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Abstract. The ability of large-scale infrastructures to store and retrieve
a massive amount of data is now decisive to scale up scientific applica-
tions. However, there is an ever-widening gap between I/O and com-
puting performance. A way to mitigate this consists of deploying new
intermediate storage tiers (node-local storage, burst-buffers, ...) between
the compute nodes and the traditional global shared parallel file-system.
Unfortunately, without advanced techniques to allocate and size these
resources, they remain underutilized. In this paper, we investigate how
heterogeneous storage resources can be allocated on an HPC platform,
in a similar way as compute resources. In that regard, we introduce
StorAlloc, a simulator used as a testbed for assessing storage-aware job
scheduling algorithms and evaluating various storage infrastructures.

1 Introduction

Running scientific applications at scale requires the power of a large infrastructure
such as a High-Performance Computing (HPC) system. For years, HPC systems
have been designed with the main objective of improving computing power. How-
ever, nowadays the corpus of compute-centric applications has evolved towards
complex data-centric workflows across the domains of modeling, simulation, AI
and data analytics. The data deluge engendered by these workloads has been
observed in major supercomputing centers: the National Energy Research Scien-
tific Computing Center, USA, noticed that the volume of data stored by applica-
tions has been multiplied by 41 over the past ten years while the annual growth
rate is estimated to 30% [12]. Yet, during the same period, we have observed a
relative performance decrease of storage systems: a study of the top three super-
computers from the Top500 ranking between 2011 and 2021 shows that the ratio
of I/O bandwidth to computing power has been divided by 9.6.

An attempt to mitigate this gap has led to the emergence of new tiers of inter-
mediate storage, such as node-local disks or burst buffers [9], backed by diverse
technologies (Flash memory, NVDIMM, NVMeoF, ...), and placed between the
compute nodes and the global shared parallel file-system. Although this storage
disaggregation offers new alternatives to a centralized storage system, advanced
techniques for sizing and allocating these resources have yet to be devised to
fully leverage them.
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Unfortunately, exploring methods for allocating storage resources on super-
computers suffers from several limitations such as a difficult access to the hard-
ware with enough privileges or a panel of technologies reduced to those deployed
on the studied system. Simulation is one way to overcome these constraints. At
the cost of a loss of accuracy, ideally as moderate as possible, simulation offers
much better flexibility for representing a wide variety of storage architectures
and can be used to evaluate storage infrastructures before they are deployed.

In this paper, we propose to explore how storage resources can be allocated
on HPC systems, i.e. with which method (scheduling algorithm) and with which
efficiency (metric) a set of I/O intensive jobs can be scheduled on a pool of
heterogeneous storage resources. To do so, we introduce StorAlloc, a Discrete-
Event Simulation-based (DES) simulator of a batch scheduler able to play (or
replay) the scheduling of I/O intensive jobs on intermediate storage resources. We
first present the architecture of StorAlloc, then we evaluate the tool on a set of
basic scheduling algorithms and on multiple models of infrastructures featuring
heterogeneous storage resources. From our simulations, we can conclude on the
right sizing of intermediate storage resources among a set of architectures or
analyze the utilization rate of the underlying disks.

2 Context and Motivation

For many years, supercomputers have followed a hyper-centralized paradigm
regarding storage: a unique global shared parallel file-system such as Lustre [1]
or Spectrum Scale (formerly GPFS [15]), used as a staging area from which data
is read or written by applications or workflow components. These file-systems,
although increasingly powerful, suffer the drawbacks of any highly centralized
system: contention and interference make them very prone to performance vari-
ability [10]. In order to overcome this problem, we have seen the emergence of
new storage systems, closer to the computing nodes. Node-local SSDs, burst
buffers or dedicated storage nodes with network-attached storage technology
(NVMeoF), to name a few, are all technologies that provide fast storage, albeit
with limited capacity, various data lifetime, cost and performance, and different
means of access.

This last point in particular makes the use of these resources complicated.
To illustrate this, Table 1 presents the multiple ways of accessing resources for a
subset of storage tiers that tend to become popular on large-scale systems. The
usual scope of the storage space and the commonly deployed data manager, if
any, are also listed.

This variety, which would require working on new levels of abstraction, also
raises another problem: how to preempt all or part of these storage resources so
as to make them available for the duration of an I/O-intensive job’s execution,
as we do for compute nodes? Allocation methods exist for storage tiers but
they are numerous and not interoperable: storage allocated at the same time
as the compute node, dedicated APIs integrated or not into the job scheduler,
complex low-level configurations. Thus, while it is common on HPC systems
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Table 1. Type of access, scope and default data management system on a subset of
storage resources that tend to be democratized on large-scale systems.

Access Scope Data manager

Global storage system Mount point System-wide Parallel file-system
Node-local disk Mount point Node File-system
NVDIMM - FSDAX Mount point Node DAX-enabled file-system
NVDIMM - DEVDAX Direct access Node Raw persistent memory
Burst buffer Middleware Job (Parallel) file-system
Network-attached storage API Node(s) Raw storage space

to get access exclusively to compute nodes (usually though a job scheduler),
the allocation of those intermediate levels of storage remains minor in practice
and often limited to homogeneous resources. In order to use these new levels of
storage to their full potential, new allocation techniques must be invented and
deployed on supercomputers.

The development of such solutions would, however, require access to interme-
diate storage resources with enough rights to repurpose them, which is usually
not possible on deployed infrastructures for various reasons such as security or
maintenance efforts. In addition, such experimentation can easily disrupt other
users’ workloads on production systems. An alternative approach is to use sim-
ulations as a way to reproduce with a certain degree of accuracy the behavior of
a system with a very low footprint. While experiments on real systems would be
limited to the embedded technologies, a simulator can also evaluate new types
of architectures combining existing and emerging storage tiers, for example to
make decisions about their sizing or their design. Several simulators already exist
for scheduling jobs on compute nodes or for optimizing I/O, yet very few has
been done to model and allocate storage resources. Therefore, in this paper,
we propose StorAlloc, a simulator of a storage-aware job scheduler whose main
objective is to explore heterogeneous storage resource allocation on supercom-
puters.

3 Related Work

To the best of our knowledge, there is no tool whose goal is to simulate the
scheduling of jobs on heterogeneous storage resources of a supercomputer. Sim-
ulators allowing to play or replay the execution of parallel and distributed appli-
cations on HPC systems exist and have been studied for many years. However, it
is the computational aspect that is essentially addressed. SimGrid [4], for exam-
ple, is a powerful framework for simulating the scheduling and execution of a
large number of applications on real or made-up infrastructure models. The I/O
aspect is limited to simulating data movement but, although preliminary work
was started a few years ago [11], storage resource allocation is absent from the
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framework. A few SimGrid derived simulators also have job scheduling oriented
approaches. This is the case of batsim [7] or Wrench [5] for example. However,
the full support of heterogeneous storage levels as allocatable resources is not
implemented (disk capacity is not modeled in batsim for example). Another dif-
ference between these solutions and StorAlloc concerns the design of the tool as
described in Sect. 4. StorAlloc has all its components decoupled. Therefore, the
servers can be distributed on multiple nodes while the simulator component can
be disabled to turn StorAlloc into a real storage-aware job scheduler.

The world of Cloud Computing is more familiar with the allocation of storage
tiers as well as compute or network resources. Work has been done to simulate the
allocation of resources between different users [3,13] in virtualized environment
but these works are outdated and have very limited storage support.

Finally, models for partitioning and sizing intermediate storage resources
such as burst buffers have been studied [2,14]. These techniques are the basis of
storage-aware job scheduling algorithms that could be evaluated in our simulator.

4 Architecture

StorAlloc is a tool able to simulate the scheduling of I/O-intensive jobs on het-
erogeneous storage resources available on a HPC system. In this section, we
present its design and discuss implementation choices.

The objective of StorAlloc is to provide a simple way to develop and eval-
uate storage-aware job scheduling algorithms targeting heterogeneous storage
resources (any kind of disk-based storage can be described). Therefore, StorAl-
loc has been designed following the basic principles of a job scheduler, i.e. a
middleware allowing clients to request resources available on a supercomputer.
Extending from the original architecture, we added the ability to run it as a
simulator, using a single code base.

Fig. 1. StorAlloc Architecture
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StorAlloc’s design is based on the composability of several components, which
can be run together and extended in order to provide the desired behavior.
Figure 1 depicts the components already implemented and how they fit together.
At the core, one or multiple server and client agents are communicating through
a central orchestrator. The clients request storage allocations to the orchestrator
and expect connection settings to the newly allocated storage space in return.
The server components declare a pool of available resources under their responsi-
bility to the orchestrator and perform the storage management operations when
needed (partitioning, rights granting, exposure on the network, releasing). In
between, the orchestrator handles routing messages between components, keeps
track of running and pending allocations and hosts the scheduler process.

In addition to these core components, we have extended StorAlloc with two
simulation units (client and server), a visualisation server for real time plotting
during simulation and an external log aggregator. The architecture of the tool
makes it possible to add additional elements if necessary. All of these components
are interconnected using a message-based protocol we have defined. They can be
deployed across a set of hosts, or run on a single machine. While the former case
is intended to properly map clients and servers onto an actual HPC platform,
the latter is sufficient for simulations. The current design only allows for one
orchestrator component to be running at any time. This constraint creates a
single point of failure when deployed as a middleware in a production setting,
and will be addressed in further developments.

In the following sections, we detail design choices for StorAlloc. In particular,
we explain the general functioning of the scheduler, a central component in our
simulator. Then we describe the storage abstraction layer used to characterize
the pool of resources. In Sect. 4.3, we present the simulation capability with a
focus on the real-time collection of scheduling data. We end this section with
some technical considerations about StorAlloc.

4.1 Scheduling of Storage Requests

We define a storage request as a triple consisting of a capacity in GB, an alloca-
tion time in minutes and a submission time in a datetime format. The scheduling
of storage requests takes place in a scheduler sub-component of the orchestrator,
as depicted in Fig. 1. This sub-component receives requests through messages
from clients and process them asynchronously in the receiving order. The sched-
uler has access to both the entire list of available storage resources and the list of
currently allocated requests. Any algorithm can thus make a resource allocation
decision backed by a full view of the platform state. So far, four naive algorithms
have been implemented in StorAlloc as listed below:

– random: storage resources are picked randomly with a chance of failure;
– round-robin: storage space is allocated in a round-robin manner;
– worst-fit : disks are filled until no more space is available;
– best-bandwidth: nodes and disks on nodes are selected according to the best

remaining bandwidth, considering a permanent maximum I/O regime for the
existing allocations.
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At launch time, the scheduler chooses one of these algorithms through a user-
defined parameter. The scheduling algorithms share a common interface which
accepts a storage request and a list of available storage resources, and returns an
identifier for the resource(s) on which the desired storage space will be allocated.
A request can also be refused (no space left for instance). In this case, we assume
that the job falls back to a traditional parallel file-system, instead of using the
intermediate storage tiers available through StorAlloc.

The scheduling of storage requests can also be adjusted by leveraging two
strategies presented in Table 2. They are meant to help allocate requests when
resources are constrained. The impact of these strategies, independent of the
scheduling algorithms, is evaluated in Sect. 5. Again, we make the assumption
that in case of (possibly repeated) allocation failures, I/O will be performed on
the global shared parallel file system.

Table 2. Optional scheduling strategies

Default setting Comment

Split Threshold at 200 GB Split requests with capacity over threshold
and allocate the parts on multiples resources

Requeued 5 retries, one every 5 m Postpone starting time and retry a failed
allocation

4.2 Storage Abstraction

Because the available storage tiers can be extremely heterogeneous, an abstrac-
tion layer is needed to allow scheduling algorithms to accommodate the variety
of technologies without needing to know the technical details of each level. In
StorAlloc, storage platforms are represented through a hierarchy of three objects:
servers, nodes and disks. Servers are top-level StorAlloc components which act
as an interface between the orchestrator and one or many storage nodes. Nodes
embed at least one disk. Nodes and disks may be of heterogeneous nature (num-
ber of disks, disk capacity, read and write bandwidth, node’s network band-
width). Whenever required by a parent server, a node should be able to setup
and expose a specific partition of their storage resources, whose ownership will
be transferred to a client. In simulation mode, servers passively accept requests
without taking any action, but we still ensure that any allocation would be legal
in terms of available resources.

It has to be noted that when defining a storage layout, we consider the
network to be flat. This is motivated by the fact that dynamic routing policies
are unpredictable, either because the vendor does not provide enough details
(such as on the Cray XC40 Theta platform which provided the input data used
in Sect. 5 [6]) or because there are too many factors involved in packet routing
decisions to be accurately modeled. Hence we only define the bandwidth at
the node and disk levels and let the scheduling algorithm model the impact of
concurrent allocations on these resources.
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4.3 Simulation

A longer-term goal of StorAlloc is to provide a single code base for a storage-
aware job scheduler and its simulator. Therefore, we have designed our simulation
server with a “component in the middle” approach. The core components run as if
they were actually deployed on a real system except that, if the simulation mode
is enabled, the requests are rerouted to the simulation server which stacks them
until a specific message triggers the actual execution of the simulation. Then,
the simulation is unrolled and go through the scheduler, using a discrete event
simulation (DES) model [8]. During that phase, data measuring the impact of
scheduling is collected and feeds a visualization server in real-time. In particular,
we measure the following indicators:

– Total allocated (and deallocated) volume.
– Mean and max number of simultaneously allocated requests (global, per node

and per disk).
– Mean and max percentage of non-free disk space for each disk over the sim-

ulation.
– Number of requeued requests and total delay time during the simulation.
– Number of split requests if any.
– Request’s status: allocated or refused.

4.4 Implementation Details

The proof of concept presented in this paper is implemented using Python3.
Our messaging protocol relies on ZeroMQ, while the DES model used for the
simulation comes from the SimPy library1. The source code of StorAlloc can be
found at https://github.com/hephtaicie/storalloc.

5 Evaluation

In this section, we evaluate the benefits of our simulator to assess storage-aware
job scheduling algorithms on heterogeneous resources. To do so, we run multiple
configurations and show their impact on the storage tiers thanks to metrics we
have defined.

5.1 Simulation Setup

To simulate storage requests from clients representative of real applications, we
used a dataset composed of one year of a Darshan2 logs on Theta, a 11.7 PFlops

1 Resp. https://zeromq.org/ and https://simpy.readthedocs.io/en/latest/.
2 Darshan is a popular I/O monitoring tool. https://www.mcs.anl.gov/research/

projects/darshan/.

https://github.com/hephtaicie/storalloc
https://zeromq.org/
https://simpy.readthedocs.io/en/latest/
https://www.mcs.anl.gov/research/projects/darshan/
https://www.mcs.anl.gov/research/projects/darshan/
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Cray XC40 supercomputer at Argonne National Laboratory3. We extracted from
these traces jobs spending at least 10% of their run time doing IO, and reading
or writing at least 10 GB of data. It resulted in about 24 000 jobs out of approx-
imately 624 000 jobs, each one translating into a storage request in StorAlloc:
the requested capacity is based on the maximum of either read or write volume
while the allocation time uses the initial job duration.

In order to have a good overview of what can be observed with our simulator,
we have run 192 different simulation setups based on the settings presented in
Table 3. The average simulation time is around 25 m 48 s per run, in a range of
[5 m 40 s; 1 h 29 m 57 s] on a single core of a Intel Core i7-1185G7 processor.
This variability is due to the difference in complexity of the algorithms and the
activation or not of the requeuing and splitting systems.

Table 3. Simulation settings

Settings Tested values Comment

Algorithm Random, round-robin worst-fit,
best-bandwidth

See Sect. 4.1

Total capacity 8 TB, 16 TB, 64 TB Disk sizes are 1, 2 and 8
TB respectively

Storage Layout Single node, single disk (1N1D)
Single node, multi disks (1NnD)
Multi nodes, single disk (nN1D)
Multi nodes, multi disks (nNnD)

1N1D serves as baseline

Requeued Enabled or disabled When enabled, new
attempts every 5 m, until
a 60 m delay

Split 200 GB or disabled When disabled, some
requests will be too large
for any of the disks

5.2 Analysis

We present here results plotted from StorAlloc simulation data. From these fig-
ures, we can conclude on an approximation of a right sizing of the platform and
we can compare the efficiency of the tested scheduling algorithms. For this anal-
ysis, platforms and algorithms have been chosen to reflect a variety of behavior.

Platform Sizing. In our dataset, the sum of all the storage capacities requested
by clients, called sum_cap, reaches 1.6 PB. In Fig. 2, we plot the percentage of

3 This data was generated from resources of the Argonne Leadership Computing Facil-
ity, which is a DOE Office of Science User Facility supported under Contract DE-
AC02-06CH11357.
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Fig. 2. Percentage of sum_cap (sum of the requested capacities in the entire dataset)
per simulation run, grouped by capacity and split strategy.

this value achieved by each of the 192 runs of our simulation according to storage
layouts and algorithms, grouped by platform capacity and split strategy.

On the top row (no request split), only the 1N1D layout at 64 TB capac-
ity reaches 100% of sum_cap. However this layout is merely a baseline which
shouldn’t be used, as it leads to a high concurrency and consequently a very low
node bandwidth. From this result, we can also conclude that never more than
64 TB are needed at the same time in our dataset. This information must be
balanced by the fact that we exclude from Theta’s traces several hundreds of
thousands of jobs that we do not consider I/O intensive. The best results with
other layouts peak slightly above 60%, which hints towards an underprovisioning
of storage resources. The bottom row depicts the same analysis with requests
split in chunks of 200 GB. We see that all layouts reach a 100% of sum_cap at
least once for 64 TB. More generally, the splitting of requests allows a better
use of resources and requires less storage space (the 16 TB platform reaches 90%
of sum_cap for half of the runs). These results give little information, however,
about the use of the disks composing the modeled platform.

Figure 3 proposes to study this. Here, we plot the maximum disk utilization,
called max_disk_use, for both 16 TB and 64 TB infrastructures (excluding
1N1D layout). As expected, the disk utilization rate correlates with the ability
to absorb split requests for storage space (Fig. 2). Nevertheless it is possible to
quantify a potential underutilization, as seen for the 64 TB platform where no
more than 65% of disk capacity is ever used. The worst-fit algorithm is specifi-
cally intended for maximising the use of a single disk from a single node, which
explains that it reaches 100% of max_disk_use for several disks.

This first analysis shows that a platform slightly larger than 16 TB can
handle all the I/O intensive jobs in our dataset, as long as the requests are split
into 200 GB blocks. In that case, the targeted disks are mostly used at their
full capacity at least once, leaving little flexibility in case of a sudden overload,
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Fig. 3. Maximum disk capacity utilisation (% of capacity), for 16 TB and 64 TB
platforms with request split threshold at 200G. The 1N1D layout has been removed.

while the average disk utilization rate is however very low (2.82%), which is
explained by the sparsity of the jobs studied spread over a whole year. Finally,
the different layouts tested (1NnD, nN1D, nNnD) behave in much the same
way. Nevertheless, they have an impact on the available aggregated bandwidth
as long as the scheduling algorithms can efficiently take advantage of the storage
disaggregation, as shown in the rest of this paper.

Scheduling Algorithms Comparison. We have implemented four different
storage-aware job scheduling algorithms in StorAlloc, as described in Sect. 4.1.
To evaluate their efficiency, we propose to define a fairness metric that looks at
the maximum and average number of concurrent allocations per disk allocated
by each algorithm. This metric provides information on the balancing of the dis-
tribution of requests (split or not) and consequently on the potential bandwidth
available for the allocations: in a permanent maximum I/O regime hypothesis
(all jobs with continuous I/O operations), the less allocations are concurrent on
resources, the more bandwidth will be available.

Figure 4 depicts this fairness for our four algorithms. First, we can see that
the general variability (standard deviation) in both the mean and max num-
bers of allocations per disk are lower for round-robin and best-bandwidth than
for random and worst-fit. As expected, worst-fit stands out, as its design clearly
goes against fairness. We also observe that round-robin and best-bandwidth have
quite similar fairness, with a slight advantage to best-bandwidth. This latter is
the most advanced algorithm as it takes into account existing allocations on disks
to make a decision. In terms of maximum number of allocations per disk, best-
bandwidth is the most stable, and also usually leads to the smallest maximums.
In other words, this algorithm can be expected to provide the best average band-
width to jobs in the permanent regime case. Best-bandwidth behaves better than
round-robin which, under the same conditions, tends to show more irregularities.
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Fig. 4. Mean (top) and max (bottom) number of allocations per disk, grouped by
algorithms, for 16 TB platform and split strategy. Storage layout 1N1D excluded. Dots
plot the mean and max number of allocations of each disk separately.

Finally, we can see the impact of a queuing system on the number of allocations,
i.e. fewer jobs are refused and have to fall back on the parallel file system.

6 Conclusion

In this paper, we have introduced StorAlloc, a DES-based simulator used to
explore the scheduling of I/O intensive jobs on heterogeneous storage resources
distributed across a HPC system. We have detailed its extensible design and con-
figuration settings for modeling storage infrastructures and implementing various
scheduling strategies. Our evaluation demonstrated how StorAlloc can ingest a
large number of allocation requests generated from production traces and output
storage-related metrics which provide valuable insights for storage platform siz-
ing and scheduling algorithms evaluation. Building upon this preliminary work,
we plan to extend this experimental campaign to more metrics, infrastructures
and storage-aware scheduling algorithms. Another direction we want to take is to
evaluate the benefits we could get from simulation frameworks such as Wrench [5]
for the implementation of our simulation component. Finally, a longer term goal
will be to explore how to combine computing and storage resources within the
same request and provide suitable scheduling algorithms.
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