
Chapter 3 
Linear Multistep Methods 

[. . . ]  this  approach, which was first adopted by Dahlquist, leads 
to a mathematically well-rounded theory. It also leads to the 
discovery of new integration formulas which could not be 
obtained by the heuristic methods. 

(Peter Henrici [206]. This quotation has also been highlighted 
by Ernst Hairer in [188]) 

One-step methods have been introduced, analyzed and implemented in Chap. 2. 
Even if they provide the simplest and maybe most intuitive family of step-by-step 
numerical schemes, enlarging this class with more complex methods could be useful 
in order to achieve better accuracy and stability properties. For this reason, we 
present a more general family of methods relying on a multistep structure, defined 
as follows. 

3.1 The Principle of Multistep Numerical Integration 

Definition 3.1 The family of linear multistep methods (LMMs), with respect 
to the discretization (2.1), is defined by the order k difference equation 

.

k∑

j=0

αjyn+j = h

k∑

j=0

βjfn+j , (3.1) 

where fn+j = f (tn+j , yn+j ), j = 0, 1, . . .  , k, n = 0, 1, . . . , N . 

The integer k is usually denoted as the number of steps of the method and represents 
the order of the difference equation defining (3.1). Normally, we assume .αk = 1 (as 
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74 3 Linear Multistep Methods

usual, if this is not the case, all coefficients can be normalized in order to fall in this 
instance) and, moreover, .|α0|+ |β0| �= 0 in order to avoid . α0 and . β0 simultaneously 
equal to zero. 

The family of LMMs includes all the one-step methods (hence, .k = 1) introduced 
in Chap. 2, namely 

• explicit Euler method (2.19), assuming that .α0 = −1, .α1 = 1, .β0 = 1, .β1 = 0; 
• implicit Euler method (2.32), for .α0 = −1, .α1 = 1, .β0 = 0, .β1 = 1; 
• the trapezoidal method (2.33), imposing .α0 = −1, .α1 = 1, .β0 = 1

2 , .β1 = 1
2 . 

Let us now provide an example of LMM (3.1) depending on more than one step, 
obtained by means of proper numerical quadrature. 

Example 3.1 We now aim to derive an example of LMM with .k = 2, i.e., a 
two-step method. As in the construction of the trapezoidal method (2.33), let  
us consider, for .t ≥ tn, the integral form of (1.1), i.e., 

. y(t) = y(tn) +
∫ t

tn

f (s, y(s))ds,

and evaluate it in .tn+2, obtaining 

. y(tn+2) = y(tn) +
∫ tn+2

tn

f (s, y(s))ds.

Approximating the integral in the right-hand side by the Cavalieri-Simpson 
formula 

. 

∫ tn+2

tn

f (s, y(s))ds≈h

3
(f (tn, y(tn))+4f (tn+1, y(tn+1))+f (tn+2, y(tn+2)))

yields 

. y(tn+2) ≈ y(tn) + h

3
(f (tn, y(tn)) + 4f (tn+1, y(tn+1)) + f (tn+2, y(tn+2))) .

This is an approximate equality involving exact values that can be regarded as 
an exact equality involving approximate values, i.e., 

.yn+2 = yn + h

3
(fn + 4fn+1 + fn+2) , (3.2) 

that is the so-called Milne-Simpson method.
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Differently from one-step methods, LMMs are not self-starting (unless .k = 1). 
For instance, consider the Milne-Simpson method (3.2) when .n = 0, leading to 

. y2 = y0 + h

3
(f0 + 4f1 + f2) .

The value of . y0 is initial value given by the problem (1.1), but the value of . y1 is 
missing and it needs to be recovered in order to compute . y2 and launch the step-by-
step procedure. 

More in general, for the family of k-step methods (3.1) a proper starting method 
is needed to reconstruct the missing starting values . y1, . y2, . . . ., .yk−1. Such values 
can be recovered, for instance, by a suitable one-step method. Just as an example, 
if we employ Euler method (2.19) as starting method, the step-by-step numerical 
scheme described by (3.1) can be summarized as follows: 

• . y0 is given by the initial value problem (1.1); 
• compute the missing starting values . y1, . y2, . . . ., .yk−1 by repeatedly applying 

(2.19), i.e., 

. 

y1 = y0 + hf0,

y2 = y1 + hf1,

...

yk−1 = yk−2 + hfk−2;

• compute . yk by applying the LMM (3.1) 

. yk +
k−1∑

j=0

αjyj = hβkfk +
k−1∑

j=0

βjfj .

We observe that, if .βk �= 0, this step is equivalent to solving a nonlinear system 
of algebraic equations in . yk; 

• go on applying (3.1) up to the computation of 

. yN +
k−1∑

j=0

αjyN−k+j = hβkfN +
k−1∑

j=0

βjfN−k+j .

Relevant examples of LMMs (3.1) can be computed, for instance, via polynomial 
interpolation, where the interpolation points are normally chosen among the grid 
points. Let us illustrate this idea through the following examples.
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Example 3.2 (An Adams-Bashforth Method) Let us consider the integral 
formulation of (1.1) 

. y(t) = y(tn+1) +
∫ t

tn+1

f (s, y(s))ds,

and evaluate it in .tn+2, obtaining 

. y(tn+2) = y(tn+1) +
∫ tn+2

tn+1

f (s, y(s))ds.

Let us approximate .f (s, y(s)) through the linear interpolant with respect to 
the nodes .(tn, y(tn)) and .(tn+1, y(tn+1)), leading to 

. f (s, y(s)) ≈ f (tn, y(tn))
s − tn+1

tn − tn+1
+ f (tn+1, y(tn+1))

s − tn

tn+1 − tn
.

Hence, 

. 

∫ tn+2

tn

f (s, y(s))ds ≈ −h

2
(f (tn, y(tn)) − 3f (tn+1, y(tn+1))) ,

leading to 

.yn+2 = yn+1 − h

2
(fn − 3fn+1) , (3.3) 

that is the so-called two-step Adams-Bashforth method, which is an explicit 
method. 

More in general, Adams-Bashforth methods are obtained by replacing the 
interpolating polynomial approximating f on a given set of nodes chosen among the 
grid points, excluding the point related to the advancing term, i.e., .tn+k . This choice 
leads to a family of explicit methods. Including .tn+k in the set of interpolation points 
leads to a family of implicit methods, the so-called Adams-Moulton formulae. An 
example is given below.
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Example 3.3 (An Adams-Moulton Method) Let us consider again the integral 
form of (1.1) 

. y(t) = y(tn) +
∫ t

tn

f (s, y(s))ds,

and proceed by approximating the function f with its linear interpolant on the 
nodes .(tn, y(tn)) and .(tn+1, y(tn+1)), leading to 

. f (s, y(s)) ≈ f (tn, y(tn))
s − tn+1

tn − tn+1
+ f (tn+1, y(tn+1))

s − tn

tn+1 − tn
.

Hence, 

. 

∫ tn+1

tn

f (s, y(s))ds ≈ h

2
(f (tn, y(tn)) + f (tn+1, y(tn+1))) ,

obtaining 

.yn+1 = yn + h

2
(fn + fn+1) , (3.4) 

that is the so-called second order Adams-Moulton method. Actually, this 
implicit method is not a novelty for us, since it is the trapezoidal method 
(2.33). 

3.2 Handling Implicitness by Fixed Point Iterations 

Looking at the coefficient . βk in (3.1) allows us to distinguish whether the method 
is explicit or implicit: indeed, if .βk = 0, the method is explicit; when .βk �= 0, 
the method is implicit. As explained in Chap. 2 for one-step methods, we now aim 
to handle the implicitness of LMMs via fixed point iterations. To this purpose, let 
us first recast (3.1) in a different, equivalent form. In particular, let us separate the 
implicit part from the explicit one in the method, by isolating the terms for .j = k in 
the summations, leading to 

.yn+k = hβkf (tn+k, yn+k) + gn+k−1, (3.5)
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where 

. gn+k−1 = h

k−1∑

j=0

βjfn+j −
k−1∑

j=0

αjyn+j .

Then, we treat the implicitness of (3.5) by fixed point iterations as follows: in order 
to advance from . tn to .tn+1, 

• we arbitrarily choose an initial guess .y
[0]
n+k ∈ Rd . To speed up the convergence of 

the iterative process, a smart choice may be .y
[0]
n+k = yn+k−1; 

• we perform fixed point iterations 

.y
[ν]
n+k = hβkf (tn+k, y

[ν−1]
n+k ) + gn+k−1, ν ≥ 1, (3.6) 

stopping at the iteration M if 

. ‖y[M]
n+k − y

[M−1]
n+k ‖ ≤ tol,

being tol  an a-priori prescribed accuracy. Then .yn+k = y
[M]
n+k . 

A major issue to address regards the convergence of the above fixed point 
iterative process. This aspect is object of the following result. 

Theorem 3.1 Consider the initial value problem (1.1), whose vector field 
satisfies the Lipschitz condition (1.8), and denote by L the Lipschitz constant. 
If 

.h|βk|L < 1, (3.7) 

then (3.5) has a unique solution .yn+k such that 

. yn+k = lim
ν→∞ y

[ν]
n+k,

with .y
[ν]
n+k defined in (3.6), for any arbitrarily chosen initial guess .y

[0]
n+k ∈ Rd . 

Proof Let us introduce the auxiliary map .ϕ : Rd → R
d , defined by 

.ϕ(y) = hβkf (tn+k, y) + gn+k−1, y ∈ Rd .
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For any .y, z ∈ Rd , we have  

. ‖ϕ(y) − ϕ(z)‖ = h |βk| ‖f (tn+k, y) − f (tn+k, z)‖

and, by the Lipschitz continuity of f , we obtain 

. ‖ϕ(y) − ϕ(z)‖ ≤ h |βk| L‖y − z‖.

Since .h|βk|L < 1, 

. ‖ϕ(y) − ϕ(z)‖ ≤ ‖y − z‖,

i.e., . ϕ is a contraction in . Rd . Hence, by the contraction mapping theorem, there 
exists a unique fixed point .α ∈ Rd such that .α = ϕ(α). Since .yn+k = ϕ(yn+k), 
.yn+k is the unique fixed point of the map . ϕ. By the contraction mapping theorem, 
such a fixed point is the limit of the fixed point iterations 

. y
[ν]
n+k = ϕ(y

[ν−1]
n+k ), ν ≥ 1,

for any arbitrarily chosen initial guess .y
[0]
n+k ∈ Rd . 
�

We highlight that (3.7) is the first limitation on the stepsize we have encountered 
so far: in order to have a convergent fixed point iterative process for implicit LMMs 
(3.1), h cannot be arbitrarily chosen, but it should satisfy the restriction 

. h <
1

|βk|L.

We present other relevant stepsize restrictions in the remainder of this book. We 
will see that, in certain situations, important properties of numerical methods can be 
translated into proper stepsize restrictions. 

3.3 Consistency and Order Conditions 

Let us now focus our attention on the analysis of the accuracy of LMMs (3.1). We  
have seen in Chap. 2 that basic necessary accuracy and stability requirements (i.e., 
consistency, zero-stability and convergence) have to be fulfilled by any numerical 
method for (1.1). Our aim is now devoted to developing a theory of multistep 
methods inspired by the principles presented in the previous chapter. Hence, let 
us start with the following definition.
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Definition 3.2 For a given grid function 

. v : Ih → R
d ,

let us denote by . vn its value in .tn ∈Ih. We define the numerical residual 
operator associated to (3.1) as 

.Rh(vn) = 1

h

k∑

j=0

αjvn+j −
k∑

j=0

βjfn+j , (3.8) 

for .n = 0, 1, . . . , N − k, with . fn+j = f (tn+j , vn+j ).

As it happens for one-step methods, when the residual operators (2.24) and 
(3.8) are respectively evaluated in the exact solution of (1.1) and its numerical 
approximation computed by (3.1), we have  

. R(y) = 0, Rh(yn) = 0.

The numerical residual operator (3.8) evaluated in the exact solution .y(t) of 
(1.1) provides the local truncation error associated to (3.1), having the following 
expression: 

. 

T (tn, y(tn);h) = Rh(y(tn)) = 1

h

k∑

j=0

αjy(tn+j ) −
k∑

j=0

βjf (tn+j , y(tn+j ))

= 1

h

k∑

j=0

αjy(tn+j ) −
k∑

j=0

βjy
′(tn+j ).

(3.9) 
Correspondingly, we give the following definition. 

Definition 3.3 A linear multistep method (3.1) is consistent if, for any 
.(t, y) ∈ [t0, T ] × Rd , 

. lim
h→0

T (t, y;h) = 0.
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Clearly, a consistent method (3.1) satisfies 

. T (t, y;h) = O(hp),

with .p ≥ 1. In other terms, consistent methods have at least order 1. The notion of 
order of a LMM is given in the following definition. 

Definition 3.4 A linear multistep method (3.1) has order p if, for a chosen 
vector norm .‖ · ‖, there exists a real constant .C > 0 such that 

. ‖T (t, y;h)‖ ≤ Chp,

for any .(t, y) ∈ [t0, T ] × Rd , where C is independent on t , y and h. 

It is the right moment to address a very crucial point. Analyzing accuracy and 
stability properties of numerical methods can be very tricky if we only rely on their 
definitions. However, the work of the pioneers of the numerical approximation of 
ODEs has led to highly effective tools which make the analysis much simpler, since 
it only requires algebraic computation involving the coefficients of the methods. As 
regards LMMs, seminal contributions in this direction have been provided through 
the talent and the ingenious work of Germund Dahlquist (1925–2005). Let us briefly 
present his biography, based on the obituary written by Åke Björck, Bill Gear and 
Gustaf Söderlind in Siam News of May 1st, 2005 and on the information reported 
in the gifted MacTutor History of Mathematics Archive (https://mathshistory.st-
andrews.ac.uk/Biographies/Dahlquist/). 

A Portrait of Germund Dahlquist 
Germund Dahlquist is one of the pioneers in establishing a theory for the 
numerical discretization of differential equations. He was born in 1925 in 
Uppsala, son of a minister in the Church of Sweden (his father) and a poet (his 
mother). He studied mathematics at Stockholm University since 1942 and was 
strongly influenced by one of his professors, Harald Bohr (brother of Niels 
Bohr, the famous Danish physicist who achieved the Nobel Prize in 1922). 
Bohr was a refugee from Denmark during the Second World War and inspired 
Dahlquist a lot not only as regards Mathematics, but also because of his gifted 
character that made of him a professor highly dedicated to his students (as 
well as a gifted soccer player. He was member of the Danish national football 
team and achieved a silver medal in the 1908 Summer Olympics). 

He graduated in 1949, but he did not promptly start a Ph.D. program: 
indeed, he was appointed at the Swedish Board of Computer Machinery as an 

(continued)
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applied mathematician and programmer. In 1951 Sweden developed a digital 
computer (its name was BESK, the acronym for Binary Electronic Sequential 
Calculator), which came into operation in December 1953: 1951 is a crucial 
year for us, since Germund Dahlquist started his studies leading to ground-
breaking contributions to the theory of numerical methods for initial value 
problems in ordinary differential equations, as written in his obituary. 

BESK was employed by Dahlquist to solve differential equations, clearly 
after a proper study of difference methods. His theoretical study was also 
accompanied by his membership in with a team working on numerical 
weather forecasts, guided by the Swedish-American meteorologist Carl 
Gustaf Rossby at the International Meteorological Institute of Stockholm 
University. This working group was able to develop in 1954 the first 24-hour 
weather observations made the same day, carried out on BESK. 

That was a very fruitful time for Dahlquist research activity, which ted to 
his first publications in numerical analysis. In 1956, Dahlquist presented his 
studies on linear multistep methods, giving rise to the beautiful convergence 
theory for such methods. His theory parallels that of Peter Lax, that introduced 
his equivalence principle in 1955 had established the Lax principle. 

From 1956 to 1959 Dahlquist covered the position head of Mathematical 
Analysis and Programming Development at the Swedish Board of Computer 
Machinery. He defended his Ph.D. thesis in 1958, entitled “Stability and 
Error Bounds in the Numerical Solution of Ordinary Differential Equations”, 
advised by Fritz Carlson. In his thesis he also introduced the logarithmic 
norm, independently developed also by Lozinskii in 1958, explained in 
Definition 1.3. The theory introduced in these years was spread out by Peter 
Henrici in 1962, through his monograph, a masterpiece for the modern theory 
of numerical discretization of ODEs. 

In 1959 Dahlquist he was appointed to the Royal Institute of Technology 
in Stockholm, where he spent the rest of his career and where the Department 
of Numerical Analysis and Computer Science was founded in 1962 as an 
offshoot the Department of Applied Mathematics. In these years he was 
pioneer also in establishing the new-born journal BIT Numerical Mathemat-
ics, published for the first time in 1961, served by Dahlquist as editor for 
more than 30 years. BIT published several relevant contributions by Germund 
Dahlquist, such as the highly cited masterpiece on A-stability (a concept we 
will later introduce in next chapters) on the famous Dahlquist barriers. 

In 1963 he got his position as Full Professor of “Computer Sciences, in 
particular Numerical Analysis”, actually the first full professorship position 
of this kind in Sweden. His highly appreciated book Numeriska Metoder, co-
authored by Åke Björck appeared in 1969 and a revised extended version 
entitled “Numerical Methods” was published in 1974 by Prentice-Hall [113]. 
This book had a great success all over the world: it was translated in German 

(continued)
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in 1972, in Polish in 1983, in Chinese in 1990. Nick Higham writes in his 
review of the book: 

This work is a monumental undertaking and represents the most comprehensive 
textbook survey of numerical analysis to date. It will be an important reference in 
the field for many years to come. 

During the 1960s and 1970s, Dahlquist visited many institutes in Europe, 
USA, Australia, New Zealand and China. He visited Stanford University in 
1968 and 1977–1978, where he held a five-year part-time position from 1982 
to 1986. 

The Society for Industrial and Applied Mathematics (SIAM) named him 
their John von Neumann lecturer in 1988. Germund Dahlquist retired from the 
Royal Institute of Technology in 1990, but continued in actively working on 
research. He obtained honorary doctorates from Hamburg University (1981), 
Helsinki University (1994), and Linköping University (1996). In 1999 he 
achieved the prestigious Peter Henrici Prize, with the following motivation: 

He has created the fundamental concepts of stability, A-stability and the nonlinear G-
stability for the numerical solution of ordinary differential equations. He succeeded, 
in an extraordinary way, to relate stability concepts to accuracy and proved the 
deep results which are nowadays called the first and second Dahlquist barrier. His 
interests, like Henrici’s, are very broad, and he contributed significantly to many 
parts of numerical analysis. As a human being and scientist, he gives freely of 
his talent and knowledge to others and remains a model for many generations of 
scientists to come. 

In 1995, on the occasion of his 70th birthday, SIAM established the 
Germund Dahlquist Prize to be awarded biennially, normally to a young 
scientist for original contributions to fields related to the numerical solution 
of differential equations and numerical methods for scientific computing. 

In his obituary, two more significant aspects arises: his active work for 
Amnesty International and his love of music. Here is an excerpt: 

As an active member of Amnesty International during the 1970s, Dahlquist worked 
to help scientists who were politically persecuted, in some cases traveling to offer his 
encouragement and recognition in person. He used to tell the story of his intervention 
on behalf of a Russian mathematician who, in despair, had made a thoughtless public 
statement to the effect that the Soviet Union was “a land of alcoholics”. Guriy I 
Marchuk, who had visited Stockholm University in the 1960s, was then president of 
the USSR Academy of Sciences and vice-chair of the USSR Council of Ministers. 
Dahlquist wrote to Marchuk pleading the dissident’s case. After a long time with no 
response, two staff members of the Soviet Embassy called at Germund’s office one 
day, bringing greetings from Marchuk and a package, that turned out to contain. . . 
two bottles of vodka! Germund had a keen interest in music, mainly classical but also 
jazz music. He would often happily sit down at the piano and entertain his colleagues 
with a few old standards, starting with “On the Sunny Side of the Street” and ending 
with “As Time Goes By”. But his knowledge went much deeper. On one visit to the 

(continued)
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USA, with a few colleagues in a fine restaurant, Germund heard a female bar pianist 
whose music was obviously the highlight of the evening for him. When it was time 
to leave, Germund told the pianist how much he had enjoyed her stylish playing, 
adding that it had reminded him of one of his favorites, the great jazz pianist Art 
Tatum. The pianist was duly flattered, but it was Germund who was surprised when 
she answered: “Art Tatum was my father!”. 

Germund Dahlquist died in 2005. His work inspired many researches over 
several decades. As John Butcher wrote: 

When I met him in 1970, I started to appreciate that he was more than a brilliant 
mathematician and computational scientist: he was a kind and sensitive man and a 
loyal  friend.  [. . . ]  Everything  Germund  published was a separate gem, exhibiting 
deep mathematical insight and, at the same time, a clear understanding of sound 
computational practice. He was a pioneer who remained a central figure throughout 
his career; he will be sadly missed. 

Let us recast (3.9) in the following form 

. 

k∑

j=0

αjy(tn+j ) − h

k∑

j=0

βjy
′(tn+j ) = hT (tn, y(tn);h).

Such a relation, though defined on vector valued functions, actually results to be the 
same on each component of the involved vectors. For this reasons, it makes sense to 
analyze it on scalar functions, motivating the following definition. 

Definition 3.5 For a given scalar function .z : [t0, T ] → R of class 
.C1([t0, T ]), the  linear difference operator associated to a linear multistep 
method (3.1) is defined by 

.L[z(t), h] =
k∑

j=0

αjz(t + jh) − h

k∑

j=0

βj z
′(t + jh). (3.10) 

Clearly, if .y(t) is the solution of (1.1), we have  

. L[yi(t), h] = hT (t, yi(t);h), i = 1, 2, . . . , d

and, as a consequence, if the method (3.1) has order p, .L[z(t), h] = O(hp+1), for 
any scalar function . z(t). This observation leads to the following result.
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Theorem 3.2 A linear multistep method (3.1) has order p if and only if 
.C� = 0, for any .�= 0, 1, . . . , p, with 

. C0 =
k∑

j=0

αj , C� =
k∑

j=0

(
j�

�! αj − j�−1

(� − 1)!βj

)
, � > 0

and .Cp+1 �= 0. 

Proof We expand in Taylor series around t each evaluation of .z(t) appearing in the 
right-hand side of (3.10), obtaining 

. L[z(t), h] =
k∑

j=0

αj

⎛

⎝z(t) +
∑

�≥1

(jh)�

�! z(�)(t)

⎞

⎠

− h

k∑

j=0

βj

(
z′(t) +

∑

�>1

(jh)�−1

(� − 1)!z
(�)(t)

)
.

Collecting in powers of h leads to 

. L[z(t), h] =
⎛

⎝
k∑

j=0

αj

⎞

⎠ z(t) +
∑

�≥1

k∑

j=0

(
j�

�! αj − j�−1

(� − 1)!βj

)
h�z(�)(t),

i.e., 

. L[z(t), h] = C0z(t) +
∑

�≥1

C�h
�z(�)(t).

In order to have .L[z(t), h] = O(hp+1), we need to satisfy 

. C0 = C1 = · · · = Cp = 0, Cp+1 �= 0,

obtaining the thesis. 
�
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Definition 3.6 The non-zero constant 

. Cp+1 =
k∑

j=0

(
jp+1

(p + 1)!αj − jp

p! βj

)

of an order p method (3.1) is denoted as its error constant. 

In other terms, for an order p linear multistep method we have 

. L[z(t), h] = Cp+1h
p+1z(p+1)(t) + O(hp+2),

for all regular scalar functions . z(t), while the corresponding local truncation error 
is 

. T (t, y(t);h) = Cp+1h
py(p+1)(t) + O(hp+1).

The following corollary of Theorem 3.2 gives us a very immediate way to 
analyze the consistency of a LMM (3.1), only requiring a straightforward algebraic 
computation involving the coefficients of the method. This way of proceeding is 
certainly much simpler than proving consistency using Definition 3.3. 

Corollary 3.1 A linear multistep method (3.1) is consistent if and only if 

.

k∑

j=0

αj = 0,
k∑

j=0

(
jαj − βj

) = 0. (3.11) 

Proof A consistent method has order at least one. Hence, according to Theorem 3.2, 
it satisfies 

. C0 =
k∑

j=0

αj = 0, C1 =
k∑

j=0

(
jαj − βj

) = 0

and the thesis holds true. 
�
Let us now present few examples of applications of the notions introduced in this 

section.
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Example 3.4 Let us analyze consistency, orders and error constants of the 
examples of LMMs (3.1) we have developed so far, depending on one and 
two steps. 

• The explicit Euler method (2.19) satisfies 

. C0 =
k∑

j=0

αj = 0, C1 =
k∑

j=0

(
jαj − βj

) = 0,

C2 =
k∑

j=0

(
j2

2
αj − jβj

)
= 1

2
,

so it is consistent, of order 1 and its error constant is equal to . 1/2; 
• for the implicit Explicit Euler method (2.32) we have 

. C0 =
k∑

j=0

αj = 0, C1 =
k∑

j=0

(
jαj − βj

) = 0,

C2 =
k∑

j=0

(
j2

2
αj − jβj

)
= −1

2
.

Then, it is consistent, of order 1 and its error constant is equal to .−1/2; 
• the trapezoidal method (2.33) fulfills 

. 

C0 =
k∑

j=0

αj = 0, C1 =
k∑

j=0

(
jαj − βj

) = 0,

C2 =
k∑

j=0

(
j2

2
αj − jβj

)
= 0, C3 =

k∑

j=0

(
j3

6
αj − j2

2
βj

)
= − 1

12
,

so it is consistent, of order 2 and its error constant is .−1/12; 
• Milne-Simpson method (3.2) is a LMM (3.1) with .α0 = −1, .α1 = 0, 

(continued)



88 3 Linear Multistep Methods

Example 3.4 (continued) 
.α2 = 1, .β0 = 1/3, .β1 = 4/3 and .β2 = 1/3. Hence, it satisfies 

. 

C0 =
k∑

j=0

αj = 0, C1 =
k∑

j=0

(
jαj−βj

) = 0,

C2 =
k∑

j=0

(
j2

2
αj−jβj

)
= 0, C3 =

k∑

j=0

(
j3

6
αj−j2

2
βj

)
= 0,

C4 =
k∑

j=0

(
j4

24
αj−j3

6
βj

)
= 0, C5 =

k∑

j=0

(
j5

120
αj− j4

24
βj

)
= − 1

90
,

so it is consistent, of order 4, with error constant .−1/90; 
• the two-step Adams-Bashforth method (3.3) is a LMM (3.1) with .α0 = 0, 

.α1 = −1, .α2 = 1, .β0 = −1/2, .β1 = 3/2 and .β2 = 0. Therefore, 

. 

C0 =
k∑

j=0

αj = 0, C1 =
k∑

j=0

(
jαj − βj

) = 0,

C2 =
k∑

j=0

(
j2

2
αj − jβj

)
= 0, C3 =

k∑

j=0

(
j3

6
αj − j2

2
βj

)
= 5

12
,

so it is consistent, of order 2 and its error constant is equal to .5/12. 

Example 3.5 We now aim to study the consistency of the following numerical 
method 

.yn+2 − 2yn+1 + yn = hfn, (3.12) 

both using conditions (3.11) and through an experimental check. Equation 
(3.12) provides an explicit two-step method and, according to Corollary 3.1 it 
is a non-consistent, since 

. C0 =
k∑

j=0

αj = 0, C1 =
k∑

j=0

(
jαj − βj

) = −1.

(continued)
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Example 3.5 (continued) 
Let us experimentally check this property. To this purpose, consider the 
following scalar test problem 

.

{
y′(t) = 2(y(t) − cos(t)) − sin(t), t ∈ [0, 2π ],
y(0) = 1,

(3.13) 

whose exact solution is .y(t) = cos(t). As visible in Fig. 3.1, the numerical 
solution does not match the exact one and the reader can verify that a similar 
behavior occurs also if the stepsize is reduced. This is a typical situation of 
lack of consistency: the application of a non-consistent method leads to the 
pattern of another function rather than one reproducing the exact solution. 

3.4 Zero-Stability 

We have learned in Chap. 2 that consistency is a local accuracy property, while zero-
stability and convergence are global accuracy properties. We now focus on zero-
stability analysis that, according to our analysis in Chap. 2, ensures the boundedness 
of the error for small values of the stepsize. We first need to introduce the following 
tools. 

Fig. 3.1 Numerical (straight 
line) vs exact (dashed line) 
solutions of (3.13). The  
numerical solution is 
computed by the 
non-consistent method (3.12) 
with stepsize . h = π/100

0 1 2 3 4 5
t
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Definition 3.7 The first characteristic polynomial associated to a linear 
multistep method (3.1) is given by 

.ρ(z) =
k∑

j=0

αjz
j , (3.14) 

while the second characteristic polynomial associated to (3.1) is given by 

.σ(z) =
k∑

j=0

βj z
j . (3.15) 

These polynomials are very useful also to analyze consistency of (3.1). Indeed, 
for a consistent method, we have 

. ρ(1) = 0, ρ′(1) = σ(1),

since 

. ρ(1) =
k∑

j=0

αj , ρ′(1) =
k∑

j=0

jαj , σ (1) =
k∑

j=0

βj .

The roots of the first characteristic polynomial are important to analyze the zero-
stability of (3.1). To this purpose, there is a relevant property that we are going to 
use, defined as follows. 

Definition 3.8 An algebraic polynomial satisfies the root condition if each of 
its roots has modulus strictly less than 1 or has modulus one but it is simple. 

Example 3.6 The polynomial 

. ρ(z) = z2 − 5

6
z + 1

6

satisfies the root condition, since its roots are 1/2 and 1/3. The polynomial 

(continued)
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Example 3.6 (continued) 

. ρ(z) = z2 − 4

3
z + 1

3

also satisfies the root condition, since its roots are 1/3 and 1. Finally, the 
polynomial 

. ρ(z) = z3 − 5

2
z2 + 2z − 1

2

does not satisfy the root condition, since its roots are 1/2 and 1, the latter with 
multiplicity 2. 

As we know from Chap. 2, zero-stability ensures that the numerical solution does 
not blow-up as h tends to 0; in other terms, we need to prove that the general solution 
of the difference equation describing (3.1) does not blow-up as h goes to 0. Hence, 
we first have to analyze what happens to the solution of a linear difference equation; 
this issue is explained by the following result, reported for the scalar case, whose 
proof is here omitted (the interested reader can refer, for instance, to [170]). 

Theorem 3.3 Consider the following order k inhomogeneous linear differ-
ence equation 

. 

k∑

j=0

αjyn+j = gn+k,

where .αj , yn+j ∈ R, .j = 0, 1, . . . , k, and .gn+k ∈ R. Then, there exists . M > 0
independent on n such that 

. |yn| ≤ M

(
max

0≤i≤k−1
|yi | +

n∑

m=k

|gm|
)

, n ≥ 0,

if and only if the characteristic polynomial 

. ρ(z) =
k∑

j=0

αjz
j

satisfies the root condition.
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According to Theorem 3.3, the root condition is a necessary and sufficient 
condition for the stability of the solutions of linear difference equations. We now 
prove that the root condition of the first characteristic polynomial (3.14) is exactly 
what we need to have stable numerical solutions through LMMs (3.1). First of all, 
let us provide a rigorous definition of zero-stability. 

Consider the vector 

.yh =

⎡

⎢⎢⎢⎣

y0

y1
...

yN

⎤

⎥⎥⎥⎦ (3.16) 

collecting the numerical solution of the initial value problem (1.1) in each grid point, 
computed by (3.1) and the vector 

. ̃yh =

⎡

⎢⎢⎢⎣

ỹ0

ỹ1
...

ỹN

⎤

⎥⎥⎥⎦

of the numerical approximations of the solution to the perturbed problem (1.12), 
obtained by (3.1). As in the one-step case described in Chap. 2, .Rh(yn) = 0, while 
we suppose that .Rh(ỹn) = εn and collect all these values in the vector 

. ε =

⎡

⎢⎢⎢⎣

ε0

ε1
...

εN

⎤

⎥⎥⎥⎦ .

We also denote by . δ the vector collecting the deviations in the initial values, i.e., 

. δ =

⎡

⎢⎢⎢⎣

y0 − ỹ0

y1 − ỹ1
...

yk−1 − ỹk−1

⎤

⎥⎥⎥⎦ .

We define zero-stability of LMMs (3.1) as follows.
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Definition 3.9 A linear multistep method (3.1) is zero-stable if there exists 
.� > 0 such that, for any value of the stepsize .h ∈ [0, h0], with .h0 > 0, the  
following stability inequality holds true 

.‖yh − ỹh‖∞ ≤ �(‖δ‖∞ + ‖ε‖∞). (3.17) 

As already observed in Chap. 2 for one-step methods, the zero-stability inequality 
(3.17) imitates the corresponding inequality (1.15), useful to study the continuous 
dependence on the initial data and the vector field of the underlying initial value 
problem. 

Let us now prove the following zero-stability criterion, whose statement recalls 
the stability result for difference equations presented in Theorem (3.3). 

Theorem 3.4 A linear multistep method (3.1) is zero-stable if and only if its 
first characteristic polynomial (3.14) satisfies the root condition. 

Proof We separately prove the necessity and the sufficiency of the root condition 
for the zero-stability of (3.1). 

• First part: let us prove that zero-stability implies the root condition for its first 
characteristic polynomial. Suppose that the vector field f of the continuous 
problem (1.1) is identically null. The corresponding LMM (3.1) reads 

.

k∑

j=0

αjyn+j = 0. (3.18) 

Let us collect the numerical solution arising from (3.18) in the vector . yh given by 
(3.16) and consider that the homogeneous difference equation (3.18) also admits 
the zero solution. Then, from the zero-stability hypothesis, there exists . � > 0
such that 

. ‖yh‖∞ ≤ � max
0≤j≤k−1

|yj |.

Hence, the solution . yh of the difference equation (3.18) is uniformly bounded 
and, by Theorem 3.3, its characteristic polynomial 

.ρ(z) =
k∑

j=0

αjz
j
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satisfies the root condition. 
• Second part: let us prove that the root condition for the first characteristic 

polynomial of (3.1) implies its zero-stability. Let us consider two given grid 
functions 

. u, v : Ih → R
d

and denote by . un and . vn their values in .tn ∈ Ih, respectively. Correspondingly, 

. 

k∑

j=0

αjun+j = h

k∑

j=0

βjf (tn+j , un+j ) + hRh(un),

k∑

j=0

αjvn+j = h

k∑

j=0

βjf (tn+j , vn+j ) + hRh(vn).

By subtraction, we have 

.

k∑

j=0

αj

(
un+j − vn+j

) = gn+k, (3.19) 

where 

. gn+k = h

k∑

j=0

βj

(
f (tn+j , un+j ) − f (tn+j , vn+j )

) + h (Rh(un) − Rh(vn)) .

In other terms, .{un−vn}n∈N is solution of the inhomogeneous difference equation 
(3.19). Since the root condition holds true, by Theorem 3.3 there exists .M > 0, 
independent on n, such that 

. ‖un − vn‖∞ ≤ M

(
max

0≤i≤k−1
‖ui − vi‖∞+

n∑

m=k

‖gm‖∞

)
.

Certainly, by defining .(rh)n = Rh(un) − Rh(vn), we have  

.

‖gm‖∞ =
∥∥∥∥∥∥
h

k∑

j=0

βj

(
f (tm+j−k, um+j−k)−f (tm+j−k, vm+j−k)

) +h(rh)m−k

∥∥∥∥∥∥∞

≤ hLβ

k∑

j=0

‖um+j−k−vm+j−k‖∞+h‖rh‖∞,
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being .β = max
0≤j≤k

βj . By defining .en = un − vn, we have  

. 

‖en‖∞ ≤ M

⎛

⎝ max
0≤i≤k−1

‖ei‖∞ +
n∑

m=k

⎛

⎝h L β

k∑

j=0

‖em+j−k‖∞ + h‖rh‖∞

⎞

⎠

⎞

⎠

≤ M

⎛

⎝ max
0≤i≤k−1

‖ei‖∞ + h L β

n∑

m=k

k∑

j=0

‖em+j−k‖∞ + Nh‖rh‖∞

⎞

⎠ .

Clearly, 

. 

n∑

m=k

k∑

j=0

‖em+j−k‖∞ ≤
k∑

j=0

n∑

m=0

‖em‖∞ = (k + 1)
n∑

m=0

‖em‖∞.

Hence, 

. ‖en‖∞ ≤ M

(
max

0≤i≤k−1
‖ei‖∞ + h L β(k + 1)

n∑

m=0

‖em‖∞ + (T − t0)‖rh‖∞

)

or, equivalently, 

. μ‖en‖∞ ≤ M

(
max

0≤i≤k−1
‖ei‖∞ + h L β(k + 1)

n−1∑

m=0

‖em‖∞ + (T −t0)‖rh‖∞

)
,

with .μ = (1 − h L β(k + 1)). Suppose to choose h small enough in order to 
make .μ > 0 (it is enough to choose .h < 1/(hLβ(k + 1)) to make this possible), 
so that 

. ‖en‖∞ ≤ h A

n−1∑

m=0

‖em‖∞ + B,

with 

. A = M

μ
L β(k + 1), B = M

μ

(
max

0≤i≤k−1
‖ei‖∞ + (T − t0)‖rh‖∞

)
.

Let us consider the corresponding difference equation 

.wn = h A

n−1∑

m=0

wm + B,
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with initial value .w0 = B. The reader can easily prove by induction that its 
solution is 

. wn = B(1 + hA)n, n ≥ 0.

Then 

. ‖en‖∞ − wn ≤ h A

n−1∑

m=0

(‖em‖∞ − wm)

and the reader can again prove by induction that 

. ‖en‖∞ ≤ wn.

Therefore, 

. ‖en‖∞ ≤ B(1 + hA)n ≤ BenhA ≤ BeNhA = Be(T −t0)A

and replacing the value of B gives 

. ‖en‖∞ ≤ M

μ
e(T −t0)A

(
max

0≤i≤k−1
‖ei‖∞ + (T − t0)‖rh‖∞

)
.

The choice 

. � = M

μ
e(T −t0)A max{1, T − t0}

let the thesis hold true. 
�
Analyzing zero-stability through Definition 3.9 may be very tricky. However, 

Theorem 3.4 provides a practical condition that makes the analysis of zero-stability 
much easier. Let us test such a condition on few examples. 

Example 3.7 According to Theorem 3.4, 

• Euler methods (2.19) and (2.32) are zero-stable, since their first character-
istic polynomial is 

. ρ(z) = z − 1;

(continued)
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Example 3.7 (continued) 
• the trapezoidal method (2.33) is zero-stable, since its first characteristic 

polynomial is 

. ρ(z) = z − 1;

• Milne-Simpson method (3.2) is zero-stable, since its first characteristic 
polynomial is 

. ρ(z) = z2 − 1;

• the two-step Adams-Bashforth method (3.3) is zero-stable, since its first 
characteristic polynomial is 

. ρ(z) = z2 − z.

Example 3.8 We now aim to study the zero-stability of the following numer-
ical method 

.yn+2 − 3yn+1 + 2yn = hfn, (3.20) 

both checking the root condition and experimentally. This method is not zero-
stable, since the roots of its first characteristic polynomial 

. ρ(z) = z2 − 3z + 2

are 1 and 2, so the root condition is not satisfied. Let us experimentally check 
this lack of zero-stability on the test problem (3.13). As visible in Fig. 3.2, the  
numerical solution does not have a stable behavior, so it does not match the 
stable character of the exact solution. Hence, the applied method is clearly not 
zero-stable. 

For a zero-stable linear multistep method (3.1), the following result holds true.
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Fig. 3.2 Numerical solution of (3.13) computed by method (3.20), that is not zero-stable, with 
stepsize . h = π/100

Theorem 3.5 The order p of a zero-stable linear multistep method (3.1) 
depending on k steps satisfies 

. p ≤
{

k + 1, k odd,

k + 2, k even.

This results, whose proof can be found, for instance, in [67], is an order barrier 
for linear multistep methods, well-known in the literature as first Dahlquist barrier. 
In other terms, the number of steps provides an upper bound for the order of 
convergence of the corresponding method. Maximal order methods are those of 
order .k+1 if k is odd, .k+2 if k is even. An example of maximal order method is the 
Milne-Simpson method (3.2), which depends on 2 steps and has order 4. However, 
maximal order methods can have poor stability properties, as it is the case of Milne-
Simpson method itself, so we should provide a reasonable balance between accuracy 
and stability properties. We will analyze this aspect in Chap. 6.
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3.5 Convergence 

Let us now turn our attention to analysis of convergence for linear multistep methods 
(3.1), starting from the following definition. 

Definition 3.10 Suppose that (3.16) is the vector collecting the numerical 
approximations of the solution to the continuous problem (1.1) in each grid 
point of the uniform grid (2.1), obtained by the method (3.1) and also consider 
the vector of the corresponding exact values 

. υh =

⎡

⎢⎢⎢⎣

y(t0)

y(t1)
...

y(tN )

⎤

⎥⎥⎥⎦ .

Denote by 

. sh =
⎡

⎢⎣
y1
...

yk−1

⎤

⎥⎦

the vector collecting the missing starting values computed by a proper starting 
procedure. Then, the LMM (3.1) is convergent if 

. lim
h→0

‖υh − yh‖∞ = 0,

whenever 

. lim
h→0

(sh)i = y(ti), i = 1, 2, . . . , k − 1.

It is worth underlining that a significant role is played by the starting procedure, 
which is assumed to provide accurate starting values in the above given definition 
of convergence. Again, as aforementioned for consistency and zero-stability, con-
vergence analysis through its definition may not be an easy task. However, there is 
a very powerful result, according to which convergence is equivalent to consistency 
plus zero-stability. In such a way, convergence analysis only relies on very simple 
calculations involving the coefficients of the method. This result originally belongs 
to a huge masterpiece due to Peter D. Lax (Budapest, 1926), specialized to LMMs 
by Germund Dahlquist. Peter Lax is a mathematician born in Hungary, Professor at
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Courant Institute of Mathematical Sciences at New York University, winner of the 
prestigious Abel Prize in 2005. 

Theorem 3.6 (Lax Equivalence Theorem) A linear multistep method (3.1) 
is convergent if and only if it is consistent and zero-stable. 

Proof We separately prove the necessity and the sufficiency parts of the theorem. 

• First part: we prove that convergence implies consistency and zero-stability. 
Consider the initial value problem (1.1) with f identically zero and .y0 = 0. 
Then, .y(t) = 0. By contradiction, suppose that the method is not zero-stable: 
then, there exists are a root . z of the first characteristic polynomial of (3.1) such 
that .|z| > 1 or .|z| = 1 and its multiplicity is greater than 1. In the first case, the 
solution of (3.1), thought as a difference equation, contains a term 

. czn, c ∈ R

tending to infinity, which contradicts the hypothesis of convergence. The case 
.|z| = 1 with multiplicity greater than 1 is similar and left to the reader. 
Let us now prove that convergence implies consistency, by proving that consis-
tency conditions arise from the exactness of the method on the monomial basis 
.{1, t} (this choice is connected to Exercise 4, Sect. 3.6). 
(i) Consider the initial value problem (1.1) with f identically zero and .y0 = 1. 

Then, .y(t) = 1. The corresponding LMM (3.1) is given by 

. 

k∑

j=0

αjyn+j = 0

and, assuming .y1 = y2 = · · · = yk−1, convergence yields 

. 

k∑

j=0

αj = 0,

that is the first consistency condition. 
(ii) Consider the initial value problem (1.1) with f identically equal to 1 and 

.y0 = 0. Then, .y(t) = t − t0. The corresponding LMM (3.1) is given by 

.

k∑

j=0

αjyn+j = h

k∑

j=0

βj ,
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i.e., 

.

k∑

j=0

αjyn+j = hσ(1). (3.21) 

Certainly, 

. yn = σ(1)

ρ′(1)
nh

is solution of (3.21), as the reader can easily check. By convergence, . yn

converges to nh and, as a consequence, 

. 
σ(1)

ρ′(1)
= 1

that is the second consistency condition. 

• Second part: we prove that consistency and zero-stability imply convergence. 
Since .Rh(yn) = 0 and .Rh(y(t)) = T (t, y(t);h), the zero-stability inequality 
(3.17) reads 

. ‖υh − yh‖∞ ≤ �(‖δ‖∞ + max
0≤i≤N

|T (ti, y(ti);h)|).

The right-hand side of last inequality goes to 0, because of the preliminary 
assumption on the starting procedure given in Definition 3.10 and the consistency 
assumption, leading to the thesis. 
�

Example 3.9 Let us analyze the family of two-step implicit LMMs (3.1), 
given by 

.yn+2 + α1yn+1 + α0yn = h(β2fn+2 + β1fn+1 + β0fn). (3.22) 

• Consistency. Let us give consistency conditions (3.11) for this class  of  
methods. We have 

. 

α0 + α1 + 1 = 0,

α1 + 2 = β0 + β1 + β2.

(continued)
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Example 3.9 (continued) 
• Order 2. We obtain the constraints on the coefficients of the methods 

ensuring second order, by imposing the additional condition .C2 = 0 in 
Theorem (3.2), i.e., 

. 
1

2
α1 + 2 = β1 + 2β2.

Hence, order 2 methods (3.22) satisfy 

. 

α0 = 3 − 2β1 − 4β2,

α1 = −4 + 2β1 + 4β2,

β0 = −2 + β1 − 3β2.

• Order 3. Third order methods also satisfy .C3 = 0 in Theorem (3.2), i.e., 

. 
1

6
α1 + 4

3
= 1

2
β1 + 2β2.

In summary, third order methods satisfy 

. 

α0 = −5 + 12β2,

α1 = 4 − 12β2,

β0 = 2 − 11β2.

β1 = 4 − 8β2.

• Order 4. Fourth order methods also fulfill .C4 = 0 in Theorem (3.2), i.e., 

. 
1

24
α1 + 2

3
= 1

6
β1 + 4

3
β2.

In summary, fourth order methods satisfy 

. α0 = 7, α1 = −8, β0 = −9, β1 = −4, β2 = −1.

We observe that the maximal order method 

. yn+2 − 8yn+1 + 7yn = −h(fn+2 + 4fn+1 + 9fn)

(continued)
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Example 3.9 (continued) 
is not convergent because it is not-zero stable, since the zeros of the first 
characteristic polynomial 

. ρ(z) = z2 − 8z + 7

are 1 and 7, then the root condition is not satisfied. 

Clearly, due to Lax equivalence theorem, if a method is not convergent then 
consistency and/or zero-stability are missing. A numerical evidence of this aspect 
has already been given in Examples 3.5 and 3.8. We now aim to experimentally 
analyze the performances of a convergent method, namely the second-order Adams-
Bashforth method (3.3), implemented in Program 3.1 by using the explicit Euler 
method (2.19) as a starting procedure. 

Program 3.1 (Adams-Bashforth Method) 
% Function implementing the second order Adams-Bashforth 
% method on a uniform grid, for the numerical solution 
% of a d-dimensional ODE. 

% Inputs 
% - problem: label of the problem to be solved; 
% - tspan: vector of two components, storing the extrema 
% of the integration interval; 
% - y0: initial value; 
% - h: constant stepsize. 

% Outputs 
% - t: set of N equidistant grid points (tspan(1) excluded); 
% - y: d. ×N matrix whose i-th column y(:,i) stores the 
% approximate value in the i-th grid point, i=1,2,. . . .,N. 

function [t,y]=AdamsBashforth(problem,tspan,y0,h) 
N=(tspan(2)-tspan(1))/h; 
t=linspace(h,tspan(2),N); 
d=length(y0); 
y=zeros(d,N); 
fold=f(problem,tspan(1),y0); 
% Starting value y(:,1) recovered by explicit Euler method 
y(:,1)=y0+h*fold; 
fnew=f(problem,t(1),y(:,1)); 
y(:,2)=y(:,1)-h*(fold-3*fnew)/2; 
% The variables fold and fnew are introduced to reuse 
% already computed function evaluations. 

(continued)
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Program 3.1 (continued) 
fold=fnew; 
fnew=f(problem,t(2),y(:,2)); 
for i=3:N 

y(:,i)=y(:,i-1)-h*(fold-3*fnew)/2; 
fold=fnew; 
fnew=f(problem,t(i),y(:,i)); 

end 

Next example gives an experimental confirmation of the order of a numerical 
method. The involved order estimate is based on the application of the method with 
stepsize h, whose principal error term is given by .err(h) ≈ Cp+1h

p, and halved 
stepsize . h/2, with principal error term .err(h/2) ≈ Cp+1(h/2)p. The ratio between 
the two errors gives 

. 
err(h)

err(h/2)
≈ 2p,

i.e., 

.p ≈ log2

(
err(h)

err(h/2)

)
, (3.23) 

that provides an estimate of the order of convergence. Clearly, the smaller is h, the  
more the estimate of p is accurate. 

Example 3.10 Consider the following van der Pol oscillator 

.

{
y′
1(t) = y2(t),

y′
2(t) = (1 − y1(t)

2)y2(t) − y1(t),
(3.24) 

with .t ∈ [0, 10] and initial value .y0 = [ 2 −2/3 ]T. Let us numerically solve 
this problem by using the second order Adams-Bashforth method (3.3): the  
pattern of the solution is displayed in Fig. 3.3. We know that (3.4) is a 
convergent method; let us give an experimental evidence of this property in 
Table 3.1, where it is visible that the more the stepsize diminishes, the more 
the error decreases. The error is computed as 

. ‖yAB − yODE45‖∞,

(continued)
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Example 3.10 (continued) 
where .yAB ≈ y(10) is computed by (3.3) and .yODE45 is the solution in . t = 10
computed by the Matlab built-in function ode45, with high accuracy, given 
by 

. yODE45 = [−1.914027891764918 0.446099168376746
]T

.

As visible, both the convergence and the order of convergence are confirmed 
in the experiments. 

0 2 4 6 8
t
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-2

-1 
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3 

y 1 (t
),

 y
2 (t

) 

 10  

Fig. 3.3 Pattern of the solution of (3.24) computed by the Adams-Bashforth method (3.3), with 
.h = 0.1. The plot of the component .y1(t) is the straight line, while .y2(t) is the dashed line 

Table 3.1 Example 3.10: error in the final integration point associated to the application of the 
Adams-Bashforth method (3.4) to the van der Pol problem (3.24) and order estimation, computed 
as suggested by Eq. (3.23) 

h .‖yAB − yODE45‖∞ p 
.h0 = 0.1 . 3.10 · 10−2

.h0/2 .8.23 · 10−3 1.91 

.h0/4 .2.13 · 10−3 1.95 

.h0/8 .5.41 · 10−4 1.97 

.h0/16 .1.36 · 10−4 1.99
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3.6 Exercises 

1. Analyze the family of explicit three-step methods (3.1), providing families of 
convergent methods of various orders. Is the maximal order method of the 
family also convergent? 

2. Compute the values of ϑ1, ϑ2 ∈ R such that the two-parameter family of 
methods 

. yn+2 + (2ϑ1 − 3ϑ2)yn+1 −
(
5ϑ1

2
− 2

)
yn = ϑ1h (fn + fn+1)

reduces to a single convergent method. Does the corresponding method also 
achieve maximal order? 

3. As seen in Example 3.4, Milne-Simpson method (3.2) is an implicit two-step 
method of order 4. Provide an experimental confirmation of its order on the van 
der Pol problem (3.24). 

4. Prove that a LMM (3.1) of order p exactly solves all the differential problems 
whose solution is a polynomial of degree at most p. 
Hint: prove that, for methods of order p, the linear difference operator (3.10) 
annihilates on the set of functions {1, t, t2, .  .  .  , tp}. 

5. Construct an explicit two-step method (3.1) exactly solving all differential 
problems whose solution belongs to the functional space spanned by 

. {1, t, cos(ωt), sin(ωt)}.

Then, compute the limit as ωh tends to 0, being h the stepsize, of the coefficients 
of the obtained method and check if they fulfill the set of order conditions 
described in Theorem 3.2 up to a certain integer p. 

6. As regards Example 3.9, find the values of β2 such that third order methods are 
zero-stable. 

7. Write a code in your favorite programming language implementing the three-
step method 

. yn+3 − 18

11
yn+2 + 9

11
yn+1 − 2

11
yn = 6

11
hf (yn+3, tn+3)

for the numerical solution of d-dimensional systems (1.1). You need to recover 
the two-missing starting values y1 and y2, hence you can implement two 
options: recover both y1 and y2 by two consecutive steps of a one-step method; 
recover y1 by a one-step method and then y2 by a two-step method. Provide an 
experimental evidence of the convergence of the method and of its order. 

8. The bound (3.7) estimating the stepsize restriction for the convergence of fixed 
point iterations in the case implicit LMMs (3.1) is fully computable if the value 
of the Lipschitz constant L of the vector field is known. Estimating the Lipschitz 
constant of a function is very important in many fields: for instance, several
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estimation algorithms for the Lipschitz constant have been developed in papers 
on global optimization. 

The exercise consists in two parts: 

• write a code in your favorite programming language implementing the 
following estimation algorithm for the Lipschitz constant L of a given scalar 
function [346]. 
Step 1. Compute the approximation P solutions of a scalar initial value 
problem (1.17) in autonomous form, by a chosen LMM (3.1), corresponding 
to P different initial values. Denote by y i,j 

n the i-th component of the j -th 
solution in the point tn ∈ Ih, i = 1, 2, . . .  ,  d, j = 1, 2, . . . , P . Then, define 

. ai = min
j=1,...,P

min
tn∈Ih

X
i,j
n , bi = max

j=1,...,P
max
tn∈Ih

X
i,j
n ,

i = 1, 2, . . .  , d. 
Step 2. Generate Q couples of vectors 

. xk =
[
x1
k , x2

k , . . . , xd
k

]T
, yk =

[
y1
k , y2

k , . . . , yd
k

]T
,

with k = 1, 2, . . . Q, such that (xi 
k, y

i 
k) is uniformly distributed in [ai, bi] ×  

[ai, bi], i = 1, 2, . . . , d. 
Step 3. Compute 

. sk = |f (xk) − f (yk)|2
|xk − yk|2 , k = 1, 2, . . . ,Q.

Step 4. Assume as estimate of L the value of max{s1, . . . , sQ}; 
• solve the same differential problem by using the implicit Euler method 

(2.32) and give an experimental confirmation of the sharpness of the bound 
(3.7), by choosing values of the stepsize above and below this bound (fully 
computable using the aforementioned estimation algorithm for the Lipschitz 
constant of the vector field) and checking the convergence of fixed point 
iterations in correspondence of the chosen values of the stepsize. 

9. Using Definition 3.3 of consistency, provide a consistency analysis of Milne-
Simpson (3.2) computing its local truncation error and, consequently, infer its 
order. 

10. Develop maximal order convergent LMMs depending on 4 and 5 steps.
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