
The Hidden Number Problem with Small
Unknown Multipliers: Cryptanalyzing

MEGA in Six Queries and Other
Applications

Nadia Heninger and Keegan Ryan(B)

University of California, San Diego, USA
nadiah@cs.ucsd.edu, kryan@eng.ucsd.edu

Abstract. In recent work, Backendal, Haller, and Paterson identified
several exploitable vulnerabilities in the cloud storage provider MEGA.
They demonstrated an RSA key recovery attack in which a malicious
server could recover a client’s private RSA key after 512 client login
attempts. We show how to exploit additional information revealed by
MEGA’s protocol vulnerabilities to give an attack that requires only six
client logins to recover the secret key.

Our optimized attack combines several cryptanalytic techniques. In
particular, we formulate and give a solution to a variant of the hidden
number problem with small unknown multipliers, which may be of inde-
pendent interest. We show that our lattice construction for this problem
can be used to give improved results for the implicit factorization prob-
lem of May and Ritzenhofen.

1 Introduction

MEGA is an encrypted cloud storage provider whose protocols are designed to
protect a client’s data and secret key against a malicious server or malicious
entity in the backend infrastructure. In a recent paper [2], Backendal, Haller,
and Paterson detail multiple exploitable flaws in MEGA’s protocols including a
full key recovery attack [2, Section III].

In this attack, a malicious MEGA server uses a victim client as a decryption
oracle to learn information about mauled encryptions of the user’s private RSA
key. In Backendal, Haller, and Paterson’s original work, the attacker learns one
bit of information about the key per query, and thus needs at least 512 client
login attempts to recover enough information to efficiently recover the rest of
the secret RSA key.

We observe that the attacker can learn up to 43 bytes of information
per query, and give an algorithm to efficiently exploit this information for an
improved attack that only requires six login attempts from a victim client. This
brings the attack into a much more realistic range of failed login attempts that
would be tolerated by a human user.
c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 147–176, 2023.
https://doi.org/10.1007/978-3-031-31368-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_6&domain=pdf
http://orcid.org/0000-0002-7904-7295
http://orcid.org/0000-0001-5846-2046
https://doi.org/10.1007/978-3-031-31368-4_6

148 N. Heninger and K. Ryan

Our work does not exploit any new vulnerabilities in MEGA’s protocol;
instead, we show that the risk to unpatched clients was significantly under-
estimated in [2]. MEGA patched the original issue by adding additional payload
validation and emphasized in their blog post about the vulnerabilities [24] that
only clients who have logged in more than 512 times are vulnerable. Their patch
is effective at preventing our attack as well.

1.1 Technical Overview

Our full attack exploits the interplay between the symmetric and asymmetric
cryptographic operations in MEGA’s design and has several stages.

We wish to draw the reader’s attention to one new subproblem that our new
attack needed to solve, which we had not seen articulated before in the litera-
ture. We call this problem the Hidden Number Problem with Small Unknown
Multipliers (HNP-SUM).

Definition 1 (HNP with Small Unknown Multipliers). Given integer
inputs N, ai, T , and E such that for 1 ≤ i ≤ n there exist integers x, ti, ei

satisfying

ai ≡ tix + ei (mod N)
|ti| ≤ T

|ei| ≤ E,

the goal of the adversary is to recover the vector of ti values up to sign and
common divisor.

The reason we only require recovery of the collection of t1, . . . , tn up to sign
and common divisor g is because if t1, . . . , tn, x satisfy the HNP-SUM equations,
then so do −t1, . . . ,−tn,−x and t1/g, . . . , tn/g, gx.

This problem can be viewed as a variant of the hidden number problem in
which the multipliers ti are unknown, but known to be small, or a variant of the
approximate GCD problem [15] with an additional modular reduction step with
an unrelated modulus N .

We develop an efficient lattice-based approach that solves HNP-SUM heuris-
tically. We apply our approach to the cryptanalysis of MEGA, enabling the
attack to succeed in as few as six login attempts with high probability. Our
definition of HNP-SUM also leads to a new approach for solving the implicit
factoring problem, first introduced by May and Ritzenhofen in PKC 2009 [21].

Theorem 1. Let N, ai, T, E, and n define an instance of HNP-SUM as in Def-
inition 1 with ti generated uniformly at random. There exists a heuristic poly-
nomial time algorithm that solves HNP-SUM when

T (n+1)/(n−1)E � N.

Although the exponential approximation factor of polynomial time lattice
reduction algorithms does influence these bounds, the effect is minimal for small
to medium n. A bound with additional terms is explored in Lemma 4.

The Hidden Number Problem with Small Unknown Multipliers 149

Our lattice construction has dimension n+1 and entries of bit length log2 N .
It is based on the observation that t2a1 − t1a2 ≡ t2e1 − t1e2 (mod N) is a small
integer linear combination modulo N that can be found by lattice reduction.
There is a natural way to extend the lattice construction for n > 2, but the
analysis becomes substantially more involved. To successfully recover the ti, we
must first use lattice reduction to find a basis for a dense sublattice of rank
n − 1, and we then use the Hermite Normal Form to calculate the ti from the
sublattice. We analyze the sublattice structure heuristically to derive the bound
in Theorem 1.

We give our detailed analysis in Sect. 3. We first analyze the n = 2 case, and
we then extend our approach for n > 2.

1.2 Applying HNP-SUM to MEGA Cryptanalysis

In the MEGA attack context of [2], the server possesses an encrypted copy of the
user’s RSA private key, which is encrypted using AES-ECB with a key derived
from the user’s password. Encrypting the RSA private key held by the server is
meant to stop a malicious server from decrypting the user’s files while allowing a
user to log in on a new client and decrypt their own files using only a password.

During the login process, the server sends the user the symmetrically
encrypted RSA private key and a challenge ciphertext encrypted to the user’s
RSA public key. The user decrypts the RSA private key using their password,
decrypts the challenge RSA ciphertext with the RSA private key they just
decrypted, and responds to the server with the most significant bytes of the
RSA plaintext. If these bytes match the server’s RSA plaintext, this is intended
to confirm that the user knows the RSA private key and therefore knows the
password.

In the attack of Backendal, Haller, and Paterson, a malicious server uses
a victim client as a decryption oracle to recover the symmetrically wrapped
private RSA key. During the login procedure, the malicious server can send the
user a mauled version of the user’s encrypted private key. Because the private
key is encrypted with ECB mode, it is possible for the attacker to selectively
modify specific fields in the private key, and the victim client uses this maliciously
modified private key to decrypt the server’s RSA ciphertext c. The encrypted
private key is a custom data structure encoding the prime factors p and q of N ,
the decryption exponent d, and the RSA-CRT coefficient u ≡ q−1 (mod p).

The value that the client sends back to the server is

MSB((u(mp − mq)q + mq) mod N)

where mp and mq are (cd mod p) and (cd mod q) respectively.
In our attack, the attacker swaps ciphertext blocks into the location encoding

u, and observes the client’s decrypted values to learn information about u. In
a toy simplification of our attack, consider the case where block swaps result
in u being a single 128-bit block of AES plaintext. This gives an instance of
HNP-SUM; u is the small unknown multiplier, (mp − mq)q is the hidden num-
ber, and the most significant bytes after shifting by mq give the approximation.

150 N. Heninger and K. Ryan

Solving HNP-SUM reveals the value of the unknown multiplier u and thus the
corresponding block of AES-encrypted plaintext, providing the attacker with
an AES decryption oracle that can be used to decrypt arbitrary blocks of the
symmetrically encrypted RSA private key, eventually revealing the entire key.

In the actual attack, the attacker is significantly more constrained, and we
detail the multiple steps that make it possible to perform the block swapping
attack and obtain HNP-SUM samples that are sufficiently bounded and recov-
erable. We detail a fast attack that recovers the victim’s RSA private key with
16 login attempts in a few seconds with success rate 93.9% and a small attack
that recovers the victim’s key with 6 login attempts in 4.5 h with success rate
97.7%.

Disclosure. The details of the attack of Backendal, Haller, and Paterson and
associated patches were made public June 21, 2022. We notified MEGA of the
improved cryptanalysis on July 13, 2022, which they acknowledged immediately
after in an update to their blog post. In response to our improved cryptanalysis,
they have updated their guidance to acknowledge that the potential exposure
applies to “the vast majority of users” and underscore the importance of installing
the patch.

1.3 Applying HNP-SUM to Implicit Factoring

In the implicit factoring problem [21], the adversary is given k (unbalanced) RSA
moduli of the form Ni = piqi, where the pi share some bits in common. The bit
length of qi is α, and t is the number of bits shared by the pi. Depending on the
variant of the implicit factoring problem, these t bits may be least significant
bits, most significant bits, a mix of both, or a block of t contiguous bits in the
middle of pi [27].

All four cases can be reduced to instances of HNP-SUM. When the t middle
bits at offset l are shared, we have pi = 2l+tp̃′

i + 2lpmid + p̃i, giving

Ni ≡ qi(2lpmid) + (qip̃i) (mod 2l+t).

This is an instance of HNP-SUM with small unknown multiplier qi, hidden num-
ber 2lpmid, and approximation Ni mod 2l+t. Solving HNP-SUM reveals qi, which
reveals the factorization of the Ni.

Our reduction to HNP-SUM gives a new lattice-based approach to solving
the implicit factoring problem. We find that the case of shared middle bits can
be heuristically solved when t ≥ 2 k

k−1α and the other three cases can be solved
when t ≥ k

k−1α. For the shared middle bit case, our construction is significantly
more efficient than the existing literature, since it requires a lattice dimension of
k+1, where prior work used a lattice of dimension Θ(k2). Our bounds match the
heuristic bounds of existing non-Coppersmith lattice-based solution methods [9,
21], but do not improve the bounds of the Coppersmith-based approaches [20,25,
27–29]. In addition, our lattice approach is the first non-Coppersmith approach
to our knowledge that solves the mixed least significant and most significant bits
case.

The Hidden Number Problem with Small Unknown Multipliers 151

2 Background

2.1 Lattices

Our algorithms make use of integer lattices in multiple ways. Given a collection
of vectors B ⊂ Z

m, the lattice L(B) = {∑�bi∈B ci
�bi | ci ∈ Z} is the set of integer

linear combinations of vectors in B. The dimension of the lattice is m. The rank
d of the lattice is the rank of the matrix B. In this work, we represent basis
vectors as the rows of the matrix B ∈ Z

d×m. A lattice does not have a unique
basis, but the lattice determinant, calculated as det(L(B)) =

√
det(BBT) is an

invariant of the lattice.
The Hermite Normal Form (HNF) of a lattice L is a unique representation

for a basis for L. The HNF is upper triangular, the elements along the diago-
nal, known as the pivots, are positive, and elements above pivots are positive
and bounded above by the pivot. Given any basis B, it is possible to compute
HNF(L(B)) in polynomial time [18].

The successive minima λi(L(B)) of a lattice are defined as the lengths of
the i shortest linearly independent vectors in L(B). The Gaussian Heuristic [10]
predicts that, for a random lattice, the successive minima approximate

λi(L(B)) ≈
√

d

2πe
(det(L(B)))1/d.

While it is trivial to construct lattices that do not follow the Gaussian Heuristic,
it is frequently a useful tool for predicting the successive minima of lattices.

Lattice reduction algorithms input a basis B and output a basis B′ for the
same lattice with vectors satisfying some reducedness definition, typically ensur-
ing that the output basis vectors are bounded and closer to orthogonal. The LLL
algorithm [19] runs in polynomial time and returns [22, Theorem 9] a basis B′

satisfying

‖�b′
1‖2 ≤ α(d−1)/4 det(L(B))1/d

‖�b′
i‖2 ≤ α(d−1)/2λi(L(B))

for some α1/4 > 1.07. That is, the lengths of the vectors are exponentially close
to their optimal values. For random lattices, LLL lattice reduction achieves an
even better approximation factor α1/4 ≈ 1.02 [23], so in typical cryptographic
applications the approximation is very close or exact for small dimension lattices.

A surprisingly large number of cryptanalysis problems can be expressed in
terms of finding short vectors in a lattice, and lattice reduction is a powerful tool
for solving these problems. One example is an approach by Coppersmith [7] and
later reinterpreted by Howgrave-Graham [14] to find small solutions to polyno-
mials modulo integers. Coppersmith techniques are powerful, but Coppersmith
lattices frequently have large dimension and large entries, so lattice reduction
is expensive. In the case of multivariate polynomials, Coppersmith’s method
involves additional heuristic assumptions and a sometimes expensive Gröbner
basis calculation [3,17].

152 N. Heninger and K. Ryan

2.2 The Hidden Number Problem

The Hidden Number Problem (HNP), introduced by Boneh and Venkatesan [6],
poses the problem of recovering a hidden integer x from knowledge of a modulus
N , multipliers ti, and approximations ai = tix + ei (mod N). In most presen-
tations, these approximations ai are given by an oracle that outputs the most
significant bits of tix (mod N), but we make the error term ei more explicit in
our generalization.

Boneh and Venkatesan gave an efficient lattice-based algorithm to solve this
problem, and Bleichenbacher gave a Fourier analysis-based approach [8]. It is also
possible to recover x from knowledge of the least significant bits of tix (mod N)
or some combination of the most and least significant bits [13].

A number of variants of HNP have been proposed in the literature. The
Extended Hidden Number Problem (EHNP) considers the case when there are
multiple contiguous blocks of unknown bits in tix (mod N). This was defined by
Hlaváč and Rosa [12] who also gave a lattice-based algorithm to solve it. EHNP is
used as part of our cryptanalysis of MEGA and is discussed further in Sect. 4.4.
The Hidden Number Problem with Chosen Multipliers (HNP-CM) considers
ti chosen adversarially instead of sampled at random [5], and can be solved
without using lattice techniques via the ACGS algorithm [1]. In the Modular
Inversion Hidden Number Problem (MIHNP), one wishes to recover a hidden
number x from ti and the most significant bits of (x + ti)−1 (mod N), and it
can be solved via Coppersmith techniques [4]. The Hidden Number Problem with
Hidden Multipliers (HNP-HM) recovers x from knowledge of the most significant
bits of x, ti, and tix (mod N), and it can be solved using lattice techniques [16].

Our definition of HNP-SUM is similar to HNP-HM, but there are differences
that prevent us from applying HNP-HM. First, HNP-HM requires uniformly
distributed ti, which our small unknown multipliers do not satisfy. HNP-HM
also assumes the same number of bits of x and tix (mod N) are known, whereas
in our case the bounds T and E may not be equal. Finally, our goal in HNP-SUM
is to recover the multipliers ti and not the hidden number x. This is because for
many parameters, the hidden number may not be unique: if x satisfies ai ≈ tix
(mod N), then it is likely x + 1 satisfies ai ≈ ti(x + 1) (mod N) as well.

3 Solving HNP-SUM

3.1 Solving HNP-SUM with n = 2

Before we solve HNP-SUM in the general case, we consider the case where n = 2.
We are given N, a1, a2, T, and E satisfying

a1 ≡ t1x + e1 (mod N)
a2 ≡ t2x + e2 (mod N)

|t1|, |t2| ≤ T

|e1|, |e2| ≤ E.

The Hidden Number Problem with Small Unknown Multipliers 153

First we observe that the following linear expression is small modulo N . This
is analogous to an observation by Faugère et al. [9] with an additional modular
reduction in our setting.

t2a1 − t1a2 ≡ t2(t1x + e1) − t1(t2x + e2) (mod N)
≡ t2e1 − t1e2 (mod N)

Since both the ti and ei are bounded, this defines a linear system ya1 + za2

(mod N) that has a small output t2e1 − t1e2 when evaluated at a small point
(t2,−t1). In order to find this small solution, we can look for a small vector in
the lattice spanned by the rows of the following basis:

B =

⎡

⎣
E 0 a1

0 E a2

0 0 N

⎤

⎦

The vector �v = (Et2,−Et1, t1e2 − t2e1) is small and is contained in this lattice,
so we might hope that lattice reduction will find it.

However, there might be a small obstruction if t1 and t2 are not relatively
prime. Note that if t1 and t2 share a common factor g, then the vector �v/g =
(Et2/g,−Et1/g, t1e2/g − t2e1/g) is also in the lattice, and it is shorter than �v.
We observe experimentally that lattice reduction typically outputs one of the
vectors ±�v/g. For our definition of HNP-SUM, we only require finding ti up to
sign and common factor, but we the issue of common factors also appears for
n > 2 and requires more analysis to work around.

Theorem 2. HNP-SUM defined as in Definition 1 with two samples is solvable
in heuristic polynomial time when

T 3E � N.

Proof. The Gaussian Heuristic predicts that λ1(L(B)) ≈ (E2N)1/3, and we also
have λ1(L(B)) ≤ ‖�v/g‖2 ≈ ET . If T 3E � N , then ET � (E2N)1/3 and the
Gaussian Heuristic is invalid. Instead of behaving like a random lattice, L(B)
contains an unexpectedly short vector, which is heuristically the shortest vector
in the lattice. If �v/g is the shortest vector by some small constant factor, then
the LLL algorithm applied to B finds ±�v/g, which reveals (t1, t2) up to sign and
common factor.

3.2 Construction for n > 2

The approach for solving HNP-SUM with n > 2 is a natural extension of the
previous section. Inspired by the construction for n = 2, we study the lattice
spanned by the rows of the basis matrix

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

E a1

E a2

. . .
...

E an

N

⎤

⎥
⎥
⎥
⎥
⎥
⎦

154 N. Heninger and K. Ryan

where all unspecified entries are 0. The rank of the lattice is n + 1 and the
determinant is EnN . In the n = 2 case, lattice reduction can be used to find
t2,−t1 such that t2a1 − t1a2 ≡ t2e1 − t1e2 (mod N) is small. For n > 2, we have
many such small linear combinations from each pair (ai, aj) and combinations
of these pairs.

Unlike the n = 2 case, reducing this lattice does not result in a single short
vector. Instead, we empirically observe that lattice reduction returns n − 1 lin-
early independent short vectors of the same length, corresponding to a dense
sublattice of rank n − 1. This sublattice is related to the (ti, tj) pairs and must
be postprocessed to recover the individual unknown multipliers ti.

More concretely, we consider the sublattice L(Bsub) containing the set of
(linearly dependent) short vectors

�vi,j = tj�bi/ gcd(ti, tj) + ti�bj/ gcd(ti, tj) − ki,j
�bn+1

Bsub = {�vi,j | i, j ∈ {1, . . . , n}, i 	= j}

where �bi is the ith row vector of B. Vector �bn+1 is included to achieve modular
reduction by N , and ki,j is set so the last entry of �vi,j is (tjei − tiej)/ gcd(ti, tj).
With this definition, Bsub contains the short vectors

�vi,j = (0, . . . , Etj , . . . ,−Eti, . . . , 0, tjei − tiej)/ gcd(ti, tj).

Clearly L(Bsub) is a sublattice of L(B), but it is not obvious what the rank
or determinant of L(Bsub) is or how to recover the ti from knowledge of this
particular sublattice.

Section 3.3 explores an alternative basis H for this sublattice that gives
insight into its structure. Section 3.4 shows how to recover the unknown mul-
tipliers from a basis of the sublattice by computing the Hermite Normal Form
of the basis. Section 3.5 bounds the determinant of this sublattice, and finally
Sect. 3.6 gives heuristic bounds for when lattice reduction can be used to find a
basis of this sublattice.

3.3 Alternative Basis for the Sublattice

We begin by constructing matrix H ∈ Z
n−1×n+1, which we show is a basis for

L(Bsub). Although H is not the HNF of the lattice, it is closely related. We
define the rows of H by

�hi =

{∑n
j=i+1 ui,j�vi,j for i < n − 1

�vi,i+1 for i = n − 1

where ui,j are integer values found by the extended GCD algorithm such that
∑n

j=i+1 ui,j
tj

gcd(ti,tj)
= gcd(ti+1

gcd(ti,ti+1)
, . . . , tn

gcd(ti,tn)
) = gcd(ti+1,...,tn)

gcd(ti,...,tn)
= g̃i. This

gives H the structure

The Hidden Number Problem with Small Unknown Multipliers 155

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

g̃1E ∗ . . . ∗ ∗ ∗ ∗
g̃2E . . . ∗ ∗ ∗ ∗

. . .
...

...
...

...
g̃n−2E ∗ ∗ ∗

tnE
gcd(tn−1,tn)

−tn−1E
gcd(tn−1,tn)

tnen−1−tn−1en

gcd(tn−1,tn)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

where the entries below the diagonal are zero.

Lemma 1. H is a basis for the sublattice L(Bsub). That is, L(Bsub) = L(H).

The construction of H makes it clear that �hi ∈ L(Bsub), and it is straightfor-
ward but tedious to show inclusion in the other direction. We include a proof of
Lemma 1 in the full version of this paper [26].

Like the HNF, H is upper triangular, and the elements along the diagonal of
H reveal the pivots of the HNF. Although the entries above the diagonal may
not be in the necessary range for the HNF, that is easily fixed by doing simple
row operations that do not modify the values along the diagonal.

3.4 Recovering Unknown Multipliers

At this point, we assume that we have applied a lattice reduction algorithm to
B and have obtained a basis B′

sub for L(Bsub). We compute H ′ = HNF(B′
sub) =

HNF(H) in polynomial time and learn the pivots g̃1E, . . . , g̃n−2E as well as the
values ±tnE

gcd(tn−1,tn)
, ∓tn−1E

gcd(tn−1,tn)
.

Setting G = gcd(t1, . . . , tn), the definition of g̃i shows that the product of the
these are

∏n−2
i=1 g̃i =

gcd(tn−1,tn)
G , so knowledge of the HNF allows us to compute(∏n−2

i=1 g̃i

)
±tn

gcd(tn−1,tn)
= ±tn/G. Similarly, we can compute ∓tn−1/G, revealing

the pair (tn−1, tn) up to sign and division by G.
Note that the ordering of the samples ai is arbitrary, and by reordering and

repeating the process, we can learn any pair (ti, tj) up to sign and division
by G. Rather than performing multiple lattice reductions, we can just reorder
the columns of B′

sub and recompute the HNF for each (ti, tj) pair we wish to
recover. By recovering (t1, tn), (t2, tn), . . . , (tn−1, tn) up to sign and division by
G, we learn �t′ = ±(t1, t2, . . . , tn)/G, which is �t up to sign and division. This is a
valid solution for HNP-SUM.

3.5 Sublattice Determinant

The previous sections show the existence of a sublattice L(Bsub) of rank n −
1. Experimentally, we observe that lattice reduction finds this sublattice. Our
goal is to heuristically understand the properties of the sublattice in order to
characterize when we expect our lattice attack to succeed. We make the following
heuristic observation by calculating the sublattice basis H for random instances
of HNP-SUM and computing the determinant.

156 N. Heninger and K. Ryan

Heuristic 1. Let N, ai, T, E, ti, ei, x define an instance of HNP-SUM with x, ti, ei

drawn uniformly at random from their respective ranges. Let L(Bsub) be the
sublattice defined in Sect. 3.3. Then experimentally

det(L(Bsub)) ≈ 0.35nEn−1T.

While the heuristic suffices to predict the behavior of our method on random
instances of HNP-SUM, we can also prove a weaker version of our heuristic for a
restricted class of HNP-SUM instances. Note that although this analytic bound
is slightly worse, it has the same structure as our heuristic, providing further
evidence for the claims of our heuristic approach.

Lemma 2. Let the rows of H ∈ Z
n−1×n+1 define a basis for the sublattice

L(Bsub) associated with an instance (N, ai, T, E) of HNP-SUM where the two
values of ti with the largest magnitude are coprime.

The determinant of the sublattice is bounded:

det(L(Bsub)) < n(2E)n−1T.

The proof for this lemma considers the special structure of H which arises
from the coprimality of the two large ti and is included in the full version [26].

3.6 Sublattice Recovery via Lattice Reduction

In the previous sections, we demonstrated the existence of a sublattice L(Bsub)
of rank n − 1 with heuristic determinant approximately nEn−1T . It remains
to establish the conditions under which lattice reduction finds this sublattice.
LLL lattice reduction on B finds short vectors that approximate the successive
minima λi of L(B). To show that lattice reduction finds the sublattice of rank
n − 1, we first estimate the successive minima, and then we argue that the
first n − 1 vectors found by lattice reduction must belong to the sublattice and
therefore form a basis.

Since the determinant of L(B) depends on N and E and there exists a dense
sublattice with determinant that depends on T and E, the Gaussian Heuristic
does not hold in general for our lattice. However, we make the following heuristic
assumption which leads to accurate bounds for our method.

Heuristic 2. Let B be the basis of rank n + 1 for an instance of HNP-SUM.
Let L(Bsub) be the sublattice specified in Sect. 3.2 and let L(B⊥) be the rank-2
lattice formed by projecting L(B) orthogonally to the span of Bsub. We assume
the successive minima of L(Bsub) and the successive minima of L(B⊥) each
follow the Gaussian Heuristic.

We can use this heuristic to infer the successive minima of L(B). A proof of
Lemma 3 is in the full version [26].

The Hidden Number Problem with Small Unknown Multipliers 157

Lemma 3. Let N,n, T,E be parameters for an instance of HNP-SUM where
n2n/(n−1)ET (n+1)/(n−1) � N . Let B the constructed lattice basis, and assume
Heuristic 1 and Heuristic 2 hold. Then the successive minima of L(B) follow

λi(L(B)) ≈
{

n(n+1)/(2n−2)ET 1/(n−1) 1 ≤ i ≤ n − 1
√

NE
nT n ≤ i ≤ n + 1

up to a small constant factor, and the vectors corresponding to the first n − 1
minima are in L(Bsub).

If the rank of the lattice is small enough that we can recover the shortest
vectors exactly, then this reveals a basis for L(Bsub), and Sect. 3.4 shows how
to recover the unknown multipliers. If the rank of the lattice is too large, we
can use LLL lattice reduction to find a basis for the sublattice. Proving this is
straightforward given Lemma 3.

Lemma 4. Let N,n, T,E be parameters for an instance of HNP-SUM where
αnn2n/(n−1)ET (n+1)/(n−1) � N for some fixed approximation factor α > 4/3,
and assume Heuristics 1 and 2 hold. Let L(Bsub) be the sublattice as before. It
is possible to recover a basis for L(Bsub) in polynomial time.

For small to medium values of n, the LLL approximation factor α and the
term n2n/(n−1) change the exact bounds by only a few bits, so for most cases in
practice, it suffices to use the heuristic ET (n+1)/(n−1) � N . Combining Lemma 4
with the method in Sect. 3.4 leads to a proof of Theorem 1.

3.7 Experimental Evaluation

We implemented our algorithm for solving HNP-SUM using Python and Sage-
Math. We use SageMath to compute the Hermite Normal Form and a custom
C++ implementation to perform lattice reduction. We experimentally measured
the success rate of our algorithm for various parameters. We randomly generated
2048-bit moduli and, depending on our choice of n, E, and T , we generated ti
and ei uniformly at random to construct the HNP-SUM samples ai. Our exper-
iments reduced lattices of dimension up to 31 and entries of size 2048 bits, and
lattice reduction took under a half second to complete on a single thread of an
Intel Xeon E5-2699A processor running at 2.4GHz. Our results in Fig. 1 show
that our predicted bound T (n+1)/(n−1)E � N is accurate to within a few bits in
practice.

4 Application: Cryptanalyzing MEGA

We present two novel and overlapping key recovery attacks on MEGA. The first
(fast) attack requires as few as 16 login attempts (with 17 login attempts on
average) and takes only a few seconds to complete. The second (small) attack
requires only 6 login attempts to succeed with 98% probability, but it is more

158 N. Heninger and K. Ryan

Fig. 1. Success Rate of our HNP-SUM method. We generated random instances
of HNP-SUM with N ≈ 22048, n ∈ {2, 5, 30}, and T ∈ {2128, 21024, 21260}. We set E to
be close to the threshold value predicted by our bound T (n+1)/(n−1)E � N , skipping
the cases n = 2, T ≥ 21024 for which no E satisfies the bound. Each data point is
averaged from 100 sample instances. In all cases, the actual threshold is within a small
factor of the predicted threshold, showing that our heuristic assumptions are valid. We
see that the threshold is slightly higher for larger n, suggesting that the bounds likely
have a secondary dependence on n as well.

computationally intensive. This latter attack can be performed in 4.5 h on an
88-core machine, but we include both because the former can be easily verified
and includes some interesting additional analysis steps. Both of these attacks
proceed in roughly the same series of stages with only minor variations in how
the stage is completed in both the fast attack and the small attack. While solving
HNP-SUM is a stage in both attacks, a number of additional stages are needed to
preprocess and postprocess the leakage from the client to get it into the correct
form. As a motivating application of HNP-SUM, we describe the relevant details
of MEGA’s protocol and the sequence of stages that allows for more efficient key
recovery.

In MEGA’s login protocol, the server sends the client an RSA private key that
is encrypted using AES in ECB mode. The client decrypts the RSA private key,
uses this RSA private key to decrypt a session ID that the server has encrypted
to the RSA public key, and sends the result to the server.

The attack of Backendal, Haller, and Paterson modifies the ECB-encrypted
ciphertext of the RSA private key and the encrypted session ID to obtain one
bit of information about the secret key per login. However, the client is using the
modified secret key to send 43 contiguous bytes of information from the result
of the RSA decryption to the server. In our attack, the adversary swaps blocks
in the ECB-encrypted wrapped RSA key before sending it to the client and then
analyzes the resulting message from the client to obtain more information about
the RSA secret key per victim client login attempt.

The Hidden Number Problem with Small Unknown Multipliers 159

In the first stage of analysis, the attacker represents the 43-byte leakage from
the client in terms of the unknown AES plaintext blocks. Second, these algebraic
representations are manipulated so that the attacker learns information about
the most significant bytes (MSBs) of an unknown value, not just about a con-
tiguous subsequence of bytes. In the fast attack, this is done using an approach
from solutions to the Extended Hidden Number Problem [12], and in the small
attack, this is done by brute forcing unknown most significant bytes. Third,
in the fast attack, these approximations of the MSBs are refined by combining
approximations together so more MSBs are known. This is why the fast attack
requires more samples than the small attack. Fourth, the (refined) approxima-
tions are used to solve for the value of unknown multipliers in the algebraic
representation via HNP-SUM. These unknown multipliers correspond to differ-
ences between plaintext blocks in the encoded RSA private key. Fifth, we use
the RSA equations to brute force a block of plaintext bytes of the RSA private
exponent in the encoded key, and the plaintext differences reveal the values of
other plaintext blocks. Finally, the plaintext blocks containing the MSBs of one
of the RSA factors are analyzed in a Coppersmith attack [7] to recover the full
factorization and private key.

Section 4.3 through 4.8 discuss each of the stages in turn. Section 4.9 analyzes
the overall complexity of the attack.

4.1 Attack Context for MEGA

When a MEGA user attempts to log in for the first time on a new client, the
client is only in possession of an AES secret key derived from the user’s password.
To function properly, the client requires a copy of the user’s RSA private key.
The server possesses the user’s RSA public key and a copy of the user’s RSA
private key encrypted using the AES key in ECB mode, so in theory the private
key is hidden from the server, but the client can obtain the private RSA key by
decrypting the encrypted private key from the server with the password-derived
AES secret key. It is the malicious server’s goal is to recover the user’s private
RSA key.

During the login process, the server creates a 43-byte session identifier (SID),
which it encrypts using the RSA public key and sends to the client alongside the
wrapped private key. The client uses the AES key to unwrap the RSA private key,
then uses the parameters in the unwrapped key to decrypt the RSA ciphertext
and retrieve the SID. The client then sends the retrieved SID to the server.
The malicious server wishes to use the SID value sent from the client to infer
information about the parameters in the unwrapped private key.

Several of the exact implementation details are relevant for our improved
attack, so we recount them here. The remaining details can be found in Back-
endal, Haller, and Paterson’s paper [2, Section II]. We denote the RSA public
key by (N, e), where the factors of modulus N are p and q. The public RSA
exponent is e and the private exponent is d. The public RSA exponent is set

160 N. Heninger and K. Ryan

by the client; the web client1 uses e = 257, and the SDK2 uses e = 17. MEGA
clients use RSA-CRT for decryption, so let u ← q−1 mod p be the coefficient
used during CRT operations.

The private key is encoded as

skencoded
share ← �(q) | q | �(p) | p | �(d) | d | �(u) | u | P.

l encodes the bit length of different values as a 2-byte integer, all integers are
stored in big-endian format, and P is an 8-byte padding value unknown to the
adversary. We wish to highlight that q is 1024 bits in length, so �(q) is 0x0400,
and since the secret values are of predictable size, they appear at predictable
offsets within the plaintext. We also highlight that the private key encodes the
full private exponent d and does not include the private exponents dp, dq that
are frequently stored for use in RSA-CRT decryption. Finally, we note that due
to the length fields, the 1024-bit u value spans 9 AES plaintext blocks, and the
first and last of those contain the length and padding fields respectively. As in
the original attack, we constrain our attacker to not alter this metadata so that
the decrypted RSA key maintains correct length encodings and padding.

This encoding of the private key is 656 bytes, or 41 AES blocks. The encoded
private key is encrypted using AES in ECB mode, which means that each 16-byte
plaintext block is encrypted independently. That is,

ct1 | ct2 | · · · | ct41 = EAES(pt1) | EAES(pt2) | · · · | EAES(pt41).

Decryption of the encrypted private key also processes 16-byte blocks indepen-
dently, enabling malleability attacks where the malicious server alters individual
blocks of ciphertext to alter the corresponding blocks of plaintext in the private
key encoding.

When the honest server constructs the RSA plaintext with the 43-byte SID, it
places the SID in bytes 3-45 of the 256-byte RSA plaintext m. Prior to patching,
clients extract these bytes from the RSA decryption output without checking
the validity of the remainder of the decryption output. However, there is special
behavior in the client’s extraction function that checks if byte 2 is nonzero, and
if this is the case it extracts bytes 2-44. This detail has no consequence for the
RSA key extraction attack in [2], but it is a necessary aspect of our small attack.
If we assume the output bytes of the RSA decryption function are uniformly
distributed, clients have probability 255/256 of returning SID ← m[2 : 44]. We
temporarily set this detail aside and assume that all SIDs returned by the client
are composed of these bytes, and we revisit it in Sect. 4.9.

MEGA clients use Garner’s formula [11] to perform RSA-CRT decryption,
the process of decrypting an RSA ciphertext c to message m. These equations,
as well as the SID extraction step, are detailed below.

1 https://github.com/meganz/webclient/blob/9fca1d0b7d8a65b9d483a10e798f1
f67d1fb8f1e/js/crypto.js#L207.

2 https://github.com/meganz/sdk/blob/849aea4d49e2bf24e06d1a3451823e02abd
76f39/src/crypto/cryptopp.cpp#L798.

https://github.com/meganz/webclient/blob/9fca1d0b7d8a65b9d483a10e798f1f67d1fb8f1e/js/crypto.js#L207
https://github.com/meganz/webclient/blob/9fca1d0b7d8a65b9d483a10e798f1f67d1fb8f1e/js/crypto.js#L207
https://github.com/meganz/sdk/blob/849aea4d49e2bf24e06d1a3451823e02abd76f39/src/crypto/cryptopp.cpp#L798
https://github.com/meganz/sdk/blob/849aea4d49e2bf24e06d1a3451823e02abd76f39/src/crypto/cryptopp.cpp#L798

The Hidden Number Problem with Small Unknown Multipliers 161

mp ← cd mod (p−1) mod p

mq ← cd mod (q−1) mod q

m ← ((mp − mq)u mod p)q + mq

SID ← m[2 : 44]

4.2 Original MEGA Attack of Backendal, Haller, and Paterson

In the original attack, the adversary alters ciphertext block ct40, which is the
last ciphertext block corresponding to only bytes of u, and no length fields or
padding bytes. The attacker sends this altered wrapped key and RSA ciphertext
qe
guess mod N to the client. The client decrypts and decodes the wrapped key

to obtain private key (q, p, d, u′, P) where u′ 	= u is not the correct value of
q−1 mod p to use during RSA-CRT decryption.

If qguess < q, then mp ≡ mq (mod p), so (mp − mq)u = 0 and m = mq < q.
Thus all SID bytes are 0. If qguess ≥ q, then mp 	≡ mq (mod p), so h 	= 0 and m >
q. Thus the SID bytes are nonzero with high probability. The attack therefore
uses whether SID is zero or nonzero as an oracle for whether the attacker-chosen
qguess is smaller or larger than the secret q. The adversary does a binary search
on the value of q until sufficiently many most significant bits of q are known.

Once enough of the most significant bits of q are known, the attacker then
uses a cryptanalytic technique by Coppersmith [7] to recover the least significant
bits of q, and thus obtain the full factorization of N . Asymptotically, this attack
recovers the factorization of N in polynomial time once the attacker knows the
most significant half of bits of q. In the context of MEGA, that is 512 bits, which
requires 512 login attempts to obtain. In practice, this attack can be prohibitively
slow at the asymptotic limit, and implementations of Coppersmith’s method
often use additional most significant bits, which makes the implementation faster
and more understandable. The proof-of-concept code associated with the original
attack uses 683 most significant bits and therefore requires 683 login attempts.

We observe that although the client provides the adversary with 344 bits
of SID per login attempt, this original attack only uses this data to refine the
knowledge of the private key by a single bit. It is natural to wonder if the client’s
responses can be exploited in a more sample-efficient way, recovering the same
private key with fewer login attempts. This is what our new attacks accomplish.

4.3 Expressing Leakage Algebraically

We begin our cryptanalysis by demonstrating how to algebraically express the
information returned during a login attempt. As in the original attack, the adver-
sary alters ciphertext blocks corresponding to the value of u, and therefore the
client uses the altered u′ value when performing decryption, but the remaining
private key values are unaltered. In our attack, the adversary also picks an RSA
ciphertext c at random, and reuses the same c for each login attempt. Both the
(modified) wrapped key and RSA ciphertext are sent to the client during a login
attempt.

162 N. Heninger and K. Ryan

By combining Garner’s formula for RSA decryption with the extraction of
the SID s′ with altered value u′, this gives the congruence

(mp − mq)u′q + mq ≡ e′
12

b1 + s′2b2 + 2b2−1 + e′
2 (mod N).

The left hand side expresses the output of the decryption function in terms of its
input, and the right hand side expresses the output in terms of the known SID
bytes s′ = m′[2 : 44] and the other unknown bytes e′

1 = m′[1] and e′
2 = m′[45 :

256] − 2b2−1. The 2b2−1 term is present so that unknown e′
2 may be positive or

negative and so |e′
2| is minimized.

We can construct a similar equation using altered value u′′ and SID s′′.

(mp − mq)u′′q + mq ≡ e′′
12

b1 + s′′2b2 + 2b2−1 + e′′
2 (mod N).

Subtracting these two congruences, we have

(u′ − u′′)(mp − mq)q ≡ (e′
1 − e′′

1)2
b1 + (s′ − s′′)2b2 + (e′

2 − e′′
2) (mod N).

The adversary can give extra structure to (u′ −u′′) by carefully manipulating
the AES-encrypted key. The value u used by the client during RSA decryption
is decoded from the nine AES-decrypted blocks DAES(ct33 | ct34 | · · · | ct41).
Plaintext blocks pt33 and pt41 also include some bytes of d, the encoding of
�(u), and padding P . Now observe that if the attacker swaps out some of these
ciphertext blocks encrypting u with ciphertext blocks cti, ctj of their choosing,
the decrypted and decoded value of u used by the client will contain bits from
pti and ptj . Consider what happens when the client decodes u′ and u′′ from the
following two ciphertexts, which differ in the second-to-last block:

u′ = Decode[DAES(ct33) | DAES(cti) | · · · | DAES(cti) | DAES(cti) | DAES(ct41)]
u′′ = Decode[DAES(ct33) | DAES(cti) | · · · | DAES(cti) | DAES(ctj) | DAES(ct41)],

After decryption, all of the plaintext blocks that contain only bits of u are
replaced with pti, except for one in the second plaintext which is replaced with
ptj . The plaintext blocks that contain length encoding data or padding are not
modified, so validation of the plaintext succeeds. With this construction, (u′−u′′)
has special structure, because the only difference between the two is in block 40,
which corresponds to bytes 105 through 120 of the encoded u. Therefore,

u′ − u′′ = (pti − ptj)264.

For simplicity, in the future we will denote δi,j = pti − ptj , and observe that
|δi,j | < 2128.

We will also consider u′ − u′′′ when u′′′ was decoded from the ciphertext

u′′′ = Decode[DAES(ct33) | DAES(cti) | · · · | DAES(ctj) | DAES(cti) | DAES(ct41)]

which differs only in block 39. By the same logic as before,

u′ − u′′′ = (pti − ptj)2196 = 2128δi,j264.

This generalizes so that the adversary can construct values of u with difference
δi,j2128t+64 for t ∈ {0, 1, . . . , 6}, corresponding to the 7 modifiable ciphertext
blocks that contain only bytes of u and no padding bytes.

The Hidden Number Problem with Small Unknown Multipliers 163

4.4 Obtaining Most Significant Bytes

For any AES ciphertext block indices i and j, Sect. 4.3 gives us the capability to
construct an equation involving the differences of the corresponding plaintexts
δi,j = pti − ptj . Specifically, we have

δi,j2128t+64(mp − mq)q ≡ (e′
1 − e′′

1)2
b1 + (s′ − s′′)2b2 + (e′

2 − e′′
2) (mod N).

In this equation, the adversary knows (s′ −s′′) because it is the difference of two
SIDs, and the adversary also knows t, b1, b2, and N . The adversary does not
know 264(mp − mq)q mod N , but this value is constant throughout the attack.
The adversary does not know (e′

1 −e′′
1) or (e′

2 −e′′
2), but knows they are bounded

by |e′
1 − e′′

1 | ≤ E1 = 28 and |e′
2 − e′′

2 | ≤ E2 = 2b2 .
The goal of this phase is to learn the most significant bytes of some algebraic

expression. This is a generally useful goal because it allows us to represent the
error in the approximation as some bounded variable, and it is frequently possible
to efficiently solve the problem of recovering bounded variables using lattice
methods.

We now detail two approaches for obtaining the most significant bytes of this
representation.

Brute Force. Because e′
1 and e′′

1 are both single-byte values, e′
1 − e′′

1 takes
on one of 511 values. We can brute force these values and expect to eventually
guess the correct value. Therefore, assuming we have guessed correctly, we can
compute a = (e′

1 − e′′
1)2

b1 + (s′ − s′′)2b2 and write

2128tδi,jx ≡ a − ε (mod N)

where x = 264(mp − mq)q mod N is unknown but constant throughout the
attack. This is beginning to resemble a sample for an instance of HNP-SUM
with unknown multiplier 2128tδi,j and error ε which is unknown and bounded
by |ε| ≤ 2b2 = 21696.

Extended Hidden Number Problem. We observe that the problem of con-
verting a sample with a known block of contiguous bytes into a sample with
known most significant bytes (MSBs) resembles the Extended Hidden Number
Problem (EHNP) [12], specifically the Hidden Number Problem with two holes
(HNP-2H). To obtain the MSBs, we search for a known multiplier C which simul-
taneously makes the unknown terms (e′

1−e′′
1)C2b1 mod N and (e′

2−e′′
2)C mod N

small. If we assume |e′
1 − e′′

1 | < E1 and |e′
2 − e′′

2 | < E2, such a value of C can be
found by reducing the lattice defined by the rows of the basis matrix B =

[
E1N 0
E12b1 E2

]

.

164 N. Heninger and K. Ryan

Lattice reduction finds the shortest vector v = (E1(C2b
1 mod N), E2C) with

‖v‖2 ≤ 2√
3
det B1/2 = 2√

3

√
E1E2N . Thus

|(e′
1 − e′′

1)C2b1 + (e′
2 − e′′

2)C mod N |
≤|e′

1 − e′′
1 ||C2b1 mod N | + |e′

2 − e′′
2 ||C|

≤E1|C2b1 mod N | + E2|C|
≤‖v‖2 + ‖v‖2
≤ 4√

3

√
E1E2N.

We set C = v2/E2 and note that C does not depend on information leaked from
the client, and thus can be reused for every sample.

We therefore let x = C(mp − mq)q mod N , a = C(s′ − s′′)2b2 , and ε =
−(e′

1 − e′′
1)C2b1 − (e′

2 − e′′
2)C mod N . This yields

2128tδi,jx ≡ a − ε (mod N).

This also resembles a sample for an instance of HNP-SUM with unknown mul-
tiplier 2128tδi,j , known approximation a that depends on the SIDs and C, and
error ε which is unknown and bounded by |ε| ≤ 4√

3

√
E1E2N ≤ 21878.

The approach using the EHNP technique therefore produces a similar equa-
tion to the brute-force approach, but the bound on the unknown ε is larger. In
fact, this approach loses about half of the information exposed by the client;
instead of knowing 43 MSBs, this transformation gives information about only
21.25 MSBs.

4.5 Refining Approximations

Our ability to solve HNP-SUM depends on the bounds for the multiplier and
the error, and the error in the HNP-SUM samples we can obtain via the EHNP
method is too large to be recovered. When using the EHNP method, it is there-
fore necessary to combine multiple HNP-SUM samples together to obtain a sam-
ple with smaller error. For the particular context of this attack, this sample
refinement is possible.

Specifically, for any AES block indices i, j and choice of t ∈ {0, 1, . . . , 6}, the
adversary uses Sect. 4.4 to learn at satisfying

2128tδi,jx ≡ at − εt (mod N).

δi,j = pti − ptj is the difference of two plaintexts and is bounded |δi,j | ≤ 2128.
We also have bound |εt| < E. The goal of the adversary is to refine the approx-
imation by computing ã satisfying

δi,jx ≡ ã − ε̃ (mod N)

where |ε̃| ≤ Ẽ ≤ E.

The Hidden Number Problem with Small Unknown Multipliers 165

Since the new bound on the error is smaller, this is equivalent to learning
additional MSBs of δi,jx.

We simplify the problem to a single refinement step using two approxima-
tions. Once we show that this is possible, it is clear that this can be repeated
multiple times to refine the approximation further. We state the problem
generically.

Approximation Refinement Problem. Assume the adversary is given
a1, a2, r 	= 0, N,E1 and E2 satisfying

y ≡ a1 − ε1 (mod N)
ry ≡ a2 − ε2 (mod N)

|ε1| ≤ E1

|ε2| ≤ E2

2|r|E1 + 1 ≤ N − 2E2.

If min((2E2 + 1)/|r|, 2E1 + 1) < 2Ẽ, then the attacker’s goal is to return ã such
that there exists ε̃ satisfying |ε̃| ≤ Ẽ and

y ≡ ã + ε̃ (mod N).

Intuitively, we consider the intersection of the set of y values satisfying
the first congruence with the set of y values satisfying the second congruence.
Because of the constraints on the parameters, the intersection is a single interval
with easily computed bounds.

To solve this problem, observe that there exists y satisfying y ∈ [a1−E1, a1+
E1]. Without loss of generality, assume r > 0. so therefore ry ∈ S1 = [r(a1 −
E1), r(a1 + E1)]. Also observe that

ry ∈ S2 =
∞⋃

k=−∞
[a2 − E2 + kN, a2 + E2 + kN],

so we wish to find the intersection of S1 and S2. Because S2 consists of the union
of intervals of size 2E2 + 1, repeated at multiples of N , the gaps between these
intervals are N −2E2−1. Since the size of S1 is 2rE1+1 ≤ N −2E2, S1 intersects
with at most one interval, and we know there exists ry, the intersection of S1

and S2 is a single interval. Therefore we compute

k∗ ←
⌈

r(a1 − E1) − (a2 + E2)
N

⌉

low ← max(r(a1 − E1), a2 − E2 + k∗N)
high ← min(r(a1 + E1), a2 + E2 + k∗N)

and observe

ry ∈ S1 ∩ S2 = [low, high] ⇒ y ∈
[⌈

low

r

⌉

,

⌊
high

r

⌋]

.

166 N. Heninger and K. Ryan

The size of this interval is at most min((2E2 +1)/r, 2E1 +1) < 2Ẽ, so we let
ã be its midpoint (or as close as possible if there are an even number of elements)
and we have solved the problem.

To apply this to our specific problem, observe that this means that we can
refine the EHNP sample δi,jx ≡ a0 − ε0 (mod N) with 2128δi,jx ≡ a1 − ε1
(mod N) to quality Ẽ = 21750 because r = 2128, E1 = E2 = 21878, N ≈ 22048.
Similar logic shows that we can iterate this process, using the three samples
{a0, a1, a2} to obtain a refined sample of the form

δi,jx ≡ ã − ε̃ (mod N) with |ε̃| ≤ 21622.

This increases the number of known MSBs from about 21 to 53 and produces
an HNP-SUM sample with small enough error to enable finding a solution.

4.6 Recovering Unknown Multipliers

We now turn to the goal of recovering unknown and small multipliers. For arbi-
trarily many (i, j) pairs, the attacker knows ai,j such that

ai,j ≡ δi,jx + ei,j (mod N)

where |δi,j | ≤ T = 2128 and |ei,j | < E. The value of E depends on if the
adversary initially used the brute-force strategy (giving E = 21696) in Sect. 4.4
or the EHNP strategy (4.4) plus refinement (4.5) (giving E = 21622).

This is an instance of HNP-SUM, because we have samples ai,j , small
unknown multipliers δi,j , and small errors ei,j . We use the lattice approach
detailed in Sect. 3 to recover the values of δi,j up to sign and division by a
common and small factor. Because the δi,j involve bytes of cryptographic mate-
rial and are essentially random, the greatest common divisor of the unknown
multipliers in our attack is likely to be 1 or some very small value. It is therefore
possible to brute force the sign and possible common factors to recover the δi,j

exactly.
By examining the heuristic condition T (n+1)/(n−1)E � N , we observe that

n = 3 samples are necessary for the brute-force strategy, and n = 2 samples are
necessary for the strategy of EHNP plus refinement.

4.7 Recovering Plaintexts

By combining the capabilities of Sects. 4.3 through 4.6, the adversary can learn
δi,j = pti − ptj for any pair (i, j) of plaintext blocks (up to sign). Note that
recovering any single plaintext pti therefore reveals any other plaintext ptj =
pti − δi,j . To accomplish this, we make use of the fact that �(q) is 2 bytes of
known plaintext and a property of the RSA equations.

The Hidden Number Problem with Small Unknown Multipliers 167

When the public modulus e is small, it is easy to compute the most significant
bits of the private modulus d. The least significant bits of d are not easy to
compute, so this does not impact the security of RSA. To see why this is the
case, observe that the RSA equation implies

d ≡ e−1 (mod (p − 1)(q − 1))
⇒ ed − 1 ≡ 0 (mod (p − 1)(q − 1))
⇒ ed − 1 = k(p − 1)(q − 1)

⇒ k = e
d

(p − 1)(q − 1)
− 1

(p − 1)(q − 1)
⇒ k ≤ e.

Thus if e is small, all possible values of k can be brute forced. A typical
choice of e is 65537, which leads to an easy brute-force attack. MEGA’s web
client uses e = 257, and the SDK uses e = 17, so brute forcing k is even easier
in this scenario. If k is known, then

d = (k(p − 1)(q − 1) + 1)/e

= (k(pq − (p + q) + 1) + 1)/e

=
kN + k + 1

e
− p + q

e
.

The second term is unknown, but it is about as small as p and q, which are about
half the size of d. The first term is known and with high probability reveals the
most significant bits of d.

To use this in the attack, we first recover δ18,1 = pt18 − pt1. pt18 contains
16 significant bytes of d and pt1 contains the length encoding �(q). We guess
all possible values of k from 1 to e, and for each guess, we determine what
the significant bytes of d would be if that guess of k were correct. This gives a
candidate value for pt18, which we can use to compute a candidate pt1. If the
candidate pt1 has valid length padding, the candidate pt18 may be correct. The
odds of a false positive are acceptably small, around e/216, so for small e this
is likely to reveal the true value of pt18. Once pt18 is known, this reveals ptj for
every known δ18,j .

4.8 Recovering the Factorization

Section 4.7 demonstrates how to recover arbitrary plaintext blocks in the encoded
RSA private key. This could be used to recover every plaintext block in the
encoded key, but as in the attack of Backendal, Haller, and Paterson there is
a more efficient solution to learning the factorization. We can recover every
plaintext block corresponding to the most significant bytes of prime factor q,
then use Coppersmith’s method [7] to recover the full factorization.

For the 2048-bit modulus N with 1024-bit prime factors p and q, this requires
at least 512 of the most significant bits. However, there is a trade-off between

168 N. Heninger and K. Ryan

how many of the most significant bits are known, how complex the implementa-
tion is, and how long it takes the implementation to run. The proof-of-concept
code for the original attack requires 683 bits and involves a dimension-3 lat-
tice constructed with Coppersmith degree 2 and multiplicity 1. We improve the
implementation by increasing the Coppersmith degree to 4 and multiplicity to
2, resulting in a lattice of dimension 5. Our improved implementation recovers
the factorization with only 624 most significant bits. This corresponds to the
most significant bits of q encoded in the first 5 plaintext blocks pt1, pt2, . . . , pt5
of the encoded private key. With the improved implementation, recovering these
5 plaintext values suffices to recover the full factorization.

4.9 Complexity

In this section, we analyze the overall complexity of both the fast attack requiring
an expected 17 login attempts and the small attack requiring an expected 6.1
login attempts. Because both of our attacks share many steps, we begin by
describing the overlap.

Both approaches assume that the 43 bytes returned by the client are at a fixed
location in the output of the RSA decryption function, but this is optimistic. As
described in Sect. 4.1, the client returns bytes 2-44 when byte 2 is nonzero, and
bytes 3-45 otherwise. This can be modeled as the attacker querying an oracle
which has some small probability of returning an incorrect answer. For both
of our approaches, we assume that all s responses from the oracle are correct.
Empirically, the analysis steps succeed when this is true and fails otherwise. If
the analysis fails, the RSA ciphertext is re-randomized and the entire attack
is repeated, collecting s fresh oracle responses. Under the simplifying assump-
tion that the probability the oracle returns a correct response for a particular
input is independently distributed and equal to 255/256 (byte 2 is nonzero), the
probability that all s responses are correct is (255/256)s. Therefore the expected
number of oracle queries before the full attack is successful is s(256/255)s.

Both approaches also overlap in the final stages of the attack, so much of
the complexity analysis is repeated. For the Coppersmith attack in Sect. 4.8
to succeed, we assume the attack has successfully recovered 5 plaintext blocks
pt1, . . . , pt5. To acquire these 5 plaintexts, Sect. 4.7 processes differences between
these plaintexts and a plaintext pt18 involving MSBs of RSA private exponent
d. That is, this part of the attack requires knowledge of δ18,1, . . . , δ18,5. These
5 values are obtained using the technique of Sect. 4.6 from five high-quality
approximations.

The two approaches differ in how they obtain these five approximations.

Fast Attack. In the fast attack, we obtain the five high-quality approximations
using Sect. 4.5 to refine 15 lower-quality approximations. For each high-quality
approximation involving δ18,j , we assume we have lower-quality approximations
of δ18,jx, 2128δ18,jx, and 2256δ18,jx for a fixed and unknown x.

We obtain these lower-quality approximations using the EHNP technique in
Sect. 4.4. This approach requires minimal guesswork, and it would still work if

The Hidden Number Problem with Small Unknown Multipliers 169

the 43 contiguous bytes were present at a different fixed offset. The disadvan-
tage is that the EHNP transformation increases the error bounds, so we need
more samples. As input to the EHNP transformation, we require 15 algebraic
relationships involving 2128tδ18,j for t ∈ {0, 1, 2} and j ∈ {1, 2, . . . , 5}.

As described in Sect. 4.3, each algebraic relationship involves taking the dif-
ference between two client responses involving different manipulations of the
wrapped RSA private key. This naively means that the attack could be per-
formed with 30 client interactions, but because each δ18,j involves the same
plaintext block pt18, one single client response can be reused in all 15 client
response pairs. In particular, the shared ciphertext leads to the client decoding
the u value as

Decode[DAES(ct33) | DAES(ct18) | · · · | DAES(ct18) | DAES(ct18) | DAES(ct41)].

This results in a total of s = 16 error-free oracle responses sufficing to recover
the RSA private key, or 16(256/255)16 ≈ 17.03 login attempts on average. None
of the steps in this approach are particularly expensive, so the overall private
key recovery is fast.

Small Attack. In the small attack, the five high-quality approximations are
obtained by using the brute-force technique described in Sect. 4.4. The inputs
to the brute-force technique are five algebraic relationships from Sect. 4.3, and
brute force attempts to recover the unknown term e′

1−e′′
1 , which can take on one

of 511 values. Instead of trying all of the (511)5 ≈ 245 possibilities, we improve
the complexity by focusing on three algebraic relationships at a time. This gives
a more tractable brute-force cost of around 227.

For every combination of prefixes for the three algebraic relationships, we
apply the lattice methods in Sect. 3 for n = 3 to recover candidate unknown
multipliers. If this attempt succeeds and yields valid multipliers, the guessed
prefixes may be correct. If the attempt fails, the guessed prefixes are probably
incorrect. In practice, this approach reliably returns the correct prefixes.

Table 1. Average number of logins and average wall time required for each attack. The
reported ranges represent a 95% confidence interval for the measured value.

Approach Sample Size Exp. Logins Avg. Logins Avg. Time (s)

Original [2] 10000 683 683 ± 0 9.46 ± 0.02

Fast Attack 10000 17.03 17.06 ± 0.08 5.59 ± 0.66

Small Attack 100 6.14 6.18 ± 0.20 16214 ± 522

Next, we take two samples with recovered prefixes and one sample with an
unknown prefix and repeat the brute-force process to recover the unknown prefix.
This is faster than brute forcing prefixes for three samples simultaneously. We
repeat this process to recover all unknown prefixes. This results in five high-
quality approximations from give algebraic relations.

170 N. Heninger and K. Ryan

Using the same argument as in the fast attack, the 5 algebraic relationships
can be obtained using 6 correct oracle responses, which happens with probabil-
ity (255/256)6 ≈ 98%. The expected number of oracle responses needed for a
successful attack would be 6(256/255)6 ≈ 6.14. The most expensive step is brute
forcing the triple of unknown prefixes, but this step is easily parallelized.

4.10 Experimental Evaluation

We benchmarked both of our new attacks3 against the abstract proof-of-concept
code of the attack in [2]. Both attacks are implemented in Python and use the
lattice reduction implementation in SageMath. We ran all our attacks on an
88-core Intel Xeon E5-2699A processor running at 2.4GHz. The original attack
and our fast attack are single-threaded, and our small attack implementation is
multithreaded. Table 1 reports a 95% confidence interval for each measurement.

As expected, there is good agreement between the measurements and the
expected complexity calculated in Sect. 4.9. The measured time includes the time
to simulate the client-server interactions, explaining why the original attack,
which includes more login attempts but fewer analysis steps, takes longer on
average to perform. The small attack takes an average of 4 h 30min of wall-
clock time to complete the analysis parallelized across 88 cores. Although this
computational effort is not small, it is eminently tractable. We therefore conclude
that the risk of these vulnerabilities was not limited to users who attempted to
log in over 500 times, and instead show that users who attempted to log in
at least 6 times may potentially be at risk. This illustrates the importance of
updating clients to the latest patched version.

Table 2. Comparison of non-Coppersmith methods solving the implicit factoring prob-
lem. Our approach achieves the same heuristic bounds as in prior work with smaller
lattices. Neither our bounds nor the bounds reported in prior work include higher-
order terms to account for the approximation factor of lattice reduction algorithms,
but experimentally the bounds are accurate for small to medium values of k.

Bits Shared Approach Bound Rank Dimension Our Bound Rank Dimension

LSBs [21] t ≥ k
k−1

α k k t ≥ k
k−1

α k + 1 k + 1

MSBs [9] t ≥ k
k−1

α k
k(k+1)

2
t ≥ k

k−1
α k + 1 k + 1

Middle [9] t ≥ 2 k
k−1

α
k(k+1)

2
k(k+1)

2
t ≥ 2 k

k−1
α k + 1 k + 1

LSBs and MSBs - - - - t ≥ k
k−1

α k + 1 k + 1

5 Application: Implicit Factoring

In the implicit factoring problem, introduced by May and Ritzenhofen in
2009 [21], one wishes to factor k RSA moduli of the form Ni = piqi where
the factors pi share t bits in common, but the value of these bits is not known.
3 Our implementation is available at https://github.com/keeganryan/attacks-poc.

https://github.com/keeganryan/attacks-poc

The Hidden Number Problem with Small Unknown Multipliers 171

This problem is typically considered in the context of unbalanced b-bit RSA
moduli where pi � qi; the size of qi is α bits

The original presentation considered the case of pi sharing least significant
bits (LSBs), and Sarkar and Maitra [27] expanded the definition to consider
shared most significant bits (MSBs), a mix of shared LSBs and MSBs, and shared
bits in the middle. They also gave Coppersmith-like approaches to solve these
cases. Faugère, Marinier, and Renault [9] gave a simpler lattice construction for
shared MSBs and shared middle bits, but they observed that their approach
cannot be applied to moduli that have factors sharing a mix of LSBs and MSBs.

Apart from [21] and [9], methods to solve the implicit factoring problem
have relied on Coppersmith-like techniques [20,25,27–29]. While these methods
often yield superior bounds, they often require lattices of higher dimension, more
involved analyses, and Gröbner basis calculations to recover the solutions to
multivariate polynomial systems.

We show that HNP-SUM can be used to solve the implicit factoring problem
when LSBs, MSBs, a mix of LSBs and MSBs, or middle bits are shared. While
our lattice construction does not improve on the bounds of the Coppersmith-
like techniques, it is the first non-Coppersmith technique to solve the mixed
LSBs/MSBs problem, and it is the most efficient method to our knowledge which
solves the shared middle bits problem for k > 2. Compared to the lattices of
dimension O(k2) in [9], our lattice has rank and dimension k+1. All of our attacks
achieve the same heuristic bounds as their non-Coppersmith counterparts, and
a comparison of these approaches is given in Table 2.

5.1 LSBs or MSBs Shared

We begin by considering the case where LSBs are shared, MSBs are shared, or
some mix are shared. The input to the problem is k RSA moduli Ni = piqi

where Ni < 2b, qi < α, and the pi share several bits. Let the t1 ≥ 0 least
significant and t2 ≥ 0 most significant bits be shared. This setup includes the
cases where only LSBs or only MSBs are shared by setting t1 or t2 to 0. We have
pi = pshared + 2t1 p̃i where p̃i < 2b−α−t1−t2 . We rewrite this as

2−t1Ni ≡ 2−t1piqi

≡ qi(2−t1pshared) + (p̃iqi) (mod M)

where M = 2b+t1+t2−α + 1. Observe that this is an instance of HNP-SUM
with samples ai = 2−t1Ni mod M , unknown multipliers qi, hidden number
x = 2−t1pshared mod M , and error ei = p̃iqi. This gives bounds T = 2α and
E = 2b−α−t1−t2+α, so Theorem 1 heuristically recovers the factors qi when

(2α)(k+1)/(k−1)2b−t1−t2 � 2b+t1+t2−α + 1,

or equivalently

t1 + t2 � k

k − 1
α.

This gives a unified heuristic bound for the cases where LSBs are shared, MSBs
are shared, or a mix of LSBs and MSBs are shared.

172 N. Heninger and K. Ryan

Justifying the Bounds. Although the choice of modulus M seems arbitrary, there
is good justification for it. Note that the congruence would hold for larger choices
of M , and a larger modulus would suggest the ability to solve HNP-SUM for
larger T and E, and this would therefore imply the ability to solve the implicit
factoring problem when arbitrarily few bits are shared. Increasing the modulus
does improve the bounds up to a certain point, but this argument fails because
beyond that point, Heuristic 2 is no longer satisfied. In particular, the projected
sublattice of rank 2 contains a short vector of length ≈ 2b−α in violation of the
Gaussian Heuristic. Since the sublattice recovery depends on the shortest vector
in the projected sublattice, the ability to recover the sublattice is unchanged.

We experimentally observe that the point at which Heuristic 2 begins to fail is
usually ≈ 2b+t1+t2−α, and using a significantly larger modulus does not improve
upon the predicted bounds. In practice, we set M to be slightly larger because
there is a small chance that Heuristic 2 holds for a slightly larger modulus, and
making M larger by a handful of bits barely affects running time. We also make
M odd to ensure 2−t1 exists in the ring of integers modulo M .

5.2 Middle Bits Shared

We next consider the case where we are given k RSA moduli Ni = piqi with
Ni < 2b, qi < 2α and the (l, l + t) middle bits of pi are shared. That is, pi =
p̃′

i2
l+t + pmid2l + p̃i where p̃′

i < 2b−α−l−t and p̃i < 2l. We rewrite this as

Ni ≡ 2l+tp̃′
iqi + 2lpmidqi + p̃iqi ≡ qi(2lpmid) + (p̃iqi) (mod 2l+t)

Table 3. Shared Least Significant Bits. We compared our lattice construction for
solving implicit factoring against [21] for b = 2048, α = 512, and various shared bits
t. The row in bold represents the first value of t for which the condition t ≥ k

k−1
α is

satisfied and we expect the lattice methods to succeed. We see that our approach is
approximately as powerful as [21] or a bit stronger, and the success rate follows the
predicted bound to within a couple of bits.

k = 2 k = 5 k = 30

Leakage (t) [21] Ours Leakage (t) [21] Ours Leakage (t) [21] Ours
1022 0% 0% 638 0% 0% 528 0% 0%
1023 0% 0% 639 0% 0% 529 0% 0%
1024 35% 44% 640 0% 0% 530 0% 0%
1025 100% 100% 641 7% 34% 531 0% 78%
1026 100% 100% 642 89% 96% 532 53% 100%
1027 100% 100% 643 100% 100% 533 100% 100%
1028 100% 100% 644 100% 100% 534 100% 100%

The Hidden Number Problem with Small Unknown Multipliers 173

Table 4. Shared Most Significant Bits. We compare our construction against [9]
for b = 2048, α = 512, and various t. The row in bold represents the first value of t
for which t ≥ k

k−1
α. As was the case for LSBs, our performance is close to [9] and the

predicted bound, although this time it is slightly weaker.

k = 2 k = 5 k = 30

Leakage (t) [9] Ours Leakage (t) [9] Ours Leakage (t) [9] Ours
1022 0% 0% 638 0% 0% 528 0% 0%
1023 0% 0% 639 0% 0% 529 0% 0%
1024 9% 2% 640 0% 0% 530 0% 0%
1025 71% 28% 641 5% 1% 531 50% 34%
1026 100% 98% 642 75% 43% 532 98% 97%
1027 100% 100% 643 99% 96% 533 100% 100%
1028 100% 100% 644 100% 100% 534 100% 100%

and observe that this gives an instance of HNP-SUM with ai = Ni, ti = qi,
x = (2lpmid), and ei = p̃iqi. This gives bounds T = 2α and E = 2α+l, so
Theorem 1 heuristically recovers the ti when

(2α)(k+1)/(k−1)2α+l � 2l+t ⇔ t � 2k
k − 1

α.

5.3 Experimental Evaluation

We implemented our reductions from implicit factoring to HNP-SUM and the
lattice methods described in [21] and [9]. We performed experiments on 2048-bit
moduli for k ∈ {2, 5, 30} and several t around the boundary for which we predict
the instance is solvable. In all cases, we find that our predicted bound is within
a couple bits of what we observed. We attempted to solve 100 instances for each
combination of parameters and report the results in Tables 3 through 6.

Our implementation was mostly written in Python and Sage. We also use a
custom C++ lattice reduction implementation. We ran each attack instance on
a single thread of an 88-core Intel Xeon E5-2699A processor running at 2.4GHz.
While our attack averaged under a second in all cases and the prior approaches
were similarly fast in most cases, [9] was significantly slower for k = 30.

This was primarily due to the cost of lattice reduction. When solving the
case of shared MSBs with k = 30, we reduce a lattice of rank 30, dimension 465,
and entries of size 2048 bits. In the case of shared middle bits, both the rank and
dimension are 465. Our custom lattice reduction implementation took around
10 s per instance in the first case and 4min in the second.

Our experiments demonstrate that our heuristically derived bounds are accu-
rate for a variety of parameters. Our methods are more efficient than prior work,
and our reduction to HNP-SUM provides a straightforward lattice-based crypt-
analysis to solve the implicit factoring problem in all shared-bit contexts.

174 N. Heninger and K. Ryan

Table 5. Shared MSBs and LSBs. We determine the success rate of our construction
for b = 2048, α = 512, and various t with the shared bits split evenly between the MSBs
and LSBs. There is no non-Coppersmith method we are aware of to compare against,
but the performance of our method closely approximates the predicted bound.

k = 2 k = 5 k = 30

Leakage (t) Ours Leakage (t) Ours Leakage (t) Ours
1022 0% 638 0% 528 0%
1023 0% 639 0% 529 0%
1024 2% 640 0% 530 0%
1025 36% 641 0% 531 36%
1026 91% 642 51% 532 95%
1027 100% 643 98% 533 100%
1028 100% 644 100% 534 100%

Table 6. Shared Middle Bits. We compare our construction against [9] for b = 2048,
α = 380, and various t around the boundary t ≥ 2 k

k−1
α. We find that our approach

closely matches the predicted bound. However, the approach of [9] for k = 30 fails for
all these values of t. This is because the lattice approximation factor is quite significant
for lattices of rank k(k + 1)/2 = 465, and lattice reduction failed to find the shortest
vector for these parameters.

k = 2 k = 5 k = 30

Leakage (t) [9] Ours Leakage (t) [9] Ours Leakage (t) [9] Ours
1518 0% 0% 948 0% 0% 785 0% 0%
1519 1% 1% 949 0% 0% 786 0% 0%
1520 7% 10% 950 0% 0% 787 0% 0%
1521 35% 38% 951 0% 0% 788 0% 0%
1522 69% 66% 952 9% 6% 789 0% 11%
1523 88% 90% 953 40% 38% 790 0% 44%
1524 91% 93% 954 68% 67% 791 0% 53%
1525 96% 96% 955 86% 84% 792 0% 67%
1526 100% 99% 956 93% 93% 793 0% 89%
1527 99% 99% 957 93% 93% 794 0% 93%

Acknowledgment. We thank Miro Haller and Kenny Paterson for their helpful com-
ments on an earlier draft, insightful discussions, and providing further context. This
material is based upon work supported by the National Science Foundation under
grants no. 2048563 and 1913210.

The Hidden Number Problem with Small Unknown Multipliers 175

References

1. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.P.: RSA and Rabin functions: certain
parts are as hard as the whole. SIAM J. Comput. 17(2), 194–209 (1988). https://
doi.org/10.1137/0217013

2. Backendal, M., Haller, M., Paterson, K.G.: MEGA: malleable encryption goes awry.
In: 2023 IEEE Symposium on Security and Privacy (SP), pp. 450–467 (2023).
https://doi.org/10.1109/SP46215.2023.00026

3. Bauer, A., Joux, A.: Toward a rigorous variation of coppersmith’s algorithm on
three variables. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 361–
378. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_21

4. Boneh, D., Halevi, S., Howgrave-Graham, N.: The modular inversion hidden num-
ber problem. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 36–51.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_3

5. Boneh, D., Shparlinski, I.E.: On the unpredictability of bits of the elliptic curve
Diffie-Hellman scheme. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
201–212. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_12

6. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68697-5_11

7. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 178–189. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-
9_16

8. De Mulder, E., Hutter, M., Marson, M.E., Pearson, P.: Using Bleichenbacher’s
solution to the hidden number problem to attack nonce leaks in 384-bit ECDSA.
In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 435–452.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1_25

9. Faugère, J.-C., Marinier, R., Renault, G.: Implicit factoring with shared most sig-
nificant and middle bits. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 70–87. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13013-7_5

10. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3_3

11. Garner, H.L.: The residue number system. In: Papers Presented at the the 3–
5 March 1959, Western Joint Computer Conference, pp. 146–153. IRE-AIEE-
ACM 1959 (Western), Association for Computing Machinery, New York, NY, USA
(1959). https://doi.org/10.1145/1457838.1457864

12. Hlaváč, M., Rosa, T.: Extended hidden number problem and its cryptanalytic
applications. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp.
114–133. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74462-
7_9

13. Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature
schemes. Des. Codes Crypt. 23(3), 283–290 (2001). https://doi.org/10.1023/A:
1011214926272

14. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024458

https://doi.org/10.1137/0217013
https://doi.org/10.1137/0217013
https://doi.org/10.1109/SP46215.2023.00026
https://doi.org/10.1007/978-3-540-72540-4_21
https://doi.org/10.1007/3-540-45682-1_3
https://doi.org/10.1007/3-540-44647-8_12
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/978-3-642-40349-1_25
https://doi.org/10.1007/978-3-642-13013-7_5
https://doi.org/10.1007/978-3-642-13013-7_5
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1145/1457838.1457864
https://doi.org/10.1007/978-3-540-74462-7_9
https://doi.org/10.1007/978-3-540-74462-7_9
https://doi.org/10.1023/A:1011214926272
https://doi.org/10.1023/A:1011214926272
https://doi.org/10.1007/BFb0024458

176 N. Heninger and K. Ryan

15. Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44670-2_6

16. Howgrave-Graham, N.A., Nguyen, P.Q., Shparlinski, I.E.: Hidden number problem
with hidden multipliers, timed-release crypto, and noisy exponentiation. Math.
Comput. 72(243), 1473–1485 (2003)

17. Jutla, C.S.: On finding small solutions of modular multivariate polynomial equa-
tions. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 158–170.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054124

18. Kannan, R., Bachem, A.: Polynomial algorithms for computing the Smith and
Hermite normal forms of an integer matrix. SIAM J. Comput. 8(4), 499–507 (1979).
https://doi.org/10.1137/0208040

19. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coef-
ficients. Math. Ann. 261(4), 515–534 (1982). https://doi.org/10.1007/BF01457454

20. Lu, Y., Peng, L., Zhang, R., Hu, L., Lin, D.: Towards optimal bounds for implicit
factorization problem. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS,
vol. 9566, pp. 462–476. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31301-6_26

21. May, A., Ritzenhofen, M.: Implicit factoring: on polynomial time factoring given
only an implicit hint. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443,
pp. 1–14. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-
1_1

22. Nguyen, P.Q.: Hermite’s constant and lattice algorithms. In: Nguyen, P., (eds.)
The LLL Algorithm. Information Security and Cryptography, pp. 19–69. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-02295-1

23. Nguyen, P.Q., Stehlé, D.: LLL On the average. In: Hess, F., Pauli, S., Pohst, M.
(eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006).
https://doi.org/10.1007/11792086_18

24. Ortmann, M.: MEGA security update (2022). https://blog.mega.io/mega-security-
update/

25. Peng, L., Hu, L., Xu, J., Huang, Z., Xie, Y.: Further improvement of factor-
ing RSA moduli with implicit hint. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 2014. LNCS, vol. 8469, pp. 165–177. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06734-6_11

26. Ryan, K., Heninger, N.: The hidden number problem with small unknown mul-
tipliers: cryptanalyzing MEGA in six queries and other applications. Cryptology
ePrint Archive, Report 2022/914 (2022). https://eprint.iacr.org/2022/914

27. Sarkar, S., Maitra, S.: Further results on implicit factoring in polynomial time.
Adv. Math. Commun. 3(2), 205–217 (2009). https://doi.org/10.3934/amc.2009.3.
205

28. Sarkar, S., Maitra, S.: Approximate integer common divisor problem relates to
implicit factorization. IEEE Trans. Inf. Theory 57(6), 4002–4013 (2011). https://
doi.org/10.1109/TIT.2011.2137270

29. Wang, S., Qu, L., Li, C., Fu, S.: A better bound for implicit factorization problem
with shared middle bits. Sci. Chin. Inf. Sci. 61(3), 1–10 (2017). https://doi.org/
10.1007/s11432-017-9176-5

https://doi.org/10.1007/3-540-44670-2_6
https://doi.org/10.1007/3-540-44670-2_6
https://doi.org/10.1007/BFb0054124
https://doi.org/10.1137/0208040
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/978-3-319-31301-6_26
https://doi.org/10.1007/978-3-319-31301-6_26
https://doi.org/10.1007/978-3-642-00468-1_1
https://doi.org/10.1007/978-3-642-00468-1_1
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/11792086_18
https://blog.mega.io/mega-security-update/
https://blog.mega.io/mega-security-update/
https://doi.org/10.1007/978-3-319-06734-6_11
https://eprint.iacr.org/2022/914
https://doi.org/10.3934/amc.2009.3.205
https://doi.org/10.3934/amc.2009.3.205
https://doi.org/10.1109/TIT.2011.2137270
https://doi.org/10.1109/TIT.2011.2137270
https://doi.org/10.1007/s11432-017-9176-5
https://doi.org/10.1007/s11432-017-9176-5

	The Hidden Number Problem with Small Unknown Multipliers: Cryptanalyzing MEGA in Six Queries and Other Applications
	1 Introduction
	1.1 Technical Overview
	1.2 Applying HNP-SUM to MEGA Cryptanalysis
	1.3 Applying HNP-SUM to Implicit Factoring

	2 Background
	2.1 Lattices
	2.2 The Hidden Number Problem

	3 Solving HNP-SUM
	3.1 Solving HNP-SUM with n = 2
	3.2 Construction for n > 2
	3.3 Alternative Basis for the Sublattice
	3.4 Recovering Unknown Multipliers
	3.5 Sublattice Determinant
	3.6 Sublattice Recovery via Lattice Reduction
	3.7 Experimental Evaluation

	4 Application: Cryptanalyzing MEGA
	4.1 Attack Context for MEGA
	4.2 Original MEGA Attack of Backendal, Haller, and Paterson
	4.3 Expressing Leakage Algebraically
	4.4 Obtaining Most Significant Bytes
	4.5 Refining Approximations
	4.6 Recovering Unknown Multipliers
	4.7 Recovering Plaintexts
	4.8 Recovering the Factorization
	4.9 Complexity
	4.10 Experimental Evaluation

	5 Application: Implicit Factoring
	5.1 LSBs or MSBs Shared
	5.2 Middle Bits Shared
	5.3 Experimental Evaluation

	References

