
Hardening Signature Schemes
via Derive-then-Derandomize: Stronger

Security Proofs for EdDSA

Mihir Bellare1(B), Hannah Davis1, and Zijing Di2

1 University of California San Diego, La Jolla, USA
{mihir,h3davis}@eng.ucsd.edu

2 Stanford University, Stanford, USA
zidi@stanford.edu

Abstract. We consider a transform, called Derive-then-Derandomize,
that hardens a given signature scheme against randomness failure and
implementation error. We prove that it works. We then give a general
lemma showing indifferentiability of a class of constructions that apply
a shrinking output transform to an MD-style hash function. Armed with
these tools, we give new proofs for the widely standardized and used
EdDSA signature scheme, improving prior work in two ways: (1) we give
proofs for the case that the hash function is an MD-style one, reflecting
the use of SHA512 in the NIST standard, and (2) we improve the tight-
ness of the reduction so that one has guarantees for group sizes in actual
use.

1 Introduction

In designing schemes, and proving them secure, theoreticians implicitly assume
certain things, such as on-demand fresh randomness and correct implementa-
tion. In practice, these assumptions can fail. Weaknesses in system random-
number generators are common and have catastrophic consequences. (An exam-
ple relevant to this paper is the well-known key-recovery attack on Schnorr signa-
tures when signing reuses randomness. Another striking example are Ps and Qs
attacks [25,29].) Meanwhile, implementation errors can be exploited, as shown
by Bleichenbacher’s attack on RSA signatures [15].

In light of this, practitioners may try to “harden” theoretical schemes before
standardization and usage. A prominent and highly successful instance is EdDSA,
a hardening of the Schnorr signature scheme proposed by Bernstein, Duif, Lange,
Schwabe, and Yang (BDLSY) [14]. It incorporates explicit, simple key-derivation,
makes signing deterministic, adds protection against sidechannel attacks via
“clamping,” and for simplicity confines itself to a single hash function, namely
SHA512. The scheme is widely standardized [27,34] and used [26].

There is however a subtle danger here, namely that the hardening attempt
introduces new vulnerabilities. In other words, hardening needs to be done right;
if not, it may even “soften” the scheme! Thus it is crucial that the hardened
scheme be vetted via a proof of security. This is of particular importance for
c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 223–250, 2023.
https://doi.org/10.1007/978-3-031-31368-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_9

224 M. Bellare et al.

EdDSA given its widespread deployment. In that regard, Brendel, Cremers, Jack-
son and Zhao (BCJZ) [16] showed that EdDSA is secure if the Discrete-Log (DL)
problem is hard and the hash function is modeled as a random oracle. This is
significant as a first step but has at least two important limitations: (1) Due
to the extension attack, a random oracle is not an appropriate model for the
SHA512 hash function EdDSA actually uses, and (2) the reduction is so loose
that there is no security guarantee for group sizes in use today.

Extrapolating EdDSA, the first part of this paper defines a general hardening
transform on signature schemes called Derive-then-Derandomize (DtD), and
proves its soundness. Next we prove the indifferentiability of a general class
of constructions, that we call shrink-MD; it includes the well-studied chop-MD
construction [19] and also the modulo-a-prime construction arising in EdDSA.
Armed with these results, the second part of the paper returns to give new
proofs for EdDSA that in particular fill the above gaps. We begin with some
background.

Respecting Hash Structure in Proofs. Recall that the MD-transform [20,
31] defines a hash function H = MD[h] : {0, 1}∗ → {0, 1}2k by iterating an under-
lying compression function h : {0, 1}b+2k → {0, 1}2k. (See Sect. 2 for details.)
SHA256 and SHA512 are obtained in this way, with (b, k) being (512, 128) and
(1024, 256), respectively. This structure gives rise to attacks, of which the
most well known is the extension attack. The latter allows an attacker given
t ← MD[h](e2‖M), where e2 is a secret unknown to the attacker and M ∈ {0, 1}∗

is public, to compute t′ = MD[h](e2‖M ′), for some M ′ ∈ {0, 1}∗ of its choice.
This has been exploited to violate the UF-security of the so-called prefix message
authentication code pfMACe2

(M) = H(e2‖M) when H is an MD-hash function;
HMAC [4] was designed to overcome this.

A proof of security of a scheme (such as EdDSA) that uses a hash function
H will often model H as a random oracle [10], in what we’ll call the (H,H)-
model: scheme algorithms, and the adversary, both have oracle access to the
same random H. However the presence of the above-discussed structure in “real”
hash functions led Dodis, Ristenpart and Shrimpton (DRS) [21] to argue that the
“right” model in which to prove security of a scheme that uses H = MD[h] is to
model the compression function h —rather than the hash function H = MD[h]—
as a random oracle. We’ll call this the (MD[h], h)-model: the adversary has oracle
access to a random h, with scheme algorithms having access to MD[h]. There
is now widespread agreement with the DRS thesis that proofs of security of
MD-hash-using schemes should use the (MD[h], h) model.

Giving from-scratch proofs in the (MD[h], h) model is, however, difficult.
Maurer, Renner and Holenstein (MRH) [30] show that if a construction F is
indifferentiable (abbreviated indiff) and a scheme is secure in the (H,H) model,
then it remains secure in the (F[h], h) model. (This requires the game defining
security of the scheme to be single-stage [38], which is true for the relevant ones
here.) Unfortunately, F = MD is provably not indiff [19], due exactly to the
extension attack. So the MRH result does not help with MD. This led to a
search for indiff variants. DRS [21] and YMO [42] (independently) offer public-

Hardening Signature Schemes 225

indiff and show that it suffices to prove security, in the (MD[h], h) model, of
schemes that use MD in some restricted way. However, EdDSA does not obey
these restrictions. Thus, other means are needed.

The EdDSA Scheme. The Edwards curve Digital Signature Algorithm (EdDSA)
is a Schnorr-based signature scheme introduced by Bernstein, Duif, Lange,
Schwabe and Yang [14]. Ed25519, which uses the Curve25519 Edwards curve
and SHA512 as the hash function, is its most popular instance. The scheme is
standardized by NIST [34] and the IETF [27]. It is used in TLS 1.3, OpenSSH,
OpenSSL, Tor, GnuPGP, Signal and WhatsApp. It is also the preferred signa-
ture scheme of the Corda, Tezos, Stellar and Libra blockchain systems. Overall,
IANIX [26] reports over 200 uses of Ed25519. Proving security of this scheme is
accordingly of high importance.

Figure 4 shows EdDSA on the right, and, on the left, the classic Schnorr
scheme [40] on which EdDSA is based. The schemes are over a cyclic, additively-
written group G of prime order p with generator B. The public verification key
is A. The Schnorr hash function has range Zp = {0, . . . , p−1}, while, for EdDSA,
function H1 has range {0, 1}2k where k, the bit-length of p, is 256 for Ed25519.
Functions H2,H3 have range Zp.

EdDSA differs from Schnorr in significant ways. While the Schnorr secret key
s is in Zp, the EdDSA secret key sk is a k-bit string. This is hashed and the
2k-bit result is split into k-bit halves e1‖e2. A Schnorr secret-key s is derived by
applying to e1 a clamping function CF that zeroes out the three least significant
bits of e1. (Note: This means s is not uniformly distributed over Zp.) Clamping
increases resistance to side-channel attacks [14]. Signing is made deterministic
by a standard de-randomization technique [9,12,23,33], namely obtaining the
Schnorr randomness r by hashing the message M with a secret-key dependent
string e2. We note that all of H1,H2,H3 are instantiated via the same hash
function, namely SHA512.

Prior Work and Our Questions. Recall that the security goal for a signa-
ture scheme is UF (UnForgeability under Chosen-Message Attack) [24]. Schnorr
is well studied, and proven UF under DL (Discrete Log in G) when H is a random
oracle [1,37]. The provable security of EdDSA, however, received surprisingly lit-
tle attention until the work of Brendel, Cremers, Jackson and Zhao (BCJZ) [16].
They take the path also used for Schnorr and other identification-based signature
schemes [1,37], seeing EdDSA as the result of the Fiat-Shamir transform on an
underlying identification scheme EdID that they define, proving security of the
latter under DL, and concluding UF of EdDSA under DL when H is a random
oracle. This is an important step forward, but the BCJZ proof [16] remains in
the (H,H) model. We ask and address the following two questions.

1. Can We Prove Security in the (MD[h], h) model? The NIST stan-
dard [34] mandates that Ed25519 uses SHA512, which is an MD-hash function.
Accordingly, as explained above, the BCJZ proof [16], being in the (H,H) model,
does not guarantee security; to do the latter, we need a proof in the (MD[h], h)
model.

226 M. Bellare et al.

The gap is more than cosmetic. As we saw above with the example of the
prefix MAC, a scheme could be secure in the (H,H) model, yet totally insecure
in the more realistic (MD[h], h) model, and thus also in practice. And EdDSA
skirts close to the edge: line 14 is using the prefix-MAC that the extension attack
breaks, and overlaps in inputs across the three uses of H could lead to failures.
Intuitively what prevents attacks is that the MAC outputs are taken modulo p,
and inputs to H in two of the three uses involve secrets. Thus, we’d expect that
the scheme is indeed secure in the (MD[h], h) model.

Proving this, however, is another matter. We already know that MD is not
indiff. It is public indiff [21,42], but this will not suffice for EdDSA because H1,H2

are being called on secrets. We ask, first, can EdDSA be proved secure in the
(MD[h], h) model, and second, can this be done in some modular way, rather
than from scratch?

2. Can We Improve Reduction Tightness? The reduction of BCJZ [16] is so
loose that, in the 256-bit curve over which Ed25519 is implemented, it guarantees
little security. Let’s elaborate. Given an adversary AUF violating the UF-security
of EdDSA with probability εUF, the reduction builds an adversary ADL breaking
DL with probability εDL = ε2UF/qh where qh is the number of H-queries of AUF

and the two adversaries have about the same running time t. (The square arises
from the use of rewinding, analyzed via the Reset Lemma of [8].) In an order p
elliptic curve group, εDL ≈ t2/p so we get εUF = t ·√qh/p. Ed25519 has p ≈ 2256.
Say t = qh = 270, which (as shown by BitCoin mining capability) is not far from
attacker reach. Then εDL = 2−116 is small but εUF = 270 · 2−(256−70)/2 = 2−23 is
in comparison quite high.

Now, one might say that one would not expect better because the same
reduction loss is present for Schnorr. The classical reductions for Schnorr [1,37]
did indeed display the above loss, but that has changed: recent advances for
Schnorr include a tighter reduction from DL [39], an almost-tight reduction from
the MBDL problem [5] and a tight reduction from DL in the Algebraic Group
Model [22]. We’d like to put EdDSA on par with the state of the art for Schnorr.
We ask, first, is this possible, and second, is there a modular way to do it that
leverages, rather than repeats, the (many, complex) just-cited proofs for Schnorr?

Contributions for EdDSA. We simultaneously simplify and strengthen the
security proofs for EdDSA as follows.

1. Reduction from Schnorr. Rather than, as in prior work, give a reduction
from DL or some other algebraic problem, we give a simple, direct reduction
from Schnorr itself. That is, we show that if the Schnorr signature scheme is UF-
secure, then so is EdDSA. Furthermore, the reduction is tight up to a constant
factor. This allows us to leverage prior work [5,22,39] to obtain tight proofs for
EdDSA under various algebraic assumptions and justify security for group sizes
in actual use. But there are two further dividends. First, Schnorr [40] is over 30
years old and has withstood the tests of time and cryptanalysis, so our proof
that EdDSA is just as secure as Schnorr allows the former to inherit, and benefit
from, this confidence. Second, our result formalizes and proves what was the

Hardening Signature Schemes 227

intuition and belief in the first place [14], namely that, despite the algorithmic
differences, EdDSA is a sound hardening of Schnorr.

2. Accurate Modeling of the Hash Function. As noted above, BCJZ [16]
assume the hash function H is a random oracle, but this, due to the extension
attack, is not an accurate model for the MD-hash function SHA512 used by
EdDSA. We fill this gap by instead proving security in the (MD[h], h) model,
where H = MD[h] is derived via the MD-transform [20,31] and the compression
function h is a random oracle.

Approach and Broader Contributions. The above-mentioned results on
EdDSA are obtained as a consequence of more general ones.

3. The DtD Transform and Its Soundness. We extend the hardening tech-
nique used in EdDSA to define a general transform that we call Derive-then-
Derandomize (DtD). It takes an arbitrary signature scheme DS, and with the
aid of a PRG H1 and a PRF H2, constructs a hardened signature scheme DS.
We provide (Theorem 1) a strong and general validation of DtD, showing that
DS is UF-secure assuming DS is UF-secure. Moreover the reduction is tight and
the proof is simple. This shows that the EdDSA hardening method is generically
sound.

4. Indifferentiability of Shrink-MD. It is well-known that MD is not indif-
ferentiable [30] from a random oracle, but that the Chop-MD [19], which trun-
cates the output of an MD hash by some number of bits, is indifferentiable.
Unfortunately, we identified gaps in two prominent proofs of indifferentiability
of Chop-MD [19,32]. EdDSA uses a similar construction that reduces the MD
hash output modulo a prime p sufficiently smaller than the size of the range of
MD, due to which we refer to this construction as Mod-MD. The Mod-MD
construction has not been proven indifferentiable. We simultaneously give new
proofs of indifferentiability for Chop-MD and Mod-MD as part of a more
general class of constructions that we call Shrink-MD functors. These are con-
structions of the form Out(MD) where Out is some output-processing function,
and we prove indifferentiability under certain “shrinking” conditions on Out.

5. Application to EdDSA. EdDSA is obtained as the result DS of the DtD
transform applied to the DS = Schnorr signature scheme, and with the PRG
and PRF defined via MD, specifically H1(sk) = MD[h](sk) and H2(e2,M) =
MD[h](e2‖M) mod p where p is the prime order of the underlying group. Addi-
tionally, the hash function used in Schnorr is also H3(X) = MD[h](X) mod p.
Due to Theorem 1 validating DtD, we are left to show the PRG security of
H1, the PRF security of H2 and the UF-security of Schnorr, all with h modeled
as a random oracle. We do the first directly. We obtain the second as a conse-
quence of the indifferentiability of Mod-MD. (In principle it follows from the
PRF security of AMAC [3], but we found it difficult to extract precise bounds
via this route.) For the third, we again exploit indifferentiability of Mod-MD,
together with a technique from BCJZ [16] to handle clamping, to reduce to the
UF security of regular Schnorr, where the hash function is modeled as a random

228 M. Bellare et al.

oracle. Putting all this carefully together yields our above-mentioned results for
EdDSA. We note that one delicate and important point is that the idealized
compression function h is the same across H1,H2 and H3, meaning these are not
independent. This is handled through the building blocks in Theorem 1 being
functors [7] rather than functions.

Discussion and Related Work. Both BCJZ [16] and CGN [17] note that
there are a few versions of EdDSA out there, the differences being in their veri-
fication algorithms. What Fig. 4 shows is the most basic version of the scheme,
but we will be able to cover the variants too, in a modular way, by reducing from
Schnorr with the same verification algorithm.

BBT [3] define the function AMAC[h] to take a key e2 and message M , and
return MD[h](e2‖M) mod p. This is the H2 in EdDSA. We could exploit their
results to conclude PRF security of H2, but it requires putting together many
different pieces from their work, and it is easier and more direct to establish
PRF security of H2 by using our lemma on the indifferentiability of Mod-MD.

In the Generic Group Model (GGM) [41], it is possible to prove UF-security
of Schnorr under standard (rather than random oracle) model assumptions on the
hash functions [18,35]. But use of the GGM means the result applies to a limited
class of adversaries. Our results, following the classical proofs for identification-
based signatures [1,28,36,37], instead use the standard model for the group,
while modeling the hash function (in our case, the compression function) as a
random oracle.

In an earlier version of this paper, our proofs had relied on a variant of
indifferentiability that we had introduced. At the suggestion of a Crypto 2022
reviewer, this has been dropped in favor of a direct proof based on PRG and PRF
assumptions on H1,H2. We thank the (anonymous) reviewer for this suggestion.

Theorem 1 is in the standard model if the PRG, PRF and starting signature
scheme DS are standard-model, hence can be viewed as a standard-model justifi-
cation of the hardening template underlying EdDSA. However, when we want to
justify EdDSA itself, we need to consider the specific, MD-based instantiations
of the PRG, PRF and Schnorr hash function, and for these we use the model
where the compression function is ideal.

Several works study de-randomization of signing by deriving the coins via a
PRF applied to the message, considering different ways to key the PRF [9,12,
23,33]. We use their techniques in the proof of Theorem 1.

One might ask how to view the UF-security of Schnorr signatures as an
assumption. What is relevant is not its form (it is interactive) but that (1) it can
be seen as a hub from where one can bridge to other assumptions that imply it,
such as DL (non-tightly) [1,37] or MBDL (tightly) [5], and (2) it is validated by
decades of cryptanalysis.

Our results have been stated for UF but extend to SUF (Strong unforgeabil-
ity), meaning our proofs also show SUF-security of EdDSA in the (MD[h], h)
model assuming SUF security of Schnorr, with a tight (up to the usual constant
factor) reduction.

Hardening Signature Schemes 229

EdDSA could be used with other hash functions such as SHAKE. The extension
attack does not apply to the latter, so the proof of BCJZ [16] applies, but gives a
loose reduction from DL; our results still add something, namely a tight reduction
from Schnorr and thus improved tightness in several ways as discussed above.

2 Preliminaries

Notation. If n is a positive integer, then Zn denotes the set {0, . . . , n − 1} and
[n] or [1..n] denote the set {1, . . . , n}. If x is a vector then |x| is its length (the
number of its coordinates), x[i] is its i-th coordinate and [x] = { x[i] : 1 ≤
i ≤ |x| } is the set of all its coordinates. A string is identified with a vector
over {0, 1}, so that if x is a string then x[i] is its i-th bit and |x| is its length.
We denote x[i..j] the i-th bit to the j-th bit of string x. By ε we denote the
empty vector or string. The size of a set S is denoted |S|. For sets D,R let
AF(D,R) denote the set of all functions f : D → R. If f : D → R is a function
then Img(f) = { f(x) : x ∈ D } ⊆ R is its image. We say that f is regular if
every y ∈ Img(f) has the same number of pre-images under f . By {0, 1}≤L we
denote the set of all strings of length at most L. For any variables a and b, the
expression [[a = b]] denotes the Boolean value true when a and b contain the
same value and false otherwise.

Let S be a finite set. We let x ←$ S denote sampling an element uniformly
at random from S and assigning it to x. We let y ← A[O1, . . .](x1, . . . ; r) denote
executing algorithm A on inputs x1, . . . and coins r with access to oracles O1, . . .
and letting y be the result. We let y ←$ A[O1, . . .](x1, . . .) be the resulting of
picking r at random and letting y ← A[O1, . . .](x1, . . . ; r) be the equivalent.
We let OUT(A[O1, . . .](x1, . . .)]) denote the set of all possible outputs of A when
invoked with inputs x1, . . . and oracles O1, Algorithms are randomized unless
otherwise indicated. Running time is worst case.

Games. We use the code-based game playing framework of [11]. (See Fig. 1 for
an example.) Games have procedures, also called oracles. Among the oracles are
Init and a Fin. In executing an adversary A with a game G, the adversary may
query the oracles at will. We require that the adversary’s first oracle query be to
Init and its last to Fin and it query these oracles at most once. The value return
by the Fin procedure is taken as the game output. By G(A) ⇒ y we denote the
event that the execution of game G with adversary A results in output y. We
write Pr[G(A)] as shorthand for Pr[G(A) ⇒ true], the probability that the game
returns true.

In writing game or adversary pseudocode, it is assumed that Boolean vari-
ables are initialized to false, integer variables are initialized to 0 and set-valued
variables are initialized to the empty set ∅.

We adopt the convention that the running time of an adversary is the time
for the execution of the game with the adversary, so that the time for oracles
to respond to queries is included, and similarly for the number of queries to an
oracle. In particular, the number of queries to a random oracle FO includes those
made by scheme algorithms executed by game procedures. By QO

A we denote the

230 M. Bellare et al.

number of queries made by A and the game to oracle O in the execution. With
qO
A we count only queries made directly by A to O, not by other game oracles

or scheme algorithms. These counts are all worst case.

Groups. Throughout the paper, we fix integers k and b, an odd prime p, and a
positive integer f such that 2f < p. We then fix two groups: G, a group of order
p · 2f whose elements are k-bit strings, and its cyclic subgroup Gp of order p.
We prove in our full version [6] that this subgroup is unique, and that it has
an efficient membership test. We also assume an efficient membership test for
G. We will use additive notation for the group operation, and we let 0G denote
the identity element of G. We let G

∗
p = G \ {0G} denote the set of non-identity

elements of Gp, which is its set of generators. We fix a distinguished generator
B ∈ G

∗
p. Then for any X ∈ G

∗, the discrete logarithm base B of X is denoted
DLG,B(X), and it is in the set Z|G|. The instantiation of G used in Ed25519 is
described in our full version [6].

3 Functor Framework

Our treatment relies on the notion of functors [7], which are functions that
access an idealized primitive. We give relevant definitions, starting with signature
schemes whose security is measured relative to a functor. Then we extend the
notions of PRGs and PRFs to functors.

Function Spaces. In using the random oracle model [10], works in the lit-
erature sometimes omit to say what exactly are the domain and range of the
underlying functions, and, when multiple functions are present, whether or not
they are independent. (Yet, implicitly their proofs rely on certain choices.) For
greater precision, we use the language of function spaces of [7], which we now
recall.

A function space O is a set of tuples H = (H1, . . . ,Hn) of functions. The
integer n is called the arity of the function space, and can be recovered as O.arity.
We view H as taking an input X that it parses as (i, x) to return Hi(x).

Functors. Following [7], we use the term functor for a transform that constructs
one function from another. A functor F : SS → ES takes as oracle a function h
from a starting function space SS and returns a function F[h] in the ending
function space ES. (The term is inspired by category theory, where a functor
maps from one category into another. In our case, the categories are function
spaces.) If ES has arity n, then we also refer to n as the arity of F, and write
Fi for the functor which returns the i-th component of F. That is, Fi[h] lets
H ← F[h] and returns Hi.

MD Functor. We are interested in the Merkle-Damg̊ard [20,31] transform.
This transform constructs a hash function with domain {0, 1}∗ from a compres-
sion function h : {0, 1}b+2k → {0, 1}2k for some integers b and k. The compression
function takes a 2k-bit chaining variable y and a b-bit block B to return a 2k
bit output h(y‖B). In the case of SHA512, the hash function used in EdDSA, the

Hardening Signature Schemes 231

compression function sha512 has b = 1024 and k = 256 (so the chaining variable
is 512 bits and a block is 1024 bits), while b = 512 and k = 128 for SHA256. In
our language, the Merkle-Damg̊ard transform is a functor MD : AF({0, 1}b+2k,
{0, 1}2k) → AF({0, 1}∗, {0, 1}2k). It is parameterized by a padding function pad
that takes the length � of an input to the hash function and returns a padding
string such that � + |pad(�)| is a multiple of b. Specifically, pad(�) returns 10∗〈�〉
where 〈�〉 is a 64-bit, resp. 128-bit encoding of � for SHA256 resp. SHA512, and
0∗ indicates the minimum number p of 0s needed to make � + 1 + p + 64, resp.
�+1+p+128 a multiple of b. We also fix an “initialization vector” IV ∈ {0, 1}2k.
Given oracle h, the functor defines hash function H = MD[h] : {0, 1}∗ → {0, 1}2k

as follows:

Functor MD[h](X)
y[0] ← IV
P ← pad(|X|) ; X ′[1] . . . X ′[m] ← X‖P // Split X‖P into b-bit blocks

For i = 1, . . . , m do y[i] ← h(y[i − 1]‖X ′[i])
Return y[m]

Strictly speaking, the domain is only strings of length less than 264 resp. 2128,
but since this is huge in practice, we view the domain as {0, 1}∗.
Signature scheme syntax. We give an enhanced, flexible syntax for a signa-
ture scheme DS. We want to cover ROM schemes, which means scheme algo-
rithms have oracle access to a function H, but of what range and domain?
Since these can vary from scheme to scheme, we have the scheme begin by
naming the function space DS.FS from which H is drawn. We see the key-
generation algorithm DS.Kg as first picking a signing key sk ←$ DS.SK via a
signing-key generation algorithm DS.SK, then obtaining the public verification
key vk ← DS.PK[H](sk) by applying a deterministic verification-key generation
algorithm DS.PK, and finally returning (vk, sk). (For simplicity, DS.SK, unlike
other scheme algorithms, does not have access to H.) We break it up like this
because we may need to explicitly refer to the sub-algorithms in constructions.
Continuing, via σ ← DS.Sign[H](sk, vk,M ; r) the signing algorithm takes sk, vk,
a message M ∈ {0, 1}∗, and randomness r from the randomness space DS.SR of
the algorithm, to return a signature σ. As usual, σ ←$ DS.Sign[H](sk, vk,M) is
shorthand for picking r ←$ DS.SR and returning σ ← DS.Sign[H](sk, vk,M ; r).
Via b ← DS.Vf[H](vk,M , σ), the verification algorithm obtains a boolean deci-
sion b ∈ {true, false} about the validity of the signature. The correctness require-
ment is that for all H ∈ DS.FS, all (vk, sk) ∈ OUT(DS.Kg[H]), all M ∈ {0, 1}∗

and all σ ∈ OUT(DS.Sign[H](sk, vk,M)) we have DS.Vf[H](vk,M , σ) = true.

UF Security. We want to discuss security of a signature scheme DS under
different ways in which the functions in DS.FS are chosen or built. Game Guf

DS,FF

in Fig. 1 is thus parameterized by a functor FF : SS → DS.FS. At line 1, a
starting function h is chosen from the starting space of the functor, and then
the function H ∈ DS.FS that the scheme algorithms (key-generation, signing and
verification) get as oracle is determined as H ← FF[h]. The adversary, however,
via oracle FO, gets access to h, which here is the random oracle. The rest is as

232 M. Bellare et al.

Game Guf
DS,FF Init:

1 h ←$ SS ; H ← FF[FO] ; (vk, sk) ←$ DS.Kg[H] ; Return vk

Sign(M):

2 σ ←$ DS.Sign[H](sk, vk,M) ; S ← S ∪ {M } ; Return σ

FO(X):

3 Return h(X)

Fin(M∗, σ∗):

4 If (M∗ ∈ S) then return false

5 Return DS.Vf[H](vk,M∗, σ∗)

Game Gprg
P Init:

1 h ←$ SS ; c ←$ {0, 1}
2 s ←$ {0, 1}k ; y1 ← P[FO](s)

3 y0 ←$ {0, 1}�

4 Return yc

FO(X):

5 Return h(X)

Fin(c′):

6 Return (c = c′)

Game Gprf
F Init:

1 h ←$ SS ; c ←$ {0, 1} ; K ←$ {0, 1}k

FN(X):

2 If YT[X] �= ⊥ then

3 If (c = 1) then YT[X] ← F[FO](K, X)

4 Else YT[X] ←$ R

5 Return YT[X]

FO(X):

6 Return h(X)

Fin(c′):

7 Return (c = c′)

Fig. 1. Top: Game defining UF security of signature scheme DS relative to functor
FF : SS → DS.FS. Bottom Left: Game defining PRG security of functor P : SS →
AF({0, 1}k, {0, 1}�). Bottom Right: Game defining PRF security of functor F : SS →
AF({0, 1}k × {0, 1}∗, R).

per the usual unforgeability definition. (Given in the standard model in [24] and
extended to the ROM in [10].) We define the UF advantage of adversary A as
Advuf

DS,FF(A) = Pr[Guf
DS,FF(A)].

PRGs and PRFs. The usual definition of a PRGs is for a function; we define
it instead for a functor P. The game Gprg

P is in Fig. 1. It picks a function h from
the starting space SS of the functor. The functor now determines a function
P[h] : {0, 1}k → {0, 1}�. The game then follows the usual PRG one for this
function, additionally giving the adversary oracle access to h via oracle FO. We
let Advprg

P (A) = 2Pr[Gprg
P (A)] − 1.

Hardening Signature Schemes 233

DS.SK:

1 sk ←$ {0, 1}k ; Return sk

DS.PK[H](sk):

2 e1‖e2 ← H1(sk) ; sk ← CF(e1)

3 vk ← DS.PK[H3](sk)

4 Return vk

DS.Sign[H](sk, vk,M):

5 e1‖e2 ← H1(sk) ; sk ← CF(e1)

6 r ← H2(e2,M)

7 σ ← DS.Sign[H3](sk, vk,M ; r)

8 Return σ

DS.Vf[H](vk,M , σ):

9 Return DS.Vf[H3](vk,M , σ)

DS∗.SK:

1 sk ←$ {0, 1}k ; Return sk

DS∗.PK[G](sk):

2 sk ← CF(sk)

3 vk ← DS.PK[G](sk)

4 Return vk

DS∗.Sign[G](sk, vk,M):

5 sk ← CF(sk)

6 σ ←$ DS.Sign[G](sk, vk,M)

7 Return σ

DS∗.Vf[G](vk,M , σ):

8 Return DS.Vf[G](vk,M , σ)

Fig. 2. Left: The signature scheme DS = DtD[DS, CF] constructed by the DtD
transform applied to signature scheme DS and clamping function CF : {0, 1}k →
OUT(DS.SK). Right: The signature scheme DS = JCl[DS, CF] constructed by the
JCl transform.

Similarly we extend the usual definition of PRG security to a functor F, via
game Gprf

F of Fig. 1. Here, for h in the starting space SS of the functor, the
defined function maps as F[h] : {0, 1}k × {0, 1}∗ → R for some k and range set
R. We let Advprf

F (A) = 2Pr[Gprf
F (A)] − 1.

4 The Soundness of Derive-then-Derandomize

We specify a general signature-hardening transform that we call Derive-then-
Derandomize (DtD) and prove that it preserves the security of the starting
signature scheme.

The DtD Transform. Let DS be a given signature scheme that we call the
base signature scheme. It will be the (general) Schnorr scheme in our application.
Assume for simplicity that its function space DS.FS has arity 1.

The DtD (derive then de-randomize) transform constructs a signature
scheme DS = DtD[DS, CF] based on DS and a function CF : {0, 1}k →
OUT(DS.SK), called the clamping function, that turns a k-bit string into a sign-
ing key for DS. The algorithms of DS are shown in Fig. 2. They have access to
oracle H that specifies sub-functions H1,H2,H3. Function H1 : {0, 1}k → {0, 1}2k

expands the signing key sk of DS into sub-keys e1 and e2. The clamping func-
tion is applied to e1 to get a signing key for the base scheme, and its associated
verification key is returned as the one for the new scheme at line 4. At line 6,

234 M. Bellare et al.

function H2 : {0, 1}k × {0, 1}∗ → DS.SR is applied to the second sub-key e2 and
the message M to determine signing randomness r for the line 5 invocation of
the base signing algorithm. Finally, H3 ∈ DS.FS is an oracle for the algorithms
of DS. Formally the oracle space DS.FS of DS is the arity 3 space consisting of
all H = (H1,H2,H3) that map as above.

Viewing the PRG H1, PRF H2 and oracle H3 for the base scheme as specified
in the function space is convenient for our application to EdDSA, where they are
all based on MD with the same underlying idealized compression function.

Just Clamp. Given a signature scheme DS and a clamping function
CF : {0, 1}k → OUT(DS.SK), it is useful to also consider the signature scheme
DS∗ = JCl[DS, CF] that does just the clamping. The scheme is shown in Fig. 2.
Its oracle space is the same as that of DS and is assumed to have arity 1. On
the right of Fig. 2 the function drawn from it is denoted G; it will be the same
as H3 on the left.

Security of DtD.b We study the security of the scheme DS = DtD[DS, CF]
obtained via the DtD transform.

When we prove security of DS, it will be with respect to a functor FF that
constructs all of H1,H2,H3. This means that these three functions could all
depend on the same starting function that FF uses, and in particular not be
independent of each other. An important element of the following theorem is
that it holds even in this case, managing to reduce security to conditions on
the individual functors despite their using related (in fact, the same) underlying
starting function.

Theorem 1. Let DS be a signature scheme. Let CF : {0, 1}k → OUT(DS.SK)
be a clamping function. Let DS = DtD[DS, CF] and DS∗ = JCl[DS, CF] be the
signature schemes obtained by the above transforms. Let FF : SS → DS.FS be a
functor that constructs the function H that algorithms of DS use as an oracle. Let
A be an adversary attacking the Guf security of DS. Then there are adversaries
A1,A2,A3 such that

Advuf
DS,FF

(A) ≤ Advprg
FF1

(A1) + Advprf
FF2

(A2) + Advuf
DS∗,FF3

(A3) .

The constructed adversaries preserve the number of FO queries of A and approx-
imately preserve its running time. Adversary A2 makes QA

Sign
queries to FN.

Adversary A3 makes QA
Sign

queries to Sign.

Proof (Theorem 1). The proof uses code-based game playing [11]. Consider the
games of Fig. 3. Let εi = Pr[Gi(A)] for i = 0, 1, 2.

Game G0 is the Guf game for DS except that the signature of M is stored
in table ST at line 8, and, at line 5, if a signature for M already exists, it is
returned directly. Since signing in DS is deterministic, meaning the signature is
always the same for a given message and signing key, this does not change what
Sign returns, and thus

Advuf
DS,FF

(A) = ε0

= (ε0 − ε1) + (ε1 − ε2) + ε2 .

We bound each of the three terms above in turn.

Hardening Signature Schemes 235

Games G0, G1, G2 Init:

1 h ←$ SS

2 sk ←$ {0, 1}k ; e1‖e2 ← FF1[FO](sk) // Game G0

3 e1‖e2 ←$ {0, 1}2k // Games G1, G2

4 sk ← CF(e1) ; vk ← DS.PK[FF3[FO]](sk) ; Return vk

Sign(M):

5 If ST[M] �= ⊥ then return ST[M]

6 r ← FF2[FO](e2,M) // Games G0, G1

7 r ←$ DS.SR // Game G2

8 ST[M] ← DS.Sign[FF3[FO]](sk, vk,M ; r) ; Return ST[M]

FO(X):

9 Return h(X)

Fin(M∗, σ∗):

10 If (ST[M∗] �= ⊥) then return false

11 Return DS.Vf[FF3[FO]](vk,M∗, σ∗)

Fig. 3. Games for proof of Theorem 1. A line annotated with names of games is included
only in those games.

The change in moving to game G1 is at line 3, where we sample e1‖e2 uni-
formly from the set {0, 1}2k rather than obtaining it via FF1[FO] as in game
G0. We build PRG adversary A1 such that

ε0 − ε1 ≤ Advprg
FF1

(A1) . (1)

Adversary A1 is playing game Gprg
FF1

. It gets its challenge via e1‖e2 ← Gprg
FF1

.Init.
It lets sk ← CF(e1) and vk ← DS.PK[FF3[G

prg
FF1

.FO]](sk) where Gprg
FF1

.FO is
the oracle provided in its own game. It runs A, returning vk in response to A’s
Init query. It answers Sign queries as do G0,G1 except that it uses Gprg

FF1
.FO

in place of FO at lines 6,8. As part of this simulation, it maintains table ST.
It answers FO queries via Gprg

FF1
.FO. When A calls Fin(M∗, σ∗), adversary A1

lets c′ ← 1 if DS.Vf[FF3[G
prg
FF1

.FO]](vk,M∗, σ∗) is true and ST[M∗] = ⊥, and
otherwise lets c′ ← 0. It then calls Gprg

FF1
.Fin(c′). When the challenge bit c in

game Gprg
FF1

is c = 1, the view of A is as in G0, and when c = 0 it is as in G1,
which explains Eq. (1).

Moving to G2, the change is that line 6 is replaced by line 7, meaning signing
coins are now chosen at random from the randomness space DS.SR of DS. We
build PRF adversary A2 such that

ε1 − ε2 ≤ Advprf
FF2

(A2) . (2)

Adversary A2 is playing game Gprf
FF2

. It picks e1‖e2 ←$ {0, 1}2k. It lets sk ←
CF(e1) and vk ← DS.PK[FF3[G

prf
FF2

.FO]](sk) where Gprg
FF2

.FO is the oracle pro-

236 M. Bellare et al.

vided in its own game. It runs A, returning vk in response to A’s Init query.
It answers Sign queries as does G1 except that it uses Gprf

FF2
.FN in place of

FF2[FO] at line 6 and Gprf
FF2

.FO in place of FO in line 8. As part of this sim-
ulation, it maintains table ST. It answers FO queries via Gprf

FF2
.FO. When A

calls Fin(M∗, σ∗), adversary A2 lets c′ ← 1 if DS.Vf[FF3[G
prf
FF2

.FO]](vk,M∗, σ∗)
is true and ST[M∗] = ⊥, and otherwise lets c′ ← 0. It then calls Gprf

FF2
.Fin(c′).

When the challenge bit c in game Gprf
FF2

is c = 1, the view of A is as in G1, and
when c = 0 it is as in G2, which explains Eq. (2).

Finally we build adversary A3 such that

ε2 ≤ Advuf
DS∗,FF3

(A3) . (3)

Adversary A3 is playing game Guf
DS∗,FF3

. It lets vk ← Guf
DS∗,FF3

.Init. It runs A,
returning vk in response to A’s Init query. When A makes query M to Sign,
it answers as per the following:

If ST[M] �= ⊥ then return ST[M]
ST[M] ←$ Guf

DS∗,FF3
.Sign(M) ; Return ST[M]

Note that memoizing signatures in ST is important here to ensure that the Sign

queries of A are correctly simulated. It answers FO queries via Guf
DS∗,FF3

.FO.
When A calls Fin(M∗, σ∗), adversary A2 calls Guf

DS∗,FF3
.Fin(M∗, σ∗). The dis-

tribution of signatures that A is given, and of the keys underlying them, is as in
G2, which explains Eq. (3).

Note that the constructed adversaries having access to oracle FO in their
games is important to their ability to simulate A faithfully.

With regard to the costs (number of queries, running time) of the constructed
adversaries, recall that we have defined these as the costs in the execution of the
adversary with the game that the adversary is playing, so for example the number
of queries to FO includes the ones made by algorithms executed in the game.
When this is taken into account, queries to FO are preserved, and the other
claims are direct. ��
Security of JCl. We have now reduced the security of DS to that of DS∗.

To further reduce the security of DS∗ to that of DS, we give a general result
on clamping. Let K = OUT(DS.SK) and let CF : {0, 1}k → K be a clamping
function. As per terminology in Sect. 2, recall that Img(CF) = { CF(sk) : |sk| =
k } ⊆ K is the image of the clamping function, and CF is regular if every y ∈
Img(CF) has the same number of pre-images under CF.

Theorem 2. Let DS be a signature scheme such that DS.SK draws its signing
key sk ←$ K at random from a set K. Let CF : {0, 1}k → K be a regular clamping
function. Let δ = |Img(CF)|/|K| > 0. Let DS∗ = JCl[DS, CF] be the signature
scheme obtained by the just-clamp transform. Let FF : SS → DS.FS be any func-
tor. Let B be an adversary attacking the Guf security of DS∗. Then

Advuf
DS∗,FF(B) ≤ (1/δ) · Advuf

DS,FF(B) .

Hardening Signature Schemes 237

DS.SK:

1 s ←$ Zp

2 Return s

DS.PK(s):

3 A ← s · B ; Return A

DS.Sign[H](s, A,M):

4 r ←$ Zp ; R ← r · B
5 c ← H(R‖A‖M)

6 z ← (sc + r) mod p

7 Return (R, z)

DS.Vf[H](A,M , σ):

8 (R, z) ← σ

9 c ← H(R‖A‖M)

10 Return VF(A, R, c, z)

DS.SK:

1 sk ←$ {0, 1}k ; Return sk

DS.PK(sk):

2 e1‖e2 ← H1(sk) ; s ← CF(e1)

3 A ← s · B ; Return A

DS.Sign[H](sk, A,M):

4 e1‖e2 ← H1(sk) ; s ← CF(e1)

5 r ← H2(e2,M) ; R ← r · B
6 c ← H3(R‖A‖M)

7 z ← (sc + r) mod p

8 Return (R, z)

DS.Vf[H](A,M , σ):

9 (R, z) ← σ

10 c ← H3(R‖A‖M) mod p

11 Return VF(A, R, c, z)

CF(e) // e ∈ {0, 1}k
:

12 t ← 2k−2

13 for i ∈ [4..k − 2]

14 t ← t + 2i−1 · e[i]

15 s ← t mod p

16 return s

sVF(A, R, c, z):

1 Return (z · B = c · A + R)

pVF(A, R, c, z):

1 Return 2f(z · B) = 2f(c · A + R)

Fig. 4. Top Left: the Schnorr scheme. Top Right: The EdDSA scheme. Bottom
Left: EDDSA clamping function (generalized for any k; in the original definition,
k = 256). Bottom Right: Strict and Permissive verification algorithms as choices for
VF.

Proof (Theorem 2). We consider running B in game Guf
DS,FF, where the signing

key is sk ←$ K. With probability δ we have sk ∈ Img(CF). Due to the regularity
of CF, key sk now has the same distribution as a key CF(sk) for sk ←$ {0, 1}k

drawn in game Guf
DS∗,FF. Thus Advuf

DS,FF(B) ≥ δ · Advuf
DS∗,FF(B). ��

5 Security of EdDSA

The Schnorr Scheme. Let the prime-order group Gp of k-bit strings with
generator B be as described in Sect. 2. The algorithms of the Schnorr signature
scheme DS = Sch are shown on the left in Fig. 4. The function space DS.FS
is AF({0, 1}∗,Zp). (Implementations may use a hash function that outputs a
string and embed the result in Zp but following prior proofs [1] we view the
hash function as directly mapping into Zp.) Verification is parameterized by

238 M. Bellare et al.

an algorithm VF to allow us to consider strict and permissive verification in a
modular way. The corresponding choices of verification algorithms are at the
bottom of Fig. 4. The signing randomness space is DS.SR = Zp.

Schnorr signatures have a few variants that differ in details. In Schnorr’s
paper [40], the challenge is c = H(R‖M) mod p. Our inclusion of the public key
in the input to H follows Bernstein [13] and helps here because it is what EdDSA
does. It doesn’t affect security. (The security of the scheme that includes the
public key in the hash input is implied by the security of the one that doesn’t
via a reduction that includes the public key in the message.) Also in [40], the
signature is (c, z). The version we use, where it is (R, z), is from [1]. However,
BBSS [2] shows that these versions have equivalent security.

The EdDSA Scheme. Let the prime-order group Gp of k-bit strings with gen-
erator B be as before and assume 2k−5 < p < 2k. Let CF : {0, 1}k → Zp be the
clamping function shown at the bottom of Fig. 4. The algorithms of the scheme
DS are shown on the right side of Fig. 4. The key length is k. As before, the ver-
ification algorithm VF is a parameter. The H available to the algorithms defines
three sub-functions. The first, H1 : {0, 1}k → {0, 1}2k, is used at lines 2,4, where
its output is parsed into k-bit halves. The second, H2 : {0, 1}k × {0, 1}∗ → Zp,
is used at line 5 for de-randomization. The third, H3 : {0, 1}∗ → Zp, plays the
role of the function H for the Schnorr schemes. Formally, DS.FS is the arity-3
function space consisting of all H mapping as just indicated.

In [14,16], the output of the clamping is an integer that (in our notation) is in
the range 2k−2, . . . , 2k−1−8. When used in the scheme, however, it is (implicitly)
modulo p. It is convenient for our analysis, accordingly, to define CF to be the
result modulo p of the actual clamping. Note that in EdDSA the prime p has
magnitude a little more than 2k−4 and less than 2k−3.

There are several versions of EdDSA depending on the choice for verification
algorithms: strict, permissive or batch VF. We specify the first two choices in
Fig. 4. Our results hold for all choices of VF, meaning EdDSA is secure with
respect to VF assuming Schnorr is secure with respect to VF. It is in order to
make this general claim that we abstract out VF.

Security of EdDSA with Independent ROs. As a warm-up, we show secu-
rity of EdDSA when the three functions it uses are independent random oracles,
the setting assumed by BCJZ [16]. However, while they assume hardness of DL,
our result is more general, assuming only security of Schnorr with a monolithic
random oracle. We can then use known results on Schnorr [1,37] to recover the
result of BCJZ [16], but the proof is simpler and more modular. Also, other
known results on Schnorr [5,22,39] can be applied to get better bounds. Follow-
ing this, we will turn to the “real” case, where the three functions are all MD
with a random compression function.

The Theorem below is for a general prime p > 2k−5 but in EdDSA the prime
is 2k−4 < p < 2k−3 so the value of δ below is δ = 2k−5/p > 2k−5/2k−3 = 1/4, so
the factor 1/δ is ≤ 4. We capture the three functions of EdDSA being independent
random oracles by setting functor P below to the identity functor, and similarly
capture Schnorr being with a monolithic random oracle by setting R to be the
identity functor.

Hardening Signature Schemes 239

Functor S1[h](sk): // |sk| = k

2 e ← MD[h](sk) ; Return e // |e| = 2k

Functor S2[h](e2,M): // |e2| = k

3 Return MD[h](e2‖M) mod p

Functor S3[h](X): // also called Mod-MD

4 Return MD[h](X) mod p

Fig. 5. The arity-3 functor S for EdDSA. Here h : {0, 1}b+2k → {0, 1}2k is a compression
function.

Theorem 3. Let DS be the Schnorr signature scheme of Fig. 4. Let CF :
{0, 1}k → Zp be the clamping function of Fig. 4. Assume p > 2k−5 and let
δ = 2k−5/p. Let DS = DtD[DS, CF] be the EdDSA signature scheme. Let
R : AF({0, 1}∗,Zp) → AF({0, 1}∗,Zp) be the identity functor. Let P : DS.FS →
DS.FS be the identity functor. Let A be an adversary attacking the Guf security
of DS. Then there is an adversary B such that

Advuf
DS,P

(A) ≤(1/δ) · Advuf
DS,R(B) +

2 · QA
FO

2k
.

Adversary B preserves the queries and running time of A.

Proof (Theorem 3). Let DS∗ = JCl[Sch, CF]. By Theorem 1, we have

Advuf
DS,P

(A) ≤ Advprg
P1

(A1) + Advprf
P2

(A2) + Advuf
DS∗,P3

(A3) .

It is easy to see that

Advprg
P1

(A1) ≤ QA1
FO

2k
=

QA
FO

2k

Advprf
P2

(A2) ≤QA2
FO

2k
=

QA
FO

2k
.

Under the assumption p > 2k−5 made in the theorem, BCJZ [16] established
that |Img(CF)| = 2k−5. So |Img(CF)|/|Zp| = 2k−5/p = δ. Let B = A3 and note
that P3 = R. So by Theorem 2 we have

Advuf
DS∗,P3

(A3) ≤ (1/δ) · Advuf
DS,R(B) . (4)

Collecting terms, we obtain the claimed bound stated in Theorem 3. ��
Analysis of the S Functor. Let DS be the result of the DtD transform
applied to Sch and a clamping function CF : {0, 1}k → Zp. Security of EdDSA
is captured as security in game Guf

DS,S
when S is the functor that builds the

component hash functions in the way that EdDSA does, namely from a MD-
hash function. To evaluate this security, we start by defining the functor S in

240 M. Bellare et al.

Games G0, G1 Init:

1 sk ←$ {0, 1}k ; e ←$ {0, 1}2k

2 Return e

FO(X):

3 If FT[X] �= ⊥ then return FT[X]

4 Y ←$ {0, 1}2k

5 If X = IV ‖sk‖P then bad ← true ; Y ← e

6 FT[X] ← Y ; Return FT[X]

Fin(c′):

7 Return (c′ = 1)

Fig. 6. Games G0 and G1 in the proof of Lemma 4. Boxed code is only in G1.

Fig. 5. It is an arity-3 functor, and we separately specify S1,S2,S3. (Functor S3

will be called Mod-MD in later analyses.) The starting space, from which h is
drawn, is AF({0, 1}b+2k, {0, 1}2k), the set of compression functions. The prime p
is as before, and is public.

We want to establish the three assumptions of Theorem 1. Namely: (1) S1 is
PRG-secure (2) S2 is PRF secure and (3) security holds in game Guf

Sch∗,S3
where

Sch∗ = JCl[Sch, CF]. Bridging from Sch∗ to Sch itself will use Theorem 2.

Lemma 4. Let functor S1 : AF({0, 1}b+2k, {0, 1}2k) → AF({0, 1}k, {0, 1}2k) be
defined as in Fig. 5. Let A1 be an adversary. Then

Advprg
S1

(A1) ≤ QA1
FO

2k
(5)

Proof (Lemma 4). Since the input sk to S1[h] is k-bits long, the MD transform
defined in Sect. 3 only iterates once and the output is e = h(IV ‖sk‖P), for
padding P ∈ {0, 1}3k and initialization vector IV ∈ {0, 1}2k that are fixed and
known. Now consider the games in Fig. 6, where the boxed code is only in G1.
Then we have

Advprg
S1

(A1) = Pr[G1(A1)] − Pr[G0(A1)]

≤ Pr[G0(A1) sets bad]

≤ QA1
FO

2k
.

The second line above is by the Fundamental Lemma of Game Playing, which
applies since G0,G1 are identical-until-bad. ��

Hardening Signature Schemes 241

Lemma 5. Let functor S2 : AF({0, 1}b+2k, {0, 1}2k) → AF({0, 1}k × {0, 1}∗,Zp)
be defined as in Fig. 5. Let � be an integer such that all messages queried to FO

are no more than b · (� − 1) − k bits long. Let A2 be an adversary. Then

Advprf
S2

(A2) ≤QA2
FO

2k
+

2p(qA2
FO

+ �QA2
FN

)
22k

+
(qA2

FO
+ �QA2

FN
)2

22k
+

pqA2
FO

· �QA2
FN

22k
.

Proof (Lemma 5). In Sect. 6, we prove the indifferentiability of functor S3

(c.f. Figure 5), which we also call Mod-MD. Define R : AF({0, 1}∗,Zp) →
AF({0, 1}k × {0, 1}∗,Zp) to be the identity functor such that R[H](x, y) =
H(x ‖ y) for all x, y,H in the appropriate domains. Notice that when R is given
access to the Mod-MD functor as its oracle, the resulting functor is exactly
S2. Using this property, we will reduce the PRF security of functor S2 to the
indifferentiability of Mod-MD.

For any simulator algorithm S, the indifferentiability composition theo-
rem [30] grants the existence of distinguisher D and adversary A5 such that

Advprf
S2

(A2) ≤ Advprf
R (A5) + Advindiff

Mod-MD,S(D).

We let S be the simulator guaranteed by Theorem 8 and separately bound each
of these terms. Adversary A5 simulates the PRF game for its challenger A2 by
forwarding all FN queries to its own FN oracle and answering FO queries using
the simulator, which has access to the FO oracle of A5. Since the simulator is
efficient and makes at most one query to its oracle each time it is run, we can
say the runtime of A5 is approximately the same as that of A2. A5 makes the
same number of FN and FO queries as A2.

Next, we want to compute Advprf
R (A5). When R is evaluated with access

to a random function h, its outputs are random unless the adversary makes a
relevant query involving the secret key. The adversary can only distinguish if
the output of FN is randomly sampled or from R[h] if it queries FO on the
k-bit secret key (e2), which has probability 1

2k for a single query. Taking a union
bound over all FO queries, we have

Advprf
R (A5) ≤ QA2

FO

2k
.

Distinguisher D simulates the PRF game for A2, by replacing functor
Mod-MD with its own Priv oracle within the FN oracle and forwarding A2’s
direct FO queries to Pub. D hence makes QFN

A2
queries to Priv of maximum

length b ·(�−1) and qFOA2
to Pub. To bound the second term, we apply Theorem 8

on the indifferentiability of shrink-MD transforms. This theorem is parameter-
ized by two numbers γ and ε; in Sect. 6, we show that Mod-MD belongs to the
shrink-MD class for γ = � 22k

p � and ε = p
22k . Then the theorem gives

Advindiff
Mod-MD,S(D) ≤ 2(QD

Pub
+ �QD

Priv
)ε +

(QD
Pub

+ �QD
Priv

)2

22k
+

QD
Pub

· �QD
Priv

γ
.

By substituting QD
Pub

= qA2
FO

and QD
Priv

= QA2
FN

, we obtain the bound stated
in the theorem. ��

242 M. Bellare et al.

The following considers the UF security of DS∗ = JCl[Sch, CF] with the hash
function being an MD one, and reduces this to the UF security of the same
scheme with the hash function being a monolithic random oracle. Formally, the
latter is captured by game Guf

DS∗,R where R is the identity functor.

Lemma 6. Let functor S3 : AF({0, 1}b+2k, {0, 1}2k) → AF({0, 1}∗,Zp) be
defined as in Fig. 5. Assume 2k > p. Let DS∗ = JCl[Sch, CF] where CF : {0, 1}k →
Zp is a clamping function. Let R : AF({0, 1}∗,Zp) → AF({0, 1}∗,Zp) be the iden-
tity functor, meaning R[H] = H. Let A3 be a Guf adversary making QA3

FO
,QA3

Sign

queries to its respective oracles, and let � be an integer such that the maximum
message length A3 queries to Sign is at most b · (� − 1) − 2k bits. Then we can
construct adversary A4 such that

Advuf
DS∗,S3

(A3) ≤ Advuf
DS∗,R(A4) +

2p(qA3
FO

+ �QA3
Sign

)
22k

(6)

+
(qA3

FO
+ �QA3

Sign
)2

22k
+

pqA3
FO

· �QA3
Sign

22k
. (7)

Adversary A4 has approximately equal runtime and query complexity to A3.

Proof (Theorem 6). Again, we rely on the indifferentiability of functor S3 =
Mod-MD, as shown in Sect. 6. The general indifferentiability composition the-
orem [30] states that for any simulator S and adversary A3, there exist distin-
guisher D and adversary A4 such that

Advuf
DS∗,S3

(A3) ≤ Advuf
DS∗,R(A4) + Advindiff

S3,S (D).

Let S be the simulator whose existence is implied by Theorem 8. The dis-
tinguisher runs the unforgeability game for its adversary, replacing S3[FO] in
scheme algorithms and adversarial FO queries with its Priv and Pub oracles
respectively. It makes qA3

FO
queries to Pub and QA3

Sign
queries to Priv, and the

maximum length of any query to Priv is b · (� − 1) bits because each element
of group Gp is a k-bit string (c.f. Section 2). We apply Theorem 8 to obtain the
bound

Advindiff
S3,S (D) ≤ 2(qA3

FO
+ �QA3

Sign
)ε +

(qA3
FO

+ �QA3
Sign

)2

22k
+

qA3
FO

· �QA3
Sign

γ
.

Adversary A4 is a wrapper for A3, which answers all of its queries to FO by
running S with access to its own FO oracle; since the simulator runs in constant
time and makes only one query to its oracle, the runtime and query complexity
approximately equal those of A3.

Substituting 1
γ ≥ p

22k and ε = p
22k gives the bound. ��

Security of EdDSA with MD. We now want to conclude security of EdDSA,
with an MD-hash function, assuming security of Schnorr with a monolithic ran-
dom oracle. The Theorem is for a general prime p in the range 2k > p > 2k−5

but in EdDSA the prime is 2k−4 < p < 2k−3 so the value of δ below is

Hardening Signature Schemes 243

δ = 2k−5/p > 2k−5/2k−3 = 1/4, so the factor 1/δ is ≤ 4. Again recall our
convention that query counts of an adversary include those made by oracles in
its game, implying for example that QA

FO
≥ QA

Sign
.

Theorem 7. Let DS be the Schnorr signature scheme of Fig. 4. Let CF : {0, 1}k

→ Zp be the clamping function of Fig. 4. Assume 2k > p > 2k−5 and let
δ = 2k−5/p. Let DS = DtD[DS, CF] be the EdDSA signature scheme. Let
R : AF({0, 1}∗,Zp) → AF({0, 1}∗,Zp) be the identity functor. Let S be the func-
tor of Fig. 5. Let A be an adversary attacking the Guf security of DS. Again let
b · (� − 1) − 2k be the maximum length in bits of a message input to Sign. Then
there is an adversary B such that

Advuf
DS,S

(A) ≤(1/δ) · Advuf
DS,R(B) +

QA
FO

2k−1
+

p(qA
FO

+ �QA
Sign

)
22k−2

+
(qA

FO
+ �QA2

Sign
)2

22k−1
+

pqA
FO

· �QA
Sign

22k−1
.

Adversary B preserves the queries and running time of A.

Proof (Theorem 7). Let DS∗ = JCl[Sch, CF]. By Theorem 1, we have

Advuf
DS,S

(A) ≤ Advprg
S1

(A1) + Advprf
S2

(A2) + Advuf
DS∗,S3

(A3).

Now applying Lemma 4, we have

Advprg
S1

(A1) ≤ QA
FO

2k
.

Applying Lemma 5, we have

Advprf
S2

(A2) ≤QA2
FO

2k
+

2p(qA2
FO

+ �QA2
FN

)
22k

+
(qA2

FO
+ �QA2

FN
)2

22k
+

pqA2
FO

· �QA2
FN

22k
.

We substitute QA2
FO

= QA
FO

, qA2
FO

= qA
FO

and QA2
FN

= QA
Sign

. By Lemma 6 we obtain

Advuf
DS∗,S3

(A3) ≤Advuf
DS∗,R(B) +

2p(QA3
FO

+ �QA3
Sign

)
22k

+
(QA3

FO
+ �QA3

Sign
)2

22k
+

pQA3
FO

· �QA3
Sign

22k
.

Recall that adversary A3 has the same query complexity as A.
Under the assumption p > 2k−5 made in the theorem, BCJZ [16] established

that |Img(CF)| = 2k−5. So |Img(CF)|/|Zp| = 2k−5/p = δ. So by Theorem 2 we
have

Advuf
DS∗,R(B) ≤ (1/δ) · Advuf

DS,R(B) . (8)

By substituting with the number of queries made by A as in Theorem 1 and
collecting terms, we obtain the claimed bound stated in Theorem 7. ��

244 M. Bellare et al.

We can now obtain security of EdDSA under number-theoretic assumptions
via known results on the security of Schnorr. Namely, we use the known results
to bound Advuf

DS,R(B) above. From [1,37] we can get a bound and proof based
on the DL problems, and from [39] with a better bound. We can also get an
almost tight bound under the MBDL assumption via [5] and a tight bound in
the AGM via [22].

6 Indifferentiability of Shrink-MD Class of Functors

Indifferentiability. We want the tuple of functions returned by a functor
F : SS → ES to be able to “replace” a tuple drawn directly from ES. Indiffer-
entiability is a way of defining what this means. We adapt the original MRH
definition of indifferentiability [30] to our game-based model in Fig. 7. In this
game, S is a simulator algorithm. The advantage of an adversary A against the
indifferentiability of functor F with respect to simulator S is defined to be

Advindiff
F,S (A) := 2Pr[Gindiff

F,S (A) ⇒ 1] − 1.

Game Gindiff
F,S Init():

1 c ←$ {0, 1}
2 h ←$ SS

3 H ←$ ES

Pub(i,Y):

1 if c = 0 then

2 return S[H](i,Y)

3 else return h(i,Y)

Priv(i,X):

1 if c = 0 then return H(i,X)

2 else return F[h](i,X)

Fin(c′):

1 return [[c = c′]]

Fig. 7. The game Gindiff
F,S measuring indifferentiability of a functor F with respect to

simulator S.

Modifying the Merkle-Damg̊ard Transform. Coron et al. showed that
the Merkle-Damg̊ard transform is not indifferentiable with respect to any effi-
cient simulator due to its susceptibility to length-extension attacks [19]. In the
same work, they analysed the indifferentiability of several closely related indif-
ferentiable constructions, including the “chop-MD” construction. Chop-MD is a
functor with the same domain as the MD transform; it simply truncates a spec-
ified number of bits from the output of MD. The S3 functor of Fig. 5 operates
similarly to the chop-MD functor, except that S3 reduces the output modulo
a prime p instead of truncating. This small change introduces some bias into
the resulting construction that affects its indifferentiability due to the fact that

Hardening Signature Schemes 245

the outputs of the MD transform, which are 2k-bit strings, are not distributed
uniformly over Zp.

In this section, we establish indifferentiability for a general class of functors
that includes both chop-MD and S3. We rely on the indifferentiability of S3 in
Sect. 5 as a stepping-stone to the unforgeability of EdDSA; however, we think
our proof for chop-MD is of independent interest and improves upon prior work.

The original analysis of the chop-MD construction [19] was set in the ideal
cipher model and accounted for some of the structure of the underlying com-
pression function. A later proof by Fischlin and Mittelbach [32] adapts the proof
strategy to the simpler construction we address here and works in the random
oracle model as we do. Both proofs, however, contain a subtle gap in the way
they use their simulators.

At a high level, both proofs define stateful simulators S which simulate a
random compression function by sampling uniform answers to some queries and
programming others with the help of their random oracles. These simulators are
not perfect, and fail with some probability that the proofs bound. In the ideal
indifferentiability game, the Pub oracle answers queries using the simulator and
the Priv oracle answers queries using a random oracle. Both proofs at some point
replace the random oracle H in Priv with Chop-MD[S] and claim that because
Chop-MD[S[H]](X) will always return H(X) if the simulator does not fail, the
adversary cannot detect the change. This argument is not quite true, because the
additional queries to S made by the Priv oracle can affect its internal state and
prevent the simulator from failing when it would have in the previous game. In
our proof, we avoid this issue with a novel simulator with two internal states to
enforce separation between Priv and Pub queries that both run the simulator.

Our result establishes indifferentiability for all members of the Shrink-MD
class of functors, which includes any functor built by composing of the MD
transform with a function Out : {0, 1}2k → S that satisfies three conditions,
namely that for some γ, ε ≥ 0,

1. For all y ∈ S, we can efficiently sample from the uniform distribution on
the preimage set {Out−1(y)}. We permit the sampling algorithm to fail with
probability at most ε, but require that upon failure the algorithm outputs a
(not necessarily random) element of {Out−1(y)}.

2. For all y ∈ S, it holds that γ ≤ |{Out−1(y)}|.
3. The statistical distance δ(D) between the distribution

D := z ←$ Out−1(y) : y ←$ S

and the uniform distribution on {0, 1}2k is bounded above by ε.

In principle, we wish γ to be large and ε to be small; if this is so, then the set
S will be substantially smaller than {0, 1}2k and the function Out “shrinks” its
domain by mapping it onto a smaller set.

Both chop-MD and mod-MD are members of the Shrink-MD class of func-
tors; we briefly show the functions that perform bit truncation and modular
reduction by a prime satisfy our three conditions. Truncation by any number of
bits trivially satisfies condition (1) with ε = 0.

246 M. Bellare et al.

Reduction modulo p also satisfies condition (1) because the following algo-
rithm samples from the equivalence class of x modulo p with failure probability at
most p

22k . Let � be the smallest integer such that � > 22k

p . Sample w ←$ [0 . . . �−1]
and output w · p + x, or x if w · p + x > 22k. We say this algorithm “fails” in
the latter case, which occurs with probability at most 1

� < p
22k . In the event the

algorithm does not fail, it outputs a uniform element of the equivalence class
of x.

Bellare et al. showed that the truncation of n trailing bits satisfies condition
(2) for γ = 22k−n and reduction modulo prime p satisfies (2) for γ = �22k/p� . It
is clear that sampling from the preimages of a random 2k−n-bit string under n-
bit truncation produces a uniform 2k-bit string, so truncation satisfies condition
(3) with ε = 0. Also from Bellare et al. [3], we have that the statistical distance
between a uniform element of Zp and the modular reduction of a uniform 2k-bit
string is ε = p

22k . The statistical distance of our distribution z ←$ Out−1(Y) for
uniform Y over S from the uniform distribution over {0, 1}2k is bounded above
by the same ε; hence condition (3) holds.

Given a set S and a function Out : {0, 1}2k → S, we define the functor FS,Out

as the composition of Out with MD. In other words, for any x ∈ {0, 1}∗ and
h ∈ AF({0, 1}b+2k, {0, 1}2k), let FS,Out[h](x) := Out(MD[h](x)).

Theorem 8. Let k be an integer and S a set of bitstrings. Let Out : {0, 1}2k → S
be a function satisfying conditions (1), (2), and (3) above with respect to γ, ε > 0.
Let MD be the Merkle-Damg̊ard functor(c.f. Section 2) FS,Out := Out ◦ MD be
the functor described in the prior paragraph. Let pad be the padding function
used by MD, and let unpad be the function that removes padding from its input
(i.e., for all X ∈ {0, 1}∗, it holds that unpad(X ‖ pad(|X |)) = X). Assume that
unpad returns ⊥ if its input is incorrectly padded and that unpad is injective
on its support. Then there exists a simulator S such that for any adversary A
making Priv queries of maximum length b · (� − 1) bits then

Advindiff
F,S (A) ≤ 2(QA

Pub
+ �QA

Priv
)ε +

(QA
Pub

+ �QA
Priv

)2

22k
+

QA
Pub

· �QA
Priv

γ
.

We prove the theorem in the game-based framework in our full version [6]. Here,
we give a brief overview of our proof strategy and its differences from previous
indifferentiability proofs for the chop-MD construction [19,32].

Our simulator, S, is defined in Fig. 8. It is inspired by, but distinct from,
that of Mittelbach and Fischlin’s simulator for the chop-MD construction ([32]
Fig. 17.4.), which in turn adapts the simulator of Coron et al. [19] from the
ideal cipher model to the random oracle model. These simulators all present
the interface of a random compression function h and internally maintain a
graph in which each edge represents an input-output pair under the simulated
compression function. The intention is that each path through this graph will
represent a possible evaluation of FS,Out[h]. The fundamental difference between
our simulator and previous ones is that we maintain two internal graphs instead
of one: one graph for all queries, and one graph for public interface queries only.

Hardening Signature Schemes 247

This novel method of using two graphs avoids the gap in prior proofs described
above by tracking precisely which parts of the simulator’s state are influenced
by private and public interface queries respectively.

In our proof, we transform the ideal indifferentiability game by evaluating
our functor F in each query to the Priv oracle. Initially, we discard the output of
this evaluation and use a separate graph in our simulator so that these additional
queries do not influence the Pub oracle. In later games, we bound the probability
that the private queries influence the public graph in a way that is detectable by
the adversary (such as creating collisions, cycles, or duplicate edges in the public
simulator’s graph), and begin using the same graph for both types of query. We
also claim that if the graph is free of collisions, cycles, and duplicate edges, then
we can respond to Priv queries with the evaluation of F without detection. We
then use the statistical closeness of sampling a random preimage of a random
element (property (3) of Out) to argue that our simulator is honestly behaving
as a random oracle except with some small probability. The resulting game is
then equivalent to the real indifferentiability game, and the theorem follows by
collecting the bounded differences between each pair of adjacent games.

Simulator S[H](Y , G) :

1 (y, m) ← Y

2 if ∃z such that (y, z, m) ∈ G.edges

3 return z

4 M ← G.FindPath(IV, y)

5 if M �= ⊥ and unpad(M ‖ m) �= ⊥ then

6 if Th[Y ,M] �= ⊥ then z ← Th[Y ,M]

7 else z ←$ Out−1(H(unpad(M ‖ m)))

8 Th[Y ,M] ← z

9 else if Th[Y] �= ⊥ then z ← Th[Y]

10 else z ←$ {0, 1}2k; Th[Y] ← z

11 add (y, z, m) to G.edges

12 add (y, z, m) to Gall.edges

13 return z

Fig. 8. Indifferentiability simulator for the proof of Theorem 8.

Acknowledgments. Bellare and Davis are supported in part by NSF grant CNS-
2154272. We thank the (anonymous) reviewers of Crypto 2022, Asiacrypt 2022 and
CT-RSA 2023 for their valuable comments. We thank Joseph Jaeger for his helpful
comments and discussions about the correctness of chop-MD proofs in the literature.

248 M. Bellare et al.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the fiat-shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 28

2. Backendal, M., Bellare, M., Sorrell, J., Sun, J.: The Fiat-Shamir zoo: relating
the security of different signature variants. In: Gruschka, N. (ed.) NordSec 2018.
LNCS, vol. 11252, pp. 154–170. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03638-6 10

3. Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based PRFs: AMAC and
its multi-user security. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016.
Part I, volume 9665 of LNCS, pp. 566–595. Springer, Heidelberg (2016)

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

5. Bellare, M., Dai, W.: The multi-base discrete logarithm problem: tight reductions
and non-rewinding proofs for schnorr identification and signatures. In: Bhargavan,
K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp.
529–552. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7 24

6. Bellare, M., Davis, H., Di, Z.: Hardening Signature Schemes via Derive-then-
Derandomize: Stronger Security Proofs for EdDSA. Cryptology ePrint Archive,
February 2023. http://eprint.iacr.org

7. Bellare, M., Davis, H., Günther, F.: Separate your domains: NIST PQC KEMs,
oracle cloning and read-only Indifferentiability. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 3–32. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45724-2 1

8. Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: proofs of secu-
rity against impersonation under active and concurrent attacks. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9 11

9. Bellare, M., Poettering, B., Stebila, D.: From identification to signatures, tightly: a
framework and generic transforms. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 435–464. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6 15

10. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93, pp. 62–73. ACM Press, November 1993

11. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

12. Bellare, M., Tackmann, B.: Nonce-based cryptography: retaining security when
randomness fails. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9665, pp. 729–757. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49890-3 28

13. Bernstein, D.J.: Multi-user Schnorr security, revisited. Cryptology ePrint Archive,
Report 2015/996 (2015). https://eprint.iacr.org/2015/996

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/978-3-030-03638-6_10
https://doi.org/10.1007/978-3-030-03638-6_10
https://doi.org/10.1007/978-3-030-65277-7_24
http://eprint.iacr.org
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/3-540-45708-9_11
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-662-49890-3_28
https://doi.org/10.1007/978-3-662-49890-3_28
https://eprint.iacr.org/2015/996

Hardening Signature Schemes 249

14. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. J. Cryptographic Eng. 2(2), 77–89 (2012)

15. Bleichenbacher, D.: A forgery attack on RSA signatures based on implementation
errors in the verification. Rump Session Presentation, Crypto 2006, August 2006

16. Brendel, J., Cremers, C., Jackson, D., Zhao, M.: The provable security of Ed25519:
theory and practice. In: 2021 IEEE Symposium on Security and Privacy, pages
1659–1676. IEEE Computer Society Press, May 2021

17. Chalkias, K., Garillot, F., Nikolaenko, V.: Taming the many EdDSAs. In: van der
Merwe, T., Mitchell, C., Mehrnezhad, M. (eds.) SSR 2020. LNCS, vol. 12529, pp.
67–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64357-7 4

18. Chen, Y., Lombardi, A., Ma, F., Quach, W.: Does Fiat-Shamir require a crypto-
graphic hash function? In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS,
vol. 12828, pp. 334–363. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-84259-8 12

19. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

20. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 39

21. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damg̊ard for practical
applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388.
Springer, Heidelberg (2009)

22. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind schnorr signatures and signed ElGa-
mal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. Part II, volume 12106 of LNCS, pp. 63–95. Springer, Heidel-
berg (2020)

23. Goldreich, O.: Two remarks concerning the Goldwasser-Micali-Rivest signature
scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110.
Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 8

24. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Computi. 17(2), 281–308 (1988)

25. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your PS and
QS: detection of widespread weak keys in network devices. In: Kohno, T. (ed.)
USENIX Security 2012, pp. 205–220. USENIX Association, August 2012

26. IANIX. Things that use Ed25519. https://ianix.com/pub/ed25519-deployment.
html

27. S. Josefsson and I. Liusvaara. Edwards-curve digital signature algorithm (EdDSA).
RFC 8032, January 2017. https://datatracker.ietf.org/doc/html/rfc8032

28. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 2

29. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Ron was wrong, whit is right. Cryptology ePrint Archive, Report 2012/064 (2012).
https://eprint.iacr.org/2012/064

30. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

https://doi.org/10.1007/978-3-030-64357-7_4
https://doi.org/10.1007/978-3-030-84259-8_12
https://doi.org/10.1007/978-3-030-84259-8_12
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/3-540-47721-7_8
https://ianix.com/pub/ed25519-deployment.html
https://ianix.com/pub/ed25519-deployment.html
https://datatracker.ietf.org/doc/html/rfc8032
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://eprint.iacr.org/2012/064

250 M. Bellare et al.

31. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

32. Mittelbach, A., Fischlin, M.: The Theory of Hash Functions and Random Oracles.
Springer, Cham(2021). https://doi.org/10.1007/978-3-030-63287-8

33. M’Räıhi, D., Naccache, D., Pointcheval, D., Vaudenay, S.: Computational alterna-
tives to random number generators. In: Tavares, S., Meijer, H. (eds.) SAC 1998.
LNCS, vol. 1556, pp. 72–80. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48892-8 6

34. National Institute of Standards and Technology. Digital Signature Standard (DSS).
FIPS PUB 186–5, October 2019. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.186-5-draft.pdf

35. Neven, G., Smart, N.P., Warinschi, B.: Hash function requirements for Schnorr
signatures. J. Math. Cryptol. 3(1), 69–87 (2009)

36. Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from
identification. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol. 1462, pp. 354–369.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055741

37. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

38. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 27

39. Rotem, L., Segev, G.: Tighter security for Schnorr identification and signatures:
a high-moment forking lemma for Σ-protocols. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12825, pp. 222–250. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84242-0 9

40. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161–174 (1991)

41. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

42. Yoneyama, K., Miyagawa, S., Ohta, K.: Leaky random oracle. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci. 92(8), 1795–1807 (2009)

https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-030-63287-8
https://doi.org/10.1007/3-540-48892-8_6
https://doi.org/10.1007/3-540-48892-8_6
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5-draft.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5-draft.pdf
https://doi.org/10.1007/BFb0055741
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-030-84242-0_9
https://doi.org/10.1007/978-3-030-84242-0_9

	Hardening Signature Schemes via Derive-then-Derandomize: Stronger Security Proofs for EdDSA
	1 Introduction
	2 Preliminaries
	3 Functor Framework
	4 The Soundness of Derive-then-Derandomize
	5 Security of EdDSA
	6 Indifferentiability of Shrink-MD Class of Functors
	References

