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Preface 

This book is devoted to the numerical discretization of ordinary differential equa-
tions (ODEs), here presented under several perspectives. First of all, the attention 
is conveyed to the basic aspects of the numerical approximation of ODEs, with 
clear emphasis on providing accurate numerical solutions of deterministic problems. 
Then, the focus is moved to a more modern vision of numerical approximation, 
oriented to reproducing qualitative properties of the continuous problem along the 
discretized dynamics. Indeed, modern Numerical Analysis is not only devoted to 
accurately approximating the solutions of various problems through efficient and 
robust schemes, but also to retaining the characteristic properties of the continuous 
problem over long times. Sometimes such conservation properties naturally charac-
terize the numerical schemes, while in more complex situations preservation issues 
have to be conveyed into the numerical approximations. 

The book also performs some steps in the direction of stochastic differential 
equations (SDEs), with the intention of offering useful tools to generalize the 
techniques introduced for the numerical approximation of ODEs to the stochastic 
case, as well as of presenting those natively introduced for SDEs. 

The book represents the result of an intense teaching experience as well as 
of the research carried out in the last decade by the author. It is both intended 
for students and instructors: for the students, this book is comprehensive and 
mostly self-contained; for the instructors, there is material for one (or even more 
than one) monographic course on ODEs and related topics. In this respect, the 
book can be followed in its designed path and includes motivational aspects, 
historical background and examples. All theoretical issues are thought for a better 
understanding of the many aspects of numerical approximation, even when the 
theorems are mostly dealing with the differential problem rather than with its 
numerical counterpart. The author is indeed convinced that understanding as much 
as possible on the problem is a key aspect in designing proper numerical solvers. 
The book is also equipped with a large number of software programs, implemented 
in MATLAB, that can be useful for the laboratory part of a course in numerical 
ODEs.
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viii Preface

There are several beautiful monographs on the numerical approximations of the 
solutions to ODEs, so a natural question is: “Why yet another book?”. Actually, the 
effort of the author in writing this monograph was aimed at 

• regarding the theoretical analysis of ODEs as a building block for the numerical 
approximation, inferring relevant qualitative features of the continuous problem 
to be imitated along the discretized dynamics, in a way that removes possible 
useless dichotomies between the study of the problem and that of its approxima-
tion; 

• presenting the well-established theory of numerical methods for ODEs in a 
comprehensive way, with elements of novelty in the analysis that provide a 
simplified framework without sacrificing the rigor of the presentation; 

• covering the case of SDEs, which have played a relevant role in the recent 
literature on numerical analysis of evolutive problems and have not yet been 
included in a comprehensive monograph on ODEs; 

• including a wide practical setting, not only given by the provided software, but 
also (and especially) by the analysis of the results that assess the effectiveness of 
the presented approaches and confirm the theoretical results. 

Together with strictly mathematical aspects, the book contains the portraits of 
several pioneers in the numerical discretization of ODEs. 

My most sincere gratitude goes to Alfio Quarteroni, who encouraged me a lot 
to write this book and gave me many precious suggestions useful to improve the 
presentation of the monograph. I am thankful to Beatrice Paternoster, who guided 
me along the path leading to my professorship with great, sincere care. I am thankful 
to Zdzislaw Jackiewicz, especially for the great time we spent doing research 
together during my visit to Arizona when I was a Ph.D. student. I am grateful to 
John Butcher, who inspired me a lot with his deep love for Numerical Analysis 
and his heartfelt attitude; we have spent a lot of time together all over the world 
as well as during my visits to New Zealand, where we had several occasions to 
enjoy Mathematics and. . . . singing together. I am beholden to Ernst Hairer, from 
whom I learned a lot on geometric numerical integration, especially during my visit 
to Geneva, which was highly inspiring for me. I am thankful to Luca Dieci for 
his warm hospitality while I was Fulbright Research Scholar at Georgia Institute 
of Technology, where I have learned most of what I know on piecewise smooth 
dynamical systems. I am grateful to Evelyn Buckwar for introducing me to the 
world of numerical integration for SDEs during my visit to her in Linz. Many 
thanks to Kevin Burrage, David Cohen, Hugo de la Cruz and Gilles Vilmart for all 
profitable discussions on the numerics for SDEs. Thanks a lot to Springer Nature, 
Italy, especially to Francesca Bonadei for her precious support and encouragement 
and to the anonymous referee for carefully reading the manuscript. 

There are many colleagues, students and friends to whom I am deeply grateful, 
but a detailed list would certainly leave someone out: whoever you are, you will 
recognize yourself in my deepest gratitude.



Preface ix

Last but not least, thanks a lot to you, reader of this book. I hope you will enjoy it 
and share my love for the topic, which I sincerely hope will emerge from each page. 

L’Aquila, Italy Raffaele D’Ambrosio 
January 2023



Contents 

1 Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Initial Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Well-Posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Dissipative Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Conservative Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 Stability of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Discretization of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.1 Domain Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2 Difference Equations: The Discrete Counterpart of 

Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.1 Linear Difference Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.2 Homogeneous Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.3 Inhomogeneous Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Step-by-Step Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4 A Theory of One-Step Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.4.2 Zero-Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.4.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5 Handling Implicitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3 Linear Multistep Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.1 The Principle of Multistep Numerical Integration . . . . . . . . . . . . . . . . . . . . 73
3.2 Handling Implicitness by Fixed Point Iterations . . . . . . . . . . . . . . . . . . . . . . 77
3.3 Consistency and Order Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.4 Zero-Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.5 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xi



xii Contents

4 Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.1 Genesis and Formulation of Runge-Kutta Methods . . . . . . . . . . . . . . . . . . 109
4.2 Butcher Theory of Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2.1 Rooted Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.2.2 Elementary Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2.3 B-Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.2.4 Elementary Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.2.5 Order Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.3 Explicit Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.4 Fully Implicit Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.4.1 Gauss Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.4.2 Radau Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.4.3 Lobatto Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.5 Collocation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5 Multivalue Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.1 Multivalue Numerical Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.2 General Linear Methods Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.4 Two-Step Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.5 Dense Output Multivalue Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6 Linear Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.1 Dahlquist Test Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.2 Absolute Stability of Linear Multistep Methods . . . . . . . . . . . . . . . . . . . . . . 175
6.3 Absolute Stability of Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.4 Absolute Stability of Multivalue Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.5 Boundary Locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.6 Unbounded Stability Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.6.1 A-Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.6.2 Padé Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.6.3 L-Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.7 Order Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7 Stiff Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.1 Looking for a Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.2 Prothero-Robinson Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.3 Order Reduction of Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.4 Discretizations Free from Order Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.4.1 Two-Step Collocation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.4.2 Almost Collocation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7.4.3 Multivalue Collocation Methods Free from Order 

Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222



Contents xiii

7.5 Stiffly-Stable Methods: Backward Differentiation Formulae . . . . . . . . 223
7.6 Principles of Adaptive Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

7.6.1 Predictor-Corrector Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
7.6.2 Stepsize Control Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
7.6.3 Error Estimation for Runge-Kutta Methods . . . . . . . . . . . . . . . . . . 235
7.6.4 Newton Iterations for Fully Implicit Runge-Kutta 

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

8 Geometric Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
8.1 Historical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
8.2 Principles of Nonlinear Stability for Runge-Kutta Methods . . . . . . . . . 246
8.3 Preservation of Linear and Quadratic Invariants . . . . . . . . . . . . . . . . . . . . . . 248
8.4 Symplectic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
8.5 Symmetric Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
8.6 Backward Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

8.6.1 Modified Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
8.6.2 Truncated Modified Differential Equations . . . . . . . . . . . . . . . . . . . 270
8.6.3 Long-Term Analysis of Symplectic Methods . . . . . . . . . . . . . . . . . 272

8.7 Long-Term Analysis of Multivalue Methods . . . . . . . . . . . . . . . . . . . . . . . . . 275
8.7.1 Modified Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
8.7.2 Bounds on the Parasitic Components . . . . . . . . . . . . . . . . . . . . . . . . . 282
8.7.3 Long-Time Conservation for Hamiltonian Systems . . . . . . . . . . 283

8.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

9 Numerical Methods for Stochastic Differential Equations . . . . . . . . . . . . . . 291
9.1 Discretization of the Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
9.2 Itô and Stratonovich Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
9.3 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
9.4 One-Step Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

9.4.1 Euler-Maruyama and Milstein Methods . . . . . . . . . . . . . . . . . . . . . . 310
9.4.2 Stochastic ϑ-Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
9.4.3 Stochastic Perturbation of Runge-Kutta Methods . . . . . . . . . . . . 317

9.5 Accuracy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
9.6 Linear Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

9.6.1 Mean-Square Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
9.6.2 Mean-Square Stability of Stochastic ϑ-Methods . . . . . . . . . . . . . 331
9.6.3 A-stability Preserving SRK Methods . . . . . . . . . . . . . . . . . . . . . . . . . 335

9.7 Principles of Stochastic Geometric Numerical Integration . . . . . . . . . . . 338
9.7.1 Nonlinear Stability Analysis: Exponential 

Mean-Square Contractivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
9.7.2 Mean-Square Contractivity of Stochastic ϑ-Methods . . . . . . . . 340
9.7.3 Nonlinear Stability of Stochastic Runge-Kutta Methods . . . . . 349
9.7.4 A Glance to the Numerics for Stochastic 

Hamiltonian Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
9.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361



xiv Contents

A Summary of Test Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
A.1 General ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
A.2 Hamiltonian Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
A.3 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383



Chapter 1 
Ordinary Differential Equations 

In order to solve this differential equation you look at it until a 
solution occurs to you. 

(George Polya, How to Solve It: A New Aspect of Mathematical 
Method, Princeton University Press, 1945) 

In order to properly address the issue of numerically solving any mathematical 
problem, it is always extremely important to understand as much as possible the 
problem itself. Hence, this chapter focuses on some basic issues on initial value 
problems for ordinary differential equations, and in particular on the well-posedness 
of the problem and the stability of solutions. Of course, this chapter does not 
pursue the aim of being a comprehensive treatise on the theory of ODEs; rather, 
the results here presented are clearly meant to provide significant issues relevant for 
computational purposes. The reader interested in monographs specifically dedicated 
to presenting a general theory of ODEs under a qualitative point of view can refer, 
for instance, to [14, 24, 90, 99, 199–201]. 

1.1 Initial Value Problems 

Consider the following initial value problem for first order ordinary differential 
equations (ODEs) 

.

{
y′(t) = f (t, y(t)),

y(t0) = y0,
(1.1) 

with .t ∈ [t0, T ], .f : [t0, T ] × Rd → R
d and .y0 ∈ Rd . The right-hand side of the 

differential equation in (1.1), also denoted as vector field of the problem, can be of 
the form .f (y(t)), i.e., dependent on t only through the solution . y(t): in this case the 
problem is said to be autonomous. When the vector field explicitly depends on the 
independent variable t , as in  (1.1), the problem is said to be non-autonomous. In the  
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2 1 Ordinary Differential Equations

remainder of the treatise, we will always refer to the non-autonomous form (1.1), 
unless explicitly specified. 

Problem (1.1) can be assumed as a prototype model of evolution in time and, 
indeed, it models many real life phenomena. Moreover, it also arises in the spatial 
discretization of time-dependent partial differential equations: therefore, it assumes 
an important and general role in mathematical modeling of evolutive problems. 
As a consequence, understanding the problem in depth, as well as giving proper 
methodologies for its solution, deserves the necessary attention. Before entering 
into both topics, let us now provide some examples of models described by ODEs, 
which have a specific meaning in applications. 

Example 1.1 (Dynamics of Social Networks) Social networks have an intrin-
sic dynamical behavior with rapid evolution in time, due to the large amount 
of real-time interactions among their users. It looks particularly interesting to 
study the dynamics of processes over the network as well as the underlying 
connectivity among users, as a prototype model of human interactions. 

Let us suppose that N is the number of users of a selected social network 
and denote by .A(t) ∈ R

N×N the corresponding binary time-dependent 
adjacency matrix, i.e., 

. Aij (t) =
{
1, if and only if i communicates with j at time t,

0, otherwise.

We observe that .A(t) is a symmetric matrix in case, for instance, of voice calls 
and a generic entry differs from 0 only when the call is active. In other terms, 
.A(t) measures the effective interaction among two users, clearly clarifying 
also the time when such an interaction starts and when it stops. 

The non-symmetric and non-binary case occurs, for instance, in case of 
e-mails and tweets and, in this case, a vanishing value of an element of . A(t)

highlights a possible delay in receiving the message or sending a reply (in the 
case of e-mails) or the loss of visibility of a message over time (in the case of 
tweets). 

Mantzaris and Higham introduced in [258] the notion of dynamic com-
municators to denote individuals able to disseminate or collect information. 
In [179], Grindrod and Higham provided an elegant model to describe the 
evolution of dynamic communicability by means of a matrix differential 
equation in the unknown .S(t) ∈ RN×N , which is a real-valued non-symmetric 
matrix whose general entry .Sij (t) describes the ability of an individual i to 
communicate with another individual j at time t . Such a model is given by 

(continued)
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Example 1.1 (continued) 
the following matrix differential equation 

.U ′(t) = −b(U(t) − I ) − U(t) log(I − aA(t)), (1.2) 

where .U(t) = I + S(t), I is the identity matrix in .RN×N , a, b are positive 
parameters. Equation (1.2) requires the computation of a matrix logarithm; 
functions of matrices are extensively described in [211]. Here we briefly 
highlight that, for a stable matrix M (i.e., whose spectral radius is smaller than 

1), the matrix .log(I +M) is the sum of Mercator power series .
∑∞

k=1
(−1)k

k
Mk . 

Example 1.2 (Hodgkin-Huxley Model, a Nobel Prize System of ODEs) In 
1963, the Nobel Prize in Physiology or Medicine was assigned to Sir Alan 
Lloyd Hodgkin and Sir Andrew Fielding Huxley, two English physiologists 
and biophysicists who gave in [216] an accurate description of excitation 
and inhibition mechanisms in the cell membrane, published after a series of 
more qualitative contributions on the flow of electric current through the layer 
membrane of a nerve fibre. Their model obeys the following nonlinear system 
of ODEs, describing the dynamics of the functions .V (t), . n(t), .m(t), .h(t) (for 
a more amenable notation, time dependency is omitted in the remainder): 

. 

I = CmV ′ + gKn4(V − VK) + gNam
3h(V − VNa) + gl(V − Vl),

n′ = αn(V )(1 − n) − βn(V )n,

m′ = αm(V )(1 − m) − βm(V )m,

h′ = αh(V )(1 − h) − βh(V )h,

where I is the total membrane current, .Cm is the membrane capacity per 
unit area (i.e., the ability to store an electric charge), V is the membrane 
potential, . gK is a constant proportional to potassium conductance . gK (indeed, 
.gK = gKn4 or, in other terms, potassium ions can only cross the membrane 
when four similar particles occupy a certain region of the membrane), n is 
the proportion of particles inside the membrane (consequently, .1 − n is the 
proportion of particles outside of the membrane), m provides the proportion of 
activating molecules inside the membrane, h is the proportion of inactivating 
molecules outside the membrane, . gl is a constant proportional to leakage 
conductance. The values of . VK , .VNa and . Vl are reversal potentials of sodium, 
potassium and of the leakage current, respectively. Transfer rates from outside 

(continued)
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Example 1.2 (continued) 
to inside and vice versa are respectively given by the functions 

. αn(V ) = 0.01(V + 10)
(
e
10−V
10 − 1

)−1
, βn(V ) = 0.125e− V

80 .

Transfer rates of activating molecules from inside to outside and vice versa 
are modeled by 

. αm(V ) = 0.01(V + 25)
(
e
25−V
10 − 1

)−1
, βm(V ) = 4e− V

18 .

Finally, the rate of transfer of inactivating molecules from outside to inside 
are 

. αh(V ) = 0.07e− V
20 , βh(V ) =

(
e
30−V
10 + 1

)−1
.

Example 1.3 (Homeostasis of T-cells) Homeostasis can be defined as the 
natural property of living organisms to preserve their internal stability, in 
response to changes in external conditions. A specific example of homeostasis 
regards the immune system, where the number of cells playing a key role 
in the immune response (the so-called T-cells) is normally retained along 
the adult life of an individual [76]. Homeostasis of T-cells is believed to be 
due to a quorum-sensing mechanism, normally typical of bacteria, according 
to which CD4+ cells (i.e., the T-cells responsible of activating the immune 
response, by sending signals to another family of T-cells, the so-called CD8 
killer cells) could control their own expansion, thanks to their ability to 
perceive the density of their own populations, in order to prevent uncontrolled 
lymphocyte proliferation during immune responses. 

In this homeostatic mechanism Interleukin-2 (IL-2), which is a protein 
regulating the activities of lymphocytes responsible for immunity, plays a 
significant role, very well described for instance in [10] and references 
therein. In [10], the authors have developed an ODE-based model describing 
CD4+ T-cell homeostasis in terms of the time evolution of the following 
cellular populations: .n1(t), describing naïve T-cells; .n2(t), characterizing IL-2 
producing cells; .n3(t), denoting activated/memory non-IL-2 producing cells; 
.n4(t), modeling regulatory CD4+ T-cells. 

(continued)
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Example 1.3 (continued) 
The corresponding system of ODEs assumes the following form [10]: 

. 

1000 n′
1(t) = −n1(t)

(
91 + n1(t)

50

)
,

n′
2(t) = 2

(
500n1(t) + 5n3(t) + 3n22(t)

20
− n2(t)n4(t)

)
,

100 n′
3(t) = n1(t) + n2(t) + n3(t)

(
59

10
+ n2(t)

500
− n3(t)

200

)
+ n4(t)

50
,

100 n′
4(t) = −n4(t)

(
10

10 + n2(t)
− n2(t)

100

)
,

with initial conditions 

. n1(0) = 100, n2(0) = n3(0) = 0, n4(0) = 1.

As claimed by the authors in [10], the quorum-sensing mechanism described 
by above equations provides that regulatory T-cells count and regulate the 
number of activated T-cells through the detection of IL-2 and the number 
of interactions between these two populations, whose specified proportion 
(encoded within the parameters of the model) leads to cellular events such 
as division, survival or suppression. 

Example 1.4 (Fake News Diffusing as Epidemics) Internet is certainly a 
primary medium of rapidly accessible information. Clearly, since veracity is 
a serious issue in the spread out of online information, especially in social 
networks, the circulation of fake news has been extensively studied during 
last years. Understanding mechanisms of fake news diffusion and, hopefully, 
predicting their growth in order to favor the reaffirmation of the truth, is a very 
important task in the age of digitalization. 

A widespread point of view in the existing literature conceives the 
diffusion of fake news similar to that of an epidemic (see, for instance, 
[137, 166, 257, 278] and references therein). In this direction, an ODE-based 
model for the circulation of fake information has been presented in [137], 
together with its stiffness analysis (the concept of stiff problems will be 
introduced in Chap. 7 of this book) useful to understand how fast is the transit 

(continued)
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Example 1.4 (continued) 
of fake information in a given country. Modeling aspects in [137] are based on 
the well known SIR model, widely studied by the existing literature regarding 
mathematical epidemiology [28–30, 77, 154, 163, 236]. SIR model describes 
the effects of the diffusion of an epidemic in a population ideally divided into 
three groups of individuals (susceptible, infected and recovered people) that, 
in the context of fake news, can be interpreted as follows: 

• .S(t), the population of potential authors of fake news; 
• .I (t), collecting all active authors in posting fake information; 
• .R(t), grouping inactive fake news authors (for instance, recovered after 

fact checking). 

The mutual interactions among these three populations are described by the 
following system of ODEs: 

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S′(t) = −βS(t)I (t),

I ′(t) = βS(t)I (t) − αI (t),

R′(t) = αI (t),

(1.3) 

where . α and . β are recovery and contact rates, respectively. In [137], the values 
of these parameters have been related with human development and internet 
penetration indices h and i, provided in the annual report of United Nations 
Development Programme for all countries. Specifically, 

. α = h

100
, β = i

10
,

and, in general, the value of . α is smaller than that of . β, since spreading a lie 
is much easier than reaffirming the truth. Moreover, as highlighted in [327], 
truth reaffirmation is never viral and requires a large human commitment and 
this is the only option to restore the truth. On the contrary, the spread of 
fake information does not necessarily require a strong human presence, since 
authors are frequently bots or fake accounts. As a consequence, it is worth 
relating the recovery rate . α in a given country to its human development index 
and the contact rate . β to its internet penetration index.
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1.2 Well-Posedness 

A key issue in the context of initial value problems (1.1), which also plays a central 
role in their numerical approximation, is given by well-posedness. The notion of 
well-posedness we adopt is that of Hadamard: problem (1.1) is said well-posed if 

• a solution exists; 
• such a solution is unique; 
• the solution continuously depends on problem data. 

Let us analyze each condition in details, starting with the existence of a solution 
to (1.1). To this purpose, let us show a fundamental existence result due to Peano, 
who provided a first proof in 1886 [284], later improved in 1890 [285], although the 
mostly given one relies on Arzelà-Ascoli theorem, here briefly recalled (a complete 
proof can be found, for instance, in [302]). 

Theorem 1.1 (Arzelà-Ascoli Theorem) Let .{yn(t)}n∈N, with . yn : [t0, T ] →
R

d , be a sequence of functions satisfying the following properties: 

• equicontinuity, i.e., for any .ε > 0 there exists .δ > 0, such that . |t2 − t1| < δ

implies .‖yn(t2) − yn(t1)‖ < ε, for any .n ∈ N. Here .‖ · ‖ denotes a suitable 
norm of . Rd ; 

• uniform boundedness, i.e., there exists .M > 0, such that .‖yn(t)‖ < M , for  
any .t ∈ [t0, T ]. 

Then, the sequence .{yn(t)}n∈N contains a subsequence that is uniformly 
convergent in .[t0, T ]. 

Theorem 1.2 (Peano Theorem) Let .f : [a, b] × D → R
d , with .D ⊆ Rd , 

be a continuous function. Consider .(t0, y0) ∈ [a, b] × D and .δ, τ > 0, such  
that .S ⊆ [a, b] × D, having denoted .S = [t0 − τ, t0 + τ ] ×Bδ(y0) and being 
.Bδ(y0) the ball centered in . y0 with radius . δ. 

Then, the initial value problem (1.1) has at least one solution .y(t), for  
.t ∈ [t0 − γ, t0 + γ ], with 

. γ ≤ min

{
τ,

δ

M

}
,

being 

.M = max
(t,y)∈S

|f (t, y(t))|. (1.4)
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Proof The idea of the proof consists in constructing a sequence of functions fulfill-
ing the hypothesis of Arzelà-Ascoli theorem, i.e., an equicontinuous and uniformly 
bounded sequence of functions, from which we aim to extract a subsequence 
converging to the requested solution of problem (1.1). The proof is given when 
.t ∈ [t0, t0 + γ ] and, mutatis mutandis, it can be given for .t ∈ [t0 − γ, t0] in similar 
way. 

Problem (1.1) admits the following equivalent integral formulation 

. y(t) = y0 +
∫ t

t0

f (s, y(s))ds

and, as announced, we consider .t ∈ [t0, t0+γ ]. Let us define the following sequence 
.{yn(t)}n∈N+ of continuous functions in .[t0, t0 + γ ] by 

.yn(t) =

⎧⎪⎪⎨
⎪⎪⎩

y0, t ∈
[
t0, t0 + γ

n

]
,

y0 +
∫ t− γ

n

t0

f (s, yn(s))ds, t ∈
(
t0 + γ

n
, t0 + γ

]
.

(1.5) 

Let us analyze some properties of this sequence: 

• first of all, .yn(t) ∈ Bδ(y0), for any .t ∈ [t0, t0 + γ ], since 

. 

‖yn(t) − y0‖ ≤
∥∥∥∥∥
∫ t− γ

n

t0

f (s, yn(s))ds

∥∥∥∥∥ ≤
∫ t− γ

n

t0

‖f (s, yn(s))‖ds

≤ M(t − t0) ≤ Mγ ≤ δ;

• the sequence with general term given by (1.5) is uniformly bounded. Indeed, 

. 

‖yn(t)‖ ≤
∥∥∥∥∥y0 +

∫ t− γ
n

t0

f (s, yn(s))ds

∥∥∥∥∥ ≤ ‖y0‖ +
∫ t− γ

n

t0

‖f (s, yn(s))‖ ds

≤ ‖y0‖ + δ;

• finally, such a sequence is equicontinuous. Indeed, for an arbitrary .ε > 0, we  
prove the existence of .σ > 0 leading to .‖yn(t2) − yn(t1)‖ < ε, for any couple of 
values .t1, t2 ∈ [t0, t0 + γ ] such that .|t2 − t1| < σ .
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We have 

. 

‖yn(t2) − yn(t1)‖ ≤
∥∥∥∥∥y0 +

∫ t2− γ
n

t0

f (s, yn(s))ds − y0 −
∫ t1− γ

n

t0

f (s, yn(s))ds

∥∥∥∥∥
≤
∫ t2− γ

n

t1− γ
n

‖f (s, yn(s))‖ ds ≤ M|t2 − t1|.

Then, it is enough to choose .σ ≤ ε/M , in order to get 

. ‖yn(t2) − yn(t1)‖ ≤ ε.

As a consequence of the aforementioned properties, by means of Arzelà-Ascoli 
theorem, there exists a subsequence .{ynj

(t)}j∈N+ of .{yn(t)}n∈N+ uniformly con-
verging to a function .y(t). Since uniform convergence retains continuity, function 
.y(t) is continuous. 

Let us write the system corresponding to (1.5) satisfied by .{ynj
(t)}j∈N+ , i.e., 

. ynj
(t) =

⎧⎪⎪⎨
⎪⎪⎩

y0, t ∈
[
t0, t0 + γ

nj

]
,

y0 +
∫ t− γ

nj

t0

f (s, ynj
(s))ds, t ∈

(
t0 + γ

nj

, t0 + γ

]

and let us recast last equation as 

. ynj
(t) = y0 +

∫ t

t0

f (s, ynj
(s))ds −

∫ t

t− γ
nj

f (s, ynj
(s))ds.

In the limit when j tends to infinity, 

• .ynj
(t) tends to .y(t), by Arzelà-Ascoli theorem; 

• .

∫ t

t0

f (s, ynj
(s))ds tends to .

∫ t

t0

f (s, y(s))ds, by the continuity of the function f ; 

• .

∫ t

t− γ
nj

f (s, ynj
(s))ds tends to 0, since 

. 

∥∥∥∥∥∥
∫ t

t− γ
nj

f (s, ynj
(s))ds

∥∥∥∥∥∥ ≤
∫ t

t− γ
nj

‖f (s, ynj
(s))‖ds ≤ M

γ

nj

and .M
γ
nj

tends to 0 when j tends to infinity.
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Therefore, 

. y(t) = y0 +
∫ t

t0

f (s, y(s))ds, t ∈ [t0, t0 + γ ].

	

Clearly, Peano theorem only provides the existence of the solution of (1.1), under 

the assumption of continuity of the vector field. We now aim to understand under 
which assumptions the solution is also unique, through a result constructing the 
solution itself. To this purpose, we need the following preliminary lemma. 

Lemma 1.1 (Right Grönwall Lemma) Let .α(t), y(t) : [t0,∞)→R be con-
tinuous functions, with .α(t) ≥ 0, for any .t ≥ t0. If there exists .M ∈ R, such  
that 

.y(t) ≤ M +
∫ t

t0

α(s)y(s)ds, t ≥ t0, (1.6) 

then, 

.y(t) ≤ M exp

(∫ t

t0

α(s)ds

)
, t ≥ t0. (1.7) 

Proof Let us define the auxiliary function 

. z(t) = M +
∫ t

t0

α(s)y(s)ds,

describing the right-hand side of (1.6). According to the fundamental theorem of 
calculus, 

. z′(t) = α(t)y(t)

and, by (1.6), we obtain 

. z′(t) − α(t)z(t) ≤ 0.

We multiply each side of the last inequality by .exp
(
− ∫ t

t0
α(s)ds

)
, leading to 

.
(
z′(t) − α(t)z(t)

)
exp

(
−
∫ t

t0

α(s)ds

)
≤ 0.
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Taking into account that the left-hand side of this inequality is the first derivative of 

.z(t) exp
(
− ∫ t

t0
α(s)ds

)
, this function is certainly non-increasing. Then, 

. z(t) exp

(
−
∫ t

t0

α(s)ds

)
≤ z(t0) exp

(
−
∫ t0

t0

α(s)ds

)
= M

or, equivalently, 

. z(t) ≤ M exp

(∫ t

t0

α(s)ds

)
.

Combining last equation with (1.6) gives the thesis. 	

This result was proved in 1919 by the Swedish mathematician Thomas Hakon 

Grönwall (1877–1932) [180]. It is a very useful tool anytime an implicit estimate 
of a certain function, such as that in (1.6), has to be made explicit, as in (1.7). 
Similarly, as visible from the proof, Grönwall lemma is also relevant in giving 
an estimate of a function for which a differential inequality is known. Finally, 
we also notice that Theorem 1.1 admits several generalizations, leading to proper 
fully explicit Grönwall-type estimates associated to implicit inequalities involving 
a certain function. For instance, in analogous way, one can prove a left version of 
Lemma 1.1, which is here stated, leaving the similar proof to the reader. 

Lemma 1.2 (Left Grönwall Lemma) Let .α(t), y(t) : (−∞, t0] →R be con-
tinuous functions, with .α(t) ≥ 0, for any .t ≤ t0. If there exists .M ∈R such 
that 

. y(t) ≥ M +
∫ t0

t

α(s)y(s)ds, t ≤ t0,

then, 

. y(t) ≥ M exp

(∫ t0

t

α(s)ds

)
, t ≤ t0.

We are now able to prove the following existence and uniqueness theorem, well 
known as Picard-Lindelöf theorem, or Cauchy-Lipschitz theorem. The contributions 
by Charles Èmile Picard (1856–1941) and Ernst Leonard Lindelöf (1870–1946) 
were respectively published in 1890 [288] and 1894 [252], therefore after those 
by Peano. As it arises from the proof, this result has a twofold value: on the one 
hand, it gives conditions ensuring the existence and the uniqueness of the solution



12 1 Ordinary Differential Equations

to (1.1); on the other one, it suggest a preliminary numerical scheme for the solution 
of (1.1). 

Theorem 1.3 (Picard-Lindelöf Theorem) Let .f : [a, b] × D → R
d , where 

.D ⊆ Rd , be a continuous and Lipschitz continuous function with respect to 
its second argument, i.e., there exists .L ≥ 0 such that 

. ‖f (t, y1(t)) − f (t, y2(t))‖ ≤ L ‖y1(t) − y2(t)‖ , (1.8) 

for any .(t, y1(t)), (t, y2(t)) ∈ [a, b]×D, being .‖·‖ any norm in . Rd . Consider 
.(t0, y0) ∈ [a, b] × D and .δ > 0, .τ > 0, such that 

. S ⊆ [a, b] × D,

where . S is the set defined in the statement of Theorem 1.2. If .γ ≤ min{τ, δ
M

}, 
with M defined as in (1.4), then the initial value problem (1.1) has a unique 
solution .y(t), for .t ∈ [t0 − γ, t0 + γ ]. 

Proof The proof is given for .t ∈ [t0, t0 + τ ]; the case .t ∈ [t0 − τ, t0] can be 
analogously proved. We first prove the uniqueness of the solution, by contradiction. 
Indeed, we suppose that two solutions .y(t) and .w(t) of (1.1) exist. In particular, 
they also satisfy (1.1) in its integral form, i.e. 

. 

y(t) = y0 +
∫ t

t0

f (s, y(s))ds,

w(t) = y0 +
∫ t

t0

f (s,w(s))ds.

Side-by-side subtracting and passing to the norm yields 

. ‖y(t) − w(t)‖ ≤
∫ t

t0

‖f (s, y(s)) − f (s,w(s))‖ds.

Moreover, Lipschitz continuity of f gives 

. ‖y(t) − w(t)‖ ≤ L

∫ t

t0

‖y(s) − w(s)‖ds

and, by the right Grönwall lemma 1.1 with .M = 0 and .α(s) = L, we obtain 

.‖y(t) − w(t)‖ ≤ 0,



1.2 Well-Posedness 13

i.e., .y(t) = w(t), for  .t ∈ [t0, t0 + τ ]. We also observe that, by the left Grönwall 
lemma 1.2, we have .y(t) = w(t), also for .t ∈ [t0 − τ, t0], hence 

. y(t) = w(t), t ∈ [t0 − τ, t0 + τ ],

giving the desired uniqueness in the whole interval .t ∈ [t0 − τ, t0 + τ ]. 
Though existence has already been proved in Peano theorem 1.2, we provide 

existence proof by Picard and Lindelöf completely from scratch, since it leads 
to useful numerical considerations. To this purpose, we introduce the following 
recursively defined sequence 

.

y0(t) = y0,

yn+1(t) = y0 +
∫ t

t0

f (s, yn(s))ds, n ≥ 0.
(1.9) 

First of all, we aim to prove that it is well-defined, i.e., that for any .t ∈ [t0, t0 + τ ], 
.yn(t) belongs to .Bδ(y0). Let us proceed by induction. If .n = 0, .y0(t) = y0 trivially 
belongs to .Bδ(y0), for any .t ∈ [t0 − τ, t0 + τ ]. Now, let us suppose that . yn(t) ∈
Bδ(y0) and restrict our attention to .t ∈ [t0, t0 + τ ]. 

We have 

. ‖yn+1(t) − y0‖ =
∥∥∥∥
∫ t

t0

f (s, yn(s))ds

∥∥∥∥ ≤
∫ t

t0

‖f (s, yn(s))‖ds

≤ M(t − t0) ≤ Mγ ≤ δ.

We now prove, by induction, the following bound: 

. ‖yn+1(t) − yn(t)‖ ≤ MLn(t − t0)
n+1

(n + 1)! , n ≥ 0. (1.10) 

The case .n = 0 is trivial, since 

. ‖y1(t) − y0(t)‖ =
∥∥∥∥
∫ t

t0

f (s, y0(s))ds

∥∥∥∥ ≤
∫ t

t0

‖f (s, y0(s))‖ds ≤ M(t − t0).

Since 

. ‖yn+1(t) − yn(t)‖ ≤
∫ t

t0

‖f (s, yn(s)) − f (s, yn−1(s))‖ ds,

by the Lipschitz continuity of f and using the inductive hypothesis, we obtain 

. ‖yn+1(t) − yn(t)‖ ≤ MLn

n!
∫ t

t0

(s − t0)
nds = MLn(t − t0)

n+1

(n + 1)! .
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The term 

. 
Ln+1(t − t0)

n+1

(n + 1)!

is the leading term of a power series uniformly converging to .eL(t−t0) in .[t0, t0 + τ ]. 
As a consequence, the series 

. y0(t) +
∞∑

n=0

(yn+1(t) − yn(t))

is uniformly convergent in .[t0, t0 + τ ]. We observe that 

. yk(t) = y0 +
k−1∑
n=0

(yn+1(t) − yn(t))

and, therefore, the sequence .{yk(t)}k∈N is also uniformly convergent in . [t0, t0 + τ ]
and we denote its limit by . z(t). 

With similar arguments, we can prove that the sequence of integrals 

. 

{∫ t

t0

f (s, yn(s)) ds

}
n∈N

is uniformly convergent in .[t0, t0 + τ ] to .
∫ t

t0
f (s, z(s))ds. In summary, when n tends 

to infinity, we get from (1.9) that 

. z(t) = y0 +
∫ t

t0

f (s, z(s))ds,

that concludes the proof of existence when .t ∈ [t0, t0 + τ ]. As aforementioned, an 
analogous proof of existence can be given in .[t0 − τ, t0]. 	


We observe that another proof of this result can be given, for instance, by means 
of Banach contractions theorem. However, the proof based on Grönwall lemma is 
more constructive. Indeed, Theorem 1.3 provides the unique solution of (1.1) in 
terms of the series 

. y(t) = y0 +
∞∑

n=0

(yn+1(t) − yn(t)),

where .yn(t) is computed via the so-called Picard iterations (1.9). Clearly, this is 
only a formal representation of the solution, far from being assumable as a closed 
form for the solution of (1.1). Anyway, Picard iterations can be assumed as a 
primitive numerical methods to approximate the solution of (1.1) and the proof of
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Theorem 1.3 provides some meaningful properties of this iterative method. First of 
all, Picard-Lindelöf proof shows that Picard iterations are convergent and an error 
estimate, computed as difference between two consecutive iterations, is given by 
Eq. (1.10). It is worth paying attention to the fact that (1.10) provides an upper bound 
for the error depending on the time window .t−t0, which requires to be compensated 
by a suitably large number n of iterations in order to gain an acceptable accuracy in 
the iterative process. Let us provide an example that clarifies this aspect. 

Example 1.5 (Picard Iterations on a Linear Problem) We aim to provide an 
approximation to the solution of the linear problem 

.

{
y′(t) = λy(t), t ∈ [0, T ],
y(0) = 1,

(1.11) 

by means of Picard iterations. Specifically, we compute few Picard iterations 
and compare each of them with the exact solution of the problem, that is 
.y(t) = eλt . 

Let us compute the first four iterations: 

. 

y1(t) = 1 + λ

∫ t

0
y0(s)ds = 1 + λt,

y2(t) = 1 + λ

∫ t

0
y1(s)ds = 1 + λt + (λt)2

2
,

y3(t) = 1 + λ

∫ t

0
y2(s)ds = 1 + λt + (λt)2

2
+ (λt)3

6
,

y4(t) = 1 + λ

∫ t

0
y3(s)ds = 1 + λt + (λt)2

2
+ (λt)3

6
+ (λt)4

24
.

By induction, one can prove that the generic iteration .yk(t) recovers the k-th 
partial sum of the power series expansion of . eλt , i.e. 

. yk(t) = 1 +
k∑

i=1

(λt)i

i! .

As proved in Theorem 1.3, the error estimate (1.10) depends on the time 
window. Clearly, larger is time window, bigger is the value of k we need 
to use for accuracy purposes, as shown in Table 1.1. As visible from the 
table, the error .|eλT − yk(T )| is smaller if a proper balance between k and 
T is guaranteed, confirming the dependence on the time window proved in 
Theorem 1.3.
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Table 1.1 Example 1.5: 
absolute errors . |eλT − yk(T )|
obtained applying k Picard 
iterations to Eq. (1.11), with  
various values of . λ and T 

.λ k T . |eλT − yk(T )|

. −1 5 1 1.21e. −03 

10 1 2.31e. −08 

15 1 4.52e. −14 

20 10 1.34e+01 

30 10 9.25e. −04 

40 10 2.41e. −09 

1 5 1 1.61e. −03 

10 1 2.73e. −08 

15 1 5.06e. −14 

20 10 3.50e+01 

30 10 1.76e. −03 

40 10 3.92e. −09 

In summary, we have learned that existence and uniqueness of the solution to 
the initial value problem (1.1) rely on continuity and Lipschitz continuity of its 
vector field. We also need to stress that the hypothesis of Lipschitz continuity may 
be replaced by that of boundedness of .∂f /∂y, clearly when this derivative exists. 
Indeed, if .∂f /∂y is uniformly bounded, then it is Lipschitz continuous; the proof of 
this property is left to the reader. 

In order to recover Hadamard well-posedness, we finally need to provide a result 
of continuous dependence of the solution to (1.1) on the initial value and the vector 
field. Before presenting a rigorous proof, let us further elaborate on the meaning of 
this issue, which is very relevant also for the numerical approximation. We consider 
the following initial value problem 

.

{
ỹ′(t) = f̃ (t, ỹ(t)),

ỹ(t0) = ỹ0,
(1.12) 

arising from the perturbation of the initial value and the vector field of (1.1), as  
follows: 

. ̃y0 = y0 + δ0, f̃ (t, ỹ(t)) = f (t, ỹ(t)) + δ(t, ỹ(t)),

with .δ0 ∈ Rd and .δ : [t0, T ]×Rd → R
d . We ask how far is the solution .y(t) of (1.1) 

from the solution .̃y(t) of (1.12). Actually, when the third condition for Hadamard 
well posedness is fulfilled, perturbing the initial value and the vector field of (1.1) 
provides a perturbation to its solution of similar amplitude. Clearly, this concept has 
a strong connection with that of well-conditioning of the problem. Such an issue 
is of extreme importance in view of the numerical approximation of (1.1): indeed, 
anytime we look for computer solutions to a given problem, we always deal with its 
perturbation, since machine representation of real numbers is subject to round-off 
error.
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Let us now analyze under which conditions the continuous dependence on the 
initial value and the vector field is guaranteed. To this purpose, we need to introduce 
a generalization of the aforementioned Grönwall lemmas, covering the case where 
the first summand in the right-hand side of (1.6) is no longer constant. 

Lemma 1.3 (Generalized Grönwall Lemma) Let . α(t), β(t) : [t0,∞) → R

be continuous functions, with .β(t) ≥ 0, for any .t ≥ t0. If . y(t) : [t0,∞) → R

is a continuous function such that 

.y(t) ≤ α(t) +
∫ t

t0

β(s)y(s)ds, t ≥ t0, (1.13) 

then, 

. y(t) ≤ α(t) +
∫ t

t0

α(s)β(s) exp

(∫ t

s

β(τ )dτ

)
ds, t ≥ t0.

Proof Let us define the auxiliary function 

. z(t) =
∫ t

t0

β(s)y(s)ds.

According to the fundamental theorem of calculus, 

. z′(t) = β(t)y(t)

and, by (1.13), 

. z′(t) − β(t)z(t) ≤ α(t)β(t).

We multiply each side of the last inequality by .exp
(
− ∫ t

t0
β(s)ds

)
, obtaining 

. 
(
z′(t) − β(t)z(t)

)
exp

(
−
∫ t

t0

β(s)ds

)
≤ α(t)β(t) exp

(
−
∫ t

t0

β(s)ds

)
.

Taking into account that the left-hand side of this inequality is the first derivative of 

the function .w(t) = z(t) exp
(
− ∫ t

t0
β(s)ds

)
, we have  

.w′(t) ≤ α(t)β(t) exp

(
−
∫ t

t0

β(s)ds

)
, t ≥ t0,
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whose right-hand side is the first derivative of the function 

. v(t) =
∫ t

t0

α(s)β(s) exp

(
−
∫ s

t0

β(u)du

)
ds.

As a consequence, 

. w′(t) − v′(t) ≤ 0, t ≥ t0

and the function .w(t) − v(t) is non-increasing for .t ≥ t0, leading to 

. w(t) − v(t) ≤ w(t0) − v(t0) = 0, t ≥ t0.

Finally, 

. z(t) exp

(
−
∫ t

t0

β(s)ds

)
≤
∫ t

t0

α(s)β(s) exp

(
−
∫ s

t0

β(u)du

)
ds, t ≥ t0,

i.e. 

. z(t) ≤
∫ t

t0

α(s)β(s) exp

(∫ t

s

β(u)du

)
ds, t ≥ t0,

that, matched with (1.13), gives the thesis. 	

We can now state and prove the following result on the continuous dependence 

of the solution to (1.1) on the initial value and the vector field of the problem. 

Theorem 1.4 Let .y(t) and .z(t) respectively be solutions of the initial value 
problems 

.

{
y′(t) = f (t, y(t)),

y(t0) = y0,

{
z′(t) = g(t, z(t)),

z(t0) = z0,
(1.14) 

where .f, g : [t0, T ] × D → R
d , .D ⊆ Rd , are continuous functions. Suppose 

that f satisfies Lipschitz condition (1.8). Moreover, assume the existence of 
.ε > 0 such that 

. ‖f (t, w) − g(t, w)‖ ≤ ε, (t, w) ∈ [t0, T ] × D.

Then, 

.‖y(t) − z(t)‖ ≤ ‖y0 − z0‖eL(t−t0) + ε

L

(
eL(t−t0) − 1

)
. (1.15)
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Proof Problems (1.14) are equivalent to 

. 

y(t) = y0 +
∫ t

t0

f (s, y(s))ds, t ∈ [t0, T ],

z(t) = z0 +
∫ t

t0

g(s, z(s))ds, t ∈ [t0, T ].

Side-by-side subtracting and passing to the norm yields 

. ‖y(t) − z(t)‖ ≤ ‖y0 − z0‖ +
∫ t

t0

‖f (s, y(s)) − g(s, z(s))‖ ds.

We add and subtract .f (s, z(s)) in the norm of the last integrand, obtaining 

. 

‖y(t) − z(t)‖ ≤ ‖y0 − z0‖ +
∫ t

t0

‖f (s, y(s)) − f (s, z(s))‖ds

+
∫ t

t0

‖f (s, z(s)) − g(s, z(s))‖ds

≤ ‖y0 − z0‖ + L

∫ t

t0

‖y(s) − z(s)‖ds + ε(t − t0).

We are now in the typical situation where a Grönwall lemma is useful: indeed, we 
have an implicitly defined inequality on .‖y(t)− z(t)‖. To make it explicit, we apply 
the generalized Grönwall lemma 1.3, with .α(t) = ‖y0−z0‖+ε(t−t0) and .β(t) = L, 
obtaining 

.

‖y(t) − z(t)‖ ≤ ‖y0 − z0‖ + ε(t − t0)

+ L

∫ t

t0

(‖y0 − z0‖ + ε(s − t0)) eL(t−s)ds.
(1.16) 

We leave to the reader the computation of the integral appearing in the last 
inequality, which can be easily computed by parts, whose result is 

. L

∫ t

t0

(
‖y0 − z0‖ + ε(s − t0)e

L(t−s)ds
)

=
(
eL(t−t0) − 1

) (
‖y0 − z0‖ + ε

L

)
− ε(t − t0),

that, included in (1.16), gives the thesis. 	
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We observe that inequality (1.15) allows us to conclude that, if the vector field 
of (1.1) is Lipschitz continuous, the initial values of (1.14) are close enough and 
. ε is also small enough, the corresponding solutions .y(t) and .z(t) are also close 
enough to each other. In other terms, if we interpret . z0 as a perturbation of . y0 and 
g as a perturbation of f , problem (1.1) does not result to be so sensitive to such 
perturbations and they are not largely amplified on its solution. As aforementioned, 
this is a relevant property of the problem, especially in view of its numerical 
discretization. 

According to the provided results, continuity of the vector field of a differential 
problem is an important ingredient for its Hadamard well-posedness. For the case 
of lack of continuity of the vector field, focusing on the autonomous case 

.ẏ(t) = f (y(t)), y(t0) = y0, (1.17) 

the interested reader can see, for instance, in [2, 8, 9, 75, 145–153, 165, 181–184, 
230, 231] and references therein. 

1.3 Dissipative Problems 

The analysis of Hadamard well-posedness for (1.1) has revealed the importance of 
continuity and Lipschitz continuity of its vector field. Let us now discuss a variant 
of Lipschitz continuity, which looks particularly useful for the analysis of nonlinear 
problems (1.1). We start with a definition. 

Definition 1.1 Consider any two solutions .y(t) and .̃y(t) of the differential 
problem (1.1). The vector field .f (t, y(t)) satisfies a one-sided Lipschitz 
condition if 

. 〈f (t, y(t)) − f (t, ỹ(t)), y(t) − ỹ(t)〉 ≤ ν(t)‖y(t) − ỹ(t)‖2, t ∈ [t0, T ],
(1.18) 

with respect to the scalar product .〈· , ·〉, being .‖ · ‖ the corresponding induced 
norm. 

The function .ν(t) in (1.18) is usually denoted as one-sided Lipschitz constant, 
even if it is actually a function of the independent variable t .
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Lipschitz continuous functions are certainly also one-sided Lipschitz, since by 
Schwarz inequality 

. 
〈f (t, y) − f (t, ỹ(t)), y(t) − ỹ(t)〉 ≤ ‖f (t, y) − f (t, ỹ(t))‖ ‖y(t) − ỹ(t)‖

≤ L‖y(t) − ỹ(t)‖2,

while the vice versa is not true in general. One-sided Lipschitz condition plays a role 
in the case of dissipative problems, i.e., problems generating contractive solutions, 
according to the following definition. 

Definition 1.2 Consider any two solutions .y(t) and .̃y(t) of (1.1), correspond-
ing to the distinct initial values . y0 and . ̃y0, respectively. If, for a given norm 
.‖ · ‖, we have  

. ‖y(t2) − ỹ(t2)‖ ≤ ‖y(t1) − ỹ(t1)‖,

for any . t1 and . t2 such that .t0 ≤ t1 ≤ t2 ≤ T , then we say that problem (1.1) is 
dissipative and generates contractive solutions in that norm. 

The aforementioned link between the one-sided Lipschitz constant of the vector 
field and the generation of contractive solutions is clarified through the following 
result. 

Theorem 1.5 Consider any two solutions .y(t) and .̃y(t) of the differential 
problem (1.1), corresponding to the distinct initial values . y0 and . ̃y0, respec-
tively. Given a norm .‖ · ‖ induced by an inner product .〈· , ·〉, if the vector field 
of (1.1) satisfies a one-sided Lipschitz condition (1.18) in that norm, with 
.ν(t) ≤ 0 for any .t ∈ [t0, T ], then the problem generates contractive solutions 
in the same norm. 

Proof Let us define the auxiliary function .g(t) = ‖y(t) − ỹ(t)‖2 and compute its 
derivative. We obtain 

. 
g′(t) = 2〈y′(t) − ỹ′(t), y(t) − ỹ(t)〉

= 2〈f (t, y(t)) − f (t, ỹ(t)), y(t) − ỹ(t)〉.

Due to (1.18), we obtain the differential inequality 

.g′(t) ≤ 2ν(t)g(t),



22 1 Ordinary Differential Equations

that can be handled in a similar way to the case of Grönwall lemmas presented in 
Sect. 1.2. 

So, we multiply each side of the last equation by .exp
(
−2
∫ t

t0
ν(s)ds

)
, getting 

. 
(
g′(t) − 2ν(t)g(t)

)
exp

(
−2
∫ t

t0

ν(s)ds

)
≤ 0.

Taking into account that the left-hand side of this inequality is the first derivative of 

the function .g(t) exp
(
−2
∫ t

t0
ν(s)ds

)
, we obtain that this function is non-increasing. 

Then, for any .t0 ≤ t1 ≤ t2 ≤ T , 

. g(t2) exp

(
−2
∫ t2

t0

ν(s)ds

)
≤ g(t1) exp

(
−2
∫ t1

t0

ν(s)ds

)

or, equivalently, that 

. g(t2) ≤ g(t1)

[
exp

(∫ t2

t1

ν(s)ds

)]2
,

i.e., 

. ‖y(t2) − ỹ(t2)‖ ≤ ‖y(t1) − ỹ(t1)‖ exp
(∫ t2

t1

ν(s)ds

)

and, since .ν(t) ≤ 0, the thesis holds true. 	

Computing the one-sided Lipschitz constant may be a highly non-trivial task and, 

as a consequence, it would be worth considering alternative conditions allowing a 
more effective application of Theorem 1.5. A way to handle this issue is related 
to the notion of logarithmic norm, introduced in 1958 through the independent 
contributions of Germund Dahlquist in his doctoral thesis [107] and by Lozinskii 
[255]. We also refer to [325] and for a presentation of the logarithmic norm framed 
within a historical overview. 

Let us start presenting the definition of logarithmic norm for a constant matrix. 

Definition 1.3 For a given matrix .A ∈ Rd×d and a given matrix norm .‖ · ‖, 
the logarithmic norm of A is 

. μ(A) = lim
h→0+

‖I + hA‖ − 1

h
,

being I the identity matrix in .R
d×d and .h > 0.
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The logarithmic norm is not always positive, in fact it is not a norm (despite 
its name). This is the case, for instance, of negative definite matrices. Indeed, one 
can prove that, if the norm in Definition 1.3 is the 2-norm, then the corresponding 
logarithmic norm (denoted as .μ2(A)) is the maximum eigenvalue of the matrix 
.(A + AT)/2. As a consequence, if A is negative definite, the corresponding 
logarithmic norm is negative. 

It is possible to prove that (1.1) generates contractive solutions if the logarithmic 
norm of the Jacobian of its vector field is non-positive [107]. The proof is here 
omitted, but it is useful to see this result applied to a simple example. 

Example 1.6 Let us consider the following linear problem 

.

[
y′
1(t)

y′
2(t)

]
= A

[
y1(t)

y2(t)

]
, (1.19) 

with 

. A =

⎡
⎢⎢⎣

− 5

12

125

108

−3

5
− 5

12

⎤
⎥⎥⎦ .

The two distinct eigenvalues of the matrix .(A+AT)/2 are given by . −751/1080 
and . −149/1080. Hence, the logarithmic norm .μ2(A)≤ 0 and (1.19) generates 
contractive solutions. In order to display this property, according to Defi-
nition 1.2, let us compare two solutions of (1.19), one of those being the 
trivial solution .̃y(t) = 0. We compute the analytical solution of (1.19) with 
initial value .y(0) = [1 1]T (the complete calculation is left to the reader; see 
Exercise 5 in Sect. 1.6) and check if .‖y(t)‖2 is a non-increasing function. We 
depict .‖y(t)‖2 in Fig. 1.1, where its non-increasing monotonicity is visible, as 
expected. 

1.4 Conservative Problems 

In many practical situations, computing the solution of a given well-posed initial 
value problem (1.1) is not sufficient for an exhaustive understanding of the dynamics 
described by the problem itself. Indeed, solution related quantities may play a 
significant role in fully characterizing the problem and its role for the underlying 
applications. A relevant example is given by the energy conservation law: we know
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Fig. 1.1 Pattern of .‖y(t)‖2, where .y(t) is the solution of (1.19), with . y(0) = [1 1]T

that the total energy of an isolated system remains preserved over time. This is a 
characteristic property and, as we discuss in Chap. 8, it is important to make sure 
that such a preservation is guaranteed also along the numerical dynamics computed 
along approximate solutions of (1.1). 

In the remainder of this section, we are mostly interested in quantities that 
remain preserved along the dynamics described by (1.1). Specifically, we focus our 
attention on a function .I(y(t)) (generally non-constant), such that 

. I(y(t)) = I(y(t0)), t ∈ [t0, T ],

being .y(t) the solution to the autonomous problem (1.17). Such a function is 
usually called a first integral of (1.17). Clearly, since .I(y(t)) remains constant over 
solutions to (1.17), we have  

. 0 = d

dt
I(y(t)) = ∇I(y(t))y′(t) = ∇I(y(t))f (y(t)),

where .∇I(y(t)) is the gradient of .I(y(t)). The aforementioned arguments motivate 
the following definition.
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Definition 1.4 For a given well-posed autonomous problem (1.17), a  first 
integral is a function .I(y(t)) such that 

. ∇I(y(t))f (y(t)) = 0,

where .y(t) is the solution of (1.17). 

Example 1.7 (Harmonic Oscillator) Let us consider a simple harmonic oscil-
lator, i.e., a particle of unitary mass subject to a restoring force proportional to 
the displacement from its equilibrium position. The corresponding equation 
of motion is given by 

. y′′(t) = −ω2y(t),

where . ω is the constant angular frequency of the oscillations. The equation is 
a second order linear ODE that can be regarded as the first order system 

.

⎧⎨
⎩

y′
1(t) = y2(t),

y′
2(t) = −ω2y1(t).

(1.20) 

It is well-known from classical mechanics that the total energy 

.E(y1(t), y2(t)) = 1

2
y2
2(t) + 1

2
ω2y2

1(t) (1.21) 

is a first integral of (1.20). Let us prove it by applying Definition 1.4: by  
denoting .y(t) = [y1(t) y2(t)]T, we have  

. ∇I(y(t))f (y(t)) =
[
ω2y1(t) y2(t)

] [ y2(t)

−ω2y1(t)

]
= 0.

Figure 1.2 shows the pattern of the generated periodic orbit, for .ω = 1. Such 
a graph is given in the phase space, i.e., it is the set of couples . (y1, y2) ∈ R2
satisfying (1.20).
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Fig. 1.2 Pattern of the orbit 
generated by the harmonic 
oscillator (1.20) in the phase 
space .(y1, y2), with initial  
values .y1(0) = 0 and 
.y2(0) = 10, for .ω = 1
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A relevant example of problem that maintains invariants along its solution is 
given by Hamiltonian systems, describing the dynamics of a system of d particles 
whose motion is characterized by their time varying generalized coordinates 

. q = [q1(t) q2(t) . . . qd(t)]T

and generalized momenta 

. p = [p1(t) p2(t) . . . pd(t)]T ,

defined by 

. pi = ∂L(q, q̇)

∂q̇i

, i = 1, 2, . . . , d,

where the function .L(q, q̇) = T (q, q̇) − U(q) is the Lagrangian of the system (T 
is the kinetic energy, U is the potential energy). The corresponding equations of 
motion are given by 

.

ṗi = −∂H
∂qi

(p, q),

q̇i = ∂H
∂pi

(p, q),

i = 1, 2, . . . , d, (1.22) 

denoted as Hamilton equations, where the dot stands for time derivative. The 
function .H(p, q) is called Hamiltonian function and is linked to the Lagrangian
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function according to the following relation 

. H(p, q) = pTq̇ −L(q, q̇).

Let us prove that the Hamiltonian function is a first integral of (1.22). Indeed, 
according to Definition 1.4, 

. ∇H(p, q)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− ∂H
∂q1

(p, q)

...

− ∂H
∂qd

(p, q)

∂H
∂p1

(p, q)

...
∂H
∂pd

(p, q)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
d∑

i=1

(
−∂H

∂pi

(p, q)
∂H
∂qi

(p, q)+∂H
∂qi

(p, q)
∂H
∂pi

(p, q)

)
= 0.

Example 1.8 (Mathematical Pendulum) We consider a specific example of 
Hamiltonian problem depending on a single degree of freedom (.d = 1), 
modeling the motion of a particle of unitary mass constrained to a cord of 
negligible mass and unitary length, i.e., the so-called mathematical pendulum. 
The generalized coordinate q of the particle is the angle . ϑ between the 
current position of the rod and the equilibrium position, while the generalized 
momentum p is the velocity . ϑ̇ . The corresponding Hamiltonian function 
assumes the form 

. H(p, q) = p2

2
− cos(q)

and, correspondingly, Eq. (1.22) takes the form 

.

ṗ = − sin(q),

q̇ = p.
(1.23) 

Figure 1.3 shows the pattern of the corresponding periodic orbit, displayed in 
the phase space .(p, q).
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Fig. 1.3 Pattern of the orbit 
generated by (1.23), with  
initial values .y1(0) = 0 and 
.y2(0) = 1
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We observe that the Hamiltonian function in Example 1.8 consists in the sum 
of two terms: one solely dependent on p, the other only on q. In this situation, the 
Hamiltonian function is given by the summation of kinetic and potential energies 

.H(p, q) = T (p) + U(q), (1.24) 

separately depending on p and q. Hamiltonian functions as in Eq. (1.24) are denoted 
as separable Hamiltonians and the corresponding Hamiltonian problem (1.22) 
assumes the partitioned form 

.ṗi = −dU

dqi

, q̇i = dT

dpi

, i = 1, 2, . . . , d. (1.25) 

As clarified in [192], separable Hamiltonian problems (1.25) allow a particularly 
efficient invariant preserving numerical approximation. 

Example 1.9 (Hénon-Heiles Problem) An example of Hamiltonian problem 
depending on two degrees of freedom (.d = 2), is the Hénon-Heiles model of 
the motion of stars around a galactic center, developed in 1964 by Michel 
Hénon and Carl Heiles [205] in Princeton University Observatory. The 
Hamiltonian function is given by 

.H(p, q) = 1

2

(
p2
1 + p2

2 + q2
1 + q2

2

)
+ q2

1q2 − 1

3
q3
2 (1.26) 

(continued)
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Example 1.9 (continued) 
and, correspondingly, Eq. (1.22) assumes the form 

.

ṗ1 = −q1(1 + 2q2),

ṗ2 = −q2
1 + q2

2 − q2,

q̇1 = p1,

q̇2 = p2.

(1.27) 

Figure 1.4 displays the phase portrait in the plain .(p1, q1). We finally observe 
that the Hamiltonian function (1.26) is separable and, as a consequence, the 
corresponding Hamiltonian problem (1.27) exhibits the usual partitioning as 
in (1.25). 

We introduce the notation 

. y(t) =
[

p(t)

q(t)

]
, J =

[
0 −I

I 0

]
,

where .I ∈ Rd×d is the identity matrix and the other blocks of J are equal to the 
zero matrix of dimension .d × d . Correspondingly, Eq. (1.22) can be regarded in the 
compact form 

.ẏ = J∇H(y). (1.28) 

Fig. 1.4 Phase portrait 
of (1.27) in the plain .(p1, q1), 
with initial values 
.p1(0) = 0.2, .p2(0) = 0, 
.q1(0) = −0.2, .q2(0) = 0
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We now aim to prove a relevant property of Hamiltonian systems, which regards the 
structure of the associated flow. We remind that, for an autonomous problem (1.17) 
in . Rd and for any .t ≥ t0, the associated flow map .�t(y0) : Rd → R

d is given by 

. �t(y0) = y(t).

In other terms, at any fixed .t ≥ t0, the flow map associates the solution of (1.17) at 
time t . As a consequence, 

. 
d

dt
�t (y0) = f (�t(y0)).

We now consider the Jacobian of each side and, as it regards the left-hand side, we 
swap time derivative and the derivative with respect to y, obtaining 

. 
d

dt
�′

t (y0) = f ′(�t (y0))�
′
t (y0)

and denoting .M = �′
t (y0) yields 

.Ṁ = f ′(�t (y0))M. (1.29) 

This is a useful matrix differential equation describing the evolution of the Jacobian 
of the flow in time, known in the literature as variational equation associated 
to (1.17). We will use it in the proof of Poincaré theorem 1.6. 

As aforementioned, we aim to provide a characteristic property of the flow map 
of Hamiltonian problems, for which we need to introduce the following definitions. 
For any two given vectors .ξ, η ∈ R2d , we introduce the following bilinear form 

.ω(ξ, η) =
d∑

i=1

ωi(ξ, η), (1.30) 

where 

. ωi(ξ, η) = ξiηd+i − ξd+iηi , i = 1, 2, . . . , d.

The form .ω(ξ, η) has a geometric interpretation: since . ξ and . η span a bidimensional 
parallelogram in . R2d , each .ωi(ξ, η) is the oriented area of the orthogonal projection 
of this parallelogram on the .(qi, pi)-plane and .ω(ξ, η) is the sum of such projected 
oriented areas. In a more compact notation, .ω(ξ, η) = −ξ TJη.
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Definition 1.5 A given matrix .A∈R2d×2d is a symplectic matrix if it pre-
serves the bilinear form (1.30), i.e., 

. ω(Aξ,Aη) = ω(ξ, η), ξ, η ∈ R2d .

In other terms, if A is a symplectic matrix, 

. ξ TATJAη = ξ TJη

and, since this relation has to hold true for any .ξ, η ∈ R2d , we have  

.ATJA = J, (1.31) 

that is the condition for the matrix A to be symplectic. 

Example 1.10 Let us consider the following matrix 

. A =
[
1 1
0 1

]
.

The reader can easily check that A is symplectic, since it satisfies con-
dition (1.31). We now aim to check the preservation property given in 
Definition 1.5, i.e., .ω(ξ, η)= ω(Aξ,Aη), for a given couple of vectors . ξ
and . η. We consider the vectors . ξ and . η connecting the origin with the 
points of coordinate .( 52 ,

5
2 ) and .( 52 ,

15
2 ), respectively. The corresponding 

spanned parallelogram of area .ω(ξ, η) is reported in Fig. 1.5, on the  left.  
The transformed vectors . Aξ and . Aη, connecting the origin with the points 
.(5, 5

2 ) and .(10, 15
2 ) respectively, span the parallelogram of area . ω(Aξ,Aη)

displayed in Fig. 1.5, on the right. Calculations left to the reader confirm that 
.ω(ξ, η) = ω(Aξ,Aη) = 25

2 . 

The notion of symplecticity can be extended to any nonlinear map, according to 
the following definition.
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Fig. 1.5 Parallelograms spanned by the vectors . ξ , . η and the transformed ones . Aξ , . Aη through the 
symplectic matrix A, given in Example 1.10 

Definition 1.6 A map  .α : R2d → R
2d is a symplectic transformation if, for 

any .y ∈ R2d , the Jacobian .α′(y) is a symplectic matrix, i.e., 

. α′(y)TJα′(y) = J.

We are now able to prove the following fundamental result, highlighting a 
characteristic property of Hamiltonian problems. 

Theorem 1.6 (Poincaré) For any given Hamiltonian problem (1.28), with 
.H(y) twice continuously differentiable, the corresponding flow map .�t(y0) is 
a symplectic transformation for any t , i.e. 

. �′
t (y0)

TJ�′
t (y0) = J.

Proof We first specialize Eq. (1.29) to the case of Hamiltonian systems (1.28), 
whose vector field is given by 

. f (y) = J∇H(y).

Consequently, its Jacobian assumes the form 

.f ′(y) = JHyy,
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where .Hyy is the symmetric Hessian matrix of the second derivatives. Then, we 
obtain from (1.29) that 

. Ṁ = JHyyM.

Definition 1.6 requires the computation of .R = MTJM . Let us differentiate R in 
time, obtaining 

. Ṙ = ṀTJM + MTJṀ = MTH T
yyJ

TJM + MTJ 2HyyM.

Since .Hyy is symmetric, .J 2 = −I and .J TJ = I , we have  

. Ṙ = MTHyyM − MTHyyM = 0.

Thus, R is constant in time. Since .R(0) = M(0)TJM(0) = J , we have that R is 
constantly equal to its initial value J , that gives the thesis. 	


1.5 Stability of Solutions 

We now aim to focus on the stability properties of solutions of a d-dimensional 
differential problem (1.1), for  .t ≥ t0. In other terms, we briefly analyze the effects 
of perturbations to the initial value .y(t0) on the solution of the problem. Moreover, 
we are also interested in analyzing asymptotic properties of solutions to (1.1), with 
a specific interest to the linear case. The interested reader can see, for instance, [14, 
86, 99, 100, 199–201, 228, 245, 286] and references therein for a wider dedicated 
presentation of stability analysis. 

Let us start providing the following useful definitions. 

Definition 1.7 The solution .y(t) of a well-posed problem (1.1) is stable over 
the integration interval .[t0,+∞) if, for any .ε > 0, there exists .δε > 0 such 
that another solution .̃y(t) of (1.1), obtained in correspondence of the initial 
value . ̃y0 satisfying 

. ‖ỹ0 − y0‖ < δε,

fulfills the inequality 

. ‖ỹ(t) − y(t)‖ < ε,

for any .t ≥ t0, where .‖ · ‖ is a given norm.



34 1 Ordinary Differential Equations

In other terms, stable solutions are not sensitive to the effects of small perturba-
tions to the initial value. According to Definition 1.7, this property is visible on the 
whole the integration interval. An analogous long-term property is now defined as 
follows. 

Definition 1.8 The solution .y(t) of a well-posed problem (1.1) is asymptoti-
cally stable if it is stable and 

. lim
t→∞ ‖ỹ(t) − y(t)‖ = 0. (1.32) 

Hence, for asymptotically stable solutions of ODEs, the effects of perturbations 
to the initial value becomes more negligible the more t is bigger. 

Considering an ODE system .y′ = f (t, y), it is a custom to study the stability of 
the zero solution of an equivalent problem, obtained through the change of variables 

.x = y − y(t), (1.33) 

supposing that .y(t) is a given solution of the ODE. Side-by-side differentiation 
in (1.33) leads to 

.x′ = g(t, x), (1.34) 

where .g(t, x) = f (t, x + y(t)) − f (t, y(t)). 
Let us now apply Definition 1.7: the zero solution of (1.34) is stable over the 

integration interval .[t0,+∞) if, for any .ε > 0, there exists .δε > 0 such that any 
solution .̃x(t) of (1.34) satisfying .‖x̃(t0)‖ < δε fulfills the inequality .‖x̃(t)‖ < ε, 
for any .t ≥ t0, where .‖ · ‖ is a given norm. Moreover, the zero solution of (1.34) is 
asymptotically stable if it is stable and .‖x̃(t)‖ tends to 0 as t tends to infinity. We 
observe that, when the zero solution of (1.34) is stable, we say that the system itself 
is stable; similarly, when the zero solution of (1.34) is asymptotically stable, we say 
that the system itself is asymptotically stable. 

We now aim to provide a complete characterization of the stability of solutions 
to the linear problem 

.y′(t) = A(t)y(t) + b(t), (1.35) 

where the matrix .A(t) ∈ Rd×d and the vector .b(t) ∈ Rd have continuous entries. 
By choosing a solution .y(t) of (1.35) and performing the change of variables (1.33), 
we have 

.x′(t) + y′(t) = A(t)(x(t) + y(t)) + b(t),
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i.e., 

.x′(t) = A(t)x(t), (1.36) 

whose zero solution .x(t) = 0 corresponds to the chosen solution .y(t) of (1.35). The  
following result holds true. 

Theorem 1.7 The system (1.36) is stable if and only if there exists a constant 
.K > 0, such that 

.‖X(t)‖ ≤ K, t ≥ t0 (1.37) 

and it is asymptotically stable if and only if 

. lim
t→∞ ‖X(t)‖ = 0, (1.38) 

being .X(t) the fundamental matrix of (1.36), i.e., the matrix with linearly 
independent columns such that . X′(t) = A(t)X(t).

Proof We assume, without loss of generality, that .X(t0) = I , where I is the identity 
matrix in .Rd×d . Then, by denoting .x(t0) = x0 �= 0, the solution .x(t) of (1.36) is 
given by 

. x(t) = X(t)x0,

as it can be checked by the reader through its direct replacement in (1.36). 

• We first provide the stability proof. Let us assume that (1.37) holds true. Then, 

. ‖x(t)‖ ≤ ‖X(t)‖‖x0‖ ≤ K‖x0‖.

Hence, the stability inequality .‖x(t)‖< ε holds true supposing that 
.‖x0‖< δε = ε

K
. This proves that the system is stable. Let us now prove that 

stability implies (1.37). The stability hypothesis suggests that, for any .ε > 0, 
there exists .δε > 0 with .‖x0‖ < δε, such that .‖X(t)x0‖ < ε. Then, 

. ‖X(t)‖ = sup
x �=0

‖X(t)x‖
‖x‖ = 1

δε

sup
x �=0

∥∥∥∥X(t)
δεx

‖x‖
∥∥∥∥ = 1

δε

sup
‖η‖=δε

‖X(t)η‖

and the thesis .‖X(t)‖ ≤ K holds true for any .K < ε
δε
. 

• We finally provide the asymptotic stability proof. Let us assume (1.38) satisfied. 
Since .‖x(t)‖ ≤ ‖X(t)‖‖x0‖, (1.32) immediately holds true, as t tends to infinity.
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Let us now prove that asymptotic stability implies (1.38). We have already proved 
the following expression for .‖X(t)‖: 

. ‖X(t)‖ = 1

δε

sup
‖η‖=δε

‖X(t)η‖ .

The asymptotic stability hypothesis suggests that, for any .ε > 0, there exists 
.δε > 0 with .‖x0‖< δε, such that .‖x(t)‖ goes to 0 as t tends to infinity. As a 
consequence, there exists . η, with .‖η‖ = δε, such that 

. ‖X(t)‖ = 1

δε

‖X(t)η‖ .

Then, .‖X(t)‖ goes to 0 when t tends to infinity, since it inherits the same behavior 
from above right-hand side. 	

It is also interesting to analyze what happens when the matrix .A(t) in (1.36) is 

identically equal to a constant matrix .A ∈ Rd×d , i.e., when the system assumes the 
form 

.x′(t) = Ax(t). (1.39) 

This case is covered by the following result. 

Theorem 1.8 The system (1.39) is stable if and only if any eigenvalue of the 
matrix A has non-positive real part and those with zero real parts are simple. 
The system is asymptotically stable if and only if any eigenvalue of the matrix 
A has negative real part. 

The proof is here omitted, but the interested reader can find it, for instance, in 
[99, 228]. We observe that the conditions on the spectrum of A are not applicable 
when the matrix is time-dependent. A relevant counterexample has been given by 
Dekker and Verwer [141]. Consider the matrix 

.A(t) =
[−1 − 9 cos2(6t) + 6 sin(12t) 12 cos2(6t) + 9

2 sin(12t)

−12 sin2(6t) + 9
2 sin(12t) −1 − 9 sin2(6t) − 6 sin(12t)

]
,



1.5 Stability of Solutions 37

whose eigenvalues are . −1 and . −10 for any t , but the fundamental matrix of the 
corresponding system (1.36) is 

. X(t) =
[
e2t (cos(6t) + 2 sin(6t)) e−13t (sin(6t) − 2 cos(6t))

e2t (2 cos(6t) − sin(6t)) e−13t (2 sin(6t) + cos(6t))

]

and, by Theorem 1.7, the system is not stable. 

Example 1.11 We aim to analyze stability and asymptotic stability properties 
of the system 

.

[
x′
1(t)

x′
2(t)

]
= 1

t2

[
0 t2

2 −3t

][
x1(t)

x2(t)

]
, t ≥ 1. (1.40) 

In order to provide a fundamental matrix for the system, we look for a couple 
of linearly independent solutions. We observe that (1.40) is equivalent to the 
second order differential equation 

. x′′
1 (t) + 3

t
x′
1(t) − 2

t2
x1(t) = 0.

Let us look for solutions of the form .x1(t) = tn. Then 

. n(n − 1)tn−2 + 3

t
ntn−1 − 2

t2
tn = 0,

leading to .n2+2n−2 = 0. This quadratic equation has two distinct solutions, 
i.e., .n= −1 and .n= 3, providing the following linearly independent solutions 
of (1.40): 

. x(t) = 1

t2

[
t2

−1

]
, x(t) = t2

[
t

3

]
.

As a consequence, a fundamental matrix for (1.40) is given by 

. X(t) = 1

t2

[
t t5

−1 3t4

]

and, according to Theorem 1.7, system  (1.40) is neither stable nor asymptoti-
cally stable.
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1.6 Exercises 

1. Study existence and uniqueness of the solution to the following initial value 
problem 

. 

{
y′(t) = y2(t), t ∈ [0, 2],
y(0) = 0.

Moreover, provide a closed form of Picard iterations (1.9) associated to this 
problem. 

2. Study existence and uniqueness of the solution to the following initial value 
problem 

. 
y′(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−3

4
, t ∈ [0, 5),

1

4
, t = 5,

3

4
, t ∈ (5, 10],

y(0) = 0.

What happens if y′(t) = 0, when t = 5? 
3. Compute the first five Picard iterations associated to the following scalar initial 

value problem 

. 

{
y′(t) = −2ty(t), t ∈ [0, 10],
y(0) = 1.

4. Write a software in your chosen programming language that computes the 
solution of a scalar initial value problem with a certain prescribed accuracy, by 
means of Picard iterations (1.9). Each iteration requires the approximation of the 
integral in (1.9) via a certain chosen quadrature formula. For instance, you might 
use the trapezoidal rule 

.

∫ b

a

f (x)dx ≈ (b − a)
f (a) + f (b)

2
, (1.41) 

or its composite version 

.

∫ b

a

f (x)dx ≈ b − a

M

M∑
k=1

(f (xk+1) + f (xk)) , (1.42)
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where M is the number of subintervals of equal length in which you divide 
the interval [a, b]. Which stopping criterion for the iterative process would 
you implement? Do you observe any difference if the composite quadrature 
rule (1.42) is used instead of the simple one (1.41)? 

5. Compute the analytical solution of (1.19) and prove that its 2-norm is non-
increasing. 

6. Consider the following Lennard-Jones oscillator 

. 

⎧⎨
⎩

y′
1(t) = y2(t),

y′
2(t) = 12(y−13

1 (t) − y−7
1 (t)),

for t ≥ 0 and prove that its total energy is a first integral of the system. 
7. Given the linear system x′(t) = Ax(t), t ≥ 0, with 

. A =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 0 1
2

0 1
2 0 2

2
3

1
2 −1 0

2 0 1
2

1
2

⎤
⎥⎥⎥⎥⎥⎦ ,

analyze its stability and asymptotic stability properties. 
8. Analyze stability and asymptotic stability properties of x′(t) = A(t)x(t), t ≥ 1, 

where 

. A(t) = 1

t2

[
0 t2

1 −t

]
.

9. Considering the SIR model for fake news diffusion (1.3), compute its lineariza-
tion around a chosen vector of initial values and analyze the spectrum of the 
Jacobian of the linearized vector field. Then, compute the corresponding set of 
moduli of the eigenvalues and the ratio between the maximum and the minimum 
of this set, in correspondence of the values of the parameters α and β reported in 
Table 1.2 (also refer to [137]). Finally, comment on the dynamics of fake news 
in the countries listed in Table 1.2, by using the information arising from the 
computed values of the ratios. 

Table 1.2 Values of the 
constants α, β in (1.3), for  
France, India, Italy, Mexico 
and United States, referring to 
2019 

Country α β 
France 0.009 0.089 

India 0.006 0.035 

Italy 0.009 0.061 

Mexico 0.008 0.064 

United States 0.009 0.075



Chapter 2 
Discretization of the Problem 

This book is devoted to a subject – the numerical solution of 
ordinary differential equations – where practical relevance 
meets mathematical beauty in a unique way. 

(Jesús María Sanz-Serna, Foreword to the book of John C. 
Butcher [67]) 

The introduction to differential problems, delivered in Chap. 1, has established a 
number of useful issues to start our trip to the core topic of the book: how to compute 
approximate solutions to (1.1). In this chapter we aim to introduce some basic 
concepts characterizing the approximation of (1.1), as well as basic requirements 
that a numerical method has to fulfill. Clearly, all results only apply to Hadamard 
well-posed initial value problems (1.1), in view of the approximation to their unique 
solution. 

2.1 Domain Discretization 

The solution of (1.1) is a function, i.e., a continuous object, therefore one cannot 
expect to provide its analytical expression as output of computer calculations (unless 
it is provided by symbolic computations, that do not fall within the scopes of this 
book). As a consequence, since we aim to provide approximate solutions in a com-
puting environment working with a finite arithmetic, it is necessary to understand 
how to define a numerical solution of (1.1). The numerical approximation of (1.1) 
requires a preliminary step of transforming the continuous problem (1.1) into its 
discretized counterpart. Then, numerically solving (1.1) is the process of providing 
an accurate approximation of its solution computed in a discrete set of sampled 
points. There are certainly many ways to numerically solve (1.1), both of general 
type or specifically tailored to problem in order to reproduce significant properties 
of the continuous problem along its discretized dynamics. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
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The process of discretization of (1.1) requires two fundamental steps: 

• discretizing the domain of (1.1), i.e., the interval .[t0, T ]; 
• discretizing the differential equation itself. 

In this section we discuss the first issue. Discretizing the domain of the problem, 
i.e. the interval .I = [t0, T ], requires detecting a number of points belonging to I ; 
correspondingly, a numerical method provides an approximate value of the solution 
of (1.1) in these selected points. The most common way to discretize the interval 
.[t0, T ] consists in dividing it in a number of subintervals of equal lengths. In other 
terms, let us introduce the following set of .N + 1 equidistant points 

.Ih = {t0 < t1 < t2 < · · · < tN = T , N = (T − t0)/h}, (2.1) 

so that the interval I is divided in N subintervals of equal length h. Then, the generic 
point .tn ∈ Ih assumes the form 

. tn = t0 + nh, n = 0, 1, . . . , N.

Each element of . Ih is usually denoted as grid point and h is the fixed stepsize of the 
grid . Ih. A numerical method for (1.1) is designed in order to compute the set 

. {yn ≈ y(tn), tn ∈ Ih, n = 0, 1, . . . , N} (2.2) 

of approximate values of the solution .y(t) in the grid points. The following sections 
and chapters are specifically dedicated to presenting how the computation of such a 
set of values is performed. 

Grid points may even be non-equidistant and their distribution can be adapted to 
the behavior of the solution: in this case, we talk about variable stepsize grids 

. I|h| = {t0 < t1 < t2 < · · · < tN = T , tn+1 = tn + hn, n = 0, 1, . . . , N − 1},

where 

. |h| = max
n=0,1,...,N−1

hn

is the fineness of the grid. In the remainder of the presentation, unless differently 
specified, we normally consider fixed stepsize grids. Variable stepsize environments 
and technique of adaptive stepsize selection are described in Chap. 7.
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2.2 Difference Equations: The Discrete Counterpart of 
Differential Equations 

The original continuous problem (1.1) is based on a differential system whose 
solution is defined for any .t ∈ [t0, T ]. On the other side, the approximate 
solution (2.2) is defined in correspondence of the set of grid points . Ih defined 
by (2.1). As a consequence, the discrete counterpart of a differential equation is 
given by a functional relation involving the values of the numerical solution (2.2). 
In other terms, the discretized version of (1.1) is a difference equation. 

Let us briefly introduce some basic ideas on difference equations; for a more 
detailed presentation of the topic, the interested reader can refer, for instance, to 
[3, 160, 177, 235, 241, 297] and references therein. 

Definition 2.1 For a non-negative integer number . n0, a  difference equation 
of order k in the unknowns .{yn}n≥n0 , with .yn ∈ Rd for any .n ≥ n0, is given  
by the functional relation 

.F(yn, yn+1, . . . , yn+k) = 0, n ≥ n0. (2.3) 

Let us promptly dispel a possible misunderstanding: do not think that (2.3) is 
simpler to be solved than (1.1). Indeed, exact solutions of (2.3) can be computed in 
closed form only in very specific, simple cases, e.g., for linear equations. General 
procedures to solve any nonlinear difference equation are not available in the 
existing literature. However, passing from differential to difference equations allows 
us to activate, as we will see, an effective step by step procedure to compute 
approximate solutions. This aspect will be made more explicit later. 

2.2.1 Linear Difference Equations 

As announced, we are able to compute, through a general procedure, only the 
solutions of linear difference equations. Hence, it is now worth putting some efforts 
into presenting such a solving procedure; our attention is here specifically addressed 
to the case of scalar linear equations with constant coefficients and order k, i.e., 

.αkyn+k + αk−1yn+k−1 + · · · + α0yn = βn, n ≥ n0, (2.4) 

with .αi ∈ R, .i = 0, 1, . . . , k, and .βn ∈ R. The coefficient . αk can be assumed 
equal to 1, without loss of generality (indeed, it is always possible to normalize all 
coefficients in order to fall in this case).
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The case of systems of linear difference equations is here omitted, but the 
reader can find their detailed presentation in specific monographs on the theory 
of difference equations, such as the beautiful book [241] by V. Lakshmikantham 
(India, 1924-Melbourne, 2012) and D. Trigiante (Laterza, 1944-Lido di Camaiore, 
2011). 

We first aim to discuss about the existence and uniqueness of solutions of (2.4), 
equipped by a proper number of initial conditions. To this purpose, let us suppose 
that (2.4) is equipped by the following k initial conditions 

.yn0 = c0, yn0+1 = c1, . . . , yn0+k−1 = ck−1, (2.5) 

with .ci ∈R, .i = 0, 1, . . . , k − 1. According to Definition 2.1, a solution of Eq. (2.4) 
is a sequence .{yn}n≥n0 satisfying (2.4) for any .n ≥ n0. We aim to prove that, 
supplying (2.4) with the set of initial values (2.5), the following existence and 
uniqueness result holds true. 

Theorem 2.1 Problem (2.4), equipped by the set of initial conditions (2.5), 
has a unique solution .{yn}n≥n0 such that 

. yn0 = c0, yn0+1 = c1, . . . , yn0+k−1 = ck−1.

Proof Since .αk �= 0, replacing (2.5) in (2.4) leads to a linear algebraic equation 
in .yn0+k , allowing to compute it in unique way. Replacing .yn0+1, .yn0+2, . . . ., . yn0+k

in (2.4) permits to compute .yn0+k+1 in unique way as well. Thus proceeding, each 
value of . yn, for any .n ≥ n0, can be uniquely computed. ��

By defining the operator 

.L(yn) =
k∑

i=0

αiyn+i , (2.6) 

we can recast (2.4) in the following operator form 

.L(yn) = βn. (2.7) 

Clearly, .L(·) is a linear operator, since, for any .a, b ∈ R and any sequence .{yn}n≥n0 , 
.{zn}n≥n0 , 

.L(ayn + bzn) =
k∑

i=0

αi(ayn+i + bzn+i ) = aL(yn) + bL(zn).
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Let us now distinguish the case of homogeneous and inhomogeneous scalar 
linear difference equations, with the aim to provide a representation formula for 
the solution in both cases. 

2.2.2 Homogeneous Case 

As a consequence of the linearity of operator (2.6), if we denote with S the set of 
solutions of the homogeneous equation 

.L(yn) = 0, (2.8) 

we promptly discover that any linear combination of elements of S still lies in S. 
We now aim to provide a representation formula for the element of S. To this  

purpose, we need to start with the following useful lemma. 

Lemma 2.1 Let us suppose that .{yn}n≥n0 is solution of the order k homo-
geneous difference equation (2.8) with respect to a given vector of initial 
conditions .c = (c�)

k−1
�=0 , i.e., 

. yn0 = c0, yn0+1 = c1, . . . , yn0+k−1 = ck−1.

Let us also assume that, for any .i = 1, 2, . . . , k, the sequence .{yi
n}n≥n0 is 

solution of (2.8), with respect to the vector of initial conditions .ei ∈ Rk given 
by the i-th vector of the canonical basis of . Rk (hence, .eij = δij , where . δij is 
the Kronecker delta, for .i, j = 1, 2, . . . , k). Then, for any .n ≥ n0, 

. yn =
k∑

i=1

ci−1y
i
n.

Proof The proof is constructive. Let us introduce the auxiliary sequence .{zn}n≥n0 , 
with 

.zn =
k∑

i=1

ci−1y
i
n, n ≥ n0.
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The sequence .{zi
n}n≥n0 is linear combination of elements of S, so it still lies in S. Its  

first k values are given by 

. 

zn0 =
k∑

i=1

ci−1y
i
n0

= c0,

zn0+1 =
k∑

i=1

ci−1y
i
n0+1 = c1,

...

zn0+k−1 =
k∑

i=1

ci−1y
i
n0+k−1 = ck−1.

Then, .{zn}n≥n0 , is solution of (2.8) with respect to the vector of initial conditions 
c, exactly as .{yn}n≥n0 . The thesis holds true due to the uniqueness of the solution 
stated by Theorem 2.1, that gives .yn = zn, for any .n ≥ n0. ��

In other words, Lemma 2.1 states that any solution of (2.8) can be represented as 
linear combination of the k solutions of (2.8) 

.

{
{y1

n}n≥n0, {y2
n}n≥n0, . . . , {yk

n}n≥n0

}
, (2.9) 

obtained with respect to the k vectors of initial values given by the canonical basis of 
. Rk . We now aim to prove that the system of generators (2.9) of S is a set of linearly 
independent sequences, according to the following definition. 

Definition 2.2 Let . n0 be a given non-negative integer number. k given 
sequences of scalars 

.

{
{f 1

n }n≥n0, {f 2
n }n≥n0, . . . , {f k

n }n≥n0

}
(2.10) 

are linearly independent if, for any .n ≥ n0, having  

. 

k∑

i=1

σif
i
n = 0

implies .σi = 0, for any .i = 1, 2, . . . , k.
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Definition 2.3 The Casorati matrix . Kn associated to the set (2.10) is given 
by 

.Kn =

⎡

⎢⎢⎢⎢⎢⎢⎣

f 1
n f 2

n . . . f k
n

f 1
n+1 f 2

n+1 . . . f k
n+1

...
...

. . .
...

f 1
n+k−1 f 2

n+k−1 . . . f k
n+k−1

⎤

⎥⎥⎥⎥⎥⎥⎦
∈ Rk×k. (2.11) 

The Casorati matrix is a useful tool for the analysis of linear independence, 
according to the following result. 

Theorem 2.2 Let . n0 be a given non-negative integer number. Consider 
k given sequences (2.10) and denote by .Kn the corresponding Caso-
rati matrix (2.11). If there exists .n ≥ n0 such that .detKn �= 0, then the 
sequences (2.10) are linearly independent. 

Proof Let us consider the following homogeneous linear system of k algebraic 
equations 

. 

k∑

i=1

σif
i
n+� = 0, � = 0, 1, . . . , k − 1,

in the unknowns . σ1, . σ2, . . . ., . σk , whose coefficient matrix is the Casorati matrix . Kn

given by (2.11). Since, for .n= n, .detKn �= 0 by hypothesis, then the unique solution 
of above system is .σ1 = σ2 = · · · = σk = 0, which means that the sequences (2.10) 
are linearly independent. ��

If (2.10) is a set of solution of (2.8), we can assume .n = n0 in Theorem 2.2. 
Indeed, in this case, .detKn0 �= 0 implies that .detKn �= 0, for any .n ≥ n0. This  
holds true because 

. detKn0+1 = (−1)kα0 detKn0 . (2.12) 

The proof is left to the reader, here we only give few examples for specific values of 
k. If .k = 1, the corresponding homogeneous equation (2.8) is 

.f 1
n0+1 + α0f

1
n0

= 0,
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and, therefore, 

. Kn0+1 = f 1
n0+1 = −α0f

1
n0

= −α0Kn0,

leading to (2.12). If .k = 2, the corresponding homogeneous equation (2.8) is 

. f i
n0+2 + α1f

i
n0+1 + α0f

i
n0

= 0, i = 1, 2.

Then, the Casorati matrices involved in the corresponding Eq. (2.12) are 

. Kn0+1 =
[

f 1
n0+1 f 2

n0+1

f 1
n0+2 f 2

n0+2

]
, Kn0 =

[
f 1

n0
f 2

n0

f 1
n0+1 f 2

n0+1

]
.

Therefore, Eq. (2.12) is satisfied, since 

. 

detKn0+1 = f 1
n0+1f

2
n0+2 − f 2

n0+1f
1
n0+2

= f 1
n0+1

(
−α1f

2
n0+1 − α0f

2
n0

)
− f 2

n0+1

(
−α1f

1
n0+1 − α0f

1
n0

)

= α0

(
f 1

n0
f 2

n0+1 − f 2
n0

f 1
n0+1

)
= α0 detKn0 .

As a consequence of Theorem 2.2 with .n= n0, we have that the sequences 
in (2.9) are linearly independent, since the corresponding Casorati matrix .Kn0 is 
the identity matrix in .Rk×k . Hence, the set (2.9) is a basis for the space S of all 
solutions of (2.8), that results to be a linear space of dimension k. The basis (2.9) is 
called canonical basis of S. 

In conclusion, we can state that the linear combination of k linearly independent 
solutions of (2.8) provides its general solution. 

2.2.3 Inhomogeneous Case 

We now complete our analysis by describing how to obtain the general solution of 
the inhomogeneous case (2.7). The reader will find a certain analogy with the case 
of linear ODEs.
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Theorem 2.3 Given a system of k linearly independent solutions .{f i
n}n≥n0 , 

.i = 1, 2, . . . , k, of the homogeneous equation (2.8) and an arbitrary solution 

.{yn}n≥n0 of the corresponding inhomogeneous problem (2.7), then the general 
solution of (2.7) is given by 

. yn = yn +
k∑

i=1

σif
i
n, n ≥ n0.

Proof Since 

. yn − yn =
k∑

i=1

σif
i
n, n ≥ n0,

we have that .yn − yn is solution of (2.8), i.e., .L(yn − yn) = 0. The linearity of . L
leads to 

. L(yn) = L(yn) = βn

and the thesis holds true. ��
Hence, the general solution of (2.7) is obtained as sum of the general solution 

of (2.8) plus an arbitrary particular solution of (2.7). As a consequence, the first step 
to perform is finding k linearly independent solutions of (2.8). As in the case of 
the analytical solution of linear ODEs, we look for solutions of the form .yn = xn, 
.n ∈ N, with .x �= 0. Replacing this ansatz in (2.8) yields 

. xn+k + αk−1x
n+k−1 + . . . + α0x

n = 0,

i.e., 

. xk + αk−1x
k−1 + . . . + α0 = 0.

In other terms, x is solution of the characteristic polynomial 

.ρ(x) = xk + αk−1x
k−1 + . . . + α0 (2.13) 

of (2.8). Clearly, if  . ξ is a solution of (2.13), then .yn = ξn is solution of (2.8). We  
distinguish three possible cases. 

• Case 1: the characteristic polynomial (2.13) has k distinct roots . ξ1, . ξ2, . . . ., 
. ξk . As a consequence, we have k linearly independent solutions .{ξn

i }n∈N,
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.i = 1, 2, . . . , k. Their linear independence can be easily obtained by inspecting 
the Casorati matrix 

. K0 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1

ξ1 ξ2 . . . ξk−1

...
...

. . .
...

ξ k−1
1 ξk−1

2 . . . ξ k−1
k

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

which is a Vandermonde matrix. Since the values of . ξ1, . ξ2, . . . ., . ξk are distinct, 
. K0 is non-singular. 

• Case 2: the characteristic polynomial (2.13) has .m < k distinct multiple 
roots . ξ1, . ξ2, . . . ., . ξm. Clearly, since S has dimension k, the sequences .{ξn

i }n∈N, 
.i=1, 2, . . . , m, are not enough to provide the needed set of k linearly independent 
solutions. The following result, whose proof is left to the reader, is useful to find 
k linearly independent solutions in this case. 

Theorem 2.4 If the characteristic polynomial (2.13) has .m < k distinct 
multiple roots . ξ1, . ξ2, . . . ., . ξm, let us denote by . μi the multiplicity of the . ξi , 
.i = 1, 2, . . . , m. Then, the .k = ∑m

i=1 μi sequences 

. {ξn
1 }n∈N, {nξn

1 }n∈N, . . . , {nμ1−1ξn
1 }n∈N,

. {ξn
2 }n∈N, {nξn

2 }n∈N, . . . , {nμ2−1ξn
2 }n∈N,

. 

...

{ξn
m}n∈N, {nξn

m}n∈N, . . . , {nμm−1ξn
m}n∈N

are linearly independent solutions of (2.8). 

• Case 3: the characteristic polynomial (2.13) has pairs of complex conjugate roots 
.ξ = ρeiϑ and .ξ = ρe−iϑ . Among the k linearly independent solutions, those 
corresponding to the complex conjugate roots are 

. {ρn sin(nϑ)}n∈N, {ρn cos(nϑ)}n∈N.

Let us now provide some examples of computation of solutions to both homo-
geneous and inhomogeneous scalar linear difference equations with constant coef-
ficients.
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Example 2.1 (Fibonacci Equation) Consider the following homogeneous 
difference equation 

.yn+2 − yn+1 − yn = 0, (2.14) 

equipped by the initial values .y0 = y1 = 1, defining the famous Fibonacci 
sequence. The corresponding characteristic polynomial is 

. x2 − x − 1 = 0,

whose roots are the real distinct numbers 

. 
1 + √

5

2
,

1 − √
5

2
.

Then, the general solution of (2.14) is given by 

. yn = σ1

(
1 + √

5

2

)n

+ σ2

(
1 − √

5

2

)n

, n ∈ N.

The values of . σ1 and . σ2 can be computed by imposing the initial condition 
.y0 = y1 = 1, obtaining 

. yn =
(√

5 + 5

10

) (
1 + √

5

2

)n

+
(
5 − √

5

10

) (
1 − √

5

2

)n

, n ∈ N.

Example 2.2 Consider the following difference equation 

.yn+2 − yn+1 − yn = 2n, (2.15) 

equipped by the initial values .y0 = y1 = 1. We have already computed the 
general solution of the homogeneous equation in Example 2.1 and, due to 
Theorem 2.3, we only need to find a particular solution .yn∈N of (2.15). We  
make the ansatz 

. yn = a2n, n ∈ N,

(continued)
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Example 2.2 (continued) 
i.e. we suppose that such a particular solution has a similar expression as in 
the right-hand side of (2.15). Replacing such an ansatz in (2.15) gives .a = 1. 
Then, the general solution of (2.15) is 

. yn = 2n + σ1

(
1 + √

5

2

)n

+ σ2

(
1 − √

5

2

)n

, n ∈ N.

The values of . σ1 and . σ2 are obtained by imposing the initial conditions 
.y0 = y1 = 1, leading to 

. yn = 2n −
√
5

5

(
1 + √

5

2

)n

+
√
5

5

(
1 − √

5

2

)n

, n ∈ N.

Example 2.3 Consider the following difference equation 

.yn+6 −6yn+5 +yn+4 +28yn+3 −72yn+2 +208yn+1 −240yn = 0. (2.16) 

The corresponding characteristic polynomial (2.13) assumes the form 

. x6 − 6x5 + x4 + 28x3 − 72x2 + 208x − 240 = 0

and its roots are 2, with multiplicity 2, .±2i = 2e±iπ/2, 5 and . −3. Then, the 
general solution of (2.16) is given by 

. yn = σ12
n+σ2n2

n+σ32
n sin

(
n
π

2

)
+σ42

n cos
(
n
π

2

)
+σ55

n+σ6(−3)n, n ∈ N.

2.3 Step-by-Step Schemes 

As aforementioned, a difference equation is the discretized version of a differen-
tial equation; in other terms, numerical methods approximating the solutions of 
differential equations are given by difference equations that, in general, we are 
not able to solve, especially in the nonlinear case. However, difference equations 
are very important in order to give rise to step-by-step numerical schemes for the 
computation of approximate solutions of (1.1), as well clarified, for instance, in
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monographs [18, 20, 62, 67, 161, 170, 172, 195, 198, 223, 228, 287, 319] and all 
references therein. 

In order to understand the idea of step-by-step discretizations, let us introduce the 
simplest example of numerical method for (1.1), obtained by means of Taylor series 
arguments. Since the solution in . t0 is already given by the initial value of (1.1), the  
first approximate value we have to compute is .y1 ≈ y(t1). If we assume that the 
solution of (1.1) is sufficiently smooth, we can expand .y(t1) = y(t0 + h) in Taylor 
series around . t0, obtaining 

. y(t1) = y(t0) + hy′(t0) + h2

2
y′′(t0) + O(h3).

Neglecting the terms from the second order on yields 

. y(t1) ≈ y(t0) + hy′(t0).

This is an approximate equality between exact values that can be regarded as an 
exact equality between approximate values, i.e. 

.y1 = y0 + hf (t0, y0). (2.17) 

This equality performs what is graphically displayed in Fig. 2.1, i.e., the computa-
tion of . y1 only requires the knowledge of . y0. 

We can proceed in similar way for the computation of .y2 ≈ y(t2), given  . y1, via  
Taylor expansion of .y(t1+h) around . t1 and truncating at the first order. We obtain an 
approximate equality between exact values leading to the following exact equality 
involving approximate values: 

.y2 = y1 + hf (t1, y1). (2.18) 

As visible from Eq. (2.18) and from its graphical description given in Fig. 2.2, the  
computation of . y2 only relies on the knowledge of . y1, already computed in the 
previous step (2.17). 

Fig. 2.1 Graphical description of the first step of Euler method, according to Eq. (2.17) 

Fig. 2.2 Graphical description of the second step of Euler method, according to Eq. (2.18)
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Fig. 2.3 Graphical description of the generic n-th step of Euler method, according to Eq. (2.19) 

These arguments can clearly be generalized to perform the generic step from . tn to 
.tn+1, for the computation of .yn+1 ≈ y(tn+1) given . yn. Indeed, expanding . y(tn + h)

in Taylor series around . tn leads to 

. y(tn + h) = y(tn) + hy′(tn) + h2

2
y′′(tn) + O(h3)

and neglecting the terms from the second order on yields 

. y(tn + h) ≈ y(tn) + hy′(tn).

This is an approximate equality between exact values that can be regarded as an 
exact equality between approximate values, i.e., 

.yn+1 = yn + hf (tn, yn). (2.19) 

Equation (2.19) is the well-known Euler method and its graphical description is 
given in Fig. 2.3. As we can appreciate from Eq. (2.19), the computation of the new 
approximate value .yn+1 only relies on the knowledge of the approximate solution . yn

referring to the previous point of the grid: in other terms, Euler method is a one-step 
method. 

Euler method (2.19) is a first order nonlinear difference equation for which we 
are not able to a-priori provide a solution in closed form but, as previously stated, it 
can be used to activate the step-by-step scheme summarized as follows: 

• . y0 is the initial value given by the continuous problem (1.1); 
• the value of . y1 is computed from that of . y0 via Eq. (2.17); 
• the value of . y1 permits the computation of . y2 via Eq. (2.18); 
• in general, the computation of .yn+1 relies on the knowledge of . yn, according to 

Eq. (2.19); 
• this step-by-step process proceeds until the approximate solution in the last point 

. tN of the grid . Ih is computed from that in .tN−1 as 

. yN = yN−1 + hf (tN−1, yN−1).

Euler method (2.19) is also an explicit method, i.e., the right-hand side of (2.19) 
does not depend on .yn+1, but it allows its direct computation in terms of . yn. 

We now provide a simple Matlab implementation of Euler method (2.19) applied 
to (1.1), given in Program 2.1. In this program, the numerical solution is stored in a
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matrix computed columnwise; its i-th column contains the approximate solution in 
the grid point .ti ∈ Ih. The implementation is given with reference to the uniform 
grid (2.1). Let us observe that the function f.m required in Program 2.1 is reported 
in Appendix A, where a selection of test problems is proposed. 

It is now worth highlighting the clear distinction between step-by-step and 
iterative methods. Indeed, step-by-step schemes do not provide any refinements to 
the solution of (1.1), as it happens in the case of iterative schemes. Step-by-step 
approximations with fixed stepsize compute the approximate solution in the grid 
points once, without refining the value of the solution until a prescribed tolerance is 
achieved, as it happens for iterative methods. Of course, it is also possible to refine 
the solution in a step-by-step scheme until a certain tolerance is reached: this is a 
more advanced topic, mostly based on error control in adaptive grids, that will be 
discussed in Chap. 7. 

Program 2.1 (Euler Method) 
% Function implementing Euler method on a uniform grid, 
% for the numerical solution of a d-dimensional ODE. 

% Inputs 
% - problem: label of the problem to be solved; 
% - tspan: vector of two components, storing the extrema 
% of the integration interval; 
% - y0: initial value; 
% - h: constant stepsize. 

% Outputs 
% - t: set of N equidistant grid points (tspan(1) excluded); 
% - y: d. ×N matrix whose i-th column y(:,i) stores the 
% approximate value in the i-th grid point, i=1,2,...,N. 

function [t,y]=euler(problem,tspan,y0,h) 
N=(tspan(2)-tspan(1))/h; 
t=linspace(h,tspan(2),N); 
d=length(y0); 
y=zeros(d,N); 
y(:,1)=y0+h*f(problem,tspan(1),y0); 
for i=2:N 

y(:,i)=y(:,i-1)+h*f(problem,t(i-1),y(:,i-1)); 
end 

2.4 A Theory of One-Step Methods 

This section is devoted to introducing three basic accuracy and stability concepts 
necessary in any numerical discretization of (1.1), i.e., consistency, zero-stability
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and convergence. It is important to stress their importance from the very beginning: 
nothing less than consistency, zero-stability and convergence can be admitted in any 
numerical method for ODEs. Indeed, they provide three fundamental ingredients 
creating a first meaningful bridge between the continuous problem (1.1) and its 
discretization, as it will be clarified in the following pages for a reference family of 
methods. 

In particular, let us consider as case study the following family of explicit one-
step methods 

.yn+1 = yn + hϕ(tn, yn;h), (2.20) 

where the incremental function .ϕ : [t0, T ]×Rd ×[0,+∞) → R
d characterizes the 

method itself. For instance, Euler method (2.19) is recovered if 

. ϕ(tn, yn;h) = f (tn, yn).

2.4.1 Consistency 

We focus our attention on a single step of method (2.20), from the grid point . tn to 
.tn+1, which can be assumed as a discrete counterpart of the following local problem 

.

u′(t) = f (t, u(t)), t ∈ [tn, tn+1],

u(tn) = y(tn),

(2.21) 

where .u(t) is the restriction of .y(t) when t belongs to the interval .[tn, tn+1]. 
Applying (2.20) to the local problem (2.21) implies the tacit assumption that the 
initial value is not affected by any source of error: indeed, the initial value of the 
local problem (2.21) is assumed to be equal to the exact value .y(tn) of the global 
problem (1.1). This tacit assumption is the so-called localizing assumption: in other 
terms, under the localizing assumption, we study the application of a numerical 
method over a single step from . tn to .tn+1, with the hypothesis the value in . tn is 
exact. Clearly, by applying (2.20) to (2.21), we obtain .yn+1 as an approximation of 
.u(tn+1). 

Under the localizing assumption, method (2.20) assumes the form 

. yn+1 = y(tn) + hϕ(tn, y(tn);h)

or, alternatively, 

.
yn+1 − y(tn)

h
− ϕ(tn, y(tn);h) = 0
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If we replace .yn+1 by its exact counterpart .u(tn+1), we obtain a measure of the 
residuum 

.T (tn, y(tn);h) = u(tn+1) − y(tn)

h
− ϕ(tn, y(tn);h), (2.22) 

which is the so-called local truncation error, measuring the gap between the exact 
scaled increment . 1

h
(u(tn+1) − y(tn)) and the numerical one .ϕ(tn, y(tn);h), under 

the localizing assumption. Clearly, (2.22) is equivalent to 

. T (tn, y(tn);h) = 1

h
(u(tn+1) − yn+1) ,

that provides a measure of the error intended as difference between the exact and 
the approximate solution, under the localizing assumption. Let us now provide the 
following definition. 

Definition 2.4 A given one-step method (2.20) is consistent if, for any 
.(t, y)∈ [t0, T ] × Rd , 

. lim
h→0

T (t, y;h) = 0.

In other terms, consistent one-step methods (2.20) satisfy 

.ϕ(t, y; 0) = f (t, y), (2.23) 

for any .(t, y) ∈ [t0, T ] × Rd . We can thus say that consistency is the coherence 
between the numerical increment of (2.20) and the vector field of (1.1), as  h tends 
to 0. Clearly, due to (2.23), Euler method is a consistent method. 

Let us stress again that consistency focuses on a local analysis of numerical 
methods, strongly relying on the localizing assumption. On the other hand, next 
sections are focused on two global notions (zero-stability and convergence) that 
neglect the unrealistic localizing assumption and consider the error that cumulates 
overall the step-by-step process. 

Let us now give the following definition, introducing an accuracy measure for 
one-step methods (2.20).
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Definition 2.5 A one-step method (2.20) has order p if, for a chosen vector 
norm .‖ · ‖, there exists a real constant .C > 0 such that 

. ‖T (t, y;h)‖ ≤ Chp,

for any .(t, y) ∈ [t0, T ] × Rd , where C is independent on t , y and h. 

Hence, an order p method (2.20) satisfies 

. T (t, y;h) = O(hp)

and, as a consequence, a consistent method has order .p ≥ 1. The local truncation 
error of an order  p method is then of the type 

. T (t, y;h) = τ(t, y)hp + O(hp+1),

where the coefficient of the leading error term .τ(t, y) is called principal error 
function. 

Example 2.4 Let us compute the order of Euler method (2.19), whose local 
truncation error (2.22) is given by 

. T (tn, y(tn);h) = u(tn+1) − y(tn)

h
− f (tn, y(tn)).

Taking into account the localizing assumption .u(tn) = y(tn) in (2.21), we  
have 

. T (tn, y(tn);h) = u(tn+1) − u(tn)

h
− u′(tn).

Finally, applying Taylor formula yields 

. T (tn, y(tn);h) = 1

h

(
u(tn) + hu′(tn) + h2

2
u′′(ξ) − u(tn)

)
−u′(tn) = 1

2
hu′′(ξ),

with .ξ ∈ (tn, tn+1). Since .u′(t) = f (t, u(t)), then 

. u′′(t) = ft (t, u(t)) + fy(t, u(t))f (t, u(t)).

(continued)
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Example 2.4 (continued) 
If the vector field f and its first derivates are uniformly bounded in . [tn, tn+1]
by 2C, then 

. ‖T (tn, yn;h)‖ ≤ Ch,

i.e., Euler method has order 1. 

2.4.2 Zero-Stability 

It is now worth introducing the following operators. 

Definition 2.6 For a given function of class . C1([t0, T ])

. v : [t0, T ] → R
d ,

we define the residual operator associated to (1.1) as 

.R(v) = v′(t) − f (t, v(t)). (2.24) 

Definition 2.7 For a given grid function 

. v : Ih → R
d ,

let us denote by . vn its value in .tn ∈Ih. We define the numerical residual 
operator in . tn, associated to (2.20), as  

. Rh(vn) = vn+1 − vn

h
− ϕ(tn, vn;h),

for .n = 0, 1, . . . , N − 1. 

When the residual operators are respectively evaluated in the exact solution 
of (1.1) and its approximation computed by (2.20), we have  

.R(y) = 0, Rh(yn) = 0.
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Moreover, evaluating the numerical residual operator . Rh in the exact solution . y(tn)

recovers the local truncation error (2.22), since 

. Rh(y(tn)) = y(tn+1) − y(tn)

h
− ϕ(tn, y(tn);h) = T (tn, y(tn);h).

We aim to provide the numerical counterpart of the continuous dependence on 
the initial value and the vector field, described in Theorem 1.4. In other terms, we 
aim to analyze the sensitivity of one-step methods (2.20) with respect to the effect of 
perturbations on the initial data and the vector fields of the problem. To this purpose, 
we introduce the vector 

.yh =

⎡

⎢⎢⎢⎣

y0

y1
...

yN

⎤

⎥⎥⎥⎦ (2.25) 

collecting the numerical approximations of the solution to the original problem (1.1) 
in each grid point, obtained by (2.20). We also introduce the vector 

.̃yh =

⎡

⎢⎢⎢⎣

ỹ0

ỹ1
...

ỹN

⎤

⎥⎥⎥⎦ (2.26) 

of the numerical approximations of the solution to the perturbed problem (1.12), 
obtained by (2.20). We also denote by .δ = y0 − ỹ0 the difference between the initial 
values of the original problem (1.1) and the perturbed one (1.12). 

Clearly, .Rh(yn) = 0, while we suppose that .Rh(ỹn) = εn and collect all these 
values in the vector 

.ε =

⎡

⎢⎢⎢⎣

ε0

ε1
...

εN

⎤

⎥⎥⎥⎦ .
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Then, we give the following definition. 

Definition 2.8 A one-step method (2.20) is zero-stable if there exists . K > 0
such that, for any value of the stepsize .h ∈ [0, h0], with .h0 > 0, the following 
inequality holds true 

.‖yh − ỹh‖∞ ≤ K(‖δ‖∞ + ‖ε‖∞). (2.27) 

We observe that the definition of zero-stability is free from any localizing 
assumption. It states that, for bounded perturbations of the initial value and the 
vector field of the problem, the perturbation on the numerical solution remains 
bounded as well, as far as the stepsize h is in a neighborhood of 0, hence for small 
values of h. Zero-stability inequality (2.27) given in Definition 2.8 is not intended 
to provide a quantitative measure of the gap between . yh and . ̃yh; actually, we even 
do not know much on the order of magnitude of the perturbation on the solutions: 
indeed, we only know that the mentioned gap does not blow-up when h is very 
small. 

Lipschitz continuity of the vector field is enough for the continuous dependence 
of the exact solution on the initial value and the vector field, as proved in 
Theorem 1.4. We now aim to prove that a similar condition on the incremental 
function . ϕ in (2.20) is enough to guarantee zero-stability. To this purpose, we need 
to prove the following discrete Grönwall lemma. 

Lemma 2.2 (Discrete Grönwall Lemma) Suppose that .e0, e1, . . . , eN are 
real numbers satisfying the following inequality 

. en+1 ≤ anen + bn, n = 0, 1, . . . , N − 1,

with .an > 0, .bn ∈ R. Then, 

.en ≤
(

n−1∏

k=0

ak

)
e0 +

n−1∑

k=0

(
n−1∏

�=k+1

a�

)
bk, n = 0, 1, . . . , N. (2.28) 

Proof Let us denote the right-hand side of (2.28) by 

.En =
(

n−1∏

k=0

ak

)
e0 +

n−1∑

k=0

(
n−1∏

�=k+1

a�

)
bk,
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with .E0 = e0. Let us isolate the terms corresponding to the index .n − 1, obtaining 

. En = an−1

(
n−2∏

k=0

ak

)
e0 +

n−2∑

k=0

an−1

(
n−2∏

�=k+1

a�

)
bk + bn−1,

i.e., 

. En = an−1En−1 + bn−1.

Then, 

. en − En ≤ an−1en−1 + bn−1 − (an−1En−1 + bn−1) = an−1(en−1 − En−1).

Let us now proceed by induction on n to prove that .en ≤ En, for any n. For  . n = 1
we have 

. e1 − E1 ≤ a0(e0 − E0) = 0.

Suppose that .en−1 ≤ En−1. Then, 

. en − En ≤ an−1(en−1 − En−1) ≤ 0,

that gives the thesis. ��

Theorem 2.5 A one-step method (2.20) is zero-stable if there exists . M > 0
such that 

.‖ϕ(t, v, h) − ϕ(t, w, h)‖ ≤ M‖v − w‖, (2.29) 

for any .(t, v, h), (t, w, h) ∈ [t0, T ] × Rd × [0, h0]. 

Proof Consider the vectors of numerical solutions (2.25) and (2.26), whose generic 
n-th entry is given by 

. 

yn+1 = yn + hϕ(tn, yn;h),

ỹn+1 = ỹn + hϕ(tn, ỹn;h) + hεn.

Side-by-side subtracting, passing to the norms and applying (2.29) yields 

.‖yn+1 − ỹn+1‖ ≤ (1 + hM)‖yn − ỹn‖ + h‖ε‖∞.



2.4 A Theory of One-Step Methods 63

Denoting by 

. a = 1 + hM, en = ‖yn − ỹn‖, b = h‖ε‖∞,

last inequality is equivalent to 

. en+1 ≤ aen + b

and applying Lemma 2.2, we have  

. en ≤
(

n−1∏

k=0

a

)
e0 + b

n−1∑

k=0

(
n−1∏

�=k+1

a

)
.

Clearly, 

. 

n−1∏

k=0

a ≤
N−1∏

k=0

(1 + hM) ≤
N−1∏

k=0

ehM = eNhM = e(T −t0)M

and, analogously, 

. 

n−1∏

�=k+1

a ≤
N−1∏

k=0

(1 + hM) ≤ e(T −t0)M.

We finally obtain 

. en ≤ e(T −t0)M(e0 + (T − t0)‖ε‖∞),

i.e., 

. ‖yh − ỹh‖∞ ≤ e(T −t0)M (‖δ‖∞ − (T − t0)‖ε‖∞) .

The thesis holds true with .K = e(T −t0)M max{1, T − t0}. ��
Clearly, according to Theorem 2.5, Euler method (2.19) is zero-stable, since the 

numerical increment inherits its Lipschitz continuity from that of the vector field of 
the problem (1.1), which is always supposed to be Hadamard well-posed. 

2.4.3 Convergence 

Last point of this section is focused on understanding what happens to the accuracy 
of the numerical scheme if we reduce the stepsize or, equivalently, if we increase the
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number of grid points. By zero-stability, the error intended as difference between 
the exact solution of the problem and its numerical approximation does not blow-
up when the stepsize tends to zero. Through the notion of convergence we now 
introduce, one can also reinforce the stable behavior by stating that the error itself 
tends to 0, according to the following definition. 

Definition 2.9 A one-step method (2.20) is convergent if 

. lim
h→0

‖υh − yh‖∞ = 0, (2.30) 

where 

. υh =

⎡

⎢⎢⎢⎣

y0

y(t1)
...

y(tN )

⎤

⎥⎥⎥⎦

and the vector norm .‖ · ‖∞ in Eq. (2.30) is defined as 

. ‖v‖∞ = max
0≤k≤n

|vk|, v ∈ Rn.

The following important result allows to study the convergence of a numerical 
method in terms of consistency and zero-stability. 

Theorem 2.6 A consistent and zero-stable method (2.20) is convergent. 

Proof Let us apply the zero-stability inequality (2.27) to provide an estimate of 
.‖υh − yh‖∞, obtaining 

. ‖υh − yh‖∞ ≤ K‖ε‖∞,

where 

.ε =

⎡

⎢⎢⎢⎢⎣

Rh(y0)

Rh(y(t1))
...

Rh(y(tN ))

⎤

⎥⎥⎥⎥⎦
.
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Table 2.1 Example 2.25: an  
experimental confirmation of 
the convergence of Euler 
method, applied to the linear 
scalar problem (2.31) 

h . |y(10) − yEUL|
0.1 . 1.86 · 10−9

0.01 . 3.78 · 10−10

0.001 . 4.09 · 10−11

0.0001 . 4.12 · 10−12

As previously mentioned, the operator . Rh evaluated in the exact solution gives the 
local truncation error, that tends to 0 by consistency, leading to the thesis. ��

The vice versa is also true; we will prove this result in Chap. 3, in a more general 
setting. By Theorem 2.6, we have also proved that Euler method is convergent. Let 
us check this property also experimentally, thanks to the following numerical test 
obtained by applying Program 2.1 applied to a linear scalar equation. 

Example 2.25 We aim to experimentally check the convergence of Euler 
method (2.19), through its application to the following linear scalar problem 

.

y′(t) = −2y(t), t ∈ [0, 10],
y(0) = 1,

(2.31) 

whose exact solution is .y(t) = e−2t . We list in Table 2.1 the values of 
the difference .|y(10) − yEUL|, where .yEUL ≈ y(10) is computed by Euler 
method (2.19). As visible from the table, the more the value of the stepsize 
diminishes, the more the difference between the numerical and the exact 
solutions becomes smaller. This behavior is in agreement with the proved 
convergence of Euler method. 

2.5 Handling Implicitness 

Euler method (2.19) is a very basic scheme, achieving the lowest admissible order 
for a convergent method (i.e., .p = 1) and, as we will see in remainder, very poor 
in terms of stability and conservation properties. As already noted, this method is 
explicit, then it is very easy to implement. This scheme also admits an implicit 
version, obtainable by expanding .y(tn) in Taylor series around .tn + h (again, 
assuming that .y(t) is sufficiently regular), i.e., 

.y(tn) = y(tn + h) − hy′(tn + h) + O(h2).
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Neglecting the terms from the second order on leads to 

. y(tn + h) ≈ y(tn) + hy′(tn + h).

This is an approximate equality between exact values that can be regarded as an 
exact equality between approximate values, i.e., 

.yn+1 = yn + hf (tn+1, yn+1). (2.32) 

Equation (2.32) gives the so-called implicit Euler method. If  f is a nonlinear 
function, (2.32) is a nonlinear algebraic equation to be solved at each step, in order 
to compute .yn+1 from . yn, for any .n ≥ 0. This issue certainly heightens the required 
computational effort of (2.32) in comparison with its explicit version (2.19), but  
sometimes it is unavoidable in order to achieve desirable properties, as it will be 
clarified in the following chapters. 

The reader can prove that also the implicit Euler method has order 1 (see 
Exercise 4 in Sect. 2.6), through arguments analogous to those used in Example 2.4. 
Now we can understand that both versions of Euler method (2.19) and (2.32) have 
the minimum acceptable order of convergence, that is equal to 1. In order to achieve 
higher accuracy, the structure of the numerical method should be enriched a bit 
more. 

We show a very well known example of order 2 method. So far, we have 
used Taylor series expansions as a constructive technique; next example shows 
the development of a method by means of another powerful tool, i.e., numerical 
quadrature. 

Example 2.26 (Trapezoidal Method) Let us consider, for .t ≥ tn, the integral 
form of (1.1), i.e., 

. y(t) = y(tn) +
∫ t

tn

f (s, y(s)) ds

and evaluating in .tn+1 yields 

. y(tn+1) = y(tn) +
∫ tn+1

tn

f (s, y(s))ds.

The integral in the right-hand side of last equation can be approximated by 
means of a chosen numerical quadrature formula. For instance, let us apply 
the trapezoidal quadrature rule 

. 

∫ tn+1

tn

f (s, y(s))ds ≈ h

2
(f (tn, y(tn)) + f (tn+1, y(tn+1))) ,

(continued)
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Example 2.26 (continued) 
leading to 

. y(tn+1) ≈ y(tn) + h

2
(f (tn, y(tn)) + f (tn+1, y(tn+1))) .

This is an approximate equality involving exact values that can be regarded as 
an exact equality involving approximate values, i.e., 

.yn+1 = yn + h

2
(f (tn, yn) + f (tn+1, yn+1)) . (2.33) 

Equation (2.33) is the so-called trapezoidal method. Let us analyze its order 
of convergence, by inspecting the local truncation error (2.22) 

. T (tn, y(tn);h) = u(tn+1) − y(tn)

h
− 1

2
(f (tn, y(tn)) + f (tn+1, y(tn+1))) .

Taking into account the localizing assumption .u(tn) = y(tn) in (2.21) and by 
means of Taylor series expansions, we have 

. 

T (tn, y(tn);h) = u(tn+1) − u(tn)

h
− 1

2

(
u′(tn) + u′(tn+1)

)

= 1

h

(
u(tn) + hu′(tn) + h2

2
u′′(tn) + h3

6
u(tn) − u(tn)

)

= − 1

12
h2 u′′′(tn) + O(h3).

Hence, the trapezoidal method has order 2. 

Both the implicit Euler and trapezoidal methods are implicit schemes. As a 
consequence, if the vector field of (1.1) is nonlinear, the computation of the 
numerical solution requires the solution of nonlinear systems of algebraic equations 
at each step. To this purpose, fixed point iterations may be used. For a given 
nonlinear system of algebraic equations .z = g(z), with .g : Rd → R

d , fixed point 
iterations require the choice of an arbitrary initial guess .z[0] ∈ Rd and proceed 
according to the following scheme 

.z[ν+1] = g(z[ν]), ν ≥ 0, (2.34)
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whose convergence is object of the following well-known theorem. 

Theorem 2.7 For a chosen vector norm . ‖ · ‖, let .g : Rd → R
d satisfy the 

Lipschitz condition 

. ‖g(y) − g(y∗)‖ ≤ L‖y − y∗‖, y, y∗ ∈ Rd .

If .0 ≤ L < 1, there exists a unique .α ∈ Rd satisfying .α = g(α) and such that, 
for any arbitrary initial guess .z[0] ∈ Rd , the iterative scheme (2.34) converges 
to . α, i.e. 

. lim
ν→∞ ‖z[ν] − α‖ = 0.

The proof of Theorem 2.7 is here omitted, but the reader can be find it 
in monographs on numerical methods, e.g., [170, 292, 329]. We also remark 
that the convergence of the fixed point iterations for implicit numerical methods 
approximating the solution of initial value problems (1.1) will be studied in Chap. 3 
in a general setting (including the implicit Euler and trapezoidal methods as special 
cases). 

Let us now summarize the numerical scheme relying on the trapezoidal 
method (2.33) and handled by fixed point iterations: in order to advance from 
. tn to .tn+1, 

• we arbitrarily choose an initial guess .y
[0]
n+1 ∈ Rd . To speed up the convergence of 

the iterative process, a smart choice may be .y
[0]
n+1 = yn; 

• we perform fixed point iterations 

. y
[ν+1]
n+1 = yn + h

2

(
f (tn, yn) + f (tn+1, y

[ν]
n+1)

)
, ν ≥ 0,

stopping at the iteration M if 

. ‖y[M]
n+1 − y

[M−1]
n+1 ‖ ≤ tol,

being tol  an a-priori prescribed accuracy. Then .yn+1 = y
[M]
n+1. 

Program 2.2 shows a Matlab implementation of this scheme with .tol = 10−15. 
Let us provide an example of use of this program for the numerical solution 
of (2.31).
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Table 2.2 Comparison 
between the explicit 
Euler (2.19) and 
trapezoidal (2.33) methods, 
applied to Eq. (2.31) 

h .|y(10) − yEUL| . |y(10) − yTRAP|
0.1 .1.86 · 10−9 . 1.34 · 10−10

0.01 .3.78 · 10−10 . 1.37 · 10−12

0.001 .4.09 · 10−11 . 1.37 · 10−14

0.0001 .4.12 · 10−12 . 7.17 · 10−17

Example 2.27 Carrying on the analysis provided in Example 2.25, we now  
use Program 2.2 to solve Eq. (2.31) with the trapezoidal method (2.33) 
and, finally, compare the performances of the explicit Euler and trapezoidal 
methods. Table 2.2, enriching the results already displayed in Table 2.1, 
shows the values of the difference .|y(10) − yTRAP|, where . yTRAP ≈ y(10)
is computed by the trapezoidal method. Since the trapezoidal method has 
higher order, employing the same stepsize, its associated error is smaller and 
diminishes much faster than that provided by the explicit Euler method. 

Program 2.2 (Trapezoidal Method) 
% Function implementing the trapezoidal method on a uniform 
% grid, for the numerical solution of a d-dimensional ODE. 

% Inputs 
% - problem: label of the problem to be solved; 
% - tspan: vector of two components, storing the extrema 
% of the integration interval; 
% - y0: initial value; 
% - h: constant stepsize. 

% Outputs 
% - t: set of N equidistant grid points (tspan(1) excluded); 
% - y: d. ×N matrix whose i-th column y(:,i) stores the 
% approximate value in the i-th grid point, i=1,2,. . . .,N. 

function [t,y]=trapezoidal(problem,tspan,y0,h) 
tol=1e-15; 
N=(tspan(2)-tspan(1))/h; 
t=linspace(h,tspan(2),N); 
d=length(y0); 
y=zeros(d,N); 
f0=f(problem,tspan(1),y0); 
yold=y0; 
ynew=y0+h*(f0+f(problem,t(1),yold))/2; 

(continued)
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Program 2.2 (continued) 
while norm(ynew-yold,’inf’)>tol 

yold=ynew; 
ynew=y0+h*(f0+f(problem,t(1),yold))/2; 

end 
y(:,1)=ynew; 
for i=2:N 

fPrev=f(problem,t(i-1),y(:,i-1)); 
yold=y(:,i-1); 
ynew=y(:,i-1)+h*(fPrev+f(problem,t(i),yold))/2; 
while norm(ynew-yold,’inf’)>tol 

yold=ynew; 
ynew=y(:,i-1)+h*(fPrev+f(problem,t(i),yold))/2; 

end 
y(:,i)=ynew; 

end 

2.6 Exercises 

1. Solve the following scalar linear difference equations: 

(a) yn+2 − 2yn+1 − yn = 3n , 
(b) yn+4 − 2yn+3 − yn+2 + yn = 0, 
(c) yn+5 + 2yn+4 + 2yn+3 + 2yn+2 + yn+1 = 2n . 

2. Using the hypothesis of convergence of Euler method (2.19), recover the 
expression of the original differential problem, as h tends to 0. 
(Hint: it may be useful to write the method in the form (yn+1 − yn)/h = 
f (tn, yn) and analyze what happens as h goes to 0). 

3. Prove that a numerical method for 

. y(t) = y(tn) +
∫ t

tn

f (s, y(s))ds

obtained by means of a quadrature rule for the approximation of the integral 
in the right-hand side inherits the same order of convergence of the underlying 
quadrature formula. 

4. Prove the implicit Euler method (2.32) has order 1. Also give a proof of its 
convergence, exploiting Theorem 2.6. 

5. Write a code in the programming language you prefer that computes the 
solution of (1.1) by the implicit Euler method (2.32) and provides a pointwise
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Fig. 2.4 Patterns of numerical solutions computed by two non-convergent methods (see Exer-
cise 7) 

error estimate. The algorithm behind a single step from tn to tn+1 should be as 
follows: 

• compute the numerical solution yn+1 ≈ y(tn+1) by applying (2.32) with a 
chosen stepsize h; 

• compute another approximation ỹn+1 ≈ y(tn+1) with two steps of (2.32) of 
length h/2; 

• estimate the error as |yn+1 − ỹn+1|. 
6. Rewrite Program (2.2) by replacing fixed point iterations with Newton itera-

tions to handle the implicitness of the trapezoidal method. 
7. Figure 2.4 shows the patterns of the numerical solutions in [0, 2π ] of a problem 

whose exact solution is y(t) = cos(t), computed by a couple of two different 
non-convergent one-step methods. Describe the reasons why each method is 
not convergent.
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8. Given the three-parameter family of one-step methods 

. αyn+1 = βyn + hγf (tn, yn), α, β, γ ∈ R,

(a) find the values of α, β and γ ensuring consistency; 
(b) is order 2 achievable in correspondence of specific values of α, β and γ ? 

9. Discuss the zero-stability of the following one-parameter family of one-step 
methods 

. αyn+1 = 2yn + hf (tn, yn), α ∈ R.

10. Analyze the convergence of the scheme 

. yn+1 = yn + h

2
(f (tn, yn) + f (tn+1, ỹn+1)) ,

with 

. ỹn+1 = yn + hf (tn, yn).

A single step of the overall scheme consists in two parts: a prediction of the 
value of the approximate solution in tn+1 by means of the explicit Euler method; 
a correction of this value via the trapezoidal method. Does the presence of the 
prediction step affect the second order of the trapezoidal method?



Chapter 3 
Linear Multistep Methods 

[. . . ]  this  approach, which was first adopted by Dahlquist, leads 
to a mathematically well-rounded theory. It also leads to the 
discovery of new integration formulas which could not be 
obtained by the heuristic methods. 

(Peter Henrici [206]. This quotation has also been highlighted 
by Ernst Hairer in [188]) 

One-step methods have been introduced, analyzed and implemented in Chap. 2. 
Even if they provide the simplest and maybe most intuitive family of step-by-step 
numerical schemes, enlarging this class with more complex methods could be useful 
in order to achieve better accuracy and stability properties. For this reason, we 
present a more general family of methods relying on a multistep structure, defined 
as follows. 

3.1 The Principle of Multistep Numerical Integration 

Definition 3.1 The family of linear multistep methods (LMMs), with respect 
to the discretization (2.1), is defined by the order k difference equation 

.

k∑

j=0

αjyn+j = h

k∑

j=0

βjfn+j , (3.1) 

where fn+j = f (tn+j , yn+j ), j = 0, 1, . . .  , k, n = 0, 1, . . . , N . 

The integer k is usually denoted as the number of steps of the method and represents 
the order of the difference equation defining (3.1). Normally, we assume .αk = 1 (as 
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usual, if this is not the case, all coefficients can be normalized in order to fall in this 
instance) and, moreover, .|α0|+ |β0| �= 0 in order to avoid . α0 and . β0 simultaneously 
equal to zero. 

The family of LMMs includes all the one-step methods (hence, .k = 1) introduced 
in Chap. 2, namely 

• explicit Euler method (2.19), assuming that .α0 = −1, .α1 = 1, .β0 = 1, .β1 = 0; 
• implicit Euler method (2.32), for .α0 = −1, .α1 = 1, .β0 = 0, .β1 = 1; 
• the trapezoidal method (2.33), imposing .α0 = −1, .α1 = 1, .β0 = 1

2 , .β1 = 1
2 . 

Let us now provide an example of LMM (3.1) depending on more than one step, 
obtained by means of proper numerical quadrature. 

Example 3.1 We now aim to derive an example of LMM with .k = 2, i.e., a 
two-step method. As in the construction of the trapezoidal method (2.33), let  
us consider, for .t ≥ tn, the integral form of (1.1), i.e., 

. y(t) = y(tn) +
∫ t

tn

f (s, y(s))ds,

and evaluate it in .tn+2, obtaining 

. y(tn+2) = y(tn) +
∫ tn+2

tn

f (s, y(s))ds.

Approximating the integral in the right-hand side by the Cavalieri-Simpson 
formula 

. 

∫ tn+2

tn

f (s, y(s))ds≈h

3
(f (tn, y(tn))+4f (tn+1, y(tn+1))+f (tn+2, y(tn+2)))

yields 

. y(tn+2) ≈ y(tn) + h

3
(f (tn, y(tn)) + 4f (tn+1, y(tn+1)) + f (tn+2, y(tn+2))) .

This is an approximate equality involving exact values that can be regarded as 
an exact equality involving approximate values, i.e., 

.yn+2 = yn + h

3
(fn + 4fn+1 + fn+2) , (3.2) 

that is the so-called Milne-Simpson method.
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Differently from one-step methods, LMMs are not self-starting (unless .k = 1). 
For instance, consider the Milne-Simpson method (3.2) when .n = 0, leading to 

. y2 = y0 + h

3
(f0 + 4f1 + f2) .

The value of . y0 is initial value given by the problem (1.1), but the value of . y1 is 
missing and it needs to be recovered in order to compute . y2 and launch the step-by-
step procedure. 

More in general, for the family of k-step methods (3.1) a proper starting method 
is needed to reconstruct the missing starting values . y1, . y2, . . . ., .yk−1. Such values 
can be recovered, for instance, by a suitable one-step method. Just as an example, 
if we employ Euler method (2.19) as starting method, the step-by-step numerical 
scheme described by (3.1) can be summarized as follows: 

• . y0 is given by the initial value problem (1.1); 
• compute the missing starting values . y1, . y2, . . . ., .yk−1 by repeatedly applying 

(2.19), i.e., 

. 

y1 = y0 + hf0,

y2 = y1 + hf1,

...

yk−1 = yk−2 + hfk−2;

• compute . yk by applying the LMM (3.1) 

. yk +
k−1∑

j=0

αjyj = hβkfk +
k−1∑

j=0

βjfj .

We observe that, if .βk �= 0, this step is equivalent to solving a nonlinear system 
of algebraic equations in . yk; 

• go on applying (3.1) up to the computation of 

. yN +
k−1∑

j=0

αjyN−k+j = hβkfN +
k−1∑

j=0

βjfN−k+j .

Relevant examples of LMMs (3.1) can be computed, for instance, via polynomial 
interpolation, where the interpolation points are normally chosen among the grid 
points. Let us illustrate this idea through the following examples.
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Example 3.2 (An Adams-Bashforth Method) Let us consider the integral 
formulation of (1.1) 

. y(t) = y(tn+1) +
∫ t

tn+1

f (s, y(s))ds,

and evaluate it in .tn+2, obtaining 

. y(tn+2) = y(tn+1) +
∫ tn+2

tn+1

f (s, y(s))ds.

Let us approximate .f (s, y(s)) through the linear interpolant with respect to 
the nodes .(tn, y(tn)) and .(tn+1, y(tn+1)), leading to 

. f (s, y(s)) ≈ f (tn, y(tn))
s − tn+1

tn − tn+1
+ f (tn+1, y(tn+1))

s − tn

tn+1 − tn
.

Hence, 

. 

∫ tn+2

tn

f (s, y(s))ds ≈ −h

2
(f (tn, y(tn)) − 3f (tn+1, y(tn+1))) ,

leading to 

.yn+2 = yn+1 − h

2
(fn − 3fn+1) , (3.3) 

that is the so-called two-step Adams-Bashforth method, which is an explicit 
method. 

More in general, Adams-Bashforth methods are obtained by replacing the 
interpolating polynomial approximating f on a given set of nodes chosen among the 
grid points, excluding the point related to the advancing term, i.e., .tn+k . This choice 
leads to a family of explicit methods. Including .tn+k in the set of interpolation points 
leads to a family of implicit methods, the so-called Adams-Moulton formulae. An 
example is given below.
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Example 3.3 (An Adams-Moulton Method) Let us consider again the integral 
form of (1.1) 

. y(t) = y(tn) +
∫ t

tn

f (s, y(s))ds,

and proceed by approximating the function f with its linear interpolant on the 
nodes .(tn, y(tn)) and .(tn+1, y(tn+1)), leading to 

. f (s, y(s)) ≈ f (tn, y(tn))
s − tn+1

tn − tn+1
+ f (tn+1, y(tn+1))

s − tn

tn+1 − tn
.

Hence, 

. 

∫ tn+1

tn

f (s, y(s))ds ≈ h

2
(f (tn, y(tn)) + f (tn+1, y(tn+1))) ,

obtaining 

.yn+1 = yn + h

2
(fn + fn+1) , (3.4) 

that is the so-called second order Adams-Moulton method. Actually, this 
implicit method is not a novelty for us, since it is the trapezoidal method 
(2.33). 

3.2 Handling Implicitness by Fixed Point Iterations 

Looking at the coefficient . βk in (3.1) allows us to distinguish whether the method 
is explicit or implicit: indeed, if .βk = 0, the method is explicit; when .βk �= 0, 
the method is implicit. As explained in Chap. 2 for one-step methods, we now aim 
to handle the implicitness of LMMs via fixed point iterations. To this purpose, let 
us first recast (3.1) in a different, equivalent form. In particular, let us separate the 
implicit part from the explicit one in the method, by isolating the terms for .j = k in 
the summations, leading to 

.yn+k = hβkf (tn+k, yn+k) + gn+k−1, (3.5)
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where 

. gn+k−1 = h

k−1∑

j=0

βjfn+j −
k−1∑

j=0

αjyn+j .

Then, we treat the implicitness of (3.5) by fixed point iterations as follows: in order 
to advance from . tn to .tn+1, 

• we arbitrarily choose an initial guess .y
[0]
n+k ∈ Rd . To speed up the convergence of 

the iterative process, a smart choice may be .y
[0]
n+k = yn+k−1; 

• we perform fixed point iterations 

.y
[ν]
n+k = hβkf (tn+k, y

[ν−1]
n+k ) + gn+k−1, ν ≥ 1, (3.6) 

stopping at the iteration M if 

. ‖y[M]
n+k − y

[M−1]
n+k ‖ ≤ tol,

being tol  an a-priori prescribed accuracy. Then .yn+k = y
[M]
n+k . 

A major issue to address regards the convergence of the above fixed point 
iterative process. This aspect is object of the following result. 

Theorem 3.1 Consider the initial value problem (1.1), whose vector field 
satisfies the Lipschitz condition (1.8), and denote by L the Lipschitz constant. 
If 

.h|βk|L < 1, (3.7) 

then (3.5) has a unique solution .yn+k such that 

. yn+k = lim
ν→∞ y

[ν]
n+k,

with .y
[ν]
n+k defined in (3.6), for any arbitrarily chosen initial guess .y

[0]
n+k ∈ Rd . 

Proof Let us introduce the auxiliary map .ϕ : Rd → R
d , defined by 

.ϕ(y) = hβkf (tn+k, y) + gn+k−1, y ∈ Rd .
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For any .y, z ∈ Rd , we have  

. ‖ϕ(y) − ϕ(z)‖ = h |βk| ‖f (tn+k, y) − f (tn+k, z)‖

and, by the Lipschitz continuity of f , we obtain 

. ‖ϕ(y) − ϕ(z)‖ ≤ h |βk| L‖y − z‖.

Since .h|βk|L < 1, 

. ‖ϕ(y) − ϕ(z)‖ ≤ ‖y − z‖,

i.e., . ϕ is a contraction in . Rd . Hence, by the contraction mapping theorem, there 
exists a unique fixed point .α ∈ Rd such that .α = ϕ(α). Since .yn+k = ϕ(yn+k), 
.yn+k is the unique fixed point of the map . ϕ. By the contraction mapping theorem, 
such a fixed point is the limit of the fixed point iterations 

. y
[ν]
n+k = ϕ(y

[ν−1]
n+k ), ν ≥ 1,

for any arbitrarily chosen initial guess .y
[0]
n+k ∈ Rd . 
�

We highlight that (3.7) is the first limitation on the stepsize we have encountered 
so far: in order to have a convergent fixed point iterative process for implicit LMMs 
(3.1), h cannot be arbitrarily chosen, but it should satisfy the restriction 

. h <
1

|βk|L.

We present other relevant stepsize restrictions in the remainder of this book. We 
will see that, in certain situations, important properties of numerical methods can be 
translated into proper stepsize restrictions. 

3.3 Consistency and Order Conditions 

Let us now focus our attention on the analysis of the accuracy of LMMs (3.1). We  
have seen in Chap. 2 that basic necessary accuracy and stability requirements (i.e., 
consistency, zero-stability and convergence) have to be fulfilled by any numerical 
method for (1.1). Our aim is now devoted to developing a theory of multistep 
methods inspired by the principles presented in the previous chapter. Hence, let 
us start with the following definition.
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Definition 3.2 For a given grid function 

. v : Ih → R
d ,

let us denote by . vn its value in .tn ∈Ih. We define the numerical residual 
operator associated to (3.1) as 

.Rh(vn) = 1

h

k∑

j=0

αjvn+j −
k∑

j=0

βjfn+j , (3.8) 

for .n = 0, 1, . . . , N − k, with . fn+j = f (tn+j , vn+j ).

As it happens for one-step methods, when the residual operators (2.24) and 
(3.8) are respectively evaluated in the exact solution of (1.1) and its numerical 
approximation computed by (3.1), we have  

. R(y) = 0, Rh(yn) = 0.

The numerical residual operator (3.8) evaluated in the exact solution .y(t) of 
(1.1) provides the local truncation error associated to (3.1), having the following 
expression: 

. 

T (tn, y(tn);h) = Rh(y(tn)) = 1

h

k∑

j=0

αjy(tn+j ) −
k∑

j=0

βjf (tn+j , y(tn+j ))

= 1

h

k∑

j=0

αjy(tn+j ) −
k∑

j=0

βjy
′(tn+j ).

(3.9) 
Correspondingly, we give the following definition. 

Definition 3.3 A linear multistep method (3.1) is consistent if, for any 
.(t, y) ∈ [t0, T ] × Rd , 

. lim
h→0

T (t, y;h) = 0.
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Clearly, a consistent method (3.1) satisfies 

. T (t, y;h) = O(hp),

with .p ≥ 1. In other terms, consistent methods have at least order 1. The notion of 
order of a LMM is given in the following definition. 

Definition 3.4 A linear multistep method (3.1) has order p if, for a chosen 
vector norm .‖ · ‖, there exists a real constant .C > 0 such that 

. ‖T (t, y;h)‖ ≤ Chp,

for any .(t, y) ∈ [t0, T ] × Rd , where C is independent on t , y and h. 

It is the right moment to address a very crucial point. Analyzing accuracy and 
stability properties of numerical methods can be very tricky if we only rely on their 
definitions. However, the work of the pioneers of the numerical approximation of 
ODEs has led to highly effective tools which make the analysis much simpler, since 
it only requires algebraic computation involving the coefficients of the methods. As 
regards LMMs, seminal contributions in this direction have been provided through 
the talent and the ingenious work of Germund Dahlquist (1925–2005). Let us briefly 
present his biography, based on the obituary written by Åke Björck, Bill Gear and 
Gustaf Söderlind in Siam News of May 1st, 2005 and on the information reported 
in the gifted MacTutor History of Mathematics Archive (https://mathshistory.st-
andrews.ac.uk/Biographies/Dahlquist/). 

A Portrait of Germund Dahlquist 
Germund Dahlquist is one of the pioneers in establishing a theory for the 
numerical discretization of differential equations. He was born in 1925 in 
Uppsala, son of a minister in the Church of Sweden (his father) and a poet (his 
mother). He studied mathematics at Stockholm University since 1942 and was 
strongly influenced by one of his professors, Harald Bohr (brother of Niels 
Bohr, the famous Danish physicist who achieved the Nobel Prize in 1922). 
Bohr was a refugee from Denmark during the Second World War and inspired 
Dahlquist a lot not only as regards Mathematics, but also because of his gifted 
character that made of him a professor highly dedicated to his students (as 
well as a gifted soccer player. He was member of the Danish national football 
team and achieved a silver medal in the 1908 Summer Olympics). 

He graduated in 1949, but he did not promptly start a Ph.D. program: 
indeed, he was appointed at the Swedish Board of Computer Machinery as an 

(continued)
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applied mathematician and programmer. In 1951 Sweden developed a digital 
computer (its name was BESK, the acronym for Binary Electronic Sequential 
Calculator), which came into operation in December 1953: 1951 is a crucial 
year for us, since Germund Dahlquist started his studies leading to ground-
breaking contributions to the theory of numerical methods for initial value 
problems in ordinary differential equations, as written in his obituary. 

BESK was employed by Dahlquist to solve differential equations, clearly 
after a proper study of difference methods. His theoretical study was also 
accompanied by his membership in with a team working on numerical 
weather forecasts, guided by the Swedish-American meteorologist Carl 
Gustaf Rossby at the International Meteorological Institute of Stockholm 
University. This working group was able to develop in 1954 the first 24-hour 
weather observations made the same day, carried out on BESK. 

That was a very fruitful time for Dahlquist research activity, which ted to 
his first publications in numerical analysis. In 1956, Dahlquist presented his 
studies on linear multistep methods, giving rise to the beautiful convergence 
theory for such methods. His theory parallels that of Peter Lax, that introduced 
his equivalence principle in 1955 had established the Lax principle. 

From 1956 to 1959 Dahlquist covered the position head of Mathematical 
Analysis and Programming Development at the Swedish Board of Computer 
Machinery. He defended his Ph.D. thesis in 1958, entitled “Stability and 
Error Bounds in the Numerical Solution of Ordinary Differential Equations”, 
advised by Fritz Carlson. In his thesis he also introduced the logarithmic 
norm, independently developed also by Lozinskii in 1958, explained in 
Definition 1.3. The theory introduced in these years was spread out by Peter 
Henrici in 1962, through his monograph, a masterpiece for the modern theory 
of numerical discretization of ODEs. 

In 1959 Dahlquist he was appointed to the Royal Institute of Technology 
in Stockholm, where he spent the rest of his career and where the Department 
of Numerical Analysis and Computer Science was founded in 1962 as an 
offshoot the Department of Applied Mathematics. In these years he was 
pioneer also in establishing the new-born journal BIT Numerical Mathemat-
ics, published for the first time in 1961, served by Dahlquist as editor for 
more than 30 years. BIT published several relevant contributions by Germund 
Dahlquist, such as the highly cited masterpiece on A-stability (a concept we 
will later introduce in next chapters) on the famous Dahlquist barriers. 

In 1963 he got his position as Full Professor of “Computer Sciences, in 
particular Numerical Analysis”, actually the first full professorship position 
of this kind in Sweden. His highly appreciated book Numeriska Metoder, co-
authored by Åke Björck appeared in 1969 and a revised extended version 
entitled “Numerical Methods” was published in 1974 by Prentice-Hall [113]. 
This book had a great success all over the world: it was translated in German 

(continued)
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in 1972, in Polish in 1983, in Chinese in 1990. Nick Higham writes in his 
review of the book: 

This work is a monumental undertaking and represents the most comprehensive 
textbook survey of numerical analysis to date. It will be an important reference in 
the field for many years to come. 

During the 1960s and 1970s, Dahlquist visited many institutes in Europe, 
USA, Australia, New Zealand and China. He visited Stanford University in 
1968 and 1977–1978, where he held a five-year part-time position from 1982 
to 1986. 

The Society for Industrial and Applied Mathematics (SIAM) named him 
their John von Neumann lecturer in 1988. Germund Dahlquist retired from the 
Royal Institute of Technology in 1990, but continued in actively working on 
research. He obtained honorary doctorates from Hamburg University (1981), 
Helsinki University (1994), and Linköping University (1996). In 1999 he 
achieved the prestigious Peter Henrici Prize, with the following motivation: 

He has created the fundamental concepts of stability, A-stability and the nonlinear G-
stability for the numerical solution of ordinary differential equations. He succeeded, 
in an extraordinary way, to relate stability concepts to accuracy and proved the 
deep results which are nowadays called the first and second Dahlquist barrier. His 
interests, like Henrici’s, are very broad, and he contributed significantly to many 
parts of numerical analysis. As a human being and scientist, he gives freely of 
his talent and knowledge to others and remains a model for many generations of 
scientists to come. 

In 1995, on the occasion of his 70th birthday, SIAM established the 
Germund Dahlquist Prize to be awarded biennially, normally to a young 
scientist for original contributions to fields related to the numerical solution 
of differential equations and numerical methods for scientific computing. 

In his obituary, two more significant aspects arises: his active work for 
Amnesty International and his love of music. Here is an excerpt: 

As an active member of Amnesty International during the 1970s, Dahlquist worked 
to help scientists who were politically persecuted, in some cases traveling to offer his 
encouragement and recognition in person. He used to tell the story of his intervention 
on behalf of a Russian mathematician who, in despair, had made a thoughtless public 
statement to the effect that the Soviet Union was “a land of alcoholics”. Guriy I 
Marchuk, who had visited Stockholm University in the 1960s, was then president of 
the USSR Academy of Sciences and vice-chair of the USSR Council of Ministers. 
Dahlquist wrote to Marchuk pleading the dissident’s case. After a long time with no 
response, two staff members of the Soviet Embassy called at Germund’s office one 
day, bringing greetings from Marchuk and a package, that turned out to contain. . . 
two bottles of vodka! Germund had a keen interest in music, mainly classical but also 
jazz music. He would often happily sit down at the piano and entertain his colleagues 
with a few old standards, starting with “On the Sunny Side of the Street” and ending 
with “As Time Goes By”. But his knowledge went much deeper. On one visit to the 

(continued)
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USA, with a few colleagues in a fine restaurant, Germund heard a female bar pianist 
whose music was obviously the highlight of the evening for him. When it was time 
to leave, Germund told the pianist how much he had enjoyed her stylish playing, 
adding that it had reminded him of one of his favorites, the great jazz pianist Art 
Tatum. The pianist was duly flattered, but it was Germund who was surprised when 
she answered: “Art Tatum was my father!”. 

Germund Dahlquist died in 2005. His work inspired many researches over 
several decades. As John Butcher wrote: 

When I met him in 1970, I started to appreciate that he was more than a brilliant 
mathematician and computational scientist: he was a kind and sensitive man and a 
loyal  friend.  [. . . ]  Everything  Germund  published was a separate gem, exhibiting 
deep mathematical insight and, at the same time, a clear understanding of sound 
computational practice. He was a pioneer who remained a central figure throughout 
his career; he will be sadly missed. 

Let us recast (3.9) in the following form 

. 

k∑

j=0

αjy(tn+j ) − h

k∑

j=0

βjy
′(tn+j ) = hT (tn, y(tn);h).

Such a relation, though defined on vector valued functions, actually results to be the 
same on each component of the involved vectors. For this reasons, it makes sense to 
analyze it on scalar functions, motivating the following definition. 

Definition 3.5 For a given scalar function .z : [t0, T ] → R of class 
.C1([t0, T ]), the  linear difference operator associated to a linear multistep 
method (3.1) is defined by 

.L[z(t), h] =
k∑

j=0

αjz(t + jh) − h

k∑

j=0

βj z
′(t + jh). (3.10) 

Clearly, if .y(t) is the solution of (1.1), we have  

. L[yi(t), h] = hT (t, yi(t);h), i = 1, 2, . . . , d

and, as a consequence, if the method (3.1) has order p, .L[z(t), h] = O(hp+1), for 
any scalar function . z(t). This observation leads to the following result.
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Theorem 3.2 A linear multistep method (3.1) has order p if and only if 
.C� = 0, for any .�= 0, 1, . . . , p, with 

. C0 =
k∑

j=0

αj , C� =
k∑

j=0

(
j�

�! αj − j�−1

(� − 1)!βj

)
, � > 0

and .Cp+1 �= 0. 

Proof We expand in Taylor series around t each evaluation of .z(t) appearing in the 
right-hand side of (3.10), obtaining 

. L[z(t), h] =
k∑

j=0

αj

⎛

⎝z(t) +
∑

�≥1

(jh)�

�! z(�)(t)

⎞

⎠

− h

k∑

j=0

βj

(
z′(t) +

∑

�>1

(jh)�−1

(� − 1)!z
(�)(t)

)
.

Collecting in powers of h leads to 

. L[z(t), h] =
⎛

⎝
k∑

j=0

αj

⎞

⎠ z(t) +
∑

�≥1

k∑

j=0

(
j�

�! αj − j�−1

(� − 1)!βj

)
h�z(�)(t),

i.e., 

. L[z(t), h] = C0z(t) +
∑

�≥1

C�h
�z(�)(t).

In order to have .L[z(t), h] = O(hp+1), we need to satisfy 

. C0 = C1 = · · · = Cp = 0, Cp+1 �= 0,

obtaining the thesis. 
�
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Definition 3.6 The non-zero constant 

. Cp+1 =
k∑

j=0

(
jp+1

(p + 1)!αj − jp

p! βj

)

of an order p method (3.1) is denoted as its error constant. 

In other terms, for an order p linear multistep method we have 

. L[z(t), h] = Cp+1h
p+1z(p+1)(t) + O(hp+2),

for all regular scalar functions . z(t), while the corresponding local truncation error 
is 

. T (t, y(t);h) = Cp+1h
py(p+1)(t) + O(hp+1).

The following corollary of Theorem 3.2 gives us a very immediate way to 
analyze the consistency of a LMM (3.1), only requiring a straightforward algebraic 
computation involving the coefficients of the method. This way of proceeding is 
certainly much simpler than proving consistency using Definition 3.3. 

Corollary 3.1 A linear multistep method (3.1) is consistent if and only if 

.

k∑

j=0

αj = 0,
k∑

j=0

(
jαj − βj

) = 0. (3.11) 

Proof A consistent method has order at least one. Hence, according to Theorem 3.2, 
it satisfies 

. C0 =
k∑

j=0

αj = 0, C1 =
k∑

j=0

(
jαj − βj

) = 0

and the thesis holds true. 
�
Let us now present few examples of applications of the notions introduced in this 

section.
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Example 3.4 Let us analyze consistency, orders and error constants of the 
examples of LMMs (3.1) we have developed so far, depending on one and 
two steps. 

• The explicit Euler method (2.19) satisfies 

. C0 =
k∑

j=0

αj = 0, C1 =
k∑

j=0

(
jαj − βj

) = 0,

C2 =
k∑

j=0

(
j2

2
αj − jβj

)
= 1

2
,

so it is consistent, of order 1 and its error constant is equal to . 1/2; 
• for the implicit Explicit Euler method (2.32) we have 

. C0 =
k∑

j=0

αj = 0, C1 =
k∑

j=0

(
jαj − βj

) = 0,

C2 =
k∑

j=0

(
j2

2
αj − jβj

)
= −1

2
.

Then, it is consistent, of order 1 and its error constant is equal to .−1/2; 
• the trapezoidal method (2.33) fulfills 

. 

C0 =
k∑

j=0

αj = 0, C1 =
k∑

j=0

(
jαj − βj

) = 0,

C2 =
k∑

j=0

(
j2

2
αj − jβj

)
= 0, C3 =

k∑

j=0

(
j3

6
αj − j2

2
βj

)
= − 1

12
,

so it is consistent, of order 2 and its error constant is .−1/12; 
• Milne-Simpson method (3.2) is a LMM (3.1) with .α0 = −1, .α1 = 0, 

(continued)
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Example 3.4 (continued) 
.α2 = 1, .β0 = 1/3, .β1 = 4/3 and .β2 = 1/3. Hence, it satisfies 

. 

C0 =
k∑

j=0

αj = 0, C1 =
k∑

j=0

(
jαj−βj

) = 0,

C2 =
k∑

j=0

(
j2

2
αj−jβj

)
= 0, C3 =

k∑

j=0

(
j3

6
αj−j2

2
βj

)
= 0,

C4 =
k∑

j=0

(
j4

24
αj−j3

6
βj

)
= 0, C5 =

k∑

j=0

(
j5

120
αj− j4

24
βj

)
= − 1

90
,

so it is consistent, of order 4, with error constant .−1/90; 
• the two-step Adams-Bashforth method (3.3) is a LMM (3.1) with .α0 = 0, 

.α1 = −1, .α2 = 1, .β0 = −1/2, .β1 = 3/2 and .β2 = 0. Therefore, 

. 

C0 =
k∑

j=0

αj = 0, C1 =
k∑

j=0

(
jαj − βj

) = 0,

C2 =
k∑

j=0

(
j2

2
αj − jβj

)
= 0, C3 =

k∑

j=0

(
j3

6
αj − j2

2
βj

)
= 5

12
,

so it is consistent, of order 2 and its error constant is equal to .5/12. 

Example 3.5 We now aim to study the consistency of the following numerical 
method 

.yn+2 − 2yn+1 + yn = hfn, (3.12) 

both using conditions (3.11) and through an experimental check. Equation 
(3.12) provides an explicit two-step method and, according to Corollary 3.1 it 
is a non-consistent, since 

. C0 =
k∑

j=0

αj = 0, C1 =
k∑

j=0

(
jαj − βj

) = −1.

(continued)
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Example 3.5 (continued) 
Let us experimentally check this property. To this purpose, consider the 
following scalar test problem 

.

{
y′(t) = 2(y(t) − cos(t)) − sin(t), t ∈ [0, 2π ],
y(0) = 1,

(3.13) 

whose exact solution is .y(t) = cos(t). As visible in Fig. 3.1, the numerical 
solution does not match the exact one and the reader can verify that a similar 
behavior occurs also if the stepsize is reduced. This is a typical situation of 
lack of consistency: the application of a non-consistent method leads to the 
pattern of another function rather than one reproducing the exact solution. 

3.4 Zero-Stability 

We have learned in Chap. 2 that consistency is a local accuracy property, while zero-
stability and convergence are global accuracy properties. We now focus on zero-
stability analysis that, according to our analysis in Chap. 2, ensures the boundedness 
of the error for small values of the stepsize. We first need to introduce the following 
tools. 

Fig. 3.1 Numerical (straight 
line) vs exact (dashed line) 
solutions of (3.13). The  
numerical solution is 
computed by the 
non-consistent method (3.12) 
with stepsize . h = π/100

0 1 2 3 4 5
t

-1.5
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-0.5 

0 
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1
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Definition 3.7 The first characteristic polynomial associated to a linear 
multistep method (3.1) is given by 

.ρ(z) =
k∑

j=0

αjz
j , (3.14) 

while the second characteristic polynomial associated to (3.1) is given by 

.σ(z) =
k∑

j=0

βj z
j . (3.15) 

These polynomials are very useful also to analyze consistency of (3.1). Indeed, 
for a consistent method, we have 

. ρ(1) = 0, ρ′(1) = σ(1),

since 

. ρ(1) =
k∑

j=0

αj , ρ′(1) =
k∑

j=0

jαj , σ (1) =
k∑

j=0

βj .

The roots of the first characteristic polynomial are important to analyze the zero-
stability of (3.1). To this purpose, there is a relevant property that we are going to 
use, defined as follows. 

Definition 3.8 An algebraic polynomial satisfies the root condition if each of 
its roots has modulus strictly less than 1 or has modulus one but it is simple. 

Example 3.6 The polynomial 

. ρ(z) = z2 − 5

6
z + 1

6

satisfies the root condition, since its roots are 1/2 and 1/3. The polynomial 

(continued)
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Example 3.6 (continued) 

. ρ(z) = z2 − 4

3
z + 1

3

also satisfies the root condition, since its roots are 1/3 and 1. Finally, the 
polynomial 

. ρ(z) = z3 − 5

2
z2 + 2z − 1

2

does not satisfy the root condition, since its roots are 1/2 and 1, the latter with 
multiplicity 2. 

As we know from Chap. 2, zero-stability ensures that the numerical solution does 
not blow-up as h tends to 0; in other terms, we need to prove that the general solution 
of the difference equation describing (3.1) does not blow-up as h goes to 0. Hence, 
we first have to analyze what happens to the solution of a linear difference equation; 
this issue is explained by the following result, reported for the scalar case, whose 
proof is here omitted (the interested reader can refer, for instance, to [170]). 

Theorem 3.3 Consider the following order k inhomogeneous linear differ-
ence equation 

. 

k∑

j=0

αjyn+j = gn+k,

where .αj , yn+j ∈ R, .j = 0, 1, . . . , k, and .gn+k ∈ R. Then, there exists . M > 0
independent on n such that 

. |yn| ≤ M

(
max

0≤i≤k−1
|yi | +

n∑

m=k

|gm|
)

, n ≥ 0,

if and only if the characteristic polynomial 

. ρ(z) =
k∑

j=0

αjz
j

satisfies the root condition.
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According to Theorem 3.3, the root condition is a necessary and sufficient 
condition for the stability of the solutions of linear difference equations. We now 
prove that the root condition of the first characteristic polynomial (3.14) is exactly 
what we need to have stable numerical solutions through LMMs (3.1). First of all, 
let us provide a rigorous definition of zero-stability. 

Consider the vector 

.yh =

⎡

⎢⎢⎢⎣

y0

y1
...

yN

⎤

⎥⎥⎥⎦ (3.16) 

collecting the numerical solution of the initial value problem (1.1) in each grid point, 
computed by (3.1) and the vector 

. ̃yh =

⎡

⎢⎢⎢⎣

ỹ0

ỹ1
...

ỹN

⎤

⎥⎥⎥⎦

of the numerical approximations of the solution to the perturbed problem (1.12), 
obtained by (3.1). As in the one-step case described in Chap. 2, .Rh(yn) = 0, while 
we suppose that .Rh(ỹn) = εn and collect all these values in the vector 

. ε =

⎡

⎢⎢⎢⎣

ε0

ε1
...

εN

⎤

⎥⎥⎥⎦ .

We also denote by . δ the vector collecting the deviations in the initial values, i.e., 

. δ =

⎡

⎢⎢⎢⎣

y0 − ỹ0

y1 − ỹ1
...

yk−1 − ỹk−1

⎤

⎥⎥⎥⎦ .

We define zero-stability of LMMs (3.1) as follows.
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Definition 3.9 A linear multistep method (3.1) is zero-stable if there exists 
.� > 0 such that, for any value of the stepsize .h ∈ [0, h0], with .h0 > 0, the  
following stability inequality holds true 

.‖yh − ỹh‖∞ ≤ �(‖δ‖∞ + ‖ε‖∞). (3.17) 

As already observed in Chap. 2 for one-step methods, the zero-stability inequality 
(3.17) imitates the corresponding inequality (1.15), useful to study the continuous 
dependence on the initial data and the vector field of the underlying initial value 
problem. 

Let us now prove the following zero-stability criterion, whose statement recalls 
the stability result for difference equations presented in Theorem (3.3). 

Theorem 3.4 A linear multistep method (3.1) is zero-stable if and only if its 
first characteristic polynomial (3.14) satisfies the root condition. 

Proof We separately prove the necessity and the sufficiency of the root condition 
for the zero-stability of (3.1). 

• First part: let us prove that zero-stability implies the root condition for its first 
characteristic polynomial. Suppose that the vector field f of the continuous 
problem (1.1) is identically null. The corresponding LMM (3.1) reads 

.

k∑

j=0

αjyn+j = 0. (3.18) 

Let us collect the numerical solution arising from (3.18) in the vector . yh given by 
(3.16) and consider that the homogeneous difference equation (3.18) also admits 
the zero solution. Then, from the zero-stability hypothesis, there exists . � > 0
such that 

. ‖yh‖∞ ≤ � max
0≤j≤k−1

|yj |.

Hence, the solution . yh of the difference equation (3.18) is uniformly bounded 
and, by Theorem 3.3, its characteristic polynomial 

.ρ(z) =
k∑

j=0

αjz
j
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satisfies the root condition. 
• Second part: let us prove that the root condition for the first characteristic 

polynomial of (3.1) implies its zero-stability. Let us consider two given grid 
functions 

. u, v : Ih → R
d

and denote by . un and . vn their values in .tn ∈ Ih, respectively. Correspondingly, 

. 

k∑

j=0

αjun+j = h

k∑

j=0

βjf (tn+j , un+j ) + hRh(un),

k∑

j=0

αjvn+j = h

k∑

j=0

βjf (tn+j , vn+j ) + hRh(vn).

By subtraction, we have 

.

k∑

j=0

αj

(
un+j − vn+j

) = gn+k, (3.19) 

where 

. gn+k = h

k∑

j=0

βj

(
f (tn+j , un+j ) − f (tn+j , vn+j )

) + h (Rh(un) − Rh(vn)) .

In other terms, .{un−vn}n∈N is solution of the inhomogeneous difference equation 
(3.19). Since the root condition holds true, by Theorem 3.3 there exists .M > 0, 
independent on n, such that 

. ‖un − vn‖∞ ≤ M

(
max

0≤i≤k−1
‖ui − vi‖∞+

n∑

m=k

‖gm‖∞

)
.

Certainly, by defining .(rh)n = Rh(un) − Rh(vn), we have  

.

‖gm‖∞ =
∥∥∥∥∥∥
h

k∑

j=0

βj

(
f (tm+j−k, um+j−k)−f (tm+j−k, vm+j−k)

) +h(rh)m−k

∥∥∥∥∥∥∞

≤ hLβ

k∑

j=0

‖um+j−k−vm+j−k‖∞+h‖rh‖∞,
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being .β = max
0≤j≤k

βj . By defining .en = un − vn, we have  

. 

‖en‖∞ ≤ M

⎛

⎝ max
0≤i≤k−1

‖ei‖∞ +
n∑

m=k

⎛

⎝h L β

k∑

j=0

‖em+j−k‖∞ + h‖rh‖∞

⎞

⎠

⎞

⎠

≤ M

⎛

⎝ max
0≤i≤k−1

‖ei‖∞ + h L β

n∑

m=k

k∑

j=0

‖em+j−k‖∞ + Nh‖rh‖∞

⎞

⎠ .

Clearly, 

. 

n∑

m=k

k∑

j=0

‖em+j−k‖∞ ≤
k∑

j=0

n∑

m=0

‖em‖∞ = (k + 1)
n∑

m=0

‖em‖∞.

Hence, 

. ‖en‖∞ ≤ M

(
max

0≤i≤k−1
‖ei‖∞ + h L β(k + 1)

n∑

m=0

‖em‖∞ + (T − t0)‖rh‖∞

)

or, equivalently, 

. μ‖en‖∞ ≤ M

(
max

0≤i≤k−1
‖ei‖∞ + h L β(k + 1)

n−1∑

m=0

‖em‖∞ + (T −t0)‖rh‖∞

)
,

with .μ = (1 − h L β(k + 1)). Suppose to choose h small enough in order to 
make .μ > 0 (it is enough to choose .h < 1/(hLβ(k + 1)) to make this possible), 
so that 

. ‖en‖∞ ≤ h A

n−1∑

m=0

‖em‖∞ + B,

with 

. A = M

μ
L β(k + 1), B = M

μ

(
max

0≤i≤k−1
‖ei‖∞ + (T − t0)‖rh‖∞

)
.

Let us consider the corresponding difference equation 

.wn = h A

n−1∑

m=0

wm + B,
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with initial value .w0 = B. The reader can easily prove by induction that its 
solution is 

. wn = B(1 + hA)n, n ≥ 0.

Then 

. ‖en‖∞ − wn ≤ h A

n−1∑

m=0

(‖em‖∞ − wm)

and the reader can again prove by induction that 

. ‖en‖∞ ≤ wn.

Therefore, 

. ‖en‖∞ ≤ B(1 + hA)n ≤ BenhA ≤ BeNhA = Be(T −t0)A

and replacing the value of B gives 

. ‖en‖∞ ≤ M

μ
e(T −t0)A

(
max

0≤i≤k−1
‖ei‖∞ + (T − t0)‖rh‖∞

)
.

The choice 

. � = M

μ
e(T −t0)A max{1, T − t0}

let the thesis hold true. 
�
Analyzing zero-stability through Definition 3.9 may be very tricky. However, 

Theorem 3.4 provides a practical condition that makes the analysis of zero-stability 
much easier. Let us test such a condition on few examples. 

Example 3.7 According to Theorem 3.4, 

• Euler methods (2.19) and (2.32) are zero-stable, since their first character-
istic polynomial is 

. ρ(z) = z − 1;

(continued)
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Example 3.7 (continued) 
• the trapezoidal method (2.33) is zero-stable, since its first characteristic 

polynomial is 

. ρ(z) = z − 1;

• Milne-Simpson method (3.2) is zero-stable, since its first characteristic 
polynomial is 

. ρ(z) = z2 − 1;

• the two-step Adams-Bashforth method (3.3) is zero-stable, since its first 
characteristic polynomial is 

. ρ(z) = z2 − z.

Example 3.8 We now aim to study the zero-stability of the following numer-
ical method 

.yn+2 − 3yn+1 + 2yn = hfn, (3.20) 

both checking the root condition and experimentally. This method is not zero-
stable, since the roots of its first characteristic polynomial 

. ρ(z) = z2 − 3z + 2

are 1 and 2, so the root condition is not satisfied. Let us experimentally check 
this lack of zero-stability on the test problem (3.13). As visible in Fig. 3.2, the  
numerical solution does not have a stable behavior, so it does not match the 
stable character of the exact solution. Hence, the applied method is clearly not 
zero-stable. 

For a zero-stable linear multistep method (3.1), the following result holds true.
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Fig. 3.2 Numerical solution of (3.13) computed by method (3.20), that is not zero-stable, with 
stepsize . h = π/100

Theorem 3.5 The order p of a zero-stable linear multistep method (3.1) 
depending on k steps satisfies 

. p ≤
{

k + 1, k odd,

k + 2, k even.

This results, whose proof can be found, for instance, in [67], is an order barrier 
for linear multistep methods, well-known in the literature as first Dahlquist barrier. 
In other terms, the number of steps provides an upper bound for the order of 
convergence of the corresponding method. Maximal order methods are those of 
order .k+1 if k is odd, .k+2 if k is even. An example of maximal order method is the 
Milne-Simpson method (3.2), which depends on 2 steps and has order 4. However, 
maximal order methods can have poor stability properties, as it is the case of Milne-
Simpson method itself, so we should provide a reasonable balance between accuracy 
and stability properties. We will analyze this aspect in Chap. 6.
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3.5 Convergence 

Let us now turn our attention to analysis of convergence for linear multistep methods 
(3.1), starting from the following definition. 

Definition 3.10 Suppose that (3.16) is the vector collecting the numerical 
approximations of the solution to the continuous problem (1.1) in each grid 
point of the uniform grid (2.1), obtained by the method (3.1) and also consider 
the vector of the corresponding exact values 

. υh =

⎡

⎢⎢⎢⎣

y(t0)

y(t1)
...

y(tN )

⎤

⎥⎥⎥⎦ .

Denote by 

. sh =
⎡

⎢⎣
y1
...

yk−1

⎤

⎥⎦

the vector collecting the missing starting values computed by a proper starting 
procedure. Then, the LMM (3.1) is convergent if 

. lim
h→0

‖υh − yh‖∞ = 0,

whenever 

. lim
h→0

(sh)i = y(ti), i = 1, 2, . . . , k − 1.

It is worth underlining that a significant role is played by the starting procedure, 
which is assumed to provide accurate starting values in the above given definition 
of convergence. Again, as aforementioned for consistency and zero-stability, con-
vergence analysis through its definition may not be an easy task. However, there is 
a very powerful result, according to which convergence is equivalent to consistency 
plus zero-stability. In such a way, convergence analysis only relies on very simple 
calculations involving the coefficients of the method. This result originally belongs 
to a huge masterpiece due to Peter D. Lax (Budapest, 1926), specialized to LMMs 
by Germund Dahlquist. Peter Lax is a mathematician born in Hungary, Professor at
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Courant Institute of Mathematical Sciences at New York University, winner of the 
prestigious Abel Prize in 2005. 

Theorem 3.6 (Lax Equivalence Theorem) A linear multistep method (3.1) 
is convergent if and only if it is consistent and zero-stable. 

Proof We separately prove the necessity and the sufficiency parts of the theorem. 

• First part: we prove that convergence implies consistency and zero-stability. 
Consider the initial value problem (1.1) with f identically zero and .y0 = 0. 
Then, .y(t) = 0. By contradiction, suppose that the method is not zero-stable: 
then, there exists are a root . z of the first characteristic polynomial of (3.1) such 
that .|z| > 1 or .|z| = 1 and its multiplicity is greater than 1. In the first case, the 
solution of (3.1), thought as a difference equation, contains a term 

. czn, c ∈ R

tending to infinity, which contradicts the hypothesis of convergence. The case 
.|z| = 1 with multiplicity greater than 1 is similar and left to the reader. 
Let us now prove that convergence implies consistency, by proving that consis-
tency conditions arise from the exactness of the method on the monomial basis 
.{1, t} (this choice is connected to Exercise 4, Sect. 3.6). 
(i) Consider the initial value problem (1.1) with f identically zero and .y0 = 1. 

Then, .y(t) = 1. The corresponding LMM (3.1) is given by 

. 

k∑

j=0

αjyn+j = 0

and, assuming .y1 = y2 = · · · = yk−1, convergence yields 

. 

k∑

j=0

αj = 0,

that is the first consistency condition. 
(ii) Consider the initial value problem (1.1) with f identically equal to 1 and 

.y0 = 0. Then, .y(t) = t − t0. The corresponding LMM (3.1) is given by 

.

k∑

j=0

αjyn+j = h

k∑

j=0

βj ,
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i.e., 

.

k∑

j=0

αjyn+j = hσ(1). (3.21) 

Certainly, 

. yn = σ(1)

ρ′(1)
nh

is solution of (3.21), as the reader can easily check. By convergence, . yn

converges to nh and, as a consequence, 

. 
σ(1)

ρ′(1)
= 1

that is the second consistency condition. 

• Second part: we prove that consistency and zero-stability imply convergence. 
Since .Rh(yn) = 0 and .Rh(y(t)) = T (t, y(t);h), the zero-stability inequality 
(3.17) reads 

. ‖υh − yh‖∞ ≤ �(‖δ‖∞ + max
0≤i≤N

|T (ti, y(ti);h)|).

The right-hand side of last inequality goes to 0, because of the preliminary 
assumption on the starting procedure given in Definition 3.10 and the consistency 
assumption, leading to the thesis. 
�

Example 3.9 Let us analyze the family of two-step implicit LMMs (3.1), 
given by 

.yn+2 + α1yn+1 + α0yn = h(β2fn+2 + β1fn+1 + β0fn). (3.22) 

• Consistency. Let us give consistency conditions (3.11) for this class  of  
methods. We have 

. 

α0 + α1 + 1 = 0,

α1 + 2 = β0 + β1 + β2.

(continued)
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Example 3.9 (continued) 
• Order 2. We obtain the constraints on the coefficients of the methods 

ensuring second order, by imposing the additional condition .C2 = 0 in 
Theorem (3.2), i.e., 

. 
1

2
α1 + 2 = β1 + 2β2.

Hence, order 2 methods (3.22) satisfy 

. 

α0 = 3 − 2β1 − 4β2,

α1 = −4 + 2β1 + 4β2,

β0 = −2 + β1 − 3β2.

• Order 3. Third order methods also satisfy .C3 = 0 in Theorem (3.2), i.e., 

. 
1

6
α1 + 4

3
= 1

2
β1 + 2β2.

In summary, third order methods satisfy 

. 

α0 = −5 + 12β2,

α1 = 4 − 12β2,

β0 = 2 − 11β2.

β1 = 4 − 8β2.

• Order 4. Fourth order methods also fulfill .C4 = 0 in Theorem (3.2), i.e., 

. 
1

24
α1 + 2

3
= 1

6
β1 + 4

3
β2.

In summary, fourth order methods satisfy 

. α0 = 7, α1 = −8, β0 = −9, β1 = −4, β2 = −1.

We observe that the maximal order method 

. yn+2 − 8yn+1 + 7yn = −h(fn+2 + 4fn+1 + 9fn)

(continued)
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Example 3.9 (continued) 
is not convergent because it is not-zero stable, since the zeros of the first 
characteristic polynomial 

. ρ(z) = z2 − 8z + 7

are 1 and 7, then the root condition is not satisfied. 

Clearly, due to Lax equivalence theorem, if a method is not convergent then 
consistency and/or zero-stability are missing. A numerical evidence of this aspect 
has already been given in Examples 3.5 and 3.8. We now aim to experimentally 
analyze the performances of a convergent method, namely the second-order Adams-
Bashforth method (3.3), implemented in Program 3.1 by using the explicit Euler 
method (2.19) as a starting procedure. 

Program 3.1 (Adams-Bashforth Method) 
% Function implementing the second order Adams-Bashforth 
% method on a uniform grid, for the numerical solution 
% of a d-dimensional ODE. 

% Inputs 
% - problem: label of the problem to be solved; 
% - tspan: vector of two components, storing the extrema 
% of the integration interval; 
% - y0: initial value; 
% - h: constant stepsize. 

% Outputs 
% - t: set of N equidistant grid points (tspan(1) excluded); 
% - y: d. ×N matrix whose i-th column y(:,i) stores the 
% approximate value in the i-th grid point, i=1,2,. . . .,N. 

function [t,y]=AdamsBashforth(problem,tspan,y0,h) 
N=(tspan(2)-tspan(1))/h; 
t=linspace(h,tspan(2),N); 
d=length(y0); 
y=zeros(d,N); 
fold=f(problem,tspan(1),y0); 
% Starting value y(:,1) recovered by explicit Euler method 
y(:,1)=y0+h*fold; 
fnew=f(problem,t(1),y(:,1)); 
y(:,2)=y(:,1)-h*(fold-3*fnew)/2; 
% The variables fold and fnew are introduced to reuse 
% already computed function evaluations. 

(continued)
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Program 3.1 (continued) 
fold=fnew; 
fnew=f(problem,t(2),y(:,2)); 
for i=3:N 

y(:,i)=y(:,i-1)-h*(fold-3*fnew)/2; 
fold=fnew; 
fnew=f(problem,t(i),y(:,i)); 

end 

Next example gives an experimental confirmation of the order of a numerical 
method. The involved order estimate is based on the application of the method with 
stepsize h, whose principal error term is given by .err(h) ≈ Cp+1h

p, and halved 
stepsize . h/2, with principal error term .err(h/2) ≈ Cp+1(h/2)p. The ratio between 
the two errors gives 

. 
err(h)

err(h/2)
≈ 2p,

i.e., 

.p ≈ log2

(
err(h)

err(h/2)

)
, (3.23) 

that provides an estimate of the order of convergence. Clearly, the smaller is h, the  
more the estimate of p is accurate. 

Example 3.10 Consider the following van der Pol oscillator 

.

{
y′
1(t) = y2(t),

y′
2(t) = (1 − y1(t)

2)y2(t) − y1(t),
(3.24) 

with .t ∈ [0, 10] and initial value .y0 = [ 2 −2/3 ]T. Let us numerically solve 
this problem by using the second order Adams-Bashforth method (3.3): the  
pattern of the solution is displayed in Fig. 3.3. We know that (3.4) is a 
convergent method; let us give an experimental evidence of this property in 
Table 3.1, where it is visible that the more the stepsize diminishes, the more 
the error decreases. The error is computed as 

. ‖yAB − yODE45‖∞,

(continued)
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Example 3.10 (continued) 
where .yAB ≈ y(10) is computed by (3.3) and .yODE45 is the solution in . t = 10
computed by the Matlab built-in function ode45, with high accuracy, given 
by 

. yODE45 = [−1.914027891764918 0.446099168376746
]T

.

As visible, both the convergence and the order of convergence are confirmed 
in the experiments. 
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Fig. 3.3 Pattern of the solution of (3.24) computed by the Adams-Bashforth method (3.3), with 
.h = 0.1. The plot of the component .y1(t) is the straight line, while .y2(t) is the dashed line 

Table 3.1 Example 3.10: error in the final integration point associated to the application of the 
Adams-Bashforth method (3.4) to the van der Pol problem (3.24) and order estimation, computed 
as suggested by Eq. (3.23) 

h .‖yAB − yODE45‖∞ p 
.h0 = 0.1 . 3.10 · 10−2

.h0/2 .8.23 · 10−3 1.91 

.h0/4 .2.13 · 10−3 1.95 

.h0/8 .5.41 · 10−4 1.97 

.h0/16 .1.36 · 10−4 1.99
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3.6 Exercises 

1. Analyze the family of explicit three-step methods (3.1), providing families of 
convergent methods of various orders. Is the maximal order method of the 
family also convergent? 

2. Compute the values of ϑ1, ϑ2 ∈ R such that the two-parameter family of 
methods 

. yn+2 + (2ϑ1 − 3ϑ2)yn+1 −
(
5ϑ1

2
− 2

)
yn = ϑ1h (fn + fn+1)

reduces to a single convergent method. Does the corresponding method also 
achieve maximal order? 

3. As seen in Example 3.4, Milne-Simpson method (3.2) is an implicit two-step 
method of order 4. Provide an experimental confirmation of its order on the van 
der Pol problem (3.24). 

4. Prove that a LMM (3.1) of order p exactly solves all the differential problems 
whose solution is a polynomial of degree at most p. 
Hint: prove that, for methods of order p, the linear difference operator (3.10) 
annihilates on the set of functions {1, t, t2, .  .  .  , tp}. 

5. Construct an explicit two-step method (3.1) exactly solving all differential 
problems whose solution belongs to the functional space spanned by 

. {1, t, cos(ωt), sin(ωt)}.

Then, compute the limit as ωh tends to 0, being h the stepsize, of the coefficients 
of the obtained method and check if they fulfill the set of order conditions 
described in Theorem 3.2 up to a certain integer p. 

6. As regards Example 3.9, find the values of β2 such that third order methods are 
zero-stable. 

7. Write a code in your favorite programming language implementing the three-
step method 

. yn+3 − 18

11
yn+2 + 9

11
yn+1 − 2

11
yn = 6

11
hf (yn+3, tn+3)

for the numerical solution of d-dimensional systems (1.1). You need to recover 
the two-missing starting values y1 and y2, hence you can implement two 
options: recover both y1 and y2 by two consecutive steps of a one-step method; 
recover y1 by a one-step method and then y2 by a two-step method. Provide an 
experimental evidence of the convergence of the method and of its order. 

8. The bound (3.7) estimating the stepsize restriction for the convergence of fixed 
point iterations in the case implicit LMMs (3.1) is fully computable if the value 
of the Lipschitz constant L of the vector field is known. Estimating the Lipschitz 
constant of a function is very important in many fields: for instance, several
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estimation algorithms for the Lipschitz constant have been developed in papers 
on global optimization. 

The exercise consists in two parts: 

• write a code in your favorite programming language implementing the 
following estimation algorithm for the Lipschitz constant L of a given scalar 
function [346]. 
Step 1. Compute the approximation P solutions of a scalar initial value 
problem (1.17) in autonomous form, by a chosen LMM (3.1), corresponding 
to P different initial values. Denote by y i,j 

n the i-th component of the j -th 
solution in the point tn ∈ Ih, i = 1, 2, . . .  ,  d, j = 1, 2, . . . , P . Then, define 

. ai = min
j=1,...,P

min
tn∈Ih

X
i,j
n , bi = max

j=1,...,P
max
tn∈Ih

X
i,j
n ,

i = 1, 2, . . .  , d. 
Step 2. Generate Q couples of vectors 

. xk =
[
x1
k , x2

k , . . . , xd
k

]T
, yk =

[
y1
k , y2

k , . . . , yd
k

]T
,

with k = 1, 2, . . . Q, such that (xi 
k, y

i 
k) is uniformly distributed in [ai, bi] ×  

[ai, bi], i = 1, 2, . . . , d. 
Step 3. Compute 

. sk = |f (xk) − f (yk)|2
|xk − yk|2 , k = 1, 2, . . . ,Q.

Step 4. Assume as estimate of L the value of max{s1, . . . , sQ}; 
• solve the same differential problem by using the implicit Euler method 

(2.32) and give an experimental confirmation of the sharpness of the bound 
(3.7), by choosing values of the stepsize above and below this bound (fully 
computable using the aforementioned estimation algorithm for the Lipschitz 
constant of the vector field) and checking the convergence of fixed point 
iterations in correspondence of the chosen values of the stepsize. 

9. Using Definition 3.3 of consistency, provide a consistency analysis of Milne-
Simpson (3.2) computing its local truncation error and, consequently, infer its 
order. 

10. Develop maximal order convergent LMMs depending on 4 and 5 steps.



Chapter 4 
Runge-Kutta Methods 

These two papers of Butcher brought elegance and order into 
the theory of Runge-Kutta methods [. . . ] The next sensation  
came when, «at the Dundee Conference in 1969, a paper by J. 
Butcher was read which contained a surprising result». 

(Gerhard Wanner, Foreword to the book of John C. Butcher 
[68]. The nested quotation is due to Hans J. Stetter) 

As highlighted in Chap. 3, order barriers of linear multistep methods are rather 
severe. We now move to a different family of methods, i.e., Runge-Kutta methods, 
enabling better order and stability barriers. The strategy is novel with respect to that 
beyond LMMs (3.1): indeed, it is no longer of multistep type, as for (3.1), but we  
move to a multistage strategy relying on the information in some additional points, 
located inside each subinterval of the domain discretization. 

4.1 Genesis and Formulation of Runge-Kutta Methods 

Let us consider the integral formulation of (1.1) for .t ∈ [tn, tn+1], i.e., 

.y(t) = y(tn) +
∫ t

tn

f (s, y(s))ds (4.1) 

and evaluate it in .tn+1, obtaining 

.y(tn+1) = y(tn) +
∫ tn+1

tn

f (s, y(s))ds. (4.2) 

Let us approximate the integral in the right-hand side by a quadrature formula. We 
consider s points 

. tn + cih, i = 1, 2, . . . , s,
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being . c1, . c2, . . . ., . cs real numbers, usually belonging to the interval . [0, 1], in  
such a way that .tn ≤ tn + cih ≤ tn+1. This requirements is not mandatory, but it 
essentially represents a custom in most of the existing methods. Then, we consider 
the quadrature formula with nodes . ci and weights .bi ∈ R, .i = 1, 2, . . . , s, i.e., 

.

∫ tn+1

tn

f (s, y(s))ds ≈ h

s∑
i=1

bif (tn + cih, y(tn + cih)). (4.3) 

Replacing last line in (4.2) leads to 

.y(tn+1) ≈ y(tn) + h

s∑
i=1

bif (tn + cih, y(tn + cih)). (4.4) 

Last formula has a computational gap: the values of .y(tn + cih) are unknown and 
need to be properly estimated. The trick is always the same: for any .i = 1, 2, . . . , s, 
evaluate (4.1) in .tn + cih, obtaining 

.y(tn + cih) = y(tn) +
∫ tn+cih

tn

f (s, y(s))ds (4.5) 

and approximate the integral in the right-hand side by a quadrature formula with 
nodes . ci and weights .aij ∈ R, .j = 1, 2, . . . , s, i.e., 

. 

∫ tn+cih

tn

f (s, y(s))ds ≈ h

s∑
j=1

aij f (tn + cjh, y(tn + cjh)), i = 1, 2, . . . , s.

(4.6) 
Replacing last line in (4.5) finally gives 

.y(tn+cih) ≈ y(tn)+h

s∑
j=1

aij f (tn+cjh, y(tn+cjh)), i = 1, 2, . . . , s. (4.7) 

Equations (4.4) and (4.7) provide approximate equalities involving exact values; let 
us recast them as exact equalities involving approximate values. By defining 

. Yi ≈ y(tn + cih), i = 1, 2, . . . , s,

we obtain the following relevant family of methods.
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Definition 4.1 The family of Runge-Kutta methods (RK methods) with 
respect to the discretization (2.1) is defined by 

.

yn+1 = yn + h

s∑
i=1

bif (tn + cih, Yi),

Yi = yn + h

s∑
j=1

aij f (tn + cjh, Yj ), i = 1, 2, . . . , s.

(4.8) 

RK methods (4.8) are characterized by the weights . bi , the nodes . ci and the 
scalars . aij , .i, j = 1, 2, . . . , s. These are characteristic elements that uniquely define 
a Runge-Kutta method and, for this reason, they are used to provide the following 
compact representation. Indeed, let us collect these objects in the following vectors 
and matrix 

. b =

⎡
⎢⎢⎢⎣

b1

b2
...

bs

⎤
⎥⎥⎥⎦ , c =

⎡
⎢⎢⎢⎣

c1

c2
...

cs

⎤
⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1s

a21 a22 · · · a2s

...
...

. . .
...

as1 as2 · · · ass

⎤
⎥⎥⎥⎦ .

Then, RK methods have a standard representation given by the following array 

.

c A

bT
(4.9) 

well-known as Butcher tableau, in honor to John C. Butcher (Auckland, 1933), 
Emeritus Professor at the University of Auckland, well-known as one of the pioneers 
of the numerical discretization of ODEs, who has given many relevant foundational 
contributions in establishing a theory of Runge-Kutta methods, as we will discuss 
later. It is normally assumed that the entries of the vector c of the nodes satisfy the 
so-called row-sum condition, i.e., 

.ci =
s∑

j=1

aij , i = 1, 2, . . . , s, (4.10) 

i.e., each . ci is the sum of the entries of the i-th row of the matrix A. This is a  
condition of consistency of the internal stages. Indeed, consider problem (1.1) with
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vector field f identically equal to 1 and .y0 = 0. Then, its solution is .y(t) = t − t0. 
Correspondingly, the equation for the internal stages (4.8) is given by 

. Yi = yn + h

s∑
j=1

aij , i = 1, 2, . . . , s.

In hypothesis of consistency and since the solution is a linear polynomial, we obtain 

. tn + cih = tn + h

s∑
j=1

aij , i = 1, 2, . . . , s,

that reduces to (4.10). 
Clearly, the vectors and matrix in the Butcher tableau (4.9) are useful to provide 

a matrix-vector representation of RK methods (4.8), assuming the form 

.

yn+1 = yn + h(bT ⊗ I )F (Y ),

Y = (e ⊗ I )yn + h(A ⊗ I )F (Y ),

(4.11) 

where . ⊗ denotes the standard Kronecker tensor product, I is the identity matrix in 
.R

d×d and 

. Y =

⎡
⎢⎢⎢⎢⎣

Y1

Y2
...

Ys

⎤
⎥⎥⎥⎥⎦ ∈ Rsd , F (Y ) =

⎡
⎢⎢⎢⎢⎣

f (tn + c1h, Y1)

f (tn + c2h, Y2)
...

f (tn + csh, Ys)

⎤
⎥⎥⎥⎥⎦ ∈ Rsd , e =

⎡
⎢⎢⎢⎢⎣

1

1
...

1

⎤
⎥⎥⎥⎥⎦ ∈ Rs .

The vector Y is also known as vector of the internal stages. In summary, RK 
methods (4.8) are one-step formulae for which a single step from . tn to .tn+1 does 
not only require the knowledge of . yn, but also the computation of the internal stages 
by the formula 

.Y = (e ⊗ I )yn + (A ⊗ I )F (Y ). (4.12) 

As a consequence, the computational cost needed to compute the vector Y is 
strongly dependent on the structure of the matrix A. Indeed:

• if A is strictly lower triangular, (4.12) is an explicit formula for the calculation of 
Y and the corresponding RK method is said to be explicit;

• if A is a lower triangular matrix, (4.12) is a structured system of nonlinear 
algebraic equations that has to be solved at each step and the corresponding RK 
method is said to be diagonally-implicit. This class of RK methods is not covered
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in this book, but the reader can see, for instance, to [7, 53, 62, 198, 221, 242] and 
references therein;

• if A is a full matrix, (4.12) is a full nonlinear system of algebraic equations to be 
solved at each step and the corresponding RK method is said to be implicit. 

Let us now give some historical notes. As the name clearly states, the formulation 
of Runge-Kutta methods is due to Carl Runge and Willem Kutta: they were formerly 
introduced by Runge in 1895, formulated as an extension of the Euler method 
(2.19) able to achieve higher accuracy; the idea was then extended by Kutta in 
1901, leading to the formulation nowadays used for RK methods. Let us give 
a portrait of Runge and Kutta, based on the information reported in the gifted 
MacTutor History of Mathematics Archive (https://mathshistory.st-andrews.ac.uk/ 
Biographies/Kutta/, https://mathshistory.st-andrews.ac.uk/Biographies/Runge/) and 
in the celebrative paper [72] by John C. Butcher and Gerhard Wanner. 

A Portrait of Carl David Tolmé Runge 
Runge was born in Bremen in 1856, but he spent his early years in Havana, 
with his parents, three brothers and four sisters. Both his father Julius and 
his mother Fanny Tolmé belonged to a family of merchants. Fanny was the 
daughter of an English merchant, even if her family was of French descent, 
and she used to speak English with Julius and her children who grew up with 
English as first language. After his retirement, Julius and his family moved 
back to Bremen, both he died soon. 

Carl Runge attended completed his high school studies in Bremen in 1875 
and, after spending six months with his mother visiting Italy, he enrolled at the 
University of Munich at Easter 1876 to first study literature and philosophy, 
before moving soon to mathematics and physics. During his studies, Max 
Planck was his fellow student and they became close friends. 

In 1877 Planck and Runge moved to Berlin; Runge was really impressed 
by the lectures of Karl Weierstrass, who will become his Ph.D. advisor, and 
decided to turn to pure mathematics. He got his Ph.D. in 1880, discussing 
a thesis on differential geometry entitled “Über die Krümmung, Torsion und 
geodä tische Krümmung der auf einer Flä che gezogenen Curven” (About the 
curvature, torsion and geodesic curvature of the curves drawn on a surface); 
such a topic came out from several discussions with other students in the 
Mathematischer Verein where he was an active member, rather than with his 
advisor. In Berlin he also became an impressive ice skater and had a very 
intense social life. 

In 1881, after qualifying for the habilitation as Gymnasium professor, he 
started his collaboration with Kronecker. He designed a procedure for the 
numerical solution of algebraic equations, included in his Habilitation thesis 
completed in 1883 in Berlin, where he continued to do research on algebra and 

(continued)
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function theory in the group of mathematicians built up around Kronecker. 
In his research career the visit to Mittag-Leffler in Stockholm in 1884 was 
absolutely crucial: after that Runge wrote several papers published in Acta 
Mathematica in 1885. 

In the same year, Runge engaged with Aimé du Bois-Reymond but her 
father (Émile, a professor friend of Carl), influenced by his strict views due to 
his Pietist formation, prohibited them to get married until Carl had achieved 
a professor position. This achievement occurred in 1886, when Runge got 
a chair at the Technische Hochschule of Hannover. They finally married in 
1887 and remained in Hannover for 18 years. His colleague Friedrich Paschen 
gave a nice portrait of Runge and his family in the obituary appeared in 
Astrophysical Journal 69, 317–321 (1929): 

They had four daughters and two sons, one of whom was killed in the war [World 
War I]. Runge’s home at Hannover [. . . ] will never be forgotten by those who had the  
privilege of entering it. The family cultivated many sciences and arts. Runge himself 
played the piano, and he and his children would often render musical classics such as 
the ‘Matthäus Passion’. Runge was a man of affairs and of great personal charm. He 
was fond of all kinds of sports and practiced bicycling, gymnastics, and swimming. 
At Hannover he used to ride his bicycle a distance of about eight kilometers from 
his house top the Technische Hochschule four times a day. In all his activities he 
placed scientific things foremost and was willing to sacrifice everything to their 
advancement. 

After achieving his professorship, Runge moved from pure mathematics 
to Physics, establishing a fruitful collaboration with Heinrich Kayser on 
spectroscopy for seven years, until Kayser left Hannover in 1894 (he moved 
to University of Bonn to cover the professor position left vacant by Heinrich 
Hertz, who died at age 36 because of blood poisoning). Then, Carl Runge 
started a collaboration with Friedrich Paschen, an experimentalist, and they 
worked together at Hannover for seven years. In 1895 he published his famous 
paper “Über die numerische Auflösung von Differentialgleichungen” (About 
the numerical resolution of differential equations) [304] giving rise to this 
first contribution on what would have become the widely studied Runge-Kutta 
methods. 

Runge had several visits abroad: in England in 1895 he got in touch with 
Lord Rayleigh; in the United States in 1897 he became friend with Michelson. 
He got a professorship proposal in the United States, but he declined. In 
1901 Paschen left Hannover and moved to the University of Tübingen. Runge 
continued his work with Julius Precht who had achieved the Extraordinary 
Chair of Theoretical Physics at Heidelberg. In 1901 he published another 
famous paper “Über empirische Funktionen und die Interpolation zwischen 
äquidistanten Ordinaten” (On empirical functions and the interpolation with 
equidistant ordinates), where he described the phenomenon occurring in 

(continued)
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polynomial interpolation with many equidistant nodes, now known as Runge 
phenomenon. 

Felix Klein was able to let Carl Runge being professor of Applied 
Mathematics in Göttingen in 1904, where he remained until his retirement 
in 1925. At this stage, Runge gave his contributions on many numerical 
and graphical methods and in Göttingen was a very influential figure. He 
is acknowledged as a pioneer in introducing this kind of mathematics in 
Germany. He gave lectures on graphical methods at Columbia University in 
New York from October 1909 to January 1910. 

Runge retired in 1923, but he still continued his activity in Göttingen until 
the arrival of his successor Gustav Herglotz, in 1925. Six months after his 
70th birthday he died of a heart attack. 

A Portrait of Martin Wilhelm Kutta 
Kutta was born in 1867 in Pitschen (now Byczyna, in Poland). He has 
tragically lost his parents when he was very young, so he was educated with 
his brother Karl by an uncle in Breslau, where he attended the Gymnasium 
and the University, from 1885 to 1890. Then he moved to Munich where he 
studied from 1891 to 1894. Within his broad interests, mathematics occupied 
a central role, but also languages, music and art for all his life. 

He got a position in the Technische Hochschule of Munich as assistant in 
mathematics and physics from 1894. He achieved his Ph.D. at the University 
of Munich for his thesis “Beiträge zur näherungsweisen Integration totaler 
Differentialgleichungen” (Contributions for the approximate integration of 
total differential equations) in 1900, advised by Lindemann and Bauer. The 
thesis, published a year later, contains the famous Runge-Kutta method for 
the discretization of ordinary differential equations, according to the notation 
nowadays adopted. 

He was inspired by his colleague Sebastian Finsterwalder, who brought 
photographs of an early aircraft to the Institute and led Kutta interests 
to aerodynamics. This was the topic of his habilitation thesis (containing 
the relevant Zhukovsky-Kutta theorem describing the lift on an aerofoil) 
submitted in 1902, after which he got a promotion as extraordinary professor 
in Applied Mathematics in 1907. In 1909 he moved to the University of 
Jena and in 1910 he was achieved the position of ordinary professor in the 
Technische Hochschule at Aachen. In 1911 he moved to Stuttgart, where he 
remained, until his retirement in 1935, and focused on teaching to engineers 
who got a huge benefit from his inspiring presentation. 

(continued)
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Finsterwalder inspired also the interests of Kutta in glaciers: he made 
measurements of glaciers through photographs of the East Alps, as well as 
he worked on mapping the area covered by glaciers. He was also interested 
in history of mathematics, as well as in historical literature, which he was 
able to cultivate attending the active seminar of the Technische Hochschule in 
Munich. He died in 1944 in Fürstenfeldbruck. His colleague Pfeiffer describes 
Kutta as person with very broad interests, but also very lonely; he writes: 

“I had the good fortune in my life to become acquainted with a large 
number of outstanding mathematicians [. . . ], but I never met a mathematician  
who had such a deep interest and familiarity with so many different areas of 
mental activity as Kutta”. 

Runge-Kutta methods are one-step methods whose incremental function is the 
vector field of the continuous problem (1.1), that is Lipschitz continuous to ensure 
Hadamard well-posedness. Then, in force of a natural extension of Theorem 2.5 
for implicit methods as well, all RK methods are zero-stable. Moreover, by Lax 
equivalence theorem, all RK methods of order greater or equal than 1 are convergent. 
Next section provides a very elegant analysis of order, fruit of the talent of John C. 
Butcher. 

4.2 Butcher Theory of Order 

Butcher theory for the analysis of the order of Runge-Kutta methods relies on tools 
that match numerical analysis, graph theory, differentiation of vector fields, and so 
on. Later, its meaningful relationship with other topics, such as group theory [194], 
as well as quantum field theory [94] has been discovered. A featured monograph on 
Butcher theory of order and related issues is authored by John C. Butcher himself 
[68], reviewed in [116]. 

The basic tool that connects all the aforementioned fields is the notion of rooted 
trees. The following presentation is far from being an exhaustive description of 
graph theory: here we only explain the basic notions we need to understand Butcher 
theory. 

4.2.1 Rooted Trees 

The set of rooted trees . T can be graphically represented as follows
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i.e., it is the set of trees where a special node is highlighted, the root, above given 
by the bottom node of each tree. However, a more practical representation of rooted 
trees can be given in terms of the so-called square bracket notation, as follows:

• denote the rooted tree with a single node by . τ ;
• if . t1 is the subtree originated by cutting the root of a tree .t ∈T, then we use the 

notation .t = [t1]. In other terms, the square brackets denote the operation of 
removing the root from a given tree. 

This notation leads to the following alternative representation of the set of rooted 
trees 

. T =
{
τ , [τ ] , [τ 2] , [[τ ]] , [τ 3] , [τ [τ ]] , [[τ 2]] , [[[τ ]]] , . . .

}
.

Three basic functions on . T are used in Butcher theory. The first one is 

. ρ : T → R

defined as order of a rooted tree; it is the number of the nodes in a given tree. For 
instance, .ρ([[τ ]]) = 3. The second function 

. σ : T → R

is denoted as the symmetry of a rooted tree and represents the cardinality of its 
automorphism group. Such a function is recursively computed by the formula 

. 

σ(τ) = 1,

σ (t) =
k∏

i=1

mi !σ(ti)
mi ,

supposing that .t = [tm1
1 t

m2
2 . . . t

mk

k ]. For instance, .σ([[τ ]]) = σ([τ ]) = σ(τ) = 1. 
Finally, the function 

. γ : T → R

denoted as the density of a rooted tree is defined by the recursion 

.

γ (τ) = 1,

γ (t) = ρ(t)

k∏
i=1

γ (ti)
mi .
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Table 4.1 Square bracket notation, symmetry and density for rooted trees of order up to 4 

For instance, .γ ([[τ ]]) = 3γ ([τ ]) = 6γ (τ)  = 6. Table 4.1 lists the trees of order 
up 4, their square bracket representations, their symmetries and densities. A further 
example of calculation is given in the example below. 

Example 4.1 Consider the rooted tree t graphically represented by 

admitting the square brackets notation .t = [[[τ ]2]]. The order of this rooted 
tree is .ρ(t) = 6. Its symmetry is given by 

. σ(t)  = σ([[τ ]2]) = 2σ([τ ])2 = 2σ(τ)2 = 2, 

while its density is 

. γ (t)  = 6γ ([[τ ]2]) = 30γ ([τ ])2 = 120. 

There is a deep connection between rooted trees and differentiation of vector 
fields. Such a link is at the basis of Butcher theory and its precursors, well described 
in the paper [265]. The first precursor was Robert Henry Merson (1921–1992), a 
scientist at the Royal Aircraft Establishment in the United Kingdom who became 
popular for his involvement in the computations of an accurate orbit for Sputnik 
1, whose launch occurred in 1957. In the same year he was invited in Salisbury, 
South Australia, to give a plenary talk during a conference on Automatic Computing 
Machines. In his paper [266] he described the one-to-one correspondence among 
derivatives and rooted trees, even if the full theory will only be completed later by 
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John Butcher, who attended the talk by Merson in 1957: as the authors of [265] 
properly state, “the seed (of Butcher theory) was planted there”. But exactly one 
century before, Caley [80] introduced trees with the same purpose as in Butcher 
theory, i.e., understanding and effectively representing the interaction of vector 
fields repeatedly applied to one another, and for one century this aspect was totally 
forgotten by the literature and reconsidered (actually, more or less from scratch) 
only when the theory of numerical methods was established with more rigor, in the 
second half of twentieth century. 

4.2.2 Elementary Differentials 

Let us now analyze the connection between rooted trees and differentiation of vector 
fields. For our convenience, we consider an autonomous differential problem 

. y′(x) = f (y(x)), 

where .f : Rd → Rd . Only in this subsection we denote the independent variable 
by x, in order to avoid confusions with the symbol .t ∈T denoting a rooted tree. 
Moreover, we omit the dependency on x in order to make the notation less arduous 
to follow as possible. Now, taking into account that .y′ = f (y)  let us compute the 
derivative with respect to x side by side: 

. y′′ = 
d 

dx 
f (y)  = f ′(y)y′ = f ′(y)f (y), 

where .f ′(y) is Jacobian matrix containing all the partial derivatives of f , so it is a  
linear operator. Let us differentiate again: 

. y′′′ = 
d 

dx

(
f ′(y)f (y)

) = f ′′(y)(f (y), f (y)) + f ′(y)f ′(y)f (y). 

Observe that the second derivative of the vector field is a bilinear form, whose i-th 
component is given by 

. 

d∑
j,k=1 

∂2fi(y) 
∂yj ∂yk 

fj (y)fk(y). 
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Let us also give the expression of the fourth derivative 

. 

y(iv) = 
d 

dx

(
f ′′(y)(f (y), f (y)) + f ′(y)f ′(y)f (y)

)

= f ′(y)f ′(y)f ′(y)f (y) + f (y)f ′′(y)(f (y), f (y)) 

+ 3f ′′(y)(f ′(y)f (y), f (y)) + f ′′′(y)(f (y), f (y), f (y)), 

where the third derivative of f is the multilinear operator having, as general i-th 
component 

. 

d∑
j,k,�=1 

∂3fi(y) 
∂yj ∂yk∂y�

fj (y)fk(y)f�(y). 

More in general, the derivative of order k is the multilinear operator . f (k) (y)(z1, z2, 
. . . , zk ), being .z1, z2, . . . , zk ∈ Rd its k arguments, having the form 

. 

d∑
i1=1 

d∑
i2=1 

· · ·  
d∑

ik=1 

∂k fi(y) 
∂y1 

i1 
∂y2 

i2 
· · · ∂yk 

ik 

z1 
i1 
z2 
i2 

· · ·  zk 
ik 
. 

When the author of this book attended the main lecture that John Butcher gave in 
2008 in Auckland in the occasion of GLADE 2008 conference, honoring his 75th 
birthday, describing the representation of the derivatives of y given above, Butcher 
said: “Can you see a tree structure?”. Let us collect together above derivatives to 
appreciate such a tree structure: 

. 

y′ = f (y),  

y′′ = f ′(y)f (y), 

y′′′ = f ′′(y)(f (y), f (y)) + f ′(y)f ′(y)f (y), 

y(iv) = f ′(y)f ′(y)f ′(y)f (y) + f (y)f ′′(y)(f (y), f (y)) 

+ 3f ′′(y)(f ′(y)f (y), f (y)) + f ′′′(y)(f (y), f (y), f (y)). 

(4.13) 

Each summand appearing in the right-hand sides of (4.13) is called elementary 
differential and will be defined below with more rigor. The first thing we can 
observe is that the number of elementary differentials appearing in the derivative 
of order k equals the number of rooted trees of order k in . T. But actually, the link 
is much deeper: there is one-to-one connection among rooted trees and elementary 
differentials. In order to appreciate this issue, let us design the following labelling: 
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• a leaf in a rooted tree is labelled by f ;
• a node having k children is labelled by .f (k). 

This leads to the following labelling: 

for the tree . τ of order 1; 

for the tree . [τ ] of order 2; 

for the trees .[τ 2] and .[[τ ]] of order 3; 

for the trees .[τ 3], .[τ [τ ]], .[[τ 2]] and .[[[τ ]]] of order 4. We can observe the perfect 
match among above trees and the corresponding elementary differentials in (4.13), 
also listed in Table 4.2. 

We also adopt the following rigorous definition of elementary differential as 
given by Butcher [67]. 

Definition 4.2 For a given rooted tree .t = [t1 t2 . . .  tm] ∈ T and a function 
.f : Rd → Rd analytic in a neighborhood of y, the  elementary differential 
.F(t)(y) is defined by 

. F(t)(y) = f (m) (F (t1)(y), F(t2)(y), . . . , F(tm)(y)), 

assuming that .F(τ)(y) = f (y).
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Table 4.2 Elementary 
differentials and associated 
rooted trees up to order 4 

Example 4.2 Consider again the rooted tree .t = [[[τ ]2]], introduced in 
Example 4.1. The corresponding elementary differential is 

. 

F(t)(y) = f ′(y)F ([[τ ]2]) 
= f ′(y)f ′′(y)(F ([τ ])(y), F([τ ])(y)) 

= f ′(y)f ′′(y)(f ′(y)F (τ)(y), f ′(y)F (τ)(y)) 

= f ′(y)f ′′(y)(f ′(y)f (y), f ′(y)f (y)). 

4.2.3 B-Series 

Elementary differentials also give an alternative way to represent the Taylor 
expansion of the exact solution of a differential problem, i.e., 

. y(x + h) = y(x) + 
∞∑

k=1 

hk 

k! y
(k) (x). 

Indeed, elementary differentials are useful to provide the following alternative 
expansion with respect to rooted trees, i.e., 

. y(x + h) = y(x) +
∑
t∈T 

hρ(t) α(t)F (t)(y(x)), 

depending on the unknown coefficients .α(t), .t ∈T, we are now ready to compute. 
Such an expression is denoted in the literature as Butcher-series (in short, B-series) 
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of the exact solution. This celebrative name belongs to Ernst Hairer (Nauders, 1949) 
and Gerhard Wanner (Innsbruck, 1942), professors at the University of Geneva, 
eminent pioneers for Numerical Analysis. Their contact with John Butcher is dated 
back to the early 1970s of the twentieth century and gets its origin from the 
interest that the paper [60] had arisen in Wanner at that time, when he was a 28-
years old professor in Innsbruck. University of Innsbruck was celebrating its 300th 
anniversary of the foundation and each professor had to possibility to invite a guest 
lecturer. Wolfgang Gröbner, who was Wanner’s professor, got from Gerhard the 
suggestion to invite John Butcher as lecturer. The lecture had a special attendant in 
the audience: the young Ernst Hairer, who was the best student of Wanner’s course 
the year before. That invitation was the fundamental seed that led Hairer and Wanner 
introduce the notion of Butcher series and Butcher group in 1974 [194]. 

In [55], Butcher gave the complete expression of the B-series of the exact solution 
of a differential problem, explained in Theorem 4.1 relying on the following lemma, 
whose proof is here omitted (the reader can find it, for instance, in [67]). 

Lemma 4.1 For a given function .θ : T → R, 

. hf

(
y0 +

∑
t∈T 

θ(t)  
hρ(t) 

σ(t)  
F(t)(y0)

)
=

∑
t∈T

θ̃ (t)  
hρ(t) 

σ(t)  
F(t)(y0), 

where 

. ̃θ(t)  = 

⎧⎪⎪⎨ 

⎪⎪⎩ 

1, t  = τ, 
m∏

i=1 

θ(ti), t = [t1 t2 . . .  tm]. 

Theorem 4.1 (B-Series of the Exact Solution) The B-series of the exact 
solution in .x0 + h of the initial value problem 

.y(x0 + h) = y0 +
∫ x0+h 

x0 

f (y(s))ds (4.14) 

is given by 

.y(x0 + h) = y0 +
∑
t∈T 

hρ(t) 

σ(t)γ  (t)  
F(t)(y0). (4.15) 
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Proof Following [67], we give a proof based on Picard iterations (1.9). To this  
purpose, we evaluate (4.14) as follows 

. y(x0 + hξ) = y0 +
∫ x0+hξ 

x0 

f (y(s))ds, ξ ∈ [0, 1] 

and perform a change of variable .s = x0 + hξ , obtaining 

. y(x0 + hξ) = y0 + h
∫ ξ 

0 
f (y(x0 + hξ))dξ.  

Let us associate Picard iterations to this problem 

.yn(x0 + hξ) = y0 + h
∫ ξ 

0 
f (yn−1(x0 + hξ))dξ,  n  ≥ 1 (4.16) 

and let us prove that a generic Picard iteration satisfies 

.yn(x0 + hξ) = y0 +
∑
t∈Tn 

(hξ)ρ(t) 

σ(t)γ  (t)  
F(t)(y0) + O(hn+1), (4.17) 

being . Tn the set of rooted trees of order up to n. The proof is given by induction. 
The case .n = 1 is obvious. Let us assume that formula (4.17) is true for .n − 1 and 
replace this assumption in (4.16), obtaining 

. yn(x0 + hξ) = y0 + h
∫ ξ 

0 
f 

⎛ 

⎝y0 +
∑

t∈Tn−1 

(hξ)ρ(t) 

σ(t)γ  (t)  
F(t)(y0) 

⎞ 

⎠ dξ + O(hn ). 

Let us apply Lemma 4.1 on the last integrand, assuming 

. θ(t)  = 
1 

γ (t)  

and leading to 

.(hξ)f 

⎛ 

⎝y0 +
∑

t∈Tn−1 

(hξ)ρ(t) 

σ(t)γ  (t)  
F(t)(y0) 

⎞ 

⎠ =
∑

t∈Tn−1

θ̃ (t)  
(hξ)ρ(t) 

σ(t)  
F(t)(y0), 
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with 

. ̃θ(t)  = 1 
m∏

i=1 

γ (ti) 
, 

being .t = [t1 t2 . . .  tm]. Therefore, 

. 

yn(x0 + hξ) = y0 + h

∫ ξ 

0 
f 

⎛ 

⎝y0 +
∑

t∈Tn−1 

(hξ)ρ(t) 

σ(t)γ  (t)  
F(t)(y0) 

⎞ 

⎠ dξ + O(hn ) 

= y0 +
∫ ξ 

0

∑
t∈Tn−1

θ̃ (t)  
hρ(t) ξρ(t)−1 

σ(t)  
F(t)(y0)dξ + O(hn ) 

= y0 +
∑

t∈Tn−1 

hρ(t) 

σ(t)  
m∏

i=1 

γ (ti) 
F(t)(y0)

∫ ξ 

0 
ξρ(t)−1dξ + O(hn ) 

. 

= y0 +
∑

t∈Tn−1 

(hξ)ρ(t) 

σ(t)ρ(t)  
m∏

i=1 

γ (ti) 
F(t)(y0) + O(hn ) 

= y0 +
∑
t∈Tn 

(hξ)ρ(t) 

σ(t)γ  (t)  
F(t)(y0) + O(hn+1). 

The limit as n goes to infinity, in force of the convergence of Picard iterations proved 
in Theorem 1.3, gives the thesis. 
�

4.2.4 Elementary Weights 

With analogous arguments as in Theorem 4.1, we can compute the B-series of the 
numerical solution computed by (4.8). Such a computation relies on an additional 
tool, associated to the coefficients of the RK method according to the following 
definition. 
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Definition 4.3 For a given rooted tree .t = [t1 t2 . . .  tm] ∈  T, the  
derivative weights .(�iD)(t), internal weights .�i(t) and external weights 
.�(t) associated to a RK method (4.8) are recursively defined, for . i = 
1, 2, . . . , s, by  

. 

(�iD) (τ ) = 1,

�i(t) = 
s∑

j=1 

aij (�jD)(t), 

(�iD) (t) = 
m∏

j=1

�i(tj ),

�(t) = 
s∑

i=1 

bi (�iD) (t). 

As in the case of elementary differentials, there is a one-to-one connection among 
rooted trees and external elementary weights as well, described by the following 
procedure:

• label each node of a given rooted tree;
• if i is the label chosen for the root, it is associated to . bi ;
• a couple of nodes labelled by i and j and connected by an edge of the tree is 

associated to . aij ;
• sum over all the indices employed in the labelling, using the row-sum condition 

(4.10), when possible. 

Then,

• for the tree . τ , labelled as follows 

the associated external elementary weight is given by 

.�(τ) = 
s∑

i=1 

bi; 
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• for the tree . [τ ], labelled by 

the corresponding external elementary weight is 

.�([τ ]) = 
s∑

i,j=1 

biaij = 
s∑

i=1 

bici;

• for the trees .[τ 2] and .[[τ ]] of order 3, labelled as follows 

i 

kj 

i 

k 

j 

the associated external elementary weights are 

.

�([τ 2]) = 
s∑

i,j,k=1 

biaij aik = 
s∑

i,k=1 

biciaik = 
s∑

i=1 

bic
2 
i ,

�([[τ ]]) = 
s∑

i,j,k=1 

biaij ajk  = 
s∑

i,j=1 

biaij cj ;

• for the trees .[τ 3], .[τ [τ ]], .[[τ 2]] and .[[[τ ]]] of order 4, labelled by 

i 

kj 

i 

j 
k 

i 

k 

j 

i 

j 
k 



128 4 Runge-Kutta Methods 

the corresponding external elementary weights are 

. 

�([τ 3]) = 
s∑

i,j,k,�=1 

biaij aikai� = 
s∑

i=1 

bic
3 
i ,

�([τ [τ ]]) = 
s∑

i,j,k,�=1 

biaij aikak� = 
s∑

i,k=1 

biciaikck;

�([[τ 2]]) = 
s∑

i,j,k,�=1 

biaij ajkaj� = 
s∑

i,j=1 

biaij c
2 
j ;

�([[[τ ]]]) = 
s∑

i,j,k=1 

biaij ajkak� = 
s∑

i,j,k=1 

biaij ajkck. 

Hence, due to the row-sum assumption (4.10), each leaf of a rooted tree 
corresponds to the node c having as subscript the same index of the original parent. 
In summary, the external elementary weights associated to the trees of orders up to 
4 are listed in Table 4.3. 

Table 4.3 External 
elementary weights and 
associated rooted trees up to 
order 4 



4.2 Butcher Theory of Order 129 

Example 4.3 Let us consider again the rooted tree .t = [[[τ ]2]] and compute 
the corresponding external elementary weight. We first recursively proceed 
by applying Definition 4.3: 

. 

�(t) = 
s∑

i=1 

bi (�iD) ([[[τ ]2]]) = 
s∑

i=1 

bi�i([[τ ]2]) 

= 
s∑

i,j=1 

biaij

(
�jD

)
([[τ ]2]) = 

s∑
i,j=1 

biaij�j ([τ ])2 

= 
s∑

i,j=1 

biaij

(
s∑

�=1 

aj� (��D) ([τ ])
)2 

= 
s∑

i,j=1 

biaij

(
s∑

�=1 

aj���(τ)

)2 

= 
s∑

i,j=1 

biaij 

⎛ 

⎝ 
s∑

�,m=1 

aj�a�m 

⎞ 

⎠ 
2 

= 
s∑

i,j=1 

biaij

(
s∑

�=1 

aj�c�

)2 

. 

Let us now compute .�(t) by directly acting on the following graph labelling 

i 

j 
k 

nm 

obtaining 

.

�(t) = 
s∑

i,j,k,�,m,n=1 

biaij ajkakmaj�a�n = 
s∑

i,j,k,�=1 

biaij ajkckaj�c�

= 
s∑

i,j=1 

biaij

(
s∑

�=1 

aj�c�

)2 

. 
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We can now state the following result on the B-series of the numerical solution 
computed by RK methods (4.8). The proof, similar to that of Theorem 4.1, is here 
omitted, but the interested reader can find it in [67]. 

Theorem 4.2 (B-Series of the Numerical Solution) The B-series of the 
numerical solution given by a single step of the RK method (4.8) for the 
computation of . y1, given the initial value . y0, assumes the form 

.y1 = y0 +
∑
t∈T 

1 

σ(t)
�(t)hρ(t) F(t)(y0). (4.18) 

4.2.5 Order Conditions 

The results developed so far, that led us to the definition of B-series for both the 
exact solution of (1.1) and its approximation computed by a given RK-method (4.8), 
guide us toward the following result, elegantly and effectively giving the set of order 
conditions for these methods. 

Theorem 4.3 (Butcher) A given RK method (4.8) has order p if and only if 

. �(t) = 
1 

γ (t)  
, 

for any .t ∈ T of order .ρ(t) ≤ p. 

Proof The thesis holds true from the direct comparison of the B-series of the exact 
solution (4.15) and that of the numerical solution (4.18). 
�

As a consequence of Theorem 4.3, we can give a criterion of convergence of RK 
methods based on a straightforward calculation. 
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Table 4.4 Order conditions 
up to 4 for Runge-Kutta 
methods (4.8) 

Order Order conditions 

1 . 

s∑
i=1 

bi = 1 

2 . 

s∑
i=1 

bici = 
1 

2 

3 . 

s∑
i=1 

bic
2 
i = 

1 

3 

. 

s∑
i,j=1 

biaij cj = 
1 

6 

4 . 

s∑
i=1 

bic
3 
i = 

1 

4 

. 

s∑
i,k=1 

biciaikck = 
1 

8 

. 

s∑
i,j=1 

biaij c
2 
j = 

1 

12 

. 

s∑
i,j,k=1 

biaij ajkck = 
1 

24 

Corollary 4.1 A given RK method (4.8) is convergent if and only if 

. 

s∑
i=1 

bi = 1. (4.19) 

Proof Since RK methods are all zero-stable, according to Theorem 2.6, consistent 
RK methods are also convergent. Consistency requires achieving at least order 1 
that means, according to Theorem 4.3 

. �(τ) = 
1 

γ (τ)  
, 

equivalent to condition (4.19). 
�
Table 4.4 collects the set of algebraic conditions that the coefficients of a given 

RK method (4.8) have to satisfy in order to achieve order up to 4. 
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4.3 Explicit Methods 

We now aim to analyze explicit RK methods, whose Butcher tableau (4.9) is 
given by 

. 

c1 

c2 a21 

... 
... 

. . . 

cs as1 . . .  as,s−1 

b1 . . .  bs−1 bs 

i.e., the matrix A is strictly lower triangular. We observe that the zero entries of the 
matrix A are normally not reported in the Butcher tableau. As a consequence of 
this structure for the matrix A, the internal stages of the method can be explicitly 
calculated. Indeed, by the formula for the internal stages given in (4.8), we have  

. Yi = yn + h 
i−1∑
j=1 

aij f (tn + cjh, Yj ), i = 1, 2, . . . , s,  

so the i-th stage depends on the previous .i − 1 stages. The strictly lower triangular 
structure of the matrix A is certainly useful because it makes the implementation 
of the corresponding methods easier, but it also has a nontrivial drawback, which 
has been highlighted by Butcher in [59]. The fundamental results arising from his 
analysis of explicit methods are the following. 

Theorem 4.4 (Butcher Barrier for Explicit Methods) The maximum 
attainable order of an explicit s-stage RK method is .p = s. 

Theorem 4.5 (Butcher Barrier for Explicit Methods with .s >  5) If .s >  5, 
no RK methods of order .p = s exist. 

The proofs of above results are omitted, but the interested reader can find various 
proofs in [67, 198, 242]. According to Butcher barriers, we can construct explicit 
methods of order .p = s, with .s = 1, 2, 3, 4. Let us consider each case, starting from 
.s = 1. One-stage explicit methods satisfying the row-sum condition (4.10) and the 
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convergence condition (4.19) have the following Butcher tableau 

. 

0 

1 

and, as a consequence, the only one-stage explicit method is the explicit Euler 
method (2.19). 

Two-stage explicit methods satisfying the row-sum condition (4.10) and the 
convergence condition (4.19) have the following Butcher tableau 

. 

0 

c2 c2 

1 − b2 b2 

so, they depend on two parameters: . c2 and . b2. Their maximum attainable order is 
.p = s = 2 and it is reached by imposing the order 2 condition in Table 4.4, i.e., 
.b2c2 = 1 

2 . Hence, we obtain the Butcher tableau 

. 

0 

c2 c2 

1 − 1 
2c2 

1 
2c2 

(4.20) 

of a one-parameter family of maximal order methods. A value of . c2 can be selected, 
for instance, in order to have the best stability properties, as it will be highlighted in 
Chap. 6. An example of two-stage method of order 2, obtained from (4.20) imposing 
.c2 = 1 

2 , is the so-called explicit midpoint method 

. 

0 

1 
2 

1 
2 

0 1  

also denoted as modified Euler method derived by Heun (for this reason, it is also 
denoted as Euler-Heun method). Another famous method derived by Heun is the 
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explicit trapezoidal method, obtained from (4.20) with .c2 = 1, 

. 

0 

1 1 

1 
2 

1 
2 

denoted in the literature also as improved Euler method. The choice .c2 = 2 
3 in (4.20) 

leads to the so-called Ralston method 

. 

0 

2 
3 

2 
3 

1 
4 

3 
4 

developed by Anthony Ralston (New York City, 1930) in [296] as a method with 
minimal error constant. 

Finally, let us consider three-stage explicit methods satisfying the row-sum 
condition (4.10) and the convergence condition (4.19), then having the following 
Butcher tableau 

. 

0 

c2 c2 

c3 c3 − a32 a32 

1 − b2 − b3 b2 b3 

so, they depend on five parameters: . c2, . c3, . a31, . b2 and . b3. Their maximum attainable 
order is .p = s = 3 and it is reached by imposing the order 2 and 3 conditions in 
Table 4.4. The analysis of the corresponding families of three-stage explicit methods 
is left as exercise to the reader (see Exercise 8 at the end of this chapter). Famous 
examples of three-stage methods are the third order Kutta method 

. 

0 

1 
2 

1 
2 

1 −1 2  

1 
6 

2 
3 

1 
6 
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and Heun method 

. 

0 

1 
3 

1 
3 

2 
3 0 2 

3 

1 
4 0 3 

4 

having order 3. 
The case .s = 4 is also left to the reader (see Exercise 9 at the end of this chapter), 

but let us mention here two famous four-stage RK methods of order 4: the so-called 
classical RK method 

. 

0 

1 
2 

1 
2 

1 
2 0 1 

2 

1 0 0 1  

1 
6 

1 
3 

1 
3 

1 
6 

and the 3/8-method 

. 

0 

1 
3 

1 
3 

2 
3 − 1 

3 1 

1 1 −1 1  

1 
8 

3 
8 

3 
8 

1 
8 

(4.21) 

which is implemented in Program 4.1. 
As above mentioned, relevant examples of explicit RK methods have been 

introduced by Karl Heun, whose brief portrait (based on https://mathshistory.st-
andrews.ac.uk/Biographies/Heun/, [298]) is given below. 

A Portrait of Karl Heun 
Karl Heun was born in Wiesbaden (Germany) in 1859. After beginning 
his studies in mathematics and philosophy in 1878 in Göttingen, he moved 
to Halle in 1880 to study with Eduard Heine (become famous after the 

(continued) 

https://mathshistory.st-andrews.ac.uk/Biographies/Heun/
https://mathshistory.st-andrews.ac.uk/Biographies/Heun/
https://mathshistory.st-andrews.ac.uk/Biographies/Heun/
https://mathshistory.st-andrews.ac.uk/Biographies/Heun/
https://mathshistory.st-andrews.ac.uk/Biographies/Heun/
https://mathshistory.st-andrews.ac.uk/Biographies/Heun/
https://mathshistory.st-andrews.ac.uk/Biographies/Heun/
https://mathshistory.st-andrews.ac.uk/Biographies/Heun/
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publication of his book on spherical harmonics in 1861), who died in 1881. 
He returned to Göttingen and started with his thesis, inspired by Heine, under 
the supervision of the astronomer Ernst Schering. The thesis was entitled 
“Die Kugelfunctionen und Laméschen Functionen als Determinanten” (The 
spherical harmonics and Lamé functions as determinants). After getting his 
doctorate he held a position as instructor at an agricultural winter school in 
Wehlau and got the qualification as teacher for secondary schools in Prussia. 

Heun then worked as instructor in Uppingham (England) from 1883 to 
1885. He complemented his studies in London and discussed his habil-
itation thesis in Munich in 1886; the thesis was entitled “Uber lineare 
Differentialgleichungen zweiter Ordnung, deren Lösungen durch den Ket-
tenbruchalgorithmus verknüpft sind” (On linear second order differential 
equations whose solutions are linked by the continued fraction algorithm). 
He lectured in Munich from 1886 to 1889 but the absence of an adequate 
financial support led him leave Munich and move to Berlin, where we 
worked as a teacher from 1890 to 1902. In the meanwhile, he become quite 
famous in Germany, maybe due to a speech given at the Munich meeting of 
the Deutsche-Mathematiker-Vereinigung, later published as “Die kinetischen 
Probleme der wissenschaftlichen Technik” (The kinetic problems of scientific 
technology). 

In 1902 Heun got his professorship for the vacant chair in technical 
mechanics at Technische Hochschule Karlsruhe, recommended by Felix 
Klein. He has never recovered from a bad stroke had in 1921; he retired in 
1922 and remained in Karlsruhe until his death in 1929. His name is also asso-
ciated to a differential equations, the Heun equation, which is a second order 
linear differential equation of the Fuchsian type with four singular points. 
This equation is a generalization of the Riemann hypergeometric differential 
equation (having three singular points) and plays a role mathematical physics, 
in the context of integrable systems. 

Program 4.1 (3/8-Method) 
% Function implementing the 3/8-method on a uniform grid, 
% for the numerical solution of a d-dimensional ODE. 

% Inputs 
% - problem: label of the problem to be solved; 
% - tspan: vector of two components, storing the extrema 
% of the integration interval; 
% - y0: initial value; 
% - h: constant stepsize. 

(continued) 
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Program 4.1 (continued) 
% Outputs 
% - t: set of N equidistant grid points (tspan(1) excluded); 
% - y: d. ×N matrix whose i-th column y(:,i) stores the 
% approximate value in the i-th grid point, i=1,2,. . . .,N. 

function [t,y]=method38(problem,tspan,y0,h) 
N=(tspan(2)-tspan(1))/h; 
t=linspace(h,tspan(2),N); 
d=length(y0); 
Id=eye(d); 
y=zeros(d,N); 
c=[0;1/3;2/3;1]; 
A=[0 0 0 0; 1/3 0 0 0; -1/3 1 0 0; 1 -1 1 0]; 
b=[1; 3; 3; 1]/8; 
Y1=y0; 
f1=f(problem,tspan(1)+c(1)*h,Y1); 
Y2=y0+h*A(2,1)*f1; 
f2=f(problem,tspan(1)+c(2)*h,Y2); 
Y3=y0+h*(A(3,1)*f1+A(3,2)*f2); 
f3=f(problem,tspan(1)+c(3)*h,Y3); 
Y4=y0+h*(A(4,1)*f1+A(4,2)*f2+A(4,3)*f3); 
f4=f(problem,tspan(1)+c(4)*h,Y4); 
y(:,1)=y0+h*kron(b’,Id)*[f1; f2; f3; f4]; 
for n=2:N 

Y1=y(:,n-1); 
f1=f(problem,t(n-1)+c(1)*h,Y1); 
Y2=y(:,n-1)+h*A(2,1)*f1; 
f2=f(problem,t(n-1)+c(2)*h,Y2); 
Y3=y(:,n-1)+h*kron(A(3,1:2),Id)*[f1;f2]; 
f3=f(problem,t(n-1)+c(3)*h,Y3); 
Y4=y(:,n-1)+h*kron(A(4,1:3),Id)*[f1;f2;f3]; 
f4=f(problem,t(n-1)+c(4)*h,Y4); 
y(:,n)=y(:,n-1)+h*kron(b’,Id)*[f1; f2; f3; f4]; 

end 

Example 4.4 Consider van der Pol oscillator (3.24) for .t ∈ [0, 10] and initial 
value .y0 = [ 2 −2/3 ]T . Let us numerically solve this problem by using 
the 3/8-method (4.21). Table 4.5 shows the numerical results obtained for 
selected values of the stepsize. As visible from the numerical evidence, both 
the convergence and the order of convergence of the method are confirmed. 
The error reported in the table is computed as 

. ‖err38RK‖∞ = ‖y38RK − yODE45‖∞, 

(continued) 
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Example 4.4 (continued) 
where .y38RK ≈ y(10) is computed by (4.21) and .yODE45 is the solution in 
.t = 10 computed by the Matlab built-in function ode45, with high accuracy, 
given by 

. yODE45 = [−1.914027891764918 0.446099168376746 ]T . 

The table also shows again the results obtained by applying the second order 
Adams-Bashforth method (3.3), i.e., 

. ‖errAB‖∞ = ‖yAB − yODE45‖∞, 

where .yAB ≈ y(10) is computed by (3.3). As expected, by using the same 
value of the stepsize, the 3/8-method (4.21) is able to provide higher accuracy, 
since it has higher order than that of (3.3). The number of vector field 
evaluations requested by both methods is listed in Table 4.5, for each chosen 
value of the stepsize: comparing the two methods in terms of accuracy, 3/8-
method requires a lower number of function evaluations to reach a similar 
value of the error (396 evaluations of (4.21) needed to reach an error equal 
to .9.96 · 10−5, vs 1601 of (3.3) requested to achieve an accuracy equal to 
.1.36 · 10−4). 

4.4 Fully Implicit Methods 

Let us now turn our attention to fully implicit Runge-Kutta methods, whose seminal 
study has been given by Butcher in [57, 58]. The tableau of fully implicit methods 

Table 4.5 Example 4.4: error in the final integration point associated to the application of the 
3/8-method (4.21) and the Adams-Bashforth method (3.4) to the van der Pol problem (3.24). The  
estimation of the orders of both methods (.p38RK and .pAB) is reported, computed as suggested by 
Equation (3.23), together with the requested number of vector field evaluations (fe.38RK and fe. AB) 

h .‖err38RK‖∞ .p38RK fe.38RK .‖errAB‖∞ .pAB fe. AB 

.h0 = 0.1 .9.96 · 10−5 396 .3.10 · 10−2 101 

.h0/2 .5.91 · 10−6 4.07 796 .8.23 · 10−3 1.91 201 

.h0/4 .3.62 · 10−7 4.03 1596 .2.13 · 10−3 1.95 401 

.h0/8 .2.24 · 10−8 4.01 3196 .5.41 · 10−4 1.97 801 

.h0/16 .1.39 · 10−9 4.01 6396 .1.36 · 10−4 1.99 1601 
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is given by 

. 

c1 a11 a12 . . .  a1s 

c2 a21 a22 . . .  a2s 

... 
... 

... 
. . . 

... 

cs as1 as2 . . .  ass 

b1 b2 . . .  bs 

(4.22) 

where we recognize that A is a full matrix. We aim to present relevant examples 
of implicit methods, which depend on the choice of the quadrature points char-
acterizing each method. Indeed, we have seen that RK methods (4.8) depend on 
their underlying quadrature formulae (4.3) and (4.6). The choice of such quadrature 
formulae (and, in particular, of their nodes) determines the corresponding RK 
method. In this section we present some classes of RK methods belonging to 
Gaussian, Radau and Lobatto quadrature formulae. We notice that the maximum 
order of a quadrature formula depending on s nodes is 2s and is achieved by 
Gaussian quadrature formulae (see, for instance, [170, 292]). 

4.4.1 Gauss Methods 

The first family of methods is well-known as family of Gauss methods or Gauss-
Legendre methods. They are methods of maximal order 2s, being s the number of 
internal stages. The nodes here considered are the zeros of Legendre orthogonal 
polynomials [332]. The one-stage method of order 2 is given by the following 
Butcher tableau 

. 

1 
2 

1 
2 

1 
(4.23) 

and corresponds to the famous midpoint method 

.yn+1 = yn + hf
(

tn + 
1 

2 
h, 

1 

2 
(yn + yn+1)

)
. (4.24) 
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The method with .s = 2 and order 4 is characterized by the Butcher tableau 

. 

1 
2 − 

√
3 

6 
1 
4 

1 
4 − 

√
3 

6 

1 
2 + 

√
3 

6 
1 
4 + 

√
3 

6 
1 
4 

1 
2 

1 
2 

(4.25) 

while the method 

. 

1 
2 − 

√
15 

10 
5 

36 
2 
9 − 

√
15 

15 
5 
36 − 

√
15 

30 

1 
2 

5 
36 + 

√
15 

24 
2 
9 

5 
36 − 

√
15 

24 

1 
2 + 

√
15 

10 
5 

36 + 
√

15 
30 

2 
9 + 

√
15 

15 
5 
36 

5 
18 

4 
9 

5 
18 

is the three-stage formula of order 6. Higher order methods are listed, for instance, 
in [67]. 

4.4.2 Radau Methods 

Radau methods are fully implicit methods (4.22) of order .2s −1, introduced in [58], 
but relevant seminal contributions have also been given in [87, 156]. These methods 
are based on Radau quadrature formulae, introduced by Radau in [295], based on the 
zeros of Jacobi orthogonal polynomials [332]. Radau points are generally classified 
in two classes: Radau IA points, if .c1 = 0, and Radau IIA points, if .cs = 1. Let us 
first consider Radau IA methods. The method of order 1, with .s = 1, is characterized 
by the Butcher tableau 

. 

0 1 

1 

not fulfilling the row-sum condition (4.10). Oliver [281] observed that such a 
condition, at least for low order methods, is not mandatory: indeed, it is a 
simplifying assumption for the solution of order conditions, which is particularly 
useful in the derivation of high order methods. 
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The two-stage method of order 3 is given by the tableau 

. 

0 1 
4 − 1 

4 

2 
3 

1 
4 

5 
12 

1 
4 

3 
4 

(4.26) 

while the one with 3 internal stages is characterized by 

. 

0 1 
9 − 1 

18 − 
√

6 
18 − 1 

18 + 
√

6 
18 

3 
5 − 

√
6 

10 
1 
9 

11 
45 + 7

√
6 

360 
11 
45 − 43

√
6 

360 

3 
5 + 

√
6 

10 
1 
9 

11 
45 + 43

√
6 

360 
11 
45 − 7

√
6 

360 

1 
9 

4 
9 + 

√
6 

36 
4 
9 − 

√
6 

36 

and has order 5. 
We finally consider Radau IIA methods. The one-stage method of order 1 

corresponds to the Butcher tableau 

. 

1 1 

1 

that is the implicit Euler method (2.32). The two-stage method of order 3 is 
characterized by the tableau 

. 

1 
3 

5 
12 − 1 

12 

1 3 
4 

1 
4 

3 
4 

1 
4 

while that depending on 3 internal stages is given by 

. 

2 
5 − 

√
6 

10 
11 
45 − 7

√
6 

360 
37 

225 − 169
√

6 
1800 − 2 

225 + 
√

6 
75 

2 
5 + 

√
6 

10 
37 
225 + 169

√
6 

1800 
11 
45 + 7

√
6 

360 − 2 
225 − 

√
6 

75 

1 4 
9 − 

√
6 

36 
4 
9 + 

√
6 

36 
1 
9 

4 
9 − 

√
6 

36 
4 
9 + 

√
6 

36 
1 
9 
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and has order 5. Last Radau method is at the basis of a famous code by E. Hairer 
and G. Wanner, named RADAU5, which is described in [195] (https://www. 
unige.ch/~hairer/software.html). The code is developed for problems of the form 
.My′ = f (t,  y)  with possibly singular matrix M . An extension for delay differential 
equations, RADAR5, has been designed by Guglielmi and Hairer (https://www. 
unige.ch/~hairer/software.html). 

4.4.3 Lobatto Methods 

We finally present Lobatto methods, which are fully implicit methods (4.22) 
of order .2s − 2, introduced in [87, 156]. Such methods are based on Lobatto 
quadrature formulae, introduced by Lobatto in [254], based on the zeros of some 
Jacobi orthogonal polynomials [332], but different from those characterizing Radau 
quadrature formulae. Indeed, Lobatto quadrature points are always characterized by 
both .c1 = 0 and .cs = 1. Lobatto methods are divided into three classes: Lobatto 
IIIA methods, where the matrix A has always a row of zeros; Lobatto IIIB, where 
the matrix A has a column of zeros; Lobatto IIIC, where the matrix A has non-zero 
entries. Let us first consider Lobatto IIIA methods. The method of order 2, with 
.s = 2, is given by 

. 

0 0 0  

1 1 
2 

1 
2 

1 
2 

1 
2 

while that depending on 3 internal stages is characterized by the tableau 

. 

0 0 0  0  
1 
2 

5 
24 

1 
3 − 1 

24 

1 1 
6 

2 
3 

1 
6 

1 
6 

2 
3 

1 
6 

and has order 4. 
Let us now present Lobatto IIIB methods, starting with the case .s = 2 and order 

2 

. 

0 1 
2 0 

1 1 
2 0 

1 
2 

1 
2 

https://www.unige.ch/~hairer/software.html
https://www.unige.ch/~hairer/software.html
https://www.unige.ch/~hairer/software.html
https://www.unige.ch/~hairer/software.html
https://www.unige.ch/~hairer/software.html
https://www.unige.ch/~hairer/software.html
https://www.unige.ch/~hairer/software.html
https://www.unige.ch/~hairer/software.html
https://www.unige.ch/~hairer/software.html
https://www.unige.ch/~hairer/software.html
https://www.unige.ch/~hairer/software.html
https://www.unige.ch/~hairer/software.html
https://www.unige.ch/~hairer/software.html
https://www.unige.ch/~hairer/software.html
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not satisfying the row-sum condition (4.10). The method with .s = 3 is characterized 
by the Butcher tableau 

. 

0 1 
6 − 1 

6 0 

1 
2 

1 
6 

1 
3 0 

1 1 
6 

5 
6 0 

1 
6 

2 
3 

1 
6 

and order 4. We observe that, since the last column of Lobatto IIIB methods is the 
zero vector, they are all explicit in the computation of the last internal stage . Ys . 

We finally present two Lobatto IIIC methods: the one of order 2, with .s = 2, 

. 

0 1 
2 − 1 

2 

1 1 
2 

1 
2 

1 
2 

1 
2 

and that with . s = 3 

. 

0 1 
6 − 1 

3 
1 
6 

1 
2 

1 
6 

5 
12 − 1 

12 

1 1 
6 

2 
3 

1 
6 

1 
6 

2 
3 

1 
6 

of order 4. 

4.5 Collocation Methods 

So far we have analyzed numerical schemes providing the approximate solution of 
(1.1) in a prescribed number of selected points, according to the chosen stepsize. 
However, it is also possible to introduce numerical methods that provide a dense 
output, i.e., a continuous functional approximation to the solution of (1.1) obeying 
the so-called collocation principle. A collocation method computes the approxi-
mant, known as collocation function, within a finite dimensional space, denoted as 
collocation space; the technique to select a proper element of this space is normally 
based on interpolation in the chosen grid points plus the additional assumption that 
the approximant satisfies Eq. (1.1) at some selected points of the integration interval, 
denoted as collocation points. The choice of the collocation space generally relies 
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on algebraic polynomials, unless (1.1) describe a phenomenon whose qualitative 
behavior is not well described by algebraic polynomials and can be predicted in 
advance: in this case, one can use collocation spaces spanned by the most suitable 
functions for the description of the phenomenon (e.g., exponential functions, if 
(1.1) models phenomena with exponential decay; trigonometric functions, if (1.1) 
describes the dynamics of periodic phenomena). The presentation only deals with 
the case of algebraic polynomials, but the interested reader can refer to [227, 283] 
and references therein for the non-polynomial case. 

We aim to construct a piecewise algebraic polynomial as collocation function. 
In particular, supposing to advance from . tn to .tn+1, we compute a unique algebraic 
polynomial .Pn(t) such that 

. 
Pn(tn) = yn, 

P ′
n(tn + cih) = f (tn + cih, Pn(tn + cih)), i = 1, 2, . . .  ,  s.  

(4.27) 

In other terms, we require that .Pn(t) interpolates .(tn, yn) and satisfies Equation (1.1) 
at the s internal points .tn + cih, for .i = 1, 2, . . . , s. Once .Pn(t) is computed from 
(4.27), the numerical solution .yn+1 is then given by 

.yn+1 = Pn(tn+1). (4.28) 

The set of .s +1 constraints (4.27) can be recast in a convenient matrix form. Indeed, 
suppose that .Pn(t) is linear combination of .s + 1 algebraic polynomials 

.{ϕ(η), ψ1(η), ψ2(η), . . . , ψs(η), η ∈ [0, 1]} (4.29) 

in the following Runge-Kutta-like form 

.Pn(tn + ηh) = ϕ(η)yn + h 
s∑

i=1 

ψi(η)f (tn + cih, Pn(tn + cih)) . (4.30) 

Conditions (4.27), applied to (4.30), are equivalent to 

. 
ϕ(0) = 1, ϕ′(ci) = 0, 

ψi(0) = 0, ψ ′
i (cj ) = δij , 

(4.31) 

for .i, j = 1, 2, . . .  , s, being . δij the Kronecker delta. As a consequence, each basis 
function in (4.29) satisfies .s+1 constraints, therefore they are algebraic polynomials 
of degree at most s. Let us assume the following form for each of them 

. 
ϕ(η) = α0 + α1η + . . .  + αsη

s , 

ψi(η) = βi0 + βi1η + . . .  + βisη
s , i  = 1, 2, . . . , s.  
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Conditions (4.31) on .ϕ(η) are equivalent to .α0 = 1 and .α1, α2, . . . , αs satisfying 
the linear system .Cα = 0, with 

. C = 

⎡ 

⎢⎢⎢⎢⎢⎢⎣ 

1 2c1 . . .  scs−1 
1 

1 2c2 . . .  scs−1 
2 

... 
... 

. . . 
... 

1 2cs . . .  scs−1 
s 

⎤ 

⎥⎥⎥⎥⎥⎥⎦ 
, α = 

⎡ 

⎢⎢⎢⎢⎢⎢⎣ 

α1 

α2 

... 

αs 

⎤ 

⎥⎥⎥⎥⎥⎥⎦ 
. 

We observe that .det(C) = s! det(V (c1, c2, . . . , cs)), being .V (c1, c2, . . . , cs) the 
Vandermonde matrix on the vector . [c1, c2, . . . , cs] 

. V (c1, c2, . . . , cs) = 

⎡ 

⎢⎢⎢⎢⎢⎢⎣ 

1 c1 . . .  cs−1 
1 

1 c2 . . .  cs−1 
2 

... 
... 

. . . 
... 

1 cs . . .  cs−1 
s 

⎤ 

⎥⎥⎥⎥⎥⎥⎦ 
. 

It is well-known (see, for instance, [292, 329]) that a Vandermonde matrix on 
distinct nodes is non-singular, therefore also C is non-singular. Hence the homoge-
neous system .Cα = 0 only admits the trivial solution . α = 0, so .ϕ(η) = 1. Similarly, 
we can prove that each linear system for the computation of the coefficients of .ψi(η), 
.i = 1, 2, . . . , s, admits a unique solution. The proof is left to the reader. 

Hence, there exists a unique algebraic polynomial .Pn(t) of the form (4.30) 
satisfying (4.27), with .ϕ(η) = 1, assuming that .ci �= cj , .i �= j . 

Guillou and Soulé in [185] as well as Wright in [347] independently proved 
that collocation methods (4.28) are implicit Runge-Kutta methods, as proved by the 
following theorem. 

Theorem 4.6 (Guillou and Soulé; Wright) A collocation method (4.28) is 
equivalent to a s-stage RK method (4.8), with 

.aij =
∫ ci 

0 
Lj (u)du, bi =

∫ 1 

0 
Li(u)du, (4.32) 

for .i, j = 1, 2, . . .  , s, where .Li(u) is the i-th fundamental Lagrange polyno-
mial 

.Li(u) = 
s∏

j = 1 
j �= i 

u − cj 
ci − cj 

. (4.33) 
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Proof According to conditions (4.27), .P ′
n(t) is the interpolation polynomial of 

degree .s − 1 on the nodes 

. (tn + cih, P ′
n(tn + cih)), i = 1, 2, . . . , s.  

Its Lagrangian formulation is then given by 

.P ′
n(tn + ηh) = 

s∑
i=1 

Li(η)P ′
n(tn + cih), (4.34) 

being .Li(η) the i-th fundamental Lagrange polynomial (4.33). Side-by-side integra-
tion from 0 to . cj leads to 

. 

Pn(tn + cjh) − yn = h 
s∑

i=1

(∫ cj 

0 
Lj (u)du

)
P ′

n(tn + cjh) 

= h 
s∑

i=1 

aij f (tn + cjh, P(tn + cjh)), 

for .j = 1, 2, . . . , s, while integrating from 0 to 1 gives 

. 

yn+1 − yn = h 
s∑

i=1

(∫ 1 

0 
Li(u)du

)
P ′

n(tn + cih) 

= h 
s∑

i=1 

bif (tn + cih, P(tn + cih)). 

Denoting .Yj = Pn(tn + cjh) gives the thesis. 
�
The result provided by Theorem 4.6 suggests us how to construct collocation 

based Runge-Kutta methods. Clearly, not all implicit Runge-Kutta methods are 
collocation methods: a useful characterization is given by the following theorem. 

Theorem 4.7 A s-stage RK method (4.8) of order at least s and depending 
on distinct nodes is a collocation method, i.e., its coefficients satisfy (4.32), if  
and only if 

. 

s∑
j=1 

aij c
k−1 
j = 

ck 
i 
k 

, i,  k  = 1, 2, . . . , s. (4.35) 
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Proof Suppose that .π(u) is a monomial of degree at most .s − 1. Lagrange 
interpolation formula on the nodes .c1, c2, . . . , cs gives 

. π(u) = 
s∑

j=1 

Lj (u)π(cj ). 

Integrating from 0 to . ci leads to 

. 

∫ ci 

0 
π(u)du = 

s∑
j=1

(∫ ci 

0 
Lj (u)du

)
π(cj ), i = 1, 2, . . . , s,  

or, equivalently, 

. 

∫ ci 

0 
π(u)du = 

s∑
j=1 

aijπ(cj ), i = 1, 2, . . . , s,  

that is (4.35). 
�
We observe that setting .k = 1 in (4.35) leads to the row-sum condition (4.10). 

According to Theorem 4.7, all Gaussian, Radau IIA and Lobatto IIIA formulae are 
collocation methods. The check is left to the reader (see Exercise 10 at the end of 
this chapter). 

As a further consequence, the maximum attainable order for a collocation method 
is 2s, that is the maximum attainable order of a s-stage implicit Runge-Kutta 
method. The solution computed by a collocation method (4.28) inherits the order 
of the corresponding Runge-Kutta method in the grid points. However, a more 
general result on the uniform order of collocation-based Runge-Kutta method, i.e., 
the order observed in any point in the interval .[tn, tn+1], is proved in Chap. 7 and 
the consequences of this issue are also discussed. 

Example 4.5 Consider the Runge-Kutta method based on two Gaussian 
points (4.25), which is known to be a collocation method. We aim to provide 
the expression of the corresponding collocation polynomial (4.30), of the type 

. Pn(tn + ηh) = yn + h (ψ1(η)f1 + ψ2(η)f2) , 

(continued) 



148 4 Runge-Kutta Methods 

Example 4.5 (continued) 
where . and . . We  
impose the interpolation and collocation conditions 

f1 = (tn + c1h, Pn(tn + c1h)) f2 = (tn + c2h, Pn(tn + c2h))

(4.27), assuming that 

. 
ψ1(η) = β10 + β11η + β12η

2, 

ψ2(η) = β20 + β21η + β22η
2. 

The unknown coefficients of the above polynomials satisfy the linear system 

. 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

1 0  0 0 0 0  

0 1 2c1 0 0  0  

0 1 2c2 0 0  0  

0 0  0 1 0 0  

0 0  0  0  1 2c1 

0 0  0  0  1 2c2 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

β10 

β11 

β11 

β20 

β21 

β22 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

= 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 

1 

0 

0 

0 

1 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

, 

whose solution is given by 

. 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

β10 

β11 

β12 

β20 

β21 

β22 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

= 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 

1+√
3 

2 

− 
√

3 
2 

0 

1−√
3 

2√
3 

2 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

Hence, the collocation polynomial (4.30) associated to (4.25) is given by 

. Pn(tn+ηh) = yn+h

((
1 + √

3 

2 
η− 

√
3 

2 
η2

)
f1 +

(
1−√

3 

2 
η + 

√
3 

2 
η2

)
f2

)
. 

The reader can easily check that the matrix A in (4.25) can be recovered as 
follows: 

.A =
[

ψ1(c1) ψ2(c1) 

ψ1(c2) ψ2(c2)

]
. 
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We have realized that only a subset of implicit Runge-Kutta formulae are 
collocation methods and certainly extending this subset to a larger class may provide 
all the benefits emerging from dense output methods. For this reason, the literature 
has provided a number of contributions in order to provide continuous Runge-Kutta 
methods. One of the first systematic collections of results on continuous Runge-
Kutta methods has been provided in [22], where several techniques to provide 
continuous extensions keeping the same internal stages or adding new ones is 
presented and analyzed in details. In this framework, collocation methods appear 
to be a particular class of continuous RK methods (see [22] and references therein). 

4.6 Exercises 

1. Compute the two-stage method (4.20) with minimal error constant. 
2. Prove that, for all explicit four-stage Runge-Kutta methods of maximal order, 

c4 = 1. 
3. Suppose that Pn defined in (4.30) is the collocation polynomial of a given 

Runge-Kutta method (4.8). Find the expression of the matrix A and the vector 
b of this method, in terms of the basis functions (4.29). 

4. Write a software in the programming language you prefer that implements the 
two-stage RK methods on Gaussian nodes (4.25) by exploiting its collocation 
polynomial, computed in Example 4.5. In particular, the updated value yn+1, 
given yn, has to be computed by yn+1 = Pn(tn+1). 

5. Compute elementary differentials, elementary weights and order conditions 
associated to the following rooted trees 

Is there any relationship among the elementary weights �(t1), �(t2), �(t3),
�(t4)? 

6. A non-empty set G with an internal operation ◦ :  G × G → G is a group if

• (a ◦ b) ◦ c = a ◦ (b ◦ c), for any a, b, c ∈ G;
• there exists z ∈ G such that a ◦ z = z ◦ a = a, for any a ∈ G;
• for any a ∈ G, there exists a′ ∈ G, such that a ◦ a′ = a′ ◦ a = z. 

Prove that the set of Runge-Kutta methods, seen as maps y0 → y1 defined by 
the B-series (4.18), form a group with the usual composition of maps as internal 
operation (observe that the compositions of B-series is still a B-series). This is 
a famous structure, known in literature as Butcher group [67]. 

7. Compute the error constants of all explicit methods given in Sect. 4.3. 
8. Analyze the family of explicit Runge-Kutta methods (4.8) depending on 3 

internal stages. Provide examples of convergent methods, also of maximal 
order. 
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9. Analyze the family of explicit Runge-Kutta methods (4.8) depending on 4 
internal stages. Provide examples of convergent methods, also of maximal 
order. 

10. Using Theorem 4.7, check that all Gaussian, Radau IIA and Lobatto IIIA 
formulae are collocation methods. 



Chapter 5 
Multivalue Methods 

Even though multistep and Runge-Kutta methods developed 
individually and separately, they have always had a common 
core. That is, they are each built up from two basic operations 
and nothing more: the evaluation of the function f and the 
calculation of linear combinations of existing vectors. 

(John C. Butcher [68]) 

So far we have analyzed numerical methods for ODEs (1.1) providing an approxi-
mated value of the solution at each point of the grid (2.1). Such an approximation is 
computed according to a multistep principle as in (3.1), or by a multistage strategy 
as in (4.8). In both cases, the discretization only involves samples of the solution 
to (1.1) and linear combinations of vector field evaluations, while other solution 
related quantities do not play any role. As we have seen, for both LMMs and RK 
methods, order barriers do not permit the construction of methods of arbitrarily high 
orders; moreover, the order of a method depends on the number of steps for LMMs 
and on the number of internal stages for RK methods. However, involving many 
steps in LMMs may affect their stability properties (as we clarify in Chap. 6), while 
heightening the number of internal stages in RK methods has a direct influence on 
their computational cost. 

In the recent history of numerical analysis for ODEs, a third kind of strategy for 
the improvement of the drawbacks of multistep and multistage techniques has been 
provided, mostly by J. Butcher, giving rise to the so-called family of multivalue 
numerical methods. The basic principles of a multivalue discretization are briefly 
provided here; the interested reader can find a fully detailed presentation in [64, 67, 
132, 228]. 

5.1 Multivalue Numerical Dynamics 

A multivalue numerical method for the solution of the initial value problem (1.1) 
provides a discrete dynamics as described in Fig. 5.1. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
R. D’Ambrosio, Numerical Approximation of Ordinary Differential Problems, 
La Matematica per il 3+2 148, https://doi.org/10.1007/978-3-031-31343-1_5
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Fig. 5.1 Dynamics of a 
multivalue numerical method 

As displayed in Fig. 5.1, multivalue numerical methods compute a vector of 
r values, denoted as .y[n+1] ∈ Rrd , assuming that the analogous vector .y[n] of 
approximations in the previous point is given. The updated vector of approximations 
is computed according to the map 

. Gh : y[n] ∈ Rrd → y[n+1] ∈ Rrd ,

denoted as forward procedure. The generic vector of approximations .y[n] provides 
r quantities related to the solution of the problem; it does not only (and not 
necessarily) contain the approximation of the solution in the grid points (as it 
happens for LMMs (3.1) and RK methods (4.8)), but also solution related quantities, 
such as linear combination of the derivatives, evaluations of the vector field and so 
on. For instance, consider a system of ODEs (1.1) describing the motion of a system 
of particles for which an approximation of the solution and the velocity is required: 
in this case a multivalue method provides, at each step point, a vector approximating 
the solution of (1.1) and its first derivative. Moreover, involving more quantities 
in the discretized dynamics may allow the introduction of additional degrees of 
freedom in the method which can be exploited to improve the barriers of multistep 
and multistage methods. An example of vector .y[n] is given, for instance, by the 
so-called Nordsieck vector 

.y[n] =

⎡
⎢⎢⎢⎢⎢⎢⎣

y
[n]
1

y
[n]
2

...

y
[n]
r

⎤
⎥⎥⎥⎥⎥⎥⎦

≈

⎡
⎢⎢⎢⎢⎢⎢⎣

y(tn)

hy′(tn)
...

hr−1y(r−1)(tn)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (5.1) 

that provides an approximation of the first .r − 1 scaled derivatives of the solution 
to (1.1). 

Multivalue methods are clearly not self-starting: indeed, a starting procedure . Sh, 
defined by 

. Sh : y0 ∈ Rd → y[0] ∈ Rrd ,

is required for the computation of the missing starting vector . y[0].
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Moreover, it is possible to recover the approximate solution at each step point by 
the projection map 

. Fh : y[n] ∈ Rrd → yn ∈ Rd ,

denoted in the literature as finishing procedure . Fh . 
It was proved in [192] that, for any given forward and finishing procedures, there 

exist a unique starting procedure and a unique one-step method 

. yn+1 = ϕh(yn),

such that 

. Gh ◦ Sh = Sh ◦ ϕh,

with .Fh ◦ Sh equal to the identity map. Such a formal one-step map . ϕh is called 
underlying one-step method. The analysis of the underlying one-step method is 
very relevant, since many of its properties are inherited by the forward procedure of 
the corresponding multivalue methods. We will see this aspect, for instance, in the 
analysis of symmetry and symplecticity of numerical methods provided in Chap. 8. 

5.2 General Linear Methods Representation 

A classical representation of multivalue methods is usually given in the form of 
General Linear Methods (GLMs) [67, 228] 

.

Yi = h

s∑
j=1

aij f (tn + cjh, Yj ) +
r∑

j=1

uij y
[n]
j , i = 1, 2, . . . , s,

y
[n+1]
i = h

s∑
j=1

bij f (tn + cjh, Yj ) +
r∑

j=1

vij y
[n]
j , i = 1, 2, . . . , r,

(5.2) 

where .c1, c2, . . . , cs are the values of the nodes, as in the case of RK methods (4.8). 
Assuming that .Yi ≈ y(tn + cih), .i = 1, 2, . . . , s, GLMs combine a multistage 
strategy (the numerical dynamics described by (5.2) requires the computation of 
the internal stages . Yi , .i = 1, 2, . . . , s, at each step) with a multivalue strategy for 
the computation of the .y[n+1]

i , .i = 1, 2, . . . , r . As visible from their representation 
formulae (5.2), GLMs are uniquely defined by the coefficient matrices 

.A ∈ Rs×s , U ∈ Rs×r , B ∈ Rr×s , V ∈ Rr×r ,
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which can be conveniently collected in the Butcher tableau 

.

⎡
⎣A U

B V

⎤
⎦ . (5.3) 

Such a representation in terms of a .(s + r) × (s + r) partitioned matrix has 
been introduced for the first time by K. Burrage and J. Butcher in [50] and then 
extensively applied in the context of GLMs. 

A GLM admits the following compact notation 

.

{
Y = h(A ⊗ I )F + (U ⊗ I )y[n−1],

y[n] = h(B ⊗ I )F + (V ⊗ I )y[n−1],
(5.4) 

where . ⊗ denotes the usual Kronecker tensor product and .I ∈ Rd×d is the identity 
matrix and 

. y[n] =

⎡
⎢⎢⎢⎢⎢⎢⎣

y
[n]
1

y
[n]
2

...

y
[n]
r

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ Rrd , Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y1

Y2

...

Ys

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ Rrd , F =

⎡
⎢⎢⎢⎢⎢⎢⎣

f (tn + c1h, Y1)

f (tn + c2h, Y2)

...

f (tn + csh, Ys)

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ Rsd .

One can appreciate that GLMs depend on .(s + r)2 + s coefficients, while RK 
methods depend on .s2 + 2s coefficients (the entries of the matrix A and the vectors 
b and c). As previously observed, the dependence on a larger number coefficients 
(which is certainly the case, in comparison with RK methods, if .r > 1) can be 
exploited to break the order barriers affecting RK methods and obtain more accurate 
methods without increasing the computational cost that depends, as in the RK case, 
on the coefficient matrix A. Again, if  A is strictly lower triangular, the GLM is 
explicit; if A is a full matrix, the method is implicit. 

Finally, few historical notes. The name generalized multistep methods has been 
used for the first time by Gragg and Stetter [178] in 1964. Further contributions 
in the development of a theory of multivalue-multistage integration methods have 
been provided by Butcher from 1965 on (see [67] and references therein), Gear 
[172], Dahlquist [112], Donelson and Hansen [155], Jackiewicz and Tracogna [229]. 
The monograph [228] authored by Zdzislaw Jackiewicz (Swiebodzin, 1950) is a 
comprehensive presentation totally devoted to GLMs.
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Example 5.1 All numerical methods studied in the previous chapters can be 
regarded as GLMs. Indeed, linear multistep methods (3.1) with .αk = 1 are 
GLMs (5.2) with .r = 2k, .s = 1 and Butcher tableau (5.3) given by 

. 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0 −α0 · · · −αk−2 −αk−1 β1 · · · βk−1 βk

β0 −α0 · · · −αk−2 −αk−1 β1 · · · βk−1 βk

0 1 · · · 0 0 0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 1 0 0 · · · 0 0

1 0 · · · 0 0 0 · · · 0 0

0 0 · · · 0 0 1 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The vector computed at each step is then given by 

. y[n] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yn

yn+1
...

yn+k−1

f (tn, yn)

f (tn+1, yn+1)
...

f (tn+k−1, yn+k−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Runge-Kutta methods (4.8) are GLMs with .r = 1, Butcher tableau (5.3) given 
by 

. 

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 · · · a1s 1
...

. . .
...

...

as1 . . . ass 1

b1 · · · bs 1

⎤
⎥⎥⎥⎥⎥⎥⎦

and 

.y[n] = [
yn

]
.
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5.3 Convergence Analysis 

A theory of multivalue methods is not only useful to develop new methods with 
better accuracy, but also to create a unifying approach to analyze the properties of a 
numerical method for ODEs, e.g., convergence, consistency and stability. Here we 
present a unifying convergence analysis, based on the representation of multivalue 
methods as GLMs (5.2). As a consequence, once a numerical method for (1.1) is 
represented as GLM, it automatically inherits the theoretical results here presented. 

Let us apply the GLM (5.4) to the problem .y′(t) = 1, obtaining 

.

⎧⎨
⎩

Y = hAe + Uy[n],

y[n+1] = hBe + Vy[n],
(5.5) 

being .e = [ 1 1 · · · 1 ]T ∈Rs . Assume the existence of two vectors .α, β ∈ Rr such 
that 

.y[n] = αy(tn) + βhy′(yn) + O(h2) (5.6) 

and, moreover, 

.Yi = y(tn + cih) + O(h), i = 1, 2, . . . s. (5.7) 

Replacing (5.6) and (5.7) into (5.5) leads to 

. 

{
y(tn)e + chy′(tn) = hAe + U(αy(tn) + βhy′(tn)) + O(h2),

αy(tn) + αhy′(tn) + βhy′(tn) = hBe + V (αy(tn) + βhy′(tn)) + O(h2).

Comparing the .O(1) and .O(h) terms leads to the following definition. 

Definition 5.1 AGLM  (5.2) is consistent if there exist two vectors . α, β ∈ Rr

such that 

.Uα = e, V α = α, Be + Vβ = α + β (5.8) 

and it is stage-consistent if 

.Ae + Uβ = c. (5.9)
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Let us now apply the GLM (5.4) to the problem .y′(t) = 0, obtaining 

. y[n+1] = Vy[n] = V n+1y[0].

As a consequence, a stable behavior of the numerical solution provided by (5.4) 
requires the boundedness of the powers . V n, for any .n ≥ 0, motivating the following 
definition. 

Definition 5.2 A GLM  (5.4) is zero-stable if there exists a constant . C > 0
such that 

. ‖V n‖ ≤ C, n ≥ 0.

As seen for linear multistep methods, a more practical way to analyze zero-
stability is the verification of the so-called root condition. Such a condition, in the 
case of GLMs, has to be fulfilled by the minimal polynomial of the matrix V , as  
stated by the following result (compare [67, 228]). 

Theorem 5.1 A GLM  (5.4) is zero-stable if each root of the minimal poly-
nomial of the coefficient matrix V has modulus strictly less than 1 or it has 
modulus one but it is simple. 

Let us now provide a definition of convergence for GLMs. 

Definition 5.3 A GLM  (5.2) is convergent if there exists a nonzero vector 
.α ∈ Rr and a starting procedure .Sh : Rd → R

rd satisfying 

. lim
h→0

(Sh(y0))i = αiy0, i = 1, 2, . . . , r,

such that for any .t̄ > t0, the sequence of vectors .{y[n]}n∈N, computed by using 
n steps of (5.2) with stepsize .h = (t̄ − t0)/n and starting value .y[0] = Sh(y0), 
converges to .αy(t̄). 

A Lax equivalence theorem can be provided also for GLMs. The proof is here 
omitted, but the interested reader can find it in [67, 228].
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Theorem 5.2 A GLM  (5.2) is convergent if and only if it is consistent and 
zero-stable. 

We conclude this section with a definition of order for GLMs. Let us assume that 
. y

[n]
i , .i = 1, 2, . . . , r, is an approximation of order p of a linear combination of the 
solution to (1.1) and its derivatives in the point . tn, i.e., 

.y
[n]
i =

p∑
k=0

qikh
ky(k)(tn) + O(hp+1), i = 1, 2, . . . , r, (5.10) 

where .qik ∈ R are the scalars of combination, with indices .i = 1, 2, . . . , r and 
.k = 0, 1, . . . , p. The integer p is the order of the GLM (5.2). Suppose that the 
internal stages satisfy 

.Y
[n]
i = y(tn−1 + cih) + O(hq+1), i = 1, 2, . . . , r, (5.11) 

i.e., they are approximations of order q to the solution of (1.1) in the points 
.tn−1 + cih, .i = 1, 2, . . . , s. In this case, we say that the GLM (5.2) has 
stage-order q. 

The existing literature has provided two ways to analyze the order of multivalue 
methods: an extension of rooted trees and B-series theory, developed by Butcher 
[67, 68] and an extension of Albrecht theory [4–6], mostly relying on Taylor series 
arguments, provided by Jackiewicz and coauthors [78, 228]. 

Let us provide here only the set of conditions ensuring high stage-order methods, 
i.e., methods of order p and stage-order .q = p. We collect the parameters . qik

appearing in (5.10) and (5.11) in the vectors . qk , .k = 0, 1, . . . , p, defined by 

. qk = [
q1k q2k . . . qrk

]T ∈ Rr , k = 0, 1, . . . , p.

Then, a GLM (5.2) has order p and stage-order .q = p if and only if 

.
ck

k! − Ack−1

(k − 1)! − Uqk = 0, k = 1, 2, . . . , p, (5.12) 

and 

.

k∑
l=0

qk−l

l! − Bck−1

(k − 1)! − V qk = 0, k = 1, 2, . . . , p. (5.13) 

A detailed proof is given in [67, 228]. We observe that above order and stage-order 
conditions can be applied also when .q = p − 1, as highlighted in [228]. General
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order conditions when .q �= p − 1, p require to employ the general Butcher order 
theory, described in [67, 68]. We also notice that, in correspondence of .k = 1, 
consistency (5.8) and stage-consistency (5.9) can be recovered, with .α = q0 and 
.β = q1. 

Example 5.2 We provide an example of explicit one-stage GLM (5.4) with 
.r = 2, depending on the Butcher tableau 

. 

[
A U

B V

]
=

⎡
⎢⎢⎣

0 u1 u1

b1 v11 v12

b2 v21 v22

⎤
⎥⎥⎦ .

assuming that the vector of approximations 

. y[n] =
[

y
[n]
1

y
[n]
2

]

gives .y
[n]
1 = yn. Correspondingly, . α and . β in (5.8) and (5.9) are 

. α =
[

1

α2

]
, β =

[
0

β2

]
,

with . α2, .β2 ∈ R. Consistency and stage-consistency conditions yield 

. u1 = 1 − α2c

β2
,

[
v11

v21

]
=

[
1 − v12α2

(1 − v22)α2

]
,

. 

[
b1

b2

]
=

[
1 − v12β2

α2 + (1 − v22)β2

]
,

[
u21

u22

]
, u2 = c

β2
.

The resulting Butcher tableau 

. 

[
A U

B V

]
=

⎡
⎢⎢⎢⎣

0 1 − α2c
β2

c
β2

1 − v12β2 1 − v12α2 v12

α2 + (1 − v22)β2 (1 − v22)α2 v22

⎤
⎥⎥⎥⎦

(continued)
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Example 5.2 (continued) 
depends on 5 degrees of freedom that are now used to solve order and stage 
order conditions up to a certain order p. We observe that order and stage-order 
conditions (5.13) and (5.12) depend on the vectors 

. qk =
[

0

qk2

]
, qk2 ∈ R.

Since 

. Uqk = ck

k! ,

we obtain 

. qk2 = β2c
k−1

k! .

As a consequence, in order to analyze the conditions of order 2, we assume 

. q2 =
⎡
⎣

0

β2c

2

⎤
⎦

and impose the conditions of order 2, i.e., 

. q2 + β + α

2
− Bc − V q2 = 0,

obtaining 

. 

[
v12

v22

]
=

⎡
⎢⎢⎢⎣

2c − 1

β2c

α2(2c − 1) + β2(c − 2)

β2c

⎤
⎥⎥⎥⎦ .

We observe that the eigenvalues of the corresponding matrix V are 1 and . c−2
c
. 

Hence, zero-stability occurs if .c > 1 and one can prove that, in this example, 
it is not compatible with order 3. As a consequence, we have developed a 
family of order and stage-order 2 methods depending on 3 free parameters (c, 
. α2 and . β2) which can be chosen, for instance, to have good stability properties 
according to the notions provided in Chap. 6. 

(continued)
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Example 5.2 (continued) 
If we choose .c = 3

2 , .α2 = β2 = 1, we obtain the method (5.4) with Butcher 
tableau 

.

[
A U

B V

]
=

⎡
⎢⎢⎢⎣

0 − 1
2

3
2

− 1
3 − 1

3
4
3

1 0 1

⎤
⎥⎥⎥⎦ , (5.14) 

and 

. y[n] ≈
[

y(tn)

y(tn) + hy′(tn) + 3
4h

2y′′(tn)

]
.

The starting vector is then given by 

. y[0] =
[

y0

y0 + hf (t0, y0) + 3
4h

2fy(t0, y0)f (t0, y0)

]
.

This method, denoted as GLM2, requires a single function evaluation at each 
step, as it happens for the explicit Euler method (2.19), but its order of 
convergence is twice as that of Euler method. We provide an implementation 
of GLM2 in Program 5.1. 

Program 5.1 (GLM2 Method) 
% Function implementing GLM2 method (5.14) on a uniform grid, 
% for the numerical solution of a d-dimensional ODE. 

% Inputs 
% - problem: label of the problem to be solved; 
% - tspan: vector of two components, storing the extrema 
% of the integration interval; 
% - y0: initial value; 
% - h: constant stepsize. 

% Outputs 
% - t: set of N equidistant grid points (tspan(1) excluded); 
% - y: d. ×N matrix whose i-th column y(:,i) stores the 
% approximate value in the i-th grid point, i=1,2,. . . .,N. 

(continued)
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Program 5.1 (continued) 
function [t,y]=GLM2(problem,tspan,y0,h) 
N=(tspan(2)-tspan(1))/h; 
t=linspace(h,tspan(2),N); 
d=length(y0); 
y=zeros(2*d,N); 
Id=eye(d); 
% Starting procedure, requiring the Jacobian fy of f 
start=[y0; y0+h*f(problem,tspan(1),y0)+... 

3*h. 
∧2*fy(problem,tspan(1),y0)*f(problem,tspan(1),y0)/4]; 

U=[-1/2 3/2]; 
B=[-1/3; 1]; 
V=[-1/3 4/3; 0 1]; 
c=3/2; 
Y=kron(U,Id)*start; 
y(:,1)=h*kron(B,id)*f(problem,tspan(1)+c*h,Y) 

+kron(V,Id)*start; 
for i=2:N 

Y=kron(U,Id)*y(:,i-1); 
y(:,i)=h*kron(B,id)*f(problem,t(i-1)+c*h,Y)... 

+kron(V,Id)*y(:,i-1); 
end 

Example 5.3 We aim to solve van der Pol problem (3.24), with . t ∈ [0, 10]
and initial value .y0 = [2 −2/3 ]T. We provide the comparison of the 
performances achieved by the explicit Euler method (2.19) and the GLM2 
method (5.14). We compute the errors 

. ‖errEUL‖∞ = ‖yEUL − yODE45‖∞, ‖errGLM2‖∞ = ‖yGLM2 − yODE45‖∞,

where .yEUL ≈ y(10) is computed by (2.19), .yGLM2 ≈ y(10) is computed 
by (5.14) and .yODE45 is the solution in .t = 10 computed by the Matlab built-in 
function ode45, as in Example 4.4. As shown in Table 5.1, convergence and 
orders of both methods are confirmed by the numerical evidence. Moreover, 
by employing almost the same number of function evaluations, GLM2method 
is more accurate and efficient than the explicit Euler method.
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Table 5.1 Example 3.10: error in the final integration point associated to the application of the 
explicit Euler (2.19) and the GLM2 (5.14) methods to (3.24). The estimation of the orders of both 
methods (.pEUL and .pGLM2) is reported, computed as suggested by Eq. (3.23), together with the 
requested number of vector field evaluations (fe.EUL and fe.GLM2) 

h .‖errEUL‖∞ .pEUL fe.EUL .‖errGLM2‖∞ .pGLM2 fe. GLM2

.h0 = 0.1 1.57 100 .2.49 · 10−2 102 

.h0/2 .2.67 · 10−1 2.55 200 .6.25 · 10−3 1.99 202 

.h0/4 .1.01 · 10−1 1.40 400 .1.58 · 10−3 1.98 402 

.h0/8 .5.14 · 10−2 0.97 800 .3.97 · 10−4 1.99 802 

.h0/16 .2.58 · 10−2 0.99 1600 .9.96 · 10−5 1.99 1602 

5.4 Two-Step Runge-Kutta Methods 

We now focus our attention on the family of two-step Runge-Kutta (TSRK) meth-
ods, here analyzed by using the GLMs framework described in the previous sections. 
TSRK methods have been introduced by Jackiewicz and Tracogna [228, 229] and 
rely on the following two-step formulation 

. 

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yn+1 = (1 − θ)yn + θyn−1 + h

s∑
j=1

(
vjf

[n]
j + wjf

[n−1]
j

)
,

Y
[n]
i = (1 − ui)yn + uiyn−1 + h

s∑
j=1

(
aij f

[n]
j + bij f

[n−1]
j

)
, i = 1, 2, . . . , s,

(5.15) 

with .f
[n−1]
j = f (tn−1+cjh, Y

[n−1]
j ) and .f

[n]
j = f (tn +cjh, Y

[n]
j ), .j = 1, 2, . . . , s. 

As usual, . yn is supposed to be an approximation of order p to .y(tn), while 
the internal stage .Y [n]

i is an approximation of stage order q to .y(tn−1 + cih), 
.i = 1, 2, . . . , s. TSRK methods are fully characterized by the tableau 

.
u A B

θ vT wT
=

u1 a11 a12 · · · a1s b11 b12 · · · b1s

u2 a21 a22 · · · a2s b21 b22 · · · b2s

...
...

...
. . .

...
...

...
. . .

...

us as1 as2 · · · ass bs1 bs2 · · · bss

θ v1 v2 · · · vs w1 · · · ws−1 ws



164 5 Multivalue Methods

and admit the following compact representation 

. 

yn+1 = (1 − θ)yn + θyn−1 + h
(
(vT ⊗ I )F [n] + (wT ⊗ I )F [n−1]) ,

Y [n] = ((e − u) ⊗ I )yn + (u ⊗ I )yn−1 + h
(
(A ⊗ I )F [n] + (B ⊗ I )F [n−1]) ,

(5.16) 

where . ⊗ denotes the standard Kronecker tensor product, I is the identity matrix in 
.R

d×d , .e = [
1 1 · · · 1 ]T ∈ Rs and 

. Y [n] =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y
[n]
1

Y
[n]
2

...

Y
[n]
s

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ Rsd , F [n] =

⎡
⎢⎢⎢⎢⎢⎢⎣

f
[n]
1

f
[n]
2

...

f
[n]
s

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ Rsd , F [n−1] =

⎡
⎢⎢⎢⎢⎢⎢⎣

f
[n−1]
1

f
[n−1]
2

...

f
[n−1]
s

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ Rsd .

The peculiarity of TSRK methods (5.16) lies in their dependency on the stage 
derivatives .F [n] and .F [n−1] at two consecutive subintervals: as a consequence, 
“we gain extra degrees of freedom associated with a two-step scheme without the 
need for extra function evaluations” [229], because the vector .F [n−1] is completely 
inherited from the previous step and, therefore, the computational cost only depends 
on the structure of the matrix A, as for RK methods (4.8). The achieved degrees of 
freedom can be used, for instance, in order to improve the accuracy of existing one-
step methods. 

TSRK methods are multivalue methods admitting GLM representation (5.4) with 
.r = s + 2 in correspondence of the vector 

.y[n] =
⎡
⎢⎣

yn

yn−1

hF [n−1]

⎤
⎥⎦ (5.17) 

and the tableau (5.3) 

.

⎡
⎢⎢⎢⎢⎣

A e − u u B

vT 1 − θ θ wT

0 0 1 0

I 0 0 0

⎤
⎥⎥⎥⎥⎦

∈ R(2s+2)×(2s+2), (5.18) 

where I is the identity matrix in .Rs×s . In the remainder of this section, we assume 
the hypothesis of high stage order, considering TSRK methods of order p and
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stage order .q = p, i.e., we consider methods of uniform order p. Taking into 
account the expression of the vector .y[n] given by (5.17), we expand . y(tn − h)

and .y′(tn + (c − e)h) into Taylor series around . tn, obtaining 

. y[n] =

⎡
⎢⎢⎢⎢⎢⎣

y(tn)

y(tn) − hy′(tn) + h2

2
y′′(tn) + · · · + (−1)p

hp

p! y
(p)(tn)

hy′(tn)e + h2(c − e)y′′(tn) + · · · + hp (c − e)p−1

(p − 1)! y(p)(tn)

⎤
⎥⎥⎥⎥⎥⎦

+ O(hp+1),

where the power .(c − e)ν , . ν=0, 1, . . . ., .p − 1, has to be intended componentwise. 
Then, for TSRK methods, 

. q0 = [
1 1 0 · · · 0 ]T ∈ Rs+2, qk =

[
0

(−1)k

k!
(

(c − e)k−1

(k − 1)!
)T ]T

,

k = 1,  2, . . . ., p. Then, the following results holds true. 

Theorem 5.3 TSRK method (5.15) have uniform order p if and only if, for 
any .k = 1, 2, . . . , p, 

.(−1)ku + kAck−1 + kB(c − e)k−1 = ck, (5.19) 

and 

.(−1)kθ + kvTck−1 + kwT(c − e)k−1 = 1. (5.20) 

Proof Order conditions (5.19) and (5.20) are obtained by rewriting (5.12) and (5.13) 
in terms of the tableau (5.18) providing the GLM formulation of TSRK methods. 
In particular, (5.19) directly follows from (5.12). Equation (5.13) on the TSRK 
tableau (5.18) requires the computation of the vector 

.

k∑
l=0

qk−l

l! =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

k!
k∑

l=0

(−1)k−l

l!(k − l)!
k∑

l=0

(c − e)k−l−1

l!(k − l − 1)!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Since 

. 

k∑
l=0

(−1)k−l

l!(k − l)! = 1

k!
k∑

l=0

( k

l

)
(−1)k−l = 0

and 

. 

k∑
l=0

(c − e)k−l−1

l!(k − 1 − l)! = 1

(k − 1)!
k−1∑
l=0

( k − 1

l

)
(c − e)k−l−1 = ck−1

(k − 1)! ,

we have 

. 

k∑
l=0

qk−l

l! =

⎡
⎢⎢⎢⎢⎢⎣

1

k!
0

ck−1

(k − 1)!

⎤
⎥⎥⎥⎥⎥⎦

.

Replacing last equation and the values in (5.18) into (5.13) leads to the thesis. ��
We observe that setting .k = 1 in (5.20) leads to the consistency condition for 

TSRK methods 

. (vT + wT )e = 1 + θ,

while the case .k = 1 in (5.19) gives the condition of stage consistency 

. (A + B)e − u = c.

We finally analyze zero-stability, by checking the roots of the minimal polyno-
mial of the matrix V , i.e., 

. p(ω) = ω(ω2 − (1 − θ)ω − θ),

whose roots are .ω = 0, .ω = 1 and .ω = −θ . Therefore, a TSRK is zero-stable if 
and only if .−1 < θ ≤ 1. 

5.5 Dense Output Multivalue Methods 

According to [126], we now propose to smoothly extend a multivalue numerical 
method in GLM form (5.2) and depending on the Nordsieck vector (5.1) by means
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of a piecewise collocation polynomial of the form 

.Pn(tn + ϑh) =
r∑

i=1

αi(ϑ)y
[n]
i + h

s∑
i=1

βi(ϑ)f (tn + cih, P (tn + cih)), (5.21) 

with .ϑ ∈ [0, 1]. This representation is provided with respect to the functional basis 

. {αi(ϑ), βj (ϑ), i = 1, 2, . . . , r, j = 1, 2, . . . , s}

to be determined by imposing suitable conditions. In particular, since we aim to 
provide a collocation polynomial, we impose interpolation conditions of the type 

.Pn(tn) = y
[n]
1 , P ′

n(tn) = y
[n]
2 , · · · , P (r−1)

n (tn) = y[n]
r (5.22) 

and collocation conditions 

.P ′
n(tn + cih) = f (tn + cih, Pn(tn + cih)), i = 1, 2, . . . , s. (5.23) 

In other terms, due to the fact that derivatives up to order .r − 1 are interpolated, the 
global piecewise polynomial generated by multivalue collocation is globally of class 
.Cr−1. It is worth observing that most interpolants based on Runge-Kutta methods 
only have global . C1 continuity. The practical value of highly continuous interpolants 
is visible in many different situations already shown in the existing literature such as 
scientific visualization [253], functional differential equations with state-dependent 
delay [22, 202], numerical solution of differential-algebraic equations and nonlinear 
equations [246, 338], optimal control problems [293], discontinuous initial value 
problems [162, 337] or, more in general, whenever a smooth dense output is needed 
[207, 282]. 

Above interpolation conditions (5.22) on . Pn are naturally reflected on the basis 
functions and, indeed, they are equivalent to 

. αj (0) = δj1, α
(ν)
j (0) = δj,ν+1,

for .j = 1, 2, . . . , r, ν = 1, 2, . . . , r − 1 and 

. βj (0) = β
(ν)
j (0) = 0,

for .j = 1, 2, . . . , s, .ν = 1, 2, . . . , r−1. Collocation conditions (5.23) are equivalent 
to 

.

α′
j (ci) = 0, i = 1, 2, . . . , r, j = 1, 2, . . . , s,

β ′
j (ci) = δij , i, j = 1, 2, . . . , s,
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where . δij is the Kronecker delta. Each basis function is subject to .s + r constraints, 
hence it is an algebraic polynomial of degree at most .s + r − 1. 

In summary, the collocation polynomial (5.21) is a global smooth extension of 
class .Cr−1 of the Nordsieck GLM (5.2) with tableau (5.3) characterized by the 
following matrices 

. A = [
βj (ci)

]
i,j=1,...,s , U = [

αj (ci)
]
i=1,...,s, j=1,...,r ,

. B =
[
β

(i−1)
j (1)

]
i=1,...r, j=1,...,s

, V =
[
α

(i−1)
j (1)

]
i,j=1,...,r

.

We now aim to analyze the error associated to a multivalue collocation approxi-
mant of type (5.21), relying on the assumption that it provides a uniform approxima-
tion of order p to the solution of the differential system. In other terms, a multivalue 
collocation polynomial (5.21) is required to satisfy 

. Pn(tn + ϑh) = y(tn + ϑh) + O(hp+1), ϑ ∈ [0, 1].

Then, the local discretization error associated to a single step of a multivalue 
collocation method can be defined as the residuum operator 

. ξn(tn + ϑh) = y(tn + ϑh) −
r∑

i=1

αi(ϑ)hi−1y(i−1)(tn) − h

s∑
i=1

βi(ϑ)y′(tn + cih),

(5.24) 

with .ϑ ∈ [0, 1], and y is exact solution of the differential problem (1.1). Then, the 
following result holds. 

Theorem 5.4 The multivalue collocation method defined by (5.21) is an 
approximation of uniform order p to the solution of (1.1) if and only if 

.

α1(ϑ) = 1,

ϑν

ν! − αν+1(ϑ) −
s∑

i=1

cν−1
i

(ν − 1)!βi(ϑ) = 0, ν = 1, 2, . . . , r − 1,

ϑμ

μ! −
s∑

i=1

c
μ−1
i

(μ − 1)!βi(ϑ) = 0, μ = r, . . . , p.

(5.25)
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Proof We expand .y(tn + ϑh) and .y′(tn + ch) in Taylor series around . tn and replace 
them in (5.24), obtaining 

. ξ(tn + ϑh) = y(tn) + ϑhy′(yn) + . . . + (ϑh)p

p! y(p)(tn)

− α1(ϑ)y(tn) −
r∑

j=2

αi(ϑ)hi−1y(i−1)(tn)

− h

s∑
i=1

βi(ϑ)

(
y′(tn)+ cihy′′(tn)+ . . . + (cih)p−1

(p − 1)! y(p)(tn)

)
+ O(hp+1).

Conditions (5.13) arise from annihilating all terms up to order p. ��
We can then interpret conditions (5.25) as uniform order conditions for a 

multivalue collocation methods defined by (5.21). Moreover, from last theorem, we 
can also understand which is the uniform order of convergence for a multivalue 
collocation method. 

Corollary 5.1 The uniform order of convergence for a multivalue collocation 
method (5.21) is .s + r − 1. 

Proof The linear system (5.25), deprived of the first identity, is a system of p 
linearly independent equations in .s + r − 1 unknowns admitting a unique solution 
if and only if the number of equations equals that of the unknowns, i.e. when 
.p = s + r − 1. ��

Example 5.4 We provide an example of multivalue collocation method with 
.s = 1 and .r = 2, relying on the polynomial 

. Pn(tn + ϑh) = y
[n]
1 + α2(ϑ)y

[n]
2 + hβ1(ϑ)f (tn + ch, P (tn + ch)).

According to Corollary 5.1, we can expect uniform order 2, which is achieved 
by solving conditions (5.25) for .p = 2, i.e. 

. 

ϑ − α2(ϑ) − β1(ϑ) = 0,

ϑ2

2
− cβ1(ϑ) = 0.

(continued)
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Example 5.4 (continued) 
This systems leads to 

. α2(ϑ) = ϑ

(
1 − ϑ

2c

)
, β1(ϑ) = ϑ2

2c
.

The corresponding Butcher tableau is given by 

. 

⎡
⎣A U

B V

⎤
⎦ =

⎡
⎢⎢⎣

β1(c) 1 α2(c)

β1(1) 1 α2(1)

β ′
1(1) 0 α′

2(1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

c
2 1 c

2

1
2c 1 1 − 1

2c

1
c

0 1 − 1
c

⎤
⎥⎥⎥⎦ .

For .c = 1
2 we obtain 

. α2(ϑ) = ϑ(1 − ϑ), β1(ϑ) = ϑ2,

which is the . C1 extension of uniform order .p = 2 of the general linear method 

.

⎡
⎣A U

B V

⎤
⎦ =

⎡
⎢⎢⎢⎣

1
4 1 1

4

1 1 0

2 0 −1

⎤
⎥⎥⎥⎦ . (5.26) 

5.6 Exercises 

1. Analyze the family of explicit GLMs (5.4) with s = r = 2, providing the 
conditions ensuring their convergence and giving examples of methods having 
the maximum attainable order. 

2. Multistep Runge-Kutta methods 

.

yn+1 =
k∑

i=1

vjyn+1−i + h

s∑
i=1

bif (tn + cih, Yi),

Yi =
k∑

j=1

uij yn+1−j + h

s∑
j=1

aij f (tn + cjh, Yj )
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have been introduced by Burrage in [43, 44] as multistep extension of RK 
methods (4.8). Write them as GLMs (5.4), give the expression of the vector 
y[n] and analyze their convergence by the results on GLMs provided in this 
chapter. 

3. Compute the vectors qk in (5.12) and (5.13) for GLMs (5.4) where the vector 
y[n] is given by the Nordsieck vector (5.1). 

4. Provide the convergence analysis of the following TSRK method (5.15) 
depending on the Butcher tableau 

.
u A B

θ vT wT
=

−3+√
6

6
1
2

√
6
6

0 3−√
6

6
3+√

6
6

(5.27) 

in two ways: by regarding the method as GLM and applying the convergence 
result of GLMs; by direct using the results for the convergence of TSRK 
methods. 

5. Write a code in your favorite programming language implementing the TSRK 
method (5.27), for the numerical solution of d-dimensional systems (1.1). You  
need to recover the missing starting value y1 by a chosen starting method. 
Provide an experimental evidence of the convergence of the method and of 
its order. How does the choice of the starting method affect the accuracy of the 
TSRK method? 

6. Analyze the order and the stage-order of the GLM (5.26). Do they confirm the 
second order of convergence of the corresponding collocation based method, 
derived in Example 5.4? 

7. Which is the relationship between the set of uniform order conditions (5.25) of 
the collocation based method depending on the polynomial (5.21) and the set of 
order conditions (5.13) for GLMs (5.4) where y[n] is the Nordsieck vector (5.1)? 

8. Recast the arguments in Sect. 5.5, supposing that the functional basis is not 
constituted by algebraic polynomials, but by trigonometric functions. The 
development of dense output GLMs relying on mixed basis functions is object 
of [96]. 

9. Rewrite Program (5.1), supposing that the Jacobian of the vector field is not 
exactly computed, but approximated by finite differences. 

10. Recast the following family of numerical methods for the solution of (1.1) 

. Y [n+1] = (B ⊗ I )Y [n] + h(A ⊗ I )F [n] + h(R ⊗ I )F [n+1],

as GLMs (5.2), analyzing their convergence. The matrices characterizing this 
family of methods are A, B, R ∈ Rs×s , ⊗ denotes the usual Kronecker tensor 
product and I ∈ Rd×d is the identity matrix. The general i-th component 
of the vector Y [n] approximates the solution of (1.1) in the internal point 
tn + cih. The vector evaluations of the vector field in the entries of Y [n] are 
collected in the vector F [n] =

[
f (tn + cih, Y [n] 

i )
]s 

i=1 
. These methods are 

known in the literature as peer methods [311] and they only share the step-
by-step approximations related to the internal stages.



Chapter 6 
Linear Stability 

A method which cannot handle satisfactorily the linear test 
system is not a suitable candidate for incorporation into an 
automatic code. More precisely, linear stability theory provides 
a useful yardstick (if one can have a yardstick in the complex 
plane!) by which different linear multistep methods (or classes 
of such methods) can be compared as candidates for inclusion 
in an automatic code. 

(John D. Lambert [242]) 

So far, we have studied properties of numerical methods for (1.1) mostly occurring 
when the stepsize tends to 0: for instance, the local accuracy property of consistency, 
providing the coherence between the solution of difference equation and that of the 
corresponding differential problem under the localizing assumption; or the global 
accuracy property of zero-stability, ensuring that the difference between exact and 
numerical solutions does not blow-up as the stepsize goes to 0; and, finally, the 
request for convergence, guaranteeing that the global error goes to 0, when the 
stepsize tends to 0. Clearly, characteristic properties occurring when the stepsize 
goes to 0 do not reveal much of what happens for fixed values of the stepsize. In this 
section we handle this issue, presenting the so-called linear stability theory. 

6.1 Dahlquist Test Equation 

The theory of linear stability is the analysis of the behavior of a given class of 
methods applied to the so-called Dahlquist test equation, given by the linear scalar 
problem 

.y′(t) = λy(t), λ ∈ C, Re(λ) < 0. (6.1) 
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According to Theorem 1.8, the problem described by (6.1) is asymptotically stable, 
but we can have a direct confirmation of this issue by checking its analytical solution 

.y(t) = ceλt , c ∈ R, (6.2) 

that exponentially decays as t tends to infinity. Although very simple, the test 
problem (6.1) is able to reveal relevant properties of a numerical method, as clearly 
highlighted by Germund Dahlquist in his foundational paper [108]. 

Once a method for (1.1) is applied to the linear test equation (6.1), a natural 
question is the following: which values of the stepsize ensure that the asymptotic 
stability of the solution to (6.1) is also inherited by the numerical solution? In 
this sense, linear stability analysis is the study of a conservation property, i.e., the 
preservation of the monotonicity of (6.2) along the discretized dynamics associated 
to the numerical solution of (6.1) computed by a given numerical method. 

Let us now focus on the connection between the general ODE problem (1.1) 
and the Dahlquist test problem (6.1). To do this,  let  .ϕ(t) be a smooth solution 
of (1.1) corresponding to a given initial value; correspondingly, we compute the 
linearization of the vector field in (1.1) around .ϕ(t), given by 

. y′(t) = f (t, ϕ(t)) + J (t, ϕ(t))(y(t) − ϕ(t)) + higher order terms,

where J is the Jacobian of the vector field f in (1.1). By denoting .y(t) = y(t)−ϕ(t), 
we obtain 

. y′(t) = J (t, ϕ(t))y(t) + higher order terms.

Denoting by .A ∈ Rd×d the frozen Jacobian at time t , the linearized version of (1.1) 
then assumes the form 

.z′(t) = Az(t). (6.3) 

If the matrix A has d distinct eigenvalues . λ1, . λ2, . . . ., . λd , there exists an invertible 
matrix Q such that .Q−1AQ = �, where . � is the diagonal matrix 

. � =

⎡
⎢⎢⎢⎢⎢⎣

λ1

λ2
. . .

λd

⎤
⎥⎥⎥⎥⎥⎦

.

Then, system (6.3) assumes the form 

.z′(t) = �z(t),



6.2 Absolute Stability of Linear Multistep Methods 175

with .z(t) = Q−1z(t). Last equation defines a system of d linear scalar uncoupled 
equations of the type 

. zi
′(t) = λizi(t), i = 1, 2, . . . , d,

whose right-hand side is the same as that in Dahlquist test equation (6.1). In  
summary, Dahlquist test equation is recovered by linearization of the vector field 
of (1.1). However, even if (6.1) provides a remarkable simplification of (1.1), it is  
a useful tool to highlight meaningful properties which are relevant, for instance, in 
the numerical solution of stiff problems, described in Chap. 7. 

6.2 Absolute Stability of Linear Multistep Methods 

Let us apply a LMM (3.1) to the Dahlquist test problem (6.1), obtaining 

. 

k∑
j=0

αjyn+j = hλ

k∑
j=0

βjyn+j .

By denoting .̂h = hλ, we have  

.

k∑
j=0

(αj − ĥβj )yn+j = 0, (6.4) 

which is a scalar homogeneous linear difference equation. As observed in Sect. 2.2, 
solving homogeneous linear difference equations (2.8) requires the computation 
of the zeros of the corresponding characteristic polynomial (2.13) that, for (6.4), 
assumes the form 

. 

k∑
j=0

(αj − ĥβj )z
j = 0.

In terms of first and second characteristic polynomials (3.14) and (3.15), last  
equation is equivalent to 

.ρ(z) − ĥσ (z) = 0.
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Definition 6.1 For a given LMM (3.1), the  stability polynomial is given by 

.π(z, ĥ) = ρ(z) − ĥσ (z), (6.5) 

where .ρ(z) and .σ(z) are the first and second characteristic polynomials (3.14) 
and (3.15) of (3.1). 

In order to reproduce the same behavior of the exact solution of (6.1) along the 
solutions computed by (6.4), we need to require that the stability polynomial (6.5) 
satisfies the root condition introduced in Definition 3.8, for given values of .̂h ∈ C. 
This fact motivates the following definition. 

Definition 6.2 A linear multistep method (3.1) is absolutely stable for a given 
.̂h ∈ C, if the stability polynomial (6.5) satisfies the root condition introduced 
in Definition 3.8. 

Definition 6.3 For a linear multistep method (3.1), the  region of absolute 
stability is the set 

.R = {̂h ∈ C : π(z, ĥ) satisfies the root condition}. (6.6) 

Definition 6.4 For a linear multistep method (3.1), the  stability interval is the 
intersection of the stability region (6.6) with the real axis. 

In summary, the root condition applied to the stability polynomial . π(z, ĥ)

guarantees that the numerical solution computed by the corresponding LMM (3.1) 
applied to (6.1) reproduces the same behavior of its exact solution, for any . ̂h
belonging to the stability region (6.6). Hence, .̂h ∈R is the discrete counterpart of 
Re.(λ) < 0 for linear multistep methods (3.1).
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Example 6.1 Let us compute the stability region of Euler method (2.19). 
Regarded as LMM, its first characteristic polynomial (3.14) is 

. ρ(z) = z − 1,

while its second characteristic polynomial (3.15) is 

. σ(z) = 1.

Then its stability polynomial (6.5) is given by 

. π(z, ĥ) = z − 1 − ĥ

and its root .z = 1 + ĥ has to satisfy the condition 

. |1 + ĥ| ≤ 1,

describing the circle of unitary radius and centered in .(−1, 0), which is the 
stability region of the explicit Euler method. Its stability interval is then given 
by .[−2, 0]. 

Example 6.2 In the previous example, we have computed the stability inter-
val of Euler method (2.19), equal to .[−2, 0]. We now aim to understand 
the meaning of this issue. Euler method is absolutely stable, according to 
Definition 6.2, for any .̂h ∈ C whose real part belongs to the interval .[−2, 0]. 
Equivalently, .−2 ≤ hRe(λ) ≤ 0, i.e., 

.0 ≤ h ≤ − 2

Re(λ)
. (6.7) 

In other terms, a bounded stability interval imposes a stepsize restriction. 
Such a restriction is only due to stability purposes and it is not related to the 
accuracy we aim to achieve. In other terms, a value of h outside the interval 
.[0,− 2

Re(λ)
] provides unstable numerical solutions by using Euler method 

(2.19); this is not the case if the constraint (6.7) is satisfied. A numerical 
evidence is given by applying Euler method (2.19) to the test problem 

. 
y′(t) = −4y(t), t ∈ [0, 10],
y(0) = 1,

(continued)
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Example 6.2 (continued) 
whose exact solution is .y(t) = e−4t . In this case, the restriction (6.7) to the 
stepsize becomes 

. 0 ≤ h ≤ 1

2
.

Applying the method with stepsize . 110 leads to an error in the final point 
equal to .4.2483e−18, confirming that the numerical solution has inherited 
the stable behavior of the exact solution. This is not the case when the chosen 
stepsize is . 23 : in this case the error in the final point is .2.1268e+03 and the 
numerical solution is not stable. It is interesting to analyze what happens when 
the stepsize is . 12 . In this case the error in the last point is big, since it is equal 
to 1, but the solution is not unstable: this confirms that the stepsize restriction 
(6.7) has to be respected only for stability purposes, but it is not responsible 
of the accuracy of the method. 

Example 6.3 Let us study the stability properties of Milne-Simpson method 
(3.2), applied to Dahlquist test problem (6.1). We obtain 

.

(
1 − ĥ

3

)
yn+2 − 4

3
ĥyn+1 −

(
1 + ĥ

3

)
yn = 0, (6.8) 

i.e., a second-order homogeneous linear difference equation. Let us solve it, 
using the arguments treated in Chap. 2, by first computing the roots of its 
characteristic polynomial as solutions of the algebraic equation 

. 
(
3 − ĥ

)
x2 − 4ĥx − (

3 + ĥ
) = 0,

given by 

. x1 = 2ĥ +
√
9 − 3ĥ2

3 − ĥ
, x2 = 2ĥ −

√
9 − 3ĥ2

3 − ĥ
.

Then, the solution of Eq. (6.8) is given by 

. yn = σ1x
n
1 + σ2x

n
2 , σ1, σ2 ∈ R.

(continued)
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Example 6.3 (continued) 
The reader can check that 

. 

x1 = 1 + ĥ + O(̂h2) = exp(̂h) + O(̂h2),

x2 = −1 + ĥ

3
+ O(̂h2) = exp

(
− ĥ

3

)
+ O(̂h2).

As a consequence, 

. yn ≈ σ1 exp (λ(tn − t0)) + σ2 exp

(
−λ(tn − t0)

3

)

and, assuming .Re(λ) < 0, its first summand tends to 0 when . tn grows, while 
the second one exhibits an exponential growth in . tn. The term associated to the 
root . x2 is denoted in the literature as parasitic component. These components 
destroy the overall accuracy (and, especially, the long-term behavior) of the 
underlying numerical method, so they deserve a special attention. We dedicate 
our efforts in understanding the role of parasitic components in Chap. 8, in  
also in order to understand when their exponential blow-up becomes visible 
in the numerical dynamics. 

6.3 Absolute Stability of Runge-Kutta Methods 

Let us now move to the linear stability analysis of Runge-Kutta methods (4.11). 
Such methods, applied to the Dahlquist test equation (6.1), assume the form 

. 

yn+1 = yn + ĥbTY,

Y = eyn + ĥAY.

The second equation is equivalent to 

. Y = (I − ĥA)−1eyn,

where .I ∈ Rs×s is the identity matrix. As a consequence, 

. yn+1 =
(
1 + ĥbT(I − ĥA)−1e

)
yn.

Then, we give the following definition.
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Definition 6.5 For a given RK method (4.11), its stability function is defined 
as follows: 

.R(̂h) = 1 + ĥbT(I − ĥA)−1e. (6.9) 

In other terms, a RK method (4.11) applied to (6.1) assumes the form 

.yn+1 = R(̂h)yn (6.10) 

and, as a consequence, the monotonicity of the solution to (6.1) is inherited by its 
numerical approximation computed by a RK method if .|R(̂h)| < 1, for given values 
of .̂h ∈ C. This motivates the following definition. 

Definition 6.6 A Runge-Kutta method (4.11) is absolutely stable for a given 
.̂h ∈ C, if the stability function (6.9) satisfies the condition 

.|R(̂h)| < 1. (6.11) 

Definition 6.7 For a Runge-Kutta method (4.11), the  region of absolute 
stability is the set 

.R = {̂h ∈ C : |R(̂h)| < 1}. (6.12) 

Definition 6.8 For a Runge-Kutta method (4.11), the  stability interval is the 
intersection of the stability region (6.12) with the real axis. 

In summary, condition (6.11) on the stability function .R(̂h) guarantees that the 
numerical solution computed by the corresponding RK method (4.11) applied to 
(6.1) reproduces the same behavior of its exact solution, for any . ̂h belonging to 
the stability region (6.12). Hence, in terms of stability of exact and approximate 
solutions, .|R(̂h)| < 1 is the discrete counterpart of Re.(λ) < 0 for RK methods.
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Example 6.4 Let us compute the stability region of the Gaussian RK method 
(4.24). The corresponding stability function (6.9) is given by 

. R(̂h) = 2 + ĥ

2 − ĥ
.

In this case, the stability condition (6.11) holds true for any .̂h ∈ C such that 
Re.(̂h) < 0. Then, the stability region (6.12) is the whole negative half plane 
and the stability interval is given by .(−∞, 0]. 

An equivalent expression for the stability function (6.9) has been provided by 
Dekker and Verwer (Heerhugowaard, 1946-Heiloo, 2011) in [141], according to the 
following result (also see [67]). 

Theorem 6.1 The stability function (6.9) of a Runge-Kutta method admits 
the form 

.R(̂h) = det(I + ĥ(ebT − A))

det(I − ĥA)
. (6.13) 

Proof For a given couple of vectors .u, v ∈ Rs , the determinant of the matrix . I +uvT

is given by .1 + vTu (the proof is left to the reader). As a consequence 

. det(I + ĥebT(I − ĥA)−1) = 1 + ĥbT(I − ĥA)−1e = R(̂h).

Since 

. I + ĥ(ebT − A) = (I + ĥebT(I − ĥA)−1)(I − ĥA),

we have 

. det(I + ĥ(ebT − A)) = R(̂h) det(I − ĥA)

and the thesis holds true. ��
Equation (6.13) is useful to realize that the stability function of an explicit RK 

method is an algebraic polynomial in . ̂h, since .det(I − ĥA) = 1. As a consequence, 
the corresponding stability region (6.12) is necessarily bounded. For implicit RK 
methods, the stability function (6.13) is a rational function and, in this case, 
unbounded stability regions are allowed.
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We finally observe that there is a connection between the stability function (6.9) 
and the rational approximation of the exponential function. Indeed, replacing the 
exact solution (6.2) with .c = 1 in the recurrence (6.10) and denoting by p the order 
of the corresponding RK method, we obtain 

. eλ(tn+h) = R(̂h)eλtn + O(hp+1),

or, equivalently, 

. eλtn(eĥ − R(̂h)) = O(hp+1).

Last equation holds true for any . tn if 

. R(̂h) = eĥ + O(hp+1).

In other terms, .R(̂h) is an approximation of order p to the exponential . eĥ. 

6.4 Absolute Stability of Multivalue Methods 

Let us now provide the linear stability analysis of multivalue methods in GLMs 
form (5.4) (also refer to [63, 67, 228]). Such methods, applied to the Dahlquist test 
equation (6.1), read 

. 

Y = ĥAY + Uy[n−1],

y[n] = ĥBY + Vy[n−1]

and the first equation is equivalent to 

. Y = (I − ĥA)−1Uy[n−1],

where .I ∈ Rs×s is the identity matrix. As a consequence, 

. y[n] =
(
V + ĥB(I − ĥA)−1U

)
y[n−1].

Definition 6.9 For a given multivalue method (5.4), its stability matrix is 
defined by 

.S(̂h) = V + ĥB(I − ĥA)−1U. (6.14)
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In other terms, a multivalue method (5.4) applied to (6.1) assumes the form 

. y[n] = S(̂h)y[n−1].

As a consequence, the monotonicity of the solution to (6.1) is inherited by its 
numerical approximation computed by a multivalue method if the spectral radius 
of the stability matrix .ρ(S(̂h)) < 1, for given values of .̂h ∈ C. This motivates the 
following definition. 

Definition 6.10 A multivalue method (5.4) is absolutely stable for a given 
.̂h ∈ C, if the stability matrix (6.14) satisfies the condition 

.ρ(S(̂h)) < 1, (6.15) 

where .ρ(S(̂h)) is the spectral radius of the stability matrix (6.14). 

Definition 6.11 For a multivalue method (5.4), the  region of absolute stabil-
ity is the set 

.R = {̂h ∈ C : ρ(S(̂h)) < 1}. (6.16) 

Definition 6.12 For a multivalue method (5.4), the  stability interval is the 
intersection of the stability region (6.16) with the real axis. 

In summary, condition (6.15) guarantees that the numerical solution computed by 
the corresponding multivalue method (4.11) applied to (6.1) reproduces the same 
behavior of its exact solution, for any . ̂h belonging to the stability region (6.16). 
Hence, in terms of stability of exact and approximate solutions, .ρ(S(̂h)) < 1 is the 
discrete counterpart of Re.(λ) < 0 for multivalue methods.
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Example 6.5 Let us compute the stability region of the Gaussian RK method 
(4.24) using its multivalue representation (5.4), depending on the Butcher 
tableau 

. 

⎡
⎣A U

B V

⎤
⎦ =

⎡
⎣

1
2 1

1 1

⎤
⎦ .

The corresponding stability matrix (6.14) is then given by the scalar 

. S(̂h) = 2 + ĥ

2 − ĥ
,

confirming the analogous analysis given in Example 6.4. Then, the stability 
region (6.16) is the whole negative half plane and the stability interval is given 
by .(−∞, 0]. 

We finally observe that the analysis of the stability matrix (6.14) and its 
characteristic polynomial may be a non-trivial problem, especially when a large 
number of internal stages is involved. For this reason, techniques in the direction 
of remarkably reducing the complexity of this issue have been introduced in the 
literature. In particular, for a multivalue method (5.4), a desired property is the so-
called inherent Runge-Kutta stability, i.e., the characteristic polynomial .p(ω, ĥ) of 
the stability matrix (6.14) can be factor out as 

. p(ω, ĥ) = ωr−1(ω − R(̂h)),

being .R(̂h) the stability function (6.9) of a Runge-Kutta method. In this way, linear 
stability analysis of multivalue methods with inherent Runge-Kutta stability can 
be remarkably simplified, since it only relies on the analysis of the properties of 
.R(̂h). The construction of multivalue methods in the form of GLMs (5.4) with 
inherent Runge-Kutta stability has been addressed, for instance, in [67, 228, 348] 
and references therein. 

6.5 Boundary Locus 

We now aim to discuss a technique useful to draw the stability region of a numerical 
method, based on the plot of its boundary . ∂R. For this reason, the procedure we are 
going to present is known in the literature as boundary locus technique [242].
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Let us first analyze the boundary locus of a linear multistep method (3.1). 
According to Definition 6.3, the boundary of the stability region of a LMM is given 
by the values .̂h ∈ C such that there exists at least a root of the corresponding stability 
polynomial (6.5) having unitary modulus. Such a root is then of the form . eiθ , with 
.θ ∈ [0, 2π ] and, since it is solution of (6.5), we have  

. π(eiθ , ĥ) = 0.

Therefore, 

.̂h(θ) = ρ(eiθ )

σ (eiθ )
, θ ∈ [0, 2π ], (6.17) 

that is the analytic expression of a parametric curve describing the boundary of the 
stability region of the corresponding LMM. 

We now provide a Matlab implementation of the boundary locus technique for 
LMMs (3.1). 

Program 6.1 (Boundary Locus of a Linear Multistep Method) 
% Function drawing the boundary locus of a given LMM 

% Inputs: 
% - alf, vector of the coefficients . α0, . α1, . . . ., . αk; 
% - bet, vector of the coefficients . β0, . β1, . . . ., . βk; 

% Output: 
% plot of the boundary locus of the corresponding LMM 

function boundaryLocusLMM(alf,bet) 
theta=linspace(0,2*pi); 
r=exp(1i*theta); 
h=polyval(alf,r)./polyval(bet,r); 
plot(real(h),imag(h)) 

Example 6.6 Let us draw the stability regions of the following linear multi-
step methods: 

• the explicit Euler method (2.19), requiring as inputs 

. alf = [−1 1], bet = [1 0];

• the implicit Euler method (2.32), with inputs 

. alf = [−1 1], bet = [0 1];
(continued)
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Example 6.6 (continued) 
• the trapezoidal method (2.33), with inputs 

. alf = [−1 1], bet = [1/2 1/2];

• the two-step Adams-Bashforth method (3.3), with inputs 

. alf = [0 − 1 1], bet = [−1/2 3/2 0].

Figures 6.1, 6.2, 6.3, and 6.4 show the stability regions of above meth-
ods, shaded in grey. We can observe that explicit Euler and the two-step 
Adams-Bashforth methods have bounded stability regions; implicit Euler and 
trapezoidal methods have unbounded stability regions. 

Let us now provide the boundary locus of selected RK methods (4.8). According 
to Definition 6.7, the boundary of the stability region of RK methods is given by 
the values .̂h ∈ C such that .R(̂h) = eiθ , with .θ ∈ [0, 2π ], i.e., the modulus of the 
stability function is equal to 1. For a possible implementation of the boundary locus 
technique for RK methods, see Exercise 2. 

Fig. 6.1 Stability region of the explicit Euler method (2.19)
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Fig. 6.2 Stability region of the implicit Euler method (2.32)
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Fig. 6.3 Stability region of the trapezoidal method (2.33)
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Fig. 6.4 Stability region of two-step Adams-Bashforth method (3.3) 

Example 6.7 Let us draw the stability region of the 3/8-method (4.21), whose 
stability function is given by 

. R(̂h) = 1 + ĥ + 1

2
ĥ2 + 1

6
ĥ3 + 1

24
ĥ4.

Figure 6.5 shows the corresponding stability region, shaded in grey. As 
expectable, such a region is bounded, since the 3/8-method is explicit and 
its stability function is an algebraic polynomial. 

Example 6.8 Let us now display the stability region of the two-stage Radau 
IA method (4.26), whose stability function is given by 

. R(̂h) = 2(̂h + 3)

ĥ2 − 4ĥ + 6
.

Figure 6.6 shows the corresponding stability region, shaded in grey. The 
region is unbounded: as discussed in Sect. 6.3, since the method is implicit, 
.R(̂h) is a rational function and, correspondingly, unbounded stability regions 
are admitted.
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Fig. 6.5 Stability region of the 3/8-method (4.21) 

Fig. 6.6 Stability region of the two-stage Radau IA method (4.26) 

We finally analyze the stability regions of multivalue methods (5.4). According 
to Definition 6.10, the boundary of the stability region of multivalue methods is 
given by the values .̂h ∈ C such that the spectral radius of the stability matrix (6.14) 
is equal to 1. For a possible implementation of the boundary locus technique for 
multivalue methods, see Exercise 3.



190 6 Linear Stability

Fig. 6.7 Stability region of the multivalue method GLM2 (5.14) 

Example 6.9 We draw the stability region of the multivalue method GLM2 
(5.14), whose stability matrix is given by 

. S(̂h) =

⎡
⎢⎢⎢⎣

ĥ

6
− 1

3

4

3
− ĥ

2

− ĥ

2

3

2
ĥ + 1

⎤
⎥⎥⎥⎦ .

Figure 6.7 shows the corresponding stability region, shaded in grey. The 
region is bounded, as expectable since the method is explicit. 

6.6 Unbounded Stability Regions 

In the previous section we have seen that stability regions may be bounded (as it is 
always the case for explicit methods) or unbounded (as it may happen for implicit 
methods). We now aim to focus our attention on unbounded stability regions, giving 
some relevant definitions.
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6.6.1 A-Stability 

The first stability notion we introduce brings to the inclusion of the stability domain 
of the test problem (6.1), i.e., the set of points in the complex plane with negative 
real part, in the stability region of a numerical method applied to (6.1). Such an issue 
has been introduced by Dahlquist in his famous paper [108] (also see [66]). 

Definition 6.13 A numerical method for (1.1) is A-stable if its stability 
region contains the stability domain of (6.1), i.e., the set of points in the 
complex plane with negative real part. 

Hence, the stability region of an A-stable method certainly contains the left half 
plane displayed in Fig. 6.8. As a consequence, according to the examples provided 
in the previous section, the implicit Euler method (2.32), the trapezoidal method 
(2.33) and the Radau IA method are certainly A-stable. 

A curiosity about the choice of this denomination (i.e., A-stability) comes from 
Dahlquist himself, through the following quotation reported in [195]: “I didn’t 
like all these “strong”, “perfect”, “absolute”, “generalized”, “super”, “hyper”, 
“complete” and so on in mathematical definitions, I wanted something neutral; and 
having been impressed by David Young’s “property A”, I choose the term A-stable”. 

Alternative stability definitions, though weaker than A-stability, are based on 
providing unbounded stability intervals, according to the following definitions. 

Fig. 6.8 (Shaded) region of the complex plane contained in the stability region of an A-stable 
method
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Fig. 6.9 (Shaded) region of the complex plane contained in the stability region of an A.(α)-stable 
method 

Definition 6.14 A numerical method for (1.1) is .A(α)-stable, for  . α ∈
(0, π/2), if its stability region contains the set .{̂h ∈ C : −α < π−arg ĥ < α}. 

According to this definition, introduced by Widlund in [344], the stability region 
of an A(. α)-stable numerical method contains the sector shaded in Fig. 6.9. The  
stability interval of an A(. α)-stable method is the whole negative real axis, as it is for 
A-stable methods. We also observe that A-stability can also be defined as A(. π/2)-
stability. 

We conclude with the following definition, provided by Cryer in [105]. 

Definition 6.15 A numerical method for (1.1) is .A0-stable if its stability 
region contains the negative real axis. 

According to above definitions, all A-stable methods are also A.(α)-stable and 
A.0-stable; A.(α)-stable methods are also A.0-stable. 

6.6.2 Padé Approximations 

As seen in Sect. 6.3, the stability function of a Runge-Kutta method is a rational 
approximation of order p to the exponential. In some sense, we can argue that there
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is a connection between the stability properties of Runge-Kutta methods and rational 
approximations to the exponential. Hence, we are interested in analyzing rational 
functions of the type 

.Rn
m(x) =

n∑
i=0

aix
i

m∑
j=0

bjx
j

, x ∈ C, (6.18) 

where n and m are given non-negative integer numbers. We always suppose that 
.a0 = b0 = 1, .an 	= 0 and .bm 	= 0. The function .Rn

m(x) is a rational approximation 
of order p to the exponential if .Rn

m(x) = ex + O(xp+1) or, equivalently, if 

.

n∑
i=0

aix
i −

⎛
⎝

m∑
j=0

bjx
j

⎞
⎠

( ∞∑
k=0

xk

k!

)
= O(xp+1). (6.19) 

Example 6.10 Let us construct the approximant .R1
1(x) to the exponential, of 

the type 

. R1
1(x) = 1 + a1x

1 + b1x
.

According to Eq. (6.19), we have  

. 1 + a1x − (1 + b1x)

(
1 + x + x2

2
+ . . .

)
= O(xp+1).

Collecting the powers of x leads to 

. (a1 − b1 − 1)x −
(

b1 + 1

2

)
x2 = O(x3),

which gives 

. a1 = 1

2
, b1 = −1

2
.

Hence, 

.R1
1(x) = 1 + 1

2x

1 − 1
2x

.
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The rational function (6.18) depends on .n + m unknown coefficients that solve 
.n + m algebraic conditions obtained by annihilating the first .n + m terms in 
the left-hand side of (6.19). Such terms are the coefficients of . x, x2, . . . , xn+m

and, as a consequence, the right-hand side of (6.19) is .O(xn+m+1). Hence, the 
maximal attainable order is .p = n + m. Maximal order rational approximations to 
the exponential are called Padé approximations. 

The following theorem, proved by Butcher, gives the coefficients . ai and . bj of the 
Padé approximation (6.18) in closed form. The interested reader can find the proof 
in [67]. 

Theorem 6.2 The coefficients of the Padé approximation . Rn
m (6.18) are given 

by 

. 

ai = n!
(n + m)!

(n + m − i)!
i!(n − i)! , i = 1, 2, . . . , n,

bj = (−1)j
m!

(n + m)!
(n + m − j)!
i!(m − j)! , j = 1, 2, . . . , m.

The following definition, provided by Ehle [156, 157], is relevant in creating a 
bridge among rational approximations to the exponential and stability. 

Definition 6.16 A rational approximation to the exponential .Rn
m(x) is said 

A-acceptable if .|Rn
m(x)| < 1, for any .x ∈ C such that .Re(x) < 0. 

As a consequence, a Runge-Kutta method is A-stable if its stability function 
is A-acceptable. The following results on A-acceptability in the case of Padé 
approximations holds. The interested reader can find a proof in [25]. 

Theorem 6.3 All Padé approximations .Rn
n(x) to the exponential are A-

acceptable. 

A consequence of this results is given by the following theorem, on the A-
stability of all Gaussian RK methods, presented in Sect. 4.4.1.
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Corollary 6.1 All Gauss RK methods (see Sect. 4.4.1) are A-stable. 

Proof Gaussian RK methods depending on s stages have order 2s, hence their 
stability function .R(̂h) is an approximation of order .p = 2s to the exponential. 
The representation of the stability function provided by (6.13) is given by a rational 
function where both the numerator and the denominator have the same order s. 
Hence, .R(̂h) is a rational approximation to the exponential of maximal order 
2s, i.e., it is the Padé approximation .Rs

s (̂h), which is A-acceptable according to 
Theorem 6.3. Correspondingly, all Gaussian methods are A-stable. ��

In other terms, when a Gaussian RK method is applied, there are no restrictions 
on the stepsize due to stability. As we will see in next chapter, this property is 
particularly relevant for stiff problems. 

6.6.3 L-Stability 

We conclude this section with a stability concept stronger than A-stability, which 
will be particularly useful in the integration of stiff problems, presented in Chap. 7. 
Let us first give this definition for Runge-Kutta methods. 

Definition 6.17 An A-stable Runge-Kutta method (4.8), with stability func-
tion .R(z) given by (6.9), is  L-stable if 

. lim|z|→∞ R(z) = 0.

This concept, introduced by Ehle in [156], requires that the stability function 
of a Runge-Kutta method tends to zero when its argument tends to infinity. Let us 
provide few examples of L-stable methods. 

Example 6.11 The stability function of the implicit Euler method (2.32) is 
given by 

. R(z) = 1

1 − z
.

(continued)
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Example 6.11 (continued) 
Hence, since the method is A-stable, it is also L-stable. The stability function 
of the Radau method (4.26) is given by 

. R(z) = 2(z + 3)

z2 − 4z + 6
.

Also in this case, since the method is A-stable, it is also L-stable. 

Clearly, according to above definition, all L-stable methods are also A-stable, 
A.(α)-stable and A.0-stable. We now aim to provide a way to check if an A-stable 
Runge-Kutta method is also L-stable, according to a result given in [195]. 

Theorem 6.4 An A-stable Runge-Kutta method (4.8) with nonsingular coef-
ficient matrix A is L-stable if the last row of the matrix A is equal to . bT, i.e. 

. ATes = b,

where .es = [0 0 . . . 1] ∈ Rs . 

Proof We first compute the limit 

. lim|z|→∞ R(z) = 1 − bTA−1e. (6.20) 

Since .bT = eT
sA, we have  

. lim|z|→∞ R(z) = 1 − eT
se = 0

and the thesis holds true. ��
According to this result, all Radau IIA methods are L-stable, since the last row 

of A is equal to . bT. Another similar condition of L-stability is given as follows.
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Theorem 6.5 An A-stable Runge-Kutta method (4.8) with nonsingular coeffi-
cient matrix A is L-stable if all the elements of the first column of A are equal 
to . b1, i.e. 

. Ae1 = b1e,

where .e1 = [1 0 . . . 0] ∈ Rs . 

Proof Since, from the hypothesis, 

. e = 1

b1
Ae1,

from (6.20) we obtain that 

. lim|z|→∞ R(z) = 1 − 1

b1
bTA−1Ae1 = 0,

leading to the thesis. ��
According to this result, all Radau IA methods are L-stable, since the first column 

of A is equal to . b1. We finally give the definition of L-stability in the general setting 
of multivalue methods (5.4). 

Definition 6.18 A multivalue method (5.4) is L-stable if it is A-stable and 

. lim|z|→∞ ρ(S(z)) = 0,

where . ρ is the spectral radius and .S(z) is the stability matrix (6.14). 

6.7 Order Stars 

In developing numerical methods for ODEs (1.1) it is important to assess a good 
balance between order and stability properties. As expectable, for fixed values of 
the number s of internal stages, we cannot construct RK methods with unbounded 
stability region of any order; similarly, we cannot expect to develop linear multistep 
methods (3.1) of any order and with unbounded stability region for any fixed number 
k of steps. In this section we aim to clarify which is maximum attainable order for
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A-stable linear multistep and RK methods: in the literature, results providing the 
relationships between order and stability properties are known as order and stability 
barriers. 

Let us start with the case of Runge-Kutta methods. A relevant tool in developing 
order and stability barriers has been introduced in 1978 by Hairer, Nørsett and 
Wanner in their paper [342] and it is known in the literature as order stars. In order 
to present the theory of order stars, we introduce the following definition. 

Definition 6.19 The relative stability function .R̃(̂h) associated to a Runge-
Kutta method (4.8) with stability function .R(̂h) is given by 

.R̃(̂h) = e−ĥR(̂h). (6.21) 

The relative stability function is then given by ratio between the stability function 
and the exponential function, i.e., between a rational function and the function 
approximated by it. We observe that the stability function .R(̂h) and the relative 
stability function .R̃(̂h) share the same poles and .|R(iy)| = |R̃(iy)|, .y ∈ R. 

Definition 6.20 The order star S is the set of points in the complex plane 
such that .|R̃(̂h)| > 1, where .R̃(̂h) is the relative stability function (6.21). 

The following result holds true. 

Lemma 6.1 The stability function .R(̂h) of a Runge-Kutta method (4.8) is 
A-acceptable if and only if the order star S has no intersection with the 
imaginary axis and .R(̂h) has no poles in the negative half-plane. 

Proof The if part follows from the fact that, on the imaginary axis, .|eĥ| = 1 and 
from the application of the maximum principle. The only if part follows from the 
definition of A-acceptability and order star. ��
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Example 6.12 Let us analyze the order star associated to the rational function 

.R(z) = 1 + 1
3z

1 − 2
3z + 1

6z
2
, (6.22) 

that is the Padé approximation .R1
2(x) to the exponential function. The 

corresponding order star is shown in Fig. 6.10, shaded in gray. According 
to Theorem 6.1, .R(z) is A-acceptable, since the order star has no intersection 
with the imaginary axis and the poles, displayed in the figure as empty circles, 
lie in the positive half-plane. Hence, .R(z) is the stability function of an A-
stable method. 

Figure 6.10 also shows a characteristic property of an order star, stated in the 
following proposition. A detailed proof can be found in [242, 342]. 

Lemma 6.2 The boundary of the order star contains exactly two branches 
that tend to infinity. 

Order stars consist in the union of regions, called fingers, which can be bounded 
or unbounded. For instance, the order star in Fig. 6.10 contains two bounded fingers 

Fig. 6.10 Order stars associated to the rational function (6.22)
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and an unbounded one. The complement of an order star instead consists in the 
union of dual fingers, which can be bounded or unbounded. Figure 6.10 contains a 
bounded dual finger and an unbounded one. A finger belonging to n sectors of B is 
called a finger of multiplicity n. As regards Fig. 6.10, each finger has multiplicity 
one. The following result clarifies the role of fingers and dual fingers of an order 
star, whose proof can be found in [224, 242, 342]. 

Lemma 6.3 For a given order star, a bounded finger of multiplicity n 
contains at least n poles of the stability function .R(z), while each bounded 
dual finger of multiplicity n contains at least n zeros of the stability function 
.R(z). 

Figure 6.10 shows a pole in each bounded finger (displayed as empty circles) and 
a zero in the dual bounded finger (displayed as a cross). We now present a further 
lemma useful to prove the main results of this section. The interested reader can find 
its proof again in [224, 242, 342]. 

Lemma 6.4 A function .R(z) is a rational approximation of order p to the 
exponential if and only if, in a neighborhood of the origin, its order star 
consists in .p + 1 sectors of angle .π/(p + 1) separated by .p + 1 sectors 
of its dual with the same angle. 

We can now prove the main result of this section, known in the literature as Ehle 
barrier. 

Theorem 6.6 A Padé approximation .Rn
m(z) is A-acceptable if and only if 

.m − 2 ≤ n ≤ m. 

Proof Consider an A-acceptable approximation .R(z) of order p. Then, according 
to Lemma 6.4, there exist at least .[(p + 1)/2] fingers starting in the left half-plane. 
Moreover, in force of Lemma 6.1, such fingers do not intersect with the imaginary 
axis and, due to Lemma 6.2, none of them is bounded. As a consequence, such 
.[(p + 1)/2] fingers cluster in an unbounded multiple finger and . [(p + 1)/2] − 1
bounded dual fingers in the left half-plane also exist. Due to Lemma 6.3, each of 
these dual fingers contain at least a zero of .R(z), hence .R(z) results to have at least
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.[(p + 1)/2] − 1 zeros. If .R(z) is the Padé approximation .Rn
m(z), then . p = n + m

and .Rn
m(z) has n zeros. Then, 

. 

[
p + 1

2

]
− 1 ≤ n,

or, equivalently, 

. 2n + 2 ≥ 2

[
p + 1

2

]
.

Moreover, .2[(p + 1)/2] ≥ p, since .2[(p + 1)/2] is equal to .p + 1 if p is odd and to 
p if p is even. Hence, we obtain .2n + 2 ≥ p, i.e., 

. n ≥ m − 2.

We leave to the reader the proof that we need .n ≤ m in order to have A-acceptability. 
��

A consequence of this results is the order and stability barrier for Runge-Kutta 
methods, first stated by Daniel and Moore [139]. Formerly known as Daniel-Moore 
conjecture, it was proved in [342] with order stars theory (also see [224]). 

Corollary 6.2 The maximum attainable order of an A-stable Runge-Kutta 
method (4.8) is 2s, where s is the number of stages. 

Proof The A-acceptability of a Padé approximation .Rn
m(z) requires .m−2 ≤ n ≤ m, 

according to Theorem 6.6. Since, for a s-stage RK method, .m ≤ s, we have  

. p = n + m ≤ 2m ≤ 2s,

leading to the thesis. ��
In other terms, we have proved that Gaussian RK methods are A-stable methods 

of maximal order. We conclude this section stating an analogous order and stability 
barrier for linear multistep methods (3.1), well-known in the literature as second 
Dahlquist barrier. The complete proof can be found, for instance, in [108, 195, 224].
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Theorem 6.7 

• An explicit linear multistep method cannot be A-stable; 
• the maximum attainable order for an A-stable linear multistep method is 

2; 
• the second order A-stable linear multistep method with smallest error 

constant is the trapezoidal method (2.33). 

In summary, we can conclude that Runge-Kutta methods allow to achieve a better 
compromise between order and stability, with respect to linear multistep methods, 
since Daniel-Moore barrier is less restrictive than the second Dahlquist barrier. 

6.8 Exercises 

1. Using Program 6.1, depict the boundary locus of Milne-Simpson method 
(3.2) and comment the results. Certainly, you can expect very poor stability 
properties, also taking into account the arguments provided in Example 6.3. It  
is also worth observing that, due to first Dahlquist barrier (see Theorem 3.5), 
Milne-Simpson method is a maximal order method, since it is a two-step 
method of order 4. To some extent, all degrees of freedom (given by its 
coefficients) have been employed to maximize the order of convergence, rather 
than its stability region. 

2. Write a code in your favorite programming language that draws the stability 
region of a given RK method (4.8), by displaying its boundary locus. The 
program must take in input the coefficient matrix A and the vector of the 
weights b, shades the corresponding stability region and depicts its boundary. 

3. Write a code in your favorite programming language that draws the stability 
region of a given multivalue method (5.4), by displaying its boundary locus. 
The program must take in input the coefficient matrices A, U , B, V , shades the 
corresponding stability region and depicts its boundary. 

4. Construct the so-called Padé table up to 4, i.e., the table of Padé approximations 
Ri 

j (z), for  i, j=1, 2, 3, 4, and discuss the A-acceptability of each element of the 
table. 

5. Analyze the linear stability of all Lobatto methods introduced in Sect. 4.4.3.
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6. Plot the boundary locus of the following LMMs and comment the results: 

. 

yn+2 − 4

3
yn+1 + 1

3
yn = 2

3
hfn+2,

yn+3 − 18

11
yn+2 + 9

11
yn+1 − 2

11
yn = 6

11
hfn+3,

yn+4 − 48

25
yn+3 + 36

25
yn+2 − 16

25
yn+1 + 3

25
yn = 12

25
hfn+4.

What happens to the stability regions when the order of the underlying 
difference equation increases? Why? 

7. Design a linear stability theory for LMMs (3.1) and RK methods (4.8) in 
correspondence of a linear scalar test equation with a forcing term in the right-
hand side, i.e., 

. y′(t) = λy(t) + a(t), λ ∈ C, Re(λ) < 0,

with a : [t0,+∞) → R. 
8. Given the following second order ODE 

. y′′(t) = −200y(t), t ≥ 0,

with y(0) = 0, y′(0) = −20, provide the stepsize restrictions needed to 
approximate its solution by the explicit Euler method (2.19). Give an exper-
imental confirmation of the sharpness of the obtained bound, by employing 
Program 2.1. 

9. Analyze the linear stability properties of the family of θ -methods 

. yn+1 = yn + θhfn + (1 − θ)hfn+1, θ ∈ [0, 1].

Are there values of θ ensuring that the corresponding methods are A-stable? 
10. Prove that the so-called TR-BDF2 method [251] 

. 

y∗ = yn + h

4

(
fn + f

(
tn + h

2
, y∗

))
,

yn+1 = 1

3

(
4y∗ − yn + hfn+1

)
,

is L-stable. Note that the formula for the computation of y∗ is the trapezoidal 
method performing a step of length h/2, starting from yn.



Chapter 7 
Stiff Problems 

Nevertheless, even though stiffness is phenomenologically well 
understood, the lack of a proper definition is unsatisfactory, not 
least from a pedagogical perspective. There is a need to define 
stiffness in a reasonably rigorous, simple and mathematically 
appealing way, rather than relying on descriptive approaches, 
in terms of operational criteria, method classes, software 
performance, or various notions of how “computationally 
demanding” a problem is or might be. 

(Gustaf Söderlind, Laurent Jay, Manuel Calvo [326]) 

So far we have analyzed characteristic features of numerical methods for ODEs, 
mainly dealing with their accuracy and stability, with a focus on the approximation 
of a general Hadamard well-posed problem (1.1). However, in some cases, the 
choice of the numerical method to be used is driven by some features of the 
problems itself, which have to be properly taken into account. For instance, this is 
the case of the so-called stiff problems, usually occurring in mathematical modeling 
for several applications. This chapter is focused on the analysis of the main features 
of stiff problems and their numerical discretization; an exhaustive monograph on 
the topic is certainly given, for instance, by [195]. 

7.1 Looking for a Definition 

“Stiff equations are multiscale problems”. This sentence, contained in the first pages 
of the paper [79] by J. R. Cash (1947-2020) provides an important example of stiff 
equations, often occurring in the description of coupled physical systems having 
components which vary on very different time-scales: several examples which 
elaborate on this intuition can be found in [195, 328] and references therein. This 
situation is really very common in mathematical modeling: for instance, solving 
time-dependent partial differential equations by finite elements or finite differences 
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for the spatial discretization generally leads to stiff systems of ordinary differential 
equations, due to their intrinsic multiscale nature. 

When coupling together deterministic models of processes that occur on different 
scales (also belonging to different physical systems), it looks more accurate to 
regard the whole system as a single model rather than the combination of simpler 
constituents. When models are coupled together in this way, obviously the number 
of involved variables becomes very large, as well as the range of all scales also 
increase. Equations representing such multiscale processes are thus particularly stiff 
(see [328]). A relevant multiscale problem in Life Science is the simulation of a 
beating heart (see, for instance, [279]). Within the heart, several coupled physical 
processes occur at each level and there are complex feedback mechanisms and 
processes occurring on multiple time scales. Multiscale models are extensively 
developed, for instance, also in immunological modelling to support the major 
challenge of identifying drug targets that efficiently interfere with viral replication 
in case of influenza [203]. Multiscale modeling provides an ideal framework to 
combine several aspects such as immune response, pharmacokinetics and compre-
hensive information on virus-host interactions as diverse cellular processes which 
can be simulated individually and incorporated as separate modules into a unifying 
framework. 

The seminal paper by Curtiss and Hirschfelder [106] introduced the concept of 
stiffness for a differential problem. Anyway, although several decades have passed 
since this contribution, a definition of stiffness is not yet given in a widely shared 
manner. A gifted contribution on the topic is the paper [326] by G. Söderlind, L. 
Jay and M. Calvo, where the authors highlight that the opinion arising from many 
contributions provided after [106] agree with the difficulty to provide a rigorous 
definition of stiffness, although a stiff character can be clearly recognized in practice 
(see, for instance, [79, 141, 159, 195, 214, 242, 314, 315]). Despite the lack of a clear 
definition, it is well understood that “stiff equations are equations where certain 
implicit methods, in particular BDF, perform better, usually tremendously better, 
than explicit ones” (see [195], p. 1) and we aim to explain the reason of such a 
behavior in the remainder of this chapter. 

We start our analysis from the following sentence provided by Dekker and 
Verwer in [141]: “the essence of stiffness is that the solution to be computed is slowly 
varying but that perturbations exist which are rapidly damped”. In other terms, 
a way to detect the stiffness of a problem relies in distinguishing slowly varying 
components of a solution from rapidly varying ones. To do this, let us consider the 
following inhomogeneous linear system of ODEs 

.y′(t) = Ay(t) + ϕ(t), (7.1) 

where .A∈Rd×d has d distinct eigenvalues .λi ∈C, whose corresponding 
eigenvectors are denoted by .vi ∈Cd , .i = 1, 2, . . . , d; finally, the function
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.ϕ(t) : [t0, + ∞)→Rd is assumed to be smooth enough. Then, the general solution 
to Eq. (7.1) is represented by 

. y(t) = τ(t) + σ(t),

with 

. τ(t) =
d∑

i=1

cie
λi t vi ,

being .ci ∈R and .σ(t) is a particular solution to (7.1). If .Re(λi)< 0, .i = 1, 2, . . . , d, 
then the solution .y(t) asymptotically approaches .σ(t), as  t grows to infinity; for 
this reason, we denote .τ(t) as the transient term and .σ(t) as the steady-state term 
of the solution. Let us observe that eigenvalue . λ such that .|Re(λi)| ≤ |Re(λ)|, 
.i = 1, 2, . . . , d, corresponds to the fastest transient term, while the eigenvalue . λ such 
that .|Re(λ)| ≤ |Re(λi)|, .i = 1, 2, . . . , d, provides the slowest transient component. 

Clearly, when the discrepancy between .|Re(λ)| and .|Re(λ)| is large, we need to 
integrate the system with an extremely small stepsize h in order to let . hλ fit into 
the absolute stability region of the employed method. Such a restriction, at least for 
stability properties, is certainly not required when the system is integrated by an 
implicit method with unbounded stability region. The following definition provides 
a relevant quantity in this analysis, introduced by Lambert [243]. 

Definition 7.1 The stiffness ratio associated to (7.1) is given by 

.
|Re(λ)|
|Re(λ)| , (7.2) 

where . λ and . λ are the eigenvalues of the matrix A in (7.1) such that 

. |Re(λi)| ≤ |Re(λ)|, |Re(λ)| ≤ |Re(λi)|, i = 1, 2, . . . , d.

An alternative definition of stiffness ratio can also be found in [33], where a 
presentation in view of a rigorous definition of stiffness is also presented. A large 
stiffness ratio can be assumed, in some cases, as a stiffness indicator. However, as 
highlighted by Byrne and Hindmarsh [74], this is neither necessary nor sufficient 
condition for stiffness. Indeed, there are scalar problems which are stiff even if their 
stiffness ratio is equal to 1; the stiffness ratio (7.2) is not taking into account the 
direction of the integration (since it makes sense only for eigenvalues with negative 
real part); moreover, the stiffness ratio highlights a global property independent on
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the time scale, although stiffness may also vary along the solution. We also observe 
that the stiffness ratio characterizes linear systems (7.1) and may not be adequate 
for nonlinear ones by using the eigenvalues of the Jacobian matrix, as observed by 
Artemiev and Averina [17]. 

An alternative to the stiffness ratio was proposed by G. Dahlquist in [109], where 
he detected that the vector field of stiff systems has a large Lipschitz constant L. As  
developed in Theorem 3.1, the stepsize restriction (3.7) needed to guarantee the 
convergence of fixed point iterations for implicit linear multistep method may be 
vary severe if L is large, since the stepsize h behaves like . 1

L
. In other terms, the 

number of points required to integrate (1.1) in .[t0, T ] would behave like . L(T − t0)

and, as a consequence, it may be vary large for stiff problems, also in relation to 
the length of the time window. Although defining stiffness through the Lipschitz 
constant of the vector field may fill some of the gaps of the stiffness ratio (e.g., it 
covers nonlinear problems and it is also related to time scales), it is still not enough 
to provide an exhaustive definition of stiffness. Indeed, as the stiffness ratio, it does 
not distinguish between the solution of the problem forward in time or in reverse 
time. Although a large Lipschitz constant cannot be assumed as robust criterion 
for stiffness, it suggests to avoid employing fixed point iterations when handling 
stiff problems, since their convergence would require excessively small stepsizes: 
indeed, as we discuss in Sect. 7.6, Newton iterations are preferred. 

As announced, although stiff problems are hard to define, the effects of stiffness 
are very clear and next sections highlight how to detect them, both a-priori and a-
posteriori. 

Example 7.1 (Stiffness Ratio and Fake News Dynamics) In Example 1.4, we  
have presented Eq. (1.3) as SIR model for the diffusion of fake information 
[137]. Let us linearize the vector field around the initial value 

. 
[
S0 I0 R0

]T = [
S(0) I (0) R(0)

]T
,

leading to 

. 

S′(t) = βS0I0 − βI0S(t) − βS0I (t) + higher order terms,

I ′(t) = −βS0I0 + βI0S(t) + (βS0 − α)I (t) + higher order terms,

R′(t) = αI (t),

(7.3) 

(continued)
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Example 7.1 (continued) 
Correspondingly, let us compute the Jacobian matrix of the linear part of the 
vector field in (7.3), i.e., 

. Jα,β(S0, I0) =

⎡

⎢⎢⎢⎢⎣

−βI0 −βS0 0

βI0 βS0 − α 0

0 α 0

⎤

⎥⎥⎥⎥⎦
,

whose spectrum consists in a null eigenvalue and two real eigenvalues 
.λmin

α,β (S0, I0) and .λmax
α,β (S0, I0), with .|λmin

α,β (S0, I0)| < |λmax
α,β (S0, I0)|. Corre-

spondingly, the ratio 

.σα,β(S0, I0) = |λmax
α,β (S0, I0)|

|λmin
α,β (S0, I0)|

, (7.4) 

is the stiffness ratio of the linearized problem (7.3). As highlighted in [137], 
the higher this stiffness ratio, the faster the transit of fake news will be. Indeed, 
smaller values of the stiffness ratio correspond to a slower achievement of 
the maximum number of infected people and, consequently, to a slower 
dispersion of fake news. A numerical evidence of this issue is object of 
Exercise 10 at the end of this chapter. 

7.2 Prothero-Robinson Analysis 

As pointed out by several authors (see, for instance, [45, 141, 172, 318, 326]), a 
useful tool to understand the effects of stiffness on numerical discretizations is 
the so-called Prothero-Robinson analysis, i.e., the behavior of explicit and implicit 
methods applied to the following scalar test problem, well-known in the literature 
as Prothero-Robinson problem [291] 

.

{
y′(t) = λ(y(t) − g(t)) + g′(t), t ≥ t0,

y(t0) = y0 �= g(t0),
(7.5) 

where . λ is a complex parameter with negative real part and such that . |Re(λ)| 	 1
and .g : [t0,∞) → R. The exact solution 

.y(t) = eλ(t−t0) (y0 − g(t0)) + g(t)
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contains a transient term, given by the exponential part, and a steady-state term 
corresponding to the function .g(t) that is also a particular solution to the differential 
equation in (7.5) when .y0 = g(t0). 

Let us analyze the behavior of the explicit and implicit Euler methods (2.19) and 
(2.32) applied to (7.5). The application of the explicit Euler method (2.19) to (7.5) 
leads to 

.yn+1 = ayn + ϕn, (7.6) 

where 

. a = 1 + hλ, ϕn = −h
(
λg(tn) − g′(tn)

)
.

Replacing the exact solution in Eq. (7.6) yields 

.y(tn+1) = ay(tn) + ϕn + h2

2
y′′(tn) + O(h3). (7.7) 

We denote by 

. en = y(tn) − yn

the error at the point . tn of the discretization and obtain, through side-by-side 
subtraction of (7.6) and (7.7), i.e., 

. en+1 = aen + h2

2
y′′(tn) + O(h3).

In other terms, the propagated error is damped for any value of the stepsize h such 
that 

. |1 + hλ| < 1,

i.e., for any . hλ belonging to the stability region of Euler method (2.19), developed 
in Example 6.1. Clearly, when .Re(λ) tends to .−∞, the integration requires a truly 
severe restriction for the stepsize h in order to fulfill the stability requirement. 
Actually, the stepsize restriction may result severe even for moderately large 
values for .|Re(λ)|. As mentioned, .g(t) is a particular solution to the differential 
equation in (7.5) when .y0 = g(t0). A method of order p is able to exactly solve 
polynomial solutions of degree up to p; therefore, if .g(t) is locally approximated 
by a polynomial of degree p, the error .|g(t) − P(t)| remains small on intervals of a 
certain length, here denoted as H . Such a time scale for the steady-state term . g(t)

may substantially differ from that of the exponential .eλ(t−t0) and a stable integration 
via the Euler method (2.19) may require the employ of a stepsize .h 
 H , without
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taking into account if the transient has decayed or not. If .HRe(λ) 
 −1, the  
problem is stiff; otherwise when .|HRe(λ)| � 1 the problem is non-stiff. 

Let us now focus on the implicit Euler method (2.32) that, applied to (7.5), 
assumes the form 

.yn+1 = yn + ϕn+1

1 − hλ
. (7.8) 

Replacing the exact solution in Eq. (7.8) yields 

.y(tn+1) = yn + ϕn+1

1 − hλ
− h2

2(1 − hλ)
y′′(tn) + O(h3), (7.9) 

i.e., by subtracting (7.8) from (7.9) 

. en+1 = en

1 − hλ
− h2

2(1 − hλ)
y′′(tn) + O(h3).

Therefore, the propagated error is damped for any value of the stepsize h such that 

. 
1

|1 − hλ| < 1,

which is a condition certainly satisfied for any . λ having negative real part. Hence, 
no stepsize restrictions due to stability are required when the implicit Euler is 
employed. 

As one can realize from this analysis, the opening sentence of the book by Hairer 
and Wanner [195] is fully confirmed: “stiff equations are equations where certain 
implicit methods perform better, usually tremendously better, than explicit ones" 
(this sentence is a quote from [106]). An analogous investigation can be provided 
for a nonlinear system of Prothero-Robinson equations: the interested reader can 
find a detailed analysis of this case in [326]. 

7.3 Order Reduction of Runge-Kutta Methods 

Section 4.5 has been devoted to introducing Runge-Kutta methods based on the 
collocation principle. We have realized, for instance, that all Gaussian RK formulae 
are collocation methods of order 2s, being s the number of stages. We now aim 
to prove, through the following result, that collocation methods have a quite poor 
uniform order, that is equal to the number of the involved internal stages.
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Theorem 7.1 For .t ∈ [tn, tn+1], suppose that .Pn(t) is a given collocation 
polynomial (4.30). Then, there exists a positive constant C such that 

. ‖Pn(t) − y(t)‖∞ ≤ Chs+1,

i.e., . Pn given by (4.30) is an approximation of uniform order s to the solution 
.y(t) of (1.1). 

Proof Consider Lagrangian formulation of the first derivative of . Pn given by (4.34), 
that can be written in equivalent way as 

.P ′
n(tn + ηh) =

s∑

i=1

f (tn + cih, Pn(tn + cih))Li(η). (7.10) 

The corresponding interpolation error .Eh(η) (see [170, 292]) can be bounded by 

. Eh(η) ≤ hs

s! max
t∈[tn,tn+1]

‖y(s+1)(t)‖.

Since, 

. y′(tn + ηh) =
s∑

i=1

f (tn + cih, y(tn + cih))Li(η) + Eh(η),

we have, by subtraction, 

. y′(tn + ηh) − P ′
n(tn + ηh) =

s∑

i=1

	iLi(η) + Eh(η),

where 

. 	i = f (tn + cih, y(tn + cih)) − f (tn + cih, Pn(tn + cih)).

Side-by-side integration from 0 to . η leads to 

.y(tn + ηh) − Pn(tn + ηh) = h

(
s∑

i=1

	i

∫ η

0
Li(τ )dτ +

∫ η

0
Eh(τ)dτ

)
.



7.3 Order Reduction of Runge-Kutta Methods 213

As a consequence, 

. max
t∈[tn,tn+1]

‖y(t) − Pn(t)‖ ≤ hL
s−1 max
t∈[tn,tn+1]

‖y(t) − Pn(t)‖

+hs+1

s! max
t∈[tn,tn+1]

‖y(s+1)(t)‖,

begin .
s−1 the Lebesgue constant associated to the interpolation polynomial (7.10), 
i.e., 

. 
s−1 =
∥∥∥∥∥

s∑

i=1

|Li(t)|
∥∥∥∥∥

∞
.

Then, the thesis holds true with 

. C =
max

t∈[tn,tn+1]
‖y(s+1)(t)‖

s!(1 − hL
s−1)
,

for sufficiently small values of h. �

Therefore, even if the maximum attainable order of s-stage collocation methods 

is 2s (and it is obtained by using Gaussian collocation points), the uniform order is 
only s. In other terms, RK methods may exhibit effective order s of convergence, 
even if the theoretical order in the grid points is higher: this phenomenon, known 
as order reduction, is typical of RK methods, especially when they are applied to 
solve stiff problems. Prothero and Robinson [291] observed some order reduction 
effects for certain Runge-Kutta methods. A detailed analysis of order reduction 
phenomenon for RK methods applied to stiff problems has first been provided in 
[167], here suggested to the interested reader as a reference where proofs of order 
reduction for RK methods are presented, also outside collocation. We now give a 
numerical evidence of order reduction for Gaussian RK methods applied to stiff 
problems. 

Example 7.2 We now provide a numerical experiment based on the applica-
tion of the two-stage Runge-Kutta method on Gaussian points (4.25) to the 
Prothero-Robinson problem (7.5) in .[0, 100], with .g(t) = sin(t), initial value 
.y0 = 0 and for .λ = −103, .−105. The exact solution is .y(t) = sin(t). 

Table 7.1 displays the errors at the endpoint of the integration interval, 
computed as the infinity norm of the difference between the exact solution and 
the numerical solution .yRK computed by (4.25). As visible from the Table, 
since for .λ = −103 Prothero-Robinson problem (7.5) appears to be non-

(continued)
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Example 7.2 (continued) 
stiff, the experimental order of convergence is the expected one, i.e., .p = 4. 
However, when .λ = −105, the problem is stiff and the Gaussian RK method 
exhibits order reduction, converging with order .p = 2, equal to the number of 
internal stages. We observe that all order estimates reported in Table 7.1 have 
been computed through formula (3.23). 

7.4 Discretizations Free from Order Reduction 

As explained in the previous section, Runge-Kutta methods are exposed to a severe 
order reduction when applied to stiff problems. In this section we present an 
alternative to Runge-Kutta methods, given by highly stable formulae based on a 
proper modification of the collocation technique presented in Sect. 4.5, that do 
not suffer from order reduction when applied to stiff problems. The development 
and analysis of this modified collocation technique is detailed object of [123– 
126, 131, 228] and relies on extending the collocation principle to the family of 
two-step Runge-Kutta methods (5.15) and multivalue methods (5.2). 

7.4.1 Two-Step Collocation Methods 

To provide a dense output version of TSRK methods, with reference to a single step 
from . tn to .tn+1, we compute a unique algebraic polynomial 

. Pn(tn + ηh) = ϕ0(η)yn−1 + ϕ1(η)yn + h

s∑

j=1

(
χj (η)f

[n−1]
j + ψj (η)f

[n]
j

)
,

(7.11) 

Table 7.1 Example 7.2: error in the final integration point associated to the application of the two-
stage Gaussian Runge-Kutta method (4.25) to (7.5) and order estimation. The employed stepsize is 
.100/2k , for various values of the integer k. Each column “error" reports the value of the deviation 
. ‖y(100) − yRK‖∞
.λ = −103 . λ = −105

k Error p k Error p 

11 .9.64 · 10−6 7 . 2.06 · 10−2

12 .6.86 · 10−7 3.81 8 .3.65 · 10−3 2.50 

13 .4.40 · 10−8 3.96 9 .6.87 · 10−4 2.41 

14 .2.76 · 10−9 3.99 10 .1.39 · 10−4 2.30 

15 .1.73 · 10−10 4.00 11 .3.06 · 10−5 2.19
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with .η ∈ [0, 1] and .f [n]
j = t (tn + cjh, Pn(tn + cjh)), given as linear combination 

of the following basis of algebraic polynomials 

.{ϕ0(η), ϕ1(η), χj (η), ψj (η), j = 1, 2, . . . , s}. (7.12) 

Once .Pn(tn + ηh) is computed, its evaluation for .η = 1 gives the approximate 
solution at .tn+1, i.e., .yn+1 = Pn(tn + h). The unknown basis functions (7.12) are 
recovered by assuming that (7.11) satisfies interpolation conditions on two adjacent 
grid points 

.Pn(tn−1) = yn−1, Pn(tn) = yn (7.13) 

and collocation conditions on two adjacent intervals of the discretization 

.

P ′
n(tn−1 + cih) = f (tn−1 + cih, Pn(tn−1 + cih)),

P ′
n(tn + cih) = f (tn + cih, Pn(tn + cih)),

(7.14) 

.i = 1, 2, . . . , s. With a formalism similar to that introduced in Sect. 4.5, we denote 

.P(tn + ηh) as two-step collocation polynomial. The corresponding numerical 
scheme 

.yn+1 = Pn(tn + h), (7.15) 

where . Pn is the two-step collocation polynomial (7.11), is denoted as two-step 
collocation method. 

The counterpart of the interpolation conditions (7.13) on the basis functions 
(7.12) is given by 

.
ϕ0(−1) = 1, ϕ1(−1) = 0, χj (−1) = 0, ψj (−1) = 0,

ϕ0(0) = 0, ϕ1(0) = 1, χj (0) = 0, ψj (0) = 0,
(7.16) 

while for the collocation conditions (7.14) we have  

.
ϕ′
0(ci − 1) = 0, ϕ′

1(ci − 1) = 0, χ ′
j (ci − 1) = δij , ψ ′

j (ci − 1) = 0,

ϕ′
0(ci) = 0, ϕ′

1(ci) = 0, χ ′
j (ci) = 0, ψ ′

j (ci) = δij ,
(7.17) 

where . δij is the usual Kronecker delta, .i, j = 1, 2, . . . , s. 
The basis functions (7.12) are determined in such a way that .P(tn + ηh) is an 

approximation to .y(tn + ηh), .η ∈ [0, 1], of uniform order p, i.e., 

. lim
n→∞

nh=t−t0

P(tn + ηh) = y(tn + ηh), for any η ∈ [0, 1].
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In other terms, an approximant of uniform order p provides a discretization of the 
same order in any point of the integration interval, not only in the grid points. The 
analysis of uniform order relies on the following result. 

Theorem 7.2 Assuming that the vector field of the differential problem (1.1) 
is sufficiently smooth, then the two-step collocation method (7.15) has uniform 
order p if the following conditions are satisfied 

. 

⎧
⎪⎪⎨

⎪⎪⎩

ϕ0(η) + ϕ1(η) = 1,

(−1)k

k! ϕ0(η) +
s∑

j=1

(
χj (η)

(cj − 1)k−1

(k − 1)! + ψj(η)
ck−1
j

(k − 1)!
)

= ηk

k! ,

(7.18) 

.η ∈ [0, 1], .k = 1, 2, . . . , p. 

Proof We investigate the local discretization error .ξ(tn + ηh) associated to (7.11), 
i.e., the residuum obtained replacing .P(tn + ηh) by .y(tn + ηh), .P(tn + cjh) by 
.y(tn + cjh), .j = 1, 2, . . . , s, .yn−1 by .y(tn−1) and . yn by .y(tn) in (7.11), where . y(t)

is the exact solution to (1.1). This leads to 

.

ξ(tn + ηh) = y(tn + ηh) − ϕ0(η)y(tn − h) − ϕ1(η)y(tn)

− h

s∑

j=1

(
χj (η)y′(tn + (cj − 1)h) + ψj (η)y′(tn + cjh)

)
,

(7.19) 

.η ∈ [0, 1]. We expand the right-hand side of (7.19) in Taylor series around . tn and 
collect in powers of h, obtaining 

. ξ(tn + ηh)

= (
1 − ϕ0(η) − ϕ1(η)

)
y(tn) +

p+1∑

k=1

(
ηk

k! − (−1)k

k! ϕ0(η)

)
hky(k)(tn)

−
p+1∑

k=1

m∑

j=1

(
χj (η)

(cj − 1)k−1

(k − 1)! + ψj (η)
ck−1
j

(k − 1)!

)
hky(k)(tn) + O(hp+2).

Collecting in powers of h and equating to zero the coefficients of the powers of up 
to p leads to (7.18). �
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As a consequence of Theorem 7.2, if the two-step collocation method (7.15) has 
uniform order p, then the local discretization error takes the form 

. ξ(tn + ηh) = hp+1Cp(η)y(p+1)(tn) + O(hp+2), η ∈ [0, 1],

where the principal error function .Cp(s) is defined by 

. Cp(η) = ηp+1

(p + 1)! − (−1)p+1

(p + 1)! ϕ0(η) −
m∑

j=1

(
χj (η)

(cj − 1)p

p! + ψj(η)
c
p
j

p!

)
.

The set of uniform order conditions (7.18) is a linear system of .p + 1 equations 
in .2s + 2 unknowns, i.e., the .2s + 2 basis functions (7.12). As a consequence, in 
order to ensure the compatibility of system (7.18), p can be at most equal to .2s + 1. 
Then, the following result holds true. 

Corollary 7.1 The maximum attainable uniform order for a two-step collo-
cation method (7.15) is .2s + 1. 

For a proof of the uniqueness of the solution to (7.18) when .p = 2s + 1, the  
interested reader can refer to [115], where a proof of the equivalence between the 
numerical scheme (7.15) and TSRK method (5.15) with 

. θ = ϕ0(1), vj = ψj (1), wj = χj (1), ui = ϕ0(ci), aij = ψj (ci), bij = χj (ci),

.i, j = 1, 2, . . . , s, is also given. Another relevant property of the solutions to (7.18) 
is given in the following result. 

Theorem 7.3 The algebraic polynomials (7.12) obtained as solutions to 
(7.18) satisfy the interpolation and collocation conditions (7.16) and (7.17). 

Proof The interpolation conditions (7.16) follow immediately by replacing . η = 0
and .η = −1 in (7.18) for .p = 2s + 1. In order to recover the collocation conditions 
(7.17), we differentiate each condition in (7.18) with respect to . η, obtaining 

. 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ′
0(η) + ϕ′

1(η) = 0,

(−1)k

k! ϕ′
0(η) +

s∑

j=1

(
χ ′

j (η)
(cj − 1)k−1

(k − 1)! + ψ ′
j (η)

ck−1
j

(k − 1)!

)
= ηk−1

(k − 1)! ,

.k = 1, 2, . . . , 2s + 1, and replace .η = ci and .η = ci − 1, .i = 1, 2, . . . , s. �
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In summary, the basis functions computed by solving (7.18) with . p = 2s + 1
automatically satisfy all interpolation conditions (7.16) and all collocation ones 
(7.17). As a consequence, the corresponding two-step collocation polynomial (7.11) 
satisfies (7.13) and (7.14). 

7.4.2 Almost Collocation Methods 

Two-step collocation methods of maximal order .p = 2s + 1 are not suitable to 
approach stiff problems, since they violate the Daniel-Moore barrier proved by 
Corollary 6.2 and, as a consequence, they cannot be A-stable. Therefore, let us 
look for A-stable methods of uniform order .p = 2s by relaxing one of the order 
conditions in (7.18). In other terms, we solve the system of .p + 1 uniform order 
conditions (7.18) up to .p = 2s and since the unknowns are .2s + 2, one of them 
has to be fixed a-priori. The solvability of such a relaxed system is discussed in the 
following result. 

Theorem 7.4 Assuming that .ci �= cj , and .ci �= cj − 1 for .i �= j , the system 
(7.18) of continuous order conditions .p = s + r , .r = 1, 2, . . . , s, has a 
unique solution .ϕ1(η), .χj (η), .j = s − r + 1, s − r + 2, . . . , s, and .ψj (η), 
.j = 1, 2, . . . , s, for any given .ϕ0(η) and .χj (η), .j = 1, 2, . . . , s − r . 

Proof Observe that the polynomial .ϕ1(η) is uniquely determined from the first 
equation of (7.18). The proof follows from the fact that the matrices of these systems 
(7.18) corresponding to .χj (η), .j = s − r + 1, s − r + 2, . . . , s, are Vandermonde 
matrices and, therefore, the solution exists and is unique. �


In particular, for the development of methods of uniform order .p = 2s, we choose 
the algebraic polynomial .ϕ0(η) of order at most 2s, satisfying the interpolation and 
collocation conditions 

. ϕ0(0) = 0, ϕ′
0(ci) = 0,

.i = 1, 2, . . . , s. As a consequence, .ϕ0(η) factors out as 

.ϕ0(η) = η
(
q0 + q1η + · · · + q2s−1η

2s−1), (7.20) 

with 

.q0 + 2q1ci + · · · + 2sq2s−1c
2s−1
i = 0, (7.21)
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.i = 1, 2, . . . , s. Hence, .ϕ0(η) does not fulfill all the interpolation conditions (7.16) 
and the collocation ones (7.17) occurring in the case of two-step collocation 
methods. We observe that all the other basis functions in (7.12) inherit the same 
conditions imposed on .ϕ0(η) via order conditions; the interested reader can find a 
proof of this issue in [115, 131, 228]. 

As a consequence, the polynomial .Pn(tn + ηh) defined by (7.11) and arising as 
linear combination of .ϕ0(η) and the remaining basis functions (7.12) computed by 
(7.18) with .p = 2s, satisfies the interpolation and collocation conditions 

. Pn(tn) = yn, P ′
n(tn + cih) = fn(tn + cih, Pn(tn + cih)),

.i = 1, 2, . . . , s. However, in general, . Pn does not satisfy the interpolation and 
collocation conditions 

. Pn(tn−1) = yn−1, P ′
n(tn−1 + cih) = f (tn−1 + cih, Pn(tn−1 + cih)),

.i = 1, 2, . . . , s. The corresponding method 

. yn+1 = Pn(tn+1)

is denoted in the literature as two-step almost collocation method. 
For the development of A-stable two-step almost collocation methods, we now 

need to compute the corresponding stability matrix, arising from the application of 
(7.11) to the Dahlquist test problem (6.1). Assuming that 

. Pn(tn + ch) =

⎡

⎢⎢⎢⎢⎢⎣

Pn(tn + c1h)

Pn(tn + c2h)

...

Pn(tn + csh)

⎤

⎥⎥⎥⎥⎥⎦
, ϕ0(c) =

⎡

⎢⎢⎢⎢⎢⎣

ϕ0(c1)

ϕ0(c2)

...

ϕ0(cs)

⎤

⎥⎥⎥⎥⎥⎦
, ϕ1(c) =

⎡

⎢⎢⎢⎢⎢⎣

ϕ1(c1)

ϕ1(c2)

...

ϕ1(cs)

⎤

⎥⎥⎥⎥⎥⎦
,

. vT = [
ψ1(1) ψ2(1) · · · ψs(1)

]T
, wT = [

χ1(1) χ2(1) · · · χs(1)
]T

,

and 

. A = [
ψj (ci)

]s
i,j=1 , B = [

χj (ci)
]s
i,j=1 ,

we obtain 

.

Pn(tn + ch) = ϕ0(c)yn−1 + ϕ1(c)yn + ĥ (BPn(tn−1 + ch) + APn(tn + ch)) ,

yn+1 = ϕ0(1)yn−1 + ϕ1(1)yn + ĥ
(
wTPn(tn−1 + ch) + vTPn(tn + ch)

)
,
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with .̂h = hλ. Hence, the stage values satisfy the relation 

.P(tn + ch) = 

(
ϕ0(c)yn−1 + ϕ1(c)yn + ĥBP (tn−1 + ch)

)
, (7.22) 

where .
 = (
I − ĥA

)−1
. Finally, 

.

yn+1 = (
ϕ0(1) + ĥvT
ϕ0(c)

)
yn−1 + (

ϕ1(1) + ĥvT
ϕ1(c)
)
yn

+ ĥ
(
wT + ĥvT
B

)
Pn(tn−1 + ch).

(7.23) 

Equations (7.22) and (7.23) are then equivalent to the following recurrence relation 

. 

⎡

⎢⎣
yn+1

yn

Pn(tn + ch)

⎤

⎥⎦ = M(̂h)

⎡

⎢⎣
yn

yn−1

Pn(tn−1 + ch)

⎤

⎥⎦ ,

where the .(m + 2) × (m + 2) matrix 

. M(̂h) =

⎡

⎢⎢⎣

ϕ1(1) + ĥvT
ϕ1(c) ϕ0(1) + ĥvT
ϕ0(c) ĥ
(
wT + ĥvT
B

)

1 0 0


ϕ1(c) 
ϕ0(c) ĥ
B

⎤

⎥⎥⎦ ,

is the stability matrix of the two-step collocation method (7.11). The almost 
collocation method has the same stability matrix, since it inherits the same form 
for the collocation polynomial, as in the full two-step case. The characteristic 
polynomial 

. p(ω, ĥ) = det
(
ωI − M(̂h)

)
.

is the stability function of (7.11). 
Let us now provide an example of two-step almost collocation method, depend-

ing on one stage. Further examples can be found in [123–125, 131, 228]. 

Example 7.3 We aim to construct a two-step almost collocation method 
depending on one internal stage, of order 2 and A-stable. We assume that 
.ϕ0(η) satisfies (7.20) and (7.21). As a consequence, it assumes the form 

. ϕ0(s) = q0s

(
1 − 1

2c
s

)
,

(continued)
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Example 7.3 (continued) 
with .q0 ∈ R. Solving the linear system of order conditions (7.18) for  . s = 1
and .p = 2 leads to 

. 

ϕ1(s) = 1 − q0s + q0

2c
s2, χ(s) = s

4c
(2c − s)(2c + q0(1 + 2c)),

ψ(s) = s2

2
− s(c − 1) + q0s

(
c − 1

2

) ( s

2c
− 1

)
.

Above basis functions recover a two-parameter family of one-stage and 
second order two-step almost collocation methods, depending on the real 
numbers . q0 and c. The values of . q0 and c for which the corresponding method 
is also A-stable have computed in [131], by means of the so-called Schur 
criterion [242, 312]. Choosing, for instance, .q0 = −1 and .c = 3/4 leads to the 
second order A-stable two-step almost collocation method (7.11) depending 
on the basis functions 

. 

ϕ0(η) =
(
2

3
η − 1

)
η, ϕ1(η) = 1 − ϕ0(η),

χ(η) = 1

2
ϕ0(η), ψ(η) =

(
1

2
+ 1

3
η

)
η,

and the corresponding stability polynomial is given by 

. p(ω, ĥ) = ω

((
3 − 27

16
ĥ

)
ω2 −

(
4 + 5

8
ĥ

)
ω +

(
1 + 5

16
ĥ

))
.

Example 7.4 As shown in Example 7.2, the two-stage Runge-Kutta method 
on Gaussian points (4.25) exhibits order reduction in solving Prothero-
Robinson problem (7.5) for .λ = −105. We now provide a numerical evidence 
based on the application of the two-step almost collocation method developed 
in Example 7.3 to the same problem. 

Table 7.2 displays the errors in the endpoint of the integration interval, 
computed as the infinity norm of the difference between the exact solution 
minus the numerical solution .yTSAC computed by the two-step almost col-
location method developed in Example 7.3. This method does not exhibit 
order reduction, even when the problem is stiff. We observe that, when . |λ|
is large enough, the effects of the leading error term become negligible and 
the method converges with order .p = 3. Clearly, when . λ is large enough, the 
experimental order is the theoretical one (.p = 2) as visible, for instance, in 
the column for .λ = −1.
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Table 7.2 Example 7.4: error in the final integration point associated to the application of the 
two-step almost collocation method developed in Example 7.3 to (7.5) and order estimation. The 
employed stepsize is .100/2k , for various values of the integer k. Each column “error" reports the 
value of . ‖y(100) − yTSAC‖∞
.λ = −1 .λ = −103 . λ = −105

k Error p k Error p k Error p 

11 .5.99 · 10−5 7 .1.43 · 10−2 7 . 1.44 · 10−2

12 .1.69 · 10−5 1.83 8 .2.95 · 10−3 2.27 8 .2.97 · 10−3 2.27 

13 .4.46 · 10−6 1.92 9 .4.38 · 10−4 2.75 9 .4.43 · 10−4 2.74 

14 .1.14 · 10−6 1.96 10 .5.79 · 10−5 2.92 10 .5.94 · 10−5 2.90 

15 .2.90 · 10−7 1.98 11 .7.24 · 10−6 2.99 11 .7.63 · 10−6 2.96 

7.4.3 Multivalue Collocation Methods Free from Order 
Reduction 

Multivalue collocation methods introduced in Sect. 5.5 (also see [126]) are also free 
from order reduction when applied to stiff systems since, according to Theorem 5.4, 
their order of convergence is uniform overall the entire integration interval. Let us 
provide an example, confirming this theoretical expectation. 

Example 7.5 Let us provide a numerical test based on the application of the 
second order A-stable multivalue numerical method in Example 5.4 for .c = 3

2 , 
i.e., 

.

⎡

⎣
A U

B V

⎤

⎦ =

⎡

⎢⎢⎢⎣

3
4 1 3

4

1
3 1 2

3

2
3 0 1

3

⎤

⎥⎥⎥⎦ . (7.24) 

to the Prothero-Robinson problem (7.5) in .[0, 10], with .g(t) = sin(t), initial 
value .y0 = 0 and for various values of . λ. As visible in Tables 7.3 and 7.4, for  
.λ = −103, the problem is not so stiff and we can see order of convergence 
.p = 2 for both the Gaussian RK method (4.23) and multivalue method (7.24). 
However, when .λ = −106, the problem is stiff and the Runge-Kutta method 
exhibits the order reduction phenomenon and its order of convergence drops to 
about .p = 1, while this is not the case for the multivalue collocation methods 
(7.24).
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Table 7.3 Example 7.5: observed errors (in the final step point) and orders of convergence for 
the one-stage Gaussian method (4.23) applied to the Prothero-Robinson problem 

h Error (.λ = −103) p Error (.λ = −106) p 

.1/10 .6.80 · 10−4 . 6.81 · 10−4

.1/20 .1.70 · 10−4 2.00 .3.24 · 10−4 1.07 

.1/40 .4.25 · 10−5 2.00 .1.58 · 10−4 1.04 

.1/80 .1.06 · 10−5 2.00 .7.83 · 10−5 1.01 

Table 7.4 Example 7.5: observed errors (in the final step point) and orders of convergence for 
the multivalue method (7.24) applied to the Prothero-Robinson problem 

h Error (.λ = −103) p Error (.λ = −106) p 

.1/10 .7.16 · 10−7 . 1.53 · 10−9

.1/20 .1.75 · 10−7 2.03 .3.81 · 10−10 2.01 

.1/40 .4.37 · 10−8 2.00 .9.19 · 10−11 2.05 

.1/80 .1.09 · 10−9 2.00 .2.11 · 10−11 2.12 

7.5 Stiffly-Stable Methods: Backward Differentiation 
Formulae 

We conclude this chapter by presenting a relevant family of linear multistep methods 
particularly suited for the numerical solution of stiff systems, well-known in the 
literature as backward differentiation formulae (BDF). This is a family of implicit 
k-step methods of the form 

.

k∑

j=0

αjyn+j = hβkfn+k, (7.25) 

whose right-hand side consists in a single function evaluation related to the point 
.tn+k . These methods have been introduced by Curtiss and Hirschfelder in [106], 
specifically for the integration of stiff problems. BDF methods are developed via 
polynomial interpolation directly applied to the differential problem (1.1) and not to 
its integral formulation, as it happens for Adams methods. 

In correspondence to the set of distinct .k + 1 points 

. (tn, yn), (tn+1, yn+1), . . . , (tn+k, yn+k),

we develop a unique interpolation polynomial of degree k, here denoted as .Pk(t). 
Then .Pk(t) is an approximation to .y(t) in the interval .[tn, tn+k]; as a consequence, 

.P ′
k(tn+k) ≈ f (tn+k, y(tn+k)).
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Example 7.6 Let us compute the one-step BDF method by polynomial 
interpolation with respect to the set of nodes 

. (tn, yn), (tn+1, yn+1).

The interpolation polynomial .P1(t) is given by 

. P1(t) = t − tn+1

tn − tn+1
yn + t − tn

tn+1 − tn
yn+1.

Then, 

. P ′
1(t) = −yn

h
+ yn+1

h
.

As a consequence, we obtain the method 

. yn+1 − yn = hfn+1,

that is the implicit Euler method (2.32). 

Example 7.7 We now compute the two-step BDF method by polynomial 
interpolation with respect to the nodes 

. (tn, yn), (tn+1, yn+1), (tn+2, yn+2).

The interpolation polynomial .P2(t) is then given by 

. 

P2(t) = t − tn+1

tn − tn+1

t − tn+2

tn − tn+2
yn + t − tn

tn+1 − tn

t − tn+2

tn+1 − tn+2
yn+1

+ t − tn

tn+2 − tn

t − tn+1

tn+2 − tn+1
yn+2,

i.e., 

. P2(t) = (t − tn+1)(t − tn+2)

2h2
yn − (t − tn)(t − tn+2)

h2
yn+1

+ (t − tn)(t − tn+1)

2h2
yn+2.

(continued)
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Example 7.7 (continued) 
Then, 

. P ′
2(t) = 2t − tn+1 − tn+2

2h2
yn − 2t − tn − tn+2

h2
yn+1 + 2t − tn − tn+1

2h2
yn+2.

As a consequence, we obtain the second order method 

. yn+2 − 4

3
yn+1 + 1

3
yn = 2

3
hfn+2.

Table 7.5 shows the coefficients of BDF methods up to .k = 6, which are 
convergent methods of order k. BDF methods with .k ≥ 7 are not zero-stable, as 
proved by Cryer in [104]. 

Let us now focus on their linear stability properties. To this purpose, since 
BDF methods fall in the family of linear multistep methods (3.1), we analyze their 
boundary loci (6.17) using the coding reported in Program 6.1. 

The results are depicted in Fig. 7.1. The methods for .k = 1 and .k = 2 are both 
A-stable while, in all the other cases, the negative real axis is always contained in 
each stability region. The peculiar shapes of the stability regions make BDFmethods 
particularly suitable for stiff problems, in particular when the eigenvalues producing 
the fastest transients are located to the left of .Re(̂h) = −a, with .a > 0, and all the 
other ones are close to the origin with a small imaginary part. Such a peculiar shape 
for the stability region led to the following definition, provided by Gear in [171]. 

Definition 7.2 A numerical method for (1.1) is stiffly-stable if its stability 
region contains the set 

. S = {̂h : Re(̂h) < −a} ∪ {̂h : −a ≤ Re(̂h) < 0, −b ≤ Im(̂h) ≤ b},

for given values of .a > 0 and .b > 0. 

Table 7.5 Coefficients of the 
BDF methods (7.25) up to 
. k = 6

k .α6 .α5 .α4 .α3 .α2 .α1 .α0 . βk

1 1 . −1 1 

2 1 . −. 43 . 13 . 23

3 1 . −. 1811 . 911 . −. 211 . 611

4 1 . −. 4825 . 3625 . −. 1625 . 325 . 1225

5 1 . −. 300137 . 300137 . −. 200137 . 75137 . −. 12137 . 60137

6 1 . −. 360147 . 450147 . −. 400147 . 225147 . −. 72147 . 10147 . 60147
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Fig. 7.1 Stability regions of the BDF methods (7.25) up to . k = 6

Figure 7.2 depicts the subset . S of the complex plane that is certainly contained in 
the stability region of a stiffly stable method. Certainly, all BDF methods are stiffly 
stable.
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Fig. 7.2 Region of the complex plane contained in the stability region of a stiffly-stable method 

7.6 Principles of Adaptive Integration 

So far, we have considered discretizations of differential problems relying on fixed 
stepsize computational frameworks. Clearly, a-priori fixing the stepsize makes the 
numerical grid rigid: indeed, it creates a global discretization that reveals to be, 
in most of the cases, too coarse or too fine. It seems more reasonable to develop 
an adapted discretization that follows the behavior of the solution, modifying the 
stepsize in order to make it smaller only when necessary (e.g., when the solution 
rapidly changes its concavity, its monotony or when it shows fast oscillations). 

We aim to briefly present here the principal steps behind the design of a variable 
stepsize numerical solver. More details can be found, for instance, in [19, 67, 124, 
170–172, 195, 223, 228, 242, 243, 316–320, 323, 324]. 

The idea of adaptive numerical integration of ODEs by one-step methods can be 
outlined as follows: 

• we focus on a single step from . tn to .tn+1 and denote by . hn the amplitude of the 
interval .[tn, tn+1]. We aim to compute .yn+1 with a prescribed accuracy tol; 

• once the numerical solution .yn+1 is computed, we need to provide an estimation 
of the error in .tn+1; 

• if the error estimate does not exceed the prescribed accuracy tol, the computed 
value of .yn+1 is accepted; 

• if the error estimate exceeds tol, the computed value of .yn+1 is rejected and 
recomputed with a smaller stepsize, until the error estimate becomes smaller than 
tol. 

We understand from this outline that building blocks for the design of a variable 
stepsize computing framework certainly include a strategy to estimate the error,
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a stepsize control strategy and, clearly, an effective way to handle implicitness in 
highly stable methods applied to stiff problems. We explain how to handle these 
issues for the classes of methods: one-step predictor-corrector numerical solvers 
and Runge-Kutta methods. 

7.6.1 Predictor-Corrector Schemes 

Predictor-corrector strategy is a well-known technique in the numerics for ODEs 
(see, for instance, [242]), useful to handle implicit methods avoiding a direct 
solution of the underlying nonlinear system of algebraic equations at each step. 

Predictor-corrector schemes consist in coupling an explicit method (the so-called 
predictor) with an implicit method (denoted as corrector). Let us consider, for 
instance, such a scheme arising from coupling an explicit and an implicit LMM 
(3.1). Focusing on a single step to .tn+k: 

• the explicit LMM computes a prediction of the solution in .tn+k , that we denote 
as .yPRED

n+k ; 
• this prediction is included in the implicit LMM (3.5), as follows 

. yCORR
n+k = hβkf (tn+k, y

PRED
n+k ) + gn+k−1,

in order to compute the corrected value .yCORR
n+k . 

In other terms, having computed a predicted value to include in the corrector avoids 
the application of iterative methods for the solution of nonlinear systems, needed 
to handle the implicitness in direct way. Clearly, the effectiveness of this approach 
meets an expectable drawback: coupling an explicit and implicit methods certainly 
affects the stability of the overall scheme, since the explicit method has a bounded 
stability region; moreover, the order of convergence of the scheme is generally given 
by the minimum between the order of the predictor and that of the corrector [242]. 

We observe that the value of the corrector itself can also be iteratively corrected 
again, until the norm of the difference of two consecutive corrections is smaller than 
a certain tolerance. In this case, the scheme acts as follows: 

• the explicit LMM computes a prediction of the solution in .tn+k , that we denote 
as .yPRED

n+k ; 
• this prediction is included in the implicit LMM (3.5), as follows 

. yCORR
n+k = hβkf (tn+k, y

PRED
n+k ) + gn+k−1,

in order to compute the first corrected value .yCORR
n+k ;
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• the value of .yCORR
n+k is used to perform the following . μ iterative corrections 

. y
CORR,[ν]
n+k = hβkf

(
tn+k, y

CORR,[ν−1]
n+k

)
+ gn+k−1, ν = 1, 2, . . . , μ,

with .yCORR,[0]
n+k = yCORR

n+k . This further correction is performed for . μ iterations, 

such that .‖yCORR,[ν]
n+k − y

CORR,[ν−1]
n+k ‖∞ is smaller than a certain tolerance. 

Coupling a predictor and a corrector method does not only avoid the solution 
of nonlinear systems of algebraic equations at each step, but it also makes possible 
to provide an error estimate. Indeed, the comparison between the prediction and 
the correction has been used in the literature to construct the so-called Milne error 
estimate [242]. Supposing that two LMMs of order p are used as predictor and 
corrector formulae, we have 

. 

y(tn+k) = yPRED
n+k + C�

p+1h
p+1y(p+1)(tn) + O(hp+2),

y(tn+k) = yCORR
n+k + Cp+1h

p+1y(p+1)(tn) + O(hp+2),

where .C�
p+1 is the error constant of the predictor and .Cp+1 that of the corrector. 

Side-by-side subtraction yields 

.yPRED
n+k − yCORR

n+k +
(
C�

p+1 − Cp+1

)
hp+1y(p+1)(tn) + O(hp+2). (7.26) 

A direct application of the corrector method for the computation of .yn+k would give 

. y(tn+k) − yn+k = Cp+1h
p+1y(p+1)(tn) + O(hp+2).

Replacing last expression in (7.26) leads to the Milne estimate of the error 

.‖y(tn+k) − yn+k‖ ≈
∣∣∣∣∣

Cp+1

C�
p+1 − Cp+1

∣∣∣∣∣ ‖y
PRED
n+k − yCORR

n+k ‖. (7.27) 

Example 7.8 Let us compute Milne estimate (7.27) associated to the 
predictor-corrector scheme given by coupling explicit and implicit Euler 
methods (2.19)–(2.32). Since .C�

2 = −C2 = 1
2 , we have  

.‖y(tn+1) − yn+1‖ ≈ 1

2
‖yPRED

n+1 − yCORR
n+1 ‖. (7.28) 

(continued)
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Example 7.8 (continued) 
To check its accuracy, let us apply the explicit-implicit Euler predictor-
corrector scheme to solve Prothero-Robinson problem (7.5) in .[0, 10], with 
.g(t) = sin(t), initial value .y0 = 0 and for .λ = −10. The exact solution is 
.y(t) = sin(t). Comparing Milne estimate (7.28) with the true error obtained 
as difference between the solution computed by the implicit Euler method 
and the exact solution leads to the following results: for .h = 0.01, the infinity 
norm of the true error is .5.98 · 10−4, while Milne estimate gives .5.55 · 10−5; 
for .h = 0.005, the infinity norm of the true error is .2.74 · 10−4, while Milne 
estimate gives .1.31 · 10−5. The values are pretty comparable, even if Milne 
estimate slightly underestimates the error. 

7.6.2 Stepsize Control Strategies 

As aforementioned, a variable stepsize computational environment requires, 
together with an error estimation strategy, the assessment of a technique of stepsize 
control. A classical stepsize control strategy (see, for instance, [198] and references 
therein) relies on the following observations. 

Let us denote by .‖est(tn+1)‖ the norm of the error estimate in .tn+1, obtained with 
stepsize . hn, and by tol  the desired tolerance. Let us suppose that 

. ‖est(tn+1)‖ = β tol,

with .0 < β ≤ 1, if the error estimate is smaller or equal than the tolerance and 
.β > 1 if the error estimate has not yet achieved the prescribed tolerance. Let us 
denote by .hOPT the largest stepsize we can use to achieve .‖est(tn+1)‖ = tol. Since 
.‖est(tn+1)‖ ≈ Cp+1h

p+1
n ‖y(p+1)(tn)‖, we have  

. βCp+1h
p+1
OPT‖y(p+1)(tn)‖ ≈ Cp+1h

p+1
n ‖y(p+1)(tn)‖

leading to 

. hOPT ≈ hn

(
tol

‖est (tn)‖
) 1

p+1

.

Taking into account this issue, a classical stepsize controller is given by 

.hn+1 = fac · hn

(
tol

‖est (tn)‖
) 1

p+1

, (7.29)
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where .fac is a security factor useful to avoid an uncontrolled stepsize growth 
(usually, it is chosen equal to 0.9). 

This is a very basic stepsize controller, only depending on the current error 
estimate computed in the previous step, that often determines useless stepsize 
rejections, “with disruptive and wasteful increases and decreases”of the stepsize 
(see [67]). An improvement has been given by Gustafsson, Lundh and Söderlind 
[186, 323, 324], that introduced a different strategy, the so-called PI stepsize 
control , mainly based on control theory arguments. PI stepsize control involves 
the estimation of the local errors related to the two most recent subintervals of the 
discretization, i.e., 

.hn+1 = hn · min

(
2,

(
tol

‖est (tn)‖
)σ1

(
tol

‖est (tn−1)‖
)σ2

)
, (7.30) 

where . σ1 and . σ2 are parameters to be suitably chosen (see, for instance, [195, 323, 
324]. 

The following program provides a variable stepsize implementation of the 
predictor-corrector scheme given by coupling explicit and implicit Euler methods 
(2.19)–(2.32), with Milne estimation of the error (7.28) and the classical stepsize 
control strategy (7.29). 

Program 7.1 (Explicit-Implicit Euler Predictor-Corrector Scheme) 

% Matlab script implementing the predictor-corrector 
% scheme based on explicit and implicit Euler methods. 
% The user is asked to provide the following inputs: 
problem=input(’Label of the problem: ’); 
tspan=input(’Integration interval [t0,T]: ’); 
y0=input(’Initial value: ’); 
h=input(’Initial stepsize: ’); 
tol=input(’Tolerance: ’); 

hAcc=[]; % vector of accepted stepsizes 
hRej=[]; % vector of rejected stepsizes 
tr=[]; % points of stepsize rejection 
tt=[tspan(1)]; % points of stepsize acceptance 
y=[y0]; % matrix storing the numerical solution 

% at each step point (columnwise) 
nval=0; % number of function evaluations 
mu=2; % number of corrections at each step 

% The entry condition in the while loop ensures that 
% latest considered step point tt(end) falls in 
% the integration interval. 
while(abs(tspan(2)-tt(end))>5*eps) 

subint=[tt(end) tt(end)+h]; 

(continued)
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Program 7.1 (continued) 
[yPC,est,nv]=PC(problem,subint,y(:,end),h,mu); 
nval=nval+nv; 
hopt=0.9*h*sqrt(tol/est); % optimal stepsize 

if est<=tol % accepted step 
hAcc=[hAcc h]; 
% h must not exceed the length of 
% the remaining part of the integration interval 
h=min(hopt,tspan(2)-tt(end)); 
tt=[tt tt(end)+h]; 
y=[y yPC]; 
tt(end) 

else 
hRej=[hRej h]; 
h=hopt; 
tr=[tr tt(end)]; 

end 
end 

% Last step of legth tspan(2)-tt(end) 
if(tt(end)~=tspan(2)) 

h=tspan(2)-tt(end); 
subint=[tt(end) tspan(2)]; 
[yPC,est,nv]=PC(problem,subint,y(:,end),h,mu); 
nval=nval+nv; 
hAcc=[hAcc h]; 
y=[y yPC]; 

end 

fprintf(’Number of accepted steps: %d \n’, length(hAcc)); 
fprintf(’Number of rejected steps: %d \n’, length(hRej)); 
fprintf(’Number of function evaluations: %d \n’, nval); 
fprintf(’Milne estimate in the endpoint: %2.4e \n’, est); 
fprintf(’Achieved correct digits: %2.4f \n’, -log10(est)); 

plot(tt,y) 
figure(2) 
semilogy(tt(2:end),hAcc,tr,hRej,’*r’) 

% "True" error: difference between the PC solution minus 
% a reference solution computed by the built-in Matlab 
% function ode15s 
options=odeset(’AbsTol’,100*eps,’RelTol’,100*eps); 
[tMat,yMat]=ode15s(@f,tspan,y0,options,problem); 
trueError=norm(y(:,end)’-yMat(end,:),’inf’); 
fprintf(’True error: %2.4e \n’, trueError); 

Above Matlab script makes use of the following function 
PC, computing a single step of the predictor-corrector 

(continued)
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Program 7.1 (continued) 
scheme based on the explicit Euler method and the implicit 
Euler method (the latter applied . μ times). 

function [y1,est,nval]=PC(problem,tspan,y0,h,mu) 
nval=0; 
fPred=f(problem,tspan(1),y0); 
yPred=y0+h*fPred; 
nval=nval+1; 
y1=yPred; 
for j=1:mu 

fCorr=f(problem,tspan(2),y1); 
nval=nval+1; 
y1=y0+h*fCorr; 

end 
est=(norm(y1-yPred,’inf’))/2; % Milne estimate 

Example 7.9 Let us provide a numerical test based on the application of the 
explicit-implicit Euler predictor-corrector scheme to the Prothero-Robinson 
problem (7.5) in .[0, 10], with .g(t) = sin(t), initial value .y0 = 0 and 
for various values of . λ. Assuming .λ = −10, .h0 = 0.01 and tol.= 10−6, 
Program 7.1 provides the following output: 

Number of accepted steps: 5983 
Number of rejected steps: 15 
Number of function evaluations: 17994 
Milne estimate in the endpoint: 8.1248e-07 
Number of correct digits: 6.0902 
True error: 7.9146e-04 

From the analysis of the numerical results we appreciate that, in this 
case, the stepsize selection strategy looks efficient, since it rejects a very 
small number of stepsizes. However, Milne estimate looks rather optimistic, 
because the true error (computed assuming ode15s solution as a reference 
solution) is 1000 times larger. Figure 7.3 displays the pattern of the stepsize 
and highlights stepsize rejections: we can appreciate that the stepsize changes 
according to the behavior of the exact solution .y(t) = sin(t) and rejection 
points correspond to the points of concavity change for the solution. 

(continued)
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Example 7.9 (continued) 
Assuming .λ = −1000, .h0 = 0.01 and tol.= 10−6, Program 7.1 provides 

the following output: 

Number of accepted steps: 45825 
Number of rejected steps: 13556 
Number of function evaluations: 178143 
Milne estimate in the endpoint: 5.5538e-07 
Number of correct digits: 6.2554 
True error: 8.2641e-05 

In this case, the number of rejected steps is much larger and, as we can 
realize from Fig. 7.4, rejected steps are spread out overall the integration 
interval and, additionally, the pattern of the stepsize is very much oscillating 
(a zoomed portion of the graph is visible in Fig. 7.5). This is definitely not 
surprising: indeed, the problem is more stiff than in the case .λ = −10 and, 
since the scheme involves and explicit method (explicit Euler), the stability 
region is bounded. So, the solver tries to find values of h such that . hλ

remains in the stability region and, in order to succeed, it oscillates around 
its boundary. 

Fig. 7.3 Example 7.9: pattern of the stepsize associated to the application of the explicit-implicit 
Euler predictor-corrector scheme to the Prothero-Robinson problem (7.5) in .[0, 10], with  . g(t) =
sin(t), initial value .y0 = 0 and .λ = −10. The variable stepsize strategy used in Program 7.1 relies 
on Milne estimation of the error (7.28) and the classical stepsize control strategy (7.29). The initial 
stepsize is .h0 = 0.01 and the tolerance is tol.= 10−6. The stars highlight the rejected stepsizes
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Fig. 7.4 Example 7.9: pattern of the stepsize associated to the application of the explicit-implicit 
Euler predictor-corrector scheme to the Prothero-Robinson problem (7.5) in .[0, 10], with  . g(t) =
sin(t), initial value .y0 = 0 and .λ = −1000. The variable stepsize strategy used in Program 7.1 
relies on Milne estimation of the error (7.28) and the classical stepsize control strategy (7.29). The  
initial stepsize is .h0 = 0.01 and the tolerance is tol.= 10−6. The black stars highlight the rejected 
stepsizes 
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Fig. 7.5 Example 7.9: zoom of the pattern in Fig. 7.4 in a small interval 

7.6.3 Error Estimation for Runge-Kutta Methods 

Let us now briefly discuss some building blocks useful to design a variable stepsize 
solver based on RK methods (4.8), starting from the estimation of the error.
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Many possibilities can be exploited, for instance the embedding strategy (here not 
discussed, but the reader can refer to [67, 195, 242], for instance). Here we discuss 
the so-called Richardson extrapolation strategy , based on applying the method 
twice, with stepsizes h and 2h. 

Let us focus on a fixed grid point .tn+1 and denote by .yn+1 and .zn+1 RK solutions 
with stepsizes h and 2h, respectively. Supposing that p is the order of the method, 
we have 

. 

y(tn+1) = yn+1 + Chp+1y(p+1)(tn) + O(hp+2),

y(tn+1) = zn+1 + C(2h)p+1y(p+1)(tn) + O(hp+2),

where C is the error constant of the method. Side-by-side subtraction leads to 

.Chp+1y(p+1)(tn) ≈ yn+1 − zn+1

2p+1 − 1
, (7.31) 

that is the estimate of the principal error term by the so-called Richardson 
extrapolation, that is known to be pretty accurate but expensive, since it requires 
two applications of the method. 

Error estimates (such as Milne estimate or Richardson extrapolation) are asymp-
totically correct, i.e., when the stepsize tends to 0, by construction itself. As 
expectable, in order to approach stiff systems, this property of correctness may not 
be sufficient, since their solution also requires the usage of large stepsizes when the 
problem makes it possible. Shampine and Baca in [317] focused their attention on 
the assessment of the quality of the error estimate for large values of the stepsize, 
by using similar arguments as in the classical theory of absolute stability. 

To this purpose, let us consider a restricted class of problems of the form 
.y′ = Jy + g, where J is a constant matrix and g a constant vector. Let us denote by 
.R(z) the rational function obtained by applying a given RK method to this problem, 
with z proportional to . λ, and suppose that its error estimate can be represented as 
.Re(hJ )(yn − J−1g). Moreover, we denote by .Rt(z) = ez − R(z). If  

. 
Re(z)

Rt (z)
∼ czm

for Re.(z) < 0 and . |z| tending to infinity, with positive integer m, so that  the error is  
grossly overestimated for sufficiently large values of the stepsize. 

In order to improve the error estimate in this case, the authors propose in [317] 
to multiply the estimate by the filter matrix .(I − hdJ )−1: for general ODEs (1.1), 
J is the Jacobian matrix of the vector field and d is a constant characteristic of the 
method. This choice is suitable to damp the large, stiff error components and, as 
observed in [317], the improved error estimator does not alter the behavior for small 
stepsizes and corrects it for large values of the stepsize.
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7.6.4 Newton Iterations for Fully Implicit Runge-Kutta 
Methods 

We complete this brief selection of topics useful to provide a variable stepsize 
implementation of RK methods by providing a representation of Newton iterations 
for fully implicit methods. As aforementioned, stiff problems generally have large 
Lipschitz constants making fixed-point iterations unsuitable to handle implicit 
methods. Let us now consider Newton iterations applied to the tensor representation 
of RK methods (4.11). We set  

. �(Y) = Y − (e ⊗ I )y0 − h0(A ⊗ I )F (Y )

and aim to solve the system .�(Y) = 0, of dimension .sd × sd. We take as initial 
guess the vector 

. Y [0] =

⎡

⎢⎢⎢⎢⎢⎢⎣

y0

y0

...

y0

⎤

⎥⎥⎥⎥⎥⎥⎦
∈ Rsd ,

and asses the following Newton iterative procedure 

.Y [ν+1] = Y [ν] − (
∂�(Y [ν])

)−1
�(Y [ν]), (7.32) 

for .ν ≥ 1, where 

. ∂�(Y [ν]) = Isd − h(A ⊗ Id)J (Y [ν]) ∈ Rsd×sd

and .J (Y [ν]) is the Jacobian matrix of .F(Y [ν]), i.e., the block diagonal matrix 

. J (Y [ν]) =

⎡

⎢⎢⎣

∂f (Y
[ν]
1 )

. . .

∂f (Y
[ν]
s )

⎤

⎥⎥⎦ ,

where .∂f (Y
[ν]
j ) is the Jacobian matrix of f evaluated in . Y [ν]

j , for  .j = 1, 2, . . . , s. 

The matrix .∂�(Y [ν]) is invertible for small enough values of h. The expression 
(7.32) is equivalent to the linear system 

. − ∂�(Y [ν])δY [ν+1] = �(Y [ν]), (7.33)
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where .δY [ν+1] = Y [ν+1] − Y [ν+1]. We next solve the system (7.33) with respect to 
.δY [0], for example by Gaussian elimination, and derive 

. Y [0],i+1 = Y [0],i + δY [0].

We stop the iterative scheme at the M-th step, when .‖δY [M]‖∞ is smaller than 
a prescribed tolerance and .‖�(Y [M])‖∞ is also small enough. Then, we take 
.Y = Y [M]. 

7.7 Exercises 

1. Perform Prothero-Robinson analysis described in Sect. 7.2 to the two-stage 
Gaussian Runge-Kutta method (4.25). Comment the results. 

2. Write a software in the programming language you prefer that provides a 
variable stepsize implementation of a BDF method, chosen among those 
provided in Sect. 7.5. The solver should incorporate the classical stepsize 
control (7.29) and Milne error estimate (7.27) to estimate the error. 

3. Using the program developed in the previous exercise, provide an experimental 
confirmation of the stiff-stability of BDF methods. 

4. Suppose that an explicit LMM (3.1) of order p and an implicit LMM of order 
q are coupled in a predictor-corrector scheme, where the corrector is iterated μ 
times per step. Prove that (see [242]) 

• if p ≥ q (or if p <  q  and μ > q  − p) the predictor-corrector scheme and 
the corrector method have the same order and the same principal error term; 

• if p <  q  and μ = q − p, the predictor-corrector scheme and the corrector 
method have the same order abut different principal error term; 

• if p <  q  and μ ≤ q−p−1, than the order of the predictor-corrector scheme 
is p + μ. Provide an experimental confirmation of this accuracy property. 

5. Provide a formal linear stability analysis of the predictor-corrector scheme 
given by coupling explicit and implicit Euler methods (2.19)–(2.32). 

6. Find an empirical estimate of the parameters σ1 and σ2 in (7.30) to improve the 
performances of the variable stepsize implementation of the predictor-corrector 
scheme given by coupling explicit and implicit Euler methods (2.19)–(2.32). In  
particular, aim to improve the results in Fig. 7.4, trying to reduce the number of 
rejected steps. Comment the results. 

7. Use Program 7.1 to solve the Brussellator problem [195] 

.

⎧
⎨

⎩

y′
1(t) = A + y2

1y2 − (B + 1)y1(t),

y′
2(t) = By1(t) − y1(t)

2y2(t),
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for t ∈ [0, 20], with initial values y1(0) = 1.5, y2(0) = 3. Consider various 
tolerances and various values of the parameters A and B. Comment the results. 

8. Use Program 7.1 to solve van der Pol problem [195] 

. 

⎧
⎨

⎩

y′
1(t) = y2(t),

y′
2(t) = (

(1 − y1(t)
2)y2(t) − y1(t)

)
/ε,

for t ∈ [0, 2], with initial values y1(0) = 2, y2(0) = −2/3 and various values 
of the parameter ε (including 10−1, 10−3 and 10−5), observing that the problem 
is stiff for small values of ε. Comment the results. 

9. Using the material covered in this chapter, write a software in the programming 
language you prefer that provides a variable stepsize implementation of Runge-
Kutta methods, choosing an A-stable method. The solver should incorporate the 
classical stepsize control (7.29) and Richardson extrapolation (7.31) to estimate 
the error. 

10. Compute the value of σα,β(S0, I0) defined by Eq. (7.4) for the countries listed 
in Table 1.2. Then, solve Eq. (7.3) by means of a chosen implicit method and 
check the number of time units needed to reach the maximum of infected 
people in the case of each country, observing that the highest values correspond 
to those countries exhibiting larger values of σα,β(S0, I0). Finally, solve the 
original nonlinear system (1.3) and compare the results previously obtained 
with its linearized version (7.3).



Chapter 8 
Geometric Numerical Integration 

It turned out that the preservation of geometric properties of the 
flow not only produces an improved qualitative behaviour, but 
also allows for a more accurate long-time integration than with 
general-purpose methods. 

(Ernst Hairer, Christian Lubich, Gerhard Wanner, Preface of 
[192]) 

Modern Numerical Analysis is not only devoted to approximating the solutions 
of various problems through accurate and efficient numerical schemes, but also to 
retaining qualitative properties of the continuous problem over long times. Some-
times such conservation properties naturally characterize the numerical schemes, 
while in more complex situations preservation issues have to be conveyed into the 
numerical approximations. The numerical preservation of invariants is at the basis 
of the so-called geometric numerical integration. A classical reference to this topic 
is the monograph [192] by E. Hairer, C. Lubich and G. Wanner, which provides a 
comprehensive treatise on several aspects of geometric numerical integration. 

The basic principle of geometric numerical integration can be briefly explained 
through the following diagram: 

Indeed, suppose that a numerical method is applied to solve a conservative 
problem, i.e., a problem showing some invariants along the dynamics generated 
by its exact solution. A geometric numerical method provides a discretized problem 
that, along its solution, possesses invariants that are close to the exact ones over long 
time windows. Such a long-term preservation is not always automatically provided 
by any numerical method, hence it is relevant to analyze the conditions to impose 
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on a numerical scheme in order to make it a geometric numerical method. Before 
entering into the details of the topic, let us give an example. 

Example 8.1 Let us consider the system of ODEs for the harmonic oscilla-
tor (1.20). As we have proved (see Example 1.7), the total energy (1.21) is a 
first integral of the system.We now aim to check if such a first integral remains 
invariant also along the numerical solutions computed by the following three 
methods: 

• the explicit Euler method (2.19); 
• the implicit Euler method (2.32); 
• the two-stage Gaussian RK method (4.25). 

Figures 8.1, 8.2 and 8.3 show the phase portrait of the approximate 
solutions to (1.20) with .ω = 10, computed over the time window .[0, 1000] by 
applying the aforementioned methods with constant stepsize .10−2. As visible 
from these figures, both explicit and implicit Euler methods are not able to 
retain the symplecticity of the phase space, since they cannot reconstruct 
the periodic orbit characterizing the dynamics of (1.20). More specifically, 
the dynamics described by Fig. 8.1 is an outward spiral, due to the unstable 
behavior of the employed explicit method. On the contrary, the employ of an 
implicit method as in Fig. 8.2 yields an inward spiral dynamics. This is not 
the case of the two-stage Gaussian RK method (4.25) since, as visible from 
Fig. 8.3, it nicely maintains the symplecticity of the phase space. 

A similar behavior can also be visible from the pattern of the deviation 
between the energy in the final integration point and that referred to the 
initial point. Indeed, Fig. 8.4 shows that the only method able to preserve the 
energy along time is the two-stage Gaussian RK method. The reason why this 
situation occurs will be clarified in the remainder of this chapter. 

8.1 Historical Overview 

The denomination geometric numerical integration strongly recalls the approach to 
geometry formulated by Felix Klein in his Erlangen program [238]. Klein describes 
geometry as the study of invariants under certain transformations. Similarly, geo-
metric numerical methods were launched as structure-preserving schemes, able to 
retain peculiar features of a dynamical system along its discretizations. As addressed 
by Robert Mc Lachlan in his review [260] of the book by Hairer, Lubich and Wanner 
[192], the connection with the so-called geometric integration theory by Hassler 
Whitney [343] is even more subtle than that suggested by the name itself. Indeed, as
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Fig. 8.1 Phase portrait of the 
approximate solution to the 
harmonic oscillator (1.20) 
with .ω = 10, initial values 
.y1(0) = 0 and .y2(0) = 1, 
computed by the Euler 
method (2.19) with stepsize 
. 10−2

Fig. 8.2 Phase portrait of the 
approximate solution to the 
harmonic oscillator (1.20) 
with .ω = 10, initial values 
.y1(0) = 0 and .y2(0) = 1, 
computed by the implicit 
Euler method (2.32) with 
stepsize . 10−2

stated by Arnold [16] in his speech addressed to the participants of the International 
Congress of Mathematicians in Beijing, “The design of stable discretizations of 
systems of PDEs often hinges on capturing subtle aspects of the structure of the 
system in the discretization. This new geometric viewpoint has provided a unifying 
understanding of a variety of innovative numerical methods developed over recent 
decades”. In his talk, Arnold shows that the function spaces introduced by Whitney 
in [343] (the so-called Whitney elements) represent what is required for a geometric 
discretization of many PDEs. 

A famous method, well-known in the context of geometric numerical integration, 
is the so-called leapfrog method, also known as Störmer-Verlet method [192, 196].
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Fig. 8.3 Phase portrait of the 
approximate solution to the 
harmonic oscillator (1.20) 
with .ω = 10, initial values 
.y1(0) = 0 and .y2(0) = 1, 
computed by the two-stage 
Gaussian RK method (4.25) 
with stepsize . 10−2

Fig. 8.4 Energy deviations in time along the approximate solutions to the harmonic oscilla-
tor (1.20) with .ω = 10, initial values .y1(0) = 0 and .y2(0) = 1, computed by the explicit 
Euler method (2.19, dashed-dotted line), the implicit Euler method (2.32, dashed line), the two-
stage Gaussian RK method (4.25, solid line) with stepsize .10−2. The deviation is computed as the 
absolute value of the difference between the energy in the final integration point .t = 1000, minus 
that in the initial point . t = 0

This method, for the discretization of the second order problem 

. q̈ = f (q),

is given by 

.qn+1 − 2qn + qn−1 = h2f (qn).
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This method is extensively used in many fields, such as celestial mechanics and 
molecular dynamics, and it is first due to Störmer that, in 1907, used a variant of 
this scheme for the computation of the motion of ionized particles in the Earth’s 
magnetic field (aurora borealis). Above formulation is that developed by Verlet 
in 1967 [339] in his pioneering papers on the computer simulation of molecular 
dynamics models. Verlet was also particularly interested in the history of science, 
through which he was able to discover that his scheme was previously used by 
several authors (see [196] and references therein): for instance, by Delambre in 
1792 for the computation of logarithms and astronomical tables (see [263]) and 
by Newton, who used it in his Principia (1687) to prove Kepler’s second law (see 
[340]). 

As highlighted in [196], a seminal contribution regarding geometric numerical 
integration was given by De Vogelaere in 1956 [144], “a marvellous paper, short, 
clear, elegant, written in one week, submitted for publication and never published”. 
In particular, this paper provides examples of numerical methods (such as the 
symplectic Euler method) retaining the symplecticity of Hamiltonian problems. 
Still regarding Hamiltonian problems, successive contributions on their structure-
preserving integrations are due to Ruth [305] in 1983 and Kang [232] in 1985. 

A criterion for the numerical conservation of the symplecticity via Runge-Kutta 
methods (leading to the family of so-called symplectic Runge-Kutta methods) has 
independently been proved in 1988 by Lasagni [244], Sanz-Serna [307] and Suris 
[331], depending on a similar condition discovered by Cooper [98] for the numerical 
conservation of quadratic first integrals. To some extent, 1988 is the starting date for 
the spread out and the establishment of a theory of conservative numerical methods 
for Hamiltonian problems (on this topic, the interested reader can refer, for instance, 
to the monographs [26, 32, 192, 223, 233, 248, 249, 308], the survey papers [40, 41, 
189, 261, 262, 264] and references therein). 

Symplecticity is a prerogative of RK methods: in fact, Tang proved in 1993 
[335] that linear multistep methods cannot be symplectic, as well as Hairer and 
Leone in 1997 [190, 250] and Butcher and Hewitt in 2009 [71] proved that 
genuine multivalue numerical methods cannot be symplectic. However, nearly-
conserving linear multistep methods exhibiting excellent long-time behaviors have 
been developed by Hairer and Lubich [191, 192], Eirola and Sanz-Serna [158], 
while a theory of nearly-preserving multivalue methods has been explored in 
[67, 69, 70, 73, 122, 133, 134]. 

Other relevant classes of geometric numerical integrators fall in the field of the 
so-called energy preserving numerical integrators that are not considered here for 
the sake of brevity, but the interested reader can refer, for instance, to [31, 32, 34– 
36, 81–84, 92, 274–276, 294] and references therein. 

This short historical overview of geometric numerical integration is clearly very 
far from being exhaustive and also the mentioned references are a small portion of 
the very wide scientific literature on the topic. However, it is in the author’s opinion 
that even a brief glance at the historical frame is important to contextualize the 
results, better understand their genesis and the developments of new ideas.
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8.2 Principles of Nonlinear Stability for Runge-Kutta 
Methods 

We have introduced in Sect. 1.3 the relevant property of dissipativity of a differential 
problem, arising from a one-sided Lipschitz property of its vector field. In particular, 
we have proved that negative one-sided Lipschitz functions guarantee, according to 
Theorem 1.5, that contractive solutions with respect to a given norm are generated. 

We now aim to understand under which conditions this feature is preserved 
along the solutions computed by a Runge-Kutta method, according to the following 
definition, given by Butcher in [61]. 

Definition 8.1 Let us consider a Runge-Kutta method applied to a differential 
problem (1.1) satisfying the contractivity condition 

.〈f (t, y(t)) − f (t, ỹ(t)), y(t) − ỹ(t)〉 ≤ 0, (8.1) 

where .y(t) and .̃y(t) are two solutions of (1.1), obtained with respect to the 
distinct initial values . y0 and . ̃y0, respectively. The method is B-stable if, for 
any stepsize h, 

. ‖yn+1 − ỹn+1‖ ≤ ‖y0 − ỹ0‖, n ≥ 0.

B-stable methods are certainly A-stable; this evidence can be proved by a simple 
check, obtained with respect to the Dahlquist test problem (6.1). The vice versa 
is not true. All Gaussian Runge-Kutta methods (see Sect. 4.4.1) are B-stable; the 
interested reader can find a detailed proof in [195]. 

Clearly, Definition 8.6 needs a practical way to check whether a Runge-Kutta 
method is B-stable or not. As usual, we present an algebraic condition on the 
coefficients of the method, ensuring its B-stability. Such a conditions has been 
independently proved by Burrage, Butcher [49] and Crouzeix [103]. 

Theorem 8.1 For a given Runge-Kutta method (4.8), let us consider the 
matrix 

.M = BA + ATB − bbT, (8.2) 

where .B = diag(b). If .bi ≥ 0, .i = 1, 2, . . . , s and M is non-negative definite, 
then the Runge-Kutta method is B-stable.
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Proof According to Definition 8.6 of B-stability, let us consider a differential 
problem (1.1) generating contractive solutions and denote two of its solutions by 
.y(t) and .̃y(t). Side-by-side subtraction between two applications of the Runge-
Kutta method (4.8) for the approximation of .y(t) and .̃y(t) yields 

.yn+1 − ỹn+1 = yn − ỹn + h

s
∑

i=1

bi

(

f (tn + cih, Yi) − f (tn + cih, ˜Yi)
)

, (8.3) 

and 

.Yi − ˜Yi = yn − ỹn + h

s
∑

j=1

aij

(

f (tn + cjh, Yj ) − f (tn + cjh, ˜Yj )
)

. (8.4) 

Squaring side-by-side in (8.3) leads to 

. ‖yn+1 − ỹn+1‖2 = ‖yn − ỹn‖2

+2h
s

∑

i=1

bi〈f (tn + cih, Yi) − f (tn + cih, ˜Yi), yn − ỹn〉

+h2
s

∑

i=1

s
∑

j=1

bibj 〈f (tn + cih, Yi) − f (tn + cih, ˜Yi),

f (tn + cjh, Yj ) − f (tn + cjh, ˜Yj )〉.

Let us replace the value of .yn − ỹn computed from (8.4) in the first scalar product 
appearing in the right-hand side of last equation, obtaining 

. ‖yn+1 − ỹn+1‖2 = ‖yn − ỹn‖2

+2h
s

∑

i=1

bi〈f (tn + cih, Yi) − f (tn + cih, ˜Yi), Yi − ˜Yi〉

−h2
s

∑

i=1

s
∑

j=1

mij 〈f (tn + cih, Yi) − f (tn + cih, ˜Yi),

f (tn + cjh, Yj ) − f (tn + cjh, ˜Yj )〉.

Taking into account the contractivity condition (8.1), the hypothesis .bi ≥ 0, 
.i = 1, 2, . . . , s, and the characteristic property of non-negative matrices 

.

s
∑

i=1

s
∑

j=1

mij 〈ui, vj 〉 ≥ 0, ui, vj ∈ Rd , i = 1, 2, . . . , s,
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the thesis holds true. �	

Definition 8.2 A Runge-Kutta method (4.8) such that .bi ≥ 0, .i = 1, 2, . . . , s, 
and whose matrix M defined by (8.2) is non-negative definite, is said to be 
algebraically stable. 

According to Theorem 8.1 an algebraically stable RK method is B-stable. The 
vice versa is not true in general, unless the method is non-confluent, i.e., .ci 
= cj , 
for any .i 
= j . In this case, the following result holds true. 

Theorem 8.2 A non-confluent Runge-Kutta method is B-stable if and only if 
it is algebraically stable. 

The interested reader can find a complete proof of this result in [195]. An 
equivalence theorem for confluent methods has been proved by Hundsdorfer and 
Spijker in [220]. 

The concepts and the results contained in this section are a very brief introduction 
of the building blocks of the so-called nonlinear stability theory of numerical 
methods, i.e., the analysis of the properties of numerical methods applied to non-
linear problems and the ability of numerical discretizations to retain the qualitative 
properties of nonlinear test problems. Pioneering papers on nonlinear stability 
analysis for numerical methods approximating the solutions of ODEs have been 
provided by G. Dahlquist [110, 111], starting from the notion of G-stability (also 
see [65, 195]). 

Let us now specialize our presentation to conservation issues for numerical 
methods approximating nonlinear problems with selected specific features. 

8.3 Preservation of Linear and Quadratic Invariants 

We have introduced the notion of first integral for a d-dimensional autonomous 
ODE (1.17) in Sect. 1.4. We now aim to analyze the conservative behavior of Runge-
Kutta methods (4.8) if such a first integral is linear, i.e., it is of the form 

.I (y(t)) = vTy(t), (8.5) 

with .v ∈ Rd . The following result holds true.
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Theorem 8.3 Any Runge-Kutta method (4.8) preserves linear invariants 
(8.5), i.e., 

. vTyn+1 = vTyn, n ≥ 0.

Proof According to Definition 1.4, a first integral satisfies 

. ∇I (y(t))f (y(t)) = 0,

that means, for the linear case (8.5) 

. vTf (y(t)) = 0.

Let us compute .vTyn+1, where .yn+1 is provided by a RK method (4.8), obtaining 

. vTyn+1 = vTyn + h

s
∑

i=1

biv
Tf (Yi).

Since .vTf (Yi) = 0, .i = 1, 2, . . . , s, the thesis holds true. �	
Let us now analyze the conservation of quadratic functions 

.Q(y(t)) = y(t)TCy(t), (8.6) 

where .C ∈ Rd×d is a symmetric matrix. Such a quadratic form is a first integral 
of (1.17), according to Definition 1.4, if  

.y(t)TCf (y(t)) = 0. (8.7) 

This condition is useful to prove the following result, proved by Cooper in [98]. 

Theorem 8.4 If the coefficients of a Runge-Kutta method (4.8) fulfill the 
condition 

.biaij + bjaji = bibj , i, j = 1, 2, . . . , s, (8.8) 

then it preserves quadratic invariants (8.6), i.e., 

.yT
n+1Cyn+1 = yT

nCyn, n ≥ 0.
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Proof Let us compute the quadratic form .yT
n+1Cyn+1, obtaining 

. 

yT
n+1Cyn+1 = yT

nCyn + h

s
∑

i=1

bif (Yi)
TCyn + h

s
∑

i=1

biy
T
nCf (Yi)

+ h2
s

∑

i,j=1

bibjf (Yi)
TCf (Yj ).

Let us analyze the .O(h) terms in the right-hand side of last equation, by recasting 
. yn using the formula of the internal stages in (4.8), i.e., 

. yn = Yi − h

s
∑

j=1

aij f (Yj ).

We correspondingly obtain 

. 

h

s
∑

i=1

bif (Yi)
TCyn = h

s
∑

i=1

bif (Yi)
TCYi − h2

s
∑

i,j=1

biaij f (Yi)
TCf (Yj ),

h

s
∑

i=1

biy
T
nCf (Yi) = h

s
∑

i=1

biY
T
i Cf (Yi) − h2

s
∑

i,j=1

bjajif (Yi)
TCf (Yj ),

i.e., by means of (8.7), 

. 

h

s
∑

i=1

bif (Yi)
TCyn = −h2

s
∑

i,j=1

biaij f (Yi)
TCf (Yj ),

h

s
∑

i=1

biy
T
nCf (Yi) = −h2

s
∑

i,j=1

bjajif (Yi)
TCf (Yj ).

We finally get 

. yT
n+1Cyn+1 = yT

nCyn − h2
s

∑

i,j=1

(biaij + bjaji − bibj )f (Yi)
TCf (Yj ),

leading to the thesis. �	
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It is worth observing that Eq. (8.8) provides an algebraic condition on the 
coefficients of RK methods that can more compactly be written as .M = 0, where 
the matrix M is defined by (8.2). In other terms, the matrix M plays a role both 
in retaining the contractive character of solutions to dissipative problems and in 
conserving quadratic first integrals. However, the story does not end here, as we 
recognize in next section: indeed, RK methods satisfying (8.8) are particularly 
relevant in the numerical approximation of Hamiltonian problems. 

We have realized that any Runge-Kutta method is able to exactly preserve 
linear invariants, while quadratic invariants are preserved only by a family of 
Runge-Kutta methods. A natural question to ask is what happens to polynomial 
invariants of degree greater than or equal to 3. This (negative) result gives the 
answer related to RK methods, whose complete proof can be found in [192]. 
Clearly, as aforementioned, since Runge-Kutta methods are not able to cover 
themselves all possible conservation issues, other relevant classes of geometric 
numerical integrators have been introduced, most of them falling in the general 
field of energy-preserving numerical methods (the reader can refer, for instance, 
to [31, 32, 34–36, 81–84, 92, 274–276, 294] and references therein). 

8.4 Symplectic Methods 

We have introduced a relevant class of conservative problems in Sect. 1.4, i.e., 
Hamiltonian problems (1.28). A characteristic property of these problems, as proved 
in Theorem 1.6 is the symplecticity of the corresponding flow map. In the spirit of 
geometric numerical integration we are interested in understanding under which 
conditions a numerical method is able to retain the same property along discretized 
dynamics. Let us particularly focus on one-step methods; we represent them as a 
map . ϕh that associates .yn+1 to . yn and give the following definition. 

Definition 8.3 A one-step method is symplectic if the one-step map . ϕh is 
a symplectic transformation when applied to a smooth Hamiltonian prob-
lem (1.28), i.e., if 

. ϕ′
h(yn)

TJϕ′
h(yn) = J.

We now provide important examples of symplectic methods, starting from the 
famous symplectic Euler method, introduced by de Vogelaere in [144].
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Theorem 8.5 (de Vogelaere) The symplectic Euler method 

.

pn+1 = pn − hHq(pn+1, qn),

qn+1 = qn + hHp(pn+1, qn),
(8.9) 

for the numerical solution of Hamiltonian problems (1.22) is a symplectic 
method of order 1. 

Proof We first differentiate (8.9) side-by-side with respect to .(pn, qn), obtaining 

. 

∂pn+1

∂pn

= ∂pn

∂pn

− hHqp

∂pn+1

∂pn

,

∂pn+1

∂qn

= −hHqp

∂pn+1

∂qn

− hHqq

∂qn

∂qn

,

∂qn+1

∂pn

= hHpp

∂pn+1

∂pn

∂qn+1

∂qn

= ∂qn

∂qn

+ hHpp

∂pn+1

∂qn

+ hHpq

∂qn

∂qn

being .I ∈ Rd×d the identity matrix and avoiding to explicitly write the dependence 
of the Hamiltonian function on .(pn+1, qn) for the sake of brevity. As a consequence, 

. 

(

I + hHqp

) ∂pn+1

∂pn

= I,

(

I + hHqp

) ∂pn+1

∂qn

= −hHqq,

−hHpp

∂pn+1

∂pn

+ ∂qn+1

∂pn

= 0,

−hHpp

∂pn+1

∂qn

+ ∂qn+1

∂qn

= I + hHpq.

Recasting above relations in a compact matrix form yields 

.

[

I + hHqp 0

−hHpp I

]

⎡

⎢

⎢

⎣

∂pn+1

∂pn

∂pn+1

∂qn

∂qn+1

∂pn

∂qn+1

∂qn

⎤

⎥

⎥

⎦

=
[

I −hHqq

0 I + hHpq

]

,
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from which we compute 

. 

⎡

⎢

⎢

⎣

∂pn+1

∂pn

∂pn+1

∂qn

∂qn+1

∂pn

∂qn+1

∂qn

⎤

⎥

⎥

⎦

=
[

I + hHqp 0

−hHpp I

]−1 [

I −hHqq

0 I + hHpq

]

=
[

D −hDHqq

hHppD −h2HppDHqq + D−1

]

,

where .D = (I + hHqp)−1. The reader can easily check that the symplecticity 
condition 

. 

⎡

⎢

⎢

⎣

∂pn+1

∂pn

∂pn+1

∂qn

∂qn+1

∂pn

∂qn+1

∂qn

⎤

⎥

⎥

⎦

T

J

⎡

⎢

⎢

⎣

∂pn+1

∂pn

∂pn+1

∂qn

∂qn+1

∂pn

∂qn+1

∂qn

⎤

⎥

⎥

⎦

= J

holds true. �	
We observe that the symplectic Euler method (8.9) is implicit with respect to p. 

An alternative version implicit in q also exists, given by 

.

pn+1 = pn − hHq(pn, qn+1),

qn+1 = qn + hHp(pn, qn+1)

(8.10) 

and the reader can check its symplecticity, applying similar arguments as those used 
in the proof of Theorem 8.5, see Exercise 1 at the end of this chapter. 

Let us now provide a Matlab implementation of the symplectic Euler 
method (8.9) applied to (1.22), given in Program 8.1. The code requires defining 
the right-hand side of (1.22) through the functions fp.m and fq.m. Moreover, the 
built-in function fsolve is used to handle the implicitness of (8.9). 

Program 8.1 (Symplectic Euler Method) 
% Function implementing the symplectic Euler method (8.9) 
% for the numerical solution of a Hamiltonian problem 
% on a uniform grid. 

% Inputs 
% - problem: label of the problem to be solved; 
% - tspan: vector of two components, storing the extrema 
% of the integration interval; 

(continued)
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Program 8.1 (continued) 
% - p0: initial momentum; 
% - q0: initial position; 
% - h: constant stepsize. 

% Outputs 
% - t: set of N equidistant grid points (tspan(1) excluded); 
% - p: d. ×N matrix whose i-th column p(:,i) stores the 
% approximate momentum in the i-th grid point; 
% - q: d. ×N matrix whose i-th column p(:,i) stores the 
% approximate position in the i-th grid point. 

function [t,p,q]=symplecticEuler(problem,tspan,p0,q0,h) 
N=(tspan(2)-tspan(1))/h; 
t=linspace(h,tspan(2),N); 
d=length(p0); 
p=zeros(d,N); 
q=zeros(d,N); 
options=optimset(’Display’,’off’,’TolFun’,eps,’TolX’,eps); 
p(:,1)=fsolve(@(x) x-p0-h*fp(problem,x,q0),p0,options); 
q(:,1)=q0+h*fq(problem,p(:,1),q0); 
for i=2:N 

p(:,i)=fsolve(@(x) x-p(:,i-1)+... 
h*fp(problem,x,q(:,i-1)),p(:,i-1),options); 

q(:,i)=q(:,i-1)+h*fq(problem,p(:,i),q(i-1)); 
end 

Example 8.2 Let us solve the system of ODEs for the mathematical pendu-
lum (1.23) by the symplectic Euler method (8.9), in order to check if the 
symplecticity of the continuous flow is also retained along the numerical 
dynamics. The numerical evidence is provided by using Program 8.1 and 
displayed in Fig. 8.5, showing that the symplecticity of the phase space is 
nicely preserved by (8.9) that provides the periodic orbit characterizing the 
dynamics of (1.23). This property is not visible if a non-symplectic method is 
used: for instance, computing the numerical dynamics by means of the explicit 
Euler method (2.19) provides the phase portrait depicted in Fig. 8.6, where the 
symplecticity of the original problem is totally lost. 

Let us now analyze the property of symplecticity for Runge-Kutta methods, 
applied to Hamiltonian problems (1.22). This topic has been object of seminal 
papers, all dated 1988, independently authored by Lasagni [244], Sanz-Serna [307], 
Suris [331]. The proof of symplecticity for Runge-Kutta methods relies on the 
following lemma [27, 192].
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Fig. 8.5 Phase portrait 
associated to the approximate 
solution to the mathematical 
pendulum (1.23) with initial 
values .p(0) = 0 and 
.q(0) = 1, computed by the 
symplectic Euler 
method (8.9) with stepsize 
. 10−1

Fig. 8.6 Phase portrait 
associated to the approximate 
solution to the mathematical 
pendulum (1.23) with initial 
values .p(0) = 0 and 
.q(0) = 1, computed by the 
explicit Euler method (2.19) 
with stepsize . 10−1

Lemma 8.1 Consider an autonomous problem (1.17) and its variational 
equation (1.29). Correspondingly, let us denote by .yn+1 = �h(yn) the map 
associating a single step of a given Runge-Kutta method from the point . tn to 
.tn+1 of the grid. Then, the following diagram commutes: 

(continued)
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Lemma 8.1 (continued) 

where the horizontal arrows denote differentiation with respect to . y0 and 
the vertical arrows the application of . �h. In other terms, the numerical result 
.{y1,M1} obtained by applying a single step of the method to the problem 
augmented by its variational equation is equal to the numerical solution of 
.ẏ = f (y) augmented by its derivative .M1 = ∂y1/∂y0. 

Proof We first compute a single step of a RK method (4.8) applied to (1.17) and 
side-by-side differentiate with respect to . y0, obtaining 

.

∂y1

∂y0
= I + h

s
∑

i=1

bif
′(Yi)

∂Yi

∂y0
,

∂Yi

∂y0
= I + h

s
∑

j=1

aij f
′(Yj )

∂Yj

∂y0
, i = 1, 2, . . . , s.

(8.11) 

We observe that the last equation is a linear system in the unknowns . 
∂Yi

∂y0
, 

.i = 1, 2, . . . , s. 
We now aim to prove that side-by-side differentiating (1.17) and then apply-

ing (4.8) lead to the same result. So, we apply (4.8) directly to the variational 
equation (1.29), getting 

.

∂y1

∂y0
= I + h

s
∑

i=1

bif
′(Yi)˜Mi,

˜Mi = I + h

s
∑

j=1

aij f
′(Yj )˜Mj, i = 1, 2, . . . , s.

(8.12)
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We observe that last equation is also a linear system in the unknowns . ˜Mi , 
.i = 1, 2, . . . , s. Moreover, the two linear systems displayed as second equations 
of (8.11) and (8.12) act exactly in the same way. For sufficiently small values of 
h, both systems have unique solution and, since they are the same system, we have 
.˜Mi = ∂Yi/∂y0 and, consequently, .M1 = ∂y1/∂y0. So the diagram in the statement 
of the lemma commutes. �	

Theorem 8.6 Any RK method (4.8) preserving quadratic first integrals (8.6) 
is a symplectic method. 

Proof Let us consider the augmented system 

.

ẏ = J−1∇H(y),

Ṁ = J−1∇2H(y)M,
(8.13) 

containing the Hamiltonian problem (1.28) and its variational equation. Let us prove 
that .MTJM is a first integral for (8.13). Indeed, 

. 

d

dt
(MTJM) = ṀTJM + MTJṀ

=
(

J−1∇2H(y)M
)T

JM + MTJJ−1∇2H(y)M

= MT
(

∇2H(y)
)T

(J−1)TJψ + MT∇2H(y)M

= −MT∇2H(y)M + MT∇2H(y)M = 0.

In other terms, .MTJM is a quadratic first integral of (8.13) and is preserved by 
any RK method fulfilling the condition (8.8) of conservation of quadratic invariants 
described in Theorem 8.4. The conserved value of .MTJM is then equal to its initial 
value, i.e., .MTJM = J , that is the symplecticity condition. So, all RK conserving 
quadratic invariants are symplectic. �	

It is worth highlighting that condition (8.8) is then also a symplecticity condition. 
For this reason, the literature directly denotes RK methods satisfying (8.8) as 
symplectic RK methods. A consequence of this result is that all Gaussian RK 
methods (see Sect. 4.4.1) are symplectic methods; Program 8.2 implements one 
of them, namely that depending on two internal stages (4.25), to solve a given  
Hamiltonian problem.
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Program 8.2 (Symplectic RK Method (2-Stage Gaussian Method)) 
% Function implementing the 2-stage Gaussian method (4.25) 
% for the numerical solution of a Hamiltonian problem 
% on a uniform grid. 

% Inputs 
% - problem: label of the problem to be solved; 
% - tspan: vector of two components, storing the extrema 
% of the integration interval; 
% - y0: vector of initial momenta (stored in y0(1:d)) and 
% initial positions (stored in y0(d+1:2d)) 
% - h: constant stepsize. 

% Outputs 
% - t: set of N equidistant grid points (tspan(1) excluded); 
% - y: 2d. ×N matrix whose i-th column stores approximate 
% momenta (in y0(1:d)) and coordinates (in y0(d+1:2d)), 
% referring to the i-th grid point; 
% - hamDev: N-dimensional vector storing the deviation 
% of the Hamiltonian function in each grid point 
% from the initial Hamiltonian; 

function [t,y,hamDev]=GaussRK2s(problem,tspan,y0,h) 
N=(tspan(2)-tspan(1))/h; 
t=linspace(h,tspan(2),N); 
d=length(y0)/2; 
Id=eye(2*d); 
y=zeros(2*d,N); 
hamDev=zeros(N,1); 
c=[(3-sqrt(3))/6; (3+sqrt(3))/6]; e=ones(length(c),1); 
A=[1/4 1/4-sqrt(3)/6; 1/4+sqrt(3)/6 1/4]; 
b=[1; 1]/2; 
options=optimset(’Display’,’off’,’TolFun’,eps,’TolX’,eps); 
Y=fsolve(@(Z) Z-kron(e,Id)*y0-h*kron(A,Id)*... 

[f(problem,[],Z(1:2*d)); f(problem,[],Z(2*d+1:4*d))],... 
[y0; y0],options); 

y(:,1)=y0+h*kron(b’,Id)*... 
[f(problem,[],Y(1:2*d)); f(problem,[],Y(2*d+1:4*d))]; 

ham0=hamiltonian(problem,y0); 
hamDev(1)=abs(hamiltonian(problem,y(:,1))-ham0); 
for i=2:N 

Y=fsolve(@(Z) Z-kron(e,Id)*y(:,i-1)-h*kron(A,Id)*... 
[f(problem,[],Z(1:2*d)); f(problem,[],Z(2*d+1:4*d))],... 
[y(:,i-1); y(:,i-1)],options); 

y(:,i)=y(:,i-1)+h*kron(b’,Id)*[f(problem,[],Y(1:2*d)); 
f(problem,[],Y(2*d+1:4*d))]; 

hamDev(i)=abs(hamiltonian(problem,y(:,i))-ham0); 
end
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Fig. 8.7 Phase portrait 
of (1.27) in the 
.(p1, q1)-plane, with initial 
values .p1(0) = 0.2, 
.p2(0) = 0, .q1(0) = −0.2, 
.q2(0) = 0. The displayed 
dynamics originates from the 
application of the symplectic 
two-stage Gaussian RK 
method (4.25) with stepsize 
. h = 0.1

A numerical evidence of the symplecticity of Gaussian RK method is certainly 
given by Example 8.1. An additional one is reported in the following example, 
whose results have been obtained via Program 8.2. 

Example 8.3 Let us consider Hénon-Heiles problem (1.26), already analyzed 
in Example 1.9 in order to provide a numerical evidence of the symplecticity 
of the two-stage Gaussian RK method (4.25). Figures 8.7, 8.8, 8.9, and 8.10 
display the phase portrait in several planes and provide a confirmation of 
the symplecticity of the numerical scheme, able to recover the symplecticity 
of the original problem along the numerical dynamics. We observe that the 
chosen time window is .[0, 4000] and the employed stepsize is .h = 0.1. 

8.5 Symmetric Methods 

A relevant property of mechanical systems is their time reversibility; in terms of flow 
map, this property is equivalent to say that .�t ◦ �−t is the identity map. In other 
terms, for a reversible system with initial value . y0, the dynamics starting from . y(t)

with reverse time goes back to . y0. In this section, we aim to understand under which 
conditions this property is recovered by a one-step method. Then, the following 
definitions are given.



260 8 Geometric Numerical Integration

Fig. 8.8 Phase portrait 
of (1.27) in the 
.(p1, q2)-plane, with initial 
values .p1(0) = 0.2, 
.p2(0) = 0, .q1(0) = −0.2, 
.q2(0) = 0. The displayed 
dynamics originates from the 
application of the symplectic 
two-stage Gaussian RK 
method (4.25) with stepsize 
. h = 0.1

Fig. 8.9 Phase portrait 
of (1.27) in the 
.(p2, q1)-plane, with initial 
values .p1(0) = 0.2, 
.p2(0) = 0, .q1(0) = −0.2, 
.q2(0) = 0. The displayed 
dynamics originates from the 
application of the symplectic 
two-stage Gaussian RK 
method (4.25) with stepsize 
. h = 0.1

Fig. 8.10 Phase portrait 
of (1.27) in the 
.(p2, q2)-plane, with initial 
values .p1(0) = 0.2, 
.p2(0) = 0, .q1(0) = −0.2, 
.q2(0) = 0. The displayed 
dynamics originates from the 
application of the symplectic 
two-stage Gaussian RK 
method (4.25) with stepsize 
.h = 0.1
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Definition 8.4 Given a one-step method . ϕh, its adjoint method is the one-step 
map 

. ϕ�
h = ϕ−1

−h.

Definition 8.5 A one-step method . ϕh is symmetric if it is equal to its adjoint. 

Example 8.4 Let us compute the adjoint of the explicit Euler method (2.19), 
i.e., 

. yn = yn+1 − hf (yn+1).

Rearranging the terms in the last equation leads to the implicit Euler 
method (2.32). Hence, the explicit Euler method is not self-adjoint, so it is 
not symmetric. 

The implicit midpoint method (4.24) is symmetric since its adjoint method 
is given by 

. yn = yn+1 − hf

(

1

2
(yn+1 + yn)

)

,

i.e., it is the implicit midpoint method as well. 

The following theorem provides a relevant accuracy property of symmetric 
methods, useful for their construction and analysis. Indeed, we now prove that the 
order of convergence of a symmetric method is always even, then their construction 
requires to fulfill a restricted number of order conditions. 

Theorem 8.7 The order of a symmetric one-step method is even.
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Proof Let us denote by p the order of convergence of the method. Then (also see 
Theorem 3.2, Section II.3 in [192]), a single step of length h satisfies 

. ϕh(y0) = �h(y0) + Chp+1 + O(hp+2),

where C is the error constant of the method. Performing a step in reverse time 
leading to . y0 yields 

. y0 = ϕ−h(�h(y0)) + (−1)pChp+1 + O(hp+2).

Inverting the operator 

. ϕ�
h(y0) = �h(y0) + (−1)pChp+1 + O(hp+2).

Therefore, the adjoint of a method of order p has order p as well. Moreover, since 
the method is symmetric, then .C = (−1)pC and, as a consequence, the error 
constant C is different from 0 only for even values of p. �	

We now aim to give a characterization of symmetric Runge-Kutta methods, 
provided in terms of algebraic conditions on their coefficients, as usual. 

Theorem 8.8 If the coefficients of a given Runge-Kutta method (4.8) satisfy 
the conditions 

.as+1−i,s+1−j + aij = bj , i, j = 1, 2, . . . , s, (8.14) 

then, the method is symmetric. 

Proof The first step of the proof consists in computing the coefficients of the adjoint 
of a Runge-Kutta method (4.8). Referring to a single step with stepsize . −h, leading 
to . yn if we start from .yn+1, the internal stages . Y �

i of the adjoint method are given 
by 

.

Y �
i = yn+1 − h

s
∑

j=1

aij f (Yj ) = yn + h

s
∑

j=1

bjf (Yj ) − h

s
∑

j=1

aij f (Yj )

= yn + h

s
∑

j=1

(bj − aij )f (Yj ).
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Observing that the internal stages of the adjoint method appear in reverse order with 
respect to those of the original method, i.e., 

. Y �
i = Ys+1−i , i = 1, 2, . . . , s,

the coefficients of the adjoint are then given by 

. a�
ij = bs+1−j − as+1−i,s+1−j , i, j = 1, 2, . . . , s.

Proceeding similarly with the advancing law, we obtain 

. b�
i = bs+1−i , i = 1, 2, . . . , s.

The second step of the proof is a trivial check of the conditions guaranteeing that the 
method is equal to its adjoint, i.e., .a�

ij = aij and .b�
i = bi , leading to the thesis. �	

Example 8.5 Let us specialize the symmetry conditions (8.14) to specific 
values of s, in order to check the symmetry of some methods presented in 
the previous chapters. 

For .s = 1, (8.14) yields 

. b1 = 2a11.

This condition is certainly satisfied by the one-stage Gaussian Runge-Kutta 
method (4.23), i.e., the implicit midpoint method, that is a symmetric method 
of order 2. This result is not surprising, since we have already given a direct 
proof of symmetry for the implicit midpoint method in Example 8.4. 

For .s = 2, (8.14) yields 

. a11 + a22 = a12 + a21, b1 = b2.

These conditions are satisfied by the two-stage Gaussian Runge-Kutta 
method (4.25), as well as by the two-stage Lobatto IIIA and Lobatto IIIB 
methods, presented in Sect. 4.4.3. Hence, these methods are symmetric. 

Actually, the property is more general: all Gaussian Runge-Kutta methods 
(see Sect. 4.4.1) are symmetric. Similarly, all Lobatto IIIA and Lobatto IIIB 
(presented in Sect. 4.4.3) are symmetric as well. The interested reader can find 
a detailed proof in [192]. 

We finally aim to understand which is the connection between symplecticity and 
symmetry for RK methods. In some cases (as it happens for Gaussian RK methods),



264 8 Geometric Numerical Integration

the two notions coexist, while in other cases (think of Lobatto IIIA methods) they 
do not. The following result holds true. 

Theorem 8.9 For a given Runge-Kutta method (4.8) the following statements 
are equivalent: 

• the method is symmetric for linear problems .y′ = Ly, with .L ∈ Rd×d ; 
• the method is symplectic for problems of the type .y′ = JCy, where C is a 

symmetric matrix; 
• the stability function .R(z) of the method, defined in (6.9), satisfies 

.R(−z)R(z) = 1, for any .z ∈ C. 

Proof Applying a RK method to a linear problem .y′ = Ly leads to the recurrence 
.yn+1 = R(hL)yn, where .R(hL) is the matrix version of the stability function (6.9) 
of the employed RK method, defined for linear scalar test problems. Symmetry 
holds true if and only if .yn = R(−hL)yn+1, leading to .R(−hL)R(hL) = I , being 
.I ∈ Rd×d is the identity matrix. 

Applying a RK method to the problem .y′ = JCy leads to .yn+1 = R(hJC)yn. 
As a consequence, since .ϕ′

h(yn) = R(hJC), the symplecticity condition reads 

.R(hJC)TJR(hJC) = J (8.15) 

and, since for implicit Runge-Kutta methods .R(z) is a rational function, its matrix 
counterpart can be factored out as 

. R(hJC) = P(hJC)Q(hJC)−1.

Consequently, condition (8.15) is equivalent to 

. Q(hJC)−ᵀP(hJC)TJP (hJC)Q(hJC)−1 = J,

i.e., 

. P(hJC)TJP (hJC) = Q(hJC)TJQ(hJC).

Algebraic manipulations of the last expression (left to the reader, see Exercise 3 at 
the end of this chapter) lead to .R(−hJC)R(hJC) = I . �	

Let us observe that symmetry and symplecticity are equivalent concepts if the 
problem is of type .y′ = JCy. This is certainly true for Hamiltonian problems with 
quadratic Hamiltonian function .H(y) = 1

2y
TCy, where C is a symmetric matrix, 

since .∇H(y) = Cy.
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8.6 Backward Error Analysis 

As highlighted at the beginning of this chapter, a geometric numerical method is 
able to retain characteristic features of a dynamical system over long times. Studying 
the long-term character of numerical methods for ODEs has already regarded, for 
instance, the analysis of their linear and nonlinear stability properties, presented in 
the previous sections. A very effective tool in order to investigate the long-term 
conservative property of candidate geometric numerical methods is the backward 
error analysis, extensively presented in [192] and references therein, whose origin 
comes from numerical linear algebra (in particular the work of Wilkinson [345]). 

The main ingredient of backward error analysis consists in inspecting the 
properties of differential equations associated to a numerical method, well known 
as modified differential equations, whose role is clarified in the following section. 

8.6.1 Modified Differential Equations 

Let us focus on the solution of an autonomous problem (1.17) by a one-step method 
that, over a single step, is briefly denoted as the map 

. yn = ϕh(yn−1).

Forward error analysis is performed after computing the numerical solution, by 
estimating the local error (i.e., the local on a single step, such as .y1 − �h(y0), 
being . � the flow map of the continuous problem) or the global error (i.e., the 
error overall the integration interval so far, without localizing assumptions, given by 
.yn − �t0+nh(y0)). 

Backward error analysis is the analysis of a continuous problem relying on the 
so-called modified differential equations, whose exact solution is the numerical 
solution of the original ODEs. More specifically, we search for an ordinary 
differential equation .ỹ′ = fh(ỹ), written in terms of a formal power series of h, i.e., 

.ỹ′ = f (ỹ) + hf2(ỹ) + h2f3(ỹ) + . . . , (8.16) 

such that .yn = ỹ(t0 + nh). The error is then measured as difference between 
the vector field .f (y) of the original problem (1.17) and that of the modified 
differential equation (8.16), namely .fh(y). In other terms, the idea is to interpret 
the numerical solution computed by a given numerical method as the exact solution 
of a continuous problem. The right-hand side in (8.16) may generally give rise to a 
divergent series, so we will later employ just a truncation of it. 

Under suitable regularity assumptions, the computation of modified differential 
equations can be provided, for instance, by means of Taylor series arguments and
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using the expressions of the elementary differentials introduced in Sect. 4.2.2, as  
follows. Let us first expand .ỹ(t + h) around t , leading to 

. ỹ(t + h) = ỹ(t) + hỹ′(t) + h2

2
ỹ′′(t) + h3

6
ỹ′′′(t) + . . .

= ỹ(t) + h
(

f + hf2 + h2f3 + . . .
)

+ h2

2

(

f ′ỹ′(t) + hf ′
2ỹ

′(t) + . . .
)

+h3

6

(

f ′′(f, f ) + f ′f ′f + . . .
) + . . .

= ỹ(t) + h
(

f + hf2 + h2f3 + . . .
)

+h2

2

(

f ′ + hf ′
2 + . . .

)

(f + hf2 + . . .)

+h3

6

(

f ′′(f, f ) + f ′f ′f + . . .
) + . . . (8.17) 

or, equivalently, 

. 

ỹ(t + h) = ỹ(t) + hf + h2
(

f2 + 1

2
f ′f

)

+ h3
(

f3 + 1

2

(

f ′f2 + f ′
2f

) + 1

6

(

f ′′(f, f ) + f ′f ′f
)

)

+ . . .

(8.18) 

In the expressions above we have omitted the dependence of f , . f2, . f3 and their 
derivatives on .ỹ(t), in order to simplify the notation. 

Supposing that the one-step map .φh(y) can be expanded itself in power series of 
h, with coefficient .f (y) for the power 1 due to the consistency of the method, i.e., 

.ϕh(y) = y + hf (y) + h2d2(y) + h3d3(y) + . . . (8.19) 

yields 

.

f2 = d2(y) − 1

2
f ′f,

f3 = d3(y) − 1

6

(

f ′′(f, f ) + f ′f ′f
) − 1

2

(

f ′f2 + f ′
2f

)

,

(8.20) 

and so on, by comparison of (8.18) and (8.19). 
Let us provide an example of computation of modified differential equations for 

selected numerical methods aimed to solve a scalar problem.
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Example 8.6 Let us consider the following differential equation 

.y′(t) = y(t)4, (8.21) 

assuming .y(0) = 1 as initial value, the exact solution is 

. y(t) = 3

√

1

1 − 3t
.

We aim to compute the modified differential equation associated to the 
explicit Euler method (2.19). Clearly, in this case we have .dj (y) = 0 for 
all .j ≥ 2 in (8.19). The coefficients given in (8.20) assume the form 

. f2(y) = −3

2
y5, f3(y) = 19

3
y10.

As a consequence, the modified differential equation for the explicit Euler 
method applied to the logistic equation (8.21) reads 

.ỹ′ = ỹ4 − 3

2
hỹ5 + 19

3
h2ỹ10 + . . . (8.22) 

Figure 8.11 compares the solution of the original problem based on the 
ODE (8.21) with the solution of the modified differential equations truncated 
after the h and . h2 terms. We observe that taking more terms in the modified 
differential equation improves the agreement between numerical and exact 
solutions. 

The following theorem highlights an important, though expectable, property: the 
perturbation term in the modified differential equation of an order p method has 
magnitude .O(hp). 

Theorem 8.10 The modified differential equation (8.16) of a one-step 
method .yn+1 = ϕh(yn) of order p has the form 

. ỹ′ = f (ỹ) + hpfp+1(ỹ) + hp+1fp+2(ỹ) + . . . ,

with .fp+1(y) equal to the principal error term of the method.
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Fig. 8.11 Exact solution of 
Eq. (8.21) (solid line) vs 
solutions of the modified 
differential equation (8.22) of 
the explicit Euler method, 
truncated at the . O(h)

(dashed-dotted line) and 
.O(h2) (dashed line) terms 

Proof The proof follows straightforwardly from the fact that .fj (y) = 0, for  . 2 ≤
j ≤ p, if and only if .ϕh(y) − �h(y) = O(hp+1). �	

A special case worth being considered regards the analysis of modified differ-
ential equations of symplectic methods [23, 192, 277, 336], hence with a focus on 
Hamiltonian problems (1.28). To this purpose, it is useful introducing the following 
lemma [192]. 

Lemma 8.2 Let . 	 be an open set of .Rd and .f : 	 → R
d be a 

continuously differentiable function, whose Jacobian is symmetric. Then, 
for any .y0 ∈ 	 there exists a neighborhood of . y0 and a function 
.H(y) such that .f (y) = ∇H(y) on this neighborhood. 

Theorem 8.11 Consider a symplectic method .ϕh(y) applied to a Hamil-
tonian system (1.28) with smooth Hamiltonian. Then, the corresponding 
modified differential equation 

. ˙̃y = f (ỹ) + hf2(ỹ) + h2f3(ỹ) + . . .

is also Hamiltonian. In particular, there exist smooth functions . Hj : R2d → R

for .j = 2, 3, . . ., such that .fj (y) = J∇Hj (y).
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Proof The proof is given by induction. In particular, since .f1(y)= f (y)= J∇H(y), 
we assume that .fj (y) = J∇Hj (y) is satisfied for .j = 1, 2, . . . , r and aim to prove 
the existence of a Hamiltonian .Hr+1(y). According to the inductive hypothesis, the 
truncated modified differential equation 

. ˙̃y = f (ỹ) + hf2(ỹ) + · · · + hr−1fr(ỹ)

is Hamiltonian, with Hamiltonian function given by . H(y) + hH2(y) + · · · +
hr−1Hr (y). Defining its flow by .�r,t (y0), we have  

. 
ϕh(y0) = �r,t (y0) + hr+1fr+1(y0) + O(hr+2),

ϕ′
h(y0) = �′

r,t (y0) + hr+1f ′
r+1(y0) + O(hr+2) .

Since the method is symplectic and the inductive hypothesis holds true, both . ϕh and 
.�r,h are symplectic maps. Taking into account that .�′

r,h(y0) = I + O(h), we have  
that 

. 

J = ϕ′
h(y0)

TJϕ′
h(y0)

=
(

�′
r,t (y0) + hr+1f ′

r+1(y0)
)T

J
(

�′
r,t (y0) + hr+1f ′

r+1(y0)
)

+ O(hr+2)

=
(

I + hr+1f ′
r+1(y0)

)T

J
(

I + hr+1f ′
r+1(y0)

)

+ O(hr+2)

= J + hr+1 (

f ′
r+1(y0)

TJ + Jf ′
r+1(y0)

) + O(hr+2).

This means that the matrix .J Tf ′
r+1(y0) is symmetric and, by means of Lemma 8.2, 

there exists .Hr+1(y) such that 

. J Tfr+1(y0) = ∇Hr+1(y)

or, equivalently, 

. fr+1(y0) = J∇Hr+1(y),

that completes the proof. �	
We complete this section presenting a couple of results regarding the construction 

of the modified differential equation for the adjoint of a numerical method and, as 
a consequence, we provide an important result concerning the modified differential 
equations of symmetric methods.
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Theorem 8.12 Considering a one-step method .ϕh(y), whose modified differ-
ential equation (8.19) has coefficients .fj (y), the coefficients of the modified 
equations of its adjoint .ϕ�

h(y) satisfy 

. f �
j (y) = (−1)j+1fj (y).

Proof The thesis holds true in straightforward way, by considering that . ỹ(t − h) =
ϕ−h(ỹ(t)). Consequently, it is enough to replace h by . −h in formulae (8.16), (8.17) 
and (8.19) to obtain the thesis. �	

Corollary 8.1 The right-hand side of the modified differential equation of a 
symmetric method only consists in even powers of h. 

Proof The thesis is direct consequence of Theorem 8.12, since a symmetric method 
coincides with its adjoint and, therefore, the same happens to their modified differ-
ential equations. Thus, any .fj (y) is null, whenever j is even; coefficients of (8.16) 
with even subindices are those related to odd powers of h that, consequently, 
disappear from (8.16) if the method is symmetric. �	

8.6.2 Truncated Modified Differential Equations 

As aforementioned, the presentation of modified differential equations so far has 
been based on considering their right-hand side as a formal series of powers of h, 
without taking into account its convergence. Unfortunately, as clearly highlighted in 
[192], such a power series is almost never convergent, actually even in very simple 
situations. As a consequence, we should consider a proper truncation of the modified 
differential equations, up to an optimal index to be properly chosen. Such a choice 
is based on rigorous error estimates, described in details in [192] and references 
therein. Here we report themwithout their proofs, that can be found in the mentioned 
monograph by Hairer, Lubich and Wanner. 

We aim to find an optimal truncation index N for the modified differential 
equation (8.16) leading to 

.ỹ′ = FN(ỹ) = f (ỹ) + hf2(ỹ) + . . . + hN−1fN(ỹ),
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with .ỹ(0) = y0. To this purpose, the following bound on the coefficients of (8.16), 
whose proof can be found in [192], is particularly useful. 

Theorem 8.13 Suppose that .f (y) is analytic in .B2R(y0) and the coefficients 
of (8.19) are also analytic in .BR(y0). Assume that there exists a positive M 
such that .‖f (y)‖ ≤ M , for any .‖y − y0‖ ≤ 2R. Moreover, assume that each 
.dj (y) in (8.19) satisfies 

. ‖dj (y)‖ ≤ μM

(

2κM

R

)j−1

,

for any .‖y − y0‖ ≤ R, where 

. μ =
s

∑

i=1

|bi |, κ = max
i=1,2,...,s

s
∑

j=1

|aij |.

Then, the following bound holds true 

.‖fj (y)‖ ≤ ln 2 ηM

(

ηMj

R

)j−1

, (8.23) 

assuming that .‖y − y0‖ ≤ R/2 and being .η = 2max (κ, μ/(2 ln 2 − 1)). 

Taking into account the bound (8.23) and since the function .(εx)x has a minimum 
at .x = (εe)−1, it makes sense assuming as truncation index the integer N such that 

. 
ηMN

R
≤ 1

he

or, in less restrictive way, 

. hN ≤ eh0,

being .h0 = R
eηM

. In this way, since .‖f (y)‖ ≤ M and using (8.23), we have  

.‖FN(y)‖ ≤ M

⎛

⎝1 + η ln 2
N

∑

j=2

(

ηMj

R

)j−1
⎞

⎠ ≤ M

⎛

⎝1 + η ln 2
N

∑

j=2

(

j

hN

)j−1
⎞

⎠ ,
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leading to 

. ‖FN(y)‖ ≤ M(1 + 1.65η).

The following result holds true (see [192]). 

Theorem 8.14 Let .f (y) be analytic in .B2R(y0) and the coefficients . dj (y)

of (8.19) analytic in .BR(y0). If  .h ≤ h0/4, then there exists .N = N(h) (the 
largest integer satisfying .hN ≤ h0), such that 

. ‖ϕh(y0) − �N,h(y0)‖ ≤ hγMe−h0/h,

with .γ = e(2 + 1.65 + μ) only depending on the method. 

In other terms, for problems with analytic vector fields, the numerical solution 
computed by a one-step method and the solution of the corresponding modified dif-
ferential equation, truncated after .N ∼ 1

h
terms, differ by a term that is exponentially 

small. 

8.6.3 Long-Term Analysis of Symplectic Methods 

The core of backward error analysis in the context of geometric numerical inte-
gration certainly involves the study of the long-time conservative character of 
symplectic numerical methods applied to Hamiltonian problems (1.28). We know 
from Theorem 8.11 that the corresponding modified differential equation is also 
Hamiltonian and, after truncation, the modified Hamiltonian is given by 

.˜H(y) = H(y) + hpHp+1(y) + · · · + hN−1HN(y). (8.24) 

The following fundamental result, proved by Benettin and Giorgilli in [23], pro-
vides information on the long-term conservative character of symplectic methods. 

Theorem 8.15 (Benettin-Giorgilli Theorem) Consider a Hamiltonian sys-
tem (1.28) with analytic Hamiltonian function .H : D → R, with .D ⊂ R2d . 
Suppose that a symplectic numerical method .ϕh(y) of order p is used to solve 
this problem and assume that the corresponding numerical solution lies in a 
compact set .K ⊂ D. Then, there exists . h0 and .N = N(h) (as in Theorem 8.13) 

(continued)
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Theorem 8.15 (continued) 
such that 

.

˜H(yn) = ˜H(y0) + O(e−h0/2h),

H(yn) = H(y0) + O(hp),
(8.25) 

for exponentially long time intervals of length .nh − t0 ≤ eh0/2h. 

Proof Let .�N,t (y0) be the flow of the truncated modified equation (8.24), that is 
also Hamiltonian with Hamiltonian function . ˜H satisfying .˜H

(

�N,t (y0)
) = ˜H(y0), 

for any t . As a consequence of Theorem 8.14, we have that 

. ‖yn+1 − �N,h(yn)‖ ≤ hγMe−h0/h

and again, from Theorem 8.13, we deduce that there exists a global Lipschitz 
constant (independent from h) for . ˜H, such that 

. ˜H(yn) − ˜H(�N,h(yn)) = O(he−h0/h) .

Since 

. ˜H(yn) − ˜H(y0) =
n

∑

j=1

(

˜H(yj ) − ˜H(yj−1)
)

=
n

∑

j=1

(

˜H(yj ) − ˜H(�N,h(yj−1))
)

,

we obtain .˜H(yn)−˜H(y0) = O(nhe−h0/h), that proves the statement for . ˜H, recalling 
that .nh ≤ eh0/2h. 

The result for . H follows from (8.24), since 

. 

˜H(y) = H(y) + hpHp+1(y) + · · · + hN−1HN(y)

= H(y) + hp
(

Hp+1(y) + hHp+2(y) + · · · + hN−p−1HN(y)
)

and considering the fact that 

. Hp+1(y) + hHp+2(y) + · · · + hN−p−1HN(y)

is uniformly bounded on K , independently of h and N . This is a consequence of the 
fact that 

.Hj (y) =
∫ 1

0
yTfj (ty)dt + constant
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on a ball centered in . y0 contained in D and, moreover, of the estimate on . fj given 
by (8.23). �	

Benettin-Giorgilli theorem 8.15 is a gifted result in understanding the long-term 
conservative character of a symplectic method: as long as the numerical solution 
lies in a compact set, the Hamiltonian function of the optimally truncated modified 
differential equation is almost conserved up to errors of exponentially small size. 
Moreover, for a symplectic method of order p, the modified Hamiltonian function 
is close to the original Hamiltonian function over exponentially long time windows, 
with a deviation comparable to the accuracy in the computation of the solution, i.e., 
.O(hp). Let us test the usefulness of this result through the following highly didactic 
example. 

Example 8.7 Let us apply Benettin-Giorgilli theorem to the mathematical 
pendulum (1.23), with .p0 = 0 and .q0 = 1. The reader can find a detailed 
verification of the hypothesis of Theorem 8.15 for this problem in [192] 
(Example VI.8.2). Actually, the stepsize restriction dictated by Theorem 8.14 
is too severe and definitely not sharp. Indeed, symplectic methods may have 
excellent conservation properties even if used with large values of the stepsize. 

We use the symplectic Euler method (8.9) and the two-stage Gaussian 
method (4.25) with several values of the stepsize. As visible in Fig. 8.12, the  
conservation of the symplectic structure is achieved also for large values of h. 

Let us now check the accuracy in conserving the Hamiltonian function. 
Figures 8.13 and 8.14 reveal an excellent long-term conservation of the 
Hamiltonian, measured for several values of the stepsize, in the intervals 
[0,1000] and [0,10000]. The accuracy of the second equation in (8.25) is also 
confirmed, as visible in Tables 8.1 and 8.2, where the orders of both methods 
are very well recovered. They have been computed through the following 
formula, analogous to (3.23), 

.p ≈ log2

∣

∣

∣

∣

H(yN) −H(y0)

H(y2N) −H(y0)

∣

∣

∣

∣

, (8.26) 

i.e., as the logarithm in basis 2 of the ratio of the deviations between the 
Hamiltonian in the numerical solution computed with stepsize h from the 
initial Hamiltonian, divided by the analogous deviation with stepsize . h/2. 
Both values are listed in the table with reference to the final integration point. 

Let us finally make an observation on non-symplectic methods, motivated by 
Fig. 8.4, where a linear energy drift is visible for the explicit Euler method. This 
fact can be motivated through arguments very similar to those provided in the proof 
of Benettin and Giorgilli theorem (8.15). Indeed, one can prove (also see Exercise 6
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Fig. 8.12 Example 8.7: 
phase portrait associated to 
the numerical dynamics 
generated by applying the 
symplectic Euler 
method (8.9) (top) and the 
two-stage Gaussian 
method (4.25) (bottom) to the 
mathematical 
pendulum (1.23). The graphs 
are obtained in 
correspondence of . h = 0.05
(top) and .h = 0.1 (bottom) 

at the end of the chapter) that 

. H(yn) = H(y0) + O(thp).

We finally observe that alternatives to symplecticity or relaxed notions of sym-
plecticity have been treated in the literature, e.g., through the notion of conjugate 
symplectic method [133, 192, 197]. 

8.7 Long-Term Analysis of Multivalue Methods 

This section is devoted to providing a comprehensive analysis of the long-term 
stability properties of multivalue numerical methods, described in Chap. 5. The  
presented analysis is based on the results contained in [122].
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Fig. 8.13 Example 8.7: Hamiltonian deviations along the numerical dynamics generated by 
applying the symplectic Euler method (8.9) to the mathematical pendulum (1.23). The graphs 
are obtained in correspondence of four values of the stepsize: .h = 0.01 (top), . h = 0.005, 0.0025
(middle) and .h = 0.00125 (bottom). The plot displays the graph obtained considering a grid point 
every hundred 

Fig. 8.14 Example 8.7: Hamiltonian deviations along the numerical dynamics generated by 
applying the two-stage Gaussian method (4.25) to the mathematical pendulum (1.23). The three  
graphs are obtained in correspondence of three values of the stepsize: .h = 0.1 (top), . h = 0.05
(middle) and .h = 0.025 (bottom). The plot displays the graph obtained considering a grid point 
every hundred
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Table 8.1 Example 8.7: Hamiltonian deviations along the numerical dynamics generated by 
applying the symplectic Euler method (8.9) to the mathematical pendulum (1.23), computed in 
the final integration point .t = 1000. The displayed Hamiltonian deviations measure the gap at 
the final step point from the initial Hamiltonian. Order estimation is also reported, computed as 
suggested by Eq. (8.26) 

h Hamiltonian deviation (final point) p 
0.01 . 1.64 · 10−4

0.005 .7.27 · 10−5 1.17 

0.0025 .3.49 · 10−5 1.06 

0.00125 .1.69 · 10−5 1.05 

Table 8.2 Example 8.7: Hamiltonian deviations along the numerical dynamics generated by 
applying the two-stage Gaussian method (4.25) to the mathematical pendulum (1.23), computed 
in the final integration point .t = 10000. The displayed Hamiltonian deviations measure the gap 
at the final step point from the initial Hamiltonian. Order estimation is also reported, computed as 
suggested by Eq. (8.26) 

h Hamiltonian deviation (final point) p 
0.05 . 6.74 · 10−9

0.025 .4.23 · 10−10 3.99 

0.0125 .2.64 · 10−11 4.00 

To perform the long-term analysis of multivalue methods, it is worth using the 
following representation for the forward step procedure 

.Yn+1 = V Yn + h�(h, Yn). (8.27) 

We also remind that the method requires a starting procedure 

. Y0 = Sh(y0),

and a finishing procedure 

. yn = Fh(Yn),

which permits to extract the numerical approximation from . Yn. If  d is the dimension 
of the differential equation (1.17) and V is a matrix of dimension .r × r (by abuse 
of notation we write V in (8.27) instead of the correct .V ⊗ I , where I is the d-
dimensional identity matrix), then the vector . Yn is of dimension rd. 

If .r > 1, the recursion of the forward step procedure has parasitic solutions. Our 
aim is to study the long-time behavior of these parasitic solutions. We are mainly 
interested in stable methods having good conservation properties. We therefore 
assume that all eigenvalues of V are simple and lie on the unit circle. We denote 
them by .ζ1 = 1, ζ2, . . . , ζr . We let  . vj and . v∗

j be right and left eigenvectors 
(.V vj = ζj vj and .v∗

j V = ζj v
∗
j ) satisfying .v∗

j vj = 1.
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To relate the forward step procedure (8.27) to the differential equation (1.17) we 
assume the pre-consistency condition 

.�(0, Y ) = Bf (UY), Uv1 = e, (8.28) 

where B is an .r × s matrix, U an .s × r matrix, and e is the unit vector in . Rs . 
Again, by abuse of notation, we avoid the heavy tensor notation and use matrices 
B and U instead of .B ⊗ I and .U ⊗ I . For  .UY = W = (Wi)

s
i=1 ∈ Rsd the vector 

.f (W) ∈ Rsd is defined by .f (W) = (f (Wi))
s
i=1. We assume throughout this article 

that the forward step method is consistent, i.e., 

.v∗
1�(0, yv1) = f (y), (8.29) 

and, for pre-consistent methods (8.28), it is equivalent to .v∗
1Be = 1. 

8.7.1 Modified Differential Equations 

As discussed for one-step methods, a crucial tool for the study of the long-time 
behavior of numerical integrators is the backward error analysis, extended to the 
case of multivalue methods in [122]. This analysis relies on describing the dynamics 
of the smooth and parasitic components characterizing the numerical solution 
computed by genuine multivalue methods (i.e., those with .r > 1). 

With the aim of separating the smooth and parasitic components in the numerical 
solution .yn = Fh(Yn), we consider approximations to . Yn of the form 

.̂Yn = Y (tn) +
r

∑

j=2

ζ n
j Zj (tn), (8.30) 

where .tn = nh, and the coefficient functions .Y (t), .Zj (t) are independent of n, but  
depend smoothly on h. Such expansions have first been considered for the study of 
the long-time behavior of linear multistep methods [187] (also refer to [191, 193] 
for highly oscillatory problems). 

We introduce a system of modified differential equations for the smooth func-
tions .Y (t) and .Zj (t). These modified equations only depend on the forward step 
procedure and are independent of the starting and finishing procedures. 

Theorem 8.16 Consider a forward step procedure (8.27) with matrix V 
having simple eigenvalues of modulus 1. Then, there exist h-independent real 
functions .fl(y1) and complex functions .gkl(y1), ajl(y1) and .bjkl(y1) such 

(continued)
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Theorem 8.16 (continued) 
that, for an arbitrarily chosen truncation index N and for any solution .yk(t), 
.zkj (t), .j, k = 1, 2, . . . , r , of the  system  

.

ẏ1=f (y1) + h f1(y1) + . . . + hN−1fN−1(y1),

yk=h gk1(y1) + . . . + hNgk,N (y1), k > 1,

żjj=
(

aj0(y1) + h aj1(y1) + . . . + hN−1aj,N−1(y1)
)

zjj ,

zjk=
(

h bjk1(y1) + . . . + hNbj,k,N (y1)
)

zjj , k 
= j,

(8.31) 

the approximations (8.30), with 

.Y (t) =
r

∑

k=1

yk(t) vk, Zj (t) =
r

∑

k=1

zkj (t) vk, (8.32) 

satisfy (8.27) with a small defect, i.e., 

. ̂Yn+1 = V ̂Yn + h �(h, ̂Yn) + O(hN+1),+O(h‖Z‖2),

as long as .y1(tn) remains in a compact set. The constant symbolized by .O(·) is 
independent of h, but depends on the truncation index N . We use the notation 
.‖Z‖ = max{|zjk(tn)| ; j, k = 1, . . . , r}. 

Proof Inserting (8.30) into the forward step procedure and expanding the nonlin-
earity around .Y (tn) yields 

.
Y (t + h)=V Y(t) + h �

(

h, Y (t)
) + O(h‖Z‖2)

ζj Zj (t + h)=V Zj (t) + h �′(h, Y (t)
)

Zj (t) + O(h‖Z‖2). (8.33) 

Neglecting terms of size .O(h‖Z‖2) and using (8.32), from the previous relation we 
get 

.yk(t + h) = ζkyk(t) + h v∗
k�

(

h, Y (t)
)

.
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We expand the left-hand side into a Taylor series around .h = 0 and thus obtain 
(omitting the argument t) 

. 

ẏ1 + h

2
ÿ1 + · · · = �1(h, y1, . . . , yr )

(1 − ζk) yk + h ẏk + h2

2
ÿk + · · · = h�k(h, y1, . . . , yr ), k = 2, . . . , r.

(8.34) 

Differentiation of the relations for . yk (.k = 2, . . . , r) and recursive elimination of 
the first and higher derivatives, and also of .y2, . . . , yr on the right-hand side, yield 
the second relation of (8.31) with a defect of size .O(hN+1). In the same way one 
can eliminate the second and higher derivatives in the first equation of (8.34) and 
thus obtains a differential equation for . y1. By the consistency assumption (8.29), the 
h-independent term of this differential equation becomes .f (y1). 

Neglecting terms of size .O(h‖Z‖2) in the second relation of (8.33) yields 

.ζj zkj (t + h) = ζkzkj (t) + h v∗
k�′(h, Y (t)

)

Zj (t). (8.35) 

We expand the left-hand side into a Taylor series, and apply the same elimination 
procedure as for the smooth component .Y (t). This then gives a first order differential 
equation for . zjj and algebraic relations for . zkj (.k 
= j ), and terminates the proof 
of (8.31). �	

It is now worth equipping modified differential equations by suitable initial 
conditions. For .n = 0 and .̂Y0 = Y0 = Sh(y0) the relation (8.30) gives  

. Sh(y0) = Y (0) +
r

∑

j=2

Zj (0).

Because of the algebraic relations in (8.31), this represents a nonlinear algebraic 
equation for the h-dependent vectors .y1(0), .z22(0), . . . . , .zrr (0). For .h = 0, we get 

. y1(0)
∣

∣

h=0 = v∗
1S0(y0), zjj (0)

∣

∣

h=0 = v∗
jS0(y0),

and the implicit function theorem guarantees the existence of a local unique solution 
for sufficiently small h. 

The initial values .zjj (0), for .j = 2, . . . , r , determine, on intervals of length .O(1), 
the size of the parasitic solution components. We shall investigate how they depend 
on the choice of the starting procedure. Let us denote the forward step procedure 
(8.27) by  .Yn+1 = Gh(Yn). We know from Sect. 5.1 (also see Theorem XV.8.2 
of [192]) that, for a given .Gh(Y ) and a given finishing procedure .Fh(Y ), there exist a 
unique (as formal power series in h) starting procedure .S∗

h(y) and a unique one-step
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method .yn+1 = �∗
h(yn), such that 

.Gh ◦ S∗
h = S∗

h ◦ �∗
h and Fh ◦ S∗

h = identity. (8.36) 

This means that for the choice .Y0 =S∗
h(y0) the numerical solution obtained by the 

multivalue method is (formally) equal to that of the one-step method . �∗
h, the  so-

called underlying one-step method. 
For all common multivalue methods, the underlying one-step method and 

the components of the starting procedure are B-series. Their coefficients can be 
computed recursively from the relations (8.36) by using the composition formula 
for B-series. 

Theorem 8.17 Let the starting procedure .Sh(y0) satisfy 

.Sh(y0) = S∗
h(y0) + O(hq), (8.37) 

and assume that the finishing procedure is given by .Fh(Y ) = v∗
1Y = y1. Then, 

the initial values for the system of modified equations (8.31) satisfy 

. y1(0) = y0 + O(hq), zjj (0) = O(hq).

Proof For the exact starting procedure .S∗
h(y0), the numerical solution .{yn}n≥0 is 

that of the underlying one-step method and does not have parasitic components. 
Consequently, we have .y1(0) = y0 and .zkj (0) = 0 for all k and j . A perturbation of 
this starting procedure implies, by the implicit function theorem, a perturbation of 
the same size in the initial values .y1(0), z22(0), . . . , zrr (0). �	

We conclude this section by providing a result regarding the modified differential 
equations of symmetric multivalue methods, according to the following definition 
of symmetry. 

Definition 8.6 A given multivalue method (8.27) is symmetric if its underly-
ing one-step method is a symmetric method. 

Theorem 8.18 Consider a forward step procedure (8.27), where V is of 
dimension 2 with eigenvalues 1 and . −1, and assume that the method is 

(continued)
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Theorem 8.18 (continued) 
symmetric, therefore mathematically equivalent to 

. Yn = V Yn+1 − h �(−h, Yn+1).

Then, Eq. (8.31) only contain expressions with even powers of h. 

Proof Neglecting terms of size .O(hN+1) and .O(h‖Z‖2), the functions .Y (t) and 
.Zj (t) of Theorem 8.16 satisfy 

.
Y (t + h)=V Y(t) + h �

(

h, Y (t)
)

,

ζj Zj (t + h)=V Zj (t) + h �′(h, Y (t)
)

Zj (t),
(8.38) 

where the prime in .�′(h, Y ) stands for a derivative with respect to Y . Our  
assumption on the forward step procedure implies that 

. 
Y (t)=V Y(t + h) − h �

(−h, Y (t + h)
)

,

Zj (t)=V ζj Zj (t + h) − h �′(−h, Y (t + h)
)

ζj Zj (t + h),

and, replacing .t − h for t , leading to 

.

Y (t − h)=V Y(t) − h �
(−h, Y (t)

)

,

ζ−1
j Zj (t − h)=V Zj (t) − h �′(−h, Y (t)

)

Zj (t).
(8.39) 

Let us first consider the components of the vector .Y (t). Comparing the upper 
relations of (8.38) and (8.39) we notice that the components .yk(t) of .Y (t) have to 
satisfy the same equations for h and for . −h. 

Since, by assumption, .ζ2 = −1 is the only eigenvalue of V different from 1, we 
have .ζ−1

2 = ζ2. The lower relation of (8.38) is therefore equal to the lower relation 
of (8.39), where h is replaced by . −h. Consequently, also the components of . Z2(t)

have to satisfy the same equations for h and for . −h. This implies that all equations 
of (8.31) are in even powers of h. �	

8.7.2 Bounds on the Parasitic Components 

The parasitic solution components are determined by the functions .zjj (t). To  
study their long-time behavior we first examine the leading term in the differential



8.7 Long-Term Analysis of Multivalue Methods 283

equation (8.31) for . zjj . For .k = j , Eq. (8.35) yields 

. ζj żjj = v∗
j �′(0, y1v1) vj zjj + O(h|zjj |).

Subject to the pre-consistency assumption (8.28), we obtain 

.żjj = μj f ′(y1) zjj + O(h|zjj |), μj = ζ−1
j v∗

j BUvj . (8.40) 

The coefficients . μj are called growth parameters of the multivalue method. They 
determine to a large extent the long-term behavior of the parasitic components 
.Zj (t). 

It follows from Theorem 8.16 that the coefficient functions of the parasitic 
solution components (8.32) satisfy 

.
żjj = hMA

(

h, y1(t)
)

zjj ,

zjk = h B
(

h, y1(t)
)

zjj , k 
= j.
(8.41) 

In general we have .M = 0, but if the growth parameters (8.40) of the method are 
zero we have  .M = 1, and if in addition to zero growth parameters the assumptions 
of Theorem 8.18 are satisfied we have .M = 2. If the vector field .f (y) of (1.17) 
is smooth and has bounded derivatives (which excludes stiff and highly oscillatory 
problems), the functions .A(h, y1) and .B(h, y1) are bounded as long as .y1(t) stays 
in a compact set. Grönwall lemma then implies 

.‖zjj (t)‖ ≤ ‖zjj (0)‖ exp(hMLt), (8.42) 

where L is a bound on the norm or, better, the logarithmic norm of .A(h, y1). For  
.k 
= j the functions .zjk(t) are bounded by the same expression with an additional 
factor Ch. 

8.7.3 Long-Time Conservation for Hamiltonian Systems 

We have built the necessary tools to prove a conservation result for multivalue 
methods applied to Hamiltonian problems (1.22), as follows. 

Theorem 8.19 Consider a multivalue method of order p, a starting proce-
dure satisfying (8.37) with q, and let .0 ≤ M ≤ q be the integer such that the 
modified equations for . zjj , .j = 2, . . . , r , satisfy (8.41). Furthermore, assume 
the existence of a modified Hamiltonian .˜H(y) satisfying . ˜H(y) − H(y) =

(continued)
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Theorem 8.19 (continued) 
O(hp ) which is well preserved by the flow .ϕ̃t (y) of the underlying one-step 
method, more precisely, 

.˜H
(

ϕ̃h(y)
) = ˜H(y) + O(hγ+1), (8.43) 

with .p ≤ γ ≤ 2q. We then have, for .t = nh, 

. H(yn) −H(y0) = O(hp) + O(thγ ) + O(

hq+1 exp(hMLt)
)

,

as long as .t = O(h−M). 

Proof Recall that for a given initial value . y0 the numerical solution is obtained 
from .Y0 = Sh(y0), the forward step procedure .Yn+1 = V Yn + h�(h, Yn), and the 
finishing procedure .yn = Fh(Yn). The proof consists in several steps. 

(a) We use the expansion (8.30) only locally, on one step. This means that, 
for any n, we compute functions .Y [n](t) and .Z[n]

j (t) satisfying the modified 
equations (8.31), such that 

. Yn = Y [n](0) +
r

∑

j=2

Z
[n]
j (0).

It follows from Theorem 8.16 that (with the choice .N = 2q) 

. Yn+1 = Y [n](h) +
r

∑

j=2

ζjZ
[n]
j (h) + O(h2q+1),

as long as the parasitic components are bounded as .‖Z(t)‖ = O(hq). By the  
uniqueness of the initial values, we have that 

. Y [n+1](0) = Y [n](h) + O(h2q+1), Z
[n+1]
j (0) = ζjZ

[n]
j (h) + O(h2q+1).

(8.44) 

(b) The estimates (8.42) and (8.44) yield 

. ‖z[n+1]
jj (0)‖ ≤ ‖z[n]

jj (h)‖ + Ch2q+1 ≤ ‖z[n]
jj (0)‖ exp(hM+1L) + Ch2q+1.

Applying a discrete Gronwall Lemma we obtain for . t = nh

.‖z[n]
jj (0)‖ ≤ ‖z[0]

jj (0)‖ exp(hMLt) + Ch2q t exp(hMLt). (8.45)
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(c) We assume that the finishing procedure is given by .Fh(Y ) = v∗
1Y , so that the 

flow of the modified equation for . y1 in (8.31) represents the underlying one-step 
method. We consider the telescoping sum 

. ˜H
(

y
[n]
1 (0)

) − ˜H
(

y
[0]
1 (0)

) =
n−1
∑

l=0

(

˜H
(

y
[l+1]
1 (0)

) − ˜H
(

y
[l]
1 (0)

)

)

.

From the estimate (8.44) and the assumption (8.43) we obtain that every 
summand is bounded by .O(h2q+1) + O(hγ+1) (the first term can be removed, 
because .γ ≤ 2q), which yields an error term of size .O(thγ ). In the left-hand side 
we substitute .y

[n]
1 (0) from the relation 

. yn = y
[n]
1 (0) +

r
∑

j=2

z
[n]
1j (0).

The statement now follows from .‖z1j (0)‖ ≤ ch‖zjj (0)‖, from the bounds (8.45) 

for .z
[n]
jj (0), and from the assumption .˜H(y) −H(y) = O(hp). 

�	
The crucial ingredient of the previous theorem is the existence of a modified 

Hamiltonian function. Let us discuss some relevant situations where such a modified 
Hamiltonian is known to exist. 

• If the underlying one-step method is a symplectic transformation, there exists a 
modified Hamiltonian satisfying (8.43) with arbitrarily large . γ (see Sect. IX.3 in 
[192]; also see Theorem 8.15). Unfortunately, the underlying one-step method of 
multivalue methods cannot be symplectic [190]; 

• if (1.22) is an integrable reversible system, and if the underlying one-step method 
is symmetric (reversible), under mild non-resonance conditions there exists a 
modified Hamiltonian satisfying (8.43) with arbitrarily large . γ (see Chapter 9 in 
[192]); 

• if the underlying one-step method is a B-series (this is the case for all general 
linear methods), necessary and sufficient conditions for the existence of a 
modified Hamiltonian satisfying (8.43) with a given  . γ are presented in [192] 
(Chapter IX.9.4). For example, only one condition is necessary for symmetric 
methods of order 4 to satisfy condition (8.43) with .γ = 6. 

Example 8.8 Let us consider a multivalue method in the following form 

. Yn+1 = V Yn + hBf (W), W = UYn + hAf (W).

(continued)
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Example 8.8 (continued) 
with 

. 

[

A U

B V

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
12 0 0 0 1 1

2

− 1
3

1
6 0 0 1 1

5
3 − 2

3
1
6 0 1 −1

7
6 − 5

12
1
12

1
12 1 − 1

2

2
3 − 1

6 − 1
6

2
3 1 0

1 − 1
2

1
2 −1 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

corresponding to a multivalue method proposed in [73] and analyzed in [122]. 
The vector 

. Yn =
[

yn

an

]

provides an approximation . yn to the solution and an approximation . an to a 
scaled second derivative. If we denote by .Rh(y0) the result of one step of the 
Runge-Kutta method 

. 

0
1
2

1
2

1 373
550

177
550

0 8233
50976 − 30749

152928
3025
76464

0 − 383
648

275
1296 1

then the starting procedure is given by 

. Sh(y0) =
[

y0
1
2

(

Rh(y0) + R−h(y0)
) − y0

]

.

Let us collect some essential properties of this method: 

• the method has order .p = 4, implying that the underlying one-step method 
has also order 4; 

• the method is symmetric in the sense of Theorem 8.18. As a consequence 
all equations in (8.31) are in even powers of h; 

(continued)
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Example 8.8 (continued) 
• the eigenvalues of V are .ζ1 = 1 and .ζ2 = −1. By construction, the growth 

parameter corresponding to the parasitic root .ζ2 = −1 is zero. Together 
with the symmetry of the method this implies that .M = 2 in (8.41); 

• the analysis of .Sh(y) leads to .q = 6 in the formula (8.17) for the starting 
procedure (the detailed proof is given in [122]); 

• Equation (8.43) is satisfied with .γ = 8 (detailed computations are again 
given in [122]). 

Proposition 8.1 If the method regarding this example is applied to a Hamil-
tonian system (1.22), then the Hamiltonian function is nearly preserved 
according to 

. H(yn) −H(y0) = O(h4) + O(th8) + O(

h8 exp(h2Lt)
)

,

as long as .t = nh = O(h−2). 

Proof The first two error terms follow directly from Theorem 8.19. From Theo-
rem 8.17 we have that the parasitic solution components satisfy .zjj (0) = O(h6), so  
that .zjj (t) = O(

h6 exp(h2Lt)
)

. To justify the factor . h8 in front of the exponential 
term we note that only the functions . z1j enter the formula for . yn. By symmetry of  
the method, we have a factor . h2 in the modified equation (8.31) for . z1j . This proves 
that .z1j (t) = O(

h8 exp(h2Lt)
)

. �	
Let us illustrate with numerical experiments that the bounds of Theorem 8.19 

and, in particular, those for the parasitic solution components are sharp. In particular 
we aim to observe that, for multivalue methods for which the order q of the starting 
procedure is larger or equal than the order p of the method, the parasitic solution 
components can be neglected on time intervals of length .O(h−M). On such intervals 
the underlying one-step method completely describes the qualitative behavior of the 
method. In particular, if the problem is an integrable reversible system and if the 
underlying one-step method is symmetric (and reversible), then all action variables 
are preserved up to an error of size .O(hp). Moreover, the global error increases at 
most linearly with time.
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Fig. 8.15 Error in the Hamiltonian for the method in Example 8.8 applied to the mathematical 
pendulum (1.23), with initial values .q(0) = 3, .p(0) = 0. The employed values of h are . h = 0.25
(top) and .h = 0.125 (bottom) 

Example 8.9 To prove that the estimate of Theorem 8.1 is sharp, we apply 
the method described in Example 8.8 to the mathematical pendulum (1.23), 
with initial values .q(0) = 3, .p(0) = 0. Figure 8.15 (see [122]) shows the 
error in the Hamiltonian as a function of time for the step sizes . h = 0.25
and .h = 0.125. The scales on the vertical axis differ by a factor 16, so 
that the .O(h4) behavior of the error can be observed. As predicted by the 
estimate of Theorem 8.1 the error behaves like .O(h4) on intervals of length 
.O(h−2), and then follows an exponential growth. We notice that halving the 
step size increases the interval of good energy preservation by a factor of 
4. This confirms the factor . h2 in the exponential term. The constant L in the 
estimate, which depends on the problem and on the coefficients of the method, 
seems to be rather small. 

8.8 Exercises 

1. Prove that the symplectic Euler method (8.10) is symplectic. The proof requires 
similar arguments as those used to prove Theorem 8.5.
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2. Prove that the implicit midpoint method applied to (1.22), i.e., 

. yn+1 = yn + hJ−1∇H
(

yn + yn+1

2

)

.

is a symplectic method. 
3. Complete the proof of Theorem 8.9, by providing the requested algebraic 

manipulations. 
4. With reference to Example 8.6, compute the modified differential equation 

associated to the implicit midpoint method (4.24). 
5. As highlighted in [192], prove that symplectic Runge-Kutta methods preserve 

all invariants of the form 

. I (y) = yTCy + dTy + c.

6. As remarked in the explanation of Fig. 8.4, a linear energy drift is visible for 
the explicit Euler method, that is a non-symplectic method. Give a proof of this 
fact, i.e., 

. H(yn) = H(y0) + O(thp),

through similar arguments as those provided in the proof of Benettin-Giorgilli 
theorem (8.15). 

7. By using Program 8.2, solve the non-separable Hamiltonian problem whose 
Hamiltonian is given by 

. H(p, q) = p2

2(1 + U ′(q))
+ U(q),

being U(q)  = 0.1(q(q − 2))2 + 0.008q3, with initial values p(0) = 0.49 and 
q(0) = 0, describing the path of a particle of unit mass moving on a wire of 
shape U(q)  [15]. In the numerical solution, focus on the conservation of the 
Hamiltonian and comment the results. 

8. By using Program 8.2, solve the separable Hamiltonian problem whose Hamil-
tonian is the following polynomial of degree 6 [164]: 

. H(p, q) = p3

3
− p

2
+ q6

30
+ q4

4
− q3

3
+ 1

6
,

by choosing several initial values. In the numerical solution, focus on the 
conservation of the Hamiltonian and comment the results.
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9. Can explicit Runge-Kutta methods be symmetric? Give a proof motivating your 
answer. 

10. Prove that the underlying one-step method of a multivalue method cannot be 
symplectic. As aforementioned, proofs on non-symplecticity for multivalue 
method have been given in [71, 190, 250].



Chapter 9 
Numerical Methods for Stochastic 
Differential Equations 

They believe in chance because like themselves. 

(James Joyce, Ulysses) 

Stochastic differential equations, called “Itô Formula”, are 
currently in wide use for describing phenomena of random 
fluctuations over time. When I first set forth stochastic 
differential equations, however, my paper did not attract 
attention. It was over ten years after my paper that other 
mathematicians began reading my “musical scores” and 
playing my “music” with their “instruments”. By developing my 
“original musical scores” into more elaborate “music”, these 
researchers have contributed greatly to developing Itô Formula. 

(Kiyosi Itô [226]) 

This chapter is devoted to providing a bridge from the numerical discretization of 
deterministic differential equations to the case of stochastic differential equations, in 
order to both highlight basic accuracy and stability requirements and conservation 
issues along the numerical dynamics. The presentation in the direction of the 
numerics is rather self-contained, but previous knowledge of stochastic calculus is 
reasonably necessary. Useful comprehensive references (some of them also covering 
the numerical approximation of stochastic differential equations) are, for instance, 
[13, 17, 168, 173, 204, 213, 234, 237, 239, 259, 267–269, 280, 289, 309] and the other 
references therein. The gifted review paper [209] also provides a list of practical 
tools in the direction of an algorithmic introduction to the topic, together with a 
selection of Matlab programs from which we drew inspiration to design most of the 
codes reported in this section. 

9.1 Discretization of the Brownian Motion 

The basic theory of stochastic differential equations strongly relies on the notion of 
wiener process and its discretization. Let us first provide its definition. 
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Definition 9.1 A scalar standard Brownian motion or standard Wiener pro-
cess in the interval .[0, T ] is a stochastic process .{W(t), t ∈ [0, T ]} such that 

1. .W(0) = 0 with probability 1; 
2. for any .0 ≤ s < t ≤ T , the Wiener increment .W(t) − W(s) is a normally 

distributed random variable with zero mean and variance .t −s. In symbols, 

. W(t) − W(s) ∼ √
t − s N(0, 1),

where .N(0, 1) is a standard normal random variable; 
3. for any .0 ≤ s1 < t1 < s2 < t2 ≤ T , Wiener increments . W(t1) − W(s1)

and .W(t2) − W(s2) are independent random variables. 

As announced, we aim to provide a discretization of the Wiener process, i.e., a 
sampling of the random variable .W(t) evaluated in a discrete set of points in .[0, T ]. 
Therefore, we provide a partition of the interval .[0, T ] in N subintervals of equal 
length 

. δt = T

N

and the corresponding set of sampled values is then given by 

. {W0 = W(τ0) = 0} ∪ {Wj = W(τj ), j = 1, . . . , N},

with .τj = jδt , .j = 0, 1, . . . , N . As a consequence, according to Definition 9.1, the  
following recursion is established 

. 
W0 = 0,

Wj = Wj−1 + �Wj, j = 1, 2, . . . , N,

with .�Wj ∼ N(0, δt). A graphic glance of Wiener increments referring to the 
introduced partition is available in Fig. 9.1 .

Fig. 9.1 A graphic glance of Wiener increments referring to the partition of the interval .[0, T ] in 
N subintervals of equal length
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The vector of Wiener increments .�W = (
�Wj

)N
j=1 is then given by 

. �W = √
δtν,

where . ν is a vector of N scalar normally distributed random variables. Then, the 
following proposition immediately holds true. 

Proposition 9.1 The vector .W = (
Wj

)N
j=0 of sampled values of .W(t) col-

lects all cumulative summations of the vector .�W , i.e., 

. 

W0 = 0,

Wj =
j∑

k=1

�Wk, j = 1, 2, . . . , N.

Proof The result can be proved by induction. For . j = 1, we have . W1 = W0 +
�W1 = �W1. Supposing that 

. Wj−1 =
j−1∑

k=1

�Wk,

we have 

. Wj = Wj−1 + �Wj,

leading to the thesis. ��
A Matlab code for the computation of a discretized Wiener process is given in 

Program 9.1. The pattern of a Wiener process computed as W=wiener(1,1000) 
is given in Fig. 9.2. As one can appreciate from the figure, the Wiener process is 
continuous but nowhere differentiable. 

Program 9.1 (Discretized Wiener Process) 
% Computation of a discretized Wiener process, according to 
% Proposition 9.1 

% Inputs: 
% - T: maximum of the interval [0,T]; 
% - N: number of intervals. 

(continued)
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Program 9.1 (continued) 
% Output: 
% - dW: vector of Wiener increments; 
% - W: discretized Wiener process. 

function [dW,W]=wiener(T,N) 
dt=T/N; 
dW=sqrt(dt)*randn(1,N); 
W=cumsum(dW); 
W=[0 W]; 
plot(0:dt:T,W) 

We now present a Matlab code for the computation of the expected value of a 
Wiener process over M samples. Since 

. Wi
j = Wi

j−1 + �Wi
j , i = 1, 2, . . . ,M, j = 1, 2, . . . , N,

with the Wiener increments .�Wi
j , .i = 1, 2, . . . ,M , .j = 1, 2, . . . , N , normally 

distributed random variables with mean zero and variance . δt . Then, similarly as 
in Proposition 9.1, 

.W̃ i
j =

j∑

k=1

�Wi
k, i = 1, 2, . . . ,M, k = 1, 2, . . . , N. (9.1) 

Let us now discuss how to provide the simultaneous computation of M Brownian 
paths, through the Matlab implementation proposed in the forthcoming Program 9.2. 

Fig. 9.2 A join-the-dots 
Wiener path obtained by 
Program 9.1 with .T = 1 and 
.N = 1000
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In order to provide several samples of the Wiener process all-at-once, we aim to 
simulate the matrix 

. 

τ0 τ1 τ2 . . . τN

W =

⎡

⎢⎢⎢
⎢⎢
⎣

0

0
...

0

⎤

⎥⎥⎥
⎥⎥
⎦

trajectory 1

trajectory 2
...

trajectory M

where each row corresponds to a sampled Wiener trajectory and, correspondingly, 
each column stores the values of the simulated trajectory in a specific point of the 
discretization. Following Proposition 9.1, we immediately obtain that 

. Wi
j =

j∑

k=1

�Wi
k, i = 1, 2, . . . ,M, j = 1, 2, . . . , N,

i.e., the matrix W is the cumulative sum of the matrix .�W ∈ R
M×N of (pathwise) 

Wiener increments, along its columns. An example of simultaneous generation of 
several Wiener paths, using Program 9.2, is given in Fig. 9.3 

Program 9.2 (Discretized Wiener Process over Several Samples) 
% Computation of a discretized Wiener process over several 
% samples, according to Equation 9.1 

% Inputs: 
% - T: maximum of the interval [0,T]; 
% - M: number of realizations; 
% - N: number of intervals. 

% Output: 
% - dW: Wiener increments over all the sampled paths; 
% - W: matrix of M sampled Wiener paths. 

function [dW,W]=manyWiener(T,M,N) 
dt=T/N; 
dW=sqrt(dt)*randn(M,N); 
W=cumsum(dW,2); 
W=[zeros(M,1) W]; 
plot(0:dt:T,W)
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Fig. 9.3 A hundred Wiener paths computed through Program 9.2, with .N = 1000 Wiener points 

9.2 Itô and Stratonovich Integrals 

We now aim to define the integral with respect to a Wiener process, in analogous 
way as in the case of deterministic Riemann integration. In other terms, for a given 
scalar function .h : [t0, T ] → R, we aim to define the integral 

.I (h) =
∫ T

t0

h(s)dW(s). (9.2) 

The construction of this integral is now provided in two steps. We first define (9.2) 
when h is a step function 

. h(t) = hj ∈ R, t ∈ [τj , τj+1), j = 0, 1, . . . , N − 1,

with .t0 = τ0 < τ1 < . . . < τN = T . In this case, we define the Itô integral of the 
step function h by 

. I (h) =
N−1∑

j=0

hj

(
W(τj+1) − W(τj )

)
.

We now define the Itô integral of a generic continuous function .v : [t0, T ] → R. 
To this purpose, we introduce the system of .n + 1 nodes 

. t0 = t
(n+1)
0 < t

(n+1)
1 < . . . < t(n+1)

n = T , n ≥ 0

and give the following definition.
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Definition 9.2 The Itô integral of a continuous function .v : [t0, T ] → R is 
defined as the limit of the integral of the raised step functions, i.e., 

. I (v) = lim
n→∞

n−1∑

j=0

v
(
t
(n+1)
j

) (
W(t

(n+1)
j+1 ) − W(t

(n+1)
j )

)
.

In other terms, given a discretization of the integration interval 

. t0 < t1 < . . . < tN = T ,

the Itô integral of a continuous function can be approximated by the following Itô 
quadrature formula 

.

∫ T

t0

v(t)dW(t) ≈
N−1∑

j=0

v
(
tj
) (

W(tj+1) − W(tj )
)
, (9.3) 

involving a linear combination of values of the integrand function evaluated in the 
left-hand endpoint of each subinterval of the domain discretization. 

Program 9.3 provides a Matlab coding of the Itô integral of a given function by 
applying the Itô quadrature formula (9.3). 

Program 9.3 (Application of Itô Quadrature Formula) 
% Computation of the Ito integral of a given function 
% through Ito quadrature formula (9.3). 

% Inputs: 
% - T: maximum of the interval [0,T]; 
% - N: number of intervals of the discretization. 

% Output: 
% - itoIntegral: approximation of the Ito integral. 

function itoIntegral=itoQuadrature(T,N) 
[dW,W]=wiener(T,N); 
t=linspace(0,T,N+1); 
v=fun(t,W); 
itoIntegral=v(1:end-1)*dW’;
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Let us briefly list some relevant properties of Itô integral; the reader can find more 
details in [17, 168, 204, 213, 234, 237, 239, 259, 267, 269, 280, 309] and references 
therein:

• any (even random) function .v(t) is Itô-integrable if it is non-anticipative, i.e., at 
time t it must be independent of the later values .{W(s)}s>t of the Wiener process;

• the following martingale property holds true 

.E

[∫ T

0
v(t)dW(t)

]
= 0; (9.4)

• the following property of Itô isometry allows a form of conversion from 
stochastic to standard Riemann integrals: 

.E

[(∫ T

0
v(t)dW(t)

)2]

= E

[∫ T

0
v(t)2dt

]
. (9.5) 

Let us now briefly present some biographical notes of Kiyosi Itô, based on 
the information reported in the MacTutor History of Mathematics Archive (https:// 
mathshistory.st-andrews.ac.uk/Biographies/Ito/) and [226]. 

A Portrait of Kiyosi Itô 
Kiyosi Itô was born in 1915 in Japan and he is certainly acknowledged as 
a pioneer in the theory of stochastic differential equations. He graduated 
in Mathematics in 1938, at the Imperial University of Tokyo, where he 
discovered his genuine passion for probability theory and, to some extent, the 
proper direction to follow [226]: “At that time, few mathematicians regarded 
probability theory as an authentic mathematical field, in the same strict sense 
that they regarded differential and integral calculus. With clear definition 
of real numbers formulated at the end of the 19th century, differential and 
integral calculus had developed into an authentic mathematical system. When 
I was a student, there were few researchers in probability; among the few were 
Kolmogorov of Russia, and Paul Levy of France”. 

After graduating, he worked in the Statistical Bureau of the Japanese 
Government until 1943. These were crucial years for his scientific contribu-
tions, since he had the opportunity to study in depth the pioneering papers of 
Kolmogorov and Levy released at that time and provide this first remarkable 
results on stochastic integration [225] in 1942, almost 20 years after the 
contributions of Wiener on probability measures. 

In 1943 he got a position as Assistant Professor in Nagoya Imperial 
University. At that time, notwithstanding with the difficult times in Japan for 

(continued)
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World War II, he was highly prolific in his scientific work: volume 20 of the 
Proceedings of the Imperial Academy of Tokyo contains six papers authored 
by him. 

In 1945 Itô was awarded his doctorate and appointed as Professor at Kyoto 
University in 1952. In 1954–1956 he visited the Institute for Advanced Study 
at Princeton University, leading to his book on stochastic processes published 
in 1957. He has also held professor positions at Aarhus University from 1966 
to 1969 and Cornell University from 1969 to 1975, still remaining in Kyoto 
until his retirement in 1979. 

Several prized were awarded to Ito: in 1978, he achieved the Asahi Prize, 
the Imperial Prize and also the Japan Academy Prize; in 1985 he received 
the Fujiwara Prize and in 1998 the Kyoto Prize in Basic Sciences from the 
Inamori Foundation; he was elected to the National Academy of Science of 
the United States and to the Académie des Sciences of France. He received 
the Wolf Prize from Israel and honorary doctorates from the universities of 
Warwick, England and ETH, Zürich, Switzerland. He won the IMU Gauss 
prize in 2006. He died in Kyoto in 2008. 

An alternative definition of integral with respect to a Brownian motion is given by 
the so-called Stratonovich integral, defined as the limit of the following quadrature 
formula 

.

∫ T

t0

v(t) ◦ dW(t) ≈
N−1∑

j=0

v

(
tj + tj+1

2

) (
W(tj+1) − W(tj )

)
(9.6) 

and is usually denoted by the symbol . ◦ close to .dW(t) in the integral. Unlike Itô 
case, Stratonovich quadrature formula (9.6) involves evaluations of the integrand 
function in the midpoint of each subinterval of the domain discretization. 

A Matlab coding for the computation of the Stratonovich integral is object of 
Exercise 2 at the end of this chapter. 

Let us now briefly provide some historical notes regarding Ruslan Leont’evich 
Stratonovich, based on [42]. 

A Portrait of Ruslan Leont’evich Stratonovich 
Ruslan Leont’evich Stratonovich was born in Moscow in 1930. In 1947, 
after passing his school examinations with a gold medal, he started his 
studies at Moscow State University, in the Faculty of Physics, where he 
graduated in 1953. He first studied some problems of oscillation physics 

(continued)
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with P.I. Kuznetsov and then came into contact with the Kolmogorov. In 
1956 he received his doctorate. His doctoral dissertation, establishing a 
theory of conditional Markov processes, was published as a monograph 
in 1966, with the title Uslovnye Markovskie Protsessy i ikh Primenenie v 
Teorii Optimalnogo Upravleniya (Conditional Markov Processes and Their 
Application to the Theory of Optimal Control). In the US edition, released in 
1988, R. Bellman wrote in his foreword that “Stratonovich’s book represents 
a major step forward in the current endeavor to create unified mathematical 
theories with wide ranging applications in both mathematics itself and in 
science”. 

His candidate’s dissertation was the core of his first monograph Izbrannye 
Voprosy Teorii Fluktuatsiv Radiotekhnike (Selected Topics of the Theory of 
Fluctuations in Telecommunications), published in the Soviet Union in 1961 
and, few years later, in the United States under the title Topics in the Theory 
of Random Noise (in two volumes). In this monograph he developed what 
he defined a symmetrization form of integral and differential expressions for 
Markov processes and the stochastic calculus based on it, nowadays well 
known as Stratonovich calculus. In 1969 he became professor of physics at 
the Moscow State University. 

Stratonovich also contributed in many more topics such as information 
theory, the theory of optimal statistical decisions and theory of optimal con-
trol, kinetic theory, quantum theory, statistical physics. Last topic was covered 
in his monograph, Nelinenaya Neravnovesnaya Termodinamika (Nonlinear 
Non-equilibrium Thermodynamics), first published in 1985 and then revised 
and enlarged in 1992 and 1994, as part of the Springer Series in Synergetics 
(vols. 57 and 63). 

He was awarded with the Lomonosov Prize of Moscow University in 1984, 
a USSR State Prize in 1988, and a Russian Federation State Prize in 1996. He 
died in 1997. 

We read in [42]: “He loved and was well versed in Russian poetry, both 
classical and modern, wrote lyrics, was a connoisseur of painting, and could 
read fiction in four foreign languages. He was a true sports enthusiast: he 
went in for figure skating, tennis, and cycling. Sometimes he even went to 
work on his bicycle. Being a scientist of world renown, he remained a true 
friend of his disciples with no effort on his part, thus setting an example of 
sincerity and simplicity in personal relations”. 

Itô and Stratonovich calculus, although defining the same object (i.e., the integral 
with respect to a Wiener process), are characterized by different properties and are 
both used in mathematical modeling. For instance, Stratonovich calculus does not 
obey to the martingale property as in the Itô case. Anyway, as proved for instance in
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[239], Itô and Stratonovich integrals are related each other by the formula 

. 

∫ T

0
f (W(t)) ◦ dW(t) = 1

2

∫ T

0

∂f

∂W
(W(t))dt +

∫ T

0
f (W(t)) dW(t),

where f is any function of .W(t) of class . C1. In the remainder, unless differently 
specified, we will always refer to stochastic integrals as Itô integrals. We also 
highlight that Itô and Stratonovich calculus obey to different chain rules. This will 
be later clarified in the context of SDEs. 

An example of computation of Itô and Stratonovich integrals is given in the 
following example, see [209]. 

Example 9.1 Let us apply the quadrature formulae (9.3) and (9.6) to compute 
Itô and Stratonovich integrals of the function .W(t). First of all, let us compute 
the exact value of both integrals by applying their definitions. As regards the 
Itô integral, 

. 

∫ T

0
W(t)dW(t) = lim

N→∞

N−1∑

j=0

W(tj )
(
W(tj+1) − W(tj )

)

= 1

2
lim

N→∞

N−1∑

j=0

(
W(tj+1)

2 − W(tj )
2 − (

W(tj+1) − W(tj )
)2
)

= 1

2
lim

N→∞

⎛

⎝
N−1∑

j=0

(
W(tj+1)

2 − W(tj )
2
)

−
N−1∑

j=0

(
W(tj+1) − W(tj )

)2

⎞

⎠

= 1

2
W(T )2 − 1

2
lim

N→∞

N−1∑

j=0

(
W(tj+1) − W(tj )

)2
.

Let us now compute the expected value of the second summand of the last 
line, given by 

. E

⎡

⎣
N−1∑

j=0

(
W(tj+1) − W(tj )

)2

⎤

⎦ =
N−1∑

j=0

E

[(
W(tj+1) − W(tj )

)2
]

=
N−1∑

j=0

(
tj+1 − tj

) = T .

(continued)
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Example 9.1 (continued) 
Moreover, 

. E

⎡

⎣
N−1∑

j=0

(
W(tj+1) − W(tj )

)2

⎤

⎦ =
N−1∑

j=0

E

[(
W(tj+1) − W(tj )

)2
]

=
N−1∑

j=0

(
tj+1 − tj

) = T

and 

. lim
N→∞ Var

⎡

⎣
N−1∑

j=0

(
W(tj+1) − W(tj )

)2

⎤

⎦ = 0.

It follows that 

. 

∫ T

0
W(t)dW(t) = 1

2
W(T )2 − 1

2
T .

As regards the Stratonovich case, one can prove that 

. 

∫ T

0
W(t) ◦ dW(t) = 1

2
W(T )2.

Let us now compute the approximations arising from the quadrature 
formulae (9.3) and (9.6), by applying Programs 9.3 and the following lines 
of Matlab coding for the Stratonovich quadrature: 

N=input(’Number of Wiener points: ’); 
T=input(’Maximum of the integration interval: ’); 
dt=T/N; 
dW=sqrt(dt)*randn(1,N); 
W=cumsum(dW); 
ave = 0.5*([0,W(1:end-1)] + W(1:end)); 
Wave = ave + 0.5*sqrt(dt)*randn(1,N); 
straIntegral=Wave*dW’; 

The results, reported in Table 9.1, provide a measure of the pathwise 
gap between the above computed exact values of the integrals and their 
approximations, for .T = 1 and for several values of N . Clearly, as  N changes 
at each run of the code needed to fill Table 9.1 in, new Wiener increments have 

(continued)
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Table 9.1 Example 9.1: 
pathwise errors associated to 
the approximation of Itô and 
Stratonovich integrals of 
.W(t) in [0,1], for several 
numbers of Wiener points, 
using quadrature formulae 
(9.3) and (9.6), respectively 

N Error in Itô integral Error in Stratonovich integral 

100 .1.72 · 10−2 . 5.45 · 10−2

500 .2.68 · 10−2 . 1.23 · 10−2

1000 .1.95 · 10−2 . 9.30 · 10−3

.10,000 .1.44 · 10−2 . 1.09 · 10−2

Example 9.1 (continued) 
to be randomly generated and, as a consequence, new paths of the Wiener 
process are computed for each value of N . As a consequence, one should not 
expect decreasing values of the errors for increasing values of N . 

9.3 Stochastic Differential Equations 

The development of the presentation that took place in the previous chapters has 
totally been devoted to understanding how to accurately approximate the solutions 
of initial value problems based on deterministic ODEs (1.1). For Hadamard 
well-posed problems, the dynamics is given with the initial value, in a purely 
deterministic way. 

If the dynamics is governed by both deterministic and random forcing terms, 
Equation (1.1) is no longer enough to fully describe the underlying phenomenon 
and the corresponding model should incorporate the source of randomness in itself. 
To this purpose, stochastic differential equations (SDEs) 

.

dX(t) = f (X(t))dt + g(X(t)) dW(t), t ≥ 0,

X(0) = X0,
(9.7) 

are characterized by a right-hand side depending on two terms:

• the function .f :Rd → R
d , well-known as drift of the problem, that is the 

coefficient of its deterministic part;
• the function .g :Rd → R

d×m, denoted in the literature as diffusion of the problem, 
that is the coefficient of its stochastic part.
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The term .W(t) in (9.7) is a m-dimensional standard Wiener process and, due to its 
nowhere differentiability (with probability 1), the representation given in Eq. (9.7) 
is only a shorthand notation for its integral counterpart 

.X(t) = X(0) +
∫ t

0
f (X(s))ds +

∫ t

0
g(X(s))dW(s). (9.8) 

If the stochastic integral in the right-hand side of (9.8) is the Itô integral, then the 
corresponding equation is denoted as Itô stochastic differential equation; if it is the  
Stratonovich integral, Eq. (9.8) is a Stratonovich stochastic differential equation. 
Unless differently specified, our presentation is focused on Itô SDEs. We also 
observe that Itô SDEs admit an equivalent Stratonovich formulation 

. dX(t) =
(

f (X(t)) − 1

2
g(X(t))g′(X(t))

)
dt + g(X(t)) ◦ dW(t).

In other terms, we can pass from Itô to Stratonovich SDEs (and vice versa), 
obtaining formulations equivalent in terms of solution. However, the geometry 
of the problem may not be preserved by this transformation, as we discuss in 
Sect. 9.7.4: for instance Itô perturbation of Hamiltonian problems does not preserve 
the Hamiltonian function as it happens, on the contrary, to Stratonovich Hamiltonian 
problems. 

If the function g in (9.8) is constant, the corresponding problem is denoted 
as SDE with additive noise; if  g is solution dependent, (9.8) is a SDE with 
multiplicative noise. 

Mathematical modeling is extremely rich in stochastic models, which cover a 
wide selection of fields insisting in scientific knowledge (see, for instance, [101, 
102, 169, 176, 204, 210, 213, 219, 237, 240, 259, 269, 280, 290]): we cite, but only as 
a non-exhaustive list of examples, models in financial, biological, medical, physical 
and economic fields, as well as in population dynamics, in the description of opinion 
formation, in network analysis. 

Example 9.2 (Geometric Brownian Motion) Let consider the case of linear 
drift and diffusion in (9.7), i.e., 

.

dX(t) = μX(t)dt + σX(t) dW(t), μ, σ ∈ R,

X(0) = X0.
(9.9) 

well known in the literature as the equation of geometric Brownian motion. 
It is a scalar SDE with linear multiplicative noise, appearing as a stochastic 
perturbation of Dahlquist test problem (6.1). As we will see in Sect. 9.6, this  

(continued)
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Example 9.2 (continued) 
is the test equation for the analysis of linear stability in the numerics for 
SDEs. However, this equation is very relevant in the context of financial 
mathematics, since it models the evolution of a stock price in the Black-
Scholes theory for financial option evaluation. 

The coefficient . σ of the part modelling random fluctuations is known in 
the literature as volatility. If the volatility is equal to 0 and the initial value 
.X0 is deterministic, then the corresponding model .X′(t) = μX(t) is purely 
deterministic and describes a non-risky deposit in a bank with interest rate . μ; 
if .σ �= 0, the exact solution is given by 

. X(t) = X0e(μ− 1
2 σ 2)t+σW(t)

and one can easily prove that its expected value is 

. E[X(t)] = E[X0]eμt .

and . μ is the expected growth rate in the stock price model. Let us also observe 
that . μ is the rate of exponential growth in the exact solution .X(t) = X0eμt of 
the purely deterministic model (i.e., Eq. (9.9) with .σ = 0). 

Figure 9.4 shows ten sampled trajectories of (9.9), for selected values of . σ
and the reference solution of the underlying deterministic problem, for .σ = 0. 
We can appreciate from the figure that larger values of . σ provide more jagged 
paths tending to spread further from the mean. Clearly, larger values of . σ
make the stochasticity more dominant in the model. The consequence of this 
issue, also under the numerical point of view, will be clarified in the following 
sections. 

An alternative model is given by the so-called mean-reverting square root 
process, described by 

. 
dX(t) = λ(μ − X(t))dt + σ

√
X(t)dW(t), λ, μ, σ > 0,

X(0) = X0.

This model is used in mathematical finance as an alternative to geometric 
Brownian motion, since the presence of the square root dampens the influence 
of the noise for large values of .X(t), that appears to be pretty more realistic. 
For this model, the dynamics over long time windows can be well clarified by 
the long-term expectation 

. lim
t→∞E[X(t)] = μ,

(continued)
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Fig. 9.4 Example 9.2: solutions of (9.9), for .X0 = 1, .μ = 1 and selected values of . σ . Each 
subplot displays ten sampled trajectories, together with the solution of the underlying deterministic 
equation .X′(t) = X(t), with .X0 = 1, drawn with a thicker line 

Example 9.2 (continued) 
equal to the parameter . μ, and the long-term variance 

. lim
t→∞E[X(t)2] = μ2 + σ 2μ

2λ
,

where we can appreciate that . λ is the rate of convergence for the mean and 
the noise coefficient . σ affects the variance. 

Another important issue is the analysis of non-negativity of the solu-
tion [310], since it is possible to prove that, if .P(X0 ≥ 0)= 1, then 
.P(X(t)≥ 0)= 1, for any t and the solution attains the value zero if and only 
if .σ 2 > 2λμ. 

Example 9.3 (Stochastic Ginzburg-Landau Equation) Let us consider the 
following stochastic Ginzburg-Landau model [174, 222] 

. dX(t) =
(
βX(t) − γX(t)3

)
dt + δX(t)dW(t), β, γ, δ ∈ R,

(9.10) 

(continued)
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Example 9.3 (continued) 
of phase transition in superconductivity theory. It is possible to prove (see 
[239]) that, under suitable regularity assumptions, two solutions .X(t) and 
.Y (t) of (9.10), computed in correspondence of two distinct initial values . X0
and . Y0, satisfy the following inequality 

. E

[
‖X(t) − Y (t)‖2

]
≤ E

[
‖X0 − Y0‖2

]
eαt , α < 0,

where . α is a constant value, depending on the drift and the diffusion of (9.10), 
whose role will be clarified in Sect. 9.7.1. Clearly, if .α < 0, the gap between 
.X(t) and .Y (t) gets damped in time: in other terms, in analogy with the 
corresponding deterministic concept described in Chap. 1, this situation leads 
to mean-square dissipativity of the problem and mean-square contractivity 
in its solutions [38, 117, 118]. These aspects will be treated in detail in 
Sect. 9.7.1, as a good prototype of test problem for the analysis of nonlinear 
stability issues. 

Example 9.4 (Itô-Hamiltonian Problems) Starting from a general Hamilto-
nian problem (1.22), we consider the following stochastic Hamiltonian system 
of Itô type [85] 

.

⎧
⎨

⎩

dq(t) = ∇pH(q(t), p(t))dt,

dp(t) = −∇qH(q(t), p(t))dt + �dW(t),

(9.11) 

where .� ∈R
d×m, whose generic element is denoted by . σij , for . i = 1, 2, . . . , d

and .j = 1, 2, . . . , m. Moreover, we assume that the initial datum .(q0, p0) of 
the system (9.11) provides an initial Hamiltonian of finite expectation, i.e., 
.E [H(q0, p0)] < ∞. We note that if the matrix . � is the zero matrix, the 
stochastic Hamiltonian system (9.11) recasts the deterministic Hamiltonian 
system whose Hamiltonian is conserved along its exact flow. 

Stochastic Hamiltonian problems are able to conjugate the canonical 
character of evolution equations (the Hamiltonian description of motion) with 
the stochastic effects visible, for instance, in the statistical independence of 
the future from the past and the irreversibility of the time arrow, making the 
resulting equations of motion more realistic models [21, 247, 333]. 

It is possible to prove (see [47, 48, 85, 121] and references therein) that, 
along the dynamics of Itô-Hamiltonian problems (9.13), the Hamiltonian 
is not preserved, nor pathwise or in expectation. Indeed, the following 

(continued)
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Example 9.4 (continued) 
expression of the expectation of the Hamiltonian at time .t ∈ [0, T ] is 
established [48] 

. E [H(q(t), p(t))] = E [H(q0, p0)]+ 1

2

m∑

i=1

σ̄ 2
i

∫ t

0
E

[
∇ii

ppH(q(s), p(s))
]

ds,

where . σ̄i denotes the diagonal element on the i-th row of the matrix . �T�, i =
1, . . . , d, and by .∇ii

ppH the element in position .(i, i) of the Hessian matrix 
associated to the function H , computed with respect to p. 

In the case of separable Hamiltonian functions of type 

.H(q, p) = 1

2

d∑

i=1

p2
i + V (q), (9.12) 

depending on a suitable smooth potential .V : Rd → R, the corresponding 
stochastic Hamiltonian system of Itô type (9.11) reads 

.

⎧
⎨

⎩

dq(t) = p(t)dt,

dp(t) = −∇qV (q(t))dt + �dW(t).

(9.13) 

Correspondingly, the expected Hamiltonian assumes a more compact form 
[48, 85] 

.E [H(q(t), p(t))] = E [H(q0, p0)] + 1

2
Tr
(
�T�

)
t, (9.14) 

known in the literature as trace equation. This formula reveals that, for the 
Hamiltonian system (9.13), the expectation of the Hamiltonian function (9.12) 
grows linearly in time and the growth rate depends on the trace of the matrix 
.�T�. The analysis of the conservative character of numerical methods applied 
to stochastic Hamiltonian problems will be treated in Sect. 9.7.4. 

We finally report a relevant result, concerning the existence and uniqueness of 
solutions to (9.7). A complete proof is given, for instance, in [239].
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Theorem 9.1 Suppose that, for a given SDE (9.7), the following conditions 
hold true:

• the drift f and the diffusion g are .L2-measurable in . Rd ;
• f and g are Lipschitz functions, i.e., there exists a positive constant K such 

that 

. max {‖f (x) − f (y)‖, ‖g(x) − g(y)‖} ≤ K‖x − y‖,

for any .x, y ∈ R
d ;

• the following linear growth bound is satisfied by f and g: there exists a 
positive constant . 
 such that 

. max
{
‖f (x)‖2, ‖g(x)‖2

}
≤ 
2(1 + ‖x‖2), (9.15) 

for any .x ∈ R
d ;

• the initial value . X0 has bounded .E
[‖X0‖2

]
. 

Then, the SDE (9.7) has a pathwise unique solution .X(t) in .[0,+∞), called 
Itô process, with 

. sup
t≥0

E

[
‖X(t)‖2

]
< ∞.

9.4 One-Step Methods 

In developing numerical methods for ODEs (1.1), we have ascertained the effective-
ness of some tools, such as Taylor expansions and numerical quadrature, useful to 
find the discretized counterpart of the continuous operator under investigation. It is 
now worth understanding which may be the stochastic counterpart of these tools, 
with particular reference to Taylor expansion, in order to provide an effective way 
to develop numerical methods. 

As we have seen, for instance, for the development of the Butcher theory of order 
in Chap. 4, a basic tool is given by the chain rule. Indeed, the Taylor expansion of 
.y(t), solution of .y′(t) = f (y(t)), given by 

. y(t + h) = y(t) + hy′(t) + h2

2
y′′(t) + . . . ,
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relies on the computation of 

. y′(t) = f (y(t)), y′′(t) = d

dt
f (y(t)) = f ′(y(t))y′(t) = f ′(y(t))f (y(t))

and so on. 
Let us present the chain rule of Itô calculus for the scalar case (its extension to the 

multi-dimensional case as well as its proof are discussed, for instance, in [239]). For 
a given Itô process .X(t) and a function .v :R → R, .v(X(t)) is still an Itô process, 
satisfying the SDE 

.

v(X(t)) =
∫ t

0

(
v′(X(s))f (X(s)) + 1

2
v′′(X(s))g2(X(s))

)
ds

+
∫ t

0
v′(X(s))g(X(s)) dW(s), t ≥ 0,

(9.16) 

giving the chain rule of Itô calculus, better known in the literature as Itô formula. 
Let us observe that Stratonovich calculus obeys to the classical chain rule of 

real calculus. The fact that Itô and Stratonovich calculi have different chain rules 
determines a number of different issues, especially in the conservative character of 
the corresponding SDEs, as described in Sect. 9.7. 

9.4.1 Euler-Maruyama and Milstein Methods 

The full discretization of a stochastic differential equations (9.7) requires perform-
ing several steps: first of all, the discretization of the Brownian motion, as we have 
discussed in the previous sections; then, as usual also in the case of ODEs, the 
discretization of the domain. To this purpose, supposing that the equation is studied 
in the closed interval .[0, T ], let us partition it in L subintervals of equal length 

. �t = T

L
,

intercepting the corresponding set of grid points 

.I�t = {
tj = j�t, j = 0, 1, . . . , L

}
. (9.17) 

Generally, such points are chosen as a subset of Wiener points; in other terms, 

. �t = Rδt, R ∈ N.

Let us now understand how to advance from a given point . tn to the subsequent 
point .tn+1. To this purpose, we first consider the integral formulation (9.8) for .t ≥ tn,



9.4 One-Step Methods 311

i.e., 

. X(t) = X(tn) +
∫ t

tn

f (X(s))ds +
∫ t

tn

g(X(s))dW(s).

Let us now apply Itô formula (9.16), for v equal to the drift function f , i.e., 

. 

f (X(s)) = f (X(tn)) +
∫ s

tn

(
f ′(X(u))f (X(u)) + 1

2
f ′′(X(u))g2(X(u))

)
du

+
∫ s

tn

f ′(X(u))g(X(u)) dW(u)

and the diffusion function g, i.e., 

. 

g(X(s)) = g(X(tn)) +
∫ s

tn

(
g′(X(u))f (X(u)) + 1

2
g′′(X(u))g2(X(u))

)
du

+
∫ s

tn

g′(X(u))g(X(u)) dW(u).

Let us truncate both equations to the first order, i.e., approximate 

. f (X(s)) ≈ f (X(tn)), g(X(s)) ≈ g(X(tn))

and replace these values in (9.8) obtaining 

. 

X(t) ≈ X(tn) +
∫ t

tn

f (X(tn))ds +
∫ t

tn

g(X(tn))dW(s)

≈ X(tn) + f (X(tn))(t − tn) + g(X(tn))(W(t) − W(tn)).

We finally evaluate last relation for .t = tn+1, leading to 

. X(tn+1) ≈ X(tn) + f (X(tn))�t + g(X(tn))�Wn+1,

having denoted .Wn+1 = W(tn+1) − W(tn). Finally, defining .Xn :≈ X(tn) yields 

.Xn+1 = Xn + f (Xn)�t + g(Xn)�Wn+1, (9.18) 

that is the famous Euler-Maruyama method for the numerical solution of SDEs 
(9.8). 

As the name itself suggests, this numerical method arises as stochastic perturba-
tion of the explicit Euler scheme (2.19) for ODEs: indeed, for .g = 0, we recover 
the deterministic Euler method. The denomination Euler-Maruyama method is then
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the summa of the work of Euler (1707–1783) and Gisiro Maruyama (1916–1986), 
whose portrait is now briefly presented, based on [322, 334]. 

A Portrait of Gisiro Maruyama 
Gisiro Maruyama was born in Japan in 1916 and graduated from Tohoku 
Imperial University in 1939. His first interest was Fourier analysis, certainly 
motivated by the active environment he found in Tohoku at that time and, 
indeed, his first paper written in 1939 was focused on that topic. At a certain 
point, impressed by the papers of Norbert Wiener, he developed a genuine 
interest in probability theory. Influenced by several papers of Slutsky, Wiener, 
Wold and Hopf, he studied stationary processes and wrote a seminal paper on 
the topic, appeared in 1949 (actually, in Japan had already appeared in 1947), 
after which he got the degree of Doctor of Science. Certainly, his previous 
interest in Fourier analysis had a deep influence in his following results on 
probability theory. 

He was appointed as a research assistant in Kyushu University in 1941 and 
was promoted to a professor position in 1949. Later he served as a professor 
in several universities, namely in Ochanomizu University, Kyushu University 
(for the second time), Tokyo University of Education, the University of 
Tokyo, the University of Electro-Communications, and finally in Tokyo Denki 
University where he remained until his death, occurred in 1986. 

A key role in his scientific production was certainly played by the paper 
of Kiyosi Itô on stochastic differential equations, published in 1942. As 
we read in [334], “Maruyama immediately recognized the importance of 
this work and soon published a series of papers on stochastic differential 
equations and Markov processes”. The study of convergence properties of 
numerical discretizations to stochastic differential equations, published in 
1955, is certainly one of the masterpieces of Maruyama, now everywhere 
acknowledged as Euler-Maruyama method. 

Euler-Maruyama method (9.18) is a one-step method, with explicit structure, 
then very easy to use (for this reason, this scheme is very well known also outside the 
mathematical community). It arises from a direct application of Itô formula (9.16), 
truncated to the very first term. Repeated application of (9.16) to all occurrences of 
the drift and the diffusion of (9.8) gives the so-called Itô-Taylor expansion of the 
exact solution to (9.8) [239]. Then, Euler-Maruyama method arises as a first order 
truncation of the Itô-Taylor expansion of the exact solution to (9.8). Program 9.4 
presents a Matlab implementation of this method.
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Program 9.4 (Euler-Maruyama Method) 
% Approximate solution of (9.8) via Euler-Maruyama method 

% Inputs: 
% - T: maximum of the interval [0,T]; 
% - X0: initial value; 
% - N: number of intervals in Wiener discretization; 
% - R: ratio of Euler-Maruyama and Wiener stepsizes. 

% Output: 
% - X: Euler-Maruyama approximate solution. 

function X=eulerMaruyama(T,X0,N,R) 
[dW,. ∼]=wiener(T,N); 
dt=T/N; 
Dt=R*dt; 
L=N/R; 
X=zeros(1,L+1); 
X(:,1)=X0; 
for j=1:L 

Winc=sum(dW((j-1)*R+1:j*R)); 
X(:,j+1)=X(:,j)+Dt*f(X(:,j))+g(X(:,j))*Winc; 

end 
plot(0:Dt:T,X) 

We observe that, as visible in Program 9.4, adapting the discretization chosen 
for the computation of the solution to the original Wiener discretization is a crucial 
point. Let us focus on the computation of the Wiener increment related to a single 
Euler-Maruyama step from . tn to .tn+1, i.e., 

. 

W(tn+1) − W(tn) = W((n + 1)�t) − W(n�t)

= W((n + 1)Rδt) − W(nRδt)

=
(n+1)R∑

k=1

�Wk −
nR∑

k=1

�Wk

=
(n+1)R∑

k=nR+1

�Wk,

motivating the formula for Winc in Program 9.4. Let us now provide an example 
of Euler-Maruyama approximation to a given SDE, namely the equation of the 
geometric Brownian motion (9.9).
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Fig. 9.5 Euler-Maruyama (dashed lines) vs exact solution (solid lines) of the geometric Brownian 
motion equation (9.9) in . [0, 1], for .μ = 2, .σ = 1, with initial value . X0, .N = 500 Wiener 
increments and various values of R 

Example 9.5 Let us use Euler-Maruyama method (9.18) for the numerical 
solution of the equation of the geometric Brownian motion (9.9). Figure 9.5 
shows the pattern of the sampled approximate trajectories in comparison with 
the exact solution, for various values of R. We can appreciate that, for a fixed 
Wiener path, decreasing the stepsize of the discretization (up to considering 
as grid points all Wiener points) makes the corresponding numerical solution 
closer to the exact one. It appears familiar to us: it looks like a form of 
convergence of Euler-Maruyama method. This issue will be analyzed in next 
section. 

Let us conclude this part highlighting that, as for deterministic numerical meth-
ods, other formulae for the approximation of SDEs (9.8) may arise by incorporating 
further terms of Itô-Taylor expansion in the numerical method. This is the case of 
the so-called Milstein method that, for scalar problems, reads 

. Xn+1 = Xn + f (Xn)�t + g(Xn)�Wn+1 + 1

2
g′(Xn)g(Xn)(�W 2

n+1 − �t),

(9.19)
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while, for systems of SDEs 

. dX(t) = g0(X(t))dt +
m∑

k=1

gk(X(t))dWk(t),

being .gk : Rd → R
d , .k = 0, 1, . . . , m, the method is given by 

. 

Xn+1 = Xn + g0(Xn)�t +
m∑

k=1

gk(Xn)�Wk
n+1

+
m∑

j1,j2=1

Lj1gj2(Xn)

∫ tn+1

tn

∫ t

tn

dWj1(s)dWj2(t)

with 

. Lk =
d∑

i=1

gk,i ∂

∂xi

, k = 1, 2, . . . , m.

Also Milstein method is a one-step explicit method and the presence of additional 
terms arising from the truncation of Itô-Taylor expansion makes the method more 
accurate than Euler-Maruyama method. This aspect will be analyzed in the next 
section. 

9.4.2 Stochastic ϑ-Methods 

A larger family of one-step methods for SDEs (9.8) is certainly given by the 
class of stochastic .ϑ-methods, developed in order to especially improve the linear 
stability properties of Euler-Maruyama method, as we will discuss in Sect. 9.6. We  
distinguish two classes of stochastic .ϑ-methods [37, 95, 97, 117, 119, 120, 127, 129, 
208, 213, 215]: stochastic .ϑ-Maruyama methods and stochastic .ϑ-Milstein methods. 

The family of stochastic .ϑ-Maruyama methods is characterized by the same 
diffusion part as in Euler-Maruyama method (9.18) and arises from the following 
quadrature formula to approximate the drift part of the equation 

. 

∫ tn+1

tn

f (X(t))dt ≈ (
(1 − ϑ)f (X(tn)) + ϑf (X(tn+1))

)
�t,

with .ϑ ∈ [0, 1]. In other terms, the integral of the drift in .[tn, tn+1] is a convex 
combination of the value of .f (X(tn)) and .f (X(tn+1)); equivalently, the integrand 
is approximated by a linear interpolant. The corresponding numerical method is then 
given by 

. Xn+1 = Xn + (1 − ϑ)�tf (Xn) + ϑ�tf (Xn+1) + g(Xn)�Wn+1. (9.20)
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This is a one-parameter family of one-step methods, depending on the parameter 
.ϑ ∈ [0, 1]. If .ϑ = 0, we recast the Euler-Maruyama method (9.18), that is the only 
explicit .ϑ-Maruyama method. All methods (9.20) for .ϑ �= 0 are implicit and it is 
worth highlighting two main cases:

• for .ϑ = 1
2 we obtain the stochastic trapezoidal method 

. Xn+1 = Xn + (f (Xn) + f (Xn+1))
�t

2
+ g(Xn)�Wn+1; (9.21)

• for .ϑ = 1 we obtain the implicit Euler-Maruyama method 

. Xn+1 = Xn + f (Xn+1)�t + g(Xn)�Wn+1. (9.22) 

An important matter that will be analyzed in Sect. 9.6 regards the optimal choice 
of the parameter . ϑ in order to achieve good stability properties. In the implicit case, 
a nonlinear system for the computation of the updated solution is requested at each 
step. Under global Lipschitz conditions on the functions f and g, an application of 
the Banach fixed-point theorem ensures that a sufficient condition for the existence 
and uniqueness of the solution to such a nonlinear equation is given by . 

√
K�t < 1

with probability 1, where K is the Lipschitz constant defined in Theorem 9.1. 
Weaker conditions are also admissible, e.g., a one-sided Lipschitz condition on the 
drift. If . μ is the one-sided Lipschitz constant of f , then a sufficient condition for 
the existence and the uniqueness of the solution to (9.20) is given by .μ�t < 1, see  
[208, 213, 259]. 

We also observe that, if the diffusion g in (9.20) is identically null, then stochastic 
.ϑ-Maruyama methods perfectly overlap the family of deterministic .ϑ-methods 

. Xn+1 = Xn + (
(1 − ϑ)f (Xn) + ϑf (Xn+1)

)
�t.

We conclude this part by presenting the family of stochastic .ϑ-Milstein methods 
developed in [37] that, for the scalar case, reads 

.

Xn+1 = Xn + (1 − ϑ)�tf (Xn) + ϑ�tf (Xn+1) + g(Xn)�Wn+1

+ 1

2
g′(Xn)g(Xn)(�W 2

n+1 − �t),
(9.23) 

with .ϑ ∈ [0, 1], sharing the diffusion part with Milstein method (9.19). 
A Matlab coding for the .ϑ-Maruyama method (9.20) is provided in Program 9.5. 

As in previous implementations of implicit methods, this coding also uses the built-
in function fsolve to handle the implicitness of (9.20).
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Program 9.5 (.ϑ-Maruyama Method) 
% Approximate solution of (9.8) via theta-Maruyama method 

% Inputs: 
% - T: maximum of the interval [0,T]; 
% - X0: initial value; 
% - N: number of intervals in Wiener discretization; 
% - R: ratio of Euler-Maruyama and Wiener stepsizes; 
% - th: value of the parameter theta. 

% Output: 
% - X: theta-Maruyama approximate solution. 

function X=thetaMaruyama(T,X0,N,R,th) 
[dW,. ∼]=wiener(T,N); 
dt=T/N; 
Dt=R*dt; 
L=N/R; 
X=zeros(1,L+1); 
X(:,1)=X0; 
options=optimset(’Display’,’off’,’TolFun’,eps,’TolX’,eps); 
for j=1:L 

Winc=sum(dW((j-1)*R+1:j*R)); 
X(:,j+1)=fsolve(@(Y) Y-X(:,j)-(1-th)*Dt*f(X(,:j))...

-th*Dt*f(Y)-g(X(:,j))*Winc,options); 
end 
plot(0:Dt:T,X) 

9.4.3 Stochastic Perturbation of Runge-Kutta Methods 

Stochastic differential equations (9.7) can be interpreted, to some extent, as a 
perturbation of ordinary differential equations (1.1), via a random forcing term 
governed by one or more Wiener processes. As a consequence, a natural question 
may be the following: can we obtain stochastic numerical methods as proper 
perturbations of deterministic ones? 

A class of stochastic Runge-Kutta methods (SRK methods) has been obtained 
via proper perturbations of deterministic RK methods (4.8). This class has been 
introduced in [168, 303] and further analyzed (and in some cases enlarged) in [39, 
46–48, 52, 118, 299–301] and reference therein. The formulation we use relies on 
the formalism in [168, 303], that represents SRK methods as follows: 

.Xn+1 = Xn + �t

s∑

i=1

bif (X̂i) + �Wn+1

s∑

i=1

qig(X̂i), (9.24)
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where the internal stages . ̂Xi , approximating the value of .X(tn +ci�t) for any index 
.i = 1, 2, . . . , s, are given by  

.X̂i = Xn + �t

s∑

j=1

aij f (X̂j ) + �Wn+1

s∑

j=1

γij g(X̂j ). (9.25) 

As already seen in the deterministic case, a more compact effective representa-
tion of SRK methods (9.24)–(9.25) is obtained by using a Butcher tableau that, in 
this case, reads 

. 
c A �

bT qT
=

c1 a11 a12 . . . a1s γ11 γ12 . . . γ1s

c2 a21 a22 . . . a2s γ21 γ22 . . . γ2s

...
...

...
. . .

...
...

...
. . .

...

cs as1 as2 . . . ass γs1 γs2 . . . γss

b1 b2 . . . bs q1 q2 . . . qs

,

with .A,� ∈R
s×s and vector of weights .b, q ∈R

s and vector of the abscissae .c ∈ R
s . 

If . � is the zero matrix and q the null vector, then SRK methods (9.24)–(9.25) 
recover the analogous family of deterministic Runge-Kutta methods (4.8). Also in  
the stochastic case, the computational cost of the method is dictated by the structure 
of the matrices in (9.25): in particular, if A and . � are strictly lower triangular, the 
corresponding method is explicit. 

We also highlight that a two-step extension of SRK methods as stochastic 
perturbation of (5.15) has been given in [128], where the accuracy and stability 
analysis of this novel class of methods has also been given. 

9.5 Accuracy Analysis 

The transit from deterministic to stochastic numerics for evolutive problems does 
not alter the importance of analyzing proper accuracy and stability features of the 
developed scheme. In particular, in this section we provide concepts of convergence 
for numerical methods approximating SDEs (9.7) and investigate these convergence 
properties for the aforementioned numerical schemes. 

A numerical method for SDEs (9.7) provides a sequence of random variables 
.{Xn}Ln=0, whose general term .Xn approximates the exact solution .X(tn) of (9.7). 
As in the deterministic setting, we aim to let the random variable .Xn approach the 
exact value . X(tn), for .�t → 0 or, equivalently, the gap .‖Xn − X(tn)‖ should be 
infinitesimal with . �t .
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The way a notion of convergence can be defined in the stochastic setting cannot 
be purely and simply inherited from the deterministic scenario. This is because 
the error .‖Xn − X(tn)‖ itself is a random variable, hence randomly fluctuating. A 
natural measure of the error may then be represented by the use of the expectation 
operator (see, for instance, [209, 213, 239] the references therein), as follows. 

Definition 9.3 With reference to the discretization (9.17), a numerical 
method for SDEs (9.7) providing the numerical solution .{Xn}Ln=0 is strongly 
convergent if 

. lim
�t→0

sup
tn∈I�t

E [‖Xn − X(tn)‖] = 0.

Moreover, we say that its strong order of convergence is p if there exist two 
positive numbers C and .�t� such that 

. sup
tn∈I�t

E [‖Xn − X(tn)‖] ≤ C�tp, for any �t ≤ �t�. (9.26) 

It is worth observing that, in many practical situations, an integer p satisfying 
(9.26) may not exist: especially for low regularity problems (such as some stochastic 
partial differential equations) an order .p − ε can be reached, for .ε > 0. 

An alternative notion of convergence is given as follows (see, for instance, [209, 
213, 239] and the references therein). 

Definition 9.4 With reference to the discretization (9.17), a numerical 
method for SDEs (9.7) providing the numerical solution .{Xn}Ln=0 is weakly 
convergent if 

. lim
�t→0

sup
tn∈I�t

∣∣E [�(Xn)] − E [�(X(tn))]
∣∣ = 0

for any test function . � belonging to a suitable space S of functions. Moreover, 
we say that its weak order of convergence is p if there exist two positive 
numbers C and .�t� such that 

. sup
tn∈I�t

∣∣E
[
�(Xn)

] − E [�(X(tn))]
∣
∣ ≤ C�tp, for any �t ≤ �t�.
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In many practical situations, a suitable choice for the functional space S is given 
by the space of algebraic polynomials up to a given degree. Let us highlight the 
connection between the two above given notions of convergence. If we assume that 
.�(x) = x, a strongly convergent method is also weakly convergent. Indeed, 

. sup
tn∈I�t

∣∣E [�(Xn)] − E [�(X(tn))]
∣∣ = sup

tn∈I�t

∣∣E [Xn] − E [X(tn)]
∣∣.

Since 

. sup
tn∈I�t

∣
∣E [Xn] −E [X(tn)]

∣
∣ = sup

tn∈I�t

∣
∣E [Xn − X(tn)]

∣
∣ ≤ sup

tn∈I�t

E
[‖Xn − X(tn)‖

]
,

we obtain 

. sup
tn∈I�t

∣
∣E [�(Xn)] − E [�(X(tn))]

∣
∣ ≤ sup

tn∈I�t

E
[‖Xn − X(tn)‖

]
,

as we aimed to prove. 
Let us now give a proof of strong convergence for Euler-Maruyama method 

(9.18), following [213]. We observe that the proof relies on the previous knowledge 
of the following famous inequalities:

• Lyapunov inequality. For a given random variable Y , 

.E [‖Y‖] ≤
√
E
[‖Y‖2

]; (9.27)

• Cauchy-Schwarz inequality 

.E

[(∫ T

0
b(r)dr

)2]

≤ T

∫ T

0
E

[
b(r)2

]
dr. (9.28) 

Theorem 9.2 Euler-Maruyama method (9.18) is strongly convergent with 
strong order . 12 . 

Proof For the sake of simplicity of the presentation, let us provide the proof for 
scalar SDEs (9.7). We aim to prove the existence of a positive C such that 

. sup
tn∈I�t

E [|Xn − X(tn)|] ≤ C
√

�t,
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with C independent on . �t . To this purpose, it is convenient to proceed along 
continuous-time approximations. In other terms, we extend the pointwise approxi-
mation given at each grid point .tn ∈ I�t to a continuous approximant defined for 
any .t ∈ [0, T ]. 

We consider a piecewise-constant process 

. X̄(t) = Xn, tn ≤ t ≤ tn+1

and define 

. Z(t) = sup
0≤s≤t

E

[(
X̄(s) − X(s)

)2
]
.

If we show that there exists a positive . γ independent of . �t such that . Z(t) ≤ γ�t

then, by Lyapunov inequality (9.27), the thesis follows since 

. sup
0≤s≤t

E
[∣∣X̄(s) − X(s)

∣
∣] ≤

√

sup
0≤s≤t

E

[(
X̄(s) − X(s)

)2
]

≤ √
γ
√

�t.

Given any point .s ∈ [0, T ], let us denote by . ns the integer number such that 
.s ∈ [tns , tns+1). In other terms, .X̄(s) = Xns . Then, 

. 

X̄(s) − X(s) = Xns − X(s)

= Xns −
(

X0 +
∫ s

0
f (X(r))dr +

∫ s

0
g(X(r))dW(r)

)
.

Let us replace .Xns − X0 by the telescopic sum 

. 

ns−1∑

i=0

(Xi+1 − Xi)

and write each difference in this sum by means of Euler-Maruyama method (9.18), 
leading to 

.X̄(s) − X(s) =
ns−1∑

i=0

f (Xi)�t +
ns−1∑

i=0

g(Xi)�Wi+1

−
∫ s

0
f (X(r))dr −

∫ s

0
g(X(r))dW(r).
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By construction, 

. 

∫ ti+1

ti

f (X̄(t))dt =
∫ ti+1

ti

f (Xi)dt = f (Xi)�t

and, proceeding in similar way, 

. 

∫ ti+1

ti

g(X̄(t))dW(t) = g(Xi)�Wi+1.

Then, 

. 

X̄(s) − X(s) =
∫ tns

0
f (X̄(r))dr +

∫ tns

0
g(X̄(r))dW(r)

−
∫ s

0
f (X(r))dr −

∫ s

0
g(X(r))dW(r)

and, since .s ∈ [tns , tns+1), we have  

. X̄(s) − X(s) =
∫ tns

0

(
f (X̄(r)) − f (X(r))

)
dr +

∫ tns

0

(
g(X̄(r)) − g(X(r))

)
dW(r)

−
∫ s

tns

f (X(r))dr −
∫ s

tns

g(X(r))dW(r).

Since, for any .a, b, c, d ∈ R, 

. (a + b + c + d)2 ≤ 4(a2 + b2 + c2 + d2),

squaring and passing to expected values lead to 

.E

[(
X̄(s) − X(s)

)2
]

≤ 4(A1 + A2 + A3 + A4), (9.29) 

where 

. 

A1 = E

[(∫ tns

0

(
f (X̄(r)) − f (X(r))

)
dr

)2
]

,

A2 = E

[(∫ tns

0

(
g(X̄(r)) − g(X(r))

)
dW(r)

)2
]

,

A3 = E

⎡

⎣
(∫ s

tns

f (X(r))dr

)2
⎤

⎦ , A4 = E

⎡

⎣
(∫ s

tns

g(X(r))dW(r)

)2
⎤

⎦ .

Let us give a separate bound for each of these four terms.
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• Estimate of . A1. It relies on Cauchy-Schwarz inequality (9.28) and the Lipschitz 
continuity of the drift f of the equation (according to Theorem 9.1 of existence 
and uniqueness of the solution of SDEs), namely 

.A1 ≤ tns

∫ tns

0
E

[(
f (X̄(r)) − f (X(r))

)2
]

dr

≤ tns K
2
∫ tns

0
E

[(
X̄(r) − X(r)

)2
]

dr

≤ tns K
2
∫ s

0
Z(r)dr;

• estimate of . A2. It relies on Itô isometry (9.5) and the Lipschitz continuity of the 
diffusion g of the equation, namely 

.

A2 =
∫ tns

0
E

[(
g(X̄(r)) − g(X(r))

)2
]

dr ≤ K2
∫ tns

0
E

[(
X̄(r) − X(r)

)2
]

dr

≤ K2
∫ s

0
Z(r)dr;

• estimate of . A3. It relies on Cauchy-Schwarz inequality (9.28) and the linear 
growth condition (9.15), as follows: 

. A3 ≤ (s − tns )

∫ s

tns

E

[
f (X(r))2

]
dr ≤ �t


∫ s

tns

(1 + E

[
X(r)2

]
)dr.

Supposing that .E
[
(X(r)2

]
is bounded and denoted an upper bound for 

. 


∫ s

tns

E

[
X(r)2

]
dr

by . C1, we obtain 

.A3 ≤ �t2C1;

• estimate of . A4. It also relies on Itô isometry (9.5) and the linear growth condition 
(9.15), as follows: 

.A4 =
∫ s

tns

E

[
g(X(r))2

]
dr ≤ 


∫ s

tns

(
1 + E

[
X(r)2

])
dr ≤ �tC1.
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We are now able to finalize the estimate in (9.29), as follows: 

. E

[(
X̄(s) − X(s)

)2
]

≤ 4

[
(T + 1)K2

∫ s

0
Z(r)dr + C1�t(T + 1)

]

or, equivalently, 

. Z(t) ≤ B1

∫ t

0
Z(r)dr + B2�t

with .B1 = 4(T + 1)K2 and .B2 = C1(T + 1). Then, by Grönwall lemma 1.1, 

. Z(t) ≤ B2eB1t�t,

leading to the thesis, with .γ = B2eB1t . ��
We observe that the final error estimate gained in Theorem 9.2 reveals possible 

drawbacks leading to a corruption of the overall accuracy of the scheme. Indeed, 
the provided error constants depend on the length of the time window and on the 
Lipschitz constants of the drift and diffusion of the problem. As a consequence, 
the method cannot result so accurate on sufficiently long time windows, as well as 
for problems with too large Lipschitz constants (as it happens for deterministic stiff 
problems). The study of long-term properties of stochastic numerical methods will 
specifically be addressed in Sect. 9.7. 

The following result on weak convergence of Euler-Maruyama method (9.18) 
holds true. Its proof is here omitted, but the reader can find it in [213]. 

Theorem 9.3 Euler-Maruyama method (9.18) is weak convergent with weak 
order 1. 

It is also possible to prove what follows (see, for instance, [37, 168, 208, 213, 303] 
and references therein):

• strong and weak orders of convergence of Milstein method (9.19) are both equal 
to 1. Then, Milstein method is an improvement of Euler-Maruyama method in 
the sense of strong convergence;

• .ϑ-Maruyama methods (9.20) share the same strong and weak orders of conver-
gence of Euler-Maruyama method (9.18), i.e., the strong order is equal to . 1/2
and the weak order is equal to 1;

• also .ϑ-Milstein methods (9.23) share the same strong and weak orders of 
convergence of the underlying Milstein method (9.19), i.e., both strong and weak 
orders are equal to 1;
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• the convergence of explicit SRK methods (9.24)–(9.25) relies on the convergence 
of the underlying deterministic RK methods plus an additional condition, since 
we need to have 

. 

s∑

i=1

bi =
s∑

i=1

qi = 1.

Example 9.6 Let us provide an experimental check of the strong orders of 
convergence of Euler-Maruyama method (9.18), the stochastic trapezoidal 
method (9.21) and the implicit Euler-Maruyama method (9.22) for the 
numerical solution of the geometric Brownian motion equation (9.9). 

We repeatedly use Program 9.5 to sample of certain number of numerical 
trajectories useful to provide an estimate to the expected value needed for the 
computation of the strong order. Indeed, this is the idea of the so-called Monte 
Carlo estimate of the mean: from the Strong Law of Large Numbers, we know 
that repeated samples from a random variable can be averaged to give an 
asymptotically correct estimate of its mean. If Y is a random variable, a Monte 
Carlo estimate of its expectation can be computed through the following 
recipe:

• take a large number M of samples of Y . Denote them by .{ξi}Mi=1;
• compute the arithmetic mean (also known as sample mean) 

. aM := 1

M

M∑

i=1

ξi .

From the Central Limit Theorem, the discrepancy between sampled and true 
means depends on .b2 := Var[Y ]. Moreover, the estimate is only asymptoti-
cally correct (i.e., for large values of M). More details on the topic are given, 
for instance, in [213]. 

Table 9.2 provides the expected strong error in the final integration point 
associated to the application of the aforementioned methods, together with 
an estimate of the strong order, computed by a formula analogous to (3.23). 
For each value of the stepsize, strong errors are estimated by sampled 
means computed over .M = 1000 trajectories of the numerical solutions. The 
theoretical results on the strong convergence are recovered by the numerical 
evidence, as visible from the table.
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Table 9.2 Example 9.6: 
expected strong error in the 
final integration point 
associated to the application 
of the .ϑ-Maruyama methods 
(9.20) with .ϑ = 0, 1/2, 1 to 
the equation of the geometric 
Brownian motion (9.9). An  
estimate of the strong order is 
also listed for each considered 
case. For each value of the 
stepsize, strong errors are 
estimated by sampled means 
computed over . M = 1000
trajectories of the numerical 
solutions, each computed 
with .N = 28 Wiener points 
and .L = N/R grid points, 
with R displayed in the table 

R .errSTRONG . pSTRONG

. ϑ = 0
8 . 7.83 · 10−2

4 .5.06 · 10−2 0.63 

2 .3.54 · 10−2 0.51 

1 .2.47 · 10−2 0.52 

. ϑ = 1/2
8 . 7.11 · 10−2

4 .4.82 · 10−2 0.56 

2 .3.46 · 10−2 0.48 

1 .2.44 · 10−2 0.50 

. ϑ = 1
8 . 8.06 · 10−2

4 .5.34 · 10−2 0.59 

2 .3.54 · 10−2 0.59 

1 .2.55 · 10−2 0.48 

9.6 Linear Stability Analysis 

We conclude this chapter by analyzing the linear stability properties of the numerical 
methods for SDEs (9.7) introduced in the previous sections, trying to extend the 
qualitative principles studied in the deterministic case (see Chap. 6) to the stochastic 
one [37, 89, 208, 209, 213, 306]. 

As in the deterministic case, the first step in performing a linear stability analysis 
requires providing a proper test problem, whose qualitative and quantitative features 
may be well detected and clarified. As proposed by Saito and Mitsui in [306], the 
test problem we consider is the following stochastic Dahlquist test problem given 
by the equation for the geometric Brownian motion 

.

⎧
⎨

⎩
dX(t) = μX(t)dt + σX(t)dW(t), t ∈ [0, T ],
X(0) = X0,

(9.30) 

with complex parameters . μ and . σ . Equation (9.30) is scalar and linear (both in the 
drift and in the diffusion) and for .σ = 0 it recovers the deterministic Dahlquist test 
problem (6.1).
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9.6.1 Mean-Square Stability 

We give the following fundamental definition and a subsequent characterizing 
theorem. 

Definition 9.5 The solution .X(t) of the stochastic Dahlquist test problem 
(9.30) is said to be mean-square stable if 

. lim 
t→∞ 

E

[
‖X(t)‖2

]
= 0. 

Theorem 9.4 The solution .X(t) of the stochastic Dahlquist test problem 
(9.30) is mean-square stable if and only if 

. Re(μ) + 
1 

2 
|σ |2 < 0. 

Proof Let us apply Itô formula to the quadratic function .u(X(t)) = X(t)2, where 
.X(t) is solution to (9.30), leading to 

. u(X(t)) = u(X0) + 2
(

μ + 
1 

2 
|σ |2

)∫ t 

0 
u(s)ds + 2σ

∫ t 

0 
u(s)dW(s).  

Passing to side-by-side expectation leads to the linear SDE 

. E [u(X(t))] = u(X0) + 2
(

μ + 
1 

2 
|σ |2

)∫ t 

0 
E [u(X(s))] ds 

and, denoting by .y(t) = E [u(X(t))], this equation is equivalent to the linear ODE 

. y′(t) = 2
(

μ + 
1 

2 
|σ |2

)
y(t) 

whose solution is given by 

.y(t) = e2(μ+ 1 
2 |σ |2)t y(0). 
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Then, 

. E

[
|X(t)|2

]
= e2(μ+ 1 

2 |σ |2)t |X0|2, 

where . X0 is assumed to be deterministic and the thesis holds true. ��
It is now natural asking when a numerical method for SDEs preserve the mean-

square character of the solution along the discretized dynamics, according to the 
following definition. 

Definition 9.6 A numerical method that employs the set of grid points (9.17) 
and provides the approximate solution .{Xn}L 

n=0 to the linear scalar test SDE 
(9.30) is said to be mean-square stable if 

. lim 
n→∞ 

E

[
|Xn|2

]
= 0. 

Example 9.7 Let us analyze the mean-square stability of Euler-Maruyama 
method (9.18). To this purpose, let us apply this method to the stochastic 
Dahlquist test problem (9.30) with real parameters 

. Xn+1 = (1 + μ�t)Xn + σXn�Wn+1 

and square it side-by-side so as to get 

. X2 
n+1 = (1 + μ�t)2X2 

n + 2(1 + μ�t)σX2 
n�Wn+1 + σ 2X2 

n�W 2 
n+1. 

Let us pass to side-by-side expectation, taking into account that 

. E[�Wn+1] =  0, E[�W 2 
n+1] = �t 

and that . Xn and .�Wn+1 are independent random variables, leading to 

. E[X2 
n+1] =

(
(1 + μ�t)2 + σ 2�t

)
E[X2 

n]. 

In other terms, Euler-Maruyama method is mean-square stable if 

. (1 + μ�t)2 + σ 2�t < 1. 

(continued) 



9.6 Linear Stability Analysis 329 

Example 9.7 (continued) 
As in the deterministic case, the stability of the numerical solution provided 
by an explicit method requires fulfilling a stepsize restriction. In Fig. 9.6, the  
stability region of the problem (9.30) 

.SSDE =
{
λ, μ ∈ C : Re(λ) + 

1 

2
|μ|2 < 0

}
(9.31) 

and that of Euler-Maruyama method (9.18) 

.SEM =
{
λ, μ ∈ R : (1 + μ�t)2 + σ 2�t < 1

}
(9.32) 

are depicted and compared. The fact that the stability region of the method 
is much smaller than that of the problem is a signal of the possible stepsize 
restrictions affecting the efficiency of the method; as we are going to explain, 
stochastic .ϑ-methods significantly improve the stability of Euler-Maruyama 
method. 

Fig. 9.6 Region of 
mean-square stability (9.31) 
of the solution to the 
stochastic Dahlquist test 
problem (9.30) (light grey), 
for real values of the 
parameters . μ and . σ , vs the  
mean-square stability region 
(9.32) of Euler-Maruyama 
method (9.18) (dark grey) 
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Fig. 9.7 Example 9.8: points 
chosen for the numerical 
experiments. . P1 and . P2 lie 
outside the stability region of 
the method (. P2 is close to its 
boundary), but inside the 
stability region of the 
problem; . P3 lies in both 
regions 

Example 9.8 With reference to Fig. 9.6, let us choose the following 3 points 

. P1 =
(

−3, 
3 

2

)
, P2 =

(
−9 

5 
, 

9 

10

)
, P3 =

(
−6 

5 
, 

3 

5

)
, 

highlighted in Fig. 9.7. . P1 and . P2 lie outside the stability region of the method 
(. P2 is close to its boundary), but inside the stability region of the problem; . P3 
lies in both regions. If we consider .μ = −4 and .σ = 

√
2, the values of . �t 

respectively corresponding to these points are 

. �t1 = 
3 

4 
, �t2 = 

9 

20 
, �t3 = 

3 

10 
. 

Let us apply Euler-Maruyama method (9.18) to the stochastic Dahlquist 
test problem (9.30) with .μ= − 4 and .σ =√

2, using above stepsize values. 
The corresponding numerical evidence is reported in Fig. 9.8, where the 
Monte Carlo estimates of the mean-squares are computed over . M = 1000 
Euler-Maruyama paths. Numerical results confirm the theoretical results: the 
mean-square associated to .�t1 blows up, in coherence with the fact that the 
corresponding point only lies inside the stability region of the problem and 
outside that of the numerical method; the mean-square associated to . �t3 
exponentially decreases (be aware that the graph is in semi-logarithmic scale), 
in coherence with the fact that the corresponding point lies inside both the 

(continued) 
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Example 9.8 (continued) 
stability region of the problem and that of the numerical method; the mean-
square associated to .�t2 does not blow up or exponentially decrease, since the 
corresponding point lies close to the boundary of the mean-square stability 
region of the numerical method, though outside it. 

9.6.2 Mean-Square Stability of Stochastic ϑ-Methods 

Let us now analyze the mean-square stability properties of stochastic .ϑ-methods, 
according to the results provided in [208, 213]. We first consider .ϑ-Maruyama 
methods (9.20), as follows. 

Theorem 9.5 The mean-square stability region of .ϑ-Maruyama methods 
(9.20) is given by 

. Sϑ =
{
μ, σ ∈ C : (1 − 2ϑ)|μ|2�t < −2

(
Re(μ) + 

1 

2
|σ |2

)}
. 

Fig. 9.8 Mean-square of the approximate solution to the stochastic Dahlquist test problem (9.30) 
with .μ = −4 and .σ = 

√
2, arisen from the application of Euler-Maruyama method (9.18) with 

.�t1 = 3 
4 (dashed line), .�t2 = 9 

20 (dotted line) and .�t3 = 3 
10 (solid line). Monte Carlo estimates 

of the mean-squares are computed over .M = 1000 Euler-Maruyama paths 
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Proof Applying the .ϑ-Maruyama method (9.20) to the stochastic Dahlquist test 
problem (9.30) yields 

. Xn+1 = 1 + (1 − ϑ)μ�t + σ�Wn+1

1 − ϑ�tμ
Xn.

Side-by-side squaring and passing to expectation leads to 

. |1 − ϑμ�t |2E[|Xn+1|2
] = E

[|1 + (1 − ϑ)μ�t + σ�Wn|2
]
E
[|Xn|2

]
.

Hence, we have obtained the recurrence relation 

. E
[|Xn+1|2

] = γ (ϑ,�t)E
[|Xn|2

]
,

where 

. γ (ϑ,�t) = 1 + (1 − ϑ)2�t2|μ|2 + σ |2�t + 2(1 − ϑ)Re(μ)�t

1 + ϑ2|μ|2�t2 − 2ϑRe(μ)�t
.

Then, mean-square stability holds true if and only if .γ (ϑ,�t) < 1, that is equivalent 
to 

.(1 − 2ϑ)|μ|2�t < −2

(
Re(μ) + 1

2
|σ |2

)
, (9.33) 

leading to the thesis. ��
In analyzing the inequality in (9.33), always take into account that, for mean-

square stable SDEs, .Re(μ) + 1
2 |σ |2 < 0. Let us observe that mean-square stability 

condition (9.33) for .ϑ-Maruyama methods (9.20) allows us to conclude what 
follows: for any .�t > 0,

• if .0 ≤ ϑ < 1
2 , the stability region . Sϑ of the method is a subset of the stability 

region .SSDE (9.31) of the problem. For any .(μ, σ ) ∈ SSDE , the method is mean-
square stable if and only if 

. �t < −
2
(

Re(μ) + 1
2 |σ |2

)

(1 − 2ϑ)|μ|2 ,

while for unstable SDEs, the method is not stable, for any choice of .�t > 0. 
In other terms, the mean-square stability region of .ϑ-Maruyama methods with 
.0 ≤ ϑ < 1

2 is bounded and the method is stable subject to stepsize restrictions;
• if .ϑ = 1

2 , the stochastic trapezoidal method (9.21) is recovered and its stability 
region coincides with that of the problem, giving a mean-square generalization 
of the concept of A-stability, that we can denote as mean-square A-stability. So,
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for a mean-square stable SDE, the stochastic trapezoidal method is mean-square 
stable for any .�t > 0;

• if . 1 
2 < ϑ  ≤ 1, the stability region of the method contains that of the problem and 

the method is stable for any choice of the stepsize, when applied to a mean-square 
stable SDE. Actually, these methods are also overstable since, when applied to 
unstable problems, they are not mean-square stable for any 

. �t < − 
2
(

Re(μ) + 1 
2 |σ |2

)

(1 − 2ϑ)|μ|2 
, 

so they can also be stable on an unstable SDE. 

Let us now move to the case of stochastic .ϑ-Milstein methods (9.23), whose 
linear stability analysis has been provided in [117]. Applying (9.23) to the stochastic 
Dahlquist test problem (9.30) yields 

. Xn+1 = Xn +(1−ϑ)μ�tXn +ϑμ�tXn+1 +σXn�Wn+1 + 
σ 2 

2 
Xn(�W 2 

n+1 −�t), 

i.e., 

. (1 − ϑμ�t)Xn+1 =
(

1 + (1 − ϑ)μ�t  + σ�Wn+1 + 
σ 2 

2 
(�W 2 

n+1 − �t)

)
Xn. 

It is convenient to write 

. 1 + (1 − ϑ)μ�t  + σ�Wn + 
1 

2 
σ 2(�W 2 

n − �t) = x + iy, 

with 

. 

x = 1 + (1 − ϑ)Re(μ)�t + Re(σ )�Wn + 
1 

2 
Re

(
σ 2)(�W 2 

n − �t), 

y = (1 − ϑ)I (μ) + Im(σ )�Wn + 
1 

2 
Im

(
σ 2)(�W 2 

n − �t). 

The expected value of .x + iy is given by 

. 

E
[|x + iy|2] =E

[
x2 + y2] = 1 + (1 − ϑ)2�t2|μ|2 + �W 2 

n |σ |2 

+ 
1 

4 
(�W 2 

n − �t)2|σ 2|2 + 2(1 − ϑ)Re(μ)�t 

and, as a consequence, 

.E
[|Xn+1|2

] = β(ϑ,�t)E
[|Xn|2

]
, 
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with 

. 
β(ϑ,�t) = 

1 + (1 − ϑ)2�t2|μ|2 + �t |σ |2 + 
1 

2
�t2|σ 2|2 + 2(1 − ϑ)Re(μ)�t 

1 + ϑ2|μ|2�t2 − 2ϑRe(μ)�t 
. 

In other terms, .ϑ-Milstein methods (9.23) provide a mean-square stable numeri-
cal solution if and only if 

. 
(
(1 − 2ϑ)|μ|2 + 

1 

2
|σ 2|2)�t < −2

(
Re(μ) + 

1 

2
|σ |2). 

For mean-square stable test problem (9.30), the right-hand side of last inequality is 
always positive. Then, for values of .ϑ ∈ [0, 1] such that 

.(1 − 2ϑ)|μ|2 + 
1 

2
|σ 2|2 < 0, (9.34) 

any numerical solution computed by (9.23) is mean-square stable for any choice of 
the stepsize . �t . Condition (9.34) is equivalent to 

.ϑ >  
1 

2 
+ 

|σ 2|2 

4|μ|2 , 0 ≤ ϑ ≤ 1. (9.35) 

Two situations may occur:

• if the right-hand side of (9.35) is greater than 1, then no .ϑ-Milstein method with 
.ϑ ∈ [0, 1] is mean-square stable for any choice of . �t ;

• if the right-hand side of (9.35) is smaller than 1 then, for any 

. 0 ≤ ϑ ≤ 1/2 + (|σ 2|2)/(4|μ|2), 

the corresponding .ϑ-Milstein method provides a mean-square stable numerical 
solution to (9.30) subject to the stepsize restriction 

. �t < 
2
∣
∣Re(μ) + 1 

2 |σ |2∣∣
(1 − 2ϑ)|μ|2 + 1 

2 |σ 2|2 
. 

To conclude, while .ϑ-Maruyama methods allow a large variety of mean-square 
A-stable methods, this is not the case of .ϑ-Milstein methods, since stepsize 
restrictions have to be satisfied in order to provide mean-square stable .ϑ-Milstein 
numerical solutions. 
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9.6.3 A-stability Preserving SRK Methods 

We now focus on analyzing the mean-square stability properties of stochastic 
Runge-Kutta methods (9.24). We first present the following result [89]. 

Theorem 9.6 If .{Xn}L 
n=0 is the numerical solution of (9.30) computed by a 

SRK method (9.24), with reference to the set of grid points (9.17), then the 
following recurrence relation holds true 

. E

[
|Xn+1|2

]
= Rs(η, ζ )E

[
|Xn|2

]
, 

where 

.Rs(η, ζ ) = (
1 + |ζ |2)|Rd(η)|2, (9.36) 

being .Rd(η) = 1 + ηb T (I − ηA)−1e the stability function (6.9) of the 
underlying deterministic RK method (4.8), .I ∈ Rs×s the identity matrix and 
.e ∈ Rs the unit vector. 

Proof Applying the SRK method (9.24) to the stochastic Dahlquist test problem 
(9.30) gives the following recurrence 

. 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩

X̂i = Xn + μ�t 
s∑

j=1 

aij X̂j + σ�Wn+1Xn, i  = 1, 2, . . .  , s,  

Xn+1 = Xn + μ�t 
s∑

i=1 

biX̂i + σ�Wn+1Xn, 

that we can recast in the compact form 

. 

⎧ 
⎨ 

⎩

X̂ = Xne + ηAX̂ + ζ ξnXne, 

Xn+1 = Xn + ηb TX̂ + ζ ξnXn, 
(9.37) 

with .X̂ = [X̂1,  . . . , X̂s]T , .η = μ�t and with .ζ = σ
√

�t , being . ξn a standard 
normal random variable. Manipulating the first equation in (9.37) yields 

.X̂ = (I − ηA)−1e(1 + ζ ξn)Xn 
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and inserting this expression of . ̂X into the second equation in (9.37) leads to 

. 

Xn+1 = Xn + ηb 
T[

(I − ηA)−1e (1 + ζ ξn)Xn

] + ζ ξnXn 

= (
1 + ηb 

T[
(I − ηA)−1e(1 + ζ ξn)

] + ζ ξn

)
Xn 

= [
1 + ηb 

T 
(I − ηA)−1e + ηb 

T 
(I − ηA)−1eζ ξn + ζ ξn

]
Xn 

= [
1 + ηb 

T 
(I − ηA)−1e + ζ ξn(1 + ηb 

T 
(I − ηA)−1e)

]
Xn 

= (1 + ζ ξn)Rd(η)Xn. 

Since .|1 + ζ ξn|2 = 1 + |ζ |2ξ2 
n , side-by-side squaring and passing to expectation 

yields 

. E
[|X+1|2

] = E
[
1 + |ζ |2ξ2 

n

]|Rd(η)|2E[|Xn|2
] = (

1 + |ζ |2)|Rd(η)|2E[|Xn|2
]
. 

The definition of .Rs(η, ζ ) gives the thesis. ��

Definition 9.7 The function .Rs(η, ζ ) defined in (9.36) is called mean-square 
stability function of the SRK method (9.24). 

Definition 9.8 A SRK method (9.24) is mean-square stable for a fixed couple 
.(η, ζ ) ∈ C2, if  

.Rs(η, ζ ) < 1, (9.38) 

with .Rs(η, ζ ) defined in (9.36). Moreover, the set 

. SSRK = {(η, ζ ) ∈ C2 : Rs(η, ζ ) < 1} 

is called mean-square stability region of the SRK method (9.24). 
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Definition 9.9 A SRK method (9.24) is said to be mean-square A-stable if 

. SSRK ⊇ SSDE, 

being .SSDE the region of mean-square stability (9.31) of the stochastic 
Dahlquist test problem (9.30). 

We can appreciate from Theorem 9.6 that the stability function of a SRK method 
depends on the stability function of the underlying deterministic RK method. So, 
there is a deep link between the stability properties of SRK methods (9.24) arising 
as perturbation of deterministic RK methods (4.8) and the latter. It is then natural to 
ask if the properties of the underlying deterministic RK method are inherited by the 
stochastic perturbation leading to (9.24). This aspect is clarified by the following 
result [89]. 

Theorem 9.7 For a given A-stable deterministic Runge-Kutta method (4.8), 
the corresponding stochastic perturbation (9.24) is mean-square A-stable if 
and only if 

.|Rd(η)|2 ≤ 1 

1 − 2Re(η) 
, for any η ∈ C−. (9.39) 

Proof For a SRK method (9.24), whose underlying deterministic RK method (4.8) 
is A-stable, taking into account the definition of stability function as in (9.31), we  
obtain from the condition (9.38) that .

(
1 + |ζ |2)|Rd(η)|2 < 1, i.e., 

.|ζ |2 < 
1 

|Rd(η)|2 − 1. (9.40) 

We know from Definition 9.9 that the mean-square A-stability of the SRK method 
(9.24) is equivalent to the condition .Rs(η, ζ ) < 1, for any . η, .ζ ∈ SSDE. By definition 
itself, . η, .ζ ∈ SSDE if and only if 

.|ζ |2 ≤ −2Re(η). (9.41) 

Hence, taking into account (9.40) and (9.41), we have  

. 
1 

|Rd(η)|2 − 1 ≤ −2Re(η), 
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i.e., 

. |Rd(η)|2 ≤ 
1 

1 − 2Re(η) 
, 

concluding the proof. ��

Example 9.9 The SRK method (9.24) having the one-stage Gaussian method 
(4.23) as underlying deterministic RK method does not inherit the A-stability 
property. Indeed, we recall that 

. Rd(η) = 
1 + 1 

2η 
1 − 1 

2η 
, 

then (9.39) holds true only for .Re(η) ≥ − 1 
4 |η|2. 

Both the SRK methods (9.24) having the one-stage Radau IA and IIA 
methods (introduced in Sect. 4.4.2) as underlying RK ones are mean-square 
A-stable. Indeed, both deterministic methods share the same stability function 

. Rd(η) = 
1 

1 − η 
. 

Then, condition (9.39) is equivalent to 

. 
1 

|1 − η|2 ≤ 
1 

1 − 2Re(η) 
, 

that holds true for any .η ∈ C, as required by Theorem 9.7. 

9.7 Principles of Stochastic Geometric Numerical Integration 

Chapter 8 has fully been dedicated to deterministic geometric numerical integration, 
with the aim to understand how to maintain characteristic features of the continuous 
problem along the numerical dynamics. Even if stochastic dynamics is governed by 
random fluctuations, this chapter is devoted to provide examples of conservation 
issues along the approximate solutions of SDEs. Indeed, there is a principle of 
geometric numerical integration also for SDEs, briefly summarized in the following 
diagram. 
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Typical situations where invariant laws are characteristic properties of SDEs 
arise, for instance, in stochastic oscillators [51, 54, 88, 91, 93, 120, 127, 129, 130, 
135, 142, 169, 175, 313, 330, 341], in nonlinear SDEs with one-sided Lipschitz drift 
leading to mean-square contractive dynamics [38, 117–119, 212, 215], in stochastic 
Hamiltonian problems [11, 12, 21, 47, 48, 85, 121, 136, 143, 217, 218, 247, 256, 270– 
273, 333]. 

This section aims to provide selected examples of conservation of invariant laws 
of SDEs along their discretized dynamics. 

9.7.1 Nonlinear Stability Analysis: Exponential Mean-Square 
Contractivity 

Let us first present the following result, providing a stability inequality for nonlinear 
Itô SDEs (9.7) satisfying proper regularity assumptions. The proof is here omitted, 
but the interested reader can find it in [212]. 

Theorem 9.8 For a given nonlinear SDE (9.7), let us assume the following 
properties for the drift f and the diffusion g: 

(i) .f, g ∈ C1(Rd); 
(ii) f satisfies a one-sided Lipschitz condition, i.e., there exists .μf ∈R such 

that 

. < x − y, f (x) − f (y) >≤ μf ‖x − y‖2, ∀x, y ∈ R
d;

(iii) g is a globally Lipschitz function, i.e., there exists .Lg > 0 such that 

. ‖g(x) − g(y)‖2 ≤ Lg‖x − y‖2, ∀x, y ∈ R
d .

(continued)
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Theorem 9.8 (continued) 
Then, any two solutions .X(t) and .Y (t) of (9.7), computed with respect to 
distinct initial values . X0 and . Y0 such that .E

[‖X0‖2
]
< ∞ and .E

[‖Y0‖2
]
< ∞, 

satisfy 

.E
[‖X(t) − Y (t)‖2] ≤ E

[‖X0 − Y0‖2]eαt , (9.42) 

where .α = 2μf + Lg . 

Equation (9.42) provides a measure of the gap between two solutions of the same 
SDE, computed in mean-square. Clearly, if the parameter . α, appearing in (9.42) as 
rate of the exponential, is negative, then we can infer an exponential decay of the 
mean-square deviation between two solutions of a given SDE. Correspondingly, we 
give the following definition. 

Definition 9.10 A nonlinear SDE (9.7) satisfying the inequality (9.42) with 
.α < 0 is said to generate exponential mean-square contractive solutions. 

Let us observe that, when the diffusion g in (9.7) is identically equal to 0, 
Definition 9.10 recovers the classical contractivity condition .μf < 0 characterizing 
the deterministic case, according to the theory developed in Sects. 1.3 and 8.2. 

We now aim to analyze under which conditions stochastic .ϑ-methods (9.20) 
and stochastic Runge-Kutta methods (9.24) are able to reproduce the exponential 
mean-square contractive character given by Definition 9.10 along their numerical 
dynamics. The presentation relies on the results given in [117] for stochastic 
.ϑ-methods and [118] for stochastic Runge-Kutta methods. 

9.7.2 Mean-Square Contractivity of Stochastic ϑ-Methods 

Let us start with a result reproducing the inequality (9.42) along the numerical 
dynamics of stochastic .ϑ-Maruyama methods. This result requires a technical 
lemma, whose proof is here omitted, but the reader can find it in [215].
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Lemma 9.1 Under the assumptions (i)–(iii) given in Theorem 9.8, for any 
positive h and any .b1, b2 ∈ R

d , there exist unique . a1, .a2 ∈ R
d , solutions of 

the implicit equations 

. ai − hf (ai) = bi, i = 1, 2,

satisfying the inequality 

. (1 − 2hμf )‖a1 − a2‖2 ≤ ‖b1 − b2‖2.

Theorem 9.9 Under the assumptions (i)–(iii) given in Theorem 9.8, any 
two numerical solutions .Xn and . Yn, .n ≥ 0, computed by applying the .ϑ-
Maruyama method (9.20) to (9.7) with distinct initial values . X0 and . Y0 such 
that .E

[|X0|2
]

< ∞ and .E
[|Y0|2

]
< ∞, satisfy the inequality 

.E

[
‖Xn − Yn‖2

]
≤ E

[
‖X0 − Y0‖2

]
eν(ϑ,�t)tn , (9.43) 

where 

.ν(ϑ,�t) = 1

�t
ln β(ϑ,�t) (9.44) 

and 

.β(ϑ,�t) = 1 + α + (1 − ϑ)2Mf �t

1 − 2ϑμf �t
�t, (9.45) 

with 

.Mf = sup
t∈[0,T ]

E

[
‖f ′(X(t))‖2

]
. (9.46) 

Proof Applying (9.20) to (9.7) for the approximate computation of .X(t) and . Y (t)

reads 

.

Xn+1 = Xn + (1 − ϑ)�tf (Xn) + ϑ�tf (Xn+1) + g(Xn)�Wn+1,

Yn+1 = Yn + (1 − ϑ)�tf (Yn) + ϑ�tf (Yn+1) + g(Yn)�Wn+1.
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Handling these implicit relations by means of Lemma 9.1 yields 

. (1 − 2μf ϑ�t)‖Xn+1 − Yn+1‖2 ≤ ‖Xn − Yn + (1 − ϑ)�t�fn + �gn�Wn+1‖2,

with .�fn = f (Xn) − f (Yn) and .�gn = g(Xn) − g(Yn). 
Last inequality is then equivalent to 

. (1 − 2μf ϑ�t)‖Xn+1 − Yn+1‖2 ≤ ‖Xn − Yn‖2 + (1 − ϑ)2�t2‖�fn‖2

+‖�gn�Wn+1‖2

+2(1 − ϑ)�t 〈Xn − Yn,�fn〉
+2 〈Xn − Yn,�gn�Wn+1〉

+2(1 − ϑ)�t 〈�fn,�gn�Wn+1〉 .

We pass to side-by-side expectation taking into account that

• .�gn and .�Wn+1 are independent random variables. Then, assuming that we are 
using a matrix norm compatible with the vector norm, we have 

. E

[
‖�gn�Wn+1‖2

]
≤ E

[
‖�gn‖2

]
E

[
‖�Wn+1‖2

]

and by the Lipschitz continuity of g we obtain 

.E

[
‖�gn�Wn+1‖2

]
≤ Lg�t E

[
‖Xn − Yn‖2

]
;

• using the one-sided Lipschitz property satisfied by f , we have  

.E [〈Xn − Yn,�fn〉] ≤ μf E

[
‖Xn − Yn‖2

]
;

• the expectation of .Wn+1 is zero;
• due to (9.46) and the regularity assumptions on f , we have  

. E

[
‖�fn‖2

]
≤ Mf E

[
‖Xn − Yn‖2

]
.

Then, we obtain 

. E
[‖Xn+1 − Yn+1‖2] ≤ β(ϑ,�t) E

[‖Xn − Yn‖2],

with .β(ϑ,�t) defined in (9.45). By recursion, 

.E
[‖Xn − Yn‖2] ≤ β(ϑ,�t)n E

[‖X0 − Y0‖2].
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Using (9.44), we have  

. β(ϑ,�t) = e�t ν(ϑ,�t),

leading to 

. E

[
‖Xn − Yn‖2

]
≤ en�t ν(ϑ,�t)

E

[
‖X0 − Y0‖2

]
= eν(ϑ,�t)tnE

[
‖X0 − Y0‖2

]
,

giving the thesis. ��
According to Theorem 9.9, stochastic .ϑ-Maruyama methods (9.20), applied to 

a nonlinear SDE (9.7) whose solutions are mean-square contractive with parameter 
.α = 2μf + Lg , are capable of reproducing the exponential mean-square inequality 
(9.42) with parameter .ν(ϑ,�t) given by (9.44). Let us compute the gap between the 
exact rate . α and its numerical counterpart .ν(ϑ,�t) through the following result. 

Theorem 9.10 Under the same assumptions of Theorem 9.9, for any fixed 
value of .ϑ ∈ [0, 1], we have 

. |ν(ϑ,�t) − α| = O(�t).

Proof Expanding .ν(ϑ,�t) in (9.44) in power series of . �t yields 

. ν(ϑ,�t) = α +
(

Mf (ϑ − 1)2 − α2

2
+ 2αμf ϑ

)
�t + O(�t2),

leading to the thesis. ��
Theorem 9.10 ensures that the numerical exponent .ν(ϑ,�t) approaches the exact 

parameter . α, when .�t tends to 0, as desirable. Let us also observe that, for the 
expansion of .ν(ϑ,�t) in power series of . �t , we have used the symbolic framework 
of Matlab as follows: 

>> syms x alf M mu th 
>> f=log(1+(alf+(1-th)^2*M*x)*x/(1-2*th*mu*x))/x; 
>> T=taylor(f,x); 
>> coeffs(T,x) 

A similar result can be given for .ϑ-Milstein methods as follows. The proof, 
obtained by using similar arguments to those given for Theorem 9.9, is here omitted, 
but the reader can find it in [117].
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Theorem 9.11 Under the assumptions (i)–(iii) given in Theorem 9.8, any 
two numerical solutions .Xn and . Yn, .n ≥ 0, computed by applying the 
.ϑ-Milstein method 

. 

Xn+1 = Xn + (1 − ϑ)�tf (tn,Xn) + ϑ�tf (tn+1, Xn+1)

+
m∑

j=1

gj (tn,Xn)�W
j

n+1 + 1

2

m∑

j=1

Ljgj (tn,Xn)(�W
j

n+1

2 − �t)

+ 1

2

m∑

j1,j2=1
j1 �=j2

Lj1gj2(tn,Xn)�W
j1
n+1�W

j2
n+1

(9.47) 

to (9.7), with distinct initial values . X0 and . Y0 such that .E
[‖X0‖2

]
< ∞ and 

.E
[‖Y0‖2

]
< ∞, satisfy the inequality 

.E
[‖Xn − Yn‖2] ≤ E

[‖X0 − Y0‖2]eε(ϑ,�t)tn , (9.48) 

where 

. ε(ϑ,�t) = 1

�t
ln γ (ϑ,�t)

and 

. γ (ϑ,�t) = β(ϑ,�t) + 3M̃�t2

4(1 − 2ϑμf �t)
,

being .M̃ = max{M̃1, M̃2}, with .M̃1 defined as 

.M̃1 = m · max
j=1,...,m

sup
[0,T ]

E
[‖�Ljg

j
n‖2

]

E
[‖Xn − Yn‖2

] (9.49) 

and .M̃2 defined as 

.M̃2 = m(m − 1) · max
j1,j2=1,...,m

j1 �=j2

sup
[0,T ]

E
[‖�Lj1g

j2
n ‖2

]

E
[‖Xn − Yn‖2

] .
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With analogous arguments as those provided to prove Theorem 9.10, we can 
demonstrate that the following results holds true [117]. 

Theorem 9.12 Under the same assumptions of Theorem 9.11, for any fixed 
value of .ϑ ∈ [0, 1], we have 

. |ε(ϑ,�t) − α| = O(�t).

To summarize what we have obtained so far, we know that the dynamics 
of a nonlinear SDE satisfying the assumptions (i)–(iii) of Theorem 9.8 is well 
described by the exponential mean-square inequality (9.42). This inequality can 
also be reproduced along the numerical dynamics of stochastic .ϑ-Maruyama and 
.ϑ-Milstein methods, as proved in Theorems 9.9 and 9.11. 

According to Definition 9.10, if the parameter . α in (9.42) is negative, then 
the problem generates mean-square contractive solutions. Clearly, transferring 
this property also to the numerical solutions computed by .ϑ-Maruyama and 
.ϑ-Milstein methods is equivalent to respectively impose .ν(ϑ,�t) < 0 in (9.43) 
and .ε(ϑ,�t)< 0 in (9.48). Fulfilling these two conditions requires imposing proper 
stepsize restrictions, according to the following definitions. 

Definition 9.11 Consider a nonlinear stochastic differential equation (9.7) 
satisfying assumptions (i)–(iii) given in Theorem 9.8 and let .Xn and . Yn, 
.n ≥ 0, be two numerical solutions of (9.7) computed by the stochastic 
.ϑ-methods (9.20) or (9.47). Then, the applied method is said to generate 
mean-square contractive numerical solutions in a region .R ⊆ R

+ if, for a 
fixed .ϑ ∈ [0, 1], 

. ν(ϑ,�t) < 0, ∀�t ∈ R,

for (9.20), being .ν(ϑ,�t) the parameter in (9.43), or  

. ε(ϑ,�t) < 0, ∀�t ∈ R,

for (9.47), where .ε(ϑ,�t) is the parameter in (9.48).
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Definition 9.12 For a given value of . ϑ belonging to the interval [0,1], the 
corresponding stochastic .ϑ-method (9.20) or (9.47) is unconditionally mean-
square contractive if .R = R

+. 

According to Definition 9.12, if .R=R
+, the applied method is capable of 

reproducing the exponential mean-square contractivity for every choice of the 
stepsize . �t , so without any stepsize restriction. On the other hand, mean-square 
contractivity in a region imposes a stepsize restriction depending on the amplitude 
of this region. Such regions have been computed in [117] for both .ϑ-Maruyama and 
.ϑ-Milstein; we summarize here the obtained results.

• As regards .ϑ-Maruyama methods (9.20), following Definition 9.11 we have that 
mean-square contractive numerical solutions are generated if .0 < β(ϑ,�t) < 1, 
for any . �t in . R, i.e., 

.R =

⎧
⎪⎨

⎪⎩

(
0,

|α|
(1 − ϑ)2Mf

)
, ϑ < 1,

R
+, ϑ = 1.

(9.50) 

As a consequence, the implicit Euler-Maruyama method (9.22) is the only 
unconditionally mean-square contractive .ϑ-method (a similar property for the 
implicit Euler method (2.32) was true also in the deterministic case [195]);

• as regards .ϑ-Milstein methods (9.47), Definition 9.11 requires .0 < γ (ϑ,�t) < 1, 
for any .�t ∈ R, i.e., 

.R =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
0,

4|α|
4(1 − ϑ)2Mf + 3M̃

)
, ϑ < 1,

(
0,

4|α|
3M̃

)
, ϑ = 1,

(9.51) 

then no stochastic .ϑ-Milstein methods are unconditionally contractive, but all 
subject to stepsize restrictions in retaining the mean-square contractive character 
along their numerical dynamics. 

As visible from (9.50) and (9.51), the computation of the regions of mean-
square contractivity . R relies on the knowledge of the Lipschitz constant . Lg to the 
diffusion of Eq. (9.7), the one-sided Lipschitz constant .μf of its drift, the constants 
M and . M̃ defined by (9.46) and (9.49), respectively. In [117], an estimation strategy 
based on global optimization arguments [346] has been proposed and here briefly 
summarized for the estimation of the Lipschitz constant . Lg; the methodologies to 
estimate the other constants are rather similar and the reader can find them in [117].
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• Step 1. We perform M paths of the .ϑ-methods (9.20) or (9.47) and denote by . X i,j 
n 

the i-th component of the j -th realization of the solution . Xn, .i = 1, 2, . . .  ,  d, 
.j = 1, 2, . . .  ,M . Then, we compute 

.ai = min 
j=1,...,M 

min 
tn∈I�t 

X i,j 
n , bi = max 

j=1,...,M 
max 

tn∈I�t 
X i,j 

n , i  = 1, 2, . . . , d.

• Step 2. We generate Q couples of vectors 

. xk =
[
x1 
k , x2 

k ,  . . . ,  xd 
k

]T 
, yk =

[
y1 
k , y2 

k ,  . . . ,  yd 
k

]T 
, 

with .k = 1, 2, . . . Q, such that .(xi 
k, y

i 
k) is uniformly distributed in . 

[
ai, bi

] ×[
ai, bi

]
, .i = 1, 2, . . .  , d.

• Step 3. We compute 

.sk = 
|g(xk) − g(yk)|2 

|xk − yk|2 , k  = 1, 2, . . .  ,Q.

• Step 4. We assume as estimate of . Lg the value of .max{s1, . . . , sQ}. 

Example 9.10 Let us consider the stochastic Ginzburg-Landau model (9.10), 
with .β = −4, .γ = 1 and .δ = 1. It is possible to prove that this problem 
satisfies the assumptions (i)–(iii) of Theorem 9.8, see [38, 117, 212, 222]. In 
particular, the drift is one-sided Lipschitz with .μf = −4 and the diffusion is 
globally Lipschitz with .Lg = 1. Then, since .α = 2μf + Lg = −  7 < 0, the  
problem generates exponentially mean-square contractive solutions, accord-
ing to Definition 9.10. The constant M in (9.46) and . M̃ in (9.49) have also 
been estimated (see [117]) and their computed values are respectively equal 
to 16 and 1. 

We first consider the stochastic trapezoidal method (9.21), i.e., the .ϑ-
Maruyama method (9.20) with .ϑ = 1/2. Its mean-square stability region 
(9.50) is then given by the interval .R = [0, 7 

4 ], giving the stepsize restriction 
required to reproduce the exponential mean-square contractivity also along 
the numerical solution. This behavior is confirmed in Fig. 9.9, where the time-
evolution of the mean-square deviation .E

[|Xn − Yn|2
]

in logarithmic scale is 
depicted for various values of . �t . It is visible that, the more .�t decreases, 
the more the numerical slope .ν( 1 

2 ,�t)  in (9.43) tends to the exact slope 
. α in (9.42). For values of .�t > 7/4, the mean-square deviation does not 
exponentially decay. 

We finally apply the stochastic implicit Euler-Maruyama method (9.22), 
i.e., the stochastic .ϑ-Maruyama method (9.20) with .ϑ = 1. As previously 

(continued)
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Example 9.10 (continued) 
observed, this is an unconditionally mean-square contractive method, accord-
ing to Definition 9.11. The graphs shown in Fig. 9.9 confirms this property of 
the method: we can indeed observe that also for .�t = 2.3 the mean-square 
deviation of . Xn and . Yn decays exponentially. Clearly, the more . �t decreases, 
the more the numerical slope gets closer and closer to the exact one. 

Fig. 9.9 Mean-square 
deviations over 2000 paths of 
the numerical solutions 
. Xnand . Yn to problem (9.10) 
with initial values . X0 = 1 
and .Y0 = 0, computed by the 
stochastic trapezoidal method 
(9.21) (top) and the implicit 
Euler-Maruyama method 
(9.22) (bottom). The y-axes is 
displayed in the logarithmic 
scale 
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9.7.3 Nonlinear Stability of Stochastic Runge-Kutta Methods 

Let us now move to the analysis of stochastic Runge-Kutta methods applied to 
nonlinear SDEs (9.7), in order to investigate the mean-square contractive properties 
they are eventually able to maintain along the numerical dynamics, following the 
results provided in [118]. In the following theorem we aim to understand if the 
stochastic perturbation of an algebraically stable RK method (4.8) provides a good 
candidate to compute mean-square contractive numerical solutions. The proof is 
here given for a single Wiener process (.m = 1) and the interested reader can find the 
general proof in [118]. 

Theorem 9.13 Let us consider a nonlinear SDE (9.7) satisfying assumptions 
(i)–(iii) of Theorem 9.8 and two distinct initial values .X0 and . Y0, with 
.E
[‖X0‖2

]
< ∞ and .E

[‖Y0‖2
]

< ∞, leading to two solutions of (9.7), 
denoted as .X(t) and .Y (t), respectively. For a given SRK method (9.24), aris-
ing from the stochastic perturbation of an algebraically-stable deterministic 
RK method (4.8), if the matrix 

. N = Q� + �
T
Q − qq

T
,

with .Q = diag(q), is symmetric positive semi-definite and the equality 

. B� + ATQ = bqT

is satisfied, then the approximations of .X(t) and .Y (t) computed by (9.24) 
satisfy the following inequality 

.E
[‖Xn − Yn‖2] ≤ E

[‖Xn−1 − Yn−1‖2] + φn(h), (9.52) 

where 

.φn(�t) = 2
s∑

i=1

qiE

[
�Wn

〈
X̂

[n]
i − Ŷ

[n]
i , g(X̂

[n]
i ) − g(Ŷ

[n]
i )

〉]
. (9.53) 

Proof By introducing the auxiliary notation .Zn = Xn − Yn, .Ẑ
[n]
i = X̂

[n]
i − Ŷ

[n]
i , 

.�f
[n]
i = f (X̂

[n]
i )− f (Ŷ

[n]
i ) and .�g

[n]
i = g(X̂

[n]
i ) − g(Ŷ

[n]
i ), SRK methods (9.24) 

read as follows: 

.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Zn = Zn−1 + �t

s∑

i=1

bi�f
[n]
i + �Wn

s∑

i=1

qi�g
[n]
i ,

Ẑ
[n]
i = Zn−1 + �t

s∑

j=1

aij�f
[n]
j + �Wn

s∑

j=1

γij�g
[n]
j , i = 1, ..., s.

(9.54)
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Passing to the norm and squaring side-by-side the first relation in (9.54), we get 

. 

‖Zn‖2 = ‖Zn−1‖2 + �t2
s∑

i,j=1

bibj

〈
�f

n]
i , �f

[n]
j

〉 + �W 2
n

s∑

i,j=1

qiqj

〈
�g

n]
i , �g

[n]
j

〉

+ 2�t

s∑

i=1

bi

〈
Zn−1,�f

[n]
i

〉 + 2�Wn

s∑

i=1

qi

〈
Zn−1,�g

[n]
i

〉

+ 2�t�Wn

s∑

i,j=1

biqj

〈
�f

[n]
i , �g

[n]
j

〉
.

We observe that 

. 

s∑

i=1

bi

〈
Zn−1,�f

[n]
i

〉

=
s∑

i=1

bi

〈

Ẑ
[n]
i − �t

s∑

j=1

aij�f
[n]
j − �Wn

s∑

j=1

γij�g
[n]
j ,�f

[n]
i

〉

=
s∑

i=1

bi

〈
Ẑ

[n]
i , �f

[n]
i

〉
− �t

s∑

i,j=1

biaij

〈
�f

[n]
j ,�f

[n]
i

〉

−�Wn

s∑

i,j=1

biγij

〈
�g

[n]
j ,�f

[n]
i

〉
.

Due to the hypothesis (ii) of Theorem 9.8, the algebraic stability of the underlying 
deterministic RK method and the assumption . α < 0, we have  

. 

s∑

i=1

bi

〈
Ẑ[n]

n ,�f
[n]
i

〉 ≤ 0

and, as a consequence, 

.

s∑

i=1

bi

〈
Zn−1,�f

[n]
i

〉

≤ −�t

s∑

i,j=1

biaij

〈
�f

[n]
j ,�f

[n]
i

〉 − �Wn

s∑

i,j=1

biγij

〈
�g

[n]
j ,�f

[n]
i

〉
.
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Thus we gain 

. 

‖Zn‖2 ≤ ‖Zn−1‖2 − �t2
s∑

i,j=1

mij

〈
�f

n]
i , �f

[n]
j

〉 + �W 2
n

s∑

i,j=1

qiqj

〈
�g

n]
i , �g

[n]
j

〉

+ 2�Wn

s∑

i=1

qi

〈
Zn−1,�g

[n]
i

〉 + 2�t�Wn

s∑

i,j=1

(biqj − biγij )
〈
�f

[n]
i , �g

[n]
j

〉
.

Since M is a positive semi-definite matrix, we have 

. 

s∑

i,j=1

mij

〈
�f

n]
i , �f

[n]
j

〉 ≥ 0

and, finally, 

. 

‖Zn‖2 ≤ ‖Zn−1‖2 + �W 2
n

s∑

i,j=1

qiqj

〈
�g

n]
i , �g

[n]
j

〉 + 2�Wn

s∑

i=1

qi

〈
Zn−1,�g

[n]
i

〉

+ 2�t�Wn

s∑

i,j=1

(biqj − biγij )
〈
�f

[n]
i , �g

[n]
j

〉
.

Let us recast the third summand of the right-hand side of last inequality using the 
second relation in (9.54), as follows: 

.2�Wn

s∑

i=1

qi

〈
Zn−1,�g

[n]
i

〉 = 2�Wn

s∑

i=1

qi

〈
Z

[n]
i , �g

[n]
i

〉

−2�t�Wn

s∑

i,j=1

qiaij

〈
�f

[n]
j ,�g

[n]
i

〉

−2�W 2
n

s∑

i,j=1

qiγij

〈
�g

[n]
i , �g

[n]
j

〉
.
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As a consequence, 

. 

‖Zn‖2 ≤ ‖Zn−1‖2 −
s∑

i,j=1

nij

〈
�g

[n]
i , �g

[n]
j

〉 + 2�Wn

s∑

i=1

qi

〈
Ẑ

[n]
i , �g

[n]
i

〉

+ 2�t�Wn

s∑

i,j=1

(biqj − biγij − qiaij )
〈
�f

[n]
i , �g

[n]
j

〉
.

According to the hypothesis, we have 

. 

s∑

i,j=1

nij

〈
�g

[n]
i , �g

[n]
j

〉 ≥ 0

and 

. 

s∑

i,j=1

(biqj − biγij − qiaij )
〈
�f

[n]
i , �g

[n]
j

〉 = 0.

Therefore, we end up with 

. ‖Zn‖2 ≤ ‖Zn−1‖2 + 2�Wn

s∑

i=1

qi

〈
Ẑ

[n]
i , �g

[n]
i

〉

and, passing to side-by-side expectation, it leads to the thesis. ��
We first note that inequality (9.52) is referred to a single step of the numerical 

method, then no exponential terms are present. Moreover, according to Theo-
rem 9.13, the mean-square contractive behavior of SRK methods depends on the 
magnitude of a spurious term .φn(�t) that might affect the conservative character. 
So, it is worth investigating this issue, by means of the following results proving 
that the spurious term is negligible for sufficiently small values of .�t and on the 
long-term, so for sufficiently large time windows. The proofs are rather technical 
and here omitted, but the reader can find them in [118]. 

Theorem 9.14 Under the assumptions (i)–(iii) of Theorem 9.8, the spurious 
term (9.53) satisfies the limit 

. lim
�t→0

max
n=0,1,...,L

φn(�t) = 0, (9.55) 

with reference to the grid (9.17) and, for any fixed .�t > 0, 

. lim
n→∞ φn(�t) = 0. (9.56)
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Example 9.11 Let us consider the stochastic Ginzburg-Landau model (9.10), 
with .β = −4, .γ = 1 and .δ = 1, as in Example 9.10. We now address 
our attention to the application of selected SRK methods (9.24) arising as 
stochastic perturbation of algebraically stable RK methods, namely:

• the Gaussian RK method (4.24) depending on one stage, i.e., the midpoint 
method;

• the two-stage Gaussian RK method with two stages (4.25). 

The easy check that the corresponding SRK methods fulfills the conditions of 
Theorem 9.13 is left to the reader. 

Figure 9.10 provides the comparison of these two methods with the 
Euler-Maruyama method (9.18) and the stochastic trapezoidal method (9.21). 
The numerical evidence confirms the numerical preservation of the mean-
square contractive character characterizing the dynamics of (9.10) for SRK 
methods having the one-stage and two-stage Gaussian methods as underlying 
RK methods. The superiority of the two-stage Gaussian SRK method with 
respect to the other ones is visible. The long-term theoretical behavior of the 
function .φn(�t) in (9.53) is also visible, since this function is monotonically 
decreasing to 0, until it reaches a plateau, due to machine precision. Moreover, 
Fig. 9.11 shows that, for decreasing values of . �t , taking the one-stage 
Gaussian SRK method as reference, the rate of exponential decay visible in 
the experiments gets closer and closer to the exact one. 

9.7.4 A Glance to the Numerics for Stochastic Hamiltonian 
Problems 

As described in Chap. 8, we have realized that Hamiltonian problems have certainly 
inspired deterministic geometric numerical integration. In this section we aim 
to briefly provide some results regarding the geometric numerical integration of 
stochastic Hamiltonian problems, introduced in Example 9.4. 

As visible in Eq. (9.14), in the case of Itô-Hamiltonian problems (9.11) the 
Hamiltonian function is not preserved along the dynamics, as it happens for 
deterministic Hamiltonian problems. Moreover, its expectation is not maintained as 
well, but it grows linearly in time, according to the trace equation (9.14). It is natural 
to ask if this property is automatically preserved along the numerical dynamics 
generated by any numerical method for SDEs. A first experimental answer was 
given in [48], where the authors proved that, for quartic Hamiltonians, the stochastic 
perturbation of symplectic RK methods does not preserve the trace law and the same 
happens for some energy-preserving schemes. A final theoretical negative answer
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Fig. 9.10 Graphs in the semi-logarithmic scale of the mean-square deviations over 1000 paths 
of the numerical solutions to the stochastic Ginzburg-Landau problem (9.10) with initial values 
.X0 = 1 and .Y0 = 0, computed by the SRK methods (9.24) obtained as stochastic perturbation of 
two algebraically stable methods, i.e., Gaussian RK methods (4.24) and (4.25). These methods are 
compared with Euler-Maruyama method (9.18) and the stochastic trapezoidal method (9.21) 

Fig. 9.11 Graphs in the semi-logarithmic scale of the mean-square deviations over 1000 paths 
of the numerical solutions to the stochastic Ginzburg-Landau problem (9.10) with initial values 
.X0 = 1 and .Y0 = 0, computed by the SRK method (9.24) obtained as stochastic perturbation of 
the one-stage Gaussian RK methods (4.24) for .�t = 20/N , in correspondence of different values 
of N . The exact rate .e−7t of decay of the mean-square deviation is also reported for comparison
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has been provided in [136], where the authors proved what follows. For simplicity, 
let us consider the case of a single Wiener process 

. 
dq(t) = p(t) dt

dp(t) = −V ′(q(t)) dt + σ dW(t).

Expanding the solutions of (9.11) in power series of . σ , it is possible to recognize 
the presence of a secular term .σ

√
t already in the linear part of the .σ -expansions of 

p and q. Clearly, this term is more visible on long times and for large values of the 
stochastic term . σ . 

Let us see the destroying effects of the secular term in action, through the 
following example. 

Example 9.12 (Stochastic Linear Oscillators) Let us consider a scalar 
damped linear stochastic oscillator, describing the motion of a particle driven 
by deterministic and stochastic forcing terms. The Itô SDE modelling this 
physical problem, given in [51, 54], has the form 

.dZ(t) = QZ(t)dt + σqdW(t), t ∈ [0, T ], (9.57) 

where 

. Z(t) =
[
X(t)

V (t)

]

is the vector collecting the position and velocity of the particle at time t . The  
matrix Q and the vector q are defined by 

. Q =
[

0 1

−g −η

]

, q =
[

0

1

]

,

being g the amplitude of the deterministic forcing term and . η the value of the 
damping. Moreover, the parameter . σ in (9.57) provides the amplitude of the 
stochastic forcing term, driven by the scalar Weiner process .W(t). 

The long-term properties of (9.57), as highlighted, for instance, in [51, 54, 
169], can be inferred through the analysis of the correlation matrix 

.� =
[

σ 2
X ρ

ρ σ 2
V

]

= σ 2

2η

⎡

⎣
g−1 0

0 1

⎤

⎦ , (9.58) 

(continued)
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Example 9.12 (continued) 
collecting the long-term expectations 

. σ 2
X = lim

t→∞E[X(t)2], σ 2
V = lim

t→∞E[V (t)2], ρ = lim
t→∞E[X(t)V (t)] = 0.

We now aim to analyze the long-time features of the .ϑ-Maruyama methods 
(9.20) in retaining the correlation matrix (9.58) by computing the gap with 
respect to the numerical correlation matrix 

.̃�(ϑ,�t) =
[

σ̃ 2
X ρ̃

ρ̃ σ̃ 2
V

]

, (9.59) 

with 

. ̃σ 2
X = lim

tn→∞E[X2
n], σ̃ 2

V = lim
tn→∞E[V 2

n ], ρ̃ = lim
tn→∞E[XnVn],

where .{Xn}Ln=0 and .{Vn}Ln=0 are the numerical solutions of (9.57) computed 
by (9.20), with reference to the discretized domain (9.17). 

In [88], the authors have provided the following properties:

• the numerical correlation matrix (9.59) corresponding to the .ϑ-Maruyama 
method (9.20) assumes the form 

. ̃�(ϑ,�t) = σ 2

βg

⎡

⎣
g(2ϑ − 1)2�t2 + η(2ϑ − 1)�t + 2 g(2ϑ − 1)�t

g(2ϑ − 1)�t 2g

⎤

⎦ ,

with 

.β = g2(2ϑ − 1)3�t3 + 3ηg(2ϑ − 1)2�t2 + 2(η2 + 2g)(2ϑ − 1)�t + 4η;

• for any value of .ϑ ∈ [0, 1] we have that 

. lim
�t→0

‖�̃(ϑ,�t) − �‖∞ = 0.

Moreover, the stochastic trapezoidal method (9.21) exactly preserves the 
correlation matrix (9.58);

• for any value of .ϑ ∈ [0, 1] we also have that 

. lim
η→∞ ‖�̃(ϑ,�t) − �‖∞ = 0.

(continued)
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Example 9.12 (continued) 
However, when the stochastic term . σ becomes more dominant in the right-

hand side of (9.57), we have that 

. lim
σ→∞ ‖�̃(ϑ,�t) − �‖∞ �= 0.

In order to give an idea of the gap between . � and .̃�(ϑ,�t), let us refer to 
Table 9.3, reporting the value of .‖� − �̃(ϑ,�t)‖∞ for fixed values of . ϑ , . �t , 
. η, g and for varying . σ . We can observe that, the more . σ grows, the more 
the deviation between . � and .̃�(ϑ,�t) becomes larger. In other terms, if the 
stochastic term becomes dominant, .ϑ-methods may not preserve . � accurately, 
unless a small enough stepsize is chosen. 

An effective tool is given by the .σ -expansion to the solution of (9.57), i.e., 
we assume as ansatz that the exact solution can be represented as a power 
series of . σ and, as a consequence, that a numerical solution can be seen as a 
truncation of this expansion up to a certain power of . σ . Such a technique is 
quite common in deterministic numerics; we refer, for instance, to [195] and 
references therein. 

To perform the .σ -expansion, we directly act on the matrix formulation 
(9.57) of the problem and assume, as ansatz, that 

. Z(t) =
∑

i≥0

Zi(t)σ
i,

where the coefficients .Zi(t) are vectors in . R2. Replacing the ansatz in (9.57) 
leads to 

. d

⎛

⎝
∑

i≥0

Zi(t)σ
i

⎞

⎠ = Q
∑

i≥0

Zi(t)σ
idt + σqdW(t).

It is now sufficient to isolate the terms up to the linear one, obtaining the 
stochastic differential equations 

. dZ0(t) = QZ0(t)dt

and 

. dZ1(t) = QZ1(t)dt + σqdW(t),

in the unknowns .Z0(t) and .Z1(t). In particular, solving the second equation 
reveals the presence in .Z1(t) of .σ

√
t , known in the literature as secular term. 

(continued)
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Example 9.12 (continued) 
Clearly, a small enough value of . σ makes the secular term less dominant in 
the long-time; on the contrary, if the stochastic part is dominant in the right-
hand side of (9.57), the secular term becomes dominant and compromises the 
accurate preservation of . �, unless a really small value of . �t is chosen. 

To confirm our analysis, we solve numerically (9.57) by the stochastic 
trapezoidal method, exactly preserving the correlation matrix (9.58). How-
ever, as visible from Table 9.4, the more . σ grows, the more the method loses 
the excellent preservation properties achieved for more moderate values of . σ . 
This is not surprising, according to the theoretical arguments given in [88] and 
briefly reported in this example. Clearly, in order to be more accurate when 
. σ is bigger, we need to balance the presence of the secular term with a small 
stepsize. 

We have understood that secular terms destroy the overall accuracy in numer-
ically retaining the properties of the continuous problem under investigation. For 
this reason, the numerics of stochastic Hamiltonian problems deserves the design 
of proper solvers, able to conserve the characteristic features of the exact dynamics, 
such as the trace law (9.14) in the case of Itô-Hamiltonian systems (9.11). 

The development of numerical methods able to preserve the trace law with 
respect to any Hamiltonian function has been provided, for instance, in [85], where 

Table 9.3 Example 9.12: deviations between . � and .̃�(ϑ,�t) for . ϑ=3/4, .η = g = 1 and 
various values of . �t and . σ

.σ .‖� − �̃(3/4, 10−1)‖∞ .‖� − �̃(3/4, 10−2))‖∞ . ‖� − �̃(3/4, 10−3))‖∞
0 0 0 0 

0.1 .4.73 · 10−4 .4.97 · 10−5 . 5.00 · 10−6

0.5 .1.18 · 10−2 .1.24 · 10−3 . 1.25 · 10−4

1 .4.73 · 10−2 .4.97 · 10−3 . 5.00 · 10−4

10 .4.73 .6.02 · 10+1 . 5.00 · 10−2

Table 9.4 Example: 9.12: 
deviations from the exact 
values of mean-squares 
positions and velocities 
computed by the stochastic 
trapezoidal method (9.21) in 
[0,100], with .η = g = 1, 
.�t = 100/212 and for various 
values of . σ . Numerical 
expectations have been 
estimated over 1000 paths 

.σ .
∣∣σ 2

X − σ̃ 2
X

∣∣ . 
∣∣σ 2

V − σ̃ 2
V

∣∣

.10−6 .1.78 · 10−14 . 1.83 · 10−15

.10−5 .2.94 · 10−12 . 2.32 · 10−12

.10−4 .7.00 · 10−11 . 4.92 · 10−11

.10−3 .4.74 · 10−09 . 1.64 · 10−08

.10−2 .1.34 · 10−06 . 6.08 · 10−07

.10−1 .5.07 · 10−05 . 2.40 · 10−04

1 .1.13 · 10−02 .3.99 · 10−02
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the authors have introduced the following drift-preserving integrator 

.

�n+1 = pn + ��Wn+1 − h

2

∫ 1

0
V ′(qn + sh�n+1)ds,

qn+1 = qn + h�n+1,

pn+1 = pn + ��Wn+1 − h

∫ 1

0
V ′(qn + sh�n+1) ds,

(9.60) 

having both strong and weak orders equal to 1, satisfying the following property, 
whose proof is here omitted, but the reader can find it in [85]. 

Theorem 9.15 For a given Itô-Hamiltonian system (9.13), if .V ∈ C1(Rd), 
the drift-preserving method (9.60) satisfies the numerical trace law 

. E [H(pn, qn)] = E [H(p(t0), q(t0))] + 1

2
Tr
(
�T�

)
tn,

for any grid point .tn ∈ I�t . 

Let us conclude this section by briefly considering also the case of Stratonovich 
Hamiltonian systems 

.

⎧
⎨

⎩

dq(t) = ∇pH(q(t), p(t)) [dt + � ◦ dW(t)] ,

dp(t) = −∇qH(q(t), p(t)) [dt + � ◦ dW(t)] .

(9.61) 

Along the exact dynamics described by this problem, both the Hamiltonian function 
and its expectation are preserved [270], due to the fact the Stratonovich calculus 
has the same chain rule of real calculus. Long-term conservation issues along the 
discretization of Stratonovich Hamiltonian systems has been covered in [121], by 
performing a weak backward error analysis. All details are here omitted (included 
the construction of modified differential equations; also see [1, 140, 321, 349] and 
references therein), but it is worth analyzing the main result of this analysis.
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Theorem 9.16 Let us consider the Stratonowich Hamiltonian system (9.61) 
and let .(qn, pn), .n = 0, 1, . . . , L, be any numerical approximation computed 
with a numerical method of weak order r , satisfying 

. E [H(qn, pn)] = H(q0, p0) + O (�tr
)
.

Then, for any .n= 1, 2, . . . , N , the expected numerical Hamiltonian 
.E [H(qn, pn)] satisfies the following estimate 

. 

E [H(qn, pn)] = H(q0, p0) + O
(
�treC�tr tn

)
+ O

(
�tr+1

)
+ O (Ctn�tr

)

+ O
(
�tr tn eC�tr tn

)
+ O

(
C
(
�tr tn

)2eC�tr tn
)

,

being C a coefficient depending on the method. Furthermore, the gap 
.E [H(qn, pn)]−H(q0, p0) remains bounded on intervals of length .O

(
�t−r

)
. 

In other terms, according to Theorem 9.16, an exponential error growth is 
visible in the discretization of Stratonowich Hamiltonian system (9.61) and the error 
remains bounded over time windows of length .O(�t−r ). Let us provide an example 
of this property. 

Example 9.13 For separable Hamiltonians 

. H(q, p) = 1

2

m∑

i=1

p2
i + V (q),

Stratonowich Hamiltonian systems (9.61) assume the form 

.

⎧
⎨

⎩

dq(t) = p(t)
(
dt + �̃T ◦ dW(t)

)
,

dp(t) = −∇qV (q(t))
(
dt + �̃T ◦ dW(t)

)
.

(9.62) 

Let us consider the double-well potential 

.V (q) = 1

4
q4 − 1

2
q2 (9.63) 

(continued)
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Example 9.13 (continued) 
and analyze the conservation property of the following stochastic perturbation 
of an energy-preserving scheme able to preserve deterministic quartic Hamil-
tonian and introduced in the deterministic setting by E. Celledoni et al. with 
.r = 1 in [81]: 

. 

qn+1 = qn + ξn+1

2
(pn + pn+1) ,

pn+1 = pn − ξn+1

(
1

6
V ′(qn) + 2

3
V ′

(
qn + qn+1

2

)
+ 1

6
V ′(qn+1)

)
,

(9.64) 

where .ξn+1 = �t + σ�Wn+1. Figure 9.12 shows the time evo-
lution of the absolute value of the Hamiltonian error given by 
.e(tn)= H(qn, pn)− H(q0, p0), for selected values of . �t , confirming the 
exponential error growth provided in Theorem 9.16 and its boundedness over 
intervals of length .O(�t−1). Indeed, halving the stepsize makes the interval 
where the error is bounded twice as bigger. Clearly, for small enough values 
of the stepsize, the error looks bounded for longer times. 

9.8 Exercises 

1. Write a software in the programming language you prefer that simulates M 
trajectories of the random variable 

. U(t,W(t)) = exp

(
t2 + 1

2
W(t)

)
, t ∈ [0, 1],

where W(t)  is a Wiener process. Compute and plot the expected value. 
Compare the computed expectation with the exact one [209] 

. E[U(t,W(t))] = exp

(
9

8
t

)
,

for increasing values of M . Comment the results. 
2. Write a software in the programming language you prefer that approximates the 

Stratonovich integral of a given function through the quadrature formula (9.6). 
3. With reference to Example 9.1, provide an experimental verification of the 

Martingale property (9.4) of Itô integral.
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Fig. 9.12 Example 9.13: pattern in semi-logarithmic scale of the Hamiltonian deviations . |e(t)| =  
|H(q(t), p(t)) − H(q0, p0)| arising from the application of (9.64) to (9.62) with double-well 
potential problem (9.63) with .σ = 0.5, .q0 = 2, .p0 = 1 and for selected values of . �t . The  
implementation has used .N = 214 Wiener points and .L = N/R  grid points, for the displayed 
values of R 

4. Inspired by Program 9.4, write a software in the programming language you 
prefer that applies Milstein method (9.19) to approximate the solution of a 
generic SDE (9.7). Using the formulation for systems of SDEs, also extend 
this code to the case of SDEs. Finally, check the strong order 1 of the method 
by using this program. 

5. Write a software in the programming language you prefer that approximates 
the solution of a generic SDE (9.7) by stochastic Runge-Kutta methods (9.24). 
Finally, fixing a specific method, estimate its strong order by using this 
program. 
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6. As explained in Sect. 9.6.3, there is a number of stochastic Runge-Kutta method 
(9.24) inheriting the property of A-stability (in mean-square) from the underly-
ing deterministic Runge-Kutta method. With reference to Example 9.9, provide 
an experimental check of the mean-square A-stability stochastic Runge-Kutta 
methods arising as stochastic perturbation of the one-stage Gaussian method 
(4.23) and the one-stage Radau IA and IIA methods (introduced in Sect. 4.4.2). 

7. Analyze the mean-square stability of ϑ-Maruyama methods (9.20), assuming 
that diffusion g is evaluated in Xn+1. 

8. Analyze the mean-square contractivity properties of stochastic ϑ-Milstein 
methods (9.23), giving a proof of Theorem 9.11. 

9. The system of SDEs (9.7) with nonlinear drift 

. f (X(t))  = −4

[
sin(X1(t)) 

sin(X2(t))

]

and linear diffusion 

. g(X(t)) = 
1 

7 

⎡ 

⎢⎢ 
⎣ 

X1(t) 
3 

2 
X2(t) 

5 

2 
X1(t) −1 

2 
X2(t) 

⎤ 

⎥⎥ 
⎦ 

provides exponential mean-square contractive solutions with rate α = Lg + 
2μf ≈ −7.5, being Lf ≈ 0.148 and μg ≈ −3.56 (see [117]). Choosing the 
initial data X0 = [1 1]T and Y0 = [0 0]T , check the preservation of mean-
square contractivity along the numerical dynamics generated by the stochastic 
trapezoidal method (9.21) and the ϑ-Maruyama method (9.20) with ϑ = 2 

3 . In  
the computation of the mean-square stability regions (9.50), assume the value 
of Mf in (9.46) is equal to 16. 

10. Choose a symplectic RK method (4.8), such as the two-stage Gaussian method 
(4.25) and construct the corresponding SRK method (9.24). Analyze its ability 
to preserve the trace law (9.14). 



Appendix A 
Summary of Test Problems 

We list here all test problems selected in this book as object of all presented 
examples (arising from the application of the given Matlab programs) in order to 
analyze the performances of the presented methods and to confirm the previously 
given theoretical analysis. This is clearly a brief list of problems and further ones 
can be found in the monographs and papers cited along this book in the proper 
sections. These problems are collected in Matlab codes, here given for the functions 
f.m, fp.m, fq.m called in the programs presented in all previous chapters. 

A.1 General ODEs 

Programs 2.1, 2.2, 3.1, 4.1, 5.1 and 7.1 contain the reference to a Matlab function 
f.m, having the following structure: 

function yp=f(problem,t,y) 
switch problem 

case ’test’ 
lambda=-2; % parameter to be chosen 
yp=lambda*y; 

case ’dissipative’ 
A=[-5/12 125/108; -3/5 -5/12]; 
yp=A*y; 

case ’prothero’ 
lambda=-1e3; % parameter to be chosen 
yp=lambda*(y-sin(t))+cos(t); 

case ’pendulum’ 
yp=[-sin(y(2));y(1)]; 

case ’henon’ 
yp=[-y(3)*(1+2*y(4));-y(3)^2+y(4)^2-y(4);y(1); 

y(2)]; 
case ’vdp’ 
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ep=1e-3; % parameter to be chosen 
z(1)=y(2); 
z(2)=((1-y(1)^2)*y(2)-y(1))/ep; 
yp=[z(1); z(2)]; 

case ’brusselator’ 
A=1; % parameter to be chosen 
B=3; % parameter to be chosen 
z(1)=A+y(1)^2*y(2)-(B+1)*y(1); 
z(2)=B*y(1)-y(1)^2*y(2); 
yp=[z(1); z(2)]; 

end 

A.2 Hamiltonian Problems 

Program 8.1 contains the reference to twoMatlab functions fp.m and fq.m, having  
the following structure: 

function pdot=fp(problem,p,q) 
switch problem 

case ’osc’ 
omega=1; % parameter to be chosen 
pdot=-omega^2*q; 

case ’pendulum’ 
pdot=-sin(q); 

case ’henon’ 
pdot=[-q(1)*(1+2*q(2)); -q(1)^2+q(2)^2-q(2)]; 

end 

function qdot=fq(problem,p,q) 
switch problem 

case ’osc’ 
omega=1; 
qdot=p; 

case ’pendulum’ 
qdot=p; 

case ’henon’ 
qdot=[p(1); p(2)]; 

end 

Program 8.2 requires a supplementary f.m Matlab function similar to that listed 
above. We finally observe that programs for the geometric numerical integration of 
Hamiltonian problems, such as Program 8.2, require the following additional Matlab 
function hamiltonian.m with the analytic expression of the Hamiltonian. 

function H=hamiltonian(problem,y) 
switch problem 

case ’harmonicOscillator’ 
omega=1; 
H=y(2)^2/2+(1/2)*y(1)^2*omega^2; 

case ’pendulum’ 
H=y(1)^2/2-cos(y(2));
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case ’henonHeiles’ 
H=0.5*(y(1)^2+y(2)^2+y(3)^2+y(4)^2)+y(3)^2*y 

(4)-(y(4)^3)/3; 
end 

A.3 Stochastic Differential Equations 

Programs 9.4 and 9.5 contain the reference to two Matlab functions f.m and g.m, 
respectively containing the analytical expression of the drift and the diffusion of the 
problem. Their coding is analogous to the aforementioned f.m Matlab function for 
deterministic ODEs. For instance, for the geometric Brownian motion, we have 

function drift=f(problem,y) 
switch problem 

case ’geometric’ 
mu=2; % parameter to be chosen 
pdot=mu*y; 

end 

function diffusion=g(problem,p,q) 
switch problem 

case ’geometric’ 
sigma=1; % parameter to be chosen 
pdot=sigma*y; 

end
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