β1, ch, β2,ch, stΣ) outputs.

The correctness immediately follows from the correctness of Σ and OT. If the
size of the challenge space of C is a constant (or scales logarithmically with N)
then, the efficiency also directly follows from the efficiency of Σ. In the full
version of this paper we prove the following two theorems.

Theorem 17 (Weak δ-Soundness). Assuming Σ satisfies weak δ-soundness,
Construction 3 satisfies weak (δ+γ)-soundness for every constant (or even non-
negligible function) γ > 0.

Theorem 18 (Statistical Malicious Sender Privacy). Assuming OT is sta-
tistical sender private, and Σ satisfies special statistical malicious sender privacy,
Construction 3 is statistically malicious circuit private.

5.3 Weakly δ-Sound to negl(λ)-Sound Transformation

Here we present a generic transformation that for any constant δ > 0 converts a
weakly δ-sound 2-round C-PSM to a negl(λ)-sound 2-round C-PSM. The trans-
formation is essentially parallel repetition of the weakly-sound protocol, but the
verification algorithm also checks that all the repetitions return the same set of
indices.

For the following construction, let Σ = (Setup,R,S,Verify) be any weakly
sound 2-round C-PSM with δ-soundness.

Construction 4. Let rep := rep(λ,N, c) be a parameter indicating the number
of repetitions.The construction is as follows:

– Setup(1λ, N):
• Generate and output rep independent CRSs for Σ, crs := {crsi

Σ ←
Σ.Setup(1λ, N)}i∈[rep].

– R(crs, x):
• Generate rep first messages for Σ along with their internal state,

{(αi
Σ , stiΣ) ← Σ.R(crsi

Σ , x)}i∈[rep].
• Output the first messages α := {αi

Σ}i∈[rep] and internal state st =
(x, {stiΣ}i∈[rep]).

– S(crs, α,DB):
• Compute and output rep second messages for Σ, β := {βi

Σ ← Σ.S
(crsi

Σ , αi
Σ ,DB)}i∈[rep].

– Verify(β, st):
• Accept iff each repetition accepts and outputs a sequence of indices of

size c {Ii := Σ.Verifyβi, sti}i∈[rep] and all the sequences Ii are equal.
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The correctness and statistical malicious sender privacy of Construction 4 imme-
diately follow because the same properties hold in Σ. This construction satisfies
efficiency as long as rep grows at most logarithmically in N .

Theorem 19. If Σ is weakly δ-sound, then, Construction 4 is N c · δrep-sound.

Proof. For each possible sequence I∗, the probability that all of the repeti-
tions accept and output I∗ is at most δrep. Since we have at most N c different
sequences, the theorem follows.

By setting rep := (λ + c · log(N))/ log(1/δ) we get 2−λ soundness.

5.4 Putting Everything Together

In this section, we combine the constructions in Subsect. 5.1 with the transfor-
mations in Subsect. 5.2 and Subsect. 5.3, to obtain 2-round C-PSM constructions
for richer classes of functionalities.

Theorem 20. Assuming hardness of either of DDH or LWE, there exists a fam-
ily of 2-round C-PSM protocols in the CRS model with the following properties:

1. It supports all predicates f such that f can be implemented by an NC1 circuit
and also for every database DB of size N , Search(·, f,DB) can be implemented
by a branching program of length logarithmic in N .

2. It only makes black-box use of the underlying cryptographic primitives.
3. It is receiver private.
4. It is (strongly) sound.
5. It satisfies statistical malicious sender privacy.
6. It has transparent setup, i.e., the CRS is simply a random string.

Theorem 21. Assuming hardness of LWE, there exists a family of 2-round C-
PSM protocols in the CRS model with the following properties:

1. It supports all predicates f such that f can be implemented by bounded-depth
circuits, i.e., the C-PSM protocol is leveled.

2. Its only non-black-box use of the underlying cryptographic primitives happens
through bootstrapping.

3. It is receiver private.
4. It is (strongly) sound.
5. It satisfies statistical malicious sender privacy.
6. It has transparent setup.
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Abstract. We introduce new protocols for private set intersection
(PSI), building upon recent constructions of pseudorandom correlation
generators, such as vector-OLE and ring-OLE. Our new constructions
improve over the state of the art on several aspects, and perform espe-
cially well in the setting where the parties have databases with small
entries. We obtain three main contributions:
1. We introduce a new semi-honest PSI protocol that combines sub-

field vector-OLE with hash-based PSI. Our protocol is the first PSI
protocol to achieve communication complexity independent of the
computational security parameter κ, and has communication lower
than all previous known protocols for input sizes � below 70 bits.

2. We enhance the security of our protocol to the malicious setting,
using two different approaches. In particular, we show that applying
the dual execution technique yields a malicious PSI whose communi-
cation remains independent of κ, and improves over all known PSI
protocols for small values of �.

3. As most previous protocols, our above protocols are in the random
oracle model. We introduce a third protocol which relies on subfield
ring-OLE to achieve maliciously secure PSI in the standard model,
under the ring-LPN assumption. Our protocol enjoys extremely low
communication, reasonable computation, and standard model secu-
rity. Furthermore, it is batchable: the message of a client can be
reused to compute the intersection of their set with that of multiple
servers, yielding further reduction in the overall amortized commu-
nication.

1 Introduction

Private Set Intersection (PSI) is a cryptographic primitive that allows parties to
jointly compute the set of all common elements between their datasets, without
leaking any value outside of the intersection. It is a special case of secure multi-
party computation (MPC). PSI enjoys a wide array of real-life applications; it is
perhaps the most actively researched concrete functionality in secure computa-
tion, and has been the target of a tremendous number of works, see [10,13,18–
24,26–28] and references therein for a sample. As a consequence of this intense
research effort, modern PSI protocols now achieve impressive efficiency features,
c© International Association for Cryptologic Research 2023
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communicating only a few hundred bits per database items, and processing mil-
lions of items in seconds.

Improving PSI with Pseudorandom Correlation Generators. Pseudoran-
dom correlation generators (PCG) have been introduced in the works of [3,5,8] and
have been the subject of a long and fruitful line of work [3–8,11,30,32,34]. At a high
level, a PCG allows two parties to securely stretch long pseudorandom correlated
strings from short, correlated seeds. Securely sharing correlated random strings is
a crucial component in most modern secure computation protocols, which operate
in the preprocessing model; PCG allows to realize this functionality with almost no
communication. Among their many applications, PCGs allow to construct silent
oblivious transfer extension protocols [4], which can realize (pseudorandom) OT
extension with minimal (logarithmic) communication.

Since the top-performing PSI protocols rely on efficient OT extension, using
PCG-based techniques to improve their efficiency is a natural idea. And indeed,
this was done recently for OKVS-based PSI in [27], leading to the most efficient
PSI protocol known to date (OKVS stands for oblivious key-value store [13]; the
use of OKVS is the leading paradigm for the design of PSI protocols). To give
a single datapoint, computing the intersection between two databases of size
n = 220 with the protocol of [27] communicates as little as 426n bits in total. In
addition, some of the tools used in [27] have been significantly improved since:
replacing their OKVS (which is the PaXoS OKVS of [21]) by the more recent
3H-GCT OKVS of [13], and replacing their PCG (which is the one from [32]) by
the recent PCG of [11], the cost goes down to an impressive 247n bits of total
communication. In comparison, even the insecure approach of exchanging the
hashes of all items in the databases already requires 160n bits of communication.
OKVS-based PSI protocols are now firmly established as the leading paradigm
in the field, and the use of PCGs to reduce their communication overhead even
more seems to further widen the gap with the other paradigms.

1.1 Our Contributions

We thoroughly investigate how the use pseudorandom correlation generators can
reduce communication in PSI protocols. We obtain several contributions:

– A new family of semi-honest hash-based PSI protocols. Our protocols can be
instantiated using several hashing techniques, and achieve very low commu-
nication, especially for databases whose entries have a small bitlength.

– New maliciously secure hash-based PSI protocols. Here, interestingly, we
revive the dual execution technique, which had been used previously to design
malicious PSI protocols in [26], but was considered outdated. We show that,
combined with our new approach, it leads to very competitive protocols, which
achieve lower communication than all known alternatives for databases with
small entries.

– Eventually, we design a new maliciously secure polynomial-based PSI pro-
tocol. Our protocol enjoys several powerful features: competitive communi-
cation, security in the standard model under the ring-LPN assumption (in
contrast, other maliciously secure PSI use the ROM), and the possibility for
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a client to publish a single encoding of its database, and later retrieve the
intersection of its database with that of multiple servers independently, with
a single server-to-client message, plus minimal (database-independent) addi-
tional communication.

Below, we elaborate on each of our contributions.

Low Communication PSI for Databases with Small Entries. Modern
PSI protocols have communication O(κ · n), where n is the database size, and
κ is a computational security parameter. More precisely, the receiver-to-sender
communication is O(κṅ), while the sender-to-receiver communication is O(λ ·n),
where λ is a statistical security parameter (typically, κ = 128 and λ = 40).
We introduce a new protocol, that combines hashing techniques (e.g. Cuckoo
hashing or its variants, as initially used in [18]) with a new PCG-based oblivious
pseudorandom function (OPRF). In contrast to all previous works, our work
avoid the O(κ·n) overhead: it reduces the receiver-to-sender communication to be
roughly � ·n (where � is the bitsize of the database items), leading to a significant
reduction in the overall communication. To our knowledge, our protocol is the
first to achieve communication independent of κ (up to low order terms). To
give a datapoint, for n = 220, with 64-bit entries, our protocol communicates
210n bits, and with 32-bit entries, it communicates only 148n bits. For the same
parameters, the leading OKVS-based PSI of [27] communicates 197n bits, even
after improving it with all relevant optimization (such as using the 3H-GCT
OKVS of [13], and the recent PCG of [11]). We provide further datapoints and
comparisons to the state of the art on Table 1, when instantiating our protocols
with various hashing methods.

Fast Maliciously-Secure PSI for Small Entries. We then turn our attention
to maliciously secure PSI. We provide two alternative protocols which achieve
malicious security; both use standard paradigms for upgrading PSI to malicious
security. The first protocol combines our new PCG-based OPRF with simple
hashing, and applies the standard paradigm used in most previous OKVS-based
PSI to achieve malicious security (e.g. [27]). This requires to increase the sender-
to-receiver message length, from O(λ · n) to O(κ · n) (λ is a statistical security
parameter, κ is a computational security parameter; typically, λ = 40 and κ =
128) to allow for extraction of the sender input. Along the way, we also notice
a small mistake in the parameter choices of [27]: they devise a new ROM-based
extraction strategy in the malicious setting, and prove that a Q-query adversary
will make extraction fail with probability bounded Q·n/2κ (this is the probability
that one of the Q queries of the malicious receiver collides with an element of the
sender set). This implies that, to target 128 bits of computational security, one
must set κ = 128 + log n. However, the numbers reported in [27] correspond to
choosing κ = 128 at the 128-bit security level. We took this minor inconsistency
into account in our tables.

More interestingly, our second protocol applies dual execution [26] to our
PCG-based protocol with simple hashing. We observe that, in our context, this
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Table 1. Comparison of the communication cost of several PSI protocols in the semi-
honest setting and in the malicious setting, for various choices of the database size n
(we assume that both parties have a database of the same size). � denote the bit-length
of the inputs in the database; we set the computational security parameter κ to 128
and the statistical security parameter λ to 40 (for usual applications) or 30 (which
can be suitable for lower risk applications). For all protocols, we take into account
the optimization of [31] which reduces the costs of sending n elements of bitlength
λ + 2 · log n to n · (λ + log n). GCH stands for Generalized Cuckoo hashing (here, with
2 hash functions and 3 items per bin), 2CH for 2-choice hashing, and SH for simple
hashing (N is the number of bins).

n = 214 n = 216 n = 220 n = 224

Semi-honest setting
KKRT16 [18] 930n 936n 948n 960n

PRTY19 [20] low∗ 491n 493n 493n 494n

PRTY19 [20] fast∗ 560n 571n 579n 587n

CM20 [10] 668n 662n 674n 676n

PRTY20 [21] 1244n 1192n 1248n 1278n

RS21 [27] 2024n 898n 406n 374n

RS21 [27] enhanced∗∗ 280n 260n 263n 275n

Ours (� = 64, GCH) 246n 220n 210n 209n

Ours (� = 48, GCH) 215n 189n 179n 178n

Ours (� = 32, GCH) 184n 158n 148n 147n

Ours (� = 64, 2CH) 214n 190n 183n 185n

Ours (� = 48, 2CH) 193n 169n 162n 164n

Ours (� = 32, 2CH) 171n 148n 141n 142n

Ours (� = 64, SH, N = n/10) 332n 302n 284n 276n

Ours (� = 48, SH, N = n/10) 261n 230n 209n 198n

Ours (� = 32, SH, N = n/10) 191n 158n 133n 120n

Ours (� = 64, SH, N = 1) ∗∗∗ 154n 131n 125n 128n

Ours (� = 48, SH, N = 1) ∗∗∗ 138n 115n 109n 112n

Ours (� = 32, SH, N = 1) ∗∗∗ 122n 99n 93n 96n

Malicious setting
RS21 [27] enhanced∗∗ 343n 320n 315n 318n

Ours (� = 48, SH, N = n/10) 430n 393n 356n 332n

Ours (� = 40, SH, N = n/10) 359n 321n 281n 253n

Ours (� = 32, SH, N = n/10) 289n 249n 205n 175n

* PRTY19 has two variants, SpOT-low (lowest communication, higher
computation) and SpOT-fast (higher communication, better computa-
tion). Both use expensive polynomial interpolation and require signifi-
cantly more computation compared to all other protocols in this table.
** Using the 3H-GCT OKVS of [13] instead of PaXoS, and the VOLE
of [11] instead of the one from [32]. Setting κRS21 to κ + log n to achieve
κ bits of security.
*** Using N = 1 requires an expensive degree-n polynomial interpola-
tion.
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allows to achieve malicious security without having to increase the length of
the sender-to-receiver message, at the cost of increasing the receiver-to-sender
communication by a factor 2. Since our approach makes this communication as
low as O(� · n), this turns out to be an excellent tradeoff whenever the database
entries are not too large. Therefore, our results show that the landscape of mali-
ciously secure PSI is more subtle than previously thought: for large entries, the
standard approach still dominates, but for smaller entries (e.g. � ≤ 40), the
dual execution technique leads to better performances. This revives the dual
execution technique, which was previously considered obsolete compared to the
modern alternatives.

Efficient PSI in the Standard Model. Eventually, our last contribution is
a new “polynomial-based” PSI protocol that does not rely on the random oracle
model, following the high level structure of previous works [14,15,17]. To this
end, we introduce the notion of PCG for the subfield ring-OLE correlation, and
show how a simple variant of the recent PCG for ring-OLE of [7] leads to efficient
instantiations of this primitive. Then, we describe a new PSI protocol built on
top of this PCG, which enjoys a number of very interesting features.

Security Features. Our PSI protocol is in the standard model: unlike our
first protocol, it does not require the random oracle model, or any tailor-
made correlation-robustness assumptions. We rely solely on the (relatively well-
established) ring-LPN assumption over polynomial rings with irreducible poly-
nomials. To our knowledge, our protocol is the first standard model protocol
which offers competitive performances compared to protocols using the random
oracle heuristic or tailored assumptions. Furthermore, our PSI protocol enjoys
full malicious security (for both parties) almost for free. This stems from the use
of PCGs, which allows to confine the “price” of achieving malicious security to
the distributed seed generation only, which has logarithmic communication and
computation (in the set size n).

We note that, though malicious security comes for free communication- and
computation-wise, the tweaks used to guarantee malicious security in our pro-
tocol are not straightforward. In fact, achieving malicious security efficiently
in polynomial-based PSI protocols is known to be complex and error prone.
For example, previous works [14] used a superficially similar approach and
claimed malicious security, but their protocol was found to be insecure in a
recent preprint, which described powerful concrete attacks on this proposal [1].
Leveraging the specific structure of our protocol, we manage to get around these
nontrivial subtleties with careful structural checks, for a minimal cost (indepen-
dent of the database size).

Efficiency Features. Our PSI protocol enjoys a very low communication, con-
siderably lower than all previous PSI protocols in the standard model which we
are aware of (excluding iO- or FHE-based protocol, which can have very low
communication but poor concrete efficiency). In fact, communication-wise, our
PSI protocol is even on par with the best ROM-based PSI protocols of previous
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works. Concretely, for sets of size n with �-bit entries, our protocol communi-
cates (2� + 3λ + 3 log n) · n + o(n) bits. To give a single datapoint, for � = 32
and n = 220, we estimate the total communication to be 278n bits. This is on
par with the best maliciously secure protocol [27], which communicates 279n
bits in the same setting, with comparable computation (it also uses polynomial
interpolation), but without standard model security.

On Table 2, we compare our protocol to the current fastest maliciously secure
PSI protocols [21,27,29]. As the table shows, the communication of our protocol
is almost on par with that of the best protocol (the protocol of [27], enhanced
with the latest VOLE protocol) for small-ish input size, and large enough set
sizes. Yet, our protocol is in the standard model under the ring-LPN assumption,
while [27] is only proven secure in the ROM.

Table 2. Comparison of the communication cost of several PSI protocols in the mali-
cious model, for various choices of the database size n (we assume that both parties
have a database of the same size) and statistical security parameter λ = 40, using the
encoding technique of [31]. � denote the bit-length of the inputs in the database; we set
the computational security parameter κ to 128. For fairness of comparison, since our
standard model PSI uses interpolation, we compare it to RS21 with an interpolation-
based OKVS (which has better communication), and we compare our other PSIs with
RS21 instantiated with (computationally) efficient OKVS.

Protocol Communication Hardness Assumption Standard Model
n = 216 n = 218 n = 220 n = 222 n = 224

Our Standard PSI Ring-LPN ✓

� = 64 724n 423n 342n 324n 323n + OT
� = 48 692n 391n 310n 292n 291n

� = 32 660n 359n 278n 260n 259n

RS21 [27] enhanced∗ 318n 286n 279n 279n 280n LPN + OT ✗

Our Direct PSI LPN + OT ✗

� = 64 421n 385n 374n 369n 365n

� = 48 348n 311n 298n 292n 286n

� = 32 277n 237n 223n 215n 208n

Our Dual PSI
� = 64 609n 535n 511n 499n 489n

� = 48 465n 388n 361n 345n 333n

� = 32 321n 240n 210n 192n 176n

PRTY20 [21] 1766n OT ✗

RT21 [29] 512n DH ✗

RS21 [27] enhanced∗∗ 320n 315n 315n 317n 318n LPN + OT ✗

* Using interpolation instead of PaXoS, and the VOLE of [11] instead of the one
from [32]. Sets κRS21 to κ + log n to achieve κ bits of security.
** Using the new OKVS of [13] instead of PaXoS, and the VOLE of [11] instead of the
one from [32]. Sets κRS21 to κ + log n to achieve κ bits of security.
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Batch Non-interactive PSI. On top of these security and efficiency features, the
structure of our protocol allows to obtain a powerful interaction pattern: it leads
to a batch non-interactive PSI, where after a short interaction with each server,
a client C with set X can broadcast a single encoding of its database, and receive
afterwards at anytime a single message from each server Si with set Xi (plus,
in the malicious setting, a small database-size-independent 2-round structural
check), from which they can decode X ∩ Xi. To achieve this feature, we build
upon the fact that the PCG for subfield ring-OLE correlations is programmable,
which means that we can enforce that a target party will receive the same pseu-
dorandom string across executions with many different parties. Concretely, we
achieve the following form of batch non-interactive PSI between a client C with
database X and multiple servers Si with datasets Xi (all of size n):

1. In a preprocessing phase, C interacts with each of the servers, using O(log n)
communication and computation in each interaction, in a small constant num-
ber of rounds.

2. Then, C performs a single Õ(n) cost local computation, and broadcasts a
single 2�n-size encoding EX of X.

3. Each server Si can, at any time, send a single message Mi = m(Xi, EX), of
length 3(λ + log n)n, using Õ(n) computation.

4. Eventually, given X and Mi, the client C can run a Õ(n) cost decoding
procedure and recover X ∩ Xi, without further interaction.

When the number of servers becomes large, our batch PSI protocol leads to
strong savings for the client compared to executing a PSI protocol individually
with each server. Furthermore, in this setting, the amortized communication
(per PSI instance) is reduced to (2�/NS + 3λ + log n) · n + o(n), where NS

denotes the number of servers. Even for relatively small number of servers, the
amortized communication quickly outperforms that of even the best ROM-based
maliciously secure PSI protocols. For example, for n = 224 and � = 32, the
amortized communication per secure set intersection approaches 195n bits with
our protocol, versus 280n for [27].

1.2 Concurrent Work

In a concurrent and independent work, recently accepted at CCS’22, Rindal
and Raghuraman [25] introduced a new PSI protocol, using an approach similar
to ours: the authors also leveraged subfield-VOLE to achieve communication
independent of the computational security parameter κ. Our results have been
obtained independently of theirs, around the same time period. Although their
main result bears similarities to our first two contributions, we highlight some
important distinctions between our work and theirs:

– The work of [25] uses an OKVS-based construction, and achieves a receiver-
to-sender communication of (λ+2 log n) ·n. In contrast, we use a hash-based
protocol, and achieve an (� − log n) · n receiver-to-sender communication.
Therefore, we get smaller communication overall in the setting where the
databases have small entries, but a slightly larger computation.
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– For malicious security, the work of [25] only considers the standard paradigm
of previous works (e.g. [27]), hence having a O(κ · n) receiver-to-sender (and
overall) communication. In contrast, we give two protocols, including one
based on dual execution which achieves communication independent of κ
(and smaller concrete communication for databases with small entries).

– Eventually, our last contribution, a “batchable” ring-OLE-based malicious PSI
in the standard model with low communication, is unique to our work.

1.3 Structure of the Paper

We provide preliminaries in Sect. 2, and a detailed technical overview of our con-
tributions in Sect. 3. Section 4 covers our ROM-based semi-honest and malicious
protocols. Due to space limitation, our second malicious protocol, based on dual
execution, is presented in the full version [9]. Section 5 covers our standard model
PSI. Note that the additional preliminaries and all the missing proofs appear in
full version [9].

2 Preliminaries
Notation. Throughout the paper we use the following notations: we let κ, λ
denote the computational and statistical security parameters, respectively. We
write [1,m] to denote a set {1, 2, . . . ,m}. For a vector x we define by xi its
i-th coordinate. Given distribution ensembles {Xn}, {Yn}, we write Xn ≈ Yn to
denote that Xn is computationally indistinguishable to Yn.

We typically write Fq to denote a field with and arbitrary subfield Fp, where
p is a prime power and q = pt. We use Rp = Fp[X]/F(X) for the ring over the field
Fp where F (x) is some polynomial, and also denote Rq = Fpt [X]/F(X). Note that
all operations in our paper are field/ring operations not modular arithmetic.

PSI Functionality. A private set intersection (PSI) protocol allows two par-
ties to compute the intersection of their input sets while concealing all other
information. We typically denote by n the input set sizes. For completeness, the
ideal functionalities for PSI (in the semi-honest and in the malicious settings)
are given in Appendix of the full version [9].

Pseudorandom Correlation Generators (PCG). Pseudorandom correla-
tions generators have been introduced in a recent line of work [3–5]. A PCG allows
to compress long correlations into short, correlated seeds that can later be locally
expanded into pseudorandom instances of the target correlation. Slightly more
formally, a PCG for a target correlation C (which samples pairs of long correlated
strings (y0, y1)) is a pair (Gen,Expand) of algorithms such that Gen(1λ) outputs
a pair of short, correlated keys (k0, k1) and Expand(σ, kσ) outputs a long string
ỹσ. Correctness states that (ỹ0, ỹ1) are indistinguishable from a random sample
from C, while security states that given k1−σ, ỹσ looks like a random sample
from C conditioned on satisfying the target correlation with Expand(1−σ, k1−σ),
for σ = 0, 1.
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A PCG does not in itself provide a protocol to efficiently generate long pseu-
dorandom correlations. To get the latter, one must combine a PCG with a dis-
tributed key generation protocol, which allows two parties to obliviously run
Gen(1λ) such that each party gets one of the keys. Fortunately, for most PCGs
of interest (and in particular, for all PCGs we use in this work), there exists very
efficient low-communication distributed setup protocols [4,7]. Combining a PCG
with a distributed setup protocols allows to securely instantiate (with low com-
munication) functionalities that distribute instances of the target correlation.
In this work, we will directly rely in a black-box way on such functionalities,
and use known protocols to instantiate them. We now expand on the two main
functionalities we use in this work.

PARAMETERS:

– 2 parties, a sender and receiver, an integer n, the size of the output vector.
– A finite field Fq where q = pr, p is a power of prime, r an integer.

FUNCTIONALITY:

– Depending on the parties:
• If the sender is corrupted then wait for A to send 2 vectors u ∈ F

n
p ,v ∈

F
n
q ; samples Δ ←r Fq and computes w := Δ · u + v.

• If the receiver is corrupted then wait for A to send w ∈ F
n
q , Δ ∈ Fq;

samples u ←r F
n
p and computes v := w − Δ · u.

• Otherwise, samples u ∈ F
n
p ,v ∈ F

n
q , Δ ←r Fq and computes w :=

Δ · u + v.
– The functionality sends u ∈ F

n
p , v ∈ F

n
q to sender and Δ ∈ Fq , w :=

Δ · u + v to receiver.

Fig. 1. Ideal functionality (n, p, q) − Fsvole of subfield vector-OLE

Subfield Vector-OLE. We described the subfield vector-OLE correlation in the
technical overview of [9]. We represent on Fig. 1 the ideal functionality that
distributes a subfield VOLE correlation. In our concrete instantiations, we will
instantiate this functionality using the efficient protocol of [4]. The latter pro-
vides a general template which can be instantiated under various flavors of the
LPN assumption, and provides a conservative choice under LPN for quasi-cyclic
choice. A variant of LPN that leads to a considerably more efficient protocol,
when plugged in the template of [4], was recently put forth in the work [11] (we
note that our communications estimate are oblivious to the underlying variant:
only the computational costs depends on the LPN flavor).

Subfield Ring-OLE. Recently, a new PCG construction was described in [7]
for the ring-OLE correlation. The ring-OLE correlation over a ring Rq is the
following correlation: {((x0, z0), (x1, z1)) | x0, x1, z0 ←r Rq, z1 ← x0.x1 − z0}.
In this work, we rely on a slight variant of the ring-OLE correlation, where x0 is
instead sampled from a subring Rp of Rq. We represent the corresponding variant
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of the ideal functionality in the full version [9]. We note that the protocol of [7]
to instantiate the ring-OLE functionality can be adapted to handle the subfield
ring-OLE functionality in a straightforward way.

3 Technical Overview

Our starting point is the classical KKRT protocol [18], which combines Cuckoo
hashing with a batch related-key oblivious pseudorandom function (BaRK-
OPRF). We assume some familiarity with the KKRT protocol in this techni-
cal overview. For completeness, we provide a high level overview of KKRT, the
notion of BaRK-OPRF (batch related-key oblivious pseudorandom function),
and its communication costs in Appendix of full version [9]. Our construction
will also rely on a functionality that distributes subfield vector-OLE correlation
(the sVOLE functionality): Alice gets (u,v), and Bob gets (Δ,w = Δu+v). Such
correlation can be distributed with very low communication using pseudorandom
correlation generators.

3.1 A New sVOLE-Based PSI for Databases with Small Entries

Subfield-VOLE leads to a simple and natural construction of BaRK-OPRF. Let
� be the bitlength of Alice’s inputs, and let x = (x1, · · · , xn) be the inputs of
Alice, viewed as elements of F2� . We assume for simplicity that � divides κ,
the computational security parameter. Alice and Bob use an sVOLE protocol
(e.g. [11]) over the field F2κ , with subfield F2� ; let (u,v) be the output of Alice,
and (Δ,w) be the output of Bob. Recall that w = Δ·u+v. Alice sends z = x−u
to Bob, who defines the BaRK-OPRF keys to be Δ and (K1, · · · ,Kn) = Δ·z+w.
The BaRK-OPRF is defined as follows: FΔ,Ki

(y) = H(i,Ki−Δ·y) (all operations
are over F2κ). Eventually, Alice outputs (H(i, vi))i≤n. Observe that

H(i, vi) = H(i, wi − Δui) = H(i,Ki − Δ(zi + ui))
= H(i,Ki − Δ · xi) = FΔ,Ki

(xi)

The use of sVOLE, rather than OT extension as in the original KKRT BaRK-
OPRF, has two main advantages: first, the bitwise AND is now replaced by a
field multiplication. In particular, this means that we do not need anymore to
use error-correcting codes, and that y · Δ retains the entire entropy of Δ. In
other words, it suffices for Δ to be κ-bit long to achieve κ bits of security for the
construction (in contrast, KKRT had to use around 5κ bits). Second, and most
importantly, the use of subfield VOLE allows us to completely decorrelate the
size of u from that of Δ, something which can fundamentally not be achieved
with the INKP OT extension. Concretely, this means that u only needs to mask
the input vector x of Alice. If x ∈ F

n
2� , then so do u and z: the communication

now depends solely on the input size.
In total, our BaRK-OPRF communicates �·n bits, plus the cost of distributing

the seeds for the sVOLE generator. Using the protocol of [4] to distribute the
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seeds1, the cost is logarithmic in n, hence its effect on the overall communication
vanishes for large enough n.

Combining the New OPRF with Permutation-Based Hashing. Plugging
our new BaRK-OPRF into KKRT, and using the same parameters for Cuckoo
hashing, leads to a protocol with total communication (1.3·�+3·(λ+2 log n))n+
o(n) bits (where the o(n) terms capture the costs of distributing the PCG seeds).
Concretely, for n = 220 and � = 32 (resp. 64), this already brings the cost down,
from 1008n bits to 282n bits (resp. 324n bits). However, this can be further
improved using the well-established notion of permutation-based hashing [22].
Concretely, in permutation-based hashing, an item x is written as xL||xR, where
xL is log(1.3n)-bit long. The item x is inserted by mapping xR to the bin xL ⊕
f(xR), where f is a k-wise independent hash function, for some large enough
k. This guarantees that no collision occurs, because if two items x, x′ end up
mapping the same value to the same bin, this means that xR = x′

R and xL ⊕
f(xR) = x′

L ⊕ f ′(x′
R), hence x = x′. When multiple hash functions are used, as

in Cuckoo hashing, the index of the hash function must be appended to xR.
Interestingly, our use of sVOLE is crucial to enabling a permutation-hashing-

based optimization: the latter only provides savings when the communication
involves a O(� · n) component (which neither KKRT nor any modern OKVS-
based PSI has). In our protocol, however, it further reduces the communication
to (1.3 ·(�− log(1.3n)+1)+3 ·(λ+2 log n))n+o(n) bits, which gives 275n bits for
n = 220 and 32-bit items, or 317n bits for 64-bit items. In itself, this is a really
small communication improvement. However, it has an important consequence:
it implies that the Alice-to-Bob communication is now completely dominated
by the Bob-to-Alice communication. Concretely, this means that we can easily
afford to use a much higher number of bins (which is 1.3n currently) if it can
allow us to reduce the number of hash functions (which is 3). This brings us to
our last optimization.

Packing Multiple Items per Bin with Generalized Cuckoo Hashing. In
this last optimization, our goal is to reduce the number of hash functions used
in the Cuckoo hashing protocol, from 3 to 2, by increasing the number of bins
to compensate. Unfortunately, this does not work directly with standard cuckoo
hashing even while using a reasonably small stash since the cost of handling
the stash is high, and nullifies all communication benefits of using two hash
functions in the first place. Instead, we use a different approach: we add one
degree of freedom to the Cuckoo hashing parameters, by allowing bins to contain
multiple items. This generalization of Cuckoo hashing is not new: it has been
studied in details in several works [12,33], because it comes with a much nicer
cache-friendliness than standard Cuckoo hashing.

In (d, k)-Cuckoo hashing, n items are mapped to (1 + ε) · n bins using k
hash functions, and each bin is allowed to contain up to d items. Allowing more
items per bins significantly improves the efficiency; for example, (3, 2)-Cuckoo
hashing is known to perform strictly better than standard (1, 3)-Cuckoo hashing
1 This protocol uses a length-t reverse VOLE protocol as a blackbox, which we instan-

tiate with the construction of [2].
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in terms of occupancy (i.e., the total number of slots N = d · (1 + ε) · n which
must be used to guarantee a o(1) failure probability). Based on existing analysis
of this variant [33], it seems reasonable to expect that (3, 2)-Cuckoo hashing
already achieves a strictly smaller failure probability compared to (1, 3)-Cuckoo
hashing, with a smaller number of bins.

We relied on extensive computer simulations on small values of n (from 256
to 2048) to select parameters, and extrapolated from these results parameters
for larger values of n. More precisely, we ran 107 experiments with (3, 2)-Cuckoo
hashing for n ∈ {28, 29, 210} (we also experimented with 211, but with a smaller
number of experiments) with c · n bins for various values of c. Even for a value
as low as c = 0.65 and values of n as low as 29, our experiments never reported
any insertion failure, indicating that the empirical failure probability should
already be way below 2−20. Since the theoretical failure probability is known to
scale as O(1/nδ) for some constant δ with reasonably small constant factors, we
extrapolate that for large enough values of n, e.g. n ≥ 218, the failure probability
should be well below 2−40.

Alternative Hashing Variants. Alternatively, when allowing multiple items
per bins, we can consider other hashing variants. Two natural choices are two-
choice hashing [20], where each bin can have up two d items and each item is
placed in the least-full of two bins, and simple hashing, where a single hash
function is used to map the items to bins (standard results show that, when
hashing n items to O(n) bins this way, the maximum load with be of the order
of log n/ log log n with high probability). As we will see, these choices of hashing
lead to various communication versus computation tradeoffs in our protocols,
and the optimal choice also depends on the database size.

A Membership BaRK-OPRF. There remains a non-trivial task: to use some
of the above hashing variants, we need a protocol to handle hashing with up
to d items per bins. Intuitively, denoting xi = (x(1)

i , · · · , x
(d)
i ) the d entries of

the bin i, we want to construct a new kind of membership OPRF (similar in
spirit to the notion of multi-point OPRF in the literature), where Bob obtains
FΔ,Ki

(y) and Alice obtains the set FΔ,Ki
(xi) = {FΔ,Ki

(x(j)
i )}j≤d. This implies

that FΔ,Ki
(y) ∈ FΔ,Ki

(xi) if and only if y is equal to any entry of xi, and
FΔ,Ki

(y) looks pseudorandom to Alice otherwise.
Going back to the BaRK-OPRF, recall that for a bin i where Alice placed

xi and Bob placed yi, Alice computes H(i, vi) and Bob computes H(i,Ki −
Δyi) = H(i,Δ · (xi − yi) + vi). Here, we view the xi − yi term as Pxi

(yi), where
Pxi

= X −xi is a degree-1 polynomial with root xi. This view suggests a natural
generalization of this approach, where the Pxi

polynomials are replaced by higher
degree polynomials. Define Pxi

to be the polynomial
∏d

j=1(X − x
(j)
i ), and let

(cj,i)0≤j≤d−1 denote its coefficients: Pxi
(X) = Xd +

∑d−1
j=0 cj,i · Xj . Our new

membership BaRK-OPRF is a direct generalization of the BaRK-OPRF from
Sect. 3.1, which we sketch below.

Our Construction. Let m be the bitlength of Alice’s inputs inside the bins,
and let (x1, · · · ,xN) be the inputs of Alice in each of the N bins, where the
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inputs in each bin are viewed as length-d vectors of elements of F2m . We assume
for simplicity that m divides κ, the computational security parameter. Alice and
Bob use d sVOLE protocol (e.g. [11]) over the field F2κ , with subfield F2m , with
the same value Δ.2 Let (uj,vj)j≤d be the outputs of Alice, and (Δ, (wj)j≤d) be
the output of Bob. Recall that wj = Δ · uj + vj.

For each xi, let (c0,i, · · · , cd−1,i) be the coefficients of the polynomial Pxi

(omitting the coefficient of Xd, which is always 1). Let cj denote the vector
(cj,i)i≤N for j = 0 to d−1. Alice sends zj = cj−uj for j = 0 to d−1 to Bob, who
defines the membership BaRK-OPRF keys to be Δ and Ki = (kj,i)0≤j≤d−1 =
(Δ · zj,i + wj,i)0≤j≤d−1 for i = 1 to N . Define the following degree-d polynomial
PΔ,Ki

over Fq: PΔ,Ki
(X) = Δ · Xd +

∑d−1
j=0 kj,i · Xj . The OPRF is defined as

follows: FΔ,Ki
(y) = H(i, PΔ,Ki

(y)) (all operations are over F2κ). Eventually, for
each bin i, Alice sets her d tuple of outputs to be FΔ,Ki

(xi) = {H(i,
∑d−1

j=0 vj,i ·
(x(k)

i )j}k≤d. Observe that, since kj,i = Δzj,i + wj,i = Δcj,i + vj,i for all i, j,
we have H(i, PΔ,Ki

(y)) = H
(
i,Δ ·

(
yd +

∑d−1
j=0 cj,iy

j
)

+
∑d−1

j=0 vj,iy
j
)
, which is

equal to H
(
i,Δ · Pxi

(y) +
∑d−1

j=0 vj,iy
j
)
. Therefore, if there exists k ∈ {1, · · · , d}

such that y = x
(k)
i , we have Pxi

(y) = 0, and H(i, PΔ,Ki
(y)) = H(i,

∑d−1
j=0 vj,i ·

(x(k)
i )j) ∈ FΔ,Ki

(xi). On the other hand, whenever Pxi
(y) 	= 0, then the Δ·Pxi

(y)
term in the hash makes the output pseudorandom from the viewpoint of Alice,
under the correlation robustness of the hash function.

Tying Up Loose Ends. Using the new construction from the previous Section,
together with (3, 2)-Cuckoo hashing, leads to a total communication of (0.65 ·
3(� − log(0.65n) + 1) + 2 · (λ + 2 log n))n + o(n) bits, where the o(n) corresponds
to the cost of setting up the PCG seeds. For n = 220 and 32 bits items, this gives
148n bits of communication. We mention a few remaining details. First, in the
construction of membership BaRK-OPRF, Alice and Bob need to invoke d = 3
length-N sVOLE. In fact, it suffices to invoke a single length-3N sVOLE, and to
cut the output in three equal length parts, to obtain the necessary correlation.
This means that the concrete cost of distributing the sVOLE seeds remains that
of generating a single sVOLE (e.g. ≈ 0.7n bits for n = 220).

Second, in the above, we overlooked an important subtlety: a bin can possibly
contain less than d items. In KKRT, this was handled by adding dummy items
to empty bins. We use instead a more efficient approach with a negligible extra
cost called a variant of our OPRF (details in Sect. 4).

3.2 Malicious Security

We then turn our attention to maliciously secure PSI. Here, it is well known that
Cuckoo hashing and two-choice hashing are not usable. Consequently, we focus
on simple hashing as our choice of the underlying hash technique. Using mali-
ciously secure subfield-VOLE, which can be implemented very efficiently [4,11],
2 Note that all known sVOLE protocols allow Bob to choose the value of Δ, hence Bob

can enforce the use of the same Δ across all instances.
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we enhance our membership BaRK-OPRF to the malicious setting, with a mini-
mal overhead. Then, we apply two standard methods to achieve security against
malicious adversaries in our PSI protocol:

First Method: Direct Approach. The first method increases the PRF output
length to κ. Using the analysis of [27], this suffices to allow for extracting the
input of a malicious sender. However, this makes the communication depend
linearly on κ, which severely harms communication complexity.

Second Method: Dual Execution. To recover a κ-independent communication
complexity, we then turn our attention to the dual execution technique [26].
Here, the idea is simple: the parties will invoke the malicious BaRK-OPRF twice,
exchanging their roles. Then, the sender sends, for each entry x of his database,
a value of the form PRFA(x) ⊕ PRFB(x), where PRFA(x) is obtained by the
sender when invoking the BaRK-OPRF functionality as sender, and PRFB(x)
is the PRF output obtained when invoking the functionality as receiver. Here,
it becomes possible to extract the input set of each party simply from its call
as receiver to the BaRK-OPRF functionality, which does not require to increase
the output length of the OPRF. The price to pay is that the protocol now uses
two calls to the BaRK-OPRF. Concretely, the total communication becomes
(2 · N · d(� − log(N)) + (λ + log n))n + o(n), where N is the number of bins,
d the maximum load of a bin, and � the input size (e.g. for n = 220, one can
choose N = n/10 and d = 47, see [26, Fig. 5]). For small database entries, this
outperforms all known malicious PSI protocols.

3.3 An Efficient PSI in the Standard Model

In our last construction, we use a different functionality: we rely on the subfield
ring-OLE functionality (given on Appendix of full version [9]), that generates a
subfield ring-OLE correlation over the rings Rp = Fp[X]/F(X), Rq = Fpt [X]/F(X),
and F (X) is some polynomial of degree 2n + 1 (more generally, when the two
parties have sets of different size n and m, F will be of degree n + m + 1).
At a high level, the functionality Fsole distributes to Alice (a, sA) ∈ Rp × Rq

and (b, sB) ∈ (Rq)2 to Bob such that ab = sA + sB . Our protocol makes a
single black-box call to this functionality. Consider two parties, a sender Alice
and a receiver Bob, where Alice has a set A = {x1, x2, . . . , xn} ∈ F

n
p and Bob

has a set B = {y1, y2, . . . , yn} ∈ F
n
p . Define pA :=

∏n
i=1(X − xi) ∈ Rp and

pB :=
∏n

i=1(X − yi) ∈ Rp. Let I := A ∩ B denote the target output. The
protocol computes the common roots of pA and pB , i.e., gcd(pA, pB).

By revealing appropriate linear combination of their shares and their input
polynomials, Alice and Bob will “derandomize” this correlation, allowing Alice
to learn the polynomial u = pAb0 +pBb′

0, where b0, b
′
0 are two uniformly random

degree-n polynomials known by Bob (this also requires revealing the high-order
coefficients of b, to reduce the degree-2n random polynomial b to a degree-n
random polynomial b0). Using some standard lemmas about polynomials, the
polynomial u can be factored as gcd (pA, pB) · pR, where with high probability,
pR has no common root with pA. This allows Alice to compute the intersection
I = A ∩ B as I = {xi ∈ A : u(xi) = 0}. Concretely:
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– Alice computes and sends tA = a − pA to Bob.
– Bob sets s′

B ← sB − tAb. Then, Bob decomposes b as b = b0 + b1 · Xn (where
b0, b1 are degree-n polynomials), sets s′

B ← sB − tAb, and picks a random
degree-n polynomial b′

0 over Rq. He sends b1 and tB ← s′
B + pBb′

0 to Alice.
– (Output) Alice sets u ← tB − pAb1 · Xn + sA; note that u = pAb0 + pBb′

0.
Alice outputs the set I = {x ∈ A | u(x) = 0}.

We prove that this construction achieves “augmented semi-honest security”,
a strengthening of honest-but-curious corruption where the adversary is allowed
to change the corrupted parties’ inputs. Furthermore, we securely realize the
functionality Fsole using the PCG-based protocol of [7], which is secure under
the ring-LPN assumption. Instantiating the subfield ring OLE this way allows to
import a powerful feature of the PCG of [7], which is its programmability : when
generating a ring-OLE correlation, the receiver can ensure that her output a
remains identical across multiple instances of the protocol with different parties.
Using this programmability feature, we show that our protocol can be batched :
a single O(� · n)-size client message encoding her database A can be reused with
N different servers with databases Bi, allowing her to learn A∩Bi using a single
message from each server afterwards.

Achieving Malicious Security. We then turn our attention to security against
malicious adversaries. Our upgrade introduces only a minimal communication
overhead to the protocol, independent of the set sizes n. At a high level, the
main issues that can occur in the malicious setting is when Alice sets pA = 0,
or when Bob sets pBb′

0 = 0. Indeed, since Alice gets u = pAb0 + pBb′
0, if pA = 0,

she can learn Bob’s entire input set pB . On the other hand, if pBb′
0 = 0, Bob

forces the output to be A.
We handle both issues separately. The second issue is intuitively simpler to

handle, since when Bob carries out this attack, Alice will notice that her output
is exactly her set A. This suggests a simple way around: if Alice notice at the
end of the protocol that the output is equal to A, she aborts the protocol. Of
course, a honest Bob could have an input B with A ⊆ B, in which case this
modification would harm correctness. But there is a simple way around: prior to
the protocol, Alice and Bob can just agree on a reserved dummy item d (we will
pick d = 1 in the protocol, but this choice is arbitrary), which is guaranteed to
be in neither databases. If database entries are elements of a field Fp′ , this can
simply be done by choosing any slightly larger field Fp of size |Fp| ≥ |Fp′ | + 1,
reserving one element of Fp to encode d, and mapping the elements of Fp′ to the
remaining elements. Then, Alice and Bob execute the protocol on inputs A∪{1}
and B, which guarantees that B does not contain A.

For the first issue, Bob must check before sending tB = s′
B + pBb′

0 that Alice
did not set pA to be 0 when computing tA = a−pA. Intuitively, this will be done
by letting Bob check that pA(x) 	= 0, for an appropriate input x. This, however,
must be done with some care, since learning pA(x) could leak information to a
corrupted Bob. We handle this issue by reserving a second element of Fp (hence
we now need |Fp| ≥ |Fp′ | + 2), which we assume w.l.o.g. to be 0, which should
again be in neither set. Then, Alice will define the encoding of her set to be
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the degree-n polynomial pA such that pA(map(a)) = 0 for every a ∈ A, and
pA(0) = 1. Then, we let Bob first send b1, without sending tB . Afterwards, Bob
computes s′

B ← sB − tAb and Alice computes s′
A ← sA −pAb1 ·Xn. Observe that

if both parties behave honestly, s′
a + s′

b = ab− tAb− pAb1 ·Xn = ab−ab+ pAb−
pAb1 · Xn = pAb0. To enforce pA 	= 0, we will check that the above equation
holds for some nonzero pA. Crucially, since both pA and b0 have degree at most
n, no reduction modulo F(X) occurs in the right hand side of the equation. This
implies that we can simply check that the equation holds for the reserved input
x = 0 (since a honest pA is guaranteed to satisfy pA(0) = 1 	= 0). To check this,
we let Alice send s′

A(0) to Bob, who checks that s′
A(0) = b0(0) − s′

B(0); if the
check fails, Bob aborts the protocol.

4 PSI from Subfield-VOLE

4.1 A New Membership Batched OPRF

Our BaRK-OPRF allows the sender to hold a set of keys (ki)i≤N such that
each key is assigned with a tuple of d input elements of the receiver and then
the receiver learns a PRF output on each element in this tuple corresponding
with the same key. More formally, denoting xi = (x(1)

i , · · · , x
(d)
i ) consisting of

d entries, the sender gets F (i, y) and the receiver obtains a set {F (i, x(j)
i )}j≤d

such that F (i, y) ∈ {F (i, x(j)
i )}j≤d if and only if y is equal to any entry of xi,

and F (i, y) looks pseudorandom to the receiver otherwise.

PARAMETERS:

Fp is a finite field. There are 2 parties, a sender and a receiver with input set
X = {x1,x2, . . . ,xN} ⊆ Fp where xi = (x

(1)
i , · · · , x

(d)
i ).

FUNCTIONALITY:
– Wait for input (sender, id) from the sender and (receiver, id,X) from the

receiver. The functionality samples a PRF F then ∀x ∈ xi outputs F (i, x)
to the receiver for i ∈ [1, N ].

– When the sender inputs any (i, y) ∈ [1, N ]×Fp, functionality gives F (i, y)
to the sender.

Fig. 2. Ideal functionality Foprf

Main Construction. Assume that the receiver inputs the set of n = Nd

elements: X = {x1,x2, . . . ,xN} ⊆ Fp where xi = (x(1)
i , · · · , x

(d)
i ) . First, the

sender and the receiver invoke the Fsvole protocol of dimension n, with their roles
reversed, to get a random sVOLE correlation. Specifically, the receiver learns a
pair of vectors (u,v) where u ∈ F

n
p , v ∈ F

n
q , the sender gets Δ ∈ Fq and

w := Δ · u + v. Denoting u = (u1,u2, . . . ,uN) where (uj,i)1≤j≤d are d entries
of vector ui. This notation is the same for v,w. Consider xi and its associated
polynomial as Pxi

(X) =
∏d

j=1(X −x
(j)
i ) = Xd +

∑d
j=1 cj,i ·Xj−1 where cj,i ∈ Fp

for i ∈ [1, N ], j ∈ [1, d].
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Now, the receiver defines ci := (cj,i)j≤d, c := (c1, c2, . . . , cN), and then
∀i ∈ [1, N ] sends to the sender zi := ci − ui ∈ F

d
p. Above, the ui are masks for

the coefficients ci of (the polynomial associated) xi. Indeed, ui are distributed
uniformly at random in the subfield Fp, then the vector zi is a uniformly random
over F

n
p from the viewpoint of the sender. The two parties will run a coin flipping

protocol to get a random value t ← Fq. For i ∈ [1, N ], the receiver defines the
PRF output on each input x ∈ xi as F (i, x) = H

(
i|t|x ,

∑d
j=1 vj,i · xj−1

)
.

On the other hand, after receiving the vectors zi, for i ∈ [1, N ], the
sender defines the vector ki := wi + Δ · zi. As a consequence, for any
input (i, y) ∈ [1, N ] × Fp, its PRF output is computed as: F (i, y) =

H
(
i|t|y , Δ · yd +

∑d
j=1 kj,i · yj−1

)
.

Correctness and Security. To see why PRF output is defined as above.
Observe that ki := wi + Δ · zi = vi + Δ · ci. Then, we have

Δ · yd +
d∑

j=1

kj,i · yj−1 = Δ · yd +
d∑

j=1

(vj,i + Δ · cj,i) · yj−1

= Δ · (yd +
d∑

j=1

cj,i · yj−1) +
d∑

j=1

vj,i · yj−1 = Δ · Pxi
(y) +

d∑

j=1

vj,i · yj−1

so if y ∈ xi then Pxi
(y) = 0 which leads to F (i, y) ∈ {F (i, x(j)

i )}j≤d.

Theorem 1. The protocol Πoprf (Fig. 3) instantiated with random oracles H,H′,
securely realizes the ideal functionality of Foprf (Fig. 2) against a malicious set-
ting in the Fsvole hybrid model.

Note that the output v of H is chosen depending on the concrete structure of PSI
and the target setting (semi-honest or malicious). This parameter is detailed in the
Sect. 4.2 for a semi-honest setting and the Sect. 4.3 for a malicious setting.

4.2 A New Semi-honest PSI from mOPRF

A Variant of BaRK-OPRF. We now propose a variant of our BaRK-OPRF
to deal with the case when the size of each tuple input is not necessarily equal to
d. This means that the receiver now can divide the input set to N tuples xi and
each tuple has less than or equal to d items. Meanwhile, the sender is not allowed
to learn about how many exactly items are in each tuple. This functionality can
be obtained from our BaRK-OPRF plus a small extra cost, i.e., a subfield VOLE
of length N over the subfield F2.

The idea is as follows. The receiver’s input set X = {x1,x2, . . . ,xN} ⊆ Fp

where xi = (x(1)
i , · · · , x

(ji)
i ), ji ≤ d. The polynomial associated to {xi}i≤N

will be expressed as a polynomial of degree d: Pxi
(X) =

∏ji

j=1(X − x
(j)
i ) =

∑d+1
j=1 cj,i · Xj−1 where cj,i ∈ Fp.
As a result, the set of the coefficients of Pxi

(X) = (c1,i, c2,i, . . . , cd+1,i}.
We remark that, compared to the associated polynomial in our original BaRK-
OPRF which has a constant coefficient of degree d of 1, in our variant version
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PARAMETERS:

– Given Fp ⊆ Fq where Fq ≈ O(2κ), H : {0, 1}∗ × Fq → {0, 1}v and H′ :
Fq → Fq are random oracles.

– The sender has no input and the receiver inputs a set X =
{x1,x2, . . . ,xN} ⊆ Fp where xi = (x

(1)
i , · · · , x

(d)
i ) and n = Nd.

PROTOCOL:

1. The sender and the receiver invoke to the Fsvole of dimension n in the Fq

over the Fp with the inverse role. The receiver gets two random vectors
u ∈ F

n
p ,v ∈ F

n
q and the sender receives Δ ∈ Fq, w := Δu + v ∈ F

n
q .

Denoting u = (u1,u2, . . . ,uN) where ui = (cj,i)1≤j≤d. This denotation is
the same for v,w.

2. The receiver samples tr ← Fq and sends hr := H′(tr) to the sender.
3. The sender samples ts ← Fq and sends hs := H′(ts) to the receiver.
4. The receiver determines the associated polynomial for each xi as

Pxi(X) =
d∏

j=1

(X − x
(j)
i ) = Xd +

d∑

j=1

cj,i · Xj−1

where cj,i ∈ Fp for i ∈ [1, N ], j ∈ [1, d].
5. Denoting ci := (cj,i)1≤j≤d; c := (c1, c2, . . . , cN), the receiver computes

zi := ci − ui ∈ F
d
p, and then sends zi and tr to the sender.

6. The sender aborts if H′(tr) �= hr.
7. The sender sends ts to the receiver, the receiver aborts if H′(ts) �= hs and

both parties define t = ts ⊕ tr.
8. The receiver outputs the PRF values on the input x ∈ xi for i ∈ [1, N ] as

F (i, x) = H

(
i|t|x ,

d∑

j=1

vj,i · xj−1

)

9. For i ∈ [1, N ], the sender defines ki = wi + Δzi. For any input (i, y) ∈
[1, N ] × Fp, the sender computes the PRF output by below formula

F (i, y) = H

(
i|t|y , Δ · yd +

d∑

j=1

kj,i · yj−1

)

Fig. 3. Our batch BaRK-OPRF Πoprf based on subVOLE

this coefficient will equal 0 or 1 since the degree of Pxi
(X) is less than or equal

to d. So, it requires (d+1) masks for this polynomial instead of d, but the mask
for the coefficient of degree d only needs to be in F2. For each tuple, we require
an additional value ui ∈ F2, so in total we need an additional subfield VOLE of
length N over the subfield F2.

More formally, the sender and receiver invoke a subfield VOLE of length n over
the subfield Fp as before (all the notations in Fig. 3 are reused), and additionally
invoke another subfield VOLE instance over the subfield F2 of length N with
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an inverse role, while the receiver gets u′ ∈ F
N
2 , and v′ ∈ F

N
q the sender holds

Δ ∈ Fq (Δ is the same for each time invoking subfield VOLE) and w′ := Δ·u′+v′.
The receiver sends to the sender vectors zi as before, and an extra vector z′

defined as z′
i := cd+1,i − u′

i for i ∈ [1, N ]. The receiver outputs on input x ∈ xi

are computed as F (i, x) = H(i|t|x , v′
i ·xd +

∑d
j=1 vj,i ·xj−1). On the other hand,

the sender defines their PRF values on input (i, y) where i ∈ [1, N ], y ∈ Fp as
F (i, y) = H(i|t|y , (w′

i + Δz′
i) · yd +

∑d
j=1 kj,i · yj−1).

Main Construction of a New PSI. The sender and the receiver have two
input sets X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. Assume that all of
these elements have the bit-length �. Intuitively, our BaRK-OPRF is constructed
from subVOLE to handle the case when having multiple items per bin. Then this
specialized BaRK-OPRF can combine with some hashing techniques to form an
efficient PSI protocol. In the next part 4.2, we discuss these types of hashing.
Our PSI protocol is described in Fig. 4; it builds upon the protocol of [18]
using GCH and BaRK-OPRF. For simplicity, we describe our protocol directly
with generalized Cuckoo hashing; adapting the protocol to other variants is
immediate. We elaborate on our protocol below. In our protocol, the receiver
first uses (d, k)-Cuckoo hashing to map his input set Y to a table with N bins,
note that the bit-length of the values stored in a bin is � − log N insted of �.
Depending on the size of n, we use one of two approaches to handle the bins which
are not full (the threshold was chosen empirically to optimize communication).

– If n ≥ 220, the variant of our BaRK-OPRF (using an additional subfield
VOLE over F2) is used; for such sizes, the concrete cost of implementing the
additional sVOLE vanishes.

– Otherwise, when n < 220, the receiver adds dummy items to bins such that
each bin contains exactly d items. To avoid collisions between the dummy
items and the elements in the same bin of the sender, we pad an extra bit
to all items in the following way: i|x|b where i is the index of hash function
corresponding with the stored value x while b = 1 if x is a dummy item added
and b = 0 otherwise.

In both case, the sender computes k · n PRF evaluations and sends (shuffled)
to the receiver, who compares them with his OPRF outputs, and outputs the
intersection set. To reduce the computational cost in this step, the sender can
send separately each set Hi (i ∈ [1, k]) which contains the PRF outputs of each
x ∈ X with the related bin hi(x). Then for each element, the receiver only needs
to search for one set (among k sets Hi) of n items instead of k · n.

Alternative Hashing Methods. There are two hashing schemes that can be
fit into our PSI structure.

2-choice hashing [20] is a variant of Cuckoo hashing where one item x is
assigned to one of two bins h1(x) or h2(x). However, there is no restriction on
the number of items per bin and an item is put in a bin which already has
fewer items. [20] proposes both theoretical references and heuristic parameters
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PARAMETERS:

– The sender and the receiver have respectively input sets X = {x1, x2, . . . , xn}
and Y = {y1, y2, . . . , yn}, all elements of bit-length �.

– A (d, k)-generalized Cuckoo hashing (GCH) scheme mapping n items to N
bins by k hash functions h1, h2, . . . , hk : {0, 1}∗ → [N ] where Nd > n and
d = O(1) (see Sect. 4.2).

PROTOCOL:

1. The receiver uses (d, k)-Cuckoo hashing with k hash functions to map the
elements in Y to the table B consisting of N bins, where each bin i has ji ≤ d
items. Denote yj,i is an element in Y assigned to position j of bin i and its
stored value in table B is y′

j,i.
2. Depending on the size of n, there are two alternatives:

(a) n ≥ 220, the sender and receiver invoke our variant of Πoprf where the
receiver uses the input set YB = {y1,y2, . . . ,yN} defined as follows:

– yi = {r1,i, r2,i, . . . , rji,i}.
– rj,i = t ‖ y′

j,i where t is index of a hash function such that ht(yj,i) = i.
(b) n < 220, the sender and receiver directly invoke the Πoprf where the receiver

uses the input set YB = {y1,y2, . . . ,yN} defined as follows:
– yi = {r1,i, r2,i, . . . , rd,i}.

• For j ≤ ji: rj,i = t ‖ y′
j,i ‖ 1 where t is index of hash function

such that ht(yj,i) = i.
• Otherwise, rj,i = t ‖ dummy value ‖ 0 where t ←r [1, k].

3. The receiver obtains n instances OPRF:

Y ′ = {PRF(i , ri,j) | i ∈ [1, N ] , j ≤ ji}
4. The sender uses the k hash functions to map the n element in X to the N

bins. Let xt denote the value stored at bin ht(x) when mapping x for t ∈ [1, k].
5. The sender computes the sets of k · n PRF outputs:

(a) For n ≥ 220: Ht = {PRF(ht(x) , t ‖ xt) | x ∈ X} for t ∈ [1, k].
(b) For n < 220: Ht = {PRF(ht(x) , t ‖ xt ‖ 1) | x ∈ X} for t ∈ [1, k].
Then the sender randomly permutes and sends each set to the receiver.

6. The receiver finds the intersection:
– if y ∈ Y is mapped to the position j of bin i by function ht then check

whether PRF(i, ri,j) ∈ Ht (ri,j is defined depending on n).
– Outputs the intersection set.

Fig. 4. Our new semi-honest PSI protocol from BaRK-OPRF

for 2-choice hashing, which require only a small number of dummy items. Let
us assume we have n items and 2 hash functions; using 2-choice hashing allows
to map n items to N bins in time O(n log n) where each bin contains at most
L = n/N� + 1 items with a probability 1 − O(1/N)L−1.

Simple hashing uses one hash function h to map an item x to bin h(x). For
security, the number of items per bin can leak some information then it requires
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padding each bin with dummy items until having an equal number of items per
bin. With very high probability, for N = O(n log n) bins, the maximum possible
items per bin is O(log n). The percentage of the occupation of dummy items is
higher than others. However, simple hashing avoids ambiguities about where an
item can be placed, a property which is crucial in the malicious setting.

Parameters. In this section, we discuss concrete parameters used in our new
PSI semi-honest protocol. We use κ = 128 and λ = 40. The protocol contains
several parameters:

The Length of OPRF Output. The output domain of PRF would be {0, 1}v

where v = λ + 2 log2(n) guarantees a 2−λ bound on the collision probability
of PRF outputs among the two size-n sets. Furthermore, communicating the
hashes can be reduced to communicating only ≈ λ + log n bits per hash, using
a heuristic technique of [31] that directly leads to an optimization of our PSI
protocol.

The size of Fp and Fq in BaRK-OPRF. After using permutation-based hashing,
each element is mapped to a bin with a stored value in this bin, the bit-length
reduces from � to � − log N . The input set of BaRK-OPRF in PSI protocol
constructs from stored values concatenating with some extra bits. Then the
bit-length of an input element of BaRK-OPRF is computed as � − log N + 1 if
n ≥ 220 or �−log N+2 otherwise, i.e., the size of q = 2�−log N+1 or q = 2�−log N+2

respectively.

Generalized Cuckoo Hashing. We use a (d, k)-general cuckoo hashing scheme
without stash. The parameters are chosen such that the failure probability is
2−λ. When d = 1, k = 3 these parameters are identical with KKRT except for
the number of bins increases slightly to N = 1.3n which is a trade-off to obtain
no stash. Even with the higher number of bins, our PSI protocol significantly
outperforms KKRT.
To minimize the overall communication, we set k = 2 to reduce the cost of
sending k · n PRF outputs. We used a Python script to simulate randomly
assigning n values to N = c · n bins using (d, 2)-Cuckoo hashing, for several
values of d and c, and for n = 29, 210, 211, 212. For a value of c as low as 0.65,
we never observed any insertion failure over 107 trials for each values of n (for
n = 212, we could only do 106 trials), when using d = 3 items per bins. For d = 2,
the failure probability became noticeable already for c ≈ 1. Based on known
theoretical analysis of (d, k)-Cuckoo hashing, the failure probability is known to
scale inverse polynomially with n. Therefore, we expect that for reasonably large
values of n (e.g. n ≥ 218), our parameters should guarantee a failure probability
significantly below 2−40.

2-Choice Hashing. Following the analysis of [20], we set the number N of bins to
n/3, and the maximum load d = L+1 to 4. This guarantees a failure probability
which we empirically estimate to be 1/NL−1, which is below 2−40 for all values
of n above 214.
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Simple Hashing. Eventually, for simple hashing, we set arbitrarily the number of
bins N to n/10, and derive the corresponding value of d from Fig. 5 in [26]. We
note that the parameters for simple hashing are much less heuristic that the other
two, in that concrete bound can actually be achieved which are relatively close
to the heuristic (computer-estimated) bounds. For example, [20] experimentally
observes that for a 2−40 failure probability, setting d = 47 suffices when using
N = n/10 bins. Using a standard Chernoff bound, it is in fact straightforward
to prove formally that d = 49 already suffices to reach this failure probability,
which is very close to the experimental bound. In contrast, experimental bounds
in more complex hashing variants are typically much more distant from provable
bounds. The choice of N = n/10 is entirely arbitrary: any smaller N leads to
better communication, but requires using higher values of d, leading to worse
computation (due to the need to perform N polynomial interpolations with
degree-d polynomial). This allows for a smooth tradeoff between communication
and computation, where better computational power can be used to further
reduce the communication. At the extreme end of the spectrum, using N = 1 and
d = n requires one expensive degree-n polynomial interpolation, but can achieve
extremely low communications, e.g. 93n bits of communication for � = 32 and
n = 220.

Efficiency. We compare the communication of our protocols, using three hash-
ing methods, on Table 1. Regarding computation, we provide a breakdown of the
computation costs of our protocols in the Appendix of full version [9]. Briefly,
though, compared to the protocol of [27], and when using a standard choice of
parameters for our protocol (e.g. n = 220, and using generalized Cuckoo hash-
ing with d = 3 and N = 0.65n), our protocol requires essentially a length-1.9n
VOLE (with a small subfield), 0.65n degree-3 polynomial interpolations (roughly
3n multiplications over a small field), and computing n hashes. In contrast, the
enhanced version of [27] (using the OKVS of [13] and the VOLE of [11]) will
require solving a linear system to set up an OKVS (this requires on the order
of (1.3 log n + λ)3 multiplications over F2128 , plus O(λn) operations), comput-
ing a length-1.3n VOLE (over F2128), and computing 2n hashes. The cost of
the VOLE dominates that of performing n hashes, so for sufficiently large set
sizes (n � 220), the protocol of [27] should become roughly 30% more efficient
than our protocol computation-wise. For smaller sets (e.g. n ≈ 216), the cost
of setting up the OKVS becomes more significant, requiring around 20n field
multiplications over F2128 , hence the computational efficiency of our protocol
becomes roughly on par with that of [27]. Of course, real runtimes can vary due
to e.g. cache misses, so these estimations should only be viewed as a first order
approximation indicating that the computational efficiency of our protocols is
close to that of [27] (but likely slightly larger).

In terms of computation, the main computational overhead comes from per-
forming N polynomial interpolations of only degree-d polynomials. Based on our
analysis, to achieve 2−λ = 2−40 probability of insertion failure, the following
parameters can be chosen:
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– N = 0.65n and d = 3 for generalized Cuckoo hashing (GCH),
– N = 0.33n and d = 4 for two-choice hashing,
– N = n/10 and d ≈ 46 for simple hashing.

As the above illustrates, the cost of performing N polynomial interpolations will
be very small for GCH, two-choice hashing, but becomes higher for simple hashing
(though performing n/10 degree-46 interpolations remains reasonably fast).

4.3 A Malicious PSI from mOPRF

In this section, we propose a maliciously secure PSI protocol based on our BaRK-
OPRF (Sect. 4.1) and simple hashing combining a permutation-based hash func-
tion. The PSI protocol is shown in Fig. 5 and its security against a corrupted
adversary is proven in Theorem 2. The estimated overhead communication cost
of this PSI is Nd(�−log N)+(κ+log n)n+o(n). Observe that the PSI protocol in
Sect. 4.2 is insecure against malicious settings since the general hashing scheme
does not allow the simulation in ideal world. To handle this we use simple hash-
ing schemes with only one permutation-based hash function. This protocol is
constructed from the natural approach used recently in [10,20,21,27], i.e., Alice
(a sender) and Bob (a receiver) invoke the Foprf then Bob gets the PRF values on
his input and Alice enables to compute the PRF on any input so Alice computes
on her input after that she sends these PRF values to Bob; Bob compares and
outputs the intersection.

PARAMETERS:

– Alice (sender) and Bob (receiver) have respectively input set X =
{x1, x2, . . . , xn} ∈ Fp and Y = {y1, y2, . . . , yn} ∈ Fp, all elements of bit-length
�.

– A random hash functions h : {0, 1}∗ → [N ].
– A Permutation-based hashing Perh,X maps a set X to table BX consisting of

N bins such that each bin has d slots where Nd > |X|, and d = O(1). Denote
Per(x) := (i, x′) where x′ is the stored value of x in bin i which defined by h
and x then Per−1(i, x′) = x.

PROTOCOL:

1. Bob uses Per to map Y to BY , for each empty slot in each bin BY [i], put here
a dummy item of length � − log N .

2. Alice sends (sender, id) and Bob sends (receiver, id, BY) to Foprf then
– Bob receives the Y ′ = {F (i, y′) | y′ ∈ BY [i]}i≤N .

3. For each x ∈ X, Alice queries x to Foprf with corresponding input (i, x′) such
that Per(x) = (i, x′), then Alice gets F (i, x′). Alice sends to Bob

U = {F (i, x′) | x ∈ X ∧ Per(x) = (i, x′)}
4. Now for each y ∈ Y , Per(y) = (i, y′), if F (i, y′) ∈ U then Bob outputs y as an

element in the intersection.

Fig. 5. Our malicious PSI protocol based on Foprf
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Intuitively, in a malicious setting, when the sender is corrupted, the simu-
lation needs to extract the sender’s input set X from the queries to Foprf and
the set U . Denote F (y) := F (i, y′) where Per(y) = (i, y′) and the set of all ele-
ments queried to Foprf is X ′ where n′ = |X ′|. The extraction procedure is that
X = {x ∈ Fp | x ∈ X ′ ∧ F (x) ∈ U}. Observe that if there exist two distinct
elements x1, x2 ∈ X ′ such that F (x1) = F (x2) ∈ U then more than one ele-
ment is extracted to X. The probability of existing collision is 2−v+2 log n′

then
one approach to avoid collision is choosing v = 2κ. However, when v = 2κ, the
overhead communication cost significantly increases.

Therefore, another approach is that Sim only extracts elements x ∈ X ′ if
its PRF is distinct and appears in U , i.e., x ∈ X ′ such that F (x) ∈ U and
�x′ ∈ X ′ where F (x) = F (x′). [27] proposed this simulation and claimed that if
the output domain of PRF v = κ then this simulation is correct and can not be
distinguishable from the real protocol. We point out the proof of [27] has a gap
and show that the output of PRF should be κ + log n.

Indeed, if there exist some x1, x2 ∈ X ′ such that F (x1) = F (x2) then Sim
only needs to extract x1, x2 when one of them is in Y . Let assume x1 ∈ Y , the
probability of F (x2) = F (y) for some y ∈ Y is 2−v+log (nY ) since Y is first fixed
before the function F is sampled. [27] shows nY = O(κ) then the security can
hold if v = κ. However, this should be v = κ + log nY since nY = O(poly(κ))
instead of O(κ). In particular, PSI protocols in [27] are targeted on large input
set because of the usage of vector OLE.

Theorem 2. The PSI protocol on Fig. 5 securely realizes the ideal functionality
Fpsi over the field Fp for set size n and malicious set size nX = n, nY = Nd
with statistical security against malicious adversaries in Foprf hybrid model.

In general, the malicious PSI (Fig. 5) has a communication cost that depends
on the security parameter κ and is dominated by κn. We now present a new
PSI protocol that is secure in malicious setting via a dual execution while its
communication cost only depends on the statistic parameter λ and the set size n.
The idea of using a dual execution has been used in [26] but when combining this
with our BaRK-OPRF it achieves efficient results, i.e., the total communication
cost is only 2Nd(� − log N) + n(λ + log n) + o(n). The detailed construction of
dual PSI is shown in the Appendix of full version [9].

5 A Standard PSI from Subfield-Ring OLE

In this section, we describe a new PSI protocol, which builds upon a (simple vari-
ant of) a pseudorandom correlation generator for the ring-OLE correlation [7].
Our protocol enjoys a number of important features: it is in the standard model,
achieves malicious security at essentially no cost, has low communication (com-
petitive even with the best maliciously secure PSI protocols in the random oracle
model), and reasonable computation (albeit superlinear in n). Our protocol can
also be generalized to a powerful notion of batch non-interactive PSI, where (after
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a small logarithmic-cost preprocessing step with each server) a client can broad-
cast a single encoding of his database, and then obtain the intersection with any
of the server databases at any time after receiving a single message from this
server. We believe that this functionality itself is of independent interest.

5.1 Semi-Honest Batch Non-Interactive PSI from Subfield
Ring-OLE

We describe a new PSI scheme in the semi-honest model. Our protocol enjoys two
interesting features: (1) it is in the standard model, and (2) it is a batch non-
interactive protocol, a useful communication pattern which we describe after-
wards. The full construction is represented on Fig. 6.

Theorem 3. The PSI protocol on Fig. 6 securely realizes the ideal functionality
Fpsi over the field Fp with set size n and malicious set size n′ = nX = nY = 2n,
with statistical security against augmented semi-honest adversaries in the Fsole

hybrid model.

Above, “augmented semi-honest security” refers to a strengthening of honest-
but-curious corruption where the adversary is allowed to change the corrupted
parties’ inputs. This is a standard strengthening of semi-honest security, which
has been argued to better capture real-world security [16]. It will also facilitate
upgrading security to the malicious setting later on.

Batch Non-interactivity. To securely realize the functionality Fsole, we rely
on the PCG-based protocol of [7] (using a straightforward adaptation to the
subfield setting), which is secure under the ring-LPN assumption. Interestingly,
instantiating the subfield ring OLE this way allows to import a powerful feature
of the PCG of [7], which is its programmability : when generating a ring-OLE
correlation, the receiver can ensure that her output a remains identical across
multiple instances of the protocol with different parties.

This feature enables the following communication structure: after a short
(logarithmic-communication) interaction with N servers, a client, playing the
role of Alice with input set A, can broadcast a single compact encoding of her
dataset to all the servers (with input sets B1 · · · BN ). Afterwards, each server Bi

can at any time send a single message mi to Alice, from which she can recover
A∩Bi without further interaction. To our knowledge, this batch non-interactive
communication pattern was never achieved by any prior proposal; we believe
that it can make our protocol appealing in realistic scenarios.

More concretely, after a logarithmic-communication preprocessing phase
where Alice sets up PCG seeds with each of servers, Alice broadcasts the
value tA = a − pA to everyone, which communicates 2n log p ≈ 2�n bits. This
message can be seen as a compact public encoding of her dataset (it is only
twice as large as Alice’s set). Afterwards, each server can complete the pro-
tocol of Fig. 6 by sending a single message (b1, tB) to the receiver, of length
3n log q ≈ 3(λ + 2 log n)n, from which the receiver can locally recover X ∩ Xi.
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Furthermore, using the encoding technique of [31], the λ + 2 log n term can be
reduced to λ + log n (the improvement is based on the observation that for an
appropriate ordering, n random elements of a set of size 2λ+2 log n are on average
at distance 2λ+log n for each other, hence the cost of transmitting them can be
reduced to essentially λ + log n per element by sending the distance between
consecutive elements instead).

Efficiency. The communication cost of protocol (Fig. 6) is n ·(2 log p+3 log q)+
o(n) bits of communication. Here, the size of the subfield Fp depends only on
the bitsize � of the items in the sets A and B, hence we can set log p = �. As we
will see in the analysis, log q must be set to log q ≈ λ + 2 log n to guarantee λ
bits of statistical security. This leads to a total communication of n · (2� + 3λ +
6 log n) + o(n) bits, which is reduced to n · (2� + 3λ + 3 log n) + o(n) with the
encoding of [31]. The o(n) term above captures the cost of distributing the PCG
seeds of the subfield ring-OLE (we discuss the concrete value of o(n) later on,
for our maliciously secure version of the protocol).

Regarding computation, the computational cost scales as O(n log2 n) due to
the fast polynomial interpolations, or as O(n log n) when using cyclotomic rings.
We provide a concrete analysis of the computational cost of the maliciously
secure version of our protocol in Sect. 5.2.

PARAMETERS:

– Two rings Rp = Fp[X]/F(X) ⊆ Rq = Fpt [X]/F(X), where F (X) has degree
2n + 1.

– The sender (Alice) and receiver (Bob) have respective input sets A =
{a1, a2, . . . , an} ⊂ Fp and B = {b1, b2, . . . , bn} ⊂ Fp.

– A subfield ring-OLE in the ring Rq over the subring Rp.

PROTOCOL:

1. (Setting up the correlation) Alice and Bob encode their sets to pA =∏n
i=1(X−ai), pB =

∏n
i=1(X−bi) respectively, and invoke Fsole to generate

a subfield ring-OLE correlation over Rp, Rq: Alice receives (a, sA) ∈ Rp ×
Rq and Bob receives (b, sB) ∈ R2

q such that sA + sB = ab.
2. (Broadcasting the client set encoding) Alice computes and sends

tA = a − pA to Bob.
3. (Server-to-client message) Bob sets s′

B ← sB −tAb. Then, Bob decom-
poses b as b = b0 + b1 · Xn (where b0, b1 are degree-n polynomials), sets
s′

B ← sB − tAb, and picks a random degree-n polynomial b′
0 over Rq. He

sends b1 and tB ← s′
B + pBb′

0 to Alice.
4. (Output) Alice sets u ← tB −pAb1 ·Xn +sA; note that u = pAb0 +pBb′

0.
Alice outputs the set I = {x ∈ A | u(x) = 0}.

Fig. 6. Augmented semi-honest PSI protocol based on ring-OLE
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5.2 Maliciously Secure PSI in the Standard Model

In this section, we upgrade the security of our protocol to the malicious setting.
Our upgrade introduces only a minimal communication overhead to the protocol,
independent of the set sizes n. The full protocol is represented on Fig. 7.

Theorem 4. The PSI protocol on Fig. 7 securely realizes the ideal functionality
Fpsi over the field Fp with set size n and malicious set size n′ = nX = nY = 2n,
with statistical security against malicious adversaries in the Fsole-hybrid model.

PARAMETERS:

– A field Fp′ and two rings Rp = Fp[X]/F(X) ⊆ Rq = Fpt [X]/F(X), where
F (X) has degree 2n + 1 and |Fp′ | ≤ |Fp| − 2. map is an efficient (and
efficiently invertible) injective mapping, with map(Fp′) ⊆ Fp \ {0, 1}.

– The sender (Alice) and receiver (Bob) have respective input sets A =
{a1, a2, . . . , an} ⊂ Fp′ and B = {b1, b2, . . . , bn} ⊂ Fp′ .

– A subfield ring-OLE in the ring Rq over the subring Rp.

PROTOCOL:

1. (Setting up the correlation) Alice and Bob encode their sets to pA =
c · (X −1) ·∏n

i=1(X −map(ai)) with c = −(
∏n

i=1(−map(ai)))
−1 (note that

this guarantees pA(0) = 1 and pA(1) = 0) and pB =
∏n

i=1(X − map(bi))
respectively. Alice and Bob invoke Fsole to generate a subfield ring-OLE
correlation over Rp, Rq: Alice receives (a, sA) ∈ Rp ×Rq and Bob receives
(b, sB) ∈ R2

q such that sA + sB = ab.
2. (Broadcasting the client set encoding) Alice computes and sends

tA = a − pA to Bob.
3. (Server-to-client message) Bob sets s′

B ← sB −tAb. Then, Bob decom-
poses b as b = b0 + b1 · Xn (where b0, b1 are degree-n polynomials), and
sets s′

B ← sB − tAb. He sends b1 to Alice.
4. (Checking pA) Alice computes s′

A ← sA − pAb1 · Xn. Alice sends y ←
s′

A(0) to Bob. If y �= b0(0) − s′
B(0), Bob aborts. Else, Bob picks a random

degree-n polynomial b′
0 over Rq and sends tB ← s′

B + pBb′
0 to Alice.

5. (Output) Alice sets u ← tB −pAb1 ·Xn +sA; note that u = pAb0 +pBb′
0.

If u(1) = 0, Alice aborts; otherwise, Alice computes the set I = {x ∈
A | u(map(x)) = 0} and outputs I.

Fig. 7. Maliciously secure PSI protocol in the Fsole-hybrid model

Efficiency. Our malicious protocol has minimal communication overhead over
our augmented semi-honest protocol. The main overhead stems from starting
from a slightly larger field in which two elements can be “reserved elements”. If
p′ is a prime power and � ≈ log p′, the price to pay is therefore increasing � to log p
where p is the smallest prime power above p′+2. While an exact expression would



Improved PSI for Sets with Small Entries 217

be rather tedious, for any reasonable input size this cost should be negligible (the
simplest strategy is to pick p′ = 2� and p = 2�+1, in which case � is increased by
one bit, but much better encoding methods exist). Therefore, the communication
remains n · (2�+3λ+6 log n)+o(n) bits, or n · (2�+3λ+3 log n)+o(n) with the
encoding of [31]. We provide a more concrete analysis of the o(n) term (setting
up the ring-OLE) in the malicious setting in the Appendix of full version [9].

Computation Cost. Note that our standard model protocol shares with our other
protocols the feature of having a communication independent of κ. Our protocol
requires more computation compared to the best ROM-based protocols, due to
its use of polynomial interpolation. However, it still allows for very fast PSI
computation (we estimate a few seconds to compute the intersection between
databases of size 220, on one core of a standard laptop). Concretely, the protocol
requires only

– a single degree-n polynomial interpolation, one FFT over a polynomial ring
with degree-2n polynomials, and 3 multiplications of degree-n polynomials
for the receiver, and

– a single degree-n polynomial interpolation, one FFT as above, 2 multiplica-
tions of degree-n polynomials, and a single n-multipoint polynomial evalua-
tion for the sender.

Furthermore, both polynomial interpolations only have to be performed over a
field F, of size |F| ≈ 2� where � is the bit size of the set items (e.g. 32 or 64 bits),
and the multipoint evaluation is over a field of size λ + 2 log n bits. This stands
in stark contrasts with previous state of the art protocols [20] that relied on
polynomial interpolation (on top of using the ROM), where the interpolations
and multipoint evaluations had to be performed over a very large field F of size
|F| ≈ 2400. By using a cyclotomic ring, the FFTs and polynomial multiplications
are much faster than the interpolations. On Table 2, we compare our protocol to
the current fastest maliciously secure PSI protocols [21,27,29].

On the attacks of [1]. We note that constructing maliciously secure PSI pro-
tocols using an algebraic approach, along the lines of our protocol, is known
to be non-trivial and error prone. Indeed, previous works [14] used a similar
approach based on polynomial manipulation, OLEs, and the lemmas about the
polynomial (appear in the Appendix of full version [9]), to build a malicious PSI
protocol. However, their protocol was found to be insecure in a recent preprint,
which described powerful concrete attacks on this proposal [1]. Intuitively, the
key technical difficulties revolve in both cases around how to handle null poly-
nomials (pA = 0 or pB = 0). In our specific context, it turns out that our direct
use of ring-OLE enables relatively elegant and simple (in hindsight) strategies
to enforce nonzero polynomials. Our modification has almost no impact on the
communication or the computation of our protocol, essentially giving us mali-
cious security for free (though we note that we still require an additional round of
communication). It is not, however, completely clear how to adapt our strategy
to the setting of OLE-based algebraic PSI in [14]. We believe that this provides
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further support for the intuition that ring-OLE is the right primitive to build PSI
protocols using this algebraic approach (beyond its direct advantage in terms of
communication efficiency) (Fig. 7).
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2 IRIF, INRIA, Université de Paris, Paris, France

Abstract. Pseudorandom correlation functions (PCF), introduced in
the work of (Boyle et al., FOCS 2020), allow two parties to locally gener-
ate, from short correlated keys, a near-unbounded amount of pseudoran-
dom samples from a target correlation. PCF is an extremely appealing
primitive in secure computation, where they allow to confine all pre-
processing phases of all future computations two parties could want
to execute to a single short interaction with low communication and
computation, followed solely by offline computations. Beyond introduc-
ing the notion, Boyle et al. gave a candidate construction, using a new
variable-density variant of the learning parity with noise (LPN) assump-
tion. Then, to provide support for this new assumption, the authors
showed that it provably resists a large class of linear attacks, which cap-
tures in particular all known attacks on LPN.

In this work, we revisit the analysis of the VDLPN assumption. We
make two key contributions:

– First, we observe that the analysis of Boyle et al. is purely asymp-
totic: they do not lead to any concrete and efficient PCF instanti-
ation within the bounds that offer security guarantees. To improve
this state of affairs, we combine a new variant of a VDLPN assump-
tion with an entirely new, much tighter security analysis, which we
further tighten using extensive computer simulations to optimize
parameters. This way, we manage to obtain for the first time a set
of provable usable parameters (under a simple combinatorial conjec-
ture which is easy to verify experimentally), leading to a concretely
efficient PCF resisting all linear tests.

– Second, we identify a flaw in the security analysis of Boyle et al.,
which invalidates their proof that VDLPN resists linear attacks.
Using several new non-trivial arguments, we repair the proof and
fully demonstrate that VDLPN resists linear attack; our new analy-
sis is more involved than the original (flawed) analysis.

Our parameters set leads to PCFs with keys around 3 MB allowing ∼
500 evaluations per second on one core of a standard laptop for 110
bits of security; these numbers can be improved to 350 kB keys and ∼
3950 evaluations/s using a more aggressive all-prefix variant. All numbers
are quite tight: only within a factor 3 of the best bounds one could
heuristically hope for.
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1 Introduction

The generation of secret correlated random string is the cornerstone of secure
computation (MPC). Given access to a trusted source of correlated randomness,
any n-party functionality can be securely computed with information-theoretic
security (against n−1 corrupted parties), and with very high concrete efficiency.
For example, given 2m random oblivious transfers (in a random oblivious trans-
fer, Alice gets two random bits (s0, s1), and Bob gets (b, sb) for a random bit
b), two parties can securely compute any boolean circuit C with up to m AND
gates, with perfect security, while exchanging only four bits per AND gate.

The simplicity and efficiency of this paradigm is well known, and most mod-
ern MPC protocols take advantage of its features by sharing the same high level
two-step structure: in the first step, the preprocessing phase, the parties interact
to distributively and securely generate these correlated randomness. Since this
phase is input-independent, it can be carried out ahead of time. Then, in the
second step, the online phase, the parties “consume” this correlated randomness
in a fast, information-theoretic protocol. The core challenge is this approach lies
in step 1: designing a secure protocol to distributively generate long correlated
random string.

Pseudorandom Correlations. Until recently, all state of the art proto-
cols, such as SPDZ [DPSZ12], required Ω(s) communication to generate s bits
of correlated randomness (ignoring terms depending on the security param-
eter and the number of parties), leading to communication-intensive prepro-
cessing phases. This state of affair changed in a recent and exciting line
of work [BCG+17,BCGI18,BCG+19b,BCG+19a,SGRR19,BCG+20b,CRR21]
which introduced the notion of pseudorandom correlation generators (PCG), a
new cryptographic primitive which allows parties to locally generate, from short
correlated seeds, long instances of correlated pseudorandom strings. These PCGs
enable secure computation with silent preprocessing where, after a short inter-
action to generate the short correlated seeds, the parties never need to interact
anymore, and locally generate the long correlated strings. The latest results in
this area further demonstrated that this primitive could be achieved with very
high concrete efficiency, under appropriate LPN-like cryptographic assumptions.

Pseudorandom Correlated Functions. The aforementioned constructions
of PCG, however, share a common limitation: the expansion of the short keys
into long pseudorandom correlated strings is a one-time, monolithic procedure.
That is, these PCGs are limited to a single generation of an a priori bounded
amount of correlated pseudorandomness. If the parties want to possibly use
these correlations across many protocols, then they carry the burden of having
to either re-do the distributed generation of the short keys each time, or storing
a very large amount of correlated randomness for a possibly long duration.

These limitations were overcome in a recent work [BCG+20a], where
the authors introduced the notion of pseudorandom correlated functions
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(PCFs). PCFs are to PCGs what pseudorandom functions are to pseudoran-
dom generators: they allow to generate an arbitrary amount of correlated
(pseudo)randomness in an incremental fashion. That is, given two short cor-
related keys (K0,K1), two parties can locally compute an arbitrary number of
correlated strings FK0(x), FK1(x)), which are all indistinguishable from inde-
pendent random samples from the target correlation. PCFs allow to confine all
future preprocessing phases of any future MPC protocols that two parties may
wish to run to a one-time short interaction, followed solely by local computation
to generate the preprocessing material in all subsequent computations.

1.1 Constructions of Pseudorandom Correlated Functions

A PCF is an extremely powerful primitive, but also one which is highly
non-trivial to construct. A generic construction of PCF under the LWE
assumption can be obtained by letting the two parties homomorphically eval-
uate a well-chosen circuit using a threshold fully-homomorphic encryption
scheme [DHRW16,BCG+20a]: the circuit takes as input a PRF key K, and com-
putes pseudorandom instances of the correlation, using the output of the PRF to
generate the pseudorandomness used in these correlations. However, this app-
roach falls short of providing a concretely usable solution. To our knowledge,
there are currently two competing approaches to construct usable PCFs:

PCFs from Variable-Density LPN. The work of [BCG+20a] gave a generic
construction of PCF, by combining two primitives:

– A function secret sharing scheme (FSS) for a class of circuits C. At a high
level, an FSS for C allows to share any function f ∈ C in two functions f0, f1
such that each fi computationally hides f , yet for any input x, it holds that
f0(x) + f1(x) = f(x).

– One weak pseudorandom function (WPRF) for some class C′ related to C.
A WPRF is a PRF where the adversary in the pseudorandomness game is
restricted to only querying random inputs.

Previous works [GI14,BGI15,BGI16] have shown how to construct extremely
efficient FSS schemes for simple complexity classes, such as multi-point func-
tions (i.e., a function fα,β equal to 0 everywhere, except on n specific points
α = (α1, · · · , αn), where it takes a fixed value β), from minimal assumptions
(namely, the existence of one-way functions). The shares of an n-point function
fα,β over a domain of size N consist of n log N PRG seeds, and evaluating fi

on the entire domain requires only N PRG evaluations. Given this, the authors
of [BCG+20a] put forward a new WPRF in the (particularly low) complexity
class of multi-point functions, which essentially boils down to a WPRF of the
form FK(x) = F (x ⊕ K), where F is a depth-two circuit with one bottom layer
of high fan-in ANDs, and a single top high fan-in XOR gate. The security of
this new candidate relies on the hardness of a new variant of the learning parity
with noise (LPN) assumption, called variable density LPN assumption; we will
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overview this assumption later on. Given this new WPRF and the efficient FSS
scheme of [BGI16], the authors of [BCG+20a] obtain a PCF candidate which can
handle a wide variety of low-degree correlations, including (but not limited to)
oblivious transfer correlations. The authors provide several variants and param-
eter choices; their most aggressive choices of parameters lead to a reasonably
efficient construction, which (based on rough estimations) could generate hun-
dreds to thousands of pseudorandom OT correlations per second on one core of
a standard computer.

PCFs from Decisional Composite Residuosity. An alternative approach
to building PCFs was recently put forward in [OSY21], using a Paillier-based
construction of homomorphic secret sharing. In contrast to [BCG+20a], this
work does not need to rely on new assumptions, and instead only requires the
well-established decision composite residuosity assumption. However, this alter-
native construction has several downsides:

– Expressivity. The construction of [OSY21] is inherently limited to oblivious
transfer correlations. In contrast, the VDLPN-based construction can gen-
erate arbitrary low-degree polynomial correlations, such as OLE, (authen-
ticated) Beaver triples, and many more; these alternative correlations are
crucial in many secure computation protocols.

– Post-quantumness. The DCR assumption can be broken by Shor’s algorithm.
In contrast, while VDLPN is a new and little studied assumption, there seems
to be no reason to believe that it should be quantumly broken, being a rela-
tively natural LPN-style assumption.

– Efficiency. Eventually, the construction of [OSY21] requires a few hundred
exponentiations in an RSA group for every OT correlation produced. Using
standard benchmark for exponentiations in 2048-bit RSA groups on a mod-
ern laptop1, this translates to a cost of the order of one second for each OT
produced, which is several orders of magnitude less efficient than what the
VDLPN-based approach can plausibly provide, for suitable choices of param-
eters.

Given the above, the VDLPN approach seems to provide the best alternative
to obtain efficient and expressive PCFs; however, its reliance on a new assump-
tion calls for a very careful examination of its security. The work of [BCG+20a]
provided an initial security analysis, proving a number of important results
regarding the resistance of VDLPN against standard attacks. However, this anal-
ysis is purely asymptotic, and does not say much about what concrete choices
of parameters can be expected to provide a sufficient security level. In addi-
tion, a close inspection of their analysis uncovers an important gap in one of
the claim, invalidating part of the analysis (we will expand on this later on).
Before we detail our contribution, we provide more context on the underlying
new assumption and its analysis.
1 E.g. A laptop equipped with an Intel i5 2540M processor can compute an RSA

decryption in 1.4ms of amortized time.
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1.2 The Variable-Density LPN Assumption

At a high level, the standard LPN assumption with dimension k and number of
samples n > k states the following: given a uniformly random matrix A

$← F
n×k
2 ,

sample a vector b as b = A · s + e, where s is a random vector from F
k
2 , and e

is a random sparse vector (the noise vector) over Fn
2 (the exact distribution of e

depends on the LPN flavor: it follows a Bernoulli distribution for standard LPN,
it is uniform over all vectors of a given weight for exact LPN (XLPN), and it
is a concatenation of unit vectors for regular LPN). Then, LPN states that it is
hard to distinguish b from a uniformly random vector (put otherwise, it is hard
to solve noisy systems of linear equations).

In coding theoretic terms, LPN therefore states that a noisy codeword from a
random linear code looks random. LPN admits an equivalent, dual formulation:
viewing A as the generating matrix of a linear code of dimension k, let H ∈
F

(n−k)×n
2 be a parity-check matrix of A (which satisfies H · A = 0; that is, Hᵀ

generates the dual of the code generated by A). Then distinguish b = A · s + e
from random is equivalent to distinguishing H · b = H · e from random – that
is, finding whether an undetermined system of linear equation admits a sparse
solution. This is also known as the syndrome decoding problem.

The (dual) LPN assumption implies a natural construction of pseudoran-
dom generators, which maps (a short description of) e to H · e. This PRG (and
variants thereof) is at the heart of all known construction of pseudorandom cor-
relation generators, due to its linear structure which allows to preserve some
target correlations. To obtain a pseudorandom correlation function, the work
of [BCG+20a] faced the following dilemma: intuitively, we would like to extend
the PRG that maps (a representation of) e to H · e into a PRF, but this means
that we need H · e to be an exponentially long vector whose entry can be gen-
erated incrementally (in this view, an input defines a row h of the matrix H,
the key defines e, and the corresponding output is hᵀ · e). We need a way to
guarantee that e and the rows of H both admit a short (polynomial size) repre-
sentation, and that hᵀ · e can be computed in polynomial time. Unfortunately,
defining H and e to be exponentially sparse does not work in general: H ·e would
then become sparse as well, and therefore trivial to distinguish from random.

The key observation in [BCG+20a], and the central idea of their design, is
that we can circumvent this issue by making H and e exponentially sparse,
but with variable density. Concretely, fix a security parameter λ and consider
sampling the rows of H as follows: a row h is divided into λ blocks (hi)i≤λ

(looking ahead, the maximum number of queries to the PRF will be bounded
by a quantity smaller than 2λ). Each block hi is of length λ · 2i and contains
exactly λ 1’s: this guarantees that the density of hi is 1/2i. More precisely, hi is
a concatenation of λ length-2i unit vectors. This means that h constructed this
way is a variable density vector, where the density drops by a factor two when
going from one block to the next. The noise vector e is simply sampled as a
row vector. Intuitively, the dense portion of the inner products hᵀ · e guarantees
that the result will not be sparse (but the corresponding portions being narrow,
many linear dependencies appear), while the sparse portions of the hᵀ · e break
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linear dependencies (being exponentially wide, though very sparse). The VDLPN
assumption states, informally, that this suffices to guarantee indistinguishability
from random.

Definition 1 (VDLPN assumption, informal). Sample a matrix H as H =
H1|| · · · ||Hλ over F

N×λ·(2λ+1−1)
2 where the rows are independently sampled as

described above, and where N � 2λ is some bound on the maximum number of
queries. Sample a noise vector e according to the same distribution as the rows of
H. Then the VDLPN assumption states that, given H, H · e is indistinguishable
from a random length-N vector.

VDLPN directly implies a natural construction of WPRF: a random input x
(a bitstring of length λ2 ·(λ+1)/2) is parsed as λ blocks of length λ·i, for i = 1 to
λ, where each block is further parsed as λ sub-blocks of length i each. A length-i
string defines a random unit vector of length 2i (it encodes the position of the
nonzero entry in the vector). The concatenation of these unit vectors forms a
uniformly random row hx for the matrix H. A similar mapping is applied to
convert the bitstring K (the WPRF key) into a noise vector eK . Eventually,
observe that the mapping FK : x → hᵀ

x · eK is efficient, because each of h,
xeK

is exponentially sparse: computing their inner product amounts to computing
O(λ2) equality tests between the sub-blocks of x and of K. To construct a
pseudorandom correlation function, the authors of [BCG+20a] build upon the
fact that this WPRF can further be written as a XOR of point functions (each
point function takes a sub-block of x as input and returns 0 unless it is equal to
the corresponding sub-block of K), which makes it FSS-friendly.

1.3 Security of VDLPN

Since VDLPN is a variant of the LPN assumption, the natural first step to
analyze its security is to look at existing attacks on LPN. There have been, how-
ever, a tremendous number of attacks on LPN designed over the years, including
attacks such as Gaussian elimination and the BKW algorithm [BKW00,Lyu05,
LF06,EKM17] and variants based on covering codes [ZJW16,BV16,BTV16,
GJL20], and attacks based on information set decoding techniques [Pra62,
Ste88,FS09,BLP11,MMT11,BJMM12,MO15,EKM17,BM18]. This list is far
from exhaustive; one could also mention statistical decoding attacks [AJ01,
FKI06,Ove06,DAT17], generalized birthday attacks [Wag02,Kir11], lineariza-
tion attacks [BM97,Saa07], attacks based on finding low weight code vec-
tors [Zic17], and many more. A core observation of [BCG+20a] is that all these
attacks fit in a common framework, called linear tests. Roughly, a linear test is
an attack in which the adversary attempts to distinguish b from a random vector
by finding a nonzero linear function LH (which can depend on H in an arbitrary
way) such that LH(b) is biased (i.e., far from uniform in statistical distance)
when b = H · e. Being secure against linear tests is a statistical property, which
one can hope to prove unconditionally. To this end, the work of [BCG+20a] put
forward the notion of low bias WPRF:
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Definition 2 (low-bias WPRF, informal). A family {FK}K of WPRFs has
low bias up to N samples if

Pr
x1,··· ,xN

[bias(D) ≥ negl(λ)] ≤ negl′(λ),

where D is the distribution that samples a random key K for the WPRF, and
outputs the vector (FK(x1), · · · , FK(xN )). Above, the N inputs are sampled from
the input space of the WPRF family, and negl, negl′ denote two negligible func-
tions.

Above, the bias of a distribution D over F
N
2 is defined as maxu �=0 |1/2 −

Prv←D[uᵀ · v = 1]|; that is, it is the distance from the uniform distribution
over F2 induced by computing L(v) with the “worst possible” nonzero linear
function L : F

N
2 	→ F2. One of the core security claims of [BCG+20a] hinges

upon the fact that the VDLPN-based WPRF is a low-bias WPRF; in particular,
this means that the VDLPN assumption cannot be broken using essentially any
of the known attacks on LPN.

Theorem 3 (Resistance to linear tests [BCG+20a], informal). The
WPRF built from the VDLPN assumption has a low bias up to N = 2O(λ)

samples (the functions negl, negl′ are both equal to 2O(−λ) as well).

To show that the VDLPN assumption is secure, we will only consider resis-
tance against linear tests - and all our proof of security will consists of showing
this resistance. A simple variant of the VDLPN assumption achieves smaller
input size (O(λ2) instead of O(λ3), but we ignore it in this simplified overview.
Note that [BCG+20a] also considers various other attacks, such as algebraic
attacks, linear cryptanalysis, and attacks by low depth (AC0) circuits. These
analyses make VDLPN a plausible assumption, from which [BCG+20a] derives
several consequences: a pseudorandom correlation function, as we already dis-
cussed, but also the first candidate WPRF in the very low complexity class
XOR-AND (one layer of ANDs followed by a single XOR gate), which indicates
that this class is perhaps hard to learn in the uniform PAC model. Further-
more, VDLPN also implies a WPRF secure against XOR related-key attacks,
something which was previously known only assuming very strong cryptographic
primitives (namely, high degree multilinear maps).

1.4 Our Contributions

We revisit the security analysis of VDLPN against linear tests. Our main moti-
vation is that the analysis in [BCG+20a] is purely asymptotic, and trying to
extract concrete parameters within the range where the analysis applies gives
terrible performances. Concretely, let D be the number of blocks, w be the num-
ber of ones in each block, and N be a bound on the maximum number of queries
(in our simplified exposition above, we used w = D = λ and N � 2λ). The
authors of [BCG+20a] suggested the following concrete parameters to instanti-
ate VDLPN: set w = 1.5λ, D = w/4, and N = 2D. They conjectured that this
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should achieve λ bits of security. However, this choice of parameters is purely
heuristic, and described as a challenge to cryptanalysts: it is not backed up by
any concrete cryptanalysis.

On the other hand, their analysis guarantees 2Ω(w) bits of security against
linear tests whenever w > Γ · D, for up to 2D samples, where Γ is a constant
from the proof. A quick back-of-the-envelope calculation reveals that Γ in their
analysis is of the order of magnitude of 105, and it is far from obvious to improve
the constants without significantly changing the analysis (while the proof is not
tight, a straightforward “tightening” only saves a small factor). This means that,
when instantiating the parameters within the range where the proof offers some
security guarantees, the security parameters must be of the order of several
million bits long – of course, this is entirely impractical.

Furthermore, upon revisiting their analysis, we uncovered one mistake (as
well as a second, relatively minor mistake), that invalidates their proof of secu-
rity against linear attacks. Fixing the mistake turns out to be non-trivial, and
constitutes an important part of our contribution.

First Contribution: A Tighter VDLPN. The corrected analysis we present
offers even worse concrete bounds than in the original (flawed) proof: the Γ value
is of the order of 106, leading to a security parameter w in the millions. In other
words, there is no realistically usable range of parameters within the bounds
handled by the security analysis. Thus, one is left with a plausible assumption
with purely asymptotic parameters on the one hand, and some concrete candi-
date choices of parameters that lead to a reasonably efficient PCF construction,
but that are not supported by any security analysis. The goal of this first con-
tribution is to bridge this (huge) gap between secure in theory and usable in
practice. Since the task is highly non-trivial, we attack the problem simulta-
neously on three angles. Each angle in itself forms an orthogonal contribution
to the overall analysis (in the sense that each of the three techniques leads to
significant improvements by themselves).

– An entirely new proof approach. First, we step back from the original analysis
and seek to understand the main source of slackness in the parameters. Then,
we develop an alternative, much more direct approach which, in a sense, allows
us to exploit the contribution to the bias of every component of the matrix
H (while the previous analysis could only take into account the contribution
of the “top contributors”, for technical reasons). The new approach achieves
much tighter bounds.

– A proof-friendly VDLPN variant. Second, we allow ourselves to (slightly)
change the VDLPN assumption. Concretely, our variant is identical to
VDLPN, except for the first block H1: here, we set H1 to be a uniformly
random matrix instead. This choice stems from the fact that in the analysis,
we need to use two different arguments to handle the low weight linear tests
and the high weight linear tests; sampling H1 uniformly at random allows
to achieve much tighter bounds for the analysis against low weight tests. We
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observe that this variant of VDLPN remains FSS-friendly: using this variant
does not harm any of the cryptographic applications.

– Better bounds through simulations. Eventually, we rely on extensive computer
simulations to achieve tighter bounds. Concretely, we need a bound on the
expectation of some complex random variable X, which we obtained using
a generalized Chernoff inequality in the previous analysis. While this bound
suffices for the asymptotic analysis, its looseness severely impacts the bounds.
Here, instead, we estimate E[X] through computer simulations. We empiri-
cally observe that the samples from X have very low variance, and derive a
tight bound on E[X] with a very high confidence interval.

Putting everything together, we manage to prove that (our variant of)
VDLPN has bias at most 2−80 with probability at least 1 − 2−80, for a value of
w as low as w = 380 (with D = 30, and up to N = 2D samples – this is just a
sample of candidate parameters, we do not have a closed-form formula).2 This
is a tremendous improvement compared to the previous analysis, and gives for
the first time a set of parameters which are simultaneously backed by a thor-
ough security analysis, yet are usable in practice. We stress that, in spite of our
computer-verified component, our bounds are much better than purely heuristic
bounds: they are provable bounds under a simple, concrete combinatorial con-
jecture, which is easy to verify through computer experiments. In contrasts, even
ignoring the flaw in their asymptotic analysis, all “usable parameters” proposed
in [BCG+20a] were purely heuristic, based on the intuition that they might be
hard to attack and described as challenges for cryptanalysis, but not supported
by any analysis whatsoever.

We believe that our work constitutes a strong step in the direction of showing
that one can construct secure and concretely efficient pseudorandom correlation
functions, an important and intriguing goal.

Second Contribution: Fixing the Original Analysis. In essence, the anal-
ysis of a central claim in the proof of resistance against linear tests turned out
to be incorrect. The claim, on the other hand, remains essentially correct (up to
some concrete choice of the constants involved): only its analysis is flawed, it did
not lead to attacks. The mistake appears in a bound on the expectation E[Z] of
a random variable Z, of the form E[Z] ∈ [a, b], for some values 0 < a < b. The
authors deduced from this bound a bound of the form E[|Z − b| ≤ b − a, but
this is wrong in general (the error might stem from an application of the Jensen
inequality in the wrong direction): intuitively, if the distribution of Z is “anti-
concentrated” with respect to its expectation, then the inequality E[|Z−b| ≤ b−a
does not follow from E[Z] ∈ [a, b]3.
2 The choice of 80 bits of security is more conservative than it appears: it means that

an adversary will have to compute 280 inner products with a length-230 vector to
detect a 2−80 bias in the output. In terms of bit-security, this corresponds to at least
110 bits of security.

3 E.g. if Z is 0 with probability 1/2, and 10 else, then E[Z] = 5 ∈ [4, 5], but E[|Z−5|] =
5 > 5 − 4.
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On the other hand, if Z follows a “nice” distribution, typically a Gaussian-
style distribution (or any bell-shape distribution), and if the value b is sufficiently
close to E[Z], then the claim becomes true. A quick simulation reveals that Z
indeed appears to exhibit the right structure. Central to our first contribution is a
formal proof that the claim holds for Z. Compared to the analysis of [BCG+20a],
our new analysis cannot simply bound the expected value of Z: we have to prove
strong tail bounds on Z, which is significantly more complex, because Z is a sum
of dependent variables. Our analysis relies on a power-full bound about the balls
and bins problem.

We then turn to integrating our new proof of the central claim to the full proof
of resistance against linear tests. Along the way, we found (and fixed) another
minor mistake in the analysis, which requires changing the concrete choices of
constants in the proof. Due to this, and due to some slackness in our new proof
of the central claim (which stems from the limitations of the inequality which
we use), the general proof ends up failing on some corner cases. Essentially, the
analysis studies separately the contribution of each block Hi of the matrix H to
the overall bias; the analysis, however, fails whenever i is too small. Nevertheless,
we show that the case of very small values of i can be treated separately with
two simple arguments, which completes the proof.

We stress that while the repaired proof follows the high level structure of
that of [BCG+20a], the core of correction was not straight forward. This secu-
rity analysis against linear tests is central to the claim that VDLPN is a plausible
assumption (since it resists all known attacks against LPN), and therefore pro-
vides a plausible candidate to construct powerful objects such as a PCF (for all
low-degree correlations), a XOR-RKA secure WPRF, and a family of extremely
simple functions (in the XOR-AND class) hard to learn in the uniform PAC
model. We also mention that we notified the authors of [BCG+20a] of our find-
ings, and they acknowledged the flaws in the analysis.

1.5 New Cost Estimations for PCFs, and Challenges

Using the parameters from above (w = 380,D = 30), we compute the seed
size and estimate the evaluation time of the pseudorandom correlation func-
tion of [BCG+20a] instantiated using our new VDLPN variant. On top of the
VDLPN variant, the construction uses a puncturable pseudorandom function,
instantiated with the GGM construction [GGM86]. We set the security param-
eter of the PRG used in GGM to λ = 128. With these parameters, we get the
following costs:

– Seed size: 2.94 MB
– PCF evaluation time: the evaluation cost is (largely) dominated by ≈ 1.81·105

calls to a length-doubling pseudorandom generator.

To give a rough runtime estimation, the PRG can be instantiated using two
calls to fixed-key AES. According to [MSY21], using the AES-NI instructions of
modern CPUs, one byte of AES-128 can be computed in ∼ 1.3 cycles. Hence,
computing 3.6 · 105 blocks of 16 bytes requires about 7.5 · 106 cycles. Concretely,
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using a 3.8 GHz processor, this amounts to roughly 500 PCF evaluations per
second on a single core (note that the estimation should not be too far off,
because the computation requires no random data access, hence cache misses
are unlikely). Since all evaluations are fully parallelizable, using c cores increases
this number to 500c evaluations per second.

The work of [BCG+20a] also suggested an improved all prefix variant, which
has shorter seeds and better runtimes, using existing efficient constructions of
all-prefix function secret sharing. While this construction lacks a security anal-
ysis, this is only because it makes the noise vectors ei correlated (our analysis
fundamentally uses their independence). However, it seems very reasonable to
conjecture that this is just an artefact of the analysis, and that the optimized
construction provides the same security level. Under the heuristic assumption
that the correlated ei behave essentially as well as independent ei for resis-
tance to linear tests, we can reuse our previous analysis and obtain the following
improved bounds for the all-prefix PCF: seed size 0.35MB, and PCF evaluation
time around 3950 evaluations per second on a single 3.8GHz processor.

These numbers demonstrate that, already within the range of our provable
bounds, PCFs can achieve very promising parameters, with short seeds, and
reasonably fast runtimes. Note that we believe that there remains some small
gap between our analysis and the “true” security of VDLPN – namely, smaller
parameters might plausibly lead to a secure instance (perhaps as small as w =
120 and D = 30). We view further tightening our analysis as an interesting
open question. Since the cost is linear in w, reducing w to 120 would lead to
a factor 3 improvement (on seed size and evaluations per second). Nonetheless,
our provable parameters appear already quite tight, being at most a factor-3 off
compared to the best parameters one could heuristically hope for.

2 Preliminaries

We use bold font for vectors, and capitals for matrices. For vectors u,v, HW(u)
denotes the Hamming weight of u, dH(u,v)denotes the Hamming distance
between u,v. Below, we recall the definition of the bias of a distribution, and
some standard technical lemmas.

Definition 4 (Bias of a Distribution). Given a distribution D over F
n and

a vector u ∈ F
n, the bias of D with respect to u, denoted biasu(D), is equal to

biasu(D) = |Ex∼D[uᵀ · x] − Ex∼Un
[uᵀ · x]| =

∣
∣
∣
∣
Ex∼D[uᵀ · x] − 1

|F|
∣
∣
∣
∣
,

where Un denotes the uniform distribution over F
n. The bias of D, denoted

bias(D), is the maximum bias of D with respect to any nonzero vector u.

Standard Probability Lemmas. Given t distributions (D1, · · · ,Dt) over F
n
2 ,

we denote by
⊕

i≤t Di the distribution obtained by independently sampling vi
$←

Di for i = 1 to t and outputting v ← v1 ⊕ · · · ⊕ vt. We will use the following
bias of the exclusive-or (cf. [Shp09]).
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Lemma 5. Let t ∈ N be an integer, and let (D1, · · · ,Dt) be t independent distri-
butions over F

n
2 . Then bias(

⊕

i≤t Di) ≤ 2t−1 ·∏t
i=1 bias(Di) ≤ mini≤t bias(Di).

Let Berr(F2) denote the Bernoulli distribution that outputs 1 with probability
r, and 0 otherwise. More generally, we denote by Berr(F) the distribution that
outputs a uniformly random element of F with probability r, and 0 otherwise
(this does not exactly match our definition of Ber(F2), but the slight discrepancy
will not matter in our applications). We will use a standard simple lemma for
computing the bias of a XOR of Bernoulli samples:

Lemma 6 (Piling-up lemma). For any 0 < r < 1/2 and any integer n, given
n random variables X1, · · · ,Xn i.i.d. to Berr(F2), it holds that Pr[

⊕n
i=1 Xi =

0] = 1/2 + (1 − 2r)n/2.

We will also need two concentration bounds. The bounded difference inequal-
ity [McD89] is an application of the more general Azuma inequality [Azu67]. Let
(n,m) ∈ N

2 be two integers. We say that a function Φ : [n]m 	→ R satisfies the
Lipschitz property with constant d if for every x,x′ ∈ [n]m which differ in a single
coordinate, it holds that |Φ(x) − Φ(x′)| ≤ d.

Lemma 7 (Bounded Difference Inequality). Let Φ : [n]m 	→ R be a func-
tion satisfying the Lipschitz property with constant d, and let (X1, · · · ,Xm) be
independent random variables over [n]. Then

Pr[Φ(X1, · · · ,Xm) < E[Φ(X1, · · · ,Xm)] − t] ≤ exp
(

− 2t2

m · d2

)

.

Eventually we will rely on the Occupancy Bound from [KMPS94], which
provides tight bounds for the balls and bins problem.

Lemma 8 (Occupancy Bound). Let E be the number of empty bins when m
balls are placed randomly into n bins, and define r = m/n. The expectation of
E is given by μ = E[E] = (1 − 1

n )m ≈ ne−r. For any θ > 0 ,

Pr[|E − μ| ≥ θμ] ≤ 2 exp
(

−θ2μ2(n − 1
2 )

n2 − μ2

)

= B

Note that we can derive the following two equations : Pr[E ≥ μ(θ + 1)] < B
and Pr[E ≤ μ(1 − θ)] < B.

2.1 Coding Theory

Definition 9. Let n be a positive integer, C is a linear code if C is a vector
subspace of Fn

q . The integer n is called the length of C. The dimension of C is its
dimension as an Fq-vector space. It is denoted by k = dimFq

C
Definition 10. (Minimum distance of a code) Let C be a linear code of length
n. The minimum distance of C, is the minimum distance dC between two distinct
codewords of C.

dC = min
x,y∈C,x�=y

{dH(u,v)(x,y)}
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Learning Parity with Noise. We define the LPN assumption over a ring R
with dimension k, number of samples n, w.r.t. a code generation algorithm C,
and a noise distribution D:

Definition 11 (Dual LPN). Let D(R) = {Dk,n(R)}k,n∈N denote a family of
efficiently sampleable distributions over a ring R, such that for any k, n ∈ N,
Im(Dk,n(R)) ⊆ Rn. Let C be a probabilistic code generation algorithm such
that C(k, n,R) outputs a matrix H ∈ Rk×n. For dimension k = k(λ), num-
ber of samples (or block length) n = n(λ), and ring R = R(λ), the (dual)
(D,C,R)-LPN(k, n) assumption states that

{(H,b) | H
$← C(k, n,R), e $← Dk,n(R),b ← H · s}
c≈ {(H,b) | H

$← C(k, n,R),b $← Rn}.

The dual LPN assumption is also called the syndrome decoding assumption
in the code-based cryptography literature. The dual LPN assumption as written
above is equivalent to the primal LPN assumption with respect to G (a matrix
G ∈ Rn×n−k such that H ·G = 0), which states that G ·s+e is indistinguishable

from random, where s $← Rn−k and e $← Dk,n(R); the equivalence follows from
the fact that H (̇G · s + e) = H · e.

The standard LPN assumption refers to the case where H is a uniformly
random matrix over F2, and e is sampled from Berr(F2), where r is called the
noise rate. Other common noise distributions include exact noise (the noise vec-
tor e is a uniformly random weight-rn vector from F

n
2 ; this is a common choice

in concrete LPN-based constructions) and regular noise (the noise vector e is
a concatenation of rn random unit vectors from F

1/r
2 , widely used in the PCG

literature [BCGI18,BCG+19b,BCG+19a]).

2.2 The Variable Density LPN Assumption

We recall the regular VDLPN assumption from [BCG+20a]; other variants exist.
Let λ be a security parameter. We fix three parameters: a sparsity parameter
w = w(λ) (controlling the number of ones per row of a block), a block parameter
D = D(λ) (controlling the number of blocks), and a bound N = N(λ) on the
number of samples. The reader can think of w,D as being Ω(λ), with D < w,
and N = 2D for concreteness. We set par ← (w,D,N).

Let S1,2i the distribution of unit vector of size 2i. Let Rw,i be the distribution
of random w-regular vectors over F

w·2i

2 , i.e., the concatenation of w vector sam-
pled from S1,2i). Let Hi

par denote the distribution over N × (w ·2i) matrices over
F2, where each row of the matrix is sampled independently from Rw,i, and let

Hpar denote the distribution over FN×2N ·w
2 , obtained by sampling Hi

$← Hi
par for

i = 1 to D and outputting H = H1|| · · · ||HD, where || is the horizontal concate-
nation. Eventually we denote Npar the noise distribution obtained by sampling
ei	 according Rw,i and outputting e ← (e1// · · · //eD) ∈ F

2N ·w
2 where // is this

time the vertical concatenation. The matrix Hi sampled from Hi
par is:
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Hi =

⎡

⎢
⎢
⎢
⎢
⎣

ui
1,1 · · ·

2i columns
︷︸︸︷

ui
1,w

...
...

...
ui

N,1 · · · ui
N,w

⎤

⎥
⎥
⎥
⎥
⎦

where (ui
k,j)1≤k≤N,1≤j≤w are sampled from the distribution S1,2i , and are

unit vector over F
2i

2 . Thus, there is w non-zero coordinates by rows. Eventually,
the matrix H sampled from Hpar is a horizontal concatenation of the Hi:

H =
[
H1 · · · HD

]

︸ ︷︷ ︸

w·2D+1 columns

The term variable density refers to the fact that the density of 1’s in each
block Hi is 1/2i by construction. For any H sampled from the distribution Hpar

let Opar(H) be the distribution which samples e $← Npar and return H · e.

Definition 12 (rVDLPN(w,D,N)). The regular VDPLN assumption, with
parameters par = (w,D,N), denoted rVDLPN(w,D,N)), states that:

{(H,b)|H $← Hpar, e
$← Npar,b ← H · e} ≈ {(H,b)|H $← Hpar,b

$← F
N
2 }

Note that this is exactly the dual LPN assumption where both the matrix
and the noise are sampled from a specific distribution variable-density matrices
and vectors.

A WPRF Candidate from the rVDLPN Assumption. Fix parameters
par(λ) = (w(λ),D(λ), N(λ) = 2D(λ)). Recall that a vector from the distribution
Npar is in fact the vertical concatenation of D vectors from ei, where ei is the
transpose vector of the vector from the distribution Rw,i. Moreover, Rw,i is the
concatenation of w unit vector over F

2i

2 , where each of them can be generated
with i random bits (encoding the index of the nonzero entry). Therefore, sam-
pling a vector Npar requires exactly w · ∑D

i=1 i = w · D(D − 1)/2 random bits;
we write Npar(r) to denote the vector e sampled from Npar using randomness r.
We describe the WPRF candidate below.

– Key size: K ∈ {0, 1}π(λ) with π(λ) = ρ(λ) = w · D(D − 1)/2
– Input size : x ∈ {0, 1}ρ(λ) with ρ(λ) = w · D(D − 1)/2
– FK(x) : on input x ∈ {0, 1}ρ, sample h	 ← Npar(x) and output 〈h,Npar(K)〉

Theorem 13 ([BCG+20a]). Suppose that rVDLPN(par) holds. Then the above
construction is an N-query WPRF, with input length and key length equal at
w · D(D − 1)/2.
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2.3 Pseudorandom Correlation Functions

Pseudorandom correlation functions, introduced in [BCG+20a], allow to locally
generate, from a pair of short correlated keys, an arbitrary polynomial amount of
pseudorandom correlations, in an incremental way. A fundamental application
of PCF is to secure computation in the preprocessing model: two parties can
distributively generate PCF keys, and later use them every time they wish to
engage in a secure computation protocol, to generate locally (without any inter-
action) all preprocessing material required for the protocol. Therefore, PCFs
allow to confine all future preprocessing phases of all secure computation proto-
cols two parties could want to execute, to a single, one time generation of short
correlated keys, followed solely by local computations. Slightly more formally, a
PCF is a pair (PCF.Setup,PCF.Eval) where PCF.Setup generates short correlated
keys (k0, k1), and PCF.Eval(σ, kσ, x) outputs a value yσ such that for any input
x, given k1−σ, the value yσ is indistinguishable from a random value sampled
conditioned on satisfying the target correlation with PCF.Eval(σ, k1−σ, x) (for
σ = 0, 1). Due to lack of space, we defer the definition of PCF in the full version.

2.4 Pseudorandom Correlation Function from VDLPN

A construction of PCF from VDLPN follows from the general template estab-
lished in [BCG+20a], which combines a WPRF in a suitably low complexity
class with a function secret sharing scheme for a related class. Instantiating this
general template with the VDLPN-based WPRF and the FSS scheme of [BGI16],
one gets a PCF for a general class of constant degree polynomial additive cor-
relations. For the sake of concreteness, though, we focus here on PCFs for the
random oblivious transfer (OT) correlation, one of the most fundamental and
useful correlation in secure computation. A random OT correlation is a pair
(y0, y1) ∈ {0, 1}2 × {0, 1}2, where y0 = (u, v) for two random bits u, v, and
y1 = (b, u · (1 − b) ⊕ v · b) for a random bit b.

It is known that, to generate n pseudorandom OT correlations, it suffices to
generate the following simpler correlation: Alice gets a (pseudo)random pair of

length-n vectors (u,v), where u $← F
n
2 and v ∈ F

n
2λ , and Bob gets x

$← F2λ and
w ← x · u + v. This correlation (known as the subfied vector-OLE correlation)
can be locally converted by Alice and Bob into n pseudorandom OT correlations
using a correlation-robust hash function; see [BCG+19b] for details. Therefore,
we focus on building a PCF for the subfield VOLE correlation. Unlike the general
case, this does not require the full power of function secret sharing: it suffices to
rely on a simpler primitive, namely, a puncturable pseudorandom function.

Puncturable Pseudorandom Functions. A puncturable pseudorandom func-
tion (PPRF) is a PRF F such that given an input x, and a PRF key k,
one can generate a punctured key, denoted k{x}, which allows evaluating F
at every point except for x, and does not reveal any information about the
value F .Eval(k, x). PPRFs have been introduced in [KPTZ13,BW13,BGI14].
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Formally, a t-puncturable pseudorandom function (PPRF) with key space K,
domain X , and range Y, is a pseudorandom function F with an additional
punctured key space Kp and three probabilistic polynomial-time algorithms
(F .KeyGen, F .Puncture, F .Eval) such that

– F .KeyGen(1λ) outputs a random key K ∈ K,
– F .Puncture(K,S), on input a ley K ∈ K, and a subset S ⊂ X of size (at

most) t, outputs a punctured key K{S} ∈ Kp,
– F .Eval(K{S}, x), on input a key K{S} punctured at all points in S, and a

point x, outputs F (K,x) if x /∈ S, and ⊥ otherwise.

The (static) security of a t-PPRF states is captured by the following game: the
adversary A sends a size-t subset S of inputs. The challenger generates a key K,
a punctured key K{S}, and a random bit b. He sends K{S} to A, together with
either the values FK(x) = F .Eval(K{∅}, x) for all x ∈ S if b = 0, or t random
bits if b = 1. The PPRF is secure if any adversary has negligible advantage over
the random guess for finding b in this game. A t-PPRF can be constructed from
any one-way function, using the GGM construction [GGM86].

A PCF for SVOLE from VDLPN and a PPRF. We briefly sketch the con-
struction, and refer to [BCG+20a] for a formal analysis. Fix VDLPN parameters
par = (w,D,N) and set t ← D · w. Let F be a t-PPRF with range F2λ .

– PCF.Setup(1λ) : sample r
$← {0, 1}t(D−1)/2 and set e ← Npar(r). Let S ⊆

[w · (2D+1 − 1)] be the size-t subset of nonzero entries of e. Sample K ←
F .KeyGen(1λ) and set K{S} ← F .Puncture(K,S). Sample x

$← F2λ and let
(Ky)y∈S ← (FK(i) − x)i∈S . Set k0 ← (K,x) and k1 ← (r,K{S}, (Ki)i∈S).

– PCF.Eval(σ, kσ, z) : parse z as a row hz of the VDLPN matrix H (i.e., set
hᵀ

z ← N (z)). Let Sz ⊆ [w · (2D+1 − 1)] denote the index of the 1’s in hz.
If σ = 0, output x and w =

∑

i∈Sz
FK(i). If σ = 1, output u = hᵀ

z · e and
v =

∑

i∈Sz\S F .Eval(K{S}, i) +
∑

i∈Sz∩S Ki.

For correctness, observe that for every i ∈ Sz\S, FK(i)−F .Eval(K{S}, i) = 0,
and for every i in Sz ∩ S, FK(i) − Ki = x. Since Sz denotes the 1 entries
in hz and S denotes the 1 entries in e, we have w − v =

∑

i∈Sz
FK(i) −

∑

i∈Sz\S F .Eval(K{S}, i) − ∑

i∈Sz∩S Ki = x · (hᵀ
z · e) = x · u; the pseudoran-

domness of u follows from the fact that z 	→ hᵀ
z · e) is a WPRF under the

VDLPN assumption, and that of w follows from the pseudorandomness of the
PPRF.

2.5 Outline of the Original Proof of Resistance Against Linear Test

We provide here an overview of the original security analysis in [BCG+20a],
resistance against linear attacks. The two claims for which the analysis was
flawed are the Eq. 1 and the Lemma 17 . We explain the errors and provide a
correction in the Sect. 4.
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As outlined in the introduction, the goal of this analysis is to show that
the VDLPN assumption cannot be broken by any linear test, which captures in
particular all known attacks against LPN. This is formalized in the following
theorem:

Theorem 14. (Resistance against linear tests) There exist constants (Γ, μ, ν),
such that for any large enough w, any Γ · D ≤ w,N ← 2D, par ← (w,D,N), it
holds that

Pr
H

$←Hpar

[bias(Opar(H)) > μw] ≤ νw.

This theorem states that with high probability (at least 1 − νw), over the
choice of at most N = 2D random inputs (x(1), · · · , x(N)) any distinguisher
that computes a linear function of the entire output string y = (FK(x(1), · · · ,
FK(x(N))) has an advantage of at most μw in distinguishing the string from
uniform. Note that the choice of the linear function can depend arbitrarily on
(x(1), · · · , x(N)).

To bound the bias of Opar(H), the authors look at the sub-matrices of H,
and introduce a notion of good and bad matrices:

Definition 15. Given a matrix M ∈ F
N×2i

2 , M is judged bad with respect to a
vector v ∈ F

N
2 if

HW(v	 · M) /∈
[
2i

5
,
2i+2

5

]

.

Moreover, given w matrices (M1, · · · ,Mw) in F
N×2i

2 , we denote by Nv(M1,
· · · ,Mw) the number of matrices which are bad against v among M1 · · · Mw.

A matrix is bad with respect to a vector v if the bias it induces against
the test vector v is large. The goal of the proof is to guarantee that, with high
probability, at least half of the matrices are good. This is stated in the following
lemma.

Lemma 16. There is a constant C, such that for any 1 ≤ i ≤ D, and for any
vector v ∈ F

N
2 such that HW(v) ∈ [2i−1, 2i], it holds that

Pr
M1,··· ,Mw

$←Hi
par

[

Nv(M1, · · · ,Mw) ≥ w

2

]

≤ 2−C·2i·w.

The above lemma shows that for any fixed vector v of weight close to 2i,
the distribution induced by Hi

par has a low bias against v. The probability that
this holds is so high that it remains overwhelming even after a union bound
over all vectors v of weight in [2i−1, 2i]. Hence, this implies that in the output
H · e =

⊕

i Hi · ei, each component Hi · ei will guarantee low-bias against all
vectors in this window of weight; the XOR of these independent samples will
inherit the low-bias of all its components, and therefore resist all linear tests.
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Bounding the Number of Bad Matrices. In [BCG+20a], the authors refor-
mulate the event that a matrix M is bad as a balls and bins problem. Let
M

$← Hi
par. Recall that by definition of Hi

par, the rows of M are generated inde-
pendently from S1,2i . We start with 2i empty bins, each bin corresponding to a
column of M . Sampling a row of M according to the S1,2i distribution amounts
to throwing a ball randomly into one of the 2i bins. For a vector v of weight
l ∈ [2i−1, 2i], the event HW(v	 ·M) /∈

[
2i

5 , 2i+2

5

]

= Ii is equivalent to the follow-

ing event: after randomly throwing l balls into 2i bins, the number T of bins that
contain an odd number of balls satisfies T /∈ Ii. We have therefore the following
experiment: take 2i bins and throw l·w balls into the bins in w consecutive phase.
Each time that l balls have been thrown, we check that the proportion of the
number of bins that contains an odd number of balls is between 1/5 and 4/5, and
clear out the bins. At the end, we return failure if more than w/2 of the w checks
have failed. To bound the probability of returning a failure, define the following
cost function Φ (X1,1, · · · ,Xl,w) =

∑w
k=1

(

2i−1 −
∣
∣
∣HW

(
⊕l

j=1 Xj,k

)

− 2i−1
∣
∣
∣

)

,

where each Xj,k, 1 ≤ j ≤ l, 1 ≤ k ≤ w, is the random variable corresponding to
the bin in which the j-th balls of the k-th phase was thrown (seen as a length-2i

unit vector with a 1 at the bin position). The Xj,k are independent. Bound-
ing the number of bad matrices, the authors claimed, amounts to bounding Φ.
Indeed:

Pr
M1,··· ,Mw

$←Mi
par

[

Nv(M1, · · · ,Mw) ≥ w

2

]

≤ Pr

[

Φ(X1,1, · · · ,Xl,w) <
w · 2i

10

]

.

(1)
Afterwards, it suffices to bound Φ to conclude. The claim is that the following

bound holds:

Pr

[

Φ(X1,1, · · · ,Xl,w) <
w · 2i

10

]

≤ 2−C·2i·w. (2)

The choice of Φ is of course not arbitrary: Φ is a well-behaved function, in the
sense that it is 2-Lipschitz – i.e., changing any single input to Φ can only change
its output by at most 2. Fortunately, strong concentration bounds are known
on the probability that Lipschitz functions deviate too much from their mean.
It therefore only remains to apply such a bound (which is here the McDiarmid
inequality, a variant of the Azuma inequality), to get an estimate of the mean
of Φ. This bound is stated in the following lemma:

Lemma 17.

E [Φ (X1,1, · · · ,Xl,w)] ≥ w · 2i

5
.

Given the proof of Lemma 17, the McDiarmid inequality provides a bound on
Φ, which translates to a bound on Nv by Eq. 1. A union bound over all vectors
of weight between [2i−1, 2i] allows to conclude:
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Pr
M1,··· ,Mw

$←Hi
par

[

∃v ∈ Si,N , Nv(M1, · · · ,Mw) ≥ w

2

]

≤ 2D·2i · 2−C·w·2i ≤ 2−a·w,

with a = C
2 > D. The proof ends with a last union bound over all matrices

Hi, for 1 ≤ i ≤ D.

Some Notations. In the following, we will denote by Xj,k indicates the bin
into which the j-th ball of the k-th phase is thrown (Xj,k is a unit vector).
Given a test vector v ∈ F

N
2 of weight HW(v) = l, we define Ri,l,k = HW(v	 ·

M) = HW
(
⊕l

j=1 Xj,k

)

. That is, Ri,l,k it is the number of bins that contains
an odd number of 1 in the k-th phase; we usually write it Rl,k when i is clear
from the context. We further define Zi,l,k as Zi,l,k = |2i−1 − Rl,k| (also usually
written Zl,k). Eventually, we denote by Si,N the set of vectors v ∈ F

N
2 with

HW(v) ∈ [2i−1, 2i].

3 Faster PCF from a VDLPN Variant

The original proof shows that for an appropriate choice of a constant Γ , if
w ≥ Γ ·D, then the bias of Opar is 2−Ω(w) with probability 1−2−Ω(w). However,
the concrete constants are utterly impractical (the correction of the flaw doesn’t
help as we will see in Sect. 4). With a quick back-of-the-envelope calculation, to
guarantee D · 2−a·w < 2−80 we need w > 85

a (for D = 30). However, the value a
in our analysis satisfies a < 1

40000 , leading to a necessary value of w ≈ 106.These
parameters are of course completely unusable. Therefore, in its current state,
the proof only shows the asymptotic security of the construction in a parameter
range which cannot be instantiated; any concrete instantiation is bound to rely
only on heuristic parameters instead, not backed up by any security analysis.
In this section, we aim at mitigating this unsatisfying situation, and provide
a parameter set which is simultaneously usable in practice, and comes with
provable security guarantees.

3.1 A Proof Friendly VDLPN Variant for Resistance Against
Linear Attack

We put forth a simple tweak of the VDLPN assumption which allows for a much
tighter proof of resistance against linear attack, yet enjoys the same applications
as the original VDLPN assumption. The tweak is straightforward: recall that
in the original construction, the matrix H is sampled as a concatenation of
matrices H1 · · · HD, where each Hi is a concatenation of w matrices whose rows
are unit vectors of length 2i. In the security analysis, the authors bound the bias
of the Hi · ei terms against length-Θ(2i) attack vectors. However, the bounds
from the new correct analysis of Sect. 4 turned out to be much worse for small
constant values of i (to the point that the bounds do not suffice anymore for
very small i, and we have to handle them separately). Here, we suggest replacing
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H1|| · · · ||Hi∗−1, where i∗ is some fixed small constant (we will pick i∗ = 5 in
our concrete instantiation), by a uniformly random matrix R of appropriate
dimensions. That is, H is now of the form H = [R||Hi∗ || · · · ||HD]. As before,
the noise distribution will be identical to the row distribution of H. This means
that we will have H · e = R · er +

∑D
i=i∗ Hi · ei, where er is a uniformly random

vector.
Let t be the width of R. We show that the R · er term guarantees resistance

against all low-weight tests. Then, saying that the distribution DR = {R · er :

er
$← F

t
2} has zero bias against all vectors of weight below d is equivalent to

saying that DR is a d-wise independent distribution. It is a well-known fact that
this is equivalent to the following: the dual of the code generated by R, which
is a random linear code of dimension 2D − t, has minimum distance at least d.
Fortunately, the minimum distance of random linear codes is well-known. Let S
be a random code of dimension 2D − t, and codeword length 2D. Then,

Pr[S has minimum distance < d] ≤ 2−t−H2(d/2D)·2D

,

where H2(x) = −x log x − (1 − x) log(1 − x) is the binary entropy function.
Concretely, suppose that we want to perfectly withstand all linear tests of weight
at most d = 15, with probability at least 1− 2−λ, given up to 2D = 230 samples.
This means we need to pick t such that t = H2(15/230) ∗ 230 + λ; using λ =
128, this gives t = 541. Hence, picking a uniformly random width-541 matrix
guarantees that, with probability at least 1−2−128, we only have to worry about
any linear test of weight at least 16 = 2i∗−1. Note that this variant can be used
exactly in the same way as the original VDPLN one, as a building block to
construct PCF, as long as we can prove its security against linear tests.

3.2 A New Tight Proof Strategy

For the rest of the analysis, we assume that we start with i ≥ i∗ = 5. The
adversary chooses an attack vector v of hamming weight l ∈ [2i−1, 2i]. We use
the following random variable:

Zi,l,k =

∣
∣
∣
∣
∣
∣

HW

⎛

⎝

l⊕

j=1

X
(i)
j,k

⎞

⎠− 2i−1

∣
∣
∣
∣
∣
∣

.

Unlike the original proof (see Sect. 2.5), this time we aim at a much more
direct strategy. Since we ultimately want to bound the probability that the bias
of Opar(H) is too high, we rewrite this bias directly in terms of the above random
variable. For a fixed choice of H, let Oi

par = Oi
par(H) be the distribution that

samples ei (a concatenation of w length-2i unit vectors) and outputs Hi · ei. Of
course, we have Opar =

⊕

i≥i∗ Oi
par ⊕ OR

par (where OR
par denotes the distribution

that samples a uniformly random length-t vector er and outputs R · er, where t
is a parameter which will be fixed afterwards). Furthermore, for any test vector
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v, we have biasv(Opar) ≥ biasv(Oi
par). We therefore focus on bounding the bias

against a test vector v of Oi
par. We have

biasv(Oi
par) =

∣
∣
∣
∣

1
2

− Pr[(v	 · Hi) · ei = 1]
∣
∣
∣
∣
.

(v	 · Hi) · ei is the XOR of w independent terms (v	 · Hi,j) · ei,j where each
ei,j is a length-2i unit vector. Therefore, we further decompose Oi

par as the XOR
of w distributions D1, · · · ,Dw (we drop the parameters i, par, and H for now as
we consider a fixed choice of them, to lighten the notations). To bound the bias
of Oi

par, we must therefore bound

Pr

[
w⊕

k=1

Dk = 1

]

=
1
2

(

1 −
w∏

k=1

(

1 − Ri,l,k

2i−1

))

,

where you get the right hand side by applying the piling-up lemma. Hence,
we obtain a direct expression of the bias of Oi

par in terms of the Zi,l,k random
variables:

biasv(Oi
par) =

1
2

·
w∏

k=1

Zi,l,k

2i−1
.

Fix any bound B. Then by the above,

Pr[biasv(Oi
par) > B] = Pr

[
w∏

k=1

Zi,l,k > 2(i−1)w × (2B)

]

.

Now, the key to bounding the right hand side term is the following obser-
vation: independently of the exact behavior of the random variables Zi,l,k, con-
strained on the product

∏

k Zi,l,k being at least 2(i−1)w · (2B), the sum
∑

k Zi,l,k

is minimized when all the terms in the product are equal. This implies that
whenever

∏w
k=1 Zi,l,k > 2(i−1)w × (2B), it necessarily further holds that

w∑

k=1

Zi,l,k > w ·
(

2(i−1)w × (2B)
)1/w

,

which allows to upper bound the probability of the bias being too large by

Pr[biasv(Oi
par) > B] ≤ Pr

[
w∑

k=1

Zi,l,k > w · 2(i−1) · c

]

,

where c = (2B)
1
w . As in the previous proof, we can now re-introduce the function

Φ (X1,1, · · · ,Xl,w) = 2i−1 · w −∑w
k=1 Zi,l,k:

Pr[Φ < E[φ] − t] = Pr

[
w∑

k=1

Zi,l,k > w · (E[Zi,l] + 2i · ζ)

]

.
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With t = ζ · w · 2i. Let β be a constant such that E[Zi,l] ≤ β · 2i (In the
correction of the original proof, we will show that β = 0.44 works ; we will
actually use a tighter constant here). This gives c = 2(β + ζ). As we did before,
we can now apply McDiarmid’s inequality 7 to get

Pr

[
w∑

k=1

Zi,l,k > w · 2i−1 · c

]

< exp
(

−w
22i−1

l
· ζ2

)

,

and obtain the bound

Pr
(

biasv(Oi
par) >

1
2
(2(β + ζ))w

)

≤ exp
(

−w
22i−1

l
· ζ2

)

.

While this might be obscured by the many variables involved, this last bound
is tremendously tighter than what was achieved with the previous proof. In
essence, this is because the previous proof relied on Lemma 5 to bound the
bias of the XOR of independent distributions, but the latter introduces some
exponential slackness in the number of distributions involved. To overcome this
slackness, the strategy was to only “count” the distributions that contribute
the most to the bias, by identifying good distributions, showing that, over the
choice of H, a sufficient number of distributions will be good, and applying the
lemma only to these good distributions. This guarantees that the slackness is
compensated by the contribution of each distribution. If, instead, one tries to
apply the lemmas to all distribution, the bound obtain is too loose and does not
provide any usable guarantee.

Here, we manage to directly account for the contribution to the bias of all
distributions, by carefully rewriting the bias formula in terms of the Zi,l,k random
variables, and by using a standard “optimization trick” to bound the product
of the Zi,l,k in terms of their sum. This turns out to be the key to get back
to the function which we can bound with known tools (the function Φ, which is
Lipschitz), without paying any slackness in the number of distributions involved.

In the following, we will numerically evaluate the constant β (this is an
orthogonal optimization: In the correction of the mistake in Sect. 4, we prove that
β ≤ 0.44. Using this value for β would already lead to significant improvements,
as we will see) and carefully tune the parameters to find out the smallest value of
w for which we can achieve 80-bit security against all test vectors simultaneously,
fixing the number of samples to a reasonable bound of N = 230.

3.3 Concrete Parameters

In our bound on the bias, the l in the denominator of the probability is one of the
key factors for concrete efficiency. Our previous proof used l ∈ [2i−1, 2i]. In fact,
we cannot expect l to be any smaller: E[Zi,l] measures how, when one throws l
balls at random in 2i bins, the number of bins which end up containing an odd
number of balls diverges from the middle value 2i−1. When we throw less than
2i−1 balls in total, this number will of course be bounded away from 2i−1; yet,
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as simulations reveal, it becomes tightly concentrated around 2i−1 as soon as l
gets larger. We therefore fix l ∈ [2i−1, 2i] and empirically estimate E[Zi,l]. Our
script can be found in the full version. Table 1 shows the value of β obtained for
different choices of n = 2i and l. For larger values of n and a fixed l = l(n), note
that our estimate value for β barely increase (for l < n) or decrease (for l ≥ n).

Table 1. Estimated value of β for different values of n and l, in a confidence interval
of 99% (rounded value ±0.002 )

n = 32 n = 64 n = 512 n = 1024 n = 2048

l = n
2

0.178 0.181 0.184 0.184 0.184

l = 3·n
4

0.111 0.111 0.111 0.111 0.112

l = n 0.084 0.073 0.067 0.067 0.067

Let us go back to our bound. For a given vector of Hamming weight l,

Pr
(

biasv(Oi
par) >

1
2
(2(β + ζ))w

)

≤ exp
(

−w
22i−1

l
· ζ2

)

,

hence, by a union bound over all vectors of Hamming weight l,

Pr
(

∃v,HW(v) = l, biasv(Oi
par) >

1
2
(2(β + ζ))w

)

≤
(

N

l

)

exp
(

−w
22i−1

l
· ζ2

)

From the above inequality, we numerically look for a w such that, for all l
such that HW(l) ∈ [2i−1, 2i], (2 · (β + ζ))w/2 ≤ 2−80 and

(
N

l

)

· exp
(

−w
22i−1

l
· ζ2

)

≤ exp
(

ln(N) · l − w · 22i−1

l
· ζ2

)

≤ 2−90.

(The 2−90 bound is to anticipate the cost of the union bound.) In the following
we set the number of samples N = 2D = 230, which is a realistic value for target
applications. To find a suitable w, we calculate the required w for different values
of l. Let us first assume that l = 2i−1. The second inequality can be rewritten as
exp

(

2i−1 · (ln(2) · 30 − 2 · w · ζ2
)) ≤ 2−90. If w · ζ2 ≥ 12.35, then the condition

is met. Thus, we can now turn to the other inequality to satisfy; we therefore set
w to ζ2/12.35. Using Table 1, we set β = 0.184 and numerically solve (2 ·(0.184+
ζ))12.35/ζ2 ≤ 2−80 to guarantee that the bias will be lower than 2−80. This gives
ζ ≤ 0.219 and w = 12.35/0.2192 ≈ 257. At the other end of the interval, setting
l = 2i, the second inequality becomes exp

(

2i · (ln(2) · 30 − 1
2w · ζ2

)) ≤ 2−90.
This time, we get w · ζ2 ≥ 45.5 and set β = 0.084 using Table 1. Solving

(2·(0.084+ζ))
45.5
ζ2 ≤ 2−80 gives ζ = 0.347, and eventually w = 45.5/0.3472 ≈ 380.

Generalizing this method, we numerically extrapolate how the value of w evolves
when l varies from 2i−1 to 2i. The calculations show that w is monotonously
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increasing, leading to an overall choice of w ≈ 380 as a single parameter that
suffices for the entire range of values. This is a major improvement compared
to the previous proof.4 From here, finishing the proof boils down to two union
bounds, giving

Pr(∃v,HW(v) ∈ [2i−1, 2i], biasv > 2−80)

≤
2i
∑

l=2i−1

(
N

l

)

exp
(

−w
22i−1

l
· ζ2

)

≤ 2i∗−1 · 2−90 = 2−86,

where the last inequality comes from the fact that 2i∗
= 25. For i > i∗, the

bound in the probability decreases (exponentially) faster than the increase of
2i, and the result remains valid. Eventually, by a union bound on all i, with
D = 30, Pr(∃v,HW(v) ≥ 24, biasv > 2−80) ≤ (D − 8) · 2−86 < 2−80. Concrete
cost estimations for the pseudorandom correlation function obtained by using
the VDLPN parameters of our improved analysis are given in the introduction.

4 Security of VDLPN Against Linear Tests, Revisited

As pointed out, the analysis of [BCG+20a], while the proof strategy seems sound
and appropriate, contains some errors which invalidate the proof. Fixing the
errors turns out to be quite delicate. Below, we elaborate on the two issues; the
first is a minor error, which can be fixed relatively easily, at the cost of changing
the (arbitrary) choice of constants (in particular, the 1/5 and 1/10 constants):
Claim 1 is incorrect as stated; the error in its analysis stems from a reversed
inequality. However, a variant of Claim 1 with different constants can be easily
shown to hold; this does not change the spirit of the proof, nor its conclusion.
The second error is more delicate to fix, and will be the main focus of this
Section.

Main Error. The main error appears in the proof of Eq. 2. The error is in
the analysis of Lemma 17. As sketched in the introduction, after calculating
an upper bound on the expectation E

[

HW(
⊕l

j=1 Xj,k)
]

, the authors deduce

a bound on E

[∣
∣
∣2i−1 − HW(

⊕l
j=1 Xj,k)

∣
∣
∣

]

. However, a bound on E[Z] does not
imply a bound on E[|Z − b|] in general (and typically when Z is “concentrated
away” from b). Up to the choice of the constant 1/5 (the proof actually only
requires any constant below 1/2), the lemma remains true; however, proving the
lemma fundamentally requires characterizing the shape of the random variable
HW(

⊕l
j=1 Xj,k). This turns out to be non-trivial.

4 The improvement comes from a better estimation of the β parameter on one hand,
but also from the better inherent quality of the new proof. In fact, we can consider the
same calculation as before, but with l = 27 and β = 0.44. This is a non-computer-
optimized, provable value of β using i∗ = 7. With this value, we get w ≈ 13000,
which is already a big gain from the previous method: this is already several orders
of magnitudes better than the previous method, though still not practical.
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4.1 Repairing the Proof

In this section, we put forward a corrected detailed analysis of the resistance
of VDLPN against linear tests. Our proof fixes the two errors in [BCG+20a],
at the cost of achieving worse constants, and being more involved. As before,
we study individually the bias induced by the Hi components against vectors of
weight close to 2i. However, for now, we only consider large enough values of i,
and assume that n = 2i ≥ 27. The missing cases are handled in the full version.

Definition 18 (δ-Bad Matrices).
Let M ∈ F

N×2i

2 . We say that M ∈ Badδ,v with respect to a vector v ∈ F2N if

HW(v	 · M) = Rl,k /∈ [

δ · 2i, (1 − δ) · 2i
]

.

Stated in terms of Zl,k, this condition rewrites to Zl,k ∈ [

(1/2 − δ) · 2i, 2i−1
]

.
We let Goodδ,v denote the complement of Badδ,v Given vector v, we also denote
Bδ,v = #Badδ,v = Nv(M1, · · · ,Mw) and Gδ,v = #Goodδ,v = w − Bδ,v.

The Proof. We now prove Theorem 14. Let Oi
par(H) be the distribution induced

by sampling ei (as a concatenation of w length-2i vectors) and outputting Hi ·ei.
A sample from Oi

par(H) can be further decomposed as
⊕

j≤w Hi,j ·ei,j where the
ei,j are unit vectors. Let Di denote the distribution of Hi,j ·ei,j (these terms are
w samples from the same distribution). Let α be a constant. Then,

Lemma 19. If Bδ,v ≤ α · w, then

bias

(
w⊕

i=1

Di

)

≤ 1
2

· ((1 − 2δ)(1−α))w.

Proof. By the piling-up lemma (Lemma 6),

bias

(
w⊕

i=1

Di

)

≤ 2(1−α)w−1 ·
(

1
2

− δ

)(1−α)·w
≤ 1

2
· ((1 − 2δ)(1−α))w

��
Lemma 19 provides an upper bound of the bias, which depends on the number
of good matrices and their quality. We now show that the condition Bδ,v ≤ α ·w
holds with very high probability:

Lemma 20. For any v ∈ Si,N , there is a constant C such that

Pr
[

Bδ,v > α · w

]

≤ 2−C·2i·w.

Proof. As in the original proof, we introduce the function Φ:

Φ (X1,1, · · · ,Xl,w) =
w∑

k=1

⎛

⎝2i−1 −
∣
∣
∣
∣
∣
∣

HW

⎛

⎝

l⊕

j=1

Xj,k

⎞

⎠− 2i−1

∣
∣
∣
∣
∣
∣

⎞

⎠

= 2i−1 · w −
w∑

k=1

Zl,k.
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We want to bound the probability of large bias by a bound on Φ. This is
where the first error appeared in the previous proof.

Lemma 21 (Correction of the first error).

Pr
[

Bδ,v ≥ α · w

]

≤ Pr

[

Φ(X1,1, · · · ,Xl,w) < γ · w · 2i

]

,

with γ = 1
2 − α( 12 − δ).

Due to lack of space, the proof of the above lemma will appear in the full
version. It remains now to find an upper bound on the right hand side probability.
As in the original proof, we used the bounded difference inequality. Since Φ is
2-Lipschitz, (this was proved in the original proof),

Pr[Φ(X1,1, · · · ,Xl,w) ≤ E[Φ(X1,1, · · · ,Xl,w)] − t] ≤ exp
(

− t2

2lw

)

.

We finally want to prove a lower bound on E[φ(X1,1, · · · ,Xl,w)]. Recall that
Φ (X1,1, · · · ,Xl,w) = 2i−1 · w − ∑w

k=1 Zl,k, so this reduces to bounding E[Zl,k].
Our main contribution in this analysis is the proof of the following lemma:

Lemma 22 (Correction of the second error). For all n ∈ N, there exists
β < 1/2 such that E [Zl,k] < β · n.

Proof (Sketch). We first provide a high level overview, and due to lack of
space, we defer the full proof of Lemma 22 to the full version of the arti-
cle. The proof consists in finding an upper bound on both Pr[Rl,k ≥ p · n]
and Pr[Rl,k ≤ (1 − p) · n] for p ∈ [ 12 , 1] and to use it to find the one on

E[Zl,k] =
∑2i−1−1

j=0 Pr
(∣
∣Rl,k − 2i−1

∣
∣ > j

)

.

Lemma 23. Let n = 2i > 27, l ∈ [2i−1, 2i] and μ = (1 − 1
n )l. There exists

0.5 ≤ p ≤ 1 such that with θ = pn−l/2
μ − 1, it holds that

max (Pr [Rl,k ≥ pn] ,Pr [Rl,k ≤ (1 − p)n]) ≤ 2 exp
(

−θ2μ2(n − 1
2 )

n2 − μ2

)

.

To prove this lemma, we use the Occupancy Bound for balls and bins from
Lemma 8. The occupancy bound is about the proportion of empty bins, but can
shrewdly be transformed to bring it back to our specific problem which focuses
on parity in bins. This concludes the sketch. ��

The end of the proof is the same as in the original proof, up to handling
separately the case of small i’s. The total number of vectors v ∈ Si,N can be
bounded by

2i
∑

l=2i−1

(
N

l

)

≤ (2i − 2i−1) · N2i

(2i−1)!
≤ 2D·2i

.
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Hence, choosing constant such that Cw/2 > D, and setting a = C/2, by a
union bound, we have

Pr
[

∃v ∈ Si,N , Bδ,v ≥ α · w

]

≤ 2D·2i · 2−C·2i·w ≤ 2−a·w.

We eventually use a union bound again on all values of i ≤ D:

Pr
[

∃i ≤ D,v ∈ Si,N , Bδ,v ≥ α · w

]

≤ D · 2−a·w.

which, using Lemma 19, rewrites to

Pr
[

∃i ≤ D,v ∈ Si,N , biasv

(
w⊕

i=1

Di

)

≥ 1
2

· ((1 − 2δ)(1−α))w

]

≤ D · 2−a·w.

The argument for small values of i is completely different. In essence, we show
that the first block of H, H1, does already suffice to withstand all even-weight
test vectors. Then, with a “brute-force” union bound, we show that the second
block H2 allows to withstand all tests of odd weight, provided that w = Ω(2i ·D).
When i is a constant, this is already captured by the requirement that w ≥ Γ ·D
for a suitable constant Γ , which suffices to handle all remaining corner cases.
Refer to the full version for complete explanation ��
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Abstract. Given � parties with sets X1, . . . , X� of size n, we would like
to securely compute the intersection ∩�

i=1Xi, if it is larger than n − t for
some threshold t, without revealing any other additional information. It
has previously been shown (Ghosh and Simkin, Crypto 2019) that this
function can be securely computed with a communication complexity
that only depends on t and in particular does not depend on n. For
small values of t, this results in protocols that have a communication
complexity that is sublinear in the size of the inputs. Current protocols
either rely on fully homomorphic encryption or have an at least quadratic
dependency on the parameter t.

In this work, we construct protocols with a quasilinear dependency on
t from simple assumptions like additively homomorphic encryption and
oblivious transfer. All existing approaches, including ours, rely on proto-
cols for computing a single bit, which indicates whether the intersection
is larger than n−t without actually computing it. Our key technical con-
tribution, which may be of independent interest, takes any such protocol
with secret shared outputs and communication complexity O(λ� poly(t)),
where λ is the security parameter, and transforms it into a protocol with
communication complexity O(λ2�t polylog(t)).

1 Introduction

In the private set intersection (PSI) setting, � parties with private input sets
X1, . . . , X� would like to jointly compute ∩�

i=1Xi without revealing anything
else about any of the sets to each other. PSI is a powerful tool with applica-
tions in various places, such as botnet detection [NMH+10], online advertis-
ing [PSSZ15], private contact discovery [Mar14], and contact tracing [DPT20].
Various works have shown how to design asymptotically and practically efficient
protocols in both the two and multiparty setting with security against both
passive and active adversaries [Mea86,FNP04,KS05,DCW13,PSSZ15,KKRT16,
PRTY19,PRTY20]. Unfortunately, all these protocols have communication com-
plexities that are at least linear in the size of the smallest input set and it was
observed by Freedman, Nissim, and Pinkas [FNP04] that one cannot hope to do
better in general.

Ghosh and Simkin [GS19] have recently shown that the communication com-
plexity can be sublinear in the sizes of the input sets, when the intersection is
c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13941, pp. 251–272, 2023.
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very large. The authors considered the threshold private set intersection (TPSI)
setting, where the parties would like to compute the intersection of their sets,
if and only if it is larger than n − t, where n is the size of each set and t is
some threshold. Based on simple assumptions, such as the existence of obliv-
ious transfer and additively homomorphic encryption, Ghosh and Simkin con-
struct protocols for TPSI with a communication complexity of O(λt2 polylog t)
bits, where λ is the computational security parameter, for the two-party case.
The authors also show how to construct a close to optimal two-party protocol
based on fully homomorphic encryption with O(λt polylog t) bits and outline
how these protocols can be extended to the multiparty case. The authors show
an Ω(t) lower bound on the communication complexity for the two-party case.
Subsequently Branco, Döttling, and Pu [BDP21] present an �-party protocol
with a communication complexity of O(λ�t2 polylog t) bits based on threshold
additively homomorphic encryption. Badrinarayanan et al. [BMRR21] propose
a protocol for a setting similar to the TPSI setting above, namely for computing
the intersection of � sets with a communication complexity of O(λ�t polylog t),
when

∣
∣(∪�

i=1Xi) \ (∩�
i=1Xi

∣
∣) ≤ t. For � = 2, the work of Badrinarayanan et al. is

equivalent to two-party TPSI, but for � > 2 their work requires the set intersec-
tion to not only be large, but additionally they require that the parties have less
than t distinct elements outside the intersection among all sets. Both Branco,
Döttling, and Pu as well as Badrinarayanan et al. show that one cannot do bet-
ter than Ω(�t) in their respective settings and provide, up to polylog factors,
matching upper bounds based on fully homomorphic encryption.

All three works [GS19,BDP21,BMRR21] leave constructing asymptotically
optimal multiparty protocols from other assumptions than the existence of fully
homomorphic encryption as an open problem.

1.1 Applications of Threshold Private Set Intersection

As has been pointed out by the previous works, threshold private set intersection
is not just an interesting theoretical object to study, but also has the potential to
be useful in a variety of practical applications, where parties are only interested
in the actual intersection if it is indeed large. In the biometric authentication
setting, we have a biometric reading represented as a feature vector and a tem-
plate. An authentication attempt can directly be discarded, if the reading has
a small intersection with the template. In the setting of ride sharing or dating
apps, users may not care to share their private data with each other, if they do
not have a large intersection.

Even protocols for general private set intersection can benefit from more
efficient TPSI protocols. Parties that would like to compute the intersection of
their sets, can first execute a private intersection cardinality test protocol on
thresholds 2, 22, 24, . . . to determine the correct threshold and then compute the
intersection using the TPSI protocol. Using this approach, leads to a general
private set intersection protocol with a communication complexity that depends
on the size of the output and not on the size of the inputs. This is in stark contrast
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to the majority of existing works on PSI that usuall have a communication
complexity that is at least linear in the smallest set size.

1.2 Our Contribution

In this work, we present new protocols for computing the threshold private set
intersection among � parties with a quasilinear rather than quadratic dependency
on t from simple assumptions. More concretely, we construct protocols with
a communication complexity of O(λ2�t polylog t) bits. We follow the blueprint
of Ghosh and Simkin [GS19] and tackle the problem by splitting it into two
smaller problems. We first execute a private intersection cardinality test (PICT)
protocol Πn,t

�-pict(X1, . . . , X�) that checks, whether the given sets X1, . . . , X� have
an intersection of size at least n − t. If they do, we can execute another protocol
for computing the actual intersection in a communication efficient manner.

Computing the intersection, when it has already been established that it
is indeed large enough, can be done generically from assumptions, like the exis-
tence of oblivious transfer or additively homomorphic encryption, with a close to
optimal communication complexity of Õ(λ�t) bits as has been shown by Ghosh
and Simkin. Thus, the main challenge and the focus of this work is to construct
communication efficient PICT protocols from simple assumptions, which output
a single bit that indicates, whether the intersection is large enough.

Our main technical contribution is a transformation that takes any PICT pro-
tocol with secret shared outputs1 and communication complexity O(λ�poly(t))
and transforms it into a new protocol that solves the same task, but has a commu-
nication complexity of only O(λ2�t polylog(t)). An implication of this compiler
is the existence of multiparty protocols with the above stated communication
complexity from effectively any assumption that implies secure computation.
The efficiency of a protocol that is given as input to our transformation only
affects the constant in the polylog(t) exponent.

Is This Stuff Practical? We stress that the main focus of this work is to
construct asymptotically efficient protocols from simpler assumptions. We hope
that our work will eventually lead to practically efficient protocols, but we think
that our current results achieving a communication complexity of O(λ2�t logc t)
bits for some c ≥ 2 are still slightly too inefficient for most reasonable real-world
parameters. We leave constructing protocols with c ≤ 1 as an exciting open ques-
tion for future work. Nonetheless, we view our work as a significant theoretical
step towards more efficient protocols for threshold private set intersection.

1.3 Technical Overview

For the sake of this overview, let us focus on the two-party case. We would like
to design a protocol that takes two sets X,Y ⊂ U from some universe U as input
1 All existing protocols can easily be adapted to output secret shares of the output

instead of the output itself.
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and outputs a bit that indicates, whether |X ∩ Y | ≥ n−t or equivalently, whether
the symmetric set difference |X�Y | := |X \ Y ∪ Y \ X| ≤ 2t. Our main idea is
to approach this problem via a divide and conquer strategy, i.e. to partition the
sets X and Y into smaller sets X1, . . . , Xt and Y1, . . . , Yt and then to perform a
series of independent PICTs on each pair Xi and Yi for i ∈ [t] := {1, . . . , t}.

More precisely, imagine we have random functions2 Hi : U → [t] for i ∈ [ε]
for some value ε that take set elements as input and outputs values in [t]. Define
Xj

i = {x | x ∈ X ∧ Hj(x) = i} and Y j
i = {y | y ∈ Y ∧ Hj(y) = i} for i ∈ [t] and

j ∈ [ε] and observe that for all j ∈ [ε]

|X�Y | =
t∑

i=1

∣
∣
∣X

j
i �Y j

i

∣
∣
∣ .

Consider some fixed j ∈ [ε]. If |X�Y | ≤ 2t, then in expectation each pair of sets
Xj

i and Y j
i contains at most two elements in their symmetric set difference and

one can show that (for a fixed j) with a constant probability none of the pairs
has a symmetric set difference that is larger than O(ln t). It follows that when
|X�Y | ≤ 2t, there must exist at least one j for which

∣
∣
∣X

j
i �Y j

i

∣
∣
∣ ∈ O(ln t) for

all i ∈ [t] with an overwhelming in ε probability.
So how is this helpful? Imagine we were given access to an auxiliary func-

tionality Fn,t̃,v
� that takes two sets as input and either returns a secret sharing

of the size of their exact symmetric set difference or a secret sharing of some
default value v, if the symmetric set difference is larger than t̃ ≈ ln t. We can
use Fn,t̃,v

� on each of the εt many subset pairs to obtain equally many secret
shared values and then add all the values together that belong to inputs, which
were partitioned using the same random partitioning function to get a total of ε
many secret shared sums. Each of those sums either equals the exact size of the
symmetric set difference of X and Y or some value, which has v as a summand.
By picking v = t + 1, we ensure that each sum containing v is larger than t. As
the final step in our protocol, we run a generic secure computation protocol for
checking, whether any of the ε sums is at most t in which case we conclude that
the inputs X and Y have a large enough intersection.

To make our protocol work, we still need to instantiate Fn,t̃,v
� . We show

that this can be done from any PICT protocol with secret shared outputs
for thresholds t̃. If the given protocol has a communication complexity of
O(λ poly(t̃)) bits, then our instantiation of Fn,t̃,v

� has a communication com-
plexity of O(λt̃ poly(t̃)) = O(λ ln t polylog t) = O(λ polylog t). Since our app-
roach only relies on generic secure computation and existing PICT protocols, it
follows that we can instantiate our constructions from assumptions that imply
both of these cryptographic objects. As we will see, this means that we can
instantiate our results from oblivious transfer or generic additively homomor-
phic encryption.

2 Throughout the paper we will use random functions for the sake of simplicity, but
we stress that all of our constructions and arguments work equally well with pseu-
dorandom functions, where the key is known to all parties.
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Our multiparty PICT protocols follows the same blueprint as the protocol
outlined above, but need to overcome several other challenges. In the the two-
party case we got away with just talking about the symmetric set difference,
since an upper bound on that quantity directly translates into a lower bound
on the set intersection size. In the multiparty setting this is not the case any
longer and we will need to directly talk about the set intersection sizes in all the
buckets instead. While it may sounds like an irrelevant change, it does introduce
some small technical challenges that we will highlight in Sect. 4.

Paper Outline. In Sect. 2 we recall some basic preliminaries and define all
the required notation that will be needed throughout the paper. In Sect. 3, we
present our protocol for the two-party case. We stress that this does not asymp-
totically improve upon the state-of-the-art, which has a communication complex-
ity of O(λt polylog t) bits3. We do, however, believe that our two-party protocol
highlights the main ideas of this work quite well, while avoiding some of the
complexities that come from considering multiple parties. In Sect. 4 we present
our multiparty protocol, which is the main technical contribution of this work.

2 Preliminaries

Notation. We write [n] = {1, 2, . . . , n}. Let log x be the logarithm of x with
base 2 and lnx the one with base e. For convenience, we assume the natural
numbers start at one, i.e. N = {1, 2, 3, . . . }. Let λ be the computational and
ε the statistical security parameter and we assume that ε/λ ∈ O(1). We write
F to denote a finite field of prime order and we assume that |F| ≥ 2ε. For
parties P1, . . . , P� with inputs X1, . . . , X� that have oracle access to an ideal
functionality F , we write (b1, . . . , b�) ← F(X1, . . . , X�) as a shorthand notation
for each party i sending Xi to the ideal functionality and, once all inputs are
received, receiving back output bi. For a protocol Π, we write CC(Π) to denote
the communication complexity of Π, i.e. the number of bits exchanged in one
execution of the protocol.4

Theorem 1 (Chernoff Bound). Let I1, . . . , In be random variables with 0 ≤
Ii ≤ 1 for all i ∈ [n]. Define I =

∑n
i=1 Ii and let μ = E[I]. For any δ ≥ 1,

Pr[I ≥ (1 + δ)μ] ≤ e− δμ
3 .

3 This communication complexity can be obtained, without using fully homomorphic
encryption, by using the construction of Ghosh and Simkin [GS19] in combination
with an observation due to Badrinarayanan et al. [BMRR21].

4 We assume that the communication complexity is a deterministic function of the
inputs and parameters of Π.
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Set Gymnastics. Let U be the universe from which set elements will be
sampled and let Z = (z1, z2, . . . ) be an auxiliary (sorted) universe such that
U ∩ Z = ∅. We will use upper case letter for sets and lower case letters for
their elements, e.g. S = {s1, . . . , sn}. For S ∈ Un and function H : U → [t],
we write (S1, . . . , St) ← H(S) as a shorthand notation to specify the sets
Si = {s | s ∈ S ∧ H(s) = i}.

Secret Sharing. Let Sharen : F → F
� be an �-out-of-� secret sharing algorithm

that takes v ∈ F as input and outputs uniformly random v1, . . . , v� ∈ F, such
that v =

∑�
i=1 vi. When an algorithm or a functionality outputs Share�(v), we

mean that party i receives shares vi.

2.1 Secure Multiparty Computation

We assume familiarity with standard secure computation notions in the stan-
dalone model (see [Lin17]). In this paper, we assume that all parties are pairwise
connected via a synchronous network and authenticated private channels. Addi-
tionally the parties have access to a broadcast channel. We consider an adversary
that can corrupt all but one parties passively.

2.2 Private Intersection Cardinality Testing

For the two-party case the functionality we are interested in is the Fn,t
pict(X,Y )

functionality shown in Fig. 1. It is helpful to note that for X and Y with n =
|X| = |Y |, it holds that

|X ∩ Y | ≤ n − t ⇐⇒ |X�Y | > 2t,

which means that the functionality outputs a sharing of 1 for two sets of size n
if and only if |X ∩ Y | > n − t. The functionality Fn,t

pict(X,Y ) does allow for the
input sets to be of unequal sizes smaller than n in which case the equivalence
above does not hold. This is done for the sake of simplifying the presentation
of our construction in the two-party case. The multiparty functionality will be
introduced in Sect. 4 and it will require the input sets to be of the same size.

2.3 Some Auxiliary Functionalities

In the following, we define some helpful functionalities that will come in handy
later on. They can be realized using any generic secure computation protocol
and will not affect our communication complexities in any meaningful way.

The functionalities in Fig. 2 allow for comparing a secret shared input against
a publicly known threshold and returning either the secret shared value or a
default value. Both functionalities can be easily realized with communication
complexities that are linear in their input length with standard secure compu-
tation tools.
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Functionality Fn,t
pict (X, Y )

if |X| > n or |Y | > n

return ⊥
if |X�Y | > t

return Share2(0)

else

return Share2(1)

Fig. 1. Functionality takes two sets X and Y of size at most n as input and checks
whether |X�Y | ≤ t.

Functionality F t,v
cmp(r1, r2)

if r1 + r2 = t

return Share2(v)

else

return Share2(r1 + r2)

Functionality F t,v
�-geq(r1, . . . , r�)

Compute s :=
�∑

i=1

ri

if s ≥ t

return Share�(s)

else

return Share�(v)

Fig. 2. Some useful private comparison function of secret shared inputs.

Functionality F t,ε
�-vec-leq((s

1
1, . . . s

ε
1), . . . , (s

1
� , . . . s

ε
�)) in Fig. 3 takes ε many �-

out-of-� secret shared field elements as input and returns 1 if any one of them is
smaller than t and 0 otherwise. This functionality can be realized using generic
secure computation with a communication complexity of O(ε� |F|) bits.

Functionality F t,ε
�-vec-leq((s

1
1, . . . s

ε
1), . . . , (s

1
� , . . . s

ε
�))

if ∃ j ∈ [ε] :
�∑

i=1

sj
i ≤ t

return Share�(1)

else

return Share�(0)

Fig. 3. Functionality for checking, whether one of the ε many secret shared inputs is
at most t.
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The functionality in Fig. 4 computes the minimum among a list of input
values and returns that value in secret shared form.

Functionality F�-min(d1, . . . , d�)

Compute dmin := min{d1, . . . , d�}
return Share�(dmin)

Fig. 4. Functionality for computing a secret sharing of the minimum among a set of
inputs.

The functionality in Fig. 5 checks whether at least one of multiple secret
shared values is within a given interval.

3 The Two-Party Divide-and-Conquer Approach

In this section, we will focus on the two-party case for the sake of presenting our
main ideas in a simplified setting.

Let us begin with a simple lemma, which states that one can partition sets
X and Y into smaller sets and compute the size of their symmetric set difference
in a divide-and-conquer fashion.

Functionality Fn,t,ε
�-vec-intrvl((s

1
1, . . . s

ε
1), . . . , (s

1
� , . . . s

ε
�))

if ∃ j ∈ [ε] : n − t ≤
�∑

i=1

sj
i ≤ n

return Share�(1)

else

return Share�(0)

Fig. 5. Functionality for checking, whether at least one of ε many secret shared input
values is in between n − t and n.

Lemma 1. Let X,Y ⊂ U , let t ∈ N, and let H : U → [t] be an arbitrary
function. For (X1, . . . , Xt) ← H(X) and (Y1, . . . , Yt) ← H(Y ), it holds that

|X�Y | =
t∑

i=1

|Xi�Yi| .
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Proof. Consider two arbitrary sets X,Y ⊂ U . We observe that |X�Y | =
|X \ Y | + |Y \ X|. If v ∈ X \ Y , then there exists an index i ∈ [t] such that
v ∈ Xi \ Yi and since Xi ∩ Xj = ∅ for any j �= i, it holds that i is unique. The
other way round, for any i ∈ [t] and any v ∈ Xi \ Yi, it holds that v ∈ X \ Y .
Thus

|X \ Y | =
t∑

i=1

|Xi \ Yi|

and by symmetry of the above argument

|X�Y | = |X \ Y | + |Y \ X|

=
t∑

i=1

|Xi \ Yi| +
t∑

i=1

|Yi \ Xi|

=
t∑

i=1

|Xi \ Yi| + |Yi \ Xi| =
t∑

i=1

|Xi�Yi| .

��
Next, we observe that, if the symmetric set difference of X and Y is at most

t, then the symmetric set difference of each pair of subsets Xi and Yi for i ∈ [t]
is in O(ln t) with a constant probability.

Lemma 2. Let n, t, t̃ ∈ N with t < n and t̃ ≥ 1 + 3 ln 2t. Let H : U → [t] be a
random function, and let X,Y ∈ Un. If |X�Y | ≤ t, then for (X1, . . . , Xt) ←
H(X) and (Y1, . . . , Yt) ← H(Y ) it holds that

Pr
[∃i ∈ [t] : |Xi�Yi| ≥ t̃

] ≤ 1/2,

where the probability is taken over the random choice of H.

Proof. Assume that |X�Y | ≤ t. For all i ∈ [t], it holds that Xi�Yi = {v | v ∈
X�Y ∧H(v) = i} ⊂ X�Y . Fix one bucket j and let Iv be the indicator variable
for whether v ∈ X�Y landed in bucket j or not. For

E[|Xj�Yj |] = E

⎡

⎣
∑

v∈X�Y

Iv

⎤

⎦ =
∑

v∈X�Y

1/t ≤ 1

we get by Chernoff bound that

Pr [|Xj�Yj | ≥ 1 + 3 ln 2t] ≤ e− 3 ln 2t
3 = 1/2t,

where the probability is taken over the random choice of the function H. The
statement follows by union bounding over all t buckets. ��

Now, if |X�Y | ≤ t and we partition sets X and Y not once, but ε many
times, then we are guaranteed with overwhelming probability that at least one
of those partitions has no bucket that contains more than O(ln t) elements.
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Theorem 2. Let n, t, t̃ ∈ N with t < n and t̃ ≥ 1 + 3 ln 2t. For each i ∈ [ε], let
Hi : U → [t] be a random function. Let X,Y ∈ Un be two sets of size n and
(Xi

1, . . . , X
i
t) ← Hi(X) and (Y i

1 , . . . , Y i
t ) ← Hi(Y ) for i ∈ [ε]. If |X�Y | ≤ t,

then
Pr

[

∃i1, . . . iε ∈ [t] :
∣
∣
∣X

j
ij

�Y j
ij

∣
∣
∣ ≥ t̃ ∀j ∈ [ε]

]

≤ 2−ε,

where the probability is taken over the random choice of H1, . . . , Hε.

Proof. Assume |X�Y | ≤ t, then

Pr
[

∃i1, . . . iε ∈ [t] :
∣
∣
∣X

j
ij

�Y j
ij

∣
∣
∣ ≥ 1 + 3 ln 2t ∀j ∈ [ε]

]

=
ε∏

j=1

Pr
[

∃ij ∈ [t] :
∣
∣
∣X

j
ij

�Y j
ij

∣
∣
∣ ≥ 1 + 3 ln 2t

]

≤
ε∏

j=1

1/2 = 2−ε,

where the last inequality follows from Lemma 2.
��

From the above it now follows that, if there exists at least a single bucket in
each of the ε partitions, which contains more than 1+3 ln 2t elements of the sym-
metric set difference, then we can conclude that |X�Y | > t with overwhelming
probability.

Corollary 1. Let n, t, t̃ ∈ N with t < n and t̃ ≥ 1 + 3 ln 2t. For each i ∈ [ε],
let Hi : U → [t] be a random function. Let X,Y ∈ Un be two sets of size n
and (Xi

1, . . . , X
i
t) ← Hi(X) and (Y i

1 , . . . , Y i
t ) ← Hi(Y ) for i ∈ [ε]. If there exist

indices i1, . . . iε ∈ [t], such that for all j ∈ [ε] it holds that
∣
∣
∣X

j
ij

�Y j
ij

∣
∣
∣ ≥ t̃, then

Pr[|X�Y | > t] ≥ 1 − 2−ε,

where the probability is taken over the random choices of H1, . . . Hε.

Functionality Fn,t,v
� (X, Y )

if |X| > n or |Y | > n

return ⊥
if |X�Y | > t

return Share2(v)

else

return Share2(|X�Y |)

Fig. 6. Functionality for computing the exact symmetric set difference, if it is smaller
than t, of sets X and Y with elements from U . The sets X and Y may be of different
sizes, but neither of them is larger than n.
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Armed with the above observations, we are now ready to present our con-
struction. The description of our protocol makes use of an ideal functionality
Fn,t,v

� (see Fig. 6) that takes two sets as input and either returns a secret shar-
ing of their symmetric set difference or returns a sharing of some value v. The
sets may be of different sizes, but are both not larger than n. We want to high-
light that allowing for input sets of unequal size is only possible, because we
are currently talking about the symmetric set difference. Looking ahead, we will
be directly talking about the size of the intersection in the multiparty protocols
in Sect. 4 and therefore we will need to take care of making the sets be of the
correct and same size. We show how to instantiate Fn,t,v

� in Sect. 3.1

Theorem 3. Let n, t, t̃ ∈ N with n > t and t̃ = 1 + 3 ln 2t. The protocol Πpict

depicted in Fig. 7 securely realizes Fn,t
pict using ε · t calls to Fn,t̃,t+1

� and one call
to F t,ε

vec-cmp.

Proof. We prove correctness and privacy separately.

Correctness. If there exists indices j1, . . . , jε ∈ [t] such that
∣
∣Xi

ji
�Y i

ji

∣
∣ > t̃ for

all j ∈ [ε], then by Corollary 1 we know that |X�Y | > t with overwhelming
probability and thus the output of Πn,t

pict(X,Y ) should be a secret sharing of 0.
We observe that for these indices it holds that ri

ji
+ si

ji
= t + 1 and thus for all

i ∈ [ε] it holds that ri + si > t. Therefore r + s = 0

Construction Πn,t
pict(X, Y )

1 : for i ∈ [ε] :

2 : Alice: (Xi
1, . . . , X

i
t) ← Hi(X)

3 : Bob: (Y i
1 , . . . , Y i

t ) ← Hi(Y )

4 : for j ∈ [t] :

5 : (ri
j , s

i
j) ← Fn,t̃,t+1

�
(
Xi

j , Y
i

j

)

6 : Alice: ri :=
t∑

j=1

ri
j

7 : Bob: si :=
t∑

j=1

si
j

8 : (r, s) ← F t,ε
2-vec-leq

(
(r1, . . . , rε), (s1, . . . , sε)

)

9 : return (r, s)

Fig. 7. Protocol for private intersection cardinality testing.
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If on the other hand there exists an i ∈ [ε], such that
∣
∣Xi

j�Y i
j

∣
∣ ≤ t̃ for all

j ∈ [t], then

ri + si =
t∑

j=1

ri
j + si

j =
t∑

j=1

∣
∣Xi

j�Y i
j

∣
∣
(Lemma 1)

= |X�Y |

and thus the F t,ε
vec-cmp outputs a sharing of 1 if and only if |X�Y | ≤ t.

Privacy. Without loss of generality assume that Alice is corrupted. At each step
of the protocol, she only sees one share of freshly independent secret shared
values returned by the ideal functionalities. Her view can simply be simulated
by providing her shares of independent secret sharings of 0 instead of the real
values. The indistinguishability of Alice’s simulated view follows from the indis-
tinguishability of the secret sharing scheme.

��

3.1 Instantiating Fn,t,v
�

To instantiate Fn,t,v
� , we simply use Fn,i

pict once for each threshold i ∈ [t] and then
accumulate the result.

Theorem 4. Let n, t ∈ N with n > t and v ∈ F. The protocol Πn,t,v
� depicted in

Fig. 8 securely implements Fn,t,v
� using one call to Fn,i

pict for each i ∈ [t].

Construction Πn,t,v
� (X, Y )

1 : for i ∈ [t] :

2 : (ri, si) ← Fn,i
pict(X, Y )

3 : Alice: r := t −
t∑

j=1

ri

4 : Bob: s := −
t∑

j=1

sj

5 : (d1, d2) ← F t,v
cmp(r, s)

6 : return (d1, d2)

Fig. 8. Protocol Πn,t,v
� realizing Fn,t,v

� .

Proof. For correctness, we observe that Fn,i
pict(X,Y ) outputs a sharing of 1, when

|X�Y | is at most i. Thus, for |X�Y | ≤ t, we have that (r, s) is a secret sharing
of exactly |X�Y | and if |X�Y | > t, then (r, s) is a secret sharing of t.
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For seeing that the protocol is secure, assume that Alice is corrupted. To
simulated the responses of Fn,i

pict(X,Y ), we add shares of a secret sharing of 0
to her view. Given the output of the functionality, we secret share that value
and add one share to Alice’s view. It is straightforward to see that this perfectly
simulates Alice’s view in the real world, which completes the proof.

��
To instantiate our overall protocol, we now need to instantiate the Fn,t

pict func-
tionality that is being used inside of Πn,t,v

� . Formally, the two-party protocols
of Ghosh and Simkin [GS19] require the input sets to be of the same size. Their
protocols, however, work equally well for sets of different sizes and thus can be
used to instantiate our functionality Fn,t

pict. Internally, their work relies on a pro-
tocol for securely computing the determinant of a secret shared matrix. They
instantiate that protocol with a communication complexity of O(λt2 polylog(t))
via additively homomorphic encryption, but using a protocol for computing that
determinant by Cramer and Damg̊ard [CD01], one can instantiate the protocol of
Ghosh and Simkin with communication complexity O(λ ln3 t) from generic secure
computation. It follows that our result can be instantiated from any assumption,
such as the existence of additively homomorphic encryption or oblivious transfer,
that implies secure computation.

In our instantiation, we have εt buckets and for each of them we execute the
protocol of Ghosh and Simkin O(ln t) times with a threshold of O(ln t). Thus
we get the following corollaries.

Corollary 2. Assuming the existence of oblivious transfer (or additively homo-
morphic encryption), there exists a constant-round protocol for securely comput-
ing the two-party private intersection cardinality test for threshold t with com-
munication complexity of O(ε2t polylog t) bits.

Combining the results in our paper with the protocols for actually computing
the intersection, once it is known that it is large enough, from by Ghosh and
Simkin [GS19], we get the following result.

Corollary 3. Assuming the existence of oblivious transfer (or additively homo-
morphic encryption), there exists a constant-round protocol for threshold private
set intersection among two parties with threshold t with communication complex-
ity of O(ε2t polylog t) bits.

4 The Multiparty Case

We now proceed to present our protocol for the multiparty case, which follows
the blueprint from Sect. 3, but needs to overcome several additional challenges.
The functionality that we would like to realize in this section is depicted in Fig. 9.
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Functionality Fn,t
�-pict(X1, . . . , X�)

if |X1| 
= n or . . . or |X�| 
= n

return ⊥

if

∣∣∣∣∣

�⋂

i=1

Xi

∣∣∣∣∣ ≥ n − t

return Share�(1)

else

return Share�(0)

Fig. 9. Functionality for multiparty private intersection cardinality testing among sets
of size exactly n.

In the two-party case we got away with talking about the set difference as a
surrogate for the size of the set intersection due to the equivalence of intersection
size and size of the symmetric set difference that is pointed out in Sect. 2.2. In
the multiparty case, we make no such assumption.

To call a protocol for computing the size of the intersection in each bucket
among � parties, we will now ensure that the sets in each bucket are of the same
size. We achieve this by padding sets with elements from an (ordered) auxiliary
universe Z = {z1, z2, . . . } with Z ∩ U = ∅. For n, b ∈ N with b > n and any
set X ∈ Un, we define Pad(X, b) := X ∪ {zi | i ∈ [n − b]}. Lemma 3 shows
the relationship between the size of the intersection among padded sets and
unpadded sets.

Lemma 3. Let b ∈ N and let X1, . . . , X� ⊂ U with |Xi| ≤ b for all i ∈ [�]. Let
di := ||Xi| − b| for i ∈ [�]. Then

∣
∣
∣
∣
∣

�⋂

i=1

Xi

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

�⋂

i=1

Pad(Xi, b)

∣
∣
∣
∣
∣
− min(d1, . . . , d�)

Proof. Define Wi = Pad(Xi, b) \ Xi for i ∈ [�]. We observe that
∣∣∣∣∣

�⋂

i=1

Pad(Xi, b)

∣∣∣∣∣ =

∣∣∣∣∣

�⋂

i=1

(Xi ∪ Wi)

∣∣∣∣∣ =

∣∣∣∣∣

�⋂

i=1

Xi

∣∣∣∣∣ +

∣∣∣∣∣

�⋂

i=1

Wi

∣∣∣∣∣ =

∣∣∣∣∣

�⋂

i=1

Xi

∣∣∣∣∣ + min(d1, . . . , d�),

where the second equality follows from the fact that Z ∩ U = ∅ and thus the
lemma statement follows. ��

The following Lemma can be seen as a generalization of Lemma 1 to the
multiparty case. On an intuitive level, it states that a lower bound on the size
of the intersection of � sets translates into a lower bound on the cumulative size
of the intersections in each buckets
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Lemma 4. Let n, �, t ∈ N with t < n, let H : U → [t] be a random function, let
X1, . . . , X� ∈ Un, and (Xi,1, . . . , Xi,t) ← H(Xi) for i ∈ [�]. It holds that

∣
∣
∣
∣
∣

�⋂

i=1

Xi

∣
∣
∣
∣
∣
≥ n − t

if and only if
t∑

k=1

∣
∣
∣
∣
∣
Xj,k \

�⋂

i=1

Xi,k

∣
∣
∣
∣
∣
≤ t,∀j ∈ [�].

Proof. Let Wj,k := Xj,k \ ⋂�
i=1 Xi,k for k ∈ [t] and j ∈ [�]. We observe that for

each pair k, k′ ∈ [t], it holds that Wj,k ∩ Wj,k′ = ∅ and thus
∣
∣
∣
∣
∣
Xj \

�⋂

i=1

Xi

∣
∣
∣
∣
∣
=

t∑

k=1

∣
∣
∣
∣
∣
Xj,k \

�⋂

i=1

Xi,k

∣
∣
∣
∣
∣
.

The statement follows from the fact that
∣
∣
∣
∣
∣

�⋂

i=1

Xi

∣
∣
∣
∣
∣
≥ n − t,

if and only if
∣
∣
∣
∣
∣
Xj \

�⋂

i=1

Xi

∣
∣
∣
∣
∣
≤ t,∀j ∈ [�].

��
Similarly to Theorem 2, we will now show that, if the intersection is large

enough, then there exists an index j ∈ [ε] such that the partitioning with Hj will
not result in any one party having too many elements in a single bucket that do
not belong to that buckets intersection.

Theorem 5. Let n, �, t, t̃ ∈ N with t < n and t̃ ≥ 1 + 3 ln(2t�). For each j ∈ [ε],
let Hj : U → [t] be a random function. Let X1, . . . , X� ∈ Un be sets of size n
and (Xj

i,1, . . . , X
j
i,t) ← Hj(Xi) for j ∈ [ε] and i ∈ [�]. If

∣
∣
∣
∣
∣

�⋂

i=1

Xi

∣
∣
∣
∣
∣
≥ n − t,

then

Pr

[

∃ k1, . . . , kε ∈ [t]
i1, . . . , iε ∈ [�] :

∣
∣
∣
∣
∣
Xj

ij ,kj
\

�⋂

m=1

Xj
m,kj

∣
∣
∣
∣
∣
≥ t̃ ∀j ∈ [ε]

]

≤ 2−ε,

where the probability is taken over the random choice of H1, . . . , Hε.
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Proof. Let Wi := Xi \
(
⋂�

m=1 Xm

)

for i ∈ [�]. Assume
∣
∣
∣
⋂�

m=1 Xm

∣
∣
∣ > n − t,

then for each i ∈ [�], it holds that |Wi| ≤ t. Fix some i ∈ [�], j ∈ [ε], k ∈ [t]
and consider Xj

i,k, where (Xj
i,1, . . . , X

j
i,t) ← Hj(Xi). For v ∈ Wi, let Iv be the

indicator variable for whether v ∈ Xj
i,k or not. Then,

E

[
∑

v∈Wi

Iv

]

=
∑

v∈Wi

1/t ≤ 1

and thus by Chernoff bound

Pr

[
∑

v∈Wi

Iv ≥ 1 + 3 ln(2t�)

]

≤ e− 3 ln(2t�)
3 = 1/2t�.

By union bound over all t buckets and all � sets, we can thus conclude that

Pr

[

∃k ∈ [t], i ∈ [�] :

∣
∣
∣
∣
∣
Xj

i,k \ (
�⋂

m=1

Xj
m,k)

∣
∣
∣
∣
∣
> 1 + 3 ln(2t�)

]

≤ 1/2.

It follows that

Pr

[
∃ k1, . . . kε ∈ [t]

i1, . . . , iε ∈ [�]
:

∣∣∣∣∣X
j
ij ,kj

\
�⋂

m=1

Xj
m,kj

∣∣∣∣∣ ≥ 1 + 3 ln(2t�) ∀j ∈ [ε]

]

=

ε∏

j=1

Pr

[
∃kj ∈ [t], ij ∈ [�] :

∣∣∣∣∣X
j
ij ,kj

\
�⋂

m=1

Xj
m,kj

∣∣∣∣∣ ≥ 1 + 3 ln(2t�) ∀j ∈ [ε]

]
≤ 2−ε.

��
Corollary 4. Let n, t, t̃ ∈ N with t < n and t̃ ≥ 1 + 3 ln(2t�). For each j ∈ [ε],
let Hj : U → [t] be a random function. Let X1, . . . , X� ∈ Un be sets of size
n and (Xj

i,1, . . . , X
j
i,t) ← Hj(Xi) for j ∈ [ε] and i ∈ [�]. If there exist indices

k1, . . . kε ∈ [t] and i1, . . . , iε ∈ [�], such that for all j ∈ [ε] it holds that
∣
∣
∣
∣
∣
Xj

ij ,kj
\

�⋂

m=1

Xj
m,kj

∣
∣
∣
∣
∣
≥ t̃,

then

Pr

[∣
∣
∣
∣
∣

�⋂

i=1

Xi

∣
∣
∣
∣
∣
< n − t

]

≥ 1 − 2−ε

where the probability is taken over the random choices of H1, . . . Hε.

When partitioning a set into several subsets randomly, one cannot guarantee
that all subsets will be of the same size. This is problematic, since we would like
to view each party’s buckets as inputs to smaller instances of a private multi-
party intersection cardinality testing problem. That is, if the different parties
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have inputs of different (secret) sizes, then it is not clear what it means for an
intersection to be large enough. For this reason, each party will not directly
input its subset, but rather a padded version of it. Since the communication
complexities of our protocols never depend on the input sizes, we simply pad
each bucket to its maximum size.

Lemma 5. Let n, �, t, t̃, b ∈ N with t ≤ t̃ < n and b := n and H : U → [t] be a
random function. Let X1, . . . , X� ∈ Un be sets of size n and (Xi,1, . . . , Xi,t) ←
H(Xi) for i ∈ [�].

If
∣
∣
∣
∣
∣
Xj,k \

�⋂

i=1

Xi,k

∣
∣
∣
∣
∣
< t̃,∀j ∈ [�], k ∈ [t], t̃ ∈ N

then ∣
∣
∣
∣
∣
Pad(Xj,k, b) \

�⋂

i=1

Pad(Xi,k, b)

∣
∣
∣
∣
∣
< t̃,∀j ∈ [�], k ∈ [t].

Proof. Fix some k ∈ [t] and define tj :=
∣
∣
∣Xj,k \ ⋂�

i=1 Xi,k

∣
∣
∣ for j ∈ [�]. Observe

that

tj +

∣
∣
∣
∣
∣

�⋂

i=1

Xi,k

∣
∣
∣
∣
∣
+ |Pad(Xj,k, b) \ Xj,k| = b

and thus for j, j′ ∈ [�] we have

tj +

∣
∣
∣
∣
∣

�⋂

i=1

Xi,k

∣
∣
∣
∣
∣
+

∣
∣Pad(Xj,k, b) \ Xj,k

∣
∣ = tj′ +

∣
∣
∣
∣
∣

�⋂

i=1

Xi,k

∣
∣
∣
∣
∣
+

∣
∣Pad(Xj′,k, b) \ Xj′,k

∣
∣

⇐⇒ tj +
∣
∣Pad(Xj,k, b) \ Xj,k

∣
∣ − ∣

∣Pad(Xj′,k, b) \ Xj′,k
∣
∣ = tj′

Now consider index j′ such that |Xj′,k| ≥ |Xj,k| for any other j ∈ [�]. For
that index j′ it holds that Pad(Xj′,k, b) \ Xj′,k ⊆ Pad(Xj,k, b) \ Xj,k. In other
words, this means that the elements that were used for padding the bucket
belonging to party j′ will be exactly the added elements in the intersection.
Thus, for any other j the number of elements not in the intersection will be
tj + |Pad(Xj,k, b) \ Xj,k| − |Pad(Xj′,k, b) \ Xj′,k|. Now if by assumption tj′ < t̃,
then tj + |Pad(Xj,k, b) \ Xj,k| − |Pad(Xj′,k, b) \ Xj′,k| < t̃. ��

Combining all of the above observations, we now get the following lemma.

Theorem 6. Let n, �, t, t̃, b ∈ N with t < n, t̃ ≥ 1 + 3 ln(2t�) and let b = n. For
each j ∈ [ε], let Hj : U → [t] be a random function. Let X1, . . . , X� ∈ Un be sets
of size n and (Xj

i,1, . . . , X
j
i,t) ← Hj(Xi) for j ∈ [ε] and i ∈ [�]. If

∣
∣
∣
∣
∣

�⋂

i=1

Xi

∣
∣
∣
∣
∣
≥ n − t,



268 S. Ghosh and M. Simkin

then

Pr

[

∀k ∈ [t],∀i ∈ [�],∃j ∈ [ε] :

∣
∣
∣
∣
∣
Pad(Xj

i,k, b) \
�⋂

m=1

Pad(Xj
m,k, b)

∣
∣
∣
∣
∣
< t̃

]

≥ 1 − 2−ε,

where the probability is taken over the random choice of H1, . . . , Hε.

Proof. By Theorem 5 we know that if
∣
∣
∣
⋂�

i=1 Xi

∣
∣
∣ ≥ n − t, then for all i ∈ [�] and

k ∈ [t], there exist j ∈ [ε], such that
∣
∣
∣X

j
i,k \ ⋂�

m=1 Xj
m,k

∣
∣
∣ < t̃ with overwhelming

probability. Also from Lemma 5 we know
∣
∣
∣Pad(Xj

i,k, b) \ ⋂�
m=1 Pad(X

j
m,k, b)

∣
∣
∣ < t̃

in that case. The proof directly follows from these two observations.
��

Armed with the insights from above, we are now ready to present our multi-
party construction. We will assume that we are given access to an ideal function-
ality Fn,t,v

�-∩ as depicted in Fig. 10 and we will show how to concretely instantiate
it in Sect. 4.1. We also use two other simple functionalities F�-min and Fn,t,ε

�-vec-intrvl

in our protocol, which is described in Fig. 4 and Fig. 5 respectively. Note that
these functionalities can be implemented using any generic MPC protocol with
communication complexities that are independent of the initial set size n or
threshold t.

In Fig. 11 we instantiate the protocol for multiparty private cardinality test-
ing. Similar to the two-party case, here all the parties throw their set elements
into t buckets and then run separate instances of cardinality test protocol among
those buckets with a threshold parameter t̃, as stated in Theorem 6.

Functionality Fn,t,v
�-∩ (X1, . . . , X�)

u :=

∣∣∣∣∣

�⋂

i=1

Xi

∣∣∣∣∣

if u < n − t

return Sharen(v)

else

return Sharen(u)

Fig. 10. Functionality for computing the number of elements in the intersection.
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Construction Πn,t
�-pict(X1, . . . , X�)

1 : for j ∈ [ε] :

2 : for i ∈ [�] :

3 : Party i :

4 : (Xj
i,1, . . . , X

j
i,t) ← Hj(Xi)

5 : for k ∈ [t] :

6 : (sj
1,k, . . . , sj

�,k) ← Fn,t̃,n+1
�-∩

(
Pad(Xj

1,k, n + 1), . . . , Pad(Xj
�,k, n + 1)

)

7 : (dj
1,k, . . . , dj

�,k) ← F�-min

(
{
∣∣∣Pad(Xj

i,k, n + 1)
∣∣∣ −

∣∣∣Xj
i,k

∣∣∣}i∈[�]

)

8 : for i ∈ [�] :

9 : Party i : sj
i =

t∑

k=1

(sj
i,k − dj

i,k)

10 : (r1, . . . , r�) ← Fn,t,ε
�-vec-intrvl((s

1
1, . . . , s

ε
1), . . . , (s

1
� , . . . , s

ε
�))

11 : return (r1, . . . , r�)

Fig. 11. Protocol for multiparty private intersection cardinality testing.

Theorem 7. Let n, t, t̃ ∈ N with n > t and t̃ ≥ 1+3 ln(2t�). The protocol Π�-pict

depicted in Fig. 11 securely realizes Fn,t
�-pict using ε · t calls to Fb,t̃,n+1

�-∩ and F�-min

and one call to Fn,t,ε
�-vec-intrvl.

Proof. We prove correctness and privacy separately.

Correctness. If
∣
∣
∣
⋂�

i=1 Xi

∣
∣
∣ < n − t, then by Theorem 6, we know that no bucket

will overflow with an overwhelming probability in which case the protocol com-
putes the size of the intersection correctly. If

∣
∣
∣
⋂�

i=1 Xi

∣
∣
∣ ≥ n − t, then two things

can happen. Either there will exist indices k1, . . . kε ∈ [t] and i1, . . . , iε ∈ [�],
such that for all j ∈ [ε] it holds that

∣
∣
∣X

j
ij ,kj

\ ⋂�
m=1 Xj

m,kj

∣
∣
∣ ≥ t̃. In this case, by

Corollary 4, we know that the intersection was too small with an overwhelming
probability. By construction, each sum of secret shared values per partitioning
will contain a summand of n + 1 and thus the sums will always be larger than n
in which case Fn,t,ε

�-vec-intrvl returns 0 as desired.
Otherwise, the intersection is too small, but no bucket overflows. Since no

bucket overflows, the parties correctly compute a secret sharing of the actual
intersection and thus Fn,t,ε

�-vec-intrvl will produce the correct output of the compu-
tation.
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Privacy. Without loss of generality assume that P1, . . . , P�−1 are corrupted.
We observe that the only communication the parties have during a protocol
execution is through oracle calls. Each oracle call returns a fresh secret sharing
of some random value and the parties always receives a subset of shares that is
insufficient to reconstruct. To simulate the corrupted parties’ views, we simply
return shares of fresh secret sharings of 0 for each oracle call.

��

4.1 Instantiating Fn,t,v
�-∩

To instantiate Fn,t,v
�-∩ , we use Fn,i

�-pict once for each threshold i ∈ [t] and then
accumulate the result. We also use Fn−t,v

�-geq functionality which is described in
Sect. 2. Fn−t,v

�-geq checks whether the secret shared values obtained from Fn,i
�-pict

indicates that the size of the intersection is greater than n− t. If that is the case
F�-geq returns the exact size of the intersection, otherwise it returns the default
value v. The protocol Πn,t,v

�-∩ is described in Fig. 12.

Theorem 8. Let n, t ∈ N with n > t and v ∈ F. The protocol Πn,t,v
�-∩ depicted in

Fig. 12 securely implements Fn,t,v
�-∩ using one call to Fn,i

�-pict for each i ∈ [t] and
one call to Fn−t,v

�-geq .

Proof. For correctness, we observe that Fn,i
�-pict(X1, . . . , X�) outputs sharing of

1, when the size of the intersection is greater than equal to n − i. Thus, if∣
∣
∣
⋂�

j=1 Xj

∣
∣
∣ ≥ n − t then F�-pict will return sharing of 1 exactly t − t∗ + 1 times,

where n − t∗ is the true intersection size. Consequently the protocol produces
the correct output.

Construction Πn,t,v
�-∩ (X1, . . . , X�)

1 : for i ∈ [t]

2 : (r1,i, . . . , r�,i) ← Fn,i
�-pict(X1, . . . , X�)

3 : for i ∈ [�]

4 : Party i : ri :=

t∑

j=1

ri,j

5 : Party 1 : r1 := n − t − 1 + r1

6 : (d1, . . . , d�) ← Fn−t,v
�-geq (r1, . . . , r�)

7 : return (d1, . . . , d�)

Fig. 12. Protocol Πn,t,v
�-∩ realizing Fn,t,v

�-∩ .
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Privacy. Without loss of generality assume that P1, . . . , P�−1 are corrupted. The
view of the corrupted parties only contain received messages from the oracles.
Each oracle query to Fn,i

�-pict returns a fresh secret sharing, which can be simulated
by providing the corrupted parties with fresh shares of secret sharings of 0. The
last query to Fn−t,v

�-geq (r1, . . . , r�) can be simulated by returning the outputs given
to the simulator. Indistinguishability of the simulated transcript from the real
one directly follows from the security guarantees of additive secret sharing.

��
We can use the protocol of Branco, Döttling, and Pu [BDP21] to instantiate

Fn,t
�-pict in Fn,t,v

�-∩ . They present an �-party protocol with a communication com-
plexity of O(λ�t2 polylog t) bits based on additively homomorphic encryption.
Their protocol can easily be extended to use generic secure computation tech-
niques in all places, where additively homomorphic encryption was used. With
this change, their protocol provides a solution based on, for instance, oblivious
transfer with a communication complexity of O(λ�poly(t)) bits.

In our instantiation, we have εt buckets and for each of them we execute the
protocol of Branco et al. O(ln t) times with a threshold of O(ln t). Thus we get
a total communication complexity of O(ελ�t polylog t).

Corollary 5. Assuming the existence of oblivious transfer and or additively
homomorphic encryption, there exists a protocol for securely computing the �-
party private intersection cardinality test for threshold t with communication
complexity of O(ε2�t polylog t) bits.

Combining the results in our paper with the protocols for actually computing
the intersection, once it is known that it is large enough, from by Ghosh and
Simkin [GS19], we get the following result.

Corollary 6. Assuming the existence of oblivious transfer or additively homo-
morphic encryption, there exists a passively secure protocol for threshold private
set intersection among � parties with threshold t with communication complexity
of O(ε2�t polylog t) bits.
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Abstract. Re-randomizable Replayable CCA-secure public key encryp-
tion (Rand-RCCA PKE) schemes guarantee security against chosen-
ciphertext attacks while ensuring the useful property of re-randomizable
ciphertexts. We introduce the notion of multi-user and multi-ciphertext
Rand-RCCA PKE and we give the first construction of such a PKE scheme
with an almost tight security reduction to a standard assumption. Our
construction is structure preserving and can be instantiated over Type-1
pairing groups. Technically, our work borrows ideas from the state-of-the-
art Rand-RCCA PKE scheme of Faonio et al. (ASIACRYPT’19) and the
adaptive partitioning technique of Hofheinz (EUROCRYPT’17). Addi-
tionally, we show (1) how to turn our scheme into a publicly verifiable
(pv) Rand-RCCA scheme and (2) that plugging our pv-Rand-RCCA PKE
scheme into the MixNet protocol of Faonio et al. we can obtain the first
almost tightly-secure MixNet protocol.

1 Introduction

Security against chosen-ciphertext attacks (CCA) is considered to be the stan-
dard notion of security for PKE schemes. This security definition, formulated by
Rackoff and Simon [33], is elegant and easy to understand, and it has shown, by
any means, to withstand the test of time.

Replayable and Re-randomizable CCA Security. Canetti, Krawczyk and
Nielsen [7] pointed out that CCA security is not necessary for implementing
secure channels. They showed that “replayable chosen-ciphertext” (RCCA) secu-
rity suffices for secure channels, and might in fact allow for more efficient instan-
tiations. Subsequently, Groth [20] showed that RCCA PKE schemes (called
Rand-RCCA secure) can have re-randomizable ciphertexts. Specifically, Groth
constructed a scheme with a ciphertext re-randomization procedure that, given
a ciphertext as input, produces a fresh and unlinkable ciphertext that decrypts
to the same message. Such a re-randomization procedure opens the door for
applications that require secure communication and anonymity. For instance,
Rand-RCCA secure PKE schemes enable anonymous and secure message trans-
missions (see Prabhakaran and Rosulek [32]), Mix-Nets (see Faonio et al. [13]
c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13941, pp. 275–305, 2023.
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and Pereira and Rivest [31]), Controlled Functional Encryption (see Naveed
et al. [30]), and one-round message-transmission protocols with reverse firewalls
(see Dodis, Mironov and Stephens-Davidowitz [10]).

Tight Security. Yet another criticism of the original definition of CCA security is
that while the definition postulates that the message underlying one single cipher-
text remains protected even under CCA attacks, in the real world, a PKE scheme
is used to protect a large number of ciphertexts from possibly many users. Now,
it is well-known that security for one single ciphertext implies, through a hybrid
argument, security for many ciphertexts and many users. However, it is unclear
how much concrete security a PKE scheme really offers when it is used in the wild.
This question, initially posed by Bellare, Boldyreva and Micali [4] created a fruitful
area of research that investigates how tight the security of an encryption scheme
translates to the trust that we have with respect to the cryptographic assump-
tion that it relies on. In more detail, a tight security reduction ensures that for any
attack on the PKE scheme, there exists an attack on the assumption that is similar
both in terms of complexity (i.e. the running time, the space required, etc.) and
success probability. Thus, in the setting of tight security reductions, the number
of ciphertexts considered by the security definition matters.

By now, many CCA-PKE schemes have been proven to have tight security
in the multi-ciphertext and multi-user setting: some notable examples are the
works of [17,18,21,22,25,26]. However, tight security in the context of Rand-
RCCA security has not been studied.

1.1 Our Contributions

We initiate the study of tight security for Rand-RCCA secure PKE schemes in
the multi-ciphertext and multi-user setting. Our main contributions are a new
security definition for RCCA security in multi-ciphertext and multi-user setting
(hereafter, mRCCA security), and a Rand-mRCCA PKE scheme whose mRCCA
security (almost1) tightly reduces to the Dd-MDDH assumption in symmetric
(a.k.a. type-1) pairing groups.

Moreover, as an application, we revise the protocol for universally composable
MixNet based on Rand-RCCA PKE from [13]. In the following paragraphs, we
elaborate more about each of the contributions.

Multi-user Multi-ciphertext RCCA Security. In the security experiment
of the (single-ciphertext) RCCA security notion, the decryption oracle, called
“guarded decryption oracle”, can be queried on any ciphertext, including the
challenge ciphertext. However, when decryption leads to one of the challenge
messages (M0, M1), the oracle answers with a special symbol � (meaning “same”).
As a warm-up, consider a trivial extension to the case of (single-user) multi-
ciphertext RCCA security where the attacker is given:

– an encryption oracle that, on input a pair of messages M0, M1, returns some
valid encryption of Mb where b is the challenge bit,

1 As most of the tightly-secure schemes, the security reduction suffers from a small
multiplicative loss that is however independent of the number of uses of the scheme.
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– and a guarded decryption oracle that, on input a ciphertext C, returns a
message M, or the special indexed symbol �j if C corresponds to an encryption
of a message that was given as input to the encryption oracle as j-th query.

We notice that this trivial extension of RCCA security to multiple ciphertexts
is impossible to achieve. Namely, consider the following generic attacker A that
makes three queries to the encryption oracle: (i) A sends (M1, M2), and receives
back CA; (ii) sends (M2, M3), and receives back CB ; (iii) sends (M3, M1), and receives
back CC . A now queries the decryption oracle with CC . If the bit b is 0, the
decryption oracle returns �2; if b is 1, the decryption oracle returns �1.

Yet another natural extension of the single-ciphertext RCCA security notion
to the multi-ciphertext setting is to consider a guarded decryption oracle that
upon input a ciphertext C either returns a message or the special symbol �, but
without notifying the adversary of which index j triggered the special symbol.
Even if this definition avoids the attack described above, it is not as convenient as
we would like it to be. Roughly speaking, the guarded decryption oracle reveals
to the adversary that the queried ciphertext is a replay attack, but it doesn’t
tell which ciphertext was replayed; therefore, the larger the number of challenge
ciphertexts, the less informative the output of the guarded decryption oracle will
be. In particular, this definition is not sufficient for our MixNet application.

“In medio stat virtus”, as the saying goes: the definition we propose is weaker
than the first attempted (yet impossible to achieve) definition, but stronger
than the above-mentioned definition. To build some intuition, in an equivalent
version of the single-ciphertext RCCA security definition, the guarded decryption
oracle would output the minimal set of messages that the queried ciphertext
could decrypt to and such that such set does not trivially break the RCCA
security definition: namely, if the ciphertext is a replay attack then the oracle
replies with the set of challenge messages {M0, M1}, otherwise with a message
M′ �∈ {M0, M1}. We take a similar approach in our (multi-user) multi-ciphertext
RCCA definition. The guarded decryption oracle outputs the minimal set of
messages that the ciphertext could decrypt to without trivially breaking security.
This set of messages includes all the pairs of challenge messages for which at least
one of them is equal to the decryption of the queried ciphertext. To support the
claim that our definition is indeed the most natural extension of RCCA to the
multi-ciphertext setting, we prove that the simulation-based notion for RCCA
security from [7] is tightly implied by our mRCCA security notion.

A Tightly-Secure Rand-mRCCA PKE Scheme. Our starting points are
the recent work of Faonio et al. [13] (hereafter FFHR19), which is the state of art
for Rand-RCCA PKE scheme, and the tightly-secure CCA PKE schemes based
on the adaptive partitioning techniques of Hofheinz [22] and Gay et al. [19].

Very briefly, the main idea of our construction is to encrypt the message sim-
ilarly to FFHR19, and append a non-interactive proof of consistency for (part of)
the ciphertext; the latter proof needs to have a (weak) form of simulation sound-
ness property that can be obtained information-theoretically. Namely, using the
notation of [22], we append to the ciphertext a benign proof for the consistency
of part of the ciphertext (which lies in a linear language) of a proof system that
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is statistically sound even when the adversary has oracle access to simulated
proofs for a larger language that includes the disjunction of two linear spaces.

Some Technical Details. To go from the rough idea described above to the
actual scheme, we need to overcome two technical problems. The first prob-
lem is that our benign proof system needs to be re-randomizable (or, to better
say, “malleable” as it needs to be able to re-randomize proofs of re-randomized
statements), as we are aiming to construct a Rand-PKE scheme. We notice
that none of the benign proof systems or affine notions we are aware of (such
as [2,18,19,22]) are re-randomizable. To solve this problem, we introduce a
new malleable proof system based on the work of Abdalla, Benhamouda and
Pointcheval [1].

The second (and more challenging) technical problem is that we need to
reconcile the adaptive partitioning technique with the Rand-RCCA technique
of [13]. In particular, at the core of the adaptive partitioning technique there
is a complex argument that shows that the decryption oracle can safely reject
ill-formed ciphertexts even when the adversary can observe (many) ill-formed
challenge ciphertexts. In some sense, these challenge ciphertexts are the only ill-
formed ciphertexts that correctly decrypt, while all other ill-formed ciphertexts
produced by the adversary do not. However, in our security proof the adversary
can easily produce ill-formed ciphertexts that correctly decrypt, simply by re-
randomizing challenge ciphertexts.

In more detail, the adaptive partitioning technique moves the challenge
ciphertexts back and forth between two different linear spaces (different from
the linear space of honestly-generated ciphertexts). In our proof, differently
than in previous works, we need to carefully define the relationship between
these different linear spaces. In particular, it is necessary to make sure that re-
randomizations of the challenge ciphertexts still lie in the prescribed linear space
(and thus can be identified by our technique when answering �). More techni-
cally, a ciphertext for our scheme can be parsed as a vector [x] in the source group
(the CPA part of the ciphertext) plus two zero-knowledge proofs of consistency.
The vector [x] for a well-formed ciphertext lies in the affine space defined by the
encrypted message and the span of a matrix [D∗] which is part of the public
key. Re-randomization works by summing up a random vector from the span
of D∗ to x (and updating the proofs accordingly). To apply the adaptive parti-
tioning techniques, we move the challenge ciphertexts back and forth from two
well-crafted distinct superspaces of D∗. Thanks to this choice, we can recognize
the challenge ciphertexts after re-randomization by multiplying the decrypted
ciphertext by a matrix orthogonal to D∗: this operation could be roughly inter-
preted as an “extended decryption” of the ciphertexts (since D∗ encodes partial
information of the secret key), however, we are not only interested to iden-
tify the encrypted message but also to uniquely link the decrypted (possibly
re-randomized) ciphertext with one of the challenge ciphertexts. Thus, like pre-
vious adaptive partitioning approaches, we separate the randomness space of the
PKE scheme into an honest part (the span of D∗) and a normally unused part
(spanned by the vectors in the mentioned super spaces, independent of D∗) that
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is also used to hide the messages. In our view, the main technical insight is that
the span of D∗ is used for re-randomization, while the other space is kept fixed
for the challenge ciphertexts. We highlight that in order for the aforementioned
strategy to work smoothly, we preferred to follow a flavor of adaptive partition-
ing as in Gay et al. [19], where secret keys are randomized, instead of the original
strategy of Hofheinz [22], where ciphertexts are randomized. Finally, the origi-
nal adaptive partitioning strategy relies on the pairwise universality of a hash
proof system [9] that guarantees simpler statements about linear languages. We
adapt this proof system to re-randomizable statements by considering higher-
dimensional languages and refining the “core lemma for Rand-RCCA” from [13].
We highlight that this lemma was designed for the single-ciphertext scenario,
thus, some extra care is needed in our adaptive partitioning argument, more in
detail, when defining the notion of critical query. In particular, a critical query is
commonly defined as a decryption query for an ill-formed ciphertext that would
decrypt without errors under one of the randomized secret keys; the usual goal
is to show that an adversary cannot make such a query. In our case, we need to
refine this notion by additionally specifying when (allegedly) re-randomizations
of challenge ciphertexts are critical. Since each one of the challenge ciphertexts
is an ill-formed ciphertext that decrypts correctly under one of the randomized
keys, we cannot consider critical a re-randomization of such a challenge cipher-
text when it decrypts correctly under the same randomized key. Thus, after
having recognized a decryption query as a re-randomization, we make sure that
this ciphertext is decrypted only using a specific (a univocally linked) secret key;
on the other hand, other kinds of decryption queries can be safely decrypted with
any of the secret keys. This rule allows eventually to use the lemma of [13] which
provides security even given an interface for decryption of re-randomizations of
one challenge ciphertext under one specific secret key.

Extensions and Applications. Following the strategy of [13] we show that our
Rand-mRCCA PKE can be used to instantiate a PKE with the nice property
of publicly verifiable ciphertexts (pv-Rand-mRCCA PKE). We propose two pv-
Rand-mRCCA PKE schemes: one based on the Matrix Diffie-Hellman Assump-
tion (MDDH), and a second more efficient scheme based on a new MDDH-like
assumption (see Sect. 1.2 for the details) which we prove secure in the generic
group model.

As an application of our framework, we show that we can plug a pv-Rand-
mRCCA scheme into the MixNet protocol of [13]. Instantiating such proto-
col with our schemes, we obtain an (almost) “tightly-secure” MixNet protocol:
namely a protocol, the first of its kind, whose security guarantees depend lin-
early on the number of mixer parties but only logarithmically on the number of
mixed messages. To compare with the state of the art for MixNet protocols, we
notice that the Bayer and Groth [3] proof of shuffle is based on the Fiat-Shamir
transform applied to a multi-round Sigma protocol, thus the security reduction
degrades with the number of rounds of the underlying Sigma protocol, while the
proof of shuffle in the pairing setting of Fauzi et al. [16] relies on new kinds of
Dn-KerMDH assumptions (proved to hold generically in the same paper) where
n is the number of shuffled ciphertexts.
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1.2 Related Work

Prabhakaran and Rosulek [32] introduced the first Rand-RCCA PKE in the
standard model. Abstracting the scheme of [32], and solving a long-standing open
problem, recently Wang et al. [35] introduced the first receiver-anonymous Rand-
RCCA PKE. Faonio and Fiore [12] introduced a practical Rand-RCCA PKE in
the random oracle model. Considering the state of the art on pairing-based
Rand-RCCA PKE schemes, the most relevant works are the Rand-RCCA PKE
scheme of Chase et al. [8], the recent works of Libert, Peters and Qian [27], and of
Faonio et al. [13]. In Table 1 we offer a comparison, in terms of security properties
and functionalities, of our schemes of Sect. 5, i.e. PKE1,PKE2 and PKE3, and
the previous schemes. From a technical point of view, our schemes inherit from
the scheme of [13], however, we notice that our schemes are instantiated on
type-1 pairing group, while FFHR19 is instantiated on type-3 pairing group (see
the next section and [14] for more details). On the other hand, our schemes
are the only ones that have (almost) tight-security reductions. In Table 2 we
compare the most efficient Rand-RCCA PKE schemes with ours. In particular,
we instantiate PKE1 and PKE2 under DLIN assumption for type-1 pairing group
(d = 2 and, because of the security of the benign proof system, n = 6) while we
instantiate PKE3 under U9,4-TMDDH assumption. We compare the number of
operations required by the three algorithms (Enc, Rand and Dec) and the size of
the ciphertext. In particular, we have considered the cost of exponentiations in
the source and target groups, and the number of pairings. We give only a rough
estimation of the costs of PKE2 and PKE3 to provide some intuition on the
considerable efficiency gap between them: their cost is derived in terms of group
elements and operations needed to instantiate the proof systems for PKE2 (resp.
PKE3) under D6,2-MDDH (resp. U9,4-TMDDH) assumption from [11] and [13].

We note that PKE2 and PKE3 are far from being considered practical, while
PKE1 is considerably less efficient than [13]. Indeed, our main goal is to prove
feasibility. We view our work as a potential first towards a tightly secure practical
solution. For instance, while the first tightly IND-CCA secure PKE schemes were
highly impractical, state-of-the-art schemes (see [17,18]) have a realistic break-
even point2. We hope for a similar development with Rand-RCCA PKE schemes.

Our benign proof system uses the “OR-Proof” technique from [1]. We notice
that, in the context of tightly-secure reductions, the same technique from [1] has
been used in [21] to instantiate their (Leakage-Resilient) Ardent Quasi-Adaptive
Hash Proof System. We stress that in our work, in contrast with [21], the main
reason to use the technique from [1] is because of its nice linear property that,
in turn, allows for malleable proof system.

1.3 Open Problems

Our Rand-RCCA PKE schemes require type-1 pairing groups, which are less
efficient than type-3. It is natural to ask whether we can instantiate our PKE
2 For the same security parameter, the work of [17,18] outperforms state-of-the-art

non-tightly secure schemes like Kurosawa-Desmedt [24] around 230 ciphertexts.
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Table 1. Comparison of the properties of a selection of Rand-RCCA-secure PKE
schemes. The symbol ∗ indicates that the structure-preserving property of the schemes
is not strict since ciphertexts contain some elements in GT .

PKE Group Assumption Struc. Pub. Tight

Setting Pres. Ver.

[8] CKLM12, [27] LPQ17 Type-3 SXDH � �
[13] FFHR19 Type-3 Dd+1,d-MDDH �∗ �
PKE1 Type-1 Dn,d-MDDH �∗ �
PKE2 Type-1 Dn,d-MDDH �∗ � �
PKE3 Type-1 Un,d-TMDDH �∗ � �

Table 2. Efficiency comparison among the best Rand-RCCA-secure PKE schemes.
We denote as Ei the cost of 1 exponentiation in Gi, P the cost of computing a bilin-
ear pairing. In the third column, we consider the cost of Enc which is almost always
comparable with the cost of Rand. The first two schemes are privately verifiable, while
the last four are publicly verifiable. We consider the most efficient instantiations for
PKE1,PKE2 (DLIN), for PKE3 (U9,4-TMDDH) and for [13] (SXDH).

PKE |C| Enc ≈ Rand Dec

[13] FFHR19 (1) 3G1+2G2+GT 4E1+5E2+2ET +5P 8E1+4E2+4P

PKE1 7G1+2GT 14E1+2ET +14P 48E1+36ET +49P

[27] LPQ17 42G1+20G2 79E1+64E2 1E1+142P

[13] FFHR19 (2) 14G1+15G2+4GT 36E1+45E2+6ET +5P 2E1+50P

PKE2 380G1+330GT ≈ 180E1+110ET +38P ≈ 6E1+400P

PKE3 105G1+9GT ≈ 261E1+9ET +16P ≈ 6E1 + 11P

schemes from type-3 pairings. Unfortunately, we do not know how to do so,
because it is not clear how to reconcile the adaptive partitioning technique [22]
with a Rand-RCCA construction in settings with type-3 pairings (such as the
one from [13]). We elaborate more on the challenges to overcome for obtaining a
type-3 instantiation in [14] and leave the construction of a tightly-secure type-3
Rand-RCCA PKE scheme as an interesting open problem.

Our approach is semi-generic, as we work with pairing-based cryptogra-
phy. We leave as open problem to provide a generic framework to instantiate
(almost) tightly-secure Rand-RCCA-secure PKE. Possible starting points are
the HPS-based frameworks of [35] for Rand-RCCA schemes and [21] for tightly-
secure (LR-)CCA-secure schemes. Recently, Faonio and Russo [15] improved
over the mix-net protocol of [13], giving a more efficient instantiation based on
non publicly-verifiable Rand-RCCA PKE schemes; however, their construction
requires a leakage-resilient scheme. We leave as open problem the extension of
our analysis to tightly-secure LR-RCCA PKE schemes to extend their approach.

2 Preliminaries

A function is negligible in λ if it vanishes faster than the inverse of any polynomial
in λ. We write f(λ) ∈ negl(λ) when f is negligible in λ. For any bit string τ ∈
{0, 1}∗, we denote by τ [i] the i-th bit of τ and by τ|i the bit string comprising the
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first i bits of τ . A symmetric (type-1) bilinear group G is a tuple (q,G1,GT , e,P1),
where G1 and GT are groups of prime order q, the element P1 is a generator
of G1, e : G1 × G1 → GT is an efficiently computable, non-degenerate bilinear
map. Let GGen be a PPT algorithm which on input 1λ, where λ is the security
parameter, returns a description of a symmetric bilinear group G. Elements in
Gi, are denoted in implicit notation as [a]i := aPi, where i ∈ {1, T} and PT :=
e(P1,P1). Every element in Gi can be written as [a]i for some a ∈ Zq, but
note that given [a]i, a ∈ Zq is in general hard to compute (discrete logarithm
problem). Given a, b ∈ Zq we distinguish between [ab]i, namely the group element
whose discrete logarithm base Pi is ab, and [a]i · b, namely the execution of the
multiplication of [a]i and b, and [a]1 · [b]1 = [a · b]T , namely the execution of a
pairing between [a]1 and [b]1. Sometimes, to simplify the notation, we will write
[a] instead of [a]1 for elements in the source group. Vectors and matrices are
denoted in boldface. We extend the pairing operation to vectors and matrices
as e([A]1, [B]1) = [A� · B]T and e([y]1, [A]1) = [y · A]T . Let span(A) denote
the linear span of the columns of A. Dn,d is a matrix distribution if outputs (in
probabilistic polynomial time, with overwhelming probability) matrices in Z

n×d
q .

Definition 1 (Matrix Decisional Diffie-Hellman Assumption, [11]). The
Dn,d-MDDH assumption holds if for all non-uniform PPT adversaries A,

|Pr [A(G, [A]1, [Aw]1) = 1] − Pr [A(G, [A]1, [z]1) = 1]| ∈ negl(λ),

where the probability is taken over G = (q,G1,GT , e,P1) ← GGen(1λ), A ←
Dn,d,w ← Z

d
q , [z]1 ← G

n
1 and the coin tosses of adversary A.

For Q ∈ N, W ←$ Z
d×Q
q and U ←$ Z

n×Q
q , the Q-fold Dn,d-MDDH assump-

tion states that distinguishing tuples of the form ([A]1, [AW]1) from ([A]1, [U]1)
is hard. That is, a challenge for the Q-fold Dn,d-MDDH assumption consists of
Q independent challenges of the Dn,d-MDDH Assumption (with the same A but
different randomness w). In [11] it is shown that the two problems are equivalent,
where the reduction loses at most a factor n − d.

Tensor Product. Let a ∈ Z
n
q and b ∈ Z

n′
q , we define a ⊗ b ∈ Z

nn′
q to be the

tensor product between the two vectors. We can show the following property:

(A · R) ⊗ (B · S) = (A ⊗ B) · (R ⊗ S) (1)

Lemma for Rand-RCCA Security. The main technical tool employed by [13],
to which they refer as their “core lemma”, roughly speaking says that, for any u ∈
Z

d+1
q , the projective hash function with hash key f ,F that maps v to (f +Fv)�u

is pair-wise independent with respect to the quotient set Z
d+2
q /span(E) when

given as side information the matrix FE where E ∈ Z
d+2×d
q . We generalize their

result to u ∈ Z
n
q and E ∈ Z

n′×d
q for any n > d and n′ > d + 1. The proof of

the lemma follows by reduction to the original lemma from [13] and it can be
found in [14]. For the sake of clarity, in this paper we prefer to call this lemma
the “Rand-RCCA lemma”, rather than “core lemma” (for Rand-RCCA) as in
[13], because the core technical parts of our work and theirs are different.
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Lemma 1 (Rand-RCCA Lemma). Let d be a positive integer. For any
matrix D ∈ Z

n×d
q , E ∈ Z

n′×d
q where n > d and n′ > d + 1, and any (possi-

bly unbounded) adversary A:

Pr

⎡
⎣

u �∈ span(D)
(v − v∗) �∈ span(E)

z = (f + Fv)�u
:

f ←$ Z
n
q ,F ←$ Z

n×n′
q ,

(z,u,v) ←$ AO·(D,E, f�D,F�D,FE)

⎤
⎦ ≤ n · n′

q
.

where the adversary outputs a single query v∗ to O that returns f + F · v∗.

3 Non-Interactive Proof Systems (NIPS)

Definition 2 (Proof system). Let L = {Lpars} be a family of languages
with Lpars ⊆ Xpars , and with efficiently computable witness relation R. A non-
interactive proof system (NIPS) PS = (PGen,PPrv,PVer,PSim) for L consists
of the following PPT algorithms:

– PGen(1λ, pars) outputs a proving key ppk, a verification key psk.
– PPrv(ppk , x, w), x ∈ L and R(x,w) = 1, outputs a proof π.
– PVer(psk , x, π), x ∈ X and a proof π, outputs a verdict b ∈ {0, 1}.
– PSim(psk , x), x ∈ L, outputs a proof π.

Completeness: For all pars, all (ppk , psk) in the range of PGen(1λ, pars), all
x∈L, and all w with R(pars, x, w)=1, we have PVer(psk , x,PPrv(ppk , x, w))=1.

When ppk �= psk we say that the proof system is designated verifier. In the
definition above we let the verification and proving key depend on the parameters
of the relation, namely, the proof systems are quasi-adaptive as defined by Jutla
and Roy [23]. All the NIPSs of this paper are structure-preserving : i.e., all the
public interfaces are vectors in the source groups, all the private material is in
Zq and all the algorithms can be described with pairing-product equations; also,
as in [13] the proof π could lie in the target group.

Benign Proof Systems. All relevant security properties of a benign NIDVPS
are condensed in the following definitions, taken verbatim from [22].

Definition 3 (Benign proof system). Let PS be an NIDVPS for L as in
Definition 2, and let Lsim = {Lsim

pars}, Lver = {Lver
pars}, and Lsnd = {Lsnd

pars} be
families of languages. We say that PS is (Lsim,Lver,Lsnd)-benign if the following
properties hold:

(Perfect) zero-knowledge. For all pars, all (ppk , psk) that lie in the range of
PGen(1λ, pars), and all x ∈ L and w with R(pars, x, w) = 1, we have that the
distribution PPrv(ppk , x, w) is equivalent to PSim(psk , x).

(Statistical) (Lsim,Lver,Lsnd)-soundness. Let Expsnd
A,PS be the game played

by A in Fig. 1. Let Advsnd
PS,A(λ) be the probability that Expsnd

A,PS(λ) = 1.
We require that for all (possibly unbounded) A that only make a polynomial
number of oracle queries, Advsnd

PS,A(λ) is negligible.
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Non-Interactive Zero-Knowledge Proof Systems. We adapt Definition 2
for the case of publicly verifiable proof systems by requiring the prover key
and the verification key to be identical, and we refer to such key as the common
reference string. (Nontrivial) proof systems with this syntax are commonly called
zero-knowledge proof systems (NIZKs).

Notice that in the syntax of proof system we give in Definition 3 both the
simulator PSim and the verifier PVer receive as input the verification key, while
in the usual definition of NIZK the simulator receives a simulation trapdoor.
This difference is only syntactical. We say that a NIZK PS for L is adaptively
sound if it is statistically (∅,L, ∅)-sound according to Definition 3.

Definition 4. Let PS be a NIPS for L as in Definition 2, we say that PS
is (ε, T )-composable zero-knowledge if there exists a PPT algorithm PGen such
that:

– For all pars, the distributions induced by the first output of PGen(1λ, pars)
and PGen(1λ, pars) are ε-close for any adversary with running time T .

– For all pars, all (ppk , psk) that lie in the range of PGen(1λ, pars), and all x ∈
L and w with R(pars, x, w) = 1, we have that the distribution PPrv(ppk , x, w)
is equivalent to PSim(psk , x).

Malleable NIPS. We use the definitional framework of Chase et al. [8] for
malleable proof systems. For simplicity of the exposition we consider only the
unary case for transformations (see the aforementioned paper for more details).
Moreover, we adapt their definition to the quasi-adaptive setting by having a
transformation that depends on the pars. Let T = (Tel, Twit) be a pair of effi-
ciently computable functions, that we refer to as a transformation.

Definition 5 (Admissible transformation). We say that an efficient rela-
tion R is closed under a transformation T = (Tel, Twit) if for any (pars, x, w) ∈ R
the pair (pars, Tel(pars, x), Twit(w)) ∈ R. If R is closed under T then we say that
T is admissible for R. Let T be a set of transformations, if for every T ∈ T , T
is admissible for R, then T is an allowable set of transformations.

Definition 6 (Malleable NIPS). Let PS be an NIPS for L as in Definition
2, and let PEvl(ppk , x, π, T ) be a PPT algorithm that takes as inputs ppk, an
instance x, a proof π, and a transformation T ∈ T , and it outputs a proof π′.
We say that PS and PEvl form a malleable proof system for L with set T of
allowable transformations for R, if, for all pars, (ppk , psk) that lie in the range
of PGen(1λ, pars), all T ∈ T , and all x, π we have PVer(psk , Tel(pars, x), π′) = 1
if and only if PVer(psk , x, π) = 1.

Definition 7 (Derivation Privacy). Let PS be a malleable NIPS for L with
relation R and an allowable set of transformations T and corresponding PEvl.
We say that PS is derivation private if for any PPT adversary A:

Advder-priv
A,PS (λ) :=

∣∣∣Pr
[
Expder-priv

A,PS (λ) = 1
]

− 1
2

∣∣∣ ∈ negl(λ)
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Fig. 1. Security experiments for benign soundness and derivation privacy of NIPS.

where Expder-priv is the game described in Fig. 1. Moreover we say that
PS is perfectly (resp. statistically) derivation private when for any (possibly
unbounded) adversary the advantage above is 0 (resp. negligible).

Similarly to [13], we require a technical property to show re-randomizability of
our encryption scheme that we call tightness for proofs, which roughly speaking
says that it is hard to find a proof for a valid instance that does not lie in the
set of the proofs created by the prover. For space reasons, we give more details
in [14].

3.1 Our Malleable NIDVPS Based on Type-1 Pairing

Let D ∈ Z
n×d
q . We show that the following PS is a NIPS for L = span([D]1):

– PGen(pars) parses pars as prmG, [D]1 ∈ G
n×d
1 where n, d ∈ N, samples k ←$

Z
n2

q , let In be the identity matrix of dimension n, set:

psk ← k and ppk ← (k�[D ⊗ In]1,k�[In ⊗ D]1,k�[D ⊗ D]T )

– PPrv(ppk , [u]1, r) computes π ← k�[D ⊗ D]T · (r ⊗ r) for [u]1 = [D]1r
– PSim(psk , [u]1) computes π ← k�([u]1 ⊗ [u]1)
– PVer(psk , [u]1, π) returns 1 if and only if k�([u]1 ⊗ [u]1)

?= π

The first two vectors in the ppk are necessary to enable for the malleability
of the proof system. While the third element of the public key could be effi-
ciently derived from the previous two, we decide to publish it to speed up re-
randomization and proving time. Consider the set T of admissible transforma-
tions for Z

n
q :

T = {T : Tel(pars, [u]1) = [u]1 + [D]1r̂; Twit(r) = r + r̂} (2)
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We note that any transformation T in the set above is uniquely determined by
the vector r̂, thus, whenever it is clear from the context, we will simply use r̂ to
identify the transformation. Let PEvl(ppk , r̂, [u]1, π) the algorithm that computes

π̂ ← π + k�[In ⊗ D]1 · [u ⊗ r̂]1 + k�[D ⊗ In]1 · [̂r ⊗ u]1 + k�[D ⊗ D]T · r̂ ⊗ r̂.

We show that PS and PEvl form a malleable proof system for the set of trans-
formation T and the language L.

Theorem 1. Let L = span([D]1) and let Lsnd = Lsim = {[u]1 : [u]1 = [D0]1r ∨
[u]1 = [D1]1r}, and Lver = Z

n
q , where Di = D‖D̄i for i ∈ {0, 1}, D ∈ Z

n×d
q and

D̄0, D̄1 ∈ Z
n×d′
q . PS is a (Lsim,Lver,Lsnd)-benign proof system for L as long as

n2 > 2n · d + 2d′2, moreover, PS and PEvl form a malleable proof system for L
and the set of transformation T defined in Eq. (2).

Proof. In what follows, we prove each of the properties.

Completeness and Malleability. Our benign proof system is complete, as by
Eq. (1) for any u = Dr we have (u ⊗ u) = (D ⊗ D) · (r ⊗ r). We prove that our
scheme is malleable (Definition 6) with respect to set of transformation T defined
in Eq. (2), i.e., we prove that for any [u] and any r̂, a proof π for [u] verifies if
and only if the proof π̂ obtained executing PEvl on π and the transformation r̂
verifies for [u + Dr̂]. For the first direction of the implication:

π̂ = π + k� (In ⊗ D) · (u ⊗ r̂) + k� (D ⊗ In) · (r̂ ⊗ u) + k� (D ⊗ D) · (r̂ ⊗ r̂)

= k� (u ⊗ u) + k� ((Inu) ⊗ (Dr̂)) + k� ((Dr̂) ⊗ (Inu)) + k� ((Dr̂) ⊗ (Dr̂))

= k�(u ⊗ u + u ⊗ (Dr̂) + (Dr̂) ⊗ u + (Dr̂) ⊗ (Dr̂))

= k� ((u + Dr̂) ⊗ (u + Dr̂))

We highlight that the second equation holds because of the definition of π and
(1), while the third equation is obtained by grouping the previous line by k�.
The sequence of equations above also proves the other direction; indeed, if π �=
k�u ⊗ u, then π̂ �= k�(u + Dr̂) ⊗ (u + Dr̂).

Soundness. We recall that D ∈ Z
n×d
q , D̄i ∈ Z

n×d′
q . If we only consider the view

of the adversary given the verification key and the outputs of the simulation ora-
cle we have that the proving key is uniformly distributed over a set of cardinality
qn2−2nd−2d′2

. Therefore, we require that n2 > 2n · d + 2d′2 holds.
To see this, think of k as a formal variable and notice that publishing

k� (D ⊗ In) counts for n · d equations; also, k� (In ⊗ D) counts for n · d equa-
tions which in total gives us 2n · d equations. Moreover, in order to simulate
proofs for [u]1 ∈ span([Di]) the oracle gives away, at the worst case, the equa-
tions k� (

D̄i ⊗ D̄i

)
which count for d′2 equations for each i ∈ {0,1} which

sum up to 2d′2 equations in total. Indeed, expanding k� (Di ⊗ Di), we obtain
k� (

D ⊗ D|D̄i ⊗ D|D ⊗ D̄i|D̄i ⊗ D̄i

)
. Now k� (

D̄i ⊗ D
)

and k� (
D ⊗ D̄i

)
can

be computed given the proving key and D0,D1. In fact, when we compute
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k� (D ⊗ I)
(
I ⊗ D̄i

)
, we obtain k� (

DI ⊗ ID̄i

)
= k� (

D ⊗ D̄i

)
. And in a simi-

lar way, we can compute k� (
D̄i ⊗ D

)
. In total, we are giving up 2n · d + 2d′2

equations and the length of our key k is n2.
Notice that the adversary can gather additional information about the prov-

ing key k through the verification oracle. Indeed, whenever it sends a query
([u]1, π) with [u]1 ∈ Lver \Lsnd either it wins the security game or the adversary
learns that π �= k�[u]1 ⊗ [u]1.

Consider the hybrid experiment Hj where the first j-th queries ([u]1, π) to
the verification oracle with [u]1 �∈ Lsnd are answered with 0, in particular, the bit
b is left unmodified, while the remaining queries are handled as in the soundness
experiment. Clearly, H0 is the original experiment, while HQ where Q is an
upper bound on the number of verification oracle queries made by the adversary
is a trivial experiment where the adversary cannot win (since the bit b will
never be set to 1), thus Pr [HQ = 1] = 0. The distinguishing event between
two consecutive hybrids is the event that the adversary wins the soundness
experiment at the j-th query, which happens with probability 1/qn2−2nd+2d′2 ≤
1/q, as it is the same as the event of guessing a uniformly random vector from a
subspace of dimension n2−2nd+2d′2 of Zn2

q , thus Pr [Hj = 1] ≤ Pr [Hj+1 = 1]+
1/q. Finally, by the triangular equation and noticing that Q is polynomial in the
security parameter we can conclude our proof of soundness.

Derivation Privacy and Zero-Knowledge. The scheme is perfectly deriva-
tion private and zero-knowledge. For the former, notice that, for any r̂, we have
that PPrv(ppk , [u+Dr̂]1, r+r̂) = k�[D⊗D]T ·((r+r̂)⊗(r+r̂)) = PEvl(ppk , π, r̂).
For the latter, given an instance [u]1 such that [u]1 = [D]1r, we have that
PSim(psk , [u]1) = k�([u]1 ⊗ [u]1) = k�([Dr]1 ⊗ [Dr]1) = PPrv(ppk , [u]1, r).

4 Rand RCCA PKE for Multi-users and Multi-
Ciphertexts

A re-randomizable PKE (Rand-PKE) scheme PKE is a tuple of five algorithms:
(i) The algorithm Setup upon input the security parameter 1λ produces pub-
lic parameters prm which include the description of the message and ciphertext
space M, C; (ii) The algorithm KGen upon input prm, outputs a key pair (pk, sk);
(iii) The algorithm Enc upon inputs pk and a message M ∈ M, outputs a cipher-
text C ∈ C; (iv) The algorithm Dec upon input sk and a ciphertext C, outputs a
message M ∈ M or an error symbol ⊥; (v) The algorithm Rand upon inputs pk
and a ciphertext C, outputs another ciphertext C′.

Definition 8 (multi-user and multi-ciphertext Replayable CCA Secu-
rity). Consider the experiment ExpmRCCA in Fig. 2, with parameters λ, an adver-
sary A, and a PKE scheme PKE. We say that PKE is indistinguishable
secure under replayable chosen-ciphertext attacks in the multi-user and multi-
ciphertext setting (mRCCA-secure) if for any PPT adversary A:

AdvmRCCA
A,PKE(λ) :=

∣∣∣∣Pr
[
ExpmRCCA

A,PKE(λ) = 1
]
− 1

2

∣∣∣∣ ∈ negl(λ).
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Fig. 2. The multi-user and multi-ciphertext RCCA Security Experiment.

In Fig. 2, for each user j we define Qj to be a partition of the set of the challenge
messages sent to the encryption oracle for the user j. To do so we use the
classical “Disjoint-Set” (also called “Union-Find”) data structure from Tarjan
[34]. Whenever two challenge messages are submitted to the encryption oracle,
indeed, we merge the sets to which they belong so that a future call to the
guarded decryption oracle behaves consistently. This allows us to express in Fig. 2
the syntax of the encryption and the guarded decryption oracle in terms of three
operations: DisjointSet() that allows initializing the partition (initially empty),
union(S) that adds to the partition the minimal subset of the challenge messages
that contains the messages in S meanwhile maintaining invariant the partition
property (i.e. a collection of disjoint sets), and find(M) that returns the set in the
partition where M belongs to, or ⊥ if M is not in the set of challenge messages
of the user j. We confirm that our definition is indeed the right multi-user and
multi-ciphertext extension of the IND-RCCA definition of [7] by showing that our
definition tightly implies the UC-RCCA definition of the same paper3. For space
reasons, we recall the definition of the ideal functionality FRPKE which formalizes
the notion of replay security for PKE scheme in the universal composability
model in [14], where we also give the proof of the theorem below.

Theorem 2. Let PKE be a PKE scheme with message space D. There exists
a simulator S such that for any static-corruption environment Z with running
time TZ there exists an adversary B whose running time is O(TZ(λ)) such that:
∣∣∣Pr [RealZ,ΠPKE (λ) = 1] − Pr

[
IdealFRPKE

Z,S (λ) = 1
]∣∣∣ ≤ 2Advmumc−RCCA

B,PKE (λ) + TZ
|D|

For space reasons, we only informally introduce the notions of perfect re-random-
izability and public verifiability, and give more details in [14]. For the notion of
perfect re-randomizability, we consider the definition given in [13] which con-
sists of three conditions: (i) the re-randomization of a valid ciphertext and a
3 In [7], the IND-RCCA notion implies the UC-RCCA notion with a loss of security

that is proportional to the running time of the environment.
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fresh ciphertext (for the same message) are equivalently distributed; (ii) the re-
randomization procedure maintains correctness, i.e., the randomized ciphertext
and the original decrypt to the same value, and in particular, invalid ciphertexts
keep being invalid; (iii) it is hard to find a valid ciphertext that is not in the
support of the encryption scheme. A PKE scheme is publicly verifiable if the
validity of the ciphertexts can be checked only using public material.

5 Our Rand-RCCA PKE Scheme

Fig. 3. Rand-RCCA PKE scheme PKE based on the Dn,d-MDDH assumption in
type-1 bilinear groups. P is the support of the proofs for PS.

We present our scheme in Fig. 3. With the goal of improving readability for devel-
opers, all the operations (and in particular the pairing operations) in the figure
are described explicitly using e for the pairing and · for the exponentiations. The
scheme can be summarized as a type-1 pairing group version of the scheme in [13]
where we additionally append a benign proof to prove almost tight-security. The
main technical component from [13] to obtain RCCA security is the consistency
check at decryption time which checks that [y]T

?= f�[u]T + [x]�1 F�[u]1
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Perfect Re-Randomizability. The proof of perfect re-randomizability follows
from [13] and the derivation privacy of PS. Here we highlight the following
lemma, whose proof is in [14].

Lemma 2. For any [x]1 and r̂, let [x̂]1 = [x]1 + [D∗]1r̂, we have that:

(f� + [x̂]�1 F�)[û]1 = (f� + [x]�1 F�)[u]1 + [f�D]T · r̂
+ e([x]1, [F�D]1 · r̂) + e([FD∗]1 · r̂, [û]1)

The correctness of PKE follows from the lemma above and the fact that PS and
PEvl form a malleable proof system. More details are in [14].

Security. We prove that the security of the scheme reduces to the Dn,d-MDDH
assumption. Below we state the main theorem.

Theorem 3. For every PPT adversary A that makes at most QEnc encryption
and QDec decryption queries, there exist adversaries Bmddh, Bsnd with similar
running time T (Bmddh) ≈ T (Bsnd) ≈ T (A) + (QEnc + QDec) · poly(λ), where
poly(λ) is a polynomial independent of T (A), and such that

AdvRCCA
A,PKE(λ) ≤ O (d log QEnc) · AdvMDDH

G1,Dn,d,Bmddh(λ)

+ log QEnc · Advsnd
Bsnd,PS(λ) + O

(
n2QDecQEnc log QEnc

q

)
.

Proof. We give a proof only for the single-user, multi-ciphertext case, i.e. when
the adversary calls the key generation oracle only once. The proof can be easily
generalized4 to the multi-user case almost equivalently to [4,18].

To simplify the notation, since we are in the single-user setting, we omit the
index j (which specifies the user) from both encryption and decryption queries.
We let G0 be the ExpmRCCA

A,PKE experiment, and we denote with εi the advantage
of A to win Gi, i.e. εi := |Pr [Gi = 1] − 1

2 |.
The games keep track of the number of challenge ciphertexts produced.

Specifically, let ctr be a variable that counts the number of challenge cipher-
texts output by the encryption oracle: ctr is set to 0 at the beginning of the
games and, whenever the adversary calls the encryption oracle, it is increased.

Game G1. This game is identical to the previous one, but the encryption ora-
cle computes the values [y]T and [p] using secret keys (instead of public keys).
Specifically, upon the j-th query to the encryption oracle, the game computes
the ciphertext Cj = ([xj ], [yj ]T , πj) as described by the encryption procedure,

4 We rely on the self-reducibility of the MDDH assumption: in particular, we can
generate m different matrices Dj (one for each user) from one single challenge of
the (many-fold) MDDH-assumption and adapt accordingly the ciphertexts, namely,
by mapping the ciphertext for the j-th user through the same linear transformation
that maps the MDDH-challenge matrix to the matrix Dj .
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but where we compute [yj ]T ← f�[uj ]+ [xj ]�F�[uj ] and [pj ] ← a�[uj ]+ [Mj,b∗ ].
By linearity, this game is perfectly equivalent to the previous one, thus ε1 = ε0.

Game G2. This game is identical to the previous one, but the encryption oracle
simulates the benign proofs π. We rely on the perfect zero-knowledge of the
benign proof system. The reduction is standard, therefore we omit it. Since the
proof system satisfies perfect zero-knowledge we have ε2 = ε1.

Game G3. At the very beginning, the game additionally samples matrices D̄b ←$

Z
n×d
q for b ∈ {0, 1}, and sets Db ←

(
D|D̄b

)
. The encryption oracle in this

game samples [u] from the span of [D0]. We apply a standard reduction to the
QEnc-fold Dn,d-MDDH assumption, twice, and we prove that no adversary can
distinguish this game from the previous one: we first tightly switch the vectors
in the challenge ciphertexts from the span of [D] to uniformly random vectors of
G

n
1 ; next, we use the QEnc-fold Dn,2d-MDDH assumption to switch these vectors

from random to the span of [D0]. The proof of this step is standard: in [14], we
show how we can build adversaries B, B′ such that

|ε3 − ε2| ≤ AdvQEnc−MDDH
G1,Dn,d,B(λ) + AdvQEnc−MDDH

G1,Dn,2d,B′(λ)

Game G4. In this experiment, we add an explicit check to the decryption oracle.
First recall that D∗ is defined in Fig. 3 as the matrix whose first n rows are
equal to D and last row is equal to a�D. Upon query C := ([x], [y]T , π) to the
decryption oracle, where [x]� := ([u]�, [p]), the oracle additionally checks that:

u ∈ span(D) ∨ ∃j : D∗⊥xj = D∗⊥x (3)

where D∗⊥D∗ = 0, and QEnc = {Cj = ([xj ], [yj ]T , πj) : j ≤ [ctr]} is the set
of challenge ciphertexts. If the condition holds, the decryption oracle proceeds
by running the decryption procedure as usual, otherwise it returns ⊥ to the
adversary. We notice that the new condition can be checked efficiently since we
know D ∈ Z

n×d
q and a ∈ Z

n
q .

The distinguishing event between G4 and G3 is that the adversary queries
the decryption oracle with a ciphertext that would not decrypt to ⊥ (according
to the original decryption rules of G3), but where Eq. (3) holds. We call such
query to the decryption oracle a “critical query”, i.e. a decryption query where:

– [u] /∈ span([D]) and ∀j : D∗⊥xj �= D∗⊥x (the latter implies that [u] is not
the result of an honest rerandomization of a previous challenge ciphertext)

– π is valid, and [y]T = f�[u]T + [x]�F�[u], i.e., the consistency check holds.

For this step, we refer to Lemma 3.

Game G5. This game is equivalent to G4, but we modify the rules of the decryp-
tion oracle once again. For any j, let Mj,0 and Mj,1 be the challenge messages
queried by A at the j-th query to the encryption oracle. Upon decryption query
C = ([x], [y]T , π), if ∃j : D∗⊥xj = D∗⊥x where recall QEnc = {([xj ], [yj ], πj) :
j ≤ ctr}, and both the proof π verifies and the consistency check holds, then the
decryption oracle immediately returns the symbol �J where J ← Q.find(Mj,0).
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Notice that we can rewrite the decryption procedure as M = (−a�, 1)[x].
We observe that the vector (−a�, 1) is in the span of D∗⊥, since it holds that
(−a�, 1)D∗ = −a�D + a�D = 0. Thus, at any decryption query, if D∗⊥xj =
D∗⊥xj for some challenge ciphertext Cj then (−a�, 1)[xj ] = (−a�, 1)[x], and
therefore the decryption oracle would compute the message Mj,b∗ and output
the symbol �J , where J = Q.find(Mj,b∗). Moreover, notice that Q.find(Mj,b∗) =
Q.find(Mj,0) by definition of the security experiment. This shows that ε5 = ε4.

Game G6. In this last step, we encrypt random messages. Formally, at the j-th
encryption query the oracle (on input messages Mj,0, Mj,1 ) encrypts the message
Mj,b∗ +Rj , where Rj is random. Clearly, it holds that ε6 = 0 as in fact, because of
the change introduced in G6, the ciphertexts are independent of the challenge
bit b∗, and, by the changes introduced in G4 and G5, the decryption queries are
independent of the challenge bit. We prove that G5 and G6 are indistinguishable,
as this step is almost the same as in [18], we defer its proof to [14].

Lemma 3. For any PPT adversary A, we build PPT adversaries B, B′ with
running times similar to A such that:

|ε3 − ε4| ≤ O(d log QEnc)AdvMDDH
G1,Dn,d,B(λ) + log QEncAdvsnd

B′ (λ)

+ O
(

n2QDecQEnc log QEnc

q

)

Proof. We denote the probability that the adversary A wins game Hx by εHx
.

In the following, we will bound εH0 via a sequence of games.

Hybrid H0. This hybrid is the same as G3 but immediately outputs 1 if the
adversary makes a “critical query”. Specifically, the hybrid executes G3 but the
decryption oracle upon input C parses it as ([x], [y]T , π) and checks that Eq. (3)
holds; if it holds, the decryption oracle continues as before. Otherwise, returns
the message “critical”, and H0 stops the interaction, immediately returning 1.
Since the hybrid outputs 1 when the distinguishing event between G3 and G4

happens, we have that |ε3 − ε4| ≤ εH0 . Also notice that the checks in Eq. (3) can
be efficiently performed given the knowledge of D.

Hybrid H1. This hybrid is preparatory for the next one. We inject randomness
into the encryption/decryption keys, adding a vector (zD⊥) to the secret key
f�, common to all the encryption queries, where z ∈ Z

n−d
q . Specifically, at the

very beginning of the experiment we sample the vector z ←$ Z
n−d
q , we sample f

and compute the public key material [f�D] and moreover:

– The encryption oracle, at the j-th query, computes the values [yj ]T as follows:

[yj ]T ← (f� +zD⊥ )[uj ]T + [xj ]�F�[uj ]

– Similarly, the decryption oracle, upon input the ciphertext C = ([x], [y]T , π)
computes the bit b1 (i.e. the bit of the consistency check) by computing the
value [y′]T and checking if [y]T

?= [y′]T where [y′]T is computed as:

[y′]T ← (f� +zD⊥ )[u]T + [x]�F�[u]
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These new rules do not change the view of the adversary since both f� and
f� + zD⊥ are uniformly distributed over Z

1×n
q given the public key material

[f�D]. Thus we obtain εH1 = εH0 .

Hybrid H2. Let P : {0, 1}∗ → Z
1×n−d
q be an uniformly random function. In

this hybrid we use the following rules for encryption and decryption:

– The encryption oracle, at the j-th query, computes the values [yj ]T as follows:

[yj ]T ← (f� + P (j) D⊥)[uj ]T + [xj ]�F�[uj ]

– For each decryption oracle query, we first define a set S over which the decryp-
tion oracle iterates to test the consistency check. The definition of the set S
is carefully crafted to define the behavior of the hybrid experiment in case of
replay attack from the adversary
Recall that ctr counts the number of challenge ciphertexts output by the
encryption oracle and that QEnc = {Cj = ([xj ], [yj ]T , πj) : j ≤ ctr}. Upon
input the ciphertext C = ([x], [y]T , π), the decryption oracle first sets:

S := {j} if ∃j ≤ ctr : D∗⊥[x] = D∗⊥[xj ]
S := {j : j ≤ ctr} otherwise

then it computes the bit b1 (i.e. the bit of the consistency check for C, see
Fig. 3) differently by checking that

∃j ∈ S : [y]T
?= (f� + P (j) D⊥)[u]T + [x]�F�[u].

Moving from H1 to H2 requires a series of hybrids H1,i,i′ , i ∈ [log(QEnc)], i′ ∈ [6].
We give in [14] the formal definitions of all these hybrids, and we highlight their
differences.
Hybrid H1,i,0. Let Pi be a random function that takes in input strings of length
i (for i = 0, we can imagine this as a constant function defined on the empty
string) and returns row vectors of length n − d.

– On input the j-th query, the encryption oracle samples [uj ] from the span of
[D0]. The element [yj ]T is computed as

[yj ]T ← (f + Pi(j|i) D⊥)[uj ] + [xj ]�F�[uj ].

– Upon input the ciphertext C = ([x], [y]T , π), define:

S := {j|i} if ∃j ≤ ctr : D∗⊥[x] = D∗⊥[xj ]

S := {j|i : j ≤ ctr} otherwise

it then executes the same code of the previous hybrid.
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When i = 0, for any value j the string j|0 is equal to the empty string, thus,
in H1,0,0, the random function P0 is always called on input the empty string.
In particular, either when D∗⊥[x] = D∗⊥[xj ] holds or when it does not, the
consistency check performed is exactly the same. Thus the difference between
hybrid H1,0,0 and H1 is only syntactical.

Hybrid H1,i,1. This hybrid is equivalent to the previous one, but here the
encryption oracle, on input the j-the query, generates [uj ] in the span of [Dj[i+1]].
We rely on the MDDH assumption to prove indistinguishability between the two
hybrids. We proceed in two steps:

– We first switch the j-th vector [uj ] computed by the encryption oracle to a
vector in the span of [(D|U)], where U is uniform over Zn×d

q , if the (i+1)-th
bit of the binary representation of j is equal to 1. We call this intermediate
hybrid HAi

.
– Finally, we switch the j-th vector [uj ] computed by the encryption oracle to

a vector in the span of [(D|D̄1)] = [D1], if the (i + 1)-th bit of the binary
representation of j is equal to 1.

First we show indistinguishability between H1,i,0 and HAi
. Let BA be an MDDH-

adversary receiving the QEnc-fold Dn,d-MDDH challenge ([D̄0], [h1], . . . , [hQEnc
])

as input. BA can sample a random matrix D ←$ Dn,d, a random matrix D̄1 ∈
Z

n×d
q , the secret material a ←$ Z

n
q , f ←$ Z

d
q ,F ←$ Z

n×n+1
q and the secret

material for the benign proof system (since BA knows D, this can be easily
achieved running PGen([D])). Finally, BA samples a challenge bit b and gives the
public key of the scheme to A. BA simulates the encryption oracle as follows.
On input the j-th pair of messages (M0, M1):

– if the (i+1)-th bit of the binary representation of j is equal to 0, the adversary
sets [uj ] ← [D0]rj ,

– else, samples a random vector r̃ ∈ Z
d
q , and computes [uj ] ← [D]̃r + [hj ].

Note that BA can still simulate the decryption oracle, because of the knowl-
edge of the secret material a, f ,F and of the matrix D. Since BA knows both
the matrix D and the vector a, can always find a matrix D∗⊥ such that
D∗⊥D∗ = 0. This allows BA to catch critical queries. If the tuple is a real
MDDH tuple, i.e. [hj ] = [D̄0]rj , the game described is perfectly equivalent to
H1,i,0. Otherwise, if the challenge vectors are uniformly random, the game sim-
ulated is equivalent to HA,i. The next step is to switch the j-th vector [uj ]
computed by the encryption oracle to a vector in the span of [(D|D̄1)] = [D1]
if the (i + 1)-th bit of the binary representation of j is equal to 1. This trans-
formation is similar to the previous one, therefore we omit the details. Alto-
gether, combining the previous adversaries, we obtain an adversary C such that:
|εH1,i,1 − εH1,i,0 | ≤ 2(n − d)Advmddh

G1,Dn,d,C(λ) + 2
q−1 .

Hybrid H1,i,2. We add an explicit check to the decryption oracle. Specifically,
at each decryption oracle query the hybrid additionally checks if u �∈ span(D0)∪
span(D1), and if it is the case the decryption oracle returns immediately ⊥ to
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the adversary. We rely on the soundness of the underlying benign proof system.
In particular, the only condition that would allow to distinguish between this
hybrid and the previous one is to query the decryption oracle with a ciphertext
C = ([x], [y]T , π) where:

– u �∈ span(D0) ∪ span(D1)
– the decryption oracle in the hybrid H1,i,1 would not return ⊥.

For such query it holds that PVer(psk , [u], π) = 1. We build an adversary B
against the (Lsim,Lver,Lsnd)-soundness of the proof system. (Recall that Lsnd =
Lsim = span(D0) ∪ span(D1), and Lver = Z

n
q .)

The adversary B samples the secret material a, f ,F; then, it queries the
challenger to obtain the public key of the benign proof system, associated with
the matrix D, and finally gives A all the public key material. The adversary
B can easily simulate the encryption oracle since it knows all the necessary
information. To compute the proof πj associated with the j-th encryption oracle
query, it queries the simulation oracle offered by the challenger: it holds that
uj ∈ Lsim, for all j ∈ [QEnc]. When the adversary makes a decryption query, B
needs to verify that the proof π is accepted by PVer; so, it forwards (u, π) to
the challenger. Since Lver is equal to Z

n
q , the verification oracle always returns a

verdict bit, and B can proceed in the natural way the simulation of the decryption
oracle. At some point B queries the verification oracle with some ([u], π) such that
u /∈ span(D0) ∪ span(D1), i.e., u /∈ Lsnd, but PVer(psk , [u], π) = 1. This is the
event that lets B win the soundness game. The adversary B runs in time T (B) ≈
T (A)+(QEnc+QDec) ·poly(λ), where poly is a polynomial independent of T (A).
Moreover, notice that when the distinguishing event happens the adversary B
wins the soundness game, thus: |εH1,i,2 − εH1,i,1 | ≤ Advsnd

B,PS(λ).

Hybrid H1,i,3. In this hybrid, we increase the entropy of the secret keys during
encryption queries.

– The encryption oracle, at the j-th query, computes the values [yj ]T as follows:

[yj ]T ← (f� + Pi+1(j|i+1) D⊥)[uj ] + [xj ]�F�[uj ].

– The decryption oracle, upon input the ciphertext C = ([x], [y]T , π) addition-
ally checks that ∃d s.t. u ∈ span(Dd) and in such a case it sets:

S := {j|i ‖d } if ∃j ≤ ctr : D∗⊥[x] = D∗⊥[xj ]

S := {j|i ‖d : j ≤ ctr} otherwise

and it continues executing the same code as the previous hybrid.

We prove that |εH1,i,2 − εH1,i,3 | is negligible. We first transit to an intermedi-
ate hybrid H′

i where instead of using the function Pi(·)D⊥, we use the function
P ′

i (·) := P
(0)
i (·)D⊥

0 +P
(1)
i (·)D⊥

1 , where P
(0)
i and P

(1)
i are two uniformly random

functions with domain {0, 1}i. Notice that P ′
i (·) is an uniformly random function
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that maps strings in {0, 1}i to vectors in rowspan(D⊥
0 ) + rowspan(D⊥

1 ) while
Pi(·)D⊥ is an uniformly random function that maps string in {0, 1}i to vectors
in rowspan(D⊥). Thus the distinguishing event between Hi,j,2 and this interme-
diate hybrid is the event that rowspan(D⊥

0 ) + rowspan(D⊥
1 ) �= rowspan(D⊥).

The latter event happens with probability at most 1/q: in fact, the event hap-
pens if and only if the subspace span(D̄0|D̄1) has dimension strictly less than 2d
and recall that the columns of such matrices are sampled uniformly at random.
Next, we define the function P

(b)
i+1 : {0, 1}i+1 → Z

1×(n−2d)
q , ∀b ∈ {0, 1}:

P
(b)
i+1(x) =

{
P

(b)
i (x|i), x[i + 1] �= b

P̃i
(b)

(x|i), else

where Pi, P̃i are two uniformly (and independent) random functions. Notice that
P

(b)
i+1 is an uniformly random function.

We define a second intermediate hybrid H′
i+1 where for the encryption oracle

queries instead of using the random function P ′
i applied to the indexes j|i we

use the function P ′
i+1 applied to the indexes j|i+1, and for the decryption oracle

queries we use P ′
i+1 applied to (j|i‖d), where d is such that uj ∈ span(Dd) (as

described in the H1,i,3). We show that H′
i and H′

i+1 are equivalently distributed.
Indeed, in this second intermediate hybrid, at the j-th encryption oracle query
we compute [yj ]T ← (f� + P ′

i+1(j|i+1))[uj ] + [xj ]�F�[uj ]. Moreover, we have
that P ′

i+1(j|i+1)uj = P ′
i (j|i)uj , in fact:

P ′
i+1(j|i+1)uj =

(
P

(1−j[i+1])
i (j|i)D⊥

1−j[i+1] + P̃i
(j[i+1])

(j|i)D⊥
j[i+1]

)
Dj[i+1]rj

=
(
P

(1−j[i+1])
i (j|i)D⊥

1−j[i+1]

)
Dj[i+1]rj

=
(
P

(0)
i (j|i)D

⊥
0 + P

(1)
i (j|i)D

⊥
1

)
Dj[i+1]rj

= P ′
i (j|i)Dj[i+1]rj = P ′

i (j|i)uj

In the above derivation, we first applied the definitions of Pi+1 and uj , then
we simplified the second term by noticing that D⊥

j[i+1]Dj[i+1] = 0, then for the

same exact reason we can add the component P
(j[i+1])
j (j|i)Dj[i+1], and finally

we have the definition of P ′
i .

Similarly, for the decryption oracle queries with input C = ([x], [y]T , π) where
∃d : u ∈ span(Dd), we have that P ′

i+1(j|i+1)u = P ′
i (j|i)u. The derivation is

identical to before. Thus the two intermediate hybrids are equivalent.
Finally, we show that the second intermediate hybrid, H′

i+1, is statistically
close to Hi,1,3; in fact, the only difference is that in the latter hybrid we use the
function Pj+1(·)D⊥. Equivalently as before, the two random functions are not
equivalently distributed only when span(D̄0‖D̄1) has rank less then 2d, which
happens with probability at most 1/q. Thus |εH1,i,2 − εH1,i,3 | ≤ 2

q .

Hybrid H1,i,4. We remove the direct check [u]1 ∈ span([D1]1) ∪ span([D0]1)
introduced in H1,i,2. This removal can only increase the winning probability of
the adversary. Thus εH1,i,3 ≤ εH1,i,4 .
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Hybrid H1,i,5. To decrypt, we increase the number of keys used by the decryp-
tion oracle to compute the bit b1.

S := {j|i ‖b : b ∈ {0, 1}} if ∃j ≤ ctr : D∗⊥[x] = D∗⊥[xj ]

S := {j|i ‖b : b ∈ {0, 1}, j ≤ ctr} otherwise

This change can only increase the winning probability of the adversary since
the set of the strings S used in H1,i,5 contains the set of strings used in H1,i,4.

As for non-critical queries, we need to show that the view of the adversary
does not change: in particular, any non-critical query that decrypts to ⊥ in H1,i,4

should decrypt to ⊥ in H1,i,5 as well. This is easy to prove when the decryption
query has [u] ∈ span([D]): indeed, even if we modify the set S, this change does
not affect the way we decrypt such queries (recall that any key Pi+1(·) is then
multiplied by D⊥.) Also, a non-critical query could be a query for which it holds
that there exists j ∈ [QEnc] such that D∗⊥xj is equal to D∗⊥x. If a query of this
form succesfully decrypts in H1,i,4, the same happens in H1,i,5: again, this is
because S in the latter hybrid is a superset of S in H1,i,4. But, it is still possible
that a query of this form decrypts to ⊥ in H1,i,4, but the ‘augmented’ S in this
new hybrid makes the consistency bit b1 be 1, for some new key: we bound the
probability of a similar event since we know that the only way to learn the image
of the random function Pi+1(·) is via oracle queries to Odec and Oenc. By union
bound, we obtain a statistical distance of O(QEncQDec/q).

εH1,i,4 − O(QEncQDec/q) ≤ εH1,i,5 .

Hybrid H1,i,6. This hybrid is equivalent to the previous one, but the decryption
oracle computes a different set S, as follows:

S := {j|i+1} if ∃j ≤ ctr : D∗⊥[x] = D∗⊥[xj ]

S := {j|i+1 : j ≤ ctr} otherwise

Notice that the set S as defined in H1,i,6 might be a (strict) subset of the set S
as defined in H1,i,5. Thus the distinguishing event is that the consistency check
would pass in H1,i,5 but it would not pass in H1,i,6. In particular, such con-
sistency check passes for an index of the form ji‖1, such that j[i + 1] = 0 and
j ≤ ctr, and by the definition of the distinguishing event the integer representa-
tion of (ji‖1) · 2| log QEnc|−i−1 is bigger than ctr. Thus the key f� + Pi(ji‖1)D⊥

was never used for an encryption query. The only way an adversary can learn
information about one of such keys is via decryption queries. In particular, each
decryption query can at most decrease the set of possibilities (namely a valid y
that matches the consistency check) by one. Moreover, the number of such keys
is (very loosely) upper-bounded by QEnc, thus by union bound over all such keys
and over all the decryption queries we obtain: |εH1,i,6 − εH1,i,5 | ≤ QEnc·QDec

q−QDec
.
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Hybrid H1,i+1,0. We then switch back the distribution of [uj ] to the span of
[D0]. This transition is the reverse of what we have done to move from H1,i,0 to
H1,i,1. We proceed in two steps:

– We first switch the j-th vector [uj ] computed by the encryption oracle to a
vector in the span of [(D|U)], where U is uniform over Zn×d

q , if the (i+1)-th
bit of the binary representation of j is equal to 1.

– Then, we switch the j-th vector [uj ] computed by the encryption oracle to a
vector in the span of [D0].

Altogether we obtain and adversary C such that:

|εH1,i+1,0 − εH1,i,6 | ≤ 2(n − d)Advmddh
G1,Dn,d,C(λ) +

2
q − 1

.

It is easy to see that εH2 = εH1,�log QEnc�,6 . Next, we prove that εH2 ≤ O(n2)QEncQDec

q .
We reduce the adversary A playing in H2 to an (unbounded) adversary B upon
which we can invoke the Lemma 1. We say that B forged a valid tuple if the
output of B matches the event described in the lemma. For any assignments of
the vector a and of the matrix D in the support of Dn,d, we can consider in the
Lemma 1 the matrix E to be set equal to D∗.

Claim. Pr [H2 = 1] ≤ O(n2)QEncQDec

q .

Let (D,D∗,D�f ,D�F,FD∗) be the tuple received by B from the challenger.
The adversary B samples uniformly random values (̄f , F̄) such that f̄

�
D = f�D,

F̄�D = F�D and F̄D∗ = FD∗. We can think of the tuple (̄f , F̄) as a “fake”
proving key that matches the verification key given by the challenger. Given D
and a, the reduction B can sample all the secret material needed to simulate the
hybrid H2. In particular, it can compute the proving key and verification key of
the proof system PS and sample the challenge bit. The reduction B samples an
index value j∗

Enc ∈ [QEnc] and an index j∗
Dec ∈ [QDec]. (Recall that QEnc and QDec

denote the number of encryption, resp. decryption queries made by A.) At the
j-th query to the encryption oracle:

– If j �= j∗
Enc, the reduction B generates xj following the prescribed algorithms.

Then, it computes yj ←
((

f̄ + F̄xj

)� + P (j)D⊥
)
uj , where we recall that

P (·) is a random function.
– Else, for j = j∗

Enc, B computes xj as prescribed, queries its own oracle with
xj and obtains a value v = f + F · xj , then, it uses v + P (j)D⊥ to compute

the proof y, associated with uj , namely: yj ←
(
v� + P (j)D⊥

)
uj .

At the j-th query to decryption oracle with ciphertext C = ([x], [y]T , π) there are
three possible cases. The easiest case to handle is if u ∈ span(D) or ∃j �= j∗

Enc

such that D∗⊥xj = D∗⊥x. The reduction B can compute the consistency check
using the keys f̄ , F̄ and the random function P .
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The second case is when D∗⊥xj∗
Enc

= D∗⊥x, in this case let r′ be such that
x − xj∗

Enc
= D∗r′ and compute

y′ ← yj∗
Enc

+ f�Dr′ + x�
j∗
Enc

F�Dr′ + (FD∗r′)�(uj∗
Enc

+ Dr′)

namely, compute the element [y′]T as if it was computed in the re-randomization
of the ciphertext Cj∗

Enc
using randomness r′. Notice that, by definition of H2 the

consistency check for [y]T would be computed by checking if

y
?=

(
(f + Fx)� + P (j∗

Enc)D
⊥

)
u.

By Lemma 2 and by definition of yj∗
Enc

, the two checks are equivalent. The last
case is when u �∈ span(D) ∧ ∀j : D∗⊥xj �= D∗⊥x, i.e., the query might be
“critical”:

– If j < j∗
Dec then return ⊥ to the adversary A, in this case we assume that the

query was not critical and that the decryption would fail.
– If j = j∗

Dec then output the tuple (y − P (j∗
Enc)D

⊥u,u,x) as the forgery of B.

We condition on the event that j∗
Dec is the first critical query of A and that,

let the ciphertext sent by A at the j∗
Dec query be C = ([x], [y]T , π) we have that

the equation [y]T = (f + P (j∗
Enc)D

⊥ + Fx)�[u] holds. Let Guess be such event.
Conditioned on such a lucky event, B indeed produces a valid forgery, in fact by
the definition of a critical query (xj∗

Enc
− x) �∈ span(D∗) and u �∈ span(D).

We show that the view provided by B to the adversary A up to the j∗
Dec-

th decryption query and conditioned on Guess is equivalent to the view of the
adversary up to the j∗

Dec-th decryption query in the hybrid game H2. The intu-
ition is that the values P (j)D⊥, for all j, mask the components of (f ,F) and
(f̄ , F̄) that differ. Indeed, we know that for some row vectors v,w,w′, it holds
that f = Dv + (wD⊥)� and f̄ = Dv + (w′D⊥)�. Similarly, for some V,W and
W′, F = DV + (WD⊥)�, and F̄ = DV + (W′D⊥)�.

Let P ′ be a uniformly random function, and consider the following function:

P (j) =

{
P ′(j), j = j∗

Enc

P ′(j) + Δj , j �= j∗
Enc

where Δj = w − w′ + x�
j (W − W′). It is not hard to see that P is a uniformly

random function. Now consider the mental experiment where B runs the same
but using the random function P defined above. Since P is uniformly random,
the probability that B forges a valid tuple in this mental experiment is the same
as the probability that B forges a valid tuple in the real experiment. Also, for
any j �= j∗

Enc the value y computed at the j-th encryption oracle query is:

y =
((

f̄ + F̄xj

)� + P (j)D⊥
)

[uj ]
((

f̄ + F̄xj

)� + (P ′(j) + Δj)D⊥
)

[uj ]

=
((

f̄ + ((w − w′)D⊥)� + (F̄ + ((W − W′)D⊥)�)xj

)�
+ P ′(j)D⊥

)
[uj ]

=
(
(f + Fxj)

� + P ′(j)D⊥
)

[uj ].
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The probability that the reduction B creates a forgery is Pr [H2 = 1 ∧ Guess],
and the two events are independent. Moreover, since Pr [Guess] = (QEncQDec)−1,
by the Rand-RCCA Lemma in [14] we have that Pr [H2 = 1] ≤ n(n+1)QEncQDec

q .

5.1 Publicly-Verifiable Rand-RCCA PKE

We show two publicly verifiable Rand-RCCA PKE schemes based on the scheme
from Sect. 5. Following the ideas in [13], we append a malleable NIZK proof
(essentially a Groth-Sahai proof) that [y]T and π are well-formed to the cipher-
texts of PKE from the previous section. The decryption algorithm outputs the
decrypted message only if the NIZK proofs are valid. Public verifiability follows
because the NIZK proofs can be verified using the public parameters.

Let PKE1 = (KGen1,Enc1,Dec1,Rand1) be the scheme of Sect. 5 instantiated
using the benign proof system of Sect. 3.1, and let PS2 = (PGen2,PPrv2,PVer2)
and PEvl2 form a malleable NIZK system for membership in the relation

R2 =
{

(pk, [x]), ([y]T , π, r) :
y = f�u + x�Fu

PPrv1(ppk , [u], r) = π

}
,

and where the allowable set of transformations contains all the transforma-
tions (Tel, Twit) such that it exists r̂ with Tel(pk, [x]) = pk, [x̂], Twit([y]T , π, r) =
[ŷ]T , p̂k, r + r̂ and ([x̂], [ŷ]T , π̂) = Rand1(pk, ([x], [y]T , π); r̂); each transformation
in the set of allowable transformation is uniquely identified by a vector r̂.

The pv-Rand-PKE scheme PKE2 = (Init,KGen2,Enc2,Dec2,Rand2,Ver) is
identical to PKE1, except that (i) KGen2 additionally samples the common ref-
erence string for PS2, (ii) the encryption procedure computes a ciphertext as
in PKE1 but additionally computes a proof π2 for PS2 and outputs a cipher-
text C = ([x1], π2), (iii) the decryption procedure first checks the proof π2 holds
w.r.t. the instance (pk, [x]) and, if so, it outputs M = (−a�, 1)[x] (and ⊥ other-
wise), (iv) the re-randomization procedure randomizes [x] as in PKE1 and uses
PEvl2 for the remaining part of the ciphertext, and (v) Ver2 simply checks π2.

Theorem 4. If PS2 is adaptively sound, (ε, O(T ))-composable zero-knowledge,
and perfect derivation private, and PKE1 is mRCCA secure then PKE2 is pub-
licly verifiable, perfectly re-randomizable, and mRCCA-secure. Specifically, for
any PPT A making up to QEnc encryption queries and QDec decryption queries
and with running time T exist PPT Brcca making the same number of queries
and adversaries Bsnd,Bzk with similar running times

AdvmRCCA
A,PKE2

(λ) ≤AdvmRCCA
Brcca,PKE1

(λ) + Advsnd
Bsnd,PS2

(λ) + ε

The proof follows by inspection of the proof of Theorem 2 in [13]. In more detail,
their proof proceeds in two steps. First, it reduces to the adaptive soundness of
the NIZK proof system to claim that if a publicly-verifiable ciphertext decrypts
correctly then its respective non-publicly verifiable ciphertext should decrypt
correctly too. We notice that this step can be performed tightly relying either
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on statistical adaptive soundness of the proof system or relying on the com-
putational soundness of the proof system when the language proved is witness
samplable. The reason is that the reduction can check which one of the many
NIZK-proofs from the adversary breaks adaptive soundness before submitting it
as its forgery. The second step uses composable zero-knowledge to first tightly
switch the way the public parameters are generated and then to switch (all
together) the proofs for the ciphertexts from real to simulated.

To instantiate the malleable NIZK, we consider a construction along the
same line of [13]. In more detail, [13] introduced an extension of the Groth-Sahai
proof system that is zero-knowledge even for pairing product equations where
the GT -elements are variables. Their idea is to commit the elements in GT using
a commitment scheme with nice bilinear properties. Groth-Sahai proofs can be
instantiated under any Dk-MDDH Assumption [11] and, given their nice algebraic
properties they are malleable [8]. More details are given in [14].

A More Efficient Tight-Secure pv-Rand-RCCA PKE. To facilitate our
more efficient scheme, we introduce a stronger variant of the MDDH assumption
(cf. Definition 1) in which the adversary gets not only a matrix [A], but also the
tensor product [A⊗A] to distinguish an element from span([A]) and random:

Definition 9 (Tensor Matrix Diffie-Hellman assumption in Gγ). The
D�,k-Tensor-Matrix-Decisional-Diffie-Hellman (TMDDH) assumption in group
Gγ holds if for all non-uniform PPT adversaries A,

|Pr [A(G, [A ⊗ A]γ , [A]γ , [Aw]γ) = 1] − Pr [A(G, [A ⊗ A]γ , [A]γ , [z]γ) = 1]|

is negligible, where the probability is taken over G = (q,G1,G2,GT , e,P1,P2) ←
GGen(1λ), A ← D�,k,w ← Z

k
q , [z]γ ← G

�
γ , and the coin tosses of adversary A.

The TMDDH assumption can be seen as a generalization of the “square-Diffie-
Hellman” assumption [6,29], and as a special case of the “Uber assumption
family” [5]. Since a TMDDH adversary gets quadratic terms [A ⊗ A] “in the
exponent”, it is not clear how this assumption relates to the more standard
MDDH assumption. However, we remark that the TMDDH assumption holds
generically for large enough dimensions, at least for uniformly random A.

Lemma 4 (Generic security of TMDDH). For k ≥ 4, the Uk+1,k-TMDDH
assumption holds against generic adversaries in a symmetric pairing setting.

In [14] we explain what we mean by “holds generically” according to the formu-
lation of Maurer [28] and we sketch a proof of the lemma.

The idea of the second publicly-verifiable PKE scheme is to (1) add in the
public key the values k�[D ⊗ D] and (2) use a malleable proof system PS3 for
membership in the relation

R3 =
{

(pk, [x]), ([y]T , π, r) :
y = f�u + x�Fu

k�[D ⊗ D]r ⊗ r · [1] = π

}
,

with the same set of allowable transformations as in the previous publicly veri-
fiable PKE scheme. The languages associated with the relation R3 and R2 are
identical, but we can obtain a more efficient NIZK proof for R3.
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Theorem 5. The pv-Rand-PKE scheme PKE3 is publicly verifiable, perfectly
re-randomizable and RCCA-secure. Specifically:

AdvRCCA
A,PKE(λ) ≤AdvTMDDH

G1,Un,d,B(λ) + O (d log QEnc) · AdvMDDH
G1,Un,d,B′(λ)

+ log QEnc · Advsnd
B′′,PS(λ) + O

(
n2QDecQEnc log QEnc

q

)

We only sketch the proof, which is only a slight variation of the proof of
Theorem 3. Notice that in the proof of Theorem 3 to move from G3 to G4 we use
the Dn,d-MDDH assumption. This step changes with our modified scheme, since
we add [D⊗D] to the public key. We thus need to rely on the stronger TMDDH
assumption. Also notice that this is the only step in the proof of Theorem 3
where the assumption over the matrix [D] is used. Finally, observe that we can
prove both composable zero-knowledge and computational adaptive soundness
of the NIZK proof system for R3 using the classical Dk-MDDH assumption.

6 Application: Universally Composable MixNet

We can plug-and-play our pv-Rand-RCCA PKE schemes in the MixNet protocol
of [13] because their protocol works for any pv-Rand RCCA scheme that has the
property of being linear and a property that holds for both PKE2 and PKE3.
For space reasons, we defer the details in [14].

The MixNet ideal functionality interacts with n sender parties and m mixer
parties. The i-th sender sends the message Mi, while the mixer can decide to
mix the messages. At the end, when all the mixer have sent their inputs, the
functionality returns the list of sorted messages. For space reasons, the ideal
functionality is formally defined in [14].

The protocol is divided into 3 phases: (i) at the input phase, the sender parties
send pv-Rand-RCCA ciphertexts of their messages and a simulation-extractable5

NIZK of knowledge; (ii) at the mixing phase, the mixers, one after the other,
shuffle the ciphertexts and compute the so-called check-sum NIZK proofs that
paired with the public-verifiability and the RCCA property are sufficient to
prove the validity of the shuffles; (iii) at the output phase, the ciphertexts are
decrypted. The nice feature of the protocol is that the statements proved by
the check-sum proofs are of constant size, independent of the number of shuffled
ciphertexts.

The NIZK proofs employed in the input-submission phase are needed only
to make sure independence of the inputs. We notice that to obtain our “tightly-
secure” MixNet we need only to make sure that the Rand-mRCCA PKE and the
simulation-extractable NIZK proofs are tightly secure. Let Advsim−ext

A,PS (λ) be the
advantage of an adversary A against the simulation extractability experiment
for PS, we are ready now to state the main contribution of this section.

5 Actually, they need a weaker form of soundness called all-but-one soundness, however
simulation extractability is sufficient.
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Theorem 6. Let PKE be a linear pv-Rand RCCA PKE, PS be a simulation-
extractable NIZK, and let Π be the MixNet protocol from [13] instantiated with
PKE and PS. The protocol Π realizes FMix with setup assumptions a thresh-
old decryption functionality FTDec[PKE ] and a common-reference string func-
tionality FCRS. More in detail, there exist a simulator S and negligible function
negl(λ,m) such that for any static-corruption environment Z with running time
TZ there exist an adversaries B,B′ whose running time is O(TZ(λ)), such that:

|Pr [RealZ,Π(λ) = 1] − Pr
[
{FCRS,FTDec}-HybridFMix

Z,S (λ) = 1
]
|

≤ 3AdvmRCCA
B,PKE(λ) + Advsim−ext

B′,PS′ (λ) + negl(λ,m)

We stress that the function negl(λ,m) in the statement of Theorem 6 is inde-
pendent of TZ and only depends on the number of mixers (which we can think
as a small number). The proof of the theorem follows by inspection of the proof
of Theorem 5 in [13] and observing that the three steps of the proof that reduce
to the pv-Rand-RCCA security of PKE can be performed tightly by relying on
the multi-ciphertext RCCA security definition (cf. Definition 8). In [14] we give
more details and we show how to instantiate the necessary simulation-extractable
NIZK using the tightly-secure QA-NIZK based on the MDDH assumption of Abe
et al. [2]. Thus, instantiating the protocol with PKE2 (resp. PKE3) we obtain a
MixNet protocol that reduces almost-tightly in the number of mixed messages
to the MDDH (resp. TMDDH) Assumption.
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Abstract. Attribute-Based Encryption (ABE) is a cryptographic prim-
itive which supports fine-grained access control on encrypted data, mak-
ing it an appealing building block for many applications. Multi-Authority
Attribute-Based Encryption (MA-ABE) is a generalization of ABE where
the central authority is distributed across several independent parties.

We provide the first MA-ABE scheme from asymmetric prime-order
pairings where no trusted setup is needed and where the attribute uni-
verse of each authority is unbounded. Moreover, it is the first to handle
non-monotonic access structures. These features broaden the applicabil-
ity and improve the efficiency of our scheme. Our construction makes a
modular use of Functional Encryption schemes with fine-grained access
control.

1 Introduction

Attribute-Based Encryption (ABE) [SW05,GPSW06] subsumes traditional pu-
blic-key encryption by providing fine-grained access to the encrypted data.
Namely, each ciphertext is associated with an access policy, and each user
receives a so-called user secret key according to their credentials. If these cre-
dentials fulfill the policy, the user secret key can be used to successfully decrypt
the ciphertext. Otherwise, the plaintext remains hidden, even if several non-
authorized users collude.

Despite being a prominent topic in the research community, the notion of
ABE suffers from several drawbacks. User secret keys are generated from a so-
called master secret key, which can decrypt any ciphertext. Consequently, the
generation of these keys must be performed by a trusted third party, who con-
trols the master secret key and who must be online every time a key is requested
(not only during the setup phase of the scheme). Such a third party is a single
point of failure in the system and is likely to be a target for attacks. Copying
the master secret and using redundant servers to alleviate this bottleneck only
increases the chances of key exposure. Besides, the master secret key owner can
impersonate any user of its choice, acting as an escrow (see [Rog15] for further
details on this issue). To mitigate these shortcomings, a solution is to decen-
tralize the key-generation so that no single party holds the master secret key in
full. Furthermore, decentralization is encouraged given that in many scenarios
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the access policy used to generate a ciphertext includes attributes coming from
different organizations.

The work of [Cha07] and later [MKE08] considered a variation of ABE
where any party can become an authority by publishing some public key; these
authorities, created on the fly, handle different attributes, and no coordination is
required among them. In these systems, a user equipped with a global identifier
can collect different credentials associated with different attributes from each
authority. However, the user must then interact with a trusted central author-
ity that will process such credentials and provide the actual ABE user secret
keys. The advantage of their approach is that this central authority is agnos-
tic to the meaning of the attributes and credentials of the user, and does not
need to communicate with the other authorities. However, most of the afore-
mentioned shortcomings remain. Afterward, [LCLS08] removed the need for a
central authority, but the set of authorities in their construction is fixed and
they must interact during the setup phase. Another limitation is that the secu-
rity of their scheme is only proven for an a priori bounded number of collusions.
[CC09] also presented a scheme with no central authority relying on distributed
PRFs. However, their scheme is still limited in terms of expressiveness (it can
only express a strict AND policy) and only handles a pre-determined set of
attributes. In [LW11], the authors gave the first construction where there is no
central authority, authorities can join the system on the fly without communi-
cating with each other and the ciphertexts can be associated with a rich class
of expressive access policies (including Boolean formulas). Despite these impres-
sive features, their construction still suffers from some limitations: it requires
a trusted setup; it uses inefficient composite-order pairings; each authority can
only handle a small (poly-size) set of attributes as, in fact, the public key of
each authority grows with the number of attributes owned by the authority.
Later on, in [OT13,RW15], the authors built MA-ABE where there is no trusted
setup beyond the mere agreement of which groups and which hash function
to use, and where the attribute set of each authority is of exponential size or
unbounded. Moreover, these schemes have the advantage of using prime-order
pairings, which are more efficient than their composite-order counterparts. How-
ever, the scheme from [OT13] is not shown to achieve security in the presence of
corrupted authorities, an important requirement in the standard security defini-
tion for MA-ABE. The scheme from [RW15] inherits from [LW11] prohibitively
large ciphertexts. Indeed, in these schemes, each ciphertext contains a number
of target group elements that grows with the size of its associated access pol-
icy, which are significantly larger than source group elements. Another reason
all existing schemes lack practical efficiency is their use of symmetric pairings,
which are less efficient than their asymmetric counterparts. This is in contrast
with state-of-the-art single-authority ABE schemes, defined over asymmetric
pairings and without target group elements in the ciphertext.

Finally, existing MA-ABE can only handle monotonic access structures. Na-
mely, policies that can be expressed by a Boolean formula with positive literals
only, e.g. of the form: Role = Reviewer ∧ Year = 2022 . Suppose the document
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to be encrypted is an audit of the security department of some company for
the year 2022. In order to avoid conflict of interests, employees from the secu-
rity department should not be able to access the document. This corresponds to
the non-monotonic formula: (Role = Reviewer ∧Year = 2022 )∧¬(Department =
Security). A naive way to implement negative literals would be to give user secret
keys associated with both the credential owned by the user and all the negative
literals not owned by the user, e.g. ¬(HumanResources), ¬(IT), ¬(Marketing),
¬(R&D), ¬(Production), and so on, for all existing departments in the com-
pany where the user does not belong. This solution yields very large user secret
keys, since they grow proportionally with the number of possible attributes. In
fact, this becomes unfeasible for large attribute universe (where the number of
attribute is super-polynomial), let alone unbounded universe (where there is no
restriction on the number of possible attributes, i.e. any bit string can serve as an
attribute). [OSW07] gave the first ABE for non-monotonic formulas, but their
techniques do not seem to be directly applicable to the multi-authority setting.
This prompts the question: Can we achieve MA-ABE with similar features and
efficiency than single-authority ABE?

Our contribution. We provide the first MA-ABE scheme from asymmetric prime-
order pairings, without trusted setup and where the attribute universe of each
authority is of unbounded size. Furthermore, our scheme handles non-monotonic
access structures. It makes a modular use of practical Functional Encryption
(FE) schemes for simple functions, namely, inner-products (we refer to our tech-
nical overview for more details about the FE we use). We prove security from
standard assumptions using pairings (namely, the SXDH assumption) in the ran-
dom oracle model. Our construction achieves security against adversaries that
can choose the access structure of the challenge ciphertext and the attributes of
the user secret keys, but the access structure and the attributes chosen cannot
depend on the cryptographic material received. That is, they must not depend
on the challenge ciphertext or the user secret keys (although they can depend on
the public key). We refer to this security notion as super-selective security—the
selective security notion traditionally refers to the setting where the adversary
is constrained to choose the access structure used in the challenge ciphertext
before receiving any cryptographic material (either the public key or the user
secret keys). We leave it as an open problem to obtain adaptive security. Table 1
compares our scheme with the state-of-the-art.

Technical overview. We consider an MA-ABE where access policies are repre-
sented by monotone span programs (MSP) (as per Definition 1), which capture
monotonic Boolean formulas. We explain how to handle non-monotonic formu-
las later in this overview. In a nutshell, an MSP allows users to produce shares
s1, . . . , s� of a secret s, where � is the size of the MSP, and each share sj is
associated with an attribute ρ(j). Akin to standard secret sharing schemes, the
secret s can be recovered if and only if sufficiently many shares sj are given. The
ABE uses cyclic groups G1,G2,Gt of prime order p, equipped with a bilinear
map e : G1 × G2 → Gt. We use additive bracket notation for all three groups,
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Table 1. Comparison among MA-ABE schemes. The attribute universe is said to be
small when it is a-priori bounded by a polynomial in the security parameter. It is said
to be large when it is of a-priori bounded exponential size in the security parameters,
or not bounded at all. “Corrupted authorities” refers to whether or not the scheme
is secure when the adversary can acquire the secret keys of some authorities of their
choice, or even create authorities with a public key of their choice (this is the standard
definition for MA-ABE). “q-type” refers to a family of parameterized computational
assumptions in pairing groups. “s-selective” refers to the super-selective security notion
(defined in Sect. 2.5).

Reference [LW11] [RW15] [OT13] This work

pairing type comp. sym. prime. sym. prime sym. prime asym.

assumption composite q-type DLIN SXDH

security adaptive selective adaptive s-selective

attribute universe small large large large

attributes per authority bounded unbounded bounded unbounded

non-monotonic access structures no no no yes

corrupted authorities yes yes no yes

that is, for s ∈ {1, 2, t}, and all scalars x ∈ Zp, we write �x�s = xPs where Ps is
a generator of Gs. Finally, we make use of Functional Encryption (FE) schemes,
which are an advanced form of public-key encryption where the secret key can
be used to derive functional secret keys skf for certain functions f . Decryption
can use skf to extract from an encryption Enc(pk,m) of the message m the
value f(m). Nothing else is revealed about the message m apart from the value
f(m). Many functional secret keys can be derived for different functions from
the secret key (which is referred to as master secret key, just like in the ABE
setting). In short, FE enables selective computations on encrypted data. We rely
on practical FE schemes that handle a particular class of functions of interest.

For encryption, an exponent s is uniformly sampled from Zp and the encap-
sulation key is defined as �s�t (we consider the KEM variant of ABE). The MSP
is used to create shares {sj}j∈[�] of s and shares {uj}j∈[�] of 0. The MA-ABE
ciphertext consists of one FE ciphertext of the vector (sj , uj) per j ∈ [�]. The
public key of the FE used for each j ∈ [�] is published by the authority that owns
the attribute ρ(j). Note that in order to register into the system, each authority
will run the FE setup algorithm to create its pair of keys (FE.pk,FE.msk).

The FE we are using is for identity-based inner-products. That is, each cipher-
text encrypts a vector x (of some fixed dimension, say d, which is then set to
2 for our modular construction), and an identity id. Each functional secret key
is associated with a vector �y�2 ∈ G

d
2 and an identity id′. The decryption of

the ciphertext with the functional secret key succeeds if the identities match, in
which case the inner-product �x�y�t is recovered. Nothing else is revealed about
the encrypted vector x. However, we do not require that the identities id and id′
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or the vector �y�2 remain hidden. These functional secret keys can be generated
from the master secret key of the FE scheme.

As we explained, the MA-ABE ciphertext will contain the FE encryption of
the vector (sj , uj) for the identity ρ(j), under the FE.pk of the authority that
owns attribute ρ(j), for all j ∈ [�].

The secret key of a user identified by a global identifier gid, for an attribute
att, will contain the FE functional secret key for the vector �(1, zgid)�2 and the
identity att, where �zgid�2 is the output of the hash value H(gid). This FE func-
tional secret key is computed using the FE master secret key of the authority
that owns the attribute att.

The user gid collects all the FE functional secret keys sk�(1,zgid)�2,att, by making
a request (att, gid) to the relevant authorities. Each FE key sk�(1,zgid)�2,att yields
the value �sj + zgiduj�t if j is such that ρ(j) = att. If sufficiently many such
values are revealed, then they can be combined to obtain �s + zgid · 0�t = �s�t,
the encapsulation key. Otherwise said, if the user gid possesses enough attributes
to satisfy the MSP in the ciphertext, it recovers the encapsulation key. Here we
rely on the fact that the share reconstruction for an MSP is linear.

To argue security, we could simply rely on the simulation security of the
underlying FE scheme, which states that only the value �sj + zgiduj�t is revealed
by the ciphertext and the FE functional secret key for identity ρ(j) and vector
�(1, zgid)�2 (together with the value �zgid�2, which is public). Note that the term
�zgiduj�t prevent collusions across different gid. In fact it hides the share sj ,
assuming the values �zgid�2 generated by the hash function are pseudo-random
(this holds in the random oracle model). So, if for any given gid there are not
enough attributes to satisfy the access structure associated to the ciphertext,
then there are not enough values �sj + zgiduj�t to recover �s�t, which remains
hidden.

This approach works, but it requires an FE scheme that is simulation-secure
with many challenge ciphertexts. Unfortunately, such primitive cannot be built
from standard assumptions (this can be proved by an incompressibility argu-
ment, similar to [BSW11], see Remark 1). We use an FE with indistiguishability-
based security instead, which means that our MA-ABE requires a more sophis-
ticated security proof relying on some prime-order variant of the dual vector
pairing space methodology [OT09,Lew12]. Our modular construction can be
instantiated with any FE with indistinguishability-based security for the appro-
priate functionality, such as the scheme from [ACGU20].

We now explain how to handle non-monotonic access structures, represented
by span programs where each share is associated with either a normal or negated
attribute (as per Definition 2). For negated attributes, we simply replace the
identity-based FE for inner-products (which we call FE1 here) in our modular
construction with an FE with revocations (called FE2). That is, the ciphertext
of FE2 encrypts a vector x together with an identity id, as before, but now each
functional secret key is associated with a vector �y�2 and a set of identities S.
If id /∈ S, then the decryption recovers �x�y�t. Else, no information is revealed
about x (although the identity id, the vector �y�2 and the set S are not hidden).
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We present a new construction for such an FE scheme whose selective security is
proven under standard pairing assumptions (SXDH). Our modular MA-ABE for
non-monotonic access structures uses FE1 and FE2 as follows. The encryption
creates shares {sj}j∈[�] of a random value s and shares {uj}j∈[�] of 0 according
to the span program that represents the access structure, as before. The novelty
here is that each share j ∈ [�] is mapped to ρ(j) which is either a normal
attribute, in which case the encryption encrypts the vector (sj , uj) with the
identity ρ(j) using FE1; or it is mapped to ρ(j) which is a negated attribute, in
which case the encryption encrypts (sj , uj) with the identity ρ(j) but this time
using FE2. Let gid be the global identifier of a user that possesses different sets
of attributes Saut = {attaut1 , . . . , attautnaut

} each owned by a different authority aut.
For each authority aut, the user collects the FE2 functional secret key for the
vector �(1, zgid)�2 and the set Saut, together with a set of naut FE1 functional
secret keys for the vector �(1, zgid)�2 and the identity attauti for i = 1, . . . , naut.
Thanks to these keys, a user can recover the values �sj + zgiduj�t for the shares
j associated with ρ(j) which is either a normal attribute owned by the user gid,
or a negated attributed that is not part of the set of attributes owned by gid. As
a result, decryption succeeds if and only if the attributes of the user gid satisfy
the non-monotonic access structure. The security of the MA-ABE boils down to
the security of the underlying FE schemes.

To build the FE for inner-products with revocations, we start with a one-
time statistically secure scheme where the encryption of a vector x ∈ Z

n
p for an

identity id� ∈ Zp is of the form ct =
(
x + v, P (id�)

)
where v ∈ Z

n
p is a random

vector and P is a random polynomial evaluated on id� ∈ Zp. The functional secret
key for a vector y ∈ Z

n
p and a set of identities S ⊂ Zp is of the form sky ,S =(

y�v + P (0), {P (id)}id∈S
)
. We assume the identity space is Z∗

p, excluding 0 as a
valid identity. Polynomial P is of degree d, and we assume the set S associated
with each functional secret key is of size exactly d. We explain later how to
remove this restriction. If id� /∈ S, we have the evaluation of the polynomial P on
d+1 distinct points, so we can recover P (0) using Lagrange interpolation and get
y�v, thanks to which we can obtain x�y. On the other hand, if id� ∈ S, we only
have the evaluation of P on d distinct points, which reveals no information about
P (0), which completely masks v�y. Therefore, v masks x perfectly. To obtain
an FE scheme with public-key encryption and security for many functional secret
keys, we use standard techniques from pairing groups:

• instead of using the vector v and the polynomial P , the encryption uses �v�1
and the coefficients of P in G1 that are part of pk to compute:

ct = (�x + vr�1, �rP (id�)�1) , for r ←R Zp .

• to obtain security against collusions, we randomize the functional secret keys:

sky ,S = (�y�v + sP (0)�2, {�sP (id)�2}id∈S) , for s ←R Zp .

The scheme describe here would be secure in the generic group model. To accom-
modate for a security proof using the SXDH assumption (i.e. the assumption that
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DDH holds both in G1 and G2), we modify slightly the scheme using techniques
reminiscent from the hash proof system from [CS02], similarly to [ALS16] in the
context of functional encryption for inner-products.

Remark 1 (Impossibility of simulation secure FE). We consider an adversary
playing against the many-ciphertexts simulation security of an identity-based
FE scheme for inner-products, which makes q1 functional secret key queries for
random vectors �y1�2, . . . , �yq1�2 and identities id1, . . . , idq1 . The adversary also
chooses random vectors x1, . . . ,xq2 and identities id�

1, . . . , id
�
q2 for the challenge

ciphertexts. The adversary chooses id1 = id2 = · · · = idq1 = id�
1 = · · · = id�

q2 . The
simulator must produce the challenge ciphertexts and the functional secret keys
using only the values �x�

i yj�t and �yj�2 for i = 1, . . . , q2 and j = 1, . . . , q1, plus
the identities. By the SXDH assumption (which we require for our MA-ABE), the
q1 · q2 values �x�

i yj�t are pseudo-random. The ciphertexts and functional secret
keys, which are of total size (q1 + q2) · poly(λ) must encode these values of total
size q1 · q2 · poly′(λ) where poly, poly′ are polynomials, which is a contradiction.
It is not clear how to bypass this impossibility result even in the random oracle
model. In fact [AKW18] presents similar impossibility results for FE even in the
random oracle model.

Related Works. [Kim19] builds a multi-authority ABE for all circuits from LWE
for a slightly different notion that the GID model presented here (it can be seen
as a relaxation of the GID model). In a recent work, [DKW21a] builds an MA-
ABE for DNF formula from LWE, followed by [WWW22] that removed the use
of random oracles. In [MJ18], the authors present a decentralized ABE, which is
similar to an MA-ABE except the number of authorities of the system is fixed
ahead of time, and each authority requires the public keys of the other author-
ities to generate its share of the user secret key. They realized this notion for
the orthogonality-testing predicate (a.k.a. inner-product), which captures NC0

circuits. Later on, [AYY22] extended their construction to partially hide the
predicate in the user secret keys. In the same paper, they also presented a dis-
tributed ciphertext-policy ABE for NC1, based on the LWE assumption and
the bilinear generic group model. A distributed ABE is like an MA-ABE except
the number of authorities is fixed ahead of time, and the adversary cannot cre-
ate corrupted authorities with arbitrary public keys, but is instead restricted to
(statically) recover the secret keys of honestly generated authorities. In [OT13],
the authors build decentralized attribute-based signatures, which generalize the
notion of ring signatures, by allowing a user whose attributes satisfy a predicate
to sign a message with respect to the predicate. The validity of the signature
implies that the signer has valid credentials, but the identity of the signer (or
its attributes) remain hidden. As a side result, they also build a multi-authority
ABE whose adaptive security is proven under the DLIN assumption in prime-
order symmetric pairing groups in the random oracle model. Their scheme sup-
ports non-monotone access structures combined with inner-products. However,
the security they prove does not handle corruptions of authorities. That is, in
the security game, the adversary cannot get the secret key of a set of selected
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authorities, as is the case for others multi-authority ABE. In a paper concur-
rent to our work [DKW21b], the authors give the first MA-ABE for monotone
span programs from the search variant of the Bilinear Diffie Hellman assump-
tion. In their scheme, the size of the MSP, the number of attribute re-use and
the size of the attribute universe of each authorities are all a-priori bounded.
Their construction also inherits some of the practical deficiencies from prior
schemes, namely, it uses symmetric pairings and the ciphertexts contain many
target group elements. In [WFL19], the authors build an MA-ABE for bounded
collusions (that is, where the number of possible user secret keys that can be cor-
rupted is a priori bounded). Their construction also relies on inner-product FE
but which are not identity-based nor handle revocation. They can be built from
DDH (without pairing). The main different with our work lies in the unbounded-
collusion security feature we achieve, which requires different techniques.

2 Preliminaries

2.1 Notations

We say a function f : N → R is negligible if f is asymptotically dominated
by the inverse of any polynomial, i.e. for every polynomial p ∈ R[X], there
exists λp ∈ N such that |f(λ)| ≤ |1/p(λ)| for all λ ≥ λp. We denote by |v| the
length or dimension of vector v and by vi its i-th component. For any n ∈ N,
we denote {1, . . . , n} by [n]. For any column vector u ∈ Z

n and v ∈ Z
m, we

denote by (v,u) ∈ Z
n+m the column vector obtained by concatenating them.

Given two matrices (or vectors) A ∈ Z
m1×n1 and B ∈ Z

m2×n2 , we denote by
A ⊗ B ∈ Z

m1m2×n1n2 their Kronecker product, aka. tensor product defined as
follows. For all i ∈ [m1m2] and j ∈ [n1n2] which we can write i = m1i1 + i2
with i1 ∈ [m2], i2 ∈ [m2], j = n1j1 + j2 with j1 ∈ [n2], j2 ∈ [n2], the (i, j)’th
coordinate of A ⊗ B is ai1,j1 · bi2,j2 .

2.2 Lagrange Interpolation

Let p be a prime and Zp[X] denotes the mono-variate polynomials over Zp. There
exists an efficient deterministic algorithm Lagr such that for all P ∈ Zp[X] of
degree d, given as input d + 1 distinct values x1, . . . , xd+1 ∈ Zp \ {0}, outputs
(α1, . . . , αd+1) = Lagr(x1, . . . , . . . , xd+1) such that αi ∈ Zp for all i ∈ [d + 1] and
P (0) =

∑d+1
i=1 αiP (xi). The following fact states that when the evaluations of

a polynomial P of degree d at only d or less distinct points (different from 0)
are given, it is impossible to recover the value P (0), because it is statistically
independent from the values at the other points.

Fact 1. Let d ∈ N, p be a prime, x1, . . . , xd ∈ Zp \ {0} be d distinct values and
P be a uniformly random polynomial over Zp[X] of degree d. The value P (0) is
statistically independent from {P (x1), . . . , P (xd)}.
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2.3 Access Structure

We recall the definition of monotonic access structures using the language of
monotonic span programs [KW93], which capture Boolean formulas. The set of
all possible attributes used by an access structure is referred to as the attribute
universe. Most of the prior works consider attribute universes of polynomial
size (aka small universe) or at least attribute universe of finite size (aka large
universe). Here we focus on unbounded attribute universe, where any bit string
can serve as an attribute. This is the most advantageous setting in term of
flexibility.We denote the set of all possible bit strings by {0, 1}∗.

Definition 1 (Monotonic access structure [Bei96,KW93]). A monotonic
access structure is a pair (M , ρ) where M ∈ Z

n×�
p and ρ : [�] → {0, 1}∗. The

matrix M is used to generate shares as described in Fig. 1, and ρ maps each share
to its associated attribute. Given a set of attributes S ⊆ {0, 1}∗, we say that

S satisfies (M , ρ) iff 1 ∈ Span(MS),

where 1 := (1, 0, . . . , 0) ∈ Z
n; MS denotes the collection of vectors {Mj : ρ(j) ∈

S} where Mj denotes the j’th column of M ; and Span refers to linear span of
collection of vectors over Zp.

That is, S satisfies (M , ρ) iff there exists constants ω1, . . . , ω� ∈ Zp such that
∑

ρ(j)∈S ωjMj = 1 (1)

Observe that the constants {ωi} can be computed in time polynomial in the size
of the matrix M via Gaussian elimination.

Fig. 1. Share generation algorithm. Here, Mj denotes the j-th column of M . For each
j ∈ [�], aj is a share of the secret a ∈ Z

d
p.

Now we consider non-monotonic access structures, where ρ maps each share
to either an attribute or a negated attribute. A set of attribute S satisfies the
non-monotonic access structure (M , ρ) if given all the shares that correspond to
an attribute in S or a negated attribute of the form ¬att where att is not in S,
it is possible to recover the secret. For any set S ⊆ {0, 1}∗, we denote by {¬} · S
the set defined as {¬att}att∈S . The formal definition of a non-monotonic access
structure is given below.

Definition 2 (Non-monotonic access structure [OSW07]). A non-mono-
tonic access structure is a pair (M , ρ) where M ∈ Z

n×�
p and ρ : [�] → {0, 1}∗ ∪

({¬} · {0, 1}∗). The matrix M is used to generate shares as described in Fig. 1,
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and ρ maps each share to its associated attribute in {0, 1}∗ or negated attribute
in {¬} · {0, 1}∗. Given a set of attributes S ⊆ {0, 1}∗, we say that

S satisfies (M , ρ) iff 1 ∈ Span(MS),

where 1 := (1, 0, . . . , 0) ∈ Z
n; MS denotes the collection of vectors {Mj : ρ(j) ∈

S or ρ(j) = ¬att with att ∈ {0, 1}∗ \S}, Mj denotes the j’th column of M , and
Span refers to the linear span of a collection of (column) vectors over Zp.

For any set of attributes Scorr ⊂ {0, 1}∗, we say

S satisfies (M , ρ)with corruptionsScorr iff 1 ∈ Span(MS,Scorr),

where 1 := (1, 0, . . . , 0) ∈ Z
n; MS denotes the collection of vectors {Mj : ρ(j) ∈

S ∪ Scorr or ρ(j) = ¬att with att ∈ {0, 1}∗ \ S}, Mj denotes the j’th column of
M , and Span refers to the linear span of a collection of (column) vectors over
Zp.

That is, S satisfies (M , ρ) iff there exists constants ω1, . . . , ω�, ω
′
1, . . . , ω

′
� ∈ Zp

such that
∑

ρ(j)∈S∪Scorr
ωjMj +

∑
ρ(j)=¬att,att/∈S ω′

jMj = 1 (2)

Observe that the constants {ωi, ω
′
i} can be computed in time polynomial in the

size of the matrix M via Gaussian elimination. Now we recall a useful fact about
access structures represented by span programs.

Lemma 1 ([KW93]). Let (M , ρ) be a non-monotonic access structure where
M ∈ Z

n×�
p . For all sets S,Scorr ⊆ {0, 1}∗ such that S does do not satisfy (M , ρ)

with corruptions Scorr, there exists a vector wS ∈ Z
�−1
p such that (1,w)�Mj = 0

for all j ∈ [�] such that ρ(j) ∈ S ∪ Scorr or ρ(j) = ¬att with att ∈ {0, 1}∗ \ S.

2.4 Pairing Groups

Let GGen be a PPT algorithm that on input the security parameter 1λ, outputs
a description PG = (p,G1,G2, P1, P2,Gt, e) of pairing groups where G1,G2 and
Gt are cyclic groups of order p for a 2λ-bit prime p; P1 and P2 are generators
of G1 and G2 respectively and e : G1 × G2 → Gt is an efficiently computable
(non-degenerate) bilinear map, thus Pt := e(P1, P2) generates Gt.

We use implicit representation of group elements. For s ∈ {1, 2, t} and a ∈ Zp,
define �a�s = a·Ps ∈ Gs as the implicit representation of a in Gs. More generally,
for a matrix A = (aij) ∈ Z

n×m
p we define �A�s as the implicit representation of

A in Gs:

�A�s :=

⎛

⎝
a11 · Ps ... a1m · Ps

an1 · Ps ... anm · Ps

⎞

⎠ ∈ G
n×m
s .

Given �a�1 and �b�2, one can efficiently compute �a · b�t using the pairing e. For
matrices A and B of matching dimensions, define e(�A�1, �B�2) := �AB�t. For
any matrix A,B ∈ Z

n×m
p , any group s ∈ {1, 2, t}, we denote by �A�s + �B�s =

�A + B�s.
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Definition 3 (DDH assumption). For any adversary A, any group s ∈
{1, 2, t} and any security parameter λ, let

AdvDDH
Gs,A(λ) := |Pr[1 ← A(PG, �a�s, �ar�s)] − Pr[1 ← A(PG, �a�s, �u�s)]|,

where the probabilities are taken over PG ←R GGen(1λ, d), a ←R Z
2
p, r ←R Zp,

u ←R Z
2
p, and the random coins of A. We say DDH holds in Gs if for all PPT

adversaries A, AdvDDH
Gs,A(λ) is a negligible function of λ.

Definition 4 (SXDH assumption). For any security parameter λ and any
pairing group PG = (G1,G2,GT , p, P1, P2, e) ←R GGen(1λ), we say SXDH holds
in PG if DDH holds in G1 and G2.

It is well known that the DDH and SXDH assumptions are equivalent when the
dimensions of the vectors are larger than 2 (for any polynomially large dimen-
sions).

2.5 Functional Encryption

We recall the notion of functional encryption originally given in [BSW11]. Let
F = {Fλ}λ∈N be a family of sets, where for each λ ∈ N, Fλ is a set of functions
from the message space Xλ to the output space Yλ. A functional encryption
scheme for F consists of the following PPT algorithms.

• Setup(1λ) → (msk, pk). On input the global parameters gp, it outputs a master
secret key msk and a public key pk. The public key is (sometimes implicitly)
input to all other algorithms.

• Enc(pk,m) → ct. On input the public key pk and a message m ∈ Xλ, it
outputs a ciphertext ct.

• KeyGen(msk, f) → skf . On input the master secret key msk and a function
f ∈ Fλ, it outputs a functional secret key skf , which includes the description
of the function f .

• Dec(pk, ct, skf ) → m. On input the public key pk, a ciphertext ct and a
functional secret key skf , the decryption algorithm deterministically outputs
a value μ ∈ Yλ (or a special rejection symbol if it fails to decrypt).

Correctness. For all λ ∈ N, all (pk,msk) in the support of Setup(1λ), all
messages m ∈ Xλ and all functions f ∈ Fλ, we have

Pr[Dec(pk,Enc(pk,m),KeyGen(msk, f)) = f(m)] = 1,

where the probability is taken over the random coins of Enc and KeyGen.

We now describe the indistinguishability-based security notion for FE.
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Adaptive Security. Given an FE scheme denoted by FE for F , for any adver-
sary A and security parameter λ, we define the advantage function:

AdvFEA (λ) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎣

(pk,msk) ← Setup(1λ)
(m0,m1, st) ← AOKeyGen(·)(pk)

β ←R {0, 1}
ct� ← Enc(pk,mβ)
β′ ← AOKeyGen(·)(ct�, st)

: β′ = β

⎤

⎥
⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where the oracle OKeyGen, when given as input a function f ∈ Fλ, returns
KeyGen(msk, f) and st denotes the state of the adversary A. We say the adver-
sary A is admissible if for all functions f ∈ Fλ queried to OKeyGen, it holds
that f(m0) = f(m1). An FE scheme FE is said to be IND-secure if for all PPT
admissible adversaries A, AdvFEA is negligible.

Selective, Super-Selective Security. In the security game above, we say an
adversary is selective if it chooses a pair of messages (m0,m1) before querying any
functional secret key to OKeyGen. An adversary is said to be super-selective if it
is selective and it chooses the queries to OKeyGen independently of the challenge
ciphertext ct�. That is, an FE scheme FE is said to be super-selective if for
all admissible PPT adversaries A, the function Advssel-FEA is negligible, where
Advssel-FEA is defined for all λ ∈ N as follows:

Advssel-FEA (λ) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(pk,msk) ← Setup(1λ)
(m0,m1, st) ← A(pk)

st′ ← A(st)OKeyGen(·)

β ←R {0, 1}
ct� ← Enc(pk,mβ)
β′ ← A(ct�, st′)

: β′ = β

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where the oracle OKeyGen, when given as input a function f ∈ Fλ, returns
KeyGen(msk, f) and st, st′s denote the states of the adversary A. As for the
IND-security above, we say the adversary A is admissible if for all functions
f ∈ Fλ queried to OKeyGen, it holds that f(m0) = f(m1).

2.6 Definition of Multi-authority ABE

We recall the definition of multi-authority ABE from [LW11]. We assume every
authority is identified by a public key. For every authority pk, we denote by Upk

the associated attribute universe. Without loss of generality, we assume that
attribute universes are disjoint for different authorities.
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We consider access structures (M , ρ) where M ∈ Z
n×�
p , and ρ maps each

row j ∈ [�] to an attribute in Uθ(j), where θ maps a row j ∈ [�] to the authority
who owns the attribute ρ(j). To keep notations simple, we assume the map θ is
implicitly part of the description of the access structure.

Definition. A MA-ABE scheme consists of the following PPT algorithms:

• GlobalSetup(1λ)→ gp. On input the security parameter, it outputs global
parameters, which are input to all other algorithms (usually implicitly).

• AuthSetup(gp)→ (pk, sk). Each authority runs a setup procedure to generate
its own pair of keys. The public key serves as a univocal identifier for the
authority, which is associated with an attribute universe denoted by Upk.

• Enc(M , ρ,Π)→ (ct, κ). On input an access structure M ∈ Z
n×�
p , ρ : [�] →

{0, 1}∗ and a set of authorities Π such that for all columns j ∈ [�], we have
θ(j) ∈ Π, the encryption algorithm outputs a ciphertext ct and a symmetric
encryption key κ ∈ K. The ciphertext implicitly contains a description of the
access structure (M , ρ).

• KeyGen(pk, sk, gid,S)→ skgid,S . On input an authority’s public key pk and
the corresponding secret key sk, a global identifier gid and a set of attribute
S ⊂ Upk, the key generation algorithm outputs a user secret key skgid,S , which
implicitly contains a description of gid and S.

• Dec(ct, {skgid,Si
}i)→ κ/⊥. On input a ciphertext ct and a set of user secret

keys {skgid,Si
}i created for the same global identifier, the decryption algorithm

deterministically outputs a symmetric key κ or ⊥.

Correctness. For all λ ∈ N, all gp in the support of GlobalSetup(1λ), all ν ∈ N,
all (pk1, sk1), · · · , (pkν , skν) in the support of Setup(gp), all access structures
(M , ρ) associated with the set of authorities Π = {pk1, . . . , pkν}, all pairs (ct, κ)
in the support of Enc(M , ρ,Π), all sets of attributes Si ⊂ Upki

for all i ∈ [ν]
such that S = ∪i∈[ν]Si satisfies (M , ρ) and all global identifiers gid ∈ {0, 1}∗:

Pr
[
Dec(ct, {skgid,Si

}i∈[ν]) = κ
]

= 1 ,

where the probability is taken over skgid,Si
← KeyGen(pki, ski, gid,Si) for all

i ∈ [ν].
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Adaptive Security. Given a multi-authority ABE denoted by ABE, for any
stateful adversary A and security parameter λ, we define the advantage function:

AdvABEA (λ) :=
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎣

gp ← GlobalSetup(1λ)
(M , ρ,Πhon,Πcorr) ← AOcreate,Ocorr(·),OKeyGen(·,·,·)(gp)

(ct�, κ) ← Enc(M , ρ,Π)
β ←R {0, 1}; K0 := κ; K1 ←R K
β′ ← AOcorr(·),OKeyGen(·,·,·)(ct�,Kβ)

: β′ = β

⎤

⎥
⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

The oracles are defined as follows:

• Ocreate: runs (pk, sk) ← AuthSetup(gp), adds pk to the sets of honest authori-
ties denoted by Shon (initially empty) and returns pk.

• Ocorr(pk): if pk ∈ Shon, it returns the associated secret key sk and removes pk
from Shon.

• OKeyGen(pk, gid,S): if pk ∈ Shon and S ⊂ Upk, it returns KeyGen(pk, sk, gid,S)
where sk is the secret key associated with pk; otherwise, it returns ⊥. This
oracle can be queried at most once per (pk, gid) pair. That is, there cannot
be two queries of the form (pk, gid,S) and (pk, gid,S ′) for different S = S ′ to
OKeyGen. This restriction is necessary for non-monotonic access structure (see
Remark 2).

The adversary A outputs an access structure (M , ρ) with respect to the author-
ities Π = Πhon ∪ Πcorr, where Πhon denotes the set of honest authorities, that
is, which have been created via Ocreate, and which have not been queried to
Ocorr (they can still be queried to Ocorr later on), whereas Πcorr denotes the set
of corrupted authorities, that is, authorities created via Ocreate that have been
subsequently queried to Ocorr, or authorities whose public keys were maliciously
created by the adversary A himself. We require that Πcorr contains not only the
public keys of the corrupted authorities, but also their associated secret keys1.

We denote by QKeyGen the set of queries to OKeyGen, Shon ⊆ Πhon the
set of authorities in Πhon that are still honest at the end of the experiment,
Scorr = Πcorr ∪ Πhon \ Shon, Σcorr = ∪pk∈ScorrUpk, and for every global identifier
gid ∈ {0, 1}∗, Sgid = ∪pk∈Shon,(pk,gid,S)∈QKeyGen

S. We say the adversary A is admis-
sible if for all gid ∈ {0, 1}∗, Sgid does not satisfy (M , ρ) with corruptions Σcorr

(as per Definition 1). We say ABE is adaptively secure if for all PPT admissi-
ble adversaries A, there exists a negligible function ν such that for all λ ∈ N,
AdvABEA (λ) ≤ ν(λ).

Static Corruptions. We say an ABE is secure with static corruptions if the
adversary does not have access to the oracle Ocorr. He can still create authorities
maliciously as part of Πcorr, but all authorities created by Ocreate remain honest
throughout the experiment.
1 The restriction which requires that the adversary provide the secret keys of the

corrupted authorities in Πcorr can be lifted via a generic use of Zero-Knowledge
Argument of Knowledge. See Remark 3 for further details.
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Selective, Super-Selective Security. In the security game above, we say an
adversary is selective if it chooses the tuple (M , ρ,Πcorr,Πhon) before querying
any user secret key to OKeyGen. An adversary is said to be super-selective if it
is selective and it chooses the queries to OKeyGen independently of the challenge
ciphertext ct�. That is, an MA-ABE scheme ABE is said to be super-selective
if for all admissible PPT adversaries A, the function Advssel-ABEA is negligible,
where Advssel-ABEA is defined for all λ ∈ N as follows:

AdvABEA (λ) :=
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

gp ← GlobalSetup(1λ)
(M , ρ,Πhon,Πcorr, st) ← AOcreate,Ocorr(·)(gp)

st′ ← AOcorr(·),OKeyGen(·,·,·)(st)
(ct�, κ) ← Enc(M , ρ,Π)

β ←R {0, 1}; K0 := κ; K1 ←R K
β′ ← AOcorr(·)(ct�,Kβ , st′)

: β′ = β

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

where the oracles are defined as above, and st, st′ denote the states of the adver-
sary A.

Remark 2 (At most one user secret key query per gid). In the definitions above,
we restrict the adversary to query the oracle OKeyGen at most once per (pk, gid)
pair . This restriction is necessary when considering non-monotone access struc-
ture. In fact, security relies on the fact that users only obtain user secret keys
associated to the set of all attributes they possess. Giving the adversary access
to at most one query to OKeyGen per (pk, gid) is one way to ensure this is the
case.

For instance, suppose a user Alice possesses the attributes att1 and att2 that
are owned by an authority. Alice should not be able to obtain user secret keys
associated to strict subsets of {att1, att2}. If for example she obtains a user
secret key for {att1}, she would be able to decrypt a ciphertext associated with
an access structure excluding users possessing att2.

Remark 3 (Stronger security via ZK-AoK). In the security definition above, we
require the adversary to provide not only the public keys, but also the secret
keys of all the authorities in Πcorr. It is possible to lift this restriction, and
thereby strengthen the security definition, using standard techniques involving
Zero-Knowledge Argument of Knowledge (ZK-AoK). Any authority must pub-
lish not only a public key, but also an argument of knowledge of the associated
secret key. The zero-knowledge property ensures that nothing is revealed about
the secret key, and the argument of knowledge property forces the issuer to
know the associated secret key. This way, the adversary must know the secret
key associated to any authority it creates maliciously, since it has to provide an
argument of knowledge. Note that in our ABE constructions we use a ZK-AoK
for a very simple language that admits an efficient sigma protocol, that can be
made non-interactive with the Fiat-Shamir heuristic. Consequently, strengthen-
ing the security comes at a modest efficiency cost. In the rest of this paper, we
focus on the weaker security definition, which is easier to prove.



Multi-authority ABE for Non-monotonic Access Structures 321

3 Inner-Product FE

3.1 Identity-Based Inner-product FE

We recall the definition of Identity-Based Inner-Product Functional Encryption
(ID-IPFE) which is a particular case of Functional Encryption where the family
F = {Fλ}λ∈N is as follows. Let d be a polynomial and GGen a pairing group
generator. For every λ ∈ N, the set of functions Fλ is associated with a pairing
group (p,G1,G2, P1, P2,Gt, e) = GGen(1λ), where p is a prime which denotes
the order of the groups G1,G2, and Gt. We assume the pairing group PG is
given as input of the setup algorithm. The message space Xλ = Z

d(λ)
p ×Zp. That

is, every message is of the form (x, id), where x ∈ Z
d(λ)
p is referred to as the

message vector, and id ∈ Zp is referred to as the identity. The function space
Fλ = G

d(λ)
2 × Zp. Every function is of the form (�y�2, id

′) where �y�2 ∈ G
d(λ)
2

and id′ ∈ Zp. Decryption recovers the inner product �x�y�t ∈ Gt when id = id′.
When id′ = id, the vector x remains hidden. In both cases, the vector �y�2 and
the identities id and id′ are revealed.

In [DP19,TT18], the authors give an unbounded variant of the related family
where functions are of the form (y, id) ∈ Z

d(λ)
p × Zp, that is, the vector y needs

to be known in Z
d(λ)
p instead of Gd(λ)

2 . In our MA-ABE that uses the ID-IPFE as
a building block, the party generating the functional secret keys only know the
value �y�2 ∈ G

d(λ)
2 , which prevents us from using their scheme. In [ACGU20],

the authors present an ID-IPFE for the functions described above (where Fλ =
G

d(λ)
2 × Zp) which is selectively secure under the SXDH assumption. They also

present an adaptively secure construction but only for the messages (x, id) and
functions (�y�2, id

′) such that x�y is small (i.e. lies in a set of polynomial size),
which is not the case for our application. Indeed the value of the inner product
�x�y�t in our case will be well-spread in the full group Gt. This prevents from
using the adaptively secure scheme from [ACGU20]. It is an open problem to
build an adaptively secure ID-IPFE for large values.

3.2 Inner-Product FE with Revocations

Here we consider a Functional Encryption scheme for the family F = {Fλ}λ∈N

where for all λ ∈ N, Xλ = Z
d(λ)
p × Zp, Fλ = G

d(λ)
2 × St, St denotes all the sets

of size t included in Zp, and p is a prime which denotes the order of a pairing
group PG = (p,G1,G2, P1, P2,Gt, e). We assume the pairing group PG is given
as input of the setup algorithm. For every message of the form (x, id) where
x ∈ Z

d(λ)
p and id ∈ Zp, and every function of the form (�y�2,S) where S ⊂ Zp is

of size t, decryption recovers �x�y�t when id /∈ S. When id ∈ S, then the vector
x remains hidden. In both cases, the identity id, the set S and the vector �y�2 are
revealed. Note that the set S associated to each functional secret key is required
to be of size exactly t. We argue in Sect. 3.3 how to remove this restriction and
have sets of size at most t. We now give the first construction of such an FE
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scheme, whose selective security we prove under SXDH. It is described in Fig. 2.
It makes use of Lagrange interpolation, described in Sect. 2.2.

Fig. 2. Inner-product FE with revocations for d-dimensional vectors and sets of size
t. Its selective security is proven under SXDH. The algorithm Lagr is described in
Sect. 2.2.

Correctness. Since id /∈ S, we can use the correctness of the algorithm Lagr,
which states that:

∏
j∈[t+1]�γj�

αj

t = �sb�P (0)ar�t. Thus, the decryption com-
putes:

e(�c�
2 �1, �y�2) ·

∏

j∈[t+1]

�γj�
αj

t / e(�c1�1, �k2�2)

=�(x + V ar)�y + sb�P (0)ar − ra�(V �y + P (0)�bs)�t
=�x�y�t.
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Theorem 1 (Selective security). The scheme presented in Fig. 2 is selectively
secure under the SXDH assumption.

Proof. We proceed via a series of hybrid games described bellow (the differences
from one game to the next are highlighted in red).

Game0 : is the game from the selective security definition in Sect. 2.5. Recall

that the adversary A first receives pk =
(
�a�1, (�Uia�1)i∈{0,...,t} , �V a�1

)
.

Then, it chooses a pair of messages ((x0, id0), (x1, id1)), upon which it receives
ct� = (�ar�1, �xβ + V ar�1, �P (idβ)ar�1), where β ←R {0, 1}. Afterwards, it
can query its oracle OKeyGen on inputs of the form (�y�2,S), upon which it gets
sk = (�bs�2, �V �y+P (0)�bs�2, (�P (idj)�bs�2)idj∈S). The adversary A is admis-
sible, which means that id0 = id1, which we denote by id� = id0 = id1, and that
for all queries (�y�2,S) to OKeyGen, we have id� ∈ S or (id� /∈ S and x�

0 y = x�
1 y).

At the end, the adversary A outputs a guess β′.

Game1 : we change the way the challenge ciphertext is computed. Namely, we
have now

ct� =
(
�z�1, �xβ + V z�1, �P (id�)z�1

)
,

where z ←R Z
2
p. We prove that Game0 ≈c Game1 by the DDH assumption in

G1. Namely, we have (�a�1, �ar�1) ≈c (�a�1, �z�1) where the leftmost distribu-
tion corresponds to Game0, whereas the rightmost distribution corresponds to
Game1.

Game2 : we change the way the challenge ciphertext is computed. Namely, we
have now

ct� =
(
�z�1, �xβ + V z�1, �P (id�)z�1

)
,

where z ←R Z
2
p \ Span(a). Here Span(a) denotes the set of vectors propor-

tional to a. The cardinal of Span(a) is p, thus, the statistical distance between
the uniform distribution over Z

2
p \ Span(a) and uniform over Z

2
p is 1/p, and

Game1 ≈s Game2.

Game3 : we change the way the functional keys and the challenge ciphertext
are computed. Namely, the ciphertext is now of the form:

ct� =
(
�z�1, �V z�1, �P (id�)z�1

)
.

Note that the ciphertext does not depend on the messagexβ anymore. Each
query (�y�2,S) to OKeyGen is now answered with

(
�bs�2, �V

�y − a⊥ · x�
β y + P (0)�bs�2, (�P (idj)�bs�2)idj∈S

)
,
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where a⊥ ∈ Z
2
p is the vector such that a�a⊥ = 0 and z�a⊥ = 1. Game2

and Game3 are identically distributed, since for all xβ ∈ Z
d
p, all a⊥ ∈ Z

2
p, the

following are identically distributed: {V ←R Z
d×2
p : V } and {V ←R Z

d×2
p :

V − xβ(a⊥)�}. The former distribution corresponds to Game2 with some pre
and post-processing, whereas the latter corresponds to Game3 with the same pre
and post-processing. Note that Game3 crucially relies on the fact that the adver-
sary is selective, since the vector xβ needs to be known to generate all functional
secret keys.

Game4 : we change the way the functional keys are computed. Namely, each
query (�y�2,S) to OKeyGen is now answered with

(
�bs�2, �V

�y − 1id� /∈Sa⊥x�
β y + P (0)�bs�2, (�P (idj)�bs�2)idj∈S

)
.

That is, now we only have the term a⊥x�
β y for functional key queries (y,S)

where id� /∈ S . To transition from Game3 to Game4, we use the following hybrid
games.

Game3.i : for all i ∈ {0, . . . , Q}, where Q denotes the number of functional
key queries, Game3.i is defined as Game4 for the first i’th key queries and as
Game3 for the last Q − i queries. By definition we have Game3 = Game3.0 and
Game4 = Game3.Q. It suffices to show that for all i ∈ [Q], Game3.i−1 ≈c Game3.i.
To do so, we introduce new intermediate games, defined as follows.

Game3.i−1.1 : is defined as Game3.i−1, except the i’th query to OKeyGen, denoted
by (�yi�2,Si), is now answered with

(
�d�2, �V

�yi − a⊥ · x�
β yi + P (0)�d�2, (�P (idj)�d�2)idj∈Si

)
,

where d ←R Z
2
p. We have Game3.i−1 ≈c Game3.i−1.1 by the DDH assumption in

G2, which states that (�b�2, �bsi�2) ≈c (�b�2, �d�2) where b,d ←R Z
2
p, si ←R Zp.

The former distribution corresponds to Game3.i−1 with some efficient post-
processing, whereas the latter corresponds to Game3.i−1.1 with the same post-
processing.

Game3.i−1.2 : is defined as Game3.i−1.1, except the vector d used to compute
the i’th queried functional secret key is sampled as d ←R Z

2
p \ Span(b), instead

of uniformly random over Z
2
p. Since the cardinal of Span(b) is at most p, the

uniform distribution over Z
2
p \ Span(b) has statistical distance at most 1/p with

the uniform distribution over Z
2
p. Thus, Game3.i−1.1 ≈s Game3.i−1.2.

Game3.i−1.3 : is defined as Game3.i−1.2, except the i’th query to OKeyGen is now
answered with

(
�d�2, �V

�yi − 1id� /∈Si
a⊥x�

β yi + P (0)�d�2, (�P (idj)�d�2)idj∈Si

)
,
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where d ←R Z
2
p \Span(b). Note that if id� /∈ Si, then the two games Game3.i−1.2

and Game3.i−1.3 are identical. Thus we focus on the case id� ∈ Si. In that case we
show that Game3.i−1.3 is also identically distributed to Game3.i−1.2 using a sta-
tistical argument, which relies on the fact that vectors P (idj)�b and P (idj)�d
are statistically independent since b and d are linearly independent. The same
holds with respect to the matrix P (0). Moreover, since id� ∈ Si, the set of values
{(P (idj))idj∈Si

,P (id�)} are statistically independent from the value P (0)—recall
that the polynomial P is of degree t; we are using Fact 1 from Sect. 2.2. Com-
bining these two facts, we know that the vector P (0)�d is uniformly random,
independent from everything else (challenge ciphertext, public key and other
functional secret keys). Thus, it can act as a one-time pad on the value a⊥x�

β y
that we wish to remove.

Game3.i−1.4 : is defined as Game3.i−1.3, except the vector d used to compute
the i’th queried functional secret key is sampled d ←R Z

2
p, instead of uniformly

random over Z2
p \ Span(b). This is the reverse to the transition from Game3.i−1.1

to Game3.i−1.2. By the same statistical argument, we obtain Game3.i−1.3 ≈s

Game3.i−1.4.
Finally, note that Game3.i−1.4 is the same as Game3.i except the i’th queried

key is computed using �d�2 ←R G
2
2 in the former, and �bsi�2 ∈ G

2
2 with si ←R Zp

in the latter. Therefore, we have Game3.i−1.4 ≈c Game3.i by the DDH assump-
tion, which states that (�b�2, �d�2) ≈c (�b�2, �bsi�2) where b,d ←R Z

2
p, si ←R Zp.

The former distribution corresponds to Game3.i−1.4, whereas the latter distri-
bution corresponds to Game3.i. Note that this transition is exactly reverse to
the transition from Game3.i−1 to Game3.i−1.1. This concludes the proof that
Game3.i−1 ≈c Game3.i and consequently, that Game3 ≈c Game4.

Note that in Game4, the only values that possibly reveal some information
about the bit β is the set {x�

β yi} for all queries (�yi�2,Si) such that id� /∈ Si.
Since the adversary A is admissible, we know that for all such values, x�

β yi =
x�
0 yi = x�

1 yi. In other words, these values do not depend on β and the advantage
of A is 0. ��

3.3 Revocations with Arbitrary-Size Identity Sets

Our previous construction requires that the size of any identities set S be exactly
t (a pre-established system parameter).

A possible way to relax this limitation is to introduce dummy identities and
use them as “fillers”, to extend an identity set until it reaches size t. Furthermore,
in order to make the secret-key size proportional to the identity set S, we could
run different instances of the IPFE for different set-size bounds t1, . . . , tn. A
secret-key for set S would then be issued only with respect to the i-th IPFE
instance, where ti is the smallest such that |S| ≤ ti. (Ciphertexts would need to
be provided with respect to all IPFE instances). A natural and effective choice
for the values of ti is the set of powers of 2. That way, the ciphertext-size would
be increased by a factor of log2 of the global maximum identity set size. Note
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that such factor is logairthmic in the security parameter. This technique has
already been used in the literature and in particular in the context of ABE, e.g.
by Ostrovsky et al. [OSW07, Section 3.3].

4 Generic Construction of MA-ABE from IPFE

We present a modular construction of MA-ABE for non-monotone access struc-
tures based on inner-product FE schemes. We show that the resulting MA-ABE
is super selectively secure for static corruptions, provided the underlying FE are
super selectively secure. The security is proven in the random oracle model.

Fig. 3. Construction of Multi-Authority ABE from an ID-IPFE scheme Γ and an IPFE
with revocations Σ (for vectors of dimension 4). Recall that θ maps a row j ∈ [�] to
the authority that owns the attribute associated to that row.
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Correctness. Let �zgid�2 := H(gid). Observe that, by the correctness of Γ and
Σ, we have:

∑

ρ(j)∈S

ωjΓ.Dec(pkθ(j), ctj , skgid,Sθ(j) , �1,zgid�2)

+
∑

ρ(j)=¬att,att/∈S
ω′

jΣ.Dec(pkθ(j), ctj , skgid,Sθ(j) , �1,zgid�2)

=
∑

ρ(j)∈S

ωj�sj + a�zgiduj�t +
∑

ρ(j)=¬att,att/∈S
ω′

j�sj + a�zgiduj�t

=�s + a�zgid · 0�t = κ .

Theorem 2 (Super-selective security). The scheme from Fig. 3, is a super-
selectively secure MA-ABE with static corruption in the random oracle model,
assuming the schemes Γ and Σ are super-selectively secure and the DDH assump-
tion holds in G2.

Combining with the existence of an ID-IPFE selectively secure under SXDH
(from [ACGU20]) and Theorem 1 (the existence of selectively secure IPFE
with revocations from SXDH) and noting that selective security implies super-
selective security, we obtain the following corollary.

Corollary 1. There exists a super-selectively secure MA-ABE with static cor-
ruptions from SXDH.

We now proceed to prove the theorem.

Proof. We prove security via a sequence of hybrid games. We highlight in red
the changes from one hybrid to the next when relevant.

Game0 : The first game corresponds to the super-selective security game for MA-
ABE with static corruptions, defined in Sect. 2.6. We recall it here for complete-
ness. We call A the admissible adversary. First, A receives the global parameters
gp = (Γ.gp,H). Then, it can query its oracle Ocreate that creates a new (hon-
est) authority with an associated (pk, sk) pair when invoked, adds pk to the
set of honest authorities denoted by Shon and returns pk to A. Then, A sends
(M , ρ,Πhon,Πcorr) to its challenger, where M ∈ Z

n×�
p , ρ : [�] → Zp is an access

structure with attributes owned by the authorities in the set Π = Πhon ∪ Πcorr.
Here, Πhon is a set of honest authorities’ public keys, that is, Πhon ⊆ Shon,
and Πcorr is a set of authorities’ public key created by A itself (and not via
Ocreate). Because A is free to create these public keys however it wants (poten-
tially maliciously), these are referred to as corrupted authorities. Note that A
cannot query its oracle Ocorr, since we assume only static corruptions here. We
write Π = {pk1, . . . , pkν}, and we define θ : [�] → [ν], which maps each column
j ∈ [�] to the authority that owns the attribute associated with that column.

Afterwards, the adversary can query its oracle OKeyGen on inputs pk ∈ Shon

associated with the secret key sk = (mskΣ ,mskΓ ) and S ⊂ Upk, which com-
putes skΣ ← Σ.KeyGen(mskΣ , �1,zgid�2,S) and for all attributes attj ∈ S, it
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computes skΓ,j ← Γ.KeyGen(mskΓ , �1,zgid�2, attj), where �zgid�2 = H(gid). It
returns skgid,S = (skΣ , (skΓ,j)attj∈S) to the adversary A.

At this point, the challenger samples s ←R Zp and computes (s1, . . . , s�) ←
Share(M , s), (u1, . . . , u�) ← Share(M , 0)2, a ←R Z

3
p, κ0 = �s�t, κ1 ←R Gt,

β ←R {0, 1}, for all j ∈ [�], xj = (sj , uj · a) ∈ Z
4
p, and

• if ρ(j) = attj where attj ∈ {0, 1}∗, then ctj ← Γ.Enc(pkΓ,θ(j),xi, ρ(j)),

• if ρ(j) = ¬attj where attj ∈ {0, 1}∗, then ctj ← Σ.Enc(pkΣ,θ(j),xi, ρ(j)).

It sets ct� = {ctj}j∈[�] and returns (ct�, κβ) to A. Finally, A outputs a guess
β′ ∈ {0, 1}. Recall that A is admissible, which means it cannot compute κ0 from
ct� simply by correctness of the scheme with the user secret keys it queried and
the secret key of the corrupted authorities (see Sect. 2.6 for more details). The
experiment outputs 1 if β = β′, 0 otherwise.

In the following hybrids, we use the following dual basis: first, we choose
a random basis (a1|a2|a3) ∈ Z

3×3
p of Z

3
p such that a = r1a1 for r1 ←R Z

∗
p

(recall that the vector a is sampled to produce the challenge ciphertext). Strictly
speaking, such a basis exists only when a = 0. Since a is sampled uniformly at
random over Z

3
p, it is different from 0 with overwhelming probability. Thus, we

implicitly assume a is sampled uniformly over Z
3
p \ {0} in the proof (this only

changes the distribution by a negligible statistical distance). Then, we denote
by (a∗

1|a∗
2|a∗

3) ∈ Z
3×3
p its dual basis, that is, such that for all i, j ∈ {1, 2, 3},

a�
i a

∗
j = 0 if i = j and a�

i a
∗
j = 1 if i = j. We make use of the following

assumptions relative to the pairing groups (G1,G2,GT ) and the random dual
basis (a1|a2|a3) and (a∗

1|a∗
2|a∗

3).

Assumption 1. {v ←R Z
3
p : (�a1�1, �v�2)} ≈c {v ←R Span(a∗

1) : (�a1�1, �v�2)}.

This assumption is known to be implied by the DDH assumption in G2 (see
for instance [Lew12]).

Game1 : is the same as Game0 except that the outputs of the hash function
are computed as follows: for all gid, H(gid) = �zgid�2 where zgid ←R Span(a∗

1).
We have Game0 ≈c Game1 by Assumption 1. Technically, we need to use this
assumption for each query of A to the hash function H (modeled as a random
oracle) using a hybrid argument.

Game2 : is the same as Game1, except that the challenge ciphertext uses the
vectors xj = (sj , ujr1a1 + vja3), ρ(j)), for all j ∈ [�] such that θ(j) ∈ Shon,
where vj = (γ,v)�Mj , v ←R Z

n−1
p , and γ ←R Zp. That is, the vj are shares of

a random value γ. Recall that a1,a3 ∈ Z
3
p are vectors part of the basis (a1|a2|a3)

2 See Fig. 1 for the definition of the algorithm Share.
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and a = r1a1 where r1 ←R Z
∗
p. The shares sj and uj are computed as before.

For all j ∈ [�] such that θ(j) ∈ Πcorr, the vector xj are as before. The challenge
ciphertext is set to be ({ctj}j∈[�], κβ), where κβ is computed as before. We argue
that Game1 ≈c Game2 using the super-selective security of Γ and Σ, since the
extra red vector (0, vja3) is orthogonal to the vectors �1,zgid�2 from the user
secret keys. This is because for all queried gid, zgid ∈ Span(a∗

1) and a�
3 a

∗
1 = 0.

Game3 : is the same as Game2, except that the outputs of the hash function
are computed as follows: for all gid, H(gid) = �a∗

1rgid + a∗
3�2, where rgid ←R Zp.

We prove that Game2 ≈c Game3 in Lemma 2.

Game4 : is the same as Game3, except that the challenge ciphertext uses the
vectors xj = (s′

j , ujr1a1 + v′
ja3) for all j ∈ [�] such that θ(j) ∈ Shon, where

s′
j = (s + γ,w)�Mj and v′

j = (0,v)�Mj . That is, the s′
j are now shares of

s + γ instead of s and the v′
j are now shares of 0 instead of γ. The shares uj

are computed as before. We argue that Game3 ≈c Game4 thanks to the super-
selective security of Γ and Σ. Indeed, for all j ∈ [�] and all queried gid, we
have (s′

j , ujr1a1 + v′
ja3)�(1,a∗

1rgid + a∗
3) = (s + γ,w)�Mj + r1rgid(0,u)�Mj +

(0,v)�Mj = (s,w)�Mj + r1rgid(0,u)�Mj + (γ,v)�Mj = sj + r1rgiduj + vj =
(sj , ujr1a1 + vja3)�(1,a∗

1rgid + a∗
3), just as in Game3. That is, the change of

the vectors encrypted under Γ from Game3 to Game4 preserves the value of the
inner product.

Finally, to conclude the proof, we show that in Game4, the advantage of A
is 0. This comes from the fact that the value κ0 = �s�t is uniformly random,
independent of the rest of the adversary’s view. Indeed, the only place where
the value s appears is in the challenge ciphertext, in the vectors xj encrypted
under Γ or Σ. For all j ∈ [�] such that θ(j) ∈ Shon, the vector xj is of the
form xj = (s′

j , ujr1a1 + v′
ja3)) where s′

j is of the form s′
j = (s + γ,w)�Mj for

all j ∈ [�]. That is, the values s′
j are shares of the secret s + γ. But the value

γ ←R Zp is independent of the rest of the adversary’s view, thus it acts as a
one-time pad on s. Consequently, xj is independent of the value s. For all j ∈ [�]
such that θ(j) ∈ Πcorr, we have xj = (sj , ujr1a1 + vja3)), where the values sj

are shares of the secret s. But because the adversary A is admissible, we know
that the shares {sj}j∈[�],θ(j)∈Πcorr

are independent of s, by security of the MSP.
Thus, both κ0 and κ1 are uniformly random independent of everything else, the
view of the adversary does not depend on the bit β; its advantage is 0. ��

Now we state and prove the lemma used in the proof above. Its proof relies
on the assumptions below, which are known to be implied by DDH in G2 (see
for instance [Lew12]).

Lemma 2. We have Game2 ≈c Game3 assuming the super-selective security of
Γ and Σ, and the SXDH assumption.

To prove the lemma, we rely on the following assumptions, which are known
to be implied by DDH in G2 (see for instance [Lew12]).
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Assumption 2.

{v ←R Span(a∗
1), r1, r2 ←R Z

∗
p : (�r1a1 + r2a2�1, �a1�1, �a3�1, �a

∗
1�2, �a

∗
3�2, �v�2)}

≈c {v ←R Span(a∗
1,a

∗
2), r1, r2 ←R Z

∗
p : (�r1a1 + r2a2�1, �a1�1, �a3�1, �a

∗
1�2, �a

∗
3�2, �v�2)} .

Assumption 3.

{v ←R Span(a∗
1,a

∗
2), r ←R Zp : (�a1�1, �ra2 + a3�1, �a

∗
1�2, �a

∗
3�2, �v�2)}

≈c {v ←R Span(a∗
1,a

∗
2,a

∗
3), r ←R Zp : (�a1�1, �ra2 + a3�1, �a

∗
1�2, �a

∗
3�2, �v�2)} .

Proof. To prove the lemma, we introduce the following hybrid games for all
i ∈ {0, . . . , q} where q ∈ N denotes the number of distinct gid queried via
OKeyGen: Game2.i is like Game2, except that for the first i’th gid, OKeyGen behaves
like in Game3. Namely, for the first i’th gid queried to OKeyGen, the oracle
uses H(gid) = �a∗

1rgid + a∗
3�2, whereas it uses H(gid) = �a∗

1rgid�2 for the last
q − i queries. It is clear by definition of the games that Game2.0 = Game2 and
Game2.q = Game3. We prove that for all i ∈ [q], Game2.i−1 ≈c Game2.i. To do so,
we use the following hybrid games.

Game2.i−1.1 : is the same as Game2.i−1, except that the challenge ciphertext
uses the vectors xj = (sj , ujr1a1 + ujr2a2 + vja3) for all j ∈ [�] such that
θ(j) ∈ Shon, where r2 ←R Z

∗
p. We argue that Game2.i−1 ≈c Game2.i−1.1 thanks

to the super-selective security of Γ and Σ. Indeed, for all j ∈ [�] and all queried
gid, we have zgid ∈ Span(a∗

1,a
∗
3), thus (sj , ujr1a1 + ujr2a2 + vj · a3)�(1,zgid) =

(sj , ujr1a1+vj ·a3)�(1,zgid), just as in game Game2.i−1, since a�
2 a

∗
1 = a�

2 a
∗
3 = 0.

Game2.i−1.2 : is the same as Game2.i−1.1 except that the output of the hash func-
tion on the i’th queried global identifier, which we denote by gidi, is computed as
follows: H(gidi) = �zgidi

�2 where zgidi
←R Span(a∗

1,a
∗
2), as opposed to uniformly

random over Span(a∗
1) in Game2.i−1.1. We have Game2.i−1.1 ≈c Game2.i−1.2 by

Assumption 2.

Game2.i−1.3 : is the same as Game2.i−1.2 except that the challenge cipher-
text uses the vectors xj = (sj , ujr1a1 + rja2 + vja3) for all j ∈ [�] such
that θ(j) ∈ Shon, where rj = (0, r)�Mj , and r ←R Z

n−1
p . We have that

Game2.i−1.2 ≈c Game2.i−1.3 from the DDH assumption in G1, which implies that
{r2 ←R Z

∗
p,u ←R Z

n−1
p : (�u�1, �r2u�1)} ≈c {u, r ←R Z

n−1
p : (�u�1, �r�1)}3

Game2.i−1.4 : is the same as Game2.i−1.3 except that the challenge ciphertext
uses the vectors xj = (sj , ujr1a1 + rja2 + ηja2 + vja3) for all j ∈ [�] such that
θ(j) ∈ Shon, where the value ηj is defined as η(1,wgidi

)�Mj , where η ←R Zp

and wgidi
is a vector such that (1,wgidi

)�Mj = 0 for all j ∈ [�] such that

3 Strictly speaking, the DDH as per Definition 3 is stated with r2 ←R Zp, not r2 ←R

Z
∗
p used here. This makes no difference, however, since the two distributions are

within negligible statistical distance.
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ρ(j) ∈ Sgidi
or (ρ(j) = ¬attj and attj ∈ {0, 1}∗ \Sgidi

). The set Sgidi
is defined as

Sgidi
= ∪pk∈Shon,(pk,gidi,S)∈QKeyGen

S. We know that Sgidi
does not satisfy the access

structure (M , ρ) of the challenge ciphertext, because the adversary is admissible.
Thus, by security of the access structure (Lemma 1), we know that such a vec-
tor wgidi

∈ Z
n−1
p exists. Note that we crucially rely on the selectivity here, since

the vector wgidi
used in the challenge ciphertext depends on attributes queried

to OKeyGen. The fact that Game2.i−1.4 ≈c Game2.i−1.3 follows from the super-
selective security of Γ and Σ. Indeed, the extra red component ηja2 encrypted
under Γ or Σ never interacts with the vectors used to produce user secret keys.
Namely, for all gid = gidi, we have H(gid) = �zgid�2 with zgid ∈ Span(a∗

1,a
∗
3)

so (0, ηja2)�(1,zgid) = 0. For gid = gidi, we argue that for all j ∈ [�] such
that θ(j) ∈ Shon, either ηj = 0, or the extra ηja2 can be added thanks to the
super-selective security of Γ and Σ. When ρ(j) ∈ Sgidi

or ρ(j) = ¬att with
att ∈ {0, 1}∗ \ Sgidi

, we know that ηj = 0. When ρ(j) is not of this form, then
we know that none of the functional secret keys generated by OKeyGen on gidi

decrypt the ciphertext ctj . Thus, we can conclude using the super-selective secu-
rity of Σ and Γ .

Game2.i−1.5 : is the same as Game2.i−1.4 except that the challenge ciphertext uses
the vectors xj = (sj , ujr1a1 +η′

ja2 + vja3) where η′
j = (η, r)�Mj , for all j ∈ [�]

such that θ(j) ∈ Shon. The fact that Game2.i−1.5 = Game2.i−1.4 follows from the
fact a uniformly random vector r ←R Z

n−1
p is distributed identically to an offset

x ∈ Z
n−1
p plus a uniformly random vector r ←R Z

n−1
p . This is true no matter

the value of x, as long as r is sampled independently of x. So, the following
distributions are equals: {rj + ηj}j∈[�] = {(0, r)�Mj + η(1,wgidi

)�Mj}j∈[�] =
{(η, r + ηwgidi

)�Mj}j∈[�] ≡ {(η, r)�Mj}j∈[�] = {η′
j}j∈[�]. This first distribu-

tion corresponds to Game2.i−1.4, whereas the last distribution corresponds to
Game2.i−1.5.

Game2.i−1.6 : is the same as Game2.i−1.5 except that the challenge ciphertext
uses the vectors xj = (sj , ujr1a1 + r′

ja2 + vja3) or all j ∈ [�] such that
θ(j) ∈ Shon, where r′

j = r(γ,v)�Mj , r ←R Zp. Recall that γ ∈ Zp and v ∈ Z
n−1
p

are used to compute the shares vj , namely vj = (γ,v)�Mj . We argue that
Game2.i−1.5 ≈c Game2.i−1.6 using the DDH assumption in G1, which implies that
{r,v ←R Z

n−1
p , η, γ ←R Zp : (�η�1, �r�1, �γ�1, �v�1)} ≈c {v ←R Z

n−1
p , r, γ ←R

Zp : (�rγ�1, �rv�1, �γ�1, �v�1)}.

Game2.i−1.7 : is the same as Game2.i−1.6 except that the output of the hash
function on the i’th queried global identifier, which we denote by gidi, is com-
puted as follows: H(gidi) = �zgidi

+ a∗
3�2 where zgidi

←R Span(a∗
1,a

∗
2). We

have Game2.i−1.6 ≈c Game2.i−1.7 by Assumption 3. Indeed, we have {zgidi
←R

Span(a∗
1,a

∗
2) : �zgidi

�2} ≈c {zgidi
←R Span(a∗

1,a
∗
2,a

∗
3) : �zgidi

�2} ≡ {zgidi
←R

Span(a∗
1,a

∗
2,a

∗
3) : �zgidi

+ a∗
3�2} ≈c {zgidi

←R Span(a∗
1,a

∗
2) : �zgidi

+ a∗
3�2},

where the ≈c follows from Assumption 3. The first distribution corresponds
to Game2.i−1.6, whereas the last distribution corresponds to Game2.i−1.7. Note
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that for readability we omit the other values (�a1�1, �ra2 + a3�1, �a
∗
1�2, �a

∗
3�2)

present in the output of all distributions. These values are sufficient to generate
the entire adversary’s view.

Game2.i−1.8 : is the same as Game2.i−1.7 except that the challenge cipher-
text uses the vectors xj = (sj , ujr1a1 + η′

ja2 + vja3) for all j ∈ [�] such
that θ(j) ∈ Shon, where η′

j = (η, r)�Mj , η ←R Zp, r ←R Z
n−1
p . This

is the reverse of the transition from Game2.i−1.5 and Game2.i−1.6. We have
Game2.i−1.7 ≈c Game2.i−1.8 using the DDH assumption in G1, which implies that
{r, γ ←R Zp,v ←R Z

n−1
p : (�rγ�1, �rv�1, �γ�1, �v�1)} ≈c {η, γ ←R Zp, r,v ←R

Z
n−1
p : (�η�1, �r�1, �γ�1, �v�1)}.

Game2.i−1.9 : is the same as Game2.i−1.8 except that the challenge ciphertext uses
the vectors xj = (sj , ujr1a1 + rja2 + ηj + vja3) for all j ∈ [�] such that θ(j) ∈
Shon, where rj = (0, r)�Mj , ηj = η(1,wgidi

)�Mj , η ←R Zp and wgidi
is defined

as before. This is the reverse of the transition from Game2.i−1.4 and Game2.i−1.5.
The fact that Game2.i−1.8 = Game2.i−1.9 follows from the fact a uniformly ran-
dom vector r ←R Z

n−1
p is distributed identically to an offset x ∈ Z

n−1
p plus a

uniformly random vector r ←R Z
n−1
p , as long as r is sampled independently

of x. So, the following distributions are equals: {η′
j}j∈[�] = {(η, r)�Mj}j∈[�] ≡

{(η, r+ ηwgidi
)�Mj}j∈[�] = {(0, r)�Mj + η(1,wgidi

)�Mj}j∈[�] = {rj + ηj}j∈[�].
This first distribution corresponds to Game2.i−1.8, whereas the last distribution
corresponds to Game2.i−1.9.

Game2.i−1.10 : is the same as Game2.i−1.9 except that the challenge ciphertext
uses the vectors xj = (sj , ujr1a1 + rja2 + vja3) for all j ∈ [�] such that θ(j) ∈
Shon, where rj = (0, r)�Mj , r ←R Z

n−1
p . This is the reverse of the transition

from Game2.i−1.3 and Game2.i−1.4. The fact that Game2.i−1.9 ≈c Game2.i−1.10 fol-
lows from the super-selective security of Γ and Σ. Indeed, the component ηja2

encrypted under Γ and Σ in Game2.i−1.9 never interacts with the vectors used
to produce user secret keys. Namely, for all gid = gidi, we have H(gid) = �zgid�2
with zgid ∈ Span(a∗

1,a
∗
3) so (0, ηja2)�(1,zgid) = 0. For gid = gidi, we know that

all queries (pk, gidi,S) to OKeyGen are such that S ∈ Sgidi
(by definition of the set

Sgidi
), and, as argued before, we know that for all j ∈ [�] such that θ(j) ∈ Shon,

either ηj = 0 or ctj cannot be decrypted by the functional secret keys generated
by OKeyGen on gidi.

Game2.i−1.11 : is the same as Game2.i−1.10 except that the challenge cipher-
text uses the vectors xj = (sj , ujr1a1 + ujr2a2 + vj · a3) for all j ∈ [�] such
that θ(j) ∈ Shon, where r2 ←R Z

∗
p. This is the reverse of the transition from

Game2.i−1.2 and Game2.i−1.3. We have that Game2.i−1.10 ≈c Game2.i−1.11 from
the DDH assumption in G1, which implies that {u, r ←R Z

n−1
p : (�u�1, �r�1)} ≈c
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{r2 ←R Z
∗
p,u ←R Z

n−1
p : (�u�1, �r2 · u�1)}4. This first distribution corresponds

to Game2.i−1.10, whereas the last distribution corresponds to Game2.i−1.11.

Game2.i−1.12 : is the same as Game2.i−1.11 except that the output of the hash
function on the i’th queried global identifier, which we denote by gidi, is com-
puted as follows: H(gidi) = �zgidi

+ a∗
3�2 where zgidi

←R Span(a∗
1), as opposed

to uniformly random over Span(a∗
1,a

∗
2) in Game2.i−1.11. This is the reverse

of the transition from Game2.i−1.1 and Game2.i−1.2. We have Game2.i−1.1 ≈c

Game2.i−1.2 by Assumption 2.

Game2.i : is the same as Game2.i−1.12, except that the challenge ciphertext uses
the vectors xj = (sj , ujr1a1 + vja3) for all j ∈ [�] such that θ(j) ∈ Shon. That
is, we remove the component ujr2a2. We argue that Game2.i−1.12 ≈c Game2.i

thanks to the super-selective security of Γ and Σ. Indeed, for all j ∈ [�]
such that θ(j) ∈ Shon and all queried gid, we have zgid ∈ Span(a∗

1,a
∗
3), thus

(sj , ujr1a1 + ujr2a2 + vj · a3)�(1,zgid) = (sj , ujr1a1 + vj · a3)�(1,zgid), just as
in game Game2.i, since a�

2 a
∗
1 = a�

2 a
∗
3 = 0. ��
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Abstract. Mass surveillance targets many users at the same time with
the goal of learning as much as possible. Intuitively, breaking many
users’ cryptography simultaneously should be at least as hard as that
of only breaking a single one, but ideally security degradation is gradual:
an adversary ought to work harder to break more. Bellare, Ristenpart
and Tessaro (Crypto’12) introduced the notion of multi-instance security
to capture the related concept for password hashing with salts. Auer-
bach, Giacon and Kiltz (Eurocrypt’20) motivated the study of public
key encryption (PKE) in the multi-instance setting, yet their technical
results are exclusively stated in terms of key encapsulation mechanisms
(KEMs), leaving a considerable gap.

We investigate the multi-instance security of public key encryption.
Our contributions are twofold. Firstly, we define and compare possible
security notions for multi-instance PKE, where we include PKE schemes
whose correctness is not perfect. Secondly, we observe that, in general,
a hybrid encryption scheme of a multi-instance secure KEM and an
arbitrary data encapsulation mechanism (DEM) is unlikely to inherit
the KEM’s multi-instance security. Yet, we show how with a suitable
information-theoretic DEM, and a computationally secure key deriva-
tion function if need be, inheritance is possible. As far as we are aware,
ours is the first inheritance result in the challenging multi-bit scenario.

Keywords: Multi-Instance Security · Hybrid Encryption · Property
Inheritance · Mass Surveillance

1 Introduction

Security of cryptographic schemes is increasingly studied concretely. The ques-
tion changes from whether a scheme is secure or not, to how secure it is. The
change in emphasis also results in increased importance in more realistic secu-
rity notions that model a world where an adversary might have many potential
targets. If an adversary simply tries to learn something about one of its κ tar-
gets, then intuitively the more targets there are, the easier the adversary’s job
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becomes. Indeed, using simple hybrid arguments results in a security degrada-
tion that is linear in κ. But what happens if the adversary is greedy and wants
to learn more, maybe even targets everyone? On the one hand, one could argue
that if breaking one instance is hard, then so is breaking many. Yet, on the other
hand, one would hope that breaking multiple instances, say n, is strictly harder
than breaking just a single one.

This second perspective made Bellare, Ristenpart and Tessaro [12], hence-
forth BRT, realize that new security notions are needed to reason about such
greedy adversaries. They were motivated by how salts in password hashing pro-
tect against attackers re-using precomputation to retrieve multiple passwords.
For their study into probabilistic symmetric schemes, they identified left-or-right
indistinguishability under xor as the strongest notion. Roughly speaking, there
are κ keys in the system each associated with its own left-or-right challenge bit
bi and the goal of the adversary is to guess the xor of all those bits.

Recently, Auerbach, Giacon and Kiltz [4], henceforth AGK, argued the
importance of BRT’s concept to protect against mass surveillance. They intro-
duced the (n, κ) scaling factor as the effort to break n out of κ instances relative
to the effort needed to break a single instance. After recalling several well-known
greedy attacks against public key schemes with dubious scaling factors, they set
out to provide an encryption scheme with good, non-trivial scaling factor.

They discussed various versions of Hashed ElGamal that differed in whether
users shared group parameters and/or generators, plus whether the underly-
ing group was elliptic curve or finite field based. In the programmable random
oracle model, they showed that the multi-instance security of Hashed ElGamal
tightly relates to a novel multi-instance Gap Computational Diffie–Hellman (MI-
GapCDH) assumption, whose validity was further supported by an analysis in
the generic group model.

There was, or rather is, just one small problem: Hashed ElGamal is a key
encapsulation mechanism (KEM), not a public key encryption (PKE) scheme.
Indeed, although AGK use PKE as their motivation, their formalization is
entirely centred around KEMs. Of course, Cramer and Shoup [18] already showed
how a secure KEM can be combined with a secure data encapsulation mechanism
(DEM) to create a secure PKE (for various notions of security). This so-called
hybrid encryption paradigm is widely deployed in the real world, yet, can its
composition theorem be easily lifted to the multi-instance setting?

For key unrecoverability, all seems fine, but for indistinguishability one
quickly uncovers various challenges. Consider an adversary A that wants to
recover n out of κ challenge bits bi: it can attempt to recover roughly half of its
bi by somehow breaking the DEM, and recovering the remaining half by break-
ing the KEM. Intuitively, such a divide-and-conquer strategy essentially rules
out inheriting full multi-instance security of both KEM and DEM simultane-
ously. Instead, perhaps we should aim to bound an adversary’s multi-instance
advantage against the hybrid encryption in terms of either breaking the full
multi-instance security of the KEM or breaking only one of many instances of
the DEM.
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Fig. 1. An overview of multi-instance security notions for public-key encryption, where
γ relates to imperfect correctness (Definition 1), and the loss factor c is explained in
Theorem 2.

Special care would have to be taken to ensure that the corresponding multi-
user DEM advantage is not overwhelming the multi-instance KEM advantage.
After all, already when showing multi-user security of hybrid encryption, ensur-
ing the DEM advantage does not overshadow the multi-user KEM advantage is
challenging [23]. Furthermore, the study of multi-user KEMs highlights a second,
more technical problem.

For multi-user security, there are essentially two different formalizations pos-
sible: one where each user comes with its own challenge bit and one where the
users share a global challenge bit. Jager et al. [29] recently observed that only the
latter lends itself to an easy adaptation of composition theorems using KEMs, as
it allows a simple game-hop where all KEM-derived ephemeral keys are replaced
by randomly selected keys (decoupled from the KEM encapsulations). That proof
technique fails when there are multiple challenge bits. Unfortunately, for multi-
instance security, the only option available is a notion with multiple challenge
bits. In such a setting, inheritance of security properties of the KEM to any
construction based on the KEM is an open problem.

Our Contribution. As mentioned above, multi-instance security was intro-
duced by BRT in the context of probabilistic symmetric primitives and later
adapted to key encapsulation mechanisms by AGK, who provide an excellent
motivation for the study of multi-instance security in a public key setting. We
adapt those notions to multi-instance security for PKE schemes, but make a
number of non-trivial changes in the process. Firstly, we observe that the mech-
anisms used by BRT and AGK to model multi-instance games differ, which seems
to have gone unnoticed hitherto. BRT’s mechanism is stronger as it allows for
corruptions (denoted by �), yet AGK’s mechanism is more expressive by making
explicit how many instances an adversary should break. We use elements of both
in our notions, incorporating both BRT’s corruptions and AGK’s explicit expres-
sion of the number of targeted instances. Secondly, we allow for correctness to
be imperfect, which has ramifications for how to deal with decryption oracles
(for chosen-ciphertext attacks) and corruptions. We delve into the differences
between the various mechanisms in Sect. 3.3, furthermore we use our revised
mechanism to study a number of related notions, as summarized in Fig. 1.
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In more detail, we start out by porting BRT’s notion of key unrecoverability
to the public-key setting. In fact, we consider two distinct versions of key unre-
coverability: “Universal Key Unrecoverability” (UKU), where the adversary is
tasked to recover the exact challenge private key(s) and “Matching Key Unrecov-
erability” (MKU), where it suffices to recover suitably equivalent private keys,
where we leverage our imperfect correctness notion to define “suitably equiv-
alent”. As one would expect, this relaxed key unrecoverability notion implies
the stronger, exact notion up to a small loss related to how we model imperfect
correctness (Theorem 1).

For our main notion of multi-instance security, we follow BRT’s identification
of left-or-right xor-indistinguishability as the strongest notion and adapt it to
the public key setting. As for the symmetric encryption setting studied by BRT,
this indistinguishability notion implies the above key unrecoverability notions
(Theorem 2); however, the differences between perfect symmetric encryption
and imperfect PKE affect the corresponding implications and their proofs.

Finally, we explore an alternative notion, namely real-or-random xor-indistin-
guishability (ROR). Trivially, left-or-right tightly implies real-or-random and in
the multi-instance setting BRT showed that the usual factor-2 loss from the
single instance implication between real-or-random to left-or right, becomes an
exponential factor-2κ loss. A similar loss is possible in our setting, however, we
can also achieve a typically preferable bound of

(
κ
n

)
2n (Corollary 2).

With suitable notions for multi-instance PKE available, we focus on how to
turn a suitably multi-instance secure KEM into a multi-instance secure PKE
scheme using hybrid encryption. For key unrecoverability, inheritance is imme-
diate, yet we would like to guarantee good multi-instance indistinguishability
(the left-hand branch of Fig. 1). We summarize our findings in Fig. 2.

Our first observation is that we can expand the length of the ephemeral
key to any desired length using a pseudorandom extendable output function
(XOF). The resulting extendable KEM, or XEM, inherits the multi-instance
security of the underlying KEM, provided the XOF is secure against multi-
challenge adversaries (Theorem 5). To ensure that the XOF does not become
the weakest link, its seed will need to be long enough, which in turn implies that
the underlying KEM already needs to output a sufficiently long ephemeral key.

The XOF above of course plays the role of key derivation function, but it
is more common that it is modelled as part of any key expansion done by the
DEM. Moving it into the KEM allows us to use an information-theoretic DEM,
read one-time pad (OTP), irrespective of the message length. The OTP’s proper-
ties enable a simplified proof for the security of hybrid encryption (Theorem 6),
where the PKE does indeed inherit the multi-instance security of the XEM,
with two important caveats. Firstly, the OTP is only passively secure, so the
PKE only achieves CPA not CCA security, and secondly, standard KEM indis-
tinguishability only tightly provides real-or-random indistinguishability for the
PKE (see the top line of Fig. 2).

Switching to the TagKEM framework [2], or in our case TagXEM, takes care
of the first shortcoming and tightly achieves multi-instance ROR-CCA secure
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PKE, or IND-CCA non-tightly (Theorem 7). For the PKE to inherit multi-
instance IND-CCA security tightly, we introduce a novel KEM indistinguisha-
bility notion that more closely matches PKE’s left-or-right idea, namely real-or-
permuted (ROP). Finally, we can show tight multi-instance inheritance for the
most desirable PKE notion, based on a ROP-secure TagXEM (Theorem 8).

One small hiccough remains, as our KEM-to-XEM result unfortunately only
works for classical KEM indistinguishability, not for ROP indistinguishability,
nor does it look feasible to convert a KEM or XEM to a TagKEM or TagXEM,
respectively, inheriting multi-instance security using standard reductions. Here,
the random oracle, as used by AGK to prove their construction secure, comes
to the rescue, although rather than looking at Hashed ElGamal under the MI-
GapCDH assumption, we consider more general KEMs that are multi-instance
one-way under plaintext checking attacks (unfortunately, also at this point we
need to restrict to perfect correctness), which we combine with Abe et al.’s
TagKEM construction from a KEM and a MAC (message authentication code).

Recalling that the original random oracle [14] was in fact a XOF, we can
bake the extendability into the random oracle, including the key needed for
an information-theoretic secure MAC. Moreover, the power of the ROM allows
proving the stronger ROP indistinguishability just as easily as classical KEM
indistinguishability. All in all, with Theorem 9 we achieve a suitably multi-
instance secure TagXEM based on a KEM that can be instantiated by Hashed
ElGamal. In that case, the security relies on the MI-GapCDH� assumption, i.e.
with corruptions. As an added benefit of using the random oracle, the resulting
multi-instance bounds no longer rely on sufficiently long XOF inputs, thus for
determining a suitable group size (when instantiating by Hashed ElGamal) the
MI-GapCDH� advantage is leading.

For low granularity, which corresponds to a setting where every user generates
its own group as part of its public key, AGK’s technique can easily be extended to
include corruptions and in the generic group model we arrive at the same bound
for the hardness of MI-GapCDH�, so with corruptions, as AGK did without
corruptions. Unfortunately, for the more realistic high granularity setting, where
users share the same (standardized) group, AGK’s proof strategy does not easily
allow incorporating corruptions. We provide details in the full version [17].

Thus, we can conclude that XOF-based Hashed ElGamal combined with a
suitable information-theoretically secure MAC and the one-time-pad, provides
good multi-instance security in the programmable random oracle model and
generic group model, provided that users each select their own independent
group. We briefly touch upon a concrete interpretation in the full version, where
we also informally address AGK’s scaling factor.

Related Work. Farshim and Tessaro [20] recently followed up BRT’s line of
work on the multi-instance security of password hashing by combining it with
the related preprocessing setting. AGK [4] motivated their investigation into
multi-instance security by the threat of mass surveillance. The latter had previ-
ously motivated Bellare et al. [11] to consider subversion, namely the ease with
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Fig. 2. An overview of our constructions achieving various flavours of multi-instance
security. The left upwards arrow is dotted, as AGK did not consider corruptions.

which a “big brother” might subvert an encryption algorithm by replacing it
surreptitiously with a trapdoored one with otherwise identical behaviour.

The multi-instance setting is closely related to the multi-user setting, in which
the adversary is tasked with breaking only one rather than n out of κ possible
instances. Multi-user security was introduced by Bellare et al. [7] in the public-
key setting, with the goal of deriving concrete security parameters in a more
realistic setting. There have been many recent follow-up works, including how
the hybrid paradigm generalizes to the setting without corruptions [23], and later
with corruptions [33], as well as the construction of tightly-secure authenticated
key exchange (AKE) from multi-user KEMs [29]. Various versions of the multi-
user GapCDH problem with corruptions were recently proposed and analysed in
that context [30].

One definitional subtlety of multi-user security is the number of challenge
bits: either a single one, as originally conceived, or many, as typical for the
multi-instance setting. The various definitions do not appear to imply each other
tightly [26], which slightly hinders regarding the multi-user setting as a special
case of the multi-instance setting (due to potential tightness losses).

2 Preliminaries

2.1 Notation

For a positive integer n, we write [n] for the set {1, . . . , n}. We use code-based
experiments, where ← denotes deterministic assignment and ←$ denotes prob-
abilistic assignment. By convention, all sets and lists are initialized empty. For a
set X, we use the shorthand X

∪←− x for the operation X ← X ∪ {x}. If X is a list,
then X

�←− x denotes appending the element x to X; to retrieve the ith element
of the list, we write X[i] where by convention X[i] = ∅ for out-of-bounds i.

We use Pr[Code : Event | Condition ] to denote the conditional probability
of Event occurring when Code is executed, conditioned on Condition. We omit
Code when it is clear from the context and Condition when it is not needed.
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For Boolean values, we use {true, false} and {0, 1} interchangeably, where by
convention 1 corresponds to true.

When proving relations between notions and security of constructions, we
will often refer to simple fully black box (SFBB) reductions. A reduction is fully
black box iff it works for all schemes and adversaries, and only accesses them in
a black box manner [6,38] (we leave the black box dependence implicit in our
notation). Moreover, if the reduction only runs its adversary once and without
rewinding, then the reduction is simple [34].

Finally, the respective games that the adversary and the reduction are playing
often have matching (though not identical) oracles; for instance, both may have
access to a decryption oracle or a key corruption oracle. We call a reduction
type-preserving with respect to, say, a decryption oracle iff the reduction will
make decryption queries iff its black-box adversary makes decryption queries.
Type-preservation, without explicit mention of any oracles, is implicitly meant
to imply for all meaningfully matching oracles (unless otherwise specified).

Type-preservation of reductions appears folklore and can easily be estab-
lished by inspection. Intuitively, a type-preserving reduction can be used to show
simultaneously that CCA security of some kind implies CCA security of another
kind and that CPA security of the same kind implies CPA security of the other
kind. In Sect. 3.3 we will encounter several reductions that are only partially
type-preserving.

2.2 PKE Syntax

A public-key encryption scheme PKE consists of four algorithms: the probabilis-
tic key generation algorithm PKE.Kg, which takes as input some system param-
eter pm (see also Remark 1) and outputs a public/private key pair (pk, sk); the
deterministic key validation algorithm PKE.Check, which takes as input the sys-
tem parameters pm as well as a purported public/private key pair (pk, sk) and
returns true or false (see Remark 2 below), the probabilistic encryption algo-
rithm PKE.Enc, which on input a public key pk and a message m ∈ M (see
Remark 3), outputs a ciphertext c; and the deterministic decryption algorithm
PKE.Dec, which on input of a secret key sk and a ciphertext c, outputs either a
message m, or a special symbol ⊥ denoting failure.

Remark 1. The system parameters pm are implicitly input to PKE.Enc and
PKE.Dec as well; for concreteness, they can for instance be the description of an
elliptic curve group with generator for an ECDLP-based system or the dimen-
sions and noise sampling algorithm for an LWE-based system. When one is
interested in re-phrasing our results in an asymptotic setting, the parameters
pm will be generated by a probabilistic, polynomial-time algorithm that only
takes the security parameter as input.

Remark 2. For various modern cryptosystems, especially schemes targeting post-
quantum security or tight multi-user security, the relationship between public
and private keys is not one-to-one. For instance, a single public key can have var-
ious private keys [23] or a single private key can lead to various public keys [16].
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Naively, one could check whether a public key and private key belong together
by simply verifying whether encrypting and then decrypting a number of ran-
dom messages always returns the original messages. With imperfect correctness,
such a canonical checking algorithm can produce both false positives and false
negatives. Yet, it is usually still possible to ckeck whether a private–public key
pair matches more directly, which we model by the key validation algorithm
PKE.Check. We will define both correctness and key unrecoverability in terms of
this key validation algorithm.

Remark 3. The message space M may depend on the parameters pm, but for
simplicity we assume it independent of the public key pk. Often M consists
of arbitrary length bitstrings, or at least all bitstrings up to some large length
(e.g. 264) and messages of the same length are deemed equivalent as they are
expected to yield ciphertexts of identical lengths. We will model these equiva-
lences more abstractly by assuming that pm implicitly defines a number m of
equivalence classes, together with an efficient method �·� : M → [m] to deter-
mine the class (e.g. length) of a message and an efficient algorithm to sample
uniformly from a given equivalence class. We write ∼ for the equivalence, so for
m ∈ M, m ∼ m′ iff �m� = �m′�.

Correctness. Perfect correctness states that for all parameters pm, all key
pairs (pk, sk) that can be output by PKE.Kg(pm), and all messages m ∈ M, we
always have that PKE.Decsk(PKE.Encpk(m)) = m. Yet modern schemes, espe-
cially lattice-based ones, often allow a small decryption error, where occasionally
decryption will fail or it will return a wrong message.

Various relaxations of correctness have appeared in the literature in order to
argue about such schemes as it turns out that some classical results implicitly
or subtly relied on perfect correctness. In order for our work to be meaningful
for a large range of both classical and modern schemes, we introduce a stronger
version of imperfect correctness based on the key validation algorithm.

Definition 1 ((γ, δ)-Correctness). Let γ, δ ∈ [0, 1]. Then a public-key encryp-
tion scheme PKE is called (γ, δ)-correct iff for all pm,

1. Pr[(pk, sk) ←$PKE.Kg(pm) : PKE.Check(pm, pk, sk) = false ] ≤ γ;
2. for all (pk, sk) and all m ∈ M, if PKE.Check(pm, pk, sk) = true then

Pr[PKE.Decsk(PKE.Encpk(m)) 
= m] ≤ δ .

Perfect correctness corresponds to (0, 0)-correctness and any scheme is trivially
both (1, 0)-correct and (0, 1)-correct. For good schemes γ and δ can simultane-
ously be chosen small, where typically increasing γ allows for decreasing δ. As
we will see, both γ and δ will appear in various bounds, thus allowing larger γ
to enable smaller δ (or vice versa) might give preferable bounds.
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3 Multi-instance Security of Public-Key Encryption

3.1 Two Flavours of Key Recovery

The minimal requirement for public-key encryption schemes is that, given a pub-
lic key, it should be difficult to recover the private key. Although key unrecover-
ability is a very weak notion theoretically, its study has two main motivations:
firstly, many multi-instance attacks target key recovery, and secondly, concep-
tually the notion is relatively simple, allowing both an instructive introduction
of formalizing multi-instance security and an initial comparison between BRT’s
perfect symmetric encryption and our imperfect public key encryption.

At first sight, the generalization to the multi-instance setting appears imme-
diate: an adversary tries to recover the respective private keys for a number of
public keys. BRT introduced universal key unrecoverability (UKU) as a suitable
notion for multi-instance security of symmetric encryption. We provide an ana-
logue for public-key encryption, but there are some crucial changes in the game’s
mechanics (see also Sect. 3.3).

Let 0 < n ≤ κ be integer parameters, then the universal key unrecoverabil-
ity experiment Exp

(n,κ)-uku-cca�
PKE (A) for public-key encryption scheme PKE and

adversary A is described in Fig. 3. It generates κ key pairs and provides the pub-
lic keys to A, who is then tasked with recovering exactly n of the corresponding
private keys.

The adversary has access to both a decryption oracle D and a key corruption
oracle K, giving rise to chosen ciphertexts attacks with corruptions (CCA�; the
� denotes corruptions). The decryption oracle D(i, c) takes as input an index i
and a ciphertext c, and returns the output of the decryption algorithm PKE.Dec
on input ski and c. The corruption oracle K(i) simply takes as input a key index
i, and returns the corresponding private key ski. The game notes that the key
pair with index i has been corrupted by adding it to the global set K.

Eventually, A outputs a set of key indices I and a list (ŝki)i∈I of guesses of the
private keys corresponding to those indices. In order for I to be eligible, it needs
to have cardinality n without containing any corrupted key pairs, that is, the
sets of guessed keys I and corrupted keys K should be disjoint. If I is eligible and
every guessed private key matches the corresponding sampled one, the adversary
wins the game. In that case, the game halts with output 1; otherwise, it halts
with output 0. The advantage is the probability that the game outputs 1.

Definition 2. Let PKE be a public-key encryption scheme. Then the universal
key unrecoverability advantage of an adversary A is

Adv
(n,κ)-uku-cca�
PKE (A) = Pr

[
Exp

(n,κ)-uku-cca�
PKE (A) = 1

]
,

where the experiment is defined in Fig. 3.

Weaker notions emerge by dropping either or both of the two oracles. Without
key corruption, standard CCA security results. Without decryption oracle, cho-
sen plaintext security (CPA� resp. CPA) emerges. As usual, an encryption oracle
is superfluous in the PKE setting.
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Experiment Exp
(n,κ)-(u/m)ku-cca�

PKE (A)

(pk1, sk1), . . . , (pkκ, skκ) ←$PKE.Kg

(I, (ŝki)i∈I) ←$AD,K(pk1, . . . , pkκ)

if |I| �= n ∨ I ∩ K �= ∅ then return 0

UKU : return
∧

i∈I

ski = ŝki

MKU : return
∧

i∈I

PKE.Check
(
pki, ŝki,

)

Oracle D(i, c)

m ← PKE.Decski(c)

return m

Oracle K(i)

K
∪←− i

return ski

Fig. 3. The key recovery experiments Exp
(n,κ)-uku-cca�

PKE (A) and Exp
(n,κ)-mku-cca�

PKE (A);
they only differ in their win condition.

For cryptosystems where a single public key may have many matching pri-
vate keys (such as Cramer–Shoup [19]), universal key unrecoverability is rather
weak. Hence, we consider a second, slightly stronger notion of key recovery, in
which the recovered private keys are no longer required to be identical to those
sampled in the game. Instead, it suffices that each passes the keypair checking
algorithm PKE.Check; here we leverage our correctness definition (Definition 1).
We call the resulting notion matching key unrecoverability (MKU), whose game
is included in Fig. 3. That MKU security indeed implies UKU security is cap-
tured by Theorem 1 below, where the error term κγ results from the unique
correct keys as output by the key generation not always passing the PKE.Check
algorithm (see the full version for the proof).

Theorem 1 (MKU −→ UKU). Let 0 < n ≤ κ be integer parameters and let
PKE be a (γ, δ)-correct encryption scheme. Then, there is a type-preserving
SFBB reduction Bmku, such that for every adversary Auku,

Adv
(n,κ)-uku-cca�
PKE (Auku) ≤ Adv

(n,κ)-mku-cca�
PKE (Bmku) + κγ .

3.2 Left-or-Right XOR Indistinguishability

To capture a stronger notion of security than simply hardness of key recovery, BRT
considered various generalizations of indistinguishability to the multi-instance set-
ting. For perfect probabilistic symmetric encryption, they concluded that left-or-
right xor-indistinguishability is the strongest notion. Here each key comes with
its own challenge bit that determines the left-or-right nature of the corresponding
challenge encryption oracle; the adversary is tasked to retrieve the xor of all the
challenge bits. In Definition 3, we use our modified game mechanics to adapt left-
or-right xor-indistinguishability for potentially non-perfect public-key encryption.

Definition 3. Let PKE be a public-key encryption scheme. Then the xor-indis-
tinguishability advantage of an adversary A is

Adv
(n,κ)-ind-cca�
PKE (A) = 2 · Pr

[
Exp

(n,κ)-ind-cca�
PKE (A) = 1

]
− 1 ,
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Experiment Exp
(n,κ)-ind-cca�

PKE (A)

(pk1, sk1), . . . , (pkκ, skκ) ←$PKE.Kg

b1, . . . , bκ ←$ {0, 1}
(I, b̂) ←$AE,D,K,B(pk1, . . . , pkκ)

if |I| �= n ∨ I ∩ (K ∪ B) �= ∅ then b̂ ← 0

return ⊕i∈I bi = b̂

Oracle K(i)

K
∪←− i

return ski

Oracle B(i)

B
∪←− i

return bi

Oracle E(i, m0, m1)

if m0 �∼ m1 then return E
c ←$PKE.Encpki

(mbi)

Mi(c) ← mbi

Ci
∪←− c

return c

Oracle D(i, c)

m ← PKE.Decski(c)

if c ∈ Ci ∧ m = Mi(c) then return E
return m

Fig. 4. Our main notion of multi-instance indistinguishability. In blue the slightly
non-standard strengthening of the decryption oracle in case of imperfect correctness.
(Colour figure online)

where the experiment is defined in Fig. 4.

In the experiment Exp
(n,κ)-ind-cca�
PKE (A), the adversary gets access to κ indepen-

dently drawn public keys and helper oracles D and K (as described in Sect. 3.1).
Furthermore, A gets access to a challenge encryption oracle E and a separate
bit corruption oracle B.

On input two equivalent messages m0 and m1 and a public key index i,
the challenge encryption oracle returns PKE.Encpki

(mbi
) where bi is the chal-

lenge bit associated with the public key indexed by i. As usual for IND-CCA
notions, challenge ciphertexts cannot be queried to the decryption oracle, which
we catch on-the-fly [9]. Owing to the imperfect decryption, we allow a slight
relaxation: if a challenge ciphertext decrypts incorrectly, we do not suppress the
output and essentially allow the query. This relaxation strengthens the notion,
but as challenge ciphertexts are honestly generated, the advantage gained by
an adversary can be bound by the correctness parameters of the PKE using an
identical-until-bad argument; however such a generic approach might not give
bounds appropriate for the multi-instance setting.

Eventually, the adversary returns a set I of targets and a guess b̂ of the xor
of the corresponding challenge bits bi. If I is a set of n uncorrupted indices, then
intuitively an adversary’s uncertainty about any of the n challenge bits will be
affected in the final guess b̂, so in that sense b̂ neatly captures an adversary’s need
to break n instances in order to win. If I is not a set of n uncorrupted indices,
the game resets A’s guess b̂ to 0, ensuring an adversary gains zero advantage
from such a bad I.

The Relationship with Key Recovery. BRT showed that in their perfect
symmetric setting, multi-instance indistinguishability implies multi-instance uni-
versal key unrecoverability. While that may sound like a triviality, their proof [13,
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App. C] was not entirely straightforward and, to ensure that the advantages
carried over neatly, the distinguishing reduction receiving recovered keys needed
to amplify its success probability by repeated random challenge encryptions.
Their bound ends up with an additive term that corresponds to the likelihood
that decrypting using an incorrect key results in the opposite message from the
decrypted one.

Our imperfect public key setting is slightly different. On the one hand, the
reduction can check the recovered keys with the PKE.Check algorithm, yet on
the other hand correct keys can still cause incorrect decryptions. As a result,
our amplification based on multiple challenge encryptions differs from BRT’s, as
we move from unanimity to a plurality vote. Furthermore, our reduction can use
fixed messages (to match how correctness is defined), which reduces a depen-
dency (in the bound) on the size of the message space. We suspect that our
amplification can be tightened further by a combination of exploiting random-
ness and more fine-tuned voting, coupled with more fine-grained bounding of
probabilities.

As is, the complexity of the bound makes its behaviour somewhat opaque
and for some parameter choices vacuous (when c < 0). The main idea is that
Bind can increase q, the number of challenge encryptions per user, to counteract
the losses inferred by large n and/or large δ, with a small penalty to its running
time. For δ = 2−64, q = 1 already suffices for c > 1/2 for n < 225. In case of
perfect correctness for keys that check out, corresponding to δ = 0, the bound
is completely tight.

Theorem 2 (IND −→ MKU). Let PKE be a (γ, δ)-correct encryption scheme
with δ < 1/2. Then there is a type-preserving SFBB reduction Bind such that, for
every Amku,

Adv
(n,κ)-ind-cca�
PKE (Bind) ≥ c · Adv(n,κ)-mku-cca�

PKE (Amku) ,

with c = 2
(
1 − 2q(δ(1 − δ))

q
2
)n −1 where q ∈ Z>0 is an amplification parameter

of the reduction; Bind’s overhead consists of q ·n calls to E, n offline key checks,
and q · n offline decryptions.

Proof. Let Bind run adversary Amku on the same κ public keys as it received
itself. Whenever Amku makes a decryption or corruption query, Bind simply
forwards the queries to its own oracle, relaying the response back to Amku.
Eventually, Amku terminates with output (I, (ŝki)i∈I) and Bind first confirms
whether Amku won, by checking, for all the returned private keys, whether
PKE.Check(pki, ŝki) holds. If any check fails, Bind halts with output 0.

Let m0 and m1 be two distinct yet equivalent messages. Then for all i ∈ I,
Bind creates a guess b̂i by querying its challenge encryption oracle q times on
those two messages, so q queries E(i,m0,m1) resulting in cij , for j ∈ [q]. It
then decrypts those ciphertexts using the private key ŝki it obtained from Amku,
resulting in purported messages mij ← PKE.Decŝki

(cij). If, for a fixed i, there
are strictly more than q/2 appearances of m0 amongst the mij , it sets b̂i to 0;
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if there are strictly more than q/2 appearances of m1, then it sets b̂i to 1. If
neither message appears more than q/2 times, Bind halts with output 0. Once
Bind has created a guess b̂i for all i ∈ I, it terminates on output (I,

⊕
i∈I b̂i).

For i ∈ I, let Checki be the event that Amku outputs a key ŝki that passes the
test and let Goodi be the event that Bind’s guess b̂i actually equals bi. Let CheckI
be the event that all Checki hold (for i ∈ I) and define GoodI analogously.

As Bind’s simulation of Exp(n,κ)-mku-cca�
PKE is perfect, we know that

Adv(n,κ)-mku-cca�(Amku) = Pr[CheckI ] ,

moreover,

Pr
[
Exp

(n,κ)-ind-cca�
PKE (Bind) = 1

]
≥ Pr[CheckI ∧ GoodI ] + Pr[¬CheckI ∧ b = 0]

= Pr[GoodI |CheckI ] Pr[CheckI ] +
1
2

(1 − Pr[CheckI ])

which implies that

Adv
(n,κ)-ind-cca�
PKE (Bind) ≥ (2Pr[GoodI |CheckI ] − 1)Adv(n,κ)-mku-cca�(Amku) .

To bound Pr[GoodI |CheckI ] we exploit the correctness definition, specifi-
cally that its quantification (Definition 1) ensures that whenever Checki holds,
we have that Pr

[
PKE.Decŝki

(PKE.Encpki
(m)) = m

]
≥ 1 − δ, irrespective of m

and where the probability is only over the randomness of PKE.Enc.
If, for a given i, decryption is correct strictly more than q/2 times, then we

are guaranteed that Goodi occurs. If we let B
(
q, p

)
be the binomial distribution

over q trials and with probability p, then

Pr[Goodi |Checki ] ≥ Pr
[
B

(
q, (1 − δ)

)
>

q

2

]

and, as this bound only relies on the randomness of the challenge encryption
oracle, guaranteed independent for differing i, we may conclude that

Pr[GoodI |CheckI ] ≥
(
Pr

[
B

(
q, (1 − δ)

)
>

q

2

])n

.

Finally, we note that

Pr
[
B

(
q, (1 − δ)

)
>

q

2

]
≥ 1 − 2q (δ(1 − δ))

q
2

by a standard application of known bounds on binomial tails, requiring δ ≤ 1/2
(see details below). Plugging in all the various bounds recovers the theorem
statement.

For the binomial tail bound, we use the Chernoff–Hoeffding bound [27], which
states that, for a binomial distribution B

(
q, p

)
over q trials and with probability

p, and any k satisfying p < k
q < 1 the tail bound

Pr
[
B

(
q, p

)
≥ k

]
≤ exp

[
−qD

(
k

q

∥
∥
∥
∥ p

)]
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holds, where D(a‖b) is the Kullback–Leibler divergence defined as D(a‖b) =
a ln

(
a
b

)
+ (1 − a) ln

(
1−a
1−b

)
.

We further use the trick that Pr
[
B

(
q, (1 − δ)

)
> q

2

]
= 1 − Pr

[
B

(
q, δ

)
≤ q

2

]
,

so the relevant Kullback–Leibler divergence becomes

D

(
1
2

∥
∥
∥
∥ δ

)
=

1
2

ln
( 1

2

δ

)
+

(
1 − 1

2

)
ln

((
1 − 1

2

)

1 − δ

)

=
1
2

ln
(

1
2δ

)
+

1
2

ln
(

1
2(1 − δ)

)

= ln

[(
1

4δ(1 − δ)

) 1
2
]

,

which allows us to compute the bound

Pr
[
B

(
q, (1 − δ)

)
>

q

2

]
≥ 1 − exp

[
−qD

(
1
2

∥
∥
∥
∥ δ

)]

= 1 − exp

[

−q ln

[(
1

4δ(1 − δ)

) 1
2
]]

= 1 − 2q (δ(1 − δ))
q
2 .

��

Corollary 1 (IND −→ UKU). Let PKE be a (γ, δ)-correct encryption scheme
with δ < 1/2. Then there is a type-preserving SFBB reduction Bind such that, for
every Auku,

Adv
(n,κ)-ind-cca�
PKE (Bind) ≥ c · Adv(n,κ)-uku-cca�

PKE (Auku) − κγ ,

with c, q, and Bind’s overhead as above (Theorem 2).

3.3 Alternative Mechanisms

As we mentioned before, our mechanism to capture multi-instance security differs
slightly from those used by BRT and AGK, respectively, even when accounting
for changes in primitive and correctness. At first sight, the differences might
appear mostly cosmetic, though there are some subtleties involved.

The BRT Notion: Requiring n = κ, Possibly Corrupted, Targets. BRT
require an adversary to return the xor of all bits, but allow those bits or corre-
sponding users to be corrupted. Figure 5 reflects the small change needed in the
code of our security experiment to match BRT’s mechanism (ignoring a minor,
inconsequential difference, as BRT have a single, merged corruption oracle that
returns both key and bit). As motivation for including corruptions, BRT dis-
cuss the scenario that, say, half of the keys generated are hopelessly insecure: an
adversary breaks the insecure half and corrupts the rest, thus being successful.
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Experiment Exp
(≤κ,κ)-ind-cca�

PKE (A)

4 : if |I| �= κ then b̂ ← 0

Experiment Exp
(≥n,κ)-ind-cca�

PKE (A)

4 : if |I| < n ∨ I ∩ (K ∪ B) �= ∅ then b̂ ← 0

Fig. 5. The main differences between our mechanism for multi-instance indis-
tinguishability (Fig. 4) and prior art revolve around line 4: BRT’s experiment

Exp
(≤κ,κ)-ind-cca�

PKE (A) (left) and AGK’s experiment Exp
(≥n,κ)-ind-cca�

PKE (A) (right). The
differences are highlighted in blue. (Colour figure online)

Moreover, they mention that their choice implies security under a corruptionless
notion with dynamically chosen I.

Although the implication is of course true, and something can be said to
target the strongest possible notion, corruptions have a habit of creating com-
plications for reductions and provable security in general. Yet, we believe the
inclusion of corruptions, or not, should reflect the threat model of the adversary
and that choice should be orthogonal to the number of users being targeted.
BRT, instead of having an explicit hardness parameter n, restrict an adversary
to make at most qc corruption queries to avoid trivial wins when qc = κ. Yet,
whether the resulting, intuitive hardness will or should then match n = κ − qc,
is unclear.

We address the equivalence between BRT’s mechanism and our general mech-
anism (with corruptions) in Lemmas 1 and 2. Both lemmas have in common that
the respective reductions may make up to κ − n additional bit corruptions. In
other words, the reductions are not type-preserving, making the equivalence
somewhat sloppy. As an aside, using techniques similar to those to prove The-
orem 2, the key corruption oracle could be used (at a loss) to simulate the bit
corruption oracle instead (see the full version for the proofs).

Lemma 1 (main notion =⇒ BRT). Let n ≤ κ and qc ≤ κ − n. Then there
is an SFBB reduction B such that, for every adversary A making at most qc

corruption oracle calls,

Adv
(≤κ,κ)-ind-cca�
PKE (A) ≤ Adv

(n,κ)-ind-cca�
PKE (B) ,

where B makes at most κ − n additional bit corruption oracle calls.

Lemma 2 (BRT =⇒ main notion). Let n ≤ κ. Then there is an SFBB
reduction B such that, for every adversary A,

Adv
(n,κ)-ind-cca�
PKE (A) ≤ Adv

(≤κ,κ)-ind-cca�
PKE (B) ,

where B makes at most κ − n additional bit corruption oracle calls.

The AGK Notion: Allowing More than n Targets without Corruptions.
When AGK studied KEMs in the multi-instance setting, they used a xor notion
with the n as the minimum number of targets to attack (out of κ possible)
as an explicit parameter; moreover, an adversary would not have access to any
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corruption oracles. Figure 5 reflects the small change needed in the code of our
security experiment to match AGK’s mechanism with corruptions added (where
we fixed a minor bug in their code; rather than setting b̂ ← 0 their experiment
would immediately return 0 instead, inadvertently granting an adversary that
deliberately returns a compromised handle the significant advantage of −1).

Absent corruptions, AGK indicated that for some pathological schemes,
breaking more targets might paradoxically be easier than breaking fewer [3,
App. C]. In those cases, the freedom to return a set I of cardinality greater than
n would make life easier for an adversary, leading to a stronger notion.

In the presence of corruptions, requiring the adversary to target exactly n
users as we do is without loss of generality. As an example, if an adversary can
figure out the xor of n + 1 honest bits, it can bit-corrupt any single one of these
n + 1, and xor the resulting bit out of the initial guess to obtain a final one on
n bits instead. We formalize this intuition below.

Lemma 3 (main notion =⇒ AGK�). There is an SFBB adversary B such
that, for every A,

Adv
(≥n,κ)-ind-cca�
PKE (A) ≤ Adv

(n,κ)-ind-cca�
PKE (B) .

If A returns a list of n′ targets, B makes n′ − n additional calls to its bit cor-
ruption oracle.

3.4 Real-or-Random XOR Indistinguishability

An alternative notion of indistinguishability, known as real-or-random indistin-
guishability (ROR), sees the adversary tasked with figuring out whether a chal-
lenge ciphertext contains the adversarially chosen message m or an unknown,
randomly chosen message. The game Exp

(n,κ)-ror-cca�
PKE is exactly as in Fig. 4,

apart from the challenge encryption oracle EROR(i,m), which sets m0 ← m
and m1 ←$ [m] to then call (left-or-right) E(i,m0,m1).

By construction, left-or-right indistinguishability easily implies real-or-
random indistinguishability. That statement is as true in the multi-instance
setting as it is in the classical single-user setting. Conversely, in the single-user
setting, it has long been established that the reduction from ROR to IND loses a
factor 2 [8]. However, BRT showed that in the multi-instance setting, the factor 2
blows up exponentially to, in their case, 2κ. Yet, BRT argue that this exponential
loss is not as bad as it might seem, given that the multi-instance advantages are
supposed to be exponentially smaller than their single-user counterparts. Thus,
reductions incurring losses exponential in κ or n can still be valuable.

To adapt BRT’s reduction to our setting, we require n = κ, implying that
A cannot access its corruption oracles. Otherwise, corruptions would make the
reduction noticeable once at least one bi is set to 1, potentially influencing an
adversary’s behaviour in unpredictable ways (see the full version for the proof).
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Theorem 3. There is an SFBB reduction B such that, for every adversary A,

Adv
(κ,κ)-ind-cca
PKE (A) ≤ 2κ · Adv(κ,κ)-ror-cca

PKE (B) ,

where B additionally draws κ bits uniformly at random.

Furthermore, a reduction playing an (n, n) game can exploit an adversary playing
a (n, κ) game by guessing in advance the set I of targets that the adversary will
return. A correct guess allows the reduction to simulate the remaining keys
without being noticed (see the full version for the proof).

Theorem 4. There is an SFBB reduction B such that, for every adversary A,

Adv
(n,κ)-ind-cca�
PKE (A) ≤

(
κ

n

)
· Adv(n,n)-ind-cca

PKE (B) .

B’s overhead consists of generating κ − n fresh keypairs, sampling κ − n bits,
and choosing a subset of [κ] of cardinality n uniformly at random.

Composing Theorem 3 and 4, we obtain the following bound.

Corollary 2. (ROR =⇒ IND). There is an SFBB reduction B such that, for
any adversary B,

Adv
(n,κ)-ind-cca�
PKE (A) ≤

(
κ

n

)
· 2n · Adv(n,n)-ror-cca

PKE (B) .

B’s overhead consists of generating κ − n fresh keypairs, sampling κ bits, and
choosing a subset of [κ] of cardinality n uniformly at random.

An alternative bound losing a factor 2κ is possible by combining Theorem 3 with
Lemma 2, however a simple analysis shows that whenever n < κ/5 the corollary
above is preferable.

At first glance, an exponential-looking loss of 2κ might seem severe, poten-
tially rendering the resulting bound vacuous. Yet, as BRT already highlighted,
the multi-instance advantages themselves might vanish exponentially in n, mak-
ing the bounds relevant for the notions being compared. Nonetheless, tigher
bounds still matter; unfortunately achieving even tighter bounds in the general
case seems challenging [5,12].

4 Inheriting Multi-instance Security

4.1 TagKEM: Definition and Notion of Security

Our goal is to turn the AGK multi-instance secure KEM into a PKE. Yet, for the
construction of hybrid encryption, the more general TagKEMs, where encapsu-
lation is split into two algorithms (TKEM.Key and TKEM.Enc) have proven more
powerful [2]: intuitively speaking, splitting the algorithm allows the tag and con-
sequently the key encapsulation to depend on the data encapsulation, making



Multi-instance Secure Public-Key Encryption 353

Experiment Exp
(n,κ)-ind-cca�

TXEM (A)

(pk1, sk1), . . . , (pkκ, skκ) ←$TXEM.Kg

b1, . . . , bκ ←$ {0, 1}
(I, b̂) ←$AC,E,D,K,B(pk1, . . . , pkκ)

if |I| �= n ∨ I ∩ (K ∪ B) �= ∅ then b̂ ← 0

return ⊕i∈I bi = b̂

Oracle D(i, 〈c, τ〉 , �)

K ← TXEM.Decski(c, τ, �)

if Pi(c, τ) �= ∅
K′ ← Pi(c, τ), �′ ← min{�,

∣∣K′∣∣}
else

K′ ← ε, �′ ← 0

if 〈c, τ〉 ∈ Ci ∧ K��′� = K′��′�

return E
return K

Oracle C(i, �)

(K0, σ) ←$TXEM.Keypki
(�)

Ei
�←− 〈σ, K0〉

K1 ←$ {0, 1}�

return Kbi

Oracle E(i, j, τ)

if Ei[j] = ∅ then return E
〈σ, K〉 ← Ei[j], Ei[j] ← ∅
c ←$TXEM.Enc(σ, τ)

Pi(c, τ) ← K

Ci
∪←− 〈c, τ〉

return c

Oracle K(i)

K
∪←− i

return ski

Oracle B(i)

B
∪←− i

return bi

Fig. 6. Multi-instance indistinguishability notion for TXEM. In blue the same
strengthening as in Fig. 4 in the case of imperfect correctness, with a slightly more
complex admin to accomodate tags and length extension. We take K��� to mean the
first � bits of K and ε as the empty string. (Colour figure online)

CCA security of the hybrid construction easier to achieve (cf. the Kurosawa–
Desmedt scheme [31]). In Definition 4 we introduce a further generalization,
called TagXEM, by allowing extendable output lengths for the ephemeral keys
produced by the TagXEM.

Definition 4 (TagXEM). A TagXEM is a tuple of algorithms (TXEM.Kg,
TXEM.Key,TXEM.Enc,TXEM.Dec,TXEM.Check), where long-term key genera-
tion TXEM.Kg on input pm outputs a random keypair (pk, sk); ephemeral key
generation TXEM.Key on input pk and � ∈ Z>0, outputs a random ephemeral
key K ∈ {0, 1}� and an internal state σ, subsequently encapsulation TXEM.Enc
on input a state σ and a tag τ ∈ T , deterministically outputs an encapsulation
c, or a special symbol ⊥ denoting failure. The deterministic decapsulation algo-
rithm TXEM.Dec takes input a private key sk, an encapsulation c, a tag τ , and
a length �, and outputs either a key K ∈ {0, 1}� or ⊥ to denote failure. Finally,
the deterministic TXEM.Check takes as input the system parameters pm as well
as a purported public/private key pair (pk, sk) and returns true or false.

If we restrict to a single value �, the usual notion of TagKEMs appears; moreover
if we restrict to a single value of τ , the TXEM.Key and TXEM.Enc algorithms can
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be merged into a single key encapsulation mechanism, leading to normal KEMs
(or XEMs if the variable output length is still incorporated). Consequently, the
correctness and security definitions for the more general TagXEMs, as discussed
throughout this section, imply corresponding definitions for KEM, XEM, and
TagKEM.

For correctness, we allow the effective tag space T� to depend on the length
� of the ephemeral key. Similarly to Definition 1, we define (γ, δ)-correctness for
TagXEM. To ensure correctness for all τ , including those that depend on K, τ ’s
quantifier sits inside the probability statement.

Definition 5 ((γ, δ)-Correctness TagXEM). Let γ, δ ∈ [0, 1]. Then a tag
extendable-output key encapsulation mechanism TXEM is called (γ, δ)-correct
iff

1. Pr[(pk, sk) ←$TXEM.Kg(pm) : TXEM.Check(pm, pk, sk) = false ] ≤ γ;
2. if TXEM.Check(pm, pk, sk) = true then for all � ∈ Z>0 it holds that

Pr
[
(K,σ) ←$TXEM.Keypk(�) : ∃τ ∈ T� s.th.

c ← TXEM.Enc(σ, τ)
TXEM.Decsk(c, τ, �) 
= K

]
≤ δ .

For security, Abe et al.’s notion of TagKEM indistinguishability [2] transfers
easily to the multi-instance setting. The relevant game is given in Fig. 6, where
we also made the necessary changes to deal with the variable output length
of TagXEMs, plus the strengthening of D in the case of imperfect correctness
(cf. Sect. 3.2).

Definition 6. Let TXEM be a TagXEM. Then the xor-indistinguishability
advantage of an adversary A is

Adv
(n,κ)-ind-cca�
TXEM (A) = 2 · Pr

[
Exp

(n,κ)-ind-cca�
TXEM (A) = 1

]
− 1 ,

where the experiment is defined in Fig. 6.

If we fix � and set T� to a single element, the notion captures multi-instance
security for standard KEMs, which is near equivalent (see Sect. 3.3) the notion
that AGK used. In other words, provided MI-gapCDH is hard, their construction
achieves (n, κ)-IND-CCA security in the random oracle model, but only for fixed
� and trivial T� [4, Thm. 2].

4.2 Extending the Output of a TagKEM

First, we show how combining a TagKEM with a fixed output length and a
suitable pseudorandom extendable output function (XOF), yields a TagXEM
that inherits the MI security of the underlying KEM. Recall that a XOF, for
instance SHAKE128 and SHAKE256 as standardized by NIST [35], is a function
F : X ×Z>0 → {0, 1}∗ for some finite domain X that on input a seed s ∈ X and
a desired output length �, outputs a value y ∈ {0, 1}�. Moreover, if � < �′, then
F (s, �) is a prefix of F (s, �′) for all s. This prefix preservation is not a requirement
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TXEM.Keypk(�)

(Kkem, σ) ←$TKEM.Keypk

Kxem ← F (Kkem, �)

σ′ ← 〈σ, �〉
return (Kxem, σ′)

TXEM.Enc(σ′, τ)

〈σ, �〉 ← σ′

if τ �∈ T� :

return ⊥
c ← TKEM.Enc(σ, τ)

return c

TXEM.Dec(c, τ, �)

if τ �∈ T� :

return ⊥TAG

Kkem ← TKEM.Dec(c, τ)

if Kkem =⊥:

return ⊥KEM

Kxem ← F (Kkem, �)

return Kxem

Fig. 7. A TagXEM TXEM from a TagKEM TKEM with keyspace {0, 1}k and a XOF
with seed space X = {0, 1}k. The key generation algorithm TXEM.Kg is unchanged
from TKEM.Kg.

of our constructions; rather we model the property to ensure SHAKE128 and
SHAKE256 are suitable real-world instantiations.

As security notion for a XOF F we use its multi-challenge pseudorandomness,
which is a standard distinguishing advantage AdvpsrndF (A): an adversary needs to
distinguish between either a real oracle that, on input a desired length �, samples
a seed s ←$X uniformly at random and returns F (s, �), or an ideal oracle that,
on input said �, simply returns a uniformly sampled string of length �.

The construction of the TagXEM is given in Fig. 7 and the security claim
follows in Theorem 5 (see the full version for the proof). If the PsRND advantage
of F is sufficiently small, then TXEM inherits the multi-instance security of
TKEM; moreover, as the result holds for arbitrary T and T�, it holds for the
trivial spaces, yielding a slightly simpler XEM from KEM result.

Theorem 5. Let TKEM be a (γ, δ)-correct TagKEM sampling keys from
{0, 1}k and with tagspace T , let F : {0, 1}k × Z>0 → {0, 1}∗ be a XOF, and
let TXEM be a TagXEM as given in Fig. 7 for arbitrary T� ⊆ T . Then TXEM
is (γ, δ)-correct, and there are SFBB reductions B and C such that, for every
adversary A,

Adv
(n,κ)-ind-cca�
TXEM (A) ≤ Adv

(n,κ)-ind-cca�
TKEM (B) + 2 · AdvpsrndF (C) .

If A calls C qc times and D qd times, then B’s overhead consists of at most
qc + qd evaluations of F , while C’s overhead consists of doing κ executions of
TKEM.Kg, at most qc executions of TKEM.Key and TKEM.Enc, and at most qd

executions of TKEM.Dec.

One concern is whether the PsRND advantage of F will be sufficiently small.
Suppose k is the output length of the underlying TagKEM. A generic attacker
would always be able to fix � > k and evaluate F for, say, N seeds offline in the
hope of colliding with any of the challenge evaluations. The PsRND distinguish-
ing advantage of such an adversary is of order (qc + qd)N/2k, indicating that the
underlying TagKEM already needs to provide keys long enough for Theorem 5
to yield meaningful multi-instance security.
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PKE.Encpk(m)

(K, c1) ←$XEM.Encpk(|m|)
c2 ← K ⊕ m

return 〈c1, c2〉

PKE.Decsk(〈c1, c2〉)

K ← XEM.Decsk(c1, |c2|)
if K =⊥ then return ⊥
m ← K ⊕ c2

return m

PKE′.Encpk(m)

(K, σ) ←$TXEM.Keypk(|m|)
c2 ← K ⊕ m

c1 ← TXEM.Enc(σ, c2)

return 〈c1, c2〉

PKE′.Decsk(〈c1, c2〉)

K ← TXEM.Decsk(c1, c2, |c2|)
if K =⊥ then return ⊥
m ← K ⊕ c2

return m

Fig. 8. Two hybrid encryption schemes: PKE (top row) is a conventional hybrid scheme
combining a XEM with the OTP to yield a CPA-secure PKE, while PKE′ (bottom row)
combines a TagXEM with the OTP to yield a CCA-secure PKE. The key generation
and checking algorithms are equivalent to their XEM resp. TXEM counterparts.

4.3 A PKE Inheriting (Tag)XEM Security

As a multi-instance secure XEM provides us with ephemeral keys of any desired
length, we can combine it with an information-theoretic DEM in order to achieve
PKE. Here we opt for the one-time-pad (OTP), as it is the simplest and best-
known primitive providing perfect secrecy. The beauty of the OTP is that
whether you switch out the ephemeral key for a uniform random one, or the
message for a uniform random one, the resulting ciphertext distribution is the
same. It allows the PKE to tightly inherit the MI-security of the XEM, albeit
yielding only real-or-random security under chosen-plaintext attacks. The con-
struction is provided in full in Fig. 8 (top row); the security claim is captured in
Theorem 6 (see the full version for the proof).

Theorem 6 (ROR-CPA PKE). Let XEM be a (γ, δ)-correct XEM, and let
PKE be a hybrid encryption scheme as given in Fig. 8. Then PKE is (γ, δ)-
correct, and there is a type-preserving SFBB reduction B such that for every
adversary A,

Adv
(n,κ)-ror-cpa�
PKE (A) ≤ Adv

(n,κ)-ind-cpa�
XEM (B) .

One might hope that adding information-theoretic MACs to the DEM would
result in the inheritance of CCA security, but that is easier said than shown. For
instance, the usual proof technique of a game hop where all decryption queries
are disallowed does not work: after breaking only a single KEM private key,
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Oracle CROP(i, �, Π)

(K0, σ) ←$TXEM.Keypki
(�)

Ei
�←− σ

K1 ← Π(K0)

return Kbi

Fig. 9. Fig. 6 is upgraded to Exp
(n,κ)-rop-cca�

TXEM by letting CROP replace C.

the reduction will be found out as not being faithful. Sadly, a single-instance
break (of the reduction) suffices to show that reduction cannot demonstrate
multi-instance security.

Luckily, TagKEMs allow for a modified hybrid scheme for which the DEM
no longer needs to satisfy CCA security for the resulting PKE to be guaranteed
CCA-secure: in the single-instance setting, if the TagKEM is CCA-secure, then
so is the PKE [2]. We upgrade the construction to use TagXEMs and the OTP
in Fig. 8 (bottom row) and show its multi-instance inheritance in Theorem 7 (see
the full version for the proof).

Theorem 7 (ROR-CCA PKE). Let TXEM be a (γ, δ)-correct TagXEM, and
let PKE′ be a hybrid encryption scheme as given in Fig. 8. Then PKE′ is (γ, δ)-
correct, and there is a type-preserving SFBB reduction B such that for every
adversary A,

Adv
(n,κ)-ror-cca�

PKE′ (A) ≤ Adv
(n,κ)-ind-cca�
TXEM (B) .

While encouraging, the claim that the constructed PKE inherits the multi-
instance security of the TagXEM is dampened by the exponential separation
between the ROR security notion and IND, as argued in Sect. 3.4. Indeed, extrap-
olating to the latter notion by combining Theorem 7 with Corollary 2, we have
only achieved the following bound.

Corollary 3. Let TXEM be a (γ, δ)-correct TagXEM, and let PKE′ be a hybrid
encryption scheme as given in Fig. 8. Then PKE′ is (γ, δ)-correct, and there is
a type-preserving SFBB reduction B such that for every adversary A,

Adv
(n,κ)-ind-cca�

PKE′ (A) ≤
(

κ

n

)
· 2n · Adv(n,n)-ind-cca

TXEM (B) ,

where B’s overhead is dominated by generating κ − n fresh keypairs, sampling κ
bits, and choosing a subset of [κ] of cardinality n uniformly at random.

4.4 Real-or-Permuted: A Strengthened Notion for KEM Security

If we want to achieve an IND-CCA PKE more tightly, we seem to need a different
notion of security for our TagXEMs. What could such a notion look like?
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Our solution is a novel, stronger KEM notion, which we will refer to as “real-
or-permuted”, or ROP for short. Figure 9 provides the crucial new challenge
oracle. The adversary has to guess whether a tentative K is the one encapsulated
under c, or whether an adaptively chosen permutation has been applied to it.
As permutations preserve the distribution of the sampling space, there are no
choices of Π that make the game generically and trivially winnable.

Technically, we need to specify how the adversary provides Π such that it is
guaranteed, or can be checked, to be a permutation. Hence, formally we define
ROP with respect to a class of permutations P, reminiscent of for instance key-
dependent message [24] or related-key attack [10] definitions. We require that
membership Π ∈ P is easy to check (e.g. ROP can simply index an element in P)
and that, by definition, P can be verified to indeed only contain permutations.
For our main results, it suffices if P is the class of one-time pads, in the sense
that Π specifies the key (or pad) of the one-time pad enciphering. Henceforth,
we will assume that ROP is defined with respect to that class, unless explicitly
stated otherwise.

The new notion ROP and IND relate to each other much the same way as
IND and ROR for PKE. It is not hard to see that ROP tightly implies IND,
whereas the other direction seems to incur the same loss as the ROR-to-IND
implication for PKE (see the full version). For completeness, ROP lends itself
equally well to XEMs and KEMs, or notions without corruptions or a decryption
oracle. Finally, if any of the above primitives are constructed using an IND-secure
PKE (e.g. using a Fujisaki–Okamoto style transform [21,22,28]), then achieving
ROP is as easy as achieving IND: simply let K be the “left” message, and Π(K)
be the “right”!

4.5 PKE′ Tightly Inherits IND-CCA Security

Using ROP in place of IND, we are able to show directly that the PKE con-
structions of Fig. 8 are IND-CPA resp. IND-CCA secure, by (as before) giving a
(Tag)XEM reduction that provides a perfect simulation for the PKE adversary.

The crucial observation is that for any pair of messages m0,m1 ∈ {0, 1}�,
there exist a permutation Πm0→m1 on {0, 1}� such that the message encapsula-
tions are related as K ⊕m1 = Πm0→m1(K)⊕m0. Namely, the permutation that
on input K, outputs m0 ⊕ m1 ⊕ K(see the full version for the proof).

Theorem 8 (IND-CCA PKE). Let TXEM be a (γ, δ)-correct TagXEM, and
let PKE′ be a hybrid encryption scheme as given in Fig. 8. Then PKE′ is (γ, δ)-
correct, and there is a type-preserving SFBB reduction B such that for every
adversary A,

Adv
(n,κ)-ind-cca�

PKE′ (A) ≤ Adv
(n,κ)-rop-cca�
TXEM (B) .

We leave it to the reader to verify that as before, employing a ROP-CPA XEM
in place of the TagXEM yields IND-CPA security for the PKE of Fig. 8 (top
row), by adapting the proof of Theorem 6 to the above. We again stress that
using an information-theoretically CCA-secure DEM together with a CCA XEM
does not seem to yield a proof of CCA inheritance to the PKE (see Sect. 4.3).
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TXEM.Kg

(pk′, sk′) ←$KEM.Kg

pk ← pk′

sk ←
〈
pk′, sk′〉

return (pk, sk)

TXEM.Check(pk, sk)
〈
pk′, sk′〉 ← sk

if pk �= pk′ then return 0

return KEM.Check(pk′, sk′)

TXEM.Enc(σ, τ)

〈c, Kmac〉 ← σ

mac ← MACKmac(τ)

return 〈c,mac〉

TXEM.Keypk(�)

(Kkem, c) ←$KEM.Encpk

�′ ← � + �mackey

Kmac‖Kxem ← F
(
pk, c, Kkem, �′)

σ ← 〈c, Kmac〉
return Kxem

TXEM.Decsk(〈c,mac〉 , τ, �)

〈
pk′, sk′〉 ← sk

Kkem ← KEM.Decsk′(c)

if Kkem =⊥ then return ⊥
�′ ← � + �mackey

Kmac‖Kxem ← F
(
pk′, c, Kkem, �′)

if MACKmac(τ) �= mac then return ⊥
return Kxem

Fig. 10. A TagXEM from a KEM, a MAC, and an XOF F .

4.6 TagXEM from a KEM, a MAC, and a Random Oracle

With Theorem 8, we achieved what we set out to do: demonstrating tight MI
inheritance from a TagXEM to an IND-CCA PKE. However, AGK only showed
how to construct an IND-CCA KEM, providing a reduction to the MI-GapCDH
assumption in the programmable random oracle model. Without the crucial
support of tags, our construction only achieves CPA security. Furthermore, The-
orem 5 does not easily transfer to the ROP setting: it is not clear how to combine
a ROP-CCA KEM with a XOF to yield a ROP-CCA XEM.

We complete the picture by providing a TagXEM construction from a KEM, a
MAC, and a XOF. Our construction (Fig. 10) is inspired by Abe et al.’s TagKEM
construction [2] and we show that with an information-theoretic MAC, if the
KEM is perfectly correct, has unique encapsulations [25] and is multi-instance
one-way secure under plaintext-checking attacks (OW-PCA), then the TagXEM
is ROP-CCA secure in the programmable random oracle model (to model the
XOF). Before stating our concrete security result (Theorem 9), we will define
the relevant concepts and advantages below.

Preliminaries. One-wayness for KEMs tasks an adversary to retrieve the
ephemeral key that has been encapsulated, given the public key and the encap-
sulation. In the multi-instance setting, an adversary has access to many public
keys and various encapsulations per public key and endeavours to find ephemeral
keys for encapsulations for as many different public keys as possible (no reward
for breaking multiple encapsulations under the same public key).
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Exp
(n,κ)-ow-pca�

KEM (A)

(pk1, sk1), . . . , (pkκ, skκ) ←$KEM.Kg

(I, (ji, K̂i)i∈I) ←$AE,P,K(pk1, . . . , pkκ)

if |I| �= n ∨ I ∩ K �= ∅ then return 0

return
∧

i∈I

Pi[ji] = K̂i

P(i, c, K)

K′ ← KEM.Decski(c)

return K = K′

E(i)

(K, c) ←$KEM.Encpki

Pi
�←− K

return c

K(i)

K
∪←− i

return ski

Fig. 11. Multi-instance one-way security in the presence of plaintext checking attacks.

Plaintext-checking attacks (PCA) were introduced by Okamoto and Point-
cheval [36, Definition 8] in a single-user public key encryption setting. Intuitively,
PCA provides the adversary access to an oracle that, on input a pair (m, c)
determines whether c encrypts m or not; more formally [1], the oracle checks
whether c decrypts to m or not. In the context of KEMs, the PCA oracle takes
a pair (Kkem, c) as input and determines whether c decapsulates to Kkem or
not. The multi-user or multi-instance generalization is straightforward and the
definition (in its modern decryption incarnation) inherently deals with imperfect
correctness in the decryption.

Definition 7 considers one-wayness under plaintext checking attacks. For stan-
dard ElGamal KEM, where a (multiplicative) discrete-log group with generator
g and of prime order q is given as part of the parameters, a public key con-
sists of h = gx with x ←$Zq the private key, and an encapsulation outputs
(Kkem, c) = (hr, gr) for random r ←$Zq, the one-wayness problem (in the single-
user case) is equivalent to the computational Diffie–Hellman (CDH) problem.
The plaintext checking oracle allows an adversary to learn, for group elements
(k, c) of its choice, whether k = cx or not. The corresponding hardness assump-
tion for OW-PCA is known as the Strong CDH assumption. An even stronger
assumption is the GapCDH assumption, where an adversary instead can use an
oracle that determines whether a quadruple of group elements is a Diffie–Hellman
tuple or not.

Definition 7 (OW-PCA). Let KEM be a key encapsulation mechanism. Then
the one-way advantage under plaintext-checking attacks of an adversary A is

Adv
(n,κ)-ow-pca�
KEM (A) = Pr

[
Exp

(n,κ)-ow-pca�
KEM (A) = 1

]
,

where the experiment is defined in Fig. 11.

In addition to perfect correctness and OW-PCA security, the security reduc-
tion for our construction (Theorem 9) relies on two further properties of the
underlying KEM. Unique encapsulation captures that for a fixed public key and
ephemeral key, the encapsulation corresponding to that ephemeral key is unique
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(without saying anything about how to compute it). Unique encapsulations have
been used before, for instance by Heuer et al. [25] (see also Remark 4 below).

Definition 8 (Unique Encapsulation). Let KEM be a perfectly correct
KEM. Then it has unique encapsulations iff

Pr

⎡

⎣
(pk, sk) ←$KEM.Kg
(Kkem

0 , c0) ←$KEM.Encpk
(Kkem

1 , c1) ←$KEM.Encpk

: Kkem
0 = Kkem

1 ∧ c0 
= c1

⎤

⎦ = 0 .

The second additional property we require from the KEM is that collisions
amongst encapsulations (under a single randomly drawn public key) are suitably
rare. Definition 9 captures the relevant probability of a k-way encapsulation col-
lision. If a KEM is perfectly correct with unique encapsulations, then colliding
encapsulations are equivalent to colliding ephemeral keys; if, as is usually the
case, these ephemeral keys are furthermore chosen uniformly at random from a
finite set X , we can upper bound εk(q) by qk/|X |k−1 using a standard bound on
k-way collisions (see e.g. [37, Appendix B]).

Definition 9 (Encapsulation Multi-Collisions). Let KEM be a KEM, and
let q, k ∈ Z>1 be parameters. Then the k-out-of-q encapsulation multi-collision
probability is

εk(q) = Pr
[

(pk, sk) ←$KEM.Kg
∀i∈[q](Kkem

i , ci) ←$KEM.Encpk
: ∃J⊆[q],|J|=k∀i,j∈Jci = cj

]
.

For completeness, we also present definitions of a deterministic message authen-
tication code, so we dispense with an explicit verification algorithm in Defi-
nition 10 (for concreteness, we restrict to bitstrings for both keys and tags,
of length �mackey and �mac respectively), and an information-theoretic notion of
forgeries (Definition 11) where we use the same parameter k as above (or rather
k − 1 in Theorem 9), but this time to denote the number of valid message–tag
pairs available to an adversary. The usual choice is k = 1, e.g. when considering
strongly universal2 hash functions, but Wegman and Carter [40] already investi-
gated k > 1. Provided �mackey is large enough (at least k · �mac), one can achieve
ε̂k = 2−�mac , which is optimal.

Definition 10 (Message Authentication Code (MAC)). A message
authentication code MAC is a pair of algorithms MAC.Kg and MAC.Mac, where
MAC.Kg randomly generates a Kmac ∈ {0, 1}�mackey , and the deterministic
MAC.Mac takes a key Kmac and a message m ∈ M to output tag mac ←
MAC.MacKmac(m) ∈ {0, 1}�mac .

Definition 11 (Information-Theoretic MAC Forgeries). Let MAC be
given and let k ∈ Z≥0 be a parameter, then the forging advantage after observing
k valid message–tag pairs is defined as

ε̂k = max
∀i∈{0}∪[k]
(mi,maci)

Pr
[
MAC.MacKmac(m0)=mac0

∣
∣
∣ ∀i∈[k]MAC.MacKmac(mi) = maci

]
.



362 C. Brunetta et al.

Security Claim. With all elements in place, we can state the security of
Fig. 10’s TXEM, in Theorem 9 (see the full version for the proof). The secu-
rity bound depends on a tuning parameter k that feeds into both the collision
probability of the underlying KEM and the forgery advantage of the MAC, with
opposite effects. The ability to tune the bound therefore allows some flexibil-
ity when instantiating the three underlying primitives KEM, MAC, and XOF:
for fixed qc, increasing k will result in a smaller upper bound on εk(qc), but
to ensure that ε̂k−1 does not dominate, it might then be necessary to increase
the key size �mackey (and possibly tag size �mac) of the information-theoretic
MAC (see Corollary 5 for a concrete instantiation) . Otherwise, instantiating
the information-theoretic MAC and the XOF is relatively straightforward (with
the usual ROM caveats for the latter).

Theorem 9. Let TXEM be as in Fig. 10, let KEM be a perfectly correct KEM
with unique encapsulations, and let k ∈ Z>1. Then there is an SFBB reduction
B such that, for all A that makes qc challenge and qd decryption oracle queries,

Adv
(n,κ)-rop-cca�
TXEM (A) ≤ Adv

(n,κ)-ow-pca�
KEM (B) + 2

(
qdε̂k−1 + εk(qc)

)

in the programmable random oracle model, where ε̂k−1 is the forging advantage
after observing k − 1 valid message–tag pairs (Definition 11) and εk(qc) is the
k-out-of-qc encapsulation multi-collision probability of KEM (Definition 9). If A
makes qf queries to the random oracle, then B makes at most qf queries to its
plaintext checking oracle.

The proof borrows some ideas already used to prove AGK’s Theorem 2. In fact,
it is relatively straightforward to recast AGK’s Theorem 2 as the multi-instance
version of a OW-PCA KEM plus a programmable random oracle yielding an
IND-CCA KEM, although the presence of the error terms ε̂k−1 and especially
εk(qc) render recovery of AGK’s Theorem 2 as a special case of our Theorem 9
not immediate.

Combining Theorem 8 and 9 in Corollary 4, we can finally conclude that our
construction yields a PKE inheriting the multi-instance security of the underly-
ing KEM (for parameter regimes where the loss term does not dominate).

Corollary 4. Let PKE′ be as in Fig. 8, let the underlying TagXEM be as in
Fig 10, let KEM be a perfectly correct KEM with unique encapsulations, and let
k ∈ Z>1. Then, there is an SFBB reduction B such that, for all A that makes
qc challenge and qd decryption oracle queries,

Adv
(n,κ)-ind-cca�

PKE′ (A) ≤ Adv
(n,κ)-ow-pca�
KEM (B) + 2

(
qdε̂k−1 + εk(qc)

)

in the programmable random oracle model, where ε̂k−1 is the forging advantage
after observing k − 1 valid message–tag pairs (Definition 11) and εk(qc) is the
k-out-of-qc encapsulation multi-collision probability of KEM (Definition 9). If A
makes qf queries to the random oracle, then B makes at most qf queries to its
plaintext checking oracle.
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Remark 4. The resulting construction is remarkably similar to the PKE studied
by Heuer et al. [25] in the context of selective opening attacks (and to a lesser
extent its predecessor by Steinfeld et al. [39] and successor by Lai et al. [32]).
They too use a random oracle to derive a MAC key and a one-time pad from
an ephemeral KEM key. The only two differences are that Heuer et al. do
not consider arbitrary length messages and that their random oracle outputs
Kxem‖Kmac, i.e. the opposite order from what we do.

For fixed length messages, the order in which those two keys are output does
not matter. However, when moving to arbitrary length-messages, the order of the
XOF output does matter. Outputting Kxem‖Kmac instead would allow a length
extension attack enabling the adversary to recover the MAC key, at which point
producing forgeries would be trivial.

In a way, the construction is quite brittle that these small details matter.
Another example of brittleness is that our reduction for Theorem 9 requires ⊥
produced from a KEM decryption error to be indistinguishable from a failed
MAC verification. In implementations, a timing attack might well break this
requirement.

Remark 5. The proof of Theorem 9 does rely on perfect correctness of the
underlying KEM, thus excluding many popular post-quantum KEMs based on
the hardness of LWE. Having said that, establishing the post-quantum security
of TXEM would require a proof in the quantum random oracle model [15]. We
leave the construction of a post-quantum TagXEM as an enticing open problem.

A Concrete Instantiation. We conclude by providing a concrete bound for the
construction when instantiating with low granularity ElGamal KEM on groups
of size ≥ p. ElGamal KEM satisfies perfect correctness and unique encapsu-
lation (ensuring compatibility with Theorem 9) and produces uniformly ran-
dom group elements as ephemeral keys, so εk(qc) ≤ qk/pk−1. Furthermore, the
relevant multi-instance OW-PCA security can be linked to the low granular-
ity MI-GapCDH problem with corruptions (Theorem 12 of the full version).
By extending AGK’s low granularity bound [4, Thm. 6] to include corruptions
(Thm. 11 of the full version) and combining with Corollary 4, we arrive at a
clean information-theoretic bound (Corollary 5) in the generic group and pro-
grammable random oracle model. To keep the bound easier to interpret, we
assume that the adversary makes at most

√
p queries to the encryption and

decryption oracles; realistically, an adversary will be able to make far more
offline queries q to its generic group and for q ≈ √

p a single discrete loga-
rithm instance can already be broken. In a similar vein, the requirement that
each group instance receive at least max{60 log2 p,

√
qf/2} group operation calls

(allowing some simplifications in the MI-GapCDH bound) is a reasonable one, as
already argued by AGK, given that the number of group operations performed
by an ElGamal adversary is “typically large”.

Corollary 5. Let PKE′ be as in Fig. 8, let the underlying TagXEM be as in
Fig 10, let KEM be instantiated as low granularity ElGamal (see the full version
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for details) and let p be a lower bound on the generated groups. Let k ∈ Z>1,
let MAC be an information-theoretic MAC with key length �mackey and output
length �mac and satisfying ε̂k−1 = 2−�mac . Then, for any information-theoretic A
that makes at most

√
p challenge oracle queries, at most

√
p decryption oracle

queries, qf queries to the random oracle, and a total of q queries to the group-
operation oracles with at least max{60 log2 p,

√
qf/2} queries per group instance,

it holds that

Adv
(n,κ)-ind-cca�

PKE′ (A) ≤
(

4 · e · q2

n2 · p

)n

+ 2
( √

p

2�mac
+

1

p
k
2 −1

)

in the programmable random oracle and generic group model.

For the construction to exhibit meaningful multi-instance security, we want the
upper bound on the adversary’s advantage to diminish with increasing n. Since
the second term on the right hand side of Corollary 5 is independent of n, the
first term has to dominate for advantages of interest. Thus, for a fixed p, we want
to set �mac and k so that, irrespective of n, we do not really care about the other
two terms, where �mac directly corresponds to the PKE’s ciphertext expansion
and increasing k will require longer ephemeral keys as output by the XOF to
ensure that �mackey ≥ k · �mac. To minimize overhead, having both terms equal
is optimal, corresponding to 2�mac = (k − 1) log2 p. Some reasonable options are
then (�mac, k) = (log2 p, 3) or (�mac, k) = (3/2 log2 p, 4).

Alternatively, the bound can be interpreted in terms of the scaling factor,
which focuses on the minimum resources needed to achieve an overwhelming
advantage (see the full version for details). In that case, the second term, being
independent of n, is manifestly of little interest for either of our suggested param-
eter choices.
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Abstract. Updatable Encryption (UE) and Proxy Re-encryption
(PRE) allow re-encrypting a ciphertext from one key to another in the
symmetric-key and public-key settings, respectively, without decryption.
A longstanding open question has been the following: do unidirectional
UE and PRE schemes (where ciphertext re-encryption is permitted in
only one direction) necessarily require stronger/more structured assump-
tions as compared to their bidirectional counterparts? Known construc-
tions of UE and PRE seem to exemplify this “gap” – while bidirectional
schemes can be realized as relatively simple extensions of public-key
encryption from standard assumptions such as DDH or LWE, unidirec-
tional schemes typically rely on stronger assumptions such as FHE or
indistinguishability obfuscation (iO), or highly structured cryptographic
tools such as bilinear maps or lattice trapdoors.

In this paper, we bridge this gap by showing the first feasibility results
for realizing unidirectional UE and PRE from a new generic primitive
that we call Key and Plaintext Homomorphic Encryption (KPHE) – a
public-key encryption scheme that supports additive homomorphisms on
its plaintext and key spaces simultaneously. We show that KPHE can be
instantiated from DDH. This yields the first constructions of unidirec-
tional UE and PRE from DDH.

Our constructions achieve the strongest notions of post-compromise
security in the standard model. Our UE schemes also achieve
“backwards-leak directionality” of key updates (a notion we discuss is
equivalent, from a security perspective, to that of unidirectionality with
no-key updates). Our results establish (somewhat surprisingly) that uni-
directional UE and PRE schemes satisfying such strong security notions
do not, in fact, require stronger/more structured cryptographic assump-
tions as compared to bidirectional schemes.

1 Introduction

Cryptographic encryption is a powerful tool for ensuring data confidentiality. A
common security guarantee offered by any encryption scheme (either symmetric-
key or public-key) is the following: encrypted data can only be decrypted using a
c© International Association for Cryptologic Research 2023
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certain secret key. However, a limitation of traditional encryption schemes is that
once data is encrypted, it is generally hard to allow a third party to transform
the ciphertext so that it can be decrypted with a different key, without sharing
either the original or the new secret key with the third party.

Re-encryption schemes such as Proxy Re-encryption (PRE) [BBS98] and
Updatable Encryption (UE) [BLMR13] circumvent this limitation by enabling
a public transformation of ciphertexts from encryption under one key to that of
another, while protecting the underlying secret keys. Classic applications for such
schemes include key rotation for secure outsourced storage [BBB+12,Pay18],
access control, the delegation of email access, and many more.

Proxy Re-encryption (PRE). PRE is a public-key encryption scheme which
enables a party Alice, with the help of a proxy, to re-encrypt her ciphertexts
for decryption by an alternate party Bob. To facilitate re-encryption, Alice and
Bob, with key pairs (pkA, skA) and (pkB , skB) respectively, will together compute
a re-encryption key rkAB and then provide this to the proxy. Whenever the
proxy needs to perform re-encryption, it can use rkAB to transform a ciphertext
encrypted under pkA into a ciphertext encrypted under pkB . Security of the PRE
scheme guarantees that the proxy learns nothing about the underlying plaintext
during the re-encryption process.

Updatable Encryption (UE). UE was introduced by Boneh et al. [BLMR13]
to address the problem of key rotation for secure outsourced storage. UE
addresses re-encryption by using similar techniques to those of PRE, with two
main differences: (1) UE is a symmetric-key encryption scheme, and (2) UE typi-
cally only allows sequential updates. More specifically, in UE we divide time into
a series of epochs. In the first epoch a fresh symmetric key k0 is chosen and used
to encrypt all data. When we rotate a key from ke−1 to ke, we transition to the
next epoch by calculating an update token Δe. All new ciphertexts are encrypted
under the new key ke and all existing ciphertexts cte−1 are re-encrypted using
the update token Δe so that they can be decrypted by ke. The benefit of this
approach is that the storage server can perform the re-encryption of data using
the update token without the risk of exposing any plaintext data.

There are two variants of UE schemes, ciphertext-dependent schemes
[EPRS17,BEKS20] and ciphertext-independent schemes [LT18,KLR19,BDGJ20,
Jia20]. In ciphertext-dependent UE schemes, the update token Δe,ctxe−1 depends
on the ciphertext ctxe−1 to be updated, while in ciphertext-independent schemes,
the update token Δe is generated independent of the updated ciphertext, hence
a single token can be used to update all ciphertexts on the storage server. In
the rest of the paper, when we refer to UE, we mean a ciphertext-independent
scheme unless otherwise specified.

Directionality of PRE and UE. Re-encryption schemes are either bidirec-
tional or unidirectional. A scheme is said to be bidirectional if a re-encryption
key/update token can be used to re-encrypt a ciphertext to either the next par-
ty/epoch or the previous party/epoch. In contrast, the re-encryption key/update
token of a unidirectional scheme can only be used to re-encrypt a ciphertext to
the next party/epoch and not the previous. So far we have only discussed the
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directionality within the context of ciphertext updates. The (uni)directionality
with regards to keys differs slightly between PRE and UE, as we discuss next.

Bidirectionality vs. Unidirectionality in PRE. In bidirectional PRE
schemes, the re-encryption key rkAB from Alice to Bob is generated from
Alice’s key-pair (pkA, skA) and Bob’s key-pair (pkB , skB). Given rkAB along with
skA (resp. skB), it is usually possible to derive skB (resp. skA). In unidirectional
PRE schemes, the re-encryption key rkAB is derived from ((pkA, skA), pkB);
Bob’s secret key skB is not used. In fact, given the re-encryption key rkAB and
Alice’s secret key skA, it should be impossible to derive any knowledge of Bob’s
secret key skB .

Unidirectionality in UE. For UE schemes, there is an extra level of subtlety
regarding the directionality of keys in addition to ciphertexts. A recent work of
Jiang [Jia20] extensively studied the question: given an update token Δe along
with either ke−1 or ke, is it possible to derive the other key? A scheme has
bidirectional key updates if Δe can be used to derive keys in both directions,
and has unidirectional key updates if Δe can be used in one direction, to derive
ke from ke−1. Jiang [Jia20] showed that UE with bidirectional key and ciphertext
updates implies UE with unidirectional key and ciphertext updates.

In the same work, Jiang postulated that to capture the same security level
as the unidirectional PRE schemes, one requires even stronger UE schemes with
no-directional key updates, where ke cannot be derived from ke−1 and Δe. In
Jiang [Jia20], the definition of no-directional key updates intuitively requires
that it is also impossible to derive ke−1 from Δe and ke. The recent work of
Nishimaki [Nis21] proposed a seemingly weaker notion called backward-leak uni-
directional key updates where Δe can only be used in one direction to derive
ke−1 from ke. However, we observe that this new notion is essentially equiva-
lent to no-directional key updates because derivation of ke−1 does not increase
the adversary’s advantage in breaking the scheme. In particular, if the adver-
sary obtains a ciphertext cte−1 and corrupts Δe and ke, then it can first update
the ciphertext to cte and decrypt it using ke. Jiang emphasized that UE with
no-directional key updates is the ideal security model, which by our argument
above, extends to backwards-leak key updates. Henceforth, when we refer to
unidirectional UE, we mean unidirectional UE with backwards-leak directional
key updates unless otherwise specified.

Gap between Unidirectionality and Bidirectionality. In general, unidirec-
tional UE and PRE schemes are more ideally suited to real-world applications
as compared to their bidirectional counterparts due to their superior security
guarantees. For example, unlike bidirectional UE schemes, unidirectional UE
schemes guarantee security of data as if “freshly encrypted” in epoch e (i.e.,
not re-encrypted from epoch (e − 1)) even if the adversary gains access to the
secret key ke−1 and the update token Δe. Unidirectional PRE schemes also offer
similarly superior security guarantees over their bidirectional counterparts.

Another natural point of comparison between unidirectional and bidirec-
tional UE and PRE schemes is the nature of cryptographic assumptions from
which such schemes can be realized. Known constructions of UE and PRE seem-
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ingly exemplify an apparent “gap” in terms of the assumptions required – uni-
directional schemes have historically relied on stronger/more structured crypto-
graphic assumptions as compared to their bidirectional counterparts.

Blaze et al. [BBS98] showed how to construct bidirectional PRE schemes
from the Decisional Diffie-Hellman (DDH) assumption by suitably extending
the well-known ElGamal encryption scheme [Gam85]. Similarly, a long line of
works [BLMR13,LT18,KLR19,BDGJ20,Jia20] have shown how to realize bidi-
rectional UE schemes as relatively simple extensions of public-key encryption
from standard assumptions such as DDH and Learning With Errors (LWE).

On the other hand, unidirectional UE and PRE schemes typically rely on
a stronger set of assumptions such as FHE [Gen09] and indistinguishability
obfuscation (iO) [BGI+12], or highly structured cryptographic tools such as
bilinear maps [BF03] and “hard” lattice trapdoors [GPV08]. Examples of con-
structions of unidirectional PRE from FHE and/or structured lattice trapdoors
can be found in [NX15,CCL+14,Kir14,NAL15,PWA+16,FL17,PRSV17]. Con-
structions of unidirectional PRE schemes have also been shown to exist from
bilinear maps [AFGH06,LV11]; however, these constructions are restricted to the
single-hop setting in the sense that they only permit a single re-encryption of a
ciphertext. Known constructions of unidirectional UE include the construction
in [SS21] (which relies on bilinear maps), and two constructions in [Nis21] (one
which achieves backward-leak key updates from lattice-specific techniques, and
one which achieves no-directional key updates from iO). Sehrawat and Desmedt
show a construction of UE from bi-homomorphic lattice-based pseudorandom
functions [SD19]; however, their construction only achieves unidirectional cipher-
text updates while still incurring bidirectional key updates (and is hence effec-
tively bidirectional as per the recent findings in [Jia20]). To date, there exist no
constructions of unidirectional PRE or UE from the plain DDH assumption (to
our knowledge).

In this paper, we are motivated by the following longstanding open question
in the study of UE and PRE:

Do unidirectional UE and PRE schemes necessarily require stronger/more
structured assumptions as compared to their bidirectional counterparts?

More concretely, we ask the following question:

Can we construct unidirectional UE/PRE schemes from DDH?

1.1 Our Results

In this paper, we bridge this gap between the assumptions for unidirectional
and bidirectional UE/PRE. We establish (somewhat surprisingly) that unidirec-
tional UE and PRE schemes do not, in fact, require stronger/more structured
cryptographic assumptions as compared to their bidirectional counterparts.

More concretely, we present generic constructions of unidirectional UE and
PRE from a new primitive that we call Key and Plaintext Homomorphic Encryp-
tion (KPHE). We also show that such a KPHE scheme can be instantiated from



372 P. Miao et al.

the BHHO encryption scheme [BHHO08] based on the DDH assumption. This
yields the first constructions of unidirectional UE and PRE from the plain DDH
assumption.

Our main result is summarized by the following (informal) theorem:

Theorem 1 (Informal). Assuming the existence of a Key and Plaintext Homo-
morphic Encryption (KPHE) scheme that satisfies certain special properties,
there exist post-compromise secure unidirectional UE and PRE schemes.

On KPHE. The KPHE scheme with special properties required in our con-
structions can be viewed as a generalization of the BHHO public-key encryption
scheme due to Boneh et al. [BHHO08]. It is a public key encryption scheme
where the secret key is a bit-string sk ∈ {0, 1}� and the plaintext is also a bit-
string m ∈ {0, 1}�′

(in our constructions we use � = �′ = 2n). The specialized
KPHE scheme satisfies the following three properties:

– Distributional Semantic Security: We require a KPHE scheme to achieve
semantic security even when the secret keys are sampled from a specific distri-
bution. In particular, we use KPHE schemes with 2n-bit secret keys where the
secret key is uniformly random subject to the constraint that it has equally
many 0 and 1 bits (i,e., n bits of 0 and n bits of 1).

– Additive Key and Plaintext Homomorphisms: We require a KPHE
scheme to satisfy the following property: let T, T ′ be two arbitrary affine
transformations that map 0–1 vectors to 0–1 vectors of the same length (in our
constructions we use permutation maps over the bits of a 2n-bit string). Then,
given a public key pk corresponding to some secret key sk and a ciphertext
ct

$← Enc(pk,m), one can generate a public key pk′ corresponding to the secret

key T (sk) and a ciphertext ct′ $← Enc(pk′, T ′(m)), without the knowledge of
the original secret key sk or the original message m.

– Blinding: We also require the KPHE scheme to satisfy an associated security
property called “blinding”, that (informally) argues that the public key and
ciphertext generated via the aforementioned homomorphic transformations
are indistinguishable from freshly generated public keys and ciphertexts (we
make this more formal in Sect. 2).

For our PRE constructions, we also require that the KPHE scheme satisfies a
notion of distributional circular security (i.e., circular security when the secret
keys are sampled from a specific distribution). This is not required for our UE
constructions.

Instantiating KPHE. We show how to concretely instantiate a KPHE scheme
satisfying all of the aforementioned properties from DDH (based on the BHHO
scheme [BHHO08]).

Lemma 1 (Informal). Assuming DDH, there exists a secure construction of
KPHE that satisfies the aforementioned properties.
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Table 1. Summary of bi/unidirectional UE and PRE schemes. We focus on ciphertext-
independent UE and multi-hop PRE. In this table, “bi, uni, bwd-uni, no” stand for
bidirectional, unidirectional, backward-leak unidirectional, no-directional, respectively.
We note that the notion of key-directionality differs for UE and PRE; in the case of
UE, unidirectionality of key updates implies that, given the source (secret) key and
the update token, the destination (secret) key can be computed. This is not the case
for PRE, where unidirectional key update simply denotes that the re-key generation
algorithm takes as input the source secret key and the destination public key (as
opposed to bidirectional key update, where the re-key generation algorithm takes as
input both secret keys).

scheme dir. (ctx) dir. (key) security assumption

UE [BLMR13] bi bi IND-ENC DDH/LWE

UE [LT18,KLR19,BDGJ20] bi bi IND-UE DDH

UE [Jia20] bi bi IND-UE DLWE

UE [SD19] uni bi IND-UE LWE

UE [Nis21] uni bwd-uni IND-UE LWE

UE [Nis21] uni no IND-UE iO

UE [SS21] uni no IND-UE SXDH

UE Ours uni bwd-uni IND-UE DDH

PRE [BBS98] bi bi IND-CPA DDH

PRE [CCL+14] uni uni IND-CPA DLWE

PRE [PWA+16] uni uni IND-CCA LWE

PRE [PRSV17] uni uni IND-CPA RLWE

PRE Ours uni uni IND-HRA DDH

Corollary 1 (Informal). Assuming DDH, there exist post-compromise secure
unidirectional UE and PRE schemes.

Security of Our Constructions. Our constructions of unidirectional UE and
PRE achieve the strongest notions of post-compromise security in the standard
model. Our construction of unidirectional UE achieves the state-of-the-art post-
compromise security definition due to Boyd et al. [BDGJ20], while also ensuring
backward-leak unidirectional key updates [Nis21]. Our unidirectional PRE con-
struction achieves the post-compromise security definition recently proposed by
Davidson et al. [DDLM19], which is, to our knowledge, the only notion of post-
compromise PRE security to be proposed to date. We present a more detailed
discussion on post-compromise security (and other related security notions) of
UE and PRE in the next subsection. Table 1 presents a comparison of our results
with those in the existing literature.

1.2 Background and Related Work

There has been extensive research on both UE and PRE, including various set-
tings, definitions, and constructions. Below we only mention works that are the
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most directly relevant. For both UE and PRE, we focus on the CPA-type defi-
nitions, which are by far the most well-studied notions.

Security Notions for UE. Since the introduction of UE in [BLMR13], sev-
eral works have explored its security notions [EPRS17,LT18,AMP19,KLR19,
BDGJ20,Jia20]. Most notable is the work of Lehmann and Tackmann [LT18],
which improved the model and studied the notion of post-compromise security
for UE. Their Indistinguishability of Update notion (IND-UPD) returns a chal-
lenge ciphertext ct∗ which is either the re-encryption of a ciphertext ct0 or ct1.
A scheme is IND-UPD secure if an adversary is unable to determine which of
the ciphertexts was re-encrypted.

In subsequent works a stronger combined notion of IND-UE security has
been used, first defined by Boyd et al. [BDGJ20]. The IND-UE notion requires
an adversary be unable to distinguish between a fresh encryption of a plaintext
m and the re-encryption of a ciphertext ct. As a result this notion captures both
CPA (specifically IND-ENC) and IND-UPD security.

Security Notions for PRE. In the context of PRE, the traditional notion
of IND-CPA security [ID03,AFGH06] have been shown to be insufficient in
practice. To address this, Cohen [Coh19] introduced the notion of Honest Re-
Encryption Attack (HRA) security where an adversary is additionally permitted
to re-encrypt (from honest to corrupt users) ciphertexts previously output by
the encryption oracle. While only recently considered in the analysis of PRE,
the essence of this notion is also fundamental in formalizing security for UE.

More recently, Davidson et al. [DDLM19] have investigated achieving post-
compromise secure PRE schemes. They introduced a notion of IND-PCS security
for PRE, which can be viewed as the analogue of IND-UPD security of UE in the
context of PRE, albeit for more complex re-encryption graphs. To date this is
the only paper that studies the PCS security of PRE schemes. Their work again
demonstrates the challenges in constructing such schemes in the unidirectional
setting. They discuss two PCS-secure constructions which are based on a prior
unidirectional PRE scheme, Construction 7b of Fuchsbauer et al. [FKKP19] and
an extension of BV-PRE [PRSV17].

Updatable Public Key Encryption. In order to achieve forward security
in public key encryption (PKE), a notion called updatable PKE (UPKE) has
recently been proposed and studied [JMM19,ACDT20,DKW21], where any
sender (encryptor) can initiate a key update by sending a special update cipher-
text to the receiver (decryptor). This ciphertext updates the public key and
also, once processed by the receiver, will update its secret key. These are PKE
schemes that encrypt messages under different public keys and aim to achieve
forward security. In contrast, UE and PRE schemes studied in this paper aim
to update ciphertexts encrypted under an old key to a new key without leaking
the message content. The notions of UE/PRE as well as our techniques are very
different from UPKE despite the partial naming collision.

Comparison with Umbral. There exists a practically deployed construction of
unidirectional PRE, namely Umbral [Nun18], from the DDH Assumption, albeit
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in the random oracle model. It turns out that the Umbral construction is only
single-hop, and focuses on achieving threshold PRE rather than multi-hop PRE.
In particular, the Umbral construction crucially relies on the Diffie-Hellman key
change, and it is unclear how to extend the construction to multiple hops. On
the other hand, our primary aim is to achieve multi-hop unidirectional PRE in
the traditional non-threshold setting. We note additionally that Umbral would
not achieve post-compromise security, which is an important property provided
by our constructions. Fundamentally, this is due to the fact that Umbral adopts
a KEM-DEM style approach where only the KEM is re-encrypted.

Concurrent Work. A concurrent work by Galteland and Pan [GP23] constructs
unidirectional UE with backward-leak unidirectional key update from public key
encryption (PKE) schemes with certain properties, which can be realized from
the DDH or LWE assumption. Their techniques are significantly different from
ours and do not trivially extend to the PRE setting. The authors of [GP23]
also demonstrate a formal proof that the security definition for unidirectional
UE with backward-leak unidirectional key updates is equivalent to the one with
no-directional key updates, which confirms our observation discussed earlier.

1.3 Technical Overview

In this section, we provide a high-level overview of our techniques for constructing
unidirectional UE and PRE from any generic KPHE scheme satisfying the special
properties described earlier.

IND-ENC Secure UE. Our first attempt is to build a unidirectional IND-ENC
secure UE scheme, and we start with a näıve idea. Take an arbitrary symmetric-
key encryption scheme and each epoch key is a freshly generated key of this
encryption scheme. The update token Δe from ke−1 to ke is an encryption of
ke−1 under ke, namely Δe = Encke(ke−1). When we update a ciphertext from
epoch (e − 1) to epoch e, we just attach the update token Δe to the end of the
ciphertext. For a message m first encrypted in epoch e and then updated through
epoch e′, the resulting ciphertext is of the form:

cte′ =
(
Encke(m),Encke+1(ke), . . . ,Encke′ (ke′−1)

)
.

Given ke′ , one can easily decrypt cte′ layer by layer to recover m.
This näıve approach does not achieve IND-ENC security. We show a con-

crete attack in the following. Let e∗ be the challenge epoch and m∗ be the chal-
lenge message queried by the adversary. Let cte∗ = Encke∗ (m∗) be the challenge
ciphertext. To extract the secret key ke∗ , the adversary proceeds as follows. It
first queries for an encryption of an arbitrary message m in epoch 0 and then
updates it to epoch e (for some e > e∗) via a sequence of update queries. This
way the adversary obtains a ciphertext of m of the form:

cte = (Enck0(m),Enck1(k0), . . . ,Encke(ke−1)) .
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Now the adversary corrupts the secret key ke. Then it can recover all the previous
keys from k0 to ke−1 (including ke∗) during decryption of the ciphertext cte.

Nonetheless, this simple approach demonstrates some nice properties of uni-
directionality. For key updates, it is impossible to derive ke from ke−1 and Δe.
For ciphertext updates, given a fresh ciphertext cte in epoch e and the previous
update token Δe (from epoch (e − 1) to e), it is impossible to transition the
ciphertext cte to the previous epoch cte−1 (i.e. the epoch prior to its existence).
In fact, Cohen [Coh19] applied this idea to PRE and showed a CPA-secure but
not HRA-secure PRE scheme (HRA security is inherently required in IND-ENC
UE schemes).

Re-randomizing the Secret Keys. The problem with these chained cipher-
texts is that during decryption of a single ciphertext, all the previous secret keys
are also leaked. To resolve this problem, our hope is to somehow re-randomize all
the previous secret keys in the chain, in a consistent and homomorphic manner.
In particular, we want the ciphertext to be of the form

cte =
(
Enck0(m),Enck1(k0), . . . ,Encke−1

(ke−2),Encke(ke−1)
)

,

where k0, k1, . . . , ke−1 are all re-randomized secret keys that are different for each
ciphertext. During the decryption of cte, only these re-randomized secret keys
are leaked, which does not affect the security of other ciphertexts.

To enable such re-randomization, our idea is inspired by the re-randomizable
Yao’s garbled circuits [GHV10]. We propose a new primitive called Key and
Plaintext Homomorphic Encryption (KPHE), which can be seen as a gener-
alization of the circular secure encryption scheme of Boneh et al. [BHHO08].
Instead of using an arbitrary symmetric-key encryption scheme, we use the
KPHE scheme for encryption, where the UE secret key ke is a key pair
(pke, ske) of the KPHE scheme. The update token is a KPHE encryption of
the previous epoch’s secret key under the current epoch’s public key, namely
Δe = KPHE.Encpke(ske−1).

To update a ciphertext we exploit the two homomorphism properties of the
KPHE scheme, in both the message space and the key space. Given an update
token Δe and a ciphertext of the form

cte−1 =
(
KPHE.Encpk0(m),KPHE.Encpk1(sk0), . . . ,KPHE.Encpke−1

(ske−2)
)

,

we focus on the last component ctx = KPHE.Encpke−1
(ske−2) and the update

token Δe = KPHE.Encpke(ske−1), In our update operation we first generate a
random permutation π and then perform two important steps:

– Use the KPHE key-space homomorphism to transform ctx from an encryption
under ske−1 to an encryption under π(ske−1).

– Use the KPHE message-space homomorphism to transform Δe from an
encryption of ske−1 to an encryption of π(ske−1).
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The updated ciphertext becomes

cte =
(
KPHE.Encpk0

(m),KPHE.Encpk1
(sk0), . . . ,KPHE.Encpke−1

(ske−2),KPHE.Encpke (ske−1)
)
,

where ske−1 = π(ske−1) (with corresponding public key pke−1). In our construc-
tion, the KPHE secret key is a 2n-bit string, which is randomly sampled with
exactly n bits of 0 and n bits of 1. The affine transformation π is a random per-
mutation on the 2n bits of the string. By transforming from ske−1 to ske−1 we
ensure that a fresh secret key is used for each update operation and hence there
is appropriate isolation between all ciphertexts updated in a given epoch. The
blinding property of KPHE ensures that re-randomization can be done without
knowledge of the underlying secret keys, and that the re-randomized ciphertexts
are computationally indistinguishable from freshly generated ciphertexts.

Use of Balanced KPHE Keys. The astute reader might have noticed that
we use “balanced” secret keys for our KPHE scheme, wherein each secret key is
a randomly sampled 2n-bit string with exactly n bits of 0 and n bits of 1. The
restriction is required to offset some leakage that our scheme incurs during the
honest re-encryption query phase in the security proofs. Informally, the adversary
can use a sequence of honest re-encryption queries to learn some information
about the intermediate (re-randomized) secret keys; in particular, it learns the
number of 0 and 1 bits in each secret key. Intuitively, we offset this leakage
by specifying at setup that all secret keys have an equal number of 0 and 1
entries. As a result, the adversary learns no additional information about these
intermediate keys, irrespective of the number of honest re-encryption queries
that it issues. We defer a formal treatment to the detailed proofs of security for
our constructions.

Achieving Post-Compromise Secure UE. We can extend the IND-ENC
secure UE construction to achieve post-compromise security. To achieve IND-
UPD security, we can modify the update operation to ensure that all the chained
ciphertexts are updated (rather than just the last one). In effect what our
enhanced construction does is again exploit properties of the KPHE scheme to
re-randomize each of the ciphertext components. This ensures that two updated
ciphertexts of the same length are computationally indistinguishable. To further
achieve the combined IND-UE security, we need to additionally guarantee that
a freshly generated ciphertext has the same length as an updated ciphertext in
a certain epoch. More details on our UE constructions are given in Sect. 3.

Achieving Unidirectional PRE. We can use the same high-level approach to
construct a unidirectional PRE scheme, where a ciphertext consists of a chain of
KPHE ciphertexts, and re-encryption exploits the two KPHE homomorphisms to
transform each new KPHE ciphertext to a fresh secret key. The crucial subtlety
in the PRE case, which makes proving security slightly more involved, is that we
no longer consider sequential ciphertext updates but must consider re-encryption
between all possible key pairs. As a result we need to further exploit the circular
security properties of the KPHE scheme to prove security. This is further detailed
in Sect. 4.
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Connections between UE and PRE. Generally speaking, unidirectional
PRE can be viewed as a stronger primitive than unidirectional UE because UE
only allows for sequential updates while PRE allows for re-encryption between
every pair of keys. In fact, we observe that if we treat the public-secret key pair
of PRE as a secret key for UE, and the PRE re-encryption key as an update
token for UE, then IND-HRA secure PRE implies IND-ENC secure UE, and
IND-PCS secure PRE implies IND-UPD secure UE. This is also why our con-
structions for unidirectional UE and PRE follow a very similar framework. On
the other hand, since PRE supports re-encryption between (potentially) every
pair of keys, our constructions of PRE require stronger security guarantees (in
particular, circular security) from the underlying KPHE scheme.

Efficiency and Feasibility. We acknowledge that the ciphertext length in our
UE/PRE constructions grows linearly with the number of epochs/re-encryption
hops, unlike certain existing constructions (e.g. in [Nis21,PWA+16,PRSV17])
where the ciphertext size remains the same. In this context, we emphasize that
our paper is the first to achieve backward-leak unidirectional UE and unidirec-
tional PRE from standard assumptions, specifically DDH. It has been a long-
standing open problem for over a decade whether obfuscation/FHE is necessary
for unidirectional UE/(multi-hop) PRE, and our work closes this assumption
gap. As a result, we believe that our results should be viewed with emphasis
on the new theoretical insights/understanding into unidirectional-UE/PRE that
they enable as opposed to concrete efficiency. Our work opens up the discussion
of whether obfuscation/FHE is necessary for achieving unidirectional UE/PRE
with “succinctness” in the ciphertext length.

We note that in the UE setting, key rotation may only happen a small number
of times in practice. For example, once a year for the lifetime of the ciphertext
(say 10years). Thus, taking a similar approach to [BEKS20] (from the ciphertext-
dependent setting) we could bound the number of updates and have fixed-length
ciphertexts through some form of padding. We also point out that while the size
of ciphertexts in our general constructions grow linearly, the secret keys and
update tokens/re-encryption keys remain constant-sized. We also note that for
the basic versions of our UE/PRE construction (IND-CPA unidirectional UE and
IND-HRA secure unidirectional PRE), the work done per update/re-encryption
operation is also constant (independent of the number of epochs/update hops).

We note here that a näıve approach to achieving unidirectional UE is the so
called “download–decrypt–re-encrypt–upload” approach, where the client down-
loads the encrypted data (e.g. from the server storing the encrypted data), locally
decrypts it, re-encrypts it using the new key, and re-uploads the newly encrypted
data to the server. Our UE constructions are non-trivial in the sense that we
achieve significantly better properties as compared to this näıve approach. In
particular, for applications of UE (e.g. key rotation) where the client outsources
encrypted data to the server, this entails constant computational/ communi-
cation/storage overheads at the client during key rotation (the client simply
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generates and sends the update token to the server); the corresponding client-
overheads are linear (in database size) in the näıve solution.

Using Random Oracles. A possible approach towards achieving practical effi-
ciency is to use random oracles (such as in the single-hop unidirectional threshold
PRE scheme Umbral [Nun18]). Our focus is primarily on feasibility results for
unidirectional UE/PRE in the standard model, and we consciously avoid the
use of random oracles. We also point out that a previous result [AMP19] showed
that, even in the symmetric-key setting, unidirectional UE/PRE implies public-
key encryption, and so a construction from just a random oracle is unlikely.
However, it might be possible to achieve efficiency gains using a random oracle.
We leave investigating such a random oracle-based construction of unidirectional
UE/PRE as an interesting direction of future research.

1.4 Paper Outline

The rest of the paper is organized as follows. Section 2 formally defines a KPHE
scheme and its associated security properties. Section 3 presents our construc-
tions of IND-CPA and IND-UPD secure UE from any KPHE scheme. Section 4
presents our construction of IND-HRA secure PRE from any KPHE scheme. We
defer detailed proofs of security for these schemes, our constructions of IND-UE
secure UE and IND-PCS secure PRE from any KPHE scheme, and the instan-
tiation of KPHE from DDH to the full version of our paper [MPW22].

For readers not familiar with the formal definitions of UE and PRE,
we present relatively self-contained background material on UE and PRE in
Sects. 3.1 and 4.1, respectively. Due to lack of space, the formal security notions
of PRE are deferred to the full version of our paper [MPW22].

1.5 Notations

We summarize here the notations used in the rest of the paper. We write x
$← χ

to represent that an element x is sampled randomly from a set/distribution X .
The output x of a deterministic (resp. randomized) algorithm A is denoted by

x = A (resp. x
$← A). For a ∈ N such that a ≥ 1, we denote by [a] the set

of integers lying between 1 and a (both inclusive). We refer to λ ∈ N as the
security parameter, and denote by poly(λ) and negl(λ) any generic (unspecified)
polynomial function and negligible function in λ, respectively.

2 Key and Plaintext Homomorphic Encryption

In this section, we present the definitions for the core building block for our con-
structions, namely key and plaintext homomorphic encryption (KPHE). Infor-
mally, a KPHE scheme has the following features:
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– Keys and Plaintexts: Each secret key sk is an �-bit string for some
� = poly(λ) (λ being the security parameter). Additionally, each plaintext
message m is an �′-bit string for some �′ = poly(λ).

– Key Distribution: Each secret key is sampled according to some distri-
bution D over {0, 1}�. In particular, for our applications, we assume KPHE
schemes where each secret key sk is a 2n-bit string with equally many 0 and
1 entries.

– Key Homomorphism: Let T be any linear transformation that maps �-bit
strings to �-bit strings. Then, it is possible to efficiently evaluate the following:

• Given a public key pk corresponding to some secret key sk ∈ {0, 1}�, it
is possible to efficiently compute a valid public key pk′ corresponding to
the transformed secret key sk′ = T (sk), without the knowledge of sk.

• Given a ciphertext ct encrypting a message m under some secret key sk ∈
{0, 1}�, it is possible to efficiently compute a ciphertext ct′ encrypting the
same message m under the transformed secret key sk′ = T (sk), without
the knowledge of sk.

– Plaintext Homomorphism: Let T ′ be any linear transformation that maps
�′-bit strings to �′-bit strings. Then, given a ciphertext ct encrypting a message
m ∈ {0, 1}�′

under some secret key sk, it is possible to efficiently compute a
ciphertext ct′′ encrypting the transformed message m′ = T ′(m) under the
same secret key sk.

We now summarize these features of KPHE formally below.

Definition 1 (KPHE). A KPHE scheme is a tuple of PPT algorithms of the
form KPHE = (Setup,SKGen,PKGen,Enc,Dec,Eval) that are defined as follows:

– pp
$← Setup(1λ): On input the security parameter λ, the setup algorithm out-

puts a public parameter pp.
– sk

$← SKGen(pp,D): On input the public parameter pp and a distribution D
over {0, 1}� (for � = poly(λ)), the secret key generation algorithm outputs a

secret key sk
$← D.

– pk
$← PKGen(pp, sk): On input the public parameter pp and a secret key sk ∈

{0, 1}�, the public key generation algorithm outputs a public key pk.

– ct
$← Enc(pk,m): On input a public key pk and a message m ∈ {0, 1}�′

(for
�′ = poly(λ)), the encryption algorithm outputs a ciphertext ct.

– m/⊥ $← Dec(sk, ct): On input a secret key sk ∈ {0, 1}� and a ciphertext ct, the
decryption algorithm outputs a plaintext message string m or an error symbol
⊥.

– (pk′, ct′) $← Eval(pk, ct, T, T ′): On input a public key pk, a ciphertext ct, and
a pair of (linear) transformations T : {0, 1}� → {0, 1}� and T ′ : {0, 1}�′ →
{0, 1}�′

, the homomorphic evaluation algorithm outputs a tuple consisting of
a transformed public key and a transformed ciphertext (pk′, ct′).
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Correctness. A KPHE scheme (Setup,SKGen,PKGen,Enc,Dec,Eval) is said to

be correct with respect to a distribution D over {0, 1}� if for any pp
$← Setup(1λ),

any sk
$← SKGen(pp,D), any pk

$← PKGen(pp, sk), any m ∈ {0, 1}�′
, and any pair

of (linear) transformations T : {0, 1}� → {0, 1}� and T ′ : {0, 1}�′ → {0, 1}�′
,

letting sk′ = T (sk), m′ = T ′(m) and

ct
$← Enc(pk,m), (pk′, ct′) $← Eval(pk, ct, T, T ′),

both of the following hold with overwhelmingly large probability:

– pk′ is a valid public key with respect to sk′ = T (sk), i.e., for any m̄ ∈ {0, 1}�′
,

it holds that Dec(sk′,Enc(pk′, m̄)) = m̄.
– ct′ is a valid encryption of m′ under (pk′, sk′), i.e., Dec(sk′, ct′) = m′.

Distributional Semantic Security. We (informally) say that a KPHE satisfies
distributional semantic security with respect to some distribution D over {0, 1}�

if it remains semantically secure even when the secret key sk is sampled according
to the distribution D. Formally, this is modeled using a semantic security game
where the secret key is sampled by the challenger as per the distribution D.

Definition 2 (D-Semantic Security). A KPHE scheme with �-bit secret keys
is said to be D-semantically secure with respect to a distribution D over {0, 1}�

if for any security parameter λ ∈ N and any PPT adversary A, the following
holds with overwhelmingly large probability:

| Pr[ExptDSS−KPHE
D (λ,A) = 1] − 1/2 |< negl(λ),

where the experiment ExptDSS−KPHE
D (λ,A) is as defined in Fig. 1.

Distributional Circular Security. We (informally) say that a KPHE satisfies
distributional circular security with respect to some distribution D over {0, 1}�

if it satisfies the standard notion of circular security [CL01,BRS02,BHHO08,
ACPS09] even when each secret key is sampled from the distribution D. Formally,
this is modeled using a circular security game where the secret keys are sampled
by the challenger as per the distribution D.

Definition 3 (D-Circular Security). A KPHE scheme with �-bit secret keys
and �-bit messages is said to be D-circular secure with respect to a distribution
D over {0, 1}� if for any security parameter λ ∈ N and any PPT adversary A,
the following holds with overwhelmingly large probability:

| Pr[ExptDCC−KPHE
D (λ,A) = 1] − 1/2 |< negl(λ),

where the experiment ExptDCC−KPHE
D (λ,A) is as defined in Fig. 2.
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Experiment ExptDSS−KPHE
D (λ, A):

1. The challenger generates pp
$← Setup(1λ), sk

$← SKGen(pp, D), and pk
$←

PKGen(pp, sk), and provides the adversary A with (pp, pk).
2. The adversary A issues a challenge encryption query for a pair of messages

(m0,m1).

3. The challenger samples b
$← {0, 1}, creates the challenge ciphertext

ct∗ $← Enc (pk,mb) ,

and sends ct∗ to the adversary A.
4. The adversary A outputs a bit b′ ∈ {0, 1}.
5. Output 1 if b = b′ and 0 otherwise.

Fig. 1. The D-Semantic Security Experiment for KPHE

Experiment ExptDCC−KPHE
D (λ, A):

1. The challenger generates pp
$← Setup(1λ) and provides it to the adversary.

2. The adversary A outputs n = poly(λ).

3. The challenger samples sk1, . . . , skn
$← SKGen(pp, D), sets

pk1
$← PKGen(pp, sk1), . . . , pkn

$← PKGen(pp, skn),

and provides (pk1, . . . , pkn) to the adversary A.
4. The challenger also sets the following for each i, j ∈ [n]:

cti,j,0
$← Enc(pki, skj), cti,j,1

$← Enc(pki, 0
|skj |).

5. The challenger finally samples a bit b
$← {0, 1} and provides the adversary A with

the ensemble {cti,j,b}i,j∈[n].
6. The adversary A outputs a bit b′ ∈ {0, 1}.
7. Output 1 if b = b′ and 0 otherwise.

Fig. 2. The D-Circular Security Experiment for KPHE

Blinding. We (informally) say that a KPHE scheme satisfies public key and
ciphertext blinding if the homomorphic evaluation algorithm outputs a public
key-ciphertext pair (pk′, ct′) corresponding to the transformed secret key sk′ and
the transformed message m′ such that:

– The transformed public key pk′ is computationally indistinguishable from a
public key sampled uniformly at random from the set of all valid public keys
corresponding to the secret key sk′.

– The transformed ciphertext ct′ is computationally indistinguishable from a
ciphertext sampled uniformly at random from the set of all valid ciphertexts
corresponding to the transformed message m′ under pk′.
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Experiment ExptBlind−KPHE
D (λ, A):

1. The challenger generates pp
$← Setup(1λ), sk

$← D, and pk
$← PKGen(pp, sk), and

provides the adversary A with (pp, sk, pk).

2. The adversary A sends a message m ∈ {0, 1}�′
to the challenger.

3. The challenger responds to A with a ciphertext ct
$← Enc(pk,m).

4. The adversary A then sends a pair of (linear) transformations

T : {0, 1}� → {0, 1}�, T ′ : {0, 1}�′
→ {0, 1}�′

.

5. The challenger sets
sk′ = T (sk), m′ = T ′(m),

and computes the following:

(pk0, ct0)
$← Eval(pk, ct, T, T ′), pk1

$← PKGen(pp, sk′), ct1
$← Enc(pk1,m

′),

6. The challenger finally samples a bit b
$← {0, 1} and provides the adversary A with

(pkb, ctb).
7. The adversary A outputs a bit b′ ∈ {0, 1}.
8. Output 1 if b = b′ and 0 otherwise.

Fig. 3. The Blinding Experiment for KPHE

More formally, we define this blinding property as follows.

Definition 4 (Blinding). A KPHE scheme with �-bit secret keys and �′-bit
messages is said to satisfy blinding security with respect to a distribution D over
{0, 1}� if for any security parameter λ ∈ N and any PPT adversary A, the
following holds with overwhelmingly large probability:

| Pr[ExptBlind−KPHE
D (λ,A) = 1] − 1/2 |< negl(λ),

where the experiment ExptBlind−KPHE
D (λ,A) is as defined in Fig. 3.

KPHE from DDH. In full version of our paper [MPW22], we prove the fol-
lowing (informal) theorem:

Theorem 2 (Informal). Assuming DDH, there exists a KPHE scheme with
2n-bit secret keys that satisfies distributional semantic security with respect to
the distribution Un, distributional circular security with respect to the distribution
Un, and blinding, as defined above.

In particular, we rely on known results from [BHHO08,NS12,GHV10] for the
DDH-based instantiation of KPHE. See [MPW22] for details.

KPHE from LWE. In this paper, we do not explicitly describe a construction
of KPHE from LWE since there already exist constructions of unidirectional
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UE/PRE from LWE [CCL+14,PWA+16,PRSV17,Nis21]. Our aim in this work
is to close the gap between bidirectional and unidirectional constructions of
UE/PRE in terms of assumptions, and so we choose to focus on the feasibility
results from the DDH assumption.

We note, however, that constructing KPHE from LWE is a very interest-
ing direction of future work. In particular, one needs to be careful during re-
encryption, which potentially increases the level of noise in the ciphertext of the
LWE-based encryption scheme and could leak extra information. For example,
due to increase in the noise level during re-encryption, it is not straightforward
to prove the ciphertext blinding property, which requires that a freshly created
ciphertext and a re-encrypted ciphertext are distributed in an indistinguishable
manner. This issue can be handled using noise flooding techniques, albeit at the
cost of a larger ciphertext size.

KPHE from Other Assumptions. We also leave it as an interesting open
question to construct KPHE from concrete hardness assumptions other than
DDH or LWE (e.g., factorization-based assumptions or LPN). Given our results
on achieving unidirectional UE/PRE from KPHE, such realizations of KPHE
would immediately yield new constructions of unidirectional UE/PRE from these
assumptions.

3 Unidirectional UE from KPHE

In this section, we show how to construct unidirectional UE satisfying various
security notions (IND-ENC, IND-UPD and IND-UE) from any KPHE scheme.

3.1 Definition

Definition 5. An updatable encryption (UE) scheme for message space M is a
tuple of PPT algorithms UE = (UE.setup,UE.next,UE.enc,UE.upd,UE.dec) with
the following syntax:

– k0
$← UE.setup(1λ): On input a security parameter 1λ, it returns a secret key

ke for epoch e = 0.
– (ke+1,Δe+1)

$← UE.next(ke): On input a secret key ke for epoch e, it outputs
a new secret key ke+1 and an update token Δe+1 for epoch e + 1.

– cte
$← UE.enc(ke,m): On input a secret key ke for epoch e and a message

m ∈ M, it outputs a ciphertext cte.
– cte+1

$← UE.upd(Δe+1, cte): On input a ciphertext cte from epoch e and the
update token Δe+1, it returns the updated ciphertext cte+1.

– m′/⊥ ← UE.dec(ke, cte): On input a ciphertext cte and a secret key ke of some
epoch e, it returns a message m′ or ⊥.
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Setup(1λ):

k0
$← UE.setup(1λ)

e := 0; phase := 0

L, ˜L, K, T , C $← ∅

O.enc(m):

ct
$← UE.enc(ke,m)

L := L ∪ {(e, ct)}
return ct

O.next:

e := e + 1

(ke, Δe)
$← UE.next(ke−1)

if phase = 1 then

˜cte
$← UE.upd(Δe, ˜cte−1)

˜L := ˜L ∪ {(e, ˜cte)}

O.upd(cte−1):

if (e − 1, cte−1) /∈ L then
return ⊥

cte
$← UE.upd(Δe, cte−1)

L := L ∪ {(e, cte)}
return cte

O.corr(inp, ê) :

if ê > e then
return ⊥

if inp = key then
K := K ∪ {ê}
return kê

if inp = token then
T := T ∪ {ê}
return Δê

O.chall-IND-ENC(m0,m1):

if |m0| �= |m1| then
return ⊥

phase := 1; ẽ := e

˜ct̃e
$← UE.enc(kẽ,mb)

C := C ∪ {ẽ}
˜L := ˜L ∪ {(ẽ, ˜ct̃e)}
return ˜ct̃e

O.chall-IND-UPD(ct0, ct1) :

if (e − 1, ct0) /∈ L or (e − 1, ct1) /∈ L or |ct0| �=
|ct1| then

return ⊥
phase := 1; ẽ := e

˜ct̃e
$← UE.upd(Δẽ, ctb)

C := C ∪ {ẽ}
˜L := ˜L ∪ {(ẽ, ˜ct̃e)}
return ˜ct̃e

O.chall-IND-UE(m, ct) :

if (e − 1, ct) /∈ L then
return ⊥

phase := 1; ẽ := e
if b = 0 then

˜ct̃e
$← UE.enc(kẽ,m)

else
˜ct̃e

$← UE.upd(Δẽ, ct)

C := C ∪ {ẽ}
˜L := ˜L ∪ {(ẽ, ˜ct̃e)}
return ˜ct̃e

O.upd˜C :

if phase = 0 then
return ⊥

C := C ∪ {e}
return ˜cte

Fig. 4. Oracles in security games for updatable encryption.

We stress that UE.next generates a new key along with an update token, which
follows from the definition in the work of Lehmann and Tackmann [LT18]. In
our constructions, the update token Δe+1 can also be generated from ke and ke+1.

Definition 6 (Correctness). Let UE = (UE.setup,UE.next,UE.enc,UE.upd,
UE.dec) be an updatable encryption scheme. We say UE is correct if for any

m ∈ M, any k0
$← UE.setup(1λ), any sequence of (k1,Δ1), . . . , (ke,Δe) gener-
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ated as (ki,Δi)
$← UE.next(ki−1) for all i ∈ [e], and for any 0 ≤ ê ≤ e, let

ct̂e
$← UE.enc(kê,m) and ctj

$← UE.upd(Δj , ctj−1) for all j = ê + 1, . . . , e, then
UE.dec(ke, cte) = m.

Confidentiality. The adversary A has access to the oracles defined in Fig. 4. We
follow the bookkeeping techniques of [LT18,KLR19,BDGJ20,Jia20], using the
following sets to keep track of the generated and updated ciphertexts, and the
epochs in which the adversary corrupted a key or a token, or learned a version
of the challenge-ciphertext.

– L: Set of non-challenge ciphertexts (e, cte) produced by calls to the O.enc or
O.upd oracle. O.upd only updates ciphertexts obtained in L.

– L̃: Set of updated versions of the challenge ciphertexts (e, c̃te). L̃ is initiated
with the challenge ciphertext (ẽ, c̃t̃e). Any call to the O.next oracle automati-
cally updates the challenge ciphertext to the new epoch, which the adversary
can fetch via a call to O.updC̃.

– K: Set of epochs e in which the adversary corrupted the secret key ke (from
O.corr).

– T : Set of epochs e in which the adversary corrupted the update token Δe

(from O.corr).
– C: Set of epochs e in which the adversary learned a version of the challenge

ciphertext (from O.chall or O.updC̃).

We further define the epoch identification sets C∗,K∗, T ∗ as the extended sets
of C,K, T in which the adversary learned or inferred information. We focus on
no-directional key updates and uni-directional ciphertext updates.

K∗ := K
T ∗ := {e ∈ {0, . . . , eend}|(e ∈ T ) ∨ (e − 1 ∈ K∗ ∧ e ∈ K∗)}
C∗ := {e ∈ {0, . . . , eend}|ChallEq(e) = true}

where true ← ChallEq(e) ⇐⇒ (e ∈ C) ∨ (ChallEq(e − 1) ∧ e ∈ T ∗)

Remark 1. The constructions we present later will in fact permit backward-leak
key updates. At first glance the backward-leak key updates notion proposed by
Nishimaki [Nis21] is seemingly weaker than no-directionality key updates. How-
ever, as mentioned in the introduction, this notion is essentially equivalent to
no-directional key updates because backward-leak derivation of ke−1 does not
increase the adversary’s advantage in breaking the scheme. In particular, if the
adversary obtains a challenge ciphertext c̃te−1 and corrupts Δe and ke, then it
does not matter if the adversary can derive ke−1 or not, as it can always update
the ciphertext to c̃te and decrypt it using ke.

Definition 7 (IND-ENC, IND-UPD, IND-UE security). Let UE = (UE.setup,
UE.next,UE.enc,UE.upd,UE.dec) be an updatable encryption scheme. We say UE
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is notion-secure for notion ∈ {IND-ENC, IND-UPD, IND-UE} if for all PPT adver-
sary A it holds that

∣
∣
∣
∣Pr

[
ExpnotionA,UE (1λ) = 1

]
− 1

2

∣
∣
∣
∣ ≤ negl(λ)

for some negligible function negl(·).

Experiment ExpnotionA,UE (1λ) :

Run Setup(1λ)

(state,Chall0,Chall1)
$← AO.enc,O.next,O.upd,O.corr(1λ)

b $← {0, 1}
c̃t

$← O.chall-notion(Chall0,Chall1)
Proceed only if c̃t �= ⊥
b′ $← AO.enc,O.next,O.upd,O.corr,O.upd˜C(state, c̃t)
return 1 if b = b′ and C∗ ∩ K∗ = ∅

3.2 IND-ENC Secure Unidirectional UE

We begin by showing that any KPHE scheme with 2n-bit secret keys that satisfies
distributional semantic security with respect to the distribution Un, as well as
public key and ciphertext blinding as described in Sect. 2 implies an IND-ENC
secure unidirectional UE scheme.

Construction. Given a KHPE scheme of the form

KPHE = (KPHE.Setup,KPHE.SKGen,KPHE.PKGen,KPHE.Enc,KPHE.Dec,KPHE.Eval),

with 2n-bit secret keys, we construct a unidirectional UE scheme

UE = (UE.setup,UE.next,UE.enc,UE.upd,UE.dec),

with message space M = {0, 1}2n as follows:

– UE.setup(1λ): Generate pp
$← KPHE.Setup(1λ), sk0

$← KPHE.SKGen(pp,Un),
and output

k0 = (pp, sk0).

– UE.next(ke): Parse ke = (pp, ske). Generate ske+1
$← KPHE.SKGen(pp,Un)

and pke+1
$← KPHE.PKGen(pp, ske+1). Output

ke+1 = (pp, ske+1), Δe+1 = (pke+1,KPHE.Enc(pke+1, ske)).

– UE.enc(ke,m): Parse ke = (pp, ske). Generate pke
$← KPHE.PKGen(pp, ske)

and compute ctxe
$← KPHE.Enc(pke,m). Output

cte = (0(pke, ctxe)).



388 P. Miao et al.

– UE.upd(Δe+1, cte): Parse the update token and the ciphertext as

Δe+1 = (pkΔ, ctxΔ), cte = (t, (pke−t, ctxe−t), . . . , (pke−1, ctxe−1), (pke, ctxe))

Sample a uniform random permutation π : [2n] → [2n]. Also, let πid : [2n] →
[2n] denote the identity permutation. Compute

(pke, ctxe)
$← KPHE.Eval(pke, ctxe, π, πid), (pke+1, ctxe+1)

$← KPHE.Eval(pkΔ, ctxΔ, πid, π).

and output the updated ciphertext as:

cte+1 = (t + 1, (pke−t, ctxe−t), . . . , (pke, ctxe), (pke+1, ctxe+1)).

– UE.dec(ke, cte): Parse ke = (pp, ske) and the ciphertext as

cte = (t, (pke−t, ctxe−t), . . . , (pke−1, ctxe−1), (pke, ctxe)).

If t = 0, then output m ← KPHE.Dec(ske, ctxe).
Otherwise, compute ske−1 ← KPHE.Dec(ske, ctxe). Then for each j from (e−1)
downto (e − t + 1), compute

skj−1 ← KPHE.Dec(skj , ctxj).

Finally, output the message m ← KPHE.Dec(ske−t, ctxe−t).

Correctness. We first prove the correctness of the UE scheme. For any
m ∈ M, any k0 ← UE.setup(1λ), any sequence of (k1,Δ1), . . . , (ke,Δe) gen-
erated as (ki,Δi) ← UE.next(ki−1) for all i ∈ [e], let ct0 ← UE.enc(k0,m) and
cti ← UE.upd(Δi, cti−1) for all j ∈ [e], then the final ciphertext is of the form
cte = (e, (pk0, ctx0), . . . , (pke−1, ctxe−1), (pke, ctxe)). All the secret keys are of the
form k0 = (pp, sk0), . . . , ke = (pp, ske). Let πj be the random permutation sam-
pled in UE.upd(Δj+1, ctj) and let skj = πj(skj) for all j = 0, 1, . . . , e − 1. We
can prove by induction that KPHE.Dec(sk0, ctx0) = m,KPHE.Dec(sk1, ctx1) =
sk0, . . . ,KPHE.Dec(ske−1, ctxe−1) = ske−2,KPHE.Dec(ske, ctxe) = ske−1. There-
fore, UE.dec(ke, cte) outputs m. This argument is for any ciphertext starting
from epoch 0. The same argument holds for any ciphertext starting from any
epoch ê where 0 ≤ ê ≤ e.

Confidentiality. Next we prove the IND-ENC security of our UE scheme. More
formally, we state and prove the following theorem:

Theorem 3 (IND-ENC Security). Assuming that KPHE satisfies distribu-
tional security with respect to the distribution Un, as well as public key and
ciphertext blinding as described in Sect. 2, the above UE construction is an IND-
ENC secure unidirectional UE scheme.

Proof. The proof proceeds via a hybrid argument.

Hyb0 The challenger plays the real game with the adversary.
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Hyb1 Same as Hyb0 but for UE.upd(Δe, cte−1) in O.upd and UE.upd(Δe, c̃te−1)
in O.next, do the following:
– Let ke−1 = (pp, ske−1) and ke = (pp, ske).
– Parse the ciphertext cte−1 or c̃te−1 as

(t, (pke−1−t, ctxe−1−t), . . . , (pke−2, ctxe−2), (pke−1, ctxe−1)),

where ctxe−1 = KPHE.Enc(pke−1, x). Note that if t = 0, then x = m for
some message, otherwise x = ske−2 that is the KPHE secret key corre-
sponding to pke−2.

– Sample a uniform random permutation π : [2n] → [2n], let ske−1 =

π(ske−1), and sample pke−1
$← KPHE.PKGen(pp, ske−1). Compute

ctxe−1
$← KPHE.Enc(pke−1, x).

– Sample pke
$← KPHE.PKGen(pp, ske) and compute

ctxe
$← KPHE.Enc(pke, ske−1).

– Let cte or c̃te be

(t + 1, (pke−1−t, ctxe−1−t), . . . , (pke−1, ctxe−1), (pke, ctxe)).

We prove in Lemma 2 that this hybrid is computationally indistinguishable
from Hyb0 to any PPT adversary by the blinding property of KPHE.

Hyb2 Same as Hyb1 but for UE.upd(Δe, cte−1) in O.upd and UE.upd(Δe, c̃te−1)
in O.next, instead of letting ske−1 = π(ske−1), sample ske−1 from the distri-
bution Un. This hybrid is statistically identical to Hyb1.

Hyb3 Let ẽ be the challenge epoch, and let e be the last epoch where the adversary
corrupts continuous update tokens from ẽ, namely the adversary corrupts
Δẽ+1,Δẽ+2, . . . ,Δe but not Δe+1. This hybrid is the same as Hyb2 except
that the challenger guesses ẽ� and e� at the beginning of the game and
aborts the game if guessing incorrectly. Let E be the upper bound on the
number of epochs during the game. If the challenger does not abort, then this
hybrid is identical to Hyb2, which happens with probability at least 1

E2 . In
the remaining hybrids, we assume for simplicity that the challenger guesses
ẽ and e correctly.

Hyb4 Same as Hyb3 except that for each ke = (pp, ske), generate a single public

key p̂ke
$← KPHE.PKGen(pp, ske). Then whenever KPHE.Enc(pke, x) is com-

puted for a freshly generated pke and some x, compute it as KPHE.Eval(p̂ke,
KPHE.Enc(p̂ke, x), πid, πid). That is, instead of generating a fresh pke from
ske every time, use the same p̂ke to encrypt x and use then KPHE.Eval to
re-randomize it.
This hybrid is computationally indistinguishable from Hyb3 by the blinding
property of KPHE. We omit the detailed reduction here, but it is similar to
the reduction in the proof of Lemma 2.

Hyb5 Same as Hyb4 except that for all ẽ + 1 ≤ e ≤ e, UE.next(ke−1) is

computed as follows. Generate ske
$← KPHE.SKGen(pp,Un) and let p̂ke

$←
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KPHE.PKGen(pp, ske) be the single public key for ke (that will be used for
every KPHE.Enc). Output

ke = (pp, ske), Δe = (p̂ke,KPHE.Enc(p̂ke, 0
2n)).

We prove in Lemma 3 that this hybrid is computationally indistinguishable
from Hyb4 to any PPT adversary based on the distributional semantic secu-
rity of KPHE.

Hyb6 Same as Hyb5 except that for each ke = (pp, ske), generate a single public

key p̂ke
$← KPHE.PKGen(pp, ske) and use KPHE.Eval(p̂ke,KPHE.Enc(p̂ke, ·),

πid, πid) for all the computation of KPHE.Enc(ke, ·) (including the compu-
tation of Δe). The only exception is the challenge ciphertext c̃t̃e, which is
computed using p̂kẽ without re-randomization, namely

c̃t̃e = (0, (p̂kẽ,KPHE.Enc(p̂kẽ,mb))).

This hybrid is computationally indistinguishable from Hyb5 by the blinding
property of KPHE. We omit the detailed reduction here, but it is similar to
the reduction in the proof of Lemma 2.

Finally, we argue that in the final hybrid Hyb6, any PPT adversary cannot
distinguish an encryption of m0 or m1 in the challenge epoch ẽ, which relies on
the distributional semantic security of KPHE, which will conclude our proof.

Assume for the purpose of contradiction that there exists a PPT adversary A
that can distinguish an encryption of m0 or m1 in the challenge epoch. Then we
construct a PPT adversary B that breaks the distributional semantic security of
KPHE. The adversary B first receives (pp, pk) from the challenger in the semantic
security security game. Then B plays the UE game with A as a challenger in
Hyb6. B uses pp to generate UE keys and update tokens as in Hyb6 except that
for epoch ẽ, the UE key kẽ is unknown. When B receives the challenge messages
(m0,m1) from A in the UE game, it forwards the two messages to the KPHE
challenger and gets back ctx, and then responds to A with ct = (0, (pp, ctx)).
Note that B doesn’t need to know kẽ because it is never used. In particular,
B can use pk to compute all the UE.enc(kẽ, ·). Finally, B outputs whatever A
outputs.

If A can distinguish between encryptions of m0 and m1 with non-negligible
probability, then B can break the distributional semantic security of KPHE with
non-negligible probability, which leads to contradiction.

Lemma 2. Hyb0
c≈ Hyb1 in the proof of Theorem 3.

Lemma 3. Hyb4
c≈ Hyb5 in the proof of Theorem 3.

We defer the formal proofs of Lemmas 2 and 3 to the full version of our
paper [MPW22]. These proofs complete the overall proof of Theorem 3. ��
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Remark 2. In our construction one can derive ke−1 from Δe and ke. It is for this
reason that our construction permits backward-leak unidirectional key updates
proposed by Nishimaki [Nis21] where secret keys can be derived in the backward
direction but not forward direction. However, as discussed earlier, this notion is
essentially equivalent to no-directional key updates (the optimal case) and has
no bearing on our security analysis.

3.3 Post-Compromise Secure Unidirectional UE

In this section, we show that any KPHE scheme with 2n-bit secret keys that sat-
isfies distributional security with respect to the distribution Un, as well as public
key and ciphertext blinding as described in Sect. 2 implies a post-compromise
secure unidirectional UE scheme.

3.3.1 IND-UPD Secure Unidirectional UE

We first show how to construct an UE scheme that satisfies the IND-UPD secu-
rity definition as proposed in [LT18]. Given a KHPE scheme of the form

KPHE = (KPHE.Setup,KPHE.KeyGen,KPHE.Enc,KPHE.Dec,KPHE.TransPK,KPHE.Eval),

with 2n-bit secret keys, we construct a unidirectional UE scheme

UE = (UE.setup,UE.next,UE.enc,UE.upd,UE.dec),

that only differs from the IND-ENC construction in UE.upd:

– UE.upd(Δe+1, cte): Parse the update token and the ciphertext as

Δe+1 = (pkΔ, ctxΔ), cte = (t, (pke−t, ctxe−t), . . . , (pke−1, ctxe−1), (pke, ctxe))

Sample (t + 1) uniform random permutations πe−t, . . . , πe : [2n] → [2n].
Also, let πid : [2n] → [2n] denote the identity permutation. For each i ∈
{e − t + 1, . . . , e − 1}, compute

(p̃ki, c̃txi)
$← KPHE.Eval(pki, ctxi, πi, πi−1).

Additionally, compute

(p̃ke−t, c̃txe−t)
$← KPHE.Eval(pke−t, ctxe−t, πe−t, πid),

(pke, ctxe)
$← KPHE.Eval(pke, ctxe, πe, πe−1),

(pke+1, ctxe+1)
$← KPHE.Eval(pkΔ, ctxΔ, πid, πe).

Output the updated ciphertext as:

cte+1 = (t + 1, (p̃ke−t, c̃txe−t), . . . , (p̃ke−1, c̃txe−1), (pke, ctxe), (pke+1, ctxe+1)).
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Correctness. We first prove the correctness of the UE scheme. For any
m ∈ M, any k0 ← UE.setup(1λ), any sequence of (k1,Δ1), . . . , (ke,Δe) gen-
erated as (ki,Δi) ← UE.next(ki−1) for all i ∈ [e], let ct0 ← UE.enc(k0,m) and
cti ← UE.upd(Δi, cti−1) for all j ∈ [e], then the final ciphertext is of the form
cte = (e, (pk0, ctx0), . . . , (pke−1, ctxe−1), (pke, ctxe)). All the UE secret keys are
of the form k0 = (pp, sk0), . . . , ke = (pp, ske). We can prove by induction that
there exist permutations π0, π1 . . . , πe−1 : [2n] → [2n] such that ski = πi(ski) for
all i = 0, 1, . . . , e− 1, and that KPHE.Dec(sk0, ctx0) = m,KPHE.Dec(sk1, ctx1) =
sk0, . . . ,KPHE.Dec(ske−1, ctxe−1) = ske−2,KPHE.Dec(ske, ctxe) = ske−1. There-
fore, UE.dec(ke, cte) outputs m. This argument is for any ciphertext starting
from epoch 0. The same argument holds for any ciphertext starting from any
epoch ê where 0 ≤ ê ≤ e.

Confidentiality. Next we prove the IND-UPD security the UE scheme. More
formally, we state and prove the following theorem (the proof is provided in the
full version of our paper [MPW22]):

Theorem 4 (IND-UPD Security). Assuming that KPHE satisfies distribu-
tional security with respect to the distribution Un, as well as public key and
ciphertext blinding as described in Sect. 2, the above UE construction is an IND-
UPD secure unidirectional UE scheme.

3.3.2 IND-UE Secure Unidirectional UE

The basic IND-UPD construction allows ciphertexts from the same epoch e to
have different sizes. In particular, a freshly created ciphertext in epoch e can
be trivially distinguished from a ciphertext that was created as an update of
a ciphertext from epoch (e − 1). So it cannot satisfy the combined security
definition of post-compromise security for UE due to Boyd et al. [BDGJ20].

In the full version of our paper [MPW22], we showcase a simple extension
of the basic construction wherein we ensure that the size for any ciphertext in
epoch e is the same, irrespective of whether it was freshly created, or created as
an update of a ciphertext from epoch (e − 1). The overall construction remains
exactly the same; the key alteration is in how we generate fresh ciphertexts. At
a high level, a freshly created ciphertext in epoch e is made to look exactly like
a ciphertext that has undergone e update operations. We do this by having e
“dummy wrapper” layers over and above the core ciphertext generated by the
basic construction. We defer the detailed construction and security proof to the
full version of our paper [MPW22].

4 Unidirectional PRE from Circular-Secure KPHE

In this section, we show how to construct unidirectional PRE from any KPHE
scheme that satisfies distributional circular security. We present the simpler con-
struction of IND-HRA unidirectional PRE in Sect. 4.2. In the full version of our
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paper [MPW22], we show how to augment it to achieve the stronger notion
of strong post-compromise security (PCS) as introduced in a recent work by
Davidson et al. [DDLM19].

4.1 Definition of Unidirectional PRE

Definition 8 (Unidirectional Proxy Re-Encryption (PRE)). A unidirec-
tional PRE scheme is a tuple of PPT algorithms of the form

PRE = (Setup,KeyGen,Enc,ReKeyGen,ReEnc,Dec),

described as follows:

– pp
$← Setup(1λ): On input the security parameter λ, the setup algorithm out-

puts some public parameters pp (these parameters are implicit to all other
algorithms).

– (sk, pk) $← KeyGen(pp): On input the public parameters pp, the key-generation
algorithm outputs a secret key-public key pair, (sk, pk).

– ct
$← Enc(pk,m): On input a public key pk and a message m, the encryption

algorithm outputs a ciphertext ct.
– rki,j

$← ReKeyGen((ski, pki), pkj): The re-key generation algorithm returns a
re-encryption key rki,j for translation of a ciphertext from a key-pair (ski, pki)
to a key-pair (skj , pkj). It takes as input (ski, pki) and pkj, and outputs the
re-encryption key rki,j.1

– ctj
$← ReEnc(rki,j , cti): On input a re-encryption key rki,j and a ciphertext

cti, the re-encryption algorithm outputs an updated ciphertext ctj.2

– m/⊥ ← Dec(sk, ct): On input a secret key sk and a ciphertext ct, the decryp-
tion algorithm outputs either a plaintext message or an error symbol.

Definition 9 (Correctness). A PRE scheme PRE = (Setup,KeyGen,Enc,

ReKeyGen,ReEnc,Dec) is said to be correct if for any pp
$← Setup(1λ), for any

� ≥ 0, for any (� + 1) key-pairs (pk0, sk0), . . . , (pk�, sk�)
$← KeyGen(pp), and for

any plaintext message m, letting ct0
$← Enc(pk0,m), and letting for each j ∈ [�]

rkj
$← ReKeyGen(skj−1, pkj−1, pkj), ctj

$← ReEnc(rkj , ctj−1),

we have Dec(sk�, ct�) = m (with all but negligible probability).

Confidentiality. We defer the confidentiality definitions to the full version of
our paper [MPW22].
1 In a bidirectional PRE scheme, the re-key generation algorithm additionally takes

as input the destination secret key skj , i.e., it takes as input (ski, pki) and (skj , pkj),
and outputs the re-encryption key rki,j .

2 The re-encryption algorithm could be either deterministic or randomized; in this
work, we assume throughout that the re-encryption algorithm is randomized.
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4.2 HRA-Secure Unidirectional PRE

We show that any KPHE scheme with 2n-bit secret keys and plaintext messages
that satisfies: (a) distributional semantic and circular security with respect to
the distribution Un, and (b) blinding, implies the existence of a multi-hop IND-
HRA secure unidirectional PRE scheme.

Construction. Given a KHPE scheme of the form

KPHE = (KPHE.Setup,KPHE.SKGen,KPHE.PKGen,KPHE.Enc,KPHE.Dec,KPHE.Eval),

with 2n-bit secret keys, we construct a unidirectional PRE scheme

PRE = (PRE.Setup,PRE.KeyGen,PRE.Enc,PRE.ReKeyGen,PRE.ReEnc,PRE.Dec),

with message space M = {0, 1}2n as follows:

– PRE.Setup(1λ): Sample pp
$← KPHE.Setup(1λ) and output pp.

– PRE.KeyGen(pp): Sample and output (pk, sk) where

sk
$← KPHE.SKGen(pp,Un), pk

$← KPHE.PKGen(pp, sk).

– PRE.Enc(pk,m): Compute ctx0
$← KPHE.Enc(pk,m) and output

ct = (0, (pk, ctx0)).

– PRE.ReKeyGen(ski, pki, pkj): Output rki,j = (pkj , ctxΔ), where

ctxΔ
$← KPHE.Enc(pkj , ski).

– PRE.ReEnc(rki,j , ct): Parse the reencryption key and the ciphertext as

rki,j = (pkj , ctxΔ), ct = (t, (pk0, ctx0), . . . , (pkt−1, ctxt−1), (p̂kt, ĉtxt)),

for some t ≥ 0. Sample a uniformly random permutation π : [2n] → [2n].
Also, let πid : [2n] → [2n] denote the identity permutation. Compute

(pkt, ctxt)
$← KPHE.Eval(p̂kt, ĉtxt, π, πid),

(p̂kt+1, ĉtxt+1)
$← KPHE.Eval(pkj , ctxΔ, πid, π),

and output the updated ciphertext as:

ct′ = (t + 1, (pk0, ctx0), . . . , (pkt, ctxt), (p̂kt+1, ĉtxt+1)).
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– PRE.Dec(sk, ct): Parse the ciphertext as

ct = (t, (pk0, ctx0), . . . , (pkt−1, ctxt−1), (p̂kt, ĉtxt)),

for some t ≥ 0. Compute skt−1 = KPHE.Dec(sk, ĉtxt). Next, compute the
following for each � from (t − 1) to 1 in decreasing order:

sk�−1 = KPHE.Dec(sk�, ctx�).

Finally, output the message m = KPHE.Dec(sk0, ctx0).

Correctness. We defer the detailed proof of correctness to the full version of
our paper [MPW22]. At a high level, the correctness argument is very similar to
that for our unidirectional UE scheme in Sect. 3.2.

Theorem 5 (IND-HRA Security). Assuming that KPHE satisfies blinding
and distributional semantic+circular security with respect to the distribution Un,
PRE is a multi-hop IND-HRA secure unidirectional PRE scheme.

We defer the detailed proofs of correctness and IND-HRA security to the full
version of our paper [MPW22]. Also, see [MPW22] for our construction of IND-
PCS secure unidirectional PRE from any circular-secure KPHE scheme.
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Abstract. The understanding of directionality for updatable encryp-
tion (UE) schemes is important, but not yet completed in the literature.
We show that security in the backward-leak uni-directional key updates
setting is equivalent to the no-directional one. Combining with the work
of Jiang (ASIACRYPT 2020) and Nishimaki (PKC 2022), it is showed
that the backward-leak notion is the strongest one among all known
key update notions and more relevant in practice. We propose two novel
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uni-directional key update setting from public key encryption (PKE)
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message. During this process, it is also reasonable to expect that no information
of plaintexts are leaked while updating.

Updatable encryption (UE) schemes [2–4,6,11,12,14,16] are a special kind of
encryption schemes that allow the data host to update ciphertexts with the help
of a data subject generated updating material, namely update token. Update
tokens can rotate ciphertexts or keys, which makes UE schemes particularly
interesting for outsourced data storage. However, leaked tokens together with
key corruption an adversary may break confidentiality of the future or past
epoch by upgrading or downgrading keys or ciphertexts, which is captured by
the directionality of UE schemes. The study of UE mainly focuses on the security
notions and efficient constructions. Directionality for UE schemes is important to
study since it plays a central role in influencing the security result. The challenge
is that there are two types of ciphertext update settings and four types of key
update settings in the literature, and a combination of these settings results in
eight different types of update settings for UE schemes to analyze.

Directionality of Ciphertext Updates. If an update token can only update a
ciphertext under a key in the past to a ciphertext under a new key without
changing the encrypted message, it is in the forward direction, then we call that
such a UE scheme has uni-directional ciphertext updates; and if an update token
can additionally update a ciphertext to another ciphertext under a key in the
past, we call such a UE scheme with bi-directional ciphertext updates.

Directionality of Key Updates. Secret key leakage is a serious security threat to
encryption. For instance, there is no security guarantee for standard encryption
schemes if their secret keys are leaked. However, for UE schemes, the update
token offers a potential to preserve confidentiality, since the update token allows
us to update a secret key and the corresponding ciphertexts. Realizing this fully
is very challenging and requires careful treatments, since the update token may
also leak information about the key.

Directionality of key update is used to capture which information adversaries
can learn about the secret keys given the update token. Roughly speaking, there
are four key update settings given by the literature [9,12,14]. For a precise
description, let e be an epoch, namely, the index of a time period. In the forward-
leak uni-directional key update setting1 [12], given a key ke and an update token
Δe+1 adversaries can only learn a key ke+1 in the forward direction. Similarly, in
the backward-leak uni-directional key update setting [14], adversaries can only
learn a key ke in the backward direction, given ke+1 and Δe+1. If both forward-
leak and backward-leak are satisfied in a setting, then it is called bi-directional
key update. In contrary, if an update token leaks nothing about any secret key,
then this setting is called no-directional key update [9].

Security Implications Among Different Key Update Settings. Security of a UE
scheme is defined with respect to the aforementioned key update settings.
1 This was called uni-directional key updates in [12], but here we follow the more

precise terminology of Nishimaki [14] and call it forward-leak uni-directional key
updates.



Backward-Leak Uni-Directional Updatable Encryption 401

Fig. 1. Security implications among different key update settings assuming uni-
directional ciphertext updates. X → Y means that security in the X setting implies
that in the Y setting, and X �−→ Y means that security in the X setting does not imply
that in the Y setting, and X ↔ Y = (X → Y) ∧ (Y → X). Contribution in this paper is
marked with a double arrow ‘⇔’.

Roughly speaking, UE security guarantees confidentiality if the trivial win con-
ditions are not triggered. The trivial win conditions are defined differently in
each key update setting, and more information leaked about keys leads to more
trivial win conditions in the confidentiality game for UE schemes. With more
trivial win conditions, it seems harder for an adversary to win the confidentiality,
since it is easier for it to trigger the trivial win conditions. Thus, intuitively, a
setting with less key leakage seems to give stronger security.

This intuition partially holds true, according to the work of Jiang [9] and
Nishimaki [14]. More precisely, in [9] it has been showed that security in the
no-directional setting is strictly stronger than that in the bi-directional setting,
and security in the bi-directional key update setting is equivalent to that in the
forward-leak setting. To further complete the work of Jiang, Nishimaki [14] pro-
posed the backward-leak uni-directional setting and showed that UE schemes in
prior works [4,9,12] are secure in the bi-directional setting but insecure in the
backward-leak uni-directional setting. Here we consider that an update token can
only update a ciphertext in the forward direction, since if the ciphertext updates
are bi-directional then all four settings are equivalent as shown in [9]. The impli-
cations among these four key update settings are shown figuratively in Fig. 1.

To sum up the discussions above, it is currently unclear that the relation
between the no-directional and backward-leak uni-directional key update set-
tings, although they both are stronger than the bi-directional and forward-leak
setting.

Our Goal: UE schemes with Strong Security from Weak Assumptions. We aim
at constructing UE schemes with strong security from weak assumptions. In
achieving our goal, we first need to decide which notion is the strongest among
the above four settings. Jumping ahead, our first contribution is proving the
no-directional and backward-leak settings are equivalent. Given our equivalence
result, we claim it is more desirable to construct a UE scheme that is secure in
the backward-leak uni-directional key update setting for the following reasons.

Firstly, UE schemes secure in the backward-leak setting are technically more
promising to construct based on weak assumptions, since the existing UE scheme
[14] with no-directional key updates are based on strong assumptions. Namely,
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the scheme in [14] requires a rather strong and impractical primitive, indistin-
guishability obfuscation.

Secondly, although there is a backward-leak UE scheme based on the Learn-
ing With Errors (LWE) assumption proposed by Nishimaki [14], it is unknown
whether backward-leak UE schemes can be constructed from a wider class of
weak assumptions, for instance, the Diffie-Hellman assumption without pair-
ings. We are particularly interested in constructing UE schemes generically from
public-key encryption (PKE), since this not only is theoretically interesting, but
also can give us UE schemes from rather weak assumptions. Recently, Alamati,
Montgomery, and Patranabis [1] have proved that ciphertext-independent UE
implies PKE, but the implication in the other direction is unknown.

Finally, we stress that the backward-leak setting is relevant for practice, as
discussed in [14]. In practice, the purpose of updating our keys is mostly because
the current key and those in the past may be leaked. In such a scenario, UE
schemes in the backward-leak uni-directional key update setting are required,
since they can provide confidentiality in an epoch, even though all previous keys
and tokens are corrupted. Moreover, backward-leak UE schemes remain secure
even if the data host forgets to delete older keys and tokens, while this is not the
case for forward-leak UE schemes, since with the older keys an adversary can
learn the keys in the future.

1.1 Our Contributions

Intuition Behind Security Definitions. Our first contribution is providing an
intuitive understanding of trivial win conditions, firewalls, directionality and
security notions. Explanations of all these topics exists in [3,4,9,11,12,14],
however, we aim to provide a simple description to show the relations among
these definitions. We consider two classes of UE schemes (discussed in Sect. 3.2
and 3.3): the first class of UE schemes have update settings such that keys can-
not upgrade and ciphertexts cannot downgrade, the second class of UE schemes
have update settings where keys and ciphertexts both can leak information in the
forward direction. We observe that the first class of UE schemes (including UE
schemes with backward-leak uni-directional key updates and no-directional key
updates) can achieve the strongest confidentiality notion (with post-compromise
security). Thus, it is only necessary to analyze two classes of UE schemes, and
these two classes of UE schemes matches with the equivalence result in the liter-
ature [9,14] and our work. That is, the eight variants of confidentiality notions
can be seen as only two classes of confidentiality notions. We will show that
notions in the same class are equivalent and one class is strictly stronger that
the other.

Equivalence Result. Our second contribution is proving that security in the
backward-leak uni-directional key update and uni-directional ciphertext update
setting is equivalent to that in the no-directional key update and uni-directional
ciphertext update setting. All our UE schemes have uni-directional ciphertext
updates, and for simplicity, we do not mention it explicitly in the remaining of
this section. This means that UE schemes with no-directional key updates do not
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provide stronger security than UE schemes with backward-leak uni-directional
key update. Our result suggests that constructing UE schemes with backward-
leak uni-directional key update is equivalent to constructing UE schemes with
no-directional key update.

Generic Constructions of UE from PKE. Our third contribution is constructing
two generic constructions of UE schemes with backward-leak uni-directional key
update from PKE schemes. Our constructions require additional properties of
the underlying PKE schemes. Our first construction requires key and message
homomorphism for PKE schemes. Such PKE schemes can be instantiated under
the Decisional Diffie-Hellman (using the ElGamal encryption) and LWE (using
the Regev encryption [15]) assumptions. Combining with our equivalence result,
the aforementioned two schemes provide us with the first no-directional secure
UE schemes without pairings in the Diffie-Hellman setting and based on a post-
quantum assumption, respectively. We note that the uni-directional schemes
from FHE or IO or lattice trapdoors [14] usually do not have this increased
key-size or ciphertext-size. But without these assumptions and technique, uni-
directional schemes relying on standard assumptions (namely, ours and the work
in [13]) are constructed with growing key and cipehrtextext. It remains an open
problem to construct uni-directional schemes relying on standard assumptions
where the key and cipehrtextext size keeps the same.

Our second generic construction uses a bootstrappable PKE [8] that can be
implemented using the LWE assumption, which again gives us a post-quantum
UE scheme with security in the no-directional key update setting.

Of independent interest, we propose a generic construction of bi-directional
UE scheme from a key homomorphic PKE scheme. Our generic construction
abstracts the constructions of RISE [12] and LWEUE [9]. We stress that our
notion of key homomorphic PKE is inspired by the key homomorphic PRF of
Boneh et al. [3] but different to theirs. More precisely, our key homomorphic
property is defined with respect to a public key and a secret key, while theirs is
with respect to two secret keys.

Technical Overview. Here we provide a brief technical overview of our generic
backward-leak UE constructions from PKEs. The full descriptions of our schemes
can be found in Sects. 5.3 and 6. The update token plays an important role in a
UE scheme, and therefore we mostly focus on it in the following.

In our first construction, its key contains a pair of secret and public keys
from the PKE scheme. The update token contains the difference between the old
and new secret keys. In addition, the token includes an independently generated
public key, which will play a central role for the confidentiality in the next epoch.
To update a ciphertext, we have two steps: Firstly, by the key homomorphic
property of the PKE, the difference between the old and new secret keys can
be used to modify the ciphertext under the old key to one under the new key.
Secondly, we randomize this ciphertext so that it is indistinguishable to a freshly
generated ciphertext under the new key. In doing this, we use the aforementioned
independent public key to encrypt a randomness to homomorphically randomize
the ciphertext, since our PKE is further message homomorphic. In the security
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proof, we can show that message is hidden by the randomness and confidentiality
in the new epoch is preserved.

In our second construction, the update token is an encryption of the old secret
key under the new public key. This token will not reveal any information about
the new secret key even with the knowledge of the old secret key. To update a
ciphertext, we evaluate the decryption circuit on the encryption of the old key
(that is the token) and the encryption of the old ciphertext. The bootstrapping
property states that this output is statistically close to a fresh ciphertext under
the new key.

Concurrent Work. We note a recent work from Miao, Patranabis, and Watson
[13] which has a construction of backward-leak uni-directional UE similar to
ours, while our work contains a formal proof about the equivalence between
backward-leak and no-directional UE.

1.2 More Discussion

Ciphertext-Dependent v.s. Ciphertext-Independent. We call an updatable
encryption scheme is ciphertext-dependent [2,3,5,6] if the token generation pro-
cess depends on the old ciphertext. If the token generation process is indepen-
dent of the ciphertext to be updated, then the UE scheme is called ciphertext-
independent [4,9,11,12,14,16]. A ciphertext-independent UE scheme is usually
more efficient in terms of bandwidth cost, and, thus, we focus on such schemes
in this paper.

Deterministic Update. The update algorithm in UE schemes can be deterministic
or randomized. UE schemes with randomized update algorithm provide stronger
security, in which the updated ciphertext can be in the same distribution of a
fresh encryption. However, the work of Klooß et al. [11] shows that such UE
schemes with randomized update cannot achieve ciphertext integrity and secu-
rity against chosen-cipertext attacks (CCA), but replayable CCA security. For
instance, SHINE [4] and E&M [11] are UE schemes with deterministic update
that have ciphertext integrity and CCA security. Klooß et al.’s result also means
that our constructions cannot be CCA secure, but it is promising to make it
RCCA secure. We leave constructing this as an open problem.

Security Notions. Boneh et al. [3] presented the first security notion for UE
schemes. After that, the works in [4,9,11,12] proposed more realistic security
notion by providing more capability to an adversary. For instance, it can adap-
tively corrupt epoch keys or update tokens at any point within the security game.
Jiang [9] first discussed the directionality of security notions and showed that
security notions with forward-leak uni- and bi-directional updates are equivalent
in the current state-of-the-art UE security notion of Boyd et al. [4]. In addition,
Jiang [9] proved that confidentiality notions with no-directional key updates are
strictly stronger than uni- and bi-directional update variants of the correspond-
ing notions. Nishimaki [14] defined a new type of key update, backward-leak uni-
directional key update, which is not covered in the work of [9]. We will prove the
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relation between the backward-leak uni-directional key update variant of a con-
fidentiality notion with other update variants of the same confidentiality notion.
We will show that confidentiality notions with backward-leak uni-directional key
update is equivalent to no-directional key updates variants of the corresponding
notions. Which means the backward-leak uni-directional key update variant of
notions are the strongest notions.

Slamanig and Striecks [16] introduced a stronger model for UE schemes,
where they consider an “expiry epoch”, eexp. If a ciphertext is updated to an
epoch e, where e ≥ eexp and eexp is this ciphertext’s expiry epoch, then this
ciphertext can no longer be decryptable. Their model allows the adversary knows
“all”2 tokens. Forward security is guaranteed if the key updates are at most in
the forward-direction and leaked keys are in epochs after the expiry epoch of
a ciphertext. Post compromise security is guaranteed if the key updates are at
most in the backward-direction. Realizing such strong security strictly requires
no-directional UE schemes where keys must not be updatable in any direction.
Note that Jiang’s equivalence theorem [9] holds in the setting where there is no
expiry date for ciphertexts, i.e., eexp = ∞. We consider the case for eexp = ∞ in
this paper. We do not compare the efficiency of our construction with the UE
construction in [16], due to schemes are in different UE models.

2 Preliminaries

In this section we describe the notation used in this paper and present the nec-
essary background material of updatable encryption. Due to space limitations,
we provide the preliminaries for public key encryption in the full version [7]. y
parameter and negl denotes a negligible function. For distributions X and Y ,
X

s≈ Y means X is statistically indistinguishable from Y .

2.1 Updatable Encryption and Confidentiality Notions

Updatable encryption (UE) schemes [3,4,11,12] are a special kind of encryption
schemes with an additional functionality where ciphertexts under one key can
be transferred to ciphertexts under another key by an update token.

Definition 1 (UE). An updatable encryption scheme UE is parameterized by
a tuple of algorithms (Setup,Next,Enc,Dec,Upd) that operates over epochs such
that

– The setup algorithm Setup(λ) takes a security parameter λ as input, and
outputs an initial epoch key k1.

– The next algorithm Next(ke) takes an epoch key ke as input, and outputs a
new key ke+1 and an update token Δe+1, the update token can be used to
update ciphertexts from epoch e to e + 1.

2 except for some end epoch eend, if eexp ≤ eend.
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– The encryption algorithm Enc(ke,m) takes an epoch key ke and a message m
as input, and outputs a ciphertext ce.

– The decryption algorithm Dec(ke, ce) takes an epoch key ke and a ciphertext
ce as input, and outputs a message m.

– The update algorithm Upd(Δe+1, ce) takes an update token Δe+1 and a cipher-
text ce as input, and outputs an updated ciphertext ce+1.

UE is correct if for any message m, any k1 ← Setup(λ), any (kj ,Δj) ←
Next(kj−1) for j = 2, ..., e, and any ci ← Enc(ki,m) with i ∈ {1, ..., e}, we have
m = Dec(ke, ce) where cj ← Upd(Δj , cj−1) for j = i + 1, ..., e.

Security notions for UE schemes include confidentiality and integrity. We do
not consider integrity notions in this paper, see the paper by Jiang [9] for details.
We review the confidentiality notion for UE schemes in Definition 2 and extend
the six variants of security notions for UE schemes given by [9], in which the
backward-leak uni-directional key update [14] variants are not included.

The confidentiality game is played between a challenger and an adversary, the
adversary aims to distinguish a fresh encryption from an updated ciphertext. It
is allowed for the adversary to adaptively corrupt keys and tokens, if any trivial
win condition is triggered during the game the adversary will always lose. We
will provide technical and high level understanding of trivial win conditions in
Sect. 2.2 and 3.

Definition 2 ([4,9]). Let UE = (Setup,Next,Enc,Dec,Upd) be an updat-
able encryption scheme. Then the (kk, cc)-xxIND-UE-atk advantage, for kk ∈
{no, f-uni, b-uni, bi}, cc ∈ {uni, bi}, xx ∈ {det, rand} and atk ∈ {CPA,CCA}, of an
adversary A against UE is defined as

Adv(kk,cc)-xxIND-UE-atk
UE, A (λ)

=
∣
∣
∣Pr[Exp(kk,cc)-xxIND-UE-atk-1

UE, A = 1] − Pr[Exp(kk,cc)-xxIND-UE-atk-0
UE, A = 1]

∣
∣
∣,

where the experiment Exp(kk,cc)-xxIND-UE-atk-b
UE, A is given in Fig. 2.

2.2 Leakage Sets and Trivial Win Conditions

In this section, we review the definition of leakage sets and trivial win discus-
sions [4,9,11,12], the leaked information can be used to help an adversary triv-
ially win the confidentiality game.

Trivial Win via Key and Ciphertext Leakage. If an adversary knows both
the key and the challenge-equal ciphertext in the same epoch period e, then the
adversary can use this key to decrypt the challenge-equal ciphertext and obtain
the underlying plaintext to win the confidentiality game. We use leakage sets to
identify if this trivial win condition (“K∗ ∩ C∗ �= ∅”) is triggered.

Leakage sets [9,11,12] are defined to track epochs in which the adversary
knows a key, a token, or learned a version of challenge ciphertext. The direct
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Fig. 2. The confidentiality experiment Exp
(kk,cc)-xxIND-UE-atk-b
UE, A for updatable encryption

scheme UE and adversary A, for kk ∈ {no, f-uni, b-uni, bi}, cc ∈ {uni, bi}, xx ∈ {det, rand}
and atk ∈ {CPA, CCA}. The flag phase tracks whether or not A has queried the O.Chall
oracle, ẽ denotes the epoch in which the O.Chall oracle happens, and twf tracks if the
trivial win conditions are triggered. Oracles an adversary can query are O.Enc, O.Next,
O.Upd, O.Corr, O.Chall and O.UpdC̃ if atk = CPA. If atk = CCA, O.Dec is included in
the oracles. Leakage sets C, K, T , K∗

kk, T ∗
kk, C∗

kk,cc, L̃∗
kk,cc, Q̃∗

kk,cc are discussed in Sect. 2.2.

leakage sets K, T , C are describe as follows. Furthermore, K∗, T ∗ and C∗ are
defined as the extended sets of K, T and C to track the indirect leakage.
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– K: Set of epochs in which the adversary corrupted the key (from O.Corr).
– T : Set of epochs in which the adversary corrupted the token (from O.Corr).
– C: Set of epochs in which the adversary learned a challenge-equal ciphertext3

(from O.Chall or O.UpdC̃).

Key Leakage. The size of the key leakage set K∗ can be influenced by the key
update direction of UE schemes. In the no-directional key update setting [9], the
adversary does not have more information about keys except for set K. In the
forward-leak uni-directional key update setting, if the adversary knows a key ke
and an update token Δe+1 then it can infer the next key ke+1. In the backward-
leak [14] uni-directional key update setting, if the adversary knows a key ke+1

and an update token Δe+1 then it can infer the previous key ke.
The notations f-uni and b-uni denote forward-leak uni and backward-leak

uni, resp.. In the kk-directional key update setting, for kk ∈ {no, f-uni, b-uni, bi},
denote the set K∗

kk as the extended set of corrupted key epochs. We compute
these sets as follows, where the boxed part is only computed for kk ∈ {b-uni, bi},
the gray boxed part is only computed for kk ∈ {f-uni, bi}

K∗
kk ← {e ∈ {0, ..., l}|CorrK(e) = true}
true ← CorrK(e) ⇐⇒

(e ∈ K) ∨ CorrK(e+1) ∧ e+1 ∈ T ∨ CorrK (e-1) ∧ e ∈ T . (1)

Token Leakage. The adversary directly learns all corrupted tokens, it can also
compute a token from two consecutive epoch keys. We follow the assumption
(an update token can be computed via two consecutive epoch keys) in the page
7 of [10], this assumption is essential to formulate the known knowledge to the
adversary. Hence, for kk ∈ {no, f-uni, b-uni, bi}, denote T ∗

kk as the extended set of
corrupted token epochs.

T ∗
kk ← {e ∈ {0, ..., l}|(e ∈ T ) ∨ (e ∈ K∗

kk ∧ e-1 ∈ K∗
kk)}. (2)

Challenge-Equal Ciphertext Leakage. The adversary learned all versions of chal-
lenge ciphertexts in epochs in C. Additionally, the adversary can compute
challenge-equal ciphertexts via tokens. In the uni-directional ciphertext update
setting, the adversary can upgrade ciphertexts. In the bi-directional ciphertext
update setting, the adversary can additionally downgrade ciphertexts.

For kk ∈ {no, f-uni, b-uni, bi} and cc ∈ {uni, bi}, denote the set C∗
kk,cc as the

extended set of challenge-equal epochs. We compute these sets as follows, where
the boxed part is only computed for cc = bi.

C∗
kk,cc ← {e ∈ {0, ..., l}|ChallEq(e) = true}
true ← ChallEq(e) ⇐⇒

(e ∈ C) ∨ (ChallEq(e-1) ∧ e ∈ T ∗
kk) ∨ ChallEq(e+1) ∧ e+1 ∈ T ∗

kk . (3)

3 A challenge-equal ciphertext is either a challenge ciphertext or an updated ciphertext
of the challenge ciphertext.
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Trivial Win Due to Deterministic Update. In a confidentiality game with
deterministic update setting. If the adversary knows the updated version (by
either knowing the update token Δẽ or asking for an update oracle O.Upd on
c̄) of the challenge input ciphertext c̄, it can compare the updated ciphertext
with the challenge ciphertext to win the confidentiality game. This trivial win
condition is “ẽ∈T ∗ or O.Upd(c̄) is queried”.

Trivial Wins via Decryption. If the adversary submits a challenge-equal
ciphertext to the decryption oracle, it can trivially win the confidentiality game
by comparing the challenge plaintexts with the decryption output. Hence, the
adversary is not allowed to ask for a decryption oracle on such ciphertexts.
We use the following sets to track challenge ciphertexts, challenge plaintexts
and their updated versions that can be known to the adversary. These sets can
be used to identify the above trivial win condition. More precisely, “(c, e) ∈
L̃∗” is a trivial win condition that is checked by the decryption oracle in the
detIND-UE-CCA game, “(m′, e) ∈ Q̃∗” is a trivial win condition that is checked
by the decryption oracle in the randIND-UE-CCA game.

– L̃∗: Set of challenge-equal ciphertexts (c̃e, e). The adversary learned these
ciphertexts from O.Chall or O.UpdC̃, or derived these ciphertexts from tokens.

– Q̃∗: Set of challenge plaintexts {(m̄, e), (m̄1, e)}, where (m̄, c̄) is the input of
challenge query O.Chall and m̄1 is the underlying message of c̄. The adversary
learned or was able to compute a challenge-equal ciphertext in epoch e with
the underlying message m̄ or m̄1.

3 Intuitions Behind Security Definitions

In this section, we propose some high level intuitions behind the security notions
for UE.

We aim to clarify the relations among trivial win conditions, directionality
and security results. If a UE scheme potentially leaks more information (which
can be influenced by directionality), then there exists more vulnerabilities (triv-
ial win conditions) for such scheme. Forward security in prior work of UE are
achieved under the limitation that no trivial win condition is triggered, namely,
there may exist some token after the challenge epoch cannot be corrupted. In
our work, we define a relaxed version of forward security that, after the chal-
lenge epoch, any keys and tokens can be corrupted and the confidentiality of
the challenge epoch remains. Similarly, we discussed post-compromise security.
In the end, we provide some observations about what types of UE schemes can
achieve forward or post-compromise security.
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3.1 Intuition of Trivial Wins Conditions

The more information that get leaked in a confidentiality game the more chances
the adversary gains to win that game, and trivial win conditions are defined to
exclude such winning conditions. Generally speaking, the more update directions
a UE scheme has the more information the adversary can infer. That is, the
directionality of the update setting influences how much information gets leaked.

Trivial win conditions can be seen as a way of limiting the adversary’s attack-
ing power and this can be used to compare two notions, where two notions for
UE schemes are equivalent if they have the same winning probability. Consider
a modified confidentiality game where the adversary is not allowed to perform
certain actions that will trigger trivial win conditions. If such action happens,
the game aborts. The winning probability of the original confidentiality game
is the same as this modified confidentiality game. In other words, trivial win
conditions are equivalent to an attacking model. Such attacking model defines
the restriction to the adversary, for example, the adaptive corruption ability is
restricted by not triggering the trivial win conditions. Only when the adversary’s
attack actions does not trigger the trivial win conditions it is possible to win the
game. Informally, a security notion for a system can be seen as stronger if the
system remains secure even if the adversary has more attacking ability.

Combining this with the discussion above, we see that the more update direc-
tion a UE scheme has the more key and ciphertext leakage there will be and more
trivial win conditions to evaluate. This means that the adversary will be lim-
ited more in such a confidentiality game. From a security point of view, the less
attacking ability the adversary has the weaker we can regard a security notion.

3.2 Intuition of Firewalls

The observation of firewalls was introduced in the work of Lehmann and Tack-
mann [12], Klooß et al. [11] provided an extended description of this key insu-
lation technique, and Boyd et al. [4] formally defined it as firewall technique.
Furthermore, Nishimaki [14] proposed a relaxed firewall, where the token on the
left side of the insulated region (Δfwl) can be corrupted. In any security game,
if the adversary never triggers the trivial win conditions, a cryptographic sepa-
ration (firewalls) exists, for a detailed discussion of the existence of firewalls see
[4,11,12,14].

Definition 3 (Firewalls [4,11,12]). An insulated region with firewalls fwl and
fwr is a consecutive sequence of epochs (fwl, . . . , fwr) for which:

– no key in the sequence of epochs (fwl, . . . , fwr) is corrupted;
– the tokens Δfwl and Δfwr+1 are not corrupted (if they exist);
– all tokens (Δfwl+1, . . . ,Δfwr) are corrupted (if any exist).
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Definition 4 (Relaxed Firewalls [14]). A relaxed insulated region with
relaxed firewalls fwl and fwr is a consecutive sequence of epochs (fwl, . . . , fwr)
for which:

– no key in the sequence of epochs (fwl, . . . , fwr) is corrupted;
– the token Δfwr+1 is not corrupted (if it exists);
– all tokens (Δfwl+1, . . . ,Δfwr) are corrupted (if any exist).

The firewall technique is used when proving the security for UE schemes, it
provides a method of describing a cryptographic separation, which is required
in the epoch based model to simulate where keys and ciphertexts are known or
unknown to the adversary. Firewalls, and relaxed firewalls, define a “safe” or
insulated region for keys, where no key within the region can be inferred from
keys outside of this region. We can regard the tokens Δfwl and Δfwr+1 as the
left and right firewalls, the cryptographic separation is created when these two
tokens are unknown to the adversary. In some UE settings, the token Δfwl can
be corrupted and the cryptographic separation still holds, which means that the
insulated region can be relaxed even without the left firewall.

The relaxed insulated region is suitable for analyzing security for UE schemes
with update settings such that keys cannot upgrade and ciphertexts cannot
downgrade, namely ciphertext and key will not leak information in the same
direction. In UE schemes with uni-directional ciphertext update setting and key
update settings without forward-leak direction, we have that the token Δfwl can-
not upgrade early epoch keys to learn keys inside the insulated region, it cannot
downgrade challenge-equal ciphertexts to learn early challenge-equal ciphertexts
outside of the insulated region as well. Hence, keys and ciphertexts inside and
outside of the insulated region are separated even when Δfwl is known to the
adversary, the insulated region can be relaxed to allow the token Δfwl to be
corrupted.

The (original) insulated region is suitable for analyze UE schemes with
update settings such that keys and ciphertexts can both leak information in the
forward direction, namely ciphertext and key will leak information in the same
direction. In UE schemes with ciphertext and key update settings that both have
at least forward-leak direction, we have that the token Δfwl can upgrade early
corrupted keys to learn keys inside the insulated region. For these UE schemes
we have that the token Δfwr can upgrade challenge-equal ciphertexts to an epoch
outside the insulated region where the adversary knows a corrupted key. Hence,
both tokens Δfwl and Δfwr+1 are required to be unknown to the adversary to
make a cryptographic separation.

3.3 Forward Security and Post-compromise Security

Forward and post-compromise security for UE schemes were discussed by
Lehmann and Tackmann [12]. However, all confidentiality games in their work
are restricted by not triggering trivial win conditions, which means there exists
a cryptographic separation between the leaked key region and the “safe” region
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(see the discussion of cryptographic separation in Sect. 3.2). That is, there exists
two tokens one before and one after the epoch where the adversary aims to break
the confidentiality such that these tokens cannot be corrupted.

We consider the standard definitions for forward and post-compromise secu-
rity, in which we do not have the restrictions of tokens which cannot be corrupted.
We say a UE scheme have

– forward security if the confidentiality in early epochs are not broken even if
an adversary compromises keys and tokens in some later epochs.

– post-compromise security if the confidentiality in later epochs are not broken
even if an adversary compromises keys and tokens in some early epochs.

We observe that only some specific UE schemes can achieve post-compromise
security. No UE scheme can achieve forward security.

The first class of UE schemes, discussed in Sect. 3.2, have update settings
such that keys cannot upgrade and ciphertexts cannot downgrade. Since the
ciphertext update is forward direction, an adversary can upgrade challenge-equal
ciphertexts by the help of tokens to an epoch where the adversary knows a key
to break the confidentiality in early epochs. Therefore, such UE schemes cannot
achieve forward security. However, an adversary compromises keys and tokens in
some early epochs cannot learn keys to break the confidentiality in later epochs.
Additionally, the adversary cannot downgrade a challenge-equal ciphertext to
an early epoch where the adversary knows a key to break the confidentiality in
later epochs. Hence, such UE schemes can have post-compromise security.

The second class of UE schemes, discussed in Sect. 3.2, have update settings
where keys and ciphertexts both can leak information in the forward direction.
An adversary can infer keys by tokens in the forward direction to break the
confidentiality in later epochs, therefore, such UE schemes cannot achieve post-
compromise security. Moreover, since the ciphertext update is forward direction,
similar to the discussion in above paragraph, such UE schemes cannot achieve
forward security either.

The above discussion matches with the equivalence results of confidentiality
notions (see Sect. 4). It implies that the first class of UE schemes (including UE
schemes with backward-leak uni-directional key updates and no-directional key
updates) can achieve the strongest confidentiality notion (with post-compromise
security).

3.4 Directionality for UE Schemes and Confidentiality Notions

We specify that directionality for UE schemes and directionality for confidential-
ity notions are two different concepts. The update directionality for UE schemes
was defined to measure how much keys and ciphertexts are leaked because of
update tokens. However, such leakage can be the whole information leakage or
just partial information leakage. The partial leakage is not captured in the direc-
tionality for UE schemes, there is no definition for partial information leakage.
Under current definitions, we consider update direction for UE schemes to be
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without partial information leakage. However, partial information leakage may
be used to break the confidentiality. An adversary may be able to decrypt cipher-
texts where it only knows partial information about the corresponding key. Such
partial information leakage is considered in the security notion and it can be seen
as equivalent to the whole information leakage. For example, suppose tokens in
a UE scheme can be used to infer partial key information in both update direc-
tion, such UE schemes are considered as a no-directional key update UE scheme.
However, if an adversary can use this partially leaked key to break confidential-
ity, then such UE scheme is not secure in the no-directional update variant of
confidentiality, it can at most be secure in the bi-directional update variant of
confidentiality. Overall, UE schemes with one kind of update setting do not
immediately have the same update direction variant of security.

A specific update variant of security notion is suitable for examining UE
schemes with the same update setting. But we stress that our security definitions
are not restricted to UE schemes with some particular update setting, such UE
schemes are simply insecure in a less updating (or leakage) variant of notion.

4 Relations Among Confidentiality Notions

In the work of [10], Jiang showed that all variants of the same integrity notions
are equivalent, hence, we do not consider integrity notions in this work and
focus on discussing the relations among confidentiality notions in this section.
We prove that the backward-leak uni- and no directional key update variant of
the same confidentiality notion are equivalent. As a result, UE schemes with
backward-leak uni-directional key updates is as strong as UE schemes with no
directional key update. It implies that we can construct a less hard (backward-
leak uni-directional key updates) UE scheme to achieve the same security result.

4.1 Equivalence for Trivial Win Conditions

We prove four equivalence of the trivial win conditions. The proofs of these
equivalence lemmas follow the proof strategy in [9], and they are provided in
the full version [7]. The trivial win conditions considered in this section are
checked in a confidentiality game. In conclusion, if the trivial win conditions in
the backward-leak uni-directional key update setting are triggered then the same
trivial win conditions in the no directional key update setting would be triggered.
We will use these trivial win equivalences to prove the relation in Theorem 1.

Lemma 1 (Equivalence for Trivial Win Condition “K∗ ∩ C∗ �= ∅”). For
any sets K, T , C ⊆ {0, ..., l}, we have K∗

b-uni∩C∗
b-uni,uni �= ∅ ⇐⇒ K∗

no∩C∗
no,uni �= ∅.

Lemma 2 (Equivalence for Trivial Win Condition “ẽ∈ T ∗ or O.Upd(c̄)
is queried”). For any K, T , C. Suppose K∗

kk∩C∗
kk,cc = ∅, where kk ∈ {b-uni, no},

cc = uni, then

ẽ∈T ∗
no or O.Upd(c̄) is queried ⇐⇒ ẽ∈T ∗

b-uni or O.Upd(c̄) is queried.
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Lemma 3 (Equivalence for Trivial Win Condition “(c, e) ∈ L̃∗”). For
any sets K, T , C ⊆ {0, ..., e}. Suppose K∗

b-uni ∩ C∗
b-uni,uni = ∅, then

(c, e) ∈ L̃∗
b-uni,uni ⇐⇒ (c, e) ∈ L̃∗

no,uni.

Lemma 4 (Equivalence for Trivial Win Condition “(m′, e) ∈ Q̃∗”). For
any sets K, T , C ⊆ {0, ..., e}. K∗

b-uni ∩ C∗
b-uni,uni = ∅, then (m′, e) ∈ Q̃∗

b-uni,uni ⇐⇒
(m′, e) ∈ Q̃∗

no,uni.

4.2 Relations Among Confidentiality Notions

Jiang [10] showed that the bi-directional key update and the forward-leak uni-
directional key update variants of the same confidentiality notions are equivalent,
and confidentiality in the no-directional key update is strictly stronger than
that in the above mentioned two key update settings. However, the relation
between the backward-leak uni-directional key update and the no-directional key
update variants of the same confidentiality notion is missing in the previous work.
We complete the relations among the eight variants of the same confidentiality
notion, they are described as in Fig. 3. This is proven via Theorem 1, given
below, and results in [10].

Recall discussions in Sect. 3.2 and 3.3, where we consider update settings in
{(b-uni, uni), (no, uni)} are in one class and the rest update settings are in another
class. Intuitive observation shows notions in the same class are equivalent and
the prior class is strictly stronger than the latter. Interestingly, the result showed
in Fig. 3 matches with this intuition and provides a rigorous proof.

Fig. 3. Relations among the eight variants of the same confidentiality notion, where
notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA}, kk ∈
{no, b-uni, f-uni, bi} and cc ∈ {uni, bi}, the notation of (kk, cc) are except for values in
{(b-uni, uni), (no, uni)}. Results in work of [10] are marked with ∗.

In Theorem 1, we compare two types of UE notions: the no-directional key
update setting and the backward-leak uni-directional setting. To illustrate the
intuition for our equivalence between these two settings we have two scenarios:
the first is where the adversary has corrupted a key located in an epoch earlier
that the challenge epoch, and the second is where the adversary has corrupted
a key located in an epoch later that the challenge epoch. In the first scenario,
the adversary cannot update the key even if she had all update token because in
both update settings forward key update is impossible. Similarly, the challenge
ciphertext cannot be downgraded. Thus, in the first scenario, both update set-
tings are equivalent. For the second scenario, we have that the adversary will win
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the game in both update settings if she has access to enough tokens, because now
the key can either be downgraded, using the tokens, or the challenge ciphertext
can be upgraded, using the same tokens. So, in the second scenario, both update
settings are equivalent.

Theorem 1. Let UE = (Setup,Next,Enc,Dec,Upd) be an updatable encryp-
tion scheme and notion ∈ {detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA,
randIND-UE-CCA}. For any (b-uni, uni)-notion adversary A against UE, there
exists a (no, uni)-notion adversary B1 against UE such that

Adv(b-uni,uni)-notion
UE, A (λ) = Adv(no,uni)-notion

UE, B1
(λ).

Proof. The proof follows the same method as the proof of Theorem 3.1 in [10].
We construct a reduction B1 running the (no, uni)-notion experiment which will
simulate the responses of queries made by the (b-uni, uni)-notion adversary A.
The reduction will send all queries received from A to its (no, uni)-notion chal-
lenger, and forwarding the responses to A. Eventually, the reduction receives a
guess from A and forwards it to its own challenger. In the end, the (no, uni)-notion
challenger evaluates whether or not the reduction wins, if a trivial win condi-
tion was triggered the reduction is considered as losing the game. This final win
evaluation will be passed to the adversary A.

By the equivalences of trivial win conditions in Sect. 4.1 (Lemma 1 to 4), if A
does not trigger the trivial win conditions in the (b-uni, uni)-notion game, then the
reduction will not trigger the trivial win conditions in the (no, uni)-notion game
either. If A triggers the trivial win conditions in the (b-uni, uni)-notion game, then
the reduction will also trigger the trivial win conditions in the (no, uni)-notion
game. Therefore, the reduction perfectly simulates the responses to adversary
A. And we have Adv(no,uni)-notion

UE, B1
(λ) = Adv(b-uni,uni)-notion

UE, A (λ).

5 UE from Key Homomorphic PKE

We use key homomorphic PKE schemes to construct UE schemes in this section.
The idea of key homomorphic by Boneh et al. [3] inspired this construction idea.
Our key homomorphic is more general than the key homomorphic construction
presented by Boneh et al. [3], where we can rotate information based on a public
value and a secret value instead of two secret values.

5.1 Key Homomorphic PKE

We define key homomorphic PKE in this section, which will be used to build
updatable encryption schemes in the later two sections.

Definition 5 (Key Homomorphic PKE). We say public key encryption
PKE = (KG,Enc,Dec) is key homomorphic if:
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1. there exists an efficiently computable secret key to public key algorithm [·] :
SK −→ PK such that for any (sk, pk) ← KG(λ), the following two pairs of
distributions are statistically close:

(sk, [sk])
s≈ (sk, pk). (4)

{(sk1 ⊗ sk2, [sk1 ⊗ sk2]) | sk1, sk2
$←− SK} s≈ {(sk, [sk]) | sk

$←− SK}. (5)

where ⊗ is an operation (which can be addition, multiplication, etc.) over the
secret key space.

2. there exists an efficiently computable key homomorphic to key algorithm
defined as:
KHK : SK × PK −→ PK takes a secret key and a public key as input and
outputs a public key, such that for any secret key sk2 ∈ SK and public key
pk1 ∈ PK, the following two distributions are statistically close:

KHK(sk2, pk1)
s≈ [sk1 ⊗ sk2], (6)

where sk1 is the secret key of pk1.
3. there exists an efficiently commutable key homomorphic to ciphertext algo-

rithm KHC, defined as:
KHC : SK × CS −→ CS takes a secret value and a ciphertext as input and
outputs a ciphertext, such that for any keys (sk1, pk1) ← KG, secret value

sk2
$←− SK, and any message m, the following two distributions are statisti-

cally close:

(c,KHC(sk2, c))
s≈ (c,Enc([sk1 ⊗ sk2],m)), (7)

where c = Enc(pk1,m).

Remark 1. Equation (4) guarantees that we can compute a public key from a
secret key. Equation (5) makes sure the distribution generated from the homo-
morphism of keys is statistically close to the original key distribution. Equa-
tion (6) allows us to compute a new public key from a secret key (assume sk2)
and an old public key (assume pk1 = [sk1]), the underlying secret key of the
newly generated public key matches the output of the homomorphic operation
applied to the input secret keys (sk1 and sk2). It is essential for our security
proof of Theorem 2. We need an algorithm to simulate new public keys from the
corresponding old public keys and some secret values. In the proof of Theorem 2,
when we use a reduction to simulate the game to an adversary within the firewall,
the reduction has no knowledge of any secret keys, but it can simulate public keys
with KHK from its own challenge public key and simulated secrets (cf. Fig. 11 in
the full version [7]). Without these simulated public keys, the reduction cannot
simulate valid ciphertexts within the firewall region. Additionally, we require the
two distributions to be statistically close to make sure any adversary cannot dis-
tinguish simulated public keys from the real ones. All the PKE considered here
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satisfy this property. This statistical property is crucial, since the correctness of
our scheme requires Equation (7) to hold statistically. This, in turn, requires the
two public keys are statistically indistinguishable, since otherwise Equation (7)
cannot hold for an unbounded adversary. Equation (7) enables us to compute a
new ciphertext from one public key to another public key without changing the
underlying message.

Examples of key homomorphic public key encryption schemes are ElGamal
encryption and LWE-based PKE (for some parameter choice) schemes. The secu-
rity of such PKE schemes are based on DDH and LWE problems, resp..

– ElGamal encryption: Let G be a cyclic group of order q with generator g.
For any secret key x ∈ Zq, the corresponding public key is [x] = gx. Given
any public value [y] and any secret value x, we can compute KHK(x, [y]) =
[y]x = gxy = [x ⊗ y]. Here, ⊗ is multiplication of integers and function KHK
is computed as KHK(x, y) = yx. For any ciphertext c = ([rx], [r] · m), any

(y, [y]) $←− KG and a random value r′ $←− Z
∗
q , note that [xy] = KHK(y, [x]) =

[x]y, then KHC(y, c) = (cy
1 · [xy]r

′
, [r′] · c2) = ([(r + r′)xy], [r + r′] · m) is a

ciphertext encrypted under public key [xy] with the same underlying message
m of the original ciphertext c.

– Lattice based PKE: Denote [s] = as + e, then we can compute KHK(s, [t]) =
[s]+ [t]

s≈ [s⊗ t], the right side public key has a bigger error. Here, ⊗ is group

addition. For any ciphertext c = (ar, [s]r+e′ +m) and any (t, [t]) $←− KG, note
that [s ⊗ t]

s≈ [s] + [t], then KHC(t, c) = (c1 + ar′, c2 + c1t + [s ⊗ t]r′ + e′′)
s≈

(a(r+r′), [s⊗ t](r+r′)+(e′ +e′′)+m) is a ciphertext encrypted under public
key [s ⊗ t].

5.2 Bi-directional UE from Key Homomorphic PKE

We construct a UE scheme PKEUE, which is constructed from a key homo-
morphic PKE scheme PKE, the construction is described in Fig. 4. Note that
the next key pair (ske+1, pke+1) is statistically close to a real key pair gener-
ated from PKE.KG(λ) by Eq. (4) and (5). Note that RISE [12] and LWEUE [9]
are constructed by this method, they are built from ElGamal encryption and
LWE-based PKE.

Correctness. The correctness of PKEUE follows from the correctness of PKE. It is
sufficient to prove that the updated ciphertext is a valid ciphertext which keeps
the same underlying message as the original ciphertext. Since PKE is key homo-
morphic (see Definition 5), we have that ce+1 = PKE.KHC(Δe+1, ce)

s≈
Equation (7)

PKE.Enc([ske ⊗ Δe+1],m)=PKE.Enc(pke+1,m).
Next, we prove that the UE scheme constructed above satisfies the weaker

variant of rand-IND-UE security, namely the (bi, bi)-rand-IND-UE security.
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Fig. 4. PKEUE = (Setup,Next,Enc,Dec,Upd) is a UE scheme constructed from a key
homomorphic PKE PKE.

Theorem 2. Let PKEUE be the updatable encryption scheme described in
Fig. 4. For any (bi, bi)-rand-IND-UE adversary A against PKEUE, there exists
an IND-CPA adversary B2 against PKE such that

Adv(bi,bi)-randIND-UE-CPA
PKEUE, A (λ) ≤ l3 · AdvIND-CPA

PKE,B2
+ negl(λ),

where l is the upper bound on the last epoch.

Proof. In this proof, we use three steps to reach our desired goal. In the first
step, we play a hybrid game over epochs, where the reduction constructs one
hybrid for each epoch. In hybrid i, to the left of epoch i the game returns an
updated ciphertext as the challenge output, to the right of epoch i it gives an
encryption of the challenge input message as output. Therefore, we can move the
(bi, bi)-randIND-UE-CPA game from left to right across the epoch space. In the
second step, we apply the firewall technique [4,11,12] (recall the discussion in
Sect. 3.2) so that we can construct a reduction (in step 3) playing the IND-CPA
game by simulating the hybrid game to the adversary. Due to space limitations,
the detailed security proof is shown in the full version [7].

5.3 Uni-Directional UE from Key and Message Homomorphic PKE

In this section, we construct a UE scheme with backward-leak uni-directional key
update, which is called UNIUE. The UNIUE scheme is built from a key and mes-
sage homomorphic PKE scheme. Recall that key homomorphic PKE is defined in
Definition 5. The message homomorphic PKE is defined as the standard homo-
morphic encryption, we name it message homomorphic to distinguish two types of
homomorphism (key homomorphism and message homomorphism) in this paper.

Definition 6 (Message Homomorphic PKE). We say public key encryption
PKE = (KG,Enc,Dec) is message homomorphic if for any message m1,m2 ∈ M
and any public key pk, Enc(pk,m1) ⊗ Enc(pk,m2) = Enc(pk,m1 ⊕ m2), where ⊗
is an operation over the ciphertext space and ⊕ is an operation over the message
space.
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Notation. For a vector A = (a1, ..., an), we define [A] = ([a1], ..., [an]). For
vectors A,B and function f , we define f(A,B) = (f(a1, b1), ..., f(an, bn)).

Constructing Uni-Directional UE. We construct a backward-leak uni-directional
key update and uni-directional ciphertext update UE scheme UNIUE from a
key and message homomorphic PKE scheme. The construction is described in
Fig. 5. The idea of this construction is that only the public value pke+1,e+1 is
included in the update token Δe+1, secret key ske+1,e+1 is not included, in other
words, no information of this secret key can be revealed from the token. We
can deploy this key pair to protect the confidentiality in the new epoch. The
detailed construction is shown in Fig. 5. When epoch period turns into the next
epoch period, the new epoch key will increase one key element. That is, epoch
key ke has e pairs of secret key and public key, epoch key ke+1 has e+1 pairs of
secret key and public key. To update a ciphertext, we use the difference of ske

and ske+1 (except for the last element) to move encryption of random elements
from epoch e to epoch e + 1. Due to PKE is message homomorphic, we can
perform a re-randomization to refresh the underlying random values. Then, we
add an encryption of a new random value, which is encrypted under pke+1,e+1,
into the updated ciphertext. This new random value can be used to hide the
message. Note that if we do not include this additional randomness, the above
construction is bi-directional.

Correctness. It is sufficient to prove that the updpated ciphertext is a ciphertext
in epoch e+1, with underlying message m. We compute the updpated ciphertext
as follows. c1 = PKE.KHC(Δsk

e+1, ce,1)
s≈

Equation (7)
PKE.Enc([ske ⊗ Δsk

e+1],Re)

and ce+1,1 ← (c1, 0) + PKE.Enc(pke+1,R) = PKE.Enc(pke+1, (Re, 0) + R).
Denote Re+1 = (re+1,1, ..., re+1,e+1) = (Re, 0) + R, due to the randomness of R
we know Re+1 is a random vector. Furthermore, ce+1,2 ← ce,2 ⊕r1 ⊕· · ·⊕re+1 =
re+1,1 ⊕ · · · ⊕ re+1,e+1 ⊕ m. Therefore, the updated ciphertext ce+1 is a valid
ciphertext in epoch e + 1. Note that we consider epoch bounded UE, which
implies that the noise in lattice-based constructions will not grow too large.

Backward-Leak Uni-Directional Key Updates. Any new key ske+1 has a random
key element ske+1,e+1 which is independent from the update token Δe+1 and
the previous key ske, hence, any adversary cannot upgrade keys.

Uni-Directional Ciphertext Updates. If there exists an adversary A which can
infer a valid previous ciphertext ce from token Δe+1 and ciphertext ce+1. Then
we claim that A can use this ability to win the IND$-CPA game for PKE. Initially,
A receives a public key pke+1,e+1 from its IND$-CPA challenger. A generates a
secret key ske and a token Δsk

e+1 as algorithms of UNIUE specify. A computes
the public key pke+1 and token Δe+1 by embedding the public key pke+1,e+1.
Suppose A asks for a challenge query with input re+1,e+1, it gets the challenge
ciphertext c̃. Then A uses re+1,e+1 and c̃ to create a ciphertext in epoch e + 1,
say c̃e+1. A can move the ciphertext c̃e+1 to a ciphertext c̃e by the token Δe+1
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Fig. 5. UNIUE = (Setup,Next,Enc,Dec,Upd) is a UE scheme built from a key and
message homomorphic PKE scheme PKE. ⊕ is an operation on the message space and
assume its inverse operation exists.

and then decrypt c̃e by the secret key ske. Eventually, A compares the message
with the message used when it creates c̃e+1. If they are the same then A guesses
it received a real encryption from its IND$-CPA challenger, otherwise, it guesses
it received a random ciphertext from its IND$-CPA challenger. The advantage
of A winning the IND$-CPA game is equal to the probability of A successfully
downgrades the ciphertext ce+1 to a ciphertext ce by the token Δe+1.

Next, we prove that the UE scheme constructed in Fig. 5 satisfies the stronger
variant of rand-IND-UE security, namely the (b-uni, uni)-rand-IND-UE security.

Theorem 3. Let UNIUE be the updatable encryption scheme described in Fig. 5.
For any (b-uni, uni)-rand-IND-UE adversary A against UNIUE, there exists an
IND$-CPA adversary B3 against PKE such that

Adv(b-uni,uni)-randIND-UE-CPA
UNIUE, A (λ) ≤ 2l2 · AdvIND$-CPA

PKE,B3
+ negl(λ),

where l is the upper bound on the last epoch.

Remark 2. The difference between proving a UE scheme is (b-uni, uni)-rand-
IND-UE secure and (bi, bi)-rand-IND-UE secure are trivial win conditions, and
how the reduction runs the simulation.
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Consider the backward-leak uni-directional key updates variant of a confiden-
tiality notion, there will exist a the relaxed insulated region (recall the discussion
in Sect. 3.2). Assume ẽ is the challenge epoch, where key in this epoch should
not be corrupted. Hence, there exists an epoch after ẽ, say fwr, such that keys
in epoch {ẽ, ..., fwr} and token in epoch fwr + 1 are not corrupted, in addition,
tokens in epoch {ẽ + 1, ..., fwr} are corrupted. By Definition 4, we know that
epoch region {ẽ, ..., fwr} is a relaxed insulated region. Tokens and keys before
ẽ can be corrupted, which will not trigger the trivial win condition. Because
knowing any token and any key before epoch ẽ will not break the confidentiality
in epoch ẽ, the key element skẽ,ẽ in skẽ is an independent and random value
compared to all previous update tokens and keys, hence, ciphertexts in epoch ẽ
are random looking without the knowledge of the key element skẽ,ẽ.

Proof. The proof is similar to the proof in Theorem 2. We construct hybrid
games and apply the firewall technique on relaxed insulated regions.

Step 1. In the initial hybrid games, we move challenges from real to random
over epochs. We construct a sequence of hybrid games H1, ...,Hl. For b ∈ {0, 1},
experiment Hb

i is defined as follows, if the adversary asks for a challenge-equal
ciphertext by the O.Chall query or a O.UpdC̃ query, with challenge input (m̄, c̄),
in epoch j:

– if j ≤ i, for b = 1 return an updated ciphertext of c̄, for b = 0 return (an
updated ciphertext which is updated from) an encrypted ciphertext of m̄.

– if j > i, return a random ciphertext.

Thus H1
l is Exp(b-uni,uni)-randIND-UE-CPA-1

UNIUE, A , i.e. all challenge responses are

challenge-equal ciphertexts of Upd(c̄). And H0
l is Exp(b-uni,uni)-randIND-UE-CPA-0

UNIUE, A ,
i.e. all challenge responses are challenge-equal ciphertexts of Enc(m̄). Notice
that H0

0 = H1
0 , in which all challenge ciphertexts are random ciphertexts. We

have

Adv(b-uni,uni)-randIND-UE-CPA
UNIUE, A =

∣
∣Pr[H1

l = 1] − Pr[H0
l = 1]

∣
∣

≤
l∑

i=1

|Pr[H1
i = 1] − Pr[H1

i−1 = 1]|

+
l∑

i=1

|Pr[H0
i = 1] − Pr[H0

i−1 = 1]|.

Step 2. We define a new game Gi that is the same as game Hi, except for the
game randomly picks a number fwr

$←− {0, ..., l}. If the adversary corrupts a key
in the sequence of epochs (i, ..., fwr) or a token in epoch fwr+1, the game aborts.
This loss is upper bounded by l.

Then we have |Pr[Hb
i = 1] − Pr[Hb

i−1 = 1]| ≤ l|Pr[Gb
i = 1] − Pr[Gb

i−1 = 1]|.
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Step 3. In this step, we prove that |Pr[Gb
i = 1]−Pr[Gb

i−1 = 1]| = AdvIND$-CPA
PKE,B3

+
negl(λ). Assume Ai is an adversary attempting to distinguish Gb

i from Gb
i−1.

We construct a reduction B3, detailed in Fig. 6, playing the IND$-CPA game by
simulating the responses to adversary Ai.

Initially, the reduction guesses a number fwr. If Ai corrupts ki, ...,kfwr, or
Δfwr+1 the reduction aborts the game.

A summary of the technical simulations are as follows.

– In the setup phrase, B3 generates all keys and tokens, except for ki, ...,kfwr,
Δfwr+1, as follows.

• The key pairs and tokens outside of the relaxed insulated regions are
generated as in Gi.

• The public keys within relaxed firewalls are generated by embedding pub-
lic key pk to the i-th term of pki, where pk is the public key received from
its IND$-CPA game.

– To simulate non-challenge ciphertexts: B3 uses public keys to simulate
encrypted ciphertexts and updated ciphertexts.

– To simulate challenge-equal ciphertexts in an epoch that is:
• j < i: B3 uses public keys to simulate encryption and updating.
• j = i: B3 embeds the challenge ciphertext c̃ received from its IND$-CPA

challenger to the challenge-equal ciphertext in epoch i. More precisely,
suppose B3 receives a challenge query O.Chall with input (m̄0, c̄) in chal-
lenge epoch ẽ, where the underlying message of c̄ is m̄1. B3 sends a random
value ri to its IND$-CPA challenger and obtains c̃β . B3 embeds c̃β to the
i-th term of the challenge ciphertext and uses ri and mb to compute
the last term of the challenge ciphertext. Afterwards, B3 returns c̃i to
the adversary A. Again, by Eq. (7), B3 perfectly simulate the challenge
ciphertexts in game Gi−1+β except for a negligible probability negl(λ).

• j > i: B3 outputs random ciphertext as challenge ciphertext.

Eventually, B3 receives the output bit from Ai and if Ai guesses it is playing
Gi (suppose it represents the guess response of Ai is 1), then B3 guesses it
received a real encryption and sends 1 to its IND$-CPA challenger. Otherwise,
sends 0 to its IND$-CPA challenger. We have |Pr[Gb

i = 1] − Pr[Gb
i−1 = 1]| =

AdvIND$-CPA
PKE + negl(λ).

6 UE from Bootstrappable PKE

Bootstrappability can be used to refresh ciphertexts without revealing the under-
lying message, which implies updatable encryption.

Definition 7 (Bootstrappable PKE). We say a public key encryption
BPKE = (KG,Enc,Dec) is bootstrappable if it can evaluate its own decryp-
tion circuit D. More precisely, there exists a re-encryption algorithm Recrypt
that takes a public key, the decryption circuit D, an encryption of a secret key
and a ciphertext as input and outputs a new ciphertext, such that for any keys
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Fig. 6. Reduction B3 for proof of Theorem 3.
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(sk1, pk1), (sk2, pk2) ← KG(λ) and any message m, the following two distribu-
tions are statistically close:

(c,Recrypt(pk2,D,Enc(pk2, sk1), c))
s≈ (c,Enc(pk2,m)), (8)

where c = Enc(pk1,m).

Note that bootstrappable PKE is simpler than a FHE scheme. Most FHE scheme
requires bootstrappability, while only bootstrappability is not enough for FHE.
Gentry [8, Chapter 4] constructed a re-encryption algorithm Recrypt (see Fig. 7),
which allows us to update a ciphertext under pk1 to a ciphertext under pk2.

Fig. 7. Recrypt algorithm. For any key pairs (sk1, pk1), (sk2, pk2) ← KG(λ). Let sk1,j

be the j-th bit of sk1 and sk1,j = Enc(pk2, sk1,j). For any plaintext m ∈ M, let
c1 = Enc(pk1, m), and c1,j denote the j-th bit of c1. The output c2 is an encryption of
Dec(sk1, c1) = m under pk2.

The Recrypt algorithm can be used to update ciphertext, where the update
token is the encryption of the current secret key ske under the next public
key pke+1. We construct an updatable encryption scheme BPKEUE from BPKE,
which is shown in Fig. 8.

Fig. 8. BPKEUE = (Setup,Next,Enc,Dec,Upd) is a UE scheme constructed from a
bootstrappable PKE scheme BPKE.

Correctness. The correctness of encrypting then decrypting follows the correct-
ness of the underlying PKE scheme. The correctness of encrypting then updat-
ing then decrypting is because of the bootstrappability of BPKE scheme, the
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re-encrypted ciphertext is a new ciphertext encrypted under the new public key
with the same message. Note that we consider epoch bounded UE, which implies
that the noise will not grow too large.

Backward-Leak Uni-Directional Key Updates. We can see the earlier key ske
and token Δe+1 as a plaintext and the corresponding ciphertext under public
key pke+1. Hence, any adversary can not obtain the secret key ske+1.

Uni-Directional Ciphertext Updates. If there exists an adversary which can infer
a valid previous ciphertext ce from token Δe+1 and ciphertext ce+1. Then we
claim that the adversary can use this ability to win the IND-CPA game for BPKE.
Initially, the adversary receives a public key pke+1 from its IND-CPA challenger.
The adversary generates a secret key ske and computes the token Δe+1 by the
knowledge of the public key pke+1 and the secret key ske. Then the adversary
can move the challenge ciphertext c̃e+1 (encrypted under pke+1) to a ciphertext
c̃e by the token Δe+1. Note that c̃e+1 and c̃e have the same underlying message.
Therefore, the adversary can decrypt c̃e by ske and then compare the output
with the challenge messages to win the IND-CPA game.

Remark 3. Nishimaki [14] observed that if the update token Δe+1 is generated
by the old secret key ske and the new public key pke+1, such UE schemes may
have backward-leak uni-directional key updates. The reason is that it will be
difficult to break the confidentiality in epoch e + 1 with only the knowledge of
pke+1, Δe+1 and ske, no information about ske+1 is revealed.

We observed that such UE schemes may have uni-directional ciphertext
updates as well. The proof idea is similar to the proof of BPKEUE has uni-
directional ciphertext updates. We claim that if such UE schemes do not have
uni-directional ciphertext updates, then any adversary can break the confiden-
tiality of such UE schemes without the knowledge of any epoch key. If an adver-
sary aims to attack the confidentiality in epoch e+1, it can generate a new secret
key in epoch e. Then the adversary computes the token Δe+1 by the generated
secret key ske and the public key pke+1. It can move ciphertexts from epoch e+1
to epoch e by token Δe+1 and then decrypt it by ske to win the confidentiality
in epoch e + 1.

Next, we prove that the UE scheme constructed in Fig. 8 is secure under the
(b-uni, uni)-rand-IND-UE notion.

Theorem 4. Let BPKEUE be the UE scheme described in Fig. 8. For any (b-uni,
uni)-rand-IND-UE adversary A against BPKEUE, there exists an IND-CPA adver-
sary B4 against BPKE such that

Adv(b-uni,uni)-randIND-UE-CPA
BPKEUE, A (λ) ≤ 2l3 · AdvIND-CPA

BPKE,B4
+ negl(l),

where l is the upper bound on the last epoch.

Before proving the above theorem, we prove a lemma first. In the IND game,
any adversary can only ask for tokens and encryption oracles.
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Lemma 5. Let BPKEUE be the UE scheme described in Fig. 8. For any IND
adversary A against BPKEUE, there exists an IND-CPA adversary B5 against
BPKE such that

AdvIND
BPKEUE, A(λ) ≤ 2l · AdvIND-CPA

BPKE,B5
,

where l is the upper bound on the last epoch.

Proof (of Lemma 5). The proof is similar to the proof of Theorem 4.2.3 in [8].
We use a hybrid games to move tokens from real to random. In hybrid i, the
last l − i tokens are random from the real keys. More precisely, for i ∈ {1, ..., l}
let Gi be a game that is identical to the IND game against BPKEUE, except for
all j > i:

(sk′
j , pk′

j)
$←− KG(λ),Δj

$←− Enc(pkj , sk
′
j−1).

Note that the last l − i tokens are not related to the real keys.
We have that Gl is the IND game and the advantage of any adversary winning

G0 is upper bounded by l ·AdvIND-CPA
BPKE . Next, we claim that for any i ∈ {1, ..., l},

|Pr[Gi = 1] − Pr[Gi−1 = 1]| = AdvIND-CPA
BPKE .

Suppose A is an adversary aiming to distinguish Gi from Gi−1. We construct
a reduction B5 playing the IND-CPA game (against BPKE) and simulating the
response to A. Initially, B5 receives a public key pk from its IND-CPA challenger.
B5 generates key pairs as in Gi except for it embeds pk to pki. It generates a
random key pair (sk′

i−1, pk′
i−1)

$←− KG(λ), sets (m0,m1) = (sk′
i−1, ski−1) and

sends (m0,m1) to its challenger. The challenger flips a coin β
$←− {0, 1} and

returns the encryption of mβ . B5 sets the received challenge ciphertext as Δi.
Note that B5 perfectly simulates public keys and tokens in Gi−1+β to A. When

A asks for a challenge query on (m̄0, m̄1), B5 flips a coin b $←− {0, 1} and sends
the encryptions of m̄b to A. Eventually, A submit a guess, if A guesses it is Gi

then B5 returns 1 to its challenger, otherwise, B5 returns 0.
Since B5 perfectly simulate Gi−1+β to A. The probability of A is able to

distinguish which game it is playing is equal to AdvIND-CPA
BPKE,B5

.

Proof (of Theorem 4). We use firewall technique and construct a sequence of
hybrid games to move challenges from left to right over the relaxed insulated
regions. Define game Gi as (b-uni, uni)-randIND-UE-CPA game, except for

– The game randomly choose a number fwr
$←− {0, ..., l}. If fwr is not the i-th

right firewall, returns a random bit for b′. This loss is upper bounded by l.
– To the left side of epoch fwr, the game returns a ciphertext with respect to

c̄, to the right side of epoch fwr returns a encryption of m̄.

If fwr is guessed correct, then G0 is Exp(b-uni,uni)-randIND-UE-CPA-0
BPKEUE and Gl is

Exp(b-uni,uni)-randIND-UE-CPA-1
BPKEUE . So we can bound the (b-uni, uni)-randIND-UE-CPA

advantage by the advantage of distinguishing G0 and Gl.

Adv(b-uni,uni)-randIND-UE-CPA
BPKEUE, A (λ) ≤

l∑

i=1

|Pr[Gi = 1] − Pr[Gi−1 = 1]|,
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Notice that if Gi−1 and Gi have the same right firewall fwr, then they are
the same game, hence, we assume Gi−1 and Gi have different right firewall. Sup-
pose Ai is an adversary attempting to distinguish Gi−1 from Gi. For all queries
concerning epochs outside of the i-th relaxed insulated region ({i,..., fwr}) the
responses will be equal in either game, We construct a reduction B4 playing the
IND game (within the epoch region {i, ..., fwr}) for BPKEUE and will simulate
the responses of queries made by Ai. Initially, the reduction guesses a num-
bers fwr. If Ai corrupts ki, ..., kfwr, or Δfwr+1 the reduction aborts the game. A
summary of the technical simulations are as follows.

– In the setup phrase, B4 generates all keys and tokens, except for ki, ..., kfwr,
Δfwr+1, as follows.

• The key pairs and tokens outside of the relaxed insulated regions are
generated as in Gi.

• The public key within firewalls are generated by embedding public keys
(pki, ..., pkfwr) and tokens (Δi+1, ...,Δfwr), which are received from the
IND challenger.

– To simulate non-challenge ciphertexts: B4 uses public keys to simulate
encrypted ciphertexts and updated ciphertexts. Due to updated ciphertext
is statistically close to the fresh encryption of the same underlying message,
the adversary notice this change with negligible probability.

– To simulate challenge-equal ciphertexts in an epoch that is:
• j < i or j > fwr: B4 uses public keys to simulate encryption and updating.
• j ∈ {i, ..., fwr}: B4 sends (m̄0, m̄1) to its IND challenger and forwards the

response to Ai, where m̄1 is the underlying message of c̄.

Eventually, Ai sends a guess. If Ai guesses it is playing Gi−1 then B4 guesses
0 to its IND challenger. Otherwise, B4 sends 1 to its IND challenger. Note that
B4 perfectly simulates Gi−1 to Ai when its challenger encrypts m̄0 and perfectly
simulates Gi to Ai when its challenger encrypts m̄1.

Adv(b-uni,uni)-randIND-UE-CPA
BPKEUE, Ai

(λ) ≤ l2 · AdvIND
BPKEUE,B4

+ negl(l),

Combing the result of Lemma 5, we have the desired result.
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Abstract. Functional encryption (FE for short) can be used to calcu-
late a function output of a message, without revealing other informa-
tion about the message. There are mainly two types of security def-
initions for FE, exactly simulation-based security (SIM-security) and
indistinguishability-based security (IND-security). Both of them have
some limitations: FE with SIM-security supporting all circuits cannot
be constructed for unbounded number of ciphertext and/or key queries,
while IND-security is sometimes not enough: there are examples where
an FE scheme is IND-secure but not intuitively secure. In this paper, we
present a new security definition which can avoid the drawbacks of both
SIM-security and IND-security, called indistinguishability-based security
against probabilistic queries (pIND-security for short), and we give an FE
construction for all circuits which is secure for unbounded key/ciphertext
queries under this new security definition. We prove that this new secu-
rity definition is strictly between SIM-security and IND-security, and pro-
vide new applications for FE which were not known to be constructed
from IND-secure or SIM-secure FE.

Keywords: functional encryption · probabilistic queries ·
indistinguishability-based security · provable security

1 Introduction

Functional encryption (FE) was first introduced by Boneh et al. in 2011 [BSW11],
which can calculate the function output f(m) given the encrypted message
Enc(m), and leaks nothing else about the message m. Functional encryption is
a mighty cryptographic primitive, and can be considered as a generalization of
attribute-based encryption, predicate encryption and inner product encryption.

Functional encryption is also an important method for computing on
encrypted data, especially for cloud computing [KLM+18,RSG+19,MSH+19].
Using functional encryption, the cloud server can take ciphertexts as input, and
outputs the required computation result as plaintext. This is different from
homomorphic encryption, where the result is a ciphertext that requires addi-
tional decryption procedure and may not be suitable for some applications.
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Informally, a functional encryption scheme consists of four algorithms: despite
the normally defined algorithms Setup,Enc,Dec as in public key encryption, there
is another algorithm KeyGen in functional encryption, which takes the master
secret key and a function f ∈ F as input, and outputs a function key skf . In
the decryption algorithm, function key skf instead of the master secret key is
used, and the function value f(m) instead of the message m itself is returned.
(See Sect. 2 for the formal definition.)

There are mainly two types of security definitions for functional encryption:
indistinguishability-based security (IND-security) and simulation-based security
(SIM-security). However, both of them have their own drawbacks. We first briefly
introduce the two types of security notions, then show why it is necessary to
define a new type of security notions between them.

1.1 Overview of Security Notions for FE

The standard IND-security is equivalent to the natural notion of semantic secu-
rity in public key encryption, and is also defined for many other cryptographic
primitives, such as identity-based and attribute-based encryption. But for func-
tional encryption, it has been pointed out that IND-security is not the strongest
security definition. We first informally recall the definition of IND-security for
FE:

An adversary A cannot distinguish between a ciphertext for m0 and a cipher-
text for m1, even if allowed to query secret keys {skf} for polynomial many
different functions {f ∈ F}, providing that f(m0) = f(m1). (We say that A is
“admissible” if it only makes queries such that f(m0) = f(m1).)

It seems to be natural for the restriction f(m0) = f(m1), since A can trivially
determine whether the ciphertext is for m0 or m1 otherwise. However, such a
restriction leads to the counter-intuitive example given in [O’N10,BSW11] and
refined in [AGVW13]:

Example 1.1 ([BSW11,AGVW13]). Let F be a family of one-way permutations.
Suppose that PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) is a secure public-key
encryption scheme. Then the following FE construction for F is IND-secure:

– Setup(1λ): Let (PKE.pk,PKE.sk) ← PKE.KeyGen(1λ), and return PK =
PKE.pk,MSK = PKE.sk.

– Enc(PK,m): Return PKE.Enc(PK,m).
– KeyGen(MSK, f): Return (MSK, f).
– Dec(skf , ctm): Let skf = (MSK, f), return f(PKE.Dec(MSK, ctm)).

However, each skf totally leaks m, while f(m) does not leak m (since f is one-
way).

It is not difficult to understand why such a counter-example exists: since the
adversary is only allowed to query on f such that f(m0) = f(m1), it is not
allowed to make any single key query if F is a family of one-way permutations.

In [BSW11], the authors defined a stronger security notion, called simulation-
based security to handle such cases. Informally speaking, SIM-security implies that
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there exists a simulator that, given only the length of m and the function outputs
{f(m)}, but not m itself, can simulate the role of the challenger in the real game.
However, SIM-security is so strong that it suffers from the following impossible
results:

(1) [BSW11]: SIM-secure FE for P/poly cannot be constructed for unbounded
ciphertext queries before a single key query;

(2) [AGVW13]: SIM-secure FE for P/poly cannot be constructed for unbounded
key queries before a single ciphertext query.

These impossible results hold even under the random oracle model [AKW18].
Indeed, there are already some constructions for simulation-based FE schemes,
but they only work for either bounded ciphertext queries or bounded key queries
(which means that the number of ciphertext/key queries must be pre-determined
at the Setup phase) [GVW12,GJKS15,ALMT20]. However, for applications in
the real world, we need to know how an FE scheme already proven to be SIM-
secure performs when handling unbounded ciphertext and key queries. Therefore,
a natural question is that: is there a new security notion between IND-security
and SIM-security that overcomes the above drawbacks? Intuitively, the new secu-
rity notion should satisfy the following properties:

– The new security notion must avoid the counter-intuitive example in Example
1.1;

– There must be a construction of FE for P/poly under the new security notion
that supports both unbounded ciphertext and key queries;

– Any SIM-secure FE scheme should satisfy the new security notion, so that
we are able to discuss the unbounded ciphertext/key security for existing
SIM-secure schemes;

– The new security notion should be stronger than IND-security, so that the
properties for IND-security also hold for this new security notion.

Next, we show how to define this new security notion by modifying the exist-
ing IND-security definition. We note that, the problem in the counter-example
can be handled for IND-security, if we loose the restriction on the adversary, such
that A is still allowed to make query f even if f is a one-way permutation. We
start from the distributional indistinguishable security (DI-security), first intro-
duced in [AM18], by letting the input of ciphertext queries be a pair of message
distributions M0,M1, instead of a pair of messages m0,m1. For example, let M0

be the uniform distribution of messages such that the first bit is 0, and M1 be the
uniform distribution of messages such that the first bit is 1. When the adversary
submits M0,M1 to the challenger, the challenger first randomly chooses a bit b,
and then samples m ← Mb.

Now we show that why the counter-example can no longer satisfy the DI-
security definition which allows probabilistic ciphertexts. We only need to con-
struct an adversary A which queries the challenger with a pair of message dis-
tributions, instead of a pair of messages, such that A can break the scheme in
Example 1.1.
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– Let b be a hardcore predicate of f , we let A submit two distributions: M0

is uniform on all strings with b(m) = 0, M1 is uniform on all strings with
b(m) = 1. (More details can be found in Sect. 5.)

– Now A can make queries on f for the one-way permutation f , since f(M0)
and f(M1) are computationally indistinguishable by the property of hard core
predicate.

– A can calculate PKE.Dec(skf , ctmb
) and check its first bit to successfully

recover b.

On computational indistinguishability and queries with trapdoors. However, DI-
security is not enough, mainly because the usage of computational indistin-
guishability in its security definition. We point out that it is not easy to include
computational indistinguishability inside a security game. Below we show the dif-
ficulties we discovered while attempting to define a new security notion through
probabilistic queries, and that how we solved them. We first give an example,
where distributional indistinguishability fails to handle.

Example 1.2. Let PKE be a public key encryption scheme. We explicitly write
the randomness used in the encryption algorithm: PKE.Enc(pk,m; r), let R be
the space of random seeds where r ← R. We define function class F as follows:

fpk(m, r) ∈ F ⇔ ∃(pk, sk) ← PKE.KeyGen, fpk(m, r) = PKE.Enc(pk,m; r).

Let FE be a functional encryption scheme for F , and we consider the security
notion which allows message distributions instead of messages.

We construct an adversary A which makes following queries:

– A runs PKE.KeyGen to get (pk, sk).
– Then, A submits fpk as a key query.
– A chooses random m0,m1, and submits M0,M1 which are uniform distribu-

tions on {m0} × R and {m1} × R.

Now we have that fpk(M0) ← PKE.Enc(pk,m0) and fpk(M1) ←
PKE.Enc(pk,m1), hence the two distributions: f(M0) and f(M1) are computa-
tionally indistinguishable according to the IND-CPA security of PKE. However,
the adversary A can easily distinguish between a ciphertext in f(M0) and f(M1)
since it holds the secret key sk.

Although in [AM18], the authors constructed DI-secure FE for all
polynomial-sized circuits, we show here that DI-security cannot be satisfied for
a function family with trapdoors1, which makes a contradictory. The main rea-
son for this problem is that the notion of computational indistinguishability was

1 We also note that a trapdoor may not only be hidden in the function, but also in
the messages. We slightly modify the function in Example 1.2, and let f be defined
as: f(pk, m, r) = PKE.Enc(pk, m; r), and Mb = {pk} × {mb} × R, so f(M0) and
f(M1) are distributions with trapdoor, and the trapdoor is hidden in the message
distribution, not the function.
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not well-defined as in [AM18]: it must be made clear for which party it is to
distinguish between the two distributions, and how much information it has. In
Example 1.2, since an adversary may cheat, we cannot let A be the distinguisher.
However, A is the only one who has the secret key sk, and for any other party,
f(M0) and f(M1) are indistinguishable, which meets the same difficulties.

This is why we must extend computational indistinguishability into a stronger
notion for such a security notion of FE to be well-defined. We informally state
what it means by saying that two distributions are strictly computationally
indistinguishable even considering trapdoors.

Definition 1.1. (informal) Let D be a p.p.t. algorithm that outputs a pair of dis-
tributions D0,D1, we say that distributions from D are strictly computationally
indistinguishable, if there is no auxiliary string aux corresponding with D0,D1

such that (D0, aux) and (D1, aux) are computational distinguishable.

Note that the auxiliary string aux can be viewed as the trapdoor in distri-
butions D0,D1.

Now, we revisit Example 1.2. We consider A as the algorithm which outputs
fpk(M0) and fpk(M1) as a pair of distributions, and we let sk be the auxiliary
string aux. So we can easily construct B that distinguish between sk, fpk(M0)
and sk, fpk(M1), thus fpk(M0) and fpk(M1) cannot satisfy the condition of strict
computational indistinguishability.

This additional auxiliary string has no affect on function families without
trapdoors. Just consider PKE, for (pk, sk) ← PKE.KeyGen, sk can be the auxil-
iary string if pk is fixed, but if we choose random pk, then there is no such aux
as long as PKE has semantic security (we note that aux is not a variable, hence
cannot be sk). Otherwise, aux becomes a “master trapdoor” which is unrelated
to the randomness used in PKE.KeyGen. Let A be an adversary which distin-
guishes between (D0, aux) and (D1, aux), then Aaux(.) = A(., aux) (with aux
hardwired in the adversary) can break the semantic security of PKE. We shall
give a formal explanation for this case in Sect. 6.

The need for probabilistic function queries. It seems that everything is right with
a new definition for computational indistinguishability. However, since we con-
sider trapdoor functions, we extend Example 1.2 to construct another example
just like Example 1.1:

Example 1.3. Let F be defined as in Example 1.2, and PKE′ be a semantic
secure public key encryption scheme, then the following FE construction for F
is IND-secure even if we consider probabilistic ciphertext queries:

– Setup(1λ): Let (PKE′.pk∗,PKE′.sk∗) ← PKE′.Setup(1λ), and returns PK =
PKE′.pk∗, MSK = PKE′.sk∗.

– Enc(PK, (m, r)): Return PKE′.Enc(PK,m‖r).
– KeyGen(MSK, f): Return (MSK, f).
– Dec(skf , ctm): Parse skf = (MSK, f), decrypt m‖r = PKE′.Dec(MSK, ctm),

and return f(m, r).

However, each skf totally leaks m, while f(m, r) does not leak m (since f is the
encryption of a semantic secure PKE).
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The counter-example above holds, since if we allow the adversary to make
even a single query, it can first use PKE.Setup to generate a pair pk, sk, and then
query the function key for fpk = PKE.Enc(pk, .; .) ∈ F , hence having the abil-
ity to trivially distinguish between fpk(M0) and fpk(M1). (To match Definition
1.1 above, we can trivially construct a distinguisher B with sk as the auxil-
iary string.) Since the adversary cannot make any queries, the same problem in
Example 1.1 also occurs.

In order to avoid such counter-examples, we must allow probabilistic queries
not only in the ciphertext query, but also in key queries. Each time the adversary
makes a probabilistic key query F , the challenger first samples f ← F , then
returns both f and skf to the adversary. We construct an adversary A which
makes following queries (including probabilistic key queries):

– We let A submit two distributions: M0 is uniform on all strings which first
bit is 0, M1 is uniform on all strings which first bit is 1.

– A makes a single key query by submitting a distribution F which is uniform
on F , and gets fpk ∈ F .

– A can calculate PKE′.Dec(MSK, ctmb
) and check its first bit to successfully

recover b.

Since fpk is randomly chosen by the challenger, the adversary A cannot get
the corresponding sk. Here, instead of f(M0) and f(M1), we only require that
the distributions F, F (M0) and F, F (M1) be strictly computationally indistin-
guishable (sampling from F, F (Mb) means sampling f ← F , m ← Mb and
returning f, f(m).) By our definition, the auxiliary string aux is only related
to the distribution F, F (Mb) but independent from how the challenger chooses
fpk ← F (thus independent with either pk or sk).

Now we finished the discussion of rationality for probabilistic queries. We can
see that such a security notion can be well-defined, and also avoids the counter-
intuitive examples in Example 1.1, 1.2 and 1.3. We call the new security notion
indistinguishability-based security against probabilistic queries (pIND-security),
and show that it is weaker than SIM-security but stronger than IND-security.

Construction of pIND-secure FE for P/poly. In this paper, we also give a con-
struction of pIND-secure FE for P/poly, which allows unbounded number of
both ciphertext and key queries. Concretely, we show that a fully pIND-secure
FE scheme for P/poly can be constructed from a selective IND-secure FE scheme,
while the latter can be constructed from both indistinguishability obfuscation
[GGH+13] and well-founded assumptions [JLS21,GP21,WW21]. We note that,
although the existence of iO is a strong assumption, unbounded IND-secure FE
for P/poly is more than sufficient in constructing iO [AJ15]. So the FE scheme
we construct has stronger security without stronger assumptions.

1.2 Related Works

FE for randomized functionalities. Functional encryption for randomized func-
tionalities (rFE) was introduced in [GJKS15]. The authors gave both SIM-based
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and IND-based security notions for rFE. We note that, since the authors also
used computational indistinguishability to define IND-based security for rFE, the
same problems occur as we pointed out in Example 1.2, so that the IND-security
of rFE given by [GJKS15] cannot handle trapdoors or public-key encryption.
By moving our definition (and construction, using the generic transformation
of [AW17]) into the randomized case, these problems can be solved to get a
well-defined pIND-based security for rFE.

Distributional Indistinguishability for FE. In [AM18], the authors gave the defi-
nition of distributional indistinguishability (DI) for FE, which is previously dis-
cussed on garbled circuit and randomized encodings [GHRW14,LPST16], and
also gave a construction for DI-secure FE from standard IND-secure FE. Our
security definition shares some similarities with theirs, such as allowing the
adversary to submit two message distributions, rather than two messages, in
the ciphertext query. However, since the DI definition does not allow probabilis-
tic key queries, it still suffers from Example 1.2 and 1.3 which we pointed out
above (see also the discussion in Sect. 6). Moreover, we also give a pIND-secure
FE construction for P/poly with adaptive security, while the construction in
[AM18] only satisfies selective security.

Function-private public key FE. Probabilistic key queries are also considered in
the function-privacy of public key FE [BRS13,PMR19,BCJ+19] as in our work.
However, we do not consider function-privacy: In our definition, the function
chosen by the challenger is always known to the adversary. It is interesting that
whether we can extend our security definition to handle function-privacy.

Other security definitions for FE. There are some other security definitions in
early works of functional encryption. In [BO13], the authors gave some new secu-
rity definitions compared with IND-security, but without a general construction.
In [BF13], the authors considered the cases where a trapdoor is hidden in the
function family F supported by FE (instead of function-key queries, which we
consider in this paper), and made new security definitions that are even stronger
than SIM-security. However, in this paper, we mainly focus on the case where
the function family F is P/poly, so we will not consider this problem.

2 Preliminaries

Notations . x ← χ for a distribution χ means that x is sampled from χ. x ← X
for a set X means that x is uniformly random chosen from X. x ← X for a p.p.t.
algorithm X means that x is a random output of X , where the abbreviation
p.p.t. stands for probabilistic polynomial time. We say that ε is negligible in λ,
if ε < 1/Ω(λc) for any c > 0 with sufficiently large λ. [n] for n ∈ Z+ is the set
{1, ..., n}.

2.1 Functional Encryption and Security Definitions

Definition 2.1. A functional encryption scheme FE for a function family F
consists of the following four algorithms (let M be the message space):
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– Setup(1λ): output a pair (PK,MSK).
– KeyGen(MSK, f): for f ∈ F , output a function key SKf .
– Enc(PK,m): for m ∈ M, output a ciphertext CTm.
– Dec(SKf ,CTm): output the function value f(m).

FE is correct if for any (PK,MSK) ← Setup(1λ), SKf ← KeyGen(MSK,f),
CTm ← Enc(PK,m), the probability that Dec(SKf ,CTm) �= f(m) is negligible.

Now we give the definition for both IND-security and SIM-security of func-
tional encryption.

Definition 2.2. An 1-CT adaptive IND-CPA-security game for an FE scheme
is defined as follows:

– Setup: The challenger runs Setup(1λ) and returns PK to the adversary.
– Phase 1: The adversary chooses f ∈ F and gives it to the challenger. The

challenger generates skf ← KeyGen(MSK, f) and returns skf to the adver-
sary. This can be repeated adaptively for any polynomial times.

– Challenge: The adversary chooses two messages of identical length m0,m1

and gives it to the challenger. The challenger randomly chooses b ← {0, 1},
generates ct ← Enc(PK,mb) and returns ct to the adversary.

– Phase 2: Same as Phase 1.
– Output: The adversary outputs a bit b′, and the winning advantage for the

adversary is defined by AdvIND(A) = |Pr(b′ = b) − 1/2|.

An adversary A is said to be admissible, if for any query f in Phase 1 or Phase
2, f(m0) = f(m1). FE is said to be ad-IND-secure if for any p.p.t. admissible
adversary A, AdvIND(A) is negligible.

For the selective IND-security (sel-IND-security), we require that A submits
m0,m1 to the challenger at the beginning of the game.

For the many-CT version of the game, we let the adversary submits any polyno-
mial number of pairs ofmessages in the challenge phase, say (m1

0,m
1
1), ..., (m

q
0,m

q
1),

such that f(mi
0) = f(mi

1) for any query f and i ∈ [q]. In the challenge phase, the
challenger samples b ← {0, 1} and returns (Enc(PK,mi

b))i∈[q].

It is not hard to show that 1-CT IND-security implies many-CT IND-security
through hybrid arguments. In [ABSV15], the authors showed that any sel-IND
secure FE scheme which is sufficiently expressive can be turned into an ad-IND
secure FE scheme. Even if the FE scheme is not expressive enough, we can
still use the standard complexity leverage method [BB04] to prove the ad-IND-
security, if we assume the sub-exponential hardness of the underlying hardness
assumptions.

Next, we give the simulation-based security definition.

Definition 2.3. Let FE be a functional encryption scheme for a function family
F . Consider a p.p.t. adversary A = (A1,A2) and a stateful p.p.t. simulator Sim.
Let Um(.) denote a universal oracle, such that Um(f) = f(m). Consider the
following two experiments:
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ExprealFE,A(1λ) ExpidealFE,A(1λ)

1. (PK,MSK) ← FE.Setup(1λ); 1. PK ← Sim(1λ);

2. (m, st) ← AFE.KeyGen(MSK,.)
1 (PK); 2. (m, st) ← ASim(.)

1 (PK);

3. CT ← FE.Enc(PK, m); 3. CT ← SimUm(.)(1λ, 1|m|);

4. α ← AFE.KeyGen(MSK,.)
2 (PK,CT, st); 4. α ← ASimUm(.)(.)

2 (PK,CT, st);

5. Output m, α 5. Output m, α

We call a stateful simulator algorithm Sim admissible if, on each input f ,
Sim makes just a single query to its oracle Um(.) on f itself. The functional
encryption scheme FE is then said to be adaptive simulation-based secure (ad-
SIM-secure) if there is an admissible stateful p.p.t. simulator Sim such that for
every p.p.t. adversary A = (A1,A2), the two experiments are computationally
indistinguishable.

For the selective SIM-security (sel-SIM-security), we require that A submits
m to the challenger at the beginning of the game.

3 Indistinguishability-Based Security Against
Probabilistic Queries

3.1 Definition for pIND Security

First, we give a formal definition for the idea of strict computational indistin-
guishability introduced in Sect. 1. We say that a distribution F is efficiently
samplable, if there exists a p.p.t. algorithm F which output follows F . More-
over, sampling from F means to run F with random seed and fetch its output,
so we can use F to represent F if there is no confusion.

Definition 3.1. Let D be a p.p.t. algorithm that outputs a pair of efficiently
samplable distributions D0,D1. We say that distributions from D are strictly
computationally indistinguishable, if for any p.p.t. algorithm S which outputs
a pair of efficiently samplable distributions S0, S1 and an auxiliary string aux,
either:

(1) there exists a p.p.t. algorithm P which distinguishes between the output of
D and S (without aux), which means that Pr(P(D0,D1) = 1|(D0,D1) ←
D) − Pr(P(S0, S1) = 1|(S0, S1, aux) ← S) is non-negligible;
or

(2) there is no p.p.t. algorithm B which distinguishes between aux, S0 and
aux, S1, which means that Pr(B(aux, s0) = 1|s0 ← S0) − Pr(B(aux, s1) =
1|s1 ← S1) must be negligible.

Without loss of generality, we let the auxiliary string aux contains the two
distributions S0, S1 (in the form of sampling algorithms), so the distinguisher B
knows exactly the two distributions.
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Since there must be no restriction on how D works, we cannot suppose that
aux is output by D, hence we introduce another algorithm S which outputs
both the pair of distributions and the auxiliary string aux. In most cases, we
can simply suppose that S acts similar as D. However, since no p.p.t. algorithm
can determine whether two distributions are equal or even statistical indistin-
guishable, in order to get a formal definition, we simply let the outputs of D and
S be computationally indistinguishable.

Next, we use the idea of strict computational indistinguishability to define
our new definition for functional encryption.

Definition 3.2. Given message space M and function space F , an 1-CT adap-
tive pIND-CPA-security game for an FE scheme is defined as the following:

– Setup: The challenger runs Setup(1λ) and returns PK to the adversary.
– Phase 1: The adversary chooses an efficiently samplable distribution F on the

function space F , and gives the sampling algorithm to the challenger. The
challenger samples f ← F , generates skf = KeyGen(MSK, f) and returns
f, skf to the adversary. This can be repeated adaptively for any polynomial
times.

– Challenge: The adversary chooses two efficiently samplable distributions
M0,M1 on the message space M which contain messages of same length,
and gives the sampling algorithms to the challenger. The challenger randomly
chooses b ← {0, 1}, m ← Mb, generates ctm ← Enc(PK,m) and returns ctm
to the adversary.

– Phase 2: Same as Phase 1.
– Output: The adversary outputs b′, and the winning advantage for the adver-

sary is defined by AdvpIND(A) = |Pr(b′ = b) − 1/2|.

An adversary A is said to be admissible, if the two distributions
(Fi, Fi(M0))i∈[Q] and (Fi, Fi(M1))i∈[Q] are strictly computationally indistin-
guishable, Q is the number of KeyGen queries. FE is said to be ad-pIND-secure
if for any p.p.t. admissible adversary A, AdvpIND(A) is negligible.

For the selective pIND-security (sel-pIND-security), we require that A submits
M0,M1 to the challenger at the beginning of the game.

For the many-CT version of the game, we let the adversary submits any
polynomial number of pairs of messages in the challenge phase, say (M1

0 ,M1
1 ),

..., (Mq
0 ,Mq

1 ), and the admissability is changed to: (Fi, Fi(M1
0 ), ..., Fi(M

q
0 ))i∈[Q]

and (Fi, Fi(M1
1 ), ..., Fi(M

q
1 ))i∈[Q] are strictly computationally indistinguishable.

In the challenge phase, the challenger samples b ← {0, 1} and returns
(Enc(PK,mi

b))i∈[q].

We note that when sampling from the distribution (Fi, Fi(Mb))i∈[Q], we only
sample once from each Fi and Mb, so the elements from the distribution are in
fact dependent with each other.

Now we present a lemma by applying the contrapositive of strict computa-
tional indistinguishability onto pIND-security definition. This lemma is useful in
the following proofs.
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Lemma 3.1. For an adversary A in the pIND-CPA-security game, we define
the trace of A as:

trA = (M0,M1, (Fi, fi, fi(m))i∈[Q]).

Then FE is pIND-secure, if and only if for every p.p.t. A such that AdvpIND(A)
is non-negligible (not necessarily admissible), there exists a p.p.t. sampling algo-
rithm T which outputs the distribution:

(aux, b̄ ← {0, 1}, m̄ ← M̄b̄, tr = (M̄0, M̄1, (F̄i, f̄i, f̄i(m̄))i∈[Q])),

and a p.p.t. algorithm B where:

– (1) For any p.p.t. algorithm P, Pr(P(trA) = 1)−Pr(P(tr) = 1) is negligible;
– (2) aux is independent with the following conditional distributions:

m̄|M̄0, M̄1; f̄1|F̄1;...;f̄Q|F̄Q (which can be considered as the randomness used
in the choice of m̄, f̄1, ..., f̄Q);

– (3) Pr(B(aux, tr) = b̄) − 1/2 is non-negligible.

Proof. If FE is pIND-secure, then A with non-negligible advantage must be non-
admissible, which means that (Fi, Fi(M0))i∈[Q] and (Fi, Fi(M1))i∈[Q] are not
strictly computationally indistinguishable.

By the definition of strict computational indistinguishability, there is a sam-
pling algorithm S which outputs (F̄i, F̄i(M̄0))i∈[Q], (F̄i, F̄i(M̄1))i∈[Q], aux, such
that:

(1) The output of S except aux are computationally indistinguishable with
(Fi, Fi(M0))i∈[Q], (Fi, Fi(M1))i∈[Q];

(2) There exists B which distinguishes between aux, (F̄i, F̄i(M̄0))i∈[Q] and
aux, (F̄i, F̄i(M̄1))i∈[Q].

Let T do the following: first sample S0, S1, aux from S, then sam-
ple b̄ ← {0, 1}, f̄i ← F̄i, m̄ ← M̄b̄, and return (aux, b̄, m̄, t̄r =
(M̄0, M̄1, (F̄i, f̄i, f̄i(m̄))i∈[Q])). Since in the pIND-CPA-security game, the chal-
lenger samples from Fi and Mb honestly, we can see that t̄r is computationally
indistinguishable with trA, and aux is independent with the choice of f̄i and
m̄, which means that aux is independent with m̄|M̄0, M̄1; f̄1|F̄1;...;f̄Q|F̄Q, hence
satisfies all three conditions.

Now, suppose that there exists T ,B satisfies all three conditions. Let S
runs T and outputs aux and the two distributions (F̄i, F̄i(M̄0))i∈[Q], (F̄i,

F̄i(M̄1))i∈[Q], which are computationally indistinguishable with (Fi, Fi(M0))i∈[Q],
(Fi, Fi(M1))i∈[Q].

Then, we sample random b̄ ← {0, 1}, m̄ ← M̄b̄, f̄i ← F̄i, i ∈ [Q], and let
(aux, (M̄0, M̄1, (F̄i, f̄i, f̄i(m̄))i∈[Q])) be the input of B, then B distinguishes the
two distributions (F̄i, F̄i(M̄0))i∈[Q], (F̄i, F̄i(M̄1))i∈[Q]. By the definition of strict
computational indistinguishability, (Fi, Fi(M0))i∈[Q] and (Fi, Fi(M1))i∈[Q] can-
not be strictly computationally indistinguishable, which means that any adver-
sary A with non-negligible advantage cannot be admissible. �	
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For the many-CT version of the game, we define the trace trA as:

((M i
0,M

i
1)i∈[q], (Fk, fk, fk(m1), ..., fk(mq))k∈[Q]).

It is not hard to show that the result is the same as the 1-CT case.
In a general case, it seems to be hard to determine whether two distribu-

tions are strictly computationally indistinguishable, especially with the auxil-
iary string. But if the function class is a cryptographic primitive such as hash
family or public key encryption, we can use its security definition to prove the
indistinguishability. We give more details in Sect. 5 and Sect. 6.

3.2 Relationship Between Different Security Definitions

In this section, we show that pIND-security satisfies the four properties we dis-
cussed in Sect. 1.1, which means that pIND-security can be used to avoid the
drawbacks for both SIM-security and IND-security.

Theorem 3.1. If FE is SIM-secure, then FE is pIND-secure.

Proof. Let A be any pIND adversary, we can construct a SIM adversary EA as
follows (for the real experiment):

– When A outputs a key query F , E chooses f ← F and gives f to the challenger
C. When the challenger returns skf , E returns f, skf to A.

– When A outputs the ciphertext query M0,M1, E first chooses b ← {0, 1} and
gives m ← Mb to the challenger C.

– When C returns a ciphertext CT , CT is returned to A directly.
– When A outputs the guess b′, E outputs b′ along with the trace: trA =

(M0,M1, (F1, f1, f1(m)), ..., (FQ, fQ, fQ(m))).

Since b′ is the same as the output of A in the sel-pIND game, Pr(b′ = b) − 1/2 is
non-negligible iff AdvpIND(A) is non-negligible.

Now consider the ideal experiment with simulator S. Differ from the real
experiment, we let the random bit and sampled message be b̃, m̃, output be b̃′,
the trace by t̃rA, and t̃rA is computationally indistinguishable with trA by the
SIM-based security of the FE scheme. So Pr(b̃′ = b̃) − 1/2 is non-negligible iff
AdvpIND(A) is non-negligible.

Using Lemma 3.1, we only need to construct the algorithm B and a sampling
algorithm T which samples (aux, b̄, m̄, tr).

Let T run the ideal experiment with adversary EA and simulator SUm̃(.).
When S queries Um̃(f), it directly returns f(m̃) to S (since m̃ is chosen by EA),
and let b̄ = b̃, m̄ = m̃, tr = t̃rA. Finally, let aux = (rA, rS), where rA, rS are the
randomness used in A,S.

B(aux = (rA, rS), tr = (M̄0, M̄1, (F̄i, f̄i, f̄i(m̄))i∈[Q])) is constructed from
A,S with rA, rS as their randomness:

– B first runs A with randomness rA. When A outputs the ciphertext query
M̃0, M̃1, first check M̃0 = M̄0, M̃1 = M̄1, otherwise abort. S is run with
randomness rS .
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– When A outputs the i-th key query F̃i, first check F̃i = F̄i, otherwise abort.
Send f̄i to S, and when S queries Um̃, return f̄i(m̄) to S. Return f̄i and skf̄i

generated by S to A.
– When S returns a ciphertext CT , CT is returned to A directly.
– When A outputs the guess b̃′, return b̄′ = b̃′.

It is easy to see that if B never aborts, the output distribution is the same
as EA in the ideal game, which means that Pr(B(aux, tr) = b) − 1/2 is non-
negligible iff AdvpIND(A) is non-negligible, hence FE satisfies pIND-security. The
non-abortness directly follows from the fact that the queries from A in both B
and T are uniquely determined by the same randomness used by A, E ,S, so that
M̃0, M̃1, F̃1, ..., F̃Q in B are exactly the same as M̄0, M̄1, F̄1, ..., F̄Q contained in
tr generated from T . Thus we finish the proof. �	

Theorem 3.2. If FE is pIND-secure, then FE is IND-secure.

Proof. For any admissible IND adversary A, we construct a pIND adversary A′

as follows:

– When A submits m0,m1, A′ submits M0,M1 such that Mb(mb) = 1,
Mb(m′) = 0 for m′ �= mb, b ∈ {0, 1}.

– When A submits f , A′ submits F such that F (f) = 1, F (f ′) = 0 for f ′ �= f ,
f(m0) = f(m1).

– When A outputs a bit b′, A′ also outputs b′.

If AdvpIND(A′) is non-negligible, then there exists B, aux and tr =
(M̄0, M̄1, (F̄i, f̄i, f̄i(m̄))i∈[Q]), such that Pr(B(aux, tr) = b̄) − 1/2 is non-
negligible. Also, tr is indistinguishable from trA, which means that sampling
from M̄0, M̄1 and F̄i always outputs fixed values m̄0, m̄1, f̄i, where f̄i(m̄0) =
f̄i(m̄1) for i ∈ [Q] (otherwise trA and tr can easily be distinguished). So tr
is independent from b̄, also aux is independent from b̄ by Lemma 3.1. Thus
Pr(B(aux, tr) = b̄) − 1/2 = 0, which makes a contradiction.

So for every A′ defined above, AdvpIND(A′) is negligible, which means that
AdvIND(A) is negligible. �	

Now we show that 1-CT pIND-security implies many-CT pIND-security, so
that our new definition can really bypass the impossible result in [BSW11].

Theorem 3.3. If FE is 1-CT pIND-secure, then FE is many-CT pIND-secure.

Proof. We define a sequence of games:
Gi: the first i ciphertext queries always choose mi ← M0 despite whether b

is. Suppose that A makes a total of q ciphertext queries, then G0 is the original
game, and the advantage for A in Gq is always 0.

If the advantage for A in G0 is non-negligible, then there exists i ∈ [q] such
that the advantage of A to distinguish between Gi−1 and Gi is non-negligible.
Then we construct an 1-CT pIND adversary Ai as follows:
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– For (M j
0 ,M j

1 )j∈[q], we define M0(x),M1(x) be two sampling algorithms with
a single input x ∈ [q], which sample from Mx

0 and Mx
1 . Thus M0(x),M1(x)

contains all information about (M j
0 ,M j

1 )j∈[q].
– When A submits (M j

0 ,M j
1 )j∈[q], submit M0(i),M1(i) to the challenger and

get the ciphertext CT ; sample mj ← M j
0 for j < i, mj ← M j

1 for j > i, let
CTj ← Enc(PK,mj) for j �= i and CTi = CT , return (CT1, ..., CTq) to A.

– When A submits a key query F , directly pass it to the challenger and return
(f, skf ) to A.

– When A outputs b′, output b′.

So AdvpIND(Ai) is non-negligible. By the 1-CT pIND security, there exist Ti

and Bi satisfying Lemma 3.1, let (aux, tri) be sampled by Ti, we write tri =
(M̄0(i), M̄1(i), (F̄k, f̄k, f̄k(m̄i))k∈[Q]), and since M̄0(i), M̄1(i) are indistinguish-
able from M0(i),M1(i), we write the q pairs of distributions extracted from
M̄0(i), M̄1(i) as (M̄ j

0 , M̄ j
1 )j∈[q].

We first sample (m̄j ← M̄ j
b )j �=i and calculate (f̄k(m̄j))j �=i,k∈[Q]. Let B proceed

the same as Bi except that we let the input tr = ((M̄ j
0 , M̄ j

1 )j∈[q], (F̄k, f̄k, f̄k(m̄1),
..., f̄k(m̄q))k∈[Q]). So (aux, b̄, (m̄i)i∈[q], tr) can be sampled by Ti with slight mod-
ification, aux is independent from the choices of (m̄j)j∈[q] and (f̄k)k∈[Q], and
Pr(B(aux, tr) = b̄) − 1/2 is non-negligible, since the outputs of B and Bi are the
same. Thus we finish the proof. �	

4 Fully pIND-secure FE from IND-based FE Schemes

We already show that pIND-secure FE can support unbounded ciphertext. The
problem remaining is to show the existence of adaptive pIND-secure FE scheme
for P/poly which supports unbounded key, so that our new security definition can
avoid the [AGVW13] impossibility result. We show that the [ABSV15] generic
transformation, which transforms selective IND-secure FE schemes into adaptive
IND-secure ones, can be extended into pIND-security. In fact, we prove a result
stronger than expected: we can transform any selective IND-secure FE scheme
into an adaptive pIND-secure FE scheme.

Technical Overview. In [ABSV15], the authors constructed an adaptive IND-
secure FE scheme for any function class F (even if F = P/poly) from an IND-
secure private-key FE scheme for F with 1-CT query and unbounded key queries,
and a “sufficiently expressive” selective IND-secure FE scheme, here private-key
FE means that the encryption algorithm uses master secret key instead of master
public key.

To prove the existence of IND-secure private-key FE with 1-CT and
unbounded key queries, [ABSV15] relies on several results in the literature.
First, in [GVW12], the authors constructed a 1-key, unbounded-CT SIM-secure
private-key FE scheme for P/poly, which is also a 1-key, unbounded-CT IND-
secure private-key FE scheme. In [BS15], the authors gave the generic transfor-
mation from private-key FE to function-private private-key FE, here function-
private means that the function f is hidden from the adversary even given
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the function key skf . (A private-key FE without function-privacy is also called
message-private.) Then, one can swap KeyGen and Enc in a function-private
private-key FE with 1-key and unbounded-CT, to obtain a private-key FE with
unbounded-key and 1-CT.

The same method can easily be extended to pIND-security. Similar with
[ABSV15], we can construct an adaptive pIND-secure FE scheme from pIND-
secure private-key FE scheme and IND-secure (public-key) FE scheme, and by
Theorem 3.1 in this paper (extended to private-key settings), we can show the
existence of a 1-key, unbounded-CT message-private pIND-secure private-key
FE scheme for P/poly. What left for us is to transform a pIND-secure message-
private private-key FE scheme into a pIND-secure function-private private-key
FE scheme.

The idea of this construction is similar to the one in [BS15], but more compli-
cated since we consider probabilistic queries. The [BS15] construction used two
symmetric keys k, k′ to hide the two functions f0, f1 correspondingly in both the
message-private and function-private game. However, in our pIND-secure set-
tings, in message-private game, the adversary learns an exact function f , while
in function-private game, the adversary learns only two distributions F0 and
F1 (see the formal definition below). So we need three keys k, k′, k′′ to encrypt
f, F0, F1 correspondingly, and an additional game to switch between them, while
the other parts of the proof is similar to [BS15].

Finally, combining all components together, we can construct an adaptive
pIND-secure FE scheme for P/poly.

Before further discussions, first we give formal definitions for both message-
private and function-private private-key functional encryption with pIND-
security.

Definition 4.1. A private-key functional encryption scheme skFE for a function
family F consists of the following four algorithms (let M be the message space):

– Setup(1λ): output the master secret key MSK.
– KeyGen(MSK, f): for f ∈ F , output a function key SKf .
– Enc(MSK,m): for m ∈ M, output a ciphertext CTm.
– Dec(SKf ,CTm): output the function value f(m).

FE is correct if for any MSK ← Setup(1λ), SKf ← KeyGen(MSK,f), CTm ←
Enc(MSK,m), the probability of Dec(SKf ,CTm) �= f(m) is negligible.

Next, we define the (message-private) pIND-based security and function-
private pIND-based security for private-key FE schemes.

Definition 4.2. Given message space M and function space F , a q-CT (or
unbounded-CT), Q-key (or unbounded-key) adaptive (message-private) pIND-
CPA-security game for a private-key FE scheme is defined as the following:

– Setup: The challenger runs Setup(1λ) to get MSK, and randomly samples a
bit b ← {0, 1}.
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– Query Phase: The adversary can adaptively makes the following two types of
queries:

• Key Query: The adversary chooses a p.p.t. sampling algorithm F which
output is in F , and gives it to the challenger. The challenger samples f ←
F , generates skf = KeyGen(MSK, f) and returns f, skf to the adversary.
This can be repeated adaptively for any polynomial times.

• Ciphertext Query: The adversary chooses two p.p.t. sampling algorithms
M0,M1 which outputs are in M and gives them to the challenger. The
challenger randomly chooses m ← Mb, generates ctm ← Enc(PK,m) and
returns ctm to the adversary.

The number of key queries is bounded by Q or unbounded; the number of
ciphertext queries is bounded by q or unbounded.

– Output: The adversary outputs b′, and the winning advantage for the adver-
sary is defined by AdvpIND(A) = |Pr(b′ = b) − 1/2|.

Let q,Q be the number of ciphertext queries and key queries, we write the
i-th key query and the chosen function by F i, f i, the j-th ciphertext query and
the chosen message by M j

0 ,M j
1 ,mj.

An adversary A is said to be admissible, if the two distributions
(F i, F i(M1

0 ), ..., F i(Mq
0 ))i∈[Q] and (F i, F i(M1

1 ), ..., F i(Mq
1 ))i∈[Q] are strictly

computationally indistinguishable. We say that skFE is a (message-private)
pIND-secure private-key FE if for any p.p.t. admissible adversary A, AdvpIND(A)
is negligible.

Lemma 4.1. For a (message-private) pIND adversary A for a secret key FE
scheme, define the trace of A as:

trA = ((M j
0 ,M j

1 )j∈[q], (F i, f i, f i(m1), ..., f i(mq))i∈[Q]).

Then skFE is a (message-private) pIND-secure private-key FE, if and only if
for every p.p.t. A such that AdvpIND(A) is non-negligible, there exists a p.p.t.
algorithm T which outputs the following distribution:

(aux, b̄, (m̄j)j∈[q], tr = ((M̄ j
0 , M̄ j

1 , )j∈[q], (F̄ i; f̄ i, f̄ i(m̄1), ..., f̄ i(m̄q))i∈[Q])),

where b̄ ← {0, 1}, m̄j ← M̄ j

b̄
for j ∈ [q], f̄ i ← F̄ i for i ∈ [Q], and a p.p.t.

algorithm B, which satisfies:

– (1) For any p.p.t. algorithm P, Pr(P(trA) = 1) − Pr(S(tr) = 1) is negligible;
– (2) aux is independent with the following conditional distributions:

m̄j |M̄ j
0 , M̄ j

1 , j ∈ [q]; f̄ i|F̄ i, i ∈ [Q];
– (3) Pr(B(aux, tr) = b̄) − 1/2 is non-negligible.

Proof. The proof is similar to Lemma 3.1 and we omit the details. �	

Definition 4.3. Given message space M and function space F , a q-CT (or
unbounded-CT), Q-key (or unbounded-key) adaptive function-private pIND-
CPA-security game for a private-key FE scheme is defined as the following:
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– Setup: The challenger runs Setup(1λ) to get MSK, and randomly samples a
bit b ← {0, 1}.

– Query Phase: The adversary can adaptively makes the following two types of
queries:

• Key Query: The adversary chooses two p.p.t. sampling algorithms F0, F1

which output is in F , and gives it to the challenger. The challenger sam-
ples f ← Fb, generates skf = KeyGen(MSK, f) and returns skf to the
adversary. This can be repeated adaptively for any polynomial times.

• Ciphertext Query: The adversary chooses two p.p.t. sampling algorithms
M0,M1 which outputs are in M and gives them to the challenger. The
challenger randomly chooses m ← Mb, generates ctm ← Enc(PK,m) and
returns ctm to the adversary.

The number of key queries is bounded by Q or unbounded; the number of
ciphertext queries is bounded by q or unbounded.

– Output: The adversary outputs b′, and the winning advantage for the adver-
sary is defined by AdvpIND(A) = |Pr(b′ = b) − 1/2|.

Let q,Q be the number of ciphertext queries and key queries, we write the
i-th key query and the chosen function by F i

0, F
i
1, f

i, the j-th ciphertext query
and the chosen message by M j

0 ,M j
1 ,mj.

An adversary A is said to be admissible, if the two distributions
(F i

0(M
1
0 ), ..., F i

0(M
q
0 ))i∈[Q] and (F i

1(M
1
1 ), ..., F i

1(M
q
1 ))i∈[Q] are strictly computa-

tionally indistinguishable. We say that skFE is a function-private pIND-secure
private-key FE if for any p.p.t. admissible adversary A, AdvpIND(A) is negligible.

Lemma 4.2. For a function-private pIND adversary A for a secret key FE
scheme, define the trace of A as:

trA = ((M j
0 ,M j

1 )j∈[q], (F i
0, F

i
1, f

i(m1), ..., f i(mq))i∈[Q]).

Then skFE is a function-private pIND-secure private-key FE, if and only if for
every p.p.t. A such that AdvpIND(A) is non-negligible, there exists a p.p.t. algo-
rithm T which outputs the following distribution:

(aux, b̄, (m̄j)j∈[q], tr = ((M̄ j
0 , M̄ j

1 )j∈[q], (F̄ i
0, F̄

i
1, f̄

i(m̄1), ..., f̄ i(m̄q))i∈[Q])),

where b̄ ← {0, 1}, m̄j ← M̄ j

b̄
for j ∈ [q], f̄ i ← F̄ i

b̄
for i ∈ [Q], and a p.p.t.

algorithm B, which satisfies:

– (1) For any p.p.t. algorithm S, Pr(S(trA) = 1) − Pr(S(tr) = 1) is negligible;
– (2) aux is independent with the following conditional distributions:

m̄j |M̄ j
0 , M̄ j

1 , j ∈ [q]; f̄ i|F̄ i
0, F̄

i
1, i ∈ [Q];

– (3) Pr(B(aux, tr) = b̄) − 1/2 is non-negligible.

Proof. The proof is similar to Lemma 3.1 and we omit the details. �	

We give a lemma on the existence of private-key pIND-secure FE.
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Lemma 4.3. There exists a private-key pIND-secure FE with 1-CT and
unbounded key for P/poly, assuming the existence of one-way functions.

Proof. By Theorem 3.1 (which can also be applied to private-key FE schemes),
we can show that the SIM-secure private-key FE scheme for P/poly with 1-
key and unbounded-CT queries in [GVW12] is also pIND-secure. If we can lift
this scheme into a function-private pIND-secure private-key FE scheme, we can
simply swap the KeyGen and Enc algorithms to obtain a private-key pIND-secure
FE with unbounded-key and 1-CT for P/poly.

The lifting is similar to the one in [BS15]. Let skFE be the pIND-secure
message-private private-key FE scheme, Sym be a symmetric encryption scheme,
PRF be a pseudo-random function family. We construct the pIND-secure
function-private private-key FE as follows:

– Setup(1λ): Generate three symmetric encryption keys k, k′, k′′ ←
Sym.KeyGen(1λ), let skFE.MSK ← skFE.Setup(1λ). Return MSK =
(k, k′, k′′, skFE.MSK).

– KeyGen(MSK, f): Let f̃ be defined as: f̃(m, r) = f(m). Let c = Sym.
Enc(k, f̃), c′ = Sym.Enc(k′, f̃), c′′ = Sym.Enc(k′′, f̃). Return skFE.KeyGen
(skFE.MSK, gc,c′,c′′ , where for any c1, c2, c3, gc1,c2,c3(m, k1, k2, k3, r) is defined
as follows:

• If k1 �= ⊥, let f ← Sym.Dec(k1, c1), return f(m; r).
• Else if k2 �= ⊥, let f ← Sym.Dec(k2, c2), return f(m; r).
• Else if k3 �= ⊥, let f ← Sym.Dec(k3, c3), return f(m; r).
• Else return ⊥.

– Enc(MSK,m): Sample a random seed r and return ct ← skFE.Enc(skFE.MSK,
(m, k,⊥,⊥, r)).

– Dec(sk, ct): return skFE.Dec(sk, ct).

Now we prove the security of the construction above through a hybrid of
games.

Game 0 is the original game.
In Game 1, the challenger first samples a uniform random seed r∗, and

for each ciphertext query, returns skFE.Enc(MSK, (m, k,⊥,⊥, r∗)) instead of
skFE.Enc(MSK, (m, k,⊥,⊥, r)) for a freshly sampled r. Game 0 and Game 1 are
indistinguishable from the pIND-security of skFE. (Note that the distribution
of messages in different ciphertext queries share the same r∗.)

In Game 2, when the adversary makes a key query, instead of sampling
f ← Fb using a random seed, the challenger samples two seeds s0, s1, and uses
PRF(r∗, sb) as the seed to sample f ← Fb. Game 1 and Game 2 are indistin-
guishable from the pseudorandomness of PRF.

In Game 3, for each key query, let c̃′ = Sym.Enc(k′, GF0,s0), c̃
′′ = Sym.Enc(k′′,

GF1,s1), returns skFE.KeyGen(MSK, gc,c̃′,c̃′′) instead of skFE.KeyGen(MSK,
gc,c′,c′′), where GFb,sb

(m, r) is defined as:

– Sample f ← Fb using the seed PRF(r, sb);
– Return f(m).
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Game 2 and Game 3 are indistinguishable from the security of Sym.
In Game 4, we change the ciphertext into skFE.Enc(MSK,m,⊥, k′,⊥, r∗) for

b = 0 and skFE.Enc(MSK,m,⊥,⊥, k′′, r∗) for b = 1. Since fb(m) = GFb
(m, r∗),

we can see that the trace for skFE is the same in Game 3 and Game 4, so Game
3 and Game 4 are indistinguishable from the security of skFE.

In Game 5, for each key query, let c̃ = Sym.Enc(k,⊥), returns
skFE.KeyGen(MSK, gc̃,c̃′,c̃′′) instead of skFE.KeyGen(MSK, gc,c̃′,c̃′′). Game 4 and
Game 5 are indistinguishable from the security of Sym. Note that the function
gc̃,c̃′,c̃′′ is the same for b = 0 and b = 1 in Game 5.

Now in Game 5, if A is an adversary for the function-private scheme with
non-negligible advantage, there is an adversary A′ which is an adversary for
skFE with non-negligible advantage. By the pIND-based security of skFE, there
exist a sampling algorithm T ′ and an algorithm B′ with non-negligible advantage
which satisfy Lemma 4.1. We write the output of T ′ as:

(aux, b̄′, (m̄′j)j∈[q], tr
′ = ((M̄ ′j

0, M̄
′j
1)j∈[q], (F̄ ′i, f̄ ′i, f̄ ′i(m̄′1), ..., f̄ i(m̄′q))i∈[Q])).

Since tr
′ is indistinguishable with trA′ , so elements in both tr

′ and trA′

has the same structure, so we can write m̄′j = (m̄j ,⊥, k̄′,⊥, r̄∗) for b̄′ = 0
and m̄′j = (m̄j ,⊥,⊥, k̄′′, r̄∗) for b̄′ = 1, f̄ ′i = gc̄,c̄′,c̄′′ where c̄, c̄′, c̄′′ are Sym
ciphertexts of ⊥, GF̄0,s̄0

, GF̄1,s̄1
defined as above.

Without loss of generalization, we suppose that k̄′, k̄′′ are contained in aux,
since k̄′, k̄′′ are predetermined and independent with the choice of either queried
message or function.

Now we construct T and B from T ′ and B′.
T does the following:

– Call T ′ to get h̄′, aux, b̄′, (m̄′j)j∈[q], tr
′;

– Extract M̄ j
0 , M̄ j

1 , m̄j from M̄ ′j
0, M̄

′j
1, m̄

′j , F̄ i
0, F̄

i
1 from f̄ ′i;

– Sample f̄ i ← F̄ i
b̄′ ;

– Return
aux, b̄′, (m̄j)j∈[q], tr = ((M̄ j

0 , M̄ j
1 )j∈[q], (F̄ i

0, F̄
i
1, f̄

i(m̄1), ..., f̄ i(m̄q))i∈[Q])).

B(aux, tr) does the following:

– For each M̄ j
b , j ∈ [q], b ∈ {0, 1}, sampling from M̄ ′j

b does the following:
• Sample m̄ ← M̄ j

b ;
• If j = 1, sample a random seed r̄∗, otherwise use the same r̄∗ as in j′ < j2;
• If b = 0, return m̄′j = (m̄,⊥, k̄′,⊥, r̄∗), otherwise return m̄′j =

(m̄,⊥,⊥, k̄′′, r̄∗).
– For each F̄ i

0 and F̄ i
1, sampling from F̄ ′i does the following:

2 Here we allows different distributions M̄ ′j
b to include the same randomness r̄∗, which

means that there is a shared inner state between these sampling algorithms. We note
that SIM-secure FE implies pIND-secure FE even considering stateful ciphertext
queries like this, so it will not affect the validity of the proof.



448 G. Wang et al.

• Sample two random seeds s̄0, s̄1;
• Let GF̄0,s̄0

and GF̄1,s̄1
be defined as above, and c̄′ = Sym.Enc(k̄′, GF̄0,s̄0

),
c̄′′ = Sym.Enc(k̄′′, GF̄1,s̄1

);
• Return f̄ ′i = gc̄,c̄′,c̄′′ .

– Call B′(aux, ((M̄ ′j
0, M̄

′j
1)j∈[q], (F̄ ′i; f̄ ′i, f̄ ′i(m̄′1), ..., f̄ ′i(m̄′q))i∈[Q])) to get the

output.

It is not hard to see that B calls B′ exactly with (aux, tr
′), where tr

′ is defined
as above, and we already know that Pr(B′(aux, tr

′) = b̄) − 1/2 is non-negligible.
So we successfully construct T and B satisfies Lemma 4.2. Thus the new scheme
is a function-private pIND-secure private-key FE scheme. �	

Theorem 4.1. There exists a construction for ad-pIND-secure FE for P/poly
from sel-IND-secure FE for P/poly assuming the existence of one-way functions.

Proof. We simply write down the [ABSV15] construction here, and give a high
level proof. The details are similar to the ad-IND-security proof in [ABSV15].
Given the following primitives:

– A sel-IND secure public-key FE scheme for P/poly Sel;
– An ad-pIND secure 1-CT private-key FE scheme for P/poly OneCT;
– A symmetric encryption scheme with pseudorandom ciphertexts Sym;
– A pseudorandom function family PRF.

The adaptive scheme Ad is constructed as follows:

– Setup(1λ): Sample (Sel.PK,Sel.MSK) ← Sel.Setup(1λ), and return PK =
Sel.PK, MSK = Sel.MSK.

– KeyGen(MSK, f): Sample CE ← {0, 1}l1(λ), τ ← {0, 1}l2(λ), return skf ←
Sel.KeyGen(Sel.MSK, Gf,CE ,r), Gf,CE ,r(OneCT.MSK,K,Sym.K, β) defined as
follows:

• If β = 1, output Sym.Dec(Sym.K, CE);
• Otherwise, output OneCT.KeyGen(OneCT.MSK, f ;PRFK(τ)).

– Enc(PK,m): Output CT = (CT0 ← OneCT.Enc(OneCT.MSK,m),CT1 ←
Sel.Enc(Sel.MPK, (OneCT.MSK,K, 0λ, 0)).

– Dec(skf ,CT): Output OneCT.Dec(Sel.Dec(skf ,CT1),CT0).

The ad-pIND-security of this construction can be proved by a hybrid of games.
Let Game 0 be the original pIND-CPA game.

In Game 1, CE is replaced by Sym.Enc(Sym.K∗
, skf ← OneCT.

KeyGen(OneCT.MSK, f ;PRFK(τ)) for random Sym.K∗. Game 0 and Game 1 are
indistinguishable from the security of Sym.

In Game 2, CT1 is replaced by Sel.Enc(Sel.MPK, (0λ, 0λ,Sym.K∗, 1)). Since
any adversary A distinguishing Game 1 and Game 2 makes only deterministic
ciphertext queries to Sel, we can see that Game 1 and Game 2 are indistinguish-
able from the IND-security of Sel.
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In Game 3, PRFK(τ) is replaced by a truly random R. Game 2 and Game 3
are indistinguishable by the pseudorandomness of PRF.

We see that any adversary A which has non-negligible advantage in Game
3 has also a non-negligible advantage in the ad-pIND-CPA game of OneCT.
Then if OneCT is ad-pIND-secure, we can construct B and the input distribution
(h′, aux, trB) for A which satisfies Lemma 3.1, hence Ad is ad-pIND-secure. �	

5 Application of pIND-secure FE: Hashing a Secret Value

Next, we introduce a specific application scenario, which can be constructed
from pIND-secure FE. This application is inspired by Example 1.1, the counter-
example for IND-based security. We show that how we can use pIND-secure FE
to output the hash of a secret value. Like blind signature [Cha82], we name
this new primitive “blind hash”. We first give its syntax, which is similar to the
syntax of functional encryption.

Definition 5.1. A blind hash system consists of the following algorithms:

– Setup(1λ, 1n, 1k): output the public key pk and the main secret key msk. We
require that n ≥ k.

– HashGen(msk, h): for a hash function h : {0, 1}n → {0, 1}k, output its blinded
version H.

– Enc(pk,m): output the encrypted message c.

The blind hash system is called correct, if for (pk,msk) ← Setup(λ), H ←
HashGen(msk, h), c ← Enc(pk,m), the probability of H(c) �= h(m) is negligible.

In this definition, we restrict the input length of the hash function to be n
instead of arbitrary length, in order for Enc to be well-defined. We can choose
large enough n, and pad any string with length n′ < n into a string of length n.

We require the one-wayness of a blind hash system.

Definition 5.2. A blind hash system (Setup,HashGen,Enc) is called one-way,
if for any p.p.t. adversary A and a set S of (polynomial number of) universal
one-way hash families, the winning advantage of the following game is negligible:

– Setup: The challenger runs Setup(1λ) and returns pk to the adversary.
– Phase 1: Each time the adversary submits a universal one-way hash fam-

ily H ∈ S, the challenger samples h ← H, and returns (h,H ←
HashGen(msk, h)) to the adversary. This can be repeated for any polynomial
numbers of times.

– Challenge: The challenger chooses m ← M, and returns Enc(pk,m) to the
adversary.

– Phase 2: Same as Phase 1.
– Guess: The adversary outputs m′. The winning advantage of A is defined by

Pr(m′ = m).
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In this definition, we give a set of universal one-way hash families outside
the game instead of letting them to be chosen by the adversary, since both
the adversary and the challenger are p.p.t., hence cannot have the ability to
determine whether a hash family is universal one-way.

Before we give our construction for the blind hash system, we first introduce
the Goldreich-Levin hardcore predicate for one-way functions.

Definition 5.3. A polynomial time computable predicate b is a hardcore pred-
icate of a function f : {0, 1}n → {0, 1}k, if for any p.p.t. algorithm P,
|Prm←{0,1}n(P(f(m)) = b(m)) − 1/2| is negligible.

Lemma 5.1 (Goldreich-Levin Theorem). If f : {0, 1}n → {0, 1}n is a one-
way function, then b(m, r) = 〈m, r〉 is a predicate of the function g : {0, 1}2n →
{0, 1}2n, g(m‖r) = f(m)‖r.

Now we are ready to construct our blind hash system. Given a functional
encryption scheme FE, the blind hash system is constructed as follows:

– Setup(1λ): Run FE.Setup(1λ) and output the public key pk and the main
secret key msk.

– HashGen(msk, h): Let h̄ be the function which pads the output of h from k bits
into n bits (by filling 0s). Let function gh be defined as: gh(m‖r) = h̄(m)‖r.
Calculate skgh

← FE.KeyGen(msk, gh). Let the blinded hash H(c) be defined
as:

• Let t ← FE.Dec(skgh
, c);

• Output the first k bits of t.
– Enc(pk,m): Let r ← {0, 1}n, output FE.Enc(pk,m‖r).

Theorem 5.1. Let FE be pIND-based secure, then the construction above is a
one-way blind hash system.

Proof. Let GH be the p.p.t. algorithm that first samples h ← H and then outputs
gh (as define above), and M0 (resp. M1) be a p.p.t. algorithm that outputs a
random string m‖r ∈ {0, 1}2n where 〈m, r〉 = 0 (resp. 〈m, r〉 = 1). For each
adversary A′ attacks the one-wayness of the blind hash system, we consider any
pIND adversary A for FE which makes specific queries as follows:

– When A′ submits a query Hj in Phase 1 or Phase 2, A submits GHj
, and

gets skgh
from inside the blinded hash function H.

– At the challenge phase, A submits (M0,M1) to the challenger, and gets the
challenge ciphertext of A′.

We do not restrict the way that A gives its outputs b′.
By the definition of pIND-based security, if Adv(A) is non-negligible, there

exists a sampling algorithm T and an algorithm B, where (aux, b̄, m̄, tr) ← T ,
tr is computationally indistinguishable from trA, and Pr(B(aux, tr) = b̄) − 1/2
is non-negligible, where tr takes the form as:

tr = (M̄0, M̄1, (F̄i, f̄i, f̄i(m̄))i∈[Q]).
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Since M0,M1 are fixed and each Fi in trA is chosen only from a pre-
determined polynomial size set {GH}H∈S , we can see that the computational
indistinguishability between trA and tr implies that M̄0 = M0, M̄1 = M1,
and F̄i = GH for some H ∈ S. We also write f̄i as gh̄i

where h̄i ∈ H, thus
f̄i(m̄) = gh̄i

(m‖r) for some m, r, and b̄ = 〈m, r〉.
Since aux is independentwith the choice of f̄i and m̄, we defineBi(gh̄i

(m‖r)) :=
Bi(aux, tr), so by a standard hybrid argument, Pr(B(aux, tr) = b̄) − 1/2 is non-
negligible, only if there exists Bi, such that Pr(Bi({gh̄i

(m‖r)}i∈[q]) = 〈m, r〉)−1/2
is non-negligible. However, from Goldreich-Levin Theorem, 〈m, r〉 is a hardcore
predicate for gh̄i

(m‖r), and since each h̄i is independently chosen from univer-
sal hash families, we have that {gh̄i

(m‖r)}i∈[q] are independent, so 〈m, r〉 is also
a hardcore predicate for g(m‖r) := gh̄1

(m‖r)‖...‖gh̄q
(m‖r), which means that

Pr(B′({gh̄i
(m‖r)}i∈[q]) = 〈m, r〉) − 1/2 must be negligible. So we have that

Pr(B(aux, tr) = b̄) − 1/2 is also negligible, hence Adv(A) is negligible.
We know that if a function is one-one, then having a hardcore predicate

implies one-wayness. Since the advantage of A is negligible, if we consider the
function f(m‖r) = skh1‖...‖skhq

‖ct, ct ← FE.Enc(pk,m‖r), which is a one-one
function, we see that 〈m, r〉 is also its hardcore predicate, so f(m‖r) is one-way.
Since r can be directly generated from FE.Dec(ski, ct) given any ski, we can see
that f(m‖r) is one-way according to the input m, hence the advantage for A′ is
also negligible. Thus we finish the proof. �	

The construction from pIND-secure FE to blind hash systems are quite
straightforward. Since pIND-secure FE can be constructed from IND-secure FE
schemes, blind hash systems can be constructed from IND-secure FE schemes.

However, we show that the same method in this section cannot be used to
directly construct blind hash systems from IND-secure FE: let h be a collision-
resistant hash function, and construct the hash family H be: {hk : hk(m) :=
h(k‖m)}. So if A make an admissible query, which means that hk1(m) = hk2(m),
it finds a collision for h, which contradicts the security of h, so A cannot make
any queries. So if the construction above uses an IND-based FE scheme, the
one-way property cannot be satisfied, like what we showed in Example 1.1.

Also, For SIM-based secure FE schemes, as it was proven in [AGVW13], there
is no unbound-key SIM-based secure FE schemes supporting one-way functions,
so SIM-based FE schemes for H cannot be constructed, hence it is impossible
to directly construct blind hash systems from SIM-based FE schemes.

6 Application of pIND-secure FE: Semi-universal Proxy
Re-encryption

Now we give another application scenario which can be constructed from pIND-
secure FE but not other security definitions. We consider proxy re-encryption
(PRE) schemes [BBS98], which can be used to transform a ciphertext encrypted
under a delegator key into one encrypted under a delegatee key, without leak-
ing the plaintext. However, in most existing PRE constructions, the delega-
tor encryption scheme and the delegatee encryption scheme must be the same:
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they cannot re-encrypt a given ciphertext into another ciphertext under another
public-key encryption scheme.

In [DN21], the authors introduced universal proxy re-encryption, and gave
their construction from probabilistic iO, where both the delegator and the del-
egatee can be arbitrary PKE schemes. Here, we discuss a weaker version of
universal PRE, where only the delegatee ciphertext can be encrypted by arbi-
trary PKE schemes, and we call it semi-universal PRE. We now show that semi-
universal PRE can be constructed by pIND-secure FE for P/poly. We note that
pIND-secure FE for P/poly can be constructed from IND-secure FE for P/poly
as we proved in Sect. 4, thus our construction of semi-universal PRE also has
a weaker requirement than the existence of piO in the construction of univer-
sal PRE [DN21] (we note that even constructing iO requires sub-exponential
hardness IND-secure FE for P/poly).

We first give the syntax definition of semi-universal PRE.

Definition 6.1. A semi-universal PRE consists of the following algorithms:

– KeyGen(1λ): Output a public-key/secret-key pair (pk, sk).
– Enc(pk,m): For a public key generated from KeyGen(1λ), output a ciphertext

ct for m.
– ReKeyGen(skf , PKE, pkt): Let skf be generated from KeyGen(1λ) and pkt be

a public key of the PKE scheme PKE. This algorithm outputs a re-encryption
key rkf→t.

– ReEnc(rkf→t, ct): Let ct be a ciphertext encrypted by pkf , output a new cipher-
text encrypted by pkt.

– Dec(skf , ct): For a ciphertext ct ← Enc(pkf ,m), output the corresponding
message m.

Let PKE = PKE.KeyGen,PKE.Enc,PKE.Dec be any public key encryption
scheme. A semi-universal PRE scheme is correct, if for (pkf , skf ) ←
KeyGen(1λ), ctf ← Enc(pkf ,m), both: (1) Dec(skf , ctf ) = m except
for a negligible probability; (2) (pkt, sk, t) ← PKE.KeyGen(1λ), rkf→t ←
ReKeyGen(skf , PKE, pkt), the ciphertext ctt ← ReEnc(rkf→t, ctf ) satisfies:
PKE.Dec(skt, ctt) = m except for a negligible probability.

We only define a weaker version of the single-hop security of PRE, where
each delegator key must be generated at the setup phase, and allows only static
corruption. For simplicity reason, we assume that the delegatee PKE scheme is
always different from the delegator PKE scheme (which is a pIND-secure FE
scheme as in our construction).

Definition 6.2. For a semi-universal PRE (Setup,Enc,ReKeyGen,ReEnc), let
P be a set of semantic secure PKE scheme, and for any PKE ∈ P,
Enc �= PKE.Enc. The weak-CRA security of the semi-functional PRE is satis-
fied if for every adversary A, the winning advantage of the following game is
negligible:
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– Setup: The adversary asks the challenger to run Setup(1λ) for any polynomial
numbers of times to get ( ̂pki, ̂ski)i∈[q]. The challenger returns ( ̂pki)i∈[q] to the
adversary. Let L be an empty list.

– Phase 1: The adversary can make one of the following types of queries in
arbitrary sequence:

• Type 1: The adversary submits PKE ∈ P. The challenger generates
(pk|L|+1, sk|L|+1) ← PKE.KeyGen(1λ), adds the pair (PKE; pk|L|+1) into
L, and returns pk|L|+1 to the adversary.

• Type 2: The adversary submits PKE ∈ P. The challenger generates
(pk|L|+1, sk|L|+1) ← PKE.KeyGen(1λ), adds the pair (PKE; pk|L|+1) into
L, and returns (pk|L|+1, sk|L|+1) to the adversary.

• Type 3: The adversary submits ̂pki, i ∈ [q], and (PKE, pkj) ∈ L. The chal-
lenger runs ReKeyGen(̂ski,PKE, pkj) and returns rki→j to the adversary
if rki→j has not been generated before.

These queries can be repeated adaptively.
– Challenge: The adversary submits ̂pki∗ , i∗ ∈ [q] and a pair of messages

(m0,m1), providing that for each Type 3 query which returns rki∗→j for some
j, pkj is generated from a Type 1 query. The challenger chooses b ← {0, 1},
and returns Enc(̂pki∗ ,mb) to the adversary.

– Phase 2: Same as Phase 1, under the restriction that for all Type 3 queries
(̂pki∗ ,PKE, pkj), pkj is generated from a Type 1 query.

– Guess: The adversary outputs b′. The winning advantage of A is defined by
|Pr(b′ = b) − 1/2|.

Now we construct a weak-CRA secure semi-universal PRE from a pIND-
secure functional encryption scheme FE. Let PRF be a pseudorandom function.

– KeyGen(1λ): Output (pk, sk) ← FE.Setup(1λ).
– Enc(pk,m): Sample a random seed r, and output ct ← FE.Enc(pk,m‖r).
– ReKeyGen(skf ,PKE, pkt): Sample a random key K, and let F (m‖r) :=

PKE.Enc(pkt,m;PRF (K, r)). Return FE.KeyGen(skf , F ).
– ReEnc(rkf→t, ct): Output FE.Dec(rkf→t, ct).
– Dec(sk, ct): Let skID ← FE.KeyGen(sk, ID) where ID(m) = m, then output

FE.Dec(skID, ct).

Before we prove the security of the PRE scheme, we first give a lemma to
show that the auxiliary string has no effect in distinguishing a PKE ciphertext
with random key.

Lemma 6.1. Let PKE be a public key encryption scheme with semantic security.
For a pair of messages m0,m1, any p.p.t. algorithm B and auxiliary string aux,
let (pk, sk) ← PKE.KeyGen(1λ), c0 ← PKE.Enc(pk,m0), c1 ← PKE.Enc(pk,m1).
Then Pr(B(aux, pk, c0) = 1) − Pr(B(aux, pk, c1) = 1) is negligible.

Proof. Let Baux(., .) be the algorithm B(aux, ., .). We construct a IND-CPA
adversary A for PKE, which submits m0,m1 as the challenge messages, and runs
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Baux(pk, c) to get the output, then by the semantic security of PKE, the advan-
tage of A is negligible, hence Pr(B(aux, pk, c0) = 1) − Pr(B(aux, pk, c1) = 1) is
negligible. �	

We note that the adversary A in the proof above is non-uniform, so the
scheme PKE must be secure against non-uniform adversaries, which is a rather
standard assumption.

Theorem 6.1. Let FE be pIND-based secure, then the construction above satis-
fies weak-CRA security.

Proof. Given an adversary A′ for the semi-universal PRE game. We construct
a pIND adversary A for FE as follows:

In the setup phase, suppose that the adversary asks the challenger to run
Setup(1λ) for q times. A randomly choose i′ ← [q], and asks for the FE public
key pk. Let ̂pki′ := pk. For i �= i′, the challenger runs FE.Setup(1λ) to get
( ̂pki, ̂ski). A returns ( ̂pki)i∈[q].

When A′ generates a Type 1 query PKE, let FPKE be the following algorithm:

– Run (PKE.pk,PKE.sk) ← PKE.KeyGen(1λ);
– Sample a random key K and return the function f where f(m‖r) :=
PKE.Enc(PKE.pk,m;PRF(K, r)).

A submits a KeyGen query FPKE, and gets (f, skf ), where f contains
PKE.pk. Let pk|L|+1 = PKE.pk, store skf|L|+1 := skf . Return pk|L|+1 and add
(PKE, pk|L|+1) into L.

For a Type 2 query PKE, return (pk|L|+1, sk|L|+1) ← PKE.KeyGen(1λ)
directly while adding (PKE, pk|L|+1) into L.

For a Type 3 query ( ̂pki,PKE, pkj), if i = i′ and pkj is generated from Type
2 queries, then return a random guess b′ ← {0, 1} and abort. If i = i′ and pkj

is generated from Type 1 queries, return rki→j := skfj
(generated in Type 1

queries). If i �= i′, return rki→j ← FE.KeyGen(̂ski, fj).
In the challenge phase, if A′ queries for i∗ �= i′, then return a random guess

b′ ← {0, 1} and abort. Otherwise, let Mb, b ∈ {0, 1} be the algorithm that first
randomly samples r and returns mb‖r. Submit (M0,M1) and get the ciphertext
ct, return ct to A′.

Finally, return the guess b′ from A′.
We can see that A does not abort if and only if i∗ = i′. Since q is polyno-

mial, the non-aborting probability 1/q is non-negligible, so if the advantage of
A′ is non-negligible, the advantage of A is also non-negligible. By the defini-
tion of pIND-based security, there exists a sampling algorithm T and an algo-
rithm B satisfies the definition. We write the output of T as aux, b̄, m̄, tr =
(M̄0, M̄1, (F̄i, f̄i, f̄i(m̄))i∈[Q]).

Since each key query of A is from a polynomial size set {FPKE : PKE ∈ S}
and a ciphertext query Mb samples mb‖r, b ← {0, 1}, we can see that as long
as tr is computationally indistinguishable from trA, F̄i ∈ {FPKE : PKE ∈ S}



Functional Encryption Against Probabilistic Queries 455

and M̄0, M̄1 samples m̄0‖r, m̄1‖r for fixed m̄0, m̄1 and random r. So we rewrite
f̄i(m̄) as f̄i(m̄b̄‖r) = PKE.Enc(pk, m̄b̄;PRF(K, r)), which is indistinguishable
from PKE.Enc(pk, m̄b̄) by the pseudorandomness of PRF.

Since aux is independent from the choice of f̄i, it is also independent from the
choice of pk, by Lemma 6.1, we have that Pr(B(aux, (..., F̄i, f̄i, f̄i(m̄0‖r), ...)) =
1) − Pr(B(aux, (..., F̄i, f̄i, f̄i(m̄1‖r), ...)) = 1) is negligible. By a standard hybrid
argument, we have that Pr(B(aux, tr) = 1|b̄ = 0) − Pr(B(aux, tr) = 1|b̄ =
1) is negligible, hence Pr(B(aux, tr) = b̄) − 1/2 is negligible, which makes a
contradiction. So the advantage of A′ is negligible, thus we finish the proof. �	

By a discussion similar to Sect. 5, we can see that SIM-based and IND-
based FE schemes cannot be used to construct semi-universal PRE schemes
directly. We also point out that why semi-universal PRE cannot be directly con-
structed from rFE [GJKS15]. The SIM-based secure rFE in [GJKS15] supports
only selective security, hence cannot satisfy our security definition. (We note
that adaptively SIM-based secure rFE also suffers from the impossible result
of [AGVW13].) For IND-based secure rFE, the authors require that each post-
challenge key query f , where f is a probabilistic function, satisfies that f(m0)
and f(m1) are statically indistinguishable, rather than computationally indis-
tinguishable, hence cannot be satisfied if m0 �= m1 and f is PKE.Enc(pk, .) for a
PKE scheme PKE. Even if we consider only pre-challenge key queries, where the
authors only require that f(m0) and f(m1) are computationally indistinguish-
able, it still cannot handle the case where f is PKE.Enc(pk, .) since the adversary
may hold the secret key sk corresponding to pk. The same thing happens for the
distributional indistinguishability definition [AM18], which also requires f(m0)
and f(m1) to be computationally indistinguishable.

7 Conclusion and Future Works

In this paper, we define a new security notion for FE: indistinguishability-based
security against probabilistic queries (pIND-security). We justify our security
notion from the following four points: (1) Our pIND-security is strictly between
the classical SIM-security and IND-security; (2) Our pIND-security has both 1-CT
to many-CT and selective to adaptive reductions; (3) We give a construction of
fully secure FE for P/poly which satisfies pIND-security; (4) We give applications
that can be directly constructed from pIND-secure FE schemes, but cannot be
constructed from SIM-secure or IND-secure FE schemes in a same way.

We believe that our new definition has more potential applications than what
we showed in this paper. We also hope that this new security notion can be
used to simplify the construction from FE to iO, hence pushing iO further into
practical.
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Abstract. We present a new generic transform that takes a multi-round inter-
active proof for the membership of a language L and outputs a non-interactive
zero-knowledge proof (not of knowledge) in the common reference string model.
Similar to the Fiat-Shamir transform, it requires a hash function H. However,
in our transform the zero-knowledge property is in the standard model, and the
adaptive soundness is in the non-programmable random oracle model (NPROM).
Behind this new generic transform, we build a new generic OR-composition of
two multi-round interactive proofs. Note that the two common techniques for
building OR-proofs (parallel OR-proof and sequential OR-proof) cannot be natu-
rally extended to the multi-round setting. We also give a proof of security for our
OR-proof in the quantum oracle model (QROM), surprisingly the security loss
in QROM is independent from the number of rounds.

1 Introduction

Non-interactive zero-knowledge (NIZK) proofs [18,25] can prove a statement without
leaking any additional information about the witness. Since its first introduction, NIZK
plays an important role in constructing almost every primitive from the basic ones like
chosen-ciphertext encryption [33], signature [22] to complex cryptographic protocols
like e-voting [17], and e-cash system [12].

Fiat-Shamir and RandomOracle Model. The most common and efficient way to con-
struct a non-interactive zero-knowledge proof in the random oracle model (ROM) is via
the Fiat-Shamir transform [22]. One first constructs a Σ-protocol (1-round interactive
proof), then turns it into non-interactive by simulating the random challenge using a
hash function modeled as a random oracle.

Since its first introduction [2], the random oracle model (ROM) has been contro-
versial. The advantage of ROM is that, it is generally easier to build cryptographic
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primitives with it, and the resulting primitives are usually more efficient than their stan-
dard model version (without random oracle). However, a decade after its introduction
Canetti, Goldreich and Halevi [10] discovered that the instantiation of RO is theoreti-
cally impossible. More precisely, there exist cryptosystems that are secure in the ran-
dom oracle model, but for which replacing the random oracle by any implementation
leads to an insecure cryptosystem. Therefore, standard model constructions are usually
considered as more secure than the constructions in ROM.

Beside of theoretical impossibility, ROM also suffers from some security concerns
in real world applications. For example, a common way to instantiate the random oracle
is with hash functions (like MD5, SHA-1, SHA-2, SHA-3 etc.). Therefore, any progress
in cryptanalysis of hash functions could potentially make the ROM-based schemes inse-
cure. As a concrete example, the work of [35,38] have shown that standard hash func-
tions like MD5 or SHA-1 are far from behaving like random oracles. Based on these
attacks, Stevens et al. [36] showed an attack on constructing two colliding X.509 cer-
tificates for different identities and public keys, while the system is still secure in the
ROM.

NIZKWithout RandomOracle. Efficient NIZK in the standard model is considered as
a challenging problem. In the ‘ NIZK in the standard model has been proposed by [26].
However, the situation of the efficient standard model NIZK in the post-quantum setting
is less clear. Several works have constructed efficient post-quantum NIZK schemes by
relaxing the soundness definition (only average-case soundness [14] against classical
worst-case soundness) or the syntax of NIZK itself (Designated-Verifier NIZK [31],
NIZK in the preprocessing model [28]). The full-fledged post-quantum NIZK in the
standard model is only due to a new framework in the recent breakthrough results [8,
9], which gives the first lattice-based NIZK without RO [34]. As another instantiation
of this framework, a new NIZK based on Learning Parity with Noise assumption and
Trapdoor Hash Functions has also been proposed [6]. However, the efficiency of all
these constructions in the standard model is still far from that of post-quantum NIZK in
ROM [7,21,32].

Non-Programmable Random Oracle. In recent years, there is another research direc-
tion of NIZK consists of replacing the ROM by its weaker variant non-programmable
random oracle model NPROM, while preserving the efficiency [15,29]. These con-
structions are both generic transforms from Σ-protocols to NIZK. Interestingly, they
both have zero-knowledge property in the standard model, and soundness property in
the non-programmable random oracle model (NPROM).

Another interesting point about these two constructions is that, their zero-
knowledge property is independent of the random oracle model. Therefore, in many
applications, such as e-voting or authenticated encryptions, it guarantees that even the
hash function is broken in the future, the privacy is still preserved.

Limits of NIZK in NPROM. One big problem of both transforms [15,29] is that, they
only work for Σ protocols but not the more generic multi-round public-coin interactive
proofs (PCIP). As several recent results of interactive proofs are exploiting the multi-
round property of PCIP to gain efficiency, such as bullet proofs [7], exact proofs [21]
or amortized exact proofs [4], an interesting question would be to extend the [15,29]
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transforms to multi-round interactive protocols. Moreover, between these two trans-
forms, [15] not only requires less properties of the starting Σ-protocol than [29] (opti-
mal soundness against special soundness) but it is also more efficient. Therefore, we
have chosen to focus on extending [15] in this paper. Unfortunately, it cannot be easily
extended, as its principal building block is an OR-composition of two Σ-protocol, and
the existing OR-composition techniques do not apply to multi-round PCIP. We will
give below a quick overview of the existing OR-proofs.

OR-Proof. The OR-composition of Σ-protocols has been initially used to construct
ring-signature schemes by [16] based on the programmable random oracle. Another
OR-composition technique has been proposed by [1] to weaken the model, they only
require the NPROM, and [1] has a shorter proof than [16] (one hash value less in the
proof.) However, neither of them can be extended to the OR-composition of multi-
round public-coin interactive proofs. Note that, for multi-round interactive proofs, we
can firstly use Fiat-Shamir transform to reduce the number of rounds, then apply [16]
or [1] to construct NIZK. But, the Fiat-Shamir transform requires programmability of
the random oracle for the zero-knowledge property. As our goal is to keep the zero-
knowledge property in the standard model, this approach does not work. This raises a
natural question:

Can we build a generic OR-composition of multi-round PCIP, with zero-knowledge in
the standard model and soundness in NPROM?

We will answer this question positively by giving a new technique for OR-composition.

Security in the Quantum Random Oracle Model (QROM). Security of random ora-
cle model in the quantum setting is not a trivial problem. Intuitively, a quantum adver-
sary can build the hash function and run the primitive himself by querying quantum
states. Therefore, the adversary can get a superposition of exponentially many sam-
ples of the random oracle, which gives him more advantage than a classical adversary.
Many recent works address this issue [19,20,30], and they give detailed analysis for
the Fiat-Shamir transform in this setting. As we claim that we have a post-quantum
zero-knowledge proof, we also give an analysis of our transform in the QROM.

1.1 Our Contributions

In this paper, we bring several contributions. Firstly, we propose a new generic trans-
form from multi-round PCIP to NIZK, with zero-knowledge property in the standard
model and soundness in NPROM. The principal new technique behind this transform is
a new OR-proof of two different PCIPs. Surprisingly, the soundness in QROM of both
multi-round PCIP to NIZK and OR-proof of PCIPs has a security loss ofO

(
Q4

H

)
which

is independent from the number of rounds.
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More precisely:

– We propose in this paper a new generic transform from multi-round public-coin
interactive proofs (PCIP) to a non-interactive zero-knowledge proof system (NIZK).
Compared to Fiat-Shamir transform, the zero-knowledge property of our transform
is in the standard model, and soundness property is in the non-programmable ran-
dom oracle model (NPROM) (ROwithout programmability). While comparing with
similar type of transforms [15,29], ours additionally supports multi-round PCIP.

– Behind our generic transform, we have developed a new technique to generate an
OR-proof from two optimal sound PCIP: PCIP0,PCIP1. The direct approach con-
sists of using Fiat-Shamir transform to turn both PCIP0 and PCIP1 into Σ-protocols,
then apply either [16] or [1] transform to get an OR-proof. Compared to the direct
approach, the zero-knowledge property of our transform is in the standard model,
and our adaptive soundness property is in the NPROM. We believe that this new
OR-composition has other applications and independent interests.

– Finally, we analyze the soundness property of our OR-proof in the QROM. Note that
the zero-knowledge property of our OR-proof is in the standard model, therefore it is
naturally secure in the QROM. Moreover, our transform from PCIP to NIZK has the
same security loss as our OR-proof. Surprisingly, the security loss of the soundness
is O

(
Q4

H

)
which is independent of the number of rounds.

1.2 Technical Overview

Our main technique consists in constructing the OR-proof for multi-round PCIPs. We
dedicate this section to explain the intuition behind our OR-proof. Firstly, we will give
a quick overview of the existing parallel OR-proof [16] and sequential OR-proof [1,24]
as we will borrow ideas from both transforms. Then, we explain why they can not be
extended to n-round PCIPs, and our new techniques of OR-proof.

Why [16] Does Not Work for n-round PCIPs? Given Σ0 and Σ1 two Σ-protocols
with transcripts {R0, h0, s0} and {R1, h1, s1}, the intuition behind the parallel [16]
transform is that, after generating the first round commitments (R0,R1), the correspond-
ing challenges are chosen such that h0 ⊕ h1 = H(R0,R1). Therefore any adversary can
freely choose one (and only one) between h0 and h1 even before seeing (R0,R1). By
using the HVZK property of the Σ-protocol, once h0 (or h1) chosen, the adversary can
simulate the proof (R0, s0) or (R1, s1) without knowing any witness.

Let us now see why this approach can not be extended to n-round interactive pro-
tocols when n > 1. The natural extension of [16] would be to define the i-th round
challenges (i ∈ [n]) such that hi,0 ⊕ hi,1 = H({Rj,0,Rj,1}i

j=1). This transform is not
secure. To show this, we construct below an example of two 2-round protocols that are
secure individually, but once combined, the resulting OR-proof is not secure anymore.

Counter-Example of [16] Applying on 2-round PCIPs. Given two Σ-protocols
Σ0 and Σ1, we will construct two 2-round protocols PCIP0,PCIP1 by adding one
unused round into each of Σ0, Σ1 but in different order. Namely, valid transcripts of
PCIP0 and PCIP1 are of the form (R̄0, h̄0,R0, h0, s0) and (R1, h1, R̄1, h̄1, s1), where
(R̄0, h̄0, R̄1, h̄1) are just random strings and ignored in the verification process. If we
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apply the naive extension of [16] transform to PCIP0 and PCIP1, an adversary A can
randomly choose h0, h1, then use HVZK to simulate (R0, h0, s0) and (R1, h1, s1). As
(R̄0, h̄0, R̄1, h̄1) are ignored by the individual verification of PCIP0 and PCIP1, A can
define R̄0, R̄1 to be random strings and

h̄0 := h1 ⊕ H(R̄0,R1), h̄1 := h0 ⊕ H(R0, R̄1).

By the correctness of PCIP0 and PCIP1, (R̄0, h̄0,R0, h0, s0,R1, h1, R̄1, h̄1, s1) is a valid
proof for which A does not need to know any witness in order to produce it, so he can
easily break soundness of the OR-proof composition.

The above attack works because we have given too much "freedom" to A. He can
freely chose one challenge per round. Therefore, we need to limit A to only be able to
freely choose the challenges from the same interactive protocol.

Overview of Sequential OR-Proof [1,24].Given twoΣ-protocolsΣ0 andΣ1, together
with two statements x0, x1 and a witness w0. (w.l.o.g. we can assume that we know
w0.) The intuition of the sequential OR-proof is that H(R0) is used as the challenge h1
for Σ1 and H(R1) is used as the challenge h0 for Σ0. The honest generation of the proof
is given as in Fig. 1.

Prove(x0,x1,w0):
01 (R0, st0)

$← Σ0.Prove1(x0,w0)
02 h1 := H(R0)
03 (R1, s1)

$← Σ1.Sim(x1, h1)
04 h0 := H(R1)
05 s0

$← Σ0.Prove2(x0,w0, h0, st0)
06 return (R0, R1, h0, h1, s0, s1)

Fig. 1. Prove algorithm of sequential OR-proof

The intuition behind the sequential OR-proof is that, one can freely choose to gen-
erate R0 or R1 first. However, once chosen to generate Rb and h1−b first, then hb will be
chosen independently from the value Rb. By the soundness of Σb without wb, no PPT
adversary can generate a valid transcript Transb = (Rb, hb, sb).

For n-round PCIPs, we can notice that before the honest side (b) has been executed
until the (n − 1)th round, the simulation side (1 − b) doesn’t have all the challenges,
therefore even an honest prover with wb cannot generate a valid proof when n > 1.

Intuition Behind Our Approach. Let us consider two n-round public-coin interactive
proofs PCIP0 and PCIP1 for proving the membership of two languages L0 and L1. For
simplicity, we assume PCIP0 and PCIP1 have same number of rounds in this section.
We will prove that x0 ∈ L0 or x1 ∈ L1 without revealing exactly which witness is used.
Let Trans0 = ({Ri,0, hi,0}n

i=1, s0) and Trans1 = ({Ri,1, hi,1}n
i=1, s1) be two transcripts

of PCIP0 and PCIP1 respectively.
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Our starting point is the parallel OR-proof. To prevent the above attack against
multi-round parallel OR-proof, our idea is to combine all the challenges of the same
side together by an offset. Therefore, once the offset and the first i rounds commit-
ments are fixed, the challenges are fixed. More precisely, for b ∈ {0, 1}, we denote by
Ab = {a1,b, . . . , an,b} two offsets, we could compute the challenges of the i-th round
as follows,

hi,0 = H({Rj,0}i
j=1) + ai,0, hi,1 = H({Rj,1}i

j=1) + ai,1. (1)

Now, the challenges are all related. We emphasize the fact that the adversary can freely
choose Ab, where b ∈ {0, 1}, is equivalent to be able to choose every challenge of b
side.

The second step is to only allow the adversary to freely choose one and only one
offset between A0 and A1. To do this, we borrow the idea from the sequential or-proof
by putting A0 and A1 into the hash of the opposite side. More precisely, we have

hi,0 = H({Rj,0}i
j=1,A1) + ai,0, hi,1 = H({Rj,1}i

j=1,A0) + ai,1. (2)

As in sequential OR-proof, the order of query A0 and A1 is crucial in our case. Namely,
at least one of the two cases must happen:

– Before the RO query on ({Rj,0}i
j=1,A1), there exists a query of the form (·,A0).

– Before the RO query on ({Rj,1}i
j=1,A0), there exists a query of the form (·,A1).

This forces the adversary to choose A0 before having seen H({Rj,0}i
j=1,A1) or A1

before having seen H({Rj,1}i
j=1,A0). We can use this property to reduce the adaptive

soundness of our OR-proof to the optimal soundness of the underlying PCIPs.

Security in the QROM. In our QROM security proof, we apply the Measure-then-
Reprogram 2.0 technique [19]. There is a price to pay for proving our transform in
the QROM, that is we need the programmability of the random oracle. Moreover, if we
want to prove our transform for round-by-round, we need to program the random oracle
in every round, this will introduce an exponential security loss in the number of rounds.
Therefore, we restrict our transform to only optimal-sound PCIPs, then we can prove
our transform with only O

(
Q4

H

)
security loss.

Note that, despite the fact that our OR-proof is a composition of two multi-round
PCIPs, we only need to apply the Measure-then-Reprogram 2.0 technique on 2 entries.
This is due to the fact that our OR-proof is not a proof of knowledge, but only a proof
of membership, which is already useful in many applications such as voting schemes
etc.

Therefore, we do not need all the entries to be able to extract the witness. This
observation makes our security loss of the adaptive soundness as low as O

(
Q4

H

)
in

QROM, which is independent from the number of rounds n. Different from our result,
[19] has considered the soundness with proof of knowledge (stronger than our adaptive
soundness) of Fiat-Shamir transform and their security loss is O

(
Q2n

H

)
.
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Very recently, there is a new semi-generic transformation [27] from PCIPs to non-
interactive proofs in the QROM while achieving proof of knowledge. However it
requires the prover’s response to be in linear form. As a comparison, our transformation
is generic and does not impose any restriction on the prover’s response.

In comparison, Unruh’s transform [37] works for any Σ-protocol, but introduces
a noticeable overhead depending on the size of the challenge set. In [13], Chen et al.
extend Unruh’s framework for a 3-round protocol where the second challenge is binary.

2 Preliminaries

2.1 Notations

For n ∈ N, let [n] = {1, . . . , n}. For a finite set S, we denote the sampling of a
uniform random element x by x $← S. For simplicity of the notations, we omit that
every algorithm takes as input the public parameter par. For an algorithm A which
takes x as input, we denote its computation by y $← A(x). We assume all the algorithms
(including adversaries) in this paper to be probabilistic unless stated otherwise. We
denote an algorithm A with access to an oracle O by AO .

For an NP language L, we denote by x ∈w L the fact that the statement x is in the
language L with the witness w.

We use code-based games [3] to present our definitions and proofs. We implicitly
assume all Boolean flags to be initialized to 0 (false), numerical variables to 0, sets
to ∅ and strings to ⊥. We make the convention that a procedure terminates once it
has returned an output. ExpG

Σ,A(1
λ) = b denotes the final (Boolean) output b of the

adversary A running the security experiment G on the schemeΣwith security parameter
λ, and if b = 1 we say A wins G. The randomness in Pr[ExpG

Σ,A(1
λ) = 1] is over all the

random coins in experiment G. Within a procedure, “abort ” means that we terminate
the run of an adversary A.

2.2 n-Round Public Coin Interactive Proof (PCIP)

The general structure of an n-round Public-Coin Interactive Proof of the form depicted
in Fig. 2 is defined as follows.1 Notice that for n = 1, PCIP is a Σ-protocol, and PCIP
is also named as identification scheme in some literatures.

Definition 1 (n-round Public-Coin Interactive Proof). Let L be an NP language. To
prove a statement x ∈w L, an n-round public-coin interactive proof consists of n + 2
PPT stateful algorithms PCIP = ({Provei}n+1

i=1 ,Verif) with the following syntax:

– Provei(hi−1, sti−1) takes a challenge hi−1 and a state sti−1 as input, and returns a
commitment Ri and a new state sti, where st0 = (x,w), and Rn+1 = s.

– Verif(x, ({Ri, hi}n
i=1, s)): The verification Verif takes as input a statement x and a

transcript ({Ri, hi}n
i=1, s) and returns a decision 0 or 1.

We introduce the following definitions for a PCIP scheme:

1 In this paper, we use the convention that n-round PCIP has 2n + 1 moves.
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Fig. 2. An n-round Interactive Protocol

– Transcript: We define a transcript as all messages between the prover and the ver-
ifier of the form Trans = ({Ri, hi}n

i=1, s). Moreover, we define a partial transcript
Trans′ as prefix of another transcript of the form ({Ri, hi}j

i=1) with j ≤ n.

We require the following properties for an n-round PCIP:

– Correctness: For all (x,w) such that x ∈w L and for all honestly generated tran-
scripts Trans = ({Ri, hi}n

i=1, s) using (x,w), we say that PCIP is ρ-correct if we
have:

Pr[Verif(x, ({Ri, hi}n
i=1, s)) = 0] ≤ ρ.

– Honest-Verifier Zero-Knowledge: For all (x,w) such that x ∈w L, we say that
PCIP is Δ-HVZK, if there exists a PPT simulator Sim that takes x as input, and
returns a transcript Trans, such that the distribution of Trans is at statistical distance
at most Δ from the distribution of an honestly generated transcript.
In particular, if Δ = 0, we say that PCIP has perfect HVZK.

– Round-by-Round Soundness: Let PCIP be an interactive-proof with i-th round
challenge space Z�i

. We say that PCIP is round-by-round sound if, there exists a
"doomed set" D ∈ {0, 1}∗ such that,

• If x �∈ L, then (x, ∅) ∈ D, where ∅ denotes the empty transcript.
• For all partial transcript Trans, such that (x,Trans) ∈ D, for all next message

Ri given by the prover, there exists a negligible function negl(·) such that

Pr[(x,Trans‖Ri‖hi) �∈ L | hi
$← Z�i

] ≤ negl(λ) .

• For any complete transcript Trans, if (x,Trans) ∈ D then Verifier(x,Trans) =
false.

Notice that the round-by-round soundness originally proposed by [8] is a very weak
security notion. Since we only consider the constant rounds interactive proofs, by [8,
Proposition 5.3 and 5.4] round-by-round soundness and negligible soundness are equiv-
alent. On the other hand, optimal soundness (c.f. Definition 9 which is a multi-round
version of special soundness) is a commonly used term for many protocols. If a protocol
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is ε-optimal sound then it can be seen as no transcript can escape the doomed set except
in one specific round with probability ε. Therefore, optimal soundness tightly implies
round-by-round soundness. This provides us an alternative way to use our transform.

2.3 Non-Interactive Proof NIP

For the sake of completeness, we define two different types of non-interactive proofs
NIP: Non-Interactive Zero-Knowledge proofs (NIZK) and Non-Interactive Witness
Indistinguishable proofs (NIWI). Notice that we don’t consider the proof of knowledge
in this paper, and we use the adaptive soundness for NIPs.

Definition 2 (Non-Interactive Proof NIP). Let L be an NP language. To prove a
statement x ∈w L, a non-interactive proof consists of four PPT algorithms Π =
(Setup,Prove,Verif,Sim = (Sim0,Sim1)) defined as follows:

– Setup(1λ) → CRS : The setup algorithm Setup returns a common reference string
CRS.

– Prove(CRS,x,w) → π : The prove algorithm Prove returns a proof π that x ∈w L
using w as witness.

– Verif(CRS,x, π) → {0, 1} : The verification algorithm Verif returns a decision, 1
(acceptance) or 0 (rejection).

– Sim0(1λ) → (CRS, τ) : The first part of the simulation algorithm Sim0 outputs a
common reference string CRS and a simulation trapdoor τ .

– Sim1(τ,x) → π : The second part of the simulation algorithm Sim1 outputs a
simulated proof π.

Wewill also define the completeness, adaptive soundness, zero-knowledge, witness-
indistinguishability of NIP as follows.

Definition 3 (ρ-Completeness). A NIP is ρ-complete if, for all x ∈w L we have:

Pr
[
Verif(CRS,x, π) = 0

∣
∣
∣
∣
CRS $← Setup(1λ)
π $← Prove(CRS,x,w)

]
≤ ρ.

Definition 4 ((ε,QH)-Adaptive Soundness). A NIP is (ε,QH)-adaptively sound in the
non-programmable random oracle model NPROM, if for all PPT adversaries A requir-
ing at most QH hash queries we have:

Pr
[
x� ∈ {0, 1}n \ L ∧ Verif(CRS,x�, π�) = 1

∣
∣
∣
∣
CRS $← Setup(1λ)
(x�, π�) $← AOHash(CRS)

]
≤ ε.

We consider the hash function as an NPRO in the soundness proof.

Definition 5 (Zero-Knowledge). A NIP is Δ-Zero-Knowledge, if there exists a simu-
lator Sim = (Sim0,Sim1) such that, the statistical distance between the output distri-
butions of Game Sim and Game Real as defined in Fig. 3 is at most Δ.

Moreover, if Δ = 0, NIP is perfectly zero-knowledge.



470 P.-A. Fouque et al.

Game Sim:
01 (CRS, τ) $← Sim0(1

λ)
02 (x,w) $← A(CRS) //x ∈w L
03 π $← Sim1(x, τ)
04 return (CRS, π)

Game Real:
05 CRS $← Setup(1λ)
06 (x,w) $← A(CRS) //x ∈w L
07 π $← Prove(CRS,x,w)
08 return (CRS, π)

Fig. 3. Real and Sim experiments for the zero-knowledge property

Definition 6 (Witness Indistinguishable for OR-Composition). Let L∨ = L0 ∨ L1

be an OR-relation. A NIP is Δ-Witness Indistinguishable for L∨, if for the statement
x = (x0,x1) and the witness (w0,w1) such that x0 ∈w0 L0 ∨ x1 ∈w1 L1, the
statistical distance between the output distributions of the Game 0 and the Game 1 as
defined in Fig. 4 is at most Δ.

Game 0:
01 CRS $← Setup(1λ)
02 π $← Prove(CRS,x,w0)
03 return π

Game 1:
04 CRS $← Setup(1λ)
05 π $← Prove(CRS,x,w1)
06 return π

Fig. 4. Real and Sim experiments for the witness-indistinguishability

Moreover, if Δ = 0, NIP is perfectly witness indistinguishable.

We define NIZK as NIP that satisfy completeness, adaptive soundness and zero-
knowledge property while for NIWI, the zero-knowledge property is replaced with
witness-indistinguishability.

3 From Interactive to Non-interactive

One of the most common way to construct a non-interactive zero-knowledge proof is via
the Fiat-Shamir [23] transform. However, we additionally require the zero-knowledge
property to be ROM-free, which is not the case using this transform. The two existing
variants available for Σ-protocols (1-round protocols) are [29] and its more efficient
and more generic improvement [15].

Lindell’s Transform. [29] In Lindell’s transform, the challenge of Σ-protocol is of the
form H(x,Com(R)), where R is the first round message of the Σ-protocol and Com is a
dual-mode commitment [29] (aka. hybrid trapdoor commitment [11]). However, if we
want to generalize this transform to multi-round PCIP, this approach is not very effi-
cient. That is because, we need to include the commitments and the decommitments of
every round of PCIP into the final proof. Moreover, following the generic construction
of dual-mode commitment from PCIP schemes in [29], the size of one commitment
and one decommitment is equal to the size of one PCIP proof. Therefore, if we directly
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apply the Lindell’s transform, we will have a proof size blow-up of factor O
(
n
)
, where

n is the number of rounds. Consequently, it may loose the efficiency gain of multi-round
PCIP schemes over Σ-protocols.

Ciampi et al. Transform [15] The transform in [15] requires only computational
optimal soundness (weaker than special soundness) and computational HVZK of the
underlying interactive protocols, and it is more efficient than [29]. However, the [15]
transform relies heavily on the existence of an OR-composition of interactive proto-
cols. Unfortunately, the most efficient interactive lattice-based proof systems are all
2-round protocols [4,5,21], and the previous OR-compositions of interactive proof sys-
tems [1,16,24] cannot be applied to multi-round PCIPs.

In this section, we further improve the [15] transform by extending it to support OR-
composition of an n0-round computational HVZK and round-by-round sound PCIP0

and an n1-round computational HVZK and round-by-round sound PCIP1. Notice that
if we apply our transform to two 1-round PCIPs (Σ-protocols), the resulting NIZK
scheme is almost as efficient as in [15]. More precisely, in the case of Σ-protocol, we
only have two more elements (a0, a1) ∈ Z�1,0 ×Z�1,1 than [15], where 	1,0, 	1,1 are the
size of the challenge spaces of PCIP0 and PCIP1. In Sect. 2.3 we recall the definitions
of two different types of non-interactive proofs NIP: NIZK proofs and Non-Interactive
Witness Indistinguishable (NIWI) proofs.

3.1 Construction of Our OR-Proof

We recall that the intuition behind our OR-proof is explained in Sect. 1.2. We then
directly give the construction of our OR-proof in this section.

Let PCIP0 (resp. PCIP1) be an n0-round (resp. n1-round) public coin interactive
proof for proving the membership of two languages L0 and L1, and we denote the
size of challenge spaces by (	1,0, . . . , 	n0,0, 	1,1, . . . , 	n1,1). The goal is to prove that
x0 ∈ L0 or x1 ∈ L1 without revealing exactly which witness is used. The idea behind
this proof, using wb, is to first sample a random offset Ab = (a1,b, . . . , anb,b). Then, we
simulate the proof PCIP1−b for which we don’t have a witness to build the second offset
(a1,1−b, . . . , an1−b,1−b), which depends on Ab and on the commitments {Ri,1−b}n1−b

j=1 .
Finally, we can use A1−b to build the proof PCIPb for which we know the witness. To
verify the proof, we first verify that all the {hi,b} have been correctly generated, then
that both proofs pass their verification algorithm.

We give our transform in pseudo-code in Fig. 5. We define Ci,b as the challenge
space of i-th round of PCIPb, we assume that Ci,b is isomorphic to the additive group
(Z�i,b

,+).

Properties of Our NIP. We will prove in the remaining part of this section that the
non-interactive proof NIP constructed as in Fig. 5 is correct (Theorem 1), witness-
indistinguishable (Theorem 2), and adaptively sound (Theorem 3), if the underlying
protocols PCIP0,PCIP1 are both correct, HVZK and round-by-roudn sound. Moreover,
if PCIP0 and PCIP1 are both perfectly HVZK, then the resulting NIP is a NIWI proof
with perfect witness-indistinguishability.
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Prove(x0,x1,wb):
01 Ab := (a1,b, . . . , anb,b)

$← Z�1,b × . . . × Z�nb,b

02 Trans1−b
$← PCIP1−b.Sim(1λ,x1−b)

03 ({Ri,1−b, hi,1−b}n1−b

i=1 , s1−b) =: Trans1−b

04 for i = 1..n1−b do
05 ai,1−b ← hi,1−b − H({Rj,1−b}i

j=1, Ab)
06 A1−b ← (a1,1−b, . . . , an1−b,1−b)
07 st0,b = ∅; h0,b = ⊥
08 for i = 1..nb do
09 (Ri,b, sti,b)

$← PCIPb.Provei(sti−1,b, hi−1,b,xb,wb)
10 hi,b := H({Rj,b}i

j=1, A1−b) + ai,b

11 sb
$← PCIPb.Provenb(stnb−1,b, hnb−1,b,xb,wb)

12 return π := ({Ri,0}n0
i=1, {Ri,1}n1

i=1, A0, A1, s0, s1)
Verif(x0,x1, π):
13 for i = 1..n0 do
14 hi,0 := H({Rj,0}i

j=1, A1) + ai,0

15 for i = 1..n1 do
16 hi,1 := H({Rj,1}i

j=1, A0) + ai,1

17 Trans0 := ({Ri,0, hi,0}n0
i=1, s0)

18 Trans1 := ({Ri,1, hi,1}n1
i=1, s1)

19 if PCIP0.Verify(x0, Trans0) = 1 ∧ PCIP1.Verify(x1, Trans1) = 1 then
20 return 1
21 else return 0

Fig. 5. In this figure, we construct an NIP system Π = (Setup, Prove, Verif), which is an OR-
composition to prove that x0 ∈ L0 ∨x1 ∈ L1. We recall that all challenge spaces are considered
as an additive group. Namely, for all operations in the i-th round of PCIPb are modulo Z�i,b.

Theorem 1 (Correctness). If PCIP0 and PCIP1 are both ρ-correct and Δ-HVZK,
then Π is 2ρ + Δ-correct.

Proof. We can observe that in the resulting proof π, we have randomly chosen a bit b,
and the proof π can be divided into two parts (π0, π1), where πb = ({Ri,b}nb

i=1,Ab, sb)
is an honestly generated proof of PCIPb with correctness error at most ρ, and π1−b is
a simulated transcript of PCIP1−b with correctness error at most ρ + Δ. Therefore, by
the union bound over the correctness of π0 and π1, we have π has correctness error at
most 2ρ + Δ. �
Theorem 2 (Witness-Indistinguishability). If PCIP0 and PCIP1 are two Δ-HVZK
(n0, n1)-rounds public-coin interactive proofs for the language L0 and L1 respectively,
then Π is 2Δ-Witness-Indistinguishable. Namely, given a statement x = (x0,x1) such
that x0 ∈w0 L0∧x1 ∈w1 L1, the statistical distance between the proof generated using
w0 and the one generated using w1 is at most 2Δ.
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Theorem 3 (Adaptive Soundness). For b ∈ {0, 1}, let PCIPb be an nb-round round-
by-round ε′-sound interactive protocol, then Π is (t, ε,QH)-adaptively sound, where

t = poly(λ) , ε ≤ (QH + 2n)2 · n · ε′,

with n = max(n0, n1).

Proof. Assuming A a PPT adversary, running in polynomial time t, wins the adaptive
soundness game within probability ε by generating a valid OR-proof π for (x0,x1)
where x0 /∈ L0 and x1 /∈ L1,

π = ({Ri,0}n0
i=1, {Ri,1}n1

i=1,A0,A1, s0, s1).

Moreover, we can compute A0 = (a1,0, . . . , an0,0), A1 = (a1,1, . . . , an1,1), and
hi,b = H({Rj,b}i

j=1,A1−b) + ai,b. We give the security proof via a sequence of games:

– Game0 : The Game0 is the original adaptive soundness game.
– Game1 : In this game, we assume that for i0 ∈ [n0], i1 ∈ [n1], all the queries of the

form ({Ri,0}i0
j=1,A1) and ({Ri,1}i1

j=1,A0) have been queried to the random oracle.
Remind that if the adversary A does not fulfil this condition, we can construct a new
adversary B that additionally makes the above two queries with the same running
time and winning probability against the adaptive soundness game. Therefore, we
have Adv0 = Adv1, but the number of queries has slightly increased Q′

H = QH +
n0 + n1.

Analysis of the Winning Probability Adv1 of A in Game1. We define the bit b ∈ {0, 1}
such that there is a random oracle query of the form (·,Ab) happens before any query
of the form (·,A1−b).

Since π is a valid proof, we have for i ∈ [nb] that hi,b = H({Rj,b}j
i=1,A1−b)+ai,b.

Note that in the proof given by the adversary is of the form π = (π0, π1) where any
query of the form (·,A1−b) happens after a query of the form (·,Ab). Therefore, the
adversary A can only choose at most QH +2n different offsets as Ab. Moreover, for all
i ∈ [nb], given {Rj,b}i

j=1 and Ab = ({aj,b}nb
j=1), there are at most QH + 2n different

challenge values hi,b := H({Rj,b}i
j=1,A1−b) + ai,b depending on the choice of A1−b.

Thus, the adversary has in total at most (QH + 2n)2 choices of hi,b

We emphasize that the output distribution of the random oracle is uniformly ran-
dom. Therefore, the distribution of hib,b conditioned on the choice of Ab,A1−b is still
uniformly random by using the One-Time Pad argument.

We recall that, for the round-by-round ε-soundness, for all j ∈ [nb], given the
prover’s messages ({Ri,0}j

i=1), if the challenge is selected uniformly, the partial tran-
script has probability 1−ε to be "doomed". The adversary has (QH+2n)2 choices over
(Ab,A1−b). On the other hand, the total transcript is in the "doomed set" with proba-
bility 1 − (1 − ε′)n ≤ n · ε′. Therefore, we have that the success probability for the
adversary in finding a pair of (Ab,A1−b) such that the transcript of the side b is not
doomed is at most (QH + 2n)2 · n · ε′.

Summarizing all the hybrid games, we have

t = poly(λ) , ε ≤ (QH + 2n)2 · n · ε′.

�
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3.2 Adaptively Sound Non-Interactive Zero-Knowledge Proof

We follow the same framework of [15] for defining a transform from n-round interac-
tive proof systems to NIZK: we use our OR-composition in Sect. 3.1 to let the prover
combine the interactive proof system with a proof of hard membership problem.

Since the transform of [15] (and ours) makes use of a membership-hard language
L, let us first define it in Definition 7.
Definition 7 (NP membership problem[29]). A language L is a (t, εL)-hard NP
membership language if there exists a PPT sampler S = (S0,S1) such that for every
PPT distinguisher D , running in polynomial time t, we have

∣
∣Pr

[D(S0(1λ), 1λ) = 1
] − Pr

[D(S1(1λ), 1λ) = 1
]∣∣ ≤ εL,

where S behaves as follows

– S0(1λ) samples (x0,w0) $← L, and returns x0.
– S1(1λ) samples x1

$← {0, 1}λ \ L, and returns x1.

Transform from Interactive to Non-Interactive.Given a language L0 and an instance
x0 ∈w0 L0, our goal is to prove that x0 ∈ L0 without leaking any additional informa-
tion about w0. We follow the same overall framework as [15] by adding a membership-
hard langage L1 together with an instance x1 ∈ L1, then the NIZK proof consists of a
proof that x0 ∈ L0 ∨ x1 ∈ L1, and (x1,L1) is the CRS of the NIZK proof system. We
give below some intuitions behind the soundness and the zero-knowledge property of
this general construction.

– Soundness: As L1 is a membership-hard problem, we can switch x1 ∈w1 L1 into
x′
1 ∈ {0, 1}λ \L1 without the adversary noticing it. Since x′

1 ∈ {0, 1}λ \L1, a valid
proof π for the fact that x0 ∈ L0 ∨ x′

1 ∈ L1 directly implies that x0 ∈ L0.
– Zero-Knowledge: We can simulate every proof using w1 instead of w0. By the

witness-indistinguishability of the OR-proof, this change is oblivious for the adver-
sary. This proves the zero-knowledge property of the NIZK proof system.

Formally, let PCIP0 be a (k, 	)-sound n0-round interactive proof system for the NP
language L0. We will consider a (t, εL)-hard NP membership L1 and its associated
interactive proof system PCIP1. Let Π denote the NIWI scheme obtained by applying
the OR-composition from Sect. 3.1 to PCIP0 and PCIP1. We give the explicit transform
from an IP protocol PCIP0 to a NIZK scheme Σ in Fig. 6.

The correctness of Σ is straightforward from Theorem 1:

Theorem 4 (Correctness). If PCIP0 and PCIP1 are both at least ρ-correct and Δ-
HVZK, then Σ is 2ρ + Δ-correct.

Theorem 5 (Zero-Knowledge). If PCIP0 and PCIP1 are both Δ-HVZK multi-round
(n0, n1 rounds respectively) interactive protocols, then Σ is 2Δ-Zero-Knowledge.

Proof. Since we have x1 ∈w1 L1, we can use w1 to compute the NIWI proof,
which simulates an honestly generated proof with statistical distance at most 2Δ by
Theorem 2. �
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Setup(1λ):
01 (x1,w1)

$← L1

02 CRS := x1

03 return CRS

Prove(CRS,x0,w0):
04 π $← Π.Prove((x0, CRS),w0)
05 return π

Verif(CRS,x, π):
06 return Π.Verif((x, CRS), π)

Fig. 6. Transform from an optimal-sound interactive protocol PCIP0 into adaptively sound NIZK
scheme Σ.

Theorem 6 (Adaptive Soundness). For b ∈ {0, 1}, let PCIPb be a εb-Round-By-
Round sound nb-round interactive protocol such that PCIP1 is the interactive proof
associated to a (t′, ε′

L)-hard NP membership language L1, then Σ is (t, ε,QH)-
adaptively sound, where

t ≈ t′, ε ≤ (QH + 2n)2 · n · ε′ + ε′
L,

with ε′ = max(ε0, ε1) and n = max(n0, n1).

Proof. We will give a simple game-based proof of this theorem. There are only 2
hybrids described as in Fig. 7.

ExpAdSnd(1
λ):

01 (x1,w1)
$← L1 //Game0

02 x1
$← {0, 1}λ \ L1 //Game1

03 CRS := x1

04 (x�, π�) $← AOHash(CRS)

05 if x� ∈ {0, 1}n\L0∧Verif(CRS,x�, π�) = 1 then
06 return 1
07 else return 0

OHash(R):
08 h $← C
09 return h

Fig. 7. The security games for proving the adaptive soundness of Σ. The line commented with
Gamei is the pseudo-code that only exists in i-th hybrid.

The Game0 is the original security game for the adaptive soundness of Σ. In game
Game1, the only difference is that x1 in CRS is chosen from the set {0, 1}λ \ L1.
Therefore, we have

Adv0 = ε, |Adv1 − Adv0| ≤ ε′
L.

where Adv0 (respectively Adv1) is the advantage of A in gameGame0 (respectively
Game1). Moreover, inGame1, since x1 is not in L1 and x0 is neither in L0, π is a valid
attack for the underlying NIWI scheme. Therefore, we have Adv1 ≤ (QH + 2n)2 · n · ε′

from Theorem 3. Combining hybrids together we have t ≈ t′ and

ε ≤ (QH + 2n)2 · n · ε′ + ε′
L.

�
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4 Security of Our Transform in the Quantum Random Oracle
Model

In this section, we give a security proof of our OR-composition from two public-coin
interactive proofs (n0-round and n1-round respectively) into one NIZK in the quan-
tum random oracle model. Note that we can straightforwardly extend our proof in the
QROM to our transform from PCIP to NIZK as described in Sect. 3.2.

While it is an important achievement to prove security in the QROM for post-
quantum primitives, there is a price that one has to pay. One drawback is that there is a
significant loss in the security argument. The second one is related to the programma-
bility of the random oracle: proofs that were in the NPROM in the classical setting now
need the quantum random oracle to be programmable in the security reduction. The last
one is that we cannot prove our transform for round-by-round sound PCIP with accept-
able security loss (polynomial in the number of rounds), due to the fact that we need
to reprogram every round to fulfill a reduction, which introduces a exponential secu-
rity loss in the number of rounds. Therefore, we limit our transform to optimal-sound
PCIP protocols. Firstly, we introduce the notion of answerable challenge and provide
the formal definition of optimal-soundness.

Definition 8 (Answerable Challenges). Let Ans(Transi, hi) be a function that takes
a partial transcript until i-th round Transi = ({Rj , hj}i−1

j=1,Ri) and a challenge
hi as input, and returns 1 if there exists Trans′ = ({Rj , hj}n

j=i+1, s) such that
(Transi, hi,Trans′) is a valid transcript and 0 otherwise. We say that a challenge hi

is an answerable challenge for round i if Ans(Transi, hi) = 1.
We emphasize that the function Ans can be a non-efficiently computable function

here.

Definition 9 (Optimal Soundness). Let L be an NP language, we say that PCIP is
(k, 	, i)-optimal sound if, for all statement not in the language x /∈ L, and for all partial
transcripts Transi = ({Rj , hj}i−1

j=1,Ri) there exist at most k answerable challenges

{h
(j)
i }j∈[k] such that Ans(Transi, h

(j)
i ) = 1 for all j ∈ [k] and the size of the i-th

challenge space is at least 2�.

We note that, the optimal soundness is implied by the special soundness which is the
case for most PCIP protocols. Moreover optimal soundness straightforwardly imply the
negligible soundness, while the latter one is equivalent to the round-by-round soundness
in our case. Thus, limiting our transform to the PCIPs with optimal soundness is indeed
a restriction.

We will use the measure-and-reprogram 2.0 technique proposed in [19] and we
apply it to our NIZK transform in the same way that [19] apply it for proving sequential-
OR proof. Firstly, we give a quick overview of the measure-and-reprogram 2.0 tech-
nique proposed in [19].
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Measure-and-Reprogram 2.0, Multiple Input [19]. Let A be a quantum adversary
that has QH quantum queries to a random oracle H : X → Y , whereX ,Y are both finite
non-empty sets. Assuming that for a predicate (possibly quantum and not efficiently
computable) Γ , the adversary A can output in polynomial time t a transcript Trans =
(X0, . . . ,Xn−1, z) such that Γ (Trans,H(X0), . . . ,H(Xn−1)) = True.

The goal is to build a multi-stage simulator RA such that stage by stage it outputs
Xi’s and takes the corresponding Θi’s as input and finally outputs a (possibly quantum)
z such that for the same predicate we have Γ (X0, . . . ,Xn−1, z, Θ0, . . . , Θn−1) = True.

Don et al. [19] showed the existence of a quantum adversary RA that proceeds
as follows: Firstly, it outputs a permutation σ together with a hash input xσ(0) and
it takes as input Θσ(0) from a third party V . Then for every stage 0 < i ≤ n − 1,
RA outputs a hash input xσ(i) and it takes as input Θσ(i) from V . Finally, it outputs a
possibly quantum z. We denote this procedure as (σ, σ(X), z) $← 〈RA, σ(Θ)〉, where
X = (X0, . . . ,Xn−1) and Θ = (Θ0, . . . , Θn−1). In the special case of PCIP protocols,
V refers to the verifier.

More precisely, we have the following theorem:

Theorem 7 ([19, Theorem 6]). Let X and Y be the input and output sets of the
hash function H : X → Y . Let A be a polynomial time oracle quantum algorithm
that makes QH random oracle queries to H and outputs an n-dimensional vector
X = (X0, . . . ,Xn−1) and a possibly quantum z. There exists a (n + 1)-stage quan-
tum algorithm RA that behaves as described above, satisfying the following property:
For any X� ∈ X n without duplicate entries and for any predicate (possibly quantum
and not efficiently computable) Γ , and a third party V , we have:

Pr
[

X = X�∧
Γ (X,Θ, z)

∣
∣ (σ, σ(X), z) $← 〈RA, σ(Θ)〉

]

≥ 1
(2QH + 1)2n

· Pr
[

X = X�∧
Γ (X,H(X), z)

∣
∣ (X, z) $← A(1λ)

]
.(3)

Application to Our Zero-Knowledge Proof. Formally, given a n0-round PCIP0 and a
n1-round PCIP1, for languages L0 and L1 respectively. We proposed a non-interactive
proof of the form π∨ = (A0,A1, {Ri,0}n0

i=0, {Ri,1}n1
i=1, s0, s1) for the language L∨ =

{(x0,x1) : x0 ∈ L0 ∨ x1 ∈ L1}.
We assume that for b ∈ {0, 1}, the interactive protocol PCIPb is (kb, 	b, ib)-optimal

sound, and we have i�b such that given the first i�b elements R1,b, . . . ,Ri�
b ,b, there are

only kb answerable challenges. This property is captured by the answerable predicates
given in the optimal soundness Ansb(R1,b, . . . ,Ri�

b ,b, hi�
b ,b).

Theorem 8. For b ∈ {0, 1}, let PCIPb be a (k, 	, ib)-optimal sound nb-round inter-
active protocol Let Π∨ be the non-interactive zero-knowledge proof given by applying
our transform in Sect. 3.1. Any quantum adversary A running in time t, making QH

quantum random oracle, breaks the adaptive soundness of Π∨ with probability at most
k
2� · (2QH + 1)4.
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Proof. Assuming A is a quantum adversary making QH quantum random oracle
queries against the adaptive soundness of Π∨. By the definition of adaptive sound-
ness, given two false statements x0 /∈ L0 and x1 /∈ L1, A can generate a valid proof
π∨ = (A0,A1, {Ri,0}n0

i=1, {Ri,1}n1
i=1, s0, s1) with non-negligible advantage. For sim-

plicity, we denote the challenge by,

hi,b := H({Rj,b}i
j=1,A1−b) + ai,b. (4)

Note that, in our non-interactive proof construction hi,b is used as the challenges in the
underlying interactive protocols. Since π∨ is a valid proof, for b ∈ {0, 1}, and i ∈ [nb],
we have Ansb({Rj,b}i

j=1, hj,b) = True.
For our convenience, we will consider an adversary A′ that proceeds exactly like

A, except that it only outputs a partial proof π′ = ({Ri,0}i�
0

i=1,A1, {Ri,1}i�
1

i=1,A0). For
more compact notation, we denote Xb = ({Ri,b}i�

b
i=1,A1−b) for b ∈ {0, 1}. We also

define a predicate Γ as follows:

Γ ((X0,X1), (H(X0),H(X1))) = Ans0({Ri,0}i�
0

i=1, hi�
0 ,0) ∧ Ans1({Ri,1}i�

1
i=1, hi�

1 ,1).

Here, we recall that hi�
b ,b can be computed by using π′,H(X0),H(X1) as in Equation (4).

By the definition of the answerable challenge predicate, assuming a valid proof π∨, the
corresponding partial proof π′ = (X0,X1) verifies that Γ ((X0,X1), (H(X0),H(X1))) =
True.

Now, it is easy to see that (A′, Γ ) fits into the requirement of Theorem 7. By simply
applying Theorem 7, for all (X�

0,X
�
1), two uniformly chosen Θ0, Θ1 and two instances

(x0,x1), we have an adversary B such that:

Pr

⎡

⎣
X0 = X�

0∧
X1 = X�

1∧
Γ ((X0,X1), (Θ0, Θ1))

| (σ, σ(X0,X1),⊥) $← 〈B(x0,x1), σ(Θ0, Θ1)〉
⎤

⎦

≥ 1
(2QH + 1)4

· Pr
⎡

⎣
X0 = X�

0∧
X1 = X�

1∧
Γ ((X0,X1), (H(X0),H(X1)))

∣
∣
∣
∣
(X0,X1,⊥)
$← A′H(x0,x1)

⎤

⎦ .(5)

In the final step, we will construct an adversary C that helps us to choose (Θ0, Θ1).
More precisely, we describe the behavior of C as in Fig. 8.

Note that the left side of Equation (5) can be bounded by k
2� . More precisely, since

we have Γ ((X0,X1), (Θ0, Θ1)) = True, we have also Ansb(Xb, hb) = True. But, the
challenge hb is chosen uniformly random by an honest verifier Verifierb in line 09 Fig. 8.
Therefore Pr[Ansb(Xb, hb)] ≤ k

2� by the optimal soundness. Combining this upper
bound with Eq. 5, we have the probability of A breaking the adaptive soundness of Π∨
is at most k

2� · (2QH + 1)4. �
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C(x /∈ L):
01 (σ, Xσ(0), st)

$← B1(x0,x1)
02 b ← σ(1)
03 xb := x; Lb := L; Verifierb := Verifier
04 x1−b

$← {0, 1}�; L1−b
$← {0, 1}�

05 Θσ(0)
$← Y

06 (Xσ(1), st)
$← B2(Θσ(0), st)

07 parse (R1,σ(1), . . . , Riσ(1),σ(1), Aσ(1)) =: Xσ(1)

08 parse (a1,σ(1), . . . , anσ(1),σ(1)) =: Aσ(1)

09 hσ(1)
$← Verifierσ(1)(Xσ(1))

10 Θσ(1) := hσ(1) − aiσ(1),σ(1)

11 ⊥ $← B3(Θσ(1), st)
12 return (Xσ(1), hσ(1), Θ0, Θ1)

Fig. 8. Assuming PCIP0 and PCIP1 are (k, �, i)-optimal sound, we give the description of the
adversary C which interacts with the verifier Verifier of the underlying PCIP. Note that B =
(B1, B2, B3) is a 3-stage algorithm with an internal state st.
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Abstract. In this paper, we propose a new type of non-interactive zero-
knowledge (NIZK), called Fine-grained Verifier NIZK (FV-NIZK), which
provides more flexible and more fine-grained verifiability of proofs than
standard NIZK that supports public verifiability and designated-verifier
NIZK (DV-NIZK) that supports private verifiability. FV-NIZK has two
statistically equivalent verification approaches:
• a master verification using the master secret key msk;
• a fine-grained verification using a derived secret key skd, which is

derived from msk w.r.t. d (which may stand for user identity, email
address, vector, etc.).

We require unbounded simulation soundness (USS) of FV-NIZK to hold,
even if an adversary obtains derived secret keys skd with d of its choices,
and define proof pseudorandomness which stipulates the pseudorandom-
ness of proofs for adversaries that are not given any secret key.

We present two instantiations of FV-NIZK for linear subspace lan-
guages, based on the matrix decisional Diffie-Hellman (MDDH) assump-
tion. One of the FV-NIZK instantiations is pairing-free and achieves
almost tight USS and proof pseudorandomness.

We illustrate the usefulness of FV-NIZK by showing two applications
and obtain the following pairing-free schemes:

– the first almost tightly multi-challenge CCA (mCCA)-secure inner-
product functional encryption (IPFE) scheme without pairings;

– the first public-key encryption (PKE) scheme that reconciles the
inherent contradictions between public verifiability and anonymity.
We formalize such PKE as Fine-grained Verifiable PKE (FV-PKE),
which derives a special key from the decryption secret key, such that
for those who obtain the derived key, they can check the validity of
ciphertexts but the anonymity is lost from their views (CCA-security
still holds for them), while for others who do not get the derived key,
they cannot do the validity check but the anonymity holds for them.
Our FV-PKE scheme achieves almost tight mCCA-security for
adversaries who obtain the derived keys, and achieves almost tight
ciphertext pseudorandomness (thus anonymity) for others who do
not get any derived key.
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1 Introduction

NIZK with Unbounded Simulation Soundness (USS). Over decades,
non-interactive zero-knowledge (NIZK) proofs have shown great power in con-
structing a variety of cryptographic primitives, e.g., public-key encryption
(PKE) [14,27], digital signatures [7], etc. Towards better efficiency and shorter
proofs, Jutla and Roy [23] defined a weaker notion called quasi-adaptive NIZK
(QA-NIZK), where the common reference string (CRS) might depend on the
specific language. In this paper, we will focus on quasi-adaptive NIZK and omit
the term “quasi-adaptive” for simplicity.

One important security property for NIZK is unbounded simulation sound-
ness (USS) [25,30], which plays an important role in many applications of NIZK,
e.g., CCA-secure PKE [16,21], publicly verifiable CCA identity-based encryp-
tion (IBE) [22], structure preserving signatures [4,5], etc. Loosely speaking, USS
requires the computational hardness for an adversary to generate a valid proof
for an instance outside the language, even if the adversary has access to an oracle
that outputs simulated proofs for instances (not necessarily in the language) of
its choices.

Tight Security and NIZK with Tight USS. The security of a cryptographic
primitive is usually proved via a reduction, which turns an adversary A that
breaks the security of the primitive with running time t and advantage ε into
an algorithm B that solves some hard problem with running time t′ ≈ t and
advantage ε′. Intuitively, we would desire ε′ to be as large as ε. To reflect this,
we define L := ε/ε′ as the security loss factor, which is the smaller the better.
We call the reduction tight if L is a small constant or almost tight if L is linear
(or even better, logarithmic) in the security parameter λ. For a loose reduction,
L usually depends on A’s behaviours, e.g., the number of A’s queries, which can
be as large as 250 in practical settings.

Pursuing (almost) tight security has both theoretical and practical signifi-
cance. For a scheme with a loose security reduction, the deployer has to choose
larger security parameters to compensate the security loss, resulting in larger
elements and lower efficiency. In contrast, schemes with (almost) tight security
enjoy many advantages like universal key recommendations and more flexible
choices of parameters. Recently, (almost) tight security has been explored in
many areas, including PKE [16,17,20,21], signatures [8,19,21,24], IBE [9,11],
etc.

In the scenario of NIZK, Libert et al. [25] proposed the first scheme with
(almost) tight USS, and Gay et al. [16] gave a more efficient construction later.
In both schemes, the size of the CRS (in terms of the number of group elements)
is linear in λ. The first (almost) tightly secure NIZK with constant-size CRS was
designed by Abe et al. [5]. Recently in [4], Abe et al. proposed a shorter NIZK
with both constant-size CRS and proofs.

Designated-Verifier NIZK (DV-NIZK). Standard NIZK allows public veri-
fication, so that anyone who gets the CRS can verify the validity of proofs. Such
a property is useful in certain applications, e.g., when constructing signature
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schemes [4,7], the public verifiability of signatures requires the public verifiabil-
ity of NIZK proofs. However, in some other applications such as constructing
CCA-secure PKE [12,16], public verification is not necessary, and in fact, a
designated-verifier NIZK (DV-NIZK) [16] that supports only private verification
of proofs is sufficient. Roughly speaking, DV-NIZK is the same as NIZK except
that, the verification algorithm additionally takes a secret key sk as input, so
that only the designated verifier can check the validity of proofs. Moreover, the
secret key should be kept private, since otherwise the (simulation) soundness
might not hold any more.

Compared to NIZK, DV-NIZK usually has more succinct and more efficient
constructions, since it is only required to support private verification. For exam-
ple, the efficient hash proof systems (HPS) in [12] can be viewed as DV-NIZKs.
As another example, to the best of our knowledge, all NIZK schemes with tight
USS (constructed in discrete-logarithm setting) relies on bilinear pairings to
support public verification [4,5,16,25], while DV-NIZK with tight USS can be
constructed without pairings [16].

However, both NIZK (that supports public verification) and DV-NIZK (that
supports private verification) have their limitations on the flexibility of verifica-
tion in certain applications. We demonstrate with two examples below.

Fine-grained Verification Setting in IPFE. Inner-product functional
encryption (IPFE) [1] is a special subclass of functional encryption [10,28] for
inner-product functions. In an IPFE scheme, a ciphertext is an encryption of a
vector x ∈ Z

m, a secret key ˜sky (delegated from the master secret key ˜msk)
is related with a vector y ∈ Z

m, and the decryption just returns their inner
product 〈x,y〉. The inner-product function supports a large set of computation
formulas, ranging from conjunctions and disjunctions to descriptive statistics
and polynomial evaluations.

There are many explorations of CPA-secure IPFE schemes over the past
years, e.g., [2,6,31]. All ciphertexts in these constructions fall into the HPS
paradigm [12] with a pattern (c, v), where c is an instance in a language specified
by the public key and v masks the message m.

To lift these CPA-secure IPFE schemes to CCA-secure IPFE schemes, one
may want to resort to NIZK or DV-NIZK to reject ill-formed ciphertexts (i.e.,
ciphertexts with c outside the language) in decryption, thus making the decryp-
tion oracle useless to the adversary. This can be done by adding a NIZK/DV-
NIZK proof in the ciphertext to prove that c belongs to the language. However,
here comes the dilemma when choosing a suitable NIZK argument:

– DV-NIZK does not work in this setting with the following reason. To verify
the well-formedness of ciphertexts, the decryption algorithm of IPFE has
to know the secret key sk of DV-NIZK to verify the DV-NIZK proofs in
ciphertexts. Thus all secret keys ˜sky of IPFE should contain the secret key
sk. However, note that an adversary in the CPA/CCA-security experiment
of IPFE is free to ask ˜sky for vectors y of its choices. Consequently, the
adversary only needs to ask a single ˜sky to know the secret key sk of DV-
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NIZK, in which case the (simulation) soundness of DV-NIZK might not hold
any more, and consequently, the CCA-security of IPFE might not hold.

– In contrast, NIZK with public verification is sufficient, but seems to be
overqualified in this setting. In fact, it is not necessary for everyone, but
only those who hold secret keys ˜sky, to be able to check the well-formedness
of ciphertexts in decryption.

In summary, DV-NIZK does not work in converting CPA-secure IPFE schemes
into CCA-secure ones but it has more efficient constructions (e.g., pairing-free
constructions), while NIZK is sufficient but at the price of heavy constructions
(especially, the pairing operations) and it seems to be overqualified.

Actually, what we need is a NIZK with fine-grained verifiability, lying between
public verifiability and private verifiability. More precisely, there is a master
secret key msk for verification, and the ability of verification can be delegated
via deriving different secret keys skd from msk w.r.t. different d (which stands
for, e.g., user identity, email address, vector, etc.), so that one can use skd to do
the verification of NIZK proofs (hence execute decryptions of IPFE). On the one
hand, all these verification approaches, no matter using msk or using skd w.r.t.
any d, are statistically equivalent. On the other hand, (simulation) soundness is
guaranteed even if the adversary obtains several skd with d chosen by itself, as
long as msk is not leaked to the adversary.

In this work, we will formalize such NIZK as Fine-grained Verifier NIZK
(FV-NIZK), and show that it is sufficient for lifting CPA-secure IPFE schemes
to CCA-secure ones. FV-NIZK has pairing-free constructions, and hence solves
the aforementioned dilemma.

Fine-grained Verification Setting in PKE. In traditional PKE setting, only
the owner of the secret key sk can check the validity of a ciphertext (i.e., whether
a ciphertext decrypts to some plaintext or the decryption fails). In some appli-
cations, it is desirable to outsource this validity check to others. For example,
a manager may ask an assistant to filter out invalid ciphertexts for her/him so
that the manager can decrypt only the valid ciphertexts herself/himself, but the
manager does not want to reveal the secret key to the assistant. To solve such
problems, the concept of publicly verifiable PKE (PV-PKE) [3,21] is developed,
in which anyone can check the validity of a ciphertext with only the public key
of the owner.

Though public verifiability is desirable in some scenarios, it also brings the
disadvantage of losing anonymity. Namely, anyone can identify the intended
receiver of a ciphertext, by just doing a verification under someone’s public key.

In order to reconcile the inherent contradictions between public verifiability
and anonymity, we put forward a new primitive called Fine-grained Verifiable
PKE (FV-PKE), which can derive a special key (for validity check of ciphertexts)
from the secret key (for decryption). Roughly speaking, with the derived key,
one can check the validity of ciphertexts but cannot decrypt the ciphertexts,
while without the key, the anonymity of ciphertexts holds. Let us move back
to the above example. Now the manager can safely give this derived key to the
assistant to filter out invalid ciphertexts. For the assistant, the anonymity is lost
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but the CCA-security of the PKE still holds. For others who only obtain the
public key of the manager, the anonymity of ciphertexts holds. Furthermore, we
allow that different keys (for validity check) can be derived from the secret key
(for decryption), to achieve fine-grained verifiability.

Now we consider how to construct FV-PKE. Let us start from any CPA-
secure PKE scheme. To lift it to CCA-secure FV-PKE, one may want to resort to
NIZK (as in [14,27]) or DV-NIZK (as in [12,16]) to reject ill-formed ciphertexts.
However, neither NIZK nor DV-NIZK leads to FV-PKE:

– DV-NIZK does not support the delegation of verifiability. Thus to check the
validity of ciphertexts, the derived key of PKE should contain the secret key
of DV-NIZK. Then for anyone with the derived key (e.g., the assistant in the
above example), the (simulation) soundness of DV-NIZK might not hold, and
consequently, the CCA-security of PKE might not hold.

– NIZK allows public verification of proofs. Thus anyone (who obtains the CRS
of NIZK from the public key of PKE1) can check the validity of ciphertexts,
and consequently the anonymity of PKE is sacrificed. Even in the setting that
all users of a group (e.g., a company or a college) share the same CRS, the
identity of the group is still leaked.

In fact, our new Fine-grained Verifier NIZK (FV-NIZK) is suitable in this
setting and can successfully convert a CPA-secure PKE into a CCA-secure FV-
PKE. More precisely, the owner can derive an skd from the master secret key
msk of FV-NIZK, so that skd can be used to do validity check of ciphertexts.
Meanwhile, obtaining skd does not compromise the (simulation) soundness of
FV-NIZK, and hence CCA-security of PKE holds, even for those who have the
derived key. Furthermore, for others who do not obtain the derived key, the
anonymity of PKE holds, as long as the underlying CPA-secure PKE is anony-
mous and FV-NIZK has pseudorandom proofs.

Our Contributions. Now we summarize our contributions in this paper. We
introduce a new primitive called Fine-grained Verifier NIZK (FV-NIZK), which
provides more flexible and more fine-grained verifiability than standard NIZK
(with public verifiability) and DV-NIZK (with private verifiability). Intuitively,
FV-NIZK has two main verification approaches:

• a master verification (MVer) using the master secret key msk;
• a fine-grained verification (FVer) using a derived secret key skd, which is

derived from msk w.r.t. d ∈ D. Here d belongs to a delegation space D, and
may stand for user identity, email address, vector, etc.

We equip FV-NIZK with a set of useful security properties. The statistical ver-
ification equivalence property requires that the two verification approaches, no
matter using msk or using skd w.r.t. any d ∈ D, are statistically equivalent.
Besides, we adapt unbounded simulation soundness (USS) to FV-NIZK, by addi-
tionally allowing the adversary to obtain derived secret keys skd with d of its
1 Note that the CRS of NIZK is contained in the public key of PKE, since the encryp-

tion algorithm of PKE involves NIZK proof generation which requires the CRS.
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choices. We also define proof pseudorandomness which stipulates the pseudoran-
domness of proofs for adversaries that are not given any secret key.

Then we propose two instantiations of FV-NIZK with almost tight USS for
linear subspace languages, based on the matrix decisional Diffie-Hellman (MDDH)
assumption [15] (which covers the standard DDH and k-Linear assumptions).

– Our first instantiation is inspired by the DV-NIZK scheme constructed in [16].
The resulting FV-NIZK is pairing-free, and achieves almost tight USS and
proof pseudorandomness, with a linear loss factor L = O(λ).

– Our second instantiation is inspired by the DV-NIZK and NIZK schemes
in [4]. The resulting FV-NIZK is pairing-based, but involves less pairing oper-
ations than the NIZK scheme in [4]. It achieves almost tight USS with a loss
factor L = O(log λ), logarithmic in the security parameter λ.

Finally, we illustrate the usefulness of FV-NIZK by showing two applications.

– The first application is in constructing CCA-secure IPFE. Using our FV-
NIZK with almost tight USS as the core technique tool, we construct a tightly
multi-challenge CCA (mCCA)-secure IPFE scheme from the almost tightly
multi-challenge CPA (mCPA)-secure IPFE proposed in [31].
By instantiating FV-NIZK, we obtain the first almost tightly mCCA-secure
IPFE scheme without pairings, where the loss factor is L = O(λ). We also
obtain another almost tightly mCCA-secure IPFE scheme that uses less pair-
ing operations than the only known scheme [26] (12 vs. 2m + 16 pairings,
with m the vector dimension of IPFE), where the loss factor is L = O(log λ),
the same as [26].

– The second application is in constructing Fine-grained Verifiable PKE (FV-
PKE). This is a new primitive formalized in this paper to reconcile the inher-
ent contradictions between public verifiability and anonymity of PKE. Loosely
speaking, FV-PKE derives a special key from the decryption secret key, such
that for those who obtain the derived key, they can check the validity of
ciphertexts but the anonymity is lost from their views (CCA-security still
holds for them), while for others who do not get the derived key, they cannot
do the validity check but the anonymity holds for them.
By using our first FV-NIZK instantiation with almost tight USS and proof
pseudorandomness as the core building block, we construct the first FV-
PKE scheme that achieves both almost tight mCCA-security and almost
tight ciphertext pseudorandomness (thus anonymity). Moreover, the FV-PKE
scheme is pairing-free.

Technical Overview of Our FV-NIZK Instantiations. Below we give a
high-level overview of our FV-NIZK instantiations from the MDDH assumption.
Let G be a cyclic group of order q with generator g. For a matrix A := (aij) ∈
Z

n1×n2
q , we define [A] := (gaij ) ∈ G

n1×n2 as the implicit representation of A in
G [15]. Our FV-NIZK instantiations are for linear subspace language L[A] :=
Span([A]) := {[c] ∈ G

n1 | ∃s s.t. c = As} and the delegation space is D := Z
m
q .
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Our starting point is the tag-based DV-NIZK scheme proposed by Gay
et al. [16], which is pairing-free and has almost tight USS, as recalled below.
The CRS is crs := ([k�A], [B], {[̂k�

�,bB]}�,b), and the secret key msk for ver-

ification is msk := (k, {̂k�,b}�,b), where k $←−Z
n1
q , B $←−Z

3k×k
q and ̂k�,b

$←−Z
3k
q for

1 ≤ � ≤ λ, b ∈ {0, 1}. With respect to a tag τ ∈ {0, 1}λ, the proof of

[c] = [A]s ∈ L[A] is π := ([t], [u]), where [t] := [B]r for r $←−Z
k
q and

[u] := [k�A]s + [̂k�
τ B]r, with ̂kτ :=

∑λ
�=1

̂k�,τ�
,

which can be verified via [u] ?= k�[c] + ̂k�
τ [t] using msk.

How to derive keys for fine-grained verification? To support deriving keys for
different delegations d ∈ D = Z

m
q , a natural idea is to extend the master secret

key in the DV-NIZK above from a set of vectors to a sets of matrices, i.e.,
crs := ([KA], [B], {[ ̂K�,bB]}�,b) and msk := (K, { ̂K�,b}�,b) with K $←−Z

m×n1
q and

̂K�,b
$←−Z

m×3k
q . Accordingly, the proof is π := ([t], [u]) with

[u] := [KA]s + [ ̂KτB]r, with ̂Kτ :=
∑λ

�=1
̂K�,τ�

,

and the master verification checks [u] ?= K[c] + ̂Kτ [t] using msk. One can view
it as m-parallel DV-NIZKs in [16].

Now we can derive a key skd w.r.t. a delegation d ∈ D = Z
m
q as follows

skd := (d,d�K, {d�
̂K�,b}�,b),

and the fine-grained verification using skd checks

d�[u] ?= d�K[c] + d�
̂Kτ [t].

Intuitively, delegation algorithm for d derives a “projection” of msk on d, so
that this derived secret key can be used to check the proof on d’s projection.

However, here come two problems. Firstly, the two verification approaches
are not statistically equivalent. In fact, given only crs, an adversary A can easily
produce a proof π∗ = ([t∗], [u∗]) for [c] such that it passes the fine-grained
verification w.r.t. skd, but does not pass the master verification, i.e.,

d�[u∗] = d�K[c] + d�
̂Kτ [t∗], but [u∗] 	= K[c] + ̂Kτ [t∗].

This can be done as follows. A first generates a proof π = ([t], [u]) for an instance
[c] ∈ L[A] honestly using crs, and then chooses a pair of non-zero orthogonal
vectors d, e ∈ Z

m
q s.t. d�e = 0, and sets π∗ = ([t∗], [u∗]) := ([t], [u+e]). Clearly

[u∗] − K[c] − ̂Kτ [t∗] = [u∗] − [u] = [e] 	= [0], but d�([u∗] − K[c] − ̂Kτ [t∗]) =
d�[e] = [0].
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Moreover, USS cannot hold if an adversary A is allowed to obtain derived
keys. Due to the linearity of skd in d, each derived key skd leaks a part of
information about msk. If A asks derived keys for m linearly independent vectors
d, then the whole msk is exposed to A, and consequently, A can easily generate
a valid proof for an instance [c] /∈ L[A] via computing [u] := K[c] + ̂Kτ [t].

First Idea. Introducing a Random Matrix as a Secret Permutation. In order to
solve the aforementioned problems, we introduce a uniformly random matrix

M ∈ Z
m×m
q in msk, i.e., msk := (K, { ̂K�,b}�,b, M ) with M $←−Z

m×m
q . The

crs, the proof generation and the master verification approach are the same as
before, while the key deriving process and fine-grained verification are changed
as follows. Now the derived key skd w.r.t. d ∈ Z

m
q is

skd := ( d�M,d�MK, {d�M ̂K�,b}�,b ),

and the fine-grained verification using skd checks

d�M[u] ?= d�MK[c] + d�M ̂Kτ [t].

Intuitively, now the skd no longer projects msk on vector d, but on a random
vector d�M which secretly rotates d by the matrix M in msk. As long as d�M
contains enough entropy from an adversary A’s view2, it is impossible for A to
output a proof π∗ = ([t∗], [u∗]) for [c] such that

d�M[u∗] = d�MK[c] + d�M ̂Kτ [t∗], but [u∗] 	= K[c] + ̂Kτ [t∗],

except with negligible probability, since otherwise [u∗]−K[c]− ̂Kτ [t∗] constitutes
a non-zero vector in the right kernel space of d�M. As a result, verification
equivalence is guaranteed.

However, USS still cannot hold, since the whole msk is still exposed to A if
A asks derived keys for m linearly independent vectors d.

Second Idea. Enlarging the Random Matrix as an Entropy Filter. To rescue US

S, we enlarge M to be a matrix in Z
m×(m+1)
q . Now even if A queries derived keys

skd for m linearly independent vectors d, the information about msk leaked to
A is limited in

(M,MK, {M ̂K�,b}�,b),

and there is still entropy left. More precisely, let m⊥ ∈ Z
m+1
q be a vector s.t.

Mm⊥ = 0, and let (K, { ̂K�,b}�,b) := (K′ +m⊥
˜k , { ̂K′

�,b +m⊥
˜k�,b }�,b), where

2 This entropy requirement is necessary to achieve verification equivalence, see
Remark 1 in Sect. 3 for more discussions.
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K′ $←−Z
m×n1
q , ̂K′

�,b
$←−Z

m×3k
q and ˜k $←−Z

1×n1
q , ˜k�,b

$←−Z
1×3k
q . Then the entropy of

(˜k, {˜k�,b}�,b) is reserved from the derived key queries, by observing that

(M,MK, {M ̂K�,b}�,b) = (M,MK′, {M ̂K′
�,b}�,b).

Consequently, the enlarged matrix M also works as an entropy filter in our
FV-NIZK instantiation.

Finally, by using the reserved (˜k, {˜k�,b}�,b) (which in turn corresponds to
the msk of the DV-NIZK in [16]), we can prove the almost tight USS of our
FV-NIZK following the proof strategy in [16].

Others. By using the MDDH assumption, we further prove the almost tight
pseudorandomness of the proofs π = ([t], [u]) for adversaries that are not given
any derived secret key. This property serves as the core technical tool to achieve
anonymity in the fine-grained verifiable PKE application.

Moreover, we note that our aforementioned ideas seem to be general ideas
to lift a DV-NIZK scheme with good linearity to an FV-NIZK. Following the
similar ideas, we also extend the DV-NIZK scheme proposed by Abe et al. [4] to
an FV-NIZK, as our second instantiation.

Roadmap. In Sect. 2 we present notations and recall the MDDH assumptions.
The definition and security properties of FV-NIZK are formally described in
Sect. 3. Then in Sect. 4, we propose two instantiations of FV-NIZK with almost
tight USS for linear subspace languages. In Sect. 5, we illustrate two applications
of FV-NIZK in IPFE and FV-PKE, respectively.

2 Preliminaries

Let λ ∈ N denote the security parameter and ∅ the empty set. For μ ∈ N, define
[μ] := {1, 2, ..., μ}. For a, b ∈ Z with a < b, define [a, b] := {a, a+1, ..., b}. Denote

by x := y the operation of assigning y to x. Denote by x
$←−Q the operation of

sampling x uniformly at random from a set Q. For a distribution D, denote by
x ← D the operation of sampling x according to D. For an algorithm A, denote
by y ← A(x; r), or simply y ← A(x), the operation of running A with input x
and randomness r and assigning the output to y. “PPT” is short for probabilistic
polynomial-time. poly(λ) and negl(λ) denote polynomial and negligible functions
in λ, respectively.

We use bold lower-case letters to denote vectors (e.g., x), and bold upper-
case letters to denote matrices (e.g., A). Unless specific description, all vectors
are column vectors in this paper. For matrices A and B, we use A⊗B for their
tensor (or Kronecker) product (ai,jB)i,j . For vectors x,y ∈ Z

m, let 〈x,y〉 denote
their inner product x�y ∈ Z. Let In and 0n1×n2 denote the identity and zero
matrices respectively.
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For random variables X and Y , the min-entropy of X is defined as H∞(X) :=
− log(maxx Pr[X = x]), and the average min-entropy of X conditioned on Y is
defined as ˜H∞(X|Y ) := − log(Ey←Y [maxx Pr[X = x|Y = y]]), following [13].

Definition 1 (Collision Resistant Hash Families). Let X ,Y be two finite
sets. A family of hash functions H = {H : X → Y} is collision resistant, if for
any PPT adversary A, it holds that

Advcr
H,A(λ) := Pr[H $←−H, (x, x′) ← A(H) : x 	= x′ ∧ H(x) = H(x′)] ≤ negl(λ).

2.1 Group Assumptions

Let G = (G, g, q) ← GGen be a group generation algorithm that inputs 1λ and
returns a cyclic group G of order q with generator g. For matrix A := (aij)n1×n2

with aij ∈ Zq, we define [A] := (gaij )n1×n2 as the implicit representation of A
in G [15]. For A ∈ Z

n1×n2
q , the linear subspace spanned by A is Span(A) :=

{c | ∃s s.t. c = As}, and similarly, Span([A]) := {[c] | ∃s s.t. c = As}. Given
A ∈ Z

n1×n2
q , it is efficient to sample an A⊥ ∈ Z

(n1−n2)×n1
q s.t. A⊥A = 0.

Let �, k ∈ N and � > k. A matrix distribution D�,k is a probabilistic distribu-
tion that outputs matrices in Z

�×k
q of full rank k in polynomial time. Especially,

if D�,k is a uniform distribution, then we denote it by U�,k. In the case � = k +1,
we simply denote it as Dk or Uk.

Definition 2 (D�,k-MDDH Assumption). Let D�,k be a matrix distribution.
The D�,k-Matrix Decisional Diffie-Hellman (D�,k-MDDH) assumption holds in
G, if for any PPT adversary A, it holds that

Advmddh
D�,k,G,A(λ) := |Pr[A(G, [A], [As]) = 1] − Pr[A(G, [A], [u]) = 1]| ≤ negl(λ),

where G ← GGen(1λ), A ← D�,k, s
$←− Z

k
q , and u $←− Z

�
q.

Definition 3 (n-fold D�,k-MDDH Assumption). Let n ≥ 1 and let D�,k be
a matrix distribution. The n-fold D�,k-MDDH assumption holds in G, if for any
PPT adversary A, it holds that

Advn-mddh
D�,k,G,A := |Pr[A(G, [A], [AS]) = 1] − Pr[A(G, [A], [U]) = 1]| ≤ negl(λ),

where G ← GGen(1λ), A ← D�,k, S
$←− Z

k×n
q , and U $←− Z

�×n
q .

Lemma 1 (Random Self-Reducibility [15,16]). Let n ≥ 1. For any adver-
sary A, there exists an algorithm B s.t. Time(B) ≈ Time(A) + n · poly(λ), and
Advn-mddh

D�,k,G,A(λ) ≤ (� − k)Advmddh
D�,k,G,B(λ) + 1

q−1 .

For any adversary A, there exists an algorithm B s.t. Time(B) ≈ Time(A)+
n · poly(λ), and Advn-mddh

U�,k,G,A(λ) ≤ Advmddh
U�,k,G,B(λ) + 1

q−1 .

Lemma 2 (D�,k-MDDH ⇒ Uk-MDDH ⇔ U�,k-MDDH [15,16]). Let �, k ∈
N and � > k. For any adversary A, there exists an algorithm B s.t. Time(B) ≈
Time(A), and Advmddh

Uk,G,B(λ) ≤ Advmddh
D�,k,G,A(λ).

For any adversary A, there exists an algorithm B (and vice versa) s.t.
Time(B) ≈ Time(A), and Advmddh

Uk,G,A(λ) = Advmddh
U�,k,G,B(λ).
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3 Fine-Grained Verifier NIZK: Definition and Security

In this section, we give the formal definition of Fine-grained Verifier NIZK (FV-
NIZK), and propose a set of useful security properties for it.

Let L = {Lρ} be a collection of NP-languages indexed by parameter ρ.
Each language Lρ is determined by a binary relation Rρ, such that an instance
c belongs to Lρ iff there exists a witness w s.t. Rρ(c, w) = 1. We consider Lρ with
a trapdoor tdρ, which can be used to decide the membership of Lρ efficiently.

Definition 4 (Tag-Based FV-NIZK). A tag-based Fine-grained Verifier
quasi-adaptive Non-Interactive Zero-Knowledge (FV-NIZK) argument consists of
seven PPT algorithms, namely Π = (Par,Gen,Prove,MVer,Sim,Delegate,FVer).

– pp ← Par(1λ,Lρ). Initialization algorithm takes the security parameter λ and
a language Lρ as inputs, and outputs a public parameter pp, which defines
the tag space T and the delegation space D.

– (crs, td,msk) ← Gen(pp). Generation algorithm takes pp as input, and outputs
a common reference string crs, a trapdoor td, and a master secret key msk.
Without loss of generality, we assume crs contains pp, and it serves as an
implicit input of MVer, Sim, Delegate, and FVer.

– π ← Prove(crs, c, w, τ). Proof algorithm takes crs, an instance c ∈ Lρ along
with a witness w, and a tag τ ∈ T as inputs, and outputs a proof π.

– 0/1 ← MVer(msk, c, τ, π). Master verification algorithm takes msk, an
instance c, a tag τ ∈ T and a proof π as inputs, and outputs a decision
bit.

– π ← Sim(td, c, τ). Simulation algorithm takes td, an instance c and a tag
τ ∈ T as inputs, and outputs a simulated proof π.

– skd ← Delegate(msk, d). Delegation algorithm takes msk and a delegation
d ∈ D as inputs, and outputs a delegated secret key skd.

– 0/1 ← FVer(skd, c, τ, π). Fine-grained verification algorithm takes skd, an
instance c, a tag τ ∈ T and a proof π as inputs, and outputs a decision bit.

If the tag space T is the empty set ∅ or contains only one element (e.g., {0}),
we call Π an FV-NIZK argument.

We require Π to have completeness and (perfect) zero-knowledge.
Completeness. For all pp ← Par(1λ,Lρ), (crs, td,msk) ← Gen(pp), (c, w) s.t.
Rρ(c, w) = 1, τ ∈ T and π ← Prove(crs, c, w, τ), it holds that

(1) MVer(msk, c, τ, π) = 1, and
(2) FVer(skd, c, τ, π) = 1 for all skd ← Delegate(msk, d) of all d ∈ D.

Perfect Zero-Knowledge. For all pp ← Par(1λ,Lρ), (crs, td,msk) ←
Gen(pp), (c, w) s.t. Rρ(c, w) = 1 and τ ∈ T , the following two distributions
are identical:

Prove(crs, c, w, τ) ≡ Sim(td, c, τ).
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Note that the first five algorithms (Par,Gen,Prove,MVer,Sim) of FV-NIZK
basically constitute a DV-NIZK scheme as defined in [16]. Moreover, the two
additional algorithms (Delegate,FVer) provide the fine-grained verification abil-
ity, by allowing different users owning different secret keys skd (d ∈ D) to verify
proofs in different ways by invoking FVer(skd, ·, ·, ·).

Now, we define a statistical property called verification equivalence for FV-
NIZK. Intuitively, it requires that all proofs passing the master verification algo-
rithm MVer using msk also pass the fine-grained verification algorithm FVer
using any secret key skd of any d, and (with high probability) vice versa.

Definition 5 (Verification Equivalence). Let δ, ε > 0. A tag-based FV-NIZK
Π has (δ, ε)-verification equivalence, if the following two properties hold.

1. MVer =⇒ FVer: For all pp ← Par(1λ,Lρ), (crs, td,msk) ← Gen(pp),
instances c, proofs π and tags τ ∈ T , if MVer(msk, c, τ, π) = 1 holds, then
FVer(skd, c, τ, π) = 1 holds for all skd ← Delegate(msk, d) of all d ∈ D.

2. MVer
w.h.p.⇐= FVer: For any (even unbounded) adversary A, it holds that

Advver-equ
Π,A,δ (λ) := Pr[Expver-equ

Π,A,δ (λ) ⇒ 1] ≤ ε,

where the experiment Expver-equ
Π,A,δ (λ) is defined in Fig. 1.

Fig. 1. The verification equivalence experiment Expver-equ
Π,A,δ (λ) for tag-based FV-

NIZK. In the condition “ ˜H∞(skd∗ |crs,Qsim,Qsk, d∗)”, skd∗ means the distribution
Delegate(msk, d∗; r) with uniformly chosen randomness r, rather than a fixed value.

Remark 1 (On the formalization of “MVer
w.h.p.⇐= FVer”). We stress that we do

not require MVer and FVer perform identically on all inputs. In other words,
there might exist (c, τ, π) such that FVer(skd, c, τ, π) = 1 for some skd but
MVer(msk, c, τ, π) = 0. Similarly, for different d1, d2, FVer using skd1 and FVer
using skd2 might perform differently on some inputs, i.e., there might exist
(c, τ, π) such that FVer(skd1 , c, τ, π) = 1 but FVer(skd2 , c, τ, π) = 0.
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In fact, what our “MVer
w.h.p.⇐= FVer” property tries to characterize is that for

any (unbounded) adversary A who does not get enough information about skd∗

(and thus msk), it is hard to find a (c∗, τ∗, π∗) that makes MVer and FVer perform
differently. This also explains the condition “ ˜H∞(skd∗ |crs,Qsim,Qsk, d∗) > δ”
in Fig. 1 for A to win. Otherwise, if the min-entropy of skd∗ is lower than
some threshold (say δ), A can guess skd∗ correctly with a noticeable proba-
bility. Meanwhile, it can obtain skd for some d 	= d∗ by querying Delegate(d).
With the knowledge of skd∗ and skd, it is feasible for A to find (c∗, τ∗, π∗) such
that FVer(skd∗ , c∗, τ∗, π∗) = 1 but FVer(skd, c

∗, τ∗, π∗) = 0 (e.g., via brute-force
search). According to the first property “MVer =⇒ FVer”, FVer(skd, c

∗, τ∗, π∗) =
0 implies MVer(msk, c∗, τ∗, π∗) = 0, and consequently A wins in Expver-equ

Π,A,δ (λ).
To prevent such trivial attacks, we require ˜H∞(skd∗ |crs,Qsim,Qsk, d∗) > δ.

Remark 2 (On the parameter δ). Jumping ahead, both our FV-NIZK construc-
tions in Sect. 4 has (δ, ε)-verification equivalence with δ = 0. It seems that the
only way to achieve verification equivalence is if the parameter δ is either exactly
0 (as in our case) or large, but nothing in between.

Next, we adapt the unbounded simulation soundness (USS) of NIZK to our
FV-NIZK. Recall that USS for NIZK and DV-NIZK ensures that a PPT adver-
sary cannot generate a valid proof for a fresh and false statement c /∈ Lρ,
even if it can obtain multiple simulated proofs for instances not necessarily in
Lρ [16,30]. For FV-NIZK, we also allow the adversary to obtain many secret
keys skd with d of its choices. Moreover, we consider a strong USS by giving the
adversary multiple chances to win, following [16].

Definition 6 (Strong USS). A tag-based FV-NIZK Π has strong USS, if for
any PPT adversary A, it holds that

Advuss
Π,A(λ) := Pr[Expuss

Π,A(λ) ⇒ 1] ≤ negl(λ),

where the experiment Expuss
Π,A(λ) is defined in Fig. 2.

Remark 3 (On the formalization of strong USS). Note that in the strong USS
experiment in Fig. 2, Sim(c, τ) returns ⊥ directly if τ was queried to Sim(·, ·)
before, following the definition of strong USS for DV-NIZK in [16]. Similar to [16],
such a requirement is not an obstacle in many applications. For example, as we
will see, in all our applications in Sect. 5, τ is a hash of some random values.
Thus τ is different with overwhelming probability each time Sim(·, ·) is invoked
when the security of applications is reduced to the strong USS.

Moreover, we note that in the strong USS defined in [16], Ver(·, τ, ·) also
returns ⊥ if τ was queried to Sim(·, τ) before, while ours does not have such a
requirement. This relaxation seems reasonable when considering the security of
NIZK, and it helps us to construct other cryptographic algorithms in a more
straightforward way (e.g., constructing CCA-secure PKE without resorting to
one-time signatures or authenticated encryption, as shown in Subsect. 5.2).
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Fig. 2. The strong USS experiment Expuss
Π,A(λ) for tag-based FV-NIZK.

Finally, we define proof pseudorandomness for FV-NIZK, which stipulates
the pseudorandomness of proofs for PPT adversaries that are not given any
secret key but allowed to access the verification oracle. Jumping ahead, this
property serves as the core technical tool for the ciphertext pseudorandomness
(thus anonymity) of our fine-grained verifiable PKE in Subsect. 5.2.

Definition 7 (Proof Pseudorandomness). A tag-based FV-NIZK Π has
proof pseudorandomness, if for any PPT adversary A, it holds that

Advpp
Π,A(λ) := |Pr[Exppp

Π,A,0(λ) ⇒ 1] − Pr[Exppp
Π,A,1(λ) ⇒ 1]| ≤ negl(λ),

where the experiments Exppp
Π,A,β(λ) (β ∈ {0, 1}) are defined in Fig. 3.

Fig. 3. The proof pseudorandomness experiments Exppp
Π,A,β(λ) for tag-based FV-NIZK,

where X denotes the instance space, and P denotes the proof space of Π.

Remark 4 (On the formalization of proof pseudorandomness). In fact, the proof
pseudorandomness asks the pseudorandomness of proofs for instances uniformly
sampled from the language Lρ. Moreover, the adversary A in Fig. 3 has access
to two oracles, Sam(·) and Sim(·, ·), to obtain instances and simulated proofs,
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respectively. In particular, the oracle Sim(c, τ) returns proofs only for instances c
output by Sam(·), but τ can be determined by A. Indeed, in certain applications
of tag-based NIZK, the tag τ may depend on the instance c. For example, in
our application in PKE (cf. Subsect. 5.2), τ is a hash of c. Our formalization
captures such dependency between c and τ .

Remark 5 (Extension to the multi-user setting). We can naturally extend the
definitions of strong USS and proof pseudorandomness (i.e., Definitions 6 and 7)
to the multi-user setting, and define strong μ-USS and μ-proof pseudorandom-
ness in the setting of μ ∈ N users. The formal definitions can be found in the
full version. More precisely, all μ users share the same pp and each user i ∈ [μ]
invokes Gen(pp) independently to get its own (crs(i), td(i),msk(i)). Accordingly,
the adversary A has access to Sim(i, ·, ·),Delegate(i, ·),Ver(i, ·, ·, ·) which
additionally take a user index i ∈ [μ] as input and prepare the responses using
(crs(i), td(i),msk(i)).

Jumping ahead, both the two schemes in Sect. 4 have almost tight strong
USS (and the first one also have almost tight proof pseudorandomness) in the
multi-user setting.

4 FV-NIZK for Linear Subspace Languages

In this section, we propose two tightly secure FV-NIZK schemes for linear sub-
space languages, based on the MDDH assumption. The first scheme is pairing-
free and the second one relies on pairings.

Let G = (G, g, q) be a cyclic group G of order q with generator g. Let A ∈
Z

n1×n2
q with n1 > n2. The linear subspace language is L[A] := Span([A]) :=

{[c] | ∃s ∈ Z
n2
q s.t. c = As} with A the trapdoor of L[A].

4.1 The First Construction without Pairings

Let m, k, n1, n2 ∈ N and D3k,k be a matrix distribution. Let H : {0, 1}∗ → Zq be
a family of collision resistant hash functions. Our first construction of tag-based
FV-NIZK Π is shown in Fig. 4, where the tag space is T = {0, 1}λ and the
delegation space is D = Z

m
q . Note that this construction is pairing-free.

Completeness and perfect zero-knowledge follow directly from the fact that

u = (K0 + θK1)As+ ̂KτBr = (K0 + θK1)c+ ̂Kτ t // completeness (1)

= (K0 + θK1)c+ ̂KτBr, // perfect zero-knowledge

which implies d�Mu = d�M(K0 + θK1)c + d�M ̂Kτt. // completeness (2)
Next, we show the verification equivalence of Π.

Theorem 1 (Verification Equivalence). The tag-based FV-NIZK scheme Π
in Fig. 4 has (0, 1/q)-verification equivalence.
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Fig. 4. The pairing-free construction of tag-based FV-NIZK Π.

Proof. The first property (MVer =⇒ FVer) is straightforward, since [u] = (K0 +
θK1)[c] + ̂Kτ [t] directly implies d�M[u] = d�M(K0 + θK1)[c] + d�M ̂Kτ [t].

To show the second property (MVer
w.h.p.⇐= FVer), we consider an (unbounded)

adversary A that finally outputs ([c∗], τ∗, π∗ = ([t∗], [u∗]),d∗) in the experiment
Expver-equ

Π,A,0 (λ) (cf. Fig. 1). Let D denote the matrix consisting of all vectors d
that A queried Delegate(·). We analyze A’s advantage as follows.

Note that the algorithm Delegate is deterministic and linear in d. That is, if
d∗ ∈ Span(D), then skd∗ is totally determined by Qsk = {(d, skd)} and d∗, and
hence has no entropy left at all. Therefore, for A to win, ˜H∞(skd∗ |crs,Qsim,Qsk,
d∗) > 0 holds, and we must have d∗ /∈ Span(D). Moreover, since the algorithm
Sim does not involve M at all, A obtains nothing about M from Sim(·, ·). Thus,
d∗ /∈ Span(D) implies that d∗�M is uniformly random over Z

1×(m+1)
q from A’s

view. And consequently, the event FVer(skd∗ , [c∗], τ∗, π∗) = 1 ∧ MVer(msk, [c∗],
τ∗, π∗) = 0, i.e.,

d∗�M
(

u∗ − (K0 + θ∗K1)c∗ − ̂Kτ∗t∗
)

︸ ︷︷ ︸

	=0

= 0,

occurs with probability at most 1/q. This shows Advver-equ
Π,A,0 (λ) ≤ 1/q. ��

Now we show that Π has almost tight strong USS and almost tight proof
pseudorandomness via the following two theorems.

Theorem 2 (Almost Tight Strong USS). If the D3k,k-MDDH assumption
holds in G and H is a family of collision resistant hash functions, then the tag-
based FV-NIZK scheme Π in Fig. 4 has strong USS. More precisely, for any
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adversary A against the strong USS security of Π, there exist algorithms B1,B2

s.t. max(Time(B1), T ime(B2)) ≈ Time(A)+(Qsim +Qver +Qdel) ·poly(λ), and

Advuss
Π,A(λ) ≤ Advcr

H,B1
(λ) + (8λk + 2k) · Advmddh

D3k,k,G,B2
(λ) + (2λ+2)Qver+4λ+1

q−1 ,

where Qsim, Qver, Qdel denote the numbers of queries to Sim,Ver,Delegate,
respectively.

Theorem 3 (Almost Tight Proof Pseudorandomness). Let n1 ≥ 2n2.
If the Dn1,n2-MDDH assumption and the D3k,k-MDDH assumption hold in G,
and H is a family of collision resistant hash functions, then the tag-based FV-
NIZK scheme Π in Fig. 4 has proof pseudorandomness. More precisely, for any
adversary A against the proof pseudorandomness of Π, there exist algorithms
B1,B2,B3 s.t. max(Time(B1), T ime(B2) Time(B3)) ≈ Time(A)+(Qsim+Qver)·
poly(λ), and

Advpp
Π,A(λ) ≤(n1 − n2 + 2)Advmddh

Dn1,n2 ,G,B1
(λ) + (16λk + 6k)Advmddh

D3k,k,G,B2
(λ)

+ 2Advcr
H,B3

(λ) + (4λ+4)Qver+8λ+6
q−1 ,

where Qsim and Qver denote the numbers of queries to Sim and Ver,
respectively.

We prove Theorems 2 and 3 in our full version due to space limitations. See
Sect. 1 for a high-level proof sketch.

Remark 6 (On the almost tightness of strong USS and proof pseudorandomness).
The terms (2λ+2)Qver+4λ+1

q−1 and (4λ+4)Qver+8λ+6
q−1 in Theorem 2 and Theorem 3

do not affect the tightness of the reductions since they are statistically small.
Moreover, n1, n2, k are parameters of the MDDH assumptions and are constants
(e.g., n1 = 2, n2 = 1, k = 1). Consequently, the strong USS and proof pseudo-
randomness have security loss factors O(λ), and thus are almost tight.

4.2 The Second Construction with Pairings

Let m, k, n1, n2 ∈ N and D2k,k be a matrix distribution. Let H : {0, 1}∗ → Zq

be a family of collision resistant hash functions. Similar to [4], we use a NIZK
proof Πor = (Πor.Gen,Πor.TGen,Πor.Prove,Πor.Sim,Πor.Ver) for OR-language
L ∨

[B0],[B1]
:= Span([B0]) ∪ Span([B1]) := {[t] | ∃r ∈ Z

k
q s.t. t = B0r ∨ t = B1r}

as a building block, where B0,B1 ∈ Z
2k×k
q . We refer our full version for the

syntax of NIZK proofs and a concrete MDDH-based scheme of Πor proposed
in [18,29]. Our second construction of tag-based FV-NIZK Π is shown in Fig. 5,
where the tag space is T = {0, 1}∗ and the delegation space is D = Z

m
q . Note

that compared to the QA-NIZK scheme proposed in [4], our FV-NIZK scheme
uses less pairing operations, since only Πor.Ver involves pairings.
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Fig. 5. The pairing-based construction of tag-based FV-NIZK Π, where Πor =
(Πor.Gen, Πor.TGen, Πor.Prove, Πor.Sim, Πor.Ver) is a NIZK proof for OR-language
L ∨

[B0],[B1]
.

Completeness and perfect zero-knowledge follow directly from the fact that

u = (K0 + θK1)As + ̂KB0r = (K0 + θK1)c + ̂Kt // completeness (1)

= (K0 + θK1)c + ̂KB0r, // perfect zero-knowledge

which implies d�Mu = d�M(K0 + θK1)c + d�M ̂Kt. // completeness (2)
Next, we show the verification equivalence and almost tight strong USS of Π.

Theorem 4 (Verification Equivalence). The tag-based FV-NIZK scheme Π
in Fig. 5 has (0, 1/q)-verification equivalence.

The proof is very similar to that of Theorem 1 and we show it in the full
version.

Theorem 5 (Almost Tight Strong USS). If the D2k,k-MDDH assumption
holds in G, H is a family of collision resistant hash functions, and Πor is
a NIZK proof for L ∨

[B0],[B1]
with completeness, perfect soundness and zero-

knowledge, then the tag-based FV-NIZK scheme Π in Fig. 5 has strong USS.
More precisely, for any adversary A against the strong USS security of Π,
there exist algorithms B1,B2,B3 s.t. max(Time(B1), T ime(B2), T ime(B3)) ≈
Time(A) + (Qsim + Qver + Qdel) · poly(λ), and



500 X. Liu et al.

Advuss
Π,A(λ) ≤Advcr

H,B1
(λ) + (2n + 2) · Advzk

Πor,B2
(λ)

+ (4kn + 2k) · Advmddh
D2k,k,G,B3

(λ) + (n+1)(QsimQver+4)
q−1 .

where Qsim, Qver, Qdel denote the numbers of queries to Sim,Ver,Delegate,
respectively, and n := �log Qsim�.

The proof is provided in the full version due to space limitations.

Remark 7 (On the almost tightness of strong USS). Similar to Remark 6, the
term (n+1)(QsimQver+4)

q−1 in Theorem 5 does not affect the tightness of the reduc-
tion since it is statistically small. Moreover, k is the parameter of the MDDH
assumption (e.g., k = 1 corresponds to the standard DDH assumption). Conse-
quently, the strong USS has security loss factor O(n) = O(�log Qsim�), which is
O(log λ) for PPT adversaries due to Qsim = poly(λ), and thus is almost tight.

Remark 8 We note that our tag-based FV-NIZK scheme Π in Fig. 5 does not
achieve proof pseudorandomness, since its proof π contains a proof πor of the
underlying NIZK scheme Πor which supports public verification, so that anyone
who obtains crsor from pp can check the validity of πor.

5 Applications of FV-NIZK

In this section, we illustrate the usefulness of tag-based FV-NIZK by showing
two applications, including CCA-secure IPFE in Subsect. 5.1 and CCA-secure
fine-grained verifiable PKE (FV-PKE) in Subsect. 5.2.

By instantiating with the almost tightly secure FV-NIZK schemes con-
structed in Sect. 4, we immediately obtain IPFE and FV-PKE schemes that
achieve almost tight mCCA (multi-challenge CCA) security. Moreover, the
resulting schemes are either pairing-free (when using the FV-NIZK scheme in
Subsect. 4.1), or use less pairing operations than existing works (when using the
FV-NIZK scheme in Subsect. 4.2).

5.1 Almost Tightly mCCA-Secure IPFE Schemes

In [26], Liu et al. proposed the first almost tightly mCCA secure IPFE scheme,
based on a tightly mCPA secure scheme [31] and an almost tightly secure QA-
NIZK argument for linear subspace languages [4]. However, the QA-NIZK argu-
ment in [4] involves pairings, so does Liu et al.’s IPFE.

To reduce the number of pairing operations or even get rid of pairings, we
replace the QA-NIZK with our tag-based FV-NIZK for linear subspace languages
in the IPFE construction. When the tag-based FV-NIZK is instantiated with
the construction in Subsect. 4.1, we obtain the first pairing-free IPFE scheme
with almost tight mCCA security. When it is instantiated with the construction
in Subsect. 4.2, we obtain a pairing-based IPFE scheme that uses less pairing
operations than [26].
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Formally, we present the syntax of IPFE and its mCCA security in the full ver-
sion and describe our IPFE construction as follows. Let m, k,X, Y ∈ N, and let
Dk be a matrix distribution. Let Π = (Π.Par,Π.Gen,Π.Prove,Π.MVer,Π.Sim,
Π.Delegate,Π.FVer) be a tag-based FV-NIZK for linear subspace language L[A]

with tag space T and delegation space D = Z
m
q . Let H : {0, 1}∗ → T be a

family of collision resistant hash functions. Our IPFE construction IPFEmcca =
(Par,Setup,Enc,KeyGen,Dec) is described in Fig. 6, where the message space is
[−X,X]m ⊆ Z

m
q and the inner product function is defined by y ∈ [−Y, Y ]m ⊆ Z

m
q .

Similar to [26,31], we require mXY to be a polynomial in λ.
The correctness of IPFEmcca follows from the completeness of Π and the fact

that for x ∈ [−X,X]m and y ∈ [−Y, Y ]m, it holds

d = y�(WAs + x) − y�W(As) = y�x ∈ [−mXY,mXY ].

Fig. 6. Construction of IPFEmcca from tag-based FV-NIZK Π. For the ease of reading,
we emphasize different parts with [26] in gray boxes .

Theorem 6 (Almost Tight mCCA Security of IPFEmcca). If the Dk-MDDH
assumption holds in G, H is a family of collision resistant hash functions, and
Π is a tag-based FV-NIZK with (0, ε)-verification equivalence and strong USS,
then IPFEmcca shown in Fig. 6 is mCCA-secure. Concretely, for any PPT adver-
sary A, there exist PPT algorithms B1,B2,B3 s.t. max(Time(B1), T ime(B2),
T ime(B3)) ≈ Time(A) + (Qenc + Qsk + Qdec) · poly(λ,m) with poly(λ,m) inde-
pendent of A, and

Advmcca
IPFEmcca,A(λ) ≤ 2Advcr

H,B1
(λ) + 4Advmddh

Dk,G,B2
(λ) + 2Advuss

Π,B3
(λ) + 2Qdec · ε + 2

q−1
,
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where Qenc, Qsk and Qdec denote the total numbers of encryption, key generation
and decryption queries, respectively.

The proof is shown in the full version due to space limitations.

5.2 Almost Tightly mCCA-Secure FV-PKE Schemes

In this subsection, we formalize the new primitive called Fine-grained Verifiable
PKE (FV-PKE), and define verification soundness, mCCA security, and cipher-
text pseudorandomness for it. Then we show how to construct FV-PKE based
on our tag-based FV-NIZK. By instantiating with the almost tightly secure FV-
NIZK scheme proposed in Subsect. 4.1, we obtain the first FV-PKE scheme with
almost tight mCCA security and ciphertext pseudorandomness.

We first present the syntax of FV-PKE.

Definition 8 (FV-PKE). A Fine-grained Verifiable Public-Key Encryption
(FV-PKE) scheme consists of six PPT algorithms, namely FPKE =
(Par,Gen,Enc, Dec,Delegate,Ver).

– pp ← Par(1λ): Initialization algorithm takes the security parameter λ as input
and outputs a public parameter pp, which defines the message space M and
the delegation space D.

– (pk, sk) ← Gen(pp): Generation algorithm takes pp as inputs, and outputs a
public key pk and a secret key sk. We assume pk contains pp, and it serves
as an implicit input of Enc,Dec,Delegate, and Ver.

– ct ← Enc(pk,M): Encryption algorithm takes pk and a message M ∈ M as
inputs, and outputs a ciphertext ct.

– M ′/⊥ ← Dec(sk, ct): Decryption algorithm takes sk and a ciphertext ct as
inputs, and outputs a message M ′ ∈ M or a special failure symbol ⊥.

– skd ← Delegate(sk, d): Delegation algorithm takes sk and a delegation d ∈ D
as inputs, and outputs a delegated secret key skd.

– 0/1 ← Ver(skd, ct): Verification algorithm takes skd and ct as inputs, and
outputs a bit indicating whether ct is a valid ciphertext or not.

We require FPKE to have decryption correctness and verification correctness.

Decryption Correctness. For all pp, (pk, sk) ← Gen(pp), M ∈ M and ct ←
Enc(pk,M), it holds that Dec(sk, ct) = M .

Verification Correctness. For all pp, (pk, sk) ← Gen(pp), M ∈ M and ct ←
Enc(pk,M), it holds Ver(skd, ct) = 1 for all skd ← Delegate(sk, d) of all d ∈ D.

Note that the first four algorithms (Par,Gen,Enc,Dec) of FV-PKE basically
constitute a standard PKE scheme. Moreover, the two additional algorithms
(Delegate,Ver) provide the fine-grained ability for verifying ciphertext validity.

Next, we define a statistical property called verification soundness for FV-
PKE. Loosely speaking, it essentially requires that for any ciphertext ct and any
skd, Ver(skd, ct) outputs 1 if and only if ct is a valid ciphertext, i.e., Dec(sk, ct)
succeeds, except for a negligible probability.
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Definition 9 (Verification Soundness of FV-PKE). Let δ, ε > 0. An FV-
PKE scheme FPKE has (δ, ε)-verification soundness, if for any (even unbounded)
adversary A, it holds that

Advver-snd
FPKE,A,δ(λ) := Pr[Expver-snd

FPKE,A,δ(λ) ⇒ 1] ≤ ε,

where the experiment Expver-snd
FPKE,A,δ(λ) is defined in Fig. 7.

Fig. 7. The verification soundness experiment Expver-snd
FPKE,A,δ(λ) for FV-PKE.

Remark 9 (On the formalization of verification soundness). We stress that we do
not require Ver can always correctly decide whether a ciphertext is valid or not.
That is, there might exist a ciphertext ct and a pair (d, skd) s.t., Dec(sk, ct) = ⊥
but Ver(skd, ct) = 1, or Dec(sk, ct) 	= ⊥ but Ver(skd, ct) = 0. Nevertheless, veri-
fication soundness of FV-PKE ensures that even for an (unbounded) adversary
A, if it does not get enough information about skd∗ (and thus sk), it is hard
for A to find a ct∗ that makes Dec(sk, ·) and Ver(skd∗ , ·) perform inconsistently.
Similar to Remark 1, we require “ ˜H∞(skd∗ |pk,Qsk, d∗) > δ” in Fig. 7 to prevent
trivial attacks, since for those who get skd∗ , it might be easy for them to produce
such a ct∗.

Remark 10 (On the motivation for defining FV-PKE with the delegation space
D). The main motivation for defining FV-PKE with the delegation d is to pro-
vide the flexibility of verification, which can be used to make the verification
result closer to the validity of ciphertexts, as explained below. Let us go back to
the motivating example described in the introduction, where a manager asks an
assistant to filter out invalid ciphertexts. By using FV-PKE, the manager can
give a delegated key skd to the assistant, and the property of verification sound-
ness guarantees that verification using skd can correctly decide the validity for
ciphertexts generated by the outsider (i.e., anyone other than the manager and
the assistant). However, since the assistant has skd, it does not exclude the pos-
sibility that the assistant itself produces ill-formed ciphertexts which are invalid
but pass the verification, or are valid but do not pass the verification. We refer
to this as an “insider” attack.
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Thanks to the fact that FV-PKE supports delegation d, such “insider”
attacks can be easily prevented: the manager can ask several assistants, give
them different delegated keys (skd1 , skd2 , ...), and regard a ciphertext valid only
if it passes all the verifications. As long as not all the assistants collude, it is
hard for them to produce ill-formed ciphertexts which are invalid but pass all
the verifications, or are valid but do not pass all the verifications. Of course, the
manager can also set a threshold, and regard a ciphertext valid if the number of
verifications that it passes is above the threshold, in order to tolerate inadver-
tent errors. This reflects the flexibility of verification. Stepping back, even if an
“insider” attack occurs, the manager can identify which assistant produced the
ill-formed ciphertexts, by tracing the delegation d from skd.

Then we formalize the mCCA security for FV-PKE. Compared to the CCA
security for standard PKE, we also allow the adversary to obtain delegated keys
skd with d of its choices.

Definition 10 (mCCA Security of FV-PKE). An FV-PKE scheme FPKE
is indistinguishable under chosen ciphertext attacks in the multi-challenge setting
(mCCA), if for any PPT adversary A, it holds that

Advmcca
FPKE,A(λ) :=

∣

∣Pr[Expmcca
FPKE,A,0(λ) ⇒ 1] − Pr[Expmcca

FPKE,A,1(λ) ⇒ 1]
∣

∣ ≤ negl(λ),

where the experiments Expmcca
FPKE,A,β(λ) (β ∈ {0, 1}) are defined in Fig. 8.

Fig. 8. The IND-mCCA security experiments Expmcca
FPKE,A,β(λ) for FV-PKE.

Finally, we define ciphertext pseudorandomness for FV-PKE, which requires
the pseudorandomness of ciphertexts for PPT adversaries that are not given
any secret key but allowed to access the decryption oracle. This clearly implies
anonymity.

Definition 11 (Ciphertext Pseudorandomness of FV-PKE). An FV-
PKE scheme FPKE has ciphertext pseudorandomness in the multi-challenge set-
ting, if for any PPT adversary A, it holds that

Advcp
FPKE,A(λ) := |Pr[Expcp

FPKE,A,0(λ) ⇒ 1] − Pr[Expcp
FPKE,A,1(λ) ⇒ 1]| ≤ negl(λ),
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Fig. 9. The ciphertext pseudorandomness experiments Expcp
FPKE,A,β(λ) for FV-PKE,

where CT denotes the ciphertext space.

where the experiments Expcp
FPKE,A,β(λ) (β ∈ {0, 1}) are defined in Fig. 9.

Construction of FV-PKE. Now we describe our FV-PKE construction as fol-
lows. Let Π = (Π.Par,Π.Gen,Π.Prove,Π.MVer,Π.Sim,Π.Delegate,Π.FVer) be a
tag-based FV-NIZK for linear subspace language L[A] with tag space T and del-
egation space D. Let H : {0, 1}∗ → T be a family of collision resistant hash func-
tions. Our FV-PKE construction FPKEmcca = (Par,Gen,Enc,Dec,Delegate,Ver)
is described in Fig. 10, where the message space is G and the delegation space
is D.

The decryption correctness follows from the completeness (1) of Π and the
fact that

[v] − w�[c] = ([w�A]s + M) − w�[As] = M,

and the verification correctness follows from the completeness (2) of Π.

Theorem 7 (Verification Soundness of FPKEmcca). If Π is a tag-based FV-
NIZK with (δ, ε)-verification equivalence, then FPKE shown in Fig. 10 has (δ, ε)-
verification soundness.

Proof. The proof is straightforward. Since Π has (δ, ε)-verification equivalence,
the algorithms Π.MVer and Π.FVer perform identically, except with probability
at most ε. Consequently, it is hard for an (even unbounded) adversary to find
(ct∗, d∗) that passes the verification algorithm Ver of FPKE (i.e., passing Π.FVer)
but fails the decryption of ct∗ (i.e., not passing Π.MVer), or fails to pass Ver (i.e.,
not passing Π.FVer) but decrypts successfully (i.e., passing Π.MVer). ��

Now we show that FPKEmcca has almost tight mCCA security and almost
tight ciphertext pseudorandomness via the following two theorems.

Theorem 8 (Almost Tight mCCA Security of FPKEmcca). If the D2k,k-
MDDH assumption holds in G, H is a family of collision resistant hash functions,
and Π is a tag-based FV-NIZK with strong USS, then FPKEmcca shown in Fig. 10
is mCCA-secure. Concretely, for any PPT adversary A, there exist PPT algo-
rithms B1,B3,B3 s.t. max(Time(B1), T ime(B2), T ime(B3)) ≈ Time(A) + (Qenc

+Qsk + Qdec) · poly(λ) with poly(λ) independent of A, and

Advmcca
FPKEmcca,A(λ) ≤2Advcr

H,B1
(λ) + (2k + 4)Advmddh

D2k,k,G,B2
(λ) + 2Advuss

Π,B3
(λ) + 6

q−1
,
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Fig. 10. Construction of FPKEmcca from tag-based FV-NIZK Π. For the ease of reading,
we emphasize the parts related to Π in gray boxes .

where Qenc, Qsk and Qdec denote the total numbers of encryption, delegation
and decryption queries, respectively.

Proof. We prove the theorem via a series of games Gβ
0 , ...,Gβ

5 (β ∈ {0, 1}), where
the first two games Gβ

0 are the mCCA experiments Expmcca
FPKE,A,β(λ) (cf. Fig. 8),

and G0
5, G

1
5 are identical.

Game Gβ
0 . They are just the original experiments Expmcca

FPKE,A,β(λ), except that we
use secret key w to do the encryption. Due to the equation [w�A]s = w�[As] =
w�[c], we have that

Pr[Expmcca
FPKE,A,β(λ) ⇒ 1] = Pr[Gβ

0 ⇒ 1], for β ∈ {0, 1}.

Game Gβ
1 . In this two games, whenever there is an encryption or decryption

query with tag τ ′ that collides with some τ used in encryption before, the exper-
iment returns ⊥ and aborts. By the collision resistance of H, we have

|Pr[Gβ
0 ⇒ 1] − Pr[Gβ

1 ⇒ 1]| ≤ Advcr
H,B1

(λ), for β ∈ {0, 1}.

Game Gβ
2 . In this two games, Enc(M0,M1) generates proofs π via

Π.Sim(td, ·, ·). Gβ
1 and Gβ

2 are the same due to the perfect zero-knowledge of
Π, and we have

Pr[Gβ
1 ⇒ 1] = Pr[Gβ

2 ⇒ 1], for β ∈ {0, 1}.
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Game Gβ
3 . In this two games, we sample A0

$←−Z
2k×k
q in the beginning of the

experiment. Meanwhile, Enc(M0,M1) computes [c] := [A0]s, instead of [c] :=

[A]s for s $←−Z
k
q . By the D2k,k-MDDH assumption and Lemma 1, we have

|Pr[Gβ
2 ⇒ 1] − Pr[Gβ

3 ⇒ 1]| ≤ (k + 1)Advmddh
D2k,k,G,B3

+ 2
q−1 , for β ∈ {0, 1}.

Game Gβ
4 . In this two games, the decryption oracle Dec([c∗], [v∗], π∗) returns

⊥ directly if ([c∗], [v∗], π∗) /∈ Qenc and [c∗] /∈ L[A].
Define by bad the event that there exists a query Dec([c∗], [v∗], π∗), such

that ([c∗], [v∗], π∗) /∈ Qenc, [c∗] /∈ L[A], and there is no hash collision, but
Π.MVer( ̂msk, [c∗], τ∗, π∗) = 1, where τ∗ := H(pk, [c∗], [v∗]). Obviously, Gβ

3 and
Gβ
4 are identical unless bad happens. Thanks to the strong USS of Π, we have

the following lemma.

Lemma 3 For β ∈ {0, 1}, |Pr[Gβ
3 ⇒ 1] − Pr[Gβ

4 ⇒ 1]| ≤ Pr[bad] ≤ Advuss
Π,B4

(λ).

Game Gβ
5 . In this two games, Enc(M0,M1) uniformly samples [c] $←−G

2k and

[v] $←−G, instead of computing [c] := [A0]s for s $←−Z
k
q and [v] := w�[c] + Mβ .

Lemma 4 For β ∈ {0, 1}, |Pr[Gβ
4 ⇒ 1] − Pr[Gβ

5 ⇒ 1]| ≤ Advmddh
Uk,G,B5

+ 1
q−1 .

Proof. First we argue that in Gβ
4 , w still contains some entropy which is not

leaked via pk and Dec(·, ·, ·). Then we show that the left entropy helps us change

[c] from [c] := [A0]s to [c] $←−G
2k, and change [v] from [v] := w�[c] + Mβ to

[v] $←−G, based on the Qsim-fold U2k+1,k-MDDH assumption.

To see this, we redefine w� as w� := w′� + z�A⊥, where w′ $←−Z
2k
q , z $←−Z

k
q ,

and A⊥ $←−Z
k×2k
q s.t. A⊥A = 0. We argue that the information of z is totally

hidden to A.

– pk hides the information of z, due to

w�A = (w′� + z�A⊥)A = w′�A.

– Delegate(·) hides the information of z, since it does not involve w at all.
– Dec([c∗], [v∗], π∗) hides the information of z. Thanks to the new rejection

rule added in G4, we have [c∗] ∈ L[A] as otherwise Dec([c∗], [v∗], π∗) returns
⊥ immediately. Therefore, A⊥[c∗] = [0], and

w�[c∗] = (w′� + z�A⊥)[c∗] = w′�[c∗].

With overwhelming probability we have A⊥A0 	= 0. That is, z�A⊥A0 is
a random value over Z

1×k
q from A’s view. According to the Qsim-fold U2k+1,k-

MDDH assumption (equivalently the Uk-MDDH assumption due to Lemma 1
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and Lemma 2), we know the following two distributions are computationally
indistinguishable:

{[A0sj ], [z�A⊥A0sj ]}j∈[Qsim]
c≈ {[c′

j ], [v
′
j ]}j∈[Qsim],

where sj
$←−Z

k
q , c′

j
$←−Z

2k
q , v′

j
$←−Zq for 1 ≤ j ≤ Qsim.

Recall that in Gβ
4 , Enc(M0,M1) computes [c], [v] as [c] := [A0]s and

[v] := w�[c] + Mβ = w′�[c] + Mβ + z�A⊥[A0s], which are indistinguishable

from [c] $←−G
2k and [v] $←−G according to the formula above. Then by Lemma 1,

Lemma 4 holds as a result. ��
Obviously G0

5 and G1
5 are identical. At last, thanks to Lemma 2, Theorem 8

follows by taking all things together. ��
Theorem 9 (Almost Tight Ciphertext Pseudorandomness of
FPKEmcca). If the D2k,k-MDDH assumption holds in G, H is a family of collision
resistant hash functions, and Π is a tag-based FV-NIZK with strong USS and
proof pseudorandomness, then FPKEmcca shown in Fig. 10 has ciphertext pseudo-
randomness. Concretely, for any PPT adversary A, there exist PPT algorithms
B1, ...,B4 s.t. max(Time(B1), ..., T ime(B4)) ≈ Time(A)+(Qenc +Qdec) ·poly(λ)
with poly(λ) independent of A, and

Advcp
FPKEmcca,A(λ) ≤2Advcr

H,B1
(λ) + (2k + 2)Advmddh

D2k,k,G,B2
(λ) + 2Advuss

Π,B3
(λ)

+ Advpp
Π,B4

(λ) + 4
q−1 ,

where Qenc and Qdec denote the total numbers of encryption and decryption
queries, respectively.

Proof. Theorem 9 is proved via a series of games G0, ...,G8, where G0 is the
ciphertext pseudorandomness experiment Expcp

FPKE,A,0(λ) (cf. Fig. 9), and G8 is
indistinguishable with Expcp

FPKE,A,1(λ).
Due to the page limitation, we safely omit the descriptions of games G0, ...,G5,

since they are similar with those in the proof of Theorem 8.
Game G6. In this game, we eliminate the additional check [c∗] ∈ Span([A]).
Similar to the change from G3 to G4, due to the strong USS of Π, we have that

|Pr[G5 ⇒ 1] − Pr[G6 ⇒ 1]| ≤ Advuss
Π,B6

(λ).

Game G7. In this game, Enc(M) computes [c] := [A]s for s $←−Z
k
q , instead of

[c] $←−G
2k. By the D2k,k-MDDH assumption and Lemma 1, we have

|Pr[G6 ⇒ 1] − Pr[G7 ⇒ 1]| ≤ kAdvmddh
D2k,k,G,B7

+ 1
q−1 .

Game G8. In this game, Enc(M) uniformly samples [c] $←−G
2k and π

$←−P instead

of [c] := [A]s for s $←−Z
k
q and π ← Π.Sim(td, [c], τ), where P denotes the proof

space of Π.
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Lemma 5 |Pr[G7 ⇒ 1] − Pr[G8 ⇒ 1]| ≤ Advpp
Π,B8

(λ).

Proof. We construct a reduction algorithm B8 to distinguish Exppp
Π,B8,0(λ) from

Exppp
Π,B8,1(λ) for the proof pseudorandomness security of Π (cf. Fig. 3), as shown

in Fig. 11. Recall that B8 has access to three oracles Sam, Sim, and Ver in
Exppp

Π,B8,β(λ).

Fig. 11. B8’s reduction for the proof of Lemma 5.

Obviously, if B8 has access to Exppp
Π,B8,0(λ), then it simulates G7 for A; and

if B8 has access to Exppp
Π,B8,1(λ), then it simulates G8 for A. Lemma 5 holds as

a result.

From G8 to Exppp
FPKE,A,1(λ), we eliminate the additional check of hash colli-

sions in Enc(M) and Dec(ct∗). With the same analysis we have

|Pr[G8 ⇒ 1] − Pr[Expcp
FPKE,A,1(λ) ⇒ 1]| ≤ Advcr

H,B′
8
(λ).

Finally, taking Lemma 2 and all things together, Theorem 9 follows. ��

Remark 11 (Extension to the multi-user setting). For better readability, we prove
the almost tight mCCA security and ciphertext pseudorandomness of FPKEmcca

in the single-user setting in Theorems 8 and 9. Now we show how to extend the
proof techniques to the multi-user setting. More precisely, the public parameter
pp = ([A], p̂p,H) is shared among all users, and each user i ∈ [μ] samples its

own master secret key (w(i), ̂msk
(i)

). In all computational steps in the proof, we
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modify all samples of [c] simultaneously, based on the random self-reducibility
of the MDDH assumption. Moreover, the underlying FV-NIZK scheme Π is
required to have almost tight strong USS and proof pseudorandomness in the
multi-user setting, which is satisfied by the first construction in Subsect. 4.1.
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Abstract. This work investigates zero-knowledge protocols in subverted
RSA groups where the prover can choose the modulus and where the
verifier does not know the group order. We introduce a novel technique
for extracting the witness from a general homomorphism over a group of
unknown order that does not require parallel repetitions. We then present
a NIZK range proof for general homomorphisms as Paillier encryptions
in the designated verifier model that works under a subverted setup. The
key ingredient of our proof is a constant sized NIZK proof of knowledge
for a plaintext. Security is proven in the ROM assuming an IND-CPA
additively homomorphic encryption scheme. The verifier’s public key can
be maliciously generated and is reusable and linear in the number of
proofs to be verified.

1 Introduction

A zero-knowledge proof consists of a prover that demonstrates to a verifier that
a statement is true while revealing no information about the witness. Sigma pro-
tocols [28,58] are a special type of zero knowledge proof that avoid expensive NP
encodings and work naturally with many popular non-general relations. Sigma
protocols enjoy negligible soundness-error in groups of known order. The story
is different in groups of hidden order where negligible soundness can only be
achieved by running O(λ) sigma protocols in parallel [6,60], thus multiplying
the prover, proof size, and verifier costs by O(λ).

In the common reference string model [11], a negligible soundness-error of hid-
den order group sigma protocols can be directly linked to hardness assumptions
such as the strong-RSA [9,27,34,40]. However, relying on hardness assumptions
introduces an avenue for subversion: we can make no guarantees about any hard-
ness assumption when a malicious prover corrupts the parameters of the hidden
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order group. For the prominent case of RSA-groups, i.e., multiplicative groups
over the ring ZN with N = p × q, subversion is easy because one can compute
the order of the group given the factorization, p and q.

To date, no natural1 protocol for general homomorphism-languages with hid-
den order co-domain has negligible soundness-error (without repetitions), and at
the same time does not rely on computational assumptions over the co-domain.
Indeed, the task of constructing zero-knowledge proofs over subverted RSA-
groups is exceedingly challenging; strictly more so than over traditional hidden
order groups that are correctly formed. One can make no guarantees about how
the modulus was generated and the Fiat-Shamir challenges can be continuously
sampled until one from a malicious distribution is found.

Our Question. We thus put forward the question:

Can one build a generalised sigma-protocol in subverted RSA-groups achieving
negligible soundness-error without repetitions?

Our answer to this question is affirmative assuming a designated-verifier; we
provide and prove secure a construction in the designated verifier model [33,55].
This is excellent news because currently the only known method to construct
RSA-groups is via a trusted setup [45]. Generating secure RSA parameters with
a MPC is an extremely challenging task to realise in practice and to date no large
scale RSA-MPCs have ever been completed. Our work thus provides an exciting
avenue for numerous results in RSA-groups to remain applicable in subverted
settings.

Subverted RSA groups are primarily interesting because they are a rare
instantiation for groups of unknown order. The only known alternative for build-
ing hidden order groups is class groups, that can also be used to build ZKPs (e.g.
[26]). In high contrast to RSA groups, cryptanalysists have only recently started
focusing on class groups and we are still learning the best practices for choosing
the parameters for implementation [38,47,50].

Further, the potential for N to be subverted is a delicacy which is rarely con-
sidered when using the additively homomorphic Paillier [54] encryption scheme.
Here subverted parameters should be considered the default because participants
can choose their encryption modulus N . Nonetheless, the handling of subverted
parameters is a detail that is often overlooked in protocols that use Paillier. For
example, in the influential paper by Hazay et al. [45], we see that they require a
subversion resistant zero-knowledge range proof to realise their multiparty MPC
but that none of their suggestions are subversion resistant. For more detail see
the full version of the paper. As a second example, in the Damgard-Jurik voting
scheme [36], they assume that a modulus N is generated by a trusted third party.
If it were instead chosen by an election authority—which is a likelihood in real
world systems—then this modulus could certainly be subverted. By colluding

1 By ‘natural’ we mean a protocol that works directly for the underlying language and
does not involve NP-reductions.
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with just a single voter, the authority could provide verifying proofs of faulty
encryptions and thus entirely decide the election result.

1.1 Our Contributions

In this paper we investigate zero-knowledge proofs under subverted RSA param-
eters. This is an extremely adversarial setting where the modulus N can be fac-
torised by the prover but not by the verifier. We make no assumptions about
ideal properties of the modulus: for example we can have that N is smooth or
even that the prover knows the factorisation of N .

Our first contribution is a new extraction method for extracting a witness
inside general homomorphisms. This extraction technique is completely new to
the literature. We reify this technique through a designated-verifier protocol,
named DVProt, which answers affirmatively the main question of this work intro-
duced in the previous section. A substantial caveat for our extractor is that the
challenges used by the sigma protocol are encrypted (under the designated veri-
fiers secret key which importantly is independent from the potentially subverted
N). Our extractor should fail if the adversary could decrypt the challenges, thus
we describe the general extraction method and reduce the probability of the
extractor failing to an adversary’s advantage against IND-CPA. At the heart
of our extraction method is an information-theoretical lemma about the dis-
tribution of the challenges extracted, which we prove to hold unconditionally.
Exemplifying the extraction method, and as a stepping stone towards the sec-
ond contribution, we explain how to make the DVProt protocol practical, with
reusable and potentially maliciously generated verifier’s public key. Our main
results are in the random oracle model however we also provide an optimised
version in the generic group model.

Using our extraction technique we arrive at our second contribution, namely
a zero-knowledge designated verifier range proof for Paillier encryptions under
subverted modulus with negligible soundness, which we call DVRangeProt. The
protocol prevents a prover from encrypting a value outside the range even if the
prover chooses the encryption key. Our proof is non-interactive (in the random
oracle model) and has negligible soundness error without parallel repetitions.
Security is proven in the RO model under the assumption that Paillier is IND-
CPA. Our techniques for proving security are potentially of independent interest
and described in more detail in Sect. 1.3. In the full version we show how our
range proof can be applied for non-injective homomorphisms.

The verifier’s public key has size O((λ + Q) log N) for N a Paillier modulus,
λ the security parameter, and Q the number of proofs the verifier will respond
to. Our protocol does not require a common reference string; being DV the
(designated) verifier inherently runs a setup to generate their potentially mali-
cious key. To ensure zero-knowledge holds against all verifier keys we describe
a non-interactive publicly verifiable key generation algorithm. In more detail,
the verifier runs a publicly verifiable range proof to demonstrate that the veri-
fication public key (VPK) contains ciphertexts in the correct range. We apply
amortisation techniques by Cramer et al. [30] (in Sect. 4.3) to minimise the cost
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of this range proof. The key generation process is relatively expensive and can be
avoided in scenarios where the verifier only needs to retrospectively prove honest
behaviour by revealing the secrets behind their public key. Such scenarios are
common in applications such as MPC with identifiable abort (ID-MPC, [46]).

1.2 Related Work

In composite order groups the standard Σ-protocol has knowledge error of only
1/2 [6]. For a negligibly small extraction error one needs to run the protocol λ
times in parallel (for λ the security parameter). This induces an O(λ) multiplica-
tive overhead. There are many different approaches in the literature to proving
composite group statements more efficiently which we summarise here.

Proofs over Groups of Unknown Order. An intensive line of work focuses
on constructing efficient zero knowledge proofs for relations over groups where the
order is unknown to all parties, however none would fit our context. The Fujisaki-
Okamoto solution [27,34,40], the protocols of [8,18] and the solution by Boneh
et al. [13] being computationally-sound are not sound in subverted RSA groups
because having known (to the prover) group order prevents the underlying com-
putational assumptions from holding. The protocol of [7] considers a model where
the verifier has extra information about the witness2. The protocol from [5] was
later cryptanalized [49]. For specific relations, [35,36] present efficient protocols
where the prover knows the order of the group, however they are sound only when
the RSA group is correctly formed. The work of Cramer et al. [29,30] presents a
transformation that allows the protocol to have negligible soundness error, yet only
when proving λ statements simultaneously. For a single proof it cannot be applied.
Finally, Bangerter et al. [6] and Terelius et al. [60] show a lower bound on sound-
ness error for constant round sigma-like protocols in the standard model (no CRS,
no RO), that translates to 1/2 for common parameters.

Proving RSA Relations with zk-SNARKs. Many zk-SNARK proof sys-
tems are both general enough to encode any NP circuit and efficient enough to
be used in practice. Thus we can prove relations about subverted RSA groups
by representing them with an arithmetic circuit or similar. Ozdemir et al. imple-
ment an RSA based accumulator inside a SNARK [53]. Their work improves
upon xJsnark [48]. Using Ozdemir et al.’s BigNat library3 we compute the size
of the Paillier knowledge-of-plaintext circuit at 80 million gates for 2048 bit N .
This is towards the upper end of what can feasibly be computed with a SNARK.
To the best of our knowledge the biggest circuits currently in production have
about 100-million constraints and take minutes to compute even on specialist
hardware4. Our work does not require a reduction to NP and therefore we avoid
2 For some relations (e.g. Paillier Encryptions) this can lead to fully reconstructing the

witness.
3 https://github.com/alex-ozdemir/bellman-bignat.
4 https://research.protocol.ai/sites/snarks/.

https://github.com/alex-ozdemir/bellman-bignat
https://research.protocol.ai/sites/snarks/
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this prover overhead. Our approach also avoids the significant challenge of audit-
ing an 80 million gate circuit.

Range Proofs in the RSA Setting. In this work we present range proofs for
RSA-like relations (e.g. Paillier encryption), or generally (additive) homomor-
phisms with unknown co-domain. Variations of basic Schnorr-like Σ-protocol
exist for RSA-like range relations [12,18,20,25,27,34,39]. Boudot [14] presents
the first range proof for general range [L,R] with slackness 1 (i.e. the message
lies exactly in m ∈ [0 . . . R] as opposed to some extended range m ∈ [0 . . . δR]).
Further [14] uses a so-called four-squares integer decomposition property, a tech-
nique which is later used and improved in [44,51,62]. None of these works con-
sider a subverted modulus. In fact they are computationally sound and make
assumptions about the RSA group, thus they do not work in subverted settings.

Proofs of Correct Form of Moduli. An orthogonal to the above line of
work intends to prove that the group itself is not subverted [3,10,19,41,42,61],
meaning that the modulus N of the RSA group has some beneficial property;
for example is square-free, a product of two primes, a product of equally-sized
primes, a Blum integer or a product of two safe primes, etc. Other works consider
proving that moduli are correctly formed in the context of specific applications as
password-based key agreement [23] or threshold ECDSA signatures [21]. All these
solutions require repetitions to reach a negligible soundness-error. Furthermore,
to apply computationally-sound protocols for general homomorphisms (such as
Fujisaki-Okamoto) over the group afterwards, one needs to prove that the RSA
group is a product of two safe primes. Only [19] ensures this, however it has high
costs and does not avoid the O(λ) parallel repetitions.

1.3 Overview of Techniques

In this work we design efficient designated-verifier ZK protocols for knowledge
and range of RSA group homomorphisms, which have negligible soundness error
without repetitions even when the group is maliciously chosen. The main uni-
fying ideas of all our techniques are (1) an alternative approach to Σ-protocols’
witness extraction and (2) a careful realisation through homomorphic encryp-
tion with respect to (also potentially subverted) verifier’s modulus, which allows
hiding protocol challenges from the prover in a way that prevents lower-bound
attacks of [6,60].

Let ψ : D → H be a group homomorphism where H is an RSA-related group,
such as exponentatiations w �→ gw over H = Z

∗
N (or multiexponentations), or

Paillier encryption (w, r) �→ (N +1)whr. We wish to design an efficient argument
of knowledge of w such that Y = ψ(w), and w ∈ {0 . . . R} for R ∈ D ⊂ Z.

Σ-Protocol Soundness. The classic Σ-protocol for proving knowledge of w
such that Y = ψ(w), described in Sect. 1, is only secure if elements from D are
invertible. The standard special-soundness extractor behaves as follows: given
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two successful transcripts with the same first message (a, c, s), (a, c′, s′) such
that aY c = ψ(s) and aY c′

= ψ(s′) and c �= c′ it combines the two:

aY c = ψ(s) aY c′
= ψ(s′)

from which it gets Y = ψ(s−s′)(c−c′)−1
= ψ((s−s′)(c−c′)−1). When H is a group

of public prime order p, as in case of the Schnorr protocol, this strategy always
succeeds, because (c − c′)−1 mod p is efficiently computable. However, when H

is a maliciously chosen RSA group, the extractor has two problems. First, it
does not know the order of the group and thus can only compute (c − c′)−1

when c − c′ = 1 (in this trivial case Y 1 = ψ(s − s′), and s − s′ is the witness).
This limitation is similar to the hardness of taking roots in groups of unknown
order. Second, some inverses (c − c′)−1 do not exist because it is possible that
gcd(c − c′, ord(D)) �= 1 for a maliciously chosen N .

In fact the impossibility results of [6,60] show that the above extractor fails
for any group H whose order is not publicly known, such as RSA groups.

A Generalized Extraction Lemma. Towards constructing an efficient pro-
tocol with negligible soundness error, our starting point is a generalized extrac-
tion approach. Assume that our extractor has M ≥ 3 successful transcripts5

{(a, ci, si)}M
i=1 such that:

aY c1 = ψ(s1) aY c2 = ψ(s2) . . . aY cM = ψ(sM )

then combining the first with the rest we get the equivalent:

Y c2−c1 = ψ(s2 − s1) . . . Y cM −c1 = ψ(sM − s1)

Now if gcd(c2 − c1, . . . , cM − c1) = 1 then we can always compute coefficients
γ2, . . . , γM such that γ2(c2 − cm) + . . . + γM (c2 − cM ) = 1, which means:

Y 1 = Y γ2(c2−c1)+...+γ2(cM −c1) = ψ(γ2(s2 − s1) + . . . + γM (sM − s1))

so s∗ = γ2(s2 − s1) + . . . + γM (sM − s1) is a valid pre-image.
This extraction technique succeeds as long as gcd(c2 − c1, . . . , cM − c1) =

1. If we had an honest prover and the ci challenges were truly random and
independent, then well-known results from mathematics show that this happens
with probability 1/ζ(M), for ζ being the zeta Riemann function. This probability
is overwhelming (negligibly close to 1) as a function of M .

However, a malicious prover may choose not to respond upon receiving cer-
tain challenges c, so that gcd(c2 − c1, . . . , cM − c1) �= 1. As an example they can
choose only to answer even challenges. The natural conclusion is that for this
generalized extraction to work we need the (adversarial) prover to be oblivious
to the challenges it answers.

5 Extracting k successful transcripts is no harder than extracting 2 [1].
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Fig. 1. A Σ-protocol for the relation containing elements (Y, w) such that Y = ψ(w),
where ψ is a general homomorphism. This protocol is only knowledge sound if elements
from D are invertible.

Designated Verifier Techniques. We bootstrap the protocol of Fig. 1 to a
secure one (with negligible soundness error) in the Designated-Verifier model.

One of our key observations is that in the Designated-Verifier setting we can
hide the challenge c from the malicious prover by encrypting it with a homo-
morphic encryption scheme for verifier’s public key. Then the prover computes
the response to the challenge “blindly”, using additive homomorphism of the
encryption scheme. The verifier, who possesses the secret key of the encryption,
decrypts the response normally in order to retrieve the plaintext response of the
Σ-protocol. For this we need the verifier to hold the corresponding secret key,
which must be kept secret from the prover. The public key of the designated
verifier (VPK) is merely the pk of the encryption scheme and the ciphertext ct
of the encrypted challenge. The idea of encrypting a (single) challenge in the
designated-verifier public key appears in previous DV protocols [24,33]

To prove the existence of an extractor we require M answers with differ-
ent challenges from the prover. This is clearly not possible when we encrypt
just a single challenge; but we also cannot do it even when we encrypt M
challenges—the prover can potentially choose only to answer with respect to
the first challenge. What we require is an exponential sized challenge space.
For this, we encrypt λ sub-challenges that are chosen uniformly at random:
ct1 = Enc(c1), . . . , ctλ = Enc(cλ) and add them to the public key. Then the
value P responds to is a random (0, 1) linear combination of {ci}: c =

∑λ
i=1 bici

where b = (b1, . . . , bλ) a random bitstring-challenge sampled by the verifier,
which gives rise to exponential C.

To prove soundness, the core of our security proof is an information-
theoretical lemma showing that after M = poly(λ) linear combinations have been
extracted, the probability of {bic

�}M
i=1 being coprime is overwhelming (assuming

that ci’s were uniformly sampled and independent during the setup).

DV with a Reusable VPK. A common issue in the Designated-Verifier model
is that a prover, after seeing whether some proofs of its choice verify or not,
can learn information about the VPK’s structure and break soundness. This
is the analogue of IND-CCA security of encryption schemes. Intuitively, the
verification oracle behaves in a similar manner to a decryption oracle. Additive
homomorphic encryption schemes cannot be IND-CCA and thus an attacker



Zero-Knowledge Arguments for Subverted RSA Groups 519

could use a verification oracle to learn information about vpk. We overcome this
by adding Q = poly(λ) statistical blinding factors e1, . . . , eQ encrypted in the
VPK. At each proof one of these factors is added to the linear combination and
thus statistically blinds it; thus Q is maximum number of verification queries
the prover can ask. The CRS size is thus O(1) per proof.

1.4 Comparison with Alternative Approaches

To the best of our knowledge, this work is the first that deals with the problem
of constructing zero-knowledge proofs in subverted RSA groups. On the other
hand, the literature provides numerous techniques on constructing zero-knowledge
proofs in non-subverted RSA groups. It is challenging to compare the efficiency
of our scheme directly against the state-of-the-art for non-subverted solutions
because this would require fully researching how to convert multiple solutions into
the subverted setting. Instead we here briefly justify our techniques against two
possible alternative approaches that provide partial solutions to the problem.

Combine with an Auxiliary Group of Unknown Order. A possible app-
roach to constructing a sound proof of knowledge in the subverted RSA setting
would be to combine the simple protocol of Fig. 1 with a proof of a preim-
age in an established group of unknown order. That is, generate an unknown
order group G, commit to the same preimage Commit(w) and send the com-
mitment to the verifier. Then compose in parallel a proof of knowledge for
Commit(w) (over G) and the protocol of Fig. 1 (over the subverted RSA group).
The Fujisaki-Okamoto extraction technique [27,34,40] gives negligible knowledge
error and avoids the need for λ repetitions. However, this solution either requires
a private-coin trusted setup in case an RSA group is used as the auxiliary group
of unknown order, or must rely on class groups [16]. Solutions relying on class
groups are outside the scope of this work (see Introduction).

Range Proof with an Auxiliary Prime Order Group. For the range proof
problem for the preimage w of a homomorphism, Y = ψ(w) with 0 < w < R,
one possible approach is the following. Generate an auxiliary prime order group
G and commit to the preimage, Commit(w) over this group (e.g. via Pedersen
commitment). Then run in parallel the protocol of Fig. 1 for ψ(w) in the sub-
verted RSA group and a simple Schnorr protocol for the commitment on G, to
prove that Commit(w) and ψ(w) contain the same value. Afterwards one can use
a range proof protocol in the prime order group [17,26] to prove the range of w.
The main benefit here is that due to progress on range proofs over prime order
groups, the actual range proof block is concretely efficient.

This solution, however, inherits the soundness-error (and thus the required
iterations) of the protocol of Fig. 1. That is 1/2 for general homomorphisms
1/poly(λ) for some specific special homomorphisms such as the (original) Paillier
Encryption [6]. This leads to an overhead of O(λ) and O(λ/ log(λ)) respectively,
due to the repetitions needed.



520 D. Kolonelos et al.

Our work concerns with the former category, general non-special homomor-
phisms (such as ElGamal-Paillier) where the overhead is O(λ), and provides a
truly unique perspective on how to decrease their asymptotic efficiency to O(1)
which was not previously known to be possible. We achieve this by providing and
proving secure an alternative extraction technique together with an information
theoretical lemma that have no dependence on parallel executions.

2 Preliminaries

2.1 Notation

We denote the security parameter with λ; poly(λ) is any positive f(n) =
O(poly(n)), and negl(λ) is a negligible positive function. With [a, b] we denote
the set {a, a + 1, . . . , b}, and with [n] we denote [1, n]. Similarly with �n� we
denote the set [−

⌊
n
2

⌋
. . .

⌊
n
2

⌋
]. Adversaries are assumed to be stateful unless

stated otherwise.
Zn is the additive group of order n. We often explicitly consider interval �n�

as the integer encoding for Zn. Z
∗
n is the multiplicative group of all integers

in �n� coprime with n. With φ(·) we denote the Euler’s totient function. US

stands for uniform distribution on S as a finite set (e.g. UZp
); U[L,R] is a uniform

distribution on [L,R], and UR is a shorthand for U[0,R]. In general we denote with
capital letters, e.g. Y , elements of the RSA group. In bold we denote vectors (e.g.
s) and matrices (e.g. A).

2.2 Homomorphic Encryption Schemes

In this work we engage public-key encryption schemes that have additively homo-
morphic properties. That is an encryption scheme is called additively homo-
morphic if for every pk ∈ PK and m1,m2 ∈ M, Encpk(m1) · Encpk(m2) =
Encpk(m1 +m2), where ‘·’ is a ciphertext space operation. In the rest we assume
that the message space M of the additively homomorphic schemes we refer to
forms a ring. Some known examples of additively homomorphic encryption are
the Paillier cryptosystem and its variants [15,31,36,54] in the RSA setting, the
Castagnos-Laguillaumie cryptosystem over class groups [22] and schemes from
lattices [43,56]. Notably, no additively homomorphic public-key cryptosystems
from groups of prime order exist.6

Paillier Encryption Scheme. We briefly recall the Paillier public key encryp-
tion scheme [54], and refer the reader to our full version for more details.

6 Although the lifted ElGamal cryptosystem (alike ElGamal but the message is lifted
in the exponent) is additively homomorphic, the decryption is not polynomial-time,
unless one restricts the message space to polynomial size. This makes it unsuitable
for most applications.
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KeyGen(1λ): sample p, q primes of the size λ and set N = p · q. Compute d =
φ(N)−1 mod N2. Output pk = N and sk = (d, φ(N)).

Encpk(m): sample uniformly r ←$ Z
∗
N and output ct = (N + 1)mrN mod N2.

Decsk(ct): compute c = (ctφ(N) − 1)d mod N2 and return m = c
N .

2.3 Homomorphisms and Efficient Σ-protocols

Let ψ : D → H be a homomorphism between a domain D (group or ring), and
an output group H (e.g. RSA). When Y = ψ(w), we call w a witness, and Y an
instance.

A pair (v, u) ∈ Z×D is called a pseudo-preimage (PP) for instance Y = ψ(x),
if Y v = ψ(u) holds [5,7], where v is called a degree of a given PP. Pseudo-
preimages naturally occur in Σ-protocols: the extractor usually transforms two
transcripts for the same commitment a (Y cia = ψ(si), i ∈ 1, 2) into a single PP
by dividing the equations: Y c1−c2 = ψ(s1 − s2), thus (c1 − c2, s1 − s2) is a PP.

In prime-order groups (|H| = p) knowledge of PP implies knowledge of preim-
age, since inverses in Zp are efficiently computable. In groups where the order is
not prime or even unknown to V (e.g. in Paillier H = Z

∗
N2) there is another way

to extract a proper preimage, but from two pseudo-preimages: given (v1, u1),
(v2, u2) with gcd(v1, v2) = 1 for any Y we can use the so-called called “Shamir’s
trick”. Given (v1, u1), (v2, u2) s.t. Y vi = ψ(ui), i ∈ {1, 2}, it first checks if
gcd(v1, v2) �= 1 and aborts if not. Then it computes Bezout coefficients—integers
γ, δ such that γv1+δv2 = 1, and returns u := γu1+δu2. This extractor succeeds,
since given Y vi = ψ(ui), Y = Y γv1+δv2 = ψ(u1γ + u2δ) = ψ(u).

Special Homomorphisms. In [7], following Cramer [28], the homomorphism
ψ : D → H is called special if for any instance Y one can easily find a non-
trivial PP (v̂, û) of Y (non-trivial means v̂ �= 0 mod |H|). Examples of special
homomorphisms include Schnorr-like homomorphism7 ψ : Zq → Z

∗
p, ψ : x �→ hx

with ord(h) = q, q | (p − 1) and Paillier homomorphism8.
For special homomorphisms it is sometimes possible to build Σ-protocols

with non-binary challenge spaces (and thus small soundness error) by applying
Shamir’s trick to just one extracted PP, and the special PP. This is the best
known method of extraction for Paillier in the honest setting. However, in the
subverted N scenario it does not work, and binary challenges are still optimal.
This is because of the GCD condition in Shamir’s trick: A can choose N to
maximize Pr[gcd(c1 − c2, N) �= 1] (N is a degree of Paillier special PP); with
binary challenges c1 − c2 = 1, and GCD is always 1. Other variants of Paillier
(e.g. ElGamal-Paillier [15,31]), are not known to be special, thus even the above
extraction technique fails unless challenges are binary (c1 − c2 = 1).

7 Its special PP is (q, 0), since Y q = ψ(0); and the PP is non-trivial: q �= 0 mod p.
8 From Y = GmrN we can derive Y N = (GmrN )N = G0(GmrN )N , so (N, (0, Y )) is a

pseudo-preimage of degree N (and N �= 0 mod φ(N2)).
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2.4 Designated-Verifier Arguments of Knowledge

We assume some familiarity with the notion of interactive arguments of knowl-
edge and their standard security properties (completeness, knowledge-soundness,
and zero-knowledge). In the designated verifier (DV) model, additionally to P,V
programs we claim existence of a KeyGen routine that the verifier uses to create
verifier’s public key (VPK). This public key is then used to interact with this ver-
ifier only, and can potentially be reused multiple times. The formal definitions of
completeness, soundness with reusable VPK, and honest verifier zero-knowledge
under a malicious VPK are deferred to the full version.

3 Our Extraction Technique

In this section we state and prove two lemmas about our novel extraction
method. The first is a generalised extraction lemma, Lemma 1, that describes
how to extract a witness given M accepting transcripts such that the gcd of the
challenges is 1. Our second lemma, Lemma 2, is the core information-theoretical
lemma behind the security of our construction, which argues about this proba-
bility of random challenges being coprime.

3.1 The Generalized Extraction Lemma

We consider the three-round public-coin protocol of Fig. 1 where transcripts
have the form (a, c, s). In Lemma 1 we design an extractor that, given M valid
transcripts on the same first message, always succeeds provided that gcd(c(2) −
c(1), . . . , c(M) − c(1)) = 1. The following is proven in the full version.

Lemma 1. Let T =
{
(a, c(i), s(i)

}M

i=1
be a collection of M ≥ 3 successful

transcripts for the relation RHom and input Y , aY c(i)
= ψ(s(i)), such that

gcd(c(2) − c(1), . . . , c(M) − c(1)) = 1. Then there exists a PPT extractor Ext that
outputs w such that Y = ψ(w) with probability 1.

3.2 Our Core Coprimality Lemma

The above generalized extraction technique is effective conditioned on the fact that
differences of the challenges in the extracted transcripts are coprime, gcd(c(2) −
c(1), . . . , c(M) − c(1)) = 1. However, this cannot be guaranteed for any malicious
prover. This stems from the fact that an adversarial prover can manipulate the
c(i)’s by selectively choosing to answer successfully or not, after receiving c(i).

Intuitively, we would like the adversary to answer independently of c(i). Then
for sufficiently large M = poly(λ), gcd(c(2) −c(1), . . . , c(M) −c(1)) = 1 would hold.
To this end we let the challenges consist of two factors: the challenge is e = bcT

where b is sampled during the protocol execution and c is a vector that is uniformly
random from the point of view of the adversary. The adversary can manipulate b
because b is chosen during the protocol, but c cannot be manipulated. Looking
ahead, in Sect. 4 we realize this technique in the designated-verifier setting.
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In Lemma 2 we prove an information-theoretical statement which is at the
core of our construction. The distribution of values output by our extractor
depend nontrivially on some adversarial matrix B: the matrix of all b that the
adversary chooses to answer successfully. Because there are no computational
restrictions on how an adversary might choose B, we require that for any B the
extractor will succeed with high probability. Lemma 2 is new to this work and
as far as we are aware there are no similar results in the literature.

How to Interpret the Lemma. As previously noted, Lemma 2 aims to
information-theoretically prove that M extracted accepting transcripts (on the
same first message) have coprime challenges where each challenge is b(i)cT . From
the point of view of the adversary b is known but c is not, and assumed uniformly
random.

To make the applicability of the lemma more clear we briefly recall (omitting
the non-relevant details) the extractor of [2] (that generalizes [32]) which obtains
M accepting transcripts, with the same first message, for any Σ-protocol.

Let H be the binary matrix where the rows represent the first messages α1 =
ψ(r1), α2 = ψ(r2), . . . , α|D| = ψ(r|D|) and the columns represent the different
challenges b1, b2, . . . , b2λ . The position Hi,j is 1 if the adversary can answer
successfully on αi, bj and 0 otherwise. The extractor works as follows:

– Probes different positions of H until it finds a 1.
– If it finds a first 1 it continues sampling uniformly in the same row until it

finds M − 1 more 1’s (or terminates with some specific probability).

Attema et al. [2] show that this extraction strategy outputs M accepting tran-
scripts in expected polynomial time.

Assume that the extractor succeeds in outputting the M transcripts from
some row i. Then B (in matrix form) represents all the bj ’s of this row that
have 1. Similarly, B′ (also in matrix form) represents all the b(j)’s of the row
that were sampled (uniformly) by the extractor, contained 1 and thus gave an
accepting transcript. Lastly, for the lemma to be applied we need that B has
exponentially large number of rows > 2λ/poly(λ). Conditioned on the fact that
the extractor terminates in (expected) polynomial time this holds, otherwise the
probability of the extractor to find M 1’s in the row (in poly-time) would be
negligible. Clearly then, B′ is a polynomially sized sub-matrix of B.

We highlight that the matrix H represents the malicious prover’s strategy
and it is clearly adversarially chosen, thus so is B. For this it is important that
the lemma holds for any arbitrary B. This makes the lemma and its proof highly
non-trivial.

Lemma Statement. Lemma 2 proves the following. Assume any exponentially-
large (2λ/poly(λ)) space B of binary vectors with λ coordinates. Then if we

sample uniformly M = poly(λ) vectors from this space b(1), . . . , b(M) $←−
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B and λ uniformly random values (from an exponentially large space) c :=
(c1, . . . , cλ) ←$

(
�2λ�

)λ we get that their inner products b(1)cT , . . . , b(M)cT are
coprime, except with negligible probability. This then generalizes to our final result
that concerns with the differences {b(i)cT − b(1)cT }M

i=2 being coprime.
Crucially, this holds for any space B as long as it is sufficiently large.

Lemma 2. Let B be any (ε′2λ) × λ binary matrix consisting of ε′2λ distinct
binary rows, with ε′ > 1/poly(λ). Sample:

– M = poly(λ) rows of B, ik ←$ [1, ε′2λ] for k = 1, . . . ,M , and set

B′ = (b(1) b(2) . . . b(M))T := (bi1 bi2 . . . biM
)T

– λ uniformly random values, ci ←$ �2λ� for i = 1, . . . , λ, and set

c = (c1 c2 . . . cλ)

and set (e(1) . . . e(M))T = B′c. Then:

Pr[gcd(e(2) − e(1), . . . , e(M) − e(1)) = 1] = 1 − negl(λ)

the probability is over the choices of c,B′.

Due to space limitations the full proof is deferred to full version.

4 Designated Verifier Proofs of Knowledge for General
Homomorphisms

In this section we design a designated verifier argument of knowledge for an
opening to a general homomorphisms. We prove that there is a negligible sound-
ness error assuming an additively homomorphic encryption scheme that is CPA
secure. Zero-knowledge holds even under subverted parameters and it does not
require a common reference string. Our proofs consist of 6 elements and can be
made non-interactive using the Fiat-Shamir transform.

We show in Sect. 5 that knowledge of an opening for a general homomor-
phism is powerful enough to build range proofs for ciphertexts over a subverted
encryption key. For now we focus on the simpler general relation

RHom = { ψ,A w : Y = ψ(w) }

where ψ : D → H and H is a group parametrized by a maliciously generated
RSA modulus N (for example Z

∗
N or Z

∗
N2). Although not directly in our scope,

the techniques of this sections also apply to any group of unknown order.
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4.1 The Designated-Verifier Protocol

We are now ready to present our designated verifier zero-knowledge proof system
for RHom where ψ is any additive group homomorphism.

The public-coin interactive DV protocol for RHom is run between a prover
and the verifier. The protocol is a modification of the sigma protocol in Fig. 1
to ensure soundness even for subverted RSA groups. One of the key observa-
tions is that in the Designated-Verifier setting we can hide the challenge from
the malicious prover. We can thus assume that all the challenges answered are
independent, provided that they are sampled independently by the verifier. In
order to hide the challenges from the prover they are encrypted with a public
key homomorphic encryption scheme. These encrypted challenges are provided
in advance inside the verifier’s public key.

Then if these encrypted challenges are linearly combined with fresh (binary)
challenges, sampled during the actual execution one can directly apply the
extraction techniques of Sect. 3 (Lemma 1 and Lemma 2). The linear combi-
nation is performed homomorphically through the ciphertexts.

The full protocol is presented in DVProt. For ease of presentation, we first
describe our protocol incrementally: with respect to a trusted setup that always
outputs (vpk, vsk) honestly and without allowing any reusability of it; then in
the next sections we incrementally present how to achieve these properties.

Our construction makes use of any additive additively homomorphic encryp-
tion scheme with message space M, randomness space R, and ciphertext space
CT such that CT forms a multiplicative group. For simplicity we will assume
AHE to be standard Paillier w.r.t. Npk, and M to be the ring ZNpk

for an integer
Npk, although our scheme works with any AHE and ring M.9

First the key generation algorithm creates a verification key: it chooses an
encryption key pair (pk, sk) and sets the verifier’s secret key to vsk = sk. It then

samples uniformly λ values, c1, . . . , cλ
$←− �2λ� (denote c = (c1, . . . , cλ)) and

encrypts them under pk, ct1 = Encpk(c1), . . . , ctλ = Encpk(cλ). In Sect. 4.3 we
describe a protocol by which the verifier proves that their vpk is well formed,
ensuring that we achieve zero-knowledge under subverted vpk (hence without
trusting the designated verifier for the key setup).

The protocol then proceeds in 5 moves which we detail in Fig. 2. The prover
essentially proves that Y = ψ(w) by sending a = ψ(r); an encryption S of
(r+cw); and a proof (T, u1, u2, u3) that the prover knows the contents of S. The
additional steps 4 and 5 that prove knowledge of the preimage of S are there so
that we can technically avoid passing vsk to the extractor to compute s. Instead
they can extract s from the additional protocol of these steps. This explains
why d is sampled from the exponentially big challenge space – the modulus in
question (chosen by the verifier and extractor) is trusted for soundness.

As usual in public-coin protocols, the interactive DVProt can be transformed
into a non-interactive one applying the Fiat-Shamir transformation (in the ran-
dom oracle model).

9 As long as all elements in �2λ+1� have a multiplicative inverse in M.
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Fig. 2. DVProt: The designated-verifier Σ-protocol for RHom demonstrating knowledge
of a preimage of ψ(·). The additively homomorphic encryption scheme is instantiated
with Paillier with |M| = |Npk|. This scheme is knowledge sound for subverted RSA
groups provided that the outputs of KeyGen(1λ) are well-formed.

4.2 Security

We now argue the security of our DVProt. For correctness, we only need to make
sure that the message space M of AHE is large enough to fit the largest possible
s = r1 + cw. That is we require an additively homomorphic IND-CPA secure
Encryption Scheme with message space |M| > 22λ+log λ|D|.
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Knowledge Soundness. To demonstrate knowledge soundness we first
describe an extractor that can rewind a malicious prover and aims to output
the prover’s witness. This extractor obtains M(λ) = poly(λ) different verifying
transcripts from the prover and succeeds if the gcd of the challenges of these
transcripts is equal to 1. We then describe a reduction B that succeeds at IND-
CPA whenever the extractor fails at obtaining a valid witness. The reduction
queries an encryption oracle to determine the vpk and therefore does not know
the contents of the encryptions. It runs the prover and decides whether a tran-
script verifies or not based on whether the transcript verifies with both possible
contents. We argue that if it verifies with one of the possible contents but not
the other, then provided the domain space of ψ() is bigger than 2λ, then B can
guess the contents of the ciphertexts with overwhelming probability. We further
argue that the gcd of the challenges the prover does not see must equal 1 with
overwhelming probability. Thus if the extractor fails then B can guess which
challenges the ciphertexts contain based on whether the gcd is 1 or not.

The protocol and theorem currently do not give the prover oracle access to
the verifier. In Sect. 4.4 we will describe an extension of our DV protocol that
can give the prover this access.

Theorem 1 (Knowledge Soundness). The DVProt protocol is knowledge-
sound in the designated verifier model, provided that the AHE is IND-CPA
secure.10

Proof. Suppose that (vpk, vsk, τ) $←− KeyGen(1λ), where τ = {c1, . . . , cλ} con-
tains the challenges encrypted in vpk but not the secret key sk of AHE. Assume
that P∗(vpk, ψ, Y ; coin) is a malicious prover that is run on random coins coin.
We first describe an extractor Ext, that has rewindable black-box access to
the prover P∗, such that whenever P∗ outputs verifying (Y ; (a, S, T, u1, u2, u3))
ExtP

∗
(τ, vpk, ψ, Y ) outputs a witness w such that Y = ψ(w). The Ext algorithm

depends on two subalgorithms, Ext0 and Ext1 where Ext0 is the extractor from
Lemma 1, and Ext1 we present below.

Ext1, on input τ, vpk, ψ and Y , runs P∗(vpk, ψ, Y ; coin) (on challenges b, d of
its choice) until it obtains a full (M, 2)-tree of accepting transcripts, for the same
first message a. That is:

T =
{(

a, b(j), S(j), T (j), d(j,k), u
(j,k)
1 , u

(j,k)
2 , u

(j,k)
3

)}

j∈[M ],k∈[2]

and outputs T . For Ext1 we use the generic (M, 2)-special soundness extractor
(see [2]), that efficiently finds such a tree. As we argue later we set M = poly(λ).

More specifically, Ext1 proceeds as follows. It probes P∗ on randomly sampled
coin, b, d until it obtains

(
a, b(1), S(1), T (1), d(1,1), u

(1,1)
1 , u

(1,1)
2 , u

(1,1)
3

)
such that

T (1)(S(1))d(1,1)
= (C(1))u

(1,1)
1 Encpk(u

(1,1)
2 ;u(1,1)

3 ), where C(1) =
∏λ

i=1 ct
b
(1)
i

i . Since
it does not have vsk it cannot directly decrypt S(1) to s(1) and check whether
10 We further assume that if ZN is the message space, then the largest factor of N is

larger than 2λ+1, which is the case for example in Paillier.
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aY c(1) = ψ(s(1)). For this it continues probing P∗ on the same coin and b(1)

until it obtains a second
(
a, b(1), S(1), T (1), d(1,2), u

(1,2)
1 , u

(1,2)
2 , u

(1,2)
3

)
such that

T (1)(S(1))d(1,2)
= (C(1))u

(1,2)
1 Encpk(u

(1,2)
2 ;u(1,2)

3 ). So we have:

T (1)(S(1))d(1,1)
= (C(1))u

(1,1)
1 Encpk(u

(1,1)
2 ;u(1,1)

3 )

T (1)(S(1))d(1,2)
= (C(1))u

(1,2)
1 Encpk(u

(1,2)
2 ;u(1,2)

3 )

or
(S(1))d(1,1)−d(1,2)

= Encpk(u
(1,1)
2 + c(1)u

(1,1)
1 − u

(1,2)
2 − c(1)u

(1,2)
1 )

From assumption gcd(d(1,1) − d(1,2), N) = 1 (given that the largest prime factor
of N is larger that |d(1,1) − d(1,2)|) so the inverse

(
d(1,1) − d(1,2)

)−1
exists in M

and Ext1 extracts s(1) = s
(1)
2 + c(1)s

(1)
1 such that S(1) encrypts s(1) (under some

randomness unknown to the extractor) where

s
(1)
1 =

(
u
(1,1)
1 − u

(1,2)
1

) (
d(1,1) − d(1,2)

)−1

mod N

s
(1)
2 =

(
u
(1,1)
2 − u

(1,2)
2

) (
d(1,1) − d(1,2)

)−1

mod N

From here Ext1 can verify aY c(1) = ψ(s(1)) to confirm if the two transcripts are
accepting or not. It continues in a similar manner until it obtains a full (M, 2)-
tree of accepting transcripts T . Whenever P∗ convinces V with non-negligible
probability Ext1 computes the decryption of S(1) in polynomial time thus the
probability that Ext1 accepts a false transcript is negligible.11

Now, the extractor Ext behaves as follows. It runs T ← ExtP
∗

1 (τ, vpk, ψ, Y )
and computes c(j) = b(j)cT =

∑λ
i=1 cib

(j)
i . If gcd(c(2) − c(1), . . . , c(λ) −

c(1)) �= 1 it aborts. Else it computes s(j) as shown above (where it holds
that s(j) = Decsk(S(j))) for each j ∈ [M ] and runs w ← Ext0(ψ, Y ;
(a, c(1), s(1)), . . . , (a, c(M), s(M))) and returns w.

We first see that Ext runs in polynomial time provided that the adversary
P∗ has non-negligible probability of success. So either ε(λ) is polynomial in λ
or P∗ only convinces V with negligible probability. Let ε(λ) > 1/poly(λ) denote
the probability that P∗ convinces an honest verifier on input (ψ, Y ). By Lemma
1 we have that Ext0 runs in polynomial time. For the runtime of Ext1 we rely
on [2, Lemma 5] which shows that Ext1 runs in expected time O( λ

ε−(M−1)/2λ ),
which is polynomial (since we assumed that ε is non-negligible).

We must now show that Ext only aborts with negligible probability. This
occurs if and only if gcd(c(2) − c(1), . . . , c(M) − c(1)) �= 1 with non-negligible
probability. In order to show this, we design an adversary B against IND-CPA
that, using Ext, wins the IND-CPA game:

11 For ease of exposition we keep the description simple. We omit the technical details
of special soundness extractors related to aborting senarios, that ensure termination
in polynomial time(see lemma 5, [2]).
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BOEnc(pk)

c1, z1, . . . , cλ, zλ
$←− �2λ�

cti
$←− OEnc(ci, zi) for i ∈ [λ];

vpk ← (pk, ct1, . . . , ctλ)

coin
$←− [1, 2λ]; j ← 1

while j < M : (transj,1, transj,2) ← P∗(vpk, ψ, Y ; coin)
if aY c(j)

= ψ(s(j)2 + c(j)s
(j)
1 ) and aY z(j) �= ψ(s(j)2 + z(j)s

(j)
1 ) return 0

if aY c(j) �= ψ(s(j)2 + c(j)s
(j)
1 ) and aY z(j)

= ψ(s(j)2 + z(j)s
(j)
1 ) return 1

if aY c(j)
= ψ(s(j)2 + c(j)s

(j)
1 ) and aY z(j)

= ψ(s(j)2 + z(j)s
(j)
1 ) j ← j + 1

if gcd(c(2) − c(1), . . . , c(M) − c(1)) �= 1 return 0
if gcd(z(2) − z(1), . . . , z(M) − z(1)) �= 1 return 1

where we denote c(j) = b(j)cT and z(j) = b(j)zT .

Case 1. First we show that if aY c(j)
= ψ(s(j)2 + c(j)s

(j)
1 ) and aY z(j) �= ψ(s(j)2 +

z(j)s
(j)
1 ), then with overwhelming probability the encryptions contain c1, . . . , cλ

and B succeeds.
The fact that aY c(j)

= ψ(s(j)2 + c(j)s
(j)
1 ) can be rewritten as:

(
aψ(−s

(j)
2 )

)
=

(
ψ(s(j)1 )Y −1

)c(j)

Assume that cti �= Encpk(ci) then P∗ gets no information about c1, . . . , cλ, so
they are perfectly hidden. This means that from the point of view of P∗ these
are uniformly random over �2λ�, which makes the above happen with probability
2−λ (considering also that |H| > 2λ), unless aψ(−s

(j)
2 ) = ψ(s(j)1 )Y −1 = 1. Now,

since aY z(j) �= ψ(s(j)2 + z(j)s
(j)
1 ) then a �= ψ(s(j)2 ) or Y �= ψ(s(j)1 ).

We conclude then that, except with negligible probability 2−λ, {cti}i contain
encryptions of ci.

Case 2. Second, we use the same argument as in the previous case to claim
that if aY c(j) �= ψ(s(j)2 + c(j)s

(j)
1 ) and aY z(j)

= ψ(s(j)2 + z(j)s
(j)
1 ), then with

overwhelming probability the encryptions contain z1, . . . , zλ and B succeeds.

Case 3. Third we argue that if the extractor Ext fails then B succeeds. Indeed we
have from the first two cases that transcripts only verify if both aY c(j)

= ψ(s(j)2 +
c(j)s

(j)
1 ) and aY z(j)

= ψ(s(j)2 +z(j)s
(j)
1 ). If the encryptions contain c1, . . . , cλ then

Ext only fails if gcd(c(2)−c(1), . . . , c(M)−c(1)) �= 1. In this case B correctly guesses.
If the encryptions instead contain z1, . . . , zλ then Ext only fails if gcd(z(2) −

z(1), . . . , z(M) − z(1)) �= 1. In this case B guesses correctly unless gcd(c(2) −
c(1), . . . , c(M) − c(1)) �= 1. The (c1, . . . , cλ) are uniformly distributed values that
are perfectly hidden from the prover and the extractor Indeed, the encryptions
contain no information and, by the first two cases, the behaviour of the extractor
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is entirely determined by the verification with respect to z1, . . . , zλ. So the prob-
ability that gcd(c(2) − c(1), . . . , c(M) − c(1)) = 1 is overwhelming (see Lemma 2).
We thus argue that if Ext fails then B succeeds with overwhelming probability.

Indeed Lemma 2 shows that Pr[gcd(c(2) − c(1), . . . , c(M) − c(1)) = 1] = 1 −
negl(λ).

To see why Lemma 2 applies in our case, B corresponds to the matrix con-
taining all the challenges b which the adversary can successfully answer, when
the first message is a. Since the extractor was able to obtain M such challenges in
(expected) polynomial time, this means that B is at most polynomially smaller
than 2λ: there exists ε′ > 1/poly(λ) such that |B| = ε′2λ. We can show this
by contradiction, assume that ε′ = 1/ω(poly(λ)), then the expected time for
Ext to find a successful answer would be non-polynomial ω(poly(λ)). Finally, B′

corresponds to the matrix consisting of the challenges in T .

Zero-Knowledge. To demonstrate zero-knowledge we will provide a simulator
and argue that the simulators outputs are indistinguishable from the honest
provers. We make use of a standard blinding lemma.

The main HVZK result is as follows (due to space limitations the proof is
deferred to the full version of the paper):

Theorem 2 (Honest Verifier Zero Knowledge). DVProt is statistical
honest-verifier zero-knowledge for the relation RHom.

Since our DV protocol is essentially Schnorr-like, the simulator is almost
as usual: it samples response values uniformly (since they are properly blinded
in the honest protocol), and generates (encrypted) challenges using verifier’s
equations. The only difference is that one challenge is an encryption value. Also
the proof assumes honest CRS setup.

4.3 Malicious VPK Generation

The DVProt protocol in the previous section assumes that the verifier’s public
key is trusted. In particular, zero-knowledge only holds on the condition that cti
contains plaintexts ci ∈ �2λ� for all i. In this section we explain how to generate
a vpk in a way that prevents dishonest verifiers from breaking zero-knowledge of
our DV construction.

For lack of space we defer the formal description of the malicious-verifier
alternative key generation procedure is presented to the full version. We edit
the setup algorithm such that the verifier must provide a range proof on the
ciphertexts it generates for vpk.

In the full version we present a protocol proving range of the VPK ciphertext
efficiently, together with a security proof. The protocol follows the transforma-
tion by Cramer et al. [29,30] allowing to increase performance when proving
multiple instances simultaneously; however our instantiation has a number of
differences from the original transformation. The range proof comes with a slack:
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a verifying π on the prover’s side guarantees that when ci ∈ �2λ�, the resulting
messages in the ciphertexts cti of vpk are in the extended interval �23λ+log λ−1�
(the slack is 22λ+log λ−1). Therefore the encrypted sum-challenge P replies to
is in �23λ+2 log λ−1�. To preserve zero-knowledge we must increase the blinding
parameter r1 on the prover’s side to this value, multiplied by |D|. This in turn
requires us to increase AHE |M| to |D|23λ+2 log λ, to be enough to fit the new
s = r1 + cw

s≈ r1.
In addition to this, we also must prove that verifier’s public key Npk gives

rise to an injective Paillier instantiation, since otherwise the statement of the
range proof is not useful. For this we use [42, Protocol PPaillier−N, Sect. 3.2]—
it is public-coin, so can be executed non-interactively (using FS); it proves
gcd(Npk, φ(Npk)) = 1, which is enough to achieve injectivity of Paillier; and
it is quite efficient, only taking a few percent of all KeyGen computations.

4.4 Reusable VPK

In this section we present DVReusableProt, a modification of DVProt, in which
vpk is reusable Q = poly(λ) number of times. This means the prover can query
the verifier to learn whether their response verifies up to Q times. We achieve
this by adding Q encrypted challenges to the vpk. The result is that both the
communication and the computation complexity related to vpk generation and
verification can be amortized down to O(1) per query.

For the basic DVProt it is possible to show an attack in which an adversarial
prover, interacting with the verifier many times, uses the information of whether
a (malicious) proof of their choice verifies or not in order to learn plaintext
challenges ci in the vpk. This in turn defeats the purpose of hiding the challenges,
and prevents extraction, breaking soundness.

To overcome this we introduce additional challenge blinders. First, we sample
ĉκ of size at least λ22λ per query, encrypt them to ĉtκ, and add them all to the
VPK. Then we use ĉtκ in the final challenge C = ĉtκ

∏
i ct

bi
i (for a challenge

bit-vector b) so that ĉκ statistically hides
∑

cibi since ĉκ is at least 2λ larger.
This means that the adversary statistically learns no information about {ci}, but
only about ĉκ. Each challenge ĉκ must be used exactly once, which is enforced
by V.

The final challenge size now grows to λ22λ, which means r1 must be sampled
from �λ23λ|D|�, and |M| of verifier’s AHE must be bigger than this value.

Theorem 3. DVReusableProt is a complete, honest-verifier zero-knowledge pro-
tocol in the designated-verifier setting, that has knowledge-soundness with Q-
times reusable VPK for any polynomial Q(λ).

Due to space limitations the proof is deffered to the full version.

4.5 Malicious and Reusable VPK

Techniques from the two previous sections can be combined. The reusable VPK
from Sect. 4.4 can also be generated maliciously with the same technique from
Sect. 4.3.
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The batched range proof now must also cover new “bigger” challenges
introduced for reusability. From the perspective of efficiency of amortized
SigmaRangeAProt it is optimal to batch exactly n = λ instances together. Thus
we will prove challenge ranges of ci in batches of size λ, where first batch uses
range bound R1 = 2λ (corresponding to small ciphertexts), and the following
Q/λ batches use R2 = λ22λ. When λ � Q, SigmaRangeAProt instance can be
padded with dummy values.

Given 2λ+log λ−1 slack of the range proof, we must sample r1 ∈
�25λ+2 log λ|D|�; and |M| must be chosen to be bigger than this r1.

4.6 Efficiency Optimization in the Generic Group Model

Here we describe a variant of the DVProt protocol that consists of 3 rounds
(instead of 5) and thus saves 4 elements from the proof size. The protocol tran-
script simply consists of (a, b, S) omitting T, d, u1, u2, u3 together with the last
two rounds.

In DVProt the last three messages T, d and (u1, u2, u3) are used to prove that S
is a well-formed ciphertext. Namely, the extractor of Theorem 1, at each accept-
ing transcript should be able to obtain an s(j) such that S(i) = Encpk(s(j)).
We observe that if we instantiate the encryption scheme with the Paillier-with-
randomness-in-the-exponent cryptosystem, S(j) = (N +1)s(j)

hr then our extrac-
tor can obtain s(j) for free in the generic group model [52,59] (GGM).

GGM for unknown order groups has been established [13,37] in a similar
manner to the original model. For this optimization we make use of this model.
For knowledge-soundness we assume that the group generated for the Paillier
encryption is honest (it’s part of VPK), thus the model applies normally.

The following proof is almost identical to that of Theorem 1 except that
the extractor now uses whitebox access to the prover instead of the rewinding
argument to find a representation for S.

Theorem 4 (Knowledge Soundness). The optimised DVProt described above
is knowledge-sound in the generic group model provided that the AHE is IND-
CPA secure.

Due to space limitations the proof is deffered to the full version.

5 Designated Verifier Range Proof

In this section we construct DVRangeProt—a zero-knowledge argument of knowl-
edge for the range of the pre-image of general homomorphisms. Formally, we are
interested in the relation:

RHomRange =
{
(ψ, Y,R);x : Y = ψ(x) ∧ x ∈ [0, R]

}

where ψ : D → G and G is a group parameterised by a (possibly subverted)
RSA modulus N . We use our designated-verifier protocol of Sect. 4, that is able
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to extract the witness using the extraction strategy of Theorem 1. On top of
that, we use the range proof from [27] for RSA groups.

The protocol from [27] works over an integer commitment [34,40] c = gxhr

in an RSA group for which the order is unknown to the prover. Since we cannot
assume that G is such a group (recall that the prover might know the order of
G) we let the verifier generate an RSA modulus Ncm together with the bases of
the commitment g, h, which are included in the verification key. The prover first
commits to the pre-image x in ZNcm , c = gxhr and sends c to the verifier. Then
it performs the two protocols, the opening of ψ (Sect. 4.1) and the range proof
of [27] (compiled with the same Designated-Verifier technique), in parallel.

For completeness, we recall the aforementioned integer commitment scheme
used. It works over any group of unknown (to the committer) order such as an
RSA group or a class group. In our case, we focus on the RSA instantiation, thus
the underlying group is ZNcm , where Ncm is an RSA modulus. The commitment
key consists of two random elements g, h ∈ ZNcm such that g ∈ 〈h〉. In the key
generation phase we sample uniformly g ←$ ZNcm and f ←$ φ(Ncm)12 and output
(g, h) = (hf , h). A commitment to x is merely c = gxhr for a random r ←$ �Ncm

2 �.
The opening values are (x, r) and the verification is c = ±gxhr.13 The scheme is
binding under the factoring assumption for Ncm and statistically hiding.

We present DVRangeProt in Fig. 3(for lack of space we describe its key genera-
tion in the full version). For ease of presentation parts related to the range proof
and the opening of ψ are visually separated, denoted as (1) and (2) respectively.
We directly present our protocol with reusable and maliciously generated vpk,
similarly to how these were presented for DVProt in Sects. 4.3 and 4.4.

For the key generation, except for a secret/public key of the additively homo-
morphic encryption scheme (Paillier cryptosystem), we further need an RSA
modulus Ncm and the group elements g, h to instantiate the integer commitment
scheme. For zero-knowledge to hold even under maliciously generated vpk it is
important that g = hf holds. Therefore we additionally include a zero-knowledge
proof ensuring it.

Security. The above protocol consists of two sub-protocols: our protocol
of Sect. 4.1 and the range proof by Couteau et al. [27] over RSA groups. Thus the
security of the protocol can be proven in a straightforward way from the security
of these subprotocols. For correctness, again we need to consider the size of the
message space M of the encryption scheme AHE. Indeed |M| needs to be at least
as large as the maximum value encrypted, which equals τ +

∑3
i=1 xiti−4(R−x)t,

the content of U4. Knowledge-Soundness follows directly from the knowledge-
soundness of the two sub-protocols.

12 In case φ(Ncm) is unknown, sampling f ←$ �Ncm
2

� is statistically close.
13 The ± relaxation is artificially added in order to achieve a sound zero-knowledge

proof of opening of c, which however does not affect the binding of the commitment
scheme.
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Fig. 3. DVRangeProt: The designated-verifier range proof of a preimage of ψ.



Zero-Knowledge Arguments for Subverted RSA Groups 535

Table 1. Evaluation of our main protocols. Timings are in ms. “GGM” is GGM opti-
misation, and “M/T” stand for malicious or trusted setup.

VPK Gen VPK Verify Prove Verify Proof size VPK size

DVProt M 4754 12310 162 66 5.52 KB 741 KB
DVProt T 836 – 130 56 5.14 KB 159 KB
DVProt M GGM 4754 12310 84 32 2.32 KB 741 KB
DVProt T GGM 836 – 69 28 2.19 KB 159 KB
DVRangeProt M 13827 25900 1880 1120 34.32 KB 842 KB
DVRangeProt T 9106 – 1330 782 31.78 KB 188 KB
DVRangeProt M GGM 13827 25900 689 153 11.05 KB 842 KB
DVRangeProt T GGM 9106 – 490 111 10.41 KB 188 KB

Theorem 5. Let AHE be an IND-CPA secure Encryption Scheme with mes-
sage space |M| > 26λ+2 log λ+4NcmR. Then DVRangeProt is a designated verifier
argument of knowledge for the relation RHomRange that is: correct, Q-reusable
knowledge-sound under the Factoring assumption for Ncm and IND-CPA security
of AHE and statistically honest-verifier zero-knowledge under malicious VPK.

Due to space limitations the proof is deffered to the full version.
DVRangeProt can be optimised in the generic group model similarly to how it

is done in Sect. 4.6. In this case we can omit the final interaction between prover
and verifier in Fig. 3 that proves knowledge of the plaintext inside Si.

6 Evaluation and Performance

We implemented14 and benchmarked our protocols, primarily focusing on eval-
uating and comparing DVProt and DVRangeProt (Table 1), proving knowledge of
the ciphertext message, and its range correspondingly. As a baseline we also
implemented several flavours of the basic Σ-protocol (Table 2). For simplicity
here we only present non-interactive (Fiat-Shamir transformed) variants.

The evaluation indicates that our protocols is a strictly better choice for
certain types of applications (e.g. ID-MPC such as RSA ceremonies), as they
exhibit better verification time and communication size. For generic applications,
our protocols are comparable to other solutions, providing different performance
trade-offs.

Setup and Instantiation Details. We ran our benchmarks on the Intel i5-8500
@ 3.00 GHz processor. For illustrative purposes the protocol code runs in the
single-core mode only, and no specifically tailored low-level optimisations are
implemented. All the evaluations are presented for λ = 128, and log N = 2048;

14 The implementation is available publicly on Github: https://github.com/volhovm/
rsa-zkps-impl.

https://github.com/volhovm/rsa-zkps-impl
https://github.com/volhovm/rsa-zkps-impl
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Table 2. Performance for the baseline algorithms. Timings are in milliseconds.
SigmaProt is evaluated with different pmax/number of repetition parameters. Note that
SigmaRangeProt has range slack while DVRangeProt is tight.

Prove Pre-Verify Verify Proof size

SigmaProt Paillier, λ = 128 reps 342 0 1161 134.00 KB
SigmaProt Paillier, 8 reps 21 4 73 8.38 KB
SigmaProt Paillier, 7 reps 19 36 64 7.33 KB
SigmaProt Paillier, 6 reps 16 339 55 6.28 KB
SigmaProt Paillier, 5 reps 14 6535 46 5.23 KB
SigmaRangeProt Paillier (with slack) 345 0 1157 108.00 KB

for the range proof we take R = 2256; the maximum query number of VPK reuses
is set to Q = 128. For Fiat-Shamir transformation we instantiate the random
oracle with the Blake2b [4] hash function.

For DVProt and DVRangeProt we use Paillier-ElGamal encryption as the target
homomorphism (which is additively homomorphic in both message and random-
ness), and standard Paillier as the AHE scheme on the verifier’s side. For each of
our two protocols we evaluate four cases, depending on whether we use the GGM
optimisation or not, and whether we consider malicious VPK or a trusted one
(for the ID-MPC case). In the latter case we do not consider VPK verification
time.

For the baseline SigmaProt and SigmaRangeProt we use standard Paillier. We
evaluate SigmaProt with naive λ = 128 reps, and also with varying log pmax ∈
{16, 19, 22, 26}. The range proof SigmaRangeProt cannot use the pmax optimisa-
tion. Note, importantly, that SigmaRangeProt has multiplicative range slack 2λ+1,
while our DVRangeProt is tight; this means comparing them directly is not even
possible for all applications.

Performance Overview. Below we will mostly consider the GGM optimised vari-
ants of our protocols that assumes trusted setup, since it gives us best per-
formance, and fits ID-MPC case well. The main advantage of our DVProt and
DVRangeProt is that they are single-shot, requiring no repetitions. It affects the
two protocols non-proportionally, benefiting DVRangeProt more, since the base-
line SigmaRangeProt cannot avoid λ repetitions. Our verification time is strictly
less than the baseline: 1.5–2× for DVProt, and 10× for DVRangeProt. Commu-
nication is more efficient too, since our proofs are strictly smaller. Even with
our VPK being comparably heavy, its size together with Q = 128 proofs gives
us 1.5–2× improvement for DVProt and 6–9× improvement for DVRangeProt. Our
proving time is slightly higher for DVRangeProt, and about 2× higher with DVProt.
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12. Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J.H., Striecks, C.: Practical signa-
tures from standard assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 461–485. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 28

13. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26948-7 20

14. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Pre-
neel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Hei-
delberg (2000). https://doi.org/10.1007/3-540-45539-6 31

15. Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with
a double trapdoor decryption mechanism and its applications. In: Laih, C.-S.
(ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40061-5 3

16. Buchmann, J., Hamdy, S.: A survey on IQ cryptography (2001). http://tubiblio.
ulb.tu-darmstadt.de/100933/

17. Bünz, D., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium
on Security and Privacy, pp. 315–334. IEEE Computer Society Press, May 2018.
https://doi.org/10.1109/SP.2018.00020

18. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized Schnorr
proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 25

19. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the prod-
uct of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.
107–122. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 8

20. Camenisch, J., Michels, M.: Separability and efficiency for generic group signa-
ture schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–430.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 27

21. Canetti, R., Gennaro, R., Goldfeder, S., Makriyannis, N., Peled, U.: UC non-
interactive, proactive, threshold ECDSA with identifiable aborts. In: Ligatti, J.,
Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1769–1787. ACM Press,
November 2020. https://doi.org/10.1145/3372297.3423367

22. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from DDH. In:
Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16715-2 26

23. Catalano, D., Pointcheval, D., Pornin, T.: IPAKE: isomorphisms for password-based
authenticated key exchange. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 477–493. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-28628-8 29

24. Chaidos, P., Couteau, G.: Efficient designated-verifier non-interactive zero-
knowledge proofs of knowledge. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018, Part III. LNCS, vol. 10822, pp. 193–221. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 7

25. Chan, A., Frankel, Y., Tsiounis, Y.: Easy come—easy go divisible cash. In: Nyberg,
K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–575. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0054154

https://doi.org/10.1145/62212.62222
https://doi.org/10.1007/978-3-642-38348-9_28
https://doi.org/10.1007/978-3-642-38348-9_28
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/3-540-45539-6_31
https://doi.org/10.1007/978-3-540-40061-5_3
http://tubiblio.ulb.tu-darmstadt.de/100933/
http://tubiblio.ulb.tu-darmstadt.de/100933/
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1007/3-540-48405-1_27
https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/978-3-540-28628-8_29
https://doi.org/10.1007/978-3-540-28628-8_29
https://doi.org/10.1007/978-3-319-78372-7_7
https://doi.org/10.1007/978-3-319-78372-7_7
https://doi.org/10.1007/BFb0054154


Zero-Knowledge Arguments for Subverted RSA Groups 539

26. Couteau, G., Klooß, M., Lin, H., Reichle, M.: Efficient range proofs with transpar-
ent setup from bounded integer commitments. In: Canteaut, A., Standaert, F.-X.
(eds.) EUROCRYPT 2021. LNCS, vol. 12698, pp. 247–277. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77883-5 9

27. Couteau, G., Peters, T., Pointcheval, D.: Removing the strong RSA assumption
from arguments over the integers. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017, Part II. LNCS, vol. 10211, pp. 321–350. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56614-6 11

28. Cramer, R.: Modular design of secure yet practical cryptographic protocols. Ph.D.
thesis, CWI and University of Amsterdam (1996)

29. Cramer, R., Damg̊ard, I.: On the amortized complexity of zero-knowledge proto-
cols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 11

30. Cramer, R., Damg̊ard, I., Keller, M.: On the amortized complexity of zero-
knowledge protocols. J. Cryptol. 27(2), 284–316 (2013). https://doi.org/10.1007/
s00145-013-9145-x

31. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

32. Damg̊ard, I.: On Σ-Protocols. Lecture Notes, University of Aarhus, Department
for Computer Science, p. 84 (2002). Accessed: 16 Feb 2022

33. Damg̊ard, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homo-
morphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 41–59. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 3

34. Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based
on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol.
2501, pp. 125–142. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36178-2 8

35. Damg̊ard, I., Jurik, M.: A length-flexible threshold cryptosystem with applications.
In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 350–364.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45067-X 30

36. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

37. Damg̊ard, I., Koprowski, M.: Generic lower bounds for root extraction and sig-
nature schemes in general groups. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 256–271. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 17

38. Dobson, S., Galbraith, S.D., Smith, B.: Trustless groups of unknown order with
hyperelliptic curves. Cryptology ePrint Archive, Report 2020/196 (2020). https://
eprint.iacr.org/2020/196

39. Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for publicly
verifiable secret sharing and its applications. In: Nyberg, K. (ed.) EUROCRYPT
1998. LNCS, vol. 1403, pp. 32–46. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0054115

40. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
16–30. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052225

https://doi.org/10.1007/978-3-030-77883-5_9
https://doi.org/10.1007/978-3-319-56614-6_11
https://doi.org/10.1007/978-3-642-03356-8_11
https://doi.org/10.1007/s00145-013-9145-x
https://doi.org/10.1007/s00145-013-9145-x
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/11681878_3
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-45067-X_30
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-46035-7_17
https://doi.org/10.1007/3-540-46035-7_17
https://eprint.iacr.org/2020/196
https://eprint.iacr.org/2020/196
https://doi.org/10.1007/BFb0054115
https://doi.org/10.1007/BFb0054115
https://doi.org/10.1007/BFb0052225


540 D. Kolonelos et al.

41. Gennaro, R., Micciancio, D., Rabin, T.: An efficient non-interactive statistical zero-
knowledge proof system for quasi-safe prime products. In: Gong, L., Reiter, M.K.
(eds.) ACM CCS 1998, pp. 67–72. ACM Press, November 1998. https://doi.org/
10.1145/288090.288108

42. Goldberg, S., Reyzin, L., Sagga, O., Baldimtsi, F.: Efficient noninteractive certifica-
tion of RSA moduli and beyond. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019. LNCS, vol. 11923, pp. 700–727. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34618-8 24

43. Goldwasser, S., Kharchenko, D.: Proof of plaintext knowledge for the Ajtai-Dwork
cryptosystem. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 529–555.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 29

44. Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioannidis,
J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482.
Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 32

45. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T., Nicolosi, A.A.: Efficient RSA key
generation and threshold Paillier in the two-party setting. J. Cryptol. 32(2), 265–
323 (2018). https://doi.org/10.1007/s00145-017-9275-7

46. Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable
abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol.
8617, pp. 369–386. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44381-1 21

47. Kirchner, P., Fouque, P.-A.: Getting rid of linear algebra in number theory prob-
lems. Cryptology ePrint Archive, Report 2020/1619 (2020). https://ia.cr/2020/
1619

48. Kosba, A., Papamanthou, C., Shi, E.: xJsnark: a framework for efficient verifiable
computation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 944–
961. IEEE (2018)

49. Kunz-Jacques, S., Martinet, G., Poupard, G., Stern, J.: Cryptanalysis of an efficient
proof of knowledge of discrete logarithm. In: Yung, M., Dodis, Y., Kiayias, A.,
Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 27–43. Springer, Heidelberg
(2006). https://doi.org/10.1007/11745853 3

50. Lee, J.: The security of groups of unknown order based on Jacobians of hyperelliptic
curves. Cryptology ePrint Archive, Report 2020/289 (2020). https://eprint.iacr.
org/2020/289

51. Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5 26

52. Maurer, U.M.: Abstract models of computation in cryptography (invited paper).
In: Smart, N.P. (ed.) 10th IMA International Conference on Cryptography and
Coding. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (2005)

53. Ozdemir, A., Wahby, R., Whitehat, B., Boneh, D.: Scaling verifiable computation
using efficient set accumulators. In: 29th USENIX Security Symposium (USENIX
Security 2020), pp. 2075–2092 (2020)

54. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

55. Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable encryp-
tion scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 16

https://doi.org/10.1145/288090.288108
https://doi.org/10.1145/288090.288108
https://doi.org/10.1007/978-3-030-34618-8_24
https://doi.org/10.1007/978-3-030-34618-8_24
https://doi.org/10.1007/978-3-540-30576-7_29
https://doi.org/10.1007/11496137_32
https://doi.org/10.1007/s00145-017-9275-7
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://ia.cr/2020/1619
https://ia.cr/2020/1619
https://doi.org/10.1007/11745853_3
https://eprint.iacr.org/2020/289
https://eprint.iacr.org/2020/289
https://doi.org/10.1007/978-3-540-40061-5_26
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/11818175_16
https://doi.org/10.1007/11818175_16


Zero-Knowledge Arguments for Subverted RSA Groups 541

56. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 187–196. ACM Press, May 2008.
https://doi.org/10.1145/1374376.1374406

57. Rabin, M.O., Shallit, J.O.: Randomized algorithms in number theory. Commun.
Pure Appl. Math. 39(S1), S239–S256 (1986)

58. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

59. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

60. Terelius, B., Wikström, D.: Efficiency limitations of Σ-protocols for group homo-
morphisms revisited. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol.
7485, pp. 461–476. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32928-9 26

61. van de Graaf, J., Peralta, R.: A simple and secure way to show the validity of your
public key. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 128–134.
Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 9

62. Yuen, T.H., Huang, Q., Mu, Y., Susilo, W., Wong, D.S., Yang, G.: Efficient non-
interactive range proof. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp.
138–147. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02882-
3 15

https://doi.org/10.1145/1374376.1374406
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-642-32928-9_26
https://doi.org/10.1007/978-3-642-32928-9_26
https://doi.org/10.1007/3-540-48184-2_9
https://doi.org/10.1007/978-3-642-02882-3_15
https://doi.org/10.1007/978-3-642-02882-3_15


Dew: A Transparent Constant-Sized
Polynomial Commitment Scheme

Arasu Arun1, Chaya Ganesh2, Satya Lokam3, Tushar Mopuri2(B),
and Sriram Sridhar4

1 New York University, New York, USA
arasu@nyu.edu

2 Indian Institute of Science, Bengaluru, India
{chaya,tusharmopuri}@iisc.ac.in

3 Microsoft Research India, Bengaluru, India
satya@microsoft.com

4 University of California, Berkeley, USA
srirams@berkeley.edu

Abstract. We construct a polynomial commitment scheme with con-
stant (i.e., independent of the degree) sized evaluation proofs and loga-
rithmic (in the degree) verification time in the transparent setting. To
the best of our knowledge, this is the first result achieving this combina-
tion of properties.

We build our scheme from an inner product commitment scheme with
constant-sized proofs but with linear verification time. To improve the
verification time to logarithmic for polynomial commitments, we prove
a new extremal combinatorial bound. Our constructions rely on groups
of unknown order instantiated by class groups. We prove security of our
constructions in the Generic Group Model.

Compiling known information-theoretic proof systems using our
polynomial commitment scheme yields transparent and constant-sized
zkSNARKs (Zero-knowledge Succinct Non-interactive ARguments of
Knowledge) with logarithmic verification.

1 Introduction

A Polynomial Commitment Scheme (PCS) [18] allows a prover to commit to
a polynomial P of degree d so that, later. a verifier can query for P (x) at an
argument x of its choice and the prover can, together with its response, furnish
an evaluation proof that its response is indeed consistent with its commitment.
The commitment and the evaluation proof are required to be succinct, that is,
of size independent of, or logarithmic, in d.

Polynomial commitments have applications in verifiable secret sharing [15],
anonymous credentials [10], and zero-knowledge sets [22], among others. But by
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far, their most dominant application is to constructions of zkSNARKs (zero-
knowledge Succinct Non-interactive ARguments of Knowledge) for all of NP.
Indeed, improvements to PCS imply improvements to SNARKs when combined
with established modular approaches to SNARKs. On the other hand, a SNARK
for all of NP in particular implies a succinct PCS by instantiating the SNARK
for the NP-relation “y = P (x) and the commitment C opens to P”, where C
is a succinct commitment to P . While this incidental corollary of a SNARK
implies succinct PCS, we desire a “direct” construction of PCS without writing
polynomial evaluation as a generic NP relation, since most SNARK constructions
themselves use PCS as a crucial ingredient. PCS is therefore a core cryptographic
construct and there is a strong motivation to construct one with the best possible
parameters.

Transparent Setup. Non-interactive proof systems are typically in the Common
Reference String (CRS) model where a CRS is generated during a setup phase
which needs to be trusted if the CRS uses secret randomness. Constructions
that do not involve a trusted setup phase and the verifier randomness consists
of only public coins are called transparent. A recent line of work [11,12,17,23] to
construct SNARKs follows a modular approach: first, an information-theoretic
component is constructed; then this is compiled into an argument using crypto-
graphic tools, typically a PCS. Finally, this is made non-interactive to obtain a
SNARK in the random oracle model (ROM). The resulting SNARK inherits the
trusted setup assumption or the transparency property from the cryptographic
tools used in the compilation process. Any resulting SNARK from compiling an
information-theoretic protocol inherits the complexity of the PCS, that is, the
proof size depends on the commitment size and evaluation proof size of the PCS.
Unfortunately, all existing succinct PCS schemes either require trusted-setup
assumptions [18], or are when they are transparent, only achieve logarithmic
proof size [3,9,20]1. We address this challenge in this work.

1.1 Our Contributions

We present the first PCS with constant size commitment, constant size evalu-
ation proof2 and logarithmic verification in the transparent setting. Our start-
ing point is a construction of a transparent Inner Product Commitment (IPC)
scheme (which is a more general object than PCS) that allows a prover to open
a committed vector to inner products with a verifier’s query vectors. Our IPC is
succinct – that is, the size of the commitment and the proof of a correct open-
ing are independent of the length of the vector and linear (in the length of the
vector) time verification. Building on this IPC, we construct a succinct PCS,

1 A flaw in the proof of security of the DARK scheme [9] was discovered by Block
et al [3], who propose a different PCS with logarithmic proof size. We also note that
a revised version of DARK [8] also proposes a fix by showing that the DARK PCS
satisfies a property called almost-special-soundness which suffices for extraction.

2 Constant is Oκ(1). That is, independent of the size of the input, and polynomial
only in the security parameter.
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resulting in a transparent constant-sized PCS but, importantly, with logarith-
mic time verification. Our PCS is the first construction to achieve the above
combination of properties to the best of our knowledge.

From a technical point of view, our contributions are summarized below.

Inner Product Commitment (IPC) and Polynomial Commitment
Scheme (PCS). We construct a constant size transparent IPC scheme in Sect.
3. In Sect. 4, we present our transparent PCS construction that achieves constant
sized proofs, constant sized public parameters, and verification in O(log n) field
operations and a constant number of group operations for polynomials of degree
n. Both the above constructions are in the GGM. We also show hiding and zero
knowledge variants of our constructions. Using the now standard compilation
process from information-theoretic proofs in idealized models to zkSNARKs via
PCS [9,12], we obtain a transparent constant-sized zkSNARK with constant-sized
public parameters (Sect. 5). The resulting zkSNARKs achieve Oκ(1) communi-
cation and O(log n) verification3, where n is the complexity of the NP relation
(e.g., number of constraints of a Rank 1 Constraint System, or the number
of gates in an arithmetic circuit). The only other transparent zkSNARKs with
constant-sized proofs and public parameters are obtained by compiling constant-
query PCPs using transparent vector commitment schemes with constant-sized
opening proofs and public parameters. The VCs of [5,19] are such candidates.

A New Combinatorial Lemma. As noted above, we improve the verification
time from linear (in length of vector) in our IPC to logarithmic (in degree of
polynomial) in our PCS. We achieve this efficiency improvement using Kronecker
products (details in Sect. 1.3.2 and Sect. 4.1); but their naive application breaks
soundness. We recover soundness by solving a problem in extremal combina-
torics. A special case of our problem asks: how many points can we choose in
the discrete cube [n]d such that that set of points does not contain the corners
of a d-dimensional hyper-rectangle (box)? When d = 2, this is the Zarankiewicz
problem [4] in extremal graph theory for which an asymptotically tight bound
of ∼ n3/2 is known. For higher d, the “Box Theorem” due to Rosenfeld [24]
proves the bound ∼ nd−2−d+1

. We can use these bounds in the soundness proof
of our PCS to obtain nε verification time for any constant 0 < ε < 1. While this
improves on linear, our goal is to obtain logarithmic verification.

We achieve logarithmic verification by generalizing boxes in the extremal
problem to “d-cancellation structures.” With these d-cancellation structures, we
can continue to exploit certain cancellation properties required for soundness
(details in Sect. 4.2) similar to those for boxes but also, more importantly, suc-
ceed in proving much better bounds on the number of points in [n]d that do not
contain a d-cancellation structure. Our bounds are ∼ dnd−1 and it is crucial for
our soundness that this is a negligible fraction of the whole space (of size nd); in
contrast, as d → ∞, the box theorem above gives a bound that approaches nd –
essentially filling the whole space.

3 In the preprocessing setting.
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To the best of our knowledge, our result is the first application of an extremal
combinatorics theorem in the construction of PCS and SNARKs and we believe
this to be of independent interest. We note that extremal combinatorics results
like this have found applications in complexity theory and theoretical computer
science in general.

Recovering the DARK [9] Result. We show that our PCS can be adapted to
obtain logarithmic proof size and verification by employing the recursive evalu-
ation protocol from DARK on our new commitment scheme. This recovers the
flawed Lemmas 8, 9 from DARK thus recovering a transparent PCS with loga-
rithmic proof size and logarithmic verification, but at the expense of an increased
quadratic prover time. The DARK recovery does not require GGM; we achieve
this result under the same assumptions made in DARK, i.e., the Adaptive Root
and Strong RSA Assumptions. We note that [3] gives a construction that achieves
similar results as DARK by modifying DARK’s evaluation protocol, and a sub-
sequent revision of DARK [8] shows that the DARK PCS satisfies a property
called almost-special-soundness. In contrast, our construction is a commitment
scheme that is syntactically close to DARK, has a similar evaluation protocol
and recovers the flawed lemmas. We present this in the full version [1].

1.2 Related Work

Functional commitments were introduced by [21] as a generalization of vector
commitments, where a prover can commit to a vector, and later open the com-
mitment at functions of the committed vector with a succinct proof that the
answer is consistent with the committed vector. The work of [21] also showed
a construction for functional commitments for linear functions. Lai and Mala-
volta [19] put forth the notion of Linear Map Commitments (LMC) that allow a
prover to open a commitment to the output of a linear map. The constructions
from [19,21] achieve succinctness - constant commitment and proof size, but
require trusted setup.

In a recent concurrent work, [13] presents transparent inner product commit-
ment schemes with constant size openings and constant size public parameters.
Their scheme is also in groups of unknown order, however, the techniques they
use are completely different. Their result relies on proofs of cardinality of RSA
accumulated sets, whereas we rely on integer encoding of vectors and combina-
torial techniques to show extraction. Though a PCS was not their goal, a PCS
resulting from the inner product commitment scheme of [13] in the natural way
results in a linear time verifier. In contrast, we achieve logarithmic verification
time for our PCS.

Polynomial commitment schemes were introduced in [18], and have since led
to several variants being used in recent SNARKs. The KZG scheme [18] gives
constant-sized commitments and proofs, but require a trusted setup. In the trans-
parent setting, Wahby et al. [25] constructed a polynomial commitment scheme
for multilinear polynomials that has commitment size and evaluation proof size
O(

√
d) for degree d polynomials. Zhang et al. [27] construct a polynomial com-
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mitment from FRI (Fast Reed Solomon IOPP) that is transparent, has constant
size commitments, but evaluation proofs have size O(log2 d).

As mentioned earlier, Bünz et al [9] used a Diophantine Argument of Knowl-
edge (DARK), and constructed a polynomial commitment scheme with proof
size O(log d) and O(log d) verification time for polynomials of degree d. Block
et al. [3] identified a gap in the proof of security of the DARK scheme and pro-
pose a modification that sidesteps the gap in extraction, resulting in a PCS of
polylogarithmic proof size and verification time.

1.3 Technical Overview

The intuitive starting point of our commitment schemes is a natural mapping
from vectors to group elements via integers. Specifically, for a vector4 c, define
intα(c) := 〈c,α〉 :=

∑l−1
0 ciα

i, where α := (1, α, α2, . . . , αl−1) and α is suffi-
ciently large. Let us also define C := gintα(c) for a given group element g ∈ G.
When the group G is a group of unknown order and g ∈ G is random (but cho-
sen during set up), we can show that a prover can prove knowledge of a unique
positive exponent of C with base g and that the α-base representation c of that
exponent must be a valid opening of C. This follows from a Proof of Knowledge
of a Positive Exponent (PoKPE) protocol that builds on Wesolowski’s Proof of
Exponent (PoE) protocol [26] (details in Sect. 2.4).

We now wish to use the commitment C made by a Prover to vector c in a
protocol for inner product 〈c,q〉, where q is the query vector from the Verifier.
To that end, let us consider the integer product

intα(c) · intα(reverse(q)) =

(
l−1∑

i=0

ciα
i

)

·
(

l−1∑

i=0

ql−iα
i

)

= L + αl〈c,q〉 + H (1)

where L and H are polynomials collecting powers of α of degree less than l and
more than l respectively. Raising g to both sides of (1), we obtain

C intα(reverse(q)) = (gL) · (gαl〈c,q〉) · (gH). (2)

Note that the verifier can compute the l.h.s. of (2). Hence if the prover claims that
the inner product 〈c,q〉 evaluates to v and also sends gL and gH to the verifier
(and convinces the verifier of values L and H using a PoKPE protocol), then the
verifier can check consistency of the prover’s claim using (2) (with v in place of
〈c,q〉). While this intuition suffices for a completeness proof, it is by no means
sufficient for a soundness proof. Our main contribution, outlined below, is to show
that a check somewhat analogous to (2) with some additional machinery suffices
for a verifier to catch a cheating prover with high probability. This intuition is
essentially the basis for our inner product evaluation protocol IPP in Fig. 3 and
the “additional machinery” appears as the TEST protocol in Fig. 2.

We remark that the above intuition is reminiscent of approaches in [9,19].
However, our approach below differs significantly from theirs to achieve constant
4 Our vectors are over Zp and we map elements of Zp to integers {0, . . . , p − 1}.
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sized proofs (unlike in [9] that uses recursion to obtain logarithmic size) and
transparent setting where α is not secret (unlike the trusted setup in [19]).

1.3.1 A TEST Protocol and Extracting Structure from Overflows
A cheating prover could use a committed vector (derived by computing the
α-base representation of exponent of g in C using the PoKPE extractor) with
coordinate values that could cause “overflow” in the coefficients on the r.h.s.
of (1). In that case, we can no longer guarantee the correctness of the inner
product as the middle coefficient. We now describe ideas that help us overcome
this challenge.

To control the issues caused by overflow, we intersperse 0’s between coordi-
nates of c: we double the length of the vector to 2l and place the vector c to
be committed in even positions (0, 2, . . . , 2l − 2) and 0’s in odd positions. More
generally, let d denote the subvector in the odd positions and let c‖d denote
the combined vector of length 2l. Note first that completeness continues to hold
with this change since an honest prover commits to c‖0, with c ∈ Z

l
p and satisfy

analogs of (1) and (2) for length-2l vectors with 0’s in odd positions, or equiva-
lently, with α2 replacing α. Second, and this is our next crucial step, note that
the verifier can run a TEST protocol (cf. Fig 2) that queries for the inner prod-
uct 〈(c‖d) , (0‖z)〉, where z ∈ Z

l
p is a uniformly chosen random vector and the

verifier can check if the middle coefficient of (generalization to 2l-length vectors
of) (2) is zero. Assuming no overflows, the middle coefficient would be 〈d, z〉. In
this case, by the Schwartz-Zippel lemma, a cheating prover choosing nonzero d
would be caught with high probability. However, a cheating prover could choose
nonzero d and still pass the test for z by causing overflows from L in (1) (due to
large products between c and z coordinates) to “cancel out” the non-zero value
of 〈d, z〉. More precisely, it can be shown using (a generalization of) (1) and the
PoKPE protocol relating (2) to (1) that if a prover can succeed in the TEST
protocol with non-negligible probability, then

〈d, z〉 mod α +
⌊ 〈c, z〉

α

⌋

+ u = 0 mod α, (3)

for some u ∈ {0, 1} must be satisfied (3) with non-negligible probability over a
uniformly random z ∈ Z

l
p.

Call a test vector z ∈ Z
l
p a success point for the prover if (3) is satisfied when

verifier chooses z and prover’s commitment C extracts – via a PoKPE protocol
– to c‖d. Now, if a prover has two success points z and z′ on a “line”, i.e., z and
z′ agree on all coordinates except j-th, then 〈d, z〉−〈d, z′〉 = dj(zj −z′

j) because
of cancellations in coordinates 
= j. Thus subtracting (3) for z′ from that for z,
we obtain

dj · (zj − z′
j) =

(⌊ 〈c, z′〉
α

⌋

−
⌊ 〈c, z〉

α

⌋

+ u′ − u

)

mod α. (4)

Using bounds on coordinates of c and z, we conclude that dj is θ1jα+θ2j , where
θ1 and θ2 are rationals with small denominators (a more detailed statement of
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this structure appears in Theorem 34). An easy combinatorial argument shows
that if the prover succeeds with non-negligible probability, e.g., at least 1/p (p
is exp(κ)), then in every direction j, there must be a line in the j-th dimension
with two success points z and z′ on it. Hence, if the prover is accepted in the
TEST protocol (Fig. 2) with non-negligible probability, every coordinate of d
can be expressed as dj = θ1jα + θ2j with θ’s as above – this is the structure we
extract on d that we use to prove soundness. This Structure Theorem 34 is a
crucial technical ingredient of our results.

Armed with the structure theorem, we prove (Theorem 35) that if the inner
product evaluation protocol IPP (Fig. 3) for 〈(c‖d), (q‖0)〉 succeeds in satisfying
(generalizations) of (1) and (2), with query vector q‖0, then we can extract a
vector c̃ that, while fractional over the integers, has invertible denominators
modulo p. Using this c̃ as the “opening hint” (cf. Open() in §3.1), we can then
extract a unique c that is consistent with the claimed inner product.

1.3.2 Logarithmic Verification for Polynomial Commitments
Our IPC scheme above immediately yields a Polynomial Commitment Scheme
(PCS), noting that, for a polynomial f given by its vector of coefficients
f = (f0, . . . , fl−1), f(x) = 〈f ,x〉, where x = (1, x, . . . , xl−1). However, the ver-
ification complexity of the resulting PCS is much worse than what we want to
achieve. Linear verification seems inherent for inner products (since the query
vector q can be arbitrary and the verifier needs to at least read the statement,
verifier’s computation of intα(reverse(q)) itself will take linear time). But, in
a PCS, we can hope to achieve logarithmic verification time since the query
vector x is parameterized by single variable x. In particular, we can compute
intα(reverse(x)) in only logarithmic time (cf. (5) below and (11)). This makes
the verifier in IPP protocol (specialized to a PCS) logarithmic. However, we still
have the bottleneck for verifier computation in the TEST protocol. Note that
while the query vector x is parameterized by a single variable x, the test vector
z is not and hence computing intα(reverse(z)) in checking (2) in TEST protocol
still seems to require linear verifier time.

To reduce verifier’s computation in TEST protocol, we use the idea of
Kronecker products5: instead of choosing z uniformly at random in Z

l
p, we

choose log l vectors z0, . . . , zlog l−1 uniformly at random from Z
2
p and define

z = z0 ⊗ · · · ⊗ zlog l−1 To illustrate how this helps, consider the following
computation needed on the right hand side of (2), where z is as above and
i = (i0, . . . , ilog l−1) the binary expansion of index i ∈ [l].

intα(reverse(z)) =
l−1∑

i=0

αl−i

log l−1∏

j=0

zj,ij
= αl ·

log l−1∏

j=0

(zj,0 + zj,1α
−2j

), (5)

5 We note that [2] and [20] also use Kronecker products in proof systems albeit with
different motivations.
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and note that the last product can be computed in logarithmic time. The new
test protocol with Kronecker product test vectors is called logTEST (identical
to TEST except with the query vector replaced as above).

While this helps improve verifier efficiency of TEST, it breaks soundness!
The extractability proof of TEST in IPC relies on uniform randomness of the
test vector z ∈ Z

l
p. So, we must now improve the extractability proof to work with

exponentially smaller randomness in the log l vectors zj of length 2. Specifically,
it is crucial to recover an analog of the structure for the d vector as outlined in
Sect. 1.3.1 but now from this vastly reduced space of verifier’s randomness in
logTEST. We outline how to do this next.

1.3.3 An Extremal Combinatorial Bound
We recover soundness with Kronecker product TEST vectors by proving a
new result in extremal combinatorics. Informally, this theorem (Theorem 45)
gives a tight upper bound on the number of points in the hypercube [n]d such
that no subset of 2d points in that set form a configuration that we call a
d-cancellation structure. A d-cancellation structure generalizes the set of corners of
a d-dimensional box or a hyper-rectangle. For instance, a 2-cancellation structure
is a parallelogram generalizing a rectangle. In the case of a rectangle, this is
the well-known Zarankiewicz problem [4] from extremal graph theory and has
an asymptotically tight bound of n3/2 points (out of n2) that contain no four
points as corners of a rectangle in [n]2. Thus, our problem generalizes this in two
ways: first, we consider high dimensions with growing d (but no more than log n)
and second, we generalize a rectangle/box to d-cancellation structure. A recursive
definition is given in Definition 44. For d > 2 and in case of boxes, Rosenfeld [24]
proved an upper bound of ∼ nd−2−d+1

on the maximum number of points that
do not contain the corners of a box. This bound, however, is insufficient for us
to get logarithmic verification since as d grows, it tends to nd almost entirely
filling the space. Our main contribution is to obtain a significantly smaller upper
bound by generalizing boxes to d-cancellation structure: a tight upper bound of
(nd−(n−1)d) ≤ dnd−1, which is a vanishingly small fraction of nd. For example,
when the forbidden configurations are generalized from rectangles to parallelo-
grams for d = 2, the upper bound improves to ∼ n from the ∼ n3/2 stated above
for the Zarankiewicz problem.

We now tie back this combinatorial argument to the goal of extractability.
As the name implies, a d-cancellation structure induces cancellations. Recall from
Sect. 1.3.1 that cancellations between two success points (test vectors z and
z′ where the prover succeeds by satisfying (3)) allow us to deduce structural
conditions on coordinates of d using (4). We now generalize that argument to
Kronecker products as test vectors where a d-cancellation structure generalizes
the role of a line, and cancellations between two points on a line generalize to
recursive cancellations among 2d points in a d-cancellation structure. Finally, the
simple combinatorial argument outlined in Sect. 1.3.1 for TEST on the existence
of at least one line in each dimension with at least two success points is replaced
by the existence of a d-cancellation structure for every index i = (i0, . . . , ilog l−1)
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(corresponding to a d-coordinate di, cf. (5)) in the Kronecker product space for
logTEST.

Specifically, each accepting run of logTEST corresponds to a chosen/success
point in [n]d (this is our space of randomness, with n = p and d = log l). By
suitable calibration of parameters, we can show that a prover that succeeds
with a non-negligible probability gives rise to more than nd − (n − 1)d cho-
sen points and then our combinatorial bound above implies the existence of
a d-cancellation structure B, each of whose “corners” (for simplicity, think of a
d-cancellation structure as a box) is a success point. Thus, we obtain 2d equations
like (3) at the corners of B; 〈d, z〉 is a multilinear polynomial with coefficients di

(i-th coordinate of d, with bit representation of i = (i0, . . . , ilog l−1)) and vari-
ables zj,ij

(cf. (5)) from the Kronecker product TEST vector z = ⊗log l−1
j=0 zj. The

recursive structure of B allows recursively combining these equations by folding,
i.e., subtracting equations like (3) along “edges” of B in the same direction. Each
successive folding reduces the number of equations by half and eliminates one
of the free variables zj,ij

to obtain a multilinear version of (4). After log l such
folding steps, we obtain an equation generalizing (4) with one di on l.h.s, that
yields the structure on coordinates of d that we seek. This helps us recover an
analog of the structure theorem (Theorem 34) for logTEST (Theorem 42).

2 Preliminaries

Notation. A finite field is denoted by F. We denote by κ a security parameter.
When we explicitly specify the random tape for a randomized algorithm A,
then we write a ← A(pp; ρ) to indicate that A outputs a given input pp and
random tape ρ. We consider interactive arguments for relations, where a prover P
convinces the verifier that it knows a witness w such that for a public statement
x, (x,w) ∈ R. For a pair of PPT interactive algorithms P, V , we denote by
〈P (w), V 〉(x), the output of V on its interaction with P where w is P ’s private
input and x is a common input.

Fiat-Shamir transform. In this work, we consider public coin interactive argu-
ments where the verifier’s messages are uniformly random strings. Public coin
protocols can heuristically be made non-interactive by applying the Fiat-
Shamir [16] transform (FS) in the Random Oracle Model (ROM).

2.1 Inner Product Commitments

We define Inner Product Commitments (IPC) which is an extension of functional
commitments introduced in [21]. IPC allows a prover to prove that the committed
vector f satisfies 〈f ,q〉 = v, for some vector q and v.
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An Inner Product Commitment scheme over F is a tuple
IPC = (Setup,Com,Open,Eval) where:

– Setup(1κ,D) → pp. On input security parameter κ, and an upper bound D
on accepted vector lengths, Setup generates public parameters pp.

– Com(pp, f0, . . . , fl−1, l) → (C, c̃). On input the public parameters pp, the
length of the vector l ≤ D and a vector of length l, given as f0, . . . , fl−1 ∈
F, Com outputs a commitment C, and additionally an opening hint c̃ ≡
(f0. . . . , fl−1).

– Open(pp, f , l, C, c̃) → b. On input the public parameters pp, the opening hint
c̃, the length of the vector in the commitment l and the commitment C, the
claimed committed vector f , Open outputs a bit indicating accept or reject.

– Eval(pp, C, l,q, v; f) → b. A public coin interactive protocol
〈PEval(f), VEval〉(pp, C, l,q, v) between a PPT prover and a PPT verifier. The
parties have as common input public parameters pp, commitment C, the
length of the vector in the commitment l, query vector q ∈ F

l, and claimed
inner product v. The prover has, in addition, the vector committed to in C,
f . At the end of the protocol, the verifier outputs 1 indicating accepting the
proof that 〈f ,q〉 = v, or outputs 0 indicating rejecting the proof.

Definition 21 (Completeness). For all l ≤ D, for all inputs f0, . . . , fl−1 ∈ F,
for query vectors q ∈ F

l,

Pr

⎛

⎜
⎜
⎝ b = 1 :

pp ← Setup(1κ,D)
(C, c̃) ← Com(pp, f0, . . . , fl−1, l)

v ← 〈(f0, . . . , fl−1),q〉
b ← Eval(pp, C, l,q, v; f)

⎞

⎟
⎟
⎠ = 1.

Definition 22 (Binding). An Inner Product Commitment scheme PC is bind-
ing if for all PPT A, the following probability is negligible in κ.

Pr

⎛

⎝
Open(pp, f0, l, C, c̃0) = 1∧
Open(pp, f1, l, C, c̃1) = 1∧
c̃0 
= c̃1

:
pp ← setup(1κ,D)

(C, f0, f1, c̃0, c̃1, l) ← A(pp)

⎞

⎠ .

Definition 23 (Succinctness). We require the commitments and the evalua-
tion proofs to be of size independent of the length of the vector, that is the scheme
is proof succinct if |C| is poly(κ) and |π| is poly(κ), where π is the transcript
obtained by applying FS to Eval.

Definition 24 (Extractability). For any PPT adversary A = (A1,A2), there
exists a PPT algorithm Ext such that the following probability is negligible in κ:
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Pr

⎛

⎜
⎜
⎝ b = 1 ∧ REval(pp, C, l,q, v; f , c̃) = 0 :

pp ← Setup(1κ,D)
(C, l,q, v, st) ← A1(pp)

(f , c̃) = ExtA2(pp)
b ← 〈A2(st), VEval〉(pp, C, l,q, v)

⎞

⎟
⎟
⎠ .

where the relation REval is defined as follows:

REval = {((pp, C ∈ G, l ∈ N, q ∈ F
l, v ∈ F); (f , c̃)

)
:

(Open(pp, f , l, C, c̃) = 1) ∧ v = 〈f ,q〉 mod p}

2.2 Polynomial Commitment Scheme

The notion of a polynomial commitment scheme that allows the prover to open
evaluations of the committed polynomial succinctly was introduced in [18] who
gave a construction under the trusted setup assumption. A polynomial commit-
ment scheme over F is a tuple PC = (setup, commit, open, eval) where:

– setup(1κ,D) → pp. On input security parameter κ, and an upper bound
D ∈ N on the degree, setup generates public parameters pp.

– commit(pp, f(X), d) → (C, c̃). On input the public parameters pp, and a
univariate polynomial f(X) ∈ F[X] with degree at most d ≤ D, commit
outputs a commitment to the polynomial C, and additionally an opening
hint c̃.

– open(pp, f(X), d, C, c̃) → b. On input the public parameters pp, the commit-
ment C and the opening hint c̃, a polynomial f(X) of degree d ≤ D, open
outputs a bit indicating accept or reject.

– eval(pp, C, d, x, v; f(X)) → b. A public coin interactive protocol
〈Peval(f(X)), Veval〉(pp, C, d, z, v) between a PPT prover and a PPT verifier.
The parties have as common input public parameters pp, commitment C,
degree d, evaluation point x, and claimed evaluation v. The prover has, in
addition, the opening f(X) of C, with deg(f) ≤ d. At the end of the protocol,
the verifier outputs 1 indicating accepting the proof that f(x) = v, or outputs
0 indicating rejecting the proof.

A polynomial commitment scheme must satisfy completeness, binding and
extractability.

Definition 25 (Completeness). For all polynomials f(X) ∈ F[X] of degree
d ≤ D, for all x ∈ F,

Pr

⎛

⎜
⎜
⎝ b = 1 :

pp ← setup(1κ,D)
(C, c̃) ← commit(pp, f(X), d)

v ← f(x)
b ← eval(pp, C, d, x, v; f(X))

⎞

⎟
⎟
⎠ = 1.
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Definition 26 (Binding). A polynomial commitment scheme PC is binding if
for all PPT A, the following probability is negligible in κ:

Pr

⎛

⎝
open(pp, f0, d, C, c̃0) = 1∧
open(pp, f1, d, C, c̃1) = 1∧
f0 
= f1

:
pp ← setup(1κ,D)

(C, f0, f1, c̃0, c̃1, d) ← A(pp)

⎞

⎠ .

Definition 27 (Extractability). For any PPT adversary A = (A1,A2), there
exists a PPT algorithm Ext such that the following probability is negligible in κ:

Pr

⎛

⎜
⎜
⎝ b = 1 ∧ Reval(pp, C, x, v; f̃ , c̃) = 0 :

pp ← setup(1κ,D)
(C, d, x, v, st) ← A1(pp)

(f̃ , c̃) ← ExtA2(pp)
b ← 〈A2(st), Veval〉(pp, C, d, x, v)

⎞

⎟
⎟
⎠ .

where the relation Reval is defined as follows:

Reval = {((pp, C ∈ G, x ∈ F, v ∈ F); (f(X), c̃)) :
(open(pp, f, d, C, c̃) = 1) ∧ v = f(x)}

Definition 28 (Succinctness). We require the commitments and the evalua-
tion proofs to be of size independent of the degree of the polynomial, that is the
scheme is proof succinct if |C| is poly(κ), |π| is poly(κ) where π is the transcript
obtained by applying FS to eval. Additionally, the scheme is verifier succinct if
eval runs in time poly(κ) · log(d) for the verifier.

2.3 Assumptions

Groups of Unknown Order and GGM. Our constructions make use of groups of
unknown order. A class group is a candidate group of unknown order. The class
group of an imaginary quadratic order [6,7] is the quotient group of fractional
ideals by principal ideals of an order of a number field with ideal multiplication.
It is completely defined by its discriminant, which can be generated using only
public randomness.

We use the generic group model (GGM) for groups of unknown order as
defined by Damg̊ard and Koprowski [14], and used in [5]. In this model, the
group is parameterized by two integer public parameters A, B and the order of
the group is sampled uniformly from [A,B]. The group G description consists of
a random injective function σ : Z|G| → {0, 1}�, for some 	 where 2� � |G|. The
elements of the group are σ(0), σ(1), . . . , σ(|G| − 1). A generic group algorithm
A is a probabilistic algorithm with the following properties. Let L be a list that
is initialized with the encodings (group elements) given to A as inputs. A can
query two generic group oracles, O1 and O2. O1 samples a random r ∈ Z|G|
and returns σ(r) which is appended to L. The second oracle O2(i, j,±) takes
two indices i, j ∈ {1, . . . , q}, where q is the size of L, and a sign bit and returns
σ(xi ± xj), which is appended to L. It should be noted that A is not given |G|.
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We use a group sampler GGen that on input a security parameter κ, samples a
description of the group G of size 2poly(κ). Note that GGen is public-coin.

We informally describe the rest of the assumptions – note that these problems
are indeed intractable in the GGM. The formal definitions are deferred to the
full version.

Adaptive root assumption. Computing random roots of arbitrary group elements
g is hard for any PPT adversary.

Low order assumption. Computing the order of any non-trivial element in a
group G ← GGen is hard for any PPT adversary.

2.4 Proofs about Exponents

PoE (Proof of Exponentiation): We use Wesolowski’s proof of exponentiation
(PoE) protocol [26] in it’s slightly more generalized form as presented in [5] for
the relation RPoE = {(u,w ∈ G, x ∈ Z;⊥) : w = ux ∈ G}.

PoKE (Proof of Knowledge of Exponent): We also use the PoKE protocol from
[5] in our protocols. This protocol is an argument of knowledge in the GGM for
the relation RPoKE = {(u,w ∈ G;x ∈ Z) : w = ux ∈ G}.

PoKPE (Proof of Knowledge of Positive exponent): Define the relation RPoKPE =
{(w ∈ G;x ∈ Z) : (w = gx) ∧ (x > 0)}. We construct an argument of knowledge
for this relation called PoKPE using PoKE and Lagrange’s four-square theorem.
We also use the notation PoKPE{A,B, . . . } to denote the combined protocol for
the set, where the verifier outputs 1 iff PoKPE checks pass for all elements. More
details about these protocols appear in the full version.

3 Inner Product Commitment Scheme with
Constant-Sized Proof

In this section, we construct an inner product commitment (IPC) scheme that
achieves constant-sized proof and linear time verification.

3.1 Construction

IPC = (Setup,Com,Open,Eval) are as defined below:

– Setup(1κ,D): Here, κ is the security parameter and D is an upper bound
on the length of the committed vectors. Sample a group of unknown order
(we use class groups) G ← GGen(κ) and g ←$G. Define α = p2D (p is a large
prime such that len(p) = poly(κ)). Return pp = (κ,G, g, p) (α does not have
to be explicitly returned; it is defined completely by p,D).
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– Com(pp,D, f0, . . . , fl−1, l): Define the commitment to f = (f0, . . . , fl−1) ∈
Z

l
p as C := g

∑l−1
i=0 fiα

2i

, considering fi ∈ Zp as integers in [0, p − 1] and the
sum in Z. If l ≤ D, return (C, f), else return error.

– Open(pp, f , l, C, c̃): (f is the claimed opening and c̃ is an opening hint) Return
1 if all the below conditions hold, else return 0.

• l ≤ D, c̃ = f mod p 6

• C = g
∑l−1

i=0 c̃iα
2i

, exponent
∑d

i=0 c̃iα
2i ∈ Z and c̃ ∈ Q(2, 3)l, where

Q(β1, β2) :=
{a

b
: gcd(b, p) = 1, 0 < b < pβ1 , |a/b| ≤ β2α

}
,

where |a| denote s the absolute value of a ∈ Q. (Note that Q(β1, β2) is a
subset of Q(β′

1, β
′
2) if β1 ≤ β′

1, β2 ≤ β′
2)

– Eval(pp, C, l,q, v; f): The Eval protocol consists of two sub-protocols TEST
and IPP as described in Fig. 2 and 3 below.

• b1 ← TEST(C, l; f), b2 ← IPP(C, l,q, v; f). Return b = (l ≤ D) ∧ b1 ∧ b2

3.2 Proofs of Security

We prove that our construction IPC satisfies the requirements of an inner product
scheme as defined in §2.1.

Theorem 31 (Completeness). The inner product commitment scheme IPC
satisfies Completeness (Definition 21).

Proof. Note that by definition of CoeffSplit and completeness of PoKPE, all the
PoKPE checks will accept.

To show that the last checks in TEST and IPP hold, it suffices to show that
v = 0 in TEST and v = 〈f ,q〉 mod p in IPP. We will show this by expanding
the computations done in CoeffSplit.

In TEST, direct manipulation shows

l−1∑

j=0

fjα
2j ×

l−1∑

j=0

α2l−2−2jzj

= α2l

⎛

⎝
∑

j′>j

α2(j′−j)−2fj′zj

⎞

⎠

︸ ︷︷ ︸
λ

+

⎛

⎝
∑

j′<j

α2l−2−2(j−j′)fj′zj +
∑

j′=j

α2l−2fjzj

⎞

⎠

︸ ︷︷ ︸
γ

and notice that since α > lp2, these are indeed the γ, λ returned by CoeffSplit,
and v = 0 (Fig. 1).

6 Treating any coordinate a
b

of c̃ mod p as a′ · b′−1, where a′ = (a mod p) ∈ Zp and
b′ = (b mod p) ∈ Zp.
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Fig. 1. CoeffSplit

Fig. 2. The TEST Protocol

Fig. 3. The IPP Protocol
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And, in IPP,

l−1∑

j=0

fjα
2j ×

l−1∑

j=0

α2l−1−2jqj = α2l−1

⎛

⎜
⎜
⎜
⎝

l−1∑

i=0

fjqj mod p

︸ ︷︷ ︸
v

+ p

⌊∑l−1
i=0 fjqj

p

⌋

︸ ︷︷ ︸
n

⎞

⎟
⎟
⎟
⎠

+ α2l−2(0) + α2l

⎛

⎝
∑

j′>j

α2(j′−j)−1fj′qj

⎞

⎠

︸ ︷︷ ︸
λ

+

⎛

⎝
∑

j′<j

α2l−1−2(j−j′)fj′qj

⎞

⎠

︸ ︷︷ ︸
γ

Here, again since α > lp2, (v + np, λ, γ) above coincide with the output of
CoeffSplit, and v = 〈f ,q〉 mod p.

Theorem 32 (Binding). The inner product commitment scheme IPC Con-
struction in Sect. 3.1 is binding (Definition 22) for opening hint vectors in
Q(β1, β2) as long as α > 4β2p

2β1 and if the Order assumption holds for GGen.

Proof. Suppose there exists an adversary A which breaks binding as defined in
Definition 22, i.e., A(pp) outputs (C, f , f ′, c, c′, d) such that open(pp, f , d, C, c) =
1 and open(pp, f ′, d, C, c′) = 1 but f 
= f ′ (which also implies that c 
= c′ – we
will use this condition to show a contradiction).

Then, since open outputs 1 for both f , f ′ we know that the opening hints
c, c′ ∈ Q(β1, β2)l and that g

∑l−1
i=0 ciα

2i

= g
∑l−1

i=0 c′
iα

2i ⇐⇒ g
∑l−1

i=0(ci−c′
i)α

2i

= 1. If
the exponent of g above were not zero, we could construct an adversary AOrd

that uses the above exponent to break the Low order assumption. Now, let the
exponents be equal, and consider the largest index j such that c′

i 
= ci (WLOG,
let c′

i > ci). This implies that
∑j−1

i=0 (ci − c′
i)α

2i = (c′
j − cj)α2j .

We can now show that this equality is impossible given the conditions on
α, β1, β2.

Notice that any difference |c′
i − ci| (if non-zero) can be bounded by 1

p2β1
<

|c′
i − ci| < 2β2α, since ci, c

′
i ∈ Q(β1, β2). This gives a contradiction, since

j−1∑

i=0

(ci − c′
i)α

2i < 2β2α

j−1∑

i=0

α2i < 2β2α · 2α2j−2 <
α2j

p2β1
< (c′

j − cj)α2j ,

Before proving extractability, we need a few definitions. Define

S :=
{

mα − n

k
: m,n, k ∈ Z, gcd(m, k) = 1, 0 < m ≤ k < p, −2 < n < k + 2

}

as a subset of Z and functions χm, χn : Sq −→ Q
q which isolates the vector of

fractions m/k and n/k from the elements of Sq:

v ∈ Sq =⇒ v =
(

miα − ni

ki

)

i

, χm(v) :=
(

mi

ki

)

i

, and χn(v) :=
(

ni

ki

)

i

.
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These functions can be made well-defined by fixing a representation of elements
of S: for any d ∈ S, consider the representation (m,n, k) as the one with the
smallest denominator k and if there are multiple such representations, we pick
the one with the smallest m.

Theorem 33 (Extractability). The inner product commitment scheme IPC
satisfies Extractability for (β1, β2) = (2, 3) (Definition 24) in the Generic Group
Model.

Proof. We split the proof into two theorems; the first theorem (concerning
TEST) will define a partial extractor and obtain conditions on the extracted
objects, while the second theorem uses the results and the extractor of the first
theorem and finishes the proof.

Suppose there exists a generic adversary A that makes the Verifier in eval
accept with non-negligible probability (and hence both the TEST verifier and
IPP verifier). We will construct a polynomial time extractor Ext that outputs
(f̃ , c̃) satisfying Reval (in Definition 27) with overwhelming probability.

Theorem 34 (TEST Extractor). If the Verifier in TEST outputs accept
with non-negligible probability, there exists an efficient extractor ExtT in the
GGM that outputs c,d ∈ [α]l such that C = g

∑l−1
i=0(ci+αdi)α

2i

and d ∈ Sl.

Theorem 35 (IPP Extractor). If the Verifier in IPP outputs accept with
non-negligible probability (and given that the Verifier of TEST also did so), there
exists an efficient extractor Ext in the GGM that outputs an opening f̃ ∈ Z

l
p

and opening hint c̃ ∈ Q(2, 3) for C such that v = 〈f̃ ,q〉 mod p and satisfies
Extractability (Definition 24).

3.3 Auxiliary Lemmas

Lemma 1. Suppose K =
∑k

i=0 Miα
i where Mi’s are not necessarily < α, but

we have a bound Mi < α(α − 1) ∀ i. Then, we can write K =
∑k+1

i=0 Uiα
i where

each Ui < α, ui ∈ {0, 1}, and

Ui :=

⎧
⎪⎪⎨

⎪⎪⎩

(M0 mod α + u0) mod α if i = 0

(Mi mod α +
⌊

Mi−1
α

⌋
+ ui) mod α if 1 ≤ i ≤ k

(
⌊

Mk

α

⌋
+ uk+1) if i = k + 1

ui :=

⎧
⎨

⎩

0 if i = 0, 1
⌊

Mi−1 mod α+
⌊

Mi−2
α

⌋
+ui−1

α

⌋

if 1 ≤ i ≤ k + 1

Lemma 2. Suppose for some α, M ′α − N ′ = Mα − N , where M ′, N ′ ∈ Q and
M,N ∈ Z. If |N |, |N ′| < B, M ′ = x

y and y < α
2B , then M ′ = M and N ′ = N .
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3.4 Proof of Theorem 34 - TEST Extraction

First, we prove a lemma giving a partial extractor for the TEST protocol.

Lemma 3. If the Verifier in TEST outputs accept with non-negligible prob-
ability, there exists an efficient extractor ExtT in the GGM that outputs with
high probability c,d ∈ Z

l
p (that only depends on the commitment C) such that

C = g
∑l−1

i=0(ci+αdi)α
2i

.
Moreover, if the random vector used in TEST was z ∈ Z

l
p, then we also have

the relation (for some u ∈ {0, 1}):

〈d, z〉 mod α +
⌊ 〈c, z〉

α

⌋

+ u = 0 mod α

Proof. We define an extractor ExtT that invokes the PoKPE extractor for C,
which outputs an exponent c > 0 such that C = gc. Since E also passes the
PoKPE protocol and C · E = gα2l−1

, we can infer that c < α2l−1. Consider the
base-α representation of c, which is a 2l-length vector. ExtT outputs the even
indexed coordinates as c and the odd indexed coordinates as d. By construction,
C = g

∑l−1
i=0(ci+αdi)α

2i

.
Notice that each PoKPE is essentially a range check as well as a proof of

knowledge of the exponent. With overwhelming probability, we can assume that
each of these statements are true (due to knowledge soundness of PoKPE). Hence,
we get that the prover “knows” (formally, an extractor outputs) integers c, γ, λ
such that C = gc, 0 < c < α2l−1, Γ = gγ , 0 < γ < α2l−1, and Λ = gλ, 0 < λ.

Now, notice that for any equality of group elements in a group of unknown
order, we can (with overwhelming probability) equate their exponents when
written with base g over integers. This follows from the Low order assumption
as long as the prover knows all the exponents w.r.t. some fixed base g (else the
prover could compute a multiple of the order of the group).

Hence, given an equation of the form Cσ = Γgvα2l−1
Λα2l

(this is essentially
Check 2 for the TEST verifier with y = 0), we can write

gcσ = gγ+vα2l−1+λα2l

=⇒ cσ = γ + vα2l−1 + λα2l

Writing this in base α and using Lemma 1, we can compare the coefficients of
α2l−1 on both sides:

v = 〈d, z〉 mod α +
⌊ 〈c, z〉

α

⌋

+ u mod α

In TEST, we have v = 0, hence we prove the lemma.

Now, using the above lemma, we show that if the prover succeeds with non-
negligible probability, we must have di ∈ S for all i.

If the prover succeeds with non-negligible probability, it must hold that it
also succeeds for a non-negligible probability over the choice of the random query
z ∈ Z

l
p. Fix some index 0 ≤ i ≤ l − 1.
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Partition the randomness space Z
l
p into 1-dimensional “lines” of length p

along the ith dimension:

Tq := {(zi,q) : zi ∈ Zp}

If the prover was only able to succeed for at most one value of z in all Tq, the
overall success probability of the prover is bounded by 1

p , which is negligible and
hence a contradiction. Hence, there must exist some q such that there exists two
points z1, z2 ∈ Tq such that the prover succeeds in convincing the verifier (for
simplicity, we will use z1, z2 to denote the ith coordinate that differs in these two
vectors. WLOG let z2 > z1).

Now, using Lemma 3, we get two equations:

〈d, z1〉 mod α +
⌊ 〈c, z1〉

α

⌋

+ u1 mod α = 0 mod α (6)

〈d, z2〉 mod α +
⌊ 〈c, z2〉

α

⌋

+ u2 mod α = 0 mod α (7)

where u1, u2 ∈ {0, 1}. Our aim is to isolate and prove conditions on a single
coordinate di, and notice that the inner products 〈d, z1〉 and 〈d, z2〉 differ only
in the ith term. Hence, subtracting the two equations, we get:

(z2 − z1)di = −
(⌊ 〈c, z2〉

α

⌋

−
⌊ 〈c, z1〉

α

⌋

+ u2 − u1

)

mod α

Call the term in the brackets on the RHS n. Using the fact that x − 1 ≤
�x� < x and ui ∈ {0, 1} for all i gives us trivial bounds −2 < n < (z2 − z1) + 2.
We also know that 0 < z2 − z1 < p. Letting k := z2 − z1,

kdi = −n mod α =⇒ di =
mα − n

k

where −2 < n < k + 2, 0 < k < p and 0 < m ≤ k since di < α.
Hence di ∈ S. Since i was an arbitrary index, d ∈ Sl.

3.5 Proof of Theorem 35 – IPP Extraction

We define the final extractor Ext for eval using the extractor ExtT from TEST
that outputs c,d ∈ Z

l
p. Specifically, Ext invokes ExtT and performs the following

additional computations on c,d:

1. Compute mi, ni, ki for every i such that di = miα−ni

ki
.

2. Let m−1 := 0, k−1 := 1 and define vectors c′,d′ ∈ Z
l
p as

c′
i := ci + mi−1

ki−1
and d′

i := −ni

ki
.

3. Output c′ + αd′ as the opening hint, and (c′ + αd′) mod p as the opening
to the commitment.
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Note that this extractor is indeed efficient as ExtT is efficient and the only
non-trivial computations done are in Step 1 above, which can be done efficiently
(details in full version).

By construction, this is a valid opening hint, as d ∈ Sl =⇒ c′ + αd′ ∈
Q(2, 3). This is just a rearrangement of the coordinates of c and d and keeps
the sum

∑l−1
i=0(c

′
i + αd′

i)α
2i equal to the previous sum

∑l−1
i=0(ci + αdi)α2i (since

we just move the coefficient of α in di to ci+1). Hence, C = g
∑l−1

i=0(c
′
i+αd′

i)α
2i

and
the exponent ∈ Z.

Now, since the verifier accepts in IPP, we can use similar arguments as made
in Lemma 3 for the check equation in IPP to get

cσ = γ + 0α2l−2 + (v + np)α2l−1 + λα2l

Focusing on the coefficients of α2l−2 and α2l−1, we get two equations:

〈d,q+〉 mod α +
⌊ 〈c,q+〉

α

⌋

+ u′ = 0 mod α (8)

〈c,q〉 mod α +
⌊ 〈d,q+〉

α

⌋

+ u = v + np mod α (9)

where q+ is defined as the vector with elements q+i := qi+1 ∀ i ∈ {0, . . . , l −
2}, q+l−1 := 0 and u, u′ ∈ {0, 1}.

Due to the bounds on coefficients of q (chosen by the verifier ∈ Zp), we know
that Eq. 8’s LHS over integers must be either 0 or α. Also define

M ′ :=
l−1∑

i=0

mi

ki
q+i , and N ′ :=

l−1∑

i=0

ni

ki
q+i

1. If the LHS is 0, then so are each of the terms in the LHS, as they are all non-
negative. Hence, 〈d,q+〉 = 0 mod α which implies u = 0 (due to Lemma 1).
Hence, we can simplify Eq. 9

v + np = 〈c,q〉 mod α +
⌊ 〈d,q+〉

α

⌋

+ u mod α

= 〈c,q〉 +
〈d,q+〉

α
mod α = 〈c,q〉 + M ′ − N ′

α
mod α

Since M ′ − N ′/α must be an integer and N ′ < α =⇒ N ′ = 0.

v + np = 〈c,q〉 + M ′ mod α = 〈c′,q〉 mod α

=⇒ v = 〈c′,q〉 mod p = 〈c′,q〉 + α〈d′,q〉 mod p,

as α = 0 mod p and 〈d′,q〉 is invertible modulo p (or simply 0 mod p). In
either case, v = 〈c′ + αd′,q〉 mod p.

2. If the LHS is α, we get u = 1. Now, write Eq. 8 in the form 〈d,q+〉 = Mα−N
by moving all the terms but the inner product to the RHS and calling it
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N . Now, we get M ′α − N ′ = Mα − N where |N |, |N ′| < 3pl and M ′ has
denominator at most the LCM of all the ki, which is at most pl.
We can apply Lemma 2 which implies that M ′, N ′ ∈ Z (since α > p2l). Then,

v + np = 〈c,q〉 mod α +
⌊ 〈d,q+〉

α

⌋

+ u mod α

= 〈c,q〉 mod α +
⌊

M ′ − N ′

α

⌋

+ 1 mod α

= 〈c,q〉 mod α + M ′ − 1 + 1 mod α

as N ′ < α. Hence, as before, we get that v = 〈c′ + αd′,q〉 mod p.

Thus, the extracted opening equals the claimed inner product v in both cases
and we satisfy extractability.

Non-interactivity Using Fiat-Shamir. Protocol eval is public-coin and we
can use the Fiat-Shamir heuristic [16] to obtain a non-interactive version in
the ROM that has a constant-sized proof. The prover applies the RO on the
commitment C to obtain the random query vector z. Note that, the query vector
q itself needs to be communicated, but the size of the proof is constant.

4 Dew – Constant-Sized PCS with Logarithmic Verifier

We prove our main result on PCS in this section. To go from IPC in Sect. 3 to a
PCS of constant size and logarithmic verification time, we need two main ideas.
First, we use Kronecker products test vectors to improve verification time from
linear to logarithmic. But this breaks extractability of the new test. To recover
extractability, we prove a new extremal combinatorial bound that enables us to
prove a structure theorem despite the exponentially smaller randomness in the
verifier’s test vectors.

4.1 Dew: Our Polynomial Commitment Scheme

To construct Dew, we use ideas based on Kronecker products to define new query
vectors in the TEST and IPP protocols from Sect. 3 and call the modified pro-
tocols logTEST and logIPP. These changes are to bring the verifier complexity
down to logarithmic in the degree of the polynomial. For notational simplicity,
let the degree of the polynomial d = l − 1. We change the blue messages in the
TEST, IPP protocols as below. In the logTEST protocol, the query vector z
in Fig. 2 is now redefined using just 2 log l random elements in Zp:

1. Sample random x1,x2, . . . ,xlog l from Z
2
p where xj = (xj,0, xj,1).

2. For 0 ≤ k ≤ l − 1, let (k0, . . . , klog l−1) be the base-2 representation of k so
that k = k0 · 20 + · · · + klog l−1 · 2log l−1. Then,

zk ≡ zk0,...,klog l−1 :=
log l∏

j=1

xj,kj−1 . (10)
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For logIPP, the query vector q in Fig. 3 defined by the evaluation point x ∈ Zp

is modified as follows

qk :=
∏

0≤j≤log l−1

(xkj2
j

mod p). (11)

Note that 0 < zk, qk < plog l and qk mod p = xk mod p for all k.
Our PCS Dew = (setup, commit, open, eval) is now constructed as follows:

– setup(1κ,D): Here, κ is the security parameter and D is an upper bound
on the degree of the committed polynomial. Sample a group of unknown
order (we use class groups) G ← GGen(κ) and a random g ←$G. Define
α := p2D log D (p is a large prime such that len(p) = poly(κ)).
Return pp = (κ,G, g, p).

– commit(pp,D, f(X) ∈ Zp[X], l −1): Define the commitment C := g
∑l−1

i=0 fiα
2i

,
where fi are the coefficients of the degree (l −1) polynomial f(X) considered
as integers from [0, p − 1] and the sum in Z. If l − 1 ≤ D, return (C, f), else
return error.

– open(pp,D, f(X) ∈ Zp[X], l − 1, C, f̃): Check that
(i) l − 1 ≤ D, f̃i = fi mod p where fi ∈ Zp are the coefficients of f(X).
(ii) C = g

∑l−1
i=0 f̃iα

2i

,
∑l−1

i=0 f̃iα
2i ∈ Z, and f̃ ∈ Q(log l + 1, l + 1)l.

Recall that

Q(β1, β2) :=
{a

b
: gcd(a, b) = gcd(b, p) = 1, 0 < b < pβ1 , |a/b| ≤ β2α

}
,

where |a| denotes the absolute value of the integer a.
return 1 if all checks (i)-(iii) above pass, else return 0.

– eval(pp,D,C, l−1, x, v; f(X)): The eval protocol consists of two sub-protocols
logTEST and logIPP:

• If l − 1 > D, return 0
• Else Run logTEST(C, l − 1; f(X)) and logIPP(C, l − 1, x, v; f(X)).
return 1 if both these protocols accept else return 0.

The protocols logTEST and logIPP are simply variants of TEST and IPP
in Figs. 2 and 3 by replacing the (blue messages) query vectors with Kronecker
products of shorter vectors as in (10) and (11). We also replace all expensive
group exponentiations for the verifier by invocations of Wesolowski’s PoE proto-
col. The full protocols thus obtained are presented as figures in the Appendix of
[1]. In the NI version, the random query vector is derived from the RO instead
of being sent in logTEST.

Non-interactive Dew Using Fiat-Shamir. Note that even though logTEST
and logIPP are described as separate protocols for ease of exposition, they
are both run as part of eval. Protocol eval is public-coin and we can use the
Fiat-Shamir heuristic [16] to obtain a non-interactive version in the ROM that
has constant-sized proof and logarithmic verification. The prover applies the
RO on the commitment C to obtain x1, . . .xlog l, and the random query vec-
tor z is computed as described in Eq (10). The non-interactive (NI) transcript
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consists of all the elements communicated in both protocols along with the NI
versions of PoE and PoKPE from both protocols. Hence, the transcript com-
municated is π = ((C,A,Λ, Γ,R)logTEST, (B,N,Λ, Γ,R, S)logIPP, πPoE, πPoKPE)
where πPoE consists of NI transcripts of steps (4, 20, 21) and (2, 16, 17, 18) in
logTEST and logIPP respectively, and πPoKPE consists of NI transcripts of
steps (13, 14, 15, 16, 17) and (10, 11, 12, 13) in logTEST and logIPP respec-
tively (from the figures in the appendix of [1]). It is easy to see that the Fiat-
Shamir transformed NI transcript is succinct since the vectors x1, . . . ,xlog l are
now generated using the RO.

Proof of completeness is analogous (taking care of the new choices of param-
eters) to that of IPP in Theorem 31 and is deferred to the appendix of the
full version [1]. Since the commitment scheme remains unchanged, the proof of
binding remains as in Theorem 32. Proof of Extractability is shown in Sect. 4.2,
and proof of succinctness is given in Sect. 4.3. The appendix of the full version
contains concrete estimates of proof sizes. It also contains a section on how to
achieve hiding and zero-knowledge evaluation for the commitment scheme.

4.2 Proof of Extractability of Dew

Define

Slog :=
{

mα − n

k
: m,n, k ∈ Z, gcd(m, k) = gcd(k, p) = 1, 0 < m ≤ k < plog l,

−l < n < k + l}

as a subset of Z and functions χm, χn : Sq
log −→ Q

q which isolates the vector of
fractions m/k and n/k from the elements of Sq

log:

v ∈ Slog =⇒ v =
(

miα − ni

ki

)

i

, χm(v) :=
(

mi

ki

)

i

, and χn(v) :=
(

ni

ki

)

i

.

Theorem 41. The polynomial commitment scheme Dew satisfies Extractability
(Def. 27) in the Generic Group Model.

Proof. The proof of this theorem consists of two theorems about logTEST and
logIPP. Both theorems rely on the fact that the adversary is generic.

Theorem 42. If the Verifier in logTEST outputs accept with non-negligible
probability over the choice of random z1, . . . , zlog l ∈ Z

2
p, there exists an efficient

extractor that outputs c,d ∈ [α]l such that C = g
∑l−1

i=0(ci+αdi)α
2i

and d ∈ Sl
log.

Theorem 43. If the Verifier in logIPP outputs accept with non-negligible prob-
ability and the Verifier of logTEST also did so, there exists an extractor that
outputs an opening f̃ ∈ Zp[x] and an opening hint c̃ in Q(log l + 1, l + 1) for C

such that v = f̃(x).
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The proof of Theorem 42 is presented in Sect. 4.2.2. The proof of Theorem 43
is almost identical to that of Theorem 35 and we defer it to the full version.
There are only two changes: di ∈ Slog instead of S implies that the extracted
vector ∈ Q(log l + 1, l + 1)l instead of Q(2, 3)l, and the bounds on N,N ′,M ′ are
different, leading to a lower bound α > p2l(log l).

4.2.1 d-Cancellation Structures
Before we present the proof of Theorem 42 in Sect. 4.2.2, we define certain
combinatorial structures and state an extremal bound about them that plays
a crucial role in our extractability proof. These are d-cancellation structures and
are generalizations of d-dimensional hyper-rectangles /boxes. For instance, a
2-cancellation structure is a parallelogram, while a 3-cancellation structure can
be seen as two parallel parallelograms with the same base length and height
(note that this is more general than a parallelepiped - in a parallelepiped, the
two parallelograms have to be congruent). For general d, we have the following
recursive definition.

Definition 44 (d-cancellation structure). Given a d-tuple (a1, . . . , ad) ∈ [n]d, a
d-cancellation structure is defined to be the set of 2d points mapped to the leaves
of a depth-d binary tree, where the mapping from [n]d to nodes of the tree is
recursively defined as follows.

– Map (a1, . . . , ad) to the root (depth 0).
– Suppose (b1, . . . , bd) is mapped to a node u at depth d − j + 1. Then, for

some yu,j ∈ [n], map (b1, . . . , bj−1, yu,j + bj , . . . , bd) to u’s left child and
(b1, . . . , bj−1,, yu,j , . . . , bd) to u’s right child.

Informally, when we start from the same d-tuple, we get “similar”
d-cancellation structures (which form an equivalence class; see an equivalent def-
inition in the full version [1]). This is useful in counting arguments about them
such as the one below.

Our main result on d-cancellation structures states that in the [n]d integer
lattice, we can choose at most nd − (n − 1)d ≤ dnd−1 points that do not contain
a d-cancellation structure.

Theorem 45. The maximum number of points in [n]d such that no subset of
them forms a d-cancellation structure is Nd := nd − (n− 1)d. This bound is tight.

In the extractability proof in the next section, we will argue that if the prover
succeeds with non-negligible probability, then it must populate an appropriately
chosen lattice with more points than this bound, leading to the existence of a
log l-cancellation structure. We then use higher-dimensional/multilinear analogs
of ideas in Theorem 34 to induce cancellations among the l equations at the
points in this log l-cancellation structure to derive an equation with a single d
coordinate, thereby deducing the required structure for it. Specifically, we tra-
verse the corresponding tree bottom-up (from leaves to root) by “folding” equa-
tions from one level to the next – subtract them pairwise to reduce their number
by half and eliminate half of the remaining terms in each of them. Details of this
process appear in the next section and in the full version [1].
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4.2.2 Proof of Theorem 42 – logTEST Extraction
Similar to the process in Lemma 3, we define the extractor ExtT to first invoke
the PoKPE extractor for C, which outputs c > 0 such that C = gc. Since E also
passes the PoKPE protocol and C ·E = gα2l−1

, we infer that c < α2l−1. Consider
the base-α representation of c, which is a 2l-length vector. ExtT then outputs
the even indexed coordinates as c and the odd indexed coordinates as d.

Note that by definition, the first condition in the theorem is satisfied: C =
g

∑l−1
i=0(ci+αdi)α

2i

. An honest prover would clearly choose di = 0 and ci = xi,
0 ≤ ci ≤ p−1 for i ∈ [l] to commit to a vector x ∈ Z

l
p. However, with a cheating

prover, we are only guaranteed (at this point) that 0 ≤ ci, di ≤ α − 1.
Now we use the checks done by the logTEST verifier to derive conditions on

the above extracted vector and show the second part of the theorem – d ∈ Sl
log.

Suppose the prover succeeds with a non-negligible probability over the random
choice of z1, . . . , zlog l from Z

2
p.

Fix an arbitrary index 0 ≤ k ≤ l − 1, equivalently its binary representation
(k1, . . . klog l). Consider the partition of the space Z

2 log l
p by sets of the form

Tq := {(x1,k1 , . . . , xlog l,klog l
,q) : xj,kj

∈ Zp, 1 ≤ j ≤ log l} for q ∈ Z
log l
p .

Since the success probability of the prover is non-negligible, it is at least log l
p .

Hence, at least one of these sets (which are log l-dimensional spaces) must have
more than log lplog l−1 ≥ plog l − (p − 1)log l accepting points, which implies by
Theorem 45 that there exists a log l-cancellation structure in this space consisting
of l accepting points.

For some fixed 1 < aj < p and for all g1g2 . . . gτ ∈ {0, 1}τ , let this
log l-cancellation structure be represented by

B :=
{(

y1,g1,g2,...,glog l−1 + glog la1, . . . , yj,g1,g2,...,glog l−j
+

glog l−j+1aj , . . . , ylog l + g1alog l) : 1 ≤ j ≤ log l, y... ∈ Zp}

All the points in B can be considered as the leaves of a binary tree, with
leaves indexed as g1g2 . . . glog l. Starting from the root, at each node, the left
child is labeled 1 and the right child is labeled 0. Thus the leftmost leaf would
have index 11 . . . 1, and the rightmost leaf will have index 00 . . . 0.

Now, Lemma 3 gives us equations corresponding to each accepting point
on the log l-cancellation structure relating c,d (given by ExtT ) and the random
variables xj,ij

. We recall the definition of the query vector z from Eq. (10), where
for each coordinate zi if the binary representation of i = i1 . . . ilog l, then

zi ≡ zi1,i2,...,ilog l
:=

log l∏

j=1

xj,ij

〈d, z〉 mod α +
⌊ 〈c, z〉

α

⌋

+ u1 mod α = 0 mod α
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The term 〈d, z〉 mod α can be expanded as follows:

〈d, z〉 mod α =
∑

i1,i2,...,ilog l∈{0,1}
di1,i2,...,ilog l

·
log l∏

j=1,

xj,ij mod α

=
∑

i1,...,ilog l∈{0,1}
di1,...,ilog l

·
log l∏

j=1

(
yj,g1,...,glog l−j

+ glog l−j+1aj

)
·

log l∏

j=1

ij �=kj

xj,ij mod α

This expansion holds at height log l (for all leaves g1g2 . . . glog l). To obtain the
required conditions on d, we subtract the l equations in a specific order to
cancel out all but one term. This is possible due to the fact that the coefficients
of di1...ilog l

are multilinear in each of the randomly sampled variables.
More precisely, at any intermediate height in the binary tree, we obtain the

equation at that node by subtracting the equation at the right child from the
equation at the left child. For instance, at height (log l − 1), the first term takes
the form :

a1

∑

i1,...,ilog l−1

dk1,i2,...,ilog l
·
log l∏

j=2

(
yj,g1,...,glog l−j

+ glog l−j+1aj

) ·
log l∏

j=2

ij �=kj

xj,ij
mod α

In general, we get at height 0 ≤ t < log l,

log l−t∏

j=1

ai

∑

i1,i2,...,it∈{0,1}
dk1,k2,...,klog l−t,ilog l−t+1,...,ilog l

·
log l∏

j=log l−t+1

(
yj,g1,g2,...,glog l−j

+ glog l−j+1aj

) ·
log l∏

j=log l−t+1

ij �=kj

xj,ij
mod α

Notice that at the root, i.e., at height 0, we are left with the single term
a1 . . . alog l · dk1,k2,...,klog l

.
For the rest of the folded equation, we only use bounds on the other terms

and not the exact expression. The actual expression is a symbolic subtraction of
the floor terms and the ‘u’ terms. This is similar to what is done in Theorem 34
generalised to higher dimensions.

Specifically, indexing the l points/leaves by zg1g2...glog l
, we get the expression

for the remaining two terms (call this expression n) as
⎛

⎝
∑

g1,g2,...,glog l∈{0,1}
(−1)

∑log l
j=1 ij ·

⌊ 〈c, zg1,g2,...,glog l
〉

α

⌋

+

∑

g1,g2,...,glog l∈{0,1}
(−1)

∑log l
j=1 ij · ug1,g2,...,glog l

⎞

⎠ mod α
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Since for all x, x − 1 ≤ �x� < x and u ∈ {0, 1}, we can bound the above
expression n by

ck1,...,klog l
·∏log l

i=1 ai

α
− 2log l < n <

ck1,...,klog l
·∏log l

i=1 ai

α
+ 2log l

=⇒ −l < n <

log l∏

i=1

ai + l

Hence, there exists m such that dk1,...,klog l
= mα−n

a1···alog l
where m ≤∏log l

i=1 ai <

plog l (as dk1,...,klog l
< α) and −l < n <

∏log l
i=1 ai + l as shown above.

Hence, dk1,...,klog l
∈ Slog. Since (k1, . . . , klog l) was arbitrary, d ∈ Sl

log.

4.3 Succinctness of Dew

Theorem 46 (Proof and Verifier Succinctness). In Dew, the commitment
and evaluation proof sizes are poly(κ) and the Verifier runs in time poly(κ)·log(l).

Proof. Proof succinctness is easy to see; the commitment is a single group ele-
ment and the evaluation protocol only communicates a constant number of group
elements (the PoE protocols are also constant-sized) and the query vector ele-
ments x1, . . . ,xlog l. However, as mentioned before, in the NI version, the 2 log l
random field elements are generated using a RO – this makes the proof size of
the non-interactive version of the protocol constant.

To analyse the verifier computation, notice that the the only potentially
expensive computations are the computation of σ and raising group elements
to large powers (the PoKPE protocols consist of a constant number of PoKE
protocols, which are efficient). The group exponentiations are made more efficient
for the verifier by engaging in a constant number of PoE protocols with the
prover. The only remaining bottleneck is the computation of σ mod q for some
prime q in the invocation of Weslowski’s PoE (for σ in both logTEST and
logIPP).

In logTEST, using the definition of the test vector in (10) and direct manip-
ulation implies that σ mod q can be computed in O(log l) time as follows

σ mod q =
l−1∑

k=0

α2l−2−2kzk mod q = α2l−2

log l∏

i=1

(
xi,0 + xi,1α

−2i+1
)

mod q

In logIPP, by a similar manipulation as above using the definition of the
the query vector in (11), we obtain

σ =
l−1∑

k=0

α2l−1−2kqk mod q = α2l−1

log l−1∏

i=0

(
1 + (x2i

mod p) α−2i+1
)

mod q

Also note that for efficient computation, we need to compute α mod q and
α−1 mod q (If α−1 mod q does not exist, then α = 0 mod q and computing
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σ becomes trivial). In this case, since α = pL for some L = O(l), computing
α mod q = pL mod q can be efficiently done in O(log l) time using repeated
squaring. Once this is found, α−1 mod q can also be efficiently found using the
Extended Euclidean algorithm.

5 Transparent zkSNARKs via Dew

As a corollary of our PCS, we get concrete instantiations of new transparent
succinct arguments by compiling an information theoretic proof in an idealized
model into a succinct argument using a PCS.

The modular approach advocated for designing efficient arguments consists
of two steps; constructing an information theoretic protocol in an abstract model
(PCP, linear PCP, IOP etc.), and then compiling the information-theoretic pro-
tocol via a cryptographic compiler to obtain an argument system. Many recent
constructions of zkSNARKs [9,12,17] follow this approach where the information
theoretic object is an algebraic variant of IOP, and the cryptographic primitive
in the compiler is a polynomial commitment scheme. Marlin [12] uses an IOP
abstraction called algebraic holographic proofs (AHP), and [9] uses an abstrac-
tion called polynomial IOPs (PIOPs). In both these abstractions, the prover
and the verifier interact where the prover provides oracle access to a set of poly-
nomials, and the verifier sends random challenges. Then, the verifier asks for
evaluations of these polynomials at these challenge points and decides to accept
or reject based on the answers. PLONK [17] uses an abstraction called idealized
low degree protocols (ILDPs) that proceeds in a similar way except that at the
end of the protocol, the verifier checks a set of polynomial identities over the ora-
cles sent by the prover. Polynomial Holographic IOP (PHP) [11] specializes the
IOP notion in two ways (i) it is holographic – that is, the verifier has access to a
set of oracle polynomials created during the setup phase that encode the relation,
(ii) the verifier can directly check polynomial identities. The high level idea to
build a zkSNARK with universal SRS starting from PIOPs/AHPs/ILDPs/PHPs
is the following: the argument prover commits to the polynomials obtained from
the information-theoretic prover, and then uses the evaluation opening property
of the polynomial commitment scheme to respond to the evaluation queries of
the verifier in a verifiable way.

We present concrete instantiations of zkSNARKs obtained by using our trans-
parent PCS to cryptographically compile the AHP underlying the constructions
of Sonic, Marlin and PLONK. We present the details and compare our zkSNARK
Dew-SNARK to existing schemes in the full version [1].
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box for more efficient universal and Updatable zkSNARKs and commit-and-
prove extensions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS,
vol. 13092, pp. 3–33. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92078-4 1

12. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: Prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 26

13. Chu, H., Fiore, D., Kolonelos, D., Schröder, D.: Inner product functional commit-
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Abstract. In this work, we present the first construction of a fully
non-interactive publicly-verifiable delegation scheme for committed pro-
grams. More specifically, we consider a setting where Alice is a trusted
author who delegates to an untrusted worker the task of hosting a pro-
gram P , represented as a Boolean circuit. Alice also commits to a suc-
cinct value based on P . Any arbitrary user/verifier without knowledge of
P should be convinced that they are receiving from the worker an actual
computation of Alice’s program on a given input x.

Before our work, the only object known to imply this challenging form
of delegation was a SNARG/SNARK for NP. This is because from the
point of view of the user/verifier, the program P is an unknown witness
to the computation. However, constructing a SNARG for NP from stan-
dard assumptions remains a major open problem.

In our work, we show how to achieve delegation in this challenging
context assuming only the hardness of the Learning With Errors (LWE)
assumption, bypassing the apparent need for a SNARG for NP.

1 Introduction

We consider a scenario where a trusted software author Alice wishes to make
it possible for a set of users to make use of her program P , which we treat
as a (non-uniform) Boolean circuit. In particular, this program P may have
embedded within it a large proprietary database that Alice’s program makes use
of. However, Alice neither wants to release her program P nor does she want
to host and execute the program herself. Instead she wishes to delegate this
computation to an untrusted Worker, and the User/Verifier wants to be certain
that they are receiving an output obtained via a computation of Alice’s actual
program P . As illustrated in Fig. 1, the way this works is:

1. Alice sends the program P along with some computed state to the Worker,
and Alice also publishes a succinct hash HP of her program, which the
User/Verifier obtains. This step is done once and for all.

2. An Input Provider chooses an input x, which is sent to both the Worker and
the User/Verifier. Note that the input provider could be some public source
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of information like a news channel of bulletin board, and need not involve the
User/Verifier.

3. Finally, the Worker computes the output y = P (x) along with a succinct
proof Π, and sends both of these to the User/Verifier. Steps 2 and 3 may be
repeated polynomially many times.

Fig. 1. The Delegation Setup

As illustrated in Fig. 1, this process involves no back–and–forth commu-
nication. The communication is entirely unidirectional – which we call non-
interactive – from left to right. Furthermore, we say that this scenario is succinct
if all communication to the User/Verifier, and the runtime of the User/Verifier,
is poly(log |P |, λ, |x|), where λ is a security parameter.

Remark 1. Note that on one hand, the Worker is trusted with the program P
by Alice, whereas, it is not trusted by the verifier. This asymmetry of trust is
inherent in our setup and is well motivated. In a typical real world situation,
the verifier is typically a user on the internet who takes part in a one off inter-
action with a cloud service for some computation. The need to prove honesty in
this situation is significant. On the other hand, Alice might be able to have an
agreement with the cloud service before handing over her program, which would
make it hard for their Worker to breach trust without consequences.

Comparison to Prior Work. What we have just described is one of the most chal-
lenging variants of the classical problem of publicly verifiable delegation which
has been the subject of intense work for decades, for many relaxed variations of
the model that we describe above.

Specifically, delegation schemes without public verification based on standard
assumptions for deterministic and non-deterministic computations have been
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designed [1,6,7,11,12,22,24,25,37–39]. Restricting verification to a designated
verifier implies that the worker needs to produce a fresh proof unique for each
particular verifier for any computation, which is certainly not ideal. Another
line of work [15] achieves public verification but does not achieve public delega-
tion. In other words, the input provider needs to run a pre-processing algorithm
corresponding to the program P before being able to delegate. Another model
which has been extensively explored is when the User/Verifier is allowed to have
interaction with the Worker, i.e., interactive delegation. Influenced by the first
work on interactive efficient arguments by Kilian [27], there have been several
works from standard assumptions [5,24,33,34] and some even unconditional
soundness [17,36]. These are however not applicable in our setting where only
one-way communication is permitted between the parties, as can be seen in the
acyclic graph in Fig. 1.

With regard to non-interactive publicly verifiable delegation, Starting from
the seminal work on computationally sound proofs by Micali [31] in the random
oracle model, there have been several constructions on publicly verifiable non-
interactive delegation schemes [2–4,13,16,18,28,32] based on the Random Oracle
Model or non-standard knowledge assumptions. From more standard assump-
tions, there have been several works recently [1,6,7,23]. An illustrative example
is the recent work of [23] that proposed the first publicly verifiable non-interactive
delegation scheme from a falsifiable decisional assumption on groups with bilin-
ear pairings. However, in contrast with the setting we describe above, they can
only achieve succinct delegation when the Verifier knows the program P . In our
setting of Boolean circuits, this trivializes the delegation problem, since reading
P ’s description takes as long as evaluating P . Indeed, the case that we consider—
where Alice’s program is large—is extremely well motivated: the program P
could be an ML model with billions of painstakingly learned parameters.

The SNARGs for NP barrier. Why has constructing a protocol that caters to
the fully non-interactive setting which we have defined been so elusive? Note
that in our problem, the User/Verifier and Input Provider do not know the
program P . Hence, from User/Verifier’s perspective, P is an NP witness. Thus,
it certainly seems that finding a solution is intricately related to a major goal
in the area of non interactive succinct proof systems, i.e., SNARGs for NP.
Unfortunately, the only known constructions of SNARGs for NP base their
soundness on the Random Oracle Model or non-standard knowledge assumptions.
Finding a solution solely relying on standard assumptions has been an open
problem for over a decade. In fact, the closest that we have come is the very
recent work achieving SNARGs for P [10] (see also [26]).

The major technical contribution in our work is to enable Non-Interactive
Publicly Verifiable Succinct Delegation for Committed Programs without having
to use SNARGs for NP.

Our Contribution: We present the first complete solution to achieving succinct
non interactive publicly verifiable delegation for committed programs. Indeed,
furthermore, we can also achieve zero-knowledge guarantees as well. Our only
computational assumption is the hardness of the Learning with Errors (LWE)
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problem. Somewhat surprisingly, we show that SNARGs for NP are not required
to solve this problem, even though the statement being proved looks like an NP
statement to the Verifier!

Instead, we show that many ideas from SNARGs for P [10] can in fact be
applied here. Although P is unknown to the User/Verifier, we show that it suffices
for Alice to communicate a tiny amount of information of size poly(log |P |) about
the program P (referred to as HP ) as shown in Fig. 1. Because Alice is the author
of P , this HP can be trusted as correctly generated. We stress that Alice does
not need to know x to compute HP , hence this achieves public delegation and
public verification in the completely non-interactive model described above. This
leads to our main theorem,

Theorem 1. Assuming the hardness of the LWE problem, Fig. 2 gives a con-
struction for publicly verifiable non-interactive succinct delegation for commit-
ted programs with CRS size, proof size and verifier time poly(λ, log |P |, |x|) and
prover run time being poly(λ, |P |).

Finally, in order to get zero-knowledge, it suffices for Alice to commit to HP

rather than sending it out in the open. We then present a generic transformation
to convert any delegation protocol of this form to attain zero-knowledge.

Theorem 2. Assuming the hardness of the LWE problem and existence of a
succinct delegation scheme, Fig. 5 gives a construction for publicly verifiable suc-
cinct delegation scheme with zero knowledge such that CRS size, proof size and
verifier time are poly(λ, log |P |) and prover run time is poly(λ, |P |).

Finally, we also show how to achieve zero knowledge versions of our delegation
scheme, meeting the same strong succinctness and efficiency goals, and under
the same assumption (LWE).

We present a more detailed explanation in the Technical Overview.

2 Technical Overview

Our Delegation Scenario. Let us briefly recall the setup of our delegation sce-
nario. There are 4 parties, namely, (1) Alice-the program author ProgAuth
who sends a program P and some computed state state to a Worker, (2) an
Input Provider I that outputs some value x, (3) Worker W that takes as input
(P, state, x) and outputs P (x) and a proof Π, and (4) User/Verifier V gets as
inputs (x, P (x),Π) and outputs 1 if and only if Π was a valid proof. Assume that
all the parties get the security parameter λ as an input. An additional require-
ment is that |Π| and runtime of V is poly(λ, log |P |, |x|), and W runs in time
poly(λ, |x|, |P |). Thus, any non-interactive publicly verifiable succinct delegation
scheme can be viewed as a collection of 4 algorithms: sDel = (ProgAuth,W, I, V )
with the input output behaviour and efficiency guarantees as specified. Note that
this is indeed a P computation for the Worker but the primary challenge is that
the verifier does not have knowledge of the “witness” P , hence this is an NP
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computation from the verifier’s point of view. In this work, we observe that it is
indeed feasible to achieve our delegation scenario for all circuits without having
to go through SNARGs for NP. Our technique is based on the recent work of
Choudhuri et al. [10] on SNARGs for P. We begin by giving a brief overview
of their approach and elaborate the challenges of directly incorporating their
methodology for our setting.

Challenges of Implementing [10]. Roughly, the work of [10] uses Batch Argu-
ments for NP (BARGs), which they build from LWE. BARGs allow an efficient
prover to compute a non-interactive and publicly verifiable “batch proof” of
many NP instances, with size poly(|w| log T ) for T -many NP statements with
each witness of size |w|. They begin by looking at P as a Turing machine and
the steps of P ’s computation are interpreted as an Index Circuit Cindex. Say, P
terminates in T steps. Formally, they construct a BARG for the Index Language
Lindex, where

Lindex = {(Cindex, i)|∃wi, such that C(i, wi) = 1},

where i ∈ [T ] is an index. Let s0, s1, . . . , sT denote the encoding of internal states
of P along with its tape information, and let Step be its step function such
that Step(si−1) = si The witness for the ith intermediate computation is then
defined as wi = (si−1, si). The index circuit is built such that (Cindex, i) ∈ Lindex

essentially implies that the Turing machine step function was correctly computed
on si−1 to yield si. Note that this alone does not suffice as a proof because
the BARG only confirms that (si−1, si) and (s′

i, si+1) are valid witnesses. If
si−1, si, s

′
i, si+1 are generated by the step function of the same Turing machine

P , they must be consistent with each other, i.e., si = s′
i. However, this is not

guaranteed by a BARG.
To resolve this issue, the prover also sends a Somewhere Extractable Hash

(SE) to the witnesses (s0, {si−1, si}i∈[T ]). The extraction property of this hash
allows the verifier to check if the witness of two consecutive BARG instances
are indeed consistent with each other. At this stage, we would like to remind
the reader of their efficiency goals where crucially, they desire proof size and
verification time to be poly(λ, log T ). However, note that |Cindex| grows linearly
with |si| and the known constructions [20] of SE hashes can only produce hashes
with size poly(|si|). This means that total communication and verifier run time
will be at least poly(|si|). This is certainly no good if the Turing machine has
massive states. To overcome this final barrier, they make use of Hash Trees which
compress the states si to a short hash hi such that |hi| = poly(λ). Such trees [30]
also have a soundness property where a Prover must produce a succinct proof Πi

that the hash tree was indeed implemented correctly at the ith step of the Turing
machine computation. Once the succinctness guarantee is ensured, the prover
then produces SE hashes corresponding to (h0,Π0, {hi−1,Πi−1, hi,Πi}i∈[T ])
along with the openings to these hashes. To summarise, the proof consists of
two parts, (1) The BARG proof, and (2) A somewhere extractable hash of the
witnesses. Relying on the soundness of BARG, extraction correctness property
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of SE hash and soundness of the Hash Tree, a User/Verifier can check if each of
these T intermediate steps are indeed the correct states for P , i.e., the compu-
tation was done honestly.

However, this approach only works if User/Verifier can confirm that the
inputs used for the computation by the Worker, i.e. (P, x) are indeed the correct
starting values as provided by the Program Author and Input Provider. This
works fine for [10] because in their setting, the User/Verifier actually knows
(P, x). Unfortunately, this is not at all true in our scenario. Thus, the techniques
of Choudhuri et al. [10] cannot be implemented directly as the soundness of the
BARG proof cannot provide any guarantees if there is no way for to check that
the initial inputs used by the Worker are correct.

Our Idea. We start with an alternate way of interpreting the computation of P
on input x as the following: Consider a Circuit-Universal Turing Machine T M
which takes as input P, x, y and accepts (P, x, y) in T = Õ(|P |) steps if P (x) = y.
We can assume without loss of generality that P ∈ {0, 1}m, x ∈ {0, 1}n and
y ∈ {0, 1}, where m,n ≤ 2λ. Keeping this in mind, we introduce the notion of
Semi-Trusted SNARGs for NP. This new kind of SNARG is one that will work
for general NP computations, but only with a little bit of extra help from a
trusted party that knows the witness – which in our delegation scenario is Alice,
who knows the witness P !

A Semi-Trusted SNARG is a tuple of algorithms: stSNARG =
(Setup,TrustHash,P,V), where (1) Setup is a randomised algorithm that takes
as input the security parameter and outputs a Common Random String (CRS).
(2) a trusted deterministic TrustHash takes as input the (CRS, P ) and out-
puts a digest HP , (3) a deterministic prover P which takes as input CRS and
(P, x, y), and outputs a proof Π, and (4) a deterministic verifier V which gets
CRS,(HP , x, y,Π) as input and outputs 1 iff Π is valid. It must be that |Π| and
run time of V is poly(λ, log T ), and P runs in time poly(λ, |x|, |P |, T ). A simple
reduction shows that in the CRS model (or alternatively in a model where Alice
chooses the CRS), existence of stSNARG implies the existence of sDel. We show
this formally in Lemma 11. Hence, from here onwards, our goal is to construct
a Semi-Trusted SNARG for NP.

We briefly provide an informal explanation of our construction.
Like [10], every intermediate state of the Universal Turing Machine is

encoded into a succinct hash (call it h0, . . . , hT ) accompanied with succinct
proofs {Πi}i∈[T ]. The prover computes two independent copies of Somewhere
Extractable (SE) hashes (c1, c2) of the encoding {h0, {(h1,Π1), . . . , (hT ,ΠT )}}
along with their corresponding openings. Here h0 = (st0,HP ,Hx,Hwork), where
st0 is that hash of T M’s starting state which is publicly known, Hx denote the
hash of x, and Hwork is the hash of T M’s blank work tape. The use of two
independent SE hashes are pivotal for soundness which we elaborate later.

We point out that TrustHash computes HP using the same hash tree which
is used for hashing the Turing machine states by the Prover. This is crucial to
ensure soundness of the protocol. We show in Fig. 3 that once the public hash is
fixed by TrustHash, one can hard code (y, c1, c2, T,HP ,Hx) to the index circuit
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Cindex for BARG. At this point, we can now follow the approach from [10]. V can
rely upon the binding property/collision resistance of the hash to ensure that the
prover has used P and x which were provided by Alice and the input provider
respectively. The main observation here is that once a trusted party fixed a hash
of the program P and V is convinced that computation was commenced with the
correct inputs, the soundness of BARG, extraction correctness of the SE hash
and soundness of hash tree ensures that the semi-trusted SNARG construction
is sound.

While our proof of soundness closely follows the blueprint of [10], we choose to
present our proof in a different, and arguably simpler, way. In [10], No-Signaling
Somewhere Extractable(NSSE) hashes are used extensively. In our proof, we
choose to omit explicit use of this notion, and instead we make direct use of
two independent SE hashes as mentioned above. A simple hybrid argument then
gives a straightforward proof for soundness. This shows that the “anchor and
step” use of SE hashes, which dates to the introduction of somewhere-binding
hashes [20] in 2015, is directly sufficient for this proof of soundness.

Zero-Knowledge. We have only discussed soundness guarantees thus far. How-
ever, in our delegation scenario, it might also be extremely important to ensure
that no information about P leaked to V during the delegation process. Hence it
is important to add zero-knowledge guarantees to our protocol. We finally give a
generic transformation to modify a semi-trusted SNARG to add zero knowledge
guarantees. In order to do so we make use of a statistically binding extractable
commitment scheme and a NIZK1, and roughly make the following modifica-
tions:

– We add an additional commitment to 0 in the CRS which is never used in
the proof but helps in proving zero knowledge.

– The public hash output by TrustHash is a binding commitment CP of HP . It
then sends (P,HP ) to the worker W only.

– The SE hashes c1, c2 are also committed as a part of the proof and not
published in the open.

– The prover wraps the BARG Π with a NIZK which proves that that the
BARG verification circuit indeed accepts the BARG proof.

– The Verifier then checks if the NIZK proof is valid.

The binding and hiding property of the commitment, and witness indistinguisha-
bility of NIZK guarantees zero knowledge.

3 Preliminaries

We use some standard tools as building blocks to perform the Succinct
Delegation.

1 Multi-theorem NIZK from LWE is possible by combining [35] and [14]. Note that
the weaker notion NIWI would also suffice to achieve zero knowledge in our setting.
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– Somewhere Extractable Hash [9,10,20]:
SE =(SE.Gen,SE.TGen,SE.Hash,SE.Open,SE.Verify,SE.Ext)

– Non Interactive Batch Arguments (BARG) for Index Language [10]:
BARG = (BARG.Gen,BARG.TGen,BARG.Prove,BARG.Verify)

– Hash Tree [23,30]:
HT = HT.Gen,HT.Hash,HT.Read,HT.Write,HT.VerRead,HT.VerWrite

– Non Interactive Zero Knowledge Argument [8,19,35]:
(NIZK = NIZK.Gen,NIZK.Prove,NIZK.V)

– Statistically Binding Extractable Commitment [29]:
Combind = (Com.Gen,Com.TGen,Com.C,Com.Ext)

We use all the primitives in a standard way as prior works. The hash tree can be
constructed from any collision resistant hash function. The others are known to
be instantiated from LWE. Formal definitions and properties of the primitives
can be found in the Supplementary Material.

4 Publicly Verifiable Non Interactive Succinct Delegation

We formally define the notion of Publicly Verifiable Non Interactive Succinct
Delegation (sDel) which is similar to the definition proposed in prior works [21].
Such a delegation scheme in the CRS model involves the following PPT algo-
rithms, (1)Software/Program Author ProgAuth (3)Cloud Worker W , and (3)
Verifier V An sDel comprises of the following polynomial time algorithms:

– sDel.Setup(1λ): A randomized setup algorithm which on input security param-
eter λ and outputs crs.

– sDel.ProgAuth(1λ, crs): A program author which takes as input λ, outputs a
(not public) program P ∈ {0, 1}m, m ≤ 2λ ∈ N, state and a public digest HP .

– sDel.W (crs, P, state,HP , x): A deterministic cloud worker which on input crs,
program P , input x ∈ {0, 1}n, n ≤ 2λ ∈ N outputs a value y and proof Π.

– sDel.V (crs, x, y,HP ,Π): A deterministic verifier which on input crs, digest
HP , x, y,Π either accepts or rejects.

A publicly verifiable succinct delegation scheme (sDel.Setup, sDel.ProgAuth,
sDel.W, sDel.V ) satisfies the following properties:

– Completeness. For every PPT program generating algorithm sDel.
ProgAuth, every λ, n,m ∈ N, and for all x ∈ {0, 1}n such that n,m < 2λ,
we have

Pr[sDel.V (crs, x, y,HP ,Π) = 1 ∧ P (x) = y
∣
∣crs ← sDel.Setup(1λ),

((P, state),HP ) ← sDel.ProgAuth(1λ, crs),
(y,Π) ← sDel.W (crs, P, state,HP , x)] = 1.

– Efficiency. sDel.Setup runs in time poly(λ), sDel.W runs in time
poly(λ, |P |, |x|) and outputs a proofs of length poly(λ, log |P |, |x|), and sDel.V
runs in time poly(λ, log |P |, |x|).
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– Soundness. For every PPT adversary A := (A1,A2), every PPT program
generating algorithm sDel.ProgAuth, and the tuple n = n(λ),m = m(λ), there
exists a negligible function negl(λ) such that for every λ ∈ N,

Pr[sDel.V (crs, x, y,HP ,Π) = 1 ∧ P (x) �= y
∣
∣, crs ← sDel.Setup(1λ),

((P, state),HP ) ← sDel.ProgAuth(1λ, crs),

(x, aux) ← A1(1λ, crs), (y,Π) ← A2(crs, P, state,HP , x, aux)]
≤ negl(λ).

To construct sDel, we introduce a notion of Semi-Trusted Succinct Non-
Interactive Arguments stSNARG which we formally introduce and construct in
Sect. 5. After that, we prove the following lemma (cf. Lemma 11) which shows
how to construct sDel using stSNARG as a building block.

Lemma 1. Assuming T = poly(m,n), T,m, n ≤ 2λ, the stSNARG protocol in
Fig. 2 implies the unconditional existence of a publicly verifiable non interactive
succinct delegation scheme sDel as defined above.

4.1 sDel with Zero-Knowledge

A publicly verifiable non interactive succinct delegation scheme with zero knowl-
edge zk − sDel is defined by the following efficient algorithms:

– zk − sDel.Setup(1λ): A randomized setup algorithm which on input security
parameter λ and outputs crs.

– zk − sDel.ProgAuth(1λ, crs): A program author which takes as input λ, gener-
ates a program P ∈ {0, 1}m, m ≤ 2λ ∈ N. Additionally, it computes a digest
HP and creates a statistically binding and extractable commitment CP of HP

under randomness r. Finally it sends a private output (P, state) and public
output CP . Here state contains the randomness r and HP encoded in it along
with any other state information.

– zk − sDel.W (crs, P, state, CP , x): A deterministic cloud worker which on input
crs, program P , commitment CP , x ∈ {0, 1}n, n ≤ 2λ ∈ N outputs a value y
and proof Π.

– zk − sDel.V (crs, x, y, CP ,Π): A deterministic verifier which on input
(crs, CP , x, y,Π) either accepts or rejects.

Apart from the Completeness, Efficiency and Soundness guarantees men-
tioned above, a publicly verifiable succinct delegation scheme (zk − sDel.Setup,
zk − sDel.ProgAuth, zk − sDel.W, zk − sDel.V ) satisfies the following additional
property:

Non Interactive Zero Knowledge. For all λ, n,m ∈ N such that n,m ≤
2λ, ∀, x ∈ {0, 1}n and y ∈ {0, 1}, there exists a PPT simulator Sim :=
(Sim1,Sim2,Sim3) such that the distributions of
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(crs, x, y, CP ,Π)
∣
∣(crs, aux) ← Sim1(1λ), (CP , aux′) ← Sim2(crs, aux),

(y,Π) ← Sim3(aux′, crs, x, CP )

and

(crs, x, y, CP , Π)
∣
∣crs ← zk − sDel.Setup(1λ), ((P, state), CP ) ← zk − sDel.ProgAuth(1λ, crs),

(y := P (x), Π) ← zk − sDel.W (crs, P, state, x, CP )

are indistinguishable.
In Sect. 6, we present a generic construction of a semi trusted non-interactive

succinct arguments with zero-knowledge (ZKstSNARG) from stSNARG. Analo-
gous to the previous lemma, we get the following corollary(cf. Corollary 2) from
Lemma 11.

Corollary 1. Assuming T = poly(m,n), T,m, n ≤ 2λ, the ZKstSNARG pro-
tocol in Fig. 5 implies the unconditional existence of a publicly verifiable non
interactive succinct delegation scheme with zero knowledge.

5 Semi-Trusted Succinct Non-Interactive Argument
(stSNARG)

We introduce a notion of “Semi-Trusted” SNARGs which is similar to the general
definition of SNARGs with an addition “trusted” polynomial time algorithm that
outputs a hash for the witness. Further, we provide an explicit construction of
an stSNARG for all of NP . Note that any SNARG for arbitrary NP language
L can be reformulated as a Turing Machine which takes in as input an instance
x along with witness w and accepts x,w in T steps if x ∈ L [10]. In this work,
we modify the definition of [10] by using a Universal Turing Machine T M which
takes as input an instance (x, y), a witness which is a program P and accepts
(P, x, y) in T steps if P (x) = y. We formalise this notion as follows:

Let T M be a Universal Turing Machine which takes as input a program
P ∈ {0, 1}m for some m < 2λ, and x ∈ {0, 1}n for some n < 2λ and y ∈ {0, 1}
which serve as an input and output for P respectively. T M accepts (P, x, y) in
T steps if P (x) = y. A prover produces a proof Π to convince a verifier that
T M accepts P, x, y in T . A publicly verifiable semi-trusted SNARG (stSNARG)
for T M has the following polynomial time algorithms:

– stSNARG.Setup(1λ, 1T ): A randomized setup algorithm which on input secu-
rity parameter λ, and number of Turing Machine steps T , outputs crs.

– stSNARG.TrustHash(crs, P ): A deterministic and honest algorithm which on
input crs and a program P ∈ {0, 1}m for some m < 2λ, outputs a succinct
and public digest HP of P corresponding to crs.
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– stSNARG.P(crs, P, x, y,HP ): A deterministic prover algorithm which on input
the crs, P ∈ {0, 1}m for some m < 2λ, x ∈ {0, 1}n for some n < 2λ, y ∈ {0, 1}
and the digest HP outputs a proof Π.

– stSNARG.V(crs, x, y,HP ,Π): A deterministic verification algorithm which
on input crs, x, y, digest HP and proof Π, either accepts(output 1) or
rejects(output 0) it.

A Universal Turing Machine T M on input (P, x, y) outputs 1 if it accepts
(P, x, y) within T steps. We define the NP language LT M as,

LT M := {(P, x, y, T, HP , crs)
∣
∣T M(P, x, y) = 1 ∧ stSNARG.TrustHash(crs, P ) = HP }.

Note that here P is not considered a part of the witness although it is
unknown to the verifier because a typical NP statement puts a there exists
constraint on the witness. In that case, the statement becomes trivial because
there will always exist a program P which on input x ignores the input and
outputs y. We need to ensure that P is the program output by the program
author independent of x. Moreover, this is indeed a P statement for the prover.

A publicly verifiable stSNARG scheme stSNARG = (stSNARG.Setup,
stSNARG.TrustHash, stSNARG.P, stSNARG.V) satisfies the following properties:

– Completeness. For every λ, T, n,m ∈ N such that T, n,m < 2λ, pro-
gram P ∈ {0, 1}m, input x ∈ {0, 1}n and output y ∈ {0, 1} such that
(P, x, y, T,HP , crs) ∈ LT M, we have

Pr[stSNARG.V(crs, x, y,HP ,Π) = 1
∣
∣crs ← stSNARG.Setup(1λ, 1T ),

HP ← stSNARG.TrustHash(crs, P ),Π ← stSNARG.P(crs, P, x, y,HP )] = 1.

– Efficiency. stSNARG.Setup runs in time poly(λ, T ), stSNARG.TrustHash runs
in time poly(λ, |P |, T ), stSNARG.P runs in time poly(λ, |x|, |P |, T ) and outputs
a proofs of length poly(λ, log T ), and stSNARG.V runs in time poly(λ, log T ).

– Soundness. For every PPT adversary A := (A1,A2) and the tuple T =
T (λ), n = n(λ),m = m(λ), there exists a negligible function negl(λ) such
that for every λ ∈ N,

Pr[stSNARG.V(crs, x, y,HP ,Π) = 1 ∧ (P, x, y, T,HP , crs) /∈ LT M
∣
∣,

crs ← stSNARG.Setup(1λ, 1T ), (P, aux) ← A1(1λ, crs),
HP ← stSNARG.TrustHash(crs, P ), (x, y,Π) ← A2(crs, P,HP , aux)] ≤ negl(λ).



586 R. Ghosal et al.

Fig. 2. Semi-Trusted SNARG
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Fig. 3. Circuit Cindex

5.1 Our Construction

Our construction is formulated similar to that of [10]. Specifically, we use the
notion of non-interactive BARG for index language and SE Hash functions in our
scheme.

Setup for Universal Turing Machine. For a cleaner analysis, we assume without
loss of generality that T M consists of three tapes, namely, Tp1,Tp2,Tp3. Tp1
and Tp2 are read only tapes that store x and P respectively. Tp3 is the work
tape which is initialized with � to denote an empty string.
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Transition steps for T M. T M’s state information along with the head locations
of the three tapes are encoded as st. To handle Turing Machines with arbitrarily
long tapes, we encode {Tpi}i∈[3] using three Hash Trees as defined in previous
sections and produce tree roots rt1, rt2, rt3 respectively.

Let the each intermediate transition state of T M be encoded as hi :=
(sti, rt1i , rt

2
i , rt

3
i ) for i ∈ [T ]. A single step of T M can be interpreted in the

manner described below which is similar to one described for a RAM in [23]. We
break down the step function at the ith stage into two deterministic polynomial
time algorithms:

– StepR: On input sti−1 of T M, outputs head positions l1i−1, l
2
i−1, l

3
i−1 which

denote the memory locations of Tp1,Tp2,Tp3 which T M in the current state
sti−1 would read from.

– StepW: On input sti−1, and bits b1i−1, b
2
i−1, b

3
i−1 outputs bit b′, location l′ and

sti such that T M upon reading b1i−1, b
2
i−1, b

3
i−1 at locations l1i−1, l

2
i−1, l

3
i−1

using HT.Read, would write b′ at location l′ of Tp3, thereby transition to new
state sti.

Now, we translate the ith single step of T M to the circuit φ which
is defined such that on input digests hi−1 := (sti−1, rt

1
i−1, rt

2
i−1, rt

3
i−1) and

hi := (sti, rt1i , rt
2
i , rt

3
i ), bits b1i , b

2
i , b

3
i , and proofs Π1

i ,Π2
i ,Π3

i ,Π ′
i, φ(hi−1, hi, b

1
i ,

b2i , b
3
i ,Π

1
i ,Π2

i ,Π3
i ,Π ′

i) = 1 if and only if the following hold:

1. (l1i , l2i , l3i ) ← StepR(sti−1)
2. (b′, l′, st′) ← StepW(sti−1, b1i , b2i , b3i )
3. st′ = sti
4. HT.VerRead(dk, rt1i−1, l1i , b1i , Π1

i ) = 1

5. HT.VerRead(dk, rt2i−1, l2i , b2i , Π2
i ) = 1

6. HT.VerRead(dk, rt3i−1, l3i , b3i , Π3
i ) = 1

7. rt1i = rt1i−1

8. rt2i = rt2i−1

9. HT.VerWrite(dk, rt3i−1, l′, b′, rt3i , Π′
i) = 1

Here, dk denote the hash keys used to build the three hash trees. Note that
the efficiency of hash tree implies that φ can be constructed such that it can
represented as a formula in L = poly(λ) variables. For the T steps of T M, we
have the following formula over M = O(L · T ) variables:

Φ(h0, {hi, b
1
i , b2i , b3i , Π1

i , Π2
i , Π3

i , Π′
i}i∈[T ]) =

∧

i∈[T ]

φ(hi−1, hi, b
1
i , b2i , b3i , Π1

i , Π2
i , Π3

i , Π′
i)

Following the techniques in [10], we use a combination of SE Hash along with φ
to produce the circuit for index languages.

Our semi-trusted SNARG scheme is given in Fig. 2 and the corresponding
index language circuit is shown as Fig. 3.

Theorem 3. Assuming the existence of Somewhere Extractable Hash functions,
non-interactive Batch Arguments for Index Languages, and Collision Resistant
Hash Trees as described in Sect. 3, Fig. 2 is a publicly verifiable non-interactive
semi-trusted SNARG with CRS size, proof size and verifier time poly(λ, log T )
and prover run time being poly(λ, T ).
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Completeness. Here we give a sketch arguing completeness of our scheme. Our
construction in Fig. 2 tells that

Pr[stSNARG.V(crs, x, y,HP ,Π) = 1
∣
∣crs ← stSNARG.Setup(1λ, 1T ),

HP ← stSNARG.TrustHash(crs, P ),Π ← stSNARG.P(crs, P, x, y,HP )] =

Pr[BARG.V(BARG.crs, Cindex,Π) = 1
∣
∣crs ← stSNARG.Setup(1λ, 1T ),

HP ← stSNARG.TrustHash(crs, P ),Π ← stSNARG.P(crs, P, x, y,HP )]

where Cindex is the index circuit as shown in Fig. 3. Observing stSNARG.P algo-
rithm in our scheme tells it is sufficient to show that if the prover is honest and
uses a valid witness, then (Cindex, i) ∈ Lindex,∀i ∈ {0} ∪ [T ]. If we can argue that
this is indeed the case, then the completeness of BARG gives the desired result.

If (P, x, y, T,HP , crs) ∈ LT M, then (Cindex, 0) ∈ Lindex is trivially true
by observation. Now, let us look at (Cindex, 1). We start by analysing that
φ(h0, h1, {bj

1,Π
j
1}j∈[3],Π

′
1) = 1 is true. {rti1 = rti0}i∈[2] follow from the read-

only nature of tapes Tp1,Tp2. Since,
{

(bj
1,Π

j
1) ← HT.Read(treej

0, l
j
1)

}

j∈[3]
, the

hash tree completeness of read ensures that {HT.VerRead(dk, rti0, l
i
1, b

i
1,Π

i
1) =

1}i∈[3] = 1 and {Tpi[li1] = bi
1}i∈[3]. This along with the correctness of Tur-

ing Machine StepR function implies that b11, b
2
1, b

3
1 are indeed the correct input

for the StepW function of T M. Finally, (tree31, rt
3
1,Π

′
1) ← HT.Write(tree30, l

′
1, b

′
1)

implies HT.VerWrite(dk, rt30, l
′, b′, rt31,Π

′
1) = 1 from the hash tree completeness

of write property. The same property also ensures that Tp3 changes only at the
l′th memory location. When paired with the correctness of StepW, we get that
st1 = st′

The completeness of the SE hash implies that the verification algorithm cer-
tainly accepts all the local openings. Thus, (Cindex, 1) ∈ Lindex. Now, (Cindex, T ) ∈
Lindex because T M accept (P, x, y) in T steps. We can show in a similar man-
ner that for all other i, (Cindex, i) ∈ Lindex. This proves the completeness of the
scheme in Fig. 2.

Efficiency.

– Runtime of stSNARG.Setup is poly(λ, T ). This follows from the efficiency of
underlying primitives.

– stSNARG.TrustHash computes HP in time |P | · poly(λ) which is poly(|P |, λ).
– |Cindex| = poly(λ, log T ). This follows from the efficiency of the SE hash and

the efficiency of hash tree construction.
– CRS Size: By the corresponding properties of the underlying primitives,

|crs| = poly(λ, log T ).
– The prover’s computation time is dominated by the hashes corresponding to

x, P and the Turing Machine step functions that is run T times. This requires
a total time of poly(λ, |x|) + poly(λ, |P |) + poly(λ, T ) = poly(λ, |x|, |P |, T ).

– Proof Length: |c| + |Π| = poly(λ, log T ) + poly(λ, log T, |Cindex|) =
poly(λ, log T ).

– Verifier Time: Time taken to compute Cindex and verify the BARG. This is
poly(λ, log T, |Cindex|) = poly(λ, log T ).
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Soundness. Let us assume for the sake of contradiction that our scheme in Fig. 2
is not sound, i.e., there exists a PPT adversary A := (A1,A2), a value T and a
polynomial function poly(λ) such that for infinitely many values of λ ∈ N,

Pr[GA = 1] ≥ 1
poly(λ)

,

where A plays Game G described below

Real Game G
1. crs ← stSNARG.Setup(1λ, 1T )
2. (P, aux) ← A1(1λ, crs)
3. HP ← stSNARG.TrustHash(crs, P )
4. ((x, y)(c,Π)) ← A2(crs, P,HP , aux)
5. if stSNARG.V (crs, (x, y),HP , (c,Π)) = 1 ∧ ((x, y), T, P,HP , crs) /∈ LT M,

return 1
6. else return 0

Let Si denote the following set:

Si =

{

h0 if i = 0
{

hi, {bi}j∈[3], {Πi}j∈[3],Π
′
i

}

if i ∈ [T ]

Let D denote the string
(

h0,
{

hi, {bi}j∈[3], {Πi}j∈[3],Π
′
i

}

i∈[T ]

)

. ISi
⊂ |D|

denotes the following:

ISi
=

{

[a, b]
∣
∣a, b ∈ |D|,D[a, b] = Si

}

.

In game G, say we have (tree10, rt
1
0) ← HT.Hash(dk, x), (tree20, rt

2
0) ←

HT.Hash(dk, P ), (tree30, rt
3
0) ← HT.Hash(dk,�). Also, let st0 := (0, 0, 0, s), where

s is the start state of T M. We say that h̄0 := (st0, rt10, rt
2
0, rt

3
0) defines a unique

“true” digest for the starting step of T M.
If stSNARG.V(crs, x,HP , c,Π) = 1, then Algorithm Step(x, P, crs, i) in Fig. 4

computes the unique true digest h̄i after the ith Turing Machine Step along with
the other uniquely correct values of the set S̄i := {h̄i, {b̄i}j∈[3], {Π̄i}j∈[3], Π̄

′
i}. We

use the notation Step(x, P, crs, i).x to denote x ∈ S̄i. We proceed by performing
an induction on the following sequence outer hybrid games Gi, i from 1 to T .
We use a sequence of inner hybrid games to transition between subsequent outer
hybrids. Our induction hypothesis is that, under suitable assumptions, for all
i ∈ 1 to T , there exists a negligible function λ such that,

Pr[GA = 1] ≤ Pr[GA
i = 1] + negl(λ).

Intuitively, the ith game Gi is similar to the real life soundness game with
the following two changes: (1) The key generation for the SE hash and BARG is
done in the trapdoor mode at the ith game. This allows for extractability of the
ith block of the string D from the commitment c. (2) The adversary wins the
game if they break the soundness assumption as the real life game G and the
extracted block is indeed the correct one.
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Fig. 4. Turing Machine ith step.

Outer Hybrid Game Gi

1. if i is even
SE.Keven ← SE.TGen(1λ, 1M , ISi

)
SE.Kodd ← SE.TGen(1λ, 1M , ISi−1)

2. if i is odd
SE.Keven ← SE.TGen(1λ, 1M , ISi−1)
SE.Kodd ← SE.TGen(1λ, 1M , ISi

)
3. BARG.crs ← BARG.TGen(1λ, 1T+1, 1|Cindex|, i)
4. dk ← HT.Gen(1λ)
5. crs := (SE.Keven,SE.Kodd,BARG.crs, dk).
6. (P, aux) ← A1(1λ, crs)
7. HP ← stSNARG.TrustHash(crs, P )
8. ((x, y), (c,Π)) ← A2(crs, P, aux)
9. Parse c as (codd, ceven)

10. if i is even and i �= 0
• (hi, {bk

i }k∈[3], {Πk
i }k∈[3],Π

′
i) ← SE.Exteven(ceven,SE.Keven)

• (hi−1, {bk
i−1}k∈[3], {Πk

i−1}k∈[3],Π
′
i−1) ← SE.Extodd(codd,SE.Kodd)

11. if i is odd
• (hi, {bk

i }k∈[3], {Πk
i }k∈[3],Π

′
i) ← SE.Extodd(codd,SE.Kodd)

• if i − 1 > 0 then (hi−1, {bk
i−1}k∈[3], {Πk

i−1}k∈[3],Π
′
i−1) ←

SE.Exteven(ceven,SE.Keven)
• if i − 1 = 0 then h0 ← SE.Exteven(ceven,SE.Keven)
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12. if stSNARG.V (crs, (x, y),HP , (c,Π)) = 1∧ ((x, y), T, P,HP , crs) /∈ LT M ∧
hi = Step(x, y, P, crs, i).h̄i, return 1

13. else return 0

Base Case: Assuming key indistinguishability and soundness of SE hash and
BARG, we need to show that Pr[GA = 1] ≤ Pr[GA

1 = 1] + negl(λ).
We begin by using a sequence of hybrids to transition from G to an interme-

diate game G0. The colored texts in the hybrids below indicate the steps in the
hybrids exclusively appear in a particular game. We only present proof sketches
for the intermediate lemmas in this section due to lack of space. Concrete proofs
have been shifted to the Supplementary Material.

Hybrid Games Ga,Gb,Gab,G0

1. SE.Keven ← SE.TGen(1λ, 1M , IS0) ...(Ga,Gb,Gab,G0)
2. SE.Kodd ← SE.Gen(1λ, 1M ) ...(Ga)
3. SE.Kodd ← SE.TGen(1λ, 1M , IS1) ...(Gb,Gab,G0)
4. BARG.crs ← BARG.Gen(1λ, 1T+1, 1|Cindex|)...(Ga,Gb)
5. BARG.crs ← BARG.TGen(1λ, 1T+1, 1|Cindex|, 0)...(Gab,G0)
6. dk ← HT.Gen(1λ)
7. crs := (SE.Keven,SE.Kodd,BARG.crs, dk).
8. (P, aux) ← A1(1λ, crs)
9. HP ← stSNARG.TrustHash(crs, P )

10. if stSNARG.V (crs, (x, y),HP , (c,Π)) = 1 ∧ ((x, y), T, P,HP , crs) /∈ LT M,
return 1

11. h0 ← SE.Exteven(ceven,SE.Keven)...(G0)...(Ga,Gb,Gab)
12. if stSNARG.V (crs, (x, y),HP , (c,Π)) = 1∧ ((x, y), T, P,HP , crs) /∈ LT M ∧

h0 = Step(x, y, P, crs, 0).h̄, return 1 ...(G0)
13. else return 0

Lemma 2. Assuming key indistinguishability of SE,
∣
∣Pr[GA = 1] − Pr[GA

a = 1]
∣
∣

≤ negl(λ).

Proof. The only difference in Game G and Ga is that the key generation algo-
rithm of the SE hash (SE.Gen) is replaced by the trapdoor key generation
(SE.TGen).

If
∣
∣Pr[GA = 1] − Pr[GA

a = 1]
∣
∣ > negl(λ), then one can construct a PPT adver-

sary B that breaks the key indistinguishability of SE using IS0 with Key as input
from the key generation algorithm of the SE hash and runs A on Key. Here, Key
is either SE.Gen(1λ, 1M ) or SE.TGen(1λ, 1M , IS0) based on whether A is inter-
acting with game G or Ga respectively. Note that the reduction can simulate the
other steps of games G or Ga. Now, the probability that B returns 1 in either case
is exactly equal to the probability that A wins the corresponding games, hence,
B breaks if

∣
∣Pr[GA = 1] − Pr[GA

a = 1]
∣
∣ ≥ negl(λ). This leads to a contradiction

of our assumption.

Lemma 3. Assuming key indistinguishability of SE,
∣
∣Pr[GA

a = 1] − Pr[GA
b = 1]

∣
∣

≤ negl(λ).
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This again follows from the key-indistinguishability of SE as shown in the
previous lemma as the only difference in these games is that the key generation
algorithm for the SE hash has been changed to TGen, hence we skip the proof.

Lemma 4. Assuming key indistinguishability of BARG,
∣
∣ Pr[GA

b = 1] −
Pr[GA

ab = 1]
∣
∣ ≤ negl(λ).

Proof. The only difference in Game Gb and Gab is that the key generation algo-
rithm of the BARG (BARG.Gen) is replaced by the trapdoor key generation
(BARG.TGen) at index 0.

If
∣
∣Pr[GA

b = 1] − Pr[GA
ab = 1]

∣
∣ > negl(λ), then one can construct a PPT adver-

sary B gettingKey as input that breaks the key indistinguishability ofBARG, where
Key is either BARG.Gen(1λ, 1T+1, 1|Cindex|) or BARG.TGen(1λ, 1T+1, 1|Cindex|, 0)
based on whether A is interacting with game Gb or Gab respectively. The reduc-
tion then following in a similar manner as the SE key indistinguishability adversary
described above.

Lemma 5. Assuming somewhere soundness of BARG,
∣
∣Pr[GA

ab = 1] − Pr[GA
0 = 1]

∣
∣ ≤ negl(λ).

Proof. The only difference in Games Gab and G0 is that there is an additional
step which computes the true digest at index 0 and extracts at the 0th index
from ceven using the extraction function of SE. Finally, the adversary wins if and
only if the extracted value matches the true digest along with the usual win
conditions in the previous game.

Note that,
∣
∣Pr[GA

ab = 1] − Pr[GA
0 = 1]

∣
∣ ≤ Pr[BARG.V(BARG.crs, Cindex,Π) = 1∧

((x, y), T, P,HP , crs) /∈ LT M ∧ h0 �= Step(x, P, crs, 0).h̄] ≤
Pr[BARG.V(BARG.crs, Cindex,Π) = 1 ∧ h0 �= Step(x, P, crs, 0).h̄].

Let us assume that there exists a PPT adversary A such that for infinitely
many values of λ ∈ N,

Pr[BARG.V(BARG.crs, Cindex,Π) = 1 ∧ h0 �= Step(x, y, P, crs, 0).h̄] ≥ 1
poly(λ)

.

Notice that h0 �= Step(x, P, crs, 0).h̄ implies that at least one of the conditions
st0 = start, Hx = rt10, HP = rt20 and HT.Hash(dk,�) having rt30 as root must not
be true. If this is indeed true then our construction of Cindex in Fig. 3 implies
that (Cindex, 0) /∈ Lindex.

We now construct the following PPT adversary B playing the semi-adaptive
somewhere soundness game of the BARG as follows

Adversary B playing semi adaptive somewhere soundness game of BARG.
• SE.Keven ← SE.TGen(1λ, 1M , IS0)
• SE.Kodd ← SE.TGen(1λ, 1M , IS1)
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• BARG.crs ← BARG.TGen(1λ, 1T+1, 1|Cindex|, 0)
• dk ← HT.Gen(1λ)
• crs := (SE.Keven,SE.Kodd,BARG.crs, dk).
• (P, aux) ← A1(1λ, crs)
• HP ← stSNARG.TrustHash(crs, P )
• ((x, y), (c,Π)) ← A2(crs, P, aux)
• return (Cindex,Π)

By our assumption, it is clear that BARG.V(BARG.crs, Cindex,Π) = 1 with
non negligible probability but (Cindex, 0) /∈ Lindex. Thus, B will break the semi-
adaptive somewhere soundness of BARG at index 0. Therefore, it must be the
case that for every PPT adversary A, there exists a negligible function negl(λ)
such that for all λ ∈ N,

Pr[BARG.V(BARG.crs, Cindex,Π) = 1 ∧ h0 �= Step(x, y, P, crs, 0).h̄] ≤ negl(λ)

=⇒
∣
∣Pr[GA

ab = 1] − Pr[GA
0 = 1]

∣
∣ ≤ negl(λ)

.

Now, we transition from G0 to the base case for our induction, G1 using the
following sequence of indistinguishable hybrids:

G0,a Identical to G0 except we add an extraction: (h1, {bk
1}k∈[3], {Πk

1 }k∈[3],Π
′
i) ←

SE.Extodd(codd,SE.Kodd) which is not used in the hybrid, hence indistinguisha-
bility follows.

G0,b The BARG key generation’s trapdoor is changed from 0 to 1. This can be
done due to key indistinguishability of BARG.

G0,c The winning condition is changed to: if stSNARG.V (crs, (x, y),HP , (c,Π)) =
1 ∧ ((x, y), T, P,HP , crs) /∈ LT M ∧ h0 = Step(x, y, P, crs, 0).h̄ ∧
{bk

1}k∈[3] = Step(x, y, P, crs, 1).b̄ ∧ {rtk1}k∈[3] = Step(x, y, P, crs, 1).r̄t ∧ st1 =
Step(x, y, P, crs, 1).s̄t, return 1

G0,d The winning condition is changed to: if stSNARG.V (crs, (x, y),HP , (c,Π)) =
1 ∧ ((x, y), T, P,HP , crs) /∈ LT M ∧ h0 = Step(x, y, P, crs, 0).h̄ ∧
{bk

1}k∈[3] = Step(x, y, P, crs, 1).b̄ ∧ rt31 = Step(x, y, P, crs, 1).r̄t ∧ st1 =
Step(x, y, P, crs, 1).s̄t ∧ h1 = Step(x, y, P, crs, 1).h̄, return 1

G0,e The winning condition is changed to: if stSNARG.V (crs, (x, y),HP , (c,Π)) =
1 ∧ ((x, y), T, P,HP , crs) /∈ LT M ∧ h1 = Step(x, y, P, crs, 1).h̄, return 1

The indistinguishability of the last three hybrids follow from the following
lemmas.

Lemma 6. Assuming semi-adaptive somewhere soundness of BARG, extraction
correctness of SE, read and write soundness of HT,

∣
∣Pr[GA

0,b = 1] − Pr[GA
0,c = 1]

∣
∣ ≤ negl(λ).
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Proof. The only difference in Games G0,b and G0,c is that we have added some
additional conditions for the adversary to win along with the ones in the previous
game.

Note that,
∣
∣Pr[GA

0,b = 1] − Pr[GA
0,c = 1]

∣
∣ ≤ Pr[BARG.V(BARG.crs, Cindex,Π) = 1∧

h0 = Step(x, P, crs, 0).h̄ ∧
(

{bk
1}k∈[3] �= Step(x, y, P, crs, 1).b̄

∨{rtk1}k∈[3] �= Step(x, y, P, crs, 1).r̄t ∨ st1 = Step(x, y, P, crs, 1).s̄t
)

].

Let us assume that there exists a PPT adversary A such that for infinitely
many values of λ ∈ N,

Pr[BARG.V(BARG.crs, Cindex,Π) = 1 ∧ h0 = Step(x, y, P, crs, 0).h̄

∧
(

{bk
1}k∈[3] �= Step(x, y, P, crs, 1).b̄ ∨ {rtk1}k∈[3] �= Step(x, y, P, crs, 1).r̄t

∨st1 = Step(x, y, P, crs, 1).s̄t
)

] ≥ 1
poly(λ)

.

Notice that h0 = Step(x, P, crs, 0).h̄ implies that the conditions st0 = start,
Hx = rt10, HP = rt20 and HT.Hash(dk,�) having rt30 as root are true. In other
words, h0 is indeed the true digest at step 0.

Assuming extraction correctness of SE, read and write soundness of HT, we
construct the following PPT adversary B playing the semi-adaptive somewhere
soundness game of the BARG similar to the one in the proof of Lemma 5.

Thus, B will break the semi-adaptive somewhere soundness of BARG at index
1 if (Cindex, 1) /∈ Lindex.

It is now left to show that (Cindex, 1) /∈ Lindex.

Case 1 If the SE verifications in Cindex do not all return 1, then by construction
of Cindex, we have that (Cindex, 1) /∈ Lindex.

Case 2 All SE verifications return 1. Extraction Correctness/ Somewhere binding
property of SE hash implies that h0 = (st0, rt10, rt

2
0, rt

3
0), h1, {bk

1 ,Π
k
1 }k∈[3],Π

′
1

were indeed committed by the prover as the Turing machine output at step 0
and step 1. Now, let us analyze φ(h0, h1, {bk

1 ,Π
k
1 }k∈[3],Π

′
1). By assumption,

we know that h0 = h̄0, i.e., ¯st0, r̄t
1
0, r̄t

2
0, r̄t

3
0 = st0, rt

1
0, rt

2
0, rt

3
0. StepR being a

deterministic function ensures that (l11, l
2
1, l

3
1) are indeed the correct Turing

machine memory locations to be read at step 1. Thus (l̄11, l̄
2
1, l̄

3
1) = (l11, l

2
1, l

3
1).

This along with the deterministic nature of hash tree read write operations
means that we must have,

• (l̄11, l̄21, l̄31) ← StepR(s̄t0)

•
{

(b̄j
1, Π̄k

1 ) := HT.Read( ¯treek
0 , l̄k1 )

}

k∈[3]

• (b̄′3
1 , l̄′31 , s̄t1) := StepW(s̄t0, b̄11, b̄21, b̄31)

• ( ¯tree31, r̄t31, Π̄′
1) := HT.Write( ¯tree30, l̄′31 , b̄′3

1 )



596 R. Ghosal et al.

Read and Write Completeness of the hash tree implies
HT.VerRead(dk1, r̄t

1
0, l̄

1
1, b̄

1
1, Π̄

1
1 ) = 1

HT.VerRead(dk2, r̄t
2
0, l̄

2
1, b̄

2
1, Π̄

2
1 ) = 1

HT.VerRead(dk3, r̄t
3
0, l̄

3
1, b̄

3
1, Π̄

3
1 ) = 1

HT.VerWrite(dk3, r̄t
3
0, l̄

′3
1 , b̄′3

1 , r̄t31Π̄
′
1) = 1

If {bk
1}k∈[3] �= Step(x, y, P, crs, 1).b̄, then the read soundness assumption of

HT implies that
(

HT.VerRead(dk, r̄t10, l̄
k
1 , bk

1 ,Π
k
1 ) = 1

)

k∈[3]
happens with a negligible probabil-

ity. Thus, with all but negligible probability we have that (Cindex, 1) /∈ Lindex

and we are done.
Let us say this is not the case, i.e., {bk

1}k∈[3] = Step(x, y, P, crs, 1).b̄, then the
deterministic nature of the Turing machine write function StepW implies that
st1 = s̄t1. Thus, for our assumption to be valid, it must be that {rtk1}k∈[3] �=
Step(x, y, P, crs, 1).r̄t. If rt11 �= ¯rt11 = rt10 or rt21 �= ¯rt21 = rt20, then the definition
of φ implies that (Cindex, 1) /∈ Lindex. If this is not the case, then the only other
possible option is rt31 �= ¯rt31. Now, the write soundness of HT implies that with
all but negligible probability, HT.VerWrite(dk3, r̄t

3
0, l̄

′3
1 , b̄′3

1 , rt31,Π1) �= 1 must
hold. If this is indeed true then our construction of Cindex in Fig. 3 implies
that (Cindex, 1) /∈ Lindex.

Lemma 7.
Pr[GA

0,c = 1] = Pr[GA
0,d = 1].

Proof. Note that by definition, h1 = st1, rt
1
1, rt

2
1, rt

3
1. We already have that

rt11, rt
2
1, rt

3
1 = Step(x, y, P, crs, 1).r̄t and st1 = Step(x, y, P, crs, 1).s̄t. Thus

h1 = Step(x, y, P, crs, 1).h̄ if and only if rt31 = Step(x, y, P, crs, 1).r̄t ∧ st1 =
Step(x, y, P, crs, 1).s̄t.

Lemma 8.
Pr[GA

0,d = 1] ≤ Pr[GA
0,e = 1].

Proof. The number of conditions for the adversary to win simply decreases from
Game G0,d to Game G0,e, thus the probability of success must not increase.

A closer observation shows that G0,e is indeed identical to the case when one
puts i = 1 in game Gi.

Combining these together, we show the base case of the induction to be true.
Thus,

Pr[GA = 1] ≤ Pr[GA
1 = 1] + negl(λ).

Assuming that our induction hypothesis holds for some j ∈ [T − 1], we prove
that it holds for j + 1 as well. We note that by chain rule, it suffices to show
that Pr[GA

j = 1] ≤ Pr[GA
j+1 = 1] + negl(λ). We can show this by a sequence of

indistinguishable inner hybrids to transition from Game Gj to Gj+1 which look
like the following:
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Gj,a Identical to Gj except the SE hash extraction is done at Sj+1 instead of Sj .
Indistinguishability follows from the key indistinguishability of SE hash.

Gj,b Extraction for one of the SE hashes changes from ISj−1 to ISj+1 . However,
this does not affect the reduction in any way as extraction at indices j − 1
and j + 1 are not used by the reduction at any stage.

Gj,c The BARG key generation has a trapdoor at j + 1. This can be done due to
key indistinguishability of BARG.

Gj,d The winning condition is changed to: if stSNARG.V (crs, (x, y),HP , (c,Π)) =
1 ∧ ((x, y), T, P,HP , crs) /∈ LT M ∧ hj = Step(x, y, P, crs, j).h̄j ∧ {bk

j+1}k∈[3] =
Step(x, y, P, crs, j + 1).b̄j+1 ∧ rt3j+1 = Step(x, y, P, crs, j + 1).r̄tj+1 ∧ st1 =
Step(x, y, P, crs, 1).s̄t, return 1.

Gj,e The winning condition is changed to: if stSNARG.V (crs, (x, y),HP , (c,Π)) =
1 ∧ ((x, y), T, P,HP , crs) /∈ LT M ∧ hj = Step(x, y, P, crs, j).h̄j ∧ {bk

j+1}k∈[3] =
Step(x, y, P, crs, j + 1).b̄j+1 ∧ rt3j+1 = Step(x, P, crs, j + 1).r̄tj+1 ∧ st1 =
Step(x, y, P, crs, 1).s̄t ∧ hj+1 = Step(x, y, P, crs, j + 1).h̄, return 1

Gj,f if stSNARG.V (crs, (x, y),HP , (c,Π)) = 1 ∧ ((x, y), T, P,HP , crs) /∈ LT M ∧
hj+1 = Step(x, y, P, crs, j + 1).h̄, return 1

The last three steps follow identically as Lemmas 6, 7, 8.
Observe Gj,f is identical to outer Game Gj+1 with indices renamed.
Thus, combining the lemmas above, we get

Lemma 9. Assuming extraction correctness of SE, semi-adaptive somewhere
soundness of BARG, read and write soundness of HT,

Pr[GA
j = 1] ≤ Pr[GA

j+1 = 1] + negl(λ).

This follows from the combination of previous lemmas where we showed that the
winning probability in the sequence of inner hybrids are either negligibly close
to each other or increases (from Game Gj,e to Game Gj,f ).

Finally, we will show that the winning probability of A is 0 in the final game
GT .

Lemma 10. Assuming extraction correctness of SE hash,

Pr[GA
T = 1] = 0.

Proof. The extraction correctness of SE ensures that hT was indeed the state
committed by the prover. Now, hT = h̄T cannot be true since our assump-
tion of (x, y, T, P,HP , crs) /∈ LT M means that Turing Machine state after T
steps cannot be an accept state. Thus, the adversary’s win conditions cannot be
simultaneously satisfied.

Note that this step does not require us to resort to BARG soundness. Due to
our specific construction of h̄T , all we need ensure is that the state committed
by the prover does not correspond to the correct state.

Compiling the lemmas together and using chain rule, it must be true that

Pr[GA = 1] ≤ negl(λ)

which is a contradiction to our assumption that the scheme is not sound.
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Lemma 11. Assuming T = poly(m,n), T,m, n ≤ 2λ, the stSNARG protocol in
Fig. 2 implies the unconditional existence of a publicly verifiable non interactive
succinct delegation scheme sDel as defined above.

Proof. We provide an explicit construction of sDel assuming a semi-trusted
SNARG stSNARG. Without loss of generality, we can assume that T is known
a-priory.

– sDel.Setup(1λ): Run stSNARG.Setup to generate crs.
– sDel.ProgAuth(1λ, crs): Generate a program P ∈ {0, 1}m, state and run
stSNARG.TrustHash(crs, P ) to get HP .

– sDel.I(1λ, crs): Generate x ∈ {0, 1}n .
– sDel.W (crs, P, state,HP , x): Generate y ∈ {0, 1} and run stSNARG.P(crs, P, x,

y,HP ) to get Π.
– sDel.V (crs, x, y,HP ,Π): Run stSNARG.V(crs, x, y,HP ,Π) return V’s output.

Completeness and soundness of sDel follows from the completeness of stSNARG
in a straightforward way. Refer to Supplementary material for detailed analy-
sis. The proof size and verifier run time of stSNARG is poly(λ, log T )=poly(λ,
log |P |, log |x|). Similarly, the prover run time of sDel is also poly(λ, |P |, |x|).

6 Semi-Trusted Succinct Non-Interactive Argument
with Zero Knowledge (ZK-stSNARG)

A publicly verifiable semi-trusted non interactive argument with zero-
knowledge scheme ZKstSNARG : (ZKstSNARG.Setup,ZKstSNARG.TrustHash,
ZKstSNARG.P,ZKstSNARG.V) is defined as

– ZKstSNARG.Setup(1λ, 1T ): A randomized setup algorithm which on input
security parameter λ, and number of Turing Machine steps T , outputs crs.

– ZKstSNARG.TrustHash(crs, P ): A deterministic an honest algorithm which on
input crs and a program P ∈ {0, 1}m for some m < 2λ, computes a suc-
cinct digest HP of P . It then produces a statistically binding and extractable
commitment CP of HP under randomness r1. It then gives out a pair public
output POut = CP and private output SOut = (HP , r). Here SOut is made
available to the prover only.

– ZKstSNARG.P(crs, P, x, y,SOut,POut): A deterministic prover algorithm
which on input the crs, P ∈ {0, 1}m for some m < 2λ, x ∈ {0, 1}n for some
n < 2λ, y ∈ {0, 1}, SOut, and POut outputs a proof Π.

– ZKstSNARG.V(crs, x, y,POut,Π): A deterministic verification algorithm
which on input crs, x, y, public output POut of stSNARG.TrustHash and proof
Π, either accepts(output 1) or rejects(output 0) it.

We define the following language

LT M := {(P, x, y, T,POut, crs)
∣
∣∃(HP , r1) such that T M(P, x, y) = 1∧

(POut, (HP , r1)) = ZKstSNARG.TrustHash(crs, P )}.



Non-Interactive Publicly-Verifiable Delegation of Committed Programs 599

A ZKstSNARG satisfies the standard completeness, soundness and efficiency
properties as stSNARG. It also has an additional property:

Non Interactive Zero Knowledge. For all (P, x, y, T,POut, crs) ∈ LT M,
there exists a PPT simulator Sim := (Sim1,Sim2,Sim3) such that the distri-
butions of

(crs, x, y,POut,Π)
∣
∣(crs, aux) ← Sim1(1λ, 1T ),

(POut, aux′) ← Sim2(crs, aux),
Π ← Sim3(aux′, crs, (x, y),POut)

and

(crs, x, y,POut,Π)
∣
∣crs ← ZKstSNARG.Setup(1λ, 1T ),

(POut,SOut) ← ZKstSNARG.TrustHash(crs, P ),
Π ← ZKstSNARG.P(crs, P, x, y,POut,SOut)

are indistinguishable.
To achieve non interactive zero knowledge, we use the following additional

primitives, namely (1) a statistically binding extractable commitment scheme
Combind as defined in Sect. 3, and (2) a Non Interactive Zero Knowledge argument
NIZK := (NIZK.Gen,NIZK.P,NIZK.V).

The protocol in Fig. 5 demonstrates the extension of stSNARG to achieve
Zero-Knowledge. The CRS in Fig. 5 contains a statistically binding commitment
to 0. This lets us extend LT M to the language,

Lhyb :=

{

(P, x, y, T, CP , crs)
∣
∣∃(HP , r1) such that T M(P, x, y) = 1

∧(CP , (HP , r1)) = ZKstSNARG.TrustHash(crs, P )

∨
(

∃r such that crs contains a commitment to 1 under randomness r
)

.

}

such that any witness to LT M is vacuously a witness to Lhyb due to binding
property of the commitment. We use NIZK for the following NP language:

L :=

{

(c.com, Π.com, (crs, x, y, T ), CP )
∣
∣
∣∃r1, r2, r3, r4, c, Π, HP such that

(

CP = Com.C(Combind.Key1, HP ; r1) ∧ c.com = Com.C(Combind.Key2, c; r2)

∧Π.com = Com.C(Combind.Key3, Π; r3) ∧ stSNARG.V(crs, ((x, y), T, HP ), (c, Π)) = 1

)

∨crs contains Com.C(Combind.Key4, 1; r4)

}

Also, note that in this construction, the underlying stSNARG is built for the
index circuit C ′

index which is identical to Cindex except that HP is a part of the
input and not hard-coded in the circuit as it is not known to the verifier.
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Theorem 4. Assuming the existence of semi-trusted SNARGs and Extractable
Statistically Binding Commitment Schemes, and NIZK as described in Sects. 3
and 5, Fig. 5 is a publicly verifiable non-interactive semi-trusted SNARG with
zero knowledge such that CRS size, proof size and verifier time are poly(λ, log T )
and prover run time is poly(λ, T ).

Fig. 5. Semi-Trusted Universal Turing Machine Delegation with Non Interactive Zero-
Knowledge

Completeness and Efficiency. Completeness follows from the completeness of
the underlying stSNARG,NIZK and the binding property of the commitment.
Similarly succinctness follows from the efficiency of stSNARG, NIZK, and the
binding commitment Combind.

Soundness. The soundness following by a straightforward reduction using the
CRS indistinguishability and Statistical Binding of Combind, and the soundness
of the underlying stSNARG. We can construct an adversary that breaks the
soundness of the underlying stSNARG using the following steps:

1 Change the keys for Combind to be generated by TGen. This can be done due
to CRS indistinguishability.
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2 The reduction can now extract the committed proof from c.com and Π.com.
This is because the reduction has access to the trapdoor commitment key.

3 The stSNARG can now output the extracted proof. The extraction correctness
of Combind ensures that if ZKstSNARG is not sound, then this adversary breaks
the soundness of stSNARG.

A formal analysis is presented in the Supplementary Material.

Zero-Knowledge.

zk − stSNARG Simulator NIZK.Sim := (Sim1,Sim2,Sim3)
• Sim1(1λ, 1T ) :

1. SE.Keven ← SE.Gen(1λ, 1Mλ,T , 1Lλ)
2. SE.Kodd ← SE.Gen(1λ, 1M , 1L)
3. BARG.crs ← BARG.Gen(1λ, 1T+1, 1|Cindex|)
4. dk ← HT.Gen(1λ)
5. Combind.Key1 ← Com.Gen(1λ)
6. Combind.Key2 ← Com.Gen(1λ)
7. Combind.Key3 ← Com.Gen(1λ)
8. Combind.Key4 ← Com.Gen(1λ), r4 ←$ N, z ← Com.C(Com.Key4, 1; r4)
9. NIZK.crs ← NIZK.Gen(1λ)

10. return
crs := (SE.Keven,SE.Kodd,BARG.crs, dk,Combind.Key1.Combind.Key2,
Combind.Key3, z,NIZK.crs) and aux := r4

• Sim2(crs, aux) :
1. r1 ←$ {0, 1}λ, CP ← Com.C(Combind.Key1, 0; r1) return POut := CP .
2. return (POut, aux′ := aux)

• Sim3(crs, aux′, (x, y),POut := CP ) :
1. r2 ←$ {0, 1}λ, c.com ← Com.C(Combind.Key2, 0; r2)
2. Generate a dummy proof Π̂
3. r3 ←$ {0, 1}λ,Π.com ← Com.C(Combind.Key3, 0; r3)
4. NIZK.Π ← NIZK.Prove

(

NIZK.crs,
(

c.com,Π.com, (crs, x, y, T ), CP

)

,
(

⊥,⊥,⊥, aux
))

5. return (c.com,Π.com,NIZK.Π).

The proof of zero-knowledge follows from a sequence of hybrids.

– We define a game G′ which is identical to G0 except that crs has a commitment
of 1 instead of 0. Note that an honest prover does not make use of this
section of the crs in its proof. Consider hyb′ as the output distribution of
intermediate G′. All other algorithms in G′ remains identical as G0. hyb0
must be indistinguishable from hyb′, otherwise we can construct an efficient
adversary that breaks the computational hiding property of Combind.

– The hybrid game G′′ with output distribution hyb′′ works like G′ except
stSNARG.P computes (c.com,NIZK.Π) honestly and then ignores c.com and
outputs (c1,NIZK.Π) where c1 is the statistical binding commitment to the
0 string using Combind. The indistinguishability of hyb′ and hyb′′ follows from
the computational hiding property of Combind.
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– We now define another hybrid game G′′′ where everything remains identical
as G′′ but the NIZK proof NIZK.P proves that crs has a commitment of 1
using randomness r as a witness. This is indeed a valid witness for the same
language L∗

hyb. Observe that G′′ and G′′′ have identical CRS. However, NIZK.P
in each case uses different witnesses, namely r and ((c, rcom2),Π) respectively.
Thus, the Witness Indistinguishability of NIZK implies indistinguishability of
G′′ and G′′′.

– In the next hybrid G′′′′, trusted commitment generator is replaced by Sim2

which on input crs simply outputs a hiding commitment to the 0 string.
Note that the output of Sim2 is not used anywhere else in the proof and
its output is computationally indistinguishable from the public output of
ZKstSNARG.TrustHash(crs, P ) because of the hiding property of commitment
scheme.

– In the final game G1, Sim1 uses the same crs as the previous hybrid. Sim3

ignores all operations performed by the prover and only outputs c1 which is
the statistical binding commitment to the 0 string using Combind and sends
a NIZK proof as G′′′′. The output distributions of G′′′′ and G1 are indeed
identical as the output of Sim3 solely depends on the output of Sim1,Sim2

and the commitment of the 0 string c1.

Combining all the hybrids, we prove that G0 and G1 have output distributions
which are computationally indistinguishable.

Public Verifiable Non Interactive Succinct Delegation with Zero Knowledge. A
direct extension of Lemma 11 gives us the following corollary,

Corollary 2. Assuming T = poly(m,n), T,m, n ≤ 2λ, the ZKstSNARG pro-
tocol in Fig. 5 implies the unconditional existence of a publicly verifiable non
interactive succinct delegation scheme with zero knowledge.

The zero knowledge simulator for the delegation scheme zk − sDel.Sim :=
(zk − sDel.Sim1, zk − sDel.Sim2) can simply run the stSNARG ZK-simulator.
More specifically, zk − sDel.Sim1 and zk − sDel.Sim2 call zk−stSNARG.Sim1 and
zk − stSNARG.Sim2 respectively above. The proof follows in a straightforward
manner, hence we skip the details.
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Abstract. Laconic function evaluation (LFE) allows Alice to compress
a large circuit C into a small digest d. Given Alice’s digest, Bob can
encrypt some input x under d in a way that enables Alice to recover
C(x), without learning anything beyond that. The scheme is said to be
laconic if the size of d, the runtime of the encryption algorithm, and the
size of the ciphertext are all sublinear in the size of C.

Until now, all known LFE constructions have ciphertexts whose size
depends on the depth of the circuit C, akin to the limitation of levelled
homomorphic encryption. In this work we close this gap and present
the first LFE scheme (for Turing machines) with asymptotically optimal
parameters. Our scheme assumes the existence of indistinguishability
obfuscation and somewhere statistically binding hash functions. As fur-
ther contributions, we show how our scheme enables a wide range of new
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1 Introduction

Laconic function evaluation (LFE) is a cryptographic primitive recently intro-
duced by Quach, Wee, and Wichs [FOCS’18]. Using LFE, Alice can compress a
large circuit C into a small digest d. Given Alice’s digest, Bob can encrypt some
input x under d in a way that enables Alice to recover C(x) without learning
anything about Bob’s input. The scheme is said to be laconic if the size of the
digest d, the runtime of the encryption algorithm LFE.Enc, and the size of the
ciphertext c are all sublinear in the size of C.

LFE is particularly interesting in the context of two-party and multi-party
computation (2PC, MPC), since it enables the construction of protocols with
novel properties. As an example, LFE enables a “Bob-optimised” two-round
2PC protocol in which Alice does all the work, while Bob’s computation and
communication are smaller than both the function being evaluated and Alice’s
input. However, for all known LFE constructions [QWW18,AR21,NRS21], the
runtime of the encryption procedure and the size of Bob’s ciphertext depend
on the depth of the circuit being evaluated by Alice. This is a severe limita-
tion which restricts the applicability of this primitive to “shallow” circuits. In
some sense, this mirrors the efficiency gap between levelled and fully homomor-
phic encryption. This leaves us with the following open problem (also stated
in [QWW18]):

Is it possible to construct LFE where Bob’s work is independent of the circuit
size?

1.1 Our Results

We answer this question in the affirmative and our main result is the construc-
tion of an asymptotically optimal LFE scheme assuming indistinguishability
obfuscation [BGI+01] and somewhere statistically binding (SSB) hash func-
tions [HW15]. Our construction enables the computation of any Turing machine
M and, unlike all prior constructions [QWW18] [AR21] [NRS21], removes the
dependency on the depth of the circuit (the runtime of the Turing machine in
our case). In the standard simulation-security setting, we obtain the following
result.

Theorem 1 (Informal). Assuming indistinguishability obfuscation for circuits
and somewhere statistically binding hash functions, there exists a simulation
secure LFE scheme with the following parameters:

– The size of the digest d is poly(λ).
– The runtime of the encryption procedure is O(|x| + |M(x)|) · poly(λ).
– The size of the ciphertext c is O(|x| + |M(x)|) · poly(λ).

If we relax the security to an indistinguishability-based notion, we can further
improve the parameters by removing the dependency on the size of the output.
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Theorem 2 (Informal). Assuming indistinguishability obfuscation for circuits
and somewhere statistically binding hash functions, there exists a LFE scheme
with ciphertext indistinguishability and the following parameters:

– The size of the digest d is poly(λ).
– The runtime of the encryption procedure is O(|x|) · poly(λ).
– The size of the ciphertext c is O(|x|) · poly(λ).

As for the underlying assumptions, SSB hash functions [OPWW15] can be con-
structed from a variety of standard assumptions (e.g. LWE or DDH), whereas
indistinguishability obfuscation is a less understood primitive and currently the
subject of a large body of research. Numerous recent works [BDGM20,GP20,
JLS20,WW21] show provably-secure constructions of indistinguishability obfus-
cation for circuits under simple assumptions, some of which are regarded as
well-founded.

We briefly describe some additional contributions which show how our con-
struction enables a wide range of new results in cryptography.

(1) Witness Encryption for Turing Machines: We construct the first
witness encryption where the size of the ciphertext depends only on the size
of the witness and the security parameter (but not on the NP relation R).
Furthermore, the decryption runtime is only proportional to the runtime of
the Turing machine computing R, rather than its circuit representation. This
implies the first ABE for Turing machines [GKP+13] from falsifiable assump-
tions. Prior to our work, Goldwasser et al. [GKP+13] constructed the same
primitive from extractable witness encryption,1 which is a considerably stronger
and non-falsifiable assumption, whose validity has often been called into ques-
tion [GGHW14,BP15,BSW16].

(2) NIZKs with Optimal Prover Complexity: By applying a known trans-
formation [KNYY19], we construct the first prover-optimal NIZK proof system,
where the prover’s computational complexity depends only on the size of the
witness and on the security parameter (and is otherwise independent of the size
of the NP relation).

(3) MPC Compiler: By applying the transformation described in [QWW18]
we obtain a compiler for multi-party computation (MPC) that reduces the com-
munication complexity to be independent of the circuit size, without introducing
additional rounds of interaction.

1.2 Technical Overview

Following is a brief overview of the techniques developed in this work. Before
delving into our approach, we briefly discuss why trivial solutions fall short in
constructing LFE.
1 We should also mention a recent work of Ananth et al. [AFS19], which constructs

ABE for RAM programs from LWE, although it achieves only a weaker form of
efficiency where the public parameters and the ciphertexts grow with the runtime of
the RAM program.
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Why Trivial Solutions Fail. An astute reader may wonder why this is still a
challenging problem, given iO for circuits. One plausible approach to constructing
LFE via this route would be to place the hash of the circuit d := H(C) in the
common reference string. Bob could then obfuscate and send Alice the following
universal circuit

U(C′) : if d
?= H(C′) return C′(x).

Intuitively, Alice should only be able to run the obfuscated circuit on C unless
she is able to find a collision for H. Unfortunately, this approach has two major
flaws:

(1) Efficiency: The construction is not laconic since both the runtime of Bob and
the size of the ciphertext depend on the size of C. Even recent constructions
of iO for Turing machines [AJS17] suffer from the drawback that the size
of the obfuscated Turing machine depends on the maximum input size.
An exception is the recent work of [BFK+19] which, however, requires a
large shared random string or a random oracle. At present, constructing iO
without input-size dependence remains an open problem.

(2) Provable Security: The above informal argument assumes the strong notion
of virtual-blackbox obfuscation, which is known to be impossible [BGI+01].
Constructing a provably secure scheme requires a significant modification
of the template in order to be able to leverage the weak indistinguishability
security of iO.

Even if iO for Turing machines does not appear to be sufficient to construct
LFE, it turns out that other techniques from the area [KLW15,CCHR15,CH16,
CCC+16,ACC+16,GS18] will help us in building a provably-secure scheme, as
we explain in the following.

To understand the challenge in more detail, it is useful to compare the notion
of LFE with succinct randomized encodings (SRE) [BGL+15]: SRE allows one
to encode an input x with respect to a public Turing machine M in such a way
that nothing is revealed beyond M(x). However, the runtime of the encoding
algorithm and the size of the encoding depend on the size of M, whereas in
LFE Bob’s ciphertext crucially only depends on the size of his input (and the
security parameter). Furthermore, SRE do not allow Alice to privately hash her
circuit/Turing machine.

Our Approach and Differences to [GS18]. Readers familiar with the work
of [GS18] may wonder why their results cannot be used “off the shelf” as fol-
lows. Alice computes the digest of her encrypted input along with the circuit
C. Then she sends the resulting hash to Bob, who computes a succinct ran-
domised encoding as specified in [GS18], except using Alice’s digest. Then Alice
can just load C into the memory of the Turing machine M, thus allowing us
to use the result of [GS18] off-the-shelf. Unfortunately, this solution does not
work, as [GS18] states that the hash is binding only for the non-⊥ locations
of the database (whose length is denoted by the parameter n). This raises the
question whether adding C to the database should result in a hash which is
“binding for C”. - If yes, namely the hash is binding for C, then the parameter
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n will grow with the size of |C|. In this case, the complexity of hash update (and
consequently the runtime of Bob) will be poly(n, λ, log M ). Here, M denotes the
size of the database. Since n ≥ |C|, this means that the runtime of Bob would
depend on the size of C, which nullifies Bob’s efficiency. - If no, namely the hash
is not binding for C, then we do not see a direct way to prove the security of
the construction, since we cannot rule out that Alice knows a different circuit C′

that collides with C, thus breaking the security of the encryption. Note that the
hash is compressing, so collisions always exist even if the hash is computed hon-
estly. The key observation here is that the size of [GS18]’s hash doesn’t depend
on the size of the unassigned (= ⊥) locations, but does depend on the number
of specified locations (= n). As such loading the circuit C into memory, would
increase the number of specified locations.

Our construction builds on the techniques introduced in [GS18], and requires
us to modify the construction in a non-blackbox manner, in order to constrain
Alice to execute the Turing machine M on Bob’s input while at the same time
making Bob’s runtime independent of it. To gain some intuition on the approach,
we consider the simplified setting in which both parties know a public Turing
machine M, where the transition function is denoted by CM and Bob holds an
input x. Later in this overview, we show that this template can be lifted to the
more generic setting where Alice evaluates a private Turing machine by letting
M be a universal Turing machine with an additional input. To establish some
notation, consider the insecure protocol where Bob sends his input x in plain:
Alice can evaluate M by maintaining a database D that encodes x and the
current state of the memory of M. Each operation of CM consists of reading the
current state, one bit from Alice, and one from Bob.

Garbled Circuits. One possible way to secure this approach is to use Yao’s
garbled circuits [Yao82,Yao86], that allow for the secure computation of a circuit
C by creating a garbled version ˜C and encoding the input x = (x1, . . . , xn) as
a set of labels (lbs1, . . . , lbsn). Security is guaranteed as long as a single input
encoding is revealed to the evaluator. If we were to garble the step circuit CM,
we immediately run into two problems: (1) From an efficiency perspective, Bob
would need to garble one circuit for each step of the computation, which would be
more expensive than just evaluating M locally. (2) With regards to functionality,
the evaluator needs to receive the labels corresponding to an input encoding. This
corresponds to a particular set of locations in D (depending on which bits CM

needs to read). The difficulty here stems from the fact that the state of D evolves
over the course of the computation, as it includes the memory tape of the Turing
machines. Thus, we would need a way to dynamically select labels depending on
the intermediate state of D. Fortunately, (1) can be solved using iO: Instead of
garbling all step circuits explicitly, Bob sends an obfuscated circuit that, given
an index i, returns the ith garbled step circuit. The remainder of this overview
is devoted to solving (2).

Updatable Laconic Oblivious Transfer. Before explaining our solution, we
recall the notion of updatable laconic oblivious transfer (ULOT) [CDG+17].
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With an ULOT protocol, a large database D can be hashed to a small digest d
offering the sender two operations.

Read: Given a pair of messages (m0,m1) and an index i, the sender can compute
a ciphertext c such that the receiver (knowing D and d) can recover mD[i],
where D[i] is the value of the bit at the ith location of D.

Write: Given |d|-many pairs of messages {m0,i,m1,i}i∈[|d|], a bit b, and index i,
the sender can compute a ciphertext c such that the receiver (knowing D and
d) can recover

(

mD′
1,1, . . . , mD′

|d|,|d|
)

. Here, d′ is the hash of D′, the database
D updated by writing b at index i.

Equipped with this functionality, we can now devise a mechanism to provide
the evaluator with the appropriate input encodings. Bob compresses his input x,
using the hashing procedure of the ULOT scheme and sends it to Alice, who will
act as the evaluator. At each step of the computation, Alice is provided with the
labels corresponding to the database locations needed by the current step circuit.
She then uses these labels to evaluate the garbled step circuit, which performs
the computation step and computes a ULOT ciphertext containing the pairs of
labels for the next step of the computation. In the next step, Alice will be able
to retrieve the set corresponding to the locations of the updated database, by
running the receive algorithm of the ULOT. These include an encoding of the
updated hash of D, as a result of the write operation of the step circuit.

Piecing It Together. Now only two problems remain. First, the state of D is
given in clear to Alice, meaning the intermediate values of the computation are
leaked. This is solved by adding a layer of symmetric encryption to the memory
of the Turing machine. To ensure the correctness of the computation, we remove
this layer before feeding the input into CM. The output is then re-encrypted
using a new key that is only available in the next step circuit. As this happens
within the garbled circuit, security is preserved. We can now lift the construction
to the setting where Alice’s M is not known to Bob. This is done by including an
additional ULOT digest of the description of the Turing machine, which allows
the step circuit to read the description (via ULOT read) and determines the
next operation of the computation. Given the above procedure, the database
lookup algorithm can be naturally extended to the case of an additional tape,
encoding the machine’s instructions. To ensure that the random coins used in
the garbled circuits are consistent across different computations steps, we use a
(puncturable) PRF to sample the labels.

The Final Scheme. We provide some intuition for the encryption and decryp-
tion procedures in Fig. 1. For the encryption procedure, Bob starts by obfus-
cating the Garbling Step Circuit and computing the first set of labels that will
be needed to evaluate the garbled circuit. These are then sent along with his
encrypted input to Alice. For the decryption procedure, Alice evaluates the gar-
bled circuit using the first set of labels sent by Bob. The output from the Step
Circuit is then used for receiving the updatable laconic oblivious transfer. This
is repeated for all steps of the computation until the final output is returned by
the decryption procedure.
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Fig. 1. High level overview of the encryption and decryption procedures.

Security Proof. Next, we provide some intuition about the security argument.
To prove the security of our construction we use a similar proof strategy to
that of [GS18]. In particular, our proof proceeds via a hybrid argument. In each
hybrid we change the way the obfuscated circuit computes the garbled circuits
for each step of the computation. Each garbled step circuit can be computed
in three modes. The first mode is real, where the computations are just as in
the real protocol. The second mode is dummy, where the output of the garbled
circuit is constant and hardwired, but the same as in the real execution. The
third mode is sim, which is similar to real mode, with the difference being that
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the garbled circuit only outputs dummy values which are not the same as in the
real execution. We cannot change directly from real mode to sim mode because
at each step of the computation the labels from the previous step are visible to
the adversary. Hence, we first need to change to dummy mode and then to sim
mode. We show a set of rules that define a pebbling game, where the pebbles are
represented by simulation slots. The aim of the game is to switch the pebbles
from real (white pebbles) to sim (black pebbles), while minimizing the number of
nodes in dummy (grey pebbles). Our objective is to minimize the number of grey
pebbles at any point in time because the size of the obfuscated circuit grows with
the number of simulation slots in dummy mode. Finally, with help of a pebbling
strategy [GS18], we prove that our LFE construction is secure while having only
a poly-logarithmic number of grey pebbles at any point in the simulation.

Application: Witness Encryption for Turing Machines. We show how
our newly constructed LFE scheme allows us to construct witness encryption
for Turing machines. To encrypt a message m with respect to a relation R,
the witness encryption algorithm computes the crs of the LFE and hashes d ←
LFE.Hash(crs,MR), where the Turing machine is defined as

MR(m,w) :=

{

return m if R(x,w) = 1
return ⊥ else

.

Then it returns the obfuscation of a circuit obC ← iO(Cx,m) where Cx,m is
defined as

Cx,m(w) := return LFE.Enc(crs, d, (m,w)).

Given a witness w, one can recover m by querying the obfuscated circuit and
evaluating the LFE decryption algorithm:

LFE.Dec(crs,MR, obC(w)) = LFE.Dec(crs,MR,Cx,m(w))
= LFE.Dec(crs,MR, LFE.Enc(crs, d, (m,w)))
= MR(m,w)
= m.

Note that the size of the ciphertext is only dependent on the size of the witness
w, the size of the message m, and the security parameter. Furthermore, the
runtime of the decryption algorithm only depends on the runtime of the Turing
machine computing MR. Security follows via a standard puncturing argument.

Application: ABE for Turing Machines. We also sketch how to turn the
above witness encryption into an ABE for Turing machines. This is a standard
transformation [GGSW13] and therefore we only include an outline of the con-
struction. To delegate a decryption key for a Turing machine M, the authority
computes a signature σ on the tuple (crs, dM), where dM ← LFE.Hash(crs, M̃) and
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M̃(x,m) returns m if and only if M(x) = 1. Then encrypting a message m with
respect to an attribute x can be done by obfuscating

Cx,m(crs, d, σ, x) : if Verify(σ, (crs, d)) = 1; return LFE.Enc(crs, d, (m,x)).

Note that the runtime of the encryption algorithm (and consequently the size
of the ciphertext) only depends on the size of the attribute x and the message
m. Furthermore, the runtime of the decryption algorithm is only proportional
to the runtime of the Turing machine M.

For additional details and further applications, we refer the reader to the full
version.

1.3 Related Works

The notion of LFE was introduced in the work of Quach et al. [QWW18], in
which they presented a construction for depth-bounded polynomial-size cir-
cuits from the learning with errors problem. Work by Pang, Chen, Fan, and
Tang [PCFT20] extended the notion of (single-input) LFE to the multi-input
settings, by additionally assuming the existence of indistinguishability obfus-
cation. Their protocol uses single-input LFE (and in particular the scheme
from [QWW18]) generically. Thus, our scheme can be plugged into their work
to obtain improved parameters.

Recent work by Agrawal and Roşie [AR21] shows a new construction of
LFE with adaptive security (based on the ring learning with errors assumption).
However, the scheme is limited to the computation of NC1 circuits. Another
recent work by Naccache, Roşie, and Spignoli [NRS21] improves the concrete
efficiency of LFE. In particular, the authors present a construction based on
the LWE assumption with asymptotically smaller parameters than those used
in [QWW18]. However, their construction is restricted to the class L/poly, i.e.,
the class of circuits that can be represented by branching programs of polynomial
length.

2 Definitions

Let λ ∈ N denote the security parameter. We say that a function negl(·) is
negligible if it vanishes faster than the inverse of any polynomial. Given a
set S, we denote by s ←$ S the uniform sampling from S. We say that an
algorithm is PPT if it can be implemented by a probabilistic Turing machine
running in time poly(λ). Let X and Y denote two random variables and let
{X}λ∈N and {Y }λ∈N be two distribution ensembles. We say that these dis-
tributions are computationally indistinguishable if for all PPT algorithms A,
|Prx←Xλ

[A(x) = 1] − Prx←Yλ
[A(x) = 1]| ≤ negl(λ). We denote this by Xλ

c≈
Yλ. Let Gpar denote a game, defined relative to a set of parameters par, where an
adversary A interacts with a challenger that answers oracle queries issued by A.
We denote the output of the game Gpar, between a challenger and an adversary
A, as GA

par. A is said to win the game if GA
par = 1. We define the advantage of

A in Gpar as AdvGpar,A := Pr[GA
par = 1].
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2.1 Laconic Function Evaluation for Turing Machines

Here, we adapt the definition of laconic function evaluation (LFE), a primitive
recently introduced by Quach, Wichs, and Wee [QWW18], to that of LFE for
Turing machines. The runtime of the Turing machine, denoted T , is publicly
known and available to all parties. Without loss of generality we assume the
Turing machine to be oblivious.

Definition 1 (Laconic Function Evaluation for Turing Machines).
A laconic function evaluation scheme LFE := (LFE.Gen, LFE.Hash, LFE.Enc,
LFE.Dec) for Turing machines is defined as the following tuple of PPT algo-
rithms.

crs ← LFE.Gen
(

1λ, 1N
)

: Given the security parameter 1λ and the block size 1N

(encoded in unary), the generation algorithm returns a common reference
string crs.

d ← LFE.Hash(crs,M): Given the common reference string crs and the descrip-
tion of a Turing machine M, the compression algorithm returns a digest d.

c ← LFE.Enc(crs, d, x): Given the common reference string crs, a digest d, and
a message x, the encoding algorithm returns a ciphertext c.

y ← LFE.Dec(crs,M, c): Given the common reference string crs, the description
of a Turing machine M, and a ciphertext c, the decoding algorithm returns
a message y.

For correctness, we require the encoding of an input with respect to the digest
of a Turing machine, when decoded, to return the same result as evaluating the
machine on the input. A more formal definition follows.

Definition 2 (Correctness). A laconic function evaluation scheme LFE :=
(LFE.Gen, LFE.Hash, LFE.Enc, LFE.Dec) for Turing machines is correct if for all
λ ∈ N, N ∈ N, for all Turing machines M, and all messages x it holds that

Pr

⎡

⎢

⎢

⎣

M(x) = y

∣

∣

∣

∣

∣

∣

∣

∣

crs ← LFE.Gen(1λ, 1N )
d ← LFE.Hash(crs,M)
c ← LFE.Enc(crs, d, x)
y ← LFE.Dec(crs,M, c)

⎤

⎥

⎥

⎦

= 1,

where the probability is taken over the random coins of LFE.Gen and LFE.Enc.

The security notion captures the requirement that the encryption of a mes-
sage x with respect to a compressed Turing machine M reveals nothing beyond
M(x).

Definition 3 (Security: Sender-Privacy Against Semi-Honestbreak
Receivers). A laconic function evaluation scheme LFE := (LFE.Gen, LFE.Hash,
LFE.Enc, LFE.Dec) for Turing machines is secure if there exists a PPT simulator
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SimLFE such that for any stateful PPT adversaries A = (A1,A2) and N ∈ N

there exists a negligible function negl(·) such that
∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎣

A2(c, st) = 1

∣

∣

∣

∣

∣

∣

∣

∣

crs ← LFE.Gen(1λ, 1N )
(x,M, st) ← A1(crs)

d ← LFE.Hash(crs,M)
c ← LFE.Enc(crs, d, x)

⎤

⎥

⎥

⎦

− Pr

⎡

⎢

⎢

⎣

A2(c, st) = 1

∣

∣

∣

∣

∣

∣

∣

∣

crs ← LFE.Gen(1λ, 1N )
(x,M, st) ← A1(crs)

d ← LFE.Hash(crs,M)
c ← SimLFE(crs, d,M,M(x), T )

⎤

⎥

⎥

⎦

∣

∣

∣

∣

∣

∣

∣

∣

≤ negl(λ) ,

where the probability is taken over the random coins of LFE.Gen, A1, LFE.Enc
and SimLFE. Here, T denotes the runtime of M(x) and st the state of A.

An additional security property of an LFE scheme is that of function hiding,
which captures the notion that the digest d ← LFE.Hash(crs,M) should hide the
description of the Turing machine M. We note that our scheme can be generically
transformed to satisfy function-hiding using the transformation of [QWW18].
The transformation uses 2-round 2PC based on OT and garbled circuits, and
maintains the same asymptotic efficiency.

3 Laconic Function Evaluation for Turing Machines

In this section we will construct a laconic function evaluation scheme Fig. 4 with
asymptotically optimal parameters.

Notation. We consider the case where the protocol computes a function
F (mA,mB), where mA and mB are the inputs of Alice and Bob, respectively.
We assume that the function F (mA,mB) is computed by a Turing machine M,
where mA and mB are given to M on two different input tapes. We assume
without loss of generality that the Turing machine M is publicly known.2 More
formally, M denotes the 4-tape Turing machine consisting of two read-only input
tapes, a read/write work tape, and a read/write output tape. M is described by
the tuple (Γ,Q, δ), where Γ denotes the finite alphabet of M containing a blank
symbol � as well as a start symbol �, and the numbers 0 and 1; Q denotes a
finite set of states containing a start state qstart and a halting state qhalt; and
δ : Q × Γ 4 → Q × Γ 2 × {L,S,R}4 denotes the transition function. We assume
that the transition function δ of M is given by a circuit CM. It is going to be
convenient for us to load the input mB onto the working tape of the Turing
machine. For the remainder of this description, we consider the working tape
and the input tape of mB as a single tape. Furthermore, M is an oblivious Tur-
ing machine, meaning its head movements do not depend on the input but only
on the input length. Note, that by a classical result of Pippinger and Fischer,

2 One can always make the function F private by including an encoding of F in the
input of Alice and computing LFE of a universal Turing machine.
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Turing machines can be simulated by an oblivious (and deterministic) Turing
machine with only a logarithmic slowdown [PF79]. For convenience, we denote
by HeadPos(i) the function that outputs the state st′, the write location on the
working tape Iw, and the read locations Ir, Jr on the input tapes mB and mA

respectively; all at step i of CM’s computation.

Description. Our scheme assumes the existence of:
– A symmetric encryption scheme Π := (Sym.Gen,Sym.Enc,Sym.Dec) that is

IND-CPA secure.
– An updatable laconic oblivious transfer ULOT := (ULOT.Gen,ULOT.Hash,
ULOT.Send,ULOT.Receive,
ULOT.SendWriteRead,ULOT.ReceiveWriteRead) with sender privacy against
semi-honest receivers.

– An indistinguishability obfuscator iO.
– A garbling scheme GC := (GC.Garble,GC.Eval,GC.Input) with selective secu-

rity.
– A puncturable pseudorandom function PPRF := (PPRF.Gen,PPRF.Eval,
PPRF.Punc).

For convenience we make a few simplifying assumptions: (1) The Turing
machine never writes to the same position twice (this does not affect its runtime,
as we can just write to a new memory location every time) and (2) The input mB

is of length exactly N . Our scheme can be modified to handle the more general
case but the description and the proof become somewhat more contrived.

The step circuit Fig. 2 handles the tasks performed at each step of M’s compu-
tation. Namely, decrypting the secret input into CM, computing one step of CM

and encrypting the output with a new key. Furthermore, after each step, addi-
tional outputs are used to specify a location in the database where the encrypted
data is to be written using the updatable laconic oblivious transfer. The garbling
step circuit Fig. 3 garbles each step circuit and generates the relevant labels and
keys so that the garbled circuit can be evaluated.

We define the step circuit SCi as in Fig. 2. As inputs, CM takes the state
st ∈ Q of the Turing machine M, as well as two input blocks xA ⊆ mA and
xB = mB both of size N . After evaluating the circuit on its inputs, CM returns
a new state st′ ∈ Q; a write location Iw on the working tape, at which the next
block of symbols yB is written; a read location Ir on the input tape mB ; a read
location Jr on the input tape mA; and q = ⊥, unless the halting state qhalt has
been reached, in which case q is the only output of the computation.

Now we define the following circuit GarbleSC, which has the crs and a PRF
seed s hardwired Fig. 3. It takes as input an index i and outputs a garbled circuit
GC(i).

We are now ready to present our laconic function evaluation protocol Fig. 4.

3.1 Correctness

The correctness of our LFE construction follows routinely from the correctness
of its components, namely the indistinguishability obfuscator iO, the garbling
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Fig. 2. Step Circuit.

Fig. 3. Garbling Step Circuit. The circuit is padded to the maximum size of
SimGarbleSC [See proof of Theorem 3].

scheme GC, the updatable laconic oblivious transfer protocol ULOT, the sym-
metric encryption scheme Π and the puncturable pseudorandom function PPRF.

Proposition 1 (Correctness). The Laconic Function Evaluation protocol in
Fig. 4 is correct.

Proof of Proposition 1. We prove the claim via an inductive argument. Let c
(i)
B

denote the contents of the databases at the beginning of the ith iteration of the
while loop in LFE.Dec. Let tr′i denote the transcript tri of M, except that we
remove Alice’s input tape mA, and let T denote the runtime of M. We argue
that ∀i ∈ {1, . . . , T}, c

(i)
B block-wise decrypts to the transcript tr′i at step i

of M’s computation. We also show that at each i, the garbled input labels
(

̂st
(i)

∣

∣

∣

∣

∣

∣ ẑ
(i)
A

∣

∣

∣

∣

∣

∣ ẑ
(i)
B

)

are a valid encoding of the state of the Turing machine
M, dA the block of mA, and dB the block of cB all in step circuit SCi.
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LFE.Gen
(
1λ, 1N

)
:

1. Compute crs ← ULOT.Gen
(
1λ, 1N

)

return crs
LFE.Hash(crs,mA):

1. Compute (dA, m̂A) ← ULOT.Hash(crs,mA)
return (dA, m̂A)

LFE.Enc(crs, dA,mB):
1. Choose two uniformly random PRF seeds (s, k)
2. Compute (lbsst || lbsA || lbsB || R) ← PPRF.Eval(s, 1)
3. Compute k1 ← PPRF.Eval(k, 1)
4. Compute obG ← iO (GarbleSC[crs, s, k])
5. Block-wise encrypt cB ← Sym.Enc(k1,mB)
6. Compute (dB , ĉB) ← ULOT.Hash(crs, cB)
7. Set st ← 0N

8. Set zA ← (
dA, 0

N
)

9. Set zB ← (dB , cB)
10. Compute ŝt ← GC.Input(st, lbsst)
11. Compute ẑA ← GC.Input(zA, lbsA)
12. Compute ẑB ← GC.Input(zB , lbsB)
13. Set c ← (

ĉB , obG, ŝt, ẑA, ẑB

)

return c
LFE.Dec(crs,mA, c):

1. Parse
(
ĉB , obG, ŝt, ẑA, ẑB

)
:= c

2. Set m
(1)
B ← ĉB , ŝt

(1) ← ŝt, ẑ
(1)
A ← ẑA, ẑ

(1)
B ← ẑB

3. Set i := 1
4. q := ⊥
5. while true do

if q �= ⊥ then
return q

Compute GC(i) ← obG(i)

Compute
(
ŝt

(i+1)
∣
∣
∣
∣
∣
∣ Iw

∣
∣
∣
∣
∣
∣ m(i+1)

B

∣
∣
∣
∣
∣
∣ Ir

∣
∣
∣
∣
∣
∣ Jr

∣
∣
∣
∣
∣
∣ eA

∣
∣
∣
∣
∣
∣ eB

∣
∣
∣
∣
∣
∣ q

)
←

GC.Eval
(
GC(i),

(
ŝt

(i)
∣
∣
∣
∣
∣
∣ ẑ(i)A

∣
∣
∣
∣
∣
∣ ẑ(i)B

))

Compute ẑ
(i+1)
A ← ULOT.ReceivemA (crs, eA, Jr)

Compute ẑ
(i+1)
B ← ULOT.ReceiveWriteReadĉB

(
crs, Iw,m

(i)
B , eB , Ir

)

Set i := i + 1

Fig. 4. Laconic Function Evaluation Protocol.

The base case, when i = 1, follows trivially. Initially, the database c
(1)
B con-

tains a block-wise encryption of mB [step 5 of LFE.Enc]. In step 9 of LFE.Enc

x′
B is set to c

(1)
B , i.e. x′

B contains mB and the content of the (empty) worktape.
Similarly, xA is also initialised to 0N in step 8 of LFE.Enc. Hence, the tran-
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script tr′1 consists of the input tape mB concatenated with an empty working
tape and the state. Thus, Sym.Dec

(

k1, c
(1)
B

)

= tr′1. The garbled input labels
(

̂st
(1)

∣

∣

∣

∣

∣

∣ ẑ
(1)
A

∣

∣

∣

∣

∣

∣ ẑ
(1)
B

)

are passed to LFE.Dec in the ciphertext.

By the inductive hypothesis we assume that the database c
(i−1)
B block-wise

decrypts to give tr′i−1. We now show that Sym.Dec
(

ki, c
(i)
B

)

= tr′i. In the ith

iteration of the while loop in LFE.Dec, SCi is evaluated by GC(i). Due to the
correctness of the indistinguishability obfuscator iO, the obfuscated garbling step
circuit obG can be correctly evaluated on input i, and GC(i) is given by

GC(i) = obG(i)

= iO (GarbleSC[crs, s, k](i))

= GC.Garble
(
1λ,SCi

[
crs, ki, ki+1, lbs

′
st, lbs

′
A, lbs

′
B

]
(·, ·, ·), lbsst|| lbsA|| lbsB ;R

)
.

By the induction hypothesis, the garbled input labels
(

̂st
(i)

∣

∣

∣

∣

∣

∣ ẑ
(i)
A

∣

∣

∣

∣

∣

∣ ẑ
(i)
B

)

are a valid encoding of the state of the Turing machine M, dA and the block of
mA, and dB and the block of cB all in step circuit SCi. In SCi, the decryption
of x′(i)

B gives x
(i)
B . After running CM, y

(i)
B is then written to the work tape at I

(i)
w ,

and encrypted to y′(i)
B . By the correctness of updatable laconic oblivious transfer,

ULOT.SendWriteRead specifies y′(i)
B to be written to a database and in step 5 of

LFE.Dec, y′(i)
B is written to cB at position I

(i)
w . Therefore, Sym.Dec

(

ki, c
(i)
B

)

=

tr′i−1 with y
(i)
B written on the work tape at I

(i)
w . I.e., Sym.Dec

(

ki, c
(i)
B

)

= tr′i.

Furthermore, the garbled input labels ẑ
(i+1)
A and ẑ

(i+1)
B are given by

ẑ
(i+1)
A = ULOT.Receivem

(i)
A

(

crs, e
(i)
A , J (i)

r

)

= ULOT.Receivem
(i)
A

(

crs,ULOT.Send
(

crs, dA, J (i)
r , lbsA

)

, J (i)
r

)

,

and

ẑ
(i+1)
B = UL OT.ReceiveWriteRead

̂

c
(i)
B

(

crs, I
(i)
w ,m

(i)
B , e

(i)
B , I

(i)
r

)

= UL OT.ReceiveWriteRead
̂

c
(i)
B

(

crs, I
(i)
w ,m

(i)
B ,

ULOT.SendWriteRead
(

crs, dB , I
(i)
w , y′(i)

B , lbsB[0], Ir, lbsB[1]

)

, I
(i)
r

)

,

respectively.

3.2 Proof of Security

We will now establish sender simulation security for our protocol, and start by
stating the main security theorem.
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Theorem 3 (Security). Assume that iO is an indistinguishability obfuscator,
(GC.Garble, GC.Input, GC.Eval) is simulation secure, (ULOT.Gen, ULOT.Hash,
ULOT.Send, ULOT.Receive, ULOT.SendWriteRead, ULOT.ReceiveWriteRead) has
sender privacy against semi-honest receivers, (Sym.Gen,Sym.Enc,Sym.Dec) is
IND-CPA secure, and that (PPRF.Gen, PPRF.Eval, PPRF.Punc) is a punc-
turable pseudorandom function. Then (LFE.Gen, LFE.Hash, LFE.Enc, LFE.Dec)
has sender privacy against semi-honest receivers.

To prove the security of our construction we use a similar proof strategy to
that of [GS18]. In particular, our proof will proceed via a hybrid argument. In
each hybrid we change the way the circuit obG computes the garbled circuits
GC(i). Each garbled step circuit GC(i) can be computed in three modes Fig. 8.
The first mode is real, where the computations are just as in the real protocol.
The second mode is dummy, where the output of the garbled circuit is constant
and hardwired, but the same as in the real execution Fig. 5 and 6. The third
mode is sim, which is similar to real mode, with the difference being that the
garbled circuit only outputs dummy values which are not the same as in the real
execution Fig. 2.

Both garbled circuits in real and dummy mode will keep the intermediate
states and memory consistent (recall that the memory is accessed via an updat-
able laconic OT). On the other hand, a garbled circuit in sim mode will only
output the dummy state and perform dummy read and writes to memory. Gar-
bled circuits in real and sim mode are computed on-the-fly by obG, whereas
circuits in dummy need to be hardwired into obG. As a result, the size of obG
depends on the maximum number of dummy circuits needed in any given hybrid.

We will briefly discuss the necessary conditions under which we can switch
the mode of a garbled step circuit. The first garbled circuit in the in line GC(1)

can always be switched from real to dummy or vice versa, provided there is a
free simulation slot available, i.e., the number of currently simulated garbled
circuits is less than some maximum amount t. For any other garbled circuit
GC(i), we can switch its mode from real to dummy or vice versa, given that the
circuit GC(i−1) is in dummy mode and a simulation slot is available. To switch
a node into sim mode, we require that its successor node is in sim mode and
that its predecessor is in dummy mode. In the case of the first node we only have
the requirement for its successor node and for the last node we only have the
requirement for its predecessor.

These rules define a pebbling game, where we identify pebbles as simulation
slots. The goal of the game is to switch the nodes from real (white pebbles)
to sim (black pebbles), while minimizing the number of nodes in dummy (grey
pebbles). To win the game, we can use the same pebbling strategy as in [GS18],
where O(log(T )) pebbles suffice to set a pebble at the last node (with index
T ) in poly(T ) steps. Consequently, with this strategy we only need to simulate
O(log(T )) = O(λ) nodes in any given hybrid. We refer the reader to the works
of [GPSZ17] and [GS18] for an optimal strategy for the pebbling game. For the
sake of completeness we state the main Lemmas here.



622 N. Döttling et al.

Lemma 1 ([GPSZ17]). For any p ∈ Z, such that n + 1 ≤ p ≤ n + 2k − 1, it
is possible to make O (

(p − n)log2 3
) ≈ O (

(p − n)1.585
)

moves and get a black
pebble at position p using k gray pebbles.

Lemma 2 ([GS18]). For any T ∈ N, there exists a strategy for pebbling the line
graph {1, . . . , T} according to rules A and B by using at most log(T ) grey pebbles
and making poly(λ) moves.

Thus, our proof strategy will proceed as follows. First we will use the above
pebbling argument to switch the last node, i.e. the node with index T to sim
mode. This will take poly(T ) steps. Next, we will again use the same pebbling
argument to switch node T −1 to sim mode. This will take poly(T − 1) = poly(T )
steps. Consequently, we replace nodes T − 2, T − 3, . . . , 2, 1 with sim nodes, in
this order. In total, this will require T · poly(T ) = poly(T ) steps. In the very last
hybrid, we will replace the encryption of that database mB by an encryption of
0. Once all pebbles (step circuits) are in sim mode, and the encryption of mB

has been replaced with the encryption of 0, this corresponds to the simulator
SimLFE, which takes as input the crs, d, the machine M, the output M(x) and
the time bound T . The simulator then outputs the ciphertext c. As a result, the
view of the adversary, in this last hybrid, is independent of the sender input mB .
Hence, we can use this hybrid to simulate the view of a semi-honest receiver by
only using the receiver’s output. The full proof of Theorem 3 follows from that
of two lemmas [Lemma 3, Lemma 4].

Circuit Configuration. A circuit configuration conf consists of a subset of
garbling step circuits in dummy mode as well as an index i∗ ∈ {1, . . . , T} denoting
the garbling step circuit to be changed by the rule.

Rules of Indistinguishability. We define the rules of indistinguishability
(which determine the configurations in the pebbling game) below.

Rule A: Rule A dictates when a garbling step circuit can be indistinguishably
changed from real mode to dummy mode. Let conf and conf′ be two valid
configurations and i∗ be an index of the garbling step circuit, such that:
– Index i∗ is changed from real mode to dummy mode, and there are no

indices in sim mode to the left of i∗.
– Index i∗ is either the first or its predecessor is in dummy mode.
– The garbling step circuits in sim mode remain unchanged.

In Lemma 3 we show that for two valid circuit configurations conf and conf′,
satisfying the above constraints, the two distributions Hconf and Hconf′ are
computationally indistinguishable.

Rule B: Rule B dictates when a step circuit can be indistinguishably changed
from dummy mode to sim mode. Let conf and conf′ be two valid configurations
and i∗ be an index of the garbling step circuit, such that:
– Index i∗ is changed from dummy mode to sim mode.
– Index i∗ is either the last or its predecessor is in dummy mode.
– The garbling step circuits in real mode remain unchanged.
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SCdummy
i∗ [crs, ki∗ , ki∗+1, lbsst, lbsA, lbsB ](st, zA, zB):
1. Parse (dA, xA) := zA

2. Parse (dB , x′
B) := zB

3. Parse
(
lbsB[0], lbsB[1]

)
:= lbsB

4. xB ← Sym.Dec(ki∗ , x′
B)

5. (st′, Iw, yB , Ir, Jr, q) ← CM(st, xA, xB)
6. y′

B ← Sym.Enc(ki∗+1, yB)
7. d∗

B ← ULOT.Hash (crs,m∗
B)

8. eA ← SimULOT.S

(
crs,mA, Jr,GC.Input

(
lbsA,mA[Jr ]

))

9. eB ← SimULOT.WR

(
crs,mB , Iw, y

′
B ,GC.Input

(
lbsB[0], d

∗
B

)
, Ir,

GC.Input
(
lbsB[1],m

∗
B[Ir ]

) )

10. ŝt ← GC.Input(st′, lbsst)
return

(
ŝt, Iw, y

′
B , Ir, Jr, eA, eB , q

)

Fig. 5. Step Circuit in dummy mode. Let m∗
B denote the database that is identical to

mB except that m∗
B [Iw] = y′

B .

In Lemma 4 we show that for two valid circuit configurations conf and conf′,
satisfying the above constraints, the two distributions Hconf and Hconf′ are
computationally indistinguishable.

Fig. 6. Garbling Step Circuit in dummy mode.



624 N. Döttling et al.

Fig. 7. Step Circuit in sim mode.

Fig. 8. Garbling Step Circuit in real, dummy and sim mode.

3.3 Proof of Indistinguishability for the Rules

Implementing Rule A

Lemma 3 (Rule A). Let conf and conf′ be two valid circuit configurations
satisfying the constraints of rule A. Assume that iO is an indistinguishability
obfuscator, GC is simulation secure, ULOT has sender privacy against semi-
honest receivers, and that PPRF is a puncturable pseudorandom function. Then,
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for the two distribution ensembles {Hconfλ}λ∈N
and {Hconf′λ

}λ∈N
it holds that

∣

∣

∣

∣

∣

Pr
c←Hconfλ

[A (

1λ, c
)

= 1
] − Pr

c←Hconf′λ

[A (

1λ, c
)

= 1
]

∣

∣

∣

∣

∣

≤ negl(λ) .

Proof of Lemma 3. We prove this with help of a hybrid argument.

Hconfλ : The garbling step circuit is in real mode.
H1: Instead of hardwiring the PPRF key s into SimGarbleSC, we hardwire the key

s{i∗} ← PPRF.Punc(s, i∗), that is punctured at i∗. Since we cannot evaluate
PPRF.Eval(s{i∗}, i∗), we additionally hardwire the labels and key that are
output by PPRF.Eval(s, i∗) into SimGarbleSC.

(lbsst || lbsA || lbsB || R) ← PPRF.Eval(s, i∗)

To be able to use the security of iO, the size of GarbleSC is padded to be
the same size as SimGarbleSC.

Claim (Hconf → H1). The advantage of any PPT adversary in distinguishing
between Hconf and H1 is:

AdvHconf→H1
A1

≤ AdviO-sec
iO,B1

.

Hconf → H1. The proof relies on the security of the indistinguishability obfus-
cator iO to be able to switch the PPRF key and hardwire the labels. The
reduction B1 gets a bit b from the adversary A1, where b = 0 if the obfus-
cated circuit is as described in Hconf and b = 1 if the obfuscated circuit is as
described in H1. If A1 wins the game with advantage ε, B1 wins the iO-sec
game with greater than ε probability. ��

H2: As opposed to using the labels output by PPRF.Eval(s, i∗), we sample a
string u from the uniform distribution Uλ.

Claim (H1 → H2). The advantage of any PPT adversary in distinguishing
between H1 and H2 is:

AdvH1→H2
A2

≤ AdvPPRF-randPPRF,B2
.

H1 → H2. The proof relies on the pseudorandomness property of PPRF, to be
able to switch the output of PPRF.Eval(s, i∗) with u. The reduction B2 gets
a bit b from the adversary A2, where b = 0 if the output of PPRF.Eval(s, i∗)
is used, and b = 1 if the uniform string is used. If A2 wins the game with
advantage ε, B2 wins the PPRF-rand game with greater than ε probability. ��

H3: Since each label is computed twice, once in step i∗ − 1 and once in step i∗,
we now remove the following labels at step i∗ − 1;

lbsst \ GC.Input
(

lbsst, st
(i∗−1)

)

lbsA \ GC.Input
(

lbsA, z
(i∗−1)
A

)

lbsB \ GC.Input
(

lbsB, z
(i∗−1)
B

)

.
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I.e., those used in steps 8 –10 in SCdummy
i∗−1 . This is possible, since by the

constraints of rule A, the previous step is known to be in dummy mode.

Claim (H2 → H3). The distributions H2 and H3 are identical.

H2 → H3. We note that SCdummy
i∗ is not executed in the obfuscated circuit,

but rather computed locally by the simulator. The output is hardwired in the
obfuscated circuit, and we are simply removing unused variables. ��

H4: We hardwire the output out of

GC.Garble
(

1λ,SCi∗
[

crs, ki∗ , ki∗+1, lbs
′, lbs′A, lbs′B

]

, (lbsst || lbsA || lbsB ;R)
)

into SimGarbleSC. iO reduction.

Claim (H3 → H4). The advantage of any PPT adversary in distinguishing
between H3 and H4 is:

AdvH3→H4
A4

≤ AdviO-sec
iO,B4

.

H3 → H4. The proof relies on the security of the indistinguishability obfusca-
tor iO to be able to hardwire the output of the garbling scheme. The reduction
B4 gets a bit b from the adversary A4, where b = 0 if the obfuscated circuit is
as described in H3 and b = 1 if the obfuscated circuit is as described in H4.
If A4 wins the game with advantage ε, B4 wins the iO-sec game with greater
than ε probability.

��
H5: We simulate the garbling step circuit, as

GC ← SimGC

(

1λ, 1|SCi∗ |, out, (Lst || LA || LB;R)
)

,

where out ← SCi∗
[

crs, ki∗ , ki∗+1, lbs
′
st, lbs

′
A, lbs′B

]

(

st(i
∗+1), z

(i∗+1)
A , z

(i∗+1)
B

)

,

and (lbs′st || lbs′A || lbs′B || R′) ← PPRF.Eval (s{i∗}, i∗ + 1). Recall that
st(i

∗+1), z
(i∗+1)
A , and z

(i∗+1)
B denote the state of the Turing machine M; the

digest dA and the input block xA; as well as the digest dB and the encrypted
input block xB , respectively, each at step i∗ + 1 of the computation.

Claim (H4 → H5). The advantage of any PPT adversary in distinguishing
between H4 and H5 is:

AdvH4→H5
A5

≤ AdvGC-secGC,B5
.

H4 → H5. The proof relies on the selective simulation security of the garbling
scheme GC to be able to simulate the garbling step circuit. The reduction B5

gets a bit b from the adversary A5, where b = 0 if A5 identified
{

GC.Garble
(

1λ,SCi∗
[

crs, ki∗ , ki∗+1, lbs
′
st, lbs

′
A, lbs′B

]

,

(lbsst || lbsA || lbsB ;R)
)

, (Lst || LA || LB ;R)
}
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and b = 1 if A5 identified
{

SimGC

(

1λ, 1|SCi∗ |, out, (Lst || LA || LB ;R)
)

, (Lst || LA || LB;R)
}

.

If A5 wins the game with advantage ε, B5 wins the GC-sec game with greater
than ε probability. ��

H6: We simulate the ULOT.Send ciphertext as eA ← SimULOT.S
(

crs,mA, Jr,GC.Input
(

lbsA,mA[Jr]

))

. Recall that mA[Jr] denotes M’s input
tape mA at read location Jr, all at step i∗.

Claim (H5 → H6). The advantage of any PPT adversary in distinguishing
between H5 and H6 is:

AdvH5→H6
A6

≤ AdvSenPriExptULOT,B6
.

H5 → H6. The proof relies on the semi-honest sender privacy of ULOT to
be able to simulate the ciphertext. The reduction B6 gets a bit b from the
adversary A6, where b = 0 if A6 identified the ciphertext as

{ULOT.Send (crs, dA, Jr, lbsA)}

and b = 1 if A6 identified the ciphertext as
{

SimULOT.S

(

crs,mA, Jr,GC.Input
(

lbsA,mA[Jr]

))}

.

If A6 wins the game with advantage ε, B6 wins the SenPriExpt game with
greater than ε probability. ��

H7: We simulate the ULOT.SendWriteRead ciphertext as eB ← SimULOT.WR
(

crs,mB , Iw, y′
B , GC.Input

(

lbsB[0], d
∗
B

)

, Ir,GC.Input
(

lbsB[1],m
∗
B[Ir]

) )

. Here,
m∗

B denotes the database that is identical to mB except that m∗
B [Iw] = y′

B,
and d∗

B ← ULOT.Hash (crs,m∗
B). Recall that Iw, Ir, and y′

B denote the write
location on the working tape; the read location on the input tape mB; and
the encrypted block of symbols that are output by M, respectively, all step
i∗ of the computation.

Claim (H6 → H7). The advantage of any PPT adversary in distinguishing
between H6 and H7 is:

AdvH6→H7
A7

≤ AdvWriReaSenPriExpt
ULOT,B7

.

H6 → H7. The proof relies on the semi-honest sender privacy for writes and
reads of ULOT to be able to simulate the ciphertext. The reduction B7 gets
a bit b from the adversary A7, where b = 0 if A7 identified the ciphertext as

{

ULOT.SendWriteRead
(

crs, dB , Iw, y′
B , lbsB[0], Ir, lbsB[1]

)}
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and b = 1 if A7 identified the ciphertext as
{

SimULOT.WR

(

crs,mB , Iw, y′
B ,GC.Input

(

lbsB[0], d
∗
B

)

, Ir,

GC.Input
(

lbsB[1],m
∗
B[Ir]

)

)}

.

If A7 wins the game with advantage ε, B7 wins the WriReaSenPriExpt game
with greater than ε probability.

H8 − H10: Finally, we revert the changes made in H1 − H3. Here, the indistin-
guishability between H8 − H10 follows analogous to that of H1 − H3.

Hconf′λ
: The step circuit is in dummy mode.

�
This concludes the proof of Lemma 3.

Implementing Rule B

Lemma 4 Rule B). Let conf and conf′ be two valid circuit configurations
satisfying the constraints of rule B. Assume that iO is an indistinguishability
obfuscator, GC is simulation secure, ULOT has sender privacy against semi-
honest receivers, and that PPRF is a puncturable pseudorandom function. Then,
for the two distribution ensembles {Hconfλ}λ∈N

and {Hconf′λ
}λ∈N

it holds that
∣

∣

∣

∣

∣

Pr
c←Hconfλ

[A (

1λ, c
)

= 1
] − Pr

c←Hconf′λ

[A (

1λ, c
)

= 1
]

∣

∣

∣

∣

∣

≤ negl(λ) .

Proof of Lemma. 4. We prove this with help of a hybrid argument. To keep the
proof similar to that of Lemma 3, we start with hybrid Hconf′ and end with
hybrid Hconf . ��

Hconf′ : The garbling step circuit is in sim mode.
H1: Same as H1 in Lemma 3.
H2: Same as H2 in Lemma 3.
H3: Same as H3 in Lemma 3.
H4: Instead of hardwiring the PPRF key k into SimGarbleSC, we hardwire the

key k{i∗} ← PPRF.Punc(s, Iw), where Iw is the position of the writing head
of the Turing Machine at step i∗. We additionally hardwire the labels and
key that are output by PPRF.Eval(k, Iw) into SimGarbleSC.

ki∗ ← PPRF.Eval(k, Iw)

To be able to use the security of iO, the size of GarbleSC is padded to be
the same size as SimGarbleSC.
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Claim (H3 → H4). The advantage of any PPT adversary in distinguishing
between H3 and H4 is:

AdvH3→H4
A4

≤ AdviO-sec
iO,B4

.

H3 → H4. The proof follows by a reduction to the security of the obfuscator,
since the two circuits are functionally equivalent.

H5: As opposed to using the key output by PPRF.Eval(k, Iw), we sample a string
u from the uniform distribution Uλ.

Claim (H4 → H5). The advantage of any PPT adversary in distinguishing
between H4 and H5 is:

AdvH4→H5
A5

≤ AdvPPRF-randPPRF,B5
.

H4 → H5. Follows by the pseudorandomness of the puncturable PRF.
H6: We hardwire the output out of

GC.Garble
(

1λ,SCsim
i∗

[

crs, ki∗ , ki∗+1, lbs
′, lbs′A, lbs′B

]

, (lbsst || lbsA || lbsB ;R)
)

into SimGarbleSC.

Claim (H5 → H6). The advantage of any PPT adversary in distinguishing
between H5 and H6 is:

AdvH5→H6
A6

≤ AdviO-sec
iO,C6

.

H5 → H6. The proof relies on the security of the indistinguishability obfusca-
tor iO to be able to hardwire the output of the garbling scheme. The reduction
C6 gets a bit b from the adversary A6, where b = 0 if the obfuscated circuit is
as described in H5 and b = 1 if the obfuscated circuit is as described in H6.
If A6 wins the game with advantage ε, B6 wins the iO-sec game with greater
than ε probability. ��

H7: We simulate the garbling step circuit, as

GC ← SimGC

(

1λ, 1|SCsim
i∗ |, out, (Lst || LA || LB;R)

)

,

where out ← SCsim
i∗ [crs, ki∗ , ki∗+1, lbs

′
st, lbs

′
A, lbs′B ]

(

st(i
∗+1), z

(i∗+1)
A , z

(i∗+1)
B

)

,

and (lbs′st || lbs′A || lbs′B ;R′) ← PPRF.Eval (s{i∗}, i∗ + 1). Recall that
st(i

∗+1), z
(i∗+1)
A , and z

(i∗+1)
B denote the state of the Turing machine M; the

digest dA and the input block xA; as well as the digest dB and the encrypted
input block xB, respectively, each at step i∗ + 1 of the computation.

Claim (H6 → H7). The advantage of any PPT adversary in distinguishing
between H6 and H7 is:

AdvH6→H7
A7

≤ AdvGC-secGC,B7
.
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H6 → H7. The proof relies on the selective simulation security of the garbling
scheme GC to be able to simulate the garbling step circuit. The reduction B7

gets a bit b from the adversary A7, where b = 0 if A7 identified
{

GC.Garble
(

1λ,SCsim
i∗

[

crs, ki∗ , ki∗+1, lbs
′
st, lbs

′
A, lbs′B

]

,

(lbsst || lbsA || lbsB ;R)
)

, (Lst || LA || LB ;R)
}

and b = 1 if A7 identified
{

SimGC

(

1λ, 1|SCsim
i∗ |, out, (Lst || LA || LB;R)

)

, (Lst || LA || LB ;R)
}

.

If A7 wins the game with advantage ε, B7 wins the GC-sec game with greater
than ε probability. ��

H8: Same as H6 in Lemma 3.
H9: Same as H7 in Lemma 3.
H10: Instead of computing the state st′, the write location Iw, the read locations

Ir and Jr using HeadPos(i), as well as computing y′
B as Sym.Enc (ki∗+1, 0);

we compute the output of CM, and y′
B as Sym.Enc (ki∗+1, yB).

Claim (H9 → H10). The advantage of any PPT adversary in distinguishing
between H9 and H10 is:

AdvH9→H10
A10

≤ AdvΠ,B10
.

H9 → H10. The proof relies on the chosen plaintext attack security of the
symmetric encryption scheme Π to be able to switch from encrypting 0 to yB .
We can do this, since the constraints of rule B ensure that the next circuit
is in sim mode and therefore the key ki∗+1 is not present in the view of the
distinguisher. The reduction C10 gets a bit b from the adversary A10, where
b = 0 if the plaintext is 0, and b = 1 if the plaintext is yB. If A10 wins the
game with advantage ε, B10 wins the symmetric encryption game with greater
than ε probability. ��

H11 − H13: Finally, we revert the changes made in H1 − H3. Here, the indistin-
guishability between H11 − H13 follows analogously to that of H1 − H3.

Hconf : The garbling step circuit is in dummy mode.

This concludes the proof of Lemma 4. �

Proof of Theorem 3. The sequence of hybrids shown in the proof of Lemma 3 and
Lemma 4 are reversible, and imply an inverse of rule A and rule B. Thus, the
proof of Theorem 3 follows directly from the proofs of Lemma 3 and Lemma 4.

�
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3.4 Removing the Output Dependency

We note that our whilst our construction Fig. 4 outputs only one bit, a generic
transformation can be used to output multiple bits. Depending on the security
definition that we want to achieve, there are two generic ways to carry out such
a transformation.

Simulation Security. If we insist on simulation security (which is the same
definition achieved by the protocol in Fig. 4) we can simply hash the circuit Φ as
d ← LFE.Hash(crs, Φ), where Φ takes as input an mB and an index i and returns
the i-th output bit of C(x)i. Then, for all output bits we let the sender compute

c :=
(

c1 ← LFE.Enc(crs, d, (x, 1)), . . . , c|y| ← LFE.Enc(crs, d, (x, |y|)))

where |y| denotes the output size. The reciever can then recover the output
bit-by-bit. Security follows from a standard hybrid argument.

Indistinguishability. If we relax the requirements to indistinguishability-based
security, then it becomes possible to remove the output dependency entirely.
Specifically, we require that LFE.Enc(crs, d, x) and LFE.Enc(crs, d, x̄) are compu-
tationally indistinguishable, for pairs (x, x̄) such that C(x) = C(x̄).

Our scheme proceeds as described above except that the sender does not
explicitly compute the ciphertexts

(

c1, . . . , c|y|
)

, instead the sender obfuscates a
circuit that given an index i ∈ {1, . . . , |y|} returns

LFE.Enc
(

crs, d, (x, i);PPRF.Eval(k, i)
)

where k is the key of a puncturable PRF. To compute the output, the receiver
evaluates the obfuscated circuit on all possible indices to recover

(

c1, . . . , c|y|
)

,
then she applies the LFE.Dec algorithm to recover the output bit-by-bit. Observe
that now the size of the ciphertext depends on |y| only logarithmically.

In terms of security, we can show indistinguishabilty by defining (|y|+1)-many
intermediate distributions, where in the i∗-th distribution Hi∗ we obfuscate the
circuit that given an index i ∈ {1, . . . , |y|} returns

LFE.Enc
(

crs, d, (x̄, i);PPRF.Eval(k, i)
)

, if i < i∗

LFE.Enc
(

crs, d, (x, i);PPRF.Eval(k, i)
)

, otherwise.

Note that H0 is functionally equivalent to the original obfuscated circuit,
whereas H|y|+1 is functionally equivalent to the encryption of x̄. Thus, it suffices
to show that Hi∗ and Hi∗+1 are computationally indistinguishable. This is done
with help of a five-steps argument:

– First we puncture the PRF key at point i∗, and indistinguishability follows
from the security of iO.

– We switch PPRF.Eval(k, i∗) with a uniform string u, which is indistinguishable
by the security of the puncturable PRF.



632 N. Döttling et al.

– We hardwire the output of c∗ ← LFE.Enc(crs, d, (x, i∗);u) in the obfuscated
circuit. Again, indistinguishability follows from the security of iO.

– We set c∗ ← LFE.Enc(crs, d, (x̄, i∗);u). Indistinguishability follows from the
security of LFE.

– We undo the modifications done by the first three steps.

Note that the first distribution is identical to Hi∗ , whereas the latter is identical
to Hi∗+1.
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Abstract. A witness map deterministically maps a witness w of some
NP statement x into computationally sound proof that x is true, with
respect to a public common reference string (CRS). In other words, it
is a deterministic, non-interactive, computationally sound proof system
in the CRS model. A unique witness map (UWM) ensures that for any
fixed statement x, the witness map should output the same unique proof
for x, no matter what witness w it is applied to. More generally a com-
pact witness map (CWM) can only output one of at most 2α proofs for
any given statement x, where α is some compactness parameter. Such
compact/unique witness maps were proposed recently by Chakraborty,
Prabhakaran and Wichs (PKC ’20) as a tool for building tamper-resilient
signatures, who showed how to construct UWMs from indistinguisha-
bility obfuscation (iO). In this work, we study CWMs and UWMs as
primitives of independent interest and present a number of interesting
connections to various notions in cryptography.

• First, we show that UWMs lie somewhere between witness PRFs
(Zhandry; TCC ’16) and iO – they imply the former and are implied
by the latter. In particular, we show that a relaxation of UWMs to
the “designated verifier (dv-UWM)” setting is equivalent to witness
PRFs. Moreover, we consider two flavors of such dv-UWMs, which
correspond to two flavors of witness PRFs previously considered in
the literature, and show that they are all in fact equivalent to each
other in terms of feasibility.

• Next, we consider CWMs that are extremely compact, with α =
O(log κ), where κ is the security parameter. We show that such
CWMs imply pseudo-UWMs where the witness map is allowed to
be pseudo-deterministic – i.e., for every true statement x, there is a
unique proof such that, on any witness w, the witness map outputs
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this proof with 1 − 1/p(λ) probability, for a polynomial p that we
can set arbitrarily large.

• Lastly, we consider CWMs that are mildly compact, with α = p(λ)
for some a-priori fixed polynomial p, independent of the length of the
statement x or witness w. Such CWMs are implied by succinct non-
interactive arguments (SNARGs). We show that such CWMs imply
NIZKs, and therefore lie somewhere between NIZKs and SNARGs.

1 Introduction

When several mathematicians prove the same theorem, it is unlikely that they
would all write down the exact same proof. Similarly, in the context of NP, a true
statement (e.g., that some graph is 3-colorable) will often have many different
proofs/witnesses (e.g., 3-colorings of the vertices). Can we come up with a proof
system for NP languages where the proofs are guaranteed to be unique?

This question was studied extensively in complexity theory, where the class
of languages with unique proofs is known as UP [15]. It is believed to be unlikely
that NP = UP, meaning that we do not believe that all NP languages have
unique proof systems, and there are several results that separate the two classes
relative to oracles [1,2,13]. Recently, the work of Chakraborty, Prabhakaran and
Wichs [4] proposed unique proof systems with computational soundness (aka
arguments). They defined the notion of a unique witness map (UWM) in the
common reference string (CRS) model. This is a deterministic polynomial-time
map that takes as input an NP statement x and some arbitrary witness w for x
(and the CRS) and maps them to a unique proof w∗ for x. Any other witness w′

for x is mapped to the same unique proof w∗. There is also a polynomial time
verifier that checks whether w∗ is a good proof of the statement x. The com-
putational soundness guarantee ensures that no polynomial time adversary can
cause the verifier to accept a proof of a false statement x, except with negligible
probability over the choice of the CRS. In other words, a UWM is a determin-
istic non-interactive computationally sound proof (aka argument) system with
unique proofs. More generally, [4] also considered a relaxation of UWMs to com-
pact witness maps (CWMs) where the number of possible proofs w∗ that the map
can output for any given statement x is bounded by 2α, for some compactness
parameter α. UWMs then naturally correspond to CWMs with α = 0.

It is worth noting that UWMs/CWMs only impose a restriction on the num-
ber of proofs w∗ that the prover outputs, but not on the number of proofs that
the verifier accepts for a given statement x. It may be the case that we have a
UWM where the prover outputs a unique proof w∗ for a given statement x, but
there are exponentially many alternate proofs that the verifier would accept as
well. We also note that UWMs are easily seen to be a special case of a witness-
indistinguishable proof system, since all witnesses are mapped to the same unique
proof.
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The work of [4] showed how to construct UWMs from indistinguishability
obfuscation (iO) and one-way functions, closely following the construction of
NIZKs due to [14]. They also showed that UWMs imply witness encryption. As
their main result, they gave an application of UWMs to the problem of leakage
and tamper-resilient signatures with a deterministic signer. However, not much
else was known about UWMs/CWMs and how they relate to other notions in
cryptography.

1.1 Our Results

In this work, we undertake the thorough study of UWMs/CWMs as primitives of
interest in their own right. We provide a number of novel results to better under-
stand these notions and discover surprising connections between UWM/CWM
and other cryptographic objects of interest. Interestingly, we show that (quanti-
tative) compression factor affects the (qualitative) cryptographic power, leading
to a hierarchy of “worlds”, depending on whether all of NP has α-CWM for, say,
α = 0, O(1), log n, nc (c < 1), somewhat akin to Impagliazzo’s worlds.

The study of UWMs/CWMs can be seen as part of a broader context of
complexity theoretic study within cryptography, whose aim is to understand
connections between primitives and their relative power. We also view the study
of UWMs/CWMs as adding to the understanding of “functional compression”
as a fundamental cryptographic feature. For example, functional compression
plays a central role in obfuscation, where we can define variants (e.g., XiO
vs iO [11]) depending on the level of compression provided. And (perhaps a
bit further off), the complexity of computing Kolmogorov complexity, which is
also about functional compression, is deeply related to the existence of one-way
functions [12].

We now discuss each of our results, relating CWMs with various levels of
compression to other cryptographic objects and to each other.

Relating UWMs and Witness PRFs. At its most compact end, witness
maps take the form of UWMs. We show several results tightly relating flavors
of UWMs and flavors of witness PRFs.

First, we show that UWMs imply witness PRFs [17], which lie somewhere
between witness encryption and iO, but are believed to be strictly stronger than
witness encryption. In particular, they were shown to imply multi-party key
exchange without trusted setup, polynomially-many hardcore bits for any one-
way function, and several other applications that are otherwise only known from
iO, but not from witness encryption.
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Fig. 1. A summary of the implications established (under standard cryptographic
assumptions). The dotted lines correspond to trivial implications, and the dashed line
are results from [4].

In a witness PRF, just like a standard PRF, there is a secret function key fk
that allows the holder to evaluate the function on any input x. However, there
is also a public evaluation key ek, that allows one to evaluate the function on
any input x belonging to some NP language L, provided the evaluator also has
the corresponding witness w. The basic security notion says that for any x �∈ L,
the output of the function looks uniform even given the public evaluation key. A
stronger interactive security variant says that the above should hold even if the
adversary can query the function on arbitrary other inputs x �∈ L. It is trivial to
construct witness encryption from witness PRFs (with basic security), but the
other direction is not known.

We show that UWM and one-way functions imply witness PRFs. In fact, we
show that witness PRFs are equivalent to a weaker form of designated-verifier
UWMs (dv-UWMs), where the public CRS is generated together with a secret
verification key needed to verify proofs. In this case we can define two flavors of
soundness: A basic soundness guarantee when the adversarial prover does not get
any information about the secret verification key, beyond seeing the CRS, and
a reusable soundness guarantee for dv-UWMs, where the adversarial prover can
make verification queries to check whether purported proofs for various (true or
false) statements x would be accepted using the verification key. We show that all
four notions are equivalent in terms of feasibility (assuming one-way functions):
witness PRFs with interactive security imply reusable dv-UWMs, which imply
basic dv-UWMs, which imply basic witness PRFs, which then imply interactive
witness PRFs. In particular, the last result shows that it is possible to generically
upgrade witness PRFs with basic security to interactive security.

The above results place UWMs on the map somewhere between witness PRFs
(which are equivalent to dv-UWMs) and iO. We also believe that UWMs are
likely stronger than witness PRFs and dv-UWMs, mainly since we do not know
of any way to generically go from the designated verifier setting to public veri-
fiability. Moreover, we show that UWMs imply non-interactive zero-knowledge
(NIZKs) with a deterministic prover, which are currently only known from iO,
but not from witness PRFs.

Extreme Compactness Implies Pseudo-Uniqueness. Next, we consider
CWMs with “extreme compactness” α = O(log κ) for security parameter κ. In
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other words, while we do not require the proofs to be unique, we require that the
witness map can produce at most 2α = poly(κ) many possible proofs for each
statement x ∈ L. We show that such extreme compactness is almost as good
as uniqueness. In particular, we show that one can generically transform an
extremely compact CWM into a pseudo-unique witness map (pseudo-UWM),
where the pseudo-uniqueness property says the following. For any statement
x ∈ L and any two witnesses w1, w2 for x, both witnesses will map to the same
“pseudo-unique” proof w∗ with high 1 − 1/p(κ) probability over the choice of
the CRS, where we can choose p(κ) to be an arbitrarily large polynomial.

We note that a pseudo-UWM remains a powerful primitive. It can be used
instead of UWM in applications where the “error” (i.e., non-uniqueness) can
be “corrected.” In particular, it implies witness encryption. Indeed, in the con-
struction of witness encryption using a UWM (from [4], or alternately, from a
WPRF which is in turn constructed from a UWM as shown here), if we simply
replace the UWM with a pseudo-UWM, it results in a small decryption error
probability. This error probability can be made exponentially low by repeating
the encryption process multiple times using independent keys and randomnes,
and during decryption, outputting the majority.

To show that extremely compact WMs imply pseudo-UWM, we solve an
abstract problem of potentially independent interest that we refer to as pseudo-
deterministic sampling. Consider a sampler that has oracle access to some arbi-
trary distribution D whose support has polynomial size. The sampler can call
the oracle polynomially many times and each call outputs a fresh random sample
x ← D. At the end, the sampler has to output some value x∗ in the support of
the distribution D. Moreover, we want the sample x∗ to be unique; if we run the
sampler twice, with the oracle producing random/independent samples from D in
each run, the sampler should output the same value x∗ in both executions with
high 1 − 1/p(κ) probability. This guarantee is similar to pseudo-deterministic
algorithms [6,8], which are randomized algorithms that nevertheless output a
unique value independent of their randomness with high probability. We show
how to solve the pseudo-deterministic sampling problem in the CRS model. The
sample x∗ that the sampler outputs may depend on the CRS but, with high
probability, should be the same for every execution of the sampler with the
given CRS, no matter what samples it receives from its oracle.

Mild Compactness Implies NIZKs. We then turn our attention to CWMs
with “mild compactness” where α = p(κ) for some fixed polynomial p, indepen-
dent of the statement size |x| or the witness size |w|. Such CWMs are implied
by succinct non-interactive arguments (SNARGs) for NP, which are computa-
tionally sound proofs where the proof size is bounded by some fixed polynomial
p(κ), and independent of |x| or |w|. The mild compactness of CWMs can be seen
as a relaxation of the succinctness requirement for SNARGs, where the latter
requires the proof to have small size p(κ), while the former only requires the
number of possible proofs that the prover outputs to be bounded by 2p(κ) but
allows the size of the proofs to be arbitrarily large. Although mildly compact
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CWMs are weaker than SNARGs, we show that they nevertheless imply non-
interactive zero knowledge (NIZK) proofs. We generalize the recent work of [10],
who showed how to construct NIZKs from SNARGs, by showing that the same
result holds if we replace SNARGs by mildly compact CWMs. The above shows
that mildly compact CWMs lie somewhere between NIZKs and SNARGs.

UWMs with Statistical Soundness and UP. Lastly, we ask whether we can
get UWMs with statistical/perfect soundness. This appears highly unlikely since
it would imply a construction of witness PRFs (and hence witness encryption)
from one-way functions. But can we rule out this possibility under some well-
studied complexity assumption? Interestingly, we do not know the answer to this
question. Intuitively, we’d like to say that perfectly sound UWMs for NP would
imply NP = UP, where UP is the class of languages where every statement x
has a unique witness w∗. However, a perfectly sound UWM only guarantees that
the prover outputs a unique proof and that the verifier never accepts a proof
for a false statement, but it may still be possible for the verifier to accept many
possible proofs besides the one that the prover outputs. We define the stronger
notion of verifier-unique witness maps (VUWM) where we also guarantee that
the verifier only accepts a unique proof w∗ for each x, and show that perfectly
sound VUWMs for NP imply NP = UP.

1.2 Technical Overview

1.2.1 dv-UWM Is Equivalent to Witness PRFs
To show the equivalence between dv-UWM and witness PRF wPRF, we first
show that wPRF implies dv-UWM.

Witness PRF Implies dv-UWM: This direction is rather straightforward
and follows from the definition of wPRF. In particular, the dv-UWM proof w∗

is computed by running the public evaluation algorithm using the evaluation
key ek. The verification algorithm of dv-UWM is obtained by running the secret
evaluation algorithm of wPRF using the secret function key fk and checking
if the proof w∗ is equal to the output of this algorithm. The correctness of the
construction follows from the fact that the values computed in both the modes of
wPRF are equal. Uniqueness is guaranteed since the private evaluation algorithm
does not depend on the witness w and deterministically maps x to a unique
output value. Finally, the soundness of dv-UWM follows from the interactive
security of wPRF.

dv-UWM Implies Witness PRF: We show this result in two steps – (i) First,
we show that a construction of non-interactive witness PRF for NP from any
non-reusably sound dv-UWM for NP, (ii) next, we show a generic transforma-
tion from any non-interactive witness PRF for NP to an interactive witness
PRF for NP additionally using one way function.

Non-reusably sound UWM Implies Non-interactive Witness PRF: To construct a
non-interactive wPRF from a (non-reusable) dv-UWM, the key generation algo-
rithm wPRF.Gen of wPRF samples a random seed z for a (length-doubling) pseu-
dorandom generator G and sets y = G(z). It then runs the setup algorithm of
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dv-uwm, i.e., dv.setup to obtain ((K,VK)). It then sets the evaluation key as
ek = (K,VK, y) and the function key as fk = z. To compute the function F(fk, ·)
on input x ∈ L, the evaluator uses dv-uwm to get a representative witness w∗

for the statement x̂ stating that “either x is true or y is pseudorandom”, using
z as the witness. It then outputs a hardcore bit (e.g., the Goldreich-Levin (GL)
hardcore bit) of w∗ as the pseudorandom bit b. In the public evaluation mode,
on input (x,w) the algorithm wPRF.Eval uses the UWM to map the witness
w for x into the unique witness w∗ for the statement x̂. It can then compute
the pseudorandom bit b using the GL predicate. Intuitively, if an adversary can
break wPRF security, then it can distinguish the bit 0 and 1 with non-negligible
probability even if x is a false statement. This means that, using GL decod-
ing, it can compute the correct value w∗ given y with non-negligible probability.
Furthermore this value w∗ is a valid representative witness for the statement x̂.
Since the adversary cannot break the PRG, it must also compute a valid repre-
sentative witness for x̂ if we switch y to false. But this contradicts the soundness
of dv-UWM.

Generic Transformation from Non-interactive to Interactive Witness PRF: To
construct interactive witness PRF from non-interactive witness PRF (nI-wPRF)
we need to carefully define the relation for the underlying nI-wPRF. In particu-
lar, the key generation algorithm of the interactive witness PRF wPRF runs the
key generation algorithm of the non-interactive witness PRF nI-wPRF to obtain
(êk, f̂k). It then uses a statistically binding commitment scheme to commit to
a message 0 (using randomness r) such that 0 is not a valid statement of the
underlying NP relation R for wPRF to obtain commitment c. In other words,
0 /∈ X , where X is the statement space of R. It then sets the evaluation key
as ek = (êk, c) and the function key as fk = (f̂k, r). To compute the function
F(fk, ·) on input x ∈ L, the evaluator uses nI-wPRF to get a value y for the state-
ment x̂ stating that “either x is true or c is a commitment to some message x′

such that x �= x′”. In the public evaluation mode, on input (x,w) the algorithm
wPRF.Eval uses the public evaluation key of the underlying nI-wPRF to map the
witness w for x into the value y for the statement x̂. In the proof, when the
adversary commits to a challenge x∗ /∈ L, we switch from a commitment to 0 to
a commitment c∗ to x∗. Hence, we have that the statement x̂ = (x∗, c∗) is now
false. The hiding property of the commitment allows us to make such a switch.
On the other hand, for all other statement xi �= x∗, the statement (xi, c

∗) is still
true, and hence we can simulate the queries of the wPRF adversary using the
function nI-wPRF.F(f̂k, ·).

1.2.2 Extremely Compact WM Implies Pseudo-Unique WM
As mentioned above, to construct a Pseudo-UWM from an extremely compact
WM, we solve the abstract problem of pseudo-deterministic sampling from a
distribution with polynomial-sized support. We briefly sketch our solution to
the pseudo-deterministic sampling problem.

Solving Pseudo-Deterministic Sampling. As a first attempt, consider
obtaining N samples from the distribution for a value N that is much larger
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than the size of the distribution’s support, and then taking the lexicographically
smallest one. This would indeed work if we could ensure that every element in
the support gets sampled at least once. Unfortunately, this does not hold true
for arbitrary distributions. For instance, if the lexicographically smallest element
in the support has a probability 1/N , then there is a constant probability for
it to get sampled as well as to not get sampled. As a second attempt, one may
consider using a hash function to define the lexicographic ordering to prevent
the distribution from adversarially assigning such a probability to the smallest
element; however, this does not help either, if a large fraction of the elements in
the support have probability 1/N . One may note that the difficulty here arises
from (moderately) low probability elements; so to avoid such elements, we could
try to pick a high probability element, which is guaranteed to occur many times
in the sample. However neither picking the most frequent element (e.g., when
there are multiple elements which have the maximum probability), nor picking
the lexicographically smallest one from among a selected subset of frequent ele-
ments (e.g., when there are elements with probabilities that place them near
the threshold used for selection) is sufficient to guarantee uniqueness. Our final
solution combines ideas from all of these approaches: it obtains N samples and
would choose one with the smallest hash value, but the hash is computed on
the element concatenated with a counter. That is, if an element x occurs k times
in the sample, then the hashes of all of x‖1, x‖2, . . . , x‖k are considered. This
has the effect of picking an element from among the more frequent elements,
but without creating a threshold for being considered frequent. Using elemen-
tary concentration bounds we show that the probability of two executions of
this process yielding different outcomes (when using a N -wise independent hash
function) goes down polynomially with 1/N .

Pseudo-UWM from Pseudo-Deterministic Sampling. To reduce pseudo-
UWM to pseudo-deterministic sampling, first we need to create a distribution
over proofs that remains (essentially) the same for all witnesses. We achieve this
using a Non-Interactive Witness Indistinguishable proof system (NIWI). Then
we map this NIWI proof using the extremely compact WM (for the relation cor-
responding to NIWI verification) into a polynomial-sized support. The soundness
of this proof depends on the fact that for any false statement, there should not
exist a NIWI proof that gets accepted; this is guaranteed by using a statistically
sound NIWI. At this point, we have a proof system that is sound, compact, and
witness-indistinguishable. Now, pseudo-deterministic sampling from this distri-
bution would result in a pseudo-UWM.

1.2.3 Mildly CWM Implies NIZK
We show that CWM with compactness level α = poly(κ) for some fixed polyno-
mial poly(·), independent of the statement size |x| or the witness size |w| implies
the existence of NIZK argument system. Our construction generalizes the recent
work of [10] who constructed NIZKs from SNARG by replacing SNARG with
CWM with the above compactness level. [10] shows how to compile any NIZK in
the hidden-bits model (HBM) to NIZK in the CRS model using a primitive called
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hidden-bits generator with subset-dependent proofs (SDP-HBG). Then they they
show how to construct such a SDP-HBG from any SNARG and bounded-leakage
weak PRF (BLR-wPRF)1. Below we sketch the main idea of the construction
and the proof of [10]. We then show how to modify their construction and proof
technique when using CWM instead of SNARG. A SDP-HBG consists of the
following algorithms:

• HBGsdp.Setup(1κ, 1n) generates a CRS crs where n denotes the length of
hidden-bits to be generated.

• HBGsdp.GenBits(crs) generates “hidden-bits” r ∈ {0, 1}n and a state st.
• HBGsdp.Prove(st, I) generates a proof π that certifies the sub-string rI .
• HBGsdp.Verify(crs, I, rI , π) verifies the proof π to ensure that the substring of

r on the positions corresponding to subset I is indeed rI .

The SDP-HBG is required to satisfy the following properties – (i) Some-
what Computational Binding, which requires that exists a “sparse” subset
Vcrs ∈ {0, 1}n of size much smaller than 2n such that no PPT malicious prover
can generate a proof for bits that are not consistent with any element of Vcrs,
(ii) Hiding, which requires that for any subset I ⊆ [n], no PPT adversary given
can distinguish rĪ from a uniformly random string r′̄

I
, where rĪ denotes the sub-

string of r on the positions corresponding to Ī = [n]\I. To construct SDP-HBG,
the setup algorithm HBGsdp.Setup(1κ, 1n) samples �x = (x1, · · · , xn) ∈ {0, 1}m×n

and sets crs = �x. The algorithm HBGsdp.GenBits(crs) derives the hidden bits
�r = (r1, · · · , rn) ∈ {0, 1}n as ri = FK(xi), where FK : {0, 1}m → {0, 1} is a
λ-BLR-wPRF and K ∈ {0, 1}k for some polynomial k = k(κ, λ), where κ is the
security parameter. The algorithm HBGsdp.Prove(st, I) then uses the SNARG to
generate a proof π for the statement that the values ri for all i ∈ [I] are correctly
computed, using K as the witness. The verification then consists of verifying the
SNARG proof.

The somewhat computational binding property of SDP-HBG easily follows
from the soundness of SNARG as long as k � n (where k is the size of the
PRF key K and n is the length of the hidden bit string). The hiding property
is easy to reduce to security of the underlying BLR-wPRF as long as |π| ≤ λ.
In particular, the proof π corresponds to the subset I which does not depend
on xĪ (the bits of x in the positions [n] \ I), and thus we can think of xĪ as the
challenge inputs and π as the leakage.

Using CWM instead of SNARG. Our construction follows the same blueprint
from [10], except that we use a α-CWM for α = poly(κ) instead of a SNARG to
generate the proof π and use a entropic leakage-resilient weak PRF2 to generate
1 Informally, a λ-BLR-wPRF FK(·) guarantees pseudorandomness of the output of the

PRF when evaluated on uniformly random inputs, even when the adversary can leak
up to λ bits on K. [9] showed how to construct such BLR-wPRF from any OWF.

2 Informally, a λ-entropic leakage-resilient PRF FK(·) guarantees pseudorandomness
of the output of the PRF when evaluated on uniformly random inputs, even when
the adversary can get λ-entropic leakage on K. Roughly this means that the PRF
key K still has k − λ bits of average min-entropy, even conditioned on the leakage
from K. [9] showed how to construct such entropic LR-wPRF from any OWF.
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the hidden bits r ∈ {0, 1}n, instead of a bounded leakage-resilient weak PRF.
This is because, unlike SNARG the size of our CWM proofs π are not guaranteed
to be succinct. However, we have the guarantee that the proof π is α-compact, for
some α = poly(κ), where poly(κ) is independent of n. This means the size of the
CWM image is at most 2α. Hence, as long as the underlying wPRF is resilient to
λ-entropic leakage, where α ≤ λ, we can rely on the (entropic) leakage-resilience
of ELR-wPRF to argue hiding of the SDP-HBG. We can then set the parameters
appropriately to satisfy these two inequalities.

1.2.4 UWM Implies Deterministic-prover NIZK
We show that UWM implies deterministic prover NIZK arguments systems
(dp-nizk), where the prover and verifier are deterministic. In fact, we can achieve
perfect zero-knowledge property. The main idea of our construction is similar to
the construction of non-interactive witness PRF from dv-UWM. In particular,
the setup algorithm of dp-nizk chooses a pseudorandom string y = G(z), where
G is a length-doubling PRG. The CRS crs of dp-nizk consists of the CRS K of
UWM and the value y. The prover of dp-nizk on input some (x,w) in the rela-
tion runs the UWM prover to get a representative witness w∗ for the statement
x̂ stating that “either x is true or y is pseudorandom”, using w as the witness.
Note that the prover is deterministic. The verification of dp-nizk simply uses
the UWM verifier. To prove the soundness of this construction, we sample y
uniformly at random and hence with very high probability there does not exist
any valid preimage of y with respect to G. Hence, if x /∈ L, the statement
x̂ = (x, y) is also not in the (augmented) language with overwhelming probabil-
ity. The soundness of the construction now follows from the soundness of UWM.
To prove zero-knowledge property, the simulator uses the trapdoor z as the wit-
ness to simulate proofs of statements xi ∈ L queried by the adversary (note that
z is a valid witness for the statements (xi, y)). The uniqueness property of UWM
guarantees that proofs computed by either of the witnesses result in the same
proof. Hence, the zero-knowledge property follows. Finally, note that, we can
achieve the stronger notion of perfect ZK since the CRS in both the real world
and the simulation are identically distributed (both are computed by sampling
the CRS K of UWM and the string y pseudorandomly).

1.2.5 Perfectly Sound Verifier UWM Implies NP = UP
Recall that a verifier UWM (VUWM) is similar to an UWM with the additional
guarantee that the verifier also accepts a unique proof for each statement x. The
complexity class UP consists of problems that are accepted by an unambiguous
Turing machine with at most one accepting path for each input. It is easy to
see that the verifier of a perfectly sound VUWM acts as a UP relation. Also,
since we require the VUWM to be perfectly sound it does not require as setup.
Hence, it shows that NP ⊆ UP. The other direction is trivial and hence this
shows that NP = UP.
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2 Preliminaries

2.1 Notation

For n ∈ N, we write [n] = {1, 2, · · · , n}. If x is a string, we denote |x| as the
length of x. For a distribution or random variable X, we denote x ← X the action
of sampling an element x according to X. When A is an algorithm, we write
y ← A(x) to denote a run of A on input x and output y; if A is randomized, then
y is a random variable and A(x; r) denotes a run of A on input x and randomness
r. An algorithm A is probabilistic polynomial-time (PPT) if A is randomized and
for any input x, r ∈ {0, 1}∗; the computation of A(x; r) terminates in at most
poly(|x|) steps. For a set S, we let US denote the uniform distribution over S.
For an integer α ∈ N, let Uα denote the uniform distribution over {0, 1}α, the bit
strings of length α. Throughout this paper, we denote the security parameter by
κ. We refer the reader to the full version of the paper for some basic definitions
and concepts related to information theory. We will need the following form of
the Chernoff-Hoeffding inequality.

Lemma 1. Let SN be the sum of N independent samples of a Bernoulli random
variable, which is 1 with probability p and 0 otherwise. Then Pr[|SN − Np| >

t] < e−t2/N . In particular, Pr[|SN − Np| > N2/3] < e−N1/3
.

2.2 Cryptographic Primitives

Next we summarize some of the cryptographic primitives from literature that
we rely on.

2.2.1 Witness PRFs
A witness PRF [17] consists of triple of algorithms wPRF = (wPRF.Gen,
F,wPRF.Eval) as follows:

1. wPRF.Gen(κ,R) : This is a randomized algorithm that takes as input the
security parameter 1κ and the description of a circuit R : X × W → {0, 1}
and outputs a function secret key fk along with a public evaluation key ek.

2. F(fk, x) : The private evaluation algorithm F is a deterministic algorithm that
takes as input the function secret key fk and an input x ∈ X and produces
some output y ∈ Y for some set Y.

3. wPRF.Eval(ek, x, w) : The public evaluation algorithm wPRF.Eval is also a
deterministic algorithm that takes as input the public evaluation key ek, an
input x ∈ X and a witness w ∈ W to produce an output y ∈ Y or ⊥.

* Correctness. The correctness of wPRF requires that for all x ∈ X and w ∈ W,
the following holds:

wPRF.Eval(ek, x, w) =

{
F(fk, x) if R(x,w) = 1
⊥ if R(x,w) = 0
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* Security. We recall the adaptive instance interactive security notion for wit-
ness PRFs from [17]. Consider the following experiment ExpR

A(κ, b) between
an adversary A and a challenger C, parameterized by a relation R : X ×W →
{0, 1}, a bit b and security parameter κ.

• The challenger C runs (fk, ek) ← wPRF.Gen(κ,R), and gives ek to A.
• A can adaptively make queries on instances xi ∈ X and receives the values
F(fk, xi) from C.

• At any point in the game, A can make a challenge query x∗ ∈ X . The chal-
lenger computes y0 ← F(fk, x∗) and y1

$←− Y. It then returns yb to A.
• A can make additional queries to F and finally A outputs a bit b′. The chal-

lenger C checks that x∗ /∈ {xi} and that x∗ /∈ LR
3. If either check fails, C

outputs a random bit. Otherwise, it outputs b′.

Let Wb be the event that the challenger in experiment ExpR
A(κ, b) outputs 1.

Define the advantage of A as wPRF.AdvR
A(κ) = |Pr[W0] − Pr[W1]|.

Definition 1 (Adaptive instance Interactive security). wPRF =
(wPRF.Gen,F,wPRF.Eval) is adaptive instance interactively secure for a NP rela-
tion R if for all PPT adversaries A, the advantage wPRF.AdvR

A of A is negligible in
the security parameter κ.

One can also define non-interactive security for witness PRFs, where the
adversary A in the above experiment is not allowed to make any F queries.

Definition 2 (Adaptive instance Non-Interactive security). wPRF =
(wPRF.Gen,F,wPRF.Eval) is adaptive instance non-interactively secure for a NP
relation R if for all PPT adversaries A, the advantage wPRF.AdvR

A of A is negli-
gible in the security parameter κ, and additionally the adversary A is not allowed
to make any F queries in the above experiment.

Finally, one can also define a weaker notion of security, called the static
instance interactive (non-interactive) security, where the adversary needs to
commit to the challenge x∗ before seeing ek or before making any queries to
the oracle F. We note that one can convert any static-instance interactive (resp.
non-interactive) witness PRF to an adaptive instance one by relying on com-
plexity leveraging when appropriate.

2.2.2 Generalized Goldreich-Levin Theorem
For our construction of witness PRF from witness maps we will need to use a
generalized version of the Goldreich-Levin (GL) theorem [7], as stated below.

Lemma 2 (Generalized Goldreich-Levin Theorem). There exists a PPT
inverter A′ and a non-zero polynomial q(·) such that, for any PPT algorithm
A and any (α, β) ∈ {0, 1}k × {0, 1}� such that p(α) := Pr[A(α, r) = 〈β, r〉 :

r
$←− {0, 1}�] (where 〈·, ·〉 denotes the inner product over the binary field), then

Pr[A′A(α,·)(1�, α) = β] ≥ q(p
(
α) − 1

2

)
.

3 Note that, the language LR := {x | ∃w, (x, w) ∈ R}.



A Map of Witness Maps: New Definitions and Connections 647

2.2.3 Leakage-resilient Weak PRF
A standard weak PRF (wPRF) requires that given arbitrarily many uniformly
random inputs x1, · · · , xq, the outputs of the wPRF y1, · · · , yq look pseudoran-
dom. A leakage-resilient wPRF (LR-wPRF) requires wPRF security to hold even
if the attacker can leak some information about the secret key. In particular, we
will consider the entropy-bounded leakage model [3,5]. Following [5], we first
recall the notion of λ-leaky functions.

Definition 3 (λ-leaky function). A probabilistic function h : {0, 1}∗ →
{0, 1}∗ is λ-leaky if, for all n ∈ N we have H̃∞(Un|h(Un)) ≥ n − λ, where
Un is the uniform distribution over {0, 1}n.

As shown in [5], if a function is λ-leaky (decreases the entropy of the uniform dis-
tribution by at most λ bits), then it decreases the entropy of every distribution
by at most λ bits. Moreover, the definition composes nicely and an adversary
that adaptively chooses several λi-leaky functions, only learns

∑
i λi bits of infor-

mation.
Informally, we say a function FK($) is a λ(κ)-leakage-resilient weak PRF

in the entropy-bounded leakage model, if the weak PRF security guarantee is
maintained, even if the adversary can learn the output of a λ-leaky function on
the key K. We refer to the full version for the formal definition.

We also rely on statistically-sound NIWI proof systems. We refer to the full
version for the formal definition.

3 Different Notions of Witness Maps and Their
Definitions

In this section, we present the definition of compact witness map from [4]. We
then present different variations of their definition, namely designated-verifier
witness maps and verifier-compact witness maps, which we introduce in this
work. We start by recalling the definition of compact witness map (CWM)
from [4].

3.1 Compact Witness Maps

We say that R ⊆ {0, 1}∗ × {0, 1}∗ is said to be an NP relation if membership
in it can be computed in time polynomial in the length of the first input. Given
an NP relation R, we define the NP language LR := {x | ∃w, (x,w) ∈ R}.
When referring to (x,w) ∈ R, where R is a given NP relation, x is called the
statement and w the witness. It will be convenient for us to consider NP relations
parametrized with their input length: Below we let R� := R ∩ {0, 1}� × {0, 1}∗.
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Definition 4 (Compact Witness Map (CWM)). For α ≥ 0, an α-CWM
for an NP relation R is a triple cwm = (setup,map, check) where setup is a
PPT algorithm and the other two are deterministic polynomial time algorithms
such that:

• setup(κ, �) outputs a string K of length polynomial in the security parameter
κ and �, where � = �(κ) is an upper bound on the length of the statements
supported by cwm.

• Completeness: For any polynomial �, ∀(x,w) ∈ R�(κ), ∀K ← setup(κ, �(κ)),

check(K, x,map(K, x, w)) = 1.

• Compactness: For any polynomial �, ∀K ← setup(κ, �(κ)), ∀x ∈ {0, 1}�(κ),

|{map(K, x, w) | (x,w) ∈ R�(κ)}| ≤ 2α.

• Soundness: For any polynomial � and any PPT adversary A, Advcwm
A (κ)

defined below is negligible:

Pr
K←setup(κ,�(κ))
(x∗,w∗)←A(K)

[check(K, x∗, w∗) = 1, x∗ �∈ LR ].

A 0-CWM is also called a Unique Witness Map (UWM).

The above definition has perfect security in the sense that the completeness
and compactness conditions hold for every possible K that cwm.setup can output
with positive probability. A statistical version, where this needs to hold with all
but negligible probability over the choice of K will suffice for all our applications.
But for simplicity, we shall use the perfect version above.

3.2 Designated-Verifier Witness Maps

In this section, we define (reusable/non-reusable) designated-verifier compact
witness maps (dv-CWM).

Definition 5 (Reusable/Non-Reusable dv-CWM). For α ≥ 0, a reusable
(resp. non-reusable) α-dv-CWM for an NP relation R is a triple dv-cwm =
(setup,map, check) where setup is a PPT algorithm that on input the security
parameter κ and the statement length �, outputs a pair of strings (K,VK), and
the other two are deterministic polynomial time algorithms that satisfy the com-
pleteness, compactness and reusable soundness (resp. non-reusable soundness)
conditions below.

• Completeness: For any polynomial �, ∀(x,w) ∈ R�(κ), ∀(K,VK) ←
setup(κ, �(κ)),

check(VK, x,map(K, x, w)) = 1.
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• Compactness: For any polynomial �, ∀(K,VK) ← setup(κ, �(κ)), ∀x ∈
{0, 1}�(κ),

|{map(K, x, w) | (x,w) ∈ R�(κ)}| ≤ 2α.

• Reusable/Non-Reusable Soundness: Reusable soundness requires that the
advantage Advdv-cwm

A (κ) defined below is negligible for every polynomial � and
every PPT adversary A with oracle access to check(VK, ·, ·).

Advdv-cwm
A (κ) = Pr

(K,VK)←setup(κ,�(κ))

(x∗,w∗)←Acheck(VK,·,·)(K)

[check(VK, x∗, w∗) = 1 ∧ x∗ �∈ LR ].

Non-reusable soundness requires that Advdv-cwm
A (κ) is negligible for every poly-

nomial � and every PPT adversary A which does not access its oracle.

A 0-dv-CWM is also called a Designated-verifier UWM (dv-UWM).
Similar to CWM, one can also define a weaker notion of selective reusable

(resp. non-reusable) soundness, in which the adversary is required to gener-
ate x∗first (given κ, �) before it gets Kand access to the verification oracle
check(VK, ·, ·).

3.3 Verifier-Compact Witness Maps

Definition 6 (Verifier-Compact Witness Maps (VCWM)). For α ≥ 0,
an α-VCWM (setup,map, check) for an NP relation R is a CWM for R satis-
fying the following additional condition:

• Verifier-Compactness: For any polynomial �, ∀K ← setup(κ, �(κ)), ∀x ∈
{0, 1}�(κ), ∣∣{w∗ | check(K, x, w∗) = 1

}∣∣ ≤ 2α.

A 0-VCWM is also called a verifier-unique witness map (vuwm).

Selective Soundness. The soundness condition for CWM and its variants (dv-
CWM and VCWM) can be relaxed to obtain a selectively sound variant of the
corresponding primitive. In the soundness conditions above, we considered an
adversary A which outputs a statement x∗ and a purported proof w∗ at the
end of the experiment. For selective soundness, we require A to output x∗ at
the beginning (given only κ, �), before setup is executed. This level of soundness
suffices for some applications (e.g., construction of a witness encryption scheme
from a UWM), as shown in [4]. It also provides an intermediate target for con-
structions, as one can convert a selectively sound CWM to a standard CWM by
relying on complexity leveraging.
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4 Equivalence of Witness PRFs and dv-UWM

In this section, we explore the relationship between witness PRF (wPRF) and
unique witness maps. In particular, we show that witness PRF and designated-
verifier UWM (dv-UWM) are equivalent for NP. For these implications, we
consider the static security variant of witness PRF and selective soundness of
dv-UWM. Our implications can be adapted to the adaptive security variants of
both these notions via complexity leveraging.

4.1 Witness PRF Imply dv-UWM

In this section, we present the construction of our (selective reusable sound) dv-
UWM for any NP relation R. The main building block of our construction is a
(static-instance secure) witness PRF for R.

Construction. Let wPRF = (wPRF.Gen,F,wPRF.Eval) be a static-instance
interactively secure witness PRF for any NP relation R parametrized by state-
ments of length at most �(κ), where κ is the security parameter and � is an arbi-
trary (but fixed) polynomial in the security parameter. We construct a (selective)
reusable dv-UWM dv-uwm = (dv.setup, dv.map, dv.check) for R as follows:

• dv.setup(κ, �) : Run (fk, ek) ← wPRF.Gen(κ,R). Set K = ek and VK = fk.
• dv.map(K, x, w) : Parse K as ek. Run y = wPRF.Eval(ek, x, w). Output w∗ = y
• dv.check(VK, x, w∗) : Parse VK as fk and compute y′ = F(fk, x) and check if

w∗ ?= y′. If the check is satisfied, output 1; else output ⊥.

Theorem 1. Let wPRF be an static-instance interactively secure witness PRF
for NP with super-polynomial range |Y| = κω(1). Then the above construction
of dv-UWM for NP satisfies selective reusable soundness.

Proof. Firstly, we note that dv-uwm satisfies perfect completeness (assum-
ing wPRF is perfectly correct). Also, it satisfies uniqueness, since (x,w) is
deterministically mapped to the output of wPRF, regardless of the witness
w. In particular, the correctness of wPRF guarantees that for all (x,w) ∈ R,
wPRF.Eval(ek, x, w) = F(fk, x). The later function (i.e., F(fk, ·)) does not depend
on w and deterministically maps x to a unique output value y ∈ Y. Below, we
shall prove that the construction satisfies selective reusable soundness as well.

Consider an adversary A in the definition of Advdv-uwm
A (κ) (see Def. 5). Note

that, in the (selective) reusable soundness experiment the adversary A first com-
mits to the challenge x∗ and then gets access to the public parameter K and the
verification oracle, namely dv.check(VK, ·, ·). The oracle takes as input tuples of
the form (xi, w

∗
i ) and outputs either 1 or 0. We show how to construct another

adversary B breaking the static-instance interactive security of wPRF using A
in a black-box way. The adversary B simulates the environment of A as follows:

1. The adversary B first commits to a challenge x∗ such that x∗ /∈ LR. The
adversary A forwards x∗ to its own challenger and receives a value y∗ ∈ Y,
which it stores in its memory.
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2. The adversary B then receives ek from its challenger and sets K = ek. It gives
K to A.

3. When A queries a tuple (xi, w
∗
i ) to dv.check(K,VK, ·, ·), the adversary B does

the following:
• Query the oracle F(fk, ·) on input xi to receive some output yi.
• Checks if w∗

i
?= yi. If so, it outputs 1 to A’ else it outputs 0.

4. Finally, at some point A outputs w∗ corresponding to the challenge x∗ (which
it committed to before). The adversary A then retrieves the value y∗ from
its memory and checks if y∗ ?= w∗. If the check passes, B outputs 0; else it
outputs 1.

This completes the description of simulation of A′s environment by B. Let
us assume that A makes a total of q = q(κ) queries to the verification ora-
cle dv.check(VK, ·, ·) (including the challenge query). Since A has some non-
negligible advantage (say ε) in breaking the selective reusable soundness of
dv-uwm, it must hold that dv.check(VK, x∗, w∗) = 1 holds with probability ε.
According to the construction, the above check passes whenever w∗ = F(fk, x∗).
If the value y∗ received by B from its challenger was computed using the function
F(fk, ·), then it always holds that y∗ = w∗. However, if y∗ was randomly sam-
pled, the probability that w∗ is equal to y∗ is 1

|Y| , which is negligible. Hence, the
advantage of B in breaking the adaptive-instance interactive security of wPRF is
ε − q

|Y| , which is non-negligible, thereby contradicting the security of wPRF. ��

4.2 dv-UWM Implies Witness PRF

Now, we present our implication in the other direction, namely that dv-UWM for
NP implies witness PRF for NP. We split our transformation into two phases.
First, we present a construction of a (static) non-interactive witness PRF for
NP from any (selective) non-reusably sound dv-UWM for NP. Next, we show
a generic transformation from any (static) non-interactive witness PRF for NP
to an (static) interactive witness PRF for NP additionally using any one way
function.

4.2.1 dv-UWM Implies Non-interactive Witness PRF
In this section, we show our first transformation from any (selective) non-
reusably sound dv-UWM for NP to a (static-instance) non-interactive witness
PRF for NP. The construction is shown in Fig. 2.

Theorem 2. If dv-uwm is a selective non-reusably sound dv-UWM for the NP
relation � (defined in Fig. 2), then the construction shown in Fig. 2 is a static-
instance non-interactively secure witness PRF for the NP relation R.
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Fig. 2. Construction of Non-Interactive Witness PRF wPRF from dv-uwm

Proof. We show that any adversary Awprf breaking the static-instance non-
interactive security of wPRF with a noticeable advantage can be transformed into
an adversary Adv-uwm breaking the selective non-reusable soundness of dv-uwm.
Note that, in the static-instance non-interactive security game of wPRF the
adversary commits to the challenge x∗ before seeing the evaluation key ek. At
first, we show that the adversary Awprf breaking the security of wPRF can be
converted into a predictor Agl for the generalized Goldreich-Levin theorem.
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In more details, let the adversary Awprf can predict the bit b in the security
experiment of wPRF on the challenge instance x∗ /∈ LR with non-negligible
probability. Let, α = (K, y), and β = w∗ from the generalized GL theorem (see
Lemma 2). This implies that we can construct a distinguisher A that on input(
α = (K, y), r

)
can distinguish the bit b (in the above construction) from a ran-

dom bit with non-negligible probability. Hence, by Lemma 2, we can use this
distinguisher A to construct a predictor A′, who given α = (K, y) can predict
the pre-image w∗ with non-negligible probability. This implies that the predictor
outputs w∗ such that w∗ = dv.map

(
K, (x, y), (⊥, z)

)
with non-negligible prob-

ability. At this point, instead of computing y = G(z), we sample a random
y ← {0, 1}2κ. The security of the PRG G ensures that this switch is indistin-
guishable to A′. Hence the probability that A′ outputs a “valid” w∗ (w∗ such
that dv.check(K,VK, (x, y), w∗) = 1) continues to hold, except with a negligi-
ble probability. However, note that, with very high probability it holds that
(x, y) /∈ �. This contradicts the selective non-reusable soundness property of
dv-UWM, since the adversary A′ outputs a valid representative witness corre-
sponding to a false statement (x, y) /∈ �. ��

4.2.2 Equivalence of Non-Interactive and Interactive Witness PRF
In this section, we show that any (static-instance) non-interactive witness PRF
for NP can be generically transformed to a (static-instance) interactive witness
PRF for NP. The construction is given in Fig. 3.

Theorem 3. Let nI-wPRF be a static-instance non-interactively secure witness
PRF for the NP relation Ψ (defined in Fig. 3), and (Com,Open) be a statistically
binding commitment scheme. Then the construction shown in Fig. 3 is a static-
instance interactively secure witness PRF for the NP relation R.

The detailed proof of this theorem is presented in the full version of the paper.
The intuition behind the proof is given in the technical overview.

5 Extremely Compact WM Implies Pseudo-UWM

In this section, we show that an extremely compact WM – i.e., a CWM with
polynomial-sized image – implies a Pseudo-UWM (p-UWM) where the unique-
ness may not hold with an inverse polynomial probability (that can be made
arbitrarily small). In other words, we show that a α-CWM for α = O(log κ) for
security parameter κ implies a p-UWM as defined below.

Definition 7 (Pseudo Unique Witness Map (p-UWM)). A Pseudo-UWM
(p-UWM) for an NP relation R is a triple cwm = (setup,map, check) where
setup is a PPT algorithm, and map and check are deterministic polynomial time
algorithms such that:
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Fig. 3. Construction of an interactive wPRF wPRF from a non-interactive wPRF
nI-wPRF

• setup(κ, �, ε) outputs a string K of length polynomial in κ, � and 1/ε.
• Completeness: For any polynomials �, 1/ε, ∀(x,w) ∈ R�(κ),

Pr
K←setup(κ,�(κ),ε(κ))

w∗←map(K,x,w)

[check(K, x, w∗) = 1] = 1.

• Pseudo-Uniqueness: For any polynomial �, ∀x ∈ {0, 1}�(κ), ∀w1, w2 such that
(x,w1), (x,w2) ∈ R�(κ) (possibly w1 = w2),

Pr
K←setup(κ,�(κ),ε(κ))

w∗
1←map(K,x,w1)

w∗
2←map(K,x,w2)

[w∗
1 �= w∗

2 ] ≤ ε(κ)
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• Soundness: For any polynomials �, 1/ε, and any PPT adversary A, Advcwm
A (κ)

defined below is negligible:

Pr
K←setup(κ,�(κ),ε(κ))

(x∗,w∗)←A(K)

[check(K, x∗, w∗) = 1, x∗ �∈ LR ].

We now present the construction below. The main building block of our con-
struction is a statistically-sound NIWI (SNIWI) argument system niwi. Before
proceeding with the construction, let us try to solve a seemingly unrelated algo-
rithmic problem, which we call the pseudo-deterministic sampling (PDS) prob-
lem over a polynomial-sized domain. We will later see how to use a solution for
the PDS problem in our construction of p-UWM from CWM.

Pseudo-Deterministic Sampling for Small Domains. Let D be an arbi-
trary distribution over some set X with a support of size n. Our goal is to
design an algorithm PDS.sam that is polynomial-time in n and with only sam-
pling access to D, can pseudo-deterministically output an element from the sup-
port of D. PDS.sam takes a reference string crs, and the pseudo-determinism
is required to hold with high probability over the choice of crs. More formally,
(PDS.setup,PDS.sam) is said to be a PDS scheme if:

1. PDS.setup(n, �, δ), with inputs the security parameter κ, a bound n on the
support size of distributions over {0, 1}� that are to be handled, and a prob-
ability δ > 0, outputs a common reference string crs of length polynomial in
n, � and 1/δ.

2. PDS.samD(crs) : Given an input crs and sampling access to a distribution
D over {0, 1}�, the algorithm PDS.sam gets a polynomial number of samples
from D (polynomial in |crs|) and outputs an element in the support of D,
such that the following holds:

• Pseudo-determinism: For all distributions D over {0, 1}� with support
size at most n,

Pr
crs←PDS.setup(n,�,δ)

c1←PDS.samD(crs),c2←PDS.samD(crs)

[c1 �= c2] ≤ δ

where the probability is over the choice of crs as well as the samples
from D.

We refer to an (n, �, δ)-PDS as a PDS scheme setup with those parameters.
We now present a construction of a PDS scheme in Fig. 4.
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Fig. 4. A pseudo-deterministic sampling algorithm for a small support

Lemma 3. (PDS.setup,PDS.sam) (Fig. 4) is a PDS scheme.

Proof. Since PDS.sam satisfies the efficiency requirements, and always outputs
an element in the support of D, it remains to show that it satisfies the pseudo-
determinism requirement.

Consider two independent runs of PDS.sam using the same H. Let Si, Yi

denote the multi-set of samples and the set of count-appended samples in the
two executions.

First, fix the sets Y1 and Y2. Note that if the lexicographically smallest ele-
ment in {H(y) | y ∈ Y1 ∪ Y2} is an element H(y) for y ∈ Y1 ∩ Y2, then PDS.sam
outputs the same value in both runs. Now, since H is 2N -wise independent, H
behaves identical to a random function over Y1 ∪ Y2. Hence, over the choice of
H, the probability of error – i.e., that the outputs of PDS.sam are different – is
upper bounded by |Y1ΔY2|

|Y1∪Y2| ≤ |Y1ΔY2|
N .

Now we define the following “Good” event for the choice of (S1, S2) over the
samples from D (independent of H): For all x the support of D, the multiplicity
of x in S1 and in S2 are both in the range [Np−N2/3, Np+N2/3], where p is the
probability assigned to x by D. When this condition holds, |Y1ΔY2| ≤ n · 2N2/3,
where n is an upper bound on the size of the support of D. Hence, conditioned
on the Good event, the probability of error is at most |n·2N2/3|

2N .
Finally, by Lemma 1 and union bound (for each x in the support of D,

and each of Y1, Y2), the probability of the Good event not occurring is at most
2ne−N1/3

. Hence the probability of error is at most 2ne−N1/3
+nN−1/3. Letting

N = (2n/δ)3, this is at most δ. ��
Now we present the p-UWM scheme for an NP relation R. For simplicity,

first we present a randomized map, and then point out how to derandomize it
using the CRS.
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1. The p-UWM setup outputs crs = (crsniwi, crscwm, crsPDS.sam), which consists
of the setup for a statistically sound NIWI proof system for the relation
R, an α-CWM for the relation corresponding to the NIWI verifier, and a
(2α, �, ε/2)-PDS scheme (as given above).

2. The p-UWM, on input (x,w) ∈ R, defines the distribution Dx,w as the distri-
bution of map(NIWI(x,w; crsNIWI); crscwm). Then it outputs PDS.samDx,w .

3. The p-UWM verifier is the same as check.

Completeness is easy to see. The soundness of this proof depends on the
fact that for any false statement, there does not exist a NIWI proof that gets
accepted (except with negligible probability, over the choice of crsniwi), and that
cwm is (computationally) sound. For pseudo-uniqueness, first consider two runs
of p-UWM (with the same setup) using the same witness w. In this case, from
the compactness of CWM and the pseudo-determinism of the PDS scheme, the
probability of the outputs differing is at most ε/2. In the general case, when
two different witnesses w1, w2 are used, we note that the distributions Dx,w1

and Dx,w2 are computationally indistinguishable from each other, thanks to the
witness indistinguishability property of NIWI. Since PDS.sam is computationally
efficient, this implies that the probability of the outputs differing given access to
Dx,w1 and Dx,w2 (rather than two copies of Dx,w1) can only be negligibly more
than ε/2. Hence for any inverse polynomial ε, this error probability is bounded
by ε, as required.

Finally, we address the fact the p-UWM mapping algorithm above was
defined to be randomized, to carry out the implementation of (N samples from)
Dx,w, given (x,w). Since the definition of pseudo-uniqueness involves only two
runs of the mapping algorithm, it is enough to include a pairwise independent
hash function in the CRS which would be used to derive the required amount of
randomness as a function of its input (x,w).

6 Mildly Compact WM Implies NIZK

In this section, we show that a mildly compact WM - i.e., a CWM with com-
pactness level α = poly(κ) for some fixed polynomial poly(·), independent of the
statement size |x| or the witness size |w| implies the existence of NIZK argument
system. As mentioned in in the introduction, we generalize the recent work of
[10] who constructed NIZKs from SNARG by replacing SNARG with CWM with
the above compactness level. In particular, we show a construction of hidden-bits
generator with subset-dependent proofs (SDP-HBG) from α-CWM. This result,
along with the compiler of [10] that transforms any NIZK in the hidden-bits
model (HBM-NIZK) to NIZK in the CRS model using SDP-HBG implies a con-
struction of NIZK from any α-CWM as long as α = poly(κ) as defined above.
Following [10] we first provide the definition of SDP-HBG.

6.1 Hidden-Bits Generator with Subset-Dependent Proofs

Following [10], we recall the notion of hidden-bits generator with subset-
dependent proofs (SDP-HBG).
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Definition 8 (SDP-HBG). A hidden-bits generator with subset-dependent
proofs (SDP-HBG) consists of four PPT algorithms (HBGsdp.Setup, HBGsdp.
GenBits, HBGsdp.Prove, HBGsdp.Verify ) defined as follows:

1. HBGsdp.Setup(1κ, 1n) : The setup algorithm takes the security parameter 1κ

and the length parameter 1n as input, and outputs a CRS crs.
2. HBGsdp.GenBits(crs) : The bits generation algorithm takes a CRS crs as input,

and outputs a string r
$←− {0, 1}n and a state st.

3. HBGsdp.Prove(st, I) : The proving algorithm takes a state st and a subset
I ⊆ [n] as input, and outputs a proof π.

4. HBGsdp.Verify(crs, I, rI , π) : The verification algorithm takes a CRS crs, a
subset I ⊆ [n], a string rI ∈ {0, 1}|I| and a proof π as input, and outputs
either 1 or 0 indicating acceptance or rejection respectively.

A SDP-HBG is required to satisfy the following properties:

• Correctness. For any natural number n and I ⊆ [n], we have:

Pr

⎡
⎣ crs ← HBGsdp.Setup(1κ, 1n);
HBGsdp.Verify(crs, I, rI , π) = 1 : (r, st) ← HBGsdp.GenBits(crs);

π ← HBGsdp.Prove(st, I)

⎤
⎦ = 1

• Somewhat Computational Binding. There exists a constant γ < 1 such
that (1) for any polynomial n = n(κ) and for all crs ← HBGsdp.Setup(1κ, 1n),
there exists a subset Vcrs ⊆ {0, 1}n such that |Vcrs| ≤ 2nγpoly(κ) holds, and (2)
for any PPT adversary A, we have:

Pr
crs←HBGsdp.Setup(1κ,1n)

[
rI /∈ Vcrs

I ∧ HBGsdp.Verify(crs, I, rI , π) = 1 :

(I, rI , π) ← A(crs)
]

= negl(κ).

where Vcrs
I = {rI : r ∈ Vcrs}

• Computational Hiding. For any polynomial n = n(κ), I ⊆ [n], any PPT
adversary A, we have:∣∣∣ Pr [A(crs, I, rI , π, rĪ) = 1] − Pr

[A(crs, I, rI , π, r′̄
I) = 1

] ∣∣∣
where r′̄

I
denotes the substring of r on the positions corresponding to Ī =

[n] \ I.

A SDP-HBG is a weaker primitive than HBG, and [10] showed how to con-
struct a SDP-HBG generically starting from any HBG.
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6.2 Construction of SDP-HBG

In this section, we show how to construct a SDP-HBG from CWM and OWF.
Our construction requires the following ingredients:

• An λ-entropic leakage-resilient weak PRF (λ-LR-wPRF) F = {FK :
{0, 1}m → {0, 1}}K∈{0,1}k (see Sect. 2.2.3), with key length k = k(κ, λ) =
λ · poly(κ), input length m = m(κ, λ) = λ · poly(κ), and output length 1 bit.
Here λ denotes the leakage parameter of the ELR-wPRF F .

• A α-CWM cwm = (setup,map, check) for α = poly(κ) for an arbitrary poly-
nomial poly(κ) (independent of the length of the statement or witness) for
the language L associated with the following relation R:(

(k′, {xi}i∈[k′], {ri}i∈[k′]),K)
)

∈ R ⇐⇒ ri = FK(xi) ∀i ∈ [k′]

We now proceed to describe our construction.
1. HBGsdp.Setup(1κ, 1n) : Do the following:

(a) Run K ← setup(κ, �), where � is the length of the statement mentioned
in the relation above.

(b) For all i ∈ [n], sample xi
$←− {0, 1}m.

Return crs = (K, {xi}i∈[n]).
2. HBGsdp.GenBits(crs) : Do the following:

(a) Parse the CRS as crs = (K, {xi}i∈[n]).

(b) Sample key K
$←− {0, 1}k, and compute ri = FK(xi) for all i ∈ [n].

Return (r = {ri}i∈[n], st = (crs,K, r)).
3. HBGsdp.Prove(st, I) : Parse st = (crs,K, r) and crs = ((K, {xi}i∈[n]). Then

compute w∗ ← map
(
K, (|I|, xI , rI),K

)
and return π := w∗.

4. HBGsdp.Verify(crs, I, rI , π) : Parse crs = ((K, {xi}i∈[n]) and π as w∗.
Return the output check

(
K, (|I|, xI , rI), w∗).

Theorem 4. Let κ be the security parameter. If there exist a λ-entropic leakage-
resilient weak PRF and a α-CWM for all NP languages for α = poly(κ) (where
poly(κ) is some polynomial) such that α ≤ λ and that satisfies adaptive sound-
ness, then there exists an SDP-HBG that satisfies somewhat computational bind-
ing and computational hiding.

The detailed proof of this theorem is presented in the full version of the paper.
The intuition behind the proof is given in the technical overview.

7 UWM Implies Deterministic-Prover NIZK

In this section we show that UWM implies deterministic-prover NIZK argument
system (dp-nizk) satisfying perfect zero-knowledge. Before this, we knew how
to construct such a DP-NIZK argument system only from iO. Below we briefly
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sketch the construction and defer to the full version of the paper for the details
of the construction and proof.

A DP-NIZK argument system is NIZK argument system where the prover
and verifier are both deterministic. Apart from completeness and soundness we
require perfect zero-knowledge property to hold, i.e., the simulated proofs are
identically distributed to the real proofs. The setup algorithm of our dp-nizk
chooses a random seed z for a length-doubling pseudorandom generator G and
sets y = G(z). The CRS crs of dp-nizk consists of the CRS K of UWM and
the value y. The prover of dp-nizk on input some (x,w) in the relation runs
the UWM prover to get a representative witness w∗ for the statement x̂ stating
that “either x is true or y is pseudorandom”, using w as the witness. Note that
the prover is deterministic. In the proof of soundness, we sample y uniformly at
random, so that y is not in the image of G, except with negligible probability.
At this point the soundness of dp-nizk follows from the soundness of UWM. To
prove ZK, the simulator uses the witness z to simulate the proofs. The uniqueness
property of UWM guarantees that proofs computed by either of the witnesses
result in the same proof. Hence, the zero-knowledge property follows.

8 Perfectly Sound Verifier UWM Implies NP = UP

In this section, we show that if a perfect sound verifier unique witness map
(vuwm) exists (see Definition 6) then the complexity class NP will be equal to
the complexity class UP, where UP stands for unambiguous non-deterministic
polynomial-time. Informally, the class UP is the complexity class of decision
problems solvable in polynomial time on an unambiguous Turing machine with
at most one accepting path for each input. Hence it is easy to see that UP
contains the class P and is contained in NP. In the following we shall prove
that NP ⊆ UP, assuming perfect sound VUWM. Let us first formally define
the class UP.

Definition 9 (Complexity class UP). A language L ∈ UP if there exists a
two-input polynomial-time algorithm R and a constant c such that

• If x ∈ L, then there exists a unique certificate w with |w| = O(|x|)c such that
R(x,w) = 1.

• If x /∈ L, there is no certificate w with |w| = O(|x|)c such that R(x,w) = 1.

Valiant and Vazirani [16] showed that NP ⊆ RPpromise-UP, which means that
that there is a randomized reduction from any problem in NP to a problem in
Promise-UP.

Theorem 5. If perfectly-sound vuwm exists for an NP relation R, then LR ∈
UP. In particular, if perfectly-sound vuwm exists for every NP relation, then
NP = UP.

The proof of this theorem is presented in the full version of the paper.



A Map of Witness Maps: New Definitions and Connections 661

References

1. Beigel, R.: On the relativized power of additional accepting paths. In: Proceedings:
Fourth Annual Structure in Complexity Theory Conference, University of Oregon,
Eugene, Oregon, USA, 19–22 June 1989, pp. 216–224. IEEE Computer Society
(1989)

2. Beigel, R., Buhrman, H., Fortnow, L.: NP might not be as easy as detecting unique
solutions. In: Scott Vitter, J. (ed.) Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, Dallas, Texas, USA, 23–26 May 1998,
pp. 203–208. ACM (1998)

3. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 7

4. Chakraborty, S., Prabhakaran, M., Wichs, D.: Witness maps and applications. In:
Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. Part I, volume
12110 of LNCS, pp. 220–246. Springer, Heidelberg (2020). https://doi.org/10.1007/
978-3-030-45374-9 8
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Abstract. The dream of software obfuscation is to take programs, as
they are, and then generically compile them into obfuscated versions that
hide their secret inner workings. In this work we investigate notions of
obfuscations weaker than virtual black-box (VBB) but which still allow
obfuscating cryptographic primitives preserving their original function-
alities as much as possible.

In particular we propose two new notions of obfuscations,
which we call oracle-differing-input obfuscation (odiO) and oracle-
indistinguishability obfuscation (oiO). In a nutshell, odiO is a natural
strengthening of differing-input obfuscation (diO) and allows obfuscat-
ing programs for which it is hard to find a differing-input when given
only oracle access to the programs. An oiO obfuscator allows to obfus-
cate programs that are hard to distinguish when treated as oracles.

We then show applications of these notions, as well as positive and
negative results around them. A few highlights include:

– Our new notions are weaker than VBB and stronger than diO.
– As it is the case for VBB, we show that there exist programs that

cannot be obfuscated with odiO or oiO.
– Our new notions allow to generically compile several flavours of

secret-key primitives (e.g., SKE, MAC, designated verifier NIZK)
into their public-key equivalent (e.g., PKE, signatures, publicly ver-
ifiable NIZK) while preserving one of the algorithms of the origi-
nal scheme (function-preserving), or the structure of their outputs
(format-preserving).

1 Introduction

Obfuscation and Its (Dream) Applications. Obfuscation—the ability of
running a program hiding its inner working—is a cryptographer’s dream. This
is especially true of its most powerful instantiation, virtual black-box (VBB)
obfuscation: anything a VBB-obfuscated program leaks can be simulated through
oracle access to the function it computes [8]. It follows that one important appli-
cation of VBB is to generically transform secret-key cryptographic primitives
into their public-key counterparts (an approach sometimes referred to as white-
box cryptography). For example, the seminal work of Diffie and Hellman [25]
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already imagined compiling secret key encryption (SKE) into public key encryp-
tion (PKE) by letting the public key consist of the obfuscated encryption pro-
gram Enc(k, ·). Note that this compiler has the advantage of preserving the
format of the underlying ciphertext, as well as the function used to perform
decryption.

Transforming Primitives, Nicely. In this paper, we are interested in obfu-
cators that allow generic structure preserving transformation of large classes of
cryptographic primitives, i.e., obfuscators that allow to compile cryptographic
primitives while preserving parts of the original primitive. In particular, with the
term structure-preserving, we refer to two main classes of transformations (from
secret-key to public-key primitives), dubbed function-preserving and format-
preserving transformations:

– Function-preserving. This first type of transformation does not alter the algo-
rithms (one of which is then obfuscated during the transformation) of the
secret-key primitive. An example of such a transformation is the one described
by Diffie and Hellman, i.e., compile a SKE into a PKE by obfuscating (with-
out any modification) the encryption algorithm and keep the decryption one
unchanged.

– Format-preserving. This other type of transformation modifies the algorithms
of the original secret-key primitive but it preserves the format of the output.1

For example, in order to convert a SKE into a PKE, a format-preserving
transformation may require to modify both (before obfuscating) the encryp-
tion and decryption algorithm. However, these modifications do not alter the
format of ciphertexts (i.e., the ciphertexts of the resulting PKE is of the same
format as the original SKE one).

We see this as an interesting design approach to transformation of primitives,
worth of study of its own. Structure-preserving compilers are desirable because
of: (i) reusability/retrocompatibility and (ii) efficiency. First, with function-
preserving transformations we can reuse existing code, programs, libraries, con-
structions and their cryptanalysis. Cryptographic primitives deployed in hard-
ware could reuse that same hardware for the transformed primitive, instead
of having to be redesigned from scratch and possibly replaced in a produc-
tion environment. Moreover, transformations that preserve the format of their
output allow to reuse parsing-related software and to be retrocompatible with
older standards (particularly important for legacy systems). Also, function- and
format-preserving transformations maintain some of the scheme’s original effi-
ciency guarantees such as preserving the running time of the (possibly heavily
optimized) original function and its communication complexity, respectively.

Nice Transformations from Weaker Obfuscation? The seminal work
in [7,8] has shown that the “dream version” of obfuscation, VBB, is in gen-
1 Note that a function-preserving transformation is also format-preserving. This is

because the former does not modify the algorithms of the original primitive. Hence,
the format of the output is preserved by definition.
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eral impossible, i.e., there exist programs that cannot be obfuscated through
VBB. Since then cryptographers have defined new, weaker notions of obfusca-
tions that could hopefully be constructed. One of the plausible weaker candidates
in this sense is indistinguishability obfuscation (iO) that guarantees the indistin-
guishability of a pair obfuscated programs, only if the latter have the exact
same input-output behavior. It is truly surprising that a notion of obfuscation
as weak as iO has managed to generate so many applications [41]. However, most
of the applications of iO are out of the spectrum of the “design once; obfuscate
later”-approach that was dreamed in the beginning, i.e., generically compile an
existing secret-key primitive that it has been designed without the intend of
being obfuscated later in time. In fact, most iO-based constructions are quite
involved and they are not generic since only carefully designed programs can be
successfully obfuscated through iO. A clear example is [41] that leverages punc-
turable PRFs and pseudorandom generators (PRG) to build (from scratch) a
SKE scheme that satisfies very specific properties (e.g., puncturability) which,
in turn, allows iO to convert it into a PKE scheme. Intuitively, this is far from
having a generic transformation since the SKE is built with the intent of being
obfuscated through iO. It is therefore natural to ask the following question:

Can we obtain generic structure-preserving transformations from notions of
obfuscation weaker than VBB?

Our Results: New Primitives, Compilers, Connections to Prior
Notions. In this work we propose two new definitions of obfuscation, oracle-
differing-input obfuscation (odiO) and oracle-indistinguishability obfuscation
(oiO), and apply them to structure-preserving transformations for several classes
of primitives.

Recall that iO [8] only guarantees indistinguishability of obfuscations between
pair of programs that have the exact same input/output behaviour. Differing-
input obfuscation (diO) [1,8,17] is a stronger kind of obfuscation which guaran-
tees the same indistinguishability property of iO but for pair of programs which
might have different input/output behaviour, as long as it is computationally
hard to find inputs on which the output of the programs differ, even when look-
ing at the code of the programs. Our first notion, odiO, enriches the class of
programs that can be securely obfuscated including any pair of programs for
which it is hard to find differing-inputs, but when the distinguisher is given only
oracle access to the programs. oiO then takes it a step further and allows to
obfuscate any pair of programs that are indistinguishable when given as oracle.

In the paper we formally study the relationship between our new notions of
obfuscation and the existing one. Note that:

VBB > oiO > odiO > diO > iO

meaning that a VBB-obfuscator is also an oiO-obfuscator, and so on. Intuitively,
the separation are strict. Again, focusing only on the first inequality: while a
VBB-obfuscator cannot leak anything about the program that cannot be learned
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SKE PKEMAC Signature

MAC Signature SKE PKE

dv-SNARG pv-SNARG

Prove Prove Tag Sign Enc Enc

Verify Verify Verify Verify Dec Dec

(1) (2) (5)

Tag Sign Enc Enc

Verify Verify Dec Dec

(3) (4)

oiO

≡odiO

≡≡

odiO

odiO(PPRF)

∼=odiO(PPRF)

∼=

Fig. 1. The transformations (1)-(5) of this work: function-preserving on top row;
format-preserving on bottom row. By odiO/oiO we denote an algorithm obtained
through direct obfuscation of the one on the left; by ≡ one that is completely
unchanged; by ∼= one with minor changes but still able to take the same input; by
(PPRF) we denote where we modify the algorithm through puncturable PRFs before
obfuscation.

by the oracle version of the program, an oiO-obfuscator is allowed to leak any
secret contained in its circuit, as long as these secrets do not allow to distin-
guish between the oracle programs. Focusing on oiO, odiO, diO, and iO, we have
that all these notions provide the same flavor of security (i.e., two obfuscations
are indistinguishable) but for different classes of circuits, each progressively con-
tained into the other. For this reason, we have that oiO > odiO > diO > iO.

Note that odiO is stronger than diO. Hence, as considered by previous works
for diO, this work assumes that current candidates of iO obfuscators are candi-
dates obfuscators for odiO and oiO.

Still, since oiO and odiO are weaker than VBB, it is plausibly easier to build
oiO and odiO obfuscators than VBB ones, at least for specific classes of programs:
For example, it is known that point functions can be VBB-obfuscated, despite
the general impossibility results for VBB; similarly, programs that differ in a
single input (or polynomial number of inputs) can be diO-obfuscated, even if we
believe that diO is unlikely to exist in general. In the same spirit, our results can
be interpreted as showing that we can lift certain symmetric-key primitives to
public-key primitives as long as specific functions (e.g., verification algorithms)
can be odiO-obfuscated.

We then show that our new notions of obfuscation are enough for generic
structure-preserving transformations of important cryptographic primitives. In
particular we provide the following transformation (see also Fig. 1):

1. A function-preserving transformation from selectively sound succinct des-
ignated verifier non-interactive argument systems (dv-SNARG) into publicly
verifiable ones (pv-SNARG) (Sect. 5.1); The same transformation allows trans-
forming non-interactive argument systems that satisfy straight-line knowledge
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soundness, i.e., it is possible to extract (through a trapdoor) a valid witness
from verifying proofs without interacting with the adversary;2

2. A function-preserving transformation from strong existentially unforgeable
MACs into digital signatures that remains strongly unforgeable only in the
presence of adversaries that can ask signatures of arbitrary messages in a
selective fashion;

3. A format-preserving transformation that leverages puncturable PRFs to con-
vert selectively existentially unforgeable MACs into selectively existentially
unforgeable digital signatures. In constrast to the previous (MACs to signa-
tures) transformation, this is only format-preserving but achieves existential
unforgeability under the standard notion of chosen message attacks (i.e., the
adversary has adaptive oracle access to the signature algorithm);

4. A format-preserving transformation that leverages puncturable PRFs to con-
vert IV-based selectively secure SKEs into selectively IND-CPA secure PKEs.
Here, IV-based SKEs refer to encryption schemes of the form Enc(k,m; iv) =
(iv, c) where iv is the initialization vector (i.e., randomness) used to encrypt
a message m. Note that most SKE used in practice are IV-based e.g., those
based on block ciphers mode operations such as AES-CBC-mode, AES-CTR-
mode, and so on.

5. A function-preserving transformation from any semantically secure and key
indistinguishable SKE into a selective IND-CPA PKE (Sect. 5.2). Here, the
SKE’s key indistinguishability property must hold under chosen message ran-
domness attacks, i.e., it is infeasible to determine under which key a tar-
get message has been encrypted even if the adversary has oracle access to
Enc(k, ·; ·) that accepts adversarially chosen messages and randomnesses.

Note that only the last transformation requires oiO (in order to use the key
indistinguishability property of the SKE) whereas odiO is sufficient to achieve the
other ones. Also, all the transformations that use puncturable PRFs are (only)
format-preserving, i.e., the programs/algorithms of the compiled primitive are
(slightly) modified but the format of the output is preserved.3 We anticipate that
all our transformations require odiO/oiO and they cannot be implemented using
iO (or diO). In a nutshell, this is because we focus on generic transformations from
secret-key to public-key primitives. In order to be generic, we need to eventually
reduce the security of the transformation to the security of the original secret-
key primitive. If we wish to accomplish this reduction using either iO or diO, we
need to put, into the obfuscated circuit, the key sk of the original (secret-key)

2 As for straight-line knowledge soundness, we do not consider succinctness (i.e., we
do not cover dv-SNARG/pv-SNARG) since, in order to have a straight-line extraction,
the size of the proof is proportional to the size of the witness.

3 We will elaborate on this later, but intuitively this is because the obfuscated program
will use the puncturable PRF to generate a fresh symmetric key for different input
(e.g., messages, initialization vectors). Hence, on decryption/verification, the receiver
needs to evaluate the same PRF in order to recompute the symmetric key used to
decrypt/verify a particular ciphertext/signature.
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primitive. However, this is not possible. During the reduction sk is sampled and
kept secret by the challenger. We provide more details in Sect. 1.1.

Although both odiO and oiO are weaker than VBB, this does not tell us
anything about the plausibility of these new notions of obfuscation (and their
applications). As a last contribution, we investigate whether VBB’s impossibility
results of Barak et al. [7,8] extends to either odiO or oiO (or both). In particular,
Barak et al. [7,8] shows the following two impossibility results regarding VBB. (i)
The first states an universal VBB obfuscator does not exist, i.e. there exists (not
necessarily natural) computations that cannot be obfuscated through VBB. (ii)
The second states that even the specific applications/transformations of VBB we
can naturally hope for are impossible (e.g., converting any SKE into a PKE).

What about the above and odiO/oiO? We answer this question as follows:

– Result (i) does apply to odiO and oiO. This does not say much about how
useful they are, so in the paper we explore result (ii) as well (see Sect. 6.1).

– Result (ii) applies only to transformation (5) for oiO. Moreover, we need to
rework the original result (ii) from [7,8] to extend it to transformation (5)
since it does not apply as it is (see Sect. 6.2).

– Result (ii) does not apply at all to the applications/transformations we have
for odiO and there seems no natural way to extend it to them. Hence, all our
odiO-based transformations remain plausible.

Summing up, while the first result (i) applies to both our proposed notions,
odiO is not at all subject to the second result (ii) (impossibility of applications),
which is the most limiting one.

Expanding more about the above results, we provide two different negative
results by adapting the techniques of [7,8] to the case of odiO and oiO. First,
we show that there exists an ensemble of circuits that neither odiO nor oiO can-
not obfuscate, unconditionally (Sect. 6.1). Second, we show that the oiO-based
function-preserving transformation (5) from any semantically secure and key
indistinguishable SKEs into selective IND-CPA secure PKEs is inherently impos-
sible (no matter what type of obfuscator is used to implement it).4 We elaborate
further on this in the technical overview (Sect. 1.1) and in the related Sect. 6.

Why Study these New Notions if they are Still Subject to the [7,8]
Impossibility Results? There are multiple responses to that (some of which
we expand below):

1. The work of Barak et al. [7,8] does not really say much about how useful
odiO/oiO are (see also technical overview). Indeed, [7,8] shows two types of
impossibility results, i.e., impossibility of an universal obfuscator and impos-
sibility of applications. As we mentioned above, these impossibilities do not

4 Note that Barak et al. [8] demonstrates the impossibility of transforming a SKE into
a PKE (through the obfuscation of its encryption algorithm Enc(k, ·)) by building a
(contrived) secure SKE that, after applying the transformation, yields an insecure
PKE. However, their contrived SKE is not key indistinguishable. For this reason,
in order to prove the impossibility of our oiO-based transformation (5) (from key
indistinguishable SKE to PKE) we need to rework their result.
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equally extend to both notions, e.g., impossibility of applications do not
extend to our odiO-based transformations.

2. It is still important to study foundational aspects of obfuscation. We think
ours are natural questions and natural notions to propose and to turn our
attention to. As it is often the case in theoretical research, these notions
may be connected to others in the future in unexpected ways. They might
also motivate further work on notions that will turn out to be achievable
(the [7,8] prompted the quest for iO and other notions related to VBB).

3. Related to the above, both odiO and oiO might be useful for many “proof-of-
concept” type of results that rely on VBB-obfuscation. In cases where these
weaker definitions might suffice, the proposed notions could shed light on what
security property is actually needed from the obfuscator to imply security of
the overall construction.5 As an example, our results can be interpreted as fol-
lows: If a particular circuit (e.g., secret-key verification/encryption algorithm)
can be odiO-obfuscated (resp. oiO-obfuscated) then we can lift a particular
secret-key primitive into its public-key flavor (e.g., MAC to signatures, SKE
to PKE).

4. VBB and odiO/oiO are still distinct notions and with distinct flavors of secu-
rity (simulation- vs indistinguishability-based). Moreover, nonetheless the
known impossibility results, research on VBB is still active such as iden-
tifying specific and interesting class of circuits that can be securely VBB-
obfuscated [33,43,45]. The same can be investigated for the case of odiO/oiO.
For example, there could exist a specific class of circuits that can be oiO-
/odiO-obfuscated but not VBB-obfuscated. Or there could exist circuit classes
that are VBB-obfuscatable, but that can still be odiO/oiO-obfuscated more
efficiently or from significantly weaker assumptions.

Lastly, we stress that odiO/oiO may have other interesting applications. This
work focuses on secret-key to public-key transformations since these are most
prominent applications of VBB and, we believe that studying odiO/oiO in the
same context provides a better understanding about the relations between
odiO/oiO and VBB, including their limitations.

1.1 Technical Overview

Oracle-Differing-Input Obfuscation (odiO). The notion of odiO is a variant
of the notion of differing-input obfuscation, or diO. What is common with diO,
for example, is that: (i) we are given a sampler S that outputs two circuits
C0 and C1 and some auxiliary information α; (ii) the output of the sampler
should satisfy some property P (we call such sampler “permissible”); (iii) if the
sampler sastisfies property P then the obfuscated circuits Obf(C0) and Obf(C1)
should look indistinguishable to a PPT adversary given also in input α. Also, in
both diO and odiO, the property P corresponds to “no PPT D can find a differing
5 This follows the same spirit of the UCE framework proposed by Bellare et al. [9]

that allows to identify which property of the random oracle model (ROM) is needed
to imply security of the (ROM-based) construction..
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input x for C0 and C1 (given in input α)”, that is an input x such that C0(x) �=
C1(x). Where the two definitions diverge is that in diO algorithm D takes as
input the actual representation (the code) of the two circuits, whereas in odiO
D only has oracle access to the functions computed by C0 and C1.

An example of sampler that is permissible for odiO but not diO is the follow-
ing: consider two programs C0 and C1 where their only (high-entropy) differing
input is encoded as a comment in their code. Given their code it is easy to find
such input, but not with oracle access to them. We provide more examples when
we discuss our transformations below.

Public-key “Forgery-based” Transformations through odiO. We show
that odiO is particularly suitable for transforming a general class of primitives—
which we informally dub forgery-based—from their secret-key to their public-
key version. By forgery-based we mean a primitive where the security is defined
roughly as follows: “No adversary can produce (forge) a string passing a given
test without knowledge of a certain secret (or if a certain condition does not
hold)”. Straightforward examples of this type of primitives include message-
authentication codes (MACs) and digital signature, but non-interactive proof
systems and signatures of knowledge [24] also capture this intuition.

The properties of odiO are sufficient for compiling the forgery-based prim-
itives (1)-(3) listed above. We now give the main intuitions behind our trans-
formations and their security. Our goal is to transform a primitive allowing
us to verify a string through knowledge of secret into one that can do the
same without such knowledge. Let us denote the first generic verification algo-
rithm by Verify(sk, . . . );6 we aim to transform it into a public key equivalent
Verify′(pk, . . . ). Our construction is straightforward: We define pk as the odiO-
obfuscation of Verify(sk, . . . ), and the program Verify′(pk, . . . ) simply runs the
program encoded in pk.

We now argue that the above is secure in a selective-security-flavored set-
ting. In general, in such a setting, the adversary first claims some input (e.g.,
a message or an NP statement) for which it would like to forge a valid string
(e.g., a signature or a proof). The rest of the intuition is better conveyed being
specific. We thus focus on the setting of non-adaptive (selective) security in non-
interactive proof systems where the verifier has the syntax Verify(vrs, x, π) and
vrs is the (secret) verification key, x is a public statement (allegedly in a lan-
guage L), π is the proof. In this security game, for any input x̂ �∈ L, the adversary
should not be able to forge a corresponding valid proof after seeing the public
parameters (aka, common reference string or crs). We now show how to reduce
the security of the publicly verifiable construction to that of the original (desig-
nated verifier) one applying odiO security. Recall that the security property of
odiO must refer to a given sampler returning pairs of circuits. We require that
our odiO obfuscator is secure against a sampler that returns (C0, C1) (we ignore
the auxiliary input here) where:

6 The rest of the input besides the key is irrelevant for this discussion.
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– C0 takes as input x and π and returns Verify(vrs, x, π).
– C1 behaves like C0 except that it immediately returns 0 whenever x = x̂.

The two circuits clearly satisfy the odiO permissibility notion since finding a dif-
fering input through oracle access to them would violate the original hypothesis
of soundness (the only differing inputs are valid proofs for x̂).7

Thus we can move to an hybrid where the crs is an obfuscation of C1, and
indistinguishability of the hybrids follows from the security of the odiO obfusca-
tor. But now note that by construction of C1, when crs = Obf(C1), an adversary
by definition cannot produce a valid for x̂. Moreover, we obtain (for free) that
our transformation preserves zero-knowledge since it is function-preserving and
the Prove algorithm is not modified (see Remark 5.3).

The blueprint for the construction and security proof above can be adapted
(with the appropriate care) to the other forgery-settings (2)-(3) for which we
propose transformations. For transformation (2)—which yields selectively-secure
strongly unforgeable signatures—one technical challenge is that we need to sim-
ulate the queries to the signing oracle. Since these queries are selective we can
embed them in one of the circuits we obfuscate during the hybrid arguments.
Transformation (3) requires additional care since it yields a signature scheme
secure against an adversary with adaptive queries to the signing oracle. To do
so we slightly modify the signature algorithm and use a (puncturable) PRF to
generate a fresh one-time symmetric-key used to sign a single message. The veri-
fication algorithm is similarly adapted and then obfuscated. Due to the use of the
PRF, the transformation is not function-preserving but only format-preserving.

Compiling Extractable Argument Systems. We are able to extend our
result for argument schemes satisfying soundness to arguments that satisfy
knowledge soundness. This is achieved by the exact same function-preserving
construction from odiO.8 We are able to compile an adaptively-secure straight-
line extractable designated verifier argument into an adaptively-secure straight-
line extractable publicly verifiable argument. Note that, when considering
straight-line extractability, proofs are not succinct anymore; hence, in this case
we cover dv-NIZK and pv-NIZK. In contrast to soundness—which achieves only
selective security—here we are able to preserve adaptive security. Again, the

7 In particular, soundness (of underlying designated-verifier non-interactive proof sys-
tem) must hold even if the adversary has oracle access to the verification algorithm.
The latter is essential during the reduction to simulate the input-output behavior
of the two circuits (treated as oracles). Hence, our transformation does not apply to
non-interactive proofs systems that suffer from the so called verifier rejection prob-
lem, i.e., giving oracle access to the verifier allows the adversary to break soundness..

8 Despite the construction is the same, the sampler required to prove knowledge sound-
ness is different.
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transformation is function-preserving and it does not alter the Prove algo-
rithm. Hence, zero-knowledge is preserved (see also Remark 5.3). To the best
of our knowledge ours is the first work applying obfuscation in the context of
extractability in proof schemes.

Using odiO for Public-key Encryption through Puncturable PRFs.
So far we discussed how odiO is particularly useful for forgery-flavored prim-
itives. We observe, however, that we are able to prove security of another type
of primitive, encryption. In the full version of this work [21], we show how
to compile IV-based selectively secure SKEs (whose ciphertexts have the form
Enc(k,m; iv) = (iv, c)) into selectively IND-CPA secure PKEs. Our obfuscated
circuit (that will be our pk) uses two puncturable PRFs: The first to generate
the initialization vector iv from the randomness given to the PKE’s Enc and, the
second to generate a one-time fresh symmetric-key (used to encrypt) from iv.9

The decryption algorithm has access to the key for the second PRF and takes
as input the ciphertext (iv, c). It can then regenerate the key and thus decrypt.
Note that this transformation is only format-preserving since we slightly modify
both encryption and decryption algorithm to embed the evaluation of the PRF.

Oracle-Indistinguishability Obfuscation (oiO). The notion of oiO repre-
sents a natural strengthening of odiO. It has similar features to diO and odiO in
that it requires samplers that output pairs of circuits satisfying some permissi-
bility predicate P . While the permissibility predicate in diO and odiO requires
hardness of finding a differing-input, in oiO we have a weaker permissibility pred-
icate (which in turn makes oiO stronger than odiO): in oiO the sampler must
output pairs of circuits such that an adversary (given also as input related aux-
iliary string α) cannot distinguish the circuits while having only oracle oracle
access to them. An example of a sampler that is permissible for oiO but not odiO
is the one where C0 and C1 are both PRFs but with different keys, since they
differ on (almost) every input but their output distributions are indistinguish-
able.

Public-key “Indistinguishability-based” Transformations through oiO.
While odiO is suitable for transforming forgery-based primitives, oiO has syn-
ergies with indistinguishability-based primitives, i.e. where “No adversary can
distinguish between two distributions without knowledge of a certain secret”.
Natural examples are encryption schemes where the distributions to distinguish
are the encryption of different messages (e.g., IND-CPA security).

9 If, instead of generating iv using the first PRF, we allow the circuit to take directly
in input iv then the PKE (output by the transformation) is trivially broken. This is
because (following the syntax of the IV-based SKE) iv is included into the ciphertext.
Hence, an adversary can break the selective IND-CPA security of the compiled PKE
by simply re-encrypting a message using the iv that is included into the challenge
ciphertext.
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Through oiO we are able to prove the security of a more general transforma-
tion (compared to (4)) from SKEs to PKEs. Starting from a symmetric encryp-
tion algorithm Enc(k, ·; ·), our aim is to transform it into something with the
following syntax Enc(pk, ·; ·), where pk is a public key. Our transformation is
identical to the one proposed by Diffie and Hellman [25]: We define pk as the
oiO-obfuscation of Enc(k, ·; ·) for some honestly chosen symmetric key k. To claim
the IND-CPA security of the above transformation, we need to assume that the
initial SKE is key indistinguishable under (adversarially) chosen message ran-
domness attacks. The latter allows us to build a sampler that satisfies the per-
missibility predicate of oiO. In particular, the sampler returns (C0, C1) (again,
we ignore the auxiliary input here) where:

– C0 takes as input m and r and returns Enc(k,m; r).
– C1 is identical to the above except that it uses a different (honestly generated)

symmetric key k′.

Intuitively, the circuits satisfy the oiO permissibility notion since any adversary
that is able to distinguish between oracles C0 and C1 would also violates the key
indistinguishability security of the SKE. Now, since the obfuscations of these
two circuits are indistinguishable, we can reduce the security of the PKE to
the security of the original SKE. Consider the standard IND-CPA experiment
of PKE where pk is set to the obfuscation of C0 and the challenge ciphertext
c is computed as c = pk(mb; r) = Enc(k,mb; r) for r randomly chosen. We can
now do an hybrid where pk is set to the obfuscation of C1 whereas the challenge
ciphertext is still computed as c = Enc(k,mb; r) where k is the key hardcoded in
C0. Since the ciphertext c is computed using a key k that is not the obfuscated
one (recall C1 uses an independent key k′), we can now conclude the proof by
doing a reduction to the semantic security of the original SKE. We highlight
that this proof technique works only if we consider selective IND-CPA security.
This is because the sampler needs to output an auxiliary input that is an honest
encryption of mb under the key k (hardcoded into C0). This is fundamental to
simulate the challenge ciphertext (of the selective IND-CPA experiment) and
concludes the hybrid argument.

Why aren’t diO/iO Sufficient for these Transformations Above? We
observe that each of the compilation described above would not be feasible with
either iO or diO. Intuitively, this is because we would eventually need to reduce
the security of our transformations (pv-SNARG, signature, PKE) to the security
of the original secret-key primitive (dv-SNARG, MAC, SKE). However, in the
latter experiment the secret-key sk (e.g., a vrs or a symmetric-key), that we need
to obfuscate in order to conclude the reduction, is sampled and kept secret by
the challenger. This makes iO and diO insufficient since we are not able to satisfy
their permissibility notion during this reduction. For the case of iO, during the
reduction, the only thing we could do is to to obfuscate different circuit C1

that does not use the secret-key sk sampled by the challenger. However, this
C1 will have (with overwhelming probability) a different input/output behavior
compared to C0 (the original obfuscated circuit of the transformation that, in
turn, contains sk).
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A similar discussion applies to diO. For the sake of concreteness, consider
transforming a dv-SNARG into a pv-SNARG by publishing an obfuscation of the
circuit C0 which implements the dv-SNARG verification algorithm using an hard-
coded verification key vrs. During the reduction to the security of the underlying
scheme we are not allowed to use the secret verification key vrs. Thus, during
the reduction, we can only move to a hybrid where we obfuscate a circuit C1

that does not use the vrs. But then we cannot argue that it is hard to find
differing-inputs for C0, C1. In this specific case, the distinguisher could simply
produce proofs π for true statements x and submit them to the circuits. While
C0 (using the vrs) returns 1, C1 (without the vrs) is unable to verify the proof
and cannot return a consistent output. Similar arguments apply to the other
transformations.

The Landscape of Limitations of odiO/oiO. The seminal work of [7,8]
explores the boundaries of obfuscation in several directions. As it is well known
they show that there are (not necessarily natural) computations which are impos-
sible to obfuscate using VBB. Moreover, [7,8] also shows that VBB-obfuscation
cannot be used for securely performing certain structure-preserving transforma-
tions. In this direction, they show a (contrived but secure) SKE that turns into
an insecure PKE scheme when compiled using obfuscation. We show that the
results of [7,8] can be extended to the setting of odiO and oiO. In particular, we
show that there (unconditionally) exist samplers that are odiO/oiO permissible
but are not obfuscatable. Specifically we sample (somewhat contrived) circuits
Cs with an embedded secret s that remains “hidden enough” when only oracle
access is allowed (thus being odiO/oiO permissible). We then show that, once
given access to the obfuscated circuit, it becomes possible to “partially extract”
this secret s. Finally, we show that (since this sampler cannot be obfuscated) our
oiO-based transformation (5) (from semantically secure and key indistinguish-
able SKE to selectively IND-CPA PKE) is inherently impossible, regardless of
the strength of the obfuscator used. This is done by using the unobfuscatable
circuits to build a contrived SKE (satisfying semantic security and key indis-
tinguishability) that, once compiled, yields an insecure PKE. As mentioned, a
similar impossibility result was given in [8, Theorem 4.10]. However their con-
trived SKE does not satisfy key indistinguishability and, for this reason, it cannot
be directly used to show the infeasibility of our transformation (5). Thus, our
negative result strengthens the one of [8] since ours apply to a smaller class of
SKEs (i.e., SKEs with stronger notions of security) that satisfy key indistin-
guishability under chosen message randomness attacks. Note that while we just
argued that the oiO-based transformation in (5) is inherently impossible, our
odiO-based transformations (1)-(4) remain plausible as the impossibility results
do not seem to extend. We elaborate further in Sect. 6.2.
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1.2 Future Directions

Our work opens up several interesting future directions. How to generally for-
malize structure-preserving transformations? Can we characterize what type of
games can be transformed (from “secret” to “public” key) through odiO? Several,
but not all those we achieve, seem to have a “forgery” flavor to them (MAC,
NIZKs, etc.). What are further connections between our proposed notions of
obfuscation and VBB, iO and diO? While the techniques in [8] seem to fail to
show that some of our transformations are paradoxical, what are other techniques
that could shed light on further limitations of odiO oiO? Can we leverage our
techniques for going from secret-key to public-key variants of different crypto-
graphic primitives than those we consider here, e.g., proofs of retrievability [42]?

2 Related Work

Barak et al. [7,8] investigate the feasibility of obfuscation. They focus on vir-
tual black-box (VBB) obfuscation, where an obfuscated program/circuit should
leak no information except for its input-output behaviour. They show: 1) that
a general VBB obfuscator cannot exist since there are circuits that cannot be
unconditionally obfuscated in the VBB paradigm; 2) that most of the intriguing
applications of VBB are impossible (including the suggestion of Diffie and Hell-
man’s of building a PKE by obfuscating the SKE encryption algorithm with an
embedded symmetric key). On the positive side, several works have shown that
some restricted classes of circuits can be securely VBB-obfuscated [23,33,43,45]
. Goldwasser and Kalai [30,31] and Bitansky et al. [13] extended VBB’s impossi-
bility results to the case of auxiliary information demonstrating that other “nat-
ural” circuits cannot be VBB obfuscated when some (dependent or independent)
auxiliary information are available. In addition, [13] demonstrated that the avail-
ability of auxiliary information is equivalent to VBB with universal simulation.
Goldwasser and Rothblum [32] proposed the notion of best-possible obfuscation
that guarantees that the obfuscation of a circuit leaks as little information as
any other circuit implementing the same functionality. They show that a sep-
aration between VBB and best-possible obfuscation and an impossibility result
(for both) in the random oracle model. Other works [6,20,22,37,38,40] studied
the (in)feasibility of VBB in different idealized models.

To avoid the VBB paradigm (and its impossibility results), [8] suggested two
weaker security definitions of obfuscation: indistinguishability obfuscation (iO)
and differing-input obfuscation (diO). The former has obtained a lot of interest
thanks to its applications, as initially shown by Sahai and Waters [41]. The first
work that proposed a candidate iO construction is by Garg et al. [26] that built
iO via multilinear maps. Subsequent works [2–4,15,16,19,28,29,36,39] focused
on both the relations of iO and other primitives (e.g., functional encryption)
and new candidates construction from weaker assumptions. These works led to
the recent works of Jain et al. [35] and Wee and Wichs [44]. [35] built (sub-
exponentially secure) iO from the sub-exponential hardness of LWE, learning
parity with noise, and boolean pseudorandom generators in NC0. On the other
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hand, [44] proposed the first construction based solely on lattices and LWE.
Their construction relies on a new falsifiable LWE assumption.

As for diO, [1,10,17,17] proposed different formalization of diO (for both
circuits and Turing machines) and showed different applications. On the negative
side, [11,18,27] showed that, in the presence of (some) auxiliary information
(e.g., samplers), a general diO obfuscator may not exist. Notably, Bellare et
al. [11] showed that if sub-exponentially secure one-way functions exist then a
sub-exponentially secure general diO obfuscator for Turing machines does not
exist, i.e., there exists a sampler that outputs two Turing machines and some
auxiliary information that cannot be obfuscated through diO. Moreover, they
show that the impossibility result extends to diO for circuits, if SNARKs exist.
Garg et al. [27] showed a similar result for diO for circuits under the conjecture
that a special-purpose obfuscator exists (i.e., an obfuscator that does not follow
from diO). All the negative results of [11,18,27] rely on the fact that the sampler
can silently provide a trapdoor that allows an adversary to distinguish between
two obfuscations whereas the trapdoor does not help in finding a differing-input.,
Because of this, Ishai et al. [34] proposed the weaker notion of public-coin diO
where the random coins of the sampler are public, i.e., a sampler cannot hide
any trapdoor in the auxiliary information.

Among weaker notions of obfuscation, we also find virtual gray-box obfusca-
tion (VGB) [12,14]. This notion is close to that of VBB but models the simulator
as semi-bounded, i.e., unbounded in running time but limited to a polynomial
number of oracle queries. VGB is equivalent to another notion, strong iO (siO),
where it holds that Obf(C0) ≈c Obf(C1) whenever the pair (C0, C1) is sam-
pled from a concentrated distribution D: For every input x, the probability that
C0(x) and C1(x) do not return to common output majD(x) is negligible (where
majD(·) is defined with respect to the concentrated distribution D taken into
account). Observe that concentrated distributions are a generalization of eva-
sive functions [5]. Intuitively, siO is weaker than odiO (and oiO) since circuits
(sampled from concentrated distributions) are oracle-diffing-input even against
semi-bounded adversaries. Also, note that siO is not powerful enough to achieve
structure-preserving transformations. Intuitively, because siO is able to obfus-
cate distributions of circuits that “pass” an information theoretical test. This is
a obstacle when trying to implement our structure-preserving transformations
since our objective is to compile/obfuscate primitives whose security follows from
computational assumptions.

3 Preliminaries on Obfuscation

We assume the reader to be familiar with standard cryptographic notation and
definitions. Our notation and all the standard definitions used in the paper can
be found in the full version.

Indistinguishability Obfuscation and Differing-input Obfuscation. Let
C = {Cλ}λ∈N be an ensemble of functionally equivalent circuits (of same size),
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i.e., ∀λ ∈ N,∀C0, C1 ∈ Cλ,∀x ∈ {0, 1}�in , C0(x) = C1(x) and |C0| = |C1|. Indis-
tinguishability obfuscation (iO) [7] guarantees that the obfuscation of any two
functionally equivalent circuits C0, C1 ∈ Cλ are computationally indistinguish-
able. The stronger notion of differing-input obfuscation (diO) [1,8,17] considers
the larger class of differing-input circuits, i.e., circuits that differ on hard to
find inputs. Below, we introduce the definition of diO with respect to samplers
responsible of sampling two differing-input circuits and (some) auxiliary infor-
mation.

Definition 3.1. A sampler S for an ensemble of circuits C = {Cλ}λ∈N is a
PPT algorithm that, on input the security parameter 1λ, it outputs two circuits
C0, C1 ∈ Cλ such that |C0| = |C1| and (possibly) some auxiliary information α.

Definition 3.2. (diO-sampler) We say a sampler S (Definition 3.1) is a diO-
sampler if for every PPT adversary A we have

P

[
C0(x) �= C1(x)

∣∣∣(C0, C1, α) ←$ S(1λ), x ←$ A(1λ, C0, C1, α)
]

≤ negl(λ).

Definition 3.3. [Differing-input obfuscation] Let S be an ensemble of diO-
samplers (Definition 3.2). For every S ∈ S, let CS = {CS

λ}λ∈N be the ensemble
of circuits output by S. A PPT algorithm Obf is a (S)-diO-obfuscator for the
ensemble S if the following conditions are satisfied:

Correctness. ∀S ∈ S, ∀λ ∈ N, ∀C ∈ CS
λ, ∀x ∈ {0, 1}�in , we have C ′(x) = C(x)

where C ′ ←$ Obf(1λ, C).
Polynomial slowdown. There exists a polynomial p such that ∀S ∈ S, ∀C ∈ CS

λ,
we have |Obf(1λ, C)| ≤ p(|C|).

Indistinguishability. For every S ∈ S, every PPT adversary D, we have that
∣∣P [

D(1λ,Obf(1λ, C0), α) = 1
] − P

[
D(1λ,Obf(1λ, C1), α) = 1

]∣∣ ≤ negl(λ),

where (C0, C1, α) ←$ S(1λ).

The above definition is parametrized by an ensemble of diO-samplers since some
negative results for diO are known [11,27] (see next). Because of this, an universal
(general) diO-obfuscator may not exists, i.e., a diO-obfuscator that obfuscates
any diO-sampler.

Negative Results. In the setting of Turing machines (not covered by this
paper), Bellare et al. [11] show that if sub-exponentially secure one-way func-
tions exist then a sub-exponentially secure diO-obfuscator Obf for any sampler
for Turing machines does not exist (i.e., there exists a particular sampler that
cannot be diO-obfuscated). We stress that the main impossibility result covers
Turing machines but, as described by [11], if SNARKs exist the negative result
can be extended to diO for circuits. Garg et al. [27] show that under the conjec-
ture that a special-purpose obfuscator exists (i.e., an obfuscator that does not
follow from the existence of a diO-obfuscator) then a diO-obfuscator Obf for any
sampler for circuits does not exist. We highlight that both [11,27] show that only
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“some” diO-samplers cannot be obfuscated. Indeed, both works rely on samplers
that output complex auxiliary information α (α is itself an obfuscation of con-
trived circuit/Turing machine). Hence, this does not rule out the possibility of
obfuscating the same class of circuits/Turing machines under simpler auxiliary
information.

Virtual Black-box Obfuscation. Virtual black-box obfuscation (VBB) [7],
is the strongest known notion of obfuscation. In a nutshell, a VBB-obfuscator
guarantees that having an obfuscation of a circuit C is “equivalent” to having
oracle access to C. We consider the weakest notion of VBB that requires the
adversary (and the simulator) to output a single bit. This is equivalent to asking
the adversary/simulator to compute/determine an arbitrary predicate π(C) of
the original circuit [7]. Similarly to diO, we consider VBB with respect to samplers
responsible to sample a circuit and (some) auxiliary information. This will allow
us to provide a meaningful comparison between VBB and diO, odiO, oiO.

Definition 3.4. (VBB-sampler) A VBB-sampler S for an ensemble of circuits
C = {Cλ}λ∈N is a PPT algorithm that, on input the security parameter 1λ, it
outputs a circuit C ∈ Cλ and some auxiliary information α.

Definition 3.5 (Virtual black-box obfuscation). Let S be an ensemble of
VBB-samplers (Definition 3.4). For every S ∈ S, let CS = {CS

λ}λ∈N be the ensem-
ble of circuits output by S. A PPT algorithm Obf is a (S)-VBB-obfuscator for
the ensemble S if the following conditions are satisfied:

Correctness. ∀S ∈ S, ∀λ ∈ N, ∀C ∈ CS
λ, ∀x ∈ {0, 1}�in , we have C ′(x) = C(x)

where C ′ ←$ Obf(1λ, C).
Polynomial slowdown. There exists a polynomial p such that ∀S ∈ S, ∀C ∈ Cλ,

we have |Obf(1λ, C)| ≤ p(|C|).
Virtual black-box simulation. For every PPT adversary A, there exists a

PPT simulator Sim such that for every S ∈ S, we have
∣∣∣P [

A(1λ,Obf(1λ, C), α) = 1
] − P

[
SimC(·)(1λ, 1|C|, α) = 1

]∣∣∣ ≤ negl(λ),

where (C,α) ←$ S(1λ).

Note that VBB is a much stronger flavor of obfuscation than diO and iO
for two reasons. First, VBB defines the concept of ideal/oracle obfuscation, i.e.,
an obfuscated circuit behaves as an oracle. Second, VBB is a simulation-based
definition (whereas both iO and diO are indistinguishability-based), i.e., any
bit of leakage (that can be retrieved from the obfuscation of a circuit) can be
simulated (except with negligible probability) having only oracle access to the
unobfuscated circuit.

Impossibility Results. VBB is a very interesting notion of obfuscation since it
has several important applications (e.g., it permits to convert a SKE into PKE).
However, VBB-obfuscation turned out to be impossible for several and reasonably
simple class of circuits/samplers [7,8,13]. Moreover, also several applications of
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VBB are impossible to achieve. As an example, Barak et al. [8, Theorem 4.10]
have shown that there exist a SKE that cannot be transformed into a PKE
by (simply) obfuscating the SKE’s encryption algorithm (a similar impossibility
result applies also to PRFs, MACs, and signatures). Still, VBB-obfuscation is still
possible for other class of circuits/samplers. Examples are compute-and-compare
programs [45] (also known as lockable obfuscation [33]) and point functions [43].

4 Oracle-Differing-Input and Oracle-Indistinguishability
Obfuscation

In this section, we propose two new notions of obfuscation, dubbed oracle-
differing-input obfuscation and oracle-indistinguishability obfuscation (odiO and
oiO in short). Both odiO and oiO are the result of two natural extensions of diO
(resp. iO): they introduce the notion of oracle circuits (as in VBB) while keeping
the indistinguishability property of diO (resp. iO). In a nutshell, odiO requires
that the obfuscations of two circuits C0, C1 are computationally indistinguish-
able if the latter two are differing-input circuits when treated as oracles, i.e., an
adversary cannot find an input x such that C0(x) �= C1(x) when given oracle
access to both C0 and C1. On the other hand, oiO provides the same indistin-
guishability guarantee with respect to circuits C0, C1 that are computationally
indistinguishable when treated as oracles.

As usual, we define odiO and oiO with respect to an ensemble of samplers
responsible of generating the circuits C0, C1 and (possibly) some auxiliary infor-
mation α.

Definition 4.1. (odiO- and oiO-sampler) Let type ∈ {odiO, oiO}. We say a
sampler S (Definition 3.1) is an type-sampler if for every PPT adversary A we
have

If type = odiO: P

[
C0(x) �= C1(x)

∣∣∣x ←$ AC0(·),C1(·)(1λ, 1|C0|, α)
]

≤ negl(λ),

If type = oiO:
∣∣P [

AC0(·)(1λ, 1|C0|, α) = 1
] − P

[
AC1(·)(1λ, 1|C1|, α) = 1

]∣∣ ≤
negl(λ),

where (C0, C1, α) ←$ S(1λ).10

Definition 4.2 (Oracle-differing-input and oracle-indistinguishability
obfuscation). For type ∈ {odiO, oiO}, let S be an ensemble of type-samplers
(Definition 4.1). For every S ∈ S, let CS = {CS

λ}λ∈N be the ensemble of circuits
output by S. A PPT algorithm Obf is a (S)-type-obfuscator for the ensemble S
if the following conditions are satisfied:

Correctness. ∀S ∈ S, ∀λ ∈ N, ∀C ∈ CS
λ, ∀x ∈ {0, 1}�in , we have C ′(x) = C(x)

where C ′ ←$ Obf(1λ, C).
Polynomial slowdown. There exists a polynomial p such that ∀S ∈ S, ∀C ∈

CS
λ, we have |Obf(1λ, C)| ≤ p(|C|).

10 Recall that |C0| = |C1| by definition of sampler (Definition 3.1).
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Indistinguishability. For every S ∈ S, every PPT adversary D, we have that
∣∣P [

D(1λ,Obf(1λ, C0), α) = 1
] − P

[
D(1λ,Obf(1λ, C1), α) = 1

]∣∣ ≤ negl(λ),

where (C0, C1, α) ←$ S(1λ).

Comparing diO-, odiO-, oiO-, and VBB-obfuscation. We now study the rela-
tions between diO, odiO, oiO, and VBB. In order to provide a meaningful com-
parison, we work in terms of best-possible universal obfuscators, i.e., we compare
the classes of circuits/samplers that each flavor of obfuscation is able to handle.
We start by defining the notion of best-possible universal type-obfuscator Obf
(for type ∈ {diO, odiO, oiO,VBB}) whose definition is tied with the (universal)
set Stype composed of all the type-samplers that can be securely type-obfuscated
(as defined in Definitions 4.2 to 3.4).

Definition 4.3 (Best-possible universal type-obfuscator). Let type ∈
{diO, odiO, oiO,VBB}. Consider the ensemble Stype composed of every type-
sampler S (Definitions 4.1, 3.2 and 3.4) that can be securely type-obfuscated
(Definitions 4.2, 3.3 and 3.5), i.e.,

Stype = {type-sampler S | ∃ Obf s.t. Obf is a ({S})-type-obfuscator}.

A PPT algorithm Obf is a best-possible universal type-obfuscator if Obf is a
(Stype)-type-obfuscator (Definitions 3.3, 4.2 and 3.5).

Remark 4.4. There are two technical reasons behind the need of considering only
best-possible universal obfuscators, while comparing diO, odiO, oiO, and VBB.
First, for any notion of type-obfuscation, it is possible to find two contrived type-
obfuscators Obf0 and Obf1 that result to be incomparable, even within the same
flavor of obfuscation. As an example, we could have that Obf0 (resp. Obf1) is able
to type-obfuscate S0 (resp. S1) but not S1 (resp. S0) where S0,S1 are two type-
samplers.11 The same argument holds between different notions. For example, if
we consider diO and odiO, we could have that Obf0 diO-obfuscates a diO-sampler
S (that in turn, as we will see, is also a odiO-obfuscator) but Obf1 does not odiO-
obfuscate S. Also, we can have the symmetric case: there exist two obfuscators
Obf′0 and Obf′1 such that Obf′1 odiO-obfuscates S but Obf′0 does not diO-obfuscate
S. Hence by changing the obfuscator we could reach any conclusions: (i) odiO and
diO are incomparable, (ii) odiO implies diO, or (iii) diO implies odiO. This clearly
does not allow for a meaningful comparison. Definition 4.3 naturally solves the
above problem since a best-possible universal type-obfuscator uniquely represents
the power of a particular notion of obfuscation, i.e., the set Stype of samplers that
can be securely type-obfuscated. This allows us to have a meaninful (and unique)
formal comparison between diO, odiO, oiO, and VBB.

11 For instance, we can have that Sb only outputs circuits whose description starts with
a bit b, and that Obfb rejects any circuit whose description starts with the bit 1 − b.
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Second, Definition 4.3 allows us to exclude from the comparison the known
impossibility results of VBB [7,13] (and odiO, oiO as we will show in Sect. 6). This
is because, instead of quantifying over any possible type-sampler, best-possible
universal type-obfuscation is defined over any possible type-sampler that can be
type-obfuscated.

In the setting of best-possible universal obfuscation, odiO (resp. oiO)
is stronger than diO since (i) any diO-sampler is also an odiO-sampler
(resp. oiO-sampler) and (ii) both diO and odiO (resp. oiO) have the same
indistinguishability-based security definition. The same argument applies to odiO
and oiO, i.e., oiO is stronger than odiO.

Theorem 4.5 (oiO ⇒ odiO ⇒ diO). For type ∈ {diO, odiO, oiO}, we have that
SdiO ⊆ SodiO ⊆ SoiO where Stype as defined in Definition 4.3.

The proof of this theorem is deferred to full version.
About (best-possible universal) odiO-, oiO-, and VBB-obfuscation, we have

that VBB is stronger than odiO (resp. oiO) for two main reasons:

1. VBB leverages a simulation-based definition: any bit of information that can
be leaked from an obfuscated circuit C can be simulated by only having
oracle access to C. On the other hand, odiO (resp. oiO) provides a much
weaker security guarantee: the obfuscation of two circuits C0, C1 (output by
an odiO-sampler (resp. oiO-sampler)) are computationally indistinguishable.
This implies that a odiO-obfuscator (resp. oiO-obfuscator) could leak signif-
icant information about the circuit, as long as the leaked information does
not help in distinguishing (except with negligible probability) between the
obfuscations of C0 and C1.

2. Both VBB and odiO (resp. oiO) incorporate the notion of oracle circuits in
their definitions. However, oracles are used to define two different concepts.
VBB uses oracle circuits to define the amount of information a VBB-obfuscator
may leak. Since oracles leak no information (except their input-output behav-
ior), this implies that a VBB-obfuscator does not leak any information, except
with negligible probability.
Conversely, odiO and oiO leverage the notion of oracle circuits to characterize
the class of circuits (or samplers) that an odiO-/oiO-obfuscator can handle.
The definition of security (i.e., the indistinguishability property of Definition
4.2) is independent from the oracles. Both odiO and oiO “only” guarantee
that the information leaked by the obfuscation of two circuits are the same.
This does not imply that the odiO-/oiO-obfuscated circuits must “behave” as
oracles (as required by VBB (Definition 3.5)).

The relation between VBB, oiO, and odiO is formalized by the following theorem,
whose proof is deferred to full version.

Theorem 4.6 (VBB ⇒ oiO and VBB ⇒ odiO). Let S be a sampler (Definition
3.1). For b ∈ {0, 1}, let Sb be a sampler such that (Cb, α) = Sb(1λ; r) where
r ∈ {0, 1}∗, and (C0, C1, α) = S(1λ; r). If S0,S1 ∈ SVBB then S ∈ Stype where
SVBB and Stype are defined in Definition 4.3.
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By leveraging a similar argument to that used to prove Theorem 4.5, we
can demonstrate that any negative result for diO extends to odiO. This because
any diO-sampler S is also an odiO-sampler and, since diO and odiO leverage
the same indistinguishability-based definition, if S �∈ SdiO then S �∈ SodiO.12 The
same applies between odiO and oiO, and between oiO and VBB (with respect to
samplers as defined in Thoerem 4.6).

Corollary 4.7. For type ∈ {diO, odiO, oiO,VBB}, let Stype be an ensemble of
type-samplers as defined in Definition 4.3. The following conditions holds:

1. For every diO-sampler S such that S �∈ SdiO then S �∈ SodiO.
2. For every odiO-sampler S such that S �∈ SodiO then S �∈ SoiO.
3. For every oiO-sampler S and every pair of VBB-samplers (S0,S1) such that

(Cb, α) = Sb(1λ; r) where r ∈ {0, 1}∗, (C0, C1, α) = S(1λ; r) and b ∈ {0, 1}
(as defined in Theorem 4.6), if S �∈ SoiO then S0 �∈ SVBB or S1 �∈ SVBB.

Lastly, odiO (resp. oiO) does not imply VBB, i.e., both odiO and oiO are
strictly weaker than VBB. This follows by leveraging two observations. First,
Barak et al. [7, Lemma 3.5, Corollary 3.8] have demonstrated that there (uncon-
ditionally) exists a distribution of circuits that cannot be VBB-obfuscated (see
also Sect. 6.1). This, in turn, implies that there exists a VBB-sampler S0 �∈ SVBB,
i.e., S0 outputs (C,⊥) where C comes from the distribution of [7, Lemma
3.5]. Second, we have that any sampler S1, that outputs (C0, C1,⊥) such that
C0 = C1, is an odiO-sampler (resp. oiO-sampler) that can be easily odiO-
obfuscated (resp. oiO-obfuscated).13 By combining these two observations, we
conclude that if S1 outputs (C0, C1,⊥) where C0 = C1 and (C0,⊥) ←$ S0(1λ), it
follows that neither C0 nor C1 (sampled by S0) can be VBB-obfuscated but S1
can be odiO-obfuscated (resp. oiO-obfuscated). While this counterexample might
be trivial at first sight, it indeed captures the fact that an odiO-/oiO-obfuscator is
allowed to reveal any information which is common to the two circuits, as long
as this information does not allow to win the respective distinguishing game
between the oracles.

Theorem 4.8 (odiO �⇒ VBB and oiO �⇒ VBB). Let S0 be a VBB-sampler
(Definition 3.4). Consider the odiO-sampler (resp. oiO-sampler) S1 defined as
(C0, C1, α) = S1(1λ; r) where C0 = C1 and (C0, α) = S0(1λ; r) for r ∈ {0, 1}∗.
For type ∈ {odiO, oiO}, there exists a VBB-sampler S0 such that S0 �∈ SVBB and
S1 ∈ Stype where SVBB and Stype as defined in Definition 4.3.

5 Applications of odiO and oiO

In this section, we show that odiO and oiO are able to compile several symmetric
key primitives into their corresponding public key versions and designated veri-
fier non-interactive argument systems into their public verifiable version. These
12 Otherwise, if S ∈ SodiO, there exists a ({S})-odiO-obfuscator that in turn is also a

({S})-diO-obfuscator.
13 Indeed, any PPT obfuscator Obf that satisfies correctness and polynomial slowdown

is a ({S})-odiO-obfuscator (resp. ({S})-oiO-obfuscator), e.g., Obf is the identity func-
tion or Obf is an iO-obfuscator.
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transformations achieve (and use) different flavors of security whose definitions
can be found in the full version of this paper. In more details, we demonstrate
the following transformations:

Function-Preserving PV-NIZK from DV-NIZK: odiO is able to compile
any designated verifier non-interactive argument system (that satisfies either
selective soundness or straight-line knowledge soundness) into its public ver-
ifiable version (Sect. 5.1).

Function-Preserving Signatures from MACs: odiO is able to compile any
(q)-sEUF-sel-CMA MAC into a (q)-sEUF-sel-CMA signature scheme (full
version).

Format-Preserving Signatures from MACs: odiO is able to compile EUF
MAC into a sel-EUF-CMA digital signature scheme, using puncturable PRF
(full version).

Format-Preserving PKE from IV-based SKE: odiO is able to compile
semantically secure IV-based SKE (i.e., SKE whose encryption algorithm has
the following sintax Enc(k,m; iv) = (iv, c)) into a sel-IND-CPA PKE, using
puncturable PRF (full version).

Function-Preserving PKE from SKE: oiO is able to compile any seman-
tically and sel-IND-CPRA-key secure SKE into a sel-IND-CPA PKE
(Sect. 5.2).

Note that transformations that use the puncturable PRFs are only format-
preserving whereas the others are fully function-preserving.

We show the first and the last of our applications in detail in the main body;
proofs and the remaining applications are deferred to the full version of this
work.

5.1 From Designated Verifier to Public Verifiable Non-interactive
Argument Systems

Construction 1. Let Π∗ = (Setup∗,Prove∗,Verify∗) and Obf be a DV non-
interactive argument system for a relation R and an obfuscator, respec-
tively. We compile Π∗ into a PV non-interactive argument system Π =
(Setup,Prove,Verify) for the same relation R as follows:

Setup(1λ,R): On input the security parameter 1λ and a relation R, the setup
algorithm computes (crs∗, vrs∗) ←$ Setup∗(1λ,R) and outputs crs = crs∗ and
vrs = C̃ where C̃ ←$ Obf(1λ, CVerify

vrs∗ ) and CVerify
vrs is depicted in Fig. 2.

Prove(crs, x, ω): On input the common reference string crs = crs∗, a statement
x, and a witness ω, the prover algorithm outputs π ←$ Prove∗(crs∗, x, ω).

Verify(vrs, x, π): On input the verification key vrs = C̃, a statement x, and a
proof π, the verification algorithm returns b = C̃(x, π).

Below we establish the following result.
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Fig. 2. The circuits CVerify
vrs , CVerify

vrs,x∗ , CVerify
vrs,td,r, and the samplers Sx,SExt∗ . CVerify

vrs and CVerify
vrs,x∗

(resp. CVerify
vrs and CVerify

vrs,td,r) are padded to match the size γ = max{|CVerify
vrs |, |CVerify

vrs,x∗ |} (resp.

γ = max{|CVerify
vrs |, |CVerify

vrs,td,r|}).

Theorem 5.1. Let Π∗ and Obf as defined in Construction 1. For every x �∈ L,
consider the sampler Sx depicted in Fig. 2.

1. If Π∗ satisfies selective soundness then, for every x �∈ L, Sx is an odiO-
sampler (Definition 4.1), and

2. if Obf is a ({Sx}x�∈L)-odiO-obfuscator (Definition 4.2) then the publicly veri-
fiable non-interactive argument system Π of Construction 1 satisfies selective
soundness.

We extend the above result to the case of straight-line knowledge soundness.

Theorem 5.2. Let Π∗ and Obf as defined in Construction 1.

1. If Π∗ satisfies straight-line knowledge soundness then the sampler SExt∗

of Fig. 2 is an odiO-sampler (Definition 4.1) where Ext∗ = (Ext∗0,Ext
∗
1) is

the PPT extractor of Π∗, and
2. if Obf is a ({SExt∗})-odiO-obfuscator (Definition 4.2) then the publicly verifi-

able non-interactive argument system Π of Construction 1 satisfies straight-
line knowledge soundness.

Remark 5.3 (On zero-knowledge). Observe that Construction 1 preserves zero-
knowledge if the underlying designated verifier non-interactive argument sys-
tem Π∗ is zero-knowledge. This is straightforward and follows intuitively
because Construction 1 only obfuscates vrs (that it is known by a malicious
verifier against zero-knowledge) and it does not alter Π∗’s Prove. A proof sketch
of the zero-knowledge property would be as follows. The simulator for the pub-
licly verifiable case is the same as the one for the designated verifier case. Now
assume there exists an adversary Apv distinguishing simulated proofs from hon-
est ones. We could then design adversary Adv breaking zero-knowledge of the
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Fig. 3. The circuit CEnc
k and the sampler Sm. CEnc

k0 and CEnc
k1 (output by Sm) are padded

to match the size γ = max{|CEnc
k0 |, |CEnc

k1 |})

original scheme. This adversary can in fact internally run Apv passing to it the
obfuscation Obf(1λ, CVerify

vrs ). It can do that because the designated-verifier zero-
knowledge has access to vrs.

5.2 From Semantically and sel-IND-CPRA-key SKEs to
sel-IND-CPA PKEs

Construction 2. Let Π∗ = (KGen∗,Enc∗,Dec∗) and Obf be a SKE with mes-
sage space M and an obfuscator, respectively. We compile Π∗ into a PKE
scheme Π = (KGen,Enc,Dec) with message space M as follows:

KGen(1λ): On input the security parameter 1λ, the key generation algorithm
computes k∗ ←$ KGen∗(1λ) and outputs pk = C̃ and sk = k∗ where
C̃ ←$ Obf(1λ, CEnc

k∗ ) and CEnc
k is depicted in Fig. 3.

Enc(pk,m; r): On input the public key pk = C̃, a message m ∈ M, and random-
ness r ∈ {0, 1}∗, the encryption algorithm outputs c = C̃(m, r).

Dec(sk, c): On input the secret key sk = k∗ and a ciphertext c, the deterministic
decryption algorithm returns m = Dec∗(k∗, c).

Below we establish the following result.

Theorem 5.4. Let Π∗ and Obf as defined in Construction 2. For every m ∈ M,
consider the sampler Sm depicted in Fig. 3.

1. If Π∗ is sel-IND-CPRA-key then, for every m ∈ M, Sm is an oiO-sampler
(Definition 4.1), and

2. If Π∗ is semantically secure and Obf is a ({Sm}m∈M)-oiO-obfuscator (Defi-
nition 4.2) then the PKE scheme Π of Construction 2 is sel-IND-CPA.
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Fig. 4. The circuit C∗
s,(k,a,b,y,e) where (s, k, a, b, y, e) ∈ {0, 1}5λ+1 and � is the binary

representation of a 2 × 2 table of an arbitrary binary operator (e.g., AND, OR, NOT).

6 Extending the Impossibility Results of Barak et
al. [7,8] to the Setting of odiO and oiO

In Sect. 4, we have demonstrated that both odiO and oiO are weaker than VBB
and, despite this, these new notions are enough to implement several of the most
important applications of VBB (Sect. 5). At this point, the natural question is
how weak odiO and oiO are, compared to VBB. In order to give an answer to
this question, we investigate whether the impossibility results for VBB (of Barak
et al. [7,8]) extend to either odiO or oiO (or both). Unfortunately, this turned
out to be true: As we show in Sect. 6.1, for type ∈ {odiO, oiO}, there exist a
type-sampler that cannot be type-obfuscated (unconditionally).

In addition, Barak et al. [8, Theorem 4.10] have shown that converting an
arbitrary SKE into a PKE (by simply obfuscating the SKE’s encryption algo-
rithm together with a symmetric key) is not possible: Indeed, there exists a con-
trived SKE Π that cannot be obfuscated (as described above) into a PKE. How-
ever, such an impossibility result does not apply to our oiO-based transformation
from semantically secure and sel-IND-CPRA-key secure SKEs into sel-IND-CPA
PKEs (Sect. 5.2) since the contrived SKE Π of [8] is not sel-IND-CPRA-key.
Following the same spirit, we study whether a similar argument applies to our
format-preserving (deferred to full version) and function-preserving transforma-
tions (Construction 2). In this case, we have a negative answer but only for the
oiO-based function-preserving transformation (Construction 2): We demonstrate
that there exists a SKE Π that is semantically and sel-IND-CPRA-key secure
that cannot be converted into a sel-IND-CPA PKE by simply obfuscating the
SKE’s encryption algorithm together with a symmetric key, as done by our oiO-
based Construction 2. On the other hand, it remains unclear how we can prove a
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similar impossibility result for our odiO-based format-preserving transformation
from SKEs to PKEs (through puncturable PRFs). See full version of this work
for more details.

We stress that both our impossibility results leverage similar techniques to
that of Barak et al. [7,8] that we describe in the next sections.

Also, to meet space constraints, the formal proofs of the theorems that appear
in next sections are deferred to full version.

6.1 Unobfuscatable odiO-samplers (Resp. oiO-samplers) Exist
Unconditionally

We build an ensemble of circuits C = {C∗
s,(k,a,b,y,e)} (indexed by (s, k, a, b, y, e) ∈

{0, 1}5λ+1) that (i) C∗
s,(k,a,b,y,e) leaks no information when treated as oracles,

and (ii) the obfuscation of any C∗
s,(k,a,b,y,e) ∈ C allows to extract the hard-

coded values (k, a, b, y, e). We anticipate that the value e ∈ {0, 1} will allow us to
prove that a circuit C∗

s,(k,a,b,y,e) cannot be odiO-obfuscated (resp. oiO-obfuscated)
(see Sect. 6.1). On the other hand, the value y is a key of a PRF that is fun-
damental to build a contrived semantically and sel-IND-CPRA-key secure SKE
that cannot be obfuscated (as described in Construction 2) into a sel-IND-CPA
PKE (Sect. 6.2). We build such an ensemble C (depicted in Fig. 4) by using a
similar technique to that of [7,8] (for more details, we refer the reader to [7,8]).

In a nutshell, C∗
s,(k,a,b,y,e) (depicted in Fig. 4) is the composition of four cir-

cuits (C0
k,a,b, C

1
k,a, C2

k , C3
k,a,b,y,e) and it is defined with respect to a SKE scheme

Π0 = (KGen0,Enc0,Dec0) and a PRF Π1 = (Gen1,F1) (required to generate
“fresh” randomnesses). On input (�, v, r) where v = (x, i, c1, c2,�, d1, . . . , dλ),
C∗

s,(k,a,b,y,e) uses � to select which circuit to execute:

1. If � = 0, C0
k,a,b(x,F1(s, (�, v, r))) is executed. This circuit presents a trigger

input a. If x = a, C0
k,a,b(x,F1(s, (�, v, r))) returns b. Otherwise, it returns

Enc0(k, 0;F1(s, (�, v, r))).
2. If � = 1, C1

k,a(i,F1(s, (�, v, r))) is executed. This circuit simply outputs the
encryption of the i-th bit of a, i.e., Enc0(k, ai;F1(s, (�, v, r))).

3. If � = 2, C2
k (c1, c2,�,F1(s, (�, v, r))) is executed. This circuit allows an

evaluator to perform (gate by gate) computations over encrypted inputs.
In more detail, it outputs the encryption of the evaluation of w � z (i.e.,
Enc0(k, w � z;F1(s, (�, v, r)))) where � is a binary operator, and w and z are
the bits encrypted by c1 and c2, respectively.

4. If � = 3, C3
k,a,b,y,e(d1, . . . , dλ,F1(s, (�, v, r))) is executed. This is another cir-

cuit that presents a trigger input b. In more detail, if each di is the encryp-
tion of the i-th of b, the circuit returns (k, a, y, e). Otherwise, it returns
Enc0(k, 0;F1(s, (�, v, r))).

Following [7,8], if the SKE scheme Π0 is IND-CCA1 and Π1 is a secure
PRF, then oracle access to C∗

s,(k,a,b,y,e) is computationally indistinguishable to

oracle access to a circuit C̃k that, on every input (�, v, r), it always outputs a
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fresh encryption of 0. This is because an adversary only sees ciphertexts and,
as a consequence, it cannot distinguish between C∗

s,(k,a,b,y,e) and C̃k unless it
guesses the trigger inputs a, b ∈ {0, 1}λ. As a consequence, this implies that (i)
an adversary cannot leak the hardcoded values (k, a, b, y, e) and, (ii) the pair
of circuits (C∗

s,(k,a,b,y,0), C
∗
s,(k,a,b,y,1)) are both oracle-differing-input and oracle-

indistinguishable circuits (Definition 4.1).
On the other hand, on input C̃ ←$ Obf(1λ, C∗

s,(k,a,b,y,e)), an adversary can
easily extract (k, a, b, y, e), i.e., the circuit is partially reversible. This can be
done as follows:

– Evaluate C̃(1, ·, ·) to get the encryptions (c1, . . . , cλ) of the a’s bits
(see Item 2).

– Use (c1, . . . , cλ) to compute (d1, . . . , dλ) where di is the encryption of b’s i-th
bit. Observe that this can be done by leveraging C̃(2, ·, ·) to evaluate (gate
by gate) C̃(0, ·, ·) = C0

k,a,b(·, ·) on a (see Item 3), and
– Compute (k, a, b, y, e) by C̃(3, ·, ·) on (d1, . . . , dλ) (see Item 4).

The properties of the ensemble C are formalized in Theorem 6.1. We highlight
that our technique of generating Enc0’s randomness as F1(s, (�, v, r)) (instead of
F1(s, (�, v)) as done by Barak et al. [7,8]) permits to have multiple randomnesses
for a fixed pair (�, v). This is allows us to prove a new property (not achieved
by [7,8]) named input-indistinguishability that, in turn, is fundamental to prove
the impossibility (Sect. 6.2) of converting semantically and sel-IND-CPRA-key
secure SKE into sel-IND-CPA PKE. We stress that the ensemble of circuits built
by Barak et al. [7, Lemma 3.5] does not satisfy input-indistinguishability.

Theorem 6.1. Let Π0 = (KGen0,Enc0,Dec0), Π1 = (Gen1,F1), and C∗
s,(k,a,b,y,e)

be a SKE scheme with key space {0, 1}λ, a PRF scheme with key space {0, 1}λ,
and the circuit defined in Fig. 4 with respect to Π0 and Π1, respectively. Then, the
ensemble C = {C∗

s,(k,a,b,y,e)}s,k,a,b,y∈{0,1}λ,e∈{0,1} satisfies the following properties:

Oracle-differing-input: If Π0 is IND-CCA1 and Π1 is secure then for every
PPT adversary D, we have

P

[
C∗

s,(k,a,b,y,0)(�, v, r) �= C∗
s,(k,a,b,y,1)(�, v, r)

]
≤ negl(λ),

where (�, v, r) ←$ AC∗
s,(k,a,b,y,0)(·,·,·),C

∗
s,(k,a,b,y,1)(·,·,·)(1λ), k ←$ KGen0(1λ), s ←$

Gen1(1λ), y ←$ Gen1(1λ), and (a, b) ←$ {0, 1}2λ.
Input-indistinguishability: If Π0 is IND-CCA1 and IND-CPA-key, and Π1

is secure, then for every �, v ∈ {0, 1}∗, every PPT adversary D, we have
∣∣∣P

[
DC∗

s0(k0,a0,b0,y0,0)(·,·,·),C
∗
s1,(k1,a1,b1,y1,1)(·,·,·)(1λ,m0) = 1

]
−

P

[
DC∗

s0,(k0,a0,b0,y0,0)(·,·,·),C
∗
s1,(k1,a1,b1,y1,1)(·,·,·)(1λ,m1) = 1

]∣∣∣ ≤ negl(λ),

where (a0, b0, a1, b1) ←$ {0, 1}4λ, kj ←$ KGen0(1λ) for j ∈ {0, 1}, sj ←$

Gen1(1λ) for j ∈ {0, 1}, yj ←$ Gen1(1λ) for j ∈ {0, 1}, and md =
C∗

sd,(kd,ad,bd,yd,d)(�, v, rd) for rd ←$ {0, 1}∗ and d ∈ {0, 1}.
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Fig. 5. The circuit Cowf
r,b and the sampler Sowf .

Partial reversibility: There exists a PPT algorithm Ext such that for every
(s, k, a, b, y, e) ∈ {0, 1}5λ+1 and every circuit C̃ such that C̃(�, v, r) =
C∗

s,(k,a,b,y,e)(�, v, r) for all �, v, r ∈ {0, 1}∗, P

[
(k, a, b, y, e) ←$ Ext(1λ, C̃)

]
= 1.

Theorem 6.1 implies that there exists an odiO-sampler (resp. oiO-sampler) Ŝ
that cannot be odiO-obfuscated (resp. oiO-obfuscated), if OWFs exist (indeed,
OWF implies both IND-CCA1 and IND-CPA-key security of SKE. See full ver-
sion for more details).

Corollary 6.2. For type ∈ {odiO, oiO}, if OWFs exist then there exists a type-
sampler Ŝ (Definition 4.1) such that Ŝ �∈ Stype where Stype is defined in Definition
4.3.

Similarly to VBB, both odiO and oiO imply the existence of OWFs. As a
consequence, for type ∈ {odiO, odiO}, a type-unobfuscatable type-sampler exists
unconditionally.

Theorem 6.3. s Let Obf and Sowf be an obfuscator and the sampler as defined
in Fig. 5. Let p(·) and F = {Fλ}λ∈N be a polynomial and an ensemble of functions
such that Fλ is defined as Fλ(b, r0, r1) = Obf(1λ, Cowf

r0,b; r1) where (b, r0, r1) ∈
{0, 1} × {0, 1}λ × {0, 1}p(λ). Then, the following statements hold:

1. Sowf is an odiO-sampler (resp. oiO-sampler), and
2. if Obf is a ({Sowf})-odiO-obfuscator (resp. ({Sowf})-oiO-obfuscator) then Fλ ∈

F is a OWF.

Corollary 6.4. For type ∈ {odiO, oiO}, there exists (unconditionally) a type-
sampler S such that S �∈ Stype where Stype as defined in Definition 4.3.

The above corollary follows by combining Corollary 6.2 and Theorem 6.3, i.e.,
either Sowf �∈ Stype or Ŝ �∈ Stype (for type ∈ {odiO, odiO}) where Sowf and Ŝ defined
in Fig. 5 and Corollary 6.2, respectively.

6.2 Impossibility of Obfuscating Semantically and sel-IND-
CPRA-key Secure SKE into sel-IND-CPA Secure PKE
Schemes

We now demonstrate that it is inherently impossible to convert a semantically
secure and sel-IND-CPRA-key SKEs into sel-IND-CPA PKEs by simply obfus-
cating the SKE’s encryption algorithm, as described in our oiO-based Construc-
tion 2. We prove this by leveraging a similar technique to that of [8]: We con-
struct a SKE Π∗ that satisfies semantic and sel-IND-CPRA-key security that,
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when obfuscated into a PKE (as described in Sect. 5.2), the latter results to
be completely insecure. By leveraging the ensemble C of Theorem 6.1, a PRF
Π = (Gen,F), and a semantically and sel-IND-CPRA-key secure SKE scheme
Π̃ = (K̃Gen, Ẽnc, D̃ec), we build the contrived SKE Π∗ as follows:

Enc∗(k∗, (�, v); r) = (Ẽnc(k̃, (�, v); r), C∗
s,(̂k,a,b,y,e)

(�, v, r),F(y, (�, v, r)) ⊕ k̃) (1)

where k∗ = (k̂, k̃, s, a, b, y, e).
Π∗ is a semantically and sel-IND-CPRA-key secure SKE for the following

reasons. First, as described in Sect. 6.1, oracle access to the circuit C∗
s,(̂k,a,b,y,e)

∈
C is computationally indistinguishable from having oracle access to a circuit C̃k

that always returns encryptions of 0. Hence, this implies that C∗
s,(̂k,a,b,y,e)

does
not leak the message (�, v) and that an adversary cannot leak any information
about (k̂, a, b, y, e). Second, conditioned to the above observation, the semantic
security of Π∗ easily follows from the semantic security of Π̃ and the security
of Π. Third, as for the sel-IND-CPRA-key security of Π∗, it follows from sel-
IND-CPRA-key security of Π̃, the security of Π, and the fact that C satisfies
input-indistinguishability (see Theorem 6.1).

On the other hand, when Enc∗ is obfuscated (as in Construction 2), an adver-
sary can exploit the partial reversibility of C (Theorem 6.1) to extract y and, in
turn, the key k̃ that is used to encrypt the message m = (�, v). Below, we report
the formal result.

Theorem 6.5. If OWFs exist then the following statements hold:

1. there exist a SKE Π∗ such that Π∗ is semantically secure, sel-IND-CPRA-
key, and

2. the PKE scheme Π = (KGen,Enc,Dec) (output by applying to Π∗ the trans-
formation defined in Construction 2) is not sel-IND-CPA (Theorem 5.4).

We stress that the above result improves the impossibility result of Barak et
al. [8] since ours apply to the smaller class of SKEs (i.e., SKEs with stronger
notions of security) that satisfy sel-IND-CPRA-key security.

Also, all our odiO-based transformations remain plausible as the impossibility
result do not seem to extend. We provide more details in the full version of this
work.
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