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Abstract. Here, the IRIS programming model is evaluated as a method
to improve performance portability for heterogeneous systems that use
LU matrix factorization. LU (lower-upper) factorization is considered
one of the most important numerical linear algebra operations used in
multiple high-performance computing and scientific applications. IRIS
enables the separation of the algorithm’s definition from the tuning by
using tasks + dependencies. This considerably reduces the effort required
to achieve performance portability on heterogeneous systems. One IRIS
code can use different settings depending on the underlying hardware
features. Different configurations are evaluated on two different hetero-
geneous systems to achieve important speedups for the reference code
with minimal changes to the source code.
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1 Introduction

This paper describes performance portability on different heterogeneous systems
using the IRIS programming model1 for LU (lower-upper) matrix factorization.
Iris is a task + dependency-based programming model in which each task can
encapsulate almost any kind of current parallel code (e.g., OpenMP, CUDA,
HIP, OpenACC) and targets almost any current parallel computer architecture
(e.g., CPUs, graphics processing units [GPUs], digital signal processors [DSPs],
field-programmable gate arrays [FPGAs]).

1 https://iris-programming.github.io/.
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We use LU factorization as a motivating case study given its importance in
multiple high-performance computing (HPC) applications [1–3], but the ideas
explored in this paper can also be effectively applied to other HPC applications.
LU factorization is also one of the most important benchmarks [4,5] used to
evaluate the performance of HPC systems.2 Parallel LU factorization is com-
posed of four major and completely different operations that must be computed
on blocks of different shapes and sizes, and the size of these blocks are different
along the computation. All these factors make LU factorization a challenging
case study for performance portability on heterogeneous systems—for which the
best target architecture of each application component is unclear.

To make performance portability on heterogeneous systems simpler, we sep-
arate the algorithm design from the tuning. While the algorithm is described by
using tasks + dependencies on top of IRIS, the tuning consists of choosing the
target/code for each of the tasks, which enables us to use one code for multiple
platforms.

The rest of the paper is organized as follows: Sect. 2 presents the main charac-
teristics of the IRIS programming model, Sect. 3 introduces the LU factorization
case study, and Sect. 4 outlines the effort to implementation a portable and het-
erogeneous LU code using IRIS. The performance study is described in Sect. 5.
Finally, related work is summarized in Sect. 6, and future directions and conclu-
sions are presented in Sect. 7.

Fig. 1. The IRIS architecture.

2 https://www.top500.org/.

https://www.top500.org/


A Portable and Heterogeneous LU Factorization on IRIS 19

2 IRIS Programming System

As a programming system for extremely heterogeneous architectures, IRIS [6]
enables application developers to write portable applications across diverse het-
erogeneous programming platforms, including CUDA, HIP, Level Zero, OpenCL,
and OpenMP (Fig. 1). IRIS orchestrates multiple programming platforms into
a single execution/programming environment by providing portable tasks and
shared virtual device memory.

IRIS provides a task-based programming model in which a task is a schedul-
ing unit. A task runs on a single device but is portable across any compute device
in a system. A task can contain zero or more commands, and there are four types
of commands: (1) host-to-device memory copy, (2) device-to-host memory copy,
(3) kernel launch, and (4) host. Because a task can have a dependency on other
tasks, it cannot start until the prerequisite tasks complete. Therefore, writing
an IRIS application means building directed acyclic graphs of tasks. Each task
has a target device selection policy when it is submitted. This policy is specified
by the programmer, and it can be a device number, device type (e.g., CPU,
GPU, FPGA, DSP), or a built-in policy provided by IRIS (e.g., greedy, random,
locality-aware, profile).

To achieve application portability and flexible task scheduling with effective
data orchestration, IRIS provides shared virtual device memory across multiple,
disjointed physical device memories. IRIS automatically transfers data across
multiple devices to keep memory consistency across tasks. Therefore, all compute
devices can share memory objects in the shared virtual device memory, and they
can see the same content in the memory objects.

3 LU Factorization

Decomposing a matrix A into lower and upper triangular matrices (i.e., the LU
factorization) is used to more easily solve systems of linear equations:

Ax = LUx = B. (1)

LU factorization plays a key role in many computational science applications.
However, it is also computationally expensive, which motivated us to develop a
new LU factorization implementation on top of the IRIS programming model to
provide performance portability on different modern heterogeneous systems.

One of the most common ways to parallelize this type of operation is to
decompose the matrix into tiles by defining the dependencies between the tiles
and the operations to be computed on each tile. This can be accomplished
through tasking [7–9].

The LU factorization on a tiled matrix (Fig. 2) consists of (1) factorizing the
first tile of the diagonal to obtain the L (dark-green) and U (light-green) matrices
of the tile; (2) computing several TRSMs (light-blue) by using the L matrix for
the corresponding row and the U matrix for the corresponding column; and
(3) computing the so-called update step (dark-blue) by multiplying (i.e., general
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matrix multiply [GEMM]) the result of the set of TRSMs and updating the tiles
in the rest of the matrix. We compute the next tile of the diagonal and the next
two steps until the entire matrix is computed.

...

...

...

...

Fig. 2. LU decomposition.

Although the state-of-the-art routine for LU factorization involves pivoting,
we developed a non-pivoting version for two reasons: (1) the pivoting is not
necessary on well-conditioned matrices, and (2) we want to analyze the perfor-
mance of the proposed optimizations without the influence of pivoting for the
sake of performance analysis. Additionally, although using pivoting to solve lin-
ear systems of equations is commonly accepted, we found multiple problems in
which the matrices were well conditioned, which made expensive operations such
as pivoting unnecessary. For this reason, multiple implementations in reference
libraries do not use such a technique. Examples include PLASMA [9], LASs [7],
Intel’s MKL,3 NVIDIA’s cuSolver [10] and cuSparse [11], FISHPACK [12,13],
and SuperLU [14].

4 Implementation

Figure 3 shows the pseudocode for the IRIS-implemented LU factorization. At
this algorithm level, we declare the different memory spaces and tasks and depen-
dencies among them and describe the algorithm to be computed. As shown, every
task can be computed on a CPU, a GPU, or both depending on the optimizations
and ideas we want to explore. These optimizations do not require code modifica-
tions at the algorithm level, but they are conducted internally in each of the tasks
at the implementation level. Although the algorithm is described/implemented
at the algorithm level in an architecture-agnostic way, the implementation level
(set of tasks) attempts to obtain the maximum performance on the target archi-
tecture. One of the benefits of using IRIS is that one algorithm-level code can
have multiple and different implementation levels with each optimized for a spe-
cific heterogeneous platform.
3 https://software.intel.com/en-us/mkl-developer-reference-c-mkl-getrfnpi.

https://software.intel.com/en-us/mkl-developer-reference-c-mkl-getrfnpi
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1 int SIZE= 16384; int TILE_SIZE = 512; int num_tiles = SIZE/TILE_SIZE
2 A = malloc(SIZE*SIZE);
3 //Creation of the IRIS graph
4 iris_graph graph;
5 iris_graph_create(&graph);
6 //Creation of the IRIS memory space
7 iris_mem A_iris, B_iris0, B_iris1, C_iris;
8 iris_mem_create( TILE_SIZE * TILE_SIZE, &A_iris);
9 iris_mem_create( TILE_SIZE * (SIZE-TILE_SIZE), &B_iris0);

10 iris_mem_create( TILE_SIZE * (SIZE-TILE_SIZE), &B_iris1);
11 iris_mem_create((SIZE-TILE_SIZE) * (SIZE-TILE_SIZE), &C_iris);
12 //Creation of the IRIS tasks pointers
13 iris_task *getrf = malloc(num_tiles*sizeof(iris_task));
14 iris_task *trsm_top = malloc(num_tiles*sizeof(iris_task));
15 iris_task *trsm_left = malloc(num_tiles*sizeof(iris_task));
16 iris_task *gemm = malloc(num_tiles*sizeof(iris_task));
17 //Creation of the IRIS tasks parameters
18 struct *getrf_params = malloc( num_tiles * sizeof(getrf_params);
19 struct *trsm_top_params = malloc( num_tiles * sizeof(getrf_params);
20 struct *trsm_left_params = malloc( num_tiles * sizeof(getrf_params);
21 struct *gemm_params = malloc( num_tiles * sizeof(getrf_params);
22 for ( d = 0; d < num_tiles; d++){
23 //---GETRF TASK---
24 //Creation of the getrf[d] task
25 iris_task_create_perm(&getrf[d]);
26 //Initialization of getrf task's parameters
27 getrf_params[d].M = TILE_SIZE;
28 getrf_params[d].LDA = TILE_SIZE;
29 ...
30 getrf_params[d].A_cpu = &A[( (d * TILE_SIZE) * LDA ) + ( d * TILE_SIZE )];
31 getrf_params[d].A_gpu = A_iris;
32 //Initialization of the task
33 iris_task_host(getrf[d], getrf_task, &getrf_params[d]);
34 //Queue task into the graph
35 iris_graph_task(graph, getrf[d], iris_default, NULL);
36 //---TRSM-TOP TASK---
37 n = d + 1
38 iris_task_create_perm(&trsm_top[d]);
39 //Defining dependencies of the trsm-top tasks
40 iris_task_depend( trsm_top[d], 1, &getrf[d]);
41 trsm_top_params[d].M = TILE_SIZE;
42 trsm_top_params[d].LDA_cpu = SIZE;
43 trsm_top_params[d].LDA_cpu = TILE_SIZE;
44 ...
45 trsm_top_params[d].A_cpu = &A[( (d * TILE_SIZE) * LDA ) + ( d * TILE_SIZE )];
46 trsm_top_params[d].A_gpu = A_iris;
47 trsm_top_params[d].B_cpu = &B[( (n * TILE_SIZE) * LDA ) + ( d * TILE_SIZE )];
48 trsm_top_params[d].B_gpu = B_iris0;
49 iris_task_host(trsm_top[d], trsm_task, &trsm_top_params[d]);
50 iris_graph_task(graph, trsm_top[d], iris_default, NULL);
51 //---TRSM-LEFT TASK---
52 m = d + 1
53 iris_task_create_perm(&trsm_left[d])
54 iris_task_depend( trsm_left[d], 1, &getrf[d]);
55 trsm_left_params[d].M = TILE_SIZE;
56 trsm_left_params[d].LDA_cpu = SIZE;
57 trsm_left_params[d].LDA_cpu = TILE_SIZE;
58 ...
59 trsm_left_params[d].A_cpu = &A[( (d * TILE_SIZE) * LDA ) + ( d * TILE_SIZE )];
60 trsm_left_params[d].A_gpu = A_iris;
61 trsm_left_params[d].B_cpu = &B[( (d * TILE_SIZE) * LDA ) + ( m * TILE_SIZE )];
62 trsm_left_params[d].B_gpu = B_iris1;
63 iris_task_host(trsm_left[d], trsm_task, &trsm_left_params[d]);
64 iris_graph_task(graph, trsm_left[d], iris_default, NULL);
65 //---GEMM TASK---
66 iris_task_create_perm(&gemm[d]);
67 brisbane_task gemm_dep[] = { trsm_top[d], trsm_left[d] };
68 iris_task_depend( gemm[d], 2, gemm_dep);
69 gemm_params[d].M = SIZE - ( m * TILE_SIZE);
70 gemm_params[d].LDA_cpu = SIZE;
71 ...
72 gemm_params[d].A_cpu = &A[( (d * TILE) * LDA ) + ( m * TILE )];
73 gemm_params[d].B_cpu = &A[( (n * TILE) * LDA ) + ( d * TILE )];
74 gemm_params[d].C_cpu = &A[( (n * TILE) * LDA ) + ( m * TILE )];
75 gemm_params[d].A_gpu = B_iris1;
76 gemm_params[d].B_gpu = B_iris0;
77 gemm_params[d].C_gpu = C_iris;
78 iris_task_host( gemm[d], gemm_task, &gemm_params[d] );
79 iris_graph_task(graph, gemm[d], iris_default, NULL);
80 }
81 iris_graph_submit(graph, iris_default, 1);

Fig. 3. LU factorization code using IRIS.



22 P. Valero-Lara et al.

The implementation of our LU factorization consists of four different tasks
(Fig. 4): (1) GETRF, in which we compute a no-pivoting LU factorization on the
top-left corner matrix TILE; (2) TRSM-top, in which we compute the level-3
BLAS TRSM routine by using the lower side of the LU factorization computed
in the previous task as the input matrix (A in Fig. 4) and the rectangular tile
located at the right of the LU matrix as the output matrix (B in Fig. 4); (3)
TRSM-left, in which we compute the same level-3 BLAS operation used in the
previous task but on a different part of the matrix by using the upper side of
the LU matrix computed by the first task (GETRF) as input and a set of square
tiles located under the lower side of the LU matrix as output (B0, B1, B2, and B3

in Fig. 4); and (4) GEMM, in which we compute a matrix-matrix multiplication
by using the output of the two previous tasks as input and the remaining matrix
parts as output. We compute all the previous tasks until the entire matrix is
computed (Figs. 2 and 4 [left]).

Fig. 4. Tasks of the LU decomposition implementation.

4.1 Memory Management

Our goal is to maximize the use of both the CPU and the GPU. In general, prob-
lems with larger tile sizes achieve relatively higher performance during computa-
tion. Knowing this, instead of using square tiles (Fig. 2), we decided to use rect-
angular tiles when possible. The only exception is the TRSM-left task/operation
(Fig. 4), in which the rectangular tile is divided into a set of square tiles. This
decomposition, which is carried out internally in the TRSM-left task at the
implementation level, is necessary because this particular operation requires the
vertical dimensions of both A (input) and B (output) matrices to be the same.4

In our code, we use one pointer (A in Fig. 3) to allocate the matrix to be
factorized. Additionally, we create four different memory spaces that correspond
to the memory computed (tiles) from each of the tasks. This way we can define
the two-level memory space, one used at the algorithm (IRIS) level (A pointer)
and one used at the implementation (task) level (A iris, B iris0/1, and C iris).
4 http://www.netlib.org/lapack/explore-html/db/def/group complex blas level3

gaf33844c7fd27e5434496d2ce0c1fc9d4.html.

http://www.netlib.org/lapack/explore-html/db/def/group__complex__blas__level3_gaf33844c7fd27e5434496d2ce0c1fc9d4.html
http://www.netlib.org/lapack/explore-html/db/def/group__complex__blas__level3_gaf33844c7fd27e5434496d2ce0c1fc9d4.html
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4.2 Tasking

As we described above, the idea is to maximize the use of both the CPU and the
GPU. To do that, apart from carrying out the matrix decomposition illustrated
in Fig. 4, we use multithreaded (CPU and GPU) computations to exploit the
parallelism at both the algorithm and the implementation levels.

In our code, basically every task corresponds to one LAPACK or BLAS
routine. As parameters, we need the same parameters that are described in the
standard specification of these math libraries, so we can then see the tasks as a
wrapper to a standard linear algebra library. For convenience, we implemented
a different C structure data type per LAPACK or BLAS routine, which is then
used to pass the arguments from the algorithm level to the implementation level.

Although it is well known that LU factorizations do not perform well for
small matrices on GPUs, it is difficult to know which platform (i.e., CPU or
GPU) is best suited for the rest of the tasks. This is particularly challenging
when the workload and number of operations (i.e., size of the tiles) in each of
the tasks change along the execution. Another important factor to consider is the
differences of the components in our heterogeneous systems and the connections
between them. Fortunately, in IRIS, one task can be run on either the CPU or
the GPU; in other words, we can decide which architecture to use depending on
the size of the tile or other factors. We implemented several approaches for each
of the tasks using CPU-only, GPU-only, and CPU-GPU methods (Fig. 5).

Next, we explain the main characteristics of the different implementations of
each task.

GETRF. The computation of the LU (no pivoting) factorization is carried out
on the CPU. Although, we do not perform a GPU computation in this task,
we can make some computationally expensive memory transfers between CPU
and GPU, such as transferring the B matrices used by the TRSM tasks (TRSM-
top and TRSM-left in Fig. 4) while LU factorization is being computed. So,
we have two different implementations: (1) one in which we only compute the
LU factorization on the CPU and (2) one in which we simultaneously compute
the LU factorization, perform the CPU-to-GPU memory transfers for B matrices
used by TRSM tasks, and perform the CPU-to-GPU transfer of the factorization
output because this is also used by TRSM tasks.

TRSM-Top. Three different variants of TRSM-top were implemented: (1) a
CPU version in which we make use of the TRSM routine within the CPU vendor
libraries (e.g., IBM ESSL on Summit and Intel MKL on Oswald), (2) a GPU
version in which we compute both a cuBLAS call for the TRSM computation
and CPU-GPU memory copies for the input (from CPU to GPU) and output
(from GPU to CPU), and (3) an optimization of the GPU version in which we
compute a cuBLAS TRSM call and a GPU-CPU memory copy to transfer the
result of the cuBLAS routine from GPU to CPU. In the last implementation,
we do not carry out the CPU-to-GPU communication because this is performed
in the GETRF task.
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Fig. 5. The IRIS algorithm-implementation partition.

TRSM-Left. Two different versions of TRSM-left were implemented here: (1)
a CPU implementation in which we compute the TRSM routine of the IBM
ESSL library on Summit and the Intel MKL library on Oswald and (2) a GPU
code in which we compute the CPU-GPU memory copies necessary to transfer
the input to GPU memory and the output to CPU memory after computing the
cuBLAS TRSM routine on the GPU.

4.3 GEMM

We implemented three different variants of GEMM: (1) a CPU code that uses
CPU vendor libraries; (2) a GPU code in which the C matrix is transferred
from CPU/GPU to GPU/CPU before/after the GPU computation of GEMM
(cuBLAS), the A matrix is transferred from CPU to GPU before the computa-
tion, and the B matrix (output of TRSM-top) is already in GPU memory; and
(3) an optimized GPU implementation in which only the A matrix is transferred
from CPU to GPU before the computation of GEMM on the GPU, and the
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Table 1. Summit and Oswald hardware specifications.

Name Summit Oswald

CPU Architecture IBM Power 9 Intel Xeon E5-2683 v4

Frequency 3,800 MHz 2,100 MHz

Cores 22 32

Memory 512 GB 256 GB

Compiler GCC 8.3.1 GCC 11.1.0

LAPACK/BLAS ESSL MKL

GPU Architecture NVIDIA (Volta) V100 NVIDIA (Pascal) P100

Frequency 1,455 MHz 1,126 MHz

CUDA Cores 5,120 3,584

SM/CU Count 80 60

GPU-to-CPU Comm NVLink 2.0 (50 GB/s) PCIe Gen3 (16 GB/s)

Shared Memory up to 96 KB per SM 64 KB per SM

L1 up to 96 KB per SM 64 KB per SM

L2 6,144 KB (unified) 4,096 KB (unified)

Memory HBM2 16 GB HBM2 12 GB

Bandwidth 900 GB/s 549 GB/s

Compiler NVCC v11.0.221 NVCC v11.0.194

BLAS cuBLAS cuBLAS

top-left tile of the C matrix is transferred from GPU to CPU after the computa-
tion of GEMM. In the last implementation, we transfer the whole matrix to be
factorized from CPU to GPU at the very beginning of the execution. Although
this can be time consuming, it is only done once and has important implications
for the overall performance (see Sect. 5).

5 Performance Analysis

This section describes the performance analysis of our code and the different
variants/optimizations implemented. For a test case, we used a 16, 384× 16, 384
matrix with a tile size of 512×512. We used two different heterogeneous systems
for our analysis—Summit and Oswald (see Table 1 for the hardware features).

5.1 GETRF

For the GETRF task, we used Intel MKL’s LAPACKE mkl dgetrfnpi routine
on Oswald, whereas we used our own code on Summit because the IBM ESSL
library does not have a routine for the non-pivoting LU factorization. In terms of
performance, the optimized vendor library (i.e., Intel MKL on Oswald) achieved



26 P. Valero-Lara et al.

much better performance (about 48 GFLOP/s) compared to our own implemen-
tation on Summit (15 GFLOP/s). However, as we describe below, this did not
have a significant impact on the overall performance.

When overlapping communication with computation (i.e., to transfer the B
matrix used by TRSM tasks and the output of the factorization from CPU to
GPU), we see a fall in performance when compared to the CPU-only implemen-
tation, and we achieve an overall performance of 11 GFLOP/s on Summit and
42 GFLOP/s on Oswald.

5.2 TRSM-top

Fig. 6. TRSM-top performance.

Figure 6 illustrates the performance reached by the TRSM-top task on Sum-
mit and Oswald. As expected, the GPU-optimized implementation reaches the
highest performance on both systems, at least in the first steps. On Summit,
the performance of this implementation is considerably higher than the other
two implementations—about 2× higher in some cases. In fact, this is the fastest
implementation for all steps on Summit. On Oswald, the performance of the
GPU-optimized implementation is higher than the CPU implementation (sec-
ond fastest implementation) in the first steps; however, the CPU implementation
is the faster one in the last steps, in which the computational cost and parallelism
of computing TRSM is much lower. Although Summit has a much faster CPU-
GPU connection (NVLink), a larger number of CPU cores and a more similar
performance (GFLOP/s) between CPU and GPU makes the CPU implemen-
tation on Oswald faster than the GPU-optimized implementation for the last
steps.

As shown, although the GPU-optimized implementation is the best choice
for Summit, Oswald benefits from a heterogeneous approach (task) in which the
GPU-optimized implementation is used during the first steps of the algorithm,
and the CPU implementation is computed in the last steps.

5.3 TRSM-Left

Although we use the same level-3 BLAS operation from the previous task, we
achieve very different performance results owing to the different matrix decompo-
sition required by this operation. Again, as we can see in Fig. 7, the performance
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varies significantly depending on the target platform. While the performance
of the GPU implementation is lower than that of the CPU implementation on
Oswald, we see the opposite scenario for Summit, where the GPU implementa-
tion is considerably faster than the CPU implementation.

As was the case for the TRSM-top task, we also need a different configuration
here depending on the target platform.

Fig. 7. TRSM-left performance.

5.4 Join TRSM-Top and TRSM-Left

For Oswald, we can see that although the GPU implementation is better for
TRSM-top, the CPU implementation is the better choice for TRSM-left. Because
both tasks are totally independent, this opens an opportunity for better perfor-
mance on Oswald by computing both tasks in parallel using the more suitable
implementation for each task. As shown Fig. 8, joining both tasks enables sig-
nificant speedup.

Fig. 8. Left: Time (s) of TRSM-top + TRSM-left and join-TRSM. Right: Join-TRSM
speedup.
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5.5 GEMM

Unlike the other two tasks, for GEMM we see the same behavior in both het-
erogeneous systems (Fig. 9). The GPU-optimized implementation has proven to
be the fastest implementation in both systems and is 6×–8× faster than the
second-fastest approach. As expected, the performance decreases along the exe-
cution; this can be seen in the other tasks too, in which the computational cost
and the parallelism are much lower in the last steps than in the first steps of the
algorithm.

Fig. 9. GEMM performance.

5.6 Overall Performance

Here, we evaluate the overall performance for the different task implementa-
tions, and we start with the CPU-only implementations. On Oswald, we achieved
an overall performance of 340 GFLOP/s, whereas on Summit we achieved 120
GFLOP/s. The relatively poor performance on Summit is from our implemen-
tation of the GETRF task.

Next, we evaluate using both the CPU and the GPU. For this, GETRF is
computed on the CPU, and the rest of the tasks are computed on the GPU. We
do not overlap computation with memory transfers at this level. On Oswald, we
achieved 225 GFLOP/s, whereas on Summit, we achieved 511 GFLOP/s. Here,
Summit’s faster CPU-GPU connection results in better performance. The lower
CPU-GPU bandwidth on Oswald has a negative impact on performance, and
the overall performance is lower than using only the CPU.

Moving on, we focus on the overall performance impact of the different opti-
mizations implemented in the tasks. We start with Oswald. By overlapping the
LU factorization with CPU-GPU communication in the GETRF task, and by
using the GPU to compute the TRSM-top task, we increased performance to
235 GFLOP/s. Also, by running TRSM-left on the CPU instead of the GPU, we
achieved 275 GFLOP/s. As shown in Fig. 9, the most important optimization
consists of moving the whole matrix from CPU to GPU at the very beginning.
Using the GPU-optimized implementation in the GEMM task, we increased the
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overall performance to 652 GFLOP/s. Finally, we conducted the last optimiza-
tion, which consists of joining TRSM-left (computed on the CPU) and TRSM-
top (computed on the GPU), which increased the overall performance to 700
GFLOP/s.

Next, we focus on Summit. By overlapping the LU factorization with the
CPU-GPU communication in the GETRF task, we increased the overall perfor-
mance to 546 GFLOP/s. As shown in Fig. 7, using the CPU is not faster than
using the GPU for TRSM-left. With that in mind, the optimizations on Oswald
for TRSM tasks are not beneficial on Summit, but computing both tasks on the
GPU is better. Finally, using the GPU-optimized implementation of the GEMM
task increases the overall performance considerably—achieving 1,972 GFLOP/s.

6 Related Works

Recently, we have seen important progress toward performance portability. Some
examples are the C++ template metaprogramming libraries Kokkos [15] and
RAJA [16]. These libraries can build different binaries that target different archi-
tectures from one source code. However, they cannot use more than a single
architecture at a time.

Using CPUs and GPUs for HPC codes has been widely studied [13,17,18].
Since OpenMP 4.0, it is possible to use GPU offloading in OpenMP codes.
Valero-Lara et al. [19] used OpenMP 4.5 to implement a heterogeneous version
of the TRSM level-3 BLAS routine and achieved good performance on one node
of Oak Ridge National Laboratory’s Summit supercomputer. One important
reference for heterogeneous linear algebra codes is the MAGMA [20] library.
MAGMA, offers multiple heterogeneous implementations for several LAPACK
routines. Unfortunately, there is not an implementation for our test case.

In contrast, our work focuses on the potential benefits of using IRIS for per-
formance portability on heterogeneous HPC architectures. To the best of our
knowledge, this is the first time that a portable and heterogeneous LU factor-
ization code (i.e., IRIS) has been implemented and analyzed.

7 Final Remarks and Future Directions

The difference in current and upcoming heterogeneous systems hinders imple-
mentation of HPC codes. By using IRIS, we not only make this effort more
affordable, but we can also implement portable and heterogeneous HPC codes
by separating the algorithm design from the implementation. First, we described
our algorithm using tasks + dependencies. After that, we had to decide which
code to use in each of the tasks. A specific and different setting must be used
depending on the target platform. In this paper, we were able to optimize one
of the most important HPC algorithms, the LU factorization, on two different
heterogeneous platforms with minimal modifications to the code.

However, a more thorough and computationally expensive study is required
to evaluate which code/implementation should be used in each of the tasks. In
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the future, we plan to implement alternatives that enable one to compute the
setting in an automatic and computationally cheaper manner. We also want to
extend this effort to other HPC applications and heterogeneous systems.
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