
Chapter 8 
Geometric Numerical Integration 

It turned out that the preservation of geometric properties of the 
flow not only produces an improved qualitative behaviour, but 
also allows for a more accurate long-time integration than with 
general-purpose methods. 

(Ernst Hairer, Christian Lubich, Gerhard Wanner, Preface of 
[192]) 

Modern Numerical Analysis is not only devoted to approximating the solutions 
of various problems through accurate and efficient numerical schemes, but also to 
retaining qualitative properties of the continuous problem over long times. Some-
times such conservation properties naturally characterize the numerical schemes, 
while in more complex situations preservation issues have to be conveyed into the 
numerical approximations. The numerical preservation of invariants is at the basis 
of the so-called geometric numerical integration. A classical reference to this topic 
is the monograph [192] by E. Hairer, C. Lubich and G. Wanner, which provides a 
comprehensive treatise on several aspects of geometric numerical integration. 

The basic principle of geometric numerical integration can be briefly explained 
through the following diagram: 

Indeed, suppose that a numerical method is applied to solve a conservative 
problem, i.e., a problem showing some invariants along the dynamics generated 
by its exact solution. A geometric numerical method provides a discretized problem 
that, along its solution, possesses invariants that are close to the exact ones over long 
time windows. Such a long-term preservation is not always automatically provided 
by any numerical method, hence it is relevant to analyze the conditions to impose 
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on a numerical scheme in order to make it a geometric numerical method. Before 
entering into the details of the topic, let us give an example. 

Example 8.1 Let us consider the system of ODEs for the harmonic oscilla-
tor (1.20). As we have proved (see Example 1.7), the total energy (1.21) is a 
first integral of the system.We now aim to check if such a first integral remains 
invariant also along the numerical solutions computed by the following three 
methods: 

• the explicit Euler method (2.19); 
• the implicit Euler method (2.32); 
• the two-stage Gaussian RK method (4.25). 

Figures 8.1, 8.2 and 8.3 show the phase portrait of the approximate 
solutions to (1.20) with .ω = 10, computed over the time window .[0, 1000] by 
applying the aforementioned methods with constant stepsize .10−2. As visible 
from these figures, both explicit and implicit Euler methods are not able to 
retain the symplecticity of the phase space, since they cannot reconstruct 
the periodic orbit characterizing the dynamics of (1.20). More specifically, 
the dynamics described by Fig. 8.1 is an outward spiral, due to the unstable 
behavior of the employed explicit method. On the contrary, the employ of an 
implicit method as in Fig. 8.2 yields an inward spiral dynamics. This is not 
the case of the two-stage Gaussian RK method (4.25) since, as visible from 
Fig. 8.3, it nicely maintains the symplecticity of the phase space. 

A similar behavior can also be visible from the pattern of the deviation 
between the energy in the final integration point and that referred to the 
initial point. Indeed, Fig. 8.4 shows that the only method able to preserve the 
energy along time is the two-stage Gaussian RK method. The reason why this 
situation occurs will be clarified in the remainder of this chapter. 

8.1 Historical Overview 

The denomination geometric numerical integration strongly recalls the approach to 
geometry formulated by Felix Klein in his Erlangen program [238]. Klein describes 
geometry as the study of invariants under certain transformations. Similarly, geo-
metric numerical methods were launched as structure-preserving schemes, able to 
retain peculiar features of a dynamical system along its discretizations. As addressed 
by Robert Mc Lachlan in his review [260] of the book by Hairer, Lubich and Wanner 
[192], the connection with the so-called geometric integration theory by Hassler 
Whitney [343] is even more subtle than that suggested by the name itself. Indeed, as
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Fig. 8.1 Phase portrait of the 
approximate solution to the 
harmonic oscillator (1.20) 
with .ω = 10, initial values 
.y1(0) = 0 and .y2(0) = 1, 
computed by the Euler 
method (2.19) with stepsize 
. 10−2

Fig. 8.2 Phase portrait of the 
approximate solution to the 
harmonic oscillator (1.20) 
with .ω = 10, initial values 
.y1(0) = 0 and .y2(0) = 1, 
computed by the implicit 
Euler method (2.32) with 
stepsize . 10−2

stated by Arnold [16] in his speech addressed to the participants of the International 
Congress of Mathematicians in Beijing, “The design of stable discretizations of 
systems of PDEs often hinges on capturing subtle aspects of the structure of the 
system in the discretization. This new geometric viewpoint has provided a unifying 
understanding of a variety of innovative numerical methods developed over recent 
decades”. In his talk, Arnold shows that the function spaces introduced by Whitney 
in [343] (the so-called Whitney elements) represent what is required for a geometric 
discretization of many PDEs. 

A famous method, well-known in the context of geometric numerical integration, 
is the so-called leapfrog method, also known as Störmer-Verlet method [192, 196].
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Fig. 8.3 Phase portrait of the 
approximate solution to the 
harmonic oscillator (1.20) 
with .ω = 10, initial values 
.y1(0) = 0 and .y2(0) = 1, 
computed by the two-stage 
Gaussian RK method (4.25) 
with stepsize . 10−2

Fig. 8.4 Energy deviations in time along the approximate solutions to the harmonic oscilla-
tor (1.20) with .ω = 10, initial values .y1(0) = 0 and .y2(0) = 1, computed by the explicit 
Euler method (2.19, dashed-dotted line), the implicit Euler method (2.32, dashed line), the two-
stage Gaussian RK method (4.25, solid line) with stepsize .10−2. The deviation is computed as the 
absolute value of the difference between the energy in the final integration point .t = 1000, minus 
that in the initial point . t = 0

This method, for the discretization of the second order problem 

. q̈ = f (q),

is given by 

.qn+1 − 2qn + qn−1 = h2f (qn).
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This method is extensively used in many fields, such as celestial mechanics and 
molecular dynamics, and it is first due to Störmer that, in 1907, used a variant of 
this scheme for the computation of the motion of ionized particles in the Earth’s 
magnetic field (aurora borealis). Above formulation is that developed by Verlet 
in 1967 [339] in his pioneering papers on the computer simulation of molecular 
dynamics models. Verlet was also particularly interested in the history of science, 
through which he was able to discover that his scheme was previously used by 
several authors (see [196] and references therein): for instance, by Delambre in 
1792 for the computation of logarithms and astronomical tables (see [263]) and 
by Newton, who used it in his Principia (1687) to prove Kepler’s second law (see 
[340]). 

As highlighted in [196], a seminal contribution regarding geometric numerical 
integration was given by De Vogelaere in 1956 [144], “a marvellous paper, short, 
clear, elegant, written in one week, submitted for publication and never published”. 
In particular, this paper provides examples of numerical methods (such as the 
symplectic Euler method) retaining the symplecticity of Hamiltonian problems. 
Still regarding Hamiltonian problems, successive contributions on their structure-
preserving integrations are due to Ruth [305] in 1983 and Kang [232] in 1985. 

A criterion for the numerical conservation of the symplecticity via Runge-Kutta 
methods (leading to the family of so-called symplectic Runge-Kutta methods) has 
independently been proved in 1988 by Lasagni [244], Sanz-Serna [307] and Suris 
[331], depending on a similar condition discovered by Cooper [98] for the numerical 
conservation of quadratic first integrals. To some extent, 1988 is the starting date for 
the spread out and the establishment of a theory of conservative numerical methods 
for Hamiltonian problems (on this topic, the interested reader can refer, for instance, 
to the monographs [26, 32, 192, 223, 233, 248, 249, 308], the survey papers [40, 41, 
189, 261, 262, 264] and references therein). 

Symplecticity is a prerogative of RK methods: in fact, Tang proved in 1993 
[335] that linear multistep methods cannot be symplectic, as well as Hairer and 
Leone in 1997 [190, 250] and Butcher and Hewitt in 2009 [71] proved that 
genuine multivalue numerical methods cannot be symplectic. However, nearly-
conserving linear multistep methods exhibiting excellent long-time behaviors have 
been developed by Hairer and Lubich [191, 192], Eirola and Sanz-Serna [158], 
while a theory of nearly-preserving multivalue methods has been explored in 
[67, 69, 70, 73, 122, 133, 134]. 

Other relevant classes of geometric numerical integrators fall in the field of the 
so-called energy preserving numerical integrators that are not considered here for 
the sake of brevity, but the interested reader can refer, for instance, to [31, 32, 34– 
36, 81–84, 92, 274–276, 294] and references therein. 

This short historical overview of geometric numerical integration is clearly very 
far from being exhaustive and also the mentioned references are a small portion of 
the very wide scientific literature on the topic. However, it is in the author’s opinion 
that even a brief glance at the historical frame is important to contextualize the 
results, better understand their genesis and the developments of new ideas.
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8.2 Principles of Nonlinear Stability for Runge-Kutta 
Methods 

We have introduced in Sect. 1.3 the relevant property of dissipativity of a differential 
problem, arising from a one-sided Lipschitz property of its vector field. In particular, 
we have proved that negative one-sided Lipschitz functions guarantee, according to 
Theorem 1.5, that contractive solutions with respect to a given norm are generated. 

We now aim to understand under which conditions this feature is preserved 
along the solutions computed by a Runge-Kutta method, according to the following 
definition, given by Butcher in [61]. 

Definition 8.1 Let us consider a Runge-Kutta method applied to a differential 
problem (1.1) satisfying the contractivity condition 

.〈f (t, y(t)) − f (t, ỹ(t)), y(t) − ỹ(t)〉 ≤ 0, (8.1) 

where .y(t) and .̃y(t) are two solutions of (1.1), obtained with respect to the 
distinct initial values . y0 and . ̃y0, respectively. The method is B-stable if, for 
any stepsize h, 

. ‖yn+1 − ỹn+1‖ ≤ ‖y0 − ỹ0‖, n ≥ 0.

B-stable methods are certainly A-stable; this evidence can be proved by a simple 
check, obtained with respect to the Dahlquist test problem (6.1). The vice versa 
is not true. All Gaussian Runge-Kutta methods (see Sect. 4.4.1) are B-stable; the 
interested reader can find a detailed proof in [195]. 

Clearly, Definition 8.6 needs a practical way to check whether a Runge-Kutta 
method is B-stable or not. As usual, we present an algebraic condition on the 
coefficients of the method, ensuring its B-stability. Such a conditions has been 
independently proved by Burrage, Butcher [49] and Crouzeix [103]. 

Theorem 8.1 For a given Runge-Kutta method (4.8), let us consider the 
matrix 

.M = BA + ATB − bbT, (8.2) 

where .B = diag(b). If .bi ≥ 0, .i = 1, 2, . . . , s and M is non-negative definite, 
then the Runge-Kutta method is B-stable.
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Proof According to Definition 8.6 of B-stability, let us consider a differential 
problem (1.1) generating contractive solutions and denote two of its solutions by 
.y(t) and .̃y(t). Side-by-side subtraction between two applications of the Runge-
Kutta method (4.8) for the approximation of .y(t) and .̃y(t) yields 

.yn+1 − ỹn+1 = yn − ỹn + h

s
∑

i=1

bi

(

f (tn + cih, Yi) − f (tn + cih, ˜Yi)
)

, (8.3) 

and 

.Yi − ˜Yi = yn − ỹn + h

s
∑

j=1

aij

(

f (tn + cjh, Yj ) − f (tn + cjh, ˜Yj )
)

. (8.4) 

Squaring side-by-side in (8.3) leads to 

. ‖yn+1 − ỹn+1‖2 = ‖yn − ỹn‖2

+2h
s

∑

i=1

bi〈f (tn + cih, Yi) − f (tn + cih, ˜Yi), yn − ỹn〉

+h2
s

∑

i=1

s
∑

j=1

bibj 〈f (tn + cih, Yi) − f (tn + cih, ˜Yi),

f (tn + cjh, Yj ) − f (tn + cjh, ˜Yj )〉.

Let us replace the value of .yn − ỹn computed from (8.4) in the first scalar product 
appearing in the right-hand side of last equation, obtaining 

. ‖yn+1 − ỹn+1‖2 = ‖yn − ỹn‖2

+2h
s

∑

i=1

bi〈f (tn + cih, Yi) − f (tn + cih, ˜Yi), Yi − ˜Yi〉

−h2
s

∑

i=1

s
∑

j=1

mij 〈f (tn + cih, Yi) − f (tn + cih, ˜Yi),

f (tn + cjh, Yj ) − f (tn + cjh, ˜Yj )〉.

Taking into account the contractivity condition (8.1), the hypothesis .bi ≥ 0, 
.i = 1, 2, . . . , s, and the characteristic property of non-negative matrices 

.

s
∑

i=1

s
∑

j=1

mij 〈ui, vj 〉 ≥ 0, ui, vj ∈ Rd , i = 1, 2, . . . , s,



248 8 Geometric Numerical Integration

the thesis holds true. �	

Definition 8.2 A Runge-Kutta method (4.8) such that .bi ≥ 0, .i = 1, 2, . . . , s, 
and whose matrix M defined by (8.2) is non-negative definite, is said to be 
algebraically stable. 

According to Theorem 8.1 an algebraically stable RK method is B-stable. The 
vice versa is not true in general, unless the method is non-confluent, i.e., .ci 
= cj , 
for any .i 
= j . In this case, the following result holds true. 

Theorem 8.2 A non-confluent Runge-Kutta method is B-stable if and only if 
it is algebraically stable. 

The interested reader can find a complete proof of this result in [195]. An 
equivalence theorem for confluent methods has been proved by Hundsdorfer and 
Spijker in [220]. 

The concepts and the results contained in this section are a very brief introduction 
of the building blocks of the so-called nonlinear stability theory of numerical 
methods, i.e., the analysis of the properties of numerical methods applied to non-
linear problems and the ability of numerical discretizations to retain the qualitative 
properties of nonlinear test problems. Pioneering papers on nonlinear stability 
analysis for numerical methods approximating the solutions of ODEs have been 
provided by G. Dahlquist [110, 111], starting from the notion of G-stability (also 
see [65, 195]). 

Let us now specialize our presentation to conservation issues for numerical 
methods approximating nonlinear problems with selected specific features. 

8.3 Preservation of Linear and Quadratic Invariants 

We have introduced the notion of first integral for a d-dimensional autonomous 
ODE (1.17) in Sect. 1.4. We now aim to analyze the conservative behavior of Runge-
Kutta methods (4.8) if such a first integral is linear, i.e., it is of the form 

.I (y(t)) = vTy(t), (8.5) 

with .v ∈ Rd . The following result holds true.
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Theorem 8.3 Any Runge-Kutta method (4.8) preserves linear invariants 
(8.5), i.e., 

. vTyn+1 = vTyn, n ≥ 0.

Proof According to Definition 1.4, a first integral satisfies 

. ∇I (y(t))f (y(t)) = 0,

that means, for the linear case (8.5) 

. vTf (y(t)) = 0.

Let us compute .vTyn+1, where .yn+1 is provided by a RK method (4.8), obtaining 

. vTyn+1 = vTyn + h

s
∑

i=1

biv
Tf (Yi).

Since .vTf (Yi) = 0, .i = 1, 2, . . . , s, the thesis holds true. �	
Let us now analyze the conservation of quadratic functions 

.Q(y(t)) = y(t)TCy(t), (8.6) 

where .C ∈ Rd×d is a symmetric matrix. Such a quadratic form is a first integral 
of (1.17), according to Definition 1.4, if  

.y(t)TCf (y(t)) = 0. (8.7) 

This condition is useful to prove the following result, proved by Cooper in [98]. 

Theorem 8.4 If the coefficients of a Runge-Kutta method (4.8) fulfill the 
condition 

.biaij + bjaji = bibj , i, j = 1, 2, . . . , s, (8.8) 

then it preserves quadratic invariants (8.6), i.e., 

.yT
n+1Cyn+1 = yT

nCyn, n ≥ 0.
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Proof Let us compute the quadratic form .yT
n+1Cyn+1, obtaining 

. 

yT
n+1Cyn+1 = yT

nCyn + h

s
∑

i=1

bif (Yi)
TCyn + h

s
∑

i=1

biy
T
nCf (Yi)

+ h2
s

∑

i,j=1

bibjf (Yi)
TCf (Yj ).

Let us analyze the .O(h) terms in the right-hand side of last equation, by recasting 
. yn using the formula of the internal stages in (4.8), i.e., 

. yn = Yi − h

s
∑

j=1

aij f (Yj ).

We correspondingly obtain 

. 

h

s
∑

i=1

bif (Yi)
TCyn = h

s
∑

i=1

bif (Yi)
TCYi − h2

s
∑

i,j=1

biaij f (Yi)
TCf (Yj ),

h

s
∑

i=1

biy
T
nCf (Yi) = h

s
∑

i=1

biY
T
i Cf (Yi) − h2

s
∑

i,j=1

bjajif (Yi)
TCf (Yj ),

i.e., by means of (8.7), 

. 

h

s
∑

i=1

bif (Yi)
TCyn = −h2

s
∑

i,j=1

biaij f (Yi)
TCf (Yj ),

h

s
∑

i=1

biy
T
nCf (Yi) = −h2

s
∑

i,j=1

bjajif (Yi)
TCf (Yj ).

We finally get 

. yT
n+1Cyn+1 = yT

nCyn − h2
s

∑

i,j=1

(biaij + bjaji − bibj )f (Yi)
TCf (Yj ),

leading to the thesis. �	
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It is worth observing that Eq. (8.8) provides an algebraic condition on the 
coefficients of RK methods that can more compactly be written as .M = 0, where 
the matrix M is defined by (8.2). In other terms, the matrix M plays a role both 
in retaining the contractive character of solutions to dissipative problems and in 
conserving quadratic first integrals. However, the story does not end here, as we 
recognize in next section: indeed, RK methods satisfying (8.8) are particularly 
relevant in the numerical approximation of Hamiltonian problems. 

We have realized that any Runge-Kutta method is able to exactly preserve 
linear invariants, while quadratic invariants are preserved only by a family of 
Runge-Kutta methods. A natural question to ask is what happens to polynomial 
invariants of degree greater than or equal to 3. This (negative) result gives the 
answer related to RK methods, whose complete proof can be found in [192]. 
Clearly, as aforementioned, since Runge-Kutta methods are not able to cover 
themselves all possible conservation issues, other relevant classes of geometric 
numerical integrators have been introduced, most of them falling in the general 
field of energy-preserving numerical methods (the reader can refer, for instance, 
to [31, 32, 34–36, 81–84, 92, 274–276, 294] and references therein). 

8.4 Symplectic Methods 

We have introduced a relevant class of conservative problems in Sect. 1.4, i.e., 
Hamiltonian problems (1.28). A characteristic property of these problems, as proved 
in Theorem 1.6 is the symplecticity of the corresponding flow map. In the spirit of 
geometric numerical integration we are interested in understanding under which 
conditions a numerical method is able to retain the same property along discretized 
dynamics. Let us particularly focus on one-step methods; we represent them as a 
map . ϕh that associates .yn+1 to . yn and give the following definition. 

Definition 8.3 A one-step method is symplectic if the one-step map . ϕh is 
a symplectic transformation when applied to a smooth Hamiltonian prob-
lem (1.28), i.e., if 

. ϕ′
h(yn)

TJϕ′
h(yn) = J.

We now provide important examples of symplectic methods, starting from the 
famous symplectic Euler method, introduced by de Vogelaere in [144].



252 8 Geometric Numerical Integration

Theorem 8.5 (de Vogelaere) The symplectic Euler method 

.

pn+1 = pn − hHq(pn+1, qn),

qn+1 = qn + hHp(pn+1, qn),
(8.9) 

for the numerical solution of Hamiltonian problems (1.22) is a symplectic 
method of order 1. 

Proof We first differentiate (8.9) side-by-side with respect to .(pn, qn), obtaining 

. 

∂pn+1

∂pn

= ∂pn

∂pn

− hHqp

∂pn+1

∂pn

,

∂pn+1

∂qn

= −hHqp

∂pn+1

∂qn

− hHqq

∂qn

∂qn

,

∂qn+1

∂pn

= hHpp

∂pn+1

∂pn

∂qn+1

∂qn

= ∂qn

∂qn

+ hHpp

∂pn+1

∂qn

+ hHpq

∂qn

∂qn

being .I ∈ Rd×d the identity matrix and avoiding to explicitly write the dependence 
of the Hamiltonian function on .(pn+1, qn) for the sake of brevity. As a consequence, 

. 

(

I + hHqp

) ∂pn+1

∂pn

= I,

(

I + hHqp

) ∂pn+1

∂qn

= −hHqq,

−hHpp

∂pn+1

∂pn

+ ∂qn+1

∂pn

= 0,

−hHpp

∂pn+1

∂qn

+ ∂qn+1

∂qn

= I + hHpq.

Recasting above relations in a compact matrix form yields 

.

[

I + hHqp 0

−hHpp I

]

⎡

⎢

⎢

⎣

∂pn+1

∂pn

∂pn+1

∂qn

∂qn+1

∂pn

∂qn+1

∂qn

⎤

⎥

⎥

⎦

=
[

I −hHqq

0 I + hHpq

]

,
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from which we compute 

. 

⎡

⎢

⎢

⎣

∂pn+1

∂pn

∂pn+1

∂qn

∂qn+1

∂pn

∂qn+1

∂qn

⎤

⎥

⎥

⎦

=
[

I + hHqp 0

−hHpp I

]−1 [

I −hHqq

0 I + hHpq

]

=
[

D −hDHqq

hHppD −h2HppDHqq + D−1

]

,

where .D = (I + hHqp)−1. The reader can easily check that the symplecticity 
condition 

. 

⎡

⎢

⎢

⎣

∂pn+1

∂pn

∂pn+1

∂qn

∂qn+1

∂pn

∂qn+1

∂qn

⎤

⎥

⎥

⎦

T

J

⎡

⎢

⎢

⎣

∂pn+1

∂pn

∂pn+1

∂qn

∂qn+1

∂pn

∂qn+1

∂qn

⎤

⎥

⎥

⎦

= J

holds true. �	
We observe that the symplectic Euler method (8.9) is implicit with respect to p. 

An alternative version implicit in q also exists, given by 

.

pn+1 = pn − hHq(pn, qn+1),

qn+1 = qn + hHp(pn, qn+1)

(8.10) 

and the reader can check its symplecticity, applying similar arguments as those used 
in the proof of Theorem 8.5, see Exercise 1 at the end of this chapter. 

Let us now provide a Matlab implementation of the symplectic Euler 
method (8.9) applied to (1.22), given in Program 8.1. The code requires defining 
the right-hand side of (1.22) through the functions fp.m and fq.m. Moreover, the 
built-in function fsolve is used to handle the implicitness of (8.9). 

Program 8.1 (Symplectic Euler Method) 
% Function implementing the symplectic Euler method (8.9) 
% for the numerical solution of a Hamiltonian problem 
% on a uniform grid. 

% Inputs 
% - problem: label of the problem to be solved; 
% - tspan: vector of two components, storing the extrema 
% of the integration interval; 

(continued)
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Program 8.1 (continued) 
% - p0: initial momentum; 
% - q0: initial position; 
% - h: constant stepsize. 

% Outputs 
% - t: set of N equidistant grid points (tspan(1) excluded); 
% - p: d. ×N matrix whose i-th column p(:,i) stores the 
% approximate momentum in the i-th grid point; 
% - q: d. ×N matrix whose i-th column p(:,i) stores the 
% approximate position in the i-th grid point. 

function [t,p,q]=symplecticEuler(problem,tspan,p0,q0,h) 
N=(tspan(2)-tspan(1))/h; 
t=linspace(h,tspan(2),N); 
d=length(p0); 
p=zeros(d,N); 
q=zeros(d,N); 
options=optimset(’Display’,’off’,’TolFun’,eps,’TolX’,eps); 
p(:,1)=fsolve(@(x) x-p0-h*fp(problem,x,q0),p0,options); 
q(:,1)=q0+h*fq(problem,p(:,1),q0); 
for i=2:N 

p(:,i)=fsolve(@(x) x-p(:,i-1)+... 
h*fp(problem,x,q(:,i-1)),p(:,i-1),options); 

q(:,i)=q(:,i-1)+h*fq(problem,p(:,i),q(i-1)); 
end 

Example 8.2 Let us solve the system of ODEs for the mathematical pendu-
lum (1.23) by the symplectic Euler method (8.9), in order to check if the 
symplecticity of the continuous flow is also retained along the numerical 
dynamics. The numerical evidence is provided by using Program 8.1 and 
displayed in Fig. 8.5, showing that the symplecticity of the phase space is 
nicely preserved by (8.9) that provides the periodic orbit characterizing the 
dynamics of (1.23). This property is not visible if a non-symplectic method is 
used: for instance, computing the numerical dynamics by means of the explicit 
Euler method (2.19) provides the phase portrait depicted in Fig. 8.6, where the 
symplecticity of the original problem is totally lost. 

Let us now analyze the property of symplecticity for Runge-Kutta methods, 
applied to Hamiltonian problems (1.22). This topic has been object of seminal 
papers, all dated 1988, independently authored by Lasagni [244], Sanz-Serna [307], 
Suris [331]. The proof of symplecticity for Runge-Kutta methods relies on the 
following lemma [27, 192].
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Fig. 8.5 Phase portrait 
associated to the approximate 
solution to the mathematical 
pendulum (1.23) with initial 
values .p(0) = 0 and 
.q(0) = 1, computed by the 
symplectic Euler 
method (8.9) with stepsize 
. 10−1

Fig. 8.6 Phase portrait 
associated to the approximate 
solution to the mathematical 
pendulum (1.23) with initial 
values .p(0) = 0 and 
.q(0) = 1, computed by the 
explicit Euler method (2.19) 
with stepsize . 10−1

Lemma 8.1 Consider an autonomous problem (1.17) and its variational 
equation (1.29). Correspondingly, let us denote by .yn+1 = �h(yn) the map 
associating a single step of a given Runge-Kutta method from the point . tn to 
.tn+1 of the grid. Then, the following diagram commutes: 

(continued)
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Lemma 8.1 (continued) 

where the horizontal arrows denote differentiation with respect to . y0 and 
the vertical arrows the application of . �h. In other terms, the numerical result 
.{y1,M1} obtained by applying a single step of the method to the problem 
augmented by its variational equation is equal to the numerical solution of 
.ẏ = f (y) augmented by its derivative .M1 = ∂y1/∂y0. 

Proof We first compute a single step of a RK method (4.8) applied to (1.17) and 
side-by-side differentiate with respect to . y0, obtaining 

.

∂y1

∂y0
= I + h

s
∑

i=1

bif
′(Yi)

∂Yi

∂y0
,

∂Yi

∂y0
= I + h

s
∑

j=1

aij f
′(Yj )

∂Yj

∂y0
, i = 1, 2, . . . , s.

(8.11) 

We observe that the last equation is a linear system in the unknowns . 
∂Yi

∂y0
, 

.i = 1, 2, . . . , s. 
We now aim to prove that side-by-side differentiating (1.17) and then apply-

ing (4.8) lead to the same result. So, we apply (4.8) directly to the variational 
equation (1.29), getting 

.

∂y1

∂y0
= I + h

s
∑

i=1

bif
′(Yi)˜Mi,

˜Mi = I + h

s
∑

j=1

aij f
′(Yj )˜Mj, i = 1, 2, . . . , s.

(8.12)
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We observe that last equation is also a linear system in the unknowns . ˜Mi , 
.i = 1, 2, . . . , s. Moreover, the two linear systems displayed as second equations 
of (8.11) and (8.12) act exactly in the same way. For sufficiently small values of 
h, both systems have unique solution and, since they are the same system, we have 
.˜Mi = ∂Yi/∂y0 and, consequently, .M1 = ∂y1/∂y0. So the diagram in the statement 
of the lemma commutes. �	

Theorem 8.6 Any RK method (4.8) preserving quadratic first integrals (8.6) 
is a symplectic method. 

Proof Let us consider the augmented system 

.

ẏ = J−1∇H(y),

Ṁ = J−1∇2H(y)M,
(8.13) 

containing the Hamiltonian problem (1.28) and its variational equation. Let us prove 
that .MTJM is a first integral for (8.13). Indeed, 

. 

d

dt
(MTJM) = ṀTJM + MTJṀ

=
(

J−1∇2H(y)M
)T

JM + MTJJ−1∇2H(y)M

= MT
(

∇2H(y)
)T

(J−1)TJψ + MT∇2H(y)M

= −MT∇2H(y)M + MT∇2H(y)M = 0.

In other terms, .MTJM is a quadratic first integral of (8.13) and is preserved by 
any RK method fulfilling the condition (8.8) of conservation of quadratic invariants 
described in Theorem 8.4. The conserved value of .MTJM is then equal to its initial 
value, i.e., .MTJM = J , that is the symplecticity condition. So, all RK conserving 
quadratic invariants are symplectic. �	

It is worth highlighting that condition (8.8) is then also a symplecticity condition. 
For this reason, the literature directly denotes RK methods satisfying (8.8) as 
symplectic RK methods. A consequence of this result is that all Gaussian RK 
methods (see Sect. 4.4.1) are symplectic methods; Program 8.2 implements one 
of them, namely that depending on two internal stages (4.25), to solve a given  
Hamiltonian problem.
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Program 8.2 (Symplectic RK Method (2-Stage Gaussian Method)) 
% Function implementing the 2-stage Gaussian method (4.25) 
% for the numerical solution of a Hamiltonian problem 
% on a uniform grid. 

% Inputs 
% - problem: label of the problem to be solved; 
% - tspan: vector of two components, storing the extrema 
% of the integration interval; 
% - y0: vector of initial momenta (stored in y0(1:d)) and 
% initial positions (stored in y0(d+1:2d)) 
% - h: constant stepsize. 

% Outputs 
% - t: set of N equidistant grid points (tspan(1) excluded); 
% - y: 2d. ×N matrix whose i-th column stores approximate 
% momenta (in y0(1:d)) and coordinates (in y0(d+1:2d)), 
% referring to the i-th grid point; 
% - hamDev: N-dimensional vector storing the deviation 
% of the Hamiltonian function in each grid point 
% from the initial Hamiltonian; 

function [t,y,hamDev]=GaussRK2s(problem,tspan,y0,h) 
N=(tspan(2)-tspan(1))/h; 
t=linspace(h,tspan(2),N); 
d=length(y0)/2; 
Id=eye(2*d); 
y=zeros(2*d,N); 
hamDev=zeros(N,1); 
c=[(3-sqrt(3))/6; (3+sqrt(3))/6]; e=ones(length(c),1); 
A=[1/4 1/4-sqrt(3)/6; 1/4+sqrt(3)/6 1/4]; 
b=[1; 1]/2; 
options=optimset(’Display’,’off’,’TolFun’,eps,’TolX’,eps); 
Y=fsolve(@(Z) Z-kron(e,Id)*y0-h*kron(A,Id)*... 

[f(problem,[],Z(1:2*d)); f(problem,[],Z(2*d+1:4*d))],... 
[y0; y0],options); 

y(:,1)=y0+h*kron(b’,Id)*... 
[f(problem,[],Y(1:2*d)); f(problem,[],Y(2*d+1:4*d))]; 

ham0=hamiltonian(problem,y0); 
hamDev(1)=abs(hamiltonian(problem,y(:,1))-ham0); 
for i=2:N 

Y=fsolve(@(Z) Z-kron(e,Id)*y(:,i-1)-h*kron(A,Id)*... 
[f(problem,[],Z(1:2*d)); f(problem,[],Z(2*d+1:4*d))],... 
[y(:,i-1); y(:,i-1)],options); 

y(:,i)=y(:,i-1)+h*kron(b’,Id)*[f(problem,[],Y(1:2*d)); 
f(problem,[],Y(2*d+1:4*d))]; 

hamDev(i)=abs(hamiltonian(problem,y(:,i))-ham0); 
end
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Fig. 8.7 Phase portrait 
of (1.27) in the 
.(p1, q1)-plane, with initial 
values .p1(0) = 0.2, 
.p2(0) = 0, .q1(0) = −0.2, 
.q2(0) = 0. The displayed 
dynamics originates from the 
application of the symplectic 
two-stage Gaussian RK 
method (4.25) with stepsize 
. h = 0.1

A numerical evidence of the symplecticity of Gaussian RK method is certainly 
given by Example 8.1. An additional one is reported in the following example, 
whose results have been obtained via Program 8.2. 

Example 8.3 Let us consider Hénon-Heiles problem (1.26), already analyzed 
in Example 1.9 in order to provide a numerical evidence of the symplecticity 
of the two-stage Gaussian RK method (4.25). Figures 8.7, 8.8, 8.9, and 8.10 
display the phase portrait in several planes and provide a confirmation of 
the symplecticity of the numerical scheme, able to recover the symplecticity 
of the original problem along the numerical dynamics. We observe that the 
chosen time window is .[0, 4000] and the employed stepsize is .h = 0.1. 

8.5 Symmetric Methods 

A relevant property of mechanical systems is their time reversibility; in terms of flow 
map, this property is equivalent to say that .�t ◦ �−t is the identity map. In other 
terms, for a reversible system with initial value . y0, the dynamics starting from . y(t)

with reverse time goes back to . y0. In this section, we aim to understand under which 
conditions this property is recovered by a one-step method. Then, the following 
definitions are given.
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Fig. 8.8 Phase portrait 
of (1.27) in the 
.(p1, q2)-plane, with initial 
values .p1(0) = 0.2, 
.p2(0) = 0, .q1(0) = −0.2, 
.q2(0) = 0. The displayed 
dynamics originates from the 
application of the symplectic 
two-stage Gaussian RK 
method (4.25) with stepsize 
. h = 0.1

Fig. 8.9 Phase portrait 
of (1.27) in the 
.(p2, q1)-plane, with initial 
values .p1(0) = 0.2, 
.p2(0) = 0, .q1(0) = −0.2, 
.q2(0) = 0. The displayed 
dynamics originates from the 
application of the symplectic 
two-stage Gaussian RK 
method (4.25) with stepsize 
. h = 0.1

Fig. 8.10 Phase portrait 
of (1.27) in the 
.(p2, q2)-plane, with initial 
values .p1(0) = 0.2, 
.p2(0) = 0, .q1(0) = −0.2, 
.q2(0) = 0. The displayed 
dynamics originates from the 
application of the symplectic 
two-stage Gaussian RK 
method (4.25) with stepsize 
.h = 0.1
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Definition 8.4 Given a one-step method . ϕh, its adjoint method is the one-step 
map 

. ϕ�
h = ϕ−1

−h.

Definition 8.5 A one-step method . ϕh is symmetric if it is equal to its adjoint. 

Example 8.4 Let us compute the adjoint of the explicit Euler method (2.19), 
i.e., 

. yn = yn+1 − hf (yn+1).

Rearranging the terms in the last equation leads to the implicit Euler 
method (2.32). Hence, the explicit Euler method is not self-adjoint, so it is 
not symmetric. 

The implicit midpoint method (4.24) is symmetric since its adjoint method 
is given by 

. yn = yn+1 − hf

(

1

2
(yn+1 + yn)

)

,

i.e., it is the implicit midpoint method as well. 

The following theorem provides a relevant accuracy property of symmetric 
methods, useful for their construction and analysis. Indeed, we now prove that the 
order of convergence of a symmetric method is always even, then their construction 
requires to fulfill a restricted number of order conditions. 

Theorem 8.7 The order of a symmetric one-step method is even.
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Proof Let us denote by p the order of convergence of the method. Then (also see 
Theorem 3.2, Section II.3 in [192]), a single step of length h satisfies 

. ϕh(y0) = �h(y0) + Chp+1 + O(hp+2),

where C is the error constant of the method. Performing a step in reverse time 
leading to . y0 yields 

. y0 = ϕ−h(�h(y0)) + (−1)pChp+1 + O(hp+2).

Inverting the operator 

. ϕ�
h(y0) = �h(y0) + (−1)pChp+1 + O(hp+2).

Therefore, the adjoint of a method of order p has order p as well. Moreover, since 
the method is symmetric, then .C = (−1)pC and, as a consequence, the error 
constant C is different from 0 only for even values of p. �	

We now aim to give a characterization of symmetric Runge-Kutta methods, 
provided in terms of algebraic conditions on their coefficients, as usual. 

Theorem 8.8 If the coefficients of a given Runge-Kutta method (4.8) satisfy 
the conditions 

.as+1−i,s+1−j + aij = bj , i, j = 1, 2, . . . , s, (8.14) 

then, the method is symmetric. 

Proof The first step of the proof consists in computing the coefficients of the adjoint 
of a Runge-Kutta method (4.8). Referring to a single step with stepsize . −h, leading 
to . yn if we start from .yn+1, the internal stages . Y �

i of the adjoint method are given 
by 

.

Y �
i = yn+1 − h

s
∑

j=1

aij f (Yj ) = yn + h

s
∑

j=1

bjf (Yj ) − h

s
∑

j=1

aij f (Yj )

= yn + h

s
∑

j=1

(bj − aij )f (Yj ).
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Observing that the internal stages of the adjoint method appear in reverse order with 
respect to those of the original method, i.e., 

. Y �
i = Ys+1−i , i = 1, 2, . . . , s,

the coefficients of the adjoint are then given by 

. a�
ij = bs+1−j − as+1−i,s+1−j , i, j = 1, 2, . . . , s.

Proceeding similarly with the advancing law, we obtain 

. b�
i = bs+1−i , i = 1, 2, . . . , s.

The second step of the proof is a trivial check of the conditions guaranteeing that the 
method is equal to its adjoint, i.e., .a�

ij = aij and .b�
i = bi , leading to the thesis. �	

Example 8.5 Let us specialize the symmetry conditions (8.14) to specific 
values of s, in order to check the symmetry of some methods presented in 
the previous chapters. 

For .s = 1, (8.14) yields 

. b1 = 2a11.

This condition is certainly satisfied by the one-stage Gaussian Runge-Kutta 
method (4.23), i.e., the implicit midpoint method, that is a symmetric method 
of order 2. This result is not surprising, since we have already given a direct 
proof of symmetry for the implicit midpoint method in Example 8.4. 

For .s = 2, (8.14) yields 

. a11 + a22 = a12 + a21, b1 = b2.

These conditions are satisfied by the two-stage Gaussian Runge-Kutta 
method (4.25), as well as by the two-stage Lobatto IIIA and Lobatto IIIB 
methods, presented in Sect. 4.4.3. Hence, these methods are symmetric. 

Actually, the property is more general: all Gaussian Runge-Kutta methods 
(see Sect. 4.4.1) are symmetric. Similarly, all Lobatto IIIA and Lobatto IIIB 
(presented in Sect. 4.4.3) are symmetric as well. The interested reader can find 
a detailed proof in [192]. 

We finally aim to understand which is the connection between symplecticity and 
symmetry for RK methods. In some cases (as it happens for Gaussian RK methods),
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the two notions coexist, while in other cases (think of Lobatto IIIA methods) they 
do not. The following result holds true. 

Theorem 8.9 For a given Runge-Kutta method (4.8) the following statements 
are equivalent: 

• the method is symmetric for linear problems .y′ = Ly, with .L ∈ Rd×d ; 
• the method is symplectic for problems of the type .y′ = JCy, where C is a 

symmetric matrix; 
• the stability function .R(z) of the method, defined in (6.9), satisfies 

.R(−z)R(z) = 1, for any .z ∈ C. 

Proof Applying a RK method to a linear problem .y′ = Ly leads to the recurrence 
.yn+1 = R(hL)yn, where .R(hL) is the matrix version of the stability function (6.9) 
of the employed RK method, defined for linear scalar test problems. Symmetry 
holds true if and only if .yn = R(−hL)yn+1, leading to .R(−hL)R(hL) = I , being 
.I ∈ Rd×d is the identity matrix. 

Applying a RK method to the problem .y′ = JCy leads to .yn+1 = R(hJC)yn. 
As a consequence, since .ϕ′

h(yn) = R(hJC), the symplecticity condition reads 

.R(hJC)TJR(hJC) = J (8.15) 

and, since for implicit Runge-Kutta methods .R(z) is a rational function, its matrix 
counterpart can be factored out as 

. R(hJC) = P(hJC)Q(hJC)−1.

Consequently, condition (8.15) is equivalent to 

. Q(hJC)−ᵀP(hJC)TJP (hJC)Q(hJC)−1 = J,

i.e., 

. P(hJC)TJP (hJC) = Q(hJC)TJQ(hJC).

Algebraic manipulations of the last expression (left to the reader, see Exercise 3 at 
the end of this chapter) lead to .R(−hJC)R(hJC) = I . �	

Let us observe that symmetry and symplecticity are equivalent concepts if the 
problem is of type .y′ = JCy. This is certainly true for Hamiltonian problems with 
quadratic Hamiltonian function .H(y) = 1

2y
TCy, where C is a symmetric matrix, 

since .∇H(y) = Cy.
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8.6 Backward Error Analysis 

As highlighted at the beginning of this chapter, a geometric numerical method is 
able to retain characteristic features of a dynamical system over long times. Studying 
the long-term character of numerical methods for ODEs has already regarded, for 
instance, the analysis of their linear and nonlinear stability properties, presented in 
the previous sections. A very effective tool in order to investigate the long-term 
conservative property of candidate geometric numerical methods is the backward 
error analysis, extensively presented in [192] and references therein, whose origin 
comes from numerical linear algebra (in particular the work of Wilkinson [345]). 

The main ingredient of backward error analysis consists in inspecting the 
properties of differential equations associated to a numerical method, well known 
as modified differential equations, whose role is clarified in the following section. 

8.6.1 Modified Differential Equations 

Let us focus on the solution of an autonomous problem (1.17) by a one-step method 
that, over a single step, is briefly denoted as the map 

. yn = ϕh(yn−1).

Forward error analysis is performed after computing the numerical solution, by 
estimating the local error (i.e., the local on a single step, such as .y1 − �h(y0), 
being . � the flow map of the continuous problem) or the global error (i.e., the 
error overall the integration interval so far, without localizing assumptions, given by 
.yn − �t0+nh(y0)). 

Backward error analysis is the analysis of a continuous problem relying on the 
so-called modified differential equations, whose exact solution is the numerical 
solution of the original ODEs. More specifically, we search for an ordinary 
differential equation .ỹ′ = fh(ỹ), written in terms of a formal power series of h, i.e., 

.ỹ′ = f (ỹ) + hf2(ỹ) + h2f3(ỹ) + . . . , (8.16) 

such that .yn = ỹ(t0 + nh). The error is then measured as difference between 
the vector field .f (y) of the original problem (1.17) and that of the modified 
differential equation (8.16), namely .fh(y). In other terms, the idea is to interpret 
the numerical solution computed by a given numerical method as the exact solution 
of a continuous problem. The right-hand side in (8.16) may generally give rise to a 
divergent series, so we will later employ just a truncation of it. 

Under suitable regularity assumptions, the computation of modified differential 
equations can be provided, for instance, by means of Taylor series arguments and
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using the expressions of the elementary differentials introduced in Sect. 4.2.2, as  
follows. Let us first expand .ỹ(t + h) around t , leading to 

. ỹ(t + h) = ỹ(t) + hỹ′(t) + h2

2
ỹ′′(t) + h3

6
ỹ′′′(t) + . . .

= ỹ(t) + h
(

f + hf2 + h2f3 + . . .
)

+ h2

2

(

f ′ỹ′(t) + hf ′
2ỹ

′(t) + . . .
)

+h3

6

(

f ′′(f, f ) + f ′f ′f + . . .
) + . . .

= ỹ(t) + h
(

f + hf2 + h2f3 + . . .
)

+h2

2

(

f ′ + hf ′
2 + . . .

)

(f + hf2 + . . .)

+h3

6

(

f ′′(f, f ) + f ′f ′f + . . .
) + . . . (8.17) 

or, equivalently, 

. 

ỹ(t + h) = ỹ(t) + hf + h2
(

f2 + 1

2
f ′f

)

+ h3
(

f3 + 1

2

(

f ′f2 + f ′
2f

) + 1

6

(

f ′′(f, f ) + f ′f ′f
)

)

+ . . .

(8.18) 

In the expressions above we have omitted the dependence of f , . f2, . f3 and their 
derivatives on .ỹ(t), in order to simplify the notation. 

Supposing that the one-step map .φh(y) can be expanded itself in power series of 
h, with coefficient .f (y) for the power 1 due to the consistency of the method, i.e., 

.ϕh(y) = y + hf (y) + h2d2(y) + h3d3(y) + . . . (8.19) 

yields 

.

f2 = d2(y) − 1

2
f ′f,

f3 = d3(y) − 1

6

(

f ′′(f, f ) + f ′f ′f
) − 1

2

(

f ′f2 + f ′
2f

)

,

(8.20) 

and so on, by comparison of (8.18) and (8.19). 
Let us provide an example of computation of modified differential equations for 

selected numerical methods aimed to solve a scalar problem.
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Example 8.6 Let us consider the following differential equation 

.y′(t) = y(t)4, (8.21) 

assuming .y(0) = 1 as initial value, the exact solution is 

. y(t) = 3

√

1

1 − 3t
.

We aim to compute the modified differential equation associated to the 
explicit Euler method (2.19). Clearly, in this case we have .dj (y) = 0 for 
all .j ≥ 2 in (8.19). The coefficients given in (8.20) assume the form 

. f2(y) = −3

2
y5, f3(y) = 19

3
y10.

As a consequence, the modified differential equation for the explicit Euler 
method applied to the logistic equation (8.21) reads 

.ỹ′ = ỹ4 − 3

2
hỹ5 + 19

3
h2ỹ10 + . . . (8.22) 

Figure 8.11 compares the solution of the original problem based on the 
ODE (8.21) with the solution of the modified differential equations truncated 
after the h and . h2 terms. We observe that taking more terms in the modified 
differential equation improves the agreement between numerical and exact 
solutions. 

The following theorem highlights an important, though expectable, property: the 
perturbation term in the modified differential equation of an order p method has 
magnitude .O(hp). 

Theorem 8.10 The modified differential equation (8.16) of a one-step 
method .yn+1 = ϕh(yn) of order p has the form 

. ỹ′ = f (ỹ) + hpfp+1(ỹ) + hp+1fp+2(ỹ) + . . . ,

with .fp+1(y) equal to the principal error term of the method.
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Fig. 8.11 Exact solution of 
Eq. (8.21) (solid line) vs 
solutions of the modified 
differential equation (8.22) of 
the explicit Euler method, 
truncated at the . O(h)

(dashed-dotted line) and 
.O(h2) (dashed line) terms 

Proof The proof follows straightforwardly from the fact that .fj (y) = 0, for  . 2 ≤
j ≤ p, if and only if .ϕh(y) − �h(y) = O(hp+1). �	

A special case worth being considered regards the analysis of modified differ-
ential equations of symplectic methods [23, 192, 277, 336], hence with a focus on 
Hamiltonian problems (1.28). To this purpose, it is useful introducing the following 
lemma [192]. 

Lemma 8.2 Let . 	 be an open set of .Rd and .f : 	 → R
d be a 

continuously differentiable function, whose Jacobian is symmetric. Then, 
for any .y0 ∈ 	 there exists a neighborhood of . y0 and a function 
.H(y) such that .f (y) = ∇H(y) on this neighborhood. 

Theorem 8.11 Consider a symplectic method .ϕh(y) applied to a Hamil-
tonian system (1.28) with smooth Hamiltonian. Then, the corresponding 
modified differential equation 

. ˙̃y = f (ỹ) + hf2(ỹ) + h2f3(ỹ) + . . .

is also Hamiltonian. In particular, there exist smooth functions . Hj : R2d → R

for .j = 2, 3, . . ., such that .fj (y) = J∇Hj (y).
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Proof The proof is given by induction. In particular, since .f1(y)= f (y)= J∇H(y), 
we assume that .fj (y) = J∇Hj (y) is satisfied for .j = 1, 2, . . . , r and aim to prove 
the existence of a Hamiltonian .Hr+1(y). According to the inductive hypothesis, the 
truncated modified differential equation 

. ˙̃y = f (ỹ) + hf2(ỹ) + · · · + hr−1fr(ỹ)

is Hamiltonian, with Hamiltonian function given by . H(y) + hH2(y) + · · · +
hr−1Hr (y). Defining its flow by .�r,t (y0), we have  

. 
ϕh(y0) = �r,t (y0) + hr+1fr+1(y0) + O(hr+2),

ϕ′
h(y0) = �′

r,t (y0) + hr+1f ′
r+1(y0) + O(hr+2) .

Since the method is symplectic and the inductive hypothesis holds true, both . ϕh and 
.�r,h are symplectic maps. Taking into account that .�′

r,h(y0) = I + O(h), we have  
that 

. 

J = ϕ′
h(y0)

TJϕ′
h(y0)

=
(

�′
r,t (y0) + hr+1f ′

r+1(y0)
)T

J
(

�′
r,t (y0) + hr+1f ′

r+1(y0)
)

+ O(hr+2)

=
(

I + hr+1f ′
r+1(y0)

)T

J
(

I + hr+1f ′
r+1(y0)

)

+ O(hr+2)

= J + hr+1 (

f ′
r+1(y0)

TJ + Jf ′
r+1(y0)

) + O(hr+2).

This means that the matrix .J Tf ′
r+1(y0) is symmetric and, by means of Lemma 8.2, 

there exists .Hr+1(y) such that 

. J Tfr+1(y0) = ∇Hr+1(y)

or, equivalently, 

. fr+1(y0) = J∇Hr+1(y),

that completes the proof. �	
We complete this section presenting a couple of results regarding the construction 

of the modified differential equation for the adjoint of a numerical method and, as 
a consequence, we provide an important result concerning the modified differential 
equations of symmetric methods.
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Theorem 8.12 Considering a one-step method .ϕh(y), whose modified differ-
ential equation (8.19) has coefficients .fj (y), the coefficients of the modified 
equations of its adjoint .ϕ�

h(y) satisfy 

. f �
j (y) = (−1)j+1fj (y).

Proof The thesis holds true in straightforward way, by considering that . ỹ(t − h) =
ϕ−h(ỹ(t)). Consequently, it is enough to replace h by . −h in formulae (8.16), (8.17) 
and (8.19) to obtain the thesis. �	

Corollary 8.1 The right-hand side of the modified differential equation of a 
symmetric method only consists in even powers of h. 

Proof The thesis is direct consequence of Theorem 8.12, since a symmetric method 
coincides with its adjoint and, therefore, the same happens to their modified differ-
ential equations. Thus, any .fj (y) is null, whenever j is even; coefficients of (8.16) 
with even subindices are those related to odd powers of h that, consequently, 
disappear from (8.16) if the method is symmetric. �	

8.6.2 Truncated Modified Differential Equations 

As aforementioned, the presentation of modified differential equations so far has 
been based on considering their right-hand side as a formal series of powers of h, 
without taking into account its convergence. Unfortunately, as clearly highlighted in 
[192], such a power series is almost never convergent, actually even in very simple 
situations. As a consequence, we should consider a proper truncation of the modified 
differential equations, up to an optimal index to be properly chosen. Such a choice 
is based on rigorous error estimates, described in details in [192] and references 
therein. Here we report themwithout their proofs, that can be found in the mentioned 
monograph by Hairer, Lubich and Wanner. 

We aim to find an optimal truncation index N for the modified differential 
equation (8.16) leading to 

.ỹ′ = FN(ỹ) = f (ỹ) + hf2(ỹ) + . . . + hN−1fN(ỹ),
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with .ỹ(0) = y0. To this purpose, the following bound on the coefficients of (8.16), 
whose proof can be found in [192], is particularly useful. 

Theorem 8.13 Suppose that .f (y) is analytic in .B2R(y0) and the coefficients 
of (8.19) are also analytic in .BR(y0). Assume that there exists a positive M 
such that .‖f (y)‖ ≤ M , for any .‖y − y0‖ ≤ 2R. Moreover, assume that each 
.dj (y) in (8.19) satisfies 

. ‖dj (y)‖ ≤ μM

(

2κM

R

)j−1

,

for any .‖y − y0‖ ≤ R, where 

. μ =
s

∑

i=1

|bi |, κ = max
i=1,2,...,s

s
∑

j=1

|aij |.

Then, the following bound holds true 

.‖fj (y)‖ ≤ ln 2 ηM

(

ηMj

R

)j−1

, (8.23) 

assuming that .‖y − y0‖ ≤ R/2 and being .η = 2max (κ, μ/(2 ln 2 − 1)). 

Taking into account the bound (8.23) and since the function .(εx)x has a minimum 
at .x = (εe)−1, it makes sense assuming as truncation index the integer N such that 

. 
ηMN

R
≤ 1

he

or, in less restrictive way, 

. hN ≤ eh0,

being .h0 = R
eηM

. In this way, since .‖f (y)‖ ≤ M and using (8.23), we have  

.‖FN(y)‖ ≤ M

⎛

⎝1 + η ln 2
N

∑

j=2

(

ηMj

R

)j−1
⎞

⎠ ≤ M

⎛

⎝1 + η ln 2
N

∑

j=2

(

j

hN

)j−1
⎞

⎠ ,
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leading to 

. ‖FN(y)‖ ≤ M(1 + 1.65η).

The following result holds true (see [192]). 

Theorem 8.14 Let .f (y) be analytic in .B2R(y0) and the coefficients . dj (y)

of (8.19) analytic in .BR(y0). If  .h ≤ h0/4, then there exists .N = N(h) (the 
largest integer satisfying .hN ≤ h0), such that 

. ‖ϕh(y0) − �N,h(y0)‖ ≤ hγMe−h0/h,

with .γ = e(2 + 1.65 + μ) only depending on the method. 

In other terms, for problems with analytic vector fields, the numerical solution 
computed by a one-step method and the solution of the corresponding modified dif-
ferential equation, truncated after .N ∼ 1

h
terms, differ by a term that is exponentially 

small. 

8.6.3 Long-Term Analysis of Symplectic Methods 

The core of backward error analysis in the context of geometric numerical inte-
gration certainly involves the study of the long-time conservative character of 
symplectic numerical methods applied to Hamiltonian problems (1.28). We know 
from Theorem 8.11 that the corresponding modified differential equation is also 
Hamiltonian and, after truncation, the modified Hamiltonian is given by 

.˜H(y) = H(y) + hpHp+1(y) + · · · + hN−1HN(y). (8.24) 

The following fundamental result, proved by Benettin and Giorgilli in [23], pro-
vides information on the long-term conservative character of symplectic methods. 

Theorem 8.15 (Benettin-Giorgilli Theorem) Consider a Hamiltonian sys-
tem (1.28) with analytic Hamiltonian function .H : D → R, with .D ⊂ R2d . 
Suppose that a symplectic numerical method .ϕh(y) of order p is used to solve 
this problem and assume that the corresponding numerical solution lies in a 
compact set .K ⊂ D. Then, there exists . h0 and .N = N(h) (as in Theorem 8.13) 

(continued)



8.6 Backward Error Analysis 273

Theorem 8.15 (continued) 
such that 

.

˜H(yn) = ˜H(y0) + O(e−h0/2h),

H(yn) = H(y0) + O(hp),
(8.25) 

for exponentially long time intervals of length .nh − t0 ≤ eh0/2h. 

Proof Let .�N,t (y0) be the flow of the truncated modified equation (8.24), that is 
also Hamiltonian with Hamiltonian function . ˜H satisfying .˜H

(

�N,t (y0)
) = ˜H(y0), 

for any t . As a consequence of Theorem 8.14, we have that 

. ‖yn+1 − �N,h(yn)‖ ≤ hγMe−h0/h

and again, from Theorem 8.13, we deduce that there exists a global Lipschitz 
constant (independent from h) for . ˜H, such that 

. ˜H(yn) − ˜H(�N,h(yn)) = O(he−h0/h) .

Since 

. ˜H(yn) − ˜H(y0) =
n

∑

j=1

(

˜H(yj ) − ˜H(yj−1)
)

=
n

∑

j=1

(

˜H(yj ) − ˜H(�N,h(yj−1))
)

,

we obtain .˜H(yn)−˜H(y0) = O(nhe−h0/h), that proves the statement for . ˜H, recalling 
that .nh ≤ eh0/2h. 

The result for . H follows from (8.24), since 

. 

˜H(y) = H(y) + hpHp+1(y) + · · · + hN−1HN(y)

= H(y) + hp
(

Hp+1(y) + hHp+2(y) + · · · + hN−p−1HN(y)
)

and considering the fact that 

. Hp+1(y) + hHp+2(y) + · · · + hN−p−1HN(y)

is uniformly bounded on K , independently of h and N . This is a consequence of the 
fact that 

.Hj (y) =
∫ 1

0
yTfj (ty)dt + constant
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on a ball centered in . y0 contained in D and, moreover, of the estimate on . fj given 
by (8.23). �	

Benettin-Giorgilli theorem 8.15 is a gifted result in understanding the long-term 
conservative character of a symplectic method: as long as the numerical solution 
lies in a compact set, the Hamiltonian function of the optimally truncated modified 
differential equation is almost conserved up to errors of exponentially small size. 
Moreover, for a symplectic method of order p, the modified Hamiltonian function 
is close to the original Hamiltonian function over exponentially long time windows, 
with a deviation comparable to the accuracy in the computation of the solution, i.e., 
.O(hp). Let us test the usefulness of this result through the following highly didactic 
example. 

Example 8.7 Let us apply Benettin-Giorgilli theorem to the mathematical 
pendulum (1.23), with .p0 = 0 and .q0 = 1. The reader can find a detailed 
verification of the hypothesis of Theorem 8.15 for this problem in [192] 
(Example VI.8.2). Actually, the stepsize restriction dictated by Theorem 8.14 
is too severe and definitely not sharp. Indeed, symplectic methods may have 
excellent conservation properties even if used with large values of the stepsize. 

We use the symplectic Euler method (8.9) and the two-stage Gaussian 
method (4.25) with several values of the stepsize. As visible in Fig. 8.12, the  
conservation of the symplectic structure is achieved also for large values of h. 

Let us now check the accuracy in conserving the Hamiltonian function. 
Figures 8.13 and 8.14 reveal an excellent long-term conservation of the 
Hamiltonian, measured for several values of the stepsize, in the intervals 
[0,1000] and [0,10000]. The accuracy of the second equation in (8.25) is also 
confirmed, as visible in Tables 8.1 and 8.2, where the orders of both methods 
are very well recovered. They have been computed through the following 
formula, analogous to (3.23), 

.p ≈ log2

∣

∣

∣

∣

H(yN) −H(y0)

H(y2N) −H(y0)

∣

∣

∣

∣

, (8.26) 

i.e., as the logarithm in basis 2 of the ratio of the deviations between the 
Hamiltonian in the numerical solution computed with stepsize h from the 
initial Hamiltonian, divided by the analogous deviation with stepsize . h/2. 
Both values are listed in the table with reference to the final integration point. 

Let us finally make an observation on non-symplectic methods, motivated by 
Fig. 8.4, where a linear energy drift is visible for the explicit Euler method. This 
fact can be motivated through arguments very similar to those provided in the proof 
of Benettin and Giorgilli theorem (8.15). Indeed, one can prove (also see Exercise 6



8.7 Long-Term Analysis of Multivalue Methods 275

Fig. 8.12 Example 8.7: 
phase portrait associated to 
the numerical dynamics 
generated by applying the 
symplectic Euler 
method (8.9) (top) and the 
two-stage Gaussian 
method (4.25) (bottom) to the 
mathematical 
pendulum (1.23). The graphs 
are obtained in 
correspondence of . h = 0.05
(top) and .h = 0.1 (bottom) 

at the end of the chapter) that 

. H(yn) = H(y0) + O(thp).

We finally observe that alternatives to symplecticity or relaxed notions of sym-
plecticity have been treated in the literature, e.g., through the notion of conjugate 
symplectic method [133, 192, 197]. 

8.7 Long-Term Analysis of Multivalue Methods 

This section is devoted to providing a comprehensive analysis of the long-term 
stability properties of multivalue numerical methods, described in Chap. 5. The  
presented analysis is based on the results contained in [122].
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Fig. 8.13 Example 8.7: Hamiltonian deviations along the numerical dynamics generated by 
applying the symplectic Euler method (8.9) to the mathematical pendulum (1.23). The graphs 
are obtained in correspondence of four values of the stepsize: .h = 0.01 (top), . h = 0.005, 0.0025
(middle) and .h = 0.00125 (bottom). The plot displays the graph obtained considering a grid point 
every hundred 

Fig. 8.14 Example 8.7: Hamiltonian deviations along the numerical dynamics generated by 
applying the two-stage Gaussian method (4.25) to the mathematical pendulum (1.23). The three  
graphs are obtained in correspondence of three values of the stepsize: .h = 0.1 (top), . h = 0.05
(middle) and .h = 0.025 (bottom). The plot displays the graph obtained considering a grid point 
every hundred
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Table 8.1 Example 8.7: Hamiltonian deviations along the numerical dynamics generated by 
applying the symplectic Euler method (8.9) to the mathematical pendulum (1.23), computed in 
the final integration point .t = 1000. The displayed Hamiltonian deviations measure the gap at 
the final step point from the initial Hamiltonian. Order estimation is also reported, computed as 
suggested by Eq. (8.26) 

h Hamiltonian deviation (final point) p 
0.01 . 1.64 · 10−4

0.005 .7.27 · 10−5 1.17 

0.0025 .3.49 · 10−5 1.06 

0.00125 .1.69 · 10−5 1.05 

Table 8.2 Example 8.7: Hamiltonian deviations along the numerical dynamics generated by 
applying the two-stage Gaussian method (4.25) to the mathematical pendulum (1.23), computed 
in the final integration point .t = 10000. The displayed Hamiltonian deviations measure the gap 
at the final step point from the initial Hamiltonian. Order estimation is also reported, computed as 
suggested by Eq. (8.26) 

h Hamiltonian deviation (final point) p 
0.05 . 6.74 · 10−9

0.025 .4.23 · 10−10 3.99 

0.0125 .2.64 · 10−11 4.00 

To perform the long-term analysis of multivalue methods, it is worth using the 
following representation for the forward step procedure 

.Yn+1 = V Yn + h�(h, Yn). (8.27) 

We also remind that the method requires a starting procedure 

. Y0 = Sh(y0),

and a finishing procedure 

. yn = Fh(Yn),

which permits to extract the numerical approximation from . Yn. If  d is the dimension 
of the differential equation (1.17) and V is a matrix of dimension .r × r (by abuse 
of notation we write V in (8.27) instead of the correct .V ⊗ I , where I is the d-
dimensional identity matrix), then the vector . Yn is of dimension rd. 

If .r > 1, the recursion of the forward step procedure has parasitic solutions. Our 
aim is to study the long-time behavior of these parasitic solutions. We are mainly 
interested in stable methods having good conservation properties. We therefore 
assume that all eigenvalues of V are simple and lie on the unit circle. We denote 
them by .ζ1 = 1, ζ2, . . . , ζr . We let  . vj and . v∗

j be right and left eigenvectors 
(.V vj = ζj vj and .v∗

j V = ζj v
∗
j ) satisfying .v∗

j vj = 1.
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To relate the forward step procedure (8.27) to the differential equation (1.17) we 
assume the pre-consistency condition 

.�(0, Y ) = Bf (UY), Uv1 = e, (8.28) 

where B is an .r × s matrix, U an .s × r matrix, and e is the unit vector in . Rs . 
Again, by abuse of notation, we avoid the heavy tensor notation and use matrices 
B and U instead of .B ⊗ I and .U ⊗ I . For  .UY = W = (Wi)

s
i=1 ∈ Rsd the vector 

.f (W) ∈ Rsd is defined by .f (W) = (f (Wi))
s
i=1. We assume throughout this article 

that the forward step method is consistent, i.e., 

.v∗
1�(0, yv1) = f (y), (8.29) 

and, for pre-consistent methods (8.28), it is equivalent to .v∗
1Be = 1. 

8.7.1 Modified Differential Equations 

As discussed for one-step methods, a crucial tool for the study of the long-time 
behavior of numerical integrators is the backward error analysis, extended to the 
case of multivalue methods in [122]. This analysis relies on describing the dynamics 
of the smooth and parasitic components characterizing the numerical solution 
computed by genuine multivalue methods (i.e., those with .r > 1). 

With the aim of separating the smooth and parasitic components in the numerical 
solution .yn = Fh(Yn), we consider approximations to . Yn of the form 

.̂Yn = Y (tn) +
r

∑

j=2

ζ n
j Zj (tn), (8.30) 

where .tn = nh, and the coefficient functions .Y (t), .Zj (t) are independent of n, but  
depend smoothly on h. Such expansions have first been considered for the study of 
the long-time behavior of linear multistep methods [187] (also refer to [191, 193] 
for highly oscillatory problems). 

We introduce a system of modified differential equations for the smooth func-
tions .Y (t) and .Zj (t). These modified equations only depend on the forward step 
procedure and are independent of the starting and finishing procedures. 

Theorem 8.16 Consider a forward step procedure (8.27) with matrix V 
having simple eigenvalues of modulus 1. Then, there exist h-independent real 
functions .fl(y1) and complex functions .gkl(y1), ajl(y1) and .bjkl(y1) such 

(continued)
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Theorem 8.16 (continued) 
that, for an arbitrarily chosen truncation index N and for any solution .yk(t), 
.zkj (t), .j, k = 1, 2, . . . , r , of the  system  

.

ẏ1=f (y1) + h f1(y1) + . . . + hN−1fN−1(y1),

yk=h gk1(y1) + . . . + hNgk,N (y1), k > 1,

żjj=
(

aj0(y1) + h aj1(y1) + . . . + hN−1aj,N−1(y1)
)

zjj ,

zjk=
(

h bjk1(y1) + . . . + hNbj,k,N (y1)
)

zjj , k 
= j,

(8.31) 

the approximations (8.30), with 

.Y (t) =
r

∑

k=1

yk(t) vk, Zj (t) =
r

∑

k=1

zkj (t) vk, (8.32) 

satisfy (8.27) with a small defect, i.e., 

. ̂Yn+1 = V ̂Yn + h �(h, ̂Yn) + O(hN+1),+O(h‖Z‖2),

as long as .y1(tn) remains in a compact set. The constant symbolized by .O(·) is 
independent of h, but depends on the truncation index N . We use the notation 
.‖Z‖ = max{|zjk(tn)| ; j, k = 1, . . . , r}. 

Proof Inserting (8.30) into the forward step procedure and expanding the nonlin-
earity around .Y (tn) yields 

.
Y (t + h)=V Y(t) + h �

(

h, Y (t)
) + O(h‖Z‖2)

ζj Zj (t + h)=V Zj (t) + h �′(h, Y (t)
)

Zj (t) + O(h‖Z‖2). (8.33) 

Neglecting terms of size .O(h‖Z‖2) and using (8.32), from the previous relation we 
get 

.yk(t + h) = ζkyk(t) + h v∗
k�

(

h, Y (t)
)

.
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We expand the left-hand side into a Taylor series around .h = 0 and thus obtain 
(omitting the argument t) 

. 

ẏ1 + h

2
ÿ1 + · · · = �1(h, y1, . . . , yr )

(1 − ζk) yk + h ẏk + h2

2
ÿk + · · · = h�k(h, y1, . . . , yr ), k = 2, . . . , r.

(8.34) 

Differentiation of the relations for . yk (.k = 2, . . . , r) and recursive elimination of 
the first and higher derivatives, and also of .y2, . . . , yr on the right-hand side, yield 
the second relation of (8.31) with a defect of size .O(hN+1). In the same way one 
can eliminate the second and higher derivatives in the first equation of (8.34) and 
thus obtains a differential equation for . y1. By the consistency assumption (8.29), the 
h-independent term of this differential equation becomes .f (y1). 

Neglecting terms of size .O(h‖Z‖2) in the second relation of (8.33) yields 

.ζj zkj (t + h) = ζkzkj (t) + h v∗
k�′(h, Y (t)

)

Zj (t). (8.35) 

We expand the left-hand side into a Taylor series, and apply the same elimination 
procedure as for the smooth component .Y (t). This then gives a first order differential 
equation for . zjj and algebraic relations for . zkj (.k 
= j ), and terminates the proof 
of (8.31). �	

It is now worth equipping modified differential equations by suitable initial 
conditions. For .n = 0 and .̂Y0 = Y0 = Sh(y0) the relation (8.30) gives  

. Sh(y0) = Y (0) +
r

∑

j=2

Zj (0).

Because of the algebraic relations in (8.31), this represents a nonlinear algebraic 
equation for the h-dependent vectors .y1(0), .z22(0), . . . . , .zrr (0). For .h = 0, we get 

. y1(0)
∣

∣

h=0 = v∗
1S0(y0), zjj (0)

∣

∣

h=0 = v∗
jS0(y0),

and the implicit function theorem guarantees the existence of a local unique solution 
for sufficiently small h. 

The initial values .zjj (0), for .j = 2, . . . , r , determine, on intervals of length .O(1), 
the size of the parasitic solution components. We shall investigate how they depend 
on the choice of the starting procedure. Let us denote the forward step procedure 
(8.27) by  .Yn+1 = Gh(Yn). We know from Sect. 5.1 (also see Theorem XV.8.2 
of [192]) that, for a given .Gh(Y ) and a given finishing procedure .Fh(Y ), there exist a 
unique (as formal power series in h) starting procedure .S∗

h(y) and a unique one-step
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method .yn+1 = �∗
h(yn), such that 

.Gh ◦ S∗
h = S∗

h ◦ �∗
h and Fh ◦ S∗

h = identity. (8.36) 

This means that for the choice .Y0 =S∗
h(y0) the numerical solution obtained by the 

multivalue method is (formally) equal to that of the one-step method . �∗
h, the  so-

called underlying one-step method. 
For all common multivalue methods, the underlying one-step method and 

the components of the starting procedure are B-series. Their coefficients can be 
computed recursively from the relations (8.36) by using the composition formula 
for B-series. 

Theorem 8.17 Let the starting procedure .Sh(y0) satisfy 

.Sh(y0) = S∗
h(y0) + O(hq), (8.37) 

and assume that the finishing procedure is given by .Fh(Y ) = v∗
1Y = y1. Then, 

the initial values for the system of modified equations (8.31) satisfy 

. y1(0) = y0 + O(hq), zjj (0) = O(hq).

Proof For the exact starting procedure .S∗
h(y0), the numerical solution .{yn}n≥0 is 

that of the underlying one-step method and does not have parasitic components. 
Consequently, we have .y1(0) = y0 and .zkj (0) = 0 for all k and j . A perturbation of 
this starting procedure implies, by the implicit function theorem, a perturbation of 
the same size in the initial values .y1(0), z22(0), . . . , zrr (0). �	

We conclude this section by providing a result regarding the modified differential 
equations of symmetric multivalue methods, according to the following definition 
of symmetry. 

Definition 8.6 A given multivalue method (8.27) is symmetric if its underly-
ing one-step method is a symmetric method. 

Theorem 8.18 Consider a forward step procedure (8.27), where V is of 
dimension 2 with eigenvalues 1 and . −1, and assume that the method is 

(continued)
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Theorem 8.18 (continued) 
symmetric, therefore mathematically equivalent to 

. Yn = V Yn+1 − h �(−h, Yn+1).

Then, Eq. (8.31) only contain expressions with even powers of h. 

Proof Neglecting terms of size .O(hN+1) and .O(h‖Z‖2), the functions .Y (t) and 
.Zj (t) of Theorem 8.16 satisfy 

.
Y (t + h)=V Y(t) + h �

(

h, Y (t)
)

,

ζj Zj (t + h)=V Zj (t) + h �′(h, Y (t)
)

Zj (t),
(8.38) 

where the prime in .�′(h, Y ) stands for a derivative with respect to Y . Our  
assumption on the forward step procedure implies that 

. 
Y (t)=V Y(t + h) − h �

(−h, Y (t + h)
)

,

Zj (t)=V ζj Zj (t + h) − h �′(−h, Y (t + h)
)

ζj Zj (t + h),

and, replacing .t − h for t , leading to 

.

Y (t − h)=V Y(t) − h �
(−h, Y (t)

)

,

ζ−1
j Zj (t − h)=V Zj (t) − h �′(−h, Y (t)

)

Zj (t).
(8.39) 

Let us first consider the components of the vector .Y (t). Comparing the upper 
relations of (8.38) and (8.39) we notice that the components .yk(t) of .Y (t) have to 
satisfy the same equations for h and for . −h. 

Since, by assumption, .ζ2 = −1 is the only eigenvalue of V different from 1, we 
have .ζ−1

2 = ζ2. The lower relation of (8.38) is therefore equal to the lower relation 
of (8.39), where h is replaced by . −h. Consequently, also the components of . Z2(t)

have to satisfy the same equations for h and for . −h. This implies that all equations 
of (8.31) are in even powers of h. �	

8.7.2 Bounds on the Parasitic Components 

The parasitic solution components are determined by the functions .zjj (t). To  
study their long-time behavior we first examine the leading term in the differential
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equation (8.31) for . zjj . For .k = j , Eq. (8.35) yields 

. ζj żjj = v∗
j �′(0, y1v1) vj zjj + O(h|zjj |).

Subject to the pre-consistency assumption (8.28), we obtain 

.żjj = μj f ′(y1) zjj + O(h|zjj |), μj = ζ−1
j v∗

j BUvj . (8.40) 

The coefficients . μj are called growth parameters of the multivalue method. They 
determine to a large extent the long-term behavior of the parasitic components 
.Zj (t). 

It follows from Theorem 8.16 that the coefficient functions of the parasitic 
solution components (8.32) satisfy 

.
żjj = hMA

(

h, y1(t)
)

zjj ,

zjk = h B
(

h, y1(t)
)

zjj , k 
= j.
(8.41) 

In general we have .M = 0, but if the growth parameters (8.40) of the method are 
zero we have  .M = 1, and if in addition to zero growth parameters the assumptions 
of Theorem 8.18 are satisfied we have .M = 2. If the vector field .f (y) of (1.17) 
is smooth and has bounded derivatives (which excludes stiff and highly oscillatory 
problems), the functions .A(h, y1) and .B(h, y1) are bounded as long as .y1(t) stays 
in a compact set. Grönwall lemma then implies 

.‖zjj (t)‖ ≤ ‖zjj (0)‖ exp(hMLt), (8.42) 

where L is a bound on the norm or, better, the logarithmic norm of .A(h, y1). For  
.k 
= j the functions .zjk(t) are bounded by the same expression with an additional 
factor Ch. 

8.7.3 Long-Time Conservation for Hamiltonian Systems 

We have built the necessary tools to prove a conservation result for multivalue 
methods applied to Hamiltonian problems (1.22), as follows. 

Theorem 8.19 Consider a multivalue method of order p, a starting proce-
dure satisfying (8.37) with q, and let .0 ≤ M ≤ q be the integer such that the 
modified equations for . zjj , .j = 2, . . . , r , satisfy (8.41). Furthermore, assume 
the existence of a modified Hamiltonian .˜H(y) satisfying . ˜H(y) − H(y) =

(continued)
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Theorem 8.19 (continued) 
O(hp ) which is well preserved by the flow .ϕ̃t (y) of the underlying one-step 
method, more precisely, 

.˜H
(

ϕ̃h(y)
) = ˜H(y) + O(hγ+1), (8.43) 

with .p ≤ γ ≤ 2q. We then have, for .t = nh, 

. H(yn) −H(y0) = O(hp) + O(thγ ) + O(

hq+1 exp(hMLt)
)

,

as long as .t = O(h−M). 

Proof Recall that for a given initial value . y0 the numerical solution is obtained 
from .Y0 = Sh(y0), the forward step procedure .Yn+1 = V Yn + h�(h, Yn), and the 
finishing procedure .yn = Fh(Yn). The proof consists in several steps. 

(a) We use the expansion (8.30) only locally, on one step. This means that, 
for any n, we compute functions .Y [n](t) and .Z[n]

j (t) satisfying the modified 
equations (8.31), such that 

. Yn = Y [n](0) +
r

∑

j=2

Z
[n]
j (0).

It follows from Theorem 8.16 that (with the choice .N = 2q) 

. Yn+1 = Y [n](h) +
r

∑

j=2

ζjZ
[n]
j (h) + O(h2q+1),

as long as the parasitic components are bounded as .‖Z(t)‖ = O(hq). By the  
uniqueness of the initial values, we have that 

. Y [n+1](0) = Y [n](h) + O(h2q+1), Z
[n+1]
j (0) = ζjZ

[n]
j (h) + O(h2q+1).

(8.44) 

(b) The estimates (8.42) and (8.44) yield 

. ‖z[n+1]
jj (0)‖ ≤ ‖z[n]

jj (h)‖ + Ch2q+1 ≤ ‖z[n]
jj (0)‖ exp(hM+1L) + Ch2q+1.

Applying a discrete Gronwall Lemma we obtain for . t = nh

.‖z[n]
jj (0)‖ ≤ ‖z[0]

jj (0)‖ exp(hMLt) + Ch2q t exp(hMLt). (8.45)
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(c) We assume that the finishing procedure is given by .Fh(Y ) = v∗
1Y , so that the 

flow of the modified equation for . y1 in (8.31) represents the underlying one-step 
method. We consider the telescoping sum 

. ˜H
(

y
[n]
1 (0)

) − ˜H
(

y
[0]
1 (0)

) =
n−1
∑

l=0

(

˜H
(

y
[l+1]
1 (0)

) − ˜H
(

y
[l]
1 (0)

)

)

.

From the estimate (8.44) and the assumption (8.43) we obtain that every 
summand is bounded by .O(h2q+1) + O(hγ+1) (the first term can be removed, 
because .γ ≤ 2q), which yields an error term of size .O(thγ ). In the left-hand side 
we substitute .y

[n]
1 (0) from the relation 

. yn = y
[n]
1 (0) +

r
∑

j=2

z
[n]
1j (0).

The statement now follows from .‖z1j (0)‖ ≤ ch‖zjj (0)‖, from the bounds (8.45) 

for .z
[n]
jj (0), and from the assumption .˜H(y) −H(y) = O(hp). 

�	
The crucial ingredient of the previous theorem is the existence of a modified 

Hamiltonian function. Let us discuss some relevant situations where such a modified 
Hamiltonian is known to exist. 

• If the underlying one-step method is a symplectic transformation, there exists a 
modified Hamiltonian satisfying (8.43) with arbitrarily large . γ (see Sect. IX.3 in 
[192]; also see Theorem 8.15). Unfortunately, the underlying one-step method of 
multivalue methods cannot be symplectic [190]; 

• if (1.22) is an integrable reversible system, and if the underlying one-step method 
is symmetric (reversible), under mild non-resonance conditions there exists a 
modified Hamiltonian satisfying (8.43) with arbitrarily large . γ (see Chapter 9 in 
[192]); 

• if the underlying one-step method is a B-series (this is the case for all general 
linear methods), necessary and sufficient conditions for the existence of a 
modified Hamiltonian satisfying (8.43) with a given  . γ are presented in [192] 
(Chapter IX.9.4). For example, only one condition is necessary for symmetric 
methods of order 4 to satisfy condition (8.43) with .γ = 6. 

Example 8.8 Let us consider a multivalue method in the following form 

. Yn+1 = V Yn + hBf (W), W = UYn + hAf (W).

(continued)



286 8 Geometric Numerical Integration

Example 8.8 (continued) 
with 

. 

[

A U

B V

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
12 0 0 0 1 1

2

− 1
3

1
6 0 0 1 1

5
3 − 2

3
1
6 0 1 −1

7
6 − 5

12
1
12

1
12 1 − 1

2

2
3 − 1

6 − 1
6

2
3 1 0

1 − 1
2

1
2 −1 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

corresponding to a multivalue method proposed in [73] and analyzed in [122]. 
The vector 

. Yn =
[

yn

an

]

provides an approximation . yn to the solution and an approximation . an to a 
scaled second derivative. If we denote by .Rh(y0) the result of one step of the 
Runge-Kutta method 

. 

0
1
2

1
2

1 373
550

177
550

0 8233
50976 − 30749

152928
3025
76464

0 − 383
648

275
1296 1

then the starting procedure is given by 

. Sh(y0) =
[

y0
1
2

(

Rh(y0) + R−h(y0)
) − y0

]

.

Let us collect some essential properties of this method: 

• the method has order .p = 4, implying that the underlying one-step method 
has also order 4; 

• the method is symmetric in the sense of Theorem 8.18. As a consequence 
all equations in (8.31) are in even powers of h; 

(continued)
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Example 8.8 (continued) 
• the eigenvalues of V are .ζ1 = 1 and .ζ2 = −1. By construction, the growth 

parameter corresponding to the parasitic root .ζ2 = −1 is zero. Together 
with the symmetry of the method this implies that .M = 2 in (8.41); 

• the analysis of .Sh(y) leads to .q = 6 in the formula (8.17) for the starting 
procedure (the detailed proof is given in [122]); 

• Equation (8.43) is satisfied with .γ = 8 (detailed computations are again 
given in [122]). 

Proposition 8.1 If the method regarding this example is applied to a Hamil-
tonian system (1.22), then the Hamiltonian function is nearly preserved 
according to 

. H(yn) −H(y0) = O(h4) + O(th8) + O(

h8 exp(h2Lt)
)

,

as long as .t = nh = O(h−2). 

Proof The first two error terms follow directly from Theorem 8.19. From Theo-
rem 8.17 we have that the parasitic solution components satisfy .zjj (0) = O(h6), so  
that .zjj (t) = O(

h6 exp(h2Lt)
)

. To justify the factor . h8 in front of the exponential 
term we note that only the functions . z1j enter the formula for . yn. By symmetry of  
the method, we have a factor . h2 in the modified equation (8.31) for . z1j . This proves 
that .z1j (t) = O(

h8 exp(h2Lt)
)

. �	
Let us illustrate with numerical experiments that the bounds of Theorem 8.19 

and, in particular, those for the parasitic solution components are sharp. In particular 
we aim to observe that, for multivalue methods for which the order q of the starting 
procedure is larger or equal than the order p of the method, the parasitic solution 
components can be neglected on time intervals of length .O(h−M). On such intervals 
the underlying one-step method completely describes the qualitative behavior of the 
method. In particular, if the problem is an integrable reversible system and if the 
underlying one-step method is symmetric (and reversible), then all action variables 
are preserved up to an error of size .O(hp). Moreover, the global error increases at 
most linearly with time.
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Fig. 8.15 Error in the Hamiltonian for the method in Example 8.8 applied to the mathematical 
pendulum (1.23), with initial values .q(0) = 3, .p(0) = 0. The employed values of h are . h = 0.25
(top) and .h = 0.125 (bottom) 

Example 8.9 To prove that the estimate of Theorem 8.1 is sharp, we apply 
the method described in Example 8.8 to the mathematical pendulum (1.23), 
with initial values .q(0) = 3, .p(0) = 0. Figure 8.15 (see [122]) shows the 
error in the Hamiltonian as a function of time for the step sizes . h = 0.25
and .h = 0.125. The scales on the vertical axis differ by a factor 16, so 
that the .O(h4) behavior of the error can be observed. As predicted by the 
estimate of Theorem 8.1 the error behaves like .O(h4) on intervals of length 
.O(h−2), and then follows an exponential growth. We notice that halving the 
step size increases the interval of good energy preservation by a factor of 
4. This confirms the factor . h2 in the exponential term. The constant L in the 
estimate, which depends on the problem and on the coefficients of the method, 
seems to be rather small. 

8.8 Exercises 

1. Prove that the symplectic Euler method (8.10) is symplectic. The proof requires 
similar arguments as those used to prove Theorem 8.5.
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2. Prove that the implicit midpoint method applied to (1.22), i.e., 

. yn+1 = yn + hJ−1∇H
(

yn + yn+1

2

)

.

is a symplectic method. 
3. Complete the proof of Theorem 8.9, by providing the requested algebraic 

manipulations. 
4. With reference to Example 8.6, compute the modified differential equation 

associated to the implicit midpoint method (4.24). 
5. As highlighted in [192], prove that symplectic Runge-Kutta methods preserve 

all invariants of the form 

. I (y) = yTCy + dTy + c.

6. As remarked in the explanation of Fig. 8.4, a linear energy drift is visible for 
the explicit Euler method, that is a non-symplectic method. Give a proof of this 
fact, i.e., 

. H(yn) = H(y0) + O(thp),

through similar arguments as those provided in the proof of Benettin-Giorgilli 
theorem (8.15). 

7. By using Program 8.2, solve the non-separable Hamiltonian problem whose 
Hamiltonian is given by 

. H(p, q) = p2

2(1 + U ′(q))
+ U(q),

being U(q)  = 0.1(q(q − 2))2 + 0.008q3, with initial values p(0) = 0.49 and 
q(0) = 0, describing the path of a particle of unit mass moving on a wire of 
shape U(q)  [15]. In the numerical solution, focus on the conservation of the 
Hamiltonian and comment the results. 

8. By using Program 8.2, solve the separable Hamiltonian problem whose Hamil-
tonian is the following polynomial of degree 6 [164]: 

. H(p, q) = p3

3
− p

2
+ q6

30
+ q4

4
− q3

3
+ 1

6
,

by choosing several initial values. In the numerical solution, focus on the 
conservation of the Hamiltonian and comment the results.
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9. Can explicit Runge-Kutta methods be symmetric? Give a proof motivating your 
answer. 

10. Prove that the underlying one-step method of a multivalue method cannot be 
symplectic. As aforementioned, proofs on non-symplecticity for multivalue 
method have been given in [71, 190, 250].
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