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Abstract. Threshold ring signatures are digital signatures that allow t
parties to sign a message while hiding their identity in a larger set of n
users called “ring”. Recently, Aranha et al. [PKC 2022] introduced the
notion of extendable threshold ring signatures (ETRS). ETRS allow one
to update, in a non-interactive manner, a threshold ring signature on
a certain message so that the updated signature has a greater thresh-
old, and/or an augmented set of potential signers. An application of this
primitive is anonymous count me in. A first signer creates a ring signa-
ture with a sufficiently large ring announcing a proposition in the signed
message. After such cause becomes public, other parties can anonymously
decide to support that proposal by producing an updated signature. Cru-
cially, such applications rely on partial signatures being posted on a pub-
licly accessible bulletin board since users may not know/trust each other.

In this paper, we first point out that even if anonymous count me in
was suggested as an application of ETRS, the anonymity notion proposed
in the previous work is insufficient in many application scenarios. Indeed,
the existing notion guarantees anonymity only against adversaries who
just see the last signature, and are not allowed to access the “full evolu-
tion” of an ETRS. This is in stark contrast with applications where partial
signatures are posted in a public bulletin board. We therefore propose
stronger anonymity definitions and construct a new ETRS that satis-
fies such definitions. Interestingly, while satisfying stronger anonymity
properties, our ETRS asymptotically improves on the two ETRS pre-
sented in prior work [PKC 2022] in terms of both time complexity and
signature size. Our ETRS relies on extendable non-interactive witness-
indistinguishable proof of knowledge (ENIWI PoK), a novel technical tool
that we formalize and construct, and that may be of independent inter-
est. We build our constructions from pairing groups under the SXDH
assumption.
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1 Introduction

Anonymity is a central requirement in several privacy-preserving technologies.
Notable examples are e-voting protocols [34], anonymous authentication [30],
and privacy-protecting cryptocurrencies [35]. A central cryptographic primitive
that can be used to provide anonymity in applications is ring signatures [33].
Ring signatures [33] are digital signatures which allow one user to sign a message
while hiding her identity in a larger group called ring R. In practice, the signing
algorithm, aside the message, takes as input a set of public keys (i.e., the ring)
and one of the corresponding secret keys. The produced signature guarantees
that one of the public keys in the ring signed the message, while hiding which
one of the secret keys was used to create the signature. Clearly, the larger is
R the greater is the anonymity provided to the signer. Constructions for ring
signatures are known from a variety of cryptographic tools such as RSA [17],
pairing groups [10,16,37], non-interactive zero-knowledge proofs [3,11,22], and
lattices [9,19,27,28]. A practical application of ring signature is whistleblowing.
By signing a message, a member of a company can report a wrong practice of
the company itself while hiding his identity among all the other employees.

Threshold ring signatures [12] enrich ring signatures by allowing t signers to
hide their identity within the ring. The signature guarantees that t members
of R signed the message without revealing which ones. Ring signatures can be
seen as threshold ring signatures with t = 1. Some threshold ring signatures also
enjoy a property called flexibility [29,31]. They allow new signers to join already
produced signatures: a signature on a message m that was already created with
threshold t for a ring R can be transformed into a new signature on message m
with threshold t + 1 w.r.t. the same ring R. The interesting aspect of flexible
threshold ring signatures is that the update does not require the participation
of any previous signer. Nevertheless, until recently, all known threshold ring
signatures did not offer an analogous property that would allow extending the
ring. In other words, all previous constructions required to fix the ring from the
beginning and did not allow to modify it further.

This problem has been addressed for the first time in the recent work of
Aranha et al. [2] which has put forth the notion of extendable threshold ring
signatures (ETRS). ETRS, aside the join operation, also provide an extend oper-
ation: any signature with ring R can be transformed by anybody into a signature
with ring R′ s.t. R ⊂ R′. After the extend operation, all signers in R′ can join
the signature.

On Count-me-in Applications. Aranha et al. [2] observe how the richer flexibil-
ity of ETRS can enable more advanced forms of whistleblowing or anonymous
petitions. The first signer could create a ring signature with a sufficiently large
ring announcing a proposition in the signed message. After such cause becomes
public, other parties could support the cause via extend and/or join operations.
As also reported in [2], an observer who has seen signatures on an old ring R
and on a new ring R′ can always compute R′ \ R, and this can help narrowing
down the identity of the signers. This problem is inherent in the functionality
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provided by ETRS, and it worsens as t approaches the size of the ring. A clear
example is the one of a signature w.r.t. ring R with threshold t = n − 1, where
n = |R|, which is transformed into a signature with threshold t = n′ − 1 w.r.t.
R′, |R′| = n′ = n + 1 (i.e., the threshold is increased by one and the final ring
contains an additional public key of a user A). By looking at the two signatures,
one can infer that one signer of the last signature either comes from |R| or it is
A with probability 1

2 .
In [2], the authors address this issue by proposing an anonymity definition in

which the adversary is restricted to see only the signature obtained eventually,
after all the extend and join operations have been applied. However, this restric-
tion hinders the use of ETRS in real-world count-me-in applications since it bears
an implicit requirement: the signers should privately interact to incrementally
produce the ETRS and then only the final signature can be made public to the
outside world. This means that all the possible advocates of a proposal should
be given access to a private bulletin board where partial signatures are posted (it
can be implemented using a blockchain). Additionally, the abstract of [2] infor-
mally mentions the importance of fellow signer anonymity (FSA), a property
stating that “it is often crucial for signers to remain anonymous even from their
fellow signers”. Such requirement was previously formally modeled in [29], but
it is not captured by the anonymity definitions of [2]. Indeed, it is unclear how
such property could be guaranteed when anonymity is only formulated w.r.t. an
adversary who cannot see intermediate signatures (as real signers would) and
does not have the secret key of any of the signers (as in the definition of [2]).

1.1 Our Contributions

In this work, we address the aforementioned shortcomings of ETRS. First, we
propose a stronger security definition that guarantees anonymity even against
adversaries that see the full “evolution” of a signature. Second, we propose
a new ETRS construction that achieves our strong anonymity definition, and
also improves in efficiency over previous work (cfr., Table 1). Our construction
relies on extendable non-interactive witness indistinguishable proof of knowledge
(ENIWI PoK), a novel technical tool that we formalize and construct, and that
may be of independent interest. In what follows, we present our contributions in
more detail.

Stronger Anonymity for ETRS. Even though certain leaks are inherent when the
adversary gets to see several ETRS, one should aim at building a scheme which
leaks nothing more than that. To this regard, we start from the anonymity
definition proposed in [2] and we make it stronger as follows. We allow the
adversary A to see all the ETRS that led to the final signature. In a nutshell, A
outputs two sequences of operations which at every step lead to an ETRS on the
same message, with the same ring, and the same threshold in both sequences.
The challenger C picks one of such sequences at random, executes it, and gives
to A the corresponding outputs of each step. We then require that A only has a
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negligible advantage in guessing which sequence was applied. We also propose a
security game that models fellow signer anonymity for ETRS.

Constructing ETRS. In [2], two constructions of ETRS are proposed: the first one
is obtained from extendable same-message linkable ring signatures (SMLERS)1,
while the second one is constructed from signatures of knowledge (SoK) for
the discrete log relation, public key encryption (PKE), and the discrete log
assumption. The first scheme achieves our stronger anonymity notion but suffers
quite high complexity; for instance, the signature size is O(tn). The second
scheme in [2] is more compact but does not fulfill our stronger anonymity notion.
Indeed, anyone who sees an ETRS before and after a join operation can easily
pinpoint the exact signer who joined the signature (see Appendix A.1 of [5] for
more details). It follows that such scheme is also not fellow-signer anonymous,
since no secret key is required to carry out the above attack.

We construct an ETRS which fulfills our stronger anonymity definition and
is also fellow-signer anonymous. As shown in Table 1, our ETRS also generally
improves the constructions given in [2] in terms of both time complexity and
signature size. In Appendix A.1 of [5], we give a high-level overview of both
ETRS presented in [2]. To build our ETRS, we introduce the notion of ENIWI
PoK, which may be of independent interest. We then show how to build an ETRS
from an ENIWI PoK for a hard relation, and an IND-CPA homomorphic public
key encryption scheme.

Table 1. Comparison of signature size, time complexities, and anonymity guarantees
of our ETRS and the ones presented in [2]. Let |R| = n and t be the threshold. In
the DL + SoK + PKE construction of [2] signature size and time complexities both
depend on a fixed upper bound on the ring size N . We say that a scheme achieves
weak anonymity if it achieves the anonymity property of [2], and strong anonymity if
our stronger anonymity definition is satisfied. FSA stands for fellow-signer anonymity.

Scheme Size Sign Join Extend Verify Anonymity FSA

SMLERS [2] O(tn) O(tn) O(n) O(tn) O(tn) Strong Yes

DL + SoK + PKE [2] O(N) O(N2) O(N2) O(N2) O(N2) Weak No

Ours O(n) O(n) O(n) O(n) O(n) Strong Yes

ENIWI PoKs. In [14], Chase et al. examined notions of malleability for non-
interactive proof systems. They defined the notion of allowable transformation
T = (Tx, Tw) w.r.t. a relation RL. A transformation is allowable w.r.t. RL if
on input (x,w) ∈ RL it gives as output (Tx(x) = x′, Tw(w) = w′) ∈ RL.

1 SMLERS were introduced in [2] as well. A SMLERS is a ring signature which is
also extendable. In addition, it allows to link two signatures produced by the same
signer on the same message, even on different rings. The SMLERS of [2] is obtained
from signatures of knowledge for the discrete log relation, collision-resistant hash
functions, and the discrete log assumption.
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Then, a proof system is said to be malleable w.r.t. an allowable transforma-
tion T = (Tx, Tw), if there exists a poly-time algorithm that on input the initial
statement x, the transformation T , and an accepting proof Π, gives an accepting
proof Π ′ for the transformed statement x′. They also considered more complex
transformations including n statements and proofs. They showed that Groth-
Sahai (GS) proofs [24] are malleable w.r.t. the language of sets of pairing product
equations and they define a set of elementary allowable transformations which
can be used to build more complex ones, including conjunctions and disjunc-
tions. They also observed that since GS is re-randomizable, a transformation of
a proof followed by its re-randomization is indistinguishable from a proof com-
puted from scratch for statement x′ using witness w′. They called this property
derivation privacy.

In this paper, we further explore the notion of malleability for non-interactive
witness indistinguishable (NIWI) proofs of knowledge (PoKs) in the context of
threshold relations. A threshold relation RLtr is defined w.r.t. a relation RL as
RLtr = {(x = (k, x1, . . . , xn), w = ((w1, α1), . . . , (wk, αk)))|1 ≤ α1 < . . . < αk ≤
n ∧ ∀ j ∈ [k] : (xαj

, wj) ∈ RL}. Let Ltr be the corresponding NP language. In
words, the prover wants to prove it has k witnesses for k different statements out
of n statements. The transformations we explore are extend and add operations:

– Extend: transform a proof for (k, x1, . . . , xn) ∈ Ltr into a proof for (k, x1, . . . ,
xn, xn+1) ∈ Ltr.

– Add: transform a proof for (k, x1, . . . , xn) ∈ Ltr into a proof for (k+1, x1, . . . ,
xn) ∈ Ltr.

While the extend operation can be realized without using any private input
of the “previous” prover, as modelled in [14], the same does not hold for the
add operation. Indeed, thanks to extractability, an accepting proof for (k +
1, x1, . . . , xn) ∈ Ltr can only be generated by the prover, except with negligible
probability, using k + 1 witnesses for k + 1 different statements out of all the
n statements. It follows that the add transformation must require a witness for
statement xi, with index i ∈ [n] that was not previously used, and it cannot
produce an accepting proof for the updated statement on input a witness for a
previously used index. It is straightforward to notice that this fact could be used
to check whether or not a given witness was used in the proof, thus violating
witness indistinguishability.

Therefore, we put forth the new notion of ENIWI PoK. In an ENIWI PoK,
when the prover computes a proof Π for a statement x = (k, x1, . . . , xn), it also
outputs a list of auxiliary values AUX = (aux1, . . . , auxn). The auxiliary value
auxi will be later used to perform the add operation via an additional algorithm
called PrAdd. PrAdd, on input an accepting proof Π for (k, x1, . . . , xn) ∈ Ltr, a
witness wi for a not previously used index i s.t. (xi, wi) ∈ RL, and the corre-
sponding auxiliary value auxi, outputs a proof Π ′ for (k + 1, x1, . . . , xn) ∈ Ltr.
Analogously, there is an additional algorithm PrExtend that is used to perform
the extend operation. PrExtend does not require any auxiliary value. PrExtend, on
input an accepting proof for (k, x1, . . . , xn) ∈ Ltr, and a statement xn+1, outputs
a proof Π ′ for (k, x1, . . . , xn+1) ∈ Ltr and the auxiliary value auxn+1 related to
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statement xn+1. The auxiliary value auxn+1 can later be used to perform an add
operation using witness wn+1 s.t. (xn+1, wn+1) ∈ RL. The verification algorithm
is left unaltered and does not take any auxiliary value in input.

Similarly to derivation privacy, we require that the outputs of both the extend
and add operations followed by a re-randomization are indistinguishable from
proofs created using the regular prover algorithm. Regarding witness indistin-
guishability, we have to treat the auxiliary values in a special manner. Indeed,
giving out all the auxiliary values would at least reveal the indices of the used
witnesses. Therefore, we propose a new notion called extended witness indis-
tinguishability. In this notion, the adversary A samples a x = (k, x1, . . . , xn)
and two witnesses wi as ((wi

1, α
i
1) . . . , (wi

k, αi
k)), s.t. (x,wi) ∈ RLtr for i ∈

{0, 1}. Recall that αj ∈ [n], with j ∈ [k], indicates that wj is a witness s.t.
(xαj

, wj) ∈ RL. Then, the challenger C outputs a proof computed using one of
the two witnesses, but it only gives to A a subset of all the auxiliary values.
Such subset includes the auxiliary values only related to certain indices, namely
({1, . . . , n} \ ({α0

1, . . . , α
0
n} ∪ {α1

1, . . . , α
1
n})) ∪ ({α0

1, . . . , α
0
n} ∩ {α1

1, . . . , α
1
n}). In

words, those are the auxiliary values related to the indices for which one of the
following conditions holds: (i) the index was not used in either w0 or w1; (ii) the
index was used in both w0 and w1. We require that A has negligible advantage
in guessing whether w0 or w1 was used to create the proof. The idea is that if we
build upon a NIWI and if the auxiliary values are only tied to the indices of the
used witness and not to their concrete values, then giving the auxiliary values
for the “irrelevant” positions to A does not give A any advantage. Although it
could seem a cumbersome notion, ENIWI is enough to obtain strongly anonymous
ETRS, and could possibly have other applications.

High-level Overview of our ENIWI. We propose an ENIWI for the base relation
RL of pairing product equations (PPEs) in which all the variables are elements
of group two, public constants are either paired with secret values or with the
public generator, and the target element is the neutral element.

We build our ENIWI from GS proofs. GS is a commit-and-prove system where
secret variables are first committed and the prover algorithm takes as input the
committed values as well as the commitments randomnesses to create some proof
elements. The proof can be verified on input the statement, the commitments,
and proof elements. We first modify known techniques to get disjunctions of
PPEs [13,23] into a technique to get proofs of partial satisfiability of k out of
n PPEs. Such transformation modifies the starting PPEs via some additional
variables M̂i with i ∈ [n] s.t. k of the PPEs are left unaltered while n − k of
them now admit the trivial solution, thus allowing for simulation. The value
of M̂i is constrained to two values, depending on whether or not the proof for
the i-th equation should be simulated. We then observe that such proofs can
be turned into an ENIWI provided with the extend and the add operations.
The auxiliary values can be seen as the commitment openings related to such
variables which enable to replace an M̂i allowing for simulation (i.e., an M̂i

that makes the corresponding PPE admit the trivial solution) with a new one
preventing simulation (i.e., an M̂i that leaves the corresponding PPE unaltered).
The idea is that to perform the add operation, the old commitment to a variable
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M̂i would be replaced with a fresh one. Then, auxi would allow to erase from
the proof element the contribution related to the old committed variable and
to subsequently put in the contribution of the freshly committed variable. The
extend operation is more straightforward since it does not need to erase any
contribution, but only to add the contribution of a new variable. At a high level,
extended witness indistinguishability is achieved since the M̂i variables are only
tied to the particular equation being simulated or not, but not to the actual
value of any of the variables. Proofs can also be re-randomized leveraging the re-
randomizability of GS and by appropriately updating the auxiliary values after
the re-randomization.

High-level Overview of our ETRS. To get an ETRS, we just need a way to turn
an ENIWI in a signature scheme preserving its extendability properties. In [20], it
is shown how to create a signature of knowledge (SoK) from a NIWI PoK in the
random oracle model (ROM). In a nutshell, the message is hashed to produce
the CRS which is then used to prove the statement of the SoK. The resulting
proof constitutes the signature. We leverage their technique to create an ETRS
starting from an ENIWI PoK. The idea is that since the transformation given
in [20] just modifies how the CRS is generated, we are able to replace the NIWI
PoK with an ENIWI PoK to get an ETRS instead of a regular signature. In our
ETRS, the i-th signer has as public key a statement xi for a hard relation RL for
which it exists an ENIWI, along with the public key pki

e of an IND-CPA public
key encryption scheme (PKE) which is homomorphic w.r.t. the update operation
of the auxiliary values. The corresponding secret key is wi s.t. (xi, wi) ∈ RL,
along with the secret key of the encryption scheme ski

e. The first signer S hashes
the message m to get the CRS, then S uses her own witness to create a proof for
(1, x1, . . . , xn) ∈ RLtr . By creating such proof, the signer will also get auxiliary
values (aux1, . . . , auxn). Since publishing the auxiliary values in the clear would
reveal the identity of the signer, each individual auxi is encrypted using the
public key of the i-th signer2. A new signer willing to join will decrypt auxi and
run PrAdd to update the proof. To extend the ring, it suffices to run PrExtend to
update the proof. Finally, to ensure anonymity we exploit the fact that ENIWI
PoKs are re-randomizable. We re-randomize all the proofs after running either
PrAdd or PrExtend. We additionally exploit the homomorphic property of the
encryption scheme to update the auxiliary values after each re-randomization.
We prove the security of our ETRS in the ROM.

Both the constructions presented in [2] use SoKs for the discrete log rela-
tion as a building block without specifying a concrete instantiation. Whether
they require the ROM or not depends on whether there exists a practical3 SoK
2 Notice that for anonymity to hold, it is crucial that the witness indistinguishability

property holds even if the auxiliary values related to unused positions are accessible
by the adversary. Indeed, in our anonymity notion the adversary is allowed to corrupt
all non-signers, thus getting their decryption keys and the related auxiliary values.

3 Chase and Lysyanskaya [15] proposed a generic construction under standard com-
plexity assumptions in the common random string model, but it is not practical
since it uses general non-interactive zero-knowledge (NIZK) proofs.
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without random oracles for that relation. The authors also provide an implemen-
tation in which they use the Schnorr identification scheme with the Fiat-Shamir
transform as a SoK. Such SoK requires the ROM. In our ETRS, all operations
require linear time in n as the number of equations to be proved linearly depends
on n. Additionally, GS proofs have constant size for each type of equation, there-
fore the size of the ETRS is O(n). Note that both time complexity and signature
size do not depend on t.

2 Related Work

Threshold ring signatures were introduced by Bresson et al. [12]. They provided
a construction based on RSA. The size of the signature is O(n log n), where n is
the size of the ring. Subsequent works proposed new constructions from a variety
of assumptions focused on either relaxing the setup assumptions, reducing the
signature size, or getting rid of the ROM.

Several works have signatures of size linear in n [1,26,32], while some others
proposed constructions with signature size that can be sub-linear in n [4,6,36]4,
or even O(t) [25,29]. Some works have also focused on providing post-quantum
security [1,8,26].

In [31], the concept of flexibility was introduced. A flexible threshold ring
signature scheme allows one to modify an already created signature on a message
m with threshold t and ring R into a new signature on message m with threshold
t + 1 w.r.t. R, without the intervention of the previous signers.

Usually, threshold ring signatures are formulated as an interactive protocol
run among the signers. Some schemes have a weaker requirement [4,6], where the
signers just have to interact with one party called the aggregator. After having
interacted with all the signers, the aggregator just compiles all the received
contributions into one threshold ring signatures which can then be publicly
posted. Munch-Hansen et al. [29] presented a threshold ring signature based on
RSA accumulators with size O(t). Their scheme also achieves flexibility. More-
over, they introduce a stronger anonymity property that demands that a signer
cannot be deanonymized even by their fellow signers. In this scenario, having
non-interactive signing is crucial since the deanonymization could be done by
exploiting communication meta-data such as the IP address. The same applies
to signatures using an aggregator, unless the aggregator is trusted. Recently,
Aranha et al. [2] have further enhanced the functionality of threshold ring signa-
ture by proposing extendable threshold ring signatures ETRS. ETRS are flexible
and they also allow to extend the ring of a given signature without the need of
any secret.

3 Preliminaries

In this section, we introduce the assumptions and the cryptographic tools our
constructions rely on. We defer to the full version [5] for more widely known defi-
4 In particular, [36] has size O(t

√
n), [6] is O(t log n), and [4] is O(log n).
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nitions and assumptions. When referring to an NP language L we call RL the cor-
responding NP relation. We work over bilinear groups gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ) ←
G(1λ). G(1λ) is a generator algorithm that on input the security parameter, out-
puts the description of a bilinear group. We call such description group key gk.
Ĝ, Ȟ,T are prime p order groups, ĝ, ȟ are generators of Ĝ, Ȟ respectively, and
e : Ĝ × Ȟ → T is a non-degenerate bilinear map. In this paper, we will use
additive notation for the group operations and multiplicative notation for the
bilinear map e.

Assumption 1 (Double Pairing Fixed Term Assumption) We say
the double pairing fixed term assumption holds relative to Ĝ if for gk =
(p, Ĝ, Ȟ,T, e, ĝ, ȟ) ← G(1λ), and for all PPT adversaries A we have

Pr
[
â, b̂ ←$ Ĝ \ (0̂, 0̂); b̌′ ← A(gk, â, b̂) : b̌′ ∈ Ȟ, â · ȟ + b̂ · b̌′ = 0T

]
≤ negl(λ).

Lemma 1. If the double pairing fixed term assumption holds for gk, then the
Decisional Diffie-Hellman assumption holds for Ĝ.

See [5] for the proof.

3.1 Groth-Sahai Proofs

The Groth-Sahai proof system [24] is a proof system for the language of
satisfiable equations (of types listed below) over a bilinear group gk =
(p, Ĝ, Ȟ,T, e, ĝ, ȟ) ← G(1λ). The prover wants to show that there is an assign-
ment of all the variables that satisfies the equation. Such equations can be of
four types:

Pairing-Product Equations (PPE): For public constants âj ∈ Ĝ, b̌i ∈ Ȟ,
γij ∈ Zp, tT ∈ T:

∑
i x̂i · b̌i +

∑
j âj · y̌j +

∑
i

∑
j γij x̂i · y̌j = tT.

Multi-Scalar Multiplication Equation in Ĝ (ME
Ĝ
): For public constants

âj ∈ Ĝ, bi ∈ Zp, γij ∈ Zp, t̂ ∈ Ĝ:
∑

i x̂ibi +
∑

j âjyj +
∑

i

∑
j γij x̂iyj = t̂.

Multi-Scalar Multiplication Equation in Ȟ (ME
Ȟ
): For public constants

aj ∈ Zp, b̌i ∈ Ȟ, γij ∈ Zp, ť ∈ Ȟ:
∑

i xib̌i +
∑

j aj y̌j +
∑

i

∑
j γijxiy̌j = ť.

Quadratic Equation in Zp (QE): For public constants aj ∈ Zp, bi ∈ Zp,
γij ∈ Zp, t ∈ Zp:

∑
i xibi +

∑
j ajyj +

∑
i

∑
j γijxiyj = t.

Here, we formalize the GS proof system as in [18]. The GS proof system
is a commit-and-prove system. Each committed variable is also provided with
a public label that specifies the type of input (i.e., scalar or group element).
Accordingly, the prover algorithm takes as input a label L which indicates the
type of equation to be proved (i.e., L ∈ {PPE,ME

Ĝ
,ME

Ȟ
,QE}). GS features

the following PPT algorithms, the common reference string crs and the group
key gk are considered as implicit input of all the algorithms.
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– crs ←$ CRSSetup(gk): on input the group key, output the common reference
string.

– (l, c) ← Com(l, w; r): return a commitment (l, c) to message w according to
the label l and randomness r.

– π ← Prove(L, x, (l1, w1, r1), . . . , (ln, wn, rn)): consider statement x as an equa-
tion of type specified by L, and on input a list of commitment openings pro-
duce a proof π.

– 0/1 ← PrVerify(x, (l1, c1), . . . , (ln, cn), π): given committed variables, state-
ment x, and proof π, output 1 to accept and 0 to reject.

– ((l1, c′
1), . . . , (ln, c′

n), π′) ← RandPr(L, (l1, c1), . . . , (ln, cn), π; r): on input
equation type specified by L, a list of commitments, a proof π, and a ran-
domness r, output a re-randomized proof along with the corresponding list
of re-randomized commitments.

GS can be also used to prove that a set of equations S, with possibly shared
variables across the equations, has a satisfying assignment. To do so, the prover
has to reuse the same commitments for the shared variables while executing the
Prove algorithm for each individual equation. The above description can also fit
the interface of NIWI PoK (see Appendix A.2 of [5]). Indeed, the Prove algorithm
can just launch the Com and the Prove algorithm above with the appropriate
labels, and return as a proof both the commitments and the proof elements. Sim-
ilarly, the PrVerify and RandPr algorithms of the NIWI PoK interface have just
to appropriately parse their inputs and call the PrVerify and RandPr algorithms
described above.

The GS proof system is proved to be a NIWI for all types of the above equa-
tions under the SXDH assumption. In addition, it is a NIWI PoK for all equations
involving solely group elements. To be more specific, Escala and Groth formu-
lated the notion of F -knowledge [18] (i.e., a variation of adaptive extractable
soundness, see Definition 14 of [5]) for a commit-and-prove system. In a nutshell,
it requires the existence of an Ext2 algorithm that, on input a valid commitment
and the extraction key produced by Ext1, outputs a function F of the committed
value. They prove that GS enjoys F -knowledge. For commitments to group ele-
ments, F is identity function. Regarding commitments to scalars, F is a one-way
function that uniquely determines the committed value.

Internals of GS Proofs. In [18], the authors provide a very fine-grained
description of GS proofs. In this description, we report only the aspects that
are relevant to our constructions. It is possible to write the equations of Sect. 3.1
in a more compact way. Consider x̂ = (x̂1, . . . , x̂m) and y̌ = (y̌1, . . . , y̌n), which
may be both public constants (i.e., written before as âj , b̌i) or secret values. Let
Γ = {γij}m,n

i=1,j=1 ∈ Z
m×n
p . We can now write a PPE as x̂Γ y̌ = tT. Similarly, a

ME
Ĝ
, a ME

Ȟ
, and a QE can be written as x̂Γy = t̂, xΓ y̌ = ť, and xΓy = t. This

holds for x̂ ∈ Ĝ
1×m, y̌ ∈ Ȟ

n×1,x ∈ Z
1×m
p ,y ∈ Z

n×1
p . Additionally, for equations

of type ME
Ĝ
, ME

Ȟ
, and QE, we can, without loss of generality, assume the tar-

get element to be the neutral element. For PPE we will restrict ourselves to the
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case in which tT = 0T, and no public constants are paired with each other, unless
one of the two is a generator specified in the public parameters. The structure
of the crs is clear from Fig. 1, where the Ext1 algorithm is shown.

Fig. 1. Generation of the CRS along with the extraction key in the GS proof system.

In Fig. 2, we report the commitment labels and corresponding commit algo-
rithm that are of interest for this work.

Fig. 2. GS commit labels and corresponding commit algorithm, e = (0, 1).

In Fig. 3 and in Fig. 4, we report the prover and verifier algorithm respec-
tively. We defer to Appendix A.4 of [5] for more details on GS internals.

4 Extendable Threshold Ring Signature

A non-interactive extendable threshold ring signature scheme ETRS is defined as
a tuple of six PPT algorithms ETRS = (Setup,KeyGen,Sign,Verify, Join,Extend),
where the public parameters pp produced by Setup are implicitly available to all
the other algorithms:

– pp ← Setup(1λ): on input the security parameter, outputs public parameters
pp.
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Fig. 3. Prover algorithm of the GS proof system.

Fig. 4. Verifier algorithm of the GS proof system.

– (pk, sk) ← KeyGen(): generates a new public and secret key pair.
– σ ← Sign(m, {pki}i∈R , sk): returns a signature with threshold t = 1 using the

secret key sk corresponding to a public key pki with i ∈ R.
– 0/1 ← Verify(t,m, {pki}i∈R , σ): verifies a signature σ for the message m

against the public keys {pki}i∈R with threshold t. Outputs 1 to accept, and
0 to reject.

– σ′ ← Join(m, {pki}i∈R , sk, σ): it takes as input a signature σ for message m
produced w.r.t. ring R with threshold t, and the new signer secret key sk
(whose corresponding pk is included in R). It outputs a new signature σ′

with threshold t + 1.
– σ′ ← Extend(m,σ, {pki}i∈R , {pki}i∈R′): extends the signature σ with thresh-

old t for the ring R into a new signature σ′ with threshold t for the larger
ring R ∪ R′.

To formalize the properties of ETRS, we use the notion of ladder as in [2].
A ladder lad is a sequence of tuples (action, input), where action takes a value in
the set {Sign, Join,Extend} and the value of input depends on the value of action.
If action = Sign, then input is a pair (R, i), where R is the ring for the signature
and i is the signer’s identity. If action = Join, then input is an identifier i that
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identifies the signer that joins the signature. If action = Extend, then input is a
ring R that is the ring to use to extend the previous ring. We notice that a ladder
unequivocally determines a sequence of ETRS, each one with a specific ring and
threshold value. In Fig. 7, the algorithm Proc is described. Proc takes as input
a message, a ladder, and a corresponding list of keys, and outputs the sequence
of all the signatures that correspond to each step of the ladder. It outputs ⊥
whenever the ladder has an inconsistent sequence of actions or is incompatible
with the list of keys provided in the input.

Definition 1 (Correctness for ETRS). For all λ ∈ N, for any message m ∈
{0, 1}∗, for any ladder lad of polynomial size identifying a ring R, it holds that:

Pr

⎡
⎢⎢⎣

(
�∧

j=1

Verify(t,m, {pki}i∈R , σj) = 1

)

∨(Σ, t,R) = ⊥

∣∣∣∣∣∣∣∣

pp ← Setup(1λ);
Lkeys ← {KeyGen()}i∈R;

(Σ, t,R) ← Proc(m, Lkeys, lad);
{σ1, . . . , σ�} = Σ

⎤
⎥⎥⎦ = 1.

Definition 2 (Unforgeability for ETRS). An extendable threshold ring sig-
nature scheme ETRS is said to be unforgeable if for all PPT adversaries A, the
success probability in the experiment of Fig. 5 is

Pr
[
ExpcmEUF

A,ETRS(λ) = win
]

≤ negl(λ).

Definition 3 (Anonymity for ETRS). An extendable threshold ring signa-
ture scheme ETRS is said to provide anonymity if for all PPT adversaries A,
the success probability in the anonymous extendability experiment of Fig. 6 is
Pr

[
ExpANEXT

A,ETRS (λ) = win
]

≤ 1
2 + negl(λ). In this experiment, the ladders submit-

ted by A are said to be well-formed if all the actions in the ladders are pairwise
of the same type, and they have the same ring as input.

Remarks on Anonymity and Unforgeability for ETRS. We modify the definition
of anonymity for ETRS in [2] making it stronger. The difference is that the
adversary now gets to see all the intermediate ETRS instead of just the final
one (see lines 11 and 12 of Chal in Fig. 6). This modification enables count-
me-in applications where partial signatures get publicly posted. In addition,
in the experiment, we add the checks of lines 15 and 17 to rule out a trivial
attack inherent to any ETRS. Indeed, since the Join operation cannot increase
the threshold of an ETRS when using a secret key that was already used before,
A could use this fact to distinguish between the ladders.

The Combine algorithm is introduced in [2] as a procedure to combine
together two signatures on the same message with two different (not necessarily
disjoint) rings. The output is a signature having as ring the union of the two
rings and as threshold the cardinality of the union of the signers sets of the
starting signatures. The Combine algorithm can be run without knowing any
secret key. In [2], the authors showed that the Join operation can be obtained
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Fig. 5. Unforgeability game for ETRS (security experiment and oracles). This notion
is reported from [2].

as the concatenation of the Sign operation and the Combine operation. In order
to avoid the same attack described before, the checks in lines 11 and 13 of the
experiment of Fig. 6 are needed. We notice that our ETRS only provides a weaker
form of Combine in which the starting rings are disjoint (cfr., Sect. 6). A similar
discussion holds for lines 5 − 8 of the unforgeability experiment in Fig. 5. In
particular, they rule out trivial attacks due to A asking too many sign, join, or
corruption queries.

Fellow-signer Anonymity. We also define a stronger version of anonymity called
fellow-signer anonymity. This game models the requirement that even a signer
cannot determine any of the other signers by just looking at all the signatures
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that were produced. It is straightforward to notice that fellow-signer anonymity
implies anonymity for ETRS.

Definition 4 (Fellow Signer Anonymity for ETRS). An extendable thresh-
old ring signature scheme ETRS is said to provide fellow signer anonymity if
for all PPT adversaries A, the success probability in the experiment of Fig. 8 is
Pr

[
ExpANFS

A,ETRS(λ) = win
]

≤ 1
2 + negl(λ).

5 Extendable Non-interactive Witness Indistinguishable
Proof of Knowledge

Given an NP language L with associated poly-time relation RL, we define the
related threshold relation RLtr as follows. We name the corresponding lan-
guage Ltr.

Fig. 6. Anonymous extendability game. We use lad.S to indicate the set of signers of a
ladder lad. We propose a stronger notion compared to [2]. Indeed, in our definition, the
adversary gets to see all the intermediate signatures instead of only the final ETRS.
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Fig. 7. Process algorithm for ETRS.

RLtr ={(x = (k, x1, . . . , xn), w = ((w1, α1), . . . , (wk, αk)))|
1 ≤ α1 < . . . < αk ≤ n ∧ ∀ j ∈ [k] : (xαj

, wj) ∈ RL}.

An extendable non-interactive proof system for a threshold relation RLtr con-
sists of the following PPT algorithms. The group key gk ← G(1λ) is considered
as an implicit input to all algorithms:

– crs ←$ CRSSetup(gk): on input the group key gk, output a uniformly random5

common reference string crs ∈ {0, 1}λ.
5 Here we are also assuming that the crs is uniformly random since it is needed by our
ETRS construction.
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Fig. 8. Fellow signer anonymity game. We use lad.S to indicate the set of signers of a
ladder lad and lad.add to indicate that we are adding the pair (action, input) as the last
element of the ladder.

– (Π, (aux1, . . . , auxn)) ← Prove(crs, (k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk))): on
input ((k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk))) ∈ RLtr , output a proof Π and
auxiliary values (aux1, . . . , auxn). The auxiliary value auxi is used later on to
perform an add operation using a witness for a not previously used statement
xi.

– 0/1 ← PrVerify(crs, (k, x1, . . . , xn),Π): on input statement (k, x1, . . . , xn),
and a proof Π, output 1 to accept and 0 to reject.

– (Π ′, auxn+1) ← PrExtend(crs, (k, x1, . . . , xn), xn+1,Π): on input statements
(k, x1, . . . , xn), xn+1, and a proof Π for (k, x1, . . . , xn) ∈ Ltr, output an
updated proof Π ′ for (k, x1, . . . , xn, xn+1) ∈ Ltr, and additional auxiliary
value auxn+1. The auxiliary value auxn+1 is used later on to perform an add
operation using a witness for xn+1.

– (Π ′, aux′
α) ← PrAdd(crs, (k, x1, . . . , xn), (w,α), aux,Π): on input statement

(k, x1, . . . , xn), witness (w,α), auxiliary value aux, and proof Π for (k, x1, . . . ,
xn) ∈ Ltr, output an updated proof Π ′ for (k + 1, x1, . . . , xn) ∈ Ltr, and
updated auxiliary value aux′

α.
– (Π ′, r = (r1, . . . , rn)) ← RandPr(crs, (k, x1, . . . , xn),Π): on input statement

x and proof Π for x ∈ Ltr, output a re-randomized proof Π ′ and update
randomness ri (related to auxiliary value auxi) with i ∈ [n].
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– aux′
i ← AuxUpdate(crs, auxi, ri): on input auxiliary value auxi, and update

randomness ri, output updated auxiliary value aux′
i. AuxUpdate is used to

update the auxiliary values after a proof has been re-randomized. The used
input randomness is the one given in output by RandPr. To simplify the
notation, we write AUX′ ← AuxUpdate(crs,AUX, r) to indicate that a list of
auxiliary values is updated by appropriately parsing AUX and r and running
the update operation on each element of the list.

– 0/1 ← AuxVerify(crs, (k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk)), (aux1, . . . , auxn),
Π): on input statement (k, x1, . . . , xn), witness ((w1, α1) . . . , (wk, αk)), auxil-
iary values (aux1, . . . , auxn), and proof Π, output 1 if the auxiliary values are
consistent with the statement, the proof, and the witness. Return 0 otherwise.
If AuxUpdate returns 1, we are guaranteed that the subsequent extend/add
operations can be correctly executed6.

An extendable non-interactive proof system is said to be an extendable non-
interactive witness indistinguishable (ENIWI) proof of knowledge if it satisfies
adaptive extractable soundness (Definition 14 of [5]) and the following properties.

Definition 5 (Completeness). An extendable non-interactive proof system for
RLtr is complete if ∀λ ∈ N, gk ← G(1λ), crs ←$ CRSSetup(gk), (x,w) ∈ RLtr ,
and (Π,AUX) ← Prove(crs, x, w) it holds that

Pr[PrVerify(crs, x,Π) = 1 ∧ AuxVerify(crs, x, w,AUX,Π) = 1] = 1

Definition 6 (Transformation Completeness). An extendable non-
interactive proof system for RLtr is transformation complete if ∀λ ∈ N, gk ←
G(1λ), crs ←$ CRSSetup(gk), (x,w) ∈ RLtr , and (Π,AUX) such that PrVerify(crs,
x,Π) = 1 and AuxVerify(crs, x, w,AUX,Π) = 1 the following holds with probability
1:

– AuxVerify(crs, x, w,AUX′,Π ′) = 1, where (Π ′, r) ← RandPr(crs, x,Π) and
AUX′ ← AuxUpdate(crs,AUX, r).

– Parse x as (k, x1, . . . , xn) and w as ((w1, α1) . . . , (wk, αk)). (Π ′, aux′) ←
PrAdd(crs, x, (w′, α′), aux,Π), modify AUX replacing auxα′ with aux′.
If α′ ∈ {α1, . . . αk} and (xα′ , w′) ∈ RL, then PrVerify(crs, (k +
1, x1, . . . , xn),Π ′) = 1, andAuxVerify(crs, (k+1, x1, . . . , xn), ((w1, α1) . . . , (wk,
αk), (w′, α′)),AUX,Π ′) = 1.

– (Π ′, auxn+1) ← PrExtend(crs, x, xn+1,Π), modify AUX adding auxil-
iary value auxn+1. Then, PrVerify(crs, (k, x1, . . . , xn+1),Π ′) = 1, and
AuxVerify(crs, (k, x1, . . . , xn+1), w,AUX,Π ′) = 1.

Definition 7 (Re-Randomizable Addition). Consider the following
experiment:

– gk ← G(1λ)

6 We introduce AuxVerify merely as an internal utility to simplify the description of
our definitions.
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– crs ←$ CRSSetup(gk)
– (x,w,Π∗,AUX∗) ← A(crs)
– Parse x as (k, x1, . . . , xn) and w as ((w1, α1) . . . , (wk, αk))
– If (x,w) /∈ RLtr or PrVerify(crs, (k − 1, x1, . . . , xn),Π∗) = 0 or

AuxVerify(crs, (k − 1, x1, . . . , xn), ((w1, α1) . . . , (wk−1, αk−1)),AUX∗,Π∗) = 0
output ⊥ and abort. Otherwise, sample b ←$ {0, 1} and do the following:

• If b = 0, (Π0,AUX0) ← Prove(crs, x, w); (Π, r) ← RandPr(crs, x,Π0),
AUX ← AuxUpdate(crs,AUX0, r)

• If b = 1, (Π1, aux
∗) ← PrAdd(crs, x, (wk, αk),AUX∗,Π∗). Replace in

AUX∗ the value auxαk
with aux∗. (Π, r) ← RandPr(crs, x,Π1),AUX ←

AuxUpdate(crs,AUX∗, r)
– b′ ← A(Π,AUX)

We say that the proof system has re-randomizable addition if for every PPT A,
there exists a negligible function ν(·), such that Pr[b = b′] ≤ 1/2 + ν(λ).

Definition 8 (Re-Randomizable Extension). Consider the following exper-
iment:

– gk ← G(1λ)
– crs ←$ CRSSetup(gk)
– (x,w, xn,Π∗,AUX∗) ← A(crs)
– Parse x as (k, x1, . . . , xn−1)
– If (x,w) /∈ RLtr or PrVerify(crs, x,Π∗) = 0 or AuxVerify(crs,

x, w,AUX∗,Π∗) = 0 output ⊥ and abort. Otherwise, sample b ←$ {0, 1} and
do the following:

• If b = 0 (Π0,AUX0) ← Prove(crs, (k, x1, . . . , xn), w); (Π, r) ← RandPr(
crs, (k, x1, . . . , xn),Π0),AUX ← AuxUpdate(crs,AUX0, r)

• If b = 1 (Π1, aux
∗) ← PrExtend(crs, x, xn,Π∗). Append the value aux∗ to

AUX∗. (Π, r) ← RandPr(crs, (k, x1, . . . , xn),Π1),AUX ← AuxUpdate(crs,
AUX∗, r)

– b′ ← A(Π,AUX)

We say that the proof system has re-randomizable extension if, for every PPT
A, there exists a negligible function ν(·), such that Pr[b = b′] ≤ 1/2 + ν(λ).

Definition 9 (Extended Witness Indistinguishability). Consider the fol-
lowing experiment.

– gk ← G(1λ)
– crs ←$ CRSSetup(gk)
– (x,w0, w1) ← A(crs)
– Parse x as (k, x1, . . . , xn), wi as ((wi

1, α
i
1) . . . , (wi

k, αi
k)), for i ∈ {0, 1}

– If (x,w0) /∈ RLtr or (x,w1) /∈ RLtr output ⊥ and abort. Otherwise, sample
b ←$ {0, 1} and do the following:

• (Π, (aux1, . . . , auxn)) ← Prove(crs, x, wb).
• Set I0 = {α0

1, . . . , α
0
k}, I1 = {α1

1, . . . , α
1
k}, I = I0 ∩ I1, S = ([n] \ (I0 ∪

I1)) ∪ I, and AUX = {auxi}i∈S.
– b′ ← A(Π,AUX)

The proof system has extended witness indistinguishability (EWI) if for every
PPT A, there exists a negligible function ν(·), such that Pr[b = b′] ≤ 1/2+ ν(λ).
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6 Our Extendable Threshold Ring Signature

In Fig. 9, we show our ETRS from an ENIWI PoK ENIWI for a hard relation
RL, and an IND-CPA public key encryption scheme PKE which is homomorphic
w.r.t. ENIWI.AuxUpdate. By hard relation we mean that a PPT A who is given
x ∈ L, has negligible probability of providing a witness w such (x,w) ∈ RL.
We also require that RL is public coin samplable, meaning that it is possible
to efficiently sample random x ∈ L. We omit the Setup algorithm from the
description since it simply runs the setup algorithm of PKE and samples a hash
function mapping arbitrary strings into elements in the correct space7.

Instantiating our ETRS. We work over a bilinear group gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ)
for which the SXDH assumption is believed to hold. In Sect. 7.3, we show an
ENIWI PoK having as base relation pairing product equations in which all the
variables are elements of Ȟ, public constants are either paired with secret values
or with ȟ, and the target element is 0T. In particular, we can use as base relation
the following: RL = {(x = (â, b̂, ȟ), w = b̌′|â · ȟ + b̂ · b̌′ = 0T}. In Lemmma 1, we
prove that this is a hard relation under the DDH assumption in Ĝ. Additionally,
since in our ENIWI AuxUpdate simply consists of applying the group operation
between two elements of Ȟ, we can use ElGamal instantiated in Ȟ as public key
encryption scheme.

Remark on Malicious Extenders. As in [2], we do not consider security definitions
accounting for malicious signers that try to prevent future signers from joining
the signature. For example, in our construction a malicious extender could just
encrypt a wrong auxiliary value. An approach that could be investigated to
tackle this issue is adding a NIZK proving that the content of the encrypted
auxiliary values is s.t. AuxVerify = 1. Such NIZK would need to be malleable so
that it could be updated after every re-randomization step, as well as whenever
the signature is extended.

On Combining Signatures. One might wonder if concrete instantiations of our
ETRS could also support the Combine operation as described in [2]. Whenever
there is a shared public key (i.e., statement) in two ETRS, such signatures cannot
be combined. Indeed, consider the case of two proofs over the same ring where
there is a common base statement for which a corresponding witness was used
in both proofs. Then, the combined proof should not have a resulting threshold
that counts it twice. This means that the output of Combine would be different
depending on whether two NIWI proofs on the same statement used the same
witness or not. This is in clear contradiction with the witness indistinguisha-
bility property. On the other hand, the above observation does not exclude the
possibility of having a weaker form of Combine where the starting signatures are
constrained to have disjoint rings. Indeed, our instantiation of Sect. 7.3 could be

7 We need a cryptographic hash function that allows to hash directly to both the
source groups of the pairing group. See [21] for more details.
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easily modified to support the corresponding Combine operation. Such operation
exploits basically the same technique of the extend operation, and thus we omit
its description.

6.1 Security of Our Extendable Threshold Ring Signature

Theorem 1. Let ENIWI be an extendable non-interactive witness indistinguish-
able proof of knowledge for a hard relation RL, and PKE be an IND-CPA public
key encryption scheme which is homomorphic w.r.t. ENIWI.AuxUpdate, then the
scheme of Fig. 9 is an extendable threshold ring signature scheme.

We prove Theorem 1 using Lemma 2 and Lemma 3.

Lemma 2. The signature scheme described in Fig. 9 is unforgeable according
to Definition 2.

Proof Sketch. The basic idea of the proof is to turn an adversary A breaking
the unforgeability with non-negligible probability into another adversary B that
extracts a witness for an instance x ∈ L of the hard relation, which is sampled by
a challenger C. In order to build this reduction, we need to show how to simulate
all the oracle queries of A during the game. We do this by showing a series of
hybrid games, starting from the game described in Fig. 5.

The first change consists into replying to Join queries by computing every
time a new proof from scratch using ENIWI.Prove, instead of updating the cur-
rent proof using PrAdd. This change is not detected by A thanks to the re-
randomizable addition of the ENIWI.

The second change is that B can guess j∗, that is the index of the random
oracle query in which A will query the message used in the forgery, and i∗, that is
the index of a “new” signer used to create the forgery for mj∗ . We notice that, by
the rules of the unforgeability game (see checks of lines 5−8 of the unforgeability
experiment in Fig. 5), this index i∗ must exist, A never makes a corruption query
for i∗, and it does not ask for any Sign/Join query involving i∗ on message mj∗ .
Whenever B discovers that it did not guess such indices correctly, B aborts.
Nevertheless, since these indices can be kept perfectly hidden in A’s view, B
guesses these two indices with noticeable probability.

The next change consists into programming the random oracle to switch to
an extraction-mode crs for the query on message mj∗ . Additionally, for each
j = j∗, we can program the random oracle to output a pkOj

for which B knows
the witness w1j

s.t. (x1j
, w1j

) ∈ RL. Every Join/Sign query involving the signer
i∗ and a message mj , with j = j∗, is answered using w1j

instead of wi∗ . This
change is not detectable by A thanks to the extended WI and the adaptive
extractable soundness of ENIWI. Indeed, extended WI guarantees that A cannot
notice the change of the used witness, and the adaptive extractable soundness
guarantees that the probability of extracting a witness for statement xi∗ from
the forgery does not change, except up to a negligible factor. Importantly, in
order to reduce the indistinguishability of these changes to these two properties
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Fig. 9. ETRS from ENIWI PoK and IND-CPA homomorphic PKE. For space rea-
sons, we directly write the internal algorithms of the schemes (e.g., Prove instead of
ENIWI.Prove), and we omit crs from ENIWI algorithms input considering it as implicit.
We use AUX[i] to indicate the i-th element of list AUX.
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of the ENIWI we take advantage of the fact that we have a different CRS for
every message. Finally, after applying all these changes, B can set xi∗ as the x
received from C. Given the forgery generated by A, B can extract a witness for
statement x, breaking the hardness of RL.

Let Pr
[
ExpcmEUF

A,ETRS(λ) = win
]

be the probability that the adversary wins the

unforgeability game, we have that: Pr
[
ExpcmEUF

A,ETRS(λ) = win
]

≤ εrr + qm(εcrs +
(qKG + 1)(εHR + εEWI)), where qKG and qm are polynomial bounds on the
number of key generation queries and random oracle queries that A can do.
While εrr, εcrs, εHR, εEWI are the advantages in the re-randomizable addition
game of ENIWI, in distinguishing a regular CRS from an extraction-mode CRS,
in the hard relation game, and in the extended witness indistinguishability game
respectively. We defer to [5] for the complete proof.

Lemma 3. The signature scheme described in Fig. 9 satisfies the anonymity
property of Definition 3.

Proof Sketch. Through a sequence of indistinguishable hybrids, we switch from
a challenger B using lad0 to a B using lad1. We show that at every hybrid, B can
exploit A distinguishing between the two hybrids to break some properties of
the underlying primitives. First, B changes the way it processes the ladders and
replies to Join queries. In particular, B computes every time a new proof from
scratch using ENIWI.Prove, instead of running the Join/Extend algorithms, anal-
ogously to the proof of unforgeability. After that, when processing the ladders,
B will encrypt ⊥ in all signers’ ciphertexts. This change is not detected by A
thanks to the IND-CPA property of the encryption scheme. At the end, B fixes
the ladder used in the anonymity game to be lad1. This change is unnoticeable
thanks to the extended WI of ENIWI. We defer to [5] for the complete proof.

Lemma 4. The signature scheme described in Fig. 9 enjoys fellow-signer
anonymity (cfr., Definition 4).

The proof follows essentially the same path of the one of Lemma3.

7 Our Extendable Non-Interactive Witness
Indistinguishable Proof of Knowledge

In this section, we first show how to extend the GS proof system to define a
proof system for a threshold relation. After that, we show how to further modify
such scheme to get our ENIWI PoK.

7.1 GS Proofs of Partial Satisfiability

In [13,23], it is shown how to transform n sets of certain types of equations
S1, . . . , Sn to a set of equations S′ s.t. S′ is satisfied whenever one of S1, . . . , Sn

is satisfied. A witness for Si, with i ∈ [n], is easily mapped to a witness
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for S′. Indeed, this transformation realizes a disjunction. The transformation
works by assuming that S1, . . . , Sn have independent variables, adding variables
b1, . . . bn−1 ∈ {0, 1}, and defining bn = 1 − b1 − . . . − bn−1. Then, for i ∈ [n], bi

is used to modify all the equations in Si so that they remain the same if bi = 1,
but they admit the trivial solution for bi = 0. Slightly increasing the overhead
of these compilers, it is also possible to implement partial satisfiability proofs
for an arbitrary threshold k, meaning that S′ is satisfied iff k of S1, . . . , Sn are
satisfied. To do so, the main idea is to define bn ∈ {0, 1}, and to prove that
b1 + . . . + bn = k.

A case which is relevant to this paper is when S1, . . . , Sn contain only PPEs
with tT = 0T, all the variables of the PPEs are elements of Ȟ, and public con-
stants are either paired with secret values or with ȟ. In this case, the prover
would:

1. Add variables b1, . . . , bn and prove that bi ∈ {0, 1} ∀i ∈ [n]. This can be done
with quadratic equations, by adding the equations bi(1−bi) = 0. Let us define
such equations to be of type B, we will refer to a specific equation using Bi.

2. Add variables M̂1, . . . , M̂n and prove biĝ − M̂i = 0, with i ∈ [n]. This can
be done via multi-scalar multiplication equations in Ĝ. Since bi ∈ {0, 1}, it
follows that M̂i ∈ {0̂, ĝ}. Let us define such equations to be of type M.

3. Add equation
∑n

i=1 M̂i · ȟ − kĝ · ȟ = 0T. Since M̂i ∈ {0̂, ĝ}, this equation
implies that exactly k of the M̂i, with i ∈ [n], are equal to ĝ. Let us call such
equation as K.

4. For each Si, with i ∈ [n], let Qi be the number of equations in Si, let Ji,q be
the number of variables in the equation q ∈ [Qi] of Si. For each variable y̌i,q,j

with q ∈ [Qi], j ∈ [Ji,q], define variable x̌i,q,j and add equation M̂i · y̌i,q,j −M̂i ·
x̌i,q,j = 0T. Since k of the M̂i are equal to ĝ, this implies that for k equations
sets it must hold that all y̌i,q,j = x̌i,q,j . Let us define such equations to be of
type Y.

5. For each equation in each Si, replace all the original y̌i,q,j with the correspond-
ing x̌i,q,j . This allows to set all x̌i,q,j = y̌i,q,j = 0̌ for each set Si for which
the prover does not have a satisfying assignment. For the k sets for which the
prover does have a satisfying assignment, the prover sets y̌i,q,j = x̌i,q,j . Let
us define such equations to be of type X .

7.2 High-level Overview of Our ENIWI

We construct our ENIWI by observing that GS proofs of partial satisfiability can
be updated in two ways:

– Extend: consider a proof Π for a set of equations S which is satisfied if k
out of n of the original equations sets S1, . . . , Sn are satisfied. On input a new
equations set Sn+1 and the proof Π, compute a new equations set S′ which
is satisfied if k out of the n + 1 equations sets S1, . . . , Sn, Sn+1 are satisfied.
Output S′ and the corresponding updated proof Π ′.
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– Add: consider a proof Π for a set of equations S which is satisfied if k out n of
the original equations sets S1, . . . , Sn are satisfied. On input the proof Π for
S, a witness for an equations set Si with i ∈ [n] which was not previously used
to create Π, and some corresponding auxiliary information auxi, compute a
new equations set S′ which is satisfied if k + 1 out of the n equations sets
S1, . . . , Sn are satisfied. Output S′ and the corresponding updated proof Π ′.

In particular, one can notice that each step of the partial satisfiability proof
described in Sect. 7.1 only adds equations featuring independent variables, except
for step 3. In step 3, one equation is added combining all variables M̂i with i ∈ [n].
The equation is

∑n
i=1 M̂i · ȟ− kĝ · ȟ = 0T. Let us compute the GS proof for such

equation. Let crs be (û, v̂, ŵ, ǔ, v̌, w̌).

– Variables M̂i are committed as group elements (i.e., with label com
Ĝ
), thus

ĉM̂i
= e�M̂i + v̂ri + ŵsi, with ri, si ←$ Zp.

– ĝ is the base element of Ĝ, thus it is publicly committed with label base
Ĝ

as
ĉĝ = (0, ĝ)�.

– ȟ is the base element of Ȟ, and thus it is publicly committed with label base
Ȟ

as (0, ȟ).

This results in Ĉ = (ĉM̂1
, . . . , ĉM̂n

, ĉĝ), Ď = (0, ȟ), rx = (r1, . . . , rn, 0)�, sx =
(s1, . . . , sn, 0)�, ry = 0, sy = 0.

This means that π̂v̌ = −v̂α − ŵγ and π̂w̌ = −v̂β − ŵδ, with α, γ, β, δ being
random elements in Zp.

Let us compute rxΓĎ = (r1, . . . , rn, 0)�(1, . . . , 1,−k)(0, ȟ) = (0,
∑n

i=1 riȟ).
Similarly, we have that sxΓĎ = (0,

∑n
i=1 siȟ). Let us define auxi =

(aux1i , aux
2
i ) = (riȟ, siȟ). This means that π̌v̂ = rxΓĎ + αv̌ + βw̌ =

(0,
∑n

i=1 aux
1
i )+αv̌+βw̌ and π̌ŵ = sxΓĎ+δv̌+γw̌ = (0,

∑n
i=1 aux

2
i )+δv̌+γw̌.

We notice that the proof elements for equation K are essentially a sum of
n independent contributions (i.e., the auxi values) for each of the involved n
variables (i.e., M̂i with i ∈ [n]). We can exploit this fact to perform the extend
and add operations in the following way. Let us consider the steps of Sect. 7.1.

– Extend: Add new equations of types B,M,Y,X by defining the correspond-
ing new independent variables, and compute the related GS proofs. Modify
equation K to be

∑n+1
i=1 M̂i · ȟ − kĝ · ȟ = 0T and update π̌v̂ and π̌ŵ as

π̌v̂ = π̌v̂ + (0, rn+1ȟ), π̌ŵ = π̌ŵ + (0, sn+1ȟ), where rn+1 and sn+1 are the
randomnesses used to commit to the new variable M̂n+1 = 0̂.

– Add: Replace the committed variables for the equations Bi,Mi,Yi,Xi with
new committed variables bi = 1, M̂i = ĝ, and y̌i,q,j = x̌i,q,j . Replace the
old corresponding GS proofs with freshly computed ones. Modify equation
K to be

∑n
i=1 M̂i · ȟ − (k + 1)ĝ · ȟ = 0T, and update π̌v̂ and π̌ŵ as π̌v̂ =

π̌v̂ − (0, aux1i ) + (0, r′
iȟ), π̌ŵ = π̌ŵ − (0, aux2i ) + (0, s′

iȟ), where r′
i and s′

i are
the randomnesses used for the fresh commitment to M̂i = ĝ.
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After any of the two above modifications, the resulting proof is an accepting
proof for the updated threshold relation. Indeed, both the extend and add oper-
ation symbolically compute the proofs in the same way a prover for the updated
threshold relation would do from scratch.

7.3 Our ENIWI

Our ENIWI is an ENIWI PoK over the language of sets of pairing product equa-
tions where all the variables are elements of Ȟ, public constants are either paired
with secret values or with ȟ, and the target element is 0T. For simplicity, we con-
sider each statement xi as containing only one equation.

– crs ← CRSSetup(gk): run GS.Setup(gk). This results in crs = (û, v̂, ŵ,
ǔ, v̌, w̌).

– (Π, (aux1, . . . , auxn)) ← Prove(crs, (k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk))): on
input ((k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk))) ∈ rl, define A = {α1, . . . , αk}8
and do the following.
1. For each equation xi, i ∈ [n], define new variables and equations:

• Define variable bi = 1 if i ∈ A, and bi = 0 otherwise.
• Define quadratic equation Bi as bi(1 − bi) = 0.
• Define variables M̂i = ĝ if i ∈ A, and M̂i = 0̂ otherwise.
• Define multi-scalar multiplication equation Mi as biĝ − M̂i = 0.
• Let Ji be the number of variables in equation xi. For each variable

y̌i,j , with j ∈ [Ji], define a variable x̌i,j . Set x̌i,j = y̌i,j , if i ∈ A, and
x̌i,j = 0̌ otherwise.

• For each variable y̌i,j , with j ∈ [Ji], define pairing product equation
Yi,j as M̂i · y̌i,j − M̂i · x̌i,j = 0T.

• Modify pairing product equation xi by replacing each variable y̌i,j ,
with j ∈ [Ji], with variable x̌i,j . Let us call such modified equation
Xi.

Moreover, define pairing product equation K as
∑n

i=1 M̂i · ȟ − kĝ · ȟ =
0T. At the end of this step, there will be n equations of types B,M,X ,
n

∑n
i=1 Ji equations of type Y, and one equation of type K.

2. For each equation of types B,M,Y,X generate appropriate commit-
ments (using GS.Com) to all variables, resulting in lists of commit-
ments CB,CM,CY ,CX respectively9. Then, for each equation of types
B,M,Y,X , run GS.Prove with the obvious inputs obtaining proof ele-
ments lists πB,πM,πY ,πX . For example, πB contains proof elements
πBi, with i ∈ [n], each of them obtained running GS.Prove for equation
Bi using commitments CBi (and related randomnesses) from CB.

8 A indicates what are the k equations the prover has a satisfying assignment for.
9 Whenever different equations share the same variables, we can think of the commit-

ments lists as containing copies of the exact same commitments. Clearly, in practice
data does not need to be replicated.
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Moreover, for equation K do the following10:
• Commit to M̂i, with i ∈ [n], with label com

Ĝ
and randomness (ri, si),

i.e., (com
Ĝ
, ĉM̂i

) ← GS.Com(com
Ĝ
, M̂i; (ri, si)), resulting in ĉM̂i

=
e�M̂i + v̂ri + ŵsi.

• Commit to ĝ with label base
Ĝ

and randomness (0, 0), i.e.,
(base

Ĝ
, ĉĝ) ← GS.Com(base

Ĝ
, ĝ; (0, 0)), resulting in ĉĝ = (0, ĝ)�.

• Commit to ȟ with label base
Ȟ

and randomness (0, 0), i.e.,
(base

Ȟ
, ďȟ) ← GS.Com(base

Ȟ
, ȟ; (0, 0)), resulting in ďȟ = (0, ȟ).

Do the following steps:
• Define Ĉ = (ĉM̂1

, . . . , ĉM̂n
, ĉĝ), Ď = (0, ȟ), rx = (r1, . . . , rn, 0)�, sx =

(s1, . . . , sn, 0)�, ry = 0, sy = 0. This means that π̂v̌ = −v̂α−ŵγ and
π̂w̌ = −v̂β − ŵδ.

• Compute rxΓĎ = (r1, . . . , rn, 0)�(1, . . . , 1,−k)(0, ȟ) =
(0,

∑n
i=1 riȟ). Similarly, we have that sxΓĎ = (0,

∑n
i=1 siȟ). Define

auxi = (aux1i , aux
2
i ) = (riȟ, siȟ), with i ∈ [n].

• Compute π̌v̂ = rxΓĎ + αv̌ + βw̌ = (0,
∑n

i=1 aux
1
i ) + αv̌ + βw̌ and

π̌ŵ = sxΓĎ + δv̌ + γw̌ = (0,
∑n

i=1 aux
2
i ) + δv̌ + γw̌.

Let πK = (π̂v̌ , π̂w̌ , π̌v̂ , π̌ŵ ) and CK = (Ĉ, Ď). Output (Π = (CB,CM,
CY ,CX , CK,πB,πM,πY ,πX , πK),AUX = (aux1, . . . , auxn)).

– 0/1 ← PrVerify(crs, (k, x1, . . . , xn),Π) reconstruct equations of type B,M,
Y,X ,K, appropriately parse Π, and for every equation run GS.PrVerify with
the obvious inputs. For example, the proof for equation Bi is verified giving,
after appropriate parsing, commitments CBi and proof element πBi in input
to GS.PrVerify. Return 1 iff all the calls to GS.PrVerify return 1.

– (Π ′, auxn+1) ← PrExtend(crs, (k, x1, . . . , xn), xn+1,Π) do the following:
1. Parse Π as (CB,CM,CY ,CX , CK,πB,πM,πY ,πX , πK),AUX = (aux1,

. . . , auxn).
2. For each of the 4 equation types B,M,Y,X , add a new equation related

to xn+1 by defining the corresponding new independent variables, bn+1 =
0, M̂n+1 = 0̂ and all the y̌n+1,j = 0̌, with j ∈ [Jn+1].

3. Compute commitments to new variables and appropriately add them to
CB,CM,CY ,CX .

4. Compute the related new GS proofs and add them to πB,πM,πY ,πX
accordingly.

5. Parse πK as (π̂v̌ , π̂w̌ , π̌v̂ , π̌ŵ ) and update π̌v̂ and π̌ŵ as π̌v̂ = π̌v̂ +
(0, rn+1ȟ), π̌ŵ = π̌ŵ + (0, sn+1ȟ), where rn+1 and sn+1 are the random-
nesses used to commit to the new variable M̂n+1 = 0̂.

6. Set auxn+1 = (aux1n+1, aux
2
n+1) = (rn+1ȟ, sn+1ȟ).

7. Output (Π, auxn+1).
– (Π ′, aux′

α) ← PrAdd(crs, (k, x1, . . . , xn), (w,α), aux,Π) do the following:
1. Parse Π as (CB,CM,CY ,CX , CK,πB,πM,πY ,πX , πK).

10 We report the whitebox computation of the GS prover to show how to compute the
auxiliary values. Furthermore, for sake of clarity, we report again commitments to
variables M̂i with i ∈ [n], which were already created to prove other equations.
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2. For each of the 4 equation types B,M,Y,X , replace the variables in
equations related to xα (i.e., Bα,Mα,Xα, and all Yα,j with j ∈ Jα) as
follows: bα = 1, M̂α = ĝ and all the y̌α,j = x̌α,j , with j ∈ [Jα].

3. Replace the commitments related to equations Bα,Mα,Xα, and all Yα,j ,
with j ∈ Jα with freshly generated ones updating CB,CM,CY ,CX
accordingly.

4. Replace the GS proofs related to equations Bα,Mα,Xα, and all Yα,j

with j ∈ Jα, with freshly generated ones replacing proof elements of
πB,πM,πY ,πX accordingly.

5. Parse πK as (π̂v̌ , π̂w̌ , π̌v̂ , π̌ŵ ) and update π̌v̂ and π̌ŵ as π̌v̂ = π̌v̂ −
(0, aux1α) + (0, r′

αȟ), π̌ŵ = π̌ŵ − (0, aux2α) + (0, s′
αȟ), where r′

α and s′
α are

the randomnesses used for the fresh commitment to M̂α = ĝ.
6. Set aux′

α = (aux1α, aux2α) = (r′
αȟ, s′

αȟ).
7. Output (Π, aux′

α).
– (Π ′, r1, . . . , rn) ← RandPr(crs, (k, x1, . . . , xn),Π):

1. Run GS.RandPr on each of the proofs, appropriately fixing the random
coins when randomizing proofs related to equations involving shared vari-
ables (i.e., s.t. we end up again with shared variables having the exact
same commitments). Let r′

i, s
′
i, with i ∈ [n] be the randomnesses used

to update commitments to all M̂i, with i ∈ [n]. Define ri = (r′
i, s

′
i). Let

randomized proof elements and commitments be contained in Π ′.
2. Output (Π ′, r1, . . . , rn)

– aux′ ← AuxUpdate(crs, aux, r):
1. Parse r as (r′, s′), and aux as (aux1, aux2).
2. Output aux′ = (aux1 + r′ȟ, aux2 + s′ȟ).

– 0/1 ← AuxVerify(crs, (k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk)), (aux1, . . . , auxn),
Π):
1. Parse Π as (CB,CM,CY ,CX , CK,πB,πM,πY ,πX , πK). Parse CK as

Ĉ = (ĉM̂1
, . . . , ĉM̂n

, ĉĝ) and Ď = (0, ȟ).
2. Check that (auxα1 , . . . , auxαk

) all open (ĉM̂α1
, . . . , ĉM̂αk

) to ĝ. Namely,

check that ĉM̂i
· (ȟ, ȟ)+ v̂ · (−aux1i ,−aux1i )+ ŵ · (−aux2i ,−aux2i ) = (0̂, ĝ)� ·

(ȟ, ȟ), for all i ∈ A.
3. Check that remaining auxiliary values open commitments ĉM̂i

with i ∈
[n] \ A to 0̂. Namely, check that ĉM̂i

· (ȟ, ȟ) + v̂ · (−aux1i ,−aux1i ) + ŵ ·
(−aux2i ,−aux2i ) = (0̂, 0̂)� · (ȟ, ȟ), for all i ∈ [n] \ A.

Theorem 2. If GS (cfr., Sect. 3.1) is a NIWI for all equation types and a NIWI
PoK for pairing product equations, then the construction above is an ENIWI
PoK. The base relation RL consists of pairing product equations in which all the
variables are elements of Ȟ, public constants are either paired with secret values
or with ȟ, and the target element is 0T.

See [5] for the proof.
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