
Decentralized Multi-Authority Attribute-Based
Inner-Product FE: Large Universe

and Unbounded

Pratish Datta1 and Tapas Pal2(B)

1 NTT Research, Inc., Sunnyvale, CA 94085, USA
pratish.datta@ntt-research.com

2 NTT Social Informatics Laboratories, Musashino-shi, Tokyo 180-8585, Japan
tapas.pal.wh@hco.ntt.co.jp, tapas.real@gmail.com

Abstract. This paper presents the first decentralized multi-authority attribute-
based inner product functional encryption (MA-ABIPFE) schemes supporting
vectors of a priori unbounded lengths. The notion of AB-IPFE, introduced by
Abdalla et al. [ASIACRYPT 2020], combines the access control functionality
of attribute-based encryption (ABE) with the possibility of evaluating linear
functions on encrypted data. A decentralized MA-ABIPFE defined by Agrawal
et al. [TCC 2021] essentially enhances the ABE component of AB-IPFE to
the decentralized multi-authority setting where several authorities can indepen-
dently issue user keys involving attributes under their control. In MA-ABIPFE
for unbounded vectors (MA-ABUIPFE), encryptors can encrypt vectors of arbi-
trary length under access policies of their choice whereas authorities can issue
secret keys to users involving attributes under their control and vectors of arbi-
trary lengths. Decryption works in the same way as for MA-ABIPFE provided
the lengths of the vectors within the ciphertext and secret keys match.

We present two MA-ABUIPFE schemes supporting access policies realiz-
able by linear secret sharing schemes (LSSS), in the significantly faster prime-
order bilinear groups under decisional assumptions based on the target groups
which are known to be weaker compared to their counterparts based in the source
groups. The proposed schemes demonstrate different trade-offs between versatil-
ity and underlying assumptions. The first scheme allows each authority to con-
trol a bounded number of attributes and is proven secure under the well-studied
decisional bilinear Diffie-Hellman (DBDH) assumption. On the other hand, the
second scheme allows authorities to control exponentially many attributes and
attributes are not required to be enumerated at the setup, that is, supports large
attribute universe, and is proven secure under a non-interactive q-type variant of
the DBDH assumption called L-DBDH, similar to what was used in prior large-
universe multi-authority ABE (MA-ABE) construction.

When compared with the only known MA-ABIPFE scheme due to Agrawal
et al. [TCC 2021], our schemes offer significantly higher efficiency while offer-
ing greater flexibility and security under weaker assumptions at the same time.
Moreover, unlike Agrawal et al., our schemes can support the appearance of
the same attributes within an access policy arbitrarily many times. Since effi-
ciency and practicality are the prime focus of this work, we prove the security
of our constructions in the random oracle model against static adversaries sim-
ilar to prior works on MA-ABE with similar motivations and assumptions. On
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the technical side, we extend the unbounded IPFE techniques of Dufour-Sans
and Pointcheval [ACNS 2019] to the context of MA-ABUIPFE by introducing a
novel hash-decomposition technique.

Keywords: multi-authority · attribute-based · unbounded · inner product ·
functional encryption · large universe · static model

1 Introduction

Functional encryption (FE), introduced by Boneh, Sahai and Waters [15] and O’Neill
[34] is an advanced form of public key encryption (PKE) designed for computing
on encrypted data while maintaining its confidentiality beyond the computed results.
FE delivers cryptographic solutions to a wide variety of privacy-enhancing technolo-
gies from enabling finer access control to outsourcing computations on sensitive data
to the cloud. Starting with the work of Abdalla et al. [3], a long sequence of works
[2,4,10,18,40] studied FE schemes for the class of linear functions, also known as
inner product FE (IPFE). In IPFE, the ciphertexts and functional secret keys are asso-
ciated with vectors x and y respectively while a decrypter only learns the inner product
x ·y and nothing else about x. Although the functionality is simple, IPFE has found
a great amount of applications in both theory, for example, designing more expres-
sive FE schemes for quadratic [23,27] and general functions [26,28] and in practice,
for example, performing statistical studies on encrypted data, evaluating polynomials,
computing conjunctions and disjunctions [3], or calculating hamming weights in bio-
metric authentications [29,45], constructing trace and revoke schemes [6]. However,
any IPFE system suffers from an inherent leakage of data due to it’s linear functional-
ity. In fact, releasing a set of secret keys for vectors forming a basis of the underlying
vector space would result in a complete break of the system since it enables the recov-
ery of the master secret key of the IPFE system and hence uncover all the encrypted
data in the system.

One natural way to control such leakage of data in IPFE is to combine it
with attribute-based encryption (ABE), that is, to additionally associate access poli-
cies/attributes within the ciphertexts/secret keys (or the other way around) in the same
spirit as attribute-based encryption (ABE) such that the eligibility for computing on the
encrypted data requires a prior validation of the attributes by the policy. Such access
control mechanism in IPFE was introduced by Abdalla et al. [5] where they termed this
upgraded notion as attribute-based IPFE (AB-IPFE). The notion of AB-IPFE [5,8,35]
has been mostly explored in the setting where a single authority is responsible for man-
aging all the attributes in the system and issuing secret keys to users. This not only
is a limitation from the point of view of trust, but also it is problematic for practical
applications. In fact, in reality, different attributes are governed by different authorities,
for example, academic degrees are handled by universities, medical attributes are man-
aged by hospitals while driving licenses are controlled by transportation or automobile
agencies.
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Multi Authority AB-IPFE: Inspired by the notion of multi-authority ABE (MA-ABE)
[19–21,30,33,36,43] which deals with the decentralization of attribute management in
the context of ABE, Agrawal et al. [9] initiated the study of multi-authority AB-IPFE
(MA-ABIPFE) which enhances the ABE segment of AB-IPFE to the multi-authority
setting. That is, just like MA-ABE, in MA-ABIPFE individual authorities are allowed
to generate their own master key pairs and provide secret keys for attributes only
under their control without interacting with the other authorities. A user learns x ·y
by decrypting a ciphertext generated with respect to a policy P and a vector x using
various secret keys associated to a vector y and the different attributes it possesses
that are obtained from the authorities controlling those attributes. Some potential prac-
tical application of MA-ABIPFE could be computing average salary of employees in
an organization possessing a driving license and holding a Ph.D, statistics determining
mental health of students of different departments in a university, etc.

Despite its countless potential applications, so far the only candidate MA-ABIPFE
scheme, is due to Agrawal et al. [9] which supports access policies realizable by linear
secret sharing schemes (LSSS) and is designed in a composite-order group and the
security is based on variants of the subgroup decision assumptions which are source
group assumptions, that is, assumptions made about the source groups of the underlying
bilinear pairing. It is a well-known fact that composite-order bilinear groups are very
expensive both in terms of computation and communication/storage. This is reflected in
theMA-ABIPFE of [9], especially the decryption takes an unacceptable time of around
five days (as shown in Table 2) when run using reasonable parameters, which clearly
makes the scheme impractical. In order to address this efficiency bottleneck, a possible
way to avoid this heavy efficiency bottleneck is to look for a construction in the prime-
order bilinear groups which are way better in terms of the above parameters compared
to their composite-order counterparts [22,25,31].

Another significant drawback of theMA-ABIPFE is that the vector lengths are fixed
and the number of authorities or attributes are bounded in the setup. Consequently, the
system must provision for a vector length bound that captures all possible plaintext
vectors that would be encrypted during the lifetime of the system. Further, the size of
ciphertexts and the encryption time, however small the length of the plaintext vector
x is, scale with the worst-case vector length bound. Also, in the [9] construction, each
authority can control at most a bounded number of attributes. This could be a bottleneck
in certain applications, for instance, a university may introduce a new academic degree
program over time which would require its potential to freely expand the attribute list
under its control. Moreover, in theMA-ABIPFE system of [9], new authorities/attributes
could not join beyond the upper limit set in the setup. This is clearly a disadvantage for
several applications from the point of view of sustainability since it is often impossible
to visualize all possible attributes/authorities that can ever come into existence at the
time of setting up the system. For instance, new universities may be included in the sur-
vey of analyzing mental health of their students, which amplifies the number of author-
ities/attributes as well as the length of data. Additionally, the MA-ABIPFE scheme of
[9] suffer from the so-called “one-use” restriction, that is, an attribute can appear within
an access policy at most a bounded number of times, which clearly limits the class of
access policies and negatively impacts efficiency. Lastly, in order to gain confidence
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in a new cryptographic primitive such as MA-ABIPFE, it is always important to have
more and more candidates for that primitive under qualitatively weaker computational
assumptions. We thus consider the following open problem:

Open Problem: Is it possible to construct efficient MA-ABIPFE schemes for any
expressive class of policies, e.g., LSSS, and avoiding the one-use restriction in prime-
order bilinear groups under any (possibly qualitatively weaker) computational assump-
tion such that an arbitrary number of authorities (possibly having an unbounded number
of attributes under their control) can join at any point of time and an unbounded length
data can be processed?

Our Results: In this paper, we answer the above open problem affirmatively. More pre-
cisely, we start by formulating the notion of (decentralized) multi-authority attribute-
based unbounded IPFE (MA-ABUIPFE) which has all the features discussed above,
namely, (a) several independent authorities can control different attributes in the sys-
tem, (b) authorities can join the system at any time and there is no upper bound on
the number of authorities that can ever exist in the system, and (c) unbounded length
message and key vectors can be processed, that is, each authority can generate their
public and master secret keys without fixing the length of vectors that can be processed
with their keys. Next, we constructMA-ABUIPFE supporting LSSS access structures in
the significantly faster prime-order bilinear group setting under computational assump-
tions based in the target group which are known to be qualitatively weaker compared
to those based in the source group [11,21]. The efficiency improvements achieved by
our scheme as compared to the only knownMA-ABIPFE scheme [9] is quite significant
(see Tables 1 and 2 for a concrete comparison of the schemes). On a more positive note,
we are able to overcome the “one-use restriction”, that is, support the appearance of
attributes within access policies arbitrarily many times.

We present twoMA-ABUIPFE schemes with varying trade-offs between versatility
and underlying assumptions.

– Small-Universe MA-ABUIPFE Scheme: We construct an MA-ABUIPFE scheme
where an authority is allowed to control a single (or a bounded number of)
attribute(s), but the number of authorities that could be added to the system is still
arbitrary. The construction is proven secure under the decisional bilinear Diffie-
Hellman (DBDH) assumption [13,38] which is a very well-studied computational
assumption based in the target groups. Note that the DBDH assumption underlies
the security of classical ABE schemes [24,37,42] and has recently been shown to
realizeMA-ABE [21]. OurMA-ABUIPFE scheme demonstrates that it is possible to
base the security of an even richer functionality on DBDH as well.

– Large-Universe MA-ABUIPFE Scheme: We further upgrade our small-universe
MA-ABUIPFE scheme to support large attribute universe, that is, where each author-
ity can control exponentially many attributes and attributes need not be enumer-
ated at the setup. We present the security of this construction under a parame-
terized version of the DBDH assumption which we call the L-DBDH assump-
tion. We justify the validity of this new computational assumption in the generic
bilinear group model [12,39] as is done for nearly if not all bilinear group-
based computational assumptions used today. Note that, so far, there is no known



Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 591

MA-ABE scheme supporting large universe in the literature that is proven secure
without parameterized assumption. The efficiency of the proposed large-universe
scheme is well comparable to the small-universe one. Thus, our large-universe
MA-ABUIPFE (LMA-ABUIPFE) scheme addresses several efficiency and practi-
cality issues towards deploying this primitive in practice.

Since our focus on this paper is on efficiency and practicality, we content with prov-
ing the security of our schemes in the static model where the adversary has to declare
all its ciphertext, secret key, and authority corruption queries upfront following prior
work on MA-ABE with similar motivations [36]. However, we would like to mention
that while we could not prove our schemes secure against selective adversaries under
DBDH or similar target-group-based assumptions, that is, adversaries who must send
the challenge ciphertext and authority corruption queries upfront but are allowed to
make user secret key queries adaptively afterwards, as considered in [9], we could not
identify any vulnerability in our proposed schemes against such adversaries. Also, just
like priorMA-ABE schemes proven secure under standard computational assumptions,
we make use of the random oracle model1.

In order to design our small-universe MA-ABUIPFE, we build on the techniques
used in the MA-ABE construction from DBDH by [21] and the unbounded IPFE con-
struction fromDBDH by [38]. However, as explained in Sect. 2 below, a straightforward
combination of those techniques does not work. We devise a novel hash-decomposition
technique to decompose the evaluation of the hash values, used as randomizers for tying
together the different secret keys for the same user, between the encryption and key gen-
eration/decryption algorithms and also for handling satisfying and non-satisfying secret
key queries of the adversary during the security proof differently. (Please see Sect. 2 for
more details on the hash-decomposition technique.)

Along the way to our small universeMA-ABUIPFE scheme, we also present a single
authority ABUIPFE for LSSS access policies in prime-order bilinear groups under the
DBDH assumption. Prior to this work, there was no known AB-IPFE scheme even
for bounded length vectors that was proven secure under a target group assumption.
Thus, the proposed ABUIPFE expands the portfolio of computational assumptions on
which this useful primitive can be based on and thereby increasing the confidence in
the existence of this primitive in turn. Further, our construction also demonstrates that
despite of being a more expressive functionality, MA-ABIPFE is still possible under
the same assumption as ABE orMA-ABE. In fact, our AB-IPFE is the first target-group
assumption-based FE scheme that goes beyond the “all-or-nothing” paradigm.

1 Very recently, Waters, Wee, and Wu [43] presented a lattice-basedMA-ABE scheme that does
not make use of random oracles. However, the scheme relies on a recently introduced com-
plexity assumption called evasive LWE [44] which is a strong knowledge type assumption and
is not yet cryptanalyzed in detail.
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Table 1. Efficiency Comparison of [9] and Our Scheme with 128-bit Security

Scheme Group order
length (in bits)

|PKt|/
|PKθ|

|SKGID,t,u |
T(t) = θ

|CT| Encrypt Time Decrypt Time

Agrawal
et al. [9]

3072 6054n 3072 (n + � +
2n�)3072

(n + n�)EN,T + (� +
n�)EN,S

(� + 1)PN + (n +
n�2)EN,T +(�+n�2)EN,S

MA-ABUIPFE
(Sect. 5)

256 |PKt| =
256smax

256 [n + �smax(n +
1)]256

(n+n�)Eq,T + [�smax(n+
2) − �(n + 1)]Eq,S +
(2�n(smax − 1))Pq

[� + n(smax − 1)](Pq +
Eq,T ) + nEq,S

LMA-ABUIPFE
(Sect. 6)

256 |PKθ| =
256smax

256(smax+1) [n + �smax(n +
2)]256

(n+n�)Eq,T + [�smax(n+
3) − �(n + 1)]Eq,S +
(2�n(smax − 1))Pq

[� + n(smax − 1)](Pq +
Eq,T ) + �smaxPq + nEq,S

The notations from Table 1 are described below:

– |PKt|/|PKθ|: size of the public key associated to the attribute t or authority θ
– |SKGID,t,u |: size of the secret key associated to the tuple (GID, t,u)
– |CT|: size of the ciphertext
– n: length of vectors; �, smax: number of rows and columns in LSSS matrix respec-

tively
– EN,S ,Eq,S : exponentiation time in composite and prime order source groups respec-
tively

– EN,T ,Eq,T : exponentiation time in composite and prime order target groups respec-
tively

– PN ,Pq: time to compute a pairing in composite and prime order groups respectively

Table 2. Concrete Efficiency Comparison for 128-bit Security, n = 200, � = 50, smax = 20.

Scheme |PKθ| |CT| Encrypt Time Decrypt Time

Agrawal et al. [9] ≈ 147.8 KB ≈ 7.78MB ≈ 143.7 mins ≈ 4.9 days

MA-ABUIPFE (Sect. 5) ≈ 0.64 KB ≈ 6.44MB ≈ 63.14 mins ≈ 7.27 mins

LMA-ABUIPFE (Sect. 6) ≈ 0.64 KB ≈ 6.47MB ≈ 63.2 mins ≈ 7.35 mins

Advantages of Our Schemes Over Agrawal et al. [9] Beyond Unboundedness: Our
MA-ABUIPFE schemes have notable advantages in terms of versatility and perfor-
mance over the MA-ABIPFE of [9], named as AGT-FE hereafter beyond the unbound-
edness property that we achieve in this work. Firstly, the composite-order group-based
AGT-FE is significantly slower than our prime-order constructions [22,25] because of
the inherent efficiency gains offered by prime-order bilinear groups. Especially, the
size of group elements of a composite-order group GN is much larger than that of a
prime-order group Gq for the same security level: 3072-bit length of GN compared to
256-bit length of Gq for the 128-bit security level. Moreover, one pairing operation is
more than 250 times slower in GN compared to its prime-order counterpart. A con-
crete comparison of efficiency is depicted in Tables 1 and 2. As we can see, at 128-bit
security level, while AGT-FE takes nearly 5 days for a decryption, our scheme only
takes several minutes. We also bring down the public key size (which is constant for
any arbitrary length vector) by around 99% and at the same time the ciphertext size
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is comparable to that of AGT-FE. Thus our constructions mark a significant progress
towards the practical deployment of this primitive. Secondly, the security of AGT-FE
is based on source-group-assumptions, precisely, various types of subgroup decision
assumptions, which are known to be qualitatively stronger than the target-group-based
assumptions [11] such as the DBDH assumption considered in this work. The existing
transformations from composite-order group-based systems to analogous prime-order
group-based systems [16,22,31] that could be applied to AGT-FE, technically replaces
the subgroup structures by some vector space structures. Consequently, it incurs addi-
tional overheads and potential loss in the efficiency to the resulting prime-order system.
Further, the translated scheme would still depend on source group assumptions, e.g. the
k-linear or its variants.

Thus, our MA-ABUIPFE exhibits a substantial boost with respect to the perfor-
mance and at the same time it is secure under a weaker assumption. Furthermore,
we extend our MA-ABUIPFE to the large universe setting which has the flexibility
to include an unbounded number of attributes under different authorities to the system
at any point of time.
Static Security: Our Motivation: The static security may not be the dream security
model for MA-ABUIPFE. However, in this work, our main motivation is on perfor-
mance and versatility. Moreover, as we already mentioned above, we could not find any
vulnerability of our schemes against stronger adversaries, e.g., selective adversaries
as considered in [9], even though we could not prove it based on the computational
assumptions we considered in this paper. Schemes with greater performance and weaker
provable security have often found to suit better in practical deployments. Further,
weaker security notions have often been a major stepping stone to obtain more advanced
security, e.g., adaptive security, for the same primitive. Please note that many primitives
like ABE [24,37,42], MA-ABE [19,21,36,43], IPFE [3], and MC-IPFE [1,17], were
first built only with selective/static security before being upgraded to adaptive secu-
rity [10,20,32] based on the same assumptions. Moreover, from a sustainability point
of view, it is always important to have a portfolio of candidates for a primitive under
various computational assumptions so that if one of the assumptions gets broken, candi-
dates under a different assumption can be deployed. Another motivation for designing
a DBDH or related assumption-based scheme is to innovate new techniques that could
possibly be translated to the LWE setting, as has previously been done for other FE
primitives, e.g., [7,13,19,21].

Paper Organization: The paper is organized as follows.We provide technical overview
of our small and large universe MA-ABUIPFE schemes in Sect. 2. Important notations
and computational assumptions are given in Sect. 3. The other prerequisites such as def-
initions of bilinear groups, access structures, LSSS and justification of our newly intro-
duced L-DBDH assumption are given in the full version. We formalize the notion of
small and large universeMA-ABUIPFEs for LSSS in Sect. 4. In Sect. 5, we present the
construction of small universe MA-ABUIPFE and formally discuss its correctness and
security analysis. Next, our LMA-ABUIPFE scheme is described in Sect. 6 whereas its
correctness and the security analysis are shifted to the full version. The small universe
single authority ABUIPFE scheme along with its correctness and security analysis are
provided in the full version.
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2 Technical Overview

In this technical overview, we focus on discussing the high level technical details of
constructing small universe MA-ABUIPFE since this is where most of our technical
ideas lie. For extending it to large universe setting, we depend on the technique of
Rouselakis and Waters [36] which we discuss later in this section. Since our goal is
to construct the schemes under target-group-based assumptions, we start with the only
existing UIPFE scheme of [38] whose security relies on the DBDH assumption. In fact,
their UIPFE is designed from the selectively secure (bounded) IPFE of Abdalla et al.
[3] using a hash and pairing mechanism.

2.1 Constructing the Small Universe MA-ABUIPFE

In this overview, we denote by q a prime number and by [[x]]i an element in a group
Gi for i ∈ {1, 2, T}. At a high level, given a public key [[α]]1, the encryption algorithm
of [38] amplifies entropy by pairing the public key with the outputs of a hash function
applied on the indices of the message vectors. More precisely, the ciphertext and secret
keys in the [38] UIPFE (DP-UIPFE) takes the following forms.

CTv : C0 = [[r]]1, {Ci = [[vi]]T · e([[α]]1, r[[H(i)]]2)}i∈Iv
; r ← Zq

SKu : −α
∏

j∈Iu
H(j)uj

where Iu , Iv ⊂ N are the index sets of u,v respectively, the hash function H maps the
indices to elements in G2 and (q,G1,G2,GT , e) is a prime-order bilinear group. If the
index sets are equal, i.e. Iu = Iv = I then one can use the key vector u to extract
[[u ·v]]T from the product

∏
j∈I C

uj

j and a single pairing e(C0,SKu ). As a natural
first step, we seek to utilize the DP-UIPFE to upgrade an existing MA-ABE to a small
universe MA-ABUIPFE scheme.

As the aim is to rely on the target-group-based assumption, we consider the DBDH-
based MA-ABE of Datta, Komargodski and Waters (DKW-MA-ABE) [21] for this
upgrade. As a simpler first step, we investigate the primitive in the bounded and small
universe setting, that is, the number of authorities and vector lengths are bounded and
each authority controls a single attribute.

2.1.1 The First Step: A Bounded MA-ABIPFE Scheme

Let us start by adding the functionality of IPFE on top of DKW-MA-ABE. For each
authority t, the public key and master secret key in the DKW-MA-ABE construction
are given by PKt = ([[αt]]T , [[yt,2]]1, . . . , [[yt,smax ]]1) and MSKt = (αt, yt,2, . . . , yt,smax)
where smax is a bound on the maximum number of columns in the LSSS access structure
and αt, yt,2, . . . , yt,smax ← Zq. In order to construct an MA-ABIPFE scheme from the
DKW-MA-ABE, we convert the components of MSKt from scalars to vectors whose
lengths are fixed according to the vector length bound of the system. All the other
components are similarly upgraded to either vectors or matrices of fixed dimensions. In
particular, the resultingMA-ABIPFE derived from DKW-MA-ABE can be described in



Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 595

the following way where P = (M = (Mi,j)�×smax , ρ : [�] → AU) is the LSSS access
policy associated with the ciphertexts, AU is the set of all authorities, and Mi denotes
the i-th row of M.

PKt : ([[αt]]T , [[yt,2]]1, . . . , [[yt,smax ]]1)
MSKt : (αt,yt,2, . . . ,yt,smax)

CTv ,P :
C0 = [[v + z]]T , C1,i = [[MiB + riαρ(i)]]T ,

C2,i = [[ri]]1, C3,i,j = [[Mi,jxj + riyρ(i),j ]]1 ∀i ∈ [�], j ∈ [2, smax]

SKGID,t,u : [[αt ·u]]2 ·
smax∏

j=2

H(GID ‖ u ‖ j)yt,j ·u

where z ← Z
n
q , ri ← Zq and n represents the length of u,v. Further, B ∈ Z

smax×n
q

and {xj ← Z
n
q }j∈[2,smax] are the secret shares of z and 0 respectively. Recall that the

decryption algorithm of MA-ABIPFE requires a set of secret keys {SKGID,t,u}t∈S for
the same user identifier GID and an authorized subset S of attributes featuring in the
LSSS access policy associated with the ciphertext in order to decrypt it. Given such a
collection of keys , the decryption algorithm gets rid of the masking term from C0 · u
by computing

[[u · z]]T =
∏

i∈I

[
C1,i ·u · ∏smax

j=2 e (H(GID ‖ u ‖ j), C3,i,j ·u)

e
(
SKGID,ρ(i),u , C2,i

)

]wi

(2.1)

where I represents the rows of M associated to S. Note that the Eq. (2.1) holds as
the decryption algorithm can efficiently find a coefficients {wi ∈ Zq}i∈I satisfying
(1, 0, . . . , 0) =

∑
i∈I wiMi whenever the attributes linked to the rows in I satisfies the

policy (M, ρ).
The role of the public hash function H is to tie together a set of independently gen-

erated secret keys under the same user identifier GID while decrypting. In the security
proof, H is treated as a random oracle to ensure that a fresh randomness is produced for
each user identity GID that links together the different secret keys generated for it and
it is infeasible for an adversary to mix and match secret keys generated with respect to
different global identifiers even if the attributes associated with those secret keys satisfy
the access policy associated with the ciphertext.

In fact, the above bounded MA-ABIPFE scheme can be proven secure in the static
model under the DBDH assumption. Let us now proceed to transform the bounded
scheme into an unbounded one using the idea of DP-UIPFE sketched above. Unfortu-
nately, a straightforward approach does not work. In particular, we face a few difficulties
while incorporating the hash and pairing mechanism of [38] with the DKW-MA-ABE
as we describe below.
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2.1.2 Challenges in Expanding Authority Keys on the Fly and Our Approach

The foremost problem arises in vectorizing the components of the authority master
secret keys MSKt. This is because there being no upper bound on the length of vec-
tors, we cannot simply use random vectors of predetermined sizes in the vectorization
process. Rather, we must provision for generating the components of the vectors on
the fly as needed during encryption/key generation. Similar to the idea of [38], we use
hash functions modeled as random oracles in order to resolve this issue. More pre-
cisely,we proceed as follows: An authority t generates the public/master secret keys as
(PKt = ([[αt]]T , [[yt,2]]1, . . . , [[yt,smax ]]1),MSKt = (αt, yt,2, . . . , yt,smax)) without know-
ing the vector lengths where α, yt,2, . . . , yt,smx are still scalars. To maintain the sim-
plicity of this overview, we assume that the vectors u = (uk)k∈Iu

and v = (vk)k∈Iv

are both associated with the index set Iu = Iv = I = [n] which is unknown to the
authority setup. Then the scalar αt could be vectorized using a hash function H1 as
follows.

during encryption : C1,i = [[MiB + ϑi]]T
where [[ϑi,k]]T = e(ri[[αρ(i)]]1,H1(ρ(i) ‖ k ‖ I))

during key generation : αt ·u =
n∏

k=1

H1(t ‖ k ‖ I)αt·uk

The next step is to vectorize the authority master secret key components yt,j accord-
ing to the vector lengths. One may hope to apply [38] idea to extend yt,j to the same
length of the vectors on the fly in a similar way. To see whether it works, let us assume
that the hash function H used in the key generation in the above bounded MA-ABIPFE
additionally takes an index position and an index set as inputs. That is, let us do the
following modification for the key generation of the bounded MA-ABIPFE scheme

H(GID ‖ u ‖ j)yt,j ·u −→
n∏

k=1

H(GID ‖ u ‖ j ‖ k ‖ I)yt,j ·uk

Thus, using this idea, it is possible to expand yt,j to a vector yt,j of the same
length as the key vector u and eventually enabling an authority to compute the term
H(GID ‖ u ‖ j ‖ k ‖ I)yt,j ·u while generating keys for an unbounded length vector.
Note that, the hash value H(GID ‖ u ‖ j ‖ k ‖ I) has GID and u as inputs. Therefore,
this would call for the following modification in the ciphertext computation.

C3,i,j = [[Mi,jxj + ςi,j ]]T

where [[ςi,j,k]]T = e(ri[[yρ(i),j ]]1,H( GID ‖ u ‖ j ‖ k ‖ I))

However, such a vector [[yt,j ]]1 is not known or rather the k-th element
e([[yt,j ]]1,H(GID ‖ u ‖ j ‖ k ‖ I)) can not be computed during encryption. The main
reason is that the global identity GID and the vector u are available when an authority
generates a secret key, but the encryption algorithm is oblivious of which GID or u will
be used to decrypt the ciphertext. In fact, it is natural that the same ciphertext would
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be decrypted by several users with different GID and u vectors. Hence, a simple hash
and pairing technique similar to DP-UIPFE is not sufficient for a data owner to encrypt
unbounded length vectors.

At this point, we devise a correlated “hash-decomposition” mechanism which
enables us to compute the value of a hash function by combining the outputs of several
hash functions applied on different segments of the input to the original hash function.
More precisely, our idea is to define the hash value H(GID ‖ u ‖ j ‖ k ‖ I) by grouping
two independently generated hash values as

H(GID ‖ u ‖ j ‖ k ‖ I) = H2(j ‖ k ‖ I) · H3(GID ‖ u ‖ j ‖ k) (2.2)

where H2 and H3 are two new public hash functions generated during global setup.
Now, we observe that the first hash value H2(j ‖ k ‖ I) in the product can
be computed without knowing GID, which in turn enable the encryptor to expand
an authority public key component [[yt,j ]]1 into a vector [[y(2)

t,j ]]T as [[y(2)
t,j,k]]T =

e([[yt,j ]]1,H2(j ‖ k ‖ I)). Similarly, an authority expands the master secret key com-

ponent yt,j into vectors [[y(2)
t,j ]]2 and [[y(3)

t,j ]]2 as [[y(2)
t,j,k]]2 = H2(j ‖ k ‖ I))yt,j and

[[y(3)
t,j,k]]2 = H3(GID ‖ u ‖ j ‖ k)yt,j respectively while generating a secret key for a

vector u. However, at this point, it is not immediate how would the vector [[y(2)
t,j ]]T be

useful for the encryption algorithm.
Next, we carefully look into the decryption equation of the bounded MA-ABIPFE

scheme described above (Eq. (2.1)) and try to adapt it for theMA-ABUIPFE setting with
the modifications we did so far. We note that the pairing operation in the numerator can
be rearranged with the hash function H replaced by H2 as

e (H2(j ‖ k ‖ I), C3,i,j ·u) = e(H2(j ‖ k ‖ I), (Mi,jxj + riyρ(i),j) · u)

= e(H2(j ‖ k ‖ I),Mi,jxj · u) · [[riy
(2)
ρ(i),j · u]]T

Since u is not available during encryption, we only compute the above term without
multiplying by u and represent it as a single element

C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ k ‖ I)) · [[riy
(2)
ρ(i),j,k]]T .

Therefore, the hash-decomposition mechanism allows the encryptor to simulate the first
part of the hash value H(GID ‖ u ‖ j ‖ k ‖ I) from Eq. (2.2) using the hash function
H2. The second part of the hash value still remains to be handled. For this, we gen-
erate an additional layer of secret share of zero by sampling f2, . . . , fsmax ∈ Zq and
introduce the encodings C4,i,j = [[Mi,jfj + riyρ(i),j ]]1 for all i ∈ [�], j ∈ [2, smax]
within the ciphertext. At the time of decryption, C4,i,j will be paired with the term
H3(GID ‖ u ‖ j ‖ k)uk . Thus, combining C3,i,j,k and C4,i,j via the hash-decomposition
mechanism we are able to distribute the execution of the pairing operation from (Eq.
(2.1)) among the encryption and decryption algorithms as follows:
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e (H(GID ‖ u ‖ j), C3,i,j ·u)
as inMA-ABIPFE

decryption (ref: Eq. (2.1))

−→
n∏

k=1

C3,i,j,k · uk · e(C4,i,j ,H3(GID ‖ u ‖ j ‖ k)uk)
new decryption

strategy forMA-ABUIPFE

= C
(3,4)
i,j (u) (say)

Equipped with these concepts, we state our final MA-ABUIPFE scheme below by
assuming Iu = Iv = I = [n].

PKt : ([[αt]]T , [[yt,2]]1, . . . , [[yt,smax ]]1)
MSKt : (αt, yt,2, . . . , yt,smax)

CTv ,P :
C0 = [[v + z]]T , C1,i = [[MiB + ϑi]]T , C2,i = [[ri]]1,

C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ k ‖ I)) · [[riy
(2)
ρ(i),j,k]]T ,

C4,i,j = [[Mi,jfj + riyρ(i),j ]]1, ∀i ∈ [�], j ∈ [2, smax], k ∈ [n]

SKGID,t,u :
n∏

k=1

H1(t ‖ k ‖ I)αt·uk ·
smax∏

j=2

n∏

k=1

([[y(2)
t,j,k]]2 · [[y(3)

t,j,k]]2)uk

The components ϑi, y
(2)
t,j,k, y

(3)
t,j,k are defined as above. The decryption follows by can-

celing the masking term from C0 · u using a similar computation like in Eq. (2.1)
executed as

[[u · z]]T =
∏

i∈I

[
C1,i ·u · ∏smax

j=2 C
(3,4)
i,j (u)

e
(
SKGID,ρ(i),u , C2,i

)

]wi

(2.3)

We next look into the security of the proposed construction. Here again, we face several
challenges while adapting the security proof of [21,38] into our setting.

2.1.3 Challenges in the Security Analysis and Our Approach

The main difference between the MA-ABE and MA-ABUIPFE security model is in the
secret key queries made by the adversary. This is because MA-ABUIPFE is more like
an FE scheme and the adversary is entitled to ask for secret keys that would decrypt
the challenge ciphertext which is in contrast to any MA-ABE scheme where only non-
authorized keys are released. On the other hand, proving security of MA-ABUIPFE
is more technically challenging compared to the (bounded) MA-ABIPFE (like AGT-
FE [9]) as an authorized key which always leads to a successful decryption in case
ofMA-ABIPFE, may not be eligible for decrypting a ciphertext ofMA-ABUIPFE. The
index set associated with the authorized key must match to the index set of the encrypted
vector for successful decryption inMA-ABUIPFE. In other words, the adversary should
be restricted to infer any information about the encrypted message vector from the
authorized keys whose index sets are not equal to the index set of the message vector.
Moreover, AGT-FE is proven secure under subgroup decision assumptions which are
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source group assumptions while our target is to prove security under DBDH which is
a target group assumption, thus the dual system encryption technique [41] used for the
security proof of AGT-FE does not work in our case. Hence, we design a different proof
strategy that works coherently with the hash-decomposition mechanism and for target
group assumptions in the prime-order bilinear group.

We prove the security of our MA-ABUIPFE in the static model similar to the
DKW-MA-ABE. The adversary is asked to submit all it’s queries including the chal-
lenge message vectors v0,v1 with a common index set I∗ and an associated chal-
lenge access structure (M, ρ). Recall that the adversary can also corrupt or even mali-
ciously generate some of the authorities indicated by a set C of corrupted authorities or
attributes. Let us consider a DBDH instance ([[a]]1, [[b]]2, [[c]]1, [[τ ]]T ) where τ is either
abc or random. In the first step, we use the information-theoretic partitioning lemma,
the so-called “zero-out” lemma [36, Lemma 1], to isolate and ignore the set of rows of
M that correspond to the corrupted authorities throughout the analysis. In particular,
the lemma allows us to replace the LSSS matrixM with an updated simpler matrixM′

such that a subset of columns, say CM′ , of M′ can be set to zero that are related to
the corrupted authorities. Next, we follow the proof techniques of [3,38] and sample
a basis S̃ = {(v0 − v1), b2, . . . , bn} of Zn

q where n denotes the size of I∗ to rep-
resent key vectors u whose lengths are equal to n. However, answering the hash and
secret key queries require a careful treatment while embedding the DBDH challenge
instance. The role of the hash function of DKW-MA-ABE was limited to simulating the
non-authorized keys of a fixed length. However, in our case, we need to deal with both
authorized and unauthorized keys and here again, our hash-decomposition mechanism
plays a crucial role. Moreover, a key can be non-authorized with respect to the index
set or the associated policy, or both.

Let S be the set of attributes queried under a user identifier GID as a part of secret
key queries such that S contains at least an attribute involved in the challenge policy.
The main idea of simulating secret keys of DKW-MA-ABE was to sample a special
vector d ∈ Z

smax
q such that the inner product of d with M ′

i is zero for all i ∈ ρ−1(S∪C)
and to set the hash values as

H(GID ‖ j) = (gb
2)

dj · g
hj

2 , ∀j ∈ CM′ , and uniform otherwise. (2.4)

This, in fact, enables in simulating the secret keys using the properties of d and by
embedding the matrix M′ into the public keys of authorities linked to the challenge
policy. Unfortunately, we observe that such encoding of hash values is not compatible
with our hash-decomposition mechanism. Firstly, the hash function H2 does not take
a GID as input and hence it is not possible to encode the hash values depending on
a vector like d which is sampled according to an unauthorized set of attributes (S ∪
C) under a given global identity. In our case, H2 should generate a good amount of
entropy for indices of key vectors irrespective of any global identity. This would restrict
an adversary to gain any illegitimate information about the encrypted message from
any secret key where the associated index set does not match with I∗ even though the
attributes associated to the key satisfy the challenge policy. Secondly, H3 takes a GID
as it’s input along with a key vector, a column number and an index set. The role of H3
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is to make a secret key generated under a given GID useless to the adversary whenever
the associated attributes does not satisfy the challenge policy.

In the static security model the simulator knows all the secret key queries in
advance. We exploit this fact to prepare encodings for the hash values keeping in mind
their roles in the security experiment. Our idea is to sample all possible {dφ}φ vectors
corresponding to the sets {Sφ ∪C}φ such that Sφ ∪C constitutes an unauthorized subset
of row of M and use the information of {dφ}φ in the encodings of the hash functions.
More precisely, we use an add and subtract technique to set the hash values as follows

H2(j ‖ k ‖ I∗) = (gb
2)

∑
φ dφ,j · g

h2,j

2 , ∀j ∈ CM′ , and uniform otherwise.

H3(GID ‖ uφ′ ‖ j ‖ k) = (gb
2)

∑
φ�=φ′ −dφ,j · g

h3,j

2 , ∀j ∈ CM′ , and uniform otherwise.

Now, we multiply the above hash encodings while simulating non-authorized secret key
queries and obtain a hash encoding similar to Eq. (2.4).

H2(j ‖ k ‖ I∗) · H3(GID ‖ uφ′ ‖ j ‖ k) = (gb
2)

dφ′,j · g
h2,j+h3,j

2 ∀j ∈ CM′ .

For simplicity of this section, we have ignored a few additional elements in the above
encodings that connect the hash values with the H1 encodings which actually facilitates
in using the fact that dφ ·M ′

i = 0 for all i ∈ ρ−1(Sφ ∪ C) for non-authorized keys
such that Iuφ

= I∗. Lastly, when simulating authorized secret keys we use the basis S̃
to obtain a vector η satisfying η ·uφ = 0 with the help of the admissibility condition
uφ · (v0 − v1) = 0 for all keys leading to a successful decryption of the challenge
ciphertext. The full security analysis can be found in Sect. 5.3.

2.2 Constructing the Large Universe MA-ABUIPFE

We recall that in the large universe setting each authority is allowed to control expo-
nentially many attributes. We upgrade our small universe scheme to a large universe
MA-ABUIPFE (LMA-ABUIPFE) by extending the techniques presented in [36] from
encrypting a fixed length message to encrypting an unbounded length vector in the con-
text of MA-ABUIPFE. To support exponentially many attributes, we use an additional
hash function R which maps arbitrary attributes to elements of G2. We replace the map
ρ of the LSSS access structure (M, ρ) by decomposition of two mappings T and δ, that
is ρ(i) = T(δ(i)) = θ where δ labels row numbers i of the LSSS access matrix to some
attributes δ(i) and T assigns the attributes δ(i) to its respective authorities denoted by
θ. Our LMA-ABUIPFE is described as follows.
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PKθ : ([[αθ]]T , [[yθ,2]]1, . . . , [[yθ,smax ]]1)
MSKθ : (αθ, yθ,2, . . . , yθ,smax)

CTv ,P :

C0 = [[v + z]]T , C1,i = [[MiB + ϑi]]T , C2,i = [[ri]],
C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ k ‖ I)) · [[riy

(2)
ρ(i),j,k]]T ,

C4,i,j = [[Mi,jfj + riyρ(i),j ]]1, C5,i,j = R(δ(i) ‖ j ‖ I)
∀i ∈ [�], j ∈ [2, smax], k ∈ [n]

SKGID,t,u :

n∏

k=1

H1(t ‖ k ‖ I)αθ·uk ·
smax∏

j=2

n∏

k=1

([[y(2)
θ,j,k]]2 · [[y(3)

θ,j,k]]2)uk ·
smax∏

j=1

R(t ‖ j ‖ I)τj ,

Zt,j = [[τj ]]1, ∀j ∈ [smax]

The components ϑi,y
(2)
θ,j ,y

(3)
θ,j are defined similarly as in our MA-ABUIPFE scheme.

[[ϑi,k]]T = e(ri[[αρ(i)]]1,H1(ρ(i) ‖ k ‖ Iv )),

[[y(2)
θ,j,k]]T = e([[yθ,j ]]1,H2(j ‖ k ‖ I)), [[y(2)

θ,j,k]]2 = H2(j ‖ k ‖ I)yθ,j ,

[[y(3)
θ,j,k]]2 = H3(GID ‖ u ‖ j ‖ k)yθ,j , ∀k ∈ [n].

The decryption procedure is similar to our MA-ABUIPFE scheme. We consider
static security of LMA-ABUIPFE and model the hash functions as random oracles.
However, it may not be possible to base security on the plain DBDH assumption.
Following the same notations that we used to sketch the proof technique of our MA-
ABUIPFE, we discuss the main reason which prevent using the DBDH assumption as
before. The R-values related to the authorities in the challenge policy in our proposed

LMA-ABUIPFE scheme described above are roughly set as R(t ‖ j ‖ I∗) = g
ζt,j

2 g
aM ′

i,j

2 ,
where ζt,j is a random Zq-element and M ′

i,j is the (i, j)-th entry of the updated LSSS

matrix M′ in the challenge policy. On the other hand, the randomness ri used in the
encryption2 are set as ri = c. Hence, the reduction requires the group element gac

2

in order to simulate the components C5,i,j of the challenge ciphertext. However, the
DBDH assumption does not make it possible to make gac available to an adversary.

Thus, for basing the security, we look into the parameterized versions of the DBDH
assumptions. Unlike [36] where they consider a much more complex parameterized
assumption, a primary motivation of our security reduction is to depend on a simpler
parameterized assumption that is as close as possible to the plain DBDH assumption.
More specifically, [36] consider an exponent type assumption where each instance con-
sists of at least O(L3

max) group elements and Lmax ≥ max{�, smax}, where �, smax is the
number of rows and columns of the challenge LSSS access matrix respectively. Con-
sequently, the reduction becomes more involved and complex. In contrast, we prove
the security of LMA-ABUIPFE based on the newly introduced L-DBDH assumption
where each instance has O(L2) group elements with L ≥ �. We show that the L-DBDH
assumption is generically secure using the techniques of [12,36]. Although incompara-
ble with the assumption used in [36], it seems that our L-DBDH assumption is weaker
as it contains fewer elements. Therefore, our LMA-ABUIPFE improves upon the previ-
ous results of [36] even without considering the enhanced functionality of UIPFE.

2 The ciphertext is re-randomized to ensure the distribution of its components is unharmed.
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There are some other technical hurdles in the security reduction that does not
directly allow using the program and cancel technique similar to [36] while simu-
lating secret key queries. This is due to the fact that we are handling unbounded
length messages and using a hash-decomposition mechanism on top of large universe
paradigm. In contrast to the small universe scheme, an authority in a queried secret key
of LMA-ABUIPFE may be present in the challenge policy but none of their attributes
are linked to it. We use our add and subtract technique which enables the reduction to
combine the decomposed hash values into a single hash value that eventually produces
an adequate amount of randomness preventing the leakage of unwanted information
about the underlying message vector from such secret keys.

On the other hand, if the authorities as well as some of their controlled attributes
are present in the challenge policy but the associated secret key is unauthorized then
we observe that the program and cancel technique of [36] is not sufficient to handle
an adversary of LMA-ABUIPFE given the fact that it can query for secret keys corre-
sponding to vectors of arbitrary lengths. In order to make these secret keys useless for
an adversary irrespective of the associated lengths of vectors, we delicately program the
hash queries that enables the reduction to procreate additional entropy via an interplay
between the program and cancel technique of [36] and add and subtract mechanism of
ours at the time of simulating such unauthorized secret keys. Although the high-level
proof technique is inspired from [36], the technical obstacles mentioned above prevent
applying their approach straightforwardly into our setting. As a whole, we carefully
embed the L-DBDH instance into the adversary’s queries by extending the [36] tech-
nique in the context of amplifying entropy for supporting computation over unbounded
length vectors and at the same time making it compatible for hash-decomposition mech-
anism used in our scheme. We present a detailed security analysis in the full version.

3 Preliminaries

In this section, we present the notations used in this paper and the new L-DBDH
assumption we introduce.

3.1 Notations

We will denote the underlying security parameter by λ throughout the paper. A function
negl : N → R is said to be a negligible function of λ, if for every c ∈ N, there exists
a λc ∈ N such that ∀λ > λc, negl(λ) < λ−c. We denote the set of positive integers
{1, . . . , n} as [n]. We denote ∅ as the empty set. We use the abbreviation PPT for
probabilistic polynomial-time. For a set X , we write x ← X to denote that x is sampled
according to the uniform distribution over the elements of X . Also for any set X , we
denote by |X| and 2X the cardinality and the power set of the set X respectively. We
use bold lower case letters, such as v, to denote vectors and upper-case, such asM, for
matrices. We assume all vectors, by default, are row vectors. The ith row of a matrix
is denoted by Mi and analogously for a set of row indices I , we denote MI for the
sub-matrix of M that consists of the rows Mi,∀i ∈ I . By rowspan(M), we denote the
linear span of the rows of a matrixM.
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For an integer q ≥ 2, we let Zq denote the ring of integers modulo q. We repre-
sent Zq as integers in the range (−q/2, q/2]. The set of matrices of size m × n with
elements in Zq is denoted by Z

m×n
q . The operation (·)� denotes the transpose of vec-

tors/matrices. Let u = (ui)i∈Iu
∈ Z

|Iu |
q ,v = (vi)i∈Iv

∈ Z
|Iv |
q where Iu and Iv

are the associated index sets, then the inner product between the vectors is denoted as
v ·u = u�u =

∑
i∈I uivi ∈ Zq whenever Iu = Iv = I.

3.2 Complexity Assumptions

We use bilinear groups of prime order to build our MA-ABUIPFE schemes.
Here, we formally define the DBDH assumption and a parameterized version of

it, we call L-DBDH which would underlie of security of our small and large universe
MA-ABUIPFE schemes respectively.

Assumption 3.1 (Decisional Bilinear Diffie-Hellman (DBDH). [14,38]) For a secu-
rity parameter λ ∈ N, let G = (q,G1,G2,GT , g, e) ← G(1λ) be a bilinear group and
let a, b, c ← Zq. The DBDH assumption states that for any PPT adversary A, there
exists a negligible function negl such that for any security parameter λ ∈ N, given the
distribution (G, [[a]]1, [[c]]1, [[a]]2, [[b]]2, [[τ ]]T ), A has advantage

AdvDBDH
A (λ) =

∣
∣
∣Pr

[

1 ← A
(

1λ, D, [[abc]]T
)]

− Pr
[

1 ← A
(

1λ, D, [[τ ]]T
)]∣

∣
∣ ≤ negl(λ),

Assumption 3.2 (L-Decisional Bilinear Diffie-Hellman (L-DBDH)). Let G =
(q,G1,G2,GT , g, e) ← G(1λ) be a bilinear group and let a, b, c, μ1, . . . , μL ← Zq.
The L-DBDH assumption states that for any PPT adversaryA, there exists a negligible
function negl such that for any security parameter λ ∈ N, given the distribution
⎛

⎝G,

(
[[b]]1, [[c]]1,
[[a]]2, [[b]]2

)

,

{
[[aμi]]1, [[c/μi]]1,

[[aμi]]2

}

i∈[L]

,

{
[[cμι/μi]]1, [[acμι/μi]]1,

[[acμι/μi]]2

}

i,ι∈[L],
i�=ι

, [[τ ]]T

⎞

⎠

A has advantage

AdvL-DBDH
A (λ) =

∣
∣
∣Pr

[

1 ← A
(

1λ, D, [[abc]]T
)]

− Pr
[

1 ← A
(

1λ, D, [[τ ]]T
)]∣

∣
∣ ≤ negl(λ),

4 Decentralized (Large Universe)MA-ABUIPFE for LSSS

A large universe decentralized multi-authority attribute-based inner-product func-
tional encryption (LMA-ABUIPFE) scheme LMA-ABUIPFE = (GlobalSetup,
LocalSetup,KeyGen,Encrypt,Decrypt) for access structures captured by linear secret
sharing schemes (LSSS) over some finite field Zq with q = q(λ) and inner product
value space U consists of five algorithms with the following syntax. We denote by AU
the authority universe and by GID the universe of users’ global identifiers in the system.
The attribute universe is denoted as Uatt which may be arbitrary. Further, an authority
θ ∈ AU may have any arbitrary number of attributes from Uatt under its control. Fol-
lowing [36], we assume a publicly computable function T : Uatt → AU that maps each
attribute t ∈ Uatt to a unique authority θ = T (t). The algorithms proceed as follows:
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GlobalSetup(1λ, smax): It is the global setup algorithm which on input the security
parameter λ and a maximum width smax of the LSSS matrix, and outputs the global
public parameters GP. We assume that GP includes the descriptions of AU and GID.
LocalSetup(GP, θ): The authority θ ∈ AU runs the local setup algorithm during its
initialization with the global parameters GP and generates its public parameters and a
master secret key pair (PKθ,MSKθ).
KeyGen(GP,GID,MSKθ , t, u,Iu): The key generation algorithm takes input the
global parameter GP, a user’s global identifier GID ∈ GID, a master secret key MSKθ

for authority θ controlling an attribute t ∈ Uatt, and a vector u ∈ Z
|Iu |
q with an associ-

ated index set Iu . It outputs a secret key SKGID,t,u which contains (u, Iu ).

Encrypt(GP, (M, δ),{PKθ}θ , v,Iv ): The encryption algorithm takes input the
global parameter GP, an LSSS access structure (M, δ) where M is a matrix over Zq

and δ is a row-labeling function that assigns to each row of M an attribute in Uatt.
We define the function ρ : [�] → AU as ρ(·) := T(δ(·)) which maps row indices of
M to authorities θ ∈ AU . Accordingly, the encryption algorithm further takes a set
{PKθ}θ of public keys for all the authorities in the range of ρ, and a message vector
v ∈ Z

|Iv |
q with an associated index set Iv . It outputs a ciphertext CT. We assume that

CT implicitly contains the description of (M, δ) and Iv .
Decrypt(GP,GID,CT,{SKGID,t,u}t): The decryption algorithm takes in the global
parameters GP, a ciphertext CT generated with respect to some LSSS access pol-
icy (M, δ) and an index set I associated to the message, and a collection of keys
{SKGID,t,u}t corresponding to user ID-attribute pairs (GID, S ⊆ Uatt) and a key vector
(u, Iu ) possessed by a user with global identifier GID. It outputs a message ζ when the
collection of attributes associated with the secret keys {SKGID,t,u}t satisfies the LSSS
access policy (M, δ), i.e., when the vector (1, 0, . . . , 0) belongs to the linear span of
those rows of M which are mapped by δ to the set of attributes in S that corresponds
to the secret keys {SKGID,t,u}t∈S possessed by the user with global identifier GID.
Otherwise, decryption returns ⊥.
Correctness: An LMA-ABUIPFE scheme for LSSS-realizable access structures and
inner product message space U is said to be correct if for every λ ∈ N, every message
vector v ∈ Z

|Iv |
q , key vector u ∈ Z

|Iu |
q such that I = Iv = Iu , and GID ∈ GID,

every LSSS access policy (M, δ), and every subset of authorities S ⊆ Uatt controlling
attributes which satisfy the access structure it holds that

Pr

⎡

⎢
⎢
⎢
⎣

Γ = v ·u

∣
∣
∣
∣
∣
∣
∣
∣
∣

GP ← GlobalSetup(1λ, 1n),
(PKθ,MSKθ) ← LocalSetup(GP, θ),

SKGID,t,u ← KeyGen(GP,GID,MSKθ, t,u),
CT ← Encrypt(GP, (M, δ), {PKθ}θ,v),
Γ = Decrypt(GP,CT, {SKGID,t,u}t∈S)

⎤

⎥
⎥
⎥
⎦

= 1.

Static Security: In this paper, we consider static security for LMA-ABUIPFE formal-
ized by the following game between a challenger and an adversary. The static security
model is adapted from [36], defined for MA-ABE, to the context of LMA-ABUIPFE.
We emphasize that unlike MA-ABE, our static security model allows the adversary to
ask for secret keys which are capable of decrypting the challenge ciphertext.
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Global Setup: The challenger runs GlobalSetup(1λ, smax) to get and send the global
public parameters GP to the attacker.

Adversary’s Queries: The adversary sends the following queries:
1. A list C ⊂ AU of corrupt authorities and their respective public parameters

{PKθ}θ∈C , which it might have created in a malicious way.
2. A set N ⊂ AU of non-corrupt authorities, i.e., C ∩ N = ∅, for which the

adversary requests the public keys.
3. A set Q = {(GID, S,u, Iu )} of secret key queries with GID ∈ GID, S ⊆ Uatt

such that T(S)∩C = ∅, u ∈ Z
|Iu | and Iu ⊂ Z where GIDs are distinct in each

of these tuples.
4. Two message vectors v0,v1 ∈ Z

|I∗|
q having the same index set I∗,

and a challenge LSSS access policy (M, δ) with M = (Mi,j)�×smax =
(M1, . . . ,M�)� ∈ Z

�×smax
q , δ : [�] → Uatt and satisfying the constraint that

for each (GID, S,u, Iu ) ∈ Q, either S ∪ ⋃
θ∈C T−1(θ) ⊆ [�] constitutes an

unauthorized subset of rows of the access matrix M or the secret key vector u
satisfies the relation (v0 − v1) ·u = 0 whenever Iu = I∗. Note that the set⋃

θ∈C T−1(θ) contains the attributes belonging to the corrupt authorities.
Challenger’s Replies: The challenger flips a random coin β ← {0, 1} and replies with

the following:
1. The public keys PKθ ← LocalSetup(GP, θ) for all θ ∈ N .
2. The secret keys SKGID,t,u ← KeyGen(GP,GID,MSKθ, t,u) for all

(GID, S,u) ∈ Q, t ∈ S.
3. The challenge ciphertext CT ← Encrypt(GP, (M, δ), {PKθ}θ∈C∪N ,vβ).

Guess: The adversary outputs a guess β′ for β.

The advantage of the adversary A is AdvLMA-ABUIPFE
A,SS-CPA (λ) � |Pr[β = β′] − 1/2|.

Definition 4.1 (Static Security for LMA-ABUIPFE for LSSS) An LMA-ABUIPFE
scheme for LSSS-realizable access structures satisfies static security if for any PPT
adversary A there exists negl(·) such that for all λ ∈ N, we have AdvLMA-ABUIPFE

A,SS-CPA (λ)
≤ negl(λ).

Remark 4.1 (Static Security in the Random Oracle Model.) Similar to [19,21,36],
we additionally consider the aforementioned notion of selective security with static cor-
ruption in the ROM. In this context, we assume a global hash function H published as
part of the global public parameters and accessible by all the parties in the system. In
the security proof, we will model H as a random oracle programmed by the challenger.
In the security game, therefore, we let the adversary A submit a collection of H-oracle
queries to the challenger immediately after seeing the global public parameters, along
with all the other queries it makes in the static security game as described above.

Remark 4.2 (Small Universe MA-ABUIPFE.) The above definition of LMA-
ABUIPFE captures the large universe scenario where one authority can control mul-
tiple attributes. We can similarly define a small universe MA-ABUIPFE or simply
MA-ABUIPFE by restricting each authority to control only a single attribute [36].
Hence, we would use the words “authority” and “attribute” interchangeably in the case
of MA-ABUIPFE. There are a few syntactic and semantic changes in the above defini-
tion when adapted for the small universe setting:
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1. There is a bijection between the attribute universe Uatt and the authority universe
AU .

2. LocalSetup(GP, t) outputs (PKt,MSKt) for an authority/attribute t ∈ AU .
3. KeyGen(GP,GID,MSKt,u, Iu ) outputs SKGID,t,u .
4. For an LSSS access structure (M, δ), we have ρ(·) = δ(·) is an injective map.
5. The changes in the security definition follow accordingly. Due to space constraints,

we state them directly in the proof of our small universe scheme in Sect. 5.3.

5 The Proposed Small UniverseMA-ABUIPFE from DBDH

In this section, we describe the formal construction and proof for our MA-ABUIPFE
scheme. The construction is in prime-order groups and uses a hash functions that will
be modeled as a random oracle in the security proof.

5.1 The Construction

GlobalSetup(1λ, smax): The global setup algorithm takes input the security parameter
λ, the maximum width of an LSSS matrix supported by the scheme smax = smax(λ)
and the vector length n in unary. It generates G = (q,G1,G2,GT , g, e). Consider the
hash functions H1 : Uatt × Z × Z

∗ → G2, H2 : [smax] × Z × Z
∗ → G2, H3 :

GID × Z
∗ × [smax] → G2. It outputs a global parameter GP = (G,H1,H2,H3).

LocalSetup(GP, t): The authority setup algorithm takes as input GP and an authority
index/attribute t ∈ AU . It samples vectors αt, yt,2, . . . , yt,smax ← Zq and outputs

PK =
({[[αt]]1, {[[yt,j ]]1}j∈{2,...,smax}}t∈Uatt

)
, MSK = {{αt, {yt,j}j∈{2,...,smax}}t∈Uatt}

KeyGen(GP,GID,MSKt , u,Iu): The key generation algorithm takes input GP, the
user’s global identifier GID, the authority’s secret key MSKt and a vector u ∈ Z

|Iu |
q . It

proceeds as follows

1. Parse Iu = {ι1, . . . , ιn} and u = (uι1 , . . . , uιn
).

2. Compute

SKt,u =
n∏

k=1

H1(t ‖ ιk ‖ Iu )αtuιk ·
smax∏

j=2

n∏

k=1

(H2(j ‖ ιk ‖ Iu ) · H3(GID ‖ u ‖ j ‖ ιk))yt,juιk .

3. Output SKGID,t,u = (GID,u,SKt,u , Iu ) as the secret key.

Encrypt(GP, (M, ρ),{PKt}, v,Iv ): The encryption algorithm takes input the
global parameter GP, an LSSS access structure (M, ρ) whereM = (M1, . . . ,M�)� ∈
Z

�×smax
q and ρ : [�] → AU , a set {PKt} of public keys for all the authorities in the range

of ρ, and a message vector v ∈ Z
m
q . The function maps the row indices ofM to author-

ities or attributes. We assume ρ is an injective function, that is, an authority/attribute is
associated with at most one row of M. The algorithm proceeds as follows:

1. Parse Iv = {ι1, . . . , ιm} and v = (vι1 , . . . , vιm
).
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2. Sample {ri ← Zq}i∈[�] and f = (f2, . . . , fsmax) ← Z
smax−1
q .

3. Sample z, b2, . . . , bsmax ,x2, . . . ,xsmax ← Z
m
q .

4. Set the matrix B =
[
z, b2, . . . , bsmax

]�
smax×m

.
5. Compute ϑi,k = e(ri[[αρ(i)]]1,H1(ρ(i) ‖ ιk ‖ Iv )) and set ϑi := (ϑi,1, . . . , ϑi,m).
6. Compute the following terms:

C0 = [[v + z]]T , C1,i = [[MiB + ϑi]]T , C2,i = [[ri]]1,
C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ Iv )) · e(ri[[yρ(i),j ]]1,H2(j ‖ ιk ‖ Iv )),

C4,i,j = [[Mi,jfj + yρ(i),jri]]1

for all i ∈ [�], j ∈ {2, . . . , smax}, k ∈ [m].
7. Output the ciphertext

CT =
(
(M, ρ) , C0, {C1,i, C2,i,, C3,i,j,k, C4,i,j}i∈[�],j∈{2,...,smax},k∈[m], Iv

)
.

Decrypt(GP,GID,CT,{SKGID,t,u}): The decryption algorithm takes input the pub-
lic key PK, a secret key SKS,u for an attribute set S ⊆ Uatt and a vector u ∈ Z

n
q and

a ciphertext CT for an access structure (M, ρ) with M ∈ Z
�×smax
q and an injective map

ρ : [�] → Uatt.
Parse SKGID,S,u =

(
GID,u, {SKρ(i),u}ρ(i)∈S , Iu

)
, where i ∈ [�] and CT =

((M, ρ) , C0, {C1,i, C2,i,, C3,i,j,k, C4,i,j}i∈[�],j∈{2,...,smax},k∈[m], Iv ). Denote I =
{i|ρ(i) ∈ S} ⊆ [�]. If (1, 0, . . . , 0) is not in the span ofMI (i.e.,M restricted to the set
of rows from I) or Iu �= Iv decryption returns ⊥. Else, when S satisfies (M, ρ), the
algorithm finds {wi ∈ Zq}i∈I such that (1, 0, . . . , 0) =

∑
i∈I wiMi. It then computes

[[Γ ]]T = C0 ·u · [[μ]]T where [[μ]]T is given by
⎛

⎜
⎜
⎜
⎜
⎜
⎝

∏

i∈I

⎡

⎢
⎢
⎢
⎢
⎣

C1,i ·u ·
smax∏

j=2

n∏

k=1

uιk
· C3,i,j,k · e(C4,i,j ,H3(GID ‖ u ‖ j ‖ ιk)uιk )

e
(
SKρ(i),u , C2,i

)

⎤

⎥
⎥
⎥
⎥
⎦

wi
⎞

⎟
⎟
⎟
⎟
⎟
⎠

−1

and outputs loggT
([[Γ ]]T ).

5.2 Correctness

Consider a secret key SKGID,S,u = (GID,u, {SKt,u}t∈S , Iu ) consisting of a set of
attributes satisfying the LSSS access structure (M, ρ) associated with a ciphertext
CT =

(
(M, ρ) , C0, {C1,i, C2,i,, C3,i,j,k, C4,i,j}i∈[�],j∈{2,...,smax},k∈[m], Iv

)
such that

Iu = Iv = I. In particular, the vector (1, 0, . . . , 0) ∈ rowspan(MI) corresponding to
the set of indices I = {i ∈ I|ρ(i) = t ∈ S}.
For each i ∈ I , we have the following:

e(SKρ(i),u , C2,i) =
n∏

k=1

e(g1,H1(ρ(i) ‖ ιk ‖ I))riαρ(i)uιk ·
smax∏

j=2

n∏

k=1

(e(g1,H2(j ‖ ιk ‖ I)) · e(g1,H3(GID ‖ u ‖ j ‖ ιk)))riyρ(i),juιk
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For i ∈ I, j ∈ {2, . . . , smax}, k ∈ [n],

uιk
C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ I))uιk · e(g1,H2(j ‖ ιk ‖ I))riyρ(i),juιk

For i ∈ I, j ∈ {2, . . . , smax}, k ∈ [n],

e(C4,i,j ,H3(GID ‖ u ‖ j ‖ ιk)uιk )
= e([[Mi,jfj ]]1,H3(GID ‖ u ‖ j ‖ ιk))uιk · e(g1,H3(GID ‖ u ‖ j ‖ ιk))riyρ(i),juιk

Finally, for each i ∈ I , we have C1,i = [[MiB + ϑi]]T and so

C1,i ·u ·
smax∏

j=2

n∏

k=1

(uιk
· C3,i,j,k · e(C4,i,j ,H3(GID ‖ u ‖ j ‖ ιk)uιk ))

e
(
SKρ(i),u , C2,i

)

= [[MiB ·u]]T
n∏

k=1

e(g1,H1(ρ(i) ‖ ιk ‖ I))riαρ(i)uιk ·
smax∏

j=2

n∏

k=1

(uιk
· C3,i,j,k · e(C4,i,j ,H3(GID ‖ u ‖ j ‖ ιk)uιk ))

e
(
SKρ(i),u , C2,i

)

= [[MiB ·u]]T ·
smax∏

j=2

n∏

k=1

e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ I))uιk ·

smax∏

j=2

n∏

k=1

e([[Mi,jfj ]]1,H3(GID ‖ u ‖ j ‖ ιk))uιk

Since SKS,u corresponds to a set of qualified authorities, ∃{wi ∈ Zq}i∈I such that∑
i∈I wiMiB ·u = (1, 0, . . . , 0)B · u = z ·u and it holds that

∑
i∈I wiMi,j =

0,∀j ∈ {2, . . . , smax}. Hence, we have

∏

i∈I

⎡

⎢
⎢
⎢
⎢
⎣

C1,i ·u ·
smax∏

j=2

n∏

k=1

(uιk
· C3,i,j,k · e(C4,i,j ,H3(GID ‖ u ‖ j ‖ ιk)uιk ))

e
(
SKρ(i),u , C2,i

)

⎤

⎥
⎥
⎥
⎥
⎦

wi

= [[
∑

i∈I

wiMiB ·u]]T = [[z ·u]]T

Finally, the message is recovered as loggT
([[Γ ]]T ) where

[[Γ ]]T = (C0 ·u)/[[z ·u]]T = [[v ·u + z ·u]]T /[[z ·u]]T = [[v ·u]]T
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5.3 Security Analysis

Theorem 5.1. If the DBDH assumption holds, then all PPT adversaries have a
negligible advantage in breaking the static security of the proposed small universe
MA-ABUIPFE scheme in the random oracle model.

Proof. We prove this theorem by showing that if there is any PPT adversary A
who breaks the static security of MA-ABUIPFE then there is a PPT adversary
B who solves the DBDH problem with a non-negligible advantage. Suppose, B
gets an instance (G, [[a]]1, [[c]]1, [[a]]2, [[b]]2, [[τ ]]T ) of the DBDH problem where G =
(q,G1,G2,GT , g, e) ← G(1λ) is a group description, the elements a, b, c ← Zq are
random integers, and the element τ ∈ Zq is either abc or a random element of Zq.
The algorithm B works as follows: On input λ, A outputs smax,Uatt and queries the
following.

Attacker’s Queries: Upon initialization, the adversary A sends the following to B:
(a) A list C ⊂ AU of corrupt authorities and their respective public keys

{PKt = (Yt,1,Yt,2, . . . ,Yt,smax)}t∈C ,

where Yt,1,Yt,2, . . . ,Yt,smax ∈ G1 for all t ∈ C.
(b) A set N ⊂ AU of non-corrupt authorities, i.e., C ∩ N = ∅, for which A requests

the public keys.
(c) A collection of hash queries H1 = {(t, ιk, I) : t ∈ Uatt, ιk ∈ Z, I ⊂ N}, H2 =

{(j, ιk, I) : j ∈ {2, . . . , smax}, ιk ∈ Z, I ⊂ N} and H3 = {(GID,u, j, ιk) :
GID ∈ GID,u ∈ Z

∗, j ∈ {2, . . . , smax}, ιk ∈ Z}.
(d) A set Q = {(GID, S,u, Iu )} of secret key queries with GID ∈ GID, S ⊆ Uatt,

u ∈ Z
|Iu | and Iu ⊂ Z.

(e) Two message vectors v0,v1 ∈ Z
n
q having the same index set I∗, and a challenge

LSSS access policy (M, ρ) with M = (Mi,j)�×smax = (M1, . . . ,M�)� ∈ Z
�×smax
q

and ρ : [�] → C∪N injective and satisfying the constraint that for each (S,u, Iu ) ∈
Qu , either ρ−1(C ∪ S) ⊆ [�] constitutes an unauthorized subset of rows of the
access matrixM or the secret key vector u satisfies the relation (v0 − v1) ·u = 0
whenever Iu = I∗.

Before answering A’s queries, the adversary B substitute the secret sharing matrix
Mwith the matrixM′ from Lemma 3.1 of [36] computed using ρ−1(C) as the unautho-
rized subset of rows. Lemma 3.1 of [36] guarantees the fact that if B uses M′ instead
of M in the simulation, the view of A in the simulated game is information theoreti-
cally the same as if B would have used the original matrix M. Furthermore, Lemma
3.1 of [36] implies that if we assume the subspace spanned by Mρ−1(C) has dimension
c̃, then so is the dimension of the subspace spanned by M′

ρ−1(C) and M ′
i,j = 0 for

all (i, j) ∈ ρ−1(C) × [smax − c̃]. B now proceeds to answer the queries of A. Denote
ŝmax = smax − c̃, where c̃ is the dimension of the sequence spanned by the rows of
Mρ−1(C), the latter being the rows of M controlled by corrupted authorities, C.
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Note that I∗ can be any subset of Z and w.l.o.g one can consider I∗ = [n]3 for some
n ∈ N. Inspired by the proof techniques of prior works [3,38], the reduction first com-
pute a basis of (v0−v1)⊥ as {b̃1, . . . , b̃n−1}. Then the set S̃ = {v0−v1, b̃1, . . . , b̃n−1}
form a basis of Zn

q . For any vector u ∈ Z
n
q , if we represent it as the linear combination

of the vectors in S̃ as

u = ζ · (v0 − v1) +
n−1∑

k=1

ζkb̃k, for some ζ, ζk ∈ Zq

then ζ = 0 whenever it holds that (v0 − v1) · u = 0. Let ek be the k-th vector in the
standard basis of Zn

q . We write ei for each i ∈ [n] as

ei = ηi · (v0 − v1) +
n−1∑

k=1

λi,kb̃k for some η, λi,k ∈ Zq.

Generating Public Key: There are two cases to consider:

1. Case 1 — t ∈ N \ ρ([�]) (i.e., attribute t is absent in the challenge policy (M, ρ)
but it belongs to a non-corrupt authority) — In this case, B executes the Setup
algorithm according to the real experiment. It samples αt, yt,2, . . . , yt,smax ← Zq

by itself, and computes the public key component corresponding to attribute t as
([[αt]]1, [[yt,2]]1, . . . , [[yt,smax ]]1).

2. Case 2—t ∈ ρ([�]) \ C (i.e., attribute t appears in the challenge policy (M, ρ)
and it does not belong to a corrupt authority) — In this case, B samples
α′

t, y
′
t,2, . . . , y

′
t,smax

← Zq and implicitly sets αt = α′
t + a · M ′

ρ−1(t),1 and
yt,j = y′

t,j + aM ′
ρ−1(t),j for j ∈ {2, . . . , ŝmax} and yt,j = y′

t,j for j ∈ {ŝmax +
1, . . . , smax}(these are well-defined as ρ is injective), and sets the public key ele-
ments w.r.t. attribute t as ([[αt]]1, [[yt,2]]1, . . . , [[yt,smax ]]1) where the elements [[αt]]1
and [[yt,j ]]1 for j ∈ {2, . . . , ŝmax} are computed as follows:

[[αt]]1 = [[α′
t]]1 · M ′

ρ−1(t),1[[a]]1, [[yt,j ]]1 = [[y′
t,j ]]1 · M ′

ρ−1(t),j [[a]]1 (5.1)

for all j ∈ [2, ŝmax]. Note that, αt and {yt,j}j∈{2,...,smax} are distributed uniformly
over Zq and hence each of these elements of the public key is properly distributed.

Answering Hash Queries:

1. H1 queries. If (ιk ∈ I∗ ∧ I = I∗), then sample uniformly random elements
h1,k̂, h1,t,ιk

from Zq and set

3 In particular, we consider a map γ : I∗ → [n] and use γ(k) = ιk throughout the security
analysis.



Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 611

H1(t ‖ ιk ‖ I) = (gb
2)

ηk ·
n−1∏

k̂=1

g
h1,k̂

λ
k,k̂

2 · g
h1,t,ιk
2 . (5.2)

Otherwise, if (ιk �∈ I∗ ∨ I �= I∗), then output a random G2 element, i.e., sample

uniformly random element h′
1,t,ιk

from Zq and set H1(t ‖ ιk ‖ I) = g
h′
1,t,ιk

2 . The
reduction stores the hash queries for future use.

2. H2 queries. If (ιk ∈ I∗ ∧ I = I∗), then sample uniformly random elements
h2,k̂, h2,j,ιk

for j ∈ {2, . . . , ŝmax} (in Eq. 5.3) and elements h′
2,j,ιk

for j ∈ {ŝmax +
1, . . . , smax} from Zq (in Eq. 5.4) and set

H2(j ‖ ιk ‖ I) = (gb
2)

ηk

∑Q
φ=1 dφ,j ·

n−1∏

k̂=1

g
h2,k̂

λ
k,k̂

2 · g
h2,j,ιk
2 (5.3)

H2(j ‖ ιk ‖ I) = g
h′
2,j,ιk

2 (5.4)

where Q denotes the total number of non-accepting key queries {(Sφ,uφ,
Iuφ

)}φ∈[Q] made by the adversary in the case where Iuφ
= I∗ but the attributes

in Sφ does not satisfy the challenge policy (M, ρ). Note that, for such secret key
queries, there exists a vector dφ = (dφ,1, . . . , dφ,smax) ∈ Z

smax
q such that dφ,1 = 1

and the inner product M ′
i ·dφ = 0 for all i ∈ ρ−1(C ∪ Sφ), where M ′

i denotes
the i-th row of M′. Additionally, the set of rows R = {M ′

i ∈ Z
smax
q : i ∈ ρ−1(C)}

has dimension c and M ′
i,j = 0 for all (i, j) ∈ ρ−1(C) × [ŝmax]. Therefore, R spans

the entire subspace V =
{

(
ŝmax︷ ︸︸ ︷

0, . . . , 0,ν) : ν ∈ Z
c
q

}

. Thus, it follows that dφ is

orthogonal to any of the vectors

{

(
ŝmax︷ ︸︸ ︷

0, . . . , 0,

j−1
︷ ︸︸ ︷
0, . . . , 0, 1,

c−j
︷ ︸︸ ︷
0, . . . , 0)

}

j∈{ŝmax+1,...,smax}
.

In other words, dφ,j = 0 for all j ∈ {ŝmax +1, . . . , smax}. Combining the above two
facts, we have (M ′

i |[ŝmax]) · (dφ|[ŝmax]) = 0 for all i ∈ ρ−1(Sφ), where for a vector
x, x|X denotes a vector formed by taking the entries of x having indices in the set
X ∈ N. For simplicity of notation, let us denote M ′

i � dφ = (M ′
i |[ŝmax]) · (dφ|[ŝmax])

for i ∈ ρ−1(Sφ).
Otherwise, if (ιk �∈ I∗ ∨ I �= I∗), then output a random G2 element, i.e., sample

uniformly random element h′′
2,t,ιk

from Zq and set H2(j ‖ ιk ‖ I) = g
h′′
2,t,ιk

2 . The
reduction stores the hash queries for future use.

3. H3 queries. If (GID, Sφ,uφ, Iuφ
) ∈ Q and Sφ ∩ ρ([�]) �= ∅ and ρ−1(Sφ ∪ C)

constitutes an unauthorized subset of the rows of M then sample h3,j,ιk
for
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j ∈ {2, . . . , ŝmax} (in Eq. 5.5) and elements h′
3,j,ιk

for j ∈ {ŝmax + 1, . . . , smax}
from Zq (in Eq. 5.6) and set

H3(GID ‖ uφ ‖ j ‖ ιk) = (gb
2)

ηk

∑
φ′∈[Q]\{φ} −dφ′,j · g

h3,j,ιk
2 (5.5)

H3(GID ‖ uφ ‖ j ‖ ιk) = g
h′
3,j,ιk

2 (5.6)

for all ιk ∈ Iuφ
such that Iuφ

= I∗ and dφ is as defined above.
If (GID, Sφ,uφ, Iuφ

) ∈ Q and Sφ ∩ ρ([�]) �= ∅ and Iuφ
�= I∗ then sample h′′

3,j,ιk

uniformly at random from Zq and set H3(GID ‖ uφ ‖ j ‖ ιk) = g
h′′
3,j,ιk

2 .
On the other hand, if (GID, Sφ,uφ, Iuφ

) ∈ Q and Sφ ∩ ρ([�]) �= ∅ and ρ−1(Sφ ∪C)
constitutes an authorized subset of the rows of M then sample h′′′

3,j,ιk
← Zq and set

H3(GID ‖ uφ ‖ j ‖ ιk) = g
h′′′
3,j,ιk

2 . The reduction stores the hash queries for future
use. For all other cases, the reduction simple outputs a uniformly random element
from G2 to answer the hash query H3(GID ‖ uφ ‖ j ‖ ιk).

Generating Secret Keys: For any (GID, Sφ,uφ, Iuφ
) ∈ Q, B returns a secret key

SKGID,Sφ,uφ
=

(
GID,uφ, {SKt,uφ

}t∈Sφ
, Iuφ

)
, where it computes each of its compo-

nents as follows. We denote

H2·3(GID,uφ, j, k) = H2(j ‖ ιk ‖ Iuφ
) · H3(GID ‖ uφ ‖ j ‖ ιk)

for simplifying the representation of equations. For each t ∈ Sφ and Iuφ
, it has four

different cases to consider:

1. Case 1—(t ∈ Sφ \ ρ([�])) (i.e., the attribute is absent in the challenge policy
(M,ρ))—In this case, B simulates the secret keys according to the real experiment.
It knows αt, yt,j for all j ∈ {2, . . . , smax} in clear and hence can compute

SKφ,t,uφ
= (

n∏

k=1

H1(t ‖ ιk ‖ Iuφ
)αtuιk ) ·

smax∏

j=2

n∏

k=1

H2·3(GID,uφ, j, k)yt,juιk

where H3(GID ‖ uφ ‖ j ‖ ιk) were sampled uniformly.
2. Case 2—(t ∈ Sφ ∩ ρ([�]) ∧ Iuφ

�= I∗) (i.e., the attribute is present in the challenge
policy, but the associated index set does not match with the challenge index set) In
this case, B extracts the corresponding exponents of the hash values from the list of
hash queries and computes

SKφ,t,uφ
= (

n∏

k=1

H1(t ‖ ιk ‖ Iuφ
)αtuιk ) ·

smax∏

j=2

n∏

k=1

H2·3(GID,uφ, j, k)yt,juιk

where H3(GID ‖ uφ ‖ j ‖ ιk) = g
h′′
3,j,ιk

2 were sampled uniformly from Zq.
3. Case 3—(t ∈ Sφ ∩ρ([�])∧Iuφ

= I∗) and ρ−1(C ∪Sφ) constitutes an unauthorized
subset of the rows of M (i.e., Sφ does not satisfy the challenge policy (M, ρ)).
Note that the inner product value (v0 − v1) ·uφ can be either zero or non-zero
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in this case. Since Sφ does not satisfy the challenge policy (M, ρ), there exists a
vector dφ = (dφ,1, . . . , dφ,smax) ∈ Z

smax
q such that dφ,1 = 1 and the inner product

M ′
i �dφ = 0 for all i ∈ ρ−1(Sφ), whereM ′

i denotes the i-th row ofM′. B computes
the secret key SKt,u as follows.

SKφ,t,uφ
= (

n∏

k=1

H1(t ‖ ιk ‖ Iuφ
)αtuιk ) ·

smax∏

j=2

n∏

k=1

H2·3(GID,uφ, j, k)yt,juιk

= (
n∏

k=1

(gab
2 )ηkM ′

ρ−1(t),1
uιk ) ·

ŝmax∏

j=2

n∏

k=1

(gab
2 )ηkdφ,jM ′

ρ−1(t),j
uιk · g

Lφ(a,b)
2

=
ŝmax∏

j=1

n∏

k=1

(gab
2 )ηkdφ,jM ′

ρ−1(t),j
uιk · g

Lφ(a,b)
2

=
n∏

k=1

(gab
2 )ηkuιk

(M ′
ρ−1(t)


dφ) · g
Lφ(a,b)
2 = g

Lφ(a,b)
2

where Lφ(a, b) represents a linear function in a, b and hence g
Lφ(a,b)
2 can be effi-

ciently computable by B. The first equality follows from the definition of αt, yt,j

(Eq. (5.1)) and the hash functions H1 (Eq. (5.2)), H2 (Eqs. (5.3) and (5.4)) and H3

(Eqs. (5.5) and (5.6)). The last equality holds since M ′
ρ−1(t)�dφ = 0 and the second

last equality holds since dφ,1 = 1.
4. Case 4—(t ∈ Sφ ∩ ρ([�]) ∧ Iuφ

= I∗) and ρ−1(Sφ) constitutes an authorized
subset of rows ofM (i.e., Sφ satisfies the challenge policy (M, ρ)) – In this case, B
computes the secret key SKφ,t,uφ

as follows.

SKφ,t,uφ
= (

n∏

k=1

H1(t ‖ ιk ‖ Iuφ
)αtuιk ) ·

smax∏

j=2

n∏

k=1

H2·3(GID,uφ, j, k)yt,juιk

= (
n∏

k=1

(gab
2 )ηkM ′

ρ−1(t),1
uιk ) ·

ŝmax∏

j=2

n∏

k=1

((gab
2 )ηk

∑Q
φ=1 dφ,j )M ′

ρ−1(t),j
uιk · g

Lφ(a,b)
2

=

⎡

⎣(gab
2 )ηkM ′

ρ−1(t),1 ·
ŝmax∏

j=2

(gab
2 )ηk

∑Q
φ=1 dφ,jM ′

ρ−1(t),j

⎤

⎦

η ·uφ

· g
Lφ(a,b)
2 = g

Lφ(a,b)
2

where the last equality follows from the fact that η ·uφ = 0 if the secret key query
satisfies the condition (v0 − v1) ·uφ = 0 as Sφ is authorized. Hence, in this case,
B can efficiently simulates the secret key as Lφ(a, b) is linear in a, b.

Generating the Challenge Ciphertext: B implicitly sets the vectors

z = −abc · η = −abc(η1, . . . , ηn) ∈ Z
n
q ,

xj = −(ac, . . . , ac) ∈ Z
n
q , fj = −ac ∈ Zq, ∀j ∈ {2, . . . , ŝmax},

xj = 0 ∈ Z
n
q , fj = 0 ∈ Zq, ∀j ∈ {ŝmax + 1, . . . , smax}

There are two cases to consider according to the authority whether it is corrupted or
non-corrupted.
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1. Case 1—ρ(i) ∈ C (meaning that the authority associated with this row is
corrupted)—In this case, it holds that M ′

iB = 0 and M ′
i,jxj = 0 for all (i, j) ∈

ρ−1(C) × [ŝmax] since M ′
i |[ŝmax] =

{ ŝmax︷ ︸︸ ︷
0, . . . , 0

}

and due to the above implicit setting

of B,xj . Thus, for each such row, B picks ri ← Zq, and using the authority public
key PKρ(i) = (Yρ(i),1,Yρ(i),2, . . . ,Yρ(i),smax

) obtained from A, it computes

C0 = [[vβ + z]]T , C1,i = [[M ′
iB + ϑi]]T = [[ϑi]]T , C2,i = [[ri]]1,

C3,i,j,k = e([[M ′
i,jxj,k]]1,H2(j ‖ ιk ‖ I∗)) · e(ri[[Yρ(i),j ]]1,H2(j ‖ ιk ‖ I∗))

= e(ri[[Yρ(i),j ]]1,H2(j ‖ ιk ‖ I∗))
C4,i,j = [[M ′

i,jfj + Yρ(i),jri]]1 = [[Yρ(i),jri]]1

for all i ∈ [�], j ∈ {2, . . . , smax} and k ∈ [n], where ϑi = (ϑi,1, . . . , ϑi,m) and

ϑi,k = e(ri[[Yρ(i)]]1,H1(ρ(i) ‖ ιk ‖ I∗)).

2. Case 2—ρ(i) ∈ N (meaning that the authority associated with this row is
uncorrupted)—Firstly, B sets C0 = [[vβ + z]]T where β is the challenge bit for
A. It also implicitly sets ri = c and the matrix B = (z,0, · · · ,0)� ∈ Z

smax×n
q .

This implies M ′
iB = M ′

i,1z = −M ′
i,1 · abc · η and the k-th element of the vec-

tor is (M ′
iB)k = −M ′

i,1abcηk. Recall that, for each i ∈ [�], we have αρ(i) =
α′

ρ(i)+a ·M ′
i,1 and yρ(i),j = y′

ρ(i),j +aM ′
i,j . Now, B implicitly computes the vector

ϑi := (ϑi,1, . . . , ϑi,m) as

ϑi,k = e(ri[[αρ(i)]]1,H1(ρ(i) ‖ ιk ‖ I∗))

= e([[cα′
ρ(i) + ac · M ′

i,1]]1, [[bηk +
n−1∑

k̂=1

h1,k̂λk,k̂ + h1,ρ(i),ιk
]]2)

= [[bcα′
ρ(i)ηk + M ′

i,1abcηk + (cα′
ρ(i) + ac · M ′

i,1)h1,i,k]]T

where h1,i,k =
∑n−1

k̂=1
h1,k̂λk,k̂ + h1,ρ(i),ιk

. We write h1,i = (h1,ρ(i),ιk
)n
k=1. Thus,

for each i ∈ [�], B sets C2,i = [[c]]1 and computes

C1,i = [[MiB + ϑi]]T = [[bcα′
ρ(i)η + (cα′

ρ(i) + ac · M ′
i,1)h1,i]]T

= e(gc
1, g

b
2)

α′
ρ(i)η · e(gc

1, g2)
α′

ρ(i)hi · e(gc
1, g

a
2 )M ′

i,1h1,i

Next, B computes C3,i,j,k as follows. Recall that C3,i,j,k is a product of two pairing
operations. Note that, M ′

i,jxj,k = 0 if j ∈ {ŝmax + 1, . . . , smax}. Thus, for j ∈
{2, . . . , ŝmax}, the first pairing is computed as

e([[M ′
i,jxj,k]]1,H2(j ‖ ιk ‖ I∗))

= e([[M ′
i,jxj,k]]1, (gb

2)
ηk

∑Q
φ=1 dφ,j ·

n−1∏

k̂=1

g
h2,k̂

λ
k,k̂

2 · g
h2,ρ(i),ιk
2 )

= [[M ′
i,jxj,kbηkd+j + M ′

i,jxj,kh2,i,k]]T
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where d+j =
∑Q

φ=1 dφ,j and h2,i,k =
∑n−1

k̂=1
h2,k̂λk,k̂ + h2,ρ(i),ιk

. If j ∈
{2, . . . , ŝmax}, the second pairing is computed as

e(ri[[yρ(i),j ]]1,H2(j ‖ ιk ‖ I∗))

= e([[cy′
ρ(i),j + acM ′

i,j ]]1, (g
b
2)

ηk

∑Q
φ=1 dφ,j ·

n−1∏

k̂=1

g
h2,k̂

λ
k,k̂

2 · g
h2,ρ(i),ιk
2 )

= [[bc(y′
ρ(i),j + aM ′

i,j)ηkd+j + c(y′
ρ(i),j + aM ′

i,j)h2,i,k]]T

Finally, for each i ∈ [�], j ∈ {2, . . . , ŝmax}, k ∈ [n], the ciphertext component
C3,i,j,k is obtained as

C3,i,j,k = e([[M ′
i,jxj,k]]1,H2(j ‖ ιk ‖ I∗)) · e(ri[[yρ(i),j ]]1,H2(j ‖ ιk ‖ I∗))

= [[bcy′
ρ(i),jηkd+j + cy′

ρ(i),jh2,i,k]]T

= e(gc
1, g

b
2)

y′
ρ(i),jηkd+

j · e(gc
1, g2)

y′
ρ(i),jh2,i,k

which B can compute as a part of the challenge ciphertext. Now, if j ∈ {ŝmax +
1, . . . , smax}, recall that yρ(i),j are known is clear and hence B computes C3,i,j,k as

C3,i,j,k = e([[M ′
i,jxj,k]]1,H2(j ‖ ιk ‖ I∗)) · e(ri[[yρ(i),j ]]1,H2(j ‖ ιk ‖ I∗))

= e(ri[[yρ(i),j ]]1, [[h′
2,j,ιk

]]2) = e(gc
1, g2)

yρ(i),jh′
2,j,ιk

for all i ∈ [�], k ∈ [n]. The last remaining part C4,i,j is given by

C4,i,j = [[M ′
i,jfj + yρ(i),jri]]1 = [[−acM ′

i,j + cy′
ρ(i),j + acM ′

i,j ]]1 = (gc
1)

y′
ρ(i),j

if i ∈ [�], j ∈ {2, . . . , ŝmax}. Note that, M ′
i,jfj = 0 and yρ(i),j are known in clear

for j ∈ {ŝmax + 1, . . . , smax}. Hence, B computes C4,i,j as

C4,i,j = [[M ′
i,jfj + yρ(i),jri]]1 = [[cyρ(i),j ]]1 = (gc

1)
yρ(i),j

for each i ∈ [�], j ∈ {2, . . . , smax}. Observe that, the elements B,xj , fj and ri are
not properly distributed. Thus, B re-randomizes the ciphertext components using the
algorithm CTRand described below before it sends to A.

Ciphertext Re-randomization Algorithm: The algorithm described below provides
properly distributed ciphertexts even if the randomness used within the ciphertexts
inputted into the algorithm are not uniform. The algorithm uses only publicly avail-
able information to perform the re-randomization and hence rectify the distribution of
the challenge ciphertext in the reduction.
CTRand((M, ρ),CT,PK): The algorithm takes input an LSSS access policy (M, ρ),
where M = (Mi,j)�×smax = (M1, . . . ,M�)� ∈ Z

�×smax
q and ρ : [�] → Uatt, a cipher-

text CT =
(
(M, ρ) , C0, {C1,i, C2,i,, C3,i,j,k, C4,i,j}i∈[�],j∈{2,...,smax},k∈[m], Iv

)
, and

the public key components PK such that ρ([�]) ⊆ Uatt.

1. Sample
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(a) r′
1, . . . , r

′
� ← Zq;x′

2, . . . ,x
′
smax

∈ Z
n
q ; f ′

2, . . . , f
′
smax

∈ Zq,
(b) B′ = (z′, b′

2, . . . , b
′
smax

)� ∈ Z
smax×n
q ,

2. Compute C ′
0 = C0 · [[z′]]T .

3. For all i ∈ [�], j ∈ {2, . . . , smax} and k ∈ [n], compute

C ′
1,i = C1,i · [[MiB′ + ϑ′

i]]T , C ′
2,i = C2,i · [[r′

i]]1,

C ′
3,i,j,k = C3,i,j,k · e([[Mi,jx

′
j,k]]1,H2(j ‖ ιk ‖ I∗)) · e(r′

i[[yρ(i),j ]]1,H2(j ‖ ιk ‖ I∗))

C ′
4,i,j = C4,i,j · [[Mi,jf

′
j + yρ(i),jr

′
i]]1

where ϑ′
i = (ϑ′

i,1, . . . , ϑ
′
i,n) and ϑ′

i,k = e(r′
i[[αρ(i)]]1,H1(ρ(i) ‖ ιk ‖ I∗)).

4. Output the ciphertext

CT =
(
(M, ρ) , C ′

0, {C ′
1,i, C

′
2,i,, C

′
3,i,j,k, C ′

4,i,j}i∈[�],j∈{2,...,smax},k∈[m], Iv

)
.

Guess: If A guesses the challenge bit β ∈ {0, 1} correctly, B returns 1; Otherwise B
outputs 0. Now, observe that z = −τ · η where [[τ ]]T is the DBDH challenge element.
If τ = abc, then all the secret keys and the challenge ciphertext are distributed properly,
in particular, the challenge ciphertext is an encryption of the message vector vβ for
β ← {0, 1}. Therefore, in this case,A outputs β′ = β with probability 1/2+ε(λ)where
ε(λ) is the advantage of A in the static security game of the MA-ABUIPFE scheme.
On the other hand, if τ is a random element of Zq then the ciphertext element C0 is
uniformly random in GT , and hence from A’s point of view there is no information
of the challenge bit β in the challenge ciphertext. So, the probability of A outputting
β′ = β is exactly 1/2. Hence, by the guarantee of DBDH assumption, A has a non-
negligible advantage against the proposed MA-ABUIPFE scheme in the static security
game. This completes the proof. ��

6 The Proposed Large UniverseMA-ABUIPFE from L-DBDH

In this section, we describe the construction of our LMA-ABUIPFE scheme. The con-
struction is in prime-order groups and additionally uses hash functions that are modelled
as random oracles in the security proof just like our small universe construction.

GlobalSetup(1λ, smax): The global setup algorithm takes input the security parameter
λ and a vector length n both in unary, and the maximum width of an LSSS matrix
supported by the scheme smax = smax(λ). It generates G = (q,G1,G2,GT , g, e) and
specify hash functions H1 : Uatt × Z × Z

∗ → G2, H2 : [smax] × Z × Z
∗ → G2,

H3 : GID × Z
∗ × [smax] × Z → G2 and R :Uatt × [smax] × Z

∗ → G2 mapping
strings (t, j) ∈ Uatt × [smax] to elements in G2. It outputs a global parameter GP =
(G,H1,H2,H3,R).

LocalSetup(GP, θ): The authority setup algorithm takes input the global parameter
GP and an authority index θ ∈ AU . It samples αθ, yθ,2, . . . , yθ,smax ← Zq and outputs
PKθ = ([[αθ]]1, [[yθ,2]]1, . . . , [[yθ,smax ]]1) and MSKθ = (αθ, yθ,2, . . . , yθ,smax).

KeyGen(GP,GID,MSKθ , t, u,Iu): The key generation algorithm takes input GP,
the user’s global identifier GID, the authority’s secret key MSKθ, an attribute t con-
trolled by the authority and a vector u ∈ Z

|Iu |
q . It samples τj ← Zp for j ∈ [smax] and

proceeds as follows:
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1. Parse Iu = {ι1, . . . , ιn} and u = (uι1 , . . . , uιn
).

2. Compute

Kt,u = (
∏n

k=1 H1(t ‖ ιk ‖ Iu )αθuιk ) · ∏smax

j=2

∏n
k=1(H2(j ‖ ιk ‖ Iu ) · H3(GID ‖ u ‖ j ‖ ιk))yθ,juιk .

3. Compute SKt,u = Kt,u · ∏smax

j=1 R(t ‖ j ‖ Iu )τj and Z
(j)
t = [[τj ]]1 ∀ j ∈ [smax].

Output SKGID,t,u = (GID,u,SKt,u ,Z
(j)
t , Iu ).

Encrypt(GP, (M, δ),{PKθ}, v,Iv ): The encryption algorithm takes input the
global parameter GP, an LSSS access structure (M, δ) whereM = (M1, . . . ,M�)� ∈
Z

�×smax
q and δ : [�] → Uatt, a set {PKθ} of public keys for all the relevant authorities,

and a message vector v ∈ Z
m
q . The function δ maps the row indices ofM to attributes.

We define the function ρ : [�] → AU as ρ(·) = T(δ(·)) which maps row indices of M
to authorities. The algorithm proceeds as follows:

1. Parse Iv = {ι1, . . . , ιm} and v = (vι1 , . . . , vιm
).

2. Sample {ri ← Zq}i∈[�] and f = (f2, . . . , fsmax) ← Z
smax−1
q .

3. Sample z, b2, . . . , bsmax ,x2, . . . ,xsmax ← Z
m
q .

4. Set the matrix B =
[
z, b2, . . . , bsmax

]�
smax×m

.
5. Compute ϑi,k = e(ri[[αρ(i)]]1,H1(ρ(i) ‖ ιk ‖ Iv )) and set ϑi := (ϑi,1, . . . , ϑi,m).
6. Compute the following terms:

C0 = [[v + z]]T , C1,i = [[MiB + ϑi]]T , C2,i = [[ri]]1,
C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ Iv )) · e(ri[[yρ(i),j ]]1,H2(j ‖ ιk ‖ Iv )),

C4,i,j = [[Mi,jfj + yρ(i),jri]]1,

for all i ∈ [�], j ∈ {2, . . . , smax}, k ∈ [m].
7. Compute C5,i,j = R(δ(i) ‖ j ‖ Iv )ri for all i ∈ [�], j ∈ [smax].
8. Output the ciphertext

CT =

(

(M, δ) , C0, {C1,i, C2,i,, C3,i,j,k, C4,i,j , C5,i,1, C5,i,j}j∈{2,...,smax},
i∈[�],k∈[m]

, Iv

)

.

Decrypt(GP,GID,CT,{SKGID,t,u}): It takes input the public key PK, a secret key
SKS,u for an attribute set S ⊆ Uatt and a vector u ∈ Z

n
q and a ciphertext CT for an

access structure (M, δ) withM ∈ Z
�×smax
q and a map δ : [�] → Uatt.

Parse SKGID,t,u = (GID,u,SKt,u ,Z
(j)
t , Iu ), where i ∈ [�] and CT =

((M, δ), C0, {C1,i, C2,i,, C3,i,j,k, C4,i,j , C5,i,1, C5,i,j}i∈[�],j∈{2,...,smax},k∈[m], Iv ).
Denote a set I = {i|δ(i) ∈ S} ⊆ [�]. If (1, 0, . . . , 0) is not in the span of MI (i.e., M
restricted to the set of rows from I) or Iu �= Iv decryption returns ⊥. Else, when S sat-
isfies (M, ρ), the algorithm finds {wi ∈ Zq}i∈I such that (1, 0, . . . , 0) =

∑
i∈I wiMi.

It first computes

[[Λi]]T =
smax∏

j=2

n∏

k=1

uιk
· C3,i,j,k · e(C4,i,j ,H3(GID ‖ u ‖ j ‖ ιk)uιk )
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and outputs loggT
([[Γ ]]T ) where [[Γ ]]T = C0 ·u · [[μ]]T and

[[μ]]T =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∏

i∈I

⎡

⎢
⎢
⎢
⎢
⎣

C1,i ·u · [[Λi]]T ·
smax∏

j=1

e(Z(j)
δ(i), C5,i,j)

e
(
SKρ(i),u , C2,i

)

⎤

⎥
⎥
⎥
⎥
⎦

wi
⎞

⎟
⎟
⎟
⎟
⎟
⎠

−1

.

Theorem 6.1. If the L-DBDH assumption holds, then all PPT adversaries have a
negligible advantage in breaking the static security of the proposed LMA-ABUIPFE
scheme in the random oracle model.
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