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Abstract. In digital image processing, retrieving a high-resolution
image from its low-resolution version is considered to be a major topic.
Super-resolution SR is a problem that has direct applications in numer-
ous disciplines like medical diagnosis, satellite imagery, face recognition
and surveillance. The choice of the optimization function has been a
major factor in previous super-resolution approaches. Optimizing metrics
that are determined based primarily on pixel-level variance is the most
common objective for supervised super-resolution algorithms. Neverthe-
less, these approaches do not output perceptually satisfactory images.
This paper adopts an idea in which depending on only pixel-space simi-
larity is avoided. Instead, the major goal is to utilize a content loss based
on perceptual resemblance using feature maps of the VGG network in
conjunction with Generative Adversarial Networks GAN. This depends
on training two networks: a generator and a discriminator. In an adver-
sarial game, they compete to outperform each other with an ultimate
objective of producing super-resolution images that are identical to the
real high-resolution images that already exist in the dataset. This paper’s
main contribution is a comparison of the effects of taking the VGG-19
content loss from various layers. On public benchmarks, super-resolution
GAN was successful in recovering detailed textures from highly down-
sampled images. SRGAN reveals large gains in perceptual quality in a
mean opinion score MOS test.

Keywords: super-resolution · SRGAN · content loss · perceptual
loss · HR · LR · SRResNet

1 Introduction

Single Image Super Resolution, also known as SISR, is a technique that is focused
on enhancing the clarity of a poor quality image. In general, the expression super-
resolution refers to extracting knowledge from an existing low-resolution signal
and use it to reach a high-resolution signal. Depending on the application, the
relationship between the high-resolution HR image and the low-resolution LR
version may differ. This paper presents addresses case that the LR image is a
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Fig. 1. Mean Opinion Scores MOS for Set14 [16] using bicubic interpolation, SRRes-
Net, SRGAN36 (VGG loss taken before 36th layer) and SRGAN35 (VGG loss taken
before 35th layer) in comparison to the ground-truth HR image [×4 upscaling].

bicubic downscaled counterpart of the corresponding HR image is adopted. The
method used to extract and use the data from the LR image influences how well
the image is recreated. Due to the fact that a large number of HR photos can
be downscaled into a single LR image, single image super resolution continues
to be an unsolved and demanding challenge in the field of computer vision.

Super-resolution is involved in many applications. First, it can be used in
surveillance systems for a better face recognition in the images obtained from
surveillance cameras [4]. Second, it is beneficial for diagnostic imaging, particu-
larly for magnetic resonance imaging MRI [11]. By reducing cost of scan time,
spatial coverage, and signal-to-noise ratio, it becomes more convenient to use SR
techniques to output super-resolved MRI scans by processing their correspond-
ing low-resolution ones. Third, data transmission and storage can be a relevant
application [9], as one may send a low-resolution signal, and upscale it on the fly,
rather than sending the high-resolution one, reducing cost. Finally, using super-
resolution satellite imagery can help in finding and determining the number of
elephants in African environments [3].
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1.1 Related Work

A very early solution was to interpolate the values of the missing pixels. This
typically results in solutions with excessively smooth textures. Dong et al. [2]
proposed the first preprocessing interpolation method that consisted of three lay-
ers: feature extraction layer, then feature mapping to high-dimensional feature
vectors by using 1 × 1 convolutional filters that add some non-linearity, then a
final reconstruction layer that constructs the final target high-resolution images.
However, because this super-resolution convolutional network SRCNN is shallow
and convolution kernels are small, image fine details are not obtained and the
network is limited to a single scale. An improvement over the SRCNN was utiliz-
ing the very-deep-super-resolution VDSR [6]. It used a much deeper network in
which a reduced size of convolutional kernels, higher learning rate and gradient
clipping were used. This speeded up convergence and improved training stability.
Nevertheless, both SRCNN [2] and VDSR [6] were pre-upsampling techniques
that accomplished feature extraction in the high-resolution space. FSRCNN, on
the other hand, does not use an interpolation method at the beginning but does
feature extraction in the low-resolution space [11]. It uses multiple convolutional
layers with reduced kernel size which in turn reduces the count of learnable
weights. Deconvolutional filtering is used in the final step of upsampling.

Sub-pixel convolution, rather than a deconvolutional layer for upsampling,
was first suggested by another proposed technology, the efficient sub-pixel convo-
lutional neural network, or ESPCN [12]. Recursively connected units are used by
the deeply-recursive convolutional network DRCN [7] to make the convolutional
layer much deeper and enhance the fine details of the recounstructed image. The
training difficulty of the deep network’s parameters can be mitigated through
weight sharing while also improving the model’s capacity for generalization.

The main objective of SR optimization techniques is to reduce the mean
squared error MSE between retrieved HR images and dataset original images.
This is beneficial because it optimizes the peak signal-to-noise ratio, or PSNR,
a typical measure for assessing SR approaches. There are severe limitations on
PSNR’s capacity to detect perceptual dissimilarity because this metric is calcu-
lated depending on pixel-level numeric differences. The lowest PSNR may not
always indicate a perceptually enhanced super-resolved image outcome [8].

Generative Adversarial Networks. As described by Goodfellow et al. who
were the first to propose the concept of GAN [5], the final aim of GAN is to
produce data that has the same distribution as an input dataset. The idea of
GAN is based on a rivalry between these generator and discriminator networks
which play an adversarial game to beat each other. In this case, the generator’s
target is to produce fake output that looks very similar to the original dataset
examples, trying to fool the discriminator and make it unable to recognize the
difference between the real and generated data. On the other side, the discrimi-
nator is to be trained to become a reliable judge that can accurately detect the
fake output from the generator and tell them apart from the real data. This
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Fig. 2. These are the layers of the VGG19 architecture [13]. In [8], they said that taking
an MSE loss between the feature maps at i = 5 and j = 4 after the ReLU activation
gives the best results. In [15], however, they took the feature maps before the ReLU
activation.

adversarial game will improve both the generator and the discriminator, result-
ing in the final goal which is to make the generator a well-founded one that can
generate accurate images or any kind of data. The target function of GAN is:

V (θ(D), θ(G)) = Ex∼pdata(x) log(D(x)) + Ez∼pz(z) log(1 − D(G(z)) (1)

in which the probability that an input example, x, is real or not is represented
by (D(x)), while the generated samples are represented by (G(z)). [5].

The value function V (θ(D), θ(G)) can be viewed as a payoff: the aim is to
maximize its value with regard to the discriminator (D), while reducing its value
with respect to the generator (G), that is, min

G
max
D

(V (θ(D), θ(G))).

GAN was used to solve the problem of SISR for the first time by Ledig et al.
[8] in 2017. Their proposed solution made use of residual blocks to enhance the
output. Wang et al. [15] improved the work of [8] by employing the fundamental
unit known as the Residual-in-Residual Dense Block. In addition, they removed
batch-normalization and altered the content loss by changing the VGG layer
from which they compared the outputs.

Another method for SR reconstruction [11] has been presented using self-
attention GAN or SRAGAN. To enhance the fine details of the recovered image,
the generator network assigns higher weights and makes use of the attention
mechanism model to create a more complex architecture. Another recently pro-
posed image reconstruction technique called SwinIR [10] makes use of the well-
known Swin Transformer network. Their architecture consists of layers for shal-
low feature extraction, deep feature extraction, and high-quality image recon-
struction.
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1.2 Contribution

To not rely on the MSE loss function, GAN s for image super-resolution SRGAN
[8] have been used in this paper. A perceptual loss function that consists of
an adversarial loss and a content loss is used to achieve this. The adversarial
loss pushes the output images to look more like the original high-resolution
images using a discriminator network. The discriminator has been trained to tell
apart between generated super-resolved images and existing ground-truth in the
dataset.

As presented in Fig. 2, an enhancement that [15] has done over the original
SRGAN paper was changing the VGG layer from which the content loss is taken.
Nevertheless, this was one of many changes thay have made over GAN ’s imple-
mentation [8]. Evaluating the results of changing the content VGG loss alone has
not been done. For this reason, this paper’s main contribution is to evaluate the
results of taking the content loss of the VGG19 network from different layers. It
was discovered that taking the VGG-loss at the 4th convolution (after activation)
before the 5th maxpooling layer in the VGG19 network yielded more perceptu-
ally fulfilling results compared to taking it before the activation. Figure 1 shows
a sample of the MOS test result to show a comparison between taking the VGG
loss from different layers. On public benchmarks, Super-Resolution GAN was
able to restore fine texture details from ×4 downscaled images. SRGAN reveals
large gains in perceptual quality in a mean opinion score MOS test as shown in
Fig. 1.

2 Methods

2.1 Generator and Discriminator Networks

This paper is adopting the same generator and discriminator structures described
by Ledig et al. [8], who were the first to employ a perceptual-based objective
function for a real-looking SISR output using the notion of GAN.

Generator Structure. As shown in Fig. 3, the generator network G is com-
posed of identically designed N residual blocks. In the experiments of this paper,
number of residual blocks N = 16 was used. Two layers of convolution are
employed with small 3 × 3 filters and a count of 64. Since deep structures like
these were found to be challenging to train, batch-normalization is employed
to mitigate the internal co-variate shift in order to train these deeper network
structures quickly. After that, parametric ReLU is used as the activation func-
tion. Finally, the input image’s resolution has been increased using two layers of
sub-pixel convolution.

Discriminator Structure. As previously mentioned, the discriminator is used
as a judge to tell apart between produced images from high-resolution images
in the dataset. LeakyReLU is used as an activation function with α = 0.2 while
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Fig. 3. The architecture of the generator is based on [8], with k denoting the filter size,
n denoting representing the count of feature maps, and s denoting the stride for each
layer. The generator uses 16 residual blocks, then sub-pixel convolution has been used
to increase the image’s resolution.

max-pooling is not utilized. The network architecture is composed of eight con-
volutional layers of a kernel size 3 × 3. The count of kernels in each layer are
(64, 64, 128, 128, 256, 256, 512, 512) respectively. At the final stages, two dense
layers and a sigmoid activation functions are employed that output a probability
that represents classifying an input image as real or generated. The architecture
layers details are depicted in Fig. 4.

2.2 Loss Function

Following the loss function that was suggested by Goodfellow et al. [5], to resolve
the adversarial optimization problem that was mentioned in Eq. 1, the generator
and discriminator networks are alternately optimized. This formulation enables
the training of a generator to mislead a discriminator taught to differentiate
between generated images and real ones. The final objective function to deter-
mine the perceptual quality of generated images is a summation of the content
loss and the adversarial loss, each multiplied by some hyperparameter. This
objective function can be represented as follows:

lSR = lSR
X + 10−3lSR

Gen (2)

where lSR
X represents the content loss and lSR

Gen represents the adversarial loss
and they both add up to the perceptual loss lSR [8]. For the content loss,
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Fig. 4. The Discriminator network adopted from [8] is composed of eight convolu-
tional filters proceeded by dense layers and a final sigomid activation layer to output
probability of input being real.

the mean-squared-error MSE is the one that is conventionally used. The MSE
loss in pixels is calculated as follows:

lSR
MSE =

1
r2WH

rW∑

x=1

rH∑

y=1

(IHR
x,y − G(ILR

x,y ))2 (3)

such that r represents the factor with which the image is to be upscaled, W rep-
resents the image’s width, H represents the image’s height and (x, y) represent
the indices of the pixels [8].

Many modern solutions depend on this objective as it is the most often used
image SR optimization target. MSE optimization approaches mostly lack the
fine details, which leads to perceptually unpleasant solutions, despite the fact
that they often produce high PSNR.

The authors of SRGAN [8] use an objective function that is more related
to perceptual relevance rather than pixel-wise losses. In their experiments, they
use the ReLU activation layers of the pre-trained VGG network to calculate the
VGG content loss. The feature map acquired by the jth convolution prior to
the ith maxpooling layer within the VGG19 network, which is pre-trained, is
indicated by φi,j (See Fig. 2). The VGG loss is then specified as the euclidean
distance between the feature maps of the super-resolved image by the generator
G(LR) and the original HR image:

lSR
V GG/i.j =

1
Wi,jHi,j

Wi,j∑

x=1

Hi,j∑

y=1

(φi,j(IHR)x,y − φi,j(G(ILR))x,y)2 (4)
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where Wi,j and Hi,j , respectively, describe the widths and heights of different
feature maps within the VGG network [8].

In [8], they claim that setting i = 5 and j = 4 gives the most visually
compelling output, that they credit to the capacity of deeper architectures to
capture elements of higher abstraction. They take the output after the activation
(before layer 36 in the VGG network) in all of their experiments. However, in
[15], they state that applying Eq. 4 before the activation (before layer 35 in the
VGG network) is one of the steps to enhance the work the authors of [8] have
done. One of the contributions of this paper is to compare the results of training
the same network using varying layers of the VGG network to better understand
the effect of relying on the VGG content loss.

For the adversarial loss, it depends on the output classification the discrimi-
nator D(G(ILR)) on the training data, the generative loss lSR

Gen is defined as:

lSR
Gen =

N∑

n=1

− log D(G(ILR)) (5)

2.3 Training Details

The two experiments have been conducted on a NVIDIA GeForce GTX 1650
GPU. Before training, the LR images were acquired by downsampling the HR
counterparts in a bicubic kernel with a factor r = 4. A batch size of 16 images
was used, where each high-resolution image is a 96×96 randomly cropped image
from a distinct training image from the dataset. However, It is essential to keep
in mind that the generator can accept images of any size since it is based on
convolution layers.

Before training, low-resolution images were rescaled to the range [0, 1] while
the high-resolution images were rescaled to the range [−1, 1]. The same has been
applied in the experiments of this paper. Adam optimizer was used with β1 = 0.9
and β2 = 0.99 in all experiments. The SRResNet model that was trained with the
MSE loss was utilised as a start for the generator while training the GAN -based
generator to prevent undesirable local optima.

In each update iteration, both the adversarial models were optimized once
in an alternative fashion, which means that k = 1 as defined by authors of
GAN [5]. The residual blocks in the generator network are all identical, where
the generator consists of 16 residual blocks in all the conducted experiments
(B = 16). Pytorch was used to construct and train all the models in the experi-
ments. Datasets were organized in a data loader, where each batch (16 examples)
contained 24×24×3 LR images and their corresponding 96×96×3 HR images.
Outdoor Scenes OST dataset [14] is the main dataset that was used for training
in the experiments.
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2.4 Training Experiments

Experiment 1: SRResNet and SRGAN36 training on OST dataset [14]

– The generator has been trained alone (without training the discriminator) for
440 epochs (270, 000 update iterations) using a learning rate η = 1 × 10−4.
The loss that was used is an MSE -based loss between super-resolved images
and HR ground truth images. This trained generator phase will be referenced
as the SRResNet in the course of this paper.

– The SRResNet model (trained with MSE loss) was used as a start model
for the generator in the next training phase, SRGAN [8]. The generator was
trained using η = 1 × 10−5, while the discriminator was trained using a
η = 1 × 10−6. Both networks were trained for 165 epochs (100, 000 update
iterations). The VGG loss has been taken with i = 5 and j = 4 after the
activation. This takes feature maps of the VGG architecture before the 36th

layer. Hence, this phase will be referenced as SRGAN36 in the course of this
paper.

– Finally, the content loss Eq. 4 was multiplied by a factor of 0.006. This is to
make the content loss scale comparable to the scale of the adversarial loss.

Experiment 2: SRResNet and SRGAN35 training on OST dataset [14]

– The generator has been trained alone (without training the discriminator).
This trained generator phase is exactly similar to the SRResNet training
phase that was mentioned in Experiment 1.

– The SRResNet model (trained with MSE loss) was used as a start model
for the generator in the next training phase, SRGAN [8]. The generator was
trained using a η = 1 × 10−5, while the discriminator was trained using a
η = 1 × 10−6. Both networks were trained for 165 epochs (100, 000 update
iterations). The VGG loss has been taken with i = 5 and j = 4 before the
activation. This takes feature maps of the VGG architecture before the 35th

layer. Hence, this phase will be referenced as SRGAN35 in the course of this
paper.

2.5 Testing Details

Set5 [1] and Set14 [16], the testing sets, are two commonly used benchmark
datasets on which tests were conducted. As shown in Fig. 5, between low- and
high-resolution images, a scaling factor of 4 is used in all tests. This translates
to a ×16-pixel reduction in image size. Generated images from other SR tech-
niques, including nearest neighbor interpolation, bicubic interpolation, SRCNN
[2] were obtained from online supplementary materials to do a comparison with
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Fig. 5. The left image is the low-resolution bicubic downsampled version that is input
to the generator. The right image is the high-resolution real image with a scaling factor
×4. Both images are sample from the Set14 dataset [16].

the generated SRGAN36 and SRGAN35 images.1. The following are all the 6
methods on which the tests have been done:

1. Nearest Neighbor Interpolation
2. Bicubic Interpolation
3. Super Resolution Using Deep Convolutional Networks or SRCNN [2]
4. Super Resolution Residual Network or SRResNet that was trained as initial-

ization for experiments 1 and 2
5. Super Resolution GAN or SRGAN36 of experiment 1
6. Super Resolution GAN or SRGAN35 of experiment 2

The following has been done to test the above different super-resolution algo-
rithms:

– For all the 6 methods, PSNR [dB] was calculated for all Set5 [1] and Set14
[16] for fair comparison.

– For all the 6 methods, SSIM was calculated for all Set5 [1] and Set14 [16]
for fair comparison.

– For all the 6 methods, a Mean Opinion Score (MOS ) has been calculated for
3 random images from the Set5 [1] dataset and 6 random images from the
Set14 [16] dataset. This has been done by creating a google form. For each
question, two images are presented beside each other, the first was a Set14
[16] or Set5 [1] generated output of one of the reference methods or one of the
experiments of this paper, and the second was the HR ground-truth image.
The quality of the output image has been rated by the participants with a
number between 1 (bad quality) and 10 (excellent quality) compared to the
HR original image from the dataset.
The form consisted of 9 pages (each for a test image). Each page contained
6 comparison questions to compare the 6 corresponding methods to be com-
pared. Consequently, each participant rated 6 versions of 9 images that were
presented in a random order, summing up to 54 images to be rated.

1 https://www.kaggle.com/datasets/ll01dm/set-5-14-super-resolution-dataset.

https://www.kaggle.com/datasets/ll01dm/set-5-14-super-resolution-dataset
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Fig. 6. Results for Set14 [16] using bicubic interpolation, SRResNet, SRGAN36 and
SRGAN35 in comparison to the ground-truth HR image [×4 upscaling].

Table 1. This table shows comparison of the 6 tested methods on Set14 [16] dataset.
Highest measures of average PSNR, SSIM, and Mean Opinion Score MOS are in bold.

Results on Set14 [16] dataset

Nearest Bicubic SRCNN SRResnet SRGAN36 SRGAN35

PSNR 22.6 23.8 24.72 23.64 22.18 21.24

SSIM 0.64 0.68 0.71 0.70 0.62 0.58

MOS 4.68 5.29 6.36 6.23 6.48 6.07

3 Results and Analysis

This section will go over the PSNR, SSIM, and MOS numerical results that the
trained generators of the two conducted experiments produced, beside showing
the results of nearest neighbor interpolation, bicubic interpolation, and SRCNN
[2] for comparison.

In the MOS test, 25 raters have participated in grading the SR techniques
output images from ×4 downsampled images with a score between 1 (poor qual-
ity) and 10 (great quality). Of these images, 6 images were obtained from the
Set14 [16] dataset and 3 images were obtained from the Set5 [1] dataset. The
outcomes of the MOS test are presented in Tables 1 and 2.
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Table 2. This table shows comparison of the 6 tested methods on Set5 [1] dataset.
Highest measures of PSNR, SSIM, and Mean Opinion Score MOS are in bold.

Results on Set5 [1] dataset

Nearest Bicubic SRCNN SRResnet SRGAN36 SRGAN35

PSNR 24.37 26.45 27.9 25.87 23.57 22.42

SSIM 0.71 0.77 0.81 0.79 0.71 0.67

MOS 3.92 5.32 6.12 6.21 5.84 5.53

3.1 Investigating the Perceptual Loss

Basically, the goal of training an SRGAN36 model in experiment 1 and an
SRGAN35 model in experiment 2, with the same SRResNet initialization, was
to compare the effect of taking the VGG-loss before and after the activation.
Tables 1 and 2 show the performance of both networks on the PSNR, SSIM and
MOS metrics. It can be observed that SRGAN36 outperformed SRGAN35 on all
metrics. This might make sense given the notion that taking VGG-loss deeper in
the network yields the most convincing results [8]. It is also important to mention
that the authors of [15] enhanced on [8] by taking the VGG-loss before the
activation and achieved better results. However, this was accompanied by some
changes in the structure of the generator itself. For example, they removed all

Fig. 7. Results for Set14 [16] using bicubic interpolation, SRResNet, SRGAN36 and
SRGAN35 in comparison to the HR image from the dataset [×4 upscaling].
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the batch-normalization layers and increased the number of residual connections.
These changes, however, were not employed in experiment 2 since the aim was
to see the effect of only taking the VGG-loss before the activation but with the
same generator structure that was used in the other experiments.

3.2 Investigating the Performance of Final Networks

SRResNet, SRGAN36 and SRGAN35 are compared to nearest neighbor inter-
polation, bicubic interpolation, and one of the modern algorithms, SRCNN [2].
Tables 1 and 2 summarize the quantitative results while Fig. 1, 6, 7, 8 summa-
rize the qualitative results. These results show that SRResNet and SRGAN36
establish a new state-of-the-art on Set14 [16] and Set5 [1] datasets. Compared to
nearest neighbor interpolation and bicubic interpolation, SRResNet had higher
PSNR and SSIM results on mostly all test images. SRGAN36 and SRGAN35, on
the other side, could not accomplish superior PSNR and SSIM results. Despite
that, participants in the form gave SRGAN36 and SRGAN35 (and SRResNet)
much higher scores than nearest neighbor and bicubic interpolations, on average.

Moreover, SRCNN [2] had the best PSNR and SSIM results. However,
SRGAN36 was able to do better than it on the average MOS on Set14 [16]
as shown in Table 1. This shows the limited potential of metrics like PSNR and
SSIM to recover the image’s perceptual quality, taking into account the fine tex-
ture details. This might be reasoned by the fact that these metrics are mostly
based on pixel-level resemblance between two images. Hence, the weighted aver-
age of adversarial loss and content loss produced a new loss that has shown a

Fig. 8. Results for Set5 [1] using bicubic interpolation, SRResNet, SRGAN36 and
SRGAN35 in comparison to theHR image from the dataset [×4 upscaling].
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great performance in capturing the fine details of images. This gave SRGAN [8]
the ability to produce images that are relatively of higher quality.

4 Conclusion

After conducting two training experiments, an SRResNet model and two SRGAN
models were trained and proven to be competitive with both conventional and
cutting-edge super-resolution methods. With MOS testing, SRGAN ’s satisfac-
tory perceptual performance was confirmed. Images generated by the trained
SRResNet and SRGAN models had the highest MOS scores on two benchmark
datasets compared with interpolation techniques and one of the modern tech-
niques, SRCNN. It was also demonstrated that typical performance measures
like PSNR and SSIM do not always succeed in effectively judging image qual-
ity like how the perception of a human does. Despite the fact that traditional
interpolation methods achieved higher PSNR and SSIM than SRGAN meth-
ods, SRGAN methods outperformed them in the average mean opinion score.
However, It is essential to keep in mind that the MOS is quite subjective and
the result can be different depending on the individuals who participated in the
evaluation, the conditions in which the images are shown to the evaluators, and
even the order of the images were shown. While attempting to output perceptu-
ally convincing result to solve the SR problem, the selection of perceptual loss
is especially important. Taking the VGG-loss exactly before the 5th max pool-
ing layer and after the activation, as opposed to taking it before the activation,
yielded more perceptually appealing results for the participants in the MOS test
on the OST dataset.
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