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Preface

The International European Conference on Parallel and Distributed Computing (Euro-
Par) is an annual, international conference in Europe, covering all aspects of parallel and
distributed processing. These range from theory to practice, from small to the largest
parallel and distributed systems and infrastructures, from fundamental computational
problems to fully-fledged applications. It also covers architecture, compiler, language,
and interface design and implementation, as well as tools, support infrastructures, and
application performance aspects.

The Euro-Par conference is complemented by a workshop program, where work-
shops dedicated to more specialized themes, to cross-cutting issues, and to upcoming
trends and paradigms can be easily and conveniently organized. In addition to work-
shops, the second edition of the Euro-Par PhD Symposium was also organized at the
Euro-Par 2022 conference, with the aim of gathering doctoral students in broadly defined
areas related to parallel and distributed processing.

The 28th Euro-Par Workshops and PhD Symposium were held in Glasgow between
August 22–23, 2022, following the well-established format of its predecessors. The
28th Euro-Par Workshops and PhD Symposium were organized by the University of
Glasgow, with support from Heriot Watt University, the University of Edinburgh and the
University of Stirling.

Overall, tenworkshop proposals were submitted. The following fiveworkshopswere
co-located with the Euro-Par 2022 edition, namely:

1. Workshop on Algorithms, Models and Tools for Parallel Computing on Heteroge-
neous Platforms (HeteroPar)

2. Workshop on Asynchronous Many-Task Systems for Exascale (AMTE)
3. Workshop on Domain Specific Languages for High-Performance Computing (DSL-

HPC)
4. Workshop on Distributed and Heterogeneous Programming in C and C++

(DHPCC++)
5. Workshop on Resiliency in High Performance Computing in Clouds, Grids, and

Clusters (Resilience)

After a careful revision process, and from a total of 35 submittedworkshop papers, 24
paperswere accepted, resulting in an acceptance rate of 69%.Eachworkshophad an inde-
pendent program committee, which was in charge of selecting the papers. The workshop
papers received three reviews per paper on average. These proceedings include 3 papers
accepted at AMTE, 3 from DSL-HPC, 11 from Hetero-Par, and in the Miscellaneous
section 1 paper each from DHPCC++ and from Resilience.

The Euro-Par PhD Symposium received 10 submissions from five countries, with
each submission being reviewed by three technical program committee members of the
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Euro-Par PhD Symposium. After the thorough peer-reviewing process, seven submis-
sions were accepted for presentation at the Euro-Par 2022 PhD Symposium, of which
six are included as extended abstracts in these proceedings.

This volume contains the papers and extended abstracts presented at the Euro-Par
2022Workshops and PhDSymposium, divided into five track sections (corresponding to
three larger workshops, a miscellaneous chapter aggregating contributions from smaller
workshops, and the PhD Symposium.

The success of the Euro-ParWorkshops and PhDSymposiumdepends on thework of
many individuals and organizations. We therefore thank all the organizers and reviewers
for the time and effort that they invested. We would also like to express our gratitude
to the members of the Euro-Par 2022 Organizing Committee and the local staff. Lastly,
we thank all participants, panelists, and keynote speakers of the Euro-Par Workshops
and PhD Symposium for their contribution to a productive meeting. It was a pleasure to
organize and host the Euro-Par Workshops and PhD Symposium 2022 in Glasgow.

August 2022 Jeremy Singer
Yehia Elkhatib

Dora Blanco Heras
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Asynchronous Many-Task Systems
for Exascale (AMTE)

Workshop Description

The workshop, Asynchronous Many-Task systems for Exascale (AMTE) 2022, was
held on August 23rd in conjunction with the 28th International European Conference
on Parallel and Distributed Computing (Euro-Par) as a hybrid event in Glasgow, UK.
The workshop explored the advantages of task-based programming on modern and
future high-performance systems. It gathered developers, users, and proponents of these
models and systems to share experiences, discuss how they meet the challenges posed
by Exascale system architectures, and explore opportunities for increased performance,
robustness, and full-system utilization.

The workshop was organized by Patrick Diehl, Steven R. Brandt, Zahra Khatami,
and Parsa Amini. The keynote was given by Bryce Adelstein Lelbach (NVIDIA) and
the invited talk by Elliot Ronaghan (HPE).

This chapter comprises selected contributions of attendees from this event. The con-
tributed papers range from optimization of asynchronous many-task runtime systems to
applications. This workshop has shown that AMTs are widely used in academia, indus-
try, and national laboratories, and researchers are working to address some challenges
posed by Exascale system architectures.



Organization

Steering Committee

Parsa Amini Halpern-Wight Inc., USA
Steven R. Brandt Louisiana State University, USA
Patrick Diehl Louisiana State University, USA
Zahra Khatami NVIDIA, USA

Program Committee

Jeff Hammond NVIDIA
Hartmut Kaiser Center for Computation & Technology at

Louisiana State University, USA
Markus Rampp Max Planck Computing & Data Facility,

Germany
Patricia Grubel Los Alamos National Laboratory, USA
Bita Hasheminezhad NASA Ames Research Center, USA
Pedro Valero-Lara Oak Ridge National Laboratory, USA
H. Metin Aktulga MSU College of Engineering, USA
Keita Teranishi Sandia National Laboratories, USA



Quantifying Overheads in Charm++

and HPX Using Task Bench

Nanmiao Wu1(B) , Ioannis Gonidelis1, Simeng Liu2, Zane Fink2 ,
Nikunj Gupta2, Karame Mohammadiporshokooh1, Patrick Diehl1 ,

Hartmut Kaiser1 , and Laxmikant V. Kale2

1 Center of Computation & Technology, Lousiana State University, Baton Rouge,
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2 Department of Computer Science, University of Illinois at Urbana-Champaign,

Champaign, USA
{simengl2,zanef2,nikunj,kale}@illinois.edu

Abstract. Asynchronous Many-Task (AMT) runtime systems take
advantage of multi-core architectures with light-weight threads, asyn-
chronous executions, and smart scheduling. In this paper, we present
the comparison of the AMT systems Charm++ and HPX with the main
stream MPI, OpenMP, and MPI+OpenMP libraries using the Task
Bench benchmarks. Charm++ is a parallel programming language based
on C++, supporting stackless tasks as well as light-weight threads asyn-
chronously along with an adaptive runtime system. HPX is a C++ library
for concurrency and parallelism, exposing C++ standards conforming
API. First, we analyze the commonalities, differences, and advanta-
geous scenarios of Charm++ and HPX in detail. Further, to investigate
the potential overheads introduced by the tasking systems of Charm++

and HPX, we utilize an existing parameterized benchmark, Task Bench,
wherein 15 different programming systems were implemented, e.g., MPI,
OpenMP, MPI + OpenMP, and extend Task Bench by adding HPX
implementations. We quantify the overheads of Charm++, HPX, and the
main stream libraries in different scenarios where a single task and multi-
task are assigned to each core, respectively. We also investigate each
system’s scalability and the ability to hide the communication latency.

Keywords: Asynchronous Many-Task (AMT) · Charm++ · HPX ·
Task Bench

1 Introduction

Asynchronous Many-Task (AMT) systems emerge as an effective solution to the
demands of adaptive applications. However, by utilizing the fine-grained paral-
lelism, AMTs tend to generate runtime overheads which inhibits performance
and counteracts their benefits. We are mainly interested in systems that expose

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Singer et al. (Eds.): Euro-Par 2022 Workshops, LNCS 13835, pp. 5–16, 2023.
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distributed execution, which is the prevalent technique for massive computa-
tional experiments. Many options exist in the realm of parallel runtime systems,
e.g. Uintah [1], Chapel [2], Legion [3], and PaRSEC [4]. For a more detailed sur-
vey of various AMTs, we refer to [5]. This research focuses on Charm++ [6]
and HPX [7] since both systems provide a similar underlying program-
ming model.

Charm++ delivers a highly abstracted environment for productivity bound to
a flexible and performant execution paradigm. On the other hand, HPX provides
a C++ standards conforming API and extends the standard parallel facilities by
providing asynchronous and distributed components. Our goal is to objectively
quantify the overheads of those two systems by evaluating measurements from
intrinsic benchmark implementations characteristics. Further comparisons are
presented against MPI and OpenMP for distributed and within-node parallel
execution, respectively. For that, we utilize Task Bench, a unified benchmarking
solution that evaluates these systems under a common ground.

Task Bench was proposed by Slaughter et al. [8] as a standardized solution
that unifies the benchmarking process of various existing concurrency frame-
works. It provides a backend benchmarking kernel that is exposed through a
parameterized interface. Once Task Bench is implemented in a given program-
ming system, it enables a straightforward comparative analysis with every other
system in the Task Bench pool. Task Bench has already been implemented
for Chapel [2], Dask [9], MPI, OmpSs [10], OpenMP, PaRSEC, Realm [11],
Regent [12], Spark [13], StarPU [14], Swift/T [15], TensorFlow [16] and X10 [17].
This makes it suitable for our goal of a fair comparison of two different systems
under a common ground. The centralized results enable a direct comparison of
the performance of each system in a wide spectrum of tasking paradigms that
model various execution schemes corresponding to real world experiments like
the stencil pattern, the FFT pattern etc. We extend this work [8] by adding HPX
implementations, and reproducing the same results for Charm++ and HPX with
using MPI, OpenMP and MPI+OpenMP as a common denominator for the com-
parisons. Our results reflect those of the original authors and are accompanied
by elaborate remarks.

The three major contributions of our work are:

1. This is the first work comparing Charm++ and HPX using the same bench-
mark. Different HPX implementations with respect to the Task Bench library
are implemented, namely HPX local and HPX distributed, in order to fairly
compare HPX with Charm++ against the mainstream MPI, OpenMP, and
MPI+OpenMP. The optimizations of HPX implementations to minimize the
overheads are further introduced.

2. The commonalities, differences, and advantageous scenarios of Charm++ and
HPX, are analyzed in detail. The performance results further validate the
analysis.

3. The overheads of Charm++ and HPX, along with several other program-
ming systems, are quantified in terms of shared-memory parallelism and
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distributed-memory parallelism, in various scenarios wherein a single task
and multi-task are assigned to each core, respectively.

The paper is structured as follows: Sect. 2 introduces the existing state-of-
the-art performance evaluations. In Sect. 3 Charm++ and HPX are briefly intro-
duced and the similarities and differences are discussed. In Sect. 4 we briefly
introduce the ingredients of Task Bench used in this work. Section 5 summarizes
the improvements to further reduce the overhead. Section 6 shows simulations
in various scenarios without/with overdecomposition. Finally, Sect. 7 concludes
the work.

2 Related Work

Many existing works evaluate the performance of task-based parallel program-
ming models. In what follows, we consider studies focusing on mini-apps: simple
applications designed to represent the performance characteristics of full-fledged
applications.

Karlin et al. [18] evaluate the performance and productivity characteristics
of several traditional and task-based parallel programming models using the
LULESH [19] mini-application for shock hydrodynamics. In [20], the authors
implement a block eigensolver in OpenMP [21] and OpenACC [22] to assess the
performance portability of these models. The Parallel Research Kernels [23–26]
are a suite of mini-applications and microbenchmarks designed to assess the
performance of different parallel systems and programming models. The authors
in [27] implement a stencil mini-application in Legion [28] and MPI, observing
similar weak-scaling performance between Legion and MPI. In [29], the mini-
application and communication microbenchmark performance of Python ports of
established programming models Charm++ and MPI is compared. An extensive
study at Sandia National Laboratory [30] compares 3 many-task programming
models on qualitative and quantitative metrics.

While studies based on mini-application performance provide insight into the
performance and programmability of different programming models, the O(m·n)
complexity of implementing m mini-applications in n frameworks makes it oner-
ous to comprehensively evaluate even a few programming models on a range of
benchmarks. Section 4 describes another approach to facilitate such comparisons.

3 Asynchronous Many-Task Systems

3.1 Charm++

Charm++ is a parallel programming language based on C++. Unlike the bulk-
synchronous and process-centric approach taken by MPI, Charm++ implements
a migratable-objects programming model. The basic unit of object in Charm++
is called a chare which is typically a class in C++. Functions in a chare can
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group logically-related execution and communication tasks, supporting data-
encapsulation and locality. Users can designate some methods as entry meth-
ods for a chare class which are the methods that can be invoked by other,
potentially remote, chares asynchronously. With the object-oriented approach,
Charm++ supports overdecomposition, where the user can define multiple collec-
tions (“arrays”) of chares corresponding to the domain of the problem. Charm++
applications typically partition the domain into finer grains than the amount of
available execution units (e.g. cores). The location of individual chares is con-
trolled dynamically by Charm++’s adaptive runtime system (aRTS). On each
core (or node, in some configurations), a user-space scheduler is used to asyn-
chronously but non-preemptively execute the set of available method invoca-
tions. This data-driven execution allows Charm++ applications to adaptively
overlap communication and computation. By leveraging migratability of chares,
the aRTS supports dynamic load-balancing, as well as other capabilities such as
fault-tolerance, shrinking or expanding the set of nodes assigned to a job in the
middle of execution, power/energy/thermal optimizations etc.

3.2 HPX

HPX is a C++ Standard Library for parallelism and concurrency [7]. HPX is
implemented as a lightweight user-level task manager running on top of kernel
threads. It is widely known that thread creation and destruction managed by
the operating system are expensive and reserve lots of memory. For that rea-
son, HPX creates one thread per core and binds each of them to one of the
cores. Therefore, the performance can be improved since there is no kernel-
level interruption when the tasks are running. HPX is the first implementation
of an advanced parallel execution model [31], which essentially resolves critical
issues that prevent effective usage of new HPC systems: Starvation, Latency,
Overheads, and Waiting for Contention. The HPX asynchronous programming
model exposes a C++ standard API entirely conforming to interfaces as defined
by C++11/C++14/C++17/C++20 and adds on top of the latest C++ standard
by providing distributed and heterogeneous computing scenarios, which makes
HPX portable and uniformly usable for local and remote parallelism. HPX aligns
with the ongoing C++ standardization proposal with a goal of providing a uni-
form interface, in particular, related to parallelism and concurrency. HPX is
widely used for applications that utilize both shared and distributed memory.
PeriHPX [32] is an example of using HPX for shared-memory parallelism, and
Octo-Tiger [33] is one example of using HPX for a distributed memory applica-
tion.

3.3 Commonalities and Differences

Both Charm++ and HPX are highly performant and feature rich AMTs that
leverage asynchrony, overdecomposition, and migratability. These features are
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either implicitly or explicitly exposed to the user. For instance, Charm++ sup-
ports built-in migrations while HPX implements user assisted migrations. Fur-
thermore, they bring different interpretations and consequently implementation
details on certain key concepts. Charm++ defines a “Processing Element” (PE)
that can be an OS thread or a process. Each chare is assigned to a PE by keeping
it anchored to PEs to enhance locality of the computation. Note that chares can
move to another PE according to load-balancing strategies to minimize commu-
nication or achieve more balanced load distribution. Multiple chares are assigned
to a PE and user-level scheduler schedules entry method executions non preemp-
tively based on availability of data (messages). On the other hand, HPX keeps
the notion of locality explicit and the user needs to assign parallel execution to
occur on a certain locality or locally if no locality is provided. Moreover, they
both support threading, including features like thread suspension and resump-
tion. While any parallel execution on HPX is run on an HPX thread, Charm++
threading is mainly utilized only in specially designated threaded entry meth-
ods that use blocking primitives (such as access to futures) that can otherwise
block the scheduler if not run on a thread. The default entry methods are not
threaded, and can be considered as stack-less tasklets. Finally, Charm++ imple-
ments continuations by utilizing callbacks, while HPX utilizes C++ conforming
futures that can retrieve the underlying computation result.

While both AMTs are feature rich, there are a few key areas in which
Charm++ is advantageous. As HPX utilizes HPX threads for any parallel execu-
tion, it suffers from the overheads of the threading subsystem and further over-
heads of the networking interface. Charm++ schedules over each PE individually,
i.e. anchoring each chares to a particular PE (and thereby to a core) except when
load-balancing, enhances locality and allows lock-less interaction between enti-
ties assigned to the same PE. Furthermore, Charm++ supports load-balancing,
automatic checkpoint-restart, and multiple communication protocols. Similarly,
HPX supports load-balancing by enabling work-stealing scheduling policy, and
supports explicit checkpoint, restart techniques, and several communication lay-
ers, e.g. TCP, MPI, and libfabrics, with others currently under work.

HPX provides some clear advantages over Charm++ as well. Given HPX
exposes an ISO C++ conforming API, porting any standard C++ application to
HPX is a mere search and replace. Porting to Charm++ requires careful restruc-
turing of the program. Furthermore, HPX supports all the C++17 parallel algo-
rithms along with various execution policies. An application developer can use
these execution policies to achieve NUMA aware parallelism, explicit vector-
ization of loops, asynchronous algorithm execution, and much more. Charm++
requires the user to explicitly implement some of these features in their code.
Given that HPX allows tracking of all function parameters and associated data
either as a constant lvalue reference or as rvalue references, the overheads asso-
ciated are minimal. Charm++’s parameter marshalling and related copying over-
heads, resulting in higher overheads in the single node shared-memory setting.

Thus, Charm++ and HPX have similarities and differences, with multiple
performance-oriented trade-offs based on the machine and programming model.
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4 Task Bench

Task Bench is a parameterized benchmark for evaluating runtime system perfor-
mance. Notably, Task Bench benchmarks are defined by task graphs expressing
communication and task dependency patterns common in real-world applica-
tions. This task graph representation enables the evaluation of n systems for m
benchmarks with O(m+n) implementation effort, rather than the O(m·n) effort
required by other benchmark suites. This dramatically reduces the programming
effort required to evaluate new systems and benchmarks.

While strong and weak scaling have been the prevalent solutions for perfor-
mance measurement, they both have the potential to yield misleading results.
Strong scaling cannot isolate system overheads from application cost while weak
scaling could hide the system overheads if large problem size is being used [8].
Task Bench uses METG (Minimum Effective Task Granularity) as a metric,
which essentially indicates the scaling capabilities of the system on-target.
METG exposes how high the computing performance (FLOP/s) can be main-
tained as the amount of work per task gets smaller. The reasoning behind METG
is that for large problem sizes, all systems are expected to behave (almost) opti-
mally. Conversely, for small problem sizes, parallelism becomes challenging. In
this work, we use the same choice of 50% as the Task Bench paper [8] to compare
the smallest average task granularity such that each system reaches at least 50%
peak efficiency. We briefly introduce the ingredients of Task Bench used in this
paper. For more details, we refer to [8].

5 Improvements

5.1 Charm++

Charm++ has organically grown over 20+ years, along with many applications
and research projects, such as fault tolerance and energy management. As a
result, the most general implementation tends to have accumulated overheads.
Especially for running fine-grained benchmarks, it is useful to select build-time
options carefully. The following briefly describes relevant options:

– Eight-Byte Message Priority: Charm++ supports arbitrary-length bit-
vector message priorities, complicating the message receive path. A build
option to use eight-byte message priorities simplifies it.

– Simplified Scheduling Path: We further simplify the message delivery
path in Charm++ with these additional changes: no message priorities, no
idle detection, and no condition-based or periodic callbacks.

– Intranode IPC via Shared Memory: By default, Charm++ uses the NIC
for inter-process communication within a node. We assess the performance
impact of shared-memory communication within a node.

While we use the Charm++ implementation of Task Bench presented in [34],
with the default build here, we provide some data with different build options
to evaluate their impacts on fine-grained performance in Sect. 6.3.
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Table 1. Left column: Compilers and libraries used to compile all systems. Right
column: Hardware details of the rostam nodes.

Software Hardware

gcc 11.2.0 hwloc 2.6.0 CPU AMD EPYC 7352 24-Core

boost 1.78.0 OpenMPI 4.1.2 Memory 16 GB DDR-4 memory

gperftools 2.9.1 cmake 3.22.0 Interconnect 200Gb/s EDR Infiniband

5.2 HPX

For HPX, two implementations are available, one is HPX local and another
is HPX distributed. Their similarity is that a scheduling facility that is based
on top of the current C++ Standard execution proposal [35], called executor, is
deployed on both of them. Utilizing such an executor, HPX implementations
benefit from retaining the spawning threads alive by allocating existing work to
these threads. Further, such executor offers more ability and flexibility, e.g. users
can determine the priority of worker threads, the stack size of the work threads,
and enable or disable work-stealing policy. Note that work-stealing policy is
advantageous when we consider overdecomposition, wherein each worker thread
has a set of work in queue and the worker thread that finishes its local work
can steal the work from currently active worker threads. HPX local and HPX
distributed are also different. HPX local relies on HPX local facilities and does
on-node computation, while HPX distributed depends on equivalent distributed
facilities and manages communication on top of parallelization.

6 Experiments

All experiments were conducted on Buran nodes of the Rostam cluster. The
hardware and software details are shown in Table 1. In Sect. 6.1 the overheads of
Charm++, HPX, and other systems are measured when considering the scenario
where the runtime overhead is dominant, and one computational task is assigned
to each core. In Sect. 6.2, overdecomposition is adopted where more than one
computational tasks are assigned to each core. We investigate the fine-grained
performance of Charm++ in Sect. 6.3, where we use POSIX shared memory for
intra-node communication, as described in Sect. 5.1. Each run is 1000 time steps
long. Each data point has run 5 times, and a confidence interval with 99%
confidence level is shown for the variance in the 5 runs.

6.1 Performance of a Single Task on Each Core

To characterize the performance limited by runtime overhead, the number of
tasks is set to the number of total cores.
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Fig. 1. Stencil pattern, 1 node (48 cores), 48 tasks.

Figure 1a presents the TeraFLOP/s reached with a compute-bound kernel,
varying the grain size. Note that the time for each vertex to execute such a kernel
with a grain size of one is 2.5 ns. Almost all systems achieve peak Tera FLOP/s,
i.e. 2.44×1012, when the grain size is large enough. Figure 1b shows the efficiency
of each system responding to the peak Tera FLOP/s vs. task granularity. Task
granularity is measured by: wall time × number of cores / number of tasks.
Figure 1 shows METG of each system, which is the intersection of its efficiency
curve and the 50% efficiency red dashed line in Fig. 1. To calculate METG, we
first measure the peak Tera FLOP/s and get the efficiency percentage of each
system responding to the peak Tera FLOP/s. For more details about METG,
we refer to [8]. For the shared-memory system, i.e. OpenMP and HPX local,
we observe that HPX local performs better than OpenMP. For the distributed-
memory system, we find that MPI has the smallest METG, 3.9 µs. METGs of
other systems for this scenario are listed in the first column of Table 2.

Table 2. METG (µs) of each system for the stencil pattern without/with different
overdecomposition, using 1 node.

System single task per core 8 tasks per core 16 tasks per core

Charm++ 9.8 37.8 84.1

HPX distributed 19.3 39.2 54.1

HPX local 22.4 54.5 77.9

MPI 3.9 6.1 7.6

OpenMP 36.2 36.9 41.8

MPI+OpenMP 50.9 152.5 258.6
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6.2 Performance of Overdecomposition

To quantify the performance of overlapping communication with computation,
the total size of tasks is set to N times the number of total cores, such that each
core processes N tasks. In this subsection, N is set to 8 and 16, respectively.

Table 2 lists METGs of each system for the stencil pattern with/without
overdecomposition, using one node, respectively. For all systems, MPI achieves
the smallest METG for these three scenarios.

Fig. 2. METG of each system with varying number of nodes for different overdecom-
position. METG is short for Minimum Effective Task Granularity, is an efficiency-
constrained metric for runtime-limited performance, introduced in Task Bench
paper [8].

Figure 2 presents METGs of each system with varying number of nodes.
Lower is better because a lower METG indicates a smaller task granularity
required to achieve at least 50% overall efficiency. Flat is ideal because a flat
line implies that the communication topology does not affect METG by increas-
ing the number of nodes. We observe that Charm++ and MPI have lower and
flat trends, while HPX distributed and MPI+OpenMP have higher and rising
tendencies. For shared-memory parallelism, OpenMP has smaller METGs than
HPX local for both scenarios.

6.3 Fine-grained Charm++ performance

In Fig. 3, we evaluate the performance impact of the different build options meant
for fine-grained applications described in Sect. 5.1, which were not used in the
above experiments. Default is the standard Charm++ build used above. Char.
Priority denotes a build using eight-byte message priorities; SHMEM denotes the
build that uses shared-memory for intra-node communication. Combined is a
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Fig. 3. Stencil pattern, 8 nodes, 384 cores, 384 tasks. Performance of different Charm++

build configurations for a grain size of 4096 iterations.

build using all optimizations, and Simple Sched. denotes Charm++ built with
the simplified scheduling path described in Sect. 5.1.

We find that SHMEM and Combined yield an average throughput increase of
5.7% and 5.3%, respectively Using eight-byte message priorities and a simpli-
fied scheduling path did not yield a significant increase in throughput. Conse-
quently, we find that scheduling overhead is not substantial even at this grain
size, and that communication latency dominates. To further explore the perfor-
mance impact of scheduling, additional investigation with different Task Bench
dependency patterns is required.

7 Conclusion and Outlook

This work is the first work comparing Charm++ and HPX using the same bench-
mark. Using Task Bench enabled us to study the overheads introduced by the
two AMTs compared to the more traditional approaches. The asynchronous
scheduling using light-weight threads as in HPX or stackless tasks as in Charm++
incurred some costs. We seen, for larger grain sizes, the overhead was negligi-
ble. However, for smaller grain sizes, the overhead was observed. To conclude,
the overheads of fine-grained parallelism was not inherent to the programming
models, and benchmark studies like this one was expected to lead to further
optimizations to reduce or eliminate the gap with respect to MPI.

This study has shown that there is potential for improvement for both AMTs
for smaller grain sizes. Here, we need to investigate the differences with respect
to MPI and do some profiling with the tools provided by both AMTs. For dis-
tributed HPX, we plan to try different libraries for communication, e.g. libfabric
and LCI. For Charm++ the support for active messaging in the communication
layer (such as UCX) will be tested. As a next step, a comparison with other
AMTs would be interesting.
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Abstract. Here, the IRIS programming model is evaluated as a method
to improve performance portability for heterogeneous systems that use
LU matrix factorization. LU (lower-upper) factorization is considered
one of the most important numerical linear algebra operations used in
multiple high-performance computing and scientific applications. IRIS
enables the separation of the algorithm’s definition from the tuning by
using tasks + dependencies. This considerably reduces the effort required
to achieve performance portability on heterogeneous systems. One IRIS
code can use different settings depending on the underlying hardware
features. Different configurations are evaluated on two different hetero-
geneous systems to achieve important speedups for the reference code
with minimal changes to the source code.

Keywords: IRIS · Tasking · Heterogeneity · Performance portability ·
CPU · GPU · LU factorization

1 Introduction

This paper describes performance portability on different heterogeneous systems
using the IRIS programming model1 for LU (lower-upper) matrix factorization.
Iris is a task + dependency-based programming model in which each task can
encapsulate almost any kind of current parallel code (e.g., OpenMP, CUDA,
HIP, OpenACC) and targets almost any current parallel computer architecture
(e.g., CPUs, graphics processing units [GPUs], digital signal processors [DSPs],
field-programmable gate arrays [FPGAs]).

1 https://iris-programming.github.io/.
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We use LU factorization as a motivating case study given its importance in
multiple high-performance computing (HPC) applications [1–3], but the ideas
explored in this paper can also be effectively applied to other HPC applications.
LU factorization is also one of the most important benchmarks [4,5] used to
evaluate the performance of HPC systems.2 Parallel LU factorization is com-
posed of four major and completely different operations that must be computed
on blocks of different shapes and sizes, and the size of these blocks are different
along the computation. All these factors make LU factorization a challenging
case study for performance portability on heterogeneous systems—for which the
best target architecture of each application component is unclear.

To make performance portability on heterogeneous systems simpler, we sep-
arate the algorithm design from the tuning. While the algorithm is described by
using tasks + dependencies on top of IRIS, the tuning consists of choosing the
target/code for each of the tasks, which enables us to use one code for multiple
platforms.

The rest of the paper is organized as follows: Sect. 2 presents the main charac-
teristics of the IRIS programming model, Sect. 3 introduces the LU factorization
case study, and Sect. 4 outlines the effort to implementation a portable and het-
erogeneous LU code using IRIS. The performance study is described in Sect. 5.
Finally, related work is summarized in Sect. 6, and future directions and conclu-
sions are presented in Sect. 7.

Fig. 1. The IRIS architecture.

2 https://www.top500.org/.

https://www.top500.org/
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2 IRIS Programming System

As a programming system for extremely heterogeneous architectures, IRIS [6]
enables application developers to write portable applications across diverse het-
erogeneous programming platforms, including CUDA, HIP, Level Zero, OpenCL,
and OpenMP (Fig. 1). IRIS orchestrates multiple programming platforms into
a single execution/programming environment by providing portable tasks and
shared virtual device memory.

IRIS provides a task-based programming model in which a task is a schedul-
ing unit. A task runs on a single device but is portable across any compute device
in a system. A task can contain zero or more commands, and there are four types
of commands: (1) host-to-device memory copy, (2) device-to-host memory copy,
(3) kernel launch, and (4) host. Because a task can have a dependency on other
tasks, it cannot start until the prerequisite tasks complete. Therefore, writing
an IRIS application means building directed acyclic graphs of tasks. Each task
has a target device selection policy when it is submitted. This policy is specified
by the programmer, and it can be a device number, device type (e.g., CPU,
GPU, FPGA, DSP), or a built-in policy provided by IRIS (e.g., greedy, random,
locality-aware, profile).

To achieve application portability and flexible task scheduling with effective
data orchestration, IRIS provides shared virtual device memory across multiple,
disjointed physical device memories. IRIS automatically transfers data across
multiple devices to keep memory consistency across tasks. Therefore, all compute
devices can share memory objects in the shared virtual device memory, and they
can see the same content in the memory objects.

3 LU Factorization

Decomposing a matrix A into lower and upper triangular matrices (i.e., the LU
factorization) is used to more easily solve systems of linear equations:

Ax = LUx = B. (1)

LU factorization plays a key role in many computational science applications.
However, it is also computationally expensive, which motivated us to develop a
new LU factorization implementation on top of the IRIS programming model to
provide performance portability on different modern heterogeneous systems.

One of the most common ways to parallelize this type of operation is to
decompose the matrix into tiles by defining the dependencies between the tiles
and the operations to be computed on each tile. This can be accomplished
through tasking [7–9].

The LU factorization on a tiled matrix (Fig. 2) consists of (1) factorizing the
first tile of the diagonal to obtain the L (dark-green) and U (light-green) matrices
of the tile; (2) computing several TRSMs (light-blue) by using the L matrix for
the corresponding row and the U matrix for the corresponding column; and
(3) computing the so-called update step (dark-blue) by multiplying (i.e., general
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matrix multiply [GEMM]) the result of the set of TRSMs and updating the tiles
in the rest of the matrix. We compute the next tile of the diagonal and the next
two steps until the entire matrix is computed.

...

...

...

...

Fig. 2. LU decomposition.

Although the state-of-the-art routine for LU factorization involves pivoting,
we developed a non-pivoting version for two reasons: (1) the pivoting is not
necessary on well-conditioned matrices, and (2) we want to analyze the perfor-
mance of the proposed optimizations without the influence of pivoting for the
sake of performance analysis. Additionally, although using pivoting to solve lin-
ear systems of equations is commonly accepted, we found multiple problems in
which the matrices were well conditioned, which made expensive operations such
as pivoting unnecessary. For this reason, multiple implementations in reference
libraries do not use such a technique. Examples include PLASMA [9], LASs [7],
Intel’s MKL,3 NVIDIA’s cuSolver [10] and cuSparse [11], FISHPACK [12,13],
and SuperLU [14].

4 Implementation

Figure 3 shows the pseudocode for the IRIS-implemented LU factorization. At
this algorithm level, we declare the different memory spaces and tasks and depen-
dencies among them and describe the algorithm to be computed. As shown, every
task can be computed on a CPU, a GPU, or both depending on the optimizations
and ideas we want to explore. These optimizations do not require code modifica-
tions at the algorithm level, but they are conducted internally in each of the tasks
at the implementation level. Although the algorithm is described/implemented
at the algorithm level in an architecture-agnostic way, the implementation level
(set of tasks) attempts to obtain the maximum performance on the target archi-
tecture. One of the benefits of using IRIS is that one algorithm-level code can
have multiple and different implementation levels with each optimized for a spe-
cific heterogeneous platform.
3 https://software.intel.com/en-us/mkl-developer-reference-c-mkl-getrfnpi.

https://software.intel.com/en-us/mkl-developer-reference-c-mkl-getrfnpi
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1 int SIZE= 16384; int TILE_SIZE = 512; int num_tiles = SIZE/TILE_SIZE
2 A = malloc(SIZE*SIZE);
3 //Creation of the IRIS graph
4 iris_graph graph;
5 iris_graph_create(&graph);
6 //Creation of the IRIS memory space
7 iris_mem A_iris, B_iris0, B_iris1, C_iris;
8 iris_mem_create( TILE_SIZE * TILE_SIZE, &A_iris);
9 iris_mem_create( TILE_SIZE * (SIZE-TILE_SIZE), &B_iris0);

10 iris_mem_create( TILE_SIZE * (SIZE-TILE_SIZE), &B_iris1);
11 iris_mem_create((SIZE-TILE_SIZE) * (SIZE-TILE_SIZE), &C_iris);
12 //Creation of the IRIS tasks pointers
13 iris_task *getrf = malloc(num_tiles*sizeof(iris_task));
14 iris_task *trsm_top = malloc(num_tiles*sizeof(iris_task));
15 iris_task *trsm_left = malloc(num_tiles*sizeof(iris_task));
16 iris_task *gemm = malloc(num_tiles*sizeof(iris_task));
17 //Creation of the IRIS tasks parameters
18 struct *getrf_params = malloc( num_tiles * sizeof(getrf_params);
19 struct *trsm_top_params = malloc( num_tiles * sizeof(getrf_params);
20 struct *trsm_left_params = malloc( num_tiles * sizeof(getrf_params);
21 struct *gemm_params = malloc( num_tiles * sizeof(getrf_params);
22 for ( d = 0; d < num_tiles; d++){
23 //---GETRF TASK---
24 //Creation of the getrf[d] task
25 iris_task_create_perm(&getrf[d]);
26 //Initialization of getrf task's parameters
27 getrf_params[d].M = TILE_SIZE;
28 getrf_params[d].LDA = TILE_SIZE;
29 ...
30 getrf_params[d].A_cpu = &A[( (d * TILE_SIZE) * LDA ) + ( d * TILE_SIZE )];
31 getrf_params[d].A_gpu = A_iris;
32 //Initialization of the task
33 iris_task_host(getrf[d], getrf_task, &getrf_params[d]);
34 //Queue task into the graph
35 iris_graph_task(graph, getrf[d], iris_default, NULL);
36 //---TRSM-TOP TASK---
37 n = d + 1
38 iris_task_create_perm(&trsm_top[d]);
39 //Defining dependencies of the trsm-top tasks
40 iris_task_depend( trsm_top[d], 1, &getrf[d]);
41 trsm_top_params[d].M = TILE_SIZE;
42 trsm_top_params[d].LDA_cpu = SIZE;
43 trsm_top_params[d].LDA_cpu = TILE_SIZE;
44 ...
45 trsm_top_params[d].A_cpu = &A[( (d * TILE_SIZE) * LDA ) + ( d * TILE_SIZE )];
46 trsm_top_params[d].A_gpu = A_iris;
47 trsm_top_params[d].B_cpu = &B[( (n * TILE_SIZE) * LDA ) + ( d * TILE_SIZE )];
48 trsm_top_params[d].B_gpu = B_iris0;
49 iris_task_host(trsm_top[d], trsm_task, &trsm_top_params[d]);
50 iris_graph_task(graph, trsm_top[d], iris_default, NULL);
51 //---TRSM-LEFT TASK---
52 m = d + 1
53 iris_task_create_perm(&trsm_left[d])
54 iris_task_depend( trsm_left[d], 1, &getrf[d]);
55 trsm_left_params[d].M = TILE_SIZE;
56 trsm_left_params[d].LDA_cpu = SIZE;
57 trsm_left_params[d].LDA_cpu = TILE_SIZE;
58 ...
59 trsm_left_params[d].A_cpu = &A[( (d * TILE_SIZE) * LDA ) + ( d * TILE_SIZE )];
60 trsm_left_params[d].A_gpu = A_iris;
61 trsm_left_params[d].B_cpu = &B[( (d * TILE_SIZE) * LDA ) + ( m * TILE_SIZE )];
62 trsm_left_params[d].B_gpu = B_iris1;
63 iris_task_host(trsm_left[d], trsm_task, &trsm_left_params[d]);
64 iris_graph_task(graph, trsm_left[d], iris_default, NULL);
65 //---GEMM TASK---
66 iris_task_create_perm(&gemm[d]);
67 brisbane_task gemm_dep[] = { trsm_top[d], trsm_left[d] };
68 iris_task_depend( gemm[d], 2, gemm_dep);
69 gemm_params[d].M = SIZE - ( m * TILE_SIZE);
70 gemm_params[d].LDA_cpu = SIZE;
71 ...
72 gemm_params[d].A_cpu = &A[( (d * TILE) * LDA ) + ( m * TILE )];
73 gemm_params[d].B_cpu = &A[( (n * TILE) * LDA ) + ( d * TILE )];
74 gemm_params[d].C_cpu = &A[( (n * TILE) * LDA ) + ( m * TILE )];
75 gemm_params[d].A_gpu = B_iris1;
76 gemm_params[d].B_gpu = B_iris0;
77 gemm_params[d].C_gpu = C_iris;
78 iris_task_host( gemm[d], gemm_task, &gemm_params[d] );
79 iris_graph_task(graph, gemm[d], iris_default, NULL);
80 }
81 iris_graph_submit(graph, iris_default, 1);

Fig. 3. LU factorization code using IRIS.
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The implementation of our LU factorization consists of four different tasks
(Fig. 4): (1) GETRF, in which we compute a no-pivoting LU factorization on the
top-left corner matrix TILE; (2) TRSM-top, in which we compute the level-3
BLAS TRSM routine by using the lower side of the LU factorization computed
in the previous task as the input matrix (A in Fig. 4) and the rectangular tile
located at the right of the LU matrix as the output matrix (B in Fig. 4); (3)
TRSM-left, in which we compute the same level-3 BLAS operation used in the
previous task but on a different part of the matrix by using the upper side of
the LU matrix computed by the first task (GETRF) as input and a set of square
tiles located under the lower side of the LU matrix as output (B0, B1, B2, and B3

in Fig. 4); and (4) GEMM, in which we compute a matrix-matrix multiplication
by using the output of the two previous tasks as input and the remaining matrix
parts as output. We compute all the previous tasks until the entire matrix is
computed (Figs. 2 and 4 [left]).

Fig. 4. Tasks of the LU decomposition implementation.

4.1 Memory Management

Our goal is to maximize the use of both the CPU and the GPU. In general, prob-
lems with larger tile sizes achieve relatively higher performance during computa-
tion. Knowing this, instead of using square tiles (Fig. 2), we decided to use rect-
angular tiles when possible. The only exception is the TRSM-left task/operation
(Fig. 4), in which the rectangular tile is divided into a set of square tiles. This
decomposition, which is carried out internally in the TRSM-left task at the
implementation level, is necessary because this particular operation requires the
vertical dimensions of both A (input) and B (output) matrices to be the same.4

In our code, we use one pointer (A in Fig. 3) to allocate the matrix to be
factorized. Additionally, we create four different memory spaces that correspond
to the memory computed (tiles) from each of the tasks. This way we can define
the two-level memory space, one used at the algorithm (IRIS) level (A pointer)
and one used at the implementation (task) level (A iris, B iris0/1, and C iris).
4 http://www.netlib.org/lapack/explore-html/db/def/group complex blas level3

gaf33844c7fd27e5434496d2ce0c1fc9d4.html.

http://www.netlib.org/lapack/explore-html/db/def/group__complex__blas__level3_gaf33844c7fd27e5434496d2ce0c1fc9d4.html
http://www.netlib.org/lapack/explore-html/db/def/group__complex__blas__level3_gaf33844c7fd27e5434496d2ce0c1fc9d4.html
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4.2 Tasking

As we described above, the idea is to maximize the use of both the CPU and the
GPU. To do that, apart from carrying out the matrix decomposition illustrated
in Fig. 4, we use multithreaded (CPU and GPU) computations to exploit the
parallelism at both the algorithm and the implementation levels.

In our code, basically every task corresponds to one LAPACK or BLAS
routine. As parameters, we need the same parameters that are described in the
standard specification of these math libraries, so we can then see the tasks as a
wrapper to a standard linear algebra library. For convenience, we implemented
a different C structure data type per LAPACK or BLAS routine, which is then
used to pass the arguments from the algorithm level to the implementation level.

Although it is well known that LU factorizations do not perform well for
small matrices on GPUs, it is difficult to know which platform (i.e., CPU or
GPU) is best suited for the rest of the tasks. This is particularly challenging
when the workload and number of operations (i.e., size of the tiles) in each of
the tasks change along the execution. Another important factor to consider is the
differences of the components in our heterogeneous systems and the connections
between them. Fortunately, in IRIS, one task can be run on either the CPU or
the GPU; in other words, we can decide which architecture to use depending on
the size of the tile or other factors. We implemented several approaches for each
of the tasks using CPU-only, GPU-only, and CPU-GPU methods (Fig. 5).

Next, we explain the main characteristics of the different implementations of
each task.

GETRF. The computation of the LU (no pivoting) factorization is carried out
on the CPU. Although, we do not perform a GPU computation in this task,
we can make some computationally expensive memory transfers between CPU
and GPU, such as transferring the B matrices used by the TRSM tasks (TRSM-
top and TRSM-left in Fig. 4) while LU factorization is being computed. So,
we have two different implementations: (1) one in which we only compute the
LU factorization on the CPU and (2) one in which we simultaneously compute
the LU factorization, perform the CPU-to-GPU memory transfers for B matrices
used by TRSM tasks, and perform the CPU-to-GPU transfer of the factorization
output because this is also used by TRSM tasks.

TRSM-Top. Three different variants of TRSM-top were implemented: (1) a
CPU version in which we make use of the TRSM routine within the CPU vendor
libraries (e.g., IBM ESSL on Summit and Intel MKL on Oswald), (2) a GPU
version in which we compute both a cuBLAS call for the TRSM computation
and CPU-GPU memory copies for the input (from CPU to GPU) and output
(from GPU to CPU), and (3) an optimization of the GPU version in which we
compute a cuBLAS TRSM call and a GPU-CPU memory copy to transfer the
result of the cuBLAS routine from GPU to CPU. In the last implementation,
we do not carry out the CPU-to-GPU communication because this is performed
in the GETRF task.
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Fig. 5. The IRIS algorithm-implementation partition.

TRSM-Left. Two different versions of TRSM-left were implemented here: (1)
a CPU implementation in which we compute the TRSM routine of the IBM
ESSL library on Summit and the Intel MKL library on Oswald and (2) a GPU
code in which we compute the CPU-GPU memory copies necessary to transfer
the input to GPU memory and the output to CPU memory after computing the
cuBLAS TRSM routine on the GPU.

4.3 GEMM

We implemented three different variants of GEMM: (1) a CPU code that uses
CPU vendor libraries; (2) a GPU code in which the C matrix is transferred
from CPU/GPU to GPU/CPU before/after the GPU computation of GEMM
(cuBLAS), the A matrix is transferred from CPU to GPU before the computa-
tion, and the B matrix (output of TRSM-top) is already in GPU memory; and
(3) an optimized GPU implementation in which only the A matrix is transferred
from CPU to GPU before the computation of GEMM on the GPU, and the
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Table 1. Summit and Oswald hardware specifications.

Name Summit Oswald

CPU Architecture IBM Power 9 Intel Xeon E5-2683 v4

Frequency 3,800 MHz 2,100 MHz

Cores 22 32

Memory 512 GB 256 GB

Compiler GCC 8.3.1 GCC 11.1.0

LAPACK/BLAS ESSL MKL

GPU Architecture NVIDIA (Volta) V100 NVIDIA (Pascal) P100

Frequency 1,455 MHz 1,126 MHz

CUDA Cores 5,120 3,584

SM/CU Count 80 60

GPU-to-CPU Comm NVLink 2.0 (50 GB/s) PCIe Gen3 (16 GB/s)

Shared Memory up to 96 KB per SM 64 KB per SM

L1 up to 96 KB per SM 64 KB per SM

L2 6,144 KB (unified) 4,096 KB (unified)

Memory HBM2 16 GB HBM2 12 GB

Bandwidth 900 GB/s 549 GB/s

Compiler NVCC v11.0.221 NVCC v11.0.194

BLAS cuBLAS cuBLAS

top-left tile of the C matrix is transferred from GPU to CPU after the computa-
tion of GEMM. In the last implementation, we transfer the whole matrix to be
factorized from CPU to GPU at the very beginning of the execution. Although
this can be time consuming, it is only done once and has important implications
for the overall performance (see Sect. 5).

5 Performance Analysis

This section describes the performance analysis of our code and the different
variants/optimizations implemented. For a test case, we used a 16, 384× 16, 384
matrix with a tile size of 512×512. We used two different heterogeneous systems
for our analysis—Summit and Oswald (see Table 1 for the hardware features).

5.1 GETRF

For the GETRF task, we used Intel MKL’s LAPACKE mkl dgetrfnpi routine
on Oswald, whereas we used our own code on Summit because the IBM ESSL
library does not have a routine for the non-pivoting LU factorization. In terms of
performance, the optimized vendor library (i.e., Intel MKL on Oswald) achieved
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much better performance (about 48 GFLOP/s) compared to our own implemen-
tation on Summit (15 GFLOP/s). However, as we describe below, this did not
have a significant impact on the overall performance.

When overlapping communication with computation (i.e., to transfer the B
matrix used by TRSM tasks and the output of the factorization from CPU to
GPU), we see a fall in performance when compared to the CPU-only implemen-
tation, and we achieve an overall performance of 11 GFLOP/s on Summit and
42 GFLOP/s on Oswald.

5.2 TRSM-top

Fig. 6. TRSM-top performance.

Figure 6 illustrates the performance reached by the TRSM-top task on Sum-
mit and Oswald. As expected, the GPU-optimized implementation reaches the
highest performance on both systems, at least in the first steps. On Summit,
the performance of this implementation is considerably higher than the other
two implementations—about 2× higher in some cases. In fact, this is the fastest
implementation for all steps on Summit. On Oswald, the performance of the
GPU-optimized implementation is higher than the CPU implementation (sec-
ond fastest implementation) in the first steps; however, the CPU implementation
is the faster one in the last steps, in which the computational cost and parallelism
of computing TRSM is much lower. Although Summit has a much faster CPU-
GPU connection (NVLink), a larger number of CPU cores and a more similar
performance (GFLOP/s) between CPU and GPU makes the CPU implemen-
tation on Oswald faster than the GPU-optimized implementation for the last
steps.

As shown, although the GPU-optimized implementation is the best choice
for Summit, Oswald benefits from a heterogeneous approach (task) in which the
GPU-optimized implementation is used during the first steps of the algorithm,
and the CPU implementation is computed in the last steps.

5.3 TRSM-Left

Although we use the same level-3 BLAS operation from the previous task, we
achieve very different performance results owing to the different matrix decompo-
sition required by this operation. Again, as we can see in Fig. 7, the performance
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varies significantly depending on the target platform. While the performance
of the GPU implementation is lower than that of the CPU implementation on
Oswald, we see the opposite scenario for Summit, where the GPU implementa-
tion is considerably faster than the CPU implementation.

As was the case for the TRSM-top task, we also need a different configuration
here depending on the target platform.

Fig. 7. TRSM-left performance.

5.4 Join TRSM-Top and TRSM-Left

For Oswald, we can see that although the GPU implementation is better for
TRSM-top, the CPU implementation is the better choice for TRSM-left. Because
both tasks are totally independent, this opens an opportunity for better perfor-
mance on Oswald by computing both tasks in parallel using the more suitable
implementation for each task. As shown Fig. 8, joining both tasks enables sig-
nificant speedup.

Fig. 8. Left: Time (s) of TRSM-top + TRSM-left and join-TRSM. Right: Join-TRSM
speedup.
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5.5 GEMM

Unlike the other two tasks, for GEMM we see the same behavior in both het-
erogeneous systems (Fig. 9). The GPU-optimized implementation has proven to
be the fastest implementation in both systems and is 6×–8× faster than the
second-fastest approach. As expected, the performance decreases along the exe-
cution; this can be seen in the other tasks too, in which the computational cost
and the parallelism are much lower in the last steps than in the first steps of the
algorithm.

Fig. 9. GEMM performance.

5.6 Overall Performance

Here, we evaluate the overall performance for the different task implementa-
tions, and we start with the CPU-only implementations. On Oswald, we achieved
an overall performance of 340 GFLOP/s, whereas on Summit we achieved 120
GFLOP/s. The relatively poor performance on Summit is from our implemen-
tation of the GETRF task.

Next, we evaluate using both the CPU and the GPU. For this, GETRF is
computed on the CPU, and the rest of the tasks are computed on the GPU. We
do not overlap computation with memory transfers at this level. On Oswald, we
achieved 225 GFLOP/s, whereas on Summit, we achieved 511 GFLOP/s. Here,
Summit’s faster CPU-GPU connection results in better performance. The lower
CPU-GPU bandwidth on Oswald has a negative impact on performance, and
the overall performance is lower than using only the CPU.

Moving on, we focus on the overall performance impact of the different opti-
mizations implemented in the tasks. We start with Oswald. By overlapping the
LU factorization with CPU-GPU communication in the GETRF task, and by
using the GPU to compute the TRSM-top task, we increased performance to
235 GFLOP/s. Also, by running TRSM-left on the CPU instead of the GPU, we
achieved 275 GFLOP/s. As shown in Fig. 9, the most important optimization
consists of moving the whole matrix from CPU to GPU at the very beginning.
Using the GPU-optimized implementation in the GEMM task, we increased the
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overall performance to 652 GFLOP/s. Finally, we conducted the last optimiza-
tion, which consists of joining TRSM-left (computed on the CPU) and TRSM-
top (computed on the GPU), which increased the overall performance to 700
GFLOP/s.

Next, we focus on Summit. By overlapping the LU factorization with the
CPU-GPU communication in the GETRF task, we increased the overall perfor-
mance to 546 GFLOP/s. As shown in Fig. 7, using the CPU is not faster than
using the GPU for TRSM-left. With that in mind, the optimizations on Oswald
for TRSM tasks are not beneficial on Summit, but computing both tasks on the
GPU is better. Finally, using the GPU-optimized implementation of the GEMM
task increases the overall performance considerably—achieving 1,972 GFLOP/s.

6 Related Works

Recently, we have seen important progress toward performance portability. Some
examples are the C++ template metaprogramming libraries Kokkos [15] and
RAJA [16]. These libraries can build different binaries that target different archi-
tectures from one source code. However, they cannot use more than a single
architecture at a time.

Using CPUs and GPUs for HPC codes has been widely studied [13,17,18].
Since OpenMP 4.0, it is possible to use GPU offloading in OpenMP codes.
Valero-Lara et al. [19] used OpenMP 4.5 to implement a heterogeneous version
of the TRSM level-3 BLAS routine and achieved good performance on one node
of Oak Ridge National Laboratory’s Summit supercomputer. One important
reference for heterogeneous linear algebra codes is the MAGMA [20] library.
MAGMA, offers multiple heterogeneous implementations for several LAPACK
routines. Unfortunately, there is not an implementation for our test case.

In contrast, our work focuses on the potential benefits of using IRIS for per-
formance portability on heterogeneous HPC architectures. To the best of our
knowledge, this is the first time that a portable and heterogeneous LU factor-
ization code (i.e., IRIS) has been implemented and analyzed.

7 Final Remarks and Future Directions

The difference in current and upcoming heterogeneous systems hinders imple-
mentation of HPC codes. By using IRIS, we not only make this effort more
affordable, but we can also implement portable and heterogeneous HPC codes
by separating the algorithm design from the implementation. First, we described
our algorithm using tasks + dependencies. After that, we had to decide which
code to use in each of the tasks. A specific and different setting must be used
depending on the target platform. In this paper, we were able to optimize one
of the most important HPC algorithms, the LU factorization, on two different
heterogeneous platforms with minimal modifications to the code.

However, a more thorough and computationally expensive study is required
to evaluate which code/implementation should be used in each of the tasks. In
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the future, we plan to implement alternatives that enable one to compute the
setting in an automatic and computationally cheaper manner. We also want to
extend this effort to other HPC applications and heterogeneous systems.
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Abstract. Separating algorithms from their computation schedule has
become a de facto solution to tackle the challenges of developing high
performance code on modern heterogeneous architectures. Common
approaches include Domain-specific languages (DSLs) which provide
familiar APIs to domain experts, code generation frameworks that auto-
mate the generation of fast and portable code, and runtime systems
that manage threads for concurrency and parallelism. In this paper, we
present the Halide code generation framework for Phylanx distributed
array processing platform. This extension enables compile-time optimiza-
tion of Phylanx primitives for target architectures. To accomplish this,
(1) we implemented new Phylanx primitives using Halide, and (2) par-
tially exported Halide’s thread pool API to carry out parallelism on HPX
(Phylanx’s runtime) threads. (3) showcased HPX performance analysis
tools made available to Halide applications. The evaluation of the work
has been done in two steps. First, we compare the performance of Halide
applications running on its native runtime with that of the new HPX
backend to verify there is no cost associated with using HPX threads.
Next, we compare performances of a number of original implementations
of Phylanx primitives against the new ones in Halide to verify perfor-
mance and portability benefits of Halide in the context of Phylanx.

Keywords: AMT · Phylanx · Halide · HPX · DSL

1 Introduction

In recent years there has been a massive shift towards heterogeneous computing
systems as impacts of Moore’s law [1] and Dennard scaling [2] have been dwin-
dling. As a consequence, high performance code has become increasingly more
complex and expensive to maintain, while less portable. A common approach to
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address these issues is separating the algorithm from the scheduling of the com-
putation, i.e., the order of computations and memory accesses. This has resulted
in a growing interest in developing domain specific languages (DSLs), code gen-
eration frameworks, and runtime systems which all aim at such separation, albeit
at different levels of abstraction:

Domain specific languages support high-level abstractions and provide
APIs that are closer to domains nomenclature. DSLs are categorized into internal
and external languages. External DSLs are stand-alone with custom semantics,
and syntax, while internal DSLs are embedded in a host language [3]. External
DSLs are typically more expressive and readable [4], but are costly to imple-
ment. Internal DSLs, on the other hand, are cheaper to develop but carry over
drawbacks of the host language. Internal DSLs also share their Intermediate Rep-
resentation (IR) with the host language which may further limit their applicable
optimizations [5].

DSLs benefit from the prior knowledge on the data characteristics and com-
putational traits of applications in a particular domain in order to utilize opti-
mizations that may not be valid in general. DSLs must still be able to identify
the parallelism in the application, and generate optimized code for the target
platforms in order to achieve heterogeneous parallelism [6], requiring a deep
understanding of hardware architecture, parallelism, and scheduling on devel-
oper’s part [6].

Code Generation Frameworks. The complexity of new architectures has
increased the already exorbitant cost of developing and maintaining handwritten
high-performance code. This has led to the emergence of code generation frame-
works like Halide which are capable of automatically generating code for mul-
tiple architectures while being far less error-prone. The code generation frame-
works are great tools for scheduling computations, and managing the associated
data for achieving performances on par to highly-tuned handwritten code. It is
worth mentioning, though, realizing potentials of such frameworks requires a fair
amount of knowledge about the architecture, and application requirements. Also,
such frameworks usually target a particular runtime and may cause performance
degradation in other environments.

Runtime systems, including asynchronous runtime systems (AMTs), carry
out the execution model of the program. Runtime systems facilitate parallelism
and concurrency at thread level, and provide functionalities to dynamically
adjust execution for the best performance. Their scope of effectiveness, how-
ever, is limited to operations rather than larger tasks such as algorithms, or
applications.

While each of the above can independently improve the performance, using all
together may have adverse effects on overall performance—e.g., Halide’s native
runtime and HPX competing for resources could be a source of performance
degradation. In this work we have taken an overarching solution that avails the
combined benefits of all these approaches in a single environment by:

– implementing HPX backend for Halide.
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– introducing a new Phylanx plugin which allows seamless interaction with
Halide-generated code.

– demonstrating benefits of HPX performance analysis suite for Halide appli-
cations in general and in Phylanx in particular.

The remainder of this paper is organized as follows. Section 2 gives an
overview of related existing solutions. Section 3 briefly discusses the underlying
technologies in the extended Phylanx software stack. Next, Sect. 4 elaborates on
how we improved performance portability in Phylanx through Halide. Finally,
in the results Sect. 5, we evaluate the effectiveness of Halide’s HPX backend and
it’s benefits in the context of Phylanx. We conclude by sharing learned lessons,
and outlining the future work Sect. 6.

2 Related Work

In this section we review several solutions for each DSL, code generation frame-
works, and AMT approaches.

2.1 Domain Specific Languages (DSLs)

The Delite Compiler Framework and Runtime [6], based on Scala language, was
developed in order to produce heterogeneous, and parallel domain specific lan-
guages. Delite developers take a hybrid approach to balance between internal
and external DSL implementations [6] by utilizing the concept of Language Vir-
tualization [5,7]. The Delite compiler creates an IR from the DSL, applies the
relevant optimizations, automatically generates codes for different compute ker-
nels, and forms the Delite execution graph (DEG), which is then scheduled to
be executed with an execution plan [5]. Delite also provides code generators for
frequently used parallel patterns to assist application developers. The OptiML
[8] machine learning DSL is developed based on Delite Compiler Framework and
Runtime.

STELLA (STEncil Loop LAnguage) [9] is a DSL for solving partial differ-
ential equations on structured grids and mostly used in weather and climate
simulations. STELLA utilizes C++ template meta-programming to generate
optimized loop nests for several backend architectures.

Osuna et al. [10] developed Dawn as a DSL compiler toolchain for climate
and weather applications. They use GTClang [11] as the DSL frontend, which
is integrated in C++ through Clang compiler. In this DSL, first the model is
considered sequentially, and a parallel representation of the model is created
afterwards based on the identified data dependencies [10].

2.2 Code Generation Frameworks

The developers of CHiLL [12], based their framework on empirical optimizations.
They automatically generate code for several combinations of possible optimiza-
tions and run a subset of the application on the target platform to identify the
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best-performing variant [12]. Their framework is capable of performing complex
code transformations such as imperfect loop nest transformations [12]. Tiwari et
al. [13] extended this work by using Active Harmony [14] in order to facilitate
parallel search.

Baghdadi et al. [15] developed TIRAMISU, a polyhedral framework, to gen-
erate high performance code on different hardware architectures. Tiramisu’s IR
represents the polyhedral model of the loop nests. Tiramisu uses this represen-
tation to effectively apply multiple transformations at once, and generate high
performance code for a wide range of target architectures [15].

2.3 AMT Runtime Systems

Charm++ [16] is a parallel programming system in which the computation is
divided into “migratable” objects called chares and are left to the runtime to
decide when and where to execute them. The execution model of Charm++ is
based on message-driven execution which facilitates overlapping communication
with computation [17].

Legion [18] is developed as a data-centric model in which the runtime iden-
tifies data locality and dependencies between the tasks, and performs the neces-
sary movements and transformations to achieve high performance. Legion focus
is more on GPUs

3 Enabling Technologies

Phylanx is built on top of many existing open source libraries with the aim of
creating a suite for developing, profiling, and analyzing array-based applications.
In this section, we discuss these enabling technologies used to develop Phylanx
and extend its usability.

3.1 HPX

Internally, Phylanx IR is a HPX task graph running on the HPX thread pool
[19]. HPX is an open-source (licensed under Boost Software License) C++ high-
performance asynchronous many-task (AMT) runtime system for parallelism and
concurrency. HPX provides a uniform API for parallel and distributed compu-
tation allowing threads to run both locally, and remotely– the latter per active
messages called parcels [20]. Here we highlight a few HPX facilities used in Phy-
lanx to carry out parallel operations and improve concurrency.

hpx::async. In order to boost opportunities for global parallelism and con-
currency, Phylanx follows the asynchronous programming pattern using HPX’s
async syntax. Any Phylanx program is a tree of asynchronous functions eval-
uated by HPX threading system. This allow the non-blocking async functions
start executing as soon as their input is ready and not blocked by the slower
statements that may appear before them in the program. Once the evaluation
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starts, as long as there are resources available on the system, any number of
functions can run in parallel, resulting in improved system throughput.

hpx::future. Similar to C++ std::future class template, provides a placeholder
for the result of an asynchronous operation. Each Phylanx function returns a
future object. The value of the object can be queried explicitly by the user
through the eval method or may be evaluated implicitly once its value is needed
by another function depending on it. future is essential for non-blocking evalua-
tion of HPX execution tree.

hpx::for_loop. HPX’s Parallel Algorithms module provides a catalog of
C++20 standard conforming algorithms including the for_loop which imple-
ments functionality over a range specified by integral or iterator bounds. The
for_loop iteratively applies the input operation following the execution policy
set by the user. The HPX Halide runtime (Sect. 4) relies on this construct to
execute parallel loops. This approach provides performance better or on par
with popular multiprocessing libraries such as OpenMP [21] without requiring
any directives by the user. In addition, the profiling information will be readily
available and visualizable through APEX (Sect. 3.3) and Traveler (Sect. 3.4).

3.2 Halide

HPX abstracts away many complexities of lower-level APIs for parallelism and
concurrency. However, benefiting from the modern architectures to the fullest
extent also requires global organization of the computation and the associated
data movements. This issue is more pronounced on heterogeneous systems like
the state-of-the-art HPC resources. Phylanx relies on the automatic code gen-
eration capabilities provided by Halide to overcome complications posed when
developing and maintaining high-performance applications.

Halide separates program schedule, i.e., managing the intermediate storage
and the order of computation, from the algorithm. Halide allows programmers
to define the algorithm with a range of possible organization constraints and
generates code with performance equal or better than hand-tuned code. Halide
is also capable of generating code for multiple architectures including CPU and
GPU from the single source.

3.3 APEX

APEX [22] (Autonomic Performance Environment for eXascale) is a perfor-
mance measurement library for distributed, asynchronous multitasking runtime
systems. APEX collects data though inspectors using the dependency chain in
HPX’s execution tree to produce traces–instead of the call stack.

The synchronous module of APEX uses an event API and event listeners.
APEX can collect performance measurements both synchronously, and asyn-
chronously. APEX’s synchronous module will start, stop, yield, or resume timers
whenever an event occurs. These timers can also capture hardware metrics using
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the PAPI [23] library. The asynchronous measurement involves periodic, or on-
demand interrogation of OS, hardware, or runtime states and counters.

APEX also supports performance profiling of runtime tasks. The profile data
contains the number of times each task was executed, and the total time spent
executing that type of task. APEX is integrated with the Open Trace Format
2 (OTF2) [24] library capturing full event traces including event identification
and start/stop times. In HPX applications, all tasks are uniquely identified by
their GUID (globally unique identifier) and the GUID of their parent task. These
GUIDs are captured as part of the OTF2 trace output.

3.4 Traveler

We use Traveler to visualize performance data collected by APEX. Traveler [25]
is a visualization platform for parallel performance data. Traveler is built on
web technologies and all visualized data is readily available through the web
browser. Traveler provides interactive access to performance data at multiple
levels of abstraction supporting charts such as time series, histograms, source
code, and Gantt charts.

Additionally, Traveler supports aggregated execution graphs as more com-
monly analyzed to understand AMT execution. In the context of Phylanx, Trav-
eler is capable of visualizing three kinds of data: (1) OTF2 trace data including
task traces (optionally annotated with PAPI counters), and extra dependency
information through APEX, (2) execution graph data generated by Phylanx,
and (3) raw source code.

4 Performance Portability in Phylanx

Phylanx is an asynchronous array processing platform built on top of the HPX
runtime system. Previous works have shown the performance-portability of Phy-
lanx in both shared-memory [26], and distributed [27–29] settings. Phylanx
has also been tested on container technologies such as Singularity [30] and
Docker [31], and run on Agave/Tapis [32] science gateway through the Jet-
Lag [28,33] interactive environment.

So far, however, Phylanx has relied on two of the three performance optimiz-
ing solutions discussed above Sect. 1, namely, the domain knowledge, and the
HPX runtime system. This has been made possible through: (1) the low-level
PhySL representation, and (2) the Python frontend.

Internally, all the algorithms and operations of the Phylanx platform are
implemented in PhySL (Phylanx Specialization Language). PhySL runs on HPX
thread pool to exploit fine-grain parallelism, and concurrency. It benefits from
constraint-based synchronization, through asyn and future constructs, in order
to maximize throughput and also to improve opportunities for overlapping com-
putation and communication. The frontend, on the other hand, seamlessly man-
ages data between Python and PhySL making low-level functionalities available
in python via the decorator design pattern.
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In this paper we introduce the automatic code generation approach, through
Halide, to improve performance portability of Phylanx. This was done in two
steps: first, we developed a custom HPX runtime for Halide (Sect. 4.1), and next,
implemented a new Phylanx plugin to enable interoperability between Phylanx
and Halide object files (Sect. 4.2).

4.1 HPX Runtime for Halide

Halide’s native runtime provides a highly tuned thread pool to optimize for
the types of contention patterns that its pipelines encounter. However, to avoid
interference with HPX running Phylanx tasks, we exported Halide’s thread pool
to HPX.

Halide has minimal runtime requirements, solely requiring a memory alloca-
tion, and threading implementation. It allows individual pieces of the runtime to
be overridden either through weak linking (on supported platforms), or explicitly
by calling functions that overwrite a set of function pointers. In order to guaran-
tee support for both Unix-like and Windows platforms, we have overwritten the
parallel loop function pointers to replace the default thread pool implementa-
tion, using HPX for_loop with the parallel execution policy. The HPX runtime
is available to Halide in both just-in-time (JIT) and ahead-of-time (AoT) modes.
Listing 1.1 shows an example of how one can use HPX’s parallel loop construct
in the JIT context. Similarly, for the case of ahead of time compilation, we have
partially exported Halide’s thread pool API, overriding Halide’s default runtime.
In this case, the user just need to correctly link their Halide applications and
have HPX threads carry out the tasks.

4.2 Halide Integration in Phylanx

Interoperability of Phylanx primitives (Phylanx functions) and Halide runtime
requires (1) compatibility of threading systems of the two platforms and (2)
seamless exchange of data between the two. Here, we explain how these are
achieved.

Runtime Compatibility. Although it is possible to use JIT compilation 1.1,
Phylanx relies on Halide’s generators (ahead-of-time compilation scheme) to
avoid runtime overheads. This approach allows us to compile Halide objects dur-
ing Phylanx compilation and requires no changes to the Halide code. The only
requirement is linking Halide libraries against the HPX runtime. As a result,
all Phylanx and Halide tasks are scheduled and carried out by HPX runtime,
avoiding resource competition between the two platforms.

int hpx_parallel_loop(void *ctx , int (*f)(void *, int ,
uint8_t *),
int min , int extent , uint8_t *closure)

{
hpx:: for_loop(hpx:: execution ::par ,
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min , min + extent ,
[&]( int i) { f(ctx , i, closure); });

return 0;
}

int main(int argc , char **argv) {
// construct the ‘brighten ’ algorithm in Halide ...
Func brighten;
// override the default parallel loop
brighten.set_custom_do_par_for(

&hpx_parallel_loop);
// ...
// call the function as usual
output =

brighten.realize ({input.width (),
input.height (),
input.channels ()});

return 0;
}

Listing 1.1. Example of using hpx::for_loop to carry out Halide’s parallel loops with
JIT compilation.

Data Management. Phylanx data objects are built on top of blaze [34] and
blaze_tensor [35] while Halide works with halide buffers. Fortunately, both
libraries support a generic and convenient approach for exchanging data with
third-party libraries by exposing a buffer view. These views provide direct access
to the underlying raw data in each object. The Halide plugin implements the
interface between the two by passing the pointers to the data, allowing copy-free
interoperability. The similar scheme is used for exchanging the data between
Phylanx and NumPy [36] arrays. Therefore, data can be seamlessly accessed
across all these three platforms.

from phylanx import Phylanx
import cv2
import numpy

@Phylanx
def py_harris(img):

return harris(img)

img = cv2.imread("rgba.png")
data = numpy.asarray(img)

new_img = py_harris(data)

cv2.imwrite(’result_hpx.png’, new_img)

Listing 1.2. Seamless integration of a Halide application, harris, in Phylanx.
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Listing 1.2 is an example of Phylanx and a Halide application interacting
through the new Halide plugin for Phylanx. The implementation of the harris
function is taken from Halide repository1 and wrapped as a primitive through
the Phylanx plugin for interfacing with Halide. This example demonstrates how
the data can be seamlessly shared by NumPy, Phyalnx, and Halide.

Finally, it is worth noting that, since the whole pipeline runs on HPX, all the
benefits of APEX and Traveler are at the user’s disposal in the entire platform,
see Fig. 1.

Fig. 1. Phylanx profiling, and performance analysis suite which is now available to
Halide application with HPX runtime. The Utilization View (a) shows the utilization
of the runtime threads, the Gantt View (b) Shows the scheduling of individual threads,
(c) shows the source code, and the Dependency Tree (d) shows the task graph associated
to the code [37].

5 Results

In this section we show the empirical results gathered from running a number of
Halide applications using HPX thread pool in the context of Phylanx package.
We first compare performances of the native runtime and HPX in Halide appli-
cation. Next, study the data interfaces between Phylanx, NumPy and Halide
buffers.

1 https://github.com/halide/Halide/tree/master/apps/harris.

https://github.com/halide/Halide/tree/master/apps/harris
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5.1 System Setup

All the experiments were conducted on the Rostam [38] cluster at the Center
for Computation and Technology at LSU. Rostam consists of 53 nodes with a
wide range of architectures. Table 1 provide the specifications of the nodes used
in this work. All applications used the latest version of all software libraries at
the time of the experiment. Table 2 summarizes all the versions and commits
used for the experiments.

Table 1. Specifications of the Maedusa and Kamand nodes on the Rostam cluster used
for experiments in this paper.

Node CPU RAM Number of Cores

Medusa Intel Skylake 96 GB 40
Kamand AMD Rome 512 GB 128

Table 2. Specifications of the libraries used in the experiments.

Library Version Commit

HPX 1.8.0 0db6fc565c
Blaze 3.9.0 89ee9476df
Phylanx 0.1 295b5f82cc
Halide 12.0.0 085e11e0dc

5.2 Experiments

In order to evaluate the effectiveness of the HPX runtime for Halide, we tested
our framework for a convolution arithmetic kernel, as well as IIR Blur and non-
local mean algorithm. We adopted all these algorithms from Halide’s GitHub
repository and compared the performance of the native runtime against HPX.
We carried out the experiments on two of the Intel’s SkyLake, and AMD’s Rome
architectures. Figures 2, and 3 show the performance comparison of the two
runtimes on each of these architectures. We observed matching scaling patterns
on both architectures across all our tests. Although in some cases HPX is slower
for smaller number of threads, that gap between the execution times closes as
the number of threads increases.

https://github.com/STEllAR-GROUP/hpx/tree/0db6fc565cc24a1356d0d87ae3728b1f0b69d399
https://bitbucket.org/blaze-lib/blaze/src/89ee9476df103e42bb6988b7368550a53858353a/
https://github.com/STEllAR-GROUP/phylanx/tree/295b5f82cc39925a0d53e77ba3b6d02a65204535
https://github.com/halide/Halide/tree/085e11e0dc40591bdbb742f8b4df6130b299bc9b
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Fig. 2. (a) Convolution layers, (b) IIR Blur, and (c) Non-Local Means run on Intel
SkyLake. Both Halide’s native runtime and HPX scale similarly.

We further examined the performance of the Halide’s HPX runtime in the
Python environment to test interoperability of the Halide, NumPy and Phylanx
data buffers. Listing 1.2 is an example of a Phylanx primitive, harris, that is
called from python, demonstrating the compatibility of the two platforms.
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Fig. 3. (a) Convolution layers, (b) IIR Blur, and (c) Non-Local Means running on
AMD Rome. Showing comparable performance for Halide’s native vs HPX.

6 Conclusion

Separation of algorithms from the scheduling of their computation has been
shown effective in removing challenges of programming on heterogeneous systems
and the associated portability issues. There are several established approaches,
including DSLs, code generation frameworks, and runtime systems to provide
such abstractions. In this work, we extended the Phylanx array processing plat-
form to enable code generation using Halide, complimenting the HPX runtime,
to better support performance portability. In addition, the HPX-APEX-Traveler
pipeline provides excellent tools for analyzing Halide code. The pipeline facil-
itates measuring and visualizing the performance data without requiring any
changes in the application code. To the best of our knowledge, HPX runtime for
Halide is the first of its kind to outperform Halide’s native runtime.
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Abstract. The Cerebras Wafer Scale Engine (WSE) is an accelerator
that combines hundreds of thousands of AI-cores onto a single chip. Whilst
this technology has been designed for machine learning workloads, the
significant amount of available raw compute means that it is also a very
interesting potential target for accelerating traditional HPC computa-
tional codes. Many of these algorithms are stencil-based, where update
operations involve contributions from neighbouring elements, and in this
paper we explore the suitability of this technology for such codes from
the perspective of an early adopter of the technology, compared to CPUs
and GPUs. Running on a Cerebras CS-1 we explore the performance and
describe in which programmers at the moment express their algorithms.
We demonstrate that, whilst there is still work to be done around exposing
the programming interface to users, performance of the WSE is impressive
as it out performs four V100 GPUs by two and a half times and two Intel
Xeon Platinum CPUs by around 114 times in our experiments. There is
significant potential therefore for this technology to play an important role
in accelerating HPC codes on future exascale supercomputers.

1 Introduction

Scientists and engineers are forever demanding the ability to model larger sys-
tems at reduced time to solution. This ambition is driving the HPC community
towards exascale, and given the popularity of accelerators in current generation
supercomputers it is safe to assume that they will form a major component
of future exascale machines. Whilst GPUs have become dominant in HPC, an
important question is the role that other more novel technologies might also play
in increasing the capabilities of scientific simulation software. One such technol-
ogy is Cerebras’ Wafer Scale Engine (WSE) which is an accelerator containing
hundreds of thousands of relatively simple, AI, cores. Whilst the major target
for Cerebras to this point has been accelerating machine learning workloads,
as the cores are optimised for processing sparse tensor operations this means
they are capable of executing general purpose workloads, and furthermore com-
bined with massive on-chip memory bandwidth and interconnect performance.
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Put simply, the WSE has significant potential for accelerating traditional HPC
computational kernels in addition to machine learning models.

There are currently a handful of Cerebras machines which are publicly avail-
able, making testing and exploration of the architecture difficult. Furthermore,
the software stack is optimised for machine learning workloads, and whilst Cere-
bras are making impressive progress in this regard, for instance the recent
announcement of their SDK [6], at the time of writing machine interaction is
mainly driven via high level machine learning tools. It is currently a very excit-
ing time for the WSE, with Cerebras making numerous advances in both their
software and future hardware offering. Consequently, whilst the technology is
still in a relatively early state, at this stage understanding its overall suitability
for HPC workloads compared with other hardware is worthwhile, especially as
the Cerebras offering is set to mature and grow in coming years.

In this paper we explore the suitability of the Cerebras WSE for accelerating
stencil-based computational algorithms. Section 2 introduces the background to
this work by describing the WSE in more detail and how one interacts with the
machine, along with other related work on the WSE. In Sect. 3 we explore how
one must currently program the architecture for computational workloads and
then, by running on a Cerebras CS-1, in Sect. 4 use a stencil-based benchmark to
compare the performance properties of the WSE against four V100 GPUs and
two 18-core Intel Xeon Platinum CPUs. In Sect. 5 we draw conclusions and then
discuss further work.

2 Background and Related Work

The Cerebras WSE has been used by various organisations, including large global
corporations, for accelerating machine learning. Already there have been numer-
ous notable successes from running AI models on the WSE including new drug
discovery [3], advancing treatments for fighting cancer [4], and helping to tackle
the COVID-19 pandemic [7]. The benefits of accelerating machine learning work-
loads has been well proven, however there are far fewer studies concerned with
using the WSE to run more traditional computational tasks.

One such study was undertaken in [5] where the authors ported the
BiCGSTAB solver, a Krylov Subspace method for solving systems of linear equa-
tions, and also a simple CFD benchmark onto the Cerebras CS-1. Whilst their
raw results were impressive, the authors used Cerebras’ low level interface for this
work, programming each individual core separately and manually configuring the
on-chip network. This required a very deep understanding of the architecture,
and furthermore as the work was undertaken in part by Cerebras employees they
had access to this proprietary tooling which is not publicly available to users.

In this work we focus on stencil-based algorithms because of their suitability
for mapping to the WSE architecture and TensorFlow programming interface
(see Sect. 3). When calculating the value of a grid cell stencils represent a fixed
pattern of contributions from neighbouring elements. Most commonly operating
in iterations, at each iteration the value held in each grid cell will be updated
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based upon some weighted contribution of values held in neighbouring cells. This
form of algorithm is widespread in scientific computing and hence represents the
underlying computational pattern in use by a large number of HPC codes.

2.1 Cerebras Wafer Scale Engine

The Cerebras Wafer Scale Engine (WSE) is a MIMD accelerator and on the
CS-1, the hardware used for this work, there are approximately 350000 process-
ing cores running concurrently and able to executing different instructions on
different data elements. The WSE provides more flexibility than a GPU, for
instance, where on that accelerator groups of cores must operate in lock-step
within a warp. At the physical level the WSE is composed of a wafer containing
84 dies, with each die comprising 4539 individual tiles. Each tile holds a single
processing element, which is a computational core, a router, and 48KB of SRAM
memory. In total there is approximately 18GB of SRAM memory on the CS-1
but this is distributed on a processing element by processing element basis. Each
computational core supports operations on 16-bit integers, and both 16-bit and
32-bit floating point numbers, with the IEEE floating point standard supported
for both floating point bit sizes and additionally Cerebras’s own CB16. Each
core provides 4-way SIMD for 16-bit floating point addition, multiplication, and
fused multiply accumulate (FMAC) operations, 2-way SIMD for mixed preci-
sion (16-bit multiplications and 32-bit additions), and one operation per cycle
is possible for 32-bit arithmetic. Therefore it is advantageous to embrace 16-bit
operations where applicable, which corresponds to the overarching objective of
Cerebras in targeting the acceleration of machine learning models.

The WSE is designed to accelerate computation involved in model training
and inference, with numerous support functions undertaken by the host machine.
The host is connected to the WSE via twelve 100 GbE network connections,
and undertakes activities include model compilation, input data preprocessing,
streaming input and output model data, and managing the overall model train-
ing. The Cerebras machine used for this work is a CS-1 hosted by EPCC and
connected to a host Superdome Flex Server (containing twenty four Intel Xeon
Platinum 8260 CPUs, with each CPU containing 24 physical cores and a total
of 17TB RAM). There is a total of 1.2 Tbps network bandwidth between the
host and CS-1 accelerator. Whilst Cerebras have recently announced their next
generation CS-2 WSE [1], which contains approximately double the resources of
the CS-1, the hardware used for experiments in this paper is still very relevant
and popular with many Cerebras customers. Importantly, the CS-1 represents
the first generation of Cerebras’s architecture and consequently lessons learnt
here apply more widely to later generations being or to be released.

2.2 Programming the Wafer Scale Engine

In [5] the authors programmed their kernels for the CS-1 using a bespoke low
level interface, however this is proprietary and not exposed to users. Cerebras
have recently announced the availability of their SDK [6] for general purpose
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programming of the WSE and whilst this is a very important step in widening
the workloads that can be executed on the architecture, at the time of writing
the SDK is not widespread installed across Cerebras machines including the CS-
1 at EPCC. Furthermore, whilst the SDK is much higher level than the low level
interfaced used in [5], it still requires an investment of time for programmers
to gain the expertise in order to be able to write optimal code for the WSE
using it. Consequently in this work we use the TensorFlow API, which is the
only programming approach currently installed on the EPCC CS-1 at this time,
which abstracts the tricky and low level details of decomposing the workload
into tasks, mapping these to cores, and determining the appropriate routing
strategy. Hence whilst our objective is to focus on stencil-based, rather than
machine learning, codes, by encoding our algorithm via TensorFlow it enables us
to undertake performance explorations for this workload, to understand whether
it is worthwhile investing the time in using the Cerebras SDK as it becomes more
commonly available, and also means that such algorithms can be ported to the
WSE more quickly to undertake such evaluations.

The WSE supports a subset of TensorFlow functionality, and in this work
we use two major building blocks to encode stencil-based algorithms. The first
building block are dense layers, which are fully-connected meaning that every
value provided as an input to the layer will have a connection to every output
value of the layer. As such the operation performed by a dense layer is a matrix-
matrix multiplication with a batch of input tensors and weight matrix resulting
in, for every output value, each input value multiplied by a specific weight and
intermediate values added together to form the result.

The second TensorFlow construct used in this work are convolution layers,
where a kernel slides across the input tensor and performs a convolution product
to calculate results. For each element of the output, the kernel weight values will
be multiplied with a subset of the input values. In the 2D case, the filter can be
thought of as sliding from left to right and up to down, and whilst TensorFlow
includes convolution layers that operate in one, two, and three dimensions, at
the time of writing the Cerebras software stack only supports the 2D convolution
layer. In this Conv2D layer the data-structure is comprised of four dimensions
which are the batch size, number of channels (the depth of the input tensor,
for instance red, green, blue for an image), rows, and columns. Whilst the WSE
provides single and half precision in hardware, the Cerebras software stack only
supports mixed precision (single and half) at the TensorFlow API level.

3 TensorFlow for Encoding Stencil-Based Algorithms
on the Wafer Scale Engine

In this work our objective has been to implement a stencil-based benchmark and
for this we selected the Jacobi iterative method for solving Laplace’s equation for
diffusion in multiple dimensions. Whilst this is a fairly simplistic solver compared
to the BiCGSTAB method explored on the CS-1 in [5], the limitation of having to
encode the algorithm via TensorFlow imposes some limitations. Furthermore, the
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underlying computational pattern is similar and represents an important class
of algorithms and solvers. Consequently insights obtained from this benchmark
on the WSE are highly relevant and interesting to the wider HPC community.
Other benchmarks, such as the Open Earth Compiler benchmark suite [2], were
considered however they were not readily representable in TensorFlow in a form
that would build with the Cerebras software stack.

The first approach we explored used a dense layer to undertake the Jacobi
stencil computation. A sketch of this algorithm is illustrated in Algorithm 1,
where x is the input tensor containing data being operated upon, and stencil is
a matrix representing the stencil operation. The input tensor is first flattened
and then, along with stencil, passed to the Dense TensorFlow layer which will
undertake the calculation. This operation is repeated iterations times.

Algorithm 1: Stencil Calculation with Dense Layer
1 function model-function (x, stencil, iterations,N);

Input : x - the input tensor for the stencil calculations
stencil - matrix used by Dense layer to perform stencil calculation
iterations - the number of times the calculation will be performed
N - total number of elements per step

Output: result of performing stencil calculation on input tensor
2 values = Flatten(x);
3 for i ← 0 to iterations do
4 values = Dense(N, kernelInitializer = stencil)(values);
5 end
6 return values

N is the total size of the input tensor per step, x, which is of size equal to X
in one dimension, X ∗ Y in two dimensions, and X ∗ Y ∗ Z in three dimensions.
TensorFlow drives the dense layer with inputs over many steps, and the overar-
ching problem size being operated upon is N ∗ numberofsteps. The problem is
therefore decomposed into tiles each of size N , and overlapping is undertaken to
ensure boundary neighbours from one tile are available to another. This decom-
position of the problem into steps, each of size N , is required to fit the hardware’s
memory and compute limits.

There are several advantages to programming the WSE using dense layers
such as the ability to readily handle any number of input dimensions because
the input is flattened regardless. Furthermore, because we explicitly define the
stencil calculation then special cases, such as non-zero boundary conditions, can
be handled without the need for conditional statements or other operations. For
instance in this example the stencil matrix value can be set to 1 in order to
maintain boundary conditions throughout the calculation.

However, the major disadvantage of this approach is that the dense layer is of
size N2 (where N is the total size of the input tensor per step). Depending upon
the equation being solved this can involve a significant amount of redundant
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storage and computation. Figure 1 provides an illustration for solving Laplace’s
equation for diffusion in 2D with X = Y = 3. This is first flattened into a
vector of size N = X ∗ Y = 9 and then a matrix-vector product undertaken to
calculate the results. In this example all cells on the boundaries, which is every
element apart the middle value, 5, remains unchanged which corresponds to 1
in the stencil matrix as it is a boundary condition. The 0.25 values in the stencil
matrix average neighbouring values, with every other element a zero and not
contributing to the result. However these zeros must still be stored in the matrix
and computations undertaken with them on them regardless.

Fig. 1. Illustration of dense layer operations for solving Laplace’s equation for diffusion
in 2D with X = Y = 3

Another approach, as introduced in Sect. 2.2, is to use a convolution layer
where the stencil is represented as a much smaller data window that slides across
the input values. A sketch of the code for driving the convolution layer approach
is illustrated in Algorithm 2 where, in contrast to the dense layer of Algorithm 1,
input values are not flattened because the convolution layer is dimensioned. Fur-
thermore, there are two additional arguments, dataFormat and padding provided
to this layer at line 3. The former determines the ordering of the dimensions in
the input and output tensors, and the CS-1 only supports channelsFirst. The
second option ensures that the output is the same shape as the input by under-
taking additional padding if required, where same results in padding with zeros
evenly to the left/right or up/down of the input.

The major benefit of the convolution layer is that, because the defined filter
slides across the input, it decouples the size of the stencil matrix from the input
tensor size. The convolution layer stencil for the same Laplace’s equation for
diffusion in 2D is illustrated in Fig. 2, where irrespective of the input tensor size,
N , nine values are required for the 2D case. Consequently, whilst there are some
zeros still present, representing wasted storage and computation, their number
is very significantly reduced in comparison to the dense layer approach.

However there are two disadvantages with using convolution layers as
sketched in Algorithm 2, firstly stencil-based algorithms with non-zero boundary
conditions are not possible because padding adds extra zero elements. To enable
boundary condition values other than zero, the padding of the convolution layer
must be changed to mode valid, with the algorithm then manually defining the
padding of the input. The most convenient approach to do this would be to
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Algorithm 2: Stencil Calculation with Convolution Layer
1 function model-function (x, stencil, iterations, stencilShape);

Input : x - the input tensor for the stencil calculations
stencil - filter for the Conv2D layer performing stencil calculation
iterations - the number of times the calculation will be performed
stencilShape - the shape of the stencil

Output: result of performing stencil calculation on input tensor
2 for i ← 0 to iterations do
3 x = Conv2D(1, stencil, kernelInitializer = stencilInit, dataFormat =′

channelsF irst′, padding =′ same′)(x);

4 end
5 return x

Fig. 2. Illustration of convolution layer kernel for 2D Laplace’s equation for diffusion

use the tensorflow.pad operation, which pads the outer edge with zeros, and
boundary conditions could then be added around this padded input, driven by a
concatenate layer. However, at the time of writing, both the pad operation and
concatenate layer are not supported by the Cerebras software stack.

Instead a mask must be created that will zero out the edges that were updated
by the convolution layer and then subsequently add the boundary conditions
back in. The mask is a tensor of the same shape and size, N , as the input
tensor and contains 1 in the internal values and 0 on the outer, boundary con-
dition, locations. Multiplying the mask by the output zeros out the boundary
conditions and then a further, boundary conditions tensor which holds zeros for
inner elements and the boundary conditions themselves, is added to the masked
intermediate result. Whilst this approach is not ideal, as it results in additional
runtime overhead, it is required because the Cerebras software stack does not yet
fully support the entire TensorFlow API which would enable better alternatives.

The other challenge with using the convolution layer is that only Conv2D is
currently supported by the Cerebras software stack, meaning that other convo-
lution layers such as Conv3D are not currently available for increased problem
dimensions. Due to the ubiquity in HPC of PDEs in three dimensions, this
omission would be a major limitation. To address this we increase the number
of channels in the 2D convolution layer. Figure 3 illustrates the approach, where
the number of channels in the convolution layer can be considered the depth of
the stencil in the third dimension. Because the depth corresponds to the sten-
cil size in the third dimension, as the filter slides across the input tensor in two
dimensions each channel will undertake calculations on separate third dimension
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Fig. 3. Illustration of 3D convolution approach with the input in 3D but output in 2D

slices. However, as illustrated in Fig. 3 this only results in a 2D output layer. To
expand the number of output dimensions then the number of filter channels
needs to be further increased by the number of input channels as illustrated by
Fig. 4. This supports the handling of three dimensions, within the limitations
imposed by the Cerebras software stack, but does imposes additional storage
and computation overhead.

Fig. 4. Illustration of 3D convolution approach with the input and output in 3D

4 Results

In this section we conduct runs of our benchmark, a Jacobi method for solving
Laplace’s equation for diffusion in multiple dimensions, on the CS-1 which uses
the latest version, 1.0.1, of Cerebras software. Performance is compared against
four Nvidia Telsa V100-SXM2-16GB GPUs (CUDA toolkit version 10.1.243 and
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the CUDA library cuDNN version 7.6.5), and two 18-core Intel Xeon E5-2695
(Broadwell) CPUs. We use TensorFlow version 2.2.0 on the CS-1 and 2.3.0 on
the GPUs and CPUs. Reported results are averaged over three runs.

To compare performance between the hardware we use the metric of delivered
performance in FLOPS. This is defined in Eq. 1, where stencilFLOP is the total
number of floating point operations involved in applying the stencil for each
output element. From the perspective of the computational algorithm this is the
number of FLOPS delivered and includes the unnecessary floating point opera-
tions highlighted in Sect. 3 which do not contribute to the final result. However
there are additional internal operations being undertaken by the TensorFlow
framework which are not readily discernible and these are not included in this
metric. Consequently delivered performance can be thought of as a metric which
is useful to compare the relative performance of hardware technologies, rather
than able to provide an indication of absolute performance.

delivered performance = (problemSize∗stencilFLOP ∗ iterations)/time (1)

As described in Sect. 3, the problem size is a product of N and the number of
steps, where N is the size of the input tensor, for instance X ∗Y in the 2D case.
We set the batch size to be one, and the number of model iterations represents
the number of solver iterations being undertaken, where an iteration operates
on the data resulting from a previous iteration.

Table 1. Delivered performance for 2D Jacobi with a problem size of 2048 million ele-
ments (X = Y = 64) using dense (over 7 iterations) and convolution (3500 iterations)
layers across hardware and different numeric precision configurations

Technology Dense layer delivered
performance (GFLOPS)

Convolution layer delivered
performance (GFLOPS)

Two CPUs (single precision) 10.75 26.75

Two CPUs (mixed precision) 0.63 3.88

Four GPUs (single precision) 27.93 985.12

Four GPUs (mixed precision) 32.28 1255.74

CS-1 (mixed precision) 224.43 3054.89

Table 1 reports the delivered performance in GFLOPS across the CPUs,
GPUs, and Cerebras CS-1. On the CPUs and GPUs we include results for single
and mixed precision (the later is a combination of 32-bit and 16-bit operations),
whereas the Cerebras software stack only supports mixed precision for Ten-
sorFlow. For each of these configurations we include results for the dense and
convolution layer approaches, with the dense layer running in training mode
and convolution layer in predict mode. It is important to stress that the num-
bers reported here are delivered performance, for instance the GPU is capable of
far higher raw FLOPS and the CS-1 was demonstrated to reach 0.86 PFLOPS
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in [5], however representing this benchmark in TensorFlow induces additional
overhead and-so whilst this does not give a measure of the raw performance it
does enable us to compare relative performance between the technologies.

It can be seen from the relative performance comparison in Table 1 that the
Cerebras CS-1 delivers around 2.5 times the performance of four V100 GPUs
and around 114 times the performance of two 18-core Intel Xeon Platinum CPUs
for this benchmark. Mixed precision is slightly more efficient on the GPU, but
performs very poorly on the CPU which is because the CPU does not support
half-precision floating point in hardware and-so must emulate it in software.
Furthermore it can be seen that predict mode, used for the convolution layer,
is beneficial as the weights are already provided by the user for our stencil-
based algorithms and-so additional work involved by training is not required.
However not all TensorFlow operations support predict mode on the WSE and
consequently the dense layer experiments can be run in train mode only.

Whilst our delivered performance metric includes all stencil operations from
the perspective of the algorithm, as described in Sect. 3, not all of these calcu-
lations are useful because not all contribute to the final result. For Laplace’s
equation for diffusion there are 7 useful calculations undertaken per input ele-
ment, comprising four multiplications and three additions. However in the dense
layer all input values contribute to each output element’s calculation, result-
ing in (N ∗ 2) − 1 operations for every output element. In the 2D case, with
X = Y = 64 and therefore N = 4096, there are 8191 operations for each output
element and 33550336 total calculations for the entire input tensor, per step, per
iteration. The convolution layer by contrast undertakes 17 operations per output
element, resulting in 69632 total operations for the 2D case where X = Y = 64.
Whilst, as described in Sect. 3, there are N ∗ 2 additional operations for apply-
ing the mask with non-zero boundary conditions after an iteration, this is still
considerably less overhead than the dense layer. The dense layer approach has
a further limitation which is that a separate dense layer, of size N2, must be
created for each iteration. This significantly limits the overall number of iter-
ations possible with the dense layer, a maximum of 7 on the CS-1, whereas
the convolution approach can run at thousands of iterations. This is the other
reason for the large performance difference between the dense and convolution
layer approaches seen in Table 1, as from our experiments we see performance
improving as small numbers of iterations are increased because this keeps the
CS-1 busy and helps ameliorates startup and shutdown overhead.

Consequently we now focus on the convolution layer approach as it is more
flexible and delivers much better performance. We explored scaling of the prob-
lem size with different numbers of workers. Each worker runs on a node of the
Superdome Flex over 12 cores, and in predict mode can drive the WSE indepen-
dently by streaming in data concurrently to keep the fabric busy. Consequently
multiple workers running concurrently can provide increased performance. This
is illustrated in Fig. 5, where performance increases initially with the problem
size and then plateaus. Increasing the number of workers significantly improves
performance for smaller number of workers as they service the WSE fabric to
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keep it fed with data. However once we reach six workers, whilst there is still a
small performance improvement when increasing to eight or twelve workers, the
advantage is negligible. This is because at six workers the CS-1 is already being
fed sufficiently well with data and beyond this the accelerator is saturated with
data to process so there is no more capacity that requires filling.

Fig. 5. Delivered performance for 2D Jacobi over 3500 iterations on the Cerebras CS-1
when changing the problem size and number of workers

To this point we have concentrated on the benchmark solving Laplace’s equa-
tion for diffusion in two dimensions with input tensor shape X = Y = 64. Con-
sequently in two dimensions we have an overall problem size of N = 4096 multi-
plied by the number of steps. To modify the problem size in Fig. 5 we changed the
number of steps, however it is also possible to change the size and shape of the
input tensor from X = Y = 64 too. Increasing the size and shape of the input
tensor will result in a larger amount of input processed per step, consequently
scaling the pipeline on the hardware to handle this and thus increasing the
amount of fabric used on the WSE. Therefore it is interesting to see what differ-
ence this makes to performance, and Fig. 6 illustrates the delivered performance
in GFLOPS for four different problem size configurations where we modify the
size and shape of the input tensor and the number of steps appropriately. It can
be seen that this configuration change has an impact on performance at smaller
problem sizes, where performance favours a larger input tensor processed per
step and fewer steps. However as the problem size is increased the difference
becomes smaller until, at 2048 million elements there is no significant difference
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between the configurations. The 32 × 64 and 64 × 64 shapes utilised 27% of the
CS-1 fabric, whereas the 128 × 64 used 45% and 128 × 128 67%, beyond this
size the Cerebras compiler was unable to find a suitable placement.

Fig. 6. Delivered performance for 2D Jacobi on the Cerebras CS-1 with 3500 iterations
and 12 workers, with convolution layers. This experiment explores the performance
impact for different problem sizes as the input tensor size and shape is varied

We then ran the 3D Jacobi benchmark with non-zero boundary conditions
and an input tensor shape of X = 64, Y = 64, Z = 10, which is the largest
supported shape on the CS-1, with non-zero boundary conditions over 3500 iter-
ations and 12 workers. Figure 7 reports the speed up obtained against a baseline
of two 24-core Intel Xeon Platinum CPUs executing the benchmark in single
precision (which as per Table 1 is the best performing CPU configuration). We
include results for four V100 GPUs at mixed precision, which is the highest
performing GPU configuration, and the CS-1. It can be seen that the CS-1 sig-
nificantly out-performs the CPUs and GPUs at all problem sizes, which broadly
agrees with results reported for the 2D case in Table 1. It can be seen that speed
up against the CPU is lower at smaller problem sizes for both the GPUs and
Cerebras CS-1, although this is more pronounced for the CS-1, demonstrating
that these accelerator technologies favour working on larger problem sizes and
being fed with data to keep the fabric busy in the case of the CS-1.
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Fig. 7. Speed up relative to running single precision on two CPUs for 3D Jacobi. Using
convolution layers, X=64, Y=64, Z=10, 3500 iterations, and 12 workers

5 Conclusions

The Cerebras Wafer Scale Engine (WSE) is a very exciting technology which has
already delivered significant advantages for machine learning workloads. This
makes it not only an important accelerator for AI, but also very interesting for
traditional computational HPC applications. In this paper we have explored the
suitability of accelerating stencil-based computational algorithms on the WSE
via a benchmark which implements the Jacobi method for solving Laplace’s
equation for diffusion in multiple dimensions. This represents an important class
of algorithm which are common place in HPC and-so insights gained from such
experiments are interesting for high performance workloads more widely. The
primary objective of the WSE has been to accelerate machine learning mod-
els, and whilst the Cerebras team are making significant progress in opening
up the architecture for more general purpose codes, at the time of writing the
only way for many users to interact with the WSE is via the TensorFlow API.
Consequently, to undertake the early user exploration detailed in this paper we
have encoded the stencil-based benchmark in TensorFlow using two approaches,
dense and convolution layers. It was found that the later approach provides more
flexibility and was able to deliver greater performance on the WSE.

We ran performance experiments on a Cerebras CS-1, and because the exact
operations being undertaken by the TensorFlow API are somewhat of a black-
box, the delivered performance metric was used which measures the performance
delivered by the hardware from the perspective of the computational algorithm.
This provides a relative, rather than absolute, measure of performance and
enabled us to compare different hardware technologies. We found that, for this
benchmark, the CS-1 delivered around two and a half times the performance
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of four V100 GPUs and 114 times the performance of two 18-core Intel Xeon
Platinum (Broadwell) CPUs. Based on these initial results we then investigated
the impact that different configurations have on performance delivered by the
CS-1, detailing the effect of changing the number of workers has in keeping the
fabric fed with data, and also how different shapes of the input tensor impact
performance for different problem sizes. Our experiments were concluded by a
comparison for the 3D Jacobi benchmark on the CS-1, with non-zero boundary
conditions, against the two CPUs and the four V100 GPUs.

Throughout this work we have found that the Cerebras CS-1 delivers very
impressive performance, and whilst undoubtedly using TensorFlow to represent
stencil-based computational algorithms is sub-optimal, this has provided us with
the ability to undertake a relative performance comparison against other archi-
tectures and understand some of the behaviours of the WSE in more detail.
The user experience in programming the WSE has been, in the main, pleasant
which is especially notable considering that the Cerebras software stack is still in
active development. It is our belief that, given the performance results presented
in this paper, it is very much worth the effort for HPC software developers to
gain expertise with the Cerebras SDK [6] when it becomes more widely available
in the coming months. It is expected that, whilst development using the SDK
will inevitably require increased effort and architectural knowledge, this will
help deliver significantly improved performance, and the user no longer limited
to mixed precision only will also have more choice over numeric representation.
Therefore a next step will be port our benchmark to use the Cerebras SDK
and, with this work as a baseline, explore the increased performance that the
WSE combined with the Cerebras SDK can deliver compared to other hardware
technologies.
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Abstract. Vipera provides a compiler and runtime framework for imple-
menting dynamic Domain-Specific Languages on micro-core architec-
tures. The performance and code size of the generated code is critical
on these architectures. In this paper we present the results of our inves-
tigations into the efficiency of Vipera in terms of code performance and
size.
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1 Introduction

In order to reduce the power consumption of new High-Performance Computing
(HPC) machines, the use of hybrid HPC architectures with graphics processing
units (GPUs) as accelerators has increased, such as the 4:1 ratio of GPUs to
central processing units (CPUs) per node of the new OLCF Frontier exascale
supercomputer [1]. Other novel architectures for HPC have been introduced,
including innovative micro-core1 processor architectures that consist of many,
low energy cores combined with small amounts of memory on a single chip,
such as the 256 core Kalray MPPA, the 256 core Sunway SW26010, the 1024
Adapteva Epiphany-V and the 2048 core PEZY-SC2. These micro-core archi-
tectures have the promise of overcoming the power wall due to the high energy
efficiency of their designs, for example, the class-leading 70 GFLOPS per Watt
of the 64-core Adapteva Epiphany-IV [3]. Whilst these architectures provide
the high energy efficiency and low overall power consumption levels, micro-cores
are notoriously difficult to program and take advantage of; each technology is
different with its own idiosyncrasies, such as the topology of the Network-on-
Chip (NOC), and they each present a different low-level interface to the pro-
grammer. Although manufacturers have made great progress in developing the
hardware, parallel programming and compilation techniques have not evolved

1 Although the term manycore is commonly used, we define micro-cores as manycores
with extremely small amounts of on-chip, scratchpad RAM (circa 32–64KB) without
hardware cache support.
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quickly enough to exploit this effectively [27]. Fundamentally, writing parallel,
scalable code is difficult and requires the programmer to consider multiple levels
of parallelism to get good performance [29]. However, to date, these technologies
have tended to result in significant performance overheads, required the pro-
grammer to ensure their code fits within the limited on-chip memory, provided
limited choices around data location and size, and provided little, if any, porta-
bility across architectures. As evidenced by ePython [16], a Python interpreter
for the Epiphany-III, dynamic programming languages can significantly reduce
the programming effort required to overcome these complexities in comparison
to the provided, low-level C software development kits (SDKs) [26].

In this paper we present the investigations into the efficiency of our Vipera
framework for dynamic programming languages, in terms of code performance
and size, relative to handwritten (native) C, on a variety of micro-core and
traditional CPU architectures.

2 Related Work

Whilst Python is currently the most popular programming language [2], its use
of an interpreter results in performance significantly slower than statically com-
piled languages, such as C and Fortran. This has driven the need to overcome
the performance overhead of the interpreter and the restrictions imposed by the
global interpreter lock (GIL). This has resulted in technologies to increase the
performance of existing Python codes through the compilation to native code,
including Cython [15], MicroPython [11], Numba [28], Copperhead [18], Parakeet
[30], ALPyNA [23] and PyCUDA [4]. The high-level approach of Numba, Copper-
head and Parakeet is similar, whereby they define an embedded domain specific
language (eDSL) and utilise Python function decorators (directives) to annotate
the code to be compiled to native code or offloaded to GPUs. ALPyNA adopts
a different technique to generating GPU code than the eDSL and function dec-
orator approach. Rather than requiring the programmer to select and annotate
the Python functions that will be generated as GPU kernels, ALPyNA analyses
loop data dependencies and performs automatic loop parallelisation to generate
CUDA kernels for GPUs. However, unlike Numba, Copperhead, Parakeet and
ALPyNA, PyCUDA does not abstract the generation of GPU code but instead
embeds CUDA C code directly within the Python source code. MicroPython
performs the compilation of bytecode to native code on the device [10] similar
to JIT except that the bytecode is not profiled as is common for JIT compilers,
rather the bytecode is just lowered to native code. An alternative approach was
taken for Vipera, similar to that employed by the Pallene/Titan compiler [21]
for Lua [22]. Here, the source language compiler, running on the host, emits C
source code that is then compiled to generate native binary executables.

2.1 Vipera Dynamic Language Framework

The Vipera [17] framework was created to support the development of dynamic
languages on micro-core architectures. As shown in Fig. 1, the framework consists
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Fig. 1. Vipera dynamic language framework architecture

of a layered architecture with components running on the host and micro-core
devices. Vipera manages the compilation of code 1 , the transfer and launch of
kernels on the micro-core devices, and the transfer of data 2 . vPython is a devel-
opment of ePython, a subset of the Python programming language specifically
designed for micro-core architectures. Vipera provides two implementations of
this; the first compiles down to bytecode that executes on a tiny virtual machine
(c. 24KB on the Adapteva Epiphany-III [16]) running on the device 3 and the
second generates Olympus abstract machine code that is compiled to provide
device native code 4 . The communications technology 2 for the native code
version of ePython is provided by the Eithne becnhmarking framework [24]. In
this paper we will focus on the Olympus abstract machine version of vPython.

vPython can either be run standalone on the device or as a Domain-Specific
Language (DSL) within Python running on the host, offloading kernels for exe-
cution to the device. More information on the parallel programming, offloading
and dynamic code loading capabilities of the language can be found in [25,26].

3 Experimental Environment

3.1 CPU Selection

In order to support the assessment of the Vipera vPython compiler and Olympus
abstract machine, a number of different platforms and processors were selected,
including the Adapteva Epiphany-III , Xilinx MicroBlaze and PicoRV32 RISC-
V micro-cores and the AMD64 (x64), ARM Cortex-A9 (ARM32), MIPS32,
SPARCv9 and U740 RISC-V (RISCV64) traditional CPUs. As processor ISAs
can have a significant impact on both the compiled kernel performance and
binary size, the CPUs were selected to test the impact of the Olympus abstract
machine design and to test the portability of Olympus between 32 bit and 64
bit processors with varying alignment constraints and byte ordering.

For the selected benchmarks, LINPACK [19] and the Sieve of Eratosthenes
[20], the source vPython codes were compiled to Olympus abstract machine C
source code and wrapped by Eithne API calls for execution on a single core of
the CPUs. The benchmarks were executed 100 times on all of the CPUs at both
GCC compiler optimisation levels -O2 and -O3.
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3.2 LINPACK Overview

The LINPACK benchmark measures the floating point performance of a com-
puter by solving a matrix problem using LU decomposition. It is a long-
established benchmark, having been introduced in 1979, and is the standard
benchmark used to rank supercomputer performance for the Top500 [13] list.
LU factorisation is commonly used in scientific and industrial applications, such
as design automation, machine learning and signal processing. The C version [12]
was selected to compare the performance (MFLOPS2) of the Olympus abstract
machine3 against native C. For the Olympus abstract machine investigations,
a serial version of the LINPACK code was run on a single core. Due to the
extremely small memory available on the micro-core devices, the problem size n
was 50 and for traditional CPUs n = 1000.

3.3 Sieve of Eratosthenes (Byte Sieve) Overview

The Sieve of Eratosthenes benchmark [20], often referred to as Byte Sieve, is an
algorithm to finding all prime numbers up to a set limit (SIZE) and is com-
monly used to test compiler code generation performance and efficiency [5,7].
The standard C and a new vPython version of the benchmark were used to
determine the performance of integer array access and looping constructs of
the Olympus abstract machine relative to native C, to augment the LINPACK
benchmark that performs floating point array access and calculations. The stan-
dard Sieve benchmark is serial and both versions were run on a single core of all
the CPUs. Like LINPACK, due to the limited memory on the micro-core devices,
the flag array size was reduced (SIZE = 4095) on the Epiphany-III, MicroB-
laze and PicoRV32 micro-cores, on the other CPUs, per the original benchmark,
SIZE = 8190.

4 Results and Discussion

Table 1 details the mean MFLOPS attained by each CPU for Olympus and
native C kernels at GCC optimisation levels -O2 and -O3. Table 2 lists the mean
runtimes for the Byte Sieve Olympus and native C kernels at GCC optimisation
levels -O2 and -O3. On the PicoRV32, the Olympus -O3 kernel froze and did
not return a value to the host, even though the kernel successfully executed
when compiled at optimisation level -Os. As the Byte Sieve (Sect. 4.3) PicoRV32
kernels also failed to execute correctly at -O3, it is likely that the version of the
RISC-V compiler used (riscv32-unknown-elf-gcc 8.2.0) is generating code that is
invalid for the PicoRV32 at this level of optimisation.

2 Million Floating Point Operations per Second.
3 A vPython version of LINPACK was written and compiled to Olympus abstract

machine code.
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Table 1. LINPACK kernel mean runtime performance (MFLOPS)

CPU Olympus (-Os) Olympus (-O3) native C (-Os) native C (-O3)

Epiphany-III 139.36 193.53 83.99 105.99

MicroBlaze 0.0604 0.0605 0.0611 0.0612

PicoRV32 0.0252 N/A 0.0256 N/A

ARM32 67.74 66.61 66.71 69.67

MIPS32 65.90 75.60 75.40 81.077

AMD64 520.98 563.03 652.46 695.57

SPARCv9 49.81 59.40 70.78 68.96

RISCV64 51.63 54.00 57.48 56.57

Table 2. Byte Sieve benchmark native C and Olympus kernel mean runtime (seconds)

CPU Olympus (-Os) Olympus (-O3) native C (-Os) native C (-O3)

Epiphany-III 4.972 3.475 2.760 1.996

MicroBlaze 48.23 32.70 17.78 14.94

PicoRV32 358.64 N/A 140.77 94.52

ARM32 12.53 9.135 4.629 3.443

MIPS32 13.79 9.211 3.683 2.858

AMD64 3.895 2.868 2.319 1.409

SPARCv9 30.93 18.80 6.763 5.060

RISCV64 14.61 11.12 2.676 2.755

4.1 LINPACK Runtime Performance

Figure 2 shows the single-core performance results for LINPACK on the target
processor architectures, compiled using the -Os and -O3 compiler optimisation
levels. Whilst the results vary widely across the architectures, the performance
difference between the Olympus and native C kernels is very small. However,
the Olympus LINPACK kernel compiled at -Os is 1.7 times faster than native C
on the Epiphany-III and is marginally faster (1.5%) on the ARM32. Although
the performance advantage of Olympus kernels on the ARM32 is reversed at
-O3, where native C is 4.6% faster, the advantage is actually slightly increased
at -O3 on the Epiphany-III to 1.8 times faster than native C. On the other
architectures, native C is between about 1.2% on the MicroBlaze and 42% on
the SPARC faster than Olympus at -Os and between about 7.2% on the MIPS32
and 24% on the AMD64 faster at -O3.
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Fig. 2. LINPACK benchmark native C and Olympus kernel floating point performance,
with error bars denoting standard deviation (log scale)

Analysing the performance advantage of Olympus kernels over native C on
the Epiphany-III and at -Os on the ARM32 requires knowledge of the pecu-
liarities of the Epiphany-III and looking at the assembly language generated
by the C compiler. In the case of the Epiphany-III, there are four modes for
the floating point unit (FPU) that can be specified at compile time [8]. The
default FPU mode is caller, which results4 in native C kernels being 1.7 times
faster than Olympus. The truncate FPU mode does not provide a significant
improvement (2.1%) of native C kernels over Olympus. The round-nearest mode
provides a 2.1 times performance improvement of native C over the Olympus
abstract machine. The int FPU mode, executing integer operations as well as
floating point operations in the FPU, delivers a 1.66 and 1.83 times performance
advantage of Olympus kernels over native C at for -Os and for -O3, respectively.
This result is surprising but considering that the Epiphany-III is a superscalar
design that can execute two floating point operations and one integer instruction
per clock cycle [14], it is possible to surmise that the Olympus mnemonics can
take advantage of the additional two integer operations per clock cycle afforded
by the int FPU mode and prevent the pipleline from stalling.

The minor performance advantage of Olympus over native C on the ARM
at the -Os compiler optimisation level can be explained by the additional 21
APSR nzcv opcodes in the native C kernel. This opcode transfers the floating-
point status flags to the ARM application program status register (APSR) and,
as [9] state:

4 The FPU mode comparisons were all performed using the -O3 compiler optimisation
level.
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These instructions stall the ARM until all current NEON or VFP opera-
tions complete.

It is also interesting to determine from the disassembly listing of the ARM
Olympus kernel that the ARM NEON vector / SIMD instructions (e.g. VLDR,
VLMUL and VSTR) are being issued by the C compiler for the Olympus mnemon-
ics, thereby taking advantage of this parallel processing capability of the ARM
processor for the LINPACK benchmark.

4.2 LINPACK Code Size

Figure 3 illustrates that the C kernels are significantly smaller than the Olympus
kernels on all platforms, at GCC optimisation levels -Os and -O3, for the LIN-
PACK benchmark. The difference in kernel size ranges from around 1.5 times big-
ger than native C on the Epiphany-III to 2.6 times bigger on the MIPS32, using
-O3. Interestingly, the difference ranges from around 2 times bigger than native
C on the Epiphany-III to around 3 times bigger on the MIPS32 and AMD64.
This suggests that the Olympus mnemonics generate wordy C code, whereby a
significantly larger number of underlying operations (machine opcodes) are gen-
erated by the C compiler in comparison to the equivalent native C operation.
However, it should be noted that the Olympus kernels include a full compact-
ing heap manager and other runtime functions required to support the dynamic
features of ePython that are absent from the static native C LINPACK kernel.
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Fig. 3. LINPACK benchmark native C and Olympus kernel size
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The figures for the MicroBlaze reflect the use of the floating-point emulation
option for the LINPACK benchmark. Unsurprisingly, the code size difference is
greater on the MicroBlaze in comparison to the Epiphany-III, at between 2 and
2.6 times larger (for both compiler optimisation levels), due to the increased num-
ber of operations generated by the Olympus mnemonics over native C, which is
amplified by the floating-point emulation code required for the MicroBlaze LIN-
PACK benchmark. There is up to a 20% advantage, on the Epiphany-III, in terms
of code size in selecting -Os over -O3. However, for the SPARCv9 the advan-
tage is minimal (0.048%) and is actually detrimental on the ARM32 (-1.67%).
Overall, there is an average increase in code size of 7.5% selecting -O3 over -Os,
which needs to be considered relative to any performance advantage gained by
selecting the higher compiler optimisation level. For a micro-core architecture,
such as the Epiphany-III, the code size saving of 20% (approximately 1.8KB)
could be significant. Therefore, it is important to understand any performance
differences between the two compiler optimisation levels.

4.3 Sieve of Eratosthenes Runtime Performance

The LINPACK benchmark tests the floating point performance of the Olympus
abstract machine. Therefore, the Sieve of Eratosthenes5 (Sieve) benchmark was
selected to determine the size efficiency and integer performance of Olympus
relative to handwritten (native) C. Figure 4 shows that, across compiler optimi-
sation levels -Os and -O3, the Sieve benchmark displays a wider performance
gap between the Olympus and native C kernels than was observed for the LIN-
PACK benchmark, discussed in Sect. 4.1. The Olympus Sieve kernel performance
ranges from approximately 1.4 times slower than native C on the Epiphany-III
to over 5.5 times slower on the RISCV64. For all CPUs apart from the AMD64,
the difference between Olympus and native C kernel performance is smaller at
compiler optimisation level -O3 than at -Os. On the RISCV64, the native C
Sieve kernel is 5.5 times faster than the Olympus kernel at -Os but is only 4
times faster at -O3.

Whilst the kernel performance difference between the -Os and -O3 GCC
optimisation levels is greatest for the RISCV64, all of the RISC CPU Olympus
kernels close the performance gap with the native C kernels at -O3. In com-
parison, the CISC AMD64 native C kernels are 1.7 times faster than Olympus
at -Os and 2 times faster at -O3. This suggests that GCC is able to leverage
the additional registers available on the RISCV64 over those available on the
AMD64 to optimise the Olympus abstract machine code at -O3 optimisation
level. However, the results for the Epiphany-III, MIPS32 and SPARCv9 suggest
that the additional registers available on the Epiphany-III do not provide an
advantage over the 32 available on the MIPS32 and SPARCv9.

5 Due to the limited memory on the micro-core devices, the flag array size was reduced
(SIZE = 4095) on the Epiphany-III, MicroBlaze and PicoRV32 micro-cores, on the
other CPUs, per the original benchmark, SIZE = 8190.
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Fig. 4. Sieve benchmark native C and Olympus kernel runtimes, with error bars denot-
ing standard deviation (log scale)

4.4 Sieve of Eratosthenes Code Size
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Fig. 5. Sieve benchmark native C and Olympus kernel size

Figure 5 shows the size of the Sieve kernels compiled with -Os and -O3 compiler
optimisation levels for all CPUs. Whilst the Olympus kernel sizes are between
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near parity6 and 1.9 times7 that of the native C kernels for the other CPUs,
the difference for the PicoRV32 is striking, with the Olympus kernel size around
5 times larger for both -Os and -O3. The Olympus kernel binary size for the
PicoRV32 is explained by the fact that the GCC compiler allocates space in
the kernel ELF file for the statically allocated C array used for the heap in
the Olympus abstract machine. This is best illustrated by the size of the .bss
segment reported by the GNU size utility for the Olympus Sieve kernel on
the Epiphany-III, as shown in Listing 1.1, where the Olympus abstract machine
heap is 24KB, and the 8MB default heap size of the RISCV64 desktop (threaded)
kernel, as shown in Listing 1.2.

1 text data bss dec hex filename

2 4666 1208 25336 31210 79ea e_task.elf

Listing 1.1. Output of GNU size for Epiphany-III Olympus Sieve kernel

1 text data bss dec hex filename

2 9185 928 8001440 8011553 7a3f21 threaded_sieve.elf

Listing 1.2. Output of GNU size for RISCV64 Olympus Sieve kernel

1 text data bss dec hex filename

2 54668 0 0 54668 d58c rv_task.elf

Listing 1.3. Output of GNU size for PicoRV32 Olympus Sieve kernel

In contrast, for the PicoRV32, as shown in Listing 1.3, there is is only a
single .text segment, containing the executable code, static values, strings and
the Olympus heap array. This is due to the custom GNU linker file that is
required to set up the memory map on the bare-metal PicoRV32 micro-core.
The Epiphany-III and MicroBlaze micro-cores require similar custom linker files.
However, the PicoRV32 file is unique in that the KEEP command is used to
prevent the linker from performing dead code removal on the .text segment,
which is vital to ensure that the PicoRV32 register initialisation is performed.
As the register initialisation subroutine is not referenced in the C source code,
it would be removed by the GCC linker when the kernel binary is created, if the
KEEP command was not used. As all functions are placed in the .text segment
and no dead code removal is performed, all unused library functions will also
be kept in the final binary, unlike the binaries for other CPUs. Although this is
an issue for PicoRV32 binaries, it impacts both Olympus and native C kernels.
Therefore, a more detailed discussion of possible mitigations for this issue will
not be provided, except to highlight the benefits of the Olympus dynamic code
loading mechanism discussed in [25].

6 MicroBlaze GCC optimisation level -Os.
7 Epiphany-III GCC optimisation level -O3.
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4.5 Optimising Loops

Whilst the performance of the Olympus abstract machine closes the gap with
native C, the question remained as to whether the Olympus code generator could
leverage the constrained vPython for loop to increase performance. Although
it is considered unpythonic to use range to provide an index variable to iterate
through the elements of a list [6], as shown in lines 2 and 3 of Listing 1.4,
rather than accessing an iterator directly as shown in lines 5 and 6, the iterator
is immutable and the list element cannot be updated, whereas the unpythonic
approach allows the list element to be updated.

1 arr = [ "a", "b", "c"]

2 for i in range(0,len(arr)):

3 arr[i] = "x"

4

5 for i in arr:

6 i = "y"

Listing 1.4. Unpythonic and Pythonic list access

Although a while loop with a manual index variable is often used in this case,
the unpythonic for loop approach provides a performance benefit in vPython.
As the iterator is managed by the Olympus abstract machine and not the pro-
grammer, the vPython for loop can leverage a native C local loop index variable,
for example $iter i$ in Listing 1.5. This C variable not only controls the loop
iteration but also is used to update the vPython list element, as shown in line 2
of Listing 1.5. In contrast, the while loop requires a lookup of the index variable
in the Olympus environment for both loop control and list element updates, as
shown in lines 5, 6 and 7 of Listing 1.5.

1 FOR($iter_i$ ,0,LDI(ADDRL (2)) ,1)

2 STAI(ADDRL (4),$iter_i$ ,TRUE);

3 END

4

5 WHILE ((LDI(ADDRL (10))<LDI(ADDRL (2))))

6 STAI(ADDRL (4),LDI(ADDRL (10)),TRUE);

7 STI(ADDRL (10) ,(LDI(ADDRL (10))+1));

8 END

Listing 1.5. Example Olympus abstract machine code for vPython loop constructs

Two vPython variants8 of the Sieve benchmark were used to determine the
performance benefits of the for loop over the while loop alternative. These were
compiled at GCC optimisation levels -Os and -O3, and run on the RISCV64. A
native C version of the Byte Sieve benchmark was also compiled at both optimi-
sation levels and run for comparison with the vPython variants. As detailed in

8 Standalone versions, not run within the Eithne framework per Sect. 4.3.
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Table 3, the for loop variant of the vPython Byte Sieve benchmark is approx-
imately 3 times faster at both -Os and -O3 GCC optimisation levels than the
while loop variant. Furthermore, the for loop variant closes the performance
gap with native C to around 1.5 times slower from approximately 5 times slower
for the while loop variant (both at GGC optimisation level -Os).

Table 3. Byte Sieve benchmark runtime performance (seconds)

Code variant GCC -Os GCC -O3

vPython while 7.22 5.55

vPython for 2.33 1.92

Native C 1.33 1.20

The new version of the Olympus abstract machine for Vipera, that separates
the object addressing from operation within the mnemonics, enables direct access
to native C variables, as shown in Listing 1.5. This not only increases runtime
performance but also simplifies the implementation of object references within
the abstract machine , enabling the integration of Olympus applications with C
frameworks, such as the Eithne benchmarking framework [24] and MPI (Message
Passing Interface).

5 Conclusion

Whilst the vPython virtual machine provided a productive environment to
deploy parallel codes written in a dynamic language to micro-core architectures,
the performance overhead of the interpreter limited its use for real-world codes.
However, the Olympus abstract machine approach resulted in kernel perfor-
mance that was comparable to or, in some cases could exceed, native C kernels,
as confirmed for the LINPACK benchmark in Sect. 4.1, and, at a worst-case, was
around five times slower than native C for the Sieve of Eratosthenes benchmark
(Sect. 4.3). Crucially, as shown in Sect. 4.5, this gap can be lowered to just over
1.5 times slower by leveraging the for loop’s native C iterator. Furthermore, a
single Python code is portable across these architectures, which is not the case
for the standard C codes.

Vipera has also addressed the portability of user codes and underlying run-
time support. All of the benchmarks run unmodified across all the supported
platforms and the Olympus abstract machine builds from a single codebase,
which results in significant programmer productivity gains. All device-specific
code is managed within the mnemonics and runtime support functions, with the
generated Olympus abstract machine code remaining the same across all plat-
forms. Furthermore, the vPython virtual machine was also shown to be portable
to a number of micro-core architectures with the minimum of effort.
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Further work includes exploring automatic memory management for data
and code, optimisation of the Olympus abstract machine, automatic dynamic
function selection for the dynamic loading support discussed in [25], additional
data types (byte arrays) to minimise the memory footprint of data and additional
device support (GPUs and FPGAs) using OpenCL C and Xilinx HLS C.

Whilst this paper has focused on the assessment of the Olympus code gener-
ation model using vPython, we also believe that Vipera has a wider applicability
to other dynamic programming languages targeting micro-core architectures.
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Abstract. Discrete Fourier Transform (DFT) libraries are one of the
most critical software components for scientific computing. Inspired by
FFTW, a widely used library for DFT HPC calculations, we apply
compiler technologies for the development of HPC Fourier transform
libraries. In this work, we introduce FFTc, a domain-specific language,
based on Multi-Level Intermediate Representation (MLIR), for express-
ing Fourier Transform algorithms. We present the initial design, imple-
mentation, and preliminary results of FFTc.

Keywords: MLIR · Fast Fourier Transform Compiler · DSL

1 Introduction

HPC libraries for computing Discrete Fourier Transforms (DFT) are critical
computational building blocks for enabling signal processing, data analysis, and
the solution of Partial Differential Equations (PDE). In particular, Fast Fourier
Transform (FFT) algorithms solve DFT via O(n log n) calculations, where n is
the input size against the naive DFT implementation corresponding to a matrix-
vector multiply with complex numbers requiring O(n2) calculations.

Several algorithms for FFT have been designed, including the notorious
Cooley-Tukey recursive scheme to the Stockham and Pease algorithms [11].
FFT algorithms can be expressed using a factorized formulation, e.g., the entire
FFT operation is expressed as the multiplication of matrices, and different algo-
rithms will correspond to various factorization forms. These matrices are largely
sparse, and their final computation will still rely only on O(n log n) operations.
Therefore, from an abstraction point of view, we can express any FFT algorithms
in terms of matrix multiplications. Most importantly for this work, different fac-
torizations are better suited than others for achieving high-performance on a
given system. For instance, Stockham FFT factorization is an excellent fit for
accelerators while other factorizations containing block matrices are a good fit
for hierarchical memory systems. For this reason, to be capable of expressing and
generating automatically and optimizing different FFT algorithms for different
architectures is critical for producing high-performance FFT libraries.

FFTW [8] is among the most successful implementations of FFT libraries.
Inspired by the FFTW design and development, in this work, we propose a new
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Singer et al. (Eds.): Euro-Par 2022 Workshops, LNCS 13835, pp. 80–92, 2023.
https://doi.org/10.1007/978-3-031-31209-0_6
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framework, called FFTc (FFT compiler), for the automatic generation of FFT
algorithms using the MLIR and LLVM compiler infrastructure. To achieve this,
we design a new language to express FFT algorithms using different formulations.
The major contributions of this paper are the following:

– We design and provide a first initial development of a domain-specific lan-
guage for the automatic code generation of FFT algorithms, leveraging MLIR
and LLVM infrastructure.

– We collect and analyze the preliminary performance results from small-size
one-dimensional FFT and compare the performance with the FFTW perfor-
mance.

2 Background

The goal of this work is to develop a DSL for FFT calculation. A direct com-
putation of the Fourier transform is the multiplication of a DFT matrix by the
input vector x. We can define the DFTN matrix as:

DFTNm,n
= (ωN )mn, where ωN = exp(−2πi/N) for 0 ≤ m,n < N. (1)

The most famous FFT algorithm was introduced in 1965 by Cooley and Tukey.
This algorithm relies on the recursive nature of DFT i.e. several small DFTs
can describe a large DFT. In this paper, we use a matrix-formalism to represent
FFT algorithms where a matrix-factorization of the DFT matrix into sparse
and structured matrices describes each FFT algorithm. For example the Cooley-
Tukey factorization of DFT4:

DFT4 =

⎡
⎢⎢⎣

1 1
1 1

1 −1
1 −1

⎤
⎥⎥⎦

︸ ︷︷ ︸
DFT2 ⊗ I2

⎡
⎢⎢⎣

1
1

1
−i

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 1
1 −1

1 1
1 −1

⎤
⎥⎥⎦

︸ ︷︷ ︸
I2 ⊗DFT2

⎡
⎢⎢⎣

1
1

1
1

⎤
⎥⎥⎦ , (2)

where the I is the identity matrix. Here, we see the use of DFT2 in the for-
mulation of DFT4. In the example, we see the sparse (zeros in the matrices are
omitted for clarity) and structured nature of the algorithm. The Cooley-Tukey
general-radix decimation-in-time algorithm for N inputs can be written as:

DFTN = (DFTK ⊗ IM)DN
M(IK ⊗DFTM)ΠN

K with N = MK, (3)

where ΠN
K is a stride permute and DN

M is a diagonal matrix of twiddle-factors.
Different FFT algorithms, such as Stockham and Pease FFT can be expressed
using different factorization schemes.

In this work, we use the LLVM (originally for Low-Level Virtual Machine)
compiler infrastructure for the development of the FFT domain-specific lan-
guage. LLVM is a collection of compiler and toolchain technologies: it consists of
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a set of modular compiler components, including the Clang front-ends, optimizer,
code generator, debugger, linker, and OpenMP runtime. Particularly important
for developing portable HPC code, the LLVM compiler technologies support
many targets, including x86, Arm, and GPU systems [9].

The LLVM project also includes Multi-Level Intermediate Representation
(MLIR), a project aiming at supporting the building of domain-specific compil-
ers, and combining existing compiler infrastructure together. While MLIR (and
the XLA compiler) was initially developed by Google for machine learning work-
loads, MLIR is widely used today for the development of domain-specific lan-
guages beyond machine and deep learning. To solve domain-specific problems,
MLIR offers the infrastructure to define and introduce high-level abstractions
and transforms [10]. The main mechanism to extend MLIR is the development
of dialects that allow defining new operations, attributes, and types. In addi-
tion, MLIR allows using multiple dialects that can be used together within one
module. Examples of existing MLIR dialects are the affine, LLVM, GPU, vector,
SPIR-V dialects. In this work, we design and develop an MLIR dialect to express
FFT libraries.

3 Related Work

Several efforts exist for the development of high-performance FFT libraries. The
inspiration for developing an FFT DSL is FFTW [7], which is the most widely
used open-source FFT library. At its heart, FFTW is an FFT compiler, based
on Objective Caml, to generate Directed Acyclic Graphs (DAG) of FFT algo-
rithms and performs algebraic optimization on them. FFTW uses a planner at
runtime to recursively decompose the DFT problem into sub-problems. These
sub-problems are solved directly by optimized, straight-line code that is automat-
ically generated by a special-purpose compiler, called genfft [8]. An additional
DSL for numerical kernels including FFT is SPIRAL. SPIRAL [6] is a program
generation system for linear transforms and other mathematical functions that
produces HPC code in C. SPIRAL also supports FFTs [5]: it applies pattern
match and rewriting to generate optimal FFT formulation for different hard-
ware, such as multicore systems. Then, SPIRAL maps the matrix formula to
high-performance C code.

4 Methodology: A Domain-Specific Language for FFT

This section describes FFTc– a custom Domain-Specific Language (DSL) for
describing Fast Fourier Transforms (FFT). Our aspiration with FFTc is to
increase the productivity of algorithm developers without any loss in perfor-
mance while at the same time being able to target multiple different backends
(CPUs/GPUs/etc.) with the same input source code. In short, FFTc aims to
increase productivity, portability, and (hopefully) performance.
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The execution model and compilation pipeline are shown in Fig. 1. The cur-
rent implementation supports the parts in dark color; the remaining parts will
be the focus in the near future.

The FFTc compilation pipeline has five core parts: (a) is the translation
from the DSL to the Abstract Syntax Tree (AST), (b) is generating the MLIR
out of AST, (c) stands for progressive lowering from FFT dialect to LLVM
dialect, going through different levels of abstraction represented by dialects, (d)
emits LLVM IR out of the MLIR’s LLVM dialect, (e) is the LLVM middle-end
compilation and code generation.
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Operator
Implementa�on/ 
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Fig. 1. Compilation Pipeline

4.1 The FFTc Language and Grammar

The goal of FFTc is to create an input language that resembles (as close as pos-
sible) that of mathematics, which we believe will help end-users in being more
productive without losing familiarity with the code they are writing. An example
source code of our is seen in Listing 1.1, where we have aimed to keep them as
similar to abstract mathematical expressions as possible, such as Eq. (3). We
support the Kronecker product through the binary operation ’⊗’, the matrix-
matrix multiplication using ’·’, and the matrix multiplication with the twiddle
matrix through the twiddle. Furthermore, we have a set of unary operations,
such as creating the identity matrix, and calculating the dft. Finally, we have
support for permuting. In short, we currently support all necessary language
constructs to describe FFTs in a factorized form. Additionally, our grammar
supports the correct right-associative binding of (e.g.,) matrix multiplication,
which is different from the traditional left-associative binding of binary opera-
tors. A subset of the grammatical construct (in Backus-Naur form) is shown in



84 Y. He et al.

Listing 1.2. The grammatical construct is based on (and extended) from LLVM’s
Kaleidoscope language tutorial [2].

1 var InputReal <4, 1> = [[1], [2], [3], [4]];
2 var InputImg <4, 1> = [[1], [2], [3], [4]];
3 var InputComplex = createComplex(InputReal , InputImg);
4 var result = (DFT (2) ⊗ I(2)) · twiddle (4,2) ·
5 (I(2) ⊗ DFT (2)) · Permute (4,2) · InputComplex

;

Listing 1.1. DSL FFT language

1 expression -> additive -expr (’+’| ’-’) additive -expr
2 additive -expr -> (multiplicative -expr ( ’*’ | ’/’ )

multiplicative -expr)
3 multiplicative -expr -> (FFT -expr ( ’*’ | ’/’ ) FFT -expr) *
4 FFT -expr -> (primary ( ’⊗’ | ’ · ’ ) FFT -expr) *
5 primary -> identifierexpr | numberexpr | parenexpr |

tensorliteral

Listing 1.2. FFTc Language Grammar Extension in Backus-Naur form

4.2 FFTc Compilation Pipeline

The FFTc compilation pipeline shown in Fig. 1 is based on the MLIR’s tutorial
project [4]. The compilation starts at the frontend (Fig. 1:a), where the lexical
analysis, parsing, and building of an Abstract Syntax Tree (AST) based on our
custom DSL language take place. The FFT dialect is the first state of MLIR
generated from the AST (Fig. 1:b). Then a series of lowering passes are applied
(Fig. 1:c) on the FFT dialect in order to expand many of the custom operators
(e.g., the Kronecker product) into a lowered state. For example, a matrix mul-
tiplication, written in our language using “·”, will be expanded to a three-level
nested loop implementing said matrix multiplication. Furthermore, we can apply
several existing MLIR optimization passes (such as Affine) in order to further
optimize the transformed kernels. Finally, near the end of the pipeline (Fig. 1:c),
we lower our representation to the LLVM Intermediate Representation (IR),
after which we inject the code into the LLVM backend for compilation towards
machine code (Fig. 1:d). We explain this pipeline in more detail next.

4.2.1 Phase 1: Translation The FFT dialect is the first dialect in the com-
pilation pipeline. The FFT dialect provides the basic building blocks for different
kinds of FFT algorithms and defines the complex tensor data type and opera-
tions.

– FFT dialect data type: The FFT dialect operates on the double tensor and
complex tensor as well as scalar integer as attributes. There is createComplex
to generate the complex tensor from the double tensor of real and imaginary
parts.
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– FFT dialect operations: We define the operations needed to implement
various kinds of popular FFTs. Examples of such operators are the Kronecker
product and matrix-matrix multiplication. We also define the DFT, Identity,
and permute matrix generator. These make it a lot easier to construct the
FFT algorithm with the similar notation and syntax in mathematics. The
map of operations from FFTc DSL to MLIR FFT dialect is shown in Table 1.

With the FFT dialect implementation described above, we can generate MLIR
out of AST, as shown in (a) to (b) in Fig. 1. Figure 2 shows an example of the
FFT dialect IR that is translated from size 4 recursive FFT in Listing 1.1.

Table 1. From FFTc DSL to FFT Dialect MLIR

FFTc DSL FFT Dialect
createComplex(A, B) fft.createCT(a,b)
A · B fft.matmul a, b :
A ⊗ B fft.kroneckerproduct a, b
twiddle (a,b) fft.twiddle (a , b)
I(size) fft.identity (a)
DFT(size) fft.dft(a)
Permute (a ,b) fft.Permute(a, b)

4.2.2 Phase 2: Operator Implementation/Optimization MLIR sup-
ports different levels of abstraction through dialects. We lower the FFT dialect
to a mix of dialects. Then, we can reuse the analysis/transform passes embedded
in those dialects. We run shape inference to prepare for later transforms and per-
form progressive lowering to a mix of dialects to implement and optimize FFT
operations.

– Shape Inference: In the FFTc DSL, all the operations operate on generic
tensors. We do not need to explicitly specify the shape of tensor data. This
reduces the efforts of the programmers. However, carrying shape informa-
tion in the IR can simplify the workload of analysis and transform passes,
as well as code generation. We can obtain the shape of input tensors dur-
ing the initialization of constants. Later, we propagate the shapes through
the computation to every operation involved. We implement a specific shape
inference function for each operation based on the input augments, such as
for the Kronecker product. All dimensions of the output tensor would be the
multiplication of the corresponding dimensions of two input tensors.

– Progressive Lowering: The compilation pipeline generates the actual
implementations of the operations, which we defined through progressive low-
ering. To reuse existing optimizations in MLIR’s dialects, we lower the FFT
dialect to a mix of dialects, comprising of Affine, Arithmetic, Complex and
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MemRef dialects. The Affine dialect uses techniques from polyhedral compila-
tion to provide a powerful abstraction for affine operations and analyses, such
as dependence analysis and loop transformations. The Arithmetic dialect is
intended to hold basic integer and floating-point mathematical operations,
and the Complex dialect is intended to hold complex numbers creation and
arithmetic operations. The MemRef dialect is intended to hold core memref
creation and manipulation operations [3].

– Affine Dialect: We implement the computation-heavy part of the DSL in
Affine dialect, by lowering from the tensor type that FFT dialect operates
on to the MemRef type that is indexed via an affine loop-nest. Tensors rep-
resent an abstract value-typed sequence of data. By using tensor and tensor
operations, we can increase the productivity of algorithm developers since it
is similar to the notations used in mathematics. The MemRefs dialect, on the
other hand, represents the lower level buffer access, builds a bridge to the
actual computer memory.

var result =

(DFT(2)

⊗

I(2))

·

twiddle(4,2)

·

(I(2)

⊗

DFT(2))

·

Permute(4,2)

·

InputComplex;

%5 = .arithconstant 2.000000e+00 : f64

%6 = " .d "(%5) : (f64) -> tensor<*xcomplex<f64>>

%7 = .arithconstant 2.000000e+00 : f64

%8 = " .iden y"(%7) : (f64) -> tensor<*xcomplex<f64>>

%9 = .kroneckerproduct %6, %8 : tensor<*xcomplex<f64>>

%10 = .arithconstant 4.000000e+00 : f64

%11 = .arithconstant 2.000000e+00 : f64

%12 = " .twiddle"(%10, %11) : (f64, f64) -> tensor<*xcomplex<f64>>

%13 = .arithconstant 2.000000e+00 : f64

%14 = " .iden y"(%13) : (f64) -> tensor<*xcomplex<f64>>

%15 = .arithconstant 2.000000e+00 : f64

%16 = " .d "(%15) : (f64) -> tensor<*xcomplex<f64>>

%17 = .kroneckerproduct %14, %16 : tensor<*xcomplex<f64>>

%18 = .arithconstant 4.000000e+00 : f64

%19 = .arithconstant 2.000000e+00 : f64

%20 = " .Permute"(%18, %19) : (f64, f64) -> tensor<*xcomplex<f64>>

%21 = .matmul %20, %4 : tensor<*xcomplex<f64>>

%22 = .matmul %17, %21 : tensor<*xcomplex<f64>>

%23 = .matmul %12, %22 : tensor<*xcomplex<f64>>

%24 = .matmul %9, %23 : tensor<*xcomplex<f64>>

%7 = .arithconstant 2.000000e+00 : f64

%8 = " .iden y"(%7) : (f64) -> tensor<*xcomplex<f64>>

%10 = .arithconstant 4.000000e+00 : f64

%11 = .arithconstant 2.000000e+00 : f64

%12 = " .twiddle"(%10, %11) : (f64, f64) -> tensor<*xcomplex<f64>>

%15 = .arithconstant 2.000000e+00 : f64

%16 = " .d "(%15) : (f64) -> tensor<*xcomplex<f64>>

%18 = .arithconstant 4.000000e+00 : f64

%19 = .arithconstant 2.000000e+00 : f64

%20 = " .Permute"(%18, %19) : (f64, f64) -> tensor<*xcomplex<f64>>

%22 = .matmul %17, %21 : tensor<*xcomplex<f64>>

%24 = .matmul %9, %23 : tensor<*xcomplex<f64>>

Fig. 2. Mapping from the Recursive FFT to MLIR.

To implement the operators, we allocate a chunk of memory for the output
tensor, construct loops to compute each element of the output tensor, then
store them to the corresponding index of the output memory. The scalar-
ized tensor arithmetic operations are performed by corresponding operations
in the Complex dialect. The lowering result of a matrix multiplication oper-
ator is shown in the Listing 1.3. We take advantage of the existing opti-
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mizations in the Affine dialect, such as loop fusion, AffineScalarReplacement
and AffineLoopInvariantCodeMotion. These optimization passes can help per-
form operator fusion, eliminate redundant load/store and hoists loop invariant
operations out of Affine loops.

1 From:
2 %10 = fft.matmul %9, %3 : (tensor <4x4xcomplex <f64 >>,
3 tensor <4x1xcomplex <f64 >>) ->
4 tensor <4x1xcomplex <f64 >>
5 To:
6 affine.for %arg0 = 0 to 4 {
7 affine.for %arg1 = 0 to 1 {
8 affine.for %arg2 = 0 to 4 {
9 %18 = affine.load %9[%arg0 , %arg2] :

10 memref <4x4xcomplex <f64 >>
11 %19 = affine.load %3[%arg2 , %arg1] :
12 memref <4x1xcomplex <f64 >>
13 %20 = complex.mul %18, %19 : complex <f64 >
14 %21 = affine.load %2[%arg0 , %arg1] :
15 memref <4x1xcomplex <f64 >>
16 %22 = complex.add %21, %20 : complex <f64 >
17 affine.store %22, %2[%arg0 , %arg1] :
18 memref <4x1xcomplex <f64 >>
19 }
20 }
21 }

Listing 1.3. Affine Code Example for FFT.MatMul Operation

4.2.3 Phase 3: Translation There exist infrastructures in MLIR to perform
a full conversion from the Affine, MemRef, and Complex dialects to the LLVM
dialect. Then, we can emit the LLVM IR from the LLVM dialect.

4.2.4 Phase 4: Code Generation We set up a JIT compiler using the MLIR
wrapper over LLVM OrcJit, and pass the optimization and debug flags to the JIT
compiler. The pass manager is also populated by MLIR. Then, the JIT compiler
will perform the LLVM’s middle-end optimization and code generation.
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Fig. 3. Compilation modes.

4.2.4.1 Ahead-Of-Time vs Just-In-Time Compilation
We support two types of compilation modes in FFTc: Ahead-of-Time (AOT) and
Just-in-Time (JIT) compilation. The compilation modes can be seen in Fig. 3,
where they share multiple components and are in line with similar compilation
flows (e.g., in OpenCL’s Online/Offline compilation [1]). In short, both modes
start by parsing the DSL source code and transforming/optimizing it using our
MLIR intermediate representation. Next, we lower the MLIR down to LLVM
IR. Once in LLVM IR, the two modes differ: using the JIT mode, we directly
execute the main function of our compiled targets and exit afterward. The AOT
mode, instead, transforms the LLVM IR representation to an object file, links
with eventual standard libraries, and outputs a machine code binary file that
can be invoked by the user.

Using either model has benefits and limitations. For example, the AOT mode
can be faster and speed up the final execution significantly but has the limitation
that the FFT size needs to be constant. The JIT model, on the other hand, is
slower but allows the FFT size to be variable at runtime. In short, the AOT
mode trades flexibility for performance, while the JIT mode honors flexibility
over performance.

5 Experimental Setup

We evaluate our FFTc on the Kebnekaise supercomputer that is located at the
HPC2N HPC center in Umeå, Sweden. Kebnekaise nodes have a dual-socket
Intel Xeon Gold 6132 CPU, 192 GB of RAM. The operating system is Ubuntu
20.04.4 LTS. The version of LLVM we use to embed the FFTc is 15.0.0. We
run the Ahead-of-Time compilation mode FFTc 1,000 times, and we calculate
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error computing the standard deviation for 30 execution rounds. We developed a
Python script to generate the recursive implementation of the Cooley-Tukey FFT
algorithm, using our FFTc DSL. An example of the output program is shown in
Listing 1.1. Albeit our script can generate different FFT algorithm implementa-
tions, in this paper, we only present the results of the recursive Cooley-Tukey
algorithm.

6 Results

As first step of our evaluation, we verify the correctness of DSL implementation.
We test different random input vectors with different sizes: the input sizes are
the powers of two, from 32 to 1024. We employ complex numbers in double-
precision. We compare the results with the NumPy’s FFT function, that is based
on FFTW. The error is calculated as |resultDSL−resultNumpy|

FFTsize
. The error is smaller

than 1e-7 for each run.
For the next step, we evaluate the performance in the JIT mode. We measure

the execution time of size 32 recursive FFT under JIT mode. The execution time
is shown in Fig. 4. In the figure, the item Parser&MLIRGen stands for frontend
compilation, ‘builtin.func’ stands for MLIR compilation pipeline, ’Jit’ stands for
both LLVM Jit compilation and running time. It is clear from analyzing the
figure that the frontend takes a minor portion of the execution time. The MLIR
pipeline takes the largest part of the execution time. Most of the time is spent
in the optimization passes such as AffineLoopFusion and AffineScalarReplace-
ment. We can choose whether to run these optimization passes or not by passing
optimization flag to FFTc, currently there are O0/O2/O3 available. The Jit
part takes much smaller portion compared with MLIR pipeline, under O3 opti-
mization option for both LLVM middle-end compilation and code generation.
In actual applications, FFT algorithms may run many times while only need to
be compiled once, so the compilation time does not matter considerably. As a
future plan, we intend to reduce the compilation time, such as multi-threading
the compiler and remove redundant operations in Affine passes.

Under Pre-Compiled mode, we compare the FFTc pre-compiled binary with
FFTW 3.3. We built FFTW with gcc compiler, enabled the SIMD instructions.
The input size of the FFT are the powers of 2, we use single thread to run the
program. The result is shown in Fig. 5, the standard deviation is shown as the
black lines over bars.

We run four versions of FFT using FFTc: direct DFT implementation and
Cooley-Tukey recursive FFT implementation with different optimization flags
(O0/O2/O3). It is expected that the DFT performs much better than recursive
implementations, because current implementation for FFT is computed through
dense matrix multiplication, and to achieve the O(N log N) complexity FFT
must be sparse matrix computation. The workload of the currently developed
recursive FFT is much larger than DFT. However, we intend to use the current
solution to showcase the functionality of FFTc and are planning to rewrite the
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Fig. 4. JIT Mode Performance for size 32 recursive FFT

computation in sparse form as a future work. The performance with optimiza-
tion flag O3 is better that O2 and O0. The difference between O2 and O3 flag is
that under O2, the AffineScalarReplacement pass will not be executed. For size

Fig. 5. FFTc Single Thread Performance Compared with FFTW
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128 the O2 is slightly better than O3. Investigating the MLIR, the AffineScalar-
Replacement performs memory access optimizations. In addition, there is also a
similar optimization pass in LLVM pipeline. We plan to further investigate this
issue in the future.

When comparing the performance between FFTc Cooley-Tukey code and
FFTW, we note that here is still a significant performance gap. We believe that
this gap can be attributed to (amongst others) the following reasons:

– The recursive factorized FFTs are computed through matrix-matrix multipli-
cation where the matrices are not expressed as sparse matrices.

– We do not take full advantage of MLIR/LLVM infrastructure to generate
high performance code. Examples of such a features are loop tiling, unrolling
and jam and vectorization in the MLIR/LLVM pipeline.

– We do not support yet an autotuning mechanism, such as the FFTW plan-
ner, to decompose the FFT problem into simpler sub-problems, later solve
the simpler sub-problems using codelets generated by genfft. Currently, our
implementation is similar to genfft: for the FFTs with large-size input, the
generated code is extremely large and introduces considerable compilation
overhead.

7 Discussion and Conclusion

In this paper, we have introduced FFTc– an emerging, work-in-progress DSL for
describing different FFTs variants. The goal of FFTc is to decouple algorithm
description from hardware-specific details and ultimately provide higher pro-
ductivity and better portability without sacrificing performance. To this end, we
have chosen an abstract language representation that is not unlike the mathe-
matical formulas we are used to describing FFTs. We show how such an abstract
language design can be mapped down-to machine code by leveraging existing
MLIR and LLVM infrastructure. The performance – while not a direct objective
of this paper – of our DSL is not yet on par with state-of-the-art FFTW, but is
never-the-less a good starting point to further build upon in future performance-
focused studies, such as extending our compiler with support for OpenMP task-
ing or vectorization.
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SEA). I want to thank Steven W. D. Chien (wdchien@kth.se) for his help with the
proofread.

References

1. Intel Online/Offline Compilation. https://www.intel.com/programmable/
technical-pdfs/683521.pdf

2. Kaleidoscope: implementing a parser and AST. https://llvm.org/docs/tutorial/
MyFirstLanguageFrontend/LangImpl02.html

https://www.intel.com/programmable/technical-pdfs/683521.pdf
https://www.intel.com/programmable/technical-pdfs/683521.pdf
https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl02.html
https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl02.html


92 Y. He et al.

3. MLIR dialects document. https://mlir.llvm.org/docs/Dialects/
4. MLIR toy language. https://mlir.llvm.org/docs/Tutorials/Toy/Ch-1/
5. Franchetti, F., al.: Discrete fourier transform on multicore. IEEE Sig. Process.

Mag. 26(6), 90–102 (2009)
6. Franchetti, F., al.: SPIRAL: extreme performance portability. From High Level

Specification High Performance Code 106(11), 1935–1968 (2018)
7. Frigo, M.: A fast fourier transform compiler. In: ACM SIGPLAN 1999 Conference

on Programming Language Design and Implementation, pp. 169–180 (1999)
8. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE

93(2), 216–231 (2005)
9. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-

ysis amp; transformation. In: CGO 2004, pp. 75–86 (2004)
10. Lattner, C., al.: MLIR: Scaling compiler infrastructure for domain specific com-

putation. In: 2021 IEEE/ACM International Symposium on Code Generation and
Optimization, pp. 2–14 (2021)

11. Van Loan, C.: Computational frameworks for the fast Fourier transform. In: SIAM
(1992)

https://mlir.llvm.org/docs/Dialects/
https://mlir.llvm.org/docs/Tutorials/Toy/Ch-1/


Hetero-Par



Workshop on Algorithms, Models and Tools for Parallel
Computing on Heterogeneous Platforms (HeteroPar)

Workshop Description

HeteroPar is a forum for researchers working on algorithms, programming languages,
tools, and theoretical models for efficiently solving complex problems on heterogeneous
parallel platforms. Heterogeneity is emerging as one of the most profound and challeng-
ing characteristics of today’s parallel environments. From the macro level, where het-
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tectures are increasingly common, the impact of heterogeneity on parallel processing
is rapidly increasing. Traditional parallel algorithms, programming environments and
tools designed for legacy homogeneous multiprocessors will at best achieve a small
fraction of the efficiency and the performance expected from tomorrow’s highly diverse
parallel computing architectures. Therefore, efficiently using these new andmultifarious
parallel architectures requires innovative ideas, newmodels, novel algorithms, and other
specialized or unified programming environments and tools.

The 20th InternationalWorkshop onAlgorithms,Models andTools for Parallel Com-
puting on Heterogeneous Platforms (HeteroPar 2022) took place in Glasgow, Scotland,
organized for the 14th time in conjunction with the Euro-Par annual international confer-
ence. The format of the workshop included one keynote and 11 technical presentations.
The workshop received good attendance of around 25 people on average throughout
the day. This year, the workshop received 22 paper submissions from 11 countries.
After a thorough peer-reviewing process that included discussion and agreement among
reviewers whenever necessary, the program chair selected 11 papers for presentation at
the workshop. The review process focused on the quality of the papers, their innovation,
and applicability to heterogeneous architectures. The quality and the relevance of the
selected papers is high.
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Heras and Jeremy Singer for their help and support.
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LaBRI/Inria/University of Bordeaux/CNRS/Bordeaux INP, Bordeaux, France
{mathieu.faverge,nathalie.furmento,abdou.guermouche,gwenole.lucas,
raymond.namyst,samuel.thibault,pierre-andre.wacrenier}@inria.fr

Abstract. Task-based systems have gained popularity as they promise
to exploit the computational power of complex heterogeneous systems. A
common programming model is the so-called Sequential Task Flow (STF)
model, which, unfortunately, has the intrinsic limitation of supporting
static task graphs only. This leads to potential submission overhead and
to a static task graph not necessarily adapted for execution on hetero-
geneous systems. A standard approach is to find a trade-off between
the granularity needed by accelerator devices and the one required by
CPU cores to achieve performance. To address these problems, we extend
the STF model of StarPU [5] to enable tasks subgraphs at runtime.
We refer to these tasks as hierarchical tasks. This approach allows for a
more dynamic task graph. Combined with an automatic data manager,
it allows to dynamically adapt the granularity to meet the optimal size
of the targeted computing resource. We show that the model is correct
and we provide an early evaluation on shared memory heterogeneous
systems, using the Chameleon [1] dense linear algebra library.

Keywords: Multicore · accelerator · GPU · heterogeneous
computing · task graph · programming model · runtime system · dense
linear algebra

1 Introduction

Due to the recent evolution of High Performance Computing systems toward
heterogeneous multicore architectures, many research efforts have recently been
devoted to the design of runtime systems that support portable programming
techniques and tools to exploit the complex hardware. Runtime systems with
mature implementations are now available both for regular homogeneous multi-
core systems and for complex heterogeneous systems. Standards like OpenMP
(since version 4.0) support the task-based paradigm with applications repre-
sented as direct acyclic graph (DAG) of tasks.

However, the task-based paradigm poses several problems when trying to
exploit heterogeneous platforms efficiently. First, the computing resources of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Singer et al. (Eds.): Euro-Par 2022 Workshops, LNCS 13835, pp. 97–108, 2023.
https://doi.org/10.1007/978-3-031-31209-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31209-0_7&domain=pdf
https://doi.org/10.1007/978-3-031-31209-0_7


98 M. Faverge et al.

heterogeneous platforms have diverse characteristics and requirements. GPU
devices typically favor large data sets, whereas conventional CPU cores reach
peak performance with fine-grain kernels working on a reduced memory foot-
print. Systems usually have a much larger number of CPU units than GPUs,
having more small tasks may lead to better performance. Several efforts have
tried to tackle this problem either by finding the best trade-off between the opti-
mal granularity of each device [1,7,17], or by aggregating CPU cores to process
a task which was meant to be executed by an accelerator like a GPU [9,15].
Alternatively, some preliminary work has considered splitting the tasks on CPU
cores [18]. Even though these approaches are efficient in specific contexts like
dense linear algebra, they suffer from the fact that the task graph is static and
does not allow to select an alternative granularity for a given operation at run-
time. As an example, when designing linear algebra solvers based on low-rank
approximation algorithms, it is almost impossible to statically predict the right
DAG to ensure good numerical accuracy [2,6,8].

These runtime systems all use high-level descriptions of dependencies to build
the task graph at runtime, and then schedule the corresponding computations
on available resources. Several approaches are used to build the task graph. Most
of the previously cited runtime systems rely on the so-called Sequential Task-
Flow model (e.g. OpenMP, StarSS, StarPU) to build the task graph: by
relying on data access-modes and a sequential submission order, dependencies
between tasks can be inferred through data dependency analysis [3] ensuring
the so-called Sequential Consistency at runtime. Other runtime systems such
as PaRSEC use the parameterized task-graph programming model (PTG) [10]
where the task graph is unrolled at runtime using a high-level description of
the dataflow corresponding to the computations. Alternatively, other runtime
systems use a different paradigm for expressing computations. Legion describes
logical regions of data to express the data flow and dependencies between tasks.
All these programming models differ with respect to usability and the overhead
induced on the underlying runtime system.

In this paper, we propose a new type of task, namely the hierarchical tasks,
which can transform themselves into a new task-graph dynamically at runtime.
Programmers only need to provide hints stating which tasks can be transformed
into a hierarchical task. The runtime system can then delay the submission of
parts of the task graph to support dynamic implementation selection, to par-
allelize the task insertion process, and to strongly reduce the number of tasks
in the runtime system. This approach is similar to what is done in OpenMP
for the nested task-based parallelization scheme. However, we extend it to han-
dle heterogeneous platforms while expressing fine grain dependencies. This is
possible thanks to an advanced data manager which can dynamically and asyn-
chronously change the data layout. The proposed model associated to these
hierarchical tasks addresses the issues mentioned above: 1) How to make the
task graph more dynamic? 2) How to reduce the overhead of the runtime sys-
tem? 3) How to overcome the intrinsic limitation of the sequential task flow
submission process? While this model is generic and targets distributed het-
erogeneous architectures, in this paper, we focus on an initial implementation
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for shared memory heterogeneous architectures. Our contribution is two-fold: 1)
We present an advanced data management engine which supports asynchronous
data layout modification, 2) We show how we extend the sequential task flow
model to support hierarchical tasks and present our implementation within the
StarPU runtime system.

2 Related Work

Several efforts have targeted the problem of reducing the overhead of task-based
runtime systems (mainly for those based on the sequential task flow model)
or enhancing the amount of parallelism provided by such systems. [4] analyzes
the limiting factors in the scalability of a task-based runtime system and pro-
poses individual solutions for each of the listed challenges, including a wait-free
dependency system and a scalable scheduler design based on delegation instead
of work-stealing. Alternative approaches consider advanced dependency manage-
ment. For instance, [11] proposes an eager approach for releasing data depen-
dencies. Following this approach, the execution of tasks will not be delayed until
their predecessor tasks completely finish their execution. Instead, tasks will be
launched for execution as soon as their data requirements are available. Alterna-
tively, [15] introduces worksharing tasks. These are tasks that internally leverage
worksharing techniques to exploit fine-grained structured loop-based parallelism
without requiring a barrier.

The closest contribution to our proposition from the perspective of task
dependencies was introduced in [16] as the concept of weak dependencies. It is
an extension of the OpenMP task-nesting model which enhances the dataflow
model of OpenMP by supporting fine-grained dependencies between any set of
tasks. Our contribution is a generalization of the weak dependency concept to
the heterogeneous case where memory consistency is not ensured by the under-
lying hardware, thus needing an advanced data manager (see Sect. 3). Alterna-
tively, some preliminary work targeting heterogeneous architectures has consid-
ered splitting the tasks when assigned to CPU cores in the context of ParSEC [18]
and XKaapi [12].

From the point of view of advanced/dynamic task management and genera-
tion, several efforts have been made to allow task-based runtime systems to have
a more dynamic expressiveness. In TaskFlow [13], advanced tasking schemes are
introduced including dynamic, composable and conditional tasking. Dynamic
tasking, in particular, allows to dynamically generate a sub-DAG from a given
task. However, a synchronization is added at the end of each hierarchical task
to ease the dependencies management. Furthermore, data management must be
handled by the programmers: it is their responsibility to change the layout of
data when needed. [14] introduces the IRIS runtime which has the ability to
perform dynamic task partitioning (either performed by the user or automati-
cally via a polyhedral compiler). However, no details were provided to illustrate
how dependencies are handled in this context. Finally, an advanced runtime
system supporting hierarchical tasks in the context of low-rank linear algebra
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solvers is presented in [6]. In this work, hierarchical tasks are introduced and the
dependencies are expressed at the finest level. However, the data management
is straightforward since the partitioning of data is performed statically at the
beginning of the execution.

3 Automatic Data Management

Data handling is at the heart of StarPU both to automatically infer dependen-
cies between tasks in the STF model and to automatically manage data transfers
between the different memory banks of a distributed/heterogeneous system. To
benefit from these automation, applications must register the data that are han-
dled by the tasks. To do so, StarPU provides an opaque data structure called
handle which is an abstract view of a registered data. Handles are coupled with
an access mode (read-only, read-write, ...) and are used as task parameters. It
is mandatory for a task to access a piece of data through the associated handle.
To ease data manipulation, StarPU brings the notion of data filter, a tool to
partition data associated with a handle into subdata parts associated with new
subhandles. Indeed, instead of registering all data subsets independently, it is
often more convenient to register a large piece of data and to recursively partition
it. Once a handle is partitioned, we can observe that the same piece of data can
be designated simultaneously by several handles. Data in read-only access mode
can advantageously be accessed simultaneously at different partitioning levels by
several tasks. However, when a data is accessed in write access mode, this access
must be exclusive for coherency purpose. This property is ensured by StarPU
when a single partitioning is used for a data, but may be violated when several
handles point to the same data. To deal with this problem, StarPU provides
functions to invalidate other handles to ensure they cannot be used to access
their underlying data, and to unpartition subhandles back into the main handle
to gather the subdata.

We propose a mechanism to automate the management of several simulta-
neous partitions. This mechanism enhances StarPU such that it automatically
inserts partition or unpartition tasks as needed. First, programmers need to
define the partitioning scheme through the plan operation which declares the
partitioning to StarPU, and can be seen as the declaration of a new set of sub-
handles. Once a plan is performed, it is possible to submit tasks using the initial
handle or any of the subhandles even if the actual partitioning has not been done
yet. Furthermore, several partitioning schemes can be planned simultaneously.

The data manager will then handle the actual partitioning tasks and data
coherency. At runtime, StarPU will introduce coherency synchronization: when
a task is ready to be executed, StarPU must ensure that the partition associated
with each handle it uses is valid. If a data is accessed in read-only mode, StarPU
will allow different partitioning to coexist. As soon as a data is accessed in read-
write mode, StarPU will automatically (and recursively) unpartition subdata
and activate only the partitioning leading to the handle being written to. Figure 1
shows a matrix on which two partition plans are defined. The matrix is first
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initialized through its root handle, then modified using the vertical partitioning,
and finally checks are performed in both horizontal and vertical stripes.

Figure 1a shows the state of the DAG and the data-layout after the execution
of the plan operations and the insertion of the initialization task. With the first
task using a vertical stripe, StarPU will automatically insert the corresponding
partitioning task (see Fig. 1b). The same scheme is then applied when submitting
tasks working on the horizontal layout and vertical layout in read-mode. One
should note that Cv1 and Cv2 share the same vertical layout as V1 and V2, so no
partition operation is needed for these tasks. On the contrary, tasks CH1 and CH2

do not share any handles with those using the vertical layout. However the data
manager knows that these handles share a common ancestor (the whole matrix)
and thus it will insert as needed the unpartition/partition tasks to make the data
available to the tasks using the horizontal layout. This is illustrated in Fig. 1c
where the Uv and Ph tasks are inserted, making the tasks using the horizontal
layout depend on them. Finally, when the partition needs to be cleaned, the final
unpartition task is inserted (see Fig. 1d).

Fig. 1. Example of the behavior of the automatic data manager. Dotted border stands
for inactive, solid border stands for active. Red border stands for read-write partitioned.
Green border stands for read-only partitioned or unpartitioned. Step 1. Root handle
initialization and partition plan, Step 2. Read-Write Vertical partitions, Step 3. 3 Read-
Only active partitions, Step 4. Partition clean.

The previous example illustrates the general behavior of the data manager.
More precisely, during the submission of tasks, each handle in the partitioning
hierarchy can be either inactive (one cannot access the piece of data), read-
write-active (one can read/write to the piece of data or a subpart of it), or read-
only-active (one can only read from the piece of data or a subpart of it). The
main handle at the root of the partitioning hierarchy is always read-write-active.
Each handle in the hierarchy, when active, is additionally either unpartitioned
(one can read/write the piece of data itself), read-write-partitioned (one can only
write to the subpieces of data), or read-only-partitioned (one can read the piece
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of data or subpieces of data) ; when it is partitioned, its children subhandles in
the hierarchy are active.

When submitting a task that accesses a handle within the hierarchy, StarPU
will automatically ensure that the handle is active. This possibly requires recur-
sively making its ancestors active by submitting partitioning tasks for them,
possibly starting right from the root handle of the hierarchy. This also possibly
requires recursively submitting unpartitioning tasks for some subhandles which
were previously written to. In the case of the transition from Fig. 1b to Fig. 1c,
StarPU indeed had to submit the unpartition task of the root handle, and
repartition it.

4 The Hierarchical Task Paradigm

In a formal way, a hierarchical task is simply a regular task that can, at run-
time, submit a sub-DAG instead of performing actual computations. Processing
a hierarchical task consists in the submission of its corresponding task subgraph,
its outgoing dependencies can be released at the end of that submission process.
To ensure the portability with heterogeneous platforms, coherency synchroniza-
tion tasks are submitted along the sub-graph to ensure a correct execution by
connecting the sub-DAG with the rest of the DAG. Hierarchical tasks represent
an elegant answer to: 1) the problem of adapting the granularity of tasks to the
device executing them, 2) the question of the reduction of the amount of active
tasks in the runtime system, 3) the problem of the dynamic selection of the
implementation of a given operation in the application. Introducing hierarchical
tasks in a task-based runtime system needs to respect the following constraints
which aim at having a general implementation of such a paradigm. First of all,
the depth of the hierarchy is not limited. Secondly, Programmers express their
task-graph at the highest level and only annotate some tasks as possibly hier-
archical. Thirdly, data management needs to be transparent to programmers.
Finally, task dependencies always have to be inferred at the deepest level.

T1

T2 T3

H1 H2

T4

(a) Initial DAG.

T1

T2 T3

P H2

T4

(b) H1 processed.

T1

T2 T3

P

T4

(c) H2 processed.

T1

T2 T3

P U

T4

(d) Auto. U inserted.

Fig. 2. Example of a DAG with 2 hierarchical tasks and 4 regular tasks. (Color figure
online)

Figure 2a shows an execution scenario for a given task graph where blue tasks
could be transformed into hierarchical tasks. The state of each task (i.e. node in
the graph) is described by its border: 1) a ready task is green (all dependencies
are met), 2) a not-ready task is red (some dependencies are unsatisfied), 3) an
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already executed task is black. Thus, we can see in Fig. 2a that T1 has com-
pleted its execution making T2 and H1 ready for execution. T2 and T3 execute as
normal tasks, while H1 is processed, i.e. its corresponding subDAG is submitted,
resulting to Fig. 2b. The dependency between H1 and H2 is then released, mak-
ing H2 ready for processing. Furthermore, we can see that after the processing
of H2 (see Fig. 2c) the dependencies between the resulting submitted tasks are
inferred by the runtime system at the deepest level of the hierarchy.

We now have to consider how the data coherency will be achieved between the
DAG and the subDAGs. Introducing hierarchical tasks in a task-based runtime
system requires to change the granularity of data dynamically at runtime each
time a hierarchical task has to be processed. We propose to automatically insert a
data management task ahead of a task requiring data which are not in the correct
layout by relying on the data manager introduced in Sect. 3. Figure 2b shows the
insertion of the partitioning task P (resp. U) ahead of the subgraph produced
by H1 (resp. T4). We can also notice that there is no data management task
between the subgraphs produced by H1 and H2 since they share the same data
layout. Finally, it is important to emphasize that hierarchical tasks are processed
when their dependencies are fulfilled. However the actual computations tasks
submitted by these hierarchical tasks are executed whenever they are ready.
Thus we need to ensure a correct order of the actual computations.

4.1 Ensuring the Correctness of the DAG

We now show why the hierarchical task model to extend the STF model produces
a correct DAG regardless of the depth of the hierarchy. First of all, as stated above,
the STF model infers the dependencies from data access modes of individual tasks
while relying on the sequential consistency. Introducing hierarchical tasks makes
the submission process parallel while in the STF model, the submission is done
by a single entity. We show that the dependencies respect the STF model by dis-
cussing four simple scenarios which are building blocks for any general DAG to
show its correctness. The two first scenarios ( T T and T H ) will not be dis-
cussed since they inherently respect the sequential consistency.

H1 T1

(a) Initial DAG.

P T1

(b) Processing of H1.

P U T1

(c) Insertion of U when T1 is ready.

Fig. 3. Example of a scenario where a task follows a hierarchical task.

Task following hierarchical task. Figure 3 illustrates this scenario ( H T ). The
main problem is that the regular task is by construction submitted before the
tasks resulting from the hierarchical task (H1 in Fig. 3). This may violate the
order required by the sequential consistency. However, the hierarchical task has
changed the data layout before it starts its execution (see Fig. 3b). Thus the task
following the hierarchical task (T1 in Fig. 3) will request the data layout to be
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changed. The data manager will then automatically submit data management
tasks to turn back data to their original layout. These data management tasks
will be inserted ahead of the task in the DAG and will depend on the data
produced by the DAG resulting from the execution of the hierarchical task (see
Fig. 3c). Therefore, the data management tasks will ensure that the regular task
T cannot start its execution before the completion of the DAG submitted by the
hierarchical task.

H1 H2

(a) Initial DAG.

P1 H2

(b) H1 processed.

P1

(c) H2 processed.

P1 P2

(d) H11 processed.

P1 P2 U2

(e) Auto. U2 inserted.

Fig. 4. Example of a chain of two hierarchical tasks.

Hierarchical task following hierarchical task. Figure 4 illustrates this scenario
( H H ). Since the dependency between the two hierarchical tasks is not released
until the first one has completed its processing, the tasks resulting from the two
hierarchical tasks are correctly ordered making the dependencies between these
tasks coherent with the sequential consistency. This is illustrated in Fig. 4 where
initially two hierarchical tasks H1 and H2 are submitted (see Fig. 4a). Then H1

is processed (see Fig. 4b). Note that in the example, we assume that the data was
previously unpartitioned, and thus a data partitioning task P1 is needed before
the DAG corresponding to H1. Afterwards, H2 is processed (see Fig. 4c) and it
does not require any data layout modification. Note that, each individual task
produced by a hierarchical task can itself be hierarchical, and the same rules can
be applied recursively to ensure the correctness of the DAG. This is illustrated
in Fig. 4d where the first task submitted by H1, which will be referred to as H11,
is decided to be hierarchical and is processed. We can also see the partitioning
task P2 which was automatically inserted by the data manager. The resulting
task-graph is coherent with the STF paradigm.

5 Experimental Evaluation

To illustrate the potential of hierarchical tasks for handling the coexistence of
multiple levels of granularity, we apply them in a dense linear algebra context1

using the Chameleon library [1]. To do so, we extended the matrix descriptors
in order to describe a hierarchical partitioning of the matrix tiles. Note that as
explained in Sect. 3, all these partitions are only planned and will be enforced, if
needed, at runtime. The following experiments were conducted on an architecture

1 https://gitlab.inria.fr/starpu/starpu-papers/heteropar2022 for replication.

https://gitlab.inria.fr/starpu/starpu-papers/heteropar2022
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composed of 2 Intel Xeon Gold 6142 of 16 cores each running at 2.6 GHz, 2
Nvidia V100, and 384 GB of memory. The tile sizes used are the ones providing
the best asymptotic performance for CPUs only (960) and for hybrid CPU-
GPU configuration (2880). Additionally, we provide results for tile size of 320
that provides the best performances on CPU configurations for small matrices.
Concerning hierarchical variants we will use the following notation x/y/z/...
meaning that each initial tile is of size x and is partitioned into tiles of size y
which are in turn split into tiles of size z etc. StarPU has been configured to
use a single stream per GPU, to pipeline four events per stream and to use the
DMDA scheduler.

Fig. 5. Submission cost of computational
tasks for DGEMM with all tiles parti-
tioned.

Fig. 6. Performance evaluation of
DGEMM with diagonal distribution of
the hierarchical tasks

To evaluate the overhead induced by hierarchical tasks, we consider the graph
of a matrix-matrix multiplication (GEMM) using a tile size of 960. Figure 5 com-
pares the submission time per computational task for that graph in two config-
urations. The ‘960’ curve represents the non-hierarchical case. The ‘960/960’
curve shows the worst possible scenario: the DAG is composed only of hierarchi-
cal tasks and each one of them submits exactly one task when processed. This
doubles the number of tasks submitted as well as heavily increasing the workload
of the data manager making the submission time per computational task roughly
3.5 times slower. Finally, the ‘2880/960’ curve is a more realistic scenario, where
the graph is first submitted at coarse grain (with a tile size of 2880) and then
refined down to the same granularity as the previous configurations (960). In this
case, each individual hierarchical task submits �2880/960�3 = 27 regular tasks
when processed, thus amortizing the overhead induced by the management of
hierarchical tasks.
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In the following experiments we use a more realistic partitioning of the matrix
where only the diagonal, subdiagonal and superdiagonal tiles are partitioned
recursively. We evaluate the behavior of the GEMM operation on those matrices,
using one and two GPUs (Fig. 6). In both cases, the hierarchical versions lag
behind on small matrices, due to the overhead introduced. As the matrix size
increases, the amount of kernels using smaller tiles becomes sufficient to feed
the CPUs and compensates for that overhead. We can also observe that using
more levels of partitioning does not have an impact on performance for this
experiment. Eventually, the number of tasks needed for the computation becomes
large enough that the ‘2880’ curve can start affecting more work to the CPUs
and catches up with the hierarchical curve. All in all, the hierarchical variants
have a good behavior and outperform the regular Chameleon implementation
while relying on simplistic matrix partitioning.

Fig. 7. Performance evaluation of Cholesky type operations (DPOTRF, DPOSV,
DPOINV) with diagonal distribution of the hierarchical tasks.

To better illustrate the expressiveness of hierarchical tasks, Fig. 7 shows
results of operations relying on Cholesky decomposition (POTRF): POSV (linear
system solving, in this case of a single vector) and POINV (matrix inversion).
These operations have complex task graphs, and in the case of POINV, vali-
date the anti-dependency problem (WRITE after READ). We observe a similar
behavior to the one observed for GEMM. A notable distinction however, is that
we now benefit more from our partitioning scheme, because Chameleon places
all POTRF kernels (which are on the critical path of the factorization) on CPU
cores leading to moderate performance before N ≈ 75000. On the other hand,
thanks to hierarchical tasks, we can partition the tiles along the diagonal and
split those large tasks into subgraphs with a smaller granularity allowing for
better CPU utilization on the critical path. Similarly to the results on GEMM,
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the hierarchical tasks are sooner able to take advantage of the performance of
both GPUs and CPUs resources. The sudden drop observed at the end of some
non-hierarchical curves is explained by a conflict between the StarPU sched-
uler data prefetching and eviction in GPU memory. The experimental results
illustrate the interest of hierarchical tasks for tackling the granularity problem
of heterogeneous architectures.

6 Conclusion

In this paper, we propose an extension of the STF model together with an
upgrade of the underlying runtime system in order to overcome the inherent
limitations of the programming model. Our approach introduces a new type of
tasks, the hierarchical tasks, which have the ability to submit at runtime a new
sub-graph of tasks. In addition, to ensure that the parallel submission process
still produces a valid DAG, we introduce a new automatic data manager whose
goal is to handle data layout dynamically by submitting data management tasks
at the right moment.

In the near future, we plan to extend this work in several ways. We first
need to consider the hierarchical tasks from the scheduling point of view, and
answer the question “when does a hierarchical task need to be processed?”. This
requires to consider the amount of tasks in the system and the work assigned
to each resource. Additionally, we will consider the problem of choosing which
subgraph has to be submitted when a hierarchical task is processed. Indeed, to be
able to select the most adapted implementation, we need advanced performance
models which have yet to be designed. Finally, the task graph resulting from the
processing of a hierarchical task has to be efficiently scheduled. More generally,
we want to investigate how this model can be used to implement advanced
irregular algorithms like linear algebra solvers based on low-rank approximation
or sparse solvers. We believe that extending the hierarchical task model to the
distributed memory context will be an elegant answer to the scalability problem
of task-based runtime systems.
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project under the grant (ANR-19-CE46-0009). Experiments presented in this paper
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Abstract. We present a C++14 library for performance portability
of scientific computing codes across CPU and GPU architectures. Our
library combines generic data structures like vectors, multi-dimensional
arrays, maps, graphs, and sparse grids with basic, reusable algorithms
like convolutions, sorting, prefix sum, reductions, and scan. The memory
layout of the data structures is adapted at compile-time using tuples with
optional memory mirroring between CPU and GPU. We combine this
transparent memory mapping with generic algorithms under two alterna-
tive programming interfaces: a CUDA-like kernel interface for multi-core
CPUs, Nvidia GPUs, and AMD GPUs, as well as a lambda interface. We
validate and benchmark the presented library using micro-benchmarks,
showing that the abstractions introduce negligible performance overhead,
and we compare performance against the current state of the art.

Keywords: performance portability · memory layout · generic
algorithms · C++ tuples · multi-core · GPU

1 Introduction

Performance portability and programmability of scientific computing applica-
tions is gaining importance as hardware becomes more heterogeneous. With
GPUs now commonplace in scientific computing, the landscape of multi-core
CPUs is also diversifying with x86 64 and amd64 joined by POWER and ARM.
Porting scientific codes to new hardware costs valuable developer time due to
the large semantic gap between hardware-specific programming models.

Typically in High-Performance Computing (HPC), semantic gaps are
addressed by abstraction [7]. This has been successfully demonstrated also for
performance portability, for example by libraries like Kokkos [8], Alpaka [9],
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and RAJA [1], as well as Intel’s OneAPI built on top of SYCL [6], providing
abstractions to execute code across hardware platforms. While providing a good
variety of data structures as containers, these libraries have limited memory lay-
out restructuring capabilities, in particular if an object is not a primitive type.
Libraries like LLAMA [2] provide complex memory layout restructuring across
hardware platforms, but are limited to multi-dimensional arrays as containers.
Moreover, most of the existing libraries currently lack the capability of combining
data structures with tuple-based layout switching, and all of them lack support
for sparse data structures or the possibility to automatically serialize/deserialize
arbitrarily nested data structures.

Here, we address this gap by providing an open-source memory- and compute-
abstraction library that supports arbitrarily nested and sparse tuple data struc-
tures mapped to different memory layouts, as well as commonly used basic algo-
rithms tuned for performance on a variety of hardware targets. Our library is
implemented using C++ tuples (see Sect. 2) for compile-time code generation
of generic scalar, vector, and tensor multi-dimensional arrays, in addition to
more complex data structures like compressed-sparse-row graphs, cell lists, and
arbitrary-dimensional sparse block grids [3]. Our library uses memory mirroring
to support data structures that simultaneously exist on both device and host,
enabling user codes to, e.g., have CPU and GPU sections share an abstract
data structure simultaneously mapped to both memories. We provide optimized
algorithms along with the data structures, e.g., for arbitrary-dimensional convo-
lutions, sorting, prefix sum, reduction, and scan (Sect. 3).

The presented library, openfpm data, is available as part of the OpenFPM
scalable computing project [4]. It provides the shared-memory layer of
OpenFPM, but can also be used as a stand-alone library. It provides two inter-
faces for user-implemented algorithms over abstract data structures: CUDA-like
compute kernels and lambda functions. Since openfpm data is able to shape
pointers to external memory, zero-copy interfaces are possible with other libraries
that provide algorithms or shape memory, like Kokkos [8] or LLAMA [2], sup-
plementing them, e.g., with sparse grids, graphs, or neighborhood search.

We show in micro-benchmarks and in a real-world application that the flexi-
bility afforded by openfpm data does not impact performance (Sect. 4). Indeed,
we find that combining memory layout restructuring of complex data structures
with generic algorithms can benefit the performance optimizations of modern
C++ compilers on multiple CPU and GPU architectures. We conclude the paper
in Sect. 5.

2 From C++ Tuples to Compile-Time Data Structures

We construct memory-layout reconfigurable data structures with a common
abstract programming interface by exploiting two features of the C++ program-
ming language: The first is the existence of three types of brackets — <>, (),
and []. We use them to cleanly separate the semantics of data structures. Angle
braces are used to specify which property of a tuple/composite data structure
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one wants to access. Round parentheses are used to specify an element of a dis-
crete set. Square brackets are used to access individual components of a vector or
array. This three-brackets access semantic is common across all data structures
and independent of the physical memory layout used.

The second C++ feature we use are tuples (and consequently variadic tem-
plates). We use the tuple data structure provided by the Boost library1 to define
properties or elements of a data structure. Using tuples instead of structs enables
content parsing at compile-time using template meta-programming. The memory
layout (or memory mapping) of a data structure is determined at compile-time
by a layout restructuring algorithm implemented using meta-programming. We
then construct an object that stores the information of a container with the
specified layout and inject the access methods with layout-specific code required
to overload the three parenthesis operators.

Fig. 1. Summary of the openfpm data library: The UML diagram on the left lists the
implemented containers and their composition, starting from multi-dimensional arrays,
with template parameters as listed in the right box. The first template parameter
(green) is the tuple defining the data type of the container. The memory layout is
defined in the second parameter (red). The linearization of multi-dimensional indices
is defined by the third template parameter (violet). The fourth template argument
(yellow) defines the type of memory to be allocated: GPU device (Nvidia or AMD) or
heap memory. The three dots outside the box indicate the possibility of the interface
to be extended to user-defined layouts, linearizations, and memory types. (Color figure
online)

The data structures and memory layouts available in openfpm data are sum-
marized in Fig. 1. The UML diagram on the left shows the composition of the
available containers, starting from the base class “multi-dimensional array”. A
vector is a one-dimensional array, a Compressed Sparse Row (CSR) graph is
stored in an encapsulated vector of vertices and edges, a map is a sorted vec-
tor, and a sparse grid is an n-dimensional map [3]. All sub-classes inherit the
layout reconfigurability of the base class as defined by the four template param-
eters shown in the right box. Every container in the hierarchy can override every
layout parameter, leading to a vast diversity of possible implementations.
1 https://www.boost.org/.

https://www.boost.org/


112 P. Incardona et al.

Fig. 2. Example to illustrate the classes involved in accessing an element of
a Struct-of-Arrays (SoA) container in GPU memory with standard C++ strid-
ing linearization for the () operator. The figure illustrates how the method
grid.get<stress>(element)[x][y] is implemented across classes using the three
bracket types of C++. Colors of arrows and parameters match the parenthesis and
in-parenthesis parameter colors. In the example of the figure, the component [x][y]

(two-dimensional tensor index) of the element (element) of a named property <stress>

is accessed. This is how one would access the components of a stress tensor field in a
fluid mechanics simulation. The operator () is overloaded by grid sm (green arrow),
which converts the multi-index to an integer (orange) using standard C++ striding.
This integer is passed to multi array ref openfpm, which overloads the [] operator.
The class memory traits inte implements the interleaved memory layout for SoA with
memory allocated on the GPU in the CudaMemory object. (Color figure online)

Figure 2 illustrates the mechanism used for memory mapping and for abstract
layout switching. In the example of the figure, the object memory traits inte
implements the meta-algorithm to transform a tuple into a multi-dimensional
container object with interleaved (i.e., SoA) memory layout, and it contains
the code for the parentheses functions. In the figure, this is shown for the get
method on a multi-dimensional array named grid to access tensor component
[x, y] of a certain element of a container called stress (e.g., the stress tensor
field of a fluid mechanics simulation). All layout-specific code is encapsulated in
the objects that overload the parenthesis operators, as indicated by the colors.

All openfpm data data structures support memory mirroring to use host
and device memory simultaneously. Mirrored data structures simplify code where
some sections run, e.g., on a CPU and others on a GPU. However, openfpm data
does not provide any memory consistency model. Synchronization of a mirrored
data structure needs to be triggered by the user when needed. Functions to
transparently move data from device to host and vice versa are provided.

3 Generic Algorithms over Abstract Data Structures

We complement the hardware-independent data structures and memory layout
capabilities of openfpm data with generic algorithms, which are translated to
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optimized hardware-specific implementations at compile time. We further expose
two different interfaces for user-implemented algorithms: a CUDA-like kernel
interface and a lambda function interface.

In order for openfpm data kernels to run on multiple hardware backends,
we provide hardware-native implementations of the following algorithmic prim-
itives: prefix sum, atomic add, stencils, n-dimensional convolution, adding and
removing elements from maps, data structure copying and merging, sorting, seg-
mented reduce, in-warp reduce, and cell lists. These implementations are encap-
sulated in switchable back-end objects that determine their implementation. At
the time of writing, the following four backends are available: CUDA (Nvidia
GPU), HIP (AMD GPU), SEQUENTIAL (CPU), and OpenMP (CPU). The
backend is chosen by the user at compile time.

For the CUDA and HIP backends, the openfpm data algorithms directly
wrap the corresponding implementations in CUDA/HIP via the CUB/hipCUB
API. The SEQUENTIAL backend executes each thread block sequentially on the
CPU. Then, global and device map at preprocessor level to an empty
string and an inline, respectively, and blockIdx, blockDim, threadIdx, and
gridDim are global variables.

User-implemented algorithms can be written as CUDA-like compute kernels
or using a lambda interface. Like in CUDA, openfpm data kernels are labeled
with the attribute global , and device functions are labeled with the attribute
device . Also like in CUDA, computation is divided into a grid of blocks,

where each block contains a user-defined number of threads. Within a kernel,
openfpm data provides the local variables blockIdx, blockDim, threadIdx, and
gridDim that contain the thread block index, dimension, the thread index within
the block, and the number of blocks in the grid. Static shared memory is available
via shared , and syncthreads() is implemented with lightweight threads
(number of threads = size of the thread block; each thread has 8 KB stack,
extensible via a compile-time parameter) and fast context switching. Every time
syncthreads() is encountered, execution is stopped and a context switch is

performed, moving to the next lightweight thread. While this leads to sub-
optimal performance, it provides a direct mapping for user-defined kernels where
no backend-native implementation is available to at least run (e.g., for debug-
ging). When reaching the end of a block, the first lightweight thread in the block
is resumed in a cyclic way.

For the SEQUENTIAL backend, lightweight threads are created inter-
nally, while fast context switching is performed using the Boost library’s
boost::context. Because lightweight threads are not concurrent, atomicAdd
reduces to a regular addition operation. A block scan is implemented as a
syncthreads() followed by the calculation of the exclusive prefix sum for

thread zero in the block and a final syncthreads().
In the OpenMP backend, blockIdx and threadIdx are marked

thread local and use thread-local storage (TLS) in order to have an inde-
pendent copy for each thread. Blocks are distributed across OpenMP threads,
with each thread of a block executed by one OpenMP thread. If blocks do not
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use syncthreads(), the backend switches to non-lightweight threads to help
vectorization.

To illustrate the similarity of the openfpm data kernel programming interface
with CUDA, List. 1.1 shows the first part (defining the shared memory and load-
ing the fields) of the miniBUDE benchmark [5] implemented as an openfpm data
kernel that can run on both CPUs and GPUs.

template<typename vector atom , . . . >
g l o b a l void fas ten main ( . . .

const vector atom prote in mo l ecu l e ,
const vector atom l igand molecu l e , . . . ) {

// Compute index o f f i r s t TD
in t ix = blockIdx . x∗blockDim . x∗N TD PER THR + threadIdx . x ;
i n t t i d = threadIdx . x ;
i x = ix < numTransforms ? ix : numTransforms − N TD PER THR

#i f d e f USE SHARED
sha r e d FFParams f o r c e f i e l d [N ATOM TYPES ] ;

i f ( t i d < num atom types ) {
f o r c e f i e l d [ t i d ] . hbtype = . . . ; f o r c e f i e l d [ t i d ] . r ad iu s =

. . . ;
}

. . .
}
Listing 1.1. Example of an openfpm data compute kernel able to run on both GPU
and CPU. The listing shows the first part of the miniBUDE benchmark [5].

For lambda-based computation, openfpm data supports directly launching a
lambda function similar to libraries like Kokkos [8], RAJA [1], and SYCL [6].
The blockIdx and threadIdx constants are passed to the function as argu-
ments. This implies that TLS for the OpenMP backend is not required, because
blockIdx and threadIdx are local function arguments rather than global vari-
ables.

4 Benchmarks

We profile the memory and compute performance of openfpm data in micro-
benchmarks, and we demonstrate the use of the library in a real-world appli-
cation from computational fluid dynamics. All benchmarks are performed on
the hardware and using the compilers listed in Table 1. Benchmarks for sparse
data structures are available elsewhere [3]. We only benchmark the OpenMP
(on CPUs), CUDA (on Nvidia GPUs), and HIP (on AMD GPUs) backends of
openfpm data; SEQUENTIAL is always slower and only intended for debug-
ging or porting purposes. Each measurement is repeated several million times to
compute means and standard deviations.
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Table 1. Hardware/compiler combinations considered for the benchmarks.

Hardware Type Vendor Compiler

A100 GPU Nvidia NVCC 11.01

RTX 3090 GPU Nvidia NVCC 11.01

M1 CPU Apple clang 12.05

POWER 9 CPU IBM GCC 10.2

Ryzen 3990X CPU AMD GCC 9.3

EPYC 7702 CPU AMD GCC 10.2

Xeon 8276 CPU Intel GCC 10.2

RXVega 64 GPU AMD clang 13

4.1 Memory Performance

We first analyze the memory performance. We do so using a micro-benchmark
that moves data between aggregates/tuples containing scalars, vectors, and rank-
two tensors. Because this benchmark is memory-bound, it assesses the memory
performance portability of the openfpm data aggregates/tuple data abstrac-
tions. We evaluate the results both absolutely and relatively. For the relative
evaluation, we compare against a hand-tuned implementation in Kokkos [8] and
a C++ plain-array implementation. For the absolute evaluation, we compare
the memory bandwidth achieved by openfpm data with the synthetic bench-
marks babel-STREAM (for POWER 9, ARM, and dual-socket x86 64), pmbw
(for single-socket x86 64—an optimized memory bandwidth benchmark written
in assembly), and vendor-specific memory copy functions for the GPUs, as well
as with the theoretical peak memory bandwidth reported in the data sheets.

We perform the benchmark on 67.1 million elements, each containing a scalar,
two 2-vectors, and a tensor of rank two and size 2×2. We repeat each benchmark
both for reading and for writing. The write benchmark reads one element from
component 0 of the first vector and copies it into component 1 of the first vector,
the scalar, all four components of the 2 × 2 tensor, and all components of the
second 2-vector. This requires a total of nine memory accesses (counted from
the generated assembly code): 8 write and 1 read. The read benchmark reads
the values from the first 2-vector, the scalar, the tensor, and component 0 of
the second vector, sums them, and writes the sum into component 1 of the
second vector. This results in a total of 8 reads and 1 write. In this benchmark,
we use lambda-based openfpm data implementations compiled for the OpenMP
backend on CPUs and for CUDA/HIP backends on GPUs. Memory bandwidth is
calculated as the number of access operations divided by the runtime to complete
all of them. The results are shown in Table 2.

On the x86 64 CPUs, the measured memory bandwidth when reading is
significantly larger than when writing. This suggests the use of a cache policy of
type write allocate rather than write around. In write allocate, a write to
a memory location out of cache generates a cache line that is filled from memory.
Eventually the line is written back, causing double transfer of data compared to
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Table 2. Memory performance (read/write) on different hardware in Gigabytes/second
(GB/s) for the same memory transfer micro-benchmark (see main text) implemented
in openfpm data, Kokkos, and plain C++ arrays, compared with the synthetic memory
benchmarks described in the text and the vendor-provided memory bandwidth from the
data sheet, where available. All synthetic benchmarks except pmbw (for Ryzen 3990X)
and data sheets only report composite read/write bandwidth. For all measurements,
the standard deviation is < 3% and therefore not shown.

Hardware openfpm data Kokkos Plain C++ Synthetic Data sheet

A100 (1390/1212) (1375/1131) (1394/1226) 1297 1555

RTX 3090 (868/818) (869/819) (868/818) 835 936

M1 (47.5/27.5) (43.1/28.6) (47.8/26.1) 61.8 N/A

POWER 9 (120.2/109.8) (143.0/112.8) (121.6/111.8) 250.0 340

Ryzen 3990X (70.8/37.7) (54.0/32.8) (70.6/37.7) (77.1/37.7) 96

EPYC 7702 (242.5/135.3) (243.6/134.7) (243.9/133.2) 214.0 384

Xeon 8276 (137.1/87.7) (142.9/89.6) (144.3/89.6) 150.0 216.8

RXVega 64 (359/358) (323/293) (359/360) 378 484

a read. The GPUs appear to implement a write through cache policies. On all
platforms, the memory performance of openfpm data is comparable to that of
plain C++ arrays (Table 2). With the exception of the M1 and the POWER 9,
the numbers also match the synthetic benchmarks, confirming that the memory-
mirrored tuple abstraction of openfpm data incur low performance overhead.

To confirm that memory layout reordering does not interfere with the opti-
mization stages of the compilers tested, but indeed helps the compilers vectorize
the code, we check the generated assembly code. An example for an SoA memory
layout is shown in Fig. 3 for clang 13. The analysis shows that even when com-
bining tensor components of rank two with vector components, the compiler is
able to understand the contiguity of the index for the parenthesis () and to gen-
erate AVX instructions without further hints. This shows that the openfpm data
abstractions do not interfere with the optimization stages of the compiler, and
the thread model still allows for vectorization.

4.2 Compute Performance

In order to benchmark the compute performance of openfpm data, we use the
miniBUDE performance benchmark [5], which has previously been used to com-
pare compute performance of programming models including OpenCL, Kokkos,
CUDA, SYCL, OpenMP, and OpenACC. While this benchmark does not over-
stress the data structures, it quantifies the performance portability of the algo-
rithms provided by openfpm data. We do so by running the miniBUDE CUDA
benchmark kernel through openfpm data’s kernel interface. The openfpm data
compute kernel remains the same across all benchmarks, but is compiled using
different backends: CUDA on Nvidia GPUs, OpenMP on CPUs, and HIP on
AMD GPUs.

In order to render the results reproducible and comparable across compil-
ers, we manually enable DAZ (denormals are zero) and FTZ (flush to zero) on
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Fig. 3. C++ code reading from a vector component and writing to a rank-two tensor.
As seen from the assembly code generated by clang 13, both the reads and writes are
vectorized, processing 8 floats in one instruction. Then, the counter in the register %rax
is incremented by 16 Bytes, the stop condition is checked, and the loop iterates to label
be8. The numbers to the left of the vertical line indicate the percentages of profiling
samples collected from each instruction.

all hardware. This does not affect significantly the values computed, but pre-
vents compilers from using different SIMD mask flags with different compilation
options.

Table 3 reports the relative performance of the same openfpm data code
on different hardware compared with the respective best performer from the
miniBUDE test suite, as indicated in the last column. Despite the fact that
the openfpm data kernel was not manually changed or tuned for the differ-
ent hardware targets, it mostly performs on par with the specialized CUDA or
OpenMP implementations of miniBude. The only exception is the RXVega 64,
where OpenCL is faster than openfpm data with HIP backend. Code inspec-
tion shows that this is because the two compilers produce different code: HIP
produces code with fewer registers and higher occupancy, while OpenCL does
the opposite. While it is counter-intuitive that this explains the performance
difference, it is what the measurements show, and it possibly hints at latencies
or GPU stalling as the problem for openfpm data on the RXVega 64.

4.3 Application Example: Smoothed Particle Hydrodynamics

We demonstrate the use of openfpm data in a typical real-world application
from scientific computing: a computational fluid dynamics simulation using the
numerical method of Smoothed Particle Hydrodynamics (SPH). As a base-
line, we use the CPU-only implementation of SPH from the original OpenFPM
paper [4], which is freely available in the OpenFPM repository, albeit without
the CPU-specific manual optimizations (like Verlet lists and symmetric interac-
tions). We derive from this code a version implemented using the CUDA-like
kernel interface of openfpm data and the built-in algorithmic primitives cell-list,
sort, and scan.
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Table 3. Performance of the same miniBUDE-like openfpm data kernel on differ-
ent hardware compared with the respective best performer of the miniBude bench-
mark [5] as given in the last column. Values are given as relative performance (GFlops
openfpm data)/(GFlops best miniBude) as mean ± standard deviation over 30 inde-
pendent trials. Values >1 (in bold) mean that openfpm data was faster than the fastest
miniBude implementation.

Hardware openfpm data/miniBude best miniBude

A100 1.00± 0.07 CUDA

RTX 3090 1.00± 0.04 CUDA

M1 1.05± 0.01 OpenMP

POWER 9 0.80± 0.09 OpenMP

Ryzen 3990X 1.08± 0.04 OpenMP

EPYC 7702 1.01± 0.03 OpenMP

Xeon 8276 0.97± 0.03 OpenMP

RXVega 64 0.54± 0.01 OpenCL

We use both codes—the original MPI-only CPU code [4] and the code using
openfpm data kernels—to simulate the same “dam break” SPH test case [4].

Table 4 shows the measured relative performance of these two codes on dif-
ferent CPUs. Performance is reported as runtime ratio (original MPI code)/
(openfpm data code) in percent for the OpenMP backend of openfpm data.
Therefore, numbers >100% (in bold) indicate speedup. The most expensive part
of the simulation, the force calculation step, is also profiled separately.

The results show that the openfpm data abstraction layer adds no detectable
performance penalty in this complex real-world application. It actually being a
few percent faster than the original MPI code is likely because the OpenMP
backend has a lower communication overhead than MPI. The openfpm data
code also runs on GPUs. On a Nvidia A100, it runs 36 times faster than on all
cores of an EPYC 7702 CPU, and on a RXVega 64 the speedup is 2.7. This
difference in speedups is expected, as profiling shows the bottleneck for this
application to be memory access and L2 cache. The Vega has slower memory
than the A100 (484 GB/s vs. 1.5 TB/s) and 10x less L2 cache (4 MB vs. 40 MB).
In addition, the Vega uses the old GCN architecture, known to be less efficient
than AMD’s new CDNA architecture.

Table 4. Performance of the openfpm data SPH “dam break” simulation on different
CPUs using all available cores, relative to the performance of the original MPI code [4]
on the same CPUs (=100%). Numbers >100% (in bold) indicate speedups.

Hardware Overall Force calculation

M1 109% 113%

Ryzen 3990X 105% 98%

EPYC 7702 115% 121%

Xeon 8276 122% 97%
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5 Conclusions

We have presented and benchmarked a C++14 memory and compute abstrac-
tion library for scientific computing applications on CPUs and GPUs. The pre-
sented library, called openfpm data, combines shared-memory data structures
with reusable algorithmic building blocks. Compared to the state of the art,
openfpm data provides more flexible memory layouts with tuples, memory mir-
roring, and advanced data structures like cell list, sparse grids, and graphs.

We have shown the benefits this brings for performance portability in both
micro-benchmarks and a typical real-world numerical simulation application,
comparing to the respective state of the art. The presented benchmarks have also
shown that memory layout switching using memory-mirrored C++ tuples does
not interfere with performance and does not distract compiler optimizations.

The algorithmic primitives provided by openfpm data include n-dimensional
convolution, merging, sorting, prefix sum, reduction, and scan. They are available
in optimized implementations for CUDA, HIP, SEQUENTIAL, and OpenMP
backends and can be used and extended in either a CUDA-like kernel program-
ming interface or a lambda-based interface. This allows scientific codes to run
on different hardware platforms without losing performance, as demonstrated in
the SPH fluid-flow simulation example.

The abstract data structures provided by openfpm data are composable and
can be used as building blocks for more complex data structures, such as dis-
tributed sparse block grids [3], and for domain-specific data structures like those
in OpenFPM [4]. The memory layout capabilities are inherited, as well as the
memory mirroring capability, allowing the same data structure to simultaneously
be mapped to host and device. Moreover, third-party libraries can be interfaced
via external memory and pointer shaping.

The scalable scientific computing framework OpenFPM [4] is based on the
openfpm data abstraction layer presented here. The OpenFPM project com-
poses the shared-memory openfpm data abstractions to distributed-memory
objects for multi-node and multi-GPU applications with transparent network
communication. The portable openfpm data data structures and kernels enable
OpenFPM to transparently run simulation codes on multiple architectures.
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Code availability. The source code of the presented library is available under

the GPLv3 license as part of the OpenFPM project for scalable scientific com-

puting (http://openfpm.mpi-cbg.de/) at: https://git.mpi-cbg.de/mosaic/software/

parallel-computing/openfpm.
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Abstract. When we apply field programmable gate arrays (FPGAs) as
HPC accelerators, their memory bandwidth presents a significant chal-
lenge because it is not comparable to those of other HPC accelerators. In
this paper, we propose a memory system for HBM2-equipped FPGAs and
HPC applications that uses block RAMs as an addressable cache imple-
mented between HBM2 and an application. This architecture enables
data transfer between HBM2 and the cache bulk and allows an applica-
tion to utilize fast random access on BRAMs. This study demonstrates
the implementation and performance evaluation of our new memory sys-
tem for HPC and HBM2 on an FPGA. Furthermore, we describe the
API that can be used to control this system from the host. We imple-
ment RISC-V cores in an FPGA as controllers to realize fine-grain data
transfer control and to prevent overheads derived from the PCI Express
bus. The proposed system is implemented on eight memory channels
and achieves 102.7 GB/s of the bandwidth. It overcomes the memory
bandwidth of conventional FPGA boards with four channels of DDR4
memory despite using only 8 of 32 channels of the HBM2.

Keywords: FPGA · HBM2 · Memory System

1 Introduction

Field Programmable Gate Array (FPGA) have received attention as accelera-
tors in the HPC field [9]. FPGAs have high-speed serial IO (HSSI) and can
communicate with other devices directly between applications implemented in
them. Other accelerators in high-performance computing lack this capability [4].
Hardware Description Language (HDL) has been used for programming in an
FPGA. It is difficult for HPC programmers to use FPGAs because we have to
describe clock cycle behavior in HDL. In recent years, development environ-
ments using High-Level Synthesis (HLS) have evolved. HLS uses C, C++, or
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Singer et al. (Eds.): Euro-Par 2022 Workshops, LNCS 13835, pp. 121–132, 2023.
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OpenCL as a programming language to describe hardware in an FPGA. Thus,
expert-level knowledge is not required to use FPGAs.

However, the memory bandwidth of an FPGA is lower than that of other
accelerators used in HPC clusters so far. It becomes the bottleneck when we
implement HPC applications into an FPGA [15]. Conventional FPGAs are
equipped with DDR4 memories as external memory. Four channels of DDR4-
2400 have only 76.8 GB/s of bandwidth while NVIDIA A100 80 GB Graph-
ics Processing Unit (GPU) has a memory bandwidth of 2 TB/s. There is an
approximately 25 times memory performance gap between FPGAs and GPUs.
High-performance FPGAs that are equipped with High Bandwidth Memory 2
(HBM2) have been developed. For example, the Intel Stratix 10 MX FPGA
has up to 512 GB/s of HBM2 bandwidth. However, the architecture of HBM2
is different from that of conventional DDR4 memory. A new memory system
optimized for HBM2 on an FPGA is urgently needed.

The purpose of this research is to propose and implement a new memory
system optimized for HBM2. Our proposed system uses Block RAM (BRAM)
embedded in an FPGA as the addressable-cache. Moreover, it has crossbars that
connect HBM2 and caches. A crossbar can manage both high-performance and
high-flexibility memory access. The contributions of this paper are as follows.

– We propose a memory system for HBM2-equipped FPGAs and show the
implementation of the proposed system and the optimized API on an FPGA.

– The proposed system achieves near peak performance, and its performance
is superior to that of DDR4-equipped FPGAs.

2 Related Works

Applications of FPGAs with HBM2 have been widely studied. [12] implemented
HPCChallenge benchmarks what is memory bandwidth bound on an FPGA.
[10,14] optimized the memory access of neural network applications using HBM2.
In these papers, applications were connected to the HBM2 memory channels
directly, and a client in an application could access only one channel. In [3], Y.
Choi et al. proposed the interconnection network named “HBM Connect”. They
evaluated the network using bucket sort and merge sort on a Xilinx Alveo U280
Xilinx FPGA. They used half of the HBM2 on the FPGA board because of the
limitation of the board development environment, but HBM Connect achieved
90% efficiency of the bandwidth. In [7], H. Philipp et al. proposed Memory
Access Optimizer (MAO) for Xilinx FPGAs. They compared MAO performance
with Xilinx’s native switching fabric and achieved 3.8x and 40.6x performance
improvements on random access and stride access, respectively.

HBM Connect and MAO are memory networks between the application and
the HBM2. These systems do not have caches in the memory system. The novelty
of this paper is that we propose a memory system with an addressable cache
using embedded memory in an FPGA. Furthermore, we introduce an optimized
API to manage the cache system efficiently.
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3 Proposed Memory System

3.1 Overview

The fundamental design of the system is based on results of our previous study
[5]. However, our previous system was a work-in-progress and supported only
two channels; moreover, we did not propose APIs that could be used to control
an FPGA from a host. In this paper, we propose not only advanced memory
system hardware but also advanced software APIs for controlling an FPGA.

An Intel Stratix 10 MX FPGA has two HBM2 dies. Each die has 16 (pseudo)
memory channels, and an FPGA has 32 channels in total. The maximum aggre-
gated memory bandwidth is 512 GB/s if a –1 speed-grade FPGA is used. In this
architecture, we have to use all the memory channels simultaneously to obtain
a high performance from HBM2. Unlike CPUs or GPUs, FPGAs do not have
high-performance caches or memory interconnections as dedicated functions. If
we connect these channels with applications directly, the applications will not
utilize the memory bandwidth efficiently. Moreover, HBM2 cannot handle ran-
dom access efficiently because it is based on DRAM.

To address this issue, we implement addressable caches between the memory
and the application. These caches are implemented by BRAMs inside an FPGA.
Because BRAM is an embedded memory and SRAM, we can access it with high
bandwidth and low latency. However, the capacity of BRAM is limited, which
is only 20∼30 MB in an FPGA.

In general processors, a cache is automatically managed by the hardware.
However, an automatic cache system consumes a considerable amount of FPGA
resources. We, therefore, decide to make the cache manually controllable. We
have to describe data transfer between a cache and memory manually. This
architecture makes the system simpler than that which uses automatic cache and
reduces FPGA resource consumption. Manual data transfer is generally used in
accelerator programming. For example, we call APIs manually to transfer data
between the CPU’s memory and the accelerator’s memory. We consider that
manual data management is acceptable for HPC applications.

3.2 System Design

Figure 1 shows an overview of our proposed memory system. This system com-
prises a group of eight memory channels. We call this group the “Memory Group”
hereafter. A Memory Group has eight Local Stores (LSs), two crossbars, and
eight memory controllers connected to HBM2 (eight channels). Crossbars tightly
couple LSs and memory channels in the same Memory Group. They provide non-
blocking data transfer between the LSs and the memory. In implementing this
system on an FPGA, the complexity of the crossbars is the bottleneck. For this
reason, the Memory Group supports only eight memory channels. In addition to
Memory Groups, the system comprises a PCI express (PCIe) controller, global
crossbar, and system management module (not shown in Fig. 1) The global cross-
bar provides system-wide communication.
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Fig. 1. Overview of the proposed system.

Fig. 2. Detail of the crossbars between LSs and HBM2. The red arrows and black
arrows represent connections to crossbar 1 and connections to crossbar 2, respectively.
(Color figure online)

Because the system described in this study is still a work in progress, we
implement only one Memory Group that supports eight memory channels. To
support all the memory channels, we would have to make three copies of the
Memory Group and connect all the Memory Groups using the global crossbar.
Inter Memory Group connections are sparse and will be blocking communication.
This design is similar to Non-Uniform Memory Architecture (NUMA) on CPUs.

3.3 Crossbar

In Fig. 1, a crossbar between HBM2 and LSs has 17 ports, but the actual imple-
mentation is different because implementing such a large crossbar is not practical
in an FPGA. Figure 2 shows the details of the crossbar. We implement two of
the 9-port crossbars in that area. Crossbar 1 connects the HBM2 channels to
the LSs. Crossbar 2 connects the LSs and HBM2 channels. LocalStore → HBM2
and HBM2 → LocalStore can use the full bandwidth and non-blocking commu-
nication. LocalStore → LocalStore and HBM2 → HBM2 are connected by the
global crossbar indirectly, and their bandwidth is limited. However, such com-
munication is only for management and is not important. Therefore, the indirect
connection does not limit the system’s performance.

The crossbars in the system have a 613bit width (101bit header + 512bit
data). A Virtual Output Queue (VOQ) is implemented on each input port of
a crossbar. It allows packets to pass other packets in the queue if two packets
have different destinations. We use DRRM [2] as a scheduling algorithm in the
arbiter. The scheduling happens every two cycles to achieve a high operation
frequency.
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Fig. 3. Detail of a LS.

3.4 Design of LocalStore

Figure 3 shows the details of a LocalStore. Each LocalStore has the cache memory
(128 KB of BRAM), Direct Memory Access Controllers (DMACs), and RISC-V
[13] controller core. The cache memory is a 2-reads and 2-writes memory. Both
the internal network and the application can access it simultaneously.

We have two DMACs in each LocalStore. Each DMAC has a fixed direction.
One of them is only for LocalStore → HBM2, and the other is only for HBM2
→ HBM2. The two DMACs are independent modules and can transfer data
simultaneously.

We use the RISC-V core in a LocalStore as a system controller. We have
the original RISC-V implementation that is tightly coupled with the memory
system. Because we do not use the core for any computation, we optimize it for
low resource utilization. It supports a subset of the RV32I instructions that we
need and executes an instruction every two cycles.

The RISC-V core controls the memory system. It manages data transfer
between HBM2 and a LS, and the kernel execution. In the proposed system,
RISC-V instructions represent what the FPGA does. This design allows us to
describe complicated behavior in the FPGA without changing the FPGA hard-
ware implementation.

4 Design and Implementation of the API

4.1 Overview

In accelerator programming, we control accelerators by using APIs. When we
use NVIDIA GPUs, we use CUDA API to control them. In these APIs, the
host CPU controls all computations on the accelerators, as accelerators cannot
start computation or data transfer themselves. On the other hand, FPGAs have
different characteristics from these accelerators. We can configure them as self-
contained accelerators. In such a design, they can start computation or data
transfer without management from the host.
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Fig. 4. Code generation flow.

For this system, before starting any computation, we transfer the data
required for it between caches in the LocalStores and the HBM2. The capacity
of a cache is limited because a cache uses BRAM, which is embedded memory
in an FPGA. If we perform a large computation that does not fit into the cache
in one step, we have to split it into small steps.

We estimate the time for each step is approximately 10µs if the computation
is memory bandwidth bound. The estimation is calculated from the memory
bandwidth and the operation frequency of the system. Moreover, we assume
double-buffering is used to hide memory latency. We believe it is impossible for
the host to issue control commands to an FPGA every 10µs through the PCIe
bus. Therefore, in this system, we design the hardware and the software to allow
FPGAs to operate themselves.

4.2 RISC-V Core and Code Generation

Each LocalStore has a RISC-V core to control its DMACs and kernel interface.
A C++ API generates instructions executed by the core at runtime We transfer
the generated instructions to the FPGA, and then the cores execute them.

In this system, we use double-buffering to hide memory latency and to
improve performance. The RISC-V core supports the “Stream” mechanism to
describe double-buffering behavior at a low cost. The core supports up to two
Streams for double-buffering. The Stream mechanism is inspired by coroutine
and CUDA Stream. Only one Stream can be active at a time, but we can switch
the execution of the Stream with low overhead. When the core issues a com-
mand to DMACs or the kernel, the core enters the yield state and suspends the
execution of a Stream. When a DMAC or a kernel executes a command, they
emit an interruption. The interruption resumes the execution of the appropriate
Stream that is waiting for the completed command.

The description of data transfer and kernel management is written in the
code running on the host (Fig. 4-(1)). It has to be executed on the FPGA’s
RISC-V cores and not on the host CPU. We abstract API calls as an Abstract
Syntax Tree (AST). The runtime library generates RISC-V instructions from
the AST through optimizations on the Single Static Assignment (SSA) form.

We use the C++ Expression Template (ET) technique to make an AST
(Fig. 4-(2)). The Boost.YAP [1] library from the Boost C++ Library uses C++
operator overloading and encodes C++ expressions as templated types. It has
APIs that construct and evaluate expression templates. Next, we construct the
SSA form from the AST (Fig. 4-(3)). We use LibFirm [11] to construct and opti-
mize the SSA form. LibFirm’s construction API allows us to construct the SSA as
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Table 1. Evaluation Environment (PPX)

CPU Intel Xeon E5-2690 v4 × 2

CPU Memory DDR4 2400 MHz MHz 64 GB (8 GB × 8)

Host OS CentOS 7.9

Host Compiler gcc 9.1.0

FPGA Board Intel Stratix 10 MX FPGA Development Kit

FPGA Memory HBM2 16 GB (8 GB × 2)

FPGA Synthesis Tool Quartus Prime Pro 20.4.0.72

a graph, including custom operators. We encode system management operations
as custom operators and put them in the SSA graph. LibFirm supports various
operations and optimizations on the SSA form including the Control Flow Graph
(CFG) and data dependency analysis (Fig. 4-(4)). Finally, we develop RISC-V
instructions from the optimized SSA graph (Fig. 4-(5)). We use the algorithm
shown in [6]. We allocate registers in the order of the Perfect Elimination Order
(PEO) of the dominator tree of the control flow. LibFirm computes the domi-
nator tree from the SSA graph. Currently, the RISC-V core in the system does
not support register spills. If the core does not have enough number of registers
required by the allocator, the runtime library raises an error.

5 Performance Evaluation

5.1 Environment and Program for Evaluation

We use the Pre-PACS-X (PPX) cluster for performance evaluation in this study.
It is a development cluster for accelerators operated by Center for Computational
Sciences (CCS), University of Tsukuba, Japan. Table 1 shows the specification
used in the evaluation. We use the Intel Stratix 10 MX FPGA development kit
with the 1SM21CHU2F53E1VG FPGA, which is Speedgrade-1 SKU that has a
16GB HBM2 capacity.

In this evaluation, the HBM2 memory frequency, HBM2 controller, HBM2
FPGA IP, and other modules are run at 1000MHz, 500MHz, 400MHz, and
250MHz, respectively. The HBM2 memory and its controller are hardwired, and
thus we operate them at the maximum frequency. The frequency of the HBM2
FPGA IP is the recommended frequency suggested by the Platform Designer.
The bus width of the system is twice that of the memory bus and operates at
250MHz which is the 1:2 ratio of the controller frequency.

The evaluation program inverts all bits in the target array. This program
intends to measure the data copy performance between the FPGA and HBM2,
and to verify the transfer. First, the host writes random numbers to the array
on the FPGA. Next, the FPGA flips all bits of the array. Finally, the host reads
back data from the FPGA and verifies the result. We implement the application
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LS  0 LS  1

Kernel
0

Kernel
1

Array on HBM2 (1024KB)

128KB
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Fig. 5. Computation flow of the benchmark when the number of LSs is two and the size
of the array is 1024KB. The dotted lines represent the sub regions for double buffering.

kernel in an FPGA in Verilog HDL, not in HLS, because this study focuses on
the performance of the memory system.

Each LocalStore has DMACs and a computation kernel. We iterate multiple
steps to solve a large part of the problem with double-buffering, as shown in
Fig. 5. The figure shows the compute regions with double buffering for each LS
when the number of LSs is 2 and the size of the array is 1024 KB. The actual
number of LSs is 8, but it is reduced in the figure for simplification. DMAC
copies data from HBM2, the kernel computes bitwise-not, and DMAC copies
the result to HBM2.

Figure 6 shows a part of the host code using the API. Because the capacity of
the cache in a LocalStore is 128 KB, we split it into two parts each with a 64KB
(=16384 elements) size for double-buffering using two Streams. var variables
and array view variables are handles. They represent variables in the RISC-V
core and regions of arrays, respectively. The location of each step is computed
with the var variables. The assign statements using array view variables invoke
DMA transfers. A stream for represents a loop on the RISC-V core like for
statements on the host. Because it is implemented as a C preprocessor macro,
we have to use commas as the separators of arguments.

5.2 Evaluation Result

The FPGA resource utilization is summarized in Table 2. Adaptive Logic Mod-
ule (ALM), Registers, M20K, and Digital Signal Processor (DSP) contain Look
Up Tables (LUTs), registers in ALMs, embedded RAM blocks, and 18bit inte-
ger multipliers, respectively. Table 2 shows that we consume 18% of the FPGA
resources. This evaluation uses the small kernels that consume less than 0.1% of
the FPGA resource. Therefore, we can assume Table 2 as the resource consump-
tion for the memory system. The most consumed resource is M20K. A total of
18% of the M20Ks are used, but 6.5% of the M20Ks are used for the cache mem-
ory in LocalStores. Except for resources consumed by the cache memory, the
most consumed FPGA resource is ALMs. The module for controlling memory
and networking consumes 13.9% of the FPGA resources.
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Fig. 6. Part of the program using the proposed API. N CHUNK and CHUNK SIZE are
constants decided by the problem size. N WORKERS is a constant that represents the
number of Streams in the system. d data is a memory handle object on the HBM2.

Table 2. Resource consumption of FPGA resources.

ALM Registers M20K DSP

97229 (13.84%) 174718 (6.22%) 1243 (18.15%) 120 (3.03%)

We implement performance counters on each memory channel from HBM2
running at 250MHz (4ns resolution). They measure the data transfer time from
the start command from the host until all LocalStores complete the computation.
LocalStores wait for completions of all issued memory transactions responded
from the memory controller. Figure 7 shows the performance result. We change
the size of the array from 1 MB to 64 MB, which is equivalent to changing
the number of loops per LS from 2 (1× double-buffering) to 64 (32× double-
buffering). We perform the measurement 10 times on every array size. The dots
represent the median value, and error bars represent the minimum and the max-
imum performance of 10 runs.

We achieve 102.7 GB/s of the memory bandwidth at a maximum of 64 MB
of array size. This performance is almost the same as the peak bandwidth of the
FPGA side (256bit × 400MHz × 32 = 102.4 GB/s). We consider that this result
reveals the proposed system works as expected. We will discuss the performance
in detail in the next section.
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Fig. 7. Result of the performance evaluation.

6 Discussion

Except for the BRAMs used by the cache memory, the system consumes 13.9% of
the FPGA resources as shown in the previous section. We implement the system
to all of the memory channels from HBM2 here. This is equal to implementing
four Memory Groups instead of one Memory Group in an FPGA. Therefore, we
can estimate the resource utilization as being four times what it was with one
memory group. We expect that approximately 56% of FPGA resources will be
consumed if we have four Memory Groups. If we implement practical benchmarks
or applications using our system in the future, this resource consumption might
be the problem. Although our system achieves a high performance, it consumes
too many resources, and we have to optimize and reduce resource consumption.

The most ALM-consuming modules are the crossbars between the LSs and
HBM2 channels (6.33%). The multiplexers that select the output data require a
considerable amount of ALMs. It is difficult to optimize resource consumption
on them because they are essential and fundamental functions for crossbars.
Optimization may be achieved by doubling the frequency and halving the width
of the network. However, the congestion in the FPGA network makes increasing
the frequency challenging. Other optimization approaches need to be explored.

Although HBM2 is DRAM and has a refresh interval to keep data in the
memory cells, the evaluation achieves a 100.3% performance efficiency. We con-
sider that the reason for this behavior is that the memory controller runs faster
than the FPGA-side IP. The frequency of the controller is 500 MHz which is
the maximum frequency allowed in the specification, but the frequency of the
FPGA-side IP is 400MHz. The maximum throughput is limited by 256 bit times
400 MHz. However, the data refresh process is performed by the memory con-
troller at 500 MHz. As a result, the FPGA cannot observe the time taken by
the refresh process. In addition to the faster frequency of the controller, the bus
between the FPGA and the controller is a full duplex. The bus enables us to
make overlapping between write accesses and read accesses. We consider that
this makes the 0.3% portion of the 100.3% efficiency. If the controller and the
bus operate at the same frequency, the performance is limited by the HBM2
bandwidth, and the full-duplex bus will not offer any benefit.



Memory System Using Addressable Cache for HBM2 Equipped FPGAs 131

The future Intel FPGA product, Agilex M series FPGA, has a Network on
Chip (NOC) for memory access [8]. The details of the NOC have not been pub-
lished yet, but the whitepaper indicates it is a hard-wired crossbar network. We
can reduce the resource consumption significantly on Agilex FPGAs if we replace
the crossbars with the NOC. We still need to implement an interconnection net-
work in an FPGA because the NOC supports only allows transfers between the
FPGA and memory. It does not support FPGA-to-FPGA or memory-to-memory
transfers. However, we can use a network in an FPGA that is more lightweight
than a crossbar network because the bandwidth of the network becomes trivial.
Even if we were to use Agilex FPGAs, our research would still be important, as
we also focus on important components such as caches, controllers, and software.

7 Conclusion and Future Work

We proposed and implemented a memory system for HBM2-equipped FPGAs
using an addressable cache. Because this system uses BRAMs embedded in an
FPGA, we need to consider the fine grain control of the FPGA. We implemented
RISC-V cores as controller processors inside an FPGA to address this issue. We
also proposed an API for this system so that RISC-V instructions can be made
for the controllers. The API can describe complex operations on the FPGA, such
as loops and branches. Using the RISC-V core allows an FPGA to operate itself
without instructions from a host.

We evaluated the performance of the proposed system and achieved 100.3%
efficiency of the memory bandwidth. This result revealed the system works as
expected. Although all the memory channels were not implemented, the perfor-
mance of the system was superior to that of DDR-4 equipped FPGAs (DDR4-
2400 × 4 channels: 76.8 GB/s). The system supports eight channels, which is
one-fourth of the total memory channels of the HBM2 in an FPGA. We esti-
mated the resource consumption by the memory system as 56% if all memory
channels are implemented. As a result, the system will limit the size of the appli-
cation implemented in an FPGA. We have to optimize the system to improve
operation frequency and reduce the width of the network in a future study.
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Abstract. FPGAs are an attractive type of accelerator for all-purpose
HPC computing systems due to the possibility of deploying tailored hard-
ware on demand. However, the common tools for programming and oper-
ating FPGAs are still complex to use, specially in scenarios where diverse
types of tasks should be dynamically executed. In this work we present
a programming abstraction with a simple interface that internally lever-
ages High-Level Synthesis, Dynamic Partial Reconfiguration and syn-
chronisation mechanisms to use an FPGA as a multi-tasking server with
preemptive scheduling and priority queues. This leads to a better use of
the FPGA resources, allowing the execution of several kernels at the same
time and deploying the most urgent ones as fast as possible. The results of
our experimental study show that our approach incurs only a 1.66% over-
head when using only one Reconfigurable Region (RR), and 4.04% when
using two RRs, whilst presenting a significant performance improvement
over the traditional non-preemptive full reconfiguration approach.

Keywords: FPGA · Partial Reconfiguration · Heterogeneous
systems · Preemptive scheduling

1 Introduction

The end of Moore’s law and loss of Dennard’s scaling has motivated the search
of alternative ways of improving the performance of upcoming computational
systems. As a result, heterogeneous systems, primarily composed of CPUs and
GPUs [2], have become commonplace in HPC machines. However, these archi-
tectures are not ideally suited for all codes, and it has been found that when
HPC applications are bound by aspects other than compute, for instance mem-
ory bound codes, moving to a dataflow style and exploiting the specialisation of
FPGAs can be beneficial [3,8]. Nonetheless, FPGAs have not yet been adopted
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by any of the large supercomputers, which is due to both the challenges of pro-
grammability and flexibility. The former has been partially addressed by High
Level Synthesis (HLS) tooling, enabling the programmer to write their code in
C or C++. However the latter has been less explored. The entire FPGA is often
stalled during fabric reconfiguration which means that dynamic scheduling and
preemptive execution of workloads is less common.

In this paper we propose a programming abstraction to easily use an FPGA
as a multi-tasking server with preemptive scheduling and priority queues. It hides
the complex low-level details of using Dynamic Partial Reconfiguration (DPR)
and synchronisation mechanisms to support on-the-fly instantiation, stopping
and resumming of kernels on parts of the FPGA fabric whilst the rest of the
chip continues executing other workloads independently. The proposal includes,
as a case study, the development of a full First-Come-First-Served (FCFS) pre-
emptive scheduler with priority queues. The tasks are programmed as OpenCL
kernels managed with the Controller model [4,7], a heterogeneous programming
model implemented as a C99 library of functions. It is oriented to efficiently man-
age different types of devices with a portable interface. The Controller model
has been extended to support multiple kernels and preemption on DPR capa-
ble FPGA systems. This solution brings all the benefits of task-based models
to FPGAs, with a low programming effort. We also introduce an experimental
study to show the efficiency of the proposed solution.

The rest of the paper is organised as follows: Sect. 2 describes related activ-
ities tackling flexible execution of kernels for FPGAs. Section 3 presents an
overview of the original programming model that we use as a base to devise
and implement our proposal. In Sect. 4 we present the techniques and exten-
sions to support our approach, both on the management of the on-chip FPGA
infrastructure and on the host code. Section 5 describes the programming level
abstractions provided to the user. In Sect. 6 we present an experimental study
to evaluate our approach. Section 7 concludes the paper and discusses further
work.

2 Related Work

The integration of different types of architectures in heterogeneous systems can
enable the execution of workloads more efficiently by using the most appropriate
hardware for each part of a program. However, this also requires the user to mas-
ter the programming models of these architectures. Programming abstractions
have been introduced to simplify the management of different types of devices,
targeting both functional and performance portability. Many approaches are
devised as implementations of a heterogeneous task-based model. They present
a common host-side API for orchestrating workloads/tasks, programmed as ker-
nels, among the different accelerators present in the system. Approaches such
as Kokkos [6], OpenCL [9], and OpenACC [1] have become popular for mix-
ing CPUs and GPUs. Other approaches also support the FPGAs with a similar
high-level approach. However, despite improving general programmability by
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supporting a common host-side API, these approaches fail to provide the high
flexibility potential of FPGAs. For example, these frameworks lack the support
to independently swap in and out tasks of varying sizes onto an FPGA acceler-
ator. The FPGA is programmed with a full bitstream that contains the kernels
that will be run during the program execution in a non-preemptive way.

The authors of [5] explore these issues. They present a task-based model
targeting System on-a Chip (SoC) deployment based on OpenCL and using
DPR. They support kernel preemption by enabling checkpointing at the end
of each OpenCL workgroup, and whilst this is a natural consistency point in
the OpenCL model, the coarse-grained nature of the approach limits scheduling
flexibility. For example, tasks of higher priority may need to wait until a previ-
ous workgroup with lower priority tasks finishes. Moreover, the user must write
their kernel interfaces in a manner that are comformant to the interfaces of the
Reconfigurable Regions (RR), causing a conflict between the high-level OpenCL
description and the management of the lower-level on-chip infrastructure, which
increases the overall development complexity.

3 The Controller Programming Model

Our proposal is devised as an extension of the Controller heterogeneous program-
ming model. In this section we provide and overview of the original model and
its features. Controller [4,7] is a heterogeneous task-based parallel programming
model implemented as a C99 library. It provides an abstraction for programming
using different types of devices, such as sets of CPU-cores, GPUs, and FPGAs.

As illustrated in Fig. 1, the model is based around the Controller entity. Each
Controller entity is associated to a particular device on its creation and manages
the execution or data-transfers with that device.

Fig. 1. The Controller programming model, generic FPGA
backend. Extracted from [7].

The main program
executes the coordi-
nation code in a main
thread, using the Con-
troller high-level API
to enqueue compu-
tation tasks for the
device. Each Controller
entity has its own
thread that dequeues
and launches the exe-
cution of the ker-
nels associated to the
tasks. The model also
provides an extra hid-

den device to execute host-tasks, which are managed through a separate thread.
The Controller runtime resolves data dependencies between tasks automatically,
performing data transfers in a transparent way. The requests of both kernel exe-
cutions and data-transfers needed are derived to the internal queues or streams
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of the device driver, controlling the execution order of kernels, data-transfers and
host-tasks with native events. It uses three queues for each device: one for kernel
execution, one for host-to-device transfer, and one for device-to-host transfers.
This enables a fast control operation and an efficient overlapping of computa-
tion and data transfers when it is possible. Portability is achieved using different
runtime backends for different device technologies (such as CUDA or OpenCL),
to implement the calls to manage the low-level device queues and events. The
computations that can be launched as tasks are kernel codes written by the pro-
grammer. Controller supports generic codes, written in OpenCL and targeting
any kind of device, or specialised kernels programmed in the native programming
model of an accelerator such as CUDA for Nvidia GPUs.

4 Approach to Support Preemptive Scheduling
on FPGAs

Our approach requires the use of new techniques in two areas, the on-chip FPGA
infrastructure and the integration on the host-side of the Controller runtime.

4.1 On-chip Infrastructure

Figure 2 shows the architecture of the static part of the on-chip infrastructure,
known as shell, that should be deployed in the FPGA to support the proposed
control of Reconfigurable Regions (RR). The example shows two RRs, although
this model is scalable to any number of RRs. The example shows details of
a reference implementation of the proposal using Xilinx technology, although,
these concepts can be easily ported to other FPGAs. This example shell imple-
mentation deploys HLS kernels generated by Xilinx’s Vitis with 1 AXI4-Master
interface which bundles the data ports to DRAM memory, and an AXI4-Slave
interface bundling the control ports. This interface layout is fairly standard. The
interrupt controller registers interrupts generated by the RRs upon completion.
Thus, the CPU can detect when kernels have finished execution. To support
preemption, the shell should be able to interrupt a kernel, saving its context
and state, to later resume it. The shell features two on-chip BRAM memory
banks (one per RR) to store the interrupted kernels context at arbitrary inter-
vals, defined by the user. BRAM memory is used since its speed and its closeness
to the RRs results in very low latency, minimizing the overhead of the context
saving operation. These BRAM banks are also connected to a BRAM controller
which enables access from the CPU, supporting overall book-keeping of the ker-
nel context when they are being swapped in and out by the scheduler that
controls the execution from the host.

Our approach needs support for resetting both the entire FPGA and indi-
vidual RRs (to undertake partial reconfigurations). The former is achieved via
the shell’s global reset (see Fig. 2). The latter is supported by a specific reset
functionality for each RR. It is implemented using the GPIO ports of the CPU,
with the added complexity that HLS kernels by default contain a low active
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reset. We negate the GPIO signal and apply a logical and with the global reset
signal. The application of the reset signal is asynchronous which means that the
kernel might be interrupted unpredictably. The software abstractions described
in Sect. 5.2 ensure that the task can be resumed later from a consistent state.

Fig. 2. Simplified architecture of the system.

This shell de-
sign is provided
in netlist form
with the RRs
instantiated as
black boxes. Con-
sequently, to gen-
erate the shell’s
bitstream the
number of RRs
required is sup-
plied to the asso-
ciated TCL script.
This generates a
corresponding
Vivado compati-
ble DPR capable
hardware design,
which is built

and deployed onto the FPGA. The programmer writes their HLS kernels using
our proposed software abstractions (see Sect. 5.2), that effectively transform the
C code into interface-compliant HLS code during the HLS synthesis.

4.2 Integration into the Controller Framework

A new backend has been written for the Controller framework. It supports inter-
action with our shell, targeting the Zynq-7020 FPGA in Pynq-Z2. To communi-
cate with the FPGA, our backend uses the Pynq C API [10]. This API exposes
low-level functionalities, such as the loading of both full and partial bitstreams,
the interaction with design IP such as interrupt controllers or DMA engines
through memory mapping, and host-device shared memory. Building on the C
Pynq API means that this work is compatible with any other FPGA from the
Zynq-7000 family with little modification required.

Each RR is treated as an independent accelerator by our backend to ensure
that RR kernels can be executed in parallel. Thus, the Controller’s queue is
replicated as many times as the number of RRs, and each instance is managed
by a separate thread. A request to reconfigure a region is implemented as an
internal task, queued up and executed like any other task. This simplifies the
backend structure and allows the scheduling of reconfigurations request before
the associated task execution on the fabric. Zynq only provides a single Internal
Configuration Access Port (ICAP) [12]. This means that only one RR can be
partially reconfigured at a time. Thus, we need to implement a synchronisation
between reconfiguration request in the Controller queues. The Zynq-7000 FPGA
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family architecture supports shared memory which can be accessed by both the
FPGA fabric and host CPU. Thus, data-movement operations can be imple-
mented with zero-copy. The backend utilises Userspace I/O (UIO) to interact
with the shell’s interrupt controller to detect the interrupts raised by the RRs to
indicate kernel termination. We use the select() system call to activate the man-
ager CPU thread when an interrupt is received. Then, the backend queries the
interrupt controller to determine which RR raised the interrupt. This avoids the
use of an active polling approach that would keep a CPU core busy unnecessarily.

4.3 Use Case: DPR Scheduler

In this section we show the use the proposed DPR approach to build an FCFS
scheduler of kernel tasks, with priorities and preemption.

In this proof-of-concept we simulate scenarios where both the time of the next
task arrival and the task parameters are randomly generated. We pre-generate
a sequence of tasks (tasks to arrive), ordered by a random arrival time. Each
task has a random priority, a randomly chosen kernel code to execute (from a
given set), and random arguments. We design a modular scheduler with separate
modules for the generation of random tasks, management of the queues, service
of tasks and the main loop of the scheduler. Therefore, it is easy to extend or
adapt. It is compatible with any number of RRs.

Algorithm 1. Main loop of the scheduler.
while true do

WaitForInterrupt(&timeout)
if has finished(N,R,&tasks to arrive) then

break
end if
if tasks to arrive && timeout == 0 then

task = get arrived task()
else

task = get task from queue()
end if
serve task(task,R, P )
update timeout(&timeout)

end while

The main loop of the
scheduler is presented in
Algorithm 1. The arrival
of the next task is sim-
ulated with a timeout
clock, used in the same
select() function that
detects the interrupts
raised by the end of a ker-
nel in a RR. Thus, the
WaitForInterrupt func-
tion returns when a new
task arrives or when a RR
kernel finishes.

The process of serving a task consists of the following steps: (1) Find an
available region, i.e., a region where the last task running has already finished.
(2) In case no available region was found, if preemption is disabled enqueue the
task. If preemption is enabled, check if there is a region executing a task with
lower priority. In that case, stop the kernel execution in that region, save the
context and state, enqueue the stopped task, and consider the region as available.
(3) If the kernel loaded in the available region is distinct from the kernel of the
incoming task, enqueue a swapping task to reconfigure the RR. (4) Launch the
new task. If it was a previously stopped task, its context is copied back to the
device before launching.
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5 Programmer’s Abstractions

This section describes the abstractions provided to the programmer to implement
kernels and to use the proposed approach, without knowledge of the low-level
details of the DPR technology.

5.1 Kernel Interface Abstraction

The generation of interfaces in technologies such as Vitis HLS is done adding
pragmas that can be cumbersome and error prone to write. Moreover, a require-
ment of DPR is that HLS kernels to be deployed into a given RR must present
the same external interface to the shell. They must conform to the same number
of interface ports and port configurations, such as bus widths [12]. Thus, better
abstractions are needed to hide these low-level details to the programmer.

1 CTRL KERNEL FUNCTION(
2 MedianBlur , PYNQ, DEFAULT,
3 KTILE ARGS( KHitT i l e in t in ar ray ,
4 KHitT i l e in t out ar ray )

,
5 INT ARGS( int H, int W, int i t e r s ) ,
6 FLOAT ARGS(NO FLOAT ARG) ) {
7 . . .
8 int k , row , c o l ;
9 con t ex t va r s (k , row , c o l ) ;

10 . . .
11 f o r s a v e (k , 0 , i t e r s , 1) {
12 f o r s a v e ( row , 1 , H+1, 1) {
13 f o r s a v e ( co l , 1 , W+1, 1) {
14 window [ 0 ] = h i t (
15 i n a r ray , row−1, H NCOL+col −1) ;
16 . . .
17 checkpoint ( c o l ) ;
18 } checkpoint ( row ) ;
19 } checkpoint (k ) ;
20 }
21 }

Listing 1.1. Sketch of a Median Blur kernel
written with the Controller abstraction

The configuration of the inter-
faces is a parameter present in
our TCL configuration script that
generates the shell’s hardware
design, as discussed in Sect. 4.1.
In the Controller model, the ker-
nel codes are wrapped with curly
brackets and preceded by a kernel
signature. The kernel signature is
provided with a macro-function
named CTRL KERNEL FUNCTION. It
specifies the kernel parameters in
a form that is processed by the
Controller library to generate the
proper low-level interface. List-
ing 1.1 illustrates the definition
of a Median Blur kernel, used in
our evaluation in Sect. 6, preceded
by its signature. In this work we

extend the Controller kernel signature to generate code with a uniform interface,
as required by the shell. The parameters of the kernel signature are the following:

CTRL KERNEL FUNCTION(K, T, S, Ap, Ai, Af):

• K is the name of the kernel.
• T indicates the backend type that will be targeted. Supported types are: CPU,

CUDA, OpenCL, FPGA.
• S is the subtype of backend that will be targeted, e.g. DEFAULT.
• Ap is a list of pointer non-scalar arguments defined with KTILE ARGS.
• Ai is a list of integer scalar arguments defined with INT ARGS.
• Af is a list of floating point scalar arguments defined with FLOAT ARGS.

Controller provides a wrapper structure for multi-dimensional arrays named
HitTile. Any kind of non-scalar arguments are provided as HitTile arguments.
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KTILE ARGS function enables the use of HitTile accessors within the kernel,
effectively providing input and output arrays to the kernel, as discussed in [7].
INT ARGS and FLOAT ARGS support passing integer and float scalar arguments,
respectively. All these functions have variadic arguments to adapt the kernel
interface to the number of arguments required by the programmer. The corre-
sponding code generated by the kernel signature for the kernel shown in List-
ing 1.1 is shown in Listing 1.2. Three integer arguments are provided by the
user and five extra dummy arguments i args < n > are generated. Similarly, 8
dummy floating point and 1 dummy pointer arguments are generated to fill the
argument count and provide a shell compliant interface. Finally, a pointer to a
struct context is added for context book-keeping if the task is interrupted.

1 void MedianBlur ( . . . ,
2 int H, int W, int i t e r s , int i a r g s 0 , . . . , int i a r g s 4 ,
3 . . . , volat i le struct context ∗ context , int ∗ r e tu rn va r ) ;

Listing 1.2. Code generation for the signature of the Median Blur kernel

5.2 Programmer Abstractions for Preemption

Preemption of a kernel whilst it is running requires saving its state so that it can
be resumed in the future. Previous approaches, such as [5] only save the context
at the end of an OpenCL workgroup. We also wanted to provide flexibility for
the programmer to decide exactly where their code should be checkpointed. We
propose a finer-grain and programmer-aware checkpointing approach, where the
programmer has the flexibility to indicate when and what data should be chek-
pointed during the kernel execution. We provide several checkpointing macro-
functions. The programmer declares which variables should be stored in the
checkpoints using the context vars macro-function. The checkpoint macro
stores one or more of these variables at a given execution point. A for save
macro-function is used in-place of the normal for loop construct, to provide sup-
port for resumption on a specific loop iteration. These calls are expanded to the
proper code at synthesis time.

An example of their use is shown in Listing 1.1. At line 11 the integer variables
k, row, and col are selected to be checkpointed, with lines 11, 12, and 13 using the
for save macro to define loops and for these to be restarted as appropriate. The
associated loop variables are checkpointed at lines 17, 18, and 19. This kernel
saves the state at each iteration to be able to be resumed without discarding
previously computed iterations.

1 struct context {
2 int var [N ] ;
3 int i n i t v a r [N

] ;
4 int i n c r v a r [N

] ;
5 int saved [N ] ;
6 int va l i d ;
7 } ;

Listing 1.3. Definition
of struct context.

Context saving is done transparently storing the
state in the struct context generated in BRAM (see
Listing 1.3). In our prototype up to N integers can be
nominated by the user to be saved, where N is a compile
time parameter. It is trivial to extend the structure to
support other data types. The field saved keeps infor-
mation about whether the variables have already been
saved through checkpoint and they should be restored
in a resume operation. The valid field is used to indicate
if the asynchronous preemption interrupted the kernel



Programming Abstractions for Preemptive Scheduling 141

during a data saving operation. In that case, the resume operation will be done
with the previously saved values.

6 Experimental Study

We present the results of an experimental study to evaluate the efficiency of our
approach.

6.1 Use Case: Scheduler of Randomly Generated Image Filter Tasks

In this study we experiment with the scheduler described in Sect. 4.3. The kernels
chosen for the experimentation are blur image filters applied to images pre-
stored in memory. Tasks execute one of four possible kernels: Median Blur over
one, two or three iterations or one iteration of Gaussian Blur. Tasks arrive at
random times distributed over U(0, T ) minutes. The scheduler features optional
preemption and priorities. For these experiments we choose to use 5 different
priorities, to generate enough preemptions, task switching and reconfigurations.
The tasks, their arrival time, and the image on which it should be applied, are
randomly generated before the scheduler starts.

6.2 Experimentation Environment

The experiments were conducted on a Xilinx PYNQ-Z2 FPGA. It features a
ZYNQ XC7Z020-1CLG400C of the Zynq-7020 family, an ARM Cortex-A9 dual
core at 650 MHz CPU and 512 MB DDR3. HLS kernels were compiled using
Xilinx Vitis HLS version 2020.2 and the hardware design and corresponding
bitstreams were generated with Xilinx Vivado v2020.2. Controller was compiled
with GCC 9.3.0 and compilation scripts were generated with CMake 3.20.5.

Several random seeds for the task generation have been tested. We show the
results for the value 15. The main observations can be extrapolated for other
random sequences. The number of tasks generated was chosen to be 30. We
enabled priorities both with and without preemption of tasks. We considered
three different rate of arrivals T : busy (0.1), medium (0.5) and idle (0.8). We
worked with image sizes 200×200, 300×300, 400×400, 500×500 and 600×600.
In order to study the sequential vs. the parallel behaviour both one and two RRs
were considered. Finally, each experiment was executed ten times to account for
variability and the results presented are average times with standard deviation.

6.3 Results

In order to show the effectiveness of our approach we are presenting results
for the following metrics: (i) service time, defined as the time it takes for a
task to be served since it is generated until it starts execution on the FPGA
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and (ii) throughput, defined as the number of tasks executed per second. We
also compare the use of partial reconfiguration with the more conventional full
reconfiguration approach. Figure 3 reports the service time for tasks in every
priority queue both with and without preemption for 30 tasks at size 600× 600
accumulated by priority. We chose this number of tasks and image size as it
provides enough workload and a sufficient number of tasks to study the behaviour
of the scheduler. The results are presented both for one and two RRs. As can be
seen, service times are longer for the busy rate of arrival than for medium and
idle, as tasks have to wait a longer time until a RR becomes available than when
they arrive later, giving the opportunity for kernels to finish. If the priority
of an incoming task is higher than one of the tasks running, then its service
time will be virtually zero. We can observe this by comparing the plots on the
right with plots on the left. For this representative case, on average, preemption
reduces service time substantially. This will be the case in general when incoming
tasks present a higher priority than running tasks. These results show that our
scheduler effectively reduces the total service time of tasks, thus increasing the
flexibility, as preemption enables swapping in and out tasks upon a condition
— priority in this case. The reduction in service time is heavily dependent on
the structure of priorities of the generated tasks, both in terms of the number of
tasks enqueued and the number of reconfigurations enforced by incoming kernels
not loaded already in the fabric. Note that a task will have to wait until previous
tasks of higher or the same priority have completed. Additionally, as shown in
Fig. 3, the service time decreases with the number of RRs, as more opportunities
are created for kernels of lower priorities to execute.

Fig. 3. Service times for 30 tasks at size 600× 600. 1 RR (left), 2 RRs (right). Per bar
group: Non-preemptive (left), preemptive (right).

Figure 4 shows the throughput of the scheduler with 30 tasks both with
and without preemption over one and two RRs. As expected, the throughput
increases with the rate of arrival of tasks. The lower the dimensions of the images
the higher the throughput, as the kernels complete execution faster. It is also
noticeable that the overheads incurred by preemption lead to a slightly lower
throughput. These are most noticeable for a high rate of arrival of tasks, where
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throughput losses are 8.3% and 10.7% for the case with one and two RRs, respec-
tively, at size 200 and busy arrival rate. For the rest of cases the loss ranges
between 0–4%. Most of this overhead is explained by the time taken by the extra
partial reconfigurations imposed by preemption. The dashed red lines show an
upper bound of the throughput if full reconfiguration was used instead. This has
been calculated from the throughput at busy rate of arrival adding the prod-
uct of the number of reconfigurations by the average difference on time between
full (0.22 s) and partial (0.07 s) reconfiguration. This is a highly optimistic upper
bound, since it does not take into account the effects of stalling the FPGA, which
impedes the concurrency of kernel execution and reconfiguration, and enforces
a preemption of the rest of kernels that are to be kept in the FPGA. Finally,
the average preemption overhead observed is 1.66% for one RR with standard
deviation 2.60%, and 4.04% for two RRs with a standard deviation of 7.16%.
The deviation is high due to a overhead peak of 23.40% for busy rate of arrival
at size 200× 200. This indicates that this technique might not be interesting for
short tasks whose execution time is comparable to the reconfiguration time.

Fig. 4. Throughput for 30 tasks. 1 RR (first row) and 2 RRs (second row). Non-
preemptive (first column) and preemptive (second column).

7 Conclusions

This work presents a task-based abstraction for programming FPGAs that
enables task preemption using DPR. We abstract the low-level details of the
generation of a DPR capable system and provide a high-level API for simple
management of kernel launch, data transfer and transparent book-keeping for
context preemption. We show that our approach enhances flexibility by reducing
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the service time of urgent tasks thanks to the ability to swap tasks in and out.
The overhead of preemptive vs. non-preemptive scheduling with DPR is 1.66%
on average for one RR and 4.04% for two RRs. Finally, our simulations show
significant performance gains over the traditional use of full reconfiguration.

Future work includes, in no particular order:

1. Task migration between FPGA and other architectures e.g. GPU and CPU.
2. Extension to data-center FPGAs e.g. as Xilinx Versal and Xilinx Alveo.
3. Extension of the backend to leverage full reconfiguration to provide an accu-

rate measure of the performance gain through the use of DPR.
4. Reduction of the overhead of this technique with a custom ICAP controller,

as Xilinx’s can only exploit up to 2.5% of the port bandwidth [11].
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Abstract. We introduce a new model for the task mapping problem
to aid in the systematic design of algorithms for heterogeneous systems
including, but not limited to, CPUs, GPUs and FPGAs. A special focus
is set on the communication between the devices, its influence on parallel
execution, as well as on device-specific differences regarding paralleliz-
ability and streamability. We show how this model can be utilized in
different system design phases and present two novel mixed-integer lin-
ear programs to demonstrate the usage of the model.

Keywords: Heterogeneous computing · Task mapping · Resource
allocation · Modeling · MILP · FPGA · Hardware/software
partitioning · Design space exploration

1 Introduction

With Moore’s Law declining, modern computing systems become increasingly
heterogeneous, containing processing devices, such as CPUs, GPUs or FPGAs
as well as associated memories with vastly different characteristics. A significant
challenge lies in the mapping of application tasks to fitting devices. In general, a
mapping should minimize the execution time of a task on a certain device, which
is influenced by multiple factors, such as the parallelizability and streamability
of a task. Nevertheless, a better suited device may be a suboptimal choice if
the device is already highly contended. Moreover, even an unused device with a
high processing speed may be avoided if the data transfer cost between devices
exceeds the gain from the parallelization.

In this work, we develop an abstract model for the task mapping problem
on heterogeneous devices for data-intensive applications, where communication
cost plays a significant role. With this model we aim to support developers in the
early design phases of a heterogeneous system and clear the path for theoretical
evaluations and comparisons of task mapping algorithms. We demonstrate the
capabilities of the model based on two linear programs in a sample environment,
which can be used as a reference for future heuristics.
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2 State of the Art

The mapping of tasks to processing devices (also called resource/task allocation
or workload partitioning) describes a central step in the design of heterogeneous
systems. Much work exists for CPU-GPU task mapping [7]. Research in this
field mainly focuses on (application-)specific algorithms without a reference to a
general model or a common measure of cost. This makes it difficult to compare
different approaches and to transfer insights to new problems. Some authors
introduce a more detailed model [2,11]. However, the underlying parallelism of
a heterogeneous system is seldom taken into account, especially with respect to
the impact of data transfer. In the field of production research, a closely related
problem is known as the agent bottleneck generalized assignment problem [1,5].
Here, the parallel execution through different agents is central, but communica-
tion cost between the agents are usually not present.

Few work is present that includes dataflow-based devices such as FPGAs.
Works that include FPGAs frequently model them similar to software process-
ing units [10]. Yet, FPGAs have special characteristics as they are area-bound
and enable pipelining, leading to vastly different behavior. Modeling these differ-
ences is crucial for exploiting their full potential [3]. Owaida et al. discuss these
differences in the context of designing OpenCL tasks for FPGAs [9]. Much work
is done in the closely related field of hardware/software partitioning [6]. Models
in this field better reflect hardware properties [8], but usually do not differentiate
between software units e.g. in terms of parallelizability.

3 Modeling

In this section, we develop an abstract system model with a minimal set of
interfaces that allows us to define a cost function to assess the quality of a given
task mapping. We then show how this model can be utilized in different phases
of a systematic design space exploration for a heterogeneous system.

3.1 Abstract Model

In different design phases, different knowledge about the system properties is
present, therefore it is crucial to make single components of the model exchange-
able without the need to adjust other components or the underlying algorithm.
For this, we split the system model into an application model, which describes
the properties of and relations between tasks, a platform model describing the
characteristics of the available hardware, and an implementation model, defining
the relation between the available hardware and the application model.

The application model is based on a task graph, i.e., a directed acyclic
graph, where nodes represent tasks and edges represent data dependencies
between these tasks. Similarly to Campeanu et al. [2], we differentiate between
computation nodes and memory nodes. While computation nodes indicate that a
certain computation must be executed, memory nodes indicate that data must be
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made available. More precisely, each task consists of three nodes: a memory node
representing the input data, a computation node, and a memory node represent-
ing the output data. Furthermore, additional memory nodes may indicate data
sources or sinks (Fig. 1). This representation is based on the assumption that
a high amount of data needs to be computed, making memory access manda-
tory during the execution of each task. It allows us to accurately differentiate
between the cost caused by the computation and the cost caused by the memory
access. In particular, it allows us to consider different locations for the data. For
example, a CPU could work on data provided by the System RAM and write it
back directly into the GPU RAM.

T1 T2

src

snk

i1

o1

c1

i2

o2

c2

i2

o2

c2

T3

Fig. 1. Sample memory-
augmented task graph with
three tasks, one source and
one sink.

In the hardware model, we assume that (1)
each computation device is connected to (at least)
one associated memory, (2) data transfer can only
happen between memories (not between computa-
tion devices) and (3) the computation of a device is
blocked by a memory transfer from or to the associ-
ated memory. Usually, the associated memory refers
to a respective RAM unit, e.g. a GPU RAM for
the GPU or the System RAM for the CPU. The
model, however, is not limited to one memory unit
per device. While the data transfer between differ-
ent memories is usually done through DMA units, it
is still reasonable to assume that computation units
are affected by the memory transfer, since they can-
not access their respective data. Excess data rate,
however, can be used to start independent tasks.
We elaborate on this in Sect. 3.3.

The (task) implementation model repre-
sents the relation between the application and hard-
ware model. Its main purpose is to work as an inter-
face between those two models and to make parts
of the modeling framework more interchangeable.
Between each node of the application model and each device, a compatibility
relation is defined that indicates which task can be mapped onto which device.
Naturally, memory nodes can only be mapped onto memories and computation
nodes must be mapped onto a processing device. However, there can be further
restrictions. For example, a cache may only fit memory nodes that contain a
small amount of data or a tensor processing unit can only execute a small sub-
set of tasks. In addition to a compatibility function, the implementation model
defines how much time is needed to execute a task on a certain device or to
transport the output of a task from one device to another.

The overall advantage of the described modeling approach lies in the possi-
bility to easily evaluate a given task mapping while abstracting from implemen-
tation and platform details. Consequently, we define a cost function based on
a simple, but reasonably effective, evaluation algorithm.



148 M. Wilhelm et al.

Input: Nodes, Devices, Map : Nodes �→ Devices
SortedNodes ← topsort_bfs(Nodes)
foreach p ∈ Devices do time(p) ← 0
foreach i ∈ SortedNodes do

if i is input memory node then
j ← successor(i), k ← successor(j)
pi ← Map(i), pj ← Map(j), pk ← Map(k)
t ← max(time(pi), time(pj), time(pk)) + di,pi,pj

+ tj,pj
+ dj,pj ,pk

time(pi), time(pj), time(pk) ← t
else if i is output memory node or source then

foreach j ∈ successors(i) do
pi ← Map(i), pj ← Map(j)
time(pi), time(pj) ← max(time(pi), time(pj)) + di,pi,pj

end
end

end
return maxp(time(p))

Algorithm 1: Computation of the total cost of a given task-device mapping.

Algorithm 1 shows the computation of the cost of a given mapping. For each
device, a decoupled time value is managed, which is increased when the device is
in use. Tasks are queued for execution according to a topological sorting based
on a breadth-first search. There are two main cost factors. The transportation
of data from task i on device p to device q, denoted by dipq, and the execution
of a task i on device p, denoted by tip. Transportation of data happens along
the edge between two memory nodes. The time values of both memories are
synchronized and increased according to the time given by the implementation
model. The time for the execution of a task consists of the time for the read
access to the input memory, the write access to the output memory and the
computation time on the given device. The time values of all three involved
devices are synchronized and the total time for the execution is added to each of
them. Note that the input memory waits for the output memory and vice versa
to account for the fact that data is processed in small chunks.

After all tasks have finished, the overall cost for the computation is given as
the maximum time value over all devices. This value may depend on the used
schedule, i.e. the order of tasks in the topological sorting. A potential bias can
be circumvented by choosing the topological sorting at random.

3.2 Models for Different Design Stages

The high abstraction level of the model presented in Sect. 3.1 allows the designer
to reuse optimization algorithms written for this model in different design stages.
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In an early design stage, the time for task execution and data transport can be
determined based on superficial characteristics of the given tasks and potential
devices. This allows for a rapid estimate on the required characteristics for a
performance gain and, in consequence, supports the designer in their hardware
choice. In a later design stage, promising tasks may be implemented and mea-
sured on different devices. With these more precise values, the same algorithms
can support the designer in finding the optimal configuration.

We present a simple realization of the abstract system model that can be
used during an early design stage. In particular, we describe a more detailed
hardware and application model that fulfills the specifications demanded by
the abstraction. The model is primarily based on the task sizes of the given
application and the processable data rates of the devices. The general idea is
to get an estimate of the processing time of a certain amount of data based
on device characteristics. Each task node is attributed with a data processing
function, which computes the amount of output data generated from input data
of a certain size, e.g. a simple sum of two values would have a 2:1 relation
between input and output data. In addition, each node has a complexity function,
which determines the amount of computations needed based on the input data.
Finally, each computation node indicates which percentage of its execution time
is parallelizable. For the sake of simplicity, we assume that the parallelizable part
is fully parallelizable with an arbitrary amount of processors.

In the hardware model, we compute the data rate of a memory as the product
of (1) the bus clock speed, (2) the bus width and (3) the number of memory
channels. We set the serial data rate rs of a processing device to the clock
rate multiplied with a device-specific overhead penalty, describing the overhead
caused by the microarchitecture. Note that a penalty is relevant only if the
overhead is expected to be vastly different between devices. In the evaluation
given in Sect. 5, we therefore do not apply penalties. In addition to the serial
data rate, each processing device is assigned a parallelization factor rp consisting
of (1) the number of cores and (2) the potential data parallelism. For example,
in case of a GPU, the second factor equals the number and width of SIMD units.

Finally, in the implementation model, we set the execution time of a task
node on a device to 0 for a memory node and to datain /(rs ∗ (1 − p + prp)) for
a computation node, where p ∈ [0, 1] denotes the parallelizability of the task.
The transport time is determined by the minimum of the data rates of the two
connected devices and a potential data rate limitation between them. It is set
to infinity if no edge is present in a given hardware graph.

Using this model, an early assessment of the potential of a heterogeneous
implementation can be made. In a later design stage a measure-based model
should replace these rough estimates. For this, (time) complexity functions for
both the execution and the transport time should be derived from the measured
data, which can then be directly incorporated into the task implementation
model. Using appropriate penalties, a mixture of both models can be used if
measured data isn’t available for all task-device combinations.
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3.3 Extension: Full Usage of Data Busses

Data transport between two memories is usually done through DMAs, which are
independent of the processing devices. Hence, processing devices are in principle
able to execute tasks during the transport of (independent) data. In the presented
abstract model, on the other hand, we wait until the input and output memories
are unoccupied before we start another execution. The reasoning behind this
decision is that during processing, data must be accessed by the processing device
and therefore access to the memory bus is needed. However, a data transaction
does not always use the full data rate of both memories. If, for example, memory
is transferred between System RAM and GPU RAM, the transaction speed is
usually limited by the bus of the GPU RAM. The remaining bus width of the
System RAM can be used by a processing device to access data.

The resulting gain in performance can be incorporated into the model by
adjusting the blocking time according to the used resources. Let r1, r2 be the data
rate of two devices p1, p2 with r1 ≤ r2. Then a data transport between these two
devices that takes time t increases (after synchronization) the time value of p1 by
t and of p2 by r1

r2
t. The increase in the time value of p2 represents the time that

the device would work if it could use all of its resources for the task, i.e., the total
delay that a parallel execution of other tasks accessing p2 would experience. Note
that the additional capabilities can only be used by independent computations.
A task that is dependent on the data transport between p1 and p2 won’t be
able to make use of the free resources. Hence, the cost computation algorithm
must assure that a dependent task waits the full time t until its computation is
started.

3.4 Extension: Streamability and Virtual Memory

In the current model we write data back to the memory after each task execution.
Depending on the granularity of the tasks, this may be inefficient if a subsequent
task is executed on the same device. If a task works only locally on the given
data, we may do several subsequent processing steps on the same data before
writing it back to memory. These tasks are called streamable. We can model
this behavior in two ways: (1) we modify the cost function to ignore memory
accesses between subsequent tasks that are executed on the same device and do
not produce intermediate data used by other devices or non-streamable tasks, or
(2) we introduce virtual memories into the hardware model with zero access time
from the chosen device and infinite data transfer time to other devices. Virtual
memories can then be used in between operations on the same device to hide the
memory access. The first variant increases the complexity of the cost function,
whereas the second variant shifts the responsibility to the mapping algorithm.

A special case for streamability is the handling of dataflow-based devices
such as FPGAs. Here, not only the memory access can be omitted, but also the
execution of tasks can be pipelined, i.e., operations can be executed in parallel
along the stream. Therefore, a subtree of streamable tasks on such a device will
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only take as long as the most expensive processing or memory node in the sub-
tree. A limitation to this property is given by the limited area on such a device.
To integrate this behavior into our model, we introduce an area requirement
for all tasks and modify the cost function to compress subtrees up to the size
of the respective device to one single task. Furthermore, bigger tasks that are
streamable and fit on a single FPGA may also greatly benefit from pipelined
processing. Regarding Sect. 3.2, the behavior can be modeled by a streamability
factor for each task, indicating into how many pipelined steps the task can be
split. If a computation node is mapped onto an FPGA and doesn’t exceed the
maximum area available on the FPGA, the execution time is reduced by this
factor.

4 Mixed-Integer Linear Programs

The abstract model presented in Sect. 3.1 allows us to effectively develop and
compare algorithms and heuristics for heterogeneous task assignments without
regard for implementation details. In this section, we present two mixed-integer
linear programs for heterogeneous task assignment based on the model.

4.1 Device-Based ILP

In the first MILP, we aim to minimize the maximum time on each device. In a
system with n nodes and m devices, let tip be the time required to execute task
i on device p and let dipq be the time required to transport the output data of
task i from device p to device q. Let xip be a binary variable indicating that task
i is executed on device p, and let E be the set of edges in the application graph.
Then the times Tp, T

in
p , T out

p reflecting the total time of execution on, transport
to, and transport from device p, respectively, are given as:

Tp =
n∑

i=1

xiptip T in
p =

m∑

q=1

∑

(i,j)∈E

dipqxipxjq T out
p =

m∑

q=1

∑

(i,j)∈E

diqpxiqxjp

Note that the quadratic terms xipxjq can be replaced by single variables using
the McCormick inequalities xipjq ≤ xip, xipjq ≤ xjq and xipjq + 1 ≥ xip + xjq.
Our goal is to minimize the term maxp(Tp+T in

p +T out
p ). To resolve the minmax

formulation, we introduce another variable z with z ≥ Tp + T in
p + T out

p for all
p ∈ {1, ...,m}, which is then minimized. As additional constraint we ensure that
each task node is mapped to one device. Let Ci be the set of devices that are
compatible to task i. Then we want to guarantee that

∑
p∈Ci

xip = 1 for all
i ∈ {1, ..., n}. Hence our final MILP is given as

minimize z

subject to z ≥ Tp + T in
p + T out

p ∀p ∈ {1, ...,m}
∑

p∈Ci

xip = 1 ∀i ∈ {1, ..., n}
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4.2 Time-Based ILP

While above MILP is reasonably simple, it does not consider execution order
and synchronization issues. In this section, we present a more exact, but also
more expensive time-based linear program. Here, the goal is to “simulate” an
execution, i.e., to assign start and end times to each task. For this, we introduce
variables yi,0, yi,1 representing the start and end of the execution of node i.

With the notation from the previous section, we guarantee that there is
sufficient time before the start and the end of the execution of a node and that
a node can only be started if all previous nodes have been processed. Hence,

yi,1 ≥ yi,0 +
m∑

p=1

xiptip and yj,0 ≥ yi,1 +
m∑

p=1

m∑

q=1

dipqxipxjq

for all tasks i and all edges (i, j), respectively. In contrast to the device-based
variant, we must assure that each device is used for only one task simultaneously.
For this, we sort the tasks topologically and assure that all tasks that are mapped
onto the same device are executed in topological order. Hence, we demand

yj,0 ≥
m∑

p=1

xipxjpyi,1

for all j ∈ {1, ..., n} and all i < j. This equation can be linearized by replacing
it with yj,0 − yi,1 ≥ Mxipxjp − M for all p with a sufficiently large constant
M and using the McCormick inequalities as before. We minimize the maximum
time z by demanding z ≥ yi,1 for all tasks. Adding, as before, the condition that
a device must be assigned to each task node, we get

minimize z

subject to z ≥ yi,1 ∀i ∈ {1, ..., n}

yi,1 ≥ yi,0 +
m∑

p=1

xiptip ∀i ∈ {1, ..., n}

yj,0 ≥ yi,1 +
m∑

p=1

m∑

q=1

dipqxipxjq ∀(i, j) ∈ E

yj,0 ≥
m∑

p=1

xipxjpyi,1 ∀j ∈ {1, ..., n},∀i ∈ {1, ..., j − 1}
∑

p∈Ci

xip = 1 ∀i ∈ {1, ..., n}

4.3 Extension: Streamable Devices

The time-based linear program can be extended to reflect the pipelining behav-
ior of dataflow-based devices such as FPGAs. For this, we modify the order
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constraint to enable tasks on streamable devices to start simultaneously with a
parent task executed on the same device. Let D be the set of all devices and
Dp be the set of pairs of dataflow-based devices and their associated memories
(including pairs with themselves). Then the modified constraint is given as

yj,0 ≥ yi,1 +
∑

(p,q)∈D2\Dp

dipqxipxjq −
∑

(p,q)∈Dp

xipxjqtip, ∀(i, j) ∈ E

By this, we effectively reduce the constraint to yj,0 ≥ yi,0 if both tasks are on
associated dataflow-based devices. Finally, to take the maximum of all operations
in the pipeline, we ensure that a task cannot end before its parent ends, i.e.,
yj,1 ≥ yi,1 ∀(i, j) ∈ E.

Since devices such as FPGAs have a maximum capacity, we must ensure that
the total number of tasks added to the device does not exceed this capacity. Let
si be the area requirement for task i and Sp be the capacity of a device p. Then

n∑

i=1

xipsi ≤ Sp ∀p ∈ Ds

where Ds is the set of all streamable devices. This capacity constraint is added
to the device-based approach as well to ensure a valid configuration, even though
the pipelining capability can’t be represented.

5 Evaluation

We demonstrate the usage of the model in an early design stage through several
experiments in a sample environment. We determine the execution time and
data transfer time based on the specifications of the given devices and the size
of a virtual data load as described in Sect. 3.2. Our virtual test system contains
an AMD Epyc 7531P with 16 cores (32 threads), a clock rate of 2.4GHz and
SIMD processing with 8×32B words, as well as a AMD Radeon RX Vega 56 with
1.6GHz and 3584 SIMD units. Furthermore we assume a Xilinx XCZ7045 FPGA
with a clock rate of 400MHz and an equivalent of 350k logic cells, partitioned
into 28 area units. We assume appropriate RAM units for CPU, GPU and FPGA
with a calculated throughput of 170GB/s, 410GB/s and 11GB/s, respectively.

For the application, we generate random series-parallel graphs with 30 edges.
For this, we start with a connected source and sink node and subsequently add
edges using either a series (split an edge into two by adding a node on it) or
parallel (copy an edge) operation. The resulting graphs are stereotypical for data-
intensive applications where you start with a common data set, process the data
along different computation paths and combine the outputs to a common result.
In order to avoid duplicate edges, we set the probability of a series operation
to 0.5 + 0.5 i

m , where m is the desired number of edges and i is the number of
edges already added. That is, we start with a probability of 0.5 and continuously
increase the probability to 1. After removing duplicate edges, we arrive at graphs
with, on average, around 21 nodes and 22 edges. Each node, except for the source
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and sink, is then converted to a task with input, computation and output node,
resulting in application graphs with on average slightly below 60 nodes.

We assign the same data load to each task, so the data processing function
of each task is the identity function. We choose the parallelizability of a task
uniformly between 0 and 1 and the complexity function as a linear function
f(x) = cx, where the factor c is log-normal-distributed with μ = 3, σ = 0.5. The
parameters are chosen to create generally similar complexities with occasional
outliers of significantly higher complexity. About 90% of the generated values
for c lie in the interval [10, 50] with a median of 20. For the FPGA extension,
we assume that every task is streamable and that the area needed for a task
as well as the possible gain through streaming is equal to its complexity factor.
Through this, one used unit of area is equated to roughly one pipelining step.
The linear programs are solved using Gurobi 9.1.2 [4] in Python on an AMD
EPYC 7542 with 2TB RAM.

Table 1. Performance gain through task assignment strategies compared to assigning
all tasks to the CPU for 100 graphs with on average 20 tasks and 100 MB input data.
The fourth column indicates the number of cases in which the performance could be
improved. Execution time is given in the last column.

Avg Min Max # impr. Tme avg
CG
Device-based −10% –19% 29% 8 0.06 s
Time-based 11% –10% 66% 81 4.98 s
CGF
Device-based 1% –17% 54% 46 0.11 s
Time-based 17% –8% 64% 92 18.95 s
CGFF
Device-based 6% –18% 40% 65 0.19 s
Time-based 19% –5% 71% 94 47.54 s

In Table 1, results are listed for three different hardware configurations: A
configuration with only CPU and GPU (CG), a configuration with CPU, GPU
and one FPGA (CGF) and a configuration with CPU, GPU and two identi-
cal FPGAs (CGFF). It shows the average, minimum and maximum change of
performance compared to an implementation where all tasks are mapped to the
CPU. For our input data, mapping all tasks to the GPU makes the execution
about 33% slower. Compared to the CPU, the higher parallelization factor of the
GPU leads to an improvement only if close to 100% of the task is parallelizable.
Consequently, potential improvements through the GPU are mainly enabled by
the simultaneous execution of different tasks using uncontended memories.
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As the results show, the time-based ILP is usually more effective than the
device-based ILP in increasing the performance of the execution. Both the max-
imum performance gain and the frequency of getting an improved mapping is
higher for the time-based ILP. Adding one or two FPGAs increases the size
of the design space and consequently leads to more optimization opportunities,
showing potential performance gains of up to 71%.
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Fig. 2. Mappings found by the device-based (left) and the time-based (right) LP for
a small sample graph. For each node, the parallelizability p and complexity factor c are
given. At the edges and in the nodes, the time windows for transport and computation
are annotated. For all tasks, the chosen input and output memory are identical, the
corresponding nodes are omitted for readability.

An exemplary mapping of the two algorithms is shown in Fig. 2. Both
depicted mappings improve on a pure CPU mapping (which has a cost of 423
time steps). The device-based approach chooses to put two moderately well par-
allelizable tasks on the GPU (with parallelizability 0.6 and 0.77, respectively).
However it is not able to recognize that both nodes lie on the critical path of
the task graph. The time-based approach is able to identify the critical path and
therefore puts a badly parallelizable, but uncriticial, task on the GPU, reducing
the overall cost of the mapping. However, there are cases in which the device-
based ILP finds a better mapping, since it is not restricted to follow a specific
topological order. Furthermore, it is less complex to solve and therefore better
suitable for very large task graphs. As shown in the last column of Table 1, the
device-based approach is about two orders of magnitude faster than the time-
based approach.

In the example shown in Fig. 2, the transfer cost between different memories
has only a small impact on the mapping. This changes drastically if the com-
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plexity of the computations is reduced. If the complexity is set to 1 for all tasks,
switching devices is much more costly compared to the computation itself. In
this case, in each of the hardware configurations only about 40 out of 100 graphs
with 30 edges could be improved using the time-based algorithm and about 2
out of 100 graphs with the device-based ILP. Furthermore, the tendency to map
multiple connected tasks to the same device strongly increases.

6 Conclusion

The model presented in this work provides a solid basis for the development of
general task assignment algorithms. A common model allows the designer to use
various heuristics to explore the design space for potential improvements early
in the design process. In particular, a large database of available algorithms
helps in deciding early on whether a potential optimization is worth the effort.
The realization of the model in different design stages currently still puts much
responsibility to the designer. The modeling of the time function assessed in
Sect. 3.2 provides a direction on how the model can be used. The development
of more precise realizations is open for future research. The given MILPs are
sufficiently powerful to find significant improvements for small task graphs. Fur-
thermore, they form a robust baseline to assess the quality of future heuristics
for large task graphs or dynamic resource allocation in a changing environment.
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Abstract. Directed acyclic graphs are commonly used to model scien-
tific workflows, by expressing dependencies between tasks, as well as the
resource requirements of the workflow. As a special case, rooted directed
trees occur in several applications. Since typical workflows are modeled
by huge trees, it is crucial to schedule them efficiently. We investigate
the partitioning and mapping of tree-shaped workflows on target archi-
tectures where each processor can have a different memory size. Our
three-step heuristic adapts and extends previous work for homogeneous
clusters. In particular, we design a novel algorithm to assign subtrees to
processors with different memory sizes, and we show how to select appro-
priate processors when splitting or merging subtrees. The experiments
demonstrate that exploiting the heterogeneity reduces the makespan sig-
nificantly compared to the state of the art for homogeneous memories.

Keywords: Tree partitioning · Mapping · Heterogeneous memory

1 Introduction

In many scientific disciplines, singular tasks revolving around the computation
of one particular problem have made way to more complicated workflows that
consist of many individual tasks. Such workflows are often represented as directed
acyclic graphs (DAGs), with nodes of the graph representing the tasks and the
edges their dependencies. One common form of such DAGs is the class of rooted
directed trees, which we consider in this paper. These tree-shaped workflows
occur in a variety of scientific applications, most notably as elimination trees for
sparse matrix factorizations [10,13,17] or in computational physics [15].

Running such workflows efficiently in parallel, e. g., on a compute cluster
where processors have their own local memory and communicate via the network,
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requires a good scheduling strategy. Such a strategy would distribute singular
tasks or whole subtrees to computing nodes in a way that fulfills a goal. Our
focus regarding schedule quality is on the total execution time, expressed by the
makespan of the schedule. To this end, we assume the workflow and its properties
to be known before scheduling. Previous work [10] for completely homogeneous
clusters (or other homogeneous platforms) showed the corresponding scheduling
problem to be NP-complete and proposed several variants of a successful three-
step heuristic: (i) partition the tree into subtrees, minimizing the makespan while
not taking the memory limit into account, (ii) further partition subtrees too big
for the memory limit, and finally (iii) ensure that the number of subtrees is less
than or equal to the number of processors. Yet, more and more compute clusters
are heterogeneous, i. e., have variable memory sizes. This can happen due to
hardware updates, a combination of clusters, or an intentional configuration with
fat and light nodes. Thus, to adapt the scheduling algorithm to variable memory
constraints is very relevant. Yet, maybe with the exception of He et al. [11], there
are no scheduling algorithms in the literature tailored to tree-shaped workflows
on memory-heterogeneous architectures. And while He et al. [11] design their
algorithm with heterogeneity in mind, their experimental setup and results do
not consider memory-heterogeneous architectures, which are our focus.

In this paper, we present a partitioning and mapping heuristic (called Het-
Part – for heterogeneous tree partitioning) for tree-shaped workflows that
exploits memory heterogeneity (i. e., different memory sizes). Our algorithmic
contribution, described in Sect. 4, consists of a three-step heuristic that builds
upon the work by Gou et al. [10] for the homogeneous case. We adapt two of these
steps: (i) the assignment of tasks to processors, which now considers the differ-
ent memory sizes, and (ii) when splitting or merging subtrees, the selection of
processors considers their memory size. For the experiments (Sect. 5), we choose
the homogeneous state-of-the-art algorithm by Gou et al. [10] as standard of ref-
erence with different resource consumption scenarios. Our experimental results
show that HetPart reduces the makespan by better exploiting the heteroge-
neous memories. The average improvement is 15.5% and 25.0%, respectively,
compared to the two best homogeneous scenarios. Where the improvement by
HetPart is only 15.5%, the corresponding homogeneous scenario does not pro-
duce a valid solution for more than 20% of the instances. Details omitted due to
space constraints can be found in the companion research report [14].

2 Related Work

Scheduling and mapping collections of tasks on various types of computing plat-
forms has been a focus of research interest since the 1990s. Many different kinds
of applications have been considered over time, ranging from independent tasks
to graphs of tasks, where tasks may have dependence constraints. Earlier works
schedule various forms of workflows, such as pipeline workflows [5] and bags
of tasks [4]. However, current consensus seems to be that a workflow is best
described with a directed acyclic graph (DAG) [1,16], which is the most general
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representation of dependence constraints. Rooted task trees are a common spe-
cial case of DAGs, where each task (except the root) has a single parent node.
Such trees arise in particular from sparse linear algebra applications [7,17].

The goal is usually to be able to execute the whole application as fast as
possible, hence minimizing the makespan, or total execution time. Several other
objective functions have been studied, as for instance minimizing the throughput
or latency of pipelined applications [5], focusing on fault tolerance [3], and also
energy efficiency [2]. Recently, an important focus is put on memory optimiza-
tion, since memory and I/O become a bottleneck [8,13]. Some of these optimiza-
tion goals may be antagonistic, and one may want to consider several of them
simultaneously. This can be done either by finding Pareto-optimal solutions aim-
ing at optimizing all objectives, or by fixing constraints on some objectives and
optimizing only one. This latter approach is particularly suitable when objectives
are of different nature, as in [5].

In the current work, the main optimization objective is to minimize the
makespan. As each processor has a limited amount of memory, one must ensure
that a constraint on memory is not violated, by carefully mapping parts of the
applications on each processor such that a processor can handle its part within its
own memory limit. Hence, one must partition the tree, map each subtree on its
own processor, and then schedule the subtrees without exceeding the processor’s
memory. Given a tree, an exact scheduling algorithm with minimum memory
requirement was designed [13]. An algorithm was also designed to minimize
the I/O volume when parts of data need to be evicted from memory (MinIO
problem). We choose not to evict data from memory in our case, but rather
we aim at using several processors to process the application. The focus of our
work is hence on the partitioning of the tree, and mapping of subtrees onto
processors. We then reuse, for each subtree, the optimal scheduling algorithm
that minimizes the memory requirement.

The partitioning of various forms of graphs has been reviewed [6], and in par-
ticular, the partitioning of DAGs is difficult [12]. However, for the case when the
strict condition of balanced weights of parts of the graph is relaxed, approaches
to its partitioning were proposed [9].

Note that the problem of makespan minimization of a tree of tasks, by par-
titioning the tree so that each part fits (memory-wise) onto a processor, has
already been tackled in the case of homogeneous processors [10]. As pointed out
in Sect. 1, recent work by He et al. [11] has attempted to extend this approach
to heterogeneous architectures. Their work leaves several important questions
open, though: (i) the experiments seem to be on a system with homogeneous
memories only, and (ii) the code is not available, but the descriptions regarding
the subroutine FitMemory are not sufficient for a reimplementation. Our work
differs from theirs in several respects. As an example, one of our main contribu-
tions is a new merging procedure accounting for heterogeneous memories, while
He et al. use the homogeneous merge from [10].
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3 Model

Application Model. We consider workflows that come in the form of rooted
trees τ = (V,E), as in [10,13]. The tree vertices, numbered from 1 to n, cor-
respond to the tasks, where each task is the smallest non-changeable workflow
entity. Hence, each task vi ∈ V (1 ≤ i ≤ n) requires wi operations to be per-
formed. Vertex vr ∈ V (1 ≤ r ≤ n) is the root of the tree.

The edges, in turn, model precedence constraints between tasks. We assume
all precedence constraints to be oriented towards the leaves, which is no limita-
tion [10]. If (vj , vi) ∈ E (i.e., vj → vi), then task vi cannot start before receiving
an input file (or, more generally, input data) from its parent task vj . The size
of the (single) input file received by vi is denoted as fi (for the root, fr = 0).
The task also requires some memory to be executed; its size is denoted by mi

for task vi (see [13] for a very similar way of modeling a workflow).
For each node, the memory requirement includes the size of all files to be

sent to its children. Hence, given a tree workflow, Dmax is the maximum memory
requirement of a node in this tree: Dmax = maxvi∈V

{
fi + mi +

∑
j:(vi,vj)∈E fj

}
.

Platform Model. The target environment is a cluster consisting of a finite
number l of processing units (processors), denoted by p1, . . . , pl. Each pair of pro-
cessors can communicate with each other via some network, and communication
operations can happen in parallel. We assume that the system-specific bandwidth
is always available for transferring input files to the responsible processor. All
data generated during the execution of a task on processor pu are stored on pu,
1 ≤ u ≤ l. Tasks are non-preemptive and atomic: a processor executes a single
task at a time [13]. For 1 ≤ u ≤ l, let Mu be the size of the main memory of pro-
cessor pu. Task vi can be processed by pu only if all the data required to execute
the task fits into the processor’s memory, i.e., Mu ≥ fi + mi +

∑
j:(vi,vj)∈E fj .

While processors may have memories of different sizes, we consider a platform
with processors computing at an identical speed s (number of operations per
seconds), hence any processor can execute task vi (1 ≤ i ≤ n) within time wi

s .
For (vi, vj) ∈ E, if task vi is mapped on processor pu and task vj is mapped

on processor pv, the input file for vj is sent through the communication network,
which has a bandwidth β. Hence, the time to send the file from vi to vj is fj

β .

Constraints and Scheduling Objectives. In order to benefit from the paral-
lel platform, the idea is to partition the tree τ into subtrees, and then map each
subtree onto its own processor. Each subtree τ� is identified by its root root(τ�) =
vi, with 1 ≤ i ≤ n. We denote by tasks(i) the set of tasks included in the subtree
with root vi. The processor handling this subtree τ� with root vi is denoted by
proc(i); it is a processor pu that must be able to process the whole subtree
within its own memory. Depending on the order in which tasks are processed,
the required memory may differ. Yet, it is possible, given a subtree, to obtain its
minimum memory requirement Mmin and the corresponding traversal (in which
order tasks should be executed), using the MinMemory algorithm [13].
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Hence, we denote by Mmin(i) the minimum memory required to execute
the subtree τ� rooted in vi. We can now express the memory constraint: for
each subtree τ� rooted in vi, Mmin(i) ≤ Mproc(i). Given a valid partitioning
and mapping (i.e., a set of subtrees and a mapping of subtrees onto processors
such that each subtree fits into the processor’s memory), one can compute the
corresponding execution time of the tree, or makespan. Let desc(i) = {j | vj /∈
tasks(i) ∧ (vk, vj) ∈ E ∧ vk ∈ tasks(i)} be the indices of tasks that are not in
the subtree rooted in vi, but that have a parent in this subtree τ�. These tasks
are the root of subtrees that are descendants of τ�, and hence the processor in
charge of τ� will need to send files to the processors in charge of these subtrees.

The makespan can then be computed recursively, where MS(i) denotes the
makespan of the subtree rooted in vi. The makespan for the whole tree is
then MS(r). Note that for the subtree rooted in vr, we have fr = 0.

MS(i) =
fi

β
+

∑
k∈tasks(i)

wk

s
+ max

j∈desc(i)
MS(j). (1)

The first term corresponds to the incoming communication. The second term
is the time to process all tasks on processor proc(i) (no communication to be
paid within the same processor). Finally, the last term corresponds to the longest
makespan of descendant subtrees, which are processed in parallel (and hence the
longest one determines the makespan).

Problem Statement and Its Complexity. The HetMemPartMap problem
targeted in this paper is the following. Given a task tree and a platform with
heterogeneous memories, the goal is to partition the tree into subtrees, to map
each subtree onto a processor, such that the memory constraint on each processor
is respected (for the subtree rooted in vi, Mmin(i) ≤ Mproc(i)), and the makespan
MS(r) is minimized. The problem was shown to be NP-complete for a fully
homogeneous platform in [10], and considering platforms with heterogeneous
memories only makes it more difficult. In the following, we focus on the design
of an efficient heuristic for such platforms.

4 Heuristic Strategies

In this section, we describe HetPart, a polynomial-time heuristic for the Het-
MemPartMap problem. Following the idea of [10], the heuristic works in three
steps: (1) partition the tree into subtrees to minimize the makespan; (2) assign
the trees to fitting processors and further partition the subtrees that do not fit
into memory; (3) adjust the number of subtrees to comply with the number of
nodes in the target platform, and possibly reassign the new subtrees to different
processors. Unlike the work of [10], we need to fix the assignment of each subtree
to a specific processor, since processors have different memories. Furthermore, we
need to consider which processors are still available when taking a partitioning
decision in Step 2 or a merging decision in Step 3.
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Minimizing Makespan. In the first step, we split the tree into a number of
subtrees with the aim to minimize the overall makespan. Neither the memory
constraint nor the number of resulting trees is the focus of this step. The splitting
continues as long as a better makespan can be achieved. Several heuristics are
designed for this case in [10] (also see Sect. 5.1 for details).

Fitting into Memory. After the tree has been partitioned with the aim to
minimize the makespan, the subtrees need to be allocated to processors while
respecting the memory constraints. Gou et al. [10] suggest three fitting methods
that all cut the existing subtrees further until they reach the (unique) memory
constraint. Building on the FirstFit method, we propose the new BiggestFit
algorithm (shown in the report [14] as Algorithm 1), which additionally considers
the memory size of each processor. We use a max-priority queue Q to keep the
current set of subtrees, S, “ordered” according to their memory consumption.
Moreover, we sort the processors by memory size (from largest to smallest) in a
dynamic array M . Then, in a while loop that terminates if Q or M become empty,
we iteratively fit the currently largest subtree s into the processor with currently
biggest memory m. This is done using any memory fitting algorithm (referred to
as MemFit in the pseudocode); we use FirstFit [10]. This algorithm checks the
memory required by subtree s, and if it does not fit entirely within memory m, it
splits the subtree while increasing the makespan as little as possible. The result
is a subtree that fits within m (denoted as Sfitted, which is never empty but
possibly equal to s), and it may also generate new subtrees (denoted as Srem)
that are added to the set of subtrees still in need to be assigned to a processor
(in the priority queue Q). If Srem is empty (the original subtree fits within m,
and hence Sfitted = s), then this step is ignored.

Thanks to this MemFit algorithm, Sfitted fits within memory m, and we
assign it to the corresponding processor, which is then removed from the array
of available processors. If all processors have been assigned a subtree but there
still remain some subtrees in Q, we take care of these subtrees in a second while
loop that terminates when Q is empty. In the loop, we further split the subtrees
with the memory m of the smallest processor as a threshold. All these subtrees
are left unassigned and will be merged in the next step below.

Adjusting the Number of Subtrees. After the tree has been partitioned
into subtrees (for makespan minimization, Step 1) and after further splitting
the subtrees to fit into the respective memories (Step 2), we need to adjust
the number of the resulting subtrees to match the number of processors. This
is mandatory if there are still unassigned subtrees after BiggestFit has been
applied on the tree: in this case, we need to decrease the number of subtrees so
that each one can be assigned to a processor. However, note that this step may
also increase the number of subtrees instead – in case all subtrees have been
assigned and there remain some idle processors.
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Algorithm 1. Merge for heterogeneous memories
1: procedure HeterMerge(τ , C, S, P )
2: � Input: tree τ , cut edges C, subtrees S, and set of processors P
3: T ← quotient tree according to τ and C;
4: A ← binary array of length |P |, initialized with 1s; � A[u] = 1 ↔ proc. u has

been assigned a subtree
5: toMerge ← |S| − |P |; � Number of subtrees not yet assigned to a proc.
6: while toMerge > 0 do
7: Δmin ← −∞;
8: for each node i ∈ T except the root do
9: j ← parent(i);

10: if i is a leaf and i has only one sibling k then � Case 1
11: p ← ChooseProcessor(i, j, k, A);
12: Δi ← estimated increase in MS(r) if i, j and k are merged onto p;
13: else � Case 2
14: p ← ChooseProcessor(i, j, 0, A);
15: Δi ← estimated increase in MS(r) if i and j are merged onto p;
16: end if
17: if p �= −1 and Δi < Δmin then Δmin ← Δi; pmin ← p; imin ← i;
18: end if
19: end for
20: if Δmin = −∞ then break; � No further improvement possible
21: end if
22: � Now, imin, pmin, Δmin correspond to a possible merge, leading to the

smallest increase in makespan
23: if imin is a leaf and imin has only one sibling then � Case 1
24: Merge imin to its parent j and sibling k in τ ; Update T and C;
25: Assign the merged subtree to pmin; � And free other procs. next
26: if 0 < proc(i) �= pmin then A[proc(i)] ← 0;
27: else if 0 < proc(j) �= pmin then A[proc(j)] ← 0;
28: else if 0 < proc(k) �= pmin then A[proc(k)] ← 0;
29: end if
30: toMerge ← toMerge − 2;
31: else � Case 2
32: Merge imin to its parent j in τ ; Update T and C;
33: Assign the merged subtree to pmin; � And free other proc. next
34: if 0 < proc(i) �= pmin then A[proc(i)] ← 0;
35: else if 0 < proc(j) �= pmin then A[proc(j)] ← 0;
36: end if
37: toMerge ← toMerge − 1;
38: end if
39: end while
40: return (MS(r), C);
41: end procedure
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Decreasing the Number of Subtrees. Should the previous step yield more trees
than there are processors, some trees need to be merged. To this end, we propose
the HeterMerge heuristic (Algorithm 1). We first construct the quotient tree T
of τ , where each subtree in τ becomes a vertex in T ; there is an edge between
two vertices u → v in T iff there is an edge from the corresponding subtree τu to
τv in τ . The general idea now is similar to [10]: as candidate merge operations,
we either try merging a leaf to its parent and only sibling (Case 1), or only to its
parent (Case 2). The main difference to the homogeneous case is that we need
to choose the processor on which the resulting merged tree is to be executed.
This choice is done through the ChooseProcessor procedure (see [14]). If at
least one of the subtrees has been assigned already, then we select the processor
with smallest memory that is able to hold the merged subtree. Otherwise, if we
were not able to find a processor, we are looking for an available processor to
handle the merged subtree. Such processors may have been released in a previous
merge iteration. This processor must have enough memory to process the merged
subtree, and if there are several candidates, we pick the one with the smallest
memory to keep larger processors for further iterations. If no suitable processor
can be found, we return −1 and this merge is not possible.

Since the processors have identical computing speeds (and only memories of
different size), the makespan after a merge can be computed by applying Eq. (1).
More precisely, we compute the difference Δi between the makespans before and
after the merge of node i. Finally, in Lines 23 to 38 of Algorithm 1, we perform
the merge that results in the smallest increase of the makespan (if there is at
least one valid merge), and we iterate as long as merges are possible, until all
subtrees have been successfully assigned to processors. When no further merges
are possible, Algorithm 1 breaks in Line 20.

Increasing the Number of Subtrees. If all subtrees have already been assigned to
processors but there are still some idle processors, some subtrees can be further
broken down if it improves the makespan. We employ the SplitAgain algorithm
from [10] with a single modification: we check if the resulting subtree fits into the
memory of any free processor before assigning the subtree to this free processor.

5 Experimental Evaluation

We now describe the experimental settings and a representative subset of the
results. Additional results can be found in the companion research report [14].
All results have been obtained via a simulation of the target cluster platforms.

5.1 Experimental Setup

All algorithms are implemented in C++ and compiled with g++ (v.11.2.0) with
flags “–O2 -fopenmp”. The code can be downloaded at this link: https://box.
hu-berlin.de/d/fe55a68653c74809b14d/ with password “het-sched”. The base-
line algorithm from [10], which we call HomPart, is also written in C++; it is
compiled and executed with the same infrastructure.

https://box.hu-berlin.de/d/fe55a68653c74809b14d/
https://box.hu-berlin.de/d/fe55a68653c74809b14d/
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Instances. We evaluate the algorithms on two general sets of trees: elimination
trees generated from real-world sparse matrices, and randomly generated ones.
The real-world tree workflows were provided by Jacquelin et al. [13]; we consider
the set of 31 trees that were already used by Gou et al. [10] in the homogeneous
setting. To avoid overfitting to one particular instance set, we also generate a set
of random trees, derived from Prüfer sequences,see [14] for detailed parameters.
We build eight categories, each containing 30 trees ranging in size from 2K to
50K nodes. The categories differ in the problem parameters (mi, fi, wi) and
the fanout, i.e., average number of children per node. By default, the fanout
comes from a Prüfer sequence. For the “random” category, mi, fi, wi all result
from a uniform random distribution. For “large fi, wi,mi”, the expected values
of these weights are all multiplied by 100, while for “small fi, wi,mi”, they are
divided by 10. The categories “large mi”, “large wi”, and “large fi” increase only
one of these respective values. Finally, “large fanout” and “largest fanout” have
an expected fanout of 3 (standard deviation 1) and 20 (standard deviation 4),
respectively; their other weights are as in “random” in expectation. A detailed
description of each tree category is given in [14].

Compute Platforms. For evaluation purposes, we create synthetic compute
platforms that resemble heterogeneous real-world configurations. To make the
algorithms’ job difficult, we use a modest 4-fold cluster with a total of 36 nodes
of four different kinds (9 nodes of each kind): “extra-light” nodes with memory
Dmax/2, “light” nodes with a memory Dmax, “moderate” nodes with memory
1.5Dmax, and “fat” nodes with memory 3Dmax. Thus, the amount of memory
given to a certain tree depends not only on the memory capacity of the cluster
node, but also on the tree’s requirements expressed by its Dmax. All processor
speeds and bandwidths are assumed equal (normalized to 1 for speeds and to
500 for bandwidths).

Setup for Algorithmic Comparison. The two major criteria for comparing
HetPart with the baseline HomPart are solution quality (makespan of the
produced schedules) and running time. To account for fluctuations in the running
time, we perform three runs of each experiment and use the arithmetic mean.

Since the homogeneous algorithm cannot exploit varying memory sizes, the
heterogeneous clusters need to be represented in a homogeneous way for Hom-
Part. The main differences stem from the memory limit imposed on each com-
pute node (see [14]). The configurations of HomPart are suffixed with ML
(many light, uses 27 nodes as “light”), SM (some moderate, uses 18 nodes as
“moderate”), or FF (few fat, uses only the 9 “fat” nodes). Note that the mem-
ory would not suffice for the largest tasks if we took all 36 nodes and treated
them as “extra-light”.

We selected the best combinations of different heuristics in each phase
(regarding solution quality, on average) for our setup, both for HetPart and for
HomPart, in order to be as fair as possible (details in [14]). In the following, we
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use the combinations that respectively returned the best results. Detailed results
supporting this claim can be found in the companion research report [14].

5.2 Results

We first study the increase of makespan when using HomPart rather than
HetPart. We report the percentage of increase in makespan when HomPart
is used in various configurations (ML, SM, FF). If HomPart could not find
a solution, no bar is reported. The geometric mean is used when aggregating
several ratios. Lower values indicate a better quality.

Fig. 1. Makespan increase of HomPart in % compared to HetPart in different clus-
ter configurations (higher means that HetPart is better). The two missing bars for
HomPart-ML indicate unsuccessful runs (no solution for HomPart in this setting).

Makespan. Figure 1 displays the average increase of the makespan (in %) of
the three HomPart scenarios compared to HetPart. Each bar represents an
instance group. As most bars are above 0, HetPart performs best overall:
averaged over all instance groups, the best homogeneous variant HomPart-ML
still increases the makespan by 15.5%. At the same time, note that HomPart-
ML is not able to produce results for two instance groups (with fixed fanout).
This robustness problem results from the fact that finding a valid solution can
become more difficult if only light nodes are available. If we compare to the next
best scenario, HomPart-SM, which is able to solve all instances, HetPart is
25.1% better on average. Overall, HetPart achieves high improvements in most
cases but two. In case of “large fi” and “largest fanout”, HomPart-SM performs
quite well – if it is able to find a solution.

In the following, we take a look at the respective instance groups. On
sparse matrix trees, HetPart is 25.0% better than the best homogeneous sce-
nario HomPart-SM. HomPart-ML fares comparably to HomPart-SM (29.9%
increase), while HomPart-FF is clearly the worst (42.3% increase). On random
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trees, HetPart improves by at least 15.4% (against HomPart-ML). The other
two homogeneous variants perform significantly worse.

For the categories where only weights change (and not the tree topology –
“large mi, fi, wi” and “small mi, fi & wi”), the improvement of HetPart com-
pared to HomPart-ML is significant (17.1% and 26.1% respectively). Similar
results can be observed with “large mi”: HetPart improves on HomPart-ML
by 21.2%. HetPart works very well in these previous categories as the corre-
sponding instances allow our heuristic to distribute the tasks across the whole
cluster. The situation is somewhat different for the categories “largest fanout”
and “large fi”. Here, all heuristics use only a subset of the cluster since the
trees cannot be parallelized and distributed that well. Evidently, the dominance
of communication over computation in these trees yields this behavior. As indi-
cated before, on trees with fixed fanouts (“large fanout, “largest fanout”), Hom-
Part-ML cannot find a solution for the majority of the trees, hence no results
are displayed in this case. The other two homogeneous scenarios do find solu-
tions, but they are much worse than those of HetPart. Trees with large wi fall
in between the two poles: HetPart yields the best results again; the improve-
ment on HomPart-ML is rather modest with 8.4%. However, HetPart fares
significantly better than HomPart-SM (29.4%) and HomPart-FF (82.7%).

Finally, note that overall, for all categories, HomPart-ML compares the most
closely to HetPart (the increase in makespan is low in Fig. 1), but it also leads
to the largest number of unsolved trees. On average over all categories, 21.8% of
the trees could not be solved by HomPart-ML. For the category “large fanout”,
no tree could be solved. For “largest fanout”, half of the trees were unsolved.
The other categories have two to five unsolved trees out of 30, except for the
matrix trees, where all trees could be solved.

Comparison with a 2-Fold Cluster. We performed further experiments with
a more homogeneous cluster with only “fat” and “light” nodes (18 nodes of each
kind), and compared the results between the two clusters. Detailed results are
available in [14], they are summarized below. With more heterogeneity to exploit
in the 4-fold cluster, HetPart is able to provide a more tangible improvement.
In the 2-fold cluster, HetPart wins by much smaller margins (2%-13%) and
loses in 3 categories (“large fi”, “largest fanout”, large “wi”). For the sparse
matrix trees (real-world instances), HetPart provides tangible improvements
in both clusters (24.9% and 20.7%).

Running Times. Here again, a summary is presented while detailed results are
available in the companion research report [14]. The running time of HetPart
is comparable to that of HomPart-SM and HomPart-FF (averaged over all
instance groups). More precisely, HetPart is 9.7% faster than HomPart-SM
but 7.3% slower than HomPart-FF. At the same time, as we saw above, Het-
Part provides a much better solution quality. The homogeneous scenario with
the best quality, HomPart-ML, is much slower. Its running time is 3.5× higher
than HetPart’s. Our experiments indicate that most time is spent merging.
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Smaller memory sizes as in HomPart-ML produce trees that require extensive
merging, explaining the much longer running time. Note that we do not consider
here the three largest matrix trees due to their very long runtime.

6 Conclusions and Future Work

We have studied the problem of tree partitioning for a heterogeneous multipro-
cessor computing system, where each processor can have a different memory size.
Taking heterogeneity into account when partitioning these trees into subtrees
pays off: our new heuristic HetPart clearly improves the makespan compared
to the homogeneous state of the art. At the same time, the best homogeneous
scenario, HomPart-ML, fails to produce valid solutions in many cases due to
its inability to exploit the full memory of the cluster and it is 3.5× slower.

Future work includes the increase of the heterogeneity level. This should
include different processor speeds and different bandwidths in the cluster. Over-
all, we expect similar findings for such cases: when the compute platform is suf-
ficiently heterogeneous, a heuristic taking this heterogeneity into account should
pay off. However, integrating processor speeds and bandwidths makes a corre-
sponding heuristic significantly more complicated.
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Abstract. Convolutional Neural Network (CNN) models often comprise
multiple layers varying in compute requirements. For deployment, a num-
ber of hardware accelerators are available that have subtle differences in
compute architectures within the same family of platforms. A component
(a set of layers) of a CNN model may perceive different performance in
different compute architectures. Optimal mapping of the components of
a CNN model across a given heterogeneous architecture can leverage
underlying different compute architectures to deliver minimum inference
latency3. In this paper, we present an optimal partitioning approach to
map a CNN model across heterogeneous architectures by leveraging a
repository of performance-measurement-benchmark (PerfLib) for differ-
ent accelerators. Our proposed framework, Hetero-vis, decides optimal
partitions and mapping of a CNN network across different accelerators
to minimize the inference latency. Our experiments reveal up to 1.43×
better performance with grouped layer deployment of CNN models on
heterogeneous hardware compared to the entire model deployed on a
single accelerator.1Inference latency and latency terms are used inter-
changeably in the rest of the paper.

Keywords: CNN deployments · Model partitioning · Heterogeneous
deployment

1 Introduction

The need for performance-efficient Neural Network (NN) processing on resource-
constrained devices has spurred the development of specialized hardware accel-
erators architect-ed to efficiently execute the kernels commonly found in deep
neural networks. The accelerators have high variations in their architectural fea-
tures including distinct micro-architectures, memory and compute capabilities.

NN models exert different computational intensity (computation/bit)
requirements on the underlying hardware platforms as the processing progresses
from one layer to another. For instance, in CNNs the convolutional layer are
dominated by computational processing whereas the fully connected layers are
heavy on memory access. Additionally, the amount of data parallelism, data
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Singer et al. (Eds.): Euro-Par 2022 Workshops, LNCS 13835, pp. 171–183, 2023.
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transfer (dominating the execution time) and computation schedule in a CNN
model may suggest suitability of different components of a CNN model to dif-
ferent compute architectures for minimizing inference latency.

Accelerators belonging to different paradigm have different <compute,
memory> capability and consequently are not equally suitable for all kinds
of workload. For instance, GPUs (Graphics Processing Units) support SIMD
(Single Instruction Multiple Data) processing owing to large number of cores
whereas FPGAs (Field Programmable Gate Arrays) have Block RAMs that
provide quick memory access but limited number of compute units. Due to such
varied hardware characteristics, matrix multiplication workloads are processed
faster on GPUs whereas FPGAs provide performance benefits in moderate com-
pute intensity workloads such as embedding fetch operation. With heterogeneous
computing the computational efficiency of the workflow can be improved through
acceleration for a subset of workflow tasks on the hardware that suits the com-
putational requirement of the target task. The availability of parallel program-
ming frameworks like OpenCL and SyCL across hardware platforms has further
pushed the adoption of heterogeneous systems and accelerators for applications
running in production data centers.

However, an efficient heterogeneous deployment requires optimal division
and mapping of workload across hardware platforms. This necessitates multi-
ple experiments and access to the set of hardware targeted for heterogeneous
deployment. The engineering effort to deploy models on different accelerators
(GPU, CPU and FPGA) can be bypassed by replacing performance measure-
ment with estimates. Recently, the state-of-the-art includes BRP-NAS [8] and
nn-meter [18], where BRP-NAS predict latency of the NASBench-201 [9] dataset
on various accelerators and reports reasonable accuracy for NASBench-201 net-
works. However, the same level of accuracy can not be generalized for other
untested networks. To address the problem of generalized latency prediction, we
propose an automated and unified framework for CNN-based networks, called
Hetero-Vis, that optimally partitions the CNN network and maps these parti-
tions to heterogeneous accelerators to minimize te inference latency. We present
a performance-measurement-benchmark library (PerfLib), consisting of process-
ing time of NASBench-201 cells on different hardware accelerators. This library
is used to estimate the execution time of the partitions/components (set of lay-
ers) of CNN model to identify the optimal <CNN partition, accelerator> pair
for high-performance deployments. Additionally, we accommodate the commu-
nication cost for inter-accelerator communication. We observe, heterogeneous
configurations generated by our framework offers a performance speed-up of
upto 1.43× for CNN deployments, such as VGG, CRAFT and ResNet models,
over homogeneous configurations.

The key contributions of this paper includes:

Hetero-Vis framework for low latency deployment of convolutional neural
networks on heterogeneous architectures comprising the following.
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Fig. 1. Examples of NASBench-201 [9] cell with 4 nodes. An edge is associated with
an operation selected from a predefined operations set.

– Optimal partitioning of CNN for deployment on heterogeneous compute by
searching network partition and hardware pair optimized for latency while
including communication cost between hardware.

– Performance-measurement-benchmark library (PerfLib) comprising of
NASBench-201 cell processing time for hardware accelerators such as multi-
core Intel CPU platform, Xilinx Alveo U280 DPU, NVIDIA GPUs: A100 and
V100.

– Heuristic-based approach to create performance-efficient network partitions.

The rest of the paper is organized as follows. Preliminaries and related work
are presented in Sects. 2 and 3, respectively. We present details of Hetero-Vis in
Sect. 4. The experimental results and performance is discussed in Sect. 5, which
is followed by the proposed framework’s limitations in Sect. 6. Finally, the paper
is concluded in Sect. 7.

2 Preliminaries

Neural Architecture Search Benchmarks (NAS) for Vision Models:
Researchers have addressed the NAS replication problem by providing NAS-
Benchmark datasets [9,17] that have a fixed search space and provide a unified
benchmark for NAS algorithms. NASBench-201 [9], in one of the NAS bench-
marks, with a cell-based search space, results on multiple datasets, and more
diagnostic information.

An Overview of Model Architectures in NASBench-201 [9]:
NASBench-201 is a benchmark for NAS algorithms including all cell-based (sam-
ple cells shown in Fig. 1) NAS methods. The search space includes 15,625 neural
cell candidates stacked 5 times in the selected macro skeleton to create model
architectures. Cell Structure: Each cell in the search space is represented as a
densely connected DAG, obtained by assigning a direction from the ith node to
the jth node (i < j) for each edge in an un-directed complete graph. Each edge of
DAG is associated with an operation transforming feature map from source node
to the target node. The predefined operation set five representative operations:
(1) zeroize, (2) skip connection, (3) 1×1 convolution, (4) 3× 3 convolution, and
(5) 3 × 3 average pooling layer. In this case, convolution is an abbreviation of an
operation sequence of ReLU, convolution, and batch normalization. The DAG
has V = 4 nodes, where each node represents sum of all feature maps transformed
through the associated operations of the edges pointing to this node.
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Fig. 2. The representative diagram of proposed Hetero-Vis framework.

3 Related Work

Previous works on latency estimators uses FLOPs as proxy for latency [11,14],
which is simple but not a direct metric of latency. Recent works on latency pre-
dictions [6,16] use a layer-wise predictor which derives the latency by summing
latency measured for each operation in the model individually. Recently, the
state-of-the-art includes BRP-NAS [8] and nn-meter [18], where BRP-NAS uses
graph convolutional networks (GCN) to predict latency of the NASBench-201
[9] dataset on various devices. It captures the runtime optimizations by learning
the representation of model graphs and corresponding latency. However, this
model-graph based approach heavily depends on the tested model structures
and may not work for many unseen model structures. nn-meter on the other
hand is a generalized framework for latency prediction for any arbitrary model.
It opts for kernel level decomposition of the model since the kinds of operators
and kernels are stable with a relative small set despite the increasing number of
models. However, this approach has heavy dependency on inference backend and
might loose its prediction accuracy when there are significant backend changes.
Additionally, the latency prediction is limited to homogeneous implementation
only. In this work, we provide latency estimations while optimally partitioning
the workload across heterogeneous hardware devices. With our approach, we are
able to leverage the benefits of inference backend optimizations at a partition
level granularity.

4 Hetero-Vis Framework

Hetero-Vis, is an automated framework, that generates optimal deployment
configuration for CNNs across hardware platforms. The framework accepts a
CNN and presents the homogeneous latency on all target hardware platforms
and heterogeneous deployment configuration optimized for latency as outputs.



Hetero-Vis 175

4.1 Methodology

We leverage the structural properties of CNNs to build performance-
measurement-benchmark library (PerfLib). We adopt CNN partitioning and
optimal appropriation of partitions to candidate hardware that promises latency-
efficient deployment. We estimate the overall network latency as sum of partition
execution times and use cell structures available in NASBench-201 to build the
PerfLib for CPU, GPU and FPGA. The cell-based granularity in PerfLib makes
our approach modular as well as re-usable across networks since a partition can
appear in many networks but the same is not true for a monolithic network.

4.2 Framework Components

The representative diagram of the framework is presented in Fig. 2. The frame-
work components with their purpose is as follows:

– Layer Transformation Module: extend the support for layers and variations
un-supported by NASBench-201.

– Model Partitioning Module: create partitions of the input model. This mod-
ule use heuristics to make latency-efficient partitions.

– Matching Module: returns NASBench cells that match with the partitions
created by model partitioning module.

– Performance-measurement-benchmark library (PerfLib): contains execution
time of NASBench cells on target accelerators.

– Communication Cost Model: contains estimates of communication cost
among accelerators.

The detailed discussion on the Hetero-vis framework components follows.

Performance-Measurement-BenchmarkLibrary (PerfLib): We have con-
sidered four hardware platforms, namely A100 GPU [1], V100 GPU [2], Alveo
U280 FPGA [3] and Intel Xeon CPU [4], in this work. The PerfLib contains mea-
sured execution time for 15,625 NASBench-201 cells with 40 ×8 combinations of
in and out channels and image sizes (23 × 23 to 2 10× 210). The in and out chan-
nels represent the feature depth of input and output of the cell, respectively. The
<in,out> channels combinations are <n,n>, <n/2,n>, <n,n/2> and <3,n> with
n = 2m, with m varying from 1–10, since they are commonly seen at head, convo-
lution and de-convolution parts of the network. The PerfLib returns cell execution
time on all target hardware platforms upon query.

Layer Transformation Module: The NASBench-201 cells currently support
convolution layer with filter sizes- 3 × 3 and 1× 1 with unit stride, same padding
(1 pixel padding on each side of input) and no dilation. This layer also includes
batch normalization and ReLU. Other supported layers include average pooling
(3 × 3) with support for skip connection and dropping an edge through zeroize.
We extend support for upsampling, fully-connected layer, filter size 5× 5 with
variable stride, padding and dilation for convolution layers.
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Algorithm 1. Layer Transformation Module
1: Inputs:CNN model,i mage size; Outputs:Transformed CNN model (TransModel)
2: NASBench lay: set of NASBench supported layer
3: lay db: set of layers having dedicated PerfLib (e.g. fully connected layer)
4: model struct=model.read() %returns net. struct., layer type, <in,out> ch.
5: Transform un-supported Layers.
6: for all layers in model do
7: if (model struct.layer typ[i] /∈ NASBench lay) then
8: eq layer = lat eq (model struct.layer[i])
9: Replace model struct.layer[i] with eq layer

10: else
11: if (model struct.layer typ[i] ∈ lay db then %if dedicated PerfLib
12: Retain model struct.layer[i]
13: else
14: Advise: Create PerfLib for model struct.layer[i]
15: end if
16: end if
17: end for
18: return TransModel.write(model struct)

We have established performance equivalences between NASBench-201 un-
supported and supported layer. Performance equivalence denotes that two layers
have approximately same execution time and can be used inter-changeably. By
doing this, the NASBench-201 PerfLib can be used even for un-supported layer
by considering its performance equivalent layer in its place. This approach can
be extended to other layers in vision networks that are not addressed in this
work. Our experiments suggest average pool and max pool layers are perfor-
mance equivalent. We have created a dedicated PerfLib for upsampling and
fully-connected layer since there were no direct performance equivalent layers
for these operations.

The performance equivalence for two layers (layer a and layer b) is obtained
using following steps:

1. Read layer a- type and parameters including filter size, stride, padding, dila-
tion.

2. Measure its execution time on target hardware platforms (A100, V100, U280
and Xeon CPU) for different feature sizes.

3. Identify a NASBench supported layer with approximately same execution
time across hardware and feature size. Say, layer b satisfies the requirements.

4. Record layer b as performance equivalent layer for layer a.

Algorithm 1 presents steps carried out by the layer transformation module.
The module reads the input model structure and identifies the model structure
with layer specifications such as layer name, layer type, filter size, stride, dilation,
padding (Ln #4). As the next step, the module identifies the un-supported layers
in input model (Ln #7) and replaces it with its performance equivalent layer
(Ln #8–9). In case performance equivalent layer is not available, the module
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Algorithm 2. Model Partitioning Module
1: Inputs:Transformed CNN Model (TransModel)
2: Outputs: Split configurations for Transformed CNN model
3: model struct = TransModel.read()
4: %Create all possible partitions for model.
5: for all layers in model do
6: Partn 1lay[j] = read(model struct.layer[i]) %1-layer partitions
7: Partn 2lay[j] = read(model struct.layer[i:i+1]) %2-layer partitions
8: Partn 3lay[j] = read(model struct.layer[i:i+2]) %3-layer partitions
9: i++

10: end for
11: all com = combination(Partn 1lay, Partn 2lay, Partn 3lay) %Combination of <1-

layer, 2-layer, 3-layer> partitions
12: for all combinations in all com do
13: if all com[i] == len(model struct.layer) then
14: Splits.enqueue(all com[i]) %Combinations where all TransModel layer

appear only once
15: else
16: Dequeue all com[i]
17: end if
18: end for
19: return Splits

checks if un-supported layer has dedicated performance database (Ln #11). The
layer is retained if its database is available (Ln #12) otherwise an advice to
create database is issued (Ln #14) and layer performance is not modeled. The
transformed model is returned as TransModel (Ln #18).

Model Partitioning Module: The task of the model partitioning module
is diagrammatically shown in Fig. 3. The partitions are combined together to
create splits that are representative of target model. A model, can be parti-
tioned in many ways. For instance, considering each layer or group of two layers

Fig. 3. The Model partitioning module partitioning a sample model into partitions (1-
layer, 2-layer and 3 layer) that are later combined to form input network representatives
called Splits.
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as partitions are few ways of model splitting. Reducing the partition space is
advantageous because it allows faster convergence on minimum latency model
split. The NASBench-201 cells introduce partition constraint that reduces the
partition space to a reasonable size. Additionally, we use some heuristics (dis-
cussed later in this section) from the PerfLib to further reduce the partition
space. A NASBench-201 cell contains maximum of 4 nodes, out of which one
node is considered as input node. This leaves three nodes for feature transforma-
tions thereby limiting the partition depth to ≤3 cascade layers. The Algorithm
2 captures the main steps carried out by partitioning module. The module takes
the transformed network obtained from layer transformation block as input. It
creates partitions for the network by taking layer groups of sizes 3, 2 and 1 (Ln
#6–8). The combinations of partitions are created (Ln #11). The combination
where all layers are considered only once are valid and queued into Splits (Ln
#14) whereas other combinations are discarded (Ln #16). The retained combi-
nations (or Splits) are returned (Ln #19).

Heuristics-Guided Partitioning: Based on our performance database, we tried to
deduce the performance behaviours of multi-layer and single layer partitions. For
this experiment, we selected a portion of the model with 3 cascade convolutions.
This has 3 1-layer, 2 2-layer and 1 3-layer partitions that makes 4 split con-
figurations. We estimated the execution time of all split options and observed
that partition with 3 layers was the most performance-efficient. For example,
split with 1-layer partitions takes 0.819 ms whereas the 3-layer split takes only
0.378 ms for A100. This behaviour is observed across all image sizes, <in,out>
channels and hardware platforms. We used this finding as a guide to reduce the
partition space.

Matching Module: The network partitions from partitioning block is passed
to matching module. The matching module finds NASBench-201 cells that match
the network partitions and returns the matched cells.

Communication Cost Modelling: For the purpose of modeling inter-
hardware communication cost, we assume GPU and FPGA reside on a sin-
gle server and are connected through PCIe to the host CPU. The data trans-
fer between CPU and GPU (or FPGA) is considered as direct communica-
tion, since CPU APIs support transfers with accelerators connected through
PCIe. Whereas, because of the lack of access to a unified system containing all
three (CPU, FPGA and GPU) hardwares, the communication between GPU
and FPGA is routed through CPU. We modelled the communication cost by
benchmarking the PCIe3 and PCIe4 communication interfaces for transfer sizes
ranging from 28–232 MB. We observe that execution time increasing steadily
with transfer sizes upto 8 MB but shots up for transfer size >16 MB. This is
because the realised bandwidth peaks at 512k and a constant low bandwidth
(≈10 GB/s) is realize for transfers ≥32 MB.
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Algorithm 3. Hetero-Vis Framework
1: Inputs: CNN model, Image size; Outputs: Latency on V100, A100, FPGA DPU

and Xeon CPU, Heterogeneous deployment conf. optimized for latency
2: TransModel=Lay tran(Model,Image size) %from Algorithm 1
3: Splits = Model part(TransModel) %from Algorithm 2
4: prev hetero = contains previous heterogeneous deployment conf. with min latency
5: prev hetero lat = contains heterogeneous latency for prev hetero
6: prev hw = hardware assigned with last partition of a model split
7: for all Splits do
8: for all Partitions in Splits do
9: for all NASBench cells do % NASBench cells structure is available as string

10: if (str Match (split[i].part[j], cells[k]) == 1) then % string matching
11: {A100 lat, V100 lat, DPU lat, CPU lat} ¡- Query performance

database for cells[k]
12: hw lat[0] += A100 lat
13: hw lat[1] += V100 lat
14: hw lat[2] += DPU lat
15: hw lat[3] += CPU lat
16: {min lat,hw} = min(A100 lat, V100 lat, DPU lat, CPU lat)
17: if (prev hw != hw) then%comm cost
18: Lat += min lat + comm lat[prev hw, hw, tx size]
19: hetero config.add({hw, split[i].part[j]})
20: else
21: Lat += min lat
22: end if
23: end if
24: end for
25: tx size = split[i].part[j].out feat size
26: end for
27: if (prev hetero lat ¿ Lat) then
28: prev hetero = hetero config %update heterogeneous conf.
29: prev hetero lat = Lat %update heterogeneous conf. latency
30: end if
31: for all hardware do
32: if (prev hw lat[m] ¿ hw lat[m]) then
33: prev hw lat[m] = hw lat[m] %update homogeneous conf. latency
34: end if
35: end for
36: end for
37: return prev hw lat, prev hetero lat, prev hetero

4.3 Algorithm for Hetero-Vis Framework:

Algorithm 3 presents the Hetero-Vis framework. The framework takes target
model, image size as user inputs and returns the latency on all target hardware
(A100, V100, FPGA and CPU) along with heterogeneous deployment configura-
tion optimized for latency. First two steps include layer transformation (Ln #2)
and model partitioning (Ln #3), already explained as Algorithm 1 and 2. The net-
work splits are iteratively accessed for heterogeneous deployments (Ln #7–37).
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For a split, its partitions are matched with NASBench-201 cells and cell execu-
tion time is queried from performance database (Ln #10–11). The query returns
the partition execution time for all hardware platforms that is accumulated for
all partitions (Ln #12–15). The hardware with minimum latency is then recorded
(Ln #16) and compared against the hardware selected for previous partition (Ln
#17). In case both platforms are same, latency is updated with execution time
for present partition (Ln #21) otherwise the communication cost is also accumu-
lated in latency (Ln #18). The transfer size for communication cost is calculated
using feature map dimensions from previous partition (Ln #25). At this point, the
algorithm generates homogeneous (or hardware-wise) latency and heterogeneous
configuration option. The algorithm checks and updates heterogeneous (Ln # 27–
30) and homogeneous (Ln # 31–35) latency after comparing present latency with
last minimum. The algorithm iterates over all splits and returns (Ln #37) the min-
imum latency achieved for homogeneous deployment on all target hardware plat-
forms and heterogeneous deployment configuration across hardware platforms.

5 Results and Discussions

5.1 Experimental Setup

We have reported results on deployment configurations for four hardware plat-
forms i.e. NVIDIA A100 [1] and V100 GPU [2], Xilinx FPGA Alveo U280 DPU
[3] and Intel Xeon Gold CPU [4]. Broadly, we have analysed two deployments:
homogeneous and heterogeneous where the former denotes single-hardware
deployment. The Hetero-Vis framework takes CNN network model file (.pb or
.pth), input image size, and an optional input of hardware platform for which
latency estimation is required. The model file is converted from .pb or .pth
to ONNX format for easy traversal. The latency database is available in a
pickle format for quick access. We report measured and estimated (from Hetero-
Vis) latency for following pre-trained networks: VGG16-bn [13], Resnet-18 [10],
Resnet-50 [10] and text segmentation model CRAFT [5]. The latency is esti-
mated for two image dimensions i.e. 1024 × 1024 × 3 and 512 × 512 × 3. The
performance model accuracy (expressed in %) is derived from measured and
estimated latency and is indicative of deviation of later with respect to for-
mer. For homogeneous deployment, latency is measured by running the model
directly on the respective hardware. On the other hand, heterogeneous deploy-
ment measurements includes running the model across hardware by splitting and
mapping partitions on suitable hardware platforms. For the communication cost,
estimates are used instead of measurements since authors did not have access to
a server housing A100, V100 an U280 FPGA at the time of this writing.

5.2 Experiment Outcomes

We present the latency for homogeneous deployment of target models in Table 1
for RGB images with dimensions 1024×1024 and 512×512, respectively. We
observe our framework exhibits >90% accuracy for all target hardware.
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Table 1. Homogeneous deployment: comparison of Hetero-Vis estimates and measured
latency

Network Image A100 V100 FPGA DPU Xeon CPU

Size M E % A M E % A M E % A M E % A

VGG16-bn 1024 28 30.2 92.1 31 32.4 95.5 167 180.1 92.1 1950 1970 98.7

512 9.7 10.1 95.9 10.5 11.2 93.5 33 35.4 92.5 500 537 92.5

CRAFT 1024 11.2 11.7 95.4 11.5 12.3 92.7 24.5 26.5 91.5 180 195 91.6

512 6.1 6.3 95.7 6.8 7.1 95.5 8 8.5 92.6 55 56 96.7

ResNet-18 1024 8 8.7 91.2 9.5 10.3 90.8 11.5 12.3 92.7 430 450 95.3

512 6.5 7.1 90.3 7.5 8.2 91.2 9.7 10.5 91.2 115 121 94.7

ResNet-50 1024 18 19.1 93.8 21.4 23.3 90.7 35 37.6 92.4 530 550 96.2

512 9.6 10.2 93.2 12.6 13.3 94.6 19 20.9 90.1 220 235 93.1

M- Average Measured Latency (in ms), E- Estimated Latency (in ms), A- Accuracy,

Image- RGB, H=W

Table 2. Heterogeneous deployments: comparison of Hetero-Vis Estimates and mea-
sured latency

Network Image # of Mapped Cells Latency (in ms) % A

Dimensions Total #GPU-#FPGA Measured Estimated

VGG16-bn 1024× 1024× 3 7 5A100-2FPGA 25 ± 1 26.93 92.28

512× 512× 3 7 4A100-3FPGA 9.22 ± 0.5 9.51 95.86

CRAFT 1024× 1024× 3 13 6A100-3FPGA-4A100 10.87 ± 0.5 11.36 95.13

512× 512× 3 14 6A100-6FPGA-2A100 4.25 ± 0.5 4.637 90.89

ResNet-18 1024× 1024× 3 10 5A100-5FPGA 7.05 ± 0.5 7.35 95.74

512× 512× 3 10 4A100-6FPGA 5.28 ± 0.5 5.77 90.71

ResNet-50 1024× 1024× 3 18 13A100-5FPGA 16.55 ± 1.5 16.91 97.82

512× 512× 3 18 8A100-10FPGA 8.54 ± 1 8.82 96.72

The heterogeneous implementation results are presented in Table 2. We
observe that for VGG10-bn, CRAFT, ResNet-18 and ResNet-50, the hetero-
geneous deployments (measured latency) are marginally faster as compared to
homogeneous. Higher improvements can be expected with faster communication
links between the accelerators. The optimal latency heterogeneous deployment
for VGG-16 network is obtained when it is split between GPU and FPGA. For a
1024 × 1024 × 3 image, the network is expressed as 7 NASBench-201 cells, out of
which 5 are mapped on GPU and remaining on FPGA. However, we observe that
for 512 × 512 × 3 image, the model split proportion between GPU and FPGA
changes. Furthermore, in case of CRAFT, the # of matched NASBench cells
changes from 13 to 14 for smaller image size. This captures the importance of
image dimensions in performance modeling. The measured and estimated latency
data presented in the Table are in good agreements. The overall accuracy for
performance model is 90%–97%.

Comparison with State-of-the-Art: Performance model in [12] is concep-
tually similar to NASBench and has 90% accuracy while making estimation for
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ResNet-50 on Mobile GPU. nn-Meter [18] works with mobile-CPU and mobile-
GPU deployments with performance model accuracy of 85–95%. Heterogeneous
implementation in [15] achieves 1.07 × reduction in latency for small CNNs
and [7] shows 1.01–1.3× performance gain over homogeneous deployment. Our
results indicate a performance gain of 1.07–1.43× in heterogeneous deployment
over A100 GPU. Implementations in [7,15] have used fine-grained (layer-level)
partitions, whereas, we have considered multi-layer partitions making better use
of heuristics from the performance library. The performance models in [12,18],
have used cell-based approach to predict latency but are limited to homoge-
neous deployments. In this work, we have focused on the datecenter devices
(GPU, CPU and FPGA) and with performance model accuracy-90% to 98% as
compared the state-of-the-art.

6 Limitations and Future Work

Handling In-parallel Layers: Models with skip connections over more than 3
layers does not have an equivalent NASBench cell. Additionally, the in-parallel
layers of a model constitute data parallelism and can be mapped to parallel units
in a hardware. Hetero-vis framework does not handle these model variations.

Limiting Performance Measurements: The performance library generation
requires running 5 million test cases which needs to be repeated for every hard-
ware considered for heterogeneity. An accurate performance mapping between
hardwares can limit these measurements and is left as future work.

Latency Estimates for Batch Sizes > 1: The developed accelerator perfor-
mance library contains cell latency for unit batch size. Techniques to extrapolate
performance data for higher batch sizes is left as future work.

7 Conclusion

Increase in adoption of AI based models in enterprise applications with simulta-
neous growth of hardware accelerators suited to data-flow nature of AI workloads
is ubiquitous. In order to utilize the underlying heterogeneous hardware archi-
tectures efficiently, we may need to deploy different components of an AI pipeline
to their best performing hardware for an overall reduction in inference time. In
this paper, we propose Hetero-Vis framework, to automatically deploy vision
inference workloads and presented the evaluation results across CPU, GPU and
FPGA heterogeneous architectures. The framework employs performance mea-
surement benchmark library-based optimization algorithm to optimally deploy
components of deep learning pipeline across right heterogeneous hardware for
high performance. The performance model exhibit 90%–98% accuracy in latency
prediction for CNN. Furthermore, we observe, heterogeneous configurations gen-
erated by our framework offers a performance speed-up of upto 1.43× for CNN
deployments over homogeneous deployments.
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Abstract. Asymmetric multicore processors (AMPs) couple high-
performance big cores and power-efficient small ones, all exposing
a shared instruction set architecture to software, but with different
microarchitectural features. The energy efficiency benefits of AMPs
together with the general-purpose nature of the various cores, have led
hardware manufactures to build commercial AMP-based products, first
for the mobile and embedded domains, and more recently for the desktop
market segment, as with the Intel Alder Lake processor family. This indi-
cates that AMPs may become a solid and more energy efficient replace-
ment to symmetric multicores in a wide range of application domains.

Previous research has demonstrated that the system software can sub-
stantially improve scheduling –critical to get the most out of heteroge-
neous cores– by leveraging hardware facilities that are directly managed
by the OS, such as performance monitoring counters, or the recently
introduced Intel Thread Director technology. Unfortunately, the OS-level
support enabling to access scheduling-relevant hardware support may
take a long time to be adopted in operating systems, or may come in
forms that make its utilization challenging from specific levels of the sys-
tem software stack, especially in production systems. To fill this gap, we
propose the PMCSched framework, which enables the creation of cus-
tom OS support on Linux to aid in the design of novel scheduling and
resource-management policies for multicores implemented at different
layers of the system software, but without requiring to patch the kernel.
To demonstrate the potential of our framework, we implement a set of
OS-level schedulers for AMPs, that make use of custom OS extensions to
access scheduling-relevant hardware facilities in an x86 AMP processor.

Keywords: Asymmetric multicore processors · Scheduling · Operating
systems · Runtime systems · Linux kernel · Intel alder lake

1 Introduction

Energy efficiency has become one of the most critical constraints of processor
design [14]. The quest for improved energy efficiency substantially contributed
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to the proliferation of heterogeneous architectures that combine within the same
platform different types of cores and processing units for diverse and special-
ized uses [10]. Asymmetric multicore processors (AMPs) constitute an attractive
type of heterogeneous architecture where high-performance big cores and power-
efficient small ones –all exposing a shared ISA (instruction set architecture)– are
combined on the same system. The common ISA in conjunction with the general-
purpose nature of the AMP cores, allows the execution of legacy (unmodified)
software. These facts, along with AMPs’ energy efficiency benefits, have drawn
the attention of major hardware players, leading to the massive release of com-
mercial AMP products for mobile platforms, such as those based on the ARM
big.LITTLE processor [28]. Today, the Intel Alder Lake processor family and the
Apple M1 SoC, are clear examples of the expansion of AMPs toward the desk-
top market segment [31]. Moreover, in the high performance computing (HPC)
domain, the combination of different core types with a shared ISA has also been
explored; the Sunway TaihuLight supercomputer is a representative case [6,8].

Despite the remarkable benefits of AMPs [19], effectively scheduling diverse
programs/tasks on heterogeneous cores poses a significant challenge to the vari-
ous system software layers [5,6,10,21,25]. When a single multithreaded applica-
tion runs alone on an AMP system, smart user-level scheduling within the run-
time system is the key to making the most out of its heterogeneous cores [6,30].
However, in multi-application scenarios, and especially under the presence of
legacy programs, the OS scheduler plays an essential role in transparently deliv-
ering the benefits of AMPs to the end user [10,16,18,25].

Previous research has demonstrated that the runtime system and the OS
scheduler can perform optimizations on AMPs by leveraging hardware features
that are directly controlled by the OS kernel and exposed to user space, such
as Performance Monitoring Counters (PMCs) [10,18,36] or Dynamic Voltage
and Frequency Scaling (DVFS) [7,35]. Often, the support to conveniently access
new scheduling-relevant hardware features from the system software may take
time to be adopted in operating systems [31], or it may come in the form of
architecture-specific interfaces that limit application portability or make its uti-
lization impossible from particular levels of the software stack [11,17]. Take for
instance the Linux kernel, that does not currently feature support for the Intel
Thread Director (TD) technology [31], unlike the proprietary Windows 11 ker-
nel. TD is a set of scheduling-related hardware facilities –introduced with Alder
Lake processors– that provide the system software with performance and energy
efficiency hints to aid in carrying out effective thread-to-core mappings on Intel
AMPs. Implementing custom mechanisms in the OS kernel to leverage these
new –yet unsupported– features directly from the OS scheduler, or exposing
them to user space involves a substantial development effort, due to the inher-
ent challenges associated with kernel-level programming [11,26]. At the same
time, custom OS-level extensions could be difficult to be adopted in production
systems, where patching the OS kernel may be impractical.

To address these issues, we propose PMCSched, a framework for the Linux
kernel that enables rapid development of the OS-level support required to create
custom scheduling and resource-management schemes on both symmetric and
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asymmetric multicore systems. Unlike other existing frameworks that require
patching the Linux kernel to function [4,20,26,39], PMCSched makes it possible
to incorporate new scheduling-related OS-level support in Linux via a kernel
module that can be loaded in unmodified kernels, making its adoption easier in
production systems. Notably, the main focus of this framework is to simplify the
creation of novel scheduling and resource-management strategies that are either
implemented entirely in the OS kernel, or require changes in different layers of
the system software, so as to benefit from coordinated decisions between the
runtime system and the OS scheduler [10,13,30].

As a proof of concept of our framework, in this work we implement differ-
ent asymmetry-aware OS-level schedulers on top of an unmodified Linux ker-
nel v5.16, and evaluate their effectiveness by running different multi-application
worloads on an Intel Alder Lake processor. These schedulers make use of PMCs
and leverage the Intel Thread Director technology [15,16], by accessing such
hardware facilities directly from kernel space.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 3 provides an overview of PMCSched design and introduces its
main implementation challenges. Section 4 covers the experimental case study
on scheduling for Alder Lake processors, and Sect. 5 concludes the paper.

2 Related Work

A large body of work has proposed asymmetry-aware scheduling strategies for
adoption on either runtime systems [5,25,37] or OS kernels [10,18,31]. Fre-
quently, such endeavors culminate in tools and frameworks that aim to ease
the development and analysis of new scheduling algorithms; these are likewise
some of the main goals of this paper.

Recent studies have shown that scheduling algorithms that come in stock
general-purpose OSs exhibit suboptimal behavior for different workloads on a
wide range of processor architectures [6,10,23]. At the same time, making the
required changes in an OS kernel to build effective scheduling policies specifically
tailored to custom workloads or microarchitectures may be a significant burden
to the average developer [26,39]. On many monolithic kernels such as Linux, the
development of new OS scheduling policies constitutes a labor intensive task, as
the kernel itself needs to be modified. More specifically, testing any scheduling-
related kernel modification requires compiling and reinstalling the kernel, and
finally rebooting the machine for the changes to take effect. Testing an individual
change in this way may as well take a full a coffee break, depending on the
features and resources of the target platform and the development host.

To overcome these problems, some researchers have resorted to evaluating
their proposed OS-level schedulers via simplistic user space prototypes [3,9,35].
Even though this approach may allow to draw interesting insights and also ben-
efit from leveraging application-level metrics, strategies implemented in this way
suffer from the limitations imposed to userland, such as the additional overhead
of context switches and extra system calls required for dynamic thread affinity
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and performance monitoring [26], or the inability to quickly react to low-level
scheduling-related events (e.g., a thread blocks due to I/O or a page fault), thus
wasting CPU cycles [11]. In addition, user-level scheduling prototypes cannot
access hardware extensions not currently exposed by the OS kernel.

Scheduling frameworks, such as those proposed in [4,26,39] or PMCSched
itself, aim to overcome some of the aforementioned limitations. LUSH permits the
creation of user-level schedulers for AMPs without special execution privileges,
and introduces kernel-level changes to allow fine-grained access to PMCs from
user space. Mvondo et al. [26] propose the extension of existing OS APIs, so as to
allow the development of kernel-level schedulers programmable from user-space
using a safe and controlled environment. LITMUS [4], by contrast, constitutes a
substantial fork of the Linux kernel with extensions to facilitate programming of
real-time kernel-level scheduling algorithms. Contrary to such solutions –some of
them restricted to specific domains [4,39]– PMCSched allows to create custom
scheduling-related OS-level modifications without actually patching the kernel.
This constitutes a major advantage, as getting profound modifications of the
kernel accepted upstream is an arduous task; so much so that researchers tend
to forget about that possibility altogether and treat their software as research
prototypes with no hope of production integration in sight [26], even after con-
ducting the required security audits. Conversely, the big effort required to main-
tain multiple project forks for various releases of the Linux kernel often shortens
the lifespan of the associated projects [38].

Other studies explore the challenges of OS scheduling on highly heteroge-
neous architectures [25]. Of special attention is the case of Popcorn Linux [2],
which targets heterogeneous systems consisting of nodes with different ISAs,
opening the door to parallel ISA-heterogeneous runtime scheduling [24]. These
efforts are orthogonal to ours, formulating a problem with several interconnected
computing nodes with different processor architectures (e.g., x86 and ARM).

3 PMCSched: Implementation Challenges and Design

Motivation and challenges. PMCSched is implemented on top of PMCTrack,
a performance monitoring tool [33] for Linux that was open sourced back in
2015 [32]. Unlike Perf Events [38] –the default Linux subsystem to access hard-
ware facilities, such as performance monitoring counters (PMCs)– PMCTrack
was not primarily designed to only expose hardware monitoring facilities to user
space, but to assist the system software when performing runtime optimizations
based on these hardware facilities. The operations for which the system software
can benefit from PMCTrack include scheduling [10,34] and resource manage-
ment [11]. The main advantages of relying on PMCTrack for such tasks are its
ability to foster new OS-level features as part of an extensible loadable kernel
module, and its efficient architecture-independent API to access PMCs within
the kernel on a wide range of architectures (x86, ARMv7, ARMv8, etc.). Figure 1
depicts the various components of PMCTrack and their relationship, described
in detail in [33].
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Fig. 1. PMCSched components (in green) inside PMCTrack’s architecture. (Color
figure online)

With the PMCSched framework we take PMCTrack’s potential one step fur-
ther by enabling rapid development of OS support for scheduling and resource
management for Linux within a loadable kernel module. We need to highlight this
because hitherto new scheduling policies could not be implemented as a kernel
module [20,26], since no specific API exists for that purpose within the Linux
scheduler. When creating novel OS-level schedulers for Linux without modify-
ing the kernel, three main challenges have repeatedly appeared: (1) the inability
to execute code in a kernel module in immediate response to the occurrence of
key scheduling-relevant events –context switches, thread creation/destruction,
etc.– (2) the lack of a standardized method to seamlessly extend the Linux task
structure with new per-thread scheduling related fields that custom schedulers
typically require to function, and (3) how to efficiently customize the behav-
ior of the Linux load balancer. Notably, the first two barriers also arise when
attempting to manage performance counters at the low level, and for that reason,
most PMC tools require changes in the kernel; PMCTrack adds the associated
functionality via a small portable kernel patch [33].

Our solution. PMCSched addresses the three aforementioned issues without
patching the kernel as follows. First, to be aware of key scheduling events from
a kernel module, PMCSched installs scheduling-related hooks (callbacks) lever-
aging two modern tracing facilities of the Linux kernel: dynamic ftrace [29] and
tracepoints [22]. These two tracing technologies rely on dynamic and static kernel
instrumentation, respectively. Noticeably, both are supported on a wide range
of processor architectures, and can be found enabled by default on the most
popular Linux distributions. Unlike other kernel instrumentation facilities (like
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Kprobes), these technologies make it possible for a module to be notified when
a kernel function is invoked or when a static tracepoint is reached with virtually
no overhead [22,29]. Not only do PMCSched hooks –depicted in Fig. 1– enable
the implementation of custom schedulers in a kernel module, but also allowed
us to eliminate the need for the PMCTrack kernel patch entirely [27]. Secondly,
PMCSched provides a seamless mechanism to extend the task structure with
new thread-specific data without modifying the kernel. To this end, whenever a
thread enters the system, PMCSched associates a dummy software event from
the Perf Events subsystem to the thread, by inserting the event into the event list
present in Linux’s task structure (perf event list field). The structure of this
dummy event (struct perf event) contains a void pointer field (pmu private)
that can be utilized to point to any other structure. To simplify the integration
of PMCSched in PMCTrack, we use the event’s void pointer to point to PMC-
Track’s per-thread structure (pmon prof t). PMCSched scheduling fields can
be seamlessly added without modifying the kernel, by extending the structures
definition inside PMCTrack’s kernel module sources.

To make it possible to implement custom load balancing policies, PMCSched
introduces the core group abstraction. Essentially, cores in the system are orga-
nized into different sets (or core groups) based on their type (for AMP systems)
or their hierarchical relationship in the platform’s topology (e.g., cores sharing
a last-level cache, or part of the same NUMA node). PMCSched automatically
divides cores into different core groups based on system topology, but consider-
ing a configurable granularity (LLC, socket or NUMA domain). To implement
custom and scalable OS-level load balancing policies or perform specific thread-
to-core mappings, a scheduler implemented in PMCSched must assign threads
to specific core-groups by using affinity masks. In using this approach, enforcing
load balancing across cores within the same group is up to the Linux load bal-
ancer, which respects affinity masks. We should also highlight that PMCSched
associates a set of linked lists to each core group (spin-lock protected), making
it possible to keep track of active threads or multithreaded processes associated
with each core group. This design approach allows to make scheduling decisions
independently for threads assigned to different core groups, and favors scalable
designs that reduce contention in accesses to core-group specific data structures.

A new scheduling or resource management algorithm can be implemented by
creating a scheduling plugin, which –as illustrated in Fig. 1– becomes a part of
the PMCSched subsystem within PMCTrack’s kernel module. Building a plugin
boils down to instantiating an interface of scheduling operations and implement-
ing the corresponding interface functions in a separate ”.c” file within the mod-
ule sources. The various algorithm-specific operations are invoked from the core
part of the scheduling framework when a key scheduling-related event occurs,
such as when a threads enters the system, terminates, becomes runnable/non-
runnable, or when tick processing is due to update statistics. The framework also
provides a set of callbacks to carry out periodic scheduling activations from inter-
rupt (timer) and process (kernel thread) context on each core group separately,
thus making it possible to invoke a wide range of blocking and non-blocking
scheduling-related kernel API calls, such as those to map a thread to a specific
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CPU or core group. This modular approach to creating scheduling algorithms
resembles the one used by scheduling classes (algorithms) inside the Linux kernel,
but with a striking advantage: PMCSched scheduling plugins can be bundled in a
kernel module that can be loaded on unmodified kernels. Moreover, plugin devel-
opers have access to a rich set of APIs available in PMCTrack, empowering them
to configure performance counters seamlessly and retrieve PMC values in a per-
thread fashion, to gather data from other hardware monitoring features [31,33],
or to govern hardware facilities for shared-resource contention mitigation (e.g.,
LLC partitioning) available on Intel and AMD processors [1,11].

OS-runtime interaction and Future Work. As previously stated, PMC-
Sched could also be used as a tool to perform system-software optimizations
that exploit synergistic interactions between a user-level runtime system and
the OS [13,30]. To allow different types of interaction between user space and
the kernel, the current version of PMCSched exports a set of special files under
the /proc filesystem. For example, the value of configurable parameters of the
currently active scheduling plugin can be retrieved/altered by reading/writing
from/to those special files. PMCSched also supports the creation of a per-thread
page-sized memory region that can be shared between kernel and user space, so
as to allow the runtime system to share critical application-level metrics with
the OS (e.g., QoS metrics for throughput or latency constraints) and, at the
same time, enable the OS to expose information not directly accessible from
the runtime system, such as Thread Director performance and energy-efficiency
estimates for the current core type where the thread runs [31]. As for future
work, and by leveraging this or other communication features –such as netlink
sockets–, we plan to implement an OS/runtime interaction scheme to enable effi-
cient execution of multiple data-parallel OpenMP programs on an AMP system,
where both layers of the system software play an essential role [6,30].

4 Experimental Case Study

To demonstrate the applicability of the PMCSched framework, we experimented
with a system equipped with an Intel Core i9-12900K “Alder Lake” processor
and 32 GB DDR4 SDRAM. This AMP processor combines 8 “Golden Cove” big
(P) cores, and 8 “Gracemont” small (E) cores. E-cores are grouped into two
4-core clusters, each group sharing a 2 MiB L2 cache. P-cores, by contrast, have
a private 1.25 MiB L2 cache. Every core in the platform integrates a private L1
cache, but shares a 30 MiB L3 (LLC) with the remaining E and P cores. With
our experiments we evaluate how effectively an OS-level scheduler implemented
with our framework can improve the overall system throughput on an Intel Alder
Lake processor.

Maximizing Throughput on AMPs. Previous research has demonstrated
that, to maximize throughput in the context of multi-program workloads, the
scheduler needs to be able to (1) determine at runtime the performance benefit
that each thread in the workload derives from running on a big core relative
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to a small one, and then (2) use big cores for running threads that exhibit
a larger relative performance benefit from such cores, while possibly readjust-
ing the mappings dynamically based on program-phase changes. Henceforth,
we will refer to the big-to-small performance benefit as the thread’s Speedup
Factor (SF). Similarly, we will now use the acronym HSF (i.e., High SF) to
refer to a dynamic scheduling strategy that aims to maximize throughput by
mapping high-SF threads to big cores. While this experimental analysis focuses
on workloads consisting of compute-intensive single-threaded applications, it is
worth noting that other factors beyond the SF need to be considered for multi-
threaded programs, such as latency constraints [12], load balancing and synchro-
nization [6,30], along with other interdependencies among tasks/threads in the
application [5].

Implementation of Scheduling Algorithms. One of the main deltas among
the various HSF implementations [18,19,34] is the underlying method employed
to determine the SF online. In this work we explore the effectiveness of two
SF prediction methods: PMC-based estimation models [18,28,34], and reliance
on specific hardware support for SF estimation [15,16]. Regarding the first pre-
diction method, we use the two SF-estimation models proposed in our earlier
work [31], which were specifically built for SF prediction from the big and small
cores of an Intel Alder Lake processor. The methodology used to build these
estimation models [34], the specific performance events they depend upon, and
a detailed discussion on their accuracy can be found in [31]. For the hardware-
aided SF prediction we leverage the Intel Thread Director (TD) technology, a
set of hardware facilities –first introduced in Alder Lake processors– enabling
to guide the OS in making thread scheduling decisions on Intel hybrid multi-
cores [15,16]. To predict a thread’s current SF with TD, the OS must retrieve
its TD class (i.e., an integer in {0..3} in the Alder Lake processor we used) by
reading a model-specific register, and then calculate the ratio of two performance
estimates (for big and small cores) associated with the current TD class; these
performance estimates are stored in a memory-resident table that the hardware
maintains, which is directly readable from the OS kernel alone.

We experimented with several asymmetry-aware schedulers implemented in
PMCSched: an Asymmetry-Aware Round-Robin (AARR) scheduler [21] that
equally shares big and small cores among applications; and three variants of the
HSF scheduler, which optimize throughput. The first variant of HSF –referred
to as HSF/TD– employs Thread Director (TD) to obtain SF estimates. Because
in the Alder Lake processor we used such estimates are only accessible directly
when the thread runs on a big core (i.e., a valid TD class is not reported from
E-cores [31]), our implementation continuously stores TD-based big-core SF esti-
mates on a per-thread history table for different program phases, making it
possible to obtain SF predictions indirectly from small cores by accessing the
history table. The utilization of history tables to observe patterns from previous
samples and predict current and future performance has been widely explored
by previous work [10,39]. To deal with frequent phase misses when accessing
the history table from small cores, our implementation triggers migrations to



192 C. Bilbao et al.

Fig. 2. Workloads used for our experiments. Each row Mi depicts the composition of
the i-th workload. A blank cell indicates that the associated program is not included in
the workload. Applications whose average SF is lower than 1.7 are considered low-SF
programs in our platform, and those with an SF value greater than 2.05 are classified
as high-SF. The remaining ones are labeled as medium-SF.

Fig. 3. Normalized throughput delivered by the various scheduling algorithms

big cores to gather new big-core estimates, and also implements a throttling
mechanism to limit the number of profiling-related migrations, as in [10]. In the
second HSF variant, denoted as HSF/BS, the OS continuously gathers a number
of per-thread PMC metrics; an up-to-date SF prediction is obtained for a thread
by using the metric values as input to the core-specific models proposed in [31]
for the big and the small core (the model to use depends on the thread’s current
core type). Lastly, under the HSF/B variant, SF predictions on big cores are
obtained via the same big-core model used by HSP/BS; however, on the small
core, predictions are obtained indirectly by reading a history table, populated
with past SF estimates retrieved on the big core. Note that this variant was
implemented to conduct a fairer comparison with HSF/TD, where direct SF
predictions on the small core are unavailable.

Experiments and discussion. For our experiments we randomly generate 20
diverse workloads, comprising of 16 single-threaded programs each. The com-
position of the various program mixes (Mi) is depicted in Fig. 2, and covers 46
different SPEC CPU applications in total. In launching each program mix, we
follow a similar procedure to that of previous works [3,34], so as to ensure the
machine’s load is constant throughout the experiment. All applications in the
workload are started simultaneously, and when one of them completes, the pro-
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gram is restarted repeatedly until the slowest application completes three times.
We use the geometric mean of the completion times for each program to calculate
the degree of throughput, by using the Aggregate Speedup metric [10,31,34]. All
programs were compiled with GCC 11.2 with the -O3 and -mtune=alderlake
compiler switches.

Figure 3 shows the normalized throughput for the various scheduling algo-
rithms relative to AARR. As a reference, we also provide the best and worst
results obtained by Linux default scheduler (CFS) across 10 runs of each exper-
iment, referred to as Linux-best and Linux-worst, respectively. This scheduler
is designed to minimize the number of thread migrations, but it is still largely
asymmetry unaware [10], and provides highly variable completion times for the
same application across multiple runs of the same experiment on Intel Alder Lake
processors. Essentially CFS may map an application to a big core for a certain
run, and then to a small core in another run, irrespective of its co-runners.
This causes large throughput differences across runs, making CFS a misleading
baseline [10].

These experimental results undoubtedly reveal that HSP/BS outperforms
the other schedulers for most workloads, achieving up to a 30% throughput gain
w.r.t. AARR, and providing a 22.9% average improvement against the TD vari-
ant. These numbers are tightly related to the superior SF-estimation accuracy
provided by the PMC-based models for the big and small core, relative to that
of Thread Director, as shown in [31]. Overall, a higher SF-prediction accuracy
allows HSF to identify programs with a truly high SF better, and, as a result,
the scheduler can grant more big-core cycles to them than to other threads. We
further observe that using the big-core model in combination with the history
table (HSF/B variant), provides substantially better throughout figures than
HSP/TD (averaging 7.9% improvement). However, in a few workloads, such as
M10 and M20, HSF/B fails to yield comparable performance to that of AARR.
We found that this is caused by the extra thread migrations (and hence the
overheads), triggered in response to frequent table phase misses, and aimed at
refreshing the history table on big cores. Despite this fact, we conclude that the
PMC-based big-core model alone provides superior accuracy than TD, and that
the per-thread history table constitutes a reasonably effective method to deal
with scenarios where direct SF estimation is not available on certain core types.

5 Conclusions and Future Work

In this paper we have presented PMCSched, a framework for Linux that enables
to implement the custom OS kernel support required by new scheduling and
resource-management policies for multicore systems. A key distinctive feature of
our framework is that it empowers developers and researchers to add new kernel-
level scheduling-related support via a loadable module that can be inserted in
vanilla (unmodified) versions of the Linux kernel. This favors the adoption in
production systems of custom, and potentially sophisticated, scheduling strate-
gies implemented at one or multiple levels of the system software stack. To
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demonstrate the flexibility of the framework, we leveraged PMCSched’s modu-
lar plugin-based design to implement several asymmetry-aware OS-level sched-
ulers, and evaluated their ability to improve system throughput under multi-
application workloads on an Intel Alder Lake (hybrid) multicore processor.

As for future work, we plan to design novel scheduling and resource man-
agement strategies to improve performance when both single-threaded and mul-
tithreaded programs are present on the system, making emphasis on potential
optimizations that come from the synergistic cooperation between the runtime
system and the OS. Lastly, we should highlight that part of the core functionality
of PMCSched is already publicly available in PMCTrack’s source code reposi-
tory [27], but that the full framework will be open sourced with the next public
release of PMCTrack, scheduled for late 2022.
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Abstract. While heterogeneous computing has emerged as a dominant
trend in current and future High-Performance Computing (HPC) sys-
tems, it is also widely recognized that this shift has led to increased soft-
ware complexity due to a proliferation of programming systems for dif-
ferent heterogeneous processors. One such example is the Heterogeneous-
Computing Interface for Portability from AMD (HIP), which is composed
of a C Runtime API and C++ Kernel Language. Many HPC applica-
tions will likely use HIP on future exascale systems (e.g., Frontier and
El Capitan), but HIP currently only targets AMD and NVIDIA proces-
sors. This limitation creates challenges for users who would also like to
run their applications on exascale systems based on other architectures
(e.g., Aurora, which is based on Intel hardware) that are currently not
targeted by HIP.

In this paper, we introduce the design and implementation of HIPLZ,
a compiler and runtime system that uses the Intel Level Zero API to
support HIP on Intel GPU architectures. We discuss the design of HIPLZ,
derived from HIPCL (an implementation of HIP on top of OpenCL), and
portability issues that occur from using the Level Zero runtime as a back-
end. We evaluate our implementation by running several performance
benchmarks and mini-apps written in HIP on Intel architectures using
HIPLZ. Our results show that this approach provides competitive perfor-
mance relative to Intel’s OpenCL implementations on Intel Gen9 GPUs,
while providing good coverage of features needed by HPC applications.
Overall, this approach is a promising demonstration of enabling perfor-
mance portability for exascale systems.

1 Introduction

Modern High Performance Computing (HPC) has been defined as an era of
extreme heterogeneity where an increasing number of accelerators support SIMD
parallelism, spatial computing, or domain specific architectures. This is espe-
cially true as we move toward exascale, where the majority of pre-exascale and
exascale systems are accelerator-based. For example, 7 of the top 10 systems in
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the Top 500 for November 2021 are GPU-based [1]. Recently, NVIDIA systems
were the dominant accelerator which applications would target, but several next-
generation systems will be based on accelerators from different vendors: Aurora
and SuperMUC-NG Phase II, with Intel GPUs [2,3] and Frontier, El Capitan,
and LUMI with AMD GPUs [4–6]. Each vendor generally develops its own pro-
gramming model and implementation which is optimized for its hardware. This
design poses a challenge for application developers who wish to create portable
code for multiple systems. Often this programming model heterogeneity results
in application developers maintaining multiple branches of code in each differ-
ent vendor-specific programming model, which increases code complexity and
developer time requirements.

Heterogeneous-compute Interface for Portability (HIP) from AMD is one
example of such a programming system that targets AMD and NVIDIA architec-
tures. In this paper, we introduce HIPLZ: a compilation and runtime system that
supports HIP via Intel’s Level Zero (L0) runtime [7] using the fat binary model
for supporting multiple architectures and SPIR-V as an intermediate language
(IL). To the best of our knowledge, HIPLZ is the first effort that bridges HIP to
L0 which is the primary low level application programming interface (API) for
Intel hardware.

In thispaper, we present the following contributions:

1. The prototype of HIPLZ, a library that allows applications using the HIP API
to run on devices that support Intel Level Zero and OpenCL drivers. The
source code is located at: https://github.com/jz10/anl-gt-gpu.

2. A test suite that covers the major functionality of HIP and that uses it as the
validation of HIPLZ.

3. An evaluation of test coverage and code performance of HIPLZ on Intel Gen 9
GPUs. Our results show that HIPLZ supports the complete execution of 82%
of tested applications and demonstrates performance parity with HIPCL and
OpenCL for memory- and FLOP-focused benchmarks.

The paper is organized as follows: Sect. 2 gives background information
about the HIP programming model, intermediate representation and the Intel
L0 runtime. The details of the design and implementation are presented in
Sect. 3. Section 4 discusses testing HIPLZ and evaluates the performance of HIPLZ.
Section 5 discusses related work.

2 Background

2.1 Heterogeneous-compute Interface for Portability (HIP)

HIP [8] is a C++ 14 Runtime API and kernel language that is derived from
CUDA [9] and that allows developers to create portable applications for AMD
and NVIDIA GPUs from a single source code. It supports advanced C++ pro-
gramming language features including templates, C++11 lambdas, and many
other features.

https://github.com/jz10/anl-gt-gpu
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2.2 Standard Portable Intermediate Representation (SPIR-V)
and Fat Binary

SPIR-V [10] is an industry open standard intermediate language (IL) for shader
and kernel language compilers used for expressing parallel computation and
GPU-based graphics. SPIR-V provides a common language front-end compiler
to developers for building computing kernels without needing to directly expose
source code. This IL allows shipping compiled kernels in binary format while
remaining portable on multiple hardware implementations.

The fat binary model integrates device code (kernel functions) into the host
side executable binary via intermediate languages, and uses vendor APIs (driver
compiler) to apply just-in-time compilation on kernel functions during runtime.
SPIR-V and NVIDIA PTX are typical examples for fat binary.

2.3 OpenCL and HIPCL

OpenCL [11] is a widely used, open standard for programming heterogeneous
platforms, and is supported by most of the major accelerator vendors, including
NVIDIA, AMD, Xilinx, ARM, and Intel.

HIPCL [12] is an open-source compilation and runtime system that allows
running HIP programs on OpenCL platforms with sufficient capabilities. HIPCL
relies on SPIR-V as a target IL (i.e. fat binary embedded in ELF binary) and
implements the HIP API on top of OpenCL calls.

2.4 Level Zero Runtime

Intel Level Zero (L0) [7] is a specification which is part of the Intel oneAPI
suite which is a SYCL-based specification and set of APIs and tools targeting
CPU, GPU and FPGA devices. The Intel L0 implementation provides a direct-
to-metal access to accelerator devices and brings flexibility through the support
of a broad set of language features, e.g. unified shared memory, synchronization
primitives, and device function pointers. The aim of the L0 API is to provide a
system level programming interface that easily allows higher level runtime APIs
and libraries to target heterogeneous hardware. This is why we selected it for
HIPLZ. The features of the L0 API include, but are not limited to: device par-
titioning, instrumentation, debugging, power managements, frequency control,
and hardware diagnostics. The L0 specification does not define a kernel language,
but relies on SPIR-V as an IL.

3 Design and Implementation

3.1 Design Goal

The main design goal of HIPLZ is to connect the Intel L0 runtime to the HIP
programming model, thus enabling applications written using HIP to run on
GPU devices driven by L0. Based on a survey of HPC application needs, we
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focused on supporting the following HIP features in HIPLZ: i) streams, includ-
ing the command execution and callbacks (Sect. 3.4); ii) memory management,
including host, device, shared memory, and texture memory (Sect. 3.5); iii) ker-
nel and module management (Sect. 3.6); iv) device management (Sect. 3.7); and
v) inter-operation with other parallel programming systems like Intel’s DPC++
(Sect. 3.8). We ended up implementing 133 functions in HIPLZ out of 144 total
HIP functions at the time HIPLZ was written. HIP now has 343 functions and the
unincluded functions are mainly for graph operations.

Fig. 1. The compilation workflow for HIPLZ.

3.2 The Compilation System

The workflow for the compilation of a HIP program by HIPLZ is shown in Fig. 1.
The HIPLZ compilation workflow is based on that of HIPCL, which is a HIP-
compatible compiler frontend based on the LLVM/Clang compiler. The HIPLZ
compiler translates HIP source code to two parts of LLVM intermediate repre-
sentation : host IR and device IR. The host part is processed via the legacy
LLVM x86 backend to produce an x86 binary, and the device part is processed
via the LLVM SPIR-V backend to produce SPIR-V IR. The x86 binary and the
SPIR-V IR are then linked together to make an x86 executable binary (or shared
library) that is embedded with SPIR-V (a fat binary).

Fig. 2. The organization of Intel Level Zero runtime.
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3.3 Runtime System

Before getting into the details of HIP feature support, here we introduce the
basic structure of L0. Figure 2 presents the organization of L0 APIs and objects
in a top-down manner. On the top level, each Driver interacts with a collection
of heterogeneous computing devices that share a given software stack. A physical
device is presented as a Device that is associated with a Context that provides
an interface for managing memory, modules, synchronization objects, command
lists and queues. L0’s memory management covers hosts, devices, shared memory,
and image samplers.

The L0 API is very similar to OpenCL’s, especially in terms of the device data
abstraction, execution model, and event driven synchronization. However, L0 is
at lower level and many features that are available in OpenCL are left to the
application developer to implement. Such features include (but are not limited
to) reference counting to handle object lifetime, callbacks on events state change,
or host kernel enqueuing. HIPLZ wraps L0 data structures in C++ classes in an
object-oriented manner, similar to OpenCL’s C++ bindings.

Table 1 gives some details about the mapping of data structures and similar
objects for the different programming models we will use in the next sections
HIP, HIPLZ, L0, OpenCL, and SYCL. The HIPLZ compiler translates a HIP object to
its corresponding data structure in HIPLZ as in the first two columns in Table 1.

Table 1. The mapping among HIP, HIPLZ, L0, OpenCL, and SYCL objects.

HIP HIPLZ L0 OpenCL SYCL

hipDevice LZDevice ze_device_t cl_device_id sycl::device

hipContext LZContext ze_context_t cl_context sycl::context

hipStream LZQueue ze_queue_t cl_command_queue sycl::queue

ze_commandlist_t

hipModule LZModule ze_module_t cl_program sycl::program

hipFunction LZKernel ze_kernel_t cl_kernel sycl::kernel

hipTextureObject LZTexture ze_image_t cl_image sycl::image

ze_sampler_t cl_sampler sycl::sampler

3.4 Streams

A stream in HIP is presented as a sequence of tasks (e.g. kernels, memory copies,
events) that execute in FIFO order. The tasks being executed in different streams
are allowed to overlap and share device resources. Different streams may execute
their commands out of order with respect to one another or concurrently. Three
types of streams exist in HIP, the default stream (or NULL stream), blocking
streams, and non-blocking streams. The last two types of streams can be created
by the application programmer, and each differs in how they synchronize with
the default stream. Tasks in the default stream will wait for all tasks previously
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submitted to blocking streams to be completed before executing. Similarly, tasks
in blocking streams will wait for all tasks previously submitted to the default
stream to be completed before executing. Non-blocking streams do not synchro-
nize with the default stream.

Fig. 3. a. The basic HIPLZ Command List and Command Queue (image source: https://
spec.oneapi.io/level-zero/latest/core/INTRO.html); b. The event order for executing
callback

To be able to implement HIP streams with L0, L0 offers two possible modes
of execution to dispatch tasks to a device. 1.) a command buffer abstraction
(named command list), that will aggregate a series of tasks, and that can later
be submitted to a command queue. The driver is free to optimize the execution of
the command lists based on the synchronization expressed by the programmer;
2.)a low latency dispatch (named immediate command list) that will execute
tasks as soon as they are ready (dependencies met) and able to be executed
(available resources).

In HIPLZ, streams are implemented via LZQueue objects that wrap L0’s imme-
diate command lists (see Fig. 3(a)). This mode of execution is better suited to
implement the FIFO behavior of HIP streams. Synchronization considerations
are still important to ensure barriers between tasks within streams as well as
to correctly implement the HIP default stream semantics and synchronization.
Nonetheless, using the immediate command list greatly reduces the overhead of
managing individual command lists that would need to be submitted to com-
mand queues and which would need to be freed or recycled once the tasks they
contain have finished executing. This technique eliminates the need for dedicated
event tracking for each command list, irrespective of synchronization with other
streams, and it also reduces the latency between task submission and execution.

The commands executed by the streams include: kernel functions, memory
copy operations, host callbacks, and HIP event operations. The synchronization
among different streams is supported via L0 events and their wait and signal
APIs. The event object in a command list acts as either a barrier or signal,
so two tasks running on different streams can use events to synchronize their
executions.

https://spec.oneapi.io/level-zero/latest/core/INTRO.html
https://spec.oneapi.io/level-zero/latest/core/INTRO.html
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Stream Synchronization Example: We use the host callback implementa-
tion as an example of how synchronization between and within streams in HIPLZ
is implemented with L0. Figure 3(b) presents the workflow of host callback reg-
istration and invocation in HIPLZ. The callback function pointer is registered
by the callback registration API, and a synchronization scheme is set up to
program the callback using L0 events. This implementation of host callbacks
requires a three point synchronization scheme. For each callback three L0 events
are created, here called reg event, exec event and final event. Three syn-
chronization primitives are added to the L0 immediate command list: a barrier
that will signal the reg event once it is reached, a barrier that will wait for
the exec event to be signaled by the host, and lastly a signal to final event
signifying that the synchronization is complete and that the events can be freed
(or recycled). In parallel, the event (host) monitor thread waits on reg event to
be signaled, executes the callback, signals callback termination via exec event
and waits on final event before releasing the resources.

3.5 Memory Management

HIPLZ supports several HIP memory management APIs, including hipMalloc,
hipMemcpy, hipMemcpyAsync, and hipFree. Users can specify the allocation site,
i.e. host memory, device memory or shared memory. Shared memory is based on
the underlying GPU’s support, and its reference is presented as a raw pointer
that can be referred on both the host and device side. As mentioned in Sect. 3.4,
in L0 the memory copy operation is implemented as a command that is queued
on the command list and is executed via command queue.

HIP texture objects are special memory objects, and their support is similar
to as texture objects in CUDA; that is, the texture object is a first-class C++
object and can be passed as an argument just as if it is a pointer. HIPLZ provides
hipCreateTextureObject and hipDestroyTextureObject to allocate and free
texture objects.

The texture object is composed as an image buffer and a sampler object that
operates on an image buffer. Since the image and sampler are defined as separate
objects in L0 (i.e. ze_image_t and ze_sampler_t), we create the texture object
as a C struct, as shown in Listing 1.1.

The ze_image_t and ze_sampler_t created via the L0 API are raw pointer
values, thus they can be stored as intptr_t values. The actual texture opera-
tions are performed on reinterpreted structure fields, as shown in lines 6–9 of
Listing 1.1, where a 2 dimensional texture of floating point values is sampled at
coordinates x and y. This scheme relies on implementation specific behaviors of
the Intel driver compiler.
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Listing 1.1. HIP Texture Object Examples
1 typedef struct hipTextureObject_s {
2 intptr_t image ;
3 intptr_t sampler ;
4 } hipTextureObject_st , ∗hipTextureObject_t ;
5
6 return read_imagef (
7 __builtin_astype ( texObj−>image , read_only image2d_t ) ,
8 __builtin_astype ( texObj−>sampler , sampler_t ) ,
9 ( f l o a t 2 ) ( x , y ) ) . x ;

3.6 Kernel and Module Management

HIP defines three different attributes for functions: __host__, __device__, and
__global__. A __host__ decorated function is a function that is to be executed
on the host, and functions without decorators will be considered host functions.
A __device__ function will be callable from the device, and this decorator can
be combined with __host__ to obtain a function that can execute on both
the device and the host. A __global__ decorated function or kernel is callable
from the host. The HIPLZ compiler translates the kernel and device functions to
SPIR-V IL, and they are translated to device binary via vendor compiler during
runtime. Each kernel function is wrapped into a LZKernel object and managed
by a LZProgram object that presents the L0 module. The kernel launch is based
on the L0 API and issues a command to the immediate command list.

HIPLZ also supports device global variables that are used for exchanging
values between kernels and host code. Device global variables are supported in
SPIR-V, and they can be interacted with from the host using L0. They can also
be supported in OpenCL using Intel extensions.

3.7 Device Management

The device management in HIPLZ focuses device selection (hipSetDevice and
hipGetDevice) and device property queries (i.e. hipGetDeviceProperties).
From L0 standpoint, this means creating a L0 context containing all the devices,
and exposing those devices through the hipGetDeviceCount. This allows shar-
ing memory between devices using USM, without needing to register USM allo-
cations between different contexts. Setting the current active device in HIPLZ
changes the values for the default devices and default stream. HIP device prop-
erties are derived from the different device properties available in L0.

3.8 SYCL Inter-operation

Interoperability between SYCL and HIP helps users maintain large heterogeneous
code bases, and it also leverages the advantages of high performance libraries
built by vendors (e.g. Intel oneMKL [13]). Both HIPLZ and DPC++ use L0 as the
runtime driver for executing kernel functions on Intel GPUs, and use L0’s driver
object handles to maintain and exchange GPU device information, e.g. to pass an
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execution context object from HIPLZ to DPC++. To support data exchange, the
unified shared memory (USM) mechanism is employed. Both HIPLZ and DPC++
use raw pointers to maintain the reference of the allocated memory from USM,
and this simplifies memory reference passing between objects in each execution
context.

https://www.overleaf.com/project/61854547ee0a74d0afa28679

3.9 Kernel Library

The implementation of the HIP math API in HIPLZ is based on OCML [14],
which is a thin layer wrapping the OpenCL builtin math functions.

3.10 Discussion

Implementing HIP with L0 comes with some challenges:
Program interface: The L0 API organization is very similar to OpenCL,

especially for the objects that abstract the GPU device. However, L0 is a lower
level API than OpenCL, as it lacks a kernel language, object lifetime management,
and also requires finer grained control on tasks using queues and command lists.
This requires careful management of objects lifetime in HIPLZ, and more involved
synchronization schemes than in HIPCL.

Capacity of Conversion: Users could benefit from a conversion guide that
would describe the potential pitfalls that can arise from migrating to the L0 API
from other heterogeneous programming models.

Lack of Thread Safety: There are many runtime objects and APIs that
are not thread-safe in the L0 specification, so mutual exclusion is employed for
all relevant API call sites in HIPLZ using mutexes.

4 Evaluation

4.1 Employed GPU System

In this study we evaluated HIPLZ on an Intel Gen9 [15] on the JLSE cluster [16].
The Gen9 is an integrated GPU which is available in commercial Intel products
such as laptops. Although Intel plans to release high-performance discrete GPUs
[2], these are not publicly available at the time of writing, so we focus on the
Gen9 GPUs.

The Gen9 GPU has a peak theoretical double (single) precision performance
of 331.2 GFlop/s (1324.8 GFlop/s). With 2 channels of DDR4-2133, the peak
theoretical DRAM bandwidth is 34.1 GB/s.

4.2 Overview of Tests

To evaluate HIPLZ we collected a repository of HPC-relevant benchmarks, mini-
apps, frameworks, and applications hosted on GitHub [17]. The 50 selected codes
include 2 benchmarks, 7 mini-apps (2 for BerkeleyGW), 1 application, and 40
HIP examples. The codes are listed in Table 4.

https://www.overleaf.com/project/61854547ee0a74d0afa28679
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4.3 Results

We first discuss the performance results of the benchmarks and then the overall
build/run/pass rate for the tests. For the measurements presented here we used:

– HIPLZ version: From HIPLZ, branch launch_bounds, commit cbf2260
– HIPCL version: From a fork of HIPCL, https://github.com/Kerilk/hipcl, in

branch fence, commit dd39656
– OpenCL version: Intel OpenCL 3.0 NEO, driver version 22.02.0
– hip-test-suite [17], commit 3b19290

We note that HIPLZ has a differently named compiler driver than AMD HIP.
HIPLZ uses clang++, while HIP uses hipcc.

Benchmark and Performance Results. To evaluate the performance of the
HIPLZ implementation, we consider the tests in the hip-test-suite benchmarks
subdirectory. The two tests in this subdirectory (ERT and BabelStream) mea-
sure the memory bandwidth and/or the peak performance of the system. The
results are summarized in Table 2. By comparing the memory bandwidth and
floating point performance, HIPLZ performs similarly to the OpenCL port, near
the theoretical peaks of the Gen9 device.

For the memory bandwidth measurements, we expect the code to be able to
reach 80% of the theoretical memory bandwidth of the hardware. As shown in
Table 2, with the HIPLZ implementation, the HIP BableStream port measures a
bandwidth of 27.76 GB/s and the HIP ERT port measures 25.84 GB/s. These
are both near 80% of the theoretical bandwidth of the employed hardware.

For the floating point performance measurements, with our HIPLZ implemen-
tation, ERT measured 303.22 Gflop/s double precision peak performance, and
1240.69 Gflop/s single precision peak performance. The measured double preci-
sion peak performance is about 91% of the theoretical value, and the measured
single precision peak performance is about 94% of the theoretical value.

Table 2. Efficiency evaluation of HIPLZ with Comparable APIs.

HIPCL OpenCL HIPLZ

DRAM Bandwidth (GB/s) (from Triad BabelStream) 26.13 26.07 27.42

DRAM Bandwidth (GB/s) (from ERT) 25.48 25.77 25.84

FP64 peak (Gflop/s) (from ERT) 301.66 299.12 303.22

FP32 peak (Gflop/s) (from ERT) 1235.39 1184.91 1240.69

Details about how this test was compiled and run can be found in Ref. [17].
Several of the tests in the proxies and HIP-Examples subfolders also have HIP

and OpenCL ports and measure performance metrics. We also compare several
of these performance metrics in Table 3. As shown in Table 3, the performance

https://github.com/Kerilk/hipcl
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Table 3. Performance metrics from additional tests

Test (measurement) HIPLZ OpenCL

su3_bench (Total GFLOP/s) 28.813 28.6

strided-access (Stride 2 bandwidth, GB/s) 21.573 22.0791

GPU-STREAM (Triad bandwidth GB/s) 27.8 26.5

mixbench (Compute iter 256, Read-only Iops/bytes) 413.55 414.55

achieved by HIPLZ on Intel Gen9 GPUs is similar to that achieved by the
OpenCL port for additional tests.

We also note that although add4 and cuda-stream do not have OpenCL ports
in the test suite, they measure memory bandwidth. The bandwidth reported is
similar to that reported by the OpenCL and HIP ports of Babelstream in Table 2,
so we can consider them achieving the expected performance.

Overall Results. The results are shown in Table 4. Out of 50 tests, 45/50 (90
%) compile without errors, 41/50 (82%) compile and run without crashing, and
38/50 (76%) compile, run to completion, and give the correct answer.

Table 4. Detailed results of building, running, and checking correctness for the tests

Test Build Run Correct Test Build Run Correct

BabelStream Y Y Y mixbench Y Y Y
cs-roofline-toolkit Y Y Y BinomialOption Y Y Y
cholla N BitonicSort Y Y Y
KokkosDslash N FastWalshTransform Y Y Y
su3_bench Y Y Y FloydWarshall Y Y Y
BerkeleyGW-FF N HelloWorld Y Y Y
BerkeleyGW-GPP Y N Histogram Y Y Y
add4 Y Y Y MatrixMultiplication Y Y Y
Cuda-stream Y Y Y PrefixSum Y Y Y
gpu-burn Y N RecursiveGaussian Y Y Y
Mini-nbody Y Y Y SimpleConvolution Y Y Y
Reduction Y Y Y dct Y Y Y
rodinia_3.0 (18 tests) Y (18) Y (15) Y (14) dwtHaar1D Y Y Y
rtm8 Y Y Y adept-proxy N
Strided-access Y Y Y RSBench Y Y N
VectorAdd Y Y Y GridMini N
GPU-STREAM Y Y Y
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Discussion of Results. We now discuss reasons for the failures shown in
Table 4. For the tests which did not build, this was due to dependence on exter-
nal libraries that are not currently supported by HIPLZ (cholla (dependence
on hipfft), KokkosDslash (dependence on kokkos)), unimplemented functions
(adept-proxy (three-argument shuffles)), and compiler errors (BerkeleyGW-FF,
GridMini).

There were four tests that failed at runtime. In three tests, rodinia-backprop,
rodinia-dwt2d, and rodinia-b+tree kernel creation failed, and are being investi-
gated. The other test which failed at runtime was gpu-burn, which fails since it
allocates a piece of memory larger than what is available on the hardware.

Three of the tests ran but did not give correct answers. BerkeleyGW-GPP,
rodinia-heartwall, and RSBench all return output arrays that do not pass vali-
dation. Future work will investigate these issues.

5 Related Work

Many of the programming language systems that support GPU offloading trans-
late high-level programming language constructs to heterogeneous programming
model APIs. Typical examples are OpenMP [18] and OpenACC [19]. Compilers
which support OpenMP or OpenACC translate high-level pragma-based abstrac-
tions to lower-level (for example, CUDA driver or OpenCL) calls. This allows code
using OpenMP or OpenACC to target a wide variety of hardware as long as the
compiler lowers the abstractions into lower-level representations that the under-
lying runtime can ingest. This representation is bundled in a fat binary-based
executable, in which the same binary embeds both host and device code. This
allows the device code to be recompiled or optimized when the driver is updated,
without having to rebuild the application. The usage of fat binaries brings the
advantage for application deployment, i.e. no need to maintain separated binary
or source code (host and device) and link them together for execution. LLVM/-
Clang [20] uses PTX as the intermediate language (IL) for the CUDA driver. Intel
OpenMP compiler makes another choice and uses SPIR-V as IL in order to tar-
get their OpenCL or L0 based GPU backends [21,22]. The approach in HIPLZ is
similar, although we implement the HIP API and not pragma-based approaches,
and we use SPIR-V as the intermediary representation.

Different approaches exist to bridge programming models to L0: for example
ZLUDA [23] is a demonstrator showcasing running unmodified CUDA applications
on top of L0 by implementing the CUDA driver API in L0, and converting NVIDIA
PTX [24] to SPIR-V. ZLUDA only supports a limited subset of applications, but
it does showcase promising performance on those applications.

Another well known project bridging several programming models to
OpenCL is pocl [25]. pocl implements OpenCL for NVIDIA GPUs on top of
CUDA, AMD GPUs on top of HSA and supports CPU devices as well through
the Posix Threads programming API.

hipSYCL [26] is a SYCL implementation that leverages existing heterogeneous
programming model such as CUDA, HIP to support different GPU architectures.
It also provides a work-in-progress support for Intel GPUs via oneAPI [21].
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6 Conclusion

In this paper, we introduced the design and implementation of HIPLZ, a compi-
lation and runtime system that allows HIP code to run on Intel GPUs. It uses
the L0 API to implement the HIP API’s functionalities and SPIR-V as the IL
to represent the kernel functions. To the best of our knowledge, HIPLZ is the
first compiler and runtime system that allows HIP code to run on Intel GPUs by
using L0.

HIPLZ successfully compiled and produced correct results on an Intel Gen9
GPU for more than 35 HIP test cases and mini-apps. In terms of performance, we
ran two performance benchmarks using HIPLZ and were able to achieve approx-
imately the same peak values as OpenCL, demonstrating that HIPLZ produces
code that can effectively use the Intel GPU hardware. Future work will focus
on extending performance for more applications and interoperability with other
programming models like DPC++ and OpenMP.
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Abstract. The ability of large-scale infrastructures to store and retrieve
a massive amount of data is now decisive to scale up scientific applica-
tions. However, there is an ever-widening gap between I/O and com-
puting performance. A way to mitigate this consists of deploying new
intermediate storage tiers (node-local storage, burst-buffers, ...) between
the compute nodes and the traditional global shared parallel file-system.
Unfortunately, without advanced techniques to allocate and size these
resources, they remain underutilized. In this paper, we investigate how
heterogeneous storage resources can be allocated on an HPC platform,
in a similar way as compute resources. In that regard, we introduce
StorAlloc, a simulator used as a testbed for assessing storage-aware job
scheduling algorithms and evaluating various storage infrastructures.

1 Introduction

Running scientific applications at scale requires the power of a large infrastructure
such as a High-Performance Computing (HPC) system. For years, HPC systems
have been designed with the main objective of improving computing power. How-
ever, nowadays the corpus of compute-centric applications has evolved towards
complex data-centric workflows across the domains of modeling, simulation, AI
and data analytics. The data deluge engendered by these workloads has been
observed in major supercomputing centers: the National Energy Research Scien-
tific Computing Center, USA, noticed that the volume of data stored by applica-
tions has been multiplied by 41 over the past ten years while the annual growth
rate is estimated to 30% [12]. Yet, during the same period, we have observed a
relative performance decrease of storage systems: a study of the top three super-
computers from the Top500 ranking between 2011 and 2021 shows that the ratio
of I/O bandwidth to computing power has been divided by 9.6.

An attempt to mitigate this gap has led to the emergence of new tiers of inter-
mediate storage, such as node-local disks or burst buffers [9], backed by diverse
technologies (Flash memory, NVDIMM, NVMeoF, ...), and placed between the
compute nodes and the global shared parallel file-system. Although this storage
disaggregation offers new alternatives to a centralized storage system, advanced
techniques for sizing and allocating these resources have yet to be devised to
fully leverage them.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Unfortunately, exploring methods for allocating storage resources on super-
computers suffers from several limitations such as a difficult access to the hard-
ware with enough privileges or a panel of technologies reduced to those deployed
on the studied system. Simulation is one way to overcome these constraints. At
the cost of a loss of accuracy, ideally as moderate as possible, simulation offers
much better flexibility for representing a wide variety of storage architectures
and can be used to evaluate storage infrastructures before they are deployed.

In this paper, we propose to explore how storage resources can be allocated
on HPC systems, i.e. with which method (scheduling algorithm) and with which
efficiency (metric) a set of I/O intensive jobs can be scheduled on a pool of
heterogeneous storage resources. To do so, we introduce StorAlloc, a Discrete-
Event Simulation-based (DES) simulator of a batch scheduler able to play (or
replay) the scheduling of I/O intensive jobs on intermediate storage resources. We
first present the architecture of StorAlloc, then we evaluate the tool on a set of
basic scheduling algorithms and on multiple models of infrastructures featuring
heterogeneous storage resources. From our simulations, we can conclude on the
right sizing of intermediate storage resources among a set of architectures or
analyze the utilization rate of the underlying disks.

2 Context and Motivation

For many years, supercomputers have followed a hyper-centralized paradigm
regarding storage: a unique global shared parallel file-system such as Lustre [1]
or Spectrum Scale (formerly GPFS [15]), used as a staging area from which data
is read or written by applications or workflow components. These file-systems,
although increasingly powerful, suffer the drawbacks of any highly centralized
system: contention and interference make them very prone to performance vari-
ability [10]. In order to overcome this problem, we have seen the emergence of
new storage systems, closer to the computing nodes. Node-local SSDs, burst
buffers or dedicated storage nodes with network-attached storage technology
(NVMeoF), to name a few, are all technologies that provide fast storage, albeit
with limited capacity, various data lifetime, cost and performance, and different
means of access.

This last point in particular makes the use of these resources complicated.
To illustrate this, Table 1 presents the multiple ways of accessing resources for a
subset of storage tiers that tend to become popular on large-scale systems. The
usual scope of the storage space and the commonly deployed data manager, if
any, are also listed.

This variety, which would require working on new levels of abstraction, also
raises another problem: how to preempt all or part of these storage resources so
as to make them available for the duration of an I/O-intensive job’s execution,
as we do for compute nodes? Allocation methods exist for storage tiers but
they are numerous and not interoperable: storage allocated at the same time
as the compute node, dedicated APIs integrated or not into the job scheduler,
complex low-level configurations. Thus, while it is common on HPC systems
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Table 1. Type of access, scope and default data management system on a subset of
storage resources that tend to be democratized on large-scale systems.

Access Scope Data manager

Global storage system Mount point System-wide Parallel file-system
Node-local disk Mount point Node File-system
NVDIMM - FSDAX Mount point Node DAX-enabled file-system
NVDIMM - DEVDAX Direct access Node Raw persistent memory
Burst buffer Middleware Job (Parallel) file-system
Network-attached storage API Node(s) Raw storage space

to get access exclusively to compute nodes (usually though a job scheduler),
the allocation of those intermediate levels of storage remains minor in practice
and often limited to homogeneous resources. In order to use these new levels of
storage to their full potential, new allocation techniques must be invented and
deployed on supercomputers.

The development of such solutions would, however, require access to interme-
diate storage resources with enough rights to repurpose them, which is usually
not possible on deployed infrastructures for various reasons such as security or
maintenance efforts. In addition, such experimentation can easily disrupt other
users’ workloads on production systems. An alternative approach is to use sim-
ulations as a way to reproduce with a certain degree of accuracy the behavior of
a system with a very low footprint. While experiments on real systems would be
limited to the embedded technologies, a simulator can also evaluate new types
of architectures combining existing and emerging storage tiers, for example to
make decisions about their sizing or their design. Several simulators already exist
for scheduling jobs on compute nodes or for optimizing I/O, yet very few has
been done to model and allocate storage resources. Therefore, in this paper,
we propose StorAlloc, a simulator of a storage-aware job scheduler whose main
objective is to explore heterogeneous storage resource allocation on supercom-
puters.

3 Related Work

To the best of our knowledge, there is no tool whose goal is to simulate the
scheduling of jobs on heterogeneous storage resources of a supercomputer. Sim-
ulators allowing to play or replay the execution of parallel and distributed appli-
cations on HPC systems exist and have been studied for many years. However, it
is the computational aspect that is essentially addressed. SimGrid [4], for exam-
ple, is a powerful framework for simulating the scheduling and execution of a
large number of applications on real or made-up infrastructure models. The I/O
aspect is limited to simulating data movement but, although preliminary work
was started a few years ago [11], storage resource allocation is absent from the
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framework. A few SimGrid derived simulators also have job scheduling oriented
approaches. This is the case of batsim [7] or Wrench [5] for example. However,
the full support of heterogeneous storage levels as allocatable resources is not
implemented (disk capacity is not modeled in batsim for example). Another dif-
ference between these solutions and StorAlloc concerns the design of the tool as
described in Sect. 4. StorAlloc has all its components decoupled. Therefore, the
servers can be distributed on multiple nodes while the simulator component can
be disabled to turn StorAlloc into a real storage-aware job scheduler.

The world of Cloud Computing is more familiar with the allocation of storage
tiers as well as compute or network resources. Work has been done to simulate the
allocation of resources between different users [3,13] in virtualized environment
but these works are outdated and have very limited storage support.

Finally, models for partitioning and sizing intermediate storage resources
such as burst buffers have been studied [2,14]. These techniques are the basis of
storage-aware job scheduling algorithms that could be evaluated in our simulator.

4 Architecture

StorAlloc is a tool able to simulate the scheduling of I/O-intensive jobs on het-
erogeneous storage resources available on a HPC system. In this section, we
present its design and discuss implementation choices.

The objective of StorAlloc is to provide a simple way to develop and eval-
uate storage-aware job scheduling algorithms targeting heterogeneous storage
resources (any kind of disk-based storage can be described). Therefore, StorAl-
loc has been designed following the basic principles of a job scheduler, i.e. a
middleware allowing clients to request resources available on a supercomputer.
Extending from the original architecture, we added the ability to run it as a
simulator, using a single code base.

Fig. 1. StorAlloc Architecture
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StorAlloc’s design is based on the composability of several components, which
can be run together and extended in order to provide the desired behavior.
Figure 1 depicts the components already implemented and how they fit together.
At the core, one or multiple server and client agents are communicating through
a central orchestrator. The clients request storage allocations to the orchestrator
and expect connection settings to the newly allocated storage space in return.
The server components declare a pool of available resources under their responsi-
bility to the orchestrator and perform the storage management operations when
needed (partitioning, rights granting, exposure on the network, releasing). In
between, the orchestrator handles routing messages between components, keeps
track of running and pending allocations and hosts the scheduler process.

In addition to these core components, we have extended StorAlloc with two
simulation units (client and server), a visualisation server for real time plotting
during simulation and an external log aggregator. The architecture of the tool
makes it possible to add additional elements if necessary. All of these components
are interconnected using a message-based protocol we have defined. They can be
deployed across a set of hosts, or run on a single machine. While the former case
is intended to properly map clients and servers onto an actual HPC platform,
the latter is sufficient for simulations. The current design only allows for one
orchestrator component to be running at any time. This constraint creates a
single point of failure when deployed as a middleware in a production setting,
and will be addressed in further developments.

In the following sections, we detail design choices for StorAlloc. In particular,
we explain the general functioning of the scheduler, a central component in our
simulator. Then we describe the storage abstraction layer used to characterize
the pool of resources. In Sect. 4.3, we present the simulation capability with a
focus on the real-time collection of scheduling data. We end this section with
some technical considerations about StorAlloc.

4.1 Scheduling of Storage Requests

We define a storage request as a triple consisting of a capacity in GB, an alloca-
tion time in minutes and a submission time in a datetime format. The scheduling
of storage requests takes place in a scheduler sub-component of the orchestrator,
as depicted in Fig. 1. This sub-component receives requests through messages
from clients and process them asynchronously in the receiving order. The sched-
uler has access to both the entire list of available storage resources and the list of
currently allocated requests. Any algorithm can thus make a resource allocation
decision backed by a full view of the platform state. So far, four naive algorithms
have been implemented in StorAlloc as listed below:

– random: storage resources are picked randomly with a chance of failure;
– round-robin: storage space is allocated in a round-robin manner;
– worst-fit : disks are filled until no more space is available;
– best-bandwidth: nodes and disks on nodes are selected according to the best

remaining bandwidth, considering a permanent maximum I/O regime for the
existing allocations.
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At launch time, the scheduler chooses one of these algorithms through a user-
defined parameter. The scheduling algorithms share a common interface which
accepts a storage request and a list of available storage resources, and returns an
identifier for the resource(s) on which the desired storage space will be allocated.
A request can also be refused (no space left for instance). In this case, we assume
that the job falls back to a traditional parallel file-system, instead of using the
intermediate storage tiers available through StorAlloc.

The scheduling of storage requests can also be adjusted by leveraging two
strategies presented in Table 2. They are meant to help allocate requests when
resources are constrained. The impact of these strategies, independent of the
scheduling algorithms, is evaluated in Sect. 5. Again, we make the assumption
that in case of (possibly repeated) allocation failures, I/O will be performed on
the global shared parallel file system.

Table 2. Optional scheduling strategies

Default setting Comment

Split Threshold at 200 GB Split requests with capacity over threshold
and allocate the parts on multiples resources

Requeued 5 retries, one every 5 m Postpone starting time and retry a failed
allocation

4.2 Storage Abstraction

Because the available storage tiers can be extremely heterogeneous, an abstrac-
tion layer is needed to allow scheduling algorithms to accommodate the variety
of technologies without needing to know the technical details of each level. In
StorAlloc, storage platforms are represented through a hierarchy of three objects:
servers, nodes and disks. Servers are top-level StorAlloc components which act
as an interface between the orchestrator and one or many storage nodes. Nodes
embed at least one disk. Nodes and disks may be of heterogeneous nature (num-
ber of disks, disk capacity, read and write bandwidth, node’s network band-
width). Whenever required by a parent server, a node should be able to setup
and expose a specific partition of their storage resources, whose ownership will
be transferred to a client. In simulation mode, servers passively accept requests
without taking any action, but we still ensure that any allocation would be legal
in terms of available resources.

It has to be noted that when defining a storage layout, we consider the
network to be flat. This is motivated by the fact that dynamic routing policies
are unpredictable, either because the vendor does not provide enough details
(such as on the Cray XC40 Theta platform which provided the input data used
in Sect. 5 [6]) or because there are too many factors involved in packet routing
decisions to be accurately modeled. Hence we only define the bandwidth at
the node and disk levels and let the scheduling algorithm model the impact of
concurrent allocations on these resources.
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4.3 Simulation

A longer-term goal of StorAlloc is to provide a single code base for a storage-
aware job scheduler and its simulator. Therefore, we have designed our simulation
server with a “component in the middle” approach. The core components run as if
they were actually deployed on a real system except that, if the simulation mode
is enabled, the requests are rerouted to the simulation server which stacks them
until a specific message triggers the actual execution of the simulation. Then,
the simulation is unrolled and go through the scheduler, using a discrete event
simulation (DES) model [8]. During that phase, data measuring the impact of
scheduling is collected and feeds a visualization server in real-time. In particular,
we measure the following indicators:

– Total allocated (and deallocated) volume.
– Mean and max number of simultaneously allocated requests (global, per node

and per disk).
– Mean and max percentage of non-free disk space for each disk over the sim-

ulation.
– Number of requeued requests and total delay time during the simulation.
– Number of split requests if any.
– Request’s status: allocated or refused.

4.4 Implementation Details

The proof of concept presented in this paper is implemented using Python3.
Our messaging protocol relies on ZeroMQ, while the DES model used for the
simulation comes from the SimPy library1. The source code of StorAlloc can be
found at https://github.com/hephtaicie/storalloc.

5 Evaluation

In this section, we evaluate the benefits of our simulator to assess storage-aware
job scheduling algorithms on heterogeneous resources. To do so, we run multiple
configurations and show their impact on the storage tiers thanks to metrics we
have defined.

5.1 Simulation Setup

To simulate storage requests from clients representative of real applications, we
used a dataset composed of one year of a Darshan2 logs on Theta, a 11.7 PFlops

1 Resp. https://zeromq.org/ and https://simpy.readthedocs.io/en/latest/.
2 Darshan is a popular I/O monitoring tool. https://www.mcs.anl.gov/research/

projects/darshan/.

https://github.com/hephtaicie/storalloc
https://zeromq.org/
https://simpy.readthedocs.io/en/latest/
https://www.mcs.anl.gov/research/projects/darshan/
https://www.mcs.anl.gov/research/projects/darshan/
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Cray XC40 supercomputer at Argonne National Laboratory3. We extracted from
these traces jobs spending at least 10% of their run time doing IO, and reading
or writing at least 10 GB of data. It resulted in about 24 000 jobs out of approx-
imately 624 000 jobs, each one translating into a storage request in StorAlloc:
the requested capacity is based on the maximum of either read or write volume
while the allocation time uses the initial job duration.

In order to have a good overview of what can be observed with our simulator,
we have run 192 different simulation setups based on the settings presented in
Table 3. The average simulation time is around 25 m 48 s per run, in a range of
[5 m 40 s; 1 h 29 m 57 s] on a single core of a Intel Core i7-1185G7 processor.
This variability is due to the difference in complexity of the algorithms and the
activation or not of the requeuing and splitting systems.

Table 3. Simulation settings

Settings Tested values Comment

Algorithm Random, round-robin worst-fit,
best-bandwidth

See Sect. 4.1

Total capacity 8 TB, 16 TB, 64 TB Disk sizes are 1, 2 and 8
TB respectively

Storage Layout Single node, single disk (1N1D)
Single node, multi disks (1NnD)
Multi nodes, single disk (nN1D)
Multi nodes, multi disks (nNnD)

1N1D serves as baseline

Requeued Enabled or disabled When enabled, new
attempts every 5 m, until
a 60 m delay

Split 200 GB or disabled When disabled, some
requests will be too large
for any of the disks

5.2 Analysis

We present here results plotted from StorAlloc simulation data. From these fig-
ures, we can conclude on an approximation of a right sizing of the platform and
we can compare the efficiency of the tested scheduling algorithms. For this anal-
ysis, platforms and algorithms have been chosen to reflect a variety of behavior.

Platform Sizing. In our dataset, the sum of all the storage capacities requested
by clients, called sum_cap, reaches 1.6 PB. In Fig. 2, we plot the percentage of

3 This data was generated from resources of the Argonne Leadership Computing Facil-
ity, which is a DOE Office of Science User Facility supported under Contract DE-
AC02-06CH11357.
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Fig. 2. Percentage of sum_cap (sum of the requested capacities in the entire dataset)
per simulation run, grouped by capacity and split strategy.

this value achieved by each of the 192 runs of our simulation according to storage
layouts and algorithms, grouped by platform capacity and split strategy.

On the top row (no request split), only the 1N1D layout at 64 TB capac-
ity reaches 100% of sum_cap. However this layout is merely a baseline which
shouldn’t be used, as it leads to a high concurrency and consequently a very low
node bandwidth. From this result, we can also conclude that never more than
64 TB are needed at the same time in our dataset. This information must be
balanced by the fact that we exclude from Theta’s traces several hundreds of
thousands of jobs that we do not consider I/O intensive. The best results with
other layouts peak slightly above 60%, which hints towards an underprovisioning
of storage resources. The bottom row depicts the same analysis with requests
split in chunks of 200 GB. We see that all layouts reach a 100% of sum_cap at
least once for 64 TB. More generally, the splitting of requests allows a better
use of resources and requires less storage space (the 16 TB platform reaches 90%
of sum_cap for half of the runs). These results give little information, however,
about the use of the disks composing the modeled platform.

Figure 3 proposes to study this. Here, we plot the maximum disk utilization,
called max_disk_use, for both 16 TB and 64 TB infrastructures (excluding
1N1D layout). As expected, the disk utilization rate correlates with the ability
to absorb split requests for storage space (Fig. 2). Nevertheless it is possible to
quantify a potential underutilization, as seen for the 64 TB platform where no
more than 65% of disk capacity is ever used. The worst-fit algorithm is specifi-
cally intended for maximising the use of a single disk from a single node, which
explains that it reaches 100% of max_disk_use for several disks.

This first analysis shows that a platform slightly larger than 16 TB can
handle all the I/O intensive jobs in our dataset, as long as the requests are split
into 200 GB blocks. In that case, the targeted disks are mostly used at their
full capacity at least once, leaving little flexibility in case of a sudden overload,
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Fig. 3. Maximum disk capacity utilisation (% of capacity), for 16 TB and 64 TB
platforms with request split threshold at 200G. The 1N1D layout has been removed.

while the average disk utilization rate is however very low (2.82%), which is
explained by the sparsity of the jobs studied spread over a whole year. Finally,
the different layouts tested (1NnD, nN1D, nNnD) behave in much the same
way. Nevertheless, they have an impact on the available aggregated bandwidth
as long as the scheduling algorithms can efficiently take advantage of the storage
disaggregation, as shown in the rest of this paper.

Scheduling Algorithms Comparison. We have implemented four different
storage-aware job scheduling algorithms in StorAlloc, as described in Sect. 4.1.
To evaluate their efficiency, we propose to define a fairness metric that looks at
the maximum and average number of concurrent allocations per disk allocated
by each algorithm. This metric provides information on the balancing of the dis-
tribution of requests (split or not) and consequently on the potential bandwidth
available for the allocations: in a permanent maximum I/O regime hypothesis
(all jobs with continuous I/O operations), the less allocations are concurrent on
resources, the more bandwidth will be available.

Figure 4 depicts this fairness for our four algorithms. First, we can see that
the general variability (standard deviation) in both the mean and max num-
bers of allocations per disk are lower for round-robin and best-bandwidth than
for random and worst-fit. As expected, worst-fit stands out, as its design clearly
goes against fairness. We also observe that round-robin and best-bandwidth have
quite similar fairness, with a slight advantage to best-bandwidth. This latter is
the most advanced algorithm as it takes into account existing allocations on disks
to make a decision. In terms of maximum number of allocations per disk, best-
bandwidth is the most stable, and also usually leads to the smallest maximums.
In other words, this algorithm can be expected to provide the best average band-
width to jobs in the permanent regime case. Best-bandwidth behaves better than
round-robin which, under the same conditions, tends to show more irregularities.
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Fig. 4. Mean (top) and max (bottom) number of allocations per disk, grouped by
algorithms, for 16 TB platform and split strategy. Storage layout 1N1D excluded. Dots
plot the mean and max number of allocations of each disk separately.

Finally, we can see the impact of a queuing system on the number of allocations,
i.e. fewer jobs are refused and have to fall back on the parallel file system.

6 Conclusion

In this paper, we have introduced StorAlloc, a DES-based simulator used to
explore the scheduling of I/O intensive jobs on heterogeneous storage resources
distributed across a HPC system. We have detailed its extensible design and con-
figuration settings for modeling storage infrastructures and implementing various
scheduling strategies. Our evaluation demonstrated how StorAlloc can ingest a
large number of allocation requests generated from production traces and output
storage-related metrics which provide valuable insights for storage platform siz-
ing and scheduling algorithms evaluation. Building upon this preliminary work,
we plan to extend this experimental campaign to more metrics, infrastructures
and storage-aware scheduling algorithms. Another direction we want to take is to
evaluate the benefits we could get from simulation frameworks such as Wrench [5]
for the implementation of our simulation component. Finally, a longer term goal
will be to explore how to combine computing and storage resources within the
same request and provide suitable scheduling algorithms.
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Abstract. In this paper, we perform an extensive benchmarking and
analysis of the performance and scalability of our software tool called
CFD suite, which implements the AI-based domain-specific method for
accelerating CFD (computation fluid dynamic) simulations proposed by
us recently. By exploring various computing platforms containing both
CPUs and GPUs, this analysis helps select suitable platforms for train-
ing and inference stages across heterogeneous execution environments.
We propose and investigate two modes of utilizing the proposed decom-
position of the AI model at the inference stage – either by calling each
sub-model one by one (on GPUs) with reduced memory requirements
or by performing pipeline predictions (on CPUs with large RAM) to
improve the overall performance. It is shown that for the whole inference
stage (including overheads), due to the pipeline execution and excluding
overheads for data transfers through PCIe, the speedup provided by two
Intel Xeon Gold CPUs (Skylake) is 2.4 times higher than for V100 GPU.

Keywords: AI-accelerated HPC · CPU/GPU/cluster computing ·
chemical mixing · CFD · OpenFOAM · performance · scalability

1 Introduction

Machine learning (ML) and artificial intelligence (AI) methods have become
pervasive in recent years due to numerous algorithmic advances, and the acces-
sibility of computational power [1]. In computational fluid dynamics (CFD) [21],
these methods have been used to replace, accelerate or enhance existing solvers
[13,22]. This work focuses on the AI-based acceleration of CFD tools used for
chemical mixing simulations.

Chemical mixing [5] is a critical process used in various industries, such as
pharmaceutical, cosmetic, food, mineral, and plastic ones. It can include dry
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blending, emulsification, particle size reduction, paste mixing, and homogeniza-
tion to achieve the desired custom blend [5]. Recently we have proposed [20]
the domain-specific method for accelerating CFD simulations by integrating the
conventional CFD solver with AI models. The proposed workflow embraces the
stirred tank mixing analysis tool called MixIT [10]. This tool utilizes the Open-
FOAM toolbox [14] for meshing, simulation, and data generation allowing users
to design, simulate and visualize phenomena of chemical mixing. MixIT provides
geometry creation and performs 3D CFD simulations for stirred reactors, includ-
ing tracer simulations and heat transfer analysis. Moreover, it allows users to get
performance parameters: intensity, power per unit volume, blend time, critical
suspension speed, gas hold-up, and mass transfer coefficients.

The goal is to provide an interaction between AI models and an OpenFOAM-
based solver for much faster analysis. The scope of our research includes steady-
state simulations, using an iterative scheme to progress to convergence. Steady-
state models perform a mass and energy balance of a process in an equilibrium
state, independent of time [3]. Our method is responsible for predicting the
convergence state with the AI models based on a few initial iterations generated
by the CFD solver. The time-to-solution is significantly reduced since we do
not need to calculate intermediate iterations to produce the final result. The
proposed approach makes it possible to run many more experiments and better
explore the design space before decisions are made.

The contributions of this work are as follows:

– We provide an extensive benchmarking and analysis of the performance and
scalability of our software tool called CFD suite, which implements the AI-
based domain-specific method for accelerating CFD simulations proposed by
us recently. By exploring various computing platforms containing both CPUs
and GPUs, this analysis helps select suitable platforms for training and infer-
ence stages across heterogeneous execution environments.

– We propose and explore two modes of utilizing the proposed decomposition of
the AI model at the inference stage - either by calling each sub-model one by
one (on GPUs) with reduced memory requirements or by performing pipeline
predictions (on CPUs with large RAM) to improve the performance.

– We show that CFD Suite is a scalable solution as we observe a stable efficiency
when parallelizing the training process across cluster nodes (up to 64 nodes
with 12-cores each). At the same time, for the whole inference stage (including
overheads), due to the pipeline execution and excluding overheads for data
transfers through PCIe, the speedup provided by two Gold CPUs is 2.4 times
higher than for V100 GPU, and even for the desktop Core-i7 CPU, it is 1.47
times higher.

2 Related Work

Accelerating CFD simulations is an established problem in many domains, from
industrial applications to fluid effects for computer graphics and animation.
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Many works are focused on the adaptation of CFD codes to hardware archi-
tectures [21] exploring modern compute accelerators such as GPUs [12,17], Intel
Xeon Phi [24] or FPGAs [19]. Developing a simulator can require years of engi-
neering effort and often must trade off generality for accuracy in a given range
of settings. Among the main disadvantages of such adaptations are the require-
ments for in-depth knowledge about complex CFD codes and the expensive and
long-term process of providing portability across new hardware platforms. At the
same time, relatively low-performance improvements against the original CFD
solver are achieved. In many cases, only a small kernel of the solver is optimized.

Recent works [13,22] have addressed the increasing computation demand of
CFD simulations by implementing generalized AI models to simulate various use
cases. It gives the opportunity of achieving lower costs of experiments and faster
prototyping/parametrization. Modern AI frameworks support multiple comput-
ing platforms providing code portability with minimum additional effort. Most
related to this work, some authors have considered the fluid simulation process
as a supervised regression problem. In [7], the authors present a novel gener-
ative model to synthesize fluid simulations from a set of reduced parameters.
A convolutional neural network (CNN) is trained on a collection of discrete,
parameterizable fluid simulation velocity fields. In work [25], J. Thompson et
al. propose a data-driven approach using a CNN that leverages the approxima-
tion of deep learning to obtain fast and highly realistic simulations. The authors
rephrase the learning task as an unsupervised learning problem. Work [8] intro-
duces an ML framework for the acceleration of Reynolds-averaged Navier-Stokes
modeling to predict steady-state turbulent eddy viscosities, given the initial con-
ditions. In [23], the authors present a general framework for learning simulation
and give a single model implementation that yields state-of-the-art performance
across a variety of challenging physical domains.

Our method for AI-accelerated CFD simulations is based on utilizing a
set of sub-models that are separately trained for each simulated quantity.
This approach allows us to reduce memory requirements and operate on large
CFD meshes. The proposed approach provides a low entry barrier for future
researchers since the method can be easily tuned when the CFD solver evolves.

As the number of hardware and software systems for performing ML/AI
computation increase so does the need for comprehensive performance analy-
sis and benchmarking [9]. At the moment, the leading industry benchmark for
ML/AI performance is MLperf [11]. The idea was [15] to allow decision-makers
to determine what devices (from mobile devices to datacenter systems) to use for
ML, for both training and inference [9,16]. MLPerf Training [11] consists of eight
workloads covering a broad diversity of use cases, including vision, language, rec-
ommenders, and reinforcement learning. MLPerf Inference tests use seven cases
across different kinds of neural networks - three use cases for computer vision,
one for recommender systems, two for language processing, and one for medical
imaging. Apart from difficulties with providing results obtained with MLPerf to
be comparable [15], this benchmark does not cover an increasingly important
domain of using ML/AI to accelerate key high-performance scientific computing
problems such as CFD simulations.
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Fig. 1. AI-accelerated simulation (b) versus conventional non-AI approach (a)

3 AI-Based Acceleration of CFD Simulations
for Chemical Mixing Using CFD Suite

The chemical mixing simulation is based on the standard k-ε model. The goal
is to compute the converged state of the liquid mixture in a tank equipped
with a single impeller. The simulation generates a set of quantities, including
the velocity vector field U , pressure scalar field p, turbulent kinetic energy k of
the substance, turbulent dynamic viscosity mut, and turbulent kinetic energy
dissipation rate ε.

The OpenFOAM meshing tool snappyHexMesh is responsible for generating
3D meshes for considered domains. The conventional modeling with OpenFOAM
involves several steps (Fig. 1a). The first step includes pre-processing, where the
geometry and meshing are created. The next step is the simulation itself. It
is the part that we mainly focus on in this paper by developing the AI-based
acceleration. The third step is post-processing (visualization, result analysis).

The proposed method of acceleration [20] belongs to the group of data-driven
methods where we use partial results returned by the CFD solver. Figure 1b
presents the general scheme of the AI-accelerated simulation versus the conven-
tional non-AI simulation. It includes the initial iterations computed by the CFD
solver and the AI-accelerated part executed by the proposed AI module called
CFD Suite. The CFD solver produces results sequentially iteration by iteration.
The proposed method takes the results of initial iterations computed by this
solver as input, sends them to the AI module, and generates the final results of
the simulation. The AI module consists of three stages: (i) data formatting and
normalization, (ii) prediction with AI model (inference), and (iii) data export.

The neural networks used in our AI models are based on the ResNet network
[4] organized as residual blocks where each layer feeds into the next layer and
directly into the layers about two hops away. To handle large meshes (about 1
million cells), we have to reduce the original ResNet network to 8–16 layers.

Pipeline Execution for AI Sub-models: Our AI model is responsible for get-
ting results from 24 iterations (iterations 20, 40, 60, ..., 480) as the input, feeding
the network, and returning the final results. The number of required input itera-
tions is estimated experimentally by searching the lowest value that allows us to
achieve an accuracy of at least 90%. Using 3D meshes, we simulate five quantities
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Fig. 2. Pipeline mode of executing CFD Suite

taken as the input and returned as the simulation output. For each quantity, we
create a sub-model that predicts the results independently.

The proposed method is used in two scenarios (modes). The first one predicts
the results by calling each sub-model one by one and allows us to reduce mem-
ory requirements. In the second scenario, we perform pipeline predictions for
considered quantities to improve the overall performance. The created pipelines
simultaneously call all sub-models, where each quantity is predicted indepen-
dently (Fig. 2). Thus, our method is suitable both for GPU platforms to be
executed in the one-by-one mode and CPU platforms with large RAM to be
implemented in the pipeline mode.

Accuracy Analysis: Before exploring the performance, it is necessary to verify
the accuracy of AI-accelerated simulations using the CFD suite. The selected
scenario for chemical mixing includes the simulation of mixing the liquid mixture
in a tank equipped with a single impeller and a set of baffles. For a 3D mesh
with 40000 cells, 5000 iterations are required to converge into a final state.

We compare the simulation results for the converged state achieved with
the OpenFOAM toolbox and our AI-based method. The outcomes calculated
by MixIT include velocity magnitude, pressure torque, kinetic energy k, kinetic
energy dissipation rate (ε), and dynamic viscosity mut. The observed deviation
of results for the AI-based approach from the conventional CFD solver results
is from 0.16% for the velocity magnitude to 1.5% for the parameter k. Results
generated by both approaches are also compared using statistical metrics such as

Table 1. Statistical metrics of accuracy

Quantity Pearson’s corr. Spearman’s corr. RMSE Histogram equal. [%]

Velocity magnitude 0.990 0.935 0.016 89.1

Pressure torque 0.993 0.929 0.004 90.1

k 0.943 0.934 0.035 99.4

ε 0.983 0.973 0.023 90.3

mut 0.937 0.919 0.147 93.5

Average 0.969 0.938 0.045 92.5
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Pearson’s and Spearman’s correlations, the Root Mean Square Error (RMSE),
and the histogram equalization (Table 1). The average accuracy estimated across
all simulated quantities based on the histogram equalization is 92%. Both Pear-
son’s and Spearman’s correlation factors are above 0.9 on average. These values
show a high linear correlation and a monotonic relationship between the results
obtained by the OpenFOAM solver and predicted using AI.

4 Methodology of Benchmarking and Analysis

4.1 Hardware and Software Environments

The CFD Suite performance is explored using the following computing platforms:

1. A single HPC node: two 20-core Intel Xeon Gold 6148 CPUs (Skylake archi-
tecture) clocked at 2.40 GHz and 2xNvidia V100 GPUs equipped with 16 GB
of HBM and 400 GB of the host memory (abbreviated as Gold in case of
CPU tests and V100 in case of GPU tests, respectively).

2. Intel CPU-only HPC cluster, BEM supercomputer [2] equipped with 12-core
Intel Xeon E5-2670 v3 CPUs (Haswell) clocked at 2.30 GHz (abbreviated as
BEM for cluster and E5-2670 or E5 for a single node).

3. Desktop platform with 4-core Intel Core i7-3770 CPU (Ivy Bridge architec-
ture) clocked at 3.40 GHz (abbreviated Core-i7 or i7) with Nvidia GeForce
GTX TITAN GPU (abbreviated TITAN) and 48 GB of host memory.

The software environment includes a set of the following tools: Python v3.8.2,
TensorFlow v2.4.1, Horovod v0.21.3, OpenVINO v2021.2.200, NVIDIA Cuda
v10.1, and cuDNN v7.6.5. The OpenVINO toolkit [18] is used to accelerate AI
workloads for the inference part on CPUs, where the simulation is accelerated
with the AI predictions. The Horovod framework [6] makes possible the dis-
tributed training across multiple GPUs and cluster nodes.

4.2 Benchmarking Scenarios

Training: Two configurations are used for benchmarking. The first one includes
training AI models for a mesh with 400 cells (small mesh) and the second one is
based on a mesh with 40000 cells (big mesh). The aim is to explore how scalable
the training is for a relatively small dataset and how the training process is adapt-
able to the cluster platform with bigger meshes. The single-precision floating-
point format FP32 is used for training (and then inferencing). The following
benchmarking scenarios are explored: (i) validating performance improvements
due to optimizing data access to the training dataset; (ii) exploring the scalabil-
ity of the training module based on the Horovod distributed parallelization; (iii)
performance comparison of training across the tested platforms.
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Inferencing: The AI-accelerated simulation that uses inferencing with trained
AI models is composed of a set of steps. First, we need to execute 10% of the
conventional CFD solver. Then the remaining 90% are predicted by CFD Suite
using the following steps: (i) data import from the conventional CFD solver, (ii)
data normalization, (iii) inferencing with AI models, that is where we leverage
trained AI models, and (iv) data export to the conventional solver format so
that we output results ready for the analysis by existing CAE tools. When
benchmarking inference, we utilize the mesh with 1,000,000 cells (relevant trained
AI models are used).

5 Performance and Scalability Analysis: Training

Performance Improvements Due to Optimizing Data Access to the
Training Dataset: Benchmarking the training stage includes three quantities,
where the first and third represent scalar quantities (pressure – model1, turbu-
lent kinetic energy – model3), while model2 corresponds to a vector quantity -
velocity (only the big mesh configuration is considered). In this test, two versions
are compared; (i) with data loaded from the disk to reduce as much as possi-
ble the host memory requirements, and (ii) the optimized version, where the
data are stored in thread-safe structures in the host memory. This benchmark
is executed using a single BEM node. Table 2 shows the normalized execution
time for both versions and the achieved speedup. It can be concluded that the
second version allows us to reduce the execution time by a factor of 1.5. Thus,
the remaining experiments are based on the optimized version of the CFD Suite.

Scalability of Training Using the Horovod Distributed Parallelization:
The results of these benchmarking scenarios executed on the BEM cluster are
shown in Fig. 3 for both small and big mesh configurations.

For the small mesh, in spite of using the Infiniband FDR interconnect we
observe the high negative impact of inter-nodes communications on the perfor-
mance for more than 8 nodes. At the same time, a super efficiency with the
speedup exceeding the number of nodes is observed in one case (8 nodes for
model2). We conclude that there is not enough computation to saturate the
platform and the cluster interconnect limits the scalability for small meshes.

For the big mesh, the execution time is reduced by a factor of 48 for 64
nodes. We can observe a stable efficiency of parallelization (>90% up to 8 nodes,

Table 2. Time normalized between 0 and 1 for training the models with datasets
stored in hard disk and RAM with the corresponding speedup

model1 model2 model3

Loading from disk 0.98 1.00 0.96
Loading from RAM 0.62 0.64 0.63
Speedup 1.56 1.57 1.52
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Table 3. Execution time of training models on different compute platforms

Device #devices tasks model1 [s] model2 [s] model3 [s]

Xeon E5-2670 1 12 1312.60 1324.13 1437.99
Xeon E5-2670 2 24 679.48 694.70 771.08
Xeon E5-2670 4 48 358.69 346.82 379.13
Xeon E5-2670 8 96 179.13 180.27 193.72
Xeon E5-2670 16 192 100.37 100.86 108.71
Xeon E5-2670 32 384 54.74 55.96 58.42
Xeon E5-2670 64 768 30.94 30.48 32.15
GeForce GTX TITAN 1 1 241.30 241.30 294.18
Tesla V100 1 1 209.68 210.29 255.81
Xeon Gold 6148 1 20 1108.96 1109.45 1193.04
Tesla V100 2 2 127.90 130.38 156.81
Xeon Gold 6148 2 40 991.91 991.71 1101.05

and ≈70% up to 64 nodes). The second model, which is the most compute-
intensive since it feeds the neural network with the vector quantity, achieves the
best efficiency, confirming that the more compute-intensive model, the better
scalability is achieved. Thus, the Horovod-based implementation is well scalable
for distributed training, being practical enough for our models on mesh sizes of
at least 40000 cells.

Performance Comparison of Training Across Various Computing Plat-
forms: Table 3 shows the execution time of training for the tested platforms,
including both single- and dual-socket configurations with CPUs and GPUs, as
well as CPU cluster. The achieved performance is also visualized in Fig. 4.

Typically, conventional CFD solvers belong to the group of memory-bound
algorithms [21]. There is a relatively enormous amount of data for AI-based
acceleration to feed the AI model. It enforces reduced model structures to make it

Fig. 3. Speedup of training on the BEM cluster using from 1 to 64 nodes
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Fig. 4. Performance comparison across the cluster with 12–768 cores of E5-2670 v3
CPUs, GeForce GTX TITAN GPU, one and two NVIDIA Tesla V100 GPUs, one and
two Intel Xeon Gold CPUs with 20 and 40 cores, respectively

possible to feed the neural network. Consequently, we have a lot of data processed
by a relatively small network (up to 16 layers). As a result, there is no expected
speedup across a single node when using two Gold CPUs (40 cores) instead of
one CPU with 20 cores (speedup by a factor of about 1.1 times). The reason is
that the training is not compute-intensive enough. Also, no significant difference
is observed between a single V100 GPU and a single TITAN graphics card.

The performance improvement is much more promising in the case of dis-
tributed training on two V100 GPUs instead of a single one, and the BEM
cluster with up to 64 nodes. The cluster implementation based on the Horovod
framework allows us to overtake the performance of a single V100 GPU using
8 cluster nodes while using 16 nodes outperforms two V100 GPUs by a factor
of 1.3. By comparing the results achieved for a single Intel Gold processor and
a single cluster node (single E5-2670 v3 CPU), we can estimate that it is very
likely that a cluster with 8 Gold CPUs would allow us to achieve execution time
comparable to the time obtained on two V100 GPUs.

6 Performance Analysis: Inference

Table 4 presents the analysis of the AI-accelerated simulation across all steps
fixed in Sect. 4.2. In the table, the total time of executing all steps required to
predict results with AI models is included in the row named “CFD Suite”, while
the last row shows the total time of performing the AI-accelerated simulation.

First, we compare the performance (Fig. 5) of different computing platforms
for the inference stage only - without any overhead related to data formatting
(“Inferencing” row in Table 4). Also, the time of inferencing with the TensorFlow
framework and inferencing optimized by the OpenVINO tool are compared.
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Fig. 5. Inferencing time of CFD Suite across different compute platforms

The OpenVINO framework allows reducing the execution time on CPUs up
to 1.36 times, with a negligible improvement for the Intel Xeon Gold proces-
sors. CFD Suite uses a relatively small number of layers (up to 16), so there is
a limited possibility to optimize the network by OpenVINO. The overall infer-
ence process within CFD Suite consists of a set of sub-model inferences that are
pipelined across the CPU cores or executed one by one on the GPU with par-
allelization provided by cuDNN. Moreover, inferencing performed on the GPU
has a much higher overhead than on the CPU. The overhead is related to the
memory allocation and data transfers through PCIe from the host to the GPU
global memory. As a result, GPU reaches a significantly lower performance for
inferencing itself (without overheads), which is performed up to 9.5 times faster
on two Intel Gold CPUs (CFD Suite optimized with OpenVINO) than on V100
GPU.

The performance analysis of inference across various platforms is summa-
rized in Table 5 showing two kinds of achieved speedups. The first one (row “a”)
is the ratio of the time required for executing 90% of OpenFOAM iterations (per-
formed on a CPU) to the time of inference, including overheads - data import,
normalization, and data export. The second kind (row “b”) compares the time
of the conventional OpenFOAM simulation with the total time required by the

Table 4. Step-by-step analysis of the AI-accelerated simulation

Device Core-i7 Core-i7 2xGold 2xGold 2xE5 TITAN V100

Framework TF OV TF OV TF TF TF

Data import [s] 25.29 25.48 22.42 22.87 40.78 25.32 22.21

Data norm. [s] 81.59 81.6 64.03 64 230.18 81.6 66.24

Inferencing [s] 97.41 71.1 19.66 18.91 39.39 164.38 180.31

Data export [s] 10.68 10.69 9.58 9.56 16.16 10.69 9.51

CFD Suite [s] 214.97 188.87 115.7 115.34 326.52 281.98 278.27

OpenFOAM+CFD Suite [s] 1639.09 1613 1539.82 1539.47 1750.64 1706.1 1702.39
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Table 5. Speedup for (a) generating the steady-state with CFD Suite based on the
initial 10% of OpenFOAM iterations versus using 90% of OpenFOAM iterations; (b)
AI-accelerated simulation against conventional OpenFOAM simulation.

Device Core-i7 Core-i7 2xGold 2xE5 TITAN V100

Framework TF OV TF TF TF TF
a) 59.62 67.86 110.78 39.25 45.45 46.06
b) 8.69 8.83 9.25 8.13 8.35 8.37

AI-accelerated simulation. In particular, we conclude that on two Intel Gold
CPUs, 90% of the OpenFOAM iterations are predicted about 110 times faster,
while the entire simulation is executed 9.25 times faster.

Considerable interest represents the comparison of performance for CPUs
and GPUs. All CPU-based configurations (except E5 CPUs) outperform GPU-
based ones. In particular, regarding the execution of 90% iterations (row “a”),
the speedup provided by two Gold CPUs is 2.4 times higher than for V100 GPU
(even for Core-i7 with OpenVINO it is 1.47 times higher). This advantage is not
so impressive for the whole simulation, but still, two Gold CPUs yield a speedup
of about 1.1 times higher than V100.

7 Conclusions

The proposed AI-based method and its implementation by CFD Suite allow us
to reduce the execution time of conventional OpenFOAM solver by a factor of 9
times and keep the accuracy at the level of at least 90%. The proposed tool can
be used as an add-on to existing CAE/CFD environments, and its integration
is a straightforward process.

CFD Suite is a scalable solution. We observe a stable efficiency when par-
allelizing training across cluster nodes - up to 64 nodes (12-cores each). It is
shown that eight nodes of the tested HPC cluster are enough to overtake a sin-
gle V100 GPU for training. At the same time, due to the pipeline execution of
AI sub-models and excluding overheads for data transfers through PCIe, CPUs
achieve significantly higher performance for the inferencing stage. In particular,
inferencing itself (without overheads) is executed up to 9.5 times faster on two
Gold CPUs than on V100 GPU. For the whole inference stage (including over-
heads), the speedup for two Gold CPUs is 2.4 times higher than for V100 GPU,
and even for the desktop Core-i7 CPU, it is 1.47 times higher.
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Abstract. SYCL standard has been released with the conviction to
increase code portability in heterogeneous environments. On its side,
Intel has launched the oneAPI toolkit, which includes the Data Parallel
C++ language, the Intel implementation of SYCL. SYCL is designed to
use a single source code to target multiple accelerators, such as multi-core
CPUs, GPUs, or even FPGAs. Additionally, the C/C++ oneAPI com-
piler also supports OpenMP which also allows targeting CPU and GPU
devices. In this paper, a performance evaluation of SYCL and OpenMP
is carried out using the well-known, Non-negative Matrix Factoriza-
tion (NMF) algorithm. Three different NMF implementations (base-
line, SYCL and OpenMP) are developed to analyze the speedups on
both CPU and GPU devices. Experimental results show that while on
CPUs both programming models report almost the same performance,
on GPUs, SYCL slightly outperforms OpenMP counterpart.

Keywords: OpenMP · SYCL · DPC++ · oneAPI · Non-Matrix
Factorization · HPC

1 Introduction

Techniques related to machine learning have gained visibility because help to
discover non-trivial and useful patterns in data sets in diverse areas such as
genetics and genomics, consumption patterns, marketing and population opinion
through social networks. These aspects joined with the demand for applying
efficient computational techniques that accelerate the analysis of large volumes
of data, is still a current challenge.

Matrix factorization and clustering algorithms are one of the most popular
techniques in data science [14]. These methods allow to reduce the number of
dimensions, or simply reveal certain patterns to facilitate data interpretation.
Among them, the Non-negative Matrix Factorization (NMF) [3] can establish
a correlation in experimental datasets, it is considered to be one of the most
effective methods in biological disclosure. NMF’s use and popularity have been
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spread in recent years motivated by its incorporation in well-known Machine
Learning (ML) libraries, such as scikit-learn or pytorch. However, those libraries’
implementations suffer from heterogeneous computing exploitation in the first
case, while the pytorch’s works on GPUs, but is limited to the CUDA proprietary
software that constraints its adoption only on NVIDIA GPUs.

Facing that inconvenience, paradigms such as OpenCL, Kokkos or SYCL [20]
abstract the vendor language (e.g. CUDA or HIP) and offer a transparent lan-
guage targetable to any of those accelerators. However, while OpenCL was the
main solution for many years, others have come to overcome the disadvantages
of OpenCL. That is the case of SYCL, which could be considered the evolution
of OpenCL, greatly simplifying the coding task for different accelerators. On the
other way, traditional programming models, like OpenMP, have evolved from
targeting CPU parallelization to also giving GPU support in recent versions
with OpenMP offload.

This paper assesses a comparison of SYCL and OpenMP portability on CPU
and GPU devices using the well-known NMF algorithm. The recent appearance
of the oneAPI software suite allows this evaluation by using the Data Parallel
C++ (DPC++) compiler [19] which supports either OpenMP or SYCL pro-
gramming models.

The rest of the paper is organized as follows, Sect. 2 presents the new
oneAPI software suite. Section 3 introduces the NMF algorithm and its key
aspects. Section 4 contains the NMF implementations. Sections 5 and 6 focus
on the experimental aspects. Finally, Sect. 7 discusses the main contributions
and includes our remarks on this work.

2 Background and Related Work

Even though SYCL and OpenMP are cross-market specifications, not all the
compilers support both models or the OpenMP offload feature. The Intel
oneAPI, released in 2020, is one the market solution. It offers a unified pro-
gramming API for different devices such as CPUs, GPUs, FPGAs or other chips
developed to accelerate specific tasks. It is based both on a programming model
using libraries that hide the particularities of each hardware from the program-
mer’s point of view, as well as the so-called direct programming model supported
by the DPC++ [19] compiler with support for SYCL [10]. oneAPI consists of
a series of Toolkits for the specific application domain, which also includes the
specialized libraries such as oneMKL for linear algebra, oneDNN for deep learn-
ing environments, oneDAL for machine learning or oneVLP for video processing,
among others.

The novel Intel’s compilers DPC++ and ICX also support the OpenMP
5.0/5.1 [11] standards which include the offloading feature. In addition, one
of the advantage of using the DPC++ or ICX is the compatibility with the
optimized libraries as oneMKL.

Motivated by the recent release of oneAPI, we found a reduced number of
works in the literature coupled with the use of the suite. Most of them are
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related to the migration from CUDA to DPC++ such as the tsunami simula-
tion code easyWave [6] or the recent evaluation of the Intel’s compatibility tool
with DPC++ [4] through the well-known Rodinia benchmarks. Focusing on a
comparative analysis of programming models, the paper [2] evaluates different
competing programming frameworks such as OpenMP, CUDA, OpenCL, and
SYCL in the context of PLSSVM library. Among the main conclusions, we can
summarise that there is no complete support of any framework for the acceler-
ators exploitation either because backends do not support all devices without
the corresponding root permissions or some manufacturers no longer provide offi-
cial support. Regarding portability aspects, Poenaru [17] compares the program-
ming paradigms of OpenMP, native CUDA/OpenCL against the most promising
alternatives such as SYCL and Kokkos targeting both CPUs and GPUs using
miniBUDE application, highlighting that higher-level frameworks such as SYCL
can achieve OpenMP levels of performance while aiding productivity.

3 Non-negative Factorization

Non-negative factorization (NMF) was first proposed by Paataro and Tapper in
1994 [16] which was called positive matrix factorization. Later, Lee and Seung [13]
promoted it. The NMF decomposition can be seen as

V ≈ WH, (1)

where V ∈ R+
m×n corresponds to a positive matrix with m variables and n

objects, W ∈ R+
m×k is the reduced k vector or factor, and H ∈ R+

k×n con-
tains the coefficients of linear combinations of the basis vectors. For the sake of
dimensional reduction of NMF, it is assumed that k � min(n,m).

Particularly, for gene expression, the matrix V represents an experimental
biological matrix with m genes and n experimental conditions. For a specific
level, k, H and W represent metagenes (semantic features) and metagene expres-
sion patterns (gene semantic features), respectively.

In Lee and Seung’s method, NMF repeatedly modifies W and H until their
product approximates V . Such modifications are derived from minimizing a cost
function that describes the distance between the product WH and V. For this
work we consider the well-known NMF factorization reformulated by Brunet et
al. [3] with the following update rules:

Hαμ ← Hαμ

∑
i WiαViμ/(WHiμ)

∑
k Wkα

(2)

Wiα ← Wiα

∑
μ HαμViμ/(WHiμ)

∑
ν Hαν

(3)

H and W are randomly generated, so this method does not always converge
to the same solution.
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4 NMF Code Implementation

In a first instance, matrices W and H are initialized with positive random values.
The number of iterations allows the matrix convergence at expense of a more
demanding execution time. Algorithm 1 shows the main NMF code excerpts
of each iteration of the refining process; although it is shown the necessary
operations for updating H according to Eq. 2, analogous operations are applied
to the W update.

Algorithm 1 NMF(V n×m, Wn×k, Hk×m, niters)
1: for iter ≤ niters do
2:
3: � Get H as H = H. ∗ (W ′ ∗ (V./(W ∗ H)))./x1

4:
5: wh = W ∗ H
6: wh = V./wh
7:
8: � Reduce to one column (x1)
9: x1 = repmat(sum(W, 1)′, 1, m)

10:
11: Haux = W ∗ wh
12: H = (H. ∗ Haux)./x1

13:
14: � Get W as W = W. ∗ ((V./(W ∗ H)) ∗ H ′)./x2

15: . . .
16: end for

As seen, the matrix multiplication is performed twice (lines 5 and 11) for
the computation of H. It is important to note that this operation is by far the
most time-consuming stage on NMF, so the usage of BLAS libraries is highly
recommended.

4.1 BLAS Baseline Implementation

The base version (coded in native C/C++) was optimized using the
BLAS library, specifically using the Single-precision GEneral Matrix Multiply
(SGEMM) operation. This implementation corresponds to the baseline version
used in the rest of this paper.

Profiling the NMF (see Fig. 1), it is noticeable that the matrix multiplication
takes most of the time. For this experiment, the V n×m size selected is 5000×1000
with a factorization factor of k = 4 and ten iterations before the testing conver-
gence. Regarding the non-optimized version, NMF takes 115 s, where the matrix
multiplications account for 87% of the time, the division 12.9% and the remain-
ing kernels 0.1%. On the contrary, the optimized version based on SGEMM
accomplishes the task in 22.5 s, achieving an overall speedup of 5.1×. After this



Performance Portability Assessment 243

optimization, it is important to note that the most time-consuming kernel is now
the point-by-point division (70%).

Fig. 1. NMF profiled time kernel by kernel. Non-optimized version (left bar) and a
BLAS optimized version (right bar).

4.2 SYCL Implementation

Concerning the SYCL implementation,1 it is pointing out that the oneMKL
library API also supports SYCL, so its adaptation is immediate. For the rest
of the kernels, it is necessary to rewrite the kernel code expressing the par-
allelism. Firstly, the basic data-parallelism is carried out with parallel for con-
structions. We would like to notice that meanwhile, this parallelism scheme could
achieve reasonable performance on a CPU, an important performance degrada-
tion has been observed on GPU devices, because the work-items do not coop-
erate, increasing the cache miss ratio and losing the data locality benefits in
accordance with those indicated in [19].

However, the nd range parallelism expression fits well on GPU, as several
parallelism levels are available on Intel’s GPUs: sub-slices, execution units (EU),
and SIMD Units. A single work-group is mapped to a sub-slice (group of EUs)
which allows sharing a cache memory and synchronization mechanisms. A single
work-item usually cooperates with its analogous as part of a SIMD lane (sub-
group) inside the EU. Hence, using this grade of parallelism to map the kernel
over the GPU hardware will greatly increase the performance achieved.

In our own developed SYCL version, the point-by-point division is imple-
mented using the nd range parallelism feature. Nevertheless, it is important to
take into account that the usage of nd range feature forces to fix the number

1 Available in: https://github.com/artecs-group/nmf-dpcpp.

https://github.com/artecs-group/nmf-dpcpp
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of work-groups as a multiple of the nd range parameter. To solve this aspect,
the V matrix size was artificially increased to the closest pow two value in the
same way that is performed in the padding technique for the memory alignment
access. It is worth mentioning that the overhead of this modification is negligible.

With regard to the reduction operation, the approach is based on the
nd range expression, taking advantage of the local shared memory and synchro-
nization mechanism at work-group level. The most efficient implementation of a
classic array-reduction is based on a tree scheme [9], where each work item in a
work-group copies the input data to local memory initially; and then, work-items
reduce the input by a factor of two in parallel, synchronizing each stage with
a local barrier; and finally, the first element of each group updates the original
memory. However, the NMF applies a multivariable reduction of size k (see line
9 of Algorithm 1), where each k-reduction is performed in a working group.

4.3 OpenMP Implementation

Concerning to OpenMP implementation,2 the parallelism can be exploited focus-
ing on the independent loops by adding the corresponding pragmas directives.
The for-loop parallel degree can be exploited on two levels: multithreading
and vectorization. Traditionally, OpenMP was exploited on the multi-threading
CPUs; however, newer OpenMP standards added support for target offload-
ing since OpenMP v4.0. OpenMP API incorporates the multilevel parallelism
expression through the “teams distribute” and “parallel for” directives, spread-
ing the workload over the groups of EUs on the GPU.

Our implementation based on OpenMP defines a decouple version for CPU
and GPU devices, where the main difference is found in the reduction kernel, and
the memory management mandatory for the GPU devices (data copied from/to
device).

The implementation of the point-by-point division kernel on GPUs is
mapped using the above-mentioned keywords; nevertheless, in order to find
the best fine-tuning performance, number of teams and the maximum num-
ber of threads per team should be specified. For this purpose, OpenMP pro-
vides the “num teams(EUs)” and the “thread limit(gpu threads)” pragmas. It is
worthy to indicate that the “num teams(EUs)” directive set straightforward to
the number of EUs of the GPU. We have observed that the optimal value of
“thread limit(gpu threads)” corresponds with the number of hardware threads
per EU [15]. We would like to point out that these values rely on the GPU
features and OpenMP API provides no way to figure out at runtime, so unfor-
tunately the setting up must be done manually at compiling phase in detriment
of code portability.

On the other side, due to lack of support for the GPU local memory man-
agement through the OpenMP API, the efficient tree reduction scheme can not
be implemented. Our OpenMP implementation is based on the classical “reduc-
tion” directive to spread the k reductions over the teams. This aspect supposes a

2 Available in: https://github.com/artecs-group/nmf-openmp.

https://github.com/artecs-group/nmf-openmp
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relevant increment in the number of cache miss (spatial locality is not exploited)
with the corresponding scalability deterioration.

4.4 OpenMP and SYCL Common Ground

Both implementations (OpenMP and SYCL) also show common considerations
due to the architecture target (CPU vs GPU).

Concerning the kernels, the parallel reduction kernel offers significantly lower
performance on CPU-based systems compared to its sequential implementation.
This fact is due to the reduction operation requires a high number of synchro-
nizations and communications stages between CPU cores. Thus, we have coded
a serial reduction kernel on the CPU version.

Another aspect to consider is the possible optimization of the point-to-point
division operation by making use of oneMKL’s native function div3. Although
the experimental results show a poor performance in comparison with our custom
implementation, we do not rule out that in future versions of oneMKL this aspect
will turn if this operation is successfully optimized.

5 Experimental Conditions

This section describes the systems and datasets used for the experiment phase.
In addition, we describe some experimental conditions, those are assessed to get
the maximum performance.

5.1 Work Environment

The experiments were performed using two work environments: a retail desktop,
and a more powerful node in the Intel’s DevCloud. Table 1 summarizes the most
interesting features. The desktop computer uses an integrated GPU (UHD 630)
with 24 compute units, reaching a peak performance of 480 GFLOPS. On the
other side, the chosen Intel DevCloud’s node is equipped with a discrete Xe
MAX DG1 GPU (2.5 TFLOPS) connected through PCIe. We would like to
notice that all the experiments are carried out with the Intel’s oneAPI 2022.0
version. The DPC++ and ICPX compiler used are set with the optimization
flags -O3 -xhost enabled. Experiments are performed 10 times to avoid time
fluctuation discarding the worst execution.

5.2 Data Description

The datasets used in the experimentation are summarized below and include bio-
logical samples from two experiments. The main reason to choose those datasets
is to evidence the differences between CPU and GPU architectures behaviour,
for that we selected a relatively small dataset (Lung) in comparison to the bigger
dataset (ExpO).
3 https://spec.oneapi.io/versions/latest/elements/oneMKL/source/domains/vm/div.

html#onemkl-vm-div.

https://spec.oneapi.io/versions/latest/elements/oneMKL/source/domains/vm/div.html#onemkl-vm-div
https://spec.oneapi.io/versions/latest/elements/oneMKL/source/domains/vm/div.html#onemkl-vm-div
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Table 1. Work environment technical specifications used.

Parameter Desktop DevCloud

CPU Intel Core i7-10700 Intel Core
i9-10920X

Frequency 2.9 GHz (base)
4.8 GHz (boost)

3.5 GHz (base)
4.6 GHz (boost)

Cores 2 × 8 2 × 12

Performance (FP 32) 371.2 GFLOPS 672 GFLOPS

GPU UHD 630 Iris Xe MAX DG1

Frequency 1050 MHz (base)
1250 MHz (boost)

300 MHz (base)
1650 MHz (boost)

Cores 24 execution units 96 execution units

Performance (FP 32) 480 GFLOPS 2.534 TFLOPS

– Lung (16063 × 280): Contains 16063 genes by Affymetrix Genechips of pri-
mary tumors tissues and poorly differentiated adenocarcinomas [5].

– ExpO (54675 × 1973): A set of 1973 tumor samples obtained by the expO
project, which are available at Gene Expression Omnibus [1].

Concerning the experimentation aspect, the W and H matrices have been
randomly initialized, fixing the seed to avoid variability in the convergence cri-
terion. For the sake of simplicity, the results obtained were performed in single-
precision. Despite in biological studies the factor k usually ranges from 2 to 10,
we have noticed similar behaviour from the performance perspective, so for the
sake of clarity, the k parameter is fixed to 4 in all the experimentation performed
to avoid this redundancy.

5.3 Other Considerations

Multi-threading technology enables the CPU to keep two different contexts per
physical core although there are certain resources that will remain shared [12].
Our experiments show that the use of two threads per core reports an average
performance degradation of 22% in the SYCL paradigm versus 16% in OpenMP,
motivated by competition between threads for shared resources such as hierarchy
memory. Hence, hyper-threading has been disabled.

SYCL provides two host-device memory management mechanisms: the uni-
fied shared memory (USM) and the buffer model. USM is more transparent from
the programmer perspective, meanwhile the programmer has fine-control at the
expense an increment of code lines in buffer model. We would like to point out
that in NMF most the variables can be stored in the device scope, except the W
and H matrices, which are copied back periodically to evaluate the convergence
criterion. Hence, testing both models, we found that the USM model runs 20%
faster than its counterpart on the CPU, meanwhile, on the GPU USM exhibits
7.2% better rates.
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One last consideration related to compiler choice is the use of the new Intel
DPC++ and ICPX compilers. Both are based on LLVM technology [18] and
supports OpenMP.

6 Discussion

We have grouped the results achieved for the Lung (16,063 × 280) dataset in
Fig. 2, and the ExpO’s (54,675 × 1,973) in Fig. 3. Both figures show the NMF
time consumption split in stacked bars of each kernel varying the target device
and the programming model. Besides, each bar represents the time achieved by
the system (Desktop, DevCloud), device (CPU, GPU), and the implementation
(BLAS base version, OpenMP, SYCL) used.

Fig. 2. Comparative time results obtained from the Lung (16,063 × 280) dataset. The
results show how the CPU and GPU perform in SYCL, OpenMP and the BLAS-base
version. The desktop executions are striped, while the DevCloud’s are marked with
crossing lines.

6.1 CPU Discussion

Regarding the Lung dataset, a speedup of ≈ 1.47× respect to the BLAS base
version is achieved on the desktop CPU (i7-10700), either OpenMP or SYCL
implementations give a slight similar performance. The boosted performance is
mainly achieved by the division kernel, which reduces its time consumption by
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Fig. 3. Comparative time results obtained from the ExpO (54,675 × 1,973) dataset.
The results show how the CPU and GPU perform in SYCL, OpenMP and the BLAS-
base version. The desktop executions are striped, while the DevCloud’s are marked
with crossing lines.

43%. By increasing the problem size (ExpO dataset) the speedups decrease to
≈ 1.25×, revealing a compute bound scenario on CPU devices.

On the DevCloud’s CPU (i9-10920X), we achieve a ≈ 3.1× and 1.53× using
the Lung and ExpO datasets. Note that the i9-10920X CPU raises a higher
speedup than the desktop’s due to more parallel resource available. Although
results still show that both OpenMP and SYCL versions have almost the same
performance rates on CPUs, there is an important difference: the OpenMP ver-
sion allows selecting the SIMD instruction-set (SSE, AVX2, AVX512) meanwhile
SYCL, as far as we know, does not.

It is worth mentioning that although the i9-10920X supports the AVX512
SIMD-type, which theoretically should achieve even more performance, no effect
is observed for the small dataset and in the large one the performance is even
worse than choosing AVX2. This aspect is due to certain TDP restrictions and
frequency downscaling when AVX512-SIMD is enabled [7,8].

6.2 GPU Discussion

Focusing on GPUs behaviour, we observed a poor performance in comparison to
the baseline using the Lung dataset. The overhead of data offloading does not
compensate by parallel gains for a small data set.

Nevertheless, the ExpO dataset achieves a relevant speedups, up to 1.64× and
1.82× with OpenMP and SYCL respectively on the UHD 630 GPU. The main
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performance differences appear in the SGEMM and reduction kernels. SGEMM
runs a bit slower with OpenMP. The reduction kernel successfully scales with
data size.

As expected, the discrete Xe DG1 GPU reports greater performance rates,
achieving up-to 2.76× in the SYCL version. As a summary, we can indicate that
the Xe DG1 device offers the highest throughput rates for huge problems.

7 Conclusion

High-Performance Computing benefits from the use of heterogeneous hardware
to reduce computational times. Intel’s SYCL implementation, DPC++, has
reduced the gap between those accelerators and their specific programming
model. To prove that, we developed three NMF implementations: an optimized
version based on oneMKL library on the CPU (baseline version), as well as,
SYCL and OpenMP versions, which run on both the CPU and GPU devices.

The experimental results reveal that all versions scale fine with small datasets
on CPUs. As expected, for larger datasets, GPU devices report greater per-
formance rates. Regarding the programming models, we found that although
OpenMP and SYCL achieved almost the same performance on CPUs, SYCL
slightly beats OpenMP on GPUs. However, focusing on portability/performance
aspects we observe the main differences: (1) meanwhile SYCL allows to code
once for both devices, OpenMP requires some customization coding to run on
the CPU or GPU devices (memory management, and special directives on prag-
mas), and (2) the lack of expression of OpenMP to exploit EUs local group
memory, and local group barriers make its implementation non-optimal.

Focusing on the SYCL, although the code was written once and executed
on different target devices, sometimes, some extra hand-tuned coding is recom-
mended to exploit the device’s architecture advantages, which slightly introduc-
ing more code or even could require rewriting the entire kernel for a specific
architecture.

This research aims to increase the number of studies that compare and eval-
uate SYCL against other programming models, such as OpenMP and OpenMP
offload. It also examines the support with the well-known libraries as oneMKL.
An extension of this analysis could target other GPUs such as NVIDIA or AMD,
which is affordable for building a DPC++ toolchain with CUDA and HIP AMD
support.
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Abstract. Scientific applications are large and complex; task-based pro-
gramming models are a popular approach to developing these applica-
tions due to their ease of programming and ability to handle complex
workflows and distribute their workload across large infrastructures. In
these environments, either the hardware or the software may lead to fail-
ures from a myriad of origins: application logic, system software, mem-
ory, network, or disk. Re-executing a failed application can take hours,
days, or even weeks, thus, dragging out the research. This article pro-
poses a recovery system for dynamic task-based models to reduce the re-
execution time of failed runs. The design encapsulates in a checkpointing
manager the automatic checkpointing of the execution, leveraging dif-
ferent mechanisms that can be arbitrarily defined and tuned to fit the
needs of each performance. Additionally, it offers an API call to establish
snapshots of the execution from the application code. The experiments
executed on a prototype implementation have reached a speedup of 1.9×
after re-execution and shown no overhead on the execution time on suc-
cessful first runs of specific applications.

Keywords: High-Performance Computing · Checkpointing ·
Task-based programming model · Recovery System · Fault Tolerance

1 Introduction

Supercomputers and cloud computing have become essential tools for researchers
to work on their investigations. The amount of data used in scientific applica-
tions has dramatically escalated and the computation time required to execute
them. Parallelizing applications using multiple networked computers shortens
its execution time, making research more manageable. Furthermore, distribut-
ing the workload across large infrastructures enables higher levels of parallelism,
unreachable when using one single machine.

Using shared distributed infrastructures such as clusters, supercomputers, or
the Cloud, usually entails execution time limits and resource quotas – e.g., disk –,
increasing the probability of unexpected issues that makes the application unable
to complete. There are myriad reasons for that: network disruptions, inability
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to allocate memory, disk quota violations, issues with the shared file system,
exceeding the allowed execution time, etc. Frequent solutions for these problems
consist of retrying the failed computation on the same node or changing the
host for that part upon failure detection. However, in most cases, the application
fails due to the lack of resources. Therefore, either the crash affects the whole
system or the queuing system ends the execution. A more complex solution
to overcome these shortcomings consists of establishing checkpoints where the
application saves its status and data values in persistent data space to avoid the
re-computation of previous values on future re-executions of the application.

This article contributes to the current state of the art by proposing and
evaluating a system that allows applications developed following a task-based
programming model to recover from failures and reduce their re-execution time.
Thus, application users will speed up significantly their research on their respec-
tive disciplines by avoiding computations that take hours, days, and even weeks
while using extensive computing infrastructures.

The proposed system leverages the determinism of tasks to avoid re-executing
non-failed tasks in case of breakdown by automatically copying their output as
the execution goes on. Performing such copies entails a significant overhead on
network and storage operations; the optimal balance for this trade-off between
resilience and performance depends on each execution and the preferences of
the end-user. To that end, the proposed system combines various mechanisms
that systematically select which output values to checkpoint and envisages the
customization of these decisions by incorporating mechanisms to define new
policies. The user can define these policies by creating arbitrary checkpointing
groups of tasks. Besides systematic copies, the system also provides application
developers with a method to set up specific points in the application code to
checkpoint the execution status.

The article continues by describing the baseline knowledge to understand
the details of the presented work in Sect. 2. Section 3 discuss the design and
implementation details of the solution. Section 4 evaluates and presents the per-
formance measures that validate the solution’s viability with a prototype, Sect. 5,
casts a glance over the research already performed on the area. Finally, Sect. 6
concludes this work.

2 Checkpointing Task-Based Workflows

Task-based parallel programming models have become more popular and are a
standard solution for creating parallel applications. This popularity is due to
their higher development productivity due to their automatic exploitation of
the inherent parallelism and, second, their ability to ease the implementation of
scientific workflows by combining executions of different applications.

Such models build on the concept of task: a stateless logic executed asyn-
chronously. It processes a specific set of input values to produce some output
values. Applications are a combination of tasks where data establishes a depen-
dency relation, defining a workflow. Often represented as a directed acyclic
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Fig. 1. Diagrams depicting four different situations where different output values are
persisted to checkpoint Task 1.

graph, where nodes correspond to tasks, and edges illustrate data dependen-
cies. Executing a task producing a data value will always precede the execution
of a task consuming such value. A task will not start its execution until all its
input data has been generated by its predecessor tasks.

Runtime systems supporting these programming models know which tasks
are ready to execute and fully exploit the parallelism inherent to the application
given the available infrastructure. Besides, they apply techniques to increase the
application parallelism, such as data renaming to avoid false data dependencies.
Instead of keeping a single value of the data, the runtime makes a new copy for
each value computed for a datum, thus, enabling a task updating a datum to run
ahead of others reading that value. Awareness of all the values that relate to the
same data allows the system to consolidate a version and remove the preceding
values that will no longer be used.

These runtime systems usually follow an architecture where one of the nodes
hosts a process (the master) orchestrating the execution, and the other nodes
run a middleware software (worker) that hosts the execution of the tasks. The
worker can notice task failures when they terminate abruptly or an exception
arises and notifies the failure to the master. When losing the connection with a
worker, the master assumes that all the tasks offloaded to that node have failed.
After unsuccessfully trying to recover from a task failure, the master terminates
the execution, and the whole application fails. Errors on the master would end
the execution abruptly. We aim to persist some data values so that the following
re-executions recover them, avoiding a partial re-execution.

To that end, this work leverages the stateless, serverless, and determinism
properties of deterministic tasks. A deterministic task always produces the same
output values regardless of the node and moment it runs, given the same input
values. Therefore, persisting all output values of the task beyond the run enables
future executions of the application to skip the re-computation of the previous
task. This technique is known in the bibliography as task-level checkpointing
[10,12]; tasks that will not be re-executed in upcoming runs of the application
are checkpointed tasks. Despite building on the task determinism, the presented
solution is also valid for applications that exploit randomness in their computa-
tions – e.g., Monte Carlo simulations. Our solution design can execute stochastic
algorithms. However, the seed of the pseudo-random generator must be treated
as another application value to re-create the exact computation as it was in the
previous execution and pass it in as another input value for each task.
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Fig. 2. Task diagram showing the output copies of a task workflow.

Being part of a workflow allows relaxing the conditions to consider a task
as checkpointed from having all its output values persisted, to having each of
the output values of the task, either persist or ensure that the value into con-
sideration will no longer be used in the future – i.e., all tasks consuming the
value have been checkpointed, and new tasks consuming the value cannot be
created. Figure 1 depicts four different situations where Task 1, which produces
two output values, is checkpointed by persisting different values. The first situa-
tion shows the original practice that persists all the output values to checkpoint
the task. In the second case, it is unnecessary to persist one of the output val-
ues since checkpointing Task 2 ensures that the value will not be needed in the
future. In this specific example, the second value persisted; however, as shown in
the third situation, checkpointing Task 3 would have a similar effect and avoid
persisting the value. The last case shows a slightly different situation, where the
second output value is consumed by Task 3, but the output value could still
create new tasks consuming the value. Therefore, the value needs to be saved
despite Task 3 being checkpointed.

Whereas some task-based programming models define a static workflow
before execution and, perhaps, scale the number of tasks according to the size
of the processed data, some other models are more flexible and allow adapting
the whole workflow depending on task results. In the latter case, the component
spawning tasks require a mechanism to synchronize the results of some tasks to
evaluate them and continue with the dynamic generation of tasks (e.g., to check
convergence in a loop). These synchronization values need to be persisted and
cannot be deleted even if future executions have no tasks consuming them to
enable the re-creation of the same workflow.

Two essential aspects that automatically capture the progress of any appli-
cation are the execution time and the amount of already finished tasks; hence,
the proposed system implements two mechanisms building on them. The first
mechanism, Periodic Checkpoint, registers the finished tasks and the produced
data values and periodically triggers data operations to persist the output values
computed until execution, avoiding unnecessary values as depicted in Fig. 1. The
Finished Tasks mechanism behaves similarly, but the trigger is the completion of
N tasks. The more frequent the checkpointing is, the fewer possibilities to avoid
persisting values; however, the longer the checkpointing period is, the more tasks
will need to be re-executed if the application fails.

Checkpointing can achieve an optimal balance between one execution per-
formance and resilience by defining arbitrary checkpointing groups. The system
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persists only the final output values of each group and dismisses the values
corresponding to intermediate versions or deleted data. Figure 2 illustrates an
example of how arbitrarily grouping tasks impacts the amount of checkpointed
values. The group distribution in the leftmost part of the figure depicts a case
where groups are done according to the depth level in the graph. The group
distribution shows that, for this specific workflow, creating groups according to
data dependencies reduces the amount of persisted values from four to two by
avoiding making persistent the intermediate value between them.

3 Solution Design and Implementation

Finding an optimal selection of values to checkpoint requires deep knowledge
of the application workflow, the host infrastructure, the size of the problem
solved with the application, and the current progress of each execution. The
runtime system orchestrating the workflow execution is the only point where all
this knowledge meets; therefore, there is the best place to select which values
to persist. To that end, this article aims to provide the runtime system with
a Checkpoint Manager (CM) component encapsulating the automatic manage-
ment of the checkpointing for the execution. Figure 3 depicts an overview of the
architecture of the proposed system.

The Runtime System (RS) notifies the CM of the different events required
to checkpoint tasks. When the application generates a new task, the RS queries
the CM whether the task was checkpointed in a previous execution. If it does,
the task execution is skipped, and the checkpointed values are restored as if
the task computed them for their later use in a non-checkpointed task or a
synchronization point. Otherwise, if the task has not been checkpointed, the
checkpoint manager registers its existence.

The RS also notifies the CM of other execution events such as finalizations
of tasks, indicating the location of output values, accesses to synchronization
values, and value deletions. With that information, the CM can know the values
needed to recreate the workflow, request their persistence, or order their deletion
when they will not be involved in future tasks or access synchronization points
to minimize the I/O usage.

The CM component implements an engine supporting all the checkpoint-
ing mechanisms described in Sect. 2. Policymakers can combine them to create

Fig. 3. Overview of the proposed checkpointing system
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highly-efficient complex tactics to checkpoint applications fitting the specifics of
each application. For that purpose, the CM offers an interface (Policy develop-
ment interface) to customize each mechanism’s behavior properly. The Periodic
Time (PT) and Finished Tasks (FT) policies leverage the periodic checkpoint and
finished tasks mechanisms while disabling the others. The application end-user
can establish the period or the number of finished tasks to trigger them. Check-
pointing some data values might have a cost higher than their re-computation;
ignoring these values would improve the system’s performance; similar to the
period and the number of tasks, the system also allows indicating a set of tasks
to be ignored by them.

As mentioned in the previous section, application-tailored policies rely on
the task group mechanism. Upon task detection, the CM assigns the task to a
group according to the selected checkpointing policy. To decide the group, the
policy developer can use any information available at instantiation-time, e.g., the
number of tasks, operation to perform, accessed data values, or preceding tasks.
The Instantiated Tasks Groups (ITG) policy gathers tasks in N-sized groups
according to their creation order. When the CM resolves a group closure – i.e.,
all tasks of the group have already been instantiated –, it determines the final
output values of the group by analyzing the data accesses of all the tasks within
the group. The RS requests the necessary operations to persist those values that
have already been computed. For those that have not been generated, the RS
monitors the task generation of each one of them. Upon its completion, requests
the necessary operations to persist them.

Moreover, efficient checkpointing requires a deep understanding of the appli-
cation. To ensure a certain quality of experience, application developers may
not want to leave the end-user decisions about checkpointing in the hands of the
end-user. To that end, the CM includes a mechanism to order snapshots of the
current status of the execution from the application code. The runtime system
will persist the useful output values of all the tasks until that point.

To affect the application execution minimally, the CM performs all the per-
sistence operations asynchronously in a background thread with a lower priority
and limits the maximum number of ongoing operations in parallel.

4 Evaluation

To validate the proposed design and evaluate its performance, we conducted
several experiments aiming at (1) quantifying the overhead of the system when
the application does not fail, (2) measuring the speedup when recovering from
a failure, and assessing the impact of customizing the policies (3) skipping the
checkpointing of some tasks and (4) developing application-tailored policies.

To that end, a prototype of the CM has been implemented and integrated
into the COMPSs/PyCOMPSs runtime [4,5] and its performance has been eval-
uated when running four different applications: K-Means, PMXCV19, Principal
Component Analysis (PCA) and Matrix Multiplication (Matmul).
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Table 1. Execution time and relative overhead (baseline: NC) using different policies.
The policy with the lowest overhead is highlighted with green background.

NC ITG FT PT

K-Means 220.12 s 222.56 s (1%) 229.34 s (4.5%) 228.44 s (4%)

PMXCV19 33 m 33.9 m (2.7%) 34.1 m (3.3%) 33.6 m (1.8%)

PCA 883.13 s 1075.13 s (21.7%) 1026.21 s (16.1%) 1284.07 s (45.4%)

K-Means1 (2152 tasks) is a clustering algorithm that identifies K clusters
within the input data. The algorithms start with K randomly generated centers.
Iteratively, values are assigned to the closest center. These centers are recom-
puted using the data assigned to them. This process lasts until the centers con-
verge, and their position is not updated. This application has two parts: data
generation and center convergence.

PCA (see footnote 1) (685 tasks) is a dimensionality reduction algorithm
that computes the principal components of a collection of points to use them to
perform a change of data basis using only the first few principal components. It
is often used to perform data analysis for predictive models.

PMXCV192 (2027 tasks) evaluates changes in the binding affinity between
SARS-Cov-2 Spike protein and Human ACE2 (hACE2) receptor using the PMX
algorithm [9]. It runs a large series of short Molecular Dynamic simulations
executed using GROMACS.

Matmul (64 tasks) implements a blocked matrix multiplication. The resulting
workflow consists of several chains of tasks corresponding to all tasks updating
the same output block.

The presented results run using two nodes of the MareNostrum 4 supercom-
puter – each equipped with two 24-core Intel Xeon Platinum 8160 at 2.1 GHz.
and 98 GB of main memory – interconnected with a Full-fat tree 100Gb Intel
Omni-Path network.

4.1 Checkpointing Overhead

This experiment aims to measure the overhead induced by the checkpointing
system when the application (K-Means, PMXCV19, and PCA) successfully fin-
ishes. To that end, a run with no checkpointing (NC) is compared to runs using
different policies: PT (15-second interval), FT (every 10 finished tasks), and ITG
(grouping every 10 instantiated tasks).

The results in Table 1 show the importance of adapting the checkpointing
policy depending on the application being executed to minimize the time over-
head. With the right policy, the checkpointing system overhead can be negligible
depending on the application, with only a 1% of added time. However, picking
the wrong policy may entail significant overheads, in the case of PCA, choosing
PT over FT may add a 29.3% of overhead.

1 Implementation with PyCOMPSs distributed within the dislib library [1].
2 Implementation with PyCOMPSs offered as a BioExcel Building Blocks (BioBB) [3].
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Regardless of the policy, picking the appropriate granularity for each policy
has a significant impact. Table 2 shows the execution time and relative overhead
of each application when running with the policy with a better result in Table 1,
set up with different granularities: K-Means runs ITG with groups of 10, 50, and
100 tasks; PMXCV19, PT with 15, 30 and 60-second intervals; and PCA, FT
triggering the checkpoint every 10, 50 and 100 completed tasks.

Table 2. Execution time and overhead (baseline: NC) using different granularities for
the best policy in Table 1

Fine-grain Medium-grain Coarse-grain

Kmeans (ITG) 222.56 s (1.1%) 244.25 s (11%) 264.36 s (20%)

PMXCV19 (PT) 33.6 m (1.8%) 33 m (0%) 33.1 m (0.3%)

PCA (FT) 1026.21 s (16.1%) 1016.20 s (15%) 1103.94 (24.9%)

Table 2 shows that balancing the checkpoint granularity is needed. Although
coarser granularities reduce the number of copies, they can generate I/O-
bandwidth peaks that may decrease performance.

4.2 Recovery Speedup

The second experiment aims to measure the speedup of an application when the
application fails on the first execution and the checkpointing system recovers
the state in a subsequent run. For that purpose, we forced an error when the
application reached a certain point of the execution (For the Kmeans we chose
the 8th iteration, PXMCV19 we make it fail at min 32 of the execution, finally
at PCA we added an exception near the end of the fit function) and measured
the duration of failed execution plus the time to finish the subsequent execution
using different granularities – defined in Sect. 4.1 – for the best-performing pol-
icy for each application. Table 3 contains the obtained times and the speedup
of the recovery compared to the same process when no checkpoint is enabled.
The K-Means and PCA applications show that despite the overhead, more fre-
quent checkpointing enables a faster recovery time due to the fewer tasks being
recomputed on the recovery. The PMXCV19 application performs better with a
medium granularity. However, the recovery difference with other granularities is
insignificant.

Table 3. Failure, recovery execution time and speedup (baseline: No Checkpoint) using
different granularities for the best policy in Table 1.

No Checkpoint Fine-grain Medium-grain Coarse-grain

1st Exec 2nd Exec 1st Exec Recov. SpeedUp 1st Exec Recov. SpeedUp 1st Exec Recov. SpeedUp

Kmeans (ITG) (s) 208.22 221.5 216.96 27.1 1.76x 232.38 25.83 1.39x 254.26 27.14 1.52x

PMXCV19 (PT) (m) 32 33 32 3.1 1.85x 32 2.3 1.89x 32 3.3 1.84x

PCA (FT) (s) 877.99 883.13 1026.21 187.30 1.45x 1016.20 861.26 0.93x 1103.94 855 0.89x
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4.3 Avoid Checkpointing Tasks

This third experiment measures the impact of avoiding the persistence of the
significant values computed by short tasks. The K-Means application has a pat-
tern composed of two partially overlapped phases: the data set generation and
the iterative center convergence. The experiment compares the behavior of a
K-Means execution that fails on its 8th convergence iteration. Afterward, it is
re-launched, disabling the checkpointing, enabling checkpointing with the FT
policy (10-task granularity) for all the tasks and the same policy but disabling
the checkpointing of those tasks corresponding to the data set generation phase.

Figure 4 depicts the traces of the failed (left) and recovery (right) executions
for the no checkpointing (top), all-tasks checkpointing (middle) and generation-
dismissed checkpointing (bottom) configurations. The blue tasks correspond to
dataset-generating functions, and each batch of white tasks corresponds to a
convergence iteration.

Fig. 4. K-Means execution traces without checkpointing (top), checkpointing all tasks
(middle), and generation disabled checkpointing (bottom)

The traces of the first (failed) execution illustrate the effect of the I/O over-
head due to the checkpointing. Limiting the number of concurrent checkpoint-
ing operations makes the overhead on both executions performing checkpointing
similar regardless of the difference in the total number of checkpointed values.
However, during the first part of the execution, the CM has no time to persist all
the outputs of the generation phase. Thus, it must recompute part of them even
if the checkpointing is enabled. The overall execution time grows from 222.99 s
when checkpointing is disabled to 282.02 s (0.79× speedup) when the CM check-
points all the tasks – 126.07 s on the first execution and 159.95 on the recovery.
When disabling the checkpointing for the dataset generation tasks, the CM can
keep up with the execution progress and avoid most of the tasks’ re-execution
in the recovery. In this case, the execution time shrinks to 175.75 s (1.27×) –
124.92 s on the initial run and 50.83 on the recovery.
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4.4 Customized Policies

The last experiment aims to illustrate the impact of using customized policies
leveraging the task groups mechanism on the number of persisted values. To
that end, the experiment measures the number of persisted values when using the
Matmul application to multiply two 4-by-4-block matrices, and the checkpointing
system adopts two custom policies.

Each Matmul run generates a total of 64 tasks forming 16 chains – 1 per
output block – of 4 tasks each. The algorithm iterates on all the blocks of the
result matrix, instantiating all the tasks updating the block; from a graph point
of view, the algorithm generates tasks in a depth-first manner. The custom
policies used in the experiment create checkpointing groups of up to two tasks.
The first policy (Same-depth policy) groups two tasks from the same depth
level, and the second (Same-chain policy) groups two subsequent tasks from the
same chain. Listings 1.1 and 1.2 respectively contain the implementation of the
function assigning a task to a group for each policy.

Listing 1.1. Same-Depth
void assignTaskToGroup (Task t){

int id = t.getId ();
int mod = id % 4;
mod = mod == 0 ? 4 : mod % 4;
int gId = 1+id /8+((mod -1)*8);
TaskGroup group=groups.get(gId);
group.addTask(t);
if (group.size ()==2){

group.close ();
}

}

Listing 1.2. Same-Chain
void assignTaskToGroup (Task t){

int id = t.getId ();
int gId = ((int) id /2)+1;
TaskGroup group=groups.get(gId);
group.addTask(t);
if (group.size ()==2){

group.close ();
}

}

Figure 5a illustrates the graph of a run using the Same-Depth policy. Green-
colored tasks depict those tasks whose output values are persisted by the CM;
the output of white-colored tasks is not persisted. It is appreciated how all
output data is saved except for two tasks, for which the checkpoint did not have
time to copy the results before the execution finished. Thus, the Same-Depth
policy persists in 62 data values. Creating groups that take into account the
data dependency allows the Same-Chain policy to avoid persisting intermediate

(a) Same-Depth policy (b) Same-Chain policy

Fig. 5. Matmul’s task graphs with both policies; tasks whose output is persisted by
the CM are depicted in green. (Color figure online)
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values (the output of tasks on the odd rows). Thus, the CM checkpoints 32
values, and there is time to persist as depicted in Fig. 5b.

Application-tailored policies persist fewer values and, thus, reduce the over-
head. Avoiding the bottleneck of the concurrent operation allows checkpointing
more advanced states of the execution and, therefore, faster recovery executions
and lower disk usage.

5 Related Work

The most popular approach for facing failures using task-based parallel models,
consists on re-executing the failed task several times, either in the failed node or
in a different one. It does not have recovered in case the execution crashes. As
instance we have Dask [11], when one node has network connection problems, it
will reroute the computation to a different node. However, if the failed node is one
with relevant results or the scheduling fails, all results previously executed will
have to be re-computed again by other nodes. Additionally, there are PARSL [2],
and COMPSs [8], which have some mechanism to retry tasks in case of failure,
and even keep with the execution regardless of some tasks have failed. However,
all these programming models do not have a recovery system that re-executes
the application avoiding the computations performed in the failed execution.

Few workflow environments implement a recovery system that recovers a
failed execution into a new one, avoiding re-computing the whole workflow. One
of these systems is Pegasus [7]. In Pegasus, once one of the jobs surpasses the
number of established failures, it will be marked as failed, and eventually, the
whole application will crash. The recovery procedure is to mark nodes in the
DAG that succeeded as finished. This allows the user to correct the problem
by fixing the errors of ill-compiled nodes, incorrectly compiled codes, inaccessi-
ble clusters, etc. This way, the application can restart from the point of failure.
Another environment with a recovery system is Legion [6], a data-centric task-
based parallel programming system for distributed heterogeneous architectures.
This system uses speculation, which allows them to discover non-predicated tasks
while the system waits for predicates to finish. If there is a mis-speculation, the
runtime must calculate the dependent operations that have been affected. After-
ward will reset all operations impacted by it. This process is done recursively,
so it could happen that when trying to recover from a failure, it would restart
the whole execution from scratch. This checkpointing approach allows it to be
performed independently on individual tasks without synchronization.

6 Conclusion

This article proposes a recovery system for task-based programming models. The
introduced system copies task outputs to avoid re-executing the computed tasks
in the previous execution run. The checkpointing system offers a checkpointing
manager that, apart from encapsulating automatic checkpointing, has an inter-
face that allows the end-user to create arbitrary tasks to checkpoint, enabling
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a specific checkpoint workflow formation to minimize the execution overhead.
Moreover, the checkpointing implementation has been propounded to decrease
the number of data copies by avoiding the copy of intermediate data values.
The flexibility in creating different checkpointing workflows helps reduce the
overhead, which can be as minimal as 0% of the execution time and allows for
a faster recovery, achieving up to a 1.9× speedup. Additionally, the proposed
solution offers an API call that establishes snapshots of the execution in the
application code.
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Abstract. Byzantine fault-tolerance (BFT) algorithms enhance trust-
worthiness of distributed systems by guaranteeing their resilience to
Byzantine faults. Traditional BFT algorithms suffer from scalability
issues, resulting in performance bottlenecks (e.g., low throughputs) in
large-scale distributed systems. Moreover, distributed systems are gen-
erally deployed on geographically and/or logically distributed networks,
which aggravates the performance-scalability issue. To tackle this chal-
lenge, existing works have proposed a number of new BFT algorithms
(e.g., HotStuff, FastBFT). However, limited work has explored parallel
BFT based on a partitioned set of connected subgroups. This is challeng-
ing due to 1) heterogeneous communications delays between different,
potentially geographically distributed, peers, and 2) peers may have a
random crash and/or Byzantine failures, which contribute to the failure
of the BFT consensus. To address these issues, we propose a stochastic
programming (SP) model to maximise the throughput, while consider-
ing communications delays and failure behaviors as constraints. The SP
model solution provides the optimal multi-committee organisation. Eval-
uation results show 24% throughput enhancement with the SP model.

Keywords: Stochastic Programming · Byzantine Fault Tolerant
Algorithm · Parallel Consensus

1 Introduction

Blockchain is a technology that allows a group of peers to save the same records in
a distributed ledger. Such a decentralised architecture releases the network peers
from dependence on a trusted third party. However to perform their intended
operations participating peers need to reach agreements. Consequently, reaching
consensus becomes a critical problem, especially in Byzantine fault conditions.
Moreover, scalability becomes the main bottleneck of classical consensus algo-
rithms like the practical Byzantine Fault Tolerance (PBFT) [1] algorithm, as
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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they only support small peer sets (usually no more than 20). Small-scale peer
networks do not meet the requirement of the current commercial blockchain
applications. Thus, to address the scalability issue, researchers proposed a multi-
committee-based consensus mechanism (e.g., Elastico [2]) to partition the large-
scale peers set into several parallel consensus committees. However, most of these
multi-committee solutions take a naive approach to peer set partitioning. They
generally initialise the multi-committee peers set randomly without considering
any optimization of the committee organization.

In this paper, we focus on finding an optimal partitioning scheme for a pre-
viously proposed multi-committee BFT algorithm, ParBFT [3], respecting that
crucial algorithm parameters (e.g., network delay, failure behavior) are uncer-
tain. Thus, our research explores the most performance optimal partitioning
scheme by building a stochastic programming (SP) optimisation model. The SP
model aims to maximise the transaction throughput, which allows us to opti-
mally solve the number of committees and allocation of peers within the formed
committees. The remainder of the paper is organized as follows: Sect. 2 describes
the assumptions and the model. In Sect. 3 we present the performance evaluation
results on the testbed. Section 4 concludes the work.

2 Stochastic Model

2.1 System Assumption

We consider a distributed system made up of geographically/logically dis-
tributed peers. Specifically, we seek to model the uncertainties of communications
and failure behaviors in a previously proposed multi-committee BFT: ParBFT
[3]. ParBFT achieves a parallel consensus via multi-committee scheme, and it
includes three basic phases: pre-prepare, prepare and commit. In pre-prepare, each
leader sends a message to the followers in its committee; follower peers then ver-
ify messages and reply to the leader peer in prepare; finally, leader peers send a
message to the verification committee in commit. In the ParBFT algorithm, the
peer set consists of 1) a verification committee which has at least one verification
peer (verifier), and 2) multiple consensus committees, each of which consists of a
leader peer (leader) and several follower peers (followers). We consider that the
set of leaders and followers forms a set of N peers, denoted as N . We assume that
any two peers i and j are connected to each other via two unidirectional com-
munication links (i, j) and (j, i). As peers in N are geographically distributed,
their communications are subject to network condition changes, which leads to
variable peer-to-peer (P2P) message delays. These delays substantially impact
the BFT algorithm performance in terms of transaction throughput and latency
as consensus messages may reach their destination peers later than expected.

We also consider that N peers are exposed to two types of failures: Crash and
Byzantine failures. Crash failure happens when a peer stops working and does
not resume. A Byzantine failure happens when a peer produces arbitrary, con-
tradictory or conflicting responses at arbitrary times, with or without malicious
intentions. The peers’ failure behaviors considerably affect the BFT algorithm
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performance as allocating peers more prone to failures within the same commit-
tees will result in the failure of the consensus in these committees, and hence on
the failure of the overall consensus. We use a failure detector (for e.g., [4,5]) to
detect Crash failures. We record participating peers in previously failed consen-
sus as Byzantine failures. The security of ParBFT is guaranteed by its Byzantine
fault tolerant feature, which means each committee can tolerate no more than
one third of faulty peers. In our model, for security reasons, each committee must
be able to tolerate a certain number of Byzantine faulty peers [1]. We denote the
number of faulty peers that can be tolerated in each committee as fmin. That
is, for each committee, the system still works even if each committee has fmin

Byzantine faulty peers. This requires us to ensure that the number of peers in
each committee is guaranteed to be at least 3fmin+1. In stochastic programming,
there is the notion of “scenario”, which represents the possible value of a random
parameter. Hence, a “scenarios space” (or scenarios set) represents all possible
values of a random parameter. We denote the network delay from j to i in sce-
nario ω as dij(ω) ∈ RN×N , ∀i, j ∈ N . We define the failure rate of a peer i as
the ratio of its failures over an observation time, denoted as fi(ω) under scenario
ω, We also introduce bi(ω) to represent the status of peer i under scenario ω so
bi(ω) = 1 if i fails under scenario ω and bi(ω) = 0 otherwise. We denote the total
number of faulty peers under scenario ω as B(ω), where B(ω) =

∑N
i=1 bi(ω). In

terms of consensus communication, we denote the available bandwidth at the
verification committee as Kbw, and the required bandwidth by each consensus
committee i as qbwi .

2.2 Decision Variables and Objective Function

To obtain an optimal configuration, we need to decide: the number of commit-
tees, the selection of leaders and the allocation of followers (remaining peers)
to formed committees. Let p be an integer decision variable that represents the
number of consensus committees (also the number of leaders). Let xij be a binary
decision variable such that xij = 1 if i is the leader of j and xij = 0 otherwise,
∀i, j ∈ N , i �= j. For i = j, xii = 1 means i is selected as a leader of one of the
formed committees and xii = 0 implies it is a follower.

The transaction throughput is a key metric to evaluate the performance of
a consensus algorithm, and is defined as the number of successful transactions
during an observation time period. Note that a higher transaction throughput
implies that the time spent should be as short as possible for each single trans-
action. Let T (ω) be the time spent on processing a consensus under scenario
ω. Similarly, we denote the time spent on pre-prepare, prepare and commit as
Tp−pre(ω), Tpre(ω) and Tcom(ω), respectively. The time spent in each phase
depends on the communication defined in [3]. Consequently, the consensus time
of one transaction could be represented as:
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T (ω) = Tp−pre(ω) + Tpre(ω) + Tcom(ω) (1)

Tp−pre(ω) = max
i,j

(
xij · dij(ω)

)
(2)

Tpre(ω) = max
i,j

(
xij · (dij(ω) + 2dji)(ω)

)
(3)

Tcom(ω) = max
i

(
xii · 2dvi(ω)

)
(4)

2.3 Performance Constraints

Partitioning of N . Here we introduce the constraints related to the general
formation of the multi-committees. Firstly, each committee should have exactly
one leader. Consequently, the number of committees corresponds to the number
of leaders, which implies:

n∑

i=1

xii = p (5)

Secondly, for each committee, the leader peer establishes links with all the fol-
lower peers to communicate messages; there is no communication between fol-
lower peers. This is expressed by the following constraint:

∀i, j ∈ N : xij ≤ xii (6)

Thirdly, each peer only belongs to one committee. Consequently, a peer j
can either be a follower to exactly one leader in its committee or the leader of
this committee. Thus, we have the following constraint:

∀j ∈ N :
n∑

i=1

xij = 1 (7)

Security and Stability. BFT algorithms require at least 2/3 of the peers to
be honest to reach a consensus. To enhance the stability of the system, we need
to ensure that there are at least 3fmin + 1 peers in each committee

∀i ∈ N :
n∑

j=1

xij + 1 ≥ 3fmin + 1 (8)

Leaders play a critical role in the communications between their respective
followers and between their respective committee and the verification committee.
Consequently, leaders must be the most reliable peers in N and additionally
meet system requirements in terms of reliability. Let F be a system parameter
representing the upper bound of leaders failure rates. This is to prevent less
reliable peers from leading the committees as expressed here:

∀i ∈ N ,∀ω ∈ Ω : xii · fi(ω) ≤ F (9)
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Additionally, we need to prevent the grouping of peers susceptible to failures in
the same committees. Thus, it is essential to distribute faulty peers evenly into
committees. This constraint guarantees such a distribution:

∀i ∈ N ,∀ω ∈ Ω :
n∑

j=1

xij · bj(ω) ≤ �B(ω)
p

� (10)

Committee Number Optimisation. Constraint (8) states that the number
of peers in each committee should be no less than 3fmin + 1, which implies that
the number of formed committees p should respect such peer allocation:

1 ≤ p ≤ 	 N

3fmin + 1

 (11)

During consensus, committees’ leaders simultaneously communicate with the
verification committee, which consumes its available bandwidth. As a conse-
quence, a high number of formed committees leads to a communication bot-
tleneck in the verification committee communication resources. To avoid such
situations, only peers that collectively respect the verification bandwidth are
allowed to be the committee leaders

p∑

i=1

xii · qbwi ≤ Kbw (12)

3 Performance Evaluation

To evaluate the performance of our proposed SP model, we apply the optimised
committee configuration obtained by solving the SP model to the ParBFT algo-
rithm. First, we apply the optimised committee organisation scheme driven by
the SP model to the ParBFT algorithm and compare it to the non-optimised
ParBFT algorithm that uses a random committee organisation scheme. Second,
we compare with a recent BFT algorithm, FastBFT [6], that is considered one
of the fastest BFT algorithm published recently. Third, we compare the perfor-
mance of our SP model to a deterministic model, standard ParBFT, in which
the parameters are set to constant values. This aims to verify the importance
of adopting random parameters in the SP model. We developed a testbed using
Java and composed of five Microsoft Azure cloud virtual machines (VMs). Each
VM has eight v-CPUs and 32G RAM. We use the same transaction size and
block size as in the Bitcoin system, where transaction size is 250 bytes and
block size is 1 MB. Our settings are similar to FastBFT in [6], which allows a
fair performance comparison. Also, we assume that each committee can tolerate
fmin = 1 faulty peer, and we vary the total number of peers from 40 to 200.

Figure 1 shows the throughput and latency of our proposed SP model and
several BFT algorithms with a number of peers varying from 40 to 200, respec-
tively. Compared to FastBFT, the ParBFT shows a stable throughput improve-
ment when the number of peers increases as it benefits from the parallel consen-
sus design. Moreover, the ParBFT achieves 220% improvements on throughput,
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Fig. 1. Performance comparison of various BFT algorithms

while the FastBFT has a significant decline when the number of peers increases
from 40 to 200. The SP-driven ParBFT algorithm shows the best performance
and can achieve around 20% throughput improvement compared with standard
ParBFT optimised by deterministic model. When the number of peers increases
to 200, the SP model can improve system throughput up to 24% (i.e. from 388K
TPS to 480K TPS) compared to the non-optimised ParBFT algorithm. Hence,
the SP model yields effective optimisation on consensus performance.

4 Conclusion

In this paper we presented a stochastic programming model for optimising
the performance of our previously proposed multi-committee BFT algorithm,
ParBFT. The experimental results show that the SP model can improve the
throughput of ParBFT by around 24%. Such an improvement is vital for many
domain applications including blockchain and traditional BFT replica services.
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Abstract. Mesh partitioning used for load balancing in distributed
numerical simulations is typically managed with tools that are good
enough but not optimal. Their use scope is not explicitly dedicated to
load balancing, and they cannot make use of all available information.
In this paper, the mesh partitioning problem and the context for its use
are precisely defined. Then, existing tools are presented, along with their
characteristics and features that are missing. Finally, a new partitioning
platform – the subject of my PhD thesis – is presented: its architec-
ture, software engineering choices made along the way, and how it can
be the best fit for load balancing distributed simulations. The platform
is open-source and is hosted on GitHub: https://github.com/LIHPC-
Computational-Geometry/coupe.

Keywords: mesh partitioning · load balancing · shared memory ·
parallel algorithms

1 Introduction

Many numerical simulations are based on high-order finite elements or volume
methods (FEM or FVM) and run on distributed-memory machines such as high-
performance computing (HPC) architectures. The FEM and FVM approaches
require the geometric domain of study to be discretized into basic elements,
called cells, which form a mesh. Numerical and physical data is associated with
each cell to model the physical phenomenon (e.g., pressure, temperature, speed).
To run on HPC architectures, simulation codes tend to adopt the Bulk Syn-
chronous Parallel (BSP) programming model: multiple computations phases are
performed and, in between two successive computations steps, a synchronization
step is carried out to exchange non-locally managed data in between processes.
Therefore, to achieve efficient parallelism, one must balance data and workloads
between processes.

To this end, we aim to solve a mesh partitioning problem: how to distribute
the cells of a mesh across processing units while ensuring a fair amount of
work on each and minimizing data exchange during the synchronization step.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Such a problem can be modeled and solved using geometric [5] or topological
approaches, usually based on graph representations [12]. Finding high-quality
solutions to these problems has received significant attention, and partitioning
platforms have been developed during the last three decades [2,11]. My PhD’s
work defines a new mesh partitioning tool that fills the gaps between geometri-
cal and topological approaches and adopts the Rust programming ecosystem to
provide a safe, robust, multi-thread modular framework.

2 The Mesh Partitioning Problem

2.1 Topologic vs. Geometrical Mesh Partitioning

In the context of this work, mesh partitioning is a mean to balance computational
work between process units in a numerical simulation. At a given step time of a
simulation running on N process units, we associate each cell of a mesh M with
both a computation and a communication cost. Additionally, cell connectivity1

is chosen to define data dependencies since FEM and FVM require stencils of
adjacent cells to compute numerical quantities. The mesh partitioning problem
entails partitioning M in N parts such that the computational costs of the parts
differ the least and the sum of communication costs of cells with neighbors in
different parts is minimal.

A traditional approach to address the mesh partitioning problem is to con-
sider only the mesh topology: most proposed solutions build the dual mesh
structure, i.e., a graph where each vertex represents a cell and each edge links
vertices that represent neighboring cells. Weights are defined on vertices to model
the computational cost of the associated mesh cell and on edges to model the
communication cost between the cells corresponding to its endpoints. Then the
edge cut approximates the communication costs between different parts. The
edge cut is the sum of the communication costs of all the edges (v1, v2) where
v1 and v2 are in different parts.

Geometric approaches consist in partitioning the mesh using point coordi-
nates. Each obtained part gathers cells having close coordinates. The advantage
of geometric algorithms is that they are generally simple and efficiently imple-
mented. However, the absence of topology may lead to partitions of arbitrary
quality with respect to the communications. Handling weight on the vertices is
also less flexible.

We illustrate some of the above concepts in Fig. 1, where a mesh (Fig. 1a)
is first partitioned by a Recursive Coordinate Bisection (RCB) [1], a geometric
algorithm that works on weighted points (Fig. 1b). Then, the partition is refined
(Fig. 1c) using Fiduccia-Mattheyses [6] which works on a graph.

2.2 Current Partitioning Platforms and Features

There already exist partitioning platforms. METIS [11] and SCOTCH [2] for
example use graphs primarily. They have the advantage of being able to work
1 two cells share an edge or a vertex, for instance.
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Fig. 1. A composition of algorithms that work on different aspects of the same mesh

on any graph, be it the dual of a mesh or a social network graph, for example.
Zoltan [5] uses a hypergraph representation. It can also work on geometrical
information, such as the coordinates of the nodes that make up cells.

When dealing with large graphs, these tools use a method called multilevel
partitioning, which relies on the fact that partitioning a reduced, coarsened ver-
sion of a graph – where some vertices have been merged together – will produce a
low-communication-cost partition on the original graph. This technique enables
the use of sequential or otherwise non-scalable algorithms such as Fiduccia-
Mattheyses [6] on arbitrarily large inputs. Multilevel partitioning is, however,
geared toward graph and hypergraph algorithms. In the case of mesh partition-
ing for load balancing, geometrical information is also present, and algorithms
that make use of it are known to scale better [1,4,14] than multilevel, where
the partitioning is done sequentially. Additionally, all these tools sit above MPI
for scalability. Mesh partitioners being mostly memory-bound, are typically not
used with multiple MPI processes per node, leaving most computation power on
the table.

Finally, a recent study [3] shows that memory constraints, not considered by
existing partitioning tools, can fail some physics simulations where computation
units need not only their own part’s cells but also the neighbors of their part’s
border. Those cells are qualified as ghost cells. The traditional edge cut metric
used to optimize partitions typically leads to memory overflow. Authors of [3]
also claimed that integration trials of those extra constraints in SCOTCH have
been difficult due to tight coupling between implementations and usages of its
data structures.

3 Coupe: A Dedicated Mesh Partitioning Platform

The choice of starting from scratch first comes from a paradigm shift in how
meshes are partitioned. Widely used partitioning tools, except for Zoltan, target
arbitrary graphs or other topological structures. In our case, we want to partition
meshes specifically to balance the workload of physics simulations. This means
we can use the geometrical information absent in a dual graph. Furthermore,
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recent machines can host memory banks large enough to work on the whole mesh
locally, using threading and GPU acceleration as a way to scale. Also, while the
existing tools – built around MPI – do multilevel partitioning, we experiment
with the use of inherently scalable algorithms, which have the potential to reach
a higher threshold of concurrency [1,4,14]. Finally, this new platform must also
consider the new metrics discovered since, and produce high-quality partitions
that fit within the given constraints.

3.1 Software Choices and Architecture

Coupe hosts several partitioning algorithms, some geometrical, some topological,
and some producing an initial partition, some optimizing an exiting one. In order
to widen the range of possibilities, we should be able to compose any of these
together. As such, their implementation should not interfere with others’, and
the source code, on the whole, must be highly modular.

Programming Language Choice. Building for distributed architectures
inclined software developers to write code in C or Fortran whose support is
required by the MPI standard. While Coupe is not bound to this interface, it
still needs the low-level access to hardware these programming languages offer,
so CPU cores and GPU accelerators can be fully made use of. The technological
challenge induced by the modularity and the extensive use of multi-threading
drove us to select Rust [15]. On the one hand, Rust compiles down to optimized
machine code and has little to no runtime; on the other, it offers features worthy
of high-level languages like iterators, closures, and generics. Its ability to detect
data races and other memory errors at compile time significantly helps us build
Coupe. Rust also has the advantage of having several collection types built into
the standard library, such as hash maps and binary heaps.

Rust as a Choice of Ecosystem. All of these language features are also well
integrated into Rust’s ecosystem of libraries, seamlessly usable from the Cargo
package manager:

– criterion [9] is a benchmark framework that runs statistical models on the per-
formance results. It can work with add-ons to measure CPU cycles, assembly
instructions, cache misses, and context switches. Post-processing is done to
ensure measurements are stable and correct.

– iai [10] is another benchmark framework, though this one is designed to run
in Continuous Integration environments. It runs benchmarks just once with
CacheGrind and returns the number of instructions, CPU cache accesses,
RAM accesses, and cycles.

– proptest [13] is a property testing framework. It picks random values within
a given input domain and tests given properties. While it does not ensure all
edge cases are covered, it allows for succinct unit testing.

– rayon [16] is a parallel processing library. It works mainly through iterators.
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Integration with Other Languages. Code written in C can easily be called
from other languages. Because this is not the case for Rust, Coupe has to offer
a compatibility layer that exposes its features through the C ABI. This layer
called FFI (for Foreign Function Interface) or C bindings, is the baseline for
bindings to other languages. It must therefore be stable, low-level, and easy to
understand. For these reasons, it has been written by hand.

Tooling. The modularity of the codebase and the fact that all the algorithms
can be tested separately and composed together lead to a lack of tools to run
relevant tests and benchmarks. Great care has been taken in making a set of
tools around Coupe. These tools can test algorithms in different conditions and
on different weight distributions. Visuals can be quickly produced through an
SVG converter that optimizes the size of its output. A benchmarking tool built
atop criterion allows for scalability measurements: it runs a list of algorithms
on different numbers of threads and shows an efficiency graph. Finally, a mesh
library for the simple MEDIT [7] file format has been written.

3.2 Example of Scaling Algorithm Under Development

As an example of how Coupe can be used to implement new algorithms, we will
show the process of implementing a variant of the Fiduccia-Mattheyses [6] (FM)
algorithm that can be used after the scalable geometrical algorithms for further
reduction of the communication costs.

FM is a hypergraph partitioning algorithm, which, for simplicity here, is
restricted to graphs. The algorithm minimizes the edge cut of a given bi-partition
by moving vertices between parts, one by one, so that the edge cut decreases the
most at every step. This decrease is called gain: a vertex has a positive gain if
moving it to the other part decreases the edge cut. A gain table is used to retrieve
in constant time a vertex that has the largest gain. Great care is taken to also
enable constant time updates of gains each time a vertex is moved. The iteration
stops when no more gain can be found. By its greedy nature, this algorithm is
very much sequential and thus mainly used in multilevel partitioning, where the
input size has been drastically reduced. Given our constraints, the idea is to drop
the greedy requirement and the gain table and move any vertex with a positive
gain.

Benchmarks have been run on a 128-thread machine. The mesh is 2D, trian-
gular, and has 19 775 488 cells. RCB provides an initial partition which is then
refined by the FM variant. RCB alone takes an average wall time of 321ms
(std.dev.: 15ms), and the whole run takes 463ms (std.dev.: 15ms).

4 Outlook

Coupe is a partitioning platform geared towards mesh partitioning for load bal-
ancing in distributed physics simulations. Its codebase is made modular, and
implemented algorithms can be composed together, so users can fine-tune how
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they partition their mesh. Although it is still a work in progress, the project
is very much usable, and experiments are done at the order of the million of
vertices. Multiple geometrical, topological, and number-partitioning algorithms
have already been implemented. They can be used from Rust, C, and the
command-line thanks to the bundled tooling. Shortly, Coupe will be integrated
into the Arcane framework [8] and tested in real-life simulations. This will set
performance goals to attain and deliver profiling data. It is also planned to
support multi-criteria runs, i.e., runs where cells have multiple associated com-
putation costs. In the meantime, sources of Coupe are available to the public on
GitHub: https://github.com/LIHPC-Computational-Geometry/coupe.

Acknowledgements. Great thanks to my main advisor Franck Ledoux, and my
supervisors Cédric Chevalier and Sébastien Morais for helping me both write this paper
and throughout my PhD thesis so far.
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Abstract. Wireless communications remain a vital part of our economy
as it is a key enabler of information exchange between billions of peo-
ple around the world. However, the current technology cannot meet the
demands of the future (i.e., explosive growth in the number of devices,
better coverage, and connection rate). For future wireless communica-
tions, the key technology that has the potential to enhance connectivity
for billions of users is referred to as Cell-Free Massive Multiple-Input
Multiple-Output (CF-mMIMO). One of the many challenges in CF-
mMIMO is how to efficiently manage limited resources in a way that
maximizes the performance of the network - the so-called resource allo-
cation problem in wireless communications. This work explores compu-
tational and mathematical tools that will tackle some of the resource
allocation problems in future wireless networks.

Keywords: Wireless communications · Resource allocation ·
Optimisation problems · Scheduling · Theory and Algorithms

1 Introduction

In recent years, there has been an explosive growth in the number of smart-
phones and other high-performance handheld devices which require high-speed
wireless connectivity. In 2018, statistics showed that over 22 billion devices were
connected around the world and it is predicted that in 2030, there would be
over 50 billion connected devices [1]. This demand has necessitated the need for
more efficient and scalable techniques for efficient communication. In the past,
the main service for mobile networks was to cater for voice calls but presently
transmission of data (internet connectivity) is the dominant service. Nowadays
we have billions of smart devices used in critical sectors like healthcare and they
require stable and reliable internet connections.

Unlike classical times when wired networks were dominant, wireless networks
use radio waves as communication channels and signals are often transmitted in
parallel across channels to improve the total spectral efficiency of the network.
The spectral efficiency (SE) of a network can be viewed as a metric used to
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assess network performance and represents the total number of data (in bits)
transmitted over a channel. Due to the variation of the wireless environment,
the capacity of wireless links exhibits a dynamic nature. More so, signals are
easily affected by interferences from other signals as they travel across the same
channel. This stands in clear contrast to wired networks where the capacity of
any channel is fixed and independent of the transmission rate on other channels.
Furthermore, we often experience resource constraints (power, channels, band-
width) that must be properly managed to maximise the network performance.
As a result, strategies for resource allocation and interference management are
usually necessary in wireless networks to provide acceptable data rates to the
users.

In this work, we are concerned with optimisation problems for cell-free mas-
sive Mimo (CF-mMIMO) networks. The latest 5G network architecture follows a
cellular model where the network is divided into cells and we have APs serving
only users in their cells. With this, users far from the APs achieve low spec-
tral efficiency and inter-cell interference occurs since APs have to handle several
active users in their cells at the same time. On the other hand, there are no
cells in CF-mMIMO and all APs can serve all users simultaneously as we see
in Fig. 1. With this approach, it is envisaged that we can attain higher network
speed, better reliability of connections and improved scalability [2].

Fig. 1. Cellular networks vs Cell-free networks

2 System Model and Existing Work

A typical CF-mMIMO model contains a set of APs A = {a1, a2, ..., aM} serving
a set of users U = {u1, u2, ..., uK} such that the number of APs M � K. We also
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have a channel gmk between AP am and user uk which is assumed to remain
constant during a coherence interval and an upper bound on the achievable
spectral efficiency attainable by each user can be calculated using Shannon sum
capacity formula [5]. Different resource allocation problems exist in all stages
of signal transmission which include an uplink training stage, a downlink data
transmission stage (AP → user), and an uplink data transmission stage (User
→ AP). The uplink training stage typically involves the process of acquiring
channel estimates for downlink (AP → user) data transmission to occur and for
now we focus on the optimisation problems in this phase.

In downlink transmission, we have power constraints at each AP that deter-
mine the strength of transmitted signals. Therefore, resource allocation takes
the form of optimising utility functions subject to these power constraints. These
utility functions are sum spectral efficiency, proportional fairness, harmonic rate,
and the minimum rate [5]. In this work, we focus on the problem of maximising
the sum spectral efficiency (sum SE) under i) power constraints and ii) without
power constraints i.e. assuming uniform power.

2.1 Sum SE Maximisation Under Power Constraints

Given a CF-mMIMO network of K users and M APs, the sum SE problem under
power constraint is described as:

max
ηmk≥0

K∑

k=1

SEk ∀m, k

subject to
K∑

k=1

0 ≤ ηmk ≤ Pmax, m = 1, . . . ,M.

where SEk is the achievable spectral efficiency between a given user uk and
AP ak. This variable SEk is the ratio of the transmitted signals against the
interference and noise from neighbouring channels. ηmk is the power for signal
transmission and Pmax is the maximum power that can be used for signal trans-
mission. It has been shown that the sum-SE maximisation problem is non-convex
and NP-hard [4,6] based on a reduction from the maximum independent set [3].
In [5], the problem of maximising the minimum spectral efficiency of users was
solved using a bisection search and a sequence of second-order cone feasibil-
ity problems where their proposed method had a complexity of O(K4). Also, a
concave-convex procedure (CCP) based fractional programming (FP) approach
was proposed by [8] to solve the sum-SE problem. However, the algorithmic
complexity of this method was not analysed.

2.2 Sum SE Maximisation Without Power Considerations

Under uniform power assumptions, a peculiarity in a cell-free network is that
since all access points can jointly serve all users and we must further devise
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strategies to determine what set of APs serve users best. It has been shown that
it is impractical for all APs to serve all users at the same time and constructing
a serving cluster is more beneficial [4]. Here the problem is to allocate a set of
serving APs to users in a way that maximises the overall spectral efficiency of
the network. More formally, we define this as:

max
xik∈{0,1}

R∑

i=1

K∑

k=1

SEikxik (1)

s.t.
R∑

i=1

xik = 1, for i = 1, ..., R, (2)

K∑

k=1

xik = 1, for k = 1, ...,K. (3)

where R is the number of AP clusters formed, and the objective function in (3)
is presented by a reward matrix, where K rows represent K users and R columns
are considered as the combinations (clusters) of the required number of APs to
be selected for each user. In addition, SEik denotes the spectral efficiency of uk

assigned to ai (selected AP) and xik equals 1 if there is an assignment between
uk and ai, while xik equals 0 otherwise.

One of the earliest works in CF-mMIMO for optimal allocation of APs to
users assumes that all users have equal power and adopted a hierarchical clus-
tering algorithm whereby in the first instance we have K users in K different
clusters that are merged into similar clusters iteratively based on channel simi-
larities. The authors showed that the complexity of this technique is O(M2logK)
[7] where K is the number of users and M is the number of APs. Compared to
using conventional methods of selecting APs with high SE which gives a com-
plexity of O(KM2) [10], the authors in [9], introduce a preprocessing technique
to eliminate access points that don’t meet a required power threshold. After
preprocessing, the complexity of the Hungarian algorithm order is significantly
reduced such that we have a complexity of O(K.M2) to O(K ′.M ′2),where K ′ �
Kand M ′ � M .

3 Our Contributions

Here, we describe some progress towards developing efficient algorithmic tech-
niques that can be applied to solving the present challenges in CF-mMIMO net-
works, while maximising available resources. To better understand the model,
we simulated an instance of the sum SE maximisation problem in (3) with an
Integer programming model to see how it scales with respect to the input. We
provided a fixed cluster size, such that a user can only be assigned to one cluster
group. From the experiment, we observed that for smaller input sizes the IP
model produces optimal results very quickly (≤60) s but begins to slow down
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considerably as the number of APs increases, M ≥ 40. Furthermore, we com-
pared the optimal solution shown by the model with the Hungarian matching
algorithm and the random AP selection algorithm. We observe that although
the IP model produces optimal solutions in general, as the input size n grows
larger, the random and Hungarian algorithm produce their results in a faster
time (Fig. 2).

Fig. 2. Comparison of existing algorithms with IP model

4 Conclusion and Future Directions

The research on cell-free massive MIMO is still in its infancy and thus deserves
more extensive studies on the complexities of algorithms used. CF-mMIMO is a
type of wireless architecture that is receiving considerable attention for enhanc-
ing the efficiency of future wireless networks. However, several combinatorial
optimisation problems exist with respect to resource allocation. In maximising
the total spectral efficiency of the network, the challenge lies in allocating several
users to wireless channels in an optimal way given power constraints and interfer-
ences that exist. Another distinct feature in CF-mMIMO networks is selecting
the best subset of APs to serve users even under uniform power assumptions
which is known to be NP-hard [11].

By exploring the connections that might exist between this type of wireless
network and already existing graph techniques, we seek to design algorithms
that produce feasible solutions for maximising the network performance. Some
future directions include:

– Preprocessing the input graph and restricting the graph based on power
thresholds and interference ratios to see how this affects the complexity of
maximising the sum SE.
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– Clustering approaches like hierarchical clustering has been used with a com-
plexity of O(M2 logK). However, this clustering technique is not specific to
graph-like structures. Hence, we could try to obtain better complexity results
by exploring advanced graph clustering algorithms.

– We could also focus on optimising other utility functions like fairness (Max-
min fairness) amongst users to improve network reliability. A bisection search
algorithm was shown in [5] for optimising user fairness. We could explore load
balancing approaches in graph theory that can be applied in our scenario.

Acknowledgements. We would like to thank the reviewers for their insightful com-
ments.
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Abstract. Virtualisation technologies are widely used in Cloud com-
puting infrastructures, because they can be provisioned cheaply and
quickly to meet demand. The common approaches are either to package
a Operating System (OS) as a Virtual Machine, or to containerise soft-
ware with an OS kernel. An emerging alternative are unikernels, which
are customised kernels to support just one application. Unikernels are
lightweight and an applications has sole use of the kernel, which offers
potential for fast, resource efficient and secure execution. For these rea-
sons, unikernels may be idea for parallel computing in the Cloud. How-
ever, the parallel performance of unikernel-based Cloud applications has
not been extensively studied. This paper presents an evaluation of the
OSv unikernel using a parallelised Mandelbrot benchmark, comparing
with Docker and a monolithic VM for runtime, parallel speedups and
boot-up time. OSv has the fastest boot-up time, and is comparable with
the parallel speedups of Docker and the monolithic VM.

Keywords: Unikernels · Parallel Computing

1 Introduction

1.1 Unikernels for the Cloud

The convention for running parallel programs is by executing them on multicore
CPUs within standard Operating Systems (OS) with multithreading support.
Security, on-demand elastic scalability and energy efficiency are the primary
requirements when deploying parallel programs to the Cloud [19–21], which is
why virtualisation technologies are widely used for Cloud deployments. The most
widely used virtualisation technologies are application-specific containers e.g.
Docker, and OS Virtual Machines e.g. VirtualBox and Qemu. These approaches
package the full OS software stack along with compiled applications.

An emerging alternative approach is unikernels [2]. A unikernel is an exe-
cutable image that can execute natively on a hypervisor, without the need for
a separate operating system. A unikernel are application specific, i.e. they are
customised to execute a single binary program. A unikernel is a lightweight OS
kernel where the kernel modules are shared with the hypervisor e.g. Qemu. This
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results in quicker boot times because there are fewer modules to start, and addi-
tional security guarantees are provided because the compiled application is the
only entry point.

Unikernels are designed to be fast, customisable and secure. Unikernels have a
single address space, for the one application being executed. This minimises con-
text switching only to kernel actions rather than to other OS processes. Uniker-
nels have a single address space, for the one application being executed. This
minimises context switching only to kernel actions rather than to other OS pro-
cesses.

All components are modularised including operating system primitives,
drivers, platform code and libraries should be easy to add and remove as needed,
to generate a light weight and flexible operating system. This helps in terms of
reducing overhead for the OS and provides the flexibility to switch between dif-
ferent OS modules. POSIX support provides the ability to run existing legacy
applications. Exposure to external security threads is minimised because no other
process is executed in the virtualised environment.

There are two distinct approaches to unikernel implementation. The first
approach is to develop unikernels for specific programming languages, where
the low-level kernel libraries are developed in one language and applications
are developed in the same language. Examples include MirageOS [4] for OCaml
programs and HaLVM [3] for Haskell programs. Any static security guarantees
of the language, e.g. through its type system, are guaranteed for the complete
software stack. The second approach is to develop unikernels that are compatible
with standard binaries. That is, any programming language compiled to native
code are supported by these kinds of unikernels. Examples include OSv [5] and
Unikraft [6].

The experiments in Sect. 3 uses the language agnostic OSv unikernel. This is
because it supports multiple programming languages with parallelism features,
and is portable across both hypervisors (e.g. Qemu and Xen) and also CPU
architectures (e.g. ARM and x86).

1.2 Parallel Performance of Unikernels

Existing unikernel benchmarks have focused on latency and boot-up time [4]
and CPU performance [8]. Another metric is OS noise, which is benchmarked
in [7] using FWQ (Fixed work Quanta), FTQ (Fixed time Quanta) and hourglass
metrics. When compared with the Linux kernel, the Azalea Unikernel [7] had less
kernel interference and scaled well to many-core CPUs. Other benchmarks focus
on specific application domains, e.g. comparing boot-up times, file read/write
latencies and memory allocation for the Sqlite and Redis databases [6].

The lightweight nature of unikernels, and the fact that programs have exclu-
sive use of the kerne, may enable them to achieve good parallelism efficiency.
To the best of the author’s knowledge, there is little work on profiling the par-
allel performance of unikernels. This paper provides a systematic evaluation of
a parallelised Mandelbrot implementation on three virtualised software stacks:
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Docker, a virtualised Linux OS and the OSv unikernel. Section 3 compares boot-
up times, wall-clock runtimes and parallel speedups.

The aim of this paper’s experiments are to provide insights into the com-
parative performance of parallel computing with unikernels. The wider context
of this PhD is to firstly discover parallel performance bottlenecks of emerging
unikernels, to identify systems-level research opportunities and to find ideal use
cases for parallel computing with unikernels.

2 Experimental Design

2.1 Benchmark Metrics

Wall Clock Run Times. The wall clock runtime measures in seconds the total
time to execute the Mandelbrot [16] program. The wall clock runtime does not
include the boot-up time. This metric shows the sequential runtime performance,
as well as the parallel runtime performance on multiple CPU cores. The standard
deviation, parallel speeds and parallel efficiency are calculated based on the wall
clock runtimes.

Boot-Up Times. The boot-up times is the time taken to the start the Virtual
Machine or Container as well as starting the application’s execution. This metrics
shows how fast it takes to start a parallel program, e.g. if deployed on-demand
in the Cloud.

Parallel Speedups. The parallel speed up is defined as the ratio of serial
execution time to the parallel execution time [17]. This metric shows how well
Mandelbrot speeds up with multiple CPU cores versus the sequential runtime
with the same virtualised software stack, e.g. OSv on 8 cores and OSv on 1 core.

2.2 The Mandelbrot Benchmark

Mandelbrot images are generated by applying a mathematical function to each
complex number projected in the complex plane and determining for each
whether they are bounded or escapes towards infinity. The experiments in Sect. 3
are ran with two sets of Mandelbrot parameters, image height and iterations.

These values are a height of 1000 with 3000 iterations, and then a height of
2000 with 6000 iterations. This is to evaluate the parallel performance of three
virtualisation comparators when computational complexity increases.

The Mandelbrot algorithm is parallelised using Goroutines in Go. A Gorou-
tine is spawned for each row to be generated in the Mandelbrot image. Inside
each parallel Goroutine is a sequential loop which iterates through each image
column. The loop executes the Mandelbrot iteration and Linear Interpolation.
Once all go routines are executed the image is written from to disk (Fig. 1).
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Fig. 1. A generated Mandelbrot image

2.3 Comparators

Existing unikernel benchmarks [6,8] use Docker and Monolithic kernels as their
standard means of comparison. Docker is commonly used for Cloud deployment
given its ability to rapidly spawn containers for elastic-scale computing.

There are three virtualisation comparators in the experiments (Sect. 3):

1. OSv running on a Qemu emulator. The Mandelbrot program (implemented
in Go) is compiled using Cgo, and the generated shared object and header
files are linked to the OSv kernel and then executed.

2. Docker running a Ubuntu 20.04 image. The Mandelbrot program is compiled
with the Go compiler which is linked to the Docker file then executed.

3. A monolithic kernel (Ubuntu 20.04) running on a Qemu emulator. The Man-
delbrot program is also compiled with the Go compiler, then executed in
userspace as a binary file.

Both Qemu and Docker are ran on a host OS (i.e. type-2 hypervisor) in
the experiments. The hardware specification of the machine is a Intel i7-1065G7
CPU with 8 cores and 16 GB of memory. For the experiments in Sect. 3, the
type 2 hypervisors ensure a fair comparison between OSv, the monolithic kernel
and Docker at the same layer of virtualized abstraction.

3 Results

3.1 Wall Clock Run Times

The wall clock runtime results for both parameters are in Figs. 3(a) and 3(b).
The plots of the wall clock runtimes refer to the mean of run times. The x-axis
refers to the number of cores used and the y-axis refers to seconds of the mean
run time all measurements are the mean of 3 executions.

Fig. 2. Bootup times

Each experiment is executed 8 times to obtain the mean average and the
standard deviation.
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Fig. 3. Wall clock run times

Fig. 4. Parallel Speed ups

Scenario 1: The result in scenario 1 in Fig. 3(a) shows that OSv is slower than
Docker and the Monolithic kernel (i.e. Ubuntu). The Monolithic kernel and
Docker have almost identical run times with a difference of 2 s (circa 1% of
the single core runtime). OSv on the other-hand exhibits runtimes that are up
to 8.5 s higher than Monolithic kernel and Docker. For Scenario 1 (Fig. 3(a)),
OSv is the fastest system across all core numbers, 32 s faster than the Mono-
lithic kernel and 29 s faster than Docker on 4 cores. On 6 and 8 cores OSv runs
on average 19 s.

Across all parameters and core numbers, OSv was slower than the other
2 comparators by a difference on average of 17 s. With higher core numbers
the differences in runtimes between the systems (both in absolute time and
percentages) decreases. In Scenario 1 with one core OSv runs faster than Docker
by 24 s and OSv is slower than the Monolithic Kernel (i.e. Ubuntu) by 3 s. In all
other runs of Scenario 1 OSv is slower than the other 2 comparators by 20.5 s.
In the case of OSv for Scenario 1 the first run of each core number delivered the
fastest run time.

Scenario 2: In Scenario 2 in Fig. 3(b) OSv is slower than Docker and the Mono-
lithic kernel. Docker consistently has the fastest mean wall clock run times com-
pared to the other two systems: it is on average 23 s faster than the Monolithic
kernel, and 102 s faster than OSv. In Scenario 2 (Fig. 3(b)), and in contrast to
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Scenario 1, OSv is consistently slower than the other configurations: across all
core numbers it runs by 82 s slower than Docker, and by 99 s slower than the
Monolithic kernel. In a single core configuration, we observed the highest differ-
ences in runtime for OSv, by an average of 113 s slower than Docker and 130 s
slower than the monolithic kernel. On a single core configuration OSv had the
least stable results with a standard deviation of 57.84 s. In comparison Docker
had a standard deviation of only 40 s and the Monolithic kernel had the lowest
standard deviation of 16.4 s. Interestingly, for the multi cores runs OSv had more
stable run times in comparison to Docker and the Monolithic kernel, with stan-
dard deviations of 0.4 for OSv, 1.45 for Monolithic kernel, and 9.61 for Docker.
This means although Docker and Monolithic kernel had faster run times in the
multi-core configurations, OSv delivers more predictable run times based on the
standard deviation calculated across the 8 runs on different core numbers.

3.2 Boot up Times

Figure 2(a) shows the average boot times of OSv, Docker and monolithic kernel
(i.e. Ubuntu). In terms of boot-up times OSv has faster than Docker by 25%
and 99% faster than the monolithic Kernel (i.e. Ubuntu).

3.3 Parallel Speedups

The parallel speed ups are in Fig. 4(a) and Fig. 4(b). They show the parallel
speed ups of all configurations, calculated based on the mean wall clock run
times over 3 runs.

Scenario 1: The parallel speed ups for OSv multi core is respectively 2.05× times
for 4 cores, 2.64× for 6 cores and 3.20× 8 cores. OSv achieves modest speedups of
2.05× on 4 cores, 2.64× on 6 cores, and 3.20× on 8 cores In comparison, Docker
achieves initially higher but relatively dropping speedups of 2.10× on 4 cores,
2.79× on 6 cores. and 2.80× on 8 cores. Finally, the Monolithic kernel achieves
similar speedups with the best high-end performance of 2.05× on 4 cores, 2.80×
on 6 cores, and 3.40× on 8 cores. Based on these parallel speed ups for OSv the
parallel efficiency is 51% on 4 cores, 45% on 6 cores, and 39% on 8 cores. The
parallel efficiency for Docker is 52% on 4 cores, 46% on 6 cores, and 44% on 8
cores. The parallel efficiency for the Monolithic kernel is 51% for 4 cores, 46% for
6 cores and 43% for 8 cores. For this scenario Docker and the Monolithic kernel
have a similar speed up compared to OSv with an average difference of 20%.
Docker and the Monolithic kernel have a similar parallel efficiency compared to
OSv with an average of 2% parallel efficiency difference.

Scenario 2 On Scenario 2, OSv achieves modest speedups of 1.96× on 4 cores,
2.70× on 6 cores, and 3.20× on 8 cores. In comparison, Docker achieves higher
speedups of 2.54× on 4 cores, 3.35× on 6 cores, and 4× on 8 cores. Finally, the
Monolithic kernel achieves speedups of 2.08× on 4 cores, 2.80× on 6 cores, and
3.49× on 8 cores.
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3.4 Discussion

The boot-up time comparison shows that launching applications with OSv is
slightly faster than doing so with Docker and significantly faster than with a
monolithic VM. This is likely because Unikernels have fewer modules to launch
compared to the other two. The more reproducible run times with Scenario 2 for
OSv likely because there are fewer background processes and no other user-level
applications running which results in less OS noise. The slightly longer runtimes
for OSv may be due to the OS multi-threading scheduling implementation in
OSv. As future work, will plan on investigating this.

4 Conclusion

This paper presents an experiment comparing the parallel and boot-up time
performance of the OSv unikernel compared with a Docker container and a
monolithic Linux VM. The results (Sect. 3) provides a better understanding on
how Unikernels preform on parallel applications, and what needs deeper investi-
gation. The unikernel achieved the fastest boot-up time. Moreover these exper-
iments show that the OSv unikernel can achieve parallel speedups. Moreover
these speedups are comparable with Docker and the Linux VM. This provides a
starting point for deeper investigation in this PhD research. The future work will
focus on benchmarking parallelised applications from a wider range of domains,
using more metrics including memory profiling, energy consumption and OS
noise.
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Abstract. The increasing complexity of modern and future pre-exascale
high-performance computing (HPC) systems necessitate the introduction
of machine learning methodologies that support systems administrators.
The key element of these monitoring and support systems is anomaly
detection. This presentation discusses my current work - as part of my
Ph.D. research - in developing anomaly detection systems for the HPC
systems. Specifically, I discuss my ongoing work in improving upon the
previous SoA anomaly detection system. The proposed approach is eval-
uated on the Maroni 100 supercomputer located in CIENCA. Based on
a large-scale evaluation (on all 980 nodes), we see that the proposed
approach outperforms the previous SoA.

Keywords: Anomaly detection · High-performance computing ·
Machine learning

1 Introduction

In the move towards exascale, modern High-performance computing (HPC) sys-
tems are becoming increasingly larger and more complex [9]. A typical modern
HPC system consists of hundreds of compute nodes with future pre-exascale sys-
tems expending this number into thousands [6]. This increased complexity neces-
sitates the introduction of monitoring systems supported by AI/ML methodolo-
gies that support system administrators in managing the HPC system.

The most critical application of AI tools in support of system administrators
is the introduction of anomaly detection systems. Anmol detection systems are
crucial as they allow system administrators to react to the downtime (or unavail-
ability event) faster and thus reduce the time between the anomaly (evet) and
their response. This faster response time severely reduces the time the compute
nodes are unavailable and increases the overall availability of the HPC system
[8]. This anomaly detection signal is then included in the dashboard presented
to the system administrators as a part of a digital twin of the datacentre.
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The foundation for the creation of AI-augmented monitoring systems is the
holistic monitoring infrastructure that combines out-of-band power monitoring,
system monitoring, and historical availability data [3,7]. My Ph.D. thesis focuses
on data collected by the ExaMon monitoring system developed by the University
of Bologna [5]. I study the data collected from the Marconi 100, which is a Tier-0
HPC system located in CINECA Italy [2] (ranked 9th in Jun. 2020 Top500 list
[1]).

The state-of-the-art (SoA) approach to anomaly detection is to deploy a
semi-supervised approach [4,8]. This stems from the fact that the anomalies are
rare events, and it would be impossible to collect a significant enough dataset
for classical supervised classification methods [4]. The current SoA approach to
anomaly detection proposed by Borghesi et al. [4] is a semi-supervised anomaly
detection approach that takes minimal advantage of the temporal dependencies
in the anomaly signal. Our current work - discussed in this paper - is thus how
to extend this approach to include temporal dynamics. We propose to do this by
deploying an encoder network consisting of Long Short-Term Memory (LSTM)
cells.

1.1 Contributions

The key research question that this work discussed is how to extend our previous
work [4] (which is the current SoA) with temporal dependency data. Specifically,
we propose an LSTM-based approach that we evaluate in a very large scale
experiment: we train two different models for each of the 980 nodes of Marconi
100; an extensive scale experiment thus supports the results (and the claim of
the new SoA).

Fig. 1. Data collection schema of M100 HPC system. Data from various sensors is
collected by ExaMon and then passed to the encoder/decoder network.
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1.2 Anomalies and Dataset

The proposed methodology is evaluated on the complete first ten-month oper-
ation history of all 980 nodes of the Marconi 100 HPC system. The collected
dataset contains out-of-bound hardware monitoring data and system data. The
complete list of used features is presented in Table 1. The anomalies are deter-
mined as events where the nodes are unavailable to accept (or continue to exe-
cute) compute jobs. The dataset is prepared in collaboration between the Uni-
versity of Bologna and CINECA [2].

Table 1. An anomaly detection model is created only on hardware and application
monitoring features. More granular information regarding individual jobs is not col-
lected to ensure the privacy of the HPC system users.

Source Features

Hardware monitoring ambient temp., dimm[0-15] temp.,
fan[0-7] speed, fan disk power,
GPU[0-3] core temp. ,GPU[0-3] mem
temp. , gv100card[0-3], core[0-3]
temp. , p[0-1] io power, p[0-1] mem
power, p[0-1] power, p[0-1] vdd
temp. ,part max used, ps[0-1] input
power, ps[0-1] input voltage, ps[0-1]
output current, ps[0-1] output
voltage, total power

System monitoring CPU system, bytes out, CPU idle,
proc. run, mem. total, pkts. out,
bytes in, boot time, CPU steal,
mem. cached, stamp, CPU speed,
mem. free, CPU num., swap total,
CPU user, proc. total, pkts. in, mem.
buffers, CPU idle, CPU nice, mem.
shared, PCIe, CPU wio, swap free

2 The LSTM Autoencoder Network

To improve the current SoA, we propose an LSTM encoder-dense decoder model.
The key innovation, compared to the current SoA [4] is that we are encoding a
sequence leading up to (and including) the last timestamp. This improves upon
the dense autoencoder as it better captures the temporal dependencies inherent
in the dataset. The critical insight in this innovation is that while the data
describing supercomputing nodes is composed of multi-variate time series, the
state-of-the-art does not explicitly consider the temporal dimension – the dense
autoencoder has no notion of time nor of sequence of data points. To overcome
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this limitation, our approach works by encoding the sequence of values leading
up to the anomaly. The encoder network is composed of LSTM layers, which
have often been proved to be well suited to the context where the temporal
dimension is relevant. An LSTM layer consists of recurrent cells with input from
the previous timestamp and the long-term memory. The latent layer (vector)
output is passed into a dense decoder trained by reproducing the final vector
in an input sequence. The decoder network is thus composed of fully connected
dense layers.

The proposed LSTM encoder/dense decoder model takes as input a sequence
of vectors of features x leading up to the current time t0 and then tries to
reconstruct only the last vector in the sequence x̂t0 :

M : xt0−W , · · · ,xt0 → x̂t0 . (1)

The length of the input sequence W leading up to the current time t0 is a
tunable parameter. For experimental results, the length of the input sequence
is set to 10. The proposed model M outputs the probability (estimated from
the reconstruction error between xt0 and x̂t0) that the node is in an anomalous
state at time t0.

3 Experimental Results

To remove the potential for bias by setting up the decision threshold, we compare
the proposed approach against the current SoA [4] by evaluating the area under
the receiver-operator characteristic curve (AUC ROC). An exponential smooth-
ing baseline is implemented as a sanity check - if the anomalies were simple
jumps in value, the exponential smoothing would be able to catch them. As it is
clear from the results, this is not the case - exponential smoothing performs even
worse than the trivial classifier (AUC smaller than 0.5). As seen in the Table 2),
the proposed model (combined results from 980 nodes) outperforms the current
SoA. This confirms our hypothesis about the usefulness of considering temporal
dependencies when modeling anomalies.

Table 2. AUC performance of different AD models. Proposed approach outperforms
the current SoA for AD.

Anomaly detection method: AUC:

Exponential smoothing 0.4276

Dense autoencoder (current SoA) 0.7470

LSTM autoencoder (proposed approach) 0.7582
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4 Conclusions

This work presents the genesis of developing anomaly detection systems on a
Tier-0 supercomputer. It reevaluates our previous work [4] against a new pro-
posed approach. This approach, based on LSTM cells, outperforms the old SoA
approach.

Both deep learning-based approaches are evaluated on a very large-scale
experiment consisting of the whole dataset collected from Marconi 100. Results
from this large-scale experiment strongly support our claim that the proposed
SoA approach sets a new SoA benchmark for anomaly detection in HPC systems.
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Abstract. In recent years heterogeneity become synonymous with
supercomputing, and whilst GPUs are highly popular and demonstrated
excellent computational performance, there are other options. One such
option is that of Field Programmable Gate Arrays (FPGAs) which are
reconfigurable at the electronics level to suit an application. Such tai-
loring means that programmers can directly connect with how the elec-
tronics is executing their code, rather than via the black-box microarchi-
tecture of CPUs and GPUs. Consequently FPGAs can provide advan-
tages, especially when codes are memory bound, however they are not yet
mainstream due to the difficulty in gaining performance. The issue is that
they require programming using the dataflow paradigm, whereas existing
imperative languages are based on Von Neumann architectures. Further-
more, the FPGA tooling traditionally imposes usage patterns which lacks
the flexibility expected by HPC programmers, especially around work-
load migration and preemptive scheduling. The overarching aim of this
PhD is to improve accessibility of accelerating HPC codes on FPGAs,
firstly by providing appropriate programming abstractions and secondly
by enabling usage mechanisms which enable flexible interaction.

Keywords: FPGAs · Dataflow programming · Partial Reconfiguration

1 Research Problem

1.1 Dataflow Programming

FPGAs (Field Programmable Gate Arrays) are the most popular type of reconfig-
urable architectures, where their circuitry is not fixed during manufacture. Thus,
the electronics can be adapted to the problem traditionally through Hardware
Description Language (HDL) programming (usually written in Verilog or VHDL)
and, most recently, through High Level Synthesis (HLS) codes (written in C or
C++). Thanks to this flexibility, there is no predefined control logic as in CPUs
or GPUs, as instead the architecture is bespoke for every problem. With Von Neu-
mann based architectures, such as CPUs or GPUs, performance is drawn from a
high clock frequency to issue a high number of operations per second (typically
measured as FLOPS, floating operations per second) and parallelism.
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FPGAs, without a predefined ISA or control logic provide reconfigurable fab-
ric combined with hardened components, for example for undertaking floating
point arithmetic, and memory. The hardware is created ad-hoc from the fun-
damental component parts of the FPGA, which, from a coarse-grained view,
leads to a large pipeline of custom functional units. Dataflow is everything here,
and for this reason, a traditional imperative program does not map well to this
type of architecture and leads to poor performance. In addition, as already high-
lighted, Von Neumann architectures partially rely on a high clock frequency to
deliver high performance, whereas FPGAs are powered by low-frequency clocks
due to the higher underlying complexity of the reconfigurable building blocks —
frequencies are typically around 250 to 350 MHz, however the ability to exploit
massive parallelism when programmed properly provides the potential to ame-
liorate this and to outperform Von Neumann architectures.

Dataflow programming maps better to the FPGA architecture and unlocks
massive parallelism. This paradigm assumes programs can be expressed as a
Directed Graph (DG) with nodes being operations performed on input data,
transforming it to output data. The nodes are connected by directed archs, that
represent the data dependencies for the operations in the program. The data
flow between nodes until all input has been exhausted. Essentially, these nodes
could be mapped to the functional units synthesised in the FPGA and the whole
program expressed as a DG could be mapped to the synthesised pipeline.

Opposed to the imperative paradigm, where a sequence of instructions would
be fetched from memory sequentially as directed by the program counter and
operate on data, dataflow programming unveils the data dependencies in the pro-
gram thanks to its equivalence to a DG. This can prevent stalling on memory
accesses between operations and increase parallelism. In dataflow the program-
mer’s model is that the logic is laid out spatially across the chip.

Fig. 1. Imperative vs Dataflow. Extracted from [5]

Figure 1 shows a simple
program both in an imper-
ative fashion (left) and in
a dataflow fashion as a
DG (right). In the original
work the following question is
posed: What if Y is available
before X? It turns out that,
assuming no out-of-order exe-
cution, the imperative pro-
gram will stall since, in order
to execute the first instruc-
tion, it needs X. On the other
hand, the division can be exe-
cuted whilst X arrives in the
dataflow program, thus not
wasting computing cycles. This is possible thanks to the explicit expression
of data dependencies in dataflow programming. However, we know that nowa-
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days CPUs have out-of-order execution capabilities. Even in that situation the
dataflow approach would be advantageous as it would take only 2 cycles to com-
plete when all the input data is available from the beginning, opposed to the
imperative version whose best-case scenario is 3 cycles. These minor difference
account for massive performance improvements at a larger scale. In words of J.
Flynn [2], a pipeline is typically 500 deep, thus just by replicating the pipeline
four times 2000 dataflow actions will be occurring every cycle. This ability to
discover massive parallelism with dataflow in FPGAs renders them an attrac-
tive accelerator for HPC. Thus, tasks like data reordering whilst other parts of
the chip consume different data concurrently can be undertaken. In combina-
tion with features such as the effective use of on-chip memory replacing generic
L1/L2 CPU caches this allows to draw high performance from FPGAs.

Original works on the dataflow paradigm tried to find a general dataflow
machine [3]. Unfortunately, this machine is not general enough and relies on
overcomplicated constructs to keep track of the arrival of tokens to nodes which
result in performance overhead and area occupancy. Our approach intends to
ameliorate performance programming by enabling the user to implement bespoke
dataflow machines entirely tuned to the application instead of programming a
general one. This will be enabled by the dataflow programming language Lucid,
originally designed to program general dataflow machines.

1.2 Flexibility

The reconfiguration of an FPGA takes place by downloading a pre-generated
configuration file known as bitstream. This bitstream describes the contents of
the configuration memory of the FPGA i.e., values held by the logic fabric and
how the interconnect is wired. This configuration will remain static until a new
bitstream is downloaded, completely erasing the old configuration to replace
it with the new one. This process is time consuming, in the order of seconds
for large FPGAs, and stalls the device, losing potential compute cycles. Further-
more, vendors do not provide a method for saving the context of running kernels,
thus workload migration is not officially supported even within a same configu-
ration. Widely adopted architectures in HPC such as CPUs and GPUs support
preemptive scheduling, workload migration and the execution of new workloads
does not include any performance penalty except for cache misses. Some works
[1,8] on Dynamic Partial Reconfiguration (DPR), i.e. the ability to reconfigure
one part of the FPGA fabric whilst the rest of it is running, address this issue
of lack of flexibility. However, none of them deal with the use of this technology
in a heterogeneous task-based model to potentially interact with other devices
and they are limited in that they require the board to support OpenCL. Part of
this PhD is focused on addressing this problem in a more technology agnostic
way and with a focus on integrating FPGAs in heterogeneous systems.



302 G. Rodriguez-Canal

2 Dataflow: Compiler Technology and DSLs

2.1 Vitis HLS Open Source Front-End

Xilinx released the frontend of Vitis HLS as open source, their framework for
HLS, in 2021. This opens numerous research avenues, as it allows the manip-
ulation of the IR to explore ideas for optimisation whilst still relying on the
backend of Vitis HLS that will map the IR to the physical FPGA resources.
The modifications at the IR level allow the developer to optimise aspects rang-
ing from memory access patterns to the application of well-known optimisation
techniques such as loop tiling manually if desired. Additionally, since the fron-
tend is fully available, it is possible to modify the clang frontend to add new
constructs such as pragmas that the user can utilise to indicate the compiler a
given custom optimisation should be applied.

2.2 An Example: The Stencil Pragma

This example demonstrates the use of the recently released Xilinx technology and
allows obtaining performance in a recurring method in computational science
without further knowledge of the underlying technology. Stencil codes present a
strided memory access that leads to poor performance. In FPGAs the pattern is
transformed to the shift register pattern [4] that, supported by on-chip memory,
provides the result of one cell per cycle. This is considered a low-level optimisa-
tion, and programmers will not generally be aware of this pattern or even that
there is a performance problem.

To deliver performance transparently, the Xilinx’s clang compiler was
extended with a pragma that applies the shift register pattern to 1D/2D stencil
codes. The user is just required to qualify the outer loop with #pragma stencil.
The frontend was modified accordingly so that a metadata flag is added to the
first instruction of the first basic block of the loop. This flag is later used in the
LLVM optimiser to modify the IR accordingly to apply the shift register pattern.

2.3 DSLs and xDSL

Domain Specific Languages (DSLs) are programming abstractions specialised for
a specific type of problem. As such, they provide an amenable user-facing inter-
face for the domain scientist, thus allowing a straightforward mapping of the
equations to the code. Additionally, DSLs provide builtin high-performant mod-
ules to solve the most common tasks for that particular type of problem, there-
fore improving code readability, performance and debugging. However, these
languages present several hurdles:

1. Lack of uniformity: by the specificity nature of DSLs that renders them unus-
able for other problems apart from the one they were designed to target ini-
tially, the domain scientist that works on several different problems is forced
to use more than one DSL should they opt for this approach. There is not a
standard for the design of DSLs, which leads to non-uniform languages that
have to be learnt separately by the user.
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2. Code duplication: the development of every DSL has steps in common such
as the definition of a new IR (Intermediate Representation). This is highly
inefficient from the point of view of development and hinders maintainability.

3. Lack of support: DSLs are commonly developed by academic research groups
that might or might not continue giving support to the language in the future,
based on factors such as funding. This hinders its adoption, as users are
reluctant to introduce a dependency in their software on an obsolete language.

The EPSRC funded xDSL project aims to address this by developing a com-
mon DSL ecosystem based on MLIR. Exposed via a Python toolkit, the idea
is that DSL developers can write a thin layer on-top of this framework to then
benefit from the underlying MLIR/LLVM ecosystem. I am working with xDSL
to develop appropriate dataflow abstractions and compiler using this technology,
effectively providing a dataflow DSL for efficient programming of FPGAs.

This will address the issues described above by providing the programmer
with the appropriate set of dataflow abstractions to direct their code execution
on the FPGA, whilst benefiting from an existing compilation stack. Because this
is MLIR/LLVM we are able to generate LLVM IR which is compatible with the
HLS tool as described above, or target other tools such as CIRCT.

3 Flexibility: Dynamic Partial Reconfiguration
in Task-Based Models

Fig. 2. Service times for 30 tasks at size 600 × 600
on 2 RRs. Per bar group: Non-preemptive (left), pre-
emptive (right).

Section 1.2 describes two issues
regarding flexibility that affect
FPGAs: (1) the stalling and
the overhead derived from
reconfiguration and (2) the
lack of support for preemptive
scheduling. DPR, unlike tra-
ditional full reconfiguration,
does not require stalling the
FPGA for loading new kernels
and the reconfiguration time
can be overlapped with com-
putation. Additionally, since
reconfiguration time is pro-
portional to the size of the
portion to be reconfigured,
DPR is always faster than full
reconfiguration. However, this
technology is not directly accessible to the programmer. It requires a compatible
hardware design and awareness of multiple low-level details for the integration
of HLS kernels.

To address the issues mentioned above, the author has integrated DPR along-
side a checkpointing technique saving the kernel context in Controller [6,7], a
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mature heterogeneous task-based programming model based on C99 macros.
This bridges the gap between the programmer and DPR through a software
abstraction that allows swapping in and out kernels whilst the rest of the fab-
ric keeps operating. Reconfiguration time is lower thanks to the use of partial
bitstreams and it is hidden by overlapping with computation.

In summary, this work involved the implementation of a DPR-capable hard-
ware design easily customisable by the user through TCL scripts, the extension
of the Controller model with a new backend and the development of a modu-
lar preemptive scheduler that makes use of DPR. The work is proven with an
application consisting of 4 image filters applied over images generated at random
times drawn from U(0, T ). Figure 2 shows the service time, defined as the time
it takes for a task to be served since it is generated until it starts execution on
the FPGA, for 30 tasks at size 600 × 600 on 2 RRs. Times T considered are
Busy (0.1), Medium (0.5) and Idle (0.8). These results show that our scheduler
effectively reduces the total service time of tasks, thus increasing the flexibility,
as preemption enables swapping in and out tasks upon a condition — prior-
ity in this case. These results illustrate that the technique enables flexibility
through preemptive scheduling, effectively reducing service time. This occurs at
an overhead of only 4.04%. Furthermore, we know that the service time with
preemptive scheduling can be further reduced by replacing the Xilinx’s ICAP
controller (used for DPR), as it only uses 2.5% of the maximum port bandwidth.
This avenue will be explored in the future.
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