
FFTc: An MLIR Dialect for Developing
HPC Fast Fourier Transform Libraries

Yifei He(B), Artur Podobas, Måns I. Andersson, and Stefano Markidis

KTH Royal Institute of Technology, Stockholm, Sweden
{yifeihe,podobas,mansande,markidis}@kth.se

Abstract. Discrete Fourier Transform (DFT) libraries are one of the
most critical software components for scientific computing. Inspired by
FFTW, a widely used library for DFT HPC calculations, we apply
compiler technologies for the development of HPC Fourier transform
libraries. In this work, we introduce FFTc, a domain-specific language,
based on Multi-Level Intermediate Representation (MLIR), for express-
ing Fourier Transform algorithms. We present the initial design, imple-
mentation, and preliminary results of FFTc.

Keywords: MLIR · Fast Fourier Transform Compiler · DSL

1 Introduction

HPC libraries for computing Discrete Fourier Transforms (DFT) are critical
computational building blocks for enabling signal processing, data analysis, and
the solution of Partial Differential Equations (PDE). In particular, Fast Fourier
Transform (FFT) algorithms solve DFT via O(n log n) calculations, where n is
the input size against the naive DFT implementation corresponding to a matrix-
vector multiply with complex numbers requiring O(n2) calculations.

Several algorithms for FFT have been designed, including the notorious
Cooley-Tukey recursive scheme to the Stockham and Pease algorithms [11].
FFT algorithms can be expressed using a factorized formulation, e.g., the entire
FFT operation is expressed as the multiplication of matrices, and different algo-
rithms will correspond to various factorization forms. These matrices are largely
sparse, and their final computation will still rely only on O(n log n) operations.
Therefore, from an abstraction point of view, we can express any FFT algorithms
in terms of matrix multiplications. Most importantly for this work, different fac-
torizations are better suited than others for achieving high-performance on a
given system. For instance, Stockham FFT factorization is an excellent fit for
accelerators while other factorizations containing block matrices are a good fit
for hierarchical memory systems. For this reason, to be capable of expressing and
generating automatically and optimizing different FFT algorithms for different
architectures is critical for producing high-performance FFT libraries.

FFTW [8] is among the most successful implementations of FFT libraries.
Inspired by the FFTW design and development, in this work, we propose a new
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Singer et al. (Eds.): Euro-Par 2022 Workshops, LNCS 13835, pp. 80–92, 2023.
https://doi.org/10.1007/978-3-031-31209-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31209-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-31209-0_6

FFTc: an MLIR Dialect for FFTs 81

framework, called FFTc (FFT compiler), for the automatic generation of FFT
algorithms using the MLIR and LLVM compiler infrastructure. To achieve this,
we design a new language to express FFT algorithms using different formulations.
The major contributions of this paper are the following:

– We design and provide a first initial development of a domain-specific lan-
guage for the automatic code generation of FFT algorithms, leveraging MLIR
and LLVM infrastructure.

– We collect and analyze the preliminary performance results from small-size
one-dimensional FFT and compare the performance with the FFTW perfor-
mance.

2 Background

The goal of this work is to develop a DSL for FFT calculation. A direct com-
putation of the Fourier transform is the multiplication of a DFT matrix by the
input vector x. We can define the DFTN matrix as:

DFTNm,n
= (ωN)mn, where ωN = exp(−2πi/N) for 0 ≤ m,n < N. (1)

The most famous FFT algorithm was introduced in 1965 by Cooley and Tukey.
This algorithm relies on the recursive nature of DFT i.e. several small DFTs
can describe a large DFT. In this paper, we use a matrix-formalism to represent
FFT algorithms where a matrix-factorization of the DFT matrix into sparse
and structured matrices describes each FFT algorithm. For example the Cooley-
Tukey factorization of DFT4:

DFT4 =

⎡
⎢⎢⎣

1 1
1 1

1 −1
1 −1

⎤
⎥⎥⎦

︸ ︷︷ ︸
DFT2 ⊗ I2

⎡
⎢⎢⎣

1
1

1
−i

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 1
1 −1

1 1
1 −1

⎤
⎥⎥⎦

︸ ︷︷ ︸
I2 ⊗DFT2

⎡
⎢⎢⎣

1
1

1
1

⎤
⎥⎥⎦ , (2)

where the I is the identity matrix. Here, we see the use of DFT2 in the for-
mulation of DFT4. In the example, we see the sparse (zeros in the matrices are
omitted for clarity) and structured nature of the algorithm. The Cooley-Tukey
general-radix decimation-in-time algorithm for N inputs can be written as:

DFTN = (DFTK ⊗ IM)DN
M(IK ⊗DFTM)ΠN

K with N = MK, (3)

where ΠN
K is a stride permute and DN

M is a diagonal matrix of twiddle-factors.
Different FFT algorithms, such as Stockham and Pease FFT can be expressed
using different factorization schemes.

In this work, we use the LLVM (originally for Low-Level Virtual Machine)
compiler infrastructure for the development of the FFT domain-specific lan-
guage. LLVM is a collection of compiler and toolchain technologies: it consists of

82 Y. He et al.

a set of modular compiler components, including the Clang front-ends, optimizer,
code generator, debugger, linker, and OpenMP runtime. Particularly important
for developing portable HPC code, the LLVM compiler technologies support
many targets, including x86, Arm, and GPU systems [9].

The LLVM project also includes Multi-Level Intermediate Representation
(MLIR), a project aiming at supporting the building of domain-specific compil-
ers, and combining existing compiler infrastructure together. While MLIR (and
the XLA compiler) was initially developed by Google for machine learning work-
loads, MLIR is widely used today for the development of domain-specific lan-
guages beyond machine and deep learning. To solve domain-specific problems,
MLIR offers the infrastructure to define and introduce high-level abstractions
and transforms [10]. The main mechanism to extend MLIR is the development
of dialects that allow defining new operations, attributes, and types. In addi-
tion, MLIR allows using multiple dialects that can be used together within one
module. Examples of existing MLIR dialects are the affine, LLVM, GPU, vector,
SPIR-V dialects. In this work, we design and develop an MLIR dialect to express
FFT libraries.

3 Related Work

Several efforts exist for the development of high-performance FFT libraries. The
inspiration for developing an FFT DSL is FFTW [7], which is the most widely
used open-source FFT library. At its heart, FFTW is an FFT compiler, based
on Objective Caml, to generate Directed Acyclic Graphs (DAG) of FFT algo-
rithms and performs algebraic optimization on them. FFTW uses a planner at
runtime to recursively decompose the DFT problem into sub-problems. These
sub-problems are solved directly by optimized, straight-line code that is automat-
ically generated by a special-purpose compiler, called genfft [8]. An additional
DSL for numerical kernels including FFT is SPIRAL. SPIRAL [6] is a program
generation system for linear transforms and other mathematical functions that
produces HPC code in C. SPIRAL also supports FFTs [5]: it applies pattern
match and rewriting to generate optimal FFT formulation for different hard-
ware, such as multicore systems. Then, SPIRAL maps the matrix formula to
high-performance C code.

4 Methodology: A Domain-Specific Language for FFT

This section describes FFTc– a custom Domain-Specific Language (DSL) for
describing Fast Fourier Transforms (FFT). Our aspiration with FFTc is to
increase the productivity of algorithm developers without any loss in perfor-
mance while at the same time being able to target multiple different backends
(CPUs/GPUs/etc.) with the same input source code. In short, FFTc aims to
increase productivity, portability, and (hopefully) performance.

FFTc: an MLIR Dialect for FFTs 83

The execution model and compilation pipeline are shown in Fig. 1. The cur-
rent implementation supports the parts in dark color; the remaining parts will
be the focus in the near future.

The FFTc compilation pipeline has five core parts: (a) is the translation
from the DSL to the Abstract Syntax Tree (AST), (b) is generating the MLIR
out of AST, (c) stands for progressive lowering from FFT dialect to LLVM
dialect, going through different levels of abstraction represented by dialects, (d)
emits LLVM IR out of the MLIR’s LLVM dialect, (e) is the LLVM middle-end
compilation and code generation.

Transla�on Formula
Rewri�ng

Operator
Fusion/

Scheduling

Operator
Implementa�on/

Op�miza�on

FFT AST FFT Dialect Linalg Affine

Transla�on

LLVM

Compiler Run�me

Compila�on Pipeline
MIddle-end

Op�miza�on/
Code Genera�on

for CPU target

GPU Target

FFT Plan
Genera�on Cost Model Plan

Selec�on
Task

Scheduling
…...

...

FFTc DSL

(a) (c) (d)

(e)

(b)

Fig. 1. Compilation Pipeline

4.1 The FFTc Language and Grammar

The goal of FFTc is to create an input language that resembles (as close as pos-
sible) that of mathematics, which we believe will help end-users in being more
productive without losing familiarity with the code they are writing. An example
source code of our is seen in Listing 1.1, where we have aimed to keep them as
similar to abstract mathematical expressions as possible, such as Eq. (3). We
support the Kronecker product through the binary operation ’⊗’, the matrix-
matrix multiplication using ’·’, and the matrix multiplication with the twiddle
matrix through the twiddle. Furthermore, we have a set of unary operations,
such as creating the identity matrix, and calculating the dft. Finally, we have
support for permuting. In short, we currently support all necessary language
constructs to describe FFTs in a factorized form. Additionally, our grammar
supports the correct right-associative binding of (e.g.,) matrix multiplication,
which is different from the traditional left-associative binding of binary opera-
tors. A subset of the grammatical construct (in Backus-Naur form) is shown in

84 Y. He et al.

Listing 1.2. The grammatical construct is based on (and extended) from LLVM’s
Kaleidoscope language tutorial [2].

1 var InputReal <4, 1> = [[1], [2], [3], [4]];
2 var InputImg <4, 1> = [[1], [2], [3], [4]];
3 var InputComplex = createComplex(InputReal , InputImg);
4 var result = (DFT (2) ⊗ I(2)) · twiddle (4,2) ·
5 (I(2) ⊗ DFT (2)) · Permute (4,2) · InputComplex

;

Listing 1.1. DSL FFT language

1 expression -> additive -expr (’+’| ’-’) additive -expr
2 additive -expr -> (multiplicative -expr (’*’ | ’/’)

multiplicative -expr)
3 multiplicative -expr -> (FFT -expr (’*’ | ’/’) FFT -expr) *
4 FFT -expr -> (primary (’⊗’ | ’ · ’) FFT -expr) *
5 primary -> identifierexpr | numberexpr | parenexpr |

tensorliteral

Listing 1.2. FFTc Language Grammar Extension in Backus-Naur form

4.2 FFTc Compilation Pipeline

The FFTc compilation pipeline shown in Fig. 1 is based on the MLIR’s tutorial
project [4]. The compilation starts at the frontend (Fig. 1:a), where the lexical
analysis, parsing, and building of an Abstract Syntax Tree (AST) based on our
custom DSL language take place. The FFT dialect is the first state of MLIR
generated from the AST (Fig. 1:b). Then a series of lowering passes are applied
(Fig. 1:c) on the FFT dialect in order to expand many of the custom operators
(e.g., the Kronecker product) into a lowered state. For example, a matrix mul-
tiplication, written in our language using “·”, will be expanded to a three-level
nested loop implementing said matrix multiplication. Furthermore, we can apply
several existing MLIR optimization passes (such as Affine) in order to further
optimize the transformed kernels. Finally, near the end of the pipeline (Fig. 1:c),
we lower our representation to the LLVM Intermediate Representation (IR),
after which we inject the code into the LLVM backend for compilation towards
machine code (Fig. 1:d). We explain this pipeline in more detail next.

4.2.1 Phase 1: Translation The FFT dialect is the first dialect in the com-
pilation pipeline. The FFT dialect provides the basic building blocks for different
kinds of FFT algorithms and defines the complex tensor data type and opera-
tions.

– FFT dialect data type: The FFT dialect operates on the double tensor and
complex tensor as well as scalar integer as attributes. There is createComplex
to generate the complex tensor from the double tensor of real and imaginary
parts.

FFTc: an MLIR Dialect for FFTs 85

– FFT dialect operations: We define the operations needed to implement
various kinds of popular FFTs. Examples of such operators are the Kronecker
product and matrix-matrix multiplication. We also define the DFT, Identity,
and permute matrix generator. These make it a lot easier to construct the
FFT algorithm with the similar notation and syntax in mathematics. The
map of operations from FFTc DSL to MLIR FFT dialect is shown in Table 1.

With the FFT dialect implementation described above, we can generate MLIR
out of AST, as shown in (a) to (b) in Fig. 1. Figure 2 shows an example of the
FFT dialect IR that is translated from size 4 recursive FFT in Listing 1.1.

Table 1. From FFTc DSL to FFT Dialect MLIR

FFTc DSL FFT Dialect
createComplex(A, B) fft.createCT(a,b)
A · B fft.matmul a, b :
A ⊗ B fft.kroneckerproduct a, b
twiddle (a,b) fft.twiddle (a , b)
I(size) fft.identity (a)
DFT(size) fft.dft(a)
Permute (a ,b) fft.Permute(a, b)

4.2.2 Phase 2: Operator Implementation/Optimization MLIR sup-
ports different levels of abstraction through dialects. We lower the FFT dialect
to a mix of dialects. Then, we can reuse the analysis/transform passes embedded
in those dialects. We run shape inference to prepare for later transforms and per-
form progressive lowering to a mix of dialects to implement and optimize FFT
operations.

– Shape Inference: In the FFTc DSL, all the operations operate on generic
tensors. We do not need to explicitly specify the shape of tensor data. This
reduces the efforts of the programmers. However, carrying shape informa-
tion in the IR can simplify the workload of analysis and transform passes,
as well as code generation. We can obtain the shape of input tensors dur-
ing the initialization of constants. Later, we propagate the shapes through
the computation to every operation involved. We implement a specific shape
inference function for each operation based on the input augments, such as
for the Kronecker product. All dimensions of the output tensor would be the
multiplication of the corresponding dimensions of two input tensors.

– Progressive Lowering: The compilation pipeline generates the actual
implementations of the operations, which we defined through progressive low-
ering. To reuse existing optimizations in MLIR’s dialects, we lower the FFT
dialect to a mix of dialects, comprising of Affine, Arithmetic, Complex and

86 Y. He et al.

MemRef dialects. The Affine dialect uses techniques from polyhedral compila-
tion to provide a powerful abstraction for affine operations and analyses, such
as dependence analysis and loop transformations. The Arithmetic dialect is
intended to hold basic integer and floating-point mathematical operations,
and the Complex dialect is intended to hold complex numbers creation and
arithmetic operations. The MemRef dialect is intended to hold core memref
creation and manipulation operations [3].

– Affine Dialect: We implement the computation-heavy part of the DSL in
Affine dialect, by lowering from the tensor type that FFT dialect operates
on to the MemRef type that is indexed via an affine loop-nest. Tensors rep-
resent an abstract value-typed sequence of data. By using tensor and tensor
operations, we can increase the productivity of algorithm developers since it
is similar to the notations used in mathematics. The MemRefs dialect, on the
other hand, represents the lower level buffer access, builds a bridge to the
actual computer memory.

var result =

(DFT(2)

⊗

I(2))

·

twiddle(4,2)

·

(I(2)

⊗

DFT(2))

·

Permute(4,2)

·

InputComplex;

%5 = .arithconstant 2.000000e+00 : f64

%6 = " .d "(%5) : (f64) -> tensor<*xcomplex<f64>>

%7 = .arithconstant 2.000000e+00 : f64

%8 = " .iden y"(%7) : (f64) -> tensor<*xcomplex<f64>>

%9 = .kroneckerproduct %6, %8 : tensor<*xcomplex<f64>>

%10 = .arithconstant 4.000000e+00 : f64

%11 = .arithconstant 2.000000e+00 : f64

%12 = " .twiddle"(%10, %11) : (f64, f64) -> tensor<*xcomplex<f64>>

%13 = .arithconstant 2.000000e+00 : f64

%14 = " .iden y"(%13) : (f64) -> tensor<*xcomplex<f64>>

%15 = .arithconstant 2.000000e+00 : f64

%16 = " .d "(%15) : (f64) -> tensor<*xcomplex<f64>>

%17 = .kroneckerproduct %14, %16 : tensor<*xcomplex<f64>>

%18 = .arithconstant 4.000000e+00 : f64

%19 = .arithconstant 2.000000e+00 : f64

%20 = " .Permute"(%18, %19) : (f64, f64) -> tensor<*xcomplex<f64>>

%21 = .matmul %20, %4 : tensor<*xcomplex<f64>>

%22 = .matmul %17, %21 : tensor<*xcomplex<f64>>

%23 = .matmul %12, %22 : tensor<*xcomplex<f64>>

%24 = .matmul %9, %23 : tensor<*xcomplex<f64>>

%7 = .arithconstant 2.000000e+00 : f64

%8 = " .iden y"(%7) : (f64) -> tensor<*xcomplex<f64>>

%10 = .arithconstant 4.000000e+00 : f64

%11 = .arithconstant 2.000000e+00 : f64

%12 = " .twiddle"(%10, %11) : (f64, f64) -> tensor<*xcomplex<f64>>

%15 = .arithconstant 2.000000e+00 : f64

%16 = " .d "(%15) : (f64) -> tensor<*xcomplex<f64>>

%18 = .arithconstant 4.000000e+00 : f64

%19 = .arithconstant 2.000000e+00 : f64

%20 = " .Permute"(%18, %19) : (f64, f64) -> tensor<*xcomplex<f64>>

%22 = .matmul %17, %21 : tensor<*xcomplex<f64>>

%24 = .matmul %9, %23 : tensor<*xcomplex<f64>>

Fig. 2. Mapping from the Recursive FFT to MLIR.

To implement the operators, we allocate a chunk of memory for the output
tensor, construct loops to compute each element of the output tensor, then
store them to the corresponding index of the output memory. The scalar-
ized tensor arithmetic operations are performed by corresponding operations
in the Complex dialect. The lowering result of a matrix multiplication oper-
ator is shown in the Listing 1.3. We take advantage of the existing opti-

FFTc: an MLIR Dialect for FFTs 87

mizations in the Affine dialect, such as loop fusion, AffineScalarReplacement
and AffineLoopInvariantCodeMotion. These optimization passes can help per-
form operator fusion, eliminate redundant load/store and hoists loop invariant
operations out of Affine loops.

1 From:
2 %10 = fft.matmul %9, %3 : (tensor <4x4xcomplex <f64 >>,
3 tensor <4x1xcomplex <f64 >>) ->
4 tensor <4x1xcomplex <f64 >>
5 To:
6 affine.for %arg0 = 0 to 4 {
7 affine.for %arg1 = 0 to 1 {
8 affine.for %arg2 = 0 to 4 {
9 %18 = affine.load %9[%arg0 , %arg2] :

10 memref <4x4xcomplex <f64 >>
11 %19 = affine.load %3[%arg2 , %arg1] :
12 memref <4x1xcomplex <f64 >>
13 %20 = complex.mul %18, %19 : complex <f64 >
14 %21 = affine.load %2[%arg0 , %arg1] :
15 memref <4x1xcomplex <f64 >>
16 %22 = complex.add %21, %20 : complex <f64 >
17 affine.store %22, %2[%arg0 , %arg1] :
18 memref <4x1xcomplex <f64 >>
19 }
20 }
21 }

Listing 1.3. Affine Code Example for FFT.MatMul Operation

4.2.3 Phase 3: Translation There exist infrastructures in MLIR to perform
a full conversion from the Affine, MemRef, and Complex dialects to the LLVM
dialect. Then, we can emit the LLVM IR from the LLVM dialect.

4.2.4 Phase 4: Code Generation We set up a JIT compiler using the MLIR
wrapper over LLVM OrcJit, and pass the optimization and debug flags to the JIT
compiler. The pass manager is also populated by MLIR. Then, the JIT compiler
will perform the LLVM’s middle-end optimization and code generation.

88 Y. He et al.

DSL Source Code

MLIR Genera�on

MLIR Op�miza�on

JIT Compila�on
LLVM IR

Genera�on
LLVM IR

Op�miza�on

Code
Genera�on

Invoke Main Func�on Object File

Executable
Binary

Run Binary

(a) JIT (b) Pre-Compile

Fig. 3. Compilation modes.

4.2.4.1 Ahead-Of-Time vs Just-In-Time Compilation
We support two types of compilation modes in FFTc: Ahead-of-Time (AOT) and
Just-in-Time (JIT) compilation. The compilation modes can be seen in Fig. 3,
where they share multiple components and are in line with similar compilation
flows (e.g., in OpenCL’s Online/Offline compilation [1]). In short, both modes
start by parsing the DSL source code and transforming/optimizing it using our
MLIR intermediate representation. Next, we lower the MLIR down to LLVM
IR. Once in LLVM IR, the two modes differ: using the JIT mode, we directly
execute the main function of our compiled targets and exit afterward. The AOT
mode, instead, transforms the LLVM IR representation to an object file, links
with eventual standard libraries, and outputs a machine code binary file that
can be invoked by the user.

Using either model has benefits and limitations. For example, the AOT mode
can be faster and speed up the final execution significantly but has the limitation
that the FFT size needs to be constant. The JIT model, on the other hand, is
slower but allows the FFT size to be variable at runtime. In short, the AOT
mode trades flexibility for performance, while the JIT mode honors flexibility
over performance.

5 Experimental Setup

We evaluate our FFTc on the Kebnekaise supercomputer that is located at the
HPC2N HPC center in Umeå, Sweden. Kebnekaise nodes have a dual-socket
Intel Xeon Gold 6132 CPU, 192 GB of RAM. The operating system is Ubuntu
20.04.4 LTS. The version of LLVM we use to embed the FFTc is 15.0.0. We
run the Ahead-of-Time compilation mode FFTc 1,000 times, and we calculate

FFTc: an MLIR Dialect for FFTs 89

error computing the standard deviation for 30 execution rounds. We developed a
Python script to generate the recursive implementation of the Cooley-Tukey FFT
algorithm, using our FFTc DSL. An example of the output program is shown in
Listing 1.1. Albeit our script can generate different FFT algorithm implementa-
tions, in this paper, we only present the results of the recursive Cooley-Tukey
algorithm.

6 Results

As first step of our evaluation, we verify the correctness of DSL implementation.
We test different random input vectors with different sizes: the input sizes are
the powers of two, from 32 to 1024. We employ complex numbers in double-
precision. We compare the results with the NumPy’s FFT function, that is based
on FFTW. The error is calculated as |resultDSL−resultNumpy|

FFTsize
. The error is smaller

than 1e-7 for each run.
For the next step, we evaluate the performance in the JIT mode. We measure

the execution time of size 32 recursive FFT under JIT mode. The execution time
is shown in Fig. 4. In the figure, the item Parser&MLIRGen stands for frontend
compilation, ‘builtin.func’ stands for MLIR compilation pipeline, ’Jit’ stands for
both LLVM Jit compilation and running time. It is clear from analyzing the
figure that the frontend takes a minor portion of the execution time. The MLIR
pipeline takes the largest part of the execution time. Most of the time is spent
in the optimization passes such as AffineLoopFusion and AffineScalarReplace-
ment. We can choose whether to run these optimization passes or not by passing
optimization flag to FFTc, currently there are O0/O2/O3 available. The Jit
part takes much smaller portion compared with MLIR pipeline, under O3 opti-
mization option for both LLVM middle-end compilation and code generation.
In actual applications, FFT algorithms may run many times while only need to
be compiled once, so the compilation time does not matter considerably. As a
future plan, we intend to reduce the compilation time, such as multi-threading
the compiler and remove redundant operations in Affine passes.

Under Pre-Compiled mode, we compare the FFTc pre-compiled binary with
FFTW 3.3. We built FFTW with gcc compiler, enabled the SIMD instructions.
The input size of the FFT are the powers of 2, we use single thread to run the
program. The result is shown in Fig. 5, the standard deviation is shown as the
black lines over bars.

We run four versions of FFT using FFTc: direct DFT implementation and
Cooley-Tukey recursive FFT implementation with different optimization flags
(O0/O2/O3). It is expected that the DFT performs much better than recursive
implementations, because current implementation for FFT is computed through
dense matrix multiplication, and to achieve the O(N log N) complexity FFT
must be sparse matrix computation. The workload of the currently developed
recursive FFT is much larger than DFT. However, we intend to use the current
solution to showcase the functionality of FFTc and are planning to rewrite the

90 Y. He et al.

Fig. 4. JIT Mode Performance for size 32 recursive FFT

computation in sparse form as a future work. The performance with optimiza-
tion flag O3 is better that O2 and O0. The difference between O2 and O3 flag is
that under O2, the AffineScalarReplacement pass will not be executed. For size

Fig. 5. FFTc Single Thread Performance Compared with FFTW

FFTc: an MLIR Dialect for FFTs 91

128 the O2 is slightly better than O3. Investigating the MLIR, the AffineScalar-
Replacement performs memory access optimizations. In addition, there is also a
similar optimization pass in LLVM pipeline. We plan to further investigate this
issue in the future.

When comparing the performance between FFTc Cooley-Tukey code and
FFTW, we note that here is still a significant performance gap. We believe that
this gap can be attributed to (amongst others) the following reasons:

– The recursive factorized FFTs are computed through matrix-matrix multipli-
cation where the matrices are not expressed as sparse matrices.

– We do not take full advantage of MLIR/LLVM infrastructure to generate
high performance code. Examples of such a features are loop tiling, unrolling
and jam and vectorization in the MLIR/LLVM pipeline.

– We do not support yet an autotuning mechanism, such as the FFTW plan-
ner, to decompose the FFT problem into simpler sub-problems, later solve
the simpler sub-problems using codelets generated by genfft. Currently, our
implementation is similar to genfft: for the FFTs with large-size input, the
generated code is extremely large and introduces considerable compilation
overhead.

7 Discussion and Conclusion

In this paper, we have introduced FFTc– an emerging, work-in-progress DSL for
describing different FFTs variants. The goal of FFTc is to decouple algorithm
description from hardware-specific details and ultimately provide higher pro-
ductivity and better portability without sacrificing performance. To this end, we
have chosen an abstract language representation that is not unlike the mathe-
matical formulas we are used to describing FFTs. We show how such an abstract
language design can be mapped down-to machine code by leveraging existing
MLIR and LLVM infrastructure. The performance – while not a direct objective
of this paper – of our DSL is not yet on par with state-of-the-art FFTW, but is
never-the-less a good starting point to further build upon in future performance-
focused studies, such as extending our compiler with support for OpenMP task-
ing or vectorization.

Acknowledgement. Funding for the work is received from the European High-
Performance Computing Joint Undertaking (JU), Grant Agreement No. 3893 (IO-
SEA). I want to thank Steven W. D. Chien (wdchien@kth.se) for his help with the
proofread.

References

1. Intel Online/Offline Compilation. https://www.intel.com/programmable/
technical-pdfs/683521.pdf

2. Kaleidoscope: implementing a parser and AST. https://llvm.org/docs/tutorial/
MyFirstLanguageFrontend/LangImpl02.html

https://www.intel.com/programmable/technical-pdfs/683521.pdf
https://www.intel.com/programmable/technical-pdfs/683521.pdf
https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl02.html
https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl02.html

92 Y. He et al.

3. MLIR dialects document. https://mlir.llvm.org/docs/Dialects/
4. MLIR toy language. https://mlir.llvm.org/docs/Tutorials/Toy/Ch-1/
5. Franchetti, F., al.: Discrete fourier transform on multicore. IEEE Sig. Process.

Mag. 26(6), 90–102 (2009)
6. Franchetti, F., al.: SPIRAL: extreme performance portability. From High Level

Specification High Performance Code 106(11), 1935–1968 (2018)
7. Frigo, M.: A fast fourier transform compiler. In: ACM SIGPLAN 1999 Conference

on Programming Language Design and Implementation, pp. 169–180 (1999)
8. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE

93(2), 216–231 (2005)
9. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-

ysis amp; transformation. In: CGO 2004, pp. 75–86 (2004)
10. Lattner, C., al.: MLIR: Scaling compiler infrastructure for domain specific com-

putation. In: 2021 IEEE/ACM International Symposium on Code Generation and
Optimization, pp. 2–14 (2021)

11. Van Loan, C.: Computational frameworks for the fast Fourier transform. In: SIAM
(1992)

https://mlir.llvm.org/docs/Dialects/
https://mlir.llvm.org/docs/Tutorials/Toy/Ch-1/

	FFTc: An MLIR Dialect for Developing HPC Fast Fourier Transform Libraries
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology: A Domain-Specific Language for FFT
	4.1 The FFTc Language and Grammar
	4.2 FFTc Compilation Pipeline

	5 Experimental Setup
	6 Results
	7 Discussion and Conclusion
	References

