
A Thorough Treatment
of Highly-Efficient NTRU Instantiations

Julien Duman1 , Kathrin Hövelmanns2 , Eike Kiltz1(B) ,
Vadim Lyubashevsky3, Gregor Seiler3, and Dominique Unruh4

1 Ruhr-Universität Bochum, Bochum, Germany
eike.kiltz@rub.de

2 TU Eindhoven, Eindhoven, The Netherlands
3 IBM Research Europe, Zurich, Switzerland

4 University of Tartu, Tartu, Estonia

Abstract. Cryptography based on the hardness of lattice problems over
polynomial rings currently provides the most practical solution for pub-
lic key encryption in the quantum era. Indeed, three of the four schemes
chosen by NIST in the recently-concluded post-quantum standardization
effort for encryption and signature schemes are based on the hardness of
these problems. While the first encryption scheme utilizing properties of
polynomial rings was NTRU (ANTS ’98), the scheme that NIST chose
for public key encryption (CRYSTALS-Kyber) is based on the hardness
of the somewhat-related Module-LWE problem. One of the reasons for
Kyber’s selection was the fact that it is noticeably faster than NTRU
and a little more compact. And indeed, the practical NTRU encryption
schemes in the literature generally lag their Ring/Module-LWE counter-
parts in either compactness or speed, or both.

In this paper, we put the efficiency of NTRU-based schemes on
equal (even slightly better, actually) footing with their Ring/Module-
LWE counterparts. We provide several instantiations and transforma-
tions, with security given in the ROM and the QROM, that are on par,
compactness-wise, with their counterparts based on Ring/Module-LWE.
Performance-wise, the NTRU schemes instantiated in this paper over
NTT-friendly rings of the form Zq[X]/(Xd − Xd/2 +1) are the fastest of
all public key encryption schemes, whether quantum-safe or not. When
compared to the NIST finalist NTRU-HRSS-701, our scheme is 15% more
compact and has a 15X improvement in the round-trip time of ephemeral
key exchange, with key generation being 35X faster, encapsulation being
6X faster, and decapsulation enjoying a 9X speedup.

1 Introduction

The NTRU encryption scheme [19] was the first truly practical scheme based on
the hardness of lattice problems over polynomial rings and, in many ways, the
first really practical quantum-safe encryption scheme. The hardness of NTRU
was originally stated as its own assumption, but as lattice cryptography evolved

c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 65–94, 2023.
https://doi.org/10.1007/978-3-031-31368-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_3&domain=pdf
http://orcid.org/0000-0002-5195-1290
http://orcid.org/0000-0002-5478-0140
http://orcid.org/0000-0003-1178-048X
http://orcid.org/0000-0001-8965-1931
https://doi.org/10.1007/978-3-031-31368-4_3

66 J. Duman et al.

over the next few decades, the most natural way to view the hardness behind
the NTRU encryption scheme was as a combination of two assumptions over
a polynomial ring R = Zq[X]/(f(X)). The first assumption, which we call the
NTRU assumption, is that the quotient of two polynomials f and g, with coef-
ficients chosen from some narrow distribution, looks uniform in R. The second
assumption, which later became known as the Ring-LWE assumption [25,30]
states that given a uniformly random h ∈ R, and hr+ e, for polynomials e and
r with coefficients from a narrow distribution, it is difficult to recover e. One
could eliminate the need for the first assumption by choosing a relatively wide
distribution for f and g [29], but the resulting scheme becomes very inefficient;
thus all practical instantiations of NTRU were based on these two assumptions.

Since Regev’s seminal work constructing an encryption scheme based on the
LWE problem over general lattices [28], and its subsequent porting to lattices
over polynomial rings [23,25,30], most of the community effort of shifted to
building encryption schemes that do not require the NTRU assumption, and
are just based on the decisional version (which was shown to be equivalent to
the search one in [25], and for which no faster practical algorithm is known) of
the Ring/Module-LWE problems. Indeed, in the first round of the NIST call for
quantum-safe encryption, only 3 out of 17 proposals for lattice-based encryption
schemes over polynomial rings relied on the NTRU assumption, while the rest
used just an LWE-type assumption.

There are a few reasons for avoiding the NTRU assumption. The first is that
the additional NTRU assumption is known to be false in the regime where the
modulus q of the ring is noticeably larger than the dimension [1,8,15,22] (for
the same parameters, the Ring-LWE problem is still believed to be hard). While
the attacks against this parameter regime have not been extended to the one
used for public key encryption, it does give some reason for concern. Secondly,
in many rings, the division operation is significantly more expensive than multi-
plication, and so the assumption was also avoided for efficiency considerations.
And third is that the NTRU assumption does not naturally lend itself to more
flexible instantiations, such as Module-LWE. That is, it naturally operates over
a module of dimension 1 (again, due to the division operation), whereas LWE-
based schemes can be extended to work over modules of a larger dimension. This
has the advantage that the underlying ring operations do not need to change as
one increases the security parameter. In fact, all of the non-NTRU finalists in
the NIST post-quantum standardization process use the module structure [5,10].
These schemes are also significantly more efficient than the finalist NTRU-based
proposal [21].1

There are, however, also several advantages to NTRU-based schemes. One
real-world advantage that NTRU has is that all patents on it have expired, while
there may still conceivably be some (possibly still hidden) intellectual prop-
erty claims on the Ring/Module-LWE schemes. Also, NTRU may have practical
advantages when used in certain scenarios involving zero-knowledge proofs, since

1 The schemes [5,10] can be made even more efficient by eliminating an unnecessary
input to the random oracle (see [17]) which did not exist in [21].

A Thorough Treatment of Highly-Efficient NTRU Instantiations 67

the ciphertext has a simpler form and thus may require shorter proofs that it was
correctly formed. In this paper, our goal is to put NTRU-based constructions on
equal footing, performance-wise, as schemes based on Ring/Module-LWE.

1.1 Speed

The most efficient lattice-based schemes are those that natively work over rings
Zq[X]/(f(X)) that support the Number Theory Transform (NTT). When the
polynomial f(X) factors into components having small degree, one can perform
multiplication (and division) in the ring using the Chinese Remainder Theo-
rem. That is, one evaluates the multiplicands modulo these factors, performs
component-wise multiplication, and finally converts the product back into the
original form. The process of efficiently doing these computations is the NTT
and the inverse NTT.

The most commonly used NTT-friendly ring is of the form Zq[X]/(Xd + 1),
where d is a power-of-2. For well-chosen q, the polynomial Xd + 1 = (Xd/2 −
r)(Xd/2 + r) mod q, and the respective factors similarly split as (Xd/2 − r) =
(Xd/4 −√

r)(Xd/4 +
√

r) mod q, etc. until one reaches an irreducible polynomial
of a small (usually 1 or 2) degree. Because of this very nice factorization (the
“niceness” mainly rests in the fact that all factors have 2 non-zero coefficients,
making reduction modulo them linear-time), evaluation of any polynomial mod-
ulo the irreducible factors can be done using approximately 2d log d operations
over Zq. These rings also have some very nice algebraic properties – in partic-
ular the expansion factor [24] controlling the growth of polynomial products in
the ring is the minimal of all rings. The one disadvantage of these rings is that
they are sparse and so one cannot always find one for an appropriate security
level. The hardness of the NTRU and Ring-LWE problem directly depends on
the degree of the polynomial f(X). Based on the current state of knowledge,
obtaining 128-256 bit hardness requires taking dimensions somewhere between
512 and 1024. Since there are no powers of 2 in between, and because one may
need to go beyond 1024 in case somewhat better algorithms are discovered, the
sparsity of these rings is an inconvenience. The Module-LWE problem overcomes
this inconvenience because the problem instance can be made up of a matrix of
smaller rings, but this does not work for NTRU because this approach would
significantly increase the size of the public key.

One can overcome this issue in NTRU by using “NTT-friendly” rings
f(X) = Xd − Xd/2 + 1 where d = 2i3j .2 The rings Zq[X]/(Xd − Xd/2 + 1), for
appropriately-chosen primes, also support efficient NTT because Xd−Xd/2+1 =
(Xd/2 + ζ)(Xd/2 − (ζ + 1)) mod q, where ζ is a third root of unity in Zq

(not equal to 1). And after that, every term (Xk − r) factors into either
(Xk/2−√

r)(Xk/2+
√

r) or into (Xk/3− 3
√

r)(Xk/3−ζ 3
√

r)(Xk/3−ζ2 3
√

r) modulo
q. In both cases, one can efficiently proceed with the very efficient NTT because
all factors have two non-zero coefficients. As can be seen from Table 1, there are

2 The polynomial f(X) is therefore the 3d-th cyclotomic polynomial.

68 J. Duman et al.

many such polynomials of degree between 512 and 1024. In the work of [26], a
version of NTRU was implemented over the ring Z7681[X]/(X768 − X384 + 1),
but due to the structure of the ring, no factorization into three terms was
necessary. In this work we show that there aren’t any efficiency issues when
the latter does happen, and give an instantiation of a scheme over the ring
Z2917[X]/(X648 −X324 +1). The conclusion is that all of the schemes in Table 1
should have almost equally good instantiations.

One should also mention that Module and Ring-LWE schemes can be used
in non-NTT-friendly rings [9], and the inefficiency of multiplication in these
rings can be partially overcome by doing multiplication in a ring with a larger
modulus and/or degree of f(X) which supports NTT, and then reducing back
into the original ring. This is, however not possible for NTRU-based schemes
because NTRU requires polynomial division, and it is not known how to map
this operation between rings. On the other hand, if a ring supports NTT, then
division is essentially as fast as multiplication, with only the operation in the
base ring (which is of a very low degree) being different. Thus any hope of having
NTRU-based schemes being competitive with Ring/Module-LWE schemes seems
to require defining the NTRU encryption scheme directly over NTT-friendly
rings.

A reason that NTRU was traditionally not defined over NTT-friendly-rings
was presumably due to an attack of Gentry [18] against a version of NTRU
over the ring Zq[X]/(Xd − 1), where the polynomial Xd − 1 could be factored
as (Xd/2 − 1)(Xd/2 + 1). The observation was that instead of working over the
ring Zq[X]/(Xd − 1), one can reduce everything modulo Xd/2 − 1 and work
over the ring Zq[X]/(Xd/2 − 1). What makes the attack work is that reduction
modulo Xd/2 − 1 is a ring homomorphism and that this reduction increases
the size of the maximum coefficient by at most a factor of 2. Thus one can
solve a shortest vector problem (upon which NTRU is based) in a lattice with
a significantly smaller dimension, but whose norm increased by only a factor of
2. From this attack, one might infer that it’s important to have the polynomial
f(X) be irreducible (or have a large component of it be irreducible). Interestingly,
however, the theoretical works of [23–25] showed that in the reductions from
worst-case lattice problems to average-case problems over polynomial rings (e.g.
Ring/Module-SIS, Ring/Module-LWE), one needs the polynomial f(X) to be
irreducible in Z[X], but the polynomial f(X) splitting in Zq[X] does not seem
to make the average-case problem easier.3 And in fact, most practical lattice-
based constructions work over the ring Zq[X]/(Xd + 1), where d is a power of
2. While polynomials Xd + 1 are irreducible in Z[X], they are always reducible

3 As a sanity check, one can see that the attack in [18] does not work because it is
impossible for a polynomial f(X) that’s irreducible over the integers to split modulo
q into polynomials of large degree (e.g. d/2) whose coefficients are small. For example,
it’s trivial to see that Xd +1 cannot have factors Xd/2 ±β with β <

√
q. For a more

general result, one needs a little algebraic number theory (e.g. implicit in the proof
of [27, Lemma 3.1] is that any factor of degree d/k of Xd + 1 has �2-norm at least
p1/k, and this result extends in a similar way to other polynomials).

A Thorough Treatment of Highly-Efficient NTRU Instantiations 69

in Zq[X]; and consistent with the theoretical intuition, there have not been any
attacks exploiting the factorization of Xd + 1 modulo q. We therefore don’t see
any danger of using NTRU over NTT-friendly rings.

1.2 Decryption Error and Compactness

To make NTRU encryption work efficiently over NTT-friendly rings, one creates
the public key as h = pg/(pf + 1), for a small prime p, and then the encryption
function (which is one-way CPA secure – meaning that it is hard to decrypt for
a random message) outputs c = hr+m, where r,m are polynomials with coef-
ficients coming from a narrow distribution. The decryption algorithm computes
(pf + 1)c = p(gr + fm) + m. If the coefficients of the product p(gr + fm) are
smaller than q/2, then one can recover m by taking the above value modulo p.

One important area of optimization (and what was already recognized in the
original NTRU scheme [19]) is that the product p(gr+fm) does not always need
to be less than q/2, but only with very high probability. On the one hand, this
probability should be negligible, as obtaining decryption failures on honestly-
generated ciphertexts is the folklore way of recovering the secret key in LWE-
based schemes. On the other hand, the decryption error can be defined as an
information-theoretic quantity. Unlike the security parameter, there is therefore
no safety margin needed as there is no danger of a better algorithm being found
to lower this quantity.

To make the decryption error an information-theoretic quantity, one should
define it as being worst-case when the adversary is even given the secret key [20].
In LWE-based schemes, the message is an additive term in the decryption proce-
dure, and since the message’s coefficients are generally small (normally in {0, 1}),
there is no difference between a worst-case and an “average-case” (or even best-
case) message. In NTRU, however, as we saw from the decryption equation,
we need the quantity p(gr + fm) to be smaller than q/2, and m is multiplied
by f . Purposefully choosing a “bad” m can, therefore, make a large difference
(increasing the decryption error by factors larger than 2100 is normal for stan-
dard parameter choices). The naive way to keep the worst-case decryption error
small is to increase the modulus q so that encryption errors do not occur. But
increasing q weakens the security of the scheme by making the lattice-reduction
algorithms more effective.

In this paper, we demonstrate three different ways of handling the decryption
error. The first way is a generic transformation ACWC0 from any scheme into one
in which the message does not affect the decryption error. Hence the worst-case
correctness error of the transformed scheme equals the average-case correctness
error of the original scheme. This transformation is most likely folklore, and it
is presented in Fig. 5 on page 16. The downside of this transformation is that it
increases the ciphertext size by the message length.

The two next manners in which a worst-case decryption error is handled pre-
serves the ciphertext size of the underlying scheme. The transformation ACWC
(Fig. 6 on page 18) requires some specific properties of the distribution from
which the message is generated. A natural distribution that satisfies this prop-
erty is having coefficients uniformly-random modulo p. When p is not a power

70 J. Duman et al.

of 2, this distribution is not particularly pleasant to sample with AVX2 opti-
mizations (due to the branching caused by rejection sampling), and so it was
proposed in [21] to sample the distribution as a binomial distribution modulo
p. Since the binomial distribution is very easy to sample by summing up and
subtracting random bits, and because this value modulo p is pretty close to
the uniform distribution, this is a more preferable way of sampling the secret
coefficients. Still, being required to only sample the message m according to
the uniform distribution could be an acceptable compromise. It is an interesting
open problem as to whether our transformation can still be proved secure under
the same assumptions for a different, more easily sampled, distribution of the
message.

Our final way of handling adversarial-generated messages does not involve
any transformation, but rather shows how for certain distributions of m, the
worst-case decryption error is not much worse than the average-case (or best-
case), as in LWE-based schemes. Consider the coefficients of m as consisting of
a message part μ and an error part ε. One has this implicit split by defining a
function f(μ, ε) = m in a particular way where ε and μ are sampled indepen-
dently. A property that we need from f is that f(μ, ε) mod 2 = μ. Thus if one
recovers m, one can also recover μ. If we want to choose m according to the
binomial distribution (as in e.g. NewHope [3], Kyber [5], or Saber [10]), then f
can be a very simple function as described in Lemma 4.1. And of course, we also
want the decryption error of this function to be approximately the same for all
adversarially-chosen μ. It turns out that because the adversary only gets to set
the residue modulo 2 in the binomial distribution, he has no control over the
sign of the final output, nor the variance of the conditional distribution. And for
this reason, the worst-case error distribution is close to the random one.

A further observation is that if we only need to recover μ = m mod 2, then
there is no need to set the parameter p large enough so as to be able to recover
the entire m. In particular, we could just set p = 2 and the decryption procedure
would still work. By decoupling the magnitude of p from the magnitude of the
coefficients of m, we can set m to be large (which increases the hardness of
Ring-LWE), while keeping p = 2. The value of p has no effect on the hardness
of any version of Ring-LWE (since ph is as uniform as just h), and based on
the state of affairs regarding solving Ring-LWE problems, finding m mod 2 is as
hard as finding m. We discuss the complexity of this problem in Sect. 4.3 and
present the scheme in Sect. 4.4.

1.3 Proofs in the (Q)ROM

Our two transformations ACWC0 and ACWC are defined relative to random ora-
cles, and have proofs in the ROM that are conceptually very simple. We show
that ACWC0 transforms any one-way secure (OW-CPA) encryption scheme into
one that is IND-CPA secure, and that ACWC transforms any OW-CPA secure
encryption scheme into one that is also OW-CPA secure. Note that we can-
not prove IND-CPA security of ACWC since there exist instantiations for which

A Thorough Treatment of Highly-Efficient NTRU Instantiations 71

application of ACWC yields a scheme that simply isn’t IND-CPA secure.4 By
working with q-OW-CPA security,5 a slight generalisation of OW-CPA security, we
can combine the aforementioned transformations with the well-known Fujisaki-
Okamoto transformation FO⊥ in a way such that we obtain a tight proof for the
resulting KEMs.

Since post-quantum security is a central goal of the constructions in this
paper, we also prove all our results in the quantum random oracle model
(QROM). That is, we show the security even if the adversary can perform queries
to the random oracle in superposition between different inputs. The two con-
structions involving the random oracle are ACWC0 and ACWC. We show that
ACWC0 transforms a one-way secure (OW-CPA) encryption scheme into an IND-
CPA secure one. This proof is a reasonably straightforward application of the
one-way to hiding theorem, O2H [31] in the variant from [4]. (O2H is a common
technique used in random oracle proofs for encryption schemes.) The drawback
of the use of O2H is that it introduces a square-root in the adversary’s advan-
tage. (That is, if the adversary has ε advantage against the underlying scheme
and it makes q random oracle queries, then it has advantage O(

√
q2ε) against

the result of the transformation.)
In contrast, security of ACWC does not have an obvious proof using O2H.

Instead, we use the measure-and-reprogram technique (M&R) from [11,13]. This
technique was developed for proving the security of the Fiat-Shamir transform.
The fact that this technique works here is unexpected for two reasons: First,
it was designed specifically with transformations of sigma-protocols (or related
structures) into signatures or non-interactive proof systems in mind; transfor-
mations of encryption schemes such as ACWC have a very different structure.
Second, M&R is a technique for adaptive reprogramming of the random oracle:
Its core feature is, on a high level, that we can measure a query that the adver-
sary will use later for its attack (e.g., as part of a forged signature), and sneak
in a value of interest Θ into the answer to exactly that query (e.g., the challenge
in a sigma-protocol). But in our setting, there is no such value of interest Θ.
(We use a random value Θ when invoking the M&R theorem because that is
technically required, but we would be perfectly happy if the random oracle was
not reprogrammed at all.) We thus “misuse” the M&R for a situation where
reprogramming is not required in the first place. This raises the interesting open
question whether there could be variants of the M&R theorem that only cover
the measurement-part of it (without reprogramming) but have tighter parame-
ters and could be used in situations such as ours to produce a tighter reduction.

4 Say that PKE has message space M = M1 × M2,and say that PKE’s encryptions
of messages M1||M2 leak M1 and the first bit of M2. When instantiated with the
classical one-time-pad, ACWC encrypts a message m by sampling a message M1 ←
M1 and encrypting M1||m ⊕ F(M1), thereby leaking the first bit of m.

5 In q-OW-CPA security the adversary is given an encryption of a random plaintext
and wins if it returns a set of cardinality at most q containing the plaintext. For
q = 1 this is OW-CPA security.

72 J. Duman et al.

NTRU-A (§4.4)

OW-CPA
CCA-NTRU-A

GenNTRU[Ud
3]

PRE-CPA

NTRU-B (§4.5)
q-OW-CPA

CCA-NTRU-B

GenNTRU[ψ̄d
2]

PRE-CPA

NTRU-C (§4.5)
IND-CPA

CCA-NTRU-C

FO⊥

L. 2.1, Th. 2.3

ACWC (§3.2)
L. 2.2, Th. 3.9

FO⊥

Th. 2.3

ACWC0 (§3.1)
L. 2.2, Th. 3.3

FO⊥

[20]

︸ ︷︷ ︸

average-case correctness error
︸ ︷︷ ︸

worst-case correctness error
︸ ︷︷ ︸

CCA-secure KEM

Fig. 1. Overview: How to obtain efficient IND-CCA-secure KEMs from our NTRU-
based PKE schemes. Solid arrows indicate tight reductions in the ROM, dashed arrows
indicate non-tight reductions. q-OW-CPA is a strengthening of standard OW-CPA secu-
rity, where the adversary is allowed to return q many guesses (instead of just one).
PRE-CPA security stands preimage resistance which in the setting of NTRU is essen-
tially equivalent to OW-CPA security.

Furthermore, the use of M&R also leads to better parameters than we got
using O2H: The advantage of the adversary against the result of the transforma-
tion ACWC is O(q2ε), i.e., no square-root is involved. (However, in contrast to
ACWC0, we only get one-way security. This is not a limitation of the proof tech-
nique, though, but stems from the fact that ACWC does not achieve IND-CPA
security. But note that in a setting were we only need one-way security, we still
do not have a better bound than

√
q2ε for ACWC0; in this case, ACWC gives

strictly better security.)

1.4 Concrete Results and Comparison to the State of the Art

We now describe the various ways that one can instantiate NTRU using the tech-
niques described in this paper and compare it to other lattice-based schemes. We
defined three different ways to instantiate NTRU, with all three approaches being
in the same ring and only differing in the secret distributions and the manner in
which it is transformed into a scheme with a small “worst-case” decryption error.
When working over the ring Zq[X]/(Xd−Xd/2+1), we will write NTRU-Ad

q to be
the scheme in Fig. 7 which did not require any transformation. By NTRU-Bd

q , we
denote the scheme presented in Fig. 9 which is derived from the generic NTRU
scheme GenNTRU (Fig. 8) by utilizing the size-preserving transformation from
Fig. 6. And by NTRU-Cd

q , we refer to the scheme in Fig. 10 derived from the folk-
lore transformation of the generic NTRU scheme GenNTRU (Fig. 8) in Fig. 5. All
of the aforementioned schemes are CPA-secure, and we use the standard FO-
transformation from Fig. 4 to create a CCA-KEM. The above is summarized in
the overview Fig. 1.

In Table 1, we summarize the “interesting” instantiations of the schemes
described in this paper having between 150 and 350 bits of security. We also

A Thorough Treatment of Highly-Efficient NTRU Instantiations 73

compare these to other instantiations of NTRU and Module-LWE based schemes
in Fig. 2. For a consistent evaluation of security, we used the online LWE hard-
ness estimator [2]. This estimator has undergone some updates since its initial
release, but still does not (as of this writing) include some recent cryptanalytic
techniques (e.g. [14]) which could lower the security a little bit. Nevertheless, it
still provides very meaningful results for comparing between various schemes.

In comparison to NTRU-HRSS, which was a finalist in the NIST standardiza-
tion process, NTRU-C648

2917 is based on an NTRU problem with the same error dis-
tribution, and has an approximately equal security level. But due to the fact that
we show how to control the worst-case decryption error, the ciphertext/public
key sizes are 15% smaller. If one looks at NTRU-C768

3457, which has a similar public
key/ciphertext size as NTRU-HRSS-701, one sees that the tradeoff for no error
vs. 2−252 error is 30 bits of security, and the difference in security is even larger
if one considers the NTRU-A version. In our opinion, exchanging such a large
security margin in return for reducing 2−250 to 0 in the information-theoretic
decryption error term, is not a sensible trade-off. The comparison of our NTRU
instantiations to Kyber shows that the two schemes are essentially on the same
size/security curve.

We produced a sample implementation of NTRU-A648
2917, as it is most sim-

ilar in security to NTRU-HRSS-701. In Table 3, we compare this scheme to
NTRU-HRSS and other highly-efficient lattice-based schemes such as Kyber and
NTTRU. The efficiency of our implementation is similar to that of Kyber-512,
even though the NTRU variant has about 30 extra bits of security. The effi-
ciency improvement is due to the fact that there is no matrix sampling required in
NTRU-based schemes. When compared to NTRU-HRSS-701, there is a clear dif-
ference in efficiency, with NTRU-A being over 15X faster for round-trip ephemeral
key exchange. The running time of NTRU-C should be quite similar, and NTRU-B
will be a little hampered by the more complicated (uniform vs. binomial) error
distribution, but should also be close.

While all the parameters in Table 1 are over rings of the form Zq[X]/(Xd −
Xd/2+1), we mention that another interesting instantiation would be a version of
NTRU-A from Fig. 7 with η = ψd

3 over the ring Z3329[X]/(X512 + 1). This would
have exactly the security of Level 1 Kyber, a decryption error of 2−197, and
public key/ciphertext sizes of 768 bytes. The parameters make it an attractive
NIST level 1 candidate. The one difference is that the inertia degree would be
4, which requires one to do inversions and multiplications in degree 4 rings, but
we don’t believe that this should cause a noticeable slowdown.

2 Preliminaries

2.1 Notation

If M is a finite set and ψM is a distribution on M, then m ← ψM samples m
from M according to ψM. We write m ← M to denote sampling according to the
uniform distribution. For a random variable X, H∞(X) denotes its min-entropy.

74 J. Duman et al.

Table 1. Parameters for the NTRU schemes CCA-NTRU-A, CCA-NTRU-B, and
CCA-NTRU-C from this paper. All of the variants of the NTRU schemes work over
the same ring, with the only difference being the underlying distributions of the secrets
and messages, as well as the transformation (if one is necessary) from an instance with
worst-case decryption error to one with average-case. The public key and ciphertext
are of the same length (except for the ciphertext of CCA-NTRU-C, which is 32 bytes
larger) and it is reported in bytes. The inertia degree is the smallest degree of the poly-
nomial ring over which one has to perform operations at the bottom of the NTT tree
(for efficiency, one may not always want to split down to the smallest possible degree,
though). The parameter δ is the decryption error for a worst-case message (computed
via a Pari script), and the security (in the ROM) is obtained using the LWE estimator
script [2].

d q inertia pk & log2(δ) security log2(δ) security log2(δ) security

(dim.) (mod.) degree ct (B)a CCA-NTRU-A CCA-NTRU-B CCA-NTRU-C

576 2593 2 864 -150 162 -165 155 -187 153

576 3457 1 864 -257 157 -297 150 -333 149

648 2917 2 972 -170 180 -187 172 -211 171

648 3889 1 972 -289 175 -335 166 -376 165

768 3457 2 1152 -202 210 -222 201 -252 199

864 3457 3 1296 -182 238 -197 227 -224 225

972 3889 3 1458 -206 265 -223 253 -253 251

1152 3457 1 1728 -140 321 -147 306 -167 304

1296 3889 1 1944 -158 358 -166 342 -189 339

1296 6481 3 2106 -420 339 -471 324 -530 322
a The ciphertext size for NTRU-C is 32 bytes larger.

Table 2. Comparison to Existing Work. The Kyber parameters are taken from the
Round 3 submission to the NIST PQC Standardization Process. The NTTRU parame-
ters are from [26], and the NTRU-HRSS-701 parameters are from [21], and the NTRU-
HRSS-1373 instantiation is from the comments to the NIST PQC mailing list. For
consistency of comparing these schemes to those in Table 1, the security of the schemes
are computed using the LWE estimator script [2].

dimension modulus pk (B) ct (B) log2(δ) security

Kyber-512 512 3329 800 768 -139 148

Kyber-768 768 3329 1184 1088 -164 212

Kyber-1024 1024 3329 1568 1568 -174 286

NTTRU 768 7681 1248 1248 -1217 183

NTRU-HRSS-701 701 8192 1138 1138 −∞ 166

NTRU-HRSS-1373 1373 16384 2401 2401 −∞ 314

A Thorough Treatment of Highly-Efficient NTRU Instantiations 75

Table 3. Number of cycles (on a Skylake machine) for various operations of a CCA-
secure KEM. The numbers for Kyber-512 and Kyber-768 are taken from [17, Table 3],
which shows an improved implementation of Kyber90’s (i.e. the version using AES
and SHA-256 instead of SHAKE) when using prefix hashing and employing an explicit
reject in the decapsulation procedure.

Scheme Key Gen Encaps Decaps Total Round-Trip

CCA-NTRU-A648
2917 (This Paper) 6.2K 5.6K 7.3K 19.1K

NTRU-HRSS-701 220.3K 34.6K 65K 319.9K

NTTRU 6.4K 6.1K 7.9K 20.4K

Kyber-512 (90’s) 6.2K 7.9K 9.2K 23.3K

Kyber-768 (90’s) 11K 13.1K 14.8K 38.9K

For the sake of completeness, we summarise all relevant quantum preliminar-
ies in the full version [16].

2.2 Cryptographic Definitions

Public-Key Encryption. A public-key encryption scheme PKE =
(Gen,Enc,Dec) consists of three algorithms, a probability distribution ψM on a
finite message space M. If no probability distribution is specified we assume ψM
to be the uniform distribution. The key generation algorithm KeyGen outputs a
key pair (pk , sk), where pk also defines a finite randomness space R = R(pk).
The encryption algorithm Enc, on input pk and a message m ∈ M, outputs an
encryption c ← Enc(pk ,m) of m under the public key pk . If necessary, we make
the used randomness of encryption explicit by writing c := Enc(pk ,m; r), where
r ∈ R. By ψR we denote be the distribution of r in Enc, which we require to be
independent of m. The decryption algorithm Dec, on input sk and a ciphertext
c, outputs either a message m = Dec(sk , c) ∈ M or a special symbol ⊥ /∈ M to
indicate that c is not a valid ciphertext.

Randomness Recoverability. PKE is randomness recoverable (RR) if there
exists an algorithm Recover such that for all (pk , sk) ∈ supp(Gen) and m ∈ M,
we have that

Pr
[∀m′ ∈ Preimg(pk , c) : Enc(pk , m′;Recover(pk , m′, c)) �= c | c ← Enc(pk , m)

]
= 0 ,

where the probability is taken over c ← Enc(pk ,m) and Preimg(pk , c) := {m ∈
M | ∃r ∈ R : Enc(pk ,m; r) = c}. Additionally, we will require that Recover
returns ⊥ if it is run with input m �∈ Preimg(pk , c).

Correctness Error. PKE has (worst-case) correctness error δ [20] if

E

[
max
m∈M

Pr [Dec(sk ,Enc(pk ,m)) �= m]
]

≤ δ ,

76 J. Duman et al.

where the expectation is taken over (pk , sk) ← Gen and the choice of the random
oracles involved (if any). PKE has average-case correctness error δ relative to
distribution ψM over M if

Pr [Dec(sk ,Enc(pk ,m)) �= m] ≤ δ ,

where the probability is taken over (pk , sk) ← Gen, m ← ψM and the random-
ness of Enc. This condition is equivalent to

E [Pr [Dec(sk ,Enc(pk ,m)) �= m]] ≤ δ ,

where the expectation is taken over (pk , sk) ← Gen, the choice of the random
oracles involved (if any), and m ← ψM.

Spreadness. PKE is weakly γ-spread [12] if

E

[
max

m∈M,c∈C
Pr [Enc(pk ,m) = c]

]
≤ 2−γ ,

where the probability is taken over the random coins of encryptions and the
expectation is taken over (pk , sk) ← Gen.

Security. In the usual one-way game OW-CPA for PKE, the adversary has
to decrypt a ciphertext c∗ of a random plaintext m∗ ← ψM by sending one
candidate m′ back to the challenger, and wins if m′ = m∗. In the generalized
q-OW-CPA game, the adversary gets to send a set Q of size at most q and wins if
m∗ ∈ Q. The formal definition of q-OW-CPA is given in Fig. 2 and the advantage
function of an adversary A is

Advq-OW-CPA
PKE (A) := Pr

[
q-OW-CPAA

PKE ⇒ 1
]

.

For q = 1 one recovers standard OW-CPA security, i.e., OW-CPA := 1-OW-CPA.
We also introduce preimage resistance of PKE by the defining the advantage
function of an adversary A as

AdvPRE-CPAPKE (A) := Pr
[
PRE-CPAA

PKE ⇒ 1
]

,

Game q-OW-CPA
(pk , sk) ← KeyGen
m∗ ← ψM
c∗ ← Enc(pk , m∗)
Q ← A(pk , c∗)
return �m∗ ∈ Q ∧ |Q| ≤ q�

Game PRE-CPA
(pk , sk) ← KeyGen
m∗ ← ψM
c∗ ← Enc(pk , m∗)
(m, r) ← A(pk , c∗)
return �Enc(pk , m; r) = c∗�

Game IND-CPA
(pk , sk) ← Gen
(m0, m1) ← A1(pk)
b ← {0, 1}
c∗ ← Enc(pk , mb)
b′ ← A2(pk , c∗)
return �b = b′�

Fig. 2. Left: q-Set One-Wayness game q-OW-CPA for PKE, where q = 1 is standard
OW-CPA. Middle: Preimage resistance game PRE-CPA for PKE. Right: game IND-CPA
for PKE and adversary A = (A1, A2).

A Thorough Treatment of Highly-Efficient NTRU Instantiations 77

where game PRE-CPA is given in Fig. 2.
Finally, we define the IND-CPA advantage for an adversary A as

AdvIND-CPA
PKE (A) :=

∣∣∣
∣Pr

[
IND-CPAA

PKE ⇒ 1
]

− 1
2

∣∣∣
∣ ,

where the game IND-CPAA
PKE is defined in Fig. 2.

Lemma 2.1 (PKE OW-CPA =⇒ PKE q-OW-CPA). For any adversary A
against the q-OW-CPA security of PKE, there exists an OW-CPA adversary
against PKE with

Advq-OW-CPA
PKE (A) ≤ q · AdvOW-CPA

PKE (B) .

where the running time of B is about that of A.

Proof. Sketch. The reduction B runs the adversary A on the inputs it got from its
OW-CPA challenger and obtains the set Q of size q. It samples m ← Q uniformly
at random and forwards m to the OW-CPA challenger, with probability 1/q it
guessed the right one when the solution is contained in Q, thus, the claim follows.

Lemma 2.2 (PKE PRE-CPA and RR
tightly
=⇒ PKE q-OW-CPA). If PKE is ran-

domness recoverable, then for any adversary A against the q-OW-CPA security
of PKE, there exists an PRE-CPA adversary B against PKE with

Advq-OW-CPA
PKE (A) ≤ AdvPRE-CPAPKE (B) .

where the running time of B is about Time (A) + q · (Time (Recover) +
Time (Enc)).

Proof. The reduction B forwards to A the challenge public-key and ciphertext
c∗ and obtains a set Q. For every m ∈ Q it runs r := Recover(pk ,m, c) and then
runs Enc(pk ,m; r) to obtain c. If c equals c∗ it returns (m, r) as the solution,
otherwise it continues with the search. If no element is found it can return a
random m ← M. Clearly, if A wins, then so does B. Since the reduction B runs
A once, and algorithms Recover and Enc at most q many times, the claim follows.

Key-Encapsulation Mechanism. A key encapsulation mechanism KEM =
(Gen,Encaps,Decaps) consists of three algorithms and a finite key space K sim-
ilar to a PKE scheme, but Encaps does not take a message as input. The key
generation algorithm Gen outputs a key pair (pk , sk), where pk also defines
a finite randomness space R = R(pk) as well as a ciphertext space C. The
encapsulation algorithm Encaps takes as input a public-key pk and outputs a
key encapsulation ciphertext c and a key K, that is (c,K) ← Encaps(pk). The
decapsulation algorithm Decaps, on input sk and a ciphertext c, outputs either
a key K = Decaps(sk , c) ∈ K or a special symbol ⊥ /∈ K to indicate that c is not
a valid ciphertext. We say KEM has correctness error δ if

Pr [Decaps(sk , c) = K | (c,K) ← Encaps(pk)] ≤ δ ,

78 J. Duman et al.

where the probability is taken over the randomness in Encaps and (pk , sk) ← Gen.
In terms of KEM’s security, we consider the IND-CCA advantage function of an
adversary A:

AdvIND-CCA
KEM (A) := Pr

[
IND-CCAA

KEM ⇒ 1
]

− 1
2

where game IND-CCA is defined in Fig. 3.

IND-CCA
01 (pk , sk) ← Gen
02 (K0, c

∗) ← Encaps(pk)
03 K1 ← K, b ← {0, 1}
04 b′ ← ADecaps(pk , c∗, Kb)
05 return �b = b′�

Decaps(c �= c∗)
06 return Decaps(sk , c)

Fig. 3. Game IND-CCA for KEM

The Fujisaki-Okamoto Transformation with Explicit Reject. To a
public-key encryption scheme PKE = (KeyGen,Enc,Dec) with message space
M and associated uniform distribution over M, randomness space R, and
hash functions H : {0, 1}∗ → R × K, we associate KEM := FO⊥[PKE,H] :=
(KeyGen,Encaps,Decaps). Its constituting algorithms are given in Fig. 4. In [17]
it was formally shown that including a short prefix of the public-key into the
hash function provably improves the multi-user security of the Fujisaki-Okamoto
transform. In this work, for simplicity, we will omit this inclusion and analyze
the security in the single-user setting.

Theorem 2.3 (qH-OW-CPA of PKE
ROM=⇒ IND-CCA of KEM). For any adver-

sary A, making at most qD decapsulation, qH hash queries, against the IND-CCA
security of KEM, there exists an adversary B against the qH-OW-CPA security
of PKE with

AdvIND-CCA
KEM (A) ≤ AdvqH-OW-CPA

PKE (B) + qD2−γ + qHδ ,

where the running time of B is about that of A.

The proof is very similar to formerly known proofs for FO - after showing how to
simulate oracle Decaps, we argue that the challenge key cannot be distinguished
from random unless the adversary A queries H on the challenge plaintext. When
reducing to plain OW-CPA security, a reduction would have to guess, but a
reduction to qH-OW-CPA security can simply keep a list of all of A queries to H
and return this list as the list of plaintext guesses. For the sake of completeness,
a full proof is given in the full version [16].

Theorem 2.4 (IND-CPA of PKE ROM=⇒ IND-CCA of KEM [20]). For any adver-
sary A, making at most qD decapsulation, qH hash queries, against the IND-CCA

A Thorough Treatment of Highly-Efficient NTRU Instantiations 79

Encaps(pk)
01 m ← M
02 (r, K) := H(m)
03 c := Enc(pk , m; r)
04 return (K, c)

Decaps⊥(sk , c)

05 m′ := Dec(sk , c)
06 (r′, K′) := H(m′)
07 if m′ = ⊥ or c �= Enc(pk , m′; r′)
08 return ⊥
09 return K′

Fig. 4. Key encapsulation mechanism KEM = FO⊥[PKE,H], obtained from PKE =
(KeyGen,Enc,Dec) with worst-case correctness error.

security of KEM, there exists an adversary B against the IND-CPA security of
PKE with

AdvIND-CCA
KEM (A) ≤ 2

(
AdvIND-CPA

PKE (B) + qH/ |M|) + qD2−γ + qHδ ,

where the running time of B is about that of A.

Theorem 2.5 (OW-CPA of PKE
QROM=⇒ IND-CCA of KEM [12]). For any quan-

tum adversary A, making at most qD decapsulation, qH (quantum) hash queries,
against the IND-CCA security of KEM, there exists a quantum adversary B
against the OW-CPA security of PKE with

AdvIND-CCA
KEM (A) ≤ 2q

√
AdvOW-CPA

PKE (B) + 24q2
√

δ + 24q
√

qqD · 2−γ/4 .

where q := 2(qH + qD) and Time (B) ≈ Time (A)+O(qH · qD ·Time (Enc)+ q2).

3 Worst-Case to Average-Case Decryption Error

In this section we introduce two worst-case to average case correctness transform
for public-key encryption.

3.1 Simple Transformation ACWC0 with Redundancy

Let PKE be an encryption scheme with small average-case correctness error and
F be a random oracle. We first introduce a simple transformation ACWC0 by
describing ACWC0[PKE,F] in Fig. 5 which adds λ bits of redundancy to the
ciphertexts, where λ is the size of the message space. The resulting scheme has
small worst-case correctness error.

Lemma 3.1. If PKE is δ-average-case-correct, then PKE′ := ACWC0[PKE,F] is
δ-worst-case-correct.

80 J. Duman et al.

Enc′(pk , m ∈ {0, 1}λ)
01 r ← ψR
02 return (Enc(pk , r),F(r) ⊕ m)

Dec′(sk , (c, u))
03 r := Dec(sk , c)
04 return F(r) ⊕ u

Fig. 5. ACWC0[PKE,F] transforms PKE with small average-case correctness error, with
message space R and associated distribution ψR, into PKE′ with small worst-case
correctness error. The resulting scheme is λ bits longer.

Proof. We need to upper bound δ′ = Emaxm∈{0,1}λ Pr[Dec′(Enc′(m)) �= m],
where the expectation is taken over the internal randomness of KeyGen and
the choice of random oracle F, and the probability is taken over the internal
randomness of Enc′. Since a ciphertext (Enc(pk , r),F(r) ⊕ m) fails to decrypt
iff Enc(pk , r) fails to decrypt, and since message r is drawn according to the
distribution ψR on the message space of PKE,

E max
m∈{0,1}λ

Pr[Dec′(sk ,Enc′(pk , m)) �= m] = E Pr
r←ψR

[Dec(sk ,Enc(pk , r)) �= r] = δ .

Lemma 3.2. If PKE is weakly γ-spread, then so is ACWC0[PKE,F].

Proof. Follows directly by how PKE is used, since the ciphertext of
ACWC0[PKE,F] consists of the ciphertext of PKE, plus the message blinding
part.

Theorem 3.3 (qF-OW-CPA of PKE
ROM=⇒ IND-CPA of ACWC0[PKE,F]). For

any adversary A against the IND-CPA security of ACWC0[PKE,F], issuing at
most qF queries to F, there exists an adversary B against the OW-CPA security
of PKE with

AdvIND-CPA
ACWC[PKE,F](A) ≤ AdvqF-OW-CPA

PKE (B) ,

and the running time of B is about that of A.

In the IND-CPA game for ACWC0[PKE,F], the challenge ciphertext c∗ ←(
Enc(pk , r),F(r) ⊕ mb) perfectly hides mb unless the adversary queries F on

r, thus breaking OW-CPA security of PKE. A reduction to qF-OW-CPA security
can simply keep a list of all of A queries to F and return this list as the list of
plaintext guesses. For the sake of completeness, a full proof of Theorem 3.3 is
given in the full version [16].

Theorem 3.4 (pF-OW-CPA of PKE
QROM
=⇒ IND-CPA of ACWC0[PKE,F]). For

any quantum adversary A against the IND-CPA security of ACWC0[PKE,F], with
query depth at most dF and query parallelism at most pF, there exists a quantum
adversary B against the OW-CPA security of PKE with

AdvIND-CPA
ACWC[PKE,F](A) ≤ 2dF

√
AdvpF-OW-CPA

PKE (B).

and the running time of B is about that of A.

A Thorough Treatment of Highly-Efficient NTRU Instantiations 81

Since the random oracle is now quantum-accessible, we will use the O2H lemma
to argue that we can reprogramm F on r, again with the consequence that c∗ now
perfectly hides b. In accordance with the definition of the O2H extractor, our
reduction will pick one of A’s queries at random, measure this query, and return
the measured plaintexts as its guess list. Since the query has query parallelism
at most pF, the list has at most pF many elements. For the sake of completeness,
a full proof of Theorem 3.4 is given in the full version [16].

3.2 Transformation ACWC Without Redundancy

Let PKE be an encryption scheme with small average-case correctness error,
and let F be a random oracle. We will now introduce our second transforma-
tion ACWC by describing ACWC[PKE,GOTP,F] in Fig. 6. Again, the resulting
scheme has a small worst-case correctness error. Instead of adding redundancy
to the ciphertexts, however, the scheme makes use of a generalised One-Time
Pad GOTP.

Definition 3.5. Function GOTP : X × U → Y is called generalized one-time
pad (for distributions ψX , ψY , ψU) if

1. Decoding: There exists an efficient inversion algorithm Inv such that for all
x ∈ X , u ∈ U , Inv(GOTP(x, u), u) = x.

2. Message-hiding: For all x ∈ X , the random variable GOTP(x, u), for u ← ψU ,
has the same distribution as ψY

3. Randomness-hiding: For all u ∈ U , the random variable GOTP(x, u), for
x ← ψX , has the same distribution as ψY

A simple example of the generalized one-time pad GOTP : {0, 1}n × {0, 1}n →
{0, 1}n for the uniform distributions is GOTP(x, u) := x ⊕ u with inversion
algorithm Inv(y, u) := y ⊕ u. The second and third properties are obviously
satisfied since the XOR operation is a one-time pad.

Let PKE be a public-key encryption scheme with M = M1 × M2, where
ψM = ψM1 × ψM2 is a product distribution. Let GOTP : M′ × U → M2 be a
generalized one-time pad for distribution ψM2 and F : M1 → U be a random
oracle. The associated distributions ψM1 , ψM2 , ψM′ , ψU do not necessarily have
to be uniform. (If ψU is not uniform, then the distribution of the random oracle
F is such that every output is independently ψU -distributed.) PKE′ obtained by
transformation ACWC[PKE,GOTP,F] is described in Fig. 6.

Our first theorem relates the average-case correctness of PKE to the worst-
case correctness of ACWC[PKE,GOTP,F].

Lemma 3.6. Let PKE be a public-key encryption scheme with M = M1 ×
M2, where ψM = ψM1 × ψM2 is a product distribution, and let ‖ψM1‖ :=√∑

M1

ψ1(M1)2. Let GOTP : M′ × U → M2 be a generalized one-time pad (for

82 J. Duman et al.

Enc′(pk , m ∈ M′)
01 M1 ← ψM1

02 M2 := GOTP(m,F(M1))
03 return Enc(pk , M1||M2)

Dec′(sk , c)
04 M1||M2 := Dec(sk , c)
05 m := Inv(M2,F(M1))
06 return m

Fig. 6. ACWC[PKE,GOTP,F] transforms PKE with small average-case correctness error
into PKE′ with small worst-case correctness error. The output length of the two schemes
is the same.

distributions ψM′ , ψU , ψM2) and F : M1 → U be a random oracle. If PKE is δ-
average-case-correct then PKE′ := ACWC[PKE,GOTP,F] is δ′ worst-case-correct
for

δ′ = δ + ‖ψM1‖ ·
(
1 +

√
(ln |M′| − ln ‖ψM1‖)/2

)
.

Proof. For any fixed6 key pair, δ′(pk , sk) can be bounded by an arbitrary t ∈ R
+,

plus the probability that δ′(pk , sk) exceeds t. To bound the latter, we set as t
fixed-pair average-case correctness δ(pk , sk), plus ‖ψM1‖·√(c + ln |M′|)/2, and
use helper Lemma 3.7 below. A full proof is given in the full version [16].

Lemma 3.7. Let g be some function and B be some set such that

∀m ∈ M, Pr
r1←ψ1,r2←ψ2,u←U

[g(m, r1, r2, u) ∈ B] ≤ μ, (1)

where ψ1 and ψ2 are independent. Let F be a random function mapping onto
U . Define ‖ψ1‖ =

√∑
r1

ψ1(r1)2. Then for all but an e−c fraction of random
functions F, we have that ∀m ∈ M,

Pr
r1←ψ1,r2←ψ2

[g(m, r1, r2,F(r1)) ∈ B] ≤ μ + ‖ψ1‖ ·
√

(c + ln |M|)/2 (2)

Proof. We show that for any fixed m ∈ M, the probability in (2) holds for all
but a e−c · |M|−1-fraction of random functions F. The claim then follows by the
union bound. The full proof is provided in the full version [16].

Lemma 3.8. If PKE is weakly γ-spread, then so is ACWC[PKE,GOTP,F].

Proof. Follows directly, since the ciphertext consists of the ciphertext of PKE.

Theorem 3.9 ((q·qF)-OW-CPA of PKE
ROM=⇒ q-OW-CPA of ACWC[PKE,

GOTP,F]). Let q ∈ N. For any adversary A against the q-OW-CPA security of
ACWC[PKE,GOTP,F], making at most qF random oracle queries, there exists an
adversary B against the (q·qF)-OW-CPA security of ACWC[PKE,GOTP,F] with

Advq-OW-CPA
ACWC[PKE,GOTP,F](A) ≤ Adv

(q·qF)-OW-CPA
PKE (B) + q · 2−H∞(ψM′) ,

where the running time of B is about Time (A) + O(q · qF) .
6 In cases where the support of ψM1 is some finite set R, it may be sometimes conve-

nient to upper bound ‖ψM1‖ by ‖ψM1‖∞ · √|R|, where ‖ψM1‖∞ is the maximum
probability for any element in R.

A Thorough Treatment of Highly-Efficient NTRU Instantiations 83

In the q-OW-CPA game for ACWC[PKE,GOTP,F], the adversary is presented
with an encryption c∗ ← Enc(pk ,M∗

1 ‖GOTP(m∗,F(M∗
1))) of a message pair

(M∗
1 ,m∗) ← ψM1 ×ψM′ , and has to return a list Q such that m∗ ∈ Q. Unless A

queries F on M∗
1 , m∗ is perfectly hidden from A and A cannot win with proba-

bility better than q ·2−H∞(ψM′). If A queries F on M∗
1 and wins, a reduction can

again record A’s oracle queries, and then use the query list LF and A’s one-way
guessing list QA to construct its set Q by going over all possible combinations
M ′ = M ′

1||M ′
2, where M ′

1 ∈ LF and M ′
2 := GOTP(m′,F(M ′

1)) for m′ ∈ QA. If
A queries F on M∗

1 and wins, then LF will contain the right M∗
1 , meaning that

B’s list Q will contain the challenge plaintext. Note that the ciphertext for B
would be defined relative to M∗

2 ← ψM2 , but due to the properties of GOTP,
A’s one-way game can be conceptually changed such that its ciphertext is also
defined relative to M∗

2 ← ψM2 , and A wins if it returns a list Q containing
m := Inv(M∗

2 ,F(M∗
1)). For the sake of completeness, a full proof of Theorem 3.9

is given in the full version [16].

Theorem 3.10 (OW-CPA of PKE
QROM
=⇒ OW-CPA of ACWC[PKE,GOTP,F]).

For any quantum adversary A against the OW-CPA security of ACWC[PKE,
GOTP,F], making at most qF random oracle queries, there exists a quantum
adversary B against the OW-CPA security of PKE with

AdvOW-CPA
ACWC[PKE,GOTP,F](A) ≤ (2qF + 1)2 AdvOW-CPA

PKE (B),

where the running time of B is about that of A.

Intuitively, the proof follows the same idea as its classical counterpart. In
contrast to the security proof for ACWC0, however, we can not simply apply
the O2H lemma, as a reduction needs both a query to F from which it can
extract M∗

1 and its final output m, and an O2H extractor would simply abort
A once that A has issued the query to be extracted. We will therefore use the
measure-and-reprogram technique (M&R) from [11,13], arguing that we can run
the adversary, measure a random query, and continue running it afterwards to
obtain its final output m. For the sake of completeness, a full proof of Theorem
3.10 is given in the full version [16].

4 NTRU Encryption over NTT Friendly Rings

In this section we present three instantiations of the NTRU encryption scheme
in polynomial rings of the form Zq[X]/(Xd − Xd/2 + 1), where d = 2i3j , where
the parameters are set such that multiplication and inversion can be performed
very efficiently using the NTT.

4.1 Notation

We denote by R the polynomial ring Zq[X]/(Xd −Xd/2 +1), where the positive
integer d (of the form 2i3j) and the prime q are implicit from context. Elements

84 J. Duman et al.

in R will be represented by polynomials of degree less than d, and we will denote
these polynomials by bold lower-case letters. That is, all elements of R are of

the form h =
d−1∑

i=0

hiX
i ∈ R, where hi ∈ Zq. There is a natural correspondence

between elements in R and vectors in Z
d
q , where one simply writes the coefficients

of a polynomial in vector form. As additive groups, the two are trivially isomor-
phic. We will thus sometimes abuse notation and for a vector �v, write r := �v
to mean that the coefficients of the polynomial r are assigned the coefficients of
the vector �v.

For an integer h ∈ Zq, we write h mod ±q to mean the integer from the
set

{− q−1
2 , . . . , q−1

2

}
which is congruent to h modulo q. Reducing an integer

modulo 2 always maps it to a bit. These functions naturally extend to vectors
and polynomials, where one applies the function individually to each coefficient.
For a set S, the function HS : {0, 1}∗ → S denotes a hash function modeled
as a random oracle that outputs a uniform distribution on S. Similarly, for a
distribution ψ (over some implicit set S), we will write Hψ : {0, 1}∗ → S to
denote a hash function modeled as a random oracle that outputs a distribution
ψ. The function pref(·) extracts a short (around 32-64 byte) prefix from an
element of R.

4.2 The Binomial Distribution

For an even k, we define the distribution ψd
k over Z

d to be the distribution

k∑

i=1

�ai −
k∑

i=1

�bi, �ai,�bi ← {0, 1}d. (3)

The distribution ψ̄d
k is the distribution over the set {−1, 0, 1}d defined as ψd

k

reduced modulo 3. We will mostly be working with ψ̄d
k and ψd

k for k = 2, which
are, by definition, generated as �b = �b1 + �b2 − �b3 − �b4 and �b mod ± 3, where
�bi ← {0, 1}d. Each coefficient of �b and �b mod ± 3 is distributed as

ψ2 =
Output -2 -1 0 1 2
Prob 1/16 4/16 6/16 4/16 1/16

(4)

ψ̄2 =
Output -1 0 1
Prob 5/16 6/16 5/16

(5)

We now state a lemma, which is used for the construction of NTRU-A in
Fig. 7 that shows that by creating the distribution ψ2 in a special way, one of
the components of the distribution can be completely recovered when having
access to whole sample. Note that this cannot be done if each coefficient is
generated as b = b1 + b2 − b3 − b4. For example, if b = 0, then every bi has
conditional probability of 1/2 of being 0 or 1. If, on the other hand, we generate
the distribution as b = (b1 − 2b2b3)(1− 2b4), where bi ← {0, 1}, then one can see
that b1 can be recovered by computing b mod 2.

A Thorough Treatment of Highly-Efficient NTRU Instantiations 85

Lemma 4.1. The distribution ψd
2 can be generated as

�b = (�b1 − 2�b2 ��b3) � (1 − 2�b4),

where �bi ← {0, 1}d and � denotes component-wise multiplication. Furthermore,
�b mod 2 = �b1.

4.3 The NTRU Problem and Variants

In the framework for the NTRU trap-door function [19], the secret key consists of
two polynomials f and g with small coefficients in a polynomial ring (e.g. R) and
the public key if the quotient h = gf−1. The hardness assumption states that
given (h,hr+e), where r, e are sampled from some distribution with support of
elements in R with small coefficients, it is hard to recover e. For appropriately-
set parameters, one can recover e when knowing f , and we will discuss this when
presenting the full encryption scheme later in the section. For now, we are mainly
interested in the security of NTRU.

The security of the NTRU function described above is naturally broken down
into two assumptions. The first is that the distribution of h = gf−1 is indistin-
guishable from a random element in R. And the second assumption is essentially
the Ring-LWE assumption which states that given (h,hr + e), where h is uni-
form in R and r, e are chosen from some distribution with small coefficients,
it is hard to find e (and thus also r). We point out that one can eliminate the
need for the first assumption by choosing polynomials with coefficients that are
small, but large enough, so that the quotient is statistically-close to uniform
[29], but the resulting scheme ends up being significantly less efficient because
the coefficients in the polynomials of the second (Ring-LWE) problem need to
be rather small to compensate; and this in turn requires the dimension of the
ring to be increased in order for the Ring-LWE problem to remain hard. The
below definition formally states the first assumption for the distributions used
in this paper.

Definition 4.2 (The R-NTRUη assumption). For a distribution η over the
ring R and an integer p relatively-prime to q, the R-NTRUη assumption states
that g · (pf + 1)−1 is indistinguishable from a uniformly-random element in R
when g and f are chosen from the distribution η, and pf + 1 is invertible in R.

Another common version of the assumption simply states that g · f−1 is indis-
tinguishable from random, and it doesn’t appear that there is any difference in
the hardness between the two. The reason that multiplication of f by p is useful
is because it eliminates the need for an inversion (which cannot be done using
NTT) during the decryption process; and so we use this version of the problem
in the paper. The downside of this multiplication by p is that half of the “noise
terms” in the decrypted ciphertext increase by a factor of p. We now define the
Ring-LWE problem that is specific to our instantiation, and which forms the
second assumption needed for the NTRU cryptosystem.

86 J. Duman et al.

Definition 4.3 (R-LWEη). Let η be some distribution over R. In the R-LWE
problem, one is given (h,hr + e), where h ← R and r, e ← η, and is asked to
recover e.

One can also define the decision version of the above assumption as

Definition 4.4 (Decision R-LWEη). Let η be a distribution over R. The deci-
sion R-LWE assumption states that (h,hr + e), where h ← R and r, e ← η, is
indistinguishable from (h,u), where h,u ← R.

In the original LWE definition of Regev [28], the distribution η was a rounded
continuous Gaussian, as this was the distribution most convenient for achieving
a worst-case to average-case reduction from certain lattice problems over solving
R-LWEη. When implementing cryptographic primitives based on the hardness of
R-LWEη, it is more convenient to take η to be a distribution that can be easily
sampled. Some common distributions include uniform (although sometimes it is
not that simple to sample) and those that can be generated as sums of Bernoulli
random variables such as ψk and ψ̄k from (4) and (5).

The most efficient known attack against the R-NTRU and R-LWE problems
are lattice attacks. They work by defining a set

L⊥
c (h) = {(v,w) ∈ Z[X]/(Xd − Xd/2 + 1) : hv + w ≡ c (mod q)}.

When c = 0, the above set is closed under addition, and therefore forms a lattice.
To distinguish the quotient h = g/f , where f ,g have small coefficients, from a
uniformly-random h ∈ R, one can try to find the shortest vector in L⊥

0 (h). If h
is random, then a vector of �2-norm less than Ω(

√
qd) is very unlikely to exist in

L⊥
c (h). On the other hand, if the coefficients of f ,g are noticeably less than

√
q,

then (f ,−g) ∈ L⊥
c (h), and so an algorithm that can find a good approximation

to the shortest vector should find something of length significantly less than
Ω(

√
qd).

When c �= 0, L⊥
c (h) is a shifted lattice and finding the shortest vector in

it is known as the Bounded Distance Decoding (BDD) problem. For practi-
cal parameters, the complexity of the two problems is identical. Interestingly,
when q is very large with respect to the size of the secret coefficients, finding a
short vector in L⊥

c (h) is significantly easier when c = 0, as opposed to when c
is random [1,8,15,22]. This phenomenon prevents the NTRU assumption from
being used in scenarios requiring such a large gap (and so one uses Ring-LWE
and Module-LWE schemes in those scenarios), such as in Fully-Homomorphic
Encryption schemes. This security issue, however, does not seem to extend to
the NTRU parameters that are used in practice for public key encryption and
signature schemes.

We now define a version of the R-LWE problem in which the adversary is not
asked to recover the entire vector e, but just e mod 2.

Definition 4.5 (R-LWE2η). Let η be a distribution over R. In the R-LWE prob-
lem, one is given (h,hr+e), where h ← R and r, e ← η, and is asked to recover
e mod 2.

A Thorough Treatment of Highly-Efficient NTRU Instantiations 87

While we do not have a formal reduction from R-LWE to R-LWE2, based on
the state of the art of how Ring-LWE problems are solved, the two are essen-
tially equivalent. We now present two heuristic arguments for the equivalence of
R-LWE and R-LWE2.

Suppose that there is an algorithm that solves R-LWE2η and we feed it an
instance (h,hr + e) of R-LWEη. If the R-LWE2η solver returns a correct f ≡ e
(mod 2), then we can create another instance

(2−1 · h, 2−1hr + 2−1(e − f)) = (h′r + e′).

Note that h′ is still uniformly random and the distribution of e′ is now “nar-
rower” than that of the original e – if the coefficients of e were distributed as ψ2,
then each coefficient of e′ has a probability 3/16 of being ±1 and 10/16 of being
0. Based on the state of the art, a R-LWE-type problem should be easier with
this narrower distribution. So one should be able to call the R-LWE2η oracle
again, even though the distribution of e′ is now different. It’s easy to see now
that this procedure will eventually recover the entire polynomial e.

Another heuristic argument is based on a slightly-modified version of decision
R-LWE. In particular, if we assume that the decision R-LWE problem, in which
just the first polynomial coefficient in Zq is noiseless, then there is a simple
reduction from this problem to R-LWE2η. In the reduction, we simply add a
noise with distribution η to the first coefficient, and we decide whether the
decision R-LWE instance is real or random based on whether or not the answer
returned by the R-LWE2η oracle matches our added error modulo 2. While the
version of the decision R-LWE problem where the first integer coefficient has no
error is slightly different than usual, the current best-known algorithms would
solve the decision problem by solving the search version. And in the search case,
the two versions of the problem are equally hard.

The work of Brakerski et al. [7] considers this “First-is-Errorless” version of
LWE and shows that it is essentially as hard as the usual version. Boudgoust et al.
[6] extend this problem to it’s Module-LWE variant and showed that an even
stronger assumption has a (non-tight) reduction from the usual Module-LWE
problem. In short, it is very reasonable to assume that the concrete hardness of
the R-LWE2η problem is the same as that of R-LWEη.

4.4 NTRU-A: Encryption Based on R-NTRU + R-LWE2 for η = ψd
2

We now give a construction of our first OW-CPA-secure encryption scheme,
NTRU-A, whose hardness is based on the combination of the R-NTRUη +
R-LWE2η problems for η = ψ2. The way that this scheme differs from the more
usual NTRU constructions is that the secret key does let one recover the entire
e. This can pose a problem because generally e the message in the OW-CPA
NTRU scheme, and yet we can only recover a part of it. This is not a OW-CPA
scheme and we will not be able to obtain a CCA-secure KEM using generic
transformations.

We remedy this issue by only making the value e mod 2 be the message.
This requires that for a given random message m, the e is generated from the

88 J. Duman et al.

correct distribution (i.e. ψ2) with the additional restriction that m = e mod 2.
An interesting aspect of this scheme is that because the message is not the entire
e, the adversary does not have as much freedom to pick it so as to maximize the
decryption error. If the adversary can only pick e mod 2, it turns out that the
worst-case decryption error is quite close to the “best case”. We now proceed to
describe the OW-CPA scheme in Fig. 7.

Gen1()

01 �b1,�b2,�b3,�b4 ← {0, 1}d

02 return �b1 +�b2 −�b3 −�b4

Gen2(�b1 ∈ {0, 1}d)

03 �b2,�b3,�b4 ← {0, 1}d

04 return (�b1 − 2�b2 ��b3)
�(1−2�b4)

KeyGen()
05 f ′ := Gen1()
06 f := 2f ′ + 1

07 if f is not invertible
in R, restart

08 g := Gen1()
09 (pk , sk) = (2gf−1, f)

10 return (pk , sk)

Enc(h ∈ R, �m ∈ {0, 1}d, ρ ∈ {0, 1}7d)
11 Parse ρ as (ρ1, ρ2)

12 r := Gen1(; ρ1), e := Gen2(�m; ρ2)

13 return hr+ e

Dec(f ∈ R, c ∈ R)

14 u := (cf mod ±q) mod 2
15 �m := u
16 return �m

Fig. 7. OW-CPA Encryption Scheme NTRU-A based on the R-NTRUψ2 + R-LWE2ψ2

problems. Only the procedures Gen1 and Gen2 are randomized. We include the coins
ρ as input for the Encryption algorithm (which will be passed to Gen1 and Gen2)
because these are explicitly used in the CCA transformation. The coins used in the key
generation are implicit.

OW-CPA Scheme. The distribution of the coefficients of the secret polynomials
used in key generation and encryption ψ2 (see (4)) and is produced by the Gen1()
algorithm in Fig. 7. As per Lemma 4.1, this distribution can be generated as
b1 + b2 − b3 − b4 or, equivalently, as (b1 − 2b2b3)(1 − 2b4), where all the bi are
Bernoulli random variables. The reason the latter distribution is interesting to
us is that modulo 2, it is one of the variables that creates it – b1.

The secret key is generated by choosing polynomials f ′,g ← ψd
2 and comput-

ing f = 2f ′ + 1. If f is not invertible in R, we restart. Otherwise, the public key
is h = 2gf−1 and the secret key is f .

To encrypt a message �m ∈ {0, 1}d, the encryptor first generates a random
polynomial r ← ψd

2 using the Gen1() procedure. He then needs to choose a
polynomial e such that e mod 2 (as a vector) is �m. Furthermore, when �m is
chosen uniformly at random from {0, 1}d, the distribution of e should be ψd

2 .
To create such a distribution, we define e = Gen2(�m). By Lemma 4.1, e is
distributed according to ψd

2 . The ciphertext is c = hr + e.
To decrypt the ciphertext c = hr + e = 2gr/f + e, we multiply it by f ,

centralize it mod q, and then reduce modulo 2 to obtain

(cf mod ±q) mod 2 = 2gr + ef mod 2 = 2gr + 2ef ′ + e mod 2 (6)

A Thorough Treatment of Highly-Efficient NTRU Instantiations 89

If all the coefficients of 2gr + 2ef ′ + e (as integers) are smaller than q/2, then
modulo 2, this value will be exactly e mod 2, which is �m. Since the coefficients
of e have absolute value at most 2, in order to have decryption be correct, we
need the coefficients of gr+ ef ′ to be less than q/4 − 1. We will now move on to
show how to compute this probability.

Decryption Error for a Worst-Case Message. The decryption error of
NTRU-A can be computed following the template given in [26, Section 3.2]. As
discussed above, if a coefficient of gr + ef ′ (as an integer) has absolute value
less than q/4 − 1, then the output of that coefficient in (6) will be e mod 2, as
desired. So we now need to understand what each coefficient of gr + ef ′ looks
like. This is easiest to see via an example of how polynomial multiplication in
the ring R can be represented by a matrix-vector product. If we, for example,
want to multiply two polynomials ab in the ring Zq[X]/(X6 − X3 + 1), where

a =
5∑

i=0

ai and b =
5∑

i=0

bi then their product c =
5∑

i=0

ci can be written as in (7).

⎡

⎢⎢⎢
⎢⎢⎢
⎣

a0 −a5 −a4 −a3 −a2 − a5 −a1 − a4
a1 a0 −a5 −a4 −a3 −a2 − a5
a2 a1 a0 −a5 −a4 −a3
a3 a2 + a5 a1 + a4 a0 + a3 a2 a1
a4 a3 a2 + a5 a1 + a4 a0 + a3 a2
a5 a4 a3 a2 + a5 a1 + a4 a0 + a3

⎤

⎥⎥⎥
⎥⎥⎥
⎦

·

⎡

⎢⎢⎢
⎢⎢⎢
⎣

b0

b1

b2

b3

b4

b5

⎤

⎥⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢⎢
⎣

c0
c1
c2
c3
c4
c5

⎤

⎥⎥⎥
⎥⎥⎥
⎦

(7)

Notice that c3, c4, and c5 are a sum of three independently-generated integers
of the form

c = ba + b′(a + a′). (8)

The coefficient c2, however, is simply a sum of 6 independent random variables
of the form ab. Or to make it look similar to (8), we can think of it as the sum
of three random variables of the form

c = ba + b′a′. (9)

It should be clear that the distribution of (8) is wider than that of (9), and so
the probability that the coefficients which follow the former distribution will be
outside of the “safe zone” is larger. The coefficients c0 and c1 are a hybrid of
these two distributions. For example, c1 is the sum of one coefficient from (8)
and two from (9); while c2 is the sum of two from (8) and one from (9).

To bound the probability that decryption will be correct, we should therefore
bound the distribution of c3, c4, c5, or in the general case, a coefficient in the
bottom half of c and then apply the union bound. So the widest distribution
will consist of sums of d/2 random variables having the distribution as in (8).
The term gr in (6) has this exact distribution, where each coefficient of g, r is
distributed according to Gen1().

90 J. Duman et al.

The term f ′e is distributed differently because in our security proof we need to
consider an adversarially-chosen message �m, after the adversary sees the public
key. Because the adversary does not get to choose the whole message, but just
the modulo 2 residue, it turns out that the failure probability for a worst-case
message is not too different than for a uniformly random one. In (10), we give
the distribution of a particular coefficient of ei conditioned on the message bit
being either 0 or 1.

Gen2(0) =
Output -2 0 2

Probability 0.125 0.75 0.125
Gen2(1) =

Output -1 1

Probability 0.5 0.5
(10)

One can see that in both cases the distribution is centered around 0 and has
variance 1, and so one should not expect a very large difference in the decryption
error. Experimentally, it turns out that the worst-case messages occur when
choosing �m = �0. Furthermore, the worst-case message is the same for any secret
key.7 This implies that the worst-case correctness error is the average-case one
where the distribution over the coefficients of e is as in Gen2(0) of (10). As in
[3,5,26], the error probability reported in Table 1 is computed via polynomial
multiplications which represent convolutions of random variables.

IND-CCA-Secure KEM. One can apply the Fujisaki-Okamoto transforma-
tion FO⊥ from Fig. 4 to obtain the IND-CCA secure version CCA-NTRU-A :=
FO⊥[NTRU-A,H] of NTRU-A. The concrete security bounds on the IND-CCA
security of CCA-NTRU-A from Table 4 can be derived in the ROM using Lemma
2.1 and Theorem 2.3 and in the QROM using Theorem 2.5.

Table 4. Bounds on the IND-CCA secure NTRU-variants CCA-NTRU-A, CCA-NTRU-B,
and CCA-NTRU-C. Constants and negligible terms are suppressed for simplicity. The
value q is the sum of all adversarial (random oracle and decryption) queries, i.e.,
q = qH + qD + qF. The ε values are the advantage functions of the underlying NTRU
assumptions: εA = AdvR-NTRUη +AdvR-LWE2η for η = ψd

2 ; εB = AdvR-NTRUη +AdvR-LWEη

for η = Ud
3 and εC = AdvR-NTRUη + AdvR-LWEη for η = ψ̄d

2 .

IND-CCA secure KEM ROM QROM

CCA-NTRU-A q(εA + δ) q
√

εA + q2
√

δ

CCA-NTRU-B εB + q(3−λ + δ) q2(
√

εB +
√

δ)

CCA-NTRU-C εC + q(2−λ + δ) q1.5(4
√

εC + q0.5
√

δ)

4.5 Generic NTRU Encryption and Error-Reducing
Transformations

Figure 8 defines GenNTRU[η] relative to distribution η over R. Note that
GenNTRU[η] is randomness-recoverable (RR) because once we have e and
7 This was verified experimentally by fixing the a, a′ in (8) to all valid values and

computing the probability of failure assuming that all the secret keys have this
value.

A Thorough Treatment of Highly-Efficient NTRU Instantiations 91

c = hr + e, we can compute r = (c − e) · h−1. Because we checked that g
is invertible, it holds that h = 3gf−1 also has an inverse.

KeyGen()

01 f ′,g ← η
02 f := 3f ′ + 1
03 if f or g is not invertible in R, restart
04 return (pk , sk)= (3gf−1, f)

Enc(h ∈ R,
m ∈ {−1, 0, 1}d)
05 r ← η
06 return c := hr +
m

Dec(f ∈ R, c ∈ R)

07 return
m := (cf mod ±q) mod ± 3

Fig. 8. Generic NTRU GenNTRU[η] relative to distribution ψ over ring R with average-
case correctness error. During key-generation, we need to check that g is invertible in
order to have the randomness recovery property. It seems doubtful that this check adds
any actual security in practice, but for all parameter sets, it only adds less than 0.01%
chance to a restart, so it does not make much difference either way.

By the definition, the OW-CPA security of GenNTRU[η] is implied by the R-
NTRUη+R-LWEη assumptions. In this subsection, we will consider two concrete
instantiations of GenNTRU, namely GenNTRU[U3], where U3 is the uniform dis-
tribution over {−1, 0, 1}d, and GenNTRU[ψ̄d

2], where ψ̄d
2 was defined in Sect. 4.2.

Both schemes do not have sufficiently small worst-case correctness error, which
is the reason why we will first apply one of our average-case to worst-case cor-
rectness error transformations from the last section.

NTRU-B: Encryption Based on R-NTRUη+R-LWEη for η = Ud
3 .

We define the generalized one-time pad GOTP : R × R → R relative
to distributions Ud

3 as GOTP(�m, u) := �m + u mod ± 3. Then NTRU-B :=
ACWC[GenNTRU[Ud

3],GOTP,F], obtained by applying the ACWC transforma-
tion from Sect. 3.2 to GenNTRU[Ud

3], is described in Fig. 9. Its message space
is M′ = {−1, 0, 1}λ with distribution Ud

3 , where M1 = {−1, 0, 1}d−λ and
M2 = {−1, 0, 1}λ.

By Lemma 3.6, the average-case correctness error of GenNTRU[Ud
3] and the

worst-case correctness error of NTRU-B are off by an additive factor of

Δ = ‖Ud−λ
3 ‖ ·

(
1 +

√
(ln |M′| − ln ‖Ud−λ

3 ‖)/2

)
≈ ‖Ud−λ

3 ‖ = 3−(d−λ)/2 ≈ 2−0.8×(d−λ)

which can be neglected for λ = 256 and d ≥ 576. Hence, for all practical param-
eters considered in Table 1, worst-case and average-case correctness errors are
equal. Using the techniques Sect. 4.4 it can be verified that the error probabili-
ties reported in Table 1 are correct for NTRU-B.

Finally, one can apply the Fujisaki-Okamoto transformation FO⊥ from Fig. 4
to obtain the IND-CCA secure version CCA-NTRU-B := FO⊥[NTRU-B,H] of
NTRU-B. In the ROM, the concrete security bound on the IND-CCA security
of CCA-NTRU-B from Table 4 can be derived by combining Lemma 2.2 with

92 J. Duman et al.

KeyGen()

01 f ′,g ← {−1, 0, 1}d

02 f := 3f ′ + 1
03 if f or g is not invertible

in R, restart

04 (pk , sk)= (3gf−1, f)

05 return (pk , sk)

Enc(h ∈ R, �m ∈ {−1, 0, 1}λ, ρ)

06 (use the randomness ρ for
creating �m′ and r)

07 �m′ ← {−1, 0, 1}d−λ

08 �u := F{−1,0,1}λ (�m′)
09 �m′′ := �m + u mod ± 3
10 r ← {−1, 0, 1}d

11 e := �m′||�m′′
12 return hr+ e

Dec(f ∈ R, c ∈ R)

13 �m′||�m′′ := (cf mod ±q)
mod ± 3

14 u := F{−1,0,1}λ (�m′)
15 �m := �m′′ − �u mod ± 3
16 return �m

Fig. 9. Randomness-recoverable OW-CPA encryption scheme NTRU-B with worst-case
correctness error based on the R-NTRUUd

3
+ R-LWEUd

3
problems for Ud

3 being uniform

over {−1, 0, 1}d.

Theorems 3.9 and 2.3. We refer to Fig. 1 for an overview of the implications.
In the QROM, the bound can be derived by combining Theorem 3.10 with
Theorem 2.5.

NTRU-C: Encryption Based on R-NTRUη+R-LWEη for η = ψ̄d
2 . We

define NTRU-C := ACWC0[GenNTRU[ψ̄d
2],F] with uniform message space M′ =

{0, 1}λ, obtained by applying the ACWC0 transformation with redundancy from
Sect. 3.1 to GenNTRU[ψ̄d

2] is described in Fig. 10. By Lemma 3.1, the average-
case correctness error of GenNTRU[ψ̄d

2] and the worst-case correctness error of
NTRU-C are identical. Using the techniques Sect. 4.4 it can be verified that the
error probabilities reported in Table 1 are correct for NTRU-C. Finally, one can
apply the Fujisaki-Okamoto transformation FO⊥ from Fig. 4 to obtain the IND-
CCA secure version CCA-NTRU-C := FO⊥[NTRU-C,H] of NTRU-C. In the ROM,
the concrete security bound on the IND-CCA security of CCA-NTRU-C from
Table 4 can be derived by combining Lemma 2.2 with Theorems 3.3 and 2.4.
In the QROM, the bound can be derived by combining Lemma 2.2 with Theo-
rem 3.4 and Theorem 2.5.

KeyGen()

01 f ′, g ← ψ̄d
2

02 f := 3f ′ + 1

03 if f or g is not invertible

in R, restart

04 return (pk, sk)= (3gf−1, f)

Enc(h ∈ R, �m ∈ {0, 1}λ, ρ ∈ {0, 1}8d)

05 (use the randomness ρ for

creating e and r)

06 e, r ← ψ̄d
2

07 �u := �m ⊕ F{0,1}λ (e)

08 return (hr + e, �u)

Dec(f ∈ R, (c ∈ R, �u ∈ {0, 1}λ))

09 e := (cf mod ±q) mod ± 3

10 �m := �u ⊕ F{0,1}λ (e)

11 return �m

Fig. 10. NTRU-C: a randomness-recoverable OW-CPA encryption scheme with worst-
case correctness error based on the R-NTRUη + R-LWEη problems for η = ψ̄d

2 .

Acknowledgements. The work of Julien Duman was supported by the German Fed-
eral Ministry of Education and Research (BMBF) in the course of the 6GEM Research
Hub under Grant 16KISK037. Eike Kiltz was supported by the Deutsche Forschungs-
gemeinschaft (DFG, German research Foundation) as part of the Excellence Strategy
of the German Federal and State Governments - EXC 2092 CASA - 390781972, and

A Thorough Treatment of Highly-Efficient NTRU Instantiations 93

by the European Union (ERC AdG REWORC - 101054911). Dominique Unruh was
supported by the ERC consolidator grant CerQuS (819317), by the Estonian Centre of
Excellence in IT (EXCITE) funded by ERDF, by PUT team grant PRG946 from the
Estonian Research Council. Vadim Lyubashevsky and Gregor Seiler were supported by
the ERC Consolidator grant PLAZA (101002845).

References

1. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 6

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of Learning with
Errors. J. Math. Cryptol. 9(3), 169–203 (2015)

3. Alkim, E., et al.: Post-quantum key exchange - a new hope. In: USENIX Security
Symposium. USENIX Association, pp. 327–343 (2016)

4. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 269–295. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26951-7 10

5. Bos, J.W., et al.: CRYSTALS - kyber: a CCA-secure module-lattice- based KEM.
In: EuroS&P, pp. 353–367. IEEE (2018)

6. Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: On the hardness of module-
LWE with binary secret. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704,
pp. 503–526. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75539-
3 21

7. Brakerski, Z., et al.: Classical hardness of learning with errors. In: STOC, pp.
575–584 (2013)

8. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis
of the GGH multilinear map without a low-level encoding of zero. LMS J. Comput.
Math. 19(A), 255–266 (2016)

9. Chung, C.M., et al.: NTT multiplication for NTT-unfriendly rings new speed
records for saber and NTRU on cortex-M4 and AVX2. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2021(2), 159–188 (2021)

10. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 16

11. Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0: multi-
round fiat-shamir and more. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12172, pp. 602–631. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56877-1 21

12. Don, J., et al.: Online-extractability in the quantum random-oracle model. In:
Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13277,
pp. 677–706. Springer, Cham. (2022). https://doi.org/10.1007/978-3-031-07082-
2 24

13. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 13

https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-75539-3_21
https://doi.org/10.1007/978-3-030-75539-3_21
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-031-07082-2_24
https://doi.org/10.1007/978-3-031-07082-2_24
https://doi.org/10.1007/978-3-030-26951-7_13

94 J. Duman et al.

14. Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 125–
145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 5

15. Ducas, L., van Woerden, W.: NTRU fatigue: how stretched is overstretched? In:
Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 3–32.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 1

16. Duman, J., et al.: A thorough treatment of highly-efficient NTRU instantiations.
In: Cryptology ePrint Archive (2021)

17. Duman, J., et al.: Faster lattice-based KEMs via a generic Fujisaki-Okamoto trans-
form using prefix hashing. In: CCS (2021)

18. Gentry, C.: Key recovery and message attacks on NTRU-composite. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 182–194. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44987-6 12

19. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryp-
tosystem. In: ANTS, pp. 267–288 (1998)

20. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: TCC, pp. 341–371 (2017)

21. Hülsing, A., Rijneveld, J., Schanck, J., Schwabe, P.: High-speed key encapsulation
from NTRU. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp.
232–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 12

22. Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched NTRU
parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 1

23. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptography 75(3), 565–599 (2015)

24. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: ICALP (2), pp. 144–155 (2006)

25. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

26. Lyubashevsky, V., Seiler, G.: NTTRU: truly fast NTRU using NTT. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2019(3), 180–201 (2019)

27. Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclo-
tomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 204–224.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 8

28. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: J. ACM 56.6 (2009)

29. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 4

30. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 36

31. Unruh, D.: Revocable quantum timed-release encryption. J. ACM 62(6), 49, 1–
49:76 (2015)

https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/3-540-44987-6_12
https://doi.org/10.1007/978-3-319-66787-4_12
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-319-78381-9_8
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36

	A Thorough Treatment of Highly-Efficient NTRU Instantiations
	1 Introduction
	1.1 Speed
	1.2 Decryption Error and Compactness
	1.3 Proofs in the (Q)ROM
	1.4 Concrete Results and Comparison to the State of the Art

	2 Preliminaries
	2.1 Notation
	2.2 Cryptographic Definitions

	3 Worst-Case to Average-Case Decryption Error
	3.1 Simple Transformation ACWC0 with Redundancy
	3.2 Transformation ACWC Without Redundancy

	4 NTRU Encryption over NTT Friendly Rings
	4.1 Notation
	4.2 The Binomial Distribution
	4.3 The NTRU Problem and Variants
	4.4 NTRU-A: Encryption Based on R-NTRU + R-LWE2 for =2d
	4.5 Generic NTRU Encryption and Error-Reducing Transformations

	References

