
Alexandra Boldyreva
Vladimir Kolesnikov (Eds.)

LN
CS

 1
39

40

26th IACR International Conference
on Practice and Theory of Public-Key Cryptography
Atlanta, GA, USA, May 7–10, 2023
Proceedings, Part I

Public-Key Cryptography –
PKC 2023

Lecture Notes in Computer Science 13940
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Alexandra Boldyreva · Vladimir Kolesnikov
Editors

Public-Key Cryptography –
PKC 2023
26th IACR International Conference
on Practice and Theory of Public-Key Cryptography
Atlanta, GA, USA, May 7–10, 2023
Proceedings, Part I

Editors
Alexandra Boldyreva
Georgia Institute of Technology
Atlanta, GA, USA

Vladimir Kolesnikov
Georgia Institute of Technology
Atlanta, GA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-31367-7 ISBN 978-3-031-31368-4 (eBook)
https://doi.org/10.1007/978-3-031-31368-4

© International Association for Cryptologic Research 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-0211-1244
https://doi.org/10.1007/978-3-031-31368-4

Preface

The 26th International Conference on Practice and Theory of Public-Key Cryptography
(PKC 2023) was held in Atlanta, Georgia, USA on May 7–10, 2023. It was sponsored
by the International Association for Cryptologic Research (IACR).

The conference received 183 submissions, reviewed by the Program Committee of
49 cryptography experts working with 142 external reviewers. The reviewing process
took 2.5 months and resulted in selecting 50 papers to appear in PKC 2023.

Papers were reviewed in the usual double-blind fashion. Program committee mem-
bers were limited to two submissions, and their submissions were scrutinized more
closely. The two program chairs were not allowed to submit papers.

The Program Committee recognized two papers and their authors. “The Hidden
Number Problem with Small Unknown Multipliers: Cryptanalyzing MEGA in Six
Queries and Other Applications,” by Nadia Heninger and Keegan Ryan, and “Post-
Quantum Anonymity of Kyber”, by Varun Maram and Keita Xagawa, were selected
Best Papers of the conference.

PKC 2023 welcomed Chris Peikert (University of Michigan) as the invited speaker.
The PKC Test-of-Time Award (ToT) recognizes outstanding and influential papers

published in PKC about 15 years prior. The inaugural PKC Test of Time Award was
given in PKC 2019 for papers published in the conference’s initial years of the early
2000s and late 1990s. In 2023, the ToT committee, consisting of Alexandra Boldyreva,
Goichiro Hanaoka, Vlad Kolesnikov, Moti Yung, and Yuliang Zheng, considered papers
published in PKC2006–2008 for the award. The committee selected the PKC2008 paper
“Unidirectional Chosen-Ciphertext Secure Proxy Re-encryption” by Benoît Libert and
Damien Vergnaud for the Test-of-Time award.

PKC is the main IACR-sponsored conference with an explicit focus on public-key
cryptography. It is a remarkable undertaking, only possible due to the hard work and
significant contributions of many people. We would like to express our sincere gratitude
to the authors of all submitted works, as well as to the PC and external reviewers,
session chairs and presenters. Additionally, we would like to thank the following people
and organizations for helping make PKC 2023 a success:

– Joseph Jaeger and Daniel Genkin – PKC 2023 General Chairs,
– Chris Peikert – invited speaker,
– Kay McKelly and Kevin McCurley – all things technical behind the scenes,
– Ellen Kolesnikova – design of the PKC 2023 logo,
– the team at Springer,
– Georgia Tech Hotel and Conference Center,
– Georgia Aquarium,
– School of Cybersecurity and Privacy at Georgia Tech - the academic home of the

PKC 2023 Program and General Chairs.

We would also like to thank our sponsors: Google (platinum), Starkware (silver),
Amazon AWS (silver), and Algorand (bronze). 2022 and 2023 were difficult years in the

vi Preface

tech industry, making sponsors’ contributions ever more valued. Their generous support
covered several student travel stipends and helped minimize registration fees, including
half-priced registration for all students.

Lastly, a big thanks to everyone who attended PKC 2023 in Atlanta. We hope you
enjoyed the conference and the warm welcome of our city and university.

May 2023 Alexandra Boldyreva
Vlad Kolesnikov

Organization

General Chairs

Daniel Genkin Georgia Tech, USA
Joseph Jaeger Georgia Tech, USA

Program Committee Chairs

Alexandra Boldyreva Georgia Tech, USA
Vladimir Kolesnikov Georgia Tech, USA

Steering Committee

Masayuki Abe NTT, Japan
Jung Hee Cheon Seoul National University, Korea
Yvo Desmedt University of Texas at Dallas, USA
Goichiro Hanaoka AIST, Japan
Aggelos Kiayias University of Edinburgh, UK
Tanja Lange Eindhoven University of Technology, Netherlands
David Pointcheval École Normale Supérieure, France
Moti Yung (Secretary) Google Inc. & Columbia University, USA
Yuliang Zheng (Chair) University of Alabama at Birmingham, USA

Program Committee

Ghada Almashaqbeh University of Connecticut, USA
Nuttapong Attrapadung AIST, Japan
Carlo Blundo Università degli Studi di Salerno, Italy
Katharina Boudgoust Aarhus University, Denmark
Dario Catalano Università di Catania, Italy
Suvradip Chakraborty ETH Zurich, Switzerland
Shan Chen Southern University of Science & Technology,

China
Jean Paul Degabriele Technology Innovation Institute, UAE
Chaya Ganesh Indian Institute of Science, India

viii Organization

Sean Hallgren Penn State University, USA
David Heath University of Illinois Urbana-Champaign, USA
Kristina Hostakova ETH Zürich, Switzerland
Sorina Ionica Université de Picardie Jules Verne, France
Stanislaw Jarecki University of California, Irvine, USA
Shuichi Katsumata AIST and PQShield Ltd., Japan
Kaoru Kurosawa AIST, Japan
Tancrède Lepoint Amazon, USA
Christian Majenz Technical University of Denmark, Denmark
Daniel Masny Meta, USA
Ryo Nishimaki NTT Social Informatics Laboratories, Japan
Adam O’Neill UMass Amherst, USA
Charalampos Papamanthou Yale University, USA
Alain Passelègue Inria and ENS Lyon, France
Sikhar Patranabis IBM Research India, India
Alice Pellet-Mary CNRS and Université de Bordeaux, France
Edoardo Persichetti Florida Atlantic University, USA
Rachel Player Royal Holloway, University of London, UK
David Pointcheval ENS, Paris, France
Antigoni Polychroniadou JPMorgan AI Research, USA
Willy Quach Northeastern University, USA
Elizabeth Quaglia Royal Holloway, University of London, UK
Adeline Roux-Langlois Normandie Univ, GREYC, France
John Schanck Mozilla, USA
Peter Scholl Aarhus University, Denmark
Dominique Schröder FAU Erlangen-Nürnberg, Germany
Peter Schwabe MPI-SP & Radboud University, Netherlands
Jae Hong Seo Hanyang University, Korea
Abhi Shelat Northeastern University, USA
Akira Takahashi University of Edinburgh, UK
Keisuke Tanaka Tokyo Institute of Technology, Japan
Jean-Pierre Tillich Inria, France
Frederik Vercauteren KU Leuven, Belgium
Damien Vergnaud Sorbonne Université, France
Ivan Visconti University of Salerno, Italy
Benjamin Wesolowski CNRS and University of Bordeaux, France
David Wu UT Austin, USA
Kevin Yeo Google and Columbia University, USA
Mark Zhandry NTT Research & Princeton University, USA
Vassilis Zikas Purdue University, USA

Organization ix

Additional Reviewers

Behzad Abdolmaleki
Calvin Abou Haidar
Ojaswi Acharya
Gorjan Alagic
Gennaro Avitabile
Arnab Bag
Shi Bai
Magali Bardet
Hugo Beguinet
Fabrice Benhamouda
Loris Bergerat
Ward Beullens
Olivier Blazy
Maxime Bombar
Cecilia Boschini
Vincenzo Botta
Samuel Bouaziz-Ermann
Charles Bouillaguet
Nicholas Brandt
Lennart Braun
Matteo Campanelli
André Chailloux
Rohit Chatterjee
Jesus-Javier Chi-Dominguez
Hien Chu
Heewon Chung
Michele Ciampi
Jean-Sébastien Coron
Anamaria Costache
Baptiste Cottier
Jan-Pieter D’Anvers
Pratish Datta
Gareth T. Davies
Paola De Perthuis
Jean-Christophe Deneuville
Julien Devevey
Mario Di Raimondo
Javad Doliskani
Keita Emura
Andreas Erwig
Daniel Escudero
Andre Esser
Pouria Fallahpour

Antonio Faonio
Joël Felderhoff
Weiqi Feng
Rune Fiedler
Georgios Fotiadis
Tako Boris Fouotsa
Georg Fuchsbauer
Clemente Galdi
Romain Gay
Robin Geelen
Paul Gerhart
Lenaïck Gouriou
Mohammad Hajiabadi
Erin Hales
Mickaël Hamdad
Patrick Harasser
Keitaro Hashimoto
Sorina Ionica
Vincenzo Iovino
Aayush Jain
Christian Janson
Corentin Jeudy
Saqib Kakvi
Daniel Kales
Harish Karthikeyan
Julia Kastner
Mojtaba Khalili
Hamidreza Khoshakhlagh
Ryo Kikuchi
Dongwoo Kim
Elena Kirshanova
Fuyuki Kitagawa
David Kohel
Sebastian Kolby
Walter Krawec
Mikhail Kudinov
Péter Kutas
Roman Langrehr
Mario Larangeira
Changmin Lee
Antonin Leroux
Andrea Lesavourey
Varun Madathil

x Organization

Lorenzo Magliocco
Jules Maire
Monosij Maitra
Takahiro Matsuda
Liam Medley
Kelsey Melissaris
Hart Montgomery
Ngoc Khanh Nguyen
Ky Nguyen
Thi Thu Quyen Nguyen
Phong Nguyen
Ruben Niederhagen
Koji Nuida
Tapas Pal
Kunjal Panchal
Mahak Pancholi
Lorenz Panny
Robi Pedersen
Lucas Prabel
Thomas Prest
Sihang Pu
Krijn Reijnders
Mahshid Riahinia
Doreen Riepel
Felix Rohrbach
Mélissa Rossi
Olga Sanina
Paolo Santini

André Schrottenloher
Robert Schädlich
Yixin Shen
Mark Simkin
Animesh Singh
Sayani Sinha
Luisa Siniscalchi
Christoph Striecks
Atsushi Takayasu
Debadrita Talapatra
Aravind Thyagarajan
Junichi Tomida
Toi Tomita
Monika Trimoska
Damien Vidal
Chenkai Wang
Yohei Watanabe
Christian Weinert
Weiqiang Wen
Keita Xagawa
Shota Yamada
Takashi Yamakawa
Yibin Yang
Kazuki Yoneyama
Yusuke Yoshida
Bor de Kock
Rafael del Pino
Wessel van Woerden

Contents – Part I

Post-quantum Cryptography

Post-quantum Anonymity of Kyber . 3
Varun Maram and Keita Xagawa

QCCA-Secure Generic Transformations in the Quantum Random Oracle
Model . 36

Tianshu Shan, Jiangxia Ge, and Rui Xue

A Thorough Treatment of Highly-Efficient NTRU Instantiations 65
Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky,
Gregor Seiler, and Dominique Unruh

A Lightweight Identification Protocol Based on Lattices . 95
Samed Düzlü, Juliane Krämer, Thomas Pöppelmann, and Patrick Struck

POLKA: Towards Leakage-Resistant Post-quantum CCA-Secure Public
Key Encryption . 114

Clément Hoffmann, Benoît Libert, Charles Momin, Thomas Peters,
and François-Xavier Standaert

Attacks

The Hidden Number Problem with Small Unknown Multipliers:
Cryptanalyzing MEGA in Six Queries and Other Applications 147

Nadia Heninger and Keegan Ryan

Hull Attacks on the Lattice Isomorphism Problem . 177
Léo Ducas and Shane Gibbons

A Key-Recovery Attack Against Mitaka in the t-Probing Model 205
Thomas Prest

Signatures

Hardening Signature Schemes via Derive-then-Derandomize: Stronger
Security Proofs for EdDSA . 223

Mihir Bellare, Hannah Davis, and Zijing Di

xii Contents – Part I

Security Analysis of RSA-BSSA . 251
Anna Lysyanskaya

Extendable Threshold Ring Signatures with Enhanced Anonymity 281
Gennaro Avitabile, Vincenzo Botta, and Dario Fiore

Tracing a Linear Subspace: Application to Linearly-Homomorphic Group
Signatures . 312

Chloé Hébant, David Pointcheval, and Robert Schädlich

Isogenies

SCALLOP: Scaling the CSI-FiSh . 345
Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux,
Simon-Philipp Merz, Lorenz Panny, and Benjamin Wesolowski

Round-Optimal Oblivious Transfer and MPC from Computational CSIDH 376
Saikrishna Badrinarayanan, Daniel Masny, Pratyay Mukherjee,
Sikhar Patranabis, Srinivasan Raghuraman, and Pratik Sarkar

Generic Models for Group Actions . 406
Julien Duman, Dominik Hartmann, Eike Kiltz, Sabrina Kunzweiler,
Jonas Lehmann, and Doreen Riepel

Crypto for Crypto

CRAFT: Composable Randomness Beacons and Output-Independent
Abort MPC From Time . 439

Carsten Baum, Bernardo David, Rafael Dowsley, Ravi Kishore,
Jesper Buus Nielsen, and Sabine Oechsner

Efficient and Universally Composable Single Secret Leader Election
from Pairings . 471

Dario Catalano, Dario Fiore, and Emanuele Giunta

Simple, Fast, Efficient, and Tightly-Secure Non-malleable Non-interactive
Timed Commitments . 500

Peter Chvojka and Tibor Jager

Certifying Giant Nonprimes . 530
Charlotte Hoffmann, Pavel Hubáček, Chethan Kamath,
and Krzysztof Pietrzak

Contents – Part I xiii

Transparent Batchable Time-lock Puzzles and Applications to Byzantine
Consensus . 554

Shravan Srinivasan, Julian Loss, Giulio Malavolta, Kartik Nayak,
Charalampos Papamanthou, and Sri AravindaKrishnan Thyagarajan

Pairings

Decentralized Multi-Authority Attribute-Based Inner-Product FE: Large
Universe and Unbounded . 587

Pratish Datta and Tapas Pal

Multi-Client Inner Product Encryption: Function-Hiding Instantiations
Without Random Oracles . 622

Elaine Shi and Nikhil Vanjani

GLUE: Generalizing Unbounded Attribute-Based Encryption for Flexible
Efficiency Trade-Offs . 652

Marloes Venema and Greg Alpár

Key Exchange and Messaging

EKE Meets Tight Security in the Universally Composable Framework 685
Xiangyu Liu, Shengli Liu, Shuai Han, and Dawu Gu

A Universally Composable PAKE with Zero Communication Cost:
(And Why It Shouldn’t Be Considered UC-Secure) . 714

Lawrence Roy and Jiayu Xu

Sender-binding Key Encapsulation . 744
Laurin Benz, Wasilij Beskorovajnov, Sarai Eilebrecht,
Jörn Müller-Quade, Astrid Ottenhues, and Rebecca Schwerdt

Pattern Matching in Encrypted Stream from Inner Product Encryption 774
Élie Bouscatié, Guilhem Castagnos, and Olivier Sanders

Author Index . 803

Contents – Part II

Homomorphic Cryptography and Other Topics

On Homomorphic Secret Sharing from Polynomial-Modulus LWE 3
Thomas Attema, Pedro Capitão, and Lisa Kohl

Discretization Error Reduction for High Precision Torus Fully
Homomorphic Encryption . 33

Kang Hoon Lee and Ji Won Yoon

Verifiable Capacity-Bound Functions: A New Primitive from Kolmogorov
Complexity: (Revisiting Space-Based Security in the Adaptive Setting) 63

Giuseppe Ateniese, Long Chen, Danilo Francati,
Dimitrios Papadopoulos, and Qiang Tang

A Holistic Approach Towards Side-Channel Secure Fixed-Weight
Polynomial Sampling . 94

Markus Krausz, Georg Land, Jan Richter-Brockmann, and Tim Güneysu

MPC

Private Polynomial Commitments and Applications to MPC 127
Rishabh Bhadauria, Carmit Hazay,
Muthuramakrishnan Venkitasubramaniam, Wenxuan Wu,
and Yupeng Zhang

Credibility in Private Set Membership . 159
Sanjam Garg, Mohammad Hajiabadi, Abhishek Jain, Zhengzhong Jin,
Omkant Pandey, and Sina Shiehian

Improved Private Set Intersection for Sets with Small Entries 190
Dung Bui and Geoffroy Couteau

Pseudorandom Correlation Functions from Variable-Density LPN,
Revisited . 221

Geoffroy Couteau and Clément Ducros

Threshold Private Set Intersection with Better Communication Complexity 251
Satrajit Ghosh and Mark Simkin

xvi Contents – Part II

Encryption

Almost Tightly-Secure Re-randomizable and Replayable CCA-Secure
Public Key Encryption . 275

Antonio Faonio, Dennis Hofheinz, and Luigi Russo

Multi-authority ABE for Non-monotonic Access Structures 306
Miguel Ambrona and Romain Gay

Multi-instance Secure Public-Key Encryption . 336
Carlo Brunetta, Hans Heum, and Martijn Stam

Unidirectional Updatable Encryption and Proxy Re-encryption from DDH 368
Peihan Miao, Sikhar Patranabis, and Gaven Watson

Backward-Leak Uni-Directional Updatable Encryption
from (Homomorphic) Public Key Encryption . 399

Yao Jiang Galteland and Jiaxin Pan

Functional Encryption Against Probabilistic Queries: Definition,
Construction and Applications . 429

Geng Wang, Shi-Feng Sun, Zhedong Wang, and Dawu Gu

ZK I

A Generic Transform from Multi-round Interactive Proof to NIZK 461
Pierre-Alain Fouque, Adela Georgescu, Chen Qian,
Adeline Roux-Langlois, and Weiqiang Wen

Fine-Grained Verifier NIZK and Its Applications . 482
Xiangyu Liu, Shengli Liu, Shuai Han, and Dawu Gu

Zero-Knowledge Arguments for Subverted RSA Groups . 512
Dimitris Kolonelos, Mary Maller, and Mikhail Volkhov

Dew: A Transparent Constant-Sized Polynomial Commitment Scheme 542
Arasu Arun, Chaya Ganesh, Satya Lokam, Tushar Mopuri,
and Sriram Sridhar

IO and ZK II

Non-Interactive Publicly-Verifiable Delegation of Committed Programs 575
Riddhi Ghosal, Amit Sahai, and Brent Waters

Contents – Part II xvii

Laconic Function Evaluation for Turing Machines . 606
Nico Döttling, Phillip Gajland, and Giulio Malavolta

A Map of Witness Maps: New Definitions and Connections 635
Suvradip Chakraborty, Manoj Prabhakaran, and Daniel Wichs

Structure-Preserving Compilers from New Notions of Obfuscations 663
Matteo Campanelli, Danilo Francati, and Claudio Orlandi

Author Index . 695

Post-quantum Cryptography

Post-quantum Anonymity of Kyber

Varun Maram1(B) and Keita Xagawa2

1 Department of Computer Science, ETH Zurich, Zürich, Switzerland
vmaram@inf.ethz.ch

2 NTT Social Informatics Laboratories, Musashino, Japan
keita.xagawa.zv@hco.ntt.co.jp

Abstract. Kyber is a key-encapsulation mechanism (KEM) that was
recently selected by NIST in its PQC standardization process; it is also
the only scheme to be selected in the context of public-key encryp-
tion (PKE) and key establishment. The main security target for KEMs,
and their associated PKE schemes, in the NIST PQC context has been
IND-CCA security. However, some important modern applications also
require their underlying KEMs/PKE schemes to provide anonymity (Bel-
lare et al., ASIACRYPT 2001). Examples of such applications include
anonymous credential systems, cryptocurrencies, broadcast encryption
schemes, authenticated key exchange, and auction protocols. It is hence
important to analyze the compatibility of NIST’s new PQC standard in
such “beyond IND-CCA” applications.

Some starting steps were taken by Grubbs et al. (EUROCRYPT 2022)
and Xagawa (EUROCRYPT 2022) wherein they studied the anonymity
properties of most NIST PQC third round candidate KEMs. Unfortu-
nately, they were unable to show the anonymity of Kyber because of
certain technical barriers.

In this paper, we overcome said barriers and resolve the open prob-
lems posed by Grubbs et al. (EUROCRYPT 2022) and Xagawa (EURO-
CRYPT 2022) by establishing the anonymity of Kyber, and the (hybrid)
PKE schemes derived from it, in a post-quantum setting. Along the way,
we also provide an approach to obtain tight IND-CCA security proofs for
Kyber with concrete bounds; this resolves another issue identified by the
aforementioned works related to the post-quantum IND-CCA security
claims of Kyber from a provable security point-of-view. Our results also
extend to Saber, a NIST PQC third round finalist, in a similar fashion.

Keywords: anonymity · post-quantum cryptography · NIST PQC
standardization · KEM · hybrid PKE · quantum random oracle model

1 Introduction

Roughly six years after kicking-off its post-quantum cryptography (PQC) stan-
dardization process, the US National Institute of Standards and Technology
(NIST) has finally announced the first set of cryptographic algorithms that will
be standardized (along with a set of alternate algorithms that will be considered
c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 3–35, 2023.
https://doi.org/10.1007/978-3-031-31368-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_1&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_1

4 V. Maram and K. Xagawa

for future standardization) [2]. Among this first set of algorithms, CRYSTALS-
Kyber [41] (or Kyber, for short) is the only key-encapsulation mechanism (KEM)
selected by NIST for standardization, in the context of public-key encryption
(PKE) and key-establishment. One of NIST’s main criteria for evaluating and
selecting PQC standards in the PKE/KEM category was on the algorithms’ abil-
ity to offer semantic security with respect to adaptive chosen ciphertext attacks
(a.k.a. IND-CCA security). IND-CCA security is widely accepted as a standard
notion of security for PKE schemes and KEMs since the property suffices for
many important use cases. However, as a NIST PQC standard, since Kyber is
intended to be widely used for decades to come, it is also important to study the
scheme’s compatibility with emerging modern applications that require security
properties beyond IND-CCA.

One such important security property is anonymity (or key privacy). Roughly
speaking, a PKE scheme is said to be anonymous [6] if a ciphertext hides the
receiver’s information by not leaking anything about the public key used for
encryption; anonymous KEMs are defined analogously [28,46]. Such anonymous
cryptographic primitives are fundamental in several deployed privacy-enhancing
systems, such as anonymous cryptocurrencies like Zcash [8], anonymous broad-
cast encryption schemes [5,37], anonymous credential systems [14], anonymous
authenticated key exchange [12,24,25,42], auction protocols [40], and so on. The
recent works of [28,46] have hence looked into anonymity properties of the NIST
PQC third round candidate KEMs, and the hybrid PKE schemes derived from
them via the “KEM-DEM” paradigm [16]. Collectively, both those works have
established the post-quantum anonymity of all nine candidate KEMs except for
three, which unfortunately includes the current standard Kyber (the other two
KEMs being Saber [19] and Streamlined NTRU Prime [9]).

To see why the works of [28,46] could not establish the anonymity of Kyber,
it helps to first look at how the NIST PQC candidate KEMs are constructed.
The KEM candidates first specify a weakly secure (e.g., IND-CPA secure) “base”
PKE scheme and then apply some variant of the Fujisaki-Okamoto (FO) trans-
form [20,26,27,29] to obtain their respective KEMs. The “original” FO trans-
forms of [20,26,27,29] were heavily analyzed in the idealized Random Oracle
Model (ROM) [7], and later, in the Quantum ROM (QROM) [11] which is rel-
evant for studying post-quantum security; it was shown in a long sequence of
works (e.g., [10,22,31,32,35,39]) that such original transforms boost an IND-
CPA secure PKE scheme to an IND-CCA secure KEM in the QROM. In the
context of anonymity, it was shown in [28,46] that the FO transforms also ele-
vate a weakly anonymous (i.e., ANO-CPA secure) base PKE scheme to a strongly
anonymous (i.e., ANO-CCA secure) KEM in the QROM.

However, the specific variant of FO transform used in Kyber deviates quite
significantly from the original transforms above. At a high-level, Kyber hashes
more “intermediate” values in its internal computations than is the case in FO
transforms in the literature. At the same time, this additional hashing is done
in a way which creates barriers in applying the proof strategies used in [28,46]

Post-quantum Anonymity of Kyber 5

to show the anonymity boosting properties of the original FO transforms in the
QROM. Hence, this raises the following question:

Is Kyber (provably) ANO-CCA secure in the QROM?

At the same time, as observed in [28,46], the additional hashing in Kyber
also acts as a barrier in proving even the scheme’s IND-CCA security in the
QROM with the concrete bounds claimed in its specification document [4]. Given
the importance placed on IND-CCA security in the NIST PQC standardization
process, this raises another question:

Can we obtain a (tight) proof of IND-CCA security for Kyber in the
QROM with concrete bounds?

1.1 Our Contributions

We answer the above questions in the affirmative by presenting the following
results, thereby resolving the corresponding open problems posed in [28,46]:

– We show that Kyber and the hybrid PKE schemes derived from it are ANO-
CCA secure in the QROM, under the standard hardness assumption of solving
the module learning-with-error (MLWE) problem [13,36].

– We describe an approach to obtain tight IND-CCA security with concrete
bounds for Kyber in the QROM, under the MLWE hardness assumption.

It is worth mentioning that the NIST PQC third round finalist Saber [19]
implements the same variant of FO transform as Kyber in its KEM construction.
Hence, our above results on anonymity and tight IND-CCA security also apply to
Saber in a similar fashion, where we would instead need to rely on the hardness
of solving the module learning-with-rounding (MLWR) problem [18].

We hope that our above results provide further confidence to cryptographic
scheme designers in using the new PQC standard Kyber not only in general-
purpose applications that need IND-CCA security but also in emerging modern
applications that require anonymity.

1.2 Technical Overview

Here we give a high-level description of our approach to obtain proofs of
anonymity (i.e., ANO-CCA security) and (tight) IND-CCA security for Kyber
in the QROM. We first focus on the familiar setting of IND-CCA security and
later consider ANO-CCA security.

IND-CCA Security of Kyber. We begin by first describing an alternative –
and “simpler” – approach to prove IND-CCA security of Kyber in the QROM,
and then contrasting it with our approach. As noted above, virtually all NIST
PQC candidate KEMs, including Kyber, use variants of the FO transformation
in their respective KEM constructions. Before discussing the specific variant

6 V. Maram and K. Xagawa

KGen′

1 : (pk, sk) ← KGen

2 : s ← ⊥
3 : s ←$ M
4 : sk′ ← (sk, s)

5 : return (pk, sk′)

Encap(pk)

1 : m ←$ M
2 : r ← Gr(m)

3 : c ← Enc(pk, m; r)

4 : k ← Gk(m)

5 : return (c, k)

Decap(sk′, c)

1 : Parse sk′ = (sk, s)

2 : m′ ← Dec(sk, c)

3 : r′ ← Gr(m
′)

4 : c′ ← Enc(pk, m′; r′)

5 : if c′ = c then

6 : return Gk(m′)

7 : else return Gk(s, c)

8 : else return ⊥

Fig. 1. The KEMs FO⊥
m[PKE, Gr, Gk] and FO�⊥

m[PKE, Gr, Gk] . Here M is the mes-

sage space of PKE = (KGen,Enc,Dec) and Gr, Gk are hash functions with appropriate
domain and co-domain. For notational simplicity, we set s ← ⊥ for FO⊥

m.

used by Kyber, let us first consider the standard FO transforms introduced by
Dent [20] and Hofheinz et al. [29], namely the explicitly-rejecting FO⊥

m and the
implicitly-rejecting FO �⊥

m, described in Fig. 1.
For ease of exposition, we consider a simplified version of Kyber’s FO variant

where the only main difference compared to FO⊥
m is that, instead of stopping

at “k ← Gk(m)” (Line 4 in Encap(pk), Fig. 1) during encapsulation, there is an
extra layer of hashing to compute the final encapsulated key. Namely, Kyber
outputs keys of the form “k ← H ′(k,H(c))” where H,H ′ are two additional
hash functions; decapsulation proceeds analogously where instead of returning a
⊥ when rejecting a ciphertext, Kyber implicitly rejects by returning H ′(s,H(c)).
Hence, (this simplified version of) Kyber can be seen as a “wrapper” scheme
w.r.t. the FO⊥

m KEM with appropriate modifications to the encapsulation and
decapsulation steps. As a result, the IND-CCA security of Kyber can be easily
shown by relying on the IND-CCA security of the underlying FO⊥

m KEM.
To sketch out the proof, we start with the IND-CCA security game w.r.t. (the

simplified) Kyber where the adversary gets a challenge ciphertext c∗ and the real
encapsulated key “H ′(k

∗
,H(c∗))” (refer to Subsect. 2.2 for a precise description

of the IND-CCA security games for KEMs). We then modify the game via the
following “hybrids”:

1. In the first hybrid, we provide the adversary with a new encapsulated key
“H ′(k

′
,H(c∗))”, where k

′
is an independent and uniformly random value.

This modification is justified by relying on IND-CCA security of the underly-
ing FO⊥

m KEM. Because note that k
∗

can be seen as the “real” encapsulated
key of the FO⊥

m KEM and k
′
a “random” key, and IND-CCA security of FO⊥

m

implies (computational) indistinguishability of both these keys. One impor-
tant thing worth noting here is that in the reduction to IND-CCA security
of FO⊥

m, we can simulate the decapsulation oracle of Kyber as follows. We

Post-quantum Anonymity of Kyber 7

first sample the secret s ←$ M. Then to simulate the “Kyber-decapsulation”
of a ciphertext c, we first perform the “FO⊥

m-decapsulation” of c: if the result
is a key k, we return the “Kyber-key” as H ′(k,H(c)); if the result is ⊥, we
return the “Kyber-key” as H ′(s,H(c)). Note that for this reduction to work,
it is crucial that the underlying FO transform, FO⊥

m, is explicitly rejecting, in
order to perfectly simulate the rejection of ciphertexts during decapsulation.

2. In the second and final hybrid, we again switch back to the IND-CCA security
game w.r.t. Kyber where the adversary gets a uniformly random encapsulated
key “k̂” which is independent of c∗. This modification is again justified by
relying on the pseudorandomness provided by the quantum random oracle
H ′(k

′
, ·): i.e., since the “PRF key” k

′
is independent of c∗, one can argue the

(statistical) indistinguishability of the keys “H ′(k
′
,H(c∗))” and “k̂”.

The IND-CCA security of (the simplified) Kyber in the QROM hence follows
since the adversary cannot efficiently distinguish between the real and random
encapsulated keys “H ′(k

∗
,H(c∗))” and “k̂” respectively in the above hybrids.

However, a major issue with the above approach to prove concrete (and tight)
IND-CCA security of Kyber is related to our dependence on the IND-CCA secu-
rity of FO⊥

m in the QROM in the first place. IND-CCA security of the FO⊥
m trans-

form, with concrete bounds, has been notoriously hard to prove in the QROM.
To put things in context, let us first consider FO �⊥

m, the implicitly-rejecting vari-
ant of FO⊥

m. A long sequence of prior works [10,30,32,35,39] provided concrete
IND-CCA security proofs for FO �⊥

m in the QROM, with each follow-up improving
the tightness of the corresponding reduction. For example, Kuchta et al. [35] were
the first to provide a security proof that avoided a square-root advantage loss
w.r.t. the weak (IND-CPA/OW-CPA) security of the underlying PKE scheme;
this loss seemed inherent with previous reductions for the FO transforms in
the QROM. To also showcase the relative simplicity of analyzing the IND-CCA
security of FO �⊥

m in the QROM, Unruh [45] showed a framework for formally ver-
ifying the corresponding post-quantum security proof of the implicitly-rejecting
transform provided in [30].

When it comes to the explicitly-rejecting FO⊥
m transform, the story is arguably

more complicated. Looking at prior work, some starting steps were taken in [3,
29,33,43] in this regard wherein concrete IND-CCA security proofs for modified
versions of the FO⊥

m transform – which include an additional “key confirmation”
hash in the ciphertext – were provided (however, security proofs in [3,43] were
later found to have bugs in them [3]). The unmodified FO⊥

m transform was later
analyzed in [34,48] in the QROM; however, the provided security proofs had
some subtle gaps [22]. Quite recently, these gaps were resolved in [22,31] resulting
in the first IND-CCA security proofs for the original FO⊥

m transform in the
QROM with concrete bounds. However, there are a couple of issues:

– The IND-CCA security analyses of FO⊥
m by Don et al. [22] and Hövelmanns et

al. [31] assume certain computational and statistical properties of the under-
lying PKE scheme which are not well-studied w.r.t. the NIST PQC candidates
– especially Kyber. These properties include γ-spreadness, so-called Find Fail-
ing Plaintext (FFP) security (as introduced in [31]), etc.

8 V. Maram and K. Xagawa

– Even if the above properties are properly analyzed, the resulting IND-CCA
security bounds for the final FO⊥

m-based KEM are non-tight when compared
to the corresponding state-of-the-art bounds for the implicitly-rejecting FO �⊥

m.
E.g., all known IND-CCA security proofs for FO⊥

m transform in the QROM
incur a square-root advantage loss w.r.t. passive security of the underlying
PKE scheme. This is in contrast to the tight proof of IND-CCA security
for FO �⊥

m shown in [35]. In other words, we would also incur these non-tight
bounds in our “wrapper-based” IND-CCA security analysis of Kyber in the
QROM, when relying on the corresponding post-quantum security of FO⊥

m.

This brings us to one of the main technical contributions of this paper. In
essence, we provide a way to obtain tight proofs of IND-CCA security for Kyber
in the QROM by salvaging the above “wrapper-based” approach – even when the
underlying FO transform is implicitly-rejecting. As noted in the above reduction,
we crucially relied on the explicit-rejection of FO⊥

m in order to perfectly simu-
late decapsulation oracles. But if we start with the FO �⊥

m transform, it is not
so straightforward how to simulate the “Kyber-decapsulation” oracle using the
“FO �⊥

m-decapsulation” oracle especially when the latter oracle rejects ciphertexts;
as described in Fig. 1 (Line 9), the rejection output Gk(s, c) still “looks” like a
valid key.

To resolve the above simulation issue, we start with the FO �⊥
m transform and

modify its decapsulation algorithm in a way such that the overall IND-CCA
security of the transform in the QROM is affected negligibly (in a statistical
sense). Similarly, we also modify the decapsulation procedure used in the actual
Kyber scheme such that (i) the IND-CCA security of the original and modi-
fied schemes are statistically equivalent, and (ii) the IND-CCA security of the
modified scheme can be reduced to the IND-CCA security of the modified FO �⊥

m

transform wherein we can now simulate the “modified-Kyber-decapsulation” ora-
cle using the “modified-FO �⊥

m-decapsulation” oracle perfectly in the correspond-
ing reduction. It is then not hard to see that this indirectly allows us to base
IND-CCA security of the actual Kyber scheme on that of the unmodified FO �⊥

m

transform, with a negligible loss in tightness; full details of our security proof
can be found in Sect. 4.

But one thing we would like to stress is that our current IND-CCA security
proof for Kyber in Sect. 4 is non-tight in the sense that we still incur a square-root
advantage loss w.r.t. passive security of the underlying PKE scheme mentioned
above. This is because we are currently basing the IND-CCA security of Kyber
on the (non-tight) IND-CCA security of FO �⊥

m proven in [32,39] in the QROM,
which incurs a similar square-root loss. The reason we are not relying on the
tighter proof of IND-CCA security for FO �⊥

m shown in [35] – which avoids such a
loss – is that their tight proof makes an additional assumption on the underlying
PKE scheme: namely, that the scheme satisfies a property called injectivity (as
defined in [10]). However a detailed analysis of Kyber’s injectivity is lacking,
particularly in the context of NIST’s PQC standardization process, and we also
consider it out of the scope of our work. At the same time, this showcases an
advantage of our “wrapper-based” approach w.r.t. the implicitly-rejecting FO �⊥

m

Post-quantum Anonymity of Kyber 9

in that, if the injectivity of Kyber is well established in the future, then one can
simply “plug in” [35]’s tight IND-CCA security result for FO �⊥

m in our analysis in
Sect. 4 as a drop-in replacement to essentially obtain a tight proof of IND-CCA
security for Kyber in the QROM.

ANO-CCA Security of Kyber. Now when it comes to the main focus of
this paper, i.e., the anonymity of Kyber in the QROM, we follow the framework
of [46]. Namely, we instead show that Kyber satisfies a stronger security notion
called strong pseudorandomness (or, SPR-CCA security). A KEM is said to be
SPR-CCA secure if, roughly speaking, an adversary cannot distinguish a real
ciphertext/encapsulated-key pair (c∗, k∗) from a random pair (c′, k′) where c′

is a random ciphertext and k′ is a random key (see Subsect. 2.2 for a formal
definition of SPR-CCA security where we also need to consider a simulator to
specify what we mean by a “random” ciphertext c′).

It was shown in [46] that SPR-CCA security straightforwardly implies ANO-
CCA security. The key insight used in [46] is that since SPR-CCA security is
a “single key-pair notion” like IND-CCA security (i.e., the corresponding secu-
rity game involves a single KEM key-pair), it is easier to extend the IND-CCA
security analysis of a KEM to also show its SPR-CCA security than trying to
directly prove its ANO-CCA security; note that ANO-CCA security is a “double
key-pair notion” and hence would involve simulating two different decapsulation
oracles in the security analysis.

Following our above discussion on IND-CCA security of Kyber in the QROM,
it is straightforward to show its SPR-CCA security by relying on the same strong
pseudorandomness of FO⊥

m-based KEMs by adopting the “wrapper-based” app-
roach. But as noted above, since proving IND-CCA security of FO⊥

m has been a
complicated affair, one can expect the same when it comes to proving “beyond
IND-CCA” security properties (e.g., SPR-CCA) of the explicitly-rejecting trans-
form. In fact, we consider extending the IND-CCA security analysis of FO⊥

m in
[22,31] to other important properties, such as SPR-CCA security, in the QROM
beyond the scope of this paper, and leave it as an open problem.

In contrast, SPR-CCA security of the implicitly-rejecting FO �⊥
m in the QROM

was already shown in [46], further indicating the simplicity of analyzing FO �⊥
m

in the QROM – when compared to its explicitly-rejecting counterpart – even
w.r.t. security properties beyond IND-CCA. Hence, our above “wrapper-based”
approach w.r.t. the underlying FO �⊥

m transform can be used to also show SPR-
CCA security – and hence, ANO-CCA security – of Kyber in the QROM; in
such an approach (which is presented in detail in Sect. 5), we need to introduce
additional hybrids to replace the real ciphertext c∗ with a random ciphertext c′.
This showcases yet another advantage of using our approach: quantitatively, not
only does Kyber inherit existing tight (IND-CCA) security bounds for FO �⊥

m in the
QROM as seen above, but also qualitatively, Kyber inherits “beyond IND-CCA”
security properties (such as SPR-CCA) of FO �⊥

m in the post-quantum setting.

10 V. Maram and K. Xagawa

1.3 Related Work

In concurrent work, Ding et al. [21] established the injectivity of Kyber by provid-
ing both theoretical and numerical bounds. As mentioned above, this means that
we can obtain tight IND-CCA security bounds for Kyber in the QROM (tighter
than our current bounds in Sect. 4) by using our aforementioned “wrapper-
based” approach in conjunction with [35]’s tight security analysis of FO �⊥

m-based
KEMs in the QROM.

Recently, Chen et al. [15] analyzed the concrete IND-CCA security of Kyber
in the QROM using an alternative approach; more specifically, it involves using
a well-known indistinguishability result between random functions and ran-
dom permutations in the quantum setting [47]. However, since their reduction
algorithm needs to efficiently simulate a random permutation in the QROM,
their resulting IND-CCA security bounds include an additive term O(

√
q3/2128)

which significantly restricts the number of quantum random oracle queries q
an adversary can make – this is in contrast to the “collision-resistance” term
O(q3/2256) in our obtained bounds in Sect. 4 (also see Remark 1 for some more
related discussion).

2 Preliminaries

Notations. We denote λ ∈ N to be the security parameter. We sometimes omit
writing λ when describing cryptosystems if it is clear from the context. PPT
and QPT stand for probabilistic polynomial time and quantum polynomial time
respectively. We use the standard O-notations. A function f(λ) is said to be
negligible if f(λ) = λ−ω(1). For a finite set S, we write “x ←$ S” to denote
that x is sampled uniformly at random from S. The value [x = y] is defined to
be 1 if x = y and 0 otherwise. For probabilistic algorithms we use y ← A(x)
to denote a (randomized) output of A on input x; we also sometimes specify
the randomness r used in A as y ← A(x; r). We use “AO” to denote that the
algorithm A has access to the oracle O; we’ll also make it clear whether A has
classical or quantum access to O in the description of our setting.

2.1 Quantum Random Oracle Model

Roughly speaking, the quantum random oracle model (QROM) is an idealized
model where a hash function is modeled as a publicly and quantumly accessible
random oracle. In this paper, we model a quantum oracle O : {0, 1}n → {0, 1}m

as a mapping |x〉|y〉 �→ |x〉|y ⊕ O(x)〉, where x ∈ {0, 1}n and y ∈ {0, 1}m. Refer
to [11] for a more detailed description of the model.

We now review some useful lemmas in the QROM. The first lemma describes
the collision resistance of quantum random oracles.

Lemma 1 ([47, Theorem 3.1]). There is a universal constant C (< 648) such
that the following holds: Let X and Y be finite sets. Let H : X → Y be a random
oracle. If an unbounded-time quantum adversary A makes a query to H at most

Post-quantum Anonymity of Kyber 11

q times, then we have Pr[H(x0) = H(x1) ∧ x0
= x1 : (x0, x1) ← AH] ≤ C(q+1)3

|Y| ,
where all oracle accesses of A can be quantum.

The second lemma intuitively states that a quantum random oracle can be
used as a quantum-accessible pseudorandom function, even if the distinguisher
is given full access to the quantum random oracle in addition to the PRF oracle.

Lemma 2 ([32, Lemma 4]). Let H : K × X → Y and R : X → Y be two
independent quantum random oracles. Define the oracles F0 = H(k, ·), where
we have the “PRF key” k ←$ K, and F1 = R(·). Consider an oracle algo-
rithm/distinguisher AH,Fi (i ∈ {0, 1}) that makes at most q queries to H. Then
we have |Pr[1 ← AH,F0] − Pr[1 ← AH,F1]| ≤ 2q√

|K|
.

The lemmas below provide a generic reduction from a hiding-style property
(indistinguishability) to a one-wayness-style property (unpredictability) in the
QROM. It is also popularly known as the One-Way To Hiding (OW2H) lemma
in the literature, originally appearing in [44]. We first state the original OW2H
lemma of [44] and later state a generalized version of the OW2H lemma from [3].
As will be seen in Sect. 4, different parts of our security analysis of Kyber use
different versions of the OW2H lemma for the sake of convenience.

Lemma 3 (Original OW2H [44]). Let H : X → Y be a quantum random ora-
cle. Consider an oracle algorithm AH that makes at most q queries to H. Let BH

be an oracle algorithm that on input x does the following: picks i ←$ {1, . . . , q}
and y ←$ Y, runs AH(x, y) until (just before) the i-th query, measures the argu-
ment of the query in the computational basis and outputs the measurement out-
come (if A makes less than i queries, B outputs ⊥/∈ X). Let

P 1
A = Pr[1 ← AH(x,H(x)) : x ←$ X]

P 2
A = Pr[1 ← AH(x, y) : x ←$ X , y ←$ Y]

PB = Pr[x ← BH(x) : x ←$ X].

Then, we have |P 1
A − P 2

A| ≤ 2q
√

PB.

Lemma 4 (Generalized OW2H [3, Theorem 3]). Let S ⊆ X be random. Let
G,H : X → Y be random functions satisfying G(x) = H(x) for every x /∈ S.
Let z be a random bit string. (S, G,H, z may have arbitrary joint distribution.)
Let A be a quantum oracle algorithm making q queries to its corresponding ora-
cle (either G or H).1 Let BH be an oracle algorithm that on input z does the
following: picks i ←$ {1, . . . , q}, runs AH(z) until (just before) the i-th query,

1 Strictly speaking, the generalized OW2H lemma of [3] takes into account the parallel
oracle queries made by A by having q to be the so-called query depth of A. In this
paper, we won’t consider parallel queries of A for the sake of simplicity and denote q
to be the query number of A. But our subsequent analysis of Kyber can be modified
to also consider parallel oracle queries in a straightforward way.

12 V. Maram and K. Xagawa

measures all query input registers in the computational basis, and outputs the
set T = {t1, . . . , t|T |} of measurement outcomes. Let

Pleft = Pr[1 ← AH(z)]

Pright = Pr[1 ← AG(z)]

Pguess = Pr[S ∩ T
= ∅ : T ← BH(x)].

Then, |Pleft − Pright| ≤ 2q
√

Pguess. The same result also holds with BG instead
of BH in the definition of PB.

2.2 Cryptographic Primitives

Public Key Encryption (PKE): The model for PKE schemes is summarized
as follows:

Definition 1. A PKE scheme PKE consists of the following triple of PPT algo-
rithms (KGen,Enc,Dec):

– KGen(1λ; rg) → (pk, sk): a key-generation algorithm that on input 1λ, where λ
is the security parameter, and randomness rg ∈ RKGen, outputs a pair of keys
(pk, sk). pk and sk are called the public/encryption key and private/decryption
key, respectively.

– Enc(pk,m; re) → c: an encryption algorithm that takes as input encryption
key pk, message m ∈ M, and randomness re ∈ REnc, and outputs ciphertext
c ∈ C.

– Dec(sk, c) → m/⊥: a decryption algorithm that takes as input decryption key
sk and ciphertext c and outputs message m ∈ M or a rejection symbol ⊥
∈ M.

Definition 2 (PKE Correctness [29]). We say that PKE = (KGen,Enc,Dec)
is δ-correct if

Exp
(pk,sk)←KGen(1λ)

[max
m∈M

Pr[Dec(sk, c)
= m : c ← Enc(pk,m)]] ≤ δ.

If δ = 0, then we just say that PKE is perfectly correct.

Definition 3 (PKE Security). Let PKE = (KGen,Enc,Dec) be a PKE
scheme. For any adversary A and GOAL ∈ {IND,SPR,ANO}, we define A’s
GOAL-CCA advantage against PKE (w.r.t. a simulator S when GOAL = SPR)
as follows:

AdvGOAL-CCA
PKE[,S] (A) :=

∣∣
∣∣Pr[ExptGOAL-CCA

PKE[,S],A (λ) = 1] − 1
2

∣∣
∣∣ ,

where ExptGOAL-CCA
PKE[,S],A (λ) is an experiment described in Fig. 2. For GOAL ∈

{IND,SPR,ANO}, we say that PKE is GOAL-CCA-secure if (there exists a
QPT simulator S when GOAL = SPR such that) AdvGOAL-CCA

PKE[,S] (A) is negligible
(in λ) for any QPT adversary A. We say that PKE is GOAL-CPA-secure if it
is GOAL-CCA-secure without giving A access to decryption oracle.

Post-quantum Anonymity of Kyber 13

ExptIND-CCA
PKE,A (λ)

(pk, sk) ← KGen(1λ
)

(m0, m1, state) ← ADec⊥(·)
(pk)

b ←$ {0, 1}
c

∗ ← Enc(pk, mb)

b
′ ← ADecc∗ (·)

(c
∗
, state)

return [b
′
= b]

ExptSPR-CCA
PKE,S,A (λ)

(pk, sk) ← KGen(1λ
)

(m, state) ← ADec⊥(·)
(pk)

b ←$ {0, 1}
c

∗
0 ← Enc(pk, m)

c
∗
1 ← S(1

λ
)

b
′ ← A

Decc∗
b
(·)

(c
∗
b , state)

return [b
′
= b]

ExptSDS-IND
PKE,S,A (λ)

(pk, sk) ← KGen(1λ
)

b ←$ {0, 1}
m ←$ M; c

∗
0 ← Enc(pk, m)

c
∗
1 ← S(1

λ
)

b
′ ← A(pk, c

∗
b)

return [b
′
= b]

Deca(c)

if c = a then return ⊥
m ← Dec(sk, c)

return m

Deca(β, c)

if c = a then return ⊥
m ← Dec(skβ , c)

return m

ExptANO-CCA
PKE,A (λ)

(pk0, sk0) ← KGen(1λ
)

(pk1, sk1) ← KGen(1λ
)

(m, state) ← ADec⊥(·,·)
(pk0, pk1)

b ←$ {0, 1}
c

∗ ← Enc(pkb, m)

b
′ ← ADecc∗ (·,·)

(c
∗
, state)

return [b
′
= b]

Fig. 2. Games for PKE schemes

Definition 4 (Strong Disjoint Simulatablity [38,39,46]). Let PKE =
(KGen,Enc,Dec) be a PKE scheme and S be a QPT algorithm/simulator. For
any adversary A, we define A’s SDS-IND advantage against PKE, w.r.t. S, as
follows:

AdvSDS-IND
PKE,S (A) :=

∣∣∣
∣Pr[ExptSDS-IND

PKE,S,A (λ) = 1] − 1
2

∣∣∣
∣ ,

where ExptSDS-IND
PKE,S,A (λ) is an experiment described in Fig. 2. In addition, we

define disjointness as

DisjPKE,S = Pr[c ∈ Enc(pk,M) : (pk, sk) ← KGen, c ← S(1λ)].

We say that PKE is strongly disjoint-simulatable if there exists a QPT simulator
S such that AdvSDS-IND

PKE,S (A) is negligible for any QPT adversary A and DisjPKE,S
is negligible in λ.

Key Encapsulation Mechanism (KEM): The model for KEM schemes is
summarized as follows:

Definition 5. A KEM scheme KEM consists of the following triple of
polynomial-time algorithms (KGen,Encap,Decap):

14 V. Maram and K. Xagawa

– KGen(1λ; rg) → (pk, sk): a key-generation algorithm that on input 1λ, where
λ is the security parameter, and randomness rg ∈ RKGen, outputs a pair
of keys (pk, sk). pk and sk are called the public/encapsulation key and pri-
vate/decapsulation key, respectively.

– Encap(pk; re) → (c, k): an encapsulation algorithm that takes as input encap-
sulation key pk, and randomness re ∈ REncap, and outputs ciphertext c ∈ C
and encapsulated key k ∈ K.

– Decap(sk, c) → k/⊥: a decapsulation algorithm that takes as input decapsu-
lation key sk and ciphertext c and outputs key k ∈ K or a rejection symbol
⊥
∈ K.

Definition 6 (KEM Correctness). We say that KEM = (KGen,Encap,
Decap) is δ-correct if

Pr[Decap(sk, c)
= k : (pk, sk) ← KGen(1λ), (c, k) ← Encap(pk)] ≤ δ.

In particular, we say that KEM is perfectly correct if δ = 0.

Definition 7 (KEM Security). Let KEM = (KGen,Encap,Decap) be a KEM
scheme. For any adversary A and GOAL ∈ {IND,SPR,ANO,SSMT}, we define
A’s GOAL-CCA advantage against KEM (w.r.t. a simulator S when GOAL ∈
{SPR,SSMT}) as follows:

AdvGOAL-CCA
KEM[,S] (A) :=

∣
∣∣∣Pr[ExptGOAL-CCA

KEM[,S],A (λ) = 1] − 1
2

∣
∣∣∣ ,

where ExptGOAL-CCA
KEM[,S],A (λ) is an experiment described in Fig. 3. For GOAL ∈

{IND,SPR,ANO,SSMT}, we say KEM is GOAL-CCA-secure if (there exists a
QPT simulator S when GOAL ∈ {SPR,SSMT} such that) AdvGOAL-CCA

KEM[,S] (A)
is negligible for any QPT adversary A.

We also define the above security properties for PKE schemes (in Definition 3)
and KEMs (in Definition 7) in the QROM where the corresponding schemes have
classical access and the adversary A has quantum access to a random oracle O.
Following [29,32], we make the convention that the number qO of queries made
by A to O counts the total number of times O is executed in the corresponding
security game/experiment; i.e., the number of A’s explicit queries to O plus the
number of implicit queries to O made by the experiment.

Data Encapsulation Mechanism (DEM): The model for DEM schemes is
summarized as follows:

Definition 8. A DEM scheme DEM consists of the following pair of polynomial-
time algorithms (E,D):

– E(k,m) → c: an encapsulation algorithm that takes as input key k ∈ K and
data m ∈ M, and outputs ciphertext c ∈ C.

Post-quantum Anonymity of Kyber 15

ExptIND-CCA
KEM,A (λ)

(pk, sk) ← KGen(1λ
)

b ←$ {0, 1}
(c

∗
, k

∗
0) ← Encap(pk)

k
∗
1 ←$ K

b
′ ← ADecapsc∗ (·)

(pk, c
∗
, k

∗
b)

return [b
′
= b]

ExptSPR-CCA
KEM,S,A (λ)

(pk, sk) ← KGen(1λ
)

b ←$ {0, 1}
(c

∗
0 , k

∗
0) ← Encap(pk)

(c
∗
1 , k

∗
1) ←$ S(1

λ
) × K

b
′ ← A

Decapsc∗
b
(·)

(pk, c
∗
b , k

∗
b)

return [b
′
= b]

ExptSSMT-CCA
KEM,S,A (λ)

(pk, sk) ← KGen(1λ
)

b ←$ {0, 1}
(c

∗
, k

∗
0) ← S(1

λ
) × K

k
∗
1 ← Decap(sk, c

∗
)

b
′ ← ADecapsc∗ (·)

(pk, c
∗
, k

∗
b)

return [b
′
= b]

Decapsa(c)

if c = a then return ⊥
k ← Decap(sk, c)

return k

Decapsa(β, c)

if c = a then return ⊥
k ← Decap(skβ , c)

return k

ExptANO-CCA
KEM,A (λ)

(pk0, sk0) ← KGen(1λ
)

(pk1, sk1) ← KGen(1λ
)

b ←$ {0, 1}
(c

∗
, k

∗
) ← Encap(pkb)

b
′ ← ADecapsc∗ (·,·)

(pk0, pk1, c
∗
, k

∗
)

return [b
′
= b]

Fig. 3. Games for KEM schemes

– D(k, c) → m/⊥: a decapsulation algorithm that takes as input key k and
ciphertext c, and outputs data m ∈ M or a rejection symbol ⊥
∈ M.

Definition 9 (DEM Correctness). We say DEM = (E,D) has perfect cor-
rectness if for any k ∈ K and any m ∈ M, we have

Pr[D(k, c) = m : c ← E(k,m)] = 1.

Definition 10 (One-time Strong Pseudorandomness of DEM). Let the
scheme DEM = (E,D) be a DEM. For m ∈ M, let C|m|(⊆ C) be the cipher-
text space defined by the length of data m. For any adversary A, we define A’s
SPR-otCCA advantage against DEM as follows:

AdvSPR-otCCA
DEM (A) :=

∣∣∣∣Pr[ExptSPR-otCCA
DEM,A (λ) = 1] − 1

2

∣∣∣∣ ,

where ExptSPR-otCCA
DEM,A (λ) is an experiment described in Fig. 4. We say that

DEM is strongly pseudorandom under one-time chosen-ciphertext attack (SPR-
otCCA secure) if AdvSPR-otCCA

DEM (A) is negligible for any QPT adversary A.

3 Specification of Kyber

As described in [4], Kyber is a KEM whose claimed IND-CCA security relies
on hardness of the module learning-with-error problem (MLWE problem [36]).
Kyber–or more formally, Kyber.KEM–is constructed by first starting with a base

16 V. Maram and K. Xagawa

ExptSPR-otCCA
DEM,A (λ)

k ←$ K
b ←$ {0, 1}
(m, state) ← A(1λ)

c∗
0 ← E(k, m)

c∗
1 ←$ C|m|

b′ ← ADecc∗
b
(·)

(c∗
b , state)

return [b′ = b]

Deca(c)

if c = a then return ⊥
m ← D(k, c)

return m

Fig. 4. SPR-otCCA game for DEM schemes.

PKE scheme Kyber.PKE and then applying a tweaked Fujisaki-Okamoto (FO)
transform to it in order to obtain the final KEM. The tweaked FO transform
is described in detail in Fig. 5; we also refer the reader to [4, Section 1.2] for a
detailed specification of Kyber.PKE.

KGen′

1 : (pk, sk) ← KGen

2 : s ←$ {0, 1}256

3 : pk′ ← (pk, H(pk))

4 : sk′ ← (sk, pk′, s)

5 : return (pk, sk′)

Encap(pk)

1 : m ←$ {0, 1}256

2 : m ← H(m)

3 : h ← H(pk)

4 : (k, r) ← G(m, h)

5 : c ← Enc(pk, m; r)

6 : k ← H ′(k, H(c))

7 : return (c, k)

Decap(sk′, c)

1 : Parse sk′ = (sk, pk, h, s)

2 : m′ ← Dec(sk, c)

3 : (k
′
, r′) ← G(m′, h)

4 : c′ ← Enc(pk, m′; r′)

5 : if c′ = c then

6 : return H ′(k
′
, H(c))

7 : else return H ′(s, H(c))

Fig. 5. The tweaked FO transform, namely FO�⊥′
(as described in [28,46]), used in

Kyber. Here (KGen,Enc,Dec) is the base PKE scheme and (KGen′,Encap,Decap) is the
final KEM. Also H, H ′ : {0, 1}∗ → {0, 1}256 and G : {0, 1}∗ → {0, 1}512 are hash func-
tions. Technically, Kyber instantiates H ′ with the extendable-output function SHAKE-
256 which can return outputs of arbitrary length. In this paper, we have H ′ to only
return outputs of bit-length 256 for the sake of simplicity. But our subsequent analysis
of Kyber can be modified in a straightforward manner to account for encapsulated keys
(derived from H ′) with arbitrary length.

3.1 Security Properties of Kyber.PKE

In our IND-CCA security analysis of Kyber.KEM in Sect. 4, we rely on the
IND-CPA security of Kyber.PKE. Similarly, in our ANO-CCA security analy-
sis (cf. Sect. 5) of Kyber.KEM and the hybrid PKE schemes derived from it, we

Post-quantum Anonymity of Kyber 17

rely on the strong disjoint simulatability (i.e., SDS-IND security plus statistical
disjointness) [38,39,46] of the base Kyber.PKE scheme.

It was argued in [4, Theorem 1] that (in the (quantum) random oracle model)
Kyber.PKE is tightly IND-CPA secure under the MLWE hardness assumption,
since under the MLWE assumption, the public-key and ciphertexts of Kyber.PKE
are pseudorandom. Hence, we have:

Lemma 5 (informal). Kyber.PKE is tightly IND-CPA secure under the MLWE
hardness assumption, in the QROM.

Regarding the strong disjoint simulatability of Kyber.PKE, we have:

Lemma 6 (informal). Kyber.PKE = (KGen,Enc,Dec) is tightly strong disjoint
simulatable under the MLWE hardness assumption, in the QROM.

Proof (Sketch). Let S be a QPT simulator algorithm which simply outputs a
uniformly random value from the ciphertext space C of Kyber.PKE. (Note that C
is a set of bit strings with a fixed pre-specified length [4, Section 1.2], and hence,
is efficiently samplable.) The above observation of Kyber.PKE’s public-keys and
ciphertexts being pseudorandom under the MLWE assumption can be used in
a straightforward manner to show that Kyber.PKE is tightly SDS-IND secure
w.r.t. S (cf. Definition 4) under the MLWE hardness assumption – as also noted
in [4, Section 4.3.2].

Coming to the statistical disjointness of Kyber.PKE w.r.t. S (cf. Definition 4),
we have DisjKyber.PKE,S ≤ |Enc(pk,M)|

|C| ≤ ≤|M||REnc|
|C| . Note that across all parameter

sets of Kyber [4, Section 1], we have |C| ≥ 26144 and |M × REnc| = 2512. Hence,
for all intents and purposes, DisjKyber.PKE,S can be considered to be negligible.

Finally, our IND-CCA and ANO-CCA security analyses of Kyber.KEM
accounts for the δ-correctness of Kyber.PKE (cf. Definition 2). This particular
correctness property of the base Kyber.PKE scheme has been rigorously analyzed
in [4, Section 1.4].

4 IND-CCA Security of Kyber in the QROM

In this section, we prove the IND-CCA security of Kyber in the QROM with
concrete bounds, before proceeding to show the scheme’s anonymity (i.e., ANO-
CCA security) later in Sect. 5.

Theorem 1 (IND-CCA security of Kyber.KEM). Given the base PKE
scheme Kyber.PKE = (KGen,Enc,Dec) is δ-correct, for any IND-CCA adver-
sary A against Kyber.KEM = (KGen′,Encap,Decap) issuing at most qD classical
queries to the decapsulation oracles, and at most qG, qH and qH′ queries to the
quantum random oracles G, H, and H ′, respectively, there exists an IND-CPA

18 V. Maram and K. Xagawa

adversary B against Kyber.PKE such that

AdvIND-CCA
Kyber.KEM(A) ≤ 2(qG + qH′)

√

AdvIND-CPA
Kyber.PKE(B) +

1
2256

+
9qH′ + 2qH

2128

+ 4qG

√
δ +

C(qH + 1)3

2256
,

where C (< 648) is the constant from Lemma 1, and the running time of B is
about the same as that of A.

The proof essentially follows the “wrapper-based” approach described in Sub-
sect. 1.2 above but with respect to the implicitly-rejecting FO �⊥

m transform. For-
mal details follow.

Proof. Towards proving the concrete IND-CCA security of Kyber in the QROM,
we first consider an intermediate PKE → KEM transform FO �⊥′

pre, described in
Fig. 6. Let Kyber.KEM be the KEM obtained by applying the FO �⊥′

pre transform
on Kyber.PKE, i.e., Kyber.KEM = FO �⊥′

pre[Kyber.PKE, G,H,H ′]. We now consider
the IND-CCA security of Kyber.KEM in the QROM.

KGen′

1 : (pk, sk) ← KGen

2 : s ←$ {0, 1}256

3 : pk′ ← (pk, H(pk))

4 : sk′ ← (sk, pk′, s)

5 : return (pk, sk′)

Encap(pk)

1 : m ←$ {0, 1}256

2 : h ← H(pk)

3 : (k, r) ← G(m, h)

4 : c ← Enc(pk, m; r)

5 : return (c, k)

Decap(sk′, c)

1 : Parse sk′ = (sk, pk, h, s)

2 : m′ ← Dec(sk, c)

3 : (k
′
, r′) ← G(m′, h)

4 : c′ ← Enc(pk, m′; r′)

5 : if c′ = c then

6 : return k
′

7 : else return H ′(s, c)

Fig. 6. The PKE → KEM transform FO�⊥′
pre.

Let A be an IND-CCA adversary against Kyber.KEM issuing at most q′
D

classical queries to the decapsulation oracles, and q′
H and q′

H′ queries to the
quantum random oracles H and H ′ respectively. Consider the sequence of games
G0 – G2 described in Fig. 7 which only differ in the way their corresponding
decapsulation oracles Decap(sk′, ·) reject invalid ciphertexts.

Game G0: This game is exactly the IND-CCA game for Kyber.KEM. Hence,
∣∣∣ Pr[G0 = 1] − 1

2

∣∣∣ = AdvIND-CCA
Kyber.KEM

(A). (1)

Game G1: In this game, the Decap(sk′, ·) oracle is modified such that H ′′(c)
is returned instead of H ′(s, c) for an invalid ciphertext c, where H ′′ is a fresh

Post-quantum Anonymity of Kyber 19

Games G0 − G2

1 : (pk, sk) ← KGen′

2 : (c∗, k
∗
0) ← Encap(pk)

3 : k
∗
1 ←$ {0, 1}256

4 : b ←$ {0, 1}
5 : b′ ← AG,H,H′,Decap(sk′,·)

(pk, c∗, k
∗
b)

6 : return [b′ = b]

Decap(sk′, c)

1 : Parse sk′ = (sk, pk, h, s)

2 : m′ ← Dec(sk, c)

3 : (k
′
, r′) ← G(m′, h)

4 : c′ ← Enc(pk, m′; r′)

5 : if c′ = c then

6 : return k
′

7 : else return H ′(s, c)// G0

8 : else return H ′′(c)// G1

9 : else return H(H(c))// G2

Fig. 7. Games G0 – G2. Here H ′′ : {0, 1}∗ → {0, 1}256 and H : {0, 1}256 → {0, 1}256 are
fresh internal random oracles, i.e., not directly accessible to A.

internal random oracle not directly accessible to A. Using Lemma 2 w.r.t. the
pseudorandomness of H ′(s, ·) during decapsulation, where we have the “PRF
key” s ←$ {0, 1}256, it is not hard to obtain the following via a straightforward
reduction:

∣∣Pr[G1 = 1] − Pr[G0 = 1]
∣∣ ≤ 2q′

H′

2128
. (2)

Game G2: In this game, we again modify the Decap(sk′, ·) oracle such that
H(H(c)) is returned instead of H ′′(c) for an invalid ciphertext c, where H is
another fresh internal random oracle not directly accessible to A. Note that the
oracles H ′′ and H are only accessible to A indirectly via the Decap(sk′, ·) oracle.
Now in the view of adversary A, the output distributions of the Decap(sk′, ·)
oracle in games G1 and G2 with regards to invalid ciphertexts c are identical
unless A queries the decapsulations of two invalid ciphertexts c1 and c2 such
that H(c1) = H(c2) (and c1
= c2). Since decapsulation queries are considered
to be classical in the QROM, we can bound the probability of such an event
by collision-resistance of the QRO H – as described in Lemma 1 – again via a
straightforward reduction. Hence, we have2,

∣∣Pr[G2 = 1] − Pr[G1 = 1]
∣∣ ≤ C(q′

H + q′
D + 1)3

2256
, (3)

where C (< 648) is the constant from Lemma 1.

2 Recall from our convention (described in Subsect. 2.2) that q′
H counts the total

number of times H is invoked in the game G0. However in G2, H is additionally
invoked when A queries the decapsulation of an invalid ciphertext. Hence, H is
queried at most (q′

H + q′
D) many times in G2 in the context of applying Lemma 1.

20 V. Maram and K. Xagawa

Hence by collecting the above bounds (1) – (3), we obtain

∣
∣∣ Pr[G2 = 1] − 1

2

∣
∣∣ ≤ AdvIND-CCA

Kyber.KEM
(A) +

2q′
H′

2128
+

C(q′
H + q′

D + 1)3

2256
, (4)

which will be useful shortly when we now focus on proving concrete IND-CCA
security of the actual scheme of Kyber.

Let A be an IND-CCA adversary against Kyber.KEM issuing at most qD

classical queries to the decapsulation oracles, and at most qG, qH and qH′ queries
to the quantum random oracles G, H and H ′ respectively. Consider the sequence
of games G0 – G8 described in Fig. 8.

Games G0 − G8

1 : (pk, sk) ← KGen′

2 : m∗ ←$ {0, 1}256

3 : m∗ ← H(m∗)// G0,G8

4 : (k
∗
0, r

∗) ←$ G(m∗, H(pk))

5 : k
∗
1 ←$ {0, 1}256

6 : c∗ ← Enc(pk, m∗; r∗)

7 : k∗ ← H ′(k
∗
0, H(c∗))// G0 – G3

8 : k∗ ← H ′(k
∗
1, H(c∗))// G4

9 : k∗ ←$ {0, 1}256// G5 – G8

10 : b′ ← AG,H,H′,Decap(sk′,·)(pk, c∗, k∗)

11 : return b′

Decap(sk′, c)

1 : Parse sk′ = (sk, pk, h, s)

2 : m′ ← Dec(sk, c)

3 : (k
′
, r′) ← G(m′, h)

4 : c′ ← Enc(pk, m′; r′)

5 : if c′ = c then

6 : return H ′(k
′
, H(c))

7 : else

8 : return H ′(s, H(c))// G0–G1, G7–G8

9 : return H ′′(H(c))// G2,G6

10 : return H ′(H(H(c)), H(c))// G3–G5

Fig. 8. Games G0 – G8. Here H ′′ : {0, 1}∗ → {0, 1}256 and H : {0, 1}256 → {0, 1}256 are
fresh internal random oracles, i.e., not directly accessible to A.

Game G0: This game is basically the IND-CCA game for Kyber.KEM where
the adversary A gets the “real” encapsulated key k∗, i.e., (c∗, k∗) ← Encap(pk).

Game G1: Here we essentially do not execute the “m ← H(m)” step during
encapsulation (Line 2 in “Encap(pk)”, Fig. 5) in this game’s setup. We now use
the original OW2H lemma (Lemma 3) to bound the difference in A’s “behavior”
in games G0 and G1. In the context of applying Lemma 3, let x := m∗

0 ←$ {0, 1}256
and y := m∗

1 ←$ {0, 1}256, and consider an oracle algorithm AH making at-most
qH queries to H such that AH(m∗

0,H(m∗
0)) simulates the game G0 towards A

and AH(m∗
0,m

∗
1) simulates G1 towards A. To be more specific, AH sets “m∗” in

Line 4, Fig. 8, to be its second input (either H(m∗
0) or m∗

1) when simulating the
appropriate game (G0 or G1, respectively) towards A.

Again in the context of Lemma 3, it is not hard to see that Pr[G0 = 1] =
P 1

A and Pr[G1 = 1] = P 2
A. Regarding the probability PB , note that during

AH(m∗
0,m

∗
1)’s simulation of game G1 towards A, the view of A is completely

Post-quantum Anonymity of Kyber 21

independent of the value m∗
0 (= x) ←$ {0, 1}256. Hence, we have PB = 1

2256

which leads to

|Pr[G1 = 1] − Pr[G0 = 1]| ≤ 2qH

2128
(= 2qH

√
PB). (5)

Game G2: In this game, the Decap(sk′, ·) oracle is modified such that
H ′′(H(c)) is returned instead of H ′(s,H(c)) for an invalid ciphertext c, where
H ′′ is a fresh internal random oracle not directly accessible to A. Similar to
the G0 → G1 “hop” above, by using Lemma 2 w.r.t. the pseudorandomness of
H ′(s, ·)–this time on inputs of the form “H(c)”–during decapsulation, it is not
hard to obtain:

|Pr[G2 = 1] − Pr[G1 = 1]| ≤ 2qH′

2128
. (6)

Game G3: In this game, we again modify the Decap(sk′, ·) oracle such that
H ′(H(H(c)),H(c)) is returned instead of H ′′(H(c)) for an invalid ciphertext c,
where H is another fresh internal random oracle not directly accessible to A.
Here we use the generalized OW2H lemma (Lemma 4) to bound the difference
in A’s behavior in games G2 and G3.

In the context of Lemma 4, note that the oracle algorithm needs to distinguish
the pair of random functions (H ′′(·),H ′) in G2 from the pair (H ′(H(·), ·),H ′) in
G3. But it is not hard to see that this is the same as distinguishing (H ′′,H ′) in
G2 from (H ′′, G′) in G3, where the oracle G′ is obtained by reprogramming H ′

on inputs of the form “(H(x), x)” with x ∈ {0, 1}256; namely, we have

G′(y) =

{
H ′′(x) if y is of the form (H(x), x) with x ∈ {0, 1}256
H ′(y) otherwise.

So again in the context of applying Lemma 4, consider an oracle algorithm
A which has quantum access to either (H ′′,H ′) or (H ′′, G′) such that AH′′,H′

and AH′′,G′
simulate G2 and G3 respectively towards A, while making qH′ ora-

cle queries.3 Note that the set of differences between the H ′ and G′ oracles is
S = {(H(x), x) | x ∈ {0, 1}256}. If we then set Pr[G2 = 1] = Pleft and Pr[G3 =
1] = Pright, from Lemma 4 we have |Pr[G3 = 1] − Pr[G2 = 1]| ≤ 2qH′

√
Pguess.

Regarding Pguess, note that during AH′′,H′
’s simulation of G2 towards the adver-

sary A, the view of A is completely independent of the (internal) random ora-
cle H. Hence the probability that measurement of a random H ′-oracle query
in G2 will be of the form (H(x), x) (with x ∈ {0, 1}256) is at-most 1

2256 , i.e.,
Pguess ≤ 1

2256 , since H(x) will be a fresh uniformly random value in {0, 1}256.
Therefore,

|Pr[G3 = 1] − Pr[G2 = 1]| ≤ 2qH′

2128
. (7)

3 For example, A uses the first oracle H ′′ to simulate Decap(sk′, ·) in Fig. 8 w.r.t. invalid
ciphertexts c; given such a decapsulation query c from A, the algorithm A returns
H ′′(H(c)), where the oracle H is sampled independently by A at the games’ setup.

22 V. Maram and K. Xagawa

Game G4: In this game, we generate the encapsulated key k∗ in the setup
as “k∗ ← H ′(k

∗
1,H(c∗))” instead of “k∗ ← H ′(k

∗
0,H(c∗))” where we have

(k
∗
0, r

∗) ←$ G(m∗,H(pk)) and k
∗
1 ←$ {0, 1}256. Here we make use of our analysis

of the FO �⊥′
pre transform above.

Consider the game G2 “played” by adversary A in Fig. 7 w.r.t. Kyber.KEM.
Depending on whether A gets the “real pre-key” k

∗
0 or the “random pre-key” k

∗
1

from its challenger, it can simulate the game G3 or G4 respectively towards A.
Namely, AH,H′

(c∗, k
∗
b) computes the encapsulated key k∗ as k∗ ← H ′(k

∗
b ,H(c∗))

(where b is the bit sampled by A’s challenger in Fig. 7) and sends it to A during

the games’ setup. AH,H′,Decap(sk′,·)
also simulates the decapsulation oracle in

games G3 and G4 (cf. Fig. 8) as follows: given a decapsulation query c from A, A
queries its own Decap(sk′, ·) oracle in G2 on c to obtain a key k

′
–which can also

be the value “H(H(c))” if c is invalid (cf. Line 9 in “Decap(sk′, c)”, Fig. 7)–and
returns H ′(k

′
,H(c)) to A. Hence, it is not hard to see from this reduction that

|Pr[G4 = 1] − Pr[G3 = 1]| =
∣∣Pr[1 ← A | b = 1] − Pr[1 ← A | b = 0]

∣∣

= 2 ·
∣∣∣ Pr[G2 = 1] − 1

2

∣∣∣.

By using Inequality (4) above w.r.t. our analysis of Kyber.KEM, we obtain4

|Pr[G4 = 1] − Pr[G3 = 1]| ≤ 2AdvIND-CCA
Kyber.KEM

(A) +
4qH′

2128
+

2C(qH + 1)3

2256
. (8)

Game G5: Here we have the encapsulated key k∗ in the setup to be an inde-
pendent and uniformly random value, i.e., “k∗ ←$ {0, 1}256”, instead of deriv-
ing it from H ′ as “k∗ ← H ′(k

∗
1,H(c∗))”. Similar to the G0 → G1 hop above,

by using Lemma 2 w.r.t. the pseudorandomness of H ′(k
∗
1, ·)–with “PRF key”

k
∗
1 ←$ {0, 1}256–during setup, it is not hard to obtain:

|Pr[G5 = 1] − Pr[G4 = 1]| ≤ 2qH′

2128
. (9)

Game G6: In this game, we modify the Decap(sk′, ·) oracle such that
H ′′(H(c)) is returned instead of H ′(H(H(c)),H(c)) for an invalid ciphertext
c. In essence, we are reverting the changes introduced in the “G2 → G3” hop.
Hence, by applying a similar reasoning as that hop, we get

|Pr[G6 = 1] − Pr[G5 = 1]| ≤ 2qH′

2128
. (10)

4 Here we replace the term “q′
H+q′

D” in Inequality (4) with “qH”. Recall from Footnote
3 that (q′

H + q′
D) is the maximum number of times oracle H is queried in G2. But

since the decapsulation algorithm of Kyber.KEM involves a single invocation of H(·)
for each input ciphertext c (see “Decap(sk′, c)”, Fig. 5), the quantity “qH” includes
the number of times H is queried by A to answer decapsulation queries from A
– following our convention w.r.t. counting the number of random oracle queries in
security games (cf. Subsect. 2.2).

Post-quantum Anonymity of Kyber 23

Game G7: In this game, Decap(sk′, ·) oracle is modified such that H ′(s,H(c))
is returned instead of H ′′(H(c)) for an invalid ciphertext c. Again in essence, we
are reverting the changes introduced in the “G1 → G2” hop. Hence, by using a
similar reasoning as that hop–namely, pseudorandomness of the oracle H ′(s, ·)
on inputs of the form “H(c)”–we obtain

|Pr[G7 = 1] − Pr[G6 = 1]| ≤ 2qH′

2128
. (11)

Game G8: Here we re-introduce the “m ← H(m)” step during encapsulation
(Line 2 in “Encap(pk)”, Fig. 5) in this game’s setup, thereby reverting the changes
introduced in the “G0 → G1” hop. By applying Lemma 3 in a similar way as
that hop, we get

|Pr[G8 = 1] − Pr[G7 = 1]| ≤ 2qH

2128
. (12)

Now note that G8 is the IND-CCA game for Kyber.KEM where the adversary
A gets a “random” encapsulated key k∗, i.e., k∗ ←$ {0, 1}256 (in contrast to
getting the “real” encapsulated key in G0). Hence, we have

2 · AdvIND-CCA
Kyber.KEM(A) = |Pr[G8 = 1] − Pr[G0 = 1]| .

By collecting the above bounds (5) – (12), we obtain

AdvIND-CCA
Kyber.KEM(A) ≤ AdvIND-CCA

Kyber.KEM
(A) +

7qH′ + 2qH

2128
+

C(qH + 1)3

2256
. (13)

Coming to the term “AdvIND-CCA
Kyber.KEM

(A)”, note that the FO �⊥′
pre transform is

essentially identical to the FO �⊥
m transform of [29] (also described in Fig. 1) in

the context of proving IND-CCA security of the obtained KEM. That is, the
existing IND-CCA security theorems w.r.t. FO �⊥

m in the QROM derived in the
literature (e.g., in [10,32,35,39]) apply to FO �⊥′

pre as-it-is because of the following
reasons:

– Note that FO �⊥′
pre uses a single hash function G to compute both the encap-

sulated key k and the random coins r for the deterministic encryption of
m during encapsulation, whereas FO �⊥

m uses two separate hash functions for
the same. However, these two computations are equivalent when the corre-
sponding hash functions are modeled as independent random oracles with
appropriate output lengths.

– Similarly, FO �⊥′
pre uses the hash H(pk) to compute k and r during encapsulation

(and H(pk) is also included in the KEM’s secret key sk′), in contrast to
FO �⊥

m. But this change preserves the relevant IND-CCA theorems from FO �⊥
m

to FO �⊥′
pre with trivial changes to the corresponding proofs, to accommodate

the inclusion of H(pk), because the IND-CCA security notion only involves
a single user’s public-key pk (as opposed to multi-user security notions, such
as ANO-CCA which involves two public-keys).

24 V. Maram and K. Xagawa

Hence, by applying [32, Theorem 2]5 regarding the IND-CCA security of
“FO �⊥

m-derived” KEMs in the QROM to Kyber.KEM, we have that there exists
an IND-CPA adversary B against Kyber.PKE, with its running time about the
same as that of A (and hence, that of A as well), such that6

AdvIND-CCA
Kyber.KEM

(A) ≤ 2(qG + qH′)

√

AdvIND-CPA
Kyber.PKE(B) +

1
2256

+
2qH′

2128
+ 4qG

√
δ.

(14)

Combining the inequalities (13) and (14) finishes the proof.

Remark 1. An alternative approach to prove IND-CCA security of Kyber in
the QROM was suggested in [17], involving the compressed oracle technique
introduced in [48]. More specifically, given two random oracles H1 : {0, 1}m →
{0, 1}n, H2 : {0, 1}n×{0, 1}� → {0, 1}n, and a polynomial-sized stateless classical
circuit C which has quantum access to H1,H2, it was shown in [48, Section 5] that
the “domain extender” CH1,H2(x, y) = H2(H1(x), y) is indifferentiable from a
quantum random oracle H : {0, 1}m+� → {0, 1}n. Informally, indifferentiability
guarantees that any efficient adversary cannot distinguish 〈(H1,H2), CH1,H2〉
from 〈SH ,H〉 where the simulator S queries H and simulates the oracles H1,H2.

Now note that in Kyber (Fig. 5, Line. 6 of “Encap(pk)”), the encapsulated
keys are generated as “k ← H ′(k,H(c))” by hashing the “pre-key” k and
a “nested hash” of the ciphertext, i.e., H(c). And as noted in [28,46], this
nested hash H(c) creates problems when extending prior QROM security anal-
ysis of (implicitly-rejecting) FO transforms in the literature to Kyber. How-
ever, since [48, Section 5] essentially shows that H ′(k,H(c)) is indifferentiable
from H ′′(k, c), for a fresh random oracle H ′′, we can “ignore” the nested hash
H(c) in our analysis of Kyber; in fact, [28, Appendix E] already proved the
IND-CCA security of a variant of the FO transform where keys are derived as
“k ← H ′′(k, c)”. However, we make a couple of remarks regarding this matter:

– At a conceptual level, our IND-CCA security analysis of Kyber above (The-
orem 1) relies on arguably simpler proof techniques than the ones introduced
in [48]. Specifically, our analysis of Kyber in the QROM is based on that of
the FO �⊥

m transform in the literature, which in turn is based on the well-known

5 As mentioned in Subsect. 1.2, the reason we are not applying the tighter QROM
IND-CCA security theorems of [10,35] w.r.t. FO�⊥

m-derived KEMs is that they make
an additional assumption on the base PKE scheme being injective [10]. However, we
leave a detailed analysis of Kyber.PKE’s injectivity as an open question.

6 Technically, [32, Theorem 2] reduces the IND-CCA security of the KEM to the
OW-CPA security of the underlying PKE scheme. But it is well-known that IND-
CPA security of a PKE scheme with a sufficiently large message space also implies
its OW-CPA security; namely, for any OW-CPA adversary Bow against a PKE
scheme PKE with message space M, there exists an IND-CPA adversary Bind against
PKE with the same running time as that of Bow such that AdvOW-CPA

PKE (Bow) ≤
AdvIND-CPA

PKE (Bind) + 1
|M| .

Post-quantum Anonymity of Kyber 25

“One-Way To Hiding (OW2H) lemma” [3,44] proof technique. And as men-
tioned in Sect. 1, [45] provided a framework for formally verifying security
proofs that involve applications of the OW2H lemma in the QROM. Hence,
this should make our security proofs for Kyber amenable to formal verifica-
tion, thereby providing further confidence in our analysis of the new NIST
PQC standard.

– Quantitatively, if we rely on the above indifferentiability argument to analyze
Kyber instead, then when switching from “H ′(k,H(c))” to “H ′′(k, c)” we
would incur an additive “indifferentiability” term O(q2/2n/2) (as specified
in [48, Section 5]) in our IND-CCA security bounds, where q is the number of
adversarial quantum random oracle queries made to H, H ′, and n = 256 for
Kyber. In contrast, our concrete bounds in Theorem 1 includes an additive
“collision-resistance (of H)” term O(q3/2n). Hence, our concrete IND-CCA
security theorem for Kyber allows for strictly more number of random oracle
queries q when compared to the indifferentiability-based argument, especially
w.r.t. higher security level parameter sets for Kyber when the “correctness”
term O(q

√
δ) is no longer a limiting factor on q (e.g., δ = 2−164, 2−174).

At the same time, there does not seem to be a straightforward matching
attack on the IND-CCA security of Kyber that exploits finding collisions in
H. Hence, we leave it as an open question to provide a concrete proof of IND-
CCA security for Kyber in the QROM which does not rely on the collision-
resistance of quantum random oracles, while ensuring tightness w.r.t. the pas-
sive IND-CPA security of the base PKE scheme as in the case with implicitly-
rejecting FO transforms.

5 ANO-CCA Security of Kyber in the QROM

In this section, we prove the concrete ANO-CCA security of Kyber, and the
hybrid PKE schemes derived from it, in the QROM. As mentioned in Subsect. 1.2
above, we first prove that the aforementioned schemes are strongly pseudorandom
(or, SPR-CCA secure; cf. Definitions 3, 7) in the QROM, which in turn implies
their ANO-CCA security [46, Thm. 2.5 of ePrint version].

5.1 SPR-CCA Security of Kyber.KEM

Here we prove the concrete SPR-CCA security of Kyber.KEM in the QROM
while relying on the strong disjoint simulatability (i.e., SDS-IND security and
statistical disjointness; cf. Lemma 6) of the base Kyber.PKE scheme.

Theorem 2 (SPR-CCA security of Kyber.KEM). Let the base PKE scheme
Kyber.PKE = (KGen,Enc,Dec) be δ-correct, and S be a QPT simulator algo-
rithm which simply outputs a uniformly random value from the ciphertext space
of Kyber.PKE. Then for any SPR-CCA adversary A against Kyber.KEM =
(KGen′,Encap,Decap) w.r.t. S issuing at most qD classical queries to the decap-
sulation oracles, and at most qG, qH and qH′ queries to the quantum random

26 V. Maram and K. Xagawa

oracles G, H and H ′ respectively, there exists an IND-CPA adversary B and a
SDS-IND adversary D against Kyber.PKE w.r.t. S such that

AdvSPR-CCA
Kyber.KEM,S(A) ≤ qG

√
AdvIND-CPA

Kyber.PKE(B) +
1

2256
+

1

2
DisjKyber.PKE,S(λ)

+ AdvSDS-IND
Kyber.PKE,S(D) + (2 + 8(qG + qD + 2)2 + 8(2qG + 2)2)δ

+
2(qH′ + qD)

2128
+

C(qH + 1)3

2256
+

qH + 7qH′

2128
,

where C (< 648) is the constant from Lemma 1, and the running time of B and
D is about the same as that of A.

The proof follows quite closely to that of IND-CCA security of Kyber.KEM
in the QROM above (Theorem 1). We will be focusing on the main differences
in our SPR-CCA security analysis below.

Proof. Same as in our proof of IND-CCA security for Kyber.KEM (Theorem 1),
we first consider SPR-CCA security of the “intermediate” scheme Kyber.KEM =
FO �⊥′

pre[Kyber.PKE, G,H,H ′] (see Fig. 6) in the QROM.

Games G0 – G2

1 : (pk, sk) ← KGen′

2 : (c∗
0, k

∗
0) ← Encap(pk)

3 : c∗
1 ← S()

4 : k
∗
1 ←$ {0, 1}256

5 : b ←$ {0, 1}
6 : b′ ← AG,H,H′,Decap(sk′,·)

(pk, c∗
b , k

∗
b)

7 : return [b′ = b]

Decap(sk′, c)

1 : Parse sk′ = (sk, pk, h, s)

2 : m′ ← Dec(sk, c)

3 : (k
′
, r′) ← G(m′, h)

4 : c′ ← Enc(pk, m′; r′)

5 : if c′ = c then

6 : return k
′

7 : else return H ′(s, c)// G0

8 : else return H ′′(c)// G1

9 : else return H(H(c))// G2

Fig. 9. Games G0 – G2. Here H ′′ : {0, 1}∗ → {0, 1}256 and H : {0, 1}256 → {0, 1}256 are
fresh internal random oracles, i.e., not directly accessible to A. Also, S is the simulator
described above which simply outputs a uniformly random Kyber.PKE ciphertext.

Let A be an SPR-CCA adversary against Kyber.KEM w.r.t. simulator S
(described above) issuing at most q′

D classical queries to the decapsulation ora-
cles, and q′

H and q′
H′ queries to the quantum random oracles H and H ′ respec-

tively. Consider the sequence of games G0 – G2 described in Fig. 9. It is straight-
forward to obtain the following based on our IND-CCA security analysis of
Kyber.KEM (Inequality (4)) in the proof of Theorem 1 above.

∣∣∣ Pr[G2 = 1] − 1
2

∣∣∣ ≤ AdvSPR-CCA
Kyber.KEM,S(A) +

2q′
H′

2128
+

C(q′
H + q′

D + 1)3

2256
, (15)

Post-quantum Anonymity of Kyber 27

Now, we return to proving SPR-CCA security of the actual Kyber.KEM. Let
A be an SPR-CCA adversary against Kyber.KEM w.r.t. S issuing at most qD

classical queries to the decapsulation oracles, and at most qG, qH and qH′ queries
to the quantum random oracles G, H and H ′ respectively. Consider the sequence
of games G0 – G7 described in Fig. 10. These games are quite similar to the ones
described in Fig. 8 in our IND-CCA security proof.

Games G0 – G7

1 : (pk, sk) ← KGen′

2 : m∗ ←$ {0, 1}256

3 : m∗ ← H(m∗)// G0

4 : (k
∗
0, r

∗) ←$ G(m∗, H(pk))

5 : k
∗
1 ←$ {0, 1}256

6 : c∗ ← Enc(pk, m∗; r∗)// G0 – G3

7 : c∗ ← S()// G4 – G7

8 : k∗ ← H ′(k
∗
0, H(c∗))// G0 – G3

9 : k∗ ← H ′(k
∗
1, H(c∗))// G4

10 : k∗ ←$ {0, 1}256// G5 – G7

11 : b′ ← AG,H,H′,Decap(sk′,·)(pk, c∗, k∗)

12 : return b′

Decap(sk′, c)

1 : Parse sk′ = (sk, pk, h, s)

2 : m′ ← Dec(sk, c)

3 : (k
′
, r′) ← G(m′, h)

4 : c′ ← Enc(pk, m′; r′)

5 : if c′ = c then

6 : return H ′(k
′
, H(c))

7 : else

8 : return H ′(s, H(c))// G0 – G1, G7

9 : return H ′′(H(c))// G2,G6

10 : return H ′(H(H(c)), H(c))// G3–G5

Fig. 10. Games G0 – G7. Here H ′′ : {0, 1}∗ → {0, 1}256 and H : {0, 1}256 → {0, 1}256

are fresh internal random oracles, i.e., not directly accessible to A.

Game G0: This game is the SPR-CCA game for Kyber.KEM with the “real”
ciphertext c∗ and “real” encapsulated key k∗ where (c∗, k∗) ← Encap(pk).

Now note that the games G0 – G3 in Fig. 10 are essentially identical to the
games “G0 – G3” defined in Fig. 8. Hence, from our analysis of these game hops
(i.e., Inequalities (5)–(7)) in the above IND-CCA security proof, it is not hard
to obtain:

|Pr[G0 = 1] − Pr[G3 = 1]| ≤ 2qH

2128
+

4qH′

2128
. (16)

Game G4: Relative to G3 (and G0), we modify how the challenge cipher-
text c∗ and corresponding encapsulated key k∗ are generated. In this game,
we generate (c∗, k∗) as c∗ ← S() and k∗ ← H ′(k

∗
1,H(c∗)) instead, where S is

the simulator described above and k
∗
1 ←$ {0, 1}256. Here we use our SPR-CCA

security analysis of the intermediate Kyber.KEM.
To be specific, recall that in the corresponding “G3 → G4” hop (Inequality

(8)) in our above IND-CCA security proof of Kyber.KEM, we showed a reduc-
tion to IND-CCA security of the underlying Kyber.KEM. In a similar way, it

28 V. Maram and K. Xagawa

is straightforward to construct an SPR-CCA adversary A against Kyber.KEM
w.r.t. the same S above such that

|Pr[G3 = 1] − Pr[G4 = 1]| = 2 · |Pr[G2 = 1] − 1/2|

≤ 2AdvSPR-CCA
Kyber.KEM,S(A) +

4qH′

2128
+

2C(qH + 1)3

2256
, (17)

where we used Inequality (15) w.r.t. our analysis of Kyber.KEM.
Game G5: We further modify how k∗ is generated. In this game, k∗ is chosen

from {0, 1}256 uniformly at random. Similar to our analysis of the “G4 → G5” hop
(Inequality (9)) in the proof of Theorem 1, we obtain the following by applying
Lemma 2.

|Pr[G4 = 1] − Pr[G5 = 1]| ≤ 2qH′

2128
. (18)

Game G6: We modify the decapsulation oracle such that the oracle rejects
an invalid ciphertext c by returning H ′′(H(c)). In a sense, we are reverting the
changes introduced in the “G2 → G3” hop above (cf. Inequality (7) in the proof
of Theorem 1). Hence, it is not hard to obtain

|Pr[G5 = 1] − Pr[G6 = 1]| ≤ 2qH′

2128
. (19)

Game G7: We again modify the decapsulation oracle such that the oracle
returns H ′(s,H(c)) for an invalid ciphertext c. From our analysis of the “G1 →
G2” hop above (cf. Inequality (6) in the proof of Theorem 1), we have

|Pr[G6 = 1] − Pr[G7 = 1]| ≤ 2qH′

2128
. (20)

Note that G7 is the SPR-CCA game for Kyber.KEM where A gets a “random”
ciphertext c∗ ← S() and “random” encapsulated key k∗ ←$ {0, 1}256. Hence, by
summing up the bounds (16)–(20), we obtain

2AdvSPR-CCA
Kyber.KEM,S(A) = |Pr[G0 = 1] − Pr[G7 = 1]|

≤ 2AdvSPR-CCA
Kyber.KEM,S(A) +

2C(qH + 1)3

2256
+

2qH + 14qH′

2128
.(21)

Finally, we replace the term “AdvSPR-CCA
Kyber.KEM,S(A)” with the existing SPR-

CCA security bounds on the FO �⊥
m transform in the QROM derived in [46].

Because as previously noted in our proof of Theorem 1 above, the intermediate
FO �⊥′

pre transform is essentially identical to FO �⊥
m in the context of “single key-

pair notions” such as IND-CCA security and SPR-CCA security. Hence, by
applying [46, Thms. D.1 and 4.1 of ePrint]7 w.r.t. the SPR-CCA security of

7 FO�⊥
m is composed of two modular FO transforms: namely, the “T” and “U �⊥

m” trans-
forms defined in [29]; [46, Thm. D.1 of ePrint] considers the T transform and [46,
Thm. 4.1 of ePrint] considers the U �⊥

m transform respectively.

Post-quantum Anonymity of Kyber 29

“FO �⊥
m-derived” KEMs in the QROM to Kyber.KEM, we have that there exists an

IND-CPA adversary B and a SDS-IND adversary D w.r.t. S against Kyber.PKE,
running in about the same time as that of A (and A), such that8

AdvSPR-CCA
Kyber.KEM,S(A) ≤ qG

√

AdvIND-CPA
Kyber.PKE(B) +

1
2256

+
1
2
DisjKyber.PKE,S(λ)

+ AdvSDS-IND
Kyber.PKE,S(D) +

2(qH′ + qD)
2128

+ (2 + 8(qG + qD + 2)2 + 8(2qG + 2)2)δ.

(22)

Combining inequalities (21) and (22) finishes the proof.

Corollary 1 (ANO-CCA security of Kyber.KEM). Given Kyber.PKE is
IND-CPA secure and strongly disjoint-simulatable, then Kyber.KEM is ANO-
CCA secure in the QROM.

This follows from [46, Thm. 2.5 of ePrint] which states that the SPR-CCA
security of a KEM implies its ANO-CCA security.

5.2 SPR-CCA Security of Hybrid PKE Derived from Kyber.KEM

We now focus on anonymity, or more specifically, SPR-CCA security of hybrid
PKE schemes obtained from Kyber.KEM via the well-known “KEM-DEM”
framework of [16]. It was shown in [46, Thm. 3.2 of ePrint] that composing
a one-time strongly pseudorandom (or, SPR-otCCA secure; cf. Definition 10)
DEM with an implicitly-rejecting KEM which is both SPR-CCA secure and
strongly smooth (or, SSMT-CCA secure; cf. Definition 7) results in an SPR-CCA
secure hybrid PKE scheme. Hence, we establish concrete SSMT-CCA security of
Kyber.KEM in the QROM below while relying on statistical disjointness of the
base Kyber.PKE scheme.

Theorem 3 (SSMT-CCA security of Kyber.KEM). Let S be a QPT sim-
ulator which outputs a uniformly random value from the ciphertext space of
Kyber.PKE = (KGen,Enc,Dec). For any SSMT-CCA adversary A against the
scheme Kyber.KEM = (KGen′,Encap,Decap) w.r.t. S issuing at most qD classi-
cal queries to the decapsulation oracles, and at most qG, qH and qH′ queries to
the quantum random oracles G, H and H ′ respectively. Consider the sequence
of games G0 – G6 described in Fig. 11.

8 Technically, [46, Thm. 4.1 of ePrint] includes statistical disjointness (cf. Definition 4)
of a derandomized version of the base PKE scheme in its SPR-CCA security bounds
on the final KEM. Roughly speaking, in such a derandomized PKE, the random coins
used to encrypt a message m is obtained by first hashing m. But from our proof sketch
of Lemma 6, it is not hard to see that statistical disjointness of the derandomized
Kyber.PKE is trivially upper-bounded by disjointness of the original Kyber.PKE,
i.e., DisjKyber.PKE,S . This is because our simulator S just outputs a uniformly random
Kyber.PKE ciphertext.

30 V. Maram and K. Xagawa

AdvSSMT-CCA
Kyber.KEM,S(A) ≤ DisjKyber.PKE,S(λ) +

2qH′ + 1
2128

+
C(qH + 1)3

2 · 2256
,

where C (< 648) is the constant from Lemma 1.

Games G0 – G6

1 : (pk, sk) ← KGen′

2 : c∗ ← S()// G0, G6

3 : c∗ ← S() \ Enc(pk, M)// G1 – G5

4 : k∗ ←$ {0, 1}256// G0 – G2

5 : k∗ ← H ′′(H(c∗))// G3

6 : k∗ ← H ′(s, H(c∗))// G4

7 : k∗ ← Decap(sk′, c∗)// G5 – G6

8 : b′ ← AG,H,H′,Decap(sk′,·)(pk, c∗, k∗)

9 : return b′

Decap(sk′, c)

1 : Parse sk′ = (sk, pk, h, s)

2 : if c = c∗ then return ⊥
3 : m′ ← Dec(sk, c)

4 : (k
′
, r′) ← G(m′, h)

5 : c′ ← Enc(pk, m′; r′)

6 : if c′ = c then

7 : return H ′(k
′
, H(c))

8 : else

9 : return H ′(s, H(c))// G0–G1, G4–G6

10 : return H ′′(H(c))// G2 – G3

Fig. 11. Games G0 – G6. Here H ′′ : {0, 1}∗ → {0, 1}256 is a fresh internal random
oracle not directly accessible to A. Also, S is the simulator described above which
simply outputs a uniformly random Kyber.PKE ciphertext.

Proof. Game G0: This game is the SSMT-CCA game for Kyber.KEM with the
random encapsulated key k∗ ←$ {0, 1}256 and simulated ciphertext c∗ ← S().

Game G1: We then modify how c∗ is generated. In this game, c∗ is generated
by S() conditioned on that c∗ is outside of Enc(pk,M). More specifically, the
game does a (potentially inefficient) check on whether c∗ ∈ Enc(pk,M) and
aborts if it is the case. Note that this potential inefficiency does not really matter
in our analysis since we will be bounding the difference between subsequent
games using statistical bounds anyway.

Coming to the difference between games G0 and G1, it is bounded by the
value DisjKyber.PKE,S(λ), and we have

|Pr[G0 = 1] − Pr[G1 = 1]| ≤ DisjKyber.PKE,S(λ). (23)

Game G2: We next modify the “implicit rejection” of the decapsulation
oracle. In this game, the oracle rejects by outputting H ′′(H(c)) instead of
H ′(s,H(c)), where H ′′ is an independent random oracle. From the “G1 → G2”
hop (Inequality (6)) in the proof of Theorem 1 above, we obtain the following
via Lemma 2:

|Pr[G1 = 1] − Pr[G2 = 1]| ≤ 2qH′

2128
. (24)

Post-quantum Anonymity of Kyber 31

Game G3: We next modify how k∗ is generated. In this game, k∗ is computed
as H ′′(H(c∗)) instead of being chosen uniformly at random.

Notice that the adversary can only access H ′′ via the decapsulation oracle.
Thus, if the adversary cannot query c
= c∗ such that H(c) = H(c∗), then the
adversary cannot obtain any information on H ′′(H(c∗)) and this value looks
completely random. Similar to the “G1 → G2” hop (Inequality (3)) above in our
IND-CCA security proof of Kyber.KEM, we can bound the difference between G2

and G3 via a straightforward reduction to the collision resistance of H. Hence,
we have from Lemma 1

|Pr[G2 = 1] − Pr[G3 = 1]| ≤ C(qH + 1)3

2256
. (25)

Game G4: We next replace all invocations of H ′′(H(·)) in this game –
particularly, during generation of k∗ and decapsulation of ciphertexts – with
H ′(s,H(·)). Again from the “G1 → G2” hop above (Inequality 24), we can use
the pseudorandomness of H ′ (Lemma 2) to obtain

|Pr[G3 = 1] − Pr[G4 = 1]| ≤ 2(qH′ + 1)
2128

. (26)

Game G5: In this game, we compute k∗ as k∗ ← Decap(sk′, c∗) instead of
k∗ ← H ′(s,H(c∗)). Anyways the result of Decap(sk′, c∗) in G5 will be equal to
H ′(s,H(c∗)) as in G4. Because note that c∗ is an invalid ciphertext since it is
outside of Enc(pk,M). Thus, even if the decryption of c∗ yields some plaintext
m′, the re-encrypted ciphertext c′ = Enc(pk,m′; r′) cannot be equivalent to c∗.
Hence, we have Pr[G4 = 1] = Pr[G5 = 1].

Game G6: We finally modify how c∗ is generated. In this game, c∗ is gener-
ated by S() (and there is no check by the game on whether c∗ ∈ Enc(pk,M)).
We note that this game is the SSMT-CCA game for Kyber.KEM with simulated
ciphertext c∗ ← S() and decapsulated key k∗ ← Decap(sk, c∗).

The difference is again bounded by DisjKyber.PKE,S(λ), and we have

|Pr[G5 = 1] − Pr[G6 = 1]| ≤ DisjKyber.PKE,S(λ). (27)

Summing up the above differences (23)–(27), we have

2AdvSSMT-CCA
Kyber.KEM (A) = |Pr[G0 = 1] − Pr[G6 = 1]|

≤ 2DisjKyber.PKE,S(λ) +
4qH′ + 2

2128
+

C(qH + 1)3

2256
.

Corollary 2 (ANO-CCA security of hybrid PKE from Kyber.KEM).
Given Kyber.KEM is SPR-CCA secure, SSMT-CCA secure, and δ-correct, and
a DEM that is SPR-otCCA secure, then the hybrid PKE scheme obtained by
composing Kyber.KEM and DEM is SPR-CCA secure, and hence, ANO-CCA
secure.

This follows from [46, Thm. 3.2 of ePrint].

32 V. Maram and K. Xagawa

Robustness of Kyber. The notion of “robustness” for PKE was defined in [1],
and there it was argued that robustness is an essential conjunct of anonymous
encryption. Roughly speaking, robustness guarantees that it is hard to produce a
ciphertext which decrypts validly under two different private keys. Fortunately,
it was shown in [28] that composing Kyber.KEM with an appropriately “robust”
DEM (as defined in [23]) will result in a robust hybrid PKE scheme. In other
words, composing Kyber with a one-time strongly pseudorandom and robust
DEM will result in a post-quantum strongly anonymous and robust PKE scheme.

Acknowledgements. The first author is grateful to Kenny Paterson for helpful dis-
cussions on the “wrapper” approach. The authors also thank the anonymous reviewers
of PKC 2023 for their constructive comments and suggestions.

References

1. Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11799-2 28

2. Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., Lichtinger, J.,
Liu, Y.-K., Miller, C., Moody, D., Peralta, R., Perlner, R., Robinson, A., Smith-
Tone, D.: Status report on the third round of the nist post-quantum cryptography
standardization process. US Department of Commerce, NIST (2022)

3. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical Oracles. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 269–295. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26951-7 10

4. Avanzi, R., et al.: CRYSTALS-Kyber: NIST Round 3 Submission, Algorithm Spec-
ifications and Supporting Documentation (v3.02) (2021)

5. Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribution using
private broadcast encryption. In: FC 2006, pp. 52–64 (2006)

6. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 33

7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In ACM CCS 93, 62–73 (1993)

8. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy, pp. 459–474 (2014)

9. Bernstein, D.J., et al.: NTRU Prime. Technical report, National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions

10. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. In: TCC 2019, Part
II, pp. 61–90 (2019)

11. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random Oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/3-540-45682-1_33
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3

Post-quantum Anonymity of Kyber 33

12. Boyd, C., Cliff, Y., Nieto, J.M.G., Paterson, K.G.: One-round key exchange in the
standard model. Int. J. Appl. Cryptogr. 1(3), 181–199 (2009)

13. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS 2012, pp. 309–325 (2012)

14. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

15. Chen, Z., Lu, X., Jia, D., Li, B.: Ind-cca security of kyber in the quantum random
Oracle model, revisited. In: Information Security and Cryptology - 18th Interna-
tional Conference, Inscrypt 2022, Beijing, 11–13 December 2022, Revised Selected
Papers, 2022 (to appear)

16. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

17. Bernstein, D.J.: Subject: Anonymity of KEMs in the QROM. NIST PQC
Forum. https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/8k3MhD 5stk/
m/TWGKtuL4BgAJ

18. D’Anvers, J.-P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: module-
LWR based key exchange, CPA-secure encryption and CCA-secure KEM. In:
AFRICACRYPT 18, pp. 282–305 (2018)

19. D’Anvers, J.-P.: SABER. Technical report, National Institute of Standards and
Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions

20. Dent, A.W.: A designer’s guide to KEMs. In 9th IMA International Conference on
Cryptography and Coding, pp. 133–151 (2003)

21. Ding, X., Esgin, M.F., Sakzad, A., Steinfeld, R.: An injectivity analysis of crystals-
kyber and implications on quantum security. In: Information Security and Privacy -
27th Australasian Conference, ACISP 2022, Wollongong, NSW, Australia, Novem-
ber 28–30, 2022, Proceedings, pp. 332–351 (2022)

22. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Online-extractability in the quantum
random-oracle model. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT
2022, Part III. LNCS, vol. 13277, pp. 677–706. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-07082-2 24

23. Farshim, P., Orlandi, C., Roşie, R.: Security of symmetric primitives under incor-
rect usage of keys. IACR Trans. Symm. Cryptol. 2017(1), 449–473 (2017)

24. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum
authenticated key exchange from one-way secure key encapsulation mechanism. In:
ASIACCS 13, pp. 83–94 (2013)

25. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. Des. Codes Cryptogr. 76(3), 469–
504 (2015)

26. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

27. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(1), 80–101 (2013)

28. Grubbs, P., Maram, V., Paterson, K.G.: (2022). Anonymous, Robust Post-quantum
Public Key Encryption. In: Dunkelman, O., Dziembowski, S. (eds) EUROCRYPT
2022. EUROCRYPT 2022. LNCS, vol. 13277, pp. 402–432. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-07082-2 15

https://doi.org/10.1007/3-540-44987-6_7
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/8k3MhD_5stk/m/TWGKtuL4BgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/8k3MhD_5stk/m/TWGKtuL4BgAJ
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-031-07082-2_24
https://doi.org/10.1007/978-3-031-07082-2_24
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-031-07082-2_15

34 V. Maram and K. Xagawa

29. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

30. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key
exchange in the quantum random oracle model. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 389–422. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 14

31. Hövelmanns, K., Hülsing, A., Majenz, C.: Failing gracefully: Decryption failures
and the Fujisaki-Okamoto transform. In: ASIACRYPT 2022 (to appear) (2022)

32. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsu-
lation mechanism in the quantum random oracle model, revisited. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 96–125.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 4

33. Jiang, H., Zhang, Z., Ma, Z.: Key encapsulation mechanism with explicit rejection
in the quantum random oracle model. In: Lin, D., Sako, K. (eds.) PKC 2019.
LNCS, vol. 11443, pp. 618–645. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17259-6 21

34. Katsumata, S., Kwiatkowski, K., Pintore, F., Prest, T.: Scalable ciphertext com-
pression techniques for post-quantum KEMs and their applications. In: Moriai,
S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 289–320. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64837-4 10

35. Kuchta, V., Sakzad, A., Stehlé, D., Steinfeld, R., Sun, S.-F.: Measure-rewind-
measure: tighter quantum random oracle model proofs for one-way to hiding and
CCA security. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12107, pp. 703–728. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45727-3 24

36. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr. 75(3), 565–599 (2015)

37. Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryption: Adap-
tive security and efficient constructions in the standard model. In: PKC 2012, pp.
206–224 (2012)

38. Liu, X., Wang, M.: QCCA-secure generic key encapsulation mechanism with tighter
security in the quantum random oracle model. In: Garay, J.A. (ed.) PKC 2021.
LNCS, vol. 12710, pp. 3–26. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-75245-3 1

39. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 17

40. Sako, K.: An auction protocol which hides bids of losers. In: Imai, H., Zheng,
Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 422–432. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-540-46588-1 28

41. Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions

42. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake sig-
natures. In: ACM CCS 2020, pp. 1461–1480 (2020)

43. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp.

https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-030-45388-6_14
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-030-17259-6_21
https://doi.org/10.1007/978-3-030-17259-6_21
https://doi.org/10.1007/978-3-030-64837-4_10
https://doi.org/10.1007/978-3-030-45727-3_24
https://doi.org/10.1007/978-3-030-45727-3_24
https://doi.org/10.1007/978-3-030-75245-3_1
https://doi.org/10.1007/978-3-030-75245-3_1
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-540-46588-1_28
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

Post-quantum Anonymity of Kyber 35

192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 8

44. Unruh, D.: Revocable quantum timed-release encryption. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 129–146. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 8

45. Unruh, D.: Post-quantum verification of Fujisaki-Okamoto. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 321–352. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64837-4 11

46. Xagawa, K.: Anonymity of NIST PQC Round 3 KEMs. In: Dunkelman, O., Dziem-
bowski, S. (eds.) EUROCRYPT 2022. LNCS, Part III, vol. 13277, pp. 551–581.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2 20

47. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Inf. Comput. 15(7–8) (2015)

48. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 9

https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-642-55220-5_8
https://doi.org/10.1007/978-3-030-64837-4_11
https://doi.org/10.1007/978-3-031-07082-2_20
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9

QCCA-Secure Generic Transformations
in the Quantum Random Oracle Model

Tianshu Shan1,2(B) , Jiangxia Ge1,2 , and Rui Xue1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

{shantianshu,gejiangxia,xuerui}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. The post-quantum security of cryptographic schemes
assumes that the quantum adversary only receives the classical result
of computations with the secret key. Further, it is unknown whether the
post-quantum secure schemes still remain secure if the adversary can
obtain a superposition state of the results.

In this paper, we formalize one class of public-key encryption schemes
named oracle-masked schemes. Then we define the plaintext extraction
procedure for those schemes and this procedure simulates the quantum-
accessible decryption oracle with a certain loss.

The construction of the plaintext extraction procedure does not need
to take the secret key as input. Based on this property, we prove the
IND-qCCA security of the Fujisaki-Okamoto (FO) transformation in the
quantum random oracle model (QROM) and our security proof is tighter
than the proof given by Zhandry (Crypto 2019). We also give the first
IND-qCCA security proof of the REACT transformation in the QROM.
Furthermore, our formalization can be applied to prove the IND-qCCA
security of key encapsulation mechanisms with explicit rejection. As an
example, we present the IND-qCCA security proof of TCH transforma-
tion, proposed by Huguenin-Dumittan and Vaudenay (Eurocrypt 2022),
in the QROM.

Keywords: FO transformation · REACT transformation · quantum
random oracle model · quantum chosen ciphertext attack

1 Introduction

There are two criteria for a practical encryption scheme: security and efficiency.
Many generic transformations are proposed to enhance the security of public-
key encryption schemes (PKEs) to achieve the indistinguishable under chosen
ciphertext attacks (IND-CCA) security [2,8,11,23]. As for efficiency, Cramer and
Shoup proposed the KEM-DEM hybrid construction that combines an IND-CCA
key encapsulation mechanism (KEM) with a one-time chosen ciphertext secure
secret-key encryption scheme (SKE) to obtain an IND-CCA PKE [9].
c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 36–64, 2023.
https://doi.org/10.1007/978-3-031-31368-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_2&domain=pdf
http://orcid.org/0000-0002-1918-7464
http://orcid.org/0000-0002-1671-7933
http://orcid.org/0000-0001-6024-3635
https://doi.org/10.1007/978-3-031-31368-4_2

QCCA-Secure Generic Transformations in the QROM 37

Cryptographic schemes often have efficient constructions in the random ora-
cle model (ROM) [2], in which schemes are proven to be secure assuming the
existence of the publicly accessible random oracle. Many generic transforms are
relative to random oracles. For instance, the Fujisaki-Okamoto (FO) transfor-
mation turns an arbitrary PKE that is one-way under chosen plaintext attacks
(OW-CPA) into an IND-CCA PKE in the ROM [11], and the REACT transfor-
mation turns an arbitrary PKE that is one-way under plaintext checking attacks
(OW-PCA) into an IND-CCA PKE in the ROM [23].

Typically, the random oracle is instantiated with a cryptographic hash func-
tion. Thus in the real world attack, a quantum attacker can evaluate the hash
function in superposition. To capture this issue, Boneh et al. [4] proposed the
quantum random oracle model (QROM) where the quantum adversary can query
the random oracle with superposition states. Further, classical schemes may be
implemented on quantum computers, which potentially gives quantum attack-
ers more power. For this case, Boneh and Zhandry [5] introduced the indistin-
guishability under quantum chosen ciphertext attacks (IND-qCCA) for encryp-
tion schemes, where the adversary can make quantum queries to the decryption
oracle. Following it, Gagliardoni et al. [13] focused on SKE and proposed new
notions of indistinguishability and semantic security in the quantum world, e.g.
quantum semantic security under chosen plaintext attacks (qSEM-qCPA). On
the other hand, Xagawa and Yamakawa [27] presented the IND-qCCA security of
KEMs, where the adversary can query the decapsulation oracle in superposition.

Boneh et al. [4] summarized four proof techniques that are commonly used
in the ROM but not appropriate to the quantum setting straightforwardly.
“Extractability”, as one of them, is that the simulator learns the preimages the
adversary takes interest in when simulating the random oracle for the adversary.

Extractability is the core to simulate answers to decryption queries in the
IND-CCA security proof for both FO and REACT in the ROM. However, in
the quantum setting, the non-existence of this technique had been an obstacle
to their security proofs in QROM. To circumvent it, Targhi and Unruh [26] and
the follow-up work by Ambainis et al. [1] modified the FO transformation by
appending an extra hash function to the ciphertext, then applied the One-way
to Hiding (O2H) Theorem and its variant to prove the IND-CCA security of the
modified FO in the QROM.

Hofheinz et al. [14] divided KEMs into two types: explicit rejection and
implicit rejection. The explicit rejection (resp. implicit rejection) type returns
a symbol ⊥ (resp. a pseudorandom value) if the ciphertext is invalid. For both
two types, they presented the IND-CCA security proof of transformations with
additional hash in the QROM. Later, transformations with implicit rejection
had been free from the additional hash and proved to be IND-CCA and even
IND-qCCA in the QROM [3,17,19–21,24,27]. Nonetheless, for explicit rejection
type, the IND-CCA security proofs in the QROM were only given for those
transformations either with additional hash [18] or with non-standard security
assumptions [19]. It seemed infeasible to give post-quantum security proof of
unmodified transformations due to the non-existence of extractability.

38 T. Shan et al.

In his seminal paper [29], Zhandry proposed the compressed oracle technique,
with which the simulator can “record” quantum queries to the random oracle
while simulating it efficiently. This enables to use extractability technique in
the quantum setting and thus makes it possible to give security proofs of the
unmodified FO and those transformations with explicit rejection in QROM.

Indeed in the full version of [29], Zhandry gave a proof that the unmodified
FO turns any OW-CPA PKE into an IND-qCCA PKE in the QROM. However,
in this proof, as was pointed out by Don et al. [10], the answers to decryption
queries in Hybrids 2 to 4 are simulated by applying (purified) measurements on
the internal state of the compressed oracle, yet these measurements are hard
to be determined explicitly from their respective descriptions. Until now, this is
considered as the gap that prevents the analysis of the disturbance caused by
those measurements.

As for transformations with explicit rejection, Don et al. [10] presented the
first IND-CCA security proof of FO⊥

m, a variant of FO transformation, in the
QROM, as well as its concrete security bound. Based on their work, Hövelmanns
et al. [15] improved the proof in [10] resulting in a tighter bound. However, as
far as we know, there are only a few results on the IND-qCCA security proof of
any transformations with explicit rejection [27].

1.1 Our Results

In this paper, we improve the IND-qCCA security proof in [29] and avoid the gap
mentioned in [10]. Especially, we simplify that proof with our tool and present a
tighter proof. We also give the first IND-qCCA security proof for transformation
REACT and TCH in the QROM, where TCH is a KEM variant of REACT with
explicit rejection proposed in [16]. The concrete security bounds for these three
transformations are shown in Table 1.

Table 1. Concrete security bounds for FO, REACT and TCH in the QROM. The
“Underlying security” column omits the one-time security of the underlying SKE for
both FO and REACT. εasy is the advantage of the reduced adversary against the secu-
rity of the underlying PKE. εsy is the advantage against the security of the underlying
SKE. d is the number of decryption or decapsulation queries. q is the total number
of random oracle queries. γ is from the γ-spreadness of the underlying PKE. n is the
length of the hash value being one part of the ciphertext of the achieved PKE or KEM.

Transform Underlying
security

Achieved
security

Security bound(≈)

FO OW-CPA IND-qCCA d/
√
2γ + (q + d) · √

εasy + εsy

REACT OW-qPCA IND-qCCA d/
√
2n + q · d · √

εasy + εsy

TCH OW-qPCA IND-qCCA d/
√
2n + (q + d) · √

εasy

Our main tool to prove our results is a unitary UExt named the plaintext
extraction procedure for a class of PKE called oracle-masked schemes. Informally,
the oracle-masked scheme is defined as follows.

QCCA-Secure Generic Transformations in the QROM 39

Definition 1 (Oracle-Masked Scheme, Informal). For random oracle O
with codomain Y, we call Π = (Gen,EncO,DecO) an oracle-masked scheme if
EncO and DecO are constructed as in Fig. 1. Parameter η of Π is defined to be

η := max
(pk,sk), c

∣
∣{y ∈ Y : c = A2 (pk,A3(sk, c), y)}

∣
∣/|Y| ,

where (pk, sk) is generated by Gen and c ∈ C is such that A3(sk, c) �= ⊥.

EncO(pk, m; r) DecO(sk, c)

x := A1(pk, m, r) x := A3(sk, c) if c �= c′, return ⊥
y := O(x) if x = ⊥, return ⊥ m := A4(x)
c := A2(pk, x, y) y := O(x) return m
return c c′ := A2(pk, x, y)

Fig. 1. Algorithm EncO and DecO of an oracle-masked scheme Π, and the tuple of
algorithm A1, A2, A3 and A4 is called the decomposition of Π.

According to the above definition, oracle-masked schemes contains PKEs
obtained by several transformations, including FO transformation, REACT
transformation and T in the modular FO toolkit [14]. We then present the plain-
text extraction procedure UExt for oracle-masked scheme Π as below.

Definition 2 (Plaintext Extraction Procedure, informal). Suppose that
O is simulated by the compressed standard oracle CStO with database register D.
Then the plaintext extraction procedure UExt of oracle-masked scheme Π applied
on register C, Z, D is that UExt|c, z,D〉 = |c, z ⊕ f(c,D),D〉, where

f(c,D) :=
{
A4(x) if c �= c∗ and∃x s.t. A2(pk, x,D(x)) = c, A3(sk, c) = x
⊥ otherwise.

Plaintext extraction procedure UExt is to apply extractability technique to
simulate the quantum-accessible decryption oracle in the IND-qCCA security
proof of Π. When random oracle O is simulated by CStO, the random ora-
cle queries is recorded on the database register D. Note that the queries is
not recorded perfectly, but the simulator can still learn some information from
the state on D by quantum measurements or computing functions defined on
database [7,10]. Following this fact, UExt extracts plaintext m(:= A4(x)) for
ciphertext c by computing a classical function f(c,D) defined as above. More-
over, UExt is performed efficiently if f can be computed efficiently.

With the notions defined as above, we then prove the IND-qCCA security
of transformation FO, REACT and TCH. Our proofs can be outlined as the
following three steps.

Firstly, we represent the schemes obtained by transformations as oracle-
masked schemes relative to O and specify their decomposition (A1,A2,A3,A4).
In the IND-qCCA security games of these schemes, random oracle O is simulated

40 T. Shan et al.

by CStO and accordingly, the quantum decryption oracle DecO is simulated by
unitary USim.

Next, we replace unitary USim with the plaintext extraction procedure UExt.
We also present the detailed construction of UExt without the secret key.

Finally, we apply the semi-classical O2H theorem to reprogram the com-
pressed oracle at some points, which results in a new game. We then connect it
to the security game of the underlying schemes.

Here we analyze the security loss introduced by the second and third step.
For the second step, we need to bound the security loss caused by the replace-

ment of the simulation of the decryption oracle DecO. Since CStO perfectly sim-
ulates the random oracle, USim and DecO are perfectly indistinguishable for any
adversary. Then we analyze the loss introduced by performing unitary UExt. For
one type of state |ψ〉, we compute the difference between UExt|ψ〉 and USim|ψ〉
and obtain the following lemma.

Lemma 1 (Informal). Let |ψ〉 be a quantum state on register C, Z, D that is
orthogonal to

∑

c,z,D,x αc,z,D,x|c, z,D∪(x, β0)〉. Then ‖(USim−UExt)|ψ〉‖ ≤ 5
√

η.

As is argued in [10], there are at least two requirements of refining the proof
in [29]: To rigorously specify the quantum measurements in Hybrid 3 and 4,
respectively; To analyze the disturbance of the state of CStO caused by quantum
measurements.

Our proofs meet the first requirement by providing the plaintext extraction
procedure UExt of oracle-masked schemes. Indeed, UExt and the scan operation
in Hybrid 4 act similarly. They both learns the information from the database.
But our UExt is represented in a more specific form and can also be viewed as
a formalization of the scan operation. As for the second requirement, we apply
Lemma 1 to bound the disturbance caused by performing UExt. If the adversary
makes at most q decryption queries, then by the hybrid argument, the loss caused
by UExt is upper bounded by 5q

√
η.

For the third step, we stress that we can not reprogram CStO only by applying
the semi-classical O2H theorem. As an explanation, suppose that we puncture
CStO on point x via the semi-classical oracle OSC

{x}, which forbids the adversary
from querying CStO by x if event Find does not occur. However, the performance
of UExt disturbs the database state on register D, which disturbs the simulation
of random oracle O. Thus, it can not be concluded that CStO on x is uniformly
random even if the adversary never queries CStO on point x (i.e., Find does not
occur).

To fix it, before reprogramming the compressed oracle on x, we change UExt
into StdDecompx ◦UExt ◦StdDecompx, where StdDecompx, the local decompres-
sion procedure defined in [29], is an involution performed on the database register
D. Then by the definition of UExt, StdDecompx ◦ UExt ◦ StdDecompx does not
disturb any database state in the form of |D ∪StdDecompx(x, y)〉, which in con-
trast to the disturbance made by UExt. Then we apply the following lemma to
bound the difference between UExt and StdDecompx ◦ UExt ◦ StdDecompx.

QCCA-Secure Generic Transformations in the QROM 41

Lemma 2 (Informal). For any x and state |ψ〉 on register C, Z, D,
∥
∥(UExt ◦ StdDecompx − StdDecompx ◦ UExt)|ψ〉

∥
∥ ≤ 7

√
η .

Overall, we propose the notion of oracle-masked schemes and define plaintext
extraction procedure UExt for these schemes. They can be used to avoid the gap
in the FO proof in [29]. And our proof outline can also be applied to the IND-
qCCA security proofs of other transformations in the QROM.

1.2 Related Work

Abstract frameworks were proposed to simplify the application of the compressed
oracle technique in different situations [6,7,10]. They formalized properties that
are satisfied in the presence of random oracle, and lifted them to the quantum
setting.

Existing proofs from [29] already implicitly were using compressed oracles
for some sort of extractability. Don et al. [10] then considered extractability in a
general form. Specifically, they define a simulator S that simulates the random
oracle and also allows the extraction query that is replied with a guess of the
plaintext of the query. They then prove that this simulation of the random oracle
is statistically indistinguishable from the real one if some properties are satisfied.
In their security proof, the extraction query is restricted to be classical in the
simulation. Therefore, their result seems to be tailored for post-quantum security
proofs, yet are not sufficient to prove the IND-qCCA security.

Based on [10], Hövelmanns et al. [15] proposed a variant of semi-classical
O2H theorem as the core to prove the post-quantum security of FO⊥

m. Roughly
speaking, this theorem states that the probabilities of classical event EXT and
FIND can bound the loss caused by the reprogramming of the oracle simulated
by S. Different from their work, our argument allows the adversary to make
quantum extraction query, which makes event EXT no longer make sense.

2 Preliminaries

2.1 Notation

Denote M, C and R as key space, message space and ciphertext space, respec-
tively. A function f(λ) is negligible if f(λ) = λ−ω(1). Algorithms take as input
a security parameter λ, and we omit it for convenience. Time(A) is denoted as
the running time of algorithm A.

For a finite set X , denote |X | as the number of elements X contains, and
denote x

$←− X as uniformly choose a random element x from X . [b = b′] is an
integer, that is 1 if b = b′ and 0 otherwise. Pr[P : Q] is the probability that
predicate P keeps true where all the variables in P are assigned according to the
program in Q.

42 T. Shan et al.

2.2 Quantum Random Oracle Model

We refer to [22] for basics of quantum computation and quantum information.
In the ROM, we assume the existence of the random oracle O : X → Y, and

O is publicly accessible to all parties. For concreteness, let Y = {0, 1}n. O is
initialized by choosing H

$←− ΩH , where ΩH is the set of all functions from X to
Y. In the QROM, quantum algorithms can query O with superposition states,
and the oracle performs the unitary mapping |x, y〉 �→ |x, y⊕H(x)〉 on the query
state. Oracle O also allows making classical queries. To query x, set the input
and output state to be |x, 0〉 and measure it after querying O to obtain H(x).

Below, we introduce several tools for QROM, that are used in this paper. We
begin with two ways for the simulation of the quantum random oracle.

Theorem 1 ([28, Theorem 6.1]). Let H be a function chosen from the set
of 2q-wise independent functions uniformly at random. Then for any quantum
algorithm A with at most q queries,

Pr[b = 1 : b ← AH()] = Pr[b = 1 : b ← AO()] .

The Compressed Oracle. Here we briefly introduce the compressed oracle
technique, and we only consider the Compressed Standard Oracles(CStO), one
version of the compressed oracle, with query number at most q. We refer to the
full version of [29] for more details of the compressed oracle.

The core idea of the compressed oracle technique is the purification of the
quantum random oracle, and the purified oracle imperfectly records quantum
queries to the random oracle. In the QROM, random oracle O is initialized by
uniformly sampling a function H from ΩH . If O is queried with a quantum
state |x, y〉, then the replied state is a mixed state and can be represented as
{pi, |x, y ⊕ Hi(x)〉}, where pi = 1/|ΩH |, i = 1, . . . , |ΩH |. This mixed state can
be purified to state 1/|ΩH |

∑

H |x, y ⊕ H(x),H〉, where |H〉 is the internal state
of oracle O and H of |H〉 is a truth table of function H.

Instead of a superposition state of H, CStO takes a superposition of database
as its internal state and simulates random oracle O. We denote this simulated
oracle by CStO directly, and database by D. Here D is an element of set Dl :=
(X × Ȳ)l where Ȳ = Y ∪ {⊥}, l is the length of D. For any x ∈ X , if (x, y)
exists as an entry of D, then (x, y) ∈ D and D(x) = y. Otherwise, D(x) = ⊥.
Denote |D| as the total number of x ∈ X such that D(x) �= ⊥. Then for any
y ∈ Y and D that D(x) = ⊥, |D| < l, define D ∪ (x, y) to be the database
that D ∪ (x, y)(x′) = D(x′) for any x′ �= x and D ∪ (x, y)(x) = y. Moreover,
any D is written in the form of ((x1, y1), . . . , (xs, ys), (0,⊥), . . . , (0,⊥)) such that
|D| = s ≤ l, x1 < x2 < · · · < xs.

For any x ∈ X , define the local decompression procedure StdDecompx applied
on the database state |D〉 ∈ C[Dl] as below:

– For D that D(x) = ⊥ and |D| = l, StdDecompx|D〉 = |D〉.

QCCA-Secure Generic Transformations in the QROM 43

– For D that D(x) = ⊥ and |D| < l, StdDecompx|D∪(x, βr)〉 = |D∪(x, βr)〉 for
any r �= 0, StdDecompx|D ∪ (x, β0)〉 = |D〉, StdDecompx|D〉 = |D ∪ (x, β0)〉,
where state |D ∪ (x, βr)〉 = 1/

√
2n

∑

y∈Y(−1)y·r|D ∪ (x, y)〉 for any r ∈ Y.

CStO initializes a database state |(0,⊥)q〉 with length q. For any query |x, y〉
to random oracle O, CStO does three steps: First, perform the unitary |x, y,D〉 �→
|x, y〉StdDecompx|D〉 in superposition. Next, apply the map |x, y,D〉 �→ |x, y ⊕
D(x),D〉. Finally, repeat the first step.

Theorem 2 ([29, Lemma 4]). CStO and random oracle O are indistinguishable
for any quantum algorithm A, i.e.,

Pr[b = 1 : b ← ACStO()] = Pr[b = 1 : b ← AO()] .

It is also observed that any quantum state on the database register is orthog-
onal to state |D ∪ (x, β0)〉 in the simulation of CStO. Therefore, the database
state should be the superposition state of |D ∪ (x, βr)〉 for r �= 0. This fact will
be used later.

Semi-classical Oracle. For set X and S, define fS : X → {0, 1} to be an
indicator function such that fS(x) = 1 if x ∈ S and 0 otherwise. Then we
define the semi-classical oracle OSC

S : X → {0, 1}. For any quantum query, OSC
S

does the following steps. First, initialize a qubit T to be |0〉. Then evaluate
the mapping |x, 0〉 �→ |x, fS(x)〉 in superposition. Finally, measure T in the
computational basis and obtain a bit b ∈ {0, 1} as its output.

Theorem 3 (Semi-classical O2H [1, Theorem 1]). Let S be a random subset
of X , H : X → Y a random function, z a random bitstring. And H,S,z may
have arbitrary joint distribution. Let H \ S be an oracle that first queries OSC

S
and then queries H. Let A be a quantum oracle algorithm with query depth d. In
the execution of AH\S(z), let Find be the event that OSC

S ever outputs 1. Then
∣
∣
∣Pr[b = 1 : b ← AH(z)] − Pr[b = 1 : b ← AH\S(z)]

∣
∣
∣ ≤

√

(d + 1) · Pr[Find] .

The following theorem gives an upper bound for the probability that Find occurs.

Theorem 4 ([1, Theorem 2]). Let S ⊆ X and z ∈ {0, 1}∗. And S, z may
have arbitrary joint distribution. Let A be a quantum oracle algorithm making
at most d queries to OSC

S with domain X . Let B be an algorithm that on input

z, chooses i
$← {1, . . . , d} , runs AOSC

∅ (z) until (just before) the i-th query, and
then measures all query input registers in the computational basis. Denote by T
the set of measurement outcomes. Then

Pr
[

Find : AOSC
S (z)

]

≤ 4d · Pr[S ∩ T �= ∅ : T ← B(z)] .

44 T. Shan et al.

3 Plaintext Extraction of the Oracle-Masked Scheme

In this section, we start by the formalization of the class of PKE Π named
the oracle-masked scheme. Then we will introduce plaintext extraction game
GameExt

A,Π for adversary A, and end this section with a theorem that bounds
the difference of the output distributions of GameIND-qCCA

A,Π and GameExt
A,Π .

The definition of the IND-qCCA security game GameIND-qCCA
A,Π is shown in the

Appendix B.2.

Definition 3 (Oracle-Masked Scheme). Let Π = (Gen,EncO,DecO) be a
PKE relative to random oracle O with codomain Y. We say that Π is an oracle-
masked scheme if there exist deterministic polynomial time algorithm A1, A2,
A3, A4 such that for any (pk, sk) generated by Gen, EncO and DecO are written
as in Fig. 2. Tuple (A1,A2,A3,A4) is called the decomposition of Π.

EncO(pk, m; r) DecO(sk, c)

x := A1(pk, m, r) x := A3(sk, c) if c �= c′, return ⊥
y := O(x) if x = ⊥, return ⊥ m := A4(x)
c := A2(pk, x, y) y := O(x) return m
return c c′ := A2(pk, x, y)

Fig. 2. Algorithm EncO and DecO of an oracle-masked scheme Π

For an oracle-masked scheme Π, parameter η of Π is defined to be

η := max
(pk,sk), c

∣
∣{y ∈ Y : c = A2 (pk,A3(sk, c), y)}

∣
∣/|Y| ,

where (pk, sk) is generated by Gen and c ∈ C is such that A3(sk, c) �= ⊥.

Let Π be an oracle-masked scheme. For quantum adversary A in the security
game GameIND-qCCA

A,Π in the QROM, it can query random oracle O and decryp-
tion oracle DecO both in superposition. Write C and Z to denote the input and
output register of the decryption query of A, respectively. The decryption oracle
DecO in GameIND-qCCA

A,Π can be simulated by a unitary operator UDec applied
on register C and Z, i.e., for any computational basis state |c, z〉, UDec acts as
follows:

UDec|c, z〉 =
{

|c, z ⊕ ⊥〉 if c∗ is defined and c = c∗

|c, z ⊕ DecO(c)〉 else.

where c∗ is the challenge ciphertext in GameIND-qCCA
A,Π .

Then we introduce a new game GameSimA,Π , that is identical with GameIND-qCCA
AΠ

except that random oracle O is simulated by CStO. In this game, quantum queries
to oracle O are recorded in the database register D imperfectly. The decryption

QCCA-Secure Generic Transformations in the QROM 45

oracle answers queries in the same process as in Fig. 2 and it can be simulated by
a unitary operator on register C, Z, D. We denote this operator by USim. Then
by Theorem 2, UDec and USim, these two simulations of the decryption oracle are
perfectly indistinguishable for any quantum adversary.

Notice that in the process of the decryption algorithm DecO, A3 is computed
first to obtain x and then A2 is applied to check if c = A2(pk, x,O(x)). Then the
query x to oracle O is recorded in the database D imperfectly if the decryption
oracle is simulated by USim. With this property, we design a new unitary to reply
decryption queries, and it is defined as follows.

Definition 4 (Plaintext Extraction Procedure). Let Π be an oracle-
masked scheme and (A1,A2,A3,A4) be its decomposition. For any (pk, sk) of
Π, define unitary operation UExt, as the plaintext extraction procedure of Π,
applied on register C, Z, D as follows.
UExt|c, z,D〉 :

1. If the challenge ciphertext c∗ is defined and c = c∗, return |c, z ⊕ ⊥,D〉.
2. Else if database D contains no pair (x,D(x)) such that A2(pk, x,D(x)) = c,

return |c, z ⊕ ⊥,D〉.
3. Else, for each tuple (x,D(x)) that A2(pk, x,D(x)) = c, check if A3(sk, c) = x

and do the following procedure:
(a) If a tuple (x,D(x)) passes this test,1 compute m := A4(x) and return

|c, z ⊕ m,D〉.
(b) Otherwise, return |c, z ⊕ ⊥,D〉.

In addition, the detailed construction of UExt is shown in Appendix A.

Compared with USim, UExt does not follow the decryption algorithm to pro-
duce the plaintext m(:= DecO(sk, c)), but just searches (x,D(x)) on D to obtain
m. Therefore, we call UExt the plaintext extraction procedure.

By the definition of UExt, for any computational basis state |c, z,D〉, UExt has
no effect on |D〉, and does not need to query oracle O. And for any oracle-masked
scheme, such a plaintext extraction procedure UExt exists, and it can be used to
answer quantum decryption queries. Then we introduce two properties of UExt
by the following two lemmas. Except register C, Z and D, we abbreviate other
registers (e.g. other registers of adversary A) into W and the detailed proofs of
these lemmas are shown in the full version [25].

Lemma 3. Let |ψ〉 be a quantum state on register W , C, Z and D such that |ψ〉
is orthogonal to any state in the form of

∑

w,c,z,D,x αw,c,z,D,x|w, c, z,D∪(x, β0)〉.
Then

‖(USim − UExt)|ψ〉‖ ≤ 5
√

η .

Lemma 4. Given any x ∈ {0, 1}∗, unitary StdDecompx is performed on register
D. For any quantum state |ψ〉 on register W , C, Z and D,

∥
∥(UExt ◦ StdDecompx − StdDecompx ◦ UExt)|ψ〉

∥
∥ ≤ 7

√
η .

1 Such a tuple is unique, since c and sk determines the value of A3(sk, c).

46 T. Shan et al.

Here we define a new game GameExt
A,Π named plaintext extraction game that

differs from GameSimA,Π in the way of answering decryption queries: In GameExt
A,Π ,

the decryption oracle is simulated by unitary UExt while that in GameSimA,Π is
simulated by unitary USim. With Lemma 3, we obtain Theorem 5 as follows to
bound the output difference of GameIND-qCCA

A,Π and GameExt
A,Π .

Theorem 5. Let Π be an oracle-masked scheme. For any quantum adversary
A against the IND-qCCA security of Π in the QROM, if A makes at most q
decryption queries, then

∣
∣Pr[GameIND-qCCA

A,Π → 1] − Pr[GameExt
A,Π → 1]

∣
∣ ≤ 5q · √

η .

Proof. Given Π and A, recall that GameSimA,Π is identical with GameIND-qCCA
A,Π

except that the random oracle is simulated by CStO. By Theorem 2,

Pr[GameIND-qCCA
A,Π → 1] = Pr[GameSimA,Π → 1] .

In the following, we prove that
∣
∣Pr[GameSimA,Π → 1] − Pr[GameExt

A,Π → 1]
∣
∣ ≤ 5q · √

η .

For any fixed (pk, sk), the decryption oracle in GameSimA,Π and that in
GameExt

A,Π are simulated by unitary USim and UExt, respectively.
For any i = 1, . . . , q, define Gi to be a game that is the same as GameSimA,Π

until just before the i-th decryption query of A, then simulates the decryption
oracle with unitary UExt instead of USim. Then G1 is exactly GameExt

A,Π . We also
denote GameSimA,Π by Gq+1.

For i = 1, . . . , q + 1, denote by σi the final joint state of the registers of Gi

including the register of A and the database register. By the triangle inequality
of the trace distance,

TD(σ1, σq+1) ≤ TD(σ1, σ2) + . . . + TD(σq, σq+1) ,

where TD(ρ, τ) is the trace distance of state ρ and τ .
Fix 1 ≤ i ≤ q. Since game Gi and Gi+1 only differ in the i-th decryption

query, we denote by ρ the joint state of A and the database register just before
the i-th decryption query. All the operations after the i-th decryption query can
be represented by a trace-preserving operation, that is denoted by E . Then σi

and σi+1 can be represented by σi = E(USim ρU†
Sim) and σi+1 = E(UExt ρU†

Ext),
respectively. And we have

TD(σi, σi+1) ≤ TD(USim ρU†
Sim,UExt ρU†

Ext) .

QCCA-Secure Generic Transformations in the QROM 47

Let ρ =
∑

j pj |ψj〉〈ψj | be a spectral decomposition of ρ, where
∑

j pj = 1. Then
by the convexity of the trace distance,

TD(USim ρU†
Sim,UExt ρU†

Ext)

= TD
(∑

j

pjUSim|ψj〉〈ψj |U†
Sim,

∑

j

pjUExt|ψj〉〈ψj |U†
Ext

)

≤
∑

j

pjTD(USim|ψj〉〈ψj |U†
Sim,UExt|ψj〉〈ψj |U†

Ext)

≤
∑

j

pj‖(USim − UExt)|ψj〉‖ .

Note that before the i-th decryption query, the decryption procedure is USim
and A can be considered as being in GameSimA,Π . Thus, any state |ψj〉 in the
spectral decomposition of ρ is in the form of the superposition state in Lemma 3.
By Lemma 3, ‖(USim − UExt)|ψj〉‖ ≤ 5

√
η. Then for every 1 ≤ i ≤ q,

TD(σi, σi+1) ≤
∑

j

pj · ‖(USim − UExt)|ψj〉‖ ≤
∑

j

pj · 5√η = 5
√

η .

Thus, TD(σ1, σq+1) ≤ 5q · √
η. Further, the output difference of GameSimA,Π and

GameExt
A,Π is upper bounded by the trace distance of σ1 and σq+1, the states of

these two games. This completes the proof. ��

4 Application in the Quantum Security Proof

In this section, we apply Theorem 5 of oracle-masked schemes to provide the
IND-qCCA security proof for transformation FO, REACT and TCH in the
QROM.

4.1 FO: From OW-CPA to IND-qCCA in the QROM

Let Πasy = (Genasy,Encasy,Decasy) be a PKE with message space Masy,
randomness space Rasy(= {0, 1}n) and ciphertext space Casy. Let Πsy =
(Encsy,Decsy) be a SKE with key space Ksy, message space Msy and ciphertext
space Csy. Let H : {0, 1}∗ → Rasy and G : {0, 1}∗ → Ksy be hash functions. We
review the FO transformation in the following definition, and then provide its
IND-qCCA security proof in the QROM.

Definition 5. FO[Πasy,Πsy,H,G] = (Gen,Enc,Dec) obtained from the FO
transformation is constructed as shown in Fig. 3.

Lemma 5. Assume that H is the random oracle and Πasy is γ-spread, then
FO[Πasy,Πsy,H,G] is an oracle-masked scheme relative to H, and its parameter
η is such that η ≤ 1/2γ .

Proof. We define deterministic polynomial-time algorithm A1, A2, A3 and A4:

48 T. Shan et al.

Gen Enc(pk, m; δ) Dec(sk, (c, d))

(pk, sk) ← Genasy d := Encsy(G(δ), m) δ′ := Decasy(sk, c)
return (pk, sk) c := Encasy(pk, δ;H(δ, d)) if δ′ = ⊥, return ⊥

return (c, d) c′ := Encasy(pk, δ′;H(δ′, d))
if c′ �= c, return ⊥
m := Decsy(G(δ′), d)
return m

Fig. 3. PKE FO[Πasy, Πsy, H, G] obtained from FO transformation

– A1 on input δ and m, evaluates k := G(δ) and d := Encsy(k,m), then outputs
(δ, d).

– A2 takes pk, (δ, d) and y ∈ Rasy as input, computes c := Encasy(pk, δ; y),
then outputs (c, d).

– A3 takes sk and (c, d) as input, evaluates δ := Decasy(sk, c). If δ �= ⊥, output
(δ, d). Otherwise, output ⊥.

– A4 on input (δ, d), computes k := G(δ) and m := Decsy(k, d), outputs m.

It can be verified that with these four algorithms, algorithm Enc and Dec
given in Fig. 3 are written as EncO and DecO in Definition 3 with O = H, respec-
tively. Thus, FO[Πasy,Πsy,H,G] is an oracle-masked scheme, and its parameter
η is

η = max
(pk,sk), c

∣
∣{r ∈ Rasy : c = Encasy(pk,Decasy(sk, c); r)}

∣
∣/|Rasy| ,

where (pk, sk) and c ∈ Casy are such that Decasy(sk, c) ∈ Masy.
Since Πasy is γ-spread, for any (pk, sk) and m ∈ Masy,

max
c∈Casy

∣
∣{r ∈ Rasy : c = Encasy(pk,m; r)}

∣
∣/|Rasy| ≤ 1/2γ .

Therefore, η ≤ 1/2γ . ��

Note that the above evaluation of function G can be replaced by querying an
oracle that computes G. Then algorithm A1 and A4 become oracle algorithms
denoted by AG

1 and AG
4 , respectively. In this case, the notions in Definition 3 still

work, and Theorem 5 holds. Then we apply Theorem 5 to prove the IND-qCCA
security of oracle-masked scheme FO[Πasy,Πsy,H,G] in the QROM.

Theorem 6. Let Πasy be γ-spread, for any adversary against the IND-qCCA
security of scheme Π = FO[Πasy,Πsy,H,G], making at most qD queries to the
decryption oracle, at most qH queries to random oracle H and at most qG queries
to random oracle G, there exist an adversary Aasy against the OW-CPA security
of Πasy and an adversary Asy against the OT security of Πsy such that

AdvIND-qCCA
A,Π ≤ qD· 12√

2γ
+2(d+1)

√

AdvOW-CPA
Aasy,Πasy+4d·AdvOW-CPA

Aasy,Πasy+AdvOT
Asy,Πsy ,

where d = qD + qH + 2qG, Time(Asy) ≈ Time(A) + O
(

d2 + qH · qD ·
Time(Encasy)

)

and Time(Aasy) ≈ Time(Asy).

QCCA-Secure Generic Transformations in the QROM 49

Proof. Define Game 0 to be GameIND-qCCA
A,Π as in Fig. 4. Then we obtain

∣
∣
∣
∣
Pr[Game 0 → 1] − 1

2

∣
∣
∣
∣
= AdvIND-qCCA

A,Π . (1)

In the following, we will introduce a sequence of games to bound AdvIND-qCCA
A,Π .

GameIND-qCCA
A,Π Deca(sk, (c, d))

G
$←− ΩG, H

$←− ΩH if (c, d) = a, return ⊥
(pk, sk) ← Gen δ′ := Decasy(sk, c)
(m0, m1) ← AH,G,Dec⊥(pk) if δ′ = ⊥, return ⊥
b

$←− {0, 1}, δ∗ $←− Masy c′ := Encasy(pk, δ′;H(δ′, d))
d∗ := Encsy(G(δ∗), mb) if c′ �= c, return ⊥
c∗ := Encasy(pk, δ∗;H(δ∗, d∗)) m′ := Decsy(G(δ′), d)
b′ ← AH,G,Dec(c∗,d∗)(pk, (c∗, d∗)) return m′

return [b = b′]

Fig. 4. GameIND-qCCA
A,Π for FO transformation in the QROM, where oracle H, G and

Deca are all quantum-accessible.

Starting from Game 1, random oracle H is simulated with CStO and its
database register is denoted as D. This change is undetectable for A by Theo-
rem 2. Moreover, δ∗ is sampled uniformly at the beginning of the game, which
is also undetectable for any adversary.

Game 1: In this game, the decryption oracle is simulated by the plaintext extrac-
tion procedure UExt of Π. We refer to Appendix A for the detailed construction
of UExt of Π without sk.

Omitting the (c, d) = (c∗, d∗) case, UExt can also be rephrased as UExt =
U†

E ◦UC ◦UE, based on Lemma 5. Here unitary UE is used to extract (δ′, d) cor-
responding to (c, d) from database and unitary UC is used to compute plaintext
m′ from (δ′, d). And UE acts as follows.

UE|(c, d), z1,D〉 =
{

|(c, d), z1 ⊕ (1, (δ′, d)),D〉 if Encasy(pk, δ′;D(δ′, d)) = c

|(c, d), z1 ⊕ (0, 0n),D〉 otherwise.

It is obvious that Game 1 is the plaintext extraction game GameExt
A,Π . Then

by Theorem 5, we obtain
∣
∣Pr[Game 0 → 1]−Pr[Game 1 → 1]

∣
∣ ≤ 5qD · √η for

any fixed G ∈ ΩG. Therefore,

∣
∣Pr[Game 0 → 1] − Pr[Game 1 → 1]

∣
∣ ≤ 5qD · √

η ≤ qD · 5√
2γ

, (2)

where variable G, both in Game 0 and Game 1, is sampled from ΩG uniformly.

50 T. Shan et al.

Game 2: This game is identical with Game 1 except that the decryption oracle
is simulated by the following steps after the challenge query.

1. Perform unitary StdDecomp(δ∗,d∗) to register D.
2. Apply UExt on register C, Z and D.
3. Perform StdDecomp(δ∗,d∗) to register D a second time.

We define unitary SUExt := StdDecomp(δ∗,d∗) ◦ UExt ◦ StdDecomp(δ∗,d∗).
If we flip the order of the last two steps of SUExt, then StdDecomp(δ∗,d∗) ◦
StdDecomp(δ∗,d∗) is an identity operator and in this way, SUExt performs identi-
cally as UExt. Since Lemma 4 states that UExt commutes with StdDecomp(δ∗,d∗)
by a loss, we have

TD(UExtρU†
Ext,SUExtρSU†

Ext) ≤ 7
√

η ≤ 7√
2γ

for any joint state ρ on registers in Game 2. At most qD decryption queries are
made after the challenge query, and then by the hybrid argument,

|Pr[Game 1 → 1] − Pr[Game 2 → 1]| ≤ qD · 7√
2γ

. (3)

Game 3: Differing from Game 2, we change the way to answer random oracle
queries in some cases: when random oracle H or G is queried by A or G is applied
in the decryption process, we query E and then query the random oracle, where
E is a constant zero function with quantum access.

Since E is a constant zero function, the random oracle query does not change
after querying E, and we have

Pr[Game 2 → 1] = Pr[Game 3 → 1] . (4)

Game 4: The only difference between Game 3 and Game 4 is that the semi-
classical oracle OSC

S is applied before each query to E, and set S := {δ∗, δ∗‖·}.
Let z := δ∗, and BE(δ∗) be the algorithm that runs A and simulates

Game 3. Then we have

Pr[Game 3 → 1] = Pr[b = 1 : b ← BE(δ∗), δ∗ $←− Masy] ,

Pr[Game 4 → 1] = Pr[b = 1 : b ← BE\S(δ∗), δ∗ $←− Masy] ,

Pr[Find : Game 4] = Pr[Find : BE\S(δ∗), δ∗ $←− Masy] .

It can be verified that B makes at most qH + qG + 2qD queries to E. We let
d = qH + qG + 2qD and apply Theorem 3 to obtain

|Pr[Game 3 → 1] − Pr[Game 4 → 1]| ≤
√

(d + 1)Pr[Find : Game 4] . (5)

Notice that by A4 defined in Lemma 5, G is queried in the process of UC
when performing UExt. Then oracle OSC

S should be queried in the process of
UC in Game 4. We denote by U′

C the modified UC. Accordingly, before the

QCCA-Secure Generic Transformations in the QROM 51

challenge query, the decryption oracle in Game 4 is simulated by UE ◦ U′
C ◦

U†
E, that is denoted by U′

Ext. After that, the decryption oracle is simulated by
StdDecomp(δ∗,d∗) ◦ U′

Ext ◦ StdDecomp(δ∗,d∗), that is denoted by SU′
Ext.

We assume that Find does not occur in Game 4. In this case, A never queries
H by (δ∗, d∗), and the database D is such that D(δ∗, d∗) = ⊥ until the challenge
query. To produce the challenge ciphertext, r∗ := H(δ∗, d∗) is computed and then
the joint state is in a superposition of StdDecomp(δ∗,d∗)|w,D∪((δ∗, d∗), r∗)〉, here
w is other registers of this game and D(δ∗, d∗) = ⊥. Then by the definition of
UE, we can conclude that for any ciphertext (c, d) �= (c∗, d∗),

UE|(c, d), z1,D ∪ ((δ∗, d∗), r∗)〉 = |(c, d), z1 ⊕ (b, x),D ∪ ((δ∗, d∗), r∗)〉

if and only if UE|(c, d), z1,D〉 = |(c, d), z1 ⊕ (b, x),D〉.
Furthermore, observe that StdDecomp(δ∗,d∗) commutes with U′

C of U′
Ext.

Then for any ciphertext (c, d) �= (c∗, d∗),

SU′
Ext◦StdDecomp(δ∗,d∗)|(c, d), z,D ∪ ((δ∗, d∗), r∗)〉

=StdDecomp(δ∗,d∗)|c, z ⊕ m′,D ∪ ((δ∗, d∗), r∗)〉

if and only if U′
Ext|(c, d), z,D〉 = |(c, d), z⊕m′,D〉. This means that the database

state on (δ∗, d∗) is not involved in the decryption process of Game 4. Therefore,
if Find does not occur, then random oracle H and G are never queried by (δ∗, d)
and δ∗ by the adversary. Meanwhile, the adversary A can not get information on
H(δ∗, d∗) either by making decryption queries. Therefore, it is undetectable for
adversary A to produce the challenge ciphertext with uniformly chosen k∗ ∈ Ksy

and r∗ ∈ Rsay, which is the difference between Game 4 and Game 5.

Game 5: In this game, we pick k∗ ∈ Ksy and r∗ ∈ Rasy uniformly and use them
to produce the challenge ciphertext (c∗, d∗). And we replace SU′

Ext with U′
Ext.

As analysis in Game 4, the view of A in Game 4 and that in Game 5 are
identical until Find occurs. Therefore,

Pr[Find : Game 4] = Pr[Find : Game 5] , (6)
Pr[¬Find ∧ Game 4 → 1] = Pr[¬Find ∧ Game 5 → 1] . (7)

Lemma 6. There exists a quantum adversary Asy invoking A such that
∣
∣
∣
∣
Pr[Game 5 → 1] − 1

2

∣
∣
∣
∣
= AdvOT

Asy,Πsy (8)

and Time(Asy) ≈ Time(A) + O((qH + qG + 2qD)2 + qH · qD · Time (Encasy)).

Proof. A quantum algorithm Asy that runs A and breaks the one-time security
of Πsy is constructed as follows.

Asy generates (pk, sk) ← Gen, picks δ∗ $←− Masy and simulates Game 5 for
A. Random oracle G is simulated by a 2(qG + 2qD)-wise independent function,
and other oracles used in Game 5 can be implemented efficiently by Asy. For A’s

52 T. Shan et al.

challenge query (m0,m1), Asy sends it to the challenger in GameOT
Asy,Πsy . After

receiving d∗, Asy picks r ∈ Rasy uniformly, then computes c∗ := Encasy(pk, δ∗; r)
and sends (c∗, d∗) back to A. After receiving b′ from A, Asy output b′.

From the construction of Asy, the output of Asy is correct if and only if A
guesses correctly. Moreover, the view of A invoked by Asy is identical with that
in Game 5. Therefore,

∣
∣
∣
∣
Pr[Game 5 → 1] − 1

2

∣
∣
∣
∣
=

∣
∣
∣
∣
Pr[GameOT

Asy,Πsy → 1] − 1
2

∣
∣
∣
∣
= AdvOT

Asy,Πsy .

Denote by TO the time needed to simulate oracle O, then the running time
of B is given by Time(B) = Time(A) + TG + TH + Time(UExt), where TG =
O

(

(qG + 2qD)2
)

, TH = O(q2H), Time(UExt) = O(qD · qH · Time(Encasy)) by
Appendix A.1. ��

Lemma 7. There is a quantum adversary Aasy invoking A such that

Pr[Find : Game 5] ≤ 4d · AdvOW-CPA
Aasy,Πasy (9)

and Time(Aasy) ≈ Time(A) + O((qH + qG + 2qD)2 + qH · qD · Time (Encasy)).

Proof. Define BOSC
S as a quantum oracle algorithm that on input pk, c∗, runs

A and simulates Game 5 for it. Then we have Pr[Find : Game 5] = Pr[Find :
BOSC

S (pk, c∗)], where c∗ ← Encasy(pk, δ∗), δ∗ is sampled uniformly from Masy.
As analyzed in Game 4, B makes at most d = qH + qG + 2qD queries, then by
Theorem 4,

Pr[Find : BOSC
S (pk, c∗)] ≤ 4d · Pr[(δ, d) ∈ S : (δ, d) ← D(pk, c∗)] .

Here D is a quantum algorithm invoking B. On input (pk, c∗), D chooses
i

$←− {1, . . . , d}, runs BOSC
∅ (pk, c∗) until (just before) i-th query of B, and then

measures the state on the input register of OSC
∅

to obtain (δ, d). Note that the
running time of D and that of B are almost the same.

Because S = {δ∗, δ∗‖·}, (δ, d) ∈ S is equivalent to δ = δ∗. Then D can be
considered as a quantum algorithm Aasy that breaks the OW-CPA security of
Πasy. Therefore,

Pr[(δ, d) ∈ S : (δ, d) ← D(pk, c∗)] = AdvOW-CPA
Aasy,Πasy .

The running time of B is Time(B) = Time(A)+TG+TH+Time(UExt), where
TG = O

(

(qG + 2qD)2
)

, TH = O(q2H), Time(UExt) = O(qD · qH · Time(Encasy)).
��

Summarizing Eq. (1) to (9), we have

AdvIND-qCCA
A,Π ≤ qD· 12√

2γ
+2(d+1)

√

AdvOW-CPA
Aasy,Πasy+4d·AdvOW-CPA

Aasy,Πasy+AdvOT
Asy,Πsy .

QCCA-Secure Generic Transformations in the QROM 53

��
Furthermore, compared with Zhandry’s proof for FO transformation, we

notice that the plaintext extraction procedure in this proof acts the same as
the decryption procedure defined in Hybrid 4 in his proof on input (c, d) such
that c �= c∗. With Theorem 5, we can prove that any polynomial time quantum
adversary distinguishes Hybrid 1 from Hybrid 4 with a negligible probability. On
the other hand, by Eq. (2), it seems unnecessary to restrict that the decryption
oracle outputs ⊥ directly for query (c, d) such that c = c∗.

4.2 REACT: From OW-qPCA to IND-qCCA in the QROM

Let Πasy = (Genasy,Encasy,Decasy) be a PKE with key space Kasy, message
space Masy, randomness space Rasy and ciphertext space Casy. Let Πsy =
(Encsy,Decsy) be a SKE with message space Msy, ciphertext space Csy, key
space Ksy. Let H : {0, 1}∗ → {0, 1}n and G : {0, 1}∗ → Rsy be hash func-
tions. We recall the REACT transformation in the following definition, and then
provide its IND-qCCA security proof.

Definition 6. REACT[Πasy,Πsy,H,G] = (Gen,Enc,Dec) obtained from the
REACT transformation is constructed as in Fig. 5.

Gen Enc(pk, m; (R, r)) Dec(sk, (c1, c2, c3))

(pk, sk) ← Genasy c1 := Encasy(pk, R; r) R := Decasy(sk, c1)
return (pk, sk) c2 := Encsy(G(R), m) m := Decsy(G(R), c2)

c3 := H(R, m, c1, c2) if R = ⊥ or m = ⊥
return (c1, c2, c3) return ⊥

c′
3 := H(R, m, c1, c2)
if c′

3 �= c3, return ⊥
return m

Fig. 5. PKE REACT[Πasy, Πsy, H, G] obtained from REACT transformation

Lemma 8. Let H be the random oracle, then REACT[Πasy,Πsy,H,G] is an
oracle-masked scheme relative to H, and its parameter η is 1/2n.

Proof. We define deterministic polynomial time algorithm A1, A2, A3 and A4:

– A1 takes pk, (R, r) and m as input, evaluates c1 := Encasy(pk,R; r), k :=
G(R), c2 := Encsy(k,m), and then outputs (R,m, c1, c2).

– A2 on input (R,m, c1, c2) and y ∈ {0, 1}n, lets c3 := y and outputs (c1, c2, c3).
– A3 takes sk and (c1, c2, c3) as input, computes R := Decasy(sk, c1). If R = ⊥,

output ⊥. Else, compute k := G(R) and m := Decsy(k, c2). If m = ⊥, output
⊥. Otherwise, output (R,m, c1, c2).

– A4 on input (R,m, c1, c2), outputs m directly.

54 T. Shan et al.

We can verify that with four algorithms defined as above, algorithm Enc and
Dec given in Fig. 5 are written as EncO and DecO in Definition 3 with O = H.
And thus Π is an oracle-masked scheme, and its η is

η = max
(pk,sk),(c1,c2,c3)

1/2n
∣
∣{y ∈ {0, 1}n : (c1, c2, c3) = A2(pk,A3(sk, (c1, c2, c3)), y)}

∣
∣

= max
(pk,sk),(c1,c2,c3)

1/2n
∣
∣{y ∈ {0, 1}n : c3 = y}∣

∣ = 1/2n ,

where (pk, sk) is generated by Gen, (c1, c2, c3) ∈ Casy ×Csy ×{0, 1}n is such that
A3(sk, (c1, c2, c3)) �= ⊥. ��

Theorem 7. For any adversary A against the IND-qCCA security of Π =
REACT[Πasy,Πsy,H,G] in the QROM, making at most qD queries to the decryp-
tion oracle, at most qG queries to random oracle G and at most qH queries to
random oracle H, there exist an adversary Aasy against the OW-qPCA security
of Πasy and an adversary Asy against the OT security of Πsy such that

AdvIND-qCCA
A,Π ≤ qD· 12√

2n
+2(d+1)

√

AdvOW-qPCA
Aasy,Πasy+4d·AdvOW-qPCA

Aasy,Πasy+AdvOT
Asy,Πsy ,

where d = qH + qG + 2qH · qD, Time(Asy) ≈ Time(Aasy) ≈ Time(A) + O(d2).

The IND-qCCA security proof of REACT transformation essentially follows
the proof outline for FO transformation, which is presented in the proof of
Theorem 6. Thus, we present the proof of Theorem 7 in the full version [25].

4.3 TCH: From OW-qPCA to IND-qCCA in the QROM

Transformation TCH transforms a OW-PCA secure PKE to a q-IND-CCA2 secure
KEM in the quantum random oracle model [16].

Let Πasy = (Genasy,Encasy,Decasy) be a PKE with message space Masy.
Let H,G : {0, 1}∗ → {0, 1}n be hash functions. We then introduce TCH and a
new transformation T̃ to prove the IND-qCCA security of TCH.

Definition 7. PKE T̃[Πasy,H] = (Gen,Enc,Dec) and KEM
TCH[Πasy,H,G] = (Gen,Encaps,Decaps) are as shown in Fig. 6, respectively.
Particularly, TCH is composited of transformation T̃ and modular FO transfor-
mation U⊥

m, i.e., TCH[Πasy,H,G] = U⊥
m[T̃[Πasy,H], G].

Lemma 9. T̃[Πasy,H] is an oracle-masked scheme relative to random oracle
H, and its parameter η is 1/2n.

Proof. Tuple (A1,A2,A3,A4), as the decomposition of scheme T̃[Πasy,H], is
defined as follows.

– A1 takes pk, m and r as input, computes c1 := Encasy(pk,m; r), then outputs
(m, c1).

2 Here q is a constant and indicates q classical decryption queries.

QCCA-Secure Generic Transformations in the QROM 55

Gen Enc(pk, m; r) Dec(sk, (c1, c2))

(pk, sk) ← Genasy c1 := Encasy(pk, m; r) m′ := Decasy(sk, c1)
return (pk, sk) c2 := H(m, c1) if H(m′, c1) �= c2

return (c1, c2) return ⊥
return m′

Gen Encaps(pk) Decaps(sk, (c1, c2))

(pk, sk) ← Genasy m
$←− Masy m′ := Decasy(sk, c1)

return (pk, sk) c1 ← Encasy(pk, m) if H(m′, c1) �= c2
c2 := H(m, c1) return ⊥
K := G(m) return G(m′)
return (K, (c1, c2))

Fig. 6. PKE ˜T[Πasy, H] and KEM TCH[Π
asy, H, G]

– A2 takes (m, c1) and c2 ∈ {0, 1}n as input, then outputs (c1, c2).
– A3 takes (c1, c2) as input, evaluates m := Decasy(sk, c1). If m = ⊥, output

⊥. Otherwise, output (m, c1).
– A4 on input (m, c1), outputs m.

Then its parameter η is calculated by

η = max
(pk,sk),(c1,c2)

1/2n · |{y ∈ {0, 1}n : (c1, c2) = A2(pk,A3(sk, (c1, c2)), y)}|

= max
(pk,sk),(c1,c2)

1/2n · |{y ∈ {0, 1}n : c2 = y}| = 1/2n ,

where (pk, sk) and (c1, c2) ∈ Casy × {0, 1}n are such that A3(sk, (c1, c2)) �= ⊥. ��

Theorem 8. If Πasy is δ-correct, for any adversary A against the IND-qCCA
security of Π = TCH[Πasy,H,G] in the QROM, making at most qD queries to
decapsulation oracle Decaps, at most qH queries to random oracle H and at
most qG queries to random oracle G, there exists an adversary Aasy against the
OW-qPCA security of Πasy such that

AdvIND-qCCA
A,Π ≤ qD · 24√

2n
+ 4(d + 1)

√

AdvOW-qPCA
Aasy,Πasy + 4d · AdvOW-qPCA

Aasy,Πasy ,

where d = qD + qH + qG, Time(Aasy) ≈ Time(A) + O
(

d2
)

.

Proof. Game 0: This game is exactly GameIND-qCCA
A,Π , that is given in Fig. 7.

Then we have ∣
∣
∣
∣
Pr[Game 0 → 1] − 1

2

∣
∣
∣
∣
= AdvIND-qCCA

A,Π .

Starting from Game 1, random oracle H is simulated with CStO and its
database register is denoted by D.
Game 1: In this game, we replace decapsulation oracle Decaps with oracle
Decaps1. Decaps1 replies quantum query |(c1, c2), z〉 in three steps:

56 T. Shan et al.

GameIND-qCCA
A,Π Decapsa(sk, (c1, c2))

H
$←− ΩH , G

$←− ΩG if (c1, c2) = a, return ⊥
(pk, sk) ← Gen m′ := Decasy(sk, c1)

b
$←− {0, 1}, m∗ $←− Masy if H(m′, c1) �= c2, return ⊥

c∗
1 ← Encasy(pk, m∗), c∗

2 := H(m∗, c∗
1) return G(m′)

K∗
0 := G(m∗), K∗

1
$←− {0, 1}n

b′ ← A
H,G,Decaps(c∗

1 ,c∗
2)(pk, K∗

b , (c∗
1, c

∗
2))

return [b = b′]

Fig. 7. GameIND-qCCA
A,Π for TCH transformation, where oracle H, G and Decaps are all

quantum-accessible

1. Perform the plaintext extraction procedure UExt of T̃[Πasy,H] to obtain m.
2. If m = ⊥, return |(c1, c2), z ⊕ ⊥〉. Otherwise, return |(c1, c2), z ⊕ G(m)〉.
3. Perform UExt a second time to uncompute m.

Note that the construction of UExt of T̃[Πasy,H] is presented in Appendix A.
We then can construct Decaps1 by invoking plaintext checking oracle PCO,
instead of using sk directly.

That Decaps1 answers qD decapsulation queries requires performing plaintext
extraction procedure 2qD times. By applying Theorem 5,

|Pr[Game 0 → 1] − Pr[Game 1 → 1]| ≤ 10qD · √
η = qD · 10√

2n
.

Game 2: In this game, we change oracle Decaps1 by Decaps2. Decaps2 differs
from Decaps1 only after the challenge query: Decaps2 performs StdDecomp(m∗,c∗

1)

on register D before and after applying Decaps1.
To consider the commutativity of StdDecomp(m∗,c∗

1)
and Decaps1, note that

the second step of Decaps1 commutes with StdDecomp(m∗,c∗
1)

. Then by Lemma 4,
the first and last step commute with StdDecomp(m∗,c∗

1)
by a loss. Therefore,

|Pr[Game 1 → 1] − Pr[Game 2 → 1]| ≤ 14qD · √
η = qD · 14√

2n
.

Game 3: In this game, we change the process of replying random oracle queries:
When random oracles are queried in the execution of A, we query a constant
zero function E and then query these random oracles. Then we have

Pr[Game 2 → 1] = Pr[Game 3 → 1] .

Game 4: In this game, the only change is that the semi-classical oracle OSC
S is

applied before querying E, where set S = {m∗,m∗‖·}.
E is queried at most qD +qH +qG times. We let d = qD +qH +qG, and apply

Theorem 3 to obtain

|Pr[Game 3 → 1] − Pr[Game 4 → 1]| ≤
√

(d + 1)Pr[Find : Game 4] .

QCCA-Secure Generic Transformations in the QROM 57

Game 5: In this game, we pick c∗
2 ∈ {0, 1}n and K∗

0 ∈ {0, 1}n uniformly to
produce (c∗

1, c
∗
2) and K∗. And we replace Decaps2 with Decaps1.

By similar analysis in the proof of Theorem 6, the process of oracle Decaps2
in Game 4 does not disturb the database state on (m∗, c∗

1) if Find does not
occur. Moreover, Game 4 and Game 5 are indistinguishable for adversary A
until Find occurs. Thus,

Pr[Find : Game 4] = Pr[Find : Game 5] ,
Pr[¬Find ∧ Game 4 → 1] = Pr[¬Find ∧ Game 5 → 1] .

Furthermore,
Pr[Find : Game 5] ≤ 4d · AdvOW-qPCA

Aasy,Πasy ,

where adversary Aasy invokes A and breaks the OW-qPCA security of Πasy.
The running time of Aasy is Time(Aasy) ≈ Time(A) + O

(

d2
)

.

Game 6: In this game, OSC
S is removed from the process of E.

The output difference of Game 5 and Game 6 is bounded by Theorem 3.
And in Game 6, K∗

0 and K∗
1 are both chosen from {0, 1}n uniformly, which

means that Game 6 outputs 1 with probability 1/2.
Summarizing the above arguments, we obtain

AdvIND-qCCA
A,Π ≤ qD · 12√

2n
+ 4(d + 1)

√

AdvOW-qPCA
Aasy,Πasy + 4d · AdvOW-qPCA

Aasy,Πasy .

��

Acknowledgments. We thank the anonymous reviewers of PKC 2023, and Shujiao
Cao for their insightful comments and suggestions. This work is supported by National
Natural Science Foundation of China (Grants No. 62172405).

A The Construction of UExt

To implement UExt, we first give some notations, then introduce algorithm
Extract, as a primitive of UExt, and finally present the construction of UExt.

As is shown in definition 4, O is simulated by CStO and we introduce two
definitions related to database D: For any c ∈ C, a completion in D is defined
to be a pair (x, y) ∈ D such that A2(pk, x, y) = c and A3(sk, c) = x. Define Dc

to be the subset of D such that A2(pk, x, y) = c for any (x, y) in Dc. Then any
completion of c in set D is necessarily in set Dc. Note that D contains at most
one completion of c, since c determines A3(sk, c).

Define relation R1(pk, sk) and R2(pk, sk) for any (pk, sk) of Π as below.

R1(pk, sk) := {(x, c) ∈ X × C : ∃ y ∈ Y s.t. A2(pk, x, y) = c} ,

R2(pk, sk) := {(x, c) ∈ X × C : A3(sk, c) = x} ,

where X is the output space of algorithm A1. And we give the definition of the
verification oracle V(pk, sk, ·, ·) of Π. V(pk, sk, ·, ·) takes input (x, c) ∈ X × C

58 T. Shan et al.

and outputs a bit b ∈ {0, 1}. For any (x, c) ∈ R1(pk, sk), V(pk, sk, x, c) = 1 if
and only if (x, c) ∈ R2(pk, sk).

Next, we define a classical algorithm Extract. Extract takes pk, sk, c and
D as input. It looks for a completion of c in D. If a completion (x, y) ∈ D is
found, Extract outputs (1, x). Otherwise, it outputs (0, 0).

Then we give a construction of Extract relative to oracle V. Extract on
input c and D, finds a completion in two steps: For each pair (x, y) in D, it
computes c′ = A2(pk, x, y) and compares c′ with c for equality to check whether
(x, y) ∈ Dc. Then to extract a completion from Dc, it invokes V and com-
putes V(pk, sk, x, y) for each pair (x, y) ∈ Dc. If (x, y) ∈ D exists such that
V(pk, sk, x, y) = 1, Extract outputs (1, x). Otherwise, it outputs (0, 0).

Then we construct UExt with Extract, and we start with the case when the
challenge query does not happen.

1. Evaluate (b, x) = Extract(pk, sk, c,D) in superposition and xor the output
into a newly created register.

2. Apply the following conditional procedures in superposition:
3. Condition on b = 0, evaluate the map |c, z,D, b, x〉 �→ |c, z ⊕ ⊥,D, b, x〉.
4. Condition on b = 1, evaluate the map |c, z,D, b, x〉 �→ |c, z ⊕ A4(x),D, b, x〉.
5. Uncompute (b, x) by evaluating Extract(pk, sk, c,D) in superposition again.

Then discord the new register.

After the challenge query, the challenge ciphertext c∗ is produced and UExt
is implemented below.

1. Apply the following conditional procedures in superposition:
2. Condition on c = c∗, evaluate the map |c, z,D〉 �→ |c, z ⊕ ⊥,D〉.
3. Condition on c �= c∗, apply the procedure in the case when c∗ is undefined.

In addition, the running time of UExt is upper bounded as follows. Denote the
length of database by l. For each database D, |D| ≤ l and Extract invokes A2

and V at most l times during the execution. Thus O(l ·Time(A2)+ l ·Time(V))
is an upper bound of the running time of UExt.

Then we will give respective constructions of UExt for FO[Πasy,Πsy,H,G],
REACT[Πasy,Πsy,H,G] and T̃[Πasy,H]. Since the implementation of V is suf-
ficient to determine the construction of UExt for an oracle-masked scheme Π, we
only give constructions of the verification oracle V for these three schemes.

A.1 The Construction of UExt for FO

For scheme Π = FO[Πasy,Πsy,H,G], we first present relation R1(pk, sk) and
R2(pk, sk) to determine the input form of the verification oracle V, then give
an implementation of V.

By Lemma 5, relation R1(pk, sk) and R2(pk, sk) are subsets of Masy ×Csy ×
Casy × Csy for any (pk, sk) of Π. Tuple (δ, d1, c, d2) ∈ R1(pk, sk) if d1 = d2 and
r ∈ Rasy exists such that c := Encasy(pk, δ; r). Tuple (δ, d1, c, d2) ∈ R2(pk, sk)
if d1 = d2 and Decasy(sk, c) = δ.

QCCA-Secure Generic Transformations in the QROM 59

Further, tuple (δ, d1, c, d2) ∈ R1(pk, sk) also satisfies Decasy(sk, c) = δ by
the correctness of Πasy, and thus (δ, d1, c, d2) ∈ R2(pk, sk). Then R1(pk, sk) is
a subset of R2(pk, sk). By similar arguments, we also conclude that (δ, d1, c, d2) /∈
R1(pk, sk) implies (δ, d1, c, d2) /∈ R2(pk, sk) for any (pk, sk). Thus for any
(pk, sk) of Π, R1(pk, sk) = R2(pk, sk) and

R2(pk, sk) = {(δ, d, c, d) : c ∈ Casy, δ = Decasy(sk, c), d ∈ Csy} .

By the definition of the verification oracle, V for Π can be simply simulated
by an algorithm that takes as input tuple (δ, d1, c, d2) and trivially outputs 1.
Moreover, notice that sk is not used in the construction of UExt except for the
verification oracle. Therefore, UExt for Π can be implemented without sk.

Finally, the running time of UExt is given by O(l · Time(Encasy)).

A.2 The Construction of UExt for REACT

For scheme Π = REACT[Πasy,Πsy,H,G], we only give an implementation of
oracle V here.

By Lemma 8, R1(pk, sk) and R2(pk, sk) are subsets of Masy ×Msy ×Casy ×
Csy × Casy × Csy × {0, 1}n for any (pk, sk). Any tuple (R,m, c1, c2, c

′
1, c

′
2, c

′
3) ∈

R1(pk, sk) if c1 = c′
1, c2 = c′

2. And this tuple is an element of R2(pk, sk) if
R = Decasy(sk, c′

1), m = Decsy(G(R), c′
2), c1 = c′

1, c2 = c′
2. Thus, we have

R1(pk, sk) = {(R,m, c1, c2, c1, c2, c3) : R ∈ Masy,m ∈ Msy, c1 ∈ Casy, c2 ∈
Csy, c3 ∈ {0, 1}n} and R2(pk, sk) = {(R,m, c1, c2, c1, c2, c3) : c1 ∈ Casy, c2 ∈
Csy, c3 ∈ {0, 1}n, R = Decasy(sk, c1),m = Decsy(G(R), c2)}. Then we assume
the input form of V to be (R,m, c1, c2, c1, c2, c3) according to R1(pk, sk) of Π.

We present an algorithm VSim relative to plaintext checking oracle PCO. VSim
takes as input tuple (R,m, c1, c2, c1, c2, c3). It first invokes PCO and obtain b :=
PCO(R, c1). If b = 0, VSim outputs 0. Else, it computes m′ := Decsy(G(R), c2). If
m �= m′, output 0. Else, output 1. Then by the definition of PCO in Appendix B.2,
it is easily verified that V can be simulated by VSim. In this way, UExt for Π is
implemented by invoking PCO instead of using sk directly. Moreover, the running
time of UExt is given by O(l).

A.3 The Construction of UExt for T̃

For scheme T̃[Πasy,H], we give a straightforward way to simulate oracle V here.
According to Lemma 9, tuple ((m, c1), (c′

1, c
′
2)) ∈ R1(pk, sk) if c1 = c′

1, while
tuple ((m, c1), (c′

1, c
′
2)) ∈ R2(pk, sk) if c1 = c′

1 and m = Decasy(sk, c1). Then we
can assume the input form of V to be (m, c1, c1, c2).

We construct an oracle VSim relative to plaintext-checking oracle PCO and
use it to simulate V. On input (m, c1, c1, c2), VSim first invokes PCO and obtains
b := PCO(m, c1). If b = 0, it outputs 0. Otherwise, it outputs 1. Then UExt can
be implemented without sk, and its running time is O(l).

60 T. Shan et al.

B Cryptographic Primitives

Here we introduce secret-key encryption schemes (SKE), public-key encryp-
tion schemes (PKE), key encapsulation mechanisms (KEM) and their security
notions.

B.1 Secret-Key Encryption

Definition 8. A SKE Πsy consists of a pair of polynomial-time algorithms
(E,D) as follows.

1. E, the encryption algorithm, takes as input a message m and a key k, and
outputs a ciphertext c.

2. D, the decryption algorithm, on input a ciphertext c and a key k outputs either
a message m or a special symbol ⊥ if c is invalid.

Let Πsy = (E,D) be a SKE and define one-time (OT) security for it.

Definition 9 (OT). Define the advantage of adversary A against the OT secu-
rity of Πsy as AdvOT

A,Πsy :=
∣
∣
∣Pr[GameOT

A,Πsy → 1] − 1/2
∣
∣
∣ and Pr[GameOT

A,Πsy → 1]

is written by Pr[b′ = b : (m0,m1) ← A, b
$←− {0, 1}, c∗ ← E(k,mb), b′ ← A(c∗)].

Then Πsy is OT secure if AdvOT
A,Πsy is negligible for any polynomial-time adver-

sary A.

B.2 Public-Key Encryption

Definition 10. A PKE Πasy consists of a triple of polynomial-time algorithms
(Gen,Enc,Dec) as follows.

1. Gen, the key generation algorithm, on input 1λ outputs a public/secret key-
pair (pk, sk).

2. Enc, the encryption algorithm, on input a public key pk and a message m
outputs a ciphertext c.

3. Dec, the decryption algorithm, on input a secret key sk and a ciphertext c
outputs either a message m or a special symbol ⊥ if c is invalid.

Let Πasy = (Gen,Enc,Dec) be a PKE with message space M. Then we
introduce γ-spread and δ-correct property for it.

Definition 11 (γ-spread [12]). Πasy is γ-spread if for any pk produced by
Gen(1λ) and any message m ∈ M,

max
c∈{0,1}∗

Pr[c′ = c : c′ ← Enc(pk,m)] ≤ 1/2γ .

And Πasy is called well-spread in λ if γ = ω(log(λ)).

QCCA-Secure Generic Transformations in the QROM 61

Definition 12 (δ-correct [14]). Πasy is δ-correct if

E
(pk,sk)←Gen

[

max
m∈M

Pr[Dec(sk, c) �= m : c ← Enc(pk,m)]
]

≤ δ.

And Πasy is called perfectly correct if δ = 0.

In the following, we define one-wayness under chosen plaintext attacks (OW-
CPA), one-wayness under quantum plaintext checking attacks (OW-qPCA) and
indistinguishability under quantum chosen ciphertext attacks (IND-qCCA) these
three security notions for Πasy.

Definition 13 (OW-CPA). The OW-CPA game for Πasy is defined in Fig. 8.
The advantage of an adversary A against the OW-CPA security of Π is defined
to be AdvOW-CPA

A,Πasy := Pr[GameOW-CPA
A,Πasy → 1]. Then Πasy is OW-CPA secure if

AdvOW-CPA
A,Πasy is negligible for any polynomial-time adversary A.

Definition 14 (OW-qPCA [17]). The OW-qPCA game for Πasy is defined
in Fig. 8. The advantage of an adversary A against the OW-qPCA security of
Πasy is defined as AdvOW-qPCA

A,Πasy := Pr[GameOW-qPCA
A,Πasy → 1]. Πasy is OW-qPCA

secure if AdvOW-qPCA
A,Πasy is negligible for any polynomial-time adversary A.

GameOW-ATK
A,Πasy PCO(m, c)

(pk, sk) ← Gen m′ := Dec(sk, c)

m∗ $←− M return [m = m′]
c∗ ← Enc(pk, m∗)
m′ ← AOATK(pk, c∗)
return [m = m′]

ATK CPA qPCA

OATK ⊥ PCO

Fig. 8. Game OW-ATK for Πasy (ATK ∈ {CPA, qPCA}), where oracle OATK is
quantum-accessible.

Definition 15 (IND-qCCA [5]). The IND-qCCA game for Πasy is defined
in Fig. 9. The advantage of an adversary A against the IND-qCCA security of
Πasy is defined as AdvIND-qCCA

A,Πasy := |Pr[GameIND-qCCA
A,Πasy → 1]− 1/2|. Then Πasy

is IND-qCCA secure if AdvIND-qCCA
A,Πasy is negligible for any polynomial-time adver-

sary A.

B.3 Key Encapsulation

Definition 16. A KEM Πkem consists of a triple of polynomial-time algorithms
(Gen,Encaps,Decaps) as follows.

62 T. Shan et al.

GameIND-qCCA
A,Πasy GameIND-qCCA

A,Πkem Deca(sk, c)

(pk, sk) ← Gen (pk, sk) ← Gen if c = a, return ⊥
(m0, m1) ← ADec⊥(pk) b

$←− {0, 1} m′ := Dec(sk, c)

b
$←− {0, 1} (K∗

0 , c∗) ← Encaps(pk) return m′

c∗ ← Enc(pk, mb) K1
$←− K Decapsa(sk, c)

b′ ← ADecc∗ (pk, c∗) b′ ← ADecapsc∗ (pk, K∗
b , c∗) if c = a, return ⊥

return [m = m′] return [b = b′] K := Decaps(sk, c)
return K

Fig. 9. Game IND-qCCA for Πasy and Πkem, where oracle Deca and Decapsa are both
quantum-accessible.

1. Gen, the key generation algorithm,on input 1λ outputs a public/secret key-pair
(pk, sk).

2. Encaps, the encapsulation algorithm, takes as input a public key pk and out-
puts a ciphertext c and a key k.

3. Decaps, the decapsulation algorithm, on input a secret key sk and a ciphertext
c outputs either a key k or a special symbol ⊥ if c is invalid.

Let Πkem = (Gen,Encaps,Decaps) be a KEM and define IND-qCCA security
for it.

Definition 17 (IND-qCCA [27]). The IND-qCCA game for Πkem is defined
in Fig. 9. The advantage of an adversary A against the IND-qCCA security of
Πkem is defined as AdvIND-qCCA

A,Πkem := |Pr[GameIND-qCCA
A,Πkem → 1] − 1/2|. Then

Πkem is IND-qCCA secure if AdvIND-qCCA
A,Πkem is negligible for any polynomial-time

adversary A.

References

1. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 269–295. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26951-7_10

2. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer
and Communications Security, pp. 62–73 (1993). https://doi.org/10.1145/168588.
168596

3. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 61–90. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36033-7_3

4. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0_3

https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3

QCCA-Secure Generic Transformations in the QROM 63

5. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1_21

6. Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum random
oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp.
1–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_1

7. Chung, K.-M., Fehr, S., Huang, Y.-H., Liao, T.-N.: On the compressed-oracle
technique, and post-quantum security of proofs of sequential work. In: Canteaut,
A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 598–629.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_21

8. Coron, J.S., Handschuh, H., Joye, M., Paillier, P., Pointcheval, D., Tymen, C.:
GEM: a generic chosen-ciphertext secure encryption method. In: Preneel, B. (eds.)
Topics in Cryptology–CT-RSA 2002. CT-RSA 2002. Lecture Notes in Computer
Science, vol. 2271, pp. 263–276. Springer, Berlin (2002). https://doi.org/10.1007/
3-540-45760-7_18

9. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003). https://doi.org/10.1137/S0097539702403773

10. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Online-extractability in the quan-
tum random-oracle model. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in
Cryptology–EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer
Science, vol. 13277, pp. 677–706. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-07082-2_24

11. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

12. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(1), 80–101 (2011). https://doi.org/10.1007/s00145-
011-9114-1

13. Gagliardoni, T., Hülsing, A., Schaffner, C.: Semantic security and indistinguisha-
bility in the quantum world. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9816, pp. 60–89. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53015-3_3

14. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp.
341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12

15. Hövelmanns, K., Hülsing, A., Majenz, C.: Failing gracefully: decryption failures
and the Fujisaki-Okamoto transform. In: Agrawal, S., Lin, D. (eds.) Advances in
Cryptology–ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer
Science, vol. 13794, pp. 414–443. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-22972-5_15

16. Huguenin-Dumittan, L., Vaudenay, S.: On ind-qcca security in the ROM and its
applications - CPA security is sufficient for TLS 1.3. In: Dunkelman, O., Dziem-
bowski, S. (eds.) Advances in Cryptology– EUROCRYPT 2022. EUROCRYPT
2022. Lecture Notes in Computer Science, vol. 13277, pp. 613–642. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-07082-2_22

17. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-Secure key encapsu-
lation mechanism in the quantum random oracle model, revisited. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 96–125. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_4

https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-030-77886-6_21
https://doi.org/10.1007/3-540-45760-7_18
https://doi.org/10.1007/3-540-45760-7_18
https://doi.org/10.1137/S0097539702403773
https://doi.org/10.1007/978-3-031-07082-2_24
https://doi.org/10.1007/978-3-031-07082-2_24
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-031-22972-5_15
https://doi.org/10.1007/978-3-031-22972-5_15
https://doi.org/10.1007/978-3-031-07082-2_22
https://doi.org/10.1007/978-3-319-96878-0_4

64 T. Shan et al.

18. Jiang, H., Zhang, Z., Ma, Z.: Key encapsulation mechanism with explicit rejection
in the quantum random oracle model. In: Lin, D., Sako, K. (eds.) PKC 2019.
LNCS, vol. 11443, pp. 618–645. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17259-6_21

19. Jiang, H., Zhang, Z., Ma, Z.: Tighter security proofs for generic key encapsulation
mechanism in the quantum random oracle model. In: Ding, J., Steinwandt, R.
(eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 227–248. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25510-7_13

20. Kuchta, V., Sakzad, A., Stehlé, D., Steinfeld, R., Sun, S.-F.: Measure-rewind-
measure: tighter quantum random oracle model proofs for one-way to hiding and
CCA security. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12107, pp. 703–728. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45727-3_24

21. Liu, X., Wang, M.: QCCA-secure generic key encapsulation mechanism with tighter
security in the quantum random oracle model. In: Garay, J.A. (ed.) PKC 2021.
LNCS, vol. 12710, pp. 3–26. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-75245-3_1

22. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
23. Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryp-

tosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
159–174. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45353-9_13

24. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7_17

25. Shan, T., Ge, J., Xue, R.: QCCA-secure generic transformations in the quantum
random oracle model. IACR Cryptology ePrint Archive, p. 1235 (2022). https://
eprint.iacr.org/2022/1235

26. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp.
192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5_8

27. Xagawa, K., Yamakawa, T.: (Tightly) QCCA-secure key-encapsulation mechanism
in the quantum random oracle model. In: Ding, J., Steinwandt, R. (eds.) PQCrypto
2019. LNCS, vol. 11505, pp. 249–268. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-25510-7_14

28. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5_44

29. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7_9

https://doi.org/10.1007/978-3-030-17259-6_21
https://doi.org/10.1007/978-3-030-17259-6_21
https://doi.org/10.1007/978-3-030-25510-7_13
https://doi.org/10.1007/978-3-030-45727-3_24
https://doi.org/10.1007/978-3-030-45727-3_24
https://doi.org/10.1007/978-3-030-75245-3_1
https://doi.org/10.1007/978-3-030-75245-3_1
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
https://eprint.iacr.org/2022/1235
https://eprint.iacr.org/2022/1235
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-030-25510-7_14
https://doi.org/10.1007/978-3-030-25510-7_14
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9

A Thorough Treatment
of Highly-Efficient NTRU Instantiations

Julien Duman1 , Kathrin Hövelmanns2 , Eike Kiltz1(B) ,
Vadim Lyubashevsky3, Gregor Seiler3, and Dominique Unruh4

1 Ruhr-Universität Bochum, Bochum, Germany
eike.kiltz@rub.de

2 TU Eindhoven, Eindhoven, The Netherlands
3 IBM Research Europe, Zurich, Switzerland

4 University of Tartu, Tartu, Estonia

Abstract. Cryptography based on the hardness of lattice problems over
polynomial rings currently provides the most practical solution for pub-
lic key encryption in the quantum era. Indeed, three of the four schemes
chosen by NIST in the recently-concluded post-quantum standardization
effort for encryption and signature schemes are based on the hardness of
these problems. While the first encryption scheme utilizing properties of
polynomial rings was NTRU (ANTS ’98), the scheme that NIST chose
for public key encryption (CRYSTALS-Kyber) is based on the hardness
of the somewhat-related Module-LWE problem. One of the reasons for
Kyber’s selection was the fact that it is noticeably faster than NTRU
and a little more compact. And indeed, the practical NTRU encryption
schemes in the literature generally lag their Ring/Module-LWE counter-
parts in either compactness or speed, or both.

In this paper, we put the efficiency of NTRU-based schemes on
equal (even slightly better, actually) footing with their Ring/Module-
LWE counterparts. We provide several instantiations and transforma-
tions, with security given in the ROM and the QROM, that are on par,
compactness-wise, with their counterparts based on Ring/Module-LWE.
Performance-wise, the NTRU schemes instantiated in this paper over
NTT-friendly rings of the form Zq[X]/(Xd − Xd/2 +1) are the fastest of
all public key encryption schemes, whether quantum-safe or not. When
compared to the NIST finalist NTRU-HRSS-701, our scheme is 15% more
compact and has a 15X improvement in the round-trip time of ephemeral
key exchange, with key generation being 35X faster, encapsulation being
6X faster, and decapsulation enjoying a 9X speedup.

1 Introduction

The NTRU encryption scheme [19] was the first truly practical scheme based on
the hardness of lattice problems over polynomial rings and, in many ways, the
first really practical quantum-safe encryption scheme. The hardness of NTRU
was originally stated as its own assumption, but as lattice cryptography evolved

c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 65–94, 2023.
https://doi.org/10.1007/978-3-031-31368-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_3&domain=pdf
http://orcid.org/0000-0002-5195-1290
http://orcid.org/0000-0002-5478-0140
http://orcid.org/0000-0003-1178-048X
http://orcid.org/0000-0001-8965-1931
https://doi.org/10.1007/978-3-031-31368-4_3

66 J. Duman et al.

over the next few decades, the most natural way to view the hardness behind
the NTRU encryption scheme was as a combination of two assumptions over
a polynomial ring R = Zq[X]/(f(X)). The first assumption, which we call the
NTRU assumption, is that the quotient of two polynomials f and g, with coef-
ficients chosen from some narrow distribution, looks uniform in R. The second
assumption, which later became known as the Ring-LWE assumption [25,30]
states that given a uniformly random h ∈ R, and hr+ e, for polynomials e and
r with coefficients from a narrow distribution, it is difficult to recover e. One
could eliminate the need for the first assumption by choosing a relatively wide
distribution for f and g [29], but the resulting scheme becomes very inefficient;
thus all practical instantiations of NTRU were based on these two assumptions.

Since Regev’s seminal work constructing an encryption scheme based on the
LWE problem over general lattices [28], and its subsequent porting to lattices
over polynomial rings [23,25,30], most of the community effort of shifted to
building encryption schemes that do not require the NTRU assumption, and
are just based on the decisional version (which was shown to be equivalent to
the search one in [25], and for which no faster practical algorithm is known) of
the Ring/Module-LWE problems. Indeed, in the first round of the NIST call for
quantum-safe encryption, only 3 out of 17 proposals for lattice-based encryption
schemes over polynomial rings relied on the NTRU assumption, while the rest
used just an LWE-type assumption.

There are a few reasons for avoiding the NTRU assumption. The first is that
the additional NTRU assumption is known to be false in the regime where the
modulus q of the ring is noticeably larger than the dimension [1,8,15,22] (for
the same parameters, the Ring-LWE problem is still believed to be hard). While
the attacks against this parameter regime have not been extended to the one
used for public key encryption, it does give some reason for concern. Secondly,
in many rings, the division operation is significantly more expensive than multi-
plication, and so the assumption was also avoided for efficiency considerations.
And third is that the NTRU assumption does not naturally lend itself to more
flexible instantiations, such as Module-LWE. That is, it naturally operates over
a module of dimension 1 (again, due to the division operation), whereas LWE-
based schemes can be extended to work over modules of a larger dimension. This
has the advantage that the underlying ring operations do not need to change as
one increases the security parameter. In fact, all of the non-NTRU finalists in
the NIST post-quantum standardization process use the module structure [5,10].
These schemes are also significantly more efficient than the finalist NTRU-based
proposal [21].1

There are, however, also several advantages to NTRU-based schemes. One
real-world advantage that NTRU has is that all patents on it have expired, while
there may still conceivably be some (possibly still hidden) intellectual prop-
erty claims on the Ring/Module-LWE schemes. Also, NTRU may have practical
advantages when used in certain scenarios involving zero-knowledge proofs, since

1 The schemes [5,10] can be made even more efficient by eliminating an unnecessary
input to the random oracle (see [17]) which did not exist in [21].

A Thorough Treatment of Highly-Efficient NTRU Instantiations 67

the ciphertext has a simpler form and thus may require shorter proofs that it was
correctly formed. In this paper, our goal is to put NTRU-based constructions on
equal footing, performance-wise, as schemes based on Ring/Module-LWE.

1.1 Speed

The most efficient lattice-based schemes are those that natively work over rings
Zq[X]/(f(X)) that support the Number Theory Transform (NTT). When the
polynomial f(X) factors into components having small degree, one can perform
multiplication (and division) in the ring using the Chinese Remainder Theo-
rem. That is, one evaluates the multiplicands modulo these factors, performs
component-wise multiplication, and finally converts the product back into the
original form. The process of efficiently doing these computations is the NTT
and the inverse NTT.

The most commonly used NTT-friendly ring is of the form Zq[X]/(Xd + 1),
where d is a power-of-2. For well-chosen q, the polynomial Xd + 1 = (Xd/2 −
r)(Xd/2 + r) mod q, and the respective factors similarly split as (Xd/2 − r) =
(Xd/4 −√

r)(Xd/4 +
√

r) mod q, etc. until one reaches an irreducible polynomial
of a small (usually 1 or 2) degree. Because of this very nice factorization (the
“niceness” mainly rests in the fact that all factors have 2 non-zero coefficients,
making reduction modulo them linear-time), evaluation of any polynomial mod-
ulo the irreducible factors can be done using approximately 2d log d operations
over Zq. These rings also have some very nice algebraic properties – in partic-
ular the expansion factor [24] controlling the growth of polynomial products in
the ring is the minimal of all rings. The one disadvantage of these rings is that
they are sparse and so one cannot always find one for an appropriate security
level. The hardness of the NTRU and Ring-LWE problem directly depends on
the degree of the polynomial f(X). Based on the current state of knowledge,
obtaining 128-256 bit hardness requires taking dimensions somewhere between
512 and 1024. Since there are no powers of 2 in between, and because one may
need to go beyond 1024 in case somewhat better algorithms are discovered, the
sparsity of these rings is an inconvenience. The Module-LWE problem overcomes
this inconvenience because the problem instance can be made up of a matrix of
smaller rings, but this does not work for NTRU because this approach would
significantly increase the size of the public key.

One can overcome this issue in NTRU by using “NTT-friendly” rings
f(X) = Xd − Xd/2 + 1 where d = 2i3j .2 The rings Zq[X]/(Xd − Xd/2 + 1), for
appropriately-chosen primes, also support efficient NTT because Xd−Xd/2+1 =
(Xd/2 + ζ)(Xd/2 − (ζ + 1)) mod q, where ζ is a third root of unity in Zq

(not equal to 1). And after that, every term (Xk − r) factors into either
(Xk/2−√

r)(Xk/2+
√

r) or into (Xk/3− 3
√

r)(Xk/3−ζ 3
√

r)(Xk/3−ζ2 3
√

r) modulo
q. In both cases, one can efficiently proceed with the very efficient NTT because
all factors have two non-zero coefficients. As can be seen from Table 1, there are

2 The polynomial f(X) is therefore the 3d-th cyclotomic polynomial.

68 J. Duman et al.

many such polynomials of degree between 512 and 1024. In the work of [26], a
version of NTRU was implemented over the ring Z7681[X]/(X768 − X384 + 1),
but due to the structure of the ring, no factorization into three terms was
necessary. In this work we show that there aren’t any efficiency issues when
the latter does happen, and give an instantiation of a scheme over the ring
Z2917[X]/(X648 −X324 +1). The conclusion is that all of the schemes in Table 1
should have almost equally good instantiations.

One should also mention that Module and Ring-LWE schemes can be used
in non-NTT-friendly rings [9], and the inefficiency of multiplication in these
rings can be partially overcome by doing multiplication in a ring with a larger
modulus and/or degree of f(X) which supports NTT, and then reducing back
into the original ring. This is, however not possible for NTRU-based schemes
because NTRU requires polynomial division, and it is not known how to map
this operation between rings. On the other hand, if a ring supports NTT, then
division is essentially as fast as multiplication, with only the operation in the
base ring (which is of a very low degree) being different. Thus any hope of having
NTRU-based schemes being competitive with Ring/Module-LWE schemes seems
to require defining the NTRU encryption scheme directly over NTT-friendly
rings.

A reason that NTRU was traditionally not defined over NTT-friendly-rings
was presumably due to an attack of Gentry [18] against a version of NTRU
over the ring Zq[X]/(Xd − 1), where the polynomial Xd − 1 could be factored
as (Xd/2 − 1)(Xd/2 + 1). The observation was that instead of working over the
ring Zq[X]/(Xd − 1), one can reduce everything modulo Xd/2 − 1 and work
over the ring Zq[X]/(Xd/2 − 1). What makes the attack work is that reduction
modulo Xd/2 − 1 is a ring homomorphism and that this reduction increases
the size of the maximum coefficient by at most a factor of 2. Thus one can
solve a shortest vector problem (upon which NTRU is based) in a lattice with
a significantly smaller dimension, but whose norm increased by only a factor of
2. From this attack, one might infer that it’s important to have the polynomial
f(X) be irreducible (or have a large component of it be irreducible). Interestingly,
however, the theoretical works of [23–25] showed that in the reductions from
worst-case lattice problems to average-case problems over polynomial rings (e.g.
Ring/Module-SIS, Ring/Module-LWE), one needs the polynomial f(X) to be
irreducible in Z[X], but the polynomial f(X) splitting in Zq[X] does not seem
to make the average-case problem easier.3 And in fact, most practical lattice-
based constructions work over the ring Zq[X]/(Xd + 1), where d is a power of
2. While polynomials Xd + 1 are irreducible in Z[X], they are always reducible

3 As a sanity check, one can see that the attack in [18] does not work because it is
impossible for a polynomial f(X) that’s irreducible over the integers to split modulo
q into polynomials of large degree (e.g. d/2) whose coefficients are small. For example,
it’s trivial to see that Xd +1 cannot have factors Xd/2 ±β with β <

√
q. For a more

general result, one needs a little algebraic number theory (e.g. implicit in the proof
of [27, Lemma 3.1] is that any factor of degree d/k of Xd + 1 has �2-norm at least
p1/k, and this result extends in a similar way to other polynomials).

A Thorough Treatment of Highly-Efficient NTRU Instantiations 69

in Zq[X]; and consistent with the theoretical intuition, there have not been any
attacks exploiting the factorization of Xd + 1 modulo q. We therefore don’t see
any danger of using NTRU over NTT-friendly rings.

1.2 Decryption Error and Compactness

To make NTRU encryption work efficiently over NTT-friendly rings, one creates
the public key as h = pg/(pf + 1), for a small prime p, and then the encryption
function (which is one-way CPA secure – meaning that it is hard to decrypt for
a random message) outputs c = hr+m, where r,m are polynomials with coef-
ficients coming from a narrow distribution. The decryption algorithm computes
(pf + 1)c = p(gr + fm) + m. If the coefficients of the product p(gr + fm) are
smaller than q/2, then one can recover m by taking the above value modulo p.

One important area of optimization (and what was already recognized in the
original NTRU scheme [19]) is that the product p(gr+fm) does not always need
to be less than q/2, but only with very high probability. On the one hand, this
probability should be negligible, as obtaining decryption failures on honestly-
generated ciphertexts is the folklore way of recovering the secret key in LWE-
based schemes. On the other hand, the decryption error can be defined as an
information-theoretic quantity. Unlike the security parameter, there is therefore
no safety margin needed as there is no danger of a better algorithm being found
to lower this quantity.

To make the decryption error an information-theoretic quantity, one should
define it as being worst-case when the adversary is even given the secret key [20].
In LWE-based schemes, the message is an additive term in the decryption proce-
dure, and since the message’s coefficients are generally small (normally in {0, 1}),
there is no difference between a worst-case and an “average-case” (or even best-
case) message. In NTRU, however, as we saw from the decryption equation,
we need the quantity p(gr + fm) to be smaller than q/2, and m is multiplied
by f . Purposefully choosing a “bad” m can, therefore, make a large difference
(increasing the decryption error by factors larger than 2100 is normal for stan-
dard parameter choices). The naive way to keep the worst-case decryption error
small is to increase the modulus q so that encryption errors do not occur. But
increasing q weakens the security of the scheme by making the lattice-reduction
algorithms more effective.

In this paper, we demonstrate three different ways of handling the decryption
error. The first way is a generic transformation ACWC0 from any scheme into one
in which the message does not affect the decryption error. Hence the worst-case
correctness error of the transformed scheme equals the average-case correctness
error of the original scheme. This transformation is most likely folklore, and it
is presented in Fig. 5 on page 16. The downside of this transformation is that it
increases the ciphertext size by the message length.

The two next manners in which a worst-case decryption error is handled pre-
serves the ciphertext size of the underlying scheme. The transformation ACWC
(Fig. 6 on page 18) requires some specific properties of the distribution from
which the message is generated. A natural distribution that satisfies this prop-
erty is having coefficients uniformly-random modulo p. When p is not a power

70 J. Duman et al.

of 2, this distribution is not particularly pleasant to sample with AVX2 opti-
mizations (due to the branching caused by rejection sampling), and so it was
proposed in [21] to sample the distribution as a binomial distribution modulo
p. Since the binomial distribution is very easy to sample by summing up and
subtracting random bits, and because this value modulo p is pretty close to
the uniform distribution, this is a more preferable way of sampling the secret
coefficients. Still, being required to only sample the message m according to
the uniform distribution could be an acceptable compromise. It is an interesting
open problem as to whether our transformation can still be proved secure under
the same assumptions for a different, more easily sampled, distribution of the
message.

Our final way of handling adversarial-generated messages does not involve
any transformation, but rather shows how for certain distributions of m, the
worst-case decryption error is not much worse than the average-case (or best-
case), as in LWE-based schemes. Consider the coefficients of m as consisting of
a message part μ and an error part ε. One has this implicit split by defining a
function f(μ, ε) = m in a particular way where ε and μ are sampled indepen-
dently. A property that we need from f is that f(μ, ε) mod 2 = μ. Thus if one
recovers m, one can also recover μ. If we want to choose m according to the
binomial distribution (as in e.g. NewHope [3], Kyber [5], or Saber [10]), then f
can be a very simple function as described in Lemma 4.1. And of course, we also
want the decryption error of this function to be approximately the same for all
adversarially-chosen μ. It turns out that because the adversary only gets to set
the residue modulo 2 in the binomial distribution, he has no control over the
sign of the final output, nor the variance of the conditional distribution. And for
this reason, the worst-case error distribution is close to the random one.

A further observation is that if we only need to recover μ = m mod 2, then
there is no need to set the parameter p large enough so as to be able to recover
the entire m. In particular, we could just set p = 2 and the decryption procedure
would still work. By decoupling the magnitude of p from the magnitude of the
coefficients of m, we can set m to be large (which increases the hardness of
Ring-LWE), while keeping p = 2. The value of p has no effect on the hardness
of any version of Ring-LWE (since ph is as uniform as just h), and based on
the state of affairs regarding solving Ring-LWE problems, finding m mod 2 is as
hard as finding m. We discuss the complexity of this problem in Sect. 4.3 and
present the scheme in Sect. 4.4.

1.3 Proofs in the (Q)ROM

Our two transformations ACWC0 and ACWC are defined relative to random ora-
cles, and have proofs in the ROM that are conceptually very simple. We show
that ACWC0 transforms any one-way secure (OW-CPA) encryption scheme into
one that is IND-CPA secure, and that ACWC transforms any OW-CPA secure
encryption scheme into one that is also OW-CPA secure. Note that we can-
not prove IND-CPA security of ACWC since there exist instantiations for which

A Thorough Treatment of Highly-Efficient NTRU Instantiations 71

application of ACWC yields a scheme that simply isn’t IND-CPA secure.4 By
working with q-OW-CPA security,5 a slight generalisation of OW-CPA security, we
can combine the aforementioned transformations with the well-known Fujisaki-
Okamoto transformation FO⊥ in a way such that we obtain a tight proof for the
resulting KEMs.

Since post-quantum security is a central goal of the constructions in this
paper, we also prove all our results in the quantum random oracle model
(QROM). That is, we show the security even if the adversary can perform queries
to the random oracle in superposition between different inputs. The two con-
structions involving the random oracle are ACWC0 and ACWC. We show that
ACWC0 transforms a one-way secure (OW-CPA) encryption scheme into an IND-
CPA secure one. This proof is a reasonably straightforward application of the
one-way to hiding theorem, O2H [31] in the variant from [4]. (O2H is a common
technique used in random oracle proofs for encryption schemes.) The drawback
of the use of O2H is that it introduces a square-root in the adversary’s advan-
tage. (That is, if the adversary has ε advantage against the underlying scheme
and it makes q random oracle queries, then it has advantage O(

√
q2ε) against

the result of the transformation.)
In contrast, security of ACWC does not have an obvious proof using O2H.

Instead, we use the measure-and-reprogram technique (M&R) from [11,13]. This
technique was developed for proving the security of the Fiat-Shamir transform.
The fact that this technique works here is unexpected for two reasons: First,
it was designed specifically with transformations of sigma-protocols (or related
structures) into signatures or non-interactive proof systems in mind; transfor-
mations of encryption schemes such as ACWC have a very different structure.
Second, M&R is a technique for adaptive reprogramming of the random oracle:
Its core feature is, on a high level, that we can measure a query that the adver-
sary will use later for its attack (e.g., as part of a forged signature), and sneak
in a value of interest Θ into the answer to exactly that query (e.g., the challenge
in a sigma-protocol). But in our setting, there is no such value of interest Θ.
(We use a random value Θ when invoking the M&R theorem because that is
technically required, but we would be perfectly happy if the random oracle was
not reprogrammed at all.) We thus “misuse” the M&R for a situation where
reprogramming is not required in the first place. This raises the interesting open
question whether there could be variants of the M&R theorem that only cover
the measurement-part of it (without reprogramming) but have tighter parame-
ters and could be used in situations such as ours to produce a tighter reduction.

4 Say that PKE has message space M = M1 × M2,and say that PKE’s encryptions
of messages M1||M2 leak M1 and the first bit of M2. When instantiated with the
classical one-time-pad, ACWC encrypts a message m by sampling a message M1 ←
M1 and encrypting M1||m ⊕ F(M1), thereby leaking the first bit of m.

5 In q-OW-CPA security the adversary is given an encryption of a random plaintext
and wins if it returns a set of cardinality at most q containing the plaintext. For
q = 1 this is OW-CPA security.

72 J. Duman et al.

NTRU-A (§4.4)

OW-CPA
CCA-NTRU-A

GenNTRU[Ud
3]

PRE-CPA

NTRU-B (§4.5)
q-OW-CPA

CCA-NTRU-B

GenNTRU[ψ̄d
2]

PRE-CPA

NTRU-C (§4.5)
IND-CPA

CCA-NTRU-C

FO⊥

L. 2.1, Th. 2.3

ACWC (§3.2)
L. 2.2, Th. 3.9

FO⊥

Th. 2.3

ACWC0 (§3.1)
L. 2.2, Th. 3.3

FO⊥

[20]

︸ ︷︷ ︸

average-case correctness error
︸ ︷︷ ︸

worst-case correctness error
︸ ︷︷ ︸

CCA-secure KEM

Fig. 1. Overview: How to obtain efficient IND-CCA-secure KEMs from our NTRU-
based PKE schemes. Solid arrows indicate tight reductions in the ROM, dashed arrows
indicate non-tight reductions. q-OW-CPA is a strengthening of standard OW-CPA secu-
rity, where the adversary is allowed to return q many guesses (instead of just one).
PRE-CPA security stands preimage resistance which in the setting of NTRU is essen-
tially equivalent to OW-CPA security.

Furthermore, the use of M&R also leads to better parameters than we got
using O2H: The advantage of the adversary against the result of the transforma-
tion ACWC is O(q2ε), i.e., no square-root is involved. (However, in contrast to
ACWC0, we only get one-way security. This is not a limitation of the proof tech-
nique, though, but stems from the fact that ACWC does not achieve IND-CPA
security. But note that in a setting were we only need one-way security, we still
do not have a better bound than

√
q2ε for ACWC0; in this case, ACWC gives

strictly better security.)

1.4 Concrete Results and Comparison to the State of the Art

We now describe the various ways that one can instantiate NTRU using the tech-
niques described in this paper and compare it to other lattice-based schemes. We
defined three different ways to instantiate NTRU, with all three approaches being
in the same ring and only differing in the secret distributions and the manner in
which it is transformed into a scheme with a small “worst-case” decryption error.
When working over the ring Zq[X]/(Xd−Xd/2+1), we will write NTRU-Ad

q to be
the scheme in Fig. 7 which did not require any transformation. By NTRU-Bd

q , we
denote the scheme presented in Fig. 9 which is derived from the generic NTRU
scheme GenNTRU (Fig. 8) by utilizing the size-preserving transformation from
Fig. 6. And by NTRU-Cd

q , we refer to the scheme in Fig. 10 derived from the folk-
lore transformation of the generic NTRU scheme GenNTRU (Fig. 8) in Fig. 5. All
of the aforementioned schemes are CPA-secure, and we use the standard FO-
transformation from Fig. 4 to create a CCA-KEM. The above is summarized in
the overview Fig. 1.

In Table 1, we summarize the “interesting” instantiations of the schemes
described in this paper having between 150 and 350 bits of security. We also

A Thorough Treatment of Highly-Efficient NTRU Instantiations 73

compare these to other instantiations of NTRU and Module-LWE based schemes
in Fig. 2. For a consistent evaluation of security, we used the online LWE hard-
ness estimator [2]. This estimator has undergone some updates since its initial
release, but still does not (as of this writing) include some recent cryptanalytic
techniques (e.g. [14]) which could lower the security a little bit. Nevertheless, it
still provides very meaningful results for comparing between various schemes.

In comparison to NTRU-HRSS, which was a finalist in the NIST standardiza-
tion process, NTRU-C648

2917 is based on an NTRU problem with the same error dis-
tribution, and has an approximately equal security level. But due to the fact that
we show how to control the worst-case decryption error, the ciphertext/public
key sizes are 15% smaller. If one looks at NTRU-C768

3457, which has a similar public
key/ciphertext size as NTRU-HRSS-701, one sees that the tradeoff for no error
vs. 2−252 error is 30 bits of security, and the difference in security is even larger
if one considers the NTRU-A version. In our opinion, exchanging such a large
security margin in return for reducing 2−250 to 0 in the information-theoretic
decryption error term, is not a sensible trade-off. The comparison of our NTRU
instantiations to Kyber shows that the two schemes are essentially on the same
size/security curve.

We produced a sample implementation of NTRU-A648
2917, as it is most sim-

ilar in security to NTRU-HRSS-701. In Table 3, we compare this scheme to
NTRU-HRSS and other highly-efficient lattice-based schemes such as Kyber and
NTTRU. The efficiency of our implementation is similar to that of Kyber-512,
even though the NTRU variant has about 30 extra bits of security. The effi-
ciency improvement is due to the fact that there is no matrix sampling required in
NTRU-based schemes. When compared to NTRU-HRSS-701, there is a clear dif-
ference in efficiency, with NTRU-A being over 15X faster for round-trip ephemeral
key exchange. The running time of NTRU-C should be quite similar, and NTRU-B
will be a little hampered by the more complicated (uniform vs. binomial) error
distribution, but should also be close.

While all the parameters in Table 1 are over rings of the form Zq[X]/(Xd −
Xd/2+1), we mention that another interesting instantiation would be a version of
NTRU-A from Fig. 7 with η = ψd

3 over the ring Z3329[X]/(X512 + 1). This would
have exactly the security of Level 1 Kyber, a decryption error of 2−197, and
public key/ciphertext sizes of 768 bytes. The parameters make it an attractive
NIST level 1 candidate. The one difference is that the inertia degree would be
4, which requires one to do inversions and multiplications in degree 4 rings, but
we don’t believe that this should cause a noticeable slowdown.

2 Preliminaries

2.1 Notation

If M is a finite set and ψM is a distribution on M, then m ← ψM samples m
from M according to ψM. We write m ← M to denote sampling according to the
uniform distribution. For a random variable X, H∞(X) denotes its min-entropy.

74 J. Duman et al.

Table 1. Parameters for the NTRU schemes CCA-NTRU-A, CCA-NTRU-B, and
CCA-NTRU-C from this paper. All of the variants of the NTRU schemes work over
the same ring, with the only difference being the underlying distributions of the secrets
and messages, as well as the transformation (if one is necessary) from an instance with
worst-case decryption error to one with average-case. The public key and ciphertext
are of the same length (except for the ciphertext of CCA-NTRU-C, which is 32 bytes
larger) and it is reported in bytes. The inertia degree is the smallest degree of the poly-
nomial ring over which one has to perform operations at the bottom of the NTT tree
(for efficiency, one may not always want to split down to the smallest possible degree,
though). The parameter δ is the decryption error for a worst-case message (computed
via a Pari script), and the security (in the ROM) is obtained using the LWE estimator
script [2].

d q inertia pk & log2(δ) security log2(δ) security log2(δ) security

(dim.) (mod.) degree ct (B)a CCA-NTRU-A CCA-NTRU-B CCA-NTRU-C

576 2593 2 864 -150 162 -165 155 -187 153

576 3457 1 864 -257 157 -297 150 -333 149

648 2917 2 972 -170 180 -187 172 -211 171

648 3889 1 972 -289 175 -335 166 -376 165

768 3457 2 1152 -202 210 -222 201 -252 199

864 3457 3 1296 -182 238 -197 227 -224 225

972 3889 3 1458 -206 265 -223 253 -253 251

1152 3457 1 1728 -140 321 -147 306 -167 304

1296 3889 1 1944 -158 358 -166 342 -189 339

1296 6481 3 2106 -420 339 -471 324 -530 322
a The ciphertext size for NTRU-C is 32 bytes larger.

Table 2. Comparison to Existing Work. The Kyber parameters are taken from the
Round 3 submission to the NIST PQC Standardization Process. The NTTRU parame-
ters are from [26], and the NTRU-HRSS-701 parameters are from [21], and the NTRU-
HRSS-1373 instantiation is from the comments to the NIST PQC mailing list. For
consistency of comparing these schemes to those in Table 1, the security of the schemes
are computed using the LWE estimator script [2].

dimension modulus pk (B) ct (B) log2(δ) security

Kyber-512 512 3329 800 768 -139 148

Kyber-768 768 3329 1184 1088 -164 212

Kyber-1024 1024 3329 1568 1568 -174 286

NTTRU 768 7681 1248 1248 -1217 183

NTRU-HRSS-701 701 8192 1138 1138 −∞ 166

NTRU-HRSS-1373 1373 16384 2401 2401 −∞ 314

A Thorough Treatment of Highly-Efficient NTRU Instantiations 75

Table 3. Number of cycles (on a Skylake machine) for various operations of a CCA-
secure KEM. The numbers for Kyber-512 and Kyber-768 are taken from [17, Table 3],
which shows an improved implementation of Kyber90’s (i.e. the version using AES
and SHA-256 instead of SHAKE) when using prefix hashing and employing an explicit
reject in the decapsulation procedure.

Scheme Key Gen Encaps Decaps Total Round-Trip

CCA-NTRU-A648
2917 (This Paper) 6.2K 5.6K 7.3K 19.1K

NTRU-HRSS-701 220.3K 34.6K 65K 319.9K

NTTRU 6.4K 6.1K 7.9K 20.4K

Kyber-512 (90’s) 6.2K 7.9K 9.2K 23.3K

Kyber-768 (90’s) 11K 13.1K 14.8K 38.9K

For the sake of completeness, we summarise all relevant quantum preliminar-
ies in the full version [16].

2.2 Cryptographic Definitions

Public-Key Encryption. A public-key encryption scheme PKE =
(Gen,Enc,Dec) consists of three algorithms, a probability distribution ψM on a
finite message space M. If no probability distribution is specified we assume ψM
to be the uniform distribution. The key generation algorithm KeyGen outputs a
key pair (pk , sk), where pk also defines a finite randomness space R = R(pk).
The encryption algorithm Enc, on input pk and a message m ∈ M, outputs an
encryption c ← Enc(pk ,m) of m under the public key pk . If necessary, we make
the used randomness of encryption explicit by writing c := Enc(pk ,m; r), where
r ∈ R. By ψR we denote be the distribution of r in Enc, which we require to be
independent of m. The decryption algorithm Dec, on input sk and a ciphertext
c, outputs either a message m = Dec(sk , c) ∈ M or a special symbol ⊥ /∈ M to
indicate that c is not a valid ciphertext.

Randomness Recoverability. PKE is randomness recoverable (RR) if there
exists an algorithm Recover such that for all (pk , sk) ∈ supp(Gen) and m ∈ M,
we have that

Pr
[∀m′ ∈ Preimg(pk , c) : Enc(pk , m′;Recover(pk , m′, c)) �= c | c ← Enc(pk , m)

]
= 0 ,

where the probability is taken over c ← Enc(pk ,m) and Preimg(pk , c) := {m ∈
M | ∃r ∈ R : Enc(pk ,m; r) = c}. Additionally, we will require that Recover
returns ⊥ if it is run with input m �∈ Preimg(pk , c).

Correctness Error. PKE has (worst-case) correctness error δ [20] if

E

[
max
m∈M

Pr [Dec(sk ,Enc(pk ,m)) �= m]
]

≤ δ ,

76 J. Duman et al.

where the expectation is taken over (pk , sk) ← Gen and the choice of the random
oracles involved (if any). PKE has average-case correctness error δ relative to
distribution ψM over M if

Pr [Dec(sk ,Enc(pk ,m)) �= m] ≤ δ ,

where the probability is taken over (pk , sk) ← Gen, m ← ψM and the random-
ness of Enc. This condition is equivalent to

E [Pr [Dec(sk ,Enc(pk ,m)) �= m]] ≤ δ ,

where the expectation is taken over (pk , sk) ← Gen, the choice of the random
oracles involved (if any), and m ← ψM.

Spreadness. PKE is weakly γ-spread [12] if

E

[
max

m∈M,c∈C
Pr [Enc(pk ,m) = c]

]
≤ 2−γ ,

where the probability is taken over the random coins of encryptions and the
expectation is taken over (pk , sk) ← Gen.

Security. In the usual one-way game OW-CPA for PKE, the adversary has
to decrypt a ciphertext c∗ of a random plaintext m∗ ← ψM by sending one
candidate m′ back to the challenger, and wins if m′ = m∗. In the generalized
q-OW-CPA game, the adversary gets to send a set Q of size at most q and wins if
m∗ ∈ Q. The formal definition of q-OW-CPA is given in Fig. 2 and the advantage
function of an adversary A is

Advq-OW-CPA
PKE (A) := Pr

[
q-OW-CPAA

PKE ⇒ 1
]

.

For q = 1 one recovers standard OW-CPA security, i.e., OW-CPA := 1-OW-CPA.
We also introduce preimage resistance of PKE by the defining the advantage
function of an adversary A as

AdvPRE-CPAPKE (A) := Pr
[
PRE-CPAA

PKE ⇒ 1
]

,

Game q-OW-CPA
(pk , sk) ← KeyGen
m∗ ← ψM
c∗ ← Enc(pk , m∗)
Q ← A(pk , c∗)
return �m∗ ∈ Q ∧ |Q| ≤ q�

Game PRE-CPA
(pk , sk) ← KeyGen
m∗ ← ψM
c∗ ← Enc(pk , m∗)
(m, r) ← A(pk , c∗)
return �Enc(pk , m; r) = c∗�

Game IND-CPA
(pk , sk) ← Gen
(m0, m1) ← A1(pk)
b ← {0, 1}
c∗ ← Enc(pk , mb)
b′ ← A2(pk , c∗)
return �b = b′�

Fig. 2. Left: q-Set One-Wayness game q-OW-CPA for PKE, where q = 1 is standard
OW-CPA. Middle: Preimage resistance game PRE-CPA for PKE. Right: game IND-CPA
for PKE and adversary A = (A1, A2).

A Thorough Treatment of Highly-Efficient NTRU Instantiations 77

where game PRE-CPA is given in Fig. 2.
Finally, we define the IND-CPA advantage for an adversary A as

AdvIND-CPA
PKE (A) :=

∣∣∣
∣Pr

[
IND-CPAA

PKE ⇒ 1
]

− 1
2

∣∣∣
∣ ,

where the game IND-CPAA
PKE is defined in Fig. 2.

Lemma 2.1 (PKE OW-CPA =⇒ PKE q-OW-CPA). For any adversary A
against the q-OW-CPA security of PKE, there exists an OW-CPA adversary
against PKE with

Advq-OW-CPA
PKE (A) ≤ q · AdvOW-CPA

PKE (B) .

where the running time of B is about that of A.

Proof. Sketch. The reduction B runs the adversary A on the inputs it got from its
OW-CPA challenger and obtains the set Q of size q. It samples m ← Q uniformly
at random and forwards m to the OW-CPA challenger, with probability 1/q it
guessed the right one when the solution is contained in Q, thus, the claim follows.

Lemma 2.2 (PKE PRE-CPA and RR
tightly
=⇒ PKE q-OW-CPA). If PKE is ran-

domness recoverable, then for any adversary A against the q-OW-CPA security
of PKE, there exists an PRE-CPA adversary B against PKE with

Advq-OW-CPA
PKE (A) ≤ AdvPRE-CPAPKE (B) .

where the running time of B is about Time (A) + q · (Time (Recover) +
Time (Enc)).

Proof. The reduction B forwards to A the challenge public-key and ciphertext
c∗ and obtains a set Q. For every m ∈ Q it runs r := Recover(pk ,m, c) and then
runs Enc(pk ,m; r) to obtain c. If c equals c∗ it returns (m, r) as the solution,
otherwise it continues with the search. If no element is found it can return a
random m ← M. Clearly, if A wins, then so does B. Since the reduction B runs
A once, and algorithms Recover and Enc at most q many times, the claim follows.

Key-Encapsulation Mechanism. A key encapsulation mechanism KEM =
(Gen,Encaps,Decaps) consists of three algorithms and a finite key space K sim-
ilar to a PKE scheme, but Encaps does not take a message as input. The key
generation algorithm Gen outputs a key pair (pk , sk), where pk also defines
a finite randomness space R = R(pk) as well as a ciphertext space C. The
encapsulation algorithm Encaps takes as input a public-key pk and outputs a
key encapsulation ciphertext c and a key K, that is (c,K) ← Encaps(pk). The
decapsulation algorithm Decaps, on input sk and a ciphertext c, outputs either
a key K = Decaps(sk , c) ∈ K or a special symbol ⊥ /∈ K to indicate that c is not
a valid ciphertext. We say KEM has correctness error δ if

Pr [Decaps(sk , c) = K | (c,K) ← Encaps(pk)] ≤ δ ,

78 J. Duman et al.

where the probability is taken over the randomness in Encaps and (pk , sk) ← Gen.
In terms of KEM’s security, we consider the IND-CCA advantage function of an
adversary A:

AdvIND-CCA
KEM (A) := Pr

[
IND-CCAA

KEM ⇒ 1
]

− 1
2

where game IND-CCA is defined in Fig. 3.

IND-CCA
01 (pk , sk) ← Gen
02 (K0, c

∗) ← Encaps(pk)
03 K1 ← K, b ← {0, 1}
04 b′ ← ADecaps(pk , c∗, Kb)
05 return �b = b′�

Decaps(c �= c∗)
06 return Decaps(sk , c)

Fig. 3. Game IND-CCA for KEM

The Fujisaki-Okamoto Transformation with Explicit Reject. To a
public-key encryption scheme PKE = (KeyGen,Enc,Dec) with message space
M and associated uniform distribution over M, randomness space R, and
hash functions H : {0, 1}∗ → R × K, we associate KEM := FO⊥[PKE,H] :=
(KeyGen,Encaps,Decaps). Its constituting algorithms are given in Fig. 4. In [17]
it was formally shown that including a short prefix of the public-key into the
hash function provably improves the multi-user security of the Fujisaki-Okamoto
transform. In this work, for simplicity, we will omit this inclusion and analyze
the security in the single-user setting.

Theorem 2.3 (qH-OW-CPA of PKE
ROM=⇒ IND-CCA of KEM). For any adver-

sary A, making at most qD decapsulation, qH hash queries, against the IND-CCA
security of KEM, there exists an adversary B against the qH-OW-CPA security
of PKE with

AdvIND-CCA
KEM (A) ≤ AdvqH-OW-CPA

PKE (B) + qD2−γ + qHδ ,

where the running time of B is about that of A.

The proof is very similar to formerly known proofs for FO - after showing how to
simulate oracle Decaps, we argue that the challenge key cannot be distinguished
from random unless the adversary A queries H on the challenge plaintext. When
reducing to plain OW-CPA security, a reduction would have to guess, but a
reduction to qH-OW-CPA security can simply keep a list of all of A queries to H
and return this list as the list of plaintext guesses. For the sake of completeness,
a full proof is given in the full version [16].

Theorem 2.4 (IND-CPA of PKE ROM=⇒ IND-CCA of KEM [20]). For any adver-
sary A, making at most qD decapsulation, qH hash queries, against the IND-CCA

A Thorough Treatment of Highly-Efficient NTRU Instantiations 79

Encaps(pk)
01 m ← M
02 (r, K) := H(m)
03 c := Enc(pk , m; r)
04 return (K, c)

Decaps⊥(sk , c)

05 m′ := Dec(sk , c)
06 (r′, K′) := H(m′)
07 if m′ = ⊥ or c �= Enc(pk , m′; r′)
08 return ⊥
09 return K′

Fig. 4. Key encapsulation mechanism KEM = FO⊥[PKE,H], obtained from PKE =
(KeyGen,Enc,Dec) with worst-case correctness error.

security of KEM, there exists an adversary B against the IND-CPA security of
PKE with

AdvIND-CCA
KEM (A) ≤ 2

(
AdvIND-CPA

PKE (B) + qH/ |M|) + qD2−γ + qHδ ,

where the running time of B is about that of A.

Theorem 2.5 (OW-CPA of PKE
QROM=⇒ IND-CCA of KEM [12]). For any quan-

tum adversary A, making at most qD decapsulation, qH (quantum) hash queries,
against the IND-CCA security of KEM, there exists a quantum adversary B
against the OW-CPA security of PKE with

AdvIND-CCA
KEM (A) ≤ 2q

√
AdvOW-CPA

PKE (B) + 24q2
√

δ + 24q
√

qqD · 2−γ/4 .

where q := 2(qH + qD) and Time (B) ≈ Time (A)+O(qH · qD ·Time (Enc)+ q2).

3 Worst-Case to Average-Case Decryption Error

In this section we introduce two worst-case to average case correctness transform
for public-key encryption.

3.1 Simple Transformation ACWC0 with Redundancy

Let PKE be an encryption scheme with small average-case correctness error and
F be a random oracle. We first introduce a simple transformation ACWC0 by
describing ACWC0[PKE,F] in Fig. 5 which adds λ bits of redundancy to the
ciphertexts, where λ is the size of the message space. The resulting scheme has
small worst-case correctness error.

Lemma 3.1. If PKE is δ-average-case-correct, then PKE′ := ACWC0[PKE,F] is
δ-worst-case-correct.

80 J. Duman et al.

Enc′(pk , m ∈ {0, 1}λ)
01 r ← ψR
02 return (Enc(pk , r),F(r) ⊕ m)

Dec′(sk , (c, u))
03 r := Dec(sk , c)
04 return F(r) ⊕ u

Fig. 5. ACWC0[PKE,F] transforms PKE with small average-case correctness error, with
message space R and associated distribution ψR, into PKE′ with small worst-case
correctness error. The resulting scheme is λ bits longer.

Proof. We need to upper bound δ′ = Emaxm∈{0,1}λ Pr[Dec′(Enc′(m)) �= m],
where the expectation is taken over the internal randomness of KeyGen and
the choice of random oracle F, and the probability is taken over the internal
randomness of Enc′. Since a ciphertext (Enc(pk , r),F(r) ⊕ m) fails to decrypt
iff Enc(pk , r) fails to decrypt, and since message r is drawn according to the
distribution ψR on the message space of PKE,

E max
m∈{0,1}λ

Pr[Dec′(sk ,Enc′(pk , m)) �= m] = E Pr
r←ψR

[Dec(sk ,Enc(pk , r)) �= r] = δ .

Lemma 3.2. If PKE is weakly γ-spread, then so is ACWC0[PKE,F].

Proof. Follows directly by how PKE is used, since the ciphertext of
ACWC0[PKE,F] consists of the ciphertext of PKE, plus the message blinding
part.

Theorem 3.3 (qF-OW-CPA of PKE
ROM=⇒ IND-CPA of ACWC0[PKE,F]). For

any adversary A against the IND-CPA security of ACWC0[PKE,F], issuing at
most qF queries to F, there exists an adversary B against the OW-CPA security
of PKE with

AdvIND-CPA
ACWC[PKE,F](A) ≤ AdvqF-OW-CPA

PKE (B) ,

and the running time of B is about that of A.

In the IND-CPA game for ACWC0[PKE,F], the challenge ciphertext c∗ ←(
Enc(pk , r),F(r) ⊕ mb) perfectly hides mb unless the adversary queries F on

r, thus breaking OW-CPA security of PKE. A reduction to qF-OW-CPA security
can simply keep a list of all of A queries to F and return this list as the list of
plaintext guesses. For the sake of completeness, a full proof of Theorem 3.3 is
given in the full version [16].

Theorem 3.4 (pF-OW-CPA of PKE
QROM
=⇒ IND-CPA of ACWC0[PKE,F]). For

any quantum adversary A against the IND-CPA security of ACWC0[PKE,F], with
query depth at most dF and query parallelism at most pF, there exists a quantum
adversary B against the OW-CPA security of PKE with

AdvIND-CPA
ACWC[PKE,F](A) ≤ 2dF

√
AdvpF-OW-CPA

PKE (B).

and the running time of B is about that of A.

A Thorough Treatment of Highly-Efficient NTRU Instantiations 81

Since the random oracle is now quantum-accessible, we will use the O2H lemma
to argue that we can reprogramm F on r, again with the consequence that c∗ now
perfectly hides b. In accordance with the definition of the O2H extractor, our
reduction will pick one of A’s queries at random, measure this query, and return
the measured plaintexts as its guess list. Since the query has query parallelism
at most pF, the list has at most pF many elements. For the sake of completeness,
a full proof of Theorem 3.4 is given in the full version [16].

3.2 Transformation ACWC Without Redundancy

Let PKE be an encryption scheme with small average-case correctness error,
and let F be a random oracle. We will now introduce our second transforma-
tion ACWC by describing ACWC[PKE,GOTP,F] in Fig. 6. Again, the resulting
scheme has a small worst-case correctness error. Instead of adding redundancy
to the ciphertexts, however, the scheme makes use of a generalised One-Time
Pad GOTP.

Definition 3.5. Function GOTP : X × U → Y is called generalized one-time
pad (for distributions ψX , ψY , ψU) if

1. Decoding: There exists an efficient inversion algorithm Inv such that for all
x ∈ X , u ∈ U , Inv(GOTP(x, u), u) = x.

2. Message-hiding: For all x ∈ X , the random variable GOTP(x, u), for u ← ψU ,
has the same distribution as ψY

3. Randomness-hiding: For all u ∈ U , the random variable GOTP(x, u), for
x ← ψX , has the same distribution as ψY

A simple example of the generalized one-time pad GOTP : {0, 1}n × {0, 1}n →
{0, 1}n for the uniform distributions is GOTP(x, u) := x ⊕ u with inversion
algorithm Inv(y, u) := y ⊕ u. The second and third properties are obviously
satisfied since the XOR operation is a one-time pad.

Let PKE be a public-key encryption scheme with M = M1 × M2, where
ψM = ψM1 × ψM2 is a product distribution. Let GOTP : M′ × U → M2 be a
generalized one-time pad for distribution ψM2 and F : M1 → U be a random
oracle. The associated distributions ψM1 , ψM2 , ψM′ , ψU do not necessarily have
to be uniform. (If ψU is not uniform, then the distribution of the random oracle
F is such that every output is independently ψU -distributed.) PKE′ obtained by
transformation ACWC[PKE,GOTP,F] is described in Fig. 6.

Our first theorem relates the average-case correctness of PKE to the worst-
case correctness of ACWC[PKE,GOTP,F].

Lemma 3.6. Let PKE be a public-key encryption scheme with M = M1 ×
M2, where ψM = ψM1 × ψM2 is a product distribution, and let ‖ψM1‖ :=√∑

M1

ψ1(M1)2. Let GOTP : M′ × U → M2 be a generalized one-time pad (for

82 J. Duman et al.

Enc′(pk , m ∈ M′)
01 M1 ← ψM1

02 M2 := GOTP(m,F(M1))
03 return Enc(pk , M1||M2)

Dec′(sk , c)
04 M1||M2 := Dec(sk , c)
05 m := Inv(M2,F(M1))
06 return m

Fig. 6. ACWC[PKE,GOTP,F] transforms PKE with small average-case correctness error
into PKE′ with small worst-case correctness error. The output length of the two schemes
is the same.

distributions ψM′ , ψU , ψM2) and F : M1 → U be a random oracle. If PKE is δ-
average-case-correct then PKE′ := ACWC[PKE,GOTP,F] is δ′ worst-case-correct
for

δ′ = δ + ‖ψM1‖ ·
(
1 +

√
(ln |M′| − ln ‖ψM1‖)/2

)
.

Proof. For any fixed6 key pair, δ′(pk , sk) can be bounded by an arbitrary t ∈ R
+,

plus the probability that δ′(pk , sk) exceeds t. To bound the latter, we set as t
fixed-pair average-case correctness δ(pk , sk), plus ‖ψM1‖·√(c + ln |M′|)/2, and
use helper Lemma 3.7 below. A full proof is given in the full version [16].

Lemma 3.7. Let g be some function and B be some set such that

∀m ∈ M, Pr
r1←ψ1,r2←ψ2,u←U

[g(m, r1, r2, u) ∈ B] ≤ μ, (1)

where ψ1 and ψ2 are independent. Let F be a random function mapping onto
U . Define ‖ψ1‖ =

√∑
r1

ψ1(r1)2. Then for all but an e−c fraction of random
functions F, we have that ∀m ∈ M,

Pr
r1←ψ1,r2←ψ2

[g(m, r1, r2,F(r1)) ∈ B] ≤ μ + ‖ψ1‖ ·
√

(c + ln |M|)/2 (2)

Proof. We show that for any fixed m ∈ M, the probability in (2) holds for all
but a e−c · |M|−1-fraction of random functions F. The claim then follows by the
union bound. The full proof is provided in the full version [16].

Lemma 3.8. If PKE is weakly γ-spread, then so is ACWC[PKE,GOTP,F].

Proof. Follows directly, since the ciphertext consists of the ciphertext of PKE.

Theorem 3.9 ((q·qF)-OW-CPA of PKE
ROM=⇒ q-OW-CPA of ACWC[PKE,

GOTP,F]). Let q ∈ N. For any adversary A against the q-OW-CPA security of
ACWC[PKE,GOTP,F], making at most qF random oracle queries, there exists an
adversary B against the (q·qF)-OW-CPA security of ACWC[PKE,GOTP,F] with

Advq-OW-CPA
ACWC[PKE,GOTP,F](A) ≤ Adv

(q·qF)-OW-CPA
PKE (B) + q · 2−H∞(ψM′) ,

where the running time of B is about Time (A) + O(q · qF) .
6 In cases where the support of ψM1 is some finite set R, it may be sometimes conve-

nient to upper bound ‖ψM1‖ by ‖ψM1‖∞ · √|R|, where ‖ψM1‖∞ is the maximum
probability for any element in R.

A Thorough Treatment of Highly-Efficient NTRU Instantiations 83

In the q-OW-CPA game for ACWC[PKE,GOTP,F], the adversary is presented
with an encryption c∗ ← Enc(pk ,M∗

1 ‖GOTP(m∗,F(M∗
1))) of a message pair

(M∗
1 ,m∗) ← ψM1 ×ψM′ , and has to return a list Q such that m∗ ∈ Q. Unless A

queries F on M∗
1 , m∗ is perfectly hidden from A and A cannot win with proba-

bility better than q ·2−H∞(ψM′). If A queries F on M∗
1 and wins, a reduction can

again record A’s oracle queries, and then use the query list LF and A’s one-way
guessing list QA to construct its set Q by going over all possible combinations
M ′ = M ′

1||M ′
2, where M ′

1 ∈ LF and M ′
2 := GOTP(m′,F(M ′

1)) for m′ ∈ QA. If
A queries F on M∗

1 and wins, then LF will contain the right M∗
1 , meaning that

B’s list Q will contain the challenge plaintext. Note that the ciphertext for B
would be defined relative to M∗

2 ← ψM2 , but due to the properties of GOTP,
A’s one-way game can be conceptually changed such that its ciphertext is also
defined relative to M∗

2 ← ψM2 , and A wins if it returns a list Q containing
m := Inv(M∗

2 ,F(M∗
1)). For the sake of completeness, a full proof of Theorem 3.9

is given in the full version [16].

Theorem 3.10 (OW-CPA of PKE
QROM
=⇒ OW-CPA of ACWC[PKE,GOTP,F]).

For any quantum adversary A against the OW-CPA security of ACWC[PKE,
GOTP,F], making at most qF random oracle queries, there exists a quantum
adversary B against the OW-CPA security of PKE with

AdvOW-CPA
ACWC[PKE,GOTP,F](A) ≤ (2qF + 1)2 AdvOW-CPA

PKE (B),

where the running time of B is about that of A.

Intuitively, the proof follows the same idea as its classical counterpart. In
contrast to the security proof for ACWC0, however, we can not simply apply
the O2H lemma, as a reduction needs both a query to F from which it can
extract M∗

1 and its final output m, and an O2H extractor would simply abort
A once that A has issued the query to be extracted. We will therefore use the
measure-and-reprogram technique (M&R) from [11,13], arguing that we can run
the adversary, measure a random query, and continue running it afterwards to
obtain its final output m. For the sake of completeness, a full proof of Theorem
3.10 is given in the full version [16].

4 NTRU Encryption over NTT Friendly Rings

In this section we present three instantiations of the NTRU encryption scheme
in polynomial rings of the form Zq[X]/(Xd − Xd/2 + 1), where d = 2i3j , where
the parameters are set such that multiplication and inversion can be performed
very efficiently using the NTT.

4.1 Notation

We denote by R the polynomial ring Zq[X]/(Xd −Xd/2 +1), where the positive
integer d (of the form 2i3j) and the prime q are implicit from context. Elements

84 J. Duman et al.

in R will be represented by polynomials of degree less than d, and we will denote
these polynomials by bold lower-case letters. That is, all elements of R are of

the form h =
d−1∑

i=0

hiX
i ∈ R, where hi ∈ Zq. There is a natural correspondence

between elements in R and vectors in Z
d
q , where one simply writes the coefficients

of a polynomial in vector form. As additive groups, the two are trivially isomor-
phic. We will thus sometimes abuse notation and for a vector �v, write r := �v
to mean that the coefficients of the polynomial r are assigned the coefficients of
the vector �v.

For an integer h ∈ Zq, we write h mod ±q to mean the integer from the
set

{− q−1
2 , . . . , q−1

2

}
which is congruent to h modulo q. Reducing an integer

modulo 2 always maps it to a bit. These functions naturally extend to vectors
and polynomials, where one applies the function individually to each coefficient.
For a set S, the function HS : {0, 1}∗ → S denotes a hash function modeled
as a random oracle that outputs a uniform distribution on S. Similarly, for a
distribution ψ (over some implicit set S), we will write Hψ : {0, 1}∗ → S to
denote a hash function modeled as a random oracle that outputs a distribution
ψ. The function pref(·) extracts a short (around 32-64 byte) prefix from an
element of R.

4.2 The Binomial Distribution

For an even k, we define the distribution ψd
k over Z

d to be the distribution

k∑

i=1

�ai −
k∑

i=1

�bi, �ai,�bi ← {0, 1}d. (3)

The distribution ψ̄d
k is the distribution over the set {−1, 0, 1}d defined as ψd

k

reduced modulo 3. We will mostly be working with ψ̄d
k and ψd

k for k = 2, which
are, by definition, generated as �b = �b1 + �b2 − �b3 − �b4 and �b mod ± 3, where
�bi ← {0, 1}d. Each coefficient of �b and �b mod ± 3 is distributed as

ψ2 =
Output -2 -1 0 1 2
Prob 1/16 4/16 6/16 4/16 1/16

(4)

ψ̄2 =
Output -1 0 1
Prob 5/16 6/16 5/16

(5)

We now state a lemma, which is used for the construction of NTRU-A in
Fig. 7 that shows that by creating the distribution ψ2 in a special way, one of
the components of the distribution can be completely recovered when having
access to whole sample. Note that this cannot be done if each coefficient is
generated as b = b1 + b2 − b3 − b4. For example, if b = 0, then every bi has
conditional probability of 1/2 of being 0 or 1. If, on the other hand, we generate
the distribution as b = (b1 − 2b2b3)(1− 2b4), where bi ← {0, 1}, then one can see
that b1 can be recovered by computing b mod 2.

A Thorough Treatment of Highly-Efficient NTRU Instantiations 85

Lemma 4.1. The distribution ψd
2 can be generated as

�b = (�b1 − 2�b2 ��b3) � (1 − 2�b4),

where �bi ← {0, 1}d and � denotes component-wise multiplication. Furthermore,
�b mod 2 = �b1.

4.3 The NTRU Problem and Variants

In the framework for the NTRU trap-door function [19], the secret key consists of
two polynomials f and g with small coefficients in a polynomial ring (e.g. R) and
the public key if the quotient h = gf−1. The hardness assumption states that
given (h,hr+e), where r, e are sampled from some distribution with support of
elements in R with small coefficients, it is hard to recover e. For appropriately-
set parameters, one can recover e when knowing f , and we will discuss this when
presenting the full encryption scheme later in the section. For now, we are mainly
interested in the security of NTRU.

The security of the NTRU function described above is naturally broken down
into two assumptions. The first is that the distribution of h = gf−1 is indistin-
guishable from a random element in R. And the second assumption is essentially
the Ring-LWE assumption which states that given (h,hr + e), where h is uni-
form in R and r, e are chosen from some distribution with small coefficients,
it is hard to find e (and thus also r). We point out that one can eliminate the
need for the first assumption by choosing polynomials with coefficients that are
small, but large enough, so that the quotient is statistically-close to uniform
[29], but the resulting scheme ends up being significantly less efficient because
the coefficients in the polynomials of the second (Ring-LWE) problem need to
be rather small to compensate; and this in turn requires the dimension of the
ring to be increased in order for the Ring-LWE problem to remain hard. The
below definition formally states the first assumption for the distributions used
in this paper.

Definition 4.2 (The R-NTRUη assumption). For a distribution η over the
ring R and an integer p relatively-prime to q, the R-NTRUη assumption states
that g · (pf + 1)−1 is indistinguishable from a uniformly-random element in R
when g and f are chosen from the distribution η, and pf + 1 is invertible in R.

Another common version of the assumption simply states that g · f−1 is indis-
tinguishable from random, and it doesn’t appear that there is any difference in
the hardness between the two. The reason that multiplication of f by p is useful
is because it eliminates the need for an inversion (which cannot be done using
NTT) during the decryption process; and so we use this version of the problem
in the paper. The downside of this multiplication by p is that half of the “noise
terms” in the decrypted ciphertext increase by a factor of p. We now define the
Ring-LWE problem that is specific to our instantiation, and which forms the
second assumption needed for the NTRU cryptosystem.

86 J. Duman et al.

Definition 4.3 (R-LWEη). Let η be some distribution over R. In the R-LWE
problem, one is given (h,hr + e), where h ← R and r, e ← η, and is asked to
recover e.

One can also define the decision version of the above assumption as

Definition 4.4 (Decision R-LWEη). Let η be a distribution over R. The deci-
sion R-LWE assumption states that (h,hr + e), where h ← R and r, e ← η, is
indistinguishable from (h,u), where h,u ← R.

In the original LWE definition of Regev [28], the distribution η was a rounded
continuous Gaussian, as this was the distribution most convenient for achieving
a worst-case to average-case reduction from certain lattice problems over solving
R-LWEη. When implementing cryptographic primitives based on the hardness of
R-LWEη, it is more convenient to take η to be a distribution that can be easily
sampled. Some common distributions include uniform (although sometimes it is
not that simple to sample) and those that can be generated as sums of Bernoulli
random variables such as ψk and ψ̄k from (4) and (5).

The most efficient known attack against the R-NTRU and R-LWE problems
are lattice attacks. They work by defining a set

L⊥
c (h) = {(v,w) ∈ Z[X]/(Xd − Xd/2 + 1) : hv + w ≡ c (mod q)}.

When c = 0, the above set is closed under addition, and therefore forms a lattice.
To distinguish the quotient h = g/f , where f ,g have small coefficients, from a
uniformly-random h ∈ R, one can try to find the shortest vector in L⊥

0 (h). If h
is random, then a vector of �2-norm less than Ω(

√
qd) is very unlikely to exist in

L⊥
c (h). On the other hand, if the coefficients of f ,g are noticeably less than

√
q,

then (f ,−g) ∈ L⊥
c (h), and so an algorithm that can find a good approximation

to the shortest vector should find something of length significantly less than
Ω(

√
qd).

When c �= 0, L⊥
c (h) is a shifted lattice and finding the shortest vector in

it is known as the Bounded Distance Decoding (BDD) problem. For practi-
cal parameters, the complexity of the two problems is identical. Interestingly,
when q is very large with respect to the size of the secret coefficients, finding a
short vector in L⊥

c (h) is significantly easier when c = 0, as opposed to when c
is random [1,8,15,22]. This phenomenon prevents the NTRU assumption from
being used in scenarios requiring such a large gap (and so one uses Ring-LWE
and Module-LWE schemes in those scenarios), such as in Fully-Homomorphic
Encryption schemes. This security issue, however, does not seem to extend to
the NTRU parameters that are used in practice for public key encryption and
signature schemes.

We now define a version of the R-LWE problem in which the adversary is not
asked to recover the entire vector e, but just e mod 2.

Definition 4.5 (R-LWE2η). Let η be a distribution over R. In the R-LWE prob-
lem, one is given (h,hr+e), where h ← R and r, e ← η, and is asked to recover
e mod 2.

A Thorough Treatment of Highly-Efficient NTRU Instantiations 87

While we do not have a formal reduction from R-LWE to R-LWE2, based on
the state of the art of how Ring-LWE problems are solved, the two are essen-
tially equivalent. We now present two heuristic arguments for the equivalence of
R-LWE and R-LWE2.

Suppose that there is an algorithm that solves R-LWE2η and we feed it an
instance (h,hr + e) of R-LWEη. If the R-LWE2η solver returns a correct f ≡ e
(mod 2), then we can create another instance

(2−1 · h, 2−1hr + 2−1(e − f)) = (h′r + e′).

Note that h′ is still uniformly random and the distribution of e′ is now “nar-
rower” than that of the original e – if the coefficients of e were distributed as ψ2,
then each coefficient of e′ has a probability 3/16 of being ±1 and 10/16 of being
0. Based on the state of the art, a R-LWE-type problem should be easier with
this narrower distribution. So one should be able to call the R-LWE2η oracle
again, even though the distribution of e′ is now different. It’s easy to see now
that this procedure will eventually recover the entire polynomial e.

Another heuristic argument is based on a slightly-modified version of decision
R-LWE. In particular, if we assume that the decision R-LWE problem, in which
just the first polynomial coefficient in Zq is noiseless, then there is a simple
reduction from this problem to R-LWE2η. In the reduction, we simply add a
noise with distribution η to the first coefficient, and we decide whether the
decision R-LWE instance is real or random based on whether or not the answer
returned by the R-LWE2η oracle matches our added error modulo 2. While the
version of the decision R-LWE problem where the first integer coefficient has no
error is slightly different than usual, the current best-known algorithms would
solve the decision problem by solving the search version. And in the search case,
the two versions of the problem are equally hard.

The work of Brakerski et al. [7] considers this “First-is-Errorless” version of
LWE and shows that it is essentially as hard as the usual version. Boudgoust et al.
[6] extend this problem to it’s Module-LWE variant and showed that an even
stronger assumption has a (non-tight) reduction from the usual Module-LWE
problem. In short, it is very reasonable to assume that the concrete hardness of
the R-LWE2η problem is the same as that of R-LWEη.

4.4 NTRU-A: Encryption Based on R-NTRU + R-LWE2 for η = ψd
2

We now give a construction of our first OW-CPA-secure encryption scheme,
NTRU-A, whose hardness is based on the combination of the R-NTRUη +
R-LWE2η problems for η = ψ2. The way that this scheme differs from the more
usual NTRU constructions is that the secret key does let one recover the entire
e. This can pose a problem because generally e the message in the OW-CPA
NTRU scheme, and yet we can only recover a part of it. This is not a OW-CPA
scheme and we will not be able to obtain a CCA-secure KEM using generic
transformations.

We remedy this issue by only making the value e mod 2 be the message.
This requires that for a given random message m, the e is generated from the

88 J. Duman et al.

correct distribution (i.e. ψ2) with the additional restriction that m = e mod 2.
An interesting aspect of this scheme is that because the message is not the entire
e, the adversary does not have as much freedom to pick it so as to maximize the
decryption error. If the adversary can only pick e mod 2, it turns out that the
worst-case decryption error is quite close to the “best case”. We now proceed to
describe the OW-CPA scheme in Fig. 7.

Gen1()

01 �b1,�b2,�b3,�b4 ← {0, 1}d

02 return �b1 +�b2 −�b3 −�b4

Gen2(�b1 ∈ {0, 1}d)

03 �b2,�b3,�b4 ← {0, 1}d

04 return (�b1 − 2�b2 ��b3)
�(1−2�b4)

KeyGen()
05 f ′ := Gen1()
06 f := 2f ′ + 1

07 if f is not invertible
in R, restart

08 g := Gen1()
09 (pk , sk) = (2gf−1, f)

10 return (pk , sk)

Enc(h ∈ R, �m ∈ {0, 1}d, ρ ∈ {0, 1}7d)
11 Parse ρ as (ρ1, ρ2)

12 r := Gen1(; ρ1), e := Gen2(�m; ρ2)

13 return hr+ e

Dec(f ∈ R, c ∈ R)

14 u := (cf mod ±q) mod 2
15 �m := u
16 return �m

Fig. 7. OW-CPA Encryption Scheme NTRU-A based on the R-NTRUψ2 + R-LWE2ψ2

problems. Only the procedures Gen1 and Gen2 are randomized. We include the coins
ρ as input for the Encryption algorithm (which will be passed to Gen1 and Gen2)
because these are explicitly used in the CCA transformation. The coins used in the key
generation are implicit.

OW-CPA Scheme. The distribution of the coefficients of the secret polynomials
used in key generation and encryption ψ2 (see (4)) and is produced by the Gen1()
algorithm in Fig. 7. As per Lemma 4.1, this distribution can be generated as
b1 + b2 − b3 − b4 or, equivalently, as (b1 − 2b2b3)(1 − 2b4), where all the bi are
Bernoulli random variables. The reason the latter distribution is interesting to
us is that modulo 2, it is one of the variables that creates it – b1.

The secret key is generated by choosing polynomials f ′,g ← ψd
2 and comput-

ing f = 2f ′ + 1. If f is not invertible in R, we restart. Otherwise, the public key
is h = 2gf−1 and the secret key is f .

To encrypt a message �m ∈ {0, 1}d, the encryptor first generates a random
polynomial r ← ψd

2 using the Gen1() procedure. He then needs to choose a
polynomial e such that e mod 2 (as a vector) is �m. Furthermore, when �m is
chosen uniformly at random from {0, 1}d, the distribution of e should be ψd

2 .
To create such a distribution, we define e = Gen2(�m). By Lemma 4.1, e is
distributed according to ψd

2 . The ciphertext is c = hr + e.
To decrypt the ciphertext c = hr + e = 2gr/f + e, we multiply it by f ,

centralize it mod q, and then reduce modulo 2 to obtain

(cf mod ±q) mod 2 = 2gr + ef mod 2 = 2gr + 2ef ′ + e mod 2 (6)

A Thorough Treatment of Highly-Efficient NTRU Instantiations 89

If all the coefficients of 2gr + 2ef ′ + e (as integers) are smaller than q/2, then
modulo 2, this value will be exactly e mod 2, which is �m. Since the coefficients
of e have absolute value at most 2, in order to have decryption be correct, we
need the coefficients of gr+ ef ′ to be less than q/4 − 1. We will now move on to
show how to compute this probability.

Decryption Error for a Worst-Case Message. The decryption error of
NTRU-A can be computed following the template given in [26, Section 3.2]. As
discussed above, if a coefficient of gr + ef ′ (as an integer) has absolute value
less than q/4 − 1, then the output of that coefficient in (6) will be e mod 2, as
desired. So we now need to understand what each coefficient of gr + ef ′ looks
like. This is easiest to see via an example of how polynomial multiplication in
the ring R can be represented by a matrix-vector product. If we, for example,
want to multiply two polynomials ab in the ring Zq[X]/(X6 − X3 + 1), where

a =
5∑

i=0

ai and b =
5∑

i=0

bi then their product c =
5∑

i=0

ci can be written as in (7).

⎡

⎢⎢⎢
⎢⎢⎢
⎣

a0 −a5 −a4 −a3 −a2 − a5 −a1 − a4
a1 a0 −a5 −a4 −a3 −a2 − a5
a2 a1 a0 −a5 −a4 −a3
a3 a2 + a5 a1 + a4 a0 + a3 a2 a1
a4 a3 a2 + a5 a1 + a4 a0 + a3 a2
a5 a4 a3 a2 + a5 a1 + a4 a0 + a3

⎤

⎥⎥⎥
⎥⎥⎥
⎦

·

⎡

⎢⎢⎢
⎢⎢⎢
⎣

b0

b1

b2

b3

b4

b5

⎤

⎥⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢⎢
⎣

c0
c1
c2
c3
c4
c5

⎤

⎥⎥⎥
⎥⎥⎥
⎦

(7)

Notice that c3, c4, and c5 are a sum of three independently-generated integers
of the form

c = ba + b′(a + a′). (8)

The coefficient c2, however, is simply a sum of 6 independent random variables
of the form ab. Or to make it look similar to (8), we can think of it as the sum
of three random variables of the form

c = ba + b′a′. (9)

It should be clear that the distribution of (8) is wider than that of (9), and so
the probability that the coefficients which follow the former distribution will be
outside of the “safe zone” is larger. The coefficients c0 and c1 are a hybrid of
these two distributions. For example, c1 is the sum of one coefficient from (8)
and two from (9); while c2 is the sum of two from (8) and one from (9).

To bound the probability that decryption will be correct, we should therefore
bound the distribution of c3, c4, c5, or in the general case, a coefficient in the
bottom half of c and then apply the union bound. So the widest distribution
will consist of sums of d/2 random variables having the distribution as in (8).
The term gr in (6) has this exact distribution, where each coefficient of g, r is
distributed according to Gen1().

90 J. Duman et al.

The term f ′e is distributed differently because in our security proof we need to
consider an adversarially-chosen message �m, after the adversary sees the public
key. Because the adversary does not get to choose the whole message, but just
the modulo 2 residue, it turns out that the failure probability for a worst-case
message is not too different than for a uniformly random one. In (10), we give
the distribution of a particular coefficient of ei conditioned on the message bit
being either 0 or 1.

Gen2(0) =
Output -2 0 2

Probability 0.125 0.75 0.125
Gen2(1) =

Output -1 1

Probability 0.5 0.5
(10)

One can see that in both cases the distribution is centered around 0 and has
variance 1, and so one should not expect a very large difference in the decryption
error. Experimentally, it turns out that the worst-case messages occur when
choosing �m = �0. Furthermore, the worst-case message is the same for any secret
key.7 This implies that the worst-case correctness error is the average-case one
where the distribution over the coefficients of e is as in Gen2(0) of (10). As in
[3,5,26], the error probability reported in Table 1 is computed via polynomial
multiplications which represent convolutions of random variables.

IND-CCA-Secure KEM. One can apply the Fujisaki-Okamoto transforma-
tion FO⊥ from Fig. 4 to obtain the IND-CCA secure version CCA-NTRU-A :=
FO⊥[NTRU-A,H] of NTRU-A. The concrete security bounds on the IND-CCA
security of CCA-NTRU-A from Table 4 can be derived in the ROM using Lemma
2.1 and Theorem 2.3 and in the QROM using Theorem 2.5.

Table 4. Bounds on the IND-CCA secure NTRU-variants CCA-NTRU-A, CCA-NTRU-B,
and CCA-NTRU-C. Constants and negligible terms are suppressed for simplicity. The
value q is the sum of all adversarial (random oracle and decryption) queries, i.e.,
q = qH + qD + qF. The ε values are the advantage functions of the underlying NTRU
assumptions: εA = AdvR-NTRUη +AdvR-LWE2η for η = ψd

2 ; εB = AdvR-NTRUη +AdvR-LWEη

for η = Ud
3 and εC = AdvR-NTRUη + AdvR-LWEη for η = ψ̄d

2 .

IND-CCA secure KEM ROM QROM

CCA-NTRU-A q(εA + δ) q
√

εA + q2
√

δ

CCA-NTRU-B εB + q(3−λ + δ) q2(
√

εB +
√

δ)

CCA-NTRU-C εC + q(2−λ + δ) q1.5(4
√

εC + q0.5
√

δ)

4.5 Generic NTRU Encryption and Error-Reducing
Transformations

Figure 8 defines GenNTRU[η] relative to distribution η over R. Note that
GenNTRU[η] is randomness-recoverable (RR) because once we have e and
7 This was verified experimentally by fixing the a, a′ in (8) to all valid values and

computing the probability of failure assuming that all the secret keys have this
value.

A Thorough Treatment of Highly-Efficient NTRU Instantiations 91

c = hr + e, we can compute r = (c − e) · h−1. Because we checked that g
is invertible, it holds that h = 3gf−1 also has an inverse.

KeyGen()

01 f ′,g ← η
02 f := 3f ′ + 1
03 if f or g is not invertible in R, restart
04 return (pk , sk)= (3gf−1, f)

Enc(h ∈ R,
m ∈ {−1, 0, 1}d)
05 r ← η
06 return c := hr +
m

Dec(f ∈ R, c ∈ R)

07 return
m := (cf mod ±q) mod ± 3

Fig. 8. Generic NTRU GenNTRU[η] relative to distribution ψ over ring R with average-
case correctness error. During key-generation, we need to check that g is invertible in
order to have the randomness recovery property. It seems doubtful that this check adds
any actual security in practice, but for all parameter sets, it only adds less than 0.01%
chance to a restart, so it does not make much difference either way.

By the definition, the OW-CPA security of GenNTRU[η] is implied by the R-
NTRUη+R-LWEη assumptions. In this subsection, we will consider two concrete
instantiations of GenNTRU, namely GenNTRU[U3], where U3 is the uniform dis-
tribution over {−1, 0, 1}d, and GenNTRU[ψ̄d

2], where ψ̄d
2 was defined in Sect. 4.2.

Both schemes do not have sufficiently small worst-case correctness error, which
is the reason why we will first apply one of our average-case to worst-case cor-
rectness error transformations from the last section.

NTRU-B: Encryption Based on R-NTRUη+R-LWEη for η = Ud
3 .

We define the generalized one-time pad GOTP : R × R → R relative
to distributions Ud

3 as GOTP(�m, u) := �m + u mod ± 3. Then NTRU-B :=
ACWC[GenNTRU[Ud

3],GOTP,F], obtained by applying the ACWC transforma-
tion from Sect. 3.2 to GenNTRU[Ud

3], is described in Fig. 9. Its message space
is M′ = {−1, 0, 1}λ with distribution Ud

3 , where M1 = {−1, 0, 1}d−λ and
M2 = {−1, 0, 1}λ.

By Lemma 3.6, the average-case correctness error of GenNTRU[Ud
3] and the

worst-case correctness error of NTRU-B are off by an additive factor of

Δ = ‖Ud−λ
3 ‖ ·

(
1 +

√
(ln |M′| − ln ‖Ud−λ

3 ‖)/2

)
≈ ‖Ud−λ

3 ‖ = 3−(d−λ)/2 ≈ 2−0.8×(d−λ)

which can be neglected for λ = 256 and d ≥ 576. Hence, for all practical param-
eters considered in Table 1, worst-case and average-case correctness errors are
equal. Using the techniques Sect. 4.4 it can be verified that the error probabili-
ties reported in Table 1 are correct for NTRU-B.

Finally, one can apply the Fujisaki-Okamoto transformation FO⊥ from Fig. 4
to obtain the IND-CCA secure version CCA-NTRU-B := FO⊥[NTRU-B,H] of
NTRU-B. In the ROM, the concrete security bound on the IND-CCA security
of CCA-NTRU-B from Table 4 can be derived by combining Lemma 2.2 with

92 J. Duman et al.

KeyGen()

01 f ′,g ← {−1, 0, 1}d

02 f := 3f ′ + 1
03 if f or g is not invertible

in R, restart

04 (pk , sk)= (3gf−1, f)

05 return (pk , sk)

Enc(h ∈ R, �m ∈ {−1, 0, 1}λ, ρ)

06 (use the randomness ρ for
creating �m′ and r)

07 �m′ ← {−1, 0, 1}d−λ

08 �u := F{−1,0,1}λ (�m′)
09 �m′′ := �m + u mod ± 3
10 r ← {−1, 0, 1}d

11 e := �m′||�m′′
12 return hr+ e

Dec(f ∈ R, c ∈ R)

13 �m′||�m′′ := (cf mod ±q)
mod ± 3

14 u := F{−1,0,1}λ (�m′)
15 �m := �m′′ − �u mod ± 3
16 return �m

Fig. 9. Randomness-recoverable OW-CPA encryption scheme NTRU-B with worst-case
correctness error based on the R-NTRUUd

3
+ R-LWEUd

3
problems for Ud

3 being uniform

over {−1, 0, 1}d.

Theorems 3.9 and 2.3. We refer to Fig. 1 for an overview of the implications.
In the QROM, the bound can be derived by combining Theorem 3.10 with
Theorem 2.5.

NTRU-C: Encryption Based on R-NTRUη+R-LWEη for η = ψ̄d
2 . We

define NTRU-C := ACWC0[GenNTRU[ψ̄d
2],F] with uniform message space M′ =

{0, 1}λ, obtained by applying the ACWC0 transformation with redundancy from
Sect. 3.1 to GenNTRU[ψ̄d

2] is described in Fig. 10. By Lemma 3.1, the average-
case correctness error of GenNTRU[ψ̄d

2] and the worst-case correctness error of
NTRU-C are identical. Using the techniques Sect. 4.4 it can be verified that the
error probabilities reported in Table 1 are correct for NTRU-C. Finally, one can
apply the Fujisaki-Okamoto transformation FO⊥ from Fig. 4 to obtain the IND-
CCA secure version CCA-NTRU-C := FO⊥[NTRU-C,H] of NTRU-C. In the ROM,
the concrete security bound on the IND-CCA security of CCA-NTRU-C from
Table 4 can be derived by combining Lemma 2.2 with Theorems 3.3 and 2.4.
In the QROM, the bound can be derived by combining Lemma 2.2 with Theo-
rem 3.4 and Theorem 2.5.

KeyGen()

01 f ′, g ← ψ̄d
2

02 f := 3f ′ + 1

03 if f or g is not invertible

in R, restart

04 return (pk, sk)= (3gf−1, f)

Enc(h ∈ R, �m ∈ {0, 1}λ, ρ ∈ {0, 1}8d)

05 (use the randomness ρ for

creating e and r)

06 e, r ← ψ̄d
2

07 �u := �m ⊕ F{0,1}λ (e)

08 return (hr + e, �u)

Dec(f ∈ R, (c ∈ R, �u ∈ {0, 1}λ))

09 e := (cf mod ±q) mod ± 3

10 �m := �u ⊕ F{0,1}λ (e)

11 return �m

Fig. 10. NTRU-C: a randomness-recoverable OW-CPA encryption scheme with worst-
case correctness error based on the R-NTRUη + R-LWEη problems for η = ψ̄d

2 .

Acknowledgements. The work of Julien Duman was supported by the German Fed-
eral Ministry of Education and Research (BMBF) in the course of the 6GEM Research
Hub under Grant 16KISK037. Eike Kiltz was supported by the Deutsche Forschungs-
gemeinschaft (DFG, German research Foundation) as part of the Excellence Strategy
of the German Federal and State Governments - EXC 2092 CASA - 390781972, and

A Thorough Treatment of Highly-Efficient NTRU Instantiations 93

by the European Union (ERC AdG REWORC - 101054911). Dominique Unruh was
supported by the ERC consolidator grant CerQuS (819317), by the Estonian Centre of
Excellence in IT (EXCITE) funded by ERDF, by PUT team grant PRG946 from the
Estonian Research Council. Vadim Lyubashevsky and Gregor Seiler were supported by
the ERC Consolidator grant PLAZA (101002845).

References

1. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 6

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of Learning with
Errors. J. Math. Cryptol. 9(3), 169–203 (2015)

3. Alkim, E., et al.: Post-quantum key exchange - a new hope. In: USENIX Security
Symposium. USENIX Association, pp. 327–343 (2016)

4. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 269–295. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26951-7 10

5. Bos, J.W., et al.: CRYSTALS - kyber: a CCA-secure module-lattice- based KEM.
In: EuroS&P, pp. 353–367. IEEE (2018)

6. Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: On the hardness of module-
LWE with binary secret. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704,
pp. 503–526. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75539-
3 21

7. Brakerski, Z., et al.: Classical hardness of learning with errors. In: STOC, pp.
575–584 (2013)

8. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis
of the GGH multilinear map without a low-level encoding of zero. LMS J. Comput.
Math. 19(A), 255–266 (2016)

9. Chung, C.M., et al.: NTT multiplication for NTT-unfriendly rings new speed
records for saber and NTRU on cortex-M4 and AVX2. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2021(2), 159–188 (2021)

10. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 16

11. Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0: multi-
round fiat-shamir and more. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12172, pp. 602–631. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56877-1 21

12. Don, J., et al.: Online-extractability in the quantum random-oracle model. In:
Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13277,
pp. 677–706. Springer, Cham. (2022). https://doi.org/10.1007/978-3-031-07082-
2 24

13. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 13

https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-75539-3_21
https://doi.org/10.1007/978-3-030-75539-3_21
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-031-07082-2_24
https://doi.org/10.1007/978-3-031-07082-2_24
https://doi.org/10.1007/978-3-030-26951-7_13

94 J. Duman et al.

14. Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 125–
145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 5

15. Ducas, L., van Woerden, W.: NTRU fatigue: how stretched is overstretched? In:
Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 3–32.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 1

16. Duman, J., et al.: A thorough treatment of highly-efficient NTRU instantiations.
In: Cryptology ePrint Archive (2021)

17. Duman, J., et al.: Faster lattice-based KEMs via a generic Fujisaki-Okamoto trans-
form using prefix hashing. In: CCS (2021)

18. Gentry, C.: Key recovery and message attacks on NTRU-composite. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 182–194. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44987-6 12

19. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryp-
tosystem. In: ANTS, pp. 267–288 (1998)

20. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: TCC, pp. 341–371 (2017)

21. Hülsing, A., Rijneveld, J., Schanck, J., Schwabe, P.: High-speed key encapsulation
from NTRU. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp.
232–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 12

22. Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched NTRU
parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 1

23. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptography 75(3), 565–599 (2015)

24. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: ICALP (2), pp. 144–155 (2006)

25. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

26. Lyubashevsky, V., Seiler, G.: NTTRU: truly fast NTRU using NTT. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2019(3), 180–201 (2019)

27. Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclo-
tomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 204–224.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 8

28. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: J. ACM 56.6 (2009)

29. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 4

30. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 36

31. Unruh, D.: Revocable quantum timed-release encryption. J. ACM 62(6), 49, 1–
49:76 (2015)

https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/3-540-44987-6_12
https://doi.org/10.1007/978-3-319-66787-4_12
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-319-78381-9_8
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36

A Lightweight Identification Protocol
Based on Lattices

Samed Düzlü1, Juliane Krämer1, Thomas Pöppelmann2,
and Patrick Struck1(B)

1 Universität Regensburg, Regensburg, Germany
{samed.duzlu,juliane.kraemer,patrick.struck}@ur.de

2 Infineon Technologies AG, Neubiberg, Germany
thomas.poeppelmann@infineon.com

Abstract. In this work we present a lightweight lattice-based identifi-
cation protocol based on the CPA-secured public key encryption scheme
Kyber. It is designed as a replacement for existing classical ECC- or RSA-
based identification protocols in IoT, smart card applications, or for device
authentication. The proposed protocol is simple, efficient, and implemen-
tations are supposed to be easy to harden against side-channel attacks.
Compared to standard constructions for identification protocols based
on lattice-based KEMs, our construction achieves this by avoiding the
Fujisaki-Okamoto transform and its impact on implementation security.

Moreover, contrary to prior lattice-based identification protocols or
standard constructions using signatures, our work does not require rejec-
tion sampling and can use more efficient parameters than signature
schemes.

We provide a generic construction from CPA-secured public key
encryption schemes to identification protocols and give a security proof
of the protocol in the ROM. Moreover, we instantiate the generic con-
struction with Kyber, for which we use the proposed parameter sets for
NIST security levels I, III, and V. To show that the protocol is suitable
for constrained devices, we implemented one selected parameter set on
an ARM Cortex-M4 microcontroller. As the protocol is based on exist-
ing algorithms for Kyber, we make use of existing SW components (e.g.,
fast NTT implementations) for our implementation.

Keywords: Lattice-Based Cryptography · Identification Protocol ·
Post-Quantum Cryptography · LWE

1 Introduction

It is currently expected that large-scale quantum computers will be able to break
classical cryptographic hardness assumptions in the future. This expectation
has led to a standardization process by the National Institute of Standards
and Technology (NIST). NIST aims to standardize digital signature schemes
as well as key encapsulation mechanisms (KEMs) and public key encryption
c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 95–113, 2023.
https://doi.org/10.1007/978-3-031-31368-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_4&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_4

96 S. Düzlü et al.

(PKE) schemes that are supposed to be secured against attacks by quantum
computers. From the pool for third round candidates, NIST recently selected
three signature schemes (Dilithium, Falcon, SPHINCS+) and one KEM (Kyber)
for standardization.

While KEMs/PKEs and digital signature schemes are fundamental con-
structions that are in focus of the NIST process, further post-quantum cryp-
tographic schemes will also be required in the future. For instance, instead of
more advanced functionality, in some applications it may be sufficient to just
verify that a communicating party is indeed the claimed identity, a property
that is known as authenticity. This can be achieved by using an identification
protocol that allows one party to prove its identity to another party. Such proto-
cols enable one party (the prover) to convince another party (the verifier) that
it knows some secret without revealing it.

Identification protocols can be based on a specific underlying problem, e.g.,
the hardness of lattice problems as shown in [37]. Another approach is to con-
struct them from KEMs [3] or digital signature schemes. However, the result-
ing protocols may carry the overhead of the inherent security requirements of
those schemes. In particular, simple constructions like [3] often require a KEM
secured against chosen ciphertext attacks (CCA), which entails overhead from
the Fujisaki-Okamoto (FO) transform. In such protocols, which we will refer to
as generic 2-pass protocols, the verifier sends a ciphertext as a challenge and
the prover authenticates by sending back the underlying message. In these pro-
tocols, the prover acts as a decryption oracle, which results in the necessity of
CCA security for the underlying encryption scheme. However, it could be benefi-
cial to remove the need for CCA security of the KEM by modifying the protocol
for better efficiency or implementation security [4,7,43]. This may be required
when establishing the authenticity of devices in a cost-effective manner on very
constrained devices. Practical examples are standards like USB Type-C Authen-
tication [49] or Qi 1.3 for wireless device charging [15] that now specify or even
require ECDSA-based device authentication to test that parts are manufactured
by trusted vendors and according to the necessary safety standardization. In the
long term, such standards will have to be moved to schemes that offer sufficient
quantum resistance.

1.1 Contribution

In this work we present a novel 4-pass identification protocol based on lattices
that is efficient, lightweight, and easy to be securely implemented. The pro-
tocol is based on Kyber, however, by moving from a 2-pass protocol to a 4-
pass protocol, we only need the CPA-secured variant of Kyber rather than the
more costly CCA-secured variant. As a disadvantage, one might argue that we
can only prove security assuming random oracles, whereas the 2-pass protocol
does not require random oracles. We note, however, that achieving CCA-secured
encryption via the FO transform also requires random oracles. The 2-pass pro-
tocol therefore inherits this assumption from the underlying encryption scheme.
While our protocol requires more communication, it avoids the costly FO trans-
form without adding costs in form of additional assumptions. In light of several

A Lightweight Identification Protocol Based on Lattices 97

works which indicate that side-channel security for the FO transform is a delicate
matter [4,7,43], our new protocol provides an interesting alternative, despite the
slightly extra cost in communication. Our idea avoids the need for CCA security
and therefore the FO transform, by separating the challenge and a challenge
verification, which is implicit in the CCA case. This separation allows the ver-
ification to be independent of the secret key including all data that is derived
from it, so that the verification step on the prover side does not need to be
secured against side-channel leakage. In particular for lattice-based cryptogra-
phy, hardening the challenge verification against side-channels is expensive due
to sampling procedures.

Furthermore, we provide a set of parameters following Kyber and an imple-
mentation targeting ARM Cortex-M4 based microcontrollers.

Our 4-pass identification protocol is, in fact, generic, using only a CPA-
secured PKE. This allows to easily instantiate the generic version with different
PKEs. In particular, the generic approach enables crypto-agile implementations
using post-quantum assumptions other than lattice problems.

1.2 Related Work

In [3,22] it is shown that KEMs can be used to construct identification schemes.
The constructions require a OW-CCA and OW-ftCCA secured encryption
scheme, respectively, whereas our construction only requires IND-CPA secu-
rity. Additionally, the instantiations in [3,22] are based on the Diffie-Hellman
assumption and, hence, do not achieve post-quantum security. Similarly, using
digital signature schemes allows to construct lattice-based identification proto-
cols. Conversely, signature schemes like Dilithium [39] make use of the Fiat-
Shamir transform with aborts [38]. However, the usage of rejection sampling
results in a scheme that is less efficient than lattice-based KEM constructions
and challenging to be secured against implementation attacks [41].

Note that in contrast to works like [1,37,38] our scheme has 4 steps of com-
munication instead of 2. However, all three schemes have built-in aborts with
significantly lower success ratio. Moreover, the additional communication step
in the present case allows the honest generation of challenges, which is not the
case in [1].

The authors of [10,11] also proposed identification protocols specifically for
smart cards and embedded devices. They measure the performance of GLP sig-
natures [26] and BLISS signatures [19] in an ID-scheme setting and also evaluate
a commitment protocol proposed in [18]. These identification protocols did not
receive much attention and in contrast to our work, they do not consider side-
channel attacks explicitly.

Aside from lattice-based cryptography, there are other assumptions on which
quantum-secured cryptography can be based. Among those, there have been
attempts to construct identification protocols based on multivariate polynomi-
als [44], codes [47], and isogenies [16,24,29], where [29] is based on the SIDH
problem and may be vulnerable due to the recent attack [14].

98 S. Düzlü et al.

The symmetric counterpart of identification schemes is the notion of authen-
tication schemes, where the prover and verifier have a shared secret. An instan-
tiation using lattices has been developed in [28,34] based on the learning parity
with noise (LPN) problem.

1.3 Outline

In Sect. 2, we give a brief discussion on the required technical background for
the presentation of the identification protocol. In Sect. 3, we give a description
of the identification protocol and provide a formal security reduction. In Sect. 4
we present an instantiation with the lattice-based PKE scheme Kyber and give
design rationales of our construction. We further provide a choice of parameters
for the instantiation and give details on the implementation.

2 Background

In this section, we explain the notation and basic concepts that are required for
the description and analysis of the identification protocol.

2.1 Cyptographic Primitives

We will make use of cryptographic hash functions. The hash functions will be
denoted F , H, and Gi, for i in some index set I. The family (Gi)i∈I of hash func-
tions is denoted G for short. The hash functions are separated according to their
use in the identification protocol, i.e., F is used to generate a random message
(challenge), while G is used to generate the internal randomness of the underlying
encryption algorithm, and H is used for the commitment computation.

In the instantiation, the distinct hash functions will be implemented from a
single hash function using domain separation [5]. In the security proof, we will
model the hash functions as random oracles [6].
IND-CPA Security of PKEs. As the identification protocol is based on IND-CPA
secured public-key encryption scheme, we briefly recall its definition, cf. [33].

The security experiment for the IND-CPA security of a PKE scheme PKE =
(KGen, Enc, Dec) is given as

1. KGen is run with output (pk, sk),
2. The adversary A receives the public key pk and outputs two messages m0

and m1 of the same length
3. A random bit b ∈ {0, 1} is chosen and A receives cb := Encpk(mb),
4. A outputs b′ ∈ {0, 1},
5. Finally, A wins, if b′ = b and loses otherwise.

The advantage of A against the IND-CPA security of PKE is then defined
as

AdvIND-CPA
PKE (A) = P

(
A wins game IND-CPA

)
.

A Lightweight Identification Protocol Based on Lattices 99

2.2 Protocol Security

There are three distinct security notions for identification protocols, namely
passive and active (attack) security, and the security against man-in-the-middle
attacks. We will focus on active attack security, which is described in terms of
three phases, the setup phase, the probing phase, and the impersonation phase.

In the setup phase, the keys are generated and the adversary receives the
public key. In the probing phase, the adversary takes the role of the verifier and
can interact with an honest prover. The adversary is allowed to invoke the honest
prover multiple times. After the probing phase, the adversary proceeds to the
impersonation phase. Here, the adversary takes the role of the prover, interact-
ing with an honest verifier. The adversary wins, i.e., breaks the identification
protocol, if the honest verifier accepts at the end.

Setup Phase: A key pair (pk, sk) ← $ KGen() is generated. The adversary A
receives pk and the probing phase starts.

Probing Phase: In this phase, the adversary A can interact with an honest
prover, knowing the secret key sk. At the end of the phase, the impersonation
phase starts.

Impersonation Phase: In this phase, the adversary interacts with an honest
verifier, knowing the public key pk. The adversary wins if the prover accepts,
i.e., outputs 1 at the end.

For an adversary A against the active security AS, we denote by AdvAS(A)
the probability that the honest verifier outputs 1 at the end of the security
experiment above, i.e., that the adversary successfully impersonates an honest
prover.

3 The Identification Protocol

In this section, we present an identification protocol (Fig. 1) based on an IND-
CPA secured PKE scheme and prove its active security. The security of the
identification protocol is independent of the underlying security assumptions
on the PKE scheme. In Sect. 4, we provide an instantiation with the lattice-
based Kyber PKE scheme, a collection of parameters, and a comparison of the
implementation with other identification protocol constructions.

3.1 Description of the Identification Protocol

Before giving details, we want to briefly describe the identification on a high-
level. See also Sect. 4.1 for more details on design rationales.

The protocol is executed between a verifier V who knows the public key and
a prover P who knows the corresponding secret key. The protocol starts with
a challenge computation, where the underlying encryption algorithm is made
deterministic by generating message and random coins from a seed. The result-
ing ciphertext is send to the prover as the challenge. In the following response

100 S. Düzlü et al.

computation, the prover decrypts the ciphertext to receive a message. This is the
only step, where the secret key is used. The resulting message is hashed together
with a random value and the hash is send to the verifier. The verifier sends the
seed used to generate the message and random coins to the prover. During the
challenge verification, the prover can use this seed to check that the challenge
was honestly generated. In this step, the prover does not make use of its secret
(indeed, not even results of any computations using the secret key are required in
this step). Only then, the prover sends its random value chosen in the response
computation. Finally, in the response verification, the verifier checks that the
hash value it received is compatible with the hash of the random response it
received after the challenge verification with the original message it generated
in the challenge computation.

The Underlying PKE Scheme and Public Parameters. Let PKE =
(KGen, Enc, Dec) be a PKE scheme. Further, let F , Gi, H be hash functions,
with G = (Gi)i∈I is a (finite) family I of hash functions. We assume that PKE
is instantiated with the hash functions G. Lastly, α is a security parameter.

The identification protocol will be denoted ΠPKE and is depicted in Fig. 1. In
what follows, we give a description of the steps.

Key Generation. The public and secret keys of ΠPKE are the same as the key
pairs of PKE. Thus, the key generation is done by running the KGen algorithm,
resulting in a key pair (pk, sk).

Identification. Given the key pair (pk, sk) as above, the 4-pass identification
procedure of ΠPKE is as follows.

Verifier: Challenge Computation. In the first step, the verifier V picks a
random value λ ∈ {0, 1}α. Then, λ is used to compute a challenge message
m ← F (λ). We let coins = G(λ) be the random coins used during the encryption
and set c = Enc(pk,m, coins).
1st Transmission: V→P. The verifier sends c to the prover P.
Prover: Response Computation. The prover decrypts c to get a message m̃ =
Dec(sk, c). This is the only step where the secret key sk is used. Then, the prover
samples a random value r ←$ {0, 1}α and computes h := H(r, m̃). Note that r
is independent of the challenge c and the secret s.
2nd Transmission: P→V. The prover sends the hash digest h of (r, m̃) to the
verifier. With h, the prover commits on its random value r.
Verifier. The verifier stores h.
3rd Transmission: V→P. The verifier sends λ to the prover.
Prover: Challenge Verification. The prover uses λ to re-generate m′ ←
F (λ) and the random values coins′ = G(λ), with which it computes c′ =
Enc(pk,m′, coins′). Then, the prover checks whether c = c′ and aborts if not.
Note that the prover uses m′ instead of m̃ to re-compute the ciphertext, making
this step independent of its secret s.
4th Transmission: P→V. The prover sends its commitment r to the verifier.
Verifier: Response Verification. The verifier checks, if h = H(r,m) and
outputs 1 if it holds. Otherwise, the verifier outputs 0.

A Lightweight Identification Protocol Based on Lattices 101

Fig. 1. The generalized identification protocol Π with hash functions F and H, and a
family of hash functions G = (Gi) depending on the size of coins for the given PKE.

102 S. Düzlü et al.

3.2 Security Analysis of the Identification Protocol

We proceed with the security analysis of the identification protocol described
above. We show that its active attack security AS reduces to the IND-CPA secu-
rity of the underlying PKE scheme. As a consequence, the identification proto-
col instantiated with Kyber.CPAPKE is secured, see Corollary 4.1. The security
reduction is proved in the random oracle model and an extension to the quantum
random oracle model is discussed in Sect. 3.3.

Theorem 3.1. Let Π be the identification protocol described in Fig. 1 based on
a PKE scheme PKE = (KGen, Enc, Dec). Then, in the random oracle model, for
any adversary A against Π, making q queries to G, there exists an adversary B
against PKE such that

AdvAS
Π (A) ≤ AdvIND-CPA

PKE (B) +
q

2α
,

where the hash functions are modeled as random oracles.

Proof. Let A be an adversary against Π instantiated with PKE. We construct an
adversary B against PKE that makes use of A and breaks the IND-CPA security
of PKE.

Let B be given a public key pk which is part of a key pair (pk, sk). Then by
definition of IND-CPA, B picks two messages, receives the encryption of one of
the messages, and has to distinguishing which one was encrypted. To achieve
this, B runs A with its own challenge public key pk.

Probing Phase. To make A run the attack, B needs to simulate the probing
phase of the active attack with the public key pk, in which A plays the role
of a verifier and can submit challenges to the prover, which is played by B. In
the random oracle model, B can simulate a prover without knowledge of the
secret key as follows. In the response computation, B samples a random value
h, and returns h to the verifier, in this case A. After receiving λ, B checks,
whether the challenge of A was generated honestly. If the check holds, B is
now in possession of the message m = F (λ). Then B picks a random value r and
programs the random oracle H to take (r,m) to h. It is impossible for A to detect
this reprogramming, unless it requested the value H(r,m) earlier. However, B
has access to all random oracle calls of A and can check which values of the form
(r,m) have been queried by A. As even for a fixed m, there are exponentially
many pairs (r,m), B can always find a pair which has not been queried before.

Impersonation Phase. The idea for the impersonation phase is that B will
send its own challenge ciphertext (from the IND-CPA game) to the adversary.
During the response computation, A has to commit to a message m̃ in form of
sending h = H(r, m̃). This enables B to extract the message m̃ from the random
oracle queries by A; note that in the random oracle model that any (successful)
adversary has to send r that was used to compute h. This enables B to run the
impersonation phase up to the point where A has sent its commitment h and
extracts the message from this.

A Lightweight Identification Protocol Based on Lattices 103

However, simply injecting the ciphertext from the IND-CPA game does not
correspond to challenge ciphertexts in the protocol as they are generated inde-
pendently of the random oracles F,G. Since the IND-CPA game allows B to
choose arbitrary messages, it can simply compute those as outputs of F . But
coins are chosen by the IND-CPA challenger, independently of any random ora-
cle. This means, that B simulates the impersonation phase (up to the point where
A sends h) for independently chosen coins. Detecting this simulation boils down
to querying the random oracle G on λ, however, A does not have any information
about it; even recovering m from c does not help due to the one-wayness of F .
Since A makes q queries to G, its probability of detecting the simulation is at
most q

2α .
Now we can give the reduction B. It picks λ0, λ1 uniformly at random from

{0, 1}α to compute messages mb = F (λb), for b ∈ {0, 1}. The messages m0,m1

are sent to the IND-CPA challenger which responds with cb = Enc(pk,mb; coins)
for coins chosen uniformly at random. Then B sends cb to A. When A outputs h,
B will check for a query (r∗,m∗) to H. If m∗ = m0, B outputs 0, if m∗ = m1, B
outputs 1. If neither check passes, i.e., A is not successful, B outputs a uniformly
random bit. ��

3.3 Extension to the Quantum Random Oracle Model

We briefly argue how the proof can be translated to the quantum random oracle
model (QROM) [9]. In the probing phase, the reduction can no longer look up the
queries that the adversary has made to the random oracle. This thwarts to simply
choose a value r such that the adversary has not queries (r,m) to the random
oracle. Instead the reduction will simply pick r at random and reprogram the
random oracle on (r,m) to h, where m is the message it obtains after receiving
the seed λ and h is the uniformly random value which the reduction send to the
adversary after receiving the challenge ciphertext. The O2H lemma [2] allows
to upper bound the chance that the adversary can detect this reprogramming
where it still holds that the adversary has no knowledge of the value r, which
was chosen uniformly at random and independent of everything else. This step,
however, induces another term into the bound since the reprogramming cannot
be made certain to happen at a point the adversary has not queried.

For the impersonation phase, the reduction extracts the query (r,m) from
the hash value h it receives from the adversary; this does not work in the QROM,
when the adversary makes its queries in superposition. Luckily, the technique by
Targhi and Unruh [48] allows to circumvent the problem. The reduction simu-
lates the random oracle using a 2q-wise independent function (e.g., a polynomial
of degree 2q) which was shown to be indistinguishable up to q superposition
queries by Zhandry [50]. Upon receiving the classical value h, the reduction can
extract candidates for (r,m) by computing the roots of the polynomial and, if
one of the candidates equals either of the messages, the reduction outputs the
corresponding bit. Additionally, the adversary might be able to notice the simu-
lation via the IND-CPA security game, where coins are generated independently
of the random oracle G. This step also boils down to applying the O2H lemma [2]

104 S. Düzlü et al.

and the fact that the adversary has no knowledge about λ. More recent variants
of the O2H lemma [2,8,36] and other QROM extraction techniques [17] allow to
achieve better bounds.

4 An Identification Protocol Based on Kyber

In this section we analyze an instantiation of the identification protocol with
Kyber.CPAPKE from various perspectives. First, we deduce the security of the
identification protocol from the general result in Sect. 3. We then provide design
rationales that we used as orientation to create an appropriately protected and
lightweight lattice-based identification protocol. Finally, we describe an imple-
mentation on a Cortex-M4 32-bit microcontroller, and compare our identification
protocol with various other constructions based on lattices, including a discus-
sion on side-channel protection.

4.1 Security and Design Rationales

The security of the protocol is given in the corollary below, which is a direct
consequence of Theorem 3.1.

Corollary 4.1. Let Π be the identification protocol described in Fig. 1 instanti-
ated with Kyber.CPAPKE. Then, in the random oracle model, for any adversary
A against Π, making q queries to the random oracles, there exists an adversary
C against Kyber.CPAPKE such that

AdvAS
Π (A) ≤ 2AdvIND-CPA

Kyber.CPAPKE(C) +
q

2α
,

where the hash functions are modeled as random oracles.

Design Rationales. In what follows, we describe our approach with the view
on highlighting the main design features. Specifically we compare the given ID
protocol to the one constructed from CCA-secured encryption schemes when the
CCA security is a result of the Fujisaki-Okamoto transform [23].

Indeed, given an encryption scheme, there is a simple construction of an iden-
tification protocol. In such a protocol, the verifier encrypts a random message,
sends the ciphertext to the prover, the prover decrypts the ciphertext with the
secret key and provides the message to the verifier. However, due to ciphertext
malleability [21] an attacker could break such a scheme when it is based on com-
mon lattice-based CPA-secured KEMs and PKEs. During the probing phase,
the honest prover acts as a decryption oracle for the adversary, as it decrypts
any ciphertext it receives as a challenge. This entails that the used encryption
scheme has to achieve CCA security for the protocol to be sufficiently secure; any
scheme achieving only CPA security can be broken by performing a CCA attack
against the underlying encryption during the probing phase of the protocol. The
typical way of achieving CCA security is to design a CPA-secured encryption

A Lightweight Identification Protocol Based on Lattices 105

scheme and applying the FO transform to it. However, the FO transform adds
overhead and—more importantly—is very hard to secure against side-channel
attacks [4,7,43].

The fundamental idea of the FO transform is to avoid maliciously gener-
ated ciphertexts by re-encrypting the decrypted message and comparing it with
the received ciphertext. The decrypted message is only outputted if the re-
encryption results in the given ciphertext, otherwise, the ciphertext is rejected
as an invalid one. The re-encryption procedure comes with a huge overload
when used with lattice constructions. For example, it requires the sampling
from a noise distribution, which is notoriously hard to secure against side-
channels [13,35,40,43,45,51].

Our approach mimics the idea to check that the challenge ciphertext is gener-
ated honestly. However, instead of using the decrypted message, we achieve this
check independently of the secret key. In fact, an honest challenge in the present
identification protocol is generated by means of a seed. This seed is provided to
the prover only after the prover commits to its response by sending the hash
value of its response. Then the seed can be used to check whether the ciphertext
received after the first communication is indeed generated with the presented
seed.

Note that the commitment to the response does not reveal any information
about the secret unless either the hash function is broken, or the response com-
putation leaked information. Thus, the CPA decryption still needs to be secured
against side-channel attacks.

The benefit comes into play in the challenge verification step. As the com-
putation uses the seed only and is independent of the secret key or any result of
the response computation, the verification does not need to be secured against
side channels. As will be discussed below (see Table 2), the challenge verification
takes the greater computational costs of the prover, but in contrast to the CCA
version, does not need to be side-channel secured. Also note that after the com-
mitment in terms of the hash of the message with a random value, there is no
need for the verifier to keep the message secret. Thus, the verifier can send the
seed to the prover, who can check whether the challenge was generated honestly.
This seed allows the prover to verify the challenge, without using the secret key
or any values derived from the secret key.

The described benefits are achieved by adding a marginally larger commu-
nication cost given in terms of an additional hash value and the seed being
transmitted in the intermediate steps.

Note that we are only interested in side-channel leakage on the prover side,
which possesses a long-term secret. One could, of course, consider side-channel
leakage on the verifier side, but the relevance is questionable. Assume that an
adversary can obtain the challenge message m via some side-channel from the
challenge computation. This would immediately allow to identify. However, it
would only enable a single identification and be useless afterwards. It would also
require to obtain this side-channel information from a single trace.

106 S. Düzlü et al.

Table 1. Parameter sets and NIST security level for Kyber and the implementation of
the identification protocol with Kyber.

Reference Kyber Security

Bit Level

Kyber512 (k = 2, η1 = 3, η2 = 2) 118 I

Kyber768 (k = 3, η1 = 2, η2 = 2) 183 III

Kyber1024 (k = 4, η1 = 2, η2 = 2) 256 V

4.2 Parameter Sets

The instantiation of our identification protocol with Kyber.CPAPKE comes with
the NIST security levels I, III, and V corresponding to the Kyber parameter sets
Kyber512, Kyber768, and Kyber1024, see Table 1. All parameter sets share the
common MLWE structure instantiated with n = 256 and q = 3329. For our
security analysis we rely on the core-SVP classical hardness that is also used by
Kyber [46] version 3.02.

4.3 Implementation

In general, performance measurements for common PQC schemes can be per-
formed with a portable and easier to maintain implementation (e.g., pq-
clean [32]) or an implementation that is optimized for the target platform (e.g.,
pqm4 [31]) and that uses assembly instructions or CPU-specific operations. We
evaluate our implementation using both approaches on an ARM Cortex-M4 32-
bit microcontroller and use ARM GCC version 6.3.1. Our target device is an
STM32F407 that is mounted on the popular STM32F4-DISCOVERY board1.
For the evaluation, we set the clock frequency to 24 MHz and do not use the
maximum frequency of 168 MHz to reduce the impact of caches or delays caused
by wait states stemming from the particular non-volatile memory (NVM) tech-
nology.

For key generation we use the Kyber.CPAPKE key generation as is. For chal-
lenge computation, response computation, challenge verification, and response
verification we call the Kyber.CPAPKE routines from either pq-clean or pqm4
and also use the hashing routines provided by these libraries.

The security analysis of the protocol makes use of different, independent
random oracles. For the implementation, we make use of SHAKE and instantiate
the different random oracles via domain separation, using different prefixes. This
was shown in [5] to provide a sound method of instantiating multiple random
oracles from a single one.

1 The source code of our implementations is available at https://github.com/
tpoeppelmann/id protocol.

https://github.com/tpoeppelmann/id_protocol
https://github.com/tpoeppelmann/id_protocol

A Lightweight Identification Protocol Based on Lattices 107

To measure the cycle counts we rely on the system timer (SysTick) and
confirmed that we obtain the same cycle counts for Kyber768.CPAPKE with our
compiler and setup as given in [30] for Kyber768.CPAPKE. In Table 2, we provide
measured cycle counts of our implementation for the cryptographic processing
(cf. Sect. 3). Cycles for communication and protocol state handling are excluded
as they are highly application specific and depend on the used interface (e.g.,
contactless, IC2, SPI, CAN).

Table 2. Cycle counts of our implementation on an ARM Cortex-M4 using either
pq-clean [32] or pqm4 [31] using the m4fspeed implementation.

Function Cycles
(pqclean)

Cycles
(pqm4;
m4fspeed)

Key generation 927412 607652

Challenge Computation (verifier) 1097362 637251

Response Computation (prover) 244264 62497

Challenge Verification (prover) 1099267 644945

Response Verification (verifier) 42089 38569

In Table 3 we compare our implementation with standard constructions for
the realization of identification protocols based on Kyber.CCA and Dilithium when
using different implementations. For Kyber.CCA we assume that the verifier runs
encapsulation while the prover runs decapsulation and then provides the encap-
sulated secret back to the verifier. For the Dilithium instance we assume that the
verifier sends a random number (not accounted in cycle counts) and that the
prover executes a signing operation and the verifier a signature verification. The
average cycle counts for Kyber and Dilithium are obtained from [30] in October
2022. We also provide cycle counts for an insecure instantiation of CPA-secured
Kyber768.CPAPKE as ID scheme. The large difference in cycles to the CCA-
secured version Kyber.CCA shows the overhead attributed to the FO transform.
Another important metric for an ID scheme is the amount of data that has to
be transferred. For our approach it is required to transmit 1088 bytes for c,
32 bytes for r, 32 bytes for h and 32 bytes for r, which results in 1184 bytes.
When Kyber.CCA is used as ID scheme, it requires 1088 + 32 = 1120 bytes and
Dilithium3 needs 32 + 3293 = 3325 bytes.

108 S. Düzlü et al.

Table 3. Comparison of cycle counts for cryptographic operations when excluding
communication.

Library Function Cycles verifier Cycles prover

pq-clean Our protocol ARM Cortex-M4 1 139 451 1 343 531

Kyber768.CCA as ID scheme 1 352 393 1 470 514

Dilithium3 as ID scheme 3 499 388 11 722 059

Kyber768.CPAKEM as ID scheme (insecure) 1068 876 229 451

pqm4; m4fspeed Our protocol ARM Cortex-M4 675 820 707 442

Kyber768.CCA as ID scheme 869 974 795 161

Dilithium3 as ID scheme 2691 469 6610 160

Kyber768.CPAKEM as ID scheme (insecure) 611 076 49 021

4.4 Side-Channel Protection

Some implementations of identification schemes on embedded devices may
require protection against physical attacks. For our protocol, we see the benefit
that only the Response Computation by the prover is sensitive to side-channel
attacks. This is a big advantage compared to KEMs that are using the FO
transform where the decapsulation procedure is sensitive [42] and requires costly
masking or other countermeasures [4,7,43]. The challenge verification routine is
not sensitive as all inputs and the resulting ciphertexts c and c′ are known by the
prover and verifier. The only added operation on top of a masked Kyber.CPAPKE
decryption is the masked computation of h ← H(r, m̃). This operation needs to
be masked as well to prevent leakage of information on the decrypted message m̃.
The value h itself is not critical anymore as it is randomized via r. Note that to
obtain the cycle counts for the full computation of the prover, one has to add
also the non-sensitive cycles for challenge verification.

As shown in Table 4, the overhead of a 1st-order masked Kyber decryption
(including masked FO transform) is already roughly a factor of 3 (≈ 2200000
cycles) but increases massively for second or higher orders protection. And it is
important to note that a first order masked scheme is not sufficient in practice,
as practical attacks have already been shown that exploit in particular properties
of the FO transform. Such a scheme would at least need to be combined with
hiding measures to counter known attacks.

In Table 4, we also provide measurements for an implementation of the
Response Computation using the open-source first-order masked implementa-
tion of Kyber presented in [27]. In addition, we do performance estimations of
our scheme based on results reported in [12]. Such an approach using an estima-
tion is necessary as the source code of [12] is not available but sufficient to reach
a general impression about the benefits of our proposal as we mainly call Kyber
as a subroutine.

A Lightweight Identification Protocol Based on Lattices 109

The Response Computation of the prover is a masked Kyber.CPAPKE decap-
sulation (indcpa dec in [12]) and a masked hashing operation (e.g., hashg in [12]).
Therefore, the 1st-order Response Computation of the prover is estimated to be
roughly 174 000 + 118 000 + 62 497 = 354 497 cycles, which fits to the results
obtained via [27]. A 2nd-order protection implementation can be estimated with
2 916 000 + 1 543 000 + 62 497 = 4521497 cycles. This is roughly 8.5 times
better than the approach of using Kyber768.CCA as ID scheme with 2nd-order
protection (when also accounting for the non-sensitive 644 945 cycles for chal-
lenge verification the prover has to perform in our approach as well).

For a fair comparison, Table 4 also provides the full cycle count of the Prover.
For the identification protocol based on Kyber768.CCA, there is no difference
to the cycle count of the response computation. This is because the validity
is already been checked by the Kyber768.CCA decryption algorithm. For our
protocol, the full cycle count of the prover consists of the cycle count for the
(masked) response computation plus the fixed cycle count of 644 945 (cf. Table 1)
for the challenge verification, which does not need to be protected.

Table 4. Comparison of cycle counts.

Masking Scheme Cycles (Prover) Speedup

Resp. Comp. Full Comp.

none Our protocol 62 497 707 442 ≈ 1.12

Kyber768.CCA as ID scheme 795 168 795 168

1st-order [27] Our protocol 241 887 886 832 ≈ 3.35

Kyber768.CCA as ID scheme 297 8441 2 978 441

1st-order [12] Our protocol ≈ 354497 ≈ 999442 ≈ 3.12

Kyber768.CCA as ID scheme 3 116 000 3 116 000

2nd-order [12] Our protocol ≈ 4521497 ≈ 5166442 ≈ 8.58

Kyber768.CCA as ID scheme 44347000 44 347 000

3rd-order [12] Our protocol ≈ 12009497 ≈ 12654442 ≈ 9.12

Kyber768.CCA as ID scheme 115 481 000 115 481 000

Comparison of cycle counts for response computation and the full computation
performed by the prover between our protocol and the identification protocol based
on Kyber768.CCA. For our protocol, only the response computation, as shown in
the Resp. Comp. column, is required to be secured against side channels. The full
computation cycles result from the cycles for the response computation and the
(non-sensitive) 644 945 cycles for the challenge verification. For Kyber768.CCA as ID
scheme, the response calculation is equivalent to decryption; the full computation
is the same as there is no separate challenge verification. The listed speedup is
based on the cycle count for the full computation. The comparison is based on the
implementation using pqm4; m4fspeed.

110 S. Düzlü et al.

5 Conclusion

This article presents a novel lattice-based identification protocol using an interac-
tive challenge-response protocol. It is lightweight, efficient, and simple to imple-
ment, making it well-suited for use in IoT devices, microcontrollers, and con-
strained devices. The protocol is designed in a way that supposedly allows easier
protection against side-channel attacks than generic constructions using KEMs
as it avoids rejection sampling and the FO transform.

It might be of interest to investigate possible variations of the proposed
protocol that may be able to realize identity-based identification [20]. As lattice-
based constructions allow identity-based encryption schemes as shown in [25,50],
a natural question is whether it is possible to extend the present scheme to
develop an identity-based identification scheme.

Acknowledgments. We thank the anonymous reviewers for valuable comments. This
work has been supported by the German Ministry of Education and Research in
the context of the project Aquorypt (grant number 16KIS1022 and 16KIS1020), the
Deutsche Forschungsgemeinschaft (DFG) – SFB 1119 – 236615297, and the Bavarian
State Ministry of Science and the Arts in the framework of the bidt Graduate Center
for Postdocs.

References

1. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure sig-
natures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 34

2. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 269–295. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26951-7 10

3. Anada, H., Arita, S.: Identification schemes from key encapsulation mechanisms.
In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp.
59–76. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21969-6 4

4. Azouaoui, M., et al.: Surviving the FO-calypse: Securing PQC implementations in
practice (2022). https://iacr.org/submit/files/slides/2022/rwc/rwc2022/48/slides.
pdf

5. Bellare, M., Davis, H., Günther, F.: Separate your domains: NIST PQC KEMs,
Oracle cloning and read-only indifferentiability. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 3–32. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45724-2 1

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93, pp. 62–73. ACM Press, November 1993

7. Bhasin, S., D’Anvers, J.-P., Heinz, D., Pöppelmann, T., Van Beirendonck, M.:
Attacking and defending masked polynomial comparison. IACR TCHES 2021(3),
334–359 (2021). https://tches.iacr.org/index.php/TCHES/article/view/8977

https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-642-21969-6_4
https://iacr.org/submit/files/slides/2022/rwc/rwc2022/48/slides.pdf
https://iacr.org/submit/files/slides/2022/rwc/rwc2022/48/slides.pdf
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-030-45724-2_1
https://tches.iacr.org/index.php/TCHES/article/view/8977

A Lightweight Identification Protocol Based on Lattices 111

8. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 61–90. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36033-7 3

9. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

10. Boorghany, A., Jalili, R.: Implementation and comparison of lattice-based identifi-
cation protocols on smart cards and microcontrollers. Cryptology ePrint Archive,
Report 2014/078 (2014). https://eprint.iacr.org/2014/078

11. Boorghany, A., Sarmadi, S.B., Jalili, R.: On constrained implementation of lattice-
based cryptographic primitives and schemes on smart cards. Cryptology ePrint
Archive, Report 2014/514 (2014). https://eprint.iacr.org/2014/514

12. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking
kyber: first- and higher-order implementations. IACR TCHES 2021(4), 173–214
(2021). https://tches.iacr.org/index.php/TCHES/article/view/9064

13. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload
– a cache attack on the BLISS lattice-based signature scheme. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53140-2 16

14. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH (preliminary
version). Cryptology ePrint Archive, Report 2022/975 (2022). https://eprint.iacr.
org/2022/975

15. W. P. Consortium. The QI authentication system (2021). https://www.
wirelesspowerconsortium.com/qi-authentication/

16. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 64–93. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64837-4 3

17. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Online-extractability in the quan-
tum random-oracle model. In: EUROCRYPT 2022. Part III, LNCS, pp. 677–706.
Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-07082-2 24

18. Dousti, M.S., Jalili, R.: Efficient statistical zero-knowledge authentication protocols
for smart cards secure against active & concurrent attacks. Cryptology ePrint
Archive, Report 2013/709 (2013). https://eprint.iacr.org/2013/709

19. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

20. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

21. S. Fluhrer. Cryptanalysis of ring-LWE based key exchange with key share reuse.
Cryptology ePrint Archive, Report 2016/085, 2016. https://eprint.iacr.org/2016/
085

22. Fujisaki, E.: New constructions of efficient simulation-sound commitments using
encryption and their applications. In: Dunkelman, O. (ed.) CT-RSA 2012, volume
7178 of LNCS, pp. 136–155. Springer, Heidelberg, Feb. / (2012)

https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://eprint.iacr.org/2014/078
https://eprint.iacr.org/2014/514
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://doi.org/10.1007/978-3-662-53140-2_16
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://www.wirelesspowerconsortium.com/qi-authentication/
https://www.wirelesspowerconsortium.com/qi-authentication/
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-031-07082-2_24
https://eprint.iacr.org/2013/709
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/3-540-47721-7_12
https://eprint.iacr.org/2016/085
https://eprint.iacr.org/2016/085

112 S. Düzlü et al.

23. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999)

24. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. Part I, volume 10624 of LNCS, pp. 3–33. Springer, Heidelberg
(2017)

25. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press, May 2008

26. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8 31

27. Heinz, D., Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe, P., Sprenkels,
D.: First-order masked kyber on ARM cortex-M4. Cryptology ePrint Archive,
Report 2022/058 (2022). https://eprint.iacr.org/2022/058

28. Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: Lapin: an efficient
authentication protocol based on ring-LPN. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 346–365. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34047-5 20

29. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

30. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: Post-quantum
crypto library for the ARM Cortex-M4. https://github.com/mupq/pqm4

31. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: testing and
benchmarking NIST PQC on ARM cortex-M4. Cryptology ePrint Archive, Report
2019/844 (2019). https://eprint.iacr.org/2019/844

32. Kannwischer, M.J., Schwabe, P., Stebila, D., Wiggers, T.: Improving software qual-
ity in cryptography standardization projects. In: IEEE European Symposium on
Security and Privacy, EuroS&P 2022 - Workshops, pp. 19–30. IEEE Computer
Society, 2022. Cited for PQClean: Clean, portable, tested implementations of post-
quantum cryptography, see https://github.com/PQClean/PQClean

33. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press
(2014)

34. Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, D.: Efficient authentication
from hard learning problems. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 7–26. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-20465-4 3

35. Kim, S., Hong, S.: Single trace analysis on constant time CDT sampler and its
countermeasure. Appl. Sci. 8(10), 1809 (2018)

36. Kuchta, V., Sakzad, A., Stehlé, D., Steinfeld, R., Sun, S.-F.: Measure-rewind-
measure: tighter quantum random oracle model proofs for one-way to hiding and
CCA security. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12107, pp. 703–728. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45727-3 24

37. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg
(2008)

https://doi.org/10.1007/978-3-642-33027-8_31
https://eprint.iacr.org/2022/058
https://doi.org/10.1007/978-3-642-34047-5_20
https://doi.org/10.1007/978-3-642-34047-5_20
https://doi.org/10.1007/978-3-642-25405-5_2
https://github.com/mupq/pqm4
https://eprint.iacr.org/2019/844
https://github.com/PQClean/PQClean
https://doi.org/10.1007/978-3-642-20465-4_3
https://doi.org/10.1007/978-3-642-20465-4_3
https://doi.org/10.1007/978-3-030-45727-3_24
https://doi.org/10.1007/978-3-030-45727-3_24

A Lightweight Identification Protocol Based on Lattices 113

38. Lyubashevsky, V.: Fiat-shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

39. Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report, National
Institute of Standards and Technology (2020). https://csrc.nist.gov/projects/post-
quantum-cryptography/round-3-submissions

40. Marzougui, S., Wisiol, N., Gersch, P., Krämer, J., Seifert, J.-P.: Machine-learning
side-channel attacks on the GALACTICS constant-time implementation of BLISS.
In: Proceedings of the 17th International Conference on Availability, Reliability and
Security, pp. 1–11 (2022)

41. Migliore, V., Gérard, B., Tibouchi, M., Fouque, P.-A.: Masking Dilithium - efficient
implementation and side-channel evaluation. In: Deng, R.H., Gauthier-Umaña, V.,
Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 344–362. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21568-2 17

42. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical CCA2-secure
masked Ring-LWE implementations. IACR TCHES 2018(1), 142–174 (2018).
https://tches.iacr.org/index.php/TCHES/article/view/836

43. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks
on CCA-secure lattice-based PKE and KEMs. IACR TCHES 2020(3), 307–335
(2020). https://tches.iacr.org/index.php/TCHES/article/view/8592

44. Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes based on
multivariate quadratic polynomials. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 706–723. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 40

45. Schneider, T., Paglialonga, C., Oder, T., Güneysu, T.: Efficiently masking binomial
sampling at arbitrary orders for lattice-based crypto. In: Lin, D., Sako, K. (eds.)
PKC 2019. LNCS, vol. 11443, pp. 534–564. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17259-6 18

46. Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions

47. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 2

48. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp.
192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 8

49. USB 3.0 Promoter Group. Universal serial bus security foundation specification,
2019. https://www.usb.org/document-library/usb-authentication-specification-
rev-10-ecn-and-errata-through-january-7-2019

50. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 44

51. Zhao, R.K., Steinfeld, R., Sakzad, A.: FACCT: fast, compact, and constant-time
discrete Gaussian sampler over integers. IEEE Trans. Comput. 69(1), 126–137
(2019)

https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-030-21568-2_17
https://tches.iacr.org/index.php/TCHES/article/view/836
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://doi.org/10.1007/978-3-642-22792-9_40
https://doi.org/10.1007/978-3-642-22792-9_40
https://doi.org/10.1007/978-3-030-17259-6_18
https://doi.org/10.1007/978-3-030-17259-6_18
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44

POLKA: Towards Leakage-Resistant
Post-quantum CCA-Secure Public Key

Encryption

Clément Hoffmann1(B), Benôıt Libert2, Charles Momin1, Thomas Peters1,
and François-Xavier Standaert1

1 Crypto Group, ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium
charlotte.hoffmann@ist.ac.at, fstandae@uclouvain.be

2 Zama, Annecy, France

Abstract. As for any cryptographic algorithm, the deployment of post-
quantum CCA-secure public key encryption schemes may come with the
need to be protected against side-channel attacks. For existing post-
quantum schemes that have not been developed with leakage in mind,
recent results showed that the cost of these protections can make their
implementations more expensive by orders of magnitude. In this paper,
we describe a new design, coined POLKA, that is specifically tailored to
reduce this cost. It leverages various ingredients in order to enable efficient
side-channel protected implementations such as: (i) the rigidity property
(which intuitively means that the de-randomized encryption and decryp-
tion are injective functions) to avoid the very leaky re-encryption step
of the Fujisaki-Okamoto transform, (ii) the randomization of the decryp-
tion thanks to the incorporation of a dummy ciphertext, removing the
adversary’s control of its intermediate computations and making these
computations ephemeral, (iii) key-homomorphic computations that can
be masked against side-channel attacks with overheads that scale linearly
in the number of shares, (iv) hard physical learning problems to argue
about the security of some critical unmasked operations. Furthermore, we
use an explicit rejection mechanism (returning an error symbol for invalid
ciphertexts) to avoid the additional leakage caused by implicit rejection.
As a result, the operations of POLKA can be protected against leakage
in a cheaper way than state-of-the-art designs, opening the way towards
schemes that are both quantum-safe and leakage-resistant.

1 Introduction

Recent research efforts showed that designing post-quantum chosen-ciphertext-
secure public-key encryption (PKE) schemes that allow efficient implementations
offering side-channel security guarantees is extremely challenging with exist-
ing techniques. One well-documented issue arises from the Fujisaki-Okamoto

B. Libert—This work was done when this author was a CNRS researcher at Laboratoire
LIP (UMR CNRS - ENS Lyon - UCB Lyon 1 - INRIA 5668), Lyon, France.

c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 114–144, 2023.
https://doi.org/10.1007/978-3-031-31368-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_5&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_5

POLKA 115

(FO) transform that is frequently used for building key encapsulation mecha-
nisms (KEMs) with chosen-ciphertext (IND-CCA) security from PKE schemes
or KEMs that only provide weak security notions like one-wayness under pas-
sive attacks (OW-CPA security) [42,43]. The FO transformation and its vari-
ants are, for example, used in the NIST post-quantum finalists KYBER [4,20]
and SABER [10,31], where the CCA-secure KEM is combined with a secret-key
(authenticated) encryption scheme into a hybrid PKE system.

Recall that a KEM system (Keygen,Encaps,Decaps) is a PKE scheme that
does not take any plaintext as input, but rather computes an encryption of a
random symmetric key K. To encrypt a plaintext M via the hybrid KEM/DEM
framework [63], the Encaps algorithm often samples a random m, which is used
to derive a symmetric key K and random coins r from a random oracle (K, r) ←
H(m) before deterministically encapsulating K as ckem = Encapspk(m, r). Next,
a secret-key scheme (E,D) (a.k.a. data encapsulation mechanism, or DEM) is
used to compute csym = EK(M) in order to obtain a hybrid PKE ciphertext c =
(ckem, csym). The receiver can then recover m = Decapssk(ckem) and (K, r) ←
H(m) before obtaining M = DK(csym). It is known that the hybrid construction
provides IND-CCA security if the underlying KEM is itself IND-CCA-secure
and if the DEM satisfies a similar security notion in the secret-key setting [63].
In order to secure the KEM part against chosen-ciphertext attacks, the FO
transform usually checks the validity of the incoming ckem by testing if ckem =
Encapspk(m, r) (a step known as “re-encryption”) after having recovered the
random coins r from (K, r) ← H(m) upon decryption.

In the FO transform, the first computation during a decryption attempt is
Decapssk(ckem), where Decaps is the underlying decapsulation of the OW-CPA
secure KEM. While this has no impact in a black-box security analysis, in the
context of side-channel chosen-ciphertext attacks the adversary remains able to
target this component using many ckem values of its choice [57,60,64], leaving an
important source of vulnerabilities. Indeed, the adversary is free to adaptively
feed Decapssk with (invalid) ciphertexts and craft ckem in such a way that an
internal message m with only few unknown bits is re-encrypted via the FO
transform. This allows side-channel attacks to directly exploit the leakage of
these bits obtained during the re-encryption test ckem

?= Encapspk(m, r) to infer
information about sk. This task is surprisingly easy since all the leakage samples
of the deterministic re-encryption can be exploited for this purpose (i.e., much
more than the few rounds of leakage that are typically exploited in divide-and-
conquer side-channel attacks against symmetric encryption schemes) [53].

In parallel, several pieces of work started to analyze masked implementations
of KYBER and SABER [11,17,21,22,41]. These works typically indicate large over-
heads when high security levels are required, which can be directly connected
to a large amount of leaking intermediate computations [5]. In particular, these
implementations all consider a uniform protection level for all their operations,
that is in contrast with the situation of symmetric cryptography where so-called
leveled implementations, in which different (more or less sensitive) parts of a
mode of operation are protected with different (more or less expensive) side-
channel countermeasures, can lead to important performance gains [14].

116 C. Hoffmann et al.

In this paper, we therefore initiate the study of quantum-safe CCA-secure
public-key encryption schemes that have good features for leakage-resistant (LR)
implementations. For this purpose, we propose to combine the different seed
ingredients. First, we leverage the rigidity property introduced by Bernstein and
Persichetti [15], as it allows building CCA-secure encryption schemes without
relying on re-encryption nor on the FO transform. Despite removing an impor-
tant source of leakage, getting rid of the FO transform is not yet sufficient to
enable leveled implementations for KYBER (or SABER), since the rest of their oper-
ations remains expensive to protect [5]. Therefore, we also propose to randomize
the decryption process by incorporating a “dummy ciphertext”. It brings the
direct benefit of removing the adversary’s control on all intermediate computa-
tions that are dummied, while making these computations ephemeral, which is
in general helpful against leakage. This second step already allows an interesting
leveling between computations that require security against simple power analy-
sis (SPA) and differential power analysis (DPA) attacks.1 Eventually, we observe
that the structure of the KEM’s remaining DPA target shares similarities with
the key-homomorphic re-keying schemes used in symmetric cryptography to pre-
vent side-channel attacks [36,40,55]. Building on this observation, we propose
to implement this DPA target such that only its key-homomorphic parts are
(efficiently) protected thanks to masking, by relying on the recently introduced
Learning With Physical Rounding (LWPR) assumption [39]. In short, the LWPR
assumption is a physical version of the crypto dark matter introduced by Boneh
et al. [19]. The latter assumes that low-complexity PRFs can be obtained by
mixing linear mappings over different small moduli. LWPR further leverages the
possibility that one of these mappings is computed by a leakage function.

We additionally observe that by carefully instantiating the symmetric
authenticated encryption of the DEM as an Encrypt-then-MAC scheme with
a one-time key-homomorphic MAC, the overheads due to the side-channel coun-
termeasures can be reduced to linear in the number of shares used for masking
for this part of the computation as well. And we finally combine these different
ingredients into a new efficient post-quantum CCA-secure public-key encryption
scheme, called POLKA (standing for POst-quantum Leakage-resistant public Key
encryption Algorithm), that simultaneously provides excellent features against
leakage and a proof of IND-CCA security (in the sense of the standard definition
without leakage) under the standard RLWE assumption.

Without leakage, we show that POLKA provides CCA security in the quantum
random oracle model (QROM) [18]. Our construction is a hybrid KEM-DEM
encryption scheme built upon a variant of a public-key encryption scheme due
to Lyubashevsky, Peikert and Regev (LPR) [52], which is well-known to provide
IND-CPA security under the ring learning-with-errors (RLWE) assumption. In
order to obtain a KEM, we modify the LPR system so as to recover the sender’s
random coins upon decryption. In contrast with the FO transformation and

1 Informally, SPAs are side-channel attacks where the adversary can only observe the
leakage of a few inputs to the target operation for a given secret. DPAs are attacks
where the adversary can observe the leakage of many such inputs.

POLKA 117

its variants, this is achieved without de-randomizing an IND-CPA system, by
deriving the sender’s random coins. Instead of encrypting a random message m
to derive our symmetric key K, we always “encrypt” 0 and hash the random coins
consisting of a tuple (r, e1, e2) ∈ R of small-norm ring elements sampled from the
noise distribution. These elements (r, e1, e2) are then encoded into a pair ckem =
(a · r + e1, b · r + e2) ∈ R2

q , where a, b ∈ Rq are random-looking elements included
in the public key. Using its secret key, the decryptor can extract (r, e1, e2) from
ckem and check their smallness. This verification/extraction step is designed in
such a way that decapsulation natively provides rigidity [15] without relying on
re-encryption. Namely, due to the way to recover (r, e1, e2) from ckem, we are
guaranteed that deterministically re-computing ckem = (a ·r+e1, b ·r+e2) would
yield the incoming ciphertext. This allows dispensing with the need to explicitly
re-compute ckem in the real scheme, thus eliminating an important source of
side-channel vulnerability that affects KYBER and SABER.

In a black-box security analysis, our KEM can be seen as an injective trap-
door function that maps (r, e1, e2) ∈ R3 to (a · r + e1, b · r + e2). As long as we
sample (r, e1, e2) from a suitable distribution, ckem is pseudorandom under the
RLWE assumption. However, to ease the use of efficient side-channel counter-
measures upon decryption, we also leverage the fact that our injection satisfies
a (bounded) form of additive homomorphism for appropriate parameters. That
is, if we generate what we call a dummy ciphertext c′

kem by having the decryp-
tor honestly run the basic encapsulation step using its own random coins, the
decapsulation of c̄kem = ckem + c′

kem should give the sum of the random coins
chosen by the sender and the receiver. Then, we can easily remove the addi-
tional dummy random coins after some additional tests. Introducing c̄kem in the
decryption process removes the adversary’s freedom of forcing the computation
of Decapssk(ckem) to take place on a ckem under its control, which helps us pro-
tecting the secret key. Moreover, the underlying coins of ckem are now split into
two shares upon decryption and they are only recombined in a step where we
can safely derive K. To implement this idea, we prove the CCA security of our
scheme in its variant endowed with a probabilistic decryption algorithm.

With leakage, we argue that POLKA offers a natural path towards efficient
leveled implementations secured against side-channel attacks. For this purpose,
we first use a methodology inspired from [14] to identify the level of security
required for all its intermediate computations. We then focus on how to secure
the polynomial multiplication used in POLKA against DPA, by combining mask-
ing for its key-homomorphic parts and a variant of the aforementioned LWPR
assumption after the shares recombination. Our contributions in this respect are
twofold. On the one hand, we define the LWPR variant on which POLKA relies and
discuss its difference from the original one. Given that LWPR is an admittedly
recent assumption and in view of the important performance gains it can lead to,
we additionally specify instances to serve as cryptanalysis targets. On the other
hand, we describe a hardware architecture for these masked operations, which
confirms these excellent features (e.g., simplicity to implement them securely,
performance overheads that are linear in the number of shares). Overall, protect-
ing the long-term secret of our leveled implementation only needs to combine the

118 C. Hoffmann et al.

masking of key-homomorphic computations (which has linear overheads in the
number of shares) with SPA security for other computations, which is directly
obtained thanks to parallelism in hardware. Protecting the message confiden-
tiality additionally requires protecting its symmetric cryptographic components
(i.e., hash function and authenticated encryption) against DPA.

As a last result to confirm the generality of our findings, we also show in
the ePrint report [46] that they apply to an LR variant of the NTRU cryptosys-
tem [27], which satisfies the rigidity property, can be enhanced with a dummy
mechanism and has internal computations that also generate LWPR samples.

2 Technical Overview and Cautionary Note

Technical overview. Our construction can be seen as a rigid and randomness-
recovering version of the RLWE-based encryption scheme described in [52]. By
“randomness-recovering,” we mean that the decryption procedure recovers the
message and the sender’s random coins. A randomness-recovering encryption
scheme is rigid [15] if, when the decryptor obtains a message m and ran-
domness r, running the encryption algorithm on input of (m, r) necessarily
yields the incoming ciphertext. While rigidity can always be achieved by adding
a re-encryption step (as pointed out in [47]), this generally introduces one-
more place of potential side-channel vulnerabilities, which is precisely exploited
in [57,60,64]. In order to eliminate the need for an explicit re-encryption step,
it is thus desirable to have a decryption algorithm which is natively injective
(when seen as a deterministic function). The first difficulty is thus to build a
rigid, randomness-recovering PKE/KEM under the standard RLWE assumption.
Our goal is to achieve this without sacrificing the efficiency of the original LPR
system in order to remain reasonably competitive with NIST finalists.

The LPR cryptosystem is not randomness-recovering. In a cyclotomic ring
R = Z[X]/(Xn + 1), it involves a public key containing a pair (a, b = a · s + e),
where a ∈ R/(qR) is uniform, s ∈ R is the secret key and e is a noise. To
encrypt m ∈ R/(pR) (for some moduli p < q), the sender chooses small-norm
randomness r, e1, e2 ∈ R and computes (c1, c2) = (a ·r+e1, b ·r+e2 +m · �q/p�),
so that the receiver can obtain c2 − c1 · s mod q = m · �q/p� + small. While
m is then computable, there is no way to recover (r, e1, e2) from the “decryp-
tion error” term small. To address this problem, a folklore solution is to intro-
duce distinct powers of p. Suppose we want to build a randomness-recovering
encryption of 0 (which is sufficient to build a KEM). The sender can then com-
pute (c1, c2) = (p2 · a · r + p · e1, p

2 · b · r + e2), which allows the receiver to
obtain μ = c2 − c1 · s mod q = p2er − pe1s + e2. Since the right-hand-side
member is small, the receiver can efficiently decode (r, e1, e2) ∈ R3 from μ.
Unfortunately, the latter construction is not rigid. Suppose that an adversary
can somehow compute a non-trivial pair (u, u · s) ∈ R2 given (a, a · s + e). It
can then faithfully compute (c1, c2) = (p2 · a · r + p · e1, p

2 · b · r + e2) and
turn it into (c′

1, c
′
2) = (c1 + u, c2 + u · s), which yields a “decryption collision”

μ = c2 − c1 · s = c′
2 − c′

1 · s. Besides, as shown in [32], computing a pair (u, u · s)

POLKA 119

(for an arbitrary, possibly non-invertible u �= 0) given (a, a · s + e) can only
be hard in rings R/(qR) ∼= Zq[X]/(Φ1(X)) × · · · × Zq[X]/(Φt(X)) that have no
small-degree factors, which rules out NTT-friendly rings. Even for rings where
Φ(X) = Xn + 1 splits into degree-n/2 factors, the problem (called SIP-LWE in
[32]) is non-standard and its hardness is not known to be implied by RLWE.2

Here, we take a different approach since we aim at rigidity without relying on
stronger assumptions than RLWE and without forbidding fully splitting rings.

We modify the original LPR system in the following way. The public key
contains a random a ∈ R/(qR) and a pseudorandom b ∈ R/(qR), which is now
of the form b = p · (a ·s+e), for small secrets s, e ∈ R and a public integer p such
that ‖e‖∞ < p/2. We also require b to be invertible over R/(qR), so that the key
generation phase must be repeated with new candidates (s, e) until b is a unit.
To compute an encapsulation, we sample Gaussian ring elements r, e1, e2 ∈ R
and compute ckem = (c1, c2) = (a · r + e1, b · r + e2), where K = H(r, e1, e2) is
the encapsulated key. Decapsulation is performed by using s ∈ R to compute
μ = c2−p ·c1 ·s mod q, which is a small-norm element μ = e2+p · small ∈ R that
reveals e2 = μ mod p. Given e2, the receiver then obtains r = (c2 − e2) · b−1 and
e1 = c1 −a · r, and checks the smallness of (r, e1, e2). The decapsulation phase is
natively rigid (without re-encryption) as it outputs small-norm (r, e1, e2) ∈ R3

if and only if (c1, c2) = (a · r + e1, b · r + e2).
Our hybrid encryption scheme builds on a variant of the above KEM with

explicit rejection, where the decapsulation phase returns an error symbol ⊥ on
input of an invalid ckem. It thus departs from NIST finalists that all rely on
KEMs with implicit rejection, where the decapsulation algorithm never outputs
⊥, but rather handles invalid encapsulations ckem by outputting a random key
K ′ ← H(z, ckem) derived from an independent long-term secret z.3 While our
scheme could have relied on implicit rejection in a similar way, we chose to
avoid additional computations involving an extra long-term secret z. The reason
is that, if we were to introduce additional key material z, it should be DPA-
protected with possibly heavy side-channel countermeasures (cf. Section 5.1).

When it comes to proving security in the QROM, the use of an explicit-
rejection KEM introduces some difficulty as it is not clear how to deal with
invalid ciphertexts. While the classical ROM allows inspecting all random oracle
queries and determining if one of them explains a given ciphertext, we cannot
use this approach in the QROM because RO-queries are made on superpositions
of inputs. Our solution is to use an implicit-rejection KEM only in the security
proof. In a sequence of games, we first modify the decryption oracle so as to
make the rejection process implicit. Then, we argue that, as long as the DEM
component is realized using an authenticated symmetric encryption scheme, the

2 D’Anvers et al. [32] defined a homogeneous variant of SIP-LWE which is uncondition-
ally hard, even in fully splitting rings. Still, relying on this variant incurs a partial
re-encryption to enforce the equality c2 = c′

2.
3 When the hybrid KEM-DEM framework is instantiated with an implicit rejection

KEM, invalid ciphertexts are usually rejected during the symmetric decryption step
as decrypting csym with a random key K′ yields ⊥.

120 C. Hoffmann et al.

modified decryption oracle is indistinguishable from the real one. After having
modified the decryption oracle, we can adapt ideas from Saito et al. [62] in order
to tightly relate the security of the hybrid scheme to the RLWE assumption.

As mentioned earlier, avoiding re-encryption does not suffice to ensure side-
channel resistance. As another improvement, we modify the decapsulation step
and add a dummy ciphertext (c′

1, c
′
2) = (a · r′ + e′

1, b · r′ + e′
2) for fresh receiver-

chosen randomness r′, e′
1, e

′
2 to (c1, c2) before proceeding with the decapsula-

tion of (c̄1, c̄2) = (c1 + c′
1, c2 + c′

2). This simple trick prevents the adversary
from controlling the ring elements that multiply the secret key s at the only
step where it is involved. We even show in Sect. 5 how this computation can
be protected against DPA with minimum overheads by combination the mask-
ing countermeasure and a LWPR assumption. Additionally, the choice of (c′

1, c
′
2)

as an honestly generated encapsulation allows continuing the decryption pro-
cess as if (c̄1, c̄2) was the ciphertext computed from the (still) small-norm coins
(r̄, ē1, ē2) = (r + r′, e1 + e′

1, e2 + e′
2). That is, we do not have to remove the

noise terms as we can retrieve r̄, ē1 and ē2 and test their smallness. Since r′, e′
1

and e′
2 do have small norm, if the decryption succeeds until this step, then r, e1

and e2 must be small as well (with a small constant slackness factor 3). There-
fore, the dummy ciphertext/KEM makes it possible to eliminate an exponential
amount of invalid ciphertexts without having ever tried to re-compute the cor-
rect (r, e1, e2). In case of an early rejection, and because the secret key s is now
protected with a hidden and pseudorandom (c̄1, c̄2), the leakage only provides
limited information related to the ephemeral values in (r′, e′

1, e
′
2) which were

sampled independently of the adversary’s view. If no rejection occurs, (r′, e′
1, e

′
2)

has components of (small but) sufficiently large norm to hide (at least most of
the bits of) (r, e1, e2) if the adversary gets the full leakage of (r̄, ē1, ē2). At that
time, we can safely recover (r, e1, e2) and check their norm (to eliminate the
slackness) for technical reasons. This computation can only be repeated through
many decryption queries on fixed inputs, and therefore only require SPA secu-
rity (with averaging), which is cheaper to ensure than DPA security. As for the
DEM, the general solutions outlined in [14] are a natural option. But we show
an even cheaper one that leverages a key-homomorphic MAC.

Cautionary Note. Advances in leakage-resistant cryptography usually com-
bine progresses following two main movements. On the one hand, theoretical
works aim to specify sufficient conditions of security in abstract models. On
the other hand, practical works rather aim to study heuristic countermeasures
against concrete attacks (i.e., necessary security conditions). The long-term goal
of such researches is therefore to “meet in the middle”, which can occur either
by making sufficient security conditions empirically falsifiable or by making the
heuristic study of countermeasures more and more general. Reaching this goal
is challenging due to the continuous and device-specific nature of physical leak-
ages. In the case of symmetric cryptography, such movements are for example
witnessed by definitional efforts like [45] and instances of (initially) more heuris-
tic designs like ISAP [34] or Ascon [35], while their match has been recently
discussed in [14]. In the case of asymmetric post-quantum cryptography, it is
expected to be even more challenging since algorithms come with more versatile

POLKA 121

building blocks that will in turn require a finer-grain analysis (than just rely-
ing on block ciphers or permutations, for example). Given the amplitude of the
challenge, the approach we follow is a bottom-up one. That is, we aim to show
that considering the need for side-channel countermeasures as a design criterion
can lead to encryption schemes that are easier to protect. For this purpose, we
focus our analysis on intuitive design tweaks (for which we can explain how they
avoid certain attack vectors) and on their necessary security conditions. We hope
the design of POLKA can serve as a trigger for more formal analyses leading to
identify sufficient security conditions for (part of) its design or improvements
thereof, and that this formal analysis will be easier than for encryption schemes
that did not consider leakage to guide their design, like KYBER or SABER.

In this context, one can naturally wonder why we do not provide a com-
prehensive comparison of POLKA with KYBER or SABER. The short answer is
that the current state-of-the-art does not allow such comparisons yet. That is,
a sound comparison between post-quantum encryption schemes against side-
channel attacks would require assessing their cost vs. security tradeoff. But while
there are several works that evaluate the (high) cost of masking KYBER or SABER,
none of them come with a quantitative security evaluation against worst-case
adversaries (e.g., as done in [24] for the AES). Therefore, we are for now left
with the more quantitative analysis of Sect. 5.1, where we identify the parts of
POLKA that must be protected against DPA and the ones that only require pro-
tections against SPA, together with the observation of Sect. 5.2 and 5.3 that the
DPA security of some critical operations in POLKA can be obtained with over-
heads that scale linearly in the number of shares (vs. quadratic for KYBER or
SABER). As in the context of symmetric cryptography, it is naturally expected
that POLKA comes with overheads in case leakage is not a concern. However,
considering for simplicity that they are dominated by the cost of the NTTs and
multiplications, the larger polynomials (e.g., n = 1024 vs. n = 512 for KYBER)
and modulus (e.g., 16-bit vs. 12-bit for KYBER) of POLKA should not decrease
performances by large factors. For example, assuming NTTs have complexity in
O(n log(n)) and multiplications have complexity in O(log(q)2), while taking into
account the number of such operations, the factor of overheads of POLKA over
KYBER would be around two. Besides, POLKA makes a sparser use of symmetric
cryptography and its design (without FO transform) should require less shares
for its masked implementations to provide the same security level. We infor-
mally illustrate the cycle counts of POLKA and KYBER in function of the number
of shares of their masked implementation in Fig. 1, where the black (quadratic)
curve is from [22] and the red (linear) ones assume POLKA is from twice to (a
conservative) five times more expensive than KYBER without countermeasures.
Turning this qualitative analysis into a quantitative one in order to determine the
target security level (and number of shares) that makes POLKA or improvements
thereof a relevant alternative to existing schemes is an interesting scope for fur-
ther investigations. As for the aforementioned quest towards analyzing sufficient
security conditions for leakage-resistant post-quantum encryption schemes, we
therefore hope our results can serve as a trigger towards evaluating the worst-
case side-channel security level of masked post-quantum encryption schemes.

122 C. Hoffmann et al.

Fig. 1. Informal comparison between masked POLKA (n=1024, 16-bit modulus, ≈191
bits of security – see Sect. 4.3) and KYBER768 (196 bits of security).

Additional related works are discussed in the ePrint report [46].

3 Background

3.1 Lattices and Discrete Gaussian Distributions

An n-dimensional lattice Λ ⊆ R
n is the set Λ = {∑n

i=1 zi · bi | z ∈ Z
n} of

all integer linear combinations of a set of linearly independent basis vectors
B = {b1, . . . ,bn} ⊆ R

n. Let Σ ∈ R
n×n be a symmetric positive definite matrix,

and c ∈ R
n. The n-dimensional Gaussian function on R

n is defined as ρ√
Σ,c(x) =

exp(−π(x − c)�Σ−1(x − c)). In the special case where Σ = σ2 · In and c = 0,
we denote it by ρσ. For any lattice Λ ⊂ R

n, the discrete Gaussian distribution
DΛ,

√
Σ,c has probability mass PrX∼DΛ,

√
Σ,c

[X = x] =
ρ√

Σ,c(x)

ρ√
Σ,c(Λ) for any x ∈ Λ.

When c = 0 and Σ = σ2 · In we denote it by DΛ,σ.

Lemma 1 ([56], Lemma 4.4). For σ = ω(
√

log n) there is a negligible function
ε = ε(n) such that Prx∼DZn,σ

[‖x‖ > σ
√

n] ≤ 1+ε
1−ε · 2−n.

3.2 Rings and Ideal Lattices

Let n a power of 2 and define the rings R = Z[X]/(Xn+1) and Rq = R/qR. Each
element of R is a (n−1)-degree polynomial in Z[X] and can be interpreted as an
element of Z[X] via the natural coefficient embedding that maps the polynomial
a =

∑n−1
i=0 aiX

i ∈ R to (a0, a1, . . . , an−1) ∈ Z
n. An element of Rq can similarly

be viewed as a degree-(n − 1) polynomial over Zq[X] and represented as an n-
dimensional vector with coefficients in the range {−(q − 1)/2, . . . , (q − 1)/2}.

The Euclidean and infinity norms of an element of a ∈ R are defined by
viewing elements of R as elements of Zn via the coefficient embedding.

The ring R can also be identified as the subring of anti-circulant matrices in
Z

n×n by viewing each a ∈ R as a linear transformation r → a · r. This implies
that, for any a, b ∈ R, ‖a · b‖∞ ≤ ‖a‖ · ‖b‖ by the Cauchy-Schwartz inequality.

POLKA 123

As in [50], for any lattice Λ, Dcoeff
Λ,σ denotes the distribution of a ring element

a =
∑n−1

i=0 aiX
i ∈ R of which the coefficient vector (a0, . . . , an−1)� ∈ Z

n is
sampled from the discrete Gaussian distribution DΛ,σ.

We now recall the ring variant of the Learning-With-Errors assumption [61].
The ring LWE (RLWE) problem is to distinguish between a polynomial number
of pairs of the form (ai, ai · s + ei), where ai ∼ U(Rq) and s, ei ∈ R are sampled
from some distribution χ of bounded-magnitude ring elements, and random pairs
(ai, bi) ∼ U(R2

q). In Definition 1, the number of samples k is made explicit.

Definition 1. Let λ ∈ N a security parameter. Let positive integers n = n(λ),
k = k(λ), and a prime q = q(n) > 2. Let an error distribution χ = χ(n) over
R. The RLWEn,k,q,χ assumption says that the following distance is a negligible
function for any PPT algorithm A,

AdvA,RLWE
n,k,q,χ (λ) :=

∣
∣ Pr[A(1λ, {(ai, vi)}k

i=1) = 1]

− Pr[A(1λ, {(ai, ais + ei)}k
i=1) = 1]

∣
∣,

where a1, . . . , ai, v1, . . . , vk ←↩ U(Rq), s ←↩ χ, e1, . . . , ei ←↩ χ.

For suitable parameters, the RLWE assumption is implied by the hardness of
worst-case instances of the approximate shortest vector problem in ideal lattices.

Lemma 2 ([52]). Let n a power of 2. Let Φm(X) = Xn+1 the m-th cyclotomic
polynomial where m = 2n, and R = Z[X]/(Φm(X)). Let q = 1 mod 2n. Let
also r = ω(

√
log n) Then, there is a randomized reduction from 2ω(log n) · (q/r)-

approximate R-SVP to RLWEn,poly(n),q,χ where χ = Dcoeff
Zn,r.

4 POLKA: Rationale and Specifications

Our starting point is a variant of the LPR cryptosystem [52], which builds on a
rigid randomness-recovering KEM. As in [52], the public key contains a random
ring element a ∈ Rq and a pseudorandom b ∈ Rq. Here, b is of the form b =
p · (a · s + e) (instead of b = a · s + e as in [52]), for secret s, e ∈ R sampled from
the noise distribution and where p is an integer such that ‖e‖∞ < p. Another
difference with [52] is that decryption requires b to be invertible over Rq.

The encryptor samples ring elements r, e1, e2 ∈ R from a Gaussian distribu-
tion and uses them to derive a symmetric key K = H(r, e1, e2). The latter is then
encapsulated by computing a pair (c1, c2) = (a · r +e1, b · r +e2). The decryption
algorithm uses s ∈ R to compute μ = c2 − p · c1 · s ∈ Rq, which is a small-norm
ring element μ = e2 + p · (er − e1s) ∈ R. This allows recovering e2 = μ mod p,
which in turn reveals r = (c2 − e2) · b−1 ∈ Rq and e1 = c1 − a · r ∈ Rq.
After having checked the smallness of (r, e1, e2), the decryption procedure obtains
K = H(r, e1, e2). The scheme provides the rigidity property of [15] as the decryp-
tor obtains (r, e1, e2) ∈ R3 such that ‖r‖, ‖e1‖, ‖e2‖ ≤ B, for some norm bound
B, if and only if (c1, c2) = (a ·r+e1, b ·r+e2). This ensures that no re-encryption
is necessary to check the validity of the input pair (c1, c2).

124 C. Hoffmann et al.

Our hybrid encryption scheme builds on a KEM with explicit rejection (as
per [47,59]), meaning that invalid encapsulations are rejected as soon as they
are noticed in decryption. In the security proof, we will switch to an implicit
rejection mechanism (as defined [59, Section 5.3]), where the decapsulation algo-
rithm outputs a random key on input of an invalid encapsulation. The rejection
of malformed encapsulations is then deferred to the symmetric decryption.

4.1 The Scheme with an Additive Mask

We now describe a version of the scheme that has good features for side-channel
resistant implementation, where the decryption algorithm first adds a “dummy
ciphertext” to (c1, c2) before proceeding with the actual decryption.

Keygen(1λ): Given a security parameter λ ∈ N,
1. Choose a dimension n ∈ N, a prime modulus q = 1 mod 2n. Let the rings

R = Z[X]/(Xn + 1) and Rq = R/(qR) such that Φ(X) = Xn + 1 splits
into linear factors over Rq. Let R×

q the set of units in Rq.
2. Choose a noise parameter α ∈ (0, 1), and let a norm bound B = αq

√
n.

Choose an integer p ∈ N such that 4B < p < q
8(B2+1) .

3. Sample a ←↩ U(Rq) and s, e ←↩ Dcoeff
Zn,αq and compute b = p · (a · s + e). If

b �∈ R×
q , restart step 3.

4. Choose an authenticated symmetric encryption scheme Πsym = (K,E,D)
with key length κ ∈ poly(λ) and message space {0, 1}
m .

5. Let a domain DE := {(r, e1, e2) ∈ R3 : ‖r‖, ‖e1‖, ‖e2‖ ≤ B}. Choose a
hash function H : DE → {0, 1}κ modeled as a random oracle.

Return the key pair (PK,SK) where

PK :=
(
n, q, p, α, a ∈ Rq, b ∈ R×

q , Πsym, H, B
)

and SK := s ∈ R.

Optionally, one can add b−1 in PK (to avoid computing an inverse in decryp-
tion).

Encrypt(PK,M): Given a public key PK and a message M ∈ {0, 1}
m :

1. Sample r, e1, e2 ←↩ Dcoeff
Zn,αq and compute

c1 = a · r + e1 ∈ Rq, c2 = b · r + e2 ∈ Rq

together with K = H(r, e1, e2) ∈ {0, 1}κ.
2. Compute c0 = EK(M).

Output the ciphertext C = (c0, c1, c2).

Decrypt(SK,C): Given SK = s ∈ R and C = (c0, c1, c2), do the following:

1. Sample r′, e′
1, e

′
2 ←↩ Dcoeff

Zn,αq and return ⊥ if ‖r′‖ > B, or ‖e′
1‖ > B, or

‖e′
2‖ > B. Otherwise, compute c′

1 = a · r′ + e′
1 and c′

2 = b · r′ + e′
2.

2. Compute c̄1 = c1 + c′
1 and c̄2 = c2 + c′

2.

POLKA 125

3. Compute μ̄ = c̄2 − p · c̄1 · s over Rq.
4. Compute ē2 = μ̄ mod p. If ‖ē2‖ > 2B, return ⊥.
5. Compute r̄ = (c̄2 − ē2) · b−1 ∈ Rq. If ‖r̄‖ > 2B, return ⊥.
6. Compute ē1 = c̄1 − a · r̄ ∈ Rq. If ‖ē1‖ > 2B, return ⊥.
7. Compute r = r̄ − r′, e1 = ē1 − e′

1 and e2 = ē2 − e′
2. If ‖r‖ > B, or

‖e1‖ > B, or ‖e2‖ > B, then return ⊥.
8. Compute K = H(r, e1, e2) ∈ {0, 1}κ and return

M = DK(c0) ∈ {0, 1}
m ∪ {⊥}.

The use of fully splitting rings may require multiple attempts to find an
invertible b ∈ R×

q as step 3 of Keygen. The proof of Lemma 7 shows that, unless
the RLWE assumption is false, a suitable b can be found after at most �λ/ log n�
iterations, except with negligible probability 2−λ. In practice, a small number
of attempts suffices since a random ring element is invertible with probability
1 − n/q, which is larger than 1 − 1/n with our choice of parameters.
Correctness. Let r̄ = r + r′, ē1 = e1 + e′

1 and ē2 = e2 + e′
2 over R. At step 2,

Decrypt computes c̄1 = a·r̄+ē1, c̄2 = b·r̄+ē2 over Rq, where ‖r̄‖, ‖ē1‖, ‖ē2‖ ≤ 2B
with probability 1 − 2−Ω(n) over the randomness of Encrypt and Decrypt (by
Lemma 1). At step 3, the decryptor obtains

μ̄ = c̄2 − p · c̄1 · s mod q

= (b · r̄ + ē2) − p · (a · r̄ + ē1) · s mod q

= p · (as + e) · r̄ + ē2 − p · ar̄s − p · ē1s mod q

= ē2 + p · er̄ − p · ē1s,

where the last equality holds over R with overwhelming probability over the
randomness of Keygen, Encrypt and Decrypt. Indeed, Lemma 1 implies that
‖s‖, ‖e‖ ≤ αq

√
n with probability 1 − 2−Ω(n) over the randomness of Keygen.

With probability 1−2−Ω(n) over the randomness of Encrypt and Decrypt, we also
have ‖r̄‖, ‖ē1‖, ‖ē2‖ ≤ 2αq

√
n. Then, the Cauchy-Schwartz inequality implies

‖ē2 + p · er̄ − p · ē1s‖∞ < 2αq
√

n + 4p · (αq)2n (1)
< 4p(B2 + 1) < q/2.

Since p/2 > 2αq
√

n, step 4 recovers ē2 with overwhelming probability. Since
b ∈ R×

q , Decrypt obtains r̄ at step 5 and ē1 at step 6. Therefore, it also recovers
(r, e1, e2) at step 7 and the correct symmetric key K = H(r, e1, e2) at step 8.
Correctness thus follows from the correctness of Πsym.

Remark 1. We note that correctness is guaranteed whenever ‖s‖, ‖e‖ ≤ B and
‖r̄‖, ‖ē1‖, ‖ē2‖ ≤ 2B, as it is a sufficient condition to have inequalities (1).

Rigidity. By direct inspection of the decryption algorithm, given the KEM part
(c1, c2), if it can extract a triple (r, e1, e2) in the domain, later called DE , where
each component has Euclidean norm bounded by B, the decapsulation is valid. If

126 C. Hoffmann et al.

the decapsulation is valid we have r = (c2−e2)/b and e1 = c1−a ·r by definition
(after removing the masks r′, e′

1, e
′
2). Hence, c1 = a · r + e1 and c2 = b · r + e2,

which is the public encapsulation part on input (r, e1, e2).
On Decryption Failures. Due to the rigidity and randomness recovery prop-
erties of the scheme, the probability of decryption failure does not depend on the
specific secret key s in use as long as ‖s‖ ≤ B. If (r, e1, e2) ∈ DE and ‖s‖ ≤ B,
we always have ‖μ̄‖∞ ≤ q/2, where μ̄ = c̄2 −p · c̄1 ·s mod q = p · (e · r̄− ē1 ·s)+ ē2
unless the ciphertext is rejected at step 1 (which does not depend on s). If
(r, e1, e2) �∈ DE , then either: (i) we still have ‖μ̄‖∞ ≤ q/2 and Decrypt obtains
(r, e1, e2), which are necessarily rejected; or (ii) ‖μ̄‖∞ > q/2 but the extracted
(r†, e†

1, e
†
2) cannot land in DE since, otherwise, the rigidity property would imply

(c1, c2) = (a · r† + e†
1, b · r† + e†

2), in which case we would have ‖μ̄‖∞ ≤ q/2 unless
the ciphertext is rejected at step 1. Hence, if Decrypt does not return ⊥ at step
1, it computes (r, e1, e2) ∈ DE if and only if (c1, c2) = (a · r + e1, b · r + e2) no
matter which s of norm ‖s‖ ≤ B is used at step 2.

In contrast, when m = 0 is encrypted in the LPR cryptosystem, we have
μ = c2 − c1 · s mod q = e · r − e1 · s+ e2. An adversary can then fix a small (r, e2)
and play with many e1’s until it triggers a decryption failure when ‖μ‖∞ > q/2.
The probability that this happens depends on the secret s (as a different s′

may not cause rejection for a fixed (r, e1, e2)). In KYBER and SABER, the FO
transform allows restricting the adversary’s control over e1 (which is derived
from a random message m using a random oracle and re-computed for verification
upon decryption) so as to make such attacks impractical. The FO transform is
thus crucial to offer a sufficient security margin against attacks like [30,33].

4.2 Black-Box Security Analysis

Our security proof uses ideas from Saito et al. [62, Section 4] to prove (tight)
security in the QROM. Their approach exploits the implicit rejection mecha-
nism of their KEM. Namely, when the incoming encapsulation (c1, c2) is found
invalid upon decryption in [62], the decapsulated symmetric key K is replaced
by a random-looking K = H ′(u, (c1, c2)), where u is a random string included
in the secret key and H ′ is an independent random oracle.

Here, in order to simplify the analysis of side-channel leakages in the real
scheme, it is desirable to minimize the amount of secret key operations in the
decryption algorithm and the amount of key material to protect against leakage.
Therefore we refrain from introducing an additional secret key component u (cf.
Section 5.1). Instead, our security proof will first switch (in Game2) to a modi-
fied decryption algorithm where the rejection mechanism goes implicit and the
decapsulation procedure computes K as a random function of (c1, c2). At this
point, we will be able to apply the techniques from [62].

Since the implicit/explicit decapsulation mechanisms are used as part of a
hybrid encryption system, we can argue that they are indistinguishable by relying

POLKA 127

on the ciphertext integrity of the symmetric encryption scheme. This is the
reason why we are considering the CCA security of the hybrid combination as a
whole, rather than that of its KEM component.4 We note that similar ideas were
previously used in the security proofs of hybrid PKE schemes [1,48], but usually
in the opposite direction (to go from implicit rejection to explicit rejection).

For the rest, the proof in the ROM carries over to the QROM since it avoids
ROM techniques that do not work in the QROM: we do not rely on the extraction
of encryption randomness by inspecting the list of RO queries to answer decryp-
tion queries, which is not possible when queries are made on superpositions of
inputs, and the RO is programmed identically for all queries.

Theorem 1. If Πsym is a symmetric authenticated encryption scheme, the con-
struction specified in Sect. 4.1 provides IND-CCA security in the QROM under
the ring learning-with-errors (RLWE) assumption.

Proof. The proof considers a sequence of hybrid games, which is similar to
that of [62, Theorem 4.2] from Game3 to Game5. For each i, we denote by Wi

the event that the adversary wins (i.e., d′ = d) in Gamei. We also denote by
Encaps(PK, (r, e1, e2)) the deterministic algorithm that takes as inputs PK and
explicit randomness (r, e1, e2) ∈ R3, and outputs (c1, c2) = (a · r + e1, b · r + e2).

Game0: This is the real IND-CCA game. The challenger faithfully answers
(quantum) random oracle queries. All (classical) decryption queries are
answered by running the real decryption algorithm. Note that a decryption
query triggers a random oracle query at step 8 of Decrypt. In the challenge
phase, the adversary A outputs messages M0,M1 and obtains a challenge
C = (c

0, c

1, c

2), where c

1 = a·r+e
1, c

2 = b·r+e
2, with r, e

1, e

2 ←↩ Dcoeff

Zn,αq,
and c

0 = EK�(Md) for some d ←↩ U({0, 1}). Eventually, A outputs b′ ∈ {0, 1}
and its advantage is Adv(A) := |Pr[W0] − 1/2|.

Game1: In this game, the challenger aborts and replaces A’s output by a random
bit d′ ∈ {0, 1} in the event that ‖s‖ > B or ‖e‖ > B at step 3 of Keygen. By
Lemma 1, we have |Pr[W1] − Pr[W0]| ≤ 2−Ω(n).

Game2: We modify the decryption algorithm. Throughout the game, the chal-
lenger uses an independent random oracle HQ : R2

q → {0, 1}κ that is only
accessible to A via decryption queries (i.e., A has no direct access to HQ).
This random oracle is used to run the following decryption algorithm.

Decrypt2: Given SK = s and C = (c0, c1, c2), initialize a Boolean variable
flag = 0. Then, do the following.
1. Sample r′, e′

1, e
′
2 ←↩ Dcoeff

Zn,αq. If ‖r′‖ > B, or ‖e′
1‖ > B, or ‖e′

2‖ > B,
then set flag = 1 and return ⊥.5 Otherwise, compute c′

1 = a · r′ + e′
1

and c′
2 = b · r′ + e′

2.
4 The underlying explicit rejection KEM can be proven CCA-secure secure in the

ROM but we do not prove it CCA-secure in the QROM as we only consider the
CCA security of the hybrid PKE scheme.

5 Decrypt2 still uses explicit rejection at step 1 because the secret key is not needed at
this step and the goal of implicit rejection is to handle validity checks that depend
on the secret key and the ciphertext.

128 C. Hoffmann et al.

2. Compute c̄1 = c1 + c′
1 and c̄2 = c2 + c′

2.
3. Compute μ̄ = c̄2 − p · c̄1 · s over Rq.
4. Compute ē2 = μ̄ mod p. If ‖ē2‖ > 2B, set flag = 1.
5. Compute r̄ = (c̄2 − ē2) · b−1 ∈ Rq. If ‖r̄‖ > 2B, set flag = 1.
6. Compute ē1 = c̄1 − a · r̄ ∈ Rq. If ‖ē1‖ > 2B, set flag = 1.
7. Compute r = r̄ − r′, e1 = ē1 − e′

1 and e2 = ē2 − e′
2. If ‖r‖ > B, or

‖e1‖ > B, or ‖e2‖ > B, then set flag = 1.
8. If flag = 0, compute K = H(r, e1, e2) ∈ {0, 1}κ. Otherwise, compute

K = HQ(c1, c2).
9. Compute and return M = DK(c0) ∈ {0, 1}
m ∪ {⊥}.

Lemma 3 shows that, if the adversary can distinguish Game2 from Game1,
we can turn it into an adversary against the ciphertext integrity of Πsym (of
which the definition is recalled in the ePrint report [46]).

Game3: We now simulate the random oracle6 H : DE → {0, 1}κ as

H(r, e1, e2) = H ′
Q

(
Encaps(PK, (r, e1, e2))

)
(2)

where H ′
Q : R2

q → {0, 1}κ is another random oracle to which A has no
direct access. At each decryption query, Decrypt2 consistently computes K
as per (2) when flag = 0. In the computation of C = (c

0, c

1, c

2), the sym-

metric key K is similarly obtained as K = H ′
Q

(
c
1, c

2

)
, where (c

1, c

2) =

Encaps(PK, (r, e
1, e

2)). Lemma 4 shows that, from A’s view, Game3 is iden-

tical to Game2, so that we have Pr[W3] = Pr[W2].
Game4: This game is like Game3 except that the random oracle H is now simu-

lated as H(r, e1, e2) = HQ

(
Encaps(PK, (r, e1, e2))

)
, where HQ : R2

q → {0, 1}κ

is the random oracle introduced in Game2. In the computation of the chal-
lenge ciphertext C = (c

0, c

1, c

2), the symmetric key K is similarly obtained

as K = HQ

(
c
1, c

2

)
, where (c

1, c

2) = Encaps(PK, (r, e

1, e

2)), and K is com-

puted in the same way when flag = 0 at step 8 of Decrypt2. That is, Game4 is
identical to Game3 except that H ′

Q has been replaced by HQ in the simulation
of H. Lemma 5 shows that Pr[W4] = Pr[W3] as the two games are perfectly
indistinguishable.

Game5: This game is like Game4 except that we modify the decryption oracle. At
each query C = (c0, c1, c2), if flag = 0 at the end of step 1, then the decryption
oracle computes K = HQ(c1, c2) and returns M = DK(c0) ∈ {0, 1}
m ∪ {⊥}
(i.e., it ignores steps 2–7 of Decrypt2 and jumps to step 8 after having set
flag = 1). Lemma 6 shows that Pr[W5] = Pr[W4].

Game6: We now remove the change introduced in Game1. Namely, Game6 is like
Game5, but we no longer replace A’s output by a random bit if ‖s‖ > B or
‖e‖ > B at the end of Keygen. By Lemma 1, |Pr[W6] − Pr[W5]| ≤ 2−Ω(n).

In Game6, we note that the decryption oracle does not use the secret s anymore.

6 We may assume that H outputs ⊥ on input of a triple (r, e1, e2) �∈ DE . A hash
function can always check domain membership before any computation.

POLKA 129

Game7: We modify the generation of PK. The challenger initially samples
a1, . . . , ak ←↩ U(Rq), e1, . . . , ek ←↩ Dcoeff

Zn,αq, where k = �λ/ log n�, and com-
putes bi = ai · s + ei for each i ∈ [k]. If none of the obtained {bi}k

i=1 is
invertible, the challenger aborts and replaces B’s output by a random bit.
Otherwise, it determines the first index i ∈ [k] such that bi ∈ R×

q and defines
the public key by setting a = ai and b = p · bi. Lemma 7 shows that, under
the RLWE assumption, this modified key generation procedure does not affect
A’s view and we have |Pr[W7] − Pr[W6]| ≤ AdvRLWE(λ) + 2−λ.

Game8: We change again the generation of the public key. We replace the pseu-
dorandom ring elements {bi = ai · s + ei}k

i=1 of Game7 by truly random
b1, . . . , bk ←↩ U(Rq) at the beginning of the game. Under the RLWE assump-
tion, this change goes unnoticed and a straightforward reduction shows that
|Pr[W8]−Pr[W7]| ≤ AdvRLWE(λ). As a result, since gcd(p, q) = 1, the public
key is now distributed so that a ∼ U(Rq) and b ∼ U(R×

q).
Game9: We change the generation of the challenge C = (c

0, c

1, c

2). In this game,

instead of computing c
1 = a·r+e

1, c
2 = b·r+e

2 with r, e
1, e

2 ←↩ Dcoeff

Zn,αq, we
now sample c

1, c

2 ←↩ U(Rq) uniformly. Then, we compute c

0 as a symmetric
encryption of Md under the key K = HQ(c

1, c

2). Lemma 8 shows that Game9

is indistinguishable from Game8 under the RLWE assumption.

In Game9, A can no longer query H on short ring elements (r, e
1, e

2) that

underlie (c
1, c

2) (in which case we would have HQ(c

1, c

2) = H(r, e

1, e

2)). With

overwhelming probability 1 − 2−Ω(n), there exist no r, e
1, e

2 ∈ R of norm ≤ B

such that c
1 = a · r + e

1 and c
2 = b · r + e

2. Since A has no direct access to
HQ(·), this means that HQ(c

1, c

2) is now independent of A’s view.

Game10: In this game, we modify the decryption oracle that now rejects all
ciphertexts of the form C = (c0, c

1, c

2) with c0 �= c

0 after the challenge
phase. Game10 is identical to Game9 until the event E10 that A queries the
decryption of a ciphertext C = (c0, c

1, c

2) that would not have been rejected

in Game9. Since c
0 = EK�(Md) is encrypted under a random key K =

HQ(c
1, c

2) that is independent of A’s view, E10 would imply an attack against

the ciphertext integrity of Πsym (as defined in the ePrint report [46]). We
have |Pr[W10] − Pr[W9]| ≤ Pr[E10] ≤ 2−Ω(n) +AdvAE-INT(λ), where Q is the
number of decryption queries.

In Game10, the challenge C = (c
0, c

1, c

2) is obtained by encrypting c

0 under
a random key K which is never used anywhere but in the computation of
c
0 = EK�(Md). At this point, the adversary is essentially an adversary against

the indistinguishability (under passive attacks) of the authenticated encryption
scheme Πsym. We have |Pr[W10] − 1/2| ≤ AdvAE-IND(λ).

Putting the above altogether, we can bound the advantage of an IND-CCA
adversary as

Advcca(A) ≤ 3
1 − 2−λ

· AdvB,RLWE
n,�λ/ log n	,q,χ(λ) + Q(Q + 1) · AdvAE-INT(λ) (3)

+ AdvAE-IND(λ) +
1

2Ω(n)
,

130 C. Hoffmann et al.

where Q is the number of decryption queries. ��
Lemma 3. Game2 is indistinguishable from Game1 as long as the authenticated
encryption scheme Πsym provides ciphertext integrity. Concretely, we have the
inequality |Pr[W2] − Pr[W1]| ≤ Q·(Q+1)

2 · AdvAE-INT(λ).

Proof. See the ePrint report [46].

Lemma 4. If q > 8p(αq)2n and p > 4αq
√

n, Game3 is perfectly indistinguish-
able from Game2.

Proof. See the ePrint report [46].

Lemma 5. Game4 is perfectly indistinguishable from Game3.

Proof. See the ePrint report [46].

Lemma 6. Game5 is perfectly indistinguishable from Game4.

Proof. See the ePrint report [46].

Lemma 7. Under the RLWEn,k,q,χ assumption where χ = Dcoeff
Zn,αq and k =

�λ/ log n�, Game7 is indistinguishable from Game6 if q > n2. Concretely, there
is a PPT algorithm B such that |Pr[W7] − Pr[W6]| ≤ AdvB,RLWE

n,k,q,χ (λ) + 2−λ.

Proof. the ePrint report [46].

Lemma 8. Under the RLWE assumption, Game9 is indistinguishable from
Game8. We have |Pr[W9] − Pr[W8]| ≤ (1 − 2−λ)−1 · AdvB,RLWE

n,k,q,χ (λ), where
χ = Dcoeff

Zn,αq and k = 2�λ/ log n� is the number of samples.

Proof. See the ePrint report [46].

We note that bound (3) tightly relates the security of the scheme to the RLWE
assumption. On the other hand, it loses a quadratic factor O(Q2) with respect
to the ciphertext integrity of the symmetric authenticated encryption scheme.
However, the term Q(Q + 1) · AdvAE-INT(λ) becomes statistically negligible if
Πsym is realized using an information-theoretically secure one-time MAC, as we
discuss in the following instantiation section.

4.3 Parameters and Instantiations

Parameters. In an instantiation in fully splitting rings Rq (which allows faster
multiplications using the NTT in Encrypt), we use Φ(X) = Xn + 1, where n is a
power of 2, with a modulus q = 1 mod 2n.

For correctness, we need to choose α ∈ (0, 1), q and p such that p/2 > 2B
and 4p(B2 + 1) < q/2, which satisfy the requirements of Lemma 4. To apply
Lemma 2, we can set α ∈ (0, 1) so that αq = Ω(

√
n). To satisfy all conditions,

we may thus set p = Θ(n), q = Θ(n3) and α−1 = Θ(n2.5).

POLKA 131

Concrete Proposals. Around the 128-bit security level, n has to be some-
where between 512 and 1024. In order to get a more efficient implementation,
we sample s, e, r, e1, e2 from a centered binomial distributions as previously sug-
gested in [3,20,38] and set the parameters according to the concrete hardness
against known attacks via the heuristic LWE estimator [2]. Precisely, we consider
the noise distribution ψn

k defined over Zn as {∑k
i=1(ai−bi) | ai, bi ←↩ U({0, 1}n)}

instead of a Gaussian distribution. As in [38], we use the distribution ψ̄n
2 obtained

by reducing ψn
2 mod 3. We then obtain ciphertexts of 4Kb by setting n = 1024,

p = 5 and q = 59393, and an estimated security level of 191 bits. This modifica-
tion of POLKA only entails minor modifications in the security proof, which are
detailed in the ePrint report [46] and is next used as our main instance.

In order to push optimizations even further, we could use rings where n does
not have to be a power of 2, as suggested in [38]. For example, the cyclotomic
polynomial Φ3n = Xn − Xn/2 + 1 with q = 1 mod 3n and n = 2i3j still gives
a fully splitting Rq = Zq[X]/(Φ3n). This allows choosing n = 768, p = 5 (so
that ‖ē2‖∞ ≤ (p − 1)/2), and q = 28 · 3n + 1 = 64513. Correctness is ensured
since we have ‖a · b‖∞ ≤ 2‖a‖‖b‖ for any a, b ∈ R = Z[X]/(Φ3n), so that
‖ē2 + p · (e · r̄ − ē1 · s)‖∞ ≤ (p− 1)/2+8 · p ·n ≤ (q − 1)/2. We would then obtain
a ciphertext (c1, c2) that only takes 3Kb to represent.

In all instantiations, the public key can compressed down to roughly 50% of
the ciphertext size if we derive the random a ∈ Rq from a hash function modeled
as a random oracle (as considered by many NIST candidates).

Instantiating the DEM Component. The symmetric authenticated encryp-
tion scheme Πsym can be instantiated with a a leakage-resistant Enc-then-MAC
mode of operation. Candidates for this purpose that rely on a masked block
cipher or permutation can be found in [14]. Yet, POLKA encourages the follow-
ing more efficient solution based on a key-homomorphic one-time MAC. If �m

is the message length, we can use a key length κ = λ + 2�m and a pseudo-
random generator G : {0, 1}λ → {0, 1}
m . To encrypt M ∈ {0, 1}
m , we parse
K = H(r, e1, e2) ∈ {0, 1}κ as a triple K = (K0,K1,K2) ∈ {0, 1}λ × ({0, 1}
m)2.
Then, we compute a ciphertext c = (c̄, τ) = (M ⊕ G(K0),K1 · c̄ + K2), where
the one-time MAC τ = K1 · c̄ + K2 is computed over GF(2
m). This spe-
cific MAC “annihilates” the quadratic term O(Q2) in the security bound (3).
In the ciphertext integrity experiment (defined in the ePrint report [46]), the
adversary’s advantage can then be bounded as (Q + 1)/2
m if Q is the num-
ber of decryption queries. To make the term Q(Q + 1) · AdvAE-INT(λ) statisti-
cally negligible in (3), we can assume that �m ≥ λ + 3 log2 λ in order to have
(Q + 1)2Q/2
m < 23 log2 λ/2
m < 2−λ. Concretely, if we set λ = 128 and assume
Q < 260, we can choose �m ≥ 308. In terms of leakage, the computation K1·c̄+K2

is linear in the key and can therefore be masked with overheads that are linear in
the number of shares (rather than quadratic for a block cipher or permutation).
The constraint on the message length could be relaxed by hashing the message
at the cost of an additional idealized assumption, which we leave as a scope for
further research.

132 C. Hoffmann et al.

5 Side-Channel Security Analysis

We now discuss the leakage properties of POLKA. In Sect. 5.1 we introduce the
general ideas supporting its leveled implementation and explain how its security
requirements can be efficiently fulfilled. In Sect. 5.2, we focus on its most novel
part, namely the variant of the LWPR assumption on which this implementation
relies. We also provide cryptanalysis challenges to motivate further research on
hard physical learning problems. In Sect. 5.3 we describe a hardware architecture
for the most sensitive DPA target of POLKA. Our descriptions borrow the ter-
minology introduced in [45] for symmetric cryptography. Namely, we denote as
leakage-resilient implementations of which confidentiality guarantees may van-
ish in the presence of leakage, but are restored once leakage is removed from
the adversary’s view; and we denote as leakage-resistant implementations that
preserve confidentiality against leakage even for the challenge encryption.

5.1 Leveled Implementation and Design Goals

The high-level idea behind leveled implementations is that it may not be neces-
sary to protect all the parts of implementation with equally strong (and there-
fore expensive) side-channel countermeasures. In the following, we describe how
POLKA could be implemented in such a leveled manner. For this purpose, and as
a first step, we follow the heuristic methodology introduced in [14] and identify
its SPA and DPA targets in decryption. The resulting leveled implementation of
POLKA is represented in Fig. 2. The lighter green-colored (dummied) operations
need to be protected against SPA. The darker green-colored operations need to
be protected against SPA with averaging (avg-SPA), which is a SPA where the
adversary can repeat the measurement of a fixed target intermediate computa-
tion in order to remove the leakage noise. The lighter blue-colored operations
need to be protected against DPA with unknown (dummied) inputs (UP-DPA).
The darker blue-colored operations must be protected against DPA. Operations
become generically more difficult to protect against side-channel attacks when
moving from the left to the right of the figure. Eventually, securing the first
four steps in the figure is needed to protect the long-term secret of POLKA, and
therefore to ensure leakage-resilience. By contrast, securing the fifth step is only
needed to ensure leakage-resistance (i.e., the key K can leak in full in case only
leakage-resilience is needed). Next, we first explain how these security require-
ments can be efficiently satisfied by hardware designers. We then discuss the
advantages of this implementation over a uniformly protected one.
SPA and DPA Protections. All the operations requiring SPA protection
(with or without averaging) can be efficiently implemented thanks to parallelism
in hardware. Typically, we expect that an implementation manipulating 128 bits
or more in parallel is currently difficult to attack via SPA, even when leverag-
ing advanced analytical strategies [65].7 A bit more concretely, this reference
7 As will be clear in conclusions, software implementations are left as an interesting

open problem. In this case, the typical option to obtain security against SPA would
be to emulate parallelism thanks to the shuffling countermeasure [66].

POLKA 133

Fig. 2. Leveled implementation of POLKA.

shows that single-trace attacks are possible for Signal-to-Noise Ratios (SNRs)
higher than one. Adversaries targeting a 128-bit secret based on 8-bit (resp.,
32-bit) hypotheses would face an SNR of 1

16 (resp., 1
4). Securing the computa-

tions in steps 1, 3 and 4 of Fig. 2 against side-channel attacks should therefore
lead to limited overheads. Note that the dependency on a dummy ciphertext in
step 3 prevents the adversary to control the intermediate computations (and for
example to try canceling the algorithmic noise for those sensitive operations).

Security against DPA is in general expected to be significantly more expen-
sive to reach. The standard approach for this purpose is to mask all the oper-
ations that can be targeted, which leads to (roughly) quadratic performance
overheads [49]. Furthermore, implementing masking securely is a sensitive pro-
cess, which requires dealing with composition issues [8,29], physical defaults such
as glitches [54,58] or transitions [6,28] or even their combination [25,26].

134 C. Hoffmann et al.

The main observation we leverage in POLKA is that its most critical DPA sen-
sitive operation shares similarities with the key-homomorphic re-keying schemes
used in symmetric cryptography to prevent side-channel attacks [36,39,40,55].
Namely, the operation t = (p · c1) · s in step 2 of Fig. 2 can indeed be viewed
as the product between a long-term secret s and an ephemeral (secret) value
(p · c1). As a result, it can be directly computed as t =

∑d
i=1(p · c1) · si, where

s = s1 + s2 + . . . sd and the si’s are the additive shares of the long-term secret s.
Besides the linear (rather than quadratic) overheads that such a solution enables,
key-homomorphic primitives have two important advantages for masking. First,
their long-term secret can be refreshed with linear randomness requirements [9].
Second, their natural implementation offers strong immunity against composi-
tion issues and physical defaults [23]. On top of this, the fact that the variable
input of (p · c1) · si is dummied (hence unknown) implies that it will need one
less share than in a known input attack setting [16].

Even more importantly, and as discussed in the aforementioned papers on
fresh re-keying, it is then possible to re-combine the shares and to perform the
rest of the computations on unshared values, hence extending the interest of a
leveled approach. Various models have been introduced for this purpose in the
literature, depending on the type of multiplication to perform. The first re-keying
schemes considered multiplications in binary fields that require a sufficient level
of noise to be secure [12,13]. Dziembowski et al. proposed a (more expensive)
wPRF-based re-keying that is secure even if its output is leaked in full [40].
Duval et al. proposed an intermediate solution that only requires the (possibly
noise-free) leakage function to be surjective and “incompatible” with the field
multiplication: they for example show that this happens when combining multi-
plications in prime fields with the Hamming weight leakage function, which they
formalized as the LWPR assumption [39]. Given that the multiplication of POLKA
is based on prime moduli, we next focus on this last model, which provides a
nice intermediate between efficiency and weak physical assumptions.

As for the operations of step 5 of Fig. 2, we first observe that despite the
inputs of H being ephemeral, it is possible that an adversary obtains a certain
level of control over them by incrementally increasing c1 or c2. This explains
why it must be secure against DPA (with unknown plaintexts since r, e1 and
e2 are unknown as long as steps 3 and 4 are secure against SPA). Finally, the
protection of the authenticated encryption is somewhat orthogonal to POLKA
since it is needed for any DEM. The standard option for this purpose would be
to use a leakage-resistant mode of operation that ensures side-channel security
with decryption leakage. As discussed in [14], state-of-the-art modes allow the
authenticated encryption scheme to be leveled (i.e., to mix SPA-secure operations
with DPA-secure ones), like the rest of POLKA. But as mentioned in Sect. 4.3, an
even more efficient solution is to use an Enc-then-MAC scheme with a one-time
key-homomorphic MAC that is linear in the key and therefore easy to mask.

Discussion. The main advantage of POLKA is that its structure allows avoiding
the costly implementation of uniformly protected operations based on masking.
In this respect, it is worth recalling that: (i) the removal of the dummy ciphertext

POLKA 135

takes place as late as possible in the process (i.e., just before the hashing and
symmetric decryption), and (ii) if only the long-term secret s must be protected
(i.e., if only leakage-resilience is required), step 5 of Fig. 2 does not need coun-
termeasures. Overall, these design tweaks strongly limit the side-channel attack
surface and the need to mask non-linear operations compared to algorithms like
KYBER or SABER, at the cost of an admittedly provocative LWPR assumption.

We also remind that the implicit rejection used in schemes like KYBER or
SABER generates a pseudorandom “garbage key” in case of invalid ciphertext,
which implies the manipulation of additional long-term key material that must
be secure against DPA. We avoid such a need by relying on an explicit rejection.
Yet, it is an interesting open question to find out whether the same result could
be obtained with other (implicit) rejection mechanisms or proof techniques.

Overall, Fig. 2 highlights that the novelty of POLKA mostly lies in its leakage-
resilient parts (i.e., steps 1 to 4). In order to help their understanding, we pro-
vide an open source piece of code (for now without SPA and DPA counter-
measures that require lower level programming languages, neither ensuring the
leakage-resistance of the authenticated encryption in step 5).8 In general, further
improving the leakage-resistance of POLKA so that it can be ensured with weaker
side-channel security requirements is another interesting research direction.

We finally note that ensuring a constant-time implementation of POLKA
requires running a dummy hash function when flag = 1. Without such a dummy
hash, the same granular increase of c1 or c2 as mentioned to justify the DPA
security requirements of H could leak information on e1, e2 and r, by using a
timing channel to detect whether a ⊥ message is generated during step 4 or
step 5 (by the authenticated encryption scheme). This also means that in order
to avoid such a leakage on e1, e2 and r, it should be hard to distinguish whether
the flag is 0 or 1 with SPA. We conjecture the latter is simpler/cheaper than pro-
tecting another long-term secret against DPA (as required with current implicit
rejections), but as mentioned in introduction, POLKA could be adapted with an
implicit rejection as well (in which case, it should also be hard to distinguish
whether the key used to decrypt is a garbage one or not thanks to SPA).

5.2 Learning with Physical Rounding Assumption

We now move to the main assumption that allows an efficient leveling of POLKA.
Namely, we study the security of step 2 in Fig. 2 after the recombination of the
shares. In other words, we study the security of the long-term secret s assuming
that the adversary can observe the leakage of the (unmasked) output t.9 We
start by recalling the LWPR problem introduced at CHES 2021 [39], then discuss
its adaptation to polynomial multiplications used in POLKA. We finally propose
security parameters together with cryptanalysis challenges.

8 https://github.com/cmomin/polka implem.
9 As mentioned in Subsect. 5.1, the security of the internal computations of t =∑d

i=1(p · c1) · si is obtained thanks to masking. So here, we only need to argue
that the leakage of the recombined t does not lead to strong attacks.

https://github.com/cmomin/polka_implem

136 C. Hoffmann et al.

A. The Original LWPR Problem can be viewed as an adaptation of the
crypto dark matter proposed by Boneh et al. in [19], which showed that low-
complexity PRFs can be obtained by mixing linear functions over different small
moduli. Duval et al. observed that letting one of these functions being implicitly
computed by a leakage function can lead to strong benefits for masking against
side-channel attacks. Intuitively, it implies that a designer only has to imple-
ment a key-homomorphic function securely (i.e., the first crypto dark matter
mapping), since the second (physical) mapping never has to be explicitly com-
puted: it is rather the leakage function that provides its output to the adversary.
The formal definition of the resulting LWPR problem is given next.

Definition 2 (Learning with physical rounding [39]). Let q, x, y ∈ N
∗, q

prime, for a secret κ ∈ F
x×y
q . The LWPRx,y

Lg,q
sample distribution is given by:

DLWPRx,y
Lg,q

:= (r, Lg (κ · r)) for r ∈ F
y
q uniformly random,

where Lg : F
x
q → R

d is the physical rounding function. Given query access to
DLWPRx,y

Lg,q
for a uniformly random κ, the LWPRx,y

Lg,q
problem is (χ, τ, μ, ε)-hard to

solve if after the observation of χ LWPR samples, no adversary can recover the
key κ with time complexity τ , memory complexity μ and probability ≥ ε.

Concretely, the LWPR problem consists in trying to retrieve a secret key matrix
κ using the information leakage emitted on its product with a random vector r.
It corresponds to a learning problem similar to LWR [7], with the rounding func-
tion instantiated with a leakage function. Its security depends on the dimensions
(q, x, y) and the leakage function considered. In [39], it is argued that this prob-
lem is hard in the case of the Hamming weight leakage function that is frequently
encountered in practice (with a binary representation) if the product is imple-
mented in parallel. By this, we mean that x×log2(q) bits are produced per cycle by
the implementation computing the LWPR samples. This problem can then be used
as the basis of a fresh re-keying mechanism, producing an ephemeral key ∈ F

x
q . The

security analysis of Duval et al. shows that the complexity of various (algebraic
and statistical) attacks against such a fresh re-keying scheme grows exponentially
with the (main) security parameter y. The first instance they propose uses a 31-
bit prime modulus p = 231 − 1 with parameters x = 4 and y = 4 (i.e., it assumes
that four log2(p)-bit multiplications can be performed in parallel). As can be seen
in Fig. 2, step 2 of POLKA shares strong similarities with the aforementioned fresh-
re-keying scheme based on LWPR, by simply viewing the intermediate value t as
an ephemeral key. We next discuss the differences between the original LWPR
assumption and the one needed for POLKA.

B. Ring-LWPR. Leveraging the fact that ring variants of learning problems
are common [52], we now describe a ring version of the LWPR problem. Let us
define r := p · c1. Seeing s as a long-term secret (similar to κ in the original
LWPR problem), the t value can be re-written as t = r · s. Further denoting si

(resp., ri) the coefficients of s (resp., r), we can write:

POLKA 137

r · s =

(
n−1∑

i=0

siX
i

)

·
(

n−1∑

i=0

riX
i

)

=
2n−2∑

i=0

⎛

⎝
min(i,n−1)∑

j=max(0,i−n+1)

sjri−j

⎞

⎠ Xi,

=
n−2∑

i=0

⎛

⎝
i∑

j=0

sjri−j

⎞

⎠ Xi +

⎛

⎝
n−1∑

j=0

sjri−j

⎞

⎠ Xn−1 +
2n−2∑

i=n

⎛

⎝
n−1∑

j=i−n+1

sjri−j

⎞

⎠ Xi,

=
n−2∑

i=0

⎛

⎝
i∑

j=0

sjri−j

⎞

⎠ Xi +

⎛

⎝
n−1∑

j=0

sjri−j

⎞

⎠ Xn−1 +
n−2∑

i=0

⎛

⎝
n−1∑

j=i+1

sjrn+i−j

⎞

⎠ Xn+i,

=
n−2∑

i=0

⎛

⎝
n−1∑

j=i+1

sjri−j −
i∑

j=0

sjrn+i−j

⎞

⎠ Xi +

⎛

⎝
n−1∑

j=0

sjri−j

⎞

⎠ Xn−1.

The above equation highlights the matrix representation of the polynomial mul-
tiplication carried out in POLKA. If we represent polynomials as n-dimension vec-
tors, where the i-th coefficient is the polynomial’s i-th coefficient, the product
r · s can be represented as the following matrix-vector product:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r0 −rn−1 . . . −r2 −r1

r1 r0
. . . −r2

...
.

...

rn−2
. −rn−1

rn−1 rn−2 . . . r1 r0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎝

s0
s1
...

sn−2

sn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

·

n

x

The key is represented as the vector (rather than the matrix) in order to optimize
memory usage when splitting it into shares. This product can therefore be seen
as a large LWPR instance, with two significant differences. First, a circulant
matrix is used instead of one having independent coefficients (which we will
discuss when selecting parameters in the next subsection). Second, the size of
the matrix is (much) larger than the one in the original LWPR. Concretely,
this second difference implies that in practice, these products are unlikely to be
performed in one step: they will rather be decomposed into several submatrix-
subvector products. For this purpose, let x ∈ N be a divider of n, the s matrix
can then be split in n

x (x × n)-submatrices, denoted (Bu)0≤u< n
x
. The product

can then be decomposed into n
x subproducts (illustrated in blue) with x serving

as a parameter to adapt the security vs. performance tradeoff, as in the original
LWPR. For a given k, one can explicitly obtain the coefficient i, j of Bu. For

a proposition P, denote 1P :=
{

1 if P
0 else . Then, Bi,j

u = (21(ux+i−j)<0 − 1) ·
rux+i−j (mod n) and the (x × n)-submatrices are therefore Toeplitz, determined
by their first line and first column, each other value being equal to their top-left
neighbor. Concretely, the x parameter sets the number of coefficients that are
computed in parallel so that in practice, an adversary will be granted access to
n
x samples given by the leakage function applied to x log2(q) bit-values.

138 C. Hoffmann et al.

Definition 3 (Ring learning with Physical rounding). Let q, x, n ∈ N, q
prime, for a secret s ∈ Rq. The RLWPRn,x

Lg,q
(s) sample distribution is given as:

DRLWPRn,x
Lg,q(s)

:=
(
r, (Lg (Bu · s))0≤u< n

x

)
,

where Lg is the physical rounding function and the (Bu) are submatrices made
of elements of r as defined above. Given query access to DRLWPRn,x

Lg,q(s)
for a

uniformly random s, the RLWPRn,x
Lg,q

(s) problem is (χ, τ, μ, ε)-hard to solve if
after the observation of χ RLWPR samples, no adversary can recover the key s
with time complexity τ , memory complexity μ and probability higher than ε.

Note that an implementer can also split each (x×n) submatrice into n
y pieces

(e.g., to further trade circuit size for cycles in hardware) but this has no impact
on the security of the RLWPR assumption, since the internal computations are
assumed to be secure thanks to masking, as per Footnote 9. By contrast, more
parallel implementations (reflected by a large y) may increase the level of noise
in the measurements and therefore the security of the masked computations [37].
So overall, the security of the above RLWPR problem only depends on n and x.
For a similar reason, the polynomial multiplication can be implemented naively
or in the NTT domain, as long as the inverse NTT is applied on every share
before recombination. A more efficient solution for the NTT case would be to
recombine the shares in the NTT domain (so that the inverse NTT is computed
only once). This would provide the adversary with leakages having a slightly
different structure than in the above RLWPR problem. We leave the security
analysis of this variant as an interesting scope for further research.

C. Choice of Parameters and Cryptanalysis Challenges. Applying the
security analysis of LWPR described in Part A of this subsection to RLWPR,
we could choose instances based on the main security parameter n using the
parallelism parameter x to obtain security margins (a necessary condition to
reach λ bits of security is that (n+1) log2 q+3 log2 n ≥ λ). However, as mentioned
in Part B of this subsection, the RLWPR problem is not exactly the same as
the LWPR one. Negatively, the (x × n) submatrices are Toeplitz and they are
not independent. While using structured matrices is not unusual in the context
of hard learning problems (see for example [52] for RLWE or [44,51] for LPN
variants) and we could not identify parts of the analyses in [39] that become easy
in this case, the corresponding problems are less studied, justifying additional
security margins to cover possible cryptanalysis improvements. As for the non-
independence issue, considering that the security of the full RLWPR is at least
as strong as the security of one of its subproducts, we can conservatively assume
that one RLWPR sample will generate at most n

x leakages about this subsecret. So
parameters’ choices covering that the data complexity of attacks against RLWPR
is reduced by this factor compared to attacks against LWPR should be safe.
Positively, the secret s in the leveled implementation of POLKA is not multiplied
with a public r since this r value is dummied. So concretely, the side-channel
adversary will only be provided with the leakage of this ephemeral value.

POLKA 139

Putting things together, and considering the instances proposed in Sub-
sect. 4.3, we propose the sets of parameters in Table 1 as interesting targets for
cryptanalysis with a time complexity of less than 2128 and at most 264 queries
to a RLWPR − bn,x,y

HWg,q
(s), assuming a Hamming weight leakage function.

Table 1. Proposed sets of parameters.

log2(q) n x

Set 1 16 1024 16

Set 2 16 1024 8

5.3 Hardware Performance Evaluation

We complete our results with a hardware prototype for the masked computation
of t (i.e., step 2 in Fig. 2), which is the most sensitive operation in POLKA. Due
to place constraints, we defer the description of the hardware architecture we use
and its FPGA implementation results in the ePrint report [46]. They confirm
overheads that are linear in the number of shares d. Since based on similar or
larger levels of parallelism as [39], these implementations are expected to provide
similar or larger levels of security against higher-order DPA.

6 Conclusions

The uniform protection of all the operations in recent post-quantum CCA-secure
public key encryption schemes against side-channel attacks is known to be very
expensive. To the best of our knowledge, POLKA is the first scheme for which a
protected implementation can be leveled, mixing operations that only require
SPA security with a few operations that require DPA security, some of them
being easy to mask. We reach this goal by mixing various ideas which we believe
of independent interest. We also believe these techniques are quite generic and
could be exploited for other schemes. For example, a leakage-resistant variant of
the NTRU cryptosystem is discussed in the ePrint report [46].

Our results lead to a number of interesting research challenges. First, the
RLWPR assumption on which a part of POLKA’s physical security relies is an
admittedly recent one. So further cryptanalysis (e.g., generalized to wide classes
of realistic leakage functions) is an important direction for further investigations.
The study of such hard physical learning problems in increasingly serial imple-
mentations is another promising direction, as it could lead to their exploitation
in a software context. As hinted in [39], this context may require additional
countermeasures like shuffling [66], in order to emulate the leakage of a parallel
implementation. The same holds for a NTT-LWPR variant of RLWPR that would
allow re-combining shares in the NTT domain, therefore leading to more efficient

140 C. Hoffmann et al.

multiplications and, in general, for efforts towards a more unified/less specialized
view of hard physical learning problems. More related to the high-level design of
POLKA, it would be interesting to study options to further improve its potential
for leveling (e.g., by removing the possibility of DPA against the hash function
of step 5). From a theoretical viewpoint, evaluating whether post-quantum and
leakage-resistant schemes could take advantage of ciphertext compression would
be relevant as well. Eventually, the first leakage analysis we provide in this
work is based on the heuristic (attack-based) approach of [14]. So formalizing
and proving the leakage security of POLKA with an appropriate set of physical
assumptions and comparing the concrete security level of its implementations
against the one of KYBER or SABER are necessary long-term goals.

Acknowledgments. The authors thank Tobias Schneider for useful feedback on the
design of POLKA. Thomas Peters and François-Xavier Standaert are respectively research
associate and senior research associate of the Belgian Fund for Scientific Research
(F.R.S.-FNRS). This work has been funded in parts by the European Union through
the ERC project 724725 (acronym SWORD) and the PROMETHEUS project (Horizon
2020 Research and Innovation Program, grant 780701), and by the Walloon Region
Win2Wal project PIRATE.

References

1. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: a new frame-
work for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer,
Heidelberg (2005). https://doi.org/10.1007/11426639 8

2. Albrecht, M., Player, R., Scott, S.: On the concrete hardness of learning with errors.
J. Math. Cryptol. 9(3), 169–203 (2015)

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: USENIX Security Symposium (2016)

4. Avanzi, R., et al.: CRYSTALS-KYBER algorithm specifications and supporting
documentation. NIST PQC Round 3, 42 (2020)

5. Azouaoui, M., Bronchain, O., Hoffmann, C., Kuzovkova, Y. , Schneider, T., Stan-
daert, F.: Systematic study of decryption and re-encryption leakage: the case of
kyber. In: COSADE (2022)

6. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.: On the cost of
lazy engineering for masked software implementations. In: CARDIS (2014)

7. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

8. Barthe, G., et al.: Strong non-interference and type-directed higher-order masking.
In: CCS (2016)

9. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-
Y.: Parallel implementations of masking schemes and the bounded moment leak-
age model. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10210, pp. 535–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 19

https://doi.org/10.1007/11426639_8
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-56620-7_19

POLKA 141

10. Basso, A., et al.: SABER algorithm specifications and supporting documentation.
NIST PQC Round 3, 44 (2020)

11. Beirendonck, M.V., D’Anvers, J., Karmakar, A., Balasch, J., Verbauwhede, I.: A
side-channel-resistant implementation of SABER. ACM J. Emerg. Technol. Com-
put. Syst. 17(2), 1–26 (2021)

12. Beläıd, S., Coron, J., Fouque, P., Gérard, B., Kammerer, J., Prouff, E.: Improved
side-channel analysis of finite-field multiplication. In: CHES (2015)

13. Beläıd, S., Fouque, P.-A., Gérard, B.: Side-channel analysis of multiplications in
GF(2128). In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
306–325. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 17

14. Bellizia, D., et al.: Mode-level vs. implementation-level physical security in symmet-
ric cryptography. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12170, pp. 369–400. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-56784-2 13

15. Bernstein, D.J., Persichetti, E.: Towards KEM unification. Cryptology ePrint
Archive, Report 2018/526 (2018)

16. Berti, F., Bhasin, S., Breier, J., Hou, X., Poussier, R., Standaert, F., Udvarhelyi,
B.: A finer-grain analysis of the leakage (non) resilience of OCB. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 1, 2022 (2022)

17. Bhasin, S., D’Anvers, J., Heinz, D., Pöppelmann, T., Beirendonck, M.V.: Attack-
ing and defending masked polynomial comparison for lattice-based cryptography.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 3, 2021 (2021)

18. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

19. Boneh, D., Ishai, Y., Passelègue, A., Sahai, A., Wu, D.J.: Exploring crypto dark
matter: - new simple PRF candidates and their applications. In: Beimel, A., Dziem-
bowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 699–729. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03810-6 25

20. Bos, J., et al.: CRYSTALS - Kyber: A CCA-Secure Module-Lattice-Based KEM.
In: IEEE EuroS&P (2018)

21. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking
KYBER: First- and higher-order implementations. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 4, 2021 (2021)

22. Bronchain, O., Cassiers, G.: Bitslicing arithmetic/Boolean masking conversions for
fun and profit with application to lattice-based kems (2022)

23. Bronchain, O., Schneider, T., Standaert, F.: Reducing risks through simplicity:
high side-channel security for lazy engineers. J. Cryptogr. Eng. 11(1), 39–55 (2021)

24. Bronchain, O., Standaert, F.: Breaking masked implementations with many shares
on 32-bit software platforms or when the security order does not matter. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2021(3), 202–234 (2021)

25. Cassiers, G., Grégoire, B., Levi, I., Standaert, F.: Hardware private circuits: from
trivial composition to full verification. IEEE Trans. Comput. 70(10), 1677–1690
(2021)

26. Cassiers, G., Standaert, F.: Provably secure hardware masking in the transition-
and glitch-robust probing model: better safe than sorry. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2021(2), 136–158 (2021)

27. Chen, C., et al.: NTRU algorithm specifications and supporting documentation.
NIST PQC Round 3, 41 (2020)

https://doi.org/10.1007/978-3-662-45608-8_17
https://doi.org/10.1007/978-3-662-45608-8_17
https://doi.org/10.1007/978-3-030-56784-2_13
https://doi.org/10.1007/978-3-030-56784-2_13
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-030-03810-6_25

142 C. Hoffmann et al.

28. Coron, J., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Conversion
of security proofs from one leakage model to another: a new issue. In: COSADE
(2012)

29. Coron, J., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: FSE (2013)

30. D’Anvers, J.-P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Ver-
bauwhede, I.: Decryption failure attacks on IND-CCA secure lattice-based schemes.
In: PKC (2019)

31. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 16

32. D’Anvers, J.-P., Orsini, E., Vercauteren, F.: Error term checking: Towards chosen
ciphertext security without re-encryption. In: AsiaPKC (2021)

33. D’Anvers, J.-P., Rossi, M., Virdia, F.: (One) Failure Is Not an Option: bootstrap-
ping the search for failures in lattice-based encryption schemes. In: Canteaut, A.,
Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 3–33. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45727-3 1

34. Dobraunig, C., et al.: Isap v2.0. IACR Trans. Symmetric Cryptol. 2020(S1) (2020)
35. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: Lightweight

authenticated encryption and hashing. J. Cryptol. 34(3), 33 (2021)
36. Dobraunig, C., Koeune, F., Mangard, S., Mendel, F., Standaert, F.-X.: Towards

fresh and hybrid re-keying schemes with beyond birthday security. In: Homma, N.,
Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514, pp. 225–241. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-31271-2 14

37. Duc, A., Faust, S., Standaert, F.-X.: Making Masking Security Proofs Concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 16

38. Duman, J., Hövelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G., Unruh, D.:
A thorough treatment of highly-efficient NTRU instantiations. Cryptology ePrint
Archive: Report 2021/1352 (2021)

39. Duval, S., Méaux, P., Momin, C., Standaert, F.: Exploring crypto-physical dark
matter and learning with physical rounding towards secure and efficient fresh re-
keying. IACR Trans. Cryptogr. Hardw. Embed. Syst. 1, 2021 (2021)

40. Dziembowski, S., Faust, S., Herold, G., Journault, A., Masny, D., Standaert, F.-X.:
Towards sound fresh re-keying with hard (physical) learning problems. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 272–301. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 10

41. Fritzmann, T., Beirendonck, M.V., Roy, D.B., Karl, P., Schamberger, T., Ver-
bauwhede, I., Sigl, G.: Masked accelerators and instruction set extensions for
post-quantum cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 1, 2022
(2022)

42. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

43. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(21), 80–101 (2013)

44. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: HB#: increasing the security and effi-
ciency of HB+. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
361–378. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-
3 21

https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-030-45727-3_1
https://doi.org/10.1007/978-3-319-31271-2_14
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/978-3-662-53008-5_10
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-540-78967-3_21
https://doi.org/10.1007/978-3-540-78967-3_21

POLKA 143

45. Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Authenticated encryption with
nonce misuse and physical leakage: definitions, separation results and first con-
struction. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol.
11774, pp. 150–172. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30530-7 8

46. Hoffmann, C., Libert, B., Momin, C., Peters, T., Standaert, F.: Towards leakage-
resistant post-quantum cca-secure public key encryption. IACR Cryptol. ePrint
Arch., 873 (2022)

47. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

48. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 31

49. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

50. Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial functions: more
compact Ibes from ideal lattices and bilinear maps. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 682–712. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 23

51. Kiltz, E., Pietrzak, K., Venturi, D., Cash, D., Jain, A.: Efficient authentication
from hard learning problems. J. Cryptol. 30(4), 1238–1275 (2017)

52. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

53. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets
of smart cards. Springer, New York (2007). https://doi.org/10.1007/978-0-387-
38162-6

54. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 24

55. Medwed, M., Standaert, F.-X., Großschädl, J., Regazzoni, F.: Fresh re-keying: secu-
rity against side-channel and fault attacks for low-cost devices. In: Bernstein, D.J.,
Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12678-9 17

56. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAMJC 37(1), 267–302 (2007)

57. Ngo, K., Dubrova, E., Guo, Q., Johansson, T.: A side-channel attack on a masked
IND-CCA secure SABER KEM implementation. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2021(4) (2021)

58. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)

59. Persichetti, E.: Improving the efficiency of code-based cryptography. PhD thesis,
Univ. of Auckland (2012)

60. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks on
CCA-secure lattice-based PKE and KEMs. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2020 (3) (2020)

61. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC (2005)

https://doi.org/10.1007/978-3-030-30530-7_8
https://doi.org/10.1007/978-3-030-30530-7_8
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-540-74143-5_31
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-662-53890-6_23
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-3-540-30574-3_24
https://doi.org/10.1007/978-3-642-12678-9_17

144 C. Hoffmann et al.

62. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 17

63. Shoup, V.: A proposal for an ISO standard for public key encryption. Manuscript,
December 2001

64. Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma, N.: Curse of re-
encryption: A generic power/EM analysis on post-quantum KEMs. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2022(1) (2022)

65. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel
attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
282–296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 15

66. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against side-channel attacks: a comprehensive study with cautionary note. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 44

https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-642-34961-4_44

Attacks

The Hidden Number Problem with Small
Unknown Multipliers: Cryptanalyzing

MEGA in Six Queries and Other
Applications

Nadia Heninger and Keegan Ryan(B)

University of California, San Diego, USA
nadiah@cs.ucsd.edu, kryan@eng.ucsd.edu

Abstract. In recent work, Backendal, Haller, and Paterson identified
several exploitable vulnerabilities in the cloud storage provider MEGA.
They demonstrated an RSA key recovery attack in which a malicious
server could recover a client’s private RSA key after 512 client login
attempts. We show how to exploit additional information revealed by
MEGA’s protocol vulnerabilities to give an attack that requires only six
client logins to recover the secret key.

Our optimized attack combines several cryptanalytic techniques. In
particular, we formulate and give a solution to a variant of the hidden
number problem with small unknown multipliers, which may be of inde-
pendent interest. We show that our lattice construction for this problem
can be used to give improved results for the implicit factorization prob-
lem of May and Ritzenhofen.

1 Introduction

MEGA is an encrypted cloud storage provider whose protocols are designed to
protect a client’s data and secret key against a malicious server or malicious
entity in the backend infrastructure. In a recent paper [2], Backendal, Haller,
and Paterson detail multiple exploitable flaws in MEGA’s protocols including a
full key recovery attack [2, Section III].

In this attack, a malicious MEGA server uses a victim client as a decryption
oracle to learn information about mauled encryptions of the user’s private RSA
key. In Backendal, Haller, and Paterson’s original work, the attacker learns one
bit of information about the key per query, and thus needs at least 512 client
login attempts to recover enough information to efficiently recover the rest of
the secret RSA key.

We observe that the attacker can learn up to 43 bytes of information
per query, and give an algorithm to efficiently exploit this information for an
improved attack that only requires six login attempts from a victim client. This
brings the attack into a much more realistic range of failed login attempts that
would be tolerated by a human user.
c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 147–176, 2023.
https://doi.org/10.1007/978-3-031-31368-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_6&domain=pdf
http://orcid.org/0000-0002-7904-7295
http://orcid.org/0000-0001-5846-2046
https://doi.org/10.1007/978-3-031-31368-4_6

148 N. Heninger and K. Ryan

Our work does not exploit any new vulnerabilities in MEGA’s protocol;
instead, we show that the risk to unpatched clients was significantly under-
estimated in [2]. MEGA patched the original issue by adding additional payload
validation and emphasized in their blog post about the vulnerabilities [24] that
only clients who have logged in more than 512 times are vulnerable. Their patch
is effective at preventing our attack as well.

1.1 Technical Overview

Our full attack exploits the interplay between the symmetric and asymmetric
cryptographic operations in MEGA’s design and has several stages.

We wish to draw the reader’s attention to one new subproblem that our new
attack needed to solve, which we had not seen articulated before in the litera-
ture. We call this problem the Hidden Number Problem with Small Unknown
Multipliers (HNP-SUM).

Definition 1 (HNP with Small Unknown Multipliers). Given integer
inputs N, ai, T , and E such that for 1 ≤ i ≤ n there exist integers x, ti, ei

satisfying

ai ≡ tix + ei (mod N)
|ti| ≤ T

|ei| ≤ E,

the goal of the adversary is to recover the vector of ti values up to sign and
common divisor.

The reason we only require recovery of the collection of t1, . . . , tn up to sign
and common divisor g is because if t1, . . . , tn, x satisfy the HNP-SUM equations,
then so do −t1, . . . ,−tn,−x and t1/g, . . . , tn/g, gx.

This problem can be viewed as a variant of the hidden number problem in
which the multipliers ti are unknown, but known to be small, or a variant of the
approximate GCD problem [15] with an additional modular reduction step with
an unrelated modulus N .

We develop an efficient lattice-based approach that solves HNP-SUM heuris-
tically. We apply our approach to the cryptanalysis of MEGA, enabling the
attack to succeed in as few as six login attempts with high probability. Our
definition of HNP-SUM also leads to a new approach for solving the implicit
factoring problem, first introduced by May and Ritzenhofen in PKC 2009 [21].

Theorem 1. Let N, ai, T, E, and n define an instance of HNP-SUM as in Def-
inition 1 with ti generated uniformly at random. There exists a heuristic poly-
nomial time algorithm that solves HNP-SUM when

T (n+1)/(n−1)E � N.

Although the exponential approximation factor of polynomial time lattice
reduction algorithms does influence these bounds, the effect is minimal for small
to medium n. A bound with additional terms is explored in Lemma 4.

The Hidden Number Problem with Small Unknown Multipliers 149

Our lattice construction has dimension n+1 and entries of bit length log2 N .
It is based on the observation that t2a1 − t1a2 ≡ t2e1 − t1e2 (mod N) is a small
integer linear combination modulo N that can be found by lattice reduction.
There is a natural way to extend the lattice construction for n > 2, but the
analysis becomes substantially more involved. To successfully recover the ti, we
must first use lattice reduction to find a basis for a dense sublattice of rank
n − 1, and we then use the Hermite Normal Form to calculate the ti from the
sublattice. We analyze the sublattice structure heuristically to derive the bound
in Theorem 1.

We give our detailed analysis in Sect. 3. We first analyze the n = 2 case, and
we then extend our approach for n > 2.

1.2 Applying HNP-SUM to MEGA Cryptanalysis

In the MEGA attack context of [2], the server possesses an encrypted copy of the
user’s RSA private key, which is encrypted using AES-ECB with a key derived
from the user’s password. Encrypting the RSA private key held by the server is
meant to stop a malicious server from decrypting the user’s files while allowing a
user to log in on a new client and decrypt their own files using only a password.

During the login process, the server sends the user the symmetrically
encrypted RSA private key and a challenge ciphertext encrypted to the user’s
RSA public key. The user decrypts the RSA private key using their password,
decrypts the challenge RSA ciphertext with the RSA private key they just
decrypted, and responds to the server with the most significant bytes of the
RSA plaintext. If these bytes match the server’s RSA plaintext, this is intended
to confirm that the user knows the RSA private key and therefore knows the
password.

In the attack of Backendal, Haller, and Paterson, a malicious server uses
a victim client as a decryption oracle to recover the symmetrically wrapped
private RSA key. During the login procedure, the malicious server can send the
user a mauled version of the user’s encrypted private key. Because the private
key is encrypted with ECB mode, it is possible for the attacker to selectively
modify specific fields in the private key, and the victim client uses this maliciously
modified private key to decrypt the server’s RSA ciphertext c. The encrypted
private key is a custom data structure encoding the prime factors p and q of N ,
the decryption exponent d, and the RSA-CRT coefficient u ≡ q−1 (mod p).

The value that the client sends back to the server is

MSB((u(mp − mq)q + mq) mod N)

where mp and mq are (cd mod p) and (cd mod q) respectively.
In our attack, the attacker swaps ciphertext blocks into the location encoding

u, and observes the client’s decrypted values to learn information about u. In
a toy simplification of our attack, consider the case where block swaps result
in u being a single 128-bit block of AES plaintext. This gives an instance of
HNP-SUM; u is the small unknown multiplier, (mp − mq)q is the hidden num-
ber, and the most significant bytes after shifting by mq give the approximation.

150 N. Heninger and K. Ryan

Solving HNP-SUM reveals the value of the unknown multiplier u and thus the
corresponding block of AES-encrypted plaintext, providing the attacker with
an AES decryption oracle that can be used to decrypt arbitrary blocks of the
symmetrically encrypted RSA private key, eventually revealing the entire key.

In the actual attack, the attacker is significantly more constrained, and we
detail the multiple steps that make it possible to perform the block swapping
attack and obtain HNP-SUM samples that are sufficiently bounded and recov-
erable. We detail a fast attack that recovers the victim’s RSA private key with
16 login attempts in a few seconds with success rate 93.9% and a small attack
that recovers the victim’s key with 6 login attempts in 4.5 h with success rate
97.7%.

Disclosure. The details of the attack of Backendal, Haller, and Paterson and
associated patches were made public June 21, 2022. We notified MEGA of the
improved cryptanalysis on July 13, 2022, which they acknowledged immediately
after in an update to their blog post. In response to our improved cryptanalysis,
they have updated their guidance to acknowledge that the potential exposure
applies to “the vast majority of users” and underscore the importance of installing
the patch.

1.3 Applying HNP-SUM to Implicit Factoring

In the implicit factoring problem [21], the adversary is given k (unbalanced) RSA
moduli of the form Ni = piqi, where the pi share some bits in common. The bit
length of qi is α, and t is the number of bits shared by the pi. Depending on the
variant of the implicit factoring problem, these t bits may be least significant
bits, most significant bits, a mix of both, or a block of t contiguous bits in the
middle of pi [27].

All four cases can be reduced to instances of HNP-SUM. When the t middle
bits at offset l are shared, we have pi = 2l+tp̃′

i + 2lpmid + p̃i, giving

Ni ≡ qi(2lpmid) + (qip̃i) (mod 2l+t).

This is an instance of HNP-SUM with small unknown multiplier qi, hidden num-
ber 2lpmid, and approximation Ni mod 2l+t. Solving HNP-SUM reveals qi, which
reveals the factorization of the Ni.

Our reduction to HNP-SUM gives a new lattice-based approach to solving
the implicit factoring problem. We find that the case of shared middle bits can
be heuristically solved when t ≥ 2 k

k−1α and the other three cases can be solved
when t ≥ k

k−1α. For the shared middle bit case, our construction is significantly
more efficient than the existing literature, since it requires a lattice dimension of
k+1, where prior work used a lattice of dimension Θ(k2). Our bounds match the
heuristic bounds of existing non-Coppersmith lattice-based solution methods [9,
21], but do not improve the bounds of the Coppersmith-based approaches [20,25,
27–29]. In addition, our lattice approach is the first non-Coppersmith approach
to our knowledge that solves the mixed least significant and most significant bits
case.

The Hidden Number Problem with Small Unknown Multipliers 151

2 Background

2.1 Lattices

Our algorithms make use of integer lattices in multiple ways. Given a collection
of vectors B ⊂ Z

m, the lattice L(B) = {∑�bi∈B ci
�bi | ci ∈ Z} is the set of integer

linear combinations of vectors in B. The dimension of the lattice is m. The rank
d of the lattice is the rank of the matrix B. In this work, we represent basis
vectors as the rows of the matrix B ∈ Z

d×m. A lattice does not have a unique
basis, but the lattice determinant, calculated as det(L(B)) =

√
det(BBT) is an

invariant of the lattice.
The Hermite Normal Form (HNF) of a lattice L is a unique representation

for a basis for L. The HNF is upper triangular, the elements along the diago-
nal, known as the pivots, are positive, and elements above pivots are positive
and bounded above by the pivot. Given any basis B, it is possible to compute
HNF(L(B)) in polynomial time [18].

The successive minima λi(L(B)) of a lattice are defined as the lengths of
the i shortest linearly independent vectors in L(B). The Gaussian Heuristic [10]
predicts that, for a random lattice, the successive minima approximate

λi(L(B)) ≈
√

d

2πe
(det(L(B)))1/d.

While it is trivial to construct lattices that do not follow the Gaussian Heuristic,
it is frequently a useful tool for predicting the successive minima of lattices.

Lattice reduction algorithms input a basis B and output a basis B′ for the
same lattice with vectors satisfying some reducedness definition, typically ensur-
ing that the output basis vectors are bounded and closer to orthogonal. The LLL
algorithm [19] runs in polynomial time and returns [22, Theorem 9] a basis B′

satisfying

‖�b′
1‖2 ≤ α(d−1)/4 det(L(B))1/d

‖�b′
i‖2 ≤ α(d−1)/2λi(L(B))

for some α1/4 > 1.07. That is, the lengths of the vectors are exponentially close
to their optimal values. For random lattices, LLL lattice reduction achieves an
even better approximation factor α1/4 ≈ 1.02 [23], so in typical cryptographic
applications the approximation is very close or exact for small dimension lattices.

A surprisingly large number of cryptanalysis problems can be expressed in
terms of finding short vectors in a lattice, and lattice reduction is a powerful tool
for solving these problems. One example is an approach by Coppersmith [7] and
later reinterpreted by Howgrave-Graham [14] to find small solutions to polyno-
mials modulo integers. Coppersmith techniques are powerful, but Coppersmith
lattices frequently have large dimension and large entries, so lattice reduction
is expensive. In the case of multivariate polynomials, Coppersmith’s method
involves additional heuristic assumptions and a sometimes expensive Gröbner
basis calculation [3,17].

152 N. Heninger and K. Ryan

2.2 The Hidden Number Problem

The Hidden Number Problem (HNP), introduced by Boneh and Venkatesan [6],
poses the problem of recovering a hidden integer x from knowledge of a modulus
N , multipliers ti, and approximations ai = tix + ei (mod N). In most presen-
tations, these approximations ai are given by an oracle that outputs the most
significant bits of tix (mod N), but we make the error term ei more explicit in
our generalization.

Boneh and Venkatesan gave an efficient lattice-based algorithm to solve this
problem, and Bleichenbacher gave a Fourier analysis-based approach [8]. It is also
possible to recover x from knowledge of the least significant bits of tix (mod N)
or some combination of the most and least significant bits [13].

A number of variants of HNP have been proposed in the literature. The
Extended Hidden Number Problem (EHNP) considers the case when there are
multiple contiguous blocks of unknown bits in tix (mod N). This was defined by
Hlaváč and Rosa [12] who also gave a lattice-based algorithm to solve it. EHNP is
used as part of our cryptanalysis of MEGA and is discussed further in Sect. 4.4.
The Hidden Number Problem with Chosen Multipliers (HNP-CM) considers
ti chosen adversarially instead of sampled at random [5], and can be solved
without using lattice techniques via the ACGS algorithm [1]. In the Modular
Inversion Hidden Number Problem (MIHNP), one wishes to recover a hidden
number x from ti and the most significant bits of (x + ti)−1 (mod N), and it
can be solved via Coppersmith techniques [4]. The Hidden Number Problem with
Hidden Multipliers (HNP-HM) recovers x from knowledge of the most significant
bits of x, ti, and tix (mod N), and it can be solved using lattice techniques [16].

Our definition of HNP-SUM is similar to HNP-HM, but there are differences
that prevent us from applying HNP-HM. First, HNP-HM requires uniformly
distributed ti, which our small unknown multipliers do not satisfy. HNP-HM
also assumes the same number of bits of x and tix (mod N) are known, whereas
in our case the bounds T and E may not be equal. Finally, our goal in HNP-SUM
is to recover the multipliers ti and not the hidden number x. This is because for
many parameters, the hidden number may not be unique: if x satisfies ai ≈ tix
(mod N), then it is likely x + 1 satisfies ai ≈ ti(x + 1) (mod N) as well.

3 Solving HNP-SUM

3.1 Solving HNP-SUM with n = 2

Before we solve HNP-SUM in the general case, we consider the case where n = 2.
We are given N, a1, a2, T, and E satisfying

a1 ≡ t1x + e1 (mod N)
a2 ≡ t2x + e2 (mod N)

|t1|, |t2| ≤ T

|e1|, |e2| ≤ E.

The Hidden Number Problem with Small Unknown Multipliers 153

First we observe that the following linear expression is small modulo N . This
is analogous to an observation by Faugère et al. [9] with an additional modular
reduction in our setting.

t2a1 − t1a2 ≡ t2(t1x + e1) − t1(t2x + e2) (mod N)
≡ t2e1 − t1e2 (mod N)

Since both the ti and ei are bounded, this defines a linear system ya1 + za2

(mod N) that has a small output t2e1 − t1e2 when evaluated at a small point
(t2,−t1). In order to find this small solution, we can look for a small vector in
the lattice spanned by the rows of the following basis:

B =

⎡

⎣
E 0 a1

0 E a2

0 0 N

⎤

⎦

The vector �v = (Et2,−Et1, t1e2 − t2e1) is small and is contained in this lattice,
so we might hope that lattice reduction will find it.

However, there might be a small obstruction if t1 and t2 are not relatively
prime. Note that if t1 and t2 share a common factor g, then the vector �v/g =
(Et2/g,−Et1/g, t1e2/g − t2e1/g) is also in the lattice, and it is shorter than �v.
We observe experimentally that lattice reduction typically outputs one of the
vectors ±�v/g. For our definition of HNP-SUM, we only require finding ti up to
sign and common factor, but we the issue of common factors also appears for
n > 2 and requires more analysis to work around.

Theorem 2. HNP-SUM defined as in Definition 1 with two samples is solvable
in heuristic polynomial time when

T 3E � N.

Proof. The Gaussian Heuristic predicts that λ1(L(B)) ≈ (E2N)1/3, and we also
have λ1(L(B)) ≤ ‖�v/g‖2 ≈ ET . If T 3E � N , then ET � (E2N)1/3 and the
Gaussian Heuristic is invalid. Instead of behaving like a random lattice, L(B)
contains an unexpectedly short vector, which is heuristically the shortest vector
in the lattice. If �v/g is the shortest vector by some small constant factor, then
the LLL algorithm applied to B finds ±�v/g, which reveals (t1, t2) up to sign and
common factor.

3.2 Construction for n > 2

The approach for solving HNP-SUM with n > 2 is a natural extension of the
previous section. Inspired by the construction for n = 2, we study the lattice
spanned by the rows of the basis matrix

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

E a1

E a2

. . .
...

E an

N

⎤

⎥
⎥
⎥
⎥
⎥
⎦

154 N. Heninger and K. Ryan

where all unspecified entries are 0. The rank of the lattice is n + 1 and the
determinant is EnN . In the n = 2 case, lattice reduction can be used to find
t2,−t1 such that t2a1 − t1a2 ≡ t2e1 − t1e2 (mod N) is small. For n > 2, we have
many such small linear combinations from each pair (ai, aj) and combinations
of these pairs.

Unlike the n = 2 case, reducing this lattice does not result in a single short
vector. Instead, we empirically observe that lattice reduction returns n − 1 lin-
early independent short vectors of the same length, corresponding to a dense
sublattice of rank n − 1. This sublattice is related to the (ti, tj) pairs and must
be postprocessed to recover the individual unknown multipliers ti.

More concretely, we consider the sublattice L(Bsub) containing the set of
(linearly dependent) short vectors

�vi,j = tj�bi/ gcd(ti, tj) + ti�bj/ gcd(ti, tj) − ki,j
�bn+1

Bsub = {�vi,j | i, j ∈ {1, . . . , n}, i 	= j}

where �bi is the ith row vector of B. Vector �bn+1 is included to achieve modular
reduction by N , and ki,j is set so the last entry of �vi,j is (tjei − tiej)/ gcd(ti, tj).
With this definition, Bsub contains the short vectors

�vi,j = (0, . . . , Etj , . . . ,−Eti, . . . , 0, tjei − tiej)/ gcd(ti, tj).

Clearly L(Bsub) is a sublattice of L(B), but it is not obvious what the rank
or determinant of L(Bsub) is or how to recover the ti from knowledge of this
particular sublattice.

Section 3.3 explores an alternative basis H for this sublattice that gives
insight into its structure. Section 3.4 shows how to recover the unknown mul-
tipliers from a basis of the sublattice by computing the Hermite Normal Form
of the basis. Section 3.5 bounds the determinant of this sublattice, and finally
Sect. 3.6 gives heuristic bounds for when lattice reduction can be used to find a
basis of this sublattice.

3.3 Alternative Basis for the Sublattice

We begin by constructing matrix H ∈ Z
n−1×n+1, which we show is a basis for

L(Bsub). Although H is not the HNF of the lattice, it is closely related. We
define the rows of H by

�hi =

{∑n
j=i+1 ui,j�vi,j for i < n − 1

�vi,i+1 for i = n − 1

where ui,j are integer values found by the extended GCD algorithm such that
∑n

j=i+1 ui,j
tj

gcd(ti,tj)
= gcd(ti+1

gcd(ti,ti+1)
, . . . , tn

gcd(ti,tn)
) = gcd(ti+1,...,tn)

gcd(ti,...,tn)
= g̃i. This

gives H the structure

The Hidden Number Problem with Small Unknown Multipliers 155

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

g̃1E ∗ . . . ∗ ∗ ∗ ∗
g̃2E . . . ∗ ∗ ∗ ∗

. . .
...

...
...

...
g̃n−2E ∗ ∗ ∗

tnE
gcd(tn−1,tn)

−tn−1E
gcd(tn−1,tn)

tnen−1−tn−1en

gcd(tn−1,tn)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

where the entries below the diagonal are zero.

Lemma 1. H is a basis for the sublattice L(Bsub). That is, L(Bsub) = L(H).

The construction of H makes it clear that �hi ∈ L(Bsub), and it is straightfor-
ward but tedious to show inclusion in the other direction. We include a proof of
Lemma 1 in the full version of this paper [26].

Like the HNF, H is upper triangular, and the elements along the diagonal of
H reveal the pivots of the HNF. Although the entries above the diagonal may
not be in the necessary range for the HNF, that is easily fixed by doing simple
row operations that do not modify the values along the diagonal.

3.4 Recovering Unknown Multipliers

At this point, we assume that we have applied a lattice reduction algorithm to
B and have obtained a basis B′

sub for L(Bsub). We compute H ′ = HNF(B′
sub) =

HNF(H) in polynomial time and learn the pivots g̃1E, . . . , g̃n−2E as well as the
values ±tnE

gcd(tn−1,tn)
, ∓tn−1E

gcd(tn−1,tn)
.

Setting G = gcd(t1, . . . , tn), the definition of g̃i shows that the product of the
these are

∏n−2
i=1 g̃i =

gcd(tn−1,tn)
G , so knowledge of the HNF allows us to compute(∏n−2

i=1 g̃i

)
±tn

gcd(tn−1,tn)
= ±tn/G. Similarly, we can compute ∓tn−1/G, revealing

the pair (tn−1, tn) up to sign and division by G.
Note that the ordering of the samples ai is arbitrary, and by reordering and

repeating the process, we can learn any pair (ti, tj) up to sign and division
by G. Rather than performing multiple lattice reductions, we can just reorder
the columns of B′

sub and recompute the HNF for each (ti, tj) pair we wish to
recover. By recovering (t1, tn), (t2, tn), . . . , (tn−1, tn) up to sign and division by
G, we learn �t′ = ±(t1, t2, . . . , tn)/G, which is �t up to sign and division. This is a
valid solution for HNP-SUM.

3.5 Sublattice Determinant

The previous sections show the existence of a sublattice L(Bsub) of rank n −
1. Experimentally, we observe that lattice reduction finds this sublattice. Our
goal is to heuristically understand the properties of the sublattice in order to
characterize when we expect our lattice attack to succeed. We make the following
heuristic observation by calculating the sublattice basis H for random instances
of HNP-SUM and computing the determinant.

156 N. Heninger and K. Ryan

Heuristic 1. Let N, ai, T, E, ti, ei, x define an instance of HNP-SUM with x, ti, ei

drawn uniformly at random from their respective ranges. Let L(Bsub) be the
sublattice defined in Sect. 3.3. Then experimentally

det(L(Bsub)) ≈ 0.35nEn−1T.

While the heuristic suffices to predict the behavior of our method on random
instances of HNP-SUM, we can also prove a weaker version of our heuristic for a
restricted class of HNP-SUM instances. Note that although this analytic bound
is slightly worse, it has the same structure as our heuristic, providing further
evidence for the claims of our heuristic approach.

Lemma 2. Let the rows of H ∈ Z
n−1×n+1 define a basis for the sublattice

L(Bsub) associated with an instance (N, ai, T, E) of HNP-SUM where the two
values of ti with the largest magnitude are coprime.

The determinant of the sublattice is bounded:

det(L(Bsub)) < n(2E)n−1T.

The proof for this lemma considers the special structure of H which arises
from the coprimality of the two large ti and is included in the full version [26].

3.6 Sublattice Recovery via Lattice Reduction

In the previous sections, we demonstrated the existence of a sublattice L(Bsub)
of rank n − 1 with heuristic determinant approximately nEn−1T . It remains
to establish the conditions under which lattice reduction finds this sublattice.
LLL lattice reduction on B finds short vectors that approximate the successive
minima λi of L(B). To show that lattice reduction finds the sublattice of rank
n − 1, we first estimate the successive minima, and then we argue that the
first n − 1 vectors found by lattice reduction must belong to the sublattice and
therefore form a basis.

Since the determinant of L(B) depends on N and E and there exists a dense
sublattice with determinant that depends on T and E, the Gaussian Heuristic
does not hold in general for our lattice. However, we make the following heuristic
assumption which leads to accurate bounds for our method.

Heuristic 2. Let B be the basis of rank n + 1 for an instance of HNP-SUM.
Let L(Bsub) be the sublattice specified in Sect. 3.2 and let L(B⊥) be the rank-2
lattice formed by projecting L(B) orthogonally to the span of Bsub. We assume
the successive minima of L(Bsub) and the successive minima of L(B⊥) each
follow the Gaussian Heuristic.

We can use this heuristic to infer the successive minima of L(B). A proof of
Lemma 3 is in the full version [26].

The Hidden Number Problem with Small Unknown Multipliers 157

Lemma 3. Let N,n, T,E be parameters for an instance of HNP-SUM where
n2n/(n−1)ET (n+1)/(n−1) � N . Let B the constructed lattice basis, and assume
Heuristic 1 and Heuristic 2 hold. Then the successive minima of L(B) follow

λi(L(B)) ≈
{

n(n+1)/(2n−2)ET 1/(n−1) 1 ≤ i ≤ n − 1
√

NE
nT n ≤ i ≤ n + 1

up to a small constant factor, and the vectors corresponding to the first n − 1
minima are in L(Bsub).

If the rank of the lattice is small enough that we can recover the shortest
vectors exactly, then this reveals a basis for L(Bsub), and Sect. 3.4 shows how
to recover the unknown multipliers. If the rank of the lattice is too large, we
can use LLL lattice reduction to find a basis for the sublattice. Proving this is
straightforward given Lemma 3.

Lemma 4. Let N,n, T,E be parameters for an instance of HNP-SUM where
αnn2n/(n−1)ET (n+1)/(n−1) � N for some fixed approximation factor α > 4/3,
and assume Heuristics 1 and 2 hold. Let L(Bsub) be the sublattice as before. It
is possible to recover a basis for L(Bsub) in polynomial time.

For small to medium values of n, the LLL approximation factor α and the
term n2n/(n−1) change the exact bounds by only a few bits, so for most cases in
practice, it suffices to use the heuristic ET (n+1)/(n−1) � N . Combining Lemma 4
with the method in Sect. 3.4 leads to a proof of Theorem 1.

3.7 Experimental Evaluation

We implemented our algorithm for solving HNP-SUM using Python and Sage-
Math. We use SageMath to compute the Hermite Normal Form and a custom
C++ implementation to perform lattice reduction. We experimentally measured
the success rate of our algorithm for various parameters. We randomly generated
2048-bit moduli and, depending on our choice of n, E, and T , we generated ti
and ei uniformly at random to construct the HNP-SUM samples ai. Our exper-
iments reduced lattices of dimension up to 31 and entries of size 2048 bits, and
lattice reduction took under a half second to complete on a single thread of an
Intel Xeon E5-2699A processor running at 2.4GHz. Our results in Fig. 1 show
that our predicted bound T (n+1)/(n−1)E � N is accurate to within a few bits in
practice.

4 Application: Cryptanalyzing MEGA

We present two novel and overlapping key recovery attacks on MEGA. The first
(fast) attack requires as few as 16 login attempts (with 17 login attempts on
average) and takes only a few seconds to complete. The second (small) attack
requires only 6 login attempts to succeed with 98% probability, but it is more

158 N. Heninger and K. Ryan

Fig. 1. Success Rate of our HNP-SUM method. We generated random instances
of HNP-SUM with N ≈ 22048, n ∈ {2, 5, 30}, and T ∈ {2128, 21024, 21260}. We set E to
be close to the threshold value predicted by our bound T (n+1)/(n−1)E � N , skipping
the cases n = 2, T ≥ 21024 for which no E satisfies the bound. Each data point is
averaged from 100 sample instances. In all cases, the actual threshold is within a small
factor of the predicted threshold, showing that our heuristic assumptions are valid. We
see that the threshold is slightly higher for larger n, suggesting that the bounds likely
have a secondary dependence on n as well.

computationally intensive. This latter attack can be performed in 4.5 h on an
88-core machine, but we include both because the former can be easily verified
and includes some interesting additional analysis steps. Both of these attacks
proceed in roughly the same series of stages with only minor variations in how
the stage is completed in both the fast attack and the small attack. While solving
HNP-SUM is a stage in both attacks, a number of additional stages are needed to
preprocess and postprocess the leakage from the client to get it into the correct
form. As a motivating application of HNP-SUM, we describe the relevant details
of MEGA’s protocol and the sequence of stages that allows for more efficient key
recovery.

In MEGA’s login protocol, the server sends the client an RSA private key that
is encrypted using AES in ECB mode. The client decrypts the RSA private key,
uses this RSA private key to decrypt a session ID that the server has encrypted
to the RSA public key, and sends the result to the server.

The attack of Backendal, Haller, and Paterson modifies the ECB-encrypted
ciphertext of the RSA private key and the encrypted session ID to obtain one
bit of information about the secret key per login. However, the client is using the
modified secret key to send 43 contiguous bytes of information from the result
of the RSA decryption to the server. In our attack, the adversary swaps blocks
in the ECB-encrypted wrapped RSA key before sending it to the client and then
analyzes the resulting message from the client to obtain more information about
the RSA secret key per victim client login attempt.

The Hidden Number Problem with Small Unknown Multipliers 159

In the first stage of analysis, the attacker represents the 43-byte leakage from
the client in terms of the unknown AES plaintext blocks. Second, these algebraic
representations are manipulated so that the attacker learns information about
the most significant bytes (MSBs) of an unknown value, not just about a con-
tiguous subsequence of bytes. In the fast attack, this is done using an approach
from solutions to the Extended Hidden Number Problem [12], and in the small
attack, this is done by brute forcing unknown most significant bytes. Third,
in the fast attack, these approximations of the MSBs are refined by combining
approximations together so more MSBs are known. This is why the fast attack
requires more samples than the small attack. Fourth, the (refined) approxima-
tions are used to solve for the value of unknown multipliers in the algebraic
representation via HNP-SUM. These unknown multipliers correspond to differ-
ences between plaintext blocks in the encoded RSA private key. Fifth, we use
the RSA equations to brute force a block of plaintext bytes of the RSA private
exponent in the encoded key, and the plaintext differences reveal the values of
other plaintext blocks. Finally, the plaintext blocks containing the MSBs of one
of the RSA factors are analyzed in a Coppersmith attack [7] to recover the full
factorization and private key.

Section 4.3 through 4.8 discuss each of the stages in turn. Section 4.9 analyzes
the overall complexity of the attack.

4.1 Attack Context for MEGA

When a MEGA user attempts to log in for the first time on a new client, the
client is only in possession of an AES secret key derived from the user’s password.
To function properly, the client requires a copy of the user’s RSA private key.
The server possesses the user’s RSA public key and a copy of the user’s RSA
private key encrypted using the AES key in ECB mode, so in theory the private
key is hidden from the server, but the client can obtain the private RSA key by
decrypting the encrypted private key from the server with the password-derived
AES secret key. It is the malicious server’s goal is to recover the user’s private
RSA key.

During the login process, the server creates a 43-byte session identifier (SID),
which it encrypts using the RSA public key and sends to the client alongside the
wrapped private key. The client uses the AES key to unwrap the RSA private key,
then uses the parameters in the unwrapped key to decrypt the RSA ciphertext
and retrieve the SID. The client then sends the retrieved SID to the server.
The malicious server wishes to use the SID value sent from the client to infer
information about the parameters in the unwrapped private key.

Several of the exact implementation details are relevant for our improved
attack, so we recount them here. The remaining details can be found in Back-
endal, Haller, and Paterson’s paper [2, Section II]. We denote the RSA public
key by (N, e), where the factors of modulus N are p and q. The public RSA
exponent is e and the private exponent is d. The public RSA exponent is set

160 N. Heninger and K. Ryan

by the client; the web client1 uses e = 257, and the SDK2 uses e = 17. MEGA
clients use RSA-CRT for decryption, so let u ← q−1 mod p be the coefficient
used during CRT operations.

The private key is encoded as

skencoded
share ← �(q) | q | �(p) | p | �(d) | d | �(u) | u | P.

l encodes the bit length of different values as a 2-byte integer, all integers are
stored in big-endian format, and P is an 8-byte padding value unknown to the
adversary. We wish to highlight that q is 1024 bits in length, so �(q) is 0x0400,
and since the secret values are of predictable size, they appear at predictable
offsets within the plaintext. We also highlight that the private key encodes the
full private exponent d and does not include the private exponents dp, dq that
are frequently stored for use in RSA-CRT decryption. Finally, we note that due
to the length fields, the 1024-bit u value spans 9 AES plaintext blocks, and the
first and last of those contain the length and padding fields respectively. As in
the original attack, we constrain our attacker to not alter this metadata so that
the decrypted RSA key maintains correct length encodings and padding.

This encoding of the private key is 656 bytes, or 41 AES blocks. The encoded
private key is encrypted using AES in ECB mode, which means that each 16-byte
plaintext block is encrypted independently. That is,

ct1 | ct2 | · · · | ct41 = EAES(pt1) | EAES(pt2) | · · · | EAES(pt41).

Decryption of the encrypted private key also processes 16-byte blocks indepen-
dently, enabling malleability attacks where the malicious server alters individual
blocks of ciphertext to alter the corresponding blocks of plaintext in the private
key encoding.

When the honest server constructs the RSA plaintext with the 43-byte SID, it
places the SID in bytes 3-45 of the 256-byte RSA plaintext m. Prior to patching,
clients extract these bytes from the RSA decryption output without checking
the validity of the remainder of the decryption output. However, there is special
behavior in the client’s extraction function that checks if byte 2 is nonzero, and
if this is the case it extracts bytes 2-44. This detail has no consequence for the
RSA key extraction attack in [2], but it is a necessary aspect of our small attack.
If we assume the output bytes of the RSA decryption function are uniformly
distributed, clients have probability 255/256 of returning SID ← m[2 : 44]. We
temporarily set this detail aside and assume that all SIDs returned by the client
are composed of these bytes, and we revisit it in Sect. 4.9.

MEGA clients use Garner’s formula [11] to perform RSA-CRT decryption,
the process of decrypting an RSA ciphertext c to message m. These equations,
as well as the SID extraction step, are detailed below.

1 https://github.com/meganz/webclient/blob/9fca1d0b7d8a65b9d483a10e798f1
f67d1fb8f1e/js/crypto.js#L207.

2 https://github.com/meganz/sdk/blob/849aea4d49e2bf24e06d1a3451823e02abd
76f39/src/crypto/cryptopp.cpp#L798.

https://github.com/meganz/webclient/blob/9fca1d0b7d8a65b9d483a10e798f1f67d1fb8f1e/js/crypto.js#L207
https://github.com/meganz/webclient/blob/9fca1d0b7d8a65b9d483a10e798f1f67d1fb8f1e/js/crypto.js#L207
https://github.com/meganz/sdk/blob/849aea4d49e2bf24e06d1a3451823e02abd76f39/src/crypto/cryptopp.cpp#L798
https://github.com/meganz/sdk/blob/849aea4d49e2bf24e06d1a3451823e02abd76f39/src/crypto/cryptopp.cpp#L798

The Hidden Number Problem with Small Unknown Multipliers 161

mp ← cd mod (p−1) mod p

mq ← cd mod (q−1) mod q

m ← ((mp − mq)u mod p)q + mq

SID ← m[2 : 44]

4.2 Original MEGA Attack of Backendal, Haller, and Paterson

In the original attack, the adversary alters ciphertext block ct40, which is the
last ciphertext block corresponding to only bytes of u, and no length fields or
padding bytes. The attacker sends this altered wrapped key and RSA ciphertext
qe
guess mod N to the client. The client decrypts and decodes the wrapped key

to obtain private key (q, p, d, u′, P) where u′ 	= u is not the correct value of
q−1 mod p to use during RSA-CRT decryption.

If qguess < q, then mp ≡ mq (mod p), so (mp − mq)u = 0 and m = mq < q.
Thus all SID bytes are 0. If qguess ≥ q, then mp 	≡ mq (mod p), so h 	= 0 and m >
q. Thus the SID bytes are nonzero with high probability. The attack therefore
uses whether SID is zero or nonzero as an oracle for whether the attacker-chosen
qguess is smaller or larger than the secret q. The adversary does a binary search
on the value of q until sufficiently many most significant bits of q are known.

Once enough of the most significant bits of q are known, the attacker then
uses a cryptanalytic technique by Coppersmith [7] to recover the least significant
bits of q, and thus obtain the full factorization of N . Asymptotically, this attack
recovers the factorization of N in polynomial time once the attacker knows the
most significant half of bits of q. In the context of MEGA, that is 512 bits, which
requires 512 login attempts to obtain. In practice, this attack can be prohibitively
slow at the asymptotic limit, and implementations of Coppersmith’s method
often use additional most significant bits, which makes the implementation faster
and more understandable. The proof-of-concept code associated with the original
attack uses 683 most significant bits and therefore requires 683 login attempts.

We observe that although the client provides the adversary with 344 bits
of SID per login attempt, this original attack only uses this data to refine the
knowledge of the private key by a single bit. It is natural to wonder if the client’s
responses can be exploited in a more sample-efficient way, recovering the same
private key with fewer login attempts. This is what our new attacks accomplish.

4.3 Expressing Leakage Algebraically

We begin our cryptanalysis by demonstrating how to algebraically express the
information returned during a login attempt. As in the original attack, the adver-
sary alters ciphertext blocks corresponding to the value of u, and therefore the
client uses the altered u′ value when performing decryption, but the remaining
private key values are unaltered. In our attack, the adversary also picks an RSA
ciphertext c at random, and reuses the same c for each login attempt. Both the
(modified) wrapped key and RSA ciphertext are sent to the client during a login
attempt.

162 N. Heninger and K. Ryan

By combining Garner’s formula for RSA decryption with the extraction of
the SID s′ with altered value u′, this gives the congruence

(mp − mq)u′q + mq ≡ e′
12

b1 + s′2b2 + 2b2−1 + e′
2 (mod N).

The left hand side expresses the output of the decryption function in terms of its
input, and the right hand side expresses the output in terms of the known SID
bytes s′ = m′[2 : 44] and the other unknown bytes e′

1 = m′[1] and e′
2 = m′[45 :

256] − 2b2−1. The 2b2−1 term is present so that unknown e′
2 may be positive or

negative and so |e′
2| is minimized.

We can construct a similar equation using altered value u′′ and SID s′′.

(mp − mq)u′′q + mq ≡ e′′
12

b1 + s′′2b2 + 2b2−1 + e′′
2 (mod N).

Subtracting these two congruences, we have

(u′ − u′′)(mp − mq)q ≡ (e′
1 − e′′

1)2
b1 + (s′ − s′′)2b2 + (e′

2 − e′′
2) (mod N).

The adversary can give extra structure to (u′ −u′′) by carefully manipulating
the AES-encrypted key. The value u used by the client during RSA decryption
is decoded from the nine AES-decrypted blocks DAES(ct33 | ct34 | · · · | ct41).
Plaintext blocks pt33 and pt41 also include some bytes of d, the encoding of
�(u), and padding P . Now observe that if the attacker swaps out some of these
ciphertext blocks encrypting u with ciphertext blocks cti, ctj of their choosing,
the decrypted and decoded value of u used by the client will contain bits from
pti and ptj . Consider what happens when the client decodes u′ and u′′ from the
following two ciphertexts, which differ in the second-to-last block:

u′ = Decode[DAES(ct33) | DAES(cti) | · · · | DAES(cti) | DAES(cti) | DAES(ct41)]
u′′ = Decode[DAES(ct33) | DAES(cti) | · · · | DAES(cti) | DAES(ctj) | DAES(ct41)],

After decryption, all of the plaintext blocks that contain only bits of u are
replaced with pti, except for one in the second plaintext which is replaced with
ptj . The plaintext blocks that contain length encoding data or padding are not
modified, so validation of the plaintext succeeds. With this construction, (u′−u′′)
has special structure, because the only difference between the two is in block 40,
which corresponds to bytes 105 through 120 of the encoded u. Therefore,

u′ − u′′ = (pti − ptj)264.

For simplicity, in the future we will denote δi,j = pti − ptj , and observe that
|δi,j | < 2128.

We will also consider u′ − u′′′ when u′′′ was decoded from the ciphertext

u′′′ = Decode[DAES(ct33) | DAES(cti) | · · · | DAES(ctj) | DAES(cti) | DAES(ct41)]

which differs only in block 39. By the same logic as before,

u′ − u′′′ = (pti − ptj)2196 = 2128δi,j264.

This generalizes so that the adversary can construct values of u with difference
δi,j2128t+64 for t ∈ {0, 1, . . . , 6}, corresponding to the 7 modifiable ciphertext
blocks that contain only bytes of u and no padding bytes.

The Hidden Number Problem with Small Unknown Multipliers 163

4.4 Obtaining Most Significant Bytes

For any AES ciphertext block indices i and j, Sect. 4.3 gives us the capability to
construct an equation involving the differences of the corresponding plaintexts
δi,j = pti − ptj . Specifically, we have

δi,j2128t+64(mp − mq)q ≡ (e′
1 − e′′

1)2
b1 + (s′ − s′′)2b2 + (e′

2 − e′′
2) (mod N).

In this equation, the adversary knows (s′ −s′′) because it is the difference of two
SIDs, and the adversary also knows t, b1, b2, and N . The adversary does not
know 264(mp − mq)q mod N , but this value is constant throughout the attack.
The adversary does not know (e′

1 −e′′
1) or (e′

2 −e′′
2), but knows they are bounded

by |e′
1 − e′′

1 | ≤ E1 = 28 and |e′
2 − e′′

2 | ≤ E2 = 2b2 .
The goal of this phase is to learn the most significant bytes of some algebraic

expression. This is a generally useful goal because it allows us to represent the
error in the approximation as some bounded variable, and it is frequently possible
to efficiently solve the problem of recovering bounded variables using lattice
methods.

We now detail two approaches for obtaining the most significant bytes of this
representation.

Brute Force. Because e′
1 and e′′

1 are both single-byte values, e′
1 − e′′

1 takes
on one of 511 values. We can brute force these values and expect to eventually
guess the correct value. Therefore, assuming we have guessed correctly, we can
compute a = (e′

1 − e′′
1)2

b1 + (s′ − s′′)2b2 and write

2128tδi,jx ≡ a − ε (mod N)

where x = 264(mp − mq)q mod N is unknown but constant throughout the
attack. This is beginning to resemble a sample for an instance of HNP-SUM
with unknown multiplier 2128tδi,j and error ε which is unknown and bounded
by |ε| ≤ 2b2 = 21696.

Extended Hidden Number Problem. We observe that the problem of con-
verting a sample with a known block of contiguous bytes into a sample with
known most significant bytes (MSBs) resembles the Extended Hidden Number
Problem (EHNP) [12], specifically the Hidden Number Problem with two holes
(HNP-2H). To obtain the MSBs, we search for a known multiplier C which simul-
taneously makes the unknown terms (e′

1−e′′
1)C2b1 mod N and (e′

2−e′′
2)C mod N

small. If we assume |e′
1 − e′′

1 | < E1 and |e′
2 − e′′

2 | < E2, such a value of C can be
found by reducing the lattice defined by the rows of the basis matrix B =

[
E1N 0
E12b1 E2

]

.

164 N. Heninger and K. Ryan

Lattice reduction finds the shortest vector v = (E1(C2b
1 mod N), E2C) with

‖v‖2 ≤ 2√
3
det B1/2 = 2√

3

√
E1E2N . Thus

|(e′
1 − e′′

1)C2b1 + (e′
2 − e′′

2)C mod N |
≤|e′

1 − e′′
1 ||C2b1 mod N | + |e′

2 − e′′
2 ||C|

≤E1|C2b1 mod N | + E2|C|
≤‖v‖2 + ‖v‖2
≤ 4√

3

√
E1E2N.

We set C = v2/E2 and note that C does not depend on information leaked from
the client, and thus can be reused for every sample.

We therefore let x = C(mp − mq)q mod N , a = C(s′ − s′′)2b2 , and ε =
−(e′

1 − e′′
1)C2b1 − (e′

2 − e′′
2)C mod N . This yields

2128tδi,jx ≡ a − ε (mod N).

This also resembles a sample for an instance of HNP-SUM with unknown mul-
tiplier 2128tδi,j , known approximation a that depends on the SIDs and C, and
error ε which is unknown and bounded by |ε| ≤ 4√

3

√
E1E2N ≤ 21878.

The approach using the EHNP technique therefore produces a similar equa-
tion to the brute-force approach, but the bound on the unknown ε is larger. In
fact, this approach loses about half of the information exposed by the client;
instead of knowing 43 MSBs, this transformation gives information about only
21.25 MSBs.

4.5 Refining Approximations

Our ability to solve HNP-SUM depends on the bounds for the multiplier and
the error, and the error in the HNP-SUM samples we can obtain via the EHNP
method is too large to be recovered. When using the EHNP method, it is there-
fore necessary to combine multiple HNP-SUM samples together to obtain a sam-
ple with smaller error. For the particular context of this attack, this sample
refinement is possible.

Specifically, for any AES block indices i, j and choice of t ∈ {0, 1, . . . , 6}, the
adversary uses Sect. 4.4 to learn at satisfying

2128tδi,jx ≡ at − εt (mod N).

δi,j = pti − ptj is the difference of two plaintexts and is bounded |δi,j | ≤ 2128.
We also have bound |εt| < E. The goal of the adversary is to refine the approx-
imation by computing ã satisfying

δi,jx ≡ ã − ε̃ (mod N)

where |ε̃| ≤ Ẽ ≤ E.

The Hidden Number Problem with Small Unknown Multipliers 165

Since the new bound on the error is smaller, this is equivalent to learning
additional MSBs of δi,jx.

We simplify the problem to a single refinement step using two approxima-
tions. Once we show that this is possible, it is clear that this can be repeated
multiple times to refine the approximation further. We state the problem
generically.

Approximation Refinement Problem. Assume the adversary is given
a1, a2, r 	= 0, N,E1 and E2 satisfying

y ≡ a1 − ε1 (mod N)
ry ≡ a2 − ε2 (mod N)

|ε1| ≤ E1

|ε2| ≤ E2

2|r|E1 + 1 ≤ N − 2E2.

If min((2E2 + 1)/|r|, 2E1 + 1) < 2Ẽ, then the attacker’s goal is to return ã such
that there exists ε̃ satisfying |ε̃| ≤ Ẽ and

y ≡ ã + ε̃ (mod N).

Intuitively, we consider the intersection of the set of y values satisfying
the first congruence with the set of y values satisfying the second congruence.
Because of the constraints on the parameters, the intersection is a single interval
with easily computed bounds.

To solve this problem, observe that there exists y satisfying y ∈ [a1−E1, a1+
E1]. Without loss of generality, assume r > 0. so therefore ry ∈ S1 = [r(a1 −
E1), r(a1 + E1)]. Also observe that

ry ∈ S2 =
∞⋃

k=−∞
[a2 − E2 + kN, a2 + E2 + kN],

so we wish to find the intersection of S1 and S2. Because S2 consists of the union
of intervals of size 2E2 + 1, repeated at multiples of N , the gaps between these
intervals are N −2E2−1. Since the size of S1 is 2rE1+1 ≤ N −2E2, S1 intersects
with at most one interval, and we know there exists ry, the intersection of S1

and S2 is a single interval. Therefore we compute

k∗ ←
⌈

r(a1 − E1) − (a2 + E2)
N

⌉

low ← max(r(a1 − E1), a2 − E2 + k∗N)
high ← min(r(a1 + E1), a2 + E2 + k∗N)

and observe

ry ∈ S1 ∩ S2 = [low, high] ⇒ y ∈
[⌈

low

r

⌉

,

⌊
high

r

⌋]

.

166 N. Heninger and K. Ryan

The size of this interval is at most min((2E2 +1)/r, 2E1 +1) < 2Ẽ, so we let
ã be its midpoint (or as close as possible if there are an even number of elements)
and we have solved the problem.

To apply this to our specific problem, observe that this means that we can
refine the EHNP sample δi,jx ≡ a0 − ε0 (mod N) with 2128δi,jx ≡ a1 − ε1
(mod N) to quality Ẽ = 21750 because r = 2128, E1 = E2 = 21878, N ≈ 22048.
Similar logic shows that we can iterate this process, using the three samples
{a0, a1, a2} to obtain a refined sample of the form

δi,jx ≡ ã − ε̃ (mod N) with |ε̃| ≤ 21622.

This increases the number of known MSBs from about 21 to 53 and produces
an HNP-SUM sample with small enough error to enable finding a solution.

4.6 Recovering Unknown Multipliers

We now turn to the goal of recovering unknown and small multipliers. For arbi-
trarily many (i, j) pairs, the attacker knows ai,j such that

ai,j ≡ δi,jx + ei,j (mod N)

where |δi,j | ≤ T = 2128 and |ei,j | < E. The value of E depends on if the
adversary initially used the brute-force strategy (giving E = 21696) in Sect. 4.4
or the EHNP strategy (4.4) plus refinement (4.5) (giving E = 21622).

This is an instance of HNP-SUM, because we have samples ai,j , small
unknown multipliers δi,j , and small errors ei,j . We use the lattice approach
detailed in Sect. 3 to recover the values of δi,j up to sign and division by a
common and small factor. Because the δi,j involve bytes of cryptographic mate-
rial and are essentially random, the greatest common divisor of the unknown
multipliers in our attack is likely to be 1 or some very small value. It is therefore
possible to brute force the sign and possible common factors to recover the δi,j

exactly.
By examining the heuristic condition T (n+1)/(n−1)E � N , we observe that

n = 3 samples are necessary for the brute-force strategy, and n = 2 samples are
necessary for the strategy of EHNP plus refinement.

4.7 Recovering Plaintexts

By combining the capabilities of Sects. 4.3 through 4.6, the adversary can learn
δi,j = pti − ptj for any pair (i, j) of plaintext blocks (up to sign). Note that
recovering any single plaintext pti therefore reveals any other plaintext ptj =
pti − δi,j . To accomplish this, we make use of the fact that �(q) is 2 bytes of
known plaintext and a property of the RSA equations.

The Hidden Number Problem with Small Unknown Multipliers 167

When the public modulus e is small, it is easy to compute the most significant
bits of the private modulus d. The least significant bits of d are not easy to
compute, so this does not impact the security of RSA. To see why this is the
case, observe that the RSA equation implies

d ≡ e−1 (mod (p − 1)(q − 1))
⇒ ed − 1 ≡ 0 (mod (p − 1)(q − 1))
⇒ ed − 1 = k(p − 1)(q − 1)

⇒ k = e
d

(p − 1)(q − 1)
− 1

(p − 1)(q − 1)
⇒ k ≤ e.

Thus if e is small, all possible values of k can be brute forced. A typical
choice of e is 65537, which leads to an easy brute-force attack. MEGA’s web
client uses e = 257, and the SDK uses e = 17, so brute forcing k is even easier
in this scenario. If k is known, then

d = (k(p − 1)(q − 1) + 1)/e

= (k(pq − (p + q) + 1) + 1)/e

=
kN + k + 1

e
− p + q

e
.

The second term is unknown, but it is about as small as p and q, which are about
half the size of d. The first term is known and with high probability reveals the
most significant bits of d.

To use this in the attack, we first recover δ18,1 = pt18 − pt1. pt18 contains
16 significant bytes of d and pt1 contains the length encoding �(q). We guess
all possible values of k from 1 to e, and for each guess, we determine what
the significant bytes of d would be if that guess of k were correct. This gives a
candidate value for pt18, which we can use to compute a candidate pt1. If the
candidate pt1 has valid length padding, the candidate pt18 may be correct. The
odds of a false positive are acceptably small, around e/216, so for small e this
is likely to reveal the true value of pt18. Once pt18 is known, this reveals ptj for
every known δ18,j .

4.8 Recovering the Factorization

Section 4.7 demonstrates how to recover arbitrary plaintext blocks in the encoded
RSA private key. This could be used to recover every plaintext block in the
encoded key, but as in the attack of Backendal, Haller, and Paterson there is
a more efficient solution to learning the factorization. We can recover every
plaintext block corresponding to the most significant bytes of prime factor q,
then use Coppersmith’s method [7] to recover the full factorization.

For the 2048-bit modulus N with 1024-bit prime factors p and q, this requires
at least 512 of the most significant bits. However, there is a trade-off between

168 N. Heninger and K. Ryan

how many of the most significant bits are known, how complex the implementa-
tion is, and how long it takes the implementation to run. The proof-of-concept
code for the original attack requires 683 bits and involves a dimension-3 lat-
tice constructed with Coppersmith degree 2 and multiplicity 1. We improve the
implementation by increasing the Coppersmith degree to 4 and multiplicity to
2, resulting in a lattice of dimension 5. Our improved implementation recovers
the factorization with only 624 most significant bits. This corresponds to the
most significant bits of q encoded in the first 5 plaintext blocks pt1, pt2, . . . , pt5
of the encoded private key. With the improved implementation, recovering these
5 plaintext values suffices to recover the full factorization.

4.9 Complexity

In this section, we analyze the overall complexity of both the fast attack requiring
an expected 17 login attempts and the small attack requiring an expected 6.1
login attempts. Because both of our attacks share many steps, we begin by
describing the overlap.

Both approaches assume that the 43 bytes returned by the client are at a fixed
location in the output of the RSA decryption function, but this is optimistic. As
described in Sect. 4.1, the client returns bytes 2-44 when byte 2 is nonzero, and
bytes 3-45 otherwise. This can be modeled as the attacker querying an oracle
which has some small probability of returning an incorrect answer. For both
of our approaches, we assume that all s responses from the oracle are correct.
Empirically, the analysis steps succeed when this is true and fails otherwise. If
the analysis fails, the RSA ciphertext is re-randomized and the entire attack
is repeated, collecting s fresh oracle responses. Under the simplifying assump-
tion that the probability the oracle returns a correct response for a particular
input is independently distributed and equal to 255/256 (byte 2 is nonzero), the
probability that all s responses are correct is (255/256)s. Therefore the expected
number of oracle queries before the full attack is successful is s(256/255)s.

Both approaches also overlap in the final stages of the attack, so much of
the complexity analysis is repeated. For the Coppersmith attack in Sect. 4.8
to succeed, we assume the attack has successfully recovered 5 plaintext blocks
pt1, . . . , pt5. To acquire these 5 plaintexts, Sect. 4.7 processes differences between
these plaintexts and a plaintext pt18 involving MSBs of RSA private exponent
d. That is, this part of the attack requires knowledge of δ18,1, . . . , δ18,5. These
5 values are obtained using the technique of Sect. 4.6 from five high-quality
approximations.

The two approaches differ in how they obtain these five approximations.

Fast Attack. In the fast attack, we obtain the five high-quality approximations
using Sect. 4.5 to refine 15 lower-quality approximations. For each high-quality
approximation involving δ18,j , we assume we have lower-quality approximations
of δ18,jx, 2128δ18,jx, and 2256δ18,jx for a fixed and unknown x.

We obtain these lower-quality approximations using the EHNP technique in
Sect. 4.4. This approach requires minimal guesswork, and it would still work if

The Hidden Number Problem with Small Unknown Multipliers 169

the 43 contiguous bytes were present at a different fixed offset. The disadvan-
tage is that the EHNP transformation increases the error bounds, so we need
more samples. As input to the EHNP transformation, we require 15 algebraic
relationships involving 2128tδ18,j for t ∈ {0, 1, 2} and j ∈ {1, 2, . . . , 5}.

As described in Sect. 4.3, each algebraic relationship involves taking the dif-
ference between two client responses involving different manipulations of the
wrapped RSA private key. This naively means that the attack could be per-
formed with 30 client interactions, but because each δ18,j involves the same
plaintext block pt18, one single client response can be reused in all 15 client
response pairs. In particular, the shared ciphertext leads to the client decoding
the u value as

Decode[DAES(ct33) | DAES(ct18) | · · · | DAES(ct18) | DAES(ct18) | DAES(ct41)].

This results in a total of s = 16 error-free oracle responses sufficing to recover
the RSA private key, or 16(256/255)16 ≈ 17.03 login attempts on average. None
of the steps in this approach are particularly expensive, so the overall private
key recovery is fast.

Small Attack. In the small attack, the five high-quality approximations are
obtained by using the brute-force technique described in Sect. 4.4. The inputs
to the brute-force technique are five algebraic relationships from Sect. 4.3, and
brute force attempts to recover the unknown term e′

1−e′′
1 , which can take on one

of 511 values. Instead of trying all of the (511)5 ≈ 245 possibilities, we improve
the complexity by focusing on three algebraic relationships at a time. This gives
a more tractable brute-force cost of around 227.

For every combination of prefixes for the three algebraic relationships, we
apply the lattice methods in Sect. 3 for n = 3 to recover candidate unknown
multipliers. If this attempt succeeds and yields valid multipliers, the guessed
prefixes may be correct. If the attempt fails, the guessed prefixes are probably
incorrect. In practice, this approach reliably returns the correct prefixes.

Table 1. Average number of logins and average wall time required for each attack. The
reported ranges represent a 95% confidence interval for the measured value.

Approach Sample Size Exp. Logins Avg. Logins Avg. Time (s)

Original [2] 10000 683 683 ± 0 9.46 ± 0.02

Fast Attack 10000 17.03 17.06 ± 0.08 5.59 ± 0.66

Small Attack 100 6.14 6.18 ± 0.20 16214 ± 522

Next, we take two samples with recovered prefixes and one sample with an
unknown prefix and repeat the brute-force process to recover the unknown prefix.
This is faster than brute forcing prefixes for three samples simultaneously. We
repeat this process to recover all unknown prefixes. This results in five high-
quality approximations from give algebraic relations.

170 N. Heninger and K. Ryan

Using the same argument as in the fast attack, the 5 algebraic relationships
can be obtained using 6 correct oracle responses, which happens with probabil-
ity (255/256)6 ≈ 98%. The expected number of oracle responses needed for a
successful attack would be 6(256/255)6 ≈ 6.14. The most expensive step is brute
forcing the triple of unknown prefixes, but this step is easily parallelized.

4.10 Experimental Evaluation

We benchmarked both of our new attacks3 against the abstract proof-of-concept
code of the attack in [2]. Both attacks are implemented in Python and use the
lattice reduction implementation in SageMath. We ran all our attacks on an
88-core Intel Xeon E5-2699A processor running at 2.4GHz. The original attack
and our fast attack are single-threaded, and our small attack implementation is
multithreaded. Table 1 reports a 95% confidence interval for each measurement.

As expected, there is good agreement between the measurements and the
expected complexity calculated in Sect. 4.9. The measured time includes the time
to simulate the client-server interactions, explaining why the original attack,
which includes more login attempts but fewer analysis steps, takes longer on
average to perform. The small attack takes an average of 4 h 30min of wall-
clock time to complete the analysis parallelized across 88 cores. Although this
computational effort is not small, it is eminently tractable. We therefore conclude
that the risk of these vulnerabilities was not limited to users who attempted to
log in over 500 times, and instead show that users who attempted to log in
at least 6 times may potentially be at risk. This illustrates the importance of
updating clients to the latest patched version.

Table 2. Comparison of non-Coppersmith methods solving the implicit factoring prob-
lem. Our approach achieves the same heuristic bounds as in prior work with smaller
lattices. Neither our bounds nor the bounds reported in prior work include higher-
order terms to account for the approximation factor of lattice reduction algorithms,
but experimentally the bounds are accurate for small to medium values of k.

Bits Shared Approach Bound Rank Dimension Our Bound Rank Dimension

LSBs [21] t ≥ k
k−1

α k k t ≥ k
k−1

α k + 1 k + 1

MSBs [9] t ≥ k
k−1

α k
k(k+1)

2
t ≥ k

k−1
α k + 1 k + 1

Middle [9] t ≥ 2 k
k−1

α
k(k+1)

2
k(k+1)

2
t ≥ 2 k

k−1
α k + 1 k + 1

LSBs and MSBs - - - - t ≥ k
k−1

α k + 1 k + 1

5 Application: Implicit Factoring

In the implicit factoring problem, introduced by May and Ritzenhofen in
2009 [21], one wishes to factor k RSA moduli of the form Ni = piqi where
the factors pi share t bits in common, but the value of these bits is not known.
3 Our implementation is available at https://github.com/keeganryan/attacks-poc.

https://github.com/keeganryan/attacks-poc

The Hidden Number Problem with Small Unknown Multipliers 171

This problem is typically considered in the context of unbalanced b-bit RSA
moduli where pi � qi; the size of qi is α bits

The original presentation considered the case of pi sharing least significant
bits (LSBs), and Sarkar and Maitra [27] expanded the definition to consider
shared most significant bits (MSBs), a mix of shared LSBs and MSBs, and shared
bits in the middle. They also gave Coppersmith-like approaches to solve these
cases. Faugère, Marinier, and Renault [9] gave a simpler lattice construction for
shared MSBs and shared middle bits, but they observed that their approach
cannot be applied to moduli that have factors sharing a mix of LSBs and MSBs.

Apart from [21] and [9], methods to solve the implicit factoring problem
have relied on Coppersmith-like techniques [20,25,27–29]. While these methods
often yield superior bounds, they often require lattices of higher dimension, more
involved analyses, and Gröbner basis calculations to recover the solutions to
multivariate polynomial systems.

We show that HNP-SUM can be used to solve the implicit factoring problem
when LSBs, MSBs, a mix of LSBs and MSBs, or middle bits are shared. While
our lattice construction does not improve on the bounds of the Coppersmith-
like techniques, it is the first non-Coppersmith technique to solve the mixed
LSBs/MSBs problem, and it is the most efficient method to our knowledge which
solves the shared middle bits problem for k > 2. Compared to the lattices of
dimension O(k2) in [9], our lattice has rank and dimension k+1. All of our attacks
achieve the same heuristic bounds as their non-Coppersmith counterparts, and
a comparison of these approaches is given in Table 2.

5.1 LSBs or MSBs Shared

We begin by considering the case where LSBs are shared, MSBs are shared, or
some mix are shared. The input to the problem is k RSA moduli Ni = piqi

where Ni < 2b, qi < α, and the pi share several bits. Let the t1 ≥ 0 least
significant and t2 ≥ 0 most significant bits be shared. This setup includes the
cases where only LSBs or only MSBs are shared by setting t1 or t2 to 0. We have
pi = pshared + 2t1 p̃i where p̃i < 2b−α−t1−t2 . We rewrite this as

2−t1Ni ≡ 2−t1piqi

≡ qi(2−t1pshared) + (p̃iqi) (mod M)

where M = 2b+t1+t2−α + 1. Observe that this is an instance of HNP-SUM
with samples ai = 2−t1Ni mod M , unknown multipliers qi, hidden number
x = 2−t1pshared mod M , and error ei = p̃iqi. This gives bounds T = 2α and
E = 2b−α−t1−t2+α, so Theorem 1 heuristically recovers the factors qi when

(2α)(k+1)/(k−1)2b−t1−t2 � 2b+t1+t2−α + 1,

or equivalently

t1 + t2 � k

k − 1
α.

This gives a unified heuristic bound for the cases where LSBs are shared, MSBs
are shared, or a mix of LSBs and MSBs are shared.

172 N. Heninger and K. Ryan

Justifying the Bounds. Although the choice of modulus M seems arbitrary, there
is good justification for it. Note that the congruence would hold for larger choices
of M , and a larger modulus would suggest the ability to solve HNP-SUM for
larger T and E, and this would therefore imply the ability to solve the implicit
factoring problem when arbitrarily few bits are shared. Increasing the modulus
does improve the bounds up to a certain point, but this argument fails because
beyond that point, Heuristic 2 is no longer satisfied. In particular, the projected
sublattice of rank 2 contains a short vector of length ≈ 2b−α in violation of the
Gaussian Heuristic. Since the sublattice recovery depends on the shortest vector
in the projected sublattice, the ability to recover the sublattice is unchanged.

We experimentally observe that the point at which Heuristic 2 begins to fail is
usually ≈ 2b+t1+t2−α, and using a significantly larger modulus does not improve
upon the predicted bounds. In practice, we set M to be slightly larger because
there is a small chance that Heuristic 2 holds for a slightly larger modulus, and
making M larger by a handful of bits barely affects running time. We also make
M odd to ensure 2−t1 exists in the ring of integers modulo M .

5.2 Middle Bits Shared

We next consider the case where we are given k RSA moduli Ni = piqi with
Ni < 2b, qi < 2α and the (l, l + t) middle bits of pi are shared. That is, pi =
p̃′

i2
l+t + pmid2l + p̃i where p̃′

i < 2b−α−l−t and p̃i < 2l. We rewrite this as

Ni ≡ 2l+tp̃′
iqi + 2lpmidqi + p̃iqi ≡ qi(2lpmid) + (p̃iqi) (mod 2l+t)

Table 3. Shared Least Significant Bits. We compared our lattice construction for
solving implicit factoring against [21] for b = 2048, α = 512, and various shared bits
t. The row in bold represents the first value of t for which the condition t ≥ k

k−1
α is

satisfied and we expect the lattice methods to succeed. We see that our approach is
approximately as powerful as [21] or a bit stronger, and the success rate follows the
predicted bound to within a couple of bits.

k = 2 k = 5 k = 30

Leakage (t) [21] Ours Leakage (t) [21] Ours Leakage (t) [21] Ours
1022 0% 0% 638 0% 0% 528 0% 0%
1023 0% 0% 639 0% 0% 529 0% 0%
1024 35% 44% 640 0% 0% 530 0% 0%
1025 100% 100% 641 7% 34% 531 0% 78%
1026 100% 100% 642 89% 96% 532 53% 100%
1027 100% 100% 643 100% 100% 533 100% 100%
1028 100% 100% 644 100% 100% 534 100% 100%

The Hidden Number Problem with Small Unknown Multipliers 173

Table 4. Shared Most Significant Bits. We compare our construction against [9]
for b = 2048, α = 512, and various t. The row in bold represents the first value of t
for which t ≥ k

k−1
α. As was the case for LSBs, our performance is close to [9] and the

predicted bound, although this time it is slightly weaker.

k = 2 k = 5 k = 30

Leakage (t) [9] Ours Leakage (t) [9] Ours Leakage (t) [9] Ours
1022 0% 0% 638 0% 0% 528 0% 0%
1023 0% 0% 639 0% 0% 529 0% 0%
1024 9% 2% 640 0% 0% 530 0% 0%
1025 71% 28% 641 5% 1% 531 50% 34%
1026 100% 98% 642 75% 43% 532 98% 97%
1027 100% 100% 643 99% 96% 533 100% 100%
1028 100% 100% 644 100% 100% 534 100% 100%

and observe that this gives an instance of HNP-SUM with ai = Ni, ti = qi,
x = (2lpmid), and ei = p̃iqi. This gives bounds T = 2α and E = 2α+l, so
Theorem 1 heuristically recovers the ti when

(2α)(k+1)/(k−1)2α+l � 2l+t ⇔ t � 2k
k − 1

α.

5.3 Experimental Evaluation

We implemented our reductions from implicit factoring to HNP-SUM and the
lattice methods described in [21] and [9]. We performed experiments on 2048-bit
moduli for k ∈ {2, 5, 30} and several t around the boundary for which we predict
the instance is solvable. In all cases, we find that our predicted bound is within
a couple bits of what we observed. We attempted to solve 100 instances for each
combination of parameters and report the results in Tables 3 through 6.

Our implementation was mostly written in Python and Sage. We also use a
custom C++ lattice reduction implementation. We ran each attack instance on
a single thread of an 88-core Intel Xeon E5-2699A processor running at 2.4GHz.
While our attack averaged under a second in all cases and the prior approaches
were similarly fast in most cases, [9] was significantly slower for k = 30.

This was primarily due to the cost of lattice reduction. When solving the
case of shared MSBs with k = 30, we reduce a lattice of rank 30, dimension 465,
and entries of size 2048 bits. In the case of shared middle bits, both the rank and
dimension are 465. Our custom lattice reduction implementation took around
10 s per instance in the first case and 4min in the second.

Our experiments demonstrate that our heuristically derived bounds are accu-
rate for a variety of parameters. Our methods are more efficient than prior work,
and our reduction to HNP-SUM provides a straightforward lattice-based crypt-
analysis to solve the implicit factoring problem in all shared-bit contexts.

174 N. Heninger and K. Ryan

Table 5. Shared MSBs and LSBs. We determine the success rate of our construction
for b = 2048, α = 512, and various t with the shared bits split evenly between the MSBs
and LSBs. There is no non-Coppersmith method we are aware of to compare against,
but the performance of our method closely approximates the predicted bound.

k = 2 k = 5 k = 30

Leakage (t) Ours Leakage (t) Ours Leakage (t) Ours
1022 0% 638 0% 528 0%
1023 0% 639 0% 529 0%
1024 2% 640 0% 530 0%
1025 36% 641 0% 531 36%
1026 91% 642 51% 532 95%
1027 100% 643 98% 533 100%
1028 100% 644 100% 534 100%

Table 6. Shared Middle Bits. We compare our construction against [9] for b = 2048,
α = 380, and various t around the boundary t ≥ 2 k

k−1
α. We find that our approach

closely matches the predicted bound. However, the approach of [9] for k = 30 fails for
all these values of t. This is because the lattice approximation factor is quite significant
for lattices of rank k(k + 1)/2 = 465, and lattice reduction failed to find the shortest
vector for these parameters.

k = 2 k = 5 k = 30

Leakage (t) [9] Ours Leakage (t) [9] Ours Leakage (t) [9] Ours
1518 0% 0% 948 0% 0% 785 0% 0%
1519 1% 1% 949 0% 0% 786 0% 0%
1520 7% 10% 950 0% 0% 787 0% 0%
1521 35% 38% 951 0% 0% 788 0% 0%
1522 69% 66% 952 9% 6% 789 0% 11%
1523 88% 90% 953 40% 38% 790 0% 44%
1524 91% 93% 954 68% 67% 791 0% 53%
1525 96% 96% 955 86% 84% 792 0% 67%
1526 100% 99% 956 93% 93% 793 0% 89%
1527 99% 99% 957 93% 93% 794 0% 93%

Acknowledgment. We thank Miro Haller and Kenny Paterson for their helpful com-
ments on an earlier draft, insightful discussions, and providing further context. This
material is based upon work supported by the National Science Foundation under
grants no. 2048563 and 1913210.

The Hidden Number Problem with Small Unknown Multipliers 175

References

1. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.P.: RSA and Rabin functions: certain
parts are as hard as the whole. SIAM J. Comput. 17(2), 194–209 (1988). https://
doi.org/10.1137/0217013

2. Backendal, M., Haller, M., Paterson, K.G.: MEGA: malleable encryption goes awry.
In: 2023 IEEE Symposium on Security and Privacy (SP), pp. 450–467 (2023).
https://doi.org/10.1109/SP46215.2023.00026

3. Bauer, A., Joux, A.: Toward a rigorous variation of coppersmith’s algorithm on
three variables. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 361–
378. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_21

4. Boneh, D., Halevi, S., Howgrave-Graham, N.: The modular inversion hidden num-
ber problem. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 36–51.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_3

5. Boneh, D., Shparlinski, I.E.: On the unpredictability of bits of the elliptic curve
Diffie-Hellman scheme. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
201–212. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_12

6. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68697-5_11

7. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 178–189. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-
9_16

8. De Mulder, E., Hutter, M., Marson, M.E., Pearson, P.: Using Bleichenbacher’s
solution to the hidden number problem to attack nonce leaks in 384-bit ECDSA.
In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 435–452.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1_25

9. Faugère, J.-C., Marinier, R., Renault, G.: Implicit factoring with shared most sig-
nificant and middle bits. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 70–87. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13013-7_5

10. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3_3

11. Garner, H.L.: The residue number system. In: Papers Presented at the the 3–
5 March 1959, Western Joint Computer Conference, pp. 146–153. IRE-AIEE-
ACM 1959 (Western), Association for Computing Machinery, New York, NY, USA
(1959). https://doi.org/10.1145/1457838.1457864

12. Hlaváč, M., Rosa, T.: Extended hidden number problem and its cryptanalytic
applications. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp.
114–133. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74462-
7_9

13. Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature
schemes. Des. Codes Crypt. 23(3), 283–290 (2001). https://doi.org/10.1023/A:
1011214926272

14. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024458

https://doi.org/10.1137/0217013
https://doi.org/10.1137/0217013
https://doi.org/10.1109/SP46215.2023.00026
https://doi.org/10.1007/978-3-540-72540-4_21
https://doi.org/10.1007/3-540-45682-1_3
https://doi.org/10.1007/3-540-44647-8_12
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/978-3-642-40349-1_25
https://doi.org/10.1007/978-3-642-13013-7_5
https://doi.org/10.1007/978-3-642-13013-7_5
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1145/1457838.1457864
https://doi.org/10.1007/978-3-540-74462-7_9
https://doi.org/10.1007/978-3-540-74462-7_9
https://doi.org/10.1023/A:1011214926272
https://doi.org/10.1023/A:1011214926272
https://doi.org/10.1007/BFb0024458

176 N. Heninger and K. Ryan

15. Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44670-2_6

16. Howgrave-Graham, N.A., Nguyen, P.Q., Shparlinski, I.E.: Hidden number problem
with hidden multipliers, timed-release crypto, and noisy exponentiation. Math.
Comput. 72(243), 1473–1485 (2003)

17. Jutla, C.S.: On finding small solutions of modular multivariate polynomial equa-
tions. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 158–170.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054124

18. Kannan, R., Bachem, A.: Polynomial algorithms for computing the Smith and
Hermite normal forms of an integer matrix. SIAM J. Comput. 8(4), 499–507 (1979).
https://doi.org/10.1137/0208040

19. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coef-
ficients. Math. Ann. 261(4), 515–534 (1982). https://doi.org/10.1007/BF01457454

20. Lu, Y., Peng, L., Zhang, R., Hu, L., Lin, D.: Towards optimal bounds for implicit
factorization problem. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS,
vol. 9566, pp. 462–476. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31301-6_26

21. May, A., Ritzenhofen, M.: Implicit factoring: on polynomial time factoring given
only an implicit hint. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443,
pp. 1–14. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-
1_1

22. Nguyen, P.Q.: Hermite’s constant and lattice algorithms. In: Nguyen, P., (eds.)
The LLL Algorithm. Information Security and Cryptography, pp. 19–69. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-02295-1

23. Nguyen, P.Q., Stehlé, D.: LLL On the average. In: Hess, F., Pauli, S., Pohst, M.
(eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006).
https://doi.org/10.1007/11792086_18

24. Ortmann, M.: MEGA security update (2022). https://blog.mega.io/mega-security-
update/

25. Peng, L., Hu, L., Xu, J., Huang, Z., Xie, Y.: Further improvement of factor-
ing RSA moduli with implicit hint. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 2014. LNCS, vol. 8469, pp. 165–177. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06734-6_11

26. Ryan, K., Heninger, N.: The hidden number problem with small unknown mul-
tipliers: cryptanalyzing MEGA in six queries and other applications. Cryptology
ePrint Archive, Report 2022/914 (2022). https://eprint.iacr.org/2022/914

27. Sarkar, S., Maitra, S.: Further results on implicit factoring in polynomial time.
Adv. Math. Commun. 3(2), 205–217 (2009). https://doi.org/10.3934/amc.2009.3.
205

28. Sarkar, S., Maitra, S.: Approximate integer common divisor problem relates to
implicit factorization. IEEE Trans. Inf. Theory 57(6), 4002–4013 (2011). https://
doi.org/10.1109/TIT.2011.2137270

29. Wang, S., Qu, L., Li, C., Fu, S.: A better bound for implicit factorization problem
with shared middle bits. Sci. Chin. Inf. Sci. 61(3), 1–10 (2017). https://doi.org/
10.1007/s11432-017-9176-5

https://doi.org/10.1007/3-540-44670-2_6
https://doi.org/10.1007/3-540-44670-2_6
https://doi.org/10.1007/BFb0054124
https://doi.org/10.1137/0208040
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/978-3-319-31301-6_26
https://doi.org/10.1007/978-3-319-31301-6_26
https://doi.org/10.1007/978-3-642-00468-1_1
https://doi.org/10.1007/978-3-642-00468-1_1
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/11792086_18
https://blog.mega.io/mega-security-update/
https://blog.mega.io/mega-security-update/
https://doi.org/10.1007/978-3-319-06734-6_11
https://eprint.iacr.org/2022/914
https://doi.org/10.3934/amc.2009.3.205
https://doi.org/10.3934/amc.2009.3.205
https://doi.org/10.1109/TIT.2011.2137270
https://doi.org/10.1109/TIT.2011.2137270
https://doi.org/10.1007/s11432-017-9176-5
https://doi.org/10.1007/s11432-017-9176-5

Hull Attacks on the Lattice Isomorphism
Problem

Léo Ducas1,2 and Shane Gibbons1,2(B)

1 Cryptology Group, CWI, Amsterdam, The Netherlands
{leo.ducas,shane.gibbons}@cwi.nl

2 Mathematical Institute, Leiden University, Leiden, The Netherlands

Abstract. The lattice isomorphism problem (LIP) asks one to find an
isometry between two lattices. It has recently been proposed as a founda-
tion for cryptography in two independent works [Ducas & van Woerden,
EUROCRYPT 2022, Bennett et al. preprint 2021]. This problem is the
lattice variant of the code equivalence problem, on which the notion of
the hull of a code can lead to devastating attacks.

In this work we study the cryptanalytic role of an adaptation of the
hull to the lattice setting, namely, the s-hull. We first show that the s-hull
is not helpful for creating an arithmetic distinguisher. More specifically,
the genus of the s-hull can be efficiently predicted from s and the original
genus and therefore carries no extra information.

However, we also show that the hull can be helpful for geometric
attacks: for certain lattices the minimal distance of the hull is relatively
smaller than that of the original lattice, and this can be exploited. The
attack cost remains exponential, but the constant in the exponent is
halved. This second result gives a counterexample to the general hard-
ness conjecture of LIP proposed by Ducas & van Woerden.

Our results suggest that one should be very considerate about the
geometry of hulls when instantiating LIP for cryptography. They also
point to unimodular lattices as attractive options, as they are equal to
their dual and their hulls, leaving only the original lattice to an attacker.
Remarkably, this is already the case in proposed instantiations, namely
the trivial lattice Z

n and the Barnes-Wall lattices.

Keywords: Lattice Isomorphism · Hull · Code Equivalence · Graph
isomorphism · Cryptanalysis

1 Introduction

The lattice isomorphism problem (LIP) is the problem of finding an isometry
between two lattices, given that such an isometry exists. It has long been a prob-
lem of interest in the geometry of numbers [17–19,23], in complexity theory [12],
and has recently been proposed as a foundation for cryptography [4,10,11].

The problem can be viewed as the lattice analogue of the code equivalence
problem; a problem that has received significant cryptanalytic attention [2,5,13,
20]. It should be noted that some of those attacks can be devastating for certain
c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 177–204, 2023.
https://doi.org/10.1007/978-3-031-31368-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_7&domain=pdf
http://orcid.org/0000-0003-2510-4829
http://orcid.org/0000-0001-6846-6606
https://doi.org/10.1007/978-3-031-31368-4_7

178 L. Ducas and S. Gibbons

choices of codes; in particular the code equivalence problem is easy for codes
with small or trivial hull [2,20].

The hull of a code is defined as the intersection of the code with its dual.
Critically, taking the hull is equivariant under isometries. The potential relevance
of the hull for lattices was notified by Couvreur and Debris-Alazard, as briefly
mentioned in [11]. Ducas and van Woerden [11] note that while the näıve hull of
an integral lattice L is always itself since L ⊂ L∗, one can more generally define
the s-hull Hs(L) = L∩sL∗ for any non-zero rational scaling factor s ∈ R

×. They
left any further cryptanalytic consideration to future work. This work explores
precisely that cryptanalytic boulevard.

Prior Attacks on LIP. The algorithms to solve LIP, and its distinguishing version
ΔLIP, are based on two kinds of invariants [11]. The first kind is an arithmetic
invariant, namely the genus of a lattice or a quadratic form, and is efficiently com-
putable (given the factorisation of the determinant)[7, Ch. 15], but only decide
a coarser notion of equivalence. When instantiating ΔLIP, one must therefore
take care to choose two lattices in the same genus; otherwise ΔLIP becomes easy
to solve.

The second kind of invariants are geometric invariants: essentially the set
of shortest vectors of that lattice. Once these shortest vectors are found in
both lattices, finding the lattice isomorphism reduces to finding a graph isomor-
phism [23], a problem that has long been suspected to be easy, and was finally
proven to be solvable in quasipolynomial time [1]. However, some lattices may
have an exponential number of shortest vectors, which leads to an exponentially-
sized graph resulting in superexponential complexity exp(nO(1)) in the dimension
n in the worst-case. Alternatively, one can use the quasi-exponential algorithm
of Haviv and Regev [12], which also resorts to enumeration of all short vectors
up to a rather large radius in both L and its dual L∗.

Hence, the hardness of LIP essentially appears at least as hard as finding the
shortest vectors in either the primal or the dual, and this hardness varies signifi-
cantly depending on the geometry of the lattice and its dual. This is formulated
as Conjecture 7.1 in [11] for comparing the cryptographic hardness of LIP over
different lattices.

1.1 Contributions

This work is concerned with whether the hull can be helpful in mounting attacks
against LIP (or its distinguishing variant ΔLIP). More specifically, can the hull
be used to improve either of the two types of attacks above? Our answer is
negative for the first attack, and positive for the second attack. More specifically:

– In Sect. 4, we prove that the genus of the s-hull of a lattice L is entirely
determined by s and the genus of L. This means that taking the hull is not
helpful to mount an attack based solely on arithmetic invariants.

– In Sect. 5, we show that for certain lattices, the s-hull can have a signifi-
cantly different geometry than the original lattice, making finding an isometry

Hull Attacks on the Lattice Isomorphism Problem 179

between hulls significantly easier than between the original lattices (yet still
exponential time). We can then reconstruct an isometry between the original
lattices in quasipolynomial time.

Significance. The second contribution (Sect. 5) directly contradicts the general
hardness conjecture made by Ducas and van Woerden in [11]. Their definition
of the gap, supposedly driving the hardness of LIP, only considers the geometry
of the lattice L and its dual L∗. The conjecture should be adapted to include
the s-hull of L for all relevant s. This is a rather clean redefinition, as L and L∗

are themselves s-hulls or a scaling of s-hulls of L for certain s. This is detailed
in our conclusion Sect. 6, where we prove in particular that, fortunately, there is
only a finite number of relevant values s ∈ R

× to consider.
We note that the lattices we consider, which act as a counter-example, are not

necessarily a natural choice for instantiating LIP for cryptographic application,
but instead they warn that the hull attack can be relevant. This is fortunately
inconsequential when instantiating LIP with the trivial lattice Z

n as proposed
in [4,10] since L = L∗, hence Hs(L) is merely the scaling lcm(1, s) · L for all
s ∈ Q

× and Hs(L) is the zero lattice if s �∈ Q
×.

More generally, choosing a unimodular lattice (L = L∗) avoids having to
consider hull attacks. This is in fact the case for (half of) an attractive family of
lattices for LIP-based cryptography; namely the Barnes-Wall lattices with their
associated efficient decoder [14].

1.2 Technical Overview

Genus of the Hull. The difficulty of analysing the genus of the hull comes from
the lack of an explicit basis of it given a basis of the original lattice. However,
we note that the dual of the hull can easily be described by a generating set. It
is still possible to define a quadratic form out of such a generating set that is
not a basis, but this quadratic form is only semi-definite. Most of our technical
work lies in a careful extension of the genus theory to semi-definite forms.

A Lattice with a Better Attack via the Hull. Contrary to codes, the hull of an
integer lattice is always full-dimensional, so the problem will not become easier
directly via a reduction in the dimension. However, it might be possible to make
its geometry weaker.

To do so, we consider construction A over a random code of length n and
rate 1/2 (i.e. a random p-ary lattice with n/2 equations). Because the hull of
such a code is typically trivial (i.e. empty), the hull of the associated lattice is
also “trivial”, namely it is pZ

n. Such a lattice has a minimal distance Θ(
√

n)
smaller than Minkowski’s bound, and is therefore heuristically easier for LIP
than a random lattice. On the contrary the lattice itself (and its dual), being
random, are close to Minkowski’s bound.

This gives a lattice for which LIP is significantly easier in the hull than the
original lattice: according to heuristics and experiments [10], an SVP oracle with
dimension n/2 + o(n) suffices. Although this only solves LIP for the hull, which

180 L. Ducas and S. Gibbons

differs from the original lattice, this is still helpful. The automorphism group of
Z

n is the group of signed permutations, that is, the orthonormal transforma-
tions corresponding to permuting basis vectors and swapping them with their
negatives. All that remains to be recovered is an isomorphism that is a signed
permutation with respect to the canonical basis of Z

n. This leftover problem
reduces to a signed permutation equivalence problem on the underlying code we
started with. Finally, since the hull of that code was trivial to start with, this
instance of the signed permutation equivalence problem is solvable in quasipoly-
nomial time in n by an adaptation of the algorithm of Bardet et al. [2].

2 Preliminaries

2.1 Lattices and Codes

A lattice L is a discrete additive subgroup of R
n, with inner product given by

the usual dot product or Euclidean inner product 〈 · , · 〉, that is

〈 (x1, . . . , xn) , (y1, . . . , yn) 〉 = (x1, . . . , xn) · (y1, . . . , yn) =
∑

1≤i≤n

xiyi.

A set of linearly independent column vectors B = (b0, b1, . . . , bm−1) such that
L = BZ

m is a basis of L. Such a lattice then has rank m. The determinant of
the lattice with basis B is

det(L) =
√

det(BT B).

This value is independent of the choice of basis. The dual L∗ of a lattice L is
then defined as

L∗ := {x ∈ span(L) : 〈x,L〉 ⊆ Z}.

For a basis B of a lattice L, the dual of this basis can be defined as the pseu-
doinverse

B∗ := BT
left inverse = B(BT B)−1. (1)

Importantly, the dual of B is a basis of the dual lattice.

Lemma 1. Let L ⊆ R
n be a full rank lattice with basis B and dual L∗. The

following are equivalent:

1. the lattice satisfies L ⊆ L∗,
2. for all x, y ∈ L, 〈x, y〉 ∈ Z,
3. the matrix BT B has integer coefficients,.

Proof. 1. =⇒ 2.: Let x, y ∈ L. Then by 1., x, y ∈ L∗, so 〈x, y〉 = 〈y, x〉 ∈ Z.
2. =⇒ 3.: Consider the i, j coefficient in BT B. This is the inner product of
basis vector i with basis vector j. By 2., this inner product is an integer.
3. =⇒ 1.: Every lattice point can be written in the form Bz for some z ∈ Z

n.
Let x = Bz ∈ L. Then for any y = Bw ∈ L, 〈x, y〉 = zT BT Bw ∈ Z, since BT B,
z and w have integer coefficients. Thus x ∈ L∗. ��

Hull Attacks on the Lattice Isomorphism Problem 181

Definition 1. A lattice that meets the conditions of Lemma 1 is called an inte-
gral lattice1.

By Lemma 1, integrality is independent of the choice of basis, and so every basis
B of the lattice has the condition that BT B has integer coefficients.

Lemma 2. Let L be a full rank integral lattice with basis B. Then

det(BT B)L∗ ⊆ L

Proof. Let B∗ = (B−1)T be a dual basis of L, and set Q := BT B. By Lemma
1, Q has integer coefficients, and thus has adjugate adj(Q) = det(Q)Q−1 with
integer coefficients.

adj(Q)B = det(Q)Q−1B = det(Q)(B−1)T B−1B = det(Q)(B−1)T = det(Q)B∗

This means MB = det(Q)B∗ for an integer matrix M ∈ Z
n×n, and thus the

lattice generated by B contains the lattice generated by det(Q)B∗. ��
Definition 2. An integral lattice with unit determinant is called a unimodular
lattice.

A consequence of Lemmas 1 and 2 is that a lattice is unimodular if and only if
it satisfies L = L∗.

A particular class of integral lattices of interest are q-ary lattices, namely
lattices L such that

qZ
n ⊆ L ⊆ Z

n,

for some q ∈ Z. Such a lattice can be written in many ways. Two useful formu-
lations that we will require later on are the following.

Definition 3. Let 0 < m ≤ n be integers, q ∈ Z and A ∈ Z
n×m an integer

matrix. Define the parity check lattice

Λ⊥
q (A) = {x ∈ Z

n : Ax = 0 mod q} .

Define also
Λq(A) = AZ

m + qZ
n.

When q is prime, such lattices correspond to the so-called Construction A over
a code [8].

Definition 4. Let q be a prime power. An [n, k]q linear code is a k-dimensional
vector subspace C ⊆ F

n
q . If G ∈ F

n×k
q is full rank such that C = GF

k
q , then G is

a generator matrix for C. The dual C⊥ of the code C is the [n, n − k]q linear
subspace C⊥ ⊆ F

n
q given by:

C⊥ :=
{
y ∈ F

n
q : y · x = 0 ∀x ∈ C

}
.

A generator matrix for the dual is called a parity check matrix and is usually
given the symbol H.
1 Not to be confused with an integer lattice. Every integer lattice is integral, but the

converse is not true.

182 L. Ducas and S. Gibbons

Note that the correspondence with lattices only works for p-ary codes for primes
p, since we must include the elements of C in Z

n. This is not possible with
elements of F

n
q .

Definition 5 (Construction A). Let p be a prime, n > 0 an integer, and let
C be a linear code in F

n
p . If π : Z

n → F
n
p is the coordinate-wise projection modulo

p, the Construction A lattice of C is

Lp(C) = π−1[C].

This can also be defined as

Lp(C) = ι(C) + pZ
n.

ι : F
n
p → Z

n is the obvious inclusion of elements in Fp into the integers.

By abuse of notation, we will leave out the map ι, and simply write our
lattices as C + pZ

n. It can be easily shown that Lp(C) and Lp(C⊥) are the dual
of one another, up to a p-scaling. That is,

C⊥ + pZ
n = p (C + pZ)∗

,

and as a consequence of duality,

C + pZ
n = p

(
C⊥ + pZ

n
)∗

.

This paper is concerned with deciding whether two lattices are isomorphic,
and if so, finding the isomorphism.

Definition 6 (Lattice Isomorphism). Two lattices L, L′ ⊆ R
n are said to

be isomorphic if there exists some orthonormal transformation O ∈ On(R) such
that

L′ = O · L.

Such an orthonormal O ∈ On(R) is sometimes called an isometry.

Computationally, we work in terms of bases of lattices, instead of L itself. A lat-
tice of rank greater than 1 has infinitely many bases, which differ by unimodular
basis transformations. That is, two bases B, B′ ∈ R

n×m generate isomorphic
lattices if there exists some orthonormal transformation O ∈ On(R) and some
unimodular U ∈ GLm(Z) such that

B′ = OBU.

Two computational problems arise from the idea of isomorphism. Informally,
Definition 7 below is about deciding whether two given bases generate isomorphic
lattices. Definition 8 is about finding the isomorphism, if it exists.

Definition 7 (Decision-LIP). Given two bases B, B′ ∈ R
n×m, decide whether

there exists an isometry O ∈ On(R) and a change-of-basis U ∈ GLm(Z) such
that

B′ = OBU.

Hull Attacks on the Lattice Isomorphism Problem 183

Definition 8 (Search-LIP). Given two bases B, B′ ∈ R
n×m that generate

isomorphic lattices, find O ∈ On(R) and U ∈ GLm(Z) such that

B′ = OBU.

We usually call this second problem LIP instead of search-LIP. Finally, we will
use the shorthand ZLIP for instances of LIP on lattices isomorphic to the lattice
Z

n.
Similar notions exist for codes. Instead of isomorphism, in coding theory we

consider whether two codes are “equivalent” or not, with finer and coarser forms
of equivalence, each of which are isometries with respect to the Hamming metric.

Definition 9 (Linear Code Equivalence). Two linear [n, k]q codes
C, C ′ ⊆ F

n
q are said to be linearly equivalent (sometimes just “code equivalent”)

if there exists an n-permutation σ ∈ Sn and (a1, a2, . . . , an) ∈ (F×
q)n such that

C ′ =
{
(a1xσ−1(1), a2xσ−1(2), . . . , anxσ−1(n)) : (x1, x2, . . . , xn) ∈ C

}
.

Equivalently, C and C ′ are linearly equivalent if there exists a permutation matrix
P and an n × n diagonal matrix D with non-zero diagonal entries such that

C ′ = DPC.

A matrix of the form DP is called a monomial matrix, and has one non-zero
entry on each row and column.

If we restrict a1, a2, . . . , an ∈ F
×
q to be only ±1, then the codes are said to be

signed permutation equivalent.
If we further restrict a1, a2, . . . , an ∈ F

×
q to be all 1, then the codes are said

to be permutation equivalent.

Permutation equivalence is a finer type of equivalence than linear equivalence.
Somewhere between these two types of equivalence is signed permutation equiva-
lence. When char(Fq) �= 2, this is strictly coarser than permutation equivalence,
and when Fq �= F2, F3 it is strictly finer than linear equivalence. For complete-
ness, we gave the definitions for q a power of a prime, but for our purposes, we
will only allow q to be a prime, p.

Definition 10 (CEP, SPEP, PEP). The Code Equivalence Problem (CEP)/
Signed Permutation Equivalence Problem (SPEP)/ Permutation Equivalence
Problem (PEP) is the problem of, given two linear codes C, C ′ that are lin-
early/signed permutation/permutation equivalent, finding the matrices P and D
such that C ′ = DPC.

Note that for SPEP, D has coefficients equal to ±1, while for PEP, D is
forced to be the identity matrix.

Many approaches to solving CEP, PEP or SPEP depend on the dimension
of a certain subcode called the hull. We later provide a natural generalisation of
this to lattices, and relate the hull of the Construction A lattice to the hull of
the original code.

184 L. Ducas and S. Gibbons

Definition 11. Let C be an [n, k]q linear code with [n, n − k]q-linear dual C⊥.
The hull of the code C is the linear subspace

H(C) = C ∩ C⊥.

If the code C has generator matrix G, and parity check matrix H, then the hull
of C is the kernel of [

G
∣∣H
]
.

Knowing that the hull of a code can be useful for code equivalence, it is natural
to want to define the hull of a lattice in the same way, with the intention of using
it for LIP. But immediately we find that if we define the hull exactly the same
way we get no extra information. The dual L∗ of an integral lattice L contains
the original lattice L, so

L ∩ L∗ = L. (2)

We therefore adjust the definition of the hull in a natural way. We scale the
dual before taking the intersection, since scaling is a linear transformation that
is equivariant under the action of On(R). This maintains the property of the
hull that we want to exploit: that the geometry of the hull is equivariant under
isometries.

Definition 12 (s-Hull). For s ∈ R
×, the s-hull of a lattice L is defined as the

sublattice
Hs(L) = L ∩ sL∗. (3)

We will see later that when L is an integral lattice, the hull is {0} when
s �∈ Q

×. The following lemma will later be helpful to decide which s ∈ R
× give

non-zero hulls

Lemma 3. Let L be a full rank integral lattice with basis B and Gram matrix
Q = BT B. Then for any s ∈ R

×, the s-hull of L is given by:

Hs(L) = {h ∈ L : 〈h,L〉 ⊆ sZ} . (4)

Furthermore, if s ∈ Z, then
Hs = BΛ⊥

s (Q). (5)

Proof. Let L be such a lattice, with basis B and let s ∈ R
×. Let h ∈ Hs(L). By

definition, h ∈ L and h = sx for some x ∈ L∗. Equivalently,

h/s ∈ L∗ ⇐⇒ 〈h/s, L〉 ⊆ Z ⇐⇒ 〈h,L〉 ⊆ sZ.

And thus
Hs(L) = {h ∈ L : 〈h,L〉 ⊆ sZ} .

Any h ∈ L can be written Bx for some x ∈ Z
n. So we have

Hs(L) = {Bx : x ∈ Z
n, 〈Bx,L〉 ⊆ sZ}

=
{
Bx : x ∈ Z

n, xT BT Bx ∈ sZ
n
}

.

Hull Attacks on the Lattice Isomorphism Problem 185

If s is an integer then we can write the right hand side concisely as

=
{
Bx : x ∈ Λ⊥

s (BT B)
}

= BΛ⊥
s (Q).

��
In Sect. 2.5, after we have introduced the p-adic numbers, we will show that for
integral lattices, only integer values of s that divide det(Q) are useful for our
attack.

The p-hull of a Construction A lattice relates to the hull of an Fp code in
a simple way. Note that the hull of a lattice does not have a smaller dimension
than the original lattice, while the hull of a code often does. However, the hull
of a lattice usually has a larger determinant.

Lemma 4. Let C be an [n, k]p code in F
n
p for some prime p, and let

L = Lp(C) = C + pZ
n. Then

Hp(L) = H(C) + pZ
n. (6)

This is an immediate consequence of the definitions above. Thus, not only do we
have a correspondence between p-ary lattices and Fp codes, but we also have a
correspondence between their hulls.

The relative hardness of equivalence problems is well studied. For example,
[2] show that when the hull of a code is trivial, PEP can be reduced to the graph
isomorphism problem, which is solvable in quasipolynomial time [1].

The support splitting algorithm (SSA) by Sendrier [20] can efficiently find
the permutation between two codes C, C ′ when the hull has small dimension.
It relies on the fact that the weight enumerator of a code (similar to the theta
series of a lattice) is invariant up to permutation, and is easy to calculate when
the dimension of the code is small.

Finally, note that the hull of a random code is trivial with high probability
[20], and therefore via (6) the p-hull of a random p-ary lattice is equal to pZ

n with
high probability. When this is the case, the above results about code equivalence
allow us to exploit the code-lattice correspondence for LIP.

2.2 Quadratic Forms

Definition 13. Let Q be an n × n symmetric matrix over a ring R. The
quadratic form defined by the matrix Q is the map qQ : Rn → R given by

x �→ xT Qx.

If R ⊆ R, then such a form is called positive definite if for all x ∈ R
n \ {0} we

have qQ(x) > 0. An integral quadratic form is a quadratic form over Z.

186 L. Ducas and S. Gibbons

Definition 14 (Equivalence of Quadratic Forms). Let q1, q2 be quadratic
forms of dimension n over a ring R. Then q1 is equivalent to q2 over R, written
q1 ∼R q2 (or just q1 ∼ q2 if the ring is clear from context), if there exists a
matrix H ∈ GLn(R) such that for all x ∈ Rn,

q1(x) = q2(Hx).

Given two symmetric n × n matrices Q1 and Q2, the corresponding quadratic
forms are equivalent over R, written Q1 ∼R Q2 if and only if there exists a
H ∈ GLn(R) such that

Q1 = HT Q2H.

Definition 15 (Corresponding Quadratic Form). A lattice with a basis
B ∈ R

n×n has a corresponding quadratic form, whose defining matrix is given
by BT B.

Quadratic forms are more convenient to handle than lattices, because we can
avoid computation with real valued elements of On(R). Note that two isomorphic
lattices with bases B,B′ with B = OB′ for some O ∈ On(R) give the same
quadratic form:

BT B = (OB′)T OB′ = B′T OT OB′ = B′T B′.

If we consider equivalence over quadratic forms instead, we retain all geometric
information and neglect any specific embedding of the lattice. Therefore, we
often use ‘lattice’ and ‘quadratic form’ interchangeably, even though there is
no bijection between the two. Definition 14 with H ∈ GLn(Z) lead us to the
following lemma.

Lemma 5. Let L,L′ be two lattices in R
n. Then L,L′ are isomorphic if and

only if they have corresponding quadratic forms that are equivalent over Z.

2.3 The p-adic Numbers

The real numbers R are the completion of Q with respect to the usual absolute-
value | · |∞ : R → R≥0. That is to say, every Cauchy sequence in Q converges to
an element of R. If we define another valuation on Q, then we may get another
inequivalent completion. For any prime p ∈ Z≥0, one can construct the p-adic
valuation:

| · |p : Q → R≥0

x �→ p−c

where c ∈ Z is such that x = pc a
b , and a and b are coprime to p. By convention,

| 0 |p = 0 (but this also follows intuitively from the fact that pn | 0 for all n ∈ N).

Hull Attacks on the Lattice Isomorphism Problem 187

Definition 16 (p-adic Numbers). The completion of Q with respect to the p-
adic absolute value is called the p-adic numbers (or p-adic rationals), denoted Qp.

Qp
∼=
{ ∞∑

r=−∞
arp

r : 0 ≤ ar < p, ar �= 0 for finitely many negative indices r

}
.

These sums always converge with respect to the p-adic absolute value. Addition
and multiplication are defined in the natural way: for example, if p = 2, any
element of Q2 can be expressed as an infinite binary expansion to the left, with
the usual rules for adding and multiplying. The completion Qp is a field, and
has a ring of integers Zp.

Zp
∼=
{ ∞∑

r=0

arp
r : 0 ≤ ar < p

}

=
{
a0 + a1p

1 + a2p
2 + . . . : 0 ≤ ar < p

}
.

The units of the ring of integers Z
×
p are those with non-zero a0. This type of

construction is an example of a local field. Arithmetic in Qp or Zp is said to
happen locally at the prime p. Note that there is a canonical inclusion Z ↪→ Zp,
and Q ↪→ Qp, which maps an integer or rational number to its (finite) base-p
expansion.

Definition 17 (p-Part, p-Prime-Part, Valuation). Let p be a prime, and
let α ∈ Qp. Then α can be written in the form

α = psβ

for some s ∈ Z and β coprime to p. The p-part of α is ps, while the p-prime-part
of α is β. The p-adic order or valuation of α is s.

Definition 18. The Legendre symbol at an odd prime p,
(

·
p

)
: Z → {0,±1}

is given by

(
n

p

)
=

⎧
⎪⎨

⎪⎩

0 if p | n

1 if ∃ a ∈ F
∗
p such that a2 = n mod p

−1 if � a ∈ F
∗
p such that a2 = n mod p.

The Legendre symbol is not defined at p = 2; instead there is an analogous
symbol that we will use later.

Definition 19. The Kronecker symbol
(·
2

)
: Z → {0,±1} is given by

(n

2

)
:=

⎧
⎪⎨

⎪⎩

0 if n is even,
1 if n ≡ ±1 mod 8,

−1 if n ≡ ±3 mod 8.

188 L. Ducas and S. Gibbons

2.4 Genus Symbol

Definition 20 (Genus). Two quadratic forms Q1 and Q2 lie in the same genus
if they are equivalent over R and over the p-adic integers Zp for all primes p.

The genus is coarser than the integer equivalence class of a quadratic form (i.e.
Definition 14 with R = Z). Locally, we may consider the equivalence class of
a quadratic form at a single prime p. The Jordan decomposition of a quadratic
form f at a prime p is defined as follows. For any odd finite prime p, an integer
quadratic form is equivalent over Zp to a direct sum:

f = f1 ⊕ pfp ⊕ p2fp2 ⊕ . . . , (7)

where each fpi is a quadratic form over the p-adic integers and whose determinant
is not divisible by p. The Jordan decomposition at −1 is the decomposition

f = f1 ⊕ (−1)f−1,

where both f1 and f−1 are positive definite.2

Quadratic forms corresponding to lattices are always postivie definite, and
so they are always equivalent over R. This is because for any basis B, and any
non-zero x ∈ R

n, the quadratic form BT B has the condition that
xT BT Bx = ‖Bx‖2 > 0.

The Jordan decomposition at p = 2 is a direct sum of blocks of the form

(
qx
)
, or

(
qa qb
qb qc

)

with x, b, ac−b2 coprime to 2, and a, c divisible by 2. If the elements in the main
diagonal of a block are all divisible by 2, then it is called type II. If there is at
least one element coprime to 2 in the main diagonal, then it is called type I,
and the block has another invariant called the oddity relating to its trace. This
diagonalisation is not unique, since different combinations of type I and type II
submatrices can represent the same quadratic form. What is unique, however,
is a canonical symbol representing the quadratic form, which we briefly discuss
later.

For all p, the Jordan decomposition has an associated p-adic symbol, and any
two forms with the same p-adic symbol are equivalent over Zp [6,16].

Definition 21 (Genus Symbol). For p �= 2, the symbol at p of a quadratic
form with Jordan decomposition

f = f1 ⊕ pfp ⊕ p2fp2 ⊕ . . . ⊕ prfpr ,

2 Here, −1 is the preferred notation for the infinite prime or ∞. As Conway and Sloane
say in [7], ‘Unfortunately the pernicious habit has grown up of calling them “infinite
primes” instead. [...] the unconventional name −1 made things so much more simple
that its omission would be indefensible.’.

Hull Attacks on the Lattice Isomorphism Problem 189

is the sequence
1ε0n0 , pε1n1 , (p2)ε2n2 , . . . , (pr)εrnr

where εq =
(

det fq

p

)
and nq = dim fq for each q a power of p

If any of these terms have dimension zero, they are not included in the symbol
(e.g. if there is no f1 component in the decomposition, then n0 = 0 and we omit
1ε0n0). Two quadratic forms are equivalent over Zp for an odd p if and only if
they have the same genus symbol at p [6,16].

The same is not fully true for p = 2. The symbol at p = 2 is more complicated
to define, but we know sufficient and necessary conditions for two forms to be
equivalent over Z2 [7,16] To any quadratic form f over Z2, one can associate
an oddity, which is an integer modulo 8. We refer to [7, Chapter 15, 5.1] for the
definition and the properties that we need. Suppose f has Jordan decomposition

f = f1 ⊕ 2f2 ⊕ 4f4 ⊕ . . . ⊕ 2rf2r .

The sign εq of fq is the Kronecker symbol
(

det(fq)
2

)
∈ {±1}. To such a Jor-

dan decomposition one associates a genus symbol depending on the dimension,
sign, type and oddity of each fq. A form over Z2 may have multiple Jordan
decompositions with different signs and oddities of the fq. Still, one may attach
a canonical symbol to each form in such a way that two forms are equivalent
over Z2 if and only if their canonical symbols agree. For a complete description
of the canonical symbol, see [7, Chapter 15, 7.3–7.6].

Finally, we note here that “computing the genus” of Q really amounts to com-
puting the genus symbol at each prime dividing 2 det(Q). For any prime, com-
puting with Zp can be seen as computing in Z/pk

Z, where k = ordp(det(Q))+1
[9]. In particular, computing the genus symbol at p can be done in time polyno-
mial in n, log(det(Q)), ordp(det(Q)), and log(p). There still remains the matter
of factorising 2 det(Q).

2.5 Relevant Values of s for the s-Hull

In this section, we reduce the amount of values of s ∈ R
× that can give a different

s-hull attack. That is, we find a finite set of representatives S ⊂ R such that
every s-hull is a scaling of Ht(L) for some t ∈ S. Recall from Lemma 3 that the
s-hull can be written as

Hs(L) = {h ∈ L : 〈h,L〉 ⊆ sZ} , (8)

and when s is an integer, it can be written as

Hs(L) = BΛ⊥
s (BT B). (9)

In particular, for an integral lattice this means that only rational values of s are
relevant. Otherwise, 〈h,λ〉

s would never be an integer for λ ∈ Λ, so the hull would
be {0}. Furthermore, if s = a/b ∈ Q

×, then Hs(L) = Ha(L). This can be seen

190 L. Ducas and S. Gibbons

by noting that for all h = Bx ∈ Hs(L), xT BT Bx = v for some v ∈ Z
n. Eq. (8)

tells us that v = (a/b)u for some u ∈ Z
n, and a, b are coprime, we must have

that b | ui for all ui ∈ u. Therefore, v ∈ aZ
n. So we need only consider integer

values of s.
The set of integers is still a countably infinite set, but below we see that in

general, an s-hull is a scaling of the s′-hull for some s′ that divides det(Q). In
geometric terms, there are only finitely many different hulls. The below lemma
shows that we do not need to consider the factors of s that are coprime to det(Q).

Lemma 6 Let L be a full rank integral lattice with basis B ∈ R
n×m and cor-

responding quadratic form Q = BT B ∈ Z
m×m. For any nonzero s ∈ Z, let

s = s′s′′, where s′, s′′ ∈ Z and s′′ is coprime to det(Q). Then

Hs(L) = s′′Hs′(L).

Proof Let s = s′s′′ be as above. Using Eq. (9), we know Hs(L) = BΛ⊥
s (Q). Now,

Λ⊥
s (Q) = {x ∈ Z

n : Qx = 0 mod s}. Since s′, s′′ are coprime, a solution x to
equation Qx = 0 mod s must be a solution modulo s′ and modulo s′′ also. Since
Q is full rank modulo s′′, the only solution is x = 0 mod s′′. Via the Chinese
remainder theorem,

Λ⊥
s (Q) = {x ∈ Z

n : Qx = 0 mod s}
= {s′′x ∈ Z

n : Qx = 0 mod s′}
= s′′Λ⊥

s′(Q),

and the result follows. ��
The above result now means that if det(Q) = pe1

1 . . . per
r for some primes pi

and exponents, then all s-hulls are either {0} or a scaling of a t-hull where t is
a product of the pi’s to any exponent. Finally, we can show that an s-hull for
some s � det(Q) is simply a scaling of one of the s′-hulls for some s′ | det(Q).

Lemma 7 Let L be a integral lattice with basis B and corresponding quadratic
form Q = BT B. For any nonzero s ∈ Z, and any prime p, let s = qpk+r for
some integer q, where k is the largest power of p dividing det(Q), and r an
integer greater than or equal to 0. Then

Hs(L) = prHqpk(L). (10)

Proof Via the Chinese remainder theorem, we need only show that this is true
for s = pk+r. This is equivalent to showing Λ⊥

pk+r (Q) = prΛ⊥
pk(Q), via Eq. (9).

It can be shown that Λ⊥
pt(Q) = pt(Λpt(Q)∗), for any t. Thus taking the dual of

both lattices means that instead of Eq. (10) we equivalently want to show

Λpk+r (Q) = Λpk(Q). (11)

The inclusion ⊆ is immediate from the definition of the q-ary lattices. The reverse
inclusion is proven by showing pk

Z
m ⊆ Λpk+r (Q) = QZ

m +pk+r
Z

m. That is, for
every Y ∈ Z

m, there exists a solution X ∈ Z/pk+r
Z to

QX = pkY mod pk+r. (12)

Hull Attacks on the Lattice Isomorphism Problem 191

Consider the equation in Qp, the p-adic numbers. Then

Q−1 ∈ 1
det(Q)

Z
m×m
p =

1
pk

Z
m×m
p .

The second equality is because the p-prime part of det(Q) is a unit in Zp. So set
Q−1 = p−kQ′−1 for some Q′ ∈ Z

m×m
p . Let X := Q′Y ∈ Zp. Reducing modulo

pk+r gives a solution to Eq. (12) ��
Corollary 1. Let m > 0 and A ∈ Z

m×m be a square matrix with non-zero
determinant. Then for any prime p, there exists some k ≤ ordp(det(A)) such
that

Λpr (A) = Λpk(A)

for all r ≥ k.

The above discussion, particularly Lemmas 6 and 7 say that any s-hull is either
{0} or a scaling of a t-hull for some integer t | det(Q). In summary, we have the
following lemma.

Lemma 8. Let L be a integral lattice with basis B and corresponding quadratic
form Q = BT B, and let s ∈ R

×. Denote the s-hull of L by Hs(L).

1. If s is irrational, then Hs(L) = {0}.
2. If s = a/b ∈ Q, then Hs(L) = Ha(L).
3. If s = rt ∈ Z, where t ∈ Z is the largest over all factorisations of s such that

t | det(Q), then Hs(L) = rHt(L).

3 Extensions of the Definition of the Genus

The genus is well-defined for integral lattices. We would like a more generalised
version of this for rational quadratic forms and even for semidefinite forms.
Semidefinite forms arise when we consider a generating set of a lattice rather
than a basis. This will be useful when calculating the genus of the hull of a
lattice. The concept of equivalence over Zp is still valid when the entries are
elements of Qp, similar to how Z-equivalence is still relevant to quadratic forms
with rational coefficients. We therefore provide a natural extension of the genus
definition above, which applies to quadratic forms over Q (and Qp). Consider two
rational quadratic forms Q,Q′ that are equivalent over Zp. Then ∃H ∈ GLn(Zp)
such that

HT QH = Q′.

Any scaling λQ, λQ′, with non-zero λ ∈ Q are also equivalent via the same
H. This motivates the following definition of the genus symbol of a rational
quadratic form. The difference is that we only need to multiply by the p-part
of a least common multiple (LCM) of the denominators, ensuring that λQ has
coefficients in Zp.

192 L. Ducas and S. Gibbons

Definition 22 (Genus Symbol for Rational Forms). For p �= 2, let f be a
positive definite rational quadratic form and let λ = ps be the p-part of the LCM
of the denominators of the coefficients in f . If λf has Jordan decomposition

λf = f1 ⊕ pfp ⊕ p2fp2 ⊕ . . . ⊕ prfpr ,

and genus symbol

1ε0n0 , pε1n1 , (p2)ε2n2 , . . . , (pr)εrnr ,

then the symbol at p of f is

(p−s)ε0n0 , (p1−s)ε1n1 , (p2−s)ε2n2 , . . . , (pr−s)εrnr .

This is consistent with the original definition of the genus symbol at p when f
has coefficients in Z. In that case, λ = 1.

The effect on the symbol at 2 is the same for the sign, dimension, and powers
of p, however the oddity and type of each fi would remain the same. This is
because these last two values are independent of the powers of 2 in the decom-
position. We do not include an explicit definition of the symbol here, because
for our purposes, we only need the fact that the quadratic forms are equivalent
over Z2, not necessarily their genus symbols.

Next we define an equivalence relation that allows us to augment the genus
symbol further to include semi-definite forms.

Definition 23. Define the equivalence relation ≡ of quadratic forms as follows.
Let Q be a semidefinite symmetric matrix. Then

Q ≡
(

Q 0
0 0

)
and

(
Q 0
0 0

)
≡ Q (13)

where the larger matrix is the square block matrix consisting of Q and a zero row
and zero column.

In particular, this means that a quadratic form Q is equivalent via ≡ to the
same quadratic form with any number of zero rows and zero columns added on
(so long as the matrix remains square). This is not too drastic, since integral
quadratic forms can also be written in terms of polynomials. If (Qij)1≤i,j≤n is a
quadratic form, the corresponding polynomial in n variables is

∑

1≤i,j≤n

QijXiXj .

Including zero-rows and zero-columns to the matrix Q amounts to adding extra
variables to this sum whose coefficients are always zero. This does not change
the polynomial itself, only the number of variables in the polynomial. The above
equivalence essentially says that quadratic forms whose polynomials are equal
but with different numbers of variables are equivalent.

The following definition combines ≡ and ∼ into one type of equivalence.

Hull Attacks on the Lattice Isomorphism Problem 193

Definition 24. Let R be an integral domain with field of fractions F . Let Q1

and Q2 be two symmetric semidefinite n×n matrices with coefficients in F such
that

Q1 ∼
(

Q′
1 0

0 0

)

and

Q2 ∼
(

Q′
2 0

0 0

)
,

where Q′
1, Q

′
2 are positive definite of rank m and the 0 blocks are size (n−m)×m,

(n − m) × (n − m) and m × (n − m) as required. The corresponding quadratic
forms are equivalent over R, written Q1

∼= Q2, when there exists H ∈ GLm(R)
such that

Q′
1 = HT Q′

2H.

Proposition 1. Let Q, Q′, S, S′, be quadratic forms such that Q ≡ S and
Q′ ≡ S′ where Q, Q′ have the same dimension and S, S′ have the same dimen-
sion. Then Q ∼ Q′ if and only if S ∼ S′.

Informally, in the following diagram we want to show that when Q, Q′ have
the same dimension, S ∼ S′ if and only if Q ∼ Q′, where S, S′ are the result of
adding the same number of zero-rows and zero-columns to Q,Q′, respectively.

Q S

Q′ S′

≡

∼ ∼= ∼

≡

Proof. Let Q,Q′ be n × n positive definite symmetric matrices. The positive
definiteness assumption is without loss of generality since for any symmetric
semidefinite matrices, A,B,C, equivalence means A ≡ B and B ≡ C implies
A ≡ C. Graphically, the equivalence looks like this:

Q

(
Q 0n×1

01×n 01×1

)

(
Q 0n×k

0k×n 0k×k

)

≡

≡
≡

We also know by assumption that S ∼ T :=
(

Q 0
0 0

)
and S′ ∼ T ′ :=

(
Q′ 0
0 0

)
,

where the 0’s are zero matrices of size n× k, k ×n, and k × k, ensuring S and S′

194 L. Ducas and S. Gibbons

are square. This is by definition of the equivalence ∼. If Q and Q′ are equivalent

via some U , then T, T ′ are equivalent via
(

U 0
0 Ik

)
, and therefore S ∼ S′.

For the other direction, assume that S ∼ S′. Then T ∼ T ′, and there exists
some unimodular matrix U such that UT TU = T ′. Let

U :=
(

U1 U2

U3 U4

)
,

where the U1 is size n × n, U2 is size n × k, U3 is size k × n, and U4 is size k × k.
Then we have (

UT
1 QU1 UT

1 QU2

UT
2 QU1 UT

2 QU2

)
=
(

Q′ 0
0 0

)
.

Because Q is positive definite, U2 is the zero matrix. Since det(U) =
det(U1) det(U4) is a unit, then det(U1) is a unit, and U1 is unimodular. ��

Finally, a fact that we use in Sect. 4 is that if Q ∼ Q′ via the action of some
H ∈ GLn(R), then Q−1 ∼ Q′−1 via the action of H−T ∈ GLn(R). Thus the
genus of the dual of a lattice is decided by the genus of the primal lattice, and
vice versa.

4 The Genus of the Hull

The below proposition can be summed up by saying that knowing the genus of
the s-hull of a lattice L does not provide any more information than knowing s
and the genus of L. Equivalently, the s-hull of two lattices are equivalent over
Zp if the original lattices are equivalent over Zp.

Proposition 2. Let L and L′ be two integral lattices admitting respective
quadratic forms Q, Q′ ∈ Z

m×m that are equivalent over Zp, via some trans-
formation

UT QU = Q′.

Then any quadratic forms corresponding to the s-hulls of these lattices, QH and
QH′ , are also equivalent over Zp.

Proof. Let s = αpv for some α coprime to p. Then, when considered as a lattice
over Zp, sL∗ = pv(αL∗) = pvL∗. So without loss of generality3, let s = pv for
some non-negative v. Let Hs be the s-hull of L. A convenient path when dealing
with intersections is to note that for two lattices, the sum of their duals is the
dual of their intersection. Applying this principle to Eq. (3), we get that the dual
of the s-hull can be written as

H∗
s = L∗ + (sL∗)∗

= L∗ +
1
s
L.

3 In general, if L = B · Rm is a lattice, then αL = L when α is a unit in R.

Hull Attacks on the Lattice Isomorphism Problem 195

Thus H∗
s has a column-wise generating set

1
s

(
B sB∗) ,

which has corresponding quadratic form

QH∗ =
1
s2

(
BT B sI

sI s2(B∗T B∗)

)
. (14)

For ease of notation, let Q = BT B, Q−1 = B∗T B∗ = (BT B)−1. Thus

QH∗ =
1
s2

(
Q sI

sI s2Q−1

)
.

The same is true for L′, the dual of whose s-hull has quadratic form given by

Q′
H∗ =

1
s2

(
Q′ sI

sI s2Q′−1

)
.

Now, let U be the unimodular transform in Zp such that

UT QU = Q′.

Let Û :=
(

UT 0
0 U−1

)
, which is unimodular in Zp. One can verify that

ÛQH∗ÛT = Q′
H∗ ,

which is the required result. ��
The matrix Up ∈ Z

m×m
p which sends a basis of the hull of L to the same for

L′ can be found in the following manner. The generating set of H∗
s we saw above

differs by a unimodular transformation to a basis (BM)∗ of H∗
s , where M is a

basis of Λ⊥
s (Q). The same is true for (H ′

s)
∗. The quadratic forms of the generating

sets of the duals differ by the matrix Û from the proof. Combining these three
transformations in the correct order gives us the matrix U that satisfies

UT

(
(BM)∗ 0

0 0

)
U =

(
(B′M ′)∗ 0

0 0

)
.

Since BM and B′M ′ are full rank, n × n matrices, this forces the top-left n × n
submatrix of U , which we may call U1, to satisfy

UT
1 (BM)∗U1 = (B′M ′)∗.

Thus Up = U−T
1 .

196 L. Ducas and S. Gibbons

5 A Lattice with a Better Attack via the Hull

This section demonstrates how the hull attack can be useful on certain types
of lattice. This is ultimately acts as a counterexample to [11, Conjecture 7.1]
(Conjecture 1 below). They compare the length of the shortest vectors in the
lattice to the expected length of a shortest vector in a random lattice of the same
volume, i.e. the Gaussian heuristic.

gh(L) := det(L)1/n · 1√
π

· Γ (1 + n/2)1/n ≈ det(L)1/n ·
√

n

2πe
.

The first minimum of L and its dual L∗ are both expected to be near the expected
length of a shortest vector in a random lattice of the same dimension n.

Since LIP attacks can also be launched in the dual, they define the quantity

gap(L) = max
{

gh(L)
λ1(L)

,
gh(L∗)
λ1(L∗)

}

as driving the hardness of attacks. A gap of 1 means that LIP is essentially as
hard as solving SVP in a random lattice with the same dimension as n; larger
gaps allow one to resort to the BKZ algorithm, and only solve SVP in dimension
β < n. Using our notation, the conjecture is as follows.

Conjecture 1. For any two lattices L0, L1 admitting quadratic forms Q0, Q1 in
the same genus, and 1 ≤ gap(Li) ≤ f , the best attack against an instance of
ΔLIP with L and L′ requires solving f -approx-SVP for both L0 and L1.

In this statement, f is not quantified, but an existence quantification would
be vacuously satisfied by any sufficiently large f . Indeed, this conjecture is moti-
vated by attacks that solve f -SVP with f = min{gap(Li)}. We therefore take

f = min{gap(L0), gap(L1)}
as their original estimate for hardness.

Choose parameters p, n, k. Let C be a random, rate 1/2, p-ary code of
length n. Then let L = C + pZ

n be the Construction A lattice associated to this
code. Direct LIP attacks based on SVP on lattices such as these (or their duals)
cost 20.292n+o(n) [3]. But with high probability, the p-hull of such a lattice is
pZ

n. An instance of ZLIP can be solved using the Blockwise Korkine Zolotarev
(BKZ) algorithm with block size β = n/2 + o(n) [10,11], in time 20.292β+o(β) =
20.292n/2+o(n) [3]. Section 5.1 tells us that for lattices with trivial hull, if an
isomorphism from these hulls to Z

n can be found, then LIP can be reduced to
an instance of SPEP on codes of length n, via a Karp reduction. Meanwhile,
Sect. 5.2 shows that these instances of SPEP are equivalent to solving PEP
on codes of length 2n with trivial hull. We also show that the PEP instances
relevant to LIP are exactly those cases that reduce via [2] to an instance of graph
isomorphism, GI, of size 2n , and in particular are solvable in quasipolynomial
time [1], or 2O((log n)c) for some c.

Hull Attacks on the Lattice Isomorphism Problem 197

5.1 When the Hull Is Trivial

In Sect. 2.1, Lemma 4, we saw that the hull of a p-lattice corresponds to the hull
of a code over Fp. From [20], we know that the hull of a random code is trivial
with high probability, which implies that the hull of a Construction A lattice is
pZ

n with high probability. We consider LIP for lattices that are isomorphic to
C + pZ

n, where C has trivial hull.

Lemma 9. Let C ⊆ F
n
p be an [n, k]p code whose hull is {0}. For i = 1, 2, let

Oi ∈ On(R) be two orthonormal transformations, and Li = Oi(C + pZ
n) be two

lattices which are isomorphic. An instance of LIP on L1, L2 can be solved using
two oracle calls to ZLIP and one oracle call to SPEP on C.

Proof. A lattice L = O(C + pZ
n) has determinant pn−k. Therefore if p is not

known, it can be found by taking i-th roots of det(L) (which is efficiently calcu-
lable) for i ∈ {n − k, n − k − 1, . . . , 1}, and checking if the answer is an integer.
Since L is a lattice isomorphic to a Construction A lattice, Lemma 4 gives that:

Hp(L) = pOZ
n,

that is, the p-hull is isomorphic to pZ
n via the same rotation O. If we then

solved ZLIP to find an isomorphism from pZ
n to Hp(L), then we would get

some isomorphism Ô := Oσ, where O ∈ On(R) and σ is a signed permutation.
This is because every such isomorphism is in the coset OAut(pZ

n) ⊆ On(R),
where Aut(pZ

n) = {O ∈ On(R) : pOZ
n = pZ

n}. To see this, consider two
isomorphisms

ϕ : Hp(L) → pZ
n

and
ψ : Hp(L) → pZ

n.

Then ψϕ−1 ∈ Aut(pZ
n), and therefore it must be a signed permutation. There-

fore, any ϕ and ψ as above differ only by a signed permutation.
Now, if we apply the inverse of isomorphism Ô to L, we get some lattice

L′ := Ô−1L = σ−1C + pZ
n. If we reduce this modulo p, we then get a basis for

the code σ−1C over Fp.
If instead we are given two lattices of the form Oi(C + pZ

n) for i = 1, 2,
then we can apply the above argument to get two codes over Fp that differ by a
signed permutation, i.e.

σ−1
1 C1 = C = σ−1

2 C2,

or equivalently
C1 = σ1σ

−1
2 C2.

We therefore have reduced the problem of finding the isomorphism between these
two lattices to the problem of finding the signed permutation sending one code
to another. ��

It still remains to analyse the hardness of these instances of SPEP.

198 L. Ducas and S. Gibbons

5.2 Signed Permutation Equivalence and Graph Isomorphism

Below, we adapt a method by Sendrier and Simos in [21], involving the closure
of a code, to show how SPEP on an instance of two length n codes reduces to
PEP on an instance of two length 2n codes. Crucially, we show that if a code
has trivial hull, and char(Fq) �= 2, then the length 2n closure in Definition 25
also has a trivial hull, unlike the closure in [21]. Using Bardet, Otmani and
Saeed-Taha’s reduction [2] from PEP to Graph Isomorphism when the hull is
trivial, we can conclude that SPEP on linear codes with trivial hulls is solvable
in quasipolynomial time [1].

The closure C̃ in [22] is with respect to In × F
∗
q (where In = {1, . . . , n}),

and allows a reduction from linear code equivalence of C and C ′ to permutation
code equivalence of C̃ and C̃ ′. This new code has length (q − 1)n, and is self-
dual when q ≥ 5. The weak self-duality of the closure means that the hull
has maximal possible dimension. But the expected run time of the SSA [20]
algorithm is exponential in the dimension of the hull, as is the reduction to
graph isomorphism [2].

Instead, we use the closure with respect to In × {±1} (Definition 25). The
critical difference this makes is that the hull of the signed closure of the code
is equal to the signed closure of the hull. In this case, signed permutation on
a code of length n with trivial hull reduces to permutation equivalence on a
code of length 2n with trivial hull. One can use this closure to reduce signed
permutation equivalence to graph isomorphism.

Definition 25. Let C ⊆ F
n
q be a linear code of dimension k. The signed closure

C± of the code C is the linear code of length 2n and dimension k over Fq given
by:

C± := {(x1,−x1, x2,−x2, . . . , xn,−xn) : (xi)i∈In
∈ C} .

When q �= 2, 3 the following lemma is not an immediate corollary of Theorem
1 in [22], since we are using a different concept of closure. However, the proof
follows the exact same strategy as Lemma 4 from [21], using the set of indices
In × {±1} instead of In × F

∗
q .

Lemma 10. Let C, C ′ ⊆ Fn
q be linear codes. Then C and C ′ are signed permu-

tation equivalent if and only if C± and C ′± are permutation equivalent.

Constructive Proof. Let C and C ′ be signed permutation equivalent, via σ ∈ Sn

and (v1, v2, . . . , vn) ∈ {±1}n. Thus

C ′ =
{(

v1xσ−1(1), v2xσ−1(2), . . . , vnxσ−1(n)

)
: (x1, x2, . . . , xn) ∈ C

}
.

Let C± and C ′± be their respective signed closures. Throughout the proof, for a
code C ′′, we denote AutP(C ′′) for the group of permutations on the coordinates
of C ′′ that leave C ′′ unchanged. Similarly, we write AutSP(C ′′) to be the group
of signed permutations on the coordinates of C ′′ that leave C ′′ unchanged.

The permutation π such that

C ′± =
{(

x±
π−1(1), x

±
π−1(2), . . . , x

±
π−1(2n)

)
: (x±

1 , x±
2 , . . . , x±

2n) ∈ C±
}

Hull Attacks on the Lattice Isomorphism Problem 199

is constructed as follows. For any i ∈ {1, . . . , n} with ai = −1, permute rows
2i − 1 and 2i in the code C±. Then for all i, swap row 2i − 1 with 2σ−1(i) − 1,
and swap row 2i with row 2σ−1(i). By construction, this permutation sends the
closure of C to the closure of C ′.

The other direction is the construction from Lemma 4 of [21], translated to
the simpler case we are dealing with. Let C and C ′ have permutation-equivalent
closures. That is,

C ′± =
{(

x±
π−1(1), x

±
π−1(2), . . . , x

±
π−1(n)

)
: (x±

1 , x±
2 , . . . , x±

n) ∈ C±
}

for some π ∈ S2n.
Let G± and G′± be generator matrices of C± and C ′± respectively, with rows

(g±
i)i∈In

and (g′±
i)i∈In

. We call {g±
2i−1, g

±
2i} the ith pair of rows of G±, and we

say that a permutation π ∈ S2n preserves the pair {g±
2i−1, g

±
2i} if

{π(2i − 1), π(2i)} = {2k − 1, 2k}
for some k. That is, the ith pair of C± becomes the kth pair of C ′±, even though
π does not necessarily preserve the ordering of the pair.

From [21], if π ∈ S2n preserves all pairs, then it can be lifted to some (σ, v) ∈
Sn × {±1}n. For all i ∈ {1, . . . , n}, define

vi =

{
1 if π(2i − 1) = 2k − 1 for some k (i.e. the ordering is preserved)
−1 if π(2i − 1) = 2k for some k (i.e. the ordering is not preserved),

and v = (v1, . . . , vn). In both cases above, the ith pair of C± is sent to the kth

pair of C ′±, and so define σ(i) = k. The details of why this is correct are left
to the proof of [21, Lemma 4]. That proof does not make explicit what happens
when the permutation π does not preserve all pairs i = 1, . . . n. We make this
explicit below for our definition of the closure.

The key point is that if π : C± → C ′± does not preserve all pairs, then there
exists an α ∈ AutP(C ′±) such that απ : C± → C ′± does preserve all pairs, and
can then be lifted back to some signed permutation (σ, v) ∈ Sn × {±1}n.

We construct the automorphism α as a product of permutations αi that swap
rows. Let i ∈ {1, . . . , n}. If π preserves the ith pair, then set αi = id. If π does
not preserve the ith pair, then either

(a) π(2i − 1) is odd, or
(b) π(2i − 1) is even

In case (a), {π(2i − 1), π(2i)} = {2k − 1, r} for some arbitrary index r. The
action of π on C± sends the closure of a codeword in C to the closure of a
codeword in C ′. So

g′±
2k−1 = −g′±

r ,

since rows in the same pair in C ′± are the negative of one another. But also,
because rows in C± in the same pair are the negative of one another we have

g′±
2k = −g′±

2k−1 = g′±
r .

200 L. Ducas and S. Gibbons

Therefore, we can define αi ∈ AutP(C ′±) to be the automorphism of C ′± that
swaps row 2k for row r (i.e. swapping the identical row vectors g′±

2k and g′±
r).

In case (b), {π(2i−1), π(2i)} = {2k, r} for some arbitrary index r. The action
of π on C± sends the closure of a codeword in C to the closure of a codeword
in C ′. So again since rows in the same pair of C± are negatives of one another,

g′±
2k = −g′±

r .

But also, the same is true for C ′±, so

g′±
2k−1 = −g′±

2k = g′±
r .

So we can define αi ∈ AutP(C ′±) to be the automorphism of C ′± that swaps
row 2k − 1 for row r (i.e. swapping the identical row vectors g′±

2k−1 and g′±
r).

Now, we construct α by first finding α1 using π, then finding α2 using α1π and
so on, finding αi using αi−1αi−2 . . . α1π. Each αi only swaps rows that are not
already preserved by αi−1αi−2 . . . α1π. Therefore, α1π preserves the first pair,
and by induction, αiαi−1 . . . α1π preserves the first i pairs. Finally, αn . . . α1π
preserves every pair. Thus we set

α = αn . . . α1 ∈ AutP(C ′±).

The permutation απ : C± → C ′± preserves pairs and therefore lifts to some
element in (σ, v) ∈ Sn × {±1}. ��

We have therefore reduced from SPEP on a code of length n to PEP on
a code of length 2n. One of the problems that [22] find with this approach is
that the closure of a code is almost always a hard instance of PEP. That is,
the closure is almost always weakly self-dual, with hull of maximal dimension.
The following result shows that this is not the case for the signed closure when
char(Fq) �= 2. In fact, we have a stronger statement.

Lemma 11. Let C be a linear code over finite field Fq whose characteristic is
not 2. The signed closure of the hull of a code C is the hull of the signed closure
C±.

Proof. C and C± have the same dimension. Let x, y ∈ C have closures x̃ and ỹ
respectively.

x̃ · ỹ = x1y1 + (−x1)(−y1) + . . . xnyn + (−xn)(−yn) = 2(x · y).

If x · y = 0, then x̃ · ỹ = 0. If x · y �= 0, then x̃ · ỹ �= 0, using char(Fq) �= 2. So for
any two codewords in x̃, ỹ ∈ C±, we have x̃ · ỹ �= 0 if and only if x · y �= 0. The
result follows. ��

6 Conclusion

6.1 Revising LIP Hardness Conjecture

We have demonstrated that there are some lattices for which the hull attack is
relevant: finding shortest vectors in the hull is easier than in the original lattice,

Hull Attacks on the Lattice Isomorphism Problem 201

and once they are found the isomorphism between the original lattices can be
recovered in quasipolynomial time. This constitutes a counter-example to the
(Strong) hardness conjecture made by Ducas and van Woerden [11, Conjecture
7.1] (Conjecture 1 in the present paper).

Our attack mandates the following revision, replacing the gap by the hull-gap
as follows:

hullgap(L) = max
s∈R×

gap(Hs(L)).

Note that the set we are maximising over includes the one from the original
definition so that hullgap(L) ≥ gap(L); indeed, for an integral lattice we have
H1(L) = L.

One may also be concerned that the above definition requires considering
infinitely many different s ∈ R

×; this is in fact not the case. The gap of a lattice
is the same as the gap of any non-zero scaling of that lattice. So, using Lemma
8, we need only check the gap of the s-Hull for those integers s|det(BT B). For
example, for q-ary lattices of determinant qk, one need only consider integer
divisors of qk. If q is prime, only s ∈ {qi : i ∈ 0, . . . k} are relevant.

The above two remarks are explained for integral lattices, but also apply to
lattices whose Gram matrices are rational, simply by scaling the lattice up by
the gcd of the denominators of the Gram matrix. Thus we replace the gap in
[11, Conjecture 7.1] with the quantity below.

hullgap(L) = max
s∈Z

s|det(Q)
gcd(Q)|s

gap(Hs(L)).

6.2 Unimodular Lattices

We recall that an integral lattice is unimodular if it is equal to its dual; and this
is equivalent to its associated quadratic form being unimodular. In particular,
all the hulls of such lattices are merely scalings of the original lattice, and taking
the hull is therefore not helpful. Such choices of lattice avoid the consideration
discussed above. This is the case of the trivial lattice Z

n, as used in [4,10].

Half the Barnes-Wall Lattices are Unimodular (up to Scaling). Another lattice
of interest in cryptography to instantiate LIP with is the Barnes-Wall lattice,
as suggested in [10]. A simple construction for the Barnes-Wall lattices is given
in [15], which shows that they are a scaling of a unimodular lattice. This means
that they are equal to their own hull, and not subject to any hull attack.

For convenience, we give the construction by Miccianccio and Nicolosi [14],
showing that at least half of them are unimodular, and therefore are not subject
to any hull attack. More specifically, the Barnes-Wall lattices have ranks n = 2k

for integers k, and we will show that they are unimodular when k is odd.

202 L. Ducas and S. Gibbons

Miccianccio and Nicolosi [14] propose a simple and explicit construction of
the Barnes-Wall lattice over the Gaussian integers Z[i], via an explicit column
basis:

Bk =
[
1 0
1 1 + i

]⊗k

.

Note that this lattice has rank n = 2k+1 over the rational integers Z. The
associated hermitian form over Z[i] is given by :

Qk = (B1
T
B1)⊗k =

[
2 1 − i

1 + i 2

]⊗k

.

Furthermore, Q2k = Q⊗k
2 , and one can check that:

1
2

· Q2 =

⎡

⎢⎢⎣

2 1 + i 1 + i i
1 − i 2 1 1 + i
1 − i 1 2 1 + i
−i 1 − i 1 − i 2

⎤

⎥⎥⎦

is indeed integral over Z[i], and has determinant 1 over Z[i]. It is therefore also
the case that Q2k/2k has determinant 1 for any integer k ≥ 1. That is, the
Barnes-Wall lattices of ranks 22k+1 are unimodular (up to scaling).

6.3 Open Question

The counter-example we have provided remains mild: it only increases the gap
from 1 to O(

√
n), and therefore only halves the blocksize required for an attack.

A natural question is whether one can find lattices for which the gap of the hull
increases much more consequentially, and whether this indeed leads to an attack
on LIP, in either its distinguishing or search version.

Acknowledgements. The authors would like to thank Peter Bruin, Eamonn
Postlethwaite, Ludo Pulles, Wessel van Woerden and the anonymous reviewers for their
helpful discussion and feedback. Authors Léo Ducas and Shane Gibbons are supported
by ERC Starting Grant 947821 (ARTICULATE).

References

1. Babai, L.: Graph isomorphism in quasipolynomial time (2015). https://arxiv.org/
abs/1512.03547

2. Bardet, M., Otmani, A., Saeed-Taha, M.: Permutation code equivalence is not
harder than graph isomorphism when hulls are trivial. In: 2019 IEEE International
Symposium on Information Theory (ISIT). IEEE (2019). https://doi.org/10.1109/
isit.2019.8849855

3. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving. In: Proceedings of the Annual ACM-
SIAM Symposium on Discrete Algorithms, vol. 1, pp. 10–24 (2016). https://doi.
org/10.1137/1.9781611974331.ch2

https://arxiv.org/abs/1512.03547
https://arxiv.org/abs/1512.03547
https://doi.org/10.1109/isit.2019.8849855
https://doi.org/10.1109/isit.2019.8849855
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2

Hull Attacks on the Lattice Isomorphism Problem 203

4. Bennett, H., Ganju, A., Peetathawatchai, P., Stephens-Davidowitz, N.: Just how
hard are rotations of Z

n? Algorithms and cryptography with the simplest lattice.
Cryptology ePrint Archive, Paper 2021/1548 (2021). https://eprint.iacr.org/2021/
1548

5. Beullens, W.: Not enough LESS: an improved algorithm for solving code equiva-
lence problems over Fq. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.)
SAC 2020. LNCS, vol. 12804, pp. 387–403. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81652-0 15

6. Cassels, J.W.S.: Rational quadratic forms. Academic Press, New York (1978)
7. Conway, J.H., Sloane, N.J.A.: Sphere packings, lattices and groups, vol. 290.

Springer Science & Business Media (2013). https://doi.org/10.1007/978-1-4757-
6568-7

8. Costa, S.I.R., Oggier, F., Campello, A., Belfiore, J.-C., Viterbo, E.: Lattices from
codes. In: Lattices Applied to Coding for Reliable and Secure Communications.
SM, pp. 37–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67882-
5 3

9. Dubey, C., Holenstein, T.: Computing the p-adic canonical quadratic form in poly-
nomial time (2014). https://doi.org/10.48550/ARXIV.1409.6199. https://arxiv.
org/abs/1409.6199

10. Ducas, L., Postlethwaite, E.W., Pulles, L.N., van Woerden, W.: Hawk: module LIP
makes lattice signatures fast, compact and simple. In: Agrawal, S., Lin, D. (eds.)
Advances in Cryptology - ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes
in Computer Science, vol. 13794, pp. 65–94. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-22972-5 3

11. Ducas, L., van Woerden, W.: On the lattice isomorphism problem, quadratic forms,
remarkable lattices, and cryptography. In: Dunkelman, O., Dziembowski, S. (eds.)
Advances in Cryptology - EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes
in Computer Science, vol. 13277, pp. 643–673. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-07082-2 23

12. Haviv, I., Regev, O.: On the lattice isomorphism problem. In: Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 391–
404. SIAM (2014)

13. Leon, J.: Computing automorphism groups of error-correcting codes. IEEE Trans.
Inf. Theory 28(3), 496–511 (1982)

14. Micciancio, D., Nicolosi, A.: Efficient bounded distance decoders for Barnes-wall
lattices. In: 2008 IEEE International Symposium on Information Theory, pp. 2484–
2488 (2008). https://doi.org/10.1109/ISIT.2008.4595438

15. Nebe, G., Rains, E.M., Sloane, N.J.A.: A simple construction for the Barnes-wall
lattices (2000). http://neilsloane.com/doc/bw.pdf

16. O’Meara, O.T.: Introduction to quadratic forms. Springer, Heidelberg (1971).
https://doi.org/10.1007/978-3-642-62031-7

17. Plesken, W., Pohst, M.: Constructing integral lattices with prescribed minimum.
I. Math. Comput. 45(171), 209–221 (1985)

18. Plesken, W., Souvignier, B.: Computing isometries of lattices. J. Symb. Comput.
24(3–4), 327–334 (1997)

19. Schurmann, A.: Computational geometry of positive definite quadratic forms: Poly-
hedral reduction theories, algorithms, and applications, vol. 48. American Mathe-
matical Society (2009)

20. Sendrier, N.: Finding the permutation between equivalent codes: the support split-
ting algorithm. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000)

https://eprint.iacr.org/2021/1548
https://eprint.iacr.org/2021/1548
https://doi.org/10.1007/978-3-030-81652-0_15
https://doi.org/10.1007/978-3-030-81652-0_15
https://doi.org/10.1007/978-1-4757-6568-7
https://doi.org/10.1007/978-1-4757-6568-7
https://doi.org/10.1007/978-3-319-67882-5_3
https://doi.org/10.1007/978-3-319-67882-5_3
https://doi.org/10.48550/ARXIV.1409.6199
https://arxiv.org/abs/1409.6199
https://arxiv.org/abs/1409.6199
https://doi.org/10.1007/978-3-031-22972-5_3
https://doi.org/10.1007/978-3-031-22972-5_3
https://doi.org/10.1007/978-3-031-07082-2_23
https://doi.org/10.1007/978-3-031-07082-2_23
https://doi.org/10.1109/ISIT.2008.4595438
http://neilsloane.com/doc/bw.pdf
https://doi.org/10.1007/978-3-642-62031-7

204 L. Ducas and S. Gibbons

21. Sendrier, N., Simos, D.: How easy is code equivalence over Fq. In: International
Workshop on Coding and Cryptography - WCC 2013, Apr 2013, Bergen, Norway
(2013). https://hal.inria.fr/hal-00790861v2

22. Sendrier, N., Simos, D.E.: The hardness of code equivalence over Fq and its appli-
cation to code-based cryptography. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS,
vol. 7932, pp. 203–216. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38616-9 14

23. Sikiric, M.D., Haensch, A., Voight, J., van Woerden, W.: A canonical form for
positive definite matrices. In: ANTS, vol. 14, p. 179 (2020)

https://hal.inria.fr/hal-00790861v2
https://doi.org/10.1007/978-3-642-38616-9_14
https://doi.org/10.1007/978-3-642-38616-9_14

A Key-Recovery Attack Against Mitaka
in the t-Probing Model

Thomas Prest(B)

PQShield, Paris, France

thomas.prest@pqshield.com

Abstract. Mitaka is a lattice-based signature proposed at Eurocrypt
2022. A key advertised feature of Mitaka is that it can be masked at high
orders efficiently, making it attractive in scenarios where side-channel
attacks are a concern. Mitaka comes with a claimed security proof in
the t-probing model.

We uncover a flaw in the security proof of Mitaka, and subsequently
show that it is not secure in the t-probing model. For any number of
shares d ≥ 4, probing t < d variables per execution allows an attacker to
recover the private key efficiently with approximately 221 executions. Our
analysis shows that even a constant number of probes suffices (t = 3), as
long as the attacker has access to a number of executions that is linear
in d/t.

Keywords: Mitaka · t-probing model · cryptanalysis

1 Introduction

In the last decade, post-quantum cryptography has been an extremely dynamic
research and engineering field. One of the main catalysts of this dynamism is the
NIST post-quantum cryptography standardization project, which in July 2022
has announced its first standards for key establishment and stateless digital
signatures [NIS22]. Two of the three selected standards for signatures are based
on lattices: Dilithium [LDK+22] and Falcon [PFH+22]. Dilithium and Falcon
are both based on structured lattices. They achieve good computational and
bandwidth efficiency, and the underlying mathematical assumptions are well-
understood.

When considering concrete security, it becomes important to consider side-
channel attacks, in which adversaries may learn information about the behavior
of the device executing the algorithm. Side-channel attacks based on power con-
sumption [KJJ99], running time [Koc96], electromagnetic emissions [GMO01]
and even acoustic emissions [AA04,GST14] have shown to be relevant.

The main countermeasure against side-channel attacks is masking [ISW03].
It consists of splitting sensitive information in d shares (concretely: x = x0 +
· · ·+xd−1), and of performing secure computation using MPC-based techniques.

c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 205–220, 2023.
https://doi.org/10.1007/978-3-031-31368-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_8&domain=pdf
http://orcid.org/0000-0003-1445-6212
https://doi.org/10.1007/978-3-031-31368-4_8

206 T. Prest

In practice, the cost of a side-channel attack is expected to grow exponentially
in the number of shares d [DFS19].

In parallel, leakage models have been developed in order to reason and prove
statements about side-channel countermeasures. The most standard model is the
t-probing model [ISW03], in which an attacker is allowed to learn the value of t
variables during each execution of the protected algorithm. While not being the
most realistic leakage model, the t-probing model is arguably the easiest to work
in, especially when considering masking. In addition, proving security in this
model is usually a good indicator of security, especially when augmenting the
t-probing model with proof frameworks such as the SNI, PINI or IOS models.

Unfortunately, Dilithium and Falcon are not straightforward to mask. In the
case of Dilithium, sampling from specific distributions and rejection sampling
are two examples of operations that require conversions between Boolean and
arithmetic representations (called A2B and B2A conversions), which is expensive
when operating on masked values. Falcon seems even more challenging to mask,
due to its intricate use of floating-point operations.

Mitaka [EFG+22] is a variant of Falcon that was proposed in order to
address these caveats. One of the main advertised features of Mitaka is that
it is easy to mask. This was done by proposing new algorithms for performing
masked operations. One such algorithm is GaussShareByShare (Algorithm 3),
which performs Gaussian sampling over the integers efficiently and with no A2B
or B2A conversion. Mitaka comes complete with a claimed security proof in
the t-probing model [EFG+22, Theorems 4 and 5], for t < d.

1.1 Our Contribution

We show that Mitaka is insecure in the t-probing model. More precisely, by
targeting one specific call to GaussShareByShare, and probing t < d specific
values inside that execution, a t-probing attacker can compute a vector that is
correlated to the private key b0. By combining sufficiently many of these vectors,
the attacker can compute an estimator ̂b0 that is a noisy version of the b0, which
can then be recovered by lattice reduction attacks, or simple rounding, depending
on the number of probes t, masking order d and number of executions N .

Concretely, we are able to recover the private key with N = 221 executions of
the signing algorithm and, for each execution, the values of the probed variables,
which we call traces. The efficiency behavior of our attack is illustrated in Fig. 1.

More worryingly, our attack remains feasible even if d is polynomially large
and t is constant, since we only need the number of traces N to be linear in d/t.
A generic countermeasure against our attack is to replace GaussShareByShare
by more classical conversion-based techniques, but we expect this to incur a
significant overhead on the computational cost of Mitaka.

As part of our attack, we propose in Sect. 5.4 a simple trick which speeds
up considerably the recovery of b0 from the estimator ̂b0 in many relevant
regimes. This trick also applies to a recently proposed power analysis on Falcon
[GMRR22], and may have other applications as well.

A Key-Recovery Attack Against Mitaka in the t-Probing Model 207

Fig. 1. Distance of the estimator ̂b0 to the private key b0 as a function of the number
of traces (x-axis) and the ratio t−1

2d
. The marks {λ = x} on the right side indicate the

core-SVP hardness of the lattice problem we need to solve. Under the line {- - -}, b0

can be recovered in polynomial time (Sect. 5.4).

2 Preliminaries

Given n ∈ N, n > 0, we may note [n] = {0, . . . , n − 1}.

2.1 Operators and Relations

As a mnemonic device, we note out := f(in) (resp. out ← f(in) and f(in) → out)
to indicate that out is a deterministic (resp. randomized) function of in.

We assume familiarity with the asymptotic notation: O(·), o(·),Θ(·), Knuth’s
Ω(·) and so on. We use the notation x ∼ y as shorthand for x − y = o(x).

We employ the notation x
s∼ X to indicate that the distribution of x is

statistically close to X. Finally, F � G indicates that F and G are isomorphic.

2.2 Cyclotomic Fields

For efficiency reasons, schemes such as Falcon and Mitaka work over cyclotomic
number fields. Given n ∈ N a fixed power-of-two and ζ ∈ C a primitive 2n-root
of unity, we define the cyclotomic field K and its corresponding ring of integers
R ⊂ K:

K = Q(ζ) � Q[x]/(xn + 1)
R = Z[ζ] � Z[x]/(xn + 1)

208 T. Prest

It is often convenient to think of and represent elements of K and R as polyno-
mials modulo (xn + 1). We can embed K (and thus R) with an inner product:

〈a, b〉K = a∗ · b,

where a∗ is the adjoint of a, that is the unique a∗ ∈ K such that a∗(ζk) := a(ζk)
for all odd values of k, where · denotes the complex conjugation in C. We note
R

++ = {x ∈ R|x > 0}, and a ∈ K++ if a∗(ζk) ∈ R
++ for all odd values of k.

The polynomial representation of elements in K naturally entails a mapping
K → R

n, which allows to define, for a, b ∈ K, the dot product 〈a, b〉R as the usual
dot product of their vectors of coefficients. We note that 〈a, a〉R > 0, so we can
likewise define the norm ‖a‖R =

√〈a, a〉Q.

2.3 Vectors and Matrices

We note vectors (resp. matrices) with entries in Q or K using lowercase (resp.
uppercase) bold letters, for example v (resp. M). We use the column convention
for matrices.

We also note x∗ the transposition of the coefficient-wise adjoint of x. We
extend the inner product 〈·, ·〉K to vectors a = (ai),b = (bi) ∈ Km:

〈a,b〉K =
∑

i

〈ai, bi〉K

Likewise, we extend the notations 〈·, ·〉R, ‖ ·‖R, and the notion of self-adjointness
to vectors. We say that a and b are K-orthogonal if 〈a,b〉K = 0K. Given a full-
rank matrix B ∈ Kk×�, the Gram-Schmidt orthogonalization of B is the unique
pair (U, B̃) such that U ∈ K�×� is upper triangular with 1’s on the diagonal,
the columns of B̃ ∈ Kk×� are pairwise orthogonal and:

B = B̃ · U. (1)

We say that M ∈ K
m×m is self-adjoint if the matrix obtained by transposing M,

followed by entry-wise application of the adjoint operator, is M. M is positive
definite if (i) it is self-adjoint, and (ii) 〈a,M · a〉K ∈ K++ for any non-zero
a ∈ Km.

2.4 Lattices and Gaussians

A lattice L is a discrete subgroup of Rm. Given a full-rank matrix B ∈ R
m×n,

the set L(B) := B · Zn is a lattice. This representation is useful for algorithmic
purposes. We can generalize this definition and define structured lattices by
replacing (R,Z) in the definitions above with (K,R).

Structured lattices are convenient due to their compact representation, how-
ever they can also be interpreted as standard lattices since R is a Z-module
of rank n. More concretely, given a ∈ K, we note A(a) the matrix A(a) =
[a0, . . . ,an−1] where each column ai is the vector of coefficients of x · a. Note

A Key-Recovery Attack Against Mitaka in the t-Probing Model 209

that A(a) is the matrix representation of the endomorphism f �→ a · f in the
canonical basis of K. In addition, A : a ∈ K �→ A(a) ∈ Q

n×n is a ring morphism.
Given a positive definite Σ ∈ Km×m, we note ρ√

Σ the Gaussian function
defined over Km as

ρ√
Σ(x) = exp

(

−‖x∗ · Σ−1 · x‖2
R

2

)

. (2)

We may note ρ√
Σ,c(x) = ρ√

Σ(x − c). When Σ is of the form σ · Im, where
σ ∈ K++ and Im is the identity matrix, we note ρσ,c as shorthand for ρ√

Σ,c.
For any countable set S ⊂ Km, we note ρ√

Σ,c(S) =
∑

x∈Km ρ√
Σ,c(x) whenever

this sum converges. Finally, when ρ√
Σ,c(S) converges, the discrete Gaussian

distribution DS,c,
√

Σ is defined over S by its probability distribution function:

DS,
√

Σ,c(x) =
ρ√

Σ,c(x)

ρ√
Σ,c(S)

. (3)

We may also work with continuous Gaussians. Given σ ∈ K++, we note NK,σ

the unique distribution over K which probability distribution function is propor-
tional to ρσ(x). When σ = 1, we may omit it from the subscript. We note that
σ2 · NK,σ1 ∼ NK,σ1·σ2 .

2.5 Masking

Given a finite field F, masking a value x ∈ F consists of splitting it as:

x =
∑

j∈[d]

xj (4)

We say that (xj)j∈[d] is a valid d-sharing of x, and note it �x�, if x and (xj)j∈[d]

satisfy (4). Note that for all x ∈ F, there exist |F|d−1 valid d-sharings of x. We
also note Decode the algorithm that maps a valid sharing (xj)j∈[d] ∈ F

d of x to
the plain value x =

∑

j∈[d] xj .
The t-probing model stipulates that for each execution of an algorithm Alg,

the adversary can select t intermediate variables (vi)i∈[t] inside Alg and is able
to learn the values of (vi)i∈[t] during this execution. Masked security proofs for
Mitaka are realized in the t-probing model, using a modular proof framework
which we informally refer to the SNI (strong non-interference) model. For the
purpose of this paper, it suffices to focus on one notion of the SNI framework
called t-NIo, which we recall in Definition 1.

Definition 1 (t-NIo, [BBE+18]). A masked algorithm (gadget) with public
outputs X is t-NIo (Non-Interfering with public outputs) if and only if every
set of at most t intermediate variables can be perfectly simulated with the public
outputs and at most t shares of each input.

210 T. Prest

3 Description of MITAKA

The GPV framework [GPV08] proposed a blueprint for obtaining lattice-based
signatures in the hash-then-sign paradigm. Mitaka instantiates the GPV frame-
work with NTRU lattices.

3.1 Private and Public Keys

In Mitaka, the private key is a structured matrix:

B =
[

b0 b1

]

=
[

f F
g G

]

(5)

where f, g, F,G ∈ R satisfy the NTRU equation in R:

f · G − g · F = q (6)

Concretely, this quadruple can be generated by first sampling b0 =
[

f
g

]

, then

resolving (6), which can be done efficiently [PP19]. For security, f, g, F,G are
required to have small coefficients.

The public key is h = g ·f−1 mod q. If we note A =
[−h 1

]

, we can see that
A · B = 0 mod q.

3.2 Signing Procedure

Algorithm 1 describes the signing procedure of Mitaka. In practice, only the
first half s1 of the short vector s = (s1, s2) is actually output by Algorithm
1. However, s2 can be re-computed from a valid signature, so we can assume
without loss of generality that s is output entirely.

Algorithm 1. Signing(sk,msg) → sig

Require: A message msg, a signing key sk, a bound γ
Ensure: A signature sig of msg under sk
1: repeat
2: salt ← {0, 1}k

3: c := (0, H(salt‖msg))
4: v ← HybridSampler(sk, c) � Algorithm 2
5: s := c − v � By construction, s is short
6: until ‖s‖ ≤ γ
7: return sig := (salt, s)

Algorithm 2 (HybridSampler) is at the core of the signing procedure. Given
a target vector c and a short basis B of a lattice L, it outputs a lattice point
v ∈ L close to c.

A Key-Recovery Attack Against Mitaka in the t-Probing Model 211

Algorithm 2 is designed so that v is distributed statistically close to DL,c,σ.
This ensures that v leaks no information about the short basis B. In order to
achieve this, continuous Gaussians (Line 3) and discrete Gaussians (Line 4) are
employed in a careful manner. Our attack will learn some intermediate variables
such that, conditioned on the values of these variables, the distribution of v is
no longer independent of B.

Algorithm 2. HybridSampler(B, r, c) → v
Require: A target center c ∈ K2, a matrix B = [b0,b1]
Precompute: The Gram-Schmidt orthogonalization B̃ = [b̃0, b̃1] of B. Standard

deviations σi =
√

σ2

〈b̃i,b̃i〉K
− r2 ∈ K++ for i ∈ {0, 1} and a fixed parameter σ

Ensure: v
s∼ DL(B),c,σ

1: (c2,v2) := (c,0)
2: for i ∈ {1, 0} do

3: di ← 〈b̃i,ci+1〉K
〈b̃i,b̃i〉K

− σi · NK
4: zi ← DZ,di,r � When masked, use Algorithm 3
5: (ci,vi) := (ci+1,vi+1) + zi · (−bi,bi)
6: end for
7: return v0

In a masked setting, the masked generation of �zi� from �di� in Line 4 of Algo-
rithm 2 is performed by Algorithm 3 (GaussShareByShare). Whereas a generic
approach would perform this step by leveraging costly A2B and B2A conver-
sions, Algorithm 3 foregoes this approach in favor of a more efficient one, by
sampling each share of �zi� independently and in parallel.

Algorithm 3. GaussShareByShare(�c�, r) → �z�

Require: A standard deviation r, an arithmetic masking �c� for c ∈ 1
C

·Z, B =
⌈√

2d
⌉

.

Ensure: An arithmetic masking �z�, where z
s∼ DZ,c,r

1: repeat
2: for j ∈ [d] do
3: zj ← D 1

B
·Z,cj , r√

d

4: end for
5: acc := Decode

(

(zj mod 1)j∈[d]

)

6: until acc = 0
7: return �z� := (zj)j∈[d]

3.3 The Proof Outline of MITAKA and Its Flaw

We refer to [EFG+22] for the full security proof of Mitaka, which is quite
extensive due to the constraints of the t-probing model. The relevant part for us

212 T. Prest

is [EFG+22, Lemma 3], which claims that Algorithm 3 is t-NIo (Definition 1).
While no formal proof for [EFG+22, Lemma 3] is given, [EFG+22] informally
argues that it follows from the fact that the input �c� = (ci)i∈[d] is uniform
and each share is processed independently and in parallel. We illustrate this
reasoning in Fig. 2; any subset (ci)i∈S is perfectly uniform as long as |S| < d,
and similarly for (zi)i∈S .

Fig. 2. Illustrating Algorithm 3 (Lines 2 to 4). Probing exclusively the input or output
values yields a perfectly uniform subset (Green), but probing them conjointly does not
(Red). (Color figure online)

Unfortunately, there is a flaw in this reasoning: while it is true that any set
of t < d shares of �c� or �z� would look uniform, the joint distribution of any
subset of input values (ci)i∈S and the corresponding output values (zi)i∈S is
not uniform. Indeed, for any j ∈ [d], cj − zj follows a Gaussian distribution.
Moreover, we show in the next section that the observed value of this Gaussian
is statistically correlated to the private key, and turn this observation into an
attack.

4 Our Attack

At its heart, our attack is a simple statistical, averaging-based attack.
In Sect. 4.1, we show in that by probing the appropriate values in Algorithm

3, we are able, for each execution i of Algorithm 1, to compute a scalar wi ∈ R

such that wi · b0 correlates positively with the signature vector si.
Once sufficiently many pairs (si, wi)i are collected, we show in Sect. 4.2 how

we can compute a noisy estimator of b0, then recover b0 exactly via lattice-
reduction (Sect. 5.3), pure rounding (Sect. 5.2), or guessing plus linear algebra
(Sect. 5.4), depending on the regime.

4.1 Placing the Probes

Suppose Algorithm 2 is used to sample v s∼ DL(B),c,σ. Let us note v = B ·
[

z0
z1

]

,

and let c ∈ R the first coefficient of z0. We target the execution of Algorithm 3

A Key-Recovery Attack Against Mitaka in the t-Probing Model 213

when it is used in Algorithm 2 with �c� as input. We target c in particular because
the signature s contains c ·b0 as an additive term, so learning s plus information
about c provides information about b0. As illustrated in Fig. 2 (Red), during
that specific execution of Algorithm 3, we probe:

1. the first t1 coefficients (cj)j∈[t1] of �c�;
2. the first t1 coefficients (zj)j∈[t1] of �z�;
3. the Boolean value acc.

As long as t := 2 · t1 + 1 < d, this is consistent with what is allowed within the
t-probing model. Note that our choice of probes requires d ≥ 4. Once acc = 0,
we know that �z� = (zj)j∈[d] is output and incorporated in the signature. We
compute:

w =
∑

j∈[t1]

(cj − zj) (7)

We say that the trace associated to a given execution is trace = (s, w), where
s is the vector such that A · s = H(salt‖msg), which is output as part of the
signing procedure.

4.2 Recovering the Signing Key

We show how to exploit traces in order to recover the private key b0. Since the
product w · b0 is an additive component of the signature vector s, there is a
slight but exploitable correlation between s and w · b0, more precisely the dot
product 〈s, w · b0〉R = 〈w · s,b0〉R will tend to be slightly larger than zero. We
formalize this intuition by computing a real-valued estimator for b0 from a set
of N traces (tracei = (si, wi))i∈[N]:

̂b0 =
1

(

∑

i∈[N] w
2
i

) ·
⎛

⎝

∑

i∈[N]

wi · si

⎞

⎠ . (8)

We now study the distribution of signatures, conditioned on additional informa-
tion. A valid signature s satisfies s s∼ DL−c,σ. If we note V = Span

R
(b0), we can

decompose s over V ⊕ V ⊥:

s = s̄ +
⊥
s , where

{

s̄ s∼ DProj({L−c},V),σ
⊥
s s∼ DProj({L−c},V ⊥),σ

(9)

Since
⊥
s ⊥ b0, the distribution of

⊥
s is independent of w. On the other hand, we

use the following heuristic for the conditional distribution of s̄:

s̄|w s∼ w · b0 + DProj({L−c−w·b0},V),σ∗ , where σ∗ =

√

σ2 − t1
d

· r2 (10)

214 T. Prest

Let us note w = (wi)i∈[N]. Summing the equation above for all traces, we obtain:
∑

i∈[N]

wi · si
s∼

∑

i∈[N]

wi · s̄i +
∑

i∈[N]

wi · ⊥
s i (11)

s∼ ‖w‖2 · b0 (12)
+ DProj({∑

i wi(L−ci−wi·b0)},V),σ∗‖w‖ (13)

+ DProj({∑
i wi(L−ci)},V ⊥),σ·‖w‖ (14)

Dividing everything by ‖w‖2 gives the distribution of our estimator ̂b0:

̂b0
s∼ b0 + X, (15)

where X is the random variable corresponding to summing (13) and (14), then
dividing the result by ‖w‖2. X is subgaussian for the Gaussian parameter σ/‖w‖,
so we model X in a way that is simpler, more conservative for an attacker, and
essentially tight in our context:

X
s∼ D 1

‖w‖2 {∑
i wi(L−ci−wi·b0)},σX

, (16)

where σX = σ/‖w‖. Since we modeled each wi as a Gaussian of standard devi-

ation r
√

t1
d , ‖w‖2 is a χ2 distribution with N degrees of freedom, scaled by a

factor r2·t1
d . This implies that with probability Ω(1):

σX ≤ σ ·
√

d

r2 · t1 · N
(17)

For a continuous 2n-dimensional Gaussian Z of parameter σX , the probability
that ‖Z‖∞ ≤ t is lower bounded as follows:

P[‖Z‖∞ ≤ t] ≥
(

1 − 2e−t2/2σ2
X

)2n

(18)

While X is discretized, we assume for the rest of our analysis that it behaves
like a continuous Gaussian: X ∼ NR2n,σX

. In this case, (18) guarantees that
‖X‖∞ ≤ 1/2 with probability ≥ 1/2 if:

σX ≤ 1
√

8 · log2(4 · n)
. (19)

Combining (17) with (19) gives the following success condition:

N ≥ 8 · log2(4 · n) · d · σ2

t1 · r2
(20)

If (20) is satisfied, then with good probability �̂b0� = b0 and we can recover b0.
The second private basis vector b1 can be recovered by solving (6).

Note that (20) indicates that even if the masking order d is polynomially high
and the number of probes per execution t = 2 · t1 + 1 is constant, a polynomial
number of traces N suffices to ensure key recovery with Ω(1) probability.

A Key-Recovery Attack Against Mitaka in the t-Probing Model 215

5 Concrete Results

We tested the viability of our attack via experiments. To the best of our knowl-
edge, there is no masked implementation of Mitaka, including private ones. We
instead rely on an unmasked C implementation [Esp22] of Mitaka.

5.1 Simulating the Leakage

The implementation of [Esp22] does not use Algorithm 3 to sample �zi�. Instead,
it directly samples zi ← DZ,di,r. We can nevertheless simulate the computation
of the value w. Let X,Y be two independent Gaussians of center 0 and standard
deviation σX , σY . Given the sum Z = X+Y , it is well-known that the conditional
distribution of X given the realization Z = z is distributed as a Gaussian of
mean z · σ2

X

σ2
X+σ2

Y
and variance σ2

X ·σ2
Y

σ2
X+σ2

Y
. This provides a simple way to simulate

the computation of w in Algorithm 3:

1. Sample z ← DZ,d,r corresponding to the �z� output by Algorithm 3. This
sample is easily obtained from the C implementation.

2. Compute w = (c − z) · t1
d + r

√

t1(d−t1)
d2 · NR.

One subtlety that this simulation does not capture is that each share of z belongs
to 1

B · Z, whereas our simulated w is not discretized in any way. This seems
unimportant as the discretization (or lack thereof) of w does not seem to have
an influence on the feasibility of our attack.

With this method of simulating the computation of w, we can now compute
our estimator ̂b0 using (8). Following (15), the difference ̂b0 − b0 follows an
isotropic continuous Gaussian distribution X of standard deviation σX given by
(17). We distinguish three regimes for X: low-, moderate- and high-noise, see
Fig. 3. We cover each regime in a distinct section (Sects. 5.2 to 5.4), since we
employ (slightly) different strategies for each setting.

Fig. 3. Three regimes for the coefficient-wise distribution of (̂b0 − b0)

216 T. Prest

5.2 Low-noise Regime: ‖̂b0 − b0‖∞ < 1/2

Following our analysis in Sect. 4.2, satisfying (20) guarantees with probability
Ω(1) that we fall into this regime. In this case, �̂b0� = b0.

Although the required number of samples N is polynomial, this number may
be moderately large in practice. In our experiments, we found that for Mitaka-
512 and for t1

d ≈ 1
2 , setting N ≈ 222 provides a good chance of success.

5.3 High-noise Regime: ‖̂b0 − b0‖ <
√
q

If N is large but does not satisfy (20), we can still recover b0 from the estimator
̂b0 via lattice reduction methods. We first recall the Gaussian Heuristic.

Definition 2. Let gh(L) be the expected first minimum of a lattice L according
to the Gaussian Heuristic. For a lattice L ⊂ R

m generated by a full-rank matrix
full-rank M ∈ R

m×m, it is given by:

gh(L) =
√

m

2πe
· det(M)1/m. (21)

Consider the rounded estimator: b̆0 = �̂b0� ∈ R2. If we note e = b̆0 − b0, it
holds that ‖e‖2 ≤ ‖̂b0 − b0‖2 + n2/2. On the other hand, in the parameter
regime of Mitaka, b0 is the shortest vector in the NTRU lattice: ‖b0‖ ≈ 2

√
q.1

Since ‖̂b0 − b0‖ <
√

q, we can expect e to be much shorter than the shortest
vector in the NTRU lattice. This allows us to use Kannan’s embedding; a good
reference for this technique is [AGVW17], which methodology we follow here.
We first generate the matrix M:

M =

⎡

⎣

In b̆0H qIn

1

⎤

⎦ ∈ Z
d×d (22)

where d = 2n + 1 and H = A(h). By construction, we expect
[

e
1

]

to be the

shortest vector of M. Therefore, we apply the BKZ lattice reduction algorithm to
M with blocksize β in order to recover e. Under the geometric series assumption,
e can be found if:

√

β

d
·
√

‖e‖2 + 1 ≤ δ2·β−d
β · det(M)1/d, (23)

where δβ =
(

(πβ)1/β ·β
2πe

)1/(2(β−1))

[Che13, Eq. (4.2)]. The corresponding core-
SVP hardness λ for our key-recovery attack can be determined by computing λ =
�0.292 · β� for the minimal value of β such that (23) is satisfied. Alternatively,
one may also use the nearest-colattice algorithm of [EK20].
1 In [EFG+22], it is shown that ‖b0‖ ≤ α

√
q, with α ≈ 2.04 for Mitaka-512 and

α ≈ 2.33 for Mitaka-1024.

A Key-Recovery Attack Against Mitaka in the t-Probing Model 217

5.4 Moderate-noise Regime: ‖̂b0 − b0‖∞ < 1

If it is the case that:
1
2

< ‖̂b0 − b0‖∞ < 1,

then we are in an paradoxical situation: ̂b0 is very close to b0, but rounding
its coefficients will return a different vector from b0. Worse, several dozens of
coefficients may be erroneous, and an exhaustive search of these coefficients
may be expensive in practice. Similarly, lattice reduction as in Sect. 5.3 may be
expensive. We now describe a simple trick that allows to recover b0 with high
probability and little to no computation effort.

Observation 1. By construction, when interpreted as a vector in Z
2n, b0 satisfies:

A · b0 = 0 mod q, (24)

Recall that ̂b0 is equal to b0 plus Gaussian noise of standard deviation σX . The
fact ‖̂b0 −b0‖∞ < 1 implies that σX is small (concretely, σX ≤ 0.25 if n = 512).
This in turn implies that errors close to 1 in absolute value are likely to be rare,
which leads to our first key observation:

If a coefficient of ̂b0 is close to an integer, then the corresponding coefficient
of b0 is highly likely to be equal to this integer.

Observation 2. We now observe that recovering half of the coefficients of b0 is
sufficient to recover it entirely. Suppose we have guessed n of the 2·n entries of b0.

We can rearrange the entries of b0 as
[

x
y

]

, where y corresponds to coefficients of

b0 that were successfully guessed, and x are the remaining ones. By rearranging
the columns of A in the same way, (24) becomes v:

[

A1 A2

] ·
[

x
y

]

= 0 mod q, (25)

If A1 is invertible, then we can recover x by computing x = −A−1
1 · A2 · y. In

practice, we observe that A1 is invertible more often than not.

Example 1. We illustrate this strategy with a toy example over Zq, q = 19. Let:

A =
[

12 9 10 5
9 7 5 15

]

∈ Z
2×4
q and b =

[

7 6 1 18
]t

.

One can check that A·b = 0 mod q. Our estimator will be a noisy version of b, for
example ̂b =

[

7.1 6.4 1.6 18.1
]t. Naively rounding ̂b gives �̂b� =

[

7 6 2 18
]t �= b.

In contrast, guessing half of the coefficients (precisely, the half which are closer
to an integer) gives b =

[

7 ∗ ∗ 18
]t, and which point the remaining half of b can

be computed by solving the linear system A · b = 0 mod q.

218 T. Prest

Success probability. Recall that X = ̂b0−b0. This attack succeeds if there exists
ε > 0 such that, with probability Ω(1):

1. No coefficient of X is larger in absolute norm than 1 − ε.
2. At least half of the coefficients of X are in [−ε, ε];

Item 1 ensures that “guessing to the nearest integer” all coefficient of ̂b0 that are
ε-close to an integer will indeed return the correct coefficient of b0, and is true if
P[‖X‖∞ < 1 − ε] ≤ 1/2. Item 2 ensures there are n such coefficients. Following
our modelization of X as a (2 · n)-dimensional Gaussian of standard deviation
σX , the conditions above can be expressed, using Gaussian tail bounds, as:

(

1 − 2 · e
− (1−ε)2

2·σ2
X

)2n

<
1
2
, (26)

where ε = min
{

ε∗ | NR,σX
([−ε∗, ε∗]) ≥ 1

2

}

. (27)

For n = 512, our attack is effective when σX � 0.214. In contrast, for this
value of σX , pure rounding (Sect. 5.2) succeeds2 with probability at most 2−29.
Similarly, on average 21 coefficients of ̂b0 will round incorrectly, so that a pure
lattice reduction approach (Sect. 5.3) would require a blocksize β = 196 and be
costly to carry out. In comparison, our guessing-based approach is inexpensive
and succeeds with high probability. Concretely, it allows us to decrease N to 221.

Refinement. This “smart guessing” technique can be refined to remain effective
even if we guess less than half of the coefficients of b0. Suppose that with prob-
ability 1/2, we can guess k of the 2n coefficients of b0. This is the case if (26) is
satisfied, and by replacing (27) by this relaxed condition:

ε = min
{

ε∗ | NR,σX
([−ε∗, ε∗]) ≥ k

2n

}

. (28)

We then rewrite (24) as (25), except that now A1 ∈ Z
n×(2n−k)
q and A2 ∈ Z

n×k
q .

We put A1 in systematic form (M × A1 =
[

In Ā1

]

) so that (25) becomes:

Ā1 · x2 + x1 = z, where

{

z = −M · A2 · y ∈ Z
n
q

(x2,x1) ∈ Z
n−k × Z

n
(29)

(29) can be interpreted as an LWE problem with a secret of dimension n − k,
which indeed becomes vacuous when k = n. Unfortunately, due to Gaussian cut-
off effects, this optimization does not seem to significantly increase the range of
σX covered by our technique. We still provide it here for reference.

2 Alternatively, (19) implies that pure rounding requires σX � 0.1066 to be practical.
Hence it is applicable on a more narrow range than our guessing-based approach.

A Key-Recovery Attack Against Mitaka in the t-Probing Model 219

Remark 1. We expect the guessing trick to also apply to a recent power analysis
attack on Falcon by Guerreau et al. [GMRR22]. Similarly to our attack, their
attack recovers a noisy estimator of b0, where the noise decreases with the
number of traces. It then recovers b0 either by rounding (as in Sect. 5.2) or via
lattice reduction (as in Sect. 5.3). Our guessing-based approach is applicable in
regimes that are out of reach for pure rounding, but for which the cost of lattice
reduction remains prohibitive.

Remark 2. After the initial completion of this work, we realized that a similar
guessing trick was described in [DDGR20, §6.1], although with a different per-
spective (the “LWE with side information” framework). We invite the interested
reader to read [DDGR20, §6.1] for a complementary point of view.

6 Conclusion

We have proposed a key-recovery attack against Mitaka in the t-probing model.
Given a masked implementation of Mitaka with d ≥ 4 shares, an attacker with
the capability of probing t < d variables per execution can recover the private
key efficiently with N = 221 executions of the signing algorithm. More generally,
our attack can be carried as long as N = Ω(d/t).

As part of our attack, we proposed a guessing-based trick which significantly
reduces the computational cost of our attack for many relevant regimes.

Acknowledgements. I would like to thank Mélissa Rossi, Thomas Espitau, Alexan-
dre Wallet, Morgane Guerreau and Eamonn Postlethwaite for useful discussions about
[EFG+22], [GMRR22], and the attack presented in this paper. I am particularly grate-
ful to my PQShield colleagues Rafaël del Pino and Fabrice Mouhartem for discussing
the subtleties of lattice attacks with me. Finally, I would like to thank the anonymous
reviewers of PKC 2023 for their insightful comments.

References

[AA04] Asonov, D., Agrawal, R.: Keyboard acoustic emanations. In: 2004 IEEE
Symposium on Security and Privacy, pp. 3–11. IEEE Computer Society
Press, May 2004

[AGVW17] Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the
expected cost of solving uSVP and applications to LWE. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 297–322.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 11

[BBE+18] Barthe, G., et al.: Masking the GLP lattice-based signature scheme at any
order. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 354–384. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-78375-8 12

[Che13] Chen, Y.: Réduction de réseau et sécurité concrète du chiffrement
complètement homomorphe. Ph.D. thesis (2013). https://archive.org/
details/PhDChen13

[DDGR20] Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side
information: Attacks and concrete security estimation. Cryptology ePrint
Archive, Report 2020/292 (2020). https://eprint.iacr.org/2020/292

https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1007/978-3-319-78375-8_12
https://archive.org/details/PhDChen13
https://archive.org/details/PhDChen13
https://eprint.iacr.org/2020/292

220 T. Prest

[DFS19] Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs con-
crete (or how to evaluate the security of any leaking device), extended
version. J. Cryptol. 32(4), 1263–1297 (2019)

[EFG+22] Espitau, T., et al.: A simpler, parallelizable, maskable variant of falcon.
In: Dunkelman, O., Dziembowski, S. (eds.), EUROCRYPT 2022, Part III,
LNCS, vol. 13277, pp. 222–253. Springer, Heidelberg (2022). https://doi.
org/10.1007/978-3-031-07082-2 9

[EK20] Espitau, T., Kirchner, P.: The nearest-colattice algorithm. Cryptology
ePrint Archive, Report 2020/694 (2020). https://eprint.iacr.org/2020/694

[Esp22] Espitau, T.: Supporting code for MITAKA signature (EUROCRYPT
2022). GitHub (2022). https://github.com/espitau/Mitaka-EC22

[GMO01] Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete
results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 251–261. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44709-1 21

[GMRR22] Guerreau, M., Martinelli, A., Ricosset, T., Rossi, M.: The hidden paral-
lelepiped is back again: power analysis attacks on falcon. IACR Trans.
Cryptographic Hardware Embedded Syst. 2022(3), 141–164 (2022)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.)
40th ACM STOC, pp. 197–206. ACM Press, May 2008

[GST14] Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth
acoustic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8616, pp. 444–461. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44371-2 25

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 27

[KJJ99] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48405-1 25

[Koc96] Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol.
1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/
3-540-68697-5 9

[LDK+22] Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report,
National Institute of Standards and Technology (2022). https://csrc.nist.
gov/Projects/post-quantum-cryptography/selected-algorithms-2022

[NIS22] NIST. Nistir 8413 - status report on the third round of the NIST post-
quantum cryptography standardization process (2022). https://doi.org/
10.6028/NIST.IR.8413

[PFH+22] Prest, T., et al.: FALCON. Technical report, National Institute of
Standards and Technology (2022). https://csrc.nist.gov/Projects/post-
quantum-cryptography/selected-algorithms-2022

[PP19] Pornin, T., Prest, T.: More efficient algorithms for the NTRU key gener-
ation using the field norm. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS,
vol. 11443, pp. 504–533. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17259-6 17

https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/978-3-031-07082-2_9
https://eprint.iacr.org/2020/694
https://github.com/espitau/Mitaka-EC22
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.6028/NIST.IR.8413
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-030-17259-6_17
https://doi.org/10.1007/978-3-030-17259-6_17

Signatures

Hardening Signature Schemes
via Derive-then-Derandomize: Stronger

Security Proofs for EdDSA

Mihir Bellare1(B), Hannah Davis1, and Zijing Di2

1 University of California San Diego, La Jolla, USA
{mihir,h3davis}@eng.ucsd.edu

2 Stanford University, Stanford, USA
zidi@stanford.edu

Abstract. We consider a transform, called Derive-then-Derandomize,
that hardens a given signature scheme against randomness failure and
implementation error. We prove that it works. We then give a general
lemma showing indifferentiability of a class of constructions that apply
a shrinking output transform to an MD-style hash function. Armed with
these tools, we give new proofs for the widely standardized and used
EdDSA signature scheme, improving prior work in two ways: (1) we give
proofs for the case that the hash function is an MD-style one, reflecting
the use of SHA512 in the NIST standard, and (2) we improve the tight-
ness of the reduction so that one has guarantees for group sizes in actual
use.

1 Introduction

In designing schemes, and proving them secure, theoreticians implicitly assume
certain things, such as on-demand fresh randomness and correct implementa-
tion. In practice, these assumptions can fail. Weaknesses in system random-
number generators are common and have catastrophic consequences. (An exam-
ple relevant to this paper is the well-known key-recovery attack on Schnorr signa-
tures when signing reuses randomness. Another striking example are Ps and Qs
attacks [25,29].) Meanwhile, implementation errors can be exploited, as shown
by Bleichenbacher’s attack on RSA signatures [15].

In light of this, practitioners may try to “harden” theoretical schemes before
standardization and usage. A prominent and highly successful instance is EdDSA,
a hardening of the Schnorr signature scheme proposed by Bernstein, Duif, Lange,
Schwabe, and Yang (BDLSY) [14]. It incorporates explicit, simple key-derivation,
makes signing deterministic, adds protection against sidechannel attacks via
“clamping,” and for simplicity confines itself to a single hash function, namely
SHA512. The scheme is widely standardized [27,34] and used [26].

There is however a subtle danger here, namely that the hardening attempt
introduces new vulnerabilities. In other words, hardening needs to be done right;
if not, it may even “soften” the scheme! Thus it is crucial that the hardened
scheme be vetted via a proof of security. This is of particular importance for
c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 223–250, 2023.
https://doi.org/10.1007/978-3-031-31368-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_9

224 M. Bellare et al.

EdDSA given its widespread deployment. In that regard, Brendel, Cremers, Jack-
son and Zhao (BCJZ) [16] showed that EdDSA is secure if the Discrete-Log (DL)
problem is hard and the hash function is modeled as a random oracle. This is
significant as a first step but has at least two important limitations: (1) Due
to the extension attack, a random oracle is not an appropriate model for the
SHA512 hash function EdDSA actually uses, and (2) the reduction is so loose
that there is no security guarantee for group sizes in use today.

Extrapolating EdDSA, the first part of this paper defines a general hardening
transform on signature schemes called Derive-then-Derandomize (DtD), and
proves its soundness. Next we prove the indifferentiability of a general class
of constructions, that we call shrink-MD; it includes the well-studied chop-MD
construction [19] and also the modulo-a-prime construction arising in EdDSA.
Armed with these results, the second part of the paper returns to give new
proofs for EdDSA that in particular fill the above gaps. We begin with some
background.

Respecting Hash Structure in Proofs. Recall that the MD-transform [20,
31] defines a hash function H = MD[h] : {0, 1}∗ → {0, 1}2k by iterating an under-
lying compression function h : {0, 1}b+2k → {0, 1}2k. (See Sect. 2 for details.)
SHA256 and SHA512 are obtained in this way, with (b, k) being (512, 128) and
(1024, 256), respectively. This structure gives rise to attacks, of which the
most well known is the extension attack. The latter allows an attacker given
t ← MD[h](e2‖M), where e2 is a secret unknown to the attacker and M ∈ {0, 1}∗

is public, to compute t′ = MD[h](e2‖M ′), for some M ′ ∈ {0, 1}∗ of its choice.
This has been exploited to violate the UF-security of the so-called prefix message
authentication code pfMACe2

(M) = H(e2‖M) when H is an MD-hash function;
HMAC [4] was designed to overcome this.

A proof of security of a scheme (such as EdDSA) that uses a hash function
H will often model H as a random oracle [10], in what we’ll call the (H,H)-
model: scheme algorithms, and the adversary, both have oracle access to the
same random H. However the presence of the above-discussed structure in “real”
hash functions led Dodis, Ristenpart and Shrimpton (DRS) [21] to argue that the
“right” model in which to prove security of a scheme that uses H = MD[h] is to
model the compression function h —rather than the hash function H = MD[h]—
as a random oracle. We’ll call this the (MD[h], h)-model: the adversary has oracle
access to a random h, with scheme algorithms having access to MD[h]. There
is now widespread agreement with the DRS thesis that proofs of security of
MD-hash-using schemes should use the (MD[h], h) model.

Giving from-scratch proofs in the (MD[h], h) model is, however, difficult.
Maurer, Renner and Holenstein (MRH) [30] show that if a construction F is
indifferentiable (abbreviated indiff) and a scheme is secure in the (H,H) model,
then it remains secure in the (F[h], h) model. (This requires the game defining
security of the scheme to be single-stage [38], which is true for the relevant ones
here.) Unfortunately, F = MD is provably not indiff [19], due exactly to the
extension attack. So the MRH result does not help with MD. This led to a
search for indiff variants. DRS [21] and YMO [42] (independently) offer public-

Hardening Signature Schemes 225

indiff and show that it suffices to prove security, in the (MD[h], h) model, of
schemes that use MD in some restricted way. However, EdDSA does not obey
these restrictions. Thus, other means are needed.

The EdDSA Scheme. The Edwards curve Digital Signature Algorithm (EdDSA)
is a Schnorr-based signature scheme introduced by Bernstein, Duif, Lange,
Schwabe and Yang [14]. Ed25519, which uses the Curve25519 Edwards curve
and SHA512 as the hash function, is its most popular instance. The scheme is
standardized by NIST [34] and the IETF [27]. It is used in TLS 1.3, OpenSSH,
OpenSSL, Tor, GnuPGP, Signal and WhatsApp. It is also the preferred signa-
ture scheme of the Corda, Tezos, Stellar and Libra blockchain systems. Overall,
IANIX [26] reports over 200 uses of Ed25519. Proving security of this scheme is
accordingly of high importance.

Figure 4 shows EdDSA on the right, and, on the left, the classic Schnorr
scheme [40] on which EdDSA is based. The schemes are over a cyclic, additively-
written group G of prime order p with generator B. The public verification key
is A. The Schnorr hash function has range Zp = {0, . . . , p−1}, while, for EdDSA,
function H1 has range {0, 1}2k where k, the bit-length of p, is 256 for Ed25519.
Functions H2,H3 have range Zp.

EdDSA differs from Schnorr in significant ways. While the Schnorr secret key
s is in Zp, the EdDSA secret key sk is a k-bit string. This is hashed and the
2k-bit result is split into k-bit halves e1‖e2. A Schnorr secret-key s is derived by
applying to e1 a clamping function CF that zeroes out the three least significant
bits of e1. (Note: This means s is not uniformly distributed over Zp.) Clamping
increases resistance to side-channel attacks [14]. Signing is made deterministic
by a standard de-randomization technique [9,12,23,33], namely obtaining the
Schnorr randomness r by hashing the message M with a secret-key dependent
string e2. We note that all of H1,H2,H3 are instantiated via the same hash
function, namely SHA512.

Prior Work and Our Questions. Recall that the security goal for a signa-
ture scheme is UF (UnForgeability under Chosen-Message Attack) [24]. Schnorr
is well studied, and proven UF under DL (Discrete Log in G) when H is a random
oracle [1,37]. The provable security of EdDSA, however, received surprisingly lit-
tle attention until the work of Brendel, Cremers, Jackson and Zhao (BCJZ) [16].
They take the path also used for Schnorr and other identification-based signature
schemes [1,37], seeing EdDSA as the result of the Fiat-Shamir transform on an
underlying identification scheme EdID that they define, proving security of the
latter under DL, and concluding UF of EdDSA under DL when H is a random
oracle. This is an important step forward, but the BCJZ proof [16] remains in
the (H,H) model. We ask and address the following two questions.

1. Can We Prove Security in the (MD[h], h) model? The NIST stan-
dard [34] mandates that Ed25519 uses SHA512, which is an MD-hash function.
Accordingly, as explained above, the BCJZ proof [16], being in the (H,H) model,
does not guarantee security; to do the latter, we need a proof in the (MD[h], h)
model.

226 M. Bellare et al.

The gap is more than cosmetic. As we saw above with the example of the
prefix MAC, a scheme could be secure in the (H,H) model, yet totally insecure
in the more realistic (MD[h], h) model, and thus also in practice. And EdDSA
skirts close to the edge: line 14 is using the prefix-MAC that the extension attack
breaks, and overlaps in inputs across the three uses of H could lead to failures.
Intuitively what prevents attacks is that the MAC outputs are taken modulo p,
and inputs to H in two of the three uses involve secrets. Thus, we’d expect that
the scheme is indeed secure in the (MD[h], h) model.

Proving this, however, is another matter. We already know that MD is not
indiff. It is public indiff [21,42], but this will not suffice for EdDSA because H1,H2

are being called on secrets. We ask, first, can EdDSA be proved secure in the
(MD[h], h) model, and second, can this be done in some modular way, rather
than from scratch?

2. Can We Improve Reduction Tightness? The reduction of BCJZ [16] is so
loose that, in the 256-bit curve over which Ed25519 is implemented, it guarantees
little security. Let’s elaborate. Given an adversary AUF violating the UF-security
of EdDSA with probability εUF, the reduction builds an adversary ADL breaking
DL with probability εDL = ε2UF/qh where qh is the number of H-queries of AUF

and the two adversaries have about the same running time t. (The square arises
from the use of rewinding, analyzed via the Reset Lemma of [8].) In an order p
elliptic curve group, εDL ≈ t2/p so we get εUF = t ·√qh/p. Ed25519 has p ≈ 2256.
Say t = qh = 270, which (as shown by BitCoin mining capability) is not far from
attacker reach. Then εDL = 2−116 is small but εUF = 270 · 2−(256−70)/2 = 2−23 is
in comparison quite high.

Now, one might say that one would not expect better because the same
reduction loss is present for Schnorr. The classical reductions for Schnorr [1,37]
did indeed display the above loss, but that has changed: recent advances for
Schnorr include a tighter reduction from DL [39], an almost-tight reduction from
the MBDL problem [5] and a tight reduction from DL in the Algebraic Group
Model [22]. We’d like to put EdDSA on par with the state of the art for Schnorr.
We ask, first, is this possible, and second, is there a modular way to do it that
leverages, rather than repeats, the (many, complex) just-cited proofs for Schnorr?

Contributions for EdDSA. We simultaneously simplify and strengthen the
security proofs for EdDSA as follows.

1. Reduction from Schnorr. Rather than, as in prior work, give a reduction
from DL or some other algebraic problem, we give a simple, direct reduction
from Schnorr itself. That is, we show that if the Schnorr signature scheme is UF-
secure, then so is EdDSA. Furthermore, the reduction is tight up to a constant
factor. This allows us to leverage prior work [5,22,39] to obtain tight proofs for
EdDSA under various algebraic assumptions and justify security for group sizes
in actual use. But there are two further dividends. First, Schnorr [40] is over 30
years old and has withstood the tests of time and cryptanalysis, so our proof
that EdDSA is just as secure as Schnorr allows the former to inherit, and benefit
from, this confidence. Second, our result formalizes and proves what was the

Hardening Signature Schemes 227

intuition and belief in the first place [14], namely that, despite the algorithmic
differences, EdDSA is a sound hardening of Schnorr.

2. Accurate Modeling of the Hash Function. As noted above, BCJZ [16]
assume the hash function H is a random oracle, but this, due to the extension
attack, is not an accurate model for the MD-hash function SHA512 used by
EdDSA. We fill this gap by instead proving security in the (MD[h], h) model,
where H = MD[h] is derived via the MD-transform [20,31] and the compression
function h is a random oracle.

Approach and Broader Contributions. The above-mentioned results on
EdDSA are obtained as a consequence of more general ones.

3. The DtD Transform and Its Soundness. We extend the hardening tech-
nique used in EdDSA to define a general transform that we call Derive-then-
Derandomize (DtD). It takes an arbitrary signature scheme DS, and with the
aid of a PRG H1 and a PRF H2, constructs a hardened signature scheme DS.
We provide (Theorem 1) a strong and general validation of DtD, showing that
DS is UF-secure assuming DS is UF-secure. Moreover the reduction is tight and
the proof is simple. This shows that the EdDSA hardening method is generically
sound.

4. Indifferentiability of Shrink-MD. It is well-known that MD is not indif-
ferentiable [30] from a random oracle, but that the Chop-MD [19], which trun-
cates the output of an MD hash by some number of bits, is indifferentiable.
Unfortunately, we identified gaps in two prominent proofs of indifferentiability
of Chop-MD [19,32]. EdDSA uses a similar construction that reduces the MD
hash output modulo a prime p sufficiently smaller than the size of the range of
MD, due to which we refer to this construction as Mod-MD. The Mod-MD
construction has not been proven indifferentiable. We simultaneously give new
proofs of indifferentiability for Chop-MD and Mod-MD as part of a more
general class of constructions that we call Shrink-MD functors. These are con-
structions of the form Out(MD) where Out is some output-processing function,
and we prove indifferentiability under certain “shrinking” conditions on Out.

5. Application to EdDSA. EdDSA is obtained as the result DS of the DtD
transform applied to the DS = Schnorr signature scheme, and with the PRG
and PRF defined via MD, specifically H1(sk) = MD[h](sk) and H2(e2,M) =
MD[h](e2‖M) mod p where p is the prime order of the underlying group. Addi-
tionally, the hash function used in Schnorr is also H3(X) = MD[h](X) mod p.
Due to Theorem 1 validating DtD, we are left to show the PRG security of
H1, the PRF security of H2 and the UF-security of Schnorr, all with h modeled
as a random oracle. We do the first directly. We obtain the second as a conse-
quence of the indifferentiability of Mod-MD. (In principle it follows from the
PRF security of AMAC [3], but we found it difficult to extract precise bounds
via this route.) For the third, we again exploit indifferentiability of Mod-MD,
together with a technique from BCJZ [16] to handle clamping, to reduce to the
UF security of regular Schnorr, where the hash function is modeled as a random

228 M. Bellare et al.

oracle. Putting all this carefully together yields our above-mentioned results for
EdDSA. We note that one delicate and important point is that the idealized
compression function h is the same across H1,H2 and H3, meaning these are not
independent. This is handled through the building blocks in Theorem 1 being
functors [7] rather than functions.

Discussion and Related Work. Both BCJZ [16] and CGN [17] note that
there are a few versions of EdDSA out there, the differences being in their veri-
fication algorithms. What Fig. 4 shows is the most basic version of the scheme,
but we will be able to cover the variants too, in a modular way, by reducing from
Schnorr with the same verification algorithm.

BBT [3] define the function AMAC[h] to take a key e2 and message M , and
return MD[h](e2‖M) mod p. This is the H2 in EdDSA. We could exploit their
results to conclude PRF security of H2, but it requires putting together many
different pieces from their work, and it is easier and more direct to establish
PRF security of H2 by using our lemma on the indifferentiability of Mod-MD.

In the Generic Group Model (GGM) [41], it is possible to prove UF-security
of Schnorr under standard (rather than random oracle) model assumptions on the
hash functions [18,35]. But use of the GGM means the result applies to a limited
class of adversaries. Our results, following the classical proofs for identification-
based signatures [1,28,36,37], instead use the standard model for the group,
while modeling the hash function (in our case, the compression function) as a
random oracle.

In an earlier version of this paper, our proofs had relied on a variant of
indifferentiability that we had introduced. At the suggestion of a Crypto 2022
reviewer, this has been dropped in favor of a direct proof based on PRG and PRF
assumptions on H1,H2. We thank the (anonymous) reviewer for this suggestion.

Theorem 1 is in the standard model if the PRG, PRF and starting signature
scheme DS are standard-model, hence can be viewed as a standard-model justifi-
cation of the hardening template underlying EdDSA. However, when we want to
justify EdDSA itself, we need to consider the specific, MD-based instantiations
of the PRG, PRF and Schnorr hash function, and for these we use the model
where the compression function is ideal.

Several works study de-randomization of signing by deriving the coins via a
PRF applied to the message, considering different ways to key the PRF [9,12,
23,33]. We use their techniques in the proof of Theorem 1.

One might ask how to view the UF-security of Schnorr signatures as an
assumption. What is relevant is not its form (it is interactive) but that (1) it can
be seen as a hub from where one can bridge to other assumptions that imply it,
such as DL (non-tightly) [1,37] or MBDL (tightly) [5], and (2) it is validated by
decades of cryptanalysis.

Our results have been stated for UF but extend to SUF (Strong unforgeabil-
ity), meaning our proofs also show SUF-security of EdDSA in the (MD[h], h)
model assuming SUF security of Schnorr, with a tight (up to the usual constant
factor) reduction.

Hardening Signature Schemes 229

EdDSA could be used with other hash functions such as SHAKE. The extension
attack does not apply to the latter, so the proof of BCJZ [16] applies, but gives a
loose reduction from DL; our results still add something, namely a tight reduction
from Schnorr and thus improved tightness in several ways as discussed above.

2 Preliminaries

Notation. If n is a positive integer, then Zn denotes the set {0, . . . , n − 1} and
[n] or [1..n] denote the set {1, . . . , n}. If x is a vector then |x| is its length (the
number of its coordinates), x[i] is its i-th coordinate and [x] = { x[i] : 1 ≤
i ≤ |x| } is the set of all its coordinates. A string is identified with a vector
over {0, 1}, so that if x is a string then x[i] is its i-th bit and |x| is its length.
We denote x[i..j] the i-th bit to the j-th bit of string x. By ε we denote the
empty vector or string. The size of a set S is denoted |S|. For sets D,R let
AF(D,R) denote the set of all functions f : D → R. If f : D → R is a function
then Img(f) = { f(x) : x ∈ D } ⊆ R is its image. We say that f is regular if
every y ∈ Img(f) has the same number of pre-images under f . By {0, 1}≤L we
denote the set of all strings of length at most L. For any variables a and b, the
expression [[a = b]] denotes the Boolean value true when a and b contain the
same value and false otherwise.

Let S be a finite set. We let x ←$ S denote sampling an element uniformly
at random from S and assigning it to x. We let y ← A[O1, . . .](x1, . . . ; r) denote
executing algorithm A on inputs x1, . . . and coins r with access to oracles O1, . . .
and letting y be the result. We let y ←$ A[O1, . . .](x1, . . .) be the resulting of
picking r at random and letting y ← A[O1, . . .](x1, . . . ; r) be the equivalent.
We let OUT(A[O1, . . .](x1, . . .)]) denote the set of all possible outputs of A when
invoked with inputs x1, . . . and oracles O1, Algorithms are randomized unless
otherwise indicated. Running time is worst case.

Games. We use the code-based game playing framework of [11]. (See Fig. 1 for
an example.) Games have procedures, also called oracles. Among the oracles are
Init and a Fin. In executing an adversary A with a game G, the adversary may
query the oracles at will. We require that the adversary’s first oracle query be to
Init and its last to Fin and it query these oracles at most once. The value return
by the Fin procedure is taken as the game output. By G(A) ⇒ y we denote the
event that the execution of game G with adversary A results in output y. We
write Pr[G(A)] as shorthand for Pr[G(A) ⇒ true], the probability that the game
returns true.

In writing game or adversary pseudocode, it is assumed that Boolean vari-
ables are initialized to false, integer variables are initialized to 0 and set-valued
variables are initialized to the empty set ∅.

We adopt the convention that the running time of an adversary is the time
for the execution of the game with the adversary, so that the time for oracles
to respond to queries is included, and similarly for the number of queries to an
oracle. In particular, the number of queries to a random oracle FO includes those
made by scheme algorithms executed by game procedures. By QO

A we denote the

230 M. Bellare et al.

number of queries made by A and the game to oracle O in the execution. With
qO
A we count only queries made directly by A to O, not by other game oracles

or scheme algorithms. These counts are all worst case.

Groups. Throughout the paper, we fix integers k and b, an odd prime p, and a
positive integer f such that 2f < p. We then fix two groups: G, a group of order
p · 2f whose elements are k-bit strings, and its cyclic subgroup Gp of order p.
We prove in our full version [6] that this subgroup is unique, and that it has
an efficient membership test. We also assume an efficient membership test for
G. We will use additive notation for the group operation, and we let 0G denote
the identity element of G. We let G

∗
p = G \ {0G} denote the set of non-identity

elements of Gp, which is its set of generators. We fix a distinguished generator
B ∈ G

∗
p. Then for any X ∈ G

∗, the discrete logarithm base B of X is denoted
DLG,B(X), and it is in the set Z|G|. The instantiation of G used in Ed25519 is
described in our full version [6].

3 Functor Framework

Our treatment relies on the notion of functors [7], which are functions that
access an idealized primitive. We give relevant definitions, starting with signature
schemes whose security is measured relative to a functor. Then we extend the
notions of PRGs and PRFs to functors.

Function Spaces. In using the random oracle model [10], works in the lit-
erature sometimes omit to say what exactly are the domain and range of the
underlying functions, and, when multiple functions are present, whether or not
they are independent. (Yet, implicitly their proofs rely on certain choices.) For
greater precision, we use the language of function spaces of [7], which we now
recall.

A function space O is a set of tuples H = (H1, . . . ,Hn) of functions. The
integer n is called the arity of the function space, and can be recovered as O.arity.
We view H as taking an input X that it parses as (i, x) to return Hi(x).

Functors. Following [7], we use the term functor for a transform that constructs
one function from another. A functor F : SS → ES takes as oracle a function h
from a starting function space SS and returns a function F[h] in the ending
function space ES. (The term is inspired by category theory, where a functor
maps from one category into another. In our case, the categories are function
spaces.) If ES has arity n, then we also refer to n as the arity of F, and write
Fi for the functor which returns the i-th component of F. That is, Fi[h] lets
H ← F[h] and returns Hi.

MD Functor. We are interested in the Merkle-Damg̊ard [20,31] transform.
This transform constructs a hash function with domain {0, 1}∗ from a compres-
sion function h : {0, 1}b+2k → {0, 1}2k for some integers b and k. The compression
function takes a 2k-bit chaining variable y and a b-bit block B to return a 2k
bit output h(y‖B). In the case of SHA512, the hash function used in EdDSA, the

Hardening Signature Schemes 231

compression function sha512 has b = 1024 and k = 256 (so the chaining variable
is 512 bits and a block is 1024 bits), while b = 512 and k = 128 for SHA256. In
our language, the Merkle-Damg̊ard transform is a functor MD : AF({0, 1}b+2k,
{0, 1}2k) → AF({0, 1}∗, {0, 1}2k). It is parameterized by a padding function pad
that takes the length � of an input to the hash function and returns a padding
string such that � + |pad(�)| is a multiple of b. Specifically, pad(�) returns 10∗〈�〉
where 〈�〉 is a 64-bit, resp. 128-bit encoding of � for SHA256 resp. SHA512, and
0∗ indicates the minimum number p of 0s needed to make � + 1 + p + 64, resp.
�+1+p+128 a multiple of b. We also fix an “initialization vector” IV ∈ {0, 1}2k.
Given oracle h, the functor defines hash function H = MD[h] : {0, 1}∗ → {0, 1}2k

as follows:

Functor MD[h](X)
y[0] ← IV
P ← pad(|X|) ; X ′[1] . . . X ′[m] ← X‖P // Split X‖P into b-bit blocks

For i = 1, . . . , m do y[i] ← h(y[i − 1]‖X ′[i])
Return y[m]

Strictly speaking, the domain is only strings of length less than 264 resp. 2128,
but since this is huge in practice, we view the domain as {0, 1}∗.
Signature scheme syntax. We give an enhanced, flexible syntax for a signa-
ture scheme DS. We want to cover ROM schemes, which means scheme algo-
rithms have oracle access to a function H, but of what range and domain?
Since these can vary from scheme to scheme, we have the scheme begin by
naming the function space DS.FS from which H is drawn. We see the key-
generation algorithm DS.Kg as first picking a signing key sk ←$ DS.SK via a
signing-key generation algorithm DS.SK, then obtaining the public verification
key vk ← DS.PK[H](sk) by applying a deterministic verification-key generation
algorithm DS.PK, and finally returning (vk, sk). (For simplicity, DS.SK, unlike
other scheme algorithms, does not have access to H.) We break it up like this
because we may need to explicitly refer to the sub-algorithms in constructions.
Continuing, via σ ← DS.Sign[H](sk, vk,M ; r) the signing algorithm takes sk, vk,
a message M ∈ {0, 1}∗, and randomness r from the randomness space DS.SR of
the algorithm, to return a signature σ. As usual, σ ←$ DS.Sign[H](sk, vk,M) is
shorthand for picking r ←$ DS.SR and returning σ ← DS.Sign[H](sk, vk,M ; r).
Via b ← DS.Vf[H](vk,M , σ), the verification algorithm obtains a boolean deci-
sion b ∈ {true, false} about the validity of the signature. The correctness require-
ment is that for all H ∈ DS.FS, all (vk, sk) ∈ OUT(DS.Kg[H]), all M ∈ {0, 1}∗

and all σ ∈ OUT(DS.Sign[H](sk, vk,M)) we have DS.Vf[H](vk,M , σ) = true.

UF Security. We want to discuss security of a signature scheme DS under
different ways in which the functions in DS.FS are chosen or built. Game Guf

DS,FF

in Fig. 1 is thus parameterized by a functor FF : SS → DS.FS. At line 1, a
starting function h is chosen from the starting space of the functor, and then
the function H ∈ DS.FS that the scheme algorithms (key-generation, signing and
verification) get as oracle is determined as H ← FF[h]. The adversary, however,
via oracle FO, gets access to h, which here is the random oracle. The rest is as

232 M. Bellare et al.

Game Guf
DS,FF Init:

1 h ←$ SS ; H ← FF[FO] ; (vk, sk) ←$ DS.Kg[H] ; Return vk

Sign(M):

2 σ ←$ DS.Sign[H](sk, vk,M) ; S ← S ∪ {M } ; Return σ

FO(X):

3 Return h(X)

Fin(M∗, σ∗):

4 If (M∗ ∈ S) then return false

5 Return DS.Vf[H](vk,M∗, σ∗)

Game Gprg
P Init:

1 h ←$ SS ; c ←$ {0, 1}
2 s ←$ {0, 1}k ; y1 ← P[FO](s)

3 y0 ←$ {0, 1}�

4 Return yc

FO(X):

5 Return h(X)

Fin(c′):

6 Return (c = c′)

Game Gprf
F Init:

1 h ←$ SS ; c ←$ {0, 1} ; K ←$ {0, 1}k

FN(X):

2 If YT[X] �= ⊥ then

3 If (c = 1) then YT[X] ← F[FO](K, X)

4 Else YT[X] ←$ R

5 Return YT[X]

FO(X):

6 Return h(X)

Fin(c′):

7 Return (c = c′)

Fig. 1. Top: Game defining UF security of signature scheme DS relative to functor
FF : SS → DS.FS. Bottom Left: Game defining PRG security of functor P : SS →
AF({0, 1}k, {0, 1}�). Bottom Right: Game defining PRF security of functor F : SS →
AF({0, 1}k × {0, 1}∗, R).

per the usual unforgeability definition. (Given in the standard model in [24] and
extended to the ROM in [10].) We define the UF advantage of adversary A as
Advuf

DS,FF(A) = Pr[Guf
DS,FF(A)].

PRGs and PRFs. The usual definition of a PRGs is for a function; we define
it instead for a functor P. The game Gprg

P is in Fig. 1. It picks a function h from
the starting space SS of the functor. The functor now determines a function
P[h] : {0, 1}k → {0, 1}�. The game then follows the usual PRG one for this
function, additionally giving the adversary oracle access to h via oracle FO. We
let Advprg

P (A) = 2Pr[Gprg
P (A)] − 1.

Hardening Signature Schemes 233

DS.SK:

1 sk ←$ {0, 1}k ; Return sk

DS.PK[H](sk):

2 e1‖e2 ← H1(sk) ; sk ← CF(e1)

3 vk ← DS.PK[H3](sk)

4 Return vk

DS.Sign[H](sk, vk,M):

5 e1‖e2 ← H1(sk) ; sk ← CF(e1)

6 r ← H2(e2,M)

7 σ ← DS.Sign[H3](sk, vk,M ; r)

8 Return σ

DS.Vf[H](vk,M , σ):

9 Return DS.Vf[H3](vk,M , σ)

DS∗.SK:

1 sk ←$ {0, 1}k ; Return sk

DS∗.PK[G](sk):

2 sk ← CF(sk)

3 vk ← DS.PK[G](sk)

4 Return vk

DS∗.Sign[G](sk, vk,M):

5 sk ← CF(sk)

6 σ ←$ DS.Sign[G](sk, vk,M)

7 Return σ

DS∗.Vf[G](vk,M , σ):

8 Return DS.Vf[G](vk,M , σ)

Fig. 2. Left: The signature scheme DS = DtD[DS, CF] constructed by the DtD
transform applied to signature scheme DS and clamping function CF : {0, 1}k →
OUT(DS.SK). Right: The signature scheme DS = JCl[DS, CF] constructed by the
JCl transform.

Similarly we extend the usual definition of PRG security to a functor F, via
game Gprf

F of Fig. 1. Here, for h in the starting space SS of the functor, the
defined function maps as F[h] : {0, 1}k × {0, 1}∗ → R for some k and range set
R. We let Advprf

F (A) = 2Pr[Gprf
F (A)] − 1.

4 The Soundness of Derive-then-Derandomize

We specify a general signature-hardening transform that we call Derive-then-
Derandomize (DtD) and prove that it preserves the security of the starting
signature scheme.

The DtD Transform. Let DS be a given signature scheme that we call the
base signature scheme. It will be the (general) Schnorr scheme in our application.
Assume for simplicity that its function space DS.FS has arity 1.

The DtD (derive then de-randomize) transform constructs a signature
scheme DS = DtD[DS, CF] based on DS and a function CF : {0, 1}k →
OUT(DS.SK), called the clamping function, that turns a k-bit string into a sign-
ing key for DS. The algorithms of DS are shown in Fig. 2. They have access to
oracle H that specifies sub-functions H1,H2,H3. Function H1 : {0, 1}k → {0, 1}2k

expands the signing key sk of DS into sub-keys e1 and e2. The clamping func-
tion is applied to e1 to get a signing key for the base scheme, and its associated
verification key is returned as the one for the new scheme at line 4. At line 6,

234 M. Bellare et al.

function H2 : {0, 1}k × {0, 1}∗ → DS.SR is applied to the second sub-key e2 and
the message M to determine signing randomness r for the line 5 invocation of
the base signing algorithm. Finally, H3 ∈ DS.FS is an oracle for the algorithms
of DS. Formally the oracle space DS.FS of DS is the arity 3 space consisting of
all H = (H1,H2,H3) that map as above.

Viewing the PRG H1, PRF H2 and oracle H3 for the base scheme as specified
in the function space is convenient for our application to EdDSA, where they are
all based on MD with the same underlying idealized compression function.

Just Clamp. Given a signature scheme DS and a clamping function
CF : {0, 1}k → OUT(DS.SK), it is useful to also consider the signature scheme
DS∗ = JCl[DS, CF] that does just the clamping. The scheme is shown in Fig. 2.
Its oracle space is the same as that of DS and is assumed to have arity 1. On
the right of Fig. 2 the function drawn from it is denoted G; it will be the same
as H3 on the left.

Security of DtD.b We study the security of the scheme DS = DtD[DS, CF]
obtained via the DtD transform.

When we prove security of DS, it will be with respect to a functor FF that
constructs all of H1,H2,H3. This means that these three functions could all
depend on the same starting function that FF uses, and in particular not be
independent of each other. An important element of the following theorem is
that it holds even in this case, managing to reduce security to conditions on
the individual functors despite their using related (in fact, the same) underlying
starting function.

Theorem 1. Let DS be a signature scheme. Let CF : {0, 1}k → OUT(DS.SK)
be a clamping function. Let DS = DtD[DS, CF] and DS∗ = JCl[DS, CF] be the
signature schemes obtained by the above transforms. Let FF : SS → DS.FS be a
functor that constructs the function H that algorithms of DS use as an oracle. Let
A be an adversary attacking the Guf security of DS. Then there are adversaries
A1,A2,A3 such that

Advuf
DS,FF

(A) ≤ Advprg
FF1

(A1) + Advprf
FF2

(A2) + Advuf
DS∗,FF3

(A3) .

The constructed adversaries preserve the number of FO queries of A and approx-
imately preserve its running time. Adversary A2 makes QA

Sign queries to FN.
Adversary A3 makes QA

Sign queries to Sign.

Proof (Theorem 1). The proof uses code-based game playing [11]. Consider the
games of Fig. 3. Let εi = Pr[Gi(A)] for i = 0, 1, 2.

Game G0 is the Guf game for DS except that the signature of M is stored
in table ST at line 8, and, at line 5, if a signature for M already exists, it is
returned directly. Since signing in DS is deterministic, meaning the signature is
always the same for a given message and signing key, this does not change what
Sign returns, and thus

Advuf
DS,FF

(A) = ε0

= (ε0 − ε1) + (ε1 − ε2) + ε2 .

We bound each of the three terms above in turn.

Hardening Signature Schemes 235

Games G0, G1, G2 Init:

1 h ←$ SS

2 sk ←$ {0, 1}k ; e1‖e2 ← FF1[FO](sk) // Game G0

3 e1‖e2 ←$ {0, 1}2k // Games G1, G2

4 sk ← CF(e1) ; vk ← DS.PK[FF3[FO]](sk) ; Return vk

Sign(M):

5 If ST[M] �= ⊥ then return ST[M]

6 r ← FF2[FO](e2,M) // Games G0, G1

7 r ←$ DS.SR // Game G2

8 ST[M] ← DS.Sign[FF3[FO]](sk, vk,M ; r) ; Return ST[M]

FO(X):

9 Return h(X)

Fin(M∗, σ∗):

10 If (ST[M∗] �= ⊥) then return false

11 Return DS.Vf[FF3[FO]](vk,M∗, σ∗)

Fig. 3. Games for proof of Theorem 1. A line annotated with names of games is included
only in those games.

The change in moving to game G1 is at line 3, where we sample e1‖e2 uni-
formly from the set {0, 1}2k rather than obtaining it via FF1[FO] as in game
G0. We build PRG adversary A1 such that

ε0 − ε1 ≤ Advprg
FF1

(A1) . (1)

Adversary A1 is playing game Gprg
FF1

. It gets its challenge via e1‖e2 ← Gprg
FF1

.Init.
It lets sk ← CF(e1) and vk ← DS.PK[FF3[G

prg
FF1

.FO]](sk) where Gprg
FF1

.FO is
the oracle provided in its own game. It runs A, returning vk in response to A’s
Init query. It answers Sign queries as do G0,G1 except that it uses Gprg

FF1
.FO

in place of FO at lines 6,8. As part of this simulation, it maintains table ST.
It answers FO queries via Gprg

FF1
.FO. When A calls Fin(M∗, σ∗), adversary A1

lets c′ ← 1 if DS.Vf[FF3[G
prg
FF1

.FO]](vk,M∗, σ∗) is true and ST[M∗] = ⊥, and
otherwise lets c′ ← 0. It then calls Gprg

FF1
.Fin(c′). When the challenge bit c in

game Gprg
FF1

is c = 1, the view of A is as in G0, and when c = 0 it is as in G1,
which explains Eq. (1).

Moving to G2, the change is that line 6 is replaced by line 7, meaning signing
coins are now chosen at random from the randomness space DS.SR of DS. We
build PRF adversary A2 such that

ε1 − ε2 ≤ Advprf
FF2

(A2) . (2)

Adversary A2 is playing game Gprf
FF2

. It picks e1‖e2 ←$ {0, 1}2k. It lets sk ←
CF(e1) and vk ← DS.PK[FF3[G

prf
FF2

.FO]](sk) where Gprg
FF2

.FO is the oracle pro-

236 M. Bellare et al.

vided in its own game. It runs A, returning vk in response to A’s Init query.
It answers Sign queries as does G1 except that it uses Gprf

FF2
.FN in place of

FF2[FO] at line 6 and Gprf
FF2

.FO in place of FO in line 8. As part of this sim-
ulation, it maintains table ST. It answers FO queries via Gprf

FF2
.FO. When A

calls Fin(M∗, σ∗), adversary A2 lets c′ ← 1 if DS.Vf[FF3[G
prf
FF2

.FO]](vk,M∗, σ∗)
is true and ST[M∗] = ⊥, and otherwise lets c′ ← 0. It then calls Gprf

FF2
.Fin(c′).

When the challenge bit c in game Gprf
FF2

is c = 1, the view of A is as in G1, and
when c = 0 it is as in G2, which explains Eq. (2).

Finally we build adversary A3 such that

ε2 ≤ Advuf
DS∗,FF3

(A3) . (3)

Adversary A3 is playing game Guf
DS∗,FF3

. It lets vk ← Guf
DS∗,FF3

.Init. It runs A,
returning vk in response to A’s Init query. When A makes query M to Sign,
it answers as per the following:

If ST[M] �= ⊥ then return ST[M]
ST[M] ←$ Guf

DS∗,FF3
.Sign(M) ; Return ST[M]

Note that memoizing signatures in ST is important here to ensure that the Sign
queries of A are correctly simulated. It answers FO queries via Guf

DS∗,FF3
.FO.

When A calls Fin(M∗, σ∗), adversary A2 calls Guf
DS∗,FF3

.Fin(M∗, σ∗). The dis-
tribution of signatures that A is given, and of the keys underlying them, is as in
G2, which explains Eq. (3).

Note that the constructed adversaries having access to oracle FO in their
games is important to their ability to simulate A faithfully.

With regard to the costs (number of queries, running time) of the constructed
adversaries, recall that we have defined these as the costs in the execution of the
adversary with the game that the adversary is playing, so for example the number
of queries to FO includes the ones made by algorithms executed in the game.
When this is taken into account, queries to FO are preserved, and the other
claims are direct. ��
Security of JCl. We have now reduced the security of DS to that of DS∗.

To further reduce the security of DS∗ to that of DS, we give a general result
on clamping. Let K = OUT(DS.SK) and let CF : {0, 1}k → K be a clamping
function. As per terminology in Sect. 2, recall that Img(CF) = { CF(sk) : |sk| =
k } ⊆ K is the image of the clamping function, and CF is regular if every y ∈
Img(CF) has the same number of pre-images under CF.

Theorem 2. Let DS be a signature scheme such that DS.SK draws its signing
key sk ←$ K at random from a set K. Let CF : {0, 1}k → K be a regular clamping
function. Let δ = |Img(CF)|/|K| > 0. Let DS∗ = JCl[DS, CF] be the signature
scheme obtained by the just-clamp transform. Let FF : SS → DS.FS be any func-
tor. Let B be an adversary attacking the Guf security of DS∗. Then

Advuf
DS∗,FF(B) ≤ (1/δ) · Advuf

DS,FF(B) .

Hardening Signature Schemes 237

DS.SK:

1 s ←$ Zp

2 Return s

DS.PK(s):

3 A ← s · B ; Return A

DS.Sign[H](s, A,M):

4 r ←$ Zp ; R ← r · B
5 c ← H(R‖A‖M)

6 z ← (sc + r) mod p

7 Return (R, z)

DS.Vf[H](A,M , σ):

8 (R, z) ← σ

9 c ← H(R‖A‖M)

10 Return VF(A, R, c, z)

DS.SK:

1 sk ←$ {0, 1}k ; Return sk

DS.PK(sk):

2 e1‖e2 ← H1(sk) ; s ← CF(e1)

3 A ← s · B ; Return A

DS.Sign[H](sk, A,M):

4 e1‖e2 ← H1(sk) ; s ← CF(e1)

5 r ← H2(e2,M) ; R ← r · B
6 c ← H3(R‖A‖M)

7 z ← (sc + r) mod p

8 Return (R, z)

DS.Vf[H](A,M , σ):

9 (R, z) ← σ

10 c ← H3(R‖A‖M) mod p

11 Return VF(A, R, c, z)

CF(e) // e ∈ {0, 1}k:

12 t ← 2k−2

13 for i ∈ [4..k − 2]

14 t ← t + 2i−1 · e[i]

15 s ← t mod p

16 return s

sVF(A, R, c, z):

1 Return (z · B = c · A + R)

pVF(A, R, c, z):

1 Return 2f(z · B) = 2f(c · A + R)

Fig. 4. Top Left: the Schnorr scheme. Top Right: The EdDSA scheme. Bottom
Left: EDDSA clamping function (generalized for any k; in the original definition,
k = 256). Bottom Right: Strict and Permissive verification algorithms as choices for
VF.

Proof (Theorem 2). We consider running B in game Guf
DS,FF, where the signing

key is sk ←$ K. With probability δ we have sk ∈ Img(CF). Due to the regularity
of CF, key sk now has the same distribution as a key CF(sk) for sk ←$ {0, 1}k

drawn in game Guf
DS∗,FF. Thus Advuf

DS,FF(B) ≥ δ · Advuf
DS∗,FF(B). ��

5 Security of EdDSA

The Schnorr Scheme. Let the prime-order group Gp of k-bit strings with
generator B be as described in Sect. 2. The algorithms of the Schnorr signature
scheme DS = Sch are shown on the left in Fig. 4. The function space DS.FS
is AF({0, 1}∗,Zp). (Implementations may use a hash function that outputs a
string and embed the result in Zp but following prior proofs [1] we view the
hash function as directly mapping into Zp.) Verification is parameterized by

238 M. Bellare et al.

an algorithm VF to allow us to consider strict and permissive verification in a
modular way. The corresponding choices of verification algorithms are at the
bottom of Fig. 4. The signing randomness space is DS.SR = Zp.

Schnorr signatures have a few variants that differ in details. In Schnorr’s
paper [40], the challenge is c = H(R‖M) mod p. Our inclusion of the public key
in the input to H follows Bernstein [13] and helps here because it is what EdDSA
does. It doesn’t affect security. (The security of the scheme that includes the
public key in the hash input is implied by the security of the one that doesn’t
via a reduction that includes the public key in the message.) Also in [40], the
signature is (c, z). The version we use, where it is (R, z), is from [1]. However,
BBSS [2] shows that these versions have equivalent security.

The EdDSA Scheme. Let the prime-order group Gp of k-bit strings with gen-
erator B be as before and assume 2k−5 < p < 2k. Let CF : {0, 1}k → Zp be the
clamping function shown at the bottom of Fig. 4. The algorithms of the scheme
DS are shown on the right side of Fig. 4. The key length is k. As before, the ver-
ification algorithm VF is a parameter. The H available to the algorithms defines
three sub-functions. The first, H1 : {0, 1}k → {0, 1}2k, is used at lines 2,4, where
its output is parsed into k-bit halves. The second, H2 : {0, 1}k × {0, 1}∗ → Zp,
is used at line 5 for de-randomization. The third, H3 : {0, 1}∗ → Zp, plays the
role of the function H for the Schnorr schemes. Formally, DS.FS is the arity-3
function space consisting of all H mapping as just indicated.

In [14,16], the output of the clamping is an integer that (in our notation) is in
the range 2k−2, . . . , 2k−1−8. When used in the scheme, however, it is (implicitly)
modulo p. It is convenient for our analysis, accordingly, to define CF to be the
result modulo p of the actual clamping. Note that in EdDSA the prime p has
magnitude a little more than 2k−4 and less than 2k−3.

There are several versions of EdDSA depending on the choice for verification
algorithms: strict, permissive or batch VF. We specify the first two choices in
Fig. 4. Our results hold for all choices of VF, meaning EdDSA is secure with
respect to VF assuming Schnorr is secure with respect to VF. It is in order to
make this general claim that we abstract out VF.

Security of EdDSA with Independent ROs. As a warm-up, we show secu-
rity of EdDSA when the three functions it uses are independent random oracles,
the setting assumed by BCJZ [16]. However, while they assume hardness of DL,
our result is more general, assuming only security of Schnorr with a monolithic
random oracle. We can then use known results on Schnorr [1,37] to recover the
result of BCJZ [16], but the proof is simpler and more modular. Also, other
known results on Schnorr [5,22,39] can be applied to get better bounds. Follow-
ing this, we will turn to the “real” case, where the three functions are all MD
with a random compression function.

The Theorem below is for a general prime p > 2k−5 but in EdDSA the prime
is 2k−4 < p < 2k−3 so the value of δ below is δ = 2k−5/p > 2k−5/2k−3 = 1/4, so
the factor 1/δ is ≤ 4. We capture the three functions of EdDSA being independent
random oracles by setting functor P below to the identity functor, and similarly
capture Schnorr being with a monolithic random oracle by setting R to be the
identity functor.

Hardening Signature Schemes 239

Functor S1[h](sk): // |sk| = k

2 e ← MD[h](sk) ; Return e // |e| = 2k

Functor S2[h](e2,M): // |e2| = k

3 Return MD[h](e2‖M) mod p

Functor S3[h](X): // also called Mod-MD

4 Return MD[h](X) mod p

Fig. 5. The arity-3 functor S for EdDSA. Here h : {0, 1}b+2k → {0, 1}2k is a compression
function.

Theorem 3. Let DS be the Schnorr signature scheme of Fig. 4. Let CF :
{0, 1}k → Zp be the clamping function of Fig. 4. Assume p > 2k−5 and let
δ = 2k−5/p. Let DS = DtD[DS, CF] be the EdDSA signature scheme. Let
R : AF({0, 1}∗,Zp) → AF({0, 1}∗,Zp) be the identity functor. Let P : DS.FS →
DS.FS be the identity functor. Let A be an adversary attacking the Guf security
of DS. Then there is an adversary B such that

Advuf
DS,P

(A) ≤(1/δ) · Advuf
DS,R(B) +

2 · QA
FO

2k
.

Adversary B preserves the queries and running time of A.

Proof (Theorem 3). Let DS∗ = JCl[Sch, CF]. By Theorem 1, we have

Advuf
DS,P

(A) ≤ Advprg
P1

(A1) + Advprf
P2

(A2) + Advuf
DS∗,P3

(A3) .

It is easy to see that

Advprg
P1

(A1) ≤ QA1
FO

2k
=

QA
FO

2k

Advprf
P2

(A2) ≤QA2
FO

2k
=

QA
FO

2k
.

Under the assumption p > 2k−5 made in the theorem, BCJZ [16] established
that |Img(CF)| = 2k−5. So |Img(CF)|/|Zp| = 2k−5/p = δ. Let B = A3 and note
that P3 = R. So by Theorem 2 we have

Advuf
DS∗,P3

(A3) ≤ (1/δ) · Advuf
DS,R(B) . (4)

Collecting terms, we obtain the claimed bound stated in Theorem 3. ��
Analysis of the S Functor. Let DS be the result of the DtD transform
applied to Sch and a clamping function CF : {0, 1}k → Zp. Security of EdDSA
is captured as security in game Guf

DS,S
when S is the functor that builds the

component hash functions in the way that EdDSA does, namely from a MD-
hash function. To evaluate this security, we start by defining the functor S in

240 M. Bellare et al.

Games G0, G1 Init:

1 sk ←$ {0, 1}k ; e ←$ {0, 1}2k

2 Return e

FO(X):

3 If FT[X] �= ⊥ then return FT[X]

4 Y ←$ {0, 1}2k

5 If X = IV ‖sk‖P then bad ← true ; Y ← e

6 FT[X] ← Y ; Return FT[X]

Fin(c′):

7 Return (c′ = 1)

Fig. 6. Games G0 and G1 in the proof of Lemma 4. Boxed code is only in G1.

Fig. 5. It is an arity-3 functor, and we separately specify S1,S2,S3. (Functor S3

will be called Mod-MD in later analyses.) The starting space, from which h is
drawn, is AF({0, 1}b+2k, {0, 1}2k), the set of compression functions. The prime p
is as before, and is public.

We want to establish the three assumptions of Theorem 1. Namely: (1) S1 is
PRG-secure (2) S2 is PRF secure and (3) security holds in game Guf

Sch∗,S3
where

Sch∗ = JCl[Sch, CF]. Bridging from Sch∗ to Sch itself will use Theorem 2.

Lemma 4. Let functor S1 : AF({0, 1}b+2k, {0, 1}2k) → AF({0, 1}k, {0, 1}2k) be
defined as in Fig. 5. Let A1 be an adversary. Then

Advprg
S1

(A1) ≤ QA1
FO

2k
(5)

Proof (Lemma 4). Since the input sk to S1[h] is k-bits long, the MD transform
defined in Sect. 3 only iterates once and the output is e = h(IV ‖sk‖P), for
padding P ∈ {0, 1}3k and initialization vector IV ∈ {0, 1}2k that are fixed and
known. Now consider the games in Fig. 6, where the boxed code is only in G1.
Then we have

Advprg
S1

(A1) = Pr[G1(A1)] − Pr[G0(A1)]

≤ Pr[G0(A1) sets bad]

≤ QA1
FO

2k
.

The second line above is by the Fundamental Lemma of Game Playing, which
applies since G0,G1 are identical-until-bad. ��

Hardening Signature Schemes 241

Lemma 5. Let functor S2 : AF({0, 1}b+2k, {0, 1}2k) → AF({0, 1}k × {0, 1}∗,Zp)
be defined as in Fig. 5. Let � be an integer such that all messages queried to FO
are no more than b · (� − 1) − k bits long. Let A2 be an adversary. Then

Advprf
S2

(A2) ≤QA2
FO

2k
+

2p(qA2
FO + �QA2

FN)
22k

+
(qA2

FO + �QA2
FN)2

22k
+

pqA2
FO · �QA2

FN

22k
.

Proof (Lemma 5). In Sect. 6, we prove the indifferentiability of functor S3

(c.f. Figure 5), which we also call Mod-MD. Define R : AF({0, 1}∗,Zp) →
AF({0, 1}k × {0, 1}∗,Zp) to be the identity functor such that R[H](x, y) =
H(x ‖ y) for all x, y,H in the appropriate domains. Notice that when R is given
access to the Mod-MD functor as its oracle, the resulting functor is exactly
S2. Using this property, we will reduce the PRF security of functor S2 to the
indifferentiability of Mod-MD.

For any simulator algorithm S, the indifferentiability composition theo-
rem [30] grants the existence of distinguisher D and adversary A5 such that

Advprf
S2

(A2) ≤ Advprf
R (A5) + Advindiff

Mod-MD,S(D).

We let S be the simulator guaranteed by Theorem 8 and separately bound each
of these terms. Adversary A5 simulates the PRF game for its challenger A2 by
forwarding all FN queries to its own FN oracle and answering FO queries using
the simulator, which has access to the FO oracle of A5. Since the simulator is
efficient and makes at most one query to its oracle each time it is run, we can
say the runtime of A5 is approximately the same as that of A2. A5 makes the
same number of FN and FO queries as A2.

Next, we want to compute Advprf
R (A5). When R is evaluated with access

to a random function h, its outputs are random unless the adversary makes a
relevant query involving the secret key. The adversary can only distinguish if
the output of FN is randomly sampled or from R[h] if it queries FO on the
k-bit secret key (e2), which has probability 1

2k for a single query. Taking a union
bound over all FO queries, we have

Advprf
R (A5) ≤ QA2

FO

2k
.

Distinguisher D simulates the PRF game for A2, by replacing functor
Mod-MD with its own Priv oracle within the FN oracle and forwarding A2’s
direct FO queries to Pub. D hence makes QFN

A2
queries to Priv of maximum

length b ·(�−1) and qFOA2
to Pub. To bound the second term, we apply Theorem 8

on the indifferentiability of shrink-MD transforms. This theorem is parameter-
ized by two numbers γ and ε; in Sect. 6, we show that Mod-MD belongs to the
shrink-MD class for γ = � 22k

p � and ε = p
22k . Then the theorem gives

Advindiff
Mod-MD,S(D) ≤ 2(QD

Pub + �QD
Priv)ε +

(QD
Pub + �QD

Priv)
2

22k
+

QD
Pub · �QD

Priv

γ
.

By substituting QD
Pub = qA2

FO and QD
Priv = QA2

FN, we obtain the bound stated
in the theorem. ��

242 M. Bellare et al.

The following considers the UF security of DS∗ = JCl[Sch, CF] with the hash
function being an MD one, and reduces this to the UF security of the same
scheme with the hash function being a monolithic random oracle. Formally, the
latter is captured by game Guf

DS∗,R where R is the identity functor.

Lemma 6. Let functor S3 : AF({0, 1}b+2k, {0, 1}2k) → AF({0, 1}∗,Zp) be
defined as in Fig. 5. Assume 2k > p. Let DS∗ = JCl[Sch, CF] where CF : {0, 1}k →
Zp is a clamping function. Let R : AF({0, 1}∗,Zp) → AF({0, 1}∗,Zp) be the iden-
tity functor, meaning R[H] = H. Let A3 be a Guf adversary making QA3

FO,QA3
Sign

queries to its respective oracles, and let � be an integer such that the maximum
message length A3 queries to Sign is at most b · (� − 1) − 2k bits. Then we can
construct adversary A4 such that

Advuf
DS∗,S3

(A3) ≤ Advuf
DS∗,R(A4) +

2p(qA3
FO + �QA3

Sign)
22k

(6)

+
(qA3

FO + �QA3
Sign)

2

22k
+

pqA3
FO · �QA3

Sign

22k
. (7)

Adversary A4 has approximately equal runtime and query complexity to A3.

Proof (Theorem 6). Again, we rely on the indifferentiability of functor S3 =
Mod-MD, as shown in Sect. 6. The general indifferentiability composition the-
orem [30] states that for any simulator S and adversary A3, there exist distin-
guisher D and adversary A4 such that

Advuf
DS∗,S3

(A3) ≤ Advuf
DS∗,R(A4) + Advindiff

S3,S (D).

Let S be the simulator whose existence is implied by Theorem 8. The dis-
tinguisher runs the unforgeability game for its adversary, replacing S3[FO] in
scheme algorithms and adversarial FO queries with its Priv and Pub oracles
respectively. It makes qA3

FO queries to Pub and QA3
Sign queries to Priv, and the

maximum length of any query to Priv is b · (� − 1) bits because each element
of group Gp is a k-bit string (c.f. Section 2). We apply Theorem 8 to obtain the
bound

Advindiff
S3,S (D) ≤ 2(qA3

FO + �QA3
Sign)ε +

(qA3
FO + �QA3

Sign)
2

22k
+

qA3
FO · �QA3

Sign

γ
.

Adversary A4 is a wrapper for A3, which answers all of its queries to FO by
running S with access to its own FO oracle; since the simulator runs in constant
time and makes only one query to its oracle, the runtime and query complexity
approximately equal those of A3.

Substituting 1
γ ≥ p

22k and ε = p
22k gives the bound. ��

Security of EdDSA with MD. We now want to conclude security of EdDSA,
with an MD-hash function, assuming security of Schnorr with a monolithic ran-
dom oracle. The Theorem is for a general prime p in the range 2k > p > 2k−5

but in EdDSA the prime is 2k−4 < p < 2k−3 so the value of δ below is

Hardening Signature Schemes 243

δ = 2k−5/p > 2k−5/2k−3 = 1/4, so the factor 1/δ is ≤ 4. Again recall our
convention that query counts of an adversary include those made by oracles in
its game, implying for example that QA

FO ≥ QA
Sign.

Theorem 7. Let DS be the Schnorr signature scheme of Fig. 4. Let CF : {0, 1}k

→ Zp be the clamping function of Fig. 4. Assume 2k > p > 2k−5 and let
δ = 2k−5/p. Let DS = DtD[DS, CF] be the EdDSA signature scheme. Let
R : AF({0, 1}∗,Zp) → AF({0, 1}∗,Zp) be the identity functor. Let S be the func-
tor of Fig. 5. Let A be an adversary attacking the Guf security of DS. Again let
b · (� − 1) − 2k be the maximum length in bits of a message input to Sign. Then
there is an adversary B such that

Advuf
DS,S

(A) ≤(1/δ) · Advuf
DS,R(B) +

QA
FO

2k−1
+

p(qA
FO + �QA

Sign)
22k−2

+
(qA

FO + �QA2
Sign)

2

22k−1
+

pqA
FO · �QA

Sign

22k−1
.

Adversary B preserves the queries and running time of A.

Proof (Theorem 7). Let DS∗ = JCl[Sch, CF]. By Theorem 1, we have

Advuf
DS,S

(A) ≤ Advprg
S1

(A1) + Advprf
S2

(A2) + Advuf
DS∗,S3

(A3).

Now applying Lemma 4, we have

Advprg
S1

(A1) ≤ QA
FO

2k
.

Applying Lemma 5, we have

Advprf
S2

(A2) ≤QA2
FO

2k
+

2p(qA2
FO + �QA2

FN)
22k

+
(qA2

FO + �QA2
FN)2

22k
+

pqA2
FO · �QA2

FN

22k
.

We substitute QA2
FO = QA

FO, qA2
FO = qA

FO and QA2
FN = QA

Sign. By Lemma 6 we obtain

Advuf
DS∗,S3

(A3) ≤Advuf
DS∗,R(B) +

2p(QA3
FO + �QA3

Sign)
22k

+
(QA3

FO + �QA3
Sign)

2

22k
+

pQA3
FO · �QA3

Sign

22k
.

Recall that adversary A3 has the same query complexity as A.
Under the assumption p > 2k−5 made in the theorem, BCJZ [16] established

that |Img(CF)| = 2k−5. So |Img(CF)|/|Zp| = 2k−5/p = δ. So by Theorem 2 we
have

Advuf
DS∗,R(B) ≤ (1/δ) · Advuf

DS,R(B) . (8)

By substituting with the number of queries made by A as in Theorem 1 and
collecting terms, we obtain the claimed bound stated in Theorem 7. ��

244 M. Bellare et al.

We can now obtain security of EdDSA under number-theoretic assumptions
via known results on the security of Schnorr. Namely, we use the known results
to bound Advuf

DS,R(B) above. From [1,37] we can get a bound and proof based
on the DL problems, and from [39] with a better bound. We can also get an
almost tight bound under the MBDL assumption via [5] and a tight bound in
the AGM via [22].

6 Indifferentiability of Shrink-MD Class of Functors

Indifferentiability. We want the tuple of functions returned by a functor
F : SS → ES to be able to “replace” a tuple drawn directly from ES. Indiffer-
entiability is a way of defining what this means. We adapt the original MRH
definition of indifferentiability [30] to our game-based model in Fig. 7. In this
game, S is a simulator algorithm. The advantage of an adversary A against the
indifferentiability of functor F with respect to simulator S is defined to be

Advindiff
F,S (A) := 2Pr[Gindiff

F,S (A) ⇒ 1] − 1.

Game Gindiff
F,S Init():

1 c ←$ {0, 1}
2 h ←$ SS

3 H ←$ ES

Pub(i,Y):

1 if c = 0 then

2 return S[H](i,Y)

3 else return h(i,Y)

Priv(i,X):

1 if c = 0 then return H(i,X)

2 else return F[h](i,X)

Fin(c′):

1 return [[c = c′]]

Fig. 7. The game Gindiff
F,S measuring indifferentiability of a functor F with respect to

simulator S.

Modifying the Merkle-Damg̊ard Transform. Coron et al. showed that
the Merkle-Damg̊ard transform is not indifferentiable with respect to any effi-
cient simulator due to its susceptibility to length-extension attacks [19]. In the
same work, they analysed the indifferentiability of several closely related indif-
ferentiable constructions, including the “chop-MD” construction. Chop-MD is a
functor with the same domain as the MD transform; it simply truncates a spec-
ified number of bits from the output of MD. The S3 functor of Fig. 5 operates
similarly to the chop-MD functor, except that S3 reduces the output modulo
a prime p instead of truncating. This small change introduces some bias into
the resulting construction that affects its indifferentiability due to the fact that

Hardening Signature Schemes 245

the outputs of the MD transform, which are 2k-bit strings, are not distributed
uniformly over Zp.

In this section, we establish indifferentiability for a general class of functors
that includes both chop-MD and S3. We rely on the indifferentiability of S3 in
Sect. 5 as a stepping-stone to the unforgeability of EdDSA; however, we think
our proof for chop-MD is of independent interest and improves upon prior work.

The original analysis of the chop-MD construction [19] was set in the ideal
cipher model and accounted for some of the structure of the underlying com-
pression function. A later proof by Fischlin and Mittelbach [32] adapts the proof
strategy to the simpler construction we address here and works in the random
oracle model as we do. Both proofs, however, contain a subtle gap in the way
they use their simulators.

At a high level, both proofs define stateful simulators S which simulate a
random compression function by sampling uniform answers to some queries and
programming others with the help of their random oracles. These simulators are
not perfect, and fail with some probability that the proofs bound. In the ideal
indifferentiability game, the Pub oracle answers queries using the simulator and
the Priv oracle answers queries using a random oracle. Both proofs at some point
replace the random oracle H in Priv with Chop-MD[S] and claim that because
Chop-MD[S[H]](X) will always return H(X) if the simulator does not fail, the
adversary cannot detect the change. This argument is not quite true, because the
additional queries to S made by the Priv oracle can affect its internal state and
prevent the simulator from failing when it would have in the previous game. In
our proof, we avoid this issue with a novel simulator with two internal states to
enforce separation between Priv and Pub queries that both run the simulator.

Our result establishes indifferentiability for all members of the Shrink-MD
class of functors, which includes any functor built by composing of the MD
transform with a function Out : {0, 1}2k → S that satisfies three conditions,
namely that for some γ, ε ≥ 0,

1. For all y ∈ S, we can efficiently sample from the uniform distribution on
the preimage set {Out−1(y)}. We permit the sampling algorithm to fail with
probability at most ε, but require that upon failure the algorithm outputs a
(not necessarily random) element of {Out−1(y)}.

2. For all y ∈ S, it holds that γ ≤ |{Out−1(y)}|.
3. The statistical distance δ(D) between the distribution

D := z ←$ Out−1(y) : y ←$ S

and the uniform distribution on {0, 1}2k is bounded above by ε.

In principle, we wish γ to be large and ε to be small; if this is so, then the set
S will be substantially smaller than {0, 1}2k and the function Out “shrinks” its
domain by mapping it onto a smaller set.

Both chop-MD and mod-MD are members of the Shrink-MD class of func-
tors; we briefly show the functions that perform bit truncation and modular
reduction by a prime satisfy our three conditions. Truncation by any number of
bits trivially satisfies condition (1) with ε = 0.

246 M. Bellare et al.

Reduction modulo p also satisfies condition (1) because the following algo-
rithm samples from the equivalence class of x modulo p with failure probability at
most p

22k . Let � be the smallest integer such that � > 22k

p . Sample w ←$ [0 . . . �−1]
and output w · p + x, or x if w · p + x > 22k. We say this algorithm “fails” in
the latter case, which occurs with probability at most 1

� < p
22k . In the event the

algorithm does not fail, it outputs a uniform element of the equivalence class
of x.

Bellare et al. showed that the truncation of n trailing bits satisfies condition
(2) for γ = 22k−n and reduction modulo prime p satisfies (2) for γ = �22k/p� . It
is clear that sampling from the preimages of a random 2k−n-bit string under n-
bit truncation produces a uniform 2k-bit string, so truncation satisfies condition
(3) with ε = 0. Also from Bellare et al. [3], we have that the statistical distance
between a uniform element of Zp and the modular reduction of a uniform 2k-bit
string is ε = p

22k . The statistical distance of our distribution z ←$ Out−1(Y) for
uniform Y over S from the uniform distribution over {0, 1}2k is bounded above
by the same ε; hence condition (3) holds.

Given a set S and a function Out : {0, 1}2k → S, we define the functor FS,Out

as the composition of Out with MD. In other words, for any x ∈ {0, 1}∗ and
h ∈ AF({0, 1}b+2k, {0, 1}2k), let FS,Out[h](x) := Out(MD[h](x)).

Theorem 8. Let k be an integer and S a set of bitstrings. Let Out : {0, 1}2k → S
be a function satisfying conditions (1), (2), and (3) above with respect to γ, ε > 0.
Let MD be the Merkle-Damg̊ard functor(c.f. Section 2) FS,Out := Out ◦ MD be
the functor described in the prior paragraph. Let pad be the padding function
used by MD, and let unpad be the function that removes padding from its input
(i.e., for all X ∈ {0, 1}∗, it holds that unpad(X ‖ pad(|X |)) = X). Assume that
unpad returns ⊥ if its input is incorrectly padded and that unpad is injective
on its support. Then there exists a simulator S such that for any adversary A
making Priv queries of maximum length b · (� − 1) bits then

Advindiff
F,S (A) ≤ 2(QA

Pub + �QA
Priv)ε +

(QA
Pub + �QA

Priv)
2

22k
+

QA
Pub · �QA

Priv

γ
.

We prove the theorem in the game-based framework in our full version [6]. Here,
we give a brief overview of our proof strategy and its differences from previous
indifferentiability proofs for the chop-MD construction [19,32].

Our simulator, S, is defined in Fig. 8. It is inspired by, but distinct from,
that of Mittelbach and Fischlin’s simulator for the chop-MD construction ([32]
Fig. 17.4.), which in turn adapts the simulator of Coron et al. [19] from the
ideal cipher model to the random oracle model. These simulators all present
the interface of a random compression function h and internally maintain a
graph in which each edge represents an input-output pair under the simulated
compression function. The intention is that each path through this graph will
represent a possible evaluation of FS,Out[h]. The fundamental difference between
our simulator and previous ones is that we maintain two internal graphs instead
of one: one graph for all queries, and one graph for public interface queries only.

Hardening Signature Schemes 247

This novel method of using two graphs avoids the gap in prior proofs described
above by tracking precisely which parts of the simulator’s state are influenced
by private and public interface queries respectively.

In our proof, we transform the ideal indifferentiability game by evaluating
our functor F in each query to the Priv oracle. Initially, we discard the output of
this evaluation and use a separate graph in our simulator so that these additional
queries do not influence the Pub oracle. In later games, we bound the probability
that the private queries influence the public graph in a way that is detectable by
the adversary (such as creating collisions, cycles, or duplicate edges in the public
simulator’s graph), and begin using the same graph for both types of query. We
also claim that if the graph is free of collisions, cycles, and duplicate edges, then
we can respond to Priv queries with the evaluation of F without detection. We
then use the statistical closeness of sampling a random preimage of a random
element (property (3) of Out) to argue that our simulator is honestly behaving
as a random oracle except with some small probability. The resulting game is
then equivalent to the real indifferentiability game, and the theorem follows by
collecting the bounded differences between each pair of adjacent games.

Simulator S[H](Y , G) :

1 (y, m) ← Y

2 if ∃z such that (y, z, m) ∈ G.edges

3 return z

4 M ← G.FindPath(IV, y)

5 if M �= ⊥ and unpad(M ‖ m) �= ⊥ then

6 if Th[Y ,M] �= ⊥ then z ← Th[Y ,M]

7 else z ←$ Out−1(H(unpad(M ‖ m)))

8 Th[Y ,M] ← z

9 else if Th[Y] �= ⊥ then z ← Th[Y]

10 else z ←$ {0, 1}2k; Th[Y] ← z

11 add (y, z, m) to G.edges

12 add (y, z, m) to Gall.edges

13 return z

Fig. 8. Indifferentiability simulator for the proof of Theorem 8.

Acknowledgments. Bellare and Davis are supported in part by NSF grant CNS-
2154272. We thank the (anonymous) reviewers of Crypto 2022, Asiacrypt 2022 and
CT-RSA 2023 for their valuable comments. We thank Joseph Jaeger for his helpful
comments and discussions about the correctness of chop-MD proofs in the literature.

248 M. Bellare et al.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the fiat-shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 28

2. Backendal, M., Bellare, M., Sorrell, J., Sun, J.: The Fiat-Shamir zoo: relating
the security of different signature variants. In: Gruschka, N. (ed.) NordSec 2018.
LNCS, vol. 11252, pp. 154–170. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03638-6 10

3. Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based PRFs: AMAC and
its multi-user security. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016.
Part I, volume 9665 of LNCS, pp. 566–595. Springer, Heidelberg (2016)

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

5. Bellare, M., Dai, W.: The multi-base discrete logarithm problem: tight reductions
and non-rewinding proofs for schnorr identification and signatures. In: Bhargavan,
K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp.
529–552. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7 24

6. Bellare, M., Davis, H., Di, Z.: Hardening Signature Schemes via Derive-then-
Derandomize: Stronger Security Proofs for EdDSA. Cryptology ePrint Archive,
February 2023. http://eprint.iacr.org

7. Bellare, M., Davis, H., Günther, F.: Separate your domains: NIST PQC KEMs,
oracle cloning and read-only Indifferentiability. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 3–32. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45724-2 1

8. Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: proofs of secu-
rity against impersonation under active and concurrent attacks. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9 11

9. Bellare, M., Poettering, B., Stebila, D.: From identification to signatures, tightly: a
framework and generic transforms. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 435–464. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6 15

10. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93, pp. 62–73. ACM Press, November 1993

11. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

12. Bellare, M., Tackmann, B.: Nonce-based cryptography: retaining security when
randomness fails. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9665, pp. 729–757. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49890-3 28

13. Bernstein, D.J.: Multi-user Schnorr security, revisited. Cryptology ePrint Archive,
Report 2015/996 (2015). https://eprint.iacr.org/2015/996

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/978-3-030-03638-6_10
https://doi.org/10.1007/978-3-030-03638-6_10
https://doi.org/10.1007/978-3-030-65277-7_24
http://eprint.iacr.org
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/3-540-45708-9_11
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-662-49890-3_28
https://doi.org/10.1007/978-3-662-49890-3_28
https://eprint.iacr.org/2015/996

Hardening Signature Schemes 249

14. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. J. Cryptographic Eng. 2(2), 77–89 (2012)

15. Bleichenbacher, D.: A forgery attack on RSA signatures based on implementation
errors in the verification. Rump Session Presentation, Crypto 2006, August 2006

16. Brendel, J., Cremers, C., Jackson, D., Zhao, M.: The provable security of Ed25519:
theory and practice. In: 2021 IEEE Symposium on Security and Privacy, pages
1659–1676. IEEE Computer Society Press, May 2021

17. Chalkias, K., Garillot, F., Nikolaenko, V.: Taming the many EdDSAs. In: van der
Merwe, T., Mitchell, C., Mehrnezhad, M. (eds.) SSR 2020. LNCS, vol. 12529, pp.
67–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64357-7 4

18. Chen, Y., Lombardi, A., Ma, F., Quach, W.: Does Fiat-Shamir require a crypto-
graphic hash function? In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS,
vol. 12828, pp. 334–363. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-84259-8 12

19. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

20. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 39

21. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damg̊ard for practical
applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388.
Springer, Heidelberg (2009)

22. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind schnorr signatures and signed ElGa-
mal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. Part II, volume 12106 of LNCS, pp. 63–95. Springer, Heidel-
berg (2020)

23. Goldreich, O.: Two remarks concerning the Goldwasser-Micali-Rivest signature
scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110.
Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 8

24. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Computi. 17(2), 281–308 (1988)

25. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your PS and
QS: detection of widespread weak keys in network devices. In: Kohno, T. (ed.)
USENIX Security 2012, pp. 205–220. USENIX Association, August 2012

26. IANIX. Things that use Ed25519. https://ianix.com/pub/ed25519-deployment.
html

27. S. Josefsson and I. Liusvaara. Edwards-curve digital signature algorithm (EdDSA).
RFC 8032, January 2017. https://datatracker.ietf.org/doc/html/rfc8032

28. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 2

29. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Ron was wrong, whit is right. Cryptology ePrint Archive, Report 2012/064 (2012).
https://eprint.iacr.org/2012/064

30. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

https://doi.org/10.1007/978-3-030-64357-7_4
https://doi.org/10.1007/978-3-030-84259-8_12
https://doi.org/10.1007/978-3-030-84259-8_12
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/3-540-47721-7_8
https://ianix.com/pub/ed25519-deployment.html
https://ianix.com/pub/ed25519-deployment.html
https://datatracker.ietf.org/doc/html/rfc8032
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://eprint.iacr.org/2012/064

250 M. Bellare et al.

31. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

32. Mittelbach, A., Fischlin, M.: The Theory of Hash Functions and Random Oracles.
Springer, Cham(2021). https://doi.org/10.1007/978-3-030-63287-8

33. M’Räıhi, D., Naccache, D., Pointcheval, D., Vaudenay, S.: Computational alterna-
tives to random number generators. In: Tavares, S., Meijer, H. (eds.) SAC 1998.
LNCS, vol. 1556, pp. 72–80. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48892-8 6

34. National Institute of Standards and Technology. Digital Signature Standard (DSS).
FIPS PUB 186–5, October 2019. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.186-5-draft.pdf

35. Neven, G., Smart, N.P., Warinschi, B.: Hash function requirements for Schnorr
signatures. J. Math. Cryptol. 3(1), 69–87 (2009)

36. Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from
identification. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol. 1462, pp. 354–369.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055741

37. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

38. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 27

39. Rotem, L., Segev, G.: Tighter security for Schnorr identification and signatures:
a high-moment forking lemma for Σ-protocols. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12825, pp. 222–250. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84242-0 9

40. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161–174 (1991)

41. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

42. Yoneyama, K., Miyagawa, S., Ohta, K.: Leaky random oracle. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci. 92(8), 1795–1807 (2009)

https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-030-63287-8
https://doi.org/10.1007/3-540-48892-8_6
https://doi.org/10.1007/3-540-48892-8_6
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5-draft.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5-draft.pdf
https://doi.org/10.1007/BFb0055741
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-030-84242-0_9
https://doi.org/10.1007/978-3-030-84242-0_9

Security Analysis of RSA-BSSA

Anna Lysyanskaya(B)

Brown University Providence, Providence, RI 02912, USA
anna_lysyanskaya@brown.edu

Abstract. In a blind signature scheme, a user can obtain a digital sig-
nature on a message of her choice without revealing anything about
the message or the resulting signature to the signer. Blind signature
schemes have recently found applications for privacy-preserving web
browsing and ad ecosystems, and as such, are ripe for standardization.
In this paper, we show that the recent proposed standard of Denis,
Jacobs and Wood [16,17] constitutes a strongly one-more-unforgeable
blind signature scheme in the random-oracle model under the one-more-
RSA assumption. Further, we show that the blind version of RSA-
FDH proposed and analyzed by Bellare, Namprempre, Pointcheval and
Semanko [6] does not satisfy blindness when the public key is chosen
maliciously, but satisfies a weaker notion of a blind token.

1 Introduction

A blind signature scheme is a digital signature scheme that allows the signature
recipient to obtain a digital signature on a message of the recipient’s choice with-
out revealing this message to the signer. The key feature of a blind signature
protocol is that the resulting signature cannot be linked to a particular protocol
run. If the recipient ran the protocol n times and, as a result, produced n signa-
tures and provided them to the signer in a randomly permuted order, the signer
would not be able to identify which signature corresponded to which protocol
run any better than by guessing at random. Just as in a regular digital signature
scheme, in order to verify a signature, a verifier (a third party, distinct from the
signer or the signature recipient) runs a non-interactive verification algorithm.
Applications. Blind signatures were first introduced by David Chaum [13,14].
The motivating application was untraceable electronic cash (ecash) [13,15]: a
bank can issue electronic coins by issuing blind signatures. A message represents
a coin’s serial number, while the bank’s signature on it attests that it is indeed a
valid coin. The fact that it was issued via a blind signing protocol means that one
cannot trace which coin was issued to which user, and therefore cannot surmise
how a particular user Alice spent her money.

Blind signatures protect a user’s privacy even while ensuring they are quali-
fied for a particular transaction. For example, suppose that a user has convinced
a server that he is a human (rather than a bot) by solving a CAPTCHA. Then
the server may issue such a user a blind signature (or several blind signatures)
c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 251–280, 2023.
https://doi.org/10.1007/978-3-031-31368-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_10&domain=pdf
http://orcid.org/0000-0002-3567-3550
https://doi.org/10.1007/978-3-031-31368-4_10

252 A. Lysyanskaya

that allow this user to convince other servers that he is a human and not a bot
without needing to perform additional CAPTCHAs; however, even if all these
servers compare transaction logs, they cannot tell which user it was. This sim-
ple scenario is of a growing importance in practice; for example, in is used in
VPN by Google One1, Apple’s iCloud Private Relay2 and Apple’s Safari browser
proposal for privacy-preserving click measurements3.
Definitions. A blind signature scheme must satisfy correctness, blindness, and
strong one-more unforgeability [1,25,28,33]. Correctness means that an honest
verifier will always accept a signature issued by an honest signer to an honest
recipient; here, by “honest" we mean one that follows the prescribed algorithms.
Blindness, as we explained above, means that the malicious signer learns nothing
about a message during the signing protocol, and a signature cannot be linked
to the specific protocol execution in which it was computed. This must hold
even if the signer’s public key is chosen maliciously. Finally, strong one-more
unforgeability means that, if an adversary acts as the recipient n times, then it
cannot produce n+1 distinct message-signature pairs better than with negligible
probability. It is important that unforgeability hold even when the adversary
engages in several sessions with the signer at the same time; i.e. it is important
that unforgeability should hold in the concurrent setting.
Standardization. Blind signatures have been studied for almost forty years. They
have well-understood definitions of security [1,25,28,33]. Numerous construc-
tions have also been proposed [2,3,5,6,11,13,19,23,24,27,28]. Finally, as we
argued above, they are highly desirable in practice. Of course, even a well-
understood cryptographic primitive should not get adopted for widespread use
without undergoing a thorough standardization process through software stan-
dardization bodies such as the IETF.

The first proposed IETF standard for a blind signature scheme is the RSA-
BSSA proposal by Denis, Jacobs and Wood [16,17]. The scheme they proposed
for standardization is, in a nutshell, the blind version of RSA-PSS [8,9,29,30]
along the lines proposed by Chaum [13,14]. However, as the analysis in this
paper makes clear, care must be taken to ensure that the message being signed
comes from a high-entropy distribution; in the event that it doesn’t, a random
salt value must be appended to it.

The key generation and verification algorithms are (essentially) the same as
in RSA-PSS, except that, in case the message msg does not come from a high-
entropy distribution, a salt value rand must be concatenated to the message
msg. More precisely, if msg does not come from a high-entropy distribution, this
paper’s analysis recommends that the blind signing algorithm consist of three
steps: first, on input a message msg and the RSA public key (N, e), the user
chooses a random salt value rand and computes an RSA-PSS encoding m of

1 https://one.google.com/about/vpn/howitworks.
2 https://www.apple.com/privacy/docs/iCloud_Private_Relay_Overview_Dec2021.

PDF.
3 https://webkit.org/blog/11940/pcm-click-fraud-prevention-and-attribution-sent-

to-advertiser/.

https://one.google.com/about/vpn/howitworks
https://www.apple.com/privacy/docs/iCloud_Private_Relay_Overview_Dec2021.PDF
https://www.apple.com/privacy/docs/iCloud_Private_Relay_Overview_Dec2021.PDF
https://webkit.org/blog/11940/pcm-click-fraud-prevention-and-attribution-sent-to-advertiser/
https://webkit.org/blog/11940/pcm-click-fraud-prevention-and-attribution-sent-to-advertiser/

Security Analysis of RSA-BSSA 253

msg ◦rand (where ‘◦’ denotes concatenation), picks a blinding value r and sends
the value z = mre mod N to the signer. Using his secret key d, the signer
computes s = zd mod N and sends it to the user, who derives the signature
σ = s/r mod N ; it is easy to see that σe = se/re = z/re = m mod N , and
thus, constitutes a valid RSA-PSS signature on the user’s message msg ◦ rand.
In case msg comes from a high-entropy distribution, rand is not needed, and m
is computed as a PSS encoding of msg; the rest of the signing algorithm is the
same. As we will see in Sect. 4, either the high entropy of msg, or the additional
salt value rand are necessary to ensure that the scheme is provably blind in the
event that the signer’s key was chosen maliciously. This has resulted in IETF
discussions on amending the draft4.

As pointed out by Denis, Jacobs and Wood [16,17], the message-response
(i.e., two-move) structure of this protocol makes it desirable. The security game
for strong one-more unforgeability for a two-move protocol is the same whether
in the sequential or the concurrent setting. In contrast, a recent result [10] gave
an attack on popular three-move blind signature protocols (such as the blind
version of the Schnorr signature [28,31,32] or anonymous credentials light [4])
in the concurrent setting, making them poor candidates for standardization.
Moreover, a three-message (or more) protocol would require the signer to keep
state, which is a significant complication when it comes to system design, making
the concurrently secure blind signature schemes of Abe [2] and Tessaro and
Zhu [35] less suitable in practice.

The choice of blind RSA-PSS over blind RSA-FDH [6] is motivated by the
popularity of (non-blind) RSA-PSS, ensuring that, at least as far as verifying
the signatures is concerned, no new software need be developed. That way, even
unsophisticated participants have easy access to the digital tools they need to
take advantage of the privacy-preserving features offered by blind signatures.

Why standardize and adopt an RSA-based scheme now, instead of a post-
quantum one? Indeed it is possible that, with the advent of quantum computing,
decades from now another scheme will have to replace this RSA-based one.
Yet, this will have no consequences on today’s clients and servers if the users’
privacy is protected even from quantum computers (for example, if it holds
unconditionally). The consequences to the servers are minimized because a blind
signature ceases to be relevant after a relatively brief amount of time, so the
lifetime of a signing key would be measured in weeks rather than years.
This paper’s contributions and organization. We show that the proposed RSA-
BSSA standard [16] constitutes a one-more unforgeable blind signature scheme.
One-more unforgeability holds in the random-oracle model under the one-more-
RSA assumption introduced by Bellare, Namprempre, Pointcheval and Semanko
(BNPS) [6]. Blindness of the RSA-BSSA holds in the random-oracle model.

We also show that Chaum-BNPS’s blind RSA-FDH [6,14] is not blind in the
malicious-signer model, i.e., it can only be shown to be blind if the signer’s key
pair is generated honestly (see Sect. 4.4). However, we show in Sect. 4.4 that even
in the case of a malicious signer, it satisfies the weaker notion of a blind token
which we introduce in Sect. 2.3.
4 https://github.com/cfrg/draft-irtf-cfrg-blind-signatures/pull/105.

https://github.com/cfrg/draft-irtf-cfrg-blind-signatures/pull/105

254 A. Lysyanskaya

The rest of this paper is organized as follows: In Sect. 2 we recall the definition
of security for blind signature schemes. Our definitions are tailor-made for two-
move blind signature schemes, because in the case of two-move signatures the
issues of composition with other protocols go away (as discussed above). Other
than that, our definitions are standard [1,25,28,33]. We include bibliographic
notes explaining that at the end of Sects. 2.1 and 2.2 that provide definitions of
one-more unforgeability and blindness, respectively.

In Sect. 3 we give an overview of RSA-BSSA. We begin by giving a basic
version of the scheme, in which the blind signature that a user obtains is a
standard RSA-PSS signature on the user’s message msg (i.e. there is no rand).
We also give two modifications of the basic scheme: a variant in which the signer’s
RSA public key (N, e) is enhanced in a way that ensures that the exponent e
is relatively prime to ϕ(N) using a technique of Goldberg, Reyzin, Sagga and
Baldimtsi [21]. Finally, in Sect. 3.3 we give the variant that corresponds to the
RSA-BSSA proposal from February 2022 [16]; in this variant, the public key is
a standard RSA public key (N, e) and the signature on a message msg consists
of a salt rand and the PSS signature on (msg ◦ rand).

In Sect. 4 we justify the salt rand: we show why it is difficult to prove that
the basic scheme is blind without introducing additional assumptions, and show
that, in the random-oracle model, both modifications give rise to blind signature
schemes. We also show that the basic scheme is a blind token. Finally, in Sect. 5
we show that the basic scheme and both variants are one-more-unforgeable under
the one-more-RSA assumption in the random-oracle model.

2 Definition of a Two-Move Blind Signature Scheme

The definition of a blind signature scheme we provide here applies only to two-
move blind signatures; see prior work for more general definitions [8,9,29,30].
First, in Definition 1 let us give the input-output specification for the five algo-
rithms that constitute a two-move blind signature scheme. The key generation
algorithm KeyGen and the signature verification algorithm Verify have the same
input-output behavior as in a regular digital signature scheme.

The signing algorithm is broken down into three steps: (1) The signature
recipient runs the Blind algorithm to transforms a message msg into its blinded
form blinded_msg; blinded_msg is sent to the signer. (2) The signer runs the
algorithm BSig(SK , blinded_msg) to compute its response blinded_sig, and
then sends it to the signature recipient. (3) The signature recipient uses the
algorithm Finalize to transform blinded_sig into a valid signature σ on its
message msg. More precisely:

Definition 1 (Input-output specification for a two-move blind signa-
ture scheme). Let S = (KeyGen,Blind,BSig,Finalize,Verify) be a set of poly-
nomial-time algorithms with the following input-output specifications:

KeyGen(1k) → (PK ,SK) is a probabilistic algorithm that takes as input 1k (the
security parameter represented in unary) and outputs the public signature
verification key PK and a secret signing key SK .

Security Analysis of RSA-BSSA 255

Blind(PK , msg) → (blinded_msg, inv) is a probabilistic algorithm that takes as
input the public key PK and a string msg and outputs a blinded message
blinded_msg (which will be sent to the signer) and an auxiliary string inv
(which will be used by Finalize to derive the final signature σ).

BSig(SK , blinded_msg) → blinded_sig is an algorithm (possibly a proba-
bilistic one) that takes as input the secret signing key SK and a string
blinded_msg and outputs a blinded signature blinded_sig.

Finalize(PK , inv, blinded_sig) → σ is an algorithm that takes as input the
public signature verification key PK , an auxiliary string inv and a blinded
signature and outputs a signature σ.

Verify(PK , msg, σ) is an algorithm that either accepts or rejects.

Next, let us define what it means for S to constitute a correct blind signature
scheme. On a high level, correctness means that if a signature σ was produced
after both the signature recipient and the signer followed their corresponding
algorithms, then this signature will be accepted by Verify. More formally:

Definition 2 (Correct two-move blind signature). Let S = (KeyGen,Blind,
BSig,Finalize, Verify) be a set of polynomial-time algorithms that satisfy the
input-output specification for a two-move blind signature scheme (Defini-
tion 1). S constitutes a correct two-move blind signature scheme if for all k,
(PK ,SK) output by KeyGen(1k), strings msg, (blinded_msg, inv) output by
Blind(PK , msg), blinded_sig output by BSig(SK , blinded_msg), and σ out-
put by Finalize(PK , inv, blinded_sig), Verify(PK , msg, σ) accepts.

2.1 Strong One-More Unforgeability

As discussed above, a blind signature scheme must satisfy one-more unforgeabili-
ty: an adversarial user who obtained � signatures from the signer cannot produce
� + 1 distinct message-signature pairs. Since we are limiting our attention to
two-move blind signatures, the security experiment that captures it can allow
the adversary oracle access to the algorithm BSig(SK , ·). More formally:

Definition 3 (Strong one-more-unforgeability). Let S = (KeyGen,Blind,
BSig,Finalize,Verify) be a set of polynomial-time algorithms that satisfy the input-
output specification for a two-move blind signature scheme (Definition 1). For
an oracle Turing machine A, the success probability pS

A(k) of A in breaking the
strong one-more unforgeability of S is the probability that A is successful in the
following experiment parameterized by k:

Experiment set-up The key pair is generated: (PK ,SK) ← KeyGen(1k).
Adversary’s execution The adversary A is given oracle access to BSig(SK , ·)

and is run on input PK ; ABSig(SK ,·)(PK) terminates with a set of message-
signature pairs on its output tape: ((msg1, σ1), . . . , (msgn, σn)), and a set of
query-response pairs on its query tape:

((blinded_msg1, blinded_sig1), . . . , (blinded_msg�, blinded_sig�)).

256 A. Lysyanskaya

The success criterion The number of distinct message-signature pairs (msgi,
σi) such that Verify(PK , msgi, σi) = 1 is at least � + 1, i.e. A outputs more
distinct signatures than the number of queries it made to BSig.

S satisfies the strong one-more-unforgeability property if for any polynomial-time
adversary A, the value pS

A(k) is negligible.

The history of this definition. Chaum’s original blind signatures papers [13,14]
did not contain a formal definition; in fact, they preceded the formal definition
of security for a digital signature scheme.

The regular definition of unforgeability for digital signature schemes [22] does
not apply to blind signatures. In the regular definition, the adversary wins the
unforgeability game if it produces a signature on a message that the challenger
never signed. However, the challenger in the blind signature game has no way
of knowing which messages it has signed — that’s the whole point of blindness,
and ideally, we want it to hold unconditionally.

Thus, Pointcheval and Stern [27,28] came up with the notion of one-more
unforgeability in which the adversary is considered successful if it outputs more
distinct signed messages than the number of blind signing sessions it participated
in. Pointcheval and Stern considered a more general structure of a blind signing
protocol, not just the message-response exchange a-la our Blind, BSig, Finalize
structure, and thus the issue of self-composition (i.e. what happened if the mes-
sages from the signer were adversarially interleaved with those of the adver-
sarial users) needed to be carefully defined in their work. But, as Bellare et al.
observed [6], for a protocol that has this simple two-move (i.e. message-response)
structure, self-composition is for free, and so the one-more-unforgeability game
can be formalized in relatively simple terms.

A stronger definition of unforgeability for blind signatures was given by
Schröder and Unruh [33]. They consider the case when the adversary observes
the inputs and outputs of honest users who engage in � blind signing protocols to
obtain signatures on fewer than � distinct messages (i.e. some message is getting
signed more than once). The adversary should not be able to get a signature on
an additional message by directing honest users to get more than one signature
on the same message. Schröder and Unruh showed that Pointcheval and Stern’s
one-more-unforgeability definition is not sufficient to prevent the adversary from
taking advantage of honest users this way; but strong one-more unforgeability
is. Following their work, strong one-more unforgeability is the standard notion
of unforgeability for blind signature schemes.

Our formulation of strong one-more unforgeability in Definition 3 uses Defini-
tion 6.1 of Bellare et al. [6], which is their definition of one-more unforgeability, as
a starting point. Their formulation is tailored specifically to one-more unforge-
ability of the blind RSA-FDH, while ours generally applies to any two-move
protocol consisting of Blind, BSig, and Finalize. We also modified the success
criterion to correspond to strong one-more unforgeability.

One might wonder why the security game is for only one signer. Indeed, we
could extend the game to require that the adversary specify a number of signers

Security Analysis of RSA-BSSA 257

and interact with each signer before outputting a set of message-signature pairs.
The adversary would be deemed successful if, for one of the signers, the number
of valid message-signature pairs from this signer produced by the adversary was
greater than the number of the adversary’s queries to this signer. It is easy to see
that extending the security game to such a multi-signer scenario would not make
the definition stronger: a scheme that satisfies one-more unforgeability with one
signer will also satisfy it with multiple (say, n) signers. The reduction would
randomly pick one of the signers and would set up the game so that it knows
the secret key of all but the selected signer; the selected signer is the one from
the one-more-unforgeability challenger with one signer. If the adversary succeeds
and the reduction guessed the signer correctly, then the reduction will succeed
as well; since the guess is correct with probability 1/n, this shows that the two
definitions are equivalent up to a security loss of 1/n. Although not addressed
explicitly in the literature cited above, this is well-understood in the context of
regular digital signatures [20] and thus it is the single-signer definitions that are
standard in the blind signatures literature.

2.2 Blindness

Finally, a blind signature scheme must satisfy blindness, that is, it should be
impossible to determine which query to the (adversarial) signer resulted in the
(honest) signature recipient deriving a particular message-signature pair. For this
security game, the adversary picks the public key adversarially; it also picks two
messages whose signatures the challenger will try to obtain. The challenger will
try to obtain signatures on these messages in random order selected by picking
a random bit b; the adversary’s goal is to tell in what order. The adversary gets
to see the resulting signatures before producing an output.

A trivial strategy for the adversary would be to issue a valid signature in
response to one of the queries but not the other. In order to rule out this strategy,
the challenger allows the adversary to see the resulting signatures only if both
of them verify. If one (or both) of the signatures does not verify, the adversary
will have to guess the bit b based on its view of the interaction with the user in
the blind signing protocol.

The formal definition below applies only to two-move blind signature
schemes, but it can be generalized to any protocol structure.

Definition 4 (Blindness). Let S = (KeyGen,Blind,BSig,Finalize,Verify) be a
set of polynomial-time algorithms that satisfy the input-output specification for
a two-move blind signature scheme (Definition 1). For an interactive algorithm
A, let qS

A(k, b) be the probability that A outputs 0 in the following experiment
parameterized by k and the bit b:

A is invoked A(1k) selects a public key PK (whose length is appropriate for
the security parameter k) and two messages msg0 and msg1.

A acts as the blind signer For i ∈ {0, 1}, the challenger computes the val-
ues (blinded_msgi, invi) ← Blind(PK , msgi) and sends (blinded_msgb,

258 A. Lysyanskaya

blinded_msg1−b) to A, receiving (blinded_sigb, blinded_sig1−b) in
response.

A receives the signatures For i ∈ {0, 1}, the challenger computes

σi = Finalize(PK , invi, blinded_sigi)

If Verify(PK , msg0, σ0) = Verify(PK , msg1, σ1) = 1, it sends (σ0, σ1) to A;
else it sends ⊥ to A.

A’s output A outputs some value output.

A’s advantage AdvS
A(k) in breaking the blindness of S is defined as AdvS

A(k) :=
|qS

A(k, 0)−qS
A(k, 1)|. S satisfies blindness if for any probabilistic polynomial-time

A, AdvS
A(k) is negligible.

The history of this definition. The first formalization of the blindness property
of a digital signature scheme was given by Juels, Luby and Ostrovsky [25]; in
this initial formulation, the public key for the scheme was generated honestly.
Abdalla, Namprepre and Neven [1] improved the definition by considering a
signer who is already adversarial at key generation time; they also gave a more
careful treatment of the compositional issues. The definition given above corre-
sponds to the Abdalla et al. version of the blindness definition as it applies to the
case of a two-move signing protocol. It is considered standard in the literature.

Again, one might wonder why the number of messages in the security game
is limited to just two, msg0 and msg1; and why the user just interacts with
the signer A once. It is relatively straightforward to show that extending the
definition to allow more than two messages or to give the signer more chances
to interact with the challenger will not strengthen the definition: a reduction
playing middleman between the multi-message or multi-interaction adversary
and the two-message single interaction challenger will inherit a non-negligible
fraction of the adversary’s advantage.

2.3 A New Definition: Blind Tokens

In certain applications, the messages being signed are chosen at random from
some message space M. If all goes well during the signing protocol, the user
gets a unique authenticated token, i.e. a signature on this random message. This
token should be blind, i.e. unlinkable to the specific interaction with the signer
in which it was obtained. If for some reason the signing protocol fails to return
a valid signature on this message, the message may be discarded.

Let us formalize the blindness requirement of such applications by introduc-
ing a new cryptographic primitive: a blind token scheme. A blind token scheme
will have the same input-output specification as a blind signature scheme, and
must also be strongly one-more unforgeable; however, the notion of blindness
it needs to satisfy is somewhat weaker. Unlike the blind signature blindness
experiment, here the two messages msg0 and msg1 are picked from the same
distribution M. The adversary has some influence on how they are picked: M
takes as input the adversary’s public key PK as well as some auxiliary input

Security Analysis of RSA-BSSA 259

aux . In the full version of this paper [26], we also give a version of this definition
that corresponds to the one-more unforgeability, rather than strong one-more
unforgeability.

Definition 5 (Strongly unforgeable blind token scheme). Let S =
KeyGen, Blind,BSig,Finalize, Verify be a set of polynomial-time algorithms that
satisfy the input-output specification for a two-move blind signature scheme (Def-
inition 1) and the strong one-more unforgeability property (Definition 3). Let M
be a message sampling algorithm that, on input the security parameter 1k, a
public key PK , and auxiliary input aux , outputs a string msg.

For an interactive algorithm A and an efficient message sampling algorithm
M, let qS,M

A (k, b) be the probability that A outputs 0 in the following experiment
parameterized by the security parameter k and the bit b:

A is invoked A(1k) selects a public key PK (whose length is appropriate for
the security parameter k), and auxiliary input aux for the message sampling
algorithm.

A acts as the blind signer For i ∈ {0, 1}, let msgi ← M(1k,PK , aux) be mes-
sages randomly selected by the challenger, who then proceeds to compute the
values (blinded_msgi, invi) ← Blind(PK , msgi) and send (blinded_msgb,
blinded_msg1−b) to A, receiving (blinded_sigb, blinded_sig1−b) in
response.

A receives the signatures For i ∈ {0, 1}, the challenger computes

σi = Finalize(PK , invi, blinded_sigi)

If Verify(PK , msg0, σ0) = Verify(PK , msg1, σ1) = 1, it sends
(msg0, σ0, msg1, σ1) to A; else it sends ⊥ to A.

A’s output A outputs some value output.

A’s advantage AdvS,M
A (k) is defined as AdvS,M

A (k) := |qS,M
A (k, 0) −

qS,M
A (k, 1)|. S is a strongly unforgeable blind token scheme for message space

M if for any probabilistic polynomial-time A, AdvS,M
A (k) is negligible.

The motivation for this definition. This definition is new; generally, when ana-
lyzing proposed standards, introducing new notions of security is a bad idea.
An algorithm adapted for practical use should satisfy a notion of security that
is well-understood and established. Unfortunately, as we will see in Sect. 4.4,
at least one scheme that is already used in practice does not satisfy the estab-
lished definition of a blind signature scheme; however, we show that it satisfies
Definition 5, and therefore can still be used securely in some limited applications.

In the ecash application as originally envisioned by Chaum, the message msg
is simply a string that is sampled uniformly at random; it should be long enough
that it is unlikely that the same string can be sampled twice. Once the user
obtains the signature σ on msg, the pair (msg, σ) can be viewed as an e-coin. msg
is the coin’s serial number, while σ can be thought of as its proof of validity.
However, if the user fails to obtain σ for this msg, then msg has no value and can

260 A. Lysyanskaya

be discarded. The reason that blind tokens give users of this system the desired
privacy is that each user draws the serial numbers for her coins from exactly the
same distribution as all the other users.

3 The RSA-BSSA Scheme

Let us review the blind signature scheme from the RSA blind signature scheme
with appendix (RSA-BSSA) proposal by Denis, Jacobs and Wood [16,17].
High-level description of the basic scheme. In the RSA-PSS signature scheme [8,
9,29,30], the signature on a message M is the RSA inverse of a special encod-
ing (called the PSS encoding) m of M . At a high level, the basic version of
RSA-BSSA is reminiscent of Chaum’s original blind signature scheme: it is the
blind version of the RSA-PSS signature scheme. Following RSA-PSS, the key
generation algorithm generates an RSA key pair PK = (N, e), SK = d, where
ed ≡ 1 mod ϕ(N). Following Chaum, in order to obtain a blind signature on
a message M , the user first generates a PSS encoding m of M , then blinds it
using a random r ← Z

∗
N obtaining z = mre mod N , which is (hopefully) an

element of Z∗
N that is distributed independently of M . Then he gets from the

signer the blinded signature y = zd mod N , and unblinds it to obtain and output
s = yr−1 mod N . To verify a signature s on a message M , follow the same algo-
rithm as RSA-PSS verification: check that the PSS decoding of m = se mod N
is the message M . Let us fill in the missing details.
Hash functions. For the PSS encoding, the scheme will use two cryptographic
hash functions Hash and MGF the same way that PSS does. Both Hash and MGF
take as input a string of bytes S and an integer �, and output a string of � bytes.
In the security analysis, both will be treated as random oracles. Even though
their input-output specifications and security requirements match, it may be
helpful to have functions with different implementations because, as their names
suggest, the function Hash will potentially take a long string S and output a
shorter string; while MGF (which stands for “mask generation function”) will
take as input a short “seed” string and output a longer one.
Other subroutines. Since we are analyzing not just an algorithm but a proposed
standard, it is important to note that any software program implementing this
standard will have to recognize two distinct types: integers (on which integer
operations are performed) and strings of bytes (that lend themselves to string
operations, such as concatenation and exclusive-or). I2OSP is a procedure that
converts an integer into an octet string (an octet is just the IETF terminology
for the eight-bit byte). On input an integer and the desired length �, it outputs
the binary representation of the integer using � octets if � is sufficiently large, or
fails otherwise. OS2IP reverses this process: given a string, it interprets it as the
binary representation of an integer and outputs that integer.
Parameters. The scheme is parameterized by k, which is the bit length of the
RSA modulus (strictly speaking, there are two parameters: kLen and kBits,
representing its length in bytes and in bits, respectively; but for the purposes of

Security Analysis of RSA-BSSA 261

the analysis the bit length is sufficient). The value emLen = �(k − 1)/8	 denotes
the number of octets needed to represent a PSS encoding; i.e., a PSS encoding
will always take up exactly k − 1 bits.

As in PSS, the choice of the functions Hash and MGF and the parameters
hLen and sLen are additional design choices (parameters, if you will) that define
an instantiation of the scheme. The value hLen denotes the length in octets of the
output of the hash function Hash that’s used in the scheme. It is important that
hLen be set up in such a way that, in the random oracle model, the probability
that two distinct inputs to Hash(·, hLen) yield the same output (i.e. collide) be
minuscule; an adversary whose running time is t can generate at most t such
inputs; thus 24hLen needs to be a generous upper bound on t. The value sLen
denotes the length (in octets) of the salt of the PSS encoding.

Our security analysis requires that emLen ≥ max(2hLen, hLen + sLen) + 2.
PSS encoding and decoding procedures. Recall that, in RSA-PSS, the signing
algorithm is broken down into two steps. The first step does not involve the
secret key: it simply encodes the input message in a special way. The second
step uses the secret key in order to compute the signature corresponding to the
encoding obtained in step one. Analogously, signature verification consists of two
steps as well: the first step uses the public key in order to compute what may
turn out to be an encoding of the message; the second step verifies that the
string obtained in step one is indeed a valid encoding of the message.

When describing RSA-BSSA below, we invoke the encoding and decoding
procedures from the IETF standard [30]: PSSEncode(msg, �) is the function
that, on input a message msg and an integer �, produces a string EM (encoded
message) of ��/8	 octets whose � rightmost bits constitute a PSS encoding
of msg. PSSVerify(msg, EM, �) verifies that EM is consistent with the output of
PSSEncode(msg, �). For an RSA modulus of bit length k, the PSS scheme will
use � = k − 1, so EM will be of length emLen = �(k − 1)/8	.

Specifically (but briefly), PSSEncode(msg, �) works as follows: first, hash msg
to obtain mHash = Hash(msg, hLen), and pick a random string salt of length
sLen bytes (octets). Compute H = Hash(064 ◦ mHash ◦ salt), and use it to
compute a mask dbMask = MGF(H, emLen − hLen − 1) and use it to mask the
salt: maskedDB = DB⊕ dbMask, where DB is salt padded (to make sure that the
resulting string is of the correct length) with a pre-defined string. Then output
the encoded message EM = maskedDB ◦ H ◦ 0xBC.

In turn, PSSVerify(msg, EM, �) begins by parsing EM = maskedDB ◦ H ◦ 0xBC.
Then it computes dbMask as above to unmask salt from maskedDB (it rejects if
the padding was incorrect) and verifies that H = Hash(064 ◦ mHash ◦ salt) for
mHash = Hash(msg, hLen). See the full version of this paper for details about the
history of PSS. In Appendix B we provide a more detailed description of the
verification algorithm for PSS.

3.1 The Basic Scheme

We begin by describing the basic scheme in which the user obtains from the signer
an RSA-PSS signature on the message msg. As usual, the scheme consists of a

262 A. Lysyanskaya

key generation algorithm, a protocol for obtaining signatures, and a signature
verification algorithm.

Key generation The key generation algorithm is the standard RSA key gener-
ation: The public key is PK = (N, e), where N is an RSA modulus of length
k (k is given as input to the key generation algorithm, in unary, i.e. 1k),
and e is relatively prime to ϕ(N). The secret key is SK = (N, d) such that
ed ≡ 1 mod ϕ(N). The exact specification is as described in the PKCS#1
standard.

Blind signing protocol The protocol consists of three algorithms: Blind, BSig,
and Finalize. On input a message msg that the client wishes to get a signature
for, the client runs Blind(PK , msg) and obtains (blinded_msg, inv). The
server runs the algorithm BSig(SK , blinded_msg) and outputs a blinded
signature blinded_sig. The user runs Finalize(PK , msg, blinded_sig, inv)
to derive the signature σ. The three algorithms are as follows:
Blind(PK , msg) Compute a PSS encoding of msg: EM = PSSEncode(msg, k −

1), and let m = OS2IP(EM) be the corresponding integer. Next, sample
r ← Z

∗
N , compute z = mre mod N , and make sure that z ∈ Z

∗
N . Compute

rinv = r−1 mod N , and output (z, rinv) as octet strings, i.e., output
blinded_msg = I2OSP(z, kLen), inv = I2OSP(rinv , kLen).

BSig(SK , blinded_msg) First, check that the string blinded_msg is of bit
length k, and reject if it is not. Next, convert into a k-bit integer m =
OS2IP(blinded_msg). Output the binary representation of s = md mod
N , i.e. blinded_sig = I2OSP(s, kLen).

Finalize(PK , msg, blinded_sig, inv) Convert blinded_sig and inv into
integers using the OS2IP procedure: z = OS2IP(blinded_sig),
rinv = OS2IP(inv); compute s = zrinv mod N . The signature is
the binary representation of s, i.e. σ = I2OSP(s, kLen). Finally, if
PSSVerify(PK , msg, σ), then output σ, else fail.

Verification The verification algorithm calls PSSVerify(PK , msg, σ). (Described
in more detail in Appendix B.)

The following theorem follows easily by inspection:

Theorem 1. The RSA-BSSA scheme is correct.

As we will show in Sect. 5, it also satisfies one-more unforgeability under the
one-more-RSA assumption [6]. However, as we will explain in more detail in
Sect. 4, it is not clear whether or not this construction satisfies blindness.

3.2 RSA-BSSA, Version A

The basic construction described above (Sect. 3.1) results in a perfectly blind
signing protocol whenever PK = (N, e) where the public exponent e is relatively
prime to ϕ(N): in that case, for any m ∈ Z

∗
N , selecting r ← Z

∗
N uniformly at

random and outputting z = mre ensures that z is a uniformly random element

Security Analysis of RSA-BSSA 263

of Z∗
N . This is because, of course, if there exists d such that ed ≡ 1 mod ϕ(N),

then for each z ∈ Z
∗
N , there exists a unique r = (z/m)d such that z = mre.

Thus, in order to ensure blindness, it is sufficient to ensure that e is relatively
prime to ϕ(N). Consider the following variant of RSA-BSSA, in which a public
key contains a proof that e is relatively prime to ϕ(N) as described by Goldberg,
Reyzin, Sagga and Baldimtsi [21].

It will require the additional parameter κ, which is a statistical security
parameter. Further, it will require a function Rk that, on input three inte-
gers, outputs a random integer 0 ≤ a < 2k−1; such Rk can be constructed,
for example, from MGF. Let e′ be a prime that is small enough that check-
ing that (N, e) ∈ Le′ can be done efficiently, where Le′ = {(N, e) | N, e >
0 and no prime less than e′ divides e}. In practice, e is often prime and small
enough that setting e′ = e works. We let e′ be a system-wide parameter, so each
procedure below receives it as input. Finally, let � = �κ/ log2(e′)	.
Key generation On input the desired modulus length k and a statistical secu-

rity parameter κ, run the RSA key generation algorithm as in the basic
protocol (Sect. 3.1) to obtain (N, e) and d. Next, compute a proof π that e
is relatively prime to ϕ(N), as follows: for 1 ≤ i ≤ �, let ai = Rk(N, e, i),
compute bi = ai

d mod N , and let π = b1, . . . , b�.
The public key is PK = (N, e, π), the secret key is SK = (N, d).

Blind signing protocol Before running the signing protocol, the user verifies
that the public key PK = (N, e, π) is well-formed: let π = b1, . . . , b�; for
1 ≤ i ≤ �, check that be

i = Rk(N, e, i) mod N . If one of the checks fails, fail.
Else, run the Blind, BSig, and Finalize algorithms as described in Sect. 3.1.

Verification As in Sect. 3.1, return PSSVerify(PK , msg, σ).

3.3 RSA-BSSA, Version B

As we will see in Sect. 4.2, another way to ensure blindness is to modify the
construction in such a way that the value mHash incorporated into the PSS
encoding of the message to be signed reveals nothing about this message. This
calls for a simple modification of the basic protocol that requires that, instead
of invoking the signing protocol directly on the message msg, the user invokes
it on the message msg′ = msg ◦ rand, where rand is a random value of κ bits,
where κ is a security parameter. More precisely:

Key generation Run the RSA key generation algorithm as in the basic protocol
(Sect. 3.1) to obtain PK = (N, e) and SK = d.

Blind signing protocol The user generates a random string rand of κ bits,
and runs the signing protocol in Sect. 3.1 on input msg′ = msg ◦ rand, and
obtains from it the signature σ′ on the message msg′. Output the signature
σ = (σ′, rand).

Verification Following Sect. 3.1, on input msg and σ = (σ′, rand), the ver-
ification algorithm makes sure that rand consists of κ bits, rejects if it
does not, and then returns the output of PSSVerify(PK , msg′, σ′), where
msg′ = msg ◦ rand.

264 A. Lysyanskaya

4 Blindness of RSA-BSSA

In the blindness experiment, the adversary picks the modulus N ; thus we cannot
assume that it is a proper RSA modulus. Therefore, in order to understand how
much information such an adversary can learn in the blindness experiment, we
must consider the structure of the group Z

∗
N for arbitrary N .

Lemma 1. Let N > 1 be any odd integer, let N =
∏�

i=1 pαi
i be is its prime

factorization. Then Z
∗
N is of size ϕ(N) =

∏�
i=1 ϕ(pαi

i) =
∏�

i=1 pαi−1
i (pi − 1) is

isomorphic to Zϕ(p
α1
1) × Zϕ(p

α2
2) × . . . × Zϕ(p

α�
�).

For the proof, we refer to Sect. 7.5 of Shoup [34]. The lemma implies that
every element x ∈ Z

∗
N can be viewed as a vector (x1, . . . , x�) ∈ Z

p
α1−1
1 (p1−1)

×
Z

p
α2−1
2 (p2−1)

× . . . × Z
p

α�−1
� (p�−1)

, and vice versa.
Let ΨN denote this isomorphism; when N is clear from the context, we will

write it as Ψ . Moreover, there is a (not necessarily efficient) algorithm that
computes ΨN , as follows: on input x ∈ Z

∗
N , compute xi = x mod pαi

i , and then
find χi ∈ Z

p
αi−1
i (pi−1)

such that x = gχi

i , where gi is a generator of Z
∗
p

αi
i

(it
exists by Theorem 7.28 in Shoup [34]).

We also refer the reader to Shoup [34] for the Chinese Remainder Theorem;
below, by CRT (x1, . . . , x�) we denote the element x ∈ ZN such that x = xi mod
pαi

i , where N =
∏�

i=1 pαi
i is the prime factorization of N .

Definition 6 (Roots and residues). Let N and e be any positive integers,
and let m ∈ Z

∗
N . Let the set RootsN,e(m) = {s ∈ Z

∗
N | se = m}. Let the set

ResiduesN,e = {m ∈ Z
∗
N | RootsN,e(m) = ∅}.

Lemmas 2, 3 and 4, and Corollaries 1 and 2 are well-known; for completeness,
their proofs are included in the full version of this paper [26].

Lemma 2. Let N > 1 be any odd integer. If an integer e is relatively prime
to ϕ(N), then the distribution D0(N, e) = {r ← Z

∗
N : r} is identical to the

distribution D1(N, e) = {r ← Z
∗
N : re}.

Lemma 3. Let p > 2 be a prime number, and let e ≥ 2 and α ≥ 1 be integers.
Let g = gcd(e, pα−1(p−1)). Then for any m ∈ Residuespα,e, |Rootspα,e(m)| = g.
I.e. either m /∈ Residuespα,e), or it has exactly g eth roots.

Corollary 1. Let p > 2 be a prime number, and let e > 1 and α ≥ 1 be integers.
Let g = gcd(e, pα−1(p − 1)), and let q = pα−1(p − 1)/g. Let m ∈ Residuespα,e,
and let s ∈ Rootspα,e(m). Then Rootspα,e(m) = {sk | 0 ≤ k ≤ g − 1, sk =
Ψ−1(σ + kq)}, where σ = Ψ(s).

Lemma 4. Let N > 1 be an odd integer, and let
∏�

i=1 pαi
i be its prime factor-

ization. Let e > 1 be an integer. Let gi = gcd(e, pαi−1
i (pi − 1)). Then for any

m ∈ ResiduesN,e, |RootsN,e(m)| = ∏�
i=1 gi.

Security Analysis of RSA-BSSA 265

Corollary 2. Let N > 1 be an odd integer, and let
∏�

i=1 pαi
i be its prime fac-

torization. Let e > 1 be an integer. Let gi = gcd(e, pαi−1
i (pi − 1)), and let

qi = pαi−1
i (pi − 1)/gi. Let m ∈ ResiduesN,e, let s be its eth root, and let

Ψ(s) = (σ1, . . . , σ�). Then RootsN,e(m) = {CRT (s1,k1 , . . . , s�,l�) | ∀1 ≤ i ≤
�, 0 ≤ ki ≤ gi − 1, si,ki

= Ψ−1
p

αi
i

(σi + kiqi)}.

Lemma 5. Let N > 1 be an odd integer, and e > 1 be an integer. Then r selected
as follows is a uniformly random element of Z

∗
N : first, select y uniformly at

random from ResiduesN,e. Then, select r uniformly at random from RootsN,e(y).

Proof. By Lemma 4, every element of ResiduesN,e has the same number of roots,
and so selecting a random element of ResiduesN,e and then picking one of its
roots at random is equivalent to picking a random element of Z∗

N . ��
Lemma 6. Let N > 1 be an odd integer, and e > 1 be an integer. Let m ∈
ResiduesN,e. Let z be selected uniformly at random from ResiduesN,e; let y =
z/m. Then y is a uniformly random element of ResiduesN,e.

Proof. Let y ∈ ResiduesN,e. y is selected whenever the experiment chooses z =
my; this happens with probability 1/|ResiduesN,e|. ��

In our analysis below, it will be important that even if the adversary picks
an eth root u of the value z = mre (recall that z is what the signature recipient
sends to the signer in order to get the message signed), it still cannot alter the
distribution of the resulting signature. We will see that the signature s = u/r is
a member of RootsN,e(m) that is independent of u as long as r had been picked
uniformly at random. In other words, as long as r is picked uniformly at random,
s is random as well, no matter what the adversary does. This is captured in the
following lemma:

Lemma 7. Let N > 1 be an odd integer, and e > 1 be an integer. Then for all
m, z ∈ ResiduesN,e, u ∈ RootsN,e(z), the following outputs a uniformly random
element of RootsN,e(m): pick r ← RootsN,e(z/m), output u/r.

Proof. Consider N = pα for some prime p; the general case follows via the
Chinese Remainder Theorem. Let s0 be the smallest (in absolute value) ele-
ment of Rootspα,e(m), and let r0 be the smallest element of Rootspα,e(z/m). Let
Ψ(s0) = σ, Ψ(r0) = ρ, Ψ(u) = υ, g = gcd(e, pα−1(p−1)), and q = pα−1(p−1)/g.

By Corollary 1, Rootspα,e(m) = {sk | 0 ≤ k ≤ g − 1, sk = Ψ−1(σ + kq)}.
Since u/r0 is an eth root of m, u/r0 = Ψ−1(σ + nq) for some 0 ≤ n < g. Also by
Corollary 1, Rootspα,e(m/z) = {rk | 0 ≤ k ≤ g−1, rk = Ψ−1(ρ+kq)}. Selecting
rk uniformly at random corresponds to picking k ← {0, . . . , g−1}, and results in
outputting u/rk = Ψ−1(υ−(ρ+kq)) = Ψ−1((υ−ρ)−kq) = Ψ−1((σ+nq)−kq) =
Ψ−1(σ + (n − k)q). Since k is random, n − k mod g is also a random element of
{0, . . . , g − 1}, and therefore the output rku = s(n−k) mod g is uniformly random
element of Rootspα,e(m). ��

266 A. Lysyanskaya

4.1 Blindness of the Signing Protocol

Let us consider A’s interaction with the blindness challenger, and then analyze
what information A learns as a result of this interaction. For simplicity, below we
omit the integer-to-string conversions and, when clear from context that integers
in question are elements of Z∗

N , we omit “modN .”

A is invoked A(1k) selects a public key PK = (N, e) and two messages msg0
and msg1.

A acts as the blind signer For j ∈ {0, 1}, the challenger computes EMj =
PSSEncode(msgj , k − 1); let mj = OS2IP(EMj) be the corresponding integer.
Next, sample rj ← ZN , compute zj = mjr

e
j . Compute invj = r−1

j . The
challenger sends to A the values zb and z1−b.

A receives the signatures Upon receipt of ub and u1−b from the signer, the
challenger computes s0 = u0/r0 and s1 = u1/r1. If both signatures verify,
i.e. se

0 = m0 and se
1 = m1, it sends (s0, s1) to A; else it sends ⊥ to A.

A’s output A outputs some value output.

Claim 1. If e is relatively prime to ϕ(N), then z0 and z1 (sent to A while it is
acting as the blind signer) are both random elements of Z∗

N and are distributed
independently of b, m0 and m1.

Proof. Follows immediately from Lemma 2. ��
Claim 2. If e is relatively prime to ϕ(N), then A’s view after receiving the
signatures is independent of the bit b.

Proof. A already knows, based on the values ub and u1−b it sent to the challenger
in the previous step, whether it will receive the signatures or ⊥. If it receives the
signatures, then there are unique values r0,b, r1,b consistent with either b ∈ {0, 1},
and they were equally likely to have been chosen; see Lemma 2. If A does not
receive the signatures, then A learns nothing. ��

If e is not relatively prime to ϕ(N), then there are two cases, based on whether
the signatures output by Finalize pass verification. The easy case is when the
signatures output by Finalize do not both pass verification; then, the challenger
sends ⊥ to the adversary and thus no additional information is revealed in this
step. Let us show that:

Claim 3. If both signatures verify, se
0 = m0 and se

1 = m1, then A’s view in the
blindness experiment is independent of b.

Proof. Let us condition on the event that the signatures pass verification. In this
case, the values m0, m1 computed by the challenger, as well as the value zb and
z1−b the challenger sent to the signer must all be in the set ResiduesN,e. Let us
consider a series of experiments.

Our first experiment is the case of running the blindness challenger with
b = 0: The challenger begins by sampling m0 and m1 as PSS encodings of

Security Analysis of RSA-BSSA 267

msg0 and msg1. Then, it samples r0 ← Z
∗
N , r1 ← Z

∗
N , computes z0 = m0r

e
0

and z1 = m1r
e
1, and sends (z, z′) = (z0, z1) to the adversary. The adversary

responds with (u0, u1), and the challenger computes the signatures s0 = u0/r0
and s1 = u1/r1.

By Lemma 5, instead of choosing r0 and r1 uniformly at random from Z
∗
N

and then setting z0 = re
0m0 and z1 = re

1m1, one could equivalently choose y0,
y1 uniformly at random from ResiduesN,e, and then let z0 = y0m0, z1 = y1m1,
r0 ← RootsN,e(y0), r1 ← RootsN,e(y1); let us call the resulting experiment A0.
By Lemma 6, this is equivalent to choosing z0 and z1 uniformly at random from
ResiduesN,e, and letting r0 ← RootsN,e(z0/m0), r1 ← RootsN,e(z1/m1); let us
call the resulting experiment B0. By Lemma 7, this is equivalent to picking z0
and z1 uniformly at random from ResiduesN,e and sending the adversary the
pair (z, z′) = (z0, z1), and upon receipt of u0 and u1 such that ue

0 = z0 and
ue
1 = z1, outputting s0 ← RootsN,e(m0), s1 ← RootsN,e(m1); let us call the

resulting experiment C0.
Let us obtain a new experiment, C1, by modifying C0: let (z, z′) = (z1, z0),

while everything else stays the same. C1 gives the adversary identical view to
C0. Let B1 be the same as B0 except for (z, z′) = (z1, z0); by Lemma 7, the
adversary’s view here is identical to C1. Let A1 be identical to A0 except (z, z′) =
(z1, z0); by Lemma 6, it is identical to B1. Finally, by Lemma 5, A1 gives the
adversary the same view as the challenger when b = 1. ��

Rephrasing Claims 1, 2 and 3, we get the following two lemmas:

Lemma 8. Let EA
relprime be the event that A playing the blindness game with

the challenger for the basic version of RSA-BSSA sets PK = (N, e) such that e
is relatively prime to ϕ(N). Conditioned on EA

relprime , A receives the same view
in the blindness experiment for b = 0 as for b = 1.

Lemma 9. Let EA
goodsigs be the event that in the blindness game with adversary

A, the challenger for the basic version of RSA-BSSA obtains two signatures
that pass verification. Conditioned on EA

goodsigs , A receives the same view in the
blindness experiment for b = 0 as for b = 1.

When blindness might not hold. Based on the above analysis, the only situation
in which A’s view may depend on b is when e is not relatively prime to ϕ(N)
and the challenger fails to output two valid signatures. In this situation, zb may
leak enough information about mb that it might be possible to infer whether
mb = PSSEncode(msg0) or mb = PSSEncode(msg1), revealing b.

For example, for a prime p such that e | p − 1, x and y are in the same eth

residue class modulo p if there exists r ∈ Z
∗
p such that x = yre mod p. There

are e distinct eth residue classes modulo p when e | p − 1; they correspond to
the e values of Ψp(x) mod e. Thus, determining eth residue class modulo p of an
unknown x provides log e bits of information about x.

Suppose N =
∏�

i=1 pi such that e | pi − 1 for 1 ≤ i ≤ �, where each pi is
a distinct prime number. Then zb = mbr

e mod pi is the same eth residue class
as mb mod pi. Thus, zb reveals � log e bits of information about mb. If each pi

268 A. Lysyanskaya

is only slightly larger than e, then z reveals (in the information-theoretic sense)
more than half the bits of mb. It is unclear how these information-theoretic
bits correspond to physical bits; therefore, we must consider the worst case,
in which they reveal a significant number of bits of the encoded message EM.
Especially devastating would be the case when the revealed bits correspond to
H and the bits of maskedDB just to the left of H; by XORing those bits with
MGF(H, lenDB), A can recover salt, and check whether H = Hash(M ′) where
M ′ encodes mHash = Hash(msg0, hLen) with salt (which corresponds to b = 0)
or mHash = Hash(msg1, hLen) with salt (which corresponds to b = 1).

As we will see below, variants A and B of RSA-BSSA prevent this situation in
two distinct ways. Variant A makes it extremely unlikely that e is not relatively
prime to ϕ(N). Variant B ensures that recovering mHash does not help in checking
whether it corresponds to msg0 or msg1: any value mHash is equally likely to
correspond to either, depending on the choice of the randomizer rand.

4.2 Blindness of Variants a and B

Theorem 2. RSA-BSSA, Version A, satisfies blindness (Definition 4).

Proof. This follows by the soundness of the proof due to Goldberg et al. [21]. ��
Theorem 3. RSA-BSSA, Version B, satisfies blindness in the random-oracle
model (Definition 4).

Proof. For j ∈ {0, 1}, let mj be the integer that corresponds to PSSEncode(msgj◦
randj) for a random string randj of κ bits, and zj = mjr

e
j . Let (z, z′) = (zb, z1−b)

be the values that the challenger sends to the adversary A in the blindness exper-
iment with the bit b. In order to see that (z, z′) are distributed independently
of the bit b it is sufficient to show that mHashb = Hash(msgb ◦ randb, hLen) is
distributed independently of b for a randomly chosen randb, since PSSEncode
just feeds its input string to Hash.

Let us model Hash as a random oracle. Consider a modified blindness exper-
iment in which the challenger also controls the random oracle Hash:

A is invoked A(1k) selects a public key PK = (N, e) and msg0 and msg1.
A acts as the blind signer For j ∈ {0, 1}, compute EMj = PSSEncode(msgj ,

k − 1) differently from the blindness challenger, as follows: instead of picking
randj first, and then setting mHashj , leave randj undefined for now and
let mHashj be a random string of length 8hLen. Next, follow the protocol
and let mj = OS2IP(EMj) be the corresponding integer. Next, sample rj ←
Z

∗
N , compute zj = mjr

e
j mod N and make sure zj ∈ Z

∗
N . Compute invj =

r−1
j mod N . The challenger sends to A the values zb and z1−b.

A receives the signatures Upon receipt of ub and u1−b from the signer, the
challenger checks that zj = ue

j for each j ∈ {0, 1}; if these fail, send ⊥ to A.
If these checks pass, then choose random κ-bit strings rand0 and rand1 and
set the random oracle so that mHashj = Hash(msgj ◦ randj , hLen); if setting

Security Analysis of RSA-BSSA 269

the random oracle this way fails (i.e., the value Hash(msgj ◦ randj , hLen) is
already defined), then this experiment fails.
Else, for each j ∈ {0, 1}, compute sj = uj/rj and send (s0, s1) to A.

A queries Hash Since in this modified blindness experiment, the challenger con-
trols the random oracle, we must also describe how it handles the adversary’s
queries to Hash. As usual, when A queries a value (v, �) such that Hash(v, �)
has not yet been defined, respond with a random string of length 8�; when
querying for a string whose value has already been defined, return that value.

A’s output At the end of its execution, A produces some output. At that
point, if rand0 and rand1 are still undefined, choose random κ-bit strings
rand0 and rand1 and set the random oracle so that mHashj = Hash(msgj ◦
randj , hLen); if setting the random oracle this way fails (i.e., the value
Hash(msgj ◦ randj , hLen) is already defined), then this experiment fails.

Our theorem will follow by putting together the following three claims:

Claim 4. Conditioned on the event that the modified blindness experiment does
not fail, the view A receives in the modified blindness experiment above is inde-
pendent of the bit b.

Claim 5. Conditioned on the event that the modified blindness experiment does
not fail, the view A receives in the modified blindness experiment above is iden-
tical to the view it receives in the actual blindness experiment.

Claim 6. Let A’s running time be t. Then the modified blindness experiment
fails with probability O(t2−κ).

To see that the theorem follows from the claims, consider a sequence of
experiments: (1) blindness game with b = 0; (2) modified blindness game with
b = 0; (3) modified blindness game with b = 1; (4) blindness game with b = 1.
(1) and (2) are indistinguishable by combining Claims 5 and 6; similarly (3) and
(4). (2) and (3) are indistinguishable by combining Claims 4 and 6.

We conclude our proof of the theorem by proving these claims.
Proof of Claim 4. This claim follows by construction. Note that in the step

when A acts as the blind signer, the challenger does not even need to have b
already defined: it can set mHashb and mHash1−b without knowing b and compute
mb and m1−b from them; similarly it can sample rb and compute zb. If it needs
to know b in the step where A receives the signatures, the challenger is already
assured that m0 and m1 are both in ResiduesN,e, and so by Lemma 9, A’s view
is independent of b.

Proof of Claim 5. In the random-oracle model, the only difference between
the modified experiment above and the real blindness experiment is the point in
time in which the values rand0 and rand1 are defined: whether they are already
defined when A acts as the blind signer, or whether this does not happen until
the step where A receives the signatures or (in the event it does not) the output
step. If we condition on the event that the modified experiment does not fail,
then we know that A has never over the course of its execution queried Hash on

270 A. Lysyanskaya

the values (msg0 ◦ rand0, hLen) and (msg1 ◦ rand1, hLen). In that case, whether
rand0 and rand1 were already defined or not, is independent of A’s view, and
therefore the modified blindness experiment is identical to the original one.

Proof of Claim 6. The modified experiment fails if the adversary ever queries
Hash on input (msgj ◦ randj , hLen) for j ∈ {0, 1}. In t steps, A may query at
most t such strings. randj is a random κ-bit string, so the probability it’s among
the t that A has queried, is t2−κ. ��

4.3 The Basic Version Is a Blind Token Scheme

Theorem 4. The basic version of RSA-BSSA is a strongly unforgeable blind
token scheme (Definition 5) under the one-more-RSA assumption.

Proof. First, note that the basic version of RSA-BSSA satisfies the input-output
specification for a two-move blind signature scheme (Definition 1) and the strong
one-more unforgeability property (Definition 3). The first follows by inspection;
the second, by Theorem 6. Thus, it is sufficient to show that for any A, the view
in the experiment described in Definition 5 is independent of the bit b.

Note that in the blind token security game, unless the challenger obtains
two valid signatures, the adversary’s view is independent of b based on how the
game unfolds. Thus, an adversary A guessing b correctly in that game more often
than half the time must be one for whom the challenger obtains two valid signa-
tures. Then consider the following reduction B that plays the (usual) blindness
game with a blind signature challenger for RSA-BSSA and uses A to contradict
Lemma 9: it obtains from A the values (N, e) and the auxiliary data needed to
sample the messages msg0 and msg1 and proceeds to sample them. Then it sends
(N, e) and msg0 and msg1 to its challenger, and from then on, it passes messages
back and forth from its challenger to A, and outputs whatever A outputs. If A
is successful, then B is successful. But A can only be successful (as we observed
above) when the challenger outputs two valid signatures, and by Lemma 9, under
these circumstances B cannot be successful, which is a contradiction. ��

4.4 Blindness of Chaum-RSA-FDH

Consider Bellare et al. [6]’s version of Chaum blind signature; we will call it
Chaum-RSA-FDH from now on. Chaum-RSA-FDH works as follows: Following
RSA-FDH, the key generation algorithm generates an RSA key pair PK =
(N, e), SK = d, where ed ≡ 1 mod ϕ(N). Following Chaum, in order to obtain a
blind signature on a message M , the user first blinds it using a random r ← Z

∗
N

obtaining z = Hash(M)re mod N . Then he sends z to the signer and gets back
the blinded signature y = zd mod N , and unblinds it to obtain and output s =
yr−1 mod N . The resulting value passes RSA-FDH verification: se = yer−e =
zr−e = Hash(M)rer−e = Hash(M).

Let (N, e) be such that e is not relatively prime to ϕ(N). Let U = {u | ue ≡
1 mod N}; by Lemma 4, when e divides some prime factors of N , |U | ≥ e. Let ≡e

be the following equivalence relation: a ≡e b if there exist α, β and u ∈ U such

Security Analysis of RSA-BSSA 271

that a = αeu mod N and b = βeu mod N . It is easy to see that ≡e partitions
Z

∗
N into |U | equivalence classes. There is an efficient algorithm that, on input

the factorization of N , a and b, determines whether a ≡e b. Moreover, for any
a, r ∈ Z

∗
N , a ≡e are.

In order to break blindness of Chaum-RSA-FDH, the adversary picks (N, e)
such that it knows the factorization of N , and such that e | ϕ(N). Next, it
picks two messages M0 and M1 to send to the challenger, such that 1 ≡e

Hash(M0) ≡e Hash(M1) ≡e 1. The challenger computes z0 = Hash(M0)re
0 and

z1 = Hash(M1)re
1, and sends them to the adversary in random order: (zb, z1−b).

In order to determine the bit b, the adversary checks whether zb ≡e Hash(M0);
if so, it returns 0, else it returns 1.
Bibliographic note. Before the community settled on what is now considered to
be the right definition of blindness [1], the definition due to Juels, Ostrovsky
and Luby [25] was the standard one. That definition’s security experiment for
blindness did not envision that the adversarial signer may generate the signing
key in a malicious way, rather than following the key generation algorithm.
Bellare, Namprempre, Pointcheval and Semanko showed that the Chaum-RSA-
FDH scheme was a secure blind signature under the old definition [25]. As we
saw, their result does not hold under the more modern definition of blindness that
came several years after their paper came out. Fortunately, Chaum-RSA-FDH is
a strongly one-more-unforgeable blind token scheme, i.e., it satisfies Definition 5.

Theorem 5. The Chaum-RSA-FDH scheme described in Sect. 4.4 is a strongly
one-more-unforgeable blind token scheme for any efficiently samplable message
space M.

Proof. (Sketch) It is easy to see that the scheme satisfies the input-output struc-
ture and the correctness requirements. As for strong one-more unforgeability:
Bellare, Namprempre, Pointcheval and Semanko [6] showed that it was one-more-
unforgeable under the one-more-RSA assumption. Strong one-more unforgeabil-
ity follows because RSA-FDH is deterministic, i.e., there is a unique signature
corresponding to each message. Thus we just need to show that for any A, A’s
advantage in the blind token experiment described in Definition 5 is negligible;
in fact we will see that it is 0.

Let A be an adversary playing the blind token game; let us consider the
view A receives given a fixed b ∈ {0, 1}. When it is first invoked (step 1), it
produces PK = (N, e) and some string aux . Next (step 2), msg0 and msg1 are
selected by the challenger by running M(1k,PK , aux); let x0 = Hash(msg0)
and x1 = Hash(msg1). Let r0 and r1 be sampled at random from Z

∗
N , and let

z0 = x0r
e
0 and z1 = x1r

e
1 be the blinded messages the challenger sends to A

(step 3), and let s0 and s1 be the values A sends in return — the order in which
they are sent depends on b (step 4). Next (step 5) if se

0 = z0 and se
1 = z1, the

challenger computes σ0 = s0/r0 and σ1/r1 and sends to the adversary the values
(msg0, σ0) and (msg1, σ1), else it sends it ⊥.

Consider an alternative pair of experiments for b ∈ {0, 1}; here the challenger
is computationally unbounded. The challenger begins by selecting msg0 and msg1

272 A. Lysyanskaya

from M(1k,PK , aux). We have two cases: Case A, in which there exist (σ0, σ1)
such that σe

0 = Hash(msg0) and (σ1)e = Hash(msg1); and Case B, in which the
pair exist (σ0, σ1) does not exist. Since this challenger is unbounded, it identifies
which case it is in, and acts as follows:

In Case A, in Step 2, the challenger picks z and z∗ uniformly at random
from Z

∗
N and sends (z, z∗) to A. It receives (s, s∗). In step 5, if se = z or

(s∗)e = (z∗)e, then it sends ⊥ to A. Else, it samples valid signatures σ0 and
σ1 for msg0 and msg1, respectively, and sends to the adversary A the values
(msg0, σ0) and (msg1, σ1).

In Case B, the challenger follows the protocol.
It is easy to see that, in the alternative experiment, the adversary’s view is

independent of b. To see that the alternative experiment gives A a view that’s
identical to the blind token game in Case A, note that the challenger choosing
r0 = s/σ0 and r1 = s∗/σ1 in step 3 corresponds to having b = 0 in the blind
token game, while choosing r0 = s∗/σ0 and r1 = s/σ1 corresponds to b = 1.
Since r0 and r1 are chosen uniformly at random, the two options are equally
likely. In Case B, since one or both signatures don’t exist, the adversary’s view
is independent of b as well, since the pair of messages (msg0, msg1) is just as
likely as (msg1, msg2). ��

5 Unforgeability of RSA-BSSA

Recall that an algorithm A is said to break the security of a cryptographic scheme
in the random-oracle model [7] if its success probability is non-negligible when
a specific component of the scheme, typically a hash function, is replaced by a
random oracle. Security in the random-oracle model means that no polynomial-
time algorithm can break the scheme in the random-oracle model.

A proof of security in the random-oracle model does not, in fact, imply a
proof of security in the plain model (i.e. where no component of the scheme is
modeled as a random oracle) [12]. However, it is considered evidence of security
that’s good enough in practice.

In a random-oracle-based reduction, the reduction is typically privy to all
the hash function queries the adversary issues. Another privilege that such a
reduction has (in the standard, so-called “programmable” random-oracle model
— these different flavors are explored by Fischlin et al. [18]) is that it can answer
such a query with any value it desires. Since the adversary expects the answers to
its queries to be truly random, as long as the reduction’s responses are distributed
at random (or are indistinguishable from random), the adversary’s success prob-
ability will be as high when interacting with the reduction as when attacking
the scheme.

We will prove strong one-more unforgeability of RSA-BSSA in the random-
oracle model under the one-more-RSA assumption introduced by Bellare, Nam-
prempre, Pointcheval and Semanko [6]. They also showed that the one-more-RSA
assumption (stated formally in Appendix A) holds if an only if the following
problem, called the alternative chosen-target RSA inversion (RSA-ACTI) prob-
lem, is hard:

Security Analysis of RSA-BSSA 273

Definition 7 (RSA-ACTI [6]). Let A be an oracle Turing machine. For the
security parameter k, let the experiment Exprsa−acti

A (k) be defined as follows:

RSA key pair generation The challenger generates an RSA public key (N, e)
and secret key d corresponding to the security parameter k. Let us define the
following oracles:
1. The RSA inversion oracle OI(·, N, d) that, on input y ∈ Z

∗
N , returns x

such that xe = y mod N ; i.e., it returns yd mod N where ed ≡ 1 mod
ϕ(N).

2. An oracle OR(·, N) that, when queried, issues a random RSA inversion
challenge point, i.e. a random element of Z

∗
N . By yi, let us denote the

outcome of the ith such query.
A is invoked The challenger invokes AOI(·,N,d),OR(·,N)(N, e) and responds to

its oracle queries. Eventually, A terminates.
A’s success criterion Let � be the number of queries A issued to OI(·, N, d).

Let (y1, . . . , yn) be the values A received from OR(·, N). Let (z1, . . . , zn) be
A’s output. For 1 ≤ i ≤ n, zi is correct if ze

i = yi mod N . A is successful if
|{i : zi is correct}| ≥ � + 1.

By Advrsa−acti
A (k) we denote the probability that A is successful in

Exprsa−acti
A (k). The RSA-ACTI problem is hard if for any probabilistic

polynomial-time A, Advrsa−acti
A (k) is negligible.

Theorem 6. Let A be an algorithm that breaks strong one-more unforgeability
of the basic RSA-BSSA scheme (Definition 3) where both Hash(·, �) and MGF(·, �)
are random oracles for every integer �. Let tA(k) be an upper bound on its run-
ning time; let pA(k) be its success probability.

Then there exists an algorithm B that solves the RSA-ACTI problem (Defi-
nition 7) in tB(k) = O(poly(k) + tA(k)) time with probability pB(k) = pA(k) −
Θ(t2A(k)2−8hLen).

This theorem, i.e. the unforgeability of the basic RSA-BSSA scheme, implies
unforgeability of variants A and B. For variant A, the additional proof that’s
part of the public key can be simulated in the random-oracle model as shown by
Goldberg et al. [21]. For variant B, unforgeability follows from that of the basic
scheme, since a signature in variant B on message msg with randomness rand is
also a signature in the basic scheme on message msg ◦ rand.

Corollary 3. Let A be an algorithm that breaks strong one-more unforgeability
of RSA-BSSA variants A or B (Definition 3) where both Hash(·, �) and MGF(·, �)
are random oracles for every integer �. Let tA(k) be an upper bound on its run-
ning time; let pA(k) be its success probability.

Then there exists an algorithm B that solves the RSA-ACTI problem (Defi-
nition 7) in tB(k) = O(poly(k) + tA(k)) time with probability pB(k) = pA(k) −
Θ(t2A(k)2−8hLen).

Proof. (of Theorem 6) Let qA
Hash(PK ;R), qA

MGF(PK ;R) and qA
BSig(PK ;R) be the

number of queries A makes to Hash, MGF and BSig respectively when interacting

274 A. Lysyanskaya

with it challenger on input a specific public key PK ; R denotes the randomness
of the experiment (i.e., both the random tape of A and that of the challenger).
When PK and R are clear from context, we will write qA

Hash, qA
MGF and qA

BSig.
Without loss of generality, let us assume that A’s output is either empty

(i.e., A fails to win the game) or consists solely of qA
BSig + 1 message-signature

pairs that pass verification. Let us call such an A a “high-achieving adversary"
in the sequel. The reason we can assume that A is high-achieving is that, if it’s
not, we could modify A into an algorithm A′ that verifies A’s output and, if A
succeeded, outputs the first qA

BSig + 1 pairs that pass verification. By definition
of one-more unforgeability, A′ succeeds with the same probability as A, and has
a comparable running time.

We will construct the reduction B that will use a high-achieving A as a
subroutine.
Input to the reduction. The reduction plays the role of the attacker in experiment
Exprsa−acti

B (k). Thus, it takes as input the RSA public key (N, e) that had been
generated by RSA’s key generation on input the security parameter k.
The oracle the reduction may use. As described in Definition 7, B has access to
two oracles:

1. The RSA inversion oracle OI(·, N, d) that, on input y ∈ Z
∗
N , returns x such

that xe = y mod N ; i.e., it returns yd mod N where ed ≡ 1 mod ϕ(N).
2. An oracle OR(·, N) that, when queried, issues a random RSA inversion chal-

lenge point, i.e. a random element of Z∗
N . By yi, let us denote the outcome

of the ith such query.

How the reduction interacts with A. The adversary A is attacking the strong one-
more unforgeability property of the RSA-BSSA scheme as described in Defini-
tion 3. Thus, A will need to receive PK as input; the reduction sets PK = (N, e),
where (N, e) is its own input. Since the reduction is in the random-oracle model,
A will expect oracle access to Hash and MGF, which B will respond to as
described below. A will also engage with the signer in the blind signing pro-
tocol; in the case of RSA-BSSA, this will involve oracle access to BSig(SK , ·);
below, we describe how B will handle this as well. Finally, A terminates and
produces some output; below, we describe how B uses A’s output to compute a
solution to the RSA-ACTI problem.
How the reduction will handle A’s queries to Hash(·, ·). A relevant query to
Hash(·, ·) is (v, �) such that � = hLen and the first eight bytes of v are all 0.

Let (v, �) be a query that is not relevant. A value v that is derived as part
of signature verification must begin with 64 0s; if v is not of that form, we
know that we will never encounter the need to calculate Hash(v, hLen) as part
of verifying a signature. (A detailed description of the signature verification
algorithm provided in Appendix B clarifies this point; see Step 6.) We also know
that for any length � = hLen, Hash(v, �) is not computed as part of signature
verification. Thus, there is no need to prepare a response to this query in any
special way. In response to (v, �), the reduction returns a randomly sampled
string h of � bytes and stores ((v, �), h) for future reference.

Security Analysis of RSA-BSSA 275

In contrast, the response to the ith relevant query is set up in such a way that,
should that query be part of the successful verification of one of the signatures
returned by the adversary, it should allow the reduction to invert RSA at a
challenge point yi.

More precisely: Let the ith relevant query to Hash be the pair (vi, hLen).
Parse vi as follows: vi = 064 ◦ mHashi ◦ salti. Implicitly, mHashi is computed
from some unknown Mi, and salti are the last lenSalt bits of vi.

Our goal is to ensure that, if the adversary ever returns (M,σ) that passes
the verification algorithm such that mHash = mHashi, and salt = salti, then
σe = yir

e
i mod N for some challenge point yi and a value ri known to the

reduction. Then the reduction can invert RSA at yi by outputting σ/ri.
First, the reduction obtains the challenge yi by querying OR(·, N). Next, it

samples from Z
∗
N until it finds a value ri such that, for wi = yir

e
i , wi < 2k−1 (i.e.

k − 1 bits are sufficient to encode it) and the binary representation of wi ends
in the byte 0xBC. In expectation, it will take between 256 and 512 attempts to
find such ri, depending on how close N is to 2k: at least half the time, wi < 2k−1,
and conditioned on that, it starts with 0xBC one in every 256 tries.

Next, execute the following steps that determine how to fix MGF in one point,
and what value to return in response to this query. The goal is to ensure that,
if (M,σ) is a message-signature pair accepted by the verification algorithm, and
vi = 064 ◦ mHash ◦ salt is the input to Hash computed as part of verification
(i.e. it is the value M ′ computed in Step 6 and queried in Step 7 of the detailed
verification algorithm in Appendix B), then σe mod N = wi.

1. Set EMi = I2OSP(wi, emLen) (recall that emLen = �(k − 1)/8).
2. Parse EMi = maskedDBi ◦Hi ◦0xBC (as described in Step 2 of the verification

procedure in Appendix B). Since the reduction used the sampling procedure
above to obtain wi, EMi ends in the byte 0xBC.

3. In order to ensure that DBi that will be computed in Step 4 (of the detailed
verification procedure) contains the same salt value as vi, carry out the fol-
lowing steps:

– Let mHashi and salti be the strings of hLen and sLen bytes, respectively,
such that vi = 064 ◦ mHashi ◦ salti.

– Let DBi = 0a ◦ 0 × 01 ◦ salti, where a = 8(lenDB − 1 − sLen).
– Let dbMask′

i = DBi ⊕ maskedDBi. Note that dbMask′
i must start with 0p,

since DBi starts with 0s, and the fact that maskedDB is the beginning of
the string output by I2OSP ensures that it begin with p 0s. Let dbMaski

be the result of replacing the first p bits of dbMask′
i with random bits.

– If MGF(Hi, lenDB) is already defined, fail. Else, set it to the value
dbMaski.

4. Set Hash(vi, hLen) = Hi, save (i, vi, wi, ri,Hi) for future reference.

Return Hi.
How the reduction will handle A’s queries to MGF(·, ·). Let u be a query to MGF.
Case 1: MGF(u, �) is already fixed as a result of a previous query to Hash or MGF;

276 A. Lysyanskaya

then return the value MGF(u, �). Case 2: MGF(u, �) is not yet fixed; then return
a random string of � octets.
How the reduction will handle A’s queries to BSig(SK , ·). Once blinded_msg
from the adversary A is received, compute m = OS2IP(blinded_msg). If m ≥ N ,
then it fails. Otherwise, it sends m to its RSA inversion oracle OI(·, N, d). In turn,
OI(m,N, d) returns s such that se = m mod N . B computes blinded_sig =
I2OSP(s, kLen) and returns it to A.
How the reduction will process A’s output. At the end of its execution, the
adversary A outputs a set of message-signature pairs {(Mj , σj)}. First, B verifies
these message-signature pairs, as follows: it runs the verification algorithm as
described in Appendix B. When the verification algorithm queries Hash and
MGF for a value previously queried by A, Hash and MGF return the same string
as was returned to A. When the verification algorithm queries Hash and MGF
for a value not previously queried by A, Hash and MGF return random strings.

Next, B fails if some message-signature pair (Mj , σj) is accepted by the ver-
ification algorithm, and yet A had not made the queries to Hash and MGF that
the verification algorithm just made when verifying (σj ,Mj).

Else, B proceeds as follows. Recall that n is the number of queries that B has
made to its challenge oracle, i.e. the number of challenge points yj that B has
received. For 1 ≤ i ≤ n, initialize zi = ⊥. Next, for each j such that (Mj , σj)
is accepted by the verification algorithm, find i such that σe

j mod N ≡ wi. (If
no such i exists, fail.) Then σe

j = yir
e
i mod N , so yi = (σj/ri)e and so B has

inverted RSA at yi; set zi = σj/ri.
B outputs z1, . . . , zn.

Analysis of the reduction. To conclude our proof of security, we need to prove the
following three claims. First, we show that an adversary that wins the strong
one-more-forgery game against RSA-BSSA must (other than with very small
probability) query MGF and Hash for all the values that will be queried over
the course of the verification of its signatures. This will allow us to assume
that we are dealing with the adversary that always makes these queries prior to
outputting its signatures and makes sure that verification accepts; we will call
such an adversary a “make-sure” adversary. More formally:

Claim 7. Let A be a high-achieving adversary that wins the strong one-more-
forgery game against RSA-BSSA in the random-oracle model with probability
pA(k). Let E be the event that A wins the game and for each of the message-
signature pairs it produced, it issued the queries to both MGF(·, lenDB) and
Hash(·, hLen) needed for verifying the message-signature pair some time during
the course of its execution. Then Pr[E] ≥ pA(k) − Θ(t2A(k)2−8hLen).

Next, we show that for a “make-sure” A, our reduction succeeds. This is
done in two steps: (1) showing that the view that the reduction provides for A is
identical to its view in the one-more-forgery game in the random-oracle model;
(2) showing that whenever a “make-sure” A is successful, the reduction succeeds
in the RSA-ACTI game. More formally:

Security Analysis of RSA-BSSA 277

Claim 8. Let A be any adversary. In the random-oracle model, the view that
A receives when interacting with the strong one-more unforgeability game chal-
lenger for RSA-BSSA is identical to the one A obtains in an interaction with
the reduction B whenever B does not fail while answering A’s queries. Moreover,
the probability that B fails while answering a query from A is O(t2(k)2−8hLen).

Claim 9. Let A be an adversary that wins the strong one-more unforgeability
game against RSA-BSSA in the random-oracle model with probability pA(k).
Then B wins the RSA-ACTI game with probability pA(k) − Θ(t2A(k)2−8hLen).

The proofs of Claims 7, 8 and 9 are in the full version of this paper [26]. ��

Acknowledgments. I thank Frederic Jacobs for numerous discussions about RSA-
BSSA, and to Chris Wood and Steve Myers for helpful feedback. I am also grateful
to the anonymous referees for constructive comments. This paper was supported by
Apple Inc. I also acknowledge the support of NSF awards #2154170 and #2154941.

A Statement of Computational Hardness Assumptions

Bellare, Namprempre, Pointcheval and Semanko [5,6] introduced the RSA
known-target inversion problem (RSA-KTI) defined below; the definition we
give here is identical to theirs:

Definition 8. (Known-Target Inversion Problem: RSA-KTI [6]). Let A
be an oracle Turing machine. For the security parameter k and any function
m : N �→ N, let the experiment Exprsa−kti

A,m (k) be defined as follows:

RSA key pair generation The challenger generates an RSA public key (N, e)
and secret key d corresponding to the security parameter k. Let OI(·, N, d) be
the RSA inversion oracle; i.e., on input y ∈ Z

∗
N , it returns x = yd mod N .

Challenge values are selected For 1 ≤ i ≤ m(k) + 1, pick yi ← Z
∗
N .

A is invoked The challenger invokes AOI(·,N,d)(N, e, k, y1, . . . , ym(k)+1) and
responds to its oracle queries. Eventually, A terminates.

A’s success criterion A is successful if (1) it issued no more than m(k) queries
to OI(·, N, d); and (2) A output is (z1, . . . , zm(k)+1) such that, for all 1 ≤
i ≤ m(k) + 1, ze

i = yi mod N .

By Advrsa−kti
A,m (k) we denote the probability that A is successful in Exprsa−kti

A,m (k).
The RSA-KTI[m] problem is hard if for any probabilistic polynomial-time A,
Advrsa−kti

A,m (k) is negligible; the RSA-KTI problem is hard if the RSA-KTI[m]
problem is hard for any polynomially bounded m.

Assumption A1. (One-more-RSA Assumption [6]) The known-target
inversion problem RSA-KTI is intractable.

Bellare et al. then reduced breaking the assumption (i.e., solving RSA-KTI)
to solving the seemingly easier RSA-ACTI problem stated in Definition 7. (See
Theorems 4.1 and 5.4 in Bellare et al. [6].) Thus, to prove security of the scheme,
it is sufficient to give a polynomial-time reduction that breaks RSA-ACTI with
access to an adversary A attacking the scheme.

278 A. Lysyanskaya

B The Verification Algorithm, Step by Step

For the security analysis, it is helpful to recall all the steps that the signature
verification algorithm will take (rather than deferring to subroutines that are
defined elsewhere). The notation 0xUV , where U and V are hexadecimal digits,
denote the value of an octet, or byte; e.g., 0 × 3a corresponds to the binary
string 00111100. The symbol ◦ denotes concatenation. Using the PSS encoding
from the PKCS#1 standard [29,30], verifying a signature σ for a message M
consists of the following steps (note: these steps are equivalent to those in the
PKCS# standard, but not described in exactly the same way):

1. Compute the encoded message EM = I2OSP(σe mod N, emLen). Specifically,
I2OSP will reject if σe mod N is greater than 28emLen ; else, it outputs
emLen = �(k − 1)/8	 octets that, when viewed as a binary integer, equal
σe mod N . Note that, whenever k − 1 is not a multiple of 8, this will always
result in having EM (viewed as a bit string) start with up to 7 zeroes. Let
0 ≤ p ≤ 7 be such that for maximal positive integer m, k − 1 = 8m+ (8− p).
I.e. p is the number of extra bits we get when converting the bit representation
of a k − 1-but integer into the byte representation of the same integer.

2. If EM doesn’t end in the byte 0xBC, reject. Else, parse EM as follows: the first
lenDB = emLen − hLen − 1 bytes are the string maskedDB; the next hLen
bytes are the string H, and the last byte, as we already know, is 0xBC. To
summarize, EM = maskedDB ◦ H ◦ 0xBC.

3. Let dbMask = MGF(H, lenDB).
4. Let DB′ = maskedDB ⊕ dbMask; let DB be the same string as DB′ except that

the first p bits are set to 0. (This is because, since we set p to be 0 ≤ p ≤ 7
be such that for some integer m, k − 1 = 8m + (8 − p), the first p bits of the
byte encoding of a k − 1-bit integer are always 0, so the value we “unmask"
starts at bit p + 1.)

5. If DB does not start with lenDB − 1− sLen 0 × 00 octets followed by 0 × 01,
then reject. Else, let salt be the last sLen octets of DB. To summarize, DB =
0 × 00 . . . 0 × 00 ◦ 0 × 01 ◦ salt.

6. Let M ′ = 064 ◦ mHash ◦ salt, where mHash = CRHF(M). (As usual, by 064 we
denote a binary string of 64 zeroes; we can also think of it as a string of eight
bytes, each set to 0 × 00.)

7. If H = Hash(M ′, hLen), accept, else, reject.

References

1. Abdalla, M., Namprempre, C., Neven, G.: On the (Im)possibility of blind message
authentication codes. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860,
pp. 262–279. Springer, Heidelberg (2006). https://doi.org/10.1007/11605805_17

2. Abe, M.: A secure three-move blind signature scheme for polynomially many signa-
tures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_9

https://doi.org/10.1007/11605805_17
https://doi.org/10.1007/3-540-44987-6_9

Security Analysis of RSA-BSSA 279

3. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6_17

4. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: ACM CCS 2013,
pp. 1087–1098. ACM Press, November (2013)

5. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The power of RSA
inversion oracles and the security of Chaum’s RSA-based blind signature scheme.
In: Syverson, P. (ed.) FC 2001. LNCS, vol. 2339, pp. 319–338. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46088-8_25

6. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The One-More-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003). https://doi.org/10.1007/s00145-002-0120-1

7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS 93, pp. 62–73. ACM Press, November (1993)

8. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_34

9. Bellare, M., Rogaway, P.: PSS: provably secure encoding method for digital signa-
tures. Submission to IEEE P1363 (1998)

10. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
of ROS. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS,
vol. 12696, pp. 33–53. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77870-5_2

11. Boldyreva, A.: Threshold signatures, multi signatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6_3

12. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press, May (1998)

13. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO’82, pp. 199–
203. Plenum Press, New York, USA (1982)

14. Chaum, D.: Blind signature systems. In: CRYPTO ’83, pp. 153–156. Plenum (1983)
15. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.

(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, New York (1990).
https://doi.org/10.1007/0-387-34799-2_25

16. IETF Draft. Denis, F., Jacobs, F., Wood, C.A.: RSA blind signatures, Feb (2022).
https://datatracker.ietf.org/doc/draft-irtf-cfrg-rsa-blind-signatures/

17. IETF Draft. Denis, F., Jacobs, F., Wood, C.A.: RSA blind signatures, March 2021.
https://datatracker.ietf.org/doc/html/draft-wood-cfrg-rsa-blind-signatures-00

18. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro,
S.: Random Oracles with(out) programmability. In: Abe, M. (ed.) ASIACRYPT
2010. LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-17373-8_18

19. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind schnorr signatures and signed elga-
mal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 63–95. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45724-2_3

20. Galbraith, S.D., Malone-Lee, J., Smart, N.P.: Public key signatures in the multi-
user setting. Inf. Process. Lett. 83(5), 263–266 (2002)

https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1007/3-540-46088-8_25
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/0-387-34799-2_25
https://datatracker.ietf.org/doc/draft-irtf-cfrg-rsa-blind-signatures/
https://datatracker.ietf.org/doc/html/draft-wood-cfrg-rsa-blind-signatures-00
https://doi.org/10.1007/978-3-642-17373-8_18
https://doi.org/10.1007/978-3-642-17373-8_18
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-030-45724-2_3

280 A. Lysyanskaya

21. Goldberg, S., Reyzin, L., Sagga, O., Baldimtsi, F.: Efficient noninteractive certifica-
tion of RSA moduli and beyond. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019. LNCS, vol. 11923, pp. 700–727. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34618-8_24

22. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

23. Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from identifi-
cation schemes. In: EUROCRYPT 2019, Part III, volume 11478 of LNCS, pp. 345–
375. Springer, Heidelberg, May (2019). https://doi.org/10.1007/978-3-030-17659-
4_12

24. Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K.: Lattice-based blind signatures, revis-
ited. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp.
500–529. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_18

25. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures (extended
abstract). In: CRYPTO’97, volume 1294 of LNCS, pp. 150–164. Springer, Heidel-
berg, August (1997). https://doi.org/10.1007/BFb0052233

26. Lysyanskaya, A.: Security analysis of RSA-BSSA. IACR Cryptol. ePrint Arch., p.
895 (2022)

27. Pointcheval, D., Stern, J.: Provably secure blind signature schemes. In: ASI-
ACRYPT’96, volume 1163 of LNCS, pp. 252–265. Springer, Heidelberg, November
1996. https://doi.org/10.1007/BFb0034852

28. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Crypt. 13(3), 361–396 (2000)

29. IETF RFC3447. Jonsson, J., Kaliski, B.: Public-Key Cryptography Standards
(PKCS) #1: RSA Cryptography Specifications Version 2.1, February (2003).
https://datatracker.ietf.org/doc/html/rfc3447

30. IETF RFC8017. Moriarty, K., Ed., Kaliski, B., Jonsson, J., Rusch, A.: PKCS
#1: RSA Cryptography Specifications Version 2.2, November (2016). https://
datatracker.ietf.org/doc/html/rfc8017

31. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Crypt. 4(3), 161–
174 (1991)

32. Schnorr, C.P.: Security of blind discrete log signatures against interactive attacks.
In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 1–12.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45600-7_1

33. Schröder, D., Unruh, D.: Security of blind signatures revisited. In: PKC 2012, vol.
7293 of LNCS, pp. 662–679. Springer, Heidelberg, May (2012)

34. Shoup, V.: A Computational Introduction to Number Theory and Algebra, 2nd
edn. Cambridge University Press, Cambridge (2009)

35. Tessaro, S., Zhu, C.: Short pairing-free blind signatures with exponential secu-
rity. In: EUROCRYPT 2022, Part II, vol. 13276 of LNCS, pp. 782–811. Springer,
Heidelberg, May/June (2022). https://doi.org/10.1007/978-3-031-07085-3_27

https://doi.org/10.1007/978-3-030-34618-8_24
https://doi.org/10.1007/978-3-030-34618-8_24
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/BFb0052233
https://doi.org/10.1007/BFb0034852
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc8017
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/978-3-031-07085-3_27

Extendable Threshold Ring Signatures
with Enhanced Anonymity

Gennaro Avitabile1(B), Vincenzo Botta2, and Dario Fiore1

1 IMDEA Software Institute, Madrid, Spain
avitabilegenn@gmail.com, {gennaro.avitabile,dario.fiore}@imdea.org

2 University of Warsaw, Warsaw, Poland
v.botta@uw.edu.pl

Abstract. Threshold ring signatures are digital signatures that allow t
parties to sign a message while hiding their identity in a larger set of n
users called “ring”. Recently, Aranha et al. [PKC 2022] introduced the
notion of extendable threshold ring signatures (ETRS). ETRS allow one
to update, in a non-interactive manner, a threshold ring signature on
a certain message so that the updated signature has a greater thresh-
old, and/or an augmented set of potential signers. An application of this
primitive is anonymous count me in. A first signer creates a ring signa-
ture with a sufficiently large ring announcing a proposition in the signed
message. After such cause becomes public, other parties can anonymously
decide to support that proposal by producing an updated signature. Cru-
cially, such applications rely on partial signatures being posted on a pub-
licly accessible bulletin board since users may not know/trust each other.

In this paper, we first point out that even if anonymous count me in
was suggested as an application of ETRS, the anonymity notion proposed
in the previous work is insufficient in many application scenarios. Indeed,
the existing notion guarantees anonymity only against adversaries who
just see the last signature, and are not allowed to access the “full evolu-
tion” of an ETRS. This is in stark contrast with applications where partial
signatures are posted in a public bulletin board. We therefore propose
stronger anonymity definitions and construct a new ETRS that satis-
fies such definitions. Interestingly, while satisfying stronger anonymity
properties, our ETRS asymptotically improves on the two ETRS pre-
sented in prior work [PKC 2022] in terms of both time complexity and
signature size. Our ETRS relies on extendable non-interactive witness-
indistinguishable proof of knowledge (ENIWI PoK), a novel technical tool
that we formalize and construct, and that may be of independent inter-
est. We build our constructions from pairing groups under the SXDH
assumption.

Keywords: Threshold Ring Signatures · Anonymity · Malleable Proof
Systems

G. Avitabile and V. Botta—Work done mainly while working at University of Salerno,
Italy.

c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 281–311, 2023.
https://doi.org/10.1007/978-3-031-31368-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_11&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_11

282 G. Avitabile et al.

1 Introduction

Anonymity is a central requirement in several privacy-preserving technologies.
Notable examples are e-voting protocols [34], anonymous authentication [30],
and privacy-protecting cryptocurrencies [35]. A central cryptographic primitive
that can be used to provide anonymity in applications is ring signatures [33].
Ring signatures [33] are digital signatures which allow one user to sign a message
while hiding her identity in a larger group called ring R. In practice, the signing
algorithm, aside the message, takes as input a set of public keys (i.e., the ring)
and one of the corresponding secret keys. The produced signature guarantees
that one of the public keys in the ring signed the message, while hiding which
one of the secret keys was used to create the signature. Clearly, the larger is
R the greater is the anonymity provided to the signer. Constructions for ring
signatures are known from a variety of cryptographic tools such as RSA [17],
pairing groups [10,16,37], non-interactive zero-knowledge proofs [3,11,22], and
lattices [9,19,27,28]. A practical application of ring signature is whistleblowing.
By signing a message, a member of a company can report a wrong practice of
the company itself while hiding his identity among all the other employees.

Threshold ring signatures [12] enrich ring signatures by allowing t signers to
hide their identity within the ring. The signature guarantees that t members
of R signed the message without revealing which ones. Ring signatures can be
seen as threshold ring signatures with t = 1. Some threshold ring signatures also
enjoy a property called flexibility [29,31]. They allow new signers to join already
produced signatures: a signature on a message m that was already created with
threshold t for a ring R can be transformed into a new signature on message m
with threshold t + 1 w.r.t. the same ring R. The interesting aspect of flexible
threshold ring signatures is that the update does not require the participation
of any previous signer. Nevertheless, until recently, all known threshold ring
signatures did not offer an analogous property that would allow extending the
ring. In other words, all previous constructions required to fix the ring from the
beginning and did not allow to modify it further.

This problem has been addressed for the first time in the recent work of
Aranha et al. [2] which has put forth the notion of extendable threshold ring
signatures (ETRS). ETRS, aside the join operation, also provide an extend oper-
ation: any signature with ring R can be transformed by anybody into a signature
with ring R′ s.t. R ⊂ R′. After the extend operation, all signers in R′ can join
the signature.

On Count-me-in Applications. Aranha et al. [2] observe how the richer flexibil-
ity of ETRS can enable more advanced forms of whistleblowing or anonymous
petitions. The first signer could create a ring signature with a sufficiently large
ring announcing a proposition in the signed message. After such cause becomes
public, other parties could support the cause via extend and/or join operations.
As also reported in [2], an observer who has seen signatures on an old ring R
and on a new ring R′ can always compute R′ \ R, and this can help narrowing
down the identity of the signers. This problem is inherent in the functionality

Extendable Threshold Ring Signatures with Enhanced Anonymity 283

provided by ETRS, and it worsens as t approaches the size of the ring. A clear
example is the one of a signature w.r.t. ring R with threshold t = n − 1, where
n = |R|, which is transformed into a signature with threshold t = n′ − 1 w.r.t.
R′, |R′| = n′ = n + 1 (i.e., the threshold is increased by one and the final ring
contains an additional public key of a user A). By looking at the two signatures,
one can infer that one signer of the last signature either comes from |R| or it is
A with probability 1

2 .
In [2], the authors address this issue by proposing an anonymity definition in

which the adversary is restricted to see only the signature obtained eventually,
after all the extend and join operations have been applied. However, this restric-
tion hinders the use of ETRS in real-world count-me-in applications since it bears
an implicit requirement: the signers should privately interact to incrementally
produce the ETRS and then only the final signature can be made public to the
outside world. This means that all the possible advocates of a proposal should
be given access to a private bulletin board where partial signatures are posted (it
can be implemented using a blockchain). Additionally, the abstract of [2] infor-
mally mentions the importance of fellow signer anonymity (FSA), a property
stating that “it is often crucial for signers to remain anonymous even from their
fellow signers”. Such requirement was previously formally modeled in [29], but
it is not captured by the anonymity definitions of [2]. Indeed, it is unclear how
such property could be guaranteed when anonymity is only formulated w.r.t. an
adversary who cannot see intermediate signatures (as real signers would) and
does not have the secret key of any of the signers (as in the definition of [2]).

1.1 Our Contributions

In this work, we address the aforementioned shortcomings of ETRS. First, we
propose a stronger security definition that guarantees anonymity even against
adversaries that see the full “evolution” of a signature. Second, we propose
a new ETRS construction that achieves our strong anonymity definition, and
also improves in efficiency over previous work (cfr., Table 1). Our construction
relies on extendable non-interactive witness indistinguishable proof of knowledge
(ENIWI PoK), a novel technical tool that we formalize and construct, and that
may be of independent interest. In what follows, we present our contributions in
more detail.

Stronger Anonymity for ETRS. Even though certain leaks are inherent when the
adversary gets to see several ETRS, one should aim at building a scheme which
leaks nothing more than that. To this regard, we start from the anonymity
definition proposed in [2] and we make it stronger as follows. We allow the
adversary A to see all the ETRS that led to the final signature. In a nutshell, A
outputs two sequences of operations which at every step lead to an ETRS on the
same message, with the same ring, and the same threshold in both sequences.
The challenger C picks one of such sequences at random, executes it, and gives
to A the corresponding outputs of each step. We then require that A only has a

284 G. Avitabile et al.

negligible advantage in guessing which sequence was applied. We also propose a
security game that models fellow signer anonymity for ETRS.

Constructing ETRS. In [2], two constructions of ETRS are proposed: the first one
is obtained from extendable same-message linkable ring signatures (SMLERS)1,
while the second one is constructed from signatures of knowledge (SoK) for
the discrete log relation, public key encryption (PKE), and the discrete log
assumption. The first scheme achieves our stronger anonymity notion but suffers
quite high complexity; for instance, the signature size is O(tn). The second
scheme in [2] is more compact but does not fulfill our stronger anonymity notion.
Indeed, anyone who sees an ETRS before and after a join operation can easily
pinpoint the exact signer who joined the signature (see Appendix A.1 of [5] for
more details). It follows that such scheme is also not fellow-signer anonymous,
since no secret key is required to carry out the above attack.

We construct an ETRS which fulfills our stronger anonymity definition and
is also fellow-signer anonymous. As shown in Table 1, our ETRS also generally
improves the constructions given in [2] in terms of both time complexity and
signature size. In Appendix A.1 of [5], we give a high-level overview of both
ETRS presented in [2]. To build our ETRS, we introduce the notion of ENIWI
PoK, which may be of independent interest. We then show how to build an ETRS
from an ENIWI PoK for a hard relation, and an IND-CPA homomorphic public
key encryption scheme.

Table 1. Comparison of signature size, time complexities, and anonymity guarantees
of our ETRS and the ones presented in [2]. Let |R| = n and t be the threshold. In
the DL + SoK + PKE construction of [2] signature size and time complexities both
depend on a fixed upper bound on the ring size N . We say that a scheme achieves
weak anonymity if it achieves the anonymity property of [2], and strong anonymity if
our stronger anonymity definition is satisfied. FSA stands for fellow-signer anonymity.

Scheme Size Sign Join Extend Verify Anonymity FSA

SMLERS [2] O(tn) O(tn) O(n) O(tn) O(tn) Strong Yes

DL + SoK + PKE [2] O(N) O(N2) O(N2) O(N2) O(N2) Weak No

Ours O(n) O(n) O(n) O(n) O(n) Strong Yes

ENIWI PoKs. In [14], Chase et al. examined notions of malleability for non-
interactive proof systems. They defined the notion of allowable transformation
T = (Tx, Tw) w.r.t. a relation RL. A transformation is allowable w.r.t. RL if
on input (x,w) ∈ RL it gives as output (Tx(x) = x′, Tw(w) = w′) ∈ RL.

1 SMLERS were introduced in [2] as well. A SMLERS is a ring signature which is
also extendable. In addition, it allows to link two signatures produced by the same
signer on the same message, even on different rings. The SMLERS of [2] is obtained
from signatures of knowledge for the discrete log relation, collision-resistant hash
functions, and the discrete log assumption.

Extendable Threshold Ring Signatures with Enhanced Anonymity 285

Then, a proof system is said to be malleable w.r.t. an allowable transforma-
tion T = (Tx, Tw), if there exists a poly-time algorithm that on input the initial
statement x, the transformation T , and an accepting proof Π, gives an accepting
proof Π ′ for the transformed statement x′. They also considered more complex
transformations including n statements and proofs. They showed that Groth-
Sahai (GS) proofs [24] are malleable w.r.t. the language of sets of pairing product
equations and they define a set of elementary allowable transformations which
can be used to build more complex ones, including conjunctions and disjunc-
tions. They also observed that since GS is re-randomizable, a transformation of
a proof followed by its re-randomization is indistinguishable from a proof com-
puted from scratch for statement x′ using witness w′. They called this property
derivation privacy.

In this paper, we further explore the notion of malleability for non-interactive
witness indistinguishable (NIWI) proofs of knowledge (PoKs) in the context of
threshold relations. A threshold relation RLtr is defined w.r.t. a relation RL as
RLtr = {(x = (k, x1, . . . , xn), w = ((w1, α1), . . . , (wk, αk)))|1 ≤ α1 < . . . < αk ≤
n ∧ ∀ j ∈ [k] : (xαj

, wj) ∈ RL}. Let Ltr be the corresponding NP language. In
words, the prover wants to prove it has k witnesses for k different statements out
of n statements. The transformations we explore are extend and add operations:

– Extend: transform a proof for (k, x1, . . . , xn) ∈ Ltr into a proof for (k, x1, . . . ,
xn, xn+1) ∈ Ltr.

– Add: transform a proof for (k, x1, . . . , xn) ∈ Ltr into a proof for (k+1, x1, . . . ,
xn) ∈ Ltr.

While the extend operation can be realized without using any private input
of the “previous” prover, as modelled in [14], the same does not hold for the
add operation. Indeed, thanks to extractability, an accepting proof for (k +
1, x1, . . . , xn) ∈ Ltr can only be generated by the prover, except with negligible
probability, using k + 1 witnesses for k + 1 different statements out of all the
n statements. It follows that the add transformation must require a witness for
statement xi, with index i ∈ [n] that was not previously used, and it cannot
produce an accepting proof for the updated statement on input a witness for a
previously used index. It is straightforward to notice that this fact could be used
to check whether or not a given witness was used in the proof, thus violating
witness indistinguishability.

Therefore, we put forth the new notion of ENIWI PoK. In an ENIWI PoK,
when the prover computes a proof Π for a statement x = (k, x1, . . . , xn), it also
outputs a list of auxiliary values AUX = (aux1, . . . , auxn). The auxiliary value
auxi will be later used to perform the add operation via an additional algorithm
called PrAdd. PrAdd, on input an accepting proof Π for (k, x1, . . . , xn) ∈ Ltr, a
witness wi for a not previously used index i s.t. (xi, wi) ∈ RL, and the corre-
sponding auxiliary value auxi, outputs a proof Π ′ for (k + 1, x1, . . . , xn) ∈ Ltr.
Analogously, there is an additional algorithm PrExtend that is used to perform
the extend operation. PrExtend does not require any auxiliary value. PrExtend, on
input an accepting proof for (k, x1, . . . , xn) ∈ Ltr, and a statement xn+1, outputs
a proof Π ′ for (k, x1, . . . , xn+1) ∈ Ltr and the auxiliary value auxn+1 related to

286 G. Avitabile et al.

statement xn+1. The auxiliary value auxn+1 can later be used to perform an add
operation using witness wn+1 s.t. (xn+1, wn+1) ∈ RL. The verification algorithm
is left unaltered and does not take any auxiliary value in input.

Similarly to derivation privacy, we require that the outputs of both the extend
and add operations followed by a re-randomization are indistinguishable from
proofs created using the regular prover algorithm. Regarding witness indistin-
guishability, we have to treat the auxiliary values in a special manner. Indeed,
giving out all the auxiliary values would at least reveal the indices of the used
witnesses. Therefore, we propose a new notion called extended witness indis-
tinguishability. In this notion, the adversary A samples a x = (k, x1, . . . , xn)
and two witnesses wi as ((wi

1, α
i
1) . . . , (wi

k, αi
k)), s.t. (x,wi) ∈ RLtr for i ∈

{0, 1}. Recall that αj ∈ [n], with j ∈ [k], indicates that wj is a witness s.t.
(xαj

, wj) ∈ RL. Then, the challenger C outputs a proof computed using one of
the two witnesses, but it only gives to A a subset of all the auxiliary values.
Such subset includes the auxiliary values only related to certain indices, namely
({1, . . . , n} \ ({α0

1, . . . , α
0
n} ∪ {α1

1, . . . , α
1
n})) ∪ ({α0

1, . . . , α
0
n} ∩ {α1

1, . . . , α
1
n}). In

words, those are the auxiliary values related to the indices for which one of the
following conditions holds: (i) the index was not used in either w0 or w1; (ii) the
index was used in both w0 and w1. We require that A has negligible advantage
in guessing whether w0 or w1 was used to create the proof. The idea is that if we
build upon a NIWI and if the auxiliary values are only tied to the indices of the
used witness and not to their concrete values, then giving the auxiliary values
for the “irrelevant” positions to A does not give A any advantage. Although it
could seem a cumbersome notion, ENIWI is enough to obtain strongly anonymous
ETRS, and could possibly have other applications.

High-level Overview of our ENIWI. We propose an ENIWI for the base relation
RL of pairing product equations (PPEs) in which all the variables are elements
of group two, public constants are either paired with secret values or with the
public generator, and the target element is the neutral element.

We build our ENIWI from GS proofs. GS is a commit-and-prove system where
secret variables are first committed and the prover algorithm takes as input the
committed values as well as the commitments randomnesses to create some proof
elements. The proof can be verified on input the statement, the commitments,
and proof elements. We first modify known techniques to get disjunctions of
PPEs [13,23] into a technique to get proofs of partial satisfiability of k out of
n PPEs. Such transformation modifies the starting PPEs via some additional
variables M̂i with i ∈ [n] s.t. k of the PPEs are left unaltered while n − k of
them now admit the trivial solution, thus allowing for simulation. The value
of M̂i is constrained to two values, depending on whether or not the proof for
the i-th equation should be simulated. We then observe that such proofs can
be turned into an ENIWI provided with the extend and the add operations.
The auxiliary values can be seen as the commitment openings related to such
variables which enable to replace an M̂i allowing for simulation (i.e., an M̂i

that makes the corresponding PPE admit the trivial solution) with a new one
preventing simulation (i.e., an M̂i that leaves the corresponding PPE unaltered).
The idea is that to perform the add operation, the old commitment to a variable

Extendable Threshold Ring Signatures with Enhanced Anonymity 287

M̂i would be replaced with a fresh one. Then, auxi would allow to erase from
the proof element the contribution related to the old committed variable and
to subsequently put in the contribution of the freshly committed variable. The
extend operation is more straightforward since it does not need to erase any
contribution, but only to add the contribution of a new variable. At a high level,
extended witness indistinguishability is achieved since the M̂i variables are only
tied to the particular equation being simulated or not, but not to the actual
value of any of the variables. Proofs can also be re-randomized leveraging the re-
randomizability of GS and by appropriately updating the auxiliary values after
the re-randomization.

High-level Overview of our ETRS. To get an ETRS, we just need a way to turn
an ENIWI in a signature scheme preserving its extendability properties. In [20], it
is shown how to create a signature of knowledge (SoK) from a NIWI PoK in the
random oracle model (ROM). In a nutshell, the message is hashed to produce
the CRS which is then used to prove the statement of the SoK. The resulting
proof constitutes the signature. We leverage their technique to create an ETRS
starting from an ENIWI PoK. The idea is that since the transformation given
in [20] just modifies how the CRS is generated, we are able to replace the NIWI
PoK with an ENIWI PoK to get an ETRS instead of a regular signature. In our
ETRS, the i-th signer has as public key a statement xi for a hard relation RL for
which it exists an ENIWI, along with the public key pki

e of an IND-CPA public
key encryption scheme (PKE) which is homomorphic w.r.t. the update operation
of the auxiliary values. The corresponding secret key is wi s.t. (xi, wi) ∈ RL,
along with the secret key of the encryption scheme ski

e. The first signer S hashes
the message m to get the CRS, then S uses her own witness to create a proof for
(1, x1, . . . , xn) ∈ RLtr . By creating such proof, the signer will also get auxiliary
values (aux1, . . . , auxn). Since publishing the auxiliary values in the clear would
reveal the identity of the signer, each individual auxi is encrypted using the
public key of the i-th signer2. A new signer willing to join will decrypt auxi and
run PrAdd to update the proof. To extend the ring, it suffices to run PrExtend to
update the proof. Finally, to ensure anonymity we exploit the fact that ENIWI
PoKs are re-randomizable. We re-randomize all the proofs after running either
PrAdd or PrExtend. We additionally exploit the homomorphic property of the
encryption scheme to update the auxiliary values after each re-randomization.
We prove the security of our ETRS in the ROM.

Both the constructions presented in [2] use SoKs for the discrete log rela-
tion as a building block without specifying a concrete instantiation. Whether
they require the ROM or not depends on whether there exists a practical3 SoK
2 Notice that for anonymity to hold, it is crucial that the witness indistinguishability

property holds even if the auxiliary values related to unused positions are accessible
by the adversary. Indeed, in our anonymity notion the adversary is allowed to corrupt
all non-signers, thus getting their decryption keys and the related auxiliary values.

3 Chase and Lysyanskaya [15] proposed a generic construction under standard com-
plexity assumptions in the common random string model, but it is not practical
since it uses general non-interactive zero-knowledge (NIZK) proofs.

288 G. Avitabile et al.

without random oracles for that relation. The authors also provide an implemen-
tation in which they use the Schnorr identification scheme with the Fiat-Shamir
transform as a SoK. Such SoK requires the ROM. In our ETRS, all operations
require linear time in n as the number of equations to be proved linearly depends
on n. Additionally, GS proofs have constant size for each type of equation, there-
fore the size of the ETRS is O(n). Note that both time complexity and signature
size do not depend on t.

2 Related Work

Threshold ring signatures were introduced by Bresson et al. [12]. They provided
a construction based on RSA. The size of the signature is O(n log n), where n is
the size of the ring. Subsequent works proposed new constructions from a variety
of assumptions focused on either relaxing the setup assumptions, reducing the
signature size, or getting rid of the ROM.

Several works have signatures of size linear in n [1,26,32], while some others
proposed constructions with signature size that can be sub-linear in n [4,6,36]4,
or even O(t) [25,29]. Some works have also focused on providing post-quantum
security [1,8,26].

In [31], the concept of flexibility was introduced. A flexible threshold ring
signature scheme allows one to modify an already created signature on a message
m with threshold t and ring R into a new signature on message m with threshold
t + 1 w.r.t. R, without the intervention of the previous signers.

Usually, threshold ring signatures are formulated as an interactive protocol
run among the signers. Some schemes have a weaker requirement [4,6], where the
signers just have to interact with one party called the aggregator. After having
interacted with all the signers, the aggregator just compiles all the received
contributions into one threshold ring signatures which can then be publicly
posted. Munch-Hansen et al. [29] presented a threshold ring signature based on
RSA accumulators with size O(t). Their scheme also achieves flexibility. More-
over, they introduce a stronger anonymity property that demands that a signer
cannot be deanonymized even by their fellow signers. In this scenario, having
non-interactive signing is crucial since the deanonymization could be done by
exploiting communication meta-data such as the IP address. The same applies
to signatures using an aggregator, unless the aggregator is trusted. Recently,
Aranha et al. [2] have further enhanced the functionality of threshold ring signa-
ture by proposing extendable threshold ring signatures ETRS. ETRS are flexible
and they also allow to extend the ring of a given signature without the need of
any secret.

3 Preliminaries

In this section, we introduce the assumptions and the cryptographic tools our
constructions rely on. We defer to the full version [5] for more widely known defi-
4 In particular, [36] has size O(t

√
n), [6] is O(t log n), and [4] is O(log n).

Extendable Threshold Ring Signatures with Enhanced Anonymity 289

nitions and assumptions. When referring to an NP language L we call RL the cor-
responding NP relation. We work over bilinear groups gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ) ←
G(1λ). G(1λ) is a generator algorithm that on input the security parameter, out-
puts the description of a bilinear group. We call such description group key gk.
Ĝ, Ȟ,T are prime p order groups, ĝ, ȟ are generators of Ĝ, Ȟ respectively, and
e : Ĝ × Ȟ → T is a non-degenerate bilinear map. In this paper, we will use
additive notation for the group operations and multiplicative notation for the
bilinear map e.

Assumption 1 (Double Pairing Fixed Term Assumption) We say
the double pairing fixed term assumption holds relative to Ĝ if for gk =
(p, Ĝ, Ȟ,T, e, ĝ, ȟ) ← G(1λ), and for all PPT adversaries A we have

Pr
[
â, b̂ ←$ Ĝ \ (0̂, 0̂); b̌′ ← A(gk, â, b̂) : b̌′ ∈ Ȟ, â · ȟ + b̂ · b̌′ = 0T

]
≤ negl(λ).

Lemma 1. If the double pairing fixed term assumption holds for gk, then the
Decisional Diffie-Hellman assumption holds for Ĝ.

See [5] for the proof.

3.1 Groth-Sahai Proofs

The Groth-Sahai proof system [24] is a proof system for the language of
satisfiable equations (of types listed below) over a bilinear group gk =
(p, Ĝ, Ȟ,T, e, ĝ, ȟ) ← G(1λ). The prover wants to show that there is an assign-
ment of all the variables that satisfies the equation. Such equations can be of
four types:

Pairing-Product Equations (PPE): For public constants âj ∈ Ĝ, b̌i ∈ Ȟ,
γij ∈ Zp, tT ∈ T:

∑
i x̂i · b̌i +

∑
j âj · y̌j +

∑
i

∑
j γij x̂i · y̌j = tT.

Multi-Scalar Multiplication Equation in Ĝ (ME
Ĝ
): For public constants

âj ∈ Ĝ, bi ∈ Zp, γij ∈ Zp, t̂ ∈ Ĝ:
∑

i x̂ibi +
∑

j âjyj +
∑

i

∑
j γij x̂iyj = t̂.

Multi-Scalar Multiplication Equation in Ȟ (ME
Ȟ
): For public constants

aj ∈ Zp, b̌i ∈ Ȟ, γij ∈ Zp, ť ∈ Ȟ:
∑

i xib̌i +
∑

j aj y̌j +
∑

i

∑
j γijxiy̌j = ť.

Quadratic Equation in Zp (QE): For public constants aj ∈ Zp, bi ∈ Zp,
γij ∈ Zp, t ∈ Zp:

∑
i xibi +

∑
j ajyj +

∑
i

∑
j γijxiyj = t.

Here, we formalize the GS proof system as in [18]. The GS proof system
is a commit-and-prove system. Each committed variable is also provided with
a public label that specifies the type of input (i.e., scalar or group element).
Accordingly, the prover algorithm takes as input a label L which indicates the
type of equation to be proved (i.e., L ∈ {PPE,ME

Ĝ
,ME

Ȟ
,QE}). GS features

the following PPT algorithms, the common reference string crs and the group
key gk are considered as implicit input of all the algorithms.

290 G. Avitabile et al.

– crs ←$ CRSSetup(gk): on input the group key, output the common reference
string.

– (l, c) ← Com(l, w; r): return a commitment (l, c) to message w according to
the label l and randomness r.

– π ← Prove(L, x, (l1, w1, r1), . . . , (ln, wn, rn)): consider statement x as an equa-
tion of type specified by L, and on input a list of commitment openings pro-
duce a proof π.

– 0/1 ← PrVerify(x, (l1, c1), . . . , (ln, cn), π): given committed variables, state-
ment x, and proof π, output 1 to accept and 0 to reject.

– ((l1, c′
1), . . . , (ln, c′

n), π′) ← RandPr(L, (l1, c1), . . . , (ln, cn), π; r): on input
equation type specified by L, a list of commitments, a proof π, and a ran-
domness r, output a re-randomized proof along with the corresponding list
of re-randomized commitments.

GS can be also used to prove that a set of equations S, with possibly shared
variables across the equations, has a satisfying assignment. To do so, the prover
has to reuse the same commitments for the shared variables while executing the
Prove algorithm for each individual equation. The above description can also fit
the interface of NIWI PoK (see Appendix A.2 of [5]). Indeed, the Prove algorithm
can just launch the Com and the Prove algorithm above with the appropriate
labels, and return as a proof both the commitments and the proof elements. Sim-
ilarly, the PrVerify and RandPr algorithms of the NIWI PoK interface have just
to appropriately parse their inputs and call the PrVerify and RandPr algorithms
described above.

The GS proof system is proved to be a NIWI for all types of the above equa-
tions under the SXDH assumption. In addition, it is a NIWI PoK for all equations
involving solely group elements. To be more specific, Escala and Groth formu-
lated the notion of F -knowledge [18] (i.e., a variation of adaptive extractable
soundness, see Definition 14 of [5]) for a commit-and-prove system. In a nutshell,
it requires the existence of an Ext2 algorithm that, on input a valid commitment
and the extraction key produced by Ext1, outputs a function F of the committed
value. They prove that GS enjoys F -knowledge. For commitments to group ele-
ments, F is identity function. Regarding commitments to scalars, F is a one-way
function that uniquely determines the committed value.

Internals of GS Proofs. In [18], the authors provide a very fine-grained
description of GS proofs. In this description, we report only the aspects that
are relevant to our constructions. It is possible to write the equations of Sect. 3.1
in a more compact way. Consider x̂ = (x̂1, . . . , x̂m) and y̌ = (y̌1, . . . , y̌n), which
may be both public constants (i.e., written before as âj , b̌i) or secret values. Let
Γ = {γij}m,n

i=1,j=1 ∈ Z
m×n
p . We can now write a PPE as x̂Γ y̌ = tT. Similarly, a

ME
Ĝ
, a ME

Ȟ
, and a QE can be written as x̂Γy = t̂, xΓ y̌ = ť, and xΓy = t. This

holds for x̂ ∈ Ĝ
1×m, y̌ ∈ Ȟ

n×1,x ∈ Z
1×m
p ,y ∈ Z

n×1
p . Additionally, for equations

of type ME
Ĝ
, ME

Ȟ
, and QE, we can, without loss of generality, assume the tar-

get element to be the neutral element. For PPE we will restrict ourselves to the

Extendable Threshold Ring Signatures with Enhanced Anonymity 291

case in which tT = 0T, and no public constants are paired with each other, unless
one of the two is a generator specified in the public parameters. The structure
of the crs is clear from Fig. 1, where the Ext1 algorithm is shown.

Fig. 1. Generation of the CRS along with the extraction key in the GS proof system.

In Fig. 2, we report the commitment labels and corresponding commit algo-
rithm that are of interest for this work.

Fig. 2. GS commit labels and corresponding commit algorithm, e = (0, 1).

In Fig. 3 and in Fig. 4, we report the prover and verifier algorithm respec-
tively. We defer to Appendix A.4 of [5] for more details on GS internals.

4 Extendable Threshold Ring Signature

A non-interactive extendable threshold ring signature scheme ETRS is defined as
a tuple of six PPT algorithms ETRS = (Setup,KeyGen,Sign,Verify, Join,Extend),
where the public parameters pp produced by Setup are implicitly available to all
the other algorithms:

– pp ← Setup(1λ): on input the security parameter, outputs public parameters
pp.

292 G. Avitabile et al.

Fig. 3. Prover algorithm of the GS proof system.

Fig. 4. Verifier algorithm of the GS proof system.

– (pk, sk) ← KeyGen(): generates a new public and secret key pair.
– σ ← Sign(m, {pki}i∈R , sk): returns a signature with threshold t = 1 using the

secret key sk corresponding to a public key pki with i ∈ R.
– 0/1 ← Verify(t,m, {pki}i∈R , σ): verifies a signature σ for the message m

against the public keys {pki}i∈R with threshold t. Outputs 1 to accept, and
0 to reject.

– σ′ ← Join(m, {pki}i∈R , sk, σ): it takes as input a signature σ for message m
produced w.r.t. ring R with threshold t, and the new signer secret key sk
(whose corresponding pk is included in R). It outputs a new signature σ′

with threshold t + 1.
– σ′ ← Extend(m,σ, {pki}i∈R , {pki}i∈R′): extends the signature σ with thresh-

old t for the ring R into a new signature σ′ with threshold t for the larger
ring R ∪ R′.

To formalize the properties of ETRS, we use the notion of ladder as in [2].
A ladder lad is a sequence of tuples (action, input), where action takes a value in
the set {Sign, Join,Extend} and the value of input depends on the value of action.
If action = Sign, then input is a pair (R, i), where R is the ring for the signature
and i is the signer’s identity. If action = Join, then input is an identifier i that

Extendable Threshold Ring Signatures with Enhanced Anonymity 293

identifies the signer that joins the signature. If action = Extend, then input is a
ring R that is the ring to use to extend the previous ring. We notice that a ladder
unequivocally determines a sequence of ETRS, each one with a specific ring and
threshold value. In Fig. 7, the algorithm Proc is described. Proc takes as input
a message, a ladder, and a corresponding list of keys, and outputs the sequence
of all the signatures that correspond to each step of the ladder. It outputs ⊥
whenever the ladder has an inconsistent sequence of actions or is incompatible
with the list of keys provided in the input.

Definition 1 (Correctness for ETRS). For all λ ∈ N, for any message m ∈
{0, 1}∗, for any ladder lad of polynomial size identifying a ring R, it holds that:

Pr

⎡
⎢⎢⎣

(
�∧

j=1

Verify(t,m, {pki}i∈R , σj) = 1

)

∨(Σ, t,R) = ⊥

∣∣∣∣∣∣∣∣

pp ← Setup(1λ);
Lkeys ← {KeyGen()}i∈R;

(Σ, t,R) ← Proc(m, Lkeys, lad);
{σ1, . . . , σ�} = Σ

⎤
⎥⎥⎦ = 1.

Definition 2 (Unforgeability for ETRS). An extendable threshold ring sig-
nature scheme ETRS is said to be unforgeable if for all PPT adversaries A, the
success probability in the experiment of Fig. 5 is

Pr
[
ExpcmEUF

A,ETRS(λ) = win
]

≤ negl(λ).

Definition 3 (Anonymity for ETRS). An extendable threshold ring signa-
ture scheme ETRS is said to provide anonymity if for all PPT adversaries A,
the success probability in the anonymous extendability experiment of Fig. 6 is
Pr

[
ExpANEXT

A,ETRS (λ) = win
]

≤ 1
2 + negl(λ). In this experiment, the ladders submit-

ted by A are said to be well-formed if all the actions in the ladders are pairwise
of the same type, and they have the same ring as input.

Remarks on Anonymity and Unforgeability for ETRS. We modify the definition
of anonymity for ETRS in [2] making it stronger. The difference is that the
adversary now gets to see all the intermediate ETRS instead of just the final
one (see lines 11 and 12 of Chal in Fig. 6). This modification enables count-
me-in applications where partial signatures get publicly posted. In addition,
in the experiment, we add the checks of lines 15 and 17 to rule out a trivial
attack inherent to any ETRS. Indeed, since the Join operation cannot increase
the threshold of an ETRS when using a secret key that was already used before,
A could use this fact to distinguish between the ladders.

The Combine algorithm is introduced in [2] as a procedure to combine
together two signatures on the same message with two different (not necessarily
disjoint) rings. The output is a signature having as ring the union of the two
rings and as threshold the cardinality of the union of the signers sets of the
starting signatures. The Combine algorithm can be run without knowing any
secret key. In [2], the authors showed that the Join operation can be obtained

294 G. Avitabile et al.

Fig. 5. Unforgeability game for ETRS (security experiment and oracles). This notion
is reported from [2].

as the concatenation of the Sign operation and the Combine operation. In order
to avoid the same attack described before, the checks in lines 11 and 13 of the
experiment of Fig. 6 are needed. We notice that our ETRS only provides a weaker
form of Combine in which the starting rings are disjoint (cfr., Sect. 6). A similar
discussion holds for lines 5 − 8 of the unforgeability experiment in Fig. 5. In
particular, they rule out trivial attacks due to A asking too many sign, join, or
corruption queries.

Fellow-signer Anonymity. We also define a stronger version of anonymity called
fellow-signer anonymity. This game models the requirement that even a signer
cannot determine any of the other signers by just looking at all the signatures

Extendable Threshold Ring Signatures with Enhanced Anonymity 295

that were produced. It is straightforward to notice that fellow-signer anonymity
implies anonymity for ETRS.

Definition 4 (Fellow Signer Anonymity for ETRS). An extendable thresh-
old ring signature scheme ETRS is said to provide fellow signer anonymity if
for all PPT adversaries A, the success probability in the experiment of Fig. 8 is
Pr

[
ExpANFS

A,ETRS(λ) = win
]

≤ 1
2 + negl(λ).

5 Extendable Non-interactive Witness Indistinguishable
Proof of Knowledge

Given an NP language L with associated poly-time relation RL, we define the
related threshold relation RLtr as follows. We name the corresponding lan-
guage Ltr.

Fig. 6. Anonymous extendability game. We use lad.S to indicate the set of signers of a
ladder lad. We propose a stronger notion compared to [2]. Indeed, in our definition, the
adversary gets to see all the intermediate signatures instead of only the final ETRS.

296 G. Avitabile et al.

Fig. 7. Process algorithm for ETRS.

RLtr ={(x = (k, x1, . . . , xn), w = ((w1, α1), . . . , (wk, αk)))|
1 ≤ α1 < . . . < αk ≤ n ∧ ∀ j ∈ [k] : (xαj

, wj) ∈ RL}.

An extendable non-interactive proof system for a threshold relation RLtr con-
sists of the following PPT algorithms. The group key gk ← G(1λ) is considered
as an implicit input to all algorithms:

– crs ←$ CRSSetup(gk): on input the group key gk, output a uniformly random5

common reference string crs ∈ {0, 1}λ.
5 Here we are also assuming that the crs is uniformly random since it is needed by our
ETRS construction.

Extendable Threshold Ring Signatures with Enhanced Anonymity 297

Fig. 8. Fellow signer anonymity game. We use lad.S to indicate the set of signers of a
ladder lad and lad.add to indicate that we are adding the pair (action, input) as the last
element of the ladder.

– (Π, (aux1, . . . , auxn)) ← Prove(crs, (k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk))): on
input ((k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk))) ∈ RLtr , output a proof Π and
auxiliary values (aux1, . . . , auxn). The auxiliary value auxi is used later on to
perform an add operation using a witness for a not previously used statement
xi.

– 0/1 ← PrVerify(crs, (k, x1, . . . , xn),Π): on input statement (k, x1, . . . , xn),
and a proof Π, output 1 to accept and 0 to reject.

– (Π ′, auxn+1) ← PrExtend(crs, (k, x1, . . . , xn), xn+1,Π): on input statements
(k, x1, . . . , xn), xn+1, and a proof Π for (k, x1, . . . , xn) ∈ Ltr, output an
updated proof Π ′ for (k, x1, . . . , xn, xn+1) ∈ Ltr, and additional auxiliary
value auxn+1. The auxiliary value auxn+1 is used later on to perform an add
operation using a witness for xn+1.

– (Π ′, aux′
α) ← PrAdd(crs, (k, x1, . . . , xn), (w,α), aux,Π): on input statement

(k, x1, . . . , xn), witness (w,α), auxiliary value aux, and proof Π for (k, x1, . . . ,
xn) ∈ Ltr, output an updated proof Π ′ for (k + 1, x1, . . . , xn) ∈ Ltr, and
updated auxiliary value aux′

α.
– (Π ′, r = (r1, . . . , rn)) ← RandPr(crs, (k, x1, . . . , xn),Π): on input statement

x and proof Π for x ∈ Ltr, output a re-randomized proof Π ′ and update
randomness ri (related to auxiliary value auxi) with i ∈ [n].

298 G. Avitabile et al.

– aux′
i ← AuxUpdate(crs, auxi, ri): on input auxiliary value auxi, and update

randomness ri, output updated auxiliary value aux′
i. AuxUpdate is used to

update the auxiliary values after a proof has been re-randomized. The used
input randomness is the one given in output by RandPr. To simplify the
notation, we write AUX′ ← AuxUpdate(crs,AUX, r) to indicate that a list of
auxiliary values is updated by appropriately parsing AUX and r and running
the update operation on each element of the list.

– 0/1 ← AuxVerify(crs, (k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk)), (aux1, . . . , auxn),
Π): on input statement (k, x1, . . . , xn), witness ((w1, α1) . . . , (wk, αk)), auxil-
iary values (aux1, . . . , auxn), and proof Π, output 1 if the auxiliary values are
consistent with the statement, the proof, and the witness. Return 0 otherwise.
If AuxUpdate returns 1, we are guaranteed that the subsequent extend/add
operations can be correctly executed6.

An extendable non-interactive proof system is said to be an extendable non-
interactive witness indistinguishable (ENIWI) proof of knowledge if it satisfies
adaptive extractable soundness (Definition 14 of [5]) and the following properties.

Definition 5 (Completeness). An extendable non-interactive proof system for
RLtr is complete if ∀λ ∈ N, gk ← G(1λ), crs ←$ CRSSetup(gk), (x,w) ∈ RLtr ,
and (Π,AUX) ← Prove(crs, x, w) it holds that

Pr[PrVerify(crs, x,Π) = 1 ∧ AuxVerify(crs, x, w,AUX,Π) = 1] = 1

Definition 6 (Transformation Completeness). An extendable non-
interactive proof system for RLtr is transformation complete if ∀λ ∈ N, gk ←
G(1λ), crs ←$ CRSSetup(gk), (x,w) ∈ RLtr , and (Π,AUX) such that PrVerify(crs,
x,Π) = 1 and AuxVerify(crs, x, w,AUX,Π) = 1 the following holds with probability
1:

– AuxVerify(crs, x, w,AUX′,Π ′) = 1, where (Π ′, r) ← RandPr(crs, x,Π) and
AUX′ ← AuxUpdate(crs,AUX, r).

– Parse x as (k, x1, . . . , xn) and w as ((w1, α1) . . . , (wk, αk)). (Π ′, aux′) ←
PrAdd(crs, x, (w′, α′), aux,Π), modify AUX replacing auxα′ with aux′.
If α′ ∈ {α1, . . . αk} and (xα′ , w′) ∈ RL, then PrVerify(crs, (k +
1, x1, . . . , xn),Π ′) = 1, andAuxVerify(crs, (k+1, x1, . . . , xn), ((w1, α1) . . . , (wk,
αk), (w′, α′)),AUX,Π ′) = 1.

– (Π ′, auxn+1) ← PrExtend(crs, x, xn+1,Π), modify AUX adding auxil-
iary value auxn+1. Then, PrVerify(crs, (k, x1, . . . , xn+1),Π ′) = 1, and
AuxVerify(crs, (k, x1, . . . , xn+1), w,AUX,Π ′) = 1.

Definition 7 (Re-Randomizable Addition). Consider the following
experiment:

– gk ← G(1λ)

6 We introduce AuxVerify merely as an internal utility to simplify the description of
our definitions.

Extendable Threshold Ring Signatures with Enhanced Anonymity 299

– crs ←$ CRSSetup(gk)
– (x,w,Π∗,AUX∗) ← A(crs)
– Parse x as (k, x1, . . . , xn) and w as ((w1, α1) . . . , (wk, αk))
– If (x,w) /∈ RLtr or PrVerify(crs, (k − 1, x1, . . . , xn),Π∗) = 0 or

AuxVerify(crs, (k − 1, x1, . . . , xn), ((w1, α1) . . . , (wk−1, αk−1)),AUX∗,Π∗) = 0
output ⊥ and abort. Otherwise, sample b ←$ {0, 1} and do the following:

• If b = 0, (Π0,AUX0) ← Prove(crs, x, w); (Π, r) ← RandPr(crs, x,Π0),
AUX ← AuxUpdate(crs,AUX0, r)

• If b = 1, (Π1, aux
∗) ← PrAdd(crs, x, (wk, αk),AUX∗,Π∗). Replace in

AUX∗ the value auxαk
with aux∗. (Π, r) ← RandPr(crs, x,Π1),AUX ←

AuxUpdate(crs,AUX∗, r)
– b′ ← A(Π,AUX)

We say that the proof system has re-randomizable addition if for every PPT A,
there exists a negligible function ν(·), such that Pr[b = b′] ≤ 1/2 + ν(λ).

Definition 8 (Re-Randomizable Extension). Consider the following exper-
iment:

– gk ← G(1λ)
– crs ←$ CRSSetup(gk)
– (x,w, xn,Π∗,AUX∗) ← A(crs)
– Parse x as (k, x1, . . . , xn−1)
– If (x,w) /∈ RLtr or PrVerify(crs, x,Π∗) = 0 or AuxVerify(crs,

x, w,AUX∗,Π∗) = 0 output ⊥ and abort. Otherwise, sample b ←$ {0, 1} and
do the following:

• If b = 0 (Π0,AUX0) ← Prove(crs, (k, x1, . . . , xn), w); (Π, r) ← RandPr(
crs, (k, x1, . . . , xn),Π0),AUX ← AuxUpdate(crs,AUX0, r)

• If b = 1 (Π1, aux
∗) ← PrExtend(crs, x, xn,Π∗). Append the value aux∗ to

AUX∗. (Π, r) ← RandPr(crs, (k, x1, . . . , xn),Π1),AUX ← AuxUpdate(crs,
AUX∗, r)

– b′ ← A(Π,AUX)

We say that the proof system has re-randomizable extension if, for every PPT
A, there exists a negligible function ν(·), such that Pr[b = b′] ≤ 1/2 + ν(λ).

Definition 9 (Extended Witness Indistinguishability). Consider the fol-
lowing experiment.

– gk ← G(1λ)
– crs ←$ CRSSetup(gk)
– (x,w0, w1) ← A(crs)
– Parse x as (k, x1, . . . , xn), wi as ((wi

1, α
i
1) . . . , (wi

k, αi
k)), for i ∈ {0, 1}

– If (x,w0) /∈ RLtr or (x,w1) /∈ RLtr output ⊥ and abort. Otherwise, sample
b ←$ {0, 1} and do the following:

• (Π, (aux1, . . . , auxn)) ← Prove(crs, x, wb).
• Set I0 = {α0

1, . . . , α
0
k}, I1 = {α1

1, . . . , α
1
k}, I = I0 ∩ I1, S = ([n] \ (I0 ∪

I1)) ∪ I, and AUX = {auxi}i∈S.
– b′ ← A(Π,AUX)

The proof system has extended witness indistinguishability (EWI) if for every
PPT A, there exists a negligible function ν(·), such that Pr[b = b′] ≤ 1/2+ ν(λ).

300 G. Avitabile et al.

6 Our Extendable Threshold Ring Signature

In Fig. 9, we show our ETRS from an ENIWI PoK ENIWI for a hard relation
RL, and an IND-CPA public key encryption scheme PKE which is homomorphic
w.r.t. ENIWI.AuxUpdate. By hard relation we mean that a PPT A who is given
x ∈ L, has negligible probability of providing a witness w such (x,w) ∈ RL.
We also require that RL is public coin samplable, meaning that it is possible
to efficiently sample random x ∈ L. We omit the Setup algorithm from the
description since it simply runs the setup algorithm of PKE and samples a hash
function mapping arbitrary strings into elements in the correct space7.

Instantiating our ETRS. We work over a bilinear group gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ)
for which the SXDH assumption is believed to hold. In Sect. 7.3, we show an
ENIWI PoK having as base relation pairing product equations in which all the
variables are elements of Ȟ, public constants are either paired with secret values
or with ȟ, and the target element is 0T. In particular, we can use as base relation
the following: RL = {(x = (â, b̂, ȟ), w = b̌′|â · ȟ + b̂ · b̌′ = 0T}. In Lemmma 1, we
prove that this is a hard relation under the DDH assumption in Ĝ. Additionally,
since in our ENIWI AuxUpdate simply consists of applying the group operation
between two elements of Ȟ, we can use ElGamal instantiated in Ȟ as public key
encryption scheme.

Remark on Malicious Extenders. As in [2], we do not consider security definitions
accounting for malicious signers that try to prevent future signers from joining
the signature. For example, in our construction a malicious extender could just
encrypt a wrong auxiliary value. An approach that could be investigated to
tackle this issue is adding a NIZK proving that the content of the encrypted
auxiliary values is s.t. AuxVerify = 1. Such NIZK would need to be malleable so
that it could be updated after every re-randomization step, as well as whenever
the signature is extended.

On Combining Signatures. One might wonder if concrete instantiations of our
ETRS could also support the Combine operation as described in [2]. Whenever
there is a shared public key (i.e., statement) in two ETRS, such signatures cannot
be combined. Indeed, consider the case of two proofs over the same ring where
there is a common base statement for which a corresponding witness was used
in both proofs. Then, the combined proof should not have a resulting threshold
that counts it twice. This means that the output of Combine would be different
depending on whether two NIWI proofs on the same statement used the same
witness or not. This is in clear contradiction with the witness indistinguisha-
bility property. On the other hand, the above observation does not exclude the
possibility of having a weaker form of Combine where the starting signatures are
constrained to have disjoint rings. Indeed, our instantiation of Sect. 7.3 could be

7 We need a cryptographic hash function that allows to hash directly to both the
source groups of the pairing group. See [21] for more details.

Extendable Threshold Ring Signatures with Enhanced Anonymity 301

easily modified to support the corresponding Combine operation. Such operation
exploits basically the same technique of the extend operation, and thus we omit
its description.

6.1 Security of Our Extendable Threshold Ring Signature

Theorem 1. Let ENIWI be an extendable non-interactive witness indistinguish-
able proof of knowledge for a hard relation RL, and PKE be an IND-CPA public
key encryption scheme which is homomorphic w.r.t. ENIWI.AuxUpdate, then the
scheme of Fig. 9 is an extendable threshold ring signature scheme.

We prove Theorem 1 using Lemma 2 and Lemma 3.

Lemma 2. The signature scheme described in Fig. 9 is unforgeable according
to Definition 2.

Proof Sketch. The basic idea of the proof is to turn an adversary A breaking
the unforgeability with non-negligible probability into another adversary B that
extracts a witness for an instance x ∈ L of the hard relation, which is sampled by
a challenger C. In order to build this reduction, we need to show how to simulate
all the oracle queries of A during the game. We do this by showing a series of
hybrid games, starting from the game described in Fig. 5.

The first change consists into replying to Join queries by computing every
time a new proof from scratch using ENIWI.Prove, instead of updating the cur-
rent proof using PrAdd. This change is not detected by A thanks to the re-
randomizable addition of the ENIWI.

The second change is that B can guess j∗, that is the index of the random
oracle query in which A will query the message used in the forgery, and i∗, that is
the index of a “new” signer used to create the forgery for mj∗ . We notice that, by
the rules of the unforgeability game (see checks of lines 5−8 of the unforgeability
experiment in Fig. 5), this index i∗ must exist, A never makes a corruption query
for i∗, and it does not ask for any Sign/Join query involving i∗ on message mj∗ .
Whenever B discovers that it did not guess such indices correctly, B aborts.
Nevertheless, since these indices can be kept perfectly hidden in A’s view, B
guesses these two indices with noticeable probability.

The next change consists into programming the random oracle to switch to
an extraction-mode crs for the query on message mj∗ . Additionally, for each
j = j∗, we can program the random oracle to output a pkOj

for which B knows
the witness w1j

s.t. (x1j
, w1j

) ∈ RL. Every Join/Sign query involving the signer
i∗ and a message mj , with j = j∗, is answered using w1j

instead of wi∗ . This
change is not detectable by A thanks to the extended WI and the adaptive
extractable soundness of ENIWI. Indeed, extended WI guarantees that A cannot
notice the change of the used witness, and the adaptive extractable soundness
guarantees that the probability of extracting a witness for statement xi∗ from
the forgery does not change, except up to a negligible factor. Importantly, in
order to reduce the indistinguishability of these changes to these two properties

302 G. Avitabile et al.

Fig. 9. ETRS from ENIWI PoK and IND-CPA homomorphic PKE. For space rea-
sons, we directly write the internal algorithms of the schemes (e.g., Prove instead of
ENIWI.Prove), and we omit crs from ENIWI algorithms input considering it as implicit.
We use AUX[i] to indicate the i-th element of list AUX.

Extendable Threshold Ring Signatures with Enhanced Anonymity 303

of the ENIWI we take advantage of the fact that we have a different CRS for
every message. Finally, after applying all these changes, B can set xi∗ as the x
received from C. Given the forgery generated by A, B can extract a witness for
statement x, breaking the hardness of RL.

Let Pr
[
ExpcmEUF

A,ETRS(λ) = win
]

be the probability that the adversary wins the

unforgeability game, we have that: Pr
[
ExpcmEUF

A,ETRS(λ) = win
]

≤ εrr + qm(εcrs +
(qKG + 1)(εHR + εEWI)), where qKG and qm are polynomial bounds on the
number of key generation queries and random oracle queries that A can do.
While εrr, εcrs, εHR, εEWI are the advantages in the re-randomizable addition
game of ENIWI, in distinguishing a regular CRS from an extraction-mode CRS,
in the hard relation game, and in the extended witness indistinguishability game
respectively. We defer to [5] for the complete proof.

Lemma 3. The signature scheme described in Fig. 9 satisfies the anonymity
property of Definition 3.

Proof Sketch. Through a sequence of indistinguishable hybrids, we switch from
a challenger B using lad0 to a B using lad1. We show that at every hybrid, B can
exploit A distinguishing between the two hybrids to break some properties of
the underlying primitives. First, B changes the way it processes the ladders and
replies to Join queries. In particular, B computes every time a new proof from
scratch using ENIWI.Prove, instead of running the Join/Extend algorithms, anal-
ogously to the proof of unforgeability. After that, when processing the ladders,
B will encrypt ⊥ in all signers’ ciphertexts. This change is not detected by A
thanks to the IND-CPA property of the encryption scheme. At the end, B fixes
the ladder used in the anonymity game to be lad1. This change is unnoticeable
thanks to the extended WI of ENIWI. We defer to [5] for the complete proof.

Lemma 4. The signature scheme described in Fig. 9 enjoys fellow-signer
anonymity (cfr., Definition 4).

The proof follows essentially the same path of the one of Lemma3.

7 Our Extendable Non-Interactive Witness
Indistinguishable Proof of Knowledge

In this section, we first show how to extend the GS proof system to define a
proof system for a threshold relation. After that, we show how to further modify
such scheme to get our ENIWI PoK.

7.1 GS Proofs of Partial Satisfiability

In [13,23], it is shown how to transform n sets of certain types of equations
S1, . . . , Sn to a set of equations S′ s.t. S′ is satisfied whenever one of S1, . . . , Sn

is satisfied. A witness for Si, with i ∈ [n], is easily mapped to a witness

304 G. Avitabile et al.

for S′. Indeed, this transformation realizes a disjunction. The transformation
works by assuming that S1, . . . , Sn have independent variables, adding variables
b1, . . . bn−1 ∈ {0, 1}, and defining bn = 1 − b1 − . . . − bn−1. Then, for i ∈ [n], bi

is used to modify all the equations in Si so that they remain the same if bi = 1,
but they admit the trivial solution for bi = 0. Slightly increasing the overhead
of these compilers, it is also possible to implement partial satisfiability proofs
for an arbitrary threshold k, meaning that S′ is satisfied iff k of S1, . . . , Sn are
satisfied. To do so, the main idea is to define bn ∈ {0, 1}, and to prove that
b1 + . . . + bn = k.

A case which is relevant to this paper is when S1, . . . , Sn contain only PPEs
with tT = 0T, all the variables of the PPEs are elements of Ȟ, and public con-
stants are either paired with secret values or with ȟ. In this case, the prover
would:

1. Add variables b1, . . . , bn and prove that bi ∈ {0, 1} ∀i ∈ [n]. This can be done
with quadratic equations, by adding the equations bi(1−bi) = 0. Let us define
such equations to be of type B, we will refer to a specific equation using Bi.

2. Add variables M̂1, . . . , M̂n and prove biĝ − M̂i = 0, with i ∈ [n]. This can
be done via multi-scalar multiplication equations in Ĝ. Since bi ∈ {0, 1}, it
follows that M̂i ∈ {0̂, ĝ}. Let us define such equations to be of type M.

3. Add equation
∑n

i=1 M̂i · ȟ − kĝ · ȟ = 0T. Since M̂i ∈ {0̂, ĝ}, this equation
implies that exactly k of the M̂i, with i ∈ [n], are equal to ĝ. Let us call such
equation as K.

4. For each Si, with i ∈ [n], let Qi be the number of equations in Si, let Ji,q be
the number of variables in the equation q ∈ [Qi] of Si. For each variable y̌i,q,j

with q ∈ [Qi], j ∈ [Ji,q], define variable x̌i,q,j and add equation M̂i · y̌i,q,j −M̂i ·
x̌i,q,j = 0T. Since k of the M̂i are equal to ĝ, this implies that for k equations
sets it must hold that all y̌i,q,j = x̌i,q,j . Let us define such equations to be of
type Y.

5. For each equation in each Si, replace all the original y̌i,q,j with the correspond-
ing x̌i,q,j . This allows to set all x̌i,q,j = y̌i,q,j = 0̌ for each set Si for which
the prover does not have a satisfying assignment. For the k sets for which the
prover does have a satisfying assignment, the prover sets y̌i,q,j = x̌i,q,j . Let
us define such equations to be of type X .

7.2 High-level Overview of Our ENIWI

We construct our ENIWI by observing that GS proofs of partial satisfiability can
be updated in two ways:

– Extend: consider a proof Π for a set of equations S which is satisfied if k
out of n of the original equations sets S1, . . . , Sn are satisfied. On input a new
equations set Sn+1 and the proof Π, compute a new equations set S′ which
is satisfied if k out of the n + 1 equations sets S1, . . . , Sn, Sn+1 are satisfied.
Output S′ and the corresponding updated proof Π ′.

Extendable Threshold Ring Signatures with Enhanced Anonymity 305

– Add: consider a proof Π for a set of equations S which is satisfied if k out n of
the original equations sets S1, . . . , Sn are satisfied. On input the proof Π for
S, a witness for an equations set Si with i ∈ [n] which was not previously used
to create Π, and some corresponding auxiliary information auxi, compute a
new equations set S′ which is satisfied if k + 1 out of the n equations sets
S1, . . . , Sn are satisfied. Output S′ and the corresponding updated proof Π ′.

In particular, one can notice that each step of the partial satisfiability proof
described in Sect. 7.1 only adds equations featuring independent variables, except
for step 3. In step 3, one equation is added combining all variables M̂i with i ∈ [n].
The equation is

∑n
i=1 M̂i · ȟ− kĝ · ȟ = 0T. Let us compute the GS proof for such

equation. Let crs be (û, v̂, ŵ, ǔ, v̌, w̌).

– Variables M̂i are committed as group elements (i.e., with label com
Ĝ
), thus

ĉM̂i
= e�M̂i + v̂ri + ŵsi, with ri, si ←$ Zp.

– ĝ is the base element of Ĝ, thus it is publicly committed with label base
Ĝ

as
ĉĝ = (0, ĝ)�.

– ȟ is the base element of Ȟ, and thus it is publicly committed with label base
Ȟ

as (0, ȟ).

This results in Ĉ = (ĉM̂1
, . . . , ĉM̂n

, ĉĝ), Ď = (0, ȟ), rx = (r1, . . . , rn, 0)�, sx =
(s1, . . . , sn, 0)�, ry = 0, sy = 0.

This means that π̂v̌ = −v̂α − ŵγ and π̂w̌ = −v̂β − ŵδ, with α, γ, β, δ being
random elements in Zp.

Let us compute rxΓĎ = (r1, . . . , rn, 0)�(1, . . . , 1,−k)(0, ȟ) = (0,
∑n

i=1 riȟ).
Similarly, we have that sxΓĎ = (0,

∑n
i=1 siȟ). Let us define auxi =

(aux1i , aux
2
i) = (riȟ, siȟ). This means that π̌v̂ = rxΓĎ + αv̌ + βw̌ =

(0,
∑n

i=1 aux
1
i)+αv̌+βw̌ and π̌ŵ = sxΓĎ+δv̌+γw̌ = (0,

∑n
i=1 aux

2
i)+δv̌+γw̌.

We notice that the proof elements for equation K are essentially a sum of
n independent contributions (i.e., the auxi values) for each of the involved n
variables (i.e., M̂i with i ∈ [n]). We can exploit this fact to perform the extend
and add operations in the following way. Let us consider the steps of Sect. 7.1.

– Extend: Add new equations of types B,M,Y,X by defining the correspond-
ing new independent variables, and compute the related GS proofs. Modify
equation K to be

∑n+1
i=1 M̂i · ȟ − kĝ · ȟ = 0T and update π̌v̂ and π̌ŵ as

π̌v̂ = π̌v̂ + (0, rn+1ȟ), π̌ŵ = π̌ŵ + (0, sn+1ȟ), where rn+1 and sn+1 are the
randomnesses used to commit to the new variable M̂n+1 = 0̂.

– Add: Replace the committed variables for the equations Bi,Mi,Yi,Xi with
new committed variables bi = 1, M̂i = ĝ, and y̌i,q,j = x̌i,q,j . Replace the
old corresponding GS proofs with freshly computed ones. Modify equation
K to be

∑n
i=1 M̂i · ȟ − (k + 1)ĝ · ȟ = 0T, and update π̌v̂ and π̌ŵ as π̌v̂ =

π̌v̂ − (0, aux1i) + (0, r′
iȟ), π̌ŵ = π̌ŵ − (0, aux2i) + (0, s′

iȟ), where r′
i and s′

i are
the randomnesses used for the fresh commitment to M̂i = ĝ.

306 G. Avitabile et al.

After any of the two above modifications, the resulting proof is an accepting
proof for the updated threshold relation. Indeed, both the extend and add oper-
ation symbolically compute the proofs in the same way a prover for the updated
threshold relation would do from scratch.

7.3 Our ENIWI

Our ENIWI is an ENIWI PoK over the language of sets of pairing product equa-
tions where all the variables are elements of Ȟ, public constants are either paired
with secret values or with ȟ, and the target element is 0T. For simplicity, we con-
sider each statement xi as containing only one equation.

– crs ← CRSSetup(gk): run GS.Setup(gk). This results in crs = (û, v̂, ŵ,
ǔ, v̌, w̌).

– (Π, (aux1, . . . , auxn)) ← Prove(crs, (k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk))): on
input ((k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk))) ∈ rl, define A = {α1, . . . , αk}8
and do the following.
1. For each equation xi, i ∈ [n], define new variables and equations:

• Define variable bi = 1 if i ∈ A, and bi = 0 otherwise.
• Define quadratic equation Bi as bi(1 − bi) = 0.
• Define variables M̂i = ĝ if i ∈ A, and M̂i = 0̂ otherwise.
• Define multi-scalar multiplication equation Mi as biĝ − M̂i = 0.
• Let Ji be the number of variables in equation xi. For each variable

y̌i,j , with j ∈ [Ji], define a variable x̌i,j . Set x̌i,j = y̌i,j , if i ∈ A, and
x̌i,j = 0̌ otherwise.

• For each variable y̌i,j , with j ∈ [Ji], define pairing product equation
Yi,j as M̂i · y̌i,j − M̂i · x̌i,j = 0T.

• Modify pairing product equation xi by replacing each variable y̌i,j ,
with j ∈ [Ji], with variable x̌i,j . Let us call such modified equation
Xi.

Moreover, define pairing product equation K as
∑n

i=1 M̂i · ȟ − kĝ · ȟ =
0T. At the end of this step, there will be n equations of types B,M,X ,
n

∑n
i=1 Ji equations of type Y, and one equation of type K.

2. For each equation of types B,M,Y,X generate appropriate commit-
ments (using GS.Com) to all variables, resulting in lists of commit-
ments CB,CM,CY ,CX respectively9. Then, for each equation of types
B,M,Y,X , run GS.Prove with the obvious inputs obtaining proof ele-
ments lists πB,πM,πY ,πX . For example, πB contains proof elements
πBi, with i ∈ [n], each of them obtained running GS.Prove for equation
Bi using commitments CBi (and related randomnesses) from CB.

8 A indicates what are the k equations the prover has a satisfying assignment for.
9 Whenever different equations share the same variables, we can think of the commit-

ments lists as containing copies of the exact same commitments. Clearly, in practice
data does not need to be replicated.

Extendable Threshold Ring Signatures with Enhanced Anonymity 307

Moreover, for equation K do the following10:
• Commit to M̂i, with i ∈ [n], with label com

Ĝ
and randomness (ri, si),

i.e., (com
Ĝ
, ĉM̂i

) ← GS.Com(com
Ĝ
, M̂i; (ri, si)), resulting in ĉM̂i

=
e�M̂i + v̂ri + ŵsi.

• Commit to ĝ with label base
Ĝ

and randomness (0, 0), i.e.,
(base

Ĝ
, ĉĝ) ← GS.Com(base

Ĝ
, ĝ; (0, 0)), resulting in ĉĝ = (0, ĝ)�.

• Commit to ȟ with label base
Ȟ

and randomness (0, 0), i.e.,
(base

Ȟ
, ďȟ) ← GS.Com(base

Ȟ
, ȟ; (0, 0)), resulting in ďȟ = (0, ȟ).

Do the following steps:
• Define Ĉ = (ĉM̂1

, . . . , ĉM̂n
, ĉĝ), Ď = (0, ȟ), rx = (r1, . . . , rn, 0)�, sx =

(s1, . . . , sn, 0)�, ry = 0, sy = 0. This means that π̂v̌ = −v̂α−ŵγ and
π̂w̌ = −v̂β − ŵδ.

• Compute rxΓĎ = (r1, . . . , rn, 0)�(1, . . . , 1,−k)(0, ȟ) =
(0,

∑n
i=1 riȟ). Similarly, we have that sxΓĎ = (0,

∑n
i=1 siȟ). Define

auxi = (aux1i , aux
2
i) = (riȟ, siȟ), with i ∈ [n].

• Compute π̌v̂ = rxΓĎ + αv̌ + βw̌ = (0,
∑n

i=1 aux
1
i) + αv̌ + βw̌ and

π̌ŵ = sxΓĎ + δv̌ + γw̌ = (0,
∑n

i=1 aux
2
i) + δv̌ + γw̌.

Let πK = (π̂v̌ , π̂w̌ , π̌v̂ , π̌ŵ) and CK = (Ĉ, Ď). Output (Π = (CB,CM,
CY ,CX , CK,πB,πM,πY ,πX , πK),AUX = (aux1, . . . , auxn)).

– 0/1 ← PrVerify(crs, (k, x1, . . . , xn),Π) reconstruct equations of type B,M,
Y,X ,K, appropriately parse Π, and for every equation run GS.PrVerify with
the obvious inputs. For example, the proof for equation Bi is verified giving,
after appropriate parsing, commitments CBi and proof element πBi in input
to GS.PrVerify. Return 1 iff all the calls to GS.PrVerify return 1.

– (Π ′, auxn+1) ← PrExtend(crs, (k, x1, . . . , xn), xn+1,Π) do the following:
1. Parse Π as (CB,CM,CY ,CX , CK,πB,πM,πY ,πX , πK),AUX = (aux1,

. . . , auxn).
2. For each of the 4 equation types B,M,Y,X , add a new equation related

to xn+1 by defining the corresponding new independent variables, bn+1 =
0, M̂n+1 = 0̂ and all the y̌n+1,j = 0̌, with j ∈ [Jn+1].

3. Compute commitments to new variables and appropriately add them to
CB,CM,CY ,CX .

4. Compute the related new GS proofs and add them to πB,πM,πY ,πX
accordingly.

5. Parse πK as (π̂v̌ , π̂w̌ , π̌v̂ , π̌ŵ) and update π̌v̂ and π̌ŵ as π̌v̂ = π̌v̂ +
(0, rn+1ȟ), π̌ŵ = π̌ŵ + (0, sn+1ȟ), where rn+1 and sn+1 are the random-
nesses used to commit to the new variable M̂n+1 = 0̂.

6. Set auxn+1 = (aux1n+1, aux
2
n+1) = (rn+1ȟ, sn+1ȟ).

7. Output (Π, auxn+1).
– (Π ′, aux′

α) ← PrAdd(crs, (k, x1, . . . , xn), (w,α), aux,Π) do the following:
1. Parse Π as (CB,CM,CY ,CX , CK,πB,πM,πY ,πX , πK).

10 We report the whitebox computation of the GS prover to show how to compute the
auxiliary values. Furthermore, for sake of clarity, we report again commitments to
variables M̂i with i ∈ [n], which were already created to prove other equations.

308 G. Avitabile et al.

2. For each of the 4 equation types B,M,Y,X , replace the variables in
equations related to xα (i.e., Bα,Mα,Xα, and all Yα,j with j ∈ Jα) as
follows: bα = 1, M̂α = ĝ and all the y̌α,j = x̌α,j , with j ∈ [Jα].

3. Replace the commitments related to equations Bα,Mα,Xα, and all Yα,j ,
with j ∈ Jα with freshly generated ones updating CB,CM,CY ,CX
accordingly.

4. Replace the GS proofs related to equations Bα,Mα,Xα, and all Yα,j

with j ∈ Jα, with freshly generated ones replacing proof elements of
πB,πM,πY ,πX accordingly.

5. Parse πK as (π̂v̌ , π̂w̌ , π̌v̂ , π̌ŵ) and update π̌v̂ and π̌ŵ as π̌v̂ = π̌v̂ −
(0, aux1α) + (0, r′

αȟ), π̌ŵ = π̌ŵ − (0, aux2α) + (0, s′
αȟ), where r′

α and s′
α are

the randomnesses used for the fresh commitment to M̂α = ĝ.
6. Set aux′

α = (aux1α, aux2α) = (r′
αȟ, s′

αȟ).
7. Output (Π, aux′

α).
– (Π ′, r1, . . . , rn) ← RandPr(crs, (k, x1, . . . , xn),Π):

1. Run GS.RandPr on each of the proofs, appropriately fixing the random
coins when randomizing proofs related to equations involving shared vari-
ables (i.e., s.t. we end up again with shared variables having the exact
same commitments). Let r′

i, s
′
i, with i ∈ [n] be the randomnesses used

to update commitments to all M̂i, with i ∈ [n]. Define ri = (r′
i, s

′
i). Let

randomized proof elements and commitments be contained in Π ′.
2. Output (Π ′, r1, . . . , rn)

– aux′ ← AuxUpdate(crs, aux, r):
1. Parse r as (r′, s′), and aux as (aux1, aux2).
2. Output aux′ = (aux1 + r′ȟ, aux2 + s′ȟ).

– 0/1 ← AuxVerify(crs, (k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk)), (aux1, . . . , auxn),
Π):
1. Parse Π as (CB,CM,CY ,CX , CK,πB,πM,πY ,πX , πK). Parse CK as

Ĉ = (ĉM̂1
, . . . , ĉM̂n

, ĉĝ) and Ď = (0, ȟ).
2. Check that (auxα1 , . . . , auxαk

) all open (ĉM̂α1
, . . . , ĉM̂αk

) to ĝ. Namely,

check that ĉM̂i
· (ȟ, ȟ)+ v̂ · (−aux1i ,−aux1i)+ ŵ · (−aux2i ,−aux2i) = (0̂, ĝ)� ·

(ȟ, ȟ), for all i ∈ A.
3. Check that remaining auxiliary values open commitments ĉM̂i

with i ∈
[n] \ A to 0̂. Namely, check that ĉM̂i

· (ȟ, ȟ) + v̂ · (−aux1i ,−aux1i) + ŵ ·
(−aux2i ,−aux2i) = (0̂, 0̂)� · (ȟ, ȟ), for all i ∈ [n] \ A.

Theorem 2. If GS (cfr., Sect. 3.1) is a NIWI for all equation types and a NIWI
PoK for pairing product equations, then the construction above is an ENIWI
PoK. The base relation RL consists of pairing product equations in which all the
variables are elements of Ȟ, public constants are either paired with secret values
or with ȟ, and the target element is 0T.

See [5] for the proof.

Extendable Threshold Ring Signatures with Enhanced Anonymity 309

Acknowledgements. This result is part of projects that have received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation program under projects PICOCRYPT (grant agreement No.
101001283) and PROCONTRA (grant agreement No. 885666), from the Spanish Gov-
ernment under project PRODIGY (TED2021-132464B-I00), and from the Madrid
Regional Government under project BLOQUES (S2018/TCS-4339). The last two
projects are co-funded by European Union EIE, and NextGenerationEU/PRTR funds.

References

1. Aguilar Melchor, C., Cayrel, P.-L., Gaborit, P.: A new efficient threshold ring sig-
nature scheme based on coding theory. In: Buchmann, J., Ding, J. (eds.) PQCrypto
2008. LNCS, vol. 5299, pp. 1–16. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88403-3 1

2. Aranha, D.F., Hall-Andersen, M., Nitulescu, A., Pagnin, E., Yakoubov, S.: Count
me in! extendability for threshold ring signatures. In: Hanaoka, G., Shikata, J.,
Watanabe, Y. (eds.) Public-Key Cryptography – PKC 2022. PKC 2022. Lec-
ture Notes in Computer Science, vol. 13178, pp. 379–406. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-97131-1 13

3. Attema, T., Cramer, R., Fehr, S.: Compressing proofs of k -out-Of-n partial knowl-
edge. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp.
65–91. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 3

4. Attema, T., Cramer, R., Rambaud, M.: Compressed Σ-protocols for bilinear group
arithmetic circuits and application to logarithmic transparent threshold signatures.
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 526–
556. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 18

5. Avitabile, G., Botta, V., Fiore, D.: Extendable threshold ring signatures with
enhanced anonymity. ePrint, Report 2022/1568

6. Avitabile, G., Botta, V., Friolo, D., Visconti, I.: Efficient proofs of knowledge for
threshold relations. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.)
Computer Security – ESORICS 2022. ESORICS 2022. Lecture Notes in Computer
Science, vol. 13556, pp. 42–62. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-17143-7 3

7. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 7

8. Bettaieb, S., Schrek, J.: Improved lattice-based threshold ring signature scheme. In:
Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 34–51. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38616-9 3

9. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 16

https://doi.org/10.1007/978-3-540-88403-3_1
https://doi.org/10.1007/978-3-540-88403-3_1
https://doi.org/10.1007/978-3-030-97131-1_13
https://doi.org/10.1007/978-3-030-84259-8_3
https://doi.org/10.1007/978-3-030-92068-5_18
https://doi.org/10.1007/978-3-031-17143-7_3
https://doi.org/10.1007/978-3-031-17143-7_3
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-642-38616-9_3
https://doi.org/10.1007/978-3-030-64834-3_16

310 G. Avitabile et al.

10. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 26

11. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short account-
able ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24174-6 13

12. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to
Ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 30

13. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 20

14. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof sys-
tems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4 18

15. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5

16. Chow, S.S.M., Wei, V.K.W., Liu, J.K., Yuen, T.H.: Ring signatures without ran-
dom oracles. In: ASIACCS 06, pp. 297–302. ACM Press (2006)

17. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in Ad
Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 36

18. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0 36

19. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-
out-of-many proofs and applications to ring signatures. In: Deng, R.H., Gauthier-
Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 67–88.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2 4

20. Faonio, A., Fiore, D., Nizzardo, L., Soriente, C.: Subversion-resilient enhanced
privacy ID. In: Galbraith, S.D. (ed.) CT-RSA 2022. LNCS, vol. 13161, pp. 562–
588. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95312-6 23

21. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

22. Goel, A., Green, M., Hall-Andersen, M., Kaptchuk, G.: Stacking sigmas: A frame-
work to compose Σ-protocols for disjunctions. In: Dunkelman, O., Dziembowski,
S. (eds.) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lec-
ture Notes in Computer Science, vol. 13276, pp. 458–487. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-07085-3 16

23. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

24. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/3-540-45708-9_30
https://doi.org/10.1007/978-3-642-01001-9_20
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-030-21568-2_4
https://doi.org/10.1007/978-3-030-95312-6_23
https://doi.org/10.1007/978-3-031-07085-3_16
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-540-78967-3_24

Extendable Threshold Ring Signatures with Enhanced Anonymity 311

25. Haque, A., Krenn, S., Slamanig, D., Striecks, C.: Logarithmic-size (linkable) thresh-
old ring signatures in the plain model. In: Hanaoka, G., Shikata, J., Watanabe, Y.
(eds) Public-Key Cryptography – PKC 2022. PKC 2022. Lecture Notes in Com-
puter Science, vol. 13178, pp. 437–467. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-97131-1 15

26. Haque, A., Scafuro, A.: Threshold ring signatures: new definitions and post-
quantum security. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.)
PKC 2020. LNCS, vol. 12111, pp. 423–452. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45388-6 15

27. Liu, Z., Nguyen, K., Yang, G., Wang, H., Wong, D.S.: A lattice-based linkable ring
signature supporting stealth addresses. In: Sako, K., Schneider, S., Ryan, P.Y.A.
(eds.) ESORICS 2019. LNCS, vol. 11735, pp. 726–746. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29959-0 35

28. Lu, X., Au, M.H., Zhang, Z.: Raptor: a practical lattice-based (linkable) ring sig-
nature. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS
2019. LNCS, vol. 11464, pp. 110–130. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21568-2 6

29. Munch-Hansen, A., Orlandi, C., Yakoubov, S.: Stronger notions and a more efficient
construction of threshold ring signatures. In: Longa, P., Ràfols, C. (eds.) LATIN-
CRYPT 2021. LNCS, vol. 12912, pp. 363–381. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-88238-9 18

30. Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 481–498. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9 31

31. Okamoto, T., Tso, R., Yamaguchi, M., Okamoto, E.: A k-out-of-n ring signature
with flexible participation for signers. ePrint, Report 2018/728 (2018)

32. Petzoldt, A., Bulygin, S., Buchmann, J.: A multivariate based threshold ring sig-
nature scheme. Appl. Algebra Eng. Commun. Comput. 24(3–4), 255–275 (2013)

33. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

34. Russo, A., Anta, A.F., Vasco, M.I.G., Romano, S.P.: Chirotonia: a Scalable and
Secure e-Voting Framework based on Blockchains and Linkable Ring Signatures.
In: 2021 IEEE International Conference on Blockchain (Blockchain), pp. 417–424
(2021)

35. Thyagarajan, S.A.K., Malavolta, G., Schmid, F., Schröder, D.: Verifiable timed
linkable ring signatures for scalable payments for monero. In: Atluri, V., Di Pietro,
R., Jensen, C.D., Meng, W. (eds.) Computer Security – ESORICS 2022. ESORICS
2022. Lecture Notes in Computer Science, vol. 13555, pp. 467–486. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-17146-8 23

36. Yuen, T.H., Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Efficient linkable and/or
threshold ring signature without random oracles. Comput. J. 56(4), 407–421 (2013)

37. Zhang, F., Kim, K.: ID-Based blind signature and ring signature from pairings.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 33

https://doi.org/10.1007/978-3-030-97131-1_15
https://doi.org/10.1007/978-3-030-97131-1_15
https://doi.org/10.1007/978-3-030-45388-6_15
https://doi.org/10.1007/978-3-030-45388-6_15
https://doi.org/10.1007/978-3-030-29959-0_35
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-030-88238-9_18
https://doi.org/10.1007/978-3-030-88238-9_18
https://doi.org/10.1007/3-540-45708-9_31
https://doi.org/10.1007/3-540-45708-9_31
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-031-17146-8_23
https://doi.org/10.1007/3-540-36178-2_33

Tracing a Linear Subspace: Application
to Linearly-Homomorphic Group

Signatures

Chloé Hébant1, David Pointcheval2, and Robert Schädlich2(B)

1 Cosmian, Paris, France
2 DIENS, École normale supérieure, PSL University, CNRS, Inria, Paris, France

robert.schaedlich@ens.fr

Abstract. When multiple users have power or rights, there is always
the risk of corruption or abuse. Whereas there is no solution to avoid
those malicious behaviors, from the users themselves or from external
adversaries, one can strongly deter them with tracing capabilities that
will later help to revoke the rights or negatively impact the reputation.
On the other hand, privacy is an important issue in many applications,
which seems in contradiction with traceability.

In this paper, we first extend usual tracing techniques based on codes
so that not just one contributor can be traced but the full collusion. In
a second step, we embed suitable codes into a set V of vectors in such a
way that, given a vector U ∈ span(V), the underlying code can be used
to efficiently find a minimal subset X ⊆ V such that U ∈ span(X).

To meet privacy requirements, we then make the vectors of span(V)
anonymous while keeping the efficient tracing mechanism. As an interest-
ing application, we formally define the notion of linearly-homomorphic
group signatures and propose a construction from our codes: multiple
signatures can be combined to sign any linear subspace in an anonymous
way, but a tracing authority is able to trace back all the contributors
involved in the signatures of that subspace.

1 Introduction

In any multi-user setting, a user can always share its secret key with a non-
legitimate one or get corrupted, which delegates all its rights. One way to escape
from such a situation is to make it useless: in threshold cryptography, such
keys are useless unless enough keys are obtained. Another approach consists in
deterring traitors to share their keys by activity tracing. This idea has been
introduced by Chor et al. in [7], initially to recover the origin of a pirate decoder
box decrypting broadcast messages, such as for PayTV. In this use-case, tracing
one traitor at a time makes sense, as the broadcast can continue after having
revoked the first traitor. If the pirate decoder is still effective, other traitors can
sequentially be traced and revoked. However, things are different if the setting
is rather “static”, such as when signatures are created jointly by several users.
Here, tracing one traitor at a time is meaningless, as the signature cannot be
c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 312–341, 2023.
https://doi.org/10.1007/978-3-031-31368-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_12&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_12

Tracing a Linear Subspace 313

replayed to retrieve all the traitors one after one. We therefore develop techniques
that allow to retrieve not only one but all the actual contributors.

1.1 Contributions

Linearly-Homomorphic Group Signatures. In this work, we build multi-
user signatures that include tracing capabilities. More specifically, we combine
functionality and security guarantees of group signatures [2,6] and linearly-
homomorphic signatures [4]. The former roughly guarantees that, given signa-
tures for vector messages M1, . . . ,Mn, anyone can sign elements in the span of
these messages. The latter is a multi-user signature scheme which allows mem-
bers of a (fixed) group to sign anonymously on behalf of this group, except
towards an authority called the group manager that is able to revoke anonymity.
Our new primitive puts linearly-homomorphic signatures into a multi-user set-
ting with broad functionality by allowing the aggregation of arbitrary signatures,
whether freshly created by different group members or previously aggregated.
In addition, this comes along with the strong security guarantees of a group sig-
nature. From a privacy point of view, signatures can only be associated with a
group, but not with individual members. Group members act thus anonymously,
even towards other members of the group. However, to avoid malicious behav-
ior, the group manager is able to recover the actual creators of a signature. We
emphasize that, in contrast to classic group signatures, a linearly-homomorphic
group signature can have multiple contributors after aggregation, which gener-
ally requires the group manager to identify a set of signers rather than a single
one. As a corrupted group member can always mix their own signatures with
that of honest signers, it is crucial for the group manager to recover all contrib-
utors to a signature. Any strict subset of the contributors is vacuous, as there is
no guarantee that it contains the malicious ones.

Linear-Subspace Tracing. Our main technical contribution is the construc-
tion of an object that we call a linear-subspace tracing (LST) scheme. Let U be
a vector space and c a positive integer, as a bound on the size of the collusion.
Informally, a LST scheme solves the problem of finding sets V ⊂ U such that the
following task can be solved efficiently and uniquely :

On input a vector U ∈
⋃

X⊆V,|X |≤c span(X), recover a minimal (a.k.a. the
smallest) subset X0 ⊆ V such that U ∈ span(X0).

As each subset of V spans a linear subspace, solving this task can be viewed
as “tracing” the smallest subspace that contains the given vector U. Of course,
there exist trivial constructions. For example, given U = Z

�
p for a prime p and

a positive integer �, one can choose V = {ei : i ∈ [�]} where ei denotes the
i-th standard unit vector. It even allows large collusions, as one can take c = �,
where � is the cardinality of the set V and also the maximal size c of the collusion.
However, the situation gets more intricate when we try to make the construction
more efficient (i.e., for a dimension � smaller than the cardinality n of the set)
but for possibly bounded collusions (of maximal size c ≤ n). Note that in the

314 C. Hébant et al.

example above the required dimension of U grows linearly with the cardinality
V, as n = �. In this work, we consider vector spaces where the discrete logarithm
problem in the additive group is assumed to be hard. We present LST schemes for
vector spaces of dimension � = Ω(c2 · log(n/ε)), where ε denotes the maximum
acceptable probability that the tracing will fail.

To meet privacy requirements, we also construct an anonymous LST scheme,
which informally means that recovering the set X0 is computationally hard
except one holds a special tracing key. We are able to prove anonymity without
increasing the lower bound on �. However, we need the stronger assumption that
the Decisional Diffie-Hellman problem (instead of only the discrete logarithm)
is hard in the additive group of the vector space.

Fully IPP Codes. A formal model to address the traitor tracing problem are
codes with the Identifiable Parent Property (IPP) introduced by Hollmann et
al. [10]. A word u = (uk) is a descendant of a coalition X of codewords if
every letter uk is present in at least one codeword of X at the same position k.
Conversely, the elements of X are called parents. Intuitively, a code C satisfies
the Identifiable Parent Property if for any descendant of C, at least one parent
codeword can be identified with certainty. In contrast, this work pursues the
stronger goal of identifying all parent codewords of a word u. We formalize this
aspect by defining a variant of IPP codes that we call fully IPP (FIPP), as it
allows to identify a full coalition instead of just a single parent codeword. For
consistency, we then must require that there exists a unique minimal (w.r.t. ⊆)
set X0 among all sets X ⊆ C with the property that u is a descendant of X .
Otherwise, it would be impossible to determine which of several minimal subsets
was used to derive u.

In the literature, IPP codes are only considered with respect to the above-
mentioned notion of descendants. However, the general concept of IPP (or FIPP)
can also be studied using other descendancy relations. We primarily use FIPP
codes as a building block for our LST scheme. Since this use case differs sig-
nificantly from the original purpose of tracing traitors in broadcast encryption,
a modified definition of descendants proves to be more suitable. We therefore
note that our construction of FIPP codes is not a contribution to the theory of
classical IPP codes. We use the terminology merely to give the reader a better
intuition. For readers familiar with fingerprinting codes [5,13], we further remark
that—like the standard definition of descendants—our new version can be seen
as a strengthening of the Marking assumption. As the concepts of IPP and fin-
gerprinting codes are very similar, our construction could also be interpreted as
a fingerprinting code with a modified Marking assumption.

1.2 Technical Overview

Constructing FIPP Codes. We start with the definition of descendants used
throughout this work. Let Q = {a1, . . . , an,⊥,�} be an alphabet with two dis-
tinguished letters: the neutral letter � and the letter ⊥ which represents a col-
lision. Roughly, a word u = (uk) is defined to be a descendant of a coalition X

Tracing a Linear Subspace 315

of codewords if there exists a subset X0 ⊆ X such that the following condition
is satisfied for all positions k: if all letters that occur at the k-th position of a
codeword in X0 equal either � or some a ∈ Q, then uk = a too. Otherwise,
uk = ⊥. Intuitively, descendants preserve information at those positions where
all parents coincide or equal the neutral letter �, but lose all information else-
where (since there is a collision of different letters). The condition that there
exists a subset X0 of X is necessary to cover the case that not all codewords of
X are actively used to derive the descendant u. However, for ease of exposition,
we implicitly assume that X0 = X here.

We next describe the construction of our FIPP codes C = {w1, . . . ,wn}
with respect to this definition of descendants. Recall that Q is of the form
{a1, . . . , an,⊥,�}. In our construction, we impose the restriction that the i-
th codeword wi includes only the letters ai and �. In this case, the descendancy
definition implies that any word containing the letter ai must have wi as a parent
codeword since there is no other way to derive a word which contains this letter.
Thus, the choice of w1, . . . ,wn boils down to a balls-into-bins problem, where
we must arrange the letters of the codewords in such a way that the number
of collisions is small. Our approach is very simple: we divide all codewords into
multiple blocks of equal size. Then for each i ∈ [n], wi is chosen such that each
of its blocks contains the letter ai at exactly one position, and � elsewhere.

Let u be a descendant of a coalition X ⊆ C. The tracing algorithm simply
outputs the set {wi ∈ C : u contains ai}. As argued above, this method never
“accuses” a wrong codeword. Conversely, we need to bound the probability that
a parent codeword wi is not detected. This happens if there are collisions in
all positions of u where wi contains the latter ai. Inside a fixed block, this
probability is constant. Since the blocks of wi are chosen independently, the
probability that there is such a collision in all blocks of u decreases exponentially
in the number of blocks. Thus, each parent codeword of u is detected with high
probability.

Embedding Codewords into Vectors. We next describe our construction of
a LST scheme. We start with the generation of the set V of vectors. At a high
level, we embed a FIPP code C = {w1, . . . ,wn} into the set V = {V1, . . . ,Vn}
such that vectors in the span of an arbitrary subset X = {Vi1 , . . . ,Vid} ⊆ V
represent descendants of the corresponding set Y = {wi1 , . . . ,wid} of codewords.
Thus, given a vector U ∈

⋃
X⊆V,|X |≤c span(X), we can compute the smallest

subset X0 ⊆ V such that U ∈ span(X0) by recovering the word u embedded in
the vector U, followed by an execution of the code’s tracing algorithm which
reveals all parents of u.

More specifically, we embed codewords of length � into vectors of G
2� where G

is a cyclic group of prime order p with a generator G. For each i ∈ [n], we sample
a random scalar si

$← Zp. We then construct Vi by replacing each occurrence of
the letter ai in the codeword wi with the tuple (G, si · G) and each occurrence
of � with (G,G). Let k be a position where all codewords in Y agree with either
� or the letter aij for some j ∈ [d]. Note that the construction of our FIPP

316 C. Hébant et al.

code ensures that such positions exist for all choices of j with high probability.
A simple computation shows that the coordinates (2k − 1, 2k) of any vector U
in the span of X are of the form (H, si · H), for some H ∈ G. If we identify each
element of {(H, si · H) : H ∈ G

∗} with the letter ai for i ∈ [n], then vectors in
the span of X correspond to descendants of Y as desired. Note that it is easy to
recover the descendant u of Y corresponding to U even if the discrete logarithm
problem in G is hard. Indeed, this can be done by testing for each tuple (H,H ′)
of U if H ′ = s · H for some s ∈ {s1, . . . , sn}. Once u is recovered, one runs the
code’s tracing algorithm to obtain its parents.

Anonymization. The basic idea to obtain anonymous versions V′
1, . . . ,V

′
n

of V1, . . . ,Vn is to encrypt them component-wise using the ElGamal encryption
scheme [8]. It is well-known that this encryption scheme is partially homomor-
phic. In our context, this means that for all coefficients ω1, . . . , ωn,

∑n
i=1 ωi ·V′

i is
a component-wise encryption of

∑n
i=1 ωi ·Vi. Thus, the tracing of an encrypted

vector can be done by first decrypting it and passing the resulting vector to
the original tracing algorithm. Since the security of ElGamal is based on the
DDH assumption, it is straightforward to exploit the random self-reducibility
of the DDH problem. If we reuse the same randomness in the encryption of all
components of a vector Vi, then one component of all ciphertexts is equal and,
thus, must be included only once in the anonymous version of Vi. This leads
us to a more efficient transformation where anonymous vectors have only one
additional coordinate.

Linearly-Homomorphic Group Signatures. We finally explain how our
LST scheme can be used to build linearly-homomorphic group signatures. A
well-known blueprint for the construction of group signatures works as follows
(see [2]): each group member has a secret signing key that includes a key pair of a
classical signature scheme certified by the group manager. To sign a message m in
the name of the group, a group member signs m using its private key and encrypts
this signature together with certificate and identity information under a public
encryption key held by the group manager. The final group signature consists
of this ciphertext accompanied by a non-interactive zero-knowledge proof that
it contains what it is supposed to contain.

To make this framework linearly-homomorphic, one needs to define a suit-
able aggregation operation for signatures. In particular, it raises the question of
how to aggregate the ciphertexts which encrypt the identities. Naively, one could
simply append all the ciphertexts when aggregating a signature. One disadvan-
tage of this method is that the size of signatures grows linearly with the number
of involved signers. But even worse, this construction leaks the information of
how many signers participated in the creation of the signature, thus breaking
anonymity. Therefore, one needs a mechanism which allows to aggregate the
ciphertexts in such a way that

1. the aggregated ciphertext does not leak the number of signers (nor any other
information about the identities of the signers), and

2. the originally encrypted identities can be recovered after decryption of the
aggregated ciphertext.

Tracing a Linear Subspace 317

To solve the first issue, it is straightforward to use a (partially) homomorphic
encryption scheme like ElGamal, and to aggregate signatures by applying the
homomorphic operation of the encryption scheme. The second requirement, how-
ever, is much more challenging.

Tracing Contributors to a Signature. As a starting point, one could assign
a codeword of a classical traceable code (e.g. IPP codes or fingerprinting codes)
to each group member. One then forces group members to sign messages together
with an encryption of a vector which embeds the signer’s codeword in the expo-
nents. This must be done in such a way that the homomorphic operation of
the encryption scheme respects the descendancy relation (resp. the Marking
assumption in the context of fingerprinting codes). Then, to trace a signature,
one decrypts the vector, recovers the challenge word from the exponents and
runs the code’s tracing algorithm.

This idea, however, runs into a major problem. For the unforgeability of
the underlying linearly-homomorphic signature scheme, the discrete logarithm
problem must be hard in the additive group of the vector space. Therefore, we
cannot hope to recover the challenge word from the exponents to run the tracing
algorithm. Also, running the tracing algorithm directly in the exponent seems
difficult.

As a solution we use our above-described code construction which comes with
the property that embeddings of codewords into vectors can still be traced, even
if the discrete logarithm is hard. (Recall that we call this object a LST scheme.)
Roughly, we assign to each group member a vector of a set V = {V1, . . . ,Vn}
generated using a LST scheme. We force group members to sign each message
together with their respective vector. When multiple signatures are aggregated,
one obtains a new vector U which lies in the span of those vectors Vi whose
associated group members contributed to the derived signature. Using the trac-
ing algorithm of the LST scheme, it is possible to recover exactly the subset of
V which corresponds to the contributors of the signature. To achieve privacy for
the group members, we use an anonymous LST scheme where the tracing key is
only known to the group manager.

1.3 Organization

The rest of the article is organized as follows. The next section recalls assump-
tions and definitions that we will use in the paper. Section 3 formally introduces
FIPP codes and presents a construction with respect to our new definition of
descendant. Section 4 defines and provides a construction of a LST scheme which
is made anonymous in Sect. 5. Finally, our work can be used to create a linearly-
homomorphic group signature scheme for which a formal model is provided in
Sect. 6 and the construction in Sect. 7.

318 C. Hébant et al.

2 Preliminaries

For integers i and j, we write [i; j] to denote the integer interval {k ∈ Z : i ≤
k ≤ j}. By default, we set [j] = [1, j]. For any q ≥ 2, we let Zq denote the
ring of integers with addition and multiplication modulo q. Furthermore, for an
integer n and a group (G,+) of prime order p, we interpret G

n as a vector space
over Zp in the usual way. We denote the zero element of this vector space by 0(n).
Given a vector ω = (ωi)

n
i=1 ∈ Z

n
p and a group element G ∈ G, we write ω · G to

denote the vector (ωi · G)n
i=1. Also, we refer to the set of generators of a cyclic

group G by G
∗. Given a set X and an integer 0 ≤ c ≤ |X |, we denote by Pc(X)

the set of all subsets of size at most c, i.e. Pc(X) = {X ′ ⊆ X : |X ′| ≤ c}.

2.1 Hardness Assumptions

We recall the assumptions needed for our constructions.

Definition 1 (Discrete Logarithm (DL) Assumption). The DL assumption
in a group (G,+), of prime order p with generator G, states that given H = x·G,
no algorithm can efficiently recover x.

Definition 2 (Decisional Diffie-Hellman (DDH) Assumption). The DDH
assumption in a group (G,+), of prime orders p with generator G, states that
no algorithm can efficiently distinguish the two distributions

D0 =
{
(x · G, y · G, xy · G) : x, y

$← Zp

}

D1 =
{
(x · G, y · G, z · G) : x, y, z

$← Zp

}

We prove some of our results in the algebraic group model (AGM) – a com-
putational model in which all adversaries are modeled as algebraic. Let G be
a group of prime order p. Roughly, an algorithm A is called algebraic if for all
group elements G ∈ G output by A, it additionally provides the representation
of G relative to all previously received group elements. For a clean definition of
the AGM see [9].

Real-world implementations of bilinear structures sometimes allow the con-
struction of group elements without knowing their discrete logarithm. There-
fore, it seems important to prove results in a model that takes this property of
concrete instantiations into account, e.g. a variant of the generic group model
(GGM) where the adversary has access to an oracle that generates random group
elements. We remark that besides the classical GGM, this (and similar) modifi-
cations are also covered by the AGM. Intuitively, an adversary in the “GGM-R”
(GGM with additional oracle for random group elements) can be used to con-
struct an algebraic adversary since all generated random elements and all group
operations computed by the GGM-R adversary are known and, thus, the GGM-
R simulator is able to extract itself the representations of all elements submitted
by the adversary.

Tracing a Linear Subspace 319

2.2 Linearly-Homomorphic Signatures

Linearly-homomorphic signatures were originally introduced by Boneh et al.
in [4]. Our definition is similar to that in [12].

Definition 3 (Linearly-Homomorphic Signature Scheme (LH-Sig)). A
LH-Sig scheme with tag space T and message space G

n, for a cyclic group (G,+)
of prime order p and a positive integer n, is a collection of five polynomial-time
algorithms defined as follows.

Setup(1λ): On input the security parameter λ, this algorithm returns the public
parameters pp.

KeyGen(pp): On input the public parameters pp, this algorithm returns a key
pair (sk, pk). We will assume that pk implicitly contains pp and sk implicitly
contains pk.

Sign(sk, τ,M): On input a secret key sk, a tag τ ∈ T and a message M ∈ G
n,

this algorithm returns a signature Σ of M under the tag τ .
DeriveSign(pk, τ, (ωj , Σj)

d
j=1): On input a public key pk, a tag τ ∈ T and d tuples

of weights ωj ∈ Zp and signatures Σj, this algorithm returns a signature Σ

on the vector M =
∑d

j=1 ωj · Mj under the tag τ , where Σj is a signature
on the message Mj ∈ G

n under τ .
Verify(pk, τ,M, Σ): On input a public key pk, a tag τ ∈ T , a message M ∈ G

n

and a signature Σ, this algorithm returns 1 if τ ∈ T and Σ is valid relative
to pk and τ , and 0 otherwise.

Correctness. The basic consistency requirement of every signature scheme is
that honestly generated signatures must be accepted as valid. In the case of a
LH-Sig scheme we distinguish between (a) “initial” and (b) “derived” signatures.
Let (sk, pk) ← KeyGen(Setup(1λ)) be any key pair and τ be any tag in T . Then,

(a) for every message M ∈ G
n and Σ ← Sign(sk, τ,M), the scheme satisfies

Verify(pk, τ,M, Σ) = 1, and
(b) for any list (ωj ,Mj , Σj)

d
j=1 such that Verify(pk, τ,Mj , Σj) = 1 for each

j ∈ [d], if Σ ← DeriveSign(pk, τ, (ωj , Σj)
d
j=1), then Verify(pk, τ,

∑d
j=1 ωj ·

Mj , Σ) = 1.

Security. We recall the unforgeability notion of [12], using our notations.

Definition 4 (Unforgeability of LH-Sig). For a PPT adversary A and a LH-
Sig scheme Σ = (Setup,KeyGen,Sign,DeriveSign,Verify) with message space G

n

and tag space T , we define the experiment Expunf
Σ,A(1λ) as shown in Fig. 1.

The oracles OSign, ODeriveSign and OReveal can be called in any order
and any number of times. For a tag τ ∈ T , Sτ denotes the set of mes-
sages M ∈ G

n such that the tuple (τ,M) is in the set S maintained by the
challenger. The challenger also maintains a table H that contains tuples of the
form (h, (τ,M, Σ)), where h is a handle, τ ∈ T , M ∈ G

n and Σ is a signa-
ture on M under τ . We define a lookup operation LookupH that, on input a set

320 C. Hébant et al.

of handles {h1, . . . , hd}, retrieves the tuples {(hj , (τj ,Mj , Σj))}d
j=1 from H and

returns {(τj ,Mj , Σj)}d
j=1. If there exists a j ∈ [d] such that there does not exist

a tuple of the form (hj , (·, ·, ·)) in H, then the LookupH algorithm returns an
error message that causes the oracle to abort immediately with return value ⊥.

We say that a LH-Sig scheme is unforgeable if for any PPT adversary A,
there exists a negligible function negl such that

Advunf
Σ,A(λ) = Pr

[
Expunf

Σ,A(1λ) = 1
]

≤ negl(λ).

Since G
n forms a vector space over Zp, it is consistent to write span(A) for

the subspace spanned by a subset A of G
n. As usual, we set span(∅) = {0(n)}.

Fig. 1. Security game Expunf
Σ,A(1λ) for unforgeability

As in [12], we will also consider a weaker notion of unforgeability. A one-time
linearly-homomorphic signature (OT-LH-Sig) is a LH-Sig scheme, where the tag
space is a singleton T = {ε}. Consequently, we can drop the tags τ given as
argument to the algorithms Sign, DeriveSign and Verify.

Privacy. Given signatures on messages M1, . . . ,Md ∈ G
n, it may be desirable

that derived signatures on a message M ∈ span({M1, . . . ,Md}) do not leak infor-
mation about M1, . . . ,Md beyond what is revealed by M. A strong definition
that formalizes this property is given by Ahn et al. [1] under the name context
hiding. We state a slightly different version here. The details are explained in
the full version [11].

Definition 5 (Context Hiding). A LH-Sig scheme Σ = (Setup,KeyGen,Sign,
DeriveSign,Verify) with message space G

n and tag space T is called perfectly
(resp. statistically, computationally) context-hiding if

Tracing a Linear Subspace 321

– for any key pair (pk, sk) ← KeyGen(Setup(1λ)) and any tag τ ∈ T ,
– for any tuple of messages M = (Mj)

d
j=1 ∈ (Gn)d and any tuple of coeffi-

cients ω = (ωj)
d
j=1 ∈ Z

d
p, and

– for any tuple of signatures S = (Σj)
d
j=1, where Σj is a signature returned

by Sign on input (sk, τ,Mj) with a nonzero probability,

the following distribution ensembles are perfectly (resp. statistically, computa-
tionally) indistinguishable:

D0 =
{(

sk, (Σj)
d
j=1,Sign(sk, τ,

∑d
j=1 ωj · Mj)

)}

sk,τ,M,ω ,S

D1 =
{(

sk, (Σj)
d
j=1,DeriveSign

(
pk, τ, (ωj , Σj)

d
j=1

))}

sk,τ,M,ω ,S

The definition states that a signature on a message M derived from a col-
lection of signatures (Σj)

d
j=1 on messages (Mj)

d
j=1 is indistinguishable from a

fresh signature on M, even if the original signatures are known. Consequently,
the derived signature is independent of (Σj)

d
j=1 and cannot reveal any informa-

tion about (Mj)
d
j=1 beyond what is revealed by M.

Remark 6. As observed by Ahn et al., the context hiding property can be used
to simplify the security experiment for unforgeability. For a LH-Sig scheme Σ
and a PPT adversary A, we define the experiment Expunf’

Σ,A(1λ) as shown
in Fig. 2. If a LH-Sig scheme is context hiding and unforgeable with respect
to Expunf’

Σ,A(1λ), then it is also unforgeable with respect to Expunf
Σ,A(1λ). For a

proof, see Lemma A.4 of [1]. We exploit this observation in Sect. 6 to simplify
the definition of traceability within our model of a linearly-homomorphic group
signature (LH-GSig) scheme.

Fig. 2. Simplified security game Expunf’
Σ,A (1λ) for unforgeability

3 Codes with the Fully Identifiable Parent Property

Let Q be an alphabet. A set C = {w(1), . . . ,w(n)} ⊆ Q� is called a code of
size n and length �. Each w(i) ∈ C is called a codeword. Furthermore, we say a

322 C. Hébant et al.

subset X ⊆ C is a coalition. For k ∈ [�], let Qk(X) denote the set of letters a ∈ Q
for which there exists a codeword w(i) = (w(i)

1 , . . . , w
(i)
�) ∈ X such that w

(i)
k = a.

We recall some standard terminology that goes back to Chor et al. [7]. A
word u = (uk)�

k=1 ∈ Q� is called a descendant of a coalition X if for any k ∈ [�],
uk ∈ Qk(X). In this case, the elements of X are called parent codewords of u. We
denote by Desc(X) the set of all descendants of X . Furthermore, for a positive
integer c, we write Descc(C) for the set of all descendants of coalitions that
contain at most c codewords, i.e.

Descc(C) =
⋃

X∈Pc(C)
Desc(X).

For a positive integer c and a word u ∈ Descc(C), we write Parc(u) for the
set of all coalitions X of size at most c such that u ∈ Desc(X), i.e. Parc(u) =
{X ∈ Pc(C) : u ∈ Desc(X)}. Then one defines codes with the identifiable parent
property (IPP) as follows.

Definition 7 (IPP Code). A code C is called c-IPP if for any u ∈ Descc(C),
the intersection of all X ∈ Parc(u) is nonempty.

Intuitively, a code C is IPP if for every descendant u ∈ Descc(C) at least one
parent codeword can be identified with certainty. In this paper, we pursue the
stronger goal to identify not only one parent but a full coalition X ⊆ C such
that u ∈ Desc(X). In order not to falsely include codewords into X , we must
require that there is a smallest coalition with this property. Then we define the
notion of a fully IPP (FIPP) code as follows.

Definition 8 (FIPP Code). A code C is called c-FIPP if for any u ∈ Descc(C),
there exists a smallest element X0 in Parc(u) with respect to the usual inclusion.

While IPP codes for the standard definition of descendants have been the
subject of intensive studies, little is known about other derivation models. Here,
we introduce a novel definition of descendancy.

Definition 9 (Descendant). Let Q = {a1, . . . , an,⊥,�}, where ⊥ and � are
two distinguished letters. We say that a word u = (uk)�

k=1 ∈ Q� is a descendant
of a set X if there exists a nonempty subset X0 ⊆ X that satisfies the following
condition for each k ∈ [�].

1. If Qk(X0) = {a} for some a ∈ Q, then uk = a.
2. Else, if Qk(X0) = {�, a} for some a ∈ Q \ {�}, then uk = a.
3. Else, uk = ⊥.

In the remainder of this article, we consider IPP and FIPP codes always
with respect to Definition 9. We postpone the motivation of this new derivation
model to Sect. 4 where we present a natural application.

Tracing a Linear Subspace 323

Construction. We present an extremely simple construction of a c-FIPP code C
of size n and length � over the alphabet Q = {a1, . . . , an,�,⊥}.

In the construction, � appears as the product of two positive integers J
and K. For convenience, we use tuples (k, j) ∈ [K] × [J] to index the letters of
codewords. However, they can simply be thought of as a single vector of length �,
consisting of K blocks with J coordinates each. For i ∈ [n], let S(J)

i ⊆ QJ be the
set that contains all sequences (s1, . . . , sJ) with the property that there exists
a j ∈ [J] such that sj = ai and sj′ = � for all j′ ∈ [J] \ {j}. Furthermore, we
define S(K,J)

i =×K

k=1
S(J)

i .

Theorem 10. Let n, c and J > c be positive integers. If w(i) $← S(K,J)
i for

each i ∈ [n], then the code C = {w(1), . . . ,w(n)} is c-FIPP with probability at
least 1 − negl(K) for some negligible function negl.

Proof. Let Q′ = Q \ {�,⊥}. For u = (uk,j)k∈[K],j∈[J] ∈ Descc(C), we set U =
{uk,j : k ∈ [K], j ∈ [J]} ∩ Q′ and X0 = {w(i) : ai ∈ U}. First, observe that X0 is
smaller than or equal to every element of Parc(u). This can be seen as follows.
Every letter in U occurs only in one codeword, and X0 contains exactly this
collection of codewords. Furthermore, descendants can only contain letters of Q′

if they already appeared in at least one parent codeword. Hence, X0 is a subset
of each X ∈ Parc(u). This property implies in particular that |X0| ≤ c.

It remains to show that u ∈ Desc(X0). Since u ∈ Descc(C), there exists a
set X ′ ⊆ C in Parc(u). Let X ′

0 denote a possible choice for the specific subset of X ′

whose existence is required in our definition of descendants (Definition 9). Note
that the elements in X ′\X ′

0 are irrelevant for the descendancy of u which implies
that u ∈ Desc(X ′

0). Then it suffices to show that X0 = X ′
0 with high probability.

(In this case it follows in particular that the above choice of X ′
0 is unique.) First,

since u ∈ Desc(X ′
0), we have that X ′

0 ∈ Parc(u) and, thus, X0 ⊆ X ′
0. For the

other inclusion, we define I = {i ∈ [n] : w(i) ∈ X ′
0}. Furthermore, for i ∈ [n], we

parse w(i) = (w(i)
k,j)k∈[K],j∈[J] and let d(i) = (d(i)1 , . . . , d

(i)
K) ∈ [J]K such that

(

w
(i)

1,d
(i)
1

, . . . , w
(i)

K,d
(i)
K

)

=
(
ai, . . . , ai

)
,

i.e. d(i) contains the positions of the letter ai in each of the K blocks of w(i).
Let E denote the event that there exists an i0 ∈ I with the property that for
all k ∈ [K], there exists an ik ∈ I \ {i0} such that d

(ik)
k = d

(i0)
k . Note that E

corresponds exactly to the event that X0 � X ′
0. For a fixed choice of i0 ∈ I,

the probability that for all k ∈ [K], there exists such an ik ∈ I \ {i0} with the
property that d

(ik)
k = d

(i0)
k , is bounded by (c/J)K . Thus, Pr[E] ≤ c · (c/J)K .

Finally, applying the union bound over all possible coalitions X ′
0 ⊆ C of size

at most c implies the result for all u ∈ Descc(C). Hence, we conclude that C is
c-FIPP with probability at least 1 − c · nc · (c/J)K = 1 − negl(K). �

Remark 11 (Efficiency). For a practical usability of a FIPP code, one needs effi-
cient generation and tracing algorithms. The code generation in our construction

324 C. Hébant et al.

is trivial as one only samples w(i) $← S(K,J)
i for each i ∈ [n]. Furthermore, we

observe that the proof of Theorem 10 does not only show the existence of a
smallest set X0 but also shows how to construct this set efficiently. Indeed, on
input a descendant u = (uk,j)k∈[K],j∈[J] ∈ Descc(C), the tracing algorithm sim-
ply returns the set {uk,j : k ∈ [K], j ∈ [J]} \ {�,⊥}.

Another aspect of efficiency considers the length of the code. Let ε denote
the acceptable error probability. If one chooses, say, J = 2c, then the proof of
Theorem 10 yields that K = O(c · log(n/ε)), which in turn implies that � =
O(c2 · log(n/ε)). Furthermore, our alphabet has size O(n). Thus, our codewords
have representations on O(c2 · log(n/ε) · log n) bits. It is interesting to compare
this bound with the “naive” FIPP code C = {w(i) = (δi,j)n

j=1}n
i=1, where δi,j = ⊥

if i = j, and δi,j = � otherwise. This code uses the binary alphabet Q = {�,⊥}.
Codewords in the naive solution thus require O(n) bits which grows asymptoti-
cally faster (in n) than our bound O(c2 ·log(n/ε)·log n), with reasonable trade-off
on c and ε.

4 An Efficient Tracing Algorithm for Linear Subspaces

Let U be a vector space over a field K and let V = {V1, . . . ,Vn} ⊂ U. Given a
vector ω = (ωi)

n
i=1 ∈ K

n, we write Nω = |{i ∈ [n] : ωi �= 0}|. Then for a positive
integer c, we denote spanc(V) =

⋃
X∈Pc(V) span(X). Also, we call V c-linearly

independent if the following implication is satisfied for every ω = (ωi)
n
i=1 ∈ K

n:
n∑

i=1

ωi · Vi = 0 =⇒ Nω = 0 ∨ Nω > c

Intuitively, c-linear independence states that for each vector U in spanc(V), there
exists a unique choice of coefficients ω1, . . . , ωn such that

∑n
i=1 ωi · Vi = U and

there are at most c nonzero coefficients. However, the definition does not exclude
that there may exist coefficients ω′

1, . . . , ω
′
n that also satisfy

∑n
i=1 ω′

i · Vi = U,
but with more than c coefficients being nonzero.

Definition 12. (Linear-Subspace Tracing (LST) Scheme). Let U be a vec-
tor space and c a positive integer. A LST scheme (for linear subspaces of U) is
a tuple of two polynomial-time algorithms defined as follows.

Gen(1λ, 1n): On input the security parameter λ and a positive integer n, this
algorithm returns a tracing key tk and a c-linearly independent set V ⊆ U of
size n.

Trace(tk,U): On input a tracing key tk and a vector U ∈ spanc(V), this algorithm
returns a set I ⊆ [n].

For a PPT adversary A and a LST scheme T = (Gen,Trace), the experiment
Expc-cor

T,A (1λ, 1n) is defined as shown in Fig. 3. We say that a LST scheme T is
c-correct if for any PPT adversary A and any polynomial n = n(λ), there exists
a negligible function negl such that

Advc-cor
T,A (λ, n) = Pr

[
Expc-cor

T,A (1λ, 1n) = 1
]

≤ negl(λ).

Tracing a Linear Subspace 325

Fig. 3. Security game Expc-cor
T,A (1λ, 1n) for c-correctness

As mentioned above, c-linear independence of the set V ensures that vec-
tors in spanc(V) have a unique representation as a linear combination with at
most c coefficients being nonzero. The correctness condition states that the trac-
ing algorithm returns (the indices of) these nonzero coefficients with overwhelm-
ing probability.

Construction. Let G be a group of prime order p in which the DL problem is
hard. In the following, we construct a LST scheme T = (Gen,Trace) for subspaces
of G

�, where � = Θ(c2 · log(n/ε)) and ε is the maximum acceptable probability
that the tracing will fail. We view the construction as an implementation of the
FIPP code presented in Sect. 3.

Intuitively, the Gen algorithm first chooses a random alphabet Q, along with
a tracing key tk that serves as a description of Q. Then it generates a FIPP
code C = {w(i) : i ∈ [n]} of length �′ and chooses a (random) representa-
tive V(i) ∈ G

� for each codeword w(i) and � = 2 · �′. (We will detail below what
“represent” means exactly in our context.) Finally, the Gen algorithm returns tk

and V = {V(i) : i ∈ [n]}. We then show that if a vector U is in the span of some
set {V(i1), . . . ,V(ic′)} ∈ Pc(V), then the word u ∈ Q�′

which is represented
by U is in Desc({w(i1), . . . ,w(ic′)}) with overwhelming probability. Thus, it is
enough to recover u from U and to utilize the tracing mechanism of the FIPP
code explained in Remark 11.

An overview of the implementation of our LST scheme T = (Gen,Trace) is
depicted in Fig. 4. We explain the details of the construction below. We place
special emphasis on the connections to the FIPP code from Sect. 3.

Generation. At first, the Gen algorithm samples a vector s = (si)
n
i=1

$← (Z∗
p)

n.
This vector specifies the alphabet Q = Qs and serves as the tracing key tk.
Formally, Q is a partition of G × G and the letters are the disjoint subsets of
Q, which can be seen as classes of equivalence, defined as follows: for i ∈ [n], we
set ai = {(G, si · G) : G ∈ G

∗}, � = {(0, 0)}, and ⊥ = (G × G) \ (� ∪
⋃n

i=1 ai).
In the second step, the generation algorithm generates the codewords.

According to Remark 11, one samples w(i) $← S(K,J)
i for each i ∈ [n], where

w(i) ∈ Q�′
and �′ = K · J for suitable polynomials K(λ) and J(λ). Strictly

speaking, these codewords are a sequence of classes of Q. However, since the size
of these classes can be exponential, we choose a representative (Gi, si · Gi)

$← ai

326 C. Hébant et al.

Fig. 4. Our LST scheme

for each letter ai ∈ Q. Furthermore, since � is a singleton, there is only one
possible choice for a representative. Then we construct V(i) by replacing each
occurrence of the letter ai in w(i) with the selected representative (Gi, si · Gi)
and each letter � with the tuple (0, 0).

More straightforward, the construction of the vectors V(i) can be described as
follows. For each i ∈ [n], one samples a random tuple di = (di,1, . . . , di,K) $← [J]K

and a group generator Gi
$← G

∗, and sets

V(i) =

(

V
(i)
k,j =

{
(Gi, si · Gi) if j = di,k

(0, 0) otherwise

)

k∈[K],j∈[J]

We emphasize that the random choice of both the vector s and the repre-
sentatives of the letters is crucial to achieve correctness against arbitrary PPT
adversaries.

Tracing. Let U = (Uk,j)k∈[K],j∈[J] ∈ Pc(V). The crucial part is to recover the
word u ∈ Q� which is represented by U. That is, for each coordinate (k, j) ∈
[K] × [J], we need to identify the letter a ∈ Q such that Uk,j ∈ a.

Since the DL problem is assumed to be hard in G, the scalar s cannot be
recovered from a tuple (G, s · G) ∈ G × G. However, since we deal only with a
polynomial number n, and thus with a polynomial-size alphabet Qs, we can test
for each k ∈ [K], j ∈ [J] and i ∈ [n] if Uk,j ∈ ai. Once we have recovered u, we
simply use the tracing mechanism explained in Remark 11.

Correctness. To prove correctness of the LST scheme T, one needs to show that
each vector U in the span of some set X ∈ Pc(V) represents a descendant of the
set containing all codewords that are represented by an element of X .

To state this result more formally, we introduce the following notations. First,
recall that a vector s ∈ (Z∗

p)
n defines an equivalence relation Qs on G×G. So it is

consistent to write [(G,H)]s (or simply [(G,H)] if s is fixed) for the letter a ∈ Q
which contains (G,H) ∈ G × G. Similarly, for a vector V = (Vi)

�
i=1 ∈ (G × G)�,

Tracing a Linear Subspace 327

[V1] · · · [Vn] denotes the word w ∈ Q� which is represented by V. For convenience,
we also refer to w by [V] and, for a set V = {V1, . . . ,Vn} ⊆ (G×G)�, we denote
the set {[V1], . . . , [Vn]} by [V].

Theorem 13. Let (tk,V) ← Gen(1λ, 1n) and let A be any algebraic PPT algo-
rithm that on input tk and a set X ∈ Pc(V) returns a nonzero vector U ∈
span(X). Then it holds [U] ∈ Desc([X]) with overwhelming probability under
the DL assumption.

For the proof, we need the following lemma.

Lemma 14. Let (G,+) be a group of prime order p, s ∈ Z
∗
p and n > 2. Given

n tuples (Gi, si), for Gi
$← G

∗ and si
$← Z

∗
p, it is computationally hard under

the DL assumption to output (ω1, . . . , ωn) ∈ Z
n
p such that ωi �= 0 for at least

two i ∈ [n] and

s ·
n∑

i=1

ωi · Gi =
n∑

i=1

ωisi · Gi.

A proof of Lemma 14 is provided in the full version [11].

Proof (of Theorem 13). Let tk = s = (si)
n
i=1 and V = {V(1), . . . ,V(n)}. We

assume that the entries of s are pairwise distinct, which is correct with over-
whelming probability. Also, without loss of generality, we assume that X =
{V(1), . . . ,V(c)}. Note that if [V] is c-FIPP, then X is c-linearly independent.
(This can be seen in the proof of Theorem 10.) Since X contains c elements and
is c-linearly independent, it follows that there exist unique coefficients ω1, . . . , ωc

in Zp such that U =
∑c

j=1 ωj ·V(i). These coefficients are provided by the (alge-
braic) adversary A. We set X0 = {V(i) ∈ X : ωi �= 0}.

Fix any (k, j) ∈ [K]× [J]. We consider several cases that correspond to those
in Definition 9.

1. Qk,j([X0]) = {a} for some a ∈ Q. We split this case into two subcases.
(a) Qk,j([X0]) = {�}. In this case, we have V

(i)
k,j = (0, 0) for all i ∈ [c]

satisfying ωi �= 0, which implies that also Uk,j =
∑c

i=1 ωi · V
(i)
k,j = (0, 0).

Thus, [Uk,j] = �.
(b) Qk,j([X0]) = {ai} for some i ∈ [c]. Since we assume that s1, . . . , sn are

pairwise distinct, it follows that X0 = {V(i)} and V
(i)
k,j = (Gi, si · Gi) for

some Gi ∈ G
∗. Due to the DL assumption, the probability that ωi ·Gi = 0

is negligible. Thus, [Uk,j] = [ωi · (Gi, si · Gi)] = ai with overwhelming
probability.

The case Qk,j([X0]) = ⊥ cannot occur since elements of ⊥ do not appear as
components in the vectors in V.

2. Qk,j([X0]) = {�, ai} for some i ∈ [c]. This case can be seen as the combi-
nation of the cases 1. (a) and 1. (b). That is, we have ωi′ = 0 or V

(i′)
k,j = (0, 0)

328 C. Hébant et al.

for all i′ ∈ [c] \ {i}, and V
(i)
k,j = (Gi, si · Gi) for some Gi ∈ G

∗. Again by
the DL assumption, it follows that

Uk,j =
c∑

i′=1

ωi′ · V
(i′)
k,j = (ωi · Gi, ωisi · Gi) ∈ ai.

3. None of the previous cases applies. Let J = {i ∈ [c] : V
(i)
k,j �= (0, 0)}. If

there exists at most one i ∈ J such that ωi �= 0, then we can argue as in
one of the previous cases. Otherwise, the argumentation is as follows. There
exist generators (Gi)i∈J such that V

(i)
k,j = (Gi, si · Gi) for each i ∈ J . Fix

some s ∈ Zp. By Lemma 14, it follows that a vector ω = (ωi)i∈J that has at
least two nonzero entries and satisfies

Uk,j =
∑

i∈J
ωi · V

(i)
k,j =

(
∑

i∈J
ωi · Gi, s ·

∑

i∈J
ωi · Gi

)

can be used to solve discrete logarithms in G. Applying a union bound over
all values of s ∈ {0, s1, . . . , sn} implies that Uk,j ∈ �∪

⋃n
i=1 ai with negligible

probability, i.e. [Uk,j] = ⊥ with overwhelming probability.

Finally, the statement of the theorem follows by a union bound over all (k, j) ∈
[K] × [J]. �

Remark 15 (Efficiency Improvement and Dynamic Generation). Let i ∈ [n].
Note that the vector V(i) ∈ G

J·K in Fig. 4 is computed from di ∈ [J]K , Gi ∈ G

and si ∈ Zp. Since these three values require far less memory than V(i), it
would be desirable to use these three values as an efficient representation of V(i).
Clearly, di and Gi can be recovered from V(i) and, thus, must not be hidden.
Furthermore, Theorem 13 explicitly covers the case that the vector tk = (si)

n
i=1

is known to the adversary. Thus, knowledge of the scalar si does not affect the
correctness of the LST scheme. So (di, Gi, si) can indeed be used as an efficient
representation of V(i).

Moreover, we observe that the vectors V(1), . . . ,V(n) are generated indepen-
dently, and the length of the code depends only on the security parameter but
not on n (as long as it is polynomially in the security parameter). Therefore,
the total number of vectors must not be fixed in advance, but new ones can be
added dynamically.

5 Linear-Subspace Tracing and Anonymity

Equivalent vectors V1,V2 ∈ G
� (i.e. [V1] = [V2]) are publicly linkable, as the

nonzero positions are publicly available. However, in some situations it may
be desirable that users act anonymously, with unlinkable actions, except with
respect to the authority holding the tracing key. We thus now explain how to
make vectors anonymous.

Tracing a Linear Subspace 329

Definition 16 (Anonymity). For a LST scheme T = (Gen,Trace) and a PPT
adversary A, we define the experiment Expano

T,A(1λ, 1n) as shown in Fig. 5. The
“Subspace or Full space” oracle OSoF can be called any number of times.

We say that a LST scheme is anonymous if for any PPT adversary A and
any polynomial n = n(λ), there exists a negligible function negl such that

Advano
T,A(λ, n) =

∣
∣
∣
∣Pr

[
Expano

T,A(1λ, 1n) = 1
]

− 1
2

∣
∣
∣
∣ ≤ negl(λ).

Fig. 5. Security game Expano
T,A(1λ, 1n) for anonymity

Let T′ = (Gen′,Trace′) be the LST scheme for linear subspaces of G
�′

defined
in Fig. 4. Recall that �′ = 2KJ where K and J are specified by the underlying
FIPP code. Let (tk′,V ′ = {V′

i}n
i=1) ← Gen′(1λ, 1n). Note that even if the trac-

ing algorithm cannot be run directly without the tracing key tk′, the scheme is
still not anonymous because the vectors in V ′ do not hide the embedded vec-
tors d1, . . . ,dn. Hence, to break anonymity it is enough to compare the positions
of the nonzero entries of the challenge vector with those of V1, . . . ,Vn. Never-
theless, the scheme can easily be made anonymous.

Construction. As above, let (tk′,V ′ = {V′
i}n

i=1) ← Gen′(1λ, 1n). The basic idea
to obtain anonymous versions of V′

1, . . . ,V
′
n is to encrypt them component-wise

using the ElGamal encryption scheme [8]. That is, we sample a vector x =
(xk)�′

k=1
$← Z

�′
p where, for each k ∈ [�′], xk serves as the secret key for the k-th

component. The corresponding vector of public keys is X = x · G for some fixed
generator G ∈ G

∗. Since each ElGamal ciphertext consists of two group elements,
component-wise encryption of V′

i with X yields a vector Vi of length 2�′. It is
well-known that the ElGamal encryption scheme is partially homomorphic. In
our context, this means that, for all coefficients ω1, . . . , ωn,

∑n
i=1 ωi · Vi is a

component-wise encryption of
∑n

i=1 ωi · V′
i. Thus, the tracing of a vector U

can be done by first decrypting it and passing the resulting vector U′ to the
algorithm Trace′. The output I ′ of the tracing of U′ is exactly the wanted output
I for the tracing of U.

Since the security of ElGamal is based on the DDH assumption, it is straight-
forward to exploit the random self-reducibility of the DDH problem here. If we

330 C. Hébant et al.

reuse the same randomness in the encryption of all components of a vector V′
i,

i ∈ [n], then one component of all ciphertexts is equal and, thus, must be included
only once in the anonymous version Vi of V′

i. This leads us to a more efficient
anonymous transformation of T′ where the vectors have only length � = �′ + 1
instead of 2�′.

The full scheme is depicted in Fig. 6. The correctness of the construction is
a direct consequence of the correctness of T′ and the fact that the ElGamal
encryption scheme is partially homomorphic.

Fig. 6. Our anonymous LST scheme T

Theorem 17. The LST scheme T is anonymous under the DDH assumption
in G. More precisely, it holds that Advano

T,A(λ, n) ≤ Advddh
G

(λ) for any PPT
adversary A, where Advddh

G
(λ) denotes the best advantage a PPT algorithm can

get in solving the DDH problem in G.

Proof. The proof is done via a sequence of hybrid games. The advantage of an
adversary A in game Gi is denoted by

Adv(Gi) =
∣
∣
∣
∣Pr[Gi = 1] − 1

2

∣
∣
∣
∣.

Hybrid Game G0. This corresponds to the real security game Expano
T,A(1λ, 1n).

We recall the construction of the set V. First, the Gen algorithm samples random
vectors s = (si)

n
i=1

$← (Z∗
p)

n and x $← Z
�′
p and computes X = x · G for some

fixed generator G ∈ G
∗. Then, for each i ∈ [n], the algorithm samples di =

(di,1, . . . , di,K) $← [J]K , Gi
$← G

∗ and ri
$← Zp, and computes Vi = (ri · G ‖

ri · X + V′
i) where

V′
i =

(

V ′
i,k,j =

{
(Gi, si · Gi) if j = di,k

(0, 0) otherwise

)

k∈[K],j∈[J]

.

Tracing a Linear Subspace 331

Hybrid Game G1. We slightly modify the Gen algorithm. Instead of sam-
pling x $← Z

n
p and computing X = x · G, it directly samples X $← G

�′

now. Furthermore, the algorithm samples a vector t = (ti)
n
i=1

$← (Z∗
p)

n and
sets Vi = (ri ·G ‖ ri ·X+v′

i ·G) where the vector v′
i ∈ Z

�′
p is defined as follows

v′
i =

(

v′
i,k,j =

{
(ti, siti) if j = di,k

(0, 0) otherwise

)

k∈[K],j∈[J]

.

Since the distribution of V does not change, it follows Adv(G1) = Adv(G0).

Hybrid Game G2. We embed a Diffie-Hellman tuple (X,Y,Z) in basis G. The
challenger samples μ,ν

$← Z
�′
p and sets X = μ · X + ν · G. Clearly, this does

not change the distribution of X. Furthermore, we modify the implementation
of OSoF. First, if b = 1, we simply replace X with V and continue as in the
case b = 0. On input a set X = {Vi1 , . . . ,Vid} ⊆ V, the oracle samples random
scalars ω1, . . . , ωd

$← Zp and computes U1 = (ω1ri1 · Y ‖ ri1 · Z + v′
i1

· Y) where
Z = ω1μ · Z + ω1ν · Y . Subsequently, it returns U = U1 +

∑d
j=2 ωj · Vij . Note

that if Y = y · G for some (unknown) y ∈ Zp, then U1 = ω1y · Vi1 , i.e. U1

is a random multiple of Vi1 . Thus, the oracle still returns a uniformly random
element of span(X) which implies that the games G3 and G2 are again perfectly
indistinguishable and Adv(G2) = Adv(G1).

Hybrid Game G3. We replace the above Diffie-Hellman tuple with a random
tuple (X,Y,Z) $← G

3. Thus, we have Adv(G3) ≥ Adv(G2) −Advddh
G

(λ). More-
over, we observe that Z (and thus U) are uniformly random vectors in G

� now.
Therefore, it follows that Adv(G3) = 0.

Using a hybrid argument, we conclude that Advano
T,A(λ, n) ≤ Advddh

G
(λ). �

Remark 18 (Randomizability). Let T = (Gen,Trace) be a LST scheme and let
(tk,V = {Vi}n

i=1) ← Gen(1λ, 1n). Given a vector U ∈ span(X) for some sub-
set X ⊆ V, it is easy to find another vector U′ in span(X) unlinkable to U.
Indeed, one can simply sample a scalar ω

$← Zp and set U′ = ω · U. Then the
unlinkability follows from the DL assumption in G. This randomization is even
possible without knowledge of the vectors in X .

However, this method creates several unlinkable representations of the same
subspace span(X) rather than of the same vector U. To achieve the latter, one
can add a dummy vector V0 by running (tk,V = {Vi}n

i=0) ← Gen(1λ, 1n+1)
instead of Gen(1λ, 1n). Then one sets V ′ = {Vi}n

i=1 and defines an equiva-
lence relation on span(V) × span(V) where vectors are equivalent if and only
if their orthogonal projection onto the subspace span(V ′) is equal. The random-
ization of a vector U inside its equivalence class can be done by sampling a
scalar ω

$← Zp and computing U′ = U + ω · V0. If the vector V0 is public,

332 C. Hébant et al.

then the randomization can be done by everyone. Furthermore, if T is anony-
mous, then, for any U1,U2 ∈ span(V), the distributions {(U1,U2,U′

1,U
′
2)}

and {(U1,U2,U′
2,U

′
1)} are computationally indistinguishable, where U′

1 =
U1 + ω1 · V0 and U′

2 = U2 + ω2 · V0 for ω1, ω2
$← Zp. If T is (c + 1)-correct,

then the “randomizable” variant (where V0 is public) is still c-correct. Indeed,
one can simply run Trace and remove the index 0 from its output set.

Note that in our concrete construction (Fig. 6), a randomizable, c-correct
LST scheme can even be obtained from a c-correct LST scheme (instead of a
(c + 1)-correct scheme). Using the notation of Fig 6, if one chooses V0 = (r0 ·
G ‖ r0 · X + V′

0) for V′
0 = 0(�′), then the ElGamal encryption preserves all

security guarantees, but one avoids interferences of V′
0 with V′

1, . . . ,V
′
n inside

the underlying scheme T′. Thus, c-correctness suffices.

Remark 19 (Strong Correctness). It is worth mentioning that the encrypted
LST scheme in Fig. 6 also satisfies a stronger correctness notion. The security
experiment in Fig. 3 states that the adversary sees only c out of the n vectors
in V = {V1, . . . ,Vn}. As mentioned above, for the non-encrypted LST scheme
described in Fig. 4, this is a necessary restriction since a vector Vi ∈ V does not
hide the embedded vector di chosen during its creation. If an adversary A knew
more than c vectors, then it could specifically create “collisions”, i.e. it could
combine vectors Vi0 and Vi1 for which the corresponding vectors di1 and di1

coincide in some positions.
However, in the encrypted scheme it follows from the semantic security of

the ElGamal encryption scheme that the vectors d1, . . . ,dn cannot be efficiently
recovered from V1, . . . ,Vn. Thus, even if the adversary knows the entire set V,
it is not able to determine which of the vectors must be combined to create
many collisions. (Intuitively, the tracing fails if for one vector, the adversary can
create a collision in each of its K blocks.) Therefore, we do not need to bound
the number of vectors an adversary is allowed to see, but only the number of
vectors it is allowed to combine in the challenge vector U. This stronger security
game is shown in Fig. 7.

Fig. 7. Security game Expc-scor
T,A (1λ, 1n) for strong c-correctness

Tracing a Linear Subspace 333

6 A Model for Linearly-Homomorphic Group Signatures

Group signatures were originally proposed by [6], with a formal security model
in [2]. We build on their definition by combining it with linearly-homomorphic
signatures. More precisely, we define a linearly-homomorphic group signature
scheme as follows.

Definition 20 (Linearly-Homomorphic Group Signature (LH-GSig)). A
LH-GSig scheme with tag space T and message space Z

n
p , for a positive integer n

and a prime number p, consists of the following polynomial-time algorithms.

GKg(1λ, 1κ): This algorithm takes as input a tuple (1λ, 1κ), where λ is the secu-
rity parameter and κ is the group size, and returns a tuple (gpk, gmsk, gsk),
where gpk is the group public key, gmsk is the group manager’s secret key
and gsk is a κ-vector of keys with gsk[i] being the secret signing key of group
member i ∈ [κ]. We will assume that gmsk and all gsk[i] implicitly contain
gpk.

GSig(gsk[i], τ,m): On input a secret signing key gsk[i] for some i ∈ [κ], a tag τ ∈
T and a message m ∈ Z

n
p , this algorithm returns a signature Σ of m under

the tag τ .
GDrv(gpk, τ, (ωj , Σj)

d
j=1): On input the group public key gpk, a tag τ ∈ T and

d tuples of weights ωj ∈ Zp and signatures Σj, this algorithm returns a
signature Σ on the vector m =

∑d
j=1 ωj · mj under the tag τ , where Σj is a

signature on the message mj ∈ Z
n
p under τ .

GVf(gpk, τ,m, Σ): On input the group public key gpk, a tag τ ∈ T , a mes-
sage m ∈ Z

n
p and a signature Σ, this algorithm returns 1 if τ ∈ T and Σ is

valid relative to gpk and τ , and 0 otherwise.
Open(gmsk, τ,m, Σ): On input the group manager’s secret key gmsk, a tag τ ∈ T ,

a vector m ∈ Z
n
p and a signature Σ, this algorithm returns a subset A ⊆ [κ]

containing the signers of Σ if GVf(gpk, τ,m, Σ) = 1, and ⊥ otherwise.

Correctness. LH-GSig schemes must meet two correctness requirements concern-
ing the verification and the opening of signatures. The former is very similar to
the case of LH-Sig schemes (Definition 3). Let (gpk, gmsk, gsk) ← GKg(1λ, 1κ)
be any keys and τ be any tag in T . Then,

(a) for each m ∈ Z
n
p , i ∈ [κ] and Σ ← GSig(gsk[i], τ,m), the scheme satisfies

GVf(gpk, τ,m, Σ) = 1, and
(b) for any list (ωj ,mj , Σj)

d
j=1 such that GVf(gpk, τ,mj , Σj) = 1 for each j ∈

[d], if Σ ← GDrv(gpk, τ, (ωj , Σj)
d
j=1), then GVf(gpk, τ,

∑d
j=1 ωj ·mj , Σ) = 1.

The second aspect asks that the opening algorithm correctly recovers the
identity of the signers from an honestly generated signature. Note that, since
LH-GSig schemes allow the combination of signatures issued by different group
members, the opening algorithm returns a subset of [κ] rather than a single
element. For a LH-GSig scheme Σ, a positive integer c and a PPT adversary A, we
define the experiment Expc-cor

Σ,A (1λ, 1κ) as shown in Fig. 8. We say that openings

334 C. Hébant et al.

of Σ are c-correct if for any PPT adversary A and any integer κ, there exists a
negligible function negl such that

Advc-cor
Σ,A (λ, κ) = Pr

[
Expc-cor

Σ,A (1λ, 1κ) = 1
]

≤ negl(λ).

Fig. 8. Security game Expc-cor
Σ,A (1λ, 1κ) for c-correctness of openings

Since the unforgeability of LH-Sig schemes does not exclude that signatures
of the zero vector can be created without knowledge of the secret key, we prefer
not to trace signers of this vector in general. However, if desired, our construction
could easily be modified to allow the creation of deliberately traceable signatures
on the zero vector.

Security – Anonymity. Intuitively, anonymity requires that an adversary not in
possession of the group manager’s secret key gmsk cannot efficiently recover the
identities of the signers from a signature. As usual, to win the security game
an adversary does not need to recover the identity of a signer from a signature,
but it only needs to distinguish which of two (collections of) signers of its choice
signed a target message of its choice.

Definition 21 (Anonymity). For a LH-GSig scheme Σ and a PPT adver-
sary A, we define the experiment Expano

Σ,A(1λ, 1κ) as shown in Fig. 9. The “Fresh
or Derived” oracle OFoD can be called any number of times.

We say that a LH-GSig scheme Σ is anonymous if for any PPT adversary A
and any polynomial κ = κ(λ), there exists a negligible function negl such that

Advano
Σ,A(λ, κ) =

∣
∣
∣
∣Pr

[
Expano

Σ,A(1λ, 1κ) = 1
]

− 1
2

∣
∣
∣
∣ ≤ negl(λ).

Tracing a Linear Subspace 335

Fig. 9. Security game Expano
Σ,A(1λ, 1κ) for anonymity

Our definition captures various cases. This means the adversary can win the
security game if it is able to distinguish the given signatures in either of the
following scenarios:

– The adversary is given two fresh signatures created by running the Sign algo-
rithm on input the signing keys of two different group members.

– The adversary is given a fresh signature created by running Sign and a derived
signature created using the DeriveSign algorithm and a set of “parent” signa-
tures

– The adversary is given two signatures derived from different sets of parent
signatures.

Also, our security game ensures that signatures created by the same group mem-
bers are unlinkable. This is a consequence of the fact that the adversary is
given gsk (i.e. all signing keys). Therefore, it can simulate a signing oracle itself.

On the other hand, note that the adversary in Expano
Σ,A(1λ, 1κ) does not have

access to an opening oracle. As observed by Bellare et al. [2], this would require to
use an IND-CCA secure encryption scheme. However, such encryption schemes
are not malleable which is crucial for our signature scheme to be linearly homo-
morphic. We therefore adapt the IND-CPA version of anonymity proposed by
Boneh et al. with the suggested relaxations. For more details see Sect. 5.1 of [3].

Security – Traceability. In case of misuse, signer anonymity can be revoked by
the group manager. For this to be an effective mechanism, we require that no
colluding subset of group members (of size at most c) can create signatures
that are opened incorrectly or cannot be opened at all. This is even true if the
coalition is in possession of the group manager’s secret key gmsk.

Definition 22 (Traceability). For a LH-GSig scheme Σ with tag space T and
message space Z

n
p , a positive integer c and a PPT adversary A we define the

experiment Expc-tr
Σ,A(1λ, 1κ) as shown in Fig. 10.

The oracles OGSig and OCorrupt can be called in any order and any number
of times. For a tag τ ∈ T , Sτ denotes the set of all i ∈ [κ] such that there exists
a tuple (τ, i, ·) ∈ S. Similarly, for a tag τ and an i ∈ [κ], we define Sτ,i to be the
set that contains all m ∈ Z

n
p such that (τ, i,m) ∈ S.

336 C. Hébant et al.

We say that a LH-GSig scheme Σ is c-traceable if for any PPT adversary A
and any polynomial κ = κ(λ), there exists a negligible function negl such that

Advc-tr
Σ,A(λ, κ) = Pr

[
Expc-tr

Σ,A(1λ, 1κ) = 1
]

≤ negl(λ).

Fig. 10. Security game Expc-tr
Σ,A(1λ, 1κ) for c-traceability

A reasonable notion of traceability should in particular imply unforgeabil-
ity. If one removes the adversary’s access to OCorrupt and provides only the
group public key gpk instead of the group manager’s secret key gmsk, then
Expc-tr

Σ,A(1λ, 1κ) roughly equals Expunf’
Σ,A(1λ) as defined in Fig. 2. However, accord-

ing to Remark 6, to obtain equivalence to the more general security experi-
ment Expunf

Σ,A(1λ) as defined in Fig. 1, the signatures must in addition be con-
text hiding. But this property is always implied by the anonymity of a LH-GSig
scheme. Thus, by a proof similar to that of Lemma A.4 in [1], one can replace
the oracles OSign, ODeriveSign and OReveal in Expunf

Σ,A(1λ) with the single ora-
cle OGSig as in Expc-tr

Σ,A(1λ, 1κ). So our traceability notion implies indeed a
general variant of unforgeability.

Remark 23. One-time linearly-homomorphic signatures (without tags) have the
general problem that everyone can create a signature for any message in the
span of previously signed messages. Therefore, the more signatures are available,
the less meaningful individual signatures become. To overcome this problem,
one introduces tags and allows aggregation only if signatures were created with
respect to the same tag. In this way, the number of signatures that can be
combined is decreased, and individual signatures gain more significance.

The tracing mechanism in our LH-GSig model faces a very similar issue.
Indeed, the fact of being traced becomes less significant the more signatures are
available, which is due to basic attacks of the following shape: suppose two honest
signers B and C have published signatures ΣB and ΣC of respective messages
mB and mC . Whenever a malicious signer A wants to sign an evil message mA,

Tracing a Linear Subspace 337

it may instead sign mA − (mB +mC) and combine that signature with ΣB and
ΣC to obtain a signature for mA. Every signature produced in this way traces
back to A, B and C, and the tracing authority has no chance to identify the
malicious signer among these three.

We think that this weakness in the traceability should be seen in the same
spirit as the previously mentioned lack of significance in the context of general
linearly-homomorphic signatures. Therefore, it seems natural to defeat attacks
like the one described above by applying the same countermeasures, i.e. to intro-
duce tags (such as a time stamp). This lowers the number of signatures available
during a certain time period and, in particular, it prevents the malicious signer
A from reusing the signatures ΣB and ΣC forever. In many practical scenarios
it seems unlikely that a malicious signer knows signatures of the same (honest)
signers in every time interval. However, if the malicious signer mixes its signa-
ture in each time interval with signatures from different signers (or it does not
mix its signatures at all), then A will soon be identified as the unique common
point. A second countermeasure is discussed in the full version [11].

7 Generic Construction of a LH-GSig Scheme

7.1 Properties of LH-Sig Schemes

We introduce two properties of LH-Sig schemes that we exploit in our LH-GSig
construction.

Zero-Signability. Note that signatures of the zero vector are never considered a
valid forgery in the security game Expunf

Σ,A(1λ) (Fig. 1). Thus, the definition of
LH-Sig schemes does not preclude signatures of the zero vector to be efficiently
computable without knowledge of the signing key, but it does not require it
either. If signatures of the zero vector can be computed under any tag, then we
call a LH-Sig scheme zero-signable.

Definition 24 (Zero-Signability). A LH-Sig scheme Σ = (Setup,KeyGen,
Sign,DeriveSign,Verify) with message space G

n and tag space T is called zero-
signable if there exists a polynomial-time algorithm ZSign of the following shape:

ZSign(pk, τ): On input a public key pk and a tag τ ∈ T , this algorithm returns
a signature Σ on 0(n) under τ that is valid with respect to pk.

Universality. We consider a LH-Sig scheme Σ = (Setup,KeyGen,Sign,DeriveSign,
Verify). Let (sk, pk) ← KeyGen(Setup(1λ)). Abusing notation, Sign(sk, τ,M)
denotes the set of all signatures output by the Sign algorithm on input (sk, τ,M)
with a nonzero probability. A signature Σ on a message M is called universal
with respect to sk if Σ ∈

⋂
τ∈T Sign(sk, τ,M).

The unforgeability implies that the Sign algorithm outputs universal sig-
natures only with negligible probability. Nevertheless, knowledge of the secret
key sk may enable an efficient computation of such signatures. In this case, we
call the LH-Sig scheme universal.

338 C. Hébant et al.

Definition 25 (Universality). A LH-Sig scheme Σ = (Setup,KeyGen,Sign,
DeriveSign,Verify) with message space G

n and tag space τ is called universal
if there exists a polynomial-time algorithm USign of the following shape:

USign(sk,M): On input a signing key sk and a message M ∈ G
n, this algorithm

returns a signature Σ on M that is universal with respect to sk.

Note that each OT-LH-Sig scheme is trivially universal. We present a generic
conversion of a OT-LH-Sig scheme into a universal, zero-signable LH-Sig scheme
with tag space Z

∗
p in the full version [11].

Remark 26. Let Σ′ = (Setup′,KeyGen′,Sign′,DeriveSign′,Verify′) be a LH-Sig
scheme with message space M′ = G

n and tag space T ′. Then Σ′ can easily
be turned into a LH-Sig scheme Σ = (Setup′,KeyGen′,Sign,DeriveSign′,Verify)
with message space M = Z

n
p (and tag space T = T ′) by fixing a genera-

tor G ∈ G
∗ and replacing scalar messages m ∈ Z

n
p with m · G, i.e. Sign(sk, τ,m)

runs Sign′(sk, τ,m · G) and Verify(pk, τ,m, Σ) runs Verify′(pk, τ,m · G,Σ).
For k ∈ [n], let ek denote the k-th standard unit vector in Z

n
p and let Ek =

ek · G. If Σ′ is zero-signable, then universal signatures Σ1, . . . , Σn of E1, . . . ,En

suffice to sign any message m = (mi)
n
i=1 ∈ Z

n
p under an arbitrary tag τ ∈ T .

Indeed, a signature Σ of m can be obtained by setting m0 = 1 and computing
Σ0 ← ZSign′(pk, τ) and Σ ← DeriveSign′(pk, τ, (mk, Σk)n

k=0).

7.2 High-level Description

Our c-traceable LH-GSig scheme with message space Z
n
p and tag space T is based

on the following building blocks:

– an anonymous, (c + 1)-correct LST scheme T = (Gen,Trace) for linear sub-
spaces of G

�, and
– a universal, zero-signable and context-hiding LH-Sig scheme Σ′ = (Setup′,

KeyGen′,Sign′,DeriveSign′,Verify′) with message space G
n+� and tag space

T ′ = T , and the additional algorithms ZSign′ and USign′.

Let (tk,V = {Vi}κ
i=1) ← Gen(1λ, 1κ) and (sk′, pk′) ← KeyGen′(Setup′(1λ)).

At a high level, we use the idea of Remark 26 that universal signatures of the unit
vectors suffice to sign any message in Z

n
p under any tag τ ∈ T . However, to enable

tracing, we provide the i-th group member, for i ∈ [κ], with universal signa-
tures (σi,k)n

k=1 on (Ek ‖ Vi)
n
k=1 instead of just (Ek)n

k=1. To sign a message m =
(mk)n

k=1 ∈ Z
n
p , the i-th group member proceeds exactly as in Remark 26. That is,

it computes στ ← ZSign′(pk′, τ) and σ ← DeriveSign′(pk, τ, (mk, σi,k)k∈[n]∪{τ})
for mτ = 1. Then it outputs the signature Σ = (σ,C =

∑n
k=1 mk · Vi), i.e.

Σ-signatures are tuples that consists of a Σ′-signature and a vector in G
�. For

the verification one simply checks that Verify′(pk′, τ, (m ‖ C), σ) = 1.
This method obviously generalizes to signature derivations. Given a tag τ

and d tuples (ωj , Σj = (σj ,Cj))
d
j=1 where Σj is a signature on a message mj

under τ , one obtains a message on m =
∑d

j=1 mj by deriving a Σ′-signature

Tracing a Linear Subspace 339

σ ← DeriveSign′(pk′, τ, (ωj , σj)
d
j=0) and outputting Σ = (σ,C =

∑d
j=1 ωj · Cj).

Note that C is in the span of {Cj}d
j=1. Hence, the LST scheme T can be used

to recover all group members who participated in the creation of Σ.
However, this construction is not anonymous. While the first component

of a Σ-signature is a signature of the context-hiding signature scheme Σ′,
the second component can be used to link signatures created by the same
group members. Therefore, we add a randomization mechanism as described
in Remark 18. More precisely, we run (tk,V = {V0, . . . ,Vκ}) ← Gen(1λ, 1κ+1)
and σ0 ← USign′(sk′, (0(n) ‖ V0)), and include (V0, σ0) in the group public
key. Given a Σ signature Σ = (σ,C) on a message m under a tag τ , one can
randomize it by sampling a random scalar ω0

$← Zp and setting Σ̃ = (σ̃, C̃) for
σ̃ ← DeriveSign′(pk′, τ, ((1, σ), (ω0, σ0))) and C̃ ← C+ω0 ·V0. By the anonymity
of the LST scheme T, it follows that C and C̃ cannot be linked. Furthermore,
since σ0 is a signature on the vector (0(n) ‖ V0), σ̃ is a Σ′-signature on m ‖ C̃.
This in turn implies that Σ̃ = (σ̃, C̃) is still a Σ-signature on the original mes-
sage m.

7.3 Our Scheme

Figure 11 depicts our LH-GSig scheme. The LST scheme T = (Gen,Trace)
can be instantiated from the construction presented in Fig. 6. For the LH-Sig
scheme Σ′ = (Setup′,KeyGen′,Sign′,DeriveSign′,Verify′), we provide a construc-
tion in the full version [11]. While both components are proven secure in the
AGM, the security analysis of our (generic) LH-GSig scheme is done in the stan-
dard model.

The correctness of verifications follows from the correctness of the underlying
LH-Sig scheme Σ′. The c-correctness of openings is a consequence of the (c + 1)-
correctness of the LST scheme T. Security is stated in the following theorems.

Theorem 27. Let c be a positive integer. If Σ′ is unforgeable and T is (c + 1)-
correct, then Σ is c-traceable.

Theorem 28. If Σ′ is (computationally) context hiding and T is anonymous,
then Σ is anonymous. More precisely, it holds that

Advano
Σ,A(λ, κ) ≤ Advano

T (λ, κ + 1) + Q · Advch
Σ′(λ)

for any PPT adversary A, where Q is the number of queries to OFoD and
Advch

Σ,A(λ) the best advantage a PPT algorithm can get in distinguishing the
distributions D0 and D1 in the definition of context hiding (Definition 5).

The theorems are proven in the full version [11].
Note that we could slightly relax the condition on Σ′ to be universal. For the

scheme to work, it is not important that the signatures σ0 and (σi,k)i∈[κ],k∈[n]

are valid with respect to each tag τ ∈ T . In fact, they do not even have to be
valid with respect to any tag, as their validity is never checked. In the scheme,

340 C. Hébant et al.

Fig. 11. Our LH-GSig scheme

they are only passed to the DeriveSign′ algorithm together with another signa-
ture στ which is valid with respect to a tag τ ∈ T . Therefore, it is sufficient to
require that this derivation works correctly and returns a signature also valid
with respect to τ .

Also, note that OT-LH-Sig schemes are in particular universal. Hence, each
zero-signable and context-hiding OT-LH-Sig can be used to construct a one-time
LH-GSig scheme.

Some efficiency improvements are discussed in the full version [11].

7.4 Efficiency

The size of signatures in the c-traceable LH-GSig scheme Σ presented in Fig. 11
depends mainly on the instantiation of the underlying LH-Sig and LST schemes
denoted Σ′ and T respectively. More precisely, a Σ-signature consists of a Σ′-
signature and a vector C with entries in G1 whose dimension depends on T. In
the full version [11], we present an instantiation for Σ′ where signatures consist
of a small constant number of elements of G1. For T, if one uses our LST scheme
presented in Sects. 4 and 5, then signatures consist of Θ(c2 · log(κ/ε)) group
elements where κ denotes the size of the group and ε is the maximum acceptable
probability that the tracing will fail. On the other hand, a naive solution which
uses a LST scheme based on the “naive FIPP code” described in Remark 11
(i.e. each group member puts its identity in a separate coordinate) would yield
signatures of size O(κ) group elements. Thus, Σ-signatures in the naive solution
grow asymptotically faster (in the size of the group) than in our construction.

Acknowledgments. This work was supported by the France 2030 ANR Project ANR-
22-PECY-003 SecureCompute.

Tracing a Linear Subspace 341

References

1. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., shelat, a., Waters, B.: Com-
puting on authenticated data. Cryptology ePrint Archive, Report 2011/096 (2011).
https://eprint.iacr.org/2011/096

2. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

3. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

4. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00468-1 5

5. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. In: Copper-
smith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 452–465. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-44750-4 36

6. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

7. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48658-5 25

8. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

9. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

10. Hollmann, H.D., van Lint, J.H., Linnartz, J.P., Tolhuizen, L.M.: On codes with
the identifiable parent property. J. Comb. Theory Ser. A 82(2), 121–133 (1998)

11. Hébant, C., Pointcheval, D., Schädlich, R.: Tracing a linear subspace: Applica-
tion to linearly-homomorphic group signatures. Cryptology ePrint Archive, Report
2023/138 (2023). https://eprint.iacr.org/2023/138

12. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 17

13. Tardos, G.: Optimal probabilistic fingerprint codes. In: 35th ACM STOC, pp. 116–
125. ACM Press (2003). https://doi.org/10.1145/780542.780561

https://eprint.iacr.org/2011/096
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/3-540-44750-4_36
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2023/138
https://doi.org/10.1007/978-3-642-40084-1_17
https://doi.org/10.1145/780542.780561

Isogenies

SCALLOP: Scaling the CSI-FiSh

Luca De Feo1 , Tako Boris Fouotsa2 , Péter Kutas3,4,
Antonin Leroux5,11,12,13(B), Simon-Philipp Merz6, Lorenz Panny7,

and Benjamin Wesolowski8,9,10

1 IBM Research Europe, Zürich, Switzerland
scallop@defeo.lu

2 EPFL, Lausanne, Switzerland
tako.fouotsa@epfl.ch

3 Eötvös Loránd University, Budapest, Hungary
4 University of Birmingham, Birmingham, UK

p.kutas@bham.ac.uk
5 DGA-MI, Bruz, France

6 Royal Holloway, University of London, Egham, UK
research@simon-philipp.com
7 Academia Sinica, Taipei, Taiwan

lorenz@yx7.cc
8 Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251,

33400 Talence, France
9 INRIA, IMB, UMR 5251, 33400 Talence, France

10 ENS de Lyon, CNRS, UMPA, UMR 5669, Lyon, France
11 IRMAR, Université de Rennes, Rennes, France

12 LIX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris,
Palaiseau, France

antonin.leroux@polytechnique.org
13 INRIA, Saclay, France

Abstract. We present SCALLOP: SCALable isogeny action based on
Oriented supersingular curves with Prime conductor, a new group action
based on isogenies of supersingular curves. Similarly to CSIDH and
OSIDH, we use the group action of an imaginary quadratic order’s class
group on the set of oriented supersingular curves. Compared to CSIDH,
the main benefit of our construction is that it is easy to compute the
class-group structure; this data is required to uniquely represent— and
efficiently act by —arbitrary group elements, which is a requirement in,
e.g., the CSI-FiSh signature scheme by Beullens, Kleinjung and Ver-
cauteren. The index-calculus algorithm used in CSI-FiSh to compute

Author list in alphabetical order; see https://ams.org/profession/leaders/CultureStat
ement04.pdf. This research was funded in part by the EPSRC under grants
EP/S01361X/1 and EP/P009301/1, the National Research, Development and Inno-
vation Office within the Quantum Information National Laboratory of Hungary, the
János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by the
ÚNKP-22-5 New National Excellence Program, the Agence Nationale de la Recherche
under grant ANR MELODIA (ANR-20-CE40-0013), and the France 2030 program
under grant agreement No. ANR-22-PETQ-0008 PQ-TLS. Date of this document:
2023-04-05.

c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 345–375, 2023.
https://doi.org/10.1007/978-3-031-31368-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_13&domain=pdf
http://orcid.org/0000-0002-9321-0773
http://orcid.org/0000-0003-1821-8406
http://orcid.org/0000-0003-1249-6077
https://ams.org/profession/leaders/CultureStatement04.pdf
https://ams.org/profession/leaders/CultureStatement04.pdf
https://doi.org/10.1007/978-3-031-31368-4_13

346 L. D. Feo et al.

the class-group structure has complexity L(1/2), ruling out class groups
much larger than CSIDH-512, a limitation that is particularly problem-
atic in light of the ongoing debate regarding the quantum security of
cryptographic group actions.

Hoping to solve this issue, we consider the class group of a quadratic
order of large prime conductor inside an imaginary quadratic field of
small discriminant. This family of quadratic orders lets us easily deter-
mine the size of the class group, and, by carefully choosing the conductor,
even exercise significant control on it — in particular supporting highly
smooth choices. Although evaluating the resulting group action still has
subexponential asymptotic complexity, a careful choice of parameters
leads to a practical speedup that we demonstrate in practice for a security
level equivalent to CSIDH-1024, a parameter currently firmly out of reach
of index-calculus-based methods. However, our implementation takes 35 s
(resp. 12.5 min) for a single group-action evaluation at a CSIDH-512-
equivalent (resp. CSIDH-1024-equivalent) security level, showing that,
while feasible, the SCALLOP group action does not achieve realistically
usable performance yet.

1 Introduction

Isogeny-based cryptography was first proposed by Couveignes [21] in 1996, but
not published at the time. The same idea was independently rediscovered by Ros-
tovtsev and Stolbunov later [50]. Couveignes and Rostovtsev–Stolbunov (CRS)
suggested a post-quantum key exchange based on the group action of an ideal
class group on a class of ordinary elliptic curves. However, this scheme is very
slow.

A major breakthrough for isogeny-based group actions was the invention
of CSIDH [13]. The construction follows a similar blueprint as the CRS key
exchange but the class group of an imaginary quadratic order acts on the set of
supersingular elliptic curves defined over a prime field, rather, and this makes
the scheme a lot faster for various reasons. CSIDH was the first efficient post-
quantum action and its efficient public-key validation gives rise to non-interactive
key exchange. While it is well known that CSIDH, like CRS, is susceptible to
a quantum subexponential attack, the concrete size of parameters to achieve a
certain security level has been a matter of debate [10,16,48].

Colò and Kohel generalized CSIDH-like schemes to obtain the “Oriented
Supersingular Isogeny Diffie–Hellman” (OSIDH) key exchange [19], introducing
the notion of orientations to handle the action of a generic class group on a set of
supersingular curves. Since then, the OSIDH key exchange has been broken for
the suggested parameters [23], but its generalisation of CSIDH remains a useful
framework.

The first attempt to build isogeny-based signatures was outlined in Stol-
bunov’s PhD thesis, where the Fiat–Shamir transform is applied to a Σ-pro-
tocol [52]. However, to instantiate the scheme it would be necessary to sample
uniformly from the acting class group and, crucially, to compute a canonical rep-
resentative for each class group element efficiently. The first requirement could

SCALLOP: Scaling the CSI-FiSh 347

be approximated sufficiently well, but the second one remained elusive. Instead
of using canonical representatives, De Feo and Galbraith proposed the signa-
ture scheme SeaSign [26] which uses an abundantly redundant representation
together with rejection sampling to make the distribution of class group ele-
ments independent from the secret key. Though it provides short signatures,
signing time is still impractical for the fastest parameter set (2 min), even after
further optimisations by Decru, Panny and Vercauteren [30].

Computing the class group structure of the acting group solves both chal-
lenges left to instantiate Stolbunov’s signature scheme. By providing a simple
canonical representation for class group elements, it also gives an easy way to
sample uniformly, instead of resorting to expensive statistical methods. In 2019,
Beullens, Kleinjung and Vercauteren [9] conducted a record breaking class group
computation to find the class group structure and relation lattice of the class
group of the imaginary quadratic field corresponding to the smallest CSIDH
parameter set, CSIDH-512. This let them efficiently instantiate Stolbunov’s sig-
nature, leading to CSI-FiSh [9]. CSI-FiSh is very efficient and is a building
block for many other schemes such as threshold signatures [11,22,29], ring sig-
natures [8,40]) and group signatures [7,18]. Furthermore, it is a basis for other
primitives such as updatable encryption [42].

Unfortunately, the best known algorithms to compute the class group struc-
ture have complexity LΔ(1/2), using the classic L-notation

Lx(α) = exp
(
O

(
(log x)α(log log x)1−α

))
,

where Δ denotes the discriminant of the number field. Instantiating CSI-FiSh for
larger security levels of CSIDH would require class group computations that are
currently out of reach. Yet, especially in light of recent debate about CSIDH’s
concrete quantum security, it is desirable to have an efficient isogeny-based sig-
nature scheme (and all the aforementioned primitives) at higher security levels.

This motivates the search for other isogeny actions that have better control
on the class group, it is thus natural to look at orientations different from the
one in CSIDH. However, choosing an orientation poses several challenges. First,
it is usually hard to compute an orientation even if one knows that the curve is
oriented by a particular order as discussed in [25]. Secondly, disclosing the ori-
entation in the public key requires an efficient representation of the orientation.
Then, the resulting group action should be efficiently computable. Finally, for
a general orientation it is unclear how the structure of the class group can be
computed, whereas special orientations may not lead to cryptographically secure
group actions (see [19,23] and [2, Theorem 11.4]).

1.1 Contribution

We present SCALLOP, a new isogeny-based group action on supersingular
curves. Following a standard approach [13,19], we use the group action of the
class group of an imaginary quadratic order on a set of oriented supersingular
curves. In an attempt to solve the scaling issue of CSI-FiSh, we explore the
situation where the quadratic order O of discriminant Δ has a large prime con-
ductor f inside an imaginary quadratic field of very small discriminant d0, i.e.

348 L. D. Feo et al.

Δ = f2d0. There are exact formulas and results to compute the structure of the
class group in this case.

To make the computation of the resulting group action efficient, we study how
to obtain effective and (hopefully) secure O-orientations for a generic quadratic
order O, something known only in the special case of CSIDH, where O = Z[

√−p],
prior to our work. In particular, we introduce a generic framework to evaluate
the group action when O contains a generator α such that the principal ideal
Oα can be factored as L2

1L2 for two ideals L1,L2 of smooth coprime norm.
We then show how to instantiate this framework when O is an order of large
prime conductor and we provide an algorithm to perform the computation as
efficiently as possible in this context. In particular, we provide a way to choose
the conductor such that O has a generator α of the correct form with essentially
optimal size. As is customary in isogeny-based cryptography, this setup also
requires to carefully select the characteristic of the finite field Fp for an efficient
evaluation of the group action.

To generate concrete parameters, we also provide an efficient algorithm to
generate an initial effective O-orientation, something that can always be done in
polynomial time (using the maximal-order-to-supersingular-elliptic-curve algo-
rithm from [32]) but might be very costly in practice.

Our new group action still requires a precomputation of complexity LΔ(1/2):
Here the main algorithmic task is to compute a lattice of relations for the class
group, which can be used later to obtain a “short representative” of any given
class in Cl(O). Computing relations in the class group amounts to solving dis-
crete logarithms in a subgroup of some finite field (unrelated to Fp), whose order
we can somewhat control by choosing the conductor.

Despite the fact that our choice of conductor is very constrained by the
requirements on the generator α (see Sect. 5.1), we show that we have a search
space large enough to obtain a fairly smooth class number. Thus, we were
able to instantiate the SCALLOP group action for security levels that remain
entirely out of reach for the CSI-FiSh approach, using only modest computa-
tional resources. Concretely, we give parameters for our group action with secu-
rity comparable to CSIDH-512 and CSIDH-1024. This leads to an isogeny-based
Fiat–Shamir signature analogous to CSI-FiSh for parameters twice as large as
CSI-FiSh.

1.2 Technical Overview

We give below a list of tasks and constraints required to create a setup analogous
to CSI-FiSh. Then, we briefly explain how our new group action is evaluated and
how it compares to CSI-FiSh.

We distinguish two phases in setting-up an isogeny-based group action: an
offline and an online one. The offline phase is the main novelty introduced in
CSI-FiSh compared to CSIDH [13]. It is performed just once at parameter gen-
eration. We do not need it to be efficient, but we want it to be feasible. This
precomputation is crucial to the efficiency of the online phase, which is executed
at every group action evaluation (hence dozens of times for each signature) and
needs to be as fast as possible.

SCALLOP: Scaling the CSI-FiSh 349

In the following, let O be an imaginary quadratic order.

Evaluating Isogeny Group Actions. Abstractly, a group action is defined by a
group G, a set X, and a map � : G × X → X satisfying some set of axioms.
Algorithmically, we ask that elements of G and X have a representation, and
that for any g ∈ G and x ∈ X it is feasible to compute g � x. These, and other
requirements, have been formalized under the names of Hard Homogenous Space
(HHS) [21] or Effective Group Action (EGA) [1].

In the specific case of isogeny actions, the set X is a set of elliptic curves,
which can be represented by an appropriate invariant, e.g. the j-invariant. The
group G = Cl(O) tends to be cyclic, or nearly cyclic, thus its elements could be
uniquely represented as powers ae of some generator a. However it is not true in
general that ae � E can be efficiently evaluated for every exponent e and every
curve E. Instead, there exist a list of ideals l1, . . . , ln of small norm, spanning
Cl(O) and such that the actions li�E can be efficiently evaluated for every li and
every E. Then, the action of any ideal of the form b =

∏n
i=1 l

ei
i can be efficiently

evaluated as soon as the exponent vector (e1, . . . , en) ∈ Z
n has small norm. This

setup is called a Restricted EGA (REGA) in [1].
To go from a REGA to an EGA, we need a way to rewrite any ideal class

ae as a product ae =
∏n

i=1 l
ei
i with small exponents. The main advance in CSI-

FiSh was the computation of the lattice of relations of the ideals l1, . . . , ln in
CSIDH-512, i.e. the lattice L spanned by the vectors (e1, . . . , en) such that

∏
lei
i

is principal. If the li span Cl(O), then Z
n/L is isomorphic to Cl(O). Then,

assuming a = l1, finding a decomposition of ae with short exponents amounts to
solving a Closest Vector Problem (CVP) in the lattice of relations for the vector
(e, 0, . . . , 0).

Our aim is to replicate this strategy for the relation lattices associated to the
class groups we are interested in.

The Offline Phase. The goal of this phase is to precompute the relation lattice
of the class group Cl(O), and produce a reduced basis of it. The main steps are:

1. Compute the class number and the structure of the class group.
2. Generate the lattice of relations L.
3. Compute a reduced basis of L suitable for solving approximate-CVP.

In CSI-FiSh, the first item is obtained as a byproduct of the second, which
is performed using index calculus, for an asymptotic cost of LΔ(1/2). The last
step is a standard lattice-basis reduction (typically done using BKZ); although,
depending on the approximation factor, this step may even have exponential
complexity, it is the fastest one in practice.

In this work we change the way the first two steps are performed. First, we
choose O so that the class group structure comes for free: We select a quadratic
order O = Z + fO0 of large conductor f inside a maximal quadratic order O0

of small discriminant d0. Computing the class group structure, then, amounts
to factoring f , which we choose to be a prime.

Secondly, by choosing O0 and f carefully, not only can we compute the group
structure, but we can even control it to some extent. In particular, we search

350 L. D. Feo et al.

for the prime f such that the class number of O, given by f −
(

d0
f

)
, is some-

what smooth, so that computing discrete logarithms in Cl(O) becomes feasible.
Then, instead of using index calculus, we directly obtain the lattice of rela-
tions by computing the discrete logarithm relationships between the generators
l1, . . . , ln. Asymptotically, an Lf (1/2)-long search for f is expected to yield an
Lf (1/2)-smooth class number: At this level of detail in the analysis, no obvious
improvement over index calculus stands out, however the constants hidden in the
exponents turn out to be much more favorable to our setup, as our experiments
confirm.

The final step, BKZ reduction, is unchanged.

In the Online Phase. we evaluate the group action. The inputs are an oriented
curve E and an integer e, the output is the oriented curve ae � E, where a is
some fixed generator (e.g. a = l1). This phase consists of two steps:

1. Solving approximate-CVP to find a decomposition ae =
∏

lei
i with small

exponents.
2. Using isogeny computations to evaluate

(∏
lei
i

)
� E.

In SCALLOP the first step is identical to CSI-FiSh: We use Babai’s nearest
plane algorithm [4] to find a vector close to (e, 0, . . . , 0). The cost of this step
is negligible, however the quality of the output depends on the quality of the
basis computed in the offline phase, and has a big impact on the cost of the
next step. In practice, the dimension of the lattices we consider is small enough
that we can compute a nearly optimal basis, thus the approximation factor for
CVP will be rather small. However, from an asymptotic point of view, there is
a trade-off between the time spent reducing the lattice in the offline phase, and
the approximation factor achieved in the online phase. The break-even point
happens at L(1/2), exactly like in CSI-FiSh.

The isogeny computation step is where we deviate most from CSI-FiSh.
Indeed in CSI-FiSh there is an implicit orientation by the order O = Z[

√−p],
which is easily computed via Frobenius endomorphisms. In contrast, in SCAL-
LOP we need an explicit representation of the orientation, that we transport
along the group action. It is thus not surprising that, for the same parameter
sizes, our algorithms are significantly slower than CSI-FiSh. Nonetheless we show
there are choices of orientations for which it is at least feasible to run them.

Concretely, we choose a quadratic order O that contains a generator α of
smooth norm of size roughly equal to disc(O) (essentially, the smallest size we
could hope for). The orientation is then represented by an endomorphism ω
corresponding to the principal ideal Oα, encoded as the composition of two
isogenies of degree roughly equal to

√
disc(O). The endomorphism ω plays here

the same role as the Frobenius endomorphism in CSI-FiSh: An ideal li acts
through an isogeny of degree �i whose kernel is stabilized by ω, to compute li �E
it is thus sufficient to evaluate ω on E[�i] and determine its eigenspaces.

In Sect. 5.1, we justify the concrete choices for O in more detail and we
present all required precomputations. The full description of the algorithm for
the online phase is given in Sect. 5.2.

SCALLOP: Scaling the CSI-FiSh 351

Organisation of the Paper. The rest of this paper is organized as follows.
Section 2 introduces the necessary mathematical background. In Sect. 3, we intro-
duce our generic framework for effective orientation and group action computa-
tion. Then, we introduce the security notions related to group actions in Sect. 4.
In Sect. 5, we explain in detail how the SCALLOP group action works. In Sect. 6,
we discuss the concrete instantiation of the scheme. Finally, we analyze one par-
ticular angle of attack against the scheme in Sect. 7.

2 Preliminaries

2.1 Elliptic Curves and Isogenies

Elliptic Curves. In this work we consider elliptic curves defined over a finite field
Fp2 , which can be represented, for example, by a Weierstrass equation

E : y2 = x3 + ax + b, a, b ∈ Fp2 .

For a field extension k of Fp2 , we write E(k) for the group of k-rational points
of E. We denote by [n]P the nth scalar multiple of a point P , and by E[n] the
n-torsion subgroup of E(Fp2), so E[n] � (Z/nZ)2 as soon as p � n.

Isogenies. An isogeny ϕ : E1 → E2 is a non-constant morphism sending the
identity of E1 to that of E2. The degree of an isogeny is its degree as a rational
map (see [51]). An isogeny of degree d, or d-isogeny, is necessarily separable when
p � d, which implies d = #ker ϕ. An isogeny is said to be cyclic when its kernel
is a cyclic group. For any ϕ : E1 → E2, there exists a unique dual isogeny
ϕ̂ : E2 → E1, satisfying ϕ ◦ ϕ̂ = [deg(ϕ)].

Endomorphism Ring. An isogeny from a curve E to itself, or the constant zero
map, is an endomorphism. The set End(E) of all endomorphisms of E forms
a ring under addition and composition. For elliptic curves defined over a finite
field, End(E) is isomorphic either to an order of a quadratic imaginary field or a
maximal order in a quaternion algebra. In the first case, the curve is said to be
ordinary and otherwise supersingular. We focus on the supersingular case, here,
and we write S(p) for the set of isomorphism classes of supersingular curves
defined over a field of characteristic p. It is a finite set containing roughly p/12
classes, and each class admits a representative over Fp2 . The Frobenius isogeny
π : (x, y) → (xp, yp) is the only inseparable isogeny between supersingular curves
and it has degree p. We write π : E → Ep. For any supersingular curve E we
have End(E) ∼= End(Ep), but E ∼= Ep if and only if E has an isomorphic model
over Fp.

A concrete example: j = 1728. Let p ≡ 3 (mod 4), and let E0/Fp2 be the curve
y2 = x3 + x of j-invariant 1728. Its endomorphism ring is isomorphic to the
maximal order O0 = 〈1, i, i+j

2 , 1+k
2 〉 with i2 = −1, j2 = −p and k = ij. Moreover,

we have explicit endomorphisms π and ι such that End(E0) = 〈1, ι, ι+π
2 , 1+ιπ

2 〉,
where π is the Frobenius isogeny and ι is the map (x, y) �→ (−x,

√−1y).

352 L. D. Feo et al.

2.2 Representing and Evaluating Isogenies

Vélu’s formulas [53] let us compute any separable isogeny ϕ of degree D, given
ker ϕ. They take Õ(

√
D) operations over the field of definition of kerϕ [6]. An

isogeny of degree D can be decomposed into a sequence of isogenies of degrees
the prime factors of D, thus the efficiency of any isogeny computation mainly
depends on the largest prime factor �|D, and the size of the field extension
containing E[�]∩ker ϕ. Hence, we will focus on isogenies of smooth degree where
the related torsion groups E[�] are defined over Fp2 .

In practice, we encode cyclic D-isogenies as tuples (E,P), where P is a
generator of ker φ. We call this a kernel representation. It can be compressed to
only O(log(p)+log(D)) bits using techniques similar to SIDH key compression [3,
20,46,56] (even when P is defined over a large field extension of Fp2). Such
compression becomes relevant when large degree isogenies are exchanged as part
of a key agreement message or cryptographic signature.

Pullback and Push-forward. Let us take two coprime integers A,B. Any isogeny
of degree AB can be factored in two ways as ϕA ◦ ϕB or ψB ◦ ψA, where ϕA, ψA

(resp. ϕB , ψB) have degree A (resp. B). This creates a commutative diagram,
where ker ϕA = ϕB(ker ψA) and ker ψB = ψA(ker ϕB). Given ψA and ϕB we
define ϕA (resp. ψB) as the pushforward of ψA through ϕB (resp. ϕB through
ψA), which we denote by ϕA = [ϕB]∗ψA (resp. ψB = [ψA]∗ϕB). There is also
a dual notion of pullback, denoted by [·]∗·, so that ψA = [ϕB]∗ϕA and ϕB =
[ψA]∗ψB .

2.3 Orientation of Supersingular Curves and Ideal Group Action

For the rest of this article, we fix a quadratic imaginary field K and a quadratic
order O of discriminant D < 0 in K. We will consider primitive O-orientations of
supersingular curves. The notion of orientation in Definition 1 below corresponds
to that of primitive orientation with a p-orientation in [19], and it is equivalent
under the Deuring correspondence to optimal embeddings of quadratic orders
inside maximal orders of Bp,∞. The same notion is referred to as normalized
optimal embeddings in [5].

Definition 1. For any elliptic curve E, a K-orientation is a ring homomor-
phism ι : K ↪→ End(E) ⊗ Q. A K-orientation induces an O-orientation if
ι(O) = End(E) ∩ ι(K). In that case, the pair (E, ι) is called a O-oriented curve
and E is an O-orientable curve.

In what follows, we consider the elements of S(p)/π rather than S(p) because
the Frobenius π creates two orientations (one in E and one in E(p)) from each
optimal embedding of O in a maximal quaternion order of Bp,∞. Note that this
is not the convention taken in [47,55], where orientations are not considered up
to Galois conjugacy.

Definition 2. SO(p) is the set of O-oriented curves (E, ι) up to isomorphisms
and Galois conjugacy.

SCALLOP: Scaling the CSI-FiSh 353

The following proposition follows from the results proven by Onuki [47,
Proposition 3.2, Proposition 3.3, Theorem 3.4] and gives a way to compute
#SO(p).

Proposition 3. The set SO(p) is not empty if and only if p does not split in
K and does not divide the conductor of O. When these conditions are satisfied,
and p is not ramified in K, we have #SO(p) = h(O).

When p is ramified in K, the situation is a bit more complicated but it can
be shown [2] that

#SO(p) ∈
{

1
2
h(O), h(O)

}
.

When SO(p) is not empty, the set of invertible O-ideals acts on O-orientations
via an operation that we write a � (E, ι) = (Ea, ιa). Principal ideals act trivially,
thus the operation � defines a group action of Cl(O) on SO(p), which we also
denote by �. Onuki proved that this group action is free and transitive.

Concretely, this action is computed using isogenies. For an ideal a in O and
an O-orientation (E, ιE), we define E[a] =

⋂
α∈a ker ιE(α) and write ϕE

a for the
isogeny of kernel E[a]. We have

ϕE
a : E → Ea = E/E[a] and ιEa (x) =

1
n(a)

ϕE
a ◦ ι(x) ◦ ϕ̂E

a . (1)

When a does not factor as nb for some integer n > 1, we say that a is
primitive. In that case, the corresponding isogeny ϕE

a is cyclic.
It will be useful for us to consider a generator α of O (an element such that

O = Z[α]). In that case, every ideal a can be written as 〈x + αy, n(a)〉 for some
x, y ∈ Z. Note that this choice of generator is not unique: if α is a generator,
any α + k will also be generators with k ∈ Z.

Although an orientation may exist it is not always clear how to represent it
and compute with it. Informally, an effective orientation is one that comes with
efficient representations and algorithms. We will give a more formal, and slightly
more specific definition in Sect. 3.2.

3 The Generic Group Action

This section introduces our general framework for evaluating group actions of
oriented curves. The algorithm we outline below is not designed to be particularly
efficient. Later, in Sect. 5.2, we will describe in detail a version and parameter
choices that make it somewhat practical.

The key to our technique is having a generator of smooth norm for the
quadratic order. To simplify the exposition, we restrict to quadratic orders O
with a generator α of norm L2

1L2, where L1 and L2 are two smooth coprime inte-
gers and the principal ideal Oα is equal to L2

1L2 for some primitive ideals L1,L2.
We will further refine these constraints in Sect. 5.1 for an efficient instantiation.

We now present a few generic properties, then, in Sect. 3.2, we describe how
the orientation by such an order can be made effective.

354 L. D. Feo et al.

3.1 Factorization of Ideals and Decomposition of Isogenies

We recall from Eq. (1) that if (E, ιE) is an oriented curve and a is an ideal, the
action a � (E, ιE) is computed via an isogeny denoted by ϕE

a .

Proposition 4. If a can be factored as a1a2, then the isogeny ϕE
a can be

decomposed as ϕ
Ea1
a2 ◦ ϕE

a1
. Moreover, if a1 and a2 have coprime norms, then

ϕ
Ea1
a2 = [ϕE

a1
]∗ϕE

a2
.

Proof. The fact that we can factor ϕE
a is standard and the formula to compute

ϕ
Ea1
a2 follows from Lemma 5 below. ��

Lemma 5. Let a, b be two ideals such that E[a] ∩ E[b] = {0}. Let ϕE
a : E →

Ea := E/E[a] be the isogeny corresponding to the action of a on (E, ιE). Then
Ea[b] = ϕE

a (E[b]).

Proof. Firstly, let us suppose that a = n(a) and b = n(b) are coprime. Then the
lemma follows from the usual commutative diagram obtained by decomposing
the isogeny ϕE

ab as ϕEa

b ◦ ϕE
a with Ea[b] = ker ϕEa

b = ϕE
a (E[b]).

Secondly, let us suppose that a = b. Then since E[a] ∩ E[b] = {0}, we have
b = a and b � a � (E, ιE) = (E, ιE). It follows that Ea[b] = Ea[a] = ker ϕ̂E

a =
ϕE
a (E[a]) = ϕE

a (E[a] ⊕ E[b]) = ϕE
a (E[b]).

Lastly, suppose generally that gcd(a, b) = c, writing a = ca′, b = cb′, a = ca′

and b = cb′. Then Ea[b] = Ea[c] ⊕ Ea[b′]. Combining the first case and the
second one, we have Ea[c] = ϕ

Ea′
c (Ea′ [c]) = ϕ

Ea′
c ◦ ϕE

a′(E[c]) = ϕE
a (E[c]) and

Ea[b′] = ϕ
Ea′
c (Ea′ [b′]) = ϕ

Ea′
c ◦ϕE

a′(E[b′]) = ϕE
a (E[b′]). Hence Ea[b] = ϕE

a (E[b]).
��

When using Lemma 5, we will in general specify the tuple (E, a, b) at hand.

3.2 Effective Orientation

Let us take an O-orientation (E, ιE). Through ιE , we obtain an endomorphism
ωE ∈ End(E) as ιE(α). This endomorphism ωE has degree L2

1L2 and it can be
decomposed as ωE = ϕ̂E

L−1
1

◦ϕE
L1L2

, as Proposition 4 shows. Thus, we obtain a rep-

resentation of ωE from the kernel representations of the two isogenies ϕ̂E
L−1

1
and

ϕE
L1L2

. This idea of decomposing an endomorphism into a cycle of two isogenies
is now quite standard in isogeny-based cryptography (see for instance [28,49]).

Formally, we have the following definition.

Definition 6. Let (E, ιE) ∈ SO(p) where O = Z[α] with α = L2
1L2. An effec-

tive orientation for (E, ιE) is a tuple sE = (E,PE , QE) where (E,PE) and
(E,QE) are the respective kernel representations of the isogenies ϕE

L1L2
and ϕE

L1

(of respective degree L1L2 and L1).

SCALLOP: Scaling the CSI-FiSh 355

Remark 7. When it comes to using an effective orientation as public key, it is
important to represent it in a canonical way. For example, when performing a key
exchange with SCALLOP, the shared key (which is an oriented curve), must be
canonically represented so that both parties can get the same shared key. Given
sE = (E,PE , QE), one computes canonical generators P ′

E and Q′
E of the groups

〈PE〉 and 〈QE〉 respectively. The effective representation s′
E = (E,P ′

E , Q′
E) is

then refered to as the canonical effective representation for (E, ιE).

Since L1 and L2 are coprime, PE = RE + SE where RE and SE are points
of order L1 and L2 respectively. Given PE , one recovers RE = [λ2L2]PE and
SE = [λ1L1]PE , where λ1 is the inverse of L1 mod L2 and λ2 is the inverse of
L2 mod L1. Conversely, given RE and SE , one recovers PE = RE +SE . In some
cases, such as the statement and proof of Proposition 9, we may directly assume
ωE is represented as (RE , SE , QE), for simplicity.

3.3 The Group Action Computation from the Effective Orientation

Let a be an ideal of O, our goal now is to understand how to compute an effective
orientation ωEa for a � (E, ιE) from the effective orientation ωE .

By Proposition 4, we know that we can focus on the case where a = l is a
prime ideal. If we know how to compute ϕE

l and the effective orientation ωEl

for (El, ιEl
) = l � (E, ιE), from l and ωE , then we can recursively compute the

action of any ideal a from its factorization as a product of prime ideals. So we
need to focus on two operations: computing ϕE

l and computing ωEl
.

Computation of the Group Action Isogeny. The computation of ϕE
l can be done

from ker ϕE
l = E[l] using Vélu’s formulas [53]. Thus, the main operation is the

computation of E[l] from ωE . Proposition 8 provides this operation.

Proposition 8. When � is split in O = Z[α], and l is a prime ideal above �,
there exists λ ∈ Z such that l = 〈α − λ, �〉. Then, ker ϕE

l = E[l] = E[�] ∩ ker ρE

where ρE = ωE − [λ]E.

Proof. It suffices to see that n(α − λ) = λ2 − λtr(α) + n(α) has two solutions
modulo � if and only if discO = tr(α)2 − 4n(α) is a non-zero square modulo �
which is exactly the case where � splits in O. The ideal 〈α − λ, �〉 has norm �
because α − λ �∈ �O (because � is split in O). Then the result follows from the
definition of ϕE

l . ��
The computation of a generator of kerϕE

l from Proposition 8 is quite stan-
dard in the literature on isogeny-based cryptography. It suffices, for instance, to
evaluate ωE − [n(α)/λ] (or ωE − tr(α) if λ = 0) on a basis P,Q of E[�], then at
least one of the two images will generate E[l]. From this, we derive the kernel
representation of ϕE

l .

356 L. D. Feo et al.

Computation of the New Effective Orientation. Computing ωEl
is less straight-

forward. There are basically two cases depending on whether � is coprime with
n(α) = deg ωE or not. The first case is by far the simplest: When � and
n(α) are coprime, applying Proposition 4 to ωE = ϕ̂E

L−1
1

◦ ϕE
L1L2

shows that

ωEl
= [ϕE

l]∗ωE . Thus, it suffices to push the generators of ϕ̂E
L−1

1
and ϕE

L1L2

through ϕE
l to get a kernel representation for ωEl

.
The story is more complicated when � and n(α) are not coprime because the

pushforward of ωE is not well-defined in this case. Let us treat the simplified
case where L1 = � (and so n(α) = �2L2 for some L2 coprime with �), as the
generic case can be handled with similar ideas. The full algorithm to handle the
generic case is given in Sect. 5.2.

When n(α) = �2L2, there are two possibilities: either L1 = l or L1 = l−1 as
there are no further primitive ideals of norm dividing �. If we have a method to
solve the former, we can derive a method to solve the latter by considering the
dual of the endomorphism ωE . Thus, we focus on L1 = l.

Proposition 9. Let α be a generator of O of norm �2L2 with Oα = l2L2 as
above. Then ωE = ι(α) can be decomposed as ϕ̂E

l
◦ ϕEl

L2
◦ ϕE

l . Suppose that ωE is
represented as (RE , SE , QE) where E[l] = 〈RE〉, E[L2] = 〈SE〉 and E[l] = 〈QE〉.
The effective orientation of the curve El is (REl

, SEl
, QEl

) where:

QEl
= ϕE

l (QE)

REl
= ϕ̂El

L2
◦ ϕE

l
(RE)

SEl
= ϕE

l (SE).

Proof. By the definitions of the group action and of the effective orientation,
ωE = ι(α) implies ωEl

= ιl(α). This is why we obtain the two decompositions
ϕ̂E
l

◦ϕEl

L2
◦ϕE

l for ωE and ϕ̂El

l
◦ϕ

El2

L2
◦ϕEl

l for ωEl
from the factorization Oα = l2L2.

The rest of the proposition follows by applying Lemma 5 to (E, l, l), (E,L2l, l),
and (E, l,L2) respectively. ��

Note that Proposition 9 remains valid when we replace the ideal l by any
ideal of smooth norm dividing αO. This will be the case in Sect. 5 where we
evaluate the action of a product of prime ideals li where some l2i divide αO and
others do not.

In Sect. 5, we introduce a concrete instantiation of the general principle
described above. There, we provide a detailed and efficient version of the algo-
rithms outlined in this section.

Comparison with CSIDH. In CSIDH [13], the effective orientation is obtained
through the Frobenius endomorphism, which has norm p and is thus coprime
to the norm of all ideals we need to evaluate. Thus, we are in the easy case.
Moreover, the situation of CSIDH is particularly simple because the kernel of
ϕE
l can be directly obtained as one of the two subgroups of order � stable under

Frobenius.

SCALLOP: Scaling the CSI-FiSh 357

Fig. 1. A picture of the effective orientation computation from Proposition 9.

4 Security of a Group Action

In this section, we define the security notions associated to a cryptographic
group action — a (very) hard homogenous space — and we review the best known
attacks. A (free and transitive) group action � of a group G on a set X is a hard
homogenous space if it can be computed efficiently and the following problems
are hard.

Problem 10 (Vectorisation). Given x, y ∈ X, find g ∈ G such that y = g � x.

Problem 11 (Parallelisation). Given x, g � x, h � x ∈ X (for undisclosed g, h ∈
G), find (gh) � x.

It is a very hard homogenous space if the following problem is hard.

Problem 12 (Decisional Parallelisation). Given x, y, u, v ∈ X, decide whether
there exists g ∈ G such that y = g � x and v = g � u.

The vectorisation and parallelisation problems, when instantiated with our
group action of the class group of O on SO(p), are also known as the prob-
lems O-Vectorisation and O-DiffieHellman, studied in [55]. For sim-
plicity, assume that the factorization of disc(O) is known, and that it has
O(log log |disc(O)|) distinct prime factors1, as will be the case of our construc-
tion.

The two problems O-Vectorisation and O-DiffieHellman are equivalent
under quantum reductions (see [35,45] for reductions that are polynomial in the
cost of evaluating the group action, or [55] for reductions that are polynomial in
the instance lengths).

Furthermore, these problems are closely related to the endomorphism ring
problem, a foundational problem of isogeny-based cryptography: given a super-
singular curve E, compute a basis of the endomorphism ring End(E) (i.e., four
1 Note that the average number of distinct prime factors of integers up to n is indeed

O(log log n).

358 L. D. Feo et al.

endomorphisms of E that generate End(E) as a lattice). More precisely, the
problem O-Vectorisation is equivalent to the following oriented version of
the endomorphism ring problem (see [55, Figure 1]).

Problem 13 (O-EndRing). Given an effectively oriented curve (E, ιE) ∈
SO(p), compute a basis of the endomorphism ring End(E).

Clearly, O-EndRing reduces to the standard endomorphism ring problem,
but the converse is not known to be true. In fact, O-EndRing currently seems
simpler than the endomorphism ring problem as long as |disc(O)| < p2. Precisely,

– The endomorphism ring problem can be solved in time (log p)O(1)p1/2 (see [31,
33]), and

– The problem O-EndRing can be solved in time lO(1)|disc(O)|1/4 with l the
length of the input (see [55, Proposition 3]).

Write O = Z+fO0 where f is the conductor of O and O0 is the maximal order.
Better algorithms than the above are known when O0 has small class group and
f is powersmooth (see [55, Theorem 5]), or even smooth in certain situations (as
discussed in [19], or more generally [55, Corollary 6]). We will protect against
such attacks by choosing f a large prime. This is in fact one key difference
between OSIDH [19] and our construction. In OSIDH [19], the setting is similar,
but f is smooth (a power of two), and the f -torsion is defined over Fp2 . For this
not to be a vulnerability, OSIDH is forced to only reveal partial information on
the orientations, which must be done carefully, lest the attacks of [23] apply.
An unfortunate side effect is that, without the full orientation, OSIDH does not
actually provide an effective group action.

In summary, the fastest known generic classical method to solve the vectori-
sation problem associated to the group action has complexity

min
(
(log p)O(1)p1/2, log(p + d)O(1)d1/4

)

= log(p + d)O(1) min
(
p1/2, f1/2

)
,

where d = |disc(O)|. A precise estimate of the O(1) appearing in the complexity
of [55, Proposition 3] would provide a more precise estimation of the cost of an
attack.

Regarding quantum security, there is an asymptotically faster heuristic algo-
rithm, which runs in subexponential time (see [55, Proposition 4]). It relies on
Kuperberg’s algorithm [39] for the Abelian hidden shift problem, and runs in
time

log(p)O(1)Ldisc(O)(1/2).

Note that in special cases the hidden shift problem can be solved in polyno-
mial time as discussed in [14,17,37]. These include groups isomorphic to (Z/�Z)k

where � is a small prime and groups of the form (Z/2Z)k × (Z/qZ)r where q is
a small prime. In general class groups rarely have this structure and for the
parameter sets proposed, we can easily see that these attacks do not apply.

SCALLOP: Scaling the CSI-FiSh 359

Finally, let us discuss the hardness of the Decisional Parallelisation problem.
Clearly, it is not harder than vectorisation, hence the algorithms discussed above
apply. The only known method that may outperform them is an algorithm to
distinguish the action of ideal classes up to squares. More precisely, to each
odd prime divisor m | disc(O) is associated a quadratic character, i.e., a group
homomorphism

χm : Cl(O) −→ {±1},

Given oriented curves (E, ι) and (Ea, ιa), the algorithm of [12] (a generalisation
of [15]) allows one to evaluate χm([a]) in time polynomial in m. In fact, the algo-
rithm requires finding random points in E[m], and solving a discrete logarithm in
a group of order m. Hence the quantum complexity may be as low as polynomial
in log(m) and k if the points of E[m] are defined over Fpk . There may also be two
additional computable characters if disc(O) is even. Clearly, if [a] ∈ Cl(O)2 is a
square, then χm([a]) = 1, so one can prevent this attack by using Cl(O)2 instead
of Cl(O). Another way to prevent this attack is to ensure that all prime factors
of disc(O) are large, and E[m] lives in a large field extension, so no character
can be computed efficiently.

5 SCALLOP: a Secure and Efficient Group Action

We finally propose an efficient instantiation of the effective group action outlined
in Sect. 3. Our main algorithm is given in Sect. 5.2, but we need to motivate our
parameter choices first. This is what we do in Sect. 5.1, where we also explain
all the required precomputations.

5.1 Parameter Choice and Precomputation

The content of this section covers all the choices of parameters and precompu-
tations required to make the SCALLOP group action computation secure and
efficient. All the algorithms described here have to be run only once, at the
moment of generating public parameters. We refer the reader to Sect. 1.2 for
a list of all the requirements of that precomputation to obtain a construction
similar to CSI-FiSh.

Choice of Quadratic Order. Our main motivation is to obtain a quadratic order
O of large discriminant, but with an easy to compute structure of the class
group. In general, this is a very hard problem for classical computers, the best
algorithm being index calculus, with a complexity of Ldisc(O)(1/2). But there
are some special cases where the structure is easily determined, e.g. when

O = Z + fO0, (2)

where O0 is a quadratic maximal order of small discriminant and f is in Z. In
that case, we deduce directly the structure of Cl(O) from that of Cl(O0) and
the factorization of f . In practice, we propose to take O0 of class number one

360 L. D. Feo et al.

(e.g. the Gauss integers) and f a prime number (also for security, as discussed
in Sect. 4).

We give below a formula for the class number of such an order. The group
structure, which turns out to be cyclic when O0 has class number one, is
described in the full version of this paper [24, Appx. A].

Proposition 14. Let f be a prime integer and let O0 be a quadratic order of
class number h0, discriminant d0 and let u0 denote |O×

0 |/2. The class number
of Z + fO0 is equal to

(
f −

(
d0
f

))
h0
u0

.

Note that u0 is one for all orders corresponding to curves with j-invariant dif-
ferent from 0 or 1728. From now on, we write d0 for disc(O0), and we assume
the class number is one. It is not too difficult to generalize the algorithms below
to larger class numbers, as long as d0 is small.

Choice of Conductor. We argued that we need a prime f for security, and to
avoid factoring. Prime numbers also have the advantage of being abundant and
easy to generate. Apart from this, our choice of f will be determined by effi-
ciency constraints. In particular, to use the algorithm outlined in Sect. 3, we
require that there exists a generator α with norm equal to L2

1L2 to obtain effec-
tive O-orientations. Since the manipulation of this effective orientation requires
computing L1- and L2-isogenies, we need L1 and L2 to be smooth. Moreover,
we need L2 to be small for the algorithm SetUpCurve described below.

Finally, there is a third requirement that we will motivate a bit later: that
f − (d0

f) is as smooth as possible. This last constraint impacts the efficiency of
the offline phase of our scheme. As such, it is less important than the smoothness
of L1L2, which impacts the cost of the online phase. This is why our approach
consists in finding a set of candidates for f that closely match the first two
constraints, before sieving through the set to find the best candidate for the
last requirement. In Sect. 6.1, we provide more details on how we select the
parameters and we give some concrete examples of cryptographic size.

For a given O, finding a generator α of smooth norm is quite hard. Indeed,
for a generic O, the size of the α of smallest smooth norm will be very large
compared to f . This is why we choose the conductor f (and thus the order O)
at the same time as the generator α. Our method allows us to find a conductor
f and an α of smooth norm of optimal size (i.e., n(α) ≈ f2). To do that, we first
target a smooth norm L2

1L2, and then we find a suitable conductor f .
Concretely, we fix a collection of principal ideals of small prime norm in O0.

Let us write α0 for a generator of O0 and l1, . . . , lm for the collection of principal
ideals and �1, . . . , �m for the associated split primes. Because the �i are split,
there are two principal ideals of norm �i in O0: li and its conjugate li, which, by
a slight abuse of notation, we write l−1

i . We denote by L the product
∏m

i=1 �i.
For some n1 < n2 ≤ m, we consider the products

∏n1
i=1 l

bi
i

∏n2
i=n1+1 l

ci
i where all

bi ∈ {−2, 2} and ci ∈ {−1, 1}, then we get 2n2 principal ideals of norm L2
1L2 with

L1 =
∏n1

i=1 �i and L2 =
∏n2

i=n1+1 �i. It suffices to obtain one such ideal of the form
〈L2

1L2, α〉 where α = x+fα0 for some prime number f to get that Z+fO0 = Z[α]

SCALLOP: Scaling the CSI-FiSh 361

where α has norm L2
1L2 as we desire. Each product has probability roughly

1/ log(L2
1L2) to satisfy the desired property. This gives a set of size 2m/ log(L)

to sieve through in order to find the best candidate with respect to our third
requirement (we have the estimate m = O(log(L2

1L2)/ log log(L2
1L2)), see for

instance [36, Chapter 22]). Up to exchanging li and l−1
i , we can assume that all

the bi and ci are positive and so we have O0α =
∏n1

i=1 l
2
i

∏n2
i=n1+1 li.

Remark 15. Note that for a fixed O0 of discriminant d0, the choice of class group
determines

(
d0
p

)
to be 1 or −1. This is the only condition imposed on the prime

characteristic p by the choice of class group. Thus, we will be able to choose p
in a way that enables efficient computations after a suitable O has been found.

Computing the Relation Lattice. Knowing the order of Cl(O) is not enough for
our application. Indeed, we want to be able to efficiently evaluate the action of
any ideal class, which, by virtue of Proposition 4, calls for a way to compute
for any class a representative that factors as a short product of ideals of small
norm. For that, we follow the method introduced in [9].

The first step is to choose a set {l1, . . . , lm, . . . , ln} of n = O(log(f)) ideals
of small prime norm,2 and to generate its lattice of relations L, i.e. the lattice
spanned by the vectors (e1, . . . , en) ∈ Z

n such that the ideal
∏n

i=1 l
ei
i is principal

in O. [9] uses an index calculus method, with complexity Lf (1/2), to compute
a basis of L. But another basis is simply given by the relations ah(O) = 1 and
axi = li, where a is any generator of Cl(O) and the xi are the discrete logarithms
to base a. If we force Cl(O) to have smooth order, we can efficiently compute
these discrete logarithms using the Pohlig–Hellman method.

This explains why we search for f such that f − (d0
f) is as smooth as possible

(recall Proposition 14). Unfortunately, we could not find a method to signifi-
cantly bias f − (d0

f) towards being smooth, thus our method still has subex-
ponential complexity: Heuristically, if we sieve through Lf (1/2) candidates we
expect to find one that is Lf (1/2)-smooth, then solving discrete logarithms also
takes Lf (1/2) operations.

Although it looks like we haven’t improved over index calculus, the constant
hidden in (the exponent of) Lf (1/2) is better for our method—which indeed per-
forms much better in practice—and is the only reason we were able to instantiate
parameters twice as large as those of CSI-FiSh (see Sect. 6).

After having computed a basis for L, the second step, which we do identically
to [9], is to apply a lattice reduction algorithm to obtain a shorter basis. Here
we need to strike a balance between the time spent reducing and the quality
of the output: For example, using BKZ with block size in O(

√
n), running in

time Lexp(n)(1/2), we achieve an approximation factor of Lexp(n)(1/2) (see [43,
Theorem 3]). In practice, however, the lattice rank n tends to be relatively small,
letting us compute a nearly optimal basis in negligible time, as already observed
in [9].

2 This set contains the ideals l1, . . . , lm that divide O0α, but can be larger in general.

362 L. D. Feo et al.

Finally, any time we are given an ideal class, say le1, we use Babai’s nearest
plane algorithm [4] to find a vector v close to e = (e, 0, . . . , 0), whence we deduce
a representative le−v1

1

∏n
i=2 l

−vi
i ≡ le1. The cost of evaluating the group action by

this representative, using the algorithms of Sect. 3, will be proportional to the
norm of e − v. Hence the better the basis of L has been reduced, the faster the
evaluation will be.

Choice of Prime Characteristic. When it comes to the choice of p, we want to
find a prime that maximizes the efficiency of evaluating the group action. We
have two requirements: that the effective orientations (E,PE , QE) (see Definition
6) can be manipulated efficiently, and that the isogenies associated to the ideals
li can be evaluated efficiently.

For the first requirement, we will force the points PE and QE representing
the kernel of ωE = ιE(α) to be defined over Fp2 . Recall that PE has order L1L2

and QE has order L1, hence it is sufficient to choose L1L2 | (p2 − 1).
Similarly, for the second requirement, we want each of the E[li] to be defined

over Fp2 in order to apply the most efficient versions of Vélu’s formulas, i.e. we
want n(li) = �i | (p2 − 1). Point in case, �1, . . . , �m must already divide p2 − 1.
Write L = L1L2L3 =

∏n
i=1 �i, then it suffices to select p = cL±1 for some small

cofactor c.
Finally we want that SO0(p) is not empty, implying that p must not split

in O0. For instance, if O0 = Z[i], we need p ≡ 3 (mod 4). In any case, finding
such a prime p can be done after a logarithmic number of tries for a cofactor c.
Alternatively, one might take c = 1 and play with the split prime factors dividing
L1L2L3 until L ± 1 is prime and split in O0.

In fact, we also need p to be large enough to prevent generic attacks (see
Sect. 4). Luckily, with the choices outlined above, we will obtain a prime p that
is a lot larger than the minimal security requirement.

Generation of a Starting Curve. After we have chosen parameters O0, L, α, f, p,
generated and reduced the lattice of relations L, the last step of precomputation
is the generation of a first orientation (E, ιE) in SO(p). After this last part is
done, we will be able to do everything with the group action algorithm. This
algorithm will be described later in full detail as Algorithm 3, but for now,
we focus on the computation of one (E, ιE) with the corresponding embedding
ωE = ιE(α). The goal of this paragraph is to explain how the algorithm SetUp-
Curve works (see Algorithm 1).

First, let us take (E0, ι0) ∈ SO0(p), and O0
∼= End(E0) a maximal order

in Bp,∞. When d0 is small enough, O0 is a special extremal order as defined
in [38]. This means that we can efficiently find elements γ ∈ O0 of norm M
as soon as M > p. For instance, when p ≡ 3 (mod 4), we can do this in the
endomorphism ring of the curve of j-invariant 1728 with the FullRepresentInteger
algorithm from [28, Algorithm 1]. Moreover, we can evaluate any endomorphism
of End(E0) efficiently, because we have the nice representation explicited at the
end of Sect. 2.1. By a result from [44], the orientations in SO(p) are obtained
from the orientations of SO0(p) through f -isogenies, this is what we explain in
Proposition 16.

SCALLOP: Scaling the CSI-FiSh 363

Proposition 16. Let O0 be a quadratic order, and (E0, ι0) ∈ SO0(p), let f be a
prime integer and O = Z+fO0. If ϕ : E0 → E is not one of the 1+(d0

f) isogenies
corresponding to prime ideals above f , then there exists ιE : O ↪→ End(E) and
(E, ιE) ∈ SO(p). Moreover ιE(α) = [ϕ]∗ι0(α) for any α ∈ O.

Now the idea is to compute the kernel of ι0(α) (in fact the kernel of the
two isogenies of degree L in the decomposition of ι0(α)) and push that kernel
through the isogeny ϕ. Let us write this kernel as G. The only problem is that
in our case f is a large prime, ruling out Vélu’s formulas for evaluating ϕ. Since
we know End(E0), our idea is to use the method described in [41, Algorithm 2]
(or [34]) to evaluate isogenies of large prime degree: represent ϕ as an ideal Iϕ

of norm f and compute J ∼ Iϕ where S = n(J), is smooth. Then, evaluate ϕ,
using ψ the isogeny corresponding to J . This is also similar to the key generation
of the SQISign signature protocol [27]. Here, we can even use the alternative key
generation method described in [27, Appendix D] for better efficiency. Indeed,
we can choose almost any isogeny of degree f (by Proposition 16, there are
at most two isogenies of degree f that do not create a O-orientation). Thus, we
need to find an endomorphism of norm fS for some smooth integer S. Of course,
the simplest situation would be to take S = 1, but this is not possible because
f ≈ L1

√
L2 is strictly smaller than p, and we can only find endomorphisms

of norm larger than p in End(E0). Another natural choice would be to take
S dividing L but we need S to be coprime with L1L2 because our goal is to
evaluate the isogeny of degree S on the L1L2-torsion to compute the kernel
representation of ωE . Thus, we can use only the L3-torsion which is not enough
in itself because fL3 < p. We are not going to assume anything specific about the
cofactor c (defined along with the prime p as p = cL ± 1), in particular c might
not be coprime to L so we may not be able to use it in S. However, c quantifies
the size of the additional torsion we need, since we have c

√
L2 ≈ p/(fL3). What

we know for sure is that c is small. Thus, if L2 is small as well, we can select
a small prime �0 coprime with L1L2 and take S = L3�

h
0 for some h such that

�h
0 > p/(fL3). Since h and �0 are small, we can simply brute-force through all

�h
0 -isogenies until one works, i.e., until we obtain an endomorphism of the right

norm and trace after pushing the kernel representation through the considered
isogeny of degree �h

0 .
This yields the SetUpCurve algorithm that we describe below as Algorithm

1. The orientation (E0, ι0) ∈ SO0(p), and an explicit isomorphism ρ0 : O0 ↪→
End(E0) are considered as implicit parameters of this algorithm. The output is
a kernel representation of ιEωE as in Definition 6.

For a kernel representation s and any morphism ψ, we write ψ(s) for the
kernel representation of the group obtained by pushing through ψ the kernel
corresponding to s.

Proposition 17. SetUpCurve is correct and terminates in O(c
√

L2poly(log
(pcL2)) where c is one of (p ± 1)/L.

Proof. To prove correctness, we need to verify that the output sE is an effective
orientation in SO(p). Let us assume that the verification made in the loop passed.

364 L. D. Feo et al.

Algorithm 1. SetUpCurve(p, f)
Input: A prime p of the form p = cL1L2L3 ± 1 and a prime f such that there exists

O0 of discriminant d0 where p is not split and O = Z + fO0 contains an element
of norm L2

1L2.
Output: An effective orientation sE for (E, ιE) ∈ SO(p).
1: Let �0 be the smallest prime coprime with L1L2.
2: Compute s0 the kernel representation of ω0 = ι0(α).
3: Set h such that �h0 > p/(fL3) and compute γ ∈ O0 of norm fL3�

h
0 with Full-

RepresentInteger.
4: Compute the kernel representation s = ρ0(γ)(s0).
5: Use ρ0 to compute the isogeny ψ : E0 → E′ of norm L3 corresponding to the ideal

〈γ, L3〉.
6: Make the list (ϕi : E′ → Ei)1≤i≤m of all isogenies of degree �h0 from E′.
7: for i ∈ [1, m]: do
8: Compute si = ϕi ◦ ψ(s) and verify that it is a kernel representation for an

endomorphism ωi of norm n(α) and that it is not s0.
9: If yes, verify that tr(ωi) is the same as tr(α). If yes, break from the loop.

10: end for
11: Set E = Ei, and sE = si.
12: return Output sE .

We will start by proving correctness under that assumption, then we will justify
why the verification always passes. When the verification passes, it means that
sE is the kernel representation for an endomorphism ωE of the same norm and
trace as α. This implies that Z[ωE] ∼= Z[α] and so by definition we get that sE

is a correct effective orientation.
Now, let us justify that there always is an i that passes the verification. The

element γ ∈ O0 provides us with a principal ideal O0γ, whose corresponding
isogeny ρ0(ϕγ) is an endomorphism of E0. Moreover, we have that (up to com-
posing with some isomorphisms if necessary) ϕγ = ψ′◦ϕ◦ϕf where ϕf : E0 → E
has degree f , ϕ : E → E′ has degree �h

0 and ψ′ : E′ → E0 has degree L3. By
Proposition 16, E is an O-orientable curve unless ϕf corresponds to one of the

1 +
(

d0
f

)
horizontal f -isogenies of domain E0. Let us assume for now that it

is not. By Proposition 16, we know that the endomorphism ωE = ιE(α) can
be obtained by pushing forward ω0 through ϕf . Thus, we need to show that
s = ϕf (s0). By design, the ideal 〈γ, L3〉 corresponds to the isogeny ψ̂′. Thus,
we have that the isogeny ψ computed in Step 5, is the isogeny ψ̂′. Then, if we
take the index i0 such that ϕi0 = ϕ̂, we get that Ei0 is the curve E that we
are looking for. Then, si0 = ϕi0 ◦ ψ ◦ ψ′ ◦ ϕ ◦ φf (s) = ϕf (s) and this proves
the result. To finish the proof of correctness, we simply need to address the case
where ϕf might be one of the bad isogenies. What happens in that case, is that
[ϕf]∗ι0(α) = ι0(α) (so we obtain an embedding that is not primitive, since it
is the corresponding to ι0). Thus, the additional verification that si is not s0
prevents the bad case from happening and so we know that sE is an effective
orientation of SO(p).

SCALLOP: Scaling the CSI-FiSh 365

Regarding complexity, we have �h
0 < �0p/(fL3) and since we have f =

O(L1

√
L2), the loop is repeated at most O(c

√
L2) times. The computations

over the quaternions are in O(poly(log(p)). Then, since we have the explicit
isomorphism ρ0, we can compute ψ and evaluate ρ0(γ) over the L-torsion in
O(poly(log(p)) (remember that the L-torsion is defined over Fp2 and L < p).
Then, the computation of each ϕi is in O(poly(log(pL2c)) and computing si and
checking the trace has O(poly(log(p)) complexity with the CheckTrace algorithm
introduced in [41]. This proves the result. ��

5.2 The Group Action Computation

Now that we have our starting curve E and an effective orientation ωE , it remains
to see how we can compute Ea and the kernel representation of ωEa for any ideal
a. For efficiency reasons, we restrict ourselves to the case where a has a smooth
norm. Also, we target the case where n(a) =

∏n
i=1 �ei

i because this is the one
where we will be able to compute the corresponding isogeny efficiently.

Since we only have the L-torsion available, we can factor a as the product
of e = max1≤i≤n ei ideals whose norm is dividing L and treat each of them
independently.

Thus, our main algorithm is GroupActionSmall (Algorithm 2) that performs
the group action computation for one ideal of degree dividing L. The final algo-
rithm GroupAction (described as Algorithm 3) is simply the consecutive execution
of this sub-algorithm on all factors.

When the ideal has degree dividing L. Let us fix some notation. We write L1 =∏n1
i=1 li, L2 =

∏n2
i=n1+1 li and L3 =

∏n
i=n2+1 li. With these definitions we have

Oα = L2
1L2. Equivalently, this means that we can write ωE as ϕ̂E

L−1
1

◦ϕE
L1L2

. The
kernel of ωE is made of two subgroups that we write 〈PE〉, 〈QE〉 with 〈PE〉 =
ker ϕE

L1L2
and 〈QE〉 = ker ϕE

L−1
1

. Let us take the input ideal a, it can be factored
as a1, a2, a3 where n(ai)|Li. And for i = 1, 2 we also factor ai as bici where bi|Li

and ci|L−1
i and gcd(n(bi), n(ci)) = 1. We write Ki = Li/bi and J1 = L−1

1 /c1.
Given an ideal a whose norm divides L, we use Algorithm 2 (GroupActionSmall)
to compute the action of a on (E, sE).

Figure 2 provides a visualization of the different isogenies involved in Algo-
rithm 2.

Proposition 18. GroupActionSmall is correct and runs in time Õ(B) where B
is the largest factor of L.

Proof. To prove correctness, we need to verify that sEa = (PEa , QEa) represents
the two correct subgroups, that is Ea[L1L2] = 〈PEa〉 and Ea[L−1

1] = 〈QEa〉. By
definition of the effective orientation, we have E[L1L2] = 〈PE〉 and E[L−1

1] =
〈QE〉.

366 L. D. Feo et al.

Algorithm 2. GroupActionSmall((E, ιE), a)
Input: An effective O-orientation sE for (E, ιE) and an ideal a = b1b2c1c2a3 such that

bi|Li and ci|L−1
i for i = 1, 2 and n(a3)|L3.

Output: An effective O-orientation sEa for (Ea, ιEa).
1: Parse sE as E, PE , QE .

2: Compute ϕE
b1b2 from its kernel 〈

[
L1L2

n(b1b2)

]
PE〉

3: Compute P ∗
Eb1b2

= ϕE
b1b2(PE), QEb1b2

= ϕE
b1b2(QE) and ϕE

b1b2(E[n(c2)L3]).

4: Compute ϕ
Eb1b2
K1K2

from its kernel 〈P ∗
Eb1b2

〉.
5: Compute QEL1L2

= ϕ
Eb1b2
K1K2

(QEb1b2
) and ϕ

Eb1b2
K1K2

(Eb1b2 [n(b1b2c2)L3]).

6: Compute ϕE
c1 from its kernel 〈[L1

n(c1)
]QE〉

7: Compute PEc1
= ϕE

c1(PE), Q∗
Ec1

= ϕE
c1(QE) and ϕE

c1(E[n(c2)L3]).

8: Compute ϕ
Ec1
J1

from its kernel 〈Q∗
Ec1

〉
9: Compute PEL1L2

= ϕ
Ec1
J1

(PEc1
) and ϕ

Ec1
J1

(E[n(c1c2)L3]).

10: From the action of ϕ
Eb1b2
K1K2

on Eb1b2 [n(b1b2)], compute ϕ̂
Eb1b2
K1K2

([L1L2
n(b1b2)

]PEL1L2
)

and add it up to P ∗
Eb1b2

to recover PEb1b2
.

11: From the action of ϕ
Ec1
J1

on Ec1 [n(c1)], compute ϕ̂
Ec1
J1

([L1
n(c1)

]QEL1L2
) and add it

up to Q∗
Ec1

to recover QEc1
.

12: From the action of ϕE
b1b2 , ϕ

Eb1b2
K1K2

, ϕE
c1 and ϕ

Ec1
J1

on the respective n(c2)L3-torsion
groups, compute ωEb1b2

(Eb1b2 [n(c2)L3]) and deduce Eb1b2 [c2a3].

13: Compute ϕ
Eb1b2
c1 from its kernel 〈

[
L1

n(c1)

]
QEb1b2

〉
14: Compute PEa1b2

= ϕ
Eb1b2
a1b2

(PEb1b2
) and Ea1b2 [c2a3] = ϕ

Eb1b2
c1 (Eb1b2 [c2a3]).

15: Compute ϕ
Ec1
b1b2

from its kernel 〈
[

L1L2
n(b1b2)

]
PEc1

〉
16: Compute QEa1b2

= ϕ
Ec1
b1b2

(QEc1
).

17: Compute ϕ
Ea1b2
c2a3 = ϕ

Ea1a2
a3 ◦ ϕ

Ea1b2
c2 from its kernel Ea1b2 [c2a3].

18: Compute PEa = ϕ
Ea1b2
c2a3 (PEa1b2

) and QEa = ϕ
Ea1b2
c2a3 (QEa1b2

).
19: Compute the canonical effective orientation sEa for (Ea, ιEa) from Ea, PEa and

QEa (see Remark 7).
20: return sEa .

From the computation of the isogenies ϕE
b1b2

, ϕ
Eb1b2
K1K2

, ϕE
c1 and ϕ

Ec1
J1

in step 2,
4, 6 and 8 respectively, and their evaluation on the respective n(c2a3) torsion
groups in step 3, 5, 7 and 9, we successfully recover the action of

ωEb1b2
= ϕE

b1b2
◦ ϕ̂E

c1 ◦ ϕ̂
Ec1
J1

◦ ϕ
Eb1b2
K1K2

on Eb1b2 [n(c2)L3] in step 12. Since n(c2)L3 is smooth, we efficiently solve some
two-dimensional discrete logarithms in the group Eb1b2 [n(c2)L3] to successfully
recover Eb1b2 [c2a3] in step 12.

Applying Lemma 5 to (E, b1b2,L
−1), we get that 〈QEb1b2

〉 = Eb1b2 [L
−1
1]

in step 3. Meanwhile, in step 3 〈P ∗
Eb1b2

〉 = 〈ϕE
b1b2

(PE)〉 generates the proper
subgroup of Eb1b2 [L1L2] of order L1L2/n(b1b2).

SCALLOP: Scaling the CSI-FiSh 367

Fig. 2. A picture of the isogenies and curves involved in GroupActionSmall.

To recover the remaining part of the group Eb1b2 [L1L2], one applies the
formulas given in Proposition 9: that is, one recovers the part of Eb1b2 [L1L2]
lost when evaluating ϕE

b1b2
on PE by evaluating

ϕE
(L1K1K2)−1 = ϕ̂

Eb1b2
K1K2

◦ ϕ
Ec1
J1

◦ ϕE
c1

on [L1L2
n(b1b2)

]PE . This is done in step 10 where Eb1b2 [L1L2] = 〈PEb1b2
〉.

Reasoning similarly for c1 and L1L2, we get that in step 7, we have the
equality 〈PEc1

〉 = Ec1 [L1L2] and that step 11 successfully recovers QEc1
such

that Ec1 [L
−1
1] = 〈QEc1

〉.
Applying Lemma 5 to (Ec1 , b1b2,L

−1), (Eb1b2 , c1,L1L2) and (Eb1b2 , c1, c2a3)
respectively, we get that

Ea1b2 [L
−1
1] = ϕ

Ec1
b1b2

(
Ec1 [L

−1
1]

)
= ϕ

Ec1
b1b2

(〈QEc1
〉) = 〈QEa1b2

〉

as computed in step 16,

Ea1b2 [L1L2] = ϕ
Eb1b2
c1 (Eb1b2 [L1L2]) = ϕ

Eb1b2
c1 (〈PEb1b2

〉) = 〈PEa1b2
〉

as computed in step 14 and

Ea1b2 [c2a3] = ϕ
Eb1b2
c1 (Eb1b2 [c2a3])

as computed in step 14.
In step 17 and 18, we compute ϕ

Ea1b2
c2a3 and applying Lemma 5 to (Ea1b2 , c2a3,

L−1) and (Ea1b2 , c2a3,L1L2) respectively, we get

Ea[L−1
1] = ϕ

Ea1b2
c2a3 (Ea1b1 [L

−1
1]) = ϕ

Ea1b2
c2a3 (〈Qa1b1〉) = 〈QEa〉

368 L. D. Feo et al.

Algorithm 3. GroupAction((E, ιE), d)
Input: An effective O-orientation sE for (E, ιE) and d = le11 · · · len

n .
Output: An effective O-orientation sEd for (Ed, ιEd)
1: while some ei �= 0 do
2: a = 1
3: for i ∈ {1, · · · , n} do
4: if ei < 0 then
5: a = a ∗ l−1

i , ei = ei + 1
6: else if ei > 0 then
7: a = a ∗ li, ei = ei − 1
8: end if
9: end for

10: sE = GroupActionSmall(sE , a)
11: end while
12: return sE .

and
Ea[L1L2] = ϕ

Ea1b2
c2a3 (Ea1b1 [L1L2]) = ϕ

Ea1b2
c2a3 (〈Pa1b1〉) = 〈PEa〉.

Algorithm 2 mostly consists of scalar multiplications, isogenies and discrete
logarithm computations. The running time of scalar multiplications is polyno-
mial in log(p) and log(L). Since the degrees of the isogenies computed, and the
orders of the groups in which the discrete logarithms are computed divide L,
then these operations can be performed in time Õ(B) where B is the largest
factor of L. Hence the overall complexity of Algorithm 2, ignoring logarithmic
factors, is Õ(B). ��

The Full Algorithm. Now, Algorithm 3 describes the group action evaluation. It
is simply made of consecutive executions of GroupActionSmall preceded with a
little initialization.

6 Concrete Instantiation

In this section, we report on the concrete choices we made to instantiate a
signature scheme analogous to CSI-FiSh on top of our SCALLOP group action.

For the construction of the signature scheme it suffices to replace the CSIDH
group action by the SCALLOP group action. Since this does not provide any
new insights, we refer the reader to [9] for the detailed description of the scheme
instead. The security of the new signature scheme based on the SCALLOP group
action relies on the problems introduced in Sect. 4. For the concrete instantiation
we target two levels of security: matching the security of CSIDH-512 and of
CSIDH-1024. To obtain class groups of the same size, we take prime conductors
of size 256 and 512 bits respectively.

SCALLOP: Scaling the CSI-FiSh 369

6.1 Parameter Selection

As outlined in Sect. 5, we start by choosing the conductor f . To this end, we fix
O0 = Z[i] to be the Gaussian integers. Then, we consider the smallest n1 + n2

split primes �i. As before, let li denote split ideals associated to the primes �i.
We partition the primes into two sets P1 and P2 of respective size n1 and n2

such that L1 =
∏

�i∈P1
�i and L2 =

∏
�i∈P2

�i. For such a fixed partition, we
iterate through choices for bi ∈ {−2, 2} and ci ∈ {−1, 1} to generate candidates
for the orientation α ∈ Z[i] as

∏

�i∈P1

lbi
i

∏

�i∈P2

lci
i .

By construction, each candidate is of smooth norm L2
1L2.

For each candidate, we test whether the coefficient f of the imaginary part
is prime. If this is the case, we try to factor f + 1, if f ≡ 3 (mod 4), or f − 1
otherwise. Factoring is done using the ECM method with early abort in case
a factor larger than a given smoothness bound is found or no further factor is
discovered within a given time frame.

We ran this method and the algorithm SetUpCurve to find a conductor and
a starting oriented curve for parameters with the same security level as CSIDH-
512 and CSIDH-1024 respectively. The result are reported in the full version [24,
Appx. B]. In both cases, the computation ran in minutes on a laptop.

6.2 Performance

Size of Public Keys. Public keys are represented as effective orientations
(E,PE , QE) (see Definition 6), with all constants defined over Fp2 , so they are
approximately six times larger than CSIDH keys. However, using standard com-
pression techniques, we can represent them using only two Fp-elements and two
integers modulo L1L2, which would give keys of approximately 1600 bits for
SCALLOP-512 and 2300 bits for SCALLOP-1024.

Implementation. We implemented our group action in C++, making use of
assembly-language field arithmetic. In our proof-of-concept implementation,
applying the action of one arbitrary class-group element takes about 35 s for
the smaller parameter set and 12.5 min for the larger parameter set on a single
core of an Intel i5-6440HQ processor running at 3.5 GHz. Note that our imple-
mentation is not side-channel resistant.

While the current implementation is not fully optimized, for instance it does
not yet use the

√
élu algorithm [6], we do not expect to gain an order of magnitude

by implementing all the possible optimizations. Thus, even if our implementation
demonstrates feasibility, it seems that the SCALLOP group action is not yet
ready for cryptographic applications.

Our code is available at https://github.com/isogeny-scallop/scallop.

https://github.com/isogeny-scallop/scallop

370 L. D. Feo et al.

7 Security Discussion: Evaluating the Descending Isogeny

We discuss a conceivable strategy to break the hardness assumptions of our pro-
posed group action in the following. Recall that O-Vectorisation is essentially
equivalent to O-EndRing, hence it would be sufficient to devise an algorithm
that computes the endomorphism ring of any O-oriented curve, say (E1, ι1).
Given an O0-oriented curve (E0, ι0) with known endomorphism ring and O0 of
class number one, there exists a unique descending isogeny

ϕ : (E0, ι0) −→ (E1, ι1),

which has degree f . To compute End(E1), one could try the following:

1. Find an algorithm to evaluate ϕ on input points efficiently.
2. Using Step 1, try to convert ϕ into its corresponding left End(E0)-ideal Iϕ.
3. Deduce End(E1) as the right-order of Iϕ.

Note that this problem is related to the SubOrder to Ideal Problem (SOIP)
introduced by Leroux [41]. It is quite obvious that the problem we study here is
harder than the SOIP since the SOIP provides to the attacker several effective
orientations of different quadratic orders (instead of one in our case). We refer
to [41, section 4] for a study of the SOIP. Below, we will try to explain why
applying efficiently the attack outlined above appears complicated.

In particular, the first two steps seem challenging. Since we chose deg(ϕ) = f
to be a large prime, there is no hope to evaluate ϕ, Step 1, using standard
algorithms such as Vélu’s formulas, which have polynomial complexity in deg(ϕ).
However, even if one managed to solve Step 1, it is not clear how to solve Step 2
(which is somewhat equivalent to the SOIP, see [41, Proposition 14]). Known
algorithms to convert an isogeny into an ideal require working within the torsion
subgroup E[deg(ϕ)]. Our parameter choice ensures this torsion to be defined over
an extension field of exponentially large degree.

Despite these obstacles, let us investigate a possible solution to Step 1, which
does not necessarily need to rely on Vélu’s formulas, or knowing ker(ϕ).

Let us introduce a vector notation for arithmetic on the curves. Given a
pair of points B = (P,Q), and a vector of two integers v = (x, y), we write
v ·B = xP + yQ. Fix a positive integer n coprime with p and the norm of a. Let
B0 = (P0, Q0) and B1 = (P1, Q1) be bases of E0[n] and E1[n] respectively. Let
ψ : E0 → E1 be an isogeny. The restriction of ψ on the n-torsion is characterised
by the matrix Mψ ∈ M2×2(Z/nZ) such that for any v ∈ (Z/nZ)2, we have
ψ(v · B0) = (Mψv) · B1. We call Mψ the matrix form of ψ with respect to B0

and B1.
In the following, we show that even for ϕ of large prime degree, it is possible

to learn information about Mϕ, effectively identifying a 1-dimensional subvariety
of M2×2(Z/nZ) containing it. Yet, this is not enough to solve Step 1.

Let en(−,−) denote the Weil pairing on points of order dividing n. The
following lemma fixes the determinant of Mϕ.

SCALLOP: Scaling the CSI-FiSh 371

Lemma 19. If en(P0, Q0) = en(P1, Q1), then det(Mϕ) ≡ deg(ϕ) mod n.

Proof. Write Mϕ =
(

a b
c d

)
. We have

en(P0, Q0)deg(ϕ) = en(ϕ(P0), ϕ(Q0)) = en(aP1 + cQ1, bP1 + dQ1)

= en(P1, Q1)ad−bc = en(P0, Q0)det(Mϕ).

The result follows from the non-degeneracy of the Weil pairing. ��
For random bases B0 and B1, en(P0, Q0) = en(P1, Q1) is unlikely. However,

at the cost of solving one discrete logarithm in a group of order n, this condition
on the bases can be enforced. This can be done in classical exponential time
in the size of the largest prime factor of n, or in quantum polynomial time in
log(n).

Due to ϕ being a descending isogeny, we observe that Mϕ satisfies further
certain linear relations: Writing O0 = Z[ω] and O = Z[fω], we have ι1(fω) =
ϕ ◦ ι0(ω) ◦ ϕ̂, hence

AMϕ = MϕB

where A is the matrix of ι1(fω) (with respect to B1), and B is the matrix of
fι0(ω) (with respect to B0). Note that the matrices A and B can be computed
in quantum polynomial time (or in classical exponential time in the size of the
largest prime factor). This is because the endomorphisms can be evaluated in
polynomial time on the points of the basis, and the matrix coefficients follow
from a discrete logarithm computation as above.

For simplicity, assume that n is prime. Then, M2×2(Z/nZ) is an Fn-vector
space. The space M of solutions M of AMϕ = MϕB has dimension 2. Indeed, if
M is one solution with non-zero determinant, then XM is a solution if and only
if X commutes with A. Note that a solution exists, since Mϕ itself has non-zero
determinant by Lemma 19. The space of matrices that commute with A is the
span of A and the identity matrix I2, which has rank 1 if A is a scalar matrix, and
2 otherwise. Since n is coprime with the norm of a, the endomorphism ι1(fω)
does not act like a scalar on the n-torsion, so A is not a scalar matrix, and the
space of solutions M has dimension 2.

Together with Lemma 19, we have reduced our search space for Mϕ to the
one-dimensional Fn-variety

Mf = {M ∈ M|det(M) = f}.

It is unclear how to reduce this space further, narrowing down Mϕ. One may be
tempted to use pairing equations as in Lemma 19 with the Tate pairing instead
of the Weil pairing. However, the curves having trace ±2p, the Tate pairing is
alternating (see [54, Theorem 3.17]), and thereby provides the same condition
as the Weil pairing. In conclusion, it appears that all the available information
is insufficient to evaluate the descending isogeny ϕ on any input efficiently.

372 L. D. Feo et al.

References

1. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64834-3 14

2. Arpin, S., Chen, M., Lauter, K.E., Scheidler, R., Stange, K.E., Tran, H.T.N.: Ori-
enteering with one endomorphism. arXiv preprint arXiv:2201.11079 (2022)

3. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography, pp. 1–10. ACM (2016)

4. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986)

5. Belding, J.V.: Number theoretic algorithms for elliptic curves. University of Mary-
land, College Park (2008)

6. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. ANTS (2020)

7. Beullens, W., Dobson, S., Katsumata, S., Lai, Y.F., Pintore, F.: Group signatures
and more from isogenies and lattices: Generic, simple, and efficient. In: Dunkel-
man, O., Dziembowski, S. (eds.) Advances in Cryptology – EUROCRYPT 2022.
EUROCRYPT 2022. Lecture Notes in Computer Science, vol. 13276, pp. 95–126.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-3 4

8. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 16

9. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

10. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 17

11. Campos, F., Muth, P.: On actively secure fine-grained access structures from
isogeny assumptions. In: Cheon, J.H., Johansson, T. (eds) Post-Quantum Cryp-
tography. PQCrypto 2022. Lecture Notes in Computer Science, vol. 13512, pp.
375–398. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17234-2 18

12. Castryck, W., Houben, M., Vercauteren, F., Wesolowski, B.: On the decisional
Diffie-Hellman problem for class group actions on oriented elliptic curves. Research
in Number Theory 8 (2022). https://doi.org/10.1007/s40993-022-00399-6

13. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

14. Castryck, W., van der Meeren, N.: Two remarks on the vectorization problem.
Cryptology ePrint Archive (2022)

15. Castryck, W., Sotáková, J., Vercauteren, F.: Breaking the decisional Diffie-Hellman
problem for class group actions using genus theory. In: Micciancio, D., Ristenpart,
T. (eds.) Advances in Cryptology - CRYPTO 2020. Lecture Notes in Computer
Science, vol. 12171, pp. 92–120. Springer (2020). https://doi.org/10.1007/978-3-
030-56880-1 4

https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
http://arxiv.org/abs/2201.11079
https://doi.org/10.1007/978-3-031-07085-3_4
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-031-17234-2_18
https://doi.org/10.1007/s40993-022-00399-6
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-56880-1_4
https://doi.org/10.1007/978-3-030-56880-1_4

SCALLOP: Scaling the CSI-FiSh 373

16. Chávez-Saab, J., Chi-Domı́nguez, J.J., Jaques, S., Rodŕıguez-Henŕıquez, F.: The
SQALE of CSIDH: sublinear Vélu quantum-resistant isogeny action with low expo-
nents. J. Cryptogr. Eng. 12(3), 349–368 (2022)

17. Childs, A.M., van Dam, W.: Quantum algorithms for algebraic problems. Rev.
Mod. Phys. 82(1), 1 (2010)

18. Chung, K.M., Hsieh, Y.C., Huang, M.Y., Huang, Y.H., Lange, T., Yang, B.Y.:
Group signatures and accountable ring signatures from isogeny-based assumptions.
arXiv preprint arXiv:2110.04795 (2021)

19. Colò, L., Kohel, D.: Orienting supersingular isogeny graphs. Number-Theoretic
Methods in Cryptology 2019 (2019)

20. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient com-
pression of SIDH public keys. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 679–706. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56620-7 24

21. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006)

22. Cozzo, D., Smart, N.P.: Sashimi: Cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol. In: Ding, J., Tillich, J.-P. (eds.)
PQCrypto 2020. LNCS, vol. 12100, pp. 169–186. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44223-1 10

23. Dartois, P., De Feo, L.: On the security of OSIDH. In: Hanaoka, G., Shikata, J.,
Watanabe, Y. (eds.) Public-Key Cryptography – PKC 2022. PKC 2022. Lecture
Notes in Computer Science, vol. 13177, pp. 52–81. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-97121-2 3

24. De Feo, L., et al.: SCALLOP: scaling the CSI-FiSh. Cryptology ePrint Archive,
Report 2023/058 (2023). https://eprint.iacr.org/2023/058

25. De Feo, L., et al.: SÉTA: Supersingular encryption from torsion attacks. In: ASI-
ACRYPT (2021)

26. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26

27. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 64–93. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64837-4 3

28. De Feo, L., Leroux, A., Longa, P., Wesolowski, B.: New algorithms for the Deuring
correspondence: towards practical and secure SQISign signatures. Eurocrypt 2023
(2023)

29. De Feo, L., Meyer, M.: Threshold schemes from isogeny assumptions. In: Kiayias,
A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp.
187–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 7

30. Decru, T., Panny, L., Vercauteren, F.: Faster SeaSign signatures through improved
rejection sampling. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol.
11505, pp. 271–285. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25510-7 15

31. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Des. Codes Crypt. 78(2), 425–440 (2016)

32. Eisenträger, K., Hallgren, S., Lauter, K., Morrison, T., Petit, C.: Supersingular
isogeny graphs and endomorphism rings: reductions and solutions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 329–368. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 11

http://arxiv.org/abs/2110.04795
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/978-3-030-97121-2_3
https://doi.org/10.1007/978-3-030-97121-2_3
https://eprint.iacr.org/2023/058
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-25510-7_15
https://doi.org/10.1007/978-3-030-25510-7_15
https://doi.org/10.1007/978-3-319-78372-7_11

374 L. D. Feo et al.

33. Eisenträger, K., Hallgren, S., Leonardi, C., Morrison, T., Park, J.: Computing endo-
morphism rings of supersingular elliptic curves and connections to path-finding in
isogeny graphs. Open Book Series 4(1), 215–232 (2020)

34. Fouotsa, T.B., Kutas, P., Merz, S.P., Ti, Y.B.: On the isogeny problem with torsion
point information. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds) Public-Key
Cryptography – PKC 2022. PKC 2022. Lecture Notes in Computer Science(), vol
13177, pp. 142–161. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
97121-2 6

35. Galbraith, S., Panny, L., Smith, B., Vercauteren, F.: Quantum equivalence of the
DLP and CDHP for group actions. Math. Cryptol. 1(1), 40–44 (2021)

36. Hardy, G.H., Wright, E.M., et al.: An introduction to the theory of numbers.
Oxford University Press (1979)

37. Ivanyos, G.: On solving systems of random linear disequations. arXiv preprint
arXiv:0704.2988 (2007)

38. Kohel, D.R., Lauter, K., Petit, C., Tignol, J.P.: On the quaternion �-isogeny path
problem. LMS J. Comput. Math. 17(A), 418–432 (2014)

39. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

40. Lai, Y.F., Dobson, S.: Collusion resistant revocable ring signatures and group sig-
natures from hard homogeneous spaces. Cryptology ePrint Archive (2021)

41. Leroux, A.: A new isogeny representation and applications to cryptography. In:
Agrawal, S., Lin, D. (eds.) Advances in Cryptology - ASIACRYPT 2022, pp. 3–35.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22966-4 1

42. Leroux, A., Roméas, M.: Updatable encryption from group actions. Cryptology
ePrint Archive (2022)

43. Li, J., Nguyen, P.Q.: A complete analysis of the BKZ lattice reduction algorithm.
Cryptology ePrint Archive, Paper 2020/1237 (2020). https://eprint.iacr.org/2020/
1237

44. Love, J., Boneh, D.: Supersingular curves with small noninteger endomorphisms.
Open Book Ser. 4(1), 7–22 (2020)

45. Montgomery, H., Zhandry, M.: Full quantum equivalence of group action DLog
and CDH, and more. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology -
ASIACRYPT 2022, pp. 3–32. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-22963-3 1

46. Naehrig, M., Renes, J.: Dual isogenies and their application to public-key com-
pression for isogeny-based cryptography. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11922, pp. 243–272. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34621-8 9

47. Onuki, H.: On oriented supersingular elliptic curves. Finite Fields Appl. 69, 101777
(2021)

48. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 16

49. de Quehen, V., et al.: Improved torsion-point attacks on SIDH variants. In: Malkin,
T., Peikert, C. (eds) Advances in Cryptology – CRYPTO 2021. CRYPTO 2021.
Lecture Notes in Computer Science, vol. 12827, pp. 432–470. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-84252-9 15

50. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006)

51. Silverman, J.H.: The arithmetic of elliptic curves, vol. 106 (2009)

https://doi.org/10.1007/978-3-030-97121-2_6
https://doi.org/10.1007/978-3-030-97121-2_6
http://arxiv.org/abs/0704.2988
https://doi.org/10.1007/978-3-031-22966-4_1
https://eprint.iacr.org/2020/1237
https://eprint.iacr.org/2020/1237
https://doi.org/10.1007/978-3-031-22963-3_1
https://doi.org/10.1007/978-3-031-22963-3_1
https://doi.org/10.1007/978-3-030-34621-8_9
https://doi.org/10.1007/978-3-030-34621-8_9
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-84252-9_15

SCALLOP: Scaling the CSI-FiSh 375

52. Stolbunov, A.: Cryptographic schemes based on isogenies (2012)
53. Vélu, J.: Isogénies entre courbes elliptiques. Comptes-Rendus de l’Académie des

Sciences, Série I 273, 238–241 (1971)
54. Washington, L.C.: Elliptic curves: number theory and cryptography. Chapman and

Hall/CRC, second edn. (2008). https://doi.org/10.1201/9781420071474
55. Wesolowski, B.: Orientations and the supersingular endomorphism ring problem.

In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology - EURO-
CRYPT 2022. Lecture Notes in Computer Science, vol. 13277, pp. 345–371.
Springer (2022). https://doi.org/10.1007/978-3-031-07082-2 13

56. Zanon, G.H.M., Simplicio, M.A., Pereira, G.C.C.F., Doliskani, J., Barreto,
P.S.L.M.: Faster isogeny-based compressed key agreement. In: Lange, T., Stein-
wandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 248–268. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-79063-3 12

https://doi.org/10.1201/9781420071474
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/978-3-319-79063-3_12

Round-Optimal Oblivious Transfer
and MPC from Computational CSIDH

Saikrishna Badrinarayanan1, Daniel Masny2, Pratyay Mukherjee3,
Sikhar Patranabis4(B), Srinivasan Raghuraman5, and Pratik Sarkar6

1 LinkedIn, Seattle, USA
2 Meta, Menlo Park, USA
3 Supra, Kolkata, India

4 IBM Research India, Bengaluru, India
sikharpatranabis@gmail.com,sikhar.patranabis@ibm.com

5 VISA Research, Palo Alto, USA
6 Boston University, Boston, USA

Abstract. We present the first round-optimal and plausibly quantum-
safe oblivious transfer (OT) and multi-party computation (MPC) pro-
tocols from the computational CSIDH assumption – the weakest and
most widely studied assumption in the CSIDH family of isogeny-based
assumptions. We obtain the following results:

– The first round-optimal maliciously secure OT and MPC protocols
in the plain model that achieve (black-box) simulation-based security
while relying on the computational CSIDH assumption.

– The first round-optimal maliciously secure OT and MPC protocols
that achieves Universal Composability (UC) security in the presence
of a trusted setup (common reference string plus random oracle)
while relying on the computational CSIDH assumption.

Prior plausibly quantum-safe isogeny-based OT protocols (with/without
setup assumptions) are either not round-optimal, or rely on potentially
stronger assumptions.

We also build a 3-round maliciously-secure OT extension protocol
where each base OT protocol requires only 4 isogeny computations. In
comparison, the most efficient isogeny-based OT extension protocol till
date due to Lai et al. [Eurocrypt 2021] requires 12 isogeny computations
and 4 rounds of communication, while relying on the same assumption
as our construction, namely the reciprocal CSIDH assumption.

1 Introduction

Oblivious transfer (OT) [Rab05,EGL82] is an interactive protocol between
two parties: a sender and a receiver. Informally speaking, an OT protocol

S. Patranabis—Part of the work was done while the author was at VISA Research
USA.
P. Sarkar—Supported by NSF Awards 1931714, 1414119, and the DARPA SIEVE
program.

c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 376–405, 2023.
https://doi.org/10.1007/978-3-031-31368-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_14&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_14

Round-Optimal Oblivious Transfer and MPC from Computational CSIDH 377

involves a sender holding two messages m0 and m1, and a receiver holding
a bit b ∈ {0, 1}. At the end of the protocol, the receiver should only learn
the message mb and nothing about the other message m1−b, while the sender
should learn nothing about the bit b. OT serves as a fundamental building
block in cryptography [Kil88], particularly in secure multi-party computation
(MPC) [Yao86,IKO+11,BL18,GS18]. Round optimal OT protocols imply round-
optimal MPC protocols [BL18,GS18,CCG+20] and hence are always desirable.

Quantum-Safe OT. With steady progress in quantum computing, the study
of post-quantum cryptography has gained significant momentum in recent
years, especially in light of Shor’s algorithm [Sho94], which breaks tradi-
tional cryptographic assumptions such as factoring and discrete-log. OT pro-
tocols are known from various plausibly quantum-safe assumptions such as
lattices [PVW08,BD18,MR19], codes [DvMN08,DNM12,MR19], and isogenies
of elliptic curves [BOB18,Vit18,LGdSG21]. Unfortunately, many isogeny-based
OT constructions [BOB18,dSGOPS20,Vit18] are now (classically) broken in
light of the recent attacks on the Supersingular Isogeny Diffie-Hellman (SIDH)
assumption [CD22,MM22,Rob22]. Hence, the only plausibly quantum-safe
isogeny-based OT constructions are the ones based on the Commutative
SIDH (CSIDH) [CLM+18] family of isogeny-based assumptions, which are not
affected by the recent attacks on SIDH.

The CSIDH Family of Assumptions. The CSIDH family of (plau-
sibly quantum-safe) isogeny-based assumptions includes the computational
CSIDH assumption [CLM+18] (the CSIDH-equivalent of the traditional CDH
assumption), the decisional CSIDH assumption [CSV20,ADMP20,BKW20] (the
CSIDH-equivalent of the traditional DDH assumption), the reciprocal CSIDH
assumption [LGdSG21], and certain variants of these assumptions [AEK+22]. Of
these, the computational CSIDH assumption is the weakest assumption (equiva-
lently, the hardest problem to solve). The decisional CSIDH assumption implies
the computational CSIDH assumption, and has been shown to be broken for cer-
tain families of elliptic curves [CSV20]. Finally, the reciprocal CSIDH assump-
tion is only quantum-equivalent to the computational CSIDH assumption; the
corresponding classical equivalence is not known (see discussion in [LGdSG21]).

OT from CSIDH-Based Assumptions. Many recent works have constructed
OT protocols from the CSIDH family of isogeny-based assumptions. We broadly
categorize these OT constructions as: (i) OT protocols in the plain model, i.e.,
without any (trusted) setup assumptions, or (ii) OT protocols in the setup model,
i.e., assuming the existence of some (trusted) setup and/or random oracles.

In the plain model, there exist round-optimal OT protocols achieving vari-
ous security notions from the decisional CSIDH assumption [ADMP20,KM20]
and the reciprocal CSIDH assumption [BPS22]. We present a summary of these
protocols in Table 1. In the setup model, round-optimal OT protocols are known
from the decisional CSIDH assumption [ADMP20,BKW20,AMPS21]. A recent
work by Lai et al. [LGdSG21] proposed an elegant OT protocol from the recip-
rocal CSIDH assumption; however, their construction is not round-optimal. We
summarize these protocols in Table 2.

378 S. Badrinarayanan et al.

Table 1. Comparison of plausibly quantum-safe maliciously secure OT protocols in
the plain model from the CSIDH family of isogeny-based assumptions

Protocol Computational Assumption Rounds Security Model

[ADMP20]-1 decisional CSIDH 2 semantic

[BPS22]-1 reciprocal CSIDH 3 semantic

[KM20] decisional CSIDH 4 simulation-secure

[BPS22]-2 reciprocal CSIDH 4 simulation-secure

Our Protocol-1 computational CSIDH 4 simulation-secure

Table 2. Comparison of plausibly quantum-safe maliciously secure OT protocols in
the setup model from the CSIDH family of isogeny-based assumptions. The proto-
cols of [ADMP20,AMPS21] are in the CRS model. All other protocols are in the
CRS+random oracle model.

Protocols Computational Assumption Rounds Security Model

[ADMP20]-2 decisional CSIDH 2 UC-secure

[BKW20] decisional CSIDH 2 UC-secure

[AMPS21] decisional CSIDH 2 UC-secure

[LGdSG21]-1 reciprocal CSIDH 3 simulation-secure

[LGdSG21]-2 reciprocal CSIDH 4 UC-secure

Our Protocol-2 computational CSIDH 2 UC-secure

Notably, there exist no (round-optimal) OT protocols in the plain/setup
model from the computational CSIDH assumption, which is the weakest (and
most widely studied) assumption in the CSIDH family of isogeny-based assump-
tions. This motivates us to ask the following question:

Can we design round-optimal OT protocols from computational CSIDH?

1.1 Our Contributions

In this paper, we answer the above question in the affirmative by presenting the
first round-optimal, maliciously secure, and plausibly quantum safe OT protocols
in various settings from the computational CSIDH assumption. In particular,
we propose two new round-optimal maliciously secure OT protocols in the plain
and common reference string1 (CRS) models, while relying on the computational
CSIDH assumption. These also yield the first round-optimal MPC protocols in
the respective settings from the computational CSIDH assumption. Our main
contributions can be summarized as follows.

Round Optimal OT and MPC in the Plain Model. We propose the first
round-optimal (4-round) OT protocol in the plain model while relying on the
computational CSIDH assumption. Our construction satisfies perfect correctness
and simulation-based security against malicious corruption of parties, which is
the strongest notion of OT security that is achievable in the plain model. Our
result is captured by the following (informal) theorem.
1 The setup string is structured and it is sampled from a given distribution.

Round-Optimal Oblivious Transfer and MPC from Computational CSIDH 379

Theorem 1. (Informal) Assuming computational CSIDH, there exists a 4-
round OT protocol in the plain model that achieves perfect correctness and (black-
box) simulation-security against malicious corruption of parties.

In Table 1, we present a comparison of our proposed OT construction with known
constructions of round-optimal OT in the plain model from the CSIDH family
of assumptions. Additionally, by invoking known relationships between round-
optimal OT and MPC in the plain model from [CCG+20], we achieve the fol-
lowing (informal) corollary.

Corollary 1. (Informal) Assuming computational CSIDH, there exists a 4-
round MPC protocol in the plain model with (black-box) simulation-security
against malicious corruption of parties.

This is the first round optimal MPC protocol achieving (black-box) simulation
security in the plain model from the computational CSIDH assumption.

Round-Optimal OT and MPC assuming Trusted Setup. We propose
the first round-optimal (2-round) OT protocol in the CRS plus random oracle
model2 while relying on the computational CSIDH assumption. Our construction
satisfies perfect correctness and universal composability (UC)-security against
malicious corruption of parties, which is the strongest notion of OT security
that is achievable in the trusted setup model. Informally, we prove the following
theorem.

Theorem 2. (Informal) Assuming that the computational CSIDH assumption
holds, there exists a 2-round OT protocol in the CRS plus random oracle model
that is UC-secure against malicious corruption of parties.

In Table 2, we present a comparison of our proposed OT construction with known
constructions of round-optimal OT in the trusted setup model from the CSIDH
family of assumptions. Finally, by invoking known relationships between round-
optimal OT and MPC from [GS18], we achieve the following (informal) corollary.

Corollary 2. (Informal) Assuming that the computational CSIDH assumption
holds, there exists a 2-round MPC protocol in the CRS plus random oracle model
that is UC-secure against malicious corruption of parties.

This yields the first construction of round-optimal MPC in the CRS plus random
oracle model from the computational CSIDH assumption.

Efficient OT Extension. As an additional contribution, we propose the first
UC-secure OT extension protocol that relies on the computational CSIDH
assumption. Concretely, we show that an optimized variant of the recent 4-round
OT protocol due to Lai et al. [LGdSG21] can be plugged into the OT exten-
sion compiler due to Canetti et al. [CSW20a] to build a UC-secure 3-round OT
extension protocol in the random oracle model. This yields the most efficient (to

2 The random oracles in our protocol are local to each session.

380 S. Badrinarayanan et al.

our knowledge) UC-secure OT extension protocol currently known from isogeny-
based assumptions.3

Our construction of OT extension builds upon a maliciously secure base OT
protocol that requires a total of 4 isogeny computations. On the other hand,
the state-of-the-art 4-round maliciously secure protocol of [LGdSG21] incurs 12
isogeny computations, while relying on the same hardness assumption as our
construction (the reciprocal CSIDH assumption).

1.2 Related Work

Lattice-Based OT. To the best of our knowledge, the first lattice-based obliv-
ious transfer protocol was designed by Peikert, Vaikuntanathan and Waters
[PVW08], that relies on LWE [Reg05]. Their OT protocol follows a more generic
framework on dual encryption and achieves round-optimality as well as UC secu-
rity in the CRS model. A recent result of Quach [Qua20] improves the [PVW08]
construction so that the CRS can be reused by multiple OT executions. Another
recent work by Büscher et al. [BDK+20] provided an instantiation of a lattice-
based OT from additive homomorphic encryption. The OT construction of Brak-
erski and Döttling [BD18] provided the first two-round SSP OT (without a CRS).

An alternative to constructing an OT is to construct an oblivious pseu-
dorandom function which implies [JL09] an OT. Albrecht, Davidson, Deo
and Smart [ADDS21] showed how to construct an oblivious pseudorandom
function from ideal lattices using non-interactive zero-knowledge arguments
[CSW22,PS19,CCH+19].

Code-Based OT. There are two OT constructions based on the code-based
assumptions [DvMN08,DNM12]. Both of these constructions use the specific
assumption underlying the McEliece cryptosystems [McE78]. Among these, only
the latter achieves UC security. Recently, Bitansky and Freizeit [BF22] showed
how to realize a statistically sender-private (SSP) OT protocol with semantic
security against a computationally bounded sender and an unbounded receiver
while relying on the learning with parity (LPN) assumption plus Nissan Wigder-
son style derandomization.

Generic OT Constructions. Generic approaches to realize OT [BGJ+18,
MR19,FMV19,DGH+20] rely on public-key encryption schemes with specific
properties. Unfortunately, known public-key encryption schemes from isogeny-
based assumptions (including the CSIDH family of assumptions) do not sat-
isfy any of these properties. For example, to use any isogeny-based PKE in
the framework of [MR19], one inherently needs the ability to hash into a
curve in the family of supersingular elliptic curves, which is not known so
far (see [Pet17,DMPS19,CPV20,BBD+22,MMP22] for more details). For the
constructions of Badrinarayanan et al. [BGJ+18] and Friolo et al. [FMV19] in
3 We note that while prior works on OT from isogenies do not explicitly construct

OT extension protocols, they do yield base OT protocols that can be converted in
a generic manner into full-fledged OT extension protocols.

Round-Optimal Oblivious Transfer and MPC from Computational CSIDH 381

the plain model, one needs a PKE with dense public-key space – this is again
not known to exist from isogeny-based assumptions. Döttling et al. [DGH+20]
provided a generic approach to obtain 2-round UC-secure OT in the CRS model
from protocols satisfying very mild form of security, known as elementary OT
– this gives 2-round OT from LPN [ACPS09]. The work of [AMPS21] also fol-
lows a similar route to build adaptively secure OT from a mild strengthening of
elementary OT.

Prior Isogeny-Based OT. Prior works [BOB18,dSGOPS20,Vit18,BKW20]
have realized isogeny-based OT constructions from the well-known SIDH
assumption and its variants. Unfortunately, these constructions are now (clas-
sically) broken in light of the recent attacks on the SIDH assumption [CD22,
MM22]. The construction of [BKW20] was, in fact, broken in its original form
by an earlier attack proposed in [BKM+21].

Prior works have realized OT protocols in the plain model achieving various
security notions from the decisional CSIDH assumption [ADMP20,KM20] and
the reciprocal CSIDH assumption [BPS22]. The authors of [ADMP20] showed
how to construct a 2-round SSP OT protocol with semantic security against a
computationally bounded sender and an unbounded receiver from the decisional
CSIDH assumption. The authors of [KM20] showed how to construct a 4-round
OT protocol with full-fledged simulation security from any 2-round SSP OT pro-
tocol. The authors of [BPS22] showed how to construct a 3-round statistically
receiver-private (SRP) OT protocol with semantic security against a computa-
tionally bounded receiver and an unbounded sender from the reciprocal CSIDH
assumption. They also showed a construction of 4-round OT protocol with full-
fledged simulation security from any 3-round SRP OT protocol. See Table 1 for
a comparison of our proposed OT protocol in the plain model with these prior
OT protocols.

In the setup model, round-optimal OT protocols are known from the deci-
sional CSIDH assumption [ADMP20,BKW20,AMPS21]. The OT construction
of [BKW20] was not explicitly described, but follows implicitly from the con-
struction of oblivious PRF from decisional CSIDH (plus random oracles) in
the same paper. The work of [AMPS21] presents the first adaptively secure
OT protocol from isogenies. Their protocol is round optimal and relies on deci-
sional CSIDH assumption. The recent work by Lai et al. [LGdSG21] proposed
an elegant OT protocol from the reciprocal CSIDH assumption (plus random
oracles); however, the simulation-secure and UC-secure versions of their con-
struction require 3 rounds and 4 rounds, respectively, and are hence not round-
optimal.

2 Preliminaries

Notation. For a ∈ N such that a ≥ 1, we denote by [a] the set of integers lying
between 1 and a (both inclusive). We use κ to denote the security parameter,
and denote by poly(κ) and negl(κ) any generic (unspecified) polynomial function
and negligible function in κ, respectively. For a finite set S, we use s ←R S to

382 S. Badrinarayanan et al.

sample uniformly from the set S. For a probability distribution D on a finite set
S, we use s ←R D to sample from D. We use the notations

s≈ and
c≈ to denote

statistical and computational indistinguishability of distributions, respectively.

2.1 Basic Cryptographic Primitives

Weak Unpredictable Function (wUF) [ADMP20]. Let K, X, and Y be
sets indexed by κ. A weak unpredictable function (wUF) family is a family of
efficiently computable functions {F (k, ·) : X → Y }k∈K such that for all PPT
adversaries A we have the following:

Pr[AF $
k (1κ, x∗) = F (k, x∗)] ≤ negl(κ),

where k ←R K, x∗ ←R X, and F $
k is a randomized oracle that when queried

samples x ←R X and outputs (x, F (k, x)).

Weak Pseudorandom Function (wPRF). Let K, X, and Y be sets indexed
by κ. A weak pseudorandom function (wPRF) is a family of efficiently com-
putable functions {F (k, ·) : X → Y }k∈K such that for all PPT adversaries A we
have the following:

∣
∣
∣Pr[AF $

k (1κ) = 1] − Pr[Aπ$
(1κ) = 1]

∣
∣
∣ ≤ negl(κ),

where k ←R k, F $
k is a randomized oracle that when queried samples x ←R

X and outputs (x, F (k, x)), and π$ is a randomized oracle that when queried
samples x ←R X and y ←R Y , and outputs (x, y).

2.2 Cryptographic Group Actions

In this section we recall the definitions of cryptographic group actions from
[ADMP20]. We note here that the authors of [ADMP20] use the definitions of
Brassard and Yung [BY91] and Couveignes [Cou06] as starting points to provide
definitions that allow for easy use of isogenies (in particular, isogeny families
such as CSIDH [CLM+18] and CSI-FiSh [BKV19]) in cryptographic protocols.
We begin by recalling the definition of a group action.

Definition 1. (Group Action [BY91,Cou06,ADMP20]). A group G is said to
act on a set X if there is a map � : G × X → X that satisfies:

1. Identity: If e is the identity element of G, then for any x ∈ X, we have
e � x = x.

2. Compatibility: For any g, h ∈ G and any x ∈ X, we have (gh)�x = g �(h�x).

Throughout this paper, we use the abbreviated notation (G,X, �) to denote a
group action.

Round-Optimal Oblivious Transfer and MPC from Computational CSIDH 383

Remark 1. If (G,X, �) is a group action, for any g ∈ G the map πg : x �→ g � x
defines a permutation of X.

Properties of Group Actions. We consider group actions (G,X, �) that sat-
isfy one or more of the following properties:

1. Abelian: The group G is abelian.
2. Transitive: For every x1, x2 ∈ X, there exists a group element g ∈ G such

that x2 = g � x1. For such a transitive group action, the set X is called a
homogeneous space for G.

3. Faithful: For each group element g ∈ G, either g is the identity element or
there exists a set element x ∈ X such that x 	= g � x.

4. Free: For each group element g ∈ G, g is the identity element if and only if
there exists some set element x ∈ X such that x = g � x.

5. Regular: Both free and transitive.

Remark 2. If a group action is regular, then for any x ∈ X, the map fx : g �→ g�x
defines a bijection between G and X; in particular, if G (or X) is finite, then we
must have |G| = |X|.

Effective Group Action (EGA). We now recall the definition of an effec-
tive group action (abbreviated throughout as an EGA) from [ADMP20]. At a
high level, an EGA is an abelian and regular group action with certain special
computational properties that allow it to be useful for cryptographic applica-
tions. Formally, an abelian and regular group action (G,X, �) is effective if the
following properties are satisfied:

1. The group G is finite and there exist efficient (PPT) algorithms for:
(a) Membership testing, i.e., to decide if a given bit string represents a valid

group element in G.
(b) Equality testing, i.e., to decide if two bit strings represent the same group

element in G.
(c) Sampling, i.e., to sample an element g from a distribution G on G. In this

paper, We consider distributions that are statistically close to uniform.
(d) Operation, i.e., to compute gh for any g, h ∈ G.
(e) Inversion, i.e., to compute g−1 for any g ∈ G.

2. The set X is finite and there exist efficient algorithms for:
(a) Membership testing, i.e., to decide if a bit string represents a valid set

element.
(b) Unique representation, i.e., given any arbitrary set element x ∈ X, com-

pute a string x̂ that canonically represents x.
3. There exists a distinguished element x0 ∈ X, called the origin, such that its

bit-string representation is known.
4. There exists an efficient algorithm that given (some bit-string representations

of) any g ∈ G and any x ∈ X, outputs g � x.

384 S. Badrinarayanan et al.

Restricted Effective Group Action (REGA). From the point of view of
cryptographic applications, one can view EGA as an abstraction that captures
the CSI-FiSh [BKV19] family of isogenies, where we can compute the group
action operation � efficiently for any element g in the group G. However, this is
not the case for the CSIDH family of isogenies [CLM+18], where we can only
compute the group action operation � efficiently for “certain” elements in the
group G (more specifically, a generating set of small cardinality). To model such
families of isogenies, the authors of [ADMP20] introduced a weaker or restricted
variant of EGA (abbreviated throughput as REGA). We refer the reader to the
full version [BMM+22] for more details on REGA.

Hardness Assumptions over EGA. The definitions of Effective Group
Action (EGA) and Restricted Effective Group Action (REGA) can be recalled
from [ADMP20]. We now define certain hardness assumptions pertaining to an
EGA following conventions introduced in [ADMP20].

Definition 2. (Weak Unpredictable EGA [ADMP20]). An EGA (G,X, �) is
weakly unpredictable if the family of functions (more specifically, permutations)
{πg : X → X}g∈G is weakly unpredictable, where πg is defined as πg : x �→ g � x.

Definition 3. (Weak Pseudorandom EGA [ADMP20]). An EGA (G,X, �) is
weakly pseudorandom if the family of functions (more specifically, permutations)
{πg : X → X}g∈G is weakly pseudorandom, where πg is defined as πg : x �→ g�x.

Throughout this paper, we will use the abbreviations wU-EGA and wPR-EGA
to refer to a weak unpredictable and weak pseudorandom (abelian and regu-
lar) EGA, respectively. We can similarly define wU-REGA and wPR-REGA,
where in the corresponding definitions, all group elements are sampled from a
distribution that is statistically close to uniform. Finally, we state the following
theorem (imported from [ADMP20]).

Theorem 3. [ADMP20]. Assuming that the computational (resp., decisional)
CSIDH assumption holds, there exists a wU-REGA (resp., wPR-REGA).

All of the protocols proposed in this paper can be instantiated using both EGA
and REGA (and hence from both CSI-FiSh [BKV19] and CSIDH [CLM+18]).
For simplicity of representation, we describe our constructions from an EGA;
the corresponding REGA-based constructions follow analogously.

2.3 Oblivious Transfer (OT)

In this section, we present preliminary background material on oblivious trans-
fer (OT) protocols.

The Ideal Functionality for OT. The ideal functionality FOT for any OT
protocol is described in Fig. 1. We adopt this description essentially verbatim
from prior works [CLOS02,PVW08,DGH+20].

Round-Optimal Oblivious Transfer and MPC from Computational CSIDH 385

Fig. 1. The ideal functionality FOT for Oblivious Transfer

Two-Round Oblivious Transfer in the CRS Model. We first formally
define a two-round oblivious transfer (OT) protocol in the CRS model. A two-
round OT protocol in the CRS model is a tuple of four algorithms of the form
OT = (Setup,OTR,OTS,OTD) described below:

– Setup(1κ): Takes as input the security parameter κ and outputs a CRS string
crs and a trapdoor td.4

– OTR(crs, b ∈ {0, 1}): Takes as input the crs and a bit b ∈ {0, 1}, and outputs
the receiver’s message ot1 and the receiver’s (secret) internal state st.

– OTS(crs, ot1,m0,m1): Takes as input the crs, the receiver’s message ot1, a pair
of input strings (m0,m1), and outputs the sender’s message ot2.

– OTD(crs, st, ot2): Takes as input the crs, the sender’s message ot2, and the
receiver’s internal state st, and outputs a message string m′.

Correctness. A two-round OT protocol in the CRS model is said to be cor-
rect if for any b ∈ {0, 1} and any (m0,m1), letting (crs, td) ←R Setup(1κ) and
(ot1, st) ←R OTR(crs, b), we have OTD(crs, st,OTS(crs, ot1,m0,m1)) = mb.

Four-Round Oblivious Transfer in the Plain Model. We also formally
define a four-round oblivious transfer (OT) protocol in the plain model. A four-
round OT protocol in the plain model is a tuple of five algorithms of the form
OT = (OTR1,OTS1,OTR2,OTS2,OTD) described below:

– OTR1(1κ, b): Given κ and a bit b ∈ {0, 1}, output message ot1 and (secret)
receiver state stR.

– OTS1(1κ, (m0,m1), ot1): Given κ, a pair of strings (m0,m1), and a message
ot1, output message ot2 and (secret) sender state stS.

– OTR2(stR, ot2): Given receiver state stR and a message ot2, output message
ot3 and an updated receiver state stR.

4 For standard two-round OT protocols, the setup algorithm need not output a trap-
door td, but we include it for certain security properties described subsequently.

386 S. Badrinarayanan et al.

– OTS2(stS, ot3): Given sender state stS and message ot3, output message ot4.
– OTD(stR, ot4): Given receiver state stR and message ot4, output string m′.

Correctness. A four-round OT protocol in the plain model is said to be correct
if for any bit b ∈ {0, 1} and any pair of strings m0,m1, letting

(ot1, stR) = OTR1(1κ, b) , (ot2, stS) = OTS1(1κ, (m0,m1), ot1),
(ot3, stR) = OTR2(stR, ot2) , ot4 = OTS2(stS, ot3),

and finally
m′ = OTD(stR, ot4),

we have m′ = mb with overwhelming probability.

Simulation Security in the Plain Model. We say that any 4-round OT pro-
tocol in the plain model is simulation-secure against maliciously corrupt parties
if it implements the FOT functionality in the plain model. For our construction
of 4-round OT protocol in the plain model, we prove security in the standalone
setting.

UC Security and Simulation Security. We refer the reader to the full ver-
sion [BMM+22,CSW20b] for the formal definitions of UC security and simula-
tion security of OT protocols in the aforementioned settings, namely two-round
protocols in the CRS model and four-round protocols in the plain model.

3 Round-Optimal UC-Secure OT from wU-EGA

In this section, we demonstrate how to construct a two-round UC-secure OT
protocol in the CRS model based on any weak unpredictable effective group
action (EGA) (Definition 2). For background material on EGA, see Sect. 2.2.
For simplicity, we begin with a construction of two-round (round optimal) OT
in the CRS model that is UC-secure against a malicious sender but only a semi-
honest receiver. Subsequently, we show how to augment the construction in order
to also achieve UC-security against a malicious receiver.

3.1 Warm-Up: 2-Round UC-OT Against Semi-honest Receiver

We provide a brief overview of our protocol. The initial protocol is described
as follows. The crs consists of two set elements (x0, x1) = (g0 � x, g1 � x). The
receiver has its input choice bit b. It constructs the OT receiver message z by
sampling a random group element r ←R G as follows:

z = r � xb

The sender has input messages (m0,m1) ∈ {0, 1}κ. The sender uses z and the
crs = (x0, x1) to compute the second OT message by sampling random group
elements k0, k1 ←R G as follows:

Round-Optimal Oblivious Transfer and MPC from Computational CSIDH 387

y0 = k0 � x0, γ0 = H(k0 � z) ⊕ m0,

y1 = k1 � x1, γ1 = H(k1 � z) ⊕ m1.

The receiver uses the randomness r to decrypt mb as follows:

mb = γb ⊕ H(r � yb).

Let td denote the trapdoor of the CRS as follows:

crs = (g0 � x, g1 � x), td = g1(g0)−1,

The protocol is secure against a malicious sender since z perfectly hides b. If
b = 0, then the honest receiver constructs z = r � x0. The same z can be opened
to choice bit b = 1 with randomness r′ (by using the trapdoor td) as follows:

z = r � x0 = r · (g1(g0)−1) � x1 = r′ � x1 where r′ = rg1(g0)−1.

Using the above observation, the simulator constructs z = r�x0 and extracts m0

and m1 using randomness r and r′ respectively. Next, we argue security against
a semi-honest receiver. We show that if the receiver computes m1−b by querying
H(k1 � z) to the random oracle then one can build an adversary for breaking
the weak unpredictability property. The details of our reduction can be found
in Sect. 3.1. Our reduction requires the knowledge of the receiver’s randomness
r to plug in the challenge instance of the weak unpredictability game into the
sender’s OT messages. Also, z perfectly hides b and as a result the simulator
cannot extract the corrupt receiver’s choice bit b during simulation. These are
the reasons due to which the current construction only attains malicious security
against a corrupt sender. Our construction and proof sketch follows.

The Construction. Let (G,X, �) be a wU-EGA with x being a publicly avail-
able element in the set X. Also let H : X → {0, 1}� be a hash function (modeled
in the proof as a random oracle). Our construction is a tuple of four PPT algo-
rithms (Setup,OTR,OTS,OTD) as follows:

– Setup(1λ): Sample g0, g1 ←R G and output crs = (x0, x1) where

x0 = g0 � x, x1 = g1 � x.

– OTR(crs, b): Sample uniformly at random r ←R G and compute z = r � xb.
Output the receiver message ot1 = z and the receiver state st = (b, r).

– OTS(crs, (m0,m1), ot1): Parse crs = (x0, x1) and ot1 = z. Sample uniformly
at random k0, k1 ←R G and output the sender message ot2 = (y0, y1, γ0, γ1),
where

y0 = k0 � x0, γ0 = H(k0 � z) ⊕ m0,

y1 = k1 � x1, γ1 = H(k1 � z) ⊕ m1.

388 S. Badrinarayanan et al.

– OTD(st, ot2): Parse st = (b, r) and ot2 = (y0, y1, γ0, γ1), and output the recov-
ered message as

m′ = γb ⊕ H(r � yb).

Correctness. Correctness of the scheme follows by inspection.

Security. We state and prove the following theorem.

Theorem 4. Assuming that (G,X, �) be a wU-EGA and H is a random oracle,
the above construction implements the FOT functionality in the common refer-
ence string + random oracle model against a malicious sender and a semi-honest
receiver.

Security Against Malicious Sender (Informal). Note that the receiver’s
choice bit b is hidden statistically. Also, note that z is in fact an equivocal
commitment to b given the “discrete log” of x1 w.r.t. x0, i.e. the group element
g1(g0)−1. Hence, the simulator can generate a CRS-trapdoor pair (crs, td) as

crs = (g0 � x, g1 � x), td = g1(g0)−1,

and recover both the sender messages m0 and m1.

Security Against Semi-honest Receiver (Informal). We will prove the
following lemma:

Lemma 1. Assuming that (G,X, �) be a wU-EGA and H is a random oracle,
the above construction is UC-secure in the common reference string + random
oracle model against a semi-honest receiver.

Proof. Given an wU-EGA challenge of the form (x, x∗, y = k � x), the goal is to
predict y∗ = k�x∗. Suppose A is an adversary that breaks OT security. We show
that there exists an adversary A′ for wu-EGA given A. The reduction proceeds
as follows (the reduction already knows the corrupt receiver’s choice bit b and
output mb, and simulates hash function H as a random oracle):

– Simulate the CRS as crs = (x0, x1) where :

xb = x∗, x1−b = x.

– On behalf of the receiver, sample r ←R G and compute z = r � xb. Output
the receiver message ot1 = z.

– On behalf of the sender, sample k′ ←R G and output simulated sender OT
message as ot′2 = (y0, y1, γ0, γ1) where

yb = k′ � xb, γb = H(k′ � z) ⊕ mb, y1−b = y, γ1−b ←R {0, 1}�
.

Round-Optimal Oblivious Transfer and MPC from Computational CSIDH 389

Let E be the event that A queries the random oracle with input k � z. Let
us denote the real world (resp. simulated) OT sender message as ot2 (resp. ot′2).
Then, we denote the advantage of a corrupt receiver breaking sender privacy as
follows.

∣
∣ Pr[A(ot2) → 1] − Pr[A(ot′2) → 1]

∣
∣

=
∣
∣(Pr[A(ot2) → 1|E] · Pr[E] + Pr[A(ot2) → 1|E] · Pr[E])

−(Pr[A(ot′2) → 1|E] · Pr[E] − Pr[A(ot′2) → 1|E] · Pr[E])
∣
∣

=
∣
∣(Pr[A(ot2) → 1|E] · Pr[E] − Pr[A(ot′2) → 1|E] · Pr[E])

+(Pr[A(ot2) → 1|E] · Pr[E] − Pr[A(ot′2) → 1|E] · Pr[E])
∣
∣

=
∣
∣ Pr[E] · (Pr[A(ot2) → 1|E] − Pr[A(ot′2) → 1|E])

− Pr[E] · (Pr[A(ot2) → 1|E] − Pr[A(ot′2) → 1|E])
∣
∣

≤ Pr[E] · ∣
∣ Pr[A(ot2) → 1|E] − Pr[A(ot′2) → 1|E]

∣
∣

+ Pr[E] · ∣
∣ Pr[A(ot2) → 1

∣
∣E] − Pr[A(ot′2) → 1|E]

∣
∣

≤ Pr[E] +
∣
∣ Pr[A(ot2) → 1|E] − Pr[A(ot′2) → 1|E]

∣
∣.

where ot2 is computed honestly following the honest sender algorithm and
(m0,m1), and ot′2 is computed as described above. The second last inequal-
ity follows due to triangle inequality. Rearranging the terms yields the following
inequality:

∣
∣ Pr[A(ot2) → 1] − Pr[A(ot′2) → 1]

∣
∣ − ∣

∣ Pr[A(ot2) → 1|E] − Pr[A(ot′2) → 1|E]
∣
∣ ≤ Pr[E]

Note that the simulation is perfect assuming event E does not occur, since
H is a random oracle and since

y1−b = y = k � x = k � x1−b.

In such a case, an honestly computed γ1−b is indistinguishable from a random
γ1−b if the adversary A does not query H on k �z. This follows from the random
oracle assumption. Thus the following occurs with negligible probability:

|Pr[A(ot2) → 1|E] − Pr[A(ot′2) → 1|E]| ≤ neg(κ).

This reduces the above equation to the following:
∣
∣ Pr[A(ot2) → 1] − Pr[A(ot′2) → 1]

∣
∣ − neg(κ) ≤ Pr[E]

Next, we construct our adversary A′ for wU-EGA provided event E occurs, i.e.
A queries H on k � z. The adversary A distinguishes ot2 and ot′2 if it obtains
information about m1−b. Given the simulated ensemble,

(crs, b,mb, ot1 = z, ot′2 = (y0, y1, γ0, γ1)),

390 S. Badrinarayanan et al.

if A manages to recover message m1−b by querying (conditioned on occurrence
of event E) the random oracle on z∗ = k � z, then the following holds true:

z∗ = k � z = k � (r � xb) = r � (k � xb) = r � (k � x∗) = r � y∗.

Hence, the adversary A′ recovers (with non-negligible probability)

y∗ = r−1 � z∗,

thereby violating the weak unpredictability of the EGA. Thus, the advantage of
an adversary A′ in the weak unpredictability game will be as follows:

∣
∣ Pr[A(ot2) → 1] − Pr[A(ot′2) → 1]

∣
∣ ≤ Pr[E] ≤ Pr[A′ wins wU-EGA game]

≤ neg(κ).

This completes the proof of Lemma 1 and, hence, the proof of Theorem 4. ��

3.2 2-Round Maliciously Secure UC-OT

We now show how to augment the construction in order to also achieve UC-
security against a malicious receiver. We add security against a malicious receiver
by forcing the receiver to send a non-interactive witness indistinguishable (NIWI)
proof of knowledge π proving correct construction of its OT message correspond-
ing to the following statement:

∃b ∈ {0, 1}, r ∈ G : z = r � xb

The sender verifies the proof as part of the OT protocol. The proof allows a
simulator to extract the choice bit b and randomness r to complete reduction.
The knowledge of r is required for the security reductions among the hybrids.
The NIWI can be performed by applying Fiat-Shamir Transform on the Sigma
protocols of [DG19].5 We refer to the full version [BMM+22] for the complete
protocol. This yields the first round optimal OT from weak unpredictability
property and it can be instantiated based on computational CSIDH assumption.

Additional Requirement. Let (G,X, �) be a wU-EGA with x being a publicly
available element in the set X. We denote the NIWI proof of knowledge (NIWI-
POK) system as follows:

NIWI = (NIWI.Prove,NIWI.Verify),

that is capable of generating proofs for OR relations of the following form with
respect to a tuple (x0, x1, z) ∈ X × X × X:

∃r ∈ G : (z = r � x0) ∨ (z = r � x1),

where the tuple (x0, x1, z) is the proof statement and the witness is a tuple of
the form (r, b) ∈ G × {0, 1}.
5 The recent work of [BDK+22] constructs a similar NIZK. But it is based on the

decisional CSIDH assumption, and is hence insufficient for our purpose.

Round-Optimal Oblivious Transfer and MPC from Computational CSIDH 391

Our Protocol-1. Let (G,X, �) be a wU-EGA with x being a publicly available
element in the set X. Also let H : X → {0, 1}� be a hash function (modeled
in the proof as a random oracle). Our construction is a collection of four PPT
algorithms (Setup,OTR,OTS,OTD) as follows:

– Setup(1λ): Sample g0, g1 ←R G, and output crs = (x0, x1), where

x0 = g0 � x, x1 = g1 � x.

– OTR(crs, b): Sample uniformly at random r ←R G and compute z = r � xb.
Output the receiver message ot1 = (z,π) and the receiver state st = (b, r),
where

π ←R NIWI.Prove((x0, x1, z), (r, b)).

– OTS(crs, (m0,m1), ot1): Parse ot1 = (z,π) and proceed as follows:
• If NIWI.Verify((x0, x1, z), π) = 0, output ⊥.
• Otherwise, sample uniformly at random k0, k1 ←R G and output the

sender message ot2 = (y0, y1, γ0, γ1), where

y0 = k0 � x0, γ0 = H(k0 � z) ⊕ m0,

y1 = k1 � x1, γ1 = H(k1 � z) ⊕ m1.

– OTD(st, ot2): Parse st = (b, r) and ot2 = (y0, y1, γ0, γ1), and output the recov-
ered message as

m′ = γb ⊕ H(r � yb).

Correctness. Correctness of the scheme follows by inspection.

Security Proof. The security of our protocol is summarized below.

Theorem 5. Assuming that (G,X, �) is a wU-EGA, NIWI is a NIWI proof of
knowledge, and H is a random oracle, then Protocol-1 (i.e. the above construc-
tion) implements the FOT functionality in the common reference string + random
oracle model and it is UC-secure against malicious adversaries.

Proof. At a high level, the proof is very similar to the proof for our semi-
honest construction, with the additional guarantees provided by the (NIWI-
POK) system allowing us to prove security against a malicious receiver. The
detailed proof is deferred to the full version [BMM+22].

Instantiation from wU-REGA. We finally note that our constructions and
proofs work in essentially the same way from a restricted EGA provided that
we can sample group elements from a distribution that is statistically close to
uniform over the group G while retaining the ability to efficiently compute the
action. We note that this is plausibly the case with respect to the instantiation
of restricted EGA from CSIDH and other similar isogeny-based assumptions.
We refer the reader to [DG19,ADMP20] for more details.

Leveraging this observation and Theorem 3 together with Theorem 5, we get
the following corollary.

392 S. Badrinarayanan et al.

Corollary 3. If the computational CSIDH assumption holds and if H is a ran-
dom oracle, there exists a 2-round OT protocol that implements the FOT func-
tionality in the common reference string + random oracle model and achieves
UC-security against malicious adversaries.

4 Round-Optimal OT in Plain Model from wU-EGA

In this section we construct our round optimal OT with simulation-based security
in the plain model from wU-EGA assumption.

4.1 Overview

We build upon the two round semi-honest OT protocol from Sec. 3.1. It can
be observed that the receiver’s choice bit b is perfectly hidden in the receiver
OT message ot1 = z (computed using randomness g ∈ G), even if the OT
parameters (x0, x1) are generated by a malicious sender. We need to extract
the receiver’s choice bit and randomness to enable simulation security against
a corrupt receiver. We rely on a three round WI proof of knowledge (denoted
as WI) for this purpose, where the receiver proves that for statement (x0, x1, z)
and witness (g, b) the following holds true:

C1((x0, x1, z), (g, b)) = 1, iff z = g � xb.

We require the WI proof system to be input-delayed where only the last mes-
sage of the WI proof system depends on the statement being proven. We refer
to [BPS22,BMM+22] for formal definitions. In our protocol the receiver sends
the first message πWI

1 of the proof in the first round, the sender sends the OT
parameters (x0, x1) and the second round message πWI

2 of the proof in the second
round, the receiver computes z and the final round message πWI

3 of the proof as
the third OT message and the sender verifies the proof and sends (y0, y1, γ0, γ1)
as the final OT message. The receiver uses (g, b) to decrypt mb. The simulator
against a corrupt receiver invokes the witness extractor of WI to extract (g, b).
The knowledge of g also allows us to break wU-EGA assumption when a mali-
cious receiver computes both (m0,m1). Meanwhile, receiver privacy follows the
witness indistinguishability of the proof system. For every z, there always exists
g0 and g1 such that z = g0 � x0 = g1 � x1.

Next, we need to extract a corrupt sender’s input messages (m0,m1) from
(y0, y1, γ0, γ1) to enable simulation security against a corrupt sender. We rely
on a four round ZK proof of knowledge (denoted as ZK) for this purpose, where
the sender proves that for statement (x, x0, x1) and witness (g0, g1) the following
holds true:

C2((x0, x1), (g0, g1)) = 1, iff x0 = g0 � x, x1 = g1 � x.

We require the ZK proof system to be input-delayed where only the last message
of the WI proof system depends on the statement being proven. We refer to

Round-Optimal Oblivious Transfer and MPC from Computational CSIDH 393

[BPS22,BMM+22] for formal definitions. In our protocol the receiver sends the
first message πZK

1 of the proof along with πWI
1 in the first round, the sender

sends the OT parameters (x0, x1), the second round message πZK
2 of the proof

and π2WI in the second round, the receiver computes z and πWI
3 and the third

round message πZK
3 of the proof as the third OT message and the sender verifies

the WI proof, computes the final round message of ZK proof as πZK
4 and sends

(y0, y1, γ0, γ1, πZK
4) as the final OT message. The receiver verifies the ZK proof

and then computes the output. The simulator against a corrupt sender invokes
the witness extractor of ZK to extract (g0, g1) and compute (m0,m1). Meanwhile,
the simulator against a corrupt receiver uses the ZK simulator to simulate the
ZK proof.

The three round input-delayed WI proof system can be obtained [PRS02,
KM20,BPS22] from non-interactive commitment schemes using the protocol of
[FLS99]. The commitment scheme can be obtained from wU-EGA assumption
via injective trapdoor one way function. The four round input-delayed ZK proof
system can be constructed [PRS02,KM20,BPS22] from two-round statistically
hiding commitment scheme which in turn can be constructed6 from wU-EGA.
As a result, we obtain the first round-optimal OT in plain model from wU-EGA
which satisfies simulation security. Formal details of the protocol follows. We
denote our plain model OT protocol as Protocol-2.

4.2 Our Protocol-2

Let WI = (WI1,WI2,WI3,WI4) be a three round delayed input WI proof of
knowledge for the following language L1 consisting of statement (x0, x1, z), wit-
ness (g, b) and NP verification circuit C1 described as follows, where x0, x1, z ∈
X, g ∈ G, b ∈ {0, 1}.

C1((x0, x1, z), (g, b)) = 1, if z = g � xb

= 0, otherwise

Let ZK = (ZK1,ZK2,ZK3,ZK4,ZK5) be a four round delayed input ZK proof
of knowledge for the following language L2 consisting of statement (x, x0, x1),
witness (g0, g1) and NP verification circuit C2 described as follows, where
x, x0, x1 ∈ X, g0, g1 ∈ G.

C2((x, x0, x1), (g0, g1)) = 1, if x0 = g0 � x, x1 = g1 � x

= 0, otherwise

Receiver has choice bit b ∈ {0, 1}. Sender has input bit-messages (m0,m1) ∈
{0, 1}. x is a public set element. H : X → {0, 1} is the Goldreich-Levin hash
function. We describe our OT protocol as follows:
6 The verifier sends (x0, x1) as the first round message by sampling g0, g1 ←R G and

computing x0 = g0 � x, x1 = g1 � x. The committer commits to bit b by sampling
g and computing the commitment as z = g � xb. The decommitment is (g, b). Bit b
remains perfectly hidden. Binding follows from wU-EGA assumption since openings
(s0, 0) and (s1, 1) for bits 0 and 1 help to find r = s0 · s−1

1 such that x1 = r � x0.

394 S. Badrinarayanan et al.

– OTR1(1κ, b): The receiver performs the following:
• Runs the first round of WI on the security parameter to obtain

(πWI
1 , stWI

R) ← WI1(1κ, C1) for L1 with NP-verification circuit C1.
• Runs the first round of ZK on the security parameter to obtain

(πZK
1 , stZKR) ← ZK1(1κ, C2) for L2 with NP-verification circuit C2.

• Sends ot1 = (πWI
1 , πZK

1) as the first OT message and saves stR =
(b, stWI

R , stZKR) as the internal receiver state.

– OTS1(1κ, (m0,m1), ot1): The sender computes the following:
• Samples g0, g1 ←R G and computes the OT parameters as x0 = g0 � x

and x1 = g1 � x.
• Computes second message of WI as (πWI

2 , stWI
S) ← WI2(1κ, C1, π

WI
1).

• Computes second message of ZK as (πZK
2 , stZKS) ← ZK2(1κ, C2, π

ZK
1).

• Sends ot2 =
(

x0, x1, π
WI
2 , πZK

2

)

as the second OT message and it stores
stS = (m0,m1, x0, x1, ot1, st

WI
S , stZKS) as the internal sender state.

– OTR2(stR, ot2): The receiver does the following:
• Samples g ←R G and computes z = g � xb.
• Compute third message of WI as πWI

3 ← WI3((x0, x1, z), (g, b), stWI
R , πWI

2)
corresponding to statement (x0, x1, z) and witness (g, b).

• Compute third message of ZK as (πZK
3 , stZKR) ← ZK3(stZKR , πZK

2).
• Sends the third OT message ot3 = (z, πWI

3 , πZK
3) and updates its internal

state as stR = (b, g, stZKR).

– OTS2(stS, ot3): The sender computes the following:
• The sender aborts if the WI proof fails to verify on statement (x0, x1, z),

i.e. WI4((x0, x1, z), stWI
S , πWI

3) = 0.
• The sender computes the fourth message of ZK as πZK

4 ← ZK3((x, x0, x1),
(g0, g1), stZKS , πZK

3) corresponding to statement (x, x0, x1) and witness
(g0, g1).

• Sample uniformly at random k0, k1 ←R G and compute (y0, y1, γ0, γ1),
where

y0 = k0 � x0, γ0 = H(k0 � z) ⊕ m0,

y1 = k1 � x1, γ1 = H(k1 � z) ⊕ m1.

• The sender sends fourth OT message ot4 = (y0, y1, γ0, γ1, πZK
4) to the

receiver.

– OTD(stR, ot2): The receiver computes the following:
• The receiver aborts if the ZK proof fails to verify on statement (x, x0, x1),

i.e. ZK5((x, x0, x1), stZKR , πZK
4) = 0.

• The receiver parses stR = (b, g) and ot4 = (y0, y1, γ0, γ1, πZK
4), and outputs

the recovered message as m′ where

m′ = γb ⊕ H(r � yb).

Round-Optimal Oblivious Transfer and MPC from Computational CSIDH 395

We show that the above protocol provides indistinguishability based secu-
rity against a malicious sender and simulation based security against a corrupt
receiver by proving the following theorem.

Theorem 6. Let WI = (WI1,WI2,WI3,WI4) be a three round delayed input WI
proof of knowledge for the following language L1, ZK = (ZK1,ZK2,ZK3,ZK4,
ZK5) be a four round delayed input ZK proof of knowledge for the following
language L2, and (G,X, �) be a wU-EGA, then Protocol-2 (i.e. the above con-
struction) provides receiver privacy against a malicious sender and provides
simulation-based security against a malicious receiver.

Proof. We first argue that our protocol satisfies simulation-based security against
a corrupt sender and then we argue the same against a corrupt receiver. The
formal proof details can be found in the full version [BMM+22].

Simulation Against Corrupt Sender. Assume x1 = r�x0. It can be observed
that z perfectly hides b since for every g0 ∈ G there exists g1 = g0 · r−1 such
that z = g0 � x0 = g1 � x1. When b == 0, the WI proof is constructed with the
group element g0 such that z = g0 �x0. Meanwhile, when b == 1 the WI proof is
constructed using g1 as z = g1�x1 where g0 and g1 satisfies the above relation. A
malicious sender distinguishing between a run of the OT protocol with receiver
input choice bit b = 0 from a run of the OT protocol with receiver input choice
bit b = 1 breaks the WI property of the proof system. Moreover, the simulator
can extract both m0 and m1 given the trapdoors g0 and g1. The simulator obtains
these trapdoors by invoking the ZK witness extractor algorithm ExtZK on πZK.

Simulation Against Corrupt Receiver. The simulator invokes the WI wit-
ness extractor algorithm, denoted as ExtWI, to extract the witness (g, b) from the
proof. The simulator invokes the FOT functionality with the extracted choice
bit b to obtain mb. The simulator constructs ot4 with inputs (m0,m1), where
m1−b = 0. The ZK proof is constructed by invoking the ZK simulator, denoted as
SZK. An adversary breaks the security of the protocol if the WI proof is accept-
ing and yet the witness extractor failed to extract a witness, or the corrupt
receiver distinguishes the simulated ZK proof from a real one. In the later case,
it breaks ZK property. In the former case, the corrupt receiver breaks the proof
of knowledge property of the WI protocol. The other case, where the extractor
extracts multiple valid witnesses also leads to an abort by the simulator. That
event occurs when the receiver breaks the wU-EGA property. ��

The three round input-delayed WI proof system can be obtained [PRS02,
KM20,BPS22] from non-interactive commitment schemes using the protocol of
[FLS99]. The commitment scheme can be obtained from wU-EGA assumption
via injective trapdoor one way function. The four round input-delayed ZK proof
system can be constructed [PRS02,KM20,BPS22] from two-round statistically
hiding commitment scheme which in turn can be constructed from wU-EGA. As
a result, we obtain the first round-optimal OT in plain model from wU-EGA
which satisfies simulation security. Our result is summarized in Thm. 7.

396 S. Badrinarayanan et al.

Theorem 7. Assuming (G,X, �) is a wU-EGA, there exists a four-round obliv-
ious transfer protocol in the plain model that provides simulation based security
against malicious corruptions of the parties.

5 OT Extension from Reciprocal EGA

In this section, we discuss our three round OT extension protocol following a
roadmap of observations. The maliciously secure OT protocol in [LGdSG21] fails
to achieve UC security in three rounds, and would require four rounds.7 However,
their construction relies on an efficient two round semi-honest OT protocol. We
observe that this semi-honest protocol can be used to implement a batch of
� = O(κ) OTs, satisfying malicious security notions which are weaker than UC-
security. This semi-honest to malicious security transformation requires a few
additional checks, incurring O(1) cheap symmetric operations per OT. Finally,
we show that this weaker notion of malicious security suffices for [KOS15] OT
extension by applying the result of [CSW20a]. We begin by introducing some
additional definitions and notations surrounding EGA and REGA.

5.1 Reciprocal EGA and Reciprocal CSIDH

The OT protocol of Lai et al. [LGdSG21] is based on the reciprocal CSIDH
assumption, and relies on crucially on the quadratic twist of an elliptic curve,
which can be computed efficiently in the CSIDH setting (see [LGdSG21] for
details). In this section, we adopt an abstraction of the quadratic twist and the
reciprocal CSIDH assumption in the framework of (R)EGA from [BPS22].

The Twist Map. Let (G,X, �) be an EGA (equivalently an REGA) as
described above. We define a “twist” as a map T : X → X that satisfies the
following properties:

– For any g ∈ G and any x ∈ X we have T (g � x) = g−1 � T (x).
– For any x ∈ X and any uniform g ←R G, we have: g � x ≈s T (g � x).
– There exists a “twist-invariant” element x0 ∈ X such that T (x0) = x0.

The Reciprocal EGA Assumption. Given an EGA (G,X, �), we say that
the reciprocal assumption holds if for any security parameter κ ∈ N and for any
PPT adversary A, the following holds with overwhelmingly large probability:

Pr[ExptrecEGA(κ,A) = 1] < negl(κ),

where the experiment ExptrecEGA(κ,A) is as defined in Fig. 2.

Remark 3. We can similarly define a reciprocal REGA assumption where, in
the corresponding experiment, all group elements (more concretely, the group
elements g and s) are sampled from a distribution that is statistically close to
uniform over the group G.
7 This was pointed out by the authors of [LGdSG21] in their Eurocrypt 2021 presen-

tation.

Round-Optimal Oblivious Transfer and MPC from Computational CSIDH 397

Fig. 2. The Reciprocal EGA Experiment

Finally, we import the following theorem from [LGdSG21].

Theorem 8. [LGdSG21]. Assuming that the reciprocal CSIDH assumption
holds, there exists an REGA satisfying the reciprocal REGA assumption.

5.2 OT Construction of [LGdSG21]

We briefly recall the semi-honest OT construction of [LGdSG21]. Let (G,X, �) be
an EGA with x0 being a publicly available element in the set X where reciprocal
EGA assumption holds. Let H : X → {0, 1}κ be a hash function (modeled in the
proof as a random oracle). Let T : X → X denote the twist operation. Receiver
R has input choice bit b ∈ {0, 1} and sender has inputs messages (m0,m1) ∈
{0, 1}κ. It is a tuple of five PPT algorithms (Setup,OTR,OTS1,OTD) as follows:

– Setup(1λ): Sample a trusted set element x0 such that T (x0) = x0. Sample
g ←R G and output crs = x = g � x0.

– OTR(crs,b): Sample r ←R G and compute z ∈ X as follows:

z = r � x if b = 0, z = T (r � x) if b = 1,

Output the receiver message ot1 = z and the receiver state st = (b, r).
– OTS(crs, ot1): Sample uniformly at random s ←R G and compute sender’s

OT message y ∈ X and sender’s random pads - (a0, a1) ∈ {0, 1}κ as follows:

y = s � x, c0 = H(s � z) ⊕ m0 c1 = H(s � T (z)) ⊕ m1.

Send the sender OT message as ot2 = (y, c0, c1).
– OTD(st, ot2): Parse st = (b, r) and ot2 = (y, c0, c1), and recover the output

message mb = cb ⊕ H(r � y).

398 S. Badrinarayanan et al.

Security Against Malicious Sender. At a high level, z perfectly hides the
choice bit b as (r � x) and T (r � x) are statistically indistinguishable. A corrupt
sender’s inputs can even be extracted by a simulator (see [LGdSG21] for details).

Security Against Malicious Receiver. A corrupt receiver cannot compute
both m0 and m1 since it requires to query H on (q0, q1) = (s�z, s�T (z)). Given
q1, one can compute s−1 �z = T (z). This breaks the reciprocal EGA assumption
since the adversary computes (s � z, s−1 � z) where y = s � x is generated by the
challenger after it receives adversarially generated set element z ∈ X. However,
the simulator is unable to extract a corrupt receiver’s input choice bit since it is
statistically hidden.

To achieve security against a malicious receiver, the work of [LGdSG21] adds
an interactive challenge-proof-verify mechanism. The sender computes a chal-
lenge that challenges the receiver to prove that it knows randomness r such that
z = r �x or z = T (r �x). Upon receiving the challenge, the receiver decrypts mb

and computes the proof using randomness r. It sends the proof to the sender,
who verifies it and completes the protocol. The proof is sent in the third round
of the protocol, thus blowing up the round complexity to three rounds. This
approach successfully extracts a corrupt receiver’s input if it computes a correct
proof to the sender’s challenger. However, their challenge-proof-verify mecha-
nism incurs an additional overhead of 7 isogeny computation. We note that this
3 round maliciously secure OT construction suffices for simulation-based secu-
rity but they would need an additional round for UC security. We refer to their
Eurocrypt presentation for details.

5.3 Constructing OT Extension Protocols from Reciprocal (R)EGA

We build an inexpensive challenge-proof-verify mechanism on top of the above
semi-honest by relying only on symmetric key operations to obtain custom OT
protocols. These custom OT protocols are used to instantiate the maliciously
secure base OT protocols in the [KOS15] (KOS) OT extension paradigm using
ideas from [CSW20a].

Observations from [CSW20a]. The work of [CSW20a] (abbreviated henceforth
as CSW) made crucial observations that suffices for the base-OT protocols in
KOS: 1) The base OT protocols are run in a batch of � = O(κ) > 3μ OTs
together, where μ is the statistical security parameter. Simulation based secu-
rity should hold for non-aborting parties for the batch together. 2) A corrupt
sender is allowed to launch selective failure attack on the base-OTs since the
receiver possesses random choice bits. 3) The base-OT protocols needs to sat-
isfy simulation-based security only for non-aborting parties, in case of an abort
semantic security suffices. The OT functionality FSF-ROT with selective failure
attack, which is weaker than UC-OT functionality, suffices for the base OT in
KOS. We show a technique that builds upon the semi-honest OT protocol of
[LGdSG21] to implement FSF-ROT against malicious adversaries. Our transfor-
mation only relies on cheap symmetric key operations. This reduces our isogeny

Round-Optimal Oblivious Transfer and MPC from Computational CSIDH 399

computations for each base OT to 5 and it also yields the first OT extension
protocol based on isogenies.

Overview. We build upon the semi-honest protocol of [LGdSG21]. Recall that
their two round protocol (described in Sect. 5.2) is secure against a malicious
sender and a semi-honest receiver since the simulator fails to extract the cor-
rupt receiver’s input. They add a challenge-proof-verify mechanism to tackle a
malicious receiver but that doubles their isogeny computations. Instead, we take
a different route and construct the same challenge-proof-verify mechanism by
solely relying on symmetric key operations. Our mechanism is inspired from the
work of CSW and we describe it as follows.

Let us denote the two messages of the OT sender for the ith OT as p0,i and
p1,i respectively. Let H1 : X → {0, 1}κ

,H2 : {0, 1}κ → {0, 1}κ
,H3 : {0, 1}�κ →

{0, 1}κ
,H4 : {0, 1}2κ → {0, 1}κ be different hash functions (modeled in the proof

as a random oracle). Let us denote the choice bit of the receiver for the ith OT
as bi. The sender constructs a challenge challi using the two messages as follows:

challi = u0,i ⊕ u1,i, where u0,i = H2(i, p0,i), u1,i = H2(i, p1,i).

The receiver is required to compute the response as u0,i and send it back to the
sender as the proof. The receiver decrypts pbi,i and computes u0,i as follows:

u0,i = challi · bi ⊕ H2(pbi,i).

Note that the receiver needs to query the random oracle H2 in order to compute
u0,i correctly and hence the simulator successfully extracts bi if the receiver
computes the correct response u0,i. However, a corrupt sender can extract bi by
constructing challi maliciously. It samples a random chall′i and sends it to the
receiver. If the receiver responds with the correct u0,i then the sender sets bi = 0
else it sets bi = 1.

We tackle this problem by relying on the observation that the OT protocol
can allow selective failure attack and it can allow the sender to guess O(κ)
choice bits of the receiver. This suffices for the KOS base OT protocols. Using
this observation we make the sender prove that the batch of � challenges were
correctly computed. The sender computes the response ans of receiver proof
using a random oracle H3 as follows:

ans = H3(u0,1, u0,2, . . . u0,�).

The sender sends proof of correct computation by sending the proof pf = H2(ans)
to the receiver along with the challenger. The sender sets the output of � random
OTs as (a0,a1) where a0 = {a0,i}i∈[�] and a1 = {a1,i}i∈[�] is defined as follows
for i ∈ [�]:

a0,i = H4(ans, p0,i), a1,i = H4(ans, p1,i).

Upon receiving the sender’s OT message, the receiver computes pbi,i correspond-
ing to its choice bit bi. It computes {u0,i}i∈[�] and recomputes ans to verify pf. If
the verification succeeds then the receiver sends ans to the sender as the response

400 S. Badrinarayanan et al.

and computes the OT output as abi,i = H4(ans, pbi,i). If a corrupt receiver com-
putes the correct ans then a simulator extracts every {bi}i∈[�] by observing the
queries made to H2 and H3. Without computing the correct ans the corrupt
receiver cannot compute the OT output abi,i. Hence, the simulator successfully
extracts all the choice bits of the receiver if the receiver needs to compute the
output of any single OT. Meanwhile, a corrupt sender can launch a selective fail-
ure attack only if it correctly guesses the value of receiver computed ans to verify
pf. This is performed by guessing the u0,i values computed by the receiver and for
that the sender needs to guess the receiver’s choice bit in the OT protocols. The
base OT protocols in KOS are random OTs. The sender guesses κ choice bits of
the receiver with only 2−κ probability. Thus, our OT protocol allows selective
failure attack and it implements the FSF-ROT functionality. Formal details of our
protocol follows and the security proof is deferred to the full version [BMM+22].

Our Protocol-3. Let (G,X, �) be an EGA with x0 being a publicly available
element in the set X where reciprocal EGA assumption holds. Also let H1 : X →
{0, 1}κ

,H2 : {0, 1}κ → {0, 1}κ
,H3 : {0, 1}�κ → {0, 1}κ

,H4 : {0, 1}2κ → {0, 1}κ

be different hash functions (modeled in the proof as a random oracle). Our
construction is a tuple of five PPT algorithms (Setup,OTR1,OTS1,OTR2,OTS2):

– Setup(1λ): Sample a trusted set element x0 such that T (x0) = x0. Sample
g ←R G and output crs = x = g � x0.

– OTR1(crs,b): Sample r ←R G� and compute z ∈ X� as follows for i ∈ [�]:

zi = ri � x if bi = 0, zi = T (ri � x) if bi = 1,

Output the receiver message ot1 = z and the receiver state st = (b, r).
– OTS1(crs, ot1): Sample uniformly at random s ←R G� and compute sender’s

OT message y ∈ X� and sender’s random inputs messages as (p0,p1) ∈
{0, 1}κ×� as follows for i ∈ [�]:

yi = si � x, p0,i = H1(i, si � zi) p1,i = H1(i, si � T (zi)).

Compute the challenge chall for receiver proof as follows for i ∈ [�]:

challi = u0,i ⊕ u1,i, where u0,i = H2(i, p0,i), u1,i = H2(i, p1,i).

Compute the response ans = H3(u0,1, u0,2, . . . u0,�) of receiver proof. Com-
pute the sender’s proof pf = H2(ans). Send the sender OT message as
ot2 = (y, chall, pf). Store (ans,p0,p1) as the internal state.

– OTR2(st, ot2): Parse st = (b, r) and ot2 = (y, chall, pf), and recover the
output pads p = {pi}i∈[�] as follows for i ∈ [�] as pi = H1(ri � yi). Compute
the intermediate proof response as follows for i ∈ [�]: u′

i = challi ·bi⊕H2(i, pi),
and compute the receiver’s proof response ans′ as ans′ = H3(u′

1, u
′
2, . . . u

′
�).

The receiver aborts if H2(ans′) 	= pf. Else, the receiver responds to the sender’s
challenge by sending ot3 = ans′ to the sender. The receiver computes the OT
output as m = {mi}i∈[�] = {H4(ans′, pi)}i∈[�] for i ∈ [�]. Output (b,m) as
the random OT receiver output.

Round-Optimal Oblivious Transfer and MPC from Computational CSIDH 401

– OTS2(ans, ot3): Parse ot3 = ans′. The sender aborts if ans′ 	= ans. Else, the
sender sets the output as (a0,a1) where a0 = {a0,i}i∈[�] and a1 = {a1,i}i∈[�]

is defined as follows for i ∈ [�]:

a0,i = H4(ans, p0,i), a1,i = H4(ans, p1,i).

Further Optimizations. It can be observed that the sender can reuse the
randomness s for multiple OT protocols by using reusing the same y for all the
OT protocols. This translates into a poly(κ) loss in the security parameter since
the reduction to reciprocal EGA assumption needs to guess the session where a
corrupt receiver breaks the assumption. The security loss can be compensated
by increasing the security parameter accordingly. This optimization reduces the
number of isogeny computations to 4 for each OT. Meanwhile, the semi-honest
OT protocol of [LGdSG21] requires 5 isogeny computations.

Acknowledgments. We thank the anonymous reviewers of IACR PKC 2023 for their
helpful comments and suggestions. Pratik Sarkar is supported by NSF Awards 1931714,
1414119, and the DARPA SIEVE program.

References

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 35

[ADDS21] Albrecht, M.R., Davidson, A., Deo, A., Smart, N.P.: Round-optimal ver-
ifiable oblivious pseudorandom functions from ideal lattices. In: Garay,
J.A. (ed.) PKC 2021. LNCS, vol. 12711, pp. 261–289. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-75248-4 10

[ADMP20] Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic
group actions and applications. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part II. LNCS, vol. 12492, pp. 411–439. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64834-3 14

[AEK+22] Abdalla, M., Eisenhofer, T., Kiltz, E., Kunzweiler, S., Riepel, D.:
Password-authenticated key exchange from group actions. In: Dodis, Y.,
Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 699–728.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4 24

[AMPS21] Alamati, N., Montgomery, H., Patranabis, S., Sarkar, P.: Two-round
adaptively secure MPC from isogenies, LPN, or CDH. In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13091, pp. 305–334.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92075-3 11

[BBD+22] Booher, J., et al.: Failing to hash into supersingular isogeny graphs. Cryp-
tology ePrint Archive, Paper 2022/518 (2022). https://eprint.iacr.org/
2022/518

[BD18] Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT
from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II.
LNCS, vol. 11240, pp. 370–390. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03810-6 14

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-030-75248-4_10
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-031-15979-4_24
https://doi.org/10.1007/978-3-030-92075-3_11
https://eprint.iacr.org/2022/518
https://eprint.iacr.org/2022/518
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-030-03810-6_14

402 S. Badrinarayanan et al.

[BDK+20] Büscher, N., et al.: Secure two-party computation in a quantum world.
In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020.
LNCS, vol. 12146, pp. 461–480. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-57808-4 23

[BDK+22] Beullens, W., Dobson, S., Katsumata, S., Lai, Y.-F., Pintore, F.: Group
signatures and more from isogenies and lattices: generic, simple, and
efficient. 13276, 95–126 (2022)

[BF22] Bitansky, N., Freizeit, S.: Statistically sender-private OT from LPN and
derandomization. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022.
LNCS, vol. 13508, pp. 699–728. Springer, Cham (2022). https://doi.org/
10.1007/978-3-031-15982-4 21

[BGJ+18] Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai,
A.: Promise zero knowledge and its applications to round optimal MPC.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS,
vol. 10992, pp. 459–487. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96881-0 16

[BKM+21] Basso, A., Kutas, P., Merz, S.-P., Petit, C., Sanso, A.: Cryptanalysis of
an oblivious PRF from supersingular isogenies. In: Tibouchi, M., Wang,
H. (eds.) ASIACRYPT 2021, Part I. LNCS, vol. 13090, pp. 160–184.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3 6

[BKV19] Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny
based signatures through class group computations. In: Galbraith, S.D.,
Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 9

[BKW20] Boneh, D., Kogan, D., Woo, K.: Oblivious Pseudorandom Functions from
Isogenies. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II.
LNCS, vol. 12492, pp. 520–550. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-64834-3 18

[BL18] Benhamouda, F., Lin, H.: k -Round multiparty computation from k -
Round oblivious transfer via garbled interactive circuits. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821,
pp. 500–532. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 17

[BMM+22] Badrinarayanan, S., Masny, D., Mukherjee, P., Patranabis, S., Raghu-
raman, S., Sarkar, P.: Round-optimal oblivious transfer and MPC from
computational CSIDH. IACR Cryptology ePrint Archive, p. 1511 (2022).
https://eprint.iacr.org/2022/1511

[BOB18] Barreto, P., Oliveira, G., Benits, W.: Supersingular isogeny oblivious
transfer. Cryptology ePrint Archive, Report 2018/459 (2018). https://
eprint.iacr.org/2018/459

[BPS22] Badrinarayanan, S., Patranabis, S., Sarkar, P.: Statistical security in two-
party computation revisited. In: Kiltz, E., Vaikuntanathan, V. (eds.)
TCC 2022, Part II. LNCS, vol. 13748, pp. 181–210. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-22365-5 7

[BY91] Brassard, G., Yung, M.: One-way group actions. In: Menezes, A.J., Van-
stone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 94–107. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 7

https://doi.org/10.1007/978-3-030-57808-4_23
https://doi.org/10.1007/978-3-030-57808-4_23
https://doi.org/10.1007/978-3-031-15982-4_21
https://doi.org/10.1007/978-3-031-15982-4_21
https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1007/978-3-030-92062-3_6
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78375-8_17
https://eprint.iacr.org/2022/1511
https://eprint.iacr.org/2018/459
https://eprint.iacr.org/2018/459
https://doi.org/10.1007/978-3-031-22365-5_7
https://doi.org/10.1007/3-540-38424-3_7

Round-Optimal Oblivious Transfer and MPC from Computational CSIDH 403

[CCG+20] Rai Choudhuri, A., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round
optimal secure multiparty computation from minimal assumptions. In:
Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551,
pp. 291–319. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64378-2 11

[CCH+19] Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Charikar,
M., Cohen, E. (eds.) 51st ACM STOC, pp. 1082–1090. ACM Press, June
2019

[CD22] Castryck, W., Decru, T.: An efficient key recovery attack on SIDH
(preliminary version). IACR Cryptology ePrint Archive, p. 975 (2022).
https://eprint.iacr.org/2022/975

[CLM+18] Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH:
an efficient post-quantum commutative group action. In: Peyrin, T., Gal-
braith, S. (eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–
427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-
3 15

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In: 34th ACM STOC, pp.
494–503. ACM Press, May 2002

[Cou06] Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint
Archive, Report 2006/291 (2006). https://eprint.iacr.org/2006/291

[CPV20] Castryck, W., Panny, L., Vercauteren, F.: Rational isogenies from irra-
tional endomorphisms. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT
2020, Part II. LNCS, vol. 12106, pp. 523–548. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 18

[CSV20] Castryck, W., Sotáková, J., Vercauteren, F.: Breaking the decisional
Diffie-Hellman problem for class group actions using genus theory. In:
Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol.
12171, pp. 92–120. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-56880-1 4

[CSW20a] Canetti, R., Sarkar, P., Wang, X.: Blazing fast OT for three-round UC
OT extension. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 299–327. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45388-6 11

[CSW20b] Canetti, R., Sarkar, P., Wang, X.: Efficient and round-optimal oblivious
transfer and commitment with adaptive security. In: Moriai, S., Wang,
H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 277–308. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64840-4 10

[CSW22] Canetti, R., Sarkar, P., Wang, X.: Triply adaptive UC NIZK. In: Agrawal,
S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13792, pp. 466–495.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22966-4 16

[DG19] De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from
class group actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019,
Part III. LNCS, vol. 11478, pp. 759–789. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17659-4 26

[DGH+20] Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round
oblivious transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 768–797. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 26

https://doi.org/10.1007/978-3-030-64378-2_11
https://doi.org/10.1007/978-3-030-64378-2_11
https://eprint.iacr.org/2022/975
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-45724-2_18
https://doi.org/10.1007/978-3-030-56880-1_4
https://doi.org/10.1007/978-3-030-56880-1_4
https://doi.org/10.1007/978-3-030-45388-6_11
https://doi.org/10.1007/978-3-030-64840-4_10
https://doi.org/10.1007/978-3-031-22966-4_16
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-45724-2_26

404 S. Badrinarayanan et al.

[DMPS19] De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions
from supersingular isogenies and pairings. In: Galbraith, S.D., Moriai,
S. (eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 248–277.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 10

[DNM12] David, B.M., Nascimento, A.C.A., Müller-Quade, J.: Universally compos-
able oblivious transfer from lossy encryption and the McEliece assump-
tions. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 80–99.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32284-
6 5

[dSGOPS20] de Saint Guilhem, C.D., Orsini, E., Petit, C., Smart, N.P.: Semi-
commutative masking: a framework for isogeny-based protocols, with an
application to fully secure two-round isogeny-based OT. In: Krenn, S.,
Shulman, H., Vaudenay, S. (eds.) CANS 2020. LNCS, vol. 12579, pp. 235–
258. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65411-
5 12

[DvMN08] Dowsley, R., van de Graaf, J., Müller-Quade, J., Nascimento, A.C.A.:
Oblivious transfer based on the McEliece assumptions. In: Safavi-Naini,
R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 107–117. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85093-9 11

[EGL82] Even, S., Goldreich, O., Lempel, A.: A randomized protocol for sign-
ing contracts. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.)
CRYPTO’82, pp. 205–210. Plenum Press, New York (1982)

[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowl-
edge proofs under general assumptions. SIAM J. Comput. 29(1), 1–28
(1999)

[FMV19] Friolo, D., Masny, D., Venturi, D.: A black-box construction of fully-
simulatable, round-optimal oblivious transfer from strongly uniform key
agreement. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I. LNCS,
vol. 11891, pp. 111–130. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-36030-6 5

[GS18] Garg, S., Srinivasan, A.: Two-round multiparty secure computation from
minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018, Part II. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 16

[IKO+11] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.:
Efficient non-interactive secure computation. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 23

[JL09] Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with appli-
cations to adaptive OT and secure computation of set intersection. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 34

[Kil88] Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM
STOC, pp. 20–31. ACM Press, May 1988

[KM20] Khurana, D., Mughees, M.H.: On statistical security in two-party com-
putation. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS,
vol. 12551, pp. 532–561. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64378-2 19

[KOS15] Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with opti-
mal overhead. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part
I. LNCS, vol. 9215, pp. 724–741. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-47989-6 35

https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-642-32284-6_5
https://doi.org/10.1007/978-3-642-32284-6_5
https://doi.org/10.1007/978-3-030-65411-5_12
https://doi.org/10.1007/978-3-030-65411-5_12
https://doi.org/10.1007/978-3-540-85093-9_11
https://doi.org/10.1007/978-3-030-36030-6_5
https://doi.org/10.1007/978-3-030-36030-6_5
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-030-64378-2_19
https://doi.org/10.1007/978-3-030-64378-2_19
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35

Round-Optimal Oblivious Transfer and MPC from Computational CSIDH 405

[LGdSG21] Lai, Y.-F., Galbraith, S.D., Delpech de Saint Guilhem, C.: Compact,
efficient and UC-secure isogeny-based oblivious transfer. In: Canteaut, A.,
Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 213–
241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-
5 8

[McE78] McEliece, R.J.: A public-key cryptosystem based on algebraic coding
theory. Coding Thv 4244, 114–116 (1978)

[MM22] Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting
curve. IACR Cryptology ePrint Archive, p. 1026 (2022). https://eprint.
iacr.org/2022/1026

[MMP22] Mula, M., Murru, N., Pintore, F.: On random sampling of supersingu-
lar elliptic curves. Cryptology ePrint Archive, Paper 2022/528 (2022).
https://eprint.iacr.org/2022/528

[MR19] Masny, D., Rindal, P.: Endemic oblivious transfer. In: ACM CCS 2019,
pp. 309–326. ACM Press (2019)

[Pet17] Petit, C.: Faster algorithms for isogeny problems using torsion point
images. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II.
LNCS, vol. 10625, pp. 330–353. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70697-9 12

[PRS02] Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with
logarithmic round-complexity. In: 43rd FOCS, pp. 366–375. IEEE Com-
puter Society Press, November 2002

[PS19] Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from
(plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 89–114. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26948-7 4

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-85174-5 31

[Qua20] Quach, W.: UC-secure OT from LWE, revisited. In: Galdi, C.,
Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 192–211. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-57990-6 10

[Rab05] Rabin, M.O.: How to exchange secrets with oblivious transfer. Cryptology
ePrint Archive, Report 2005/187 (2005). https://eprint.iacr.org/2005/
187

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp.
84–93. ACM Press, May 2005

[Rob22] Robert, D.: Breaking SIDH in polynomial time. Cryptology ePrint
Archive, Paper 2022/1038 (2022). https://eprint.iacr.org/2022/1038

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete loga-
rithms and factoring. In 35th FOCS, pages 124–134. IEEE Computer
Society Press, November 1994

[Vit18] Vitse, V.: Simple oblivious transfer protocols compatible with kummer
and supersingular isogenies. Cryptology ePrint Archive, Report 2018/709
(2018). https://eprint.iacr.org/2018/709

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October
1986

https://doi.org/10.1007/978-3-030-77870-5_8
https://doi.org/10.1007/978-3-030-77870-5_8
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/528
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-030-57990-6_10
https://eprint.iacr.org/2005/187
https://eprint.iacr.org/2005/187
https://eprint.iacr.org/2022/1038
https://eprint.iacr.org/2018/709

Generic Models for Group Actions

Julien Duman , Dominik Hartmann(B) , Eike Kiltz ,
Sabrina Kunzweiler , Jonas Lehmann , and Doreen Riepel

Ruhr-Universität Bochum, Bochum, Germany
{julien.duman,dominik.hartmann,eike.kiltz,sabrina.kunzweiler,

jonas.lehmann-c6j,doreen.riepel}@rub.de

Abstract. We define the Generic Group Action Model (GGAM), an
adaptation of the Generic Group Model to the setting of group actions
(such as CSIDH). Compared to a previously proposed definition by Mont-
gomery and Zhandry (ASIACRYPT ’22), our GGAM more accurately
abstracts the security properties of group actions.

We are able to prove information-theoretic lower bounds in the
GGAM for the discrete logarithm assumption, as well as for non-standard
assumptions recently introduced in the setting of threshold and identi-
fication schemes on group actions. Unfortunately, in a natural quantum
version of the GGAM, the discrete logarithm assumption does not hold.

To this end we also introduce the weaker Quantum Algebraic Group
Action Model (QAGAM), where every set element (in superposition)
output by an adversary is required to have an explicit representation
relative to known elements. In contrast to the Quantum Generic Group
Action Model, in the QAGAM we are able to analyze the hardness of
group action assumptions: We prove (among other things) the equiv-
alence between the discrete logarithm assumption and non-standard
assumptions recently introduced in the setting of QROM security for
Password-Authenticated Key Exchange, Non-Interactive Key Exchange,
and Public-Key Encryption.

Keywords: Group Actions · CSIDH · Algebraic Group Action
Model · Generic Group Action Model

1 Introduction

Group Actions. Group actions are considered a promising candidate for build-
ing post-quantum secure cryptography. While similar to the well-known prime-
order groups, group actions are more limited and provide less structure. For a
group (G, ◦) with neutral element e ∈ G and a set X , a group action is a map

� : G × X → X

that is compatible with the group operation in G. That is, e �x = x for all x ∈ X
and (g ◦h) � x = g � (h �x) for all g, h ∈ G and x ∈ X . It can be thought of as an

c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 406–435, 2023.
https://doi.org/10.1007/978-3-031-31368-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_15&domain=pdf
http://orcid.org/0000-0002-5195-1290
http://orcid.org/0000-0002-0379-7903
http://orcid.org/0000-0003-1178-048X
http://orcid.org/0000-0002-6179-2094
http://orcid.org/0000-0002-1755-8153
http://orcid.org/0000-0002-4990-0929
https://doi.org/10.1007/978-3-031-31368-4_15

Generic Models for Group Actions 407

analogue to the exponentiation in a multiplicative prime-order group, which leads
to natural analogues of problems such as the discrete logarithm problem in group
actions (GA-DLOG). The similarity to prime-order groups allows the adaptation
of several basic schemes to group actions [14,17,19,28,37,41]. Crucially, there
is no group law on X . This makes group actions resilient against well-known
quantum attacks on groups such as Shor’s algorithm [39]. To date, the best
known quantum attacks on group actions are based on Kuperberg’s algorithm
[29] which has subexponential runtime.

The most prominent example for a cryptographic group action to date is
the CSIDH group action [14], which is based on isogenies between supersingular
elliptic curves. While promising, isogeny-based cryptography is still fairly new
and has not been as thoroughly studied as traditional cryptography based on the
discrete logarithm problem in prime order groups or the RSA problem. This lack
of analysis was exemplified by the recent attacks on the SIDH assumption [13,
30,36], which completely break SIDH and related schemes, but have no impact
on the security of CSIDH.

Generic Models. A useful tool for analyzing cryptographic problems are
generic models. One popular model in the setting of prime-order groups is
Shoup’s Generic Group Model (GGM) [40]. The GGM replaces group elements
with random labels (without any algebraic meaning) and only allows computa-
tion of the group law via an oracle. In the GGM one can provide information-
theoretic lower bounds on the number of calls to the group oracle for certain
cryptographic problems. For example, in the GGM the discrete logarithm prob-
lem over groups of prime order p can only be solved with at least √

p calls to the
group oracle.

Another useful model in the setting of prime-order groups is the Algebraic
Group Model (AGM) [22]. In the AGM all algorithms know the group structure
and can compute group operations. However, adversaries are restricted to only
producing new group elements by combining previously known group elements
via the group law, i.e. they have to behave “algebraically”. This is enforced by
requiring algebraic adversaries to provide a representation of their output group
elements relative to their inputs. While this model cannot be used to prove
lower bounds for cryptographic assumptions, it has proven useful for relating
the hardness of different assumptions and cryptographic protocols [7,22,32].

Generic Models for Group Actions. The GGM has recently been adapted
to the group action setting by Montgomery and Zhandry [33] in order to prove
the generic quantum equivalence of GA-DLOG and GA-CDH in the setting of
restricted effective group actions (REGA).1 We refer to this as the MZ-Generic
Group Action Model (MZ-GGAM). The MZ-GGAM encodes elements from the
group G and the set X with random labels and provides oracles for both the

1 In a REGA (not considered in this work) the group action evaluation cannot be per-
formed efficiently for arbitrary group elements, but it is necessary to find a suitable
representation of the element first. In particular, this is the case when the group
structure is unknown.

408 J. Duman et al.

group law in G and the group action � on X . Additionally, they define the MZ-
Quantum Generic Group Action Model (MZ-QGGAM), a quantum analogue of
the MZ-GGAM providing quantum access to the two oracles.

While the definition of the MZ-GGAM seems reasonable when considering
REGAs, we believe that it does not accurately capture the security properties of
general effective group actions (EGA). Why? One could simply use group G and
ignore set X and mapping �. In the MZ-GGAM one can prove the hardness of
standard assumption like the discrete logarithm in group G, even though group
actions are “not supposed” to source their hardness from problems over G. This
simple observation allows to provably port all standard group-based cryptogra-
phy to the MZ-GGAM. That is, in the MZ-GGAM group actions actually have
more structure than prime-order groups (though they should not). Furthermore,
in the MZ-Quantum Generic Group Action Model one can efficiently compute
discrete logarithms over G by applying Shor’s algorithm [39], hence learn the
entire group structure of G. This shows that hiding the structure of group G
with random labels is useless in a quantum setting.

1.1 Contributions

We propose an alternative definition of the generic group model for group actions
(GGAM) and analyze several standard and non-standard assumptions in it. We
also consider a quantum version, QGGAM, and show that the group action dis-
crete logarithm problem (GA-DLOG) does not hold in it. Furthermore, we define
a (quantum) algebraic group model for group actions, AGAM and QAGAM, and
use it to relate the hardness of several useful group-action assumptions.

We will now go over our results in a bit more detail.

Generic Group Action Model. We propose a new definition of the Generic
Group Action Model (GGAM), which differs from the previous definition MZ-
GGAM of [33] in that we only encode elements from the set X and not from
group G. Our definition assumes G to be cyclic of order N (see the full version for
a generalization to non-cyclic abelian group actions). In a quantum setting the
isomorphism between G and ZN is efficiently computable with Shor’s algorithm,
so we can assume it to be known with some quantum precomputation. Hence
in our GGAM we set G := ZN , which also models the fact that a group action
should not source its hardness from group G, an important security feature of
group actions.

Relation to the Generic Group Model. While it seems intuitive that
hardness results in the GGM (over prime-order groups) should carry over to
the more restricted GGAM (over group actions), there are some subtleties in
formalizing this. We prove a “lifting lemma” which states that all hardness results
in the GGM for a group of prime order p carry over to the GGAM if the order
N of the group action satisfies N = p − 1. Looking ahead, this restriction is a
consequence of how the GGAM can be embedded in the GGM.

Generic Models for Group Actions 409

Generic Group Action Model with Twists. We extend the definition of
the GGAM to the GGAM with Twists (GGAM�), which models group actions
like CSIDH more closely. More specifically, we include a twisting algorithm that
allows to compute −a � x from a � x efficiently for any a ∈ ZN and x ∈ X . This
allows us to capture a wider variety of practical group action instantiations.
Unfortunately, there is no analogue to twisting in the prime order group setting,
therefore we can not prove a lifting lemma from the GGM to the GGAM�.

Generic Lower Bounds. Next, we prove explicit lower bounds on the suc-
cess probability of generic adversaries on GA-DLOG, as well as two non-standard
assumptions in the GGAM� that were recently introduced in the context of
threshold schemes [18], identification schemes [5] and password-authenticated
key exchange [1]. Our proofs are rather straightforward and adapt well-known
proof techniques from the GGM. The resulting bounds are almost the same
bounds as in the GGM except for constant factors due to the (potentially) com-
posite order of the group action. This actually highlights that there are cases
where group action based assumptions become potentially easier. Our analy-
sis makes it simple to detect and to subsequently exclude those cases in the
assumption.

Generic Models in the Quantum Setting. We define the Quantum Generic
Group Action Model (QGGAM), an extension of the GGAM to the quantum
setting where the adversary has quantum access to the group action oracle.
Similar to the classical setting, the group G is simply modeled as ZN . We first
show that our QGGAM is in fact equivalent to the MZ-GGAM, while it is
conceptually much simpler. Unfortunately, we observe that even GA-DLOG is
information-theoretically easy in the QGGAM. This is due to a generic algo-
rithm by Ettinger and Høyer [21], which breaks GA-DLOG with polynomially
many quantum group-action queries plus (classical) exponential time to solve
the Trigonometric Approximation Problem (TAP). TAP is a purely combina-
torial problem which is independent of the group action. Since the QGGAM is
an information-theoretic model which only counts the number of oracle queries,
this constitutes an efficient quantum attack against GA-DLOG in the QGGAM.
One interpretation of this result is that the quantum hardness of GA-DLOG is a
combinatorial property rather than an algebraic one.

Algebraic Group Action Model. We define the group action analogue of
the AGM [22] in the quantum setting, which we call the Quantum Algebraic
Group Action Model with twists (QAGAM�) and without twists (QAGAM).
While there cannot exist any meaningful bounds in the QGGAM, we are still
able to quantum-relate the following assumptions in the QAGAM/QAGAM�.

– Assumptions for KEM/NIKE. The Group Action Quantum Strong Com-
putational Diffie-Hellman assumption (GA-QSt-CDH) is the CDH assump-
tion for group actions, where the adversary is furthermore given quantum
access to (fixed-base) DDH oracles. GA-QSt-CDH assumptions are required
to prove active security of group-action Hashed ElGamal encryption and

410 J. Duman et al.

Diffie-Hellman NIKE protocols in the QROM (used, for example, in Post-
Quantum WireGuard and OPTLS) [19]. There is no known security analysis
of GA-QSt-CDH. We prove that GA-QSt-CDH is equivalent to the GA-DLOG
assumption in the QAGAM�, therefore giving the first indication towards its
quantum security. Our proof relies on the semi-classical one-way to hiding
lemma.

– Assumptions for PAKE. We consider the Group Action Quantum
Strong Square-Inverse Diffie-Hellman(GA-QSt-SqInvDH) assumption [1] in the
QAGAM�. This non-standard assumption is a combination of the Square-DH
and Inversion-DH assumption relative to a flexible base, where an adversary
is furthermore given quantum access to DDH oracles as in the GA-QSt-CDH
assumption. The GA-QSt-SqInvDH assumption is required to prove security
of a recently proposed PAKE protocol in the QROM [1]. We again prove that
GA-QSt-SqInvDH is equivalent to the GA-DLOG assumption in the QAGAM�,
therefore giving the first indication towards its quantum security.

– Assumptions for ElGamal. We study the Quantum CCA1 (QCCA1) secu-
rity of the Group Action plain (unhashed) ElGamal KEM. QCCA1 security
means that the adversary is allowed to ask the decryption oracle with cipher-
texts in superposition, but only before seeing the challenge ciphertext. We
prove its QCCA1 security to be equivalent to the Group Action q-Decisional
Diffie-Hellman Problem (GA-q-DDH) in the QAGAM�.

2 Preliminaries

In this section, we fix some notation that will be used throughout the paper and
recall standard definitions.

2.1 Notation

For integers m,n where m < n, [m,n] denotes the set {m,m + 1, ..., n}. For
m = 1, we simply write [n]. By log(x) we denote the logarithm over the reals
with base 2. For a (finite) set S, s ←$ S denotes that s is sampled uniformly
and independently at random from S. y ← A(x1, x2, ...) denotes that on input
x1, x2, ... the probabilistic algorithm A returns y. AO denotes that algorithm A
has access to oracle O. An adversary is a probabilistic algorithm. The notation
�B�, where B is a boolean statement, refers to a bit that is 1 if the statement is
true and 0 otherwise.

2.2 Security Games

We define code based security games similar to [8]. A game G is defined as
an algorithm (which we call the challenger) that provides a main procedure
and (possibly zero) oracle procedures. An algorithm A playing game G gets an
initial input from the challenger and can subsequently interact with (possibly
zero) oracles. In the case of quantum algorithms, the oracles can be queried in

Generic Models for Group Actions 411

superposition. At the end of its execution, A has to provide some output to
the challenger. We say that A wins (or solves) the game G if the challenger
accepts the output, which we write as GA ⇒ 1. We define the success probability
of A as Pr[GA ⇒ 1]. Note that we will use the words “game” and “problem”
interchangeably.

2.3 Quantum Notation

We recall some quantum computation preliminaries and notation as stated in
[20]. Additional quantum preliminaries can be found in the full version.

Qubit. A qubit |x〉 = α|0〉+β|1〉 is a 2-dimensional unit vector with coefficients
in C, i.e. x = (α, β) ∈ C

2 fulfilling the normalization constraint |α|2 + |β|2 = 1.
When neither α = 1 nor β = 1, we say that |x〉 is in superposition.
n-qubit state. An n-bit quantum register |x〉 =

∑2n−1
i=1 αi|i〉 is a unit vec-

tor of C
2n = (C2)⊗n, that is αi ∈ C and

∑2n−1
i=0 |αi|2 = 1. We call the set

{|0〉, |1〉, . . . , |2n − 1〉} the computational basis. When |x〉 can not be written as
the tensor product of single qubits, we say that |x〉 is entangled.

Measurement. Unless otherwise stated, measurements are done in the com-
putational basis. After measuring a quantum register |x〉 =

∑2n−1
i=0 αi|i〉 in the

computational basis, the state collapses and |x〉 = ±|i〉 with probability |αi|2.
Quantum Algorithms. A quantum algorithm A is a series of unitary oper-
ations Ui, where unitary operations are defined as to map unit vectors to unit
vectors, preserving the normalization constraint of quantum registers. A quan-
tum oracle algorithm AO is defined similarly, except it can query the oracle
O after (or before) executing a unitary Ui. Since quantum computation needs
to be reversible, we model an oracle O : X → Y by a unitary UO that maps
|x〉|y〉 	→ |x〉|y ⊕ O(x)〉. We only consider sequential quantum algorithms (see
the full version).

Quantum-Access of Oracles. For an oracle O, we are going to write |O〉
to denote that it can be queried on quantum inputs and O if it can not (which
means that its inputs are implicitly measured). For an oracle which allows par-
tial quantum-access, we write |·〉 to denote the inputs which are quantum (i.e.,
not measured), for example O(·, |·〉) means that the first input is classical (i.e.,
implicitly measured on query) and the second is quantum. Alternatively to |O〉
we might also write O(|·〉, |·〉), if O takes two inputs. While such a (partially)
quantum oracle formally needs an additional ancillary input to write its result,
we omit this to keep the interfaces between classical and quantum oracles aligned.

3 Group Actions

In this section, we introduce cyclic effective group actions (with twists). We
explain that this abstract framework models the group action underlying the
isogeny-based protocol CSIDH [14]. Further we define the two standard group
action assumptions in our setting: Group Action Discrete Logarithm Prob-
lem and the Group Action Computational Diffie-Hellman Problem.

412 J. Duman et al.

3.1 Definitions

We first recall the definition of (effective) group actions from [3] and then intro-
duce cyclic effective group actions (with twists).

Definition 1 (Group Action). Let (G, ◦) be a group with identity element
e ∈ G, and X a set. A map

� : G × X → X
is a group action if it satisfies the following properties:

1. Identity: e �x = x for all x ∈ X .
2. Compatibility: (g ◦ h) � x = g � (h � x) for all g, h ∈ G and x ∈ X .

We use the shorthand notation (G,X , �) to denote the group action. A group
action is called regular, if for all x, y ∈ X , there exists precisely one g ∈ G s.t.
y = g � x.

Example 1. Let (G, ◦) be a group of prime order p. Then the group (Z∗
p, ·) acts

on G in a natural way:

� : Z∗
p × G → G,

(a, g) 	→ ga = (g ◦ · · · ◦ g)
︸ ︷︷ ︸

a times

.

The identity property is trivially satisfied: 1 � g = g1 = g. Compatibility is
verified as follows:

(a · b) � g = ga·b = (ga)b = a � (b � g).

Note that the group action is not regular since ga �= e ∈ G for all a ∈ Z
∗
p. However

it can be easily made regular by restricting the action to the set X = G \ {e}.
We would like to stress that exponentiation does not define a group action

of (Zp,+) on G, since consecutive exponentiation behaves multiplicatively.

Definition 2 (Effective Group Action). Let (G,X , �) be a group action
satisfying the following properties:

1. G is finite and there exist efficient algorithms for membership testing, equality
testing, (random) sampling, group operation and inversion.

2. The set X is finite and there exist efficient algorithms for membership testing
and to compute a unique representation.

3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm to evaluate the group action, i.e. to com-

pute g � x given g and x.

Then we call x̃ ∈ X the origin and (G,X , �, x̃) an effective group action (EGA).

Generic Models for Group Actions 413

For an EGA it is a priori not assumed that the structure of the group G is known.
Indeed this reflects the reality for some group actions used in cryptography.
However, the security of these protocols should not be based on the difficulty of
computing the group structure. Consequently, in this work we focus on known-
order groups (see also [3, Definition 3.9]). Moreover, we restrict our attention
to cyclic groups of known order. This is not a serious restriction. For example
in isogeny-based group actions, the group G is guaranteed to be “almost” cyclic,
hence the security is dominated by its largest cyclic component (cf. Section 3.2).
For completeness, we provide an alternative set of definitions for non-cyclic
abelian groups in the full version.

Definition 3 (Cyclic Effective Group Action). Let (G,X , �, x̃) be an effec-
tive group action satisfying the following properties:

1. The group G is cyclic of order N for some known N ∈ N.
2. There exists a generator g ∈ G with known representation (that is G = 〈g〉).
3. For any element h ∈ G, the element a ∈ ZN satisfying h = ga is efficiently

computable.
4. The group action is regular.

Then we say that (G,X , �, x̃) is a cyclic (known-order) effective group action
(CEGA). In other words, a CEGA is an EGA for which there exists an isomor-
phism φ : (ZN ,+) → (G, ◦) efficiently computable in both directions. We therefore
denote any CEGA equivalently by (ZN ,X , , x̃) where

 : ZN × X → X ,

(a, x) 	→ (g ◦ · · · ◦ g)
︸ ︷︷ ︸

a times

� x .

Remark 1. We stress that for a CEGA the compatibility property of a group
action turns into a (b x) = (a + b) x.

Similar to the framework suggested in [1], we also introduce CEGA with twists
which reflects a property inherent to CSIDH-based group actions.

Definition 4 (Cyclic Effective Group Action with Twists). Let
(ZN ,X , , x̃) be a CEGA. We call it a Cyclic Effective Group Action with Twists
(CEGAT) if there is an efficient algorithm that, given x = a x̃, computes
xt = −a x̃.

Remark 2. In practice, the requirements from the definition of EGA are often too
strong. Therefore the weaker notion of restricted effective group actions (REGA)
is introduced in [3]. In the design of protocols it is important to have this limita-
tion in mind. For instance, the CSIDH protocol [14] is modeled as a REGA. For
certain CSIDH parameter sets, the group structure has already been computed
in [9] which converts it into a known-order REGA. Moreover the authors show
that in this case it can even be modeled as a known-order EGA.2
2 As is pointed out in [3], knowing the group structure of a REGA does not automat-

ically covert it to an EGA, but there are some subtleties to consider. In particular,
the evaluation of the group action might require to solve a lattice problem. However,
in all known instantiations this problem is easy to solve [9].

414 J. Duman et al.

In any case, in this work we are only concerned with analyzing the security
of protocols. It is clear that the security should not be based on the difficulty of
computing the group structure. Even more, knowing the group structure only
makes a potential adversary stronger. Consequently, it makes sense to only con-
sider known-order effective group actions.

3.2 The CSIDH Group Action

An important example of group actions used in cryptography are provided by
isogeny-based group actions, in particular by CSIDH [14].

Let p be a large prime of the form p = 4 · �1 · · · �n − 1, where the �i are small
distinct odd primes. Fix the elliptic curve E0 : y2 = x3 + x over Fp. This is a
supersingular curve and its Fp-rational endomorphism ring is O = Z[π], where π
is the Frobenius endomorphism. Let E��p(O) be the set of elliptic curves defined
over Fp, with endomorphism ring O. The ideal class group cl(O) acts on the set
E��p(O), i.e. there is a map

� : cl(O) × E��p(O) → E��p(O)

satisfying the properties from Definition 1 [14, Theorem 7].

CSIDH-512 is a CEGAT. The structure of the group cl(O) is unknown for
large parameter sets. Assuming the Generalized Riemann Hypothesis, it can be
computed in classical subexponential time using the Hafner–McCurley algorithm
[23]. Moreover there exist quantum algorithms by Biasse and Song [10] to com-
pute the class group cl(O) in polynomial time. The class group computation has
been successfully performed for the parameters of CSIDH-512 [9]. In particular,
the authors showed that cl(O) is a cyclic group of order

N = 3 · 37 · 1407181 · 51593604295295867744293584889
· 31599414504681995853008278745587832204909

≈ 2257
(1)

generated by the element g = (3, π−1) ∈ cl(O). Moreover it is shown that cl(O)
can be identified with ZN via an efficiently computable isomorphism

φ : ZN → cl(O), a 	→ ga.

Consequently, the CSIDH-512 group action can be viewed as a CEGA. Moreover
as any CSIDH-based group action, it is possible to compute twists of elements
efficiently, hence it may also be viewed as a CEGAT.

Remark 3. While not all class groups appearing in isogeny-based cryptography
are cyclic, it makes sense to model these groups as CEGATs when analyzing
their security. This is justified by the fact that heuristically the class groups
are close to being cyclic, see also [14, §7.1]. More precisely, the odd part of a
randomly chosen class group of an imaginary quadratic field is very likely to

Generic Models for Group Actions 415

be cyclic. In case it is not cyclic, the group is with overwhelming probability
of the form ZN1 × ZN2 with N2 � N1, hence its complexity is dominated by
the cyclic component ZN1 . More details on these heuristics can be found in [16,
§9.1]. Further, we note that genus theory implies that the even part of cl(O) is
trivial for all CSIDH parameters.

3.3 Group Action Assumptions

For cryptographic applications, we are interested in CEGA(T)s that come
equipped with the following two properties:

– Given x ∈ X , it is hard to find a ∈ ZN with a x̃ = x.
– Given x = a x̃, y = b x̃, it is hard to find z ∈ X with z = (a + b) x̃.

In [3] such group actions are called cryptographic group actions, and in [17]
they are called hard homogeneous spaces. The two hardness assumptions are
the natural generalizations of the discrete logarithm assumption and the Diffie-
Hellman assumption in the traditional group based setting. In analogy to this
setting, we make the following definitions.

Definition 5 (Group Action Discrete Logarithm Problem). Let
CEGA(T) = (ZN ,X , , x̃) be a cyclic effective group action (with twists).
We say that an adversary A solves the group action discrete logarithm prob-
lem (GA-DLOG) if A(x̃, a x̃) = a for a ←$ ZN .

Definition 6 (Group Action Computational Diffie-Hellman Problem).
Let CEGA(T) = (ZN ,X , , x̃) be a cyclic effective group action (with twists).
We say that an adversary A solves the group action computational Diffie-
Hellman problem (GA-CDH) if A(x̃, a x̃, b x̃) = (a + b) x̃ for a, b ←$ ZN .

4 Generic Group Action Model

In this section we adapt the well-known Generic Group Model (GGM) of Shoup
[40] to the group action setting. In Sect. 4.1 we introduce the Generic Group
Action Model and relate it to the GGM. We extend the definition to also include
twists in Sect. 4.2 and quantum queries in Sect. 4.3. There, we also show that
GA-DLOG does not hold when allowing quantum queries. Finally, we compare
our model to the model of [33] in Sect. 4.4.

As explained in the preceding section, we focus on CEGAs for the underlying
group action of our generic models. For completeness a natural extension to
known-order effective group actions is explained in the full version.

4.1 Definitions and Relations

Generic Group Model. Recall that in the GGM we associate to a group
(G,�, e) of prime order p and neutral element e a set of labels T ⊂ {0, 1}∗

and an injective labeling function σG : G → T . We require |T | = |G|, but we

416 J. Duman et al.

Fig. 1. Schematic overview of the relation between GGAM and GGM where N = p−1.

assume that labels are sufficiently long to ensure that finding a label that has a
corresponding preimage in G is hard. A generic algorithm is subsequently given
abstract access to G via two oracles Oop : T × T → T and Oexp : Z∗

p × T → T .3
The first oracle takes as input two labels σG(g) and σG(h) and returns σG(g�h).
Similarly, the second oracle takes as input a label σG(g) and an exponent k ∈ Z

∗
p

and returns σG(gk). Here we restrict the exponent k to be in Z
∗
p instead of Zp.

This restriction is without loss of generality, as Oexp(0, σG(g)) = σG(e) for all
g ∈ G, which is trivial to compute even without the oracle. However, it allows
us to view Oexp as the regular group action shown in Example 1. Lastly, we call
p the order of the GGM.

Let A be a generic algorithm playing a game G. We say A is a (ε, t, q)-
algorithm if its has success probability Pr[GA ⇒ 1] = ε, time complexity t
and query complexity q. Here, the query complexity refers to the amount of
queries to Oexp and Oop. We call a generic (ε, t, q)-algorithm pseudoefficient if
q ∈ O(poly(log p)) and simply efficient if both t, q ∈ O(poly(log p)).

Generic Group Action Model (GGAM). The Generic Group Action Model
is now defined similarly to the GGM. We associate to a cyclic effective group
action CEGA = (ZN ,X , , x̃) a set of labels S ⊂ {0, 1}∗ and an injective labeling
function σX : X → S. We again assume that X and S have the same cardinality.
Subsequently, a generic group action algorithm has access to an oracle Oexp :
ZN ×S → S which abstractly computes the group action. In particular, on input
a ∈ ZN and a label σX (x) for x ∈ X , the oracle returns σX (a x). While this is
slightly ambiguous with the Oexp in the GGM, it is easy to see that the Oexp in
the GGM and the Oexp in the GGAM are virtually identical and, as we will argue
next, can be translated into one another. We call N the order of the GGAM.

3 We include Oexp as a distinct oracle for convenience even though it can be simulated
efficiently via Oop and a square-and-multiply approach.

Generic Models for Group Actions 417

Lastly, a generic (ε, t, q)-algorithm playing a game G is called pseudoefficient if
q ∈ O(poly(log N)) and overall efficient if t, q ∈ O(poly(log N)).

One can now observe that the definition of the GGAM almost matches the
definition of the GGM except for the Oop oracle. In fact, the only other dif-
ference between both models is the fact that in the GGM, Oexp takes as input
an exponent in Z

∗
p whereas in the GGAM, the exponents are in ZN . Assuming

N = p − 1, this change is w.l.o.g. as there exists an isomorphism ψ : Z∗
p → ZN

which a (pseudoefficient) generic algorithm can easily compute. Also note that
S and T can be identified except for the label σG(e) = σG(g0) since 0 /∈ Z

∗
p,

but this label can simply be ignored. The relation between the GGM and the
GGAM is visualized in Fig. 1.

From the construction of the GGAM we easily see that it is a stronger (i.e.
more restricted) version of the GGM if we assume N +1 being prime. We there-
fore get the following observation.

Lemma 1 (Lifting Lemma). Let p be a prime and define N = p − 1. Let G
be a game in the GGAM of order N and let A be a generic (ε, t, q)-algorithm
winning G in the GGAM. Then there exists a generic (ε, t′, q)-algorithm B that
wins G in the GGM of order p with runtime t′ ≤ q + t.

Proof. From the observations above, it is straight forward to translate the algo-
rithm A in the GGAM to an algorithm B in the GGM: Because the label sets
S and T can be identified except for σG(e), we just have to worry about trans-
lating oracle queries between the GGAM and GGM. As Fig. 1 shows, this boils
down to computing the isomorphism ψ in the backwards direction, i.e. comput-
ing ψ−1 : ZN → Z

∗
p. This can be done efficiently via a 	→ ga for some generator

g ∈ Z
∗
p. Therefore the runtime of B increases by the number of evaluations of

ψ−1, which itself is exactly the amount q of oracle queries that A issues. ��

Remark 4. Note that when viewing G in the GGM we might lose some (trivial)
instances. More specifically, the game G in Lemma 1 is defined in the GGAM
first, which means that the label σG(e) cannot occur in an instance of G as it
is not defined in the GGAM. For example, in the case of DLOG this means that
the instance (g, g0) = (g, e) cannot occur in the GGM as ψ(0) is undefined and
therefore this does not have a corresponding instance in GA-DLOG. Yet this is
only a formal restriction that does not affect the hardness of G in the GGM.

Intuitively, Lemma 1 states that hardness result in the GGM can be lifted
to the GGAM as long as N = p − 1. Most importantly the lemma also applies
to the hardness of solving GA-DLOG and GA-CDH [40].

Corollary 1. Assume N+1 being prime. For a generic (ε, t, q)-algorithm solving
either GA-DLOG or GA-CDH in the GGAM of order N we have ε ≤ q2/N .

Note that the Baby-Step Giant-Step Algorithm [38] can be easily adapted to
the group action setting. This adaption yields a generic algorithm for solving
GA-DLOG which matches the bound from Corollary 1.

418 J. Duman et al.

We remark again that Lemma 1 and Corollary 1 only apply if N + 1 is
a prime number. Therefore hardness results in the GGM only carry over to
the GGAM under this restriction. For specific assumptions we can prove their
hardness irrespective of N + 1 being prime as we show in the next section,
however a universal lifting theorem might not be achievable. We leave this as an
interesting topic for future work.

4.2 Generic Group Action Model with Twists

We introduce the Generic Group Action Model with Twists (GGAM�) which
extends the above GGAM for CEGATs. Recall that current instantiations of
group actions like CSIDH are indeed modeled more accurately by a CEGAT as
they come with an additional twisting functionality which allows to efficiently
compute −a x̃ from a x̃. Since this functionality is not present in the current
definition of the GGAM, some attacks may not be captured for a large class of
widely used group actions. This makes an important difference when analyzing
the generic hardness of non-standard assumptions. It is therefore desirable to
adapt the GGAM to this setting. In particular, we extend the definition of the
GGAM by an additional oracle Otw : S → S that computes σX (−a x̃) for a
given input σX (a x̃).

Note that twists do not have an analogue in the standard prime order group
setting. This means that Lemma 1 does not apply to the GGAM� even if N +1
is prime. Below we provide two separating examples.

Example 2. The security of the password-autheticated key exchange scheme
TBPEKE [35] relies on the so-called Simultaneous Diffie-Hellman assumption.
Translated to the group action notation, an adversary is given three elements
x = g x̃, y1 = a1 x, y2 = a2 x ∈ X and is supposed to output three elements
z, r1, r2 ∈ X satisfying r1 = −a1 z and r2 = −a2 z. The authors show
that a generic (ε, t, q)-algorithm solving this problem in the GGM of order p,
has success probability ε ≤ q2 + 20/2p. In contrast to that, an adversary in the
GGAM� only needs three calls to the Otw oracle in order to find a valid solution:
z = Otw(x), r1 = Otw(y1), r2 = Otw(y2).

Example 3. Another simple separating example is the Inverse Diffie-Hellman
Problem (IDHP). Adapted to our group action notation, an adversary is given
a x̃ for a ←$ ZN and is asked to compute −a x̃. From the definition of Otw it
is obvious that IDHP is easy in GGAM�. In the GGAM, however, IDHP must
be as hard as CDH (assuming N + 1 being prime). The reason is that IDHP
and CDH are equivalent in the GGM [6], implying that both have the same
lower bound in the GGM. Due to Lemma 1, the lower bound for IDHP must
therefore hold in the GGAM. We thus have that IDHP is easy in the GGAM�

but provably hard in the GGAM if N + 1 is prime.

The two examples show that results in the GGAM� and the GGAM are
incomparable. However, we can still analyze specific problems directly in the
GGAM� by adapting the information theoretic arguments used in the GGM.

Generic Models for Group Actions 419

With this we get a similar bound for the discrete logarithm assumption, as well
as bounds for the non-standard Group Action k-power Decisional Diffie-Hellman
Problem (Definition 7) and the Group Action Discrete Logarithm Problem with
Auxilary Input (Definition 8). Our analysis further shows that some assumptions
possess instances which are potentially easier to solve. We are further able to
argue that information-theoretically there are only a hand full of these cases
which are all linked to the composite nature of N . Before we proceed to study
these problems, we recall a useful lemma needed for our analysis.

Lemma 2. Let a, b ∈ Z, N ∈ N and denote d = gcd(a,N). Then the equation
a · x ≡ b (mod N) has precisely d solutions if d divides b and no solutions
otherwise.

Theorem 1. For every generic (ε, t, q)-algorithm A winning the GA-DLOG
game in the GGAM� of order N , we have ε ≤ 2q2/N .

Note that the bound differs from the GGM bound by a factor of 2. This is
due to the fact that N is potentially composite, leading to polynomials of degree
1 with two roots in the reduction. This factor can be removed by requiring that
gcd(2, N) = 1. The latter is always true when instantiating the group action
with CSIDH.

Proof. The proof idea is very similar to classical proofs of DLOG in the GGM.
The discrete logarithm challenge is replaced by an indeterminate X and the label-
ing function is extended to polynomials fi(X). If the value of X (and therefore
the DLOG solution) is only chosen after the adversary finished, the probability
of success is exactly 1/N . However, we have to ensure that this change is unde-
tected. The only problem that can occur is that the adversary makes two queries
(which are now on polynomials fi(X), fj(X)) that result in different labels since
fi(X) �= fj(X), but both polynomials evaluate to the same value on the chosen
challenge. However, we can bound the probability of this event by predicting the
number of roots of fi(X) − fj(X), yielding the well-known bounds.

While our proof follows the same idea, there are some intricacies we have
to consider. First, the order N of the group action is potentially composite, so
by Lemma 2, for a polynomial of the form aX + b ≡ 0 (mod N), there are
d = gcd(a, N) many roots if d divides b and none otherwise. On the other hand,
an adversary is limited to the Oexp and the Otw, so all equations that it can
compute are of the form g ± X or g ± 2X, thus every equation has at most two
roots.

Overall with exactly the same argument as in the GGM the theorem follows
with the additional factor 2. ��

In [18] the authors define the so called k-power Decisional Diffie-Hellman Group
Action Problem in order to build threshold schemes. We give an equivalent defini-
tion that is written in additive notation and analyze its hardness in the GGAM�.

420 J. Duman et al.

Definition 7 (Group Action k-power Decisional Diffie-Hellman Prob-
lem). Let CEGAT = (ZN ,X , , x̃) and 1 < k < N − 1. For a, c ←$ ZN define
w0 = k · a x̃ and w1 = c x̃. We say that an adversary A solves the Group
Action k-power Decisional Diffie-Hellman Problem (GA-k-PDDH) if

A(k, a x̃, wb, w1−b) = b

for b ←$ {0, 1}.

Theorem 2. For every generic (ε, t, q)-algorithm A winning GA-k-PDDH in the
GGAM� of order N , we have

ε ≤ 1
2

+
2 · dmax · q2

N
,

where dmax = max{gcd(2k,N), gcd(k ± 1, N)}.

Proof. The proof uses an argument similar to the original proof of DDH in the
GGM by Shoup [40], however there are again some subtleties. Fix some 1 < k <
N − 1. We define indeterminates X,Y,Z that represent the values a x̃, wb and
w1−b, respectively. An algorithm can implicitly build polynomials fi(X,Y,Z) of
the following forms:

g, g ± X, g ± Y, and g ± Z (mod N) .

As in the proof of Theorem 1 we are now interested in the number of roots of
fi(X,Y,Z)−fj(Y,Y,Z). More specifically, we have to keep in mind that either
Y or Z is set to k · X at the end of the game, meaning that we have to bound
the probability that either

fi(X,Y, k · Y) − fj(Y,Y, k · X) ≡ 0 mod N (2)

or
fi(X, k · X,Z) − fj(X, k · x,Z) ≡ 0 mod N (3)

for a random assignment of X, Y and Z. Listing all possibilities for these differ-
ences is tedious, therefore we restrict our attention to the polynomial in X and
leave the remaining polynomials (in either Y or Z) unspecified. In the case of
Eq. (2) we get

±k · X + f(Y), ±(k + 1)X + f(Y), ±(k − 1)X + f(Y),

±X + f(Y), ±2X + f(Y), ±2k · X + f(Y) .

and analogously for Eq. (3). The likelihood of an assignment being a root now
mainly depends on the choice of X. Recall from Lemma 2 that an equation of
the form aX + b ≡ 0 (mod N) has at most gcd(a, N) solutions. In our setting,
a ∈ {±1,±2,±k,±(k − 1),±(k + 1),±2k}, hence

gcd(a, N) ≤ dmax = max{gcd(2k,N), gcd(k ± 1, N)} .

Generic Models for Group Actions 421

In conclusion, the probability that an assignment for X is a root of one poly-
nomial in Eq. (2) is bounded by dmax/N and the same holds for polynomials in
eq. (3). Therefore, choosing the bit b after the adversary has finished fails with
probability 2 ·dmax/N . Of course, an adversary can still guess the (now informa-
tion theoretically hidden) bit b with constant probability 1/2, which immediately
yields the overall bound. ��

Remark 5. The authors in [18] already noted that in the presence of twists
GA-k-PDDH is easy for k = N − 1. Generically, the problem can be solved by
sending one query to the twist oracle. Therefore we excluded this case in our defi-
nition of the problem. Moreover our analysis in the GGAM� indicates that there
are more choices for 1 < k < N−1 for whichGA-k-PDDH becomes potentially eas-
ier. In light of Theorem 2, we advise to only use a stronger version of GA-k-PDDH,
where it is additionally assumed that dmax = max{gcd(2k,N), gcd(k±1, N)} = 1.

Remark 6. It is also possible to consider a version of GA-k-PDDH where all
elements are given relative to some x = h x̃. A correct GA-k-PDDH tuple would
thus contain the element z = (k ·a+h)x̃. This makes the analysis more intricate
but does not change the overall bound.

Baghery, Cozzo and Pederson [5] introduce the vectorization problem with
auxiliary inputs to construct a new identification scheme and thus a signature
scheme based on CSIDH. The problem has already been analyzed by [26] in the
standard model. It is similar to q-DLOG [11] or DLOG with auxiliary inputs
[15] in the prime-order group setting. In the following we first recall the problem
and then analyze its hardness in the GGAM�.

Definition 8 Group Action Discrete Logarithm Problem with Auxi-
lary Input [5]). Let CEGAT = (ZN ,X , , x̃). We say that an adversary A solves
the Group Action Discrete Logarithm Problem with Auxilary Input (GA-DLAI) if

A(k0, . . . , km−1, x0, . . . , xm−1) = a

where the ki are given by

k0 = 0, k1 = 1 and 1 < ki < N for i > 1

under the restriction

∀i �= j : gcd(ki − kj , N) = 1 and ∀i, j : gcd(ki + kj , N) = 1

and the xi are given by xi = ki · a x̃ for a ←$ ZN .

Theorem 3. For any generic (ε, q, t)-adversary A winning GA-DLAI in the
GGAM� of order N , we have ε ≤ q2/N .

422 J. Duman et al.

Proof. The proof is almost identical to the proofs of Theorem 1 and Theorem 2.
Here, the cases where an equation has more than one root are excluded by the
requirement that gcd(ki − kj , N) = 1 for i �= j and gcd(ki + kj , N) = 1 for all
i, j. ��

4.3 Quantum Generic Group Action Model

Isogeny-based group actions are a strong candidate for post-quantum secure
cryptography. Therefore, group action based assumptions should also be ana-
lyzed in the presence of quantum adversaries. One might hope that the GGAM
can be adapted to the quantum setting where a quantum algorithm can query
Oexp in superposition. Formally this change is simple, that is, we define the
quantum oracle Oexp(

∑
x,y,z αx,y,z|x, y, z〉) =

∑
x,y,z αx,y,z|x, y, z ⊕ Oexp(x, y)〉4.

In the following, we will denote this model by QGGAM and naturally extend the
notion of a (ε, t, q)-algorithm to the quantum setting. In practice, however, mak-
ing the oracle quantum accessible creates a lot of problems, especially regarding
one of the main purposes of the GGAM: information-theoretic lower bounds.

The most glaring issue is an algorithm by Ettinger and Høyer [21] that can
be used to solve GA-DLOG pseudoefficiently in the QGGAM.

Theorem 4. There exists a generic quantum (ε, t, q)-algorithm that solves
GA-DLOG in the QGGAM of order N with ε = 1 − 1

2N , t ∈ O(
√

N) and
q = �64 ln N�.

In its purest form the Ettinger-Høyer algorithm solves the well-known Dihe-
dral Hidden Subgroup Problem (DHSP) with polynomially many quantum oracle
queries (see [27] for a survey on the DHSP). Because GA-DLOG and many other
group action based assumptions reduce to some form of the DHSP, its hardness
plays a central role in group action based cryptography [34]. Although there
have been improvements towards solving the DHSP more efficiently, the cur-
rently fastest (generic) algorithm still has an overall subexponential complexity.

Theorem 5 (Kuperberg’s algorithm, [29]). There exists a generic quantum
(ε, t, q)-algorithm that solves GA-DLOG in the QGGAM of order N with ε ≈ 1
and t, q ∈ O(2

√
log N).

In the standard model, Kuberberg’s algorithm has the more favorable trade
off between the time complexity t and query complexity q, therefore making it
the best currently known algorithm against DHSP. Because of its overall subex-
ponential complexity, the DHSP (and by extension GA-DLOG) remain hard in
the standard model, which starkly contrasts the situation in the QGGAM.

We conclude that in the QGGAM we cannot give lower bounds on compu-
tational problems because even GA-DLOG can be solved with polynomial oracle
complexity. Since the exponential time of the Ettinger-Høyer algorithm stems

4 This was already observed in [33]. A more thorough comparison can be found in
Sect. 4.4.

Generic Models for Group Actions 423

from solving a combinatorial problem, one can assume that the hardness of
GA-DLOG is thus not an algebraic one but a combinatorial one. We discuss this
more in the full version.

4.4 Comparison with the Generic Model by Montgomery
and Zhandry

In [33] the authors define a different variant of the GGAM, which we call the
MZ-GGAM, where the group G of a group action (G,X , �, x̃) is also modeled as
a generic group. Consequently, the authors define two labeling functions, one for
G and one for X , as well as corresponding oracles for the operation in G and for
the group action. In particular, DLOG is assumed to be hard in the group G.
In the following, we want to argue that this model and especially its quantum
counterpart does not capture the widely used class of (cyclic) effective group
actions very well. To simplify the exposition, we assume that in line with our
setup the group G is cyclic. Clearly, the discussion translates to the setting of
a general abelian group as well. For more details on the functionality of our
GGAM in this setting, the reader is referred to the full version.

For the discussion we introduce the (somewhat informal) notation [X] resp.
[G] to denote that a set (resp. group) is idealized in the sense of the generic
group model. That is, its elements are represented by labels and algorithms
are provided with oracles to compute the group action (resp. group operation).
With this notation our GGAM would be written as (ZN , [X], , x̃), while the
MZ-GGAM of [33] can be seen as ([G], [X], �, x̃).

Our discussion mainly focuses on the generic group [G], which is the main
difference between the two models. We first cover the classical setting where
we observe that the MZ-GGAM can be used to simulate a classical GGM. The
reason for this is straightforward: Per definition, the MZ-GGAM provides an
algorithm with a generic group [G]. In fact, any game or algorithm in the GGM
can be compiled in the MZ-GGAM by just ignoring [X] and solely using [G] for
computations. We thus have that, intuitively, the GGM is fully contained in the
MZ-GGAM. A more formal statement would be that the GGM is indifferen-
tiable from the MZ-GGAM (see [31] for a definition of indifferentiability). We
leave out this rigorous discussion in the interest of space. This connection is not
desirable as the computational hardness of group actions should not stem from
the hardness of the group itself but instead should stem from the hardness of
inverting the group action. Phrased differently: even if DLOG were easy in G, we
still require that GA-DLOG is hard in (G, [X], �, x̃).

The last fact is emphasized when looking at the quantum setting. Here, we
can easily compute an isomorphism ψ : [G] → ZN via Shor’s algorithm [39] for
a suitable N ∈ N, making the generic group [G] obsolete for algebraic purposes.
Additionally, even constructions like the random oracle from a generic group in
[42] are likely to be adaptable to the QGGAM as they only require access to a
random labeling function.

Of course, the issues discussed in Sect. 4.3 regarding the quantum hardness of
GA-DLOG also apply to the MZ-QGGAM. Hence there is no reason to insist on a

424 J. Duman et al.

generic group [G] as any hardness assumption imposed on G can be circumvented
by quantum preprocessing. We therefore believe that even in the classical setting,
our weaker definition models the computational complexity of (cyclic) effective
group actions in a more realistic way.

5 Algebraic Group Action Model

In this section we introduce the Algebraic Group Action Model and use it to
prove several results. In Sect. 5.1 we formally define the Algebraic Group Action
Model in several variants (classic/quantum and with/without twists). In Sect. 5.2
we use the quantum version to reduce different non-standard assumptions to
GA-DLOG.

5.1 Definition and Relations

We define the Algebraic Group Action Model (AGAM) similar to the AGM of
[22] with the difference that the underlying algebraic structure is now an effective
group action instead of a prime-order group. Like in the GGAM, we assume that
DLOG is easy in G and therefore make exclusive use of cyclic effective group
actions.5

Definition 9 ((Quantum) Algebraic Group Action Algorithms). Let
CEGA = (ZN ,X , , x̃) be a fixed cyclic effective group action. An algorithm
A is called algebraic if for each output element y ∈ X it additionally pro-
vides a representation relative to a previously received set element. Concretely,
if (x1, . . . , x�) ∈ X � is the list of received set elements so far, A additionally pro-
vides a group element a ∈ ZN and an index i ∈ {1, . . . , �} such that y = a xi.
We denote

y(i,a) = a xi.

If an oracle is queried on some set elements, then A also has to provide a rep-
resentation for each set element contained in that query.

Analogously, a quantum adversary is algebraic if for every output state |y〉
it additionally outputs a quantum representation, i.e. a quantum state |i, a〉 s.t.
|y〉 = |a xi〉. Similarly to the classical case, we write |y(i,a)〉. Note that the
representation is entangled with the group element.

Additionally, if the group action supports twists (i.e. it is a CEGAT), we
extend the representation by a bit b, indicating whether the base element was
twisted before applying the group action. Formally, we then have

y(i,a,b) =

{
a xi if b = 0,

a xi
t if b = 1.

As in the AGM we require that all auxiliary input provided to the adversary
which is not in X does not depend on elements from X .
5 To capture general abelian groups, a similar approach as described for the GGAM

in the full version applies.

Generic Models for Group Actions 425

Remark 7. As noted in [25,43], it is somewhat imprecise to require auxiliary
inputs to be independent of set element inputs, as there might be arbitrary,
information theoretically hidden set elements encoded in them. However, gener-
ally it is clear in practice whether such dependencies exist, so we do not specify
this further. Additionally, all adversaries that we consider only receive set ele-
ments as inputs, so it is clear either way that there are no “hidden” set elements.

Remark 8. We assume that all representations provided by an adversary in the
QAGAM are correct. While it is not as straight forward as in the classical set-
ting to actually check this correctness, this is without loss of generality. Instead
of providing the representation and the group element itself, we could instead
require the adversary to only provide the representation and have the reduc-
tion/oracle compute the group element itself. This makes everything consistent
and correct. Alternatively, an approach similar to the semi-classical O2H is possi-
ble, where the reduction measures whether the representation is correct, however
this introduces a small error probability.

Let G1,G2 be two security games in the (Q)AGAM and assume that there
exists an algebraic (ε, t)-algorithm A winning game G2. We say that G1 reduces
to G2 if there exists an efficient (quantum) algorithm R (called the reduction)
such that RA is an (ε′, t′)-algorithm that wins G1 with time complexity t′ ∈
O(poly(t)) and success probability ε′ ∈ Ω(poly(ε)). If R is algebraic, then we
have that RA is an algebraic algorithm as well.

While the GGAM can not be lifted (in a useful way) to the quantum setting
(see Sect. 4.3), the QAGAM is indeed useful for studying the relation between
assumptions in the presence of a quantum adversary. Firstly, this is due to
the fact that the AGAM is not used to prove lower bounds but instead upper
bounds via reductions as described above. This means that all reductions from
the AGAM can be immediately lifted to the QAGAM, as a quantum algorithm
can perform all classical operations. Secondly, some assumptions are inherently
quantum. They can for example include oracles which can be queried on quan-
tum superpositions. For such queries, a classical representation is implausible,
as it potentially has exponential size and would require an adversary to always
know all amplitudes of the states it queries to oracles, which is unreasonable even
for algebraic adversaries. Therefore, the QAGAM is necessary when considering
such assumptions. We analyze two inherently quantum assumptions in Sect. 5.2.

Relation Between AGAM and AGM. Similarly to the GGM and GGAM,
it is possible relate the AGM to the AGAM. While the intuition behind this
relation is similar to the generic case, it is a lot more complicated to formalize.
The main complication stems from the fact that we do not have the useful formal
limitations of the generic group model. Specifically, while it is easy to simply omit
an oracle in an idealized model, formalizing the set of allowed operations of an
arbitrary algorithm on some group or group action requires more rigor in order
to make no arbitrary limitations. While this is possible via the abstraction of

426 J. Duman et al.

group schemes [2,4,24] (which can also be adapted to group actions), it is not
very insightful.

Additionally, relating the AGAM to the AGM is not very useful. While we
can adapt lower bounds from the GGM to the GGAM, we could only hope to
adapt upper bounds from the AGAM to the AGM. However, it is very likely
that there are actually better upper bounds that can be proven in the AGM as
we have more freedom there. So we only get “upper bounds on upper bounds”,
which are of limited use.
Relation between AGAM and AGAM�. As in the GGAM, one generally
can not directly translate results from the AGAM to the AGAM� or vice versa.
For the direction from AGAM to AGAM�, the examples from Sect. 4.2 apply
as well. In the other direction, the situation is a bit more nuanced. Since the
reduction can depend on the representations provided by the adversary, there
are situations where the reduction only uses the twisting functionality of the
group action, if the adversary does so as well. In this case the reduction can be
moved from the AGAM� to the AGAM. In all other cases, directly transfering
reductions seems impossible and both models have to be considered.

5.2 Results in the Quantum Algebraic Group Action Model with
Twists

As a warm-up, we show the equivalence of GA-DLOG and GA-CDH in the
(Q)AGAM�. As the implication from GA-CDH to GA-DLOG is obvious, we only
show the non-trivial implication.

Theorem 6 (GA-DLOG ⇒ GA-CDH in the (Q)AGAM�). Let A be an alge-
braic (quantum) (εA, tA)-adversary against the GA-CDH problem, then there
exists an (εB, tB)-adversary B against the GA-DLOG problem with

εA ≤ εB and tA ≈ tB .

Formally, we prove the theorem in the AGAM�. However, there are no quantum
oracles and the proof adapts to the quantum setting without change.

Proof. We construct a reduction B against GA-DLOG as follows. B gets as input
x1 := a x̃ and chooses r ←$ ZN . It computes x2 := r x1 and then runs
the algebraic adversary A against GA-CDH on (x1, x2). At some point A will
output a solution z as well as a representation (i, s, b). Note that if A wins, then
z = (2a + r) x̃. For each i ∈ {0, 1, 2} and b ∈ {0, 1}, we show how we can solve
the GA-DLOG challenge from s.

– Case 1 (i = 0): Since the twist maps the origin x̃ to itself, we get s x̃ =
(2a + r) x̃ for both b ∈ {0, 1}. Thus, we have to solve 2a = s − r mod N .
If gcd(2, N) = 2 and 2 divides s − r, then we get two solutions and we test
which is the correct one. Otherwise, there exists exactly one solution.

– Case 2 (i = 1): For b = 0, we get s (a x̃) = (2a + r) x̃. Thus, we get
a = s − r mod N . For b = 1, we get s (−a x̃) = (2a + r) x̃ and we have

Generic Models for Group Actions 427

to solve 3a = s − r. If gcd(3, N) = 3 and 3 divides s − r, then we get three
solutions and we test which is the correct one. Otherwise, there exists exactly
one solution.

– Case 3 (i = 2): For b = 0, we get s ((a+ r) x̃) = (2a+ r) x̃. Thus, a = s is
exactly the GA-DLOG solution. For b = 1, we get s((−a−r) x̃) = (2a+r) x̃
and we have to solve 3a = s − 2r, which we can do similar to case 2.

This concludes the proof of Theorem 6. ��

An interesting new problem and its necessity to prove IND-CCA security of
(plain) hashed ElGamal was put forward by [19]. They define different variants of
the strong CDH problem, some of them allowing quantum queries to the decision
oracle. We first recall the definition of the strongest version of their problem.

Definition 10 (Group Action Quantum Strong Computational Diffie-
Hellman). Let CEGA(T) = (ZN ,X , , x̃) be a cyclic effective group action (with
twists). We say that an adversary A solves the group action quantum strong
computational Diffie-Hellman problem (GA-QSt-CDH) if AO(x̃, a x̃, b x̃) =
(a + b) x̃ for a, b ←$ ZN , where A has access to decision oracles O :=
{GA-DDHa(|·, ·〉),GA-DDHb(|·, ·〉)}.

On basis-state inputs (y, z), GA-DDHa returns 1 if a y = z and 0 other-
wise. GA-DDHb is defined equivalently. Note that superposition queries are then
implicitly defined by linearity (i.e., O(

∑
x αxx) =

∑
x αxO(x)).

Remark 9. The GA-QSt-CDH assumption is called Double-Sided Fully Quantum
Group Action Strong Computational Diffie-Hellman Problemin [19]. They define
additional variants where the adversary can only access one of the two decision
oracles or has only partial quantum access (i.e. one of the inputs is implicitly
measured). The GA-QSt-CDH assumption is the strongest of these assumptions,
so the result we show in Theorem 7 applies to the weaker assumptions as well.

Now we show that in the QAGAM�, this problem can actually be reduced to
GA-DLOG using the semi-classical oneway-to-hiding lemma (see the full version).

Theorem 7 (GA-DLOG ⇒ GA-QSt-CDH in the QAGAM�). Let A be an
algebraic quantum (εA, tA)-adversary against the GA-QSt-CDH problem mak-
ing at most q decision oracle queries, then there exist (εB, tB)-adversary B and
(εC , tC)-adversary C against GA-DLOG with

εA ≤
√

(q + 1) · εB + εC and tA ≈ tB ≈ tC .

Proof. The main difficulty of the proof is to show that the reduction can simulate
the quantum GA-DDH oracles. The main observation then is that if the algebraic
adversary queries GA-DDH on points where it might learn something interesting,
it already had to solve GA-DLOG. Therefore, we can assume that the adversary
does not query those points (with noticeable probability amplitude) and we can
remove them from the oracle using the semi-classical O2H lemma. This is done
in the gamehop G0 to G1. On the remaining points where the adversary does

428 J. Duman et al.

Fig. 2. Games G0-G1 for the proof of Theorem 7. The oracle Ob is simulated in the
same way as Oa except for an additional r in the boolean test in line 10. The variable d
is defined as in Eq. (6). Lines 06 and 07 interpret i and j as a two digit binary number.
Note that i, j ≤ 2.

not learn anything of interest, the reduction knows how to simulate GA-DDH
perfectly and we can solve GA-DLOG from the algebraic GA-CDH solution, which
bounds the probability of winning in G1. We proceed with the formal proof.

Let A be a quantum algebraic adversary against the GA-QSt-CDH game.
Consider the games given in Fig. 2.

Game G0. This is the definition of the GA-QSt-CDH game where we write Oa

for GA-DDHa and likewise for Ob. We have

Pr[G0 ⇒ 1] = εA .

Game G1. Here, we make two changes. The first change is a simple conceptual
change. We use the random self-reducibility of GA-DLOG to set x2 to r x1

instead of b x̃ for r ←$ ZN . The second change is in the simulation of the
decision oracles. We reprogram certain points of the decision oracle Oa and Ob

to always output 0. More specifically, we reprogram those points to 0 which would
allow us to solve GA-DLOG if the adversary gave us elements where GA-DDH
returns 1. By the semi-classical oneway-to-hiding lemma (see full version) we
can bound the difference between the games G0 and G1 by the probability of
the adversary finding an element from the reprogrammed set of points S. That
is

|Pr[G0 ⇒ 1] − Pr[G1 ⇒ 1]| ≤
√

(q + 1)Pr
[
Find | AG\S]

,

where we define S as the set where the function SetTest defined in Fig. 3 returns
1.

We bound the right-hand-side, showing that

Pr
[
Find | AG\S

]
≤ εB , (4)

in the reduction B described in Fig. 3. The reduction simulates the oracles as in
G1 and simulates the semi-classical O2H oracle by considering the cases described
below.

Generic Models for Group Actions 429

Fig. 3. Reduction B for bounding the difference between G0 and G1 for the proof of
Theorem 7. The function Solve solves for a and outputs a set of (possibly multiple)
solutions. The oracle Oa is simulated as in G1. The simulation of Ob is similar and
explained in the proof. Line 17 is abuse of notation and queries a search version of
SetTest instead of the decisional version. The variables ia, ib, ja and jb are defined as
in Fig. 2. The variable d is defined as in Eq. (6).

Essentially, there are three cases when the algebraic adversary queries the
decision oracle Oa. The first possibility is that the explanation of the adversary
leads to an equation which we could solve for a if GA-DDH returns 1 on that
input. In that case the reduction solves GA-DLOG. If a vanishes in the expression,
we can simply simulate the GA-DDH oracle, since all variables necessary are
known to the reduction. In the third case, a does not vanish from the expression,
but there is no solution, in which case 0 would have been returned anyway. To
give a simple example of the first case, assume that y = c x1 and z = d x̃,
then a = d− c. To cover all cases we use variables ia, ib, ja and jb as defined in
Fig. 2 and can then derive the DDH expression

a + c + (−1)b1(iaa + ib(r + a))
︸ ︷︷ ︸

�x̃=y

≡ d + (−1)b2(jaa + jb(r + a))
︸ ︷︷ ︸

�x̃=z

mod N . (5)

This equation can be rearranged to

(1 + (−1)b1(ia + ib) − (−1)b2(ja + jb))
︸ ︷︷ ︸

=:d∈[−1,3]

a ≡ ((−1)b2jb−(−1)b1ja)r

+ d − c mod N (6)

which we can use to either solve GA-DLOG when a does not vanish and otherwise
simulate Oa. Clearly, the variable a vanishes in the expression if d = 0, enabling

430 J. Duman et al.

us to extract a solution if d �= 0. This is tested in G1 before using the expression
to simulate Oa. However, in the case d �= 0 we still have to consider the fact
that d | N but d does not divide the right hand side of Eq. (6). Referring back
to Lemma 2 we therefore have no solutions for a. This is a non-issue as we can
just return 0 in that case as well. If d = 0 we test whether the right hand side
evaluates to 0 as well. For simulating Ob(y, z) = Or+a(y, z) = Oa(r y, z) we
proceed in the same way except that r is added to the left side of Eq. (5).

We have just shown Eq. 4. It remains to reduce G1 to GA-DLOG. That is,

Pr[G1 ⇒ 1] ≤ εC .

This is straightforward, the reduction C gets the GA-DLOG challenge x1 = a x̃,
samples r ←$ ZN and sets x2 = r x1. Then C simulates G1 and receives the
GA-CDH solution and solves GA-DLOG as in Theorem 6. Adding up the terms
yields the claimed bound and concludes the proof. ��

Now we want to analyze the strong square inverse Diffie-Hellman assumption
introduced in [1] to prove security of their password-authenticated key exchange
protocol. As pointed out in [19], a security proof in the quantum random oracle
model will rely on a stronger version of the assumption, where decision oracles are
queried in quantum superposition. This is similar to the case of hashed ElGamal
and the GA-QSt-CDH assumption.

Definition 11 (Group Action Quantum Strong Square-Inverse Diffie-
Hellman). Let CEGA(T) = (ZN ,X , , x̃) be a cyclic effective group action (with
twists). We say that an adversary A solves the group action quantum strong
square-inverse Diffie-Hellman problem (GA-QSt-SqInvDH) if AO(x̃, a x̃) =
(y, 2a y,−a y) for a ←$ ZN and some y ∈ X . Here A has access to decision
oracles O := {GA-DDHa(|·〉, |·〉),GA-DDH2a(|·〉, |·〉)} which are defined similarly
to those in Definition 10.

Theorem 8. Let A be an (εA, tA)-algebraic quantum adversary against the
GA-QSt-SqInvDH problem that issues at most q decision oracle queries, then there
exist an (εB, tB)-adversary B and an (εC , tC)-adversary C against the GA-DLOG
problem with

εA ≤
√

(q + 1) · εB + εC and tA ≈ tB ≈ tC .

Here the square-root term comes from the fact that we allow quantum queries to
the decision oracles. When allowing for classical queries only, the bound would
be tight. The proof is very similar to that of Theorem 7 and we defer it to the
full version.

5.3 Security Analysis of ElGamal in the Quantum Algebraic Group
Action Model with Twists

Similar to the analysis in the AGM of [22], we can prove IND-CCA1 security of
group action ElGamal. Going even one step further, we are also able to ana-
lyze IND-QCCA1 security in the QAGAM�. This security notion, where the

Generic Models for Group Actions 431

Fig. 4. The IND-CCA1 game for a key encapsulation mechanism KEM.

adversary is allowed to ask for decapsulation queries in quantum superposition,
was first proposed by Boneh and Zhandry in [12]. We recall the definition of a
key encapsulation mechanism and the group action q-decisional Diffie-Hellman
assumption below. This assumption is similar to those in Definitions 7 and 8.
Lastly, we define the ElGamal KEM in Fig. 5.

Key Encapsulation Mechanism. Let PK, SK, C, K be sets. A key encapsu-
lation mechanism KEM = (Gen,Encaps,Decaps) consists of the following three
algorithms:

– Gen: The key generation algorithm outputs a public key pk ∈ PK and a secret
key sk ∈ SK.

– Encaps(pk): On input a public key pk, the encapsulation algorithm returns a
ciphertext ct ∈ C and a key K ∈ K, where ct is an encapsulation of K.

– Decaps(sk, ct): On input a secret key sk and a ciphertext ct, the decapsulation
algorithm returns a key K ∈ K or a special failure symbol ⊥.

We require perfect correctness, i.e. for all (pk, sk) ← Gen, (ct,K) ← Encaps(pk),
we have Decaps(sk, ct) = K.

IND-CCA1 Security. We define the IND-CCA1 security game (aka. lunchtime
security) in Fig. 4. We say that an adversary A solves the IND-CCA1 game if the
game outputs 1. Analogously, we define the IND-QCCA1 security game, where
the only difference from the regular IND-CCA1 game is that an adversary has
quantum access to the decapsulation oracle.

Definition 12 (Group Action q-Decisional Diffie-Hellman). Let
CEGA(T) = (ZN ,X , , x̃). We say that an adversary A solves the group action
q-decisional Diffie-Hellman (GA-q-DDH) if

A(x̃, a x̃, 2a x̃, . . . , qa x̃, b x̃, zr) = r ,

where a, b ←$ ZN , z0 := (a + b) x̃, z1 ←$ X and r ←$ {0, 1}.

Theorem 9 (GA-q-DDH =⇒ IND-QCCA1 of ElGamal). Let A be an alge-
braic quantum (εA, tA)-adversary against the IND-QCCA1 security of ElGamal
KEM making at most q − 1 quantum decapsulation queries, then there exists a
quantum (εB, tB)-adversary B against GA-q-DDH with

εA ≤ εB and tA ≈ tB .

432 J. Duman et al.

Fig. 5. The ElGamal KEM for CEGA(T) = (ZN ,X , �, x̃).

Proof. We describe how the reduction works classically. Simulation of the quan-
tum decapsulation oracle follows from linearity of quantum states and from the
fact that all computations are deterministic from their inputs.

Let (x1, x2, . . . , xq, y, z) := (a x̃,2a x̃,. . . ,qa x̃, b x̃, z) be the GA-q-DDH
challenge. The main idea of the proof is to use the xi to simulate the decapsu-
lation oracle together with the algebraic explanation provided by the algebraic
adversary. If the adversary A uses twists, the reduction B can still simulate
decapsulation queries by twisting the appropriate xi. We will therefore define
x−i := xt

i. The main observation is that an adversary can learn higher “powers”
of a x̃, i.e. ka x̃ for k ∈ [q], by querying a x̃ to the decapsulation oracle. A can
then query the decapsulation oracle on ciphertexts which depend on answers to
previous decapsulations and so on. Then the i-th answer to the decapsulation
oracle can be written as

Ki = di xji = (jia + di) x̃

where |ji| ≤ i. For the i + 1-th decapsulation query, we then have

Decapsa(c(k,d,r)) = a c = (a + d) Kr
k

= (a + (−1)tika + dk + d) x̃ = (d + dk) x(−1)tik+1 ,

where Kr
k = Kk if b = 0 and Kt

k otherwise. With ij+1 := (−1)tik + 1 and
di := d+dk, we get a representation for Kj+1 as above, which can in turn be used
to simulate the next decapsulation. Since A makes at most q − 1 decapsulation
queries, we always have |ik| ≤ q, so the simulation always works.

Being able to simulate decapsulation queries, the adversary sets the ElGamal
randomness carrier to be b x̃ and sets the KEM key to be z and uses the
distinguishing bit to decide if it is in the real or random case of the GA-q-DDH
problem. ��

Acknowledgments. The work of Julien Duman was supported by the German Fed-
eral Ministry of Education and Research (BMBF) in the course of the 6GEM Research
Hub under Grant 16KISK037. Dominik Hartmann was supported by the European
Union (ERC AdG REWORC - 101054911). Eike Kiltz was supported by the Deutsche
Forschungsgemeinschaft (DFG, German research Foundation) as part of the Excellence
Strategy of the German Federal and State Governments - EXC 2092 CASA - 390781972,
and by the European Union (ERC AdG REWORC - 101054911). Sabrina Kunzweiler,

Generic Models for Group Actions 433

Jonas Lehmann and Doreen Riepel were funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excellence Strategy -
EXC 2092 CASA - 390781972.

References

1. Abdalla, M., Eisenhofer, T., Kiltz, E., Kunzweiler, S., Riepel, D.: Password-
authenticated key exchange from group actions. In: Dodis, Y., Shrimpton, T.
(eds.) Advances in Cryptology - CRYPTO 2022. LNCSD, vol. 13508, pp. 699–728.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_24

2. Agrikola, T., Hofheinz, D.: Interactively secure groups from obfuscation. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 341–370. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_12

3. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64834-3_14

4. Albrecht, M.R., Farshim, P., Hofheinz, D., Larraia, E., Paterson, K.G.: Multilinear
maps from obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS,
vol. 9562, pp. 446–473. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49096-9_19

5. Baghery, K., Cozzo, D., Pedersen, R.: An isogeny-based ID protocol using struc-
tured public keys. In: Paterson, M.B. (ed.) IMACC 2021. LNCS, vol. 13129, pp.
179–197. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92641-0_9

6. Bao, F., Deng, R.H., Zhu, H.F.: Variations of Diffie-Hellman problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39927-8_28

7. Bauer, B., Fuchsbauer, G., Loss, J.: A classification of computational assumptions
in the algebraic group model. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12171, pp. 121–151. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56880-1_5

8. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of
triple encryption. Cryptology ePrint Archive, Report 2004/331 (2004), https://
eprint.iacr.org/2004/331

9. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5_9

10. Biasse, J.F., Song, F.: Efficient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number fields. In: Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 893–902. SIAM (2016)

11. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2007). https://doi.org/
10.1007/s00145-007-9005-7

12. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1_21

https://doi.org/10.1007/978-3-031-15979-4_24
https://doi.org/10.1007/978-3-319-76581-5_12
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-662-49096-9_19
https://doi.org/10.1007/978-3-662-49096-9_19
https://doi.org/10.1007/978-3-030-92641-0_9
https://doi.org/10.1007/978-3-540-39927-8_28
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/978-3-030-56880-1_5
https://eprint.iacr.org/2004/331
https://eprint.iacr.org/2004/331
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21

434 J. Duman et al.

13. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH (preliminary
version). Cryptology ePrint Archive, Report 2022/975 (2022). https://eprint.iacr.
org/2022/975

14. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3_15

15. Cheon, J.H.: Discrete logarithm problems with auxiliary inputs. J. Cryptol. 23(3),
457–476 (2009). https://doi.org/10.1007/s00145-009-9047-0

16. Cohen, H., Lenstra, H.: Heuristics on class groups. In: Number theory, pp. 26–36.
Springer (1984)

17. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

18. De Feo, L., Meyer, M.: Threshold schemes from isogeny assumptions. In: Kiayias,
A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp.
187–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_7

19. Duman, J., Hartmann, D., Kiltz, E., Kunzweiler, S., Lehmann, J., Riepel, D.:
Group action key encapsulation and non-interactive key exchange in the qrom. In:
ASIACRYPT 2022 (2022)

20. Duman, J., Hövelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G., Unruh, D.:
A thorough treatment of highly-efficient NTRU instantiations. Cryptology ePrint
Archive, Report 2021/1352 (2021). https://eprint.iacr.org/2021/1352

21. Ettinger, M., Høyer, P.: On quantum algorithms for noncommutative hidden sub-
groups. Adv. Appl. Math. 25(3), 239–251 (2000). https://doi.org/10.1006/aama.
2000.0699,https://www.sciencedirect.com/science/article/pii/S0196885800906997

22. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

23. Hafner, J.L., McCurley, K.S.: A rigorous subexponential algorithm for computation
of class groups. J. Am. Math. Soc. 2(4), 837–850 (1989)

24. Kastner, J., Pan, J.: Towards instantiating the algebraic group model. Cryptology
ePrint Archive, Report 2019/1018 (2019). https://eprint.iacr.org/2019/1018

25. Katz, J., Zhang, C., Zhou, H.S.: An analysis of the algebraic group model. Cryp-
tology ePrint Archive, Report 2022/210 (2022). https://eprint.iacr.org/2022/210

26. Kim, T.: Security analysis of group action inverse problem with auxiliary inputs
with application to CSIDH Parameters. In: Seo, J.H. (ed.) ICISC 2019. LNCS, vol.
11975, pp. 165–174. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
40921-0_10

27. Kobayashi, H., Gall, F.: Dihedral hidden subgroup problem: A survey. Information
and Media Technologies 1, 178–185 (2006). https://doi.org/10.11185/imt.1.178

28. de Kock, B., Gjøsteen, K., Veroni, M.: Practical isogeny-based key-exchange with
optimal tightness. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC
2020. LNCS, vol. 12804, pp. 451–479. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-81652-0_18

29. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

30. Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve. Cryp-
tology ePrint Archive, Report 2022/1026 (2022). https://eprint.iacr.org/2022/1026

https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/s00145-009-9047-0
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-45388-6_7
https://eprint.iacr.org/2021/1352
https://doi.org/10.1006/aama.2000.0699,
https://doi.org/10.1006/aama.2000.0699,
https://www.sciencedirect.com/science/article/pii/S0196885800906997
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2019/1018
https://eprint.iacr.org/2022/210
https://doi.org/10.1007/978-3-030-40921-0_10
https://doi.org/10.1007/978-3-030-40921-0_10
https://doi.org/10.11185/imt.1.178
https://doi.org/10.1007/978-3-030-81652-0_18
https://doi.org/10.1007/978-3-030-81652-0_18
https://eprint.iacr.org/2022/1026

Generic Models for Group Actions 435

31. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1_2

32. Mizuide, T., Takayasu, A., Takagi, T.: Tight reductions for Diffie-Hellman variants
in the algebraic group model. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol.
11405, pp. 169–188. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
12612-4_9

33. Montgomery, H., Zhandry, M.: Full quantum equivalence of group action DLog
and CDH, and more. In: ASIACRYPT 2022 (2022)

34. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2_16

35. Pointcheval, D., Wang, G.: VTBPEKE: verifier-based two-basis password expo-
nential key exchange. In: Karri, R., Sinanoglu, O., Sadeghi, A.R., Yi, X. (eds.)
ASIACCS 17, pp. 301–312. ACM Press (Apr 2017)

36. Robert, D.: Breaking SIDH in polynomial time. Cryptology ePrint Archive, Report
2022/1038 (2022). https://eprint.iacr.org/2022/1038

37. Rostovtsev, A., Stolbunov, A.: Public-Key Cryptosystem Based On Isogenies.
Cryptology ePrint Archive, Report 2006/145 (2006). https://eprint.iacr.org/2006/
145

38. Shanks, D.: Class number, a theory of factorization, and genera. In: Proc. of Symp.
Math. Soc., 1971, vol. 20, pp. 41–440 (1971)

39. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-
toring. In: 35th FOCS, pp. 124–134. IEEE Computer Society Press (Nov 1994).
https://doi.org/10.1109/SFCS.1994.365700

40. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0_18

41. Yoneyama, K.: Post-quantum variants of ISO/IEC standards: compact chosen
ciphertext secure key encapsulation mechanism from isogeny. In: Proceedings of
the 5th ACM Workshop on Security Standardisation Research Workshop, SSR
2019, pp. 13–21. Association for Computing Machinery, New York (2019). https://
doi.org/10.1145/3338500.3360336

42. Zhandry, M.: Redeeming reset indifferentiability and applications to post-quantum
security. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part I. LNCS, vol.
13090, pp. 518–548. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-
030-92062-3_18

43. Zhandry, M.: To label, or not to label (in generic groups). In: Dodis, Y., Shrimpton,
T. (eds.) Advances in Cryptology - CRYPTO 2022. LNCS, vol. 13509, pp. 66–96.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15982-4_3

https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-030-12612-4_9
https://doi.org/10.1007/978-3-030-12612-4_9
https://doi.org/10.1007/978-3-030-45724-2_16
https://eprint.iacr.org/2022/1038
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1145/3338500.3360336
https://doi.org/10.1145/3338500.3360336
https://doi.org/10.1007/978-3-030-92062-3_18
https://doi.org/10.1007/978-3-030-92062-3_18
https://doi.org/10.1007/978-3-031-15982-4_3

Crypto for Crypto

CRAFT: Composable Randomness
Beacons and Output-Independent Abort

MPC From Time

Carsten Baum1,2, Bernardo David3(B), Rafael Dowsley4, Ravi Kishore3,
Jesper Buus Nielsen2, and Sabine Oechsner5

1 Technical University of Denmark, Lyngby, Denmark
cabau@dtu.dk

2 Aarhus University, Aarhus, Denmark
{cbaum,jbn}@cs.au.dk

3 IT University of Copenhagen, Copenhagen, Denmark
{beda,rava}@itu.dk

4 Monash University, Melbourne, Australia
rafael@dowsley.net

5 University of Edinburgh, Edinburgh, UK
s.oechsner@ed.ac.uk

Abstract. Recently, time-based primitives such as time-lock puzzles
(TLPs) and verifiable delay functions (VDFs) have received a lot of atten-
tion due to their power as building blocks for cryptographic protocols.
However, even though exciting improvements on their efficiency and secu-
rity (e.g. achieving non-malleability) have been made, most of the exist-
ing constructions do not offer general composability guarantees and thus
have limited applicability. Baum et al. (EUROCRYPT 2021) presented
in TARDIS the first (im)possibility results on constructing TLPs with
Universally Composable (UC) security and an application to secure two-
party computation with output-independent abort (OIA-2PC), where an
adversary has to decide to abort before learning the output. While these

C. Baum–Funded by the European Research Council (ERC) under the European
Unions’ Horizon 2020 program under grant agreement No 669255 (MPCPRO).
B. David–Supported by the Concordium Foundation and the Independent Research
Fund Denmark grants number 9040-00399B (TrA2C), 9131-00075B (PUMA) and 0165-
00079B (P2DP).
R. Dowsley–Partially done while Rafael Dowsley was with Bar-Ilan University and
supported by the BIU Center for Research in Applied Cryptography and Cyber Security
in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office.
R. Kishore–Supported by the Independent Research Fund Denmark grant number
9131-00075B (PUMA).
J.B. Nielsen–Partially funded by The Concordium Foundation; The Danish Indepen-
dent Research Council under Grant-ID DFF-8021-00366B (BETHE); The Carlsberg
Foundation under the Semper Ardens Research Project CF18-112 (BCM).
S. Oechsner–Supported by Input Output (iohk.io) through their funding of the Edin-
burgh Blockchain Technology Lab. Partially done while Sabine Oechsner was with
Aarhus University and supported by the Danish Independent Research Council under
Grant-ID DFF-8021-00366B (BETHE) and Concordium Foundation.
c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 439–470, 2023.
https://doi.org/10.1007/978-3-031-31368-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_16&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_16

440 C. Baum et al.

results establish the feasibility of UC-secure TLPs and applications, they
are limited to the two-party scenario and suffer from complexity over-
heads. In this paper, we introduce the first UC constructions of VDFs
and of the related notion of publicly verifiable TLPs (PV-TLPs). We use
our new UC VDF to prove a folklore result on VDF-based randomness
beacons used in industry and build an improved randomness beacon from
our new UC PV-TLPs. We moreover construct the first multiparty com-
putation protocol with punishable output-independent aborts (POIA-
MPC), i.e. MPC with OIA and financial punishment for cheating. Our
novel POIA-MPC both establishes the feasibility of (non-punishable)
OIA-MPC and significantly improves on the efficiency of state-of-the-art
OIA-2PC and (non-OIA) MPC with punishable aborts.

1 Introduction

Time has always been an important, although sometimes overlooked, resource in
cryptography. Recently, there has been a renewed interest in time-based prim-
itives such as Time-Lock Puzzles (TLPs) [39] and Verifiable Delay Functions
(VDFs) [12]. TLPs allow a sender to commit to a message in such a way that it
can be obtained by a receiver only after a certain amount of time, during which
the receiver must perform a sequence of computation steps. On the other hand,
a VDF works as a pseudorandom function that is evaluated by performing a
certain number of computation steps (which take time), after which it generates
both an output and a proof that this number of steps has been performed to
obtain the output. A VDF guarantees that evaluating a certain number of steps
takes at least a certain amount of time and that the proof obtained with the
output can be verified in time essentially independent of the number of steps.

Both TLPs and VDFs have been investigated extensively in recent work
which focusses on improving their efficiency [11,38,41], obtaining new prop-
erties [25] and achieving stronger security guarantees [22,26,31]. These works
are motivated by the many applications of TLPs and VDFs, such as random-
ness beacons [12,13], partially fair secure computation [20] and auctions [13].
In particular, all these applications use TLPs and VDFs concurrently com-
posed with other cryptographic primitives and sub-protocols. However, most
of current constructions of TLPs [11,13,26,31,39] and all known constructions
of VDFs [12,22,25,38,41] do not offer general composability guarantees, meaning
it is not possible to easily and securely use those in more complex protocols.

The current default tool for proving security of cryptographic constructions
under general composability is the Universal Composability (UC) framework
[14]. However, the UC framework is inherently asynchronous and does not cap-
ture time, meaning that a notion of passing time has to be added in order to
analyze time-based constructions in UC. Recently, TARDIS [6] introduced a
suitable time model and the first UC construction of TLPs, proven secure under
the iterated squaring assumption of [39] using a programmable random oracle.
[6] also shows that a programmable random oracle is necessary for realizing such
time-based primitives in the UC framework.

CRAFT 441

Besides analyzing the (im)possibility of constructing UC TLPs, TARDIS [6]
showed that UC TLPs can be used to construct UC-secure Two-Party Compu-
tation with Output-Independent Abort (OIA-2PC), where the adversary must
decide whether to cause an abort before learning the output of the computation.
OIA-2PC itself implies fair coin tossing, an important task used in randomness
beacons. However, while these results showcase the power of UC TLPs, they are
restricted to the two-party setting and incur a high concrete complexity. More-
over, their results do not extend to VDFs. This leaves an important gap, since
many TLP applications (e.g. auctions [13]) are intrinsically multiparty and VDFs
are used in practice for building randomness beacons [12,40]. The TARDIS TLP
formalization and its applications also give adversaries exactly as much power in
breaking the time-based assumption as the honest parties, which appears very
restrictive and unrealistic.

1.1 Our Contributions

In this work, we present the first UC-secure constructions of VDFs and introduce
the related notion of Publicly Verifiable TLPs, which we also construct. Using
these primitives as building blocks, we construct a new more efficient randomness
beacon and Multiparty Computation with Output-Independent Abort (OIA-
MPC) and Punishable Abort. Our constructions are both practical and proven
secure under general composition, and support adversaries who can break the
timing assumptions faster than honest parties.

UC Verifiable Delay Functions. We introduce the first UC definition of
VDFs [12], which is a delicate task and a contribution on its own. We also present
a matching construction that consists in compiling a trapdoor VDF [41] into a
UC-secure VDF in the random oracle model while only increasing the proof size
by a small constant. Even though we manage to construct a very simple and
efficient compiler, the security proof for this construction is highly detailed and
complex. Based on our UC VDF, we give the first security proof of a folklore
randomness beacon construction [12].

UC Publicly Verifiable Time-Lock Puzzles (PV-TLP). We introduce
publicly verifiable TLPs (PV-TLP), presenting an ideal functionality and a UC-
secure construction for this primitive. A party who solves a PV-TLP (or its
creator) can prove to any third party that a certain message was contained in
the PV-TLP (or that it was invalid) in way that verifying the proof takes con-
stant time. We show that the TLP of [6] allows for proving that a message was
contained in a valid TLP. Next, we introduce a new UC-secure PV-TLP scheme
based on trapdoor VDFs that allows for a solver to prove that a puzzle is invalid,
similarly to the construction of [26], which does not achieve UC security.

Efficient UC Randomness Beacon from PV-TLP. Building on our new
notion (and construction) of PV-TLPs, we introduce a new provably secure ran-
domness beacon protocol. Our construction achieves far better best case scenario
efficiency than the folklore VDF-based construction [12]. Our novel PV-TLP-
based construction requires only O(n) broadcasts (as does [12]) to generate a

442 C. Baum et al.

uniformly random output, where n is the number of parties. Differently from
the VDF-based construction [12], whose execution time is at least the worst case
communication channel delay, our protocol outputs a random value as soon as all
messages are delivered, achieving in the optimistic case an execution as fast as 2
round trip times in the communication channel. This construction and its proof
require not only a simple application of UC PV-TLPs but also a careful analysis
of the relative delays between PV-TLPs broadcast channels/public ledgers and
PV-TLPs. We not only present this new protocol but also provide a full secu-
rity proof in the partially synchronous model (where the communication delay
is unknown), characterizing the protocol’s worst case execution time in terms of
the communication delay upper bound. In comparison, no security proof for the
construction of [12] is presented in their work.

UC Multiparty Computation (MPC) with Output Independent Abort
(OIA-MPC). We construct the first UC-secure protocol for Multiparty Compu-
tation with Output Independent Abort (OIA-MPC), which is a stronger notion
of MPC where aborts by cheaters must be made before they know the output.
This notion is a generalization of the limited OIA-2PC result from [6]. As our
central challenge, we identify the necessity of synchronizing honest parties so
that their views allow them to agree on the same set of cheaters. We design a
protocol that only requires that honest parties are not too much out of sync
when the protocol starts and carefully analyze its security.

UC MPC with Punishable Output Independent Abort (POIA-MPC)
from PV-TLP. We construct the first protocol for Multiparty Computation
with Punishable Output Independent Abort (POIA-MPC), generalizing OIA-
MPC to a setting where i) outputs can be publicly verified; and ii) cheaters in
the output stage can be identified and financially punished. Our construction
employs our new publicly verifiable TLPs to construct a commitment scheme
with delayed opening. To use this simple commitment scheme, we improve the
currently best [4] techniques for publicly verifiable MPC with cheater identifi-
cation in the output stage. We achieve this by eliminating the need for homo-
morphic commitments, which makes our construction highly efficient. We do not
punish cheating that occurs before the output phase (i.e. before the output can
be known), as this requires expensive MPC with publicly verifiable identifiable
abort [8,30,34]. Our approach is also taken in other previous works [1,4,10,35].

1.2 Related Work

The recent work of Baum et al. [6] introduced the first construction of a compos-
able TLP, while previous constructions such as [11,13,39] were only proven to
be stand-alone secure. As an intermediate step towards composable TLPs, non-
malleable TLPs were constructed in [26,31]. The related notion of VDFs has
been investigated in [12,22,25,38,41]. Also for these constructions, composabil-
ity guarantees have so far not been shown. Hence, issues arise when using these
primitives as building blocks in more complex protocols, since their security is
not guaranteed when they are composed with other primitives.

CRAFT 443

Randomness beacons that resist adversarial bias have been constructed based
on publicly verifiable secret sharing (PVSS) [16,33] and on VDFs [12], although
neither of these constructions is composable. The best UC-secure randomness
beacons based on PVSS [17] still require O(n2) communication where n is the
number of parties even if only one single value is needed. UC-secure randomness
beacons based on verifiable random functions [2,21] can be biased by adversaries.

Fair secure computation (where honest parties always obtain the output if
the adversary learns it) is known to be impossible in the standard communica-
tion model and with dishonest majority [18], which includes the 2-party setting.
Couteau et al. [20] presented a secure two-party fair exchange protocol for the
“best possible” alternative, meaning where an adversary can decide to withhold
the output from an honest party but must make this decision independently of
the protocol output. Baum et al. [6] showed how to construct a secure 2-party
computation protocol with output-independent abort and composition guaran-
tees. Neither of these works considers the important multiparty setting.

Another work which considers fairness is that of Garay et al. [27], which
introduced the notion of resource-fairness for protocols in UC. Their work is
able to construct fair MPC in a modified UC framework, while we obtain OIA-
MPC which can be used to obtain partially fair secure computation (as defined
in [28]). The key difference is that their resource-fairness framework needs to
modify the UC framework in such a way that environments, adversaries and
simulators must have an a priori bounded running time. Being based on the
TARDIS model of [6], our work uses the standard UC framework without such
stringent (and arguably unrealistic) modifications/restrictions.

An alternative, recently popularized idea is to circumvent the impossibility
result of [18] by imposing financial penalties. In this model, cheating behavior is
punished using cryptocurrencies and smart contracts, which incentivizes rational
adversaries to act honestly. Works that achieve fair output delivery with penalties
such as [1,4,10,35] allow the adversary to make the abort decision after he
sees the output. Therefore financial incentives must be chosen according to the
adversary’s worst-case gain. Our POIA-MPC construction forces the adversary
to decide before seeing the output and incentives can be based on the expected
gain of cheating in the computation instead. All these mentioned works as well
as ours focus on penalizing cheating during the output phase only, as current
MPC protocols with publicly verifiable cheater identification are costly [7,8,34].

2 Preliminaries

We use the (Global) Universal Composability or (G)UC model [14,15] for ana-
lyzing security and refer interested readers to the original works for more details.

In UC protocols are run by interactive Turing Machines (iTMs) called parties.
A protocol π will have n parties which we denote as P = {P1, . . . ,Pn}. The
adversary A, which is also an iTM, can corrupt a subset I ⊂ P as defined by the
security model and gains control over these parties. The parties can exchange
messages via resources, called ideal functionalities (which themselves are iTMs)
and which are denoted by F .

444 C. Baum et al.

As usual, we define security with respect to an iTM Z called environment.
The environment provides inputs to and receives outputs from the parties P. To
define security, let πF1,... ◦ A be the distribution of the output of an arbitrary
Z when interacting with A in a real protocol instance π using resources F1,
Furthermore, let S denote an ideal world adversary and F ◦S be the distribution
of the output of Z when interacting with parties which run with F instead of π
and where S takes care of adversarial behavior.

Definition 1. We say that F UC-securely implements π if for every iTM A
there exists an iTM S (with black-box access to A) such that no environment Z
can distinguish πF1,... ◦ A from F ◦ S with non-negligible probability.

In the security experiment Z may arbitrarily activate parties or A, though only
one iTM (including Z) is active at each point of time. We denote with λ the
statistical and τ the computational security parameter.

Public Verifiability in UC. We model the public verification of protocol
outputs, for simplicity, by having a static set of verifiers V. These parties exist
during the protocol execution (observing the public protocol transcript) but only
act when they receive an input to be publicly verified. Converting our approach
to dynamic sets of verifiers (as in e.g. [3]) is possible using standard techniques.

2.1 The TARDIS [6] Composable Time Model

The TARDIS [6] model expresses time within the GUC framework in such a way
that protocols can be made oblivious to clock ticks. To achieve this, TARDIS
provides a global ticker functionality Gticker as depicted in Fig. 1. This global
ticker provides “ticks” to ideal functionalities in the name of the environment. A
tick represents a discrete unit of time which can only be advanced, and moreover
only by one unit at a time. Parties observe events triggered by elapsed time, but
not the time as it elapses in Gticker. Ticked functionalities can freely interpret ticks
and perform arbitrary internal state changes. To ensure that all honest parties
can observe all relevant timing-related events, Gticker only progresses if all honest
parties have signaled to it that they have been activated (in arbitrary order). An
honest party may contact an arbitrary number of functionalities before asking
Gticker to proceed. We refer to [6] for more details.

How We Use the TARDIS [6] Model. To control the observable side effects of
ticks, the protocols and ideal functionalities presented in this work are restricted
to interact in the1 “pull model”. This precludes functionalities from implicitly
providing communication channels between parties. Parties have to actively
query functionalities in order to obtain new messages, and they obtain the acti-
vation token back upon completion. Ticks to ideal functionalities are modeled
as follows: upon each activation, a functionality first checks with Gticker if a tick
1 The pull model, a standard approach in networking, has been used in previous works

before such as [32].

CRAFT 445

Fig. 1. Global ticker functionality Gticker (from [6]).

has happened and if so, may act accordingly. For this, it will execute code in a
special Tick interface.

In comparison to [6], after every tick, each ticked functionality F that
we define (unless mentioned otherwise) allows A to provide an optional
(Schedule, sid,D) message parameterized by a queue D. This queue contains
commands to F which specify if the adversary wants to abort F or how it
will schedule message delivery to individual parties in P. The reason for this
approach is that it simplifies the specification of a correct F . This is because it
makes it easier to avoid edge cases where an adversary could influence the output
message buffer of F such that certain conditions supposedly guaranteed by F
break. As mentioned above, an adversary does not have to send (Schedule, sid,D)
- each F can take care of guaranteed delivery itself. On the other hand, D can
depend on information that the adversary learns when being activated after a
tick event.

Modeling Start (De)synchronization. In the 2-party setting considered in
TARDIS [6] there is no need to capture the fact that parties receive inputs and
start executing protocols at different points in time, since parties can adopt the
default behavior of waiting for a message from the other before progressing.
However, in the multiparty setting (and specially in applications sensitive to
time), start synchronization is an important issue that has been observed before
in the literature (e.g. [32,36]) although it is often overlooked. In the spirit of the
original TARDIS model, we flesh out this issue by ensuring that time progresses
regardless of honest parties having received their inputs (meaning that protocols

446 C. Baum et al.

may be insecure if a fraction of the parties receive inputs “too late”). Formally,
we require that every (honest) party sends (activated) to Gticker during every
activation regardless of having received its input. We explicitly address the start
synchronization conditions required for our protocols to be secure.

Ticked Functionalities. We explicitly mention when a functionality F is
“ticked”. Each such F internally has two lists M,Q which are initially empty. The
functionality will use these to store messages that the parties ought to obtain.
Q contains messages to parties that are currently buffered. Actions by honest
parties can add new messages to Q, while actions of the adversary can change
the content of Q in certain restricted ways or move messages from Q to M. M
contains all the “output-ready” messages that can be read by the parties directly.
The content of M cannot be changed by A and he cannot prevent parties from
reading it. “Messages” from F may e.g. be messages that have been sent between
parties or delayed responses from F to a request from a party.

We assume that each ticked functionality F has two special interfaces. One,
as mentioned above, is called Tick and is activated internally, as outlined before,
upon activation of F if a tick event just happened on Gticker. The second is called
Fetch Messages. This latter interface allows parties to obtain entries of M.
The interface works identically for all ticked functionalities as follows:

Fetch Message: Upon receiving (Fetch, sid) by Pi ∈ P retrieve the set L of all
entries (Pi, sid, ·) in M, remove L from M and send (Fetch, sid, L) to Pi.

Macros. A recurring pattern in ticked functionalities in [6] is that the func-
tionality F , upon receiving a request (Request, sid,m) by party Pi must first
internally generate unique message IDs mid to balance message delivery with
the adversarial option to delay messages. F then internally stores the message
to be delivered together with the mid in Q and finally hands out i,mid to the
ideal adversary S as well as potentially also m. This allows S to influence deliv-
ery of m by F at will by referring to each unique mid. We now define macros that
simplify the aforementioned process. When using the macros we will sometimes
leave out certain options if their choice is clear from the context.

Macro “Notify the parties T ⊆ P about a message with prefix Request from Pi

via Q with delay Δ” expands to

1. Let T = {Pi1 , . . . ,Pik}. Sample unused message IDs midi1 , . . . ,midik .
2. Add (Δ,midij , sid,Pij , (Request, i)) to Q for each Pij ∈ T .

Macro “Send message m with prefix Request received from party Pi to the parties
T ⊆ P via Q with delay Δ” expands to

1. Let T = {Pi1 , . . . ,Pik}. Sample unused message IDs midi1 , . . . ,midik .
2. Add (Δ,midij , sid,Pij , (Request, i,m)) to Q for each Pij ∈ T .

CRAFT 447

Macro. “Notify S about a message with prefix Request” expands to “Send
(Request, sid, i,midi1 , . . . ,midik) to S.” Finally, the Macro “Send m with prefix
Request and the IDs to S” expands to “Send (Request, sid, i,m,midi1 , . . . ,midik)
to S.”

If honest parties send messages via simultaneous broadcast (ensuring simul-
taneous arrival), then we will only choose one mid for all messages. As the adver-
sary can influence delivery on mid-basis, this ensures simultaneous delivery. We
indicate this by using the prefix “simultaneously” in the first two macros.

2.2 Trapdoor Verifiable Sequential Computation

Functionality Fpsc is presented in Fig. 2 and captures the notion of a generic
stand alone trapdoor verifiable sequential computation scheme (a generaliza-
tion of a trapdoor VDF) in a similar way as the iterated squaring assumption
from [39] is captured in [6]. More concretely, Fpsc allows the evaluation of Γ
computational steps taking as input an initial state el and outputting a final
state elΓ along with a proof π. A verifier can use π to check that a state el′

Γ

was indeed obtained after Γ computational steps starting from el. Each compu-
tational step takes a tick to happen, and parties who are currently performing a
computation must activate Fpsc in order for their computation to advance when
the next tick happens. The proof π′ can be verified with respect to el, elΓ , Γ
in time essentially independent of Γ . Since current techniques (e.g. [25,38,41])
for verifying such a proof require non-constant computational time, we model
the number of ticks necessary for each by function g(Γ). The implementation of
Fpsc is presented in the full version [5] due to space limitations.

Fpsc must be used to capture a stand alone verifiable sequential computation
because, as observed in [6], exposing the actual states from a concrete computa-
tional problem would allow the environment to perform several computational
steps without activating other parties (and essentially breaking the hardness
assumption). However, notice that Fpsc does not guarantee that the states it
outputs are uniformly random or non-malleable, as it allows the adversary to
choose the representation of each state, which is crucial in our proof. What Fpsc

does guarantee is that proofs are only generated and successfully verified if the
claimed number of computational steps is indeed correct, also guaranteeing that
the transition between states el and nxt is injective.

2.3 Multi-party Message Delivery

Ticked Authenticated Broadcast. In Fig. 3 we describe a ticked functional-
ity FΓ,Δ

BC,delay for delayed authenticated simultaneous broadcast. FΓ,Δ
BC,delay allows

each party Pi ∈ P to broadcast one message mi in such a way that each mi

is delivered to all parties at the same tick (although different messages mi,mj

may be delivered at different ticks). This functionality guarantees messages to
be delivered at most Δ ticks after they were input. Moreover, it requires that all

448 C. Baum et al.

Fig. 2. Ticked Functionality Fpsc for trapdoor provable sequential computations.

parties Pi ∈ P must provide inputs mi within a period of Γ ticks, modeling a
start synchronization requirement. If this loose start synchronization condition
is not fulfilled, the functionality no longer provides any guarantees, allowing

CRAFT 449

Fig. 3. Ticked ideal functionality FΓ,Δ
BC,delay for synchronized authenticated broadcast

with maximal message delay Δ.

the adversary to freely manipulate message delivery (specified in Total Break-
down).

In comparison to the two-party secure channel functionality FΔ
smt,delay of

[6], our broadcast functionality FΓ,Δ
BC,delay uses a scheduling-based approach and

explicitly captures start synchronization requirements. Using scheduling makes
formalizing the multiparty case much easier while requiring start synchroniza-
tion allows us to realize the functionality as discussed below. This also means
that FΓ,Δ

BC,delay is not a simple generalization of the ticked channels of [6].

450 C. Baum et al.

We briefly discuss how to implement FΓ,Γ,Δ
BC,delay. We could start from a syn-

chronous broadcast protocol like [24] or the one in [23] with early stopping. These
protocols require all parties to start in the same round and that they terminate
within some known upper bound. For t < n/3 corruptions we could use [19]
to first synchronize the parties before running such a broadcast. If t ≥ n/3
we can get rid of the requirement that they start in the same round using the
round stretching techniques of [37]. This will maintain that the parties termi-
nate within some known upper bound. Then use n instances of such a broadcast
channel to let each party broadcast a value. When starting the protocols at time
t a party Pi knows that all protocol instances terminate before time t + Δ so it
can wait until time t + Δ and collect the set of outputs. Notice that by doing
so the original desynchronization Γ is maintained. When using protocols with
early stopping [23], the parties might terminate down to one round apart in
time. But this will be one of the stretched rounds, so it will increase the original
desynchronization by a constant factor.

We stress that other broadcast channels than the one in FΓ,Δ
BC,delay may also be

modeled using [6], although these may not be applicable to instantiate OIA-MPC
as we do in Sect. 6.

Ticked Public Ledger. In order to define a ledger functionality FLedger, we
adapt ideas from Badertscher et al. [3]. The ledger functionality FLedger is, due
to space limitations, presented in the full version [5]. There, we also describe it
in more detail. The original ledger functionality of Badertscher et al. [3] keeps
track of many relevant times and interacts with a global clock in order to take
actions at the appropriate time. Our ledger functionality FLedger, on the other
hand, only keeps track of a few counters. The counters are updated during the
ticks, and the appropriate actions are done if some of them reach zero. We also
enforce liveness and chain quality properties, and our ledger functionality can
be realized by the same protocols as [3].

3 Publicly Verifiable Time-Lock Puzzles

In this section, we describe an ideal functionality FTLP for publicly verifiable
TLPs. Intuitively, a publicly verifiable TLP allows a prover who performs all
computational steps needed for solving a PV- TLP to later convince a verifier
that the PV-TLP contained a certain message or that it was invalid. The verifier
only needs constant time to verify this claim. The ideal functionality FTLP as
presented in Figs. 4 and 5 models exactly that behavior: FTLP has an extra
interface for any verifier to check whether a certain solution to a given PV-TLP
is correct. Moreover, FTLP allows the adversary to obtain the message from a
PV-TLP with Γ steps in just εΓ steps for 0 < ε ≤ 1, modeling the slack between
concrete computational complexities for honest parties and for the adversary is
sequential computation assumptions.

Functionality FTLP allows the owner to create a new TLP containing message
m to be solved in Γ steps by activating it with (CreatePuzzle, sid, Γ,m). Other

CRAFT 451

parties can request the solution of a TLP puz generated by the owner of FTLP

by activating it with message (Solve, sid, puz). After every tick when a party
activates FTLP with message (AdvanceState, sid), one step of this party’s previosly
requested puzzle solutions is evaluated. When εΓ steps have been computed,
FTLP leaks message m contained in the puzzle puz to the adversary S. When all
Γ steps of a puzzle solution requested by a party are evaluated, FTLP outputs
m and a proof π that m was indeed contained in puz to that party. Finally, a
party who has a proof π that a message m was contained in puz can verify this
proof by activating FTLP with message (Verify, sid, puz,m, π).

Fig. 4. Ticked Functionality FTLP for publicly verifiable time-lock puzzles (Part 1).

In the full version [5], we show that the TLP from [6] realizes a slightly
weaker version of FTLP and present a new Protocol πtlp that realizes FTLP (i.e.
proving Theorem 1). Protocol πtlp is constructed from a standalone trapdoor
VDF modeled by Fpsc. A puzzle owner Po uses the trapdoor to compute the
VDF on a random input st0 for the number of steps Γ required by the PV-
TLP, obtaining the corresponding output stΓ and proof π. The owner then
computes tag1 = H1(st0, Γ, stΓ , π) ⊕ m, tag2 = H2(st0, Γ, stΓ , π, tag1,m)
and tag = (tag1, tag2), where m is the message in the puzzle, using random
oracles H1 and H2. The final puzzle is puz = (st0, Γ, tag). A solver computes

452 C. Baum et al.

Γ steps of the trapdoor VDF with input st0 to get a proof of PV-TLP solution
π′ = (stΓ , π), which can be used to check the consistency of tag and retrieve
m. If tag is not consistent, π′ can also be used to verify this fact.

Theorem 1. Protocol πtlp (G)UC-realizes FTLP in the Gticker,GrpoRO,Fpsc-hybrid
model with computational security against a static adversary. For every static
adversary A and environment Z, there exists a simulator S s.t. Z cannot distin-
guish πtlp composed with Gticker,GrpoRO,Fpsc and A from S composed with FTLP.

Fig. 5. Ticked Functionality FTLP for publicly verifiable time-lock puzzles (Part 2).

4 Universally Composable Verifiable Delay Functions

We present a generic UC construction of VDFs as modeled in functionality FVDF

(Fig. 6) from a generic verifiable sequential computation scheme modeled in func-
tionality Fpsc (Fig. 2) and a global random oracle GrpoRO. Our construction is
presented in protocol πVDF (Fig. 7).

CRAFT 453

Fig. 6. Ticked Functionality FVDF for Verifiable Delay Functions.

Verifiable Delay Functions. We model the UC VDF in Functionality FVDF.
It ensures that each computational step of the VDF evaluation takes at least
a fixed amount of time (one tick) and guarantees that the output obtained
after a number of steps is uniformly random and unpredictable even to the
adversary. However, it allows that the adversary obtains the output of evaluating
a VDF for Γ steps in only εΓ steps for 0 < ε ≤ 1, modeling the slack between
concrete computational complexities for honest parties and for the adversary
in sequential computation assumptions. Naturally, FVDF also provides a proof
that each output has been correctly obtained by computing a certain number of
steps on a given input. As it is the case with Fpsc, the time required to verify
such proofs is variable and modeled as a function g(Γ). Moreover, FVDF allows

454 C. Baum et al.

the ideal adversary to choose the representation of intermediate computational
steps involved in evaluating the VDF, even though the output is guaranteed to
be random. Another particularity of FVDF used in the proof is a leakage of each
evaluation performed by an honest party at the tick when the result is returned
to the original caller. This leakage neither affects the soundness of the VDF nor
the randomness of its output, but is necessary for simulation.

Functionality FVDF allows for a party to start evaluating the VDF for Γ steps
on an input in by activating it with message (Solve, sid, in, Γ). After this initial
request, the party needs to activate FVDF with message (AdvanceState, sid) on Γ
different ticks in order to receive the result of the VDF evaluation. This is taken
care of by the Tick interface of FVDF, whose instructions are executed after every
new tick, causing FVDF to iterate over every pending VDF evaluation request
from parties who have activated FVDF in the previous tick. Each evaluation is
performed by asking the adversary for a representation of the next intermediate
state stc+1. When εΓ steps have been evaluated, FVDF leaks the output out to
the adversary S. When all Γ steps have been evaluated by FVDF, it outputs out
and a proof Π that this output was obtained from in after Γ steps. Moreover,
parties who have an input in and a potential proof Π that out was obtained as
output after evaluating the VDF for Γ steps on this input can activate FVDF

with message (Verify, sid, in, Γ, out,Π) to verify the proof. Once a proof verifi-
cation request has been made, the party needs to activate FVDF with message
(AdvanceState, sid) on g(Γ) different ticks to receive the result of the verification.

Construction. Our protocol πVDF realizing FVDF in the Fpsc,GrpoRO-hybrid
model is described in Fig. 7. We use an instance of Fpsc where Po =⊥, meaning
that no party in P has access to the trapdoor evaluation interface. Departing
from Fpsc,GrpoRO this protocol works by letting the state el1 be the VDF input
in. Once all the Γ solution steps are computed and the final state and proof
elΓ , π are obtained, the output is defined as out = H(sid|Γ |elΓ |π) where H is
an instance of GrpoRO and the VDF proof is defined as Π = (elΓ , π). Verification
of an output out obtained from input in with proof Π consists of again setting
the initial state el′

1 = in and the output out′ = H(sid|Γ |elΓ |π), then checking
that out = out′ and verifying with Fpsc that π is valid with respect to Γ, el′

1, elΓ .
The security of Protocol πVDF is formally stated in Theorem 2, and the proof is
presented in the full version [5] due to space limitations.

Theorem 2. Protocol πVDF (G)UC-realizes FVDF in the Gticker,GrpoRO,Fpsc-
hybrid model with computational security against a static adversary: there exists
a simulator S such that for every static adversary A no environment Z can
distinguish πVDF composed with GrpoRO,Fpsc and A from S composed with FVDF.

5 UC-Secure Semi-synchronous Randomness Beacons

We model a randomness beacon as a publicly verifiable coin tossing functionality
FRB

ΔTLP−RB presented in Fig. 8. Even though this functionality does not periodi-

CRAFT 455

Fig. 7. Protocol πVDF realizing Verifiable Delay Functions functionality FVDF in the
Fpsc,GrpoRO-hybrid model.

cally produce new random values as in some notions of randomness beacons, it
can be periodically queried by the parties when they need new randomness.

5.1 Randomness Beacons from TLPs

In order to construct a UC-secure randomness beacon from TLPs and a semi-
synchronous broadcast channel FΓ,Δ

BC,delay (with finite but unknown delay Δ), we
depart from a simple commit-then-open protocol for n parties with honest major-
ity where commitments are substituted by publicly verifiable TLPs as captured
in FTLP. Such a protocol involves each party Pi posting a TLP containing a
random value ri, waiting for a set of at least 1 + n/2 TLPs to be received and
then opening their TLPs, which can be publicly verified. The output is defined
as r = rj1 ⊕· · ·⊕rj1+n/2 , where values rj are valid TLP openings. If an adversary
tries to bias the output by refusing to reveal the opening of its TLP, the honest
parties can recover by solving the TLP themselves.

To ensure the adversary cannot bias/abort this protocol, we must ensure two
conditions: 1. At least 1 + n/2 TLPs are broadcast and at least 1 is generated

456 C. Baum et al.

Fig. 8. Ticked Functionality FRB
ΔTLP−RB for Randomness Beacons.

by an honest party (i.e. it contains an uniformly random ri); 2. The adversary
must broadcast its TLPs before the honest TLPs open, so it does not learn any
of the honest parties’ ri and cannot choose its own ris in any way that biases the
output. While condition 1 is trivially guaranteed by honest majority, we ensure
condition 2 by dynamically adjusting the number of steps δ needed to solve the
TLPs without prior knowledge of the maximum broadcast delay Δ. Every honest
party checks that at least 1+n/2 TLPs have been received from distinct parties
before a timeout of εδ ticks (i.e. the amount of ticks needed for the adversary
to solve honest party TLPs) counted from the moment they broadcast their
own TLPs. If this is not the case, the honest parties increase δ and repeat the
protocol from the beginning until they receive at least 1+n/2 TLPs from distinct
parties before the timeout. In the optimistic scenario where all parties follow the
protocol (i.e. revealing TLP openings) and where the protocol is not repeated,
this protocol terminates as fast as all publicly verifiable openings to the TLPs
are revealed with computational and broadcast complexities of O(n). Otherwise,
the honest parties only have to solve the TLPs provided by corrupted parties
(who do not post a valid opening after the commitment phase).

We design and prove security of our protocol with an honest majority in
the semi-synchronous model where FΓ,Δ

BC,delay has a finite but unknown maximum
delay Δ. However, if we were in a synchronous setting with a known broadcast
delay Δ, we could achieve security with a dishonest majority by proceeding to
the Opening Phase after a delay of δ > Δ, since there would be a guarantee
that all honest party TLPs have been received.

We describe protocol πTLP−RB in Fig. 9 and state its security in Theorem 3.
The proof is presented in the full version [5] due to space limitations.

Theorem 3. If Δ is finite (though unknown) and all Pi ∈ P receive inputs
within a delay of δ ticks of each other, Protocol πTLP−RB UC-realizes FRB

ΔTLP−RB

in the FTLP,FΓ,Δ
BC,delay-hybrid model with computational security against static

CRAFT 457

Fig. 9. Protocol πTLP−RB for a randomness beacon based on PV-TLPs.

458 C. Baum et al.

adversaries corrupting t < n
2 parties in P for ΔTLP−RB = 3(ε−1Δ+1)+

∑ε−1Δ
i=1 i,

where ε is FTLP’s slack parameter. There exists a simulator S such that for every
static adversary A, and any environment Z, the environment cannot distinguish
an execution of πTLP−RB by A composed with FTLP,FΓ,Δ

BC,delay from an ideal exe-
cution with S and FRB

ΔTLP−RB .

5.2 Using a Public Ledger FLedger with πTLP−RB

Instead of using a delayed broadcast FΓ,Δ
BC,delay, we can instantiate Proto-

col πTLP−RB using a public ledger FLedger for communication. In this case, we
must parameterize the TLPs with a delay δ that is large enough to guarantee
that all honest parties (including desynchronized ones) agree on the set of the
first t + 1 TLPs that are posted on the ledger before proceeding to the Open-
ing Phase. We describe an alternative Protocol πTLP−RB−LEDGER that behaves
exactly as Protocol πTLP−RB but leverages FLedger for communication.

Protocol. πTLP−RB−LEDGER: This protocol is exactly the same as πTLP−RB except
for using FLedger for communication instead of FΓ,Δ

BC,delay in the following way:

– At every point of πTLP−RB where parties send (Send, sid, ssid,m) to FΓ,Δ
BC,delay,

instead they send (Submit, sid,m) to FLedger.
– At every point of πTLP−RB where parties send (Fetch, sid) to FΓ,Δ

BC,delay and
check for messages in (Fetch, sid, L), instead they send (Read, sid) to FLedger

and check for messages in (Read, sid, statei).

Theorem 4. If Δ = maxTXDelay+ emptyBlocks · slackWindow (computed from
FLedger’s parameters) is finite (though unknown), Protocol πTLP−RB−LEDGER UC-
realizes FRB

ΔTLP−RB in the FTLP,FLedger-hybrid model with computational secu-
rity against a static adversary corrupting t < n

2 parties in P for ΔTLP−RB =

3(ε−1Δ+1)+
∑ε−1Δ

i=1 i, where ε is FTLP’s slack parameter. Formally, there exists
a simulator S such that for every static adversary A, and any environment Z,
the environment cannot distinguish an execution of πTLP−RB−LEDGER by A com-
posed with FTLP,FLedger from an ideal execution with S and FRB

ΔTLP−RB .

Proof. The proof is presented in the full version [5] due to space limitations.

5.3 Randomness Beacons from VDFs

It has been suggested that VDFs can be used to obtain a randomness beacon [12]
via a simple protocol where parties post plaintext values r1, . . . , rn on a public
ledger and then evaluate a VDF on input H(r1| . . . |rn), where H() is a crypto-
graphic hash function, in order to obtain a random output r. However, despite
being used in industry [40], the security of this protocol was never formally
proven due to the lack of composability guarantees for VDFs. Our work settles
this question by formalizing Protocol πVDF−RB and proving Theorem 5 (in the
full version [5]), which characterizes the worst case execution time.

CRAFT 459

Theorem 5. If Δ = maxTXDelay+ emptyBlocks · slackWindow (computed from
FLedger’s parameters) is finite (but unknown), Protocol πVDF−RB UC-realizes
FRB

ΔTLP−RB in the FVDF,FLedger-hybrid model with computational security against
static adversaries corrupting t < n/2 parties for ΔTLP−RB = 2(ε−1Δ + 1) +
∑ε−1Δ

i=1 i, where ε is FVDF’s slack parameter. There is a simulator S s.t. for
every static adversary A, and any environment Z, Z cannot distinguish an exe-
cution of πVDF−RB by A composed with FVDF,FLedger from an ideal execution with
S and FRB

ΔTLP−RB .

6 MPC with (Punishable) Output-Independent Abort

In this section we will describe how to construct a protocol that achieves MPC
with output-independent abort. The starting point of this construction will be
MPC with secret-shared output2, which is a strictly weaker primitive, as well as
the broadcast as modeled in FΓ,Δ

BC,delay and Commitments with Delayed Openings
FΔ,δ,ζ

com . In the full version [5], we subsequently show how to financially penalize
cheating behavior in the protocol (POIA-MPC).

Fig. 10. How MPC with (Punishable) Output-Independent Abort is constructed.

6.1 Functionalities for Output-Independent Abort

We begin by mentioning the functionalities that are used in our construction
and which have not appeared in previous work (when modeled with respect to
time). These functionalities are:

2 For the sake of efficiency we focus on an output phase that uses additive secret
sharing. However, the core MPC computation could use any secret sharing scheme,
while only the output phase is restricted to additive secret sharing. This approach
can be generalized by using a generic MPC protocol that computes an additive secret
sharing of the output as part of the evaluated circuit, although at an efficiency cost.
We remark that efficient MPC protocols matching our requirements do exist, e.g. [29].

460 C. Baum et al.

1. FΔ
mpc,sso (Fig. 11 and Fig. 12) for secure MPC with secret-shared output.

2. FΔ,δ,ζ
mpc,oia (Fig. 13 and Fig. 14) for OIA-MPC.

In the full version [5], we also introduce the following functionalities:

1. FΔ
ct for coin-flipping with abort.

2. FΔ,δ,ζ
com for commitments with delayed non-interactive openings.

3. Fγ,δ,ζ,g
vcom for commitments with verifiable delayed non-interactive openings.

4. Fγ,δ,ζ
SC which is an abstraction of a smart contract.

5. FΔ,γ,δ,ζ
mpc,poia for POIA-MPC.

Before formally introducing all functionalities and explaining them in more
detail, we show how they are related in our construction in Fig. 10. As can be
seen there our approach is twofold. First, we will realize FΔ,δ,ζ

mpc,oia via the protocol
πmpc,oia relying on FΓ,Δ

BC,delay,FΔ
ct ,FΔ

mpc,sso and FΔ,δ,ζ
com . Then, we will show how to

implement FΔ,γ,δ,ζ
mpc,poia via the protocol πmpc,poia (a generalization of πmpc,oia) which

uses Fγ,δ,ζ
SC ,FΔ

ct ,FΔ
mpc,sso as well as Fγ,δ,ζ,g

vcom . As mentioned in Fig. 10, Fγ,δ,ζ,g
vcom and

Fγ,δ,ζ
SC are modifications of FΔ,δ,ζ

com and FΓ,Δ
BC,delay. We now describe the function-

alities required to build πmpc,oia in more detail.

MPC with Secret-Shared Output. The functionality FΔ
mpc,sso is formally

introduced in Fig. 11 and Fig. 12. It directly translates an MPC protocol with
secret-shared output into the TARDIS model, but does not make use of any tick-
related properties beyond scheduling of message transmission. The functionality
supports computations on secret input where the output of the computation is
additively secret-shared among the participants. Additionally, it allows parties
to sample random values, compute linear combinations of outputs and those
random values and allows to reliably but unfairly open secret-shared values.
FΔ

mpc,sso can be instantiated from many different MPC protocols, such as those
based on secret-sharing [9] or multiparty BMR [29].

Commitments with Delayed Openings. We describe the functionality
FΔ,δ,ζ

com for commitments with delayed non-interactive openings in the full ver-
sion [5]. The functionality distinguishes between a sender PSend, which can make
commitments, and a set of receivers, which obtain the openings. Compared to
regular commitments with a normal Open that immediately reveals the output
to all parties, PSend is also allowed to perform a Delayed Open, where there is
a delay between the choice of a sender to open a commitment (or not) and the
actual opening towards receivers and the adversary.

While both Commit and Open directly resemble their counterparts in a
normal commitment functionality, the Delayed Open logic is not as straight-
forward. What happens during such a delayed open is that first all honest parties
will simultaneously learn that indeed an opening will happen in the future - for
which they obtain a message DOpen. Additionally, FΔ,δ,ζ

com stores the openings

CRAFT 461

Fig. 11. Ticked Functionality FΔ
mpc,sso for MPC with Secret-Shared Output and Linear

Secret Share Operations.

in an internal queue O. These openings can not be rescheduled by the adver-
sary, and therefore it will take δ ticks before honest parties learn the opening of
the commitment. This means that for honest parties, it may take up to Δ + δ
ticks depending on when DOpen is obtained. The simulator will already learn
the opening after ζ ≤ δ ticks, similar to how it might solve FTLP faster. FΔ,δ,ζ

com

ensures that all honest parties will learn the delayed opening simultaneously.
In the full version [5], we provide a secure instantiation of a publicly verifiable

version of FΔ,δ,ζ
com . Since we do not require homomorphic operations, this means

that it can be realized with a much simpler protocol than the respective two-
party functionality in [6].

In Fig. 13 and Fig. 14 we describe the functionality FΔ,δ,ζ
mpc,oia for MPC with

output-independent abort.
In terms of the actual secure computation, our functionality is identical with

FΔ
mpc,sso, although it does not reveal the concrete shares to the parties and the

462 C. Baum et al.

Fig. 12. Ticked Functionality FΔ
mpc,sso for MPC with Secret-Shared Output and Linear

Secret Share Operations, Part 2.

adversary during the sharing. The output-independent abort property of our
functionality is then achieved as follows: in order to reveal the output of the
computation, each party will have to send Reveal to FΔ,δ,ζ

mpc,oia. Once all honest
parties and the verifiers thus learn that the parties indeed are synchronized by

CRAFT 463

Fig. 13. Ticked FΔ,δ,ζ
mpc,oia Functionality for MPC with Output-Independent Abort.

seeing that the first synchronization message arrives at all parties (st = sync
and f =
), the internal state of the functionality changes. From this point on,
the adversary can, within an additional time-frame of ζ ticks, decide whether
to reveal its shares or not. Then, once these ζ ticks passed, S will obtain the
output y of the computation after having provided the set of aborting parties
J . If J = ∅ then FΔ,δ,ζ

mpc,oia will, within δ additional ticks, simultaneously output y
to all honest parties, while it otherwise outputs the set J .

464 C. Baum et al.

Fig. 14. Ticked FΔ,δ,ζ
mpc,oia Functionality for MPC with Output-Independent Abort.

The additional up to δ ticks between the adversary learning y and the honest
parties learning y or J is due to our protocol and will be more clear later.

Coin Tossing. πmpc,oia additionally requires a functionality for coin tossing FΔ
ct ,

which we present in the full version [5]. Note that FΔ
ct can easily be realized in

the FΓ,Δ
BC,delay,FΔ,δ,ζ

com -hybrid model.

6.2 Building MPC with Output-Independent Abort

We will now describe how to construct an MPC protocol that guarantees output-
independent abort. Although this might appear like a natural generalization
of [6], constructing the protocol is far from trivial as we must take care that all
honest parties agree on the same set of cheaters. Our protocol works as follows:

1. The parties begin by sending a message beat (i.e. a heartbeat) to the func-
tionality FΓ,Δ

BC,delay. Throughout the protocol, they do the following in parallel
to running the MPC protocol, unless mentioned otherwise:

– All parties wait for a broadcast message beat from all parties on FΓ,Δ
BC,delay.

If some parties did not send their message to FΓ,Δ
BC,delay in one iteration

then all parties abort. Otherwise, they send beat in another iteration to
FΓ,Δ

BC,delay.

CRAFT 465

Fig. 15. Protocol πmpc,oia for MPC with Output-Independent Abort.

The purpose of the heartbeat is to ensure that honest parties are synchronized
throughout the protocol, allowing them to later achieve agreement on the
corrupt parties.

466 C. Baum et al.

Fig. 16. Protocol πmpc,oia for MPC with Output-Independent Abort.

2. The parties provide inputs xi to FΔ
mpc,sso, perform the computation using

FΔ
mpc,sso and obtain secret shares y1, . . . ,yn of the output y. They also sample

a blinding value ri ∈ F
λ for each Pi inside FΔ

mpc,sso. yi, ri is opened to Pi.
3. Next, the parties commit to both yi, ri using FΔ,δ,ζ

com towards all parties. Dis-
honest parties may commit to a different value than the one they obtained
from FΔ

mpc,sso and consistency must therefore be checked.
4. All parties use the coin-flipping functionality to sample a uniformly random

matrix A ∈ F
λ×m. This matrix is used to perform the consistency check.

5. For each i ∈ [n] the parties compute and open ti = ri +Ayi using FΔ
mpc,sso.

Due to the blinding value ri opening ti will not leak any information about
yi of Pi ∈ P \ I to the adversary.

6. Each party that obtained ti changes the next beat message to ready. Once
parties receive ready from all other parties and are thus synchronized, they
simultaneously perform a delayed open of yi, ri using their commitments (and
ignore FΓ,Δ

BC,delay from now on). Parties which don’t open commitments in time
or whose opened values do not yield ti are considered as cheaters.

Intuitively, our construction has output-independent abort because of the
timing of the opening: Until Step 6., the adversary may abort at any time but no
such abort will provide it with information about the output. Once the opening
phase begins, parties can easily verify if an opening by an adversary is valid or not
- because he committed to its shares before A was chosen and the probability of
a collision with ti for different choices of y′

i, r
′
i can be shown to be negligible in λ

as this is exactly the same as finding a collision to a universal hash function. The
decision to initiate its opening, on the other hand, will arrive at each honest party

CRAFT 467

before the honest party’s delayed opening result is available to the adversary -
which will be ensured by the appropriate choice of ζ > Δ. In turn, an adversary
must thus send its opening message before learning the shares of an honest party,
which is exactly the property of output-independent abort. At the same time,
honest parties have their DOpen message delivered after Δ steps already and
will never be identified as cheaters.

Concerning agreement on the output of the honest parties, we see that if
all honest parties initially start almost synchronized (i.e. at most Γ ticks apart)
then if they do not abort during the protocol they will simultaneously open their
commitments. Therefore, using FΓ,Δ

BC,delay guarantees that they all have the same
view of all adversarial messages during the Reveal phase.

Interestingly, our construction does not need homomorphic commitments as
was necessary in [4,6] to achieve their verifiable or output-independent abort
in UC. Clearly, our solution can also be used to improve these protocols and
to simplify their constructions. The full protocol can be found in Fig. 15 and
Fig. 16. We now prove the following Theorem:

Theorem 6. Let λ be the statistical security parameter and ζ > Δ. Assume
that all honest parties obtain their inputs at most Γ ticks apart. Then the pro-
tocol πmpc,oia GUC-securely implements the ticked functionality FΔ,δ,ζ

mpc,oia in the
FΔ

mpc,sso,FΔ,δ,ζ
com ,FΔ

ct ,FΓ,Δ
BC,delay-hybrid model against any static adversary corrupt-

ing up to n − 1 parties in P. The transcripts are statistically indistinguishable.

To prove security, we will construct a PPT simulator S and then argue indis-
tinguishability of the transcripts of πmpc,oia ◦ A and FΔ,δ,ζ

mpc,oia ◦ S. The proof is
presented in the full version [5] due to space limitations.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, Ł: Fair two-party
computations via bitcoin deposits. In: Böhme, R., Brenner, M., Moore, T., Smith,
M. (eds.) FC 2014. LNCS, vol. 8438, pp. 105–121. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44774-1_8

2. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
composable proof-of-stake blockchains with dynamic availability. In: ACM CCS
2018, Oct. (2018)

3. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7_11

4. Baum, C., David, B., Dowsley, R.: Insured MPC: efficient secure computation with
financial penalties. In: FC 2020, Feb. (2020)

5. Baum, C., David, B., Dowsley, R., Kishore, R., Nielsen, J.B., Oechsner, S.: Craft:
composable randomness beacons and output-independent abort MPC from time.
Cryptology ePrint Archive, Paper 2020/784 (2020). https://eprint.iacr.org/2020/
784

https://doi.org/10.1007/978-3-662-44774-1_8
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://eprint.iacr.org/2020/784
https://eprint.iacr.org/2020/784

468 C. Baum et al.

6. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: TARDIS: a founda-
tion of time-lock puzzles in UC. In: Canteaut, A., Standaert, F.-X. (eds.) EURO-
CRYPT 2021. LNCS, vol. 12698, pp. 429–459. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-77883-5_15

7. Baum, C., Orsini, E., Scholl, P.: Efficient secure multiparty computation with
identifiable abort. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp.
461–490. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-
4_18

8. Baum, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Efficient constant-round MPC
with identifiable abort and public verifiability. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 562–592. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1_20

9. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4_11

10. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_24

11. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters,
B.: Time-lock puzzles from randomized encodings. In: ITCS 2016, Jan. (2016)

12. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_25

13. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6_15

14. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, Oct. (2001)

15. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_4

16. Cascudo, I., David, B.: SCRAPE: scalable randomness attested by public entities.
In: ACNS 17, July (2017)

17. Cascudo, I., David, B.: ALBATROSS: publicly attestable batched randomness
based on secret sharing. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12493, pp. 311–341. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64840-4_11

18. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: 18th ACM STOC, May (1986)

19. Coan, B.A., Dolev, D., Dwork, C., Stockmeyer, L.J.: The distributed firing squad
problem. SIAM J. Comput. 18(5), 990–1012 (1989)

20. Couteau, G., Roscoe, A.W., Ryan, P.Y.A.: Partially-fair computation from timed-
release encryption and oblivious transfer. In: ACISP 21, Dec. (2021)

21. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8_3

https://doi.org/10.1007/978-3-030-77883-5_15
https://doi.org/10.1007/978-3-030-77883-5_15
https://doi.org/10.1007/978-3-662-53641-4_18
https://doi.org/10.1007/978-3-662-53641-4_18
https://doi.org/10.1007/978-3-030-56880-1_20
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-030-64840-4_11
https://doi.org/10.1007/978-3-030-64840-4_11
https://doi.org/10.1007/978-3-319-78375-8_3

CRAFT 469

22. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from super-
singular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019. LNCS, vol. 11921, pp. 248–277. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34578-5_10

23. Dolev, D., Reischuk, R., Strong, H.R.: Early stopping in byzantine agreement. J.
ACM 37(4), 720–741 (1990)

24. Dolev, D., Strong, H.R.: Polynomial algorithms for multiple processor agreement.
In: Proceedings of the 14th Annual ACM Symposium on Theory of Computing,
pp. 401–407. ACM (1982)

25. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay
functions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107,
pp. 125–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-
3_5

26. Freitag, C., Komargodski, I., Pass, R., Sirkin, N.: Non-malleable time-lock puzzles
and applications. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp.
447–479. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_15

27. Garay, J., MacKenzie, P., Prabhakaran, M., Yang, K.: Resource fairness and com-
posability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006). https://doi.org/10.
1007/11681878_21

28. Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation. J. Crypt.
(1), Jan. (2012)

29. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70694-8_21

30. Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable
abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp.
369–386. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-
1_21

31. Katz, J., Loss, J., Xu, J.: On the security of time-lock puzzles and timed commit-
ments. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 390–413.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2_14

32. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous
computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_27

33. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7_12

34. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5_25

35. Kumaresan, R., Bentov, I.: How to use bitcoin to incentivize correct computations.
In: ACM CCS 2014, Nov. (2014)

36. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols
and security under composition. In: 38th ACM STOC, May (2006)

37. Lindell, Y., Lysyanskaya, A., Rabin, T.: Sequential composition of protocols with-
out simultaneous termination. In: Ricciardi, A., editor, PODC 2002 (2002)

https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.1007/978-3-030-90456-2_15
https://doi.org/10.1007/11681878_21
https://doi.org/10.1007/11681878_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-030-64381-2_14
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5_25

470 C. Baum et al.

38. Pietrzak, K.: Simple verifiable delay functions. In: ITCS 2019, Jan. (2019)
39. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release

crypto (1996)
40. VDF Alliance Team. Vdf alliance (2020). https://www.vdfalliance.org/what-we-

do
41. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)

EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4_13

https://www.vdfalliance.org/what-we-do
https://www.vdfalliance.org/what-we-do
https://doi.org/10.1007/978-3-030-17659-4_13

Efficient and Universally Composable
Single Secret Leader Election

from Pairings

Dario Catalano1, Dario Fiore2, and Emanuele Giunta2,3,4(B)

1 Università di Catania, Catania, Italy
catalano@dmi.unict.it

2 IMDEA Software Institute, Madrid, Spain
{dario.fiore,emanuele.giunta}@imdea.org

3 Universidad Politecnica de Madrid, Madrid, Spain
4 Scuola Superiore di Catania, Catania, Italy

Abstract. Single Secret Leader Election (SSLE) protocols allow a set
of users to elect a leader among them so that the identity of the winner
remains secret until she decides to reveal herself. This notion was formal-
ized and implemented in a recent result by Boneh, et al. (ACM Advances
on Financial Technology 2020) and finds important applications in the
area of Proof of Stake blockchains.

In this paper we put forward new SSLE solutions that advance the
state of the art both from a theoretical and a practical front. On the theo-
retical side we propose a new definition of SSLE in the universal compos-
ability framework. We believe this to be the right way to model security
in highly concurrent contexts such as those of many blockchain related
applications. Next, we propose a UC-realization of SSLE from public key
encryption with keyword search (PEKS) and based on the ability of dis-
tributing the PEKS key generation and encryption algorithms. Finally,
we give a concrete PEKS scheme with efficient distributed algorithms for
key generation and encryption and that allows us to efficiently instanti-
ate our abstract SSLE construction.

Our resulting SSLE protocol is very efficient, does not require par-
ticipants to store any state information besides their secret keys and
guarantees so called on-chain efficiency: the information to verify an
election in the new block should be of size at most logarithmic in the
number of participants. To the best of our knowledge, this is the first
efficient SSLE scheme achieving this property.

1 Introduction

Leader Election protocols are of fundamental importance to realize consensus
in distributed systems. The rise of blockchain and its numerous applications
brought renewed interest on this topic and motivated the need to consider con-
sensus protocols that also provide some secrecy guarantees. This is the case, for
example, of leader elections in the context of Proof of Stake blockchains (e.g.,
[AMM18,GHM+17,KKKZ19,GOT19]) where one may wish to randomly select
c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 471–499, 2023.
https://doi.org/10.1007/978-3-031-31368-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_17&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_17

472 D. Catalano et al.

a secret leader, i.e., a leader that remains hidden until she reveals herself. In these
contexts, leader-secrecy allows to protect against several attacks that would oth-
erwise compromise the liveness of the blockchain. Indeed, if a malicious party
could know the identity of a future leader, he could try to deny the leader’s
access to the network (using a denial of service attack, for instance) before the
latter publishes her block, and this would affect, at least temporarily, the live-
ness and finality of the system. Bribery attacks could also be carried out with
ease in order to influence the set of transactions that are going to be published.

Many existing solutions address this issue by secretly selecting a few potential
leaders in expectation (e.g. [BGM16,BPS16]). This means that, for every given
round, on expectation a single block leader is elected. Unfortunately, however,
this also means that even many (or zero) leaders may be elected in any round.

This state of affairs led to the quest for an election protocol that secretly pro-
duces a single leader [Lab19], i.e., where exactly one single candidate is able to
prove that she won the election. In principle this problem could be solved using
general multiparty computation. What make such an approach problematic are
however the efficiency requirements desired in a blockchain context. In particu-
lar, beyond being computationally efficient, the protocol should guarantee low
communication complexity (i.e. the total number of exchanged messages should
scale with O(N) or better, where N is the number of miners/users), and more
importantly it should be on-chain efficient: the amount of bits to store on chain,
per new block, should be small (ideally logarithmic in N).

The question of finding such an election protocol was formally addressed in
a recent work of Boneh et al. [BEHG20] who put forward the notion of Single
Secret Leader Election (SSLE, from now on). Informally, an SSLE scheme is
a distributed protocol that secretly elects a leader and satisfies uniqueness (at
most one leader is elected), fairness (all participants have the same probability
of becoming the leader) and unpredictability (if the adversary does not win the
election, she should not be able to guess the leader better than at random).
Boneh et al. [BEHG20] also proposed three constructions meeting this notion
that are based on different approaches and that achieve different efficiency (and
security) tradeoffs (cf. Table 1 for a summary).

Their first SSLE scheme relies on indistinguishability obfuscation (iO)
[GGH+13] and its main advantage is to achieve the lowest communication com-
plexity and on-chain efficiency; indeed every election involves a single constant-
size message from the winner. At the same time, given the status of iO realiza-
tions, this SSLE protocol is of very limited (if any) practical interest.

The second construction in [BEHG20] builds on Threshold Fully homomor-
phic Encryption (TFHE) [BGG+18] and is asymptotically less efficient than the
iO-based one: every election needs O(t) communication (where t is a bound on
the number of malicious users tolerated by the system) to partially decrypt a
publicly computable ciphertext; after this round of communication, the winner
can prove her victory. A nice aspect of the TFHE-based solution is that it actu-
ally requires only a leveled scheme for circuits that for, say, N = 216 participants,
can be of depth as little as 10. However, other aspects of this solution make it far

Efficient and Universally Composable Single Secret Leader 473

from practical. First, it is not on-chain efficient: to make the election verifiable,
O(t) bits of information must be stored in the new block (unless one applies
a transformation through a general-purpose SNARK proof that t valid partial
decryptions exist). Second, it requires large O(N log N) secret key shares, and
no concrete distributed setup (for the TFHE scheme) is explicitly provided in
[BGG+18]. So to the best of our knowledge one would have to rely on general
multiparty computation techniques to achieve it.

The third SSLE construction in [BEHG20] is based on shuffling and the
decisional Diffie-Hellman assumption. Asymptotically, it performs worse than
the other two solutions: every new election requires to communicate and store
in the new block a freshly shuffled list of N Diffie-Hellman pairs1 (along with
a NIZK of shuffle). Notice that this makes the solution inherently not on-chain
efficient. The authors also describe a lightweight variant whose communication
costs are O(

√
N), but the tradeoff here is a scheme with significantly lower

security guarantees, as the secret leader is selected in a public subset of only√
N users.

We note also that both the iO and TFHE-based SSLE protocols need a
trusted setup. The latter must be realized with a distributed protocol and should
be in principle refreshed when new users join the system. On the other hand, the
shuffle-based solution is essentially setup-free and thus can handle more easily
users that join and leave the system dynamically.

Beyond efficiency considerations, another fundamental limitation of the con-
structions above is that they are proved secure with respect to a (stand-alone)
game-based definition which makes their actual security in concurrent settings
unclear. This is problematic in practice as it is hardly the case that distributed
consensus protocols are executed stand-alone.

Given this state of affairs, the main question that motivates our work is:
is it possible to build an SSLE protocol that is on-chain efficient and achieves
good practical performances while also realizing strong composability guarantees?

1.1 Our Contribution

In this paper we propose a new SSLE solution that answers the above question
in the affirmative. Our first contribution is the proposal of a new definition of
SSLE in the universal composability model [Can01] (see Sect. 3). We believe
this to be the right notion to model security in the highly distributed, often
concurrent, blockchain-like applications where electing a leader is required. Our
new definition implies the game-based definition of Boneh et al. [BEHG20], but
the converse is not true.

As a second contribution, we propose a UC-secure construction of SSLE. In
particular, we give a generic protocol based on public key encryption with key-
word search (PEKS) [BDOP04], and then propose an efficient instantiation of it
based on pairings under the SXDH assumption. The latter is our main technical

1 Precisely, when the winner no longer wants to participate in future elections, there
is no need to shuffle for the next election; we ignore this special case in our analysis.

474 D. Catalano et al.

Table 1. Comparison between the SSLE solutions from [BEHG20] and the SSLE of
this work. ‘On-chain’ refers to the amount of information to be stored on chain in the
new block after every election. Shuffle-

√
N achieves a weak unpredictability notion.

Everywhere, in O(·) we include the fixed security parameter λ. κ is a statistical security
parameter that gives meaningful security for κ = log N .

SSLE Security
model

Election efficiency

Rounds Comm. On-chain

iO Game-based 0 O(1) O(1)

TFHE Game-based 1 O(t) O(t)

Shuffle-N Game-based 1 O(N) O(N)

Shuffle-
√

N Game-based 1 O(
√

N) O(
√

N)

Ours UC 1 + 1 O(t) O(κ log N)

contribution: it is a protocol that achieves the same (asymptotic) communica-
tion complexity as the TFHE-based solution from [BEHG20] while achieving, in
addition, on-chain efficiency and much better practical performance. We refer
to Table 1 for a comparison between ours and the previous solutions and to the
next section for an overview of our protocol. We note that, although our protocol
requires a total of 2 rounds of communication to prepare an election, the first
round can actually be executed in a preprocessing phase and shared to prepare
many elections, thus making the online rounds effectively 1, as in the other solu-
tions. Moreover, the protocol does not require parties to keep any state across
rounds of communication, besides their secret keys.

An Overview of Our SSLE Protocol. Let us describe our protocol and
its efficiency in slightly more detail. PEKS is a notion of functional encryption
[BSW11,O’N10] in which given a ciphertext c encrypting a keyword w and secret
key sk associated to another keyword w′, the decryption allows one to learn if
w = w′ and nothing more. Our SSLE protocol is based on the following simple
idea. For every election a small subset of users generates a ciphertext c that
encrypts a random keyword j ∈ {0, . . . , N − 1}. At registration time, each user
is given a secret key ski associated to an integer i, and can claim victory by
giving a NIZK proof that she can decrypt the election’s ciphertext.

More specifically, our protocol consists of two phases: (1) a setup (done rarely)
in which the users run an MPC protocol to generate the public key of the PEKS
and distribute its secret keys, (2) an election’s procedure in which a randomly
sampled committee of κ players generates a commitment to the election’s cipher-
text in a distributed way. The commitment is then opened in a distributed way.
Whoever knows a secret key that decrypts the ciphertext is the leader.

We formalize this approach in a generic SSLE protocol that we prove UC-
secure assuming ideal functionalities for the setup and encryption algorithms of
any PEKS (see Sect. 4). Our main technical contribution, however is to design
an efficient instantiation of this blueprint, by showing an “MPC-friendly” PEKS

Efficient and Universally Composable Single Secret Leader 475

and by proposing very efficient (distributed) protocols for the setup and election
phases. To devise such a PEKS we build on (a modified variant of) the func-
tional encryption for orthogonality (OFE) scheme recently proposed by Wee
[Wee17]. Furthermore we extend this functionality to test keywords equality
mod N albeit the message space is over a large field Fq. We refer to this new
primitive as modular PEKS.

Informally, the committed ciphertexts created in the election procedure are
(plain) El Gamal encryptions of Wee’s ciphertexts. An immediate advantage of
this approach is that it allows for a very efficient setup procedure: it merely
consists in a threshold key generation for El Gamal followed by the key genera-
tion for the functional encryption scheme. When relying on a publicly available
random beacon, we show that the latter can be realized efficiently in two rounds
of communication, one of which only used to perform complaints.

More interestingly, however, our proposed scheme allows to complete step (2)
efficiently both in terms of computation and communication. Indeed, our proto-
col manages to distributively create valid (committed) ciphertexts c (encrypting
messages uniformly distributed in a given range) in one single round of com-
munication! Moreover, this round of communication can be used to generate,
in parallel, as many committed ciphertexts as one wishes, one for every future
election. This way, the communication needed to perform an election effectively
consists of only one round of communication in which O(t) parties send their
partial opening of the election’s ciphertext.

We note that the näıve approach of posting all these O(t) partial open-
ings in the blockchain would destroy our claimed on-chain efficiency guarantees.
Interestingly, we can do better than this. Parties can exchange the O(t) partial
openings off-chain and store on-chain only much shorter aggregate values that
still enable anyone to verify the correctness of the election. Recall that opening
our committed ciphertexts consists in, distributively, decrypting corresponding
El Gamal ciphertexts. Simplifying things a bit, in our case this is achieved by
letting players exchange partial decryption shares (K1,i,K2,i) together with cor-
responding NIZKs. These shares are then (locally) multiplied together to get
values (K1,K2) that can be used to retrieve the encrypted ciphertext c. Who-
ever is able to decrypt c correctly can then claim victory. Concretely, in our
protocol, a user can claim victory by posting on the blockchain only (K1,K2),
together with a proof that she can correctly decrypt c. Surprisingly, we show that
a potentially expensive aggregated NIZK proving correctness of (K1,K2) is not
needed for our protocol to be secure, as we prove that coming up with different
(K ′

1,K
′
2) which open the ElGamal commitment to another c′ �= c that an adver-

sary is able to decrypt, implies being able to break the underlying functional
encryption scheme.

Concrete Efficiency and Comparison to Previous Solutions. To confirm
the concrete performances of our protocol we measure them for N = 214 users,
as suggested in [Lab19]. Our results show that the communication costs of an
election are 34.0 KB to generate the committed election’s ciphertext, 1.57 MB
for the partial decryptions, and 256 B to claim victory. Importantly, out of

476 D. Catalano et al.

all this information, only 34.3 KB per election have to be stored on-chain for
verifiability.

The major cost in our protocol is that of setup, which for 214 users would
amount to 252 MB. This setup, however, is supposed to be performed rarely2.
Indeed, in our protocol we can add new users to the system without running a
full setup: they engage in a registration procedure that allows them to receive
their secret keys, without altering the key material of other users. This can be
done with only 73 KB of communication per registration. If we compare to the
shuffle-N solution of Boneh et al. [BEHG20], our protocol can easily amortize
the expensive setup and results in less communication. In the shuffle-N solution,
the issue is that every time a new user is added (which always includes the
winner of the previous election if he still wants to run) a new shuffle has to
be communicated and posted on-chain: this is about 1 MB per shuffle for 214

users. Concretely, if we assume 50 new users join before every election,3 after 100
elections the shuffle-N scheme generates 6.2 GB to be communicated and stored
on-chain, whereas our protocol involves 1.8 GB of off-chain communication and
only 5.9 MB of on-chain storage.

Our Election Protocol More in Detail. At the heart of our protocol there is
a very efficient method to generate committed ciphertexts of the form discussed
above. Here we informally highlight the main ideas underlying this construc-
tion. Recall that we build our PEKS from a tailored variant of the functional
encryption for orthogonality (OFE) scheme recently proposed by Wee [Wee17].
In OFE a ciphertext is associated to a vector x, a secret key corresponds to a
vector y and decryption allows one to learn if y�x = 0. The basic idea of our
(modular) PEKS from OFE is inspired to a transformation from [KSW08] with
a novel tweak.

In what follows, to keep the presentation intuitive, we present a simplified ver-
sion of our methods that, in particular, supports vectors of dimension 2 (rather
than 3 as in our actual scheme) and only allows to test equality of keywords
(rather than equality mod N).

During setup, each party Pi receives a public and secret key mpk, ski of the
OFE scheme, where ski is associated to the vector (1, i). If there were a magic
way to directly produce an encryption c of (m,−1) such that m is uniform over
[N] (and no user gains any extra information on m), then, using FE.Dec, each
party could test if m = i by simply checking whether (m,−1)�(1, i) = 0. Clearly
the only user able to do this could then claim victory. Unfortunately, since no
such wizardry is currently known, we go for the next best option: we develop
a very fast, one round protocol to jointly produce a commitment of such a c4.
The commitment is just a (standard) El Gamal encryption of c that can be
(distributively) opened in one round of communication.

2 As in the TFHE solution, our protocol in practice requires periodic setup to refresh
the secrets shared when many new users join (see Sect. 6 for a discussion on this).

3 This number is justified by [Lab19], where O(log2 N) new users are expected.
4 We stress here that no efficient single round solution to directly produce c seems

possible because of rushing attacks.

Efficient and Universally Composable Single Secret Leader 477

In this informal presentation, we explain how to generate the (committed)
ciphertext, in the simpler case where m is allowed to lie in the slightly larger
interval [κN]. Our underlying ciphertexts have the following shape5

c0 = [sa]1 , c1 =
[
mσ + sa�w1

]
1
, c2 =

[−σ + sa�w2

]
1
.

where [a]1 ,
[
a�w1

]
1
,
[
a�w2

]
1

are public key elements and s, σ are random val-
ues.6 Using the random beacon, we begin by generating a (small) election com-
mittee Q ⊆ [N] of size κ and two (random) group elements G,H that can be
interpreted as an ElGamal encryption of [σ]1 in the following way

G = gθ, H = hθ [σ]1

where (g, h) is the El Gamal public key and θ, σ are random and unknown
to participants. Using this public information, each player Pi ∈ Q can create
(committed) encryptions of mi by simply choosing random ri, ρi, si, and mi ∈
[N] and broadcasting [sia]1 together with

Gmi · gri = gθmi+ri Hmi · hri · [
sia�w1

]
1

= hθmi+ri
[
miσ + sia�w1

]
1

G−1 · gρi = gρi−θ H−1 · hρi · [
sia�w2

]
1

= hρi−θ
[−σ + sia�w2

]
1

All these (committed) ciphertexts share the same randomness σ and can thus
be multiplied together to produce the final (committed) ciphertext of the vector
(m =

∑
i∈Q mi,−1). Note that the message m lies in the larger interval [κN] but

m mod N is uniform over [N] as long as so is at least one of the mi’s. Finally,
as mentioned earlier, our actual realization (cf. Section 2.5) works around this
issue by managing to test equalities modulo N .

1.2 Other Related Work

Recently, the importance of SSLE solutions was confirmed by a study by Azouvi
and Cappelletti [AC21]. Their analysis shows substantial security gains (when
compared to probabilistic election schemes) both when considering the private
attack (the worst attack on longest-chain protocols [DKT+20]) and grinding
attacks. The problem of extending proof of stake systems to consider privacy was
considered, among others, in [GOT19] and in [KKKZ19]. Leader election pro-
tocols were also considered by Algorand [GHM+17] and Fantomette [AMM18].
There the idea is to first identify few potential leaders (via a VRF) that then
reveal themselves in order and choose the winner via some simple tie break
method (e.g. lowest VRF output wins). The approach is efficient but has the
drawback that the elected leader does not know she was elected until everybody
else published their value. Moreover, implicitly requires all nodes to be able to
see the winner’s output: users not getting this information might incorrectly
think that another leader was elected (causing the chain to fork). We stress that
this cannot happen in our setting.
5 For clarity note that group operations are denoted multiplicatively, and that we

make use of the bracket notation, cf. Section 2.1.
6 In Wee’s scheme σ = sa�u, with

[
a�u

]
1

being an extra element of the public key.

478 D. Catalano et al.

1.3 Organization

In the next section we start by introducing notation, computational assumptions
and cryptographic primitives used by our schemes. There we also recall the game-
based definition of SSLE from [BEHG20]. Next, in Sect. 3 we give our definition
of SSLE in the universal composability framework. Section 5 includes our main
contribution, that is our efficient SSLE protocol from the SXDH assumption (the
generic SSLE construction from PEKS is given in Sect. 4). Finally, in Sect. 6 we
discuss the efficiency of our protocol in a realistic scenario and compare it with
the SSLE based on shuffles by Boneh et al. [BEHG20].

2 Preliminaries

2.1 Notation

λ ∈ N denotes the security parameter. A function ε(λ) is said negligible in λ if
it vanishes faster than the inverse of any polynomial in λ. [n] = {0, . . . , n − 1}.
Bold font (a,u,w, . . .) denotes vectors with entries in a given field or a group.
x ←$ S means that x is sampled uniformly and with fresh randomness from S.
N is the number of players and t the threshold parameter.

We denote with G(λ) a bilinear group generator, that is an algorithm which
returns the description of a bilinear group bg = (q,G1,G2,GT , e, g1, g2), where
G1, G2 and GT are groups of the same prime order q > 2λ, g1 ∈ G1 and g2 ∈ G2

are two generators, and e : G1 × G2 → GT is an efficiently computable, non-
degenerate, bilinear map. We use gT = e(g1, g2) as a canonical generator of
GT . When G1 = G2, the groups are called symmetric; otherwise they are called
asymmetric. In our work we use Type-III asymmetric bilinear groups [GPS08]
where no efficiently computable isomorphism between G1 and G2 is known.

Fq is the finite field of prime cardinality q. Given a vector a = (ai)n
i=1 ∈ F

n
q

and a group element g we denote [a]g = (ga1 , . . . , gan). When the base is g1, g2 or
gT we replace the above notation with [a]1, [a]2 and [a]T respectively. Operations
with vectors in G

n are entry-wise, i.e., for g,h ∈ G
n, g · h = (gi · hi)n

i=1, ga =
(ga

i)n
i=1. Pairings are the only exception where e(g,h) = e(g1, h1) · . . . · e(gn, hn)

for g ∈ G
n
1 and h ∈ G

n
2 . Similarly ga = ga1

1 · . . . · gan
n .

2.2 SXDH Assumption

Our efficient construction relies on the SXDH assumption in bilinear groups,
which informally states that the classical DDH assumption holds in both G1

and G2. More formally,

Definition 1 (SXDH assumption). Let G be a bilinear group generator. We
say that the SXDH assumption holds for G if for every PPT adversary A, and
every s ∈ {1, 2} there exists a negligible function ε such that:

|Pr [A(bg, [a]s, [b]s, [c]s) = 1] − Pr [A(bg, [a]s, [b]s, [ab]s) = 1]| ≤ ε(λ)

where the probabilities are over the random choice of a, b, c ←$
Fq and bg =

(q,G1,G2,GT , g1, g2) ←$ G(1λ).

Efficient and Universally Composable Single Secret Leader 479

When the above assumption is considered in only one group Gs, for either s = 1
or s = 2, we refer to it as DDH in Gs. We call DDH0 a game in which A received
the first distribution and DDH1 a game in which he receives the second one.

In the paper we also use an extension of DDH for vectors of n elements, called
DDHn, which says it is hard to distinguish ([a1]s , . . . , [an]s , [b]s , [c1]s , . . . , [cn]s),
denoted as DDH0

n, from ([a1]s , . . . , [an]s , [b]s , [a1b]s , . . . , [anb]s) denoted as
DDH1

n, for random ai, b, ci ∈ Fq. We note that DDHn can be reduced to DDH
in the same group [NR97].

2.3 Functional Encryption

We recall the definition of Functional Encryption [BSW11,O’N10].

Definition 2. A functionality F is a family of functions F = {f : X → Y},
where X is the plaintext space and Y is the output space.

Definition 3. A functional encryption scheme for a functionality F is a
tuple (FE.Setup,FE.Enc,FE.KeyGen,FE.Dec) of PPTalgorithms such that

– FE.Setup(1λ) $→ (mpk,msk) generates the secret and public master keys.
– FE.Enc(m,mpk; r) → c returns a ciphertext. Randomness r may be omitted.
– FE.KeyGen(f,msk) $→ skf returns a key associated to the function f ∈ F.
– FE.Dec(c, f,mpk, skf) → x a bit string.

The scheme is correct if for any m ∈ X and f ∈ F, sampled mpk,msk ←$

FE.Setup(1λ), c ←$ FE.Enc(m,mpk), skf ←$ FE.KeyGen(f,msk), then up to
negligible probability FE.Dec(c, f,mpk, skf) = f(m).

We recall the notion of selectively secure FE, which suffices for our goals.

Definition 4. A functional encryption scheme achieves selective security if
for any PPT algorithm A there exists a negligible function ε such that

AdvA
SSFE(1

λ) =
∣
∣
∣
∣Pr

[
ExpA

SSFE(1
λ) = 1

]
− 1

2

∣
∣
∣
∣ ≤ ε(λ).

2.4 Functional Encryption for Modular Keyword Search

Recall that the keyword search functionality [BDOP04,ABC+05] is defined as
Fks = {fy : X → {0, 1}}, where each function fy ∈ Fks labelled by y ∈ X is
such that fy(x) returns 1 if x = y and 0 otherwise. Our realization works with a
generalisation of the above where equality are checked modulo a given integer.
Formally we consider the modular keyword search functionality Fκ

mks = {fy :
Fq ×Fq → {0, 1}} parametrized by a positive integer κ of polynomial size, where
each function fy labelled by y ∈ Fq are such that fy(x, n) returns 1 if x = y + δn
for some δ ∈ [κ], and 0 otherwise. Observe that when y ∈ [n] and x ∈ [κn], then
fy(x, n) = 1 if and only if x = y mod n.

480 D. Catalano et al.

Fig. 1. Selective security game for a FE scheme with functionality F

2.5 Our Realization of FE for Modular Keyword Search

We realize our FE scheme for the keyword search functionality Fκ
mks through a

more powerful scheme for the so-called orthogonality functionality [KSW08]. In
the latter we have the message space X = F

n
q and each function fy, defined by

a vector y ∈ F
n
q , is such that fy(x) returns 1 when y�x = 0 and 0 otherwise.

A general construction of FE for Fks from an OFE scheme already appears
in previous work [KSW08]. In this paper, we tweak that template in order to
support the Fκ

mks described earlier (see Fig. 2). The idea is that m = γ + δn
if and only if (m,−1,−n)�(1, γ, δ) for some δ ∈ [κ]. Therefore, using an OFE
scheme with dimension 3, a ciphertext for m and n is an encryption of the
vector xm,n = (m,−1,−n), while a key for γ is a collection of keys for the
vectors yγ,δ = (1, γ, δ), with δ ∈ [κ]. This way, decryption can be realized by
testing if one of the keys successfully decrypts.

Fig. 2. Our FE for Fκ
mks from and orthogonality functional encryption scheme

Note however that the resulting construction is secure under the weaker
notion in which the adversary, who initially queries an encryption of (m0, n0)
and (m1, n1), can only ask secret keys for keywords γ such that γ �= m0 + δn0

and γ �= m1 + δn1 for all δ ∈ [κ]. This restriction (often referred to as weak

Efficient and Universally Composable Single Secret Leader 481

Fig. 3. Our simplified version of [Wee17] FE scheme for orthogonality

attribute-hiding) is sufficient in our application as we want to hide the winner’s
index m mod n only from those users that haven’t won i.e. from those holding
keys for γ �= m mod n.

Concretely, we instantiate the construction in Fig. 2, with a modified variant
of the pairing-based FE for orthogonality proposed by Wee in [Wee17]. Our
modified scheme is detailed in Fig. 3. In the full version we prove the following
theorem.

Proposition 1. The scheme in Fig. 3 is selective secure under the SXDH
assumption

2.6 Non Interactive Zero-Knowledge

A non-interactive zero-knowledge (NIZK) proof system for a relation R is a
tuple of PPT algorithms (NIZK.G,NIZK.P,NIZK.V) where: NIZK.G generates
a common reference string crs; NIZK.P(crs, x, w), given (x,w) ∈ R, outputs a
proof π; NIZK.V(crs, x, π), given statement x and proof π outputs 0 (reject) or 1
(accept). We say that a NIZK for R is correct if for every crs ←$ NIZK.G(1λ) and
all (x,w) ∈ R, NIZK.V (crs, x,NIZK.P(crs, x, w)) = 1 holds with probability 1.
In our protocols we require the NIZKs to satisfy the notions of weak simulation
extractability [Sah99] and zero-knowledge [FLS90].

About the first property, it only guarantees the extractability of proofs pro-
duced by the adversary that are not equal to proofs previously observed. For
this reason we make them “unique” by adding implicitly a session ID to the
statement. Concretely this means that in the Fiat Shamir transform, the hash
function evaluations need to be salted with a unique session ID. Note that we
won’t detail how to handle these sid (and neither we do this for ideal function-
alities invocations).

We now define three relations about group elements. The first one checks
whether two vectors g,h ∈ G

n
1 are proportional, i.e., there exists x ∈ Fq s.t.

482 D. Catalano et al.

gx = h. The second one generalizes the previous to linear maps. The third one
asks for solutions to the linear system Ax = b where A, b are given in the
exponent and the last component xn lies in a prescribed range. Formally

RDDH = {((g,h), x) : g,h ∈ G
n, gx = h}

RLin =
{
(([A]1 , [B]1),X) : A ∈ F

k,m
q , B ∈ F

k,n
q , X ∈ F

m,n
q , AX = B

}

RLR = {(([A]1 , [b]1 , R),x) : A ∈ F
m,n
q , b ∈ F

m
q , x ∈ F

n
q , Ax = b, xn ∈ [R]}

We also use REnc and RDec which relates to a given functional encryption scheme.
The first one, given a ciphertext, requires knowledge of the message and ran-
domness used to generate it. The second one instead, given a tuple (mpk, c, f, x)
asks for a correct secret key skf that decrypts c to x. Below we also introduce a
language Lkey to formally capture the notion of correct secret key.

Lkey = {(mpk, f, sk) : ∀m, r; c = FE.Enc(m,mpk; r) ⇒ FE.Dec(c, f,mpk, sk) = f(m)}
RDec = {((mpk, c, f, x), sk) : (mpk, f, sk) ∈ Lkey, FE.Dec(c, f,mpk, sk) = x}
REnc = {((c,mpk), (m, r)) : c = FE.Enc(m,mpk; r)}.

Notice that, by abusing notation, standard asymmetric encryption, being a spe-
cial case of FE, is also captured by this definition.

To construct our protocols, we assume the existence of a NIZK argument
for each of these relations. We note that all of them can be proved through
a sigma protocol, and that Fiat-Shamir based NIZKs from sigma protocols
are weakly-simulation-extractable [FKMV12] based on a special property called
quasi-unique responses. For the relations RDDH and RLin, we can use generalised
Schnorr protocols provided in [Mau15]. For RLR we propose a variant of the
folklore solution based on binary decomposition7, in the full version. Still in the
full version a sigma protocol for RDec appears in the appendix.

2.7 UC Model and Ideal Functionalities

The celebrated UC model, introduced in the seminal work of Ran Canetti
[Can01], is a framework that allows to prove security properties of a protocol
that are preserved under composition. This is done by comparing the protocol to
an ideal functionality F defined to capture the intended properties. A protocol
securely realises F if it is indistinguishable from F ◦S for a given PPT simulator
S. The distinguisher Z, also called the environment, is granted the power to
choose all parties’ input, learn their output and corrupt any number of parties
learning their internal state and influencing their behavior. The challenge for S
is therefore to reproduce all the messages sent by uncorrupted parties in a con-
sistent way with their input/output, even though S cannot access it. To make

7 In this case the most efficient choice to date may be an adaptation of Bullet-
proofs [BBB+18]; however, to the best of our knowledge, this is only known to
be simulation-extractable in the AGM [GOP+21]. We leave the exploration of this
optimization for future work.

Efficient and Universally Composable Single Secret Leader 483

this possible in non trivial cases, functionalities are often designed to leak some
information to S and allow the simulator to influence the result in some way.

In Fig. 4 we define two functionalities required in our construction: Fzk and
F D

CT which respectively models a zero-knowledge proof of knowledge and a ran-
dom beacon. The first one was introduced in [CF01], with the minor difference
that in our case all the parties receive the output messages, deviation justi-
fied under the assumption of an authenticated broadcast channel. FCT instead
was introduced in [CD20] and realised assuming honest majority under standard
assumptions. We remark that our use of the random oracle for the NIZK proofs is
justified assuming a global random oracle in the GUC model [CJS14,CDG+18].
Finally, about our communication model, we assume an authenticated broadcast
channel with known bounded delay [KMTZ13], which implies that messages sent
in broadcast are eventually delivered with potentially different order. Although
this introduce some degree of synchronicity, this is in line with previous work
[BEHG20].

Fig. 4. Description of the functionalities Fzk and FCT

3 Universally Composable SSLE

The notion of single secret leader election was introduced in [BEHG20] as a tuple
of protocols (SSLE.Setup, SSLE.Reg, SSLE.Elect, SSLE.Claim, SSLE.Vrf) aimed at
electing a unique leader among a set of participants who can stay hidden until
she decide to reveal herself. Security of this primitive was captured through
three game-based properties, namely uniqueness, fairness and unpredictability.
However, the underlying security experiments fail to capture scenarios where
multiple executions of the given procedures may occur concurrently. Moreover,
as in most game-based notions, security is not guaranteed to hold when the
primitive is used in a more complex protocol.

For this reason, we propose a definition of SSLE in the universal composabil-
ity model. To this end, we define a functionality FSSLE that performs elections
and reveals the winners in an ideal way. A UC-secure SSLE scheme is then any
protocol that securely realizes FSSLE.

At a high-level, FSSLE consists of the following commands. By using (register)
a user can register to an election. When all the honest users call (elect, eid), a

484 D. Catalano et al.

new election with identifier eid is performed, that is, the ideal functionality sam-
ples a winner index j uniformly at random from the set of registered users. By
using the (elect, eid) command, every honest user is informed by the ideal func-
tionality on whether she is the winner of the election eid. Using (reveal, eid), an
honest winning user instructs the ideal functionality to announce the election’s
outcome to everyone. Finally, the (fake rejected, eid, j) command is reserved to
the adversary and makes FSSLE announce to everyone that Pj is not the winner.
This models a scenario in which an adversary who won an election deviates from
the protocol to claim victory in spite of being the winning leader. The formal
definition FSSLE is detailed in Fig. 5.

Fig. 5. SSLE functionality executed among P1, . . . , PN and environment Z

In order to capture constructions that are secure against adversaries capable
of corrupting only a fraction of the participants, we distinguish two thresholds
parameters: t ∈ [N], which bounds corruptions among all users P1, . . . , PN (even
those who are not registered), and ϑ : N → N, which upper bounds corruptions
among the set of currently registered users depending on their number. Even
though this notation is non-standard, it allows us to formalise standard assump-
tions such as the existence of an honest majority among currently active users,
which is employed in several blockchain protocols. More formally, we give the
following definitions.

Definition 5. Let t ∈ [N] and ϑ : N → N. A protocol Π is said to statically
(t, ϑ)-threshold realise FSSLE if there exists a simulator S such that Π is indis-
tinguishable from FSSLE ◦ S for all PPT environments Z that statically corrupt
a set M of parties with |M | < t and such that at each step, calling R the set of
registered users, |R ∩ M | < ϑ(|R|).
Definition 6. A (t, ϑ)-threshold statically secure UC-SSLE is a protocol
Π that (t, ϑ)-securely realise FSSLE. If t = N and ϑ = 1N then Π is called a
statically secure UC-SSLE.

Efficient and Universally Composable Single Secret Leader 485

To further motivate our UC-secure notion of SSLE we compare it to the
game-based one. First, with the following proposition, we show that the UC
notion implies the game-based one. For the sake of generality we informally say
that a property is (t, ϑ)-threshold satisfied if it holds against an adversary that
corrupts at most t users and up to ϑ(|R|) of them belong to the set R of those
currently registered at each step. For a more formal treatment see the full version
of this paper, where also a proof of the following appears.

Proposition 2. If Π is a (t, ϑ)-threshold statically secure UC-SSLE protocol,
then its derived SSLE scheme described in Fig. 6 satisfies (t, ϑ)-threshold unique-
ness, (t, ϑ)-threshold fairness and (t, ϑ)-threshold unpredictability.

Fig. 6. The derived SSLE scheme from a UC-SSLE protocol Π

Second, we argue that our UC notion is strictly stronger than the game-
based one. For this, we simply observe that taking one of the protocols from
[BEHG20] (e.g., the one based on TFHE or the one based on Shuffling) they
cannot be UC-secure if the zero-knowledge proofs they employ are not UC-
secure.8 In [BEHG20], these protocols are proven secure without making any UC
assumption on these zero-knowledge proofs; so they constitute a counterexample
of protocols that are secure in the game-based sense but would not be secure
according to our UC notion.

3.1 A Parametrised Definition

Definition 6 provides a higher level of security with respect to the game-based
definition in [BEHG20], but at the same time requires more structure from the

8 Here, as the candidate protocol we are assuming the one where each sub proto-
col is used to implement the corresponding command, i.e., SSLE.Reg for register,
SSLE.Elect for elect, etc.

486 D. Catalano et al.

underlying protocol and therefore may imply higher costs. In order to leverage
security and efficiency we present here a “tunable” functionality Fκ,η

SSLE which
allows the adversary to control, with probability smaller than 2−κ, a given elec-
tion and which may not elect any user with probability smaller than 2−η.

Fig. 7. Parametrised SSLE executed among P1, . . . , PN and environment Z

Setting κ = η = Θ(λ) we get back a functionality equivalent to FSSLE.
However for smaller κ, η, we can now capture schemes achieving weaker (but
still meaningful!) fairness and unpredictability notions. These might be accept-
able/sufficient in practical scenarios, especially if they lead to significant effi-
ciency gains. In the full version we show that applying the construction in Fig. 6
to a protocol realizing Fκ,η

SSLE yields an SSLE scheme with (2−κ + 2−η)-fairness
and ξ(κ)-unpredictability with

ξ(κ) = sup
n∈N

(
n

n − ϑ(n)

)
· 1
2κ

· 2η

2η − 1
.

For fairness, the 2−κ + 2−η bound simply means that for κ, η = log N an adver-
sary controlling T parties, wins the election with probability (T + 2)/N . This is
the same winning probability of an adversary that runs a perfectly fair election
but corrupts two single extra players.

4 UC-secure SSLE from FE for Modular Keyword Search

We now present a generic construction of a UC-SSLE protocol based on modular
keyword search FE. This, besides being of interest on its own, serves as a warm-
up for our efficient construction of Sect. 5. More specifically, assuming for the

Efficient and Universally Composable Single Secret Leader 487

sake of abstraction the existence of a protocol Π which securely distributes keys
and, on request, produces ciphertexts encrypting random messages in a given
set, we UC-realise Fκ,η

SSLE.
Our construction roughly works as follows: Initially the public key mpk is

distributed among the N users. To perform the n-th registration for Pi, parties
run Π to give skn to Pi. When an election is requested, users generate with Π
a challenge ciphertext c that encrypts a message m,n, with m ∈ [κn] such that
m mod n ∼ U([n]), and check whether they won or lost by decrypting. Whoever
can decrypt c to 1 is the leader and can claim victory by broadcasting a NIZK
argument of this.

Unfortunately, even if this solution can already be proven secure in the game-
based definition, it is not UC-secure yet. The reason is technical: if at a given
round a ciphertext c encrypting (m,n) with m = γ + δn is returned, γ being
associated to an honest user9, the adversary could re-register malicious users
until he gets skm and then test that MKS.Dec(c,m,mpk, skm) = 1. This makes
the protocol hard to simulate as the ciphertext produced needs to always contain
the winner’s index – which the simulator may not know in advance10.

To prevent this issue we introduce a set S of forbidden keys: each time a
user wins with key skγ , the indices γ + δn for δ ∈ [κ] are added to S and, each
time a new user joins, n is set to be the next integer not lying in S. However
this introduce a probability |[n] ∩ S| · n−1 to produce a ciphertext no one can
decrypt, meaning that nobody is elected. A way to keep it smaller than 2−η is
to perform a new setup every time the above probability exceeds this bound.

To proceed we formally define a functionality FSnC, Fig. 5, which shapes the
behaviour and security of Π, and a protocol {P

(i)
MKS−SSLE : i ∈ [N]} in the FSnC-

hybrid model realising Fκ,η
SSLE. A proof of security appears in the full version.

Theorem 1. The protocol {P
(i)
MKS−SSLE : i ∈ [N]} in Fig. 9 securely realises

Fκ,η
SSLE in the FSnC-hybrid model for the class of PPT environments Z that stati-

cally corrupts up to N players for any positive κ, η.

5 An Efficient UC-secure SSLE from SXDH

In this section we present our main contribution, an SSLE protocol that works
over bilinear groups which we prove UC-secure under the SXDH assumption.

5.1 Intuition

At a high level we instantiate the generic protocol provided in the previous
section with the modular KS scheme obtained applying the transformation in
Fig. 2 to our OFE in Fig. 3. The main challenge here is to efficiently generate

9 i.e. such that an honest user Pi posses the key skγ .
10 When Fκ,η

SSLE elects an honest user, the simulator learn its identity only after this
party is instructed by the environment to claim victory through a reveal command.

488 D. Catalano et al.

Fig. 8. Setup and Challenge functionality executed among P1, . . . , PN

ciphertexts in a distributed way. To address this, the basic idea is to select
a random committee Q ⊆ [N], have each member Pj secretly sample a value
mj ∈ [n], where n is the number of users currently registered, and jointly generate
an encryption of m =

∑
j∈Q mj .

A downside is that now m ∈ [|Q| · n]. For this reason we set κ ≥ |Q|, where κ
parametrises the set of functions Fκ

mks supported by our modular KS scheme. In
this way, as in the generic construction, decryption allows the holder of a secret
key skγ to learn only whether m = γ mod n or not. Also, if at least one mj is
uniform over [n], so is m mod n, implying that the election is fair. Finally, since
|Q| = κ is a small parameter, the decryption procedure in our scheme (Fig. 2)
remains efficient.

The next step is to show in more detail how the committee can accomplish
its task. The ciphertext we want to produce is the encryption of (m,−1,−n)
under our OFE scheme in Fig. 3 and has the following form

c0 = [sa]1 , c1 =
[
σm + sa�w1

]

1
, c2 =

[
−σ + sa�w2

]

1
, c3 =

[
−nσ + sa�w3

]

1

with s, σ ∼ U(Fq) and [a]1 ,
[
a�w	

]
1

being the public key. While c0, c2, c3 would
be easy to generate in a distributed way, as they linearly depend on s, σ, in c1
we need to compute a product σ · m. Standard MPC techniques could solve this
issue within a few rounds, however we opt for a solution that requires each user
to only speak once.

First, we sample two group elements G,H through the random beacon and
interpret them as the ElGamal encryption, with respect to a previously generated
public key g, h, of [σ]1. Next each player Pi for i ∈ Q samples mi ∈ [n], si ∈ [n],
and, using the linearity of ElGamal, computes and randomise an encryption of

c1,i =
[
σmi + sia�w1

]
1
, c2,i =

[−σ + sia�w2

]
1
, c3,i =

[−nσ + sia�w3

]
1

Finally he publish these encrypted values together with c0,i = [sia]1 in plain and
a NIZK. At this point everyone can locally set c0 as the product of the c0,i’s and

Efficient and Universally Composable Single Secret Leader 489

Fig. 9. Reduction of Fκ,η
SSLE to the Setup and Challenge functionality FSnC

compute ElGamal encryptions of c1, c2, c3 that are respectively the products of
c1,i, c2,i and c3,i. The last step would then be to decrypt these three remaining
components. To this aim we assume that the secret key x of the ElGamal public
key h = gx was previously t-shared among all users, which allows us to perform
a threshold decryption.

To complete the protocol we have to show how to distribute the setup and
key generation of our FE scheme. For ease of exposition, we first present a
protocol assuming an ideal setup functionality in Sect. 5.2, and then in Sect. 5.3
we show how this functionality can be UC-realized. In conclusion we point out
that, as in the general construction in Sect. 4, we have to maintain a set S of
keys that cannot be generated in order to keep the protocol simulatable, resulting
occasionally in elections without leaders.

5.2 SSLE Protocol with Ideal Setup Functionality

In Fig. 11 we show a protocol that securely realizes the Fκ,η
SSLE ideal functionality.

To this end we use the following building blocks:

– The FE scheme for orthogonality in Fig. 3, denoted FE which we use to instan-
tiate a modular KS scheme.

– NIZKs for RDDH ,RLR and RDec. For readability, we suppress the crs from the
inputs of the prover and verifier algorithm.

– A functionality FSK that distributes public and private keys of our OFE
scheme, and t-share a threshold ElGamal secret key – sending privately the
share f(j) to Pj and publicly kj = gf(j).

490 D. Catalano et al.

– A random beacon F ch
CT returning G,H,Q with G,H ∼ U(G2

1) and Q ⊆ [N],
|Q| = � such that the probability that Q is contained in the set of corrupted
parties is smaller than 2−κ. Note that t < N/2 implies � ≤ κ.

Each user maintains (or recovers from the public state) four sets C,R, S,K
respectively containing previous challenges, currently registered users, forbid-
den keys and owned secret keys.

Elections begin by invoking F ch
CT which returns (G,H,Q). In steps 6-8 users

in Q interpret (G,H) = (gθ, hθ · [σ]1) as an ElGamal encryption with σ ∼ U(Fq),
sample mi ∈ [n], si ∈ Fq and produce encrypted shares of the challenge compo-
nents. Then they sample ri and ρi to re-randomize these ciphertexts. Interest-
ingly we observe that using the same randomness for the last two components
does not affect security.

Next, in steps 11-15 we let Q0 ⊆ Q be the set of users who replied with a
correct NIZK. Observe that, calling s, r, ρ,m the sum of the respective shares
si, ri, ρi and mi over Q0, then G1 = gr+θm and G2 = gρ+θ. In order to decrypt
each user produces K1,i,K2,i that will open, through a Shamir reconstruction in
the exponent, to hr+θm and hρ+θ.

In steps 16-20, users locally multiply the elements sent by the committee and
reconstruct, interpolating at the exponent, K1 = hr+θm and K2 = hρ+θ. Since

∏

μ∈Q0

c1,μ = hr+θm
[
mσ + sa�w1

]
1

H−1
∏

μ∈Q0

c2,μ = h−ρ−θ
[−σ + sa�w2

]
1

H−n
∏

μ∈Q0

c3,μ = h−n(ρ+θ)
[−nσ + sa�w3

]
1

applying K1,K2 they finally obtain all the components of the challenge c. At
the end of an election (lines 20-22) each user verify whether or not he won by
attempting to decrypt the produced challenge with the keys he stored in K.

When a user wins and is instructed through a reveal command to claim
victory, he sends both the elements K1,K2 previously computed and a proof of
knowledge of a secret key skγ,j which decrypts the challenge to 1. The first part
is required as we don’t want to store on chain the threshold decryption. This
may sound insecure at first, as another user could come up with different K ′

1,K
′
2

that let him win. Interestingly, in the proof of security we show that being able
to do so implies breaking the selective security of our OFE.

Theorem 2. The protocol in Fig. 11 (t, ϑ)-threshold securely realizes Fκ,η
SSLE in

the (FCT,FSK)-hybrid model under the SXDH assumption, for t = N/2� and
ϑ(n) = n/2�

5.3 Realising the Setup

Here we describe how to realize the functionality FSK deployed in Protocol 11.
First of all, in order to emulate private communication channels, not available

in our model but necessary to distribute secret parameters, we use an IND-
CPA encryption scheme (AE.Setup,AE.Enc,AE.Dec). Second, as our NIZKs are

Efficient and Universally Composable Single Secret Leader 491

Fig. 10. Functionality FSK among users P1, . . . , PN and environment Z which in Pro-
tocol 11 performs the setup and distributes keys on request

randomised sigma protocols compiled with Fiat-Shamir, they only need access
to a random oracle and in particular there is no need to instantiate a crs. Next,
we need to distribute the secret key of the Threshold ElGamal scheme. This is
addressed by deploying standard techniques from verifiable secret sharing.

Finally we have to generate the public and secret keys of the FE scheme in
Fig. 3. To this aim, recall that

mpk = [a]1 , (
[
a�wα

]
1
)3α=1, skyγ,δ

= [r(w1 + γw2 + δw3)]2 , [r]2 .

Fixing [a]1 and [r]2, which can be generated through a random beacon, the
remaining components of these keys depends linearly on wα. Therefore we can
again select a random committee and let each member Pi sample wα,i ←$

F
2
q.

At a high level to produce either mpk or a secret key, users provide shares of it,
which are then locally multiplied. When reconstructing a secret key moreover
the receiver checks the shares and complain if they are malformed.

More in detail in our construction we will use

– NIZKs for REnc,RDec and the ideal functionality FLin
zk .

– Two random beacons F stp
CT and F sk

CT returning respectively (Q, z0, g) and
(dδ)κ−1

δ=0 with z0 ∼ U(F2
q), g ∼ U(G1), dδ ∼ U(G2) and Q ⊆ [N], |Q| = �

such that the probability of Q containing only corrupted users is smaller
than 2−λ. Notice that t < N/2 implies � ≤ λ.

In steps 1-6 members of the committee sample a polynomial fi used for the
VSS, and shares wi,α. The proof in line 4 guarantees that the adversary is aware
of the plaintext fi(j) encrypted, preventing decryption-oracle attacks.

492 D. Catalano et al.

Fig. 11. Protocol P
(i)
SSLE,κ. S ∈ G

7,4
1 represents the linear operations in lines 6-8.

Efficient and Universally Composable Single Secret Leader 493

In lines 7-15 users test the VSS by checking if the exponents of hμ, (ki,μ)N−1
i=0

lies in the right Reed-Solomon code. A standard test is to check orthogonality
with a codeword in the dual space RS⊥

F,N+1,t. Next, consistency with si,μ = fμ(i)
and ki,μ is checked. If it fails the player will complain (lines 10-13) and remove
Pμ from the committee.

Next, the generation of a new secret key begins by querying F sk
CT, line 20,

which returns (dδ)k−1
δ=0 , interpreted as the randomness of requested OFE keys.

In lines 21-25 members of the committee generate the secret key share d(i)
n,δ

and privately send it to the receiver. Again a NIZK is added to prevent any
decryption-oracle attack.

Observe now that, for every μ ∈ Q

(z0, z1,μ, z2,μ, z2,μ) = [a]1 ,
[
a�w1,μ

]
1
,
[
a�w2,μ

]
1
,
[
a�w3,μ

]
1

is a master public key for our OFE scheme, and (d(μ)
n,δ, dδ) is a secret key for

(1, n, δ) in the same scheme. Hence the recipient, lines 26-31, verifies this key
share by checking if it is able to decrypt an encryption of 0. Somewhat surpris-
ingly in the proof of security we show that this is enough to ensure correctness
of the key.

Finally, if the above check fails, the recipient broadcasts a complaint mes-
sage exposing the malformed key. Every user then checks the complaint and, if
legitimate, remove Pμ from the committee.

Theorem 3. Protocol {P
(i)
SK : i ∈ [N]} securely realises FSK in the (FCT,Fzk)

hybrid model under the SXDH assumption for the class of PPT environments Z
that statically corrupt up to N/2� players.

6 Efficiency Considerations

Overall communication costs of our protocol are summarised in Table 2. As men-
tioned in the previous section, however most of these messages are not required
for verification and, in particular, they do not need to be stored on chain.

More in detail, for the VSS to generate the ElGamal public and secret keys,
only aggregated elements h, k0, . . . , kN−1 have to be placed on-chain, as those are
the only ones required to verify the secret sharing. Next, during elections, we have
to store the partial ciphertexts and related NIZKs sent by the committee, as these
components are necessary to reconstruct the election’s ciphertext. However, our
specific OFE and protocol allow the winner to aggregate the expensive threshold
decryption, without the need to also post a proof of correctness. Note that the
same property does not hold for the first round, since together with the partial
ciphertexts one would have to aggregate the corresponding NIZKs with more
sophisticated tools. Finally we remark that it is also possible to avoid storing
encrypted secret keys for our OFE on chain, using the chain only for disputes.

As shown in the Table, while election requires low communications, the setup
is more expensive, requiring 252 MB for 214 users. However, this is supposed to

494 D. Catalano et al.

Fig. 12. Realisation FSK, Initial setup phase

be performed rarely. Once this is done, our protocol allows new users to join
providing them a new secret key, without updating the key material of other
users. This registration takes only 73 KB of communication. Letting users leave
the system on the other hand introduces some inefficiencies. The problem is that
users who go away may still be elected, causing some elections to end without a
winner. An obvious, but expensive, way to completely remove this problem is to
perform a new setup every time that one or more users leave. However, one can
also make a trade-off leaving the possibility that some elections finish without
a winner, and redo the setup only when this probability (which for L inactive
users out of N registered users is L/N) becomes too high.

Comparison with [BEHG20]. We now compare our UC-secure construction
with the shuffle-based solution in [BEHG20], which we briefly recall here. Essen-
tially the public state contains a list of Diffie-Hellman pairs (Ki,1,Ki,2), one for
every user, and Pi’s secret key is a discrete log ki such that Ki,2 = Kki

i,1. An elec-
tion is performed by choosing one of those tuples through the random beacon and
the leader claims victory by revealing its secret key. To achieve unpredictability,
each time a pair is added by a user, he sends a shuffled and re-randomized list
along with a NIZK. Note that every election involves at least the registration
of the previous winner, who has “burnt” her secret key, if she desires to stay.

Efficient and Universally Composable Single Secret Leader 495

Fig. 13. Realisation FSK, Key Distribution phase

Moreover, this implies that the protocol requires at each round as many shuffles
as the number of new users. Notably, all the lists and NIZKs have to be posted
on chain in order to ensure verifiability.

In the high communication solution, denoted N -shuffle, each shuffles costs 2n
group elements, while the more efficient and less secure one, denoted

√
N -shuffle,

costs 2
√

n elements.
In light of the requirement in [Lab19] to support O(log2 N) new users per

round, we compare these solutions evaluating the cumulative cost of several
elections, interleaving between every two a fixed amount of registrations. In
Fig. 6 we provide the communication costs for such a scenario where we assume
to start with 214 users and then perform: 10 registrations for each election in
the first column, 20 in the second column, and 30 in the third one. Furthermore

496 D. Catalano et al.

Table 2. Communication costs of our scheme, using ElGamal in place of the generic
IND-CPA encryption. Size is computed assuming log |Fq| = 256, log |G1| = 512,
log |G2| = 256, log |GT | = 3072, λ = 80, κ = log N , t = �N/2� and N = 214.

Procedure Number of elements sent Size

Fq G1 G2 off-chain on-chain

VSS for ElGamal 2λN 2λN + 2λ – 252 MB 1.05 MB

Distribute mpk 3λ 2λ – 20.5 KB 20.5 KB

Election, 1st Round κ(6 + 2 log n) κ(7 + log n) – 34.0 KB 34.0 KB

Election, 2nd Round 2(t + 1) 2(t + 1) – 1.57 MB –

Election, Claim 1 2 3 256 B 256 B

Registration λ – 2κλ + 2λ 73.3 KB –

we let the same number of new users who joined the system leave it after each
election. Note that, as mentioned earlier, this means some elections may have to
be repeated in our case as users who leave may still be elected.

We remark that in those plots, the costs of the shuffle-based solutions do
not even include the costs of setup11, as it can be done only once in contrast to
ours where we need to occasionally refresh the secret key material. In spite of
that, the cost of our setup is quickly compensated by our lighter registration and
election procedure, which makes our solution more suited to dynamic scenarios.

More Efficient SSLE with Game Based Security. We now remark that
communication complexity can be further reduced in our construction at the
cost of giving up UC security yet achieving the game-based security notion.

As we would not need any more to simulate each election, every secret key
can now be produced without artificially skipping some of them. For the same
reason, the NIZKs need not to be simulation-extractable, which allow us to use
Bulletproofs for the range proofs. This reduces on-chain costs to O(κ log log N).

Finally, when giving up UC security users who voluntarily leave the system
can be handled by asking such users to reveal their own secret keys upon leaving,
as done in [BEHG20]. This way, if a revoked user happens to be elected, everyone
can detect it and immediately proceed to generate a new election’s ciphertext. To
keep round complexity low, one can also prepare several challenges per election,
order them, remove those that can be decrypted with keys of users who left,
and set the current challenge as the first of the remaining ones. This solution
only works for non-UC security though, as the simulator should now generate
on request honest user’s secret key that are consistent with previous elections.

11 I.e. the cost to generate a shuffled list containing the pairs of the initial users. This
has cost O(n2) if everyone performs a shuffle, or O(κn) using an approach similar
to ours where a random committee of κ users shuffle the initial list.

Efficient and Universally Composable Single Secret Leader 497

Fig. 14. Cumulative communication costs in this work and [BEHG20]. Initially the
number of users is N = 214 and between every two elections 10 (left column), 20
(middle column) or 30 (right column) registrations occur, while the same amount of
already registered users leave.

Acknowledgements. This work has received funding in part from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation program under project PICOCRYPT (grant agreement No. 101001283), by a
research grant from Nomadic Labs and the Tezos Foundation, by the Programma
ricerca di ateneo UNICT 2020-22 linea 2, by SECURING Project (PID2019-110873RJ-
I00/MCIN/AEI/10.13039/501100011033), by the Spanish Government under projects
SCUM (ref. RTI2018-102043-B-I00), CRYPTOEPIC (ref. UR2019-103816), RED2018-
102321-T, and PRODIGY (TED2021-132464B-I00), and by the Madrid Regional Gov-
ernment under project BLOQUES (ref. S2018/TCS-4339). The last five projects are
co-funded by European Union EIE, and NextGenerationEU/PRTR funds.

References

[ABC+05] Abdalla, M., et al.: Searchable encryption revisited: consistency proper-
ties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.) CRYPTO
2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005). https://doi.org/
10.1007/11535218 13

[AC21] Azouvi, S., Cappelletti, D.: Private attacks in longest chain proof-of-stake pro-
tocols with single secret leader elections. In: Proceedings of the 3rd ACM Confer-
ence on Advances in Financial Technologies, pp. 170–182 (2021)

[AMM18] Azouvi, S., McCorry, P., Meiklejohn, S.: Betting on blockchain consensus
with fantomette. CoRR, abs/1805.06786 (2018)

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bul-
letproofs: short proofs for confidential transactions and more. In: 2018 IEEE Sym-
posium on Security and Privacy, pp. 315–334. IEEE Computer Society Press, May
(2018)

https://doi.org/10.1007/11535218_13
https://doi.org/10.1007/11535218_13

498 D. Catalano et al.

[BDOP04] Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key
encryption with keyword search. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24676-3 30

[BEHG20] Boneh, D., Eskandarian, S., Hanzlik, L., Greco, N.: Single secret leader
election. In: Proceedings of the 2nd ACM Conference on Advances in Financial
Technologies, pp. 12–24 (2020)

[BGG+18] Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S., Rasmussen,
P.M.R., Sahai, A.: Threshold cryptosystems from threshold fully homomorphic
encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. Part I, vol-
ume 10991 of LNCS, pp. 565–596. Springer, Heidelberg (2018). https://doi.org/10.
1007/978-3-319-96884-1 19

[BGM16] Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work.
In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D.S., Brenner, M., Rohloff,
K. (eds.) FC 2016 Workshops. LNCS, vol. 9604, pp. 142–157. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53357-4 10

[BPS16] Bentov, I., Pass, R., Shi, E.: Snow white: provably secure proofs of stake.
Cryptology ePrint Archive, Report 2016/919 (2016). http://eprint.iacr.org/2016/
919

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and chal-
lenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-19571-6 16

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press,
October (2001)

[CD20] Cascudo, I., David, B.: ALBATROSS: publicly attestable batched randomness
based on secret sharing. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. Part
III, volume 12493 of LNCS, pp. 311–341. Springer, Heidelberg (2020). https://doi.
org/10.1007/978-3-030-64840-4 11

[CDG+18] Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.:
The wonderful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10820, pp. 280–312. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78381-9 11

[CF01] Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 2

[CJS14] Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: Ahn, G.-J., Yung, M., Li, N., editors, ACM CCS 2014, pp. 597–608.
ACM Press, November (2014)

[DKT+20] Dembo, A., et al.: Everything is a race and Nakamoto always wins. In:
Ligatti, J., Ou, X., Katz, J., Vigna, G., editors, ACM CCS 20, pp. 859–878. ACM
Press, November (2020)

[FKMV12] Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-
malleability of the fiat-shamir transform. In: Galbraith, S.D., Nandi, M. (eds.)
INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34931-7 5

[FLS90] Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge
proofs based on a single random string (Extended Abstract). In: 31st FOCS, pp.
308–317. IEEE Computer Society Press, October (1990)

https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-662-53357-4_10
http://eprint.iacr.org/2016/919
http://eprint.iacr.org/2016/919
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-030-64840-4_11
https://doi.org/10.1007/978-3-030-64840-4_11
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/978-3-642-34931-7_5

Efficient and Universally Composable Single Secret Leader 499

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all circuits. In:
54th FOCS, pp. 40–49. IEEE Computer Society Press, October (2013)

[GHM+17] Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scal-
ing byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP ’17, pp. 51–68, New York, NY, USA
(2017). Association for Computing Machinery

[GOP+21] Ganesh, C., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.: Fiat–
shamir bulletproofs are non-malleable (in the Algebraic Group Model). Cryptology
ePrint Archive, Paper 2021/1393 (2021). https://eprint.iacr.org/2021/1393

[GOT19] Ganesh, C., Orlandi, C., Tschudi, D.: Proof-of-stake protocols for privacy-
aware blockchains. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. Part I,
volume 11476 of LNCS, pp. 690–719. Springer, Heidelberg (2019). https://doi.org/
10.1007/978-3-030-17653-2 23

[GPS08] Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers.
Discrete Appl. Math. 156(16), 3113–3121 (2008)

[KKKZ19] Kerber, T., Kiayias, A., Kohlweiss, M., Zikas, V.: Ouroboros crypsinous:
privacy-preserving proof-of-stake. In: 2019 IEEE Symposium on Security and Pri-
vacy, pp. 157–174. IEEE Computer Society Press, May (2019)

[KMTZ13] Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable
synchronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–
498. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

[KSW08] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

[Lab19] Labs, P.: Secret single-leader election (SSLE) (2019) . https://web.archive.
org/web/20191228170149/https://github.com/protocol/research-RFPs/blob/
master/RFPs/rfp-6-SSLE.md

[Mau15] Maurer, U.: Zero-knowledge proofs of knowledge for group homomorphisms.
Designs Codes Crypt. 77(2), 663–676 (2015)

[NR97] Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-
random functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society Press,
October (1997)

[O’N10] O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556 (2010). http://eprint.iacr.org/2010/556

[Sah99] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press,
October (1999)

[Wee17] Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. Part I, volume 10677 of LNCS, pp. 206–
233. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70500-2 8

https://eprint.iacr.org/2021/1393
https://doi.org/10.1007/978-3-030-17653-2_23
https://doi.org/10.1007/978-3-030-17653-2_23
https://doi.org/10.1007/978-3-642-36594-2_27
https://web.archive.org/web/20191228170149/https://github.com/protocol/research-RFPs/blob/master/RFPs/rfp-6-SSLE.md
https://web.archive.org/web/20191228170149/https://github.com/protocol/research-RFPs/blob/master/RFPs/rfp-6-SSLE.md
https://web.archive.org/web/20191228170149/https://github.com/protocol/research-RFPs/blob/master/RFPs/rfp-6-SSLE.md
http://eprint.iacr.org/2010/556
https://doi.org/10.1007/978-3-319-70500-2_8

Simple, Fast, Efficient,
and Tightly-Secure Non-malleable

Non-interactive Timed Commitments

Peter Chvojka1(B) and Tibor Jager2

1 IMDEA Software Institute, Madrid, Spain
chvojka.p@gmail.com

2 University of Wuppertal, Wuppertal, Germany

jager@uni-wuppertal.de

Abstract. Timed commitment schemes, introduced by Boneh and Naor
(CRYPTO 2000), can be used to achieve fairness in secure computation
protocols in a simple and elegant way. The only known non-malleable
construction in the standard model is due to Katz, Loss, and Xu (TCC
2020). This construction requires general-purpose zero knowledge proofs
with specific properties, and it suffers from an inefficient commitment
protocol, which requires the committing party to solve a computation-
ally expensive puzzle.

We propose new constructions of non-malleable non-interactive timed
commitments, which combine (an extension of) the Naor-Yung paradigm
used to construct IND-CCA secure encryption with a non-interactive ZK
proof for a simple algebraic language. This yields much simpler and more
efficient non-malleable timed commitments in the standard model.

Furthermore, our constructions also compare favourably to known
constructions of timed commitments in the random oracle model, as they
achieve several further interesting properties that make the schemes very
practical. This includes the possibility of using a homomorphism for the
forced opening of multiple commitments in the sense of Malavolta and
Thyagarajan (CRYPTO 2019), and they are the first constructions to
achieve public verifiability, which seems particularly useful to apply the
homomorphism in practical applications.

1 Introduction

Timed commitments make it possible to commit to a message with respect to
some time parameter T ∈ N, such that (1) the commitment is binding for the

Peter Chvojka has been partially funded by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program under
project PICOCRYPT (grant agreement No. 101001283), a research grant from Nomadic
Labs and the Tezos Foundation, the Spanish Government under project PRODIGY
(TED2021-132464B-I00), and the Madrid Regional Government under project BLO-
QUES (S2018/TCS-4339), the last two projects are co-funded by European Union
EIE, and NextGenerationEU/PRTR funds. Tibor Jager is supported by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation programme, grant agreement 802823.

c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 500–529, 2023.
https://doi.org/10.1007/978-3-031-31368-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_18&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_18

Non-malleable Non-interactive Timed Commitments 501

committing party, (2) it is hiding the committed message for T units of time
(e.g., seconds, minutes, days), but (3) it can also forcibly be opened after time
T in case the committing party refuses to open the commitment or becomes
unavailable. This idea goes back to a seminal work by Rivest, Shamir, and Wag-
ner [24] introducing the strongly related notion of time-lock puzzles, and Boneh
and Naor [7] extended this idea to timed commitments, which have the additional
feature that an opening to the commitment can be efficiently verified (and thus
the commitment can be opened efficiently).

Achieving fairness via timed commitments. One prime application of timed
commitments is to achieve fairness in secure two- or multi-party protocols.
For instance, consider a simple sealed-bid auction protocol with n bidders
B1, . . . , Bn, where every bidder Bi commits to its bid xi and publishes the com-
mitment ci = Com(xi, ri) using randomness ri. When all bidders have published
their commitments, everyone reveals their bid xi along with ri, such that every-
one can publicly verify that the claimed bid xi is indeed consistent with the
initial commitment ci. The bidder with the maximal bid wins the auction. For
this to be most practical, we want commitments to be non-interactive.

Now suppose that after the first (n − 1) bidders B1, . . . , Bn−1 have opened
their commitments (xi, ri), the last bidder Bn claims that it has “lost” its ran-
domness ri∗ , e.g., by accidentally deleting it. However, Bn also argues strongly
and quite plausibly that it has made the highest bid xi∗ . This is a difficult
situation to resolve in practice:

– Bn might indeed be honest. In this case, it would be fair to accept its highest
bid xi∗ . One could argue that it is Bn’s own fault and thus it should not win
the auction, but at the same time a seller might strongly argue to accept the
bid, as it is interested in maximising the price, and if Bn’s claim is indeed
true, then discarding the real highest bit could be considered unfair by the
seller.

– However, Bn might also be cheating. Maybe it didn’t commit to the highest
bid, and now Bn tries to “win” the auction in an unfair way.

Timed commitments can resolve this situation very elegantly and without the
need to resort to a third party that might collude with bidders, and thus needs
to be trusted, or which might not even be available in certain settings, e.g., in
fully decentralized protocols, such as blockchain-based applications. In a timed
commitment scheme, the parties create their commitments ci = Com(xi, ri, T)
with respect to a suitable time parameter T for the given application. In case
one party is not able to or refuses to open its commitment, the other parties can
force the commitment open in time T and thus resolve a potential dispute.

Requirements on Practical Timed Commitments. Several challenges arise
when constructing timed commitments that can be used in practical applications.

Consistency of standard and forced opening. A first challenge to resolve
when constructing a timed commitment scheme is to guarantee that the

502 P. Chvojka and T. Jager

availability of an alternative way to open a commitment, by using the forced
decommitment procedure, does not break the binding property. Standard and
forced opening must be guaranteed to reveal the same message. Otherwise,
a malicious party could create a commitment where standard and forced
openings yields different values. Then it could decide in the opening phase
whether it provide the “real” opening, or whether it refuses to open, such
that the other parties will perform the forced opening.

Non-interactivity. Having non-interactive commitments is generally desirable
to obtain protocols that do not require all parties to be online at the same
time. Furthermore, certain applications inherently require the commitment
scheme to be non-interactive. This includes, for example, protocols where
the commitments are published in a public ledger (e.g., a decentralized
blockchain). Several examples of such applications are described in [20]. Non-
interactivity also avoids concurrent executions of the commitment protocol,
which simplifies the security model significantly.

Non-malleability. Non-malleability of a commitment guarantees that no party
can turn a given commitment c that decommits to some value x into another
commitment c′ which decommits to a different value x′, such that x and
x′ are related in some meaningful way. For instance, in the above example
of an auction, a malicious party Bn could first wait for all other parties to
publish their commitments. Then it would select the commitment ci which
most likely contains the highest bid xi, and exploit the malleability of to
create a new commitment cn, which is derived from ci and opens to xi + 1.
Hence, Bn would be able win the auction with a bid that is only slightly
larger than the 2nd highest bit, which does not meet the intuitive security
expectations on a secure auctioning protocol.
In order to achieve non-malleability for timed commitments, a recent line
of works has explored the idea of non-malleable time-locked commitments
and puzzles [1,12,17,25]. Existing constructions of timed commitments are
either malleable, rely on the random oracle model, have highly non-tight
security proof, which constructs a reduction that solves multiple instances of
a puzzle, or require the sender of the commitment to invest as much effort
to commit to a value as for the receiver to forcibly open the commitment.
The only known standard model construction by Katz et al. [17] relies on
non-interactive zero-knowledge proofs (NIZKs) for general NP relations with
very specific properties.

Force opening many commitments at once via homomorphism. Yet
another interesting property that can make timed commitments more prac-
tical is a possibility to aggregate multiple commitments into a single one,
such that it is sufficient to force open only this commitment. The idea of
homomorphic time-lock puzzles was introduced by Malavolta and Thyagara-
jan [20] and later adopted to the setting of non-interactive timed commit-
ments in [25].
A homomorphic timed commitment scheme allows to efficiently evaluate a
circuit C over a set of commitments c1, . . . , cn, where ci is a commitment to
some value xi for all i, to obtain a commitment c to C(x1, . . . , xn). If there

Non-malleable Non-interactive Timed Commitments 503

are multiple parties Bi1 , . . . , Biz
that refuse to open their commitments and

it is not necessary to recover the full committed messages xi1 , . . . , xiz
, but

recovering C(xi1 , . . . , xiz
) is sufficient, then one can use the homomorphism

to compute a single commitment c that needs to be opened. Malavolta and
Thyagarajan [20] describe several interesting applications, including e-voting
and sealed-bid auctions over blockchains, multi-party coin flipping, and multi-
party contract signing.

Public verifiability of commitments. Another property is public verifiability
of a timed commitment, which requires that one can efficiently check whether
a commitment is well-formed, such that a forced decommitment will yield a
correct result.
Without public verifiability, timed commitments might not provide practical
solutions for certain applications. For instance, a malicious party could out-
put a malformed commitment that cannot be opened in time T , such that
a protocol would fail again in case the malicious party refuses to open the
commitment. This could pose a problem in time-sensitive applications, in
particular if a large time parameter T is used, and also give rise do Denial-
of-Service attacks. Note that public verifiability is particularly relevant for
homomorphic commitments. When many commitments are aggregated into a
single one, then it is essential that all these commitments are well-formed, as
otherwise the forced opening may fail. Public verifiability allows to efficiently
decide which subset of commitments is well-formed, and thus to include only
these in the homomorphic aggregate.
Note that the requirement of public verifiability rules out several natural
ways to achieve non-malleability, such as the Fujisaki-Okamoto transform
[14,15] used by Ephraim et al. [12]. It seems that even in the random oracle
model ZK proofs are required.

Public verifiability of forced opening. In scenarios when the forced open-
ing is executed by untrusted party, it is desirable to be able efficiently check
that forced opening has been executed properly without redoing an expen-
sive sequential computation. This particularly useful when the forced opening
computation is outsourced to untrusted server. This property was first sug-
gested for time-lock puzzles by [12].

Our Contributions. We provide a simpler and more efficient approach to con-
struct practical non-malleable timed commitments. We give the first constructions
that simultaneously achieve non-interactivity, non-malleability, linear (i.e., addi-
tive) or multiplicative homomorphism, public verifiability of commitments and
public verifiability of forced opening. Moreover, all our reductions avoid the need
to answer decommitment queries using the slow forced decommitment algorithm,
which yields much tighter security. Instead of relying on expensive ZK proofs for
general NP languages as prior work, we show how to use Fiat-Shamir [13] NIZKs
derived from Sigma protocols for simple algebraic languages. Our constructions
can be instantiated in the standard model by leveraging techniques from Libert
et al. [18] and more efficiently in the random oracle model.

504 P. Chvojka and T. Jager

Table 1. Comparison of our constructions with related work. Column Hom. indi-
cates whether the construction provides a linear/multiplicative homomorphism, Std.
whether the construction has a standard-model proof, Com? whether it is publicly
verifiable that commitments are well-formed, FDec? efficient public verifiability of
forced decommitments, |Com| is the size of commitments, |πCom| the size of proofs,
tCom the running time of the commitment algorithm, and Tight whether the proof
avoids running the forced decommitment algorithm to respond to CCA queries.

Construction Hom. Std. Setup Com? FDec? |Com| |πCom| tCom Tight

[12] — ✗ — ✗ ✓ O(1) — O(log T) ✓

[17] — ✓ priv. ✓ ✗ O(1) O(1) O(T) ✓

[25] linear ✗ pub. ✓ ✗ O(λ) O(λ) O(1) ✗

Sect. 3.3 linear ✓ priv. ✓ ✓ O(1) O(log λ) O(1) ✓

Sect. 3.4 mult. ✓ priv. ✓ ✓ O(1) O(log λ) O(1) ✓

[9] - Sect. 4.3 linear ✗ priv. ✓ ✓ O(1) O(1) O(1) ✓

[9] - Sect. 4.4 mult ✗ priv. ✓ ✓ O(1) O(1) O(1) ✓

In more detail, we make the following contributions.

1. We begin by extending the formal definitions of prior work to cover public
verifiability of forced opening in the setting of non-malleable non-interactive
timed commitments.

2. We then give four constructions of non-interactive non-malleable timed com-
mitments. All our constructions rely on a variation of the double encryption
paradigm by Naor and Yung [21], which was also used by Katz et al. [17] and
Thyagarajan et al. [25].
However, in contrast to [17], we do not start from a timed public key encryp-
tion scheme, but build our timed commitment from scratch. This enables us
avoid two out of the three NIZK proofs in their construction, and lets us
replace the third by a proof for a variation of the DDH relation over groups
of unknown order. We are able to instantiate the given NIZK both in the
standard model and in the random oracle model [2]. Like the construction
from [17] we support public verifiability of commitments. Another important
advantage of our constructions over that of Katz et al. [17] is that it allows
for fast commitment, whereas [17] requires to execute an expensive sequential
computation in order to commit to a message. Additionally, we achieve public
verifiability of forced opening and homomorphic properties.

In comparison, the non-interactive construction of David et al. [1] is in the
programmable random oracle model, while ours can also be instantiated in the
standard model. David et al. achieve fast commitments, however the construction
does not provide public verifiability of commitments, public verifiability of forced
opening nor homomorphic properties. The work of Ephraim et al. [12] does sup-
port fast commitments and public verifiability of forced opening, but is also in the
(auxiliary non-programmable) random oracle model and does not support public
verifiability of commitments and homomorphic properties. Thyagarajan et al. [25]

Non-malleable Non-interactive Timed Commitments 505

Table 2. Comparison of our construction [9](Section 4.3) with [25] for security level
λ = 128 bits and taking into account the security loss for Q = T = 232.

Construction |crs| (kB) |Com| (kB) |πCom| (kB) |m| (bits)

[25] 2.32 3321.41 8846.96 256

[9] - Sect. 4.3 1.92 1.54 1.55 3072

construct the first CCA-secure non-interactive timed commitment with transpar-
ent setup, meaning that randomness used in the setup can be made public. Their
construction relies on class groups and CCA security is achieved using the Naor-
Young paradigm. Additionally, the construction is linearly homomorphic. This is
very similar to our work. The main disadvantage of this approach compared to
our constructions is that the size of the resulting commitments is linear in secu-
rity parameter and the security proof is extremely non-tight, since it relies on slow
forced decommitment in several steps of the security proof. Moreover, it supports
a significantly smaller message space and the construction is in the random oracle
model. We provide a summary of the properties of our constructions in comparison
to previous works in Table 1. Additionally, in Table 2 we provide a comparison of
an instantiation of our construction of linearly homomorphic NITCs in the ROM
with an instantiation of the construction from [25] which is also linearly homomor-
phic and in ROM. We compare the size of crs, commitments Com, proofs πCom, and
messages for security level λ = 128 bits and taking into account a security loss in
the security proofs. Since in the majority of game hops of the security proof of [25]
decommitment queries are answered using forced decommitment, the correspond-
ing security loss is Q · T where Q is the number of decommitment queries and T
is the time parameter of NITC. As an example, we assume that Q = T = 232,
which results in the security loss of 264. Therefore to achieve 128 bits of secu-
rity, one has to instantiate assumptions in [25] for security parameter λ = 192
bits.1 According to [4] the fundamental discriminant ΔK for this security param-
eter has size of 3598 bits, and similarly to [25] we define the message space Zq for
q which is 256 bits. Hence, Δq has size of 3588 + 2 × 256 = 4110 bits, size of q̃ is
α = 3598/2+192 = 1991 bits, andZ

∗
p is instantiated for a prime p of size 3072 bits.

To instantiate our construction it is sufficient to use recommended modulus size
of 3072 bits, since our security proof is tight. We remark, that our constructions
provide significantly smaller commitments and proofs and larger message space
even if we don’t take the security loss into account.

Technical Overview. The binding property of our commitment scheme will
be relatively easy to argue, therefore let us focus on the hiding property and
non-malleability. Like in [17], we prove this by considering an IND-CCA secu-
rity experiment, where the adversary has access to a forced decommitment oracle.
Even though the forced decommitment can be performed in polynomial time, this

1 The choice of Q and T such that QT = 264 is convenient because it yields λ = 192
and [4] provides concrete parameters for this security parameter.

506 P. Chvojka and T. Jager

polynomial may be very large, if the time parameter T is large. Since the exper-
iment needs to perform a forced decommitment for every decommitment query
of the adversary, this would incur a very significant overhead and a highly lossy
reduction. Hence, following Katz et al. [17], we aim to build commitment schemes
where a reduction can perform a fast decommitment.

Recall that a classical approach to achieve IND-CCA security is to apply the
Naor-Yung paradigm [21]. A natural approach to construct non-malleable timed
commitments is therefore to apply this paradigm as follows. A commitment c =
(c1, c2, π) to a message m consists of a time-lock puzzle c1 opening to m, a public
key encryption of m, and a simulation-sound zero knowledge proof π that both
contain the same message m, everything with respect to public parameters con-
tained in a public common reference string. This scheme may potentially achieve
all desired properties:

– Consistency of regular and forced opening can be achieved by using a suitable
time-lock puzzle and public-key encryption scheme.

– The commitment is non-interactive.
– IND-CCA security follows from the standard Naor-Yung argument.
– The time-lock puzzle in the above construction can be instantiated based

on repeated squaring [24], possibly using the variant of [20] that combines
repeated squaring with Paillier encryption [22] to achieve a linear homomor-
phism.

– Public verifiability can be achieved by using a suitable proof system for π.

Furthermore, in the IND-CCA security proof, we can perform fast opening
by decrypting c2 with the secret key of the public key encryption scheme, which
is indistinguishable from a forced opening using c1 by the soundness of the proof.
However, it turns out that concretely instantiating this scheme in a way that yields
a practical construction is non-trivial and requires a very careful combination of
different techniques.

Triple Naor-Yung. First of all, note that repeated squaring modulo a composite
number N = PQ, where P and Q are different primes, is currently the only avail-
able choice to achieve a practical time-lock puzzle, hence we are bound to using
this puzzle to instantiate c1. Conveniently, this puzzle allows for a linear (i.e., addi-
tive) homomorphism by following [20]. Then, in order to be able to instanatiate
π efficiently, it would be convenient to use a standard Sigma protocol, which can
then be made non-interactive via the Fiat-Shamir transform [13] in the random
oracle model, or by leveraging techniques from Libert et al. [18] in the standard
model. Since practically efficient Sigma protocols are only known for algebraic lan-
guages, such as that defined by the DDH relation, for example, we have to choose
c2 in a way which is “algebraically compatible” with c1 and the available proofs
π. If we instantiate c1 with the homomorphic TLP from [20], then a natural can-
didate would be to instantiate c2 also with Paillier encryption. Here we face the
first technical difficulty:

– Efficient proof systems for π are only available, if both c1 and c2 use the same
modulus N . Hence, we have to instantiate both with the same modulus.

Non-malleable Non-interactive Timed Commitments 507

– When arguing that c1 hides the committed message m in the Naor-Yung argu-
ment of the security proof, we will have to replace c1 with a random puzzle,
using the strong sequential squaring (SSS) assumption. At the same time, we
have to be able to respond to decommitment queries using the decryption key
of c2. But this decryption key is the factorization P,Q of the common modulus
N , and we cannot reduce to the hardness of SSS while knowing the factoriza-
tion of N .

The first candidate approach to overcome this difficulty is to replace the Paillier
encryption used in c2 with an encryption scheme that does not require knowledge
of the factorization of N , such as the “Paillier ElGamal” scheme from [20], which
is defined over the subgroup JN of elements of ZN having Jacobi symbol 1, and
which uses a discrete logarithm to decrypt but still requires the factorization of
N to be hidden in order to be secure.

However, now we run into another difficulty. In the Naor-Yung argument, we
will also have to replace c2 with an encryption of a random message, in order to
argue that our commitment scheme is hiding. In this part of the proof, we cannot
know the secret key of c2, that is, neither the aforementioned discrete logarithm,
nor the factorization of N . However, we also cannot use c1 to respond to decom-
mitment queries, because then we would have to solve the time-lock puzzle, which
cannot be done fast without knowledge of the factorization of N .

We resolve this problem by using “triple Naor-Yung”. In our linearly homo-
morphic constructions, a commitment to m will have the form (c1, c2, c3, π), where
c1 and c2 are Paillier-ElGamal encryptions of m, and c3 is the Paillier-style time-
lock puzzle based on repeated squaring from [20]. All are with respect to the same
modulus N , and thus allow for an efficient Sigma-protocol-based proof π that c1,
c2, and c3 all contain the same message. In the Naor-Yung-style IND-CCA secu-
rity proof, we will first replace c3 with a random puzzle, while using the discrete
logarithm of the public key that corresponds to c1 to perform fast decommitments.
When we then replace c2 with an encryption of a random message, we use the dis-
crete logarithm of the public key that corresponds to c1 to answer decommitment
queries. Finally, we switch to using the discrete logarithm of the secret key cor-
responding to c2 for decommitment queries, and replace c1 with an encryption of
a random message. Hence, throughout the argument we never require the factor-
ization of N for fast decommitments.

Standard Naor-Yung works for multiplicative homomorphism. Next, we observe
that the standard (i.e., “two-ciphertext”) Naor-Yung approach works, if a mul-
tiplicative homomorphism (or no homomorphism at all) is required. Concretely,
a commitment will have the form (c1, c2, π), where c1 is an ElGamal encryption
and c2 uses the “sequential-squaring-with-ElGamal-encryption” idea of [20]. By
replacing the underlying group to the subgroup QRN of quadratic residues mod-
ulo N , we can rely on the DDH assumption in QRN and thus do not require the
factorization of N to be hidden when replacing the ElGamal encryption c1 with an
encryption of a random message. While the construction idea and high-level argu-

508 P. Chvojka and T. Jager

ments are very similar, the underlying groups and detailed arguments are some-
what different, and thus we have to give a separate proof.

On separate proofs in the standard model and the ROM. The constructions
sketched above can be instantiated relatively efficiently in the standard model,
using the one-shot Fiat-Shamir arguments in the standard model by Libert et al.
[18]. However, these proofs repeat the underlying Sigma protocol a logarithmic
number of times, and thus it would be interesting to also consider constructions
in the random oracle model. Since the syntactical definitions and properties of
proof systems in the random oracle model are slightly different from that in [18],
we give separate proofs for both random oracle constructions as well.

Shared randomness. To obtain commitments of smaller size we additionally apply
the shared randomness technique from [3], where instead of producing two or three
independent encryptions of the same message, we reuse the same randomness for
encryption. This allows to save one group element in case of the standard Naor-
Yung constructions and two group elements in the case of triple Naor-Yung.

Further Related Work. Time-lock puzzles based on randomized encodings
were introduced in [8], but all known constructions of timed commitments rely
on the repeated squaring puzzles of [24]. Timed commitments are also related to
time-lock encryption scheme [19] and time-released encryption [10], albeit with
different properties. The construction in [19] is based on an external “computa-
tional reference clock” (instantiated with a public block chain), whose output can
be used to decrypt, such that decrypting parties do not have to perform expen-
sive computations by solving a puzzle. The constructions of Chvojka et al. [10] are
based on repeated squaring, however, the main difference is that the time needed
for decryption starts to run from the point when setup is executed and not from
the point when ciphertext is created.

2 Preliminaries

We denote our security parameter by λ. For n ∈ N we write 1n to denote the n-
bit string of all ones. For any element x in a set X, we use x

$← X to indicate
that we choose x uniformly at random from X. For simplicity we model all algo-
rithms as Turing machines, however, all adversaries are modeled as non-uniform
polynomial-size circuits to simplify concrete time bounds in the security defini-
tions of non-interactive timed commitments and the strong sequential squaring
assumption. All algorithms are randomized, unless explicitly defined as determin-
istic. For any PPT algorithm A, we define x ← A(1λ, a1, . . . , an) as the execution
of A with inputs security parameter λ, a1, . . . , an and fresh randomness and then
assigning the output to x. We write [n] to denote the set of integers {1, . . . , n} and
�x� to denote the greatest integer that is less than or equal to x.

Non-malleable Non-interactive Timed Commitments 509

Non-interactive timed commitments. The following definition of a non-interactive
timed commitment scheme is from [17].

Definition 1. A non-interactive timed commitments scheme NITC with message
space M is a tuple of algorithms NITC = (PGen,Com,ComVrfy,DecVrfy,FDec)
with the following syntax.

– crs ← PGen(1λ, T) is a probabilistic algorithm that takes as input the secu-
rity parameter 1λ and a hardness parameter T and outputs a common reference
string crs and a secret key.

– (c, πCom, πDec) ← Com(crs,m) is a probabilistic algorithm that takes as input a
common reference string crs and a message m and outputs a commitment c and
proofs πCom, πDec.

– 0/1 ← ComVrfy(crs, c, πCom) is a deterministic algorithm that takes as input
a common reference string crs, a commitment c and proof πCom and outputs 0
(reject) or 1 (accept).

– 0/1 ← DecVrfy(crs, c,m, πDec) is a deterministic algorithm that takes as input
a common reference string crs, a commitment c, a message m and proof πDec

and outputs 0 (reject) or 1 (accept).
– m ← FDec(crs, c, πCom) is a deterministic forced decommit algorithm that takes

as input a common reference string crs and a ciphertext c and outputs m ∈
M ∪ {⊥} in time at most T · poly(λ).

We say NITC is correct if for all λ, T ∈ N and all m ∈ M holds:

Pr

⎡
⎢⎣

FDec(crs, c) = m

∧ ComVrfy(crs, c, πCom) = 1
∧ DecVrfy(crs, c,m, πDec) = 1

:
crs ← PGen(1λ, T)

(c, πCom, πDec) ← Com(crs,m)

⎤
⎥⎦ = 1.

The following definition is based on [17], however, adjusted to computational
model considered by Bitansky et al. [5].

Definition 2. A non-interactive timed commitment scheme NITC is IND-CCA
secure with gap 0 < ε < 1 if there exists a polynomial T̃ (·) such that for all
polynomials T (·) ≥ T̃ (·) and every non-uniform polynomial-size adversary A =
{(A1,λ,A2,λ)}λ∈N, where the depth of A2,λ is at most T ε(λ), there exists a negligi-
ble function negl(·) such that for all λ ∈ N it holds

AdvNITC
A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b = b′ :

crs ← PGen(1λ, T (λ))

(m0,m1, st) ← ADEC(·,·)
1,λ (crs)

b
$← {0, 1}

(c∗, πCom, πDec) ← Com(crs,mb)

b′ ← ADEC(·)
2,λ (c∗, π∗

Com, st)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ negl(λ),

where |m0| = |m1| and the oracle DEC(c, πCom) returns the result of FDec(crs, c)
if ComVrfy(crs, c, πCom) = 1, otherwise it returns ⊥, with the restriction that A2,λ

is not allowed to query the oracle DEC(·, ·) for a decommitment of the challenge
commitment (c∗, π∗

Com).

510 P. Chvojka and T. Jager

As already observed in [17], a challenge for a security proof of a concrete timed
commitment construction is that the reduction must be able to answer decommit-
ment queries to DEC(·, ·) in time which is independent of T , as otherwise one is
not able to obtain a sound proof when reducing to a time-sensitive assumption,
such as the strong sequential squaring assumption. This in particular means that
decommitment queries in the security proof can not be simply answered by exe-
cuting the forced decommitment algorithm FDec, as its runtime depends on T ,
but there must exist another way.

Remark 1. We note that our definition of the decommitment oracle DEC slightly
differs from the original definition in [17], since we require that the oracle at first
checks if the commitment is well formed and only then returns the result of FDec.
All our constructions can achieve also the original definition, to this end we would
simply include the proof π that the commitment is well-formed in the commitment
and then directly perform the check if a commitment is well formed in algorithm
FDec. However, in that case πCom would be empty and the whole idea of the sep-
aration of a commitment from a proof of well-formedness would be meaningless.2

Definition 3. We define the BND-CCAA(λ) experiment as follows:

1. crs ← PGen(1λ, T (λ));
2. (m, c, πCom, πDec,m

′, π′
Dec) ← ADEC(·,·)

λ (crs), where the oracle DEC(c, πCom)
returns FDec(crs, c) if ComVrfy(crs, c, πCom) = 1, otherwise it returns ⊥;

3. Output 1 iff ComVrfy(crs, c, πCom) = 1 and either:
– m �= m′ ∧ DecVrfy(crs, c,m, πDec) = DecVrfy(crs, c,m′, π′

Dec) = 1;
– DecVrfy(crs, c,m, πDec) = 1 ∧ FDec(crs, c) �= m.

A non-interactive timed commitment scheme NITC is BND-CCA secure if for all
non-uniform polynomial-size adversaries A = {Aλ}λ∈N there is a negligible func-
tion negl(·) such that for all λ ∈ N

AdvNITC
A = Pr [BND-CCAA(λ) = 1] ≤ negl(λ).

Next we define a new property of NITCs, which allows for efficient verification
that a forced decommitment was executed correctly, without the need to execute
expensive sequential computation. This property was first suggested for time-lock
puzzles by [12] and denoted as public verifiability.

Definition 4. A non-interactive timed commitments scheme NITC is publicly ver-
ifiable if FDec additionally outputs a proof πFDec and has an additional algorithm
FDecVrfy with the following syntax:

– 0/1 ← FDecVrfy(crs, c,m, πFDec) is a deterministic algorithm that takes as input
a common reference string crs, a commitment c, a message m, and a proof πFDec

and outputs 0 (reject) or 1 (accept) in time poly(log T, λ).

2 Note that [17] FDec also implicitly checks well-formedness, as it runs a decryption
algorithm, which verifies the NIZK proof.

Non-malleable Non-interactive Timed Commitments 511

Moreover, a publicly verifiable NITC must have the following properties:

– Completeness for all λ, T ∈ N and all m ∈ M holds:

Pr

⎡
⎢⎣FDecVrfy(crs, c,m, πFDec) = 1 :

crs ← PGen(1λ, T)
(c, πCom, πDec) ← Com(crs,m)

(m,πFDec) ← FDec(crs, c)

⎤
⎥⎦ = 1.

– Soundness for all non-uniform polynomial-size adversaries A = {Aλ}λ∈N there
is a negligible function negl(·) such that for all λ ∈ N

Pr

⎡
⎢⎣
FDecVrfy(crs, c, m′, π′

FDec) = 1

∧ ComVrfy(crs, c, πCom) = 1

∧ m �= m′
:

crs ← PGen(1λ, T)

(c, πCom, m′, π′
FDec) ← Aλ(crs)

(m, πFDec) ← FDec(crs, c)

⎤
⎥⎦ ≤ negl(λ).

The following definition is inspired by the definition of homomorphic time-lock
puzzles of Malavolta et al. [20].

Definition 5. A non-interactive timed commitments scheme NITC is homomor-
phic with respect to a class of circuits C = {Cλ}λ∈N, if there is an additional algo-
rithm Eval with the following syntax:

– c ← Eval(crs, C, c1, . . . , cn) is a probabilistic algorithm that takes as input a
common reference string crs, a circuit C ∈ Cλ, and set of n commitments
(c1, . . . , cn). It outputs a commitment c.

Additionally, a homomorphic NITC fulfils the following properties:
Correctness: for all λ, T ∈ N, C ∈ Cλ, (m1, . . . ,mn) ∈ Mn, all crs in the support
of PGen(1λ, T), all ci in the support of Com(crs,mi) we have:

1. There exists a negligible function negl such that

Pr [FDec(crs,Eval(crs, C, c1, . . . , cn)) �= C(m1, . . . ,mn)] ≤ negl(λ).

2. The exists a fixed polynomial poly such that the runtime of FDec(crs, c) is
bounded by poly(λ, T), where c ← Eval(crs, C, c1, . . . , cn).

Compactness: for all λ, T ∈ N, C ∈ Cλ, (m1, . . . ,mn) ∈ Mn, all crs in the support
of PGen(1λ, T), all ci in the support of Com(crs,mi), the following two conditions
are satisfied:

1. The exists a fixed polynomial ˆpoly such that |c| = ˆpoly(λ, |C(m1, . . . ,mn)|),
where c ← Eval(crs, C, c1, . . . , cn).

2. The exists a fixed polynomial ˜poly such that the runtime of Eval(crs, C,
c1, . . . , cn) is bounded by ˜poly(λ, |C|).

512 P. Chvojka and T. Jager

ExpSSSb
A(λ):

(p, q, N, g) ← GenMod(1λ)
st ← A1,λ(N, T (λ), g)

x
$← G

if b = 0 : y := x2T (λ)
mod N

if b = 1 : y
$← G

return b′ ← A2,λ(x, y, st)

ExpDCRb
A(λ):

(p, q, N, g) ← GenMod(1λ)

y1
$← Z

∗
N2

y0 = yN
1 mod N2

return b′ ← Aλ(N, yb)

Fig. 1. Security experiments for the strong sequential squaring assumption (left) and
DCR (right).

Complexity assumptions. We base our constructions on the strong sequential
squaring assumption. Let p, q be safe primes (i.e., such that p = 2p′+1, q = 2q′+1
for primes p′, q′). We denote by ϕ(·) Euler’s totient function, by Z

∗
N the group

{x ∈ ZN : gcd(N,x) = 1} and by JN the cyclic subgroup of elements of Z∗
N with

Jacobi symbol 1 which has order |JN | = ϕ(N)
2 = (p−1)(q−1)

2 . By QRN we denote
the cyclic group of quadratic residues modulo N which has order |QRN | = ϕ(N)

4 =
(p−1)(q−1)

4 . To efficiently sample a random generator g from JN , it is sufficient to
be able sample random element from JN \QRN , since with all but negligible prob-
ability a random element of JN \QRN is a generator. Moreover, when the factors
p, q are known, then it easy to check if the given element is a generator of JN by
testing possible orders.

To sample a random element of JN \ QRN , we can sample r
$← Z

∗
N and let

g := −r2 mod N . Now notice that r2 mod N is a random element in the group of
the quadratic residues and −1 mod N ∈ JN \ QRN . To see this, notice that for
any safe prime p it holds that p = 3 mod 4. By Euler’s criterion we have

(
x
p

)
=

x
p−1
2 mod p for odd primes p and every x which is coprime to p. Therefore

(
−1
p

)
=(

−1
q

)
= −1, meaning that −1 mod N ∈ JN\QRN . By multiplying a fixed element

of JN \QRN with a random element of QRN we obtain a random element of JN \
QRN .

As mentioned above, to sample a random element from QRN , we can sample
r

$← Z
∗
N and let g := r2 mod N . Again g is a generator of QRN with all but

negligible probability. When the factors p, q are known, then it easy to check if
the given element is a generator of QRN by checking if gp′ �= 1 mod N ∧ gq′ �=
1 mod N . Therefore we are able to efficiently sample a random generator of QRN .

Since our constructions relies on the strong sequential squaring assumption
either in the group JN [20] or in the groupQRN [17] for brevity we state the strong
sequential squaring assumption in the group G, where G is one of the mentioned
groups. Let GenMod be a probabilistic polynomial-time algorithm which on input
1λ outputs two λ-bit safe primes p and q, modulus N = pq and a random generator
g of the group G.

Non-malleable Non-interactive Timed Commitments 513

Definition 6 (Strong Sequential Squaring Assumption (SSS)). Consider
the security experiment ExpSSSb

A(λ) in Fig. 1. The strong sequential squaring
assumption with gap 0 < ε < 1 holds relative to GenMod if there exists a poly-
nomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and for every non-uniform
polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N, where the depth of A2,λ is at
most T ε(λ), there exists a negligible function negl(·) such that for all λ ∈ N

AdvSSS
A =

∣∣Pr[ExpSSS0A(λ) = 1] − Pr[ExpSSS1A(λ) = 1]
∣∣ ≤ negl(λ).

Next we define the DDH experiment in the group JN , as originally stated by
Castagnos et al. [11]. Castagnos et al. have shown that this problem is hard assum-
ing that DDH is hard in the subgroups of Z∗

N of order p′ and q′ and that the
quadratic residuosity problem is hard in Z

∗
N . We also define DDH experiment in

the group of quadratic residues modulo N where the factors of N are given to an
adversary. Castagnos et al. [11] have shown that DDH problem is hard in QRN

assuming that DDH is hard in the large prime-order subgroups of Z∗
N . This is

shown as part of the proof of their Theorem 9. We remark that even though in
the mentioned proof the prime factors p, q are not given to DDH adversary in the
group QRN , but the proof relies on the fact that the constructed reduction knows
factors p, q. Therefore the proof is valid even if p, q are given to DDH adversary in
QRN as input.

ExpJNDDH
b
A(λ):

(p, q, N, g) ← GenMod(1λ)

α, β
$← [ϕ(N)/2]

if b = 0 : γ = a · b mod ϕ(N)/2

if b = 1 : γ
$← [ϕ(N)/2]

return b′ ← Aλ(N, g, gα, gβ , gγ)

ExpQRNDDH
b
A(λ):

(p, q, N, g) ← GenMod(1λ)

α, β
$← [ϕ(N)/4]

if b = 0 : γ = a · b mod ϕ(N)

if b = 1 : γ
$← [ϕ(N)/4]

return b′ ← Aλ(N, p, q, g, gα, gβ , gγ)

Fig. 2. Security experiments for DDH in JN and QRN .

Definition 7 (Decisional Diffie-Hellman in JN). Consider the security exper-
iment ExpJNDDHb

A(λ) in Fig. 2. The decisional Diffie-Hellman assumption holds
relative to GenMod in JN if for every non-uniform polynomial-size adversary A =
{Aλ}λ∈N there exists a negligible function negl(·) such that for all λ ∈ N

AdvDDH
A =

∣∣Pr[ExpJNDDH0
A(λ) = 1] − Pr[ExpJNDDH1

A(λ) = 1]
∣∣ ≤ negl(λ).

Definition 8 (Decisional Diffie-Hellman in QRN). Consider the security
experiment ExpQRNDDH

b
A(λ) in Fig. 2. The decisional Diffie-Hellman assumption

holds relative to GenMod in QRN if for every non-uniform polynomial-size adver-
sary A = {Aλ}λ∈N there exists a negligible function negl(·) such that for all λ ∈ N

AdvDDH
A =

∣∣Pr[ExpQRNDDH
0
A(λ) = 1] − Pr[ExpQRNDDH

1
A(λ) = 1]

∣∣ ≤ negl(λ).

514 P. Chvojka and T. Jager

Definition 9 (Decisional Composite Residuosity Assumption). Consider
the security experiment ExpDCRb

A(λ) in Fig. 1. The decisional composite residuos-
ity assumption holds relative to GenMod if for every non-uniform polynomial-size
adversary A = {Aλ}λ∈N there exists a negligible function negl(·) such that for all
λ ∈ N

AdvDCR
A =

∣∣Pr[ExpDCR0
A(λ) = 1] − Pr[ExpDCR1

A(λ) = 1]
∣∣ ≤ negl(λ).

When designing an efficient simulation sound NIZK for our scheme, we rely on
factoring assumption.

Definition 10 (Factoring Assumption). The factoring assumption holds rel-
ative to GenMod if for every non-uniform polynomial-size adversary A = {Aλ}λ∈N

there exists a negligible function negl(·) such that for all λ ∈ N

AdvFactor
A = Pr

⎡
⎢⎣N = p′q′ :

(p, q,N, g) ← GenMod(1λ)
p′, q′ ← Aλ(N),

such that p′, q′ ∈ N; p′, q′ > 1

⎤
⎥⎦ ≤ negl(λ).

To argue that our proof system fulfils required properties, we make of use the
following lemma, which states that it is possible factorize N if a positive multiple
of ϕ(N) is known. The proof of this lemma is part of an analysis of [16, Theorem
8.50].

Lemma 1. Let (p, q,N) ← GenMod(1λ) and let M = αϕ(N) for some posi-
tive integer α ∈ Z

+. There exists a PPT algorithm Factor(N,M) which, on input
(N,M), outputs p′, q′ ∈ N, p′, q′ > 1 such that N = p′q′ with probability at least
1 − 2−λ.

On sampling random exponents for JN and QRN . Since in our construction the
order ϕ(N)/2 of the group JN and the order ϕ(N)/4 of QRN are unknown, we
use the set [�N/2�], respectively [�N/4�], whenever we should sample from the
sets [ϕ(N)/2], respectively [ϕ(N)/4] without knowing the factorization of N . Sam-
pling from [�N/2�] is statistically indistinguishable from sampling from [ϕ(N)/2]
and similarly sampling from [�N/4�] is statistically indistinguishable from sam-
pling from [ϕ(N)/4].

Definition 11 (Statistical Distance). Let X and Y be two random variables
over a finite set S. The statistical distance between X and Y is defined as

SD(X,Y) =
1
2

∑
s∈S

|Pr[X = s] − Pr[Y = s]| .

Lemma 2. Let p, q be primes, N = pq, � ∈ N such that gcd(�, ϕ(N)) = � and X
and Y be random variables defined on domain [�N/��] as follows:

Pr[X = r] = 1/ �N/�� ∀r ∈ [�N/��] and Pr[Y = r] =

{
�/ϕ(N) ∀r ∈ [ϕ(N)/�]
0 otherwise.

Non-malleable Non-interactive Timed Commitments 515

Then
SD(X,Y) ≤ 1

p
+

1
q

− 1
N

.

The proof of this lemma can be found in the full version of this paper [9].

3 Standard Model Constructions

In this section we construct two non-malleable non-interactive timed commitment
schemes whose security can be proven in standard model and which are either
linearly (i.e., additively) or multiplicatively homomorphic. he constructions rely
on non-interactive zero-knowledge proofs in the common reference string model.

3.1 Non-interactive Zero-Knowledge Proofs

We recall the definition of a simulation-sound non-interactive proof system (SS-
NIZK) that we take from Libert et al. [18].

Definition 12. A non-interactive zero-knowledge proof system Π for an NP
language L associated with a relation R is a tuple of four PPT algorithms
(Genpar,GenL,Prove,Vrfy), which work as follows:

– crs ← Setup(1λ, L) takes a security parameter 1λ and the description of a lan-
guage L. It outputs a a common reference string crs.

– π ← Prove(crs, s, w) is a PPT algorithm which takes as input the common refer-
ence string crs, a statement s, and a witness w such that (s, w) ∈ R and outputs
a proof π.

– 0/1 ← Vrfy(crs, s, π) is a deterministic algorithm which takes as input the com-
mon reference string crs, a statement s and a proof π and outputs either 1 or 0,
where 1 means that the proof is “accepted” and 0 means it is “rejected”.

Moreover, Π should satisfy the following properties.

– Completeness: for all (s, w) ∈ R holds:

Pr[Vrfy(crs, s, π) = 1 : crs ← Setup(1λ, L), π ← Prove(crs, s, w)] = 1.

– Soundness: for all non-uniform polynomial-size adversaries A = {Aλ}λ∈N

there exists a negligible function negl(·) such that for all λ ∈ N

SndNIZK
A = Pr

[
s /∈ L∧

Vrfy(crs, s, π) = 1
:

(crs ← Setup(1λ, L)
(π, s) ← Aλ(crs, τL)

]
≤ negl(λ),

where τL is membership testing trapdoor.

516 P. Chvojka and T. Jager

– Zero-Knowledge: there is a PPT simulator (Sim1,Sim2), such that for all non-
uniform polynomial-size adversaries A = {Aλ}λ∈N there exists a negligible
function negl(·) such that for all λ ∈ N:

ZKNIZK
A =

∣∣∣Pr
[
AProve(crs,·,·),

λ (crs, τL) = 1 : crs ← Setup(1λ, L)
]

−Pr
[
AO(crs,τ,·,·),

λ (crs, τL) = 1 : (crs, τ) ← Sim1(1λ, L)
]∣∣∣ ≤ negl(λ).

Here τL is a membership testing trapdoor for language L; Prove(crs, ·, ·) is an
oracle that outputs ⊥ on input (s, w) /∈ R and outputs a valid proof π ←
Prove(crs, s, w) otherwise; O(crs, τ, ·, ·) is an oracle that outputs ⊥ on input
(s, w) /∈ R and outputs a simulated proof π ← Sim2(crs, τ, s) on input (s, w) ∈
R. Note that the simulated proof is generated independently of the witness w.

Remark 2. We have slightly modified the soundness and zero-knowledge defini-
tions compared to [18]. Our soundness definition is adaptive and an adversary is
given as input also a membership testing trapdoor τL. This notion is implied by the
simulation-soundness as defined in Definition 13. Our zero-knowledge definition
provides a membership testing trapdoor τL as an input for an adversary, whereas
the definition of [18] lets an adversary generate the language L itself. The defini-
tion of [18] works in our constructions too, but we prefer to base our constructions
on a slightly weaker definition.

Definition 13 (One-Time Simulation Soundness). A NIZK for an NP lan-
guage L with zero-knowledge simulator Sim = (Sim0,Sim1) is one-time simula-
tion sound, if for all non-uniform polynomial-size adversaries A = {Aλ}λ∈N there
exists a negligible function negl(·) such that for all λ ∈ N

SimSndNIZK
A = Pr

⎡
⎢⎣

s /∈ L∧
(s, π) �= (s′, π′)∧
Vrfy(crs, s, π) = 1

:
(crs, τ) ← Sim1(1λ, L)

(s, π) ← ASim2(crs,τ,·)
λ (crs, τL)

⎤
⎥⎦≤ negl(λ),

where τL is a membership testing trapdoor for language L and Sim2(crs, τ, ·) is a
single query oracle which on input s′ returns π′ ← Sim(crs, τ, s′).

Libert et al. [18] show that given an additively homomorphic encryption
scheme, one can build a trapdoor Sigma protocol for the language defined below.
Moreover, any trapdoor Sigma protocol can be turned into an unbounded simula-
tion sound NIZK which directly implies existence of a one-time simulation sound
NIZK. Since we use the term trapdoor Sigma protocol only as intermediate notion
and never instantiate it, we do not state formal definition and only reference it for
brevity. For more details about trapdoor Sigma protocols see e.g. [18].

Lemma 3 (Lemma D.1 [18]). Let (Gen,Enc,Dec) be an additively homomor-
phic encryption scheme where the message space M , randomness space R and
the ciphertext space C form groups (M,+), (R,+) and (C, ·). Let the encryption

Non-malleable Non-interactive Timed Commitments 517

scheme be such that for any public key pk generated using (pk, sk) ← Gen(1λ), any
messages m1,m2 ∈ M and randomness r1, r2 ∈ R holds

Enc(pk,m1; r1) · Enc(pk,m2; r2) = Enc(pk,m1 + m2; r1 + r2).

Let S be a finite set of public cardinality such that uniform sampling from S is
computationally indistinguishable from uniform sampling from R. Then there is an
trapdoor Sigma protocol for the language L := {c ∈ C|∃r ∈ R : c = Enc(pk, 0; r)}
of encryptions of zero, where pk is fixed by the language.

Remark 3. We note that Libert et al. required that the order of the group (R,+)
is public and that this group is efficiently samplable, which is used in their proof
of the zero-knowledge property. This is however, not necessary, since it is suffi-
cient to be able to sample from a distribution which is computationally indistin-
guishable from the uniform distribution. This results in computational indistin-
guishability of real and simulated transcripts. In case of our constructions, we will
sample randomness from a distribution which is statistically close and hence indis-
tinguishable from the uniform distribution over R, which yields that the real and
the simulated transcripts are statistically indistinguishable.

Additionally, Libert et al. construct a simulation sound non-interactive argu-
ment system from any trapdoor Sigma protocol relying on a strongly unforgeable
one-time signature, a lossy public-key encryption scheme, an admissible hash func-
tion and a correlation intractable hash function.

Theorem 1 (Thm B.1, Thm. B.2 [18]). Let (Genpar,GenL,Prove,Vrfy) be a
trapdoor Sigma protocol for an NP language L. Then given a strongly unforgeable
one-time signature scheme, R-lossy public-key encryption scheme, a correlation
intractable hash function and an admissible hash function, there is an unbounded
simulation sound non-interactive zero-knowledge proof system for the language L.

We note that in order to achieve negligible soundness error, it is needed to run
the underlying trapdoor Sigma protocol O(log λ) times in parallel. One run of the
trapdoor Sigma protocol of Libert et al. for L, as defined above, corresponds to
sending one ciphertext of the homomorphic encryption scheme and one random
element r ∈ R.

3.2 Standard-Model Instantiation of SS-NIZKs

In this section we provide simulation sound NIZK proof systems for languages
L1 and L2 that are used in our constructions. The languages are defined in the
following way:

L1 =

{
(c0, c1, c2, c3)|∃(m, r) :

(∧3
i=1ci = hrN

i (1 + N)m mod N2)∧
c0 = gr mod N

}
and

L2 =
{
(c0, c1, c2)|∃(m, r) : (∧2

i=1ci = hr
i m mod N) ∧ c0 = gr mod N

}
,

518 P. Chvojka and T. Jager

where g, h1, h2, h3, N are parameters defining the languages.
Note that L1 can be viewed as a set of all ciphertexts (c0, c1 ·(c2)−1, c3 ·(c2)−1)

that are encryptions of zero, where the corresponding public key is defined as
pk := (g, (h1 · (h2)−1), (h3 · (h2)−1), N) and encryption is defined as Enc(pk :=
(g, h, h′),m) : c := gr mod N, c′ := hrN (1 + N)m mod N2, c′ := h′rN (1 +
N)m mod N2. L2 can be viewed as a set of all ciphertexts (c0, c1 · (c2)−1) that
are encryptions of zero, where the corresponding public key is defined as pk :=
(g, (h1 · (h2)−1)), N) and encryption is defined as Enc(pk := (g, h),m) : c :=
gr, c′ := hgm mod N . Hence, both encryption schemes are additively homomor-
phic and by Lemma 3 we obtain a trapdoor Sigma protocol for the languages
L1, L2. By Theorem 1 this yields unbounded simulation-sound NIZKs for these
languages.

3.3 Construction of Linearly Homomorphic Non-malleable NITC

We start with a construction of linearly homomorphic non-malleable NITC. In
our construction depicted in Fig. 3 we rely on a one-time simulation-sound NIZK
for the following language:

L =

{
(c0, c1, c2, c3)|∃(m, r) :

(∧3
i=1ci = hrN

i (1 + N)m mod N2)∧
c0 = gr mod N

}
,

where g, h1, h2, h3, N are parameters specifying the language.

Theorem 2. If (NIZK.Setup, NIZK.Prove, NIZK.Vrfy) is a one-time simulation-
sound non-interactive zero-knowledge proof system for L, the strong sequen-
tial squaring assumption with gap ε holds relative to GenMod in JN , the Deci-
sional Composite Residuosity assumption holds relative to GenMod, and the
Decisional Diffie-Hellman assumption holds relative to GenMod in JN , then
(PGen,Com,ComVrfy,DecVrfy,FDec) defined in Fig. 3 is an IND-CCA-secure
non-interactive timed commitment scheme with gap ε, for any ε < ε.

Proof. Completeness is implied by the completeness of the NIZK and can be ver-
ified by straightforward inspection.

To prove security we define a sequence of games G0−G12. For i ∈ {0, 1, . . . , 12}
we denote by Gi = 1 the event that the adversary A = {(A1,λ,A2,λ)}λ∈N outputs
b′ in the game Gi such that b = b′.

Game 0. Game G0 corresponds to the original security experiment where decom-
mitment queries are answered using FDec.

Game 1. In game G1 decommitment queries are answered using the algorithm
Dec defined in Fig. 4 with i := 1, meaning that secret key k1 and ciphertext c1 are
used, to answer decommitment queries efficiently.

Non-malleable Non-interactive Timed Commitments 519

PGen(1λ, T) Com(crs, m)

(p, q,N, g) ← GenMod(1λ) r
$← [�N/2�]

ϕ(N) := (p − 1)(q − 1) c0 := gr mod N

k1, k2
$← [�N/2�] For i ∈ [3] : ci := hrN

i (1 + N)m mod N2

t := 2T mod ϕ(N)/2 c := (c0, c1, c2, c3), w := (m, r)

For i ∈ [2] : hi := gki mod N π, ← NIZK.Prove(crsNIZK, c, w)
h3 := gt mod N πDec := r

crsNIZK ← NIZK.Setup(1λ, L) return (c, π,, πDec)
return crs := (N, T, g, h1, h2, h3, crsNIZK)

ComVrfy(crs, c, π,) DecVrfy(crs, c, m, πDec)

return NIZK.Vrfy(crsNIZK, c, π,) Parse c as (c0, c1, c2, c3)

if ∧3
i=1ci = h

πDecN
i (1 + N)m mod N2

∧c0 = gπDec mod N
return 1

return 0

FDec(crs, c) FDecVrfy(crs, c, m, πFDec)

Parse c as (c0, c1, c2, c3) Parse c as (c0, c1, c2, c3

Compute πFDec := c2
T

0 mod N if c3 = πN
FDec(1 + N)m mod N2

m :=
c3·π−N

FDec
(mod N2)−1

N
return 1

return (m, πFDec) return 0

Eval(crs, ⊕N , c1, . . . , cn)

Parse ci as (ci,0, ci,1, ci,2, ci,3)
Compute c0 :=

∏n
i=1 ci,0 mod N, c1 := ⊥, c2 := ⊥, c3 :=

∏n
i=1 ci,3 mod N2

return c := (c0, c1, c2, c3)

Fig. 3. Construction of Linearly Homomorphic NITC in Standard Model. ⊕N refers to
addition modN

Dec(crs, c, π,, i)

Parse c as (c0, c1, c2, c3)
if NIZK.Vrfy(crsNIZK, (c0, c1, c2, c3), π,) = 1

Compute y := cki
0 mod N

return ci·y−N (mod N2)−1
N

return ⊥

Fig. 4. Decommitment oracle

Lemma 4. |Pr[G0 = 1] − Pr[G1 = 1]| ≤ SndNIZK
B .

Notice that if c1 and c3 contain the same message, both oracles answer decom-
mitment queries consistently. Let E denote the event that the adversary A asks
a decommitment query (c, πCom) such that its decommitment using the key k1 is

520 P. Chvojka and T. Jager

different from its decommitment using FDec. Since G0 and G1 are identical until
E happens, we bound the probability of E. Concretely, we have

|Pr[G0 = 1] − Pr[G1 = 1]| ≤ Pr[E].
We construct an adversary B that breaks soundness of the NIZK. It is given as

input crsNIZK together with a membership testing trapdoor τL := (k1, k2, t) where
t := 2T mod ϕ(N)/2. The adversary Bλ(crsNIZK, τL) proceeds as follows:

1. It computes h1 := gk1 mod N,h2 := gk2 mod N,h3 := gt mod N
using the membership testing trapdoor τL := (k1, k2, t) and sets crs :=
(N,T, g, h1, h2, h3, crsNIZK).

2. Then it runs (m0,m1, st) ← A1,λ(crs) and answers decommitment queries
using k1.

3. It samples b
$← {0, 1}, r

$← [�N/2�] and computes c∗
0 := gr, c∗

1 :=
hrN
1 (1 + N)mb , c∗

2 := hrN
2 (1 + N)mb , c∗

3 := hrN
3 (1 + N)mb . It sets (s :=

(c∗
0, c

∗
1, c

∗
2, c

∗
3), w := (m, r)) and runs π∗ ← NIZK.Prove(s, w).

4. It runs b′ ← A2,λ(s, π∗, st) and answers decommitment queries using k1.
5. Finally, it checks whether there exists a decommitment query (c, πCom) such

that DEC(crs, c, πCom) �= Dec(crs, c, πCom, 2). If E occurs, then this is the case,
and it returns (c, πCom). Notice that this check can be done efficiently with the
knowledge of t, since instead of running FDec, B can verify the proof and com-
pute c3c

−t
0 mod N which produces the same output as FDec.

B simulates G1 perfectly and if the event E happens, then it outputs a valid
proof for a statement which is not in the specified language L. Therefore we get

Pr[E] ≤ SndNIZK
B .

Game 2. Game G2 proceeds exactly as the previous game but we run the zero-
knowledge simulator (crs, τ) ← Sim1(1λ, L) in PGen and produce a simulated
proof for the challenge commitment as π∗ ← Sim2(crs, τ, (c∗

0, c
∗
1, c

∗
2, c

∗
3)). By zero-

knowledge security of underlying NIZK we directly obtain

Lemma 5. |Pr[G1 = 1] − Pr[G2 = 1]| ≤ ZKNIZK
B .

We construct an adversary B = {Bλ}λ∈N against the zero-knowledge security
of NIZK as follows: Bλ(crsNIZK, τL) :

1. It sets crs := (N,T (λ), g, h1, h2, h3, crsNIZK) and runs (m0,m1, st) ← A1,λ(crs)
and answers decommitment queries using k1, which is included in τL =
(k1, k2, t).

2. It samples b
$← {0, 1}, r

$← [�N/2�] and computes c∗
0 := gr, c∗

1 :=
hrN
1 (1 + N)mb , c∗

2 := hrN
2 (1 + N)mb , c∗

3 := hrN
3 (1 + N)mb . It submits (s :=

(c∗
0, c

∗
1, c

∗
2, c

∗
3), w := (m, r)) to its oracle and obtains proof π∗ as answer.

3. Then it runs b′ ← A2,λ((c∗
0, c

∗
1, c

∗
2, c

∗
3), π

∗, st) and answers decommitment
queries using k1.

4. Finally, it returns the truth value of b = b′.

If the proof π∗ is generated using NIZK.Prove, then B simulates G1 perfectly. Oth-
erwise π∗ is generated using Sim1 and B simulates G2 perfectly. This proves the
lemma.

Non-malleable Non-interactive Timed Commitments 521

Game 3. In G3 we sample r uniformly at random from [ϕ(N)/2].

Lemma 6. |Pr[G2 = 1] − Pr[G3 = 1]| ≤ 1
p + 1

q − 1
N .

Since the only difference between the two games is in the set from which we sample
r, to upper bound the advantage of adversary we can use Lemma 2 with � := 2,
which directly yields the required bound.

Game 4. In G4 we sample y3
$← JN and compute c∗

3 as yN
3 (1 + N)mb .

Let T̃SSS(λ) be the polynomial whose existence is guaranteed by the SSS
assumption. Let polyB(λ) be the fixed polynomial which bounds the time required
to execute Steps 1–2 and answer decommitment queries in Step 3 of the adversary
B2,λ defined below. Set T := (polyB(λ))1/ε. Set T̃NITC := max(T̃SSS, T).

Lemma 7. From any polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N, where
depth of A2,λ is at most T ε(λ) for some T (·) ≥ T (·) we can construct a polynomial-
size adversary B = {(B1,λ,B2,λ)}λ∈N where the depth of B2,λ is at most T ε(λ) with
|Pr[G3 = 1] − Pr[G4 = 1]| ≤ AdvSSS

B .

The adversary B1,λ(N,T (λ), g) proceeds as follows:

1. It samples k1, k2
$← [�N/2�], computes h1 := gk1 mod N,h2 := gk2 mod

N,h3 := g2
T (λ)

mod N , runs (crsNIZK, τ) ← NIZK.Sim1(1λ, L) and sets crs :=
(N,T (λ), g, h1, h2, h3, crsNIZK). Notice that value h3 is computed by repeated
squaring.

2. It runs (m0,m1, st) ← A1,λ(crs) and answers decommitment queries using k1.
3. Finally, it outputs (N, g, k1, k2, h1, h2, h3, crsNIZK, τ,m0,m1, st)

The adversary B2,λ(x, y, (N, g, k1, k2, h1, h2, h3, crsNIZK, τ,m0,m1, st)) :

1. Samples b
$← {0, 1}, computes c∗

0 := x, c∗
1 := xk1N (1 + N)mb , c∗

2 := xk2N (1 +
N)mb , c∗

3 := yN (1 + N)mb .
2. Runs π∗ ← Sim2(crsNIZK, τ, (c∗

0, c
∗
1, c

∗
2, c

∗
3)).

3. Runs b′ ← A2,λ((c∗
0, c

∗
1, c

∗
2, c

∗
3), π

∗), st) and answers decommitment queries
using k1.

4. Returns the truth value of b = b′.

Since g is a generator of JN and x is sampled uniformly at random from JN there
exists some r ∈ [ϕ(N)/2] such that x = gr. Therefore when y = x2T

= (g2
T

)r mod
N , then B simulates G3 perfectly. Otherwise y is random value and B simulates
G4 perfectly.

Now we analyse the running time of the constructed adversary. Adversary B1

computes h3 by T (λ) consecutive squarings and because T (λ) is polynomial in λ,
B1 is efficient. Moreover, B2 fulfils the depth constraint:

depth(B2,λ) = polyB(λ) + depth(A2,λ) ≤ T ε(λ) + T ε(λ) ≤ 2T ε(λ) = o(T ε(λ)).

Also T (·) ≥ T̃NITC(·) ≥ T̃SSS(·) as required.

522 P. Chvojka and T. Jager

Game 5. InG5 we sample y3
$← Z

∗
N2 such that it has Jacobi symbol 1 and compute

c∗
3 as y3(1 + N)mb .

Lemma 8. |Pr[G4 = 1] − Pr[G5 = 1]| ≤ AdvDCR
B .

We construct an adversary B = {Bλ}λ∈N against DCR. Bλ(N, y) works as follows:

1. It samples g, y3, x
$← JN , k1, k2

$← [�N/2�], computes h1 := gk1 mod N,h2 :=
gk2 mod N,h3 := g2

T

mod N , runs (crsNIZK, τ) ← NIZK.Sim1(1λ, L) and sets
crs := (N,T (λ), g, h1, h2, h3, crsNIZK). Notice that value h3 is computed by
repeated squaring.

2. It runs (m0,m1, st) ← A1,λ(crs) and answers decommitment queries using k1.
3. Then it samples b

$← {0, 1}, w
$← Z

∗
N2 such that

(
y
N

)
=

(
w
N

)
. We remark that

computing Jacobi symbol can be done efficiently without knowing factorization
of N.

4. It computes c∗
0 := x, c∗

1 := xk1N (1+N)mb , c∗
2 := xk2N (1+N)mb , c∗

3 := ywN (1+
N)mb . Runs π∗ ← Sim2(crsNIZK, τ, (c∗

0, c
∗
1, c

∗
2, c

∗
3)).

5. It runs b′ ← A2,λ((c∗
0, c

∗
1, c

∗
2, c

∗
3), π

∗, st) and answers decommitment queries
using k1.

6. Then it returns the truth value of b = b′.

If y = vN mod N2 then ywN = vNwN = (vw)N and hence ywN is N -th residue.
Moreover, the Jacobi symbol of yw is 1, since the Jacobi symbol is multiplicatively
homomorphic. Therefore B simulates G4 perfectly.

Otherwise, if y is uniform random element in Z
∗
N2 , then ywN is also uniform

among all elements ofZ∗
N2 that have Jacobi symbol 1 and B simulatesG5 perfectly.

This proves the lemma.
We remark that at this point c∗

3 does not reveal any information about b. Here
we use that if x = y mod N then

(
x
N

)
=

(
y
N

)
and that there is an isomorphism f :

Z
∗
N ×ZN → Z

∗
N2 given by f(u, v) = uN (1+N)v = uN (1+ vN) mod N2 (see e.g.

[16, Proposition 13.6]). Since f(u, v) mod N = uN +uNvN mod N = uN mod N ,
that means that Jacobi symbol

(
f(u,v)

N

)
depends only on u. Hence if

(
f(u,v)

N

)
= 1,

then it must hold that
(

f(u,r)
N

)
= 1 for all r ∈ ZN . This implies that a random

element f(u, v) in Z
∗
N2 with

(
f(u,v)

N

)
= 1 has a uniformly random distribution

of v in ZN . Therefore if ywN = uN (1 + N)v mod N2 then ywN (1 + N)mb =
uN (1 + N)mb+v mod N2. Since v is uniform in ZN , (mb + v) is also uniform in
ZN , which means that ciphertext c∗

3 does not reveal any information about b.

Game 6. In G6 we sample k2 uniformly at random from [ϕ(N)/2].

Lemma 9. |Pr[G5 = 1] − Pr[G6 = 1]| ≤ 1
p + 1

q − 1
N .

Again using a statistical argument this lemma directly follows from Lemma 2
with � := 2.

Non-malleable Non-interactive Timed Commitments 523

Game 7. In G7 we sample y2
$← JN and compute c∗

2 as yN
2 (1 + N)mb .

Lemma 10. |Pr[G6 = 1] − Pr[G7 = 1]| ≤ AdvDDH
B .

We construct an adversary B = {Bλ}λ∈N against DDH in the group JN .
Bλ(N, g, gα, gβ , gγ) proceeds as follows:

1. It samples k1
$← [�N/2�], computes h1 := gk1 mod N,h3 := g2

T

mod N ,
runs (crsNIZK, τ) ← NIZK.Sim1(1λ, L) and sets crs := (N,T, g, h1, h2 :=
gα, h3, crsNIZK).

2. It runs (m0,m1, st) ← A1,λ(crs) and answers decommitment queries using k1.
3. It samples b

$← {0, 1}, y3
$← Z

∗
N2 such that it has Jacobi symbol 1 and computes

(c∗
0, c

∗
1, c

∗
2, c

∗
3) := (gβ , (gβ)k1N (1+N)mb , (gγ)N (1+N)mb , y3(1+N)mb). Runs

π∗ ← Sim2(crsNIZK, τ, (c∗
0, c

∗
1, c

∗
2, c

∗
3)).

4. It runs b′ ← A2,λ((c∗
0, c

∗
1, c

∗
2, c

∗
3), π

∗, st) and answers decommitment queries
using k1.

5. It returns the truth value of b = b′.

If γ = αβ, then B simulates G6 perfectly. Otherwise gγ is uniform random element
in JN and B simulates G7 perfectly. This proves the lemma.

Game 8. In G8 we sample k2 uniformly at random from [�N/2�]. Again by Lemma
2 with � := 2 we get

Lemma 11. |Pr[G7 = 1] − Pr[G8 = 1]| ≤ 1
p + 1

q − 1
N .

Game 9. InG9 we sample y2
$← Z

∗
N2 such that it has Jacobi symbol 1 and compute

c∗
2 as y2(1 + N)mb .

Lemma 12. |Pr[G8 = 1] − Pr[G9 = 1]| ≤ AdvDCR
B .

This can be proven in similar way as Lemma 8. We remark that at this point c∗
2

does not reveal any information about b, with the same argument as in the tran-
sition from G4 to G5.

Game 10. In G10 we answer decommitment queries using Dec (Fig. 4) with i := 2
which means that secret key k2 and ciphertext c2 are used.

Lemma 13. |Pr[G9 = 1] − Pr[G10 = 1]| ≤ SimSndNIZK
B .

Let E denote the event that adversary A asks a decommitment query (c, πCom)
such that its decommitment using the key k1 is different from its decommitment
using the key k2. Since G9 and G10 are identical until E happens, it is sufficient to
bound the probability of E. Concretely,

|Pr[G9 = 1] − Pr[G10 = 1]| ≤ Pr[E].
We construct an adversary B that breaks one-time simulation soundness of the

NIZK. It is given as input crsNIZK together with a membership testing trapdoor
τL := (k1, k2, t), where t := 2T mod ϕ(N)/2. The adversary BSim2

λ (crsNIZK, τL)
proceeds as follows:

524 P. Chvojka and T. Jager

1. It computes h1 := gk1 mod N,h2 := gk2 mod N,h3 := gt mod N using the
membership testing trapdoor τL and sets crs := (N,T, g, h1, h2, h3, crsNIZK).

2. It runs (m0,m1, st) ← A1,λ(crs) and answers decommitment queries using k2.
3. It samples b

$← {0, 1}, x
$← JN , y2, y3

$← Z
∗
N2 and computes (c∗

0, c
∗
1, c

∗
2, c

∗
3) :=

(x, xk1N (1+N)mb , y2(1+N)mb , y3(1+N)mb). Forwards (c∗
0, c

∗
1, c

∗
2, c

∗
3) to sim-

ulation oracle Sim2 and obtains a proof π∗.
4. It runs b′ ← A2,λ((c∗

0, c
∗
1, c

∗
2, c

∗
3), π

∗, st) and answers decommitment queries
using k2.

5. If there exists a decommitment query (c, πCom) such that Dec(crs, c, πCom, 1) �=
Dec(crs, c, πCom, 2), then it returns (c, πCom). Note that such a query exists iff
E happens.

B simulates G10 perfectly and if the event E happens, it outputs a valid proof
for a statement which is not in the specified language L. Therefore we get Pr[E] ≤
SimSndNIZK

B .

Game 11. InG11 we sample k1 uniformly at random from [ϕ(N)/2]. The following
again follows directly from Lemma 2 with � := 2 .

Lemma 14. |Pr[G10 = 1] − Pr[G11 = 1]| ≤ 1
p + 1

q − 1
N .

Game 12. In G12 we sample y1
$← JN and compute c∗

1 as yN
1 (1 + N)mb .

Lemma 15. |Pr[G11 = 1] − Pr[G12 = 1]| ≤ AdvDDH
B .

This can be proven in similar way as Lemma 10.

Game 13. In G13 we sample y1
$← Z

∗
N2 such that it has Jacobi symbol 1 and

compute c∗
1 as y1(1 + N)mb .

Lemma 16. |Pr[G12 = 1] − Pr[G13 = 1]| ≤ AdvDCR
B .

This can be proven in similar way as Lemma 8. We remark that at this point c∗
1

does not reveal any information about b, with the same arguments as above.

Lemma 17. Pr[G13 = 1] = 1
2 .

Clearly, c∗
0 is uniform random element in JN and hence it does not contain any

information about the challenge message. Since y1, y2, y3 are sampled uniformly
at random from Z

∗
N2 the ciphertexts c∗

1, c
∗
2, c

∗
3 are also uniform random elements in

Z
∗
N2 and hence do not contain any information about the challenge message mb.

Therefore, an adversary can not do better than guessing.
By combining Lemmas 4–17 we obtain the following:

AdvNITC
A =

∣∣∣∣Pr[G0 = 1] − 1
2

∣∣∣∣ ≤
12∑

i=0

|Pr[Gi = 1] − Pr[Gi+1 = 1]| +
∣∣∣∣Pr[G13 − 1

2

∣∣∣∣

≤ SndNIZK
B + ZKNIZK

B + AdvSSS
B + SimSndNIZK

B + 2AdvDDH
B + 3AdvDCR

B

+ 4
(

1
p

+
1
q

− 1
N

)
.

Non-malleable Non-interactive Timed Commitments 525

Theorem 3. (PGen,Com,ComVrfy,DecVrfy,FDec) defined in Fig. 3 is a BND-
CCA-secure non-interactive timed commitment scheme.

Proof. We show that the construction is actually perfectly binding. This is
straightforward to show since Paillier encryption is perfectly binding. Therefore
there is exactly one message/randomness pair (m, r) which can pass the check in
DecVrfy. Therefore the first winning condition of the BND-CCA experiment hap-
pens with probability 0. Moreover, since PGen is executed by the challenger, the
value h3 is computed correctly and therefore FDec reconstructs always the cor-
rect message m. Therefore the second winning condition of BND-CCA experiment
happens with probability 0 as well.

Theorem 4. If NIZK = (NIZK.Setup, NIZK.Prove, NIZK.Vrfy) is a non-interactive
zero-knowledge proof system for L, then (PGen,Com,ComVrfy,DecVrfy,FDec,
FDecVrfy) defined in Fig. 3 is a publicly verifiable non-interactive timed commit-
ment scheme.

Proof. Completeness is straightforward to verify. To prove soundness, notice that
if the commitment verifies, then we know that c0 = gr and c3 = hr

3(1 + N)m for
honestly generated g and h3 and some r and m. Otherwise, an adversary would
be able to break soundness of the proof system. Since there is an isomorphism f :
Z

∗
N ×ZN → Z

∗
N2 given by f(a, b) = aN (1+N)b mod N2 (see e.g. [16, Proposition

13.6]) there exist unique values πFDec and m such that c3 = πN
FDec(1 + N)m mod

N2. Therefore adversary is not able to provide a different message m′ fulfilling
the required equation. Finally, note that FDecVrfy is efficient, with a running time
which is independent of T .

It is straightforward to verify that considering the Eval algorithm, our con-
struction yields a linearly homomorphic NITC, which follows from the linear
homorphism of Paillier, as also used in [20].

Theorem 5. The NITC (PGen,Com,ComVrfy,DecVrfy,FDec,FDecVrfy,Eval)
defined in Fig. 3 is a linearly homomorphic non-interactive timed commitment
scheme.

3.4 Construction of Multiplicatively Homomorphic Non-malleable
NITC

The construction described in this section is similar to that from Sect. 3.3, except
that we replace Paillier encryption with ElGamal to obtain a multiplicative homo-
morphism and the construction is based on standard Naor-Yung paradigm. Our
construction is given in Fig. 5 and we rely on a one-time simulation sound NIZK
for the following language:

L =
{
(c0, c1, c2)|∃(m, r) : (∧2

i=1ci = hr
i m mod N) ∧ c0 = gr mod N

}
,

where g, h1, h2, N are parameters specifying the language.

526 P. Chvojka and T. Jager

PGen(1λ, T) Com(crs, m)

(p, q,N, g) ← GenMod(1λ) r
$← [�N/4�]

ϕ(N) := (p − 1)(q − 1) c0 := gr mod N

k1
$← [�N/4�] For i ∈ [2] : ci := hr

i m mod N
t := 2T mod ϕ(N)/4 c := (c0, c1, c2), w := (m, r)

h1 := gk1 mod N π, ← NIZK.Prove(crsNIZK, c, w)
h2 := gt mod N πDec := r

crsNIZK ← NIZK.Setup(1λ, L) return (c, π,, πDec)
return crs := (N, T, g, h1, h2, crsNIZK)
ComVrfy(crs, c, π,) DecVrfy(crs, c, m, πDec)

return NIZK.Vrfy(crsNIZK, c, π) Parse c as (c0, c1, c2)
if ∧2

i=1ci = h
πDec
i m mod N ∧ c0 = gπDec mod N

return 1
return 0

FDec(crs, c) Eval(crs, ⊗N , c1, . . . , cn)

Parse c as (c0, c1, c2) Parse ci as (ci,0, ci,1, ci,2)

Compute y := c2
T

0 mod N Compute c0 :=
∏n

i=1 ci,0 mod N, c1 := ⊥
m := c2 · y−1 mod N Compute c2 :=

∏n
i=1 ci,2 mod N

return m return c := (c0, c1, c2)

Fig. 5. Construction of Multiplicatively Homomorphic NITC in Standard Model. ⊗N

refers to multiplication modN

Theorem 6. If (NIZK.Setup, NIZK.Prove, NIZK.Vrfy) is a one-time simulation-
sound non-interactive zero-knowledge proof system for L, the strong sequen-
tial squaring assumption with gap ε holds relative to GenMod in QRN , and the
Decisional Diffie-Hellman assumption holds relative to GenMod in QRN , then
(PGen,Com,ComVrfy,DecVrfy,FDec) defined in Fig. 5 is an IND-CCA-secure
non-interactive timed commitment scheme with ε, for any ε < ε.

The proof can be found in the full version of this paper [9].

Theorem 7. (PGen,Com,ComVrfy,DecVrfy,FDec) defined in Fig. 5 is a BND-
CCA-secure non-interactive timed commitment scheme.

Proof. We show that the construction is perfectly binding. This is straightforward
to show since ElGamal encryption is perfectly binding. Therefore there is exactly
one message/randomness pair (m, r) which can pass the check in DecVrfy. There-
fore the first winning condition of BND-CCA experiment happens with probabil-
ity 0. Moreover, since PGen is executed by the challenger, the value h3 is computed
correctly and therefore FDec reconstructs always the correct message m. Therefore
the second winning condition of BND-CCA experiment happens with probability
0 as well.

It is straightforward to verify that considering Eval algorithm, our construction
yields multiplicatively homomorphic NITC.

Non-malleable Non-interactive Timed Commitments 527

FDec(crs, c) FDecVrfy(crs, c, m, πFDec)

Parse c as (c0, c1, c2) Parse c as (c0, c1, c2)

y := c2
T

0 mod N , πPoE = PoE.Prove(c0, y) if c2 = m · y mod N ∧ PoE.Vrfy((c0, y), πPoE)
πFDec := (y, πPoE), m := c2 · y−1 mod N return 1
return (m, πFDec) return 0

Fig. 6. FDec and FDecVrfy of Publicly Verifiable NITC

Theorem 8. The NITC (PGen,Com,ComVrfy,DecVrfy,FDec,FDecVrfy,Eval)
defined in Fig. 5 is a multiplicatively homomorphic non-interactive timed commit-
ment scheme.

Remark 4 (Public Verifiability). It is natural to ask if it is possible to make the
construction in Fig. 5 publicly verifiable. Since the output m of FDec is perfectly
determined by value y := c2

T

0 mod N , it is possible to achieve public verifiabil-
ity if one can efficiently check that indeed y equals to c2

T

0 mod N without exe-
cuting T squarings. However, this is exactly what proofs of exponentiation of
Pietrzak [23] and Wesolowski [26] do. Concretely, [23,26] propose efficient proofs
systems for the language L′ := {(G, a, b, T)|a, b ∈ G ∧ b = a2T } where G is some
group where low order assumption [23] or adaptive root assumption [26] hold. We
remark, that for both suggested proof systems G can be instantiated for example
as Z∗

N/{−1, 1} [6,26] or as it is proposed by Pietrzak G can be instantiated as a
group of signed quadratic residues QR

+
N := {|x| : x ∈ QRN}. One can argue that

the strong sequential squaring assumption holds in QR
+
N (see e.g. [12,23]). There-

fore by adjusting the construction in Fig. 5 to work in the group QR
+
N , one can

obtain publicly verifiable NITC by outputing in FDec the value y together with
a proof of exponentiation that y = c2

T

0 mod N and FDecVrfy just checks that the
proof of exponentiation is valid and at the same time c2 = y · m mod N . For
completeness we provide a description of these algorithms in Fig. 6, where we use
(PoE.Prover, PoE.Vrfy) to denote a proof system for language L′. Both Pietrzak’s
and Wesolowski’s proof system are interactive protocols which might be made
non-interactive using Fiat-Shamir transformation. Thus we obtain a publicly ver-
ifiable NITC in ROM.

We defer the constructions of non-malleable non-interactive timed commit-
ments in the random oracle model to the full version of this paper [9].

References

1. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: TARDIS: a founda-
tion of time-lock puzzles in UC. In: Canteaut, A., Standaert, F.-X. (eds.) EURO-
CRYPT 2021. LNCS, vol. 12698, pp. 429–459. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-77883-5 15

2. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V., (Eds.), ACM CCS 93, pp. 62–73. ACM Press, November (1993)

https://doi.org/10.1007/978-3-030-77883-5_15
https://doi.org/10.1007/978-3-030-77883-5_15

528 P. Chvojka and T. Jager

3. Biagioni, S., Masny, D., Venturi, D.: Naor-Yung paradigm with shared randomness
and applications. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp.
62–80. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9 4

4. Biasse, J.-F., Jacobson, M.J., Silvester, A.K.: Security estimates for quadratic field
based cryptosystems. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 10. LNCS, vol.
6168, pp. 233–247. Springer, Heidelberg (2010)

5. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Waters, V.V.: Time-lock puzzles
from randomized encodings. In: Sudan, M., ed., ITCS 2016, pp. 345–356. ACM,
January (2016)

6. Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. Cryptol-
ogy ePrint Archive, Report 2018/712 (2018). https://eprint.iacr.org/2018/712

7. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6 15

8. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryp-
tion: rate-1 fully-homomorphic encryption and time-lock puzzles. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019. Part II, volume 11892 of LNCS, pp. 407–437. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-030-36033-7 16

9. Chvojka, P., Jager, T.: Simple, fast, efficient, and tightly-secure non-malleable
non-interactive timed commitments. Cryptology ePrint Archive, Paper 2022/1498
(2022). https://eprint.iacr.org/2022/1498

10. Chvojka, P., Jager, T., Slamanig, D., Striecks, C.: Versatile and sustainable
timed-release encryption and sequential time-lock puzzles. ESORICS 2021, (2021).
https://eprint.iacr.org/2020/739

11. Couteau, G., Peters, T., Pointcheval, D.: Encryption switching protocols. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. Part I, volume 9814 of LNCS, pp. 308–338.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 12

12. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Non-malleable time-lock puz-
zles and applications. Cryptology ePrint Archive, Report 2020/779 (2020). https://
eprint.iacr.org/2020/779

13. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp. 186–
194. Springer, Heidelberg (1987)

14. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

15. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Crypt. 26(1), 80–101 (2013)

16. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. Chapman and
Hall/CRC Press, Boca Raton (2014)

17. Katz, J., Loss, J., Jiayu, X.: On the security of time-lock puzzles and timed com-
mitments. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. Part III, volume 12552 of
LNCS, pp. 390–413. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-
030-64381-2 14

18. Libert, B., Nguyen, K., Peters, T., Yung, M.: One-shot Fiat-Shamir-based NIZK
arguments of composite residuosity in the standard model (2021)

19. Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock encryption.
Designs, Codes Crypt. 86(11), 2549–2586 (2018). https://doi.org/10.1007/s10623-
018-0461-x

https://doi.org/10.1007/978-3-319-44618-9_4
https://eprint.iacr.org/2018/712
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/978-3-030-36033-7_16
https://eprint.iacr.org/2022/1498
https://eprint.iacr.org/2020/739
https://doi.org/10.1007/978-3-662-53018-4_12
https://eprint.iacr.org/2020/779
https://eprint.iacr.org/2020/779
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-030-64381-2_14
https://doi.org/10.1007/978-3-030-64381-2_14
https://doi.org/10.1007/s10623-018-0461-x
https://doi.org/10.1007/s10623-018-0461-x

Non-malleable Non-interactive Timed Commitments 529

20. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applica-
tions. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. Part I, volume 11692
of LNCS, pp. 620–649. Springer, Heidelberg (2019). https://doi.org/10.1007/978-
3-030-26948-7 22

21. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May (1990)

22. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes.
In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 223–238. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48910-X 16

23. Krzyszt of Pietrzak. Simple verifiable delay functions. In: Blum, A., ed., ITCS 2019,
vol. 124, pp. 60:1–60:15. LIPIcs, January (2019)

24. Ronald, L., Adi Shamir, R., Wagner, D.A.: Time-lock puzzles and timed-release
crypto, Technical report (1996)

25. Thyagarajan, A.K., Castagnos, G., Laguillaumie, F., Malavolta, G.: Efficient CCA
timed commitments in class groups. In: Vigna, G., Shi, E., eds., ACM CCS 2021,
pp. 2663–2684. ACM Press, November (2021)

26. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. Part III, volume 11478 of LNCS, pp. 379–407. Springer, Hei-
delberg (2019). https://doi.org/10.1007/s00145-020-09364-x

https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/s00145-020-09364-x

Certifying Giant Nonprimes

Charlotte Hoffmann1(B), Pavel Hubáček2, Chethan Kamath3,
and Krzysztof Pietrzak1

1 Institute of Science and Technology Austria, Klosterneuburg, Austria
{charlotte.hoffmann,krzysztof.pietrzak}@ist.ac.at

2 Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic
hubacek@iuuk.mff.cuni.cz

3 Tel Aviv University, Tel Aviv, Israel
ckamath@protonmail.com

Abstract. GIMPS and PrimeGrid are large-scale distributed projects
dedicated to searching giant prime numbers, usually of special forms like
Mersenne and Proth primes. The numbers in the current search-space
are millions of digits large and the participating volunteers need to run
resource-consuming primality tests. Once a candidate prime N has been
found, the only way for another party to independently verify the primal-
ity of N used to be by repeating the expensive primality test. To avoid
the need for second recomputation of each primality test, these projects
have recently adopted certifying mechanisms that enable efficient verifi-
cation of performed tests. However, the mechanisms presently in place
only detect benign errors and there is no guarantee against adversarial
behavior: a malicious volunteer can mislead the project to reject a giant
prime as being non-prime.

In this paper, we propose a practical, cryptographically-sound mech-
anism for certifying the non-primality of Proth numbers. That is, a vol-
unteer can – parallel to running the primality test for N – generate
an efficiently verifiable proof at a little extra cost certifying that N is
not prime. The interactive protocol has statistical soundness and can be
made non-interactive using the Fiat-Shamir heuristic.

Our approach is based on a cryptographic primitive called Proof
of Exponentiation (PoE) which, for a group G, certifies that a tuple
(x, y, T) ∈ G

2×N satisfies x2T

= y (Pietrzak, ITCS 2019 and Wesolowski,
J. Cryptol. 2020). In particular, we show how to adapt Pietrzak’s PoE
at a moderate additional cost to make it a cryptographically-sound cer-
tificate of non-primality.

1 Introduction

The search for giant primes has long focussed on primes of special forms due
to the availability of faster, custom primality tests. Two of the most well-known
examples are

c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 530–553, 2023.
https://doi.org/10.1007/978-3-031-31368-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_19&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_19

Certifying Giant Nonprimes 531

Mersenne numbers of the form Mn = 2n − 1, for some n ∈ N, which can be
tested using the Lucas-Lehmer or the Lucas-Lehmer-Reisel test [23,25,35];
and

Proth numbers of the form Pk,n = k2n + 1, for some n ∈ N and odd k ∈ N,
which can be tested using Proth’s theorem [33].

To harness the computational resources required for finding giant primes, there
are massive distributed projects like GIMPS (Great Internet Mersenne Prime
Search) and PrimeGrid dedicated to the search for giant primes of special forms,
including the ones above. A volunteer in such a distributed project can download
an open-source software that locally carries out primality tests on candidate
numbers, at the end of which, a candidate is either rejected as a composite
number or confirmed as a new prime. The largest-known prime as of now is a
Mersenne prime (282,589,933−1) with 24,862,048 decimal digits found by GIMPS
[16].

Testing primality of giant numbers. The search for large primes is a time-
consuming process: the GIMPS website warns that a single primality test could
take up to a month. The reason for this is that these tests – whenever the prime
candidate has no small prime factors1 – require the computation of a very long
sequence modulo an extremely large number. For example, Proth’s theorem [33]
states that Pk,n = k2n + 1 is prime if and only if, for a quadratic non-residue x
modulo Pk,n, it holds that

xk2n−1 ≡ −1 mod Pk,n. (1)

To date, the largest-known Proth prime is 10223 ·231,172,165+1 [31]. Since n is of
the order of magnitude 107 and the square-and-multiply algorithm is the fastest
way currently known to carry out exponentiation, the test roughly requires 107

squarings modulo a 107-digit modulus. Unfortunately, performing this test does
not yield an immediate witness that certifies the correctness of the result – in
particular, if Pk,n is composite, the test does not find a divisor of Pk,n.2 Until
very recently, the standard way for another party to independently validate the
test result was by recomputing the result of Equation (1). In 2020, Pavel Atna-
shev demonstrated that a cryptographic primitive called Proof of Exponentiation
(PoE) might be applicable in the context of these specialized primality tests to
avoid the costly second recomputation.3

1 GIMPS first tests by trial division whether a candidate number has any prime divi-
sors of size up to a bound between 266 and 281. Only when this is not the case is
that they run a more expensive specialized primality test: details can be found on
this page.

2 Note that some primality tests, like, e.g., Miller-Rabin [27,34], can be modified to
(sometimes) yield factors in case the number being tested is not a prime.

3 More details can be found in this thread of mersenneforum.org. An implementation
due to Atnashev is available on GitHub. The idea of using PoEs for certifying giant
primes has been discussed also by Mihai Preda in another thread in the same forum
already in August 2019.

https://www.mersenne.org/
https://www.primegrid.com/
https://www.mersenne.org/various/works.php
https://www.mersenne.org/various/math.php
https://www.mersenneforum.org/showthread.php?t=25323
https://www.mersenneforum.org
https://github.com/patnashev/llr2
https://mersenneforum.org/showthread.php?t=24654

532 C. Hoffmann et al.

PoEs and efficient verification of primality tests. For a group G, a PoE [28,39]
is an interactive protocol for the language

LG :=
{
(x, y, T) ∈ G × G × N : x2T

= y over G

}
. (2)

In case the PoE is public-coin, it can be transformed into a non-interactive PoE
using the Fiat-Shamir heuristic [14]. A PoE enables efficient verification of costly
iterated exponentiation even without the knowledge of the order of the under-
lying group. Since the primality test using Proth’s theorem amounts to iterated
exponentiation, it seems immediate that one would attempt to exploit PoEs also
towards efficient verifiability in the context of primality tests for giant numbers.
The idea is for the volunteer to use the (non-interactive) PoE to compute –
alongside the result of the test – a proof that helps any other party verify the
result. For this approach to be feasible,

1. computing the proof should not require much more additional resource (rela-
tive to the iterated exponentiation induced by the specialized primality test),
and

2. the cost of verifying a proof should be significantly lower than that of recom-
puting the exponentiation.

Recently, this approach has been deployed in both GIMPS [17] and PrimeGrid
[32], where (non-interactive) Pietrzak’s PoE [28] is used to certify (both primality
and non-primality) of Mersenne and Proth numbers when used along with Lucas-
Lehmer-Riesel test and Proth’s theorem, respectively. In fact, one of the recently-
found Proth primes, 68633 · 22715609 + 1, has been certified so.

However, PoEs were constructed for groups whose order is hard to compute
like, e.g., RSA group [36] or class group [11]. In such groups, the only known way
to compute x2T

is via T sequential squaring. On the other hand, if one party
knows the group order, they can not only speed up this exponentiation4 but also
(in many groups) construct false Pietrzak PoEs that lead a verifier to accept
proofs for false statements. In the context of primality testing the underlying
group is ZPk,n

, so the group order is known whenever Pk,n is prime. While this
does not speed up the computation of the primality test (since the modulus is
larger than the exponent), it removes the soundness guarantee of the protocol.
As we discuss next, a malicious prover can falsely convince a verifier that any
Proth prime is composite using Pietrzak’s protocol in those groups.

1.1 Our Contribution

The statistical security guarantee of Pietrzak’s PoE applies only to groups with-
out low-order elements.5 In groups with low-order elements, one additionally
4 If the order of the group is known, then x2T

can be computed efficiently using the
shortcut: y = xe (over G) for e = 2T mod ord(G).

5 Recall that the order of an element g ∈ G, denoted ord(g), is the least integer
such that gord(g) = 1. An example of a group without low-order elements is signed
quadratic residues QR+

N , where N is sampled as the product of safe primes [15,21].
This is also the algebraic setting used in Pietrzak’s VDF [28].

https://primes.utm.edu/primes/page.php?id=130945

Certifying Giant Nonprimes 533

requires the low-order assumption [8] to hold, i.e., it must be computationally
hard to find a group element of low order. Boneh, Bünz, and Fisch [8] described
an attack on the soundness of Pietrzak’s PoE when implemented in groups where
low-order elements are easy to find (see Sect. 1.2). This presents an issue with its
usage in the GIMPS and PrimeGrid projects since there are no guarantees on the
structure of the group in these applications. In fact, if Pk,n is prime, the order
of the group is Pk,n − 1 = k2n so low-order elements (e.g., of order 2) do exist
and can be found without much effort. We show in Appendix A how a malicious
volunteer can exploit the attack from [8] to generate a proof that “certifies” an
arbitrary Proth prime as composite with constant probability. Indeed, people at
GIMPS and PrimeGrid were aware of this [3] and Pietrzak’s PoE is currently
employed in these projects more-or-less as a checksum to catch benign errors
(e.g., hardware errors). When a volunteer is malicious and deliberately tries to
mislead the project, there are no guarantees. This could force the volunteer net-
work to waste additional computation and possibly postpone the discovery of
another giant prime by years.

Are Cryptographically-Sound Certificates Possible? In our work, we
explore whether any cryptographic guarantee for practical proofs is possible in
the above scenarios. Whilst it is theoretically possible to use existing results to
certify non-primality, these measures, as we discuss in Sect. 1.1, turn out to be
too expensive. As a first step towards practical proofs, we show how to achieve
soundness for proving non-primality of Proth numbers. That is, we construct an
interactive protocol for the language

L := {(k, n) ∈ N
2 : k is odd and Pk,n = k2n + 1 is not a prime}. (3)

While ideally, one would want to certify both primality and non-primality, the
latter is much more important for projects like GIMPS and PrimeGrid: they
worry about missing out on primes rather than false claims stating that a com-
posite is a prime. Primes are very sparse6, so double checking claims of primality
is not a problem, but performing each primality check twice to catch benign
errors or a malicious volunteer is almost twice as expensive as using a sound
non-primality test as suggested in this work.

Our interactive protocol has statistical soundness: if the candidate number
to be tested is indeed a Proth prime, then even a computationally unbounded
malicious prover (a malicious volunteer) will not be able to convince the verifier
(say a server run by the project) that it is composite.

Theorem 1 (Informal). There is a practical public-coin statistically-sound
interactive proof for the non-primality of Proth numbers.

6 For N ∈ N, let π(N) denote the number of primes less than N . By prime number
theorem, asymptotically π(N) approaches N/ log(N). For the case of Proth numbers,
however, even the question of whether there are infinitely many of them is open [9].

534 C. Hoffmann et al.

We provide an overview of our interactive protocol in the next section. Since
it is public-coin, our interactive protocol can be made non-interactive via the
Fiat-Shamir transform [14]. In general, the Fiat-Shamir transform only works
for constant round protocols, which is not the case for our protocol, so showing
that Fiat-Shamir works in our case needs a proof.

Corollary 1 (Informal). In the random-oracle model, there is a practical
statistically-sound non-interactive proof for the non-primality of Proth numbers.

Concrete Efficiency. We defer exact details about the complexity of our pro-
tocol to Sect. 4.3. Here, we provide concrete (worst-case) numbers for our non-
interactive proof using the largest Proth prime known to date as the candidate:
10223 · 231172165 + 1 [31]. For k = 10223, n = 31172165 and security parameter
λ = 80:

– the prover (additionally) stores 5584 group elements (which is around 20GB)
and performs 13188 multiplications;

– the verifier performs 10046 multiplications; and
– the proof size is 26 elements of size 31172179, i.e., around 102 MB.

Note that recomputing the result of the primality test would take n = 31172165
multiplications, so our protocol reduces the number of multiplications by a factor
of �31172165/(13188 + 10046)� = 1341. Note that this takes the order of hours
rather than days. In Sect. 4.4, we show that the additional cost of our protocol
compared to the one that is being used now (which is not cryptographically
sound) is moderate: In the above example, the prover performs 2021 and the
verifier 4046 multiplications more than in the current implementation.

Applicability of Existing Statistically-Sound PoEs. The issue with low-
order elements when using Pietrzak’s PoE out-of-the-box can be resolved using
alternative PoEs that are statistically sound in arbitrary groups.7 Indeed, such
PoEs were recently proposed [6,20]. [6] can be regarded as a parallel-repeated
variant of Pietrzak’s protocol but, to achieve statistical soundness, the number
of repetitions is as large as the security parameter. This leads to significant
overhead in terms of both proof-size and computation. For example, to compute
the PoE of [6] for the Proth prime from Sect. 1.1, the prover needs to perform
893312 multiplications and it takes the verifier 318800 multiplications to verify
the proof consisting of 2080 group elements (i.e., 8160 MB). This means that
our protocol reduces the number of multiplications of [6] by a factor of 52 and
the proof size by a factor of 80. The overall approach in [20] is similar to that in
[6], but it improves on the complexity of [6] whenever it is possible to choose the

7 One could also use SNARGs [22,26] for this purpose but, being a general-purpose
primitive, the resulting schemes would not be practically efficient.

Certifying Giant Nonprimes 535

exponent to be a large q of a special form. In the primality testing application,
we do not have the freedom to choose the exponent and, for the case of q = 2,
the complexity of [20] is comparable to that of [6].

1.2 Technical Overview

Our starting point is Pietrzak’s PoE (PPoE, Fig. 2), which is a statistically-sound
log(T)-round interactive protocol for the language LG from Equation (2). We
start with its overview (which is adapted from [20]). The protocol in [28] is
recursive in the parameter T and involves log(T) rounds of interaction. To prove
a (true) statement (x, y, T), the (honest) prover P, in the first round, sends
the “midpoint” z := x2T/2

to the verifier V. This results in two intermediate
statements (x, z, T/2) and (z, y, T/2). Next, V sends a random challenge r to
P, and they merge these two intermediate statements into a new statement
(xr · z, zr · y, T/2). The above steps constitute the “halving” sub-protocol, which
is repeated log(T) times, halving the parameter T each time, until P and V
arrive at a (base) statement for T = 1. At this point, V can efficiently check the
correctness on its own by performing a single squaring.

Problem with low-order elements. The soundness argument in groups without
low-order elements proceeds in a round-by-round manner as follows: when start-
ing with a false statement, it is guaranteed that at least one of the two interme-
diate statements is false and one can argue that the new statement is false with
high probability (over the choice of r). In groups that have easy-to-compute low-
order elements, the above argument fails and we recall the attack described in
[8]. In the following discussion, by a “μ-false” statement, we refer to a statement
that is off a true statement by a factor of μ ∈ G. Suppose that μ ∈ G has order
2 and let (x, y, T) be a true statement. For the μ-false statement (x, yμ, T), the
cheating prover simply sends μz as its first message and the claim is that the
new statement at the end of the first halving sub-protocol is true with proba-
bility 1/2. To see this, note that the new statement is (xr · μz, (μz)r · y, T/2)
and whenever r is odd, it reduces to the true statement (μ · xr · z, μ · zr · y, T/2)
(since μ vanishes when exponentiated to an even power T/2). Thus, the verifier
eventually accepts. Therefore, applying PPoE out-of-the-box as a certificate of
non-primality for a Proth number Pk,n is not sound since the group Z

∗
Pk,n

might
have easy-to-find elements of low order. We show in Appendix A that this is
indeed the case and it is not hard to generate PPoE proofs that “certify” a prime
Pk,n as composite.

Working around low-order elements. The way low-order elements are dealt with
in [6,20] is via parallel repetition and/or by working with exponents q of a partic-
ular form. As explained in Sect. 1.1, we cannot exploit either of these techniques
because of efficiency reasons and the restriction on the exponent placed by the
primality test. Nevertheless, our interactive protocol, described in Figs. 1 and 3,

536 C. Hoffmann et al.

Fig. 1. Overview of the protocol in Fig. 3. All computations are done in the group Z
∗
N ,

where N = k2n + 1.

builds on some of the ideas in [20,28] to get around the issue of low-order ele-
ments for the specific exponentiation considered in Proth’s test (Equation (1)).
Below, we give an overview of how this is accomplished – we refer the readers to
Sect. 4 for a more detailed overview.

For a prime N := Pk,n, suppose that x ∈ Z
∗
N is a quadratic non-residue.8

Suppose that a malicious prover P∗ tries to convince the verifier V that

xk2n−1 ≡ −μ mod N, 1 �= μ ∈ Z
∗
N . (4)

Since N is a prime and the result must be −1 by Proth’s theorem, the statement
(x,−μ, k2n−1) corresponding to Equation (4) is μ-false. Our protocol exploits
the fact that V does not care about the exact value of xk2n−1

and it rejects as
long as the correct result is not equal to −1. This observation greatly simplifies
the task for V. As we show, it is sufficient to perform a few efficient checks on the
order of μ, depending on which V can choose a sound method for verification.
For ease of exposition, we restrict this overview to the case where k itself is
prime.
8 In the actual protocol, we explain how the verifier can check if the Jacobi symbol of

x is −1 (Step 1 in Fig. 3).

Certifying Giant Nonprimes 537

– Our starting point is the case where ord(μ) is “large”, by which we mean
ord(μ) � k2λ log(n) (Step 3). We show in this case that it is possible to use PPoE
out of the box to prove the statement (xk,−μ, n−1), which is equivalent to the
statement in Equation (4). Key to proving this is the following observation on
the fine-grained nature of soundness of PPoE: the “falseness” of a statement in
each round of the sub-protocol cannot decrease by too much. More precisely, if
the cheating prover starts with an α-false statement then the new statement is
β-false for some β whose order cannot be much smaller than α’s. Therefore,
if the cheating prover starts off with a statement that is sufficiently false,
which turns out to be when ord(α) = k2λ log(n), then the statement in the
final round remains false with overwhelming probability and is rejected by the
PPoE verifier. We formalise this observation in Lemma 1 and point out that,
while a similar lemma was proved in [20], there are some crucial differences:
see Remark 3.

– Next is the case where ord(μ) is “small and odd” (Step 2), i.e., in this overview
ord(μ) = k. In this case, V can verify the statement in Equation (4) without
any help from P∗ as follows: find the inverse of 2n modulo k and raise μ2

to that element.9 By Equation (4), this yields the same element as xk if the
prover is honest. If N is prime, this will yield a different element than xk as
we show in Sect. 4.2. This quick verification is only possible since k and 2n

are coprime, so it can only be used in this case.
– Finally, consider the case where the order is “small and even”, by which we

mean ord(μ) | 2λ log(n) (Step 4). Here, we are in a situation where PPoE
does not guarantee soundness (since the statement is not “false enough”).
However, as in [20], it is possible to reduce the task of checking Equation
(4) to that of verifying, using PPoE, the “smaller” statement obtained by
taking the 2λ log(n)-th root of Equation (4). To be precise, P and V verify
the statement (xk, y, n − 1 − λ log(n)) using PPoE and, if convinced, V then
checks whether y2λ log(n)

= −μ, by itself, using a final exponentiation. This
final exponentiation forces a malicious prover P∗ to cheat with an element
of high enough order during the PPoE. To see this, assume for example that
P∗ sends the honest result y = x2n−1−λ log(n)

. Then, V’s final exponentiation
leads to outright rejection since

y2λ log(n)
= (xk2n−1−λ log(n)

)2
λ log(n)

= xk2n−1 �= −μ.

On the other hand, P∗ cheating with an element of such high order during
the PPoE makes the verifier reject this PPoE with overwhelming probability
(as in the first case).

We refer the reader to Sects. 3 and 4 for the formal analysis.

9 Note that if μ has order k, then −μ has order 2k (which is not coprime to 2n−1),
which is the reason we have to square the statement in Equation (4) before computing
the inverse of the exponent.

538 C. Hoffmann et al.

1.3 Related Work

General-purpose primality testing. Pratt showed that primality testing (of arbi-
trary integers) lies in the class NP, via the eponymous Pratt certificates [30]
(an alternative certificate of primality is the Atkin-Goldwasser-Kilian-Morain
certificate [2,18]). Coupled with the fact that non-primality has succinct certifi-
cates in the form of factorization (which can be efficiently checked by integer
multiplication) placed primality testing in NP ∩ co−NP. Probabilistic tests
like Solovay-Strassen [38], Miller-Rabin [27,34] and Baillie-PSW [4,29] soon fol-
lowed, which placed primality testing in classes like BPP, RPor ZPP.10 Finally,
Agrawal, Kayal, and Saxena [1] settled the question by showing that primality
testing is in P. We refer the readers to [1] for a more detailed exposition on
(general-purpose) primality testing.

Giant prime numbers and custom primality tests. In addition to Mersenne num-
bers Mn and Proth numbers Pk,n, numbers of special form that have been tar-
getted in the search for giant primes include Fermat numbers Fn := 22

n

+ 1
(which are a special case of Proth numbers), generalised Fermat numbers
Fa,b,n := a2n

+ b2
n

and Woodall numbers Wn := n · 2n − 1. We refer the readers
to PrimePages for a more comprehensive list. These numbers of special forms
are amenable to custom primality tests that run faster than general-purpose
primality tests. For example, the Lucas-Lehmer (LL) test [23,25] is a determin-
stic primality test for Mn that runs in time O(n · μ(n)), where μ(n) denotes
the complexity of multiplying two n-bit integers.11 In comparison, for Mn, the
complexity of deterministic AKS primality test is Õ(n6) and the complexity of
probabilistic Miller-Rabin test is O(λn · μ(n)) (for a statistical error of 2−λ).
GIMPS relies on the Lucas-Lehmer-Riesel [35] test, which is a generalization of
the Lucas-Lehmer test for numbers of the form k2n − 1. PrimeGrid performs a
variety of primality tests including Proth’s theorem [33] for Proth numbers. They
were first to realize that (Pietrzak’s) PoE can be used to certify the results of
Proth’s primality test [32]. They also noticed that low-order elements can affect
the soundness of the protocol and, therefore, included some checks on the order
of the result [3]. For Proth number Pk,n, given a quadratic non-residue modulo
Pk,n, the complexity of Proth’s test [33] is O(log(k) · nμ(n)); otherwise it is a
Las Vegas test (since we currently know how to generate a quadratic non-residue
only in expected polynomial-time). An alternative is to use the deterministic
Brillhart-Lehmer-Selfridge test [10].

More Related Work on PoE. PoE was introduced in the context of another cryp-
tographic primitive called Verifiable Delay Function (VDF) [7]. The VDFs of
Pietrzak [28] and Wesolowski [39], both, implicitly involve the construction of a

10 In fact, Miller’s test [27] runs in strict polynomial time assuming the Generalised
Riemann Hypothesis.

11 Since these numbers have a succinct representation, the complexity of these tests is,
strictly-speaking, exponential in the size of the input (which is n for Mn).

https://primes.utm.edu/

Certifying Giant Nonprimes 539

PoE: an overview and comparison of these PoE protocols can be found in [8].
The soundness of these PoEs relies on new hardness assumptions called low-
order assumption and, the stronger, adaptive root assumption, respectively [8],
i.e., strictly-speaking, these are arguments of exponentiation. Pietrzak’s PoE [28]
is, however, statistically-sound in groups with the syntactic guarantee that no
elements of low order exist, e.g., a subgroup of quadratic residues of RSA group.
In addition, there are two more statistically-sound PoE constructions currently
known: [6,20]. [6] can be seen as a elaborate parallel repetition of [28] that is
statistically sound in any group. However, this repetition increases the complex-
ity of the protocol by a multiplicative factor λ, where λ is a statistical security
parameter. [20] improves on the construction in [6] and reduces the complexity
by almost one order of magnitude whenever one can freely choose the exponent
in the exponentiation. Finally, PoEs have recently been used as a crucial build-
ing block in constructing space-efficient general-purpose succinct non-interactive
arguments of knowledge (SNARKs) [6,12], thus establishing a converse rela-
tionship with SNARGs (since SNARGs trivially imply PoEs). Recently, Rotem
studied the problem of batching PoEs in his work on batching VDFs [37].

2 Preliminaries

Interactive protocols. Let Σ be an alphabet. For � ∈ N, an interactive protocol
consists of a pair (P,V) of interactive Turing machines called prover and verifier,
respectively. In an �-round (i.e., (2� − 1)-message) interactive protocol, P and V
run on a common input x and proceed as follows: in each round i ∈ [1, �], first P
sends a message αi ∈ Σa to V and then V sends a message βi ∈ Σb to P, where Σ
is a finite alphabet. At the end of the interaction, V runs a (deterministic) Turing
machine on input {x, (β11 = , . . . 1 = ,β�), (α11 = , . . . 1 = ,α�)}. The interactive
protocol is public-coin if βi is a uniformly distributed random string in Σb.

Interactive proofs. The notion of an interactive proof for a language L is due to
Goldwasser, Micali and Rackoff [19].

Definition 1. An interactive protocol (P,V) is an ε-sound interactive proof sys-
tem for L if:

– Completeness: For every x ∈ L, if V interacts with P on common input x,
then V accepts with probability 1.

– Soundness: For every x �∈ L and every cheating prover strategy P̃, the ver-
ifier V accepts when interacting with P̃ with probability at most ε(|x|), where
ε = ε(n) is called the soundness error of the proof system.

In particular, the interactive protocol is a statistically-sound proof if the sound-
ness holds against computationally-unbounded cheating prover strategies and the
soundness error is negligible (in the input-length).

540 C. Hoffmann et al.

Non-interactive proofs in the random-oracle model. A non-interactive protocol
involves the prover sending a single message to the verifier. We are interested in
non-interactive proofs in the random-oracle model instead of the more standard
non-interactive arguments in the common reference string (CRS) model. There-
fore, we now have to consider oracle interactive Turing machines P(·) and V(·)

for the prover and verifier.

Definition 2. A pair of oracle machines (P(·),V(·)) is an ε-sound non-
interactive proof system for a language L in the random-oracle model if the
following properties hold:

– Completeness: For every x ∈ L,

Pr
O←O

[VO(x,PO(x)) = 1
]
= 1,

where the probability is over the random choice of the oracle O ∈ O.
– Soundness: For every (computationally-unbounded) cheating prover strategy

P̃,
Pr

O←O
(x,π̃)← ˜PO

[VO(x, π̃) = 1 ∧ x �∈ L
] ≤ ε(|x|).

Remark 1 (On the complexity of the honest prover and verifier). In standard
definitions, the prover is either unbounded and deterministic, or given additional
information (e.g., the witness when the language is in NP), whereas the verifier is
polynomially-bounded and randomised. We prefer a more fine-grained definition
where the (deterministic) prover is stronger than the (randomised) verifier, but
both parties can be polynomially-bounded.

Remark 2. The definition of interactive PoEs and non-interactive PoEs in the
random-oracle model can be recovered by restricting Definitions 1 and 2 to the
language LG from Equation (2).

3 Pietrzak’s PoE in Groups of Known Order

In this section, we recall Pietrzak’s PoE (PPoE) [28] and some of its properties.
The protocol is presented in Fig. 2. By inspection of the protocol we see that
it has perfect completeness. Pietrzak proved the following complexity results in
[28]:

Proposition 1 ([28, Sect. 6.2]). On instance (x, y, T, G) PPoE has the follow-
ing efficiency properties:

1. V performs 3λ log T multiplications in G.
2. P performs 2

√
T multiplications in G and stores

√
T group elements to com-

pute the proof.
3. The size of the proof is log T elements of G.

Certifying Giant Nonprimes 541

Instance: (x, y, T, G), where x, y ∈ G and T ∈ N is even

Parameters: statistical security parameter λ

Statement: x2T

= y in G

Protocol:

1. For T = 1:
– If x2 = y, output accept.
– Else, output reject.

2. For T > 1:
(a) P sends v = x2T/2

to V.
(b) If v �∈ G, V outputs reject. Otherwise, V samples r ← {0, 1, . . . , 2λ − 1}

uniformly at random and sends it to P.
(c) P and V compute x′ := xrv and y′ := vry in G.
(d) If T/2 is even, P and V run the protocol on instance (x′, y′, T/2, G). If

T/2 is odd, P and V run the protocol on instance (x′, y′2, (T + 1)/2, G).

Fig. 2. PPoE.

Furthermore, Pietrzak proved that the PoE is statistically sound in groups
without low-order elements, in particular safe prime RSA groups. Boneh et al.
later proved computational soundness in groups where it is hard to find low-
order elements (the low-order assumption) [8]. Ideally, we would like to use PPoE
in a group of known order, where an adversary can find low-order elements
in polynomial time. However, Boneh et al. showed that this is not sound by
presenting an attack with low-order elements in [8]. In the following section, we
analyze in what way these low-order elements affect the soundness of PPoE.

3.1 (Non-)Soundness

We analyze the soundness of PPoE in groups of known order. Assume that the
correct result of an exponentiation is x2T

= y mod N but P̃ claims that for
some α �= 1 mod N it is x2T

= yα mod N . We sometimes call α the “bad”
element and say that the second statement is α-false. Note that the prover’s
statement is of this form without loss of generality because every element has
an inverse in a group. This means that if the prover claims that the result is
some group element β, we can always find a group element α such that β = yα.
Soundess of PPoE only depends on the order of this bad element α. If its order
only has small prime divisors with small exponents, the probability that repeated
exponentiation of this element with a random exponent decreases its order to
one, and thus the verifier’s check for T = 1 passes, is not negligible.

The following lemma bounds the probability that the order of the bad element
“drops” by a factor p� in one round of PPoE. It will be the main tool in proving
soundness of our non-primality certificate later on.

542 C. Hoffmann et al.

Lemma 1. Let (x, yα, T, G) be an α-false statement for some α ∈ G, μ ∈ G

an arbitrary group element, pe any prime power that divides the order of α and
let r ← {0, 1, . . . , 2λ − 1} be sampled uniformly at random. Assume that the
statement (xrμ, μryα, T/2, G) is β-false for some β ∈ G. For any � ≤ e, the
probability that pe−�+1 does not divide the order of β is at most 1/p�.

Proof. If the statement (xrμ, μryα, T/2) is β-false, we have μ = γx2T/2
such

that β = αγr−2T/2
. We want to bound the following probability

Pr
r
[βpe−�s = αpe−�sγ(r−2T/2)pe−�s = 1] = Pr

r
[γ(r−2T/2)pe−�s = α−pe−�s]

≤ 1
ord(γpe−�s)

+
1
2λ

=
gcd(d, pe−�s)

d
+

1
2λ

, (5)

where d denotes the order of γ and s is any positive integer not divisible by p.
The inequality follows from the fact that the size of the randomness space is 2λ.
Now assume that the above event holds. Then we have γpe−�sm = α−pe−�s for
some integer m, hence

ord(α−pe−�s) = ord(γpe−�sm) =
d

gcd(d, pe−�sm)

and equivalently

d = ord(α−pe−�s) gcd(d, pe−�sm) ≥ p� gcd(d, pe−�sm).

Plugging into (5) we get

Pr[αpe−�sγ(r−2T/2)pe−�s = 1] ≤ gcd(d, pe−�s)
p� gcd(d, pe−�sm)

+
1
2λ

≤ 1
p�

+
1
2λ

.

Remark 3. A lemma of flavour similar to Lemma 1 was proven in [20, Lemma
1] for a parallel-repeated variant of PPoE. However, there are major differences
between these: (i) the new statements in the protocol in [20] (and also [6]) are
obtained in a slightly different way, using multiple random coins and (ii) [20,
Lemma 1] was only proven for restricted choices of numbers p and e. Hence,
Lemma 1 does not follow from [20, Lemma 1].

Corollary 2. Let (x, yα, T, G) be an α-false statement for some α ∈ G and 2e

any power of 2 that divides the order of α. The probability that 2e−� does not
divide the order of the bad element after one round of PPoE is at most 1/2�.

Proof. By Lemma 1 we know that the probability that 2e−�+1 does not divide
the order of the bad element of the instance (x′, y′, T/2, G) is at most 1/2�. Now
if T is odd, the new instance of the protocol is (x′, y′2, (T +1)/2, G), so the bad
element is squared once. This reduces its order by a factor of 2, which yields the
claim.

Certifying Giant Nonprimes 543

4 Certifying Non-Primality of Proth Primes

In this section, we present the interactive protocol for verifying that a Proth
number N = k2n + 1 is not prime, i.e., that xk2n−1

= −μ mod N for some
μ �= 1 and x a small prime number that is a quadratic non-residue modulo N .
This means that from now on all group operations will be performed in the group
Z

∗
N .

The protocol presented in Fig. 3 consists of four steps in which V performs
different checks on the order of the element μ and then chooses the best method
for verification accordingly. An overview can be found in Fig. 1.

In the first step, V checks if x has Jacobi symbol −1 modulo N since the
primality test is only conclusive if x is a quadratic non-residue. To this end,
V first computes a := N mod x and, if a �= 0, checks if the Jacobi symbol
(x

N) = (a
x) is −1. If a = 0 we know that x is a divisor of N and hence N is

composite, so V can already accept in Step 1. If the Jacobi symbol is 1, it is
unclear if x is a quadratic residue mod N so V rejects the proof. If the Jacobi
symbol is −1, the protocol moves on to the next step.

In the second step, V checks if the element μ has small odd order dividing
k2n, i.e., order dividing k, by computing μ̃ := μk mod N . If μ̃ �= 1, the order of
μ does not divide k and V goes on to the next step. If μ̃ = 1, V can easily find the
order d of μ by factoring the (small) integer k. Then V can verify the statement
without any message from P. In fact, V only verifies the statement xk2n

= μ2 by
computing the 2n-th root of μ2. Unfortunately we can not compute the 2n−1-th
root of −μ because −μ has order 2d and the inverse of 2n−1 modulo 2d does not
exist. This additional squaring step eliminates potential “bad” elements of order
2, so this check only proves that xk2n−1

= −μ ·α mod N , for some element α of
order 2 or α = 1. Luckily, this is enough information for V since we only want to
rule out the possibility that the result of the exponentiation is −1 and μ−1 �= α
since μ has odd order.

If V gets to the third step, we know that the order of μ does not divide
k. To make sure that it does not divide k times a small power of 2 either, V
checks if μk2λ log n �= 1 mod N . If this holds, we know that V can accept a PPoE
for the statement xk2n−1

= −μ mod N because a malicious prover will only be
successful in convincing V with negligible probability. If μk2λ log n

= 1, such a
PoE is not sound, so V goes on to the next step.

If V gets to the last step, we know that the order of μ is too small to soundly
accept a PPoE. However, we now know that the order of μ is even, so we can use
the following trick: Instead of sending a PPoE for the statement xk2n−1

= −μ

mod N , P sends a PPoE for the statement xk2n−1−λ log n

= y mod N for some
element y ∈ Z

∗
N . Then V checks if y2λ log n

= −μ. If this holds and the PoE is
correct, V outputs accept. Else, V outputs reject.

Remark 4. The complexity of Steps 3 and 4 of our protocol could be slightly
improved with the following changes:

– Instead of V computing the exponentiation μ̃2λ log n

1 in Step 3, P could send
a proof for the statement μ̃2λ log n

1 �= 1. This can be done in a sound manner

544 C. Hoffmann et al.

since again V only wants to rule out one result, so P and V can execute
Steps 2-4 recursively. This reduces the work for V but increases the work
for P. However, the PoEs can be batched together similarly to the batching
protocol in [20] so the proof size only grows by one group element.

– If V and P find out in Step 3 that μ̃2λ log n

1 = 1, they also know the smallest
integer i such that μ̃2λ log n−i

1 �= 1. This means that, in Step 4, P can send a
PoE for the statement

(xk)2
n−1−λ log n+i

= y mod N,

and V only needs to check if y2λ log n−i

= −μ mod N . This reduces the work
for V by i multiplications.

For simplicity of the analysis and because the improvements are minor, we omit
these changes and analyze the protocol as it is stated in Fig. 3.

Instance: (n, k, x, μ), where n ∈ N, 0 < k < 2n−1 an odd integer, μ ∈ Z
∗
N

with μ �= 1 and x ∈ Z
∗
N a small prime number with Jacobi symbol −1 modulo

N := k2n + 1

Parameters: statistical security parameter λ

Statement: xk2n−1
= −μ mod N

Protocol:

1. V computes a := N mod x and if a �= 0 the Jacobi symbol (a
x
).

– If a = 0, output accept.
– If a �= 0 and (a

x
) = −1, go to Step 2.

– Else, output reject.
2. P and V compute μ̃1 := μk mod N

– If μ̃1 �= 1, go to Step 3.
– Else, V computes d := ord(μ) and a := 2−n mod d. If xk = μ2a mod N

output accept. Else, output reject.
3. P and V compute μ̃2 := μ̃2λ log n

1 mod N .
– If μ̃2 = 1, go to Step 4.
– Else, P sends PPoE(xk, −μ, n − 1, N). If the PPoE verifier accepts, output

accept. Else, output reject.
4. (a) P sends a group element y and a PPoE (xk, y, n − 1− λ logn, N) for some

y ∈ Z
∗
N . If the PPoE verifier rejects, output reject. Else, go to Step 4b.

(b) V computes ỹ := y2λ log n

mod N . If ỹ = −μ output accept. Else, output
reject.

Fig. 3. The non-primality certificate.

Certifying Giant Nonprimes 545

4.1 Completeness

In this section, we show that V always outputs accept if P is honest.

Theorem 2. The protocol in Fig. 3 has perfect completeness.

Proof. We show that if P is honest, V does not output reject in any step and
outputs accept in one of the steps.

Step 1. Assume that x does not divide N since otherwise V accepts in the first
step and completeness holds trivially. If P is honest, x has Jacobi symbol
(x

N) = −1. Furthermore, since x is prime and does not divide N , we have

(x

N

)
= (−1)(x−1)k2n/4

(
N

x

)
=

(
N

x

)
=

(
N mod x

x

)
,

where the first equality follows from the law of quadratic reciprocity. Hence,
V does not reject in this step and goes on to the next one.

Step 2. If μ̃1 �= 1, V does not output anything in this step and goes on to the
next one. Assume μ̃1 = 1 and let a := 2−n mod d, where d is the order of μ.
Then we have

μ2a = (μ2)2
−n

= ((xk)2
n

)2
−n

= xk mod N

so V accepts if P is honest.
Step 3. If μ̃2 = 1, V does not output anything in this step and goes on to the

next one. If μ̃2 �= 1, completeness follows immediately from the completeness
property of PPoE.

Step 4. If P is honest, the verifier does not reject in Step 4a by the completeness
property of PPoE. In Step 4b, the verifier checks if

y2λ log n

= (xk2n−1−λ log n

)2
λ log n

= −μ mod N,

which holds if P is honest.

4.2 Soundness

For our purposes, it is sufficient to consider a relaxed definition of soundness. We
only want to rule out the event that a malicious prover P̃ can convince V that a
Proth number is not prime even though it is. This means we do not need to care
about a cheating prover that convinces V of a wrong result of the exponentiation
xk2n−1

mod N as long as the correct result is not −1.

Definition 3. We call a non-primality certificate sound if the probability that
V outputs accept on a statement (n, k, x, μ) for some μ �= 1 but xk2n−1

= −1
mod N is negligible. We call that probability the soundness error.

Theorem 3. The protocol in Fig. 3 has soundness error at most 2−λ+2 log n.

546 C. Hoffmann et al.

Proof. We bound the probability that V falsely accepts an incorrect statement
in each step individually.

Step 1. If V accepts in Step 1, x is a divisor of N so N must be composite.
Assume that this does not hold and x has Jacobi symbol 1 modulo N , i.e.,
(x

N) = 1. Then,

(a

x

)
=

(
N

x

)
= (−1)(x−1)k2n/4

(x

N

)
= 1,

so V rejects in Step 1.
Step 2. Recall that we consider a relaxed definition of soundness (see Definition

3). This means that we only need V to reject, when the correct result of the
exponentiation is −1. We show that if this is the case and μ̃1 = 1, V always
rejects in Step 2(b). Assume that N is prime. If V gets to Step 2(b), we know
that d is a divisor of k and hence odd. This means that μ2 has order d. V
computes a := 2−n mod d and checks if xk = (−μ)2a = μ2a mod d.
1. Since N is prime it holds that (xk)2

n−1
= −1 mod N so the order of x

is 2nk. This means that the order of xk is 2n.
2. On the other hand, we know that the order of μ2 is d so the order of μ2a

is a divisor of d and hence odd.
1. and 2. together yield that xk �= μ2a mod N so the verifier rejects.

Step 3. If V gets to Step 3 and μ̃2 �= 1, we know that the order of the bad element
μ is divisible by 2λ log T . This means that a malicious prover convinces V to
falsely accept if the execution of the PoE reduces the order of the bad element
on average by 2λ per round. In particular, there must be at least one round
where the order drops by at least 2λ. By Corollary 2, this happens with
probability at most 2−λ+2 for a fixed round. Applying a union bound, we
conclude that, in this case, V accepts with probability at most 2−λ+2 log n.12

Step 4. If V gets to Step 4, a malicious prover needs to cheat in Step 4 (a) since
otherwise the check in Step 4 (b) will not go through. This means that the
prover needs to multiply the claim in Step 4 (a) by a bad element α. What
can we say about the order of α? We know that it needs to pass the following
check:

(yα)2
λ log T

= −μ,

where y2λ log T

= −1. This means that α is of the following form:

α2λ log T

= μ.

It is well known that

ord(α2i

) =
ord(α)

gcd(2i, ord(α))
= ord(μ).

12 PrimeGrid has already implemented a check μk·264 = 1? [3]. Our analysis shows that
an exponent of 64 is not sufficient for cryptographic soundness as this only gives
64/ log(n) bits of security “per round”; once we apply the Fiat-Shamir methodology
to make the proof non-interactive, each round can be attacked individually.

Certifying Giant Nonprimes 547

Table 1. Complexity of the protocol in Fig. 3 depending on the step in which it outputs
the result. Prover’s and Verifier’s complexity are measured in the number of multipli-
cations and proof-size in the number of group elements. We denote by λ the statistical
security parameter.

Output in Prover’s complexity Verifier’s complexity Proof size

Step 1 0 log n 0

Step 2 1.5 log k 2.5 log k + 2 log n 0

Step 3 1.5 log k + λ logn + 2
√

n 1.5 log k + (4λ + 1) logn logn

Step 4 1.5 log k + λ logn + 2
√

n 1.5 log k + (5λ + 1) logn logn + 1

(A proof can be found in any standard textbook on group theory, e.g., [13,
Proposition 5]). Now the order of μ is even so we know that ord(α) = 2i ord(μ)
for i = λ log T . In particular, we have that 2λ log T is a divisor of the order
of α. We can apply Corollary 2 and a union bound by the same argument as
above and conclude that V accepts with probability at most 2−λ+2 log n in
this case.

All the cases together show that V outputs accept with probability at most
2−λ+2 log n whenever N is prime.

Corollary 3. The Fiat-Shamir transform of the protocol in Fig. 3 yields a sta-
tistically sound non-interactive protocol in the random oracle model: The proba-
bility that P finds a non-primality certificate for a prime number with up to Q
random oracle queries is at most Q2−λ+2.

Proof. As we have seen in the proof of Theorem 3, a cheating prover P̃ can
convince V to accept a proof of non-primality of a prime number only if P̃
manages to decrease the order of the bad element by at least 2λ in one of the
rounds of a PPoE. By Corollary 2, this happens with probability at most 2−λ+2,
where the probability depends only on the random coins. Assume that P̃ makes
up to Q queries to the random oracle. By the union bound, the probability that
P̃ finds a query that triggers the above event is at most Q2−λ+2.

4.3 Efficiency

In this section, we analyze the complexity of the Fiat-Shamir transform of the
protocol presented in Fig. 3. Note that this complexity depends on the step in
which the protocol returns the output. We summarize the results of this section
in Table 1.

Prover’s Complexity. We compute the number of multiplications the prover
has to perform additionally to finding a quadratic non-residue modulo N and
computing the initial exponentiation.

548 C. Hoffmann et al.

Step 1. If the protocol returns the output in Step 1, P does not perform any
additional computations.

Step 2. P checks if μk = 1 via “square and multiply”, which is approximately
1.5 log k multiplications. If this holds, P does not perform any other computa-
tions.

Step 3. If the protocol runs until Step 3, P has checked if μk = 1, which did not
hold and now checks if (μk)2

λ log n

, which is λ log n additional multiplications. If
this holds, P computes the proof of PPoE(xk,−μ, n−1, N) which, by Proposition
1, can be done with 2

√
n multiplications and storage of

√
n group elements.

Step 4. If the protocol runs until Step 4,P has checked if μk = 1 and (μk)2
λ log n

,
which did not hold. Now P computes the proof of PPoE (xk, y, n−1−λ log n,N),
which, by Proposition 1, can be done with 2

√
n − λ log n multiplications and

storage of
√

n − λ log n group elements.

Verifier’s Complexity.

Step 1. Computing a := k2n + 1 mod x takes approximately log n multiplica-
tions. Computing the Jacobi symbol (a

x) takes approximately log2 x multiplica-
tions. Since x is a very small prime number in practice, we will ignore the log2 x
multiplications from now on.

Step 2. V checks if μk = 1 via “square and multiply”, which is approximately
1.5 log k multiplications. If this holds, V computes 2−n mod d, where d is the
order of μ. This is another log n + log k multiplications.

Step 3. If the protocol runs until Step 3, V has checked if μk = 1, which did not
hold and now checks if (μk)2

λ log n

, which is λ log n additional multiplications.
If this holds, V verifies the proof of PPoE(xk,−μ, n − 1, N) which is 3λ log n
multiplications by Proposition 1.

Step 4. If the protocol runs until Step 4,V has checked if μk = 1 and (μk)2
λ log n

,
which did not hold. Now V verifies the proof of PPoE (xk, y, n − 1 − λ log n,N),
which is 3λ log(n−λ log n) multiplications (by Proposition 1) and then performs
an exponentiation with exponent 2λ log n, which is another λ log n multiplications.

Proof Size.

Step 1. If V already accepts or rejects in Step 1, there is no proof needed.

Step 2. If μk = 1, V can check the result themselves so there is no proof needed.

Step 3. If P sends a proof in this step, the proof size is equal to the size of the
proof of PPoE(xk,−μ, n − 1, N), which is log(n − 1) by Proposition 1.

Step 4. If P sends a proof in this step, it consists of a group element y and
the proof of PPoE (xk, y, n − 1 − λ log n,N), which is log(n − 1 − λ log n) by
Proposition 1.

Certifying Giant Nonprimes 549

Example. We give a numerical example of the complexity of the protocol when
it outputs the result in Step 4 (the most expensive case) using the largest Proth
prime known to date: 10223 · 231172165+1 [31]. For k = 10223 and n = 31172165
we have log k� = 14 and log n� = 25. If we choose the security parameter as λ =
80, we get that the prover stores √31172165� = 5584 group elements, performs
13188 multiplications, the verifier performs 10046 multiplications and the proof
size is 26 elements of size 31172179, i.e., around 102 MB. Note that recomputing
the result of the primality test would take n = 31172165 multiplications in
the same group, so our protocol reduces the number of multiplications by a
multiplicative factor of �31172165/(13188 + 10046)� = 1341.

Our protocol also achieves significant savings compared to [6]: To compute
the PoE of [6], the prover needs to perform 2λ

√
n = 893312 multiplications

and the verifier does 2λ2 log n + 2λ = 318800 multiplications to verify the proof
consisting of λ log n = 2080 group elements (i.e. 8160 MB). This means that our
protocol reduces the number of multiplications of [6] by a factor of 52 and the
proof size by a factor of 80.

4.4 Comparison with Pietrzak’s PoE

We saw in Sect. 4.3 that the complexity of the protocol is the highest, when it
outputs the result in Step 4. Even in this case the additional cost compared
to the naive implementation of PPoE is moderate: Instead of performing 2

√
n

multiplications, P needs 1.5 log k + λ log n + 2
√

n multiplications to compute
the proof. Using the numbers from the example in Sect. 4.3 this is 2021 extra
multiplications on top of the 11168 multiplications that are performed in the
naive implementation. Instead of performing 3λ log n multiplications, V needs
1.5 log k+(5λ+1) log n multiplications to verify the result. This is 4046 additional
multiplications to the 6000 multiplications of the naive implementation in our
example. The proof size grows by one group element from log n to log n + 1. In
our example, this corresponds to a proof size of 102 MB instead of 98 MB. If
the protocol outputs the result in Step 1 or Step 2 it is even more efficient than
PPoE. Recall that the implementation of PPoE in groups of known order does
not have any soundness guarantees and for the groups that we are using, there
are known attacks that break soundness. In contrast, we showed in Sect. 4.2 that
our protocol is statistically sound in these groups. We conclude that our protocol
yields a major soundness improvement at moderate additional costs.

5 Open Problems

In this work, we presented an efficient protocol that gives a certificate of non-
primality for Proth numbers. While we believe that a certificate of non-primality
is more useful than a certificate of primality in the context of search for giant
primes, constructing the latter is certainly an intriguing problem. Though, our
techniques are not directly applicable to prove primality of Proth numbers
because our protocol only rules out that the correct result is one specific number

550 C. Hoffmann et al.

(namely −1). Conversely, when proving primality one has to rule out all results
except for one (again −1). Constructing a cryptographic certificate of primality
therefore remains an open problem.

Another open problem is to demonstrate the applicability of PoEs towards
certifying (non-)primality of other types of numbers such as, for example,
Mersenne numbers. The primality of Mersenne numbers is tested via Lucas
Lehmer test amounting to computation of long modular recursive sequences.
Equivalently, the test can be performed via exponentiation in a suitable extension
ring and, thus, one could hope to employ PoEs also in the context of Mersenne
number. However, there are some major differences to the case of Proth numbers.
In particular, the order of the corresponding group is not necessarily efficiently
computable even when the candidate is a prime, which is one of the issues pre-
venting the use of our protocol.

Finally, can our interactive protocol be made non-interactive under assump-
tions other than random oracles? Several recent works [5,24] have aimed to
derandomise Pietrzak’s protocol and its closely-related variant from [6] using
more standard cryptographic assumptions. It would be interesting to explore
whether these techniques are applicable here.

Acknowledgements. We are grateful to Pavel Atnashev for clarifying via e-mail sev-
eral aspects of the primality tests implementated in the PrimeGrid project. Pavel
Hubáček is supported by the Czech Academy of Sciences (RVO 67985840), the Grant
Agency of the Czech Republic under the grant agreement no. 19-27871X, and by the
Charles University project UNCE/SCI/004. Chethan Kamath is supported by Azrieli
International Postdoctoral Fellowship, ISF grants 484/18 and 1789/19, and ERC StG
project SPP: Secrecy Preserving Proofs.

A Attacking Pietrzak’s Protocol in Proth Number
Groups

In this section we show how a malicious prover P∗ can falsely convince the verifier
V that a Proth prime is composite when using Pietrzak’s PoE. This attack was
first described in [8]. Let N = k2n + 1 be prime and x be any quadratic non-
residue modulo N . Since N is prime, it holds that xk2n−1

= −1 mod N . The
easiest way for P∗ to cheat is claiming that the result of this exponentiation
is 1 instead of −1 and then multiplying the honest messages by −1 until the
recombination step (Step 2d of PPoE) yields a correct instance. The probability
that V accepts this false “proof” of non-primality is 1−1/2log(n−1) = 1−(n−1)−1.
To see this, consider the first round of the protocol. P∗ multiplies the correct
midpoint v = (xk)2

(n−1)/2
by −1 and sends the message −v to V. V samples a

random coin r and they both compute x′ = −xkrv and y′ = (−v)r to create the
new statement x′2(n−1)/2

= y′. Plugging in the values for x′, y′ and v, we see that
the new statement is correct whenever r is an odd integer:

https://github.com/patnashev
https://github.com/patnashev/llr2

Certifying Giant Nonprimes 551

Instance: (x, y, T, G), where x, y ∈ G, T ∈ N is even and x2T

= y in G

Input to P∗: α ∈ G

Parameters: statistical security parameter λ

Statement: x2T

= yα in G

Protocol:

1. For T = 1:
– If x2 = y, V outputs accept.
– Else, V outputs reject.

2. For T > 1:
(a) P∗ sends v = α−1x2T/2

to V.
(b) If v �∈ G, V outputs reject. Otherwise, V samples r ← {0, 1, . . . , 2λ − 1}

uniformly at random and sends it to P∗.
(c) P∗ and V compute x′ := xrv and y′ := vry in G.
(d) If T/2 is even, P∗ and V run the protocol on instance (x′, y′, T/2, G)

with input α2T/2−r−1 to P∗. If T/2 is odd, P∗ and V run the protocol
on instance (x′, y′2, (T + 1)/2, G) with input α2(2T/2−r−1) to P∗.

Fig. 4. An attack with success probability at least 1 − (1 − 1/ ord(α))log T .

x′2(n−1)/2
= y′

⇔ (−xkrv)2
(n−1)/2

= (−v)r

⇔ v2(n−1)/2
= (−1)r

⇔ (xk)2
n−1

= (−1)r.

If r is even, the statement remains false and P∗ does the same in the next
round. V only outputs reject if all of the random coins are even which hap-
pens with probability 1/2log(n−1) = (n − 1)−1 since log(n − 1) is the number of
rounds. Otherwise V outputs accept on a false statement. A generalization of
this attack is shown in Fig. 4. Instead of multiplying the correct statement by
−1, P∗ multiplies the correct statement by an arbitrary group element α and
adapts its messages accordingly. The success probability can be lower bounded
by 1− (1− 1/ ord(α))log(n−1) which is the probability that in at least one round
the bad element is raised to a multiple of the order of α. If ord(α) is not a prime
number, this bound is not tight since the order of the bad element can decrease
during the execution of the rounds, making the success probability even higher.
In the case where N is prime, the prover knows the group order N −1 = k2n and
its factorization and can therefore construct elements of sufficiently low order.

552 C. Hoffmann et al.

References

1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. Math. 160(2), 781–793
(2004)

2. Atkin, A.O.L., Morain, F.: Elliptic curves and primality proving. Math. Comput.
61(203), 29–68 (1993)

3. Atnashev, P.: Personal communication, February (2022)
4. Baillie, R., Wagstaff, S.S.: Lucas pseudoprimes. Math. Comput. 35(152), 1391–

1417 (1980)
5. Bitansky, N., et al.: PPAD is as hard as LWE and iterated squaring. TCC 2022,

to appear (2022)
6. Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.. Time- and space-

efficient arguments from groups of unknown order. In: Malkin, T., Peikert, C., eds.,
Advances in Cryptology – CRYPTO 2021, Part IV, volume 12828 of Lecture Notes
in Computer Science, pp. 123–152, Virtual Event, August 16–20, 2021. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_5

7. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A., editors, Advances in Cryptology – CRYPTO 2018,
Part I, volume 10991 of Lecture Notes in Computer Science, pp. 757–788, Santa
Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany. https://
doi.org/10.1007/978-3-319-96884-1_25

8. Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. Cryp-
tology ePrint Archive, Report 2018/712, (2018). http://eprint.iacr.org/2018/712

9. Borsos, B., Kovács, A., Tihanyi, N.: Tight upper and lower bounds for the recip-
rocal sum of proth primes. Ramanujan J. 59, 181–198 (2022)

10. Brillhart, J., Lehmer, D.H., Selfridge, J.L.: New primality criteria and factoriza-
tions of 2m ± 1. Math. Comput. 29(130), 620–647 (1975)

11. Buchmann, J., Williams, H.C.: A key-exchange system based on imaginary
quadratic fields. J. Cryptol. 1(2), 107–118 (1988)

12. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–
706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24

13. Dummit, D.S., Foote, R.M.: Abstract Algebra, 3rd edn. John Wiley and Sons, USA
(2003)

14. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

15. Fischlin, R., Schnorr, C.-P.: Stronger security proofs for RSA and Rabin bits. J.
Cryptol. 13(2), 221–244 (2000)

16. Great Internet Mersenne Prime Search GIMPS. GIMPS discovers largest
known prime number: 282,589,933 − 1. https://www.mersenne.org/primes/press/
M82589933.html, (2018). Accessed 18 May 2022

17. Great Internet Mersenne Prime Search GIMPS. Prime95 v30.3. https://www.
mersenneforum.org/showthread.php?t=25823, (2020). Accessed 19 May 2022

18. Goldwasser, S., Kilian, J.: Almost all primes can be quickly certified. In: 18th
Annual ACM Symposium on Theory of Computing, pp. 316–329, Berkeley, CA,
USA, May 28–30. ACM Press (1986)

19. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25
http://eprint.iacr.org/2018/712
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/3-540-47721-7_12
https://www.mersenne.org/primes/press/M82589933.html
https://www.mersenne.org/primes/press/M82589933.html
https://www.mersenneforum.org/showthread.php?t=25823
https://www.mersenneforum.org/showthread.php?t=25823

Certifying Giant Nonprimes 553

20. Hoffmann, C., Hubácek, P., Kamath, C., Klein, K., Pietrzak, K.: Practical
statistically-sound proofs of exponentiation in any group. In: Dodis, Y., Shrimpton,
T., editors, Advances in Cryptology - CRYPTO 2022, Part II, volume 13508 of Lec-
ture Notes in Computer Science, pp. 370–399, Santa Barbara, CA, USA, August
15–18. Springer, Heidelberg, Germany (2022). https://doi.org/10.1007/978-3-031-
15979-4_13

21. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03356-8_37

22. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th Annual ACM Symposium on Theory of Computing, pp. 723–
732, Victoria, BC, Canada, May 4–6. ACM Press (1992)

23. Lehmer, D.H.: Tests for primality by the converse of Fermat’s theorem. Bull. Am.
Math. Soc. 33(3), 327–340 (1927)

24. Lombardi, A., Vaikuntanathan, V.: Fiat-Shamir for repeated squaring with appli-
cations to PPAD-hardness and VDFs. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12172, pp. 632–651. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56877-1_22

25. Lucas, E.: Théorie des fonctions numériques simplement périodiques. Am. J. Math.
1(4), 289–321 (1878)

26. Micali, S.: CS proofs (extended abstracts). In: 35th Annual Symposium on Foun-
dations of Computer Science, pp. 436–453, Santa Fe, NM, USA, November 20–22.
IEEE Computer Society Press (1994)

27. Miller, G.L.: Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci.
13(3), 300–317 (1976)

28. Pietrzak, K.: Simple verifiable delay functions. In: Blum, A., editor, ITCS 2019:
10th Innovations in Theoretical Computer Science Conference, vol. 124, pp. 60:1–
60:15, San Diego, CA, USA, January 10–12. LIPIcs (2019)

29. Pomerance, C., Selfridge, J.L., Wagstaff, S.S.: The pseudoprimes to 25 ·109. Math.
Comput. 35(151), 1003–1026 (1980)

30. Pratt, V.R.: Every prime has a succinct certificate. SIAM J. Comput. 4(3), 214–220
(1975)

31. PrimeGrid. World record Colbert number discovered! http://www.primegrid.com/
forum_thread.php?id=7116, (2016). Accessed 18 May 2022

32. PrimeGrid. Proposal: a new sierpiński problem. https://www.primegrid.com/
forum_thread.php?id=9107, (2020). Accessed 19 May 2022

33. Proth, F.: Theoremes sur les nombres premiers. Comptes rendus de l’Académie des
Sciences de Paris, 87(926), (1878)

34. Rabin, M.O.: Probabilistic algorithm for testing primality. J. Number Theory
12(1), 128–138 (1980)

35. Riesel, H.: Lucasian criteria for the primality of N = h · 2n − 1. Math. Comput.
23(108), 869–875 (1969)

36. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems (reprint). Commun. ACM 26(1), 96–99 (1983)

37. Rotem, L.: Simple and efficient batch verification techniques for verifiable delay
functions. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp. 382–
414. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_13

38. Solovay, R., Strassen, V.: A fast Monte-Carlo test for primality. SIAM J. Comput.
6(1), 84–85 (1977)

39. Wesolowski, B.: Efficient verifiable delay functions. J. Cryptol. 33(4), 2113–2147
(2020)

https://doi.org/10.1007/978-3-031-15979-4_13
https://doi.org/10.1007/978-3-031-15979-4_13
https://doi.org/10.1007/978-3-642-03356-8_37
https://doi.org/10.1007/978-3-030-56877-1_22
https://doi.org/10.1007/978-3-030-56877-1_22
http://www.primegrid.com/forum_thread.php?id=7116
http://www.primegrid.com/forum_thread.php?id=7116
https://www.primegrid.com/forum_thread.php?id=9107
https://www.primegrid.com/forum_thread.php?id=9107
https://doi.org/10.1007/978-3-030-90456-2_13

Transparent Batchable Time-lock Puzzles
and Applications to Byzantine Consensus

Shravan Srinivasan1(B), Julian Loss2, Giulio Malavolta3, Kartik Nayak4,
Charalampos Papamanthou5, and Sri AravindaKrishnan Thyagarajan6

1 University of Maryland, College Park, USA
sshravan@cs.umd.edu

2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
3 Max Planck Institute for Security and Privacy, Bochum, Germany

4 Duke University, Durham, USA
5 Yale University, New Haven, USA

6 NTT Research, Sunnyvale, USA

t.srikrishnan@gmail.com

Abstract. Time-lock puzzles (TLP) are a fascinating type of crypto-
graphic problem that is easy to generate, but takes a certain time to
solve, even when arbitrary parallel speedup is allowed. TLPs have wide-
ranging applications including fairness, round efficient computation, and
more. To reduce the effort needed to solve large numbers of TLPs, prior
work has proposed batching techniques to reduce the cost of solving.
However, these proposals either require: (1) a trusted setup or (2) the
puzzle size be linear in the maximum batch size, which implies setting
an a priori bound on the maximum size of the batch. Any of these limi-
tations restrict the utility of TLPs in decentralized and dynamic settings
like permissionless blockchains. In this work, we demonstrate the feasi-
bility and usefulness of a TLP that overcomes all the above limitations
using indistinguishability obfuscation to show that there are no funda-
mental barriers to achieving such a TLP construction.

As a main application of our TLP, we show how to improve the
resilience of consensus protocols toward network-level adversaries in
the following settings: (1) We show a generic compiler that boosts the
resilience of a Byzantine broadcast protocol Π as follows: if Π is secure
against t < n weakly adaptive corruptions, then the compiled protocol is
secure against t < n strongly adaptive corruptions. Here, ‘strong’ refers
to adaptively corrupting a party and deleting messages that it sent while
still honest. Our compiler is round and communication preserving, and
gives the first expected constant-round Byzantine broadcast protocol
against a strongly adaptive adversary for the dishonest majority setting.
(2) We adapt the Nakamoto consensus protocol to a weak model of syn-
chrony where the adversary can adaptively create minority partitions in
the network. Unlike prior works, we do not assume that all honest mes-
sages are delivered within a known upper bound on the message delay.
This is the first work to show that it is possible to achieve consensus
in the permissionless setting even after relaxing the standard synchrony
assumption.

c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 554–584, 2023.
https://doi.org/10.1007/978-3-031-31368-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_20&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_20

Transparent Batchable TLPs and Applications to Byzantine Consensus 555

Keywords: Time-lock puzzles · Batch solving · Distributed
consensus · Byzantine broadcast · Mobile-sluggish faults

1 Introduction

A Time-Lock Puzzle (TLP) is a cryptographic primitive that allows a sender
to lock a message as a computational puzzle in a manner where the receiver
will be able to solve the puzzle after a stipulated time T. In terms of effi-
ciency, a sender should be able to generate a puzzle substantially faster than
the time required to solve it, and in terms of security, an adversary should not
be able to solve the puzzle faster than the stipulated time, even with paral-
lel computation. Rivest, Shamir, and Wagner (RSW) [39] proposed the first
TLP construction based on the sequentiality of repeated modular squaring in
the RSA group. Many other TLP constructions [8,33,44] have followed suit in
different settings but require the same flavor of sequential operations during
solving. TLPs have found a wide variety of applications including sealed-bid
auctions [33,39], timed-commitments [28,44], e-voting [15,33], fair contract sign-
ing [9,33], zero-knowledge proofs [18], cryptocurrency payments [43], distributed
consensus [45], blockchain front-running prevention [1], and more applications
continue to emerge.

In many TLP applications involving multiple users, it is often the case that
a user is required to solve the puzzles of all other users, and record all of the
solutions. Say an auction house has to open all the time-locked bids and declare
them publicly before announcing the winner. Batching and solving the puzzles
is essential for scalability in such TLP applications that have large number of
participating users. Intuitively, batch solving of TLPs allows a receiver to solve
multiple puzzles simultaneously (at the price of solving one puzzle) without
needing to solve each puzzle separately. Specifically, the total running time of
the batch-solve operation is bounded by some p(λ,T) + p̃(λ, n) for some fixed
polynomials p and p̃, where λ is the security parameter, n is the number of
puzzles to be batched, and T is the timing hardness of a single puzzle.

Modern TLP constructions achieve the seemingly impossible batch-solve
property under various settings and assumptions [33,43,44]. However, all exist-
ing batch solving TLP schemes suffer from the following limitations: (1) requires
a trusted setup to generate structured reference string, and/or (2) individual puz-
zle size scales linearly in the maximum number of puzzles that can be batched,
which further implies that there is an a priori upper bound on the number of
puzzles that can be batched (which is set upfront during puzzle generation).

Yet emerging blockchain applications like Miner Extractable Value (MEV)
prevention [1], cryptocurrency payments [43], distributed consensus [45], etc.,
either for security or performance, require the TLP scheme to have a transparent
setup, the puzzle size independent of the number of puzzles batched and support
batching an unbounded number of puzzles. These requirements arise in blockchain
systems especially in the permissionless setting for the following reasons:

– First, it is often impossible or impractical to rely on a trusted party to gen-
erate the public parameters. Moreover, a compromised setup with trapdoors

556 S. Srinivasan et al.

can violate the security of the system. Precisely for these reasons, such trusted
parties are not assumed to exist and usage of cryptosystems requiring such
trusted setups are actively discouraged in permissionless blockchain systems.

– Second, in permissionless systems (like Bitcoin), nodes can join and leave the
network at will, and there are no mechanisms to authenticate any participant.
So the exact number of participants n is unknown at any point in time.
However, existing TLP schemes require the bound on the number of users at
the time of puzzle generation. Thus, restricting the ability to accommodate
more participants on demand after the puzzle generation phase.

– Third, large puzzle size increases the total communication costs. For instance,
in a setting where all participants have to exchange puzzles with each other,
a linear-sized puzzle of the prior constructions blows up the total communi-
cation overhead to O(n3).

Motivated by these open problems and applications, we ask the following
question: Is it possible to build a TLP scheme with batch solving that has a
transparent setup, puzzle size independent of the batch size, and therefore allows
unbounded batching? In this work, we affirmatively answer this question and use
our new TLP scheme to solve two elusive problems in distributed consensus:

1. The problem of expected constant round Byzantine broadcast under corrupt
majority and strongly adaptive model.

2. The problem of permissionless consensus in a generalization of synchronous
model of communication called the mobile sluggish model.

Below, we motivate how our TLP with the above properties can enhance security
and reduce communication costs in the two applications we consider.

At a high level, in both applications, TLPs help to defend against a powerful
network adversary that has the ability to delay or delete messages from the net-
work. For instance, a powerful network adversary can simply learn the contents
of the message sent by any honest party before deciding to corrupt or deliver the
message. However, by time-lock encrypting the message, the adversary cannot
learn the contents of the message before time T without doing sequential work.
In the meantime, all the honest messages would have been delivered. Thus, the
adversary is forced to corrupt an honest node without inspecting the contents of
the message. Prior works [16,45] showed the feasibility of the distributed consen-
sus in the presence of a network level adversary using TLPs (without batching
property) at the cost of polylogarithmic blowup in round complexity. However,
batch solving and compact puzzles aid in improving the round complexity and
communication costs, respectively, in these applications.

Round-Efficient Byzantine Broadcast. Byzantine broadcast (BB) is a well-
studied problem in distributed consensus, and, in recent times, BB has emerged
as a fundamental building block in blockchains [23]. Despite decades of study
in improving the round efficiency, no prior BB protocol has expected constant
round-complexity under strongly adaptive and dishonest majority setting. In
the strongly adaptive model, an adversary can observe all the honest messages,
corrupt honest nodes on the fly, and perform after-the-fact removal, that is, the

Transparent Batchable TLPs and Applications to Byzantine Consensus 557

adversary can delete any honest message in-flight before it reaches any other
honest nodes.

Current success in constant round BB is in the weakly adaptive model where
the adversary’s power is severely limited [46]. Wan et al. proposed the first sub-
linear BB protocol under strongly adaptive and dishonest majority setting [45].
Their work used TLPs to prevent the adversary from inspecting the contents
of the message before corrupting a node. Since their TLP construction did not
support batching, they proposed a sub-protocol with polylogarithmic round com-
plexity to distribute the task of opening all puzzles to honest nodes, rather than
solving the puzzles individually. We observe that by using a TLP with batching
property and puzzle size independent of the batch size as a building block, it is
possible to achieve expected constant round Byzantine broadcast under strongly
adaptive and dishonest majority setting.

Permissionless Protocol in the Mobile Sluggish Model. Guo et al. intro-
duced a relaxation of the synchronous model, which was subsequently called the
mobile sluggish model [3,25]. In the mobile sluggish model, a fraction of honest
nodes, called sluggish nodes, can arbitrarily lose synchrony, but they faithfully
follow the rest of the protocol. The remaining honest nodes, called prompt nodes,
are synchronous and faithfully follow the protocol. Additionally, sluggishness can
be mobile, that is, any honest node can become sluggish over the protocol exe-
cution, and if a sluggish node becomes prompt by regaining synchrony, it will
receive all the backlogged messages. This model is stronger than the partially
synchronous and asynchronous model but weaker than the synchronous model.
Pass and Shi showed that it is impossible to achieve permissionless consensus in
a partially synchronous or asynchronous network [37]. Unfortunately, Nakamoto
consensus is vulnerable to consistency violations even in the mobile sluggish
model, as we show in this work. Specifically, even a single mobile sluggish fault
can effectively reduce the collective mining rate of honest nodes by half!

One way to defend against a mobile sluggish adversary is to let an honest
block winner simply time-lock encrypt the message before sending it, and other
honest nodes time-lock encrypt a decoy to distract the adversary from spotting
the block winner. Since the adversary cannot learn the contents of the puzzle
without spending sufficient time, by setting the TLP duration slightly greater
than the round duration, the adversary is now forced to corrupt or deliver the
message randomly. At the end of the round, honest nodes can batch solve the
TLPs they received and update their chains. Unfortunately, no prior TLP with
batch solving works in this application, due to the requirements and challenges
in the permissionless setting: we cannot rely on a trusted setup [33,39,43], we
do not know the number of users in the network a priori, and we do not want to
blowup the round [39] and communication complexity [33,43,44].

1.1 Our Contributions

We give the first TLP construction (Sect. 4) that simultaneously achieves:

• Transparent Setup: Requires a one-time transparent (public-coin) setup.

558 S. Srinivasan et al.

• Batch Solving : Supports batch solving of any polynomial number of puzzles
even after puzzle generation, and the size of individual puzzles is independent
of the number of puzzles to be batched.

Our construction is based on Indistinguishability Obfuscation (IO) [21] where
users’ puzzles are obfuscated programs. We employ new techniques to achieve
compactness in the puzzle size while supporting unbounded batch sizes. Even
though our construction is far from being practically efficient, our construction
crucially shows that there are no fundamental barriers from achieving a TLP
with the above properties and lays a blueprint for future work to instantiate
our new techniques with more efficient tools. In Sect. 2, we briefly explain why
existing techniques for TLP fail to achieve the desired properties, along with
giving a brief overview of the key techniques used in our TLP scheme.

We use our TLP construction as a fundamental building block and overcome
other challenges to solve two longstanding open problems in consensus:

1. Round-efficient Byzantine broadcast: In the years of distributed consen-
sus research, we present (Sect. 5) the first expected constant round Byzantine
broadcast under strongly adaptive and corrupt majority setting. To realize
our result, we develop a generic compiler that uses any batch solving TLP
construction to convert any broadcast protocol secure against a weakly adap-
tive adversary [46] into a broadcast protocol secure against a strongly adaptive
adversary in a round preserving way, which could also be of independent inter-
est. With our TLP, this compiler is additionally communication preserving.
We formally prove the security (Thm. 3) of our compiler in the programmable
random oracle (RO) model.

2. Permissionless protocol in the mobile sluggish model: We first show
an attack to illustrate that Nakamoto consensus is not secure even in the
mobile sluggish model (Sect. 6.1). We then present a proof-of-work based
permissionless protocol (Sect. 6.3) which does not assume that the network is
synchronous or all honest messages arrive on time. To the best of our knowl-
edge, this is the first work to show that it is possible to achieve consensus in
the permissionless setting even after relaxing the standard synchrony assump-
tion! To do this, we develop a novel proof-of-work based decoy mechanism
that uses TLPs to defend against a mobile sluggish adversary that can arbi-
trarily delay a fraction of honest messages. We formally analyze our protocol
to prove that it achieves consistency and liveness in the extended version of
our paper [42]. Specifically, we show that our protocol realizes the standard
properties namely, chain growth, chain quality, and common prefix [42].

1.2 Related Work

Time-lock Puzzles. Bitanski et al. [8] proposed a different approach to con-
struct TLPs, assuming the existence of succinct randomized encodings [7] and
non-parallelizable languages. Similar to RSW puzzles, during solving each puzzle
has to be solved individually to obtain their solutions. Liu et al. [32] combine
(extractable) witness encryption [22] and a public reference clock like the Bit-
coin blockchain. In their construction, one can batch open many puzzles as the

Transparent Batchable TLPs and Applications to Byzantine Consensus 559

blockchain reaches a certain height as the computational effort is shared by the
entire blockchain network in mining new blocks. Their construction relies on
Succinct Non-Interactive Argument of Knowledge (SNARKs) [6] and thus non-
falsifiable assumptions. Our construction on the other hand does not require such
assumptions and does not rely on a global reference clock like a blockchain. Mala-
volta and Thyagarajan introduced Homomorphic TLPs [33]. Their constructions
allowed homomorphic function evaluations to be performed on puzzles to obtain
a single puzzle that embeds the function of all the original solutions. However,
all constructions from [33] (including their fully homomorphic TLP) and [43]
do not support unbounded batching of puzzles and require structured reference
string generated using a trusted setup. Thyagarajan et al. [44] proposed a Class
group based construction that gets rid of the trusted setup and only requires a
transparent public-coin setup. In Table 1, we compare with prior constructions.

Table 1. Comparison with other batch TLP schemes. λ is the security parameter and
T is time hardness parameter. Compactness of puzzles here refers to the size of puzzles
being independent of the batch size.

Scheme
Transparent

setup
Unbounded
batching

Compact
puzzles

One-time Setup
time

Practical
efficiency

RSA-based [33,43] ✗ ✗ ✗ O(log(T), λ) ✓

Class-groups based [44] ✓ ✗ ✗ O(T, λ) ✓

IO-based (This work) ✓ ✓ ✓ O(T, λ) ✗

Recently, Burdges and Feo [11] proposed a related but a new notion called
delay encryption. On a high level, users encrypt their messages to some common
previously unpredictable identity ID using an Identity-Based Encryption (IBE)
scheme. The decryption key for the identity ID can be derived by anyone but
the derivation is a delayed operation, meaning that it takes time T to derive
the key. We can batch decrypt several encryptions provided they are w.r.t. to
the same ID. The drawback of their construction is the requirement of a trusted
setup which is considered a strong assumption in the applications of our inter-
est. Encryption-to-the-future is a closely related primitive, however, unlike our
construction prior works either use a public bulletin (like a blockchain) or a
committee of users with an honest majority [12,19].

Strongly Adaptive Byzantine Broadcast. Wan et al. proposed the first
expected sub-linear round protocol in the strongly adaptive setting using Public-
Key Infrastructure (PKI) and TLPs [45]. Subsequently, Cohen et al. [16] explored
the feasibility of fair broadcast in the strongly adaptive setting for both property-
based and simulation-based definitions. However, our focus is on achieving
expected constant-round BB under strongly adaptive and dishonest majority
setting. We relate to other works in the extended version our paper [42].

Protocols in the Mobile Sluggish Model. Guo et al. [25] first introduced
the mobile sluggish model as “weakly synchronous” model and showed that
it is impossible for a Byzantine broadcast protocol to tolerate majority faults
(Byzantine or sluggish). Subsequently, Abraham et al. presented a Byzantine

560 S. Srinivasan et al.

Fault Tolerant blockchain protocol that can tolerate minority corruptions in
the mobile sluggish model [3]. Kim et al. [30] observed that many proof-of-
stake protocols, such as Dfinity [26], Streamlet [14], OptSync [41], can support
mobile sluggish faults. These prior techniques heavily relied on using messages
(votes) from a majority of the nodes (certificates) to establish communication
with sluggish nodes and ensure safety of the protocol. Since Nakamoto consensus
does not rely on such certificates, their techniques do not apply in our setting.

Nakamoto Style Protocols. Prior works can be categorized based on the flavor
of synchrony used to analyze Nakamoto consensus. In the lock-step model of syn-
chrony, Garay et al. formally analyzed Nakamoto consensus [20]. Subsequently,
Pass et al. and Kiffer et al. showed that the Nakamoto consensus is secure even
in the non-lock-step synchrony model where the message delay is bounded and
the time proceeds in discrete rounds [20,29,35,48]. Ren discarded the notion of
discrete rounds and proved the security of Nakamoto consensus in the contin-
uous model [38]. Even parallelly composed Nakamoto protocols are also in the
lock-step model of synchrony [4,47]. Unfortunately, all these analyses assume
that any honest message reaches other honest nodes in Δ time units regardless
of the flavor of synchrony. Our analysis is in the mobile sluggish model, which
assumes that a fraction of honest nodes can violate the Δ-assumption. However,
the prompt nodes in our setting are assumed to be in lock-step synchrony model.

Network-adversary Lower Bounds and Impossibilities. Abraham et al.
showed that a sub-quadratic protocol could not be resilient against a strongly
adaptive adversary that can perform after-the-fact removal [2]. In Nakamoto
consensus, delaying an honest block has the same effects as deleting the block.
For example, if a newly mined block is delayed for a sufficiently long time, it
could end up as an orphan block, which eventually gets pruned after the main
chain stabilizes. Moreover, sluggishness can be mobile, thus making the sluggish
adversary more powerful than the strongly adaptive adversary. Pass and Shi
showed that it is impossible to achieve permissionless consensus in the partially
synchronous/asynchronous network [37]. In these network models, the adversary
can arbitrarily partition the honest nodes. However, in our setting, the adversary
can create only minority partitions. Thus, this impossibility does not apply.

2 Technical Overview

We give an overview of our TLP construction that supports batch-solving an
unbounded number of puzzles and protocols that use our TLP construction to
tolerate network-level adversaries in the BB and Nakamoto consensus.

2.1 Time-Lock Puzzles with Batch Solving

Bounded Batching of TLPs. Before delving into the specific of our construc-
tion, we show how standard techniques [33,44] readily give a construction of
TLP with bounded batched solving, i.e., where the number n of batched solutions
is fixed at puzzle generation time. Given a Linearly Homomorphic TLP scheme

Transparent Batchable TLPs and Applications to Byzantine Consensus 561

LHP with homomorphism over Zq and a large enough q, we can homomorphically
evaluate the packing algorithm. In more detail, we are given n puzzles Z1, . . . , Zn

(of the LHP scheme) each encoding λ-bit values with timing hardness of each
puzzle being T. To batch solve these puzzles, we first homomorphically evaluate
the linear function: f(x1, . . . , xn) =

∑n
i=1 2(i−1)·λ · xi.

The resultant evaluated puzzle Z∗ is then solved in time T to obtain all the n
values where each of these values were originally encoded as λ-bit values. Impor-
tantly, this means that the bit-representation of the plaintext space must be
large enough to accommodate all n-secrets, i.e., log(q) ≈ n ·λ. Since the domain
has to be fixed at the time of puzzle generation, this means that each puzzle
scales linearly with n. In settings with n parties, where each party generates a
puzzle and broadcasts it to the other parties, the total communication is O(n3),
assuming a total of O(n2) communication for a broadcast of a single bit and
ignoring factors that depend on λ.

Unbounded Batching? The question that we set out to answer is whether
it is possible to construct a TLP that supports unbounded batch-solving. One
approach to do that is to “defer” the choice of the plaintext space at the solving
time, so that the solver can select the appropriate domain, depending on how
many puzzles need to be batched. A naive idea is to define a program P that, on
input the batch size n, outputs a LHP puzzle Z embedding the user’s message m
and where the message space is sufficiently large to accommodate packing of n
puzzles. This solution is clearly insecure as it reveals m in the plain, so to amend
this we obfuscate the program P̃ := iO(P), using indistinguishability obfuscation
(IO) [21,27]. Setting a super-polynomial upper bound on n ≈ 2ω(log(λ)) allows
one to batch any polynomial number of puzzles.

Unfortunately, this simple construction runs into issues when proving security.
A natural strategy when proving security would be to hybrid over all possible n,
hardwire the corresponding puzzle in the description of the circuit and the swap it
with a puzzle encoding a fixed string (say 0) appealing to the security of the TLP.
However it is not hard to see that this would quickly run into issues: As n grows
to super-polynomial, the size of the corresponding puzzle, and consequently of
the obfuscated circuit, would also be super-polynomial. This is not only an issue
of the security proof, since the actual obfuscated circuit must be padded to the
maximum size of the circuits that is defined in the analysis. To get this strategy
to work, our construction would yield a super-polynomial size puzzle!

Our Solution. To understand our solution, we first discuss a way to circumvent
the above issue. We change the output of the obfuscated circuit to output the n
dimensional vector (0, . . . , m, . . . , 0), where m is inserted in the i-th slot, masked
by the output of a puncturable pseudorandom function (PRF) F and a LHP
puzzle Z encoding the PRF key k.

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...
m
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

F(k, 1)
...

F(k, i)
...

F(k, n)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

F(k, 1)
...

F(k, i) + m
...

F(k, n)

⎤
⎥⎥⎥⎥⎥⎥⎦

562 S. Srinivasan et al.

This structured solution allows us to solve the proof problem by puncturing
each position individually, thereby avoiding an exponential blow-up in the size
of the obfuscated circuit. To solve this puzzle, the solver can arrange the various
masked plaintexts (from other obfuscated circuits of other users) diagonally, and
sum up all the results, to obtain

⎡
⎢⎢⎢⎣

F(k1, 1) + m1

F(k1, 2)
...

F(k1, n)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

F(k2, 1)
F(k2, 2) + m2

...
F(k2, n)

⎤
⎥⎥⎥⎦ + . . . +

⎡
⎢⎢⎢⎣

F(kn, 1)
F(kn, 2)

...
F(kn, n) + mn

⎤
⎥⎥⎥⎦

Here ki and mi are the PRF key and message, respectively, of the i-th obfuscated
program. However at this point it is not clear how to batch solve the resulting
puzzles, since each party will use an independent PRF key ki. This means that
we shifted the problem from recovering the n messages to recovering n PRF
keys, bringing us back to square one. Our last idea is to use instead a key-
homomorphic PRF F. Assuming a suitable instantiation [10], we have the above
expression evaluate to

=

⎡
⎢⎢⎢⎣

∑
i F(ki, 1) + m1∑
i F(ki, 2) + m2

...∑
i F(ki, n) + mn

⎤
⎥⎥⎥⎦ ≈

⎡
⎢⎢⎢⎣

F
(∑

i ki, 1
)

+ m1

F
(∑

i ki, 2
)

+ m2

...

F
(∑

i ki, n
)

+ mn

⎤
⎥⎥⎥⎦

We also have a LHP puzzle from each party encoding ki. The solver can now add
all keys homomorphically and solve the resulting LHP puzzle in time T to obtain∑

i ki. Once the key is known, the solver can simply unmask all the values in
the above vector by evaluating the PRF at points (1, . . . , n) using the key

∑
i ki.

Subtracting the output yields the vector of n plaintexts. Note that in the full
construction, the index i for the puzzle of a user is not chosen during puzzle
generation, but is assigned during puzzle solving through some deterministic
rule.

This gives an outline of our construction. In the actual scheme, extra care is
needed to match the modulus of the TLPs with the key space of the PRF, to
set the parameters to account for the imperfect homomorphism, and deal with
the lack of imperfect correctness of punctured keys in the proof (see Sect. 4 for
more details). Notice that the size of each puzzle is dominated by the obfuscated
program P̃, which can be implemented to be of size logarithmic in n (the batch
size). Therefore, in a multi-party setting, we get a total communication of Õ(n2)
assuming O(n2) communication for single bit broadcast and ignoring factors that
depend on λ.

2.2 Application 1: Efficient Byzantine Broadcast

Byzantine broadcast is a classical problem in distributed consensus, where a
designated sender holds a bit b and wants to transmit b to all n nodes in the
presence of t faults. A BB protocol is secure if it can guarantee consistency

Transparent Batchable TLPs and Applications to Byzantine Consensus 563

(all honest nodes output the same bit) and validity (if the designated sender is
honest, all honest nodes output the designated sender’s input b).

With increasing applications for BB (cryptography, blockchains, etc.), we
study the round-efficiency of BB under the dishonest majority setting. Prior
BB protocols in the dishonest majority setting can broadly tolerate: (1) weakly
adaptive or (2) strongly adaptive adversary. Both strongly and weakly adaptive
adversary can corrupt honest nodes on the fly. But, a weakly adaptive adversary
cannot perform after-the-fact removal.

Despite decades of study, the state-of-art round-efficient BB in the dishonest
majority is in the weakly adaptive setting [46]. Thus, it raises the question:

Is it possible to achieve an expected constant-round Byzantine broadcast
under strongly adaptive and corrupt majority?

We affirmatively answer this using PKI, RO, and any batch solvable TLP con-
struction. Our solution is a generic round preserving compiler that can convert
any weakly adaptive BB protocol into a strongly adaptive one. Thus, our com-
piler can be efficiently realized using the batch solvable TLP constructions
based on RSA or Class-groups [43,44]. With our batch solvable TLP (Sect. 4.3),
our compiler is additionally communication preserving as well!

The key ingredient in our compiler is that we use TLPs to hide the contents
of the messages sent by the underlying protocol so that the strongly adaptive
adversary cannot learn the contents of any message before honest nodes receives
it. Prior works use the RSW puzzles to defend against a strongly adaptive adver-
sary [16,45]. But, due to the inability to batch solve RSW proofs, opening all
puzzles collectively adds an overhead of polylogarithmic rounds to any proto-
col [45]. An alternate approach is to use batch solvable TLPs defined in [43,44] to
remove the polylogarithmic communication overhead incurred by RSW puzzles.
But this increases communication complexity by a linear factor since prior batch
solvable TLPs are not compact. Since our TLP is compact and batchable, we can
solve all puzzles in one round without increasing the communication complexity.

Even though TLPs can prevent the adversary from inspecting the contents
of the message, the primary challenge is in proving that the compiled protocol
is secure against an adversary that can perform after-the-fact removal. This is
because TLPs, apart from hiding the message contents for T time units, also
serve as a commitment to the message inside the puzzle, which prevents the
simulator from simulating the honest nodes without knowing the actual contents
of the puzzle! Cohen et al. encountered a similar problem in the context of
fair BB and proposed a non-committing TLP to overcome this challenge [16,
Theorem 5].

Non-committing TLPs. Informally, it allows the simulator to equivocate a
TLP. That is, the simulator first generates and sends a “fake” TLP to the net-
work, which can be later “opened” be to any message. Thus, when the simulator
is asked to explain the contents, it programs the RO to open the desired message.
In Sect. 4.3, we show how to achieve this property with our TLP construction.

Compiler Overview. Abstractly, in a weakly adaptive protocol Πbb−wa, a node
performs three basic steps: In every round, (1) receives the messages sent by

564 S. Srinivasan et al.

other nodes, (2) performs the state transition based on the messages received
and computes the messages to send, and (3) sends the messages to other nodes.
Our compiler interleaves each step of Πbb−wa with TLP operations to obtain a
strongly adaptive protocol, Πbb−sa.

In a bit more detail, before sending a message in the compiled Πbb−sa, a
node uses non-committing TLPs to encrypt the message it wants to send and
computes the puzzle with proof of well-formedness of the puzzle. Thus, instead
of sending the plaintext in Πbb−wa, a node in Πbb−sa sends the puzzle, ciphertext,
and the proof of well-formedness to other nodes. When a node receives puzzles,
ciphertexts, proofs of well-formedness from the network, instead of opening one
puzzle at time, Πbb−sa uses the batchable TLP proposed in this work to obtain
all the solutions simultaneously without incurring additional round complexity
or communication complexity to open all the puzzles. Thus, after opening all
the puzzles, a node in Πbb−sa invokes the state transition function just like a
node in Πbb−wa. This process is repeated for every round. We defer the details
to Sect. 5.2.

2.3 Application 2: Permissionless Consensus in the Mobile Sluggish
Model

Nakamoto’s protocol, used in Bitcoin, achieves consensus over the Internet in
a permissionless setting, where: any node can join and leave the system at any
time, the exact number of participating nodes is unknown, and the nodes have to
communicate over unauthenticated channels. However, for security, the protocol
assumes that the network is synchronous – all honest messages get delivered to
one another within a known upper bound on time, Δ units.

Unfortunately, assuming that an Internet scale protocol is synchronous is
excessively optimistic. Moreover, Pass and Shi [37] showed that it is impossible
to achieve permissionless consensus in an asynchronous or even in a partially
synchronous network [5], which are relaxations of the synchronous model. Thus,
to deploy the protocol in the real-world, the protocol designers are compelled to
choose a loose upper bound Δ as the network delay to accommodate nodes with
slow network.

In this work, we relax the standard synchrony assumption and study
Nakamoto consensus under the mobile sluggish model [3,25]. For Internet scale
protocols, the sluggish model is a pragmatic trade-off between the synchronous
model and partially synchronous/asynchronous model. Thus, we ask the follow-
ing question:

Is it possible to achieve consensus in a permissionless setting
in the presence of mobile sluggish faults?

We affirmatively answer this question by proposing a protocol that uses our
TLP construction from Sect. 4 as a fundamental building block to show that
it is possible to achieve consistency (any two prompt chains can differ only in
the last few blocks) and liveness (every prompt node eventually commits all
transactions) even in the presence of mobile sluggish faults.

Transparent Batchable TLPs and Applications to Byzantine Consensus 565

In this subsection, we show how to adapt the Nakamoto consensus to defend
against a mobile sluggish adversary using the our TLP. In our protocol, we use
the following ideas: (1) All honest nodes time-lock encrypt any message they
transmit, (2) all honest nodes send decoys to protect the block winner from
getting caught by the adversary, (3) restrict the adversary from flooding with
decoys, and (4) ignore malformed puzzles sent by the adversary.

Formally, we define a round, a super-round, and duration of a round in
Sects. 6.2 and 6.3. However, as a warm-up, we present strawman solutions to
illustrate the inadequacies of the well-known approaches.

Strawman Solutions. The first straightforward solution is to use RSW puzzles
to time-lock encrypt any message with a duration equal to the network delay
before transmitting across the network [39]. Unfortunately, this approach does
not work for the following reasons:

• Recall that in a protocol like the Nakamoto consensus, only the block winner
sends a message to the network. Thus, the adversary can easily stop the one
message transmitted, whether or not the message is encrypted.

• Say the other honest nodes send out time-lock encrypted dummy messages,
which act as a decoys to protect an honest block winner from getting caught.
Unfortunately, the honest parties have to open all the puzzles to find the
winning block. Thus, the honest parties either have to open all the puzzles
individually or open them using the distributed-solve primitive proposed by
Wan et al. [45, Section 4.2]. Both these approaches increase the round com-
plexity of the protocol by linear and polylogarithmic rounds, respectively.

An alternate approach is to use TLPs with batch solving property defined in [43,
44], but we would suffer from large communication costs and fixed batch size
problem as explained before. Instead, we can now use our TLP that gets rid of
the these issues. Below we give an overview of other challenges we encounter in
designing our permissionless consensus protocol.

Decoys, Spam Prevention, and Malformed Puzzles. Since the Nakamoto
consensus is in the permissionless setting, there are no identities to tackle Sybil
attacks. This setting raises an important question: how to stop the adversary
from spawning multiple identities to send decoys? We resort to proof-of-work to
tackle the Sybil attack!

Say the difficulty threshold to mine a block is T , then we set the threshold
to mine a decoy as Tc, such that T < Tc. Each RO query made by a node
simultaneously tries to mine a block and a decoy. That is, say h is the output
of the hash function. If h < T , then a block is mined, else if T ≤ h < Tc,
then a decoy is mined. This is the “2-for-1 POW” trick introduced by Garay et
al. [4,20,36]. The parameter Tc presents an interesting trade-off: Tc should be
sufficiently high so that honest nodes mine enough decoys whereas the adversary
should not be able to overwhelm the honest nodes with many decoy puzzles.

One of the challenges is that nodes do not know the exact number of decoys
mined at a given time. However, since our TLP construction can batch a variable
number of puzzles, nodes can flexibly batch puzzles on demand. Observe that
Tc restricts the number of decoys that the adversary (and the honest nodes)

566 S. Srinivasan et al.

can mine. But, this does not stop the adversary from flooding the honest nodes
with malformed puzzles. Batching malformed puzzles along with honest puzzles
prevents a node from obtaining the solutions to honest puzzles. To circumvent
this problem we equip our TLP with a verifiability property that allows an honest
node to reject a puzzle that is not well-formed according to the puzzle generation
algorithm. Thus, a valid proof guarantees that the plaintext can be obtained by
solving the puzzle.

Mine Phase and Solve Phase. Since the mining process is stochastic, the
arrival times of a decoy and a block are random. Say if an honest node sends
the puzzle as soon as it finds the block, it is unlikely that the rest of the honest
nodes will also be sending the decoy puzzles at the same time. If enough honest
nodes do not provide “cover” to the block winner, then the probability of the
adversary guessing the block winner is high. However, if all honest nodes wait
until a pre-determined time to send the respective puzzles, then block winner
will have the best chance of not being detected by the adversary.

In order to capture this intuition, we have two phases in our protocol:

– Mine phase: All nodes spend a sequence of m rounds mining a block or decoy
without sending or receiving any messages.

– Solve phase: This phase begins as soon as the mine phase ends and consists
of two rounds. In the first round, nodes send and receive the puzzles they
have mined in the mine phase, and check the well-formedness of the received
puzzles. In the second round, nodes will batch solve the TLPs to find the
block, if any, and update the longest chain.
We generically denote the duration of the solve phase as D rounds. If one
employs RSW puzzles and the distributed-solve primitive from Wan et al. [45]
instead of our TLP construction, then D can be thought of as the number of
rounds required to perform distributed-solve procedure. However, when our
protocol is instantiated with our TLP construction we have D = 2.

Thus, the duration of a super-round is (m + D) rounds.

Putting it all Together. In summary, by using our TLP, the decoy mechanism,
and super-rounds, our protocol works as follows: Every honest node performs the
following steps in every super-round: (1) Receive transactions from the environ-
ment, (2) choose the longest chain it has seen so far and break ties arbitrarily,
(3) mine for m rounds (mine phase), and (4) solve for D rounds (solve phase)
and update the longest chain. We defer the details of the protocol to Sect. 6.3.

3 Cryptographic Background

We denote by λ ∈ N the security parameter. We say that a function μ is neg-
ligible if it vanishes faster than any polynomial. The notation [n] denotes a
set {1, . . . , n}. Background and notations relevant to the two applications are
deferred to Sects. 6.2 and 5.1, respectively.

Transparent Batchable TLPs and Applications to Byzantine Consensus 567

3.1 Time-Lock Puzzles

In the following we give a definition for the main object of interest of this work,
namely time-lock puzzles (TLPs) [39]. The syntax follows the standard notation
for TLPs except that we consider an additional setup phase that depends on the
hardness parameter but not on the secret.

Definition 1 (Time-Lock Puzzles). Let S be a finite domain. A time-lock
puzzle (TLP) with solution space S is tuple of four algorithms (PSetup,PGen,
PSol) defined as follows.

– pp ← PSetup(1λ,T) a probabilistic algorithm that takes as input a security
parameter 1λ and a time hardness parameter T, and outputs public parame-
ters pp.

– Z ← PGen(pp, s) a probabilistic algorithm that takes as input public parame-
ters pp, and a solution s ∈ S, and outputs a puzzle Z.

– s ← PSol(pp, Z) a deterministic algorithm that takes as input public parame-
ters pp and a puzzle Z and outputs a solution s.

Definition 2 (Correctness). A TLP scheme (PSetup,PGen,PSol) is correct if
for all λ ∈ N, all polynomials T in λ, all secrets s ∈ S, and all pp in the support
of PSetup(1λ,T), it holds that: Pr [PSol(pp,PGen(pp, s)) = s] = 1.

Security requires that the solution of the puzzles is hidden for all adversaries
that run in (parallel) time less than T.

Definition 3 (Security). A TLP scheme (PSetup,PGen,PSol) is secure with
gap ε < 1 if there exists a polynomial T̃(·) such that for all polynomials T(·) ≥
T̃(·) and every polynomial-size adversary (A1,A2) = {(A1,A2)λ}λ∈N where the
depth of A2 is bounded from above by Tε(λ), there exists a negligible function
μ(·), such that for all λ ∈ N it holds that

Pr

⎡

⎣ b ← A2(pp, Z, st)
∧ (s0, s1) ∈ S2 :

pp ← PSetup(1λ,T(λ))
(st, s0, s1) ← A1(1λ, pp)

b ← {0, 1}, Z ← PGen(pp, sb)

⎤

⎦ ≤ 1
2

+ μ(λ)

Homomorphic Time-Lock Puzzles. We also recall the definition of homomorphic
TLPs [33], which allows one to compute functions on secrets homomorphically,
without solving the puzzles first.

Definition 4 (Homomorphic TLPs). Let C = {Cλ}λ∈N be a family of circuits
(together with their respective representations). A TLP scheme (PSetup,PGen,
PSol) is homomorphic if the syntax is augmented with the following interface:

– Z ′ ← PEval(C, pp, Z1, . . . , Zn) a probabilistic algorithm that takes as input a
circuit C ∈ Cλ, public parameters pp and a set of n puzzles (Z1, . . . , Zn) and
outputs a puzzle Z ′.

Homomorphic TLPs must satisfy the following notion of evaluation correctness.

568 S. Srinivasan et al.

Definition 5 (Evaluation Correctness). Let C = {Cλ}λ∈N be a family of
circuits (together with their respective representations). An homomorphic TLP
scheme (PSetup,PGen,PSol,PEval) is correct (for the class C) if for all λ ∈ N, all
polynomials T in λ, all circuits C ∈ Cλ and respective inputs (s1, . . . , sn) ∈ Sn,
all pp in the support of PSetup(1λ,T), and all Zi in the support of PGen(pp, si),
the following conditions are satisfied:

– It holds that

Pr [PSol(pp,PEval(C, pp, Z1, . . . , Zn)) = C(s1, . . . , sn)] = 1.

– There exists a fixed polynomial p(·) such that the runtime of PSol is bounded
by p(λ,T) and the runtime of PEval is bounded by p(λ).

We require homomorphic TLPs specifically that support homomorphic evalu-
ations of linear functions over the puzzles, that are secure against depth bounded
but sub-exponential size adversaries. We have such constructions from RSA
groups [33] and Class groups with imaginary quadratic order [44]. These con-
structions are proven secure against such adversaries by conjecturing the hard-
ness of the sequential squaring assumption [31,33] against depth bounded but
sub-exponential size adversaries.

3.2 Puncturable Pseudorandom Functions

A puncturable pseudorandom function (PRF) is an augmented PRF that has an
additional puncturing algorithm. Such an algorithm produces a punctured ver-
sion of the key that can evaluate the PRF at all points except for the punctured
one. It is required that the PRF value at that specific point is pseudorandom
even given the punctured key. A puncturable PRF can be constructed from any
one-way function [24].

Definition 6 (Puncturable PRFs). A puncturable family of PRFs is a tuple
of polynomial-time algorithms (Setup,KGen,Punc,F) defined as follows.

– pp ← Setup(1λ) a probabilistic algorithm that takes as input the security
parameter 1λ and outputs public parameters pp. Public parameters pp are
taken as input in all other algorithms.

– K ← KGen(pp) a probabilistic algorithm that takes as input the public param-
eters pp and outputs a key K.

– Ki ← Punc(K, i) a deterministic algorithm that takes as input a key K ∈ K
and a position i ∈ X and returns a punctured key Ki.

– y ← F(K, i) a deterministic algorithm that takes as input a key K and a
string i ∈ X and returns a string y ∈ Y.

Definition 7 (Correctness). For all λ ∈ N, for all outputs K ← KGen(1λ),
for all points i ∈ X and x ∈ X \ i, and for all K−i ← Punc(K, i), we have that
F(K−i, x) = F(K,x).

Transparent Batchable TLPs and Applications to Byzantine Consensus 569

We require that punctured points are pseudorandom to the eyes of any effi-
cient distinguisher.

Definition 8 (Pseudorandomness at Punctured Points). For all λ ∈ N

and for every PPT adversaries (A1,A2) there is a negligible function μ(·), such
that

Pr

⎡
⎣b ← A2(τ, Ki, i, y) :

pp ← Setup(1λ), (i, τ) ← A1(pp)
K ← KGen(pp), Ki ← Punc(K, i), b ← {0, 1}

if b = 0 then y ← Y, else y ← F(K, i)

⎤
⎦ ≤ 1

2
+ μ(λ).

Key Homomorphism. We also assume the existence of constructions of punc-
turable PRFs that satisfy key homomorphism [10].
Definition 9 (γ-Almost Key-Homomorphic PRF). Let function F : K ×
X → Z

m
p be such that (K,+) is a group. Then the tuple (F,+) is said to be

γ-almost key-homomorphic PRF if the following two conditions hold:
– F is a (puncturable) pseudorandom function.
– For all k1, k2 ∈ K and all x ∈ X , there exists a vector e ∈ [0, γ]m such that

F(k1, x) + F(k2, x) = F(k1 + k2, x) + e (mod p).

The scheme presented in [10] satisfies (additive) key-homomorphism over Z
n
q ,

which we also use in this work. Their scheme satisfies a weaker notion of cor-
rectness, which we state below.

Definition 10 (Computational Functionality Preservation). For all λ ∈
N and all PPT adversaries (A1,A2), there exists a negligible function μ(·), such
that

Pr

⎡

⎣
x∗ ← AF(K,·)

2 (1λ,Ki∗ , τ) ∧
x∗ 	= i∗ ∧

F(K,x∗) 	= F(Ki∗ , x∗)
:
pp ← Setup(1λ),K ← KGen(pp)

(i∗, τ) ← A1(pp)
Ki∗ ← Punc(K, i∗)

⎤

⎦ ≤ μ(λ).

For our purposes, we require the above property of the key-homomorphic
puncturable PRF from [10] to hold against super-polynomial adversaries, which
is possible assuming the hardness of LWE against super-polynomial adversaries.

3.3 Indistinguishability Obfuscation

We recall the definition of indistinguishability obfuscation (iO) for circuits
from [21].

Definition 11 (iO for Circuits [21]). A uniform PPT machine iO is an indis-
tinguishable obfuscator for circuit class {Cλ}, if the following are satisfied:

– For all λ ∈ N, or all C ∈ Cλ, for all inputs x, we have

Pr [C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

– For all λ ∈ N, all pairs of circuit (C0, C1) ∈ Cλ such that |C0| = |C1| and
C0(x) = C1(x) on all inputs x, it holds that the distributions {iO(λ,C0)} and
{iO(λ,C1)} are computationally indistinguishable.

570 S. Srinivasan et al.

4 Time-Lock Puzzles with Batch Solving

In this section we formally present the notion and constructions for time-lock
puzzles with batched solving.

4.1 Definition

We define the notion of TLPs with batched solving. We borrow the standard
interfaces of a TLP from Sect. 3.1 and append it with an interface to allow for
batched solving of n puzzles.

Definition 12 (Batch Solving). A TLP scheme (PSetup,PGen,PSol) sup-
ports batch solving with the aid of an additional interface defined below

– (s1, . . . , sn) ← BatchPSol(pp, Z1, . . . , Zn) a deterministic algorithm that takes
as input public parameters pp and puzzles Z1, . . . , Zn, and outputs solutions
s1, . . . , sn.

Definition 13 (Batch Solving Correctness). An TLP scheme (PSetup,
PGen,PSol) with batch solving interface BatchPSol is correct if for all λ ∈ N,
all polynomials T in λ, all polynomials n in λ, all solutions (s1, . . . , sn) ∈ Sn,
all pp in the support of PSetup(1λ,T), and all Zi in the support of PGen(pp, si),
the following conditions are satisfied:

– There exists a negligible function μ(·) such that

Pr [BatchPSol(pp, Z1, . . . , Zn) 	= (s1, . . . , sn)] ≤ μ(λ).

– There exist fixed polynomials p(·), p̃(·) such that the size complexity of the
circuit evaluating BatchPSol(pp, Z1, . . . , Zn) is bounded by p(λ,T) + p̃(λ, n).

Notice that the above definition rules out trivial solutions, where you solve
the n puzzles individually and output the solutions. This is because, in this
solution the size scales with n · T, while the definition above only permits the
scale to be n +T. One can view p̃(λ, n) as capturing the time taken to read and
process the n puzzles, and returning the n solutions. The factor p(λ,T) captures
the solving of a single puzzle and itself is independent of n.

4.2 Bounded Batching of TLPs

As hinted to in Sect. 2.1, given a linearly homomorphic TLP with homomorphism
over Zq, that has a large enough message space, it was shown in [43,44] that we
can homomorphically pack several puzzles into a single puzzle using standard
techniques. Solving the single puzzle reveals the solutions to all the n puzzles
that we started out with. A crucial requirement for the above batch solving
to work is that the message space of the homomorphic time-lock puzzle must
be large enough to accommodate all the n λ-bit values. It was shown [43] that
this is indeed possible by instantiating the Paillier-based linearly homomorphic

Transparent Batchable TLPs and Applications to Byzantine Consensus 571

time-lock puzzle construction from [33] in the same way Damg̊ard-Jurik [17]
extended the Paillier cryptosystem [34]. That is, instantiate the Paillier-based
linearly homomorphic TLP from [33] with a modulus Ns instead of modulus
N2, for a large enough value s. A similar domain extension was also shown in
the settings of class groups of imaginary quadratic orders [44] that only require
a public-coin (transparent) setup.

More formally, the LHP scheme from [33] has the LHP.PSetup algorithm
output ppLHP = (T, N, g, h), where N = pq for some λ-bit primes p and q, g

is the generator of J∗
N , and h := g2T

mod N . Here J
∗
N denotes the elements in

Z
∗
N with Jacobi symbol +1. The puzzle Z embedding message m is of the form

(u, v) where

u := gr mod N and v := hr·N (1 + N)m mod N2,

with randomness r ← [N2]. The security of the scheme follows from the sequen-
tial squaring assumption [33,39]. The Damg̊ard-Jurik extension from [33,43] lets
the puzzle generation algorithm additionally choose s ∈ Z, and set the puzzle
Z := (u, v) where

u := gr mod N and v := hr·Ns−1
(1 + N)m mod Ns.

Here, the message space is ZNs−1 while the puzzle component v is in ZNs .
Consider n puzzles Z1, . . . , Zn each encoding λ-bit values with timing hard-

ness T, and each of these puzzles are of the Damg̊ard-Jurik extended form. The
LHP.BatchPSol algorithm internally evaluates the following linear function

f(x1, . . . , xn) =
n∑

i=1

2(i−1)·λ · xi

homomorphically over the puzzles using the LHP.PEval algorithm. The effect
of this evaluation is that the resultant puzzle Z∗ embeds the λ-bit values of
(x1, x2, . . . , xn). The LHP.BatchPSol algorithm proceeds to solve the resultant
puzzle Z∗ in time T to obtain the n values encoded as λ-bit values.

However, both of the above constructions only support bounded batching as
they require the size of each puzzle Zi (the v component) to scale linearly with
the maximum batch size. Also, since the domain extension factor s has to be
fixed at puzzle generation time, it determines an upper bound on the input size
of the function f and therefore the number of puzzles we can batch solve later.

4.3 Unbounded Batching of TLPs

In this section, we present a new TLP scheme with batched solving which over-
come both drawbacks of the scheme above. Namely, our new construction allows
for batching where the size of the TLPs output by puzzle generation algorithm is
independent of the number of puzzles to be batched. As a consequence, we have
unbounded batching (bounded above by a super polynomial 2ω(log λ)) meaning
that any polynomial number of puzzles can be batched with an one-time setup.

572 S. Srinivasan et al.

– PSetup(1λ,T):

• Run ppLHP ← LHP.PSetup(1λ,T).

• Run ppF ← Setup(1λ) and ppF ← Setup(1λ).
• Return pp := (ppLHP, ppF, ppF).

– PGen(pp, m):

• Generate k ← KGen(ppF).
• Define Pm,k,pp(n, i, j) as the following circuit:a

∗ Ensure i, j ∈ [n].
∗ Compute (r, r) ← F(k, (n, i)).

∗ Compute k ← KGen(ppF; r).

∗ Compute Z ← LHP.PGen(ppLHP, k; r).

∗ If j = i set c = F(k, j) + m · �p/2� (mod p).

∗ Else if j ≤ n ≤ N set c = F(k, j).
∗ Return (Z, c).

• Return ˜P := iO(1λ,Pm,k,pp).
– BatchPSol(pp, Z1, . . . , Zn):

• For each i ∈ [n],

∗ Parse Zi := ˜Pi.
∗ For each j ∈ [n], compute (Z∗

i , ci,j) ← ˜Pi(n, i, j).
∗ Define ci = (ci,1, . . . , ci,n) ∈ Z

n
p .

• Set Z∗ ← LHP.PEval(+, pp, Z∗
1 , . . . , Z∗

n).
• Compute k∗ ← LHP.PSol(pp, Z∗).

• Compute f∗ =
(

F(k∗, 1), . . . , F(k∗, n)
)

• Compute c∗ =
∑n

i=1 ci.
• Return c∗ − f∗ rounded component-wise.

a
The circuit is padded to the maximum size of the circuits among those defined in the security
proof. We refer the reader to the end of this Section for a discussion on the size of this circuit.

Fig. 1. Our construction for TLP with unbounded batch solving.

Our construction uses the following ingredients:

– A linearly homomorphic TLP scheme LHP := (LHP.PSetup, LHP.PGen,
LHP.PSol, LHP.PEval) where the homomorphism is over Zq.

– A puncturable PRF (Setup,KGen,Punc,F) denoted in short by F.
– An indistinguishable obfuscator iO for circuits.
– A γ-almost key-homomorphic puncturable PRF (Setup,KGen,Punc,F)

(denoted in short by Fi) with key space Z
n
q and where the noise bound is

γ such that p = 2ω(log λ) · γ.

Let N = 2ω(log λ) denote an upper bound on the number of participants. Our
construction (PSetup,PGen,BatchPSol) is shown in Fig. 1. For simplicity we con-
sider the messages encoded to be in {0, 1}, and argue that its straightforward to
extend the construction for multiple bits.

A puzzle in our case is an obfuscation of the program P which has the message
m, a PRF F key k, and the public parameters pp hardwired in it. The program
P takes as input three values: n indicating number of puzzles to be batched, i
“index” of the current puzzle and j “index” of other puzzles. It is important to
note that the exact indices for each puzzle are only set later during batch solving.
Let i be the symbolic index of the puzzle being generated now (whose concrete
value will be set during batch solving). The program internally generates the

Transparent Batchable TLPs and Applications to Byzantine Consensus 573

PRF key k for the key-homomorphic puncturable PRF which then is embedded
inside the LHP puzzle Z. In case the indices i and j are the same, a ciphertext
c is set to encrypt the message m using the value F(k, j) as the masking factor.
In any other case, c encrypts 0 with F(k, j) as the masking factor. The program
returns the puzzle Z and the ciphertext c.

The batch solving algorithm in the beginning, locally indexes the n puzzles in
some order based on some rule (e.g., lexicographic ordering). We have them now
ordered (Z1, . . . , Zn) where the i-th puzzle is an obfuscated program denoted by
Zi := P̃i. Then, for all i ∈ [n], we execute the program P̃i on values (n, i, j) for
all j ∈ [n]. In the end we obtain a LHP time-lock puzzle Z∗

i and ciphertexts ci,j

for each j ∈ [n]. Recall that when i = j the program P̃i sets ci,j to encrypt the
message mi (where mi is the message inside puzzle Zi), and for all i 	= j, the
ciphertext ci,j encrypts 0. We then obtain a LHP puzzle Z∗ by homomorphically
adding the puzzles Z∗

i for all i ∈ [n] and solving Z∗ returns a PRF key k∗

of the key-homomorphic puncturable PRF. We retrieve the message mj (for all
j ∈ [n]) by doing the following: (1) compute c∗

j =
∑n

i=1 ci,j , (2) evaluate F(k∗, j),
(3) set mj as the rounding of

(
c∗
j − F(k∗, j)

)
. The correctness and security of

our construction is formalized in the theorems below and the formal proofs are
deferred to the extended version our paper [42].

Theorem 1. Let LHP be a linearly homomorphic TLP scheme where the homo-
morphism is over Zq, let F be a puncturable PRF, let iO be an indistinguishable
obfuscator for circuits and let F be a γ-almost key-homomorphic puncturable
PRF with key space Z

n
q and where the noise bound is γ such that p = 2ω(log λ) ·γ.

If all the above primitives are perfectly correct, then the TLP scheme with batch
solving from Fig. 1 is perfectly correct.

Theorem 2. Let LHP be secure against depth Tε(λ)-bounded adversaries with
sub-exponential advantage, F be a sub-exponentially secure puncturable PRF, F be
a sub-exponentially secure γ-almost key-homomorphic puncturable PRF and iO
be a sub-exponentially secure indistinguishable obfuscator. Then, the construction
from Fig. 1 is a secure time-lock puzzle with batch solving against all depth Tε(λ)-
bounded adversaries.

Size of the Obfuscated Circuit. Observe that at any point in the proof, we
only hardwire information of size bounded by a fixed polynomial in λ, and in
particular independent of the number of parties. Since the size of the obfuscated
circuit must be padded to the maximum size of the circuit at any point in the
security proof, the size overhead is also independent of the number of parties.

Instantiations and Setup Assumptions. We can instantiate: the linearly
homomorphic TLP, LHP, with the Class group based scheme from [44]. We can
instantiate the puncturable PRF F with the GGM based PRF [24,40], the iO
scheme with the scheme from [27], and the γ-almost key-homomorphic punc-
turable PRF with the scheme from [10]. Notice that the above instantiations do
not require trusted setups, thus our TLP scheme does not require a trusted setup.
However, requires a one-time transparent public-coin setup (for LHP from [44]).

574 S. Srinivasan et al.

TLP Runtime. The runtime of PGen is dominated by the obfuscation of the
circuit P which is polynomial in λ and size of P. Moreover, the size of P is
independent of the batch size n or the number of users. Thus, the total runtime
is polynomial in λ and size of the time-locked message. The BatchPSol involves
executing n obfuscated circuits, combining their outputs homomorphically using
LHP.PEval, and solving the resulting TLP using LHP.PSol. The runtime of the
first two operations is poly(λ, n), whereas the last operation is poly(λ, T).

Verifiable TLPs. We can support verifiability for our puzzles where the puzzle
generator along with the puzzle also outputs a proof, that convinces a verifier
that the puzzle is well-formed. In applications of our TLP scheme (including
the ones in later sections), verifying whether a puzzle is in the support of the
PGen is paramount for the correctness (Def. 13) of batched solving to hold. To
provide such verifiability, we can add two new interfaces: PProve(Z,m, r) run
by the puzzle generator that outputs a proof π to ascertain a puzzle Z is well-
formed (with message m and randomness r), and PVer(Z, π) run by a verifier
that validates the proof w.r.t. the puzzle. In terms properties we want that a
verifier shouldn’t be convinced of a malformed puzzle and that the proof does
not help in solving the puzzle any faster. For a formal definition and a discussion
on concrete instantiations, see the extended version of our paper [42].

Non-committing TLPs. A non-committing TLP lets a simulator generate a
puzzle first and later “explain” the puzzle as committing to a message m by
opening it to reveal m. Note that a TLP is committing to the message once
the puzzle is generated. Cohen et al. [16] showed a generic approach to build
such non-committing TLPs in the programmable random oracle model (PROM)
and we can transform our TLP scheme into one that is non-committing in the
same way. The idea is to run Z ′ ← PGen(pp, x) for some random r, and the
final puzzle Z is set as Z := (Z ′, c) where c := H(r) ⊕ m. The simulator when
required to equivocate Z as a puzzle embedding the message m, sets the value
H(r) := c ⊕ m on the fly, as H() is modeled as a PROM. We can modify the
construction from Sect. 4.3 by having letting PGen run as before, but output
(P̃,H(r) ⊕ m) as the final puzzle, where P̃ := iO(λ,Pr,k,pp). Specifically this
means that the PROM computation is outside the iO.

5 Application 1: Byzantine Broadcast

In this section, we present our generic compiler to transform any BB protocol
secure against weakly adaptive adversaries to one that is secure against strongly
adaptive adversaries.

5.1 Model and Definitions

In our setting, there are n nodes, numbered 1 to n, running a distributed protocol
where the identity of each node is known to one another through a PKI.

Transparent Batchable TLPs and Applications to Byzantine Consensus 575

Communication Model. We assume that each node has access to a shared
global clock and all parties are connected by a pairwise reliable channel. We
consider the standard synchronous model of communication where there is a
known upper bound on the message delay (Δ). The protocols are executed in
a round-based fashion, where the duration of each round is Δ time units. Any
message sent by an honest node in a round reaches all other honest nodes by the
beginning of the next round. Also, each node has access to the functionalities:
RECEIVE and SEND. When a node u invokes SEND(m, recipients) in round r−1,
then m is delivered to recipients using the pairwise reliable channels from u by
round r. When a node u invokes RECEIVE in round r, then all messages that
were sent to u using the pairwise reliable channels by round r − 1 are returned.
The adversary can read, rearrange, insert, and drop messages between any two
nodes (if strongly adaptive). But, cannot forge signatures. Moreover, we also
assume that each round is sufficiently long to perform standard cryptographic
operations except BatchPSol and PSol.

Let P be the set of possible internal states of a node and M be the set of
possible messages that can be sent and received by a node.

Definition 14 (Δ-secure Synchronous protocol). Let Fn denote the family
of transition functions such that:

Fn = {fr,u : P × Mn → P × Mn : u ∈ [n], r ∈ Z}

A synchronous protocol Πsync is executed by n nodes and proceeds in rounds.
In every round r, every node u ∈ [n], reads the messages addressed to it using
the RECEIVE functionality, updates its state and computes the messages to be
sent using fr,u, and sends the messages to intended recipients using the SEND
functionality.

Protocol Πsync(λ, Δ)
Setup.

– Let S0,u be the initial state of node u ∈ [n]
– Generate and publish public parameters

Protocol. A node u ∈ [n], for each round r:
– Fetch messages from each sender: m := (m1, . . . , mn) ← RECEIVE()
– Compute next state and messages: (Sr+1,u, m′ := (m′

1, . . . , m′
n)) ← fr,u(Sr,u, m)

– Send messages: SEND(m′, recipients)

Adversary Model. The adversary can make at most t out of n nodes to arbi-
trarily deviate from the protocol execution, where t < n. Moreover, we assume
that the adversary controls the delivery of all the messages in the network.

– We consider a strongly adaptive adversary that can corrupt nodes on the fly
and perform after-the-fact removal.

– Whereas, a weakly adaptive adversary can only corrupt nodes on the fly, but
cannot prevent the delivery of any message that was already sent.

Additionally, we consider a rushing adversary that can inspect the messages sent
by any honest node before delivering it to other nodes. Moreover, we assume that
honest nodes can irrecoverably erase (part of) its state and memory at any time.

576 S. Srinivasan et al.

Computational Model. All honest nodes are sequential, random access ppt,
but the adversary is a non-uniform probabilistic parallel machine with polyno-
mially bounded parallelism running in polynomially bounded parallel steps.

5.2 Protocol

For an n node protocol Π, we define a deterministic function called output deriva-
tion function for each node u ∈ [n]. This function allows a node to compute its
output bit for Π based on the transcript of public messages exchanged by the
participants and public parameters.

Definition 15 (Output derivation function) Let Π be an n node protocol
and Y denote the public transcript space of the protocol Π, then Gn denote the
family of output derivation functions such that:

Gn = {gu : Y → {0, 1} : u ∈ [n]}
Functions in Gn, despite being deterministic, may not be efficiently computable
without a party’s keys.

We recall the definition of a secure Byzantine broadcast protocol below.

Definition 16 ((Δ, t)-secure Byzantine broadcast). Let λ be the security
parameter, Δ be the known upper-bound on the network delay, and node d ∈ [n]
be the designated sender. A protocol Π executed by n nodes with specified family
of functions Gn, where the designated sender holds an input bit b ∈ {0, 1}, is a
(Δ, t)-secure broadcast protocol tolerating at most t corruptions if it satisfies the
following properties with probability 1 − negl(λ):

• Consistency: If two honest nodes output bit bi and bj respectively, then bi = bj.
• Validity: If the designated sender is honest, then every honest node outputs

the designated sender’s input bit b.
• Termination: Every honest node u outputs a bit from gu(transcript), where
transcript is the transcript from running Π.

If the protocol can tolerate corruptions by a strongly adaptive and a weakly adap-
tive adversary, then it is strongly adaptive (Δ, t)-secure and weakly adaptive
(Δ, t)-secure, respectively.

Let Πbb−wa be a weakly adaptive protocol, we formally describe Πbb−sa below:

Protocol Πbb−sa(λ, Δ, Πbb−wa, Gn)
Text in gray indicates the instructions from Πbb−wa.

Setup.
– Let S0,u be the initial state of node u ∈ [n]

– For each round r, pp ← PSetup(1λ, Δ)
– Generate and publish public parameters

Input.
– Let b ∈ {0, 1}
– If designated sender, d, then S0,d := S0,d ∪ b

Protocol. A node u ∈ [n], for each round r:
– Fetch messages from each sender: m := (m1, . . . , mn) ← RECEIVE()
– Parse message mv as puzzle Zv , ciphertext Cv , proof of well-formed πv for all v ∈ [n]

Transparent Batchable TLPs and Applications to Byzantine Consensus 577

– Check πv ’s to verify if Zv ’s are well-formed by PVer(pp, Zv, πv)
– Extract the individual solutions (s1, . . . , sn) ← BatchPSol(pp, Z1, . . . , Zn)
– Decrypt Cv ’s, set mv := Cv ⊕ H(sv) for all v ∈ [n], and m := (m1, . . . , mn)
– Set internal state for round r as Sr,u := mu

– Compute next state and messages: (Sr+1,u, m′ := (m′
1, . . . , m′

n)) ← fr,u(Sr,u, m)
– Pick s ∈ S, Z ← PGen(pp, s), and compute π to prove that Z is well-formed.
– Reassign m′

u := (Z, Sr+1,u ⊕ H(s), π) and m′
v := (Z, m′

v ⊕ H(s), π) for all v ∈ [n] \ {u}
– Set output messages as m′ := (m′

1, . . . , m′
n) and erase Sr+1,u, s, π

– Send messages: SEND(m′, recipients)

Output.
– Let transcript be the public transcript of the protocol execution
– Return b ← gu(transcript)

Theorem 3. Let Πbb−wa be a weakly adaptive (Δ, t)-secure Byzantine broad-
cast protocol with output derivation functions Gn and Πbb−sa be the compiled
strongly adaptive (δ, t)-secure protocol with output derivation functions Gn, such
that Δ = 2δ. If an A violates Πbb−sa with probability at least p, then there exists
an adversary B that violates Πbb−wa with probability at least p.

Analysis. Suppose ∃ an A that can break Πbb−sa, then we build another adver-
sary B that breaks Πbb−wa. At a high level, we show that every attack by A on
Πbb−sa can be translated to an attack on Πbb−wa. Observe that B is as powerful
as A, except B cannot perform after-the-fact removal. Thus, to translate the
after-the-fact removal, B must know whether A delivers or removes messages in
Πbb−sa. B can know this only by waiting for δ steps to see A’s actions! Hence, B
starts the simulation δ steps ahead of Πbb−wa. But, when the simulation begins,
B doesn’t yet have the real-world messages from Πbb−wa that can be copied to
Πbb−sa. So B sends non-committing TLPs to equivocate the contents of the puz-
zle (possible because of PROM). When A solves the TLP and queries the RO,
actual messages from Πbb−wa will be available, and B programs the RO to open
the corresponding message from Πbb−wa. Since the duration between when the
messages are sent and the contents learned by the honest nodes should be the
same in the simulation and the real-world, we set Δ = 2δ. Thus, asymptotically,
Πbb−sa is round preserving (as Δ = 2δ) and communication preserving (due
to compactness of our TLP). We present the detailed analysis in the extended
version of our paper [42].

Expected Constant-round Byzantine Broadcast. Wan et al. [46] proposed
an expected constant round BB protocol under a weakly adaptive and dishonest
majority setting. Thus, using the compiler (Sect. 5.2), we can obtain resilience
in the strongly adaptive setting!

6 Application 2: Nakamoto Consensus Secure Against
a Mobile Sluggish Adversary

In this section, we show an attack against the Nakamoto consensus in the mobile
sluggish model and how to secure the Nakamoto consensus using our TLP.

578 S. Srinivasan et al.

6.1 Attack on Nakamoto Consensus in the Mobile Sluggish Model

In Nakamoto consensus, a chain forks when two distinct blocks extend the same
parent block. Forks are inherently bad for security as it splits the honest mining
efforts across the two branches of the tree. A benign example is when two blocks
are mined less than Δ time units apart. Since the messages take Δ to reach
others, the winner of the second block would not have been aware of the previous
block. Nakamoto consensus is parameterized in a way that the inter-arrival time
between two blocks is much longer than the time to transmit between any two
farthest nodes in the system. The security threat posed by forks is the exact
reason the Nakamoto consensus is secure only in the synchronous model.

Fig. 2. Double spend attack: This plot depicts average block arrival times. Assuming
52 honest nodes (51 prompt + 1 sluggish) and 48 adversarial nodes, the average inter-
arrival time of honest blocks and adversarial blocks in Bitcoin is 19.2 and 20.8 min,
respectively. Observe that over 19.2×2 min, even though the honest nodes have mined
two blocks, due to sluggishness, the honest chain has grown only by one block.

The mobile sluggish adversary, whenever an honest node mines a block, can
simply delay the block propagation until another block extends the same header
(see Fig. 2). At this point, the adversary can release both the blocks simultane-
ously to split the honest mining efforts. The adversary can sustain the forks as
long as it has sufficient sluggish budget. Since the adversary is responsible for
message delivery and sluggishness can be mobile, it could perform this attack
repeatedly. In the meantime, adversarial nodes will continue to extend their chain
in private. Using this strategy, even a single mobile sluggish fault has the ability
to reduce the honest mining rate by half ! Thus, an honest majority assump-
tion may not be sufficient to guarantee security in this model. We elaborate this
attack in the extended version of our paper [42].

6.2 Model

Let n be the total number of nodes, d be the maximum number of sluggish
nodes, and t be the maximum number of adversarial nodes. Thus, there are at
least n−t honest nodes and at least n−d−t prompt nodes. We adopt the formal
framework from Garay et al. [20], a model inspired by the prior formulations of
secure multiparty computation [13].

Transparent Batchable TLPs and Applications to Byzantine Consensus 579

Sluggish Network Model. We assume that the time proceeds in rounds. More-
over, we assume that the adaptivity of the adversary is static. That is before the
protocol execution, the adversary picks the set of nodes to corrupt. Moreover,
we also assume that every node has access to a shared global clock and a pairwise
reliable channel between any two parties.

The standard (lock-step) model of synchrony assumes that any message sent
in round r reaches other nodes by r+1. We consider a generalization of this model
called the mobile sluggish model. In this model, if a node is prompt at round r,
then any message sent by the node in round ≤ r reaches all the nodes that are
prompt in round r + 1 by round ≤ r + 1. Due to mobility of the sluggishness,
set of prompt nodes in any two adjacent rounds need not be the same.

The adversary is responsible for message delivery. Thus, an adversary can
reorder or delay messages (according to prompt and sluggish delay requirement),
but cannot delete messages. Moreover, any message sent to a prompt node by
a prompt or an adversarial node reaches all prompt nodes. We can relax this
assumption by assuming that nodes gossip/echo any message they receive [35,
Footnote 4]. The adversary inspects all messages (including puzzles and blocks)
first before delivering to any node.

Round Duration. We assume that the duration of a round is O(Δ). Specifically,
we assume that a round is sufficiently long to send/receive messages and perform
cryptographic operations (such as verifying a hash of a message, generating
and verifying a zero-knowledge proof of well-formedness of a TLP, computing
PGen/PEval, and signing and verifying a signature), except PSol,BatchPSol, and
RO invocations to mine a block or a decoy.

Computational Model. We adopt the flat model of computation introduced
by Garay et al. [20]. In this model, all nodes are assumed to have the same
computational power. Moreover, any node can make at most q proofs-of-work
invocations to the RO in a round. Thus, the adversary can perform t · q RO
queries in each round. We remark that each node has an unlimited number of
proof-of-work verification queries to the RO [20].

Additionally, we assume that all honest nodes are sequential, random access
ppt, but the adversary is a non-uniform probabilistic parallel machine with poly-
nomially bounded parallelism running in polynomially bounded parallel steps.

Environment. The entity environment handles the external aspects of the pro-
tocol execution such as spawning the nodes and the adversary, injecting trans-
actions, writing inputs and reading outputs of each node, etc. However, the
environment cannot make queries to RO. This is to prevent the adversary from
outsourcing the RO queries to an external entity.

6.3 Protocol

Super-round. Since our protocol proceeds in two phases: (1) Mine phase (m
rounds) and (2) Solve phase (D rounds), a super-round consists of a mine phase
followed by a solve phase. Thus, the duration is (m + D) rounds.

580 S. Srinivasan et al.

Mobile Sluggish Nakamoto Protocol

Input.
– pp, TLP public parameters with T as one round
– m, duration of mine phase
– D, duration of solve phase
– q, maximum number of RO queries per round
– T , difficulty threshold to mine a block
– Tc, difficulty threshold to mine a decoy where T < Tc

Initialize. Chain C containing agreed-upon genesis block C[0]

Protocol. Every super-round R (which consists of (m + D) rounds)
– Get the payload from the environment
– Let h−1 := H(C[−1]) be the hash of the last block on the longest chain C
– Let B = ⊥ be an empty block
– For m rounds of mine phase:

• For q RO queries:
∗ Pick random η ∈ {0, 1}λ and compute h := H(h−1, payload, η)
∗ If h < Tc (mined a decoy)

· Overwrite B := (h−1, payload, η)
∗ If h < T (mined a block)

· Overwrite B := (h−1, payload, η)
· Set C := C||B
· Break out of the q and m loop

– If B = ⊥
• Compute the TLP Z := PGen(pp, B)
• Compute proof of well-formed π := PProve(pp, Z, B)

– Solve phase for D = 2 rounds:
• First round, multicast (Z, π) (if one exists), receive all the w puzzles from the network

Z1, . . . , Zw, and check their well-formedness.
• Second round, batch solve (s1, . . . , sw) := BatchPSol(Z1, . . . , Zw).

– Update the chain C based on output from the solve phase

Assumptions. Let a block mined in a super-round R be a prompt block, if mined
by an honest node and the node was prompt at the beginning of solving phase
of both R − 1 and R. Moreover, let f be the probability of one or more prompt
blocks were mined in a super-round, c be the probability of every honest node
mining at least one decoy in a super-round, ε, δ ∈ (0, 1) be parameters, and p be
the probability of a RO query mining a block. Our analysis assumes that:

(m + D)t + md

cm(n − 2d − t)
≤ (1 − δ) (1)

ε + f < δ/3 (2)

pqm(n − 2d − t) < 1/2 (3)
2ε

1 − ε
< δ2 (4)

Analysis. At a high level, our analysis extends the formal tools proposed by
Garay et al. [20]. But there are several differences due to mobile sluggish faults
and the use of TLPs:

1. The adversary can deviate from the protocol and invoke RO queries even
during the solve phase. Intuitively, Eq. 1 quantifies the required advantage
of the prompt nodes over sluggish and adversarial nodes for our protocol to
be secure. Specifically, the numerator captures the computational advantage
enjoyed by the adversarial nodes due to additional RO queries during the
solve phase (the term (m + D)t) and the loss in honest mining efforts due to
sluggish nodes (the term md). Large values of D decreases t (assuming other

Transparent Batchable TLPs and Applications to Byzantine Consensus 581

values can remain the same). But, due to the batch solving property of our
TLP, D = 2 in our protocol. Thus, the impact of D is minimal.

2. The mobility of the sluggishness provides the adversary timing based oppor-
tunities to reduce the contributions to the “prompt” chain. The adversary
with d sluggish budget can toggle the sluggishness of 2d nodes. If the adver-
sary toggles the sluggishness when the honest nodes release TLPs at the end
of the mining phase, it can reduce the number of nodes contributing to the
prompt chain to (n − 2d − t). This is because the d nodes that are sluggish
through the mining phase of a super-round may not be mining on the longest
chain, and at the end of the mining phase, the adversary can use its mobility
to make d prompt node sluggish (See [42, Remark 1]).

3. The sluggish nodes can inadvertently contribute to the adversarial chain. This
is because the sluggish nodes may only have access to the view provided to
them by the adversary.

4. Coordinated release of TLPs: Observe that from Eq. 3, large values of m
decreases p, thus reducing the block arrival frequency. But, a bounded p
ensures that the honest nodes do not fork one another and there are sufficient
“convergence opportunities” to resolve forks [20,35]. Moreover, no prior per-
missionless protocol is secure under mobile-sluggish faults even under reduced
performance.

5. Impact of decoys: In Eq. 1, the security impact of mining decoys by honest
nodes is captured by c. We set the probability of mining a decoy such that
honest nodes can mine sufficiently many decoys while simultaneously bound-
ing the total number of decoys mined. Recall that our batch solvable TLP
allows simultaneously opening a polynomial number of puzzles.

Notice that our analysis is a generalization of [20], thus by substituting
m = 1, c = 1, d = 0, and D = 0, our analysis, in principle, collapses to [20]’s anal-
ysis. We prove liveness and consistency by assuming that the mining-hardness
parameter is appropriately set in Eqs. 1 to 4. We present the complete analysis
of the protocol in the extended version of the paper [42].

Acknowledgments. This research was partially funded by the German Federal Min-
istry of Education and Research (BMBF) in the course of the 6GEM research hub under
grant number 16KISK038 and by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA
- 390781972. This work was also supported in part by Novi and VMware gift research
grant. Charalampos Papamanthou was supported in part by the National Science Foun-
dation, the Algorand Foundation through the ACE program, VMware, and Protocol
Labs.

References

1. Time-lock: Block producer extractable value - tezos (2022). https://tezos.gitlab.
io/alpha/timelock.html. Accessed 01 Sept 2022

2. Abraham, I., et al.: Communication complexity of byzantine agreement, revisited.
In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Com-
puting (2019)

https://tezos.gitlab.io/alpha/timelock.html
https://tezos.gitlab.io/alpha/timelock.html

582 S. Srinivasan et al.

3. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Yin, M.: Sync HotStuff: simple and
practical synchronous state machine replication. In: 2020 IEEE Symposium on
Security and Privacy (SP) (2020)

4. Bagaria, V., Kannan, S., Tse, D., Fanti, G., Viswanath, P.: Prism: Deconstruct-
ing the blockchain to approach physical limits. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security (2019)

5. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without
authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377.
Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 22

6. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

7. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encod-
ings and their applications. In: Proceedings of the Forty-Seventh Annual ACM
Symposium on Theory of Computing, pp. 439–448 (2015)

8. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters, B.:
Time-lock puzzles from randomized encodings. In: Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science, pp. 345–356 (2016)

9. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6 15

10. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions. In: Theory of Cryptography Conference, pp. 1–30 (2015)

11. Burdges, J., Feo, L.D.: Delay encryption. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pp. 302–326 (2021)

12. Campanelli, M., David, B., Khoshakhlagh, H., Konring, A., Nielsen, J.B.: Encryp-
tion to the Future. In: Advances in Cryptology - ASIACRYPT 2022 (2022)

13. Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols. J.
Cryptol. 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006

14. Chan, B.Y., Shi, E.: Streamlet: textbook streamlined blockchains. In: Proceedings
of the 2nd ACM Conference on Advances in Financial Technologies (2020)

15. Chen, H.C., Deviani, R.: A secure e-voting system based on RSA time-lock puzzle
mechanism. In: 2012 Seventh International Conference on Broadband, Wireless
Computing, Communication and Applications (2012)

16. Cohen, R., Garay, J., Zikas, V.: Adaptively secure broadcast in resource-restricted
cryptography. Cryptology ePrint Archive, Report 2021/775 (2021)

17. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In: International workshop on public key
cryptography, pp. 119–136 (2001)

18. Dwork, C., Naor, M.: Zaps and their applications. In: Proceedings 41st Annual
Symposium on Foundations of Computer Science (2000)

19. Döttling, N., Hanzlik, L., Magri, B., Wohnig, S.: McFly: verifiable encryption to
the future made practical. Cryptology ePrint Archive, Paper 2022/433 (2022)

20. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and
applications. In: Advances in Cryptology - EUROCRYPT 2015 (2015)

21. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 2013
IEEE 54th Annual Symposium on Foundations of Computer Science (2013)

22. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Proceedings of the ACM symposium on Theory of computing (2013)

https://doi.org/10.1007/11535218_22
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/s001459910006

Transparent Batchable TLPs and Applications to Byzantine Consensus 583

23. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles (2017)

24. Goldreich, O., Goldwasser, S., Micali, S.: How to construct randolli functions. In:
25th Annual Symposium on Foundations of Computer Science, pp. 464–479 (1984)

25. Guo, Y., Pass, R., Shi, E.: Synchronous, with a chance of partition tolerance. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 499–
529. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 18

26. Hanke, T., Movahedi, M., Williams, D.: DFINITY Technology overview series,
consensus system (2018)

27. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, pp. 60–73 (2021)

28. Katz, J., Loss, J., Xu, J.: On the security of time-lock puzzles and timed commit-
ments. In: Theory of Cryptography (2020)

29. Kiffer, L., Rajaraman, R., shelat, a.: A better method to analyze blockchain con-
sistency. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (2018)

30. Kim, J., Mehta, V., Nayak, K., Shrestha, N.: Making synchronous BFT protocols
secure in the presence of mobile sluggish faults. Cryptology ePrint Archive, Report
2021/603 (2021)

31. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-
malleable commitments from time-lock puzzles. In: 2017 IEEE 58th Annual Sym-
posium on Foundations of Computer Science (FOCS) (2017)

32. Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock encryption.
Des. Codes Crypt. 86(11), 2549–2586 (2018). https://doi.org/10.1007/s10623-018-
0461-x

33. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applica-
tions. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692,
pp. 620–649. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-
7 22

34. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: International Conference on the Theory and Applications of Cryp-
tographic Techniques, pp. 223–238 (1999)

35. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

36. Pass, R., Shi, E.: FruitChains: a fair blockchain. In: Proceedings of the ACM Sym-
posium on Principles of Distributed Computing (2017)

37. Pass, R., Shi, E.: Rethinking large-scale consensus. In: 2017 IEEE 30th Computer
Security Foundations Symposium (CSF) (2017)

38. Ren, L.: Analysis of nakamoto consensus. Cryptology ePrint Archive, Report
2019/943 (2019)

39. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Tech. rep. (1996)

40. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. SIAM J. Comput. 50, 15M1030108 (2021)

41. Shrestha, N., Abraham, I., Ren, L., Nayak, K.: On the optimality of optimistic
responsiveness. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (2020)

https://doi.org/10.1007/978-3-030-26948-7_18
https://doi.org/10.1007/s10623-018-0461-x
https://doi.org/10.1007/s10623-018-0461-x
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22

584 S. Srinivasan et al.

42. Srinivasan, S., Loss, J., Malavolta, G., Nayak, K., Papamanthou, C., Thyagarajan,
S.A.: Transparent batchable time-lock puzzles and applications to byzantine con-
sensus. Cryptology ePrint Archive, Paper 2022/1421 (2022). https://eprint.iacr.
org/2022/1421

43. Thyagarajan, S.A.K., Bhat, A., Malavolta, G., Döttling, N., Kate, A., Schröder,
D.: Verifiable timed signatures made practical. In: Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security (2020)

44. Thyagarajan, S.A.K., Castagnos, G., Laguillaumie, F., Malavolta, G.: Efficient
CCA timed commitments in class groups. In: Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security (2021)

45. Wan, J., Xiao, H., Devadas, S., Shi, E.: Round-efficient byzantine broadcast under
strongly adaptive and majority corruptions. In: Theory of Cryptography (2020)

46. Wan, J., Xiao, H., Shi, E., Devadas, S.: Expected constant round byzantine broad-
cast under dishonest majority. In: Theory of Cryptography (2020)

47. Yu, H., Nikolic, I., Hou, R., Saxena, P.: OHIE: blockchain scaling made simple. In:
2020 IEEE Symposium on Security and Privacy (SP) (2020)

48. Zhao, J., Tang, J., Li, Z., Wang, H., Lam, K.Y., Xue, K.: An analysis of blockchain
consistency in asynchronous networks: deriving a neat bound. In: 2020 IEEE 40th
International Conference on Distributed Computing Systems (ICDCS) (2020)

https://eprint.iacr.org/2022/1421
https://eprint.iacr.org/2022/1421

Pairings

Decentralized Multi-Authority Attribute-Based
Inner-Product FE: Large Universe

and Unbounded

Pratish Datta1 and Tapas Pal2(B)

1 NTT Research, Inc., Sunnyvale, CA 94085, USA
pratish.datta@ntt-research.com

2 NTT Social Informatics Laboratories, Musashino-shi, Tokyo 180-8585, Japan
tapas.pal.wh@hco.ntt.co.jp, tapas.real@gmail.com

Abstract. This paper presents the first decentralized multi-authority attribute-
based inner product functional encryption (MA-ABIPFE) schemes supporting
vectors of a priori unbounded lengths. The notion of AB-IPFE, introduced by
Abdalla et al. [ASIACRYPT 2020], combines the access control functionality
of attribute-based encryption (ABE) with the possibility of evaluating linear
functions on encrypted data. A decentralized MA-ABIPFE defined by Agrawal
et al. [TCC 2021] essentially enhances the ABE component of AB-IPFE to
the decentralized multi-authority setting where several authorities can indepen-
dently issue user keys involving attributes under their control. In MA-ABIPFE
for unbounded vectors (MA-ABUIPFE), encryptors can encrypt vectors of arbi-
trary length under access policies of their choice whereas authorities can issue
secret keys to users involving attributes under their control and vectors of arbi-
trary lengths. Decryption works in the same way as for MA-ABIPFE provided
the lengths of the vectors within the ciphertext and secret keys match.

We present two MA-ABUIPFE schemes supporting access policies realiz-
able by linear secret sharing schemes (LSSS), in the significantly faster prime-
order bilinear groups under decisional assumptions based on the target groups
which are known to be weaker compared to their counterparts based in the source
groups. The proposed schemes demonstrate different trade-offs between versatil-
ity and underlying assumptions. The first scheme allows each authority to con-
trol a bounded number of attributes and is proven secure under the well-studied
decisional bilinear Diffie-Hellman (DBDH) assumption. On the other hand, the
second scheme allows authorities to control exponentially many attributes and
attributes are not required to be enumerated at the setup, that is, supports large
attribute universe, and is proven secure under a non-interactive q-type variant of
the DBDH assumption called L-DBDH, similar to what was used in prior large-
universe multi-authority ABE (MA-ABE) construction.

When compared with the only known MA-ABIPFE scheme due to Agrawal
et al. [TCC 2021], our schemes offer significantly higher efficiency while offer-
ing greater flexibility and security under weaker assumptions at the same time.
Moreover, unlike Agrawal et al., our schemes can support the appearance of
the same attributes within an access policy arbitrarily many times. Since effi-
ciency and practicality are the prime focus of this work, we prove the security
of our constructions in the random oracle model against static adversaries sim-
ilar to prior works on MA-ABE with similar motivations and assumptions. On

c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 587–621, 2023.
https://doi.org/10.1007/978-3-031-31368-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_21&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_21

588 P. Datta and T. Pal

the technical side, we extend the unbounded IPFE techniques of Dufour-Sans
and Pointcheval [ACNS 2019] to the context of MA-ABUIPFE by introducing a
novel hash-decomposition technique.

Keywords: multi-authority · attribute-based · unbounded · inner product ·
functional encryption · large universe · static model

1 Introduction

Functional encryption (FE), introduced by Boneh, Sahai and Waters [15] and O’Neill
[34] is an advanced form of public key encryption (PKE) designed for computing
on encrypted data while maintaining its confidentiality beyond the computed results.
FE delivers cryptographic solutions to a wide variety of privacy-enhancing technolo-
gies from enabling finer access control to outsourcing computations on sensitive data
to the cloud. Starting with the work of Abdalla et al. [3], a long sequence of works
[2,4,10,18,40] studied FE schemes for the class of linear functions, also known as
inner product FE (IPFE). In IPFE, the ciphertexts and functional secret keys are asso-
ciated with vectors x and y respectively while a decrypter only learns the inner product
x ·y and nothing else about x. Although the functionality is simple, IPFE has found
a great amount of applications in both theory, for example, designing more expres-
sive FE schemes for quadratic [23,27] and general functions [26,28] and in practice,
for example, performing statistical studies on encrypted data, evaluating polynomials,
computing conjunctions and disjunctions [3], or calculating hamming weights in bio-
metric authentications [29,45], constructing trace and revoke schemes [6]. However,
any IPFE system suffers from an inherent leakage of data due to it’s linear functional-
ity. In fact, releasing a set of secret keys for vectors forming a basis of the underlying
vector space would result in a complete break of the system since it enables the recov-
ery of the master secret key of the IPFE system and hence uncover all the encrypted
data in the system.

One natural way to control such leakage of data in IPFE is to combine it
with attribute-based encryption (ABE), that is, to additionally associate access poli-
cies/attributes within the ciphertexts/secret keys (or the other way around) in the same
spirit as attribute-based encryption (ABE) such that the eligibility for computing on the
encrypted data requires a prior validation of the attributes by the policy. Such access
control mechanism in IPFE was introduced by Abdalla et al. [5] where they termed this
upgraded notion as attribute-based IPFE (AB-IPFE). The notion of AB-IPFE [5,8,35]
has been mostly explored in the setting where a single authority is responsible for man-
aging all the attributes in the system and issuing secret keys to users. This not only
is a limitation from the point of view of trust, but also it is problematic for practical
applications. In fact, in reality, different attributes are governed by different authorities,
for example, academic degrees are handled by universities, medical attributes are man-
aged by hospitals while driving licenses are controlled by transportation or automobile
agencies.

Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 589

Multi Authority AB-IPFE: Inspired by the notion of multi-authority ABE (MA-ABE)
[19–21,30,33,36,43] which deals with the decentralization of attribute management in
the context of ABE, Agrawal et al. [9] initiated the study of multi-authority AB-IPFE
(MA-ABIPFE) which enhances the ABE segment of AB-IPFE to the multi-authority
setting. That is, just like MA-ABE, in MA-ABIPFE individual authorities are allowed
to generate their own master key pairs and provide secret keys for attributes only
under their control without interacting with the other authorities. A user learns x ·y
by decrypting a ciphertext generated with respect to a policy P and a vector x using
various secret keys associated to a vector y and the different attributes it possesses
that are obtained from the authorities controlling those attributes. Some potential prac-
tical application of MA-ABIPFE could be computing average salary of employees in
an organization possessing a driving license and holding a Ph.D, statistics determining
mental health of students of different departments in a university, etc.

Despite its countless potential applications, so far the only candidate MA-ABIPFE
scheme, is due to Agrawal et al. [9] which supports access policies realizable by linear
secret sharing schemes (LSSS) and is designed in a composite-order group and the
security is based on variants of the subgroup decision assumptions which are source
group assumptions, that is, assumptions made about the source groups of the underlying
bilinear pairing. It is a well-known fact that composite-order bilinear groups are very
expensive both in terms of computation and communication/storage. This is reflected in
theMA-ABIPFE of [9], especially the decryption takes an unacceptable time of around
five days (as shown in Table 2) when run using reasonable parameters, which clearly
makes the scheme impractical. In order to address this efficiency bottleneck, a possible
way to avoid this heavy efficiency bottleneck is to look for a construction in the prime-
order bilinear groups which are way better in terms of the above parameters compared
to their composite-order counterparts [22,25,31].

Another significant drawback of theMA-ABIPFE is that the vector lengths are fixed
and the number of authorities or attributes are bounded in the setup. Consequently, the
system must provision for a vector length bound that captures all possible plaintext
vectors that would be encrypted during the lifetime of the system. Further, the size of
ciphertexts and the encryption time, however small the length of the plaintext vector
x is, scale with the worst-case vector length bound. Also, in the [9] construction, each
authority can control at most a bounded number of attributes. This could be a bottleneck
in certain applications, for instance, a university may introduce a new academic degree
program over time which would require its potential to freely expand the attribute list
under its control. Moreover, in theMA-ABIPFE system of [9], new authorities/attributes
could not join beyond the upper limit set in the setup. This is clearly a disadvantage for
several applications from the point of view of sustainability since it is often impossible
to visualize all possible attributes/authorities that can ever come into existence at the
time of setting up the system. For instance, new universities may be included in the sur-
vey of analyzing mental health of their students, which amplifies the number of author-
ities/attributes as well as the length of data. Additionally, the MA-ABIPFE scheme of
[9] suffer from the so-called “one-use” restriction, that is, an attribute can appear within
an access policy at most a bounded number of times, which clearly limits the class of
access policies and negatively impacts efficiency. Lastly, in order to gain confidence

590 P. Datta and T. Pal

in a new cryptographic primitive such as MA-ABIPFE, it is always important to have
more and more candidates for that primitive under qualitatively weaker computational
assumptions. We thus consider the following open problem:

Open Problem: Is it possible to construct efficient MA-ABIPFE schemes for any
expressive class of policies, e.g., LSSS, and avoiding the one-use restriction in prime-
order bilinear groups under any (possibly qualitatively weaker) computational assump-
tion such that an arbitrary number of authorities (possibly having an unbounded number
of attributes under their control) can join at any point of time and an unbounded length
data can be processed?

Our Results: In this paper, we answer the above open problem affirmatively. More pre-
cisely, we start by formulating the notion of (decentralized) multi-authority attribute-
based unbounded IPFE (MA-ABUIPFE) which has all the features discussed above,
namely, (a) several independent authorities can control different attributes in the sys-
tem, (b) authorities can join the system at any time and there is no upper bound on
the number of authorities that can ever exist in the system, and (c) unbounded length
message and key vectors can be processed, that is, each authority can generate their
public and master secret keys without fixing the length of vectors that can be processed
with their keys. Next, we constructMA-ABUIPFE supporting LSSS access structures in
the significantly faster prime-order bilinear group setting under computational assump-
tions based in the target group which are known to be qualitatively weaker compared
to those based in the source group [11,21]. The efficiency improvements achieved by
our scheme as compared to the only knownMA-ABIPFE scheme [9] is quite significant
(see Tables 1 and 2 for a concrete comparison of the schemes). On a more positive note,
we are able to overcome the “one-use restriction”, that is, support the appearance of
attributes within access policies arbitrarily many times.

We present twoMA-ABUIPFE schemes with varying trade-offs between versatility
and underlying assumptions.

– Small-Universe MA-ABUIPFE Scheme: We construct an MA-ABUIPFE scheme
where an authority is allowed to control a single (or a bounded number of)
attribute(s), but the number of authorities that could be added to the system is still
arbitrary. The construction is proven secure under the decisional bilinear Diffie-
Hellman (DBDH) assumption [13,38] which is a very well-studied computational
assumption based in the target groups. Note that the DBDH assumption underlies
the security of classical ABE schemes [24,37,42] and has recently been shown to
realizeMA-ABE [21]. OurMA-ABUIPFE scheme demonstrates that it is possible to
base the security of an even richer functionality on DBDH as well.

– Large-Universe MA-ABUIPFE Scheme: We further upgrade our small-universe
MA-ABUIPFE scheme to support large attribute universe, that is, where each author-
ity can control exponentially many attributes and attributes need not be enumer-
ated at the setup. We present the security of this construction under a parame-
terized version of the DBDH assumption which we call the L-DBDH assump-
tion. We justify the validity of this new computational assumption in the generic
bilinear group model [12,39] as is done for nearly if not all bilinear group-
based computational assumptions used today. Note that, so far, there is no known

Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 591

MA-ABE scheme supporting large universe in the literature that is proven secure
without parameterized assumption. The efficiency of the proposed large-universe
scheme is well comparable to the small-universe one. Thus, our large-universe
MA-ABUIPFE (LMA-ABUIPFE) scheme addresses several efficiency and practi-
cality issues towards deploying this primitive in practice.

Since our focus on this paper is on efficiency and practicality, we content with prov-
ing the security of our schemes in the static model where the adversary has to declare
all its ciphertext, secret key, and authority corruption queries upfront following prior
work on MA-ABE with similar motivations [36]. However, we would like to mention
that while we could not prove our schemes secure against selective adversaries under
DBDH or similar target-group-based assumptions, that is, adversaries who must send
the challenge ciphertext and authority corruption queries upfront but are allowed to
make user secret key queries adaptively afterwards, as considered in [9], we could not
identify any vulnerability in our proposed schemes against such adversaries. Also, just
like priorMA-ABE schemes proven secure under standard computational assumptions,
we make use of the random oracle model1.

In order to design our small-universe MA-ABUIPFE, we build on the techniques
used in the MA-ABE construction from DBDH by [21] and the unbounded IPFE con-
struction fromDBDH by [38]. However, as explained in Sect. 2 below, a straightforward
combination of those techniques does not work. We devise a novel hash-decomposition
technique to decompose the evaluation of the hash values, used as randomizers for tying
together the different secret keys for the same user, between the encryption and key gen-
eration/decryption algorithms and also for handling satisfying and non-satisfying secret
key queries of the adversary during the security proof differently. (Please see Sect. 2 for
more details on the hash-decomposition technique.)

Along the way to our small universeMA-ABUIPFE scheme, we also present a single
authority ABUIPFE for LSSS access policies in prime-order bilinear groups under the
DBDH assumption. Prior to this work, there was no known AB-IPFE scheme even
for bounded length vectors that was proven secure under a target group assumption.
Thus, the proposed ABUIPFE expands the portfolio of computational assumptions on
which this useful primitive can be based on and thereby increasing the confidence in
the existence of this primitive in turn. Further, our construction also demonstrates that
despite of being a more expressive functionality, MA-ABIPFE is still possible under
the same assumption as ABE orMA-ABE. In fact, our AB-IPFE is the first target-group
assumption-based FE scheme that goes beyond the “all-or-nothing” paradigm.

1 Very recently, Waters, Wee, and Wu [43] presented a lattice-basedMA-ABE scheme that does
not make use of random oracles. However, the scheme relies on a recently introduced com-
plexity assumption called evasive LWE [44] which is a strong knowledge type assumption and
is not yet cryptanalyzed in detail.

592 P. Datta and T. Pal

Table 1. Efficiency Comparison of [9] and Our Scheme with 128-bit Security

Scheme Group order
length (in bits)

|PKt|/
|PKθ|

|SKGID,t,u |
T(t) = θ

|CT| Encrypt Time Decrypt Time

Agrawal
et al. [9]

3072 6054n 3072 (n + � +
2n�)3072

(n + n�)EN,T + (� +
n�)EN,S

(� + 1)PN + (n +
n�2)EN,T +(�+n�2)EN,S

MA-ABUIPFE
(Sect. 5)

256 |PKt| =
256smax

256 [n + �smax(n +
1)]256

(n+n�)Eq,T + [�smax(n+
2) − �(n + 1)]Eq,S +
(2�n(smax − 1))Pq

[� + n(smax − 1)](Pq +
Eq,T) + nEq,S

LMA-ABUIPFE
(Sect. 6)

256 |PKθ| =
256smax

256(smax+1) [n + �smax(n +
2)]256

(n+n�)Eq,T + [�smax(n+
3) − �(n + 1)]Eq,S +
(2�n(smax − 1))Pq

[� + n(smax − 1)](Pq +
Eq,T) + �smaxPq + nEq,S

The notations from Table 1 are described below:

– |PKt|/|PKθ|: size of the public key associated to the attribute t or authority θ
– |SKGID,t,u |: size of the secret key associated to the tuple (GID, t,u)
– |CT|: size of the ciphertext
– n: length of vectors; �, smax: number of rows and columns in LSSS matrix respec-

tively
– EN,S ,Eq,S : exponentiation time in composite and prime order source groups respec-
tively

– EN,T ,Eq,T : exponentiation time in composite and prime order target groups respec-
tively

– PN ,Pq: time to compute a pairing in composite and prime order groups respectively

Table 2. Concrete Efficiency Comparison for 128-bit Security, n = 200, � = 50, smax = 20.

Scheme |PKθ| |CT| Encrypt Time Decrypt Time

Agrawal et al. [9] ≈ 147.8 KB ≈ 7.78MB ≈ 143.7 mins ≈ 4.9 days

MA-ABUIPFE (Sect. 5) ≈ 0.64 KB ≈ 6.44MB ≈ 63.14 mins ≈ 7.27 mins

LMA-ABUIPFE (Sect. 6) ≈ 0.64 KB ≈ 6.47MB ≈ 63.2 mins ≈ 7.35 mins

Advantages of Our Schemes Over Agrawal et al. [9] Beyond Unboundedness: Our
MA-ABUIPFE schemes have notable advantages in terms of versatility and perfor-
mance over the MA-ABIPFE of [9], named as AGT-FE hereafter beyond the unbound-
edness property that we achieve in this work. Firstly, the composite-order group-based
AGT-FE is significantly slower than our prime-order constructions [22,25] because of
the inherent efficiency gains offered by prime-order bilinear groups. Especially, the
size of group elements of a composite-order group GN is much larger than that of a
prime-order group Gq for the same security level: 3072-bit length of GN compared to
256-bit length of Gq for the 128-bit security level. Moreover, one pairing operation is
more than 250 times slower in GN compared to its prime-order counterpart. A con-
crete comparison of efficiency is depicted in Tables 1 and 2. As we can see, at 128-bit
security level, while AGT-FE takes nearly 5 days for a decryption, our scheme only
takes several minutes. We also bring down the public key size (which is constant for
any arbitrary length vector) by around 99% and at the same time the ciphertext size

Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 593

is comparable to that of AGT-FE. Thus our constructions mark a significant progress
towards the practical deployment of this primitive. Secondly, the security of AGT-FE
is based on source-group-assumptions, precisely, various types of subgroup decision
assumptions, which are known to be qualitatively stronger than the target-group-based
assumptions [11] such as the DBDH assumption considered in this work. The existing
transformations from composite-order group-based systems to analogous prime-order
group-based systems [16,22,31] that could be applied to AGT-FE, technically replaces
the subgroup structures by some vector space structures. Consequently, it incurs addi-
tional overheads and potential loss in the efficiency to the resulting prime-order system.
Further, the translated scheme would still depend on source group assumptions, e.g. the
k-linear or its variants.

Thus, our MA-ABUIPFE exhibits a substantial boost with respect to the perfor-
mance and at the same time it is secure under a weaker assumption. Furthermore,
we extend our MA-ABUIPFE to the large universe setting which has the flexibility
to include an unbounded number of attributes under different authorities to the system
at any point of time.
Static Security: Our Motivation: The static security may not be the dream security
model for MA-ABUIPFE. However, in this work, our main motivation is on perfor-
mance and versatility. Moreover, as we already mentioned above, we could not find any
vulnerability of our schemes against stronger adversaries, e.g., selective adversaries
as considered in [9], even though we could not prove it based on the computational
assumptions we considered in this paper. Schemes with greater performance and weaker
provable security have often found to suit better in practical deployments. Further,
weaker security notions have often been a major stepping stone to obtain more advanced
security, e.g., adaptive security, for the same primitive. Please note that many primitives
like ABE [24,37,42], MA-ABE [19,21,36,43], IPFE [3], and MC-IPFE [1,17], were
first built only with selective/static security before being upgraded to adaptive secu-
rity [10,20,32] based on the same assumptions. Moreover, from a sustainability point
of view, it is always important to have a portfolio of candidates for a primitive under
various computational assumptions so that if one of the assumptions gets broken, candi-
dates under a different assumption can be deployed. Another motivation for designing
a DBDH or related assumption-based scheme is to innovate new techniques that could
possibly be translated to the LWE setting, as has previously been done for other FE
primitives, e.g., [7,13,19,21].

Paper Organization: The paper is organized as follows.We provide technical overview
of our small and large universe MA-ABUIPFE schemes in Sect. 2. Important notations
and computational assumptions are given in Sect. 3. The other prerequisites such as def-
initions of bilinear groups, access structures, LSSS and justification of our newly intro-
duced L-DBDH assumption are given in the full version. We formalize the notion of
small and large universeMA-ABUIPFEs for LSSS in Sect. 4. In Sect. 5, we present the
construction of small universe MA-ABUIPFE and formally discuss its correctness and
security analysis. Next, our LMA-ABUIPFE scheme is described in Sect. 6 whereas its
correctness and the security analysis are shifted to the full version. The small universe
single authority ABUIPFE scheme along with its correctness and security analysis are
provided in the full version.

594 P. Datta and T. Pal

2 Technical Overview

In this technical overview, we focus on discussing the high level technical details of
constructing small universe MA-ABUIPFE since this is where most of our technical
ideas lie. For extending it to large universe setting, we depend on the technique of
Rouselakis and Waters [36] which we discuss later in this section. Since our goal is
to construct the schemes under target-group-based assumptions, we start with the only
existing UIPFE scheme of [38] whose security relies on the DBDH assumption. In fact,
their UIPFE is designed from the selectively secure (bounded) IPFE of Abdalla et al.
[3] using a hash and pairing mechanism.

2.1 Constructing the Small Universe MA-ABUIPFE

In this overview, we denote by q a prime number and by [[x]]i an element in a group
Gi for i ∈ {1, 2, T}. At a high level, given a public key [[α]]1, the encryption algorithm
of [38] amplifies entropy by pairing the public key with the outputs of a hash function
applied on the indices of the message vectors. More precisely, the ciphertext and secret
keys in the [38] UIPFE (DP-UIPFE) takes the following forms.

CTv : C0 = [[r]]1, {Ci = [[vi]]T · e([[α]]1, r[[H(i)]]2)}i∈Iv
; r ← Zq

SKu : −α
∏

j∈Iu
H(j)uj

where Iu , Iv ⊂ N are the index sets of u,v respectively, the hash function H maps the
indices to elements in G2 and (q,G1,G2,GT , e) is a prime-order bilinear group. If the
index sets are equal, i.e. Iu = Iv = I then one can use the key vector u to extract
[[u ·v]]T from the product

∏
j∈I C

uj

j and a single pairing e(C0,SKu). As a natural
first step, we seek to utilize the DP-UIPFE to upgrade an existing MA-ABE to a small
universe MA-ABUIPFE scheme.

As the aim is to rely on the target-group-based assumption, we consider the DBDH-
based MA-ABE of Datta, Komargodski and Waters (DKW-MA-ABE) [21] for this
upgrade. As a simpler first step, we investigate the primitive in the bounded and small
universe setting, that is, the number of authorities and vector lengths are bounded and
each authority controls a single attribute.

2.1.1 The First Step: A Bounded MA-ABIPFE Scheme

Let us start by adding the functionality of IPFE on top of DKW-MA-ABE. For each
authority t, the public key and master secret key in the DKW-MA-ABE construction
are given by PKt = ([[αt]]T , [[yt,2]]1, . . . , [[yt,smax]]1) and MSKt = (αt, yt,2, . . . , yt,smax)
where smax is a bound on the maximum number of columns in the LSSS access structure
and αt, yt,2, . . . , yt,smax ← Zq. In order to construct an MA-ABIPFE scheme from the
DKW-MA-ABE, we convert the components of MSKt from scalars to vectors whose
lengths are fixed according to the vector length bound of the system. All the other
components are similarly upgraded to either vectors or matrices of fixed dimensions. In
particular, the resultingMA-ABIPFE derived from DKW-MA-ABE can be described in

Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 595

the following way where P = (M = (Mi,j)�×smax , ρ : [�] → AU) is the LSSS access
policy associated with the ciphertexts, AU is the set of all authorities, and Mi denotes
the i-th row of M.

PKt : ([[αt]]T , [[yt,2]]1, . . . , [[yt,smax]]1)
MSKt : (αt,yt,2, . . . ,yt,smax)

CTv ,P :
C0 = [[v + z]]T , C1,i = [[MiB + riαρ(i)]]T ,

C2,i = [[ri]]1, C3,i,j = [[Mi,jxj + riyρ(i),j]]1 ∀i ∈ [�], j ∈ [2, smax]

SKGID,t,u : [[αt ·u]]2 ·
smax∏

j=2

H(GID ‖ u ‖ j)yt,j ·u

where z ← Z
n
q , ri ← Zq and n represents the length of u,v. Further, B ∈ Z

smax×n
q

and {xj ← Z
n
q }j∈[2,smax] are the secret shares of z and 0 respectively. Recall that the

decryption algorithm of MA-ABIPFE requires a set of secret keys {SKGID,t,u}t∈S for
the same user identifier GID and an authorized subset S of attributes featuring in the
LSSS access policy associated with the ciphertext in order to decrypt it. Given such a
collection of keys , the decryption algorithm gets rid of the masking term from C0 · u
by computing

[[u · z]]T =
∏

i∈I

[
C1,i ·u · ∏smax

j=2 e (H(GID ‖ u ‖ j), C3,i,j ·u)

e
(
SKGID,ρ(i),u , C2,i

)

]wi

(2.1)

where I represents the rows of M associated to S. Note that the Eq. (2.1) holds as
the decryption algorithm can efficiently find a coefficients {wi ∈ Zq}i∈I satisfying
(1, 0, . . . , 0) =

∑
i∈I wiMi whenever the attributes linked to the rows in I satisfies the

policy (M, ρ).
The role of the public hash function H is to tie together a set of independently gen-

erated secret keys under the same user identifier GID while decrypting. In the security
proof, H is treated as a random oracle to ensure that a fresh randomness is produced for
each user identity GID that links together the different secret keys generated for it and
it is infeasible for an adversary to mix and match secret keys generated with respect to
different global identifiers even if the attributes associated with those secret keys satisfy
the access policy associated with the ciphertext.

In fact, the above bounded MA-ABIPFE scheme can be proven secure in the static
model under the DBDH assumption. Let us now proceed to transform the bounded
scheme into an unbounded one using the idea of DP-UIPFE sketched above. Unfortu-
nately, a straightforward approach does not work. In particular, we face a few difficulties
while incorporating the hash and pairing mechanism of [38] with the DKW-MA-ABE
as we describe below.

596 P. Datta and T. Pal

2.1.2 Challenges in Expanding Authority Keys on the Fly and Our Approach

The foremost problem arises in vectorizing the components of the authority master
secret keys MSKt. This is because there being no upper bound on the length of vec-
tors, we cannot simply use random vectors of predetermined sizes in the vectorization
process. Rather, we must provision for generating the components of the vectors on
the fly as needed during encryption/key generation. Similar to the idea of [38], we use
hash functions modeled as random oracles in order to resolve this issue. More pre-
cisely,we proceed as follows: An authority t generates the public/master secret keys as
(PKt = ([[αt]]T , [[yt,2]]1, . . . , [[yt,smax]]1),MSKt = (αt, yt,2, . . . , yt,smax)) without know-
ing the vector lengths where α, yt,2, . . . , yt,smx are still scalars. To maintain the sim-
plicity of this overview, we assume that the vectors u = (uk)k∈Iu

and v = (vk)k∈Iv

are both associated with the index set Iu = Iv = I = [n] which is unknown to the
authority setup. Then the scalar αt could be vectorized using a hash function H1 as
follows.

during encryption : C1,i = [[MiB + ϑi]]T
where [[ϑi,k]]T = e(ri[[αρ(i)]]1,H1(ρ(i) ‖ k ‖ I))

during key generation : αt ·u =
n∏

k=1

H1(t ‖ k ‖ I)αt·uk

The next step is to vectorize the authority master secret key components yt,j accord-
ing to the vector lengths. One may hope to apply [38] idea to extend yt,j to the same
length of the vectors on the fly in a similar way. To see whether it works, let us assume
that the hash function H used in the key generation in the above bounded MA-ABIPFE
additionally takes an index position and an index set as inputs. That is, let us do the
following modification for the key generation of the bounded MA-ABIPFE scheme

H(GID ‖ u ‖ j)yt,j ·u −→
n∏

k=1

H(GID ‖ u ‖ j ‖ k ‖ I)yt,j ·uk

Thus, using this idea, it is possible to expand yt,j to a vector yt,j of the same
length as the key vector u and eventually enabling an authority to compute the term
H(GID ‖ u ‖ j ‖ k ‖ I)yt,j ·u while generating keys for an unbounded length vector.
Note that, the hash value H(GID ‖ u ‖ j ‖ k ‖ I) has GID and u as inputs. Therefore,
this would call for the following modification in the ciphertext computation.

C3,i,j = [[Mi,jxj + ςi,j]]T

where [[ςi,j,k]]T = e(ri[[yρ(i),j]]1,H(GID ‖ u ‖ j ‖ k ‖ I))

However, such a vector [[yt,j]]1 is not known or rather the k-th element
e([[yt,j]]1,H(GID ‖ u ‖ j ‖ k ‖ I)) can not be computed during encryption. The main
reason is that the global identity GID and the vector u are available when an authority
generates a secret key, but the encryption algorithm is oblivious of which GID or u will
be used to decrypt the ciphertext. In fact, it is natural that the same ciphertext would

Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 597

be decrypted by several users with different GID and u vectors. Hence, a simple hash
and pairing technique similar to DP-UIPFE is not sufficient for a data owner to encrypt
unbounded length vectors.

At this point, we devise a correlated “hash-decomposition” mechanism which
enables us to compute the value of a hash function by combining the outputs of several
hash functions applied on different segments of the input to the original hash function.
More precisely, our idea is to define the hash value H(GID ‖ u ‖ j ‖ k ‖ I) by grouping
two independently generated hash values as

H(GID ‖ u ‖ j ‖ k ‖ I) = H2(j ‖ k ‖ I) · H3(GID ‖ u ‖ j ‖ k) (2.2)

where H2 and H3 are two new public hash functions generated during global setup.
Now, we observe that the first hash value H2(j ‖ k ‖ I) in the product can
be computed without knowing GID, which in turn enable the encryptor to expand
an authority public key component [[yt,j]]1 into a vector [[y(2)

t,j]]T as [[y(2)
t,j,k]]T =

e([[yt,j]]1,H2(j ‖ k ‖ I)). Similarly, an authority expands the master secret key com-

ponent yt,j into vectors [[y(2)
t,j]]2 and [[y(3)

t,j]]2 as [[y(2)
t,j,k]]2 = H2(j ‖ k ‖ I))yt,j and

[[y(3)
t,j,k]]2 = H3(GID ‖ u ‖ j ‖ k)yt,j respectively while generating a secret key for a

vector u. However, at this point, it is not immediate how would the vector [[y(2)
t,j]]T be

useful for the encryption algorithm.
Next, we carefully look into the decryption equation of the bounded MA-ABIPFE

scheme described above (Eq. (2.1)) and try to adapt it for theMA-ABUIPFE setting with
the modifications we did so far. We note that the pairing operation in the numerator can
be rearranged with the hash function H replaced by H2 as

e (H2(j ‖ k ‖ I), C3,i,j ·u) = e(H2(j ‖ k ‖ I), (Mi,jxj + riyρ(i),j) · u)

= e(H2(j ‖ k ‖ I),Mi,jxj · u) · [[riy
(2)
ρ(i),j · u]]T

Since u is not available during encryption, we only compute the above term without
multiplying by u and represent it as a single element

C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ k ‖ I)) · [[riy
(2)
ρ(i),j,k]]T .

Therefore, the hash-decomposition mechanism allows the encryptor to simulate the first
part of the hash value H(GID ‖ u ‖ j ‖ k ‖ I) from Eq. (2.2) using the hash function
H2. The second part of the hash value still remains to be handled. For this, we gen-
erate an additional layer of secret share of zero by sampling f2, . . . , fsmax ∈ Zq and
introduce the encodings C4,i,j = [[Mi,jfj + riyρ(i),j]]1 for all i ∈ [�], j ∈ [2, smax]
within the ciphertext. At the time of decryption, C4,i,j will be paired with the term
H3(GID ‖ u ‖ j ‖ k)uk . Thus, combining C3,i,j,k and C4,i,j via the hash-decomposition
mechanism we are able to distribute the execution of the pairing operation from (Eq.
(2.1)) among the encryption and decryption algorithms as follows:

598 P. Datta and T. Pal

e (H(GID ‖ u ‖ j), C3,i,j ·u)
as inMA-ABIPFE

decryption (ref: Eq. (2.1))

−→
n∏

k=1

C3,i,j,k · uk · e(C4,i,j ,H3(GID ‖ u ‖ j ‖ k)uk)
new decryption

strategy forMA-ABUIPFE

= C
(3,4)
i,j (u) (say)

Equipped with these concepts, we state our final MA-ABUIPFE scheme below by
assuming Iu = Iv = I = [n].

PKt : ([[αt]]T , [[yt,2]]1, . . . , [[yt,smax]]1)
MSKt : (αt, yt,2, . . . , yt,smax)

CTv ,P :
C0 = [[v + z]]T , C1,i = [[MiB + ϑi]]T , C2,i = [[ri]]1,

C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ k ‖ I)) · [[riy
(2)
ρ(i),j,k]]T ,

C4,i,j = [[Mi,jfj + riyρ(i),j]]1, ∀i ∈ [�], j ∈ [2, smax], k ∈ [n]

SKGID,t,u :
n∏

k=1

H1(t ‖ k ‖ I)αt·uk ·
smax∏

j=2

n∏

k=1

([[y(2)
t,j,k]]2 · [[y(3)

t,j,k]]2)uk

The components ϑi, y
(2)
t,j,k, y

(3)
t,j,k are defined as above. The decryption follows by can-

celing the masking term from C0 · u using a similar computation like in Eq. (2.1)
executed as

[[u · z]]T =
∏

i∈I

[
C1,i ·u · ∏smax

j=2 C
(3,4)
i,j (u)

e
(
SKGID,ρ(i),u , C2,i

)

]wi

(2.3)

We next look into the security of the proposed construction. Here again, we face several
challenges while adapting the security proof of [21,38] into our setting.

2.1.3 Challenges in the Security Analysis and Our Approach

The main difference between the MA-ABE and MA-ABUIPFE security model is in the
secret key queries made by the adversary. This is because MA-ABUIPFE is more like
an FE scheme and the adversary is entitled to ask for secret keys that would decrypt
the challenge ciphertext which is in contrast to any MA-ABE scheme where only non-
authorized keys are released. On the other hand, proving security of MA-ABUIPFE
is more technically challenging compared to the (bounded) MA-ABIPFE (like AGT-
FE [9]) as an authorized key which always leads to a successful decryption in case
ofMA-ABIPFE, may not be eligible for decrypting a ciphertext ofMA-ABUIPFE. The
index set associated with the authorized key must match to the index set of the encrypted
vector for successful decryption inMA-ABUIPFE. In other words, the adversary should
be restricted to infer any information about the encrypted message vector from the
authorized keys whose index sets are not equal to the index set of the message vector.
Moreover, AGT-FE is proven secure under subgroup decision assumptions which are

Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 599

source group assumptions while our target is to prove security under DBDH which is
a target group assumption, thus the dual system encryption technique [41] used for the
security proof of AGT-FE does not work in our case. Hence, we design a different proof
strategy that works coherently with the hash-decomposition mechanism and for target
group assumptions in the prime-order bilinear group.

We prove the security of our MA-ABUIPFE in the static model similar to the
DKW-MA-ABE. The adversary is asked to submit all it’s queries including the chal-
lenge message vectors v0,v1 with a common index set I∗ and an associated chal-
lenge access structure (M, ρ). Recall that the adversary can also corrupt or even mali-
ciously generate some of the authorities indicated by a set C of corrupted authorities or
attributes. Let us consider a DBDH instance ([[a]]1, [[b]]2, [[c]]1, [[τ]]T) where τ is either
abc or random. In the first step, we use the information-theoretic partitioning lemma,
the so-called “zero-out” lemma [36, Lemma 1], to isolate and ignore the set of rows of
M that correspond to the corrupted authorities throughout the analysis. In particular,
the lemma allows us to replace the LSSS matrixM with an updated simpler matrixM′

such that a subset of columns, say CM′ , of M′ can be set to zero that are related to
the corrupted authorities. Next, we follow the proof techniques of [3,38] and sample
a basis S̃ = {(v0 − v1), b2, . . . , bn} of Zn

q where n denotes the size of I∗ to rep-
resent key vectors u whose lengths are equal to n. However, answering the hash and
secret key queries require a careful treatment while embedding the DBDH challenge
instance. The role of the hash function of DKW-MA-ABE was limited to simulating the
non-authorized keys of a fixed length. However, in our case, we need to deal with both
authorized and unauthorized keys and here again, our hash-decomposition mechanism
plays a crucial role. Moreover, a key can be non-authorized with respect to the index
set or the associated policy, or both.

Let S be the set of attributes queried under a user identifier GID as a part of secret
key queries such that S contains at least an attribute involved in the challenge policy.
The main idea of simulating secret keys of DKW-MA-ABE was to sample a special
vector d ∈ Z

smax
q such that the inner product of d with M ′

i is zero for all i ∈ ρ−1(S∪C)
and to set the hash values as

H(GID ‖ j) = (gb
2)

dj · g
hj

2 , ∀j ∈ CM′ , and uniform otherwise. (2.4)

This, in fact, enables in simulating the secret keys using the properties of d and by
embedding the matrix M′ into the public keys of authorities linked to the challenge
policy. Unfortunately, we observe that such encoding of hash values is not compatible
with our hash-decomposition mechanism. Firstly, the hash function H2 does not take
a GID as input and hence it is not possible to encode the hash values depending on
a vector like d which is sampled according to an unauthorized set of attributes (S ∪
C) under a given global identity. In our case, H2 should generate a good amount of
entropy for indices of key vectors irrespective of any global identity. This would restrict
an adversary to gain any illegitimate information about the encrypted message from
any secret key where the associated index set does not match with I∗ even though the
attributes associated to the key satisfy the challenge policy. Secondly, H3 takes a GID
as it’s input along with a key vector, a column number and an index set. The role of H3

600 P. Datta and T. Pal

is to make a secret key generated under a given GID useless to the adversary whenever
the associated attributes does not satisfy the challenge policy.

In the static security model the simulator knows all the secret key queries in
advance. We exploit this fact to prepare encodings for the hash values keeping in mind
their roles in the security experiment. Our idea is to sample all possible {dφ}φ vectors
corresponding to the sets {Sφ ∪C}φ such that Sφ ∪C constitutes an unauthorized subset
of row of M and use the information of {dφ}φ in the encodings of the hash functions.
More precisely, we use an add and subtract technique to set the hash values as follows

H2(j ‖ k ‖ I∗) = (gb
2)

∑
φ dφ,j · g

h2,j

2 , ∀j ∈ CM′ , and uniform otherwise.

H3(GID ‖ uφ′ ‖ j ‖ k) = (gb
2)

∑
φ�=φ′ −dφ,j · g

h3,j

2 , ∀j ∈ CM′ , and uniform otherwise.

Now, we multiply the above hash encodings while simulating non-authorized secret key
queries and obtain a hash encoding similar to Eq. (2.4).

H2(j ‖ k ‖ I∗) · H3(GID ‖ uφ′ ‖ j ‖ k) = (gb
2)

dφ′,j · g
h2,j+h3,j

2 ∀j ∈ CM′ .

For simplicity of this section, we have ignored a few additional elements in the above
encodings that connect the hash values with the H1 encodings which actually facilitates
in using the fact that dφ ·M ′

i = 0 for all i ∈ ρ−1(Sφ ∪ C) for non-authorized keys
such that Iuφ

= I∗. Lastly, when simulating authorized secret keys we use the basis S̃
to obtain a vector η satisfying η ·uφ = 0 with the help of the admissibility condition
uφ · (v0 − v1) = 0 for all keys leading to a successful decryption of the challenge
ciphertext. The full security analysis can be found in Sect. 5.3.

2.2 Constructing the Large Universe MA-ABUIPFE

We recall that in the large universe setting each authority is allowed to control expo-
nentially many attributes. We upgrade our small universe scheme to a large universe
MA-ABUIPFE (LMA-ABUIPFE) by extending the techniques presented in [36] from
encrypting a fixed length message to encrypting an unbounded length vector in the con-
text of MA-ABUIPFE. To support exponentially many attributes, we use an additional
hash function R which maps arbitrary attributes to elements of G2. We replace the map
ρ of the LSSS access structure (M, ρ) by decomposition of two mappings T and δ, that
is ρ(i) = T(δ(i)) = θ where δ labels row numbers i of the LSSS access matrix to some
attributes δ(i) and T assigns the attributes δ(i) to its respective authorities denoted by
θ. Our LMA-ABUIPFE is described as follows.

Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 601

PKθ : ([[αθ]]T , [[yθ,2]]1, . . . , [[yθ,smax]]1)
MSKθ : (αθ, yθ,2, . . . , yθ,smax)

CTv ,P :

C0 = [[v + z]]T , C1,i = [[MiB + ϑi]]T , C2,i = [[ri]],
C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ k ‖ I)) · [[riy

(2)
ρ(i),j,k]]T ,

C4,i,j = [[Mi,jfj + riyρ(i),j]]1, C5,i,j = R(δ(i) ‖ j ‖ I)
∀i ∈ [�], j ∈ [2, smax], k ∈ [n]

SKGID,t,u :

n∏

k=1

H1(t ‖ k ‖ I)αθ·uk ·
smax∏

j=2

n∏

k=1

([[y(2)
θ,j,k]]2 · [[y(3)

θ,j,k]]2)uk ·
smax∏

j=1

R(t ‖ j ‖ I)τj ,

Zt,j = [[τj]]1, ∀j ∈ [smax]

The components ϑi,y
(2)
θ,j ,y

(3)
θ,j are defined similarly as in our MA-ABUIPFE scheme.

[[ϑi,k]]T = e(ri[[αρ(i)]]1,H1(ρ(i) ‖ k ‖ Iv)),

[[y(2)
θ,j,k]]T = e([[yθ,j]]1,H2(j ‖ k ‖ I)), [[y(2)

θ,j,k]]2 = H2(j ‖ k ‖ I)yθ,j ,

[[y(3)
θ,j,k]]2 = H3(GID ‖ u ‖ j ‖ k)yθ,j , ∀k ∈ [n].

The decryption procedure is similar to our MA-ABUIPFE scheme. We consider
static security of LMA-ABUIPFE and model the hash functions as random oracles.
However, it may not be possible to base security on the plain DBDH assumption.
Following the same notations that we used to sketch the proof technique of our MA-
ABUIPFE, we discuss the main reason which prevent using the DBDH assumption as
before. The R-values related to the authorities in the challenge policy in our proposed

LMA-ABUIPFE scheme described above are roughly set as R(t ‖ j ‖ I∗) = g
ζt,j

2 g
aM ′

i,j

2 ,
where ζt,j is a random Zq-element and M ′

i,j is the (i, j)-th entry of the updated LSSS

matrix M′ in the challenge policy. On the other hand, the randomness ri used in the
encryption2 are set as ri = c. Hence, the reduction requires the group element gac

2

in order to simulate the components C5,i,j of the challenge ciphertext. However, the
DBDH assumption does not make it possible to make gac available to an adversary.

Thus, for basing the security, we look into the parameterized versions of the DBDH
assumptions. Unlike [36] where they consider a much more complex parameterized
assumption, a primary motivation of our security reduction is to depend on a simpler
parameterized assumption that is as close as possible to the plain DBDH assumption.
More specifically, [36] consider an exponent type assumption where each instance con-
sists of at least O(L3

max) group elements and Lmax ≥ max{�, smax}, where �, smax is the
number of rows and columns of the challenge LSSS access matrix respectively. Con-
sequently, the reduction becomes more involved and complex. In contrast, we prove
the security of LMA-ABUIPFE based on the newly introduced L-DBDH assumption
where each instance has O(L2) group elements with L ≥ �. We show that the L-DBDH
assumption is generically secure using the techniques of [12,36]. Although incompara-
ble with the assumption used in [36], it seems that our L-DBDH assumption is weaker
as it contains fewer elements. Therefore, our LMA-ABUIPFE improves upon the previ-
ous results of [36] even without considering the enhanced functionality of UIPFE.

2 The ciphertext is re-randomized to ensure the distribution of its components is unharmed.

602 P. Datta and T. Pal

There are some other technical hurdles in the security reduction that does not
directly allow using the program and cancel technique similar to [36] while simu-
lating secret key queries. This is due to the fact that we are handling unbounded
length messages and using a hash-decomposition mechanism on top of large universe
paradigm. In contrast to the small universe scheme, an authority in a queried secret key
of LMA-ABUIPFE may be present in the challenge policy but none of their attributes
are linked to it. We use our add and subtract technique which enables the reduction to
combine the decomposed hash values into a single hash value that eventually produces
an adequate amount of randomness preventing the leakage of unwanted information
about the underlying message vector from such secret keys.

On the other hand, if the authorities as well as some of their controlled attributes
are present in the challenge policy but the associated secret key is unauthorized then
we observe that the program and cancel technique of [36] is not sufficient to handle
an adversary of LMA-ABUIPFE given the fact that it can query for secret keys corre-
sponding to vectors of arbitrary lengths. In order to make these secret keys useless for
an adversary irrespective of the associated lengths of vectors, we delicately program the
hash queries that enables the reduction to procreate additional entropy via an interplay
between the program and cancel technique of [36] and add and subtract mechanism of
ours at the time of simulating such unauthorized secret keys. Although the high-level
proof technique is inspired from [36], the technical obstacles mentioned above prevent
applying their approach straightforwardly into our setting. As a whole, we carefully
embed the L-DBDH instance into the adversary’s queries by extending the [36] tech-
nique in the context of amplifying entropy for supporting computation over unbounded
length vectors and at the same time making it compatible for hash-decomposition mech-
anism used in our scheme. We present a detailed security analysis in the full version.

3 Preliminaries

In this section, we present the notations used in this paper and the new L-DBDH
assumption we introduce.

3.1 Notations

We will denote the underlying security parameter by λ throughout the paper. A function
negl : N → R is said to be a negligible function of λ, if for every c ∈ N, there exists
a λc ∈ N such that ∀λ > λc, negl(λ) < λ−c. We denote the set of positive integers
{1, . . . , n} as [n]. We denote ∅ as the empty set. We use the abbreviation PPT for
probabilistic polynomial-time. For a set X , we write x ← X to denote that x is sampled
according to the uniform distribution over the elements of X . Also for any set X , we
denote by |X| and 2X the cardinality and the power set of the set X respectively. We
use bold lower case letters, such as v, to denote vectors and upper-case, such asM, for
matrices. We assume all vectors, by default, are row vectors. The ith row of a matrix
is denoted by Mi and analogously for a set of row indices I , we denote MI for the
sub-matrix of M that consists of the rows Mi,∀i ∈ I . By rowspan(M), we denote the
linear span of the rows of a matrixM.

Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 603

For an integer q ≥ 2, we let Zq denote the ring of integers modulo q. We repre-
sent Zq as integers in the range (−q/2, q/2]. The set of matrices of size m × n with
elements in Zq is denoted by Z

m×n
q . The operation (·)� denotes the transpose of vec-

tors/matrices. Let u = (ui)i∈Iu
∈ Z

|Iu |
q ,v = (vi)i∈Iv

∈ Z
|Iv |
q where Iu and Iv

are the associated index sets, then the inner product between the vectors is denoted as
v ·u = u�u =

∑
i∈I uivi ∈ Zq whenever Iu = Iv = I.

3.2 Complexity Assumptions

We use bilinear groups of prime order to build our MA-ABUIPFE schemes.
Here, we formally define the DBDH assumption and a parameterized version of

it, we call L-DBDH which would underlie of security of our small and large universe
MA-ABUIPFE schemes respectively.

Assumption 3.1 (Decisional Bilinear Diffie-Hellman (DBDH). [14,38]) For a secu-
rity parameter λ ∈ N, let G = (q,G1,G2,GT , g, e) ← G(1λ) be a bilinear group and
let a, b, c ← Zq. The DBDH assumption states that for any PPT adversary A, there
exists a negligible function negl such that for any security parameter λ ∈ N, given the
distribution (G, [[a]]1, [[c]]1, [[a]]2, [[b]]2, [[τ]]T), A has advantage

AdvDBDH
A (λ) =

∣
∣
∣Pr

[

1 ← A
(

1λ, D, [[abc]]T
)]

− Pr
[

1 ← A
(

1λ, D, [[τ]]T
)]∣

∣
∣ ≤ negl(λ),

Assumption 3.2 (L-Decisional Bilinear Diffie-Hellman (L-DBDH)). Let G =
(q,G1,G2,GT , g, e) ← G(1λ) be a bilinear group and let a, b, c, μ1, . . . , μL ← Zq.
The L-DBDH assumption states that for any PPT adversaryA, there exists a negligible
function negl such that for any security parameter λ ∈ N, given the distribution
⎛

⎝G,

(
[[b]]1, [[c]]1,
[[a]]2, [[b]]2

)

,

{
[[aμi]]1, [[c/μi]]1,

[[aμi]]2

}

i∈[L]

,

{
[[cμι/μi]]1, [[acμι/μi]]1,

[[acμι/μi]]2

}

i,ι∈[L],
i�=ι

, [[τ]]T

⎞

⎠

A has advantage

AdvL-DBDH
A (λ) =

∣
∣
∣Pr

[

1 ← A
(

1λ, D, [[abc]]T
)]

− Pr
[

1 ← A
(

1λ, D, [[τ]]T
)]∣

∣
∣ ≤ negl(λ),

4 Decentralized (Large Universe)MA-ABUIPFE for LSSS

A large universe decentralized multi-authority attribute-based inner-product func-
tional encryption (LMA-ABUIPFE) scheme LMA-ABUIPFE = (GlobalSetup,
LocalSetup,KeyGen,Encrypt,Decrypt) for access structures captured by linear secret
sharing schemes (LSSS) over some finite field Zq with q = q(λ) and inner product
value space U consists of five algorithms with the following syntax. We denote by AU
the authority universe and by GID the universe of users’ global identifiers in the system.
The attribute universe is denoted as Uatt which may be arbitrary. Further, an authority
θ ∈ AU may have any arbitrary number of attributes from Uatt under its control. Fol-
lowing [36], we assume a publicly computable function T : Uatt → AU that maps each
attribute t ∈ Uatt to a unique authority θ = T (t). The algorithms proceed as follows:

604 P. Datta and T. Pal

GlobalSetup(1λ, smax): It is the global setup algorithm which on input the security
parameter λ and a maximum width smax of the LSSS matrix, and outputs the global
public parameters GP. We assume that GP includes the descriptions of AU and GID.
LocalSetup(GP, θ): The authority θ ∈ AU runs the local setup algorithm during its
initialization with the global parameters GP and generates its public parameters and a
master secret key pair (PKθ,MSKθ).
KeyGen(GP,GID,MSKθ , t, u,Iu): The key generation algorithm takes input the
global parameter GP, a user’s global identifier GID ∈ GID, a master secret key MSKθ

for authority θ controlling an attribute t ∈ Uatt, and a vector u ∈ Z
|Iu |
q with an associ-

ated index set Iu . It outputs a secret key SKGID,t,u which contains (u, Iu).

Encrypt(GP, (M, δ),{PKθ}θ , v,Iv): The encryption algorithm takes input the
global parameter GP, an LSSS access structure (M, δ) where M is a matrix over Zq

and δ is a row-labeling function that assigns to each row of M an attribute in Uatt.
We define the function ρ : [�] → AU as ρ(·) := T(δ(·)) which maps row indices of
M to authorities θ ∈ AU . Accordingly, the encryption algorithm further takes a set
{PKθ}θ of public keys for all the authorities in the range of ρ, and a message vector
v ∈ Z

|Iv |
q with an associated index set Iv . It outputs a ciphertext CT. We assume that

CT implicitly contains the description of (M, δ) and Iv .
Decrypt(GP,GID,CT,{SKGID,t,u}t): The decryption algorithm takes in the global
parameters GP, a ciphertext CT generated with respect to some LSSS access pol-
icy (M, δ) and an index set I associated to the message, and a collection of keys
{SKGID,t,u}t corresponding to user ID-attribute pairs (GID, S ⊆ Uatt) and a key vector
(u, Iu) possessed by a user with global identifier GID. It outputs a message ζ when the
collection of attributes associated with the secret keys {SKGID,t,u}t satisfies the LSSS
access policy (M, δ), i.e., when the vector (1, 0, . . . , 0) belongs to the linear span of
those rows of M which are mapped by δ to the set of attributes in S that corresponds
to the secret keys {SKGID,t,u}t∈S possessed by the user with global identifier GID.
Otherwise, decryption returns ⊥.
Correctness: An LMA-ABUIPFE scheme for LSSS-realizable access structures and
inner product message space U is said to be correct if for every λ ∈ N, every message
vector v ∈ Z

|Iv |
q , key vector u ∈ Z

|Iu |
q such that I = Iv = Iu , and GID ∈ GID,

every LSSS access policy (M, δ), and every subset of authorities S ⊆ Uatt controlling
attributes which satisfy the access structure it holds that

Pr

⎡

⎢
⎢
⎢
⎣

Γ = v ·u

∣
∣
∣
∣
∣
∣
∣
∣
∣

GP ← GlobalSetup(1λ, 1n),
(PKθ,MSKθ) ← LocalSetup(GP, θ),

SKGID,t,u ← KeyGen(GP,GID,MSKθ, t,u),
CT ← Encrypt(GP, (M, δ), {PKθ}θ,v),
Γ = Decrypt(GP,CT, {SKGID,t,u}t∈S)

⎤

⎥
⎥
⎥
⎦

= 1.

Static Security: In this paper, we consider static security for LMA-ABUIPFE formal-
ized by the following game between a challenger and an adversary. The static security
model is adapted from [36], defined for MA-ABE, to the context of LMA-ABUIPFE.
We emphasize that unlike MA-ABE, our static security model allows the adversary to
ask for secret keys which are capable of decrypting the challenge ciphertext.

Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 605

Global Setup: The challenger runs GlobalSetup(1λ, smax) to get and send the global
public parameters GP to the attacker.

Adversary’s Queries: The adversary sends the following queries:
1. A list C ⊂ AU of corrupt authorities and their respective public parameters

{PKθ}θ∈C , which it might have created in a malicious way.
2. A set N ⊂ AU of non-corrupt authorities, i.e., C ∩ N = ∅, for which the

adversary requests the public keys.
3. A set Q = {(GID, S,u, Iu)} of secret key queries with GID ∈ GID, S ⊆ Uatt

such that T(S)∩C = ∅, u ∈ Z
|Iu | and Iu ⊂ Z where GIDs are distinct in each

of these tuples.
4. Two message vectors v0,v1 ∈ Z

|I∗|
q having the same index set I∗,

and a challenge LSSS access policy (M, δ) with M = (Mi,j)�×smax =
(M1, . . . ,M�)� ∈ Z

�×smax
q , δ : [�] → Uatt and satisfying the constraint that

for each (GID, S,u, Iu) ∈ Q, either S ∪ ⋃
θ∈C T−1(θ) ⊆ [�] constitutes an

unauthorized subset of rows of the access matrix M or the secret key vector u
satisfies the relation (v0 − v1) ·u = 0 whenever Iu = I∗. Note that the set⋃

θ∈C T−1(θ) contains the attributes belonging to the corrupt authorities.
Challenger’s Replies: The challenger flips a random coin β ← {0, 1} and replies with

the following:
1. The public keys PKθ ← LocalSetup(GP, θ) for all θ ∈ N .
2. The secret keys SKGID,t,u ← KeyGen(GP,GID,MSKθ, t,u) for all

(GID, S,u) ∈ Q, t ∈ S.
3. The challenge ciphertext CT ← Encrypt(GP, (M, δ), {PKθ}θ∈C∪N ,vβ).

Guess: The adversary outputs a guess β′ for β.

The advantage of the adversary A is AdvLMA-ABUIPFE
A,SS-CPA (λ) � |Pr[β = β′] − 1/2|.

Definition 4.1 (Static Security for LMA-ABUIPFE for LSSS) An LMA-ABUIPFE
scheme for LSSS-realizable access structures satisfies static security if for any PPT
adversary A there exists negl(·) such that for all λ ∈ N, we have AdvLMA-ABUIPFE

A,SS-CPA (λ)
≤ negl(λ).

Remark 4.1 (Static Security in the Random Oracle Model.) Similar to [19,21,36],
we additionally consider the aforementioned notion of selective security with static cor-
ruption in the ROM. In this context, we assume a global hash function H published as
part of the global public parameters and accessible by all the parties in the system. In
the security proof, we will model H as a random oracle programmed by the challenger.
In the security game, therefore, we let the adversary A submit a collection of H-oracle
queries to the challenger immediately after seeing the global public parameters, along
with all the other queries it makes in the static security game as described above.

Remark 4.2 (Small Universe MA-ABUIPFE.) The above definition of LMA-
ABUIPFE captures the large universe scenario where one authority can control mul-
tiple attributes. We can similarly define a small universe MA-ABUIPFE or simply
MA-ABUIPFE by restricting each authority to control only a single attribute [36].
Hence, we would use the words “authority” and “attribute” interchangeably in the case
of MA-ABUIPFE. There are a few syntactic and semantic changes in the above defini-
tion when adapted for the small universe setting:

606 P. Datta and T. Pal

1. There is a bijection between the attribute universe Uatt and the authority universe
AU .

2. LocalSetup(GP, t) outputs (PKt,MSKt) for an authority/attribute t ∈ AU .
3. KeyGen(GP,GID,MSKt,u, Iu) outputs SKGID,t,u .
4. For an LSSS access structure (M, δ), we have ρ(·) = δ(·) is an injective map.
5. The changes in the security definition follow accordingly. Due to space constraints,

we state them directly in the proof of our small universe scheme in Sect. 5.3.

5 The Proposed Small UniverseMA-ABUIPFE from DBDH

In this section, we describe the formal construction and proof for our MA-ABUIPFE
scheme. The construction is in prime-order groups and uses a hash functions that will
be modeled as a random oracle in the security proof.

5.1 The Construction

GlobalSetup(1λ, smax): The global setup algorithm takes input the security parameter
λ, the maximum width of an LSSS matrix supported by the scheme smax = smax(λ)
and the vector length n in unary. It generates G = (q,G1,G2,GT , g, e). Consider the
hash functions H1 : Uatt × Z × Z

∗ → G2, H2 : [smax] × Z × Z
∗ → G2, H3 :

GID × Z
∗ × [smax] → G2. It outputs a global parameter GP = (G,H1,H2,H3).

LocalSetup(GP, t): The authority setup algorithm takes as input GP and an authority
index/attribute t ∈ AU . It samples vectors αt, yt,2, . . . , yt,smax ← Zq and outputs

PK =
({[[αt]]1, {[[yt,j]]1}j∈{2,...,smax}}t∈Uatt

)
, MSK = {{αt, {yt,j}j∈{2,...,smax}}t∈Uatt}

KeyGen(GP,GID,MSKt , u,Iu): The key generation algorithm takes input GP, the
user’s global identifier GID, the authority’s secret key MSKt and a vector u ∈ Z

|Iu |
q . It

proceeds as follows

1. Parse Iu = {ι1, . . . , ιn} and u = (uι1 , . . . , uιn
).

2. Compute

SKt,u =
n∏

k=1

H1(t ‖ ιk ‖ Iu)αtuιk ·
smax∏

j=2

n∏

k=1

(H2(j ‖ ιk ‖ Iu) · H3(GID ‖ u ‖ j ‖ ιk))yt,juιk .

3. Output SKGID,t,u = (GID,u,SKt,u , Iu) as the secret key.

Encrypt(GP, (M, ρ),{PKt}, v,Iv): The encryption algorithm takes input the
global parameter GP, an LSSS access structure (M, ρ) whereM = (M1, . . . ,M�)� ∈
Z

�×smax
q and ρ : [�] → AU , a set {PKt} of public keys for all the authorities in the range

of ρ, and a message vector v ∈ Z
m
q . The function maps the row indices ofM to author-

ities or attributes. We assume ρ is an injective function, that is, an authority/attribute is
associated with at most one row of M. The algorithm proceeds as follows:

1. Parse Iv = {ι1, . . . , ιm} and v = (vι1 , . . . , vιm
).

Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 607

2. Sample {ri ← Zq}i∈[�] and f = (f2, . . . , fsmax) ← Z
smax−1
q .

3. Sample z, b2, . . . , bsmax ,x2, . . . ,xsmax ← Z
m
q .

4. Set the matrix B =
[
z, b2, . . . , bsmax

]�
smax×m

.
5. Compute ϑi,k = e(ri[[αρ(i)]]1,H1(ρ(i) ‖ ιk ‖ Iv)) and set ϑi := (ϑi,1, . . . , ϑi,m).
6. Compute the following terms:

C0 = [[v + z]]T , C1,i = [[MiB + ϑi]]T , C2,i = [[ri]]1,
C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ Iv)) · e(ri[[yρ(i),j]]1,H2(j ‖ ιk ‖ Iv)),

C4,i,j = [[Mi,jfj + yρ(i),jri]]1

for all i ∈ [�], j ∈ {2, . . . , smax}, k ∈ [m].
7. Output the ciphertext

CT =
(
(M, ρ) , C0, {C1,i, C2,i,, C3,i,j,k, C4,i,j}i∈[�],j∈{2,...,smax},k∈[m], Iv

)
.

Decrypt(GP,GID,CT,{SKGID,t,u}): The decryption algorithm takes input the pub-
lic key PK, a secret key SKS,u for an attribute set S ⊆ Uatt and a vector u ∈ Z

n
q and

a ciphertext CT for an access structure (M, ρ) with M ∈ Z
�×smax
q and an injective map

ρ : [�] → Uatt.
Parse SKGID,S,u =

(
GID,u, {SKρ(i),u}ρ(i)∈S , Iu

)
, where i ∈ [�] and CT =

((M, ρ) , C0, {C1,i, C2,i,, C3,i,j,k, C4,i,j}i∈[�],j∈{2,...,smax},k∈[m], Iv). Denote I =
{i|ρ(i) ∈ S} ⊆ [�]. If (1, 0, . . . , 0) is not in the span ofMI (i.e.,M restricted to the set
of rows from I) or Iu �= Iv decryption returns ⊥. Else, when S satisfies (M, ρ), the
algorithm finds {wi ∈ Zq}i∈I such that (1, 0, . . . , 0) =

∑
i∈I wiMi. It then computes

[[Γ]]T = C0 ·u · [[μ]]T where [[μ]]T is given by
⎛

⎜
⎜
⎜
⎜
⎜
⎝

∏

i∈I

⎡

⎢
⎢
⎢
⎢
⎣

C1,i ·u ·
smax∏

j=2

n∏

k=1

uιk
· C3,i,j,k · e(C4,i,j ,H3(GID ‖ u ‖ j ‖ ιk)uιk)

e
(
SKρ(i),u , C2,i

)

⎤

⎥
⎥
⎥
⎥
⎦

wi
⎞

⎟
⎟
⎟
⎟
⎟
⎠

−1

and outputs loggT
([[Γ]]T).

5.2 Correctness

Consider a secret key SKGID,S,u = (GID,u, {SKt,u}t∈S , Iu) consisting of a set of
attributes satisfying the LSSS access structure (M, ρ) associated with a ciphertext
CT =

(
(M, ρ) , C0, {C1,i, C2,i,, C3,i,j,k, C4,i,j}i∈[�],j∈{2,...,smax},k∈[m], Iv

)
such that

Iu = Iv = I. In particular, the vector (1, 0, . . . , 0) ∈ rowspan(MI) corresponding to
the set of indices I = {i ∈ I|ρ(i) = t ∈ S}.
For each i ∈ I , we have the following:

e(SKρ(i),u , C2,i) =
n∏

k=1

e(g1,H1(ρ(i) ‖ ιk ‖ I))riαρ(i)uιk ·
smax∏

j=2

n∏

k=1

(e(g1,H2(j ‖ ιk ‖ I)) · e(g1,H3(GID ‖ u ‖ j ‖ ιk)))riyρ(i),juιk

608 P. Datta and T. Pal

For i ∈ I, j ∈ {2, . . . , smax}, k ∈ [n],

uιk
C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ I))uιk · e(g1,H2(j ‖ ιk ‖ I))riyρ(i),juιk

For i ∈ I, j ∈ {2, . . . , smax}, k ∈ [n],

e(C4,i,j ,H3(GID ‖ u ‖ j ‖ ιk)uιk)
= e([[Mi,jfj]]1,H3(GID ‖ u ‖ j ‖ ιk))uιk · e(g1,H3(GID ‖ u ‖ j ‖ ιk))riyρ(i),juιk

Finally, for each i ∈ I , we have C1,i = [[MiB + ϑi]]T and so

C1,i ·u ·
smax∏

j=2

n∏

k=1

(uιk
· C3,i,j,k · e(C4,i,j ,H3(GID ‖ u ‖ j ‖ ιk)uιk))

e
(
SKρ(i),u , C2,i

)

= [[MiB ·u]]T
n∏

k=1

e(g1,H1(ρ(i) ‖ ιk ‖ I))riαρ(i)uιk ·
smax∏

j=2

n∏

k=1

(uιk
· C3,i,j,k · e(C4,i,j ,H3(GID ‖ u ‖ j ‖ ιk)uιk))

e
(
SKρ(i),u , C2,i

)

= [[MiB ·u]]T ·
smax∏

j=2

n∏

k=1

e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ I))uιk ·

smax∏

j=2

n∏

k=1

e([[Mi,jfj]]1,H3(GID ‖ u ‖ j ‖ ιk))uιk

Since SKS,u corresponds to a set of qualified authorities, ∃{wi ∈ Zq}i∈I such that∑
i∈I wiMiB ·u = (1, 0, . . . , 0)B · u = z ·u and it holds that

∑
i∈I wiMi,j =

0,∀j ∈ {2, . . . , smax}. Hence, we have

∏

i∈I

⎡

⎢
⎢
⎢
⎢
⎣

C1,i ·u ·
smax∏

j=2

n∏

k=1

(uιk
· C3,i,j,k · e(C4,i,j ,H3(GID ‖ u ‖ j ‖ ιk)uιk))

e
(
SKρ(i),u , C2,i

)

⎤

⎥
⎥
⎥
⎥
⎦

wi

= [[
∑

i∈I

wiMiB ·u]]T = [[z ·u]]T

Finally, the message is recovered as loggT
([[Γ]]T) where

[[Γ]]T = (C0 ·u)/[[z ·u]]T = [[v ·u + z ·u]]T /[[z ·u]]T = [[v ·u]]T

Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 609

5.3 Security Analysis

Theorem 5.1. If the DBDH assumption holds, then all PPT adversaries have a
negligible advantage in breaking the static security of the proposed small universe
MA-ABUIPFE scheme in the random oracle model.

Proof. We prove this theorem by showing that if there is any PPT adversary A
who breaks the static security of MA-ABUIPFE then there is a PPT adversary
B who solves the DBDH problem with a non-negligible advantage. Suppose, B
gets an instance (G, [[a]]1, [[c]]1, [[a]]2, [[b]]2, [[τ]]T) of the DBDH problem where G =
(q,G1,G2,GT , g, e) ← G(1λ) is a group description, the elements a, b, c ← Zq are
random integers, and the element τ ∈ Zq is either abc or a random element of Zq.
The algorithm B works as follows: On input λ, A outputs smax,Uatt and queries the
following.

Attacker’s Queries: Upon initialization, the adversary A sends the following to B:
(a) A list C ⊂ AU of corrupt authorities and their respective public keys

{PKt = (Yt,1,Yt,2, . . . ,Yt,smax)}t∈C ,

where Yt,1,Yt,2, . . . ,Yt,smax ∈ G1 for all t ∈ C.
(b) A set N ⊂ AU of non-corrupt authorities, i.e., C ∩ N = ∅, for which A requests

the public keys.
(c) A collection of hash queries H1 = {(t, ιk, I) : t ∈ Uatt, ιk ∈ Z, I ⊂ N}, H2 =

{(j, ιk, I) : j ∈ {2, . . . , smax}, ιk ∈ Z, I ⊂ N} and H3 = {(GID,u, j, ιk) :
GID ∈ GID,u ∈ Z

∗, j ∈ {2, . . . , smax}, ιk ∈ Z}.
(d) A set Q = {(GID, S,u, Iu)} of secret key queries with GID ∈ GID, S ⊆ Uatt,

u ∈ Z
|Iu | and Iu ⊂ Z.

(e) Two message vectors v0,v1 ∈ Z
n
q having the same index set I∗, and a challenge

LSSS access policy (M, ρ) with M = (Mi,j)�×smax = (M1, . . . ,M�)� ∈ Z
�×smax
q

and ρ : [�] → C∪N injective and satisfying the constraint that for each (S,u, Iu) ∈
Qu , either ρ−1(C ∪ S) ⊆ [�] constitutes an unauthorized subset of rows of the
access matrixM or the secret key vector u satisfies the relation (v0 − v1) ·u = 0
whenever Iu = I∗.

Before answering A’s queries, the adversary B substitute the secret sharing matrix
Mwith the matrixM′ from Lemma 3.1 of [36] computed using ρ−1(C) as the unautho-
rized subset of rows. Lemma 3.1 of [36] guarantees the fact that if B uses M′ instead
of M in the simulation, the view of A in the simulated game is information theoreti-
cally the same as if B would have used the original matrix M. Furthermore, Lemma
3.1 of [36] implies that if we assume the subspace spanned by Mρ−1(C) has dimension
c̃, then so is the dimension of the subspace spanned by M′

ρ−1(C) and M ′
i,j = 0 for

all (i, j) ∈ ρ−1(C) × [smax − c̃]. B now proceeds to answer the queries of A. Denote
ŝmax = smax − c̃, where c̃ is the dimension of the sequence spanned by the rows of
Mρ−1(C), the latter being the rows of M controlled by corrupted authorities, C.

610 P. Datta and T. Pal

Note that I∗ can be any subset of Z and w.l.o.g one can consider I∗ = [n]3 for some
n ∈ N. Inspired by the proof techniques of prior works [3,38], the reduction first com-
pute a basis of (v0−v1)⊥ as {b̃1, . . . , b̃n−1}. Then the set S̃ = {v0−v1, b̃1, . . . , b̃n−1}
form a basis of Zn

q . For any vector u ∈ Z
n
q , if we represent it as the linear combination

of the vectors in S̃ as

u = ζ · (v0 − v1) +
n−1∑

k=1

ζkb̃k, for some ζ, ζk ∈ Zq

then ζ = 0 whenever it holds that (v0 − v1) · u = 0. Let ek be the k-th vector in the
standard basis of Zn

q . We write ei for each i ∈ [n] as

ei = ηi · (v0 − v1) +
n−1∑

k=1

λi,kb̃k for some η, λi,k ∈ Zq.

Generating Public Key: There are two cases to consider:

1. Case 1 — t ∈ N \ ρ([�]) (i.e., attribute t is absent in the challenge policy (M, ρ)
but it belongs to a non-corrupt authority) — In this case, B executes the Setup
algorithm according to the real experiment. It samples αt, yt,2, . . . , yt,smax ← Zq

by itself, and computes the public key component corresponding to attribute t as
([[αt]]1, [[yt,2]]1, . . . , [[yt,smax]]1).

2. Case 2—t ∈ ρ([�]) \ C (i.e., attribute t appears in the challenge policy (M, ρ)
and it does not belong to a corrupt authority) — In this case, B samples
α′

t, y
′
t,2, . . . , y

′
t,smax

← Zq and implicitly sets αt = α′
t + a · M ′

ρ−1(t),1 and
yt,j = y′

t,j + aM ′
ρ−1(t),j for j ∈ {2, . . . , ŝmax} and yt,j = y′

t,j for j ∈ {ŝmax +
1, . . . , smax}(these are well-defined as ρ is injective), and sets the public key ele-
ments w.r.t. attribute t as ([[αt]]1, [[yt,2]]1, . . . , [[yt,smax]]1) where the elements [[αt]]1
and [[yt,j]]1 for j ∈ {2, . . . , ŝmax} are computed as follows:

[[αt]]1 = [[α′
t]]1 · M ′

ρ−1(t),1[[a]]1, [[yt,j]]1 = [[y′
t,j]]1 · M ′

ρ−1(t),j [[a]]1 (5.1)

for all j ∈ [2, ŝmax]. Note that, αt and {yt,j}j∈{2,...,smax} are distributed uniformly
over Zq and hence each of these elements of the public key is properly distributed.

Answering Hash Queries:

1. H1 queries. If (ιk ∈ I∗ ∧ I = I∗), then sample uniformly random elements
h1,k̂, h1,t,ιk

from Zq and set

3 In particular, we consider a map γ : I∗ → [n] and use γ(k) = ιk throughout the security
analysis.

Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 611

H1(t ‖ ιk ‖ I) = (gb
2)

ηk ·
n−1∏

k̂=1

g
h1,k̂

λ
k,k̂

2 · g
h1,t,ιk
2 . (5.2)

Otherwise, if (ιk �∈ I∗ ∨ I �= I∗), then output a random G2 element, i.e., sample

uniformly random element h′
1,t,ιk

from Zq and set H1(t ‖ ιk ‖ I) = g
h′
1,t,ιk

2 . The
reduction stores the hash queries for future use.

2. H2 queries. If (ιk ∈ I∗ ∧ I = I∗), then sample uniformly random elements
h2,k̂, h2,j,ιk

for j ∈ {2, . . . , ŝmax} (in Eq. 5.3) and elements h′
2,j,ιk

for j ∈ {ŝmax +
1, . . . , smax} from Zq (in Eq. 5.4) and set

H2(j ‖ ιk ‖ I) = (gb
2)

ηk

∑Q
φ=1 dφ,j ·

n−1∏

k̂=1

g
h2,k̂

λ
k,k̂

2 · g
h2,j,ιk
2 (5.3)

H2(j ‖ ιk ‖ I) = g
h′
2,j,ιk

2 (5.4)

where Q denotes the total number of non-accepting key queries {(Sφ,uφ,
Iuφ

)}φ∈[Q] made by the adversary in the case where Iuφ
= I∗ but the attributes

in Sφ does not satisfy the challenge policy (M, ρ). Note that, for such secret key
queries, there exists a vector dφ = (dφ,1, . . . , dφ,smax) ∈ Z

smax
q such that dφ,1 = 1

and the inner product M ′
i ·dφ = 0 for all i ∈ ρ−1(C ∪ Sφ), where M ′

i denotes
the i-th row of M′. Additionally, the set of rows R = {M ′

i ∈ Z
smax
q : i ∈ ρ−1(C)}

has dimension c and M ′
i,j = 0 for all (i, j) ∈ ρ−1(C) × [ŝmax]. Therefore, R spans

the entire subspace V =
{

(
ŝmax︷ ︸︸ ︷

0, . . . , 0,ν) : ν ∈ Z
c
q

}

. Thus, it follows that dφ is

orthogonal to any of the vectors

{

(
ŝmax︷ ︸︸ ︷

0, . . . , 0,

j−1
︷ ︸︸ ︷
0, . . . , 0, 1,

c−j
︷ ︸︸ ︷
0, . . . , 0)

}

j∈{ŝmax+1,...,smax}
.

In other words, dφ,j = 0 for all j ∈ {ŝmax +1, . . . , smax}. Combining the above two
facts, we have (M ′

i |[ŝmax]) · (dφ|[ŝmax]) = 0 for all i ∈ ρ−1(Sφ), where for a vector
x, x|X denotes a vector formed by taking the entries of x having indices in the set
X ∈ N. For simplicity of notation, let us denote M ′

i � dφ = (M ′
i |[ŝmax]) · (dφ|[ŝmax])

for i ∈ ρ−1(Sφ).
Otherwise, if (ιk �∈ I∗ ∨ I �= I∗), then output a random G2 element, i.e., sample

uniformly random element h′′
2,t,ιk

from Zq and set H2(j ‖ ιk ‖ I) = g
h′′
2,t,ιk

2 . The
reduction stores the hash queries for future use.

3. H3 queries. If (GID, Sφ,uφ, Iuφ
) ∈ Q and Sφ ∩ ρ([�]) �= ∅ and ρ−1(Sφ ∪ C)

constitutes an unauthorized subset of the rows of M then sample h3,j,ιk
for

612 P. Datta and T. Pal

j ∈ {2, . . . , ŝmax} (in Eq. 5.5) and elements h′
3,j,ιk

for j ∈ {ŝmax + 1, . . . , smax}
from Zq (in Eq. 5.6) and set

H3(GID ‖ uφ ‖ j ‖ ιk) = (gb
2)

ηk

∑
φ′∈[Q]\{φ} −dφ′,j · g

h3,j,ιk
2 (5.5)

H3(GID ‖ uφ ‖ j ‖ ιk) = g
h′
3,j,ιk

2 (5.6)

for all ιk ∈ Iuφ
such that Iuφ

= I∗ and dφ is as defined above.
If (GID, Sφ,uφ, Iuφ

) ∈ Q and Sφ ∩ ρ([�]) �= ∅ and Iuφ
�= I∗ then sample h′′

3,j,ιk

uniformly at random from Zq and set H3(GID ‖ uφ ‖ j ‖ ιk) = g
h′′
3,j,ιk

2 .
On the other hand, if (GID, Sφ,uφ, Iuφ

) ∈ Q and Sφ ∩ ρ([�]) �= ∅ and ρ−1(Sφ ∪C)
constitutes an authorized subset of the rows of M then sample h′′′

3,j,ιk
← Zq and set

H3(GID ‖ uφ ‖ j ‖ ιk) = g
h′′′
3,j,ιk

2 . The reduction stores the hash queries for future
use. For all other cases, the reduction simple outputs a uniformly random element
from G2 to answer the hash query H3(GID ‖ uφ ‖ j ‖ ιk).

Generating Secret Keys: For any (GID, Sφ,uφ, Iuφ
) ∈ Q, B returns a secret key

SKGID,Sφ,uφ
=

(
GID,uφ, {SKt,uφ

}t∈Sφ
, Iuφ

)
, where it computes each of its compo-

nents as follows. We denote

H2·3(GID,uφ, j, k) = H2(j ‖ ιk ‖ Iuφ
) · H3(GID ‖ uφ ‖ j ‖ ιk)

for simplifying the representation of equations. For each t ∈ Sφ and Iuφ
, it has four

different cases to consider:

1. Case 1—(t ∈ Sφ \ ρ([�])) (i.e., the attribute is absent in the challenge policy
(M,ρ))—In this case, B simulates the secret keys according to the real experiment.
It knows αt, yt,j for all j ∈ {2, . . . , smax} in clear and hence can compute

SKφ,t,uφ
= (

n∏

k=1

H1(t ‖ ιk ‖ Iuφ
)αtuιk) ·

smax∏

j=2

n∏

k=1

H2·3(GID,uφ, j, k)yt,juιk

where H3(GID ‖ uφ ‖ j ‖ ιk) were sampled uniformly.
2. Case 2—(t ∈ Sφ ∩ ρ([�]) ∧ Iuφ

�= I∗) (i.e., the attribute is present in the challenge
policy, but the associated index set does not match with the challenge index set) In
this case, B extracts the corresponding exponents of the hash values from the list of
hash queries and computes

SKφ,t,uφ
= (

n∏

k=1

H1(t ‖ ιk ‖ Iuφ
)αtuιk) ·

smax∏

j=2

n∏

k=1

H2·3(GID,uφ, j, k)yt,juιk

where H3(GID ‖ uφ ‖ j ‖ ιk) = g
h′′
3,j,ιk

2 were sampled uniformly from Zq.
3. Case 3—(t ∈ Sφ ∩ρ([�])∧Iuφ

= I∗) and ρ−1(C ∪Sφ) constitutes an unauthorized
subset of the rows of M (i.e., Sφ does not satisfy the challenge policy (M, ρ)).
Note that the inner product value (v0 − v1) ·uφ can be either zero or non-zero

Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 613

in this case. Since Sφ does not satisfy the challenge policy (M, ρ), there exists a
vector dφ = (dφ,1, . . . , dφ,smax) ∈ Z

smax
q such that dφ,1 = 1 and the inner product

M ′
i �dφ = 0 for all i ∈ ρ−1(Sφ), whereM ′

i denotes the i-th row ofM′. B computes
the secret key SKt,u as follows.

SKφ,t,uφ
= (

n∏

k=1

H1(t ‖ ιk ‖ Iuφ
)αtuιk) ·

smax∏

j=2

n∏

k=1

H2·3(GID,uφ, j, k)yt,juιk

= (
n∏

k=1

(gab
2)ηkM ′

ρ−1(t),1
uιk) ·

ŝmax∏

j=2

n∏

k=1

(gab
2)ηkdφ,jM ′

ρ−1(t),j
uιk · g

Lφ(a,b)
2

=
ŝmax∏

j=1

n∏

k=1

(gab
2)ηkdφ,jM ′

ρ−1(t),j
uιk · g

Lφ(a,b)
2

=
n∏

k=1

(gab
2)ηkuιk

(M ′
ρ−1(t)

dφ) · g
Lφ(a,b)
2 = g

Lφ(a,b)
2

where Lφ(a, b) represents a linear function in a, b and hence g
Lφ(a,b)
2 can be effi-

ciently computable by B. The first equality follows from the definition of αt, yt,j

(Eq. (5.1)) and the hash functions H1 (Eq. (5.2)), H2 (Eqs. (5.3) and (5.4)) and H3

(Eqs. (5.5) and (5.6)). The last equality holds since M ′
ρ−1(t)�dφ = 0 and the second

last equality holds since dφ,1 = 1.
4. Case 4—(t ∈ Sφ ∩ ρ([�]) ∧ Iuφ

= I∗) and ρ−1(Sφ) constitutes an authorized
subset of rows ofM (i.e., Sφ satisfies the challenge policy (M, ρ)) – In this case, B
computes the secret key SKφ,t,uφ

as follows.

SKφ,t,uφ
= (

n∏

k=1

H1(t ‖ ιk ‖ Iuφ
)αtuιk) ·

smax∏

j=2

n∏

k=1

H2·3(GID,uφ, j, k)yt,juιk

= (
n∏

k=1

(gab
2)ηkM ′

ρ−1(t),1
uιk) ·

ŝmax∏

j=2

n∏

k=1

((gab
2)ηk

∑Q
φ=1 dφ,j)M ′

ρ−1(t),j
uιk · g

Lφ(a,b)
2

=

⎡

⎣(gab
2)ηkM ′

ρ−1(t),1 ·
ŝmax∏

j=2

(gab
2)ηk

∑Q
φ=1 dφ,jM ′

ρ−1(t),j

⎤

⎦

η ·uφ

· g
Lφ(a,b)
2 = g

Lφ(a,b)
2

where the last equality follows from the fact that η ·uφ = 0 if the secret key query
satisfies the condition (v0 − v1) ·uφ = 0 as Sφ is authorized. Hence, in this case,
B can efficiently simulates the secret key as Lφ(a, b) is linear in a, b.

Generating the Challenge Ciphertext: B implicitly sets the vectors

z = −abc · η = −abc(η1, . . . , ηn) ∈ Z
n
q ,

xj = −(ac, . . . , ac) ∈ Z
n
q , fj = −ac ∈ Zq, ∀j ∈ {2, . . . , ŝmax},

xj = 0 ∈ Z
n
q , fj = 0 ∈ Zq, ∀j ∈ {ŝmax + 1, . . . , smax}

There are two cases to consider according to the authority whether it is corrupted or
non-corrupted.

614 P. Datta and T. Pal

1. Case 1—ρ(i) ∈ C (meaning that the authority associated with this row is
corrupted)—In this case, it holds that M ′

iB = 0 and M ′
i,jxj = 0 for all (i, j) ∈

ρ−1(C) × [ŝmax] since M ′
i |[ŝmax] =

{ ŝmax︷ ︸︸ ︷
0, . . . , 0

}

and due to the above implicit setting

of B,xj . Thus, for each such row, B picks ri ← Zq, and using the authority public
key PKρ(i) = (Yρ(i),1,Yρ(i),2, . . . ,Yρ(i),smax

) obtained from A, it computes

C0 = [[vβ + z]]T , C1,i = [[M ′
iB + ϑi]]T = [[ϑi]]T , C2,i = [[ri]]1,

C3,i,j,k = e([[M ′
i,jxj,k]]1,H2(j ‖ ιk ‖ I∗)) · e(ri[[Yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))

= e(ri[[Yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))
C4,i,j = [[M ′

i,jfj + Yρ(i),jri]]1 = [[Yρ(i),jri]]1

for all i ∈ [�], j ∈ {2, . . . , smax} and k ∈ [n], where ϑi = (ϑi,1, . . . , ϑi,m) and

ϑi,k = e(ri[[Yρ(i)]]1,H1(ρ(i) ‖ ιk ‖ I∗)).

2. Case 2—ρ(i) ∈ N (meaning that the authority associated with this row is
uncorrupted)—Firstly, B sets C0 = [[vβ + z]]T where β is the challenge bit for
A. It also implicitly sets ri = c and the matrix B = (z,0, · · · ,0)� ∈ Z

smax×n
q .

This implies M ′
iB = M ′

i,1z = −M ′
i,1 · abc · η and the k-th element of the vec-

tor is (M ′
iB)k = −M ′

i,1abcηk. Recall that, for each i ∈ [�], we have αρ(i) =
α′

ρ(i)+a ·M ′
i,1 and yρ(i),j = y′

ρ(i),j +aM ′
i,j . Now, B implicitly computes the vector

ϑi := (ϑi,1, . . . , ϑi,m) as

ϑi,k = e(ri[[αρ(i)]]1,H1(ρ(i) ‖ ιk ‖ I∗))

= e([[cα′
ρ(i) + ac · M ′

i,1]]1, [[bηk +
n−1∑

k̂=1

h1,k̂λk,k̂ + h1,ρ(i),ιk
]]2)

= [[bcα′
ρ(i)ηk + M ′

i,1abcηk + (cα′
ρ(i) + ac · M ′

i,1)h1,i,k]]T

where h1,i,k =
∑n−1

k̂=1
h1,k̂λk,k̂ + h1,ρ(i),ιk

. We write h1,i = (h1,ρ(i),ιk
)n
k=1. Thus,

for each i ∈ [�], B sets C2,i = [[c]]1 and computes

C1,i = [[MiB + ϑi]]T = [[bcα′
ρ(i)η + (cα′

ρ(i) + ac · M ′
i,1)h1,i]]T

= e(gc
1, g

b
2)

α′
ρ(i)η · e(gc

1, g2)
α′

ρ(i)hi · e(gc
1, g

a
2)M ′

i,1h1,i

Next, B computes C3,i,j,k as follows. Recall that C3,i,j,k is a product of two pairing
operations. Note that, M ′

i,jxj,k = 0 if j ∈ {ŝmax + 1, . . . , smax}. Thus, for j ∈
{2, . . . , ŝmax}, the first pairing is computed as

e([[M ′
i,jxj,k]]1,H2(j ‖ ιk ‖ I∗))

= e([[M ′
i,jxj,k]]1, (gb

2)
ηk

∑Q
φ=1 dφ,j ·

n−1∏

k̂=1

g
h2,k̂

λ
k,k̂

2 · g
h2,ρ(i),ιk
2)

= [[M ′
i,jxj,kbηkd+j + M ′

i,jxj,kh2,i,k]]T

Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 615

where d+j =
∑Q

φ=1 dφ,j and h2,i,k =
∑n−1

k̂=1
h2,k̂λk,k̂ + h2,ρ(i),ιk

. If j ∈
{2, . . . , ŝmax}, the second pairing is computed as

e(ri[[yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))

= e([[cy′
ρ(i),j + acM ′

i,j]]1, (g
b
2)

ηk

∑Q
φ=1 dφ,j ·

n−1∏

k̂=1

g
h2,k̂

λ
k,k̂

2 · g
h2,ρ(i),ιk
2)

= [[bc(y′
ρ(i),j + aM ′

i,j)ηkd+j + c(y′
ρ(i),j + aM ′

i,j)h2,i,k]]T

Finally, for each i ∈ [�], j ∈ {2, . . . , ŝmax}, k ∈ [n], the ciphertext component
C3,i,j,k is obtained as

C3,i,j,k = e([[M ′
i,jxj,k]]1,H2(j ‖ ιk ‖ I∗)) · e(ri[[yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))

= [[bcy′
ρ(i),jηkd+j + cy′

ρ(i),jh2,i,k]]T

= e(gc
1, g

b
2)

y′
ρ(i),jηkd+

j · e(gc
1, g2)

y′
ρ(i),jh2,i,k

which B can compute as a part of the challenge ciphertext. Now, if j ∈ {ŝmax +
1, . . . , smax}, recall that yρ(i),j are known is clear and hence B computes C3,i,j,k as

C3,i,j,k = e([[M ′
i,jxj,k]]1,H2(j ‖ ιk ‖ I∗)) · e(ri[[yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))

= e(ri[[yρ(i),j]]1, [[h′
2,j,ιk

]]2) = e(gc
1, g2)

yρ(i),jh′
2,j,ιk

for all i ∈ [�], k ∈ [n]. The last remaining part C4,i,j is given by

C4,i,j = [[M ′
i,jfj + yρ(i),jri]]1 = [[−acM ′

i,j + cy′
ρ(i),j + acM ′

i,j]]1 = (gc
1)

y′
ρ(i),j

if i ∈ [�], j ∈ {2, . . . , ŝmax}. Note that, M ′
i,jfj = 0 and yρ(i),j are known in clear

for j ∈ {ŝmax + 1, . . . , smax}. Hence, B computes C4,i,j as

C4,i,j = [[M ′
i,jfj + yρ(i),jri]]1 = [[cyρ(i),j]]1 = (gc

1)
yρ(i),j

for each i ∈ [�], j ∈ {2, . . . , smax}. Observe that, the elements B,xj , fj and ri are
not properly distributed. Thus, B re-randomizes the ciphertext components using the
algorithm CTRand described below before it sends to A.

Ciphertext Re-randomization Algorithm: The algorithm described below provides
properly distributed ciphertexts even if the randomness used within the ciphertexts
inputted into the algorithm are not uniform. The algorithm uses only publicly avail-
able information to perform the re-randomization and hence rectify the distribution of
the challenge ciphertext in the reduction.
CTRand((M, ρ),CT,PK): The algorithm takes input an LSSS access policy (M, ρ),
where M = (Mi,j)�×smax = (M1, . . . ,M�)� ∈ Z

�×smax
q and ρ : [�] → Uatt, a cipher-

text CT =
(
(M, ρ) , C0, {C1,i, C2,i,, C3,i,j,k, C4,i,j}i∈[�],j∈{2,...,smax},k∈[m], Iv

)
, and

the public key components PK such that ρ([�]) ⊆ Uatt.

1. Sample

616 P. Datta and T. Pal

(a) r′
1, . . . , r

′
� ← Zq;x′

2, . . . ,x
′
smax

∈ Z
n
q ; f ′

2, . . . , f
′
smax

∈ Zq,
(b) B′ = (z′, b′

2, . . . , b
′
smax

)� ∈ Z
smax×n
q ,

2. Compute C ′
0 = C0 · [[z′]]T .

3. For all i ∈ [�], j ∈ {2, . . . , smax} and k ∈ [n], compute

C ′
1,i = C1,i · [[MiB′ + ϑ′

i]]T , C ′
2,i = C2,i · [[r′

i]]1,

C ′
3,i,j,k = C3,i,j,k · e([[Mi,jx

′
j,k]]1,H2(j ‖ ιk ‖ I∗)) · e(r′

i[[yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))

C ′
4,i,j = C4,i,j · [[Mi,jf

′
j + yρ(i),jr

′
i]]1

where ϑ′
i = (ϑ′

i,1, . . . , ϑ
′
i,n) and ϑ′

i,k = e(r′
i[[αρ(i)]]1,H1(ρ(i) ‖ ιk ‖ I∗)).

4. Output the ciphertext

CT =
(
(M, ρ) , C ′

0, {C ′
1,i, C

′
2,i,, C

′
3,i,j,k, C ′

4,i,j}i∈[�],j∈{2,...,smax},k∈[m], Iv

)
.

Guess: If A guesses the challenge bit β ∈ {0, 1} correctly, B returns 1; Otherwise B
outputs 0. Now, observe that z = −τ · η where [[τ]]T is the DBDH challenge element.
If τ = abc, then all the secret keys and the challenge ciphertext are distributed properly,
in particular, the challenge ciphertext is an encryption of the message vector vβ for
β ← {0, 1}. Therefore, in this case,A outputs β′ = β with probability 1/2+ε(λ)where
ε(λ) is the advantage of A in the static security game of the MA-ABUIPFE scheme.
On the other hand, if τ is a random element of Zq then the ciphertext element C0 is
uniformly random in GT , and hence from A’s point of view there is no information
of the challenge bit β in the challenge ciphertext. So, the probability of A outputting
β′ = β is exactly 1/2. Hence, by the guarantee of DBDH assumption, A has a non-
negligible advantage against the proposed MA-ABUIPFE scheme in the static security
game. This completes the proof. ��

6 The Proposed Large UniverseMA-ABUIPFE from L-DBDH

In this section, we describe the construction of our LMA-ABUIPFE scheme. The con-
struction is in prime-order groups and additionally uses hash functions that are modelled
as random oracles in the security proof just like our small universe construction.

GlobalSetup(1λ, smax): The global setup algorithm takes input the security parameter
λ and a vector length n both in unary, and the maximum width of an LSSS matrix
supported by the scheme smax = smax(λ). It generates G = (q,G1,G2,GT , g, e) and
specify hash functions H1 : Uatt × Z × Z

∗ → G2, H2 : [smax] × Z × Z
∗ → G2,

H3 : GID × Z
∗ × [smax] × Z → G2 and R :Uatt × [smax] × Z

∗ → G2 mapping
strings (t, j) ∈ Uatt × [smax] to elements in G2. It outputs a global parameter GP =
(G,H1,H2,H3,R).

LocalSetup(GP, θ): The authority setup algorithm takes input the global parameter
GP and an authority index θ ∈ AU . It samples αθ, yθ,2, . . . , yθ,smax ← Zq and outputs
PKθ = ([[αθ]]1, [[yθ,2]]1, . . . , [[yθ,smax]]1) and MSKθ = (αθ, yθ,2, . . . , yθ,smax).

KeyGen(GP,GID,MSKθ , t, u,Iu): The key generation algorithm takes input GP,
the user’s global identifier GID, the authority’s secret key MSKθ, an attribute t con-
trolled by the authority and a vector u ∈ Z

|Iu |
q . It samples τj ← Zp for j ∈ [smax] and

proceeds as follows:

Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 617

1. Parse Iu = {ι1, . . . , ιn} and u = (uι1 , . . . , uιn
).

2. Compute

Kt,u = (
∏n

k=1 H1(t ‖ ιk ‖ Iu)αθuιk) · ∏smax

j=2

∏n
k=1(H2(j ‖ ιk ‖ Iu) · H3(GID ‖ u ‖ j ‖ ιk))yθ,juιk .

3. Compute SKt,u = Kt,u · ∏smax

j=1 R(t ‖ j ‖ Iu)τj and Z
(j)
t = [[τj]]1 ∀ j ∈ [smax].

Output SKGID,t,u = (GID,u,SKt,u ,Z
(j)
t , Iu).

Encrypt(GP, (M, δ),{PKθ}, v,Iv): The encryption algorithm takes input the
global parameter GP, an LSSS access structure (M, δ) whereM = (M1, . . . ,M�)� ∈
Z

�×smax
q and δ : [�] → Uatt, a set {PKθ} of public keys for all the relevant authorities,

and a message vector v ∈ Z
m
q . The function δ maps the row indices ofM to attributes.

We define the function ρ : [�] → AU as ρ(·) = T(δ(·)) which maps row indices of M
to authorities. The algorithm proceeds as follows:

1. Parse Iv = {ι1, . . . , ιm} and v = (vι1 , . . . , vιm
).

2. Sample {ri ← Zq}i∈[�] and f = (f2, . . . , fsmax) ← Z
smax−1
q .

3. Sample z, b2, . . . , bsmax ,x2, . . . ,xsmax ← Z
m
q .

4. Set the matrix B =
[
z, b2, . . . , bsmax

]�
smax×m

.
5. Compute ϑi,k = e(ri[[αρ(i)]]1,H1(ρ(i) ‖ ιk ‖ Iv)) and set ϑi := (ϑi,1, . . . , ϑi,m).
6. Compute the following terms:

C0 = [[v + z]]T , C1,i = [[MiB + ϑi]]T , C2,i = [[ri]]1,
C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ Iv)) · e(ri[[yρ(i),j]]1,H2(j ‖ ιk ‖ Iv)),

C4,i,j = [[Mi,jfj + yρ(i),jri]]1,

for all i ∈ [�], j ∈ {2, . . . , smax}, k ∈ [m].
7. Compute C5,i,j = R(δ(i) ‖ j ‖ Iv)ri for all i ∈ [�], j ∈ [smax].
8. Output the ciphertext

CT =

(

(M, δ) , C0, {C1,i, C2,i,, C3,i,j,k, C4,i,j , C5,i,1, C5,i,j}j∈{2,...,smax},
i∈[�],k∈[m]

, Iv

)

.

Decrypt(GP,GID,CT,{SKGID,t,u}): It takes input the public key PK, a secret key
SKS,u for an attribute set S ⊆ Uatt and a vector u ∈ Z

n
q and a ciphertext CT for an

access structure (M, δ) withM ∈ Z
�×smax
q and a map δ : [�] → Uatt.

Parse SKGID,t,u = (GID,u,SKt,u ,Z
(j)
t , Iu), where i ∈ [�] and CT =

((M, δ), C0, {C1,i, C2,i,, C3,i,j,k, C4,i,j , C5,i,1, C5,i,j}i∈[�],j∈{2,...,smax},k∈[m], Iv).
Denote a set I = {i|δ(i) ∈ S} ⊆ [�]. If (1, 0, . . . , 0) is not in the span of MI (i.e., M
restricted to the set of rows from I) or Iu �= Iv decryption returns ⊥. Else, when S sat-
isfies (M, ρ), the algorithm finds {wi ∈ Zq}i∈I such that (1, 0, . . . , 0) =

∑
i∈I wiMi.

It first computes

[[Λi]]T =
smax∏

j=2

n∏

k=1

uιk
· C3,i,j,k · e(C4,i,j ,H3(GID ‖ u ‖ j ‖ ιk)uιk)

618 P. Datta and T. Pal

and outputs loggT
([[Γ]]T) where [[Γ]]T = C0 ·u · [[μ]]T and

[[μ]]T =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∏

i∈I

⎡

⎢
⎢
⎢
⎢
⎣

C1,i ·u · [[Λi]]T ·
smax∏

j=1

e(Z(j)
δ(i), C5,i,j)

e
(
SKρ(i),u , C2,i

)

⎤

⎥
⎥
⎥
⎥
⎦

wi
⎞

⎟
⎟
⎟
⎟
⎟
⎠

−1

.

Theorem 6.1. If the L-DBDH assumption holds, then all PPT adversaries have a
negligible advantage in breaking the static security of the proposed LMA-ABUIPFE
scheme in the random oracle model.

References

1. Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner-product func-
tional encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol.
11923, pp. 552–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8 19

2. Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-product
functional encryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 128–
157. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 5

3. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes
for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

4. Abdalla, M., Bourse, F., Caro, A.D., Pointcheval, D.: Better security for functional encryp-
tion for inner product evaluations. Cryptology ePrint Archive, Paper 2016/011 (2016).
https://eprint.iacr.org/2016/011

5. Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryption with fine-
grained access control. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol.
12493, pp. 467–497. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4 16

6. Agrawal, S., Bhattacherjee, S., Phan, D.H., Stehlé, D., Yamada, S.: Efficient public trace
and revoke from standard assumptions: Extended abstract. CCS 2017, pp. 2277–2293, New
York, NY, USA (2017). Association for Computing Machinery

7. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13190-5 28

8. Agrawal, S., Goyal, R., Tomida, J.: Multi-input quadratic functional encryption from pair-
ings. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 208–238.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 8

9. Agrawal, S., Goyal, R., Tomida, J.: Multi-party functional encryption. In: Nissim, K., Waters,
B. (eds.) TCC 2021. LNCS, vol. 13043, pp. 224–255. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-90453-1 8

10. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products,
from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-
3 12

11. Benson, K., Shacham, H., Waters, B.: The k-BDH assumption family: bilinear map cryptog-
raphy from progressively weaker assumptions. In: Dawson, E. (ed.) CT-RSA 2013. LNCS,
vol. 7779, pp. 310–325. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36095-4 20

https://doi.org/10.1007/978-3-030-34618-8_19
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-662-46447-2_33
https://eprint.iacr.org/2016/011
https://doi.org/10.1007/978-3-030-64840-4_16
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-030-84259-8_8
https://doi.org/10.1007/978-3-030-90453-1_8
https://doi.org/10.1007/978-3-030-90453-1_8
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-642-36095-4_20
https://doi.org/10.1007/978-3-642-36095-4_20

Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 619

12. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant
size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

13. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44647-8 13

14. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-45682-1 30

15. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-19571-6 16

16. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy expansion,
revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp.
503–534. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 19

17. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized multi-client
functional encryption for inner product. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT
2018. LNCS, vol. 11273, pp. 703–732. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-03329-3 24

18. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full
function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49384-7 7

19. Datta, P., Komargodski, I., Waters, B.: Decentralized multi-authority ABE for DNFs from
LWE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp.
177–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 7

20. Datta, P., Komargodski, I., Waters, B.: Fully adaptive decentralized multi-authority ABE.
Cryptology ePrint Archive, Paper 2022/1311 (2022)

21. Datta, P., Komargodski, I., Waters, B.: Decentralized multi-authority ABE from NC1 from
computational-BDH. Cryptology ePrint Archive, Paper 2021/1325, ePrint (2021)

22. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order groups to
prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 44–61.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 3

23. Gay, R.: A new paradigm for public-key functional encryption for degree-2 polynomials. In:
Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp.
95–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 4

24. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In Proceedings of the 13th ACM conference on Computer
and communications security, pp. 89–98 (2006)

25. Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-order ellip-
tic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013.
LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38980-1 22

26. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree expanding
polynomials over R to build iO. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11476, pp. 251–281. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-
2 9

27. Jain, A., Lin, H., Sahai, A.: Simplifying constructions and assumptions for iO. Cryptology
ePrint Archive, Paper 2019/1252 (2019)

https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-662-49384-7_7
https://doi.org/10.1007/978-3-662-49384-7_7
https://doi.org/10.1007/978-3-030-77870-5_7
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-030-45374-9_4
https://doi.org/10.1007/978-3-642-38980-1_22
https://doi.org/10.1007/978-3-642-38980-1_22
https://doi.org/10.1007/978-3-030-17653-2_9
https://doi.org/10.1007/978-3-030-17653-2_9

620 P. Datta and T. Pal

28. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions.
In: Khuller, S., Williams, V.V. (eds.) STOC 2021: 53rd Annual ACM SIGACT Symposium
on Theory of Computing, Virtual Event, Italy, 21–25 June 2021, pp. 60–73. ACM (2021)

29. Lee, J., Kim, D., Kim, D., Song, Y., Shin, J., Cheon, J.H.: Instant privacy-preserving bio-
metric authentication for hamming distance. Cryptology ePrint Archive, Paper 2018/1214
(2018). https://eprint.iacr.org/2018/1214

30. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20465-4 31

31. Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime
order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 318–335. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 20

32. Nguyen, K., Phan, D.H., Pointcheval, D.: Multi-client functional encryption with fine-
grained access control. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology–ASIACRYPT
2022. ASIACRYPT 2022. LNCS, vol 13791, pp. 95–125. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-22963-3 4

33. Okamoto, T., Takashima, K.: Decentralized attribute-based encryption and signatures. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. 103-A(1), 41–73 (2020)

34. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Paper
2010/556, ePrint (2010)

35. Pal, T., Dutta, R.: Attribute-based access control for inner product functional encryption from
LWE. In: Longa, P., Ràfols, C. (eds.) LATINCRYPT 2021. LNCS, vol. 12912, pp. 127–148.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88238-9 7

36. Rouselakis, Y., Waters, B.: Efficient statically-secure large-universe multi-authority attribute-
based encryption. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 315–
332. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 19

37. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639 27

38. Dufour-Sans, E., Pointcheval, D.: Unbounded inner-product functional encryption with suc-
cinct keys. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019.
LNCS, vol. 11464, pp. 426–441. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21568-2 21

39. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-69053-0 18

40. Tomida, J.: Tightly secure inner product functional encryption: multi-input and function-
hiding constructions. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol.
11923, pp. 459–488. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8 16

41. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple
assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

42. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and prov-
ably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19379-8 4

43. Waters, B., Wee, H., Wu, D.J.: Multi-authority ABE from lattices without random oracles. In:
Kiltz, E., Vaikuntanathan, V. (eds.) Theory of Cryptography. TCC 2022. LNCS, vol. 13747,
pp. 651–679. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22318-1 23

https://eprint.iacr.org/2018/1214
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-031-22963-3_4
https://doi.org/10.1007/978-3-031-22963-3_4
https://doi.org/10.1007/978-3-030-88238-9_7
https://doi.org/10.1007/978-3-662-47854-7_19
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-030-21568-2_21
https://doi.org/10.1007/978-3-030-21568-2_21
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-030-34618-8_16
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-031-22318-1_23

Decentralized Multi-Authority ABIPFE: Large Universe and Unbounded 621

44. Wee, H.: Optimal broadcast encryption and CP-ABE from evasive lattice assumptions.
In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology–EUROCRYPT 2022.
EUROCRYPT 2022. LNCS, vol. 13276, pp. 217–241. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-07085-3 8

45. Zhou, K., Ren, J.: PassBio: privacy-preserving user-centric biometric authentication. IEEE
Trans. Inf. Forensics Secur. 13(12), 3050–3063 (2018)

https://doi.org/10.1007/978-3-031-07085-3_8
https://doi.org/10.1007/978-3-031-07085-3_8

Multi-Client Inner Product Encryption:
Function-Hiding Instantiations Without

Random Oracles

Elaine Shi and Nikhil Vanjani(B)

Carnegie Mellon University, Pittsburgh, USA

nvanjani@cmu.edu

Abstract. In a Multi-Client Functional Encryption (MCFE) scheme, n
clients each obtain a secret encryption key from a trusted authority. Dur-
ing each time step t, each client i can encrypt its data using its secret key.
The authority can use its master secret key to compute a functional key
given a function f , and the functional key can be applied to a collection
of n clients’ ciphertexts encrypted to the same time step, resulting in the
outcome of f on the clients’ data. In this paper, we focus on MCFE for
inner-product computations.

If an MCFE scheme hides not only the clients’ data, but also the func-
tion f , we say it is function hiding. Although MCFE for inner-product
computation has been extensively studied, how to achieve function pri-
vacy is still poorly understood. The very recent work of Agrawal et al.
showed how to construct a function-hiding MCFE scheme for inner-
product assuming standard bilinear group assumptions; however, they
assume the existence of a random oracle and prove only a relaxed, selec-
tive security notion. An intriguing open question is whether we can achieve
function-hiding MCFE for inner-product without random oracles.

In this work, we are the first to show a function-hiding MCFE scheme
for inner products, relying on standard bilinear group assumptions. Fur-
ther, we prove adaptive security without the use of a random oracle. Our
scheme also achieves succinct ciphertexts, that is, each coordinate in the
plaintext vector encrypts to only O(1) group elements.

Our main technical contribution is a new upgrade from single-input
functional encryption for inner-products to a multi-client one. Our
upgrade preserves function privacy, that is, if the original single-input
scheme is function-hiding, so is the resulting multi-client construction.
Further, this new upgrade allows us to obtain a conceptually simple con-
struction.

Keywords: multi-client functional encryption · adaptive security ·
bilinear group

1 Introduction

Multi-Input Functional Encryption (MIFE), first proposed by Goldwasser et
al. [19], allows us to evaluate certain functions on multiple users’ encrypted

N. Vanjani—Author ordering is randomized.

c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 622–651, 2023.
https://doi.org/10.1007/978-3-031-31368-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_22&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_22

Multi-Client Inner Product Encryption 623

data. In MIFE, a trusted setup gives an encryption key to each of n users,
and then each user i can use its encryption key to encrypt some value xi. A
data analyst can ask the trusted setup for a cryptographic token to evaluate
a specific function f . Equipped with the token, the data analyst can evaluate
the outcome f(x1, . . . , xn) when presented with n ciphertexts each encoding
x1, . . . , xn, respectively.

It is also well-understood that the MIFE formulation suffers from some limi-
tations. For instance, it does not make any attempt to limit the mix-and-match
of ciphertexts. The evaluator can take any combination of users’ ciphertexts, one
from each user, to evaluate the function f . As a simple example, imagine that two
users each encrypted two values, x0, x1 and y0, y1, respectively. Then, the evalua-
tor can learn the outcome of f(xb0 , yb1) for any combination of b0, b1 ∈ {0, 1}. In
some applications, this may be too much leakage, and we want to limit the extent
of mix-and-match. As a result, a related notion called Multi-Client Functional
Encryption (MCFE) was introduced [19,26]. One way to understand the MCFE
abstraction is to think of a “streaming” setting [26]: imagine that in every time
step t, each user i encrypts a value xi,t. Given the ciphertexts, the evaluator
can evaluate f(x1,t, . . . , xn,t) for each time step t, but it cannot mix-and-match
the ciphertexts across different time steps and combine them in the evaluation.
This greatly restricts the inherent leakage of the scheme. More generally, MCFE
schemes allow users to encrypt to a label t, and only ciphertexts encrypted to the
same label t can be used together during the functional evaluation. MCFE has
numerous applications. For example, it has been applied to privacy-preserving,
time-series data aggregation [26]. It is also useful in federated learning [14,24]
where a server may wish to (incrementally) train some machine learning model
based on data collected from users’ mobile devices for each period of time. Very
recent work also showed that function-hiding MCFE schemes can be used to
construct a non-interactive anonymous routing scheme [27].

In vanilla MCFE schemes, our goal is to hide the plaintexts. However, in
some applications [10,27], we also want an additional privacy property: not only
should the ciphertexts hide the underlying messages, we also want the tokens to
hide the function f being evaluated. An MCFE scheme that achieves this extra
property is said to be function-hiding or function-private [10].

Status quo of Our Knowledge. The holy grail is to be able to construct
MCFE for general functions from standard assumptions. However, it is believed
that supporting general functions may be no easier than achieving indistinguisha-
bility obfuscation [11,13,21]. On the other hand, assuming the existence of indis-
tinguishability obfuscation and the existence of a random oracle, we can indeed
construct (function-revealing) MCFE for general functions [19].

Given that indistinguishability obfuscation will unlikely become practical in
the near term, a natural question is for which functions can we construct effi-
cient MCFE schemes, and ideally from standard assumptions? Along this direc-
tion, a line of work has explored how to construct (function-revealing) MCFE
schemes for inner product computation, also called Multi-Client Inner-Product

624 E. Shi and N. Vanjani

Encryption (MCIPE)1. This exploration culminated in the work of Libert and
Titiu [22], who showed how to construct an adaptively secure, function-revealing
MCFE from standard lattice assumptions; and moreover, their scheme achieves
succinct ciphertexts (i.e., each client’s ciphertext size does not grow w.r.t. the
number of parties). An independent work of Abdalla et al. [1] also achieved
almost the same result as Libert and Titiu [22], except that 1) they can instan-
tiate their constructions from DDH, LWE, or DCR assumptions; and 2) their
ciphertexts are not succinct and grow linearly in the number of clients. Besides
the work of Libert and Titiu [22] and that of Abdalla et al. [1], all other MCIPE
constructions, even in the function-revealing setting, rely on random oracles for
proving security [4,15,16].

When it comes to function privacy, however, our knowledge is relatively little.
So far, the only known function-hiding MCIPE construction is the elegant work
by Agrawal et al. [10], who constructed such a scheme from standard bilinear
group assumptions, and additionally, assuming the existence of a random oracle;
moreover, their construction is only selectively secure. To date, it remains elusive
how to construct a function-hiding MCIPE scheme without random oracles.

Therefore, the status quo of MCIPE begs the following natural questions:

1. Can we construct an MCIPE scheme with succinct ciphertexts from non-
lattice assumptions and without random oracles? This question is open even
for selective security and without requiring function privacy.

2. Can we construct a function-hiding MCIPE scheme from any standard
assumptions, without random oracles? This question is open even for selective
security, and even without caring about efficiency.

Recall that the recent lower bound result Ünal [29] suggests that one cannot
hope to achieve function-private (even single-input) inner-product encryption
from lattices using a class of natural approaches. Therefore, being able to answer
the first question above could open up more avenues towards eventually getting
function privacy (i.e., the second question).

1.1 Our Results and Contributions

In this paper, we present a new MCIPE scheme from standard bilinear groups
assumptions (against polynomial-time adversaries), and we prove the scheme to
satisfy adaptive, function-hiding security. Our scheme is concretely efficient in
the sense that every coordinate in the plaintext vector encrypts to only O(1)
group elements, and every coordinate in a key vector will result in O(1) group
elements in the functional key.

Therefore, we not only provide an affirmative answer to the above open ques-
tions, we also achieve all the desirable properties in a single unifying construction.
More specifically, we prove the following theorem.

1 Throughout this paper, the term “inner-product encryption” always means “inner-
product functional encryption”. This terminology is standard in this space.

Multi-Client Inner Product Encryption 625

Table 1. Comparison with prior MCIPE schemes where Oλ(·) hides terms
related to the security parameter λ.

Scheme Assumptions Func privacy Adaptive per-coordinate CT

[15] DDH + RO ✘ ✔ Oλ(1)

[1] DDH or DCR or LWE ✘ ✔ Oλ(n)

[22] LWE ✘ ✔ Oλ(1)

[4] (bilinear or DCR or LWE) ✘ ✔ Oλ(1)

+ RO

[10] bilinear + RO ✔ ✘ Oλ(1)

Our work bilinear ✔ ✔ Oλ(1)

Theorem 1. Suppose that the Decisional Linear (DLin) and Decisional Bilin-
ear Diffie-Hellman (DBDH) assumptions hold in suitable bilinear groups.
There exists an MCIPE scheme that satisfies adaptive, function-hiding,
indistinguishability-based security. Moreover, the scheme achieves succinct
ciphertext.

Techniques: A Function-Privacy-Preserving Upgrade from Single-
input to Multi-client. Notably, our MCIPE construction is conceptually sim-
pler than some prior (even function-revealing) constructions. Since the concep-
tual simplicity could make it easier for future work to further extend and improve
our framework, we believe it yet another contribution made by our work.

To get our result, we describe a new upgrade from a single-input inner-
product encryption (IPE) to MCIPE. Further, if the underlying IPE scheme sat-
isfies adaptive function-hiding security, so does the resulting MCIPE scheme.
We believe our upgrade technique can be of independent interest. Previously,
a couple works [1,10] also take the approach of upgrading from a single-input
IPE scheme; however, previous techniques suffer from several drawbacks. Abdalla
et al. [1] showed how to upgrade a single-input IPE scheme to a multi-client
one. Their technique suffers from a couple drawbacks: 1) even if the original
IPE scheme is function-private, their upgrade does not preserve function pri-
vacy; and 2) their upgrade incurs a Θ(n) blowup in the per-client ciphertext
size. The recent work of Agrawal et al. [10] can also be viewed as an upgrade
from a function-hiding IPE to a function-hiding MCIPE scheme—however, as
mentioned, their construction critically relies on a random oracle and is only
selectively secure.

We compare our contributions with prior work in Table 1 where n denotes
the total number of clients.

1.2 Additional Related Work

We now review related work, and explain why some of those ideas do not easily
extend to our new result.

626 E. Shi and N. Vanjani

Multi-input Functional Encryption. As mentioned, multi-input functional
encryption (MIFE), originally proposed by Goldwasser et al. [19], can be viewed
as a weakening of MCFE where all ciphertexts are encrypted to the same label.
This relaxation often makes constructing MIFE easier. For example, for general
functions, we know how to construct MIFE assuming indistinguishability obfus-
cation and other standard cryptographic assumptions. However, when it comes
to MCFE for general functions, we not only need indistinguishability obfusca-
tion but also the random oracle model (unless we can publish separate public
parameters for each different label that will ever be encountered).

A line of work explored how to construct MIFE for inner-product from stan-
dard assumptions. This line culminated in the work of Abdalla et al. [5], who
showed a construction that satisfies adaptive function-hiding security, assuming
standard bilinear group assumptions, and achieving succinct ciphertexts. Again,
their technique does not easily give rise to a multi-client counterpart. In fact,
without the use of a random oracle, we do not even know how to construct a
function-revealing non-lattice-based MCIPE scheme with succinct ciphertexts,
let alone a function-hiding one; and for getting function privacy, it is believed
that there may be potential barriers using lattice techniques [29].

Recently, Agrawal et al. [9] showed how to construct MIFE for quadratic
functions—however, their scheme does not allow corruption of a subset of the
clients and therefore does not directly extend to the multi-client setting; more-
over, their scheme is not function hiding. Abdalla et al. [7] showed how to con-
struct a 2-round MCFE scheme for quadratic functions. In their construction,
encryption involves a 2-round interaction between a client and a set of authori-
ties. Moreover, their scheme is not function hiding.

Throughout our paper (including Table 1), we assume static corruption.
Besides our notion of adaptive security where encryption and key queries can be
chosen adaptively by the adversary, Abdalla et al. [1,2], Libert and Titiu [22]
and Nguyen et al. [25] also considered a different, adaptive corruption notion,
where the clients are corrupted in an adaptive fashion—however, their construc-
tions are non-function-hiding. Abdalla et al. [2] constructed an MIFE scheme
for adaptive corruptions but the scheme is not function-hiding. Abdalla et al. [1]
and Libert and Titiu [22] obtained similar results in the stronger multi-client
setting from pairings and lattice assumptions respectively. Nguyen et al. [25]
constructed MCFE with fine-grained access control from pairings in the RO
model. Our work can also secure against adaptive corruption if we make sub-
exponential assumptions and use standard complexity leveraging techniques. To
the best of our knowledge, no known technique can achieve adaptive corruption
for the function-hiding setting without relying on complexity leveraging, even
for multi-input inner-product encryption, and even for selective-query security.
How to achieve security against adaptive corruption in the function-private set-
ting is an open question. Our current proof techniques adopt a sequence of
hybrids that are incompatible with adaptive corruption—this also applies to
other known constructions with function privacy [10,27]: since we must answer
the queries differently for corrupt coordinates and honest coordinates, the cur-

Multi-Client Inner Product Encryption 627

rent proof framework will not work if the challenger does not have know this
upfront.

The main challenge for adaptive corruption is that in our hybrid sequence,
we make use of a multiple-slot trick tailored for the function-hiding setting—
for example, switching from (x(1)

i , 0m, . . .) and (y∗(1)
i , 0m, . . .) to (x(1)

i ,x(0)
i) and

(y∗(1)
i , 0m, . . .) for an honest coordinate i (see Hybrid Real1 to Hyb0 transition

in Table 2). For adaptive corruption, if i is not corrupt yet but will eventually
become corrupt, we should not make this switch for coordinate i—but we cannot
predict whether i will be eventually corrupt. In the function-revealing schemes [1,
2,22,25], their proofs do not rely on this type of multiple-slot trick making it
much easier to prove adaptive corruption.

Comparison with Shi and Wu [27]. Recently, the work of Shi and Wu [27]
considered a simple special case of inner-product, that is, “selection”. Selec-
tion is the task of selecting one coordinate from the plaintext vector, i.e., inner
product with a special vector where one coordinate is set to 1, and all other
coordinates are set to 0. They showed how to achieve a selective, function-hiding
MCFE scheme for selection. Shi and Wu’s framework cannot be easily extended
to get our result. First, their proof technique only works for proving selective
security, whereas we want to prove adaptive security. Second, their framework is
tailored for selection and does not easily extend to general inner product compu-
tation. Specifically, to construct a function-hiding MCFE scheme for selection,
they first construct a function-revealing MCFE scheme for selection without
RO, and then perform a function-privacy upgrade. We are not able to follow
the same paradigm, since Previously, it was not even known how to construct a
non-lattice-based, function-revealing MCIPE scheme without RO and with suc-
cinct ciphertexts. The only known non-lattice-based, function-revealing MCIPE
scheme without RO is the elegant work by Abdalla et al. [1]. Unfortunately,
their scheme has an Θ(n) blowup in the ciphertext size that we want to avoid.
Although it is known how to construct a function-revealing MCIPE scheme with-
out RO using lattices [22], the recent lower bound result Ünal [29] suggests that
one cannot hope to achieve function-private IPE from lattices using a class of
natural approaches.

Decentralizing MIFE and MCFE Schemes. An elegant line of work [8,
10,15,17] considers how to decentralize the key generation in multi-input and
multi-client functional encryption schemes. The resulting schemes are typically
referred to as ad-hoc MIFE [8] or as dynamic decentralized functional encryption
(DDFE) [10,17]. Roughly speaking, ad-hoc MIFE can be viewed as a general-
ization of MIFE, and DDFE can be viewed as a generalization of MCFE, where
the key generation can be performed in a decentralized fashion without relying
on a trusted party. This line of work culminated in the recent work of Agrawal
et al. [10] who constructed a function-hiding DDFE scheme from bilinear groups
in the random oracle model. Therefore, an interesting question left open by our
work is whether there exists a function-hiding DDFE scheme from standard

628 E. Shi and N. Vanjani

assumptions, without relying on a random oracle. This question is open even for
selective security and even without caring about efficiency.

2 Overview of Our Constructions and Techniques

We now give an informal overview of our construction and proof techniques. In
our subsequent technical sections, we will present formal definitions, detailed
scheme description, and formal proofs.

Notations. Throughout, we will use boldface letters such as x to denote vectors.
Given a bilinear group G×G → GT of prime order q, we use the notation �x� and
�x�T to denote the group encoding of x ∈ Zq in the source and target groups;
and a similar notation is used for vectors too.

2.1 Why Prior Work Needed a Random Oracle

The recent work of Agrawal et al. [10] suggested the following elegant idea
for constructing a function-hiding MCFE scheme for inner-product (also called
MCIPE). Let IPE be a function-hiding inner-product encryption scheme (i.e., a
single-input FE scheme for inner-product). We assume that IPE is built from
suitable bilinear groups. We additionally assume the following nice property
about IPE: the encryption algorithm (denoted Enc) and the functional key gen-
eration algorithm (denoted KGen) should work even when taking in the group
encoding of the plaintext or key vector rather than the vector itself.

Let x = (x1, . . . ,xn) denote the plaintext vector where xi is the component
corresponding to client i ∈ [n]. let y = (y1, . . . ,yn) be the key vector where y is
the component corresponding to client i ∈ [n]. Agrawal et al. [10]’s construction
works as follows. Henceforth let H(·) be a random oracle and let �ρt� = H(t)
which is a hash of the time step t (also called label).

Ciphertext: Functional key:

ct1 = IPE.Enc(imsk1, �x1, ρt�) ⇔ isk1 = IPE.KGen(imsk1, �y1, z1�)
...

...

ctn = IPE.Enc(imskn, �xn, ρt�) ⇔ iskn = IPE.KGen(imskn, �yn, zn�)

In the above, each client i ∈ [n] has an independent IPE instance whose
master secret key is imski also chosen by the trusted setup; the terms z1, . . . , zn

are chosen freshly at random for each client respectively during each KGen
query, such that their summation is 0, that is, z1 + z2 + . . . + zn = 0.

Henceforth, suppose H(t) = �ρt�. To decrypt, we can IPE.Dec(cti, iski) to
obtain the partial decryption 〈xi,yi〉 + ρt · zi encoded as the exponent of some
group element. When we sum up all the partial decryptions, the part ρt · z1 +
ρt · z2 + . . . + ρt · zn cancel out, and we are left with 〈x,y〉.

Intuitively, the ciphertext terms H(t) and key terms zi’s serve to re-
randomize each partial decryption. In this way, the adversary is forced to use all
n clients’ ciphertext components from the same time step to yield a meaningful

Multi-Client Inner Product Encryption 629

decryption result. If the adversary mixes and matches ciphertext components
from different time steps, decryption gives garbage and no information is leaked.
If the adversary uses a proper subset of the clients’ ciphertext components but
not all n of them, decryption also gives garbage. Agrawal et al. [10]’s scheme
critically relies on a random oracle H(·) due to a combination of following rea-
sons:

1. For functionality, the multiple clients must coordinate and put in a common
term that is multiplied with the zi’s during the decryption. Only in this
way, can the randomizing terms cancel out when all partial decryptions are
summed up;

2. For security, the aforementioned common term must be random, and not
only so, must be fresh for each time step t. Henceforth let H denote the set of
honest clients. Without going into full details about their proof, basically, in
some critical step in their hybrid sequence, they want to argue the following
computational indistinguishability statement for some “challenge key” which
involves the terms z∗

1 , . . . , z∗
n:

{�ρt · z∗
i �}i∈H,t=1,2,3,...

c≡ {Ri,t}i∈H,t=1,2,3,... (1)

where {Ri,t}i∈H,t=1,2,3,... are randomly chosen group elements such that the
product is preserved in every time step, that is:

∀t :
∏

i∈H
Ri,t =

∏

i∈H
�ρt · z∗

i � (2)

Agrawal et al. [10] argue that the above holds under the SXDH assumption
as long as each H(t) = �ρt� is a random group element.

In summary, in the scheme by Agrawal et al., the random oracle H(·) allows
the clients to coordinate without communication, and adopt the same random
term that is refreshed for each t in their respective ciphertexts. One näıve way
to avoid the RO is for the trusted step to publish all random {�ρt�}t=1,2,3...

terms in the sky upfront, but then the scheme would not be able to support an
unbounded number of time steps.

2.2 Removing the RO: A Strawman Idea

In Agrawal et al.’s scheme, the coordinated randomness z1, . . . , zn is part of
the functional key; therefore, in the ciphertext, all clients must put in shared
common randomness to pair with these terms. To remove the RO, a strawman
idea is move the coordinated randomness to the ciphertext. To this end, we will
employ a correlated pseudorandom function, denoted CPRF. In a CPRF scheme,
each client i ∈ [n] obtains a secret key Ki from a trusted setup. Then, given a
message t, the user can compute CPRF.Eval(Ki, t) to obtain an outcome that is
computationally indistinguishable from random, subject to the constraint that

∑

i∈[n]

CPRF.Eval(Ki, t) = 0 (3)

630 E. Shi and N. Vanjani

Further, even when a subset of the clients may be corrupted, the outcomes
of the honest clients’ evaluations are nonetheless pseudorandom subject to the
constraint in Eq. (3)—see Sect. 4.2 for the formal definition. Earlier works have
shown how to construct such a CPRF assuming the existence of pseudorandom
functions [1,14]. With such a CPRF, we can construct the following strawman
scheme where we use the shorthand notation CPRF(Ki, t) = CPRF.Eval(Ki, t),
and z denotes a term shared across the different clients 1, . . . , n for the same
functional key, but freshly chosen for every functional key:

Ciphertext: Functional key:

ct1 = IPE.Enc(imsk1, (x1,CPRF(K1, t)) ⇔ isk1 = IPE.KGen(imsk1, (y1, z))
...

...

ctn = IPE.Enc(imskn, (xn,CPRF(Kn, t)) ⇔ iskn = IPE.KGen(imskn, (yn, z))

The use of the CPRF in the above allows the distributed clients to adopt
correlated randomness that is refreshed for each t at encryption time, and thus
avoids the RO. However, the strawman scheme does not work since the security
proof fails to go through. Let H denote the set of honest clients. In a critical
step Agrawal et al.’s proof, they rely on the security of the IPE scheme to hide
the {z∗

i }i∈H terms in some “challenge key”, and instead move information about
�ρt · z∗

i �i∈H,t=1,2,3,... into the ciphertext components—recall that in their scheme,
the term ρt · z∗

i is the randomizing term that protects client i’s message in the
i-th partial decryption. They argue that the terms �ρt · z∗

i �i∈H,t=1,2,3,... are com-
putationally indistinguishable from random except their product is conserved
for every time step t—see Eqs. (1) and (2).

Unfortunately, this strategy no longer works, as now all the key com-
ponents share the same randomness z. When the adversary corrupts
a subset of the clients, it will learn info about the randomness �z∗�
in the challenge key. Additionally, the adversary can gain info about
�CPRF(Ki, t)�i∈H,t=1,2,3,... from the ciphertexts. Hence, the adversary can eas-
ily distinguish {�CPRF(Ki, t) · z∗�}i∈H,t=1,2,3,... from random terms through a
DDH-style attack. We stress that using asymmetric group and SXDH does not
fix this attack, as the ciphertext and the key must come from opposite source
groups to be paired with each other2.

2.3 Our Selectively Secure Construction

We start with the goal of achieving selective security (i.e., assuming that the
adversary must submit all KGen queries ahead of encryption queries), and
2 In Appendix E of the online full version, we show that a variant of the strawman

scheme can indeed be proven secure in a different selective model, i.e., the adversary
must submit all encryption queries ahead of KGen queries. However, we do not
know any easy way to build from this selective scheme and get adaptive security
eventually.

Multi-Client Inner Product Encryption 631

later describe additional techniques for achieving adaptive security. We sketch
our selectively secure construction below—a more formal presentation can be
found in subsequent technical sections. Recall that IPE denotes a function-hiding
(single-input) inner-product encryption scheme. In our scheme the public param-
eters are just the public parameters of the underlying function-hiding secure
IPE scheme.

– Setup: we run n independent instances of IPE.Setup to sample n secret keys
denoted imsk1, . . . , imskn, respectively. We also run the setup algorithm of the
CPRF, and obtain K1, . . . , Kn. Finally, we generate a random ai

$←Zq for each
client i ∈ [n]. In summary, each client’s secret key is composed of the terms
(imski,Ki, ai), and the master secret key is simply the union of all clients’
secret keys.

– KGen: an authority with the master secret key can compute a functional
key for the vector y = (y1, . . . ,yn) ∈ Z

m·n
q as follows where ρ

$←Zq is fresh
randomness:

{iski := IPE.KGen(imski, ỹi)}i∈[n] where ỹi = (yi, 0m, ρ,−ρai, 0)

– Enc: for client i ∈ [n] to encrypt xi ∈ Z
m
q to some label t, it samples μi,t

$←Zq

if it has not been sampled before, and outputs the following ciphertext:

IPE.Enc (imski, x̃i)where x̃i = (xi, 0m,CPRF.Eval(Ki, t) + aiμi,t, μi,t, 0)

– Dec: to decrypt, simply use each iski to decrypt the ciphertext cti from
the i-th client and obtain a partial decryption pi; then, output the discrete
log of

∏
i∈[n] pi. Since decryption requires computing discrete logarithm, the

outcome of the inner-product computation must lie within a polynomially-
bounded space for the decryption to be efficient.

We now show correctness. Suppose that ct1, . . . , ctn are n honestly generated
ciphertexts all for the same label t, and for plaintext vectors x1, . . . ,xn, respec-
tively. Further, suppose that (isk1, . . . , iskn) is the functional key for the vector
y = (y1, . . . ,yn). Then, applying iski to cti gives the partial decryption result

pi = �〈xi,yi〉 + ρ · CPRF.Eval(Ki, t) + ρ · aiμi,t − ρai · μi,t�T

= �〈xi,yi〉 + ρ · CPRF.Eval(Ki, t)�T

Therefore, when we compute the product
∏

i∈[n] pi, the part related to the CPRF

all cancel out, leaving us the term �x,y�T where x := (x1, . . . ,xn).

Intuition. In comparison with the strawman scheme in Sect. 2.2, here we intro-
duce the additional term aiμi,t to protect the randomizing term CPRF.Eval(Ki

, t) in the ciphertext, where ai is part of the master secret key for client i. We also
introduce the extra term �μi,t� to client i’s ciphertext component, and the extra
term �−ρai� to client i’s key component, where ρ shared across all clients’ key
vectors but fresh for each key. These terms make sure that the newly introduced

632 E. Shi and N. Vanjani

Table 2. Sequence of hybrids, where � denotes the most technical step to be
elaborate later. Here we show the vectors passed to the underlying IPE’s Enc and
KGen functions in each hybrid. Qkgen denotes the maximum number of KGen queries
made by the adversary. For conciseness, we write CPRF(Ki, t) as a shorthand for
CPRF.Eval(Ki, t). Note that the ρ term is sampled fresh at random for each KGen
query.

Hybrid Enc KGen Assumption

Real1
(
x
(1)
i ,0,CPRF(Ki, t) + aiμi,t, μi,t, 0

) (
y
(1)
i ,0, ρ, −ρai, 0

)

Hyb0

(
x
(1)
i ,x

(0)
i ,CPRF(Ki, t) + aiμi,t, μi,t, 0

) (
y
(1)
i ,0, ρ, −ρai, 0

)
FH-IND of IPE

Hyb�

� ∈ [Qkgen]

same as

Hyb0

first �:(
0,y

(0)
i , ρ, −ρai, 0

)

remaining:(
y
(1)
i ,0, ρ, −ρai, 0

)
explained

below �

Hyb∗
(
0,x

(0)
i ,CPRF(Ki, t) + aiμi,t, μi,t, 0

) (
0,y

(0)
i , ρ, −ρai, 0

)
FH-IND of IPE

Real0
(
x
(0)
i ,0,CPRF(Ki, t) + aiμi,t, μi,t, 0

) (
y
(0)
i ,0, ρ, −ρai, 0

)
FH-IND of IPE

aiμi,t term would cancel out during decryption, such that each client’s partial
decryption result is preserved as in the strawman scheme.

In our security proof, we will rely on the security of IPE to hide the
�−ρ∗ · ai�i∈H terms pertaining to honest clients H from some “challenge
key” whose shared randomness is ρ∗, and instead move information about
{�ρ∗ · CPRF.Eval(Ki, t)�}i∈H,t=1,2,3,... to the honest clients’ ciphertext compo-
nents (see hybrid H�−1,1 in Sect. 2.4). We then argue that under the Deci-
sional Linear assumption, the terms {�ρ∗ · CPRF.Eval(Ki, t)�}i∈H,t=1,2,3,... are
computationally indistinguishable from random terms such that for each t
their product is conserved (see hybrid H�−1,3 of Sect. 2.4). Moreover, the
above should hold even when the adversary may have information about
�ρ∗� (from knowledge of the challenge key and corrupt clients’ master secret
keys), {�CPRF.Eval(Ki, t)�}i∈H,t=1,2,3,... (from honest clients’ ciphertexts), and
{�ρ · ai�}i∈H for any ρ contained in a non-challenge key (from knowledge of
non-challenge keys).

2.4 Proving Selective Function-Hiding Security

We first describe how to prove selective, function hiding security, assum-
ing that the underlying IPE scheme satisfies selective, function-hiding,
indistinguishability-based security, the CPRF scheme is secure, and that the
Decisional Linear problem is computationally hard. Later in Sect. 2.5, we dis-
cuss the additional techniques needed for proving adaptive security.

To prove that our scheme satisfies selective function-hiding indisting-
uishability-based security, we need to go through a sequence of hybrids as shown
in Table 2. Note that Table 2 shows only how the challenger generates ciphertext

Multi-Client Inner Product Encryption 633

Table 3. Selective security: inner hybrids to go from Hyb�−1 to Hyb�. y
∗(b) :=

(y
∗(b)
1 , . . . ,y

∗(b)
n) for b ∈ {0, 1} denote the key vectors submitted in the �-th KGen

query, and ρ∗ is the randomness used in the �-th KGen query.

Hybrid Assumption

Hyb�−1 see Table 2

H�−1,1

Enc :(
x
(1)
i ,x

(0)
i ,CPRF(Ki, t) + aiμi,t, μi,t,CPRF(Ki, t) · ρ∗ + 〈x(1)

i ,y
∗(1)
i 〉

)

KGen : first � − 1:
(
0m,y

(0)
i , ρ, −ρai, 0

)

�-th: (0m, 0m, 0, 0, 1)

remaining:
(
y
(1)
i , 0m, ρ, −ρai, 0

)

FH-IND

of

IPE

H�−1,2

Enc :
(
x
(1)
i ,x

(0)
i , Ri,t + aiμi,t, μi,t, Ri,t · ρ∗ + 〈x(1)

i ,y
∗(1)
i 〉

)

where
∑

i∈H Ri,t = − ∑
i∈K CPRF(Ki, t)

KGen : same as H�−1,1

correlated

pseudorand.

of CPRF

H�−1,3

Enc :
(
x
(1)
i ,x

(0)
i , Ri,t + aiμi,t, μi,t, Ti,t + 〈x(1)

i ,y
∗(1)
i 〉

)

where
∑

i∈H Ti,t = −ρ∗ · ∑
i∈K CPRF(Ki, t)

KGen : same as H�−1,1

DLin

H′
�−1,3

Enc :
(
x
(1)
i ,x

(0)
i , Ri,t + aiμi,t, μi,t, Ti,t + 〈x(0)

i ,y
∗(0)
i 〉

)

where
∑

i∈H Ti,t = −ρ∗ · ∑
i∈K CPRF(Ki, t)

KGen : same as H�−1,1

identically

distributed

H′
�−1,2

Enc :
(
x
(1)
i ,x

(0)
i , Ri,t + aiμi,t, μi,t, Ri,t · ρ∗ + 〈x(0)

i ,y
∗(0)
i 〉

)

where
∑

i∈H Ri,t = − ∑
i∈K CPRF(Ki, t)

KGen : same as H�−1,1

DLin

H′
�−1,1

Enc :(
x
(1)
i ,x

(0)
i ,CPRF(Ki, t) + aiμi,t, μi,t,CPRF(Ki, t) · ρ∗ + 〈x(0)

i ,y
∗(0)
i 〉

)

KGen : same as H�−1,1

correlated

pseudorand.

of CPRF

Hyb� see Table 2

FH-IND

of

IPE

and key components for an honest client i ∈ [n]. For a corrupted client i, the
security game stipulates that x(0)

i = x(1)
i and y(0)

i = y(1)
i , and thus the challenger

simply runs the honest Enc or KGen algorithm as in the real world.
The steps where we apply the function-hiding indistinguishability security

(denoted FH-IND in Table 2) of the underlying IPE are relatively straightforward.
The most technical part in the proof is to argue that Hyb�−1 is computationally
indistinguishable from Hyb� for � ∈ [Qkgen], where we are switching the keys
queries one by one from world 1 to world 0. In Hyb�−1, the first �−1 key queries
are answered using y∗(0), whereas the remaining are answered using y∗(1). We
want to switch the �-th key query to using y∗(0) instead which will lead to Hyb�.

634 E. Shi and N. Vanjani

To this end, we carry out another sequence of inner hybrids as shown in Table 3.
We first rely on the security of the IPE scheme to accomplish the following (see
the experiment H�−1,1):

1. move information about �CPRF(Ki, t)ρ∗ + 〈x(1)
i ,y∗(1)

i 〉�i∈H,t=1,2,3,... from the
key to the honest ciphertexts, where ρ∗ denotes the shared randomness in the
challenge key query; and

2. remove information about �ρ∗ai�i∈H from the challenge key.

At this moment, we can switch the �CPRF(Ki, t)ρ∗�i∈H,t=1,2,3,... terms in the
honest ciphertexts to random denoted �Ti,t�i∈H,t=1,2,3,... (subject to the con-
straint that their product is preserved in each time step t), and uncorrelate these
terms with the other ciphertext terms containing information about CPRF(Ki, t).
This can be accomplished through a reduction to the security of the CPRF and
the Decisional Linear assumption (hybrids H�−1,2 and H�−1,3). The Decisional
Linear step is arguably the most technical step in our selective security proof,
and we provide the detailed proof in Claim 4 in the subsequent formal sections
(see also the intuition in Sect. 2.3).

At this moment, we can switch the terms �Ti,t + 〈x(1)
i ,y∗(1)

i 〉�i∈H,t=1,2,3,...

contained in the honest ciphertexts to �Ti,t + 〈x(0)
i ,y∗(0)

i 〉�i∈H,t=1,2,3,... through
an information theoretic step. For this step to hold, we rely on the admis-
sibility rule imposed on the adversary, that is, for any honest plaintexts{(

x(0)
i ,x(1)

i

)}

i∈H
queried for the same label t, and for any pair of key vectors

queried
(
y(0),y(1)

)
,

〈
{x(0)

i }i∈H, {y(0)
i }i∈H

〉
=

〈
{x(1)

i }i∈H, {y(1)
i }i∈H

〉
(4)

This admissibility rule implies that if for some i ∈ H, the pair (x(0)
i ,x(1)

i) and
the pair (x̃(0)

i , x̃(1)
i) were queried on the same label t, then the following must

hold for any key pair (y(0),y(1)) queried:
〈
x(0)

i ,y(0)
i

〉
−

〈
x̃(0)

i ,y(0)
i

〉
=

〈
x(1)

i ,y(1)
i

〉
−

〈
x̃(1)

i ,y(1)
i

〉
(5)

Finally, we can go through symmetric steps mirroring the first half of proof, and
eventually arrive at Hyb�.

2.5 Achieving Adaptive Function-Hiding Security

We need additional techniques for proving adaptive security. To aid understand-
ing, it helps to first observe why our previous proof is inherently selective. In
a critical step (i.e., from Hyb�−1 to Hyb�) where we switched the challenge key
(i.e., the �-th key query) from (y∗(1)

i ,0, ρ∗,−ρ∗ai, 0) to (0,y∗(0)
i , ρ∗,−ρ∗ai, 0), we

need to go through an inner hybrid experiment where we remove information
about {ρ∗ai}i∈H from the honest clients’ key components, and instead encode

Multi-Client Inner Product Encryption 635

information about {CPRF(Ki, t) · ρ∗ + 〈x(1)
i ,y∗(1)

i 〉}i∈H into the ciphertexts (see
the experiment H�−1,1). In this step, we made use of the fact that the challenger
knows the challenge key vector y∗ upfront.

In adaptive security, the adversary need not commit to all the key queries
upfront. A näıve approach to prove adaptive security is via complexity leverag-
ing, i.e., the challenger guesses the challenge key query upfront, and abort the
experiment if the guess turns out to be wrong later. The problem with this app-
roach is that it incurs exponential loss in the security failure, and therefore we
would have to make the underlying computationally assumptions secure against
sub-exponential time adversaries to absorb this security loss. By contrast, our
approach does not incur such a loss in security, and we can thus reduce the
adaptive function-hiding security of our MCIPE scheme to standard assump-
tions against polynomial-time adversaries.

Specifically, we show that the scheme described in Sect. 2.3, when instantiated
with a particular IPE scheme that satisfies adaptive, function-hiding indistin-
guishable security, the resulting MCIPE scheme would indeed satisfy function-
hiding, adaptive security. To prove this, we can no longer treat the underlying
IPE as a blackbox as in our selective security proof. We need to completely
unwrap the construction and rely on properties of the specific IPE employed to
prove adaptive security. Our proof techniques are inspired by those of Abdalla et
al. [5], who constructed an adaptively secure, multi-input inner-product encryp-
tion (MIIPE). MIIPE can be considered as a special case of MCIPE where all
ciphertexts have the same label (or time step). This relaxation makes it easier
to construct MIIPE. Therefore, the adaptive function-hiding MIIPE scheme by
Abdalla et al. [5] does not easily imply a multi-client counterpart. In particular,
for MCIPE, unless we are willing to tolerate linear in n ciphertext size per client,
all known non-lattice-based constructions require RO, even for function-revealing
constructions [4,10,15].

Our adaptively Secure Scheme. Concretely, we first apply the function-
privacy upgrade of Lin [23] to an adaptively secure, function-revealing
IPE scheme of Abdalla et al. [5], resulting in an adaptively secure, weak-function-
hiding IPE scheme. We then use the resulting IPE scheme to instantiate our
MCIPE scheme described in Sect. 2.3. The resulting MCIPE scheme, when
unwrapped, is as follows—it turns out that we will not need the last slot in
the ciphertexts and keys for each client in our adaptive proof, so we remove it
from this construction:

– Setup: we generate ai
$←Zq and random matrices Ai,Bi

$←Z
(k+1)×k
q of full

rank k, Ui
$←Z

(2m+2)×(k+1)
q , Vi

$←Z
(2m+k+3)×(k+1)
q for each client i ∈ [n]. We

also run the setup algorithm of the CPRF, and obtain K1, . . . , Kn. In sum-
mary, each client’s secret key is composed of the terms (Ai,Bi,Ui,Vi,Ki, ai),
and the master secret key is simply the union of all clients’ secret keys.

– KGen: an authority with the master secret key can compute a functional key
for the vector y = (y1, . . . ,yn) ∈ Z

m·n
q as follows where ỹi = (yi, 0m, ρ,−ρai)

636 E. Shi and N. Vanjani

for some fresh random ρ
$←Zq, ti

$←Z
k
q :

{
�di� = �

(
I,Ui

)T
ỹi + ViBiti�, �d′

i� = �−Biti�
}

i∈[n]

– Enc: for client i ∈ [n] to encrypt a vector xi ∈ Z
m
q to some label t, it samples

μi,t
$←Zq if it has not been sampled before, and outputs the following:

(
�ci� = �

(
(x̃i + UiAisi)T , (−Aisi)T

)T
�, �c′

i� = �VT
i ci�

)

where x̃i = (xi, 0m,CPRF.Eval(Ki, t) + aiμi,t, μi,t)

– Dec: to decrypt, simply compute e
(
�cT

i �, �di�
) · e

(
�c′T

i �, �d′
i�

)
for the i-

th client and obtain a partial decryption pi; then, output the discrete log
of

∏
i∈[n] pi. Since decryption requires computing discrete logarithm, the

outcome of the inner-product computation must lie within a polynomially-
bounded space for the decryption to be efficient.

Proof Roadmap for Adaptive Security. In our adaptive proof, the outer
hybrids remain the same as in Table 2 except that we now need the underlying
IPE scheme to have adaptive function-hiding security for make the switches. To
switch from Hyb�−1 to Hyb�, we can no longer rely on the previous sequence
of inner hybrids (Table 3). Instead, we provide a new sequence of inner hybrids
outlined in Table 4.

As shown in Table 4, there are a couple important differences between the pre-
vious selective proof and our new adaptive proof. In the selective proof, we switch
the challenge key query to IPE functional keys of the vector (0m, 0m, 0, 0, 1).
This allowed us to erase not just information about {ρ∗ai}i∈H, but also infor-
mation about the challenge vector {y∗(1)

i }i∈H from the challenge key. Instead,
this information is moved to the honest ciphertexts reflected in the terms
�CPRF(Ki, t) · ρ∗ + 〈x(1)

i ,y∗(1)
i 〉�i∈H,t=1,2,3,.... But this would require the chal-

lenger to know the challenge vector in advance, which we now want to avoid.
In our adaptive proof, we instead switch the challenge key query to IPE

functional keys of the vector (y∗(1)
i , 0m, 0, 0). Here we only remove infor-

mation about {ρ∗ai}i∈H from the challenge key, but we retain information
about the challenge vector {y∗(1)

i }i∈H. Therefore, we only move the terms
�CPRF(Ki, t) · ρ∗�i∈H,t=1,2,3,... to the honest ciphertexts, and the challenger need
not know the challenge key vector in advance to do so. Not only so, here, to make
this switch, we rely on the structure of the underlying IPE in a non-blackbox
fashion (see hybrids H�−1,1 and H�−1,2). At this moment, we switch the chal-
lenge key from using (y∗(1)

i , 0m, 0, 0) to (0m,y∗(0)
i , 0, 0) for all i ∈ H. To make

this switch, we make non-blackbox usage of the structure of the underlying IPE,
and argue that this switch can be made without affecting the distribution at
all, i.e., H�−1,4 and H′

�−1,4 are identically distributed, as long as the adversary
satisfies the admissibility rule stated in Eq. (4) which also implies Eq. (5). The

Multi-Client Inner Product Encryption 637

rest of the proof takes mirroring steps as the first half to eventually reach hybrid
Hyb�.

The formal proof of adaptive, function-hiding security will be presented in
Appendix B.4 of the online full version.

Why We Use IPE in a Non-blackbox Way. In our hybrid sequence for
both selective and adaptive proofs, at some point of time we need to switch
the inner products from 〈x(1)

i ,y∗(1)
i 〉 to 〈x(0)

i ,y∗(0)
i 〉. This step cannot rely on

the function-hiding security of IPE because it is possible that 〈x(1)
i ,y∗(1)

i 〉 	=
〈x(0)

i ,y∗(0)
i 〉 for some honest user i ∈ H. So, our idea is to make this switch in

a way that the two resulting distributions are identically distributed (H�−1,3 to
H′

�−1,3 in the selective proof in Table 3 and H�−1,4 to H′
�−1,4 in the adaptive proof

in Table 4). To make this switch in the selective proof, we first switch to a hybrid
(H�−1,3 in Table 3) in which 〈x(1)

i ,y∗(1)
i 〉 is in the ciphertext, where we rely on

the external randomizing terms Ti,t to mask 〈x(1)
i ,y∗(1)

i 〉. However, using this
technique means we have to know the key queries upfront.

In our adaptive proof, we need to find another way for the proof to go through
without knowledge of the key queries. The key step is going from H�−1,4 to
H′

�−1,4 in Table 4, where we switch the key from (y∗(1)
i , 0m, . . .) to (0m,y∗(0)

i , . . .).
Here, we argue that making the switch does not affect the distribution if the
admissibility rule holds—to do so, we rely on the internal randomness inside the
(single-input) IPE scheme, since we no longer can leverage the external random
masks Ti,t as before.

Why Tomida’s Techniques do Not Work. We compare with Tomida [28]
and explain why their techniques do not work in the online full version.

2.6 Removing the “All-or-Nothing” Admissibility Rule

So far, our scheme is proven secure in an “all-or-nothing” query setting, that is,
for every label t, the adversary must either make at least one ciphertext query
on behalf of every honest client, or make none such queries at all. Although it
is known that one can remove this restriction on the adversary by wrapping the
MCIPE ciphertexts inside a layer of “all-or-nothing encryption” [10,16,17], we
cannot use the existing techniques as is to get adaptive security and succinct
ciphertext at the same time. Recall that in an all-or-nothing encryption (AoNE)
scheme [10,16,17], if one collects n clients’ ciphertexts encrypted to the same
label t, then all of them can be decrypted. Otherwise if the collection is not
complete for some label t, then no ciphertext encrypted to t can be decrypted
and all the plaintexts are kept secret.

Unfortunately, previous AoNE constructions [16,17] are either not efficient
in the sense that the per-client ciphertext size grows linearly with respect to
the number of parties [17]; or rely on a random oracle [16,17]. Moreover, it is
also not clear how to extend the existing proof techniques (for removing the
“all-or-nothing” query restriction) to the adaptive function-hiding setting while
retaining succinct ciphertext size [1,16,17].

638 E. Shi and N. Vanjani

Table 4. Adaptive security: inner hybrids to go from Hyb�−1 to Hyb�.

y∗(b) := (y
∗(b)
1 , . . . ,y

∗(b)
n) for b ∈ {0, 1} denote the key vectors submitted in the �-

th KGen query, and ρ∗ is the randomness used in the �-th KGen query. Values ui in
H�−1,1, . . . ,H

′
�−1,1 and b⊥

i in H�−1,2, . . . ,H
′
�−1,2 are sampled once ∀i ∈ [n] at Setup.

Hybrid assumption

Hyb�−1

Enc : ci =
(
(x̃i + UiAisi)

T , (−Aisi)
T
)T

, c′
i = VT

i ci

where x̃i =
(
x
(1)
i ,x

(0)
i ,CPRF(Ki, t) + aiμi,t, μi,t

)

KGen : di =
(
I,Ui

)T

ỹi + ViBiti, d′
i = −Biti,

where ỹi is as follows based on which KGen query it is:

first � − 1:
(
0m,y

(0)
i , ρ, −ρai

)
, else:

(
y
(1)
i , 0m, ρ, −ρai

)

H�−1,1

Enc : same as Hyb�−1

KGen : di =
(
I,Ui

)T

ỹi + Vi(Biti + ui), d′
i = −(Biti + ui),

where ui ← Z
k+1
q \ span(Bi) and ỹi is same as Hyb�−1

k-MDDH

H�−1,2

Enc : ci, x̃i : same as H�−1,1, c′
i = VT

i ci−(b⊥
i)ρ∗CPRF(Ki, t)

where b⊥
i ← orth(Bi) s.t. 〈ui,b

⊥
i 〉 = 1

KGen : di,d
′
i : same as H�−1,1 except

ỹi is as follows based on which KGen query it is:

�-th:
(
y

∗(1)
i , 0m, 0, 0

)
, else: same as H�−1,1

identically

distributed

H�−1,3

Enc : ci : same as H�−1,1 except x̃i =
(
x
(1)
i ,x

(0)
i , Ri,t + aiμi,t, μi,t

)

c′
i = VT

i ci − (b⊥
i)ρ∗Ri,t where∑

i∈H Ri,t = − ∑
i∈K CPRF(Ki, t)

KGen : same as H�−1,2

correlated

pseudorand.

of CPRF

H�−1,4

Enc : ci, x̃i : same as H�−1,1, c′
i = VT

i ci − (b⊥
i)Ti,t

where
∑

i∈H Ti,t = −ρ∗ ∑
i∈K CPRF(Ki, t)

KGen : same as H�−1,2

DLin

H′
�−1,4

Enc : same as H�−1,4

KGen : di,d
′
i : same as H�−1,4 except ỹi is as follows

based on which KGen query it is:

�-th:
(
0m,y

∗(0)
i , 0, 0

)
, else: same as H�−1,1

identically

distributed

H′
�−1,3

Enc : ci, x̃i : same as H�−1,1, c′
i = VT

i ci − (b⊥
i)ρ∗Ri,t

where
∑

i∈H Ri,t = − ∑
i∈K CPRF(Ki, t)

KGen : same as H′
�−1,4

DLin

H′
�−1,2

Enc : ci : same as H�−1,1, c
′
i = VT

i ci − (b⊥
i)ρ∗CPRF(Ki, t)

x̃i =
(
x
(1)
i ,x

(0)
i ,CPRF(Ki, t) + aiμi,t, μi,t

)

KGen : same as H′
�−1,4

correlated

pseudorand.

of CPRF

H′
�−1,1

Enc : ci, x̃i : same as H�−1,1, c′
i = VT

i ci

KGen : di,d
′
i : same as H′

�−1,2 except ỹi is as follows

based on which KGen query it is:

�-th:
(
0m,y

∗(0)
i , ρ∗, −ρ∗ai

)
, else: same as H�−1,1

identically

distributed

Hyb� see Table 2 k-MDDH

Multi-Client Inner Product Encryption 639

We propose new techniques for performing this upgrade without asymptot-
ically blowing up the ciphertext size, without random oracles, while retaining
the adaptive function-hiding security. To make this work, we additionally make
the following contributions:

– In Appendix C of the online full version, we construct a new, adaptively secure
AoNE scheme that achieves succinct ciphertexts, and reduce its security to
Decisional Bilinear Diffie-Hellman assumption.

– Even with an adaptively secure AoNE scheme, it turns out to be difficult to
directly prove the security of the upgraded scheme in the adaptive function-
hiding setting. We overcome this challenge by introducing a stepping stone:
we first prove that the upgraded construction satisfies a relaxed notion
called adaptive weak-function-hiding security. We then rely on standard tech-
niques [23,27] to upgrade the resulting adaptive weak-function-hiding MCIPE
scheme to one that satisfies full adaptive function-hiding security.

We defer the detailed exposition of these new techniques to Appendices C
and D of the online full version.

3 Definitions: Multi-Client Inner Product Encryption

Henceforth, we use m to denote the number of coordinates encrypted by each
client, and use n to denote the number of clients. In a Multi-Client Inner-Product
Functional Encryption (MCIPE) scheme, in every time step, each client i ∈ [n]
encrypts a vector xi ∈ Z

m
q using its private key eki. An authority holding a

master secret key msk can generate a functional key sky for a vector y ∈ Z
mn
q =

(y1,y2, . . . ,yn) where each yi ∈ Z
m
q . One can now apply the functional key sky

to the collection of all n clients’ ciphertexts belonging to the same time step,
and an evaluation procedure gives the result 〈x,y〉 where x := (x1, . . . ,xn).

We use a standard notion of selective indistinguishability for multi-client
inner-product encryption [10]. In this standard definition, the time step t is
generalized and encoded as an arbitrary label, and only ciphertexts encrypted
to the same label can be combined during the decryption process. Mix-and-match
among ciphertexts encrypted to different labels should be prevented; however,
mix-and-match among the same label is allowed. Formally, an MCIPE scheme
consists of the following possibly randomized algorithms:

– pp ← Gen(1λ): the parameter generation algorithm Gen takes in a security
parameter λ and chooses parameters pp—we will assume that pp contains a
λ-bit long prime number q ∈ N and the description of a suitable cyclic group
G of prime order q.

– (mpk,msk, {eki}i∈[n]) ← Setup(pp,m, n): takes in the parameters q, G, m,
and n, and outputs a public key mpk, a master secret key msk, and n user
secret keys needed for encryption, denoted ek1, . . . , ekn, respectively. Without
loss of generality, henceforth we may assume that mpk encodes pp so we need
not write the parameters pp explicitly below.

640 E. Shi and N. Vanjani

– sky ← KGen(mpk,msk,y): takes in the public key mpk, the master secret
key msk, and a vector y ∈ Z

mn
q , and outputs a functional secret key sky.

– cti,t ← Enc(mpk, eki,xi, t): takes in the public key mpk, a user secret key eki,
a plaintext xi ∈ Z

m
q , and a label t ∈ {0, 1}∗, outputs a ciphertext cti,t.

– v ← Dec(mpk, sky, {cti,t}i∈[n]): takes in the public key mpk, the functional
secret key sky, and a collection of ciphertexts {cti,t}i∈[n], outputs a decrypted
outcome v ∈ Zq.

Correctness. For correctness, we require that for any λ ∈ N, for any pp :=
(q, . . .) in the support of Gen(1λ), the following holds with probability 1 for any
m,n ∈ N: for any y ∈ Z

mn
q , and any x := (x1, . . . ,xn) ∈ Z

n
q , and any t ∈ {0, 1}∗:

let (mpk,msk, {eki}i∈[n]) ← Setup(pp,m, n), let sky ← KGen(mpk,msk,y), let
cti,t ← Enc(mpk, eki,xi, t) for i ∈ [n], and let v ← Dec(mpk, sky, {cti,t}i∈[n]}),
it must be that v = 〈x,y〉.
Function-hiding IND-security for MCIPE . Consider the following experi-
ment between an adversary A and a challenger C.

Experiment MCIPE-Exptb(1λ):
– Setup. A(1λ) outputs a set of corrupted parties K ⊂ [n], as well as

the parameters m and n to the challenger C. The challenger C runs
pp ← Gen(1λ), and (mpk,msk, {eki}i∈[n]) ← Setup(pp,m, n); it gives
mpk and {eki}i∈K to A.

– Query. The adversary can make the following types of queries:
• KGen queries. Whenever the adversary A makes a KGen query

with two vectors y(0) ∈ Z
mn
q and y(1) ∈ Z

mn
q : C calls sky(b) :=

KGen(mpk,msk,y(b)) and returns sky(b) to A;
• Enc queries. Whenever A makes an Enc query with the tuple

(i, t,x(0)
i,t ,x(1)

i,t), the challenger C calls cti,t := Enc(mpk, eki,x
(b)
i,t , t)

and returns cti,t to A;

An adversary A is said to be admissible iff the following hold with probability
1 where H := [n]\K denotes the set of honest clients:

1. for every label t ∈ {0, 1}∗, either for every i ∈ H, A has made at least one
Enc query of the form (i, t, ,), or A made no Enc query of the form (i, t, ,)
for any i ∈ H.

2. if A ever makes an Enc query with the tuple (i, t,x(0)
i,t ,x(1)

i,t) for some corrupt

i ∈ K, it must be that x(0)
i,t = x(1)

i,t ;
3. for any pair (y(0),y(1)) submitted in a KGen query where for b ∈ {0, 1},

y(b) := (y(b)
1 , . . ., y(b)

n) ∈ {0, 1}mn, it must be that
(a) for i ∈ K, y(0)

i = y(1)
i .

(b) for any collection {x(0)
i,t ,x(1)

i,t }i∈H pertaining to the same t where each pair

(x(0)
i,t ,x(1)

i,t) for i ∈ H has been submitted in an Enc query of the form

Multi-Client Inner Product Encryption 641

(i, t,x(0)
i,t ,x(1)

i,t),

〈
(x(0)

i,t)i∈H, (y(0)
i)i∈H

〉
=

〈
(x(1)

i,t)i∈H, (y(1)
i)i∈H

〉
(6)

Definition 1 (Adaptive, function-hiding IND-security of MCIPE). We
say that an MCIPE scheme is adaptive, function-hiding IND-secure iff for any
non-uniform probabilistic polynomial-time admissible adversary A, its views in
MCIPE-Expt0(1λ) and MCIPE-Expt1(1λ) are computationally indistinguishable.

Definition 2 (Selective, function-hiding IND-security of MCIPE). We
say that an MCIPE scheme is selective, function-hiding IND-secure iff for any
non-uniform probabilistic polynomial-time (PPT) admissible adversary A also
satisfying an additional constraint that A always makes all KGen queries ahead
of any Enc query, its views in MCIPE-Expt0(1λ) and MCIPE-Expt1(1λ) are com-
putationally indistinguishable.

Remark 1 (The all-or-nothing admissibility rule). We also call the first admis-
sibility rule the “all-or-nothing” admissibility rule. Jumping ahead, this rule is
necessary later to show that the hybrids H�,3 and H′

�,3 are identically distributed.
In Appendices C and D.2 of the online full version, we present new techniques
for eventually removing the all-or-nothing admissibility rule, thus strengthening
the security of the scheme.

4 Preliminaries

We review bilinear groups and relevant hardness assumptions in Appendix A of
the online full version.

4.1 Function-Hiding (Single-Input) Inner Product Encryption

We will need a single-input inner-product encryption scheme—henceforth we
call this building block Inner Production Encryption (IPE). IPE can be viewed
as a special case of multi-client inner product encryption when n = 1. However,
we will need our underlying IPE to satisfy a few nice properties, including the
fact that Enc and KGen should still work when taking in the group encoding
of the plaintext or key vector; moreover, we want that the scheme computes
the “inner-product in the exponent”. Formally, the special IPE scheme we need
consists of the following possibly randomized algorithms:

– pp ← Gen(1λ): takes in a security parameter λ and samples public parame-
ters pp. We will assume that pp contains the description of a bilinear group
(G,GT) of prime order q, a random generator g ∈ G, and the description of
the pairing operator e : G × G → GT .

– imsk ← Setup(pp,m): takes in the public parameters pp and the dimension
m of the plaintext vector, outputs a secret key imsk.

642 E. Shi and N. Vanjani

– sky ← KGen(imsk, �y�): takes in the secret key imsk, and a vector of group
elements �y� ∈ G

m which represents the group encoding of the vector y ∈ Z
m
q ,

outputs a functional (secret) key sky.
– ct ← Enc(imsk, �x�): takes in the secret key imsk, a plaintext vector �x� ∈ G

m

represented in group encoding, and outputs a ciphertext ct.
– �v�T ← Dec(sky, ct): takes in the functional key sky and a ciphertext ct, and

outputs a decrypted outcome �v�T .

Correctness. Correctness requires that for any λ,m ∈ N,x,y ∈ Z
m
q , the fol-

lowing holds with probability 1: let pp ← Gen(1λ), imsk ← Setup(pp,m),
sky ← KGen(imsk, �y�), ct ← Enc(imsk, �x�), �v�T ← Dec(sky, ct), then, it
must be that v := 〈x,y〉.
Function-hiding Security. Consider the following experiment IPE-Exptb(1λ)
between an adversary A and a challenger C:

Experiment IPE-Exptb(1λ):
– Setup. The challenger C runs pp ← Gen(1λ), and imsk ←

Setup(pp,m), and gives pp to A.
– Query. A makes the following types of queries to C:

• KGen queries: the adversary A submits (y(0),y(1)); the challenger C
computes sky(b) ← KGen(msk, �y(b)�) and returns to A the resulting
sky(b) .

• Enc queries: the adversary A submits (x(0),x(1)); the challenger C
computes ct ← Enc(mpk, �x(b)�), and returns ct to A.

An adversary A is said to be admissible iff the following holds with probability
1: for any (x(0),x(1)) tuple submitted in an Enc query, for any (y(0),y(1)) tuple
submitted in a KGen query, it must be that 〈x(0),y(0)〉 = 〈x(1),y(1)〉.
Definition 3 (Adaptive, Function-hiding IND-security of IPE). We say
that the IPE scheme satisfies adaptive, function-hiding IND-security, iff for any
non-uniform probabilistic polynomial-time (PPT) admissible adversary, its views
in IPE-Expt0 and IPE-Expt1 are computationally indistinguishable.

Definition 4 (Selective, Function-hiding IND-security of IPE). We say
that the IPE scheme satisfies selective, function-hiding IND-security, iff for
any non-uniform PPT admissible adversary also satisfying an additional con-
straint that all KGen queries must be made before any Enc query, its views in
IPE-Expt0 and IPE-Expt1 are computationally indistinguishable.

Prior works [5,27,31] showed how to construct a function-hiding IPE scheme
from the Decisional Linear assumption in bilinear groups. The idea is to first
construct an IPE scheme without function privacy from Decisional Linear [5,
27,31] and then apply a function privacy upgrade [5,23,27,31]. The resulting
constructions indeed satisfy the aforementioned nice properties that we need.

Multi-Client Inner Product Encryption 643

4.2 Correlated Pseudorandom Function

A correlated pseudorandom function family consists of the following randomized
algorithms:

– (K1, . . . , Kn) ← Gen(1λ, n, q): takes a security parameter 1λ and the number
of users n, some prime q, and outputs the user secret key Ki for each i ∈ [n].

– v ← Eval(Ki, x): given a user secret key Ki and an input x ∈ {0, 1}λ, output
an evaluation result v ∈ Zq.

Correctness. For correctness, we require that for any λ ∈ N, any (K1, . . . , Kn)
in the support of Gen(1λ), any input x ∈ {0, 1}λ, the following holds:

∑

i∈[n]

CPRF.Eval(Ki, x) = 0 mod q

Correlated Pseudorandomness. We require that for any non-uniform PPT
adversary A who is allowed corrupt f ≤ n − 2 users and obtain their user secret
keys, for any subset U of at most n − f − 1 honest users, for any input x, the
evaluations {CPRF.Eval(Ki, x)}i∈U are computationally indistinguishable from
random values, as long as the adversary has not made a query on the input x.

More formally, correlated pseudorandomness is defined as below. Consider a
game denoted CPRF-Exptb (1λ, n, q) between A and a challenger C, parameter-
ized by a bit b ∈ {0, 1}.

– Setup. A submits a set of corrupt nodes K ⊂ [n] of size at most n − 2.
Henceforth, let H := [n]\K. Now, C runs the honest (K1, . . . , Kn) :=
CPRF.Gen(1λ, n, q) algorithm, and gives {Ki}i∈K to A.

– Queries. A can adaptively make queries: for each query, A submits an input
x. If b = 0, the challenger C chooses random {vi}i∈H

$←Z
|H|
q subject to the

condition that
∑

i∈H vi +
∑

j∈K CPRF.Eval (Kj , x) = 0, and returns {vi}i∈H
to A. Else if b = 1, the challenger gives {CPRF.Eval(Ki, x)}i∈H to A.

We say that CPRF satisfies correlated pseudorandomness, iff for any n
and q, any non-uniform PPT adversary A’s views in CPRF-Expt0(1λ, n, q) and
CPRF-Expt1 (1λ, n, q) are computationally indistinguishable.

Construction. Several prior works [1,14] showed how to construct a correlated
pseudorandom function from a standard pseudorandom function (PRF). With-
out loss of generality, we may assume that PRF’s output range is [0, q−1]. During
the setup phase denoted by Gen, sample random PRF keys ki,j for all i < j,
and let kj,i = ki,j . Party i’s secret key Ki is defined to be the set {ki,j}j∈[n],j �=i.
The evaluation function Eval(Ki, x) is defined as follows:

Eval(Ki, x) =
∑

j∈[n],j �=i

(−1)j<i · PRF(ki,j , x) mod q

Prior works [1,14,27] proved that this CPRF satisfies correctness and corre-
lated pseudorandomness, assuming the underlying PRF is secure.

644 E. Shi and N. Vanjani

5 Function-Hiding MCIPE

In this section, we give our detailed constructions of function-hiding multi-client
inner-product encryption schemes and their formal proofs. In Sect. 5.1 we present
the selective function-hiding secure variant and in Appendix B of the online full
version we present the adaptive function-hiding secure variant.

5.1 Selective Function-Hiding MCIPE

Detailed Construction. Let IPE := (Gen,Setup,KGen,Enc,Dec) denote a
function-hiding inner-product encryption scheme, and let CPRF := (Gen,Eval)
denote a correlated pseudorandom function.

Selective Function-hiding, multi-client inner-product encryption

– Gen(1λ): let pp ← IPE.Gen(1λ), and output pp.
– Setup(pp,m, n):

• let (K1, . . . , Kn) := CPRF.Gen(1λ, n, q);

• for i ∈ [n]: let imski ← IPE.Setup(pp, 2m + 3), and ai
$←Zq;

• output mpk := pp, msk := {imski, ai}i∈[n], and {eki :=
(imski,Ki, ai)}i∈[n].

– KGen(mpk,msk,y):

• sample ρ
$←Zq;

• let ỹi = (yi, 0m, ρ,−ρai, 0);
• let iski ← IPE.KGen(imski, �ỹi�), and output sky := {iski}i∈[n].

– Enc(mpk, eki,xi, t):

• sample μi,t
$←Zq if μi,t has not been sampled before;

• let x̃i = (xi, 0m,CPRF.Eval(Ki, t) + aiμi,t, μi,t, 0);
• call ct ← IPE.Enc(imski, �x̃i�), and output ct.

– Dec(mpk, sky, {cti,t}i∈[n]): let �v�T :=
∏

i∈[n] IPE.Dec(iski, cti), and out-
put v := log(�v�T).

Asymptotic Efficiency. We can instantiate the function-hiding IPE using the
scheme described in earlier works [5,27,31], based on the Decisional Linear
assumption. For the underlying IPE scheme, the ciphertext contains O(m) group
elements where m is the length of the vector being encrypted. Similarly, each
functional key has only O(m) group elements too. The public parameters contain
only the group description.

In our MCIPE construction, to encrypt a length-m vector, each client’s cipher-
text has only O(m) group elements. A functional key for a length (n · m)-vector
has size O(n · m) group elements. Each client’s secret key has size O(n) where
the big-O hides terms related to the security parameter. The public parameters
contain only the group description.

Theorem 2. Suppose that the Decisional Linear assumption holds in G,
IPE satisfies selective, function-hiding IND-security (see Definition 4), and

Multi-Client Inner Product Encryption 645

moreover, CPRF satisfies correlated pseudorandomness. Then, the above MCIPE
scheme satisfies selective function-hiding IND-security.

We next present the proof of Theorem 2.

Proof of Theorem 2 We consider a sequence of outer hybrid experiments
summarized as follows:

MCIPE-Expt1 ≈c Hyb0 ≈c . . . ≈c Hyb� ≈c . . . ≈c HybQkgen
≈c Hyb∗ ≈c MCIPE-Expt0

Further, in Lemma 1 to prove Hyb�−1 ≈c Hyb�, we consider a sequence of inner
hybrid experiments summarized as follows:

Hyb�−1 ≈c H�−1,1 ≈c H�−1,2 ≈c H�−1,3 ≈c H′
�−1,3 ≈c H′

�−1,2 ≈c H′
�−1,1 ≈c Hyb�

Looking ahead, the proof falls short of showing adaptive security and only shows
selective security because in the inner hybrids, the challenger embeds the chal-
lenge key y∗(b) for b ∈ {0, 1} inside the ciphertexts and doing this requires the
adversary to make all KGen queries before any Enc query is made.

Experiment MCIPE-Expt1. This is the real-world experiment, parameterized
by b = 1. In this experiment, the challenger C answers Enc and KGen queries
using the following vectors where ρ is freshly chosen for every KGen query:

x̃i =
(
x(1)

i , 0m,CPRF.Eval(Ki, t) + aiμi,t, μi,t, 0
)

, ỹi =
(
y(1)

i , 0m, ρ,−ρai, 0
)

Experiment Hyb0. Same as MCIPE-Expt1 except that for any honest i ∈ H, the
challenger C answers Enc queries using

x̃i =
(
x(1)

i ,x(0)
i ,CPRF.Eval(Ki, t) + aiμi,t, μi,t, 0

)

Claim 1. If the IPE scheme is function-hiding IND-secure, then, MCIPE-Expt1

and Hyb0 are computationally indistinguishable.

Proof. Since this modification preserves the inner products 〈x̃i, ỹi〉 for any pair of
encryption and key vectors queried, and for any i ∈ H, Hyb0 is indistinguishable
from MCIPE-Expt1 due to the function-hiding IND-security of the IPE scheme.

Experiment Hyb�. We next define a sequence of hybrid experiments Hyb� where
� ∈ [Qkgen] where Qkgen denotes an upper bound the number of KGen queries
made by A. In Hyb�, for the first � KGen queries, the challenger C uses ỹi =(
0m,y(0)

i , ρ,−ρai, 0
)

for any honest i ∈ H, and uses ỹi =
(
y(1)

i , 0m, ρ,−ρai, 0
)

for any corrupt i ∈ K. For the remaining Qkgen − � number of KGen queries, C
uses ỹi =

(
y(1)

i , 0m, ρ,−ρai, 0
)

for all i ∈ [n].
In Lemma 1, we prove that Hyb�−1 ≈c Hyb� for � ∈ [Qkgen].

646 E. Shi and N. Vanjani

Experiment Hyb∗. The challenger C answers Enc and KGen queries using the
following vectors for any honest i ∈ H:

x̃i =
(
0m,x(0)

i ,CPRF.Eval(Ki, t) + aiμi,t, μi,t, 0
)

, ỹi =
(
0m,y(0)

i , ρ,−ρai, 0
)

For corrupt i ∈ K, the challenger C still uses:

x̃i =
(
x(1)

i , 0m,CPRF.Eval(Ki, t) + aiμi,t, μi,t, 0
)

, ỹi =
(
y(1)

i , 0m, ρ,−ρai, 0
)

Claim 2. If the IPE scheme is function-hiding IND-secure, then, HybQkgen
and

Hyb∗ are computationally indistinguishable.

Proof. Observe that HybQkgen
and Hyb∗ are almost identical except that the

first m coordinates in x̃i are replaced with 0m for i ∈ H. Since this modification
preserves the inner products 〈x̃i, ỹi〉 for any pair of encryption and key vectors
queried, and for any i ∈ H, Hyb∗ is computationally indistinguishable from
HybQkgen

due to the function-hiding IND-security of the IPE scheme.

Experiment MCIPE-Expt0. This is the real-world experiment, parameterized
by b = 0. In the experiment MCIPE-Expt0, the challenger C answers Enc and
KGen queries using the following vectors:

x̃i =
(
x(0)

i , 0m,CPRF.Eval(Ki, t) + aiμi,t, μi,t, 0
)

, ỹi =
(
y(0)

i , 0m, ρ,−ρai, 0
)

where ρ is freshly chosen for every KGen query.

Claim 3. If the IPE scheme is function-hiding IND-secure, then, Hyb∗ and
MCIPE -Expt0 are computationally indistinguishable.

Proof. Observe that Hyb∗ is computationally indistinguishable from
MCIPE-Expt0 since for honest i ∈ H, the inner-product 〈x̃i, ỹi〉 is preserved
for any pair of encryption and key vectors queried; and for corrupt i ∈ K, recall
that our admissibility stipulates that x(0)

i = x(1)
i and y(0)

i = y(1)
i , and thus it

makes no difference whether x(0)
i ,y(0)

i is used or whether x(1)
i ,y(1)

i is used by C.

Therefore, to complete the proof of Theorem 2, it suffices to prove the fol-
lowing lemma, i.e., the computational indistinguishability of Hyb�−1 and Hyb�.

Lemma 1. Suppose that the Decisional Linear assumption holds in G, IPE sat-
isfies selective function-hiding IND-security, and moreover, CPRF satisfies cor-
related pseudorandomness. Then, Hyb�−1 is computationally indistinguishable
from Hyb� for any � ∈ [Qkgen].

Multi-Client Inner Product Encryption 647

Proof. We consider a sequence of hybrid experiments.

Experiment H�−1,1. In H�−1,1, for any honest i ∈ H, the challenger C uses the

following vectors to answer Enc and KGen queries where ρ∗ $←Zq, and we use
y∗(0), y∗(1) to denote the key vectors submitted during the �-th KGen query:

x̃i =
(
x
(1)
i ,x

(0)
i ,CPRF.Eval(Ki, t) + aiμi,t, μi,t,CPRF.Eval(Ki, t) · ρ∗ + 〈x(1)

i ,y
∗(1)
i 〉

)
,

ỹi =

⎧
⎪⎪⎨

⎪⎪⎩

(
0m,y(0)

i , ρ,−ρai, 0
)

first � − 1 KGen queries

(0m, 0m, 0, 0, 1) �-th KGen query(
y(1)

i , 0m, ρ,−ρai, 0
)

remaining Qkgen − � KGen queries

Above, ρ is freshly chosen for every KGen query, and ρ∗ corresponds to the
randomness chosen for the challenge KGen query, i.e., the �-th KGen query.

Observe that H�−1,1 is almost identical to Hyb�−1 except for the above modifi-
cations highlighted in blue. Since these modification preserves the inner products
〈x̃i, ỹi〉 for any pair of encryption and key vectors queried, and for any i ∈ H,
H�−1,1 and Hyb�−1 are computationally indistinguishable due to the function-
hiding IND-security of the IPE scheme.

Observe that in this hybrid, the challenger needs to know challenge key y∗(1)

when answering Enc queries and hence A must make all KGen queries ahead of
any Enc query. This is why our proof technique works only for selective security.

Experiment H�−1,2. Almost identical to H�−1,1, except that for each t label
that appears first in an Enc query, the challenger C chooses {Ri,t}i∈H at random
from Zq subject to

∑
i∈H Ri,t = −∑

i∈K CPRF.Eval(Ki, t). For honest i ∈ H,
the challenger C uses the following vector to answer Enc queries:

x̃i =
(
x(1)

i ,x(0)
i , Ri,t + aiμi,t, μi,t, Ri,t · ρ∗ + 〈x(1)

i ,y∗(1)
i 〉

)

Experiment H�−1,2 is computationally indistinguishable from H�−1,1 due to the
correlated pseudorandomness of CPRF.

Experiment H�−1,3. Almost identical to H�−1,2, except that the challenger
C chooses random {Ti,t}i∈H subject to

∑
i∈H Ti,t = −ρ∗ · ∑

i∈K CPRF(Ki, t),
and uses the following vector in any Enc query for an honest i ∈ H:

x̃i =
(
x(1)

i ,x(0)
i , Ri,t + aiμi,t, μi,t, Ti,t + 〈x(1)

i ,y∗(1)
i 〉

)

Claim 4. Suppose that the Decisional Linear assumption holds in G. Then,
H�−1,3 is computationally indistinguishable from H�−1,2.

Proof. We will consider a sequence of hybrid experiments over the set of hon-
est clients. Henceforth let d be the number of honest clients, and let H :=
{i1, i2, . . . , id} ⊆ [n] denote the set of honest clients. We define the hybrid Gj as
follows where j ∈ [d − 1] ∪ {0}:

648 E. Shi and N. Vanjani

– If i is among the first j honest clients, then C chooses T̃i,t at random;
– If i is not among the first j honest clients and i 	= id, then, the challenger

C chooses T̃i,t = Ri,t · ρ∗;
– For the last honest client i = id, the challenger C chooses T̃i,t such that

∑

i∈H
T̃i,t = −ρ∗ ∑

i∈K
CPRF.Eval(Ki, t)

C uses the following vector when answering Enc queries for any honest i ∈ H:

x̃i =
(
x(1)

i ,x(0)
i , Ri,t + aiμi,t, μi,t, T̃i,t + 〈x(1)

i ,y∗(1)
i 〉

)
(7)

Observe that G0 is the same as H�−1,2, and Gd−1 is the same as H�−1,3.
Therefore, to prove Claim 4, it suffices to prove that any two adjacent hybrids Gj

and Gj+1 are computationally indistinguishable for j ∈ {0, 1, . . . , d − 2}. Below,
we prove that if the Decisional Linear assumption holds in G, then indeed Gj

and Gj+1 are computationally indistinguishable for j ∈ {0, 1, . . . , d − 2}.
Suppose there is an efficient adversary A that can distinguish Gj and Gj+1

with non-negligible probability, we show how to construct an efficient reduc-
tion B that can break the Decisional Linear assumption. Let Qenc denote the
maximum number of labels t submitted during Enc queries. B obtains an
instance (�1�, �β�, �γ�, �u�, �βv�, �z�) from a Vector Decisional Linear challenger
(see Appendix A.1 of the online full version), where u,v, z ∈ Z

Qenc
q and β, γ ∈ Zq.

B’s task is to distinguish whether �z� = �γ(u + v)� or random. B will now inter-
act with A and embed this Decisional Linear instance in its answers.

Let i∗ = ij+1 ∈ H be the index of the (j + 1)-th honest client.

– Setup. B chooses ξ ∈ Zq at random, and implicitly sets ai∗ = β−1 and
aid = ξ · β−1, without actually computing them. B chooses all other terms in
the Setup algorithm honestly, and gives mpk and {eki}i∈K to A.

– KGen queries.
1. For the first � − 1 KGen queries:

• for any honest i ∈ H, i 	= i∗ and i 	= id, B knows all the terms
necessary to compute iski.

• for i = i∗, the reduction B does not know ai∗ , but it can replace the
terms �ρ,−ρai∗� with �βρ′,−ρ′� instead where ρ′ $←Zq. It can compute
�βρ� because it knows �β� and ρ′. B can now continue computing
iski∗ ← IPE.KGen(imski, �0m,y(0)

i , βρ′,−ρ′, 0�) normally.
• for i = id, B can compute iskid in a similar fashion as above, even if

it does not know aid = ξ · β−1.
• for any corrupt i ∈ K, B computes iski using the original honest

algorithm, since it knows all the necessary terms.
2. For any KGen query after the first � queries, the reduction B can compute

functional key just like for the first � − 1 queries.
3. For the �-th KGen query, B wants to embed the γ term from the Deci-

sional Linear challenge into the ρ term for this specific functional key.
Recall that B knows only �γ� but not γ itself.

Multi-Client Inner Product Encryption 649

• For any corrupt i ∈ K, observe that B can compute their respective
key component iski knowing only �γ� but not γ itself.

• For any honest i ∈ H, B computes iski ← IPE.KGen(imski,
�0m, 0m, 0, 0, 1�).

– Enc queries. The adversary A submits (i, t,x(0)
i,t ,x(1)

i,t). If i ∈ K, B can com-
pute the ciphertext normally since it knows all the necessary terms. Below
we focus on the case when i ∈ H. The first time the label t appears in an
Enc query for some honest i ∈ H, the reduction B picks {T̃i,t}i∈H as follows,
where ut, vt, and zt denote the t-th component of the vector u, v, and z from
the Decisional Linear challenge3.
(a) If i ∈ H, i 	= i∗, and i 	= id: B chooses T̃i,t at random if i is among the

first j honest clients, else it implicitly lets T̃i,t := Ri,t · γ.
(b) If i = i∗: B implicitly chooses

Ri∗,t + ai∗μi∗,t = ut, μi∗,t = −βvt, T̃i∗,t = zt

(c) If i = id: B samples φ
$←Zq, and implicitly chooses

μid,t = −μi∗,t · ξ−1 + a−1
i∗ · φ, Rid,t = −

⎛
⎝ ∑

i∈H,i�=id

Ri,t +
∑
i∈K

CPRF.Eval(Ki, t)

⎞
⎠ ,

T̃id,t = −
⎛

⎝
∑

i∈K
CPRF.Eval(Ki, t) +

∑

i∈H,i �=i∗,i �=id

T̃i + zt

⎞

⎠

For case (a), computing the ciphertext (see Eq. 7) is straightforward. For case
(b), it is also easy to see that given B’s knowledge of �ut�, �βvt�, and �zt�, one
can compute the ciphertext in a straightforward way. For case (c), observe
the following. Let

ν = −
⎛

⎝
∑

i∈H,i �=id,i �=i∗
Ri,t +

∑

i∈K
CPRF.Eval(Ki, t)

⎞

⎠ ;

and thus Rid,t = ν − Ri∗,t.

�Rid,t + aidμid,t� = �ν − Ri∗,t + ξai∗ · (−μi∗,t · ξ−1 + a−1
i∗ · φ)�

= �ν − Ri∗,t − ai∗μi∗,t + ξ · φ�

= �ν − ut + ξ · φ�

Further, �μid,t� = �βvt · ξ−1 + β · φ�. Therefore, both �Rid,t + aidμid,t� and
�μid,t� can be computed knowing ν, �ut�, ξ, φ, �βvt�, and �β�.

3 For convenience, we may imagine that the labels t have been renamed to be the
integers {1, 2, . . . , Qenc}.

650 E. Shi and N. Vanjani

Observe that Ri∗,t ·γ = (ut−ai∗μi∗,t)γ = (ut+β−1 ·βvt)γ = (ut+vt)γ. Therefore,
in the Decisional Linear challenge (�1�, �β�, �γ�, �u�, �βv�, �z�) obtained by B, if
z = γ(u + v), then A’s view is identically distributed as in Gj . Else A’s view is
identically distributed as in Gj+1.

We now continue with the proof of Lemma 1.

Experiment H′
�−1,3. Almost identical to H�−1,3, except that the challenger C

uses the following vector in any Enc query for an honest i ∈ H:

x̃i =
(
x(1)

i ,x(0)
i , Ri,t + aiμi,t, μi,t, Ti,t + 〈x(0)

i ,y∗(0)
i 〉

)

where the terms {Ti,t}i∈H are chosen at random subject to
∑

i∈H Ti,t = −ρ∗ ·∑
i∈K CPRF(Ki, t).
As long as A respects the admissibility rule defined in Sect. 3, H�−1,3 and

H′
�−1,3 are identically distributed.

Experiment H′
�−1,2. Almost identical to H�−1,2, except that the challenger C

chooses uses the following vector to answer Enc queries:

x̃i =
(
x(1)

i ,x(0)
i , Ri,t + aiμi,t, μi,t, Ri,t · ρ∗ + 〈x(0)

i ,y∗(0)
i 〉

)

Experiment H′
�−1,1. Almost identical to H�−1,1, except that the challenger C

chooses uses the following vector to answer Enc queries:

x̃i =
(
x
(1)
i ,x

(0)
i ,CPRF.Eval(Ki, t) + aiμi,t, μi,t,CPRF.Eval(Ki, t) · ρ∗ + 〈x(0)

i ,y
∗(0)
i 〉

)

Using a symmetric argument as before, we can prove the computational indis-
tinguishability between H′

�−1,3 and H′
�−1,2, and between H′

�−1,2 and H′
�−1,1.

Finally, H′
�−1,1 and Hyb� are computationally indistinguishable due to the

function-hiding IND-security of the IPE scheme, since the inner-product 〈x̃i, ỹi〉
is preserved for any pair of encryption and key vectors queried and for i ∈ H.
This concludes the proof of Lemma 1.

References

1. Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner-
product functional encryption. In: Asiacrypt (2019)

2. Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-
product functional encryption. In: PKC, vol. 11443, pp. 128–157 (2019)

3. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: PKC (2015)

4. Abdalla, M., Bourse, F., Marival, H., Pointcheval, D., Soleimanian, A., Waldner,
H.: Multi-client inner-product functional encryption in the random-oracle model.
In: SCN (2020)

5. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional
encryption for inner products: Function-hiding realizations and constructions with-
out pairings. In: CRYPTO (2018)

Multi-Client Inner Product Encryption 651

6. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: EUROCRYPT (2017)

7. Abdalla, M., Pointcheval, D., Soleimanian, A.: 2-step multi-client quadratic func-
tional encryption from decentralized function-hiding inner-product. Cryptology
ePrint Archive (2021)

8. Agrawal, S., Clear, M., Frieder, O., Garg, S., O’Neill, A., Thaler, J.: Ad hoc multi-
input functional encryption. In: ITCS (2020)

9. Agrawal, S., Goyal, R., Tomida, J.: Multi-input quadratic functional encryption
from pairings. In: CRYPTO (2021)

10. Agrawal, S., Goyal, R., Tomida, J.: Multi-party functional encryption. In: TCC
(2021)

11. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional
encryption for simple functions. Cryptology ePrint Archive (2015)

12. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: Simplified proof
and improved concrete security for waters’ IBE scheme. In: Eurocrypt (2009)

13. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. J. ACM 65(6), 1–37 (2018)

14. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine
learning. In: CCS (2017)

15. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized
multi-client functional encryption for inner product. In: ASIACRYPT (2018)

16. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Multi-client
functional encryption with repetition for inner product. Cryptology ePrint (2018)

17. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Dynamic
decentralized functional encryption. In: CRYPTO (2020)

18. Escala, A., Herold, G., Kiltz, E., Rafols, C., Villar, J.L.: An algebraic framework
for Diffie-Hellman assumptions. In: CRYPTO (2013)

19. Goldwasser, S., et al.: Multi-input functional encryption. In: Eurocrypt (2014)
20. Jager, T.: Verifiable random functions from weaker assumptions. In: TCC (2015)
21. Kitagawa, F., Nishimaki, R., Tanaka, K.: Obfustopia built on secret-key functional

encryption. In: EUROCRYPT (2018)
22. Libert. B., Titiu, R.: Multi-client functional encryption for linear functions in the

standard model from LWE. In: ASIACRYPT (2019)
23. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-

5 PRGs. In: CRYPTO (2017)
24. McMahan, B., Ramage, D.: Federated learning: collaborative machine learning

without centralized training data (2017)
25. Nguyen, K., Phan, D.H., Pointcheval, D.: Multi-client functional encryption with

fine-grained access control. In: ASIACRYPT (2023)
26. Shi, E., Chan, T.-H.H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggre-

gation of time-series data. In: NDSS (2011)
27. Shi, E., Wu, K.: Non-interactive anonymous router. In: Eurocrypt (2021)
28. Tomida, J.: Tightly secure inner product functional encryption: multi-input and

function-hiding constructions. Theoret. Comput. Sci. 833, 56–86 (2020)
29. Ünal, A.: Impossibility results for lattice-based functional encryption schemes. In:

Eurocrypt, pp. 169–199 (2020)
30. Waters, B.: Efficient identity-based encryption without random oracles. In: Euro-

crypt (2005)
31. Wee, H.: New techniques for attribute-hiding in prime-order bilinear groups.

Manuscript (2016)

GLUE: Generalizing Unbounded
Attribute-Based Encryption for Flexible

Efficiency Trade-Offs

Marloes Venema1,2(B) and Greg Alpár2,3

1 University of Wuppertal, Wuppertal, Germany
Marloes.Venema@ru.nl

2 Radboud University, Nijmegen, The Netherlands
g.alpar@cs.ru.nl

3 Open University of the Netherlands, Heerlen, The Netherlands

Abstract. Ciphertext-policy attribute-based encryption is a versatile
primitive that has been considered extensively to securely manage data
in practice. Especially completely unbounded schemes are attractive,
because they do not restrict the sets of attributes and policies. So far,
any such schemes that support negations in the access policy or that
have online/offline extensions have an inefficient decryption algorithm.

In this work, we propose GLUE (Generalized, Large-universe,
Unbounded and Expressive), which is a novel scheme that allows for the
efficient implementation of the decryption while allowing the support
of both negations and online/offline extensions. We achieve these prop-
erties simultaneously by uncovering an underlying dependency between
encryption and decryption, which allows for a flexible trade-off in their
efficiency. For the security proof, we devise a new technique that enables
us to generalize multiple existing schemes. As a result, we obtain a com-
pletely unbounded scheme supporting negations that, to the best of our
knowledge, outperforms all existing such schemes in the decryption algo-
rithm.

Keywords: attribute-based encryption · unbounded attribute-based
encryption · online/offline attribute-based encryption · non-monotone
attribute-based encryption

1 Introduction

Attribute-based encryption (ABE) is an advanced type of public-key encryption
in which the key pairs are associated with attributes [47]. In ciphertext-policy
(CP) ABE, messages are encrypted under an access policy [17]. The result-
ing ciphertexts can then be decrypted by a secret key associated with a set of
attributes1 that satisfies the policy. Conversely, in key-policy (KP) ABE, the keys
1 In this paper, we will use the terms “sets of attributes” and “(attribute) sets” to

refer to the attributes associated with the secret keys. We use the term “universe of
attributes” to refer to the total set of attributes that can be used in the system.

c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 652–682, 2023.
https://doi.org/10.1007/978-3-031-31368-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_23&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_23

GLUE: Generalizing Unbounded ABE for Flexible Efficiency Trade-Offs 653

are associated with access policies and the ciphertexts with sets of attributes
[26]. To securely and efficiently implement access control on data, especially
pairing-based CP-ABE proves to be an attractive primitive [17,34,36,48,53]. In
2018, the European Telecommunications Standards Institute (ETSI) published
two technical reports on ABE [24,25], which include detailed descriptions of use
cases, varying from cloud settings to mobile networks. In such settings, the com-
putational resources of the encryption and decryption devices may vary. Thus,
different use cases may require schemes with different efficiency trade-offs.

According to ETSI, ABE schemes should be efficient and secure. Interest-
ingly, while ETSI proposes ABE to be used to enforce attribute-based access
control [32] on data, it explicitly notes that ABE cannot satisfactorily support
it, because ABE cannot support negations efficiently [25]. Indeed, the decryption
algorithm of most ABE schemes supporting negations is incredibly expensive
[11,37,43,57]. Recently, some interesting progress was made, yielding significant
speed-ups in decryption time [14,49]. However, those schemes still have a costly
decryption [14] or restrict the attribute sets [49].

In this work, we introduce GLUE, which is a new scheme that enables the
realization of the following properties:

(1) Large-universe: any string can be used as an attribute;
(2) Unbounded: no restrictions on e.g., the sizes of the policies or attributes

sets, or the number of times that an attribute may occur in the policy;
(3) Expressive: support of monotone span programs, ensuring that policies rep-

resented as Boolean formulas consisting of conjunctions and disjunctions can
be supported;

(4) Non-monotone: support of non-monotone span programs, ensuring that the
policies can use negations;

(5) Compact: the number of key and ciphertext components depends at most
linearly on the set size or the policy length, and in particular does not depend
on other parameters (implicit or explicit)2.

GLUE is designed to offer a flexible choice in the encryption/decryption efficiency
trade-off during the setup of the parameters. More specifically, it is parametrized
in variables nk and nc, where the encryption costs increase in nk + nc and the
decryption costs decrease in nk and nc, e.g., in the factor nk if nk = nc holds. In
this way, the scheme can be fine-tuned to take into account the computational
resources of the encryption and decryption devices. In particular, this feature
allows for significant speed-ups in the decryption algorithm compared to other
schemes that also satisfy the listed properties.

Large-Universe and Unbounded ABE. The universe of attributes, i.e., the
attributes that can be used in the scheme, can be small or large [47]. In small-
universe constructions, the number of attributes is bounded after the setup, e.g.,

2 For example, parameters such as those in schemes with a flexible efficiency trade-off
(e.g., [12,52]) or the number of re-uses of the same attribute in the policy (e.g., [35]).

654 M. Venema and G. Alpár

because a public key needs to be generated for each attribute. In large-universe
constructions, the universe of attributes is effectively unbounded. Moreover, the
public keys do not depend on the attributes in the system, and a user can directly
encrypt messages using the master public key and the attribute string. Large-
universe ABE is thus more scalable than small-universe ABE, as the encrypting
users do not need to first locate the necessary public keys before encrypting.
Some large-universe schemes [13,47,56] are however undesirably restrictive [39],
as they are bounded in the sizes of the policies or attribute sets, or the number
of times that an attribute may occur in the policy. Oftentimes, the scheme’s
efficiency depends on such bounds, e.g., the encryption costs grow linearly in
the bounds on the policies or sets [55]. Hence, choosing high bounds is not a
suitable solution either. Preferably, a scheme is unbounded in all parameters.

Expressivity and Non-monotonicity. Most state-of-the-art ABE schemes
are expressive in that their policies support monotone span programs (MSPs)
[2,11,40,49]. An important subclass of MSPs are Boolean formulas consisting of
conjunctions and disjunctions. As mentioned, popular access control models such
as attribute-based access control [32] allow the policies to be any Boolean for-
mula, including negations. ABE schemes that support negations are called non-
monotone [11,14,43,49,57]. In addition to being more expressive, such schemes
readily support revocation systems [37], which is crucial in practice as well.

Different Types of Non-monotonicity. For large-universe constructions,
three types of non-monotonicity exist: OSW-type [43], OT-type [42], and
OSWOT-type [14]. In OSW-type negations, e.g., “NOT user: Alice”, the entire
attribute set, e.g., “{user: Bob, course: linear algebra, course: calculus}”, is com-
pared with the negated attribute to establish that the set does not contain it.
In ABE implementations, this translates in a decryption cost that grows in not
only the size of the policy, but also in size of the attribute sets. Such nega-
tions may thus not be efficient if the sets are large. In OT-type negations, e.g.,
“user: NOT Alice”, the attribute labels, e.g., “user”, play a role. In particular,
the set must contain an attribute with label “user” and its value, e.g., “Bob”,
must differ from the negated attribute. While this is more efficient than OSW-
type negations, the set of attributes is allowed to contain only one attribute for
each label, e.g., such negations are not supported for the label “course” in our
first example. Thus, schemes supporting this type of negations are bounded in
the number of label re-uses, which is not always desirable. For instance, like
in our example, users may have multiple attributes for labels such as “depart-
ments at a hospital”, “courses followed at a university” or “mail addresses”. As
a solution, Attrapadung and Tomida [14] introduced OSWOT-type negations,
e.g., “course: NOT cryptography”, to extend OT-type negations, such that the
negated attribute is compared with all attributes in the set that share the same
label, e.g., “{course: linear algebra, course: calculus}”. In this way, the flexibility
of OSW-type negations and the efficiency of OT-type negations can be combined.

GLUE: Generalizing Unbounded ABE for Flexible Efficiency Trade-Offs 655

Table 1. Comparison of large-universe schemes supporting (non-)monotone span pro-
grams. For each scheme, we list whether it is unbounded (in the sets S and policies A,
and the number of attribute and label re-uses), whether it supports negations or has a
provably secure extension that supports negations, whether it is compact and supports
a flexible efficiency trade-off (FET). Note that we have only listed schemes that are
structurally different “in the exponent”, i.e., their associated pair encodings [9] are
different. For instance, the unbounded schemes in [35,39] have a similar structure and
therefore only [39] is listed.

Scheme KP/CP
Unbounded Negations

Compact FET
|S| |A| ARU LRU OSW OT OSWOT

GPSW06-LU [26] KP ✗ � � � � [43] ✗ ✗ � ✗

BSW07 [17] CP � � � � ✗ ✗ ✗ � ✗

ALP11 [13] KP ✗ � � � � ✗ ✗ ✗ ✗

W11-LU I [56] CP � � � � ✗ ✗ ✗ � ✗

W11b-LU [55] CP ✗ ✗ ✗ ✗ ✗ ✗ ✗ � ✗

LW11b [39,45] KP � � � � � [37] � [11] � [14] � ✗

OT12 [42] CP � � ✗ ✗ ✗ � ✗ ✗ ✗

RW13 [45] CP � � � � � [57] � [11] � [14] � ✗

AHM+16 [12] KP � � � � � [13] ✗ ✗ ✗ �
AC16 [1] CP ✗ ✗ � � � [6,11] � [6,14] � [6,14] ✗ ✗

AC17b [2] CP(/KP) � � ✗ ✗ ✗ ✗ ✗ � ✗

ABGW17 [7] KP/CP � � � � ✗ ✗ ✗ � ✗

Att19-I-CP [11] CP(/KP) � � � � � � [14] � [14] � ✗

Att19-II-CP [11] CP(/KP) ✗ � � � � ✗ ✗ ✗ ✗

Att19-III-CP [11] CP(/KP) � ✗ � � � ✗ ✗ ✗ ✗

TKN20 [49] KP/CP � � � ✗ ✗ � ✗ � ✗

VA22 [52] CP � � � � � [6] ✗ ✗ ✗ �
GLUE CP(/KP) � � � � � � � [14] � �

Note: S = attribute set; A = access policy;
ARU = attribute re-use in the policies; LRU = label re-use in the sets and policies

Achieving Properties (1)-(5) Simultaneously. Only a limited number
of existing schemes support properties (1)-(5) simultaneously [53]. In fact, all
pairing-based schemes that provide non-monotonicity and large-universeness use
a polynomial-based hash—also known as a “Boneh-Boyen (BB) hash” [18]—that
maps arbitrary attribute strings into the scheme [43,47]. Of those schemes, the
only ones that are completely unbounded [11,14,37,57] are based on the schemes
by Lewko and Waters (the KP-ABE version) [39] and Rouselakis and Waters
(the CP-ABE version) [45] (Table 1). However, all those schemes have an inef-
ficient decryption algorithm compared to other ABE schemes [44], which use
a full-domain hash (FDH) to achieve large-universeness. For this reason, such
schemes are often favored in practice, despite their inability to support negations
[24,25]. Nevertheless, since supporting negations fosters the expressivity of ABE,
we aim at improving the decryption efficiency of schemes using a BB hash.

656 M. Venema and G. Alpár

Fig. 1. Overview of large-universe schemes using a BB hash.

Improving Decryption Efficiency of Schemes Using a BB Hash. To
determine whether we can improve on the decryption efficiency of the existing
schemes satisfying properties (1)-(5), we investigate all schemes using a BB hash
to achieve large-universeness. In particular, if we consider all such schemes, then
we see that a scheme that is unbounded, compact and costs less than one pairing
operation per attribute during decryption does not exist yet (Fig. 1). Because
pairing operations are the most expensive operations in pairing-based ABE, it is
therefore important to minimize the use of those. In this work, we aim to achieve
this: we provide a scheme that satisfies properties (1)-(5), while requiring less
than one pairing operation per attribute during decryption.

1.1 Our Contributions

We first give a high-level overview of our contributions. Then, we provide more
(technical) details about these contributions.

– New construction: We present a new unbounded large-universe scheme
using a BB hash (thus avoiding random oracles). Its encryption/decryption
efficiency trade-off can be fine-tuned by taking into account the computational
resources of the devices.

– Generalizations: Concretely, the scheme can be considered a generalization
of two large-universe schemes: the Rouselakis-Waters (RW13) scheme [45]
and the bounded large-universe scheme without random oracles by Waters
(W11b) [55]. This generalization also illustrates a deeper connection among
various designs.

– Security proof: We develop new proof techniques to ensure that the ran-
domness provided by a BB hash can be simultaneously used for the keys and

GLUE: Generalizing Unbounded ABE for Flexible Efficiency Trade-Offs 657

ciphertexts. To the best of our knowledge, we are the first to achieve this in
the unbounded setting, and in the full-security setting.

– Extensions: We provide three extensions to the basic scheme: one
online/offline [31] and two non-monotone extensions supporting OT-type and
OSW-type negations, respectively. Notably, we obtain an online/offline ABE
scheme and a scheme supporting OSW-type negations with the most efficient
decryption algorithms. This enables us to support OSWOT-type negations
more efficiently, which is the most desirable in practice.

1.2 New Construction: GLUE

We focus on three schemes that satisfy at least two out of the three depicted
properties (see Fig. 1): W11b [55], RW13 [45] and AHM+16 [12]. Those three
schemes provide a good starting point for GLUE, our new scheme which satis-
fies all required properties. Intuitively, we apply the partitioning techniques of
AHM+16 to combine the unbounded RW13 and the bounded W11b that allows
for efficient decryption. However, as we show later, for the secure combination
of these techniques, GLUE requires a more intricate approach.

We give a high-level description of the partitioning approach as introduced
by AHM+16. First, we partition the attribute sets into smaller subsets. Then,
we apply a (bounded) scheme with efficient decryption (in their case, ALP11
[13]) to each subset. Lastly, we use the unbounded techniques of e.g., RW13 or
LW11b [39] to securely connect the subsets. In this way, the decryption costs
of the scheme can be decreased. Unfortunately, this comes at a cost. Because
bounded schemes typically have a more expensive encryption, the encryption
costs are increased. From a broader perspective, this approach creates a scheme
with a (flexibly) efficiency trade-off feature. As we will show later, this trade-off
is determined by some parameter n. The encryption costs are higher by a factor
n than those of unbounded schemes such as RW13, whereas the decryption costs
are lower by this factor. Because this parameter n can be chosen during setup,
it can be fine-tuned for the given practical context. If decryption needs to be
efficient (which is often the case), one can choose larger n than in cases in which
encryption needs to be efficient.

The main reason why we achieve the compactness property, in contrast to
AHM+16, is due to the bounded scheme that is used. Because AHM+16 uses
ALP11 [13], a scheme with constant-size ciphertexts and large keys whose sizes
depend on the parameter n, its keys are large and its key generation is very
expensive. Moreover, although the number of pairing operations required during
decryption decreases, the number of exponentiations grows by a factor n for each
matching attribute. As we will show, this means that AHM+16 decryption is
not much more efficient than unbounded schemes such as RW13. As a solution,
we use the W11b scheme, whose decryption costs consist of a constant number
of pairing operations and no additional exponentiations. In this way, we achieve
a much better speed-up in decryption, and since W11b is compact, the key sizes
and key generation costs are not affected.

658 M. Venema and G. Alpár

1.3 Generalizing RW13 by Generalizing the Hash

The main difference between the partitioning approach as applied by AHM+16
and us is that we have to partition both the key sets and the ciphertext poli-
cies. The reason for this is that AHM+16 uses ALP11, which is bounded in
only the ciphertexts, whereas we use W11b, which is bounded in both the keys
and ciphertexts. By extension, we need to apply some technique to connect the
resulting key and ciphertext “parts”. However, we will show that the security
proof of W11b does not generalize to the unbounded setting, meaning that we
have to devise a new proof technique for W11b that does generalize. Further-
more, it is not possible to apply the exact same approach as that of AHM+16.
In particular, to prove security, they embed the scheme in the fully secure key-
policy doubly-spatial encryption [30] scheme in [9], and then, they apply the
embedding lemma [12]. We cannot use this approach, because, to the best of
our knowledge, the W11b scheme cannot be similarly embedded in an existing
scheme.

Hence, we take a slightly different approach: we generalize RW13 by gener-
alizing its specific instantiation of the BB hash. A BB hash first takes as input
a unique representation xatt of an attribute att in the integer set Zp, where p
is the prime order of group G with generator g ∈ G. Then, it computes the
hash as Fn(xatt) =

∏n
i=0 B

xi
att

i , where the generators Bi = gbi implicitly embed
the coefficients of the polynomial fn(xatt) =

∑n
i=0 bix

i
att. Where RW13 (and its

unbounded derivatives [11,31]) uses an implicit 1-degree polynomial, we use an
implicit n-degree polynomial, like W11b [55]. However, as we will show, sim-
ply replacing the 1-degree polynomial by some n-degree polynomial does not
immediately yield a secure scheme. To solve this, we replace another public-key
variable used in the scheme by a polynomial.

1.4 Security Proof

The AC17 Framework. To benefit from the strong security guarantees as well
as the generic transformations [6,11] within the Agrawal-Chase (AC17) [3] frame-
work, we prove security within it. In general, the AC17 framework considers the
pair encoding schemes (PESs) associated with an ABE scheme [9]. Intuitively,
PESs are an abstraction of ABE schemes to what happens in the exponent
space. If a PES is secure, the AC17 framework transforms it into a fully (also
known as adaptively) secure scheme. The security notion for PES is called sym-
bolic security, which consists of two parts: the selective and co-selective symbolic
property. These properties hold for any scheme that is not trivially broken, so
the AC17 framework simplifies the effort of proving full security considerably by
giving such transformations. A small drawback is that the resulting schemes are
provably secure under q-type assumptions [19], which are less well-understood
than static security assumptions. Regardless, the assumptions used in the AC17
framework are implied by commonly-used q-type assumptions [9]. These have
not been shown to yield less secure schemes in practice yet. Another advantage
of the AC17 framework is that any symbolically secure PES can be transformed

GLUE: Generalizing Unbounded ABE for Flexible Efficiency Trade-Offs 659

in a PES that supports negations [6]. It is notoriously difficult to achieve this in
the full-security model in combination with the large-universe property [11].

Proving the Symbolic Property. Proving the (co-)selective symbolic prop-
erty is similar to proving selective security. In the selective-security model, the
attacker commits to the challenge access policy (resp. set of attributes) before
seeing the public keys. Many schemes proven security in this model use the
“program-and-cancel” strategy [45,56], in which the challenger embeds the pol-
icy (resp. set) in the public keys. In the simulation of the secret keys and chal-
lenge ciphertext, the components are programmed in a specific way, using that
the set does not satisfy the policy (resp. policy is not satisfied by the set).
Typically, the components that cannot be programmed are canceled by other
non-programmable components. In the AC17 framework, this “programming” is
replaced by “substitution”, and the “canceling” is replaced by “evaluating to 0”.

Security Proof. One of the main difficulties of our scheme is proving the
symbolic property. In the first place, proving security is difficult due to the lack
of provably secure schemes that use the randomness provided by the BB hash
for both the keys and ciphertexts. To the best of our knowledge, previously, only
W11b [55] used the hash for both the keys and ciphertexts, but only in the
bounded setting and in the selective-security model. However, the proof does
not seem to readily generalize to the unbounded setting (see the full version
[54]). Hence, we develop a novel technique to prove security. We do this, in part,
by combining several techniques.

– Proof techniques using the hash for the keys: We generalize the proof
techniques used by Agrawal and Chase in [3] to prove full security of their
scheme in [1]: the AC16 [1] scheme. AC16 is a CP-ABE scheme with constant-
size ciphertexts, in which the randomness provided by the Boneh-Boyen hash
is used for the keys. In the selective proof, the polynomial embedded in the
public keys needs to be used by the secret keys after the public keys are
generated. The proof does this by embedding a “reprogrammable” polynomial
in the public keys. We call these polynomials to be reprogrammable in the
sense that the randomizers of the secret keys can later program it to a suitable
target polynomial. We use this general strategy for the keys.

– Proof techniques using the hash for the ciphertext: Even though the
W11b [55] proof does not generalize to the unbounded setting, we are able to
use a part of the proof strategy. In the selective proof, the implicit polyno-
mial embedded in the public key is “programmed” to take into account the
attributes that will be used in the challenge ciphertext. We use this general
strategy for the ciphertexts.

– Unbounded proof techniques: One of the bottlenecks of the two aforemen-
tioned strategies is that they are bounded approaches: they use only one ran-
domizer for the keys and one for the ciphertexts. To make them unbounded,
we use the general approach of the RW13 [45] proof. This proof gives us a

660 M. Venema and G. Alpár

rough idea of how the implicit polynomial and the randomizers should be pro-
grammed. Furthermore, it shows us how to use the polynomial an unbounded
number of times: using layering and individual randomness techniques allows
us to select the required instance of the polynomial.

Another bottleneck is that the “programmed” and “reprogrammable” approaches
are orthogonal, and can therefore not be used simultaneously in the same poly-
nomial without applying a trick. Presumably, this is also the reason why the
W11b proof uses the programmed approach for both the keys and the cipher-
texts, and applies an algebraic argument to ensure that everything can be sim-
ulated as required. We eliminate this bottleneck and combine all these proof tech-
niques, by splitting the polynomial in the product of two smaller polynomials:
one “programmed” polynomial and one “reprogrammable” polynomial. For the
selective proof, we use the programmed polynomial for the ciphertexts and the
reprogrammable polynomial for the keys. For the co-selective proof, the roles of
the polynomials are reversed.

1.5 Practical Extensions

We provide several extensions to our scheme, most of which can be found in the
full version [54]. Because we prove security in the AC17 [3] framework, some of
these extensions are automatically provably secure.

– The key-policy and dual-policy versions, by applying [11];
– Online/offline extensions, by generalizing HW14 [31]. Owing to its gener-

ality, these extensions also apply to the following extensions;
– Non-monotone versions, by applying [6,11,49]. We give versions support-

ing OT-type and OSW-type negations in the full version [54].

Online/offline Extension. The algebraic structure of large-universe schemes
using a BB hash can also be exploited to increase the efficiency. Hohenberger
and Waters [31] show how the key generation and encryption of RW13 [45] can
be split in an online and offline phase. In this way, most of the computations
required by these algorithms can be performed in an offline phase. During the
online phase, little computational power is required. This is especially useful in
practice when secret keys need to be generated frequently, e.g., in revocation
systems [46]. The key generation authority then does not need to have computa-
tionally powerful resources to do this in an acceptable time frame. Similarly, the
online/offline encryption variant can be used to minimize the encryption costs.
This comes however at a cost: the decryption costs increase. Thus, reducing the
decryption costs of the basic scheme also helps reducing the decryption costs of
the online/offline version. With the online/offline version of GLUE, we can not
only improve on the decryption efficiency of existing such schemes, but we can
also mitigate the impact of the increase of n on the encryption efficiency.

GLUE: Generalizing Unbounded ABE for Flexible Efficiency Trade-Offs 661

Table 2. Theoretical efficiency comparison of all compact unbounded large-universe
CP-ABE schemes supporting MSPs (that (can) support OSW(OT)-type negations),
by analyzing the key generation, encryption and decryption costs with respect to the
number of exponentiations cexp and pairings cpair.

Scheme
Key generation Encryption Decryption

cexp cexp cexp cpair

RW13 [45] 4 + 4|S| 4 + 10|A| 4|Υ | 4 + 4|Υ |
Att19-I-CP [11] 12 + 12|S| 4 + 16|A| 4|Υ | 8 + 4|Υ |

GLUE 4 + 2|S| + 2
⌈ |S|

nk

⌉
4 + 2|A|(nk + 2nc + 1) + 2

⌈ |A|
nc

⌉
2|Υ | 4 + 2

⌈ |Υ |
nk

⌉
+ 2

⌈ |Υ |
nc

⌉

GLUE-N 12 + 8|S| + 4
⌈ |S|

nk

⌉
4 + 2|A|(nk + 2nc + 4) + 2

⌈ |A|
nc

⌉
4|Υ | 8 + 2

⌈ |Υ |
nk

⌉
+ 2

⌈ |Υ |
nc

⌉

(a) Costs for non-negated policies

Scheme cexp cpair

Att19-I-CP [11] 4|Υ | · |S| 8 + 2|Υ | + 2min(|Υ |, |S|)
GLUE-N (worst case) 4|Υ | · |S| + 2

⌈ |S|
nk

⌉
· |Υ | 8 + 2|Υ | + 2

⌈ |S|
nk

⌉

GLUE-N (best case) 4
⌈ |Υ |

nc

⌉
· |S| + 2

⌈ |S|
nk

⌉
· |Υ | 8 + 2

⌈ |Υ |
nc

⌉
+ 2

⌈ |S|
nk

⌉

(b) Decryption costs for negated policies

Note: S = attribute set; A = access policy; Υ = matching attributes;
nk, nc = parameters chosen during setup

1.6 Efficiency Comparison with Existing Schemes Supporting
(1)-(5)

We generalize RW13 to achieve a scheme that supports or can support proper-
ties (1)-(5) whilst being able to achieve a more efficient decryption algorithm. In
Table 2, we compare the efficiency of RW13 and its OSW-type non-monotone
variant Att19-I-CP with GLUE (which supports MSPs only) and GLUE-N
(which additionally supports OSW-type negations). The table shows that, if
nk = nc, the number of pairing operations required during decryption is reduced
by roughly a factor of nk = nc. In Sect. 6, we give more concrete estimates for
the timings in practice and how they compare to existing schemes.

2 Preliminaries

Notation. A negligible function parametrized by λ is denoted as negl(λ). We
use x ∈R S to indicate that an element x is chosen uniformly at random from a
finite set S. For integers a < b, we denote [a, b] = {a, a+1, ..., b−1, b}, [b] = [1, b]
and [b] = [0, b]. We denote a : A to substitute variable a by a matrix or vector
A. We define 1d1×d2

i,j ∈ Z
d1×d2
p as the matrix with 1 in the i-th row and j-th

column, and 0 everywhere else, and 1d1
i and 1d2

i as the row and column vectors
with 1 in the i-th entry and 0 everywhere else.

662 M. Venema and G. Alpár

2.1 Access Structures

Definition 1 (Access structures represented by LSSS matrices [27]).
We represent an access structure as a pair A = (A, ρ) such that A ∈ Z

n1×n2
p

is an LSSS matrix, where n1, n2 ∈ N, and ρ is a function that maps its rows
to attributes in the universe. Then, for some vector v = (s, v2, ..., vn2) ∈R Z

n2
p ,

the i-th share of secret s generated by this matrix is λi = Aivᵀ, where Ai

denotes the i-th row of A. In particular, if S satisfies A, there exist a set of
rows Υ = {i ∈ [n1] | ρ(i) ∈ S} and coefficients εi ∈ Zp for all i ∈ Υ such that∑

i∈Υ εiAi = (1, 0, ..., 0), and by extension
∑

i∈Υ εiλi = s, holds. Otherwise,
there exists w = (1, w2, ..., wn2) ∈ Z

n2
p such that Aiwᵀ = 0 for all i ∈ Υ [16].

2.2 Attribute-based Encryption

Predicate Family. A predicate family [9] is a set P = {Pκ}κ∈Nc for some
constant c, where Pκ : Xκ ×Yκ → {0, 1}. For κ, it holds that κ = (p,par), where
p is a natural number and par denote the rest of the entries.

Definition 2 (Attribute-based encryption (ABE) [3]). An attribute-based
encryption scheme for a predicate family P = {Pκ}κ∈Nc over a message space
M = {Mλ}λ∈N consists of four algorithms:

– Setup(λ,par) → (MPK,MSK): On input the security parameter λ and param-
eters par, this probabilistic algorithm generates the domain parameters, the
master public key MPK and the master secret key MSK. In addition, κ is set
to κ = (p,par), where p denotes a natural number.

– KeyGen(MSK, y) → SKy: On input the master secret key MSK and y ∈ Yκ,
this probabilistic algorithm generates a secret key SKy.

– Encrypt(MPK, x,M) → CTx: On input the master public key MPK, x ∈ Xκ

and message M , this probabilistic algorithm generates a ciphertext CTx.
– Decrypt(MPK,SKy,CTx) → M : On input the master public key MPK, the

secret key SKy, and the ciphertext CTx, if Pκ(x, y) = 1, then it returns M .
Otherwise, it returns an error message ⊥.

Correctness. For all par, M ∈ Mλ, x ∈ Xκ, and y ∈ Yκ such that Pκ(x, y) = 1,

Pr[(MPK,MSK) ← Setup(1λ);
Decrypt(MPK,KeyGen(MSK, y)),Encrypt(MPK, x,M)) �= M] ≤ negl(λ).

Unbounded Large-Universe Ciphertext-Policy ABE. A specific instance
of ABE is ciphertext-policy ABE. In this type of ABE, the key predicate y is
a set of attributes S over some universe of attributes U , and the ciphertext
predicate x is an access policy A = (A, ρ), in this work represented as LSSS
matrices (Definition 1). We consider a scheme to be large-universe if it does not
impose bounds on the size of the universe. We call it unbounded, if it does not

GLUE: Generalizing Unbounded ABE for Flexible Efficiency Trade-Offs 663

impose bounds on the sizes of the universe, sets of attributes and access policies,
or on the number of times that an attribute occurs in an access policy. The
term “unbounded ABE” is more prominently used for schemes that achieve this
without requiring random oracles in the proof.

2.3 Full Security Against Chosen-Plaintext Attacks

Definition 3 (Full security against chosen-plaintext attacks (CPA)
[3]). We define the security game IND-CPA between challenger and attacker
as:

– Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK, and
sends the master public key MPK to the attacker.

– First query phase: The attacker queries secret keys for y ∈ Yκ, and obtains
SKy ← KeyGen(MSK, y) in response.

– Challenge phase: The attacker specifies some x∗ ∈ Xκ such that for all
y in the first key query phase, we have Pκ(x∗, y) = 0, and generates two
messages M0 and M1 of equal length in Mλ, and sends these to the challenger.
The challenger flips a coin, i.e., β ∈R {0, 1}, encrypts Mβ under x∗, i.e.,
CTx∗ ← Encrypt(MPK, x∗,Mβ), and sends the resulting ciphertext CTx∗ to
the attacker.

– Second query phase: This phase is identical to the first query phase, with
the additional restriction that the attacker can only query y ∈ Yκ such that
Pκ(x∗, y) = 0.

– Decision phase: The attacker outputs a guess β′ for β.

The attacker’s advantage is defined as AdvPE,IND-CPA = |Pr[β′ = β] − 1
2 |. A

scheme is fully secure if all polynomial-time attackers have at most a negligible
advantage in this security game, i.e., AdvPE,IND-CPA ≤ negl(λ). In the selective
security model, the attacker commits to the predicate x∗ ∈ Xκ before the Setup.

2.4 Pairings (or Bilinear Maps)

We define a pairing to be an efficiently computable map e on three groups G,H
and GT of prime order p, such that e : G×H → GT , with generators g ∈ G, h ∈ H

such that for all a, b ∈ Zp, it holds that e(ga, hb) = e(g, h)ab (bilinearity), and
for ga �= 1G, hb �= 1H, it holds that e(ga, hb) �= 1GT

, where 1G′ denotes the unique
identity element of the associated group G

′ (non-degeneracy). We refer to G and
H as the two source groups, and GT as the target group.

2.5 Pair Encoding Schemes

Definition 4 (Pair encoding schemes (PES) [3]). A pair encoding scheme
for a predicate family Pκ : Xκ × Yκ → {0, 1}, indexed by κ = (p,par), where
par specifies some parameters, is given by four deterministic polynomial-time
algorithms as described below.

664 M. Venema and G. Alpár

– Param(par) → n: On input par, the algorithm outputs n ∈ N that specifies
the number of common variables, which are denoted as b = (b1, ..., bn).

– EncKey(y, p) → (m1,m2,k(r, r̂,b)): On input p ∈ N and y ∈ Yκ, this algo-
rithm outputs a vector of polynomials k = (k1, ..., km3) defined over non-lone
variables r = (r1, ..., rm1) and lone variables r̂ = (r̂1, ..., r̂m2). Specifically, the
polynomial ki is expressed as

ki = δiα +
∑

j∈[m2]

δi,j r̂j +
∑

j∈[m1],k∈[n]

δi,j,krjbk,

for all i ∈ [m3], where δi, δi,j , δi,j,k ∈ Zp.
– EncCt(x, p) → (w1, w2, c(s, ŝ,b)): On input p ∈ N and x ∈ Xκ, this algorithm

outputs a vector of polynomials c = (c1, ..., cw3) defined over non-lone vari-
ables s = (s, s2, ..., sw1) and lone variables ŝ = (ŝ1, ..., ŝw2). Specifically, the
polynomial ci is expressed as

ci =
∑

j∈[w2]

ηi,j ŝj +
∑

j∈[w1],k∈[n]

ηi,j,ksjbk,

for all i ∈ [w3], where ηi,j , ηi,j,k ∈ Zp.
– Pair(x, y, p) → (E,E): On input p, x, and y, this algorithm outputs two

matrices E and E of sizes (w1 + 1) × m3 and w3 × m1, respectively.

A PES is correct for every κ = (p,par), x ∈ Xκ and y ∈ Yκ such that
Pκ(x, y) = 1, it holds that sEkᵀ + cErᵀ = αs.

Definition 5 (Symbolic property [3]). A pair encoding scheme Γ =
(Param, EncKey, EncCt, Pair) for a predicate family Pκ : Xκ × Yκ → {0, 1}
satisfies the (d1, d2)-selective symbolic property for positive integers d1 and d2
if there exist deterministic polynomial-time algorithms EncB, EncS, and EncR
such that for all κ = (p,par), x ∈ Xκ and y ∈ Yκ with Pκ(x, y) = 0, we have
that

– EncB(x) → B1, ...,Bn ∈ Z
d1×d2
p ;

– EncR(x, y) → r1, ..., rm1 ∈ Z
d1
p ,a, r̂1, ..., r̂m2 ∈ Z

d2
p ;

– EncS(x) → s0, ..., sw1 ∈ Z
d2
p , ŝ1, ..., ŝw2 ∈ Z

d1
p ;

such that 〈s0,a〉 �= 0, and if we substitute

ŝi′ : ŝᵀ
i′ sibj : Bjs

ᵀ
i α : a r̂k′ : r̂k′ rkbj : rkBj ,

for i ∈ [w1], i′ ∈ [w2], j ∈ [n], k ∈ [m1], k′ ∈ [m2] in all the polynomials of k and
c (output by EncKey and EncCt, respectively), they evaluate to 0.

Similarly, a pair encoding scheme satisfies the (d1, d2)-co-selective symbolic
security property if there exist EncB,EncR,EncS that satisfy the above properties
but where EncB and EncR only take y as input, and EncS takes x and y as input.

A scheme satisfies the (d1, d2)-symbolic property if it satisfies the (d′
1, d

′
2)-

selective and (d′′
1 , d′′

2)-co-selective properties for d′
1, d

′′
1 ≤ d1 and d′

2, d
′′
2 ≤ d2.

Agrawal and Chase [3] prove that any PES satisfying the (d1, d2)-symbolic
property can be transformed in a fully secure ABE scheme.

GLUE: Generalizing Unbounded ABE for Flexible Efficiency Trade-Offs 665

3 Generalizing Rouselakis-Waters

We first show how RW13 [45] can be generalized. On a high level, we do this by
substituting the implicit 1-degree polynomial in the RW13 keys and ciphertexts
with an n-degree polynomial. Like W11b [55], the randomness provided by this
n-degree polynomial will be shared between the keys and ciphertexts. That is,
suppose that nk and nc are positive integers such that n = nk + nc − 1, then
the n-degree polynomial provides enough randomness for nk − 1 attributes in
the keys, and nc attributes in the ciphertext. To optimally use this randomness,
we therefore split the keys and ciphertexts in partitions of at most nk and nc

attributes, respectively. For instance, if S denotes the set of attributes for which
a key is requested, then S is split in partitions of maximum size nk, i.e., S =
S1∪ ...∪Sm such that |Sl| ≤ nk for each l ∈ [m]. Then, to avoid boundedness, we
apply the RW13 trick by introducing one “randomizer” for each partition (both
in the keys and ciphertexts).

3.1 The Rouselakis-Waters Scheme

First, we briefly review the RW13 scheme [45]. Specifically, the secret keys and
ciphertexts are of the form

SK = (K = hα−rb,K ′ = hr, {K1,att = hrb′+ratt(xattb1+b0),K2,att = hratt}att∈S),
CT = (C = M · e(g, h)αs, C ′ = gs, {C1,j = Bλj · (B′)sj ,

C2,j = (B
xattj
1 B0)sj , C3,j = gsj }j∈[n1]),

where B = gb, B1 = gb1 , B0 = gb0 and B′ = gb′
denote public keys, r, ratt ∈R

Zp are randomly chosen integers during the key generation for set S, s, sj are
randomly chosen integers during encryption under access policy A = (A, ρ) with
A ∈ Z

n1×n2
p , and xatt is the representation of attribute att in Zp. We have also

denoted xattj
= ρ(j) to clearly indicate the attributes in the ciphertext.

3.2 First Attempt: A Naive Approach

Our first attempt is to directly replace the 1-degree polynomial, xattb1 + b0, by
an n-degree polynomial, i.e., fn(xatt) =

∑n
i=0 bix

i
att (where n = nk + nc − 1):

SK = (K = hα−rb,K ′ = hr, {K1,att = h
rb′+ rattfn(xatt)

,K2,att = hratt}att∈S),
CT = (C = M · e(g, g)αs, C ′ = gs, {C1,j = Bλj · (B′)sj ,

C2,j = Fn(xattj
)sj =

(
∏n

i=0 B
xi
attj

i

)sj

, C3,j = gsj }j∈[n1]),

where Bi = gbi for all i ∈ [0, n]. We split S in partitions of maximum size nk,
and the rows of A in partitions of size nc. We ensure that the same randomizer
is used for all attributes in the same partition, i.e., set ratt = ratt′ and sj = sj′ ,
if att and att′, and attj and attj′ are in the same partitions, respectively.

666 M. Venema and G. Alpár

Unfortunately, the resulting scheme is insecure (see the full version [54] for a
concrete attack). Roughly, the reason is that C1,j = gλjb+sjb′

does not sufficiently
hide λjb, because the same sj is used for all attributes in the same partition.
Therefore, we need to introduce more randomness.

3.3 Second (Successful) Attempt

We show how to use another polynomial to introduce enough random-
ness. Because we only need enough randomness for the ciphertext partitions,
we require an (nc − 1)-degree polynomial. This polynomial, f ′

nc−1(xatt) =
∑nc−1

i=0 b′
ix

i
att, will replace the “0-degree polynomial” b′. Because sj provides ran-

domness for one attribute, and f ′
nc−1 provides randomness for nc − 1 attributes

in the partition, this sufficiently hides λj . The resulting scheme is then

SK = (K = hα−rb,K ′ = hr, {K1,att = h
rf ′

nc−1(xatt) + rattfn(xatt)
,

K2,att = hratt}att∈S),

CT = (C = M · e(g, h)αs, C ′ = gs, {C1,j = Bλj · F ′
nc−1(xattj

)sj ,

C2,j = Fn(xattj
)sj , C3,j = gsj }j∈[n1]),

where F ′
nc−1(xatt) =

∏nc−1
i=0 (B′

i)
xi
att = gf ′

nc−1(xatt), and B′
i = gb′

i for all i ∈
[0, nc − 1]. Note that this scheme is a generalization of RW13, because setting
n = nc = nk = 1 yields RW13.

3.4 More Efficient Decryption

Generalizing the polynomial allows for an improved decryption efficiency. To
understand why this yields a significant improvement, we briefly review the
W11b scheme. We consider the keys and ciphertexts, which are of the form:

SK = (K = hα−rb,K ′ = hr, {Katt = hrfn(xatt)}att∈S),

CT = (C = M · e(g, h)αs, C ′ = gs, {Cj = Bλj Fn(ρ(j))s}j∈[n1]),

where r, s ∈ Zp are randomly chosen integers, B = gb is a public key, α is the
master key, and ρ(j) is the j-th attribute of the policy of length n1, and λj is a
sharing of s with respect to the policy. To decrypt, one computes

C/e(C ′,K) ·
∏

j∈Υ

e(Cj ,K
′)εj /

∏

j∈Υ

e(C ′,Kρ(j))εj ,

where εj for j ∈ Υ ⊆ [n1] are integers that allow us to reconstruct the secret
s. Each such product of pairings can be computed more efficiently by using

GLUE: Generalizing Unbounded ABE for Flexible Efficiency Trade-Offs 667

the bilinearity property on the shared arguments, e.g.,
∏

j e(K ′, Cj)εj can be
computed more efficiently by first multiplying Cj and then taking a pairing:

C/e

⎛

⎝C ′,K ·
∏

j∈Υ

K
εj

ρ(j)

⎞

⎠ · e

⎛

⎝
∏

j∈Υ

C
εj

j ,K ′

⎞

⎠ .

This requires only two pairing operations instead of 2|Υ |+1. While decryption is
very efficient, the drawback of W11b is that it is bounded in both the keys and
ciphertexts. Because Fn embeds an n-degree polynomial, its randomized variant
only provides sufficient randomness for n+1 attributes shared between the keys
and ciphertexts. In contrast, RW13 uses an implicit 1-degree polynomial for the
hash. To provide unboundedness, each instance of the hash—which in itself only
provides sufficient randomness for one attribute—is randomized. As a result,
both the keys and ciphertexts consist of components of the form (gti , F1(xatt)ti),
such that each randomizer part gti needs to be paired with the part involving the
hash during decryption. Hence, a linear number of pairing operations is required
during decryption instead of a constant. By generalizing the 1-degree polynomial,
we can use the same randomizer for multiple attributes. Thus, we can achieve
a similar speed-up in decryption efficiency as W11b, whilst benefiting from the
unboundedness of RW13.

Note that this also illustrates why it is important that the BB hash is used for
both the keys and the ciphertexts. For example, in the GPSW06 large-universe
scheme [26, §5], the randomness provided by the hash is used only for the cipher-
texts. As a result, the keys require a fresh randomizer for each attribute, and
therefore, decryption costs at least one pairing operation per attribute.

4 Our Construction

We now present the complete description of our scheme in the selective security
setting obtained by using [50] (see the full version [54] for a fully secure version).
In this scheme, we also introduce the mappings ι and τ , which map the attributes
of the keys and ciphertexts, respectively, into arbitrary partitions of maximum
sizes nk and nc.

Definition 6 (GLUE). GLUE is defined as follows.

– Setup(λ): On input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a
pairing e : G × H → GT . It also defines the universe of attributes U = Zp,
chooses nk ∈ N and nc ∈ N as the maximum partition sizes of the keys
and ciphertexts, respectively, and sets n = nk + nc − 1. It then gener-
ates random α, b, bi, b

′
i′ ∈R Zp for all i ∈ [0, n], i′ ∈ [0, nc − 1]. It outputs

MSK = (α, b, {bi, b
′
i′}i∈[0,n],i′∈[0,nc−1]) as its master secret key and publishes

the master public key as

MPK = (g, h, A = e(g, h)α, B = gb, {Bi = gbi , B′
i′ = gb′

i′ }i∈[n],i′∈[nc−1]).

668 M. Venema and G. Alpár

– KeyGen(MSK,S): On input set of attributes S, the key generation computes
m =

⌈
|S|
nk

⌉
, defines ι : S → [m] such that |ι−1(l)| ≤ nk for each l ∈ [m],

generates random integers r, r1, ..., rm ∈R Zp, and outputs the secret key as

SKS = (K = hα−rb,K ′ = hr, ι,

{K1,att = hrι(att)(
∑n

i=0 bix
i
att)+r(

∑nc−1
i=0 b′

ix
i
att)}att∈S , {K2,l = hrl}l∈[m]).

– Encrypt(MPK,A,M): A message M ∈ GT is encrypted under policy
A = (A, ρ) with A ∈ Z

n1×n2
p and ρ : [n1] → U by computing m′ =

max
(⌈

n1
nc

⌉
,maxj∈[n1] |ρ−1(ρ(j))|

)
and defining τ : [n1] → [m′] such that

|τ−1(l′)| ≤ nc for each l′ ∈ [m′] and if j, j′ ∈ [n1] with j �= j′ such
that ρ(j) = ρ(j′), then τ(j) �= τ(j′), i.e., multiple occurrences of the same
attribute are mapped to different partitions. (Note that this works because m′

is defined to be at least as large as the maximum number of occurrences of each
attribute.) It then generates random integers s, s1, ..., sm′ , v2, ..., vn2 ∈R Zp

and outputs the ciphertext as

CTA = (C = M · As, C ′ = gs, τ, {C1,j = Bλj ·
nc−1∏

i=0

(B′
i)

sτ(j)x
i
ρ(j) ,

C2,j =
n∏

i=0

B
sτ(j)x

i
ρ(j)

i }j∈[n1], {C3,l′ = gsl′ }l′∈[m′]),

such that λj denotes the j-th entry of A · (s, v2, ..., vn2)
ᵀ.

– Decrypt(SKS ,CTA): Suppose that S satisfies A, and let Υ = {j ∈ [n1] | ρ(j) ∈
S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0) (Definition

1). Then, the plaintext M is retrieved by computing

C/
(
e(C′, K) · ∏

j∈Υ

(
e(C1,j , K

′)/e(C3,τ(j), K1,ρ(j)) · e(C2,j , K2,ι(ρ(j)))
)εj

)
.

This can be computed more efficiently as

C/
(
e(C′, K) · e(

∏
j∈Υ C

εj

1,j , K
′) ·

(∏
l′∈[m′] e(C3,l′ ,

∏
j∈Υ∩τ−1(l′) K

−εj

1,ρ(j))

· ∏
l∈[m] e(

∏
j∈Υ∩ρ−1(ι−1(l)) C

−εj

2,j , K2,l)
))

,

which costs, on average, 2 +
⌈

|Υ |
nk

⌉
+

⌈
|Υ |
nc

⌉
pairing operations.

The scheme is correct, i.e., we have C/e(C ′,K) = M · e(g, h)αs ·
e(g, h)−αs+rsb = M · e(g, h)rsb and

∏

j∈Υ

(
e(C1,j ,K

′)/e(C3,τ(j),K1,ρ(j)) · e(C2,j ,K2,ι(j))
)εj

=
∏

j∈Υ

(e(g, h)rλjb+rsτ(j)
∑nc−1

i=0 b′
iρ(j)

i

GLUE: Generalizing Unbounded ABE for Flexible Efficiency Trade-Offs 669

·e(g, h)−rι(ρ(j))sτ(j)(
∑n

i=0 biρ(j)
i)−rsτ(j)

∑nc−1
i=0 b′

iρ(j)
i

·e(g, h)rι(ρ(j))sτ(j)
∑n

i=0 biρ(j)
i

)εj

=
∏

j∈Υ

e(g, h)rεjλjb = e(g, h)rb
∑

j∈Υ εjλj = e(g, h)rsb,

which yields the plaintext, i.e., M · e(g, h)rsb/e(g, h)rsb = M .

Unique Representation of Attributes. In the scheme, we assume that any
attribute string att ∈ {0, 1}∗ can be uniquely represented in Zp. In practice, this
can be done by using a collision-resistant hash function H : {0, 1}∗ → Zp [47].

4.1 The Associated Pair Encoding Scheme

To prove security, we define the pair encoding scheme associated with our scheme
in Definition 6, for which we use the variables nc, nk, n,S,ι,ρ,τ , n1, n2, λi,m,m′

from Definition 6, as follows.

Definition 7 (PES for GLUE).

– Param(par) → 2nc + nk + 3. Let b = (b, b0, ..., bn, b′
0, ..., b

′
nc−1), where n =

nk + nc − 1.
– EncKey(S) → (r, k′, {k1,att}att∈S). Let r = (r, {rl}l∈[m]), k′ = α − rb and

k1,att = rι(att)(
∑n

i=0 bix
i
att) + r(

∑nc−1
i=0 b′

ix
i
att).

– EncCt((A, ρ)) → (s, ŝ, {c1,j , c2,j}j∈[n1]). Let s = (s, {sl′}l′∈[m′]) and
ŝ = (v̂2, ..., v̂n2), and c1,j = Aj(sb, ŝ)ᵀ + sτ(j)

∑nc−1
i=0 b′

iρ(j)i and c2,j =
sτ(j)

∑n
i=0 biρ(j)i.

In Sect. 5, we prove security of the PES.

Theorem 1. The PES for GLUE in Definition 7 satisfies the symbolic property
(Definition 5).

Therefore, instantiating the PES in the AC17 framework yields a fully secure
scheme, and instantiating the PES with [50] yields a selectively secure scheme.

5 The Security Proof

While the construction of the scheme already provides some idea on why it may
be secure, the proof requires some additional insights. First, we briefly review
some important aspects in the Rouselakis-Waters proof, to gain some deeper
understanding of the structure of the selective property proof. Then, we show
how existing techniques can be combined to generalize the selective proof.

On a high level, the selective proof consists of the splitting of the n-degree
polynomial, which provides randomness for the keys and ciphertexts, into a
product of three polynomials f1, f ′

nc−1 and gnk−1. We use gnk−1 for the keys,

670 M. Venema and G. Alpár

Fig. 2. A high-level overview of the polynomials used in the combined proofs and our
generalized selective proof.

and f1f
′
nc−1 for the challenge ciphertext. For the key polynomial gnk−1, we use

Agrawal and Chase’s [4] techniques. In their selective proof of the CP-ABE
scheme with short ciphertexts, they embed a polynomial in the public keys such
that this polynomial can be reprogrammed to some polynomial associated with
the set of attributes of the key. We call such polynomials “reprogrammable”. For
the ciphertext polynomials f1, f

′
nc−1, we use a combination of the proofs of RW13

[45] and W11b [55]. Roughly, in these proofs, they embed polynomials in the
public keys, such that these polynomials are associated with the attributes that
occur in the challenge access policy. We call such polynomials “programmed”.
These techniques ensure that the polynomials evaluate to the right values when
the set and policy attributes are evaluated. Figure 2 depicts the relationship
between the existing proofs and ours. A similar approach can be taken in the
co-selective proof, by swapping the roles of the two polynomials.

5.1 The Rouselakis-Waters Proof

We briefly review the Rouselakis-Waters selective security proof. They use the
commonly used “program-and-cancel” technique [26,56], in which the challenge
access policy A = (A, ρ) is split in two disjoint subsets with respect to the set of
attributes S associated with the queried key. One subset Υ = {j ∈ [n1] | ρ(j) ∈
S} contains all the rows of matrix A for which the corresponding attribute is
in the set, while the other set Υ = S \ Υ contains the rest of the rows. In the
simulation of the key, it then uses the property that if S does not satisfy A, there
exists a vector w = (1, w2, ..., wn2) ∈ Z

n2
p such that Ajwᵀ = 0 for all j ∈ Υ . Fur-

thermore, they introduce the layering and individual randomness technique to
ensure that the challenge ciphertext can be simulated. Roughly, they embed the
attributes that occur in the policy in the public keys as well as their correspond-
ing row in the matrix in a layered fashion, using an individual randomness for
each layer. During the key query and challenge phases, the randomizer embeds a

GLUE: Generalizing Unbounded ABE for Flexible Efficiency Trade-Offs 671

single individual randomness to select the correct attribute layer, such that the
key and ciphertext components can be simulated.

The selective symbolic security proof can be analogously structured, such
that the substitutions ensure that all polynomials k1,att, c1,j and c2,j evaluate
to 0. In general, an attribute layer in the public keys is represented as a matrix
1d1×d2

i,j ∈ Z
d1×d2
p . Then, the appropriate attribute layer can be selected by the

vector that represents the associated individual randomness, i.e., 1d1
i ∈ Z

d1
p .

Multiplying this vector with the matrix yields 1
d2
j ∈ Z

d2
p . Effectively, only one

remaining entry needs to evaluate to 0. This is done by embedding the policy in
the public keys in a certain way. Specifically, in c1,j = Aj(sb, ŝ)ᵀ + sjb

′, where
Aj(sb, ŝ)ᵀ =

∑
k∈[n2]

Aj,kvk (where v1 = sb) and sjb
′ are supposed to cancel out

one another. This can be ensured by embedding all rows Aj of the policy in b′,
and using individual randomness (represented as a vector) to select the appropri-
ate row. More concretely, b′ could be substituted by −∑

j∈[n1],k∈[n2]
Aj,k1d1×d2

j,k

and sj by 1d1
j such that sjb

′ = −∑
k∈[n2]

Aj,k1
d2
k . Then, if vk is substituted

by 1d2
(0,k), s by 1d1

0 and b by 1d1×d2
0,(0,1), then Aj(sb, ŝ)ᵀ =

∑
k∈[n2]

Aj,k1
d2
(0,k). Simi-

larly, c2,j evaluates to 0 by defining b0 and b1 such that for each attribute layer
associated with row j, the 1-degree polynomial F1,j(x) = x − ρ(j) is embedded.
The individual randomness ensures that this polynomial is selected with sj . To
ensure that the key k1,att = rattf1(xatt) + rb′ evaluates to 0, we embed the vec-
tor w in r and ratt, which ensures that all attribute layers that are also in the
set S go to 0. For those attribute layers that are not in the set S, i.e., Υ , we
ensure that layers F1,j(xatt)Ajwᵀ in rattf1(xatt) cancel out layers Ajwᵀ in rb′.
Roughly, this is done by embedding 1

F1,j(xatt)
in ratt for all j ∈ Υ , such that the

Ajwᵀ in the two summands cancel out one another.

5.2 Generalizing the Rouselakis-Waters Proof

We generalize the Rouselakis-Waters proof by layering the policy embedded
in the public keys in a partition-wise fashion instead of attribute-wise. In this
way, the ciphertext-specific variable sl′ , which is used for all attributes in the
same partition, can select all attributes associated within the l′-th partition.
As such, in the computation of c1,j and c2,j , sτ(j)f

′
nc−1(ρ(j)) needs to cancel

out Aj(sb, ŝ)ᵀ and sτ(j)fn(ρ(j)) needs to go to 0. To this end, we need to sub-

stitute f ′
nc−1 in such a way that it outputs exactly −∑

k∈[n2]
Aj,k1

d2
(0,k) when

sτ(j)f
′
nc−1(ρ(j)) is computed. Similarly, the key-specific variable rl needs to be

constructed such that k1,att goes to 0, which happens when rι(att)fn(xatt) cancels
out rf ′

nc−1(xatt).
To accomplish this, we define fn and f ′

nc−1 as mentioned before, i.e.,
fn(xatt) = f1(xatt)f ′

nc−1(xatt)gnk−1(xatt). Roughly, we substitute f1 in the same
way as in the Rouselakis-Waters proof, while we use the polynomials f ′

nc−1 and
gnk−1 to ensure that c1,j and c2,j , and k1,att evaluate to 0, respectively. Because
we are given the challenge access structure a priori, i.e., as input to EncB, we
can program these as required in the substitutions of the polynomials f1 and
f ′

nc−1 in the public keys. Concretely, we substitute b0, ..., bn such that

672 M. Venema and G. Alpár

fn(xatt) :
∑

j∈[n1],k∈[n2]

Aj,kFn,j,k(xatt)

=
∑

j∈[n1],k∈[n2]

Aj,k F1,j(xatt)F ′
nc−1,j(xatt)Ĝnk−1,j,k(xatt)

︸ ︷︷ ︸
Fn,j,k(xatt)

,

where F1,j(xatt) = (xatt − ρ(j)) and

F ′
nc−1,j(xatt) =

nc−1∑

i=0

d′
i,jx

i
att =

∏

j′∈χj\{j}

xatt − ρ(j′)
ρ(j) − ρ(j′)

,

with χj = {j′ ∈ [n1] | τ(j′) = τ(j)}. We refer to these polynomials as the
“programmed” polynomials. These ensure that Fn,j(ρ(j′)) = 0 for all j′ ∈ χj ,
F ′

nc−1,j(ρ(j)) = 1 and F ′
nc−1,j′(ρ(j)) = 0 for all j′ ∈ χj \ {j}. Then, c1,j and c2,j

evaluate to 0, if we substitute

f ′
nc−1(xatt) :

∑

j∈[n1],k∈[n2]

Aj,kF ′
nc−1,j(xatt)1d1×d2

(1,τ(j)),(0,k).

In contrast, the set of attributes associated with a key is given after the
public keys have been established, i.e., as input to EncR, so we need to somehow
achieve that we can program the polynomial Ĝnk−1,j after the public keys are
generated. We do this by setting

Ĝnk−1,j,k(xatt) =
nk−1∑

i=0

1d1×d2
(1,τ(j)),(1,i,j,k)x

i
att,

such that Ĝnk−1,j,k constitutes a “reprogrammable” polynomial. It can be repro-
grammed by ensuring that rl consists of the coefficients ui,j,l of some target
polynomial(s), i.e., by multiplying

(
nk−1∑

i=0

1d1×d2
(1,τ(j)),(1,i,j,k)x

i
att

)(
nk−1∑

i=0

ui,j,l1
d2
(1,i,j,k)

)

=
nk−1∑

i=0

ui,j,l1d1
(1,τ(j))x

i
att.

We use this to “reprogram” polynomial Ĝnk−1,j,k(xatt) for all j ∈ Υ , which
is well-defined, because ρ(j) /∈ S. This then yields F ′

nc−1,j(xatt) and cancels
out the F ′

nc−1,j(xatt) in rf ′
nc−1(xatt) part in k1,att for all j ∈ Υ . Note that,

like in Rouselakis-Waters, we have Ajwᵀ = 0 for all j ∈ Υ , so those layers
automatically go to 0 in the computation of k1,att. Hence, for each partition
Ψl = {att ∈ S | ι(att) = l} with l ∈ [m], we define the polynomial

Gnk−1,j,l(xatt) =
nk−1∑

i=0

ui,j,lx
i
att =

∑

att′∈Ψl

1
F1,j(xatt′)

∏

att′′∈Ψl\{att′}

xatt − xatt′′

xatt′ − xatt′′
,

for each j ∈ Υ , such that Gnk−1,j,l(xatt) = 1
F1,j(xatt)

for all att ∈ Ψl.

GLUE: Generalizing Unbounded ABE for Flexible Efficiency Trade-Offs 673

Putting it all together, we substitute b0,...,bn with coefficients such that the
polynomial fn is substituted by

∑

j∈[n1],k∈[n2]

Aj,kFn,j,k(xatt) =
∑

j∈[n1],k∈[n2]

Aj,k

n∑

i=0

di,j,kxi
att,

where

di,j,k =
∑

i′∈[nk−1],i′′∈[nc−1]:i′+i′′=i

d′
i′,j1

d1×d2
(1,τ(j)),(1,i′′,j,k).

5.3 The Selective Symbolic Property

We prove the selective symbolic property, using m,m′, τ, ι as in Sect. 4 and
Fn,j,k, di,j,k, F ′

nc−1,j , d
′
i,j , Gnk−1,j,l, ui,j,l and χj as in Sect. 5.2. For simplicity of

notation, we write the second index of 1d1×d2 and the index of 1d2 as a tuple
(1, i, j, k) (with i ∈ [nk], j ∈ [n1], k ∈ [n2]) such that it represents a unique
integer in [n2 + 1, (((nk + 1)n1 + 1)n2)]. Note that we use (0, k) to indicate
the first n2 columns, which are associated with only k and not (i, j). For the
first index of 1d1×d2 and the index of 1d1 , we start counting at 0. Note that,
therefore, d1 = n2 + 1 and d2 = ((nk + 1)n1 + 1)n2. The substitutions are, for
all i ∈ [n], i′ ∈ [nk], l ∈ [m], l′ ∈ [m′], k ∈ [2, n2]:

b : 1d1×d2
0,(0,1), bi :

∑

j∈[n1],k∈[n2]

Aj,kdi,j,k

b′
i′ :

∑

j∈[n1],k∈[n2]

Aj,kd′
i′,j1

d1×d2
(1,τ(j)),(0,k), s : 1d1

0

sl′ : − 1d1
(1,l′), α : 1d1

0 , v̂k : 1d2
(0,k), r :

∑

k′∈[n2]

wk′1d2
(0,k′)

rl : −
∑

i′∈[nk−1],j′∈Υ,k′∈[n2]

wk′ui′,j′,l1
d2
(1,i′,j′,k′).

Then, c1,j , c2,j , k
′ and k1,att indeed go to 0 (see the full version [54]).

5.4 Co-selective Symbolic Property

We prove that the co-selective symbolic property also holds. For this proof,
the roles of the reprogrammable and the programmed polynomial are reversed,
because we are allowed to use an attribute set S in the programming of the
public keys and secret keys, and the policy A only for the ciphertext. Similarly
as in the selective case, we use the Rouselakis-Waters proof as inspiration for
the structure of the proof. In particular, we use the selective security proof of
the KP-ABE variant of the Rouselakis-Waters scheme (which is analogous to
the co-selective proof of the CP-ABE variant).

674 M. Venema and G. Alpár

In this proof, we substitute the polynomials with:

fn(xatt) :
∑

l∈[m]

⎛

⎜
⎝F̂nc−1,1,l(xatt)Gnk,l(xatt)

︸ ︷︷ ︸
Gn,l(xatt)

−F̂nc−1,2,l(xatt)

⎞

⎟
⎠ ,

f ′
nc−1(xatt) : F̂nc−1,2,0(xatt),

where we define Gn,l(xatt) =
∑n

i=0 ũi,lx
i
att, and

Gnk,l(xatt) =
nk∑

i=0

ui,lx
i
att =

∏

att′∈Ψl

(xatt − xatt′)

is a programmed polynomial with Gnk,l(xatt) = 0 for att ∈ Ψl, and

F̂nc−1,1,l(xatt) =
nc−1∑

i=0

1d1×d2
(1,i,l),l and F̂nc−1,2,l(xatt) =

nc−1∑

i=0

1d1×d2
(2,i),l

are the reprogrammable polynomials, to be reprogrammed to

Fnc−1,1,j,l(xatt) =
nc−1∑

i=0

d̃i,j,lx
i
att =

1
Gnk,l(ρ(j))

F ′
nc−1,j(xatt),

F ′
nc−1,j(xatt) =

nc−1∑

i=0

d′
i,jx

i
att,

respectively, for j ∈ Υ . Note that Fnc−1,1,j,l(ρ(j)) = 1
Gnk,l(ρ(j))

if j ∈ Υ and
Fnc−1,1,j′,l(ρ(j)) = 0 for j′ ∈ χj . Concretely, we have

ũi,l =
∑

i′∈[nc−1],i′′∈[nk]:i′+i′′=i

ui′′,l1d1×d2
(1,i′,l),l.

Then, for i ∈ [nc − 1], i′ ∈ [nc, n], l ∈ [m], l′ ∈ [m′], k ∈ [n2] we make the
following substitutions:

b : 1d1×d2
0,0 , bi :

∑

l∈[m]

(
ũi,l − 1d1×d2

(2,i),l

)
, bi′ :

∑

l∈[m]

ũi,l

b′
i : 1d1×d2

(2,i),0 , α : 1d1
0 , v̂k : wk1

d2
0 , r : 1

d2
0 , rl : 1

d2
l

s : 1d1
0 , sl′ : −

∑

i∈[nc−1],j∈χ̂l′ ∩Υ,k∈[n2]

Aj,kwk

(
d′

i,j1
d1
(2,i) + d̃i,j

)
,

where d̃i,j =
∑

l∈[m] d̃i,j,l1d1
(1,i,l), d1 = nc(m + 1) + 1 and d2 = m + 1. For

simplicity, we use tuple notations (1, i, l) and (2, i) for the first index of 1d1×d2

and the index of 1d1 for all i ∈ [nc − 1], l ∈ [m], which map injectively into the
intervals [2, ncm + 1] and [ncm + 2, d1], respectively, and index 0 maps to the
first row. Then, c1,j , c2,j , k

′ and k1,att indeed go to 0 (see the full version [54]).

GLUE: Generalizing Unbounded ABE for Flexible Efficiency Trade-Offs 675

6 Performance Analysis

We analyze the efficiency of our schemes. An important aspect in this analysis
are the parameters nk and nc, which are chosen during the setup (e.g., by a
practitioner). On a high level, the key generation, encryption and decryption of
the selectively secure version of GLUE (via [50]) incur the following costs:

– KeyGen: 2 + |S| +
⌈

|S|
nk

⌉
exponentiations in H;

– Encrypt: 1 exponentiation in GT , 1+
⌈

n1
nc

⌉
exponentiations, n1 multi-exponen-

tiations with nc + 1 bases and n1 multi-exponentiations with nk + nc bases
in G;

– Decrypt: roughly 2 +
⌈

|Υ |
nk

⌉
+

⌈
|Υ |
nc

⌉
pairing operations.

The efficiency of these algorithms depends on the one hand on the efficiency of
these operations, and on the other hand on the choices of nk and nc. By analyzing
these rough costs from a mathematical point of view, the trade-off between the
encryption and decryption efficiency is optimal when nk = nc (which follows
from the arithmetic mean-harmonic mean inequality). However, when the set of
attributes S is large, and nk is small, it may occur that all matching attributes
are in different partitions. As such, choosing nk to be larger, e.g., nk = 10,
ensures that the matching attributes are in the same key partitions with a large
probability, and therefore the actual number of pairing operations is higher. In
general, it holds that, the larger the partition sizes, the fewer pairing operations
are needed during decryption. Unfortunately, the drawback is that encryption
becomes more expensive, meaning that we may want to use the online/offline
version of the scheme in practice. In the full version [54], we give more details
on how a suitable partition size may be chosen. For our analysis, we consider
three parameter settings: (nk, nc) ∈ {(3, 3), (5, 5), (10, 5)}. Furthermore, for the
variant that supports OSW-type negations, we consider |S| ∈ {1, 5}.

On the Comparability of the Schemes. For a fair comparision, we opti-
mize all the schemes in the same way when instantiating the schemes in the
asymmetric setting [44]. Specifically, we optimize the decryption and encryption
efficiency. For the analysis of the RW13 [45], HW14 [31], Att19-I-CP and Att19-
I-CP-OO [11] schemes, we have used the performance analysis of our associated
schemes for nk = nc = 1 (which have the same encodings). We also compare
our monotone schemes with AHM+16 [12] and ABGW17 [7] (see the full version
[54] for the compared instantiations). To place the costs based on our theoreti-
cal analyses of the selectively secure instantiations (via [50]) in the full-security
setting, we multiply the costs for each element and operation in G and H by
a factor 2. This overhead corresponds to the most efficient instantiation of the
schemes in the AC17 framework [3]. For all schemes, we also assume that the
access policies are Boolean formulas, so that for decryption, it is ensured that
εj ∈ {0, 1} [38].

676 M. Venema and G. Alpár

Estimates Based on Benchmarks in RELIC. We estimate the computa-
tional costs of the schemes by obtaining benchmarks of various algorithms and
extrapolating the results by analyzing the descriptions of the schemes. We ana-
lyze the efficiency in this way for two reasons. First, it allows us to analyze the
efficiency of many scheme configurations without having to implement each one,
which is a cumbersome and error-prone effort. Second, it allows us to compare
the schemes more accurately and more fairly. Currently, the simplest and most
popular way [2,45,53] to benchmark schemes is by using Charm [5]. However,
Charm only supports curves that do not provide sufficient security anymore, and
de la Piedra et al. [44] show that benchmarking the schemes on these curves yields
inaccurate and unfair comparisons. To compare the schemes more accurately and
fairly, we estimate3 the costs of the schemes by applying their approaches [44].
In particular, we have run benchmarks in RELIC [8], a cryptographic library
for efficient implementations of pairing-based cryptography on state-of-the-art
elliptic curves. This library has implementations for exponentiations, including
fixed-base and multi-base variants. In fixed-base exponentiation, the base g in
gx is fixed after setup, and as such, a precomputation table can be made to
speed up the computation [20]. In a multi-base exponentiation, the product of
multiple exponentiations, e.g., gx1

1 gx2
2 , is computed more efficiently [41]. We have

run these benchmarks on a 1.6 GHz Intel i5-8250U processor for the BLS12-446
curve [15], which provides approximately 132-134 bits of security [28,29]. These
benchmarks can be found in the full version [54] and are used in our analysis.

Comparison. Tables 3a and 3b show the performances of all unbounded
schemes using a BB hash that support MSPs and NMSPs. The tables illustrate
that the decryption algorithms of our regular schemes are significantly faster
than the established schemes. While the encryption costs increase compared
to the other schemes, our online/offline versions also provide a solution in this
regard, incurring minimal online costs. This comes with a slight trade-off in the
ciphertext size and the decryption efficiency compared to the regular version,
but overall, our online/offline schemes outperform the established schemes in
all algorithms. Importantly, the decryption of our schemes supporting negations
with parameters nk = nc = 5 outperforms the only other unbounded OSW-
type non-monotone scheme. Importantly, decryption is faster by a factor 4 for
non-negated attributes, and faster by a factor 4-5 for negated attributes and
|S| = 5, bringing down the costs from almost two seconds to 382 ms. As a result,
our schemes could provide a more attractive building block for OSWOT-type
non-monotone schemes, as they support more efficient decryption algorithms for
negated and non-negated attributes, and for small and large sets of attributes
for each label. Furthermore, owing to the online/offline extensions, the key gen-
eration and encryption algorithms do not need to suffer from heavy online com-
putations. Instead, encrypting users need to store only 3.17-10.17 kilobytes per
one intermediate ciphertext of the first type and sufficient of the second type
3 Although approximated theoretically, we expect our estimates to be close to the

costs of actual implementations [54].

GLUE: Generalizing Unbounded ABE for Flexible Efficiency Trade-Offs 677

Table 3. Rough estimates of the storage costs of the secret keys and the ciphertexts
in kilobytes (KB), where 1 KB = 1024 bytes, and the (online) computational costs
incurred by the key generation, encryption and decryption algorithms of GLUE(nk,nc)

(and its online/offline (suffixed with “OO”) and OSW-non-monotone (suffixed with
“N”) variants) and the other unbounded CP-ABE schemes, expressed in milliseconds
(ms), for 10 and 100 attributes. Note that the offline key generation and encryption
costs of each online/offline scheme are equal to the key generation and encryption costs
of its regular version. The code used to generate these benchmarks is available at [51].

Storage costs Computational costs

SK CT KeyGen Encrypt Decrypt

Scheme |MPK| 10 100 10 100 10 100 10 100 10 100

R
eg

u
la

r

RW13 [45] 1.42 4.86 44.58 4.05 33.58 26.0 238.7 32.9 305.9 46.2 375.2

AHM+16 [12] (nk = 2) 1.75 5.3 45.02 6.45 55.67 16.5 122.9 40.8 368.3 43.7 317.4

ABGW17 [7] 1.42 2.65 22.51 3.94 33.47 14.2 120.5 32.3 305.2 27.9 192.4

GLUE(3,3) 2.08 3.53 30.02 3.39 26.36 18.9 160.7 59.8 571.4 24.3 133.9

GLUE(5,5) 2.74 3.09 26.93 3.17 24.83 16.5 144.2 82.3 800.4 17.0 82.8

GLUE(10,5) 3.28 2.87 24.72 3.17 24.83 15.4 132.3 102.1 998.4 15.1 64.5

O
/
O

HW14 [31] 1.42 5.23 48.29 4.79 41.0 0 0 0 0 51.5 416.2

GLUE(3,3) 2.08 3.9 33.73 5.62 48.62 0 0 0 0 33.6 202.6

GLUE(5,5) 2.74 3.46 30.64 6.88 61.94 0 0 0 0 27.6 157.5

GLUE(10,5) 3.28 3.24 28.43 8.74 80.49 0 0 0 0 24.2 123.4

(a) Schemes supporting MSPs only.

Storage costs Computational costs

SK CT KeyGen Encrypt Decrypt

Scheme |MPK| 10 100 10 100 10 100 10 100 10 100 10 100 10 100

R
eg

u
la

r Att19-I-CP [11] 1.42 10.89 100.01 6.37 55.76 59.0 541.8 66.6 637.5 51.7 380.7 55.3 367.9 216.2 1779.0

GLUE-N(3,3) 2.08 7.59 63.66 5.04 41.19 44.8 385.9 90.0 865.1 29.8 139.4 62.3 374.9 109.5 745.5

GLUE-N(5,5) 2.74 6.49 55.95 4.6 38.1 40.1 352.8 111.4 1086.0 22.4 88.3 55.3 367.9 55.3 382.5

GLUE-N(10,5) 3.28 5.94 50.44 4.6 38.1 37.7 329.2 131.2 1284.0 20.6 70.0 78.5 599.4 78.5 614.1

O
/
O

Att19-I-CP-OO 1.42 12.01 111.15 7.11 63.18 0 0 0 0 61.0 461.3 64.6 448.5 225.5 1859.6

GLUE-N(3,3) 2.08 8.7 74.79 7.27 63.46 0 0 0 0 46.7 275.2 79.3 510.6 126.4 881.3

GLUE-N(5,5) 2.74 7.6 67.08 8.31 75.21 0 0 0 0 41.8 235.9 74.7 515.5 74.7 530.1

GLUE-N(10,5) 3.28 7.05 61.58 10.17 93.77 0 0 0 0 36.8 185.9 94.7 715.4 94.7 730.0

(b) Schemes supporting OSW-type negations. The decryption costs are for non-negated, and negated policies with |S| ∈ {1, 5}, respectively.

for ten attributes (depending on the instantiation). This means that, with just
a megabyte of space, a user can store at least 100 intermediate ciphertexts for
a total of 1000 attributes. For computing devices such as computers and smart-
phones, which have an abundance of storage space nowadays, this is a more
than acceptable trade-off. Similarly, key generation authorities can store inter-
mediate keys for at least 286 users and 2860 attributes with just a megabyte of
space. Thus, with gigabytes, an authority can precompute keys for hundreds of
thousands of users and millions of attributes.

7 Applying Multiple Instantiations of GLUE in Practice

The flexible efficiency trade-offs that GLUE provides can be exploited in prac-
tice. In particular, practitioners can choose one suitable instantiation of GLUE,
or choose multiple instantiations of GLUE to support different computational
devices. Interestingly, by using the direct sum with parameter reuse transfor-
mation of Attrapadung [11], GLUE would be able to support multiple instances

678 M. Venema and G. Alpár

of itself simultaneously, such that the size of the master public key is upper-
bounded in the maximum size of the public keys of all instances. This may be
useful in settings in which the devices have varying computational resources. For
instance, in the WLAN use case considered by ETSI [24], the decryption devices
may be any mobile device in a network, including more constrained devices
such as smartwatches. For those devices, it is more beneficial to use a scheme
with fast decryption, e.g., GLUE(5,5), while for faster devices, it is sufficient to
employ a scheme with slower decryption, e.g., RW13. In WLAN systems, the
access point sends, for instance, an encrypted WPA2-PSK key to the connecting
device, which can decrypt it if is satisfies the policy. Because this exchange is
interactive, the connecting device and access point could first negotiate on the
particular instance of GLUE for which the connecting device has a secret key
before encrypting the WPA2-PSK key. In non-interactive systems, e.g., cloud
settings [24], it may be more desirable to use multiple instances in parallel. Pow-
erful devices could, for example, use multiple instances to support less powerful
devices that only use the more efficient instances. For example, powerful decryp-
tion devices could have keys for both GLUE(5,5) and RW13, while less powerful
encryption devices use RW13 or an online/offline variant of GLUE to encrypt.

8 Future Work

For future work, it would be interesting to investigate the following. First, we
have proven our scheme secure in the AC17 framework, which yields full security
under a q-type assumption. Although frameworks exist that prove security gener-
ically under static assumptions [9,10,21], these use a strong security notion called
the master-key hiding property. Like other unbounded ABE using a BB hash,
ours does not satisfy this property [9]. To achieve such strong notions of security,
more intricate proof techniques need to be devised, such as [22]. Second, we have
analyzed the efficiency of the schemes on the BLS12-446 curve. Presumably, the
encryption and decryption costs can improve if curves such as KSS16-339 [33] are
used, which provide faster arithmetic in G and provide more efficient products
of pairing operations [23]. GLUE (and RW13) may also benefit from fixed-base
multi-base exponentiations [41], which RELIC does not support. Finally, while
we have given the first steps towards realizing more efficient schemes support-
ing OSWOT-type negations, we have not explicitly specified these schemes. Our
analysis in Sect. 6 indicates that any such schemes would benefit from the effi-
ciency of our schemes, including those supporting OSW-type negations (see the
full version [54] for more details).

9 Conclusion

We have proposed GLUE, a new unbounded large-universe scheme with flexible
efficiency trade-off. This scheme is a generalization of RW13 [45] and W11b [55],
in that it supports polynomials of any degree for the Boneh-Boyen hash. To
optimally use the randomness provided by the hash, we use the partitioning

GLUE: Generalizing Unbounded ABE for Flexible Efficiency Trade-Offs 679

approach (previously also used by AHM+16 [12]), splitting the sets of attributes
and the policies in partitions of maximum sizes nk and nc, respectively. This
allows for a decreased number of pairing operations required during decryption
compared to RW13 (and related variants). Roughly, the pairing costs decrease by
a factor nk = nc (if chosen to be equal). Along the way, we have also introduced
new proof techniques. These ensure that the randomness provided by the BB
hash can be used for both the keys and ciphertexts in the unbounded setting.
Finally, we have shown that our schemes indeed outperform existing schemes
using a BB hash in the decryption, and notably, all schemes supporting OSW-
type negations. Because our non-monotone schemes are unbounded and faster
than 1.2 s in all algorithms on a laptop, even for large policies and sets, they are
more suitable for practice than existing non-monotone schemes.

References

1. Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime
order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp.
259–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-
0 10

2. Agrawal, S., Chase, M.: FAME: fast attribute-based message encryption. In: CCS,
pp. 665–682. ACM (2017)

3. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate
encryption schemes. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 627–656. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 22

4. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate
encryption schemes. Cryptology ePrint Archive, Report 2017/233 (2017)

5. Akinyele, J.A., et al.: Charm: a framework for rapidly prototyping cryptosystems.
J. Cryptogr. Eng. 3(2), 111–128 (2013)

6. Ambrona, M.: Generic negation of pair encodings. In: Garay, J.A. (ed.) PKC 2021.
LNCS, vol. 12711, pp. 120–146. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-75248-4 5

7. Ambrona, M., Barthe, G., Gay, R., Wee, H.: Attribute-based encryption in the
generic group model: Automated proofs and new constructions. In: CCS, pp. 647–
664. ACM (2017)

8. Aranha, D.F., Gouvêa, C.P.L., Markmann, T., Wahby, R.S., Liao, K.: RELIC is an
Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic (2020)

9. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

10. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53890-6 20

11. Attrapadung, N.: Unbounded dynamic predicate compositions in attribute-based
encryption. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476,
pp. 34–67. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 2

https://doi.org/10.1007/978-3-662-49099-0_10
https://doi.org/10.1007/978-3-662-49099-0_10
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-030-75248-4_5
https://doi.org/10.1007/978-3-030-75248-4_5
https://github.com/relic-toolkit/relic
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-030-17653-2_2

680 M. Venema and G. Alpár

12. Attrapadung, N., Hanaoka, G., Matsumoto, T., Teruya, T., Yamada, S.: Attribute
based encryption with direct efficiency tradeoff. In: Manulis, M., Sadeghi, A.-R.,
Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 249–266. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-39555-5 14

13. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 6

14. Attrapadung, N., Tomida, J.: Unbounded dynamic predicate compositions in ABE
from standard assumptions. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020.
LNCS, vol. 12493, pp. 405–436. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64840-4 14

15. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36413-7 19

16. Beimel, A.: Secure schemes for secret sharing and key distribution, Ph. D. thesis,
Ben Gurion University (1996)

17. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: S&P, pp. 321–334. IEEE (2007)

18. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

19. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

20. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast exponentiation
with precomputation. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658,
pp. 200–207. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-47555-
9 18

21. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

22. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy
expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 19

23. Clarisse, R., Duquesne, S., Sanders, O.: Curves with fast computations in the first
pairing group. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 2020. LNCS,
vol. 12579, pp. 280–298. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-65411-5 14

24. ETSI: ETSI TS 103 458 (V1.1.1). Technical specification, European Telecommu-
nications Standards Institute (ETSI) (2018)

25. ETSI: ETSI TS 103 532 (V1.1.1). Technical specification, European Telecommu-
nications Standards Institute (ETSI) (2018)

26. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS. ACM (2006)

https://doi.org/10.1007/978-3-319-39555-5_14
https://doi.org/10.1007/978-3-642-19379-8_6
https://doi.org/10.1007/978-3-030-64840-4_14
https://doi.org/10.1007/978-3-030-64840-4_14
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/3-540-47555-9_18
https://doi.org/10.1007/3-540-47555-9_18
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-030-65411-5_14
https://doi.org/10.1007/978-3-030-65411-5_14

GLUE: Generalizing Unbounded ABE for Flexible Efficiency Trade-Offs 681

27. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for
fine-grained access control of encrypted data. Cryptology ePrint Archive, Report
2006/309 (2006)

28. Guillevic, A.: A short-list of pairing-friendly curves resistant to special TNFS at
the 128-Bit security level. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) PKC 2020. LNCS, vol. 12111, pp. 535–564. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45388-6 19

29. Guillevic, A., Singh, S.: On the alpha value of polynomials in the tower number
field sieve algorithm. Cryptology ePrint Archive, Report 2019/885 (2019)

30. Hamburg, M.: Spatial encryption. Cryptology ePrint Archive, Report 2011/389
(2011)

31. Hohenberger, S., Waters, B.: Online/offline attribute-based encryption. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 293–310. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54631-0 17

32. Hu, C.T., et al.: Guide to attribute based access control (ABAC) definition
and considerations (2019). https://tsapps.nist.gov/publication/get pdf.cfm?pub
id=927500

33. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing brezing-weng pairing-friendly
elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D., Pater-
son, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85538-5 9

34. Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., et al. (eds.) FC
2010. LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14992-4 13

35. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k -Lin.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 3–33.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 1

36. Ladd, W., Venema, M., Verma, T.: Portunus: Re-imagining access control in dis-
tributed systems. Cryptology ePrint Archive, Paper 2023/094 (2023)

37. Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys.
In: IEEE S & P, pp. 273–285 (2010)

38. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 31

39. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 30

40. Lin, H., Luo, J.: Compact adaptively secure ABE from k-lin: Beyond nc1 and
towards NL. Cryptology ePrint Archive, Paper 2020/318 (2020)

41. Möller, B.: Algorithms for multi-exponentiation. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 165–180. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45537-X 13

42. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 22

43. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: CCS, pp. 195–203. ACM (2007)

44. de la Piedra, A., Venema, M., Alpár, G.: ABE squared: Accurately benchmarking
efficiency of attribute-based encryption. TCHES 2022(2), 192–239 (2022)

https://doi.org/10.1007/978-3-030-45388-6_19
https://doi.org/10.1007/978-3-030-45388-6_19
https://doi.org/10.1007/978-3-642-54631-0_17
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=927500
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=927500
https://doi.org/10.1007/978-3-540-85538-5_9
https://doi.org/10.1007/978-3-642-14992-4_13
https://doi.org/10.1007/978-3-642-14992-4_13
https://doi.org/10.1007/978-3-030-17653-2_1
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/3-540-45537-X_13
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22

682 M. Venema and G. Alpár

45. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: CCS, pp. 463–474. ACM (2013)

46. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 13

47. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

48. Santos, N., Rodrigues, R., Gummadi, K.P., Saroiu, S.: Policy-sealed data: a new
abstraction for building trusted cloud services. In: USENIX Security Symposium,
pp. 175–188. USENIX Association (2012)

49. Tomida, J., Kawahara, Y., Nishimaki, R.: Fast, compact, and expressive attribute-
based encryption. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.)
PKC 2020. LNCS, vol. 12110, pp. 3–33. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45374-9 1

50. Venema, M.: A practical compiler for attribute-based encryption: new decentral-
ized constructions and more. In: To appear at CT-RSA 2023. Springer (2023).
Cryptology ePrint Archive, Paper 2023/143

51. Venema, M., Alpár, G.: Performance estimates for the GLUE paper. https://
github.com/mtcvenema/glue

52. Venema, M., Alpár, G.: TinyABE: Unrestricted ciphertext-policy attribute-based
encryption for embedded devices and low-quality networks. In: Batina, L., Dae-
men, J. (eds.) Progress in Cryptology - AFRICACRYPT 2022. AFRICACRYPT
2022. Lecture Notes in Computer Science, vol. 13503, pp. 103–129. Springer (2022).
https://doi.org/10.1007/978-3-031-17433-9 5

53. Venema, M., Alpár, G., Hoepman, J.: Systematizing core properties of pairing-
based attribute-based encryption to uncover remaining challenges in enforcing
access control in practice. Des. Codes Cryptogr. 91(1), 165–220 (2023)

54. Venema, M., Alpàr, G.: Glue: Generalizing unbounded attribute-based encryption
for flexible efficiency trade-offs. Cryptology ePrint Archive, Paper 2022/613 (2022)

55. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. Cryptology ePrint Archive, Report 2008/290
(2008)

56. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

57. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: A framework and com-
pact constructions for non-monotonic attribute-based encryption. In: Krawczyk,
H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 275–292. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54631-0 16

https://doi.org/10.1007/978-3-642-32009-5_13
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-030-45374-9_1
https://doi.org/10.1007/978-3-030-45374-9_1
https://github.com/mtcvenema/glue
https://github.com/mtcvenema/glue
https://doi.org/10.1007/978-3-031-17433-9_5
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-54631-0_16

Key Exchange and Messaging

EKE Meets Tight Security
in the Universally Composable

Framework

Xiangyu Liu1,2, Shengli Liu1,2,3(B), Shuai Han1,2, and Dawu Gu1

1 School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{xiangyu liu,slliu,dalen17,dwgu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. (Asymmetric) Password-based Authenticated Key Exchange
((a)PAKE) protocols allow two parties establish a session key with a pre-
shared low-entropy password. In this paper, we show how Encrypted Key
Exchange (EKE) compiler [Bellovin and Merritt, S&P 1992] meets tight
security in the Universally Composable (UC) framework. We propose a
strong 2DH variant of EKE, denoted by 2DH-EKE, and prove its tight
security in the UC framework based on the CDH assumption. The effi-
ciency of 2DH-EKE is comparable to the original EKE, with only O(λ)
bits growth in communication (λ the security parameter), and two (resp.,
one) extra exponentiation in computation for client (resp., server).

We also develop an asymmetric PAKE scheme 2DH-aEKE from 2DH-
EKE. The security reduction loss of 2DH-aEKE is N , the total number of
client-server pairs. With a meta-reduction, we formally prove that such
a factor N is inevitable in aPAKE. Namely, our 2DH-aEKE meets the
optimal security loss. As a byproduct, we further apply our technique
to PAKE protocols like SPAKE2 and PPK in the relaxed UC frame-
work, resulting in their 2DH variants with tight security from the CDH
assumption.

Keywords: (Asymmetric) PAKE · UC Framework · Tight Security

1 Introduction

Password-based Authenticated Key Exchange (PAKE) [8] allows two parties
(client and server) who share a low-entropy password pw to agree on a ses-
sion key via public networks. Such session keys can later be used to establish
secure channels. Different from authenticated key exchange (AKE) which needs
a PKI to authenticate the validity of public keys, PAKE takes short human-
memorizable passwords rather than long cryptographic keys. Therefore, PAKE
is more convenient for deployments and applications.

For PAKE, the server has to store all clients’ passwords and once compro-
mised, all clients are in high risk. Asymmetric PAKE (aPAKE) [9,19] is a variant
c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 685–713, 2023.
https://doi.org/10.1007/978-3-031-31368-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_24&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_24

686 X. Liu et al.

of PAKE that considers security against server compromise. In the scenario of
aPAKE, the server stores a password file (usually a hash value H(pw)) for the
client, rather than a plain password. A client can establish a session key with a
server if it holds a pre-image of the password file.

Started from the pioneering works by Belloven and Merritt [8,9], (a)PAKE
has been studied extensively, and a variety of protocols have been proposed
over the past decades. For example, SPEKE [28], PPK/PAK [35], SPAKE2 [4],
Dragonfly [24], J-PAKE [23], KOY [31], KV [32] for PAKE, and VB-PAKE
[33], OPAQUE [30], KC-SPAKE2+ [41], KHAPE [21], YLZT [44], aEKE and
OKAPE [39] for aPAKE. Among these protocols, SPAKE2, J-PAKE, OPAQUE
are under the process of standardization [5,27,38,40]. (a)PAKE protocols have
also been increasingly applied to numerous settings, including TLS [30,37], ad
hoc networks [43], and the Internet of Things [42].

Since passwords have limited entropy, an adversary A can always try a pass-
word guess and actively engage in a session, and hence break the security with a
noticeable probability. Such online attacks are inherit to (a)PAKE, but we can
still fence these attacks via engineering methods, e.g., by limiting the number
of online password guesses. Another type of attacks is offline dictionary attacks,
i.e., the adversary eavesdrops on executions of the protocol and tries to break
the security via a brute-force attack with all possible passwords in a given dic-
tionary. Intuitively, a PAKE protocol is secure, if offline dictionary attacks help
nothing to the adversary, and the only feasible way to break the security, is to
engage in an online attack. In aPAKE, we further consider security when the
server is compromised. That is, the password files help nothing for the adversary
in impersonating a client, as long as A does not obtain the correct password
from the compromised password file via brute-force search.

Security Models for (a)PAKE. There are two types of security notions for
(a)PAKE, namely, the game-based security in the Indistinguishability (IND)
model (see [7] for PAKE and [10,11,33] for aPAKE) and the simulation-based
security in the Universally Composable (UC) framework (see [15] for PAKE and
[19] for aPAKE). The IND model is formalized as an experiment between a
challenger C and an adversary A. We say an (a)PAKE protocol is secure in this
model, if A cannot distinguish a real session key from a random session key,
after it implements a variety of attacks.

The UC framework/model is another popular approach to formalize the secu-
rity of (a)PAKE. In the UC framework, an ideal function F is defined to capture
the essential functionality of an (a)PAKE protocol in the ideal world. We say
that an (a)PAKE protocol is secure in the UC framework, if it securely emulates
F , i.e., no PPT environment can distinguish the real world execution from the
ideal world execution (involving F and an ideal world simulator).

The UC framework is preferable to the IND model in a number of important
aspects.

– The UC framework allows an arbitrary correlation and distribution for pass-
words. But in the IND model, passwords are required to be uniformly dis-
tributed over the password set (or at least have a min-entropy) for the sake
of security proofs, e.g., [7,31].

EKE Meets Tight Security in the Universally Composable Framework 687

– UC security is preserved even if the protocol is running in arbitrary networks,
where multiple different protocols may run concurrently. This is guaranteed
by the universal composition theorem [14] in the UC framework.

– PAKE with UC security implies simulation-based security of secure-channel
protocols built on PAKE [15]. In contrast, it is not sure for the IND security
[41].

Tight Security. The security of (a)PAKE (in both the IND and UC models) is
achieved by a security reduction under proper assumptions. The security reduc-
tion transforms the ability of a successful adversary A to an algorithm B solving
some well-known hard problem in about the same running time. If A’s attack
succeeds with probability ε, then B solves the problem with probability ε/L.
Here L is defined as the security loss factor. We say that the reduction is tight
if L is a constant. Otherwise the reduction is loose. A loose factor L is generally
a polynomial of Q, where Q is the total number of queries involved by A, and it
can be of arbitrary polynomial. PAKE and aPAKE are generally implemented
in the multi-user and multi-challenge setting. With a loose security reduction,
the deployment of (a)PAKE has to choose a larger security parameter to com-
pensate the loss factor L, resulting in larger elements and slower computations
in the execution of (a)PAKE. Therefore, pursuing tight security of (a)PAKE is
not only of theoretical value but also of practical significance.

There are very few works considering tight security of (a)PAKE. Becerra et
al. [6] proved that the security of the PAK protocol [35] can be tightly reduced to
the Gap DH assumption in the IND model. Under the same assumption, Abdalla
et al. [1] proved that SPAKE2 [4] is tightly secure in the relaxed UC framework.
However, both of the works used the non-standard Gap DH assumption, which
states that it is hard to compute gxy, given gx, gy, and an oracle deciding whether
the input (ga, gb, gc) is a DDH tuple. Besides, their securities are proved in the
IND or relaxed UC model [1], rather than the (regular) UC framework. Up to
now, there is no research on (a)PAKE with tight security in the UC framework.

Therefore, a challenging question is:

Can we construct a tightly secure (a)PAKE protocol in the UC framework,
preferably from the standard assumption?

Our Contributions. In this paper, we aim to answer the above question. For
PAKE, we propose a tightly secure PAKE protocol based on the CDH assump-
tion in the UC framework, and hence answer the question for PAKE in affirma-
tive. For aPAKE, we prove a negative result via a meta-reduction, showing that
a loss factor L = N (the number of client-server pairs) is inevitable in aPAKE.
Nevertheless, we still come up with an aPAKE protocol that meets this optimal
security loss. In more detail, we revisit the EKE compiler/protocol in [8], and
make the following contributions.

1. We propose a strong 2DH variant of EKE, denoted by 2DH-EKE, and prove
that it is a tightly secure PAKE from the CDH assumption in the UC frame-
work. The efficiency of 2DH-EKE is comparable to the original EKE, with

688 X. Liu et al.

only O(λ) bits growth in communication (λ the security parameter) and two
(resp., one) extra exponentiation in computation for client (resp., server).

2. We show a negative result for aPAKE, indicating that it is impossible for
aPAKE to be tightly secure. With a meta-reduction, we prove that the secu-
rity loss of aPAKE is lower bounded by N , the number of client-server pairs.

3. We develop our 2DH-EKE to an aPAKE protocol, denoted by 2DH-aEKE,
that meets the optimal security loss N based on the CDH assumption. Com-
pared with 2DH-EKE, the 2DH-aEKE protocol adds one extra round for
message authentications.

4. As a byproduct, we further apply our technique to PAKE protocols like
SPAKE2 [4] and PPK [35] in the relaxed UC framework [1], resulting in
their 2DH variants with tight security from the CDH assumption.

Related Works. Bellovin and Merritt started the research of PAKE in [8],
and proposed the well-known EKE compiler/protocol. The security of EKE was
formally proved later by Bellare et al. [7] in the IND model, and by Dupont
et al. [17] in the UC framework. Most of the efficient PAKE constructions
([4,12,13,35,36], to name a few) rely on Random Oracles (RO), and they can
be viewed as different variants of the classical EKE compiler [8]. There are some
works [18,20,31,32] that consider PAKE in the standard model (i.e., without
any ideal functions), but the constructions usually rely on heavy building blocks
like CCA2-secure PKE [20] or NIZK [32], and hence are less efficient.

Given the advantages of the UC framework over the IND model, a large
amount of (a)PAKE protocols [21,30,39,41] are proposed and proved in the UC
framework recently. There are some other works [2,3] focusing on the existing
IND-secure (a)PAKE schemes and aiming to prove their security in the stronger
UC framework. In [1], Abdalla et al. relaxed the UC framework by introducing
a modified lazy-extraction PAKE functionality, which allows the adversary in
the ideal world to postpone its password guess until after the session is com-
pleted. Under this relaxed model, they proved that SPEKE [29], SPAKE2 [4],
and TBPEKE [36] are UC-secure.

The only two works considering tight security of PAKE are [6] by Becerra
et al., and [3] by Abdalla et al. (both of them are in the RO model). However,
their securities are proved in the IND model or the relaxed UC framework [3],
based on the non-standard Gap DH assumption. As far as we know, there exists
no tightly secure (a)PAKE schemes in the regular UC framework up to now.

1.1 Technical Overview

In this subsection we briefly overview the technique used in this paper.
The main challenge to achieve tight security for (a)PAKE, is to embed the

hard problem into multiple sessions, while keeping the ability to output their
session keys in case the adversary A has the power to compute them (e.g., A
correctly guesses the password). Furthermore, the reduction algorithm should
extract (possibly from a set) the correct solution for the hard problem, if A wins
the security experiment non-trivially.

EKE Meets Tight Security in the Universally Composable Framework 689

Now let us consider the EKE compiler/protocol [8]. The client samples x and
sends E(pw, gx), where E(·) is a symmetric encryption under key pw. Similarly,
the server samples y and sends E(pw, gy). The session key is computed as key =
H(aux, Z = gxy, pw) with aux some public information. Now we explain why it
is difficult for EKE to achieve tight security based on the CDH assumption.

In the reduction, given a CDH problem instance (gx̄, gȳ), the reduction algo-
rithm B may use the random self-reducibility of the DH problem to generate
multiple (gxi , gyj), and embed them into multiple protocol sessions. Since H(·)
works as a random oracle, A has no advantage in distinguishing a real session
key from a random key, unless it queries H(·) on the right CDH value gxiyj .
Now suppose that A does query H(·) on the right CDH value, here come two
problems for B.

(1) A may ask hash queries on (aux, Zi, pw) with different Zi, but B cannot
identify/compute the right CDH value gx̄ȳ from all Zi. Therefore, B has
to guess one for the CDH problem, leading to a loose security factor Qh

(maximum number of hash queries).
(2) A may correctly guess the password and send gy out after seeing some gxi ,

i.e., A has the power to compute gxiy and hence the session key. However,
without the knowledge of xi, B is unable to compute gxiy.

To solve these two problems, a natural idea is resorting to a decision oracle,
and that is exactly what [1,6] did. However, [1,6] rely on the non-standard Gap
DH assumption. In this paper, we solve these two problems with the twin DH
decision oracle and the standard CDH assumption.

Twin DH Decision Oracle. In [16], Cash et al. proposed the strong twin-
DH (st2DH) assumption and proved its equivalence to the (standard) CDH
assumption. Here the strong 2DH problem is to compute (gx̄1ȳ, gx̄2ȳ), given
gx̄1 , gx̄2 , gȳ, as well as a decision oracle 2DH(·, ·, ·) that inputs (Y,Z1, Z2) and
outputs whether (X̄1, Y, Z1) and (X̄2, Y, Z2) are both DDH tuples. Inspired by
[16], we propose our 2DH variant protocol for EKE, named 2DH-EKE. Now the
client sends E(pw, gx1 ||gx2) and the server sends E(pw, gy), and the session key
is computed as key = H(aux, Z1 = gx1y, Z2 = gx2y, pw) with aux some public
information. Next, we show how the twin DH decision oracle can be used to
solve the above two problems.

(1) With the decision oracle 2DH(·, ·, ·), the reduction algorithm B can easily
locate the correct Z1, Z2 among all possible candidates, by checking whether
2DH(Y,Z1, Z2) = 1. In this way, B succeeds in solving the strong 2DH
problem, and avoiding the loose factor Qh.

(2) In the reduction B may need to simulate the session key key = H(aux, gx1y,
gx1y, pw) for some adversarially generated gy, and the exponents x1||x2 are
unknown to B due to the embedded hard problem. In this case, B randomly
samples a key and implicitly sets it as the “right” key. Since H(·) works
as a random oracle, A will not obverse this difference unless it asks a hash
query on the right 2DH values Z1, Z2 later. If this happens, B can detect

690 X. Liu et al.

it with the decision oracle, and reprogram the random oracle such that
H(aux, Z1, Z2, pw) = key, and the view of A is consistent.

Towards UC Security. To achieve UC security, we need to construct a PPT
simulator to simulate the interactions with the environment in the real world,
with the help of the ideal functionality F . In our 2DH-EKE protocol, the sym-
metric encryption (E,D) is modeled as an Ideal Cipher (IC), and hence the tran-
scripts (e1 = E(pw,X1||X2) and e2 = E(pw, Y)) are perfect hiding. Consequently,
the simulator can perfectly simulate the transcripts with random messages.

To deal with the adversarially generated message (say e′
1), we can always look

up the IC list to extract the password A guesses “in mind”. Then the simulator
can resort to the TestPW interface provided by F , to check whether A succeeds
in guessing the password. If yes, the simulator can compute the “real” session
key, with the help of the twin DH decision oracle, as discussed above. Otherwise,
the session key is simulated as a random key, and this is indistinguishable to the
adversary due to the CDH assumption.

Asymmetric PAKE. Generally in the scenario of aPAKE, the server stores a
password file (usually a hash of the password) rather than the password in plain.
The resistance to server compromise requires that getting the password file helps
nothing for the adversary in impersonating a client, unless it implements a brute-
force attack and successfully recovers the pre-image pw. In this paper, we develop
our 2DH-EKE to an aPAKE protocol 2DH-aEKE, with only one extra round to
transmit a confirming message.

2DH-aEKE inherits the idea of the generic CDH-based compiler in [26], and
it works as follows. Let H0(·) be a hash function, H0(pw) = (h, v1, v2) and
V1 := gv1 , V2 := gv2 . Now the password file stored in the server is (h, V1, V2).
In the execution of 2DH-aEKE, the client and the server first run the symmet-
ric 2DH-EKE protocol using h as the key of symmetric encryption. Recall that
the client and the server’s unencrypted messages are (X1||X2) = (gx1 ||gx2) and
Y = gy, respectively. Let H(aux, gx1y, gx2y, gv1y, gv2y, h) = (key, σ), where aux
is the public information, key is the session key, and σ is the key confirmation
message. Then the client sends σ to the server as an extra round message. From
the strong 2DH assumption we know that it is hard to compute gv1y||gv2y, even
with the password file (h, V1, V2) and Y . That is how the security of 2DH-aEKE
is guaranteed even after the server compromise. Note that the security reduc-
tion has a loss factor of N , the number of total client-server pairs, due to the
commitment of client’s password in the password file.

With a meta-reduction, we prove that the security loss of aPAKE is lower
bounded by N . Hence, our 2DH-aEKE meets the optimal reduction loss. Now we
give an intuition why the loss factor N is inevitable in aPAKE. In the reduction,
the hard problem (X̄1, X̄2, Ȳ) is embedded into the password file V1||V2 and
the server’s message Y , respectively. Meanwhile, if A asks the value of H0(pw)
with the correct password, then the discrete log of V1||V2 should be returned.
However, the reduction algorithm does not know whether and when A will issue
such a query. Hence, it has to choose a particular client-server pair among all N

EKE Meets Tight Security in the Universally Composable Framework 691

pairs, embed the hard problem into this password file, and hope A breaks the
security of one session involving this password file but does not query H0(pw) at
the time being.

Recall that almost all previous aPAKE schemes [21,26,41] have a loose reduc-
tion loss at least QhNθ, where Qh, N, θ denote the maximum numbers of hash
queries, client-server pairs, and protocol executions per client-server pair, respec-
tively. We stress that the decision oracle 2DH helps us improving the loss factor
from QhNθ to the optimal bound N (note that QhNθ � N in general).

Extend to the Relaxed UC Framework. Our method can also apply to
some IC-free protocols like SPAKE2 [4] and PPK [35], to get their 2DH vari-
ants. And the tight security can be proved based on the CDH assumption in
the relaxed UC framework [1]. We take the SPAKE2 protocol as an example.
In SPAKE2, the transcript messages are X · Mpw and Y · Npw with M,N pub-
lic parameters. In our 2DH-SPAKE2, X is replaced by (X1||X2) = (gx1 ||gx2),
Y is replaced by (Y1||Y2) = (gy1 ||gy2), and the session key is computed as
key = H(aux, gx1y1 , gx1y2 , gx2y1gx2y2 , pw). Similar to the proof of 2DH-EKE, the
decision oracle 2DH is essential to make a tight reduction in the relaxed UC
framework.

Forward Security. Both 2DH-EKE and 2DH-aEKE achieve Perfect Forward
Security [22] (PFS, a.k.a. perfect forward secrecy). PFS means that once a party
is corrupted at some moment, then all session keys completed before the corrup-
tion remain hidden from the adversary. Let us take 2DH-EKE as an example.
Note that a completed session has already uniquely determined e1 and e2, even
if one of them is adversarially generated. If A later gets pw via a corruption,
the information it obtains from the corruption is limited by X1||X2 = D(pw, e1)
and Y = D(pw, e2). However, given X1||X2 and Y , computing the session key
is as hard as solving the 2DH problem, and PFS is guaranteed as a result. The
analysis of PFS for SPAKE2 (2DH-SPAKE2) can be found in [1].

1.2 Roadmap

This paper is organised as follows. In Sect. 2 we present preliminaries, includ-
ing notations and some hardness assumptions. In Sect. 3 we describe the UC
framework for PAKE, propose the 2DH-EKE protocol, and prove its security. In
Sect. 4 we describe the UC framework for aPAKE, and propose the asymmetric
variant 2DH-aEKE protocol. The optimal reduction loss in aPAKE is shown
in Sect. 5. Consequently, we extend our technique to SPAKE2 to obtain 2DH-
SPAKE2 in Sect. 6. We refer the full version [34] for details of the proofs, and
the functionalities of ideal ciphers, random oracles, and lazy-extraction PAKE.

2 Preliminaries

We use λ ∈ N to denote the security parameter throughout the paper. Denote
by x := y the operation of assigning y to x. Denote by x

$←− X the operation of

692 X. Liu et al.

sampling x uniformly at random from a set X . For an algorithm A, denote by
y ← A(x; r), or simply y ← A(x), the operation of running A with input x and
randomness r and assigning the output to y. “PPT” is short for probabilistic
polynomial-time.

The the functionalities of ideal ciphers and random oracles are given in the
full version [34].

2.1 Hardness Assumptions

Let GGen be a group generation algorithm such that (G, q, g) ← GGen(1λ), where
G is a cyclic group of prime order q with generator g.

Definition 1. For any adversary A, its advantage in solving the Computational
Diffie-Hellman (CDH) problem is defined as

AdvCDH
G,A (λ) := Pr[x, y

$←− Zq : A(g, gx, gy) = gxy].

In [16], Cash et al. proposed the Strong Twin Diffie-Hellman (strong 2DH or
st2DH) problem, and proved that it is as hard as the CDH problem.

Definition 2. [16] For any adversary A, its advantage in solving the st2DH
problem is defined as

Advst2DH
G,A (λ) := Pr[x̄1, x̄2, ȳ

$←− Zq : A2DH(·,·,·)(g, gx̄1 , gx̄2 , gȳ) = (gx̄1ȳ, gx̄2ȳ)],

where the decision oracle 2DH(·, ·, ·) inputs (gy, gz1 , gz2) and outputs 1 if (x̄1y =
z1) ∧ (x̄2y = z2) and 0 otherwise.

The st2DH assumption was proven equivalent to the CDH assumption [16].

Theorem 1. [16] For any PPT adversary A against the st2DH problem, there
exists a PPT algorithm B against the CDH problem such that Advst2DH

G,A (λ) ≤
AdvCDH

G,B (λ) + Q/q, where Q is the maximum number of decision oracle queries.

In the following sessions, we also use the notations CDH(gx, gy) = gxy, and
2DH(gx1 , gx2 , gy) = (gx1y, gx2y) for arbitrary elements gx, gy, gx1 , gx2 in G.

3 PAKE with Tight Security in the UC Framework

3.1 UC Framework for PAKE

We assume basic familiarity with the Universally Composable framework (UC
framework, a.k.a. UC model) for PAKE. The ideal functionality Fpake is shown
in Fig. 1. We mainly follow the definition by Shoup in [41], which is a modified
version of [15] by Canetti et al. For a full understanding of UC framework, we
refer [15,41] for details.

EKE Meets Tight Security in the Universally Composable Framework 693

Overview of the UC Framework. The ideal functionality Fpake plays the role
of a trusted authority in the ideal world. A client and a server first share the same
password when registration, after which Fpake records the password privately.
When initializing a new PAKE session, both the two parties send a query to
Fpake, and the client additionally sends a password (since it is very possible for
a client to mistype the password, see the description below). Then Fpake verifies
whether the password from the client matches the (correct) password stored
by the server. If yes, these two parties are “matched” and they will get the
same random session key from Fpake. Otherwise, they are “dismatched” and the
execution of PAKE fails (the output may be arbitrary in this case). Security in
this ideal model holds inherently, since nothing except the identities of involved
parties is leaked to the simulator/adversary Sim in the ideal world, and the only
attack Sim can apply, is an online attack.

The security target of a PAKE protocol Π, is to emulates the ideal function-
ality Fpake in the real world. More precisely, consider an environment Z that
controls passwords for all parties1, and it aims to distinguish the real world from
the ideal world, i.e., distinguish the case where outputs including session keys
are produced via executions of Π compelled by an adversary A, from the case
where outputs are obtained from Fpake and an simulator Sim interacting with
Fpake. If for any PPT environment Z, the distinguishing advantage is negligible,
we say PAKE protocol Π securely emulates Fpake.

Now we describe Fpake in more detail.

Password Storage and Sessions. We require two parties involved in a PAKE
execution have different roles (client or server), and each party has a unique iden-
tity, namely, C(i) or S(j). In the registration stage, the environment Z allocates a
password p̂w for each client-server pair (C(i),S(j)). The functionality Fpake then
records this password after a StorePWFile query from C(i) or S(j). Without loss
of generality, we assume each pair of (C(i),S(j)) has only one password.

For a party P , we call an execution of protocol a (session) instance, and
index it with an instance identity iid. After registration, P can initialize a new
session instance via a NewClient or NewServer query to Fpake. For a server S(j),
the password pw used in this instance is set to be the correct password p̂w pre-
shared between C(i) and S(j). For a client C(i), it is possible that pw �= p̂w due
to a mistyped/misremembered password.

Following the definition in [41], we explicitly model mistyped or misremem-
bered passwords in Fpake, instead of absorbing it into an active attack by the
adversary A (though this is enough from the perspective of PAKE security, i.e.,
preventing a bad client from logging into the server). Actually, a mistyped pass-
word is very close to the correct password, and an accidental mismatch would
not compromise this nearly-identical password to A.

1 Let the environment deciding passwords captures the security in case users’ pass-
words are arbitrarily distributed and correlated. This is one aspect in which the UC
framework is superior to the IND model.

694 X. Liu et al.

Fig. 1. The PAKE functionality Fpake [41].

Active Attacks. To capture online attacks in the real world, Fpake allows the
simulator Sim in the ideal world to make a password guess per instance via the
interface TestPW. If the guess is correct, then the session instance is marked as
compromised, which means that the adversary succeeds in attacking this instance
and can affect the generation of the session key. If the guess is wrong, then the
instance is marked as interrupted, indicating a failed online attack, and the session
key is chosen at random.

EKE Meets Tight Security in the Universally Composable Framework 695

Via (static) corruptions, a real world adversary can learn the password hold
by a party and control its behaviour completely. To make the view of the environ-
ment consistent, the simulator Sim in the ideal world also obtains the password
of that party, and simulates what it outputs in an indistinguishable way. Note
that the corruption process is not explicitly presented in Fpake in Fig 1.

Key Generation. For an instance (P, iid), when the protocol execution is com-
pleted, Fpake will assign to the instance a key and a session identity sid which is
determined by Sim. And sid is required to uniquely index this completed instance
(the two parties in a session would share the same sid if there is no active attack).
Furthermore, Fpake provides three types of interfaces for key generation.

– FreshKey. When a successful protocol execution finishes and one instance
needs to output a session key first, or the passwords do not match (includ-
ing the case of a failed password guess), the instance is assigned with an
independent and random key.

– CopyKey. If there are two instances that match with each other, and a fresh
key has been assigned to one instance before, then a copy of the session key
is passed to the other instance.

– CorruptKey. If one of the participating parties is corrupted, or the adversary
successfully guesses the password, then the session key is totally determined
by Sim.

Remark 1 (Session identities). Fpake implicitly assumes that sid allocated by the
simulator differs for each instance (even for two different instances of the same
party) except for the two partnered instances. As we will see, this is indeed
the case in 2DH-EKE, since sid connects the identities of the client, the server,
and the session transcripts, and each instance contributes its own randomness
to transcripts. So once an instance is completed and has been assigned with
(sid, k), the information of sid is sufficient to locate the unique and partnered
pair (P, iid,Q, pw) and (Q, iid∗, P, pw), when dealing with CopyKey queries.

Remark 2 (Corruptions). Our PAKE framework deals with static corruptions,
i.e., the adversary can corrupt some parties and get their passwords prior to the
protocol execution. Note that there is a stronger model that supports adaptive
corruptions, where the adversary can corrupt parties adaptively throughout the
execution, and obtain not only the passwords but also the internal states. Almost
all UC frameworks [15,41] for PAKE are defined in the way of static corruptions.

3.2 The 2DH-EKE Protocol

The EKE compiler/protocol was proposed by Bellovin and Merritt in [8], and
formally proved later by Bellare et al. in the IND model [7], and by Dupont et al.
in the UC framework [17]. The security proof is based on the CDH assumption
in the IC and RO model, and has a security loss L = Qh ·N ·θ, with Qh, N, θ the
maximum numbers of hash queries, client-server pairs, and protocol executions
per client-server pair, respectively.

696 X. Liu et al.

In this subsection, we present a variant of EKE, named 2DH-EKE protocol,
and prove its tight security based on the strong 2DH assumption (equivalently,
the CDH assumption) in the UC framework.

The 2DH-EKE protocol is shown in Fig. 2. Here (E1,D1) is a symmetric
encryption with key space PW, plaintext space G

2 and ciphertext space E1, and
(E2,D2) is a symmetric encryption with key space PW, plaintext space G and
ciphertext space E2. Hash function H is defined as H : {0, 1}∗ �→ K with K the
space of session keys. C,S are identities of Client and Server.

Fig. 2. The 2DH-EKE protocol.

Remark 3. The 2DH-EKE protocol can be modified to a variant protocol
by interchanging the operations of Client and Server: the client sends e1 =
E1(pw,X) and the server sends e2 = E2(pw, Y1||Y2). In this way, the computa-
tional cost of Client is reduced, but Server has to initiate the session. In this
paper we do not take this variant, since Client will start a session in general
cases.

Remark 4 (Ideal ciphers on group elements). The ideal cipher in the 2DH-EKE
protocol can be accomplished with a block cipher like AES. Take e1 = E1(pw,X)
as an example. First, the group element X is mapped to an n-bit string through a
quasi bijection [21], and then the encryption algorithm encrypts the n-bit string
with the password. The decryption algorithm D1 can be similarly defined. For
more details on implementations of IC, see [21].

Remark 5 (Comparisons with the Twin DH Protocol [16]). and KC-SPAKE2
[41]] Note that Cash et al. [16] extended the DH key exchange protocol to a twin
DH version and proved its tight security. In the twin DH protocol, one party
publishes (X1,X2) and the other party publishes (Y1, Y2), and the session key
is the hash value H(gx1y1 , gx1y2 , gx2y1 , gx2y2). In contrast, the server’s (plain)
message in our 2DH-EKE protocol consists of only one element Y , which greatly
decreases the computation/communication cost.

EKE Meets Tight Security in the Universally Composable Framework 697

In [41], Shoup showed the (non-tight) security of KC-SPAKE2 based on the
CDH assumption, and argued that the reduction is tight under the Gap DH
assumption. In contrast, our tight reduction of 2DH-EKE is based on the stan-
dard CDH assumption.

3.3 Security Analysis

Theorem 2 (Security of 2DH-EKE). If the st2DH assumption (equiva-
lently, the CDH assumption) holds in G, (E1,D1) and (E2,D2) work as ideal
ciphers, and H works as a random oracle, then the 2DH-EKE protocol in Fig. 2
securely emulates Fpake. More precisely, for any PPT environment Z and real
world adversary A which has access to ideal ciphers (E1,D1), (E2,D2) and ran-
dom oracle H, there exist a PPT simulator Sim, which has access to the ideal
functionality Fpake, and algorithms B,B′, s.t. the advantage of Z in distinguish-
ing the real world running with A and the ideal world running with Sim is bounded
by

Adv2DH-EKE,Z(λ) ≤2Advst2DH
G,B (λ) +

Q2
ic

|E1|
+

Q2
ic

|E2|
+ 2−Ω(λ)

≤2AdvCDH
G,B′(λ) + 2−Ω(λ).

where Qic denotes the maximum number of IC queries.

Proof. The main task of the proof, is to construct a PPT simulator Sim, which
has access to the ideal functionality Fpake and interactions with the environ-
ment Z, and simulates the real world 2DH-EKE protocol interactions among the
adversary A, parties, and the environment Z. To this end, Sim needs to simu-
late honestly generated messages from real parties, respond adversarial messages
approximately, and simulate ideal functions (E1,D1), (E2,D2), and H, as shown
in Fig. 3. The functionality Fpake provides information to Sim through interfaces
including TestPW, NewClient, NewServer, FreshKey, CopyKey, and CorruptKey, as
defined in Fig. 1. Recall that Sim has no secret inputs (i.e., passwords).

The full description of the simulator Sim is given in Fig. 4. Let RealZ,A be the
real experiment where environment Z interacts with real parties and adversary
A, and IdealZ,Sim be the ideal experiment where Z interacts with simulator Sim.
We prove that |Pr[RealZ,A ⇒ 1] − Pr[IdealZ,Sim ⇒ 1]| is negligible via a series
of games Game 0−5, where Game 0 is RealZ,A, Game 5 is IdealZ,Sim, and
argue that the adjacent two games are indistinguishable from Z’s prospective of
view.

We consider the scenario of multi-users and multi instances. Let C(i) (resp.,
S(j)) denote clients (resp., servers) with superscript (i) (resp., (j)) indexing dif-
ferent clients (resp., servers). Let (C(i), iid(i)) denote client instances of C(i) with
iid(i) indexing its different instances. Similarly, let (S(j), iid(j)) denote server
instances of S(j) with iid(j) indexing its different instances. For better presenta-
tion of the proof, we give some definitions as follows.

698 X. Liu et al.

Fig. 3. The real world execution (left) and the ideal world execution (right).

Good/Bad Client Instance. We call a client instance (C(i), iid(i)) a good
(resp., bad) one, if the password pw used in this instance equals (resp., differs
from) the correct password p̂w shared between C(i) and its intended partner
S(j). Note that a bad client instance indicates the case that the client mistypes
its password.

Linked Instances. We say that a server instance (S(j), iid(j)) is linked to a client
instance (C(i), iid(i)) (no matter good or bad), if e1 generated by (C(i), iid(i))
is received by one instance (S(j), iid(j)) of its intended partner S(j). Similarly,
we say a client instance (C(i), iid(i)) is linked to a server instance (S(j), iid(j)),
if e2 generated by (S(j), iid(j)) is received by one instance (C(i), iid(i)) of its
intended partner C(i). If the two instances are linked to each other, then they
are called linked instances.

Game 0. This is the real experiment RealZ,A. In this experiment, Z initial-
izes a password for each client-server pair, sees the interactions among clients,
servers and adversary A, and also obtains the corresponding session keys of pro-
tocol instances. Here A may implement attacks like view, modify, insert, or drop
messages over the network. We have

Pr[RealZ,A ⇒ 1] = Pr[Game 0 ⇒ 1].

Game 1. (Add an ideal layout.) From this game on, we add an ideal layout Sim2,
which is only a toy construction in Game 1, but will be complete with games
going on and arrive at the final Sim defined in Fig. 4. In Game 1, Sim still needs
to take passwords as inputs. With the help of passwords, it perfectly simulates
the executions in RealZ,A, except that the encryption of IC is simulated in
a collision-free way. Meanwhile, Sim also necessarily keeps the exponent values
of the decrypted group elements from D1 and D2. More precisely, it maintains
lists LIC1 ,LIC2 , TIC1 , TIC2 ,LH,DL (all initialized to be empty sets) and works as
follows.

2 The simulators in Game 1−4 are semi-manufactured, which help us to analyze the
differences between the real world and the ideal world step by step. For simplicity,
we still use the same notation Sim in Game 1 − 4.

EKE Meets Tight Security in the Universally Composable Framework 699

Fig. 4. Simulator Sim for 2DH-EKE in the proof of Theorem 2.

– On E1(pw,X1||X2): If there exists (pw,X1||X2, e1, ·) ∈ LIC1 , return e1. Oth-

erwise, e1
$←− E1\TIC1 , add (pw,X1||X2, e1, enc) in LIC1 , add e1 in TIC1 , and

return e1. Here “enc” indicates that the record is created in encryption.

700 X. Liu et al.

– On D1(pw, e1): If there exists (pw,X1||X2, e1, ·) ∈ LIC1 , return X1||X2. Oth-

erwise, x1, x2
$←− Zq, X1 := gx1 , X2 := gx2 , add (pw,X1||X2, e1, dec) in LIC1 ,

add (X1||X2, x1||x2) in DL, and return X1||X2. Here “dec” indicates that the
record is created in decryption.

– On E2(pw, Y): If there exists (pw, Y, e2, ·) ∈ LIC2 , return e2. Otherwise, e2
$←−

E2\TIC2 , add (pw, Y, e2, enc) in LIC2 , add e2 in TIC2 , and return e2.
– On D2(pw, e2): If there exists (pw, Y, e2, ·) ∈ LIC2 , return Y . Otherwise, y

$←−
Zq, Y := gy, add (pw, Y, e2, dec) in LIC2 , add (Y, y) in DL, and return Y .

– On H(C,S, e1, e2, Z1, Z2, pw): Let sid := C||S||e1||e2. If there exists (sid, Z1,

Z2, pw, key) ∈ LH, return key. Otherwise, key
$←− K, add (sid, Z1, Z2, pw, key)

in LH and return key.

According to the ideal functionality of ideal ciphers, we know that distinct
inputs of E1 (and E2) collide to the same ciphertext with probability 1/|E1| (and
1/|E2|). By union bound, we have

|Pr[Game 1 ⇒ 1] − Pr[Game 0 ⇒ 1]| ≤ Q2
ic

|E1|
+

Q2
ic

|E2|
,

where Qic denotes the maximum number of IC queries.

Game 2. (Randomize keys for passively attacked instances.) In this game, for
any session, if A only eavesdrops on the protocol instance, then Sim returns a
random key instead of the real session key (the hash value of H). More precisely,
Game 2 is changed as follows.

(1) If server instance (S(j), iid(j)) is linked to a good client instance
(C(i), iid(i)), then Sim generates a random session key for (S(j), iid(j)).

(2) If a good client instance (C(i), iid(i)) and a server instance (S(j), iid(j)) are
linked to each other, and (S(j), iid(j)) has already been assigned with a random
key, then Sim copies the key as the session key for (C(i), iid(i)).

Define bad1 as the event that there exists a passively attacked session w.r.t.
a good client instance (C(i), iid(i)) and a server instance (S(j), iid(j)), and A ever
asks a hash query on H(C(i),S(j), e1, e2, Ẑ1, Ẑ2, p̂w) such that

(Ẑ1, Ẑ2) = 2DH(D1(p̂w, e1),D2(p̂w, e2)),

where e1 and e2 are the transcripts, and p̂w is the correct password pre-shared
between them.

Obviously A will not detect the change in Game 2 unless bad1 happens. We
show that if bad1 happens, then we can construct an algorithm B1 to solve the
strong 2DH problem. Due to the page limitation, we provide the reduction in
our full version [34]. Consequently we have

|Pr[Game 2 ⇒ 1] − Pr[Game 1 ⇒ 1]| ≤ Advst2DH
G,B1

(λ).

Game 3. (Randomize simulated messages.) In this game, Sim directly sam-
ples random messages to simulate the transcripts e1 and e2, and postpones the

EKE Meets Tight Security in the Universally Composable Framework 701

usage of ideal ciphers (E1,D1) and (E2,D2) until necessary (like the generation
of session keys). More precisely, Game 3 is now simulated by Sim as follows.

– For the simulation of a client instance (C(i), iid(i)) generating the first message

e1, Sim chooses a random e1
$←− E1\TIC1 (without any encryption) as the

output message and adds e1 in TIC1 .
– For the simulation of a server instance (S(j), iid(j)) generating the second

message e2 and the session key, Sim chooses a random e2
$←− E2\TIC2 (without

any encryption) as the output message and adds e2 in TIC2 . Let e1 be the
message that S(j) has received .

• If (S(j), iid(j)) is linked to some good client instance, then the session key
is set to be random, just like Game 2.

• If (S(j), iid(j)) is not linked to any good client instance, then Sim

invokes Y ← D2(p̂w, e2) by sampling y
$←− Zq, computing Y := gy

and adding (p̂w, Y, e2, dec) to LIC2 . The session key is generated by
key ← H(C(i),S(j), e1, e2, 2DH(D1(p̂w, e1), Y), p̂w) with the knowledge of
y, where C(i) is the intended partner of (S(j), iid(j)) and p̂w is the (cor-
rect) password. In this way, the session key is the same hash value as that
in Game 2.

– For the simulation of a client instance (C(i), iid(i)) that sends e1 out and
receives e2, if (C(i), iid(i)) is bad or e2 was adversarially generated, then Sim

invokes (X1,X2) ← D1(pw, e1) by sampling x1, x1,
$←− Zq, computing X1 :=

gx1 , X2 := gx2 and adding (pw,X1||X2, e1, dec) to LIC1 . The session key is
generated as key ← H(C(i),S(j), e1, e2, 2DH(X1,X2,D2(pw, e2)), pw) with the
knowledge of x1, x2, where S(j) is the intended partner of (C(i), iid(i)) and
pw is the (possible incorrect) password used in this instance. In this way, the
session key is the same hash value as that in Game 2.

Recall that in Game 2, the transcripts e1 and e2 are randomly distributed
via the simulation of E1 and E2, so they have the same distribution as that in
Game 3. As shown above, the generation of all session keys in Game 3 is also
the same as that in Game 2. Therefore, we have

Pr[Game 3 ⇒ 1] = Pr[Game 2 ⇒ 1].

Game 4. (Randomize keys for actively attacked server/client instances in case
of incorrect password guesses.) In Game 4, the simulator further changes the
session key generation of server/client instances.

For any server instance (S(j), iid(j)) that receives e1, let C(i) be its intended
partner and pw(= p̂w) be the (correct) password used in this instance. Sim
generates the session key for it in the following way.

Case (S.1). If (S(j), iid(j)) is linked to some good client instance (C(i), iid(i)),
then Sim generates a random key for (S(j), iid(j)), just as that in Game 3.

702 X. Liu et al.

Case (S.2). (S(j), iid(j)) is not linked to any good client instance (C(i), iid(i)).
We further divide it into the following two subcases.
Case (S.2.1). If there exists a record (pw′ = pw,X1||X2, e1, enc) ∈ LIC1 ,

then Sim sets key ← H(C(i),S(j), e1, e2, 2DH(X1,X2,D2(pw, e2)), pw) as
the session key, just like that in Game 3. Note that there exists at most
one such record in LIC1 , since E1 is simulated in a collision-free way.

Case (S.2.2). If there does not exist a record (pw′ = pw,X1||X2, e1, enc) ∈
LIC1 , then Sim generates a random key for (S(j), iid(j)).

For any client instance (C(i), iid(i)) that sends e1 out and receives e2, let S(j)

be the intended partner and pw be the (possibly incorrect) password used in this
instance. Sim generates the session key for it in the following way.

Case (C.1). If (C(i), iid(i)) and some server instance (S(j), iid(j)) are linked to
each other, and (C(i), iid(i)) is good, then Sim assigns the same random session
key of (S(j), iid(j)) to (C(i), iid(i)), just as that in Game 3.

Case (C.2). If (C(i), iid(i)) is not linked to any server instance, or (C(i), iid(i)) is
bad. We further divide it into the following two subcases.
Case (C.2.1). If there exists a record (pw′ = pw, Y, e2, enc) ∈ LIC2 , then Sim

sets key ← H(C(i),S(j), e1, e2, 2DH(D1(pw, e1), Y), pw) as the session key,
just like that in Game 3. Note that there exists at most one such record
in LIC2 , since E2 is simulated in a collision-free way.

Case (C.2.2). If there does not exist a record (pw′ = pw, Y, e2, enc) ∈ LIC2 ,
then Sim generates a random key for (C(i), iid(i)).

Note that the differences between Game 3 and Game 4 lie in Cases (S.2.2)
and (C.2.2), since in Game 3 the session keys are the hash values (rather than
random elements) in Cases (S.2.2) and (C.2.2.).

We define bad2 as the event that there exists a server instance (S(j), iid(j))
in Case (S.2.2), or a client instance (C(i), iid(i)) in Case (C.2.2), and A ever asks
a hash query on H(C(i),S(j), e1, e2, Ẑ1, Ẑ2, pw) such that

(Ẑ1, Ẑ2) = 2DH(D1(pw, e1),D2(pw, e2)),

where e1 and e2 are the transcripts w.r.t. (S(j), iid(j)) or (C(i), iid(i)), and pw is
the password used in this instance.

Obviously Game 4 and Game 3 are the same unless bad2 happens. We show
that if bad2 happens, then we can construct a reduction algorithm B2 to solve
the strong 2DH problem. Due to the page limitation, we provide the reduction
in our full version [34].

|Pr[Game 4 ⇒ 1] − Pr[Game 3 ⇒ 1]| ≤ Advst2DH
G,B2

(λ) + 2−Ω(λ).

Now in Game 4, Sim does not use pw any more, except the case of ses-
sion key generation when the adversary A correctly guesses the password pw
and actively engages into a client/server instance, i.e., there exists a record

EKE Meets Tight Security in the Universally Composable Framework 703

(pw,X1||X2, e1, enc) ∈ LIC1 or (pw, Y, e2, enc) ∈ LIC2 . Now we are ready to
introduce the complete simulator in Fig. 4, which helps us stepping to the ideal
experiment IdealZ,Sim.

Game 5. (Use Fpake interfaces.) In the final game we introduce the ideal func-
tionality Fpake. By using interfaces to interact with Fpake, the simulator Sim can
perfectly simulates Game 4 as follows.

– It simulates (E1,D1), (E2,D2), and H as described in Game 4.
– When Sim receives (NewClient,C(i), iid(i),S(j), b) from Fpake, it marks this

instance as correct-pw if b = 1, indicating that C(i) inputs the correct password
in this client instance. Meanwhile, Sim chooses a random e1

$←− E1\TIC1 as the
output message and adds e1 in TIC1 .

– When server instance (S(j), iid(j)) receives e1 and (NewServer,S(j), iid(j),C(i))

from Fpake, Sim chooses a random e2
$←− E2\TIC2 as the output message

and adds e2 in TIC2 . Meanwhile, it sets the session identity to be sid :=
C(i)||S(j)||e1||e2 and checks whether (S(j), iid(j)) is linked to a good client
instance (C(i), iid(i)).

• If it is the case, Sim allocates a random key to (S(j), iid(j)) by directly
asking a query (FreshKey,S(j), iid(j), sid) to Fpake. According to the def-
inition of FreshKey interface, this performs identically as that in Game
4.

• Otherwise, Sim checks whether there exists a record (pw′, ·, e1, enc) ∈
LIC1 . If such a record exists, Sim issues a TestPW query (TestPW,S(j),
iid(j), pw′) to ask Fpake whether pw′ = pw, where pw is the (correct)
password used in (S(j), iid(j)).
∗ If the record exists and Fpake returns “correct guess” (i.e., pw′ = pw),

then Sim computes the session key as key ← H(sid, 2DH(D1(pw, e1),
D2(pw, e2)), pw), and allocates sid and key to (S(j), iid(j)) via a query
(CorruptKey,S(j), iid(j), sid, key) to Fpake. According to the definition
of CorruptKey interface, the environment Z has the same view as that
in Game 4.

∗ If the record does not exist, or Fpake returns “wrong guess” (i.e.,
pw′ �= pw), then Sim allocates sid and a random key to (S(j), iid(j))
by asking a query (FreshKey,S(j), iid(j), sid) to Fpake. According to
the definition of FreshKey, this results in the same view to the envi-
ronment Z as that in Game 4.

– When client instance (C(i), iid(i)) receives e2, let e1 be the message sent
out and S(j) be its intended partner. Sim sets the session identity to be
sid := C(i)||S(j)||e1||e2 and checks whether (C(i), iid(i)) and a server instance
(S(j), iid(j)) are linked to each other, and (C(i), iid(i)) is marked as correct-pw.

– If it is the case, then sid and a random key key must have been assigned
to (S(j), iid(j)). Sim assigns the same sid and key to (C(i), iid(i)) via a
query (CopyKey,C(i), iid(i), sid) to Fpake. According to the definition of
CopyKey, this performs identically as that in Game 4.

704 X. Liu et al.

– Otherwise, Sim retrieves the record (pw′, Y, e2, enc) ∈ LIC2 if it exists, and
uses the TestPW interface provided by Fpake to check whether pw′ = pw,
where pw is the (possible incorrect) password used in (C(i), iid(i)).

• If the record exists and Fpake returns “correct guess” (i.e., pw′ = pw),
then Sim computes the session key as key ← H(sid, 2DH(D1(pw, e1),
D2(pw, e2)), pw), and allocates sid and key to (C(i), iid(i)) via a query
(CorruptKey,C(i), iid(i), sid, key) to Fpake. According to the definition
of CorruptKey interface, the environment Z has the same view as that
in Game 4.

• If the record does not exist, or Fpake returns “wrong guess” (i.e.,
pw′ �= pw), then Sim allocates sid and a random key to (C(i), iid(i))
by asking a query (FreshKey,C(i), iid(i), sid) to Fpake. According to the
definition of FreshKey, this results in the same view to the environment
Z as that in Game 4.

The full description of Sim is shown in Fig. 4. From the analysis above we
know Game 4 and Game 5 are conceptually identical. Furthermore, one can
easily see that Game 5 is just the experiment in the ideal world. Therefore, we
have

IdealZ,Sim = Game 5 = Game 4.

Theorem 2 follows immediately from Game 0 to Game 5, and Theorem 1.

4 Asymmetric PAKE with Optimal Tightness in the UC
Framework

4.1 UC Framework for aPAKE

In aPAKE, the server stores a password file (usually a hash of the password)
rather than the password in plain. This somehow protects the password even
if the server is compromised. If the server’s password file is obtained by the
adversary due to compromise, the adversary can implement offline attacks to
guess the password, or impersonate the server to run the aPAKE protocol with
the client. However, it is still infeasible for the adversary to impersonate the
client to log in the server, if it fails to find the correct password and actively
engage into one protocol execution.

To capture the attacks due to server compromise3 in the asymmetric setting,
the ideal functionality Fapake is augmented with more interfaces like StealPWFile
and OfflineTestPW, compared with Fpake. Meanwhile, the CorruptKey interface
also takes into consideration the case of server compromise. Furthermore, we
add a new interface Abort to deal with the case that the explicit authentication
fails. The augments of Fapake are shown below.

3 In the real world, the server continues to faithfully execute protocols as normal after
a compromise of password files.

EKE Meets Tight Security in the Universally Composable Framework 705

Fig. 5. The aPAKE functionality Fapake [41].

706 X. Liu et al.

– The StealPWFile interface. The server may send a StealPWFile query to Fapake,
indicating that the password file stored in it has been compromised by the
adversary. Then Fapake will pass this query message to the simulator Sim (so
that Sim “simulates” a password file for the adversary).

– The OfflineTestPW interface. Sim issues OfflineTestPW together with a pass-
word guess, and Fapake tests whether the guess is the pre-image of the pass-
word file and returns the test result to Sim.4.

– The CorruptKey interface. Beyond the cases considered in Fpake, if the pass-
word file has been compromised by the adversary, Sim also assigns a key to a
client instance by issuing a CorruptKey query5.

– The Abort interface. If the explicit authentication from the client to the server
fails, Sim assigns the session key k =⊥ to the server instance via an Abort
query, indicating that the execution of aPAKE fails.

The functionality of Fapake is shown in Fig. 5. We mainly follow the definition
by Shoup in [41], which is a modified version of [19] by Gentry et al. and [25] by
Hesse.

Remark 6. Perfect Forward Security [22] (PFS, a.k.a. perfect forward secrecy)
requires that once a party has been corrupted at some moment, the session keys
completed before the corruption remain hidden from the adversary. An aPAKE
protocol with implicit authentication cannot achieve PFS due to the following
reason. For the adversary who steals the password file and actively engages into
one session as the client, it can always stage a (successful) offline dictionary
attack, to find out the correct password, and hence obtain the “completed”
session key. A canonical approach to PFS is to add an explicit authentication
from the client to the server. And the server will output a specific key k =⊥ to
terminate the session, once the authentication fails.

4.2 The 2DH-aEKE Protocol

In this section, we provide an asymmetric variant of 2DH-EKE, named 2DH-
aEKE. The 2DH-aEKE protocol meets the optimal reduction loss factor L = N ,
the maximum number of client-server pairs. A formal proof for the optimality is
shown in Sect. 5.

The 2DH-aEKE protocol is shown in Fig. 6. Here (E1,D1) is a symmetric
encryption with key space H, plaintext space G

2 and ciphertext space E1, and
(E2,D2) is a symmetric encryption with key space H, plaintext space G and
ciphertext space E2. Two hash functions are defined as: H : {0, 1}∗ �→ K with
K the space of session keys, and H0 : {0, 1}∗ × PW �→ H × Z

2
q. And C,S are

identities of Client and Server.
4 Such definitions seem reasonable only in a hybrid world where random oracles or

ideal ciphers exist. See further discussions in [21,25,41].
5 More precisely, a (corrupted) session key is assigned via CorruptKey, if 〈file, P, Q, p̂w〉

is compromised and the password pw used in the client instance is correct. If pw is
incorrect, then Sim would assign a random key for this client instance via FreshKey.

EKE Meets Tight Security in the Universally Composable Framework 707

In the registration stage, Server stores the password file S.file[C] := (h, V1, V2),
where (h, v1, v2) ← H0(C,S, pw), and V1 := gv1 , V2 := gv2 .

Fig. 6. The 2DH-aEKE protocol.

4.3 Security Analysis

Theorem 3 (Security of 2DH-aEKE). If the st2DH assumption (equiva-
lently, the CDH assumption) holds in G, (E1,D1), (E2,D2) work as ideal ciphers,
and H,H0 work as random oracles, then the 2DH-aEKE protocol in Fig. 6
securely emulates Fapake. More precisely, for any PPT environment Z and real
world adversary A which has access to ideal ciphers (E1,D1), (E2,D2) and ran-
dom oracles H,H0, there exist a PPT simulator Sim, which has access to the
ideal functionality Fapake, and algorithms B,B′, s.t. that advantage of Z in dis-
tinguishing the real world running with A and the ideal world running with Sim
is bounded by

Adv2DH-aEKE,Z(λ) ≤(N + 3) · Advst2DH
G,B (λ) +

Q2
ic

|E1|
+

Q2
ic

|E2|
+

Q2
H0

|H| + 2−Ω(λ)

≤(N + 3) · AdvCDH
G,B′(λ) + 2−Ω(λ),

where Qic and QH0 denote the maximum numbers of IC and H0 queries, and N
denotes the number of client-server pairs.

The proof is shown in the full version [34].

Remark 7 (On the optimal tightness of 2DH-aEKE). As we can see, the security
reduction in Theorem 3 has a loss factor of N . Actually, such a loose factor is
unavoidable in the scenario of aPAKE, since the correct password is committed
by the hash value to the adversary in the form of password file, and it can be
adaptively revealed via offline dictionary attacks (i.e., password hash queries). In
Sect. 5 we give a formal proof to show that, the loss factor L = N is essentially
optimal—at least for “simple” reductions.

708 X. Liu et al.

Nevertheless, the optimal factor N is superior to a loose factor (Qh · N · θ)
(the maximum numbers of hash queries, client-server pairs, and protocol execu-
tions per client-server pair, respectively). Usually there are thousands of protocol
executions per user (especially for the server), and QhNθ � N in general.

5 Optimal Reduction Loss in aPAKE

In this section we show that the security loss of L = N in Theorem 3 is essen-
tially optimal, at least for “simple” reductions. Here “simple” means that the
reduction algorithm runs a single copy of the adversary only once. Almost all
known security reductions (for PAKE and aPAKE) are either of this type, or
use the forking lemma (e.g., KHAPE-HMQV [21]).

We consider the class of DH-type aPAKE protocols defined as follows.

Definition 3 (DH-Type aPAKE Protocol). An asymmetric PAKE protocol
Π is DH-type, if it satisfies the following properties.

1. In the phase of password storage (registration), the server stores a password
file file based on the pre-shared password pw (and some salts, perhaps).

2. In an execution of Π, the honest client first obtains a secret input si from the
identities of the two parties, the password pw (and the first message by the
server, perhaps). In this case, we say si is matched with the password file file
(stored in the server).

3. For each file, there exists only one matching secret input si. And there exists
an efficiently comutable function R(file, si), to check whether si is matched
with file.

4. There exists an efficiently computable function F that inputs the identities
of the two parties, the password pw, and the password file file (stored in the
server), and outputs the matching secret input si.

5. With secret input si, an adversary can impersonate the client to communicate
with the server and compute the session key.

We take 2DH-aEKE protocol in Fig. 6 as an example, to show how it satisfies
the definition of DH-type aPAKE protocol.

1. Let pw be the password shared between C and S. The password file stored in
S is file = (h, V1, V2).

2. In the execution, C first obtains the secret input (h, v1, v2) ← H0(C,S, pw).
3. For each file = (h, V1, V2), there exists only one matching si = (h, v1, v2). And

the matching relation can be efficiently verified.
4. Given identities C,S, pw, and file = (h, V1, V2), the secret input si can be

efficiently obtained by computing H0(C,S, pw).
5. The last property is self-evident.

Apart from 2DH-aEKE, a large number of existing aPAKE protocols, includ-
ing KC-SPAKE2+ [41], KHAPE-HMQV [21], aEKE-HMQV and OKAPE-
HMQV [39], fall into the DH-type class.

EKE Meets Tight Security in the Universally Composable Framework 709

Definition 4 (Simple Reduction). A simple reduction R to a problem class
P interacts with an adversary/environment Z as follows.

1. R receives a problem instance P ∈ P from its own challenger, it also has
access to an oracle O provided by the challenger.

2. R randomly samples a bit β
$←− {0, 1}. If β = 0, then R simulates the real

world running for Z. And if β = 1, then R simulates the ideal world running
for Z.

3. R outputs its solution s.

We say R is a simple (tR, εR, εZ)-reduction, if it runs in time at most tR, and
for any adversary/environment Z with distinguishing advantage εZ , the output
s is a solution to P with probability at least εR.

The specification of oracle O depends on the problem class P (and of cause O
can be defined as NULL). In this paper we consider the strong twin DH problem,
where a problem instance is P = (X̄1, X̄2, Ȳ), and O takes (Y,Z1, Z2) as inputs
and outputs whether (Z1, Z2) = 2DH(X̄1, X̄2, Y).

Theorem 4. Let Π be a DH-type aPAKE protocol, and K be the session key
space of Π. For any simple (tR, εR, 1 − 1/|K|)-reduction R from the security of
Π defined in Subsect. 4.1 to the hardness of P, there exists a meta-reduction
algorithm M that solves P in time tM and with success probability εM, such
that tM ≈ N · tR, and

|εR − εM| ≤ 1/N,

where N denotes the total number of client-server pairs.

The proof is shown in the full version [34] due to the page limitation.

From the inequality |εR − εM| ≤ 1/N we know εM ≥ εR − 1/N . Namely,
even with a “perfect” adversary Z whose advantage is overwhelming, the success
probability εR of R cannot significantly exceed 1/N , as otherwise there exists
an efficient algorithm M against the hard problem P (e.g., the strong 2DH
problem). This implies that the reduction of R leads to a loss factor at least N .

6 Tight Security for 2DH-SPAKE2 in the Relaxed UC
Framework

In [1], Abdalla et al. relaxed the definition of PAKE functionality to a so-called
lazy-extraction PAKE (lePAKE), and proved some widely used PAKE proto-
cols, like SPEKE [29], SPAKE2 [4], and TBPEKE [36], are secure under this
relaxed model. We provide the definition of lazy-extraction UC PAKE func-
tionality Fle-pake in our full version [34]. Informally, Fle-pake allows the adver-
sary/simulator in the ideal world to postpone its password guess until after the
session is completed.

In this section, we show how our technique can be extended to get tightly
secure and ideal cipher-free protocols in the relaxed UC framework. We take

710 X. Liu et al.

Fig. 7. The 2DH-SPAKE2 Protocol.

2DH-SPAKE2 (Fig. 7) as an example. Here randomly sampled (M1,M2, N1,M2)
servers as the common reference string (CRS), and hash function H is defined
as: H : {0, 1}∗ �→ K with K the space of session keys. C,S are identities of Client
and Server.

Theorem 5 (Security of 2DH-SPAKE2). If the CDH assumption holds in
G, H works as a random oracle, then the 2DH-SPAKE2 protocol in Fig. 7 securely
emulates Fle-pake. More precisely, for any PPT environment Z and real world
adversary A which has access to random oracle H, there exist a PPT simulator
Sim, which has access to the ideal functionality Fle-pake, and an algorithm B, s.t.
that advantage of Z in distinguishing the real world running with A and the ideal
world running with Sim is bounded by

Adv2DH-SPAKE2,Z(λ) ≤ 3AdvCDH
G,B (λ) + 2−Ω(λ).

The proof is shown in the full version [34].

Note that the technique can be further used to extend PAKE protocol PPK
[35] to 2DH-PPK, that achieves tight security in the relaxed UC framework. We
omit the details due to the similarity.

Acknowledgments. We would like to thank the anonymous reviewers for their con-
structive comments, especially on the perfect forward security of 2DH-aEKE.

Shengli Liu and Xiangyu Liu were partially supported by National Natural Science
Foundation of China (NSFC No. 61925207), Guangdong Major Project of Basic and
Applied Basic Research (2019B030302008), and the National Key R&D Program of
China under Grant 2022YFB2701500. Shuai Han was partially supported by National
Natural Science Foundation of China (Grant No. 62002223), Shanghai Sailing Program
(20YF1421100), Young Elite Scientists Sponsorship Program by China Association for
Science and Technology (YESS20200185), and Ant Group through CCF-Ant Research
Fund (CCF-AFSG RF20220224). Dawu Gu is partially supported by the National Key
Research and Development Project (Grant No. 2020YFA0712302).

EKE Meets Tight Security in the Universally Composable Framework 711

References

1. Abdalla, M., Barbosa, M., Bradley, T., Jarecki, S., Katz, J., Xu, J.: Universally
composable relaxed password authenticated key exchange. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 278–307. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56784-2 10

2. Abdalla, M., Barbosa, M., Rønne, P.B., Ryan, P.Y.A., Sala, P.: Security charac-
terization of J-PAKE and its variants. IACR Cryptology ePrint Archive, Paper
2021/824 (2021)

3. Abdalla, M., Haase, B., Hesse, J.: Security analysis of CPace. In: Tibouchi, M.,
Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 711–741. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 24

4. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 14

5. Anderson, T.: Local-use ipv4/ipv6 translation prefix. RFC 8215, 1–7 (2017)
6. Becerra, J., Iovino, V., Ostrev, D., Šala, P., Škrobot, M.: Tightly-secure PAK(E).

In: Capkun, S., Chow, S.S.M. (eds.) CANS 2017. LNCS, vol. 11261, pp. 27–48.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02641-7 2

7. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

8. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Computer Society Symposium on
Research in Security and Privacy, pp. 72–84. IEEE Computer Society (1992)

9. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: a password-based
protocol secure against dictionary attacks and password file compromise. In: CCS
1993. pp. 244–250. ACM (1993)

10. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 449–475. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 25

11. Benhamouda, F., Pointcheval, D.: Verifier-based password-authenticated key
exchange: New models and constructions. IACR Cryptology ePrint Archive, p.
833 (2013)

12. Bresson, E., Chevassut, O., Pointcheval, D.: Security proofs for an efficient
password-based key exchange. In: CCS 2003, pp. 241–250. ACM (2003)

13. Bresson, E., Chevassut, O., Pointcheval, D.: New security results on encrypted key
exchange. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp.
145–158. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-
9 11

14. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS 2001, 14–17 October 2001, Las Vegas, Nevada, USA, pp. 136–
145. IEEE Computer Society (2001)

15. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639 24

https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/978-3-030-02641-7_2
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/978-3-642-40041-4_25
https://doi.org/10.1007/978-3-540-24632-9_11
https://doi.org/10.1007/978-3-540-24632-9_11
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24

712 X. Liu et al.

16. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 8

17. Dupont, P.-A., Hesse, J., Pointcheval, D., Reyzin, L., Yakoubov, S.: Fuzzy
password-authenticated key exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 393–424. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 13

18. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 33

19. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 9

20. Groce, A., Katz, J.: A new framework for efficient password-based authenticated
key exchange. In: CCS 2010, pp. 516–525. ACM (2010)

21. Gu, Y., Jarecki, S., Krawczyk, H.: KHAPE: asymmetric PAKE from key-hiding key
exchange. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp.
701–730. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 24

22. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 5

23. Hao, F., Ryan, P.Y.A.: J-PAKE: authenticated key exchange without PKI. Trans.
Comput. Sci. 11, 192–206 (2010)

24. Harkins, D.: Dragonfly key exchange. RFC 7664, 1–18 (2015)
25. Hesse, J.: Separating symmetric and asymmetric password-authenticated key

exchange. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp.
579–599. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6 29

26. Hwang, J.Y., Jarecki, S., Kwon, T., Lee, J., Shin, J.S., Xu, J.: Round-reduced mod-
ular construction of asymmetric password-authenticated key exchange. In: Cata-
lano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 485–504. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 26

27. ISO/IEC: ISO/IEC 11770–4:2017 information technology - security techniques -
key management - part 4: Mechanisms based on weak secrets. https://www.iso.
org/standard/67933.html

28. Jablon, D.P.: Strong password-only authenticated key exchange. Comput. Com-
mun. Rev. 26(5), 5–26 (1996)

29. Jablon, D.P.: Extended password key exchange protocols immune to dictionary
attacks. In: 6th Workshop on Enabling Technologies (WET-ICE 1997), pp. 248–
255. IEEE Computer Society (1997)

30. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 15

31. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44987-6 29

32. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 18

https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/3-540-39200-9_33
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/3-540-46885-4_5
https://doi.org/10.1007/978-3-030-57990-6_29
https://doi.org/10.1007/978-3-319-98113-0_26
https://www.iso.org/standard/67933.html
https://www.iso.org/standard/67933.html
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/978-3-642-19571-6_18

EKE Meets Tight Security in the Universally Composable Framework 713

33. Kwon, J.O., Sakurai, K., Lee, D.H.: One-round protocol for two-party verifier-
based password-authenticated key exchange. In: Leitold, H., Markatos, E.P. (eds.)
CMS 2006. LNCS, vol. 4237, pp. 87–96. Springer, Heidelberg (2006). https://doi.
org/10.1007/11909033 8

34. Liu, X., Liu, S., Han, S., Gu, D.: Eke meets tight security in the universally com-
posable framework. Cryptology ePrint Archive, Paper 2023/170 (2023). https://
eprint.iacr.org/2023/170

35. Mackenzie, P.: The PAK suite: protocols for password-authenticated key exchange
(2002)

36. Pointcheval, D., Wang, G.: VTBPEKE: verifier-based two-basis password expo-
nential key exchange. In: AsiaCCS 2017, pp. 301–312. ACM (2017)

37. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 8446,
1–160 (2018)

38. RFC: Crypto forum (cfrg). https://datatracker.ietf.org/rg/cfrg/documents/
39. Santos, B.F.D., Gu, Y., Jarecki, S., Krawczyk, H.: Asymmetric PAKE with low

computation and communication. In: Dunkelman, O., Dziembowski, S. (eds.)
Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes
in Computer Science, vol. 13276, pp. 127–156. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-07085-3 5

40. Shin, S., Kobara, K.: Efficient augmented password-only authentication and key
exchange for ikev2. RFC 6628, 1–20 (2012)

41. Shoup, V.: Security analysis of SPAKE2+. IACR Cryptology ePrint Archive, p.
313 (2020)

42. Tanwar, S., et al.: Human arthritis analysis in fog computing environment using
Bayesian network classifier and thread protocol. IEEE Consumer Electron. Mag.
9(1), 88–94 (2020)

43. Williams, M., et al.: Magic Wormhole, pp. 253–284. Apress, Berkeley, CA (2019)
44. Yu, J., Lian, H., Zhao, Z., Tang, Y., Wang, X.: Provably secure verifier-based

password authenticated key exchange based on lattices. Adv. Comput. 120, 121–
156 (2021)

https://doi.org/10.1007/11909033_8
https://doi.org/10.1007/11909033_8
https://eprint.iacr.org/2023/170
https://eprint.iacr.org/2023/170
https://datatracker.ietf.org/rg/cfrg/documents/
https://doi.org/10.1007/978-3-031-07085-3_5
https://doi.org/10.1007/978-3-031-07085-3_5

A Universally Composable PAKE
with Zero Communication Cost

(And Why It Shouldn’t Be Considered UC-Secure)

Lawrence Roy1(B) and Jiayu Xu2

1 Aarhus University, Aarhus, Denmark
ldr709@gmail.com

2 Oregon State University, Corvallis, USA

xujiay@oregonstate.edu

Abstract. A Password-Authenticated Key Exchange (PAKE) protocol
allows two parties to agree upon a cryptographic key, when the only
information shared in advance is a low-entropy password. The standard
security notion for PAKE (Canetti et al., Eurocrypt 2005) is in the Uni-
versally Composable (UC) framework. We show that unlike most UC
security notions, UC PAKE does not imply correctness. While Canetti
et al. has briefly noticed this issue, we present the first comprehensive
study of correctness in UC PAKE:
1. We show that TrivialPAKE, a no-message protocol that does not

satisfy correctness, is a UC PAKE;
2. We propose nine approaches to guaranteeing correctness in the UC

security notion of PAKE, and show that seven of them are equivalent,
whereas the other two are unachievable;

3. We prove that a direct solution, namely changing the UC PAKE
functionality to incorporate correctness, is impossible;

4. Finally, we show how to naturally incorporate correctness by chang-
ing the model—we view PAKE as a three-party protocol, with the
man-in-the-middle adversary as the third party.

In this way, we hope to shed some light on the very nature of UC-security
in the man-in-the-middle setting.

1 Introduction

A password-authenticated key exchange (PAKE) protocol allows two parties to
jointly establish a cryptographically strong key, where the only information
shared in advance is a low-entropy password. Crucially, such protocols must
remain secure in the presence of a man-in-the-middle adversary. Since its first
proposal in 1992 [5], PAKE protocols have been extensively studied in various
security models and under various assumptions; a very incomplete list of works
includes [1,3,4,7,10,18,22,23]. Interest in the deployment of PAKE protocols in
practice—especially their integration with TLS—has been on the rise in recent
years, culminating in the standardization process by the IRTF in 2019–20 [13,26].
Several classes of extensions, such as asymmetric PAKE [6,20] and fuzzy PAKE
[14], have also been considered.
c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 714–743, 2023.
https://doi.org/10.1007/978-3-031-31368-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_25&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_25

A Universally Composable PAKE with Zero Communication Cost 715

Security Definitions for PAKE. Since passwords have low entropy, any secu-
rity definition of PAKE has to take into account the fact that an adversary has
non-negligible probability of guessing it correctly. Roughly speaking, the basic
security property of PAKE is that the only feasible attack is via online guessing,
whose probability of success is 1/|Dict| per session (where Dict is the password
dictionary, i.e., the set of all possible passwords). In particular, offline dictionary
attacks, where the adversary performs a brute-force search over the dictionary
upon seeing protocol messages, must be prevented.

There are two major paradigms of PAKE security definitions: game-based
[4] and Universally Composable (UC) [10]. In multi-party computation, the UC
definition is generally preferable since it supports arbitrary composition, namely
the security of PAKE is preserved when composed with itself or other proto-
cols, sequentially or in parallel. In the context of PAKE, the UC definition has
the additional advantage that it naturally takes reused password or correlated
passwords into consideration, which is difficult to model in the game-based set-
ting since the latter is stand-alone in nature. The UC definition has become
the de facto standard of PAKE security; in particular, all candidates in the sec-
ond round of the IRTF standardization competition have a UC security analysis
[1,2,18,20].

UC PAKE and Correctness. A cryptographic protocol usually needs to sat-
isfy some notion of correctness (sometimes called completeness), namely the
parties’ outputs meet some desired requirements when there is no attack. For a
PAKE protocol, correctness means that the two parties should output the same
key as long as their passwords are equal. In the game-based definitions, correct-
ness and security are usually defined separately. By contrast, in the UC setting,
correctness is often a trivial implication of UC-security; that is, if we remove the
ideal adversary and let all protocol parties be honest in the UC functionality
and observe their outputs, then correctness can be seen immediately from the
functionality’s code. This the case for e.g., universally composable commitment
schemes [9] and oblivious transfer protocols [12].

Somewhat surprisingly, we show that for PAKE protocols, UC-security does
not imply correctness. In particular, in Sect. 3 we show protocol TrivialPAKE,
where the two parties independently output random keys, is a UC PAKE. At a
high level, this is because the UC PAKE functionality allows the ideal adversary
to cause the two protocol parties to output independent keys, even if both parties
are honest; therefore, a simulator can leverage such mechanism to complete the
simulation for TrivialPAKE. Of course, the same argument also goes for protocols
in which the two parties communicate in some arbitrary manner, and then output
independent random keys.

We note that the original UC PAKE paper [10] has already noticed that
UC PAKE does not imply correctness (called non-triviality therein). In [10,
Section 7], the authors wrote:

A protocol is non-trivial if two honest parties are ensured to agree on
matching session keys at the conclusion of a protocol execution (except

716 L. Roy and J. Xu

perhaps with negligible probability), provided that (1) both parties use the
same password, and (2) the adversary passes all messages between the
parties without modifying them or inserting any messages of its own. The
non-triviality requirement is needed since the “empty” protocol where par-
ties do nothing securely realizes FpwKE (the ideal-model simulator simply
never issues a NewKey query to the functionality and so the parties never
actually obtain keys).

However, the “empty” protocol realizes any two-party UC functionality, and
can be easily ruled out by requiring both parties to output something. (Indeed,
this is the approach suggested by [11, Section 2] in the context of generic two-
party computation.) By contrast, the issue with our TrivialPAKE is unique to
PAKE. We will see in Sect. 4.1 that the underlying mechanisms of these two
counterexamples are different: one is because the simulator might send some
commands while it should not (in TrivialPAKE), the other is because the simu-
lator might not send some commands while it should (in the “empty” protocol).

Furthermore, the fact that correctness needs to be checked separately from
UC-security appears under-appreciated: some works on UC PAKE do not per-
form this correctness check [15,17,20,25], which is sometimes not completely
trivial.1

Guaranteeing Correctness. At first glance, it seems trivial to fix the defi-
nition of a UC PAKE: just require that the protocol satisfy correctness as well
as realize the PAKE ideal functionality. However, we believe a deeper under-
standing of this issue is warranted, to learn why the PAKE functionality fails
to guarantee correctness (as opposed to most UC functionalities that do imply
correctness) and how to best address the issue. In Sect. 4, we study several
approaches to enforcing the correctness requirement in UC PAKE, finding that
some are impossible to achieve, while the rest are equivalent.

These definitions come from two different styles. First, as mentioned above,
we could enforce correctness separately from UC-security; namely, we require
that two honest parties using the same password, without any adversary inter-
ference, must get the same key at the end. However, while UC definitions are
based on a correspondence between a real world and an ideal world, the afore-
mentioned definition of correctness only involves the real world; as a result, it
1 The cases of [17,25] are especially problematic, since their (asymmetric) PAKE pro-

tocols use a UC-secure authenticated key exchange (AKE) protocol as a building
block, and their modelings of UC AKE also do not guarantee correctness. Therefore,
a proof of PAKE correctness would need a separate correctness notion for AKE:
roughly, that there exists an efficient algorithm Gen such that if we run it twice
and obtain two key pairs (pk, sk) and (pk′, sk′), then two AKE parties with inputs
(pk, pk′, sk) and (pk′, pk, sk′) should output the same key (assuming there is no
adversarial interference). Such structural requirement is not mentioned in any of
the aforementioned works (and in particular, the Key.Gen algorithm in [25, Fig. 6]
is undefined; a similar problem appears in [20]). The exact requirement of AKE
correctness used in [17,20,25] is out of the scope of this work.

A Universally Composable PAKE with Zero Communication Cost 717

fails to provide any kind of composability, which makes it harder to either prove
that a protocol is a valid PAKE (such as for [17,20,25](see footnote 1)), or to
make use of this proof in a higher level protocol—that is, the correctness of the
higher level protocol always needs to be proved separately.

Next, we consider placing constraints on the UC simulator for PAKE. The
basic observation here is that the simulator for TrivialPAKE always interrupts
the protocol sessions, causing the two protocol parties to output independent
random keys, even though such “interruption” mechanism in the PAKE func-
tionality is meant only to model a man-in-the-middle adversary that modifies
protocol messages. In other words, the underlying reason why TrivialPAKE is
UC-secure is that the simulator is given too much power. We consider two slightly
different ways to disallow such “rogue” interruptions of protocol sessions: requir-
ing either a so-called reasonable simulator or a strong reasonable simulator. That
is, we show that the existence of a (strong) reasonable simulator is equivalent to
the PAKE protocol being correct. We further prove that a seemingly stronger
notion, namely all successful simulators must be (strong) reasonable simulators,
is also equivalent to the PAKE protocol being correct. Finally, we consider the
question of whether the simulator can perform a “rogue” interruption with neg-
ligible or zero probability; we call the latter kind a (strong) perfectly reasonable
simulator, and show that PAKE correctness is equivalent to the existence of a
(strong) perfectly reasonable simulator. However, for any correct PAKE there
always exist simulators that fail to be perfectly reasonable. In sum, we present
eight approaches to placing requirements on the simulator, and show that six of
them are equivalent to directly enforcing PAKE correctness, whereas the other
two are unachievable. Finally, we note that this definition style has been used to
address a separate issue in the context of asymmetric PAKE [15,20]; however,
the necessity of similar constraints on simulators for (regular) PAKE protocols
went unnoticed.

Placing constraints on the simulator has the advantage that they often com-
pose easily (a similar observation is made in [15] in the context of asymmetric
PAKE). Still, such solutions are ad-hoc and we might ask whether we can just
modify the PAKE ideal functionality so that it implies correctness. Unfortu-
nately, in Sect. 5 we show that this is impossible. The problem is that the ideal
functionality has no clue whether the adversary is tampering with the PAKE
messages; therefore, it must allow the simulator to interrupt the session in case
the adversary interferes with the PAKE protocol in the real world, but then the
simulator can always use this interface to stop the keys from matching.

Finally, in Sect. 6 we show how a more sophisticated model bypasses the
impossibility result and allows correctness to be included in the UC PAKE func-
tionality, making it fully composable. We add a third party called the router,
which is connected to both protocol parties via an authenticated channel; when
the router is honest, it simply forwards messages between the two protocol par-
ties. (Of course, a corrupted router is free to deviate from its description arbitrar-
ily, namely it can modify the messages sent between the two protocol parties.)

718 L. Roy and J. Xu

Correspondingly, in our modified PAKE ideal functionality we require that ses-
sion interruption must be done by a corrupted party, who must be one of the three
participants (including the router), rather than the UC simulator. We prove that
our notion of UC three-party PAKE is equivalent to the definition of UC PAKE
plus correctness.

2 Preliminaries

Notations. For any q ∈ N
+, define [q] as the set {1, . . . , q}. We let λ denote the

security parameter. For a set X, let x ← X denote the process of sampling an
element x uniformly at random from X. We use “efficient” as a shorthand for
“probabilistic polynomial time”.

2.1 Overview of the UC Framework

In this section, we briefly review the Universally Composable framework by
Canetti [8], and introduce necessary notations to be used in later sections. For
simplicity’s sake, we only cover two-party protocols, and it extends to the case
of multi-party protocols (used in Sect. 6 only) naturally.

A protocol Π involves two parties (modeled as efficient interactive Turing
machines), P and P′, sending messages to each other. In an execution of protocol
Π, there are two additional parties, the environment Z and the adversary A,
where Z sends inputs to P and P′ and receives outputs from them; furthermore, Z
and A may communicate with each other at any time during protocol execution.
Multiple sessions may run in parallel during protocol execution, distinguished
by a session id denoted sid (which is agreed upon before protocol execution and
is not part of the protocol description). For a PAKE protocol, we consider the
man-in-the-middle setting, where all messages sent between P and P′ pass the
adversary A, which can arbitrarily modify these messages or simply drop them.
In the special case where A merely transmits all messages between P and P′

without modifying or dropping any of them, we say A is an eavesdropper.
The above describes the real world. In the ideal world, there is an uncorrupt-

able ideal functionality F whose code is public, and the adversary A’s role is
replaced by an ideal adversary (a.k.a. simulator) S. F communicates with pro-
tocol parties P and P′, as well as the ideal adversary S; P and P′ are “dummy”
parties that merely transmit messages between F and Z without any modifica-
tions. Importantly, F and Z do not communicate with each other directly.

In both the real world and the ideal world, the view of the environment Z
consists of its input to/output from protocol parties P and P′, as well as its
communications with either the (real) adversary A or the ideal adversary S. In
a nutshell, UC-security says that any efficient environment’s view can be suc-
cessfully simulated by an efficient simulator, meaning that Z cannot distinguish
whether it is in the real world or the ideal world:

A Universally Composable PAKE with Zero Communication Cost 719

P A P′

Z

�� �� �� ��
��

��

(a) Real world

P F P′

S

Z

�� �� �� ��
��

��
��

��

(b) Ideal world

Fig. 1. Real world and ideal world in the UC framework

Definition 1. For a protocol Π, an ideal functionality F , and a (real) adversary
A, we say a simulator S is successful w.r.t. A if (1) S is efficient, and (2) for
any efficient environment Z,

DistΠ,F (A,S,Z) � |Pr[Z outputs 1 in the real world with Π,A]
− Pr[Z outputs 1 in the ideal world with F ,S]|

is negligible, where the probability is taken over the randomness generated in the
execution of Π, as well as the random tapes of F , A, S, and Z.

Definition 2. We say protocol Π UC-realizes functionality F if for any efficient
adversary A, there exists a successful simulator w.r.t. A.

A standard result [8, Claim 11] states that only the dummy adversary, i.e.,
the adversary that merely transmits all messages between the environment and
the protocol parties, needs to be considered. (We may intuitively say that A
follows Z’s “instructions”, e.g., Z “instructs” A to send message (sid,m) to
protocol party P.) That is, Definition 2 is equivalent to the following:

Definition 3. We say protocol Π UC-realizes functionality F if there exists a
successful simulator w.r.t. the dummy adversary.

Definition 3 is what we will use in subsequent sections. Since the adversary
A is now fixed, we may simply say “the simulator S is successful” and write
DistΠ,F (S,Z). Furthermore, when Π and F are clear from context, we may
drop them and write Dist(S,Z).

2.2 Overview of PAKE

A password-authenticated key exchange (PAKE) is a two-party protocol where
each party inputs a supposedly low-entropy string (called the password) and out-
puts a cryptographic session key. Let Dict be the set of all candidate passwords;
we place no restrictions on |Dict| except that |Dict| ≥ 2. Correctness requires that
if the two parties’ passwords match, and there is no man-in-the-middle attack,
then they output a shared key with overwhelming probability:

720 L. Roy and J. Xu

– On input (NewSession, sid,P,P′, pw, role) from P, send (NewSession, sid,P,P′,
role) to S. Furthermore, if this is the first NewSession message for sid, or this
is the second NewSession message for sid and there is a record 〈P′,P, ·〉, then
record 〈P,P′, pw〉 and mark it fresh.

– On (TestPwd, sid,P, pw∗) from S, if there is a record 〈P,P′, pw〉 marked fresh,
then do:

• If pw∗ = pw, then mark the record compromised and send “correct guess”
to S.

• If pw∗ �= pw, then mark the record interrupted and send “wrong guess” to
S.

– On (NewKey, sid,P,K∗ ∈ {0, 1}λ) from S, if there is a record 〈P,P′, pw〉, and
this is the first NewKey message for sid and P, then output (sid,K) to P,
where K is defined as follows:

• If the record is compromised, or either P or P′ is corrupted, then set
K := K∗.

• If the record is fresh, a key (sid,K′) has been output to P′, at which time
there was a record 〈P′,P, pw〉 marked fresh, then set K := K′.

• Otherwise sample K ← {0, 1}λ.
Finally, mark the record completed.

Fig. 2. UC PAKE functionality FPAKE

Definition 4. We say a PAKE protocol Π is correct if the following holds:
for any pw ∈ Dict, in an execution of Π, if both protocol parties P and P′

input (sid, pw) (with appropriate additional fields for UC-compatibility; see Fig. 2
below), both P and P′ are honest, and the adversary A is an eavesdropper, then

Pr[Correct(pw)] � Pr[P outputs (sid,K) ∧ P′ outputs (sid,K′) ∧ K = K′ ∈ {0, 1}λ]

is overwhelming, where the probability is taken over the randomness generated
in the execution of Π.

Note that our notion of correctness requires that P and P′ must output
something at the end of the session. This is a trivial requirement since the
parties can always output a random key.

The UC PAKE Functionality. We recall in Fig. 2 the standard UC PAKE
functionality FPAKE from [10] (with minor notational changes).

The functionality allows for three types of commands:

– A NewSession command, sent from a protocol party P, indicates that P
(whose password is pw) wants to jointly establish a key with another

A Universally Composable PAKE with Zero Communication Cost 721

party P′.2 This initiates a session from P to P′; for each session id sid, only one
session from P to P′ and one session from P′ to P is allowed. The NewSession
command is transmitted to the ideal adversary S (without the password pw),
which corresponds to the real-world scenario where the adversary sees the first
message from P to P′ and thus learns that the P → P′ session has started.

– A TestPwd command models the inevitable attack in which the adversary
chooses a password guess pw∗ and communicates with P by running the
algorithm of P′ on pw∗. If pw∗ happens to be the password of P (i.e., the
adversary’s password guess is correct), then the adversary learns the ses-
sion key of P when the session ends; otherwise the adversary should not
learn anything about the session key of P.3 Thus, FPAKE marks the P → P′

session record compromised (for a correct guess) or interrupted (for a wrong
guess) accordingly. Importantly, once the session record becomes compromised
or interrupted, all further TestPwd commands for the same session will be
ignored; this implies that the adversary can test at most one password for the
P → P′ session and at most one password for the P′ → P session.

– Finally, a NewKey command models the end of a session where the party
outputs a session key. How the session key is determined depends on the
status of the session:

• If both the P → P′ session and the P′ → P session are fresh, i.e., the
adversary did not interrupt the communication between P and P′, then
the two parties should output the same key as long as their passwords
match; furthermore, the key should be random to the adversary. This is
formally modeled as follows: assume w.l.o.g. that P receives its session
key before P′ does. Then P should output a random session key (modeled
in the third case under NewKey), and when P′ outputs its session key, the
key should be equal to what was previously output by P (modeled in the
second case under NewKey).

• If the session is compromised, i.e., the adversary successfully guessed the
password during an online attack, then as noted above, the adversary
learns the session key. In this case, we consider all security guarantees to
be lost, so we might as well let the ideal adversary S choose the session
key. This is modeled in the first case under NewKey.

• If the session is interrupted, i.e., the adversary performed an online attack
using a wrong password guess, then as noted above, the session key should
be independent of the adversary’s view. The same goes for the case where

2 The role field might be necessary for the description of the protocol when the algo-
rithms of the two parties are not identical (especially when one party must wait for
the other party’s message before starting its own session; see [10, Figure 5] for an
example), but it has nothing to do with the security of the protocol.

3 The functionality in Fig. 2 lets the ideal adversary S learn whether its password
guess is correct or not. This is necessary for the simulation of some PAKE protocols
but not for others. The variant where S does not learn this information is called
implicitly-only PAKE ; see [14] for further discussion. We follow the standard PAKE
functionality, but note that all theorems below apply to implicitly-only PAKE as
well.

722 L. Roy and J. Xu

the session P → P′ is fresh but its counter-session P′ → P has been
attacked (either compromised or interrupted); as well as the case where
both the P → P′ session and the P′ → P session are fresh, yet the pass-
words of P and P′ are different. This is modeled in the third case under
NewKey.

After outputting the session key, the session record is marked completed to
prevent TestPwd from being sent after the session ends.

The functionality above only achieves implicit authentication, namely if a
session is interrupted by the adversary (or the passwords do not match), then
the two parties do not learn this fact and merely output independent random
keys. In a PAKE with explicit authentication, the two parties output an “abort”
symbol instead. Explicit authentication can be achieved by adding one round to
an implicit-authentication PAKE [16].

3 A No-Message UC PAKE

In this section, we consider protocol TrivialPAKE, where each party simply out-
puts a random string as the key. For a formal presentation in the UC framework,
see Fig. 3.

1. On input (NewSession, sid,P,P′, pw, role), if this is the first NewSession mes-
sage for sid, party P samples K ← {0, 1}λ and outputs (sid,K).

Fig. 3. Protocol TrivialPAKE

Obviously TrivialPAKE does not satisfy correctness. On the other hand:

Proposition 1. Protocol TrivialPAKE (Fig. 3) realizes FPAKE.

Proof. For the dummy adversary A, construct simulator S as follows:

Simulator S:
1. On (NewSession, sid,P,P′, role) from FPAKE, send (TestPwd, sid,P,⊥) to

FPAKE followed by (NewKey, sid,P, 0λ).

We claim that S’s simulation is perfect, i.e., any environment Z’s views
in the real world and the ideal world are identical. Suppose Z inputs

A Universally Composable PAKE with Zero Communication Cost 723

(NewSession, sid,P,P′, pw, role) to party P.4 In the ideal world, FPAKE stores a
record 〈P,P′, pw〉 and marks it fresh. When FPAKE receives (TestPwd, sid,P,⊥),
since pw 	= ⊥, the status of the record is changed to interrupted. Finally, when
FPAKE receives (NewKey, sid,P, 0λ), it enters the third case, so P receives a ran-
dom string K ← {0, 1}λ (independent of everything else) and outputs (sid,K).
We conclude that in the ideal world, each party independently outputs a random
key in {0, 1}λ together with the session id—which is exactly the case in the real
world. (Note that there are no protocol messages, so the only strings Z receives
are parties’ outputs.) This completes the proof. �

Remark 1. One might hope to prevent TrivialPAKE from being a UC PAKE
by simply disallowing the simulator from sending (TestPwd, sid, ·,⊥) to FPAKE,
i.e., FPAKE would ignore a (TestPwd, sid, ·, x) message if x /∈ Dict. Assuming
|Dict| is polynomial and the password is chosen uniformly at random from Dict,
the simulator always has non-negligible probability of guessing the password
correctly (hence setting the session record compromised). However, a simulator
that sends (TestPwd, sid,P, x) for any x ∈ Dict followed by (NewKey, sid,P,K)
for K ← {0, 1}λ, still ensures that each party independently outputs a random
key (if x = pw, P outputs K; if x 	= pw, P outputs a random key freshly sampled
by FPAKE), thus its simulation is perfect.

4 Seven Equivalent Ways to Guarantee Correctness

4.1 Three Equivalent Ways to Guarantee Correctness

While TrivialPAKE is indeed trivial and the issue appears minor, closer scrutiny
shows that there are a number of natural ways to guarantee correctness, resulting
from different insights on the essence of the issue. In this section, we propose
three such approaches, and show that they are equivalent.

First of all, a straightforward approach would be explicitly requiring correct-
ness:

Proposal 1. Only consider PAKE protocols that both realize FPAKE and are
correct.

It is instructive, however, to understand why FPAKE fails to guarantee cor-
rectness. Correctness is meant to be enforced in the second case under NewKey,
where two parties output the same key if their passwords match and both of their
session records are fresh—the latter of which in turn models an eavesdropping
adversary. However, as we have seen in the proof of Proposition 1, there is a gap
in the modeling, namely the ideal adversary can interrupt the protocol sessions
(causing the two parties to output independent keys) even if the real adversary

4 We can assume w.l.o.g. that Z never reuses a session id, i.e., it never sends
(NewSession, sid,P, ·, ·, ·) to P twice (otherwise the second message will be ignored
in both the real world and the ideal world).

724 L. Roy and J. Xu

merely eavedrops. In other words, the ideal adversary is too strong, resulting in
an unreasonably weak functionality.

To bridge this gap, we could limit the ideal adversary’s power (thus making
the power of the ideal adversary and the real adversary “equal”) by enforcing
the following rule: the ideal adversary is forbidden from sending TestPwd, if the
real adversary merely eavesdrops. To formalize this, we borrow some notations
from [10]. Consider any PAKE protocol Π, and fix a simulator S for the dummy
adversary A. For any environment Z, define SpuriousGuess(S,Z) as the follow-
ing event: both P and P′ are honest, there exists a session sid in which A is an
eavesdropper, yet S sends a (TestPwd, sid, ·, ·) message to FPAKE. As a separate
condition, define NoOutput(S,Z) as the following event: both P and P′ are hon-
est, there exists a session sid in which S receives (NewSession, sid,P, ·, ·) from
FPAKE, yet S does not send (NewKey, sid,P,K ∈ {0, 1}λ) to FPAKE before it
halts.

Definition 5. We say a simulator S is reasonable if for any efficient environ-
ment Z, Pr[SpuriousGuess(S,Z)] and Pr[NoOutput(S,Z)] are both negligible,
where the probability is taken over the randomness generated in the execution
of Π, as well as the random tapes of S, Z, and FPAKE.5

We can now consider a proposal where only reasonable simulators “count”,
and unreasonable simulators (such as the one in the proof of Proposition 1) are
considered invalid:

Proposal 2. Only consider PAKE protocols for which a successful reasonable
simulator exists.

The above proposal does not rule out the possibility that for some protocols,
there are some reasonable simulators and some unreasonable simulators. We
could strengthen it to:

Proposal 3. Only consider PAKE protocols for which all successful simulators
are reasonable.

Which, then, is the “right” proposal to guarantee correctness? We now show
that all three are the “right” approach, since they are equivalent:

Lemma 1. Let Π be any PAKE protocol. Then the followings are equivalent:

(1) Π is correct and realizes FPAKE;
(2) There exists a successful reasonable simulator for Π;
(3) Π realizes FPAKE, and all successful simulators for Π are reasonable.

5 The purpose of considering NoOutput is to rule out the “empty” protocol mentioned
in Sect. 1, where P and P′ simply don’t do anything (and S also doesn’t do anything).
Although our primary focus is to rule out protocols like TrivialPAKE, with the
requirement on NoOutput in place and with how we define correctness (Definition
4), we can formally rule out the “empty” protocol as well.

A Universally Composable PAKE with Zero Communication Cost 725

Proof. (1)⇒(3): This is [10, Lemma A.1], except that [10] requires correctness
to be perfect. See the full version of this work for a complete proof.

(3)⇒(2): This is immediate.

(2)⇒(1): The intuition is that, a reasonable simulator cannot send TestPwd
in a session where the adversary merely eavesdrops, so in the ideal world this
session must remain fresh, hence FPAKE will let the two parties output the same
key. This must happen in the real world as well (since the simulator is successful),
which implies correctness.

Formally, let S be a successful reasonable simulator as in the statement of
(2). Since S is successful, Π realizes FPAKE. We now show that Π is correct.

For any pw ∈ Dict, consider the following environment Z:

Environment Z:

1. Initialize a single session between P and P′ on pw. That is, pick any sid,
and input (NewSession, sid,P,P′, pw, role) to P and (NewSession, sid,P′,P, pw,
role′) to P′.

2. Instruct A to be an eavesdropper in session sid.
3. When P outputs (sid,K) and P′ outputs (sid,K ′), output 1 if K = K ′ ∈

{0, 1}λ and output 0 otherwise. If P or P′ does not output anything when it
halts, then output 0.

Since S is reasonable, we know that

Pr[SpuriousGuess(S,Z)] = Pr[S sends (TestPwd, sid, ·, ·) to FPAKE]

is negligible (where the equation is due to the fact that there is only one ses-
sion, and A is an eavesdropper in this session). Suppose SpuriousGuess(S,Z)
does not occur. Then in the ideal world, when S sends (NewKey, sid,P, ·) and
(NewKey, sid,P′, ·) to FPAKE (note that S must send such commands except
with negligible probability Pr[NoOutput(S,Z)]), FPAKE’s records 〈P,P′, pw〉 and
〈P′,P, pw〉 are both fresh, resulting in P and P′ outputting the same key K = K ′

(together with sid), as can be seen from the second case of FPAKE.6 This causes
Z to output 1. Therefore,

Pr[Z outputs 1 in the ideal world] ≥ 1 − Pr[SpuriousGuess(S,Z)]
− Pr[NoOutput(S,Z)].

It follows that

Pr[Z outputs 1 in the real world] ≥ 1 − Pr[SpuriousGuess(S,Z)]
− Pr[NoOutput(S,Z)] − Dist(S,Z),

6 More precisely, assume w.l.o.g. that S sends (NewKey, sid,P, ·) first and
(NewKey, sid,P′, ·) next. Then when S sends (NewKey, sid,P, ·), FPAKE enters the
third case, so P receives and outputs (sid,K) for K ← {0, 1}λ; when S sends
(NewKey, sid,P, ·), FPAKE enters the second case, so P receives and outputs (sid,K′)
for K′ := K.

726 L. Roy and J. Xu

i.e., in the real world P outputs K, P′ outputs K ′, and K = K ′ with overwhelm-
ing probability (Dist(S,Z) is negligible since S is successful). This implies that
Π is correct. �

Discussion. In traditional game-based definitions, correctness and security are
usually defined separately. In the UC framework, by contrast, there is usually one
functionality achieving various desired properties, including correctness. How-
ever, as TrivialPAKE shows, correctness cannot be taken “for granted”; apart
from the standard “sanity check” that UC-security implies game-based security,
one should also try to prove (or disprove) that UC-security implies correctness.

Proposal 1 above can be viewed as simply “conceding” that in the context
of PAKE, UC-security only implies a notion of security, and correctness needs
to be separately defined—just as in game-based notions. On the other hand,
Proposals 2 and 3 attempt to address the underlying reason that causes the issue,
namely FPAKE gives the ideal adversary too much power. Intuitively, TestPwd
corresponds to an adversary incorporating a password guess pw∗ in a message
m∗, and replacing an honest party’s message m with m∗. (The adversary sending
random garbage is modeled as pw∗ = ⊥.) Therefore, any ideal adversary sending
TestPwd should be viewed as modifying protocol messages, which disqualifies it
from being a valid simulator for an eavesdropper. Essentially, Proposals 2 and 3
are a formalization of this intuition.

4.2 Three Sets of Variants

In this section, we consider some variants of reasonable simulators (Definition 5).

Strong Reasonable Simulators. Requiring a simulator to be reasonable only
implies that it cannot send TestPwd if the (real) adversary is an eavesdropper;
this does not prevent the simulator from sending TestPwd before the adversary
modifies a protocol message (if the adversary does modify one eventually). For
example, suppose the adversary passes the first two protocol messages without
modification, and modifies the third; a reasonable simulator may send TestPwd
when the first message is sent. Intuitively, sending TestPwd “in advance” should
not be considered reasonable, since this would again cause a discrepancy between
the simulator’s power and the adversary’s power: the simulator modifies protocol
messages even when the adversary does not.

We now consider the notion of strong reasonable simulators, which essentially
says that the simulator is not allowed to send TestPwd unless and until the
adversary modifies a protocol message. It turns out that formalizing this notion
is not as straightforward as formalizing reasonable simulators: in the latter case
we can consider the adversary and the simulator separately, whereas here we
need to consider the order of the two parties’ actions, namely the adversary
modifying a protocol message and the simulator sending TestPwd. Furthermore,
these two events occur in two different worlds, so we cannot compare their timing
directly.

A Universally Composable PAKE with Zero Communication Cost 727

We overcome this difficulty by requiring that the simulator send TestPwd
only with permission from the environment, which bridges the real world and the
ideal world since the environment participates in both worlds. Formally, assume
w.l.o.g. that for each session sid, the environment always sends a (Modify, sid)
message while instructing the adversary to modify a protocol message for the first
time in this session, and does not send such messages anywhere else (so Z sends
at most one Modify message for each session).7 For any environment Z, define
GeneralSpuriousGuess(S,Z) as the following event: both P and P′ are honest,
and there exists a session sid in which S sends a (TestPwd, sid, ·, ·) message to
FPAKE without receiving (Modify, sid) from Z.

Definition 6. We say a simulator S is strong reasonable if for any effi-
cient environment Z, Pr[GeneralSpuriousGuess(S,Z)] and Pr[NoOutput(S,Z)]
are both negligible, where the probability is taken over the randomness generated
in the execution of Π, as well as the random tapes of S, Z, and FPAKE.

The following straightforward lemma states that the strong reasonability
requirement is indeed stronger than the ordinary reasonability requirement:

Lemma 2. Any strong reasonable simulator is also a reasonable simulator.

Proof. Suppose S is a strong reasonable simulator. For any efficient environment
Z, let SID be the set of sessions in which Z instructs the adversary to be
an eavesdropper. If SpuriousGuess(S,Z) occurs, there exists a sid ∈ SID such
that S sends (TestPwd, sid, ·, ·) to FPAKE. However, since the adversary never
modifies a protocol message in sid, Z never sends a (Modify, sid) message, so
GeneralSpuriousGuess(S,Z) occurs. It follows that

Pr[SpuriousGuess(S,Z)] ≤ Pr[GeneralSpuriousGuess(S,Z)],

which is negligible. So S is a reasonable simulator. �

We now show that the notion of “reasonably realizing FPAKE” remains equiv-
alent if we replace reasonable simulators with strong reasonable simulators:

Lemma 3. Let Π be any PAKE protocol. Then the followings are equivalent:

(2+) There exists a successful strong reasonable simulator for Π;
(3) Π realizes FPAKE, and all successful simulators for Π are reasonable;

(3+) Π realizes FPAKE, and all successful simulators for Π are strong reasonable.

Proof. (2+)⇒(3): This is because (2+) implies (2) by Lemma 2, and (2) implies
(3) by Lemma 1.

7 This is w.l.o.g. because any environment Z can be converted into another environ-
ment Z ′ that behaves exactly like Z, except that Z ′ additionally sends (Modify, sid)
when Z instructs the adversary to modify a protocol message for the first time in
session sid. Obviously the distinguishing advantages of Z and Z ′ are equal.

728 L. Roy and J. Xu

(3)⇒(3+): The high-level idea is that, before the adversary modifies a pro-
tocol message, a reasonable simulator does not know whether the adversary will
eventually be an eavesdropper or not, so it “dare not” send TestPwd to FPAKE

(in case the adversary turns out to be an eavesdropper).
Let S be a successful simulator for Π; then S is reasonable, and we need to

show that S is strong reasonable. Let Z be an efficient environment. As a warm-
up, we first prove the lemma in the case that Z only initiates a single session sid.
If Z instructs its adversary A to be an eavesdropper, then SpuriousGuess(S,Z)
and GeneralSpuriousGuess(S,Z) are equivalent, so the lemma is immediate. Oth-
erwise consider the following environment Z ′, which inputs the passwords that
Z inputs, and instructs its adversary A′ to be an eavesdropper:

Environment Z ′:

1. Run Z. When Z sends (NewSession, sid,P,P′, pw, role) (resp. (NewSession,
sid,P′,P, pw′, role′)) to P (resp. P′), send the same message to P (resp. P′).

2. Instruct A′ to be an eavesdropper in session sid.
3. When session is completed, output b ← {0, 1}.8

Since A (the adversary corresponding to Z) is not an eavesdropper, there exists
an r ∈ N

+ such that A does not modify the first r − 1 protocol messages,
but modifies the r-th protocol message.9 The key observation is that Z and Z ′

behave identically up to the r-th protocol message, since both use password pw
for P and password pw′ for P′, and both instruct the adversary to pass the first
r − 1 messages without modification. Therefore, we have (below we abbreviate
(TestPwd, sid, ·, ·) as TestPwd):

Pr[S sends TestPwd before receiving the r-th protocol message in the world of Z]

= Pr[S sends TestPwd before receiving the r-th protocol message in the world of Z ′]

≤ Pr[S sends TestPwd in the world of Z ′]

= Pr[SpuriousGuess(S,Z ′)].

However, since the r-th protocol message is the first time when Z instructs A to
modify a protocol message, this is also when Z sends (Modify, sid). Therefore, (in
the world of Z) S receives (Modify, sid) together with the r-th protocol message
from Z. GeneralSpuriousGuess(S,Z) is defined as S sends TestPwd before this,
i.e., S sends TestPwd before receiving the r-th protocol message. So,

Pr[S sends TestPwd before receiving the r-th protocol message in the world of Z]

= Pr[GeneralSpuriousGuess(S,Z)].

8 In fact Z ′ does not need to output anything, since we rely on the fact that
Pr[SpuriousGuess(S,Z ′)] is negligible, rather than the distinguishing advantage of
Z ′ is negligible; whether SpuriousGuess(S,Z ′) happens or not is already determined
before Z ′ finally outputs a bit.

9 Formally, r is a random variable depending on the random tape of Z, and all prob-
abilities below are also taken over the random tape of Z.

A Universally Composable PAKE with Zero Communication Cost 729

Combining the above, we obtain

Pr[GeneralSpuriousGuess(S,Z)] ≤ Pr[SpuriousGuess(S,Z ′)],

which is negligible. This shows that S is strong reasonable.
In the general case, assume Z initiates q sessions sid1, . . . , sidq. Z may

instruct A to be an eavesdropper in some of them, and to modify messages
in others. For � ∈ [q], if A is not an eavesdropper, then there exist an r� ∈ N

+

such that A does not modify the first r� − 1 protocol messages, but modifies the
r�-th protocol message; if A is an eavesdropper, then let r� = ∞. Environment
Z ′ works exactly as in the simple-session case, except that it does not output
the bit b until all sessions are completed. Just as the single-session argument
above, we observe that in session sid�, Z and Z ′ behave identically up to the
r�-th protocol message, so

Pr[GeneralSpuriousGuess(S,Z)]
= Pr[There exists � ∈ [q] such that S sends (TestPwd, sid�, ·, ·)

before receiving the r�-th protocol message in the world of Z]
≤Pr[SpuriousGuess(S,Z ′)],

which is negligible. So S is strong reasonable.

(3+)⇒(2+): This is immediate. �

(Strong) Perfectly Reasonable Simulators. If we require that a simulator
never make a spurious guess (rather than making it with negligible probability),
we get:

Definition 7. We say a simulator S is perfectly reasonable if for any efficient
environment Z, Pr[SpuriousGuess(S,Z)] = 0 and Pr[NoOutput(S,Z)] = 0, where
the probability is taken over the randomness generated in the execution of Π, as
well as the random tapes of S, Z, and FPAKE.

Similarly, for general spurious guesses,

Definition 8. We say a simulator S is strong perfectly reasonable if for any effi-
cient environment Z, Pr[GeneralSpuriousGuess(S,Z)] = 0 and Pr[NoOutput(S,
Z)] = 0, where the probability is taken over the randomness generated in the exe-
cution of Π, as well as the random tapes of S, Z, and FPAKE.

Remark 2. Interestingly, strong perfectly reasonable simulators have been stud-
ied while addressing a separate definitional issue in the context of asymmetric
PAKE (aPAKE), where one party (called the user) holds the plain password
and another party (called the server) holds a password file file, namely a one-
way mapping of the password. For the purpose of our discussion, it suffices to
let file = H(pw), where H is a random oracle. We want to ensure that after

730 L. Roy and J. Xu

compromising the server and learning file, the adversary needs Θ(|Dict|) time to
recover pw.

Formally, this is modeled as follows: after compromising the server, the ideal
adversary can send an (OfflineTestPwd, sid, pw∗) command to the functionality,
which returns “correct guess” (if pw∗ is the correct password) or “wrong guess”.
Here an issue analogous to our “general spurious guess” emerges: what prevents
the simulator from sending OfflineTestPwd for all x ∈ Dict and learning the
password, before the real adversary makes any H queries?

This issue has been discussed in [15,20], where the proposed solution is similar
to requiring the simulator to be strong perfectly reasonable; that is, the simulator
is not allowed to send (OfflineTestPwd, sid, x), unless and until the real adversary
queries H(x). Both of the aforementioned works require OfflineTestPwd messages
to be “accounted for by the environment” (yet neither of them formally defines
what “accounted for by the environment” means).

However, it was later pointed out [19] that such a solution is insufficient for
aPAKE. In a nutshell, this is because the random oracle H can be queried by
the environment directly (rather than the environment instructing the real-world
adversary to do so); therefore, an environment can learn H input/output pairs
without sending any permission to the adversary, causing the simulator not being
able to send any OfflineTestPwd messages (even when the environment already
learns the password). (For a formal treatment of the discussion above, see [19,
Appendix D].) We do not suffer from this issue, because in our setting all protocol
messages must be passed by the real adversary, rather than the environment
itself—in contrast to the environment being able to query the random oracle on
its own.

It is not hard to see that for (2) and (2+), the analogous conditions—where
the simulator is required to be perfect—are equivalent to (2+), whereas for (3)
and (3+), the analogous conditions cannot be satisfied:

Lemma 4. Let Π be any PAKE protocol. Then the followings are equivalent:

(2+) There exists a successful strong reasonable simulator for Π;
(2*) There exists a successful perfectly reasonable simulator for Π;

(2*+) There exists a successful strong perfectly reasonable simulator for Π.

Furthermore, the following do not hold:

(3*) Π realizes FPAKE, and all successful simulators for Π are perfectly rea-
sonable;

(3*+) Π realizes FPAKE, and all successful simulators for Π are strong perfectly
reasonable.

The proof is straightforward and is deferred to the full version of this work.

A Universally Composable PAKE with Zero Communication Cost 731

4.3 Putting It Together

By Lemmas 1, 3 and 4, we get:

Theorem 1. Let Π be any PAKE protocol. Then the followings are equivalent:

(1) Π is correct and realizes FPAKE;
(2) There exists a successful reasonable simulator for Π;

(2*) There exists a successful perfectly reasonable simulator for Π;
(2+) There exists a successful strong reasonable simulator for Π;

(2*+) There exists a successful strong perfectly reasonable simulator for Π;
(3) Π realizes FPAKE, and all successful simulators for Π are reasonable;

(3+) Π realizes FPAKE, and all successful simulators for Π are strong reason-
able.

Furthermore, the followings do not hold:

(3*) Π realizes FPAKE, and all successful simulators for Π are perfectly rea-
sonable;

(3*+) Π realizes FPAKE, and all successful simulators for Π are strong perfectly
reasonable.

Since all seven conditions in the first part of Theorem 1 are equivalent, we
can now define the notion of reasonably realizing the PAKE functionality:

Definition 9. We say a PAKE protocol Π reasonably realizes FPAKE if Π is
correct and realizes FPAKE, i.e., Π satisfies condition (1) in Theorem 1 (equiv-
alently, Π satisfies any of conditions (2), (2*), (2+), (2*+), (3), and (3+) in
Theorem 1).

5 Impossibility of a Direct Solution

All proposals in Sect. 4 are somewhat unsatisfactory, in that they either require
correctness to be separate from security (Proposal 1) or place additional require-
ments on the UC simulator, hence changing the very definition of UC-security
(all other proposals). Is it possible to have a direct solution, i.e., to incorporate
correctness directly into the UC functionality, without changing the definition
of UC-security? In this section, we give a negative answer.

Theorem 2. There does not exist a UC functionality F such that a PAKE
protocol Π reasonably realizes FPAKE if and only if it realizes F .

Proof. The high-level idea is as follows: in a PAKE protocol, if the protocol mes-
sages are ⊥, then the two parties output independent random keys. This means
that there must be some mechanism in F that allows the two parties to output
independent random keys. But then a simulator can use the same mechanism to
complete the simulation for TrivialPAKE. The formal proof follows.

732 L. Roy and J. Xu

Assume towards contradiction that there exists such a UC functionality F .
Take any “natural” PAKE protocol that reasonably realizes FPAKE; for con-
creteness, here we use Diffie-Hellman-based Encrypted Key Exchange (DH-EKE,
Fig. 4). Correctness can be checked as follows: assuming both parties P and P′

hold the same password pw, and the adversary is an eavesdropper, then party P
outputs

H((Dpw(Y))x) = H((Dpw(Epw(gy)))x) = H((gy)x) = H(gxy)

together with sid, and so does P′. Furthermore, it has been proven that DH-
EKE realizes FPAKE in the ideal cipher model and the random oracle model,
under the computational Diffie-Hellman assumption in the group (G, g, q) [14,
24]. Therefore, DH-EKE reasonably realizes FPAKE and thus realizes F .

The protocol uses a group (G, g, q), an ideal cipher (E ,D) where E : Dict × G →
{0, 1}λ and D : Dict × {0, 1}λ → G, and a random oracle H : G → {0, 1}λ. The
protocol is completely symmetric, so we only describe the behavior of party P.

1. On input (NewSession, sid,P,P′, pw, role), if this is the first NewSession mes-
sage for sid, party P samples x ← Zq, computes X := Epw(gx), and sends
(sid,X) to P′.

2. On (sid, Y) from party P′, if Y /∈ {0, 1}λ, then party P samples K ← {0, 1}λ

and outputs (sid,K). Otherwise P computes K := H(Dpw(Y)) and outputs
(sid,K).

Fig. 4. Protocol DH-EKE

Let S be the simulator for DH-EKE realizing F . We now use S to show that
TrivialPAKE also realizes F . The simulator S ′ works as follows:

Simulator S ′:

1. Upon receiving the first message from F , activate S using the same message.
After that, pass messages between S and F without any modifications. That
is, upon receiving a message from S (aimed at F), send the same message
to F ; upon receiving a message from F , send the same message to S (as a
message from F).

2. Upon receiving a message (sid,X) from S as a message from P to P′, send
(sid,⊥) to S as a message from P′ to P. The same goes for P′.

3. Continue passing messages between S and F .

We now prove that S ′ is successful. As warm-up, we first show that if F =
FPAKE, then S ′ is exactly the simulator for TrivialPAKE in the proof of Proposi-
tion 1. The first message S ′ receives from FPAKE is (NewSession, sid,P,P′, role),

A Universally Composable PAKE with Zero Communication Cost 733

and S ′ passes this message to S. Then S begins to simulate protocol messages,
i.e., S sends (sid,X) aimed at P′. S ′ then behaves like an environment that
instructs the adversary to respond with (sid,⊥). Upon receiving (sid,⊥), S
needs to simulate P’s behavior of outputting a random key; it does so by send-
ing (TestPwd, sid,P,⊥) followed by (NewKey, sid,P, 0λ) to FPAKE (whose role
is played by S ′).10 This means that S ′ also sends these two messages to its own
FPAKE. At this point we recover the simulator in the proof of Proposition 1.

In general, the crucial point is that S ′, while communicating with S, behaves
like an environment that instructs the real adversary to send (sid,⊥) to protocol
parties (causing them to output independent random keys). To see this formally,
for any environment Z ′ in the world of S ′ and attacking TrivialPAKE, consider
the following environment Z in the world of S and attacking DH-EKE:

Environment Z:

1. When Z ′ activates a new session for 〈P,P′〉 on password pw, do the same
thing.

2. Instruct the adversary to send (sid,⊥) as protocol messages.

Recall that S communicates with two parties: F to which it sends UC com-
mands, and Z to which it sends protocol messages (as messages from P aimed at
P′, or vice versa). S ′ plays the roles of both F and Z to S. For the former inter-
face, S ′ merely passes all messages from F to S, and from S to F ; furthermore,
Z ′ behaves exactly like Z when sending messages to F via P. Therefore, the
view of 〈S ′ � F � P � Z ′〉 is identical to the view of 〈S � F � P � Z〉. On
the other hand, S ′ replaces all protocol messages with (sid,⊥), which is exactly
what Z does. We conclude that S ′ perfectly simulates Z to S.

Since Z sends (sid,⊥) as protocol messages, in a real execution, this causes P
and P′ to output independent random keys in {0, 1}λ (together with sid). Thus,
in the ideal world simulated by S, the output distribution of parties is indistin-
guishable with each party independently outputting a random string in {0, 1}λ

(together with sid) per session. Recall again that the messages sent between S ′

and F (whose role is played by S) are exactly the same with the messages sent
between S and F ; it follows that the parties’ output distribution in the world of
Z and S is also indistinguishable with the above, i.e., each party independently
outputting a random string in {0, 1}λ (together with sid) per session. But Triv-
ialPAKE has no protocol messages, and the only strings Z receives are parties’
outputs (also see the proof of Proposition 1). This shows that the view of Z
simulated by S is indistinguishable from the real view—i.e., S is “as successful
as” S ′. Therefore, TrivialPAKE realizes F .

Since TrivialPAKE does not satisfy correctness, it does not reasonably realize
FPAKE. So we have a PAKE protocol that does not reasonably realize FPAKE

but realizes F , which contradicts the hypothesis about F . �

10 0λ can be replaced by any string in {0, 1}λ.

734 L. Roy and J. Xu

P F P′

S ′

Z ′

�� �� �� ��
��

��
��

(a) S ′ simulating TrivialPAKE to Z ′

P F P′

S

Z

�� �� �� ��
��

��
��
(sid,⊥)

��

(b) S simulating DH-EKE to Z

Fig. 5. Comparison of S ′ simulating TrivialPAKE to Z ′ and S simulating EKE to
Z. The messages in the upper halves of (a) and (b) are identical. However, in (b), Z
(whose role is played by S ′ in (a)) sends (sid,⊥) as protocol messages to S. Since S
is successful, P and P′ must output independent random keys in (b), which in turn
implies that P and P′ output independent random keys in (a), so S‘ is also successful.
Note that S ′ never sends any messages to Z ′, as there are no protocol messages to
simulate.

P A P′�� �� =⇒ P ��
FAUTH

 R ��
FAUTH

 P′

A
���
��
��
��
�

��

�� ����
��
��
��

Fig. 6. Changes to the real-world model used by PAKE. The left is for the usual
PAKE definition with a man-in-the-middle adversary, while the right shows the router
model (where the router R is corrupted). The unauthenticated channel becomes two
authenticated channels, with an extra router party passing messages back and forth.

6 PAKE as a Three-Party Protocol

In this section, we show how to bypass the impossibility result in the previous
section and directly incorporating correctness into the PAKE functionality, by
changing the execution model of the PAKE to add a third party called the router
R. Such a definition allows a UC PAKE to compose with other protocols in the
normal sense of UC composition, allowing the higher level protocols to use the
fact that the PAKE is correct in a natural way.

Concretely, any protocol in the router model is required to have a distin-
guished party R, and authenticated channels (Fig. 7) connecting every party to
R; parties other than R do not communicate with each other directly. The proto-
col’s code for R must tell it to simply route messages between the parties—where
each message sent to R is prefixed with the desired destination, while each mes-
sage sent by R is prefixed with the original source. However, R is a corruptible
party like any other, and when corrupted the adversary can have it modify the

A Universally Composable PAKE with Zero Communication Cost 735

– On input (sid,R,m) from S, send (sid,S,R,m) to A. Wait for (Ok, sid) from
A. Then send (sid,S,m) to R.

Fig. 7. The authenticated channel functionality, FAUTH (includes highlighted),
together with its guaranteed delivery variant F ′

AUTH (excludes highlighted). Note that
we do not allow corrupted parties to modify their own messages – this feature is unim-
portant for our purposes. F ′

AUTH is modified from FAUTH to guarantee that every
message is delivered eventually. This is needed in Section 6.2, as otherwise the protocol
might not complete even when both parties are honest.

messages arbitrarily. Intuitively, R represents the man-in-the-middle adversary,
and an honest R corresponds to the adversary being an eavesdropper. The mod-
ified structure for PAKE protocols in the router model is illustrated in Fig. 6.

6.1 Correctness

In this section, we first deal with the case that both protocol parties must output
a key. This covers TrivialPAKE but not the “empty” protocol. In Fig. 8, we
present a modified PAKE ideal functionality that works in the router model.
Below we show that it is equivalent to a UC PAKE that satisfies correctness.

Definition 10. A PAKE protocol Π has guaranteed output when all parties are
honest, or simply guaranteed output, if in any session where all parties are honest
(including the router R), the protocol parties both output a string in {0, 1}λ

(together with sid) with overwhelming probability before they halt.

Theorem 3. For any PAKE protocol Π that is based on an unauthenticated
channel and has guaranteed output, there is a corresponding router model PAKE
protocol ˜Π that is based on an authenticated channel and has guaranteed output,
and vice versa, such that the following conditions are equivalent:

(a) Π reasonably realizes FPAKE (Definition 9);
(b) ˜Π realizes FPAKE-3 (Fig. 8), where R follows the static corruption model;
(c) ˜Π realizes FPAKE-3, where R follows the adaptive corruption model.

Proof. The correspondence between Π and ˜Π is already completely specified by
the router model. Below we prove equivalence of the three conditions.

(a)⇒(c): Let S be a successful strong perfectly reasonable simulator for
Π, which must exist by Theorem 1. We now construct a simulator ˜S for ˜Π.
Essentially, ˜S does whatever S does, except that ˜S treats the corrupted R as the
man-in-the-middle adversary while simulating protocol messages and sending
TestPwd commands:

736 L. Roy and J. Xu

– On input (NewSession, sid,P,P′, pw, role) from P, create a record 〈P,P′, pw〉
and mark it fresh if either: (a) this is the first NewSession message for sid,
or (b) this is the second NewSession message for sid and there is a record
〈P′,P, ·〉. Send (NewSession, sid,P,P′, role) to S.

After sending NewSession, check if case (b) happened and P, P′ and R are all
honest. If so, run the NewKey handler below for P and then P′, i.e., behave as
if the messages (NewKey, sid,P, 0λ) and (NewKey, sid,P′, 0λ) were sent by S.

– On (TestPwd, sid,P, pw∗) from R or P′, if it is corrupted and there is a record
〈P,P′, pw〉 marked fresh, then do:

• If pw∗ = pw, mark the record compromised and send “correct guess” to R.
• If pw∗ �= pw, mark the record interrupted and send “wrong guess” to R.

– On (NewKey, sid,P,K∗ ∈ {0, 1}λ) from S, if there is a record 〈P,P′, pw〉, and
this is the first NewKey message for sid and P, then output (sid,K) to P,
where K is defined as follows:

• If the record is compromised, or either P or P′ is corrupted, then set
K := K∗.

• If the record is fresh, and a key (sid,K′) has been output to P′, at which
time there was a record 〈P′,P, pw〉 marked fresh, then set K := K′.

• Otherwise sample K ← {0, 1}λ.
Finally, mark the record completed.

Fig. 8. Three-party model UC functionality FPAKE-3 for PAKE. Differences with the
standard PAKE functionality (Figure 2) are highlighted in light grey. F ′

PAKE-3 adds
the lines highlighted in dark grey to guarantee output.

Simulator ˜S:
1. Upon receiving the first message from FPAKE-3 (which must be NewSession),

activate S using the same message. After that, forward FPAKE-3’s other
NewSession messages to S (as messages from FPAKE).

2. On (sid,m) from S as the simulation of a protocol message from P to P′, if R

is honest, then send (sid,P,R,m) and (sid,R,P′,m) to ˜Z (as messages from
FAUTH to the adversary; same below), and (sid,m) to S (as a message from
S’s environment; same below). If R is corrupted, then send (sid,P,R,m) to ˜Z
and (sid,m) to R; on (sid,m′) from R, send (sid,R,P′,m′) to ˜Z and (sid,m′)
to S.

3. On (TestPwd, sid,P, pw∗) from S, if either R or P′ is corrupted, then forward
this message to FPAKE-3 (as a message from the corrupted party), and forward
FPAKE-3’s response (“correct/wrong guess”) back to S.
On the other hand, if both R and P′ are honest but P is corrupted, note that
FPAKE-3 does not allow a party to attack itself—that is, P cannot trigger

A Universally Composable PAKE with Zero Communication Cost 737

(TestPwd, sid,P, pw∗). Instead, simply check if pw∗ matches the password of
P, which can be seen from the NewSession message.

4. On (NewKey, sid, ·, ·) from S, forward this message to FPAKE-3.

We now prove that ˜S is successful; that is, for any efficient environment ˜Z
attacking ˜Π, ˜S generates a view indistinguishable from the real view of ˜Z. The
key point is that ˜S acts like an environment—whose behavior corresponds to ˜Z’s
behavior—in the view of S. To formalize this argument, define an environment
Z in the world of S and attacking Π:

Environment Z:

1. When ˜Z activates a new session for 〈P,P′〉 on password pw, do the same
thing.

2. As long as R is honest, instruct the adversary to transmit messages between
P and P′ without any modifications.

3. When R is corrupted, ˜Z may let R modify the protocol messages arbitrarily,
and Z matches this by instructing its own adversary modify the unauthen-
ticated channel messages in the same way. That is, when R receives (sid,m)
from P and sends (sid,m′) to P′, instruct the adversary to send (sid,m′) to
P′.

4. When ˜Z outputs a bit b, output the same bit b.

In the real world, the only difference between an execution of ˜Π by ˜Z and
the corresponding execution of Π by Z is how the messages are passed and
modified: in ˜Π, the protocol messages are passed through FAUTH to the router,
which may modify them when corrupted; while in Π, the protocol messages
are passed and modified directly by the man-in-the-middle adversary. However,
we made Z instruct the man-in-middle adversary to apply the same message
modifications as would be made by the router (as can be seen in step 3 above).
Therefore, the view of ˜Z in the execution of ˜Π is identical to the view of Z in
the corresponding execution of Π. We have that

Pr[˜Z outputs 1 in the real world] = Pr[Z outputs 1 in the real world].

In the ideal world, we first claim that the view of S when run by ˜S, is identical
to the view of S in the world of Z. Indeed, the behavior of ˜S when communicating
with S is exactly the same as Z and FPAKE combined, except that when P, P′

and R are all honest, ˜S ignores TestPwd commands from S. However, notice that
as long as all parties are honest, Z instructs the adversary to transmit messages
between P and P′ without any modifications, so S sending TestPwd to FPAKE

means that GeneralSpuriousGuess(S,Z) occurs—which violates the assumption
that S is a strong perfectly reasonable simulator for Π. That is, it is impossible
for S to send TestPwd when all parties are honest, so ˜S does not need to consider
such an event.

We now argue that the view of ˜Z simulated by ˜S is identical to the view
of Z simulated by S. For protocol messages, ˜S simply sends whatever messages

738 L. Roy and J. Xu

simulated by S to ˜Z (as from FAUTH). For the outputs from P and P′, they are
triggered by a NewKey command from ˜S . ˜S sends TestPwd to FPAKE-3 whenever
S sends such a message to FPAKE, and sends NewKey to FPAKE-3 whenever S
sends such a message to FPAKE. Finally, note that FPAKE-3 processes NewKey
messages in the same way as FPAKE does. We conclude that

Pr[˜Z outputs 1 in the ideal world with ˜S] = Pr[Z outputs 1 in the ideal world with S].

Combining the above, we get that Dist
˜Π,FPAKE-3

(˜S, ˜Z) = DistΠ,FPAKE(S,Z),

which is negligible since S is successful. This shows that ˜S is successful, i.e., ˜Π
realizes FPAKE-3.

(c)⇒(b): This implication is trivial, because the adaptive corruption model
is stronger than the static corruption model.

(b)⇒(a): We first prove that Π realizes FPAKE. Let ˜S be a successful simula-
tor for ˜Π. The simulator S for Π is relatively simple so we only provide a sketch:
S runs ˜S, passing its inputs and outputs to the appropriate parties and func-
tionalities. While simulating the environment for ˜S, since R does not exist for Π,
S runs a fake party itself, treating R as always corrupted. Any communication
between S and FPAKE-3 is passed through directly by ˜S (using FPAKE instead of
FPAKE-3). For protocol messages, S needs to translate between protocol message
tampering by A and tampering by R—that is, when ˜S sends e.g., (sid,P,R,m)
as a message from FAUTH to the adversary, S sends (sid,m) as a message from
P to P′; when S receives (sid,m′) aimed at P′, it sends the same message to ˜S
as a message from R.

To show that S is successful, for any environment Z attacking Π, let ˜Z be
an environment attacking ˜Π that corrupts R at the beginning of the protocol.
Whenever Z instructs its adversary to tamper with protocol messages in Π, ˜Z
translates this into tampering by R in ˜Π. With this change to the environment,
the real and ideal worlds of Π exactly match the real and ideal worlds of ˜Π,
and following the same structure as the proof of (a)⇒(c), we can see that S is
successful.

Finally, we must prove that Π is correct. To see this, consider an environment
˜Z attacking ˜Π, which activates a session between P and P′ with the two parties
using the same password pw, and outputs 1 if P and P′ output the same key
when they halt. (˜Z does not corrupt R.) In the ideal world of ˜Z, TestPwd cannot
be used so session records must remain fresh, guaranteeing that P and P′ output
the same key. This means that in a real execution of ˜Π, when P and P′ are honest
using the same password pw, and R is honest, P and P′ must eventually output
the same key with overwhelming probability. (The argument above relies on the
fact that ˜Π has guaranteed output, i.e., P and P′ must output some key in ˜Π.)
By the definition of ˜Π, this immediately implies the correctness of Π, where the
condition “R is honest” is replaced by “the adversary is an eavesdropper”. �

A Universally Composable PAKE with Zero Communication Cost 739

6.2 PAKE Guaranteeing Output

Figure 6 also presents F ′
PAKE-3, another PAKE ideal functionality in the router

model, this time designed to guarantee output as well as correctness. The idea is
to have the ideal functionality itself trigger the NewKey interface if the simulator
does not do it.

Unfortunately, two complications come with this change to the router model
PAKE functionality. First, we need to guarantee delivery of all messages sent
through the authenticated channel, as otherwise this functionality is impossible
to realize. We use a modified authenticated channel functionality F ′

AUTH (see
Fig. 7), where the message is both sent to the adversary and delivered directly.

Parallel Execution. More importantly, these modified ideal functionalities
now send more than one message per activation, which is unusual for UC. Nor-
mally ideal functionalities (as well as adversaries and simulators) are supposed to
send just one message and halt, not send other messages that might be processed
in parallel—in which case there might a “race condition”.

To see why this is problematic, consider the following example: let the envi-
ronment start a PAKE session with P, P′, and R all honest. The corresponding
protocol messages must then be simulated. If the ideal functionality were to “run
faster” than the simulator, i.e., if it triggers the NewKey handlers before the sim-
ulator finishes generating the protocol messages, then the key will be delivered
too early. This would let the real world and ideal world be easily distinguished.

We clarify the execution order by specifying that if program is of the form
“Send message m to party X, then do y”, the action y waits until after m is sent
and every action that occurs as a result of send m completes.11 For example,
with adaptive corruption, if the adversary receives (sid,P,R,m) from F ′

AUTH it
could decide to corrupt R; this corruption would take place before (sid,S,m) is
sent to R. This ensures that there is still only one thread of execution occurring
at a time, and the ideal functionality merely writes down some action for later
(when there is nothing left to do).

While this is not a usual description of UC functionalities, it can be made
rigorous using the techniques from [21]. In their model, the environment is given
the power to slowly advance the protocol through the honest party’s interfaces,
by repeatedly triggering an Output interface in the functionality. On every Output
message12, let the ideal functionality start performing whatever action was saved
for later. As long as these queries are made by the environment, the functionality
will work as described above.

11 This can be viewed as a priority system. In programs of this form, we assign the
action y a lower priority than sending m to X, all processing done by X, all messages
sent by X as a result, and so on.

12 Technically, Output must be sent by every honest party. Additionally, it must be sent
some polynomial number of times, not just once, to allow protocols with multiple
rounds. See [21] for details.

740 L. Roy and J. Xu

Theorem 4. A router model PAKE protocol ˜Π realizes FPAKE-3 with guaranteed
output if and only if ˜Π realizes F ′

PAKE-3 (in the guaranteed delivery router model,
i.e., all protocol messages are sent via F ′

AUTH). This holds whether the router is
modeled with static or adaptive corruption.

Proof. F ′
PAKE-3 ⇒ FPAKE-3 with guaranteed output: It is trivial that ˜Π real-

izes FPAKE-3, because removing the extra NewKey trigger in NewSession only
strengthens the simulator’s power, as does adding the ability to not deliver mes-
sages sent through FAUTH. That is, the simulator can send (NewKey, sid,P, 0λ)
and (NewKey, sid,P′, 0λ) to FPAKE-3 at the end, like F ′

PAKE-3 would have done,
and can always choose to have all messages delivered eventually, like in F ′

AUTH.
We now show that ˜Π has guaranteed output. Consider the following environ-

ment in the world of F ′
PAKE-3:

Environment ˜Z:

1. Initialize a single session between P and P′ on pw. That is, pick any sid,
and input (NewSession, sid,P,P′, pw, role) to P and (NewSession, sid,P′,P, pw,
role′) to P′.

2. Instruct A to be an eavesdropper in session sid.
3. Output 1 if P outputs (sid,K ∈ {0, 1}λ) and P′ outputs (sid,K ′ ∈ {0, 1}λ)

before they halt, and output 0 otherwise.

Let S be a successful simulator for ˜Z. In the ideal world, note that the
extra clause in F ′

PAKE-3 (under the NewSession command) guarantees that
(NewKey, sid,P, ·) and (NewKey, sid,P′, ·) will be called at least once, causing
P and P′ to output a key in {0, 1}λ (together with sid). Thus, ˜Z always outputs
1. This means that in the real world,

Pr[P outputs (sid,K ∈ {0, 1}λ) ∧ P′ outputs (sid,K′ ∈ {0, 1}λ)] ≥ 1 − Dist(S,Z),

which is overwhelming. This shows that ˜Π has guaranteed output.

FPAKE-3 with guaranteed output ⇒ F ′
PAKE-3: Given a successful simulator ˜S

for ˜Π realizing FPAKE-3 using FAUTH, we define a simulator ˜S ′ for ˜Π realizing
F ′

PAKE-3 using F ′
AUTH:

Simulator ˜S ′:

1. Run ˜S, and processing each message as if ˜S ′ had received it.
2. Whenever ˜S sends (sid,S,R,m) to A, instruct ˜S to deliver (sid,S,m) to the

recipient R.

Let ˜Z ′ be an efficient environment against ˜Π realizing F ′
PAKE-3. Consider the

following environment ˜Z against ˜Π realizing F ′
PAKE-3:

A Universally Composable PAKE with Zero Communication Cost 741

Environment ˜Z:

1. Run ˜Z ′, and pass messages between ˜Z ′ and P, P′ and F ′
AUTH without any

modifications (when a message is sent from FAUTH, pass this message to ˜Z ′

as if it is from F ′
AUTH).

2. Whenever a message (sid,S,R,m) is sent from FAUTH to ˜Z ′, wait until ˜Z ′

finishes processing the message and all actions it triggers complete. Then let
FAUTH deliver the message to its destination R.

3. When ˜Z ′ outputs a bit b, output the same bit b.

In the real world, ˜Z behaves identically to ˜Z ′. Indeed, waiting for ˜Z ′’s pro-
cessing (and whatever ˜Z ′ triggers) to finish before delivering the message is
exactly the semantics given above for the execution splitting in F ′

AUTH (see
discussion at the start of this section).

In the ideal world, this same feature of ˜Z matches with ˜S ′ always instructing
˜S to simulate delivering its messages. This makes the ideal world with F ′

PAKE-3,
˜S ′ and ˜Z ′, and the ideal world with FPAKE-3, ˜S and ˜Z, differ only in the extra
clause in F ′

PAKE-3. However, this clause only matters when all three parties are
honest, and no NewKey message has been sent for both P and P′—in which case
in the ideal world with FPAKE-3, ˜S and ˜Z, ˜Z might halt without the key sent to
P and P′. We have that

Dist
˜Π,F′

PAKE-3
(˜S′, ˜Z′)

= Pr[P,P′ output nothing in some session in the ideal world with FPAKE-3, ˜S and ˜Z]

≤ Pr[P,P′ output nothing in some session in the real world with ˜Π and ˜Z]+

Dist
˜Π,FPAKE-3

(˜S, ˜Z),

which is negligible since ˜Π has guaranteed output and ˜S is successful. So ˜S ′ is
successful and we conclude that ˜Π realizes F ′

PAKE-3. �

7 Conclusion

In this work, we presented a comprehensive study of correctness in universally
composable symmetric PAKE. Our contributions are four-fold:

1. We showed that TrivialPAKE, a protocol where the two parties simply output
independent random keys, realizes the standard UC PAKE functionality;

2. We showed nine possible ways to address the issue, including adding a sepa-
rate notion of correctness and placing “reasonability” constraints on the UC
simulator. We proved that seven of the approaches above are equivalent, while
the other two are unachievable;

3. We proved that it is impossibly to modify the UC PAKE functionality to
include correctness;

4. We showed how to bypass the impossibility result by modeling PAKE as a
three-party protocol, including a third party called the router. We presented
a three-party PAKE functionality that is equivalent to normal PAKE with
correctness.

742 L. Roy and J. Xu

While this work is in the context of PAKE, it seems that similar issues
about correctness appear in any protocol in the man-in-the-middle setting. For
example, the UC authenticated key exchange (AKE) functionalities in [17,25]
also do not guarantee correctness: the functionalities include an Interfere com-
mand which causes the corresponding party to output a random key, just like
TestPwd in FPAKE (when the password guess is incorrect); thus, an incorrect
protocol where the two parties output independent random keys still has a suc-
cessful simulator, just as with TrivialPAKE. We conjecture that results similar
to ours—including the natural fix by switching to the router model—hold for
other UC functionalities in the man-in-the-middle setting.

Finally, as pointed out in Remark 2, reasonable simulators have been (infor-
mally) discussed while addressing another definitional issue in asymmetric PAKE
(aPAKE), although not in the context of correctness (hence the underlying rea-
son why this constraint on the UC simulator is needed is different from ours).
It would be interesting to explore whether a similar impossibility result holds
for aPAKE, and whether the requirement that a simulator be reasonable can be
removed by adding another party to the modeling of aPAKE.

References

1. Abdalla, M., Barbosa, M., Bradley, T., Jarecki, S., Katz, J., Xu, J.: Universally
composable relaxed password authenticated key exchange. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 278–307. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56784-2 10

2. Abdalla, M., Haase, B., Hesse, J.: Security analysis of CPace. In: ASIACRYPT
2021, Part IV, Dec. (2021)

3. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 14

4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

5. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Symposium on Security and Pri-
vacy, May (1992)

6. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: a password-based
protocol secure against dictionary attacks and password file compromise. In: ACM
CCS 93, Nov. (1993)

7. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 12

8. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, Oct. (2001)

9. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 2

https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2

A Universally Composable PAKE with Zero Communication Cost 743

10. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639 24

11. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. In: Biham, E. (ed.)
EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-39200-9 5

12. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, May (2002)

13. Crypto Forum Research Group. PAKE selection (2020). https://github.com/cfrg/
pake-selection

14. Dupont, P.-A., Hesse, J., Pointcheval, D., Reyzin, L., Yakoubov, S.: Fuzzy
password-authenticated key exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 393–424. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 13

15. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 9

16. Groce, A., Katz, J.: A new framework for efficient password-based authenticated
key exchange. In: ACM CCS 2010, Oct. (2010)

17. Gu, Y., Jarecki, S., Krawczyk, H.: KHAPE: asymmetric PAKE from key-hiding
key exchange. In: CRYPTO 2021, Part IV, Aug. (2021)

18. Haase, B., Labrique, B.: AuCPace: efficient verifier-based PAKE protocol tailored
for the IIoT. Cryptology ePrint Archive, Report 2018/286, (2018). https://eprint.
iacr.org/2018/286

19. Hesse, J.: Separating symmetric and asymmetric password-authenticated key
exchange. In: SCN 20, Sept. (2020)

20. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 15

21. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

22. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44987-6 29

23. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based
authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10366-7 37

24. McQuoid, I., Rosulek, M., Roy, L.: Minimal symmetric PAKE and 1-out-of-N OT
from programmable-once public functions. In: ACM CCS 2020, Nov. (2020)

25. Santos, B.F.D., Gu, Y., Jarecki, S., Krawczyk, H.: Asymmetric PAKE with low
computation and communication. In: EUROCRYPT 2022, Part II, May/June
(2022)

26. Smyshlyaev, S.V.: Results of the PAKE selection process (2020). https://
mailarchive.ietf.org/arch/msg/cfrg/LKbwodpa5yXo6VuNDU66vt Aca8

https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/3-540-39200-9_5
https://github.com/cfrg/pake-selection
https://github.com/cfrg/pake-selection
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://eprint.iacr.org/2018/286
https://eprint.iacr.org/2018/286
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-642-10366-7_37
https://mailarchive.ietf.org/arch/msg/cfrg/LKbwodpa5yXo6VuNDU66vt_Aca8
https://mailarchive.ietf.org/arch/msg/cfrg/LKbwodpa5yXo6VuNDU66vt_Aca8

Sender-binding Key Encapsulation

Laurin Benz1,2, Wasilij Beskorovajnov3, Sarai Eilebrecht3,
Jörn Müller-Quade1,2,3, Astrid Ottenhues1,2, and Rebecca Schwerdt1,2(B)

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{laurin.benz,mueller-quade,ottenhues,schwerdt}@kit.edu

2 KASTEL Security Research Labs, Karlsruhe, Germany
3 FZI Research Center for Information Technology, Karlsruhe, Germany

{beskorovajnov,eilebrecht}@fzi.de

Abstract. Secure communication is gained by combining encryption
with authentication. In real-world applications encryption commonly
takes the form of KEM-DEM hybrid encryption, which is combined with
ideal authentication. The pivotal question is how weak the employed
key encapsulation mechanism (KEM) is allowed to be to still yield uni-
versally composable (UC) secure communication when paired with sym-
metric encryption and ideal authentication. This question has so far been
addressed for public-key encryption (PKE) only, showing that encryp-
tion does not need to be stronger than sender-binding CPA, which binds
the CPA secure ciphertext non-malleably to the sender ID. For hybrid
encryption, prior research unanimously reaches for CCA2 secure encryp-
tion which is unnecessarily strong. Answering this research question is
vital to develop more efficient and feasible protocols for real-world secure
communication and thus enable more communication to be conducted
securely.

In this paper we use ideas from the PKE setting to develop new
answers for hybrid encryption. We develop a new and significantly
weaker security notion—sender-binding CPA for KEMs—which is still
strong enough for secure communication. By using game-based notions
as building blocks, we attain secure communication in the form of ideal
functionalities with proofs in the UC-framework. Secure communica-
tion is reached in both the classic as well as session context by adding
authentication and one-time/replayable CCA secure symmetric encryp-
tion respectively. We furthermore provide an efficient post-quantum
secure LWE-based construction in the standard model giving an indi-
cation of the real-world benefit resulting from our new security notion.
Overall we manage to make significant progress on discovering the mini-
mal security requirements for hybrid encryption components to facilitate
secure communication.

Keywords: IND-SB-CPA · Key Encapsulation · Secure
Communication · Authenticated Channels · UC

1 Introduction

Secure communication has always been the first and foremost goal of cryp-
tography. The common way to reach this goal is to combine encryption with
c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 744–773, 2023.
https://doi.org/10.1007/978-3-031-31368-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_26&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_26

SB-KEM 745

authentication. Development on the encryption side has come a long way from
the roots of symmetric encryption schemes via public-key encryption (PKE) [1]
to modern hybrid encryption [2], where keys are exchanged via a public-key
key encapsulation mechanism (KEM) and subsequently used to symmetrically
encrypt messages.

For secure communication via PKE it has long been known that CCA2 secure
encryption is unnecessarily strong if authentication is already provided [3]. A
recent breakthrough in this setting [4] showed that sender-binding encryption
(SBE) and IND-SB-CPA security are the right concepts to realize secure message
transfer from authenticated channels in the universal composability (UC) model.
SBE is a PKE adaption which binds the ciphertext to the sender ID.The authors
of [4], however, only consider PKE while real world applications have moved on
to hybrid encryption.

In the field of hybrid encryption, on the other hand, the question of how
strong (or weak) encryption should be for secure communication has been com-
pletely ignored. Constructing indistinguishability under adaptive chosen cipher-
text attack (IND-CCA2) secure PKE is seen as the only significant goal, regard-
less of the fact that in practice encryption schemes are then usually paired with
authentication via digital signatures to gain secure communication.

We bridge the gap between these two worlds by bringing sender-binding ideas
to real world efficient KEM-DEM hybrid encryption [2,5]:

Our Contribution. Our contribution includes an adaptation of the concept of
SBE from the PKE to the KEM setting, yielding the notion of sender-binding key
encapsulation mechanism (SB-KEM) with corresponding IND-SB-CPA security.
We prove IND-SB-CPASB-KEM

1 security to be the weakest so far—other than
plain CPA security—by investigating its relation to previously proposed (tag-
)KEM security notions. Furthermore we show that IND-SB-CPASB-KEM security
is in fact the KEM equivalent of IND-SB-CPASBE. This directly leads us to the
proof that IND-SB-CPASB-KEM is still strong enough to facilitate secure commu-
nication via the KEM-DEM principle over authenticated channels. We present
the security proofs both for the single-message setting as well as for session
communication, resulting in the ideal functionalities of secure message trans-
fer and secure channels respectively. Lastly we indicate the potential practical
benefit of our theoretic advancements by giving a concrete IND-SB-CPA secure
SB-KEM construction. Our construction is a simplified version of the recently
proposed and, as far as we know, currently most efficient KEM construction in
the standard model [6]. Overall we manage to provide a new and weaker–but still
sufficiently strong–security notion for the public-key encryption part of secure
communication which could lead to efficiency gains. The different parts of our
contribution can be viewed in Fig. 1. They are distributed throughout this paper
as follows:

1 When not obvious, the type of scheme a security notion pertains to is given in
subscript.

746 L. Benz et al.

IND-SB-CPA
SB-KEM

IND-CCA2tag-KEM

IND-gtag-CCAtag-KEM

SB-CPA KEM + OT DEM
⇒ SB-CPA SBE

LWE

LPN

πFAUTH
MSC ≥UC FMSC

Fig. 1. Overview of Our Contribution. (Duck or rabbit?)

• In Section 4 we adapt the concept of SBE and IND-SB-CPASBE to the
KEM setting, developing SB-KEM and IND-SB-CPASB-KEM. We further-
more highlight some relations to other KEM security notions in Section 4 .
In Appendix A of the full version of this paper [7] we furthermore pro-
vide a generic transformation from dual receiver key encapsulation mecha-
nism (DR-KEM) which is analogous to the SBE construction from receiver
encryption (DRE). This aids us in separating IND-SB-CPASB-KEM from
IND-gtag-CCAtag-KEM.

• In Section 5 we prove that IND-SB-CPA secure KEM can be combined
with a one-time (OT) secure data encapsulation mechanism (DEM) to gain
IND-SB-CPASBE. This in turn UC-realizes secure message transfer when
authenticated channels are added.

• For Section 6 we switch from the classic setting to the setting of ses-
sion communication and prove that IND-SB-CPASB-KEM in conjunction with
IND-CCA2DEM (or IND-RCCADEM) and authenticated channels UC-realize
secure channels. This is an improvement over the results of [8] which needed
CCA2 security from both the KEM and DEM component.

• In Section 7 we present an efficient post-quantum secure SB-KEM con-
struction based on the standard learning with errors (LWE) assumption
in the standard model and prove it to be IND-SB-CPASB-KEM secure. In
Appendix B of the full version of this paper [7] we furthermore propose an

efficient learning parity with noise (LPN) based construction.

2 Preliminaries

We start by providing some basic knowledge needed to understand our research.
This includes an introduction to the KEM-DEM- as well as UC-framework and
definitions of various game-based and ideal functionality security notions. Read-
ers who are already familiar with these topics might want to skip this section
and only come back to it later if they want to look something up.

SB-KEM 747

2.1 The KEM-DEM Framework

First, we briefly recap the KEM-DEM framework which was introduced in [5]
and subsequently included in the encryption ISO standard in 2006 [2,9]. The
KEM-DEM framework is a special form of hybrid encryption which combines
the advantages of both public-key and symmetric encryption: The symmetric
encryption of messages makes encryption more efficient while the KEM public
key infrastructure alleviates the need for a key exchange protocol. In particular,
the KEM-DEM framework consists of two modular components. The first com-
ponent is a public-key key encapsulation mechanism (KEM) which generates a
symmetric key and encrypts it, while the second component is a symmetric data
encapsulation mechanism (DEM) which uses this symmetric key to encrypt a
message:

Definition (KEM): A key encapsulation mechanism (KEM) is given by a set
of three probabilistic polynomial time (PPT) algorithms (gen, enc, dec) with

gen : 1λ �→ (sk , pk), enc : pk �→ (K ,C), dec : (sk ,C) �→ K

such that the correctness property holds, i.e. K = dec(sk ,C) whenever
(sk , pk) ← gen(1λ) and (K ,C) ← enc(pk).

Definition (DEM): A data encapsulation mechanism (DEM) is given by a
set of two PPT algorithms (DEM.enc, DEM.dec) with DEM.enc : (K ,m) �→ c
and DEM.dec : (K , c) �→ m such that m = DEM.dec(K , c) whenever c ←
DEM.enc(K ,m) (correctness).

The KEM-DEM framework comes in two flavors which slightly differ in the
combination of the KEM and DEM. One construction–which we call single-
message communication– generates a fresh symmetric key for each encryption
of a message. This is the original definition of the KEM-DEM framework and
intuitively yields a PKE scheme (Gen, Enc, Dec) where Gen ≡ gen and

Enc(pk ,m):
• (K ,C) ← enc(pk).
• c ← DEM.enc(K ,m).
↪→ Return (C , c).

Dec(sk , (C , c)):
• K ← dec(sk ,C).
• m ← DEM.dec(K , c).

↪→ Return m.

For Session communication on the other hand, one party (who does not need
a KEM key pair themselves) generates a persistent symmetric key via the KEM
and sends it to the communication partner once. This symmetric session key is
then used for many messages between the two involved parties.

Tag-KEMs. A slight variation of classical KEMs are tag-key encapsulation
mechanisms (tag-KEMs) [10] which additionally use tag to encapsulate and
decapsulate the symmetric key. The encapsulation phase of the tag-KEM is split
in two separate phases: A first phase that generates the symmetric key and a
second phase that encapsulates the given symmetric key using the tag. The split
is made to allow for the tag to depend on the symmetric key itself.

748 L. Benz et al.

Definition (Tag-KEM): A tag-KEM is given by a set of four PPT algorithms
(gen, key, enc, dec) with

gen : 1λ �→ (sk , pk) key : pk �→ (K , aux)
enc : (τ, aux) �→ C dec : (sk , τ,C) �→ K

such that the correctness property holds, i.e. K = dec(sk , τ,C) whenever
(sk , pk) ← gen(1λ), (K , aux) ← key(pk) and C ← enc(τ, aux).

When introducing tag-KEMs, Abe et al. [10] use them in a slightly modified
tag-KEM-DEM framework where the symmetrically encrypted message is used
as the tag for encapsulation which allows for a weaker DEM to be used.

2.2 Game-based Security Notions

In this section we recap previously defined game-based security notions used
in this paper. First we give definitions for PKE schemes, then KEM and finally
DEM schemes. Whenever it is not immediately obvious for which type of scheme
a security notion is intended, we denote it in its index, e.g. IND-CCA2PKE.

IND-SB-CPASBE. The PKE security notion which inspired this whole paper
is called IND-SB-CPA and was recently introduced by Beskorovajnov et al. [4].
We use this notion as a basis for the new KEM security definition we introduce in
Sect. 4. IND-SB-CPASBE security pertains to the special PKE case of SBE where
both encryption and decryption take the ID S of the encrypting (or sending)
party as additional input, binding a ciphertext not only to the receiver (via their
public key) but to the sender as well. The intuition behind IND-SB-CPASBE
security is that an adversary may be able to modify the message content of
ciphertexts arbitrarily but is not able to change a ciphertext such that it is
bound to a party ID other than that of the sender or receiver. More formally:

Definition (IND-SB-CPASBE): An SBE scheme (gen, enc, dec) with set of
party IDs P satisfies indistinguishability under sender-binding chosen plaintext
attack (IND-SB-CPA) (cf. [4]), iff for any PPT adversary ASB-CPA the advantage
to win the IND-SB-CPA game in Fig. 2 is negligible in security parameter λ.

IND-gtag-CCATBE Tag-based encryption (TBE) [11] is closely related to
SBE. Instead of party IDs the tags given to both encryption and decryption
are taken from a dedicated tag space T. For our paper we only need the weak-
est notion so far proposed for TBE–IND-gtag-CCA–which we later on adapt
to KEMs to develop a better understanding of how strong (or rather weak)
IND-SB-CPASB-KEM is in comparison to other notions. The following definition
is taken from [4].

SB-KEM 749

CSB-CPA ASB-CPA OSB-CPA

S, (skS , pkS)
$← P, gen(1λ)

R, (skR, pkR)
$← P, gen(1λ) (S, pkS , R, pkR)

. Oracle Phase I .
(pkR′ , S

′, c)

if pkR′ ∈ {pkS , pkR} :
∧ S′ �∈ {S, R}

m := dec(skR′ , S′, c)
else :

m m := ⊥
. .

m0, m1 m0, m1 ← M

b
$← {0, 1}

c∗ := enc(pkR, S, mb) c∗

. .Oracle Phase II (exactly the same as Oracle Phase I) .

. .

b
?
= b∗ b∗

Fig. 2. The IND-SB-CPASBE Game for SBE from [4].

Definition (IND-gtag-CCATBE): A TBE scheme Σ = (gen, enc, dec) with
tag space T satisfies indistinguishability under given-tag weakly chosen ciphertext
attack (IND-gtag-CCA), iff for any PPT adversary A = (A1,A2) the advantage

Advgtag-CCA
A,Σ (λ) :=

∣
∣
∣P

[

b ← AO∗
2 (c∗, aux)

∣
∣ τ∗ $← T; (sk , pk) ← gen(1λ);

(aux ,m0,m1) ← AO∗
1 (pk , τ∗); b $← {0, 1};

c∗ ← enc(pk , τ∗,mb)
]

− 1
2

∣
∣
∣

is negligible in λ, where O∗(τ, c) returns ⊥ for τ = τ∗ and dec(sk , τ, c) otherwise.

IND-CCA2tag-KEM. The following definition was taken from [10]. Note that
in [10] there is a first oracle phase where the adversary only has pk as prior
input. Since the adversary has equal oracle access for the second phase and only
gains additional input inbetween (rather than making any output themselves),
the first oracle phase is redundant and we choose to present the notion without
it.

Definition (IND-CCA2tag-KEM): A tag-KEM Σ = (gen, key, enc, dec) sat-
isfies IND-CCA2, iff for any PPT adversary A = (A1,A2) the advantage

AdvCCA2
A,Σ (λ) :=

∣
∣
∣P

[

b ← AO∗
2 (C ∗, auxA)

∣
∣ (sk , pk) ← gen(1λ);

(aux ,K0) ← key(pk);K1
$← {0, 1}|K0|; b $← {0, 1};

(τ∗, auxA) ← AO
1 (pk ,Kb);C ∗ ← enc(aux , τ∗)

]

− 1
2

∣
∣
∣

is negligible in λ, where O denotes dec(sk , ·, ·) and O∗(τ,C) returns ⊥ for
(τ,C) = (τ∗,C ∗) and dec(sk , τ,C) otherwise.

750 L. Benz et al.

For symmetric private-key security notions we follow the more descriptive
notation of [12]. With the also commonly used PX-CY notation of [13], one-time
attack (OT) corresponds to P0-C0, while CCA2 corresponds to P2-C2.

IND-OTDEM. The OT notion for DEMs is an even weaker security notion
than classic CPA, as it does not even provide the adversary with an encryp-
tion oracle. We use this notion later on in Sect. 5 in combination with an
IND-SB-CPASB-KEM secure KEM to realize secure message transfer.

Definition (IND-OTDEM): A DEM Σ = (DEM.enc, DEM.dec) satisfies indis-
tinguishability under one-time attack (IND-OT), iff for any PPT adversary
A = (A1,A2) the following advantage is negligible in λ:

AdvOT
A,Σ(λ) :=

∣
∣
∣P

[

b ← A2(c∗, aux)
∣
∣K $← {0, 1}n(λ); (m0,m1, aux) ← A1(1λ);

b
$← {0, 1}; c∗ ← enc(K ,mb)

]

− 1
2

∣
∣
∣.

IND-CCA2DEM and IND-RCCADEM. Session communication–where each
symmetric key may be used more than once–requires stronger DEMs. We
therefore recap the private key CCA2 security notion as well and formulate
a replayable chosen ciphertext attack (RCCA) DEM notion corresponding to
the respective PKE notion [3]. The intuition behind RCCA lies in replayability.
This means an adversary is allowed to be able to modify ciphertexts to other
valid ciphertexts as long as the message content is not changed, e.g. via reran-
domization.

Definition (IND-CCA2DEM, IND-RCCADEM): A DEM Σ = (DEM.enc,
DEM.dec) satisfies IND-CCA2, iff for any PPT adversary A = (A1,A2) the advan-
tage

AdvCCA2
A,Σ (λ) :=

∣
∣
∣P

[

b ← AOenc,O∗
dec

2 (c∗, aux)
∣
∣K $← {0, 1}n(λ);

(m0,m1, aux) ← AOenc,Odec

1 (1λ);

b
$← {0, 1}; c∗ ← enc(K ,mb)

]

− 1
2

∣
∣
∣

is negligible in λ, where Oenc denotes the oracle DEM.enc(K , ·), Odec denotes
DEM.dec(K , ·) and O∗

dec(c) returns ⊥ for c = c∗ and DEM.dec(K , c) otherwise.
The notion of IND-RCCA for DEMs differs only in the definition of O∗

dec,
which returns ⊥ whenever Odec(c) ∈ {m0,m1}.

Now that we are familiar with all these game-based definitions let us jump
to the parallel world of simulation-based and in particular UC security.

2.3 Simulation-based Security and UC

As we have seen in Sect. 2.2, game-based security notions are attack-centered. A
scheme fulfills a game-based security notion if and only if one specific attack (e.g.,

SB-KEM 751

distinguishing which message is contained in a ciphertext) can never be successful
in specific circumstances (e.g., without oracle access). While this is a nice way
to model simple and isolated properties, it is not easy to comprehensively define
the security of real-world scenarios which usually require multiple interrelated
properties and are conducted concurrent with other protocols. For this purpose
simulation-based security and in particular universal composability (UC) were
developed. We briefly introduce both concepts in this section, more details can
be found in [14] and [15] respectively.

With simulation-based security, properties are not captured in individual
games but the whole scenario is modeled as an ideal process which inherently
captures all properties at once. This ideal process is called an ideal functionality
F and can be thought of as a trusted third party which is handed all inputs
of all parties via ideal secure channels, honestly conducts the actual protocol
and distributes outputs again in an ideally secure way. Any adversarial powers
to influence this process are specified within the ideal functionality and there-
fore explicitly known. Functionalities for different purposes are distinguished by
name, while different instances of the same functionality are distinguished via
session IDs sid . Security with respect to an ideal functionality F means that a
protocol π solves the given problem at least as securely as the ideal functional-
ity does. More concretely: Any real adversary A attacking an execution of the
protocol can be simulated by some simulator S in an interaction with the ideal
functionality such that the two are computationally indistinguishable. In this
case the protocol π is said to securely realize the functionality F .

UC security is a form of simulation-based security which is even stricter.
Not only do transcripts of EXECπ,A and IDEALF,S of the protocol and ideal
experiment have to be computationally indistinguishable, but the distinguisher–
called environment Z–adaptively provides inputs to and receives outputs from
the protocol parties trying to make protocol and ideal functionality diverge. The
adaptivity of Z also means that standard techniques like rewinding are not feasi-
ble in the UC setting. The bright sight of this additional work is that UC secure
protocols remain secure under arbitrary and concurrent composition (hence the
name) while the same is not true in the classic stand-alone simulation-based
security. The following definition stems from [15] with the exact formulation
taken from [4]. It captures UC security more formally:

Definition (UC Security): Let F be an ideal functionality and π a protocol.
We say that π UC-realizes the ideal functionality F , iff for any PPT adversary
A there is a PPT simulator S such that no PPT environment Z can distinguish
EXECπ,A,Z from IDEALF,S,Z with non-negligible probability. In this case we
write π ≥UC F .

Having two adversarial entities Z and A can be slightly hard to follow, but as
Canetti showed in [15] we can equivalently consider an adversarial environment
Z while reducing the adversary A to a mere dummy D.

With this general knowledge of UC security we can go on to recap some
specific ideal functionalities.

752 L. Benz et al.

2.4 Ideal Functionalities

In this section we formally define the authenticated and secure channel func-
tionalities FAUTH and FMSC we use in this paper. Although the secure message
transfer (SMT) functionality FMSMT is somewhat central to Sect. 5, it is suffi-
cient to know that it does capture SMT. The detailed inner workings (see [4])
are not necessary to understand this paper. Furthermore we briefly encounter
functionalities FKEM, FKEM-DEM, FSIG, FCA and FCERT in Sect. 3 but again do
not require further details. Interested readers can find them in [8] and [16].

For PKE schemes, SMT functionalities are commonly used to model secure
communication [3,4,15]. But for session communication we follow the lead of
[8,17] and use a secure channel functionality instead. This yields the same level of
message security but is specifically designed for communication in sessions. The
classic definition of FSC can be found in [17]. For our proof in Sect. 6 we instead
use an (equivalent) multi-session version FMSC, where some abort possibilities
of the adversary (implicitly present in FSC) are made explicit as well.

FMSC
Provides:
Multiple secure two-party communication sessions.

State:

• Active function fact : SID × {{A, B} | A, B ∈ P} → {true, false, init} initial-
ized to fact ≡ false.

• Function pMsg : SID × MID → M × P2 of pending messages.

Behaviour:

• Upon receiving (init, sid , B) from some party A, set fact(sid , {A, B}) := init

and send (inited, sid , A, B) to the adversary A.
• Upon receiving (establish, sid , A) from party B, check fact(sid , {A, B}) =

init, set fact(sid , {A, B}) := true and send (established, sid , A, B) to A.
• Upon receiving (send, sid , R, m) from some party S, check fact(sid , {S, R}) =

true, draw fresh mid , send (send, sid ,mid , S, R) to the adversary A and
append (sid ,mid) �→ (m, S, R) to pMsg.

• Upon receiving (send ok, sid ,mid) from the adversary look up (m, S, R) :=
pMsg(sid ,mid). If it exists, and if fact(sid , {S, R}) = true, output
(sent, sid , S, m) to R.

• Upon receiving (expire, sid , B) from some party A, set fact(sid , {A, B}) :=
false.

Once the notational differences are ignored there is only one distinction
between FSC and FMSC: FMSC allows for multiple communication sessions
between different pairs of communication partners within one instance (i.e. with
the same sid) while a new FSC instance (sid) is needed for each communica-
tion session. Everything else is identical. For normal settings, where arbitrarily

SB-KEM 753

many sessions between arbitrary communication partners are allowed, multiple
instances (or their multi-session extensions) are needed of both FSC and FMSC
and the sole difference lies in whether or not a new sid is used for a new session.

FAUTH
Provides:
Single-receiver single-message single-sender authenticated message transfer with
constant message size.
Behaviour:

• Upon invocation with input (send, sid , R, m) from some party S, send back-
door message (send, sid , S, R, m) to the adversary A.

• Upon receiving (send ok, sid) from adversary A: If output not yet generated,
then output (sent, sid , S, R, m) to R.

• Ignore all further inputs.

With these previously known definitions fresh in our minds we go on to give
some more context to our paper in the next section by discussing prior works.

3 Related Work

While there are lots of papers pertaining to the general topic of hybrid encryp-
tion via the KEM-DEM framework, most of the works focus on more efficient
constructions of KEMs, such as the hybrid encryption scheme by Cramer and
Shoup [5], the Kurosawa-Desmedt-KEM [18] or the newly standardized Kyber-
KEM [19]. For this section, however, we stay with the main contribution of
our paper and instead consider those papers which give proofs on what levels
of secure communication can be reached with various KEM and DEM security
notions.

As mentioned in Sect. 2.1, there are two branches of KEM-DEM-based
hybrid encryption: Single-message and session communication. We start in the
more common single-message setting. With one symmetric key per message
IND-CCA2PKE has always been seen as the goal to construct secure commu-
nication. Hence the main security analysis is usually conducted by constructing
an IND-CCA2PKE secure PKE scheme from successively weaker (and more effi-
cient) KEM and DEM notions. When originally introducing the KEM-DEM
framework, Shoup showed that combining a KEM and DEM which satisfy the
respective notions of IND-CCA2 security yields an IND-CCA2PKE secure PKE
as a result [2,5]. Also in [5] it was shown that if one relaxes the security of the
DEM to one-time-IND-CCA2DEM security (sometimes called IND-OTCCA [12]),
the construction still suffices for an IND-CCA2 secure PKE as each symmet-
ric key will only be used once. In [12], Herranz, Hofheinz, and Kiltz give an
overview of all previously proposed game-based KEM and DEM security notions
and comprehensively identify which combinations lead to which security notions

754 L. Benz et al.

for the resulting PKE. One main finding was that CCA2 security could so far
only be reached via a CCA2 secure KEM in conjunction with (one-time-)CCA2
DEM. All other combinations result in less secure PKE schemes. Kurosawa and
Desmedt managed to present a KEM-DEM construction for an IND-CCA2PKE
scheme in [18] where the employed KEM scheme is not IND-CCA2 secure [20].
However, it was shown in [21] that the Kurosawa-Desmedt-KEM is not far off,
as it becomes IND-CCA2KEM secure with a slight twist. Abe et al. modify the
KEM-DEM framework to a new tag-KEM-DEM framework [10] (cf. Section 2.1).
They show that for this type of hybrid encryption an IND-CCA2 secure KEM
together with an only IND-OT secure DEM yields an IND-CCA2 PKE as well.
They also show that the aforementioned Kurosawa-Desmedt-KEM can be con-
sidered a tag-KEM in which case it actually satisfies IND-CCA2tag-KEM security.
A similar not quite IND-CCA2 secure KEM construction was used in [6] as well.

In contrast to these works we employ the results of [3,4] which state that
IND-CCA2PKE is unnecessarily strong to realize secure communication and
hence do not try to construct an IND-CCA2 secure PKE in this paper. Aiming
for the weaker but sufficient notion of IND-SB-CPASBE security [4], we develop
the corresponding KEM notion of IND-SB-CPASB-KEM. We show that in com-
bination with the weakest possible DEM–satisfying only IND-OT security–our
new notion still provides IND-SB-CPASBE security for the SBE scheme con-
structed via the classic KEM-DEM framework. Using such a weak DEM scheme
was previously only possible via the more complex tag-KEM-DEM framework.
Furthermore we show that if our SB-KEM is viewed as a (simpler) version of a
tag-KEM, the KEM security notion IND-SB-CPA, which we introduce in this
work, is strictly weaker than the IND-CCA2tag-KEM notion employed in the tag-
KEM-DEM framework.

Although Canetti and Krawczyk consider various UC and non-UC security
notions for key exchange and session key security in [17,22], Nagao, Manabe,
and Okamoto were the first to take the KEM-DEM framework into the world
of UC security [8]. They also make the switch to session communication where
each symmetric key is used not only for multiple messages but bi-directional
communication as well. Nagao, Manabe, and Okamoto firstly introduce an ideal
functionality FKEM capturing the security intuitively expected from a KEM and
prove a generic protocol to UC-realize FKEM if and only if the KEM used in
the protocol is IND-CCA2KEM secure. In a second step a complete KEM-DEM
functionality FKEM-DEM is defined and similarly shown that it is realized by a
generic DEM-protocol in the FKEM-hybrid model if and only if the DEM satisfies
IND-CCA2DEM security. Lastly it is shown that using FKEM-DEM in conjunction
with the signature and certification functionalities FSIG and FCA suffices without
any other cryptographic building blocks to realize a single-session bi-directional
secure channel FSC. An overview of this process is shown in Fig. 3.

The additional functionalities FSIG and FCA are used for authentication dur-
ing the key exchange and could equally be substituted by FAUTH, as it was
shown in [16] that such a use of signatures combined with certification already
UC-realizes FAUTH. The two equivalences between respective CCA2 security

SB-KEM 755

IND-CCA2 KEM πKEM ≥UC FKEM

IND-CCA2 DEM πFKEM
DEM ≥UC FKEM-DEM

πFKEM-DEM
FSIG,FCA

≥UC FSC

Fig. 3. Overview of Secure Channel Realization from [8].

notions and ideal KEM and KEM-DEM functionalities from [8] could be taken
to indicate that CCA2 is a necessary condition for achieving secure channels via
the session KEM-DEM framework. In this paper we show that this is not actu-
ally true. The main factor to realize here is that authentication in the form of
FSIG and FCA is only used for the key exchange and added after the fact to the
KEM-DEM functionality to realize FSC. Directly using the KEM on an authen-
ticated channel and binding the key ciphertext to the sender lets us achieve the
same level of security with significantly less security requirements on the KEM.
For our proof in Sect. 6 we skip the detour via FKEM and FKEM-DEM and directly
show that an IND-SB-CPASB-KEM secure KEM combined with FAUTH and an
IND-CCA2DEM secure DEM UC-realize a secure channel.

4 Sender-binding Key Encapsulation

In this section we develop the security notion of IND-SB-CPAKEM and give some
transformations to show its relation to other KEM security notions. Before doing
so, we first introduce what it means for a KEM to be called sender-binding.

Definition (SB-KEM): A sender-binding key encapsulation mechanism
(SBKEM) is given by a set of three PPT algorithms (gen, enc, dec) with

gen : 1λ �→ (sk , pk), enc : (pk , S) �→ (K ,C), dec : (sk , S,C) �→ K

such that the correctness property holds, i.e. K = dec(sk , S,C) whenever
(sk , pk) ← gen(1λ) and (K ,C) ← enc(pk , S).

Note that so far, this is only the traditional KEM interface enhanced by a
party ID as input for encapsulation and decryption. Although the denomination
suggests this, the “sender” and “binding” part only become meaningful with the
respective security notion. Any classic KEM instantly satisfies this definition
when its input is adjusted to incorporate a party ID, regardless of whether this
ID specifies some sender, receiver or just a random party, regardless of whether
there is any binding property or the ID can be easily exchanged, even regardless
of whether this ID is used at all in the protocol. The intended use, however, is that

756 L. Benz et al.

the sending or encapsulating party inserts its own ID upon encapsulation, this ID
is then non-malleably bound to an otherwise malleable ciphertext and decryption
is only successful if the same ID is used. These properties are expressed in the
following IND-SB-CPAKEM notion. The idea for this notion comes from the
corresponding SBE notion introduced in [4], which we adapt to fit the KEM
setting.

Definition (IND-SB-CPASB-KEM): An SB-KEM (gen, enc, dec) satisfies
indistinguishability under sender-binding chosen plaintext attack (IND-SB-CPA)
security, iff for any PPT adversary ASB-CPA the probability to win the IND-SB-
CPA game shown in Fig. 4 is negligible in λ.

CSB-CPA ASB-CPA OSB-CPA

S, (skS , pkS) ← P, gen(1λ)

R, (skR, pkR) ← P, gen(1λ)
(K0,C

∗) ← enc(pkR, S)

K1
$← {0, 1}|K0|

b
$← {0, 1} (S, pkS , R, pkR, (Kb,C

∗))

. Oracle Phase .
(pkR′ , S

′,C)

if pkR′ ∈ {pkS , pkR}
∧ S′ �∈ {S, R} :

K := dec(skR′ , S′,C)
else :

K K := ⊥
. .

b
?
= b∗ b∗

Fig. 4. The IND-SB-CPASB-KEM Game for SB-CPASB-KEM

We would like to remark several things about this definition.
Firstly, IND-SB-CPAKEM looks very different from other KEM notions at first
glance because it has only one oracle phase instead of two. This is not due to
less oracle access but because this way is simpler but equivalent: For IND-SB-
CPA, the first and second oracle phase permit exactly the same oracle queries
(in constrast to CCA2 for instance). Furthermore in the KEM setting the adver-
sary does not generate any outputs between oracle phases I and II. Hence with
IND-SB-CPAKEM the adversary can save all oracle queries it would make in the
first oracle phase and ask them in the second oracle phase instead. We therefore
decided to simplify the definition by only including the second oracle phase.

Secondly, note that although the IND-SB-CPAKEM security notion contains
a key pair (skS , pkS) for party S, no such keys need to exist in any protocol.
Especially in the session communication setting—but also if communication is
one-directional in the single-message setting—only one party needs to have a
key pair for the SB-KEM to set up a symmetrically encrypted session. The rea-
son behind the existence of these keys in our security notion is that it makes
the notion strictly weaker than if (skS , pkS) were not picked by the challenger.

SB-KEM 757

Intuitively, an IND-SB-CPAKEM secure KEM does not need to guarantee any-
thing if S’s keys may be adversarially chosen rather than honestly (and secretly)
generated. This can clearly be seen when considering the generic DRE construc-
tion of an SB-KEM in Appendix A of the full version of this paper [7]: For
this construction each encapsulated key is decryptable by both the receiver and
sender. Hence the adversary choosing or knowing skS would completely break
the encapsulation.

Before we discuss in which ways IND-SB-CPASB-KEM fits into the land-
scape of other security notions for KEMs, notice that IND-SB-CPASBE obvi-
ously implies IND-SB-CPASB-KEM by the standard PKE to KEM construction
of randomly drawing and then encrypting a symmetric key. For KEM secu-
rity notions, classifying IND-SB-CPASB-KEM with respect to classic KEM secu-
rity is unfortunately rather infeasible. While a classic KEM takes no input and
requires secrecy and various forms of integrity about the internally determined
key, IND-SB-CPASB-KEM asserts only secrecy (no integrity) of the key but addi-
tionally provides integrity (without secrecy) of some user input–the identity S.
Since those two settings are even more incompatible than comparing SBE to
classic PKE notions, we will only consider IND-SB-CPASB-KEM in relation to
the similar setting of tag-KEMs.

Relation to tag-KEM Security Notions. Let (gen, key, enc, dec) be a tag-
KEM. We construct an SB-KEM (Gen, Enc, Dec) in the natural way by using
sender IDs as tags, and combining key and enc into a single encryption algo-
rithm. I.e. Gen ≡ gen, Enc(pkR, S) = (K ,C) where (aux ,K) ← key(pkR) and
C ← enc(aux , S), and Dec ≡ dec.

Lemma 1: If (gen, key, enc, dec) is an IND-CCA2 secure tag-KEM then
(Gen, Enc, Dec) is an IND-SB-CPA secure SB-KEM.

Proof. Assume on the contrary that ASB is an adversary with non-negligible
success probability in winning the IND-SB-CPASB-KEM game. We use ASB to
construct an equally successful adversary Atag-KEM. This adversary mainly for-
wards messages between ASB and the challenger and oracle. Additionally it cre-
ates credentials for S and uses them to decrypt respective oracle queries. The
detailed reduction can be found in Fig. 5. �

It is easy to see from the reduction that the CCA2 game grants a lot more
oracle access than we need which indicates that IND-SB-CPASB-KEM is a lot
weaker than IND-CCA2tag-KEM. To further substantiate this claim we take the
weakest security notion proposed for TBE, adapt it to the KEM setting and show
that it still implies IND-SB-CPASB-KEM via the above construction. Note that
as far as we know, no weaker security notions than IND-CCA2tag-KEM have been
proposed for tag-KEM so far, which is why we take the detour over a TBE notion.
The TBE notion in question is IND-gtag-CCATBE which was recapitulated in
Sect. 2.2. The difference to IND-CCA2tag-KEM lies in the oracle access as well
as when and by whom the challenge tag τ∗ is chosen: Both oracle phases grant

758 L. Benz et al.

Ctag-KEM Atag-KEM ASB Otag-KEM

(sk , pk) ← gen(1λ)
(aux ,K0) ← key(pk)

K1
$← {0, 1}|K0|

b
$← {0, 1} pk ,Kb

. Oracle Phase I .

. .

S S, (skS , pkS)
$← P, gen(1λ)

C ∗ ← enc(aux , S) C ∗
R

$← P (S, pkS , R, pk , (Kb,C
∗))

. Oracle Phase II .
(pkR′ , S

′,C)

if pkR′ �∈ {pkS , pk}
∨ S′ ∈ {S, R} :

K := ⊥
elseif pkR′ = pkS :

K := dec(skS , S′,C)

else
(S′,C)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

K←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
K

. .
b

?
= b∗ b∗ b∗

Fig. 5. Reduction for IND-CCA2tag-KEM Construction

access to a decryption oracle punctuated at τ = τ∗, i.e. the complete challenge
tag is excluded from decryption rather than just the challenge tuple (τ∗,C ∗).
The challenge tag itself is not chosen adaptively and not even by the adversary
at all anymore, but randomly drawn by the challenger. The adaptive interface
of a tag-KEM—where encapsulation is divided into key and enc so that the tag
may depend on the output of key—does not seem quite fitting anymore when
in the security game the tag is drawn at random and hence independent of the
output of key. Nevertheless we cannot rule out that such a security notion may
still be meaningful for a tag-KEM with separate key and enc and therefore keep
the division.

Definition (IND-gtag-CCAtag-KEM): A tag-KEM Σ = (gen, key, enc, dec)
satisfies IND-gtag-CCA, iff for any PPT adversary A = (A1,A2) the advantage

AdvgtagA,Σ(λ) :=
∣
∣
∣P

[

b ← AO∗
2 (Kb,C ∗)

∣
∣ τ∗ $← T; (sk , pk) ← gen(1λ);

(auxA) ← AO∗
1 (pk , τ∗); (aux ,K0) ← key(pk);

C ∗ ← enc(aux , τ∗);K1
$← {0, 1}|K0|; b $← {0, 1}

]

− 1
2

∣
∣
∣

is negligible in λ, where O∗ returns ⊥ for τ = τ∗ and dec(sk , τ,C) otherwise.

We go on to show that this weaker notion is still sufficient to imply
IND-SB-CPASB-KEM.

Lemma 2: If (gen, key, enc, dec) is an IND-gtag-CCA secure tag-KEM then
(Gen, Enc, Dec) is an IND-SB-CPA secure SB-KEM.

SB-KEM 759

Proof. The proof of Lemma 2 works almost exactly the same as the proof of
Lemma 1. The sole difference is that the identity S is randomly provided by the
challenger Ctag-KEM rather than randomly drawn by Atag-KEM. Note that the
provision S′ 	∈ {S,R} guarantees that oracle queries forwarded to Otag-KEM get
decrypted correctly. �

In Appendix A of the full version of this paper [7] we furthermore show that
the transformation from Lemma 2 is just an implication and no equivalence,
proving IND-SB-CPASB-KEM to be strictly weaker than IND-gtag-CCAtag-KEM.

5 Realizing Secure Message Transfer

In this section we show that IND-SB-CPASB-KEM is—in conjunction with
IND-OT secure DEM and authenticated channels—strong enough to facili-
tate the realization of secure message transfer. Since Beskorovajnov et al. [4]
already showed the same for IND-SB-CPA secure SBE with authenticated
channels, we can build on their work and only fill in the gap: We show
that IND-SB-CPASB-KEM combined with IND-OTDEM via the KEM-DEM-
framework yields an IND-SB-CPA secure SBE scheme.

Hence let (gen, enc, dec) be an IND-SB-CPASB-KEM secure SB-KEM and
(DEM.enc, DEM.dec) be a compatible IND-OT secure DEM. We construct an SBE
scheme via the KEM-DEM principle by setting Gen ≡ gen and:

Enc(pkR, S,m):
• (K ,C) ← enc(pkR, S).
• c ← DEM.enc(K ,m).
↪→ Return (C , c).

Dec(skR, S, (C , c)):
• K := dec(skR, S,C).
• m := DEM.dec(K , c).
↪→ Return m.

Theorem 1: The SBE scheme (Gen, Enc, Dec) is IND-SB-CPA secure.

Proof. Assume there is an adversary ASBE for the IND-SB-CPA game with
success probability P

[ASBE successful
]

= 1
2+ρ, where ρ is non-negligible in λ. We

use this to construct an adversary ASB-KEM for the IND-SB-CPASB-KEM game
as follows: ASB-KEM is started with input (S, pkS , R, pkR, (Kb,C ∗)) by the KEM
challenger CSB-KEM and hands (S, pkS , R, pkR) on to ASBE. For any valid oracle
query (pkR′ , S′, (C , c)) from ASBE the DEM key is decrypted via the SB-KEM
oracle OSB-KEM and subsequently used for DEM decryption of c. When ASB-KEM
receives challenge messages m0,m1 the adversary ASB-KEM draws a random
challenge bit b′ $← {0, 1} and determines the challenge as c∗ ← DEM.enc(Kb,mb′).
The following second oracle phase is conducted exactly as the first one was.
Finally, in case ASBE correctly answers with b′, ASB-KEM chooses to answer the
challenger with b∗ = 0, else it answers with b∗ = 1. The detailed reduction is
shown in Fig. 6.

Let us briefly analyse the success probability of ASB-KEM. If b = 0, ASB-KEM
has the same success probability that ASBE has. If b = 1 we claim that the
success probability can only negligibly differ from 1

2 . We show this again by

760 L. Benz et al.

CSB-KEM ASB-KEM ASBE OSB-KEM

S, (skS , pkS) ← P, gen(1λ)

R, (skR, pkR) ← P, gen(1λ)
(K0,C

∗) ← enc(pkR, S)

K1
$← {0, 1}|K0|

b
$← {0, 1} (S, pkS , R, pkR, (Kb, C

∗)) (S, pkS , R, pkR)

. .Oracle Phase I. .
(pkR′ , S

′, (C , c))

if pkR′ �∈ {pkS , pkR}
∨ S′ ∈ {S, R} :

m := ⊥

else
(pkR′ , S

′,C)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
K←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

m := DEM.dec(K , c) m

. .
m0, m1

b′ $← {0, 1}
c∗ ← DEM.enc(Kb, mb′) c∗

. Oracle Phase II (exactly the same as Oracle Phase I) .
. .

(b′)∗

if (b′)∗ = b′: b∗ := 0

b
?
= b∗ b∗

else : b∗ := 1

Fig. 6. Reduction from SBE to SB-KEM.

contradiction with a reduction to the IND-OT secure DEM scheme: Assume that
when the game is conducted with b = 1, ASBE has a success probability non-
negligibly different from guessing—w.l.o.g. better (rather than worse) than one
half. We use ASBE to construct an adversary ADEM against the DEM IND-OT
game: ADEM does not get any input from the challenger. It firstly draws S and
R, generates (skS , pkS), (skR, pkR), and hands (S, pkS , R, pkR) to ASBE. Every
valid oracle query (pkR′ , S′, (C , c)) is answered by using the corresponding secret
key with m := Dec(skR′ , S′, (C , c)). When ASBE chooses challenge messages
m0,m1 they are handed through to the DEM challenger CDEM who responds with
a corresponding challenge c∗. This challenge is paired with an output C ∗ from
enc(pkR, S) and handed to ASBE. The second oracle phase, again, is handled
exactly as the first one was. Finally the answer b∗ from ASBE is passed on to the
challenger. The detailed reduction is shown in Fig. 7.

This reduction to the underlying IND-OT secure DEM shows that for b = 1 in
the first reduction, the adversary ASBE cannot perform non-negligibly better or
worse than guessing. Hence, paired with the case b = 0, the adversary ASB-KEM
has success probability P

[ASB-KEM successful
]

= 1
2 + 1

2ρ. �

Corollary 1: Combining the KEM-DEM framework from [2] with the encrypt-
then-authenticate protocol from [4], an IND-SB-CPASB-KEM secure KEM and
IND-OT secure DEM suffice to UC-realize secure message transfer functionality
FMSMT in the FAUTH-hybrid model.

The proof of this corollary follows directly from Theorem 1 and [4, Thm. 3].

SB-KEM 761

CDEM ADEM ASBE

K
$← {0, 1}|K | S, (skS , pkS) ← P, gen(1λ)

R, (skR, pkR) ← P, gen(1λ) (S, pkS , R, pkR)

. Oracle Phase .
(pk , S′, (C , c))

if pk �∈ {pkS , pkR}
∨ S′ ∈ {S, R} :

m := ⊥
else :

m := Dec(sk , S′, (C , c)) m

. .
m0, m1 m0, m1

b
$← {0, 1}

c∗ ← DEM.enc(K , mb) c∗
C ∗ ← enc(pkR, S) (C ∗, c∗)

. Oracle Phase II (exactly the same as Oracle Phase I) .

. .
b

?
= b∗ b∗ b∗

Fig. 7. Reduction from SBE to DEM.

6 Realizing Secure Channels

At this point we make the switch from single-message to session communica-
tion. This means symmetric keys are exchanged via the KEM and subsequently
used by both parties to send messages encrypted with the corresponding DEM.
The benefits are that only one communication partner needs credentials for the
KEM and that secure communication can be achieved even if the authenticated
channel is only used for the key exchange and not the actual messages. The
employed DEM, on the other hand, needs to be stronger than for single-message
KEM-DEM.2 In this section we show how IND-SB-CPAKEM in conjuction with
IND-CCA2DEM or just IND-RCCADEM suffices to UC-realize secure channels
FMSC in the FAUTH-hybrid model. We do so by first providing a protocol πMSC
and corresponding simulator SMSC before giving the actual theorem and proof.

Protocol πMSC. Let (gen, enc, dec) be an SB-KEM and (DEM.enc, DEM.dec) a
compatible DEM. The idea behind πMSC is the following: To establish a session
between parties P and P ′, a new symmetric key is generated and encapsulated
via enc(pkP ′ , P) by P . The resulting ciphertext C is sent to P ′ via authenticated
channel. When decryption dec(skP ′ , P,C) is successful, both parties can encrypt
messages to the other party via DEM.enc and send them on a plain channel. All
details can be found in the formal definition:

2 Note that the security of the DEM can be significantly extenuated if we are willing
to use authenticated channels for all messages.

762 L. Benz et al.

πMSC
Realizes:
Multiple secure two-party communication sessions.

Parameters:
• Functionality FAUTH.
• KEM (gen, enc, dec).
• DEM (DEM.enc, DEM.dec).

State of party P :
• A personal KEM key function fKEM : sid �→ (pk , sk).
• A partial KEM key function fPK : (sid , P ′) �→ pkP ′ .
• A partial DEM session key function fSK : (sid , P ′) �→ K .
• An (almost) boolean function fact : SID × P → {true, false, init} initialized

to fact ≡ false.

Behaviour of Party P :
\\ Initialization

• Upon input (sent, sidAUTH, P ′, P, (sid , pk)) from FAUTH, append (sid , P ′) �→
pkP ′ to fPK if this entry does not yet exist.

• Upon input (init, sid , P ′) from the environment:
(1) If no entry fKEM(sid) exists set fKEM(sid) := (pk , sk) ← gen(1λ).
(2) Check that fact(sid , P ′) = false and set fact(sid , P ′) := init.
(3) Draw fresh sidAUTH and call FAUTH with input

(send, sidAUTH, P ′, (sid , pk)).
• Upon input (establish, sid , P ′) from the environment:

(1) Look up pkP ′ := fPK(sid , P ′).
(2) (K ,C) ← enc(pkP ′ , P).
(3) Check that fact(sid , P ′) = false, set fact(sid , P ′) = true and append

(sid , P ′) �→ K to fSK.
(4) Draw fresh sidAUTH and call FAUTH with input

(send, sidAUTH, P ′, (sid ,C)).
• Upon input (sent, sidAUTH, P ′, P, (sid ,C)) from FAUTH:

(1) Look up (pk , sk) := fKEM(sid).
(2) K := dec(sk , P ′,C).
(3) Check that fact(sid , P ′) = init, set fact(sid , P ′) = true and append

(sid , P ′) �→ K to fSK.

\\ Data Exchange
• Upon input (send, sid , P ′, m) with m ∈ {0, 1}l from environment Z:

(1) Check fact(sid , P ′) = true, look up K := fSK(sid , P ′) and set c ←
DEM.enc(K , m).

(2) Send (sid , P, c) to P ′
• Upon receiving message (sid , P ′, c):

(1) Check fact(sid , P ′) = true, look up K := fSK(sid , P ′) and set m ←
DEM.dec(K , c).

(2) Output (sent, sid , P ′, m) to the environment.

\\ Session Expiration
• Upon input (expire, sid , P ′) from the environment:

(1) Check fact = true and send (expire, sid , P) to P ′.
(2) Erase fSK(sid , P ′) and set fact(sid , P ′) := false.

• Upon receiving message (expire, sid , P ′) erase fSK(sid , P ′) and set
fact(sid , P ′) := false.

SB-KEM 763

Simulator SMSC. To show that protocol πMSC realizes FMSC we need to con-
struct a simulator which interacts with FMSC in such a way that no environment
Z can distinguish this ideal world from an interaction with the real protocol and
(dummy) adversary A. The idea behind our simulator SMSC is striving for near
perfect simulation: It plays all honest parties (conducting protocol πMSC) as
well as the functionality FAUTH in its head, using FMSC’s outputs to give them
mock inputs from Z and using their outputs in turn to determine inputs to
FMSC. An overview can be found in Fig. 8. For proof simplicity purposes—that
become apparent later on—the simulator swaps symmetric keys for random val-
ues if the two involved parties are both honest. The only situations in which
SMSC is unable to provide perfect simulation due to lack of knowledge are actual
messages between two honest parties. In this case it sends encryptions of zeros
instead. The formal definition of SMSC looks as follows:

Fig. 8. Overview of Simulator SMSC adapted from [4].

SMSC

Realizes:
Multiple secure two-party communication sessions.

Parameters:

• Security parameter λ.
• KEM (gen, enc, dec).
• DEM (DEM.enc, DEM.dec).

In-the-head Parties:

• Functionality FAUTH. This functionality communicates in-the-head with all
honest in-the-head parties as well as with the environment Z as adversary.

764 L. Benz et al.

• Copies of honest parties running a modified version of the protocol πMSC,
which we will denote as P π. These parties communicate in-the-head with the
in-the-head functionality FAUTH. Their interface to the environment is played
by the simulator (defined in “Behaviour” below). The modification from πMSC

looks as follows:
◦ Upon input (establish, sid , P ′) from the environment:

(3) Check that fact(sid , P ′) = false, set fact(sid , P ′) = true, ask S for
freshly drawn random key K1

$← {0, 1}|K | for parties {P, P ′} and
append (sid , P ′) �→ K1 to fSK.

◦ Upon input (sent, sidAUTH, P ′, P, (sid ,C)) from FAUTH:
(3) Check that fact(sid , P ′) = init, set fact(sid , P ′) = true, ask S for

key K1 corresponding to parties {P, P ′} and append (sid , P ′) �→ K1

to fSK.
• Dummy corrupted parties. Whenever the simulator is asked by the environ-

ment to call functionality FAUTH in the name of a corrupted party, this in-the-
head dummy calls the in-the-head functionality correspondingly and reports
all outputs back to the environment Z.

State:

• Everything the in-the-head parties and functionalities store in their states.
• Partial key function {{P, P ′} | P, P ′ honest} → {0, 1}n(λ), {P, P ′} �→ K1.

Behaviour:
\\ Initialization by honest party

• Upon receiving (inited, sid , A, B) from FMSC for honest party A, start in-
the-head party Aπ with input (init, sid , B) from the environment Z.

• Upon receiving (established, sid , A, B) from FMSC for honest party B, start
in-the-head party Bπ with input (establish, sid , A) from the environment Z.

\\ Initialization by corrupted party

• Upon in-the-head party Bπ receiving output (sent, sidAUTH, A, B, (sid , pk))
from FAUTH for corrupted A, call FSC with input (init, sid , B) in the name
of A.

• Upon in-the-head party Aπ setting fact(sid , B) from init to true, call FMSC

with input (establish, sid , A) in the name of B.

\\ Message from honest to honest party

• Upon receiving (send, sid ,mid , S, R) from FMSC to A for honest parties S and
R:
(1) Start in-the-head party Sπ with input (send, sid , R, 0) from the environ-

ment Z.
(2) If in-the-head party Rπ at some point reports output (sent, sid , S, 0), call

FMSC with input (send ok, sid ,mid).

\\ Message from honest to corrupted party

• Upon receiving (send, sid ,mid , S, R) from FMSC to A for honest party S and
corrupted party R:
(1) Call FMSC with input (send ok, sid ,mid).

SB-KEM 765

(2) Receive output (sent, sid , S, m) from FMSC to R.
(3) Start in-the-head party Sπ with input (send, sid , R, m) from the environ-

ment Z.

\\ Message from corrupted to honest party

• Upon in-the-head honest party Rπ reporting output (sent, sid , S, m):
(1) Call FMSC with input (send, sid , R, m) in the name of S.
(2) Receive output (send, sid ,mid , S, R) from FMSC to A.
(3) Call FMSC with input (send ok, sid ,mid).

Security Theorem and Proof. Now that we have constructed both protocol
and simulator it remains to show that together they make the real and ideal
world indistinguishable for any environment. We do so by first explicitly stating
the differences between the simulators efforts and perfect simulation. Then we
go on to define several hybrid experiments which help us conduct the proof of
our security theorem.3

Remark 1: It is easy to see that the simulator SMSC provides nearly perfect
simulation. The two notable exceptions are:

(1) Symmetric keys of sessions between two honest parties: The modification
of protocol πMSC for the in-the-head honest parties Pπ changes the session
keys for each session between two honest parties. While a session key K
is generated and the corresponding ciphertext C is sent via FAUTH—just
like in the real protocol—all messages of the session are encrypted with a
randomly drawn and unrelated key K1

$← {0, 1}|K |.
(2) Message content between two honest parties: Let S, R and m be

the honest partys and message in question. In this case a message
(sid , S, DEM.enc(K1, 0)) will be sent from S to R in the ideal experiment while
the protocol execution contains message (sid , S, DEM.enc(K ,m)) instead.

Hence any environment Z which distinguishes experiments EXECπMSC
D,Z and

IDEALFMSC
SMSC,Z can only do so by session keys or messages between honest parties.

Before we proceed to our security theorem and proof we need several hybrid
experiments and also prove an auxiliary lemma which lets us deal with infinite
chains of hybrids.

Definition (Hybrids H−,H�
k ,H�

k,m):

• We use a “middle” hybrid H− where all honest parties swap encapsulated
session keys K for randomly drawn K1’s, while still using ciphertexts C cor-
responding to K . I.e. parties conduct the same modified protocol as the sim-
ulator’s in-the-head honest parties Pπ which means that session keys of two

3 We assume the simulator to internally track the protocol executions to know which
mid to use.

766 L. Benz et al.

honest parties are handled exactly as in the ideal experiment. Note that in
contrast to the ideal experiment for every message m between two honest
parties in H− there is a message (sid , S, DEM.enc(K1,m)) which contains an
encryption of m and not an encryption of 0.

• Let k ∈ N0 be a natural number or zero. We define H�
k to be almost identical

to the real-world execution of πMSC with the sole difference that for the first
k sessions between two honest parties, the encapsulated key K is swapped for
a randomly drawn K1. Hence we have H�

0 = EXECπMSC
D,Z and limk→∞ H�

k =
H−.

• Let k ∈ N, m ∈ N0 again be natural numbers with m possibly zero. We define
H�

k,m to be almost identical to H− with the exception that for all messages
in the first k−1 sessions between two honest parties and the first m messages
sent in the k-th session between two honest parties, encryptions of zeros are
sent over the channel instead of encryptions containing the real messages.
Hence we have H�

1,0 = H−, individual limits limm→∞ H�
k,m = H�

k+1,0 for all
k ∈ N and overall limit limk→∞ H�

k,m = IDEALFMSC
SMSC,Z .

These hybrid definitions give us the following double-chain of hybrids con-
necting the real-world execution of πMSC and the ideal experiment with FMSC:

EXECπMSC
D,Z = H�

0 ,H�
1 , . . . → H− = H�

1,0,H
�
2,0, . . . → IDEALFMSC

SMSC,Z

where each H�
k,0 is again connected to H�

k+1,0 by a chain of hybrids {H�
k,m}m.

The following lemma will help us deal with this infinite series of infinite hybrid
series:

Lemma 3 Let {Hk}k∈N0 be series of PPT experiments where executions of
Hk−1 and Hk do not differ before their k-th activation. Let furthermore limit
H∞ := limk→∞ Hk exist and Z be a PPT environment which distinguishes exper-
iments H0 and H∞. Then there is a κ ∈ N such that a PPT environment Zκ

exists which distinguishes consecutive experiments Hκ−1 and Hκ.

Proof. Let pZ be a polynomial which bounds the runtime of the distinguishing
PPT environment Z. Since Z(λ) takes at most pZ(λ) steps for the execution of
any experiment, all experiments {Hk}k>pZ(λ) are necessarily indistinguishable
for Z, since they do not differ before their pZ(λ)-th activation. Hence Z is a
distinguisher for H0 and HpZ . We now use the fact that computational indistin-
guishability is an equivalence relation and in particular transitive. This yields
the existence of a κ < pZ and distinguisher Zκ for experiments Hκ−1 and Hκ.

�

Now we are finally ready to formally state and prove that πMSC realizes
secure channels:

Theorem 2: Under static corruption the protocol πMSC with IND-SB-CPA
secure SB-KEM and IND-CCA2DEM secure DEM realizes FMSC in the FAUTH-
hybrid model. I.e.

πFAUTH
MSC ≥UC FMSC.

SB-KEM 767

Proof. We conduct the proof in two steps, we separately show that (1)
EXECπMSC

D,Z is indistinguishable from H−, and (2) H− is indistinguishable from
IDEALFMSC

SMSC,Z . We reduce the first step to the IND-SB-CPA security of the
underlying SB-KEM scheme and the second step to the IND-CCA2DEM secu-
rity of the DEM scheme. For both parts we employ Lemma 3 to go from the
corresponding infinite hybrid chain to two consecutive hybrids.

(1) Assume that EXECπMSC
D,Z and H− are computationally distinguishable. Then

by Lemma 3 there is a κ1 ∈ N and environment Z1 which can distin-
guish consecutive hybrids H�

κ1−1 and H�
κ1

, i.e. H�
κ1−1 	∼Z1 H�

κ1
. We use

this to construct a non-negligibly successful adversary A1 = ASB-KEM in
the following way: The adversary A1 is started by CSB-KEM with input
(S, pkS , R, pkR, (Kb,C ∗)) and in turn starts Z1 in its head, playing all other
parties just like they would conduct hybrid H�

κ1−1 or H�
κ1

. If Z1 corrupts
either S or R, the adversary aborts. Since S and R were randomly drawn by
the challenger and since by Remark 1 Z1 needs a message between honest
parties to distinguish anything, A1 has a polynomial chance to not abort at
this point.
When Z1 asks honest party S or R to initialize for the first time, A1 inserts
pkS/pkR as S/R’s public key respectively for the KEM scheme. Every time
in-the-head party S or R send a cipher C encrypted under pkS/pkR by some
corrupted party P , A1 decrypts it via the IND-SB-CPASB-KEM oracle. This
is possible since S and R are honest and hence P 	∈ {S,R}. Since honest
parties only get interface inputs from Z1, A1 already knows the content of
all ciphertexts C sent from honest parties to S and R and does not need the
oracle to decrypt them.
If the κ1-th request of (establish, sid , P) by Z to establish a session
between two honest parties is not made to S with P = R, abort. This again
gives A1 a polynomial chance not to abort at this stage. Otherwise insert
the challenge cipher C ∗ into the message (send, sidAUTH, P ′, (sid ,C ∗)) from
S to R via FAUTH and have S and R use challenge key Kb as the DEM key
throughout this session. For all following sessions use the encapsulated ses-
sion keys K just as H�

κ1−1 and H�
κ1

both specify. When Z1 halts, A1 outputs
b = 0 if Z1 outputs H�

κ1−1, and b = 1 if Z1 outputs H�
κ1

. This way A1 wins
the IND-SB-CPASB-KEM game whenever it did not abort and Z1 successfully
distinguished H�

κ1−1 and H�
κ1

, i.e. with non-negligible probability. This con-
tradicts the IND-SB-CPASB-KEM security of the underlying KEM scheme
and shows that EXECπMSC

D,Z must be indistinguishable from H−.
(2) Assume that H− and IDEALFMSC

SMSC,Z are computationally distinguishable.
Then by Lemma 3 there is a κ2 ∈ N such that consecutive hybrids H�

κ2,0

and H�
κ2+1,0 are computationally distinguishable as well. Again by Lemma

3 there is a μ ∈ N and environment Z2 which can distinguish consecutive
hybrids H�

κ2,μ−1 and H�
κ2,μ, i.e. H�

κ2,μ−1 	∼Z2 H�
κ2,μ. We use this to construct

a non-negligibly successful adversary A2 = ACCA2-DEM in the following way:
After the challenger CCCA2-DEM has randomly drawn the challenge key, the
adversary A is started without input and in turn starts Z2 in its head,

768 L. Benz et al.

playing all other parties just like they would conduct hybrid H�
κ2,μ−1 or

H�
κ2,μ. When Z2 asks for the κ-th session between two honest parties—call

them S and R—to be established, A does not draw a fresh random session
key K1 but rather inserts the (unknown) challenge key instead. This is no
problem as all necessary encryptions and decryptions can be obtained via
the IND-CCA2DEM oracle.4 For the μ-th message mμ of this session—which
by Remark 1 has to be send by an honest party and hence S or R—A hands
mμ and 0 to the challenger and in return obtains ciphertext c∗ which it
uses as the channel content reported to Z2. Now continue to use encryptions
of zeros for all further messages of this session, just as H�

κ2,μ−1 and H�
κ2,μ

require. Whenever the challenge ciphertext c∗ is sent to S or R within this
session again, act as if the decryption oracle had yielded message mμ. When
Z2 halts, A2 outputs b = 0 if Z2 outputs H�

κ2,μ−1, and b = 1 if Z2 outputs
H�

κ2,μ. This way A2 wins the IND-CCA2DEM game whenever Z2 successfully
distinguished H�

κ2,μ−1 and H�
κ2,μ, i.e. with non-negligible probability. This

contradicts the IND-CCA2DEM security of the underlying DEM scheme and
shows that H− must be indistinguishable from IDEALFMSC

SMSC,Z .

With these two steps transitivity of computational indistinguishability concludes
our proof. �

Just as with many other applications of CCA2 security, the building block can
be swapped for one satisfying the strictly weaker RCCA security if the message
space is super-polynomial in size.

Theorem 3: Under static corruption the protocol πMSC with IND-SB-CPA
secure SB-KEM and IND-RCCA secure DEM with super-polynomial message
size realizes FMSC in the FAUTH-hybrid model as well.

Proofsketch. Because the proof largely follows the proof of Theorem 2, we will
only sketch the differences. Instead of sending encryptions of 0 for messages
between honest parties, the simulator draws a uniformly random value r from
the message space M at the start of the execution and uses this value throughout
the protocol. This is vital for when in proof step (2)—after the insertion of c∗

as the ciphertext of the μ-th message—other ciphertexts are sent within the
same session which the IND-RCCADEM oracle refuses to decrypt. Whenever
this happens, let A2 act as if decryption yielded message mμ. By definition of
the oracle the ciphertext may also contain r instead of mμ which would lead to
a simulation error and hence we have no guarantees on the output of Z2 in this
case. But since r was randomly drawn from a super-polynomial message space,
the probability that Z2 tries to send a ciphertext containing it is negligible
and the error does not impede our construction of a non-negligibly successful
adversary A2. �
4 Note that although A knows the content of any message that Z2 asks S or R to send,

this communication is not handled via FAUTH and hence every corrupted party may
send ciphertexts to S or R expecting them to decrypt as if they were from the other
party.

SB-KEM 769

7 Efficient LWE-based Construction

After the very theoretic definitions and transformation from Sects. 4 and 5 we
now go on to show the real-world benefit of the new IND-SB-CPASB-KEM notion.
We do so by giving an LWE based SB-KEM construction in the standard model
which is even simpler than the, as far as we know, most efficient standard
model construction previously used to construct IND-CCA2PKE security [6] and
show that it still satisfies our IND-SB-CPASB-KEM notion. Our construction is a
tweaked version of the KEM part from [6,23], where we use sender IDs instead
of a hash and remove the employed MAC entirely.

Building blocks needed for this construction are the trapdoor function and
gadget matrix G from [23] as well as the corresponding invert function, a full-
rank difference encoding function FRD from [24] translating sender IDs to suit-
able matrices, a key derivation function (KDF) KDF and gaussian distributions
D. Using these building blocks we define an SB-KEM Σ := (gen, enc, dec) as
follows:

gen(1λ):
• A $← Z

n×m
q

• R ← Dm×o

ω(
√

log(n))

• A1 := A · R
↪→ Return (sk , pk) :=

(

R, (A,A1)
)

.

enc(pk , S) = enc
(

(A,A1), S
)

:
• e ← Dn

α·q; e0 ← Dm
α·q; e1 ← Do

σ,
where σ2 =

(‖e0‖2 + m(αq)2
) · ω

(√

log(n)
)2.

• k $← {0, 1}n

• s = k · q
2� + e

• c0 = s
A+ e0
• c1 = s
(A1 + FRD(S)G) + e1

↪→ Return (K ,C) :=
(

KDF(k), (c0, c1)
)

.

dec(sk , S,C) = dec
(

R, S, (c0, c1)
)

:
• (s, e0, e1) ← invert

(

R, [A|A1 + FRD(S)G], [c

0 , c

1]
)

• Check ‖e0‖ ≤ αq
√

m and ‖e1‖ ≤ αq
√
2mo · ω

(√

log(n)
)

.5

• For i ∈ {0, . . . , n − 1}: k[i] :=

{

0, if s[i] closer to 0
1, if s[i] closer to q

2

.

• Check ‖s − k‖ ≤ αq
√

n.(See footnote 5)
↪→ Return K = KDF(k).

The correctness of the scheme directly carries over from the similar scheme
in [6] which is why we concentrate on its security properties in this work. The
security of Σ is based on the hardness of the normal form LWE (NLWE) problem.

5 If any check fails, abort with output ⊥.

770 L. Benz et al.

NLWE is an equivalent version of the standard LWE problem where the secret
vector is drawn from an error distribution as well [6]. From the straightline
reduction to LWE follows the post-quantum security of our construction.

Theorem 4: The SB-KEM Σ = (gen, enc, dec) is IND-SB-CPA secure, given
that the LWE assumption holds. In particular, let A be an IND-SB-CPASB-KEM
adversary against the SB-KEM. Then there are distinguishers ALWE for NLWE
and AKDF for KDF KDF, such that for all λ ∈ N

AdvSB-CPA
A,Σ (λ) ≤ AdvLWE

ALWE
(λ) + AdvKDF

AKDF
(λ) + ε,

where ε is negligible in λ.

Proof. We roughly follow the proof idea of [6], constructing a series of games
which slowly transform the original IND-SB-CPASB-KEM game into a one which
is obviously unwinnable. At each definition of a new game we show how the
adversary’s view changes from the last one.

Game 0: This is the IND-SB-CPASB-KEM game.
Game 1: At this point A1 = AR is swapped for

(

AR−FRD(S)G
)

in the generation
of pkR = (A,A1). Since the distributions of AR and

(

AR−FRD(S)G
)

are both
statistically close to uniform randomness over Z

n×o
q they are by transitivity

statistically close to each other. Since FRD is a full-rank difference encoding
FRD(S′)−FRD(S) is invertible if and only if S′ 	= S. I.e. with the new definition
of pkR decryption of ciphertexts is still possible for any sender ID other than
S. As oracle queries with S′ = S are not permitted for IND-SB-CPASB-KEM
anyway, this does not change the oracle at all. Hence the adversary’s view in
Game 1 is statistically close to the view in Game 0.

Game 2: This game is identical to Game 1, other than the definition of the
challenge (c∗

0 , c∗
1). Instead of using r we draw a new vector c $← Z

m
q uniformly

at random and set c∗
0 :=

(

c + (k∗ · q
2�)
A)

. For the construction of c∗
1 a

new random error e ← Dω
σ with σ2 = m(αq)2 · ω(√

log(n)
)2 is drawn and c∗

1

set to c∗
1 :=

(

(c∗
0)

R + e
)

. We reduce this change to the hardness of NLWE
by showing that from an adversary A1|2 distinguishing Game 1 and Game 2
with non-negligible success probability we can construct an adversary ALWE
with the same success probability in breaking the NLWE assumption: After
getting input (B, b) from the challenger CLWE, ALWE follows Game 1 apart
from two definitions. In R’s public key pkR = (A,A1) the first value is taken
to be A := B which also results in A1 = BR. The value c is not drawn
randomly but set to b. The rest–including oracle queries–is handled as in
Game 1 (which is the same as in Game 2). When A1|2 outputs bit b, which
indicates that A1|2 thinks it interacts with Game (b+ 1), ALWE outputs the
same b to CLWE.
For the analysis of the reduction firstly note that the distribution of the
public key A has not changed at all. In case b is of the form b = x
B + y ,
we have

SB-KEM 771

c∗
0 =

(

b + (k∗ · q

2
�)
A)

= (k∗ · q

2
� + x)
A+ y ∼ s
A+ e0 (1)

c∗
1 = (c∗

0)

R + e

(1)∼ (s
A+ e0)
R + e
(∗)∼ s
(

A1 + FRD(S)G
)

+ e1,

where the second statistic closeness (∗) is gained by adapting Theorem 3.1
of [25] and Corollary 3.10 of [26]. This means the view of A1|2 is statistically

close to Game 1 if b is an NLWE sample. If, on the other hand, b $← Z
m
q is

random, c and hence (c∗
0 , c∗

1) is obviously distributed the same as in Game 2.
Game 3: Instead of the construction via c from Game 2, c∗

0 is drawn uniformly at
random from Z

m
q . This means the challenge ciphertext C ∗ is now completely

independent of the key K0. As the value c acted as a one-time-pad on
(

(k∗ ·
 q
2�)
A)

to define c∗
0 in Game 2, the statistical view of the adversary does

not change by this modification.
Game 4: As the last step, the key K0 is drawn uniformly at random rather

than generated via the KDF as KDF(k). It is obvious that with this change,
an adversary distinguishing Game 3 and Game 4 can be used to directly
construct a KDF distinguisher with the same success probability.

In Game 4 we see that the adversary is tasked to decide which of two randomly
drawn keys K0 and K1 it was sent while the rest of its view is completely inde-
pendent of these keys. This gives the adversary an even one half chance to win
Game 4 and overall provides us with the inequality claimed in Theorem 4. �

8 Conclusion

In this paper we have introduced the new notion of a sender-binding key encapsu-
lation mechanism (SB-KEM) with corresponding IND-SB-CPA security, build-
ing on the works of Beskorovajnov et al. [4]. Although slightly stronger than
plain CPA, IND-SB-CPA security is weaker than all other previously proposed
(tag-)KEM notions, giving CPA security only for the encapsulated key and
non-malleability for the sender ID. Despite its weakness we showed that the
sender-binding property makes up for the lack of key non-malleability: It is
still possible to realize secure communication via authenticated channels from
an IND-SB-CPA secure SB-KEM. This is true both for single-message and ses-
sion communication, where the SB-KEM needs to be paired with IND-OTDEM
and IND-RCCADEM respectively. This means it is now possible to get secure
communication from weaker assumptions. We show the real world merit of this
advancement by providing a post-quantum secure SB-KEM construction based
on the standard assumption of LWE. The efficiency of our construction is directly
derived from the previous KEMs construction [6] ours is based on.

An interesting theoretic problem for future work is whether IND-SB-CPA
security is in fact the weakest possible KEM notion to allow for UC-secure com-
munication via hybrid encryption and authenticated channels.

772 L. Benz et al.

Acknowledgements. We thank the PKC 2023 anonymous reviewers for their valu-
able feedback. The work presented in this paper has been funded by the German
Federal Ministry of Education and Research (BMBF) under the project “PQC4MED”
(ID 16KIS1044) and by KASTEL Security Research Labs.

References

1. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

2. Shoup, V.: A Proposal for an ISO Standard for Public Key Encryption. Cryptology
ePrint Archive, Paper 2001/112 (2001). https://eprint.iacr.org/2001/112

3. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4_33

4. Beskorovajnov, W., Gröll, R., Müller-Quade, J., Ottenhues, A., Schwerdt, R.: A
new security notion for PKC in the standard model: weaker, simpler, and still
realizing secure channels. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) Public-
Key Cryptography - PKC 2022. Lecture Notes in Computer Science, vol. 13178, pp.
316–344. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97131-1_11

5. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33, 167–226 (2002). https://doi.org/10.1137/S0097539702403773

6. Boyen, X., Izabachène, M., Li, Q.: Secure hybrid encryption in the standard model
from hard learning problems. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021
2021. LNCS, vol. 12841, pp. 399–418. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-81293-5_21

7. Schwerdt, R., Benz, L., Beskorovajnov, W., Eilebrecht, S., Müller-Quade, J., Otten-
hues, A.: Sender-binding key encapsulation, Cryptology ePrint Archive, Paper
2023/127 (2023). https://eprint.iacr.org/2023/127. https://eprint.iacr.org/2023/
127. 2023

8. Nagao, W., Manabe, Y., Okamoto, T.: A Universally composable secure channel
based on the KEM-DEM framework. In: Kilian, J. (eds.) Theory of Cryptography.
TCC 2005. Lecture Notes in Computer Science, vol. 3378, pp. 28–38. Springer,
Heidelberg (2006). https://doi.org/10.1007/978-3-540-30576-7_23

9. Information technology – Security techniques – Encryption algorithms – Part 2:
Asymmetric ciphers. Standard, Geneva, CH: International Organization for Stan-
dardization (2006)

10. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: a new frame-
work for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer,
Heidelberg (2005). https://doi.org/10.1007/11426639_8

11. MacKenzie, P., Reiter, M.K., Yang, K.: Alternatives to non-malleability: defini-
tions, constructions, and applications. In: Naor, M. (ed.) TCC 2004. LNCS, vol.
2951, pp. 171–190. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24638-1_10

12. Herranz, J., Hofheinz, D., Kiltz, E.: Some (in)sufficient conditions for secure
hybrid encryption. Inf. Comput. 208, 1243–1257 (2010). https://doi.org/10.1016/
j.ic.2010.07.002

https://eprint.iacr.org/2001/112
https://doi.org/10.1007/978-3-540-45146-4_33
https://doi.org/10.1007/978-3-030-97131-1_11
https://doi.org/10.1137/S0097539702403773
https://doi.org/10.1007/978-3-030-81293-5_21
https://doi.org/10.1007/978-3-030-81293-5_21
https://eprint.iacr.org/2023/127
https://eprint.iacr.org/2023/127
https://eprint.iacr.org/2023/127
https://doi.org/10.1007/978-3-540-30576-7_23
https://doi.org/10.1007/11426639_8
https://doi.org/10.1007/978-3-540-24638-1_10
https://doi.org/10.1007/978-3-540-24638-1_10
https://doi.org/10.1016/j.ic.2010.07.002
https://doi.org/10.1016/j.ic.2010.07.002

SB-KEM 773

13. Katz, J., Yung, M.: Characterization of security notions for probabilistic private-
key encryption. J. Cryptol. 19, 67–95 (2006). https://doi.org/10.1007/s00145-005-
0310-8

14. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

15. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, pp. 136–145 (2001)

16. Canetti, R.: Universally composable signature, certification, and authentication.
In: Proceedings 17th IEEE Computer Security Foundations Workshop, pp. 219–
233 (2004)

17. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: International Conference on the Theory and Applications of
Cryptographic Techniques, pp. 337–351 (2002)

18. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8_26

19. Bos, J., et al.: CRYSTALS - Kyber: A CCA-secure module-lattice- based KEM.
In: 2018 IEEE European Symposium on Security and Privacy, pp. 353–367 (2018).
https://doi.org/10.1109/EuroSP.2018.00032

20. Choi, S.G., et al.: The Kurosawa-Desmedt key encapsulation is not chosen-
ciphertext secure. Inf. Process. Lett. 109(16), 897–901 (2009)

21. Kurosawa, K., Trieu Phong, L.: Kurosawa-Desmedt key encapsulation mechanism,
revisited. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS,
vol. 8469, pp. 51–68. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06734-6_4

22. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: International Conference on the Theory and Applica-
tions Of Cryptographic Techniques, pp. 453–474 (2001)

23. Micciancio, D., Peikert, C.: TRapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4_41

24. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

25. Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7_5

26. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 84–93 (2009). https://doi.org/10.1145/1568318.1568324

https://doi.org/10.1007/s00145-005-0310-8
https://doi.org/10.1007/s00145-005-0310-8
https://doi.org/10.1007/978-3-540-28628-8_26
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1007/978-3-319-06734-6_4
https://doi.org/10.1007/978-3-319-06734-6_4
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1145/1568318.1568324

Pattern Matching in Encrypted Stream
from Inner Product Encryption

Élie Bouscatié1,2(B), Guilhem Castagnos2, and Olivier Sanders1

1 Orange Labs, Applied Crypto Group, Cesson-Sévigné, France
elie.bouscatie@orange.com

2 Université de Bordeaux, INRIA, CNRS, IMB UMR 5251, 33405 Talence, France

Abstract. Functional encryption features secret keys, each associated
with a key function f , which allow to directly recover f(x) from an
encryption of x, without learning anything more about x. This property
is particularly useful when delegating data processing to a third party
as it allows the latter to perform its task while ensuring minimum data
leakage. However, this generic term conceals a great diversity in the cryp-
tographic constructions that strongly differ according to the functions f
they support.

A recent series of works has focused on the ability to search a pattern
within a data stream, which can be expressed as a function f . One of the
conclusions of these works was that this function f was not supported
by the current state-of-the-art, which incited their authors to propose
a new primitive called Stream Encryption supporting Pattern Match-
ing (SEPM). Some concrete constructions were proposed but with some
limitations such as selective security or reliance on non-standard assump-
tions.

In this paper, we revisit the relations between this primitive and
two major subclasses of functional encryption, namely Hidden Vector
Encryption (HVE) and Inner Product Encryption (IPE). We indeed first
exhibit a generic transformation from HVE to SEPM, which immedi-
ately yields new efficient SEPM constructions with better features than
existing ones. We then revisit the relations between HVE and IPE and
show that we can actually do better than the transformation proposed
by Katz, Sahai and Waters in their seminal paper on predicate encryp-
tion. This allows to fully leverage the vast state-of-the-art on IPE which
contains adaptively secure constructions proven under standard assump-
tions. This results in countless new SEPM constructions, with all the
features one can wish for. Beyond that, we believe that our work sheds a
new light on the relations between IPE schemes and HVE schemes and in
particular shows that some of the former are more suitable to construct
the latter.

Keywords: Pattern Matching · Functional Encryption · Hidden
Vector Encryption · Inner Product Encryption

c© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 774–801, 2023.
https://doi.org/10.1007/978-3-031-31368-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31368-4_27&domain=pdf
https://doi.org/10.1007/978-3-031-31368-4_27

Pattern Matching in Encrypted Stream from Inner Product Encryption 775

1 Introduction

Outsourcing IT services has become very common worldwide1 for multiple rea-
sons ranging from costs reduction to improved services. Whatever the actual
reason is, the concrete consequence for the company that delegates such services
is that a third party ends up with its data in clear because of the well-known
limitations of standard encryption.

Ideally, this third party should only learn the minimal information neces-
sary for performing the requested processing, which has motivated the design of
countless encryption schemes compatible with specific processing. Such schemes
belong to the realm of functional encryption [6], where the third party recovers
a function f(x) from an encryption of x without learning anything else about
x, with minimal interaction. Of course, the function f , and hence the encryp-
tion scheme, strongly depends on the considered application, which explains the
profusion of papers related to this topic.

1.1 Related Works

As functional encryption schemes supporting a large set of functions (e.g. [2,15])
tend to be quite complex, a variety of schemes have been tailored to a specific
function and therefore to the requirements of specific use-cases. In this paper,
we will focus on the ability to detect specific patterns within an encrypted string
(also called pattern matching), which is very useful for many scenarios such as
Intrusion Detection Systems (IDS) or search on genomic data.

At first glance, this problem seems to be directly related to the area of search-
able encryption (e.g. [4,12]) where one can decide if a ciphertext C encrypts some
data x provided that it has received a trapdoor Tx specific to x. Unfortunately,
as noted in [13], this does not solve the problem of pattern matching because
there is a huge difference between deciding whether C encrypts x or whether C
encrypts a string y that contains x as a substring. One could try to follow the
tokenization approach of [24], which consists in splitting the encrypted string into
many overlapping substrings that will be individually encrypted using search-
able encryption. However, this only works if all searched patterns are strings of
a unique same length, which is not true in practice2. Adaptations of this app-
roach are possible but lead to other problems, as also discussed in [13]. We also
note that techniques tailored to use-cases related to external storage (e.g. [9,17])
do not work in our context as, in the latter, the entity performing the test is
the data owner which allows to reveal more information. In our case, the test
is performed by a third entity which should only learn the result of the pattern
matching.

Similarly, previous papers on pattern matching (e.g. [13,24], [3,8]) dismissed
so-called predicate encryption [16], a sub-class of functional encryption where f
is essentially a boolean function, as they noticed, here again, that this primitive

1 https://sumatosoft.com/blog/it-outsourcing-2019-overview-trends.
2 See e.g. the length distribution of Snort rules https://snort.org/downloads#rules.

https://sumatosoft.com/blog/it-outsourcing-2019-overview-trends
https://snort.org/downloads# rules

776 É. Bouscatié et al.

does not exactly answer our problem. More specifically, they considered two
related primitives, namely Inner Product Encryption (IPE) [16] and Hidden
Vector Encryption (HVE) [7] that seem to provide the kind of features one needs
for pattern matching. The former allows to test if the inner product of some
vector associated with the ciphertext and some other vector associated with the
secret key is zero whereas the latter allows to test if a ciphertext is associated
with a vector of attributes, potentially with wildcards. However, they noted that
using such schemes for pattern matching on data streams require to provide, for
each searched pattern, a secret key linear in the size of the stream, which quickly
becomes cumbersome. This is truly unfortunate as this area of cryptography has
been extensively studied, with very impressive results. For example, if we focus
on the specific case of Inner Product Encryption (e.g. [10,16,20–23]), one can
find schemes with remarkable features such as adaptive security, proofs under
standard assumptions, etc.

This state of affairs led very recent papers [3,8,13] to define a new primi-
tive called Stream Encryption supporting Pattern Matching (SEPM), directly
tailored to the pattern matching use-case. Conceptually, this primitive is close
to predicate encryption but aims at providing constant size secret keys that
yet allow to search the patterns anywhere in the stream. As this feature seemed
incompatible with IPE or HVE, the authors of these papers started from scratch
with constructions only achieving selective security and, for most of them, under
very strong interactive assumptions.

1.2 Our Contributions

In this paper we completely revisit SEPM by identifying generic and efficient
transformations linking IPE and SEPM through HVE. The direct consequence
of our work is that it allows to leverage all the state-of-the art related to IPE and
HVE to directly build SEPM with new features. More specifically, we proceed
in two main steps, as follows.

Our natural starting point is HVE for two reasons. Firstly, by identifying
the characters of our data streams with the attributes of HVE, one gets the
ability to search patterns while ensuring data privacy. Secondly, HVE supports
wildcards, that is, a special character � that matches all characters. This allows
to detect more advanced patterns such as ab �� cd, meaning ab followed by
cd with an offset of 2. This kind of patterns is necessary in many applications
such as IDS, as illustrated by the Snort data rules mentioned above. Moreover,
when it comes to data stream, this allows to test the presence of some pattern
abc at any position within the stream by providing secret keys for the patterns
abc � � . . ., � abc � . . ., etc. Obviously, the natural downside of this approach is
that one must issue secret keys for any possible position of the pattern, which
quickly becomes cumbersome. This is actually the reason why [13] dismissed
HVE as a potential solution. The latter paper managed to have constant-size
secret keys allowing to search a pattern everywhere in the data stream but at
the cost of a very large public key.

Pattern Matching in Encrypted Stream from Inner Product Encryption 777

In a follow-up work, [3] addressed the problem of the large public key through
a technique called fragmentation which consists in splitting the stream into over-
lapping and redundant substrings. The same technique was used in [8] to con-
struct a scheme with better complexity and security.

In this work we show that this fragmentation technique is actually much more
powerful than initially thought because, intuitively, it allows to reduce the prob-
lem of finding a pattern anywhere in a stream to the one of searching this pattern
within fixed-length substrings, called fragments, which limits the consequences
of the problem mentioned above. This allows us to propose a generic transfor-
mation from HVE to SEPM which automatically improves the state-of-the-art
of SEPM.

Once this is done, we try to further improve our result by trying to connect
SEPM to IPE, which has been much more studied than HVE.

Here, we do not start from scratch as Katz, Sahai and Waters [16] already
showed a relation between IPE and HVE. More specifically, they noted that if
one encrypts a vector (xr,−r) ∈ F2n

p with an IPE scheme, where xr denotes
the element-wise product of the vector x and some random vector r, then one
can test if x = k (and thus get an HVE scheme) given an IPE secret key for
(1, . . . , 1,k) ∈ F2n

p . Indeed, one can note that the scalar product between these
two vectors is 0. Obviously, the opposite must be true and this is the purpose
of the vector r. Without this randomness r in the ciphertext, one could indeed
easily construct another secret key that would cancel x without being equal to x.
This, combined with the way it handles wildcards, described in the body of this
paper, explains why this transformation doubles the size of the original vectors.
We stress the importance of r being hidden in the ciphertext by the security
of the IPE scheme. Surprisingly, this fact is not mentioned by [16] to prove the
security of their transformation. Actually, the arguments they provide still apply
to our next transformation but we show a counterexample in this case, i.e. an
secure IPE scheme whose conversion is not secure. As a warm-up, we provide a
complete proof of security for their transformation, which allows to identify the
subtleties that arise in the process.

As the KSW transformation entails a doubling of the ciphertext size, we
propose in this paper a new conversion with a ratio very close to 1. Our core
idea, which allows us to handle wildcards with fewer coordinates, is to move
the randomness r to the secret key in the following way. We set our ciphertext
as (x,−1) ∈ Fn+1

p whereas the secret key is (r, 〈k, r〉). Here again, we get an
HVE scheme that allows to test whether k = x, but with a better efficiency.
However, proving security of the resulting transformation is much more complex.
Intuitively, the problem stems from the fact that security inherently depends
on the secrecy of r. When r is embedded in the ciphertext, as in the KSW
transformation, one can rely on the security of the encryption scheme itself. In
our case, this is no longer possible as there is no equivalent property for the
secret key itself. Theoretically, one could learn r from the secret key and thus
break security of the conversion. We study this problem more thoroughly and
show that it actually depends on the exact model we consider.

778 É. Bouscatié et al.

In the case of selective security, we show that an adversary is unable to
exploit this problem and so that our conversion IPE to HVE remains secure for
all schemes.

In the adaptive case, we cannot prove such a result in general, and actually
show a counterexample with an IPE scheme from the literature. Fortunately, we
show that we can circumvent this problem if the underlying IPE scheme satisfies
a new property that we formalize. This property concerns the secret keys of the
IPE schemes and we show that many such constructions naturally achieve it
under the discrete logarithm assumption. With this additional property, we are
at last able to prove adaptive security of the HVE schemes resulting from this
conversion. This allows to leverage the whole state-of-the-art of IPE schemes
with a better efficiency than with the KSW conversion. Besides that, this shows
that some IPE schemes are more suitable to design HVE schemes, which clarifies
the relation between these two primitives.

In a last section, we draw the consequences of our generic conversions.
Whereas all known SEPM proposals only achieved selective security under strong
assumptions, we show that it is possible to achieve adaptive security under DLIN
by loosing only a constant factor on efficiency.

2 Definitions

In this section, we first give useful notations for the context of pattern matching
and then review notions of functional encryption still in this context. In partic-
ular, we consider Hidden Vector Encryption and Inner Product Encryption, two
primitives that we will use to construct Stream Encryption supporting Pattern
Matching. As we shall see, we will consider predicate only versions of these two
primitives, viewing attributes as messages.

Notations and Vocabulary. We denote by N the set of positive integers and
for any n ∈ N, we note �n� := {1, . . . , n}. For any set A, we write x

$←− A to say
that x is chosen uniformly at random in A, we note A∗ :=

⋃
i≥1 Ai where Ai is

the usual Cartesian product A × · · · × A and for an element a ∈ A∗, we note
len(a) the non negative integer such that a ∈ Alen(a) and call the length of a.
Let � be the wildcard symbol and Σ a finite alphabet that does not contain �.
An element x ∈ Σ∗ is called a string, an element k ∈ (Σ ∪ {�})∗ a pattern and
the set supp(k) := {1 ≤ i ≤ len(k) : ki �= �} is called the support of k.
We say that the pattern k matches the string x if len(k) = len(x), and

∀i ∈ supp(k), ki = xi.

More generally, if len(k) ≤ len(x), then for any 1 ≤ i ≤ len(x) − len(k) + 1, we
say that the pattern k matches the string x at position i if

∀j ∈ supp(k), kj = xi+j−1.

Other notations are deferred to the beginning of Sect. 4 where the choice of Σ
becomes more specific.

Pattern Matching in Encrypted Stream from Inner Product Encryption 779

2.1 Functional Encryption

Syntax. We recall the general definition of functional encryption as introduced
in [6]. A functionality F defined over (K,X) is a function F : K × X −→ {0, 1}∗

described as a (deterministic) Turing Machine. The set K is called the key space
and the set X is called the plaintext space.

A functional encryption scheme for the functionality F enables one to eval-
uate F (k,x) given the encryption of x and a secret key skk for k. The algo-
rithm for evaluation F (k,x) using skk is called decrypt. More precisely, a
functional encryption scheme is defined as a tuple of four PPT algorithms
(setup, keygen, enc, dec) as follows:

– (pp, pk,mk) ←− setup(1λ), generates public parameters that are implicit
inputs of the other algorithms, a public key and a master secret key;

– skk ←− keygen(mk,k), generates a secret key for k;
– c ←− enc(pk,x), encrypts the message x ;
– y ←− dec(skk,k, c), uses sk to compute y ∈ {0, 1}∗ from c.

Correctness. As we are essentially interested in pattern matching applications,
the definition of correctness that we give will be associated with the notion of
false positive (a pattern is mistakenly detected). However, for all the schemes
that we consider there is no false negative, patterns that are present, will always
be detected. Moreover, although we could provide a generic definition of correct-
ness, we choose to distinguish two relevant cases in our context, the one where
the output of F is 0 or 1 and the one where this output can be parsed as some
finite subset of N. It will lead to more intuitive definitions. These definitions are
similar to those in [1] but we consider a slightly weaker notion of false positive.
A functional encryption scheme with functionality F such that F (k,x) ∈ {0, 1}
is correct if for all k ∈ K,x ∈ X,

– F (k,x) = 1 =⇒ dec(keygen(mk,k),k, enc(pk,x)) = 1.
– F (k,x) = 0 and dec(keygen(mk,k),k, enc(pk,x)) = 1 (i.e. a false positive)

occurs with negligible probability μ(λ) over the coins of all the algorithms.

A functional encryption scheme with functionality F such that F (k,x) is a finite
subset of N is correct if for all k ∈ K,x ∈ X, i ∈ N,

– i ∈ F (k,x) =⇒ i ∈ dec(keygen(mk,k),k, enc(pk,x)).
– i /∈ F (k,x) and i ∈ dec(keygen(mk,k),k, enc(pk,x)) (i.e. a false positive)

occurs with negligible probability μ(λ) over the coins of all the algorithms.

780 É. Bouscatié et al.

Security. We here recall the classical IND−CPA security for functional encryp-
tion schemes.

Definition 1 (IND−CPA for functional encryption). A Functional Encryp-
tion scheme is IND − CPA secure if no probabilistic polynomial time adversary
A has a non-negligible advantage in the following game, ExpIND−CPA

A :

Setup: run (pp, pk,mk) ← setup(1λ) and give pp, pk to A.
Query Phase 1: A submits queries k ∈ K and gets skk ← keygen(mk,k)
Challenge: A submits two messages m(0),m(1) ∈ X such that every queried
pattern k follows the natural restriction:

F (k,m(0)) = F (k,m(1)). (1)

The challenger chooses β
$←− {0, 1} and gives c ← enc(pk,m(β)) to A.

Query Phase 2: A can issue key queries as before but subject to restric-
tion (1).
Guess: A eventually outputs a bit β′ in {0, 1}.

The advantage of A is defined as
∣
∣
∣
∣Pr[β = β′] − 1

2

∣
∣
∣
∣.

This definition is sometimes called adaptive IND − CPA security. In a weaker
model, selective security, the adversary A has to choose m(0),m(1) at the begin-
ning of the game, before seeing the public key and public parameters and before
Query Phase 1.

2.2 Some Classes of Functional Encryption

Hidden Vector Encryption. This primitive, HVE for short, was introduced
in [7]. The original definition follows the paradigm of predicate encryption. A
secret key encapsulates a key pattern (a string with possible wildcards) while
a ciphertext encrypts both an attribute string and a payload message. A first
security notion, called payload hiding, ensures that a ciphertext hides all infor-
mation about the payload message unless one has a secret key for a key pattern
that matches the attribute string, in this case, he recovers the payload message.
An additional security notion, called attribute hiding (cf. [16]), ensures that a
ciphertext hides all information about the attribute string and decryption does
not reveal any information about the attribute string other than the fact that it
matches the key pattern or not.

It was noted in [13] that an attribute hiding HVE can be used for pattern
matching on the attribute without revealing extra information about it but with
the strong limitations recalled in our introduction. While other applications may
not consider attribute hiding or weaker versions of it, this notion is crucial to
achieve this purpose.

In many works on HVE (e.g. [11,16]) a first building block is presented,
called a predicate-only HVE. This focuses on the attribute, not considering the

Pattern Matching in Encrypted Stream from Inner Product Encryption 781

payload message. The reason behind this is that attribute hiding is the hardest
part to achieve (especially when adaptive security is targeted as in [19]) and
the full-fledged HVE is then obtained using a key encapsulation mechanism. In
the following, we will abuse the terminology of [16], as in [11], and simply refer
to predicate-only HVE as HVE. Thus what we called an attribute will be seen
as the message and the attribute hiding security notion will coincide with the
classical IND − CPA security notion for functional encryption.

This gives the following definition.

Definition 2 ((Predicate-Only) Hidden Vector Encryption). An n-HVE
scheme for some integer n is formally described as a functional encryption
scheme where:

1. The key space K is (Σ ∪ {�})n.
2. The plaintext space X is Σn.
3. The functionality is FHVE : K × X −→ {0, 1}

(k,x) �−→ FHVE(k,x) =

{
1 if k matches x,

0 otherwise.

Inner Product Encryption. We will also consider Inner Product Encryp-
tion (IPE), a primitive introduced by [16] who additionally noted a relation to
HVE (we will review and improve this result in Sects. 4 and 5). Here keys and
attributes are vectors and one tests whether their inner product is zero, instead
of testing matching. Again we consider a predicate-only version of this primitive
which is sufficient for our purposes. We adapt the definition from [6] that uses
the vector space Fn

p to define an IPE.

Definition 3 ((Predicate-Only) Inner product Encryption). An n-IPE
scheme for some integer n is formally described as a functional encryption
scheme where:

1. The setup algorithm defines a randomly chosen prime p of length λ, where λ
is the security parameter.

2. The key space K and plaintext space X are Fn
p .

3. The functionality is FIPE : K × X −→ {0, 1}
(u,v) �−→ FIPE(u,v) =

{
1 if 〈u,v〉 = 0,

0 otherwise.

Stream Encryption Supporting Pattern Matching. This primitive has
been recently considered in [3,8]. It can be formalized as a functional encryption
scheme as follows. A plaintext x is a stream, an element of Σ∗. Given a pattern
k of length upper bounded by n, the functionality returns all the integers i such
that k matches x at position i.

782 É. Bouscatié et al.

Definition 4 (Stream Encryption supporting Pattern Matching). An n-
SEPM scheme for some integer n is formally described as a functional encryption
scheme where:

1. The key space K is
⋃n

i=1(Σ ∪ {�})i completed by the empty key ε.
2. The plaintext space X is Σ∗.
3. The functionality is defined as

FSEPM : (K \ {ε}) × X −→ {S ⊂ N : S is finite}
(k,x) �−→ FSEPM(k,x) = {i : k matches x at position i}.

And we let FSEPM(ε,x) = len(x) to leak the length of the message intentionally.

3 From HVE to SEPM Through Fragmentation

There are several ways of designing a public key encryption scheme supporting
pattern matching but, as explained in [13], they usually lead to systems suffering
from very concrete limitations, such as the restriction of the set of possible
patterns to strings of a unique same length, secret keys (called trapdoors in [13])
whose size is linear in the maximum size of the encryption stream, etc. The
authors of [13] proposed an alternative primitive that theoretically addresses
these issues but with rather poor performance. Two follow-up works [3] and [8]
improved this by introducing SEPM schemes. They both extensively rely on a
technique called fragmentation that enables to circumvent the need for shiftable
trapdoors identified in [13] by splitting the stream into fragments with some
redundancy.

We first recall this technique and then show, as a first contribution, that
fragmentation creates a strong relation between SEPM and HVE: we expose a
generic conversion from a 2d-HVE scheme to a n-SEPM with n = d + 1 and its
security.

3.1 Fragmentation

Let n be an upper bound on the length of the patterns supported by the SEPM
scheme. To enable pattern matching for string x of any length, the fragmentation
technique splits the latter into overlapping substrings xi of size 2d, where d :=
n − 1, as follows

xi = (x(i−1)d+1, . . . , x(i+1)d) for i = 1, . . . ,

⌈
len(x)

d

⌉

.

This leads to this decomposition of x :

x =
x1︷ ︸︸ ︷

x1, . . . , xd,
︸ ︷︷ ︸

x2

xd+1, . . . , x2d,

x3︷ ︸︸ ︷
x2d+1, . . . , x3d,

︸ ︷︷ ︸
x4

x3d+1, . . . , x4d, x4d+1, . . . , x5d, . . .

Pattern Matching in Encrypted Stream from Inner Product Encryption 783

Our first contribution in this paper is to revisit this notion of fragmentation
to show that it actually creates a strong relation between SEPM and HVE.
More specifically, we show that once a string has been fragmented in this way,
one can divert the use of any 2d-HVE scheme to build an SEPM scheme. This
observation allows to leverage the work that has already been done on Hidden
Vector Encryption and even on Inner Product Encryption as we will explain in
Sect. 4. In particular, it avoids the need to build a new system from scratch, as
was done in [3] and [8]. Actually, one can show that the constructions of these
works implicitly define a 2d-HVE scheme.

Remark 1. Note that if d does not divide len(x), the last fragment is not com-
pletely defined. A generic solution is to complete it with padding but this could
create a problem if the streaming resumes. However, in the latter case, one can
simply retransmit this last fragment, completed with the new data. Alterna-
tively, several HVE schemes, such as the ones implicitly used in [8], allow to
produce the encryption of an incomplete message that may later be completed
consistently. Our point here is that incomplete fragments can easily be handled
and so that we can, from now on, assume that d divides len(x).

3.2 Conversion

We first remark that fragmentation reduces the problem of encrypting a string
of arbitrary length into the one of encrypting several substrings of fixed length.
We can therefore run the encryption algorithm of any fixed-length primitive such
as a 2d-HVE scheme. However, this is true for any splitting of x. The specificity
of fragmentation is that it avoids the problem of patterns straddling fragments
by ensuring that any searchable pattern will always be entirely contained in at
least one fragment. Thanks to this feature, and by appropriately generating the
secret keys of the underlying HVE system, one can ensure that any pattern will
be detected.

We depict in Fig. 1 our generic conversion from a 2d-HVE scheme to a n-
SEPM with n = d + 1.

Correctness of the SEPM scheme of Fig. 1. Suppose that a pattern k matches
x at some position �, meaning that � ∈ FSEPM(k,x) where FSEPM is defined
in Definition 4. Let i = � �

d�. By construction, k is fully contained inside xi =
(x(i−1)d+1, . . . , x(i+1)d). We indeed have both:

1. (i − 1)d + 1 ≤ �
2. � + len(k) − 1 ≤ � + n − 1 = � + d ≤ (i + 1)d

where the last inequality stands as � ≤ i · d, by definition of i. Therefore, within
the fragment xi, k starts at some position 1 ≤ j ≤ d and will be detected by
skj with probability 1 by correctness of EHVE. We thus have that � ∈ S with
probability 1 where S is the output of decSEPM(sk, c).

Conversely suppose that � �∈ FSEPM(k,x), but � ∈ S. This means that
decHVE(skj , ci) has returned 1. By correctness of EHVE, this can occur only

784 É. Bouscatié et al.

with negligible probability as the pattern is not present in the fragment xi. Con-
sequently, the probability of false positives of ESEPM is the same as the one of
EHVE. ��

– Let n ∈ N, n ≥ 2, d = n − 1.
– Let EHVE := (setupHVE, keygenHVE, encHVE, decHVE) be a 2d-HVE scheme.
– setupSEPM is setupHVE.
– keygenSEPM(mk,k) takes as input a pattern k with len(k) ≤ n and computes

skj ←− keygenHVE(mk,kj)

for all j ∈ �d�, where kj is the 2d long pattern (

j−1
︷ ︸︸ ︷

�, . . . , �,k, �, . . . , �). It then
returns sk := (sk1, . . . , skd).

– encSEPM(pk,x) takes a string x of length f · d for some f ∈ N (see Remark 1)
and computes

ci ← encHVE(pk, (x(i−1)d+1, . . . , x(i+1)d))

for all i ∈ �f�, to return c := (c1, . . . , cf).
– decSEPM(sk, c) parses sk as (sk1, . . . , skd) and c as (c1, . . . , cf) for some f ∈ N.

Then it sets S = ∅ and, for every i ∈ �f� and j ∈ �d�, it tests whether
1 = decHVE(skj , ci), in which case it updates S ← S ∪ {(i − 1)d + j}. Finally,
it outputs S.

Fig. 1. Generic construction of an n-SEPM scheme ESEPM from a 2d-HVE scheme

Remark 2. Our conversion described in Fig. 1 leads to secret keys sk whose size
is independent of the length of x. Technically, our conversion would also work
for symmetric HVE schemes but in such a case we would have to change the
encryption key, and therefore the secret keys, for each fragment, which would be
rather cumbersome.

3.3 Security

Theorem 1. The conversion in Fig. 1 transforms an IND−CPA secure 2(n−1)-
HVE scheme EHVE into an IND − CPA secure n-SEPM ESEPM scheme.

Proof. For the sake of clarity, we slightly adapt ExpIND−CPA
A (ESEPM) for SEPM

by defining ExpIND−CPA−0
A (ESEPM) (resp. ExpIND−CPA−1

A (ESEPM)) as the original
experiment where the challenger always choose β = 0 (resp. β = 1). We must
then show that

∣
∣Pr[ExpIND−CPA−0

A → 0] − Pr[ExpIND−CPA−1
A → 0]

∣
∣ is negligible.

In other words, the behavior of A must be the same in both games.

Pattern Matching in Encrypted Stream from Inner Product Encryption 785

Let x0 and x1 be the challenge messages submitted by the adversary A
and x0

1, . . . ,x
0
f and x1

1, . . . ,x
1
f their respective fragments. In this proof we will

proceed through a sequence of games where we will progressively replace x0
i by

x1
i in the challenge ciphertext. Any discrepancy in the behavior of A would then

imply that it has been able to distinguish two HVE ciphertexts, and so an attack
against the IND − CPA security of the HVE scheme.

More formally, we define the following sequence of games:

– game0 is ExpIND−CPA−0
A (ESEPM),

– for i = 1, . . . , f , gamei is the same game as gamei−1 except that,

c =
(
encHVE(pk,x1

1), . . . , encHVE(pk,x1
i),

encHVE(pk,x0
i+1), . . . , encHVE(pk,x0

f)
)
,

so gamef is exactly ExpIND−CPA−1
A (ESEPM).

For i = 0, . . . , f , let Zi be the event that the adversary outputs 0 in gamei.
We thus have,

∣
∣Pr[ExpIND−CPA−0

A (ESEPM) → 0] − Pr[ExpIND−CPA−1
A (ESEPM) → 0]

∣
∣

≤
f∑

i=1

∣
∣Pr[Zi] − Pr[Zi−1]

∣
∣.

Let us assume that there exists i∗ ∈ �f� such that
∣
∣Pr[Zi∗] − Pr[Zi∗−1]

∣
∣ is

not negligible. We describe an adversary B that uses A against the IND − CPA
security of EHVE. Let C(EHVE) be the challenger of ExpIND−CPA(EHVE).

Setup. B runs C(EHVE) to get the public parameters and keys of the system and
forwards them to A.

Query Phase 1. When A makes a query for a pattern k, B proceeds as in Fig. 1
and then queries d times C(EHVE) to build the associated secret key sk.

Challenge. The algorithm B uses the public key to set the ciphertext elements

ci ← encHVE(pk,x1
i) for i = 1, . . . , i∗ − 1,

and ci ← encHVE(pk,x0
i) for i = i∗ + 1, . . . , f.

It then submits x0
i∗ and x1

i∗ to C(EHVE) as challenge messages which returns a
ciphertext element used by B as ci∗ . The algorithm B can then send (c1, . . . , cf)
to A as the challenge ciphertext.

Query phase 2. The algorithm B proceeds as in the first phase.

786 É. Bouscatié et al.

Guess. B finally forwards the bit β′ issued by the adversary to C(EHVE).

First note that the restrictions placed on pattern queries in the SEPM experi-
ment implies that all key queries to C(EHVE) are valid. In other words, if a pattern
k matched x0

i∗ but not x1
i∗ in the HVE game, then the same would be true for

x0 and x1 in the SEPM game, which is not possible.
Finally, the challenge ciphertext returned by C(EHVE) is either an encryption

of x0
i∗ or x1

i∗ . In the first case, we are playing gamei∗−1. In the second case, this is
exactly gamei∗ . Any adversary such that

∣
∣Pr[Zi∗] − Pr[Zi∗−1]

∣
∣ is non-negligible

can then be used against the IND − CPA experiment of HVE. ��
Remark 3. This proof readily adapts to the case of selective security.

4 Hidden Vector Encryption from Inner Product
Encryption

In the previous section, we have shown that any HVE scheme could be used
to construct an SEPM scheme. However, we note that there is not many HVE
schemes in the literature, in particular when one wants specific properties such
as adaptive security. This stands in sharp contrast with a related primitive,
Inner Product Encryption, for which countless constructions exist. Actually, the
relatively low number of publications on HVE can perhaps be explained by
a subsection of [16] where the authors explain how one can generically build
a n-HVE scheme from a 2n-IPE scheme (referred as KSW conversion in the
following). To our knowledge, this result has not been formally proven and [16]
seems to only consider selective security. In this section, we first show, as a
warm-up that this conversion is secure, even in the adaptive case, although the
proof is not that straightforward. In particular, we will see that subtleties appear
in the proof, concerning the conversions of valid key queries made by an HVE
adversary to valid key queries for an IPE adversary.

As this conversion doubles ciphertext size, we then revisit the links between
these two primitives to show that one can achieve a much better ratio (almost 1)
through a new conversion that we introduce. We then show that one can prove
that this construction is secure in the selective case, using similar information
theoretic arguments than in the proof of the KSW conversion. We defer the case
of adaptive security to Sect. 5.

Notations. In the following conversions, we suppose Σ = F×
p and � = 0 which

implies Σ ∪ {�} = Fp. For two vectors of same length u = (u1, . . . , un) and
v = (v1, . . . , vn), we denote by uv the vector of same length obtained by element-
wise product

uv := (u1v1, . . . , unvn)

For a vector k ∈ Fn
p , we denote by 1k the vector (s1, . . . , sn) where for all i ∈ �n�,

si = 1 if i ∈ supp(k) and si = 0 if i /∈ supp(k).

Pattern Matching in Encrypted Stream from Inner Product Encryption 787

4.1 KSW Conversion

In [16, Subsection 5.2], Katz, Sahai and Waters give the following conversion
from a 2n-IPE scheme to an n-HVE scheme. We define the applications

f : Σn × Fn
p −→ F2n

p

(x , r) �−→ (xr , −r)

g : Fn
p −→ F2n

p

k �−→ (1k , k)

where we have put the coordinates in a different order than [16], simplifying
our notations without fundamentally changing the original conversion. The con-
struction of Katz, Sahai and Waters is depicted in Fig. 2.

– Let EIPE := (setupIPE, keygenIPE, encIPE, decIPE) be a (2n)-IPE scheme.
– setupHVE(1λ, n) is setupIPE(1λ, 2n).
– keygenHVE(mk,k) returns skk ← keygenIPE(mk, g(k)).

– encHVE(pk,x) chooses r
$←− Fn

p and returns c ← encIPE(pk, f(x, r)).
– decHVE(skk, c) is decIPE(skk, c).

Fig. 2. KSW construction of an n-HVE scheme EHVE from a 2n-IPE scheme

Correctness. Let us remark that 〈f(x, r), g(k)〉 = 〈(xr,−r), (1k,k)〉 = 〈xr,1k〉−
〈r,k〉 = 〈1kx, r〉 − 〈k, r〉 = 〈1kx − k, r〉. Moreover, if a pattern k matches x,
then with the notations that we have just introduced, we have 1kx − k = 0.

As a result, if k matches x, this inner product is 0 for all choices of r. By
correctness of EIPE, with probability 1 decryption of a ciphertext for x with skk
will return 1.

Conversely, if k does not match x, then 1kx − k �= 0. The probability for
a random vector r in Fn

p of being orthogonal to a non-zero vector is 1/p. So
decryption will return 1 with negligible probability 1/p + (1 − 1/p) · μ(λ) where
μ(λ) is the probability of false positive for EIPE. This proves the correctness of
the conversion. ��

As we explain above, the authors of [16] do not prove the security of this
conversion but only provide a very informal argument to support this claim
from correctness and seem to consider only selective security. Below, we show
that this conversion indeed results in an adaptively (resp. selectively) secure
HVE scheme if the IPE scheme is adaptively (resp. selectively) secure but also
that this result is not that straightforward. Intuitively, the problem stems from
the fact that there is some discrepancy between the restriction on key queries
in an HVE experiment and the one in the IPE experiment. More concretely,
an adversary in the HVE experiment may submit a key query for a vector k

788 É. Bouscatié et al.

that does not match any of the challenge messages of the HVE experiment
(this is thus a valid query) but that yet results, through this conversion, in an
illicit query for the IPE experiment. The status of a query (illicit or not) will
depend on the randomness r that is included in the challenge ciphertext. Before
the challenge ciphertext is revealed, this randomness is still unknown and, as
suggested in [16], one can use the same argument that we saw when we proved
correctness, for stating that false positives are unlikely. However, this argument
does not hold in phase 2. Once the challenge ciphertext has been revealed, the
randomness is no longer perfectly hidden. Fortunately, we can rely on another
information theoretic argument as we explain in the proof.

4.2 Security Analysis of KSW Conversion

We prove in this section the following theorem.

Theorem 2. The KSW conversion transforms a selective (resp. adaptive) IND−
CPA secure 2n-IPE scheme EIPE into a selective (resp. adaptive) IND − CPA
secure n-HVE EHVE scheme.

Proof. Consider an adversary A against the IND − CPA security of EHVE. Let
C(EIPE) be the challenger of the IND − CPA experiment for EIPE. We build an
adversary B against the IND − CPA security of EIPE, using A. An overview of
the adversary B is given in Fig. 3.

C(EIPE) B A
pp,pk−−→ Setup

g(k)←−−−−−−−−−−−−−− k←−−−−−−−−−−−−−− Query
skg(k)−−→ Phase 1

f(x0,r0),f(x1,r1)←−−−−−−−−−−−−−− r0, r1
$←− Fn

p
x0,x1

←−−−−−−−−−−−−−−
Challenge

β
$←− 0, 1

c−−→
g(k)←−−−−−−−−−−−−−− Test

k←−−−−−−−−−−−−−− Query
skg(k)−−→ Phase 2

β′
←−− Guess

α

Test checks if conditions (2) and (3) are met in which case it returns the value α of
condition (3) and stops the simulation.

Fig. 3. Overview of the adversary B in the proof of Theorem 2.

Pattern Matching in Encrypted Stream from Inner Product Encryption 789

Setup. The adversary B simply forwards the public parameters and public key
from C(EIPE) to the adversary A.

Query Phase 1. As there is no restriction on the possible queries in this phase
in either security game, B simply answers a query k of A by submitting g(k) as
a query to C(EIPE) and forwards the secret key to A.

Challenge. In this phase, A submits two messages x0 and x1. We only have to
handle the case where this pair satisfies the restriction of the HVE game. In this
case, B chooses r0, r1 ∈ Fn

p , submits the messages f(x0, r0) and f(x1, r1) and
forwards the resulting challenge ciphertext to A.

However a problem can occur if f(x0, r0) and f(x1, r1) do not satisfy the
restriction of the IPE game. Let k be a pattern queried by A. From the restriction
of the HVE game, there are two cases.

First, k matches both x0 and x1. In this case, as we have seen for correctness,
∀α ∈ {0, 1}, 〈f(xα, rα), g(k)〉 = 0, for all choices of randomness. As a result the
messages f(x0, r0) and f(x1, r1) always satisfy the restriction of the IPE game.

The second case is a little more complex. The problematic conditions are

∀α ∈ {0, 1},k does not match xα, and,

∃α ∈ {0, 1}, 〈f(xα, rα), g(k)〉 = 0 and 〈f(x1−α, r1−α), g(k)〉 �= 0.

As seen before, this can be rewritten as follows:

∀α ∈ {0, 1},1kxα − k �= 0 (2)

∃α ∈ {0, 1}, 〈1kxα − k, rα〉 = 0 and 〈1kx1−α − k, r1−α〉 �= 0 (3)

At this stage, we can still rely on the correctness argument as in [16] because r0

and r1 were still unknown at the time of the queries. As a result, if equation (2)
holds, equation (3) holds with negligible probability 2·(1

p ·(1− 1
p

))
= 2

p − 2
p2 < 2

p .

Query Phase 2. Unlike in phase 1, we can no longer argue that r0 and r1

are unknown to the adversary and this is where we cannot rely only on the
arguments developed for correctness as suggested in [16]. Concretely, the HVE
adversary A could get information on one of these random values from the
challenge ciphertext and so submit a query k satisfying conditions (2) and (3).
It might perhaps be possible to exclude such cases by assuming some appropriate
computational assumption but this could only be done on a case-by-case basis
and so would be irrelevant for this generic conversion.

Fortunately we can proceed differently: if the adversary A submits a query k
that does not match either challenge message but such that 〈1kxα − k, rα〉 = 0
for some α ∈ {0, 1}, and 〈1kx1−α−k, r1−α〉 �= 0, then B returns α to C(EIPE) and
stops. The intuition here is that the probability that A submits such a query with
α = 1−β is negligible because it has no information about r1−β . Formally, for any
query k that does not match either challenge message, 〈1kx1−β − k, r1−β〉 = 0
happens with probability 1

p and in the other case, B wins the security game.

790 É. Bouscatié et al.

Guess. Finally, B forwards the guess of A to C(EIPE). ��

4.3 Our Conversion

A clear downside of the previous approach is that it requires a 2n-IPE scheme to
build a n-HVE scheme, which does not seem optimal. In this section, we propose
a new generic transformation that halves this cost. We keep the same overall idea,
of testing if a pattern k matches x by testing if the inner product 〈1kx − k, r〉
is 0 for a random r, but we add this randomness during key generation instead
of encryption which allows us to handle the wildcards of k without doubling the
coordinates. However, as we will see, this change has profound consequences on
the security proofs.

f : Σn −→ Fn+1
p

x �−→ (x , −1)

g : Fn
p × Fn

p −→ Fn+1
p

(k , r) �−→ (1kr , 〈k, r〉)

We depict in Fig. 4 our generic conversion from an (n + 1)-IPE scheme to a
n-HVE scheme.

– Let EIPE := (setupIPE, keygenIPE, encIPE, decIPE) be a (n + 1)-IPE scheme.
– setupHVE(1λ, n) is setupIPE(1λ, n + 1).

– keygenHVE(mk,k) chooses r
$←− Fn

p and returns skk ← keygenIPE(mk, g(k, r)).
– encHVE(pk,x) returns c ← encIPE(pk, f(x)).
– decHVE(skk, c) is decIPE(skk, c).

Fig. 4. Our construction of an n-HVE scheme EHVE from a (n + 1)-IPE scheme

Correctness. Let x = (x1, . . . , xn) ∈ Σn be a message and c be an encryption
of x. Let k = (k1, . . . , kn) ∈ (Σ ∪ {�})n be a pattern and skk be the secret key
of k generated as keygenIPE(mk, g(k, r)) for some vector r ∈ Fn

p . A calculation
similar to the one we did before gives 〈f(x), g(k, r)〉 = 〈1kx − k, r〉. This leads
to one the following two cases:

– If k matches x, then 1kx − k = 0, and 〈f(x), g(k, r)〉 = 0 for all choices of
r. By correctness of the IPE scheme, with probability 1, decHVE(skk, c) will
return 1.

– If k does not match x, then 1kx − k �= 0 and we only have 〈1kx − k, r〉 = 0
with probability 1/p from the uniformity of r. As the probability of a false
positive for EIPE is some negligible function μ(λ), the probability of a false
positive for the HVE scheme is less than 1/p + μ(λ) which is negligible. ��

Pattern Matching in Encrypted Stream from Inner Product Encryption 791

4.4 Selective Security

We now make a first assessment of the security of our new conversion. Unlike
the KSW conversion, we need to distinguish the case of selective security from
the case of adaptive security. Indeed, as we shall see, in the selective case, there
is no problem of conversion of key queries from the HVE scheme to the IPE
scheme: as the adversary chooses the challenge message at the beginning of the
security game, the choice of the randomness will be always made after the choice
of these messages and the choice of the query k. As a result, the randomness
is independent of the choices of the HVE adversary and we can still rely on
an information theoretic argument. However for full adaptive security, this will
no longer be the case. In the next section, we will show that we can rely on a
computational argument related to the IPE scheme in order to go through the
proof.

Theorem 3. The conversion in Fig. 4 transforms a selective IND− CPA secure
(n+1)-IPE scheme EIPE into a selective IND−CPA secure n-HVE scheme EHVE.

Remark 4. This theorem could actually be slightly extended in the sense that
the result still holds if the adversary has access to the public key at the beginning
of the security game but is not allowed to make key queries before committing
to the challenge messages (i.e., there is no Query Phase 1).

Proof. We denote by Csel(EIPE) the challenger of the selective IND−CPA security
game for EIPE. Again we build an adversary B that interacts with this challenger,
using an adversary A against the selective security of EHVE.

Setup. The adversary B receives the challenge messages x0,x1 ∈ Σn from A
and then forwards f(x0), f(x1) to Csel(EIPE). Then B forwards the public key
received from Csel(EIPE) to A.

Query Phase 1. On key query k ∈ Fn
p , B chooses r at random in Fn

p and submits
the key query g(k, r) to Csel(EIPE) and forwards the secret key to A.

Challenge. The challenger Csel(EIPE) sends a ciphertext c, encrypting either
f(x0) of f(x1), which is forwarded to A.

Query Phase 2. The adversary B proceeds as in the first query phase.

Guess. Finally, B forwards the guess of A to Csel(EIPE).

By construction, the guess of the adversary A can be used straightforwardly
against the selective IND−CPA security of EIPE if B is a valid adversary. The only
issue we need to consider here is the validity of the key queries. We actually face
a situation rather similar to the one of the proof of Theorem2. The problematic
case is a query by A for a pattern k such that

∀α ∈ {0, 1},1kxα − k �= 0

792 É. Bouscatié et al.

∃α ∈ {0, 1}, 〈1kxα − k, rα〉 = 0 and 〈1kx1−α − k, r1−α〉 �= 0.

This corresponds to a valid query for the HVE security experiment but not from
the IPE security experiment. Fortunately, in the case of selective security, we can
easily rule out this scenario. Indeed, in this case, the randomness r is selected
by B after the choice of xα and k by A. We can then rely on the same argument
as in phase 1 of the proof of Theorem2 to bound the probability of this event
by 2

p , which concludes the proof. ��

5 Adaptive Security

A natural question at this stage is how one can extend the previous result regard-
ing our conversion to the case of adaptive security. Clearly, the approach of the
selective security proof above cannot be generalized to this setting as we strongly
relied on the fact that the adversary committed to the challenge messages before
requesting any secret keys. Fortunately, we show in this section that we can
prove the adaptive security of this generic conversion at the cost of imposing
an additional requirement on the IPE scheme. We formalize this requirement
as a property that we call key privacy. This notion is related to function pri-
vacy but implies weaker requirements on the secret key itself. This allows us
to circumvent well-known limitations (see e.g. [5]) of function-privacy for public
key encryption, in particular the reliance on the entropy of the key space. As a
consequence, one can decide once and for all if a given IPE scheme achieves this
property, regardless of the distribution of the secret keys (and so of the context).
We then consider some of the most popular constructions of IPE schemes and
show that some of them achieve this property under very reasonable assump-
tion (e.g. the Discrete Logarithm (DL) assumption) whereas some others do
not. This highlights the fact that all IPE schemes are not equally suitable to
construct HVE schemes.

5.1 Key Privacy

Definition 5 (Key privacy for IPE). An IPE scheme has key privacy if no
probabilistic polynomial time adversary A has a non-negligible success in the
following game, Expsk−priv

A :

Setup: Run (pp, pk,mk) ← setup(1λ) and give pp, pk to A.
Query Phase 1: A submits queries k ∈ Fn

p and gets skk ← keygen(mk,k)
Challenge: A submits a vector y ∈ Fn

p . The challenger chooses uniformly

at random u $←− {v ∈ Vect(y)⊥ : supp(v) ⊂ supp(y)} and gives sku ←
keygen(mk,u) to A.
Query Phase 2: This phase is identical to Query Phase 1.
Guess: A eventually outputs a vector z ∈ Fn

p \ Vect(y) such that supp(z) ⊂
supp(y) and wins if 〈z,u〉 = 0.

Pattern Matching in Encrypted Stream from Inner Product Encryption 793

Intuitively, this notion states the hardness of finding a non-trivial vector z that
is orthogonal to a vector u, given only sku. Obviously, we cannot reveal u to the
adversary but we allow it to take part in the choice of u by submitting a vector
y such that 〈y,u〉 = 0. Very concretely, this models the fact that, in practice,
the adversary may have some information about u since it knows (and may even
choose) the pattern y that sku allows to detect. However, for some schemes, this
should essentially be the only information leaking about u from sku. As we do
not want to reason in terms of entropy, we choose to define a computational goal
(output z ∈ Fn

p \ Vect(y)) which is much more convenient and yet sufficient to
prove the adaptive security of our generic conversion. In particular, this allows
us to evaluate this property for a given scheme independently of any application,
as illustrated below.

5.2 Examples of Key Private IPE Schemes

Before showing how this new security notion can be used to prove adaptive
security of our generic conversion, we show in this subsection that it is naturally
satisfied by some of the most popular IPE schemes, namely those from [16] and
[21]. More generally, the technique we use below to prove this fact tends to show
that IPE schemes where the components of the vector u associated with sku
appear as exponents in the latter key should satisfy this property. Intuitively,
this stems from the fact that the vector z returned by the adversary provides a
non-trivial relation between secret exponents, which can be used to solve a DL
problem.

In the following, we use the same notations as in the original papers to
facilitate verification of our claims without having to recall all the description of
these schemes.

Katz-Sahai-Waters IPE Scheme. Our proof does not require the full knowl-
edge of the IPE scheme of [16] but will only use the fact that a secret key sku
associated with u contains two elements K1,i = gr1,i

p gf1ui
q and K2,i = gr2,i

p gf2ui
q

where r1,i, r2,i, f1, f2 are random scalars. In our proof, the reduction will insert
the DL challenge ga

q in gui
q , for i ∈ {i1, i2}, and generate all the other elements as

in the regular use of the scheme. As gui
q is only involved in the elements K1,i and

K2,i above we just have to explain how the reduction can proceed to construct
them without knowing a. Actually, we only explain it for K1,i as K2,i has exactly
the same structure.

More formally, our reduction is given a DL challenge A = ga
q in Gq and

will interact with an adversary A against the key privacy of the IPE scheme to
extract a.

In the security experiment, our reduction generates the secret key as usual
and so is perfectly able to answer any query. The adversary will then eventually
output a challenge y that will be managed as explained below.

But first we need to state some facts about y. The goal of the adversary is to
output z such that (1) supp(z) ⊂ supp(y) and (2) y and z are not colinear. There

794 É. Bouscatié et al.

are therefore at least two indices 1 < i1 < i2 < n such that yi1zi2 �= yi2zi1 , which
implies that supp(y) contains at least one element. Actually, the latter set must
contain at least two elements, otherwise z could not satisfy both (1) and (2). If
y has only two non-zero components then a simple computation shows that the
only possibility to meet (1) and (2) is when u = 0, which does not occur with
probability greater than 1

q .
So, any adversary succeeding with non-negligible probability must output a

vector y with at least three non-zero components. Let i3 be the index of one of
them, different from i1 and i2 defined above.

Upon receiving y, our reduction chooses si1 , si2 ∈ Fq and implicitly sets

ui1 =si1 + yi2a

ui2 =si2 − yi1a.

For all i ∈ �n� \ {i1, i2, i3}, the reduction explicitly sets ui
$←− Fq if i ∈ supp(y)

and ui = 0 otherwise. Finally it defines

ui3 = −(yi1si1 + yi2si2 +
n∑

i=1
i�=i1,i2,i3

yiui).

Thus, we have 〈y,u〉 = 0 and the distribution of u generated this way is exactly
the uniform distribution over {v ∈ Vect(y)⊥ : supp(v) ⊂ supp(y)}.

The reduction can then compute K1,i1 as

K1,i1 = g
ri1,1
p (gsi1

q Ayi2)f1

and proceeds similarly for K1,i2 . All the other elements K1,i can be computed
directly as the reduction knows all the involved exponents.

At some stage, the adversary returns a guess z. If the latter is valid, then we
must have:

n∑

i=1

(yi − zi)ui = 0.

If we group the components in i1 and i2 together, we get

(yi1 − zi1)ui1 + (yi2 − zi2)ui2 = scal1

where scal1 is a known scalar. As yi1ui1 + yi2ui2 = si1 + si2 , we can actually
write the previous equation as

zi1ui1 + zi2ui2 = scal2

where scal2 = scal1 − (si1 + si2) is still a known scalar. We thus have

zi1(si1 + yi2a) + zi2(si2 − yi1a) = scal2.

which can be written as

zi1yi2a − zi2yi1a = scal3

Pattern Matching in Encrypted Stream from Inner Product Encryption 795

for a known scalar scal3. This gives

a(zi1yi2 − zi2yi1) = scal3.

As the factor (zi1yi2 −zi2yi1) is assumed to be different from zero, we can recover
a as scal3(zi1yi2 − zi2yi1)

−1, which concludes the proof. ��

Okamoto-Takashima IPE Scheme. We show that the previous proof adapts
very well to the construction of Sect. 4 of [21]. Here, we use the additive notation
of this paper. The setup of this scheme chooses a group G of order p and a
generator G ∈ G, so we use a DL challenge A ∈ G where implicitly A = aG for
some a ∈ Fp and the reduction sets the vector u as in the previous proof with
respect to this challenge. This setup also generates a dual orthonormal basis
among which the vectors b∗

i1
and b∗

i2
should be used to encode the positions i1

and i2 of the vector u. These vectors are set as

b∗
i =

4n+2∑

j=1

ϑi,j(

j−1
︷ ︸︸ ︷
0, . . . , 0, G,

4n+2−j
︷ ︸︸ ︷
0, . . . , 0) for i = i1, i2

where ϑi,j are chosen by the reduction. The vector sku generated by KeyGen is
a sum of vectors that can all be computed regularly by the reduction except the
two vectors σui1b

∗
i1

and σui2b
∗
i2

where σ is chosen regularly by the reduction.
Instead, the reduction computes these two vectors as

σ[si1b
∗
i1 + yi2

4n+2∑

j=1

ϑi1,j(

j−1
︷ ︸︸ ︷
0, . . . , 0, A,

4n+2−j
︷ ︸︸ ︷
0, . . . , 0)]

and σ[si2b
∗
i2 + yi1

4n+2∑

j=1

ϑi2,j(

j−1
︷ ︸︸ ︷
0, . . . , 0, A,

4n+2−j
︷ ︸︸ ︷
0, . . . , 0)]

and sums them together with the other ones to generate the secret key. The rest
of the proof is identical to the previous one. ��

5.3 Examples of Non Key Private IPE Schemes

Here we show that some techniques used to build IPE with constant secret keys
size in [10,20] do not allow key privacy, and in fact do not allow adaptive security
using our conversion. In this case, one must use the KSW conversion. More
specifically, this incompatibility stems from the fact that these constructions
necessitate sharing the coordinates of the key vector inside its secret key as
scalars.

We first show that such a scheme is not key private. In the key privacy game
with n ≥ 3, this allows for a winning strategy which consists in submitting y =
(1, . . . , 1), learning u from sku and solving the linear equation u1z1, . . . , unzn =

796 É. Bouscatié et al.

0 whose space of solutions has at least dimension 3 − 1 = 2 and allows to
successfully return z. ��

We now show that using our conversion on such IPE schemes can actually not
give adaptively secure HVE schemes. Indeed, an adversary against the adaptive
security game of the resulting HVE has the following strategy. It first issues
a query with key k = (1, . . . , 1) and receives a secret key skk which is also a
secret key for the vector g(k, r) = (r, 〈k, r〉) in the underlying IPE scheme and
contains the coordinates of this vector as scalars. With overwhelming probability,
r1 and r2 are distinct from each other and from 0. Thus an adversary can build
the n long vectors x1 = (r2

r1
, r1

r2
, 1, . . . , 1) and x0 = (2, . . . , 2). As k does not

match either of these vectors, our adversary can submit them as challenge vectors
and receives c ← encIPE(pk, f(xβ)) for some unknown β ∈ {0, 1}. However we
have 〈f(x1), g(k, r)〉 = 0 �= 〈f(x0), g(k, r)〉 with overwhelming probability and
running decHVE(skk, c) which is the same as decIPE(skk, c) returns β. ��

5.4 Security Result

We now have all we need to state the adaptive security of a HVE scheme resulting
from our conversion applied to an adaptive IPE scheme.

Theorem 4. The conversion in Fig. 4 transforms an adaptive IND−CPA secure
(n+1)-IPE scheme EIPE achieving key privacy into an adaptive IND−CPA secure
n-HVE scheme EHVE.

Proof. We use the same reduction as in the proof of selective security of Theo-
rem 3, using an adversary A against the HVE scheme to attack the security of
the IPE scheme. The core issue is still the discrepancy between the key queries
restrictions of these two primitives. Concretely, compared to the selective proof,
a problem occurs in the reduction if A submits challenge messages x0,x1 ∈ Σ
such that there exists a query for a pattern k in Query Phase 1 satisfying the
two following equations:

∀α ∈ {0, 1},1kxα − k �= 0 (4)

∃α ∈ {0, 1}, 〈1kxα − k, rα〉 = 0 and 〈1kx1−α − k, r1−α〉 �= 0 (5)

For Query Phase 2, as the challenge messages have been committed, the
arguments of the selective proof hold again and the reduction can always use
C(EIPE) to obtain the appropriate secret keys except with negligible probability.

Our strategy will then be to consider two types of adversary A. Type 1
adversaries are those that do not output challenge messages satisfying conditions
(4) and (5) for a queried k in phase 1. The selective proof of Theorem 3 readily
adapts in this case. Conversely, Type 2 adversaries output challenge messages
satisfying those conditions and we show in the following that they can be used
to attack the key privacy notion of the IPE scheme contradicting the hypothesis
that the IPE scheme has key privacy.

Pattern Matching in Encrypted Stream from Inner Product Encryption 797

We denote by q a bound on the number of key queries that the adversary A
may submit before the challenge phase. Let Csk(EIPE) be the challenger of the
key privacy game of EIPE. We now explicit a reduction that uses A to solve the
key privacy experiment.

Setup. The reduction simply forwards the public parameters and public key from
Csk(EIPE) to the Type 2 adversary A of the EHVE security game. The reduction
chooses uniformly at random an integer m ∈ �q�.

Query phases 1 and 2. The reduction handles any key query k other than the
mth one by choosing r $←− Fn

p and submitting g(k, r) to Csk(EIPE) and forwarding
the received secret key.

For the mth key query k ∈ Fn
p , the reduction chooses the vector y = (k,−1)

as the challenge vector for Csk(EIPE) and forwards the received secret key sk
for some implicit vector u ∈ Fn+1

p to the adversary. We show that this secret
key is well distributed as there exists a well distributed vector r(u) such that
u = g(k, r(u)).

By definition, u is a vector from Vect(y)⊥ with supp(u) ⊂ supp(y). Let us
consider a vector r(u) ∈ F

n
p such that r

(u)
i = ui for all i ∈ supp(k), and random

values elsewhere. As 〈y,u〉 = 0 and yn+1 = −1, this means that un+1 = 〈k, r(u)〉
and we have indeed u = g(k, r(u)). Finally, the distribution of u as defined in
the key privacy experiment implies that r(u) (and so the associate secret key) is
well distributed.

Challenge. When the adversary submits the challenge messages x0,x1 ∈ Σn,
the reduction checks if the mth key query satisfies (4) and (5) for an α ∈ {0, 1}.
If this is the case, the reduction returns z = (1kxα,−1) otherwise, it returns ⊥.

For a Type 2 adversary, this vector z is indeed a valid answer in the key
privacy security game because:

– supp(z) ⊂ supp(y) by construction.
– zn+1 = yn+1 = −1 but z �= y because of (4), which means that these two

vectors are not colinear.
– 〈z,u〉 = 〈f(xα), g(k, ru)〉 = 0 because of (5).

Therefore, any type 2 adversary against the adaptive IND − CPA security of
the HVE scheme can be converted into an adversary against the key privacy
of the IPE scheme provided that the guess on m is valid, which occurs with
probability at least 1

q . ��

6 Consequences

In this section we draw the practical consequences of our generic conversions
which allows to leverage the remarkable results obtained for Inner Product
Encryption. The most significant results regarding complexity and security are

798 É. Bouscatié et al.

presented in Fig. 5. Among other things, the latter shows that our conversions
lead to the first SEPM schemes with adaptive security under standard assump-
tions, without significant performance loss compared to the underlying IPE
scheme. In particular, starting from the IPE scheme of [10, Subsection 3.4], we
obtain, under the DLIN assumption, an adaptively secure SEPM scheme whose
test complexity does not depend on the length of the fragment or the pattern.

As a first example illustrating our conversion, we choose to start from [11]
which is, to our knowledge, the only adaptively secure HVE scheme in the litera-
ture. At first glance, it seems to yield the SEPM scheme with the lowest number
of elements in the ciphertext but we stress that one cannot directly compare this
scheme with others as it is defined over bilinear groups of composite orders which
are larger and lead to slow implementations compared to prime order bilinear
groups. Conversion from one setting to another is possible (see e.g. [14,18]) but
has a great impact on the number of group elements.

We showed in Subsect. 5.2 that the IPE scheme from [21] satisfies our key
privacy property and can therefore be converted using either the KSW conversion
(Fig. 2) or our shorter conversion (Fig. 4). We highlight the differences between
the schemes resulting from these conversions in the next two columns of Fig. 5
and show that our conversion gives the adaptively secure SEPM scheme with
the most succinct ciphertext in prime order groups. Moreover, it shows that our
new IPE to HVE conversion decreases complexity by a factor up to 4 compared
to the KSW conversion.

Our last example uses the IPE scheme from [10]. We use the KSW conversion
of Fig. 2 to get an HVE as the scheme does not have the key privacy property.
This yields the adaptively secure SEPM scheme with the most compact public
key. Moreover, decryption time in one position is constant.

For completeness, Fig. 5 also recalls the features of the three most recent
SEPM schemes. We stress that the comparison is not very meaningful as those
schemes only achieved selective security under non-standard assumptions, some-
thing that we wanted to avoid with our conversions.

Notations. In Fig. 5, we assume fragments of size 2d (allowing to handle pat-
terns of length up to d+1) and plaintexts are arbitrary long strings of characters
from an alphabet of size |Σ|. To retain legibility of the table, we only keep the
terms of highest order in d and thus make some minor approximations in our
complexity evaluation.

– Our first two rows indicate the generic transformations we apply.
– PK indicates the number of group elements in the public key to support

fragments of size 2d.
– CT is the number of group elements to encrypt one element from Σ. Cipher-

text size is linear in the size of the encrypted string: to obtain the cost for a
string of n elements, one must multiply the CT line by n.

– SKk is the number of group elements in the secret key allowing to search a
pattern k at a given position within any fragment.

Pattern Matching in Encrypted Stream from Inner Product Encryption 799

Existing SEPM schemes New SEPM schemes built by conversions

[3, sec. 3] [8, sec. 4.3] [8, sec. 4.4] [11] [21, sec. 4.2] [21, sec. 4.2] [10, sec. 3.4]

IPE→HVE KSW (Fig. 2) Ours (Fig. 4) KSW (Fig. 2)

HVE→SEPM Ours (Fig. 1) Ours (Fig. 1) Ours (Fig. 1) Ours (Fig. 1)

PK 2d · |Σ| 4d 6d 2d · |Σ| 64d2 16d2 40d

CT 4 2 4 2 16 8 20

SKk 2 2 3 len(k) 16d 8d 8

TEST 2 2 3 len(k) 16d 8d 8

Group Order Prime Prime Prime Composite Prime Prime Prime

Security Selective Selective Selective Adaptive Adaptive Adaptive Adaptive

Assumption i-GDH i-GDH EXDH CSD, CDDH DLIN DLIN DLIN

Fig. 5. Comparison table of SEPM schemes (see Notations above)

– TEST refers to the number of pairings necessary to test the presence of a
pattern k at a given position.

We refer to the original papers for a definition of the computational assumptions
underlying their security.

Acknowledgments. The work of the second author was supported by the French
ANR SANGRIA project (ANR-21-CE39-0006) and the French PEPR Cybersecurité
SecureCompute project (ANR-22-PECY-0003). The third author is grateful for the
support of the ANR through project ANR-19-CE39-0011-04 PRESTO and project
ANR-18-CE-39-0019-02 MobiS5.

References

1. Abdalla, M., et al.: Searchable encryption revisited: consistency properties, relation
to anonymous IBE, and extensions. J. Cryptol. 21(3), 350–391 (2008)

2. Agrawal, S., Maitra, M., Vempati, N.S., Yamada, S.: Functional encryption for Tur-
ing machines with dynamic bounded collusion from LWE. In: Malkin, T., Peikert,
C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 239–269. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84259-8 9

3. Bkakria, A., Cuppens, N., Cuppens, F.: Privacy-preserving pattern matching on
encrypted data. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS,
vol. 12492, pp. 191–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64834-3 7

4. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

5. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40084-1 26

https://doi.org/10.1007/978-3-030-84259-8_9
https://doi.org/10.1007/978-3-030-64834-3_7
https://doi.org/10.1007/978-3-030-64834-3_7
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-642-40084-1_26

800 É. Bouscatié et al.

6. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

7. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

8. Bouscatié, É., Castagnos, G., Sanders, O.: Public key encryption with flexible
pattern matching. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS,
vol. 13093, pp. 342–370. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-92068-5 12

9. Chase, M., Shen, E.: Substring-searchable symmetric encryption. PoPETs 2015(2),
263–281 (2015)

10. Chen, J., Gong, J., Wee, H.: Improved inner-product encryption with adaptive
security and full attribute-hiding. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT
2018, Part II. LNCS, vol. 11273, pp. 673–702. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03329-3 23

11. De Caro, A., Iovino, V., Persiano, G.: Fully secure hidden vector encryption. In:
Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 102–121. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36334-4 7

12. Demertzis, I., Papadopoulos, D., Papamanthou, C.: Searchable encryption with
optimal locality: achieving sublogarithmic read efficiency. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 371–406.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 13

13. Desmoulins, N., Fouque, P.-A., Onete, C., Sanders, O.: Pattern matching on
encrypted streams. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I.
LNCS, vol. 11272, pp. 121–148. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03326-2 5

14. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 3

15. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2021, pp. 60–73. Association for Computing Machin-
ery, New York (2021)

16. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

17. Leontiadis, I., Li, M.: Storage efficient substring searchable symmetric encryption.
In: Proceedings of the 6th International Workshop on Security in Cloud Comput-
ing, SCC ’18, pp. 3–13. Association for Computing Machinery (2018)

18. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 20

19. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7 11

https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-030-92068-5_12
https://doi.org/10.1007/978-3-030-92068-5_12
https://doi.org/10.1007/978-3-030-03329-3_23
https://doi.org/10.1007/978-3-030-03329-3_23
https://doi.org/10.1007/978-3-642-36334-4_7
https://doi.org/10.1007/978-3-319-96884-1_13
https://doi.org/10.1007/978-3-030-03326-2_5
https://doi.org/10.1007/978-3-030-03326-2_5
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11

Pattern Matching in Encrypted Stream from Inner Product Encryption 801

20. Okamoto, T., Takashima, K.: Achieving short ciphertexts or short secret-keys for
adaptively secure general inner-product encryption. In: Lin, D., Tsudik, G., Wang,
X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 138–159. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25513-7 11

21. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 35

22. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 22

23. Ramanna, S.C.: More efficient constructions for inner-product encryption. In: Man-
ulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp.
231–248. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 13

24. Sherry, J., Lan, C., Popa, R.A., Ratnasamy, S.: Blindbox: deep packet inspection
over encrypted traffic. In: Uhlig, S., Maennel, O., Karp, B., Padhye, J. (eds.) SIG-
COMM 2015, pp. 213–226 (2015)

https://doi.org/10.1007/978-3-642-25513-7_11
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-319-39555-5_13

Author Index

A
Alpár, Greg I-652
Ambrona, Miguel II-306
Arun, Arasu II-542
Ateniese, Giuseppe II-63
Attema, Thomas II-3
Avitabile, Gennaro I-281

B
Badrinarayanan, Saikrishna I-376
Baum, Carsten I-439
Bellare, Mihir I-223
Benz, Laurin I-744
Beskorovajnov, Wasilij I-744
Bhadauria, Rishabh II-127
Botta, Vincenzo I-281
Bouscatié, Élie I-774
Brunetta, Carlo II-336
Bui, Dung II-190

C
Campanelli, Matteo II-663
Capitão, Pedro II-3
Castagnos, Guilhem I-774
Catalano, Dario I-471
Chakraborty, Suvradip II-635
Chen, Long II-63
Chvojka, Peter I-500
Couteau, Geoffroy II-190, II-221

D
Datta, Pratish I-587
David, Bernardo I-439
Davis, Hannah I-223
Di, Zijing I-223
Döttling, Nico II-606
Dowsley, Rafael I-439
Ducas, Léo I-177
Ducros, Clément II-221
Duman, Julien I-65, I-406
Düzlü, Samed I-95

E
Eilebrecht, Sarai I-744

F
Faonio, Antonio II-275
Feo, Luca De I-345
Fiore, Dario I-281, I-471
Fouotsa, Tako Boris I-345
Fouque, Pierre-Alain II-461
Francati, Danilo II-63, II-663

G
Gajland, Phillip II-606
Ganesh, Chaya II-542
Garg, Sanjam II-159
Gay, Romain II-306
Ge, Jiangxia I-36
Georgescu, Adela II-461
Ghosal, Riddhi II-575
Ghosh, Satrajit II-251
Gibbons, Shane I-177
Giunta, Emanuele I-471
Gu, Dawu I-685, II-429, II-482
Güneysu, Tim II-94

H
Hajiabadi, Mohammad II-159
Han, Shuai I-685, II-482
Hartmann, Dominik I-406
Hazay, Carmit II-127
Hébant, Chloé I-312
Heninger, Nadia I-147
Heum, Hans II-336
Hoffmann, Charlotte I-530
Hoffmann, Clément I-114
Hofheinz, Dennis II-275
Hövelmanns, Kathrin I-65
Hubáček, Pavel I-530

J
Jager, Tibor I-500
Jain, Abhishek II-159

© International Association for Cryptologic Research 2023
A. Boldyreva and V. Kolesnikov (Eds.): PKC 2023, LNCS 13940, pp. 803–805, 2023.
https://doi.org/10.1007/978-3-031-31368-4

https://doi.org/10.1007/978-3-031-31368-4

804 Author Index

Jiang Galteland, Yao II-399
Jin, Zhengzhong II-159

K
Kamath, Chethan I-530
Kiltz, Eike I-65, I-406
Kishore, Ravi I-439
Kohl, Lisa II-3
Kolonelos, Dimitris II-512
Krämer, Juliane I-95
Krausz, Markus II-94
Kunzweiler, Sabrina I-406
Kutas, Péter I-345

L
Land, Georg II-94
Lee, Kang Hoon II-33
Lehmann, Jonas I-406
Leroux, Antonin I-345
Libert, Benoît I-114
Liu, Shengli I-685, II-482
Liu, Xiangyu I-685, II-482
Lokam, Satya II-542
Loss, Julian I-554
Lysyanskaya, Anna I-251
Lyubashevsky, Vadim I-65

M
Malavolta, Giulio I-554, II-606
Maller, Mary II-512
Maram, Varun I-3
Masny, Daniel I-376
Merz, Simon-Philipp I-345
Miao, Peihan II-368
Momin, Charles I-114
Mopuri, Tushar II-542
Mukherjee, Pratyay I-376
Müller-Quade, Jörn I-744

N
Nayak, Kartik I-554
Nielsen, Jesper Buus I-439

O
Oechsner, Sabine I-439
Orlandi, Claudio II-663
Ottenhues, Astrid I-744

P
Pal, Tapas I-587
Pan, Jiaxin II-399
Pandey, Omkant II-159
Panny, Lorenz I-345
Papadopoulos, Dimitrios II-63
Papamanthou, Charalampos I-554
Patranabis, Sikhar I-376, II-368
Peters, Thomas I-114
Pietrzak, Krzysztof I-530
Pointcheval, David I-312
Pöppelmann, Thomas I-95
Prabhakaran, Manoj II-635
Prest, Thomas I-205

Q
Qian, Chen II-461

R
Raghuraman, Srinivasan I-376
Richter-Brockmann, Jan II-94
Riepel, Doreen I-406
Roux-Langlois, Adeline II-461
Roy, Lawrence I-714
Russo, Luigi II-275
Ryan, Keegan I-147

S
Sahai, Amit II-575
Sanders, Olivier I-774
Sarkar, Pratik I-376
Schädlich, Robert I-312
Schwerdt, Rebecca I-744
Seiler, Gregor I-65
Shan, Tianshu I-36
Shi, Elaine I-622
Shiehian, Sina II-159
Simkin, Mark II-251
Sridhar, Sriram II-542
Srinivasan, Shravan I-554
Stam, Martijn II-336
Standaert, François-Xavier I-114
Struck, Patrick I-95
Sun, Shi-Feng II-429

T
Tang, Qiang II-63
Thyagarajan, Sri AravindaKrishnan I-554

Author Index 805

U
Unruh, Dominique I-65

V
Vanjani, Nikhil I-622
Venema, Marloes I-652
Venkitasubramaniam, Muthuramakrishnan

II-127
Volkhov, Mikhail II-512

W
Wang, Geng II-429
Wang, Zhedong II-429
Waters, Brent II-575
Watson, Gaven II-368

Wen, Weiqiang II-461
Wesolowski, Benjamin I-345
Wichs, Daniel II-635
Wu, Wenxuan II-127

X
Xagawa, Keita I-3
Xu, Jiayu I-714
Xue, Rui I-36

Y
Yoon, Ji Won II-33

Z
Zhang, Yupeng II-127

	 Preface
	 Organization
	 Contents – Part I
	 Contents – Part II
	Post-quantum Cryptography
	Post-quantum Anonymity of Kyber
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	2.1 Quantum Random Oracle Model
	2.2 Cryptographic Primitives

	3 Specification of Kyber
	3.1 Security Properties of Kyber.PKE

	4 IND-CCA Security of Kyber in the QROM
	5 ANO-CCA Security of Kyber in the QROM
	5.1 SPR-CCA Security of Kyber.KEM
	5.2 SPR-CCA Security of Hybrid PKE Derived from Kyber.KEM

	References

	QCCA-Secure Generic Transformations in the Quantum Random Oracle Model
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Quantum Random Oracle Model

	3 Plaintext Extraction of the Oracle-Masked Scheme
	4 Application in the Quantum Security Proof
	4.1 FO: From OW-CPA to IND-qCCA in the QROM
	4.2 REACT: From OW-qPCA to IND-qCCA in the QROM
	4.3 TCH: From OW-qPCA to IND-qCCA in the QROM

	A The Construction of UExt
	A.1 The Construction of UExt for FO
	A.2 The Construction of UExt for REACT
	A.3 The Construction of UExt for T"0365T

	B Cryptographic Primitives
	B.1 Secret-Key Encryption
	B.2 Public-Key Encryption
	B.3 Key Encapsulation

	References

	A Thorough Treatment of Highly-Efficient NTRU Instantiations
	1 Introduction
	1.1 Speed
	1.2 Decryption Error and Compactness
	1.3 Proofs in the (Q)ROM
	1.4 Concrete Results and Comparison to the State of the Art

	2 Preliminaries
	2.1 Notation
	2.2 Cryptographic Definitions

	3 Worst-Case to Average-Case Decryption Error
	3.1 Simple Transformation ACWC0 with Redundancy
	3.2 Transformation ACWC Without Redundancy

	4 NTRU Encryption over NTT Friendly Rings
	4.1 Notation
	4.2 The Binomial Distribution
	4.3 The NTRU Problem and Variants
	4.4 NTRU-A: Encryption Based on R-NTRU + R-LWE2 for =2d
	4.5 Generic NTRU Encryption and Error-Reducing Transformations

	References

	A Lightweight Identification Protocol Based on Lattices
	1 Introduction
	1.1 Contribution
	1.2 Related Work
	1.3 Outline

	2 Background
	2.1 Cyptographic Primitives
	2.2 Protocol Security

	3 The Identification Protocol
	3.1 Description of the Identification Protocol
	3.2 Security Analysis of the Identification Protocol
	3.3 Extension to the Quantum Random Oracle Model

	4 An Identification Protocol Based on Kyber
	4.1 Security and Design Rationales
	4.2 Parameter Sets
	4.3 Implementation
	4.4 Side-Channel Protection

	5 Conclusion
	References

	POLKA: Towards Leakage-Resistant Post-quantum CCA-Secure Public Key Encryption
	1 Introduction
	2 Technical Overview and Cautionary Note
	3 Background
	3.1 Lattices and Discrete Gaussian Distributions
	3.2 Rings and Ideal Lattices

	4 POLKA: Rationale and Specifications
	4.1 The Scheme with an Additive Mask
	4.2 Black-Box Security Analysis
	4.3 Parameters and Instantiations

	5 Side-Channel Security Analysis
	5.1 Leveled Implementation and Design Goals
	5.2 Learning with Physical Rounding Assumption
	5.3 Hardware Performance Evaluation

	6 Conclusions
	References

	Attacks
	The Hidden Number Problem with Small Unknown Multipliers: Cryptanalyzing MEGA in Six Queries and Other Applications
	1 Introduction
	1.1 Technical Overview
	1.2 Applying HNP-SUM to MEGA Cryptanalysis
	1.3 Applying HNP-SUM to Implicit Factoring

	2 Background
	2.1 Lattices
	2.2 The Hidden Number Problem

	3 Solving HNP-SUM
	3.1 Solving HNP-SUM with n = 2
	3.2 Construction for n > 2
	3.3 Alternative Basis for the Sublattice
	3.4 Recovering Unknown Multipliers
	3.5 Sublattice Determinant
	3.6 Sublattice Recovery via Lattice Reduction
	3.7 Experimental Evaluation

	4 Application: Cryptanalyzing MEGA
	4.1 Attack Context for MEGA
	4.2 Original MEGA Attack of Backendal, Haller, and Paterson
	4.3 Expressing Leakage Algebraically
	4.4 Obtaining Most Significant Bytes
	4.5 Refining Approximations
	4.6 Recovering Unknown Multipliers
	4.7 Recovering Plaintexts
	4.8 Recovering the Factorization
	4.9 Complexity
	4.10 Experimental Evaluation

	5 Application: Implicit Factoring
	5.1 LSBs or MSBs Shared
	5.2 Middle Bits Shared
	5.3 Experimental Evaluation

	References

	Hull Attacks on the Lattice Isomorphism Problem
	1 Introduction
	1.1 Contributions
	1.2 Technical Overview

	2 Preliminaries
	2.1 Lattices and Codes
	2.2 Quadratic Forms
	2.3 The p-adic Numbers
	2.4 Genus Symbol
	2.5 Relevant Values of s for the s-Hull

	3 Extensions of the Definition of the Genus
	4 The Genus of the Hull
	5 A Lattice with a Better Attack via the Hull
	5.1 When the Hull Is Trivial
	5.2 Signed Permutation Equivalence and Graph Isomorphism

	6 Conclusion
	6.1 Revising LIP Hardness Conjecture
	6.2 Unimodular Lattices
	6.3 Open Question

	References

	A Key-Recovery Attack Against Mitaka in the t-Probing Model
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Operators and Relations
	2.2 Cyclotomic Fields
	2.3 Vectors and Matrices
	2.4 Lattices and Gaussians
	2.5 Masking

	3 Description of Mitaka
	3.1 Private and Public Keys
	3.2 Signing Procedure
	3.3 The Proof Outline of Mitaka and Its Flaw

	4 Our Attack
	4.1 Placing the Probes
	4.2 Recovering the Signing Key

	5 Concrete Results
	5.1 Simulating the Leakage
	5.2 Low-noise Regime: "026B30D b0"0362b0 - b0 "026B30D < 1/2
	5.3 High-noise Regime: "026B30D b0"0362b0 - b0 "026B30D < q
	5.4 Moderate-noise Regime: "026B30D b0"0362b0 - b0 "026B30D < 1

	6 Conclusion
	References

	Signatures
	Hardening Signature Schemes via Derive-then-Derandomize: Stronger Security Proofs for EdDSA
	1 Introduction
	2 Preliminaries
	3 Functor Framework
	4 The Soundness of Derive-then-Derandomize
	5 Security of EdDSA
	6 Indifferentiability of Shrink-MD Class of Functors
	References

	Security Analysis of RSA-BSSA
	1 Introduction
	2 Definition of a Two-Move Blind Signature Scheme
	2.1 Strong One-More Unforgeability
	2.2 Blindness
	2.3 A New Definition: Blind Tokens

	3 The RSA-BSSA Scheme
	3.1 The Basic Scheme
	3.2 RSA-BSSA, Version A
	3.3 RSA-BSSA, Version B

	4 Blindness of RSA-BSSA
	4.1 Blindness of the Signing Protocol
	4.2 Blindness of Variants a and B
	4.3 The Basic Version Is a Blind Token Scheme
	4.4 Blindness of Chaum-RSA-FDH

	5 Unforgeability of RSA-BSSA
	A Statement of Computational Hardness Assumptions
	B The Verification Algorithm, Step by Step
	References

	Extendable Threshold Ring Signatures with Enhanced Anonymity
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	3 Preliminaries
	3.1 Groth-Sahai Proofs

	4 Extendable Threshold Ring Signature
	5 Extendable Non-interactive Witness Indistinguishable Proof of Knowledge
	6 Our Extendable Threshold Ring Signature
	6.1 Security of Our Extendable Threshold Ring Signature

	7 Our Extendable Non-Interactive Witness Indistinguishable Proof of Knowledge
	7.1 GS Proofs of Partial Satisfiability
	7.2 High-level Overview of Our ENIWI
	7.3 Our ENIWI

	References

	Tracing a Linear Subspace: Application to Linearly-Homomorphic Group Signatures
	1 Introduction
	1.1 Contributions
	1.2 Technical Overview
	1.3 Organization

	2 Preliminaries
	2.1 Hardness Assumptions
	2.2 Linearly-Homomorphic Signatures

	3 Codes with the Fully Identifiable Parent Property
	4 An Efficient Tracing Algorithm for Linear Subspaces
	5 Linear-Subspace Tracing and Anonymity
	6 A Model for Linearly-Homomorphic Group Signatures
	7 Generic Construction of a LH-GSig Scheme
	7.1 Properties of LH-Sig Schemes
	7.2 High-level Description
	7.3 Our Scheme
	7.4 Efficiency

	References

	Isogenies
	SCALLOP: Scaling the CSI-FiSh
	1 Introduction
	1.1 Contribution
	1.2 Technical Overview

	2 Preliminaries
	2.1 Elliptic Curves and Isogenies
	2.2 Representing and Evaluating Isogenies
	2.3 Orientation of Supersingular Curves and Ideal Group Action

	3 The Generic Group Action
	3.1 Factorization of Ideals and Decomposition of Isogenies
	3.2 Effective Orientation
	3.3 The Group Action Computation from the Effective Orientation

	4 Security of a Group Action
	5 SCALLOP: a Secure and Efficient Group Action
	5.1 Parameter Choice and Precomputation
	5.2 The Group Action Computation

	6 Concrete Instantiation
	6.1 Parameter Selection
	6.2 Performance

	7 Security Discussion: Evaluating the Descending Isogeny
	References

	Round-Optimal Oblivious Transfer and MPC from Computational CSIDH
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Basic Cryptographic Primitives
	2.2 Cryptographic Group Actions
	2.3 Oblivious Transfer (OT)

	3 Round-Optimal UC-Secure OT from wU-EGA
	3.1 Warm-Up: 2-Round UC-OT Against Semi-honest Receiver
	3.2 2-Round Maliciously Secure UC-OT

	4 Round-Optimal OT in Plain Model from wU-EGA
	4.1 Overview
	4.2 Our Protocol-2

	5 OT Extension from Reciprocal EGA
	5.1 Reciprocal EGA and Reciprocal CSIDH
	5.2 OT Construction of ch14LaiGG21
	5.3 Constructing OT Extension Protocols from Reciprocal (R)EGA

	References

	Generic Models for Group Actions
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Security Games
	2.3 Quantum Notation

	3 Group Actions
	3.1 Definitions
	3.2 The CSIDH Group Action
	3.3 Group Action Assumptions

	4 Generic Group Action Model
	4.1 Definitions and Relations
	4.2 Generic Group Action Model with Twists
	4.3 Quantum Generic Group Action Model
	4.4 Comparison with the Generic Model by Montgomery and Zhandry

	5 Algebraic Group Action Model
	5.1 Definition and Relations
	5.2 Results in the Quantum Algebraic Group Action Model with Twists
	5.3 Security Analysis of ElGamal in the Quantum Algebraic Group Action Model with Twists

	References

	Crypto for Crypto
	CRAFT: Composable Randomness Beacons and Output-Independent Abort MPC From Time
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 The TARDIS ch16EC:BDDNO21 Composable Time Model
	2.2 Trapdoor Verifiable Sequential Computation
	2.3 Multi-party Message Delivery

	3 Publicly Verifiable Time-Lock Puzzles
	4 Universally Composable Verifiable Delay Functions
	5 UC-Secure Semi-synchronous Randomness Beacons
	5.1 Randomness Beacons from TLPs
	5.2 Using a Public Ledger FLedger with TLP-RB
	5.3 Randomness Beacons from VDFs

	6 MPC with (Punishable) Output-Independent Abort
	6.1 Functionalities for Output-Independent Abort
	6.2 Building MPC with Output-Independent Abort

	References

	Efficient and Universally Composable Single Secret Leader Election from Pairings
	1 Introduction
	1.1 Our Contribution
	1.2 Other Related Work
	1.3 Organization

	2 Preliminaries
	2.1 Notation
	2.2 SXDH Assumption
	2.3 Functional Encryption
	2.4 Functional Encryption for Modular Keyword Search
	2.5 Our Realization of FE for Modular Keyword Search
	2.6 Non Interactive Zero-Knowledge
	2.7 UC Model and Ideal Functionalities

	3 Universally Composable SSLE
	3.1 A Parametrised Definition

	4 UC-secure SSLE from FE for Modular Keyword Search
	5 An Efficient UC-secure SSLE from SXDH
	5.1 Intuition
	5.2 SSLE Protocol with Ideal Setup Functionality
	5.3 Realising the Setup

	6 Efficiency Considerations
	References

	Simple, Fast, Efficient, and Tightly-Secure Non-malleable Non-interactive Timed Commitments
	1 Introduction
	2 Preliminaries
	3 Standard Model Constructions
	3.1 Non-interactive Zero-Knowledge Proofs
	3.2 Standard-Model Instantiation of SS-NIZKs
	3.3 Construction of Linearly Homomorphic Non-malleable NITC
	3.4 Construction of Multiplicatively Homomorphic Non-malleable NITC

	References

	Certifying Giant Nonprimes
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	3 Pietrzak's PoE in Groups of Known Order
	3.1 (Non-)Soundness

	4 Certifying Non-Primality of Proth Primes
	4.1 Completeness
	4.2 Soundness
	4.3 Efficiency
	4.4 Comparison with Pietrzak's PoE

	5 Open Problems
	A Attacking Pietrzak's Protocol in Proth Number Groups
	References

	Transparent Batchable Time-lock Puzzles and Applications to Byzantine Consensus
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Technical Overview
	2.1 Time-Lock Puzzles with Batch Solving
	2.2 Application 1: Efficient Byzantine Broadcast
	2.3 Application 2: Permissionless Consensus in the Mobile Sluggish Model

	3 Cryptographic Background
	3.1 Time-Lock Puzzles
	3.2 Puncturable Pseudorandom Functions
	3.3 Indistinguishability Obfuscation

	4 Time-Lock Puzzles with Batch Solving
	4.1 Definition
	4.2 Bounded Batching of TLPs
	4.3 Unbounded Batching of TLPs

	5 Application 1: Byzantine Broadcast
	5.1 Model and Definitions
	5.2 Protocol

	6 Application 2: Nakamoto Consensus Secure Against a Mobile Sluggish Adversary
	6.1 Attack on Nakamoto Consensus in the Mobile Sluggish Model
	6.2 Model
	6.3 Protocol

	References

	Pairings
	Decentralized Multi-Authority Attribute-Based Inner-Product FE: Large Universe and Unbounded
	1 Introduction
	2 Technical Overview
	2.1 Constructing the Small Universe MA-ABUIPFE
	2.2 Constructing the Large Universe MA-ABUIPFE

	3 Preliminaries
	3.1 Notations
	3.2 Complexity Assumptions

	4 Decentralized (Large Universe) MA-ABUIPFE for LSSS
	5 The Proposed Small Universe MA-ABUIPFE from DBDH
	5.1 The Construction
	5.2 Correctness
	5.3 Security Analysis

	6 The Proposed Large Universe MA-ABUIPFE from L-DBDH
	References

	Multi-Client Inner Product Encryption: Function-Hiding Instantiations Without Random Oracles
	1 Introduction
	1.1 Our Results and Contributions
	1.2 Additional Related Work

	2 Overview of Our Constructions and Techniques
	2.1 Why Prior Work Needed a Random Oracle
	2.2 Removing the RO: A Strawman Idea
	2.3 Our Selectively Secure Construction
	2.4 Proving Selective Function-Hiding Security
	2.5 Achieving Adaptive Function-Hiding Security
	2.6 Removing the ``All-or-Nothing'' Admissibility Rule

	3 Definitions: Multi-Client Inner Product Encryption
	4 Preliminaries
	4.1 Function-Hiding (Single-Input) Inner Product Encryption
	4.2 Correlated Pseudorandom Function

	5 Function-Hiding MCIPE
	5.1 Selective Function-Hiding MCIPE

	References

	GLUE: Generalizing Unbounded Attribute-Based Encryption for Flexible Efficiency Trade-Offs
	1 Introduction
	1.1 Our Contributions
	1.2 New Construction: GLUE
	1.3 Generalizing RW13 by Generalizing the Hash
	1.4 Security Proof
	1.5 Practical Extensions
	1.6 Efficiency Comparison with Existing Schemes Supporting (1)-(5)

	2 Preliminaries
	2.1 Access Structures
	2.2 Attribute-based Encryption
	2.3 Full Security Against Chosen-Plaintext Attacks
	2.4 Pairings (or Bilinear Maps)
	2.5 Pair Encoding Schemes

	3 Generalizing Rouselakis-Waters
	3.1 The Rouselakis-Waters Scheme
	3.2 First Attempt: A Naive Approach
	3.3 Second (Successful) Attempt
	3.4 More Efficient Decryption

	4 Our Construction
	4.1 The Associated Pair Encoding Scheme

	5 The Security Proof
	5.1 The Rouselakis-Waters Proof
	5.2 Generalizing the Rouselakis-Waters Proof
	5.3 The Selective Symbolic Property
	5.4 Co-selective Symbolic Property

	6 Performance Analysis
	7 Applying Multiple Instantiations of GLUE in Practice
	8 Future Work
	9 Conclusion
	References

	Key Exchange and Messaging
	EKE Meets Tight Security in the Universally Composable Framework
	1 Introduction
	1.1 Technical Overview
	1.2 Roadmap

	2 Preliminaries
	2.1 Hardness Assumptions

	3 PAKE with Tight Security in the UC Framework
	3.1 UC Framework for PAKE
	3.2 The 2DH-EKE Protocol
	3.3 Security Analysis

	4 Asymmetric PAKE with Optimal Tightness in the UC Framework
	4.1 UC Framework for aPAKE
	4.2 The 2DH-aEKE Protocol
	4.3 Security Analysis

	5 Optimal Reduction Loss in aPAKE
	6 Tight Security for 2DH-SPAKE2 in the Relaxed UC Framework
	References

	A Universally Composable PAKE with Zero Communication Cost
	1 Introduction
	2 Preliminaries
	2.1 Overview of the UC Framework
	2.2 Overview of PAKE

	3 A No-Message UC PAKE
	4 Seven Equivalent Ways to Guarantee Correctness
	4.1 Three Equivalent Ways to Guarantee Correctness
	4.2 Three Sets of Variants
	4.3 Putting It Together

	5 Impossibility of a Direct Solution
	6 PAKE as a Three-Party Protocol
	6.1 Correctness
	6.2 PAKE Guaranteeing Output

	7 Conclusion
	References

	Sender-binding Key Encapsulation
	1 Introduction
	2 Preliminaries
	2.1 The KEM-DEM Framework
	2.2 Game-based Security Notions
	2.3 Simulation-based Security and UC
	2.4 Ideal Functionalities

	3 Related Work
	4 Sender-binding Key Encapsulation
	5 Realizing Secure Message Transfer
	6 Realizing Secure Channels
	7 Efficient LWE-based Construction
	8 Conclusion
	References

	Pattern Matching in Encrypted Stream from Inner Product Encryption
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions

	2 Definitions
	2.1 Functional Encryption
	2.2 Some Classes of Functional Encryption

	3 From HVE to SEPM Through Fragmentation
	3.1 Fragmentation
	3.2 Conversion
	3.3 Security

	4 Hidden Vector Encryption from Inner Product Encryption
	4.1 KSW Conversion
	4.2 Security Analysis of KSW Conversion
	4.3 Our Conversion
	4.4 Selective Security

	5 Adaptive Security
	5.1 Key Privacy
	5.2 Examples of Key Private IPE Schemes
	5.3 Examples of Non Key Private IPE Schemes
	5.4 Security Result

	6 Consequences
	References

	Author Index

