®

Check for
updates

Task-Level Checkpointing System
for Task-Based Parallel Workflows

Pere Vergés®)®, Francesc Lordan®, Jorge Ejarque®, and Rosa M. Badia

Department of Computer Sciences, Barcelona Supercomputing Center,
Barcelona, Spain
{pere.verges,francesc.lordan, jorge.ejarque,rosa.m.badia}@bsc.es

Abstract. Scientific applications are large and complex; task-based pro-
gramming models are a popular approach to developing these applica-
tions due to their ease of programming and ability to handle complex
workflows and distribute their workload across large infrastructures. In
these environments, either the hardware or the software may lead to fail-
ures from a myriad of origins: application logic, system software, mem-
ory, network, or disk. Re-executing a failed application can take hours,
days, or even weeks, thus, dragging out the research. This article pro-
poses a recovery system for dynamic task-based models to reduce the re-
execution time of failed runs. The design encapsulates in a checkpointing
manager the automatic checkpointing of the execution, leveraging dif-
ferent mechanisms that can be arbitrarily defined and tuned to fit the
needs of each performance. Additionally, it offers an API call to establish
snapshots of the execution from the application code. The experiments
executed on a prototype implementation have reached a speedup of 1.9x
after re-execution and shown no overhead on the execution time on suc-
cessful first runs of specific applications.

Keywords: High-Performance Computing - Checkpointing -
Task-based programming model - Recovery System - Fault Tolerance

1 Introduction

Supercomputers and cloud computing have become essential tools for researchers
to work on their investigations. The amount of data used in scientific applica-
tions has dramatically escalated and the computation time required to execute
them. Parallelizing applications using multiple networked computers shortens
its execution time, making research more manageable. Furthermore, distribut-
ing the workload across large infrastructures enables higher levels of parallelism,
unreachable when using one single machine.

Using shared distributed infrastructures such as clusters, supercomputers, or
the Cloud, usually entails execution time limits and resource quotas — e.g., disk —,
increasing the probability of unexpected issues that makes the application unable
to complete. There are myriad reasons for that: network disruptions, inability
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

J. Singer et al. (Eds.): Euro-Par 2022 Workshops, LNCS 13835, pp. 251-262, 2023.
https://doi.org/10.1007/978-3-031-31209-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31209-0_19&domain=pdf
http://orcid.org/0000-0002-4109-1071
http://orcid.org/0000-0002-9845-8890
http://orcid.org/0000-0003-4725-5097
http://orcid.org/0000-0003-2941-5499
https://doi.org/10.1007/978-3-031-31209-0_19

252 P. Vergés et al.

to allocate memory, disk quota violations, issues with the shared file system,
exceeding the allowed execution time, etc. Frequent solutions for these problems
consist of retrying the failed computation on the same node or changing the
host for that part upon failure detection. However, in most cases, the application
fails due to the lack of resources. Therefore, either the crash affects the whole
system or the queuing system ends the execution. A more complex solution
to overcome these shortcomings consists of establishing checkpoints where the
application saves its status and data values in persistent data space to avoid the
re-computation of previous values on future re-executions of the application.

This article contributes to the current state of the art by proposing and
evaluating a system that allows applications developed following a task-based
programming model to recover from failures and reduce their re-execution time.
Thus, application users will speed up significantly their research on their respec-
tive disciplines by avoiding computations that take hours, days, and even weeks
while using extensive computing infrastructures.

The proposed system leverages the determinism of tasks to avoid re-executing
non-failed tasks in case of breakdown by automatically copying their output as
the execution goes on. Performing such copies entails a significant overhead on
network and storage operations; the optimal balance for this trade-off between
resilience and performance depends on each execution and the preferences of
the end-user. To that end, the proposed system combines various mechanisms
that systematically select which output values to checkpoint and envisages the
customization of these decisions by incorporating mechanisms to define new
policies. The user can define these policies by creating arbitrary checkpointing
groups of tasks. Besides systematic copies, the system also provides application
developers with a method to set up specific points in the application code to
checkpoint the execution status.

The article continues by describing the baseline knowledge to understand
the details of the presented work in Sect.2. Section 3 discuss the design and
implementation details of the solution. Section 4 evaluates and presents the per-
formance measures that validate the solution’s viability with a prototype, Sect. 5,
casts a glance over the research already performed on the area. Finally, Sect. 6
concludes this work.

2 Checkpointing Task-Based Workflows

Task-based parallel programming models have become more popular and are a
standard solution for creating parallel applications. This popularity is due to
their higher development productivity due to their automatic exploitation of
the inherent parallelism and, second, their ability to ease the implementation of
scientific workflows by combining executions of different applications.

Such models build on the concept of task: a stateless logic executed asyn-
chronously. It processes a specific set of input values to produce some output
values. Applications are a combination of tasks where data establishes a depen-
dency relation, defining a workflow. Often represented as a directed acyclic

Task-Level Checkpointing System for Task-Based Parallel Workflows 253

l 1 Task checkpointed

g 3 = Task output not copied
1 1

' v

Task output copied

1 1
) Task not checkpointed
= .
! |
2 2
1 i
v 4

Fig. 1. Diagrams depicting four different situations where different output values are
persisted to checkpoint Task 1.

graph, where nodes correspond to tasks, and edges illustrate data dependen-
cies. Executing a task producing a data value will always precede the execution
of a task consuming such value. A task will not start its execution until all its
input data has been generated by its predecessor tasks.

Runtime systems supporting these programming models know which tasks
are ready to execute and fully exploit the parallelism inherent to the application
given the available infrastructure. Besides, they apply techniques to increase the
application parallelism, such as data renaming to avoid false data dependencies.
Instead of keeping a single value of the data, the runtime makes a new copy for
each value computed for a datum, thus, enabling a task updating a datum to run
ahead of others reading that value. Awareness of all the values that relate to the
same data allows the system to consolidate a version and remove the preceding
values that will no longer be used.

These runtime systems usually follow an architecture where one of the nodes
hosts a process (the master) orchestrating the execution, and the other nodes
run a middleware software (worker) that hosts the execution of the tasks. The
worker can notice task failures when they terminate abruptly or an exception
arises and notifies the failure to the master. When losing the connection with a
worker, the master assumes that all the tasks offloaded to that node have failed.
After unsuccessfully trying to recover from a task failure, the master terminates
the execution, and the whole application fails. Errors on the master would end
the execution abruptly. We aim to persist some data values so that the following
re-executions recover them, avoiding a partial re-execution.

To that end, this work leverages the stateless, serverless, and determinism
properties of deterministic tasks. A deterministic task always produces the same
output values regardless of the node and moment it runs, given the same input
values. Therefore, persisting all output values of the task beyond the run enables
future executions of the application to skip the re-computation of the previous
task. This technique is known in the bibliography as task-level checkpointing
[10,12]; tasks that will not be re-executed in upcoming runs of the application
are checkpointed tasks. Despite building on the task determinism, the presented
solution is also valid for applications that exploit randomness in their computa-
tions — e.g., Monte Carlo simulations. Our solution design can execute stochastic
algorithms. However, the seed of the pseudo-random generator must be treated
as another application value to re-create the exact computation as it was in the
previous execution and pass it in as another input value for each task.

254 P. Vergés et al.

Group 1) (Group 2

1 3
Task not checkpointed

Task checpointed
= Task output not copied
Task output copied

s e H

Fig. 2. Task diagram showing the output copies of a task workflow.

Being part of a workflow allows relaxing the conditions to consider a task
as checkpointed from having all its output values persisted, to having each of
the output values of the task, either persist or ensure that the value into con-
sideration will no longer be used in the future — i.e., all tasks consuming the
value have been checkpointed, and new tasks consuming the value cannot be
created. Figure 1 depicts four different situations where Task 1, which produces
two output values, is checkpointed by persisting different values. The first situa-
tion shows the original practice that persists all the output values to checkpoint
the task. In the second case, it is unnecessary to persist one of the output val-
ues since checkpointing Task 2 ensures that the value will not be needed in the
future. In this specific example, the second value persisted; however, as shown in
the third situation, checkpointing Task 3 would have a similar effect and avoid
persisting the value. The last case shows a slightly different situation, where the
second output value is consumed by Task 3, but the output value could still
create new tasks consuming the value. Therefore, the value needs to be saved
despite Task 3 being checkpointed.

Whereas some task-based programming models define a static workflow
before execution and, perhaps, scale the number of tasks according to the size
of the processed data, some other models are more flexible and allow adapting
the whole workflow depending on task results. In the latter case, the component
spawning tasks require a mechanism to synchronize the results of some tasks to
evaluate them and continue with the dynamic generation of tasks (e.g., to check
convergence in a loop). These synchronization values need to be persisted and
cannot be deleted even if future executions have no tasks consuming them to
enable the re-creation of the same workflow.

Two essential aspects that automatically capture the progress of any appli-
cation are the execution time and the amount of already finished tasks; hence,
the proposed system implements two mechanisms building on them. The first
mechanism, Periodic Checkpoint, registers the finished tasks and the produced
data values and periodically triggers data operations to persist the output values
computed until execution, avoiding unnecessary values as depicted in Fig. 1. The
Finished Tasks mechanism behaves similarly, but the trigger is the completion of
N tasks. The more frequent the checkpointing is, the fewer possibilities to avoid
persisting values; however, the longer the checkpointing period is, the more tasks
will need to be re-executed if the application fails.

Checkpointing can achieve an optimal balance between one execution per-
formance and resilience by defining arbitrary checkpointing groups. The system

Task-Level Checkpointing System for Task-Based Parallel Workflows 255

persists only the final output values of each group and dismisses the values
corresponding to intermediate versions or deleted data. Figure?2 illustrates an
example of how arbitrarily grouping tasks impacts the amount of checkpointed
values. The group distribution in the leftmost part of the figure depicts a case
where groups are done according to the depth level in the graph. The group
distribution shows that, for this specific workflow, creating groups according to
data dependencies reduces the amount of persisted values from four to two by
avoiding making persistent the intermediate value between them.

3 Solution Design and Implementation

Finding an optimal selection of values to checkpoint requires deep knowledge
of the application workflow, the host infrastructure, the size of the problem
solved with the application, and the current progress of each execution. The
runtime system orchestrating the workflow execution is the only point where all
this knowledge meets; therefore, there is the best place to select which values
to persist. To that end, this article aims to provide the runtime system with
a Checkpoint Manager (CM) component encapsulating the automatic manage-
ment of the checkpointing for the execution. Figure 3 depicts an overview of the
architecture of the proposed system.

The Runtime System (RS) notifies the CM of the different events required
to checkpoint tasks. When the application generates a new task, the RS queries
the CM whether the task was checkpointed in a previous execution. If it does,
the task execution is skipped, and the checkpointed values are restored as if
the task computed them for their later use in a non-checkpointed task or a
synchronization point. Otherwise, if the task has not been checkpointed, the
checkpoint manager registers its existence.

The RS also notifies the CM of other execution events such as finalizations
of tasks, indicating the location of output values, accesses to synchronization
values, and value deletions. With that information, the CM can know the values
needed to recreate the workflow, request their persistence, or order their deletion
when they will not be involved in future tasks or access synchronization points
to minimize the I/O usage.

The CM component implements an engine supporting all the checkpoint-
ing mechanisms described in Sect. 2. Policymakers can combine them to create

Policies

Checkpoint Manager
(cm) Periodic
Time
(PT)
Finished
Tasks
(FT)
Instantiated
Tasks Groups
ITG;

User-defined

Mechanisms

Periodic
Runtime

System

— Policy
o (RS) Finished develop.
Application interface

End-user
preferences

Fig. 3. Overview of the proposed checkpointing system

256 P. Vergés et al.

highly-efficient complex tactics to checkpoint applications fitting the specifics of
each application. For that purpose, the CM offers an interface (Policy develop-
ment interface) to customize each mechanism’s behavior properly. The Periodic
Time (PT) and Finished Tasks (FT) policies leverage the periodic checkpoint and
finished tasks mechanisms while disabling the others. The application end-user
can establish the period or the number of finished tasks to trigger them. Check-
pointing some data values might have a cost higher than their re-computation;
ignoring these values would improve the system’s performance; similar to the
period and the number of tasks, the system also allows indicating a set of tasks
to be ignored by them.

As mentioned in the previous section, application-tailored policies rely on
the task group mechanism. Upon task detection, the CM assigns the task to a
group according to the selected checkpointing policy. To decide the group, the
policy developer can use any information available at instantiation-time, e.g., the
number of tasks, operation to perform, accessed data values, or preceding tasks.
The Instantiated Tasks Groups (ITG) policy gathers tasks in N-sized groups
according to their creation order. When the CM resolves a group closure — i.e.,
all tasks of the group have already been instantiated —, it determines the final
output values of the group by analyzing the data accesses of all the tasks within
the group. The RS requests the necessary operations to persist those values that
have already been computed. For those that have not been generated, the RS
monitors the task generation of each one of them. Upon its completion, requests
the necessary operations to persist them.

Moreover, efficient checkpointing requires a deep understanding of the appli-
cation. To ensure a certain quality of experience, application developers may
not want to leave the end-user decisions about checkpointing in the hands of the
end-user. To that end, the CM includes a mechanism to order snapshots of the
current status of the execution from the application code. The runtime system
will persist the useful output values of all the tasks until that point.

To affect the application execution minimally, the CM performs all the per-
sistence operations asynchronously in a background thread with a lower priority
and limits the maximum number of ongoing operations in parallel.

4 FEvaluation

To validate the proposed design and evaluate its performance, we conducted
several experiments aiming at (1) quantifying the overhead of the system when
the application does not fail, (2) measuring the speedup when recovering from
a failure, and assessing the impact of customizing the policies (3) skipping the
checkpointing of some tasks and (4) developing application-tailored policies.

To that end, a prototype of the CM has been implemented and integrated
into the COMPSs/PyCOMPSs runtime [4,5] and its performance has been eval-
uated when running four different applications: K-Means, PMXCV19, Principal
Component Analysis (PCA) and Matrix Multiplication (Matmul).

Task-Level Checkpointing System for Task-Based Parallel Workflows 257

Table 1. Execution time and relative overhead (baseline: NC) using different policies.
The policy with the lowest overhead is highlighted with green background.

NC ITG FT PT
K-Means |220.12s| 222.56 s (1%) 229.34 s (4.5%) 228.44 s (4%)
PMXCV19| 33m | 33.9m (27%) | 34.1m (3.3%) | 33.6 m (1.8%)
PCA 883.13 s | 1075.13 s (21.7%) | 1026.21 s (16.1%) | 1284.07 s (45.4%)

K-Means! (2152 tasks) is a clustering algorithm that identifies K clusters
within the input data. The algorithms start with K randomly generated centers.
Iteratively, values are assigned to the closest center. These centers are recom-
puted using the data assigned to them. This process lasts until the centers con-
verge, and their position is not updated. This application has two parts: data
generation and center convergence.

PCA (see footnote 1) (685 tasks) is a dimensionality reduction algorithm
that computes the principal components of a collection of points to use them to
perform a change of data basis using only the first few principal components. It
is often used to perform data analysis for predictive models.

PMXCV19? (2027 tasks) evaluates changes in the binding affinity between
SARS-Cov-2 Spike protein and Human ACE2 (hACE2) receptor using the PMX
algorithm [9]. It runs a large series of short Molecular Dynamic simulations
executed using GROMACS.

Matmul (64 tasks) implements a blocked matrix multiplication. The resulting
workflow consists of several chains of tasks corresponding to all tasks updating
the same output block.

The presented results run using two nodes of the MareNostrum 4 supercom-
puter — each equipped with two 24-core Intel Xeon Platinum 8160 at 2.1 GHz.
and 98 GB of main memory — interconnected with a Full-fat tree 100Gb Intel
Omni-Path network.

4.1 Checkpointing Overhead

This experiment aims to measure the overhead induced by the checkpointing
system when the application (K-Means, PMXCV19, and PCA) successfully fin-
ishes. To that end, a run with no checkpointing (NC) is compared to runs using
different policies: PT (15-second interval), FT (every 10 finished tasks), and ITG
(grouping every 10 instantiated tasks).

The results in Table 1 show the importance of adapting the checkpointing
policy depending on the application being executed to minimize the time over-
head. With the right policy, the checkpointing system overhead can be negligible
depending on the application, with only a 1% of added time. However, picking
the wrong policy may entail significant overheads, in the case of PCA, choosing
PT over FT may add a 29.3% of overhead.

! ITmplementation with PyCOMPSs distributed within the dislib library [1].
2 Implementation with PyCOMPSs offered as a BioExcel Building Blocks (BioBB) [3].

258 P. Vergés et al.

Regardless of the policy, picking the appropriate granularity for each policy
has a significant impact. Table 2 shows the execution time and relative overhead
of each application when running with the policy with a better result in Table 1,
set up with different granularities: K-Means runs ITG with groups of 10, 50, and
100 tasks; PMXCV19, PT with 15, 30 and 60-second intervals; and PCA, FT
triggering the checkpoint every 10, 50 and 100 completed tasks.

Table 2. Execution time and overhead (baseline: NC) using different granularities for
the best policy in Table 1

Fine-grain

Medium-grain

Coarse-grain

Kmeans (ITG)

222.56 s (1.1%)

244.25 s (11%)

264.36 s (20%)

PMXCV19 (PT)

33.6 m (1.8%)

33 m (0%)

33.1 m (0.3%)

PCA (FT) | 1026.21 s (16.1%) 1016.20 s (15%) 1103.94 (24.9%)

Table 2 shows that balancing the checkpoint granularity is needed. Although
coarser granularities reduce the number of copies, they can generate I/0-
bandwidth peaks that may decrease performance.

4.2 Recovery Speedup

The second experiment aims to measure the speedup of an application when the
application fails on the first execution and the checkpointing system recovers
the state in a subsequent run. For that purpose, we forced an error when the
application reached a certain point of the execution (For the Kmeans we chose
the 8th iteration, PXMCV19 we make it fail at min 32 of the execution, finally
at PCA we added an exception near the end of the fit function) and measured
the duration of failed execution plus the time to finish the subsequent execution
using different granularities — defined in Sect. 4.1 — for the best-performing pol-
icy for each application. Table 3 contains the obtained times and the speedup
of the recovery compared to the same process when no checkpoint is enabled.
The K-Means and PCA applications show that despite the overhead, more fre-
quent checkpointing enables a faster recovery time due to the fewer tasks being
recomputed on the recovery. The PMXCV19 application performs better with a
medium granularity. However, the recovery difference with other granularities is
insignificant.

Table 3. Failure, recovery execution time and speedup (baseline: No Checkpoint) using
different granularities for the best policy in Table 1.

No Checkpoint Fine-grain Medium-grain Coarse-grain
1st Exec | 2nd Exec | 1st Exec ‘ Recov. | SpeedUp | 1st Exec | Recov. | SpeedUp | 1st Exec | Recov. | SpeedUp
Kmeans (ITG) (s) 208.22 221.5 216.96 ~ 27.1 1.76x 232.38 | 25.83 1.39x 254.26 | 27.14 1.52x
PMXCV19 (PT) (m) 32 33 32 ‘ 3.1 1.85x 32 2.3 1.89x 32 3.3 1.84x
PCA (FT) (s) 877.99 883.13 | 1026.21 187.30 | 1.45x | 1016.20 | 861.26 | 0.93x | 1103.94 | 855 0.89x

Task-Level Checkpointing System for Task-Based Parallel Workflows 259

4.3 Avoid Checkpointing Tasks

This third experiment measures the impact of avoiding the persistence of the
significant values computed by short tasks. The K-Means application has a pat-
tern composed of two partially overlapped phases: the data set generation and
the iterative center convergence. The experiment compares the behavior of a
K-Means execution that fails on its 8th convergence iteration. Afterward, it is
re-launched, disabling the checkpointing, enabling checkpointing with the FT
policy (10-task granularity) for all the tasks and the same policy but disabling
the checkpointing of those tasks corresponding to the data set generation phase.

Figure 4 depicts the traces of the failed (left) and recovery (right) executions
for the no checkpointing (top), all-tasks checkpointing (middle) and generation-
dismissed checkpointing (bottom) configurations. The blue tasks correspond to
dataset-generating functions, and each batch of white tasks corresponds to a
convergence iteration.

Failed Recovery

No Checkpoint

All tasks
checkpointng

Generation dismissed
checkpointing

Fig. 4. K-Means execution traces without checkpointing (top), checkpointing all tasks
(middle), and generation disabled checkpointing (bottom)

The traces of the first (failed) execution illustrate the effect of the I/O over-
head due to the checkpointing. Limiting the number of concurrent checkpoint-
ing operations makes the overhead on both executions performing checkpointing
similar regardless of the difference in the total number of checkpointed values.
However, during the first part of the execution, the CM has no time to persist all
the outputs of the generation phase. Thus, it must recompute part of them even
if the checkpointing is enabled. The overall execution time grows from 222.99s
when checkpointing is disabled to 282.02s (0.79% speedup) when the CM check-
points all the tasks — 126.07 s on the first execution and 159.95 on the recovery.
When disabling the checkpointing for the dataset generation tasks, the CM can
keep up with the execution progress and avoid most of the tasks’ re-execution
in the recovery. In this case, the execution time shrinks to 175.75s (1.27x) —
124.92 s on the initial run and 50.83 on the recovery.

260 P. Vergés et al.

4.4 Customized Policies

The last experiment aims to illustrate the impact of using customized policies
leveraging the task groups mechanism on the number of persisted values. To
that end, the experiment measures the number of persisted values when using the
Matmul application to multiply two 4-by-4-block matrices, and the checkpointing
system adopts two custom policies.

Each Matmul run generates a total of 64 tasks forming 16 chains — 1 per
output block — of 4 tasks each. The algorithm iterates on all the blocks of the
result matrix, instantiating all the tasks updating the block; from a graph point
of view, the algorithm generates tasks in a depth-first manner. The custom
policies used in the experiment create checkpointing groups of up to two tasks.
The first policy (Same-depth policy) groups two tasks from the same depth
level, and the second (Same-chain policy) groups two subsequent tasks from the
same chain. Listings 1.1 and 1.2 respectively contain the implementation of the
function assigning a task to a group for each policy.

Listing 1.1. Same-Depth Listing 1.2. Same-Chain
void assignTaskToGroup(Task t){ void assignTaskToGroup(Task t){
int id = t.getId(); int id = t.getId();
int mod = id % 4; int gId = ((int) id/2)+1;
mod = mod == 0 ? 4 : mod % 4; TaskGroup group=groups.get(gld);
int gId = 1+id/8+((mod-1)%*8); group.addTask (t);
TaskGroup group=groups.get(gld); if (group.size ()==2){
group.addTask (t); group.close ();
if (group.size ()==2){ }
group.close (); ¥

Figure 5a illustrates the graph of a run using the Same-Depth policy. Green-
colored tasks depict those tasks whose output values are persisted by the CM,;
the output of white-colored tasks is not persisted. It is appreciated how all
output data is saved except for two tasks, for which the checkpoint did not have
time to copy the results before the execution finished. Thus, the Same-Depth
policy persists in 62 data values. Creating groups that take into account the
data dependency allows the Same-Chain policy to avoid persisting intermediate

(a) Same-Depth policy (b) Same-Chain policy

Fig. 5. Matmul’s task graphs with both policies; tasks whose output is persisted by
the CM are depicted in green. (Color figure online)

Task-Level Checkpointing System for Task-Based Parallel Workflows 261

values (the output of tasks on the odd rows). Thus, the CM checkpoints 32
values, and there is time to persist as depicted in Fig. 5b.

Application-tailored policies persist fewer values and, thus, reduce the over-
head. Avoiding the bottleneck of the concurrent operation allows checkpointing
more advanced states of the execution and, therefore, faster recovery executions
and lower disk usage.

5 Related Work

The most popular approach for facing failures using task-based parallel models,
consists on re-executing the failed task several times, either in the failed node or
in a different one. It does not have recovered in case the execution crashes. As
instance we have Dask [11], when one node has network connection problems, it
will reroute the computation to a different node. However, if the failed node is one
with relevant results or the scheduling fails, all results previously executed will
have to be re-computed again by other nodes. Additionally, there are PARSL [2],
and COMPSs [8], which have some mechanism to retry tasks in case of failure,
and even keep with the execution regardless of some tasks have failed. However,
all these programming models do not have a recovery system that re-executes
the application avoiding the computations performed in the failed execution.
Few workflow environments implement a recovery system that recovers a
failed execution into a new one, avoiding re-computing the whole workflow. One
of these systems is Pegasus [7]. In Pegasus, once one of the jobs surpasses the
number of established failures, it will be marked as failed, and eventually, the
whole application will crash. The recovery procedure is to mark nodes in the
DAG that succeeded as finished. This allows the user to correct the problem
by fixing the errors of ill-compiled nodes, incorrectly compiled codes, inaccessi-
ble clusters, etc. This way, the application can restart from the point of failure.
Another environment with a recovery system is Legion [6], a data-centric task-
based parallel programming system for distributed heterogeneous architectures.
This system uses speculation, which allows them to discover non-predicated tasks
while the system waits for predicates to finish. If there is a mis-speculation, the
runtime must calculate the dependent operations that have been affected. After-
ward will reset all operations impacted by it. This process is done recursively,
so it could happen that when trying to recover from a failure, it would restart
the whole execution from scratch. This checkpointing approach allows it to be
performed independently on individual tasks without synchronization.

6 Conclusion

This article proposes a recovery system for task-based programming models. The
introduced system copies task outputs to avoid re-executing the computed tasks
in the previous execution run. The checkpointing system offers a checkpointing
manager that, apart from encapsulating automatic checkpointing, has an inter-
face that allows the end-user to create arbitrary tasks to checkpoint, enabling

262 P. Vergés et al.

a specific checkpoint workflow formation to minimize the execution overhead.
Moreover, the checkpointing implementation has been propounded to decrease
the number of data copies by avoiding the copy of intermediate data values.
The flexibility in creating different checkpointing workflows helps reduce the
overhead, which can be as minimal as 0% of the execution time and allows for
a faster recovery, achieving up to a 1.9x speedup. Additionally, the proposed
solution offers an API call that establishes snapshots of the execution in the
application code.

Acknowledgements. This work has been supported by the Spanish Government
(PID2019-107255GB), by Generalitat de Catalunya (contract 2017-SGR-01414), and
by the European Commission through the Horizon 2020 Research and Innovation pro-
gram under Grant Agreement No. 955558 (eFlows4HPC-project). This work has par-
tially been co-funded with 50% by the European Regional Development Fund under
the framework of the ERFD Operative Programme for Catalunya 2014—-2020.

References

1. Cid-Fuentes, J A, et al.: dislib: large scale high performance machine learning in
python. In: 2019 15th International Conference on eScience (eScience) (2019)

2. Babuji, Y., et al.: Parsl: pervasive parallel programming in python. CoRR (2019)

3. Andrio, P.; et al.: Bioexcel building blocks, a software library for interoperable
biomolecular simulation workflows. Sci. Data 6, 169 (2019)

4. Badia, R.M., et al.: Comp superscalar, an interoperable programming framework.
SoftwareX 3, 32-36 (2015)

5. Badia, R.M., et al.: Enabling python to execute efficiently in heterogeneous dis-
tributed infrastructures with pycompss. In: PyHPC 2017. Association for Comput-
ing Machinery, New York (2017)

6. Bauer, M., et al.: Legion: expressing locality and independence with logical regions.
In: SC 2012: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pp. 1-11 (2012)

7. Deelman, E., et al.: Pegasus, a workflow management system for science automa-
tion. Future Gener. Comput. Syst. 46, 17-35 (2014)

8. Ejarque, J., Bertran, M., Cid-Fuentes, J.A., Conejero, J., Badia, R.M.: Managing
failures in task-based parallel workflows in distributed computing environments.
In: Malawski, M., Rzadca, K. (eds.) Euro-Par 2020. LNCS, vol. 12247, pp. 411-425.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57675-2_26

9. Quan, O., Xu, H.: The study of comparisons of three crossover operators in genetic
algorithm for solving single machine scheduling problem (2015)

10. Qureshi, K., Khan, F.; Manuel, P., Nazir, B.: A hybrid fault tolerance technique
in grid computing system. J. Supercomput. 56, 106-128 (2011)

11. Rocklin, M.: Dask: parallel computation with blocked algorithms and task schedul-
ing, pp. 126-132 (2015)

12. Vanderster, D., Dimopoulos, N., Sobie, R.: Intelligent selection of fault tolerance
techniques on the grid, pp. 69-76 (2007)

https://doi.org/10.1007/978-3-030-57675-2_26

	Task-Level Checkpointing System for Task-Based Parallel Workflows
	1 Introduction
	2 Checkpointing Task-Based Workflows
	3 Solution Design and Implementation
	4 Evaluation
	4.1 Checkpointing Overhead
	4.2 Recovery Speedup
	4.3 Avoid Checkpointing Tasks
	4.4 Customized Policies

	5 Related Work
	6 Conclusion
	References

