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1 Introduction 

In the late 1980s, to understand “good” teachers and improve teaching practices, 
Medley (1987) reviewed prior research on teaching and teacher education and iden-
tified 10 different variables that were studied to determine effective teaching (Intro-
duction, this volume). Using a chain of effects of presage-process–product research, 
he reviewed studies that focused on measuring teaching and student behaviors that 
resulted in desired student learning outcomes. Further, he identified six of the 10 vari-
ables (Types A—F) as “online variables” (p. 105) that were in direct control of the 
teacher and these variables could be studied individually or in relationships between 
two or more variables. Using Manizade et al.’s (2019) adaptation of Medley’s work 
for mathematics education (Introduction, this volume), this chapter describes an anal-
ysis and review of the literature relevant to the Type B variable, student engagement 
in mathematics learning activities, over the last three decades. According to Medley, 
student learning activities are defined in the following way: 

Pupil learning activities occur in the classroom. The principal means by which teaching can 
affect learning outcomes is through its influence on pupil behaviors in the classroom. The 
function of teaching is to provide pupils with experiences that will result in desired outcomes. 
It is axiomatic that all learning depends on the activity of the learner. (p. 105) 

As mathematics education researchers, we are interested in examining relation-
ships between how students engage in or approach student learning activities (Type 
B) that result in the successful achievement of desired student learning outcomes 
(Type A). It is the teacher practices in classrooms (Type C) that are needed to facil-
itate effective and equitable student interactions with learning activities in which
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students develop mathematical content knowledge and engage in the process of 
doing mathematics. 

Yet, what are the characteristics of student engagement in learning activities that 
promote the development of content knowledge? What behaviors do students actively 
engage in while learning mathematics that reflect what it means to know and do math-
ematics? Can these learning activities be generalized across diverse K-12 classrooms, 
including settings that use a wide range of technological tools that support a “syn-
ergistic relationship” between technical and conceptual dimensions of mathematical 
activity (Zbiek et al., 2007)? How do teachers facilitate and enhance students’ experi-
ences while learning mathematics? One way to address these questions is to consider 
a review since Medley’s work of how the global mathematics education community 
has described constructs that further explore students’ development of mathematics 
content knowledge and engagement in learning activities while doing mathematics. 

A historical review of reform-based mathematics curriculum initiatives provides 
insight into visions of various student learning activities, including the use of tech-
nology, which impact how students engage in knowing and doing mathematics 
(Sect. 2). To address the many names for these activities, I use Kobett and Karp’s 
(2020, p. 40) terminology of behaviors and dispositions (i.e., proficiencies, processes, 
practices, competencies, and habits of mind) to identify the multiple and intersecting 
student experiences that are relevant to how students develop and show evidence of 
their mathematical thinking. Section 3 articulates multiple theoretical perspectives 
that capture how the process of student learning occurs in different learning environ-
ments. This is followed by studies relevant to student engagement in making sense 
of mathematics (problem-solving behaviors) and perseverance (productive dispo-
sitions) that are often linked to instructional practices to support desired learning 
outcomes (Sect. 4). For some studies, Medley’s methodology concerns are addressed 
related to the quality and effectiveness of research. Lastly, a discussion of findings is 
presented and implications for future mathematics education research in the area of 
student mathematics learning activities and active student engagement in knowing 
and doing mathematics (Sect. 5). 

2 Student Mathematics Learning Activities: An Overview 

Over the past several decades, early reform initiatives in the United States [U.S.] 
(National Council of Teachers of Mathematics [NCTM], 1980, 1989, 1991, 1995, 
2000; National Research Council [NRC], 2001) and other countries, such as 
Denmark, New Zealand, and Australia (Davidson et al., 2019; Hipkins, 2018; 
McDowell & Hipkins, 2018; Niss, 2003) have promoted new curricula frameworks to 
develop mathematics content knowledge and learning activities to improve student 
mathematics achievement. The organization of curriculum centered on content at 
different grade bands with some consideration of behaviors needed to engage students 
in learning mathematics. Student mathematics learning activities are a set of behav-
iors and dispositions students engage in to achieve learning goals that reflect an
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in-depth understanding of mathematics. From the last three decades, this overview 
documents a shift toward a focus on student thinking needed to build a concep-
tual understanding of mathematics and identifying how students should experience 
solving mathematical tasks. A review of reform initiatives shows an evolution of 
specificity of learner activities envisioned to meet high-quality curriculum goals that 
support students’ learning of mathematics with understanding. 

Beginning in the mid-1970s and into the decade of the 1980s, school curriculum 
reform focused on accountability and measurable standards that demonstrated 
students’ achievement in mathematics (Cuban, 1992; Pink, 1989). Teacher certi-
fication standards and higher student graduation requirements were raised in the 
hopes of improving the teaching and learning of mathematics. The 1983 publi-
cation, A Nation at Risk (National Commission, 1983) reported the failure of the 
U.S. school system with the decline of student test scores and achievement levels. 
Students lacked mathematical competence and they were unable to problem solve. 
At the same time, the business community became aware of a shrinking supply of 
skilled workers causing them to become involved in public school reform (Cuban, 
1992; Martin, 1989; Sola, 1989). According to Martin (1989), businesses supported 
education initiatives because of the potential of providing skilled workers, including 
those able to work with the emergence of technology. Yet, the need for accountability 
prompted a return to teaching basic skills and the measurement of student behavioral 
objectives (i.e., achievement of performance goals) where students completed rote 
procedures and computations that could be easily measured. 

During the decades of the 1970s and 1980s, what appeared to be missing was a 
focus on measuring student achievement of learning goals (Smith & Sherin, 2019). 
Moving beyond equating knowing mathematics as successfully completing proce-
dures, researchers needed to show evidence of what students “understood” about 
specific mathematics content as a result of engaging in learning experiences in the 
classroom. In response to the needs of the discipline and society for the 1980s, NCTM 
published the Agenda for Action (1980), which recommended future directions for 
improving the teaching and learning of mathematics. Based on reports of low math-
ematics performance, the student behavior of problem solving became central for 
engaging students in a mathematics learning activity and has remained a primary 
focus in curriculum initiatives over the last three decades. 

In the 1990s, the NCTM trilogy of U.S. Standards reform initiatives (1989, 1991, 
1995) provided a vision for the organization of school mathematics curriculum and 
evaluation, teaching, and assessment. The sets of standards described the nature of 
mathematics with an emphasis on students developing a conceptual understanding 
of mathematics rather than an acquisition of procedural knowledge, skills, and 
facts. Based on interpretations of Piaget’s (1970) and Vygotsky’s (1981) work, 
constructivist and social constructivist theories of learning supported a new vision of 
students constructing knowledge individually or collaboratively, rather than passively 
receiving knowledge. Mathematics represented a dynamic, changing discipline rather 
than a static body of knowledge. However, it is critical to state that the early sets of 
NCTM standards represented “statements of values” and that underlying assump-
tions about the teaching and learning of mathematics “were not well anchored in
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either research or theory” (Kilpatrick, 2003, p. 1). Likewise, Lesh et al.’s (2020) 
recent review of learning theories in mathematics education found that the early 
“NCTM Standards themselves were not based on any research per se, but simply an 
envisioning of what mathematics education in classrooms (i.e., in practice) might 
look like and what the appropriate content might look like, keeping the learner in 
mind” (p. 862). One of the issues relevant to a lack of research may be attributed 
to transitioning from past theories and methods of measuring procedural, student 
performance goals to a vision of measuring conceptual, student learning goals often 
showed little, if any, research related to new ways of teaching and learning. This 
is because the sets of standards had not been implemented in many mathematics 
classrooms. Moreover, although the curriculum initiatives promoted mathematics 
content learning goals and engagement in student mathematical learning activities 
(i.e., behaviors and dispositions), teaching practices (Type C) that support student 
learning with understanding were missing. 

In response to a lack of research and explicitly connected to an updated version of 
U.S. standards (NCTM, 2000), Kilpatrick (2003) asserted that a companion publi-
cation (NCTM, 2003) synthesized a review of the literature that informed the vision 
of school mathematics in the 1990s and 2000. In this publication, Sfard reviewed 
learning theory research and identified ten mathematical learner needs that were 
reflected in the curriculum changes of the NCTM standards. For example, she iden-
tified learners as having a “need for meaning and the need to understand ourselves and 
the world around us have come to be recognized as the basic driving force behind 
all our intellectual activities” (p. 356). Bringing the needs of learners to the fore-
front, researchers raised new questions about how to measure student behaviors and 
dispositions that provide detailed explanations of students’ need for “meaning” while 
learning mathematics with understanding and what does this look like in mathematics 
classrooms. 

Recognizing the ever-present dilemma of balancing the needs of mathematics 
(discipline theory) and the needs of the learner (psychological theory) in the orga-
nization of curriculum, Sfard asserted: “In our attempts to improve the learning of 
mathematics, we will always remain torn between two concerns: Our concern about 
the learner and our concern about the quality of the mathematics being learned” 
(p. 386). When one of these theories controls too much of the school mathematics 
curriculum, then disruption occurs within the entire curriculum. Over the last three 
decades and across different countries, the challenge of this dilemma has continued to 
be addressed with frameworks of curriculum initiatives that identify content knowl-
edge students should know and processes students need to engage in while doing 
mathematics. Reviewing the relevant literature, a number of terms and documents 
pertaining to student behaviors and dispositions will appear in this section and be 
discussed further throughout the chapter. Brief, capsule definitions of these terms 
and documents are included in the Appendix. The goal of the following subsections 
is to identify and compare student mathematics learning activities (Type B) that have 
evolved with students becoming knowers and doers of mathematics.
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2.1 Mathematical Processes 

After much debate related to the dilemma Sfard (2003) articulated about balancing 
the needs of both the discipline and learners, the U.S. Principles and Standards of 
School Mathematics (NCTM, 2000) expanded the vision of mathematics educa-
tion to include a more deliberate focus on school curriculum organized around 
the framework of process standards to promote learning activities students should 
engage in while doing mathematics. Rather than describe performance goals of doing 
procedures, the processes defined what mathematicians might do and say when 
problem solving. The process standards recommended providing all students oppor-
tunities to learn mathematics through engagement in five overlapping processes: 
problem solving, communication, representation, making connections, and reasoning 
and proof (NCTM, 2000). Problem solving is the primary action of mathematics 
activity and it has always been recommended as way to know and do mathematics 
(NCTM, 1980). The learning activity of reasoning develops through problem solving. 
Compared to an earlier set of process standards (NCTM, 1989), representation was 
added to the original four processes as a way to engage students in making their 
mathematical thinking explicit. To support students’ development of mathematical 
reasoning and proof, Huinker (2015) extended Lesh et al. (1987) modes of represen-
tation: contextual, physical, visual, verbal, and symbolic, with an explicit focus on 
students building representational competence from which mathematical connec-
tions are made “between” and “within” representations. In Sect. 2.5, Zbeik et al.  
(2007) use an equivalent term of representation fluency as a construct to describe 
students’ access and engagement with multiple representations in technological 
environments. The process standards inform ways students could participate while 
engaged in knowing and doing mathematics. 

2.2 Mathematical Competencies 

At the same time, in 2000, the Denmark Ministry of Education created a national 
committee to examine ways to improve mathematics teaching and learning. Their 
work resulted in the Mathematical Competencies and Learning of Mathematics: 
The Danish KOM Project (Niss, 2003). In this report, mathematical competence 
was defined as having “the ability to understand, judge, do, and use mathematics in 
a variety of intra- and extra-mathematical contexts and situations in which math-
ematics plays or could play a role” (p. 7). The project identified eight mathe-
matical competencies that demonstrated evidence of students’ “mental or physical 
processes, activities, and behaviors” (p. 9). The competencies extended NCTM’s 
process standards and included: thinking mathematically, posing and solving mathe-
matical problems, modeling mathematically, reasoning mathematically, representing 
mathematical entities, handling mathematical symbols and formalisms, communi-
cating in, with, and about mathematics, and making use of aids and tools (including
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instructional technology) (Niss, 2003). This framework of mathematical competen-
cies is relevant to Manizade et al.’s (2019) adaptation of Medley’s Type B variable 
as they identify learning experiences students should engage in to develop a deep 
understanding of mathematics articulated in high-quality curriculum goals. 

In a similar vein focused on identifying mathematical competencies, the Program 
for International Student Assessment [PISA] (PISA, 2021) measures to what extent 
15-year-olds use their many years of building mathematical knowledge to solve real-
world problems. In students’ lives outside of school, they need to solve problems 
that often demand the use and integration of multiple mathematical topics, rather 
than only knowing how to use a single procedure learned in a mathematics lesson. 
PISA assesses different mathematical competencies that gauge students’ mathemat-
ical literacy; that is, “an individual’s capacity to reason mathematically and to formu-
late, employ, and interpret mathematics to solve problems in a variety of real-world 
contexts” (PISA, 2021). The PISA mathematical literacy framework lists multiple 
competencies under each of three clusters: reproduction, connections, and reflection. 
As a research fellow at the Australian Council for Educational Research (ACER) at 
the beginning of the last decade, Turner (2010) reviewed research analyzing PISA 
mathematics test items. To be successful in solving contextual problems, he found 
that students needed to activate prior mathematical knowledge. Further, he reported 
students’ difficulty in problem solving when they needed to activate more rather than 
fewer mathematics competencies. Similar to Denmark’s competencies, the PISA 
competencies included the following: communication, mathematising, representa-
tion, reasoning and argument, strategic thinking, and using symbolic, formal, and 
technical language and operations. Turner argued for teacher activities (Type C) in 
which they increased a focus on these competencies (Type B) to engage students in 
developing mathematical literacy. 

Over the last two decades, a Ministry of Education-funded project, Competencies 
in New Zealand Curriculum (NZC) (McDowall & Hipkins, 2018; Hipkins, 2018), 
described an evolution and research base of key competencies for student learning in 
general and eight content learning areas for the twenty-first century. Connected to a 
PISA framework, a construct of competencies originated from an Organization for 
Economic Development (OECD) Definition and Selection Competencies (DeSeCo) 
Project which produced a framework to guide the development of PISA assessments 
(Hipkins, 2018). For the NZC, each learning area described “what they [students] 
will come to know and do” (Ministry of Education, 2015, p. 37) and identified five 
key competencies: thinking, relating to others, using language, symbols, and text, 
managing self, and participating/contributing. According to the Ministry of Educa-
tion (2020), “Key competencies matter because they support dispositions that will 
enable young people to learn well now, and to go on learning throughout their lives… 
Dispositions mean learners are ready (i.e., being motivated to use particular knowl-
edge, skills, and values to achieve the task at hand), willing (i.e., recognizing when 
it is relevant to draw on these), and able (i.e., knowing how to do so appropriately).” 
Similar to the framework of proficiency strands (NRC, 2001) and Kobett and Karp’s 
explicit inclusion of “disposition” when describing students’ knowing and doing 
mathematics, the NZC recognized the critical role of dispositions needed for current



Student Mathematics Learning Activities 163

and future student learning. In mathematics and statistics, “students explore relation-
ships in quantities, space, and data and learn to express relationships in ways that help 
them to make sense of the world around them” (p. 17). When examining mathemat-
ical connections to four of the key competencies: thinking, relating to others, using 
language, symbols, and text, and participating and contributing, the NZC stated: 
“Students develop the ability to think creatively, critically, strategically and logi-
cally… They learn to create models and predict outcomes, to conjecture, to justify 
and verify, and to seek patterns and generalizations… [there is] a broad range of prac-
tical applications in everyday life, in other learning areas, and in workplaces” (p. 26). 
Within the NZC, three interrelated strands of eight levels of achievement objectives 
are identified: number and algebra, geometry and measurement, and statistics. Each 
level begins with this statement: “In a range of meaningful contexts, students will 
be engaged in thinking mathematically and statistically. They will solve problems 
and model situations that require them to:” (Ministry of Education, 2014). Similar to 
other frameworks of competencies described previously, there is a focus on students 
engaged in thinking, meaningful contexts, knowing, doing, and dispositions. 

McDowall and Hipkins’ (2018) review of large systematic studies that examined 
competencies in the NZC resulted in emergent themes that defined “four phases in 
the ways that key competencies have been understood and enacted in the overall 
school curriculum” (p. 2). Between 2006 and 2018, these phases provided a “trajec-
tory of change” when considering the nature of student learning and how to weave 
the competencies into the curriculum. As an example, although there was overlap 
between the phases, in phase two (i.e., 2007–2011), “relationships between key 
competencies and ideas about learning to learn (an NZC principle) and lifelong 
learning (a part of the NZC vision)” (p. 7) came to the forefront. Research examined 
how the NZC was implemented across multiple schools and what barriers existed. 
A shift occurred in phase three (i.e., 2011–2014) with a recognition of a need for 
the “weaving of key competencies and learning area content” (p. 9); that is, relation-
ships were examined between competencies and desired discipline-specific learning 
outcomes (Type A). 

Moreover, “students’ opportunities to develop their key competencies were 
closely tied to the pedagogy used by the teacher” (p. 9) (Type B and C variables). To 
engage students in learning activities, they needed tasks where they took “meaningful 
action in real-world contexts” (p. 10) and other pedagogical approaches included crit-
ical inquiry and experimental learning. To investigate phase four studies, which are 
ongoing, McDowall and Hipkins (2018) reported: (1) “Students should actively use 
and build knowledge, as opposed to just being consumers of knowledge produced 
by others;” (2) “There should be opportunities for students to collaborate in more 
demanding ways than simply group work;” and (3) “The diverse life experiences and 
ways of being that students bring to learning are seen as a resource for learning rather 
than a problem to be managed” (p. 12). Looking ahead to future research, Hipkins 
et al. (2018) examined the OECD 2030 Learning Framework (p. 2) and its alignment 
and implications for the NZC. As in the past, the 2030 framework identifies a focus 
on knowledge, skills, attitudes, and values leading to competencies for individual and
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societal well-being. The OECD framework development is a collaborative, interna-
tional project and a work-in-progress. It is intended to update the DeSeCo framework 
for PISA assessments and provide a pathway for future research connecting student 
learning activities, teacher activities, and student learning outcomes (Type A, B, and 
C variables, Introduction, this volume). 

2.3 Mathematical Proficiency 

In the same time period as the updated NCTM (2000) process standards, the National 
Research Council’s [NRC] Mathematics Learning Study Committee published 
Adding It Up: Helping Children Learn Mathematics (2001) to identify how students 
attain mathematical proficiency through cognitive and affective engagement within 
these five strands: conceptual understanding, procedural fluency, strategic compe-
tence, adaptive reasoning, and productive disposition. By including the last strand, 
productive disposition, the NRC committee asserted the value of beliefs, attitudes, 
and emotions and their affective impact on students’ engagement in learning math-
ematics. According to NRC, conceptual understanding is defined as the “compre-
hension of mathematical concepts, operations, and relationships” and productive 
disposition is the “habitual inclination to see mathematics as sensible, useful, and 
worthwhile, coupled with a belief in diligence and one’s own efficacy” (p. 116). 
Making connections to the strands, Kobett and Karp (2020) mapped each proficiency 
to examples of what students’ strength behaviors look like in a classroom setting. 
For conceptual understanding, they included a student question, “Why do we call 
some numbers square numbers? Why do we call some numbers cube numbers?” and 
explained: “When students make a comment that something doesn’t make sense to 
them, that is an indication that they desire mathematics should be a sense-making 
activity” (p. 42). Not only was this student engaged in making sense of the meaning 
of different types of numbers, the student asked why questions to develop reasoning 
about the structure of numbers. 

In Australia, the national curriculum standards identified mathematical reasoning 
as both a process that demonstrates mathematical thinking and a strategy for learning 
mathematics (Davidson et al., 2019). According to the Australian Curriculum and 
Assessment Reporting Authority (ACARA, 2017), reasoning is one of the four profi-
ciency strands students engage in when “thinking and doing of mathematics.” In 
other words, the process of reasoning provides insight into students’ mathematical 
thinking and their engagement in student learning activities. The other three profi-
ciency strands are understanding, fluency, and problem-solving. The four Australian 
proficiency strands “describe the actions in which students can engage when learning 
and using the content” (ACARA, 2017). Thus, the proficiency strands suggest a call 
for research that examines students’ mathematical thinking when developing content 
knowledge (learning) and engagement in doing mathematics (using the content).
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2.4 Standards for Mathematical Practice 

In 2010, the U.S. created the national Common Core State Standards for Math-
ematics (CCSSM) (National Governors Association [NGA] Center for Best Prac-
tices and Council of Chief State School Officers [CCSSO], 2010), which included 
specific mathematical competencies for students called the Standards for Mathemat-
ical Practice (SMP). Many of the same international mathematical behaviors iden-
tified previously were stated: (1) make sense of problems and persevere in solving 
them, (2) reason abstractly and quantitatively, (3) construct viable arguments and 
critique the reasoning of others, (4) model with mathematics, (5) use appropriate 
tools strategically, (6) attend to precision, (7) look for and make use of structure, and 
(8) look for and express regularity in repeated reasoning. For the U.S., the CCSSM 
continued an evolution of reform visions stated in earlier initiatives and by other 
international researchers (Bostic & Sondergeld, 2015; Hipkins, 2018; Keazer & Jung, 
2020; Kobett & Karp, 2020; Koestler et al., 2013; McDowall & Hipkins, 2018; NRC, 
2001; Sanchez et al., 2015; Sfard,  2003; Turner, 2010). One purpose for creating the 
CCSSM was to provide consistency across the U.S. in K-12 grade-level curriculum 
standards rather than each state having different standards. The eight SMP described 
how students should engage in mathematics learning activities to become “doers of 
mathematics” (Kobett & Karp, 2020, p. 40). 

In summary, when reviewing the aforementioned frameworks of curriculum initia-
tives, there is a shift toward making explicit how students should experience doing 
mathematics while making sense of their developing mathematical content knowl-
edge. To demonstrate the evolution of student learning activities across different 
reform initiatives, a few mathematics educators have compared behaviors and dispo-
sitions found in the documents. Kobert and Karp described connections between 
the mathematical proficiency strands and SMP. If researchers use Manizade et al.’s 
(2019) framework (Introduction, this volume) for examining relationships between 
classroom Type C and B variables (i.e., teacher-student activities), studies could 
address Kobert and Karp’s challenge: “We want teachers to think about how their 
students respond to and interact with mathematics learning via each of these compo-
nents and that, in doing so, they listen for whispers of their students’ previously 
undetected strengths” (p. 41). What research exists that documents how students 
engage in learning activities portrayed in frameworks of curriculum initiatives to 
develop a deep understanding of mathematics and how do teachers listen and respond 
to their students? Recently, Lesh et al. (2020) argued: “The mathematics education 
community still does not know how to operationally define measurable conceptions 
of almost any of the higher-level understandings or abilities that the CCSC Stan-
dards refers to as mathematical practices” (p. 863). In essence, when working with 
the complexity of studying the nature of students’ mathematical learning with under-
standing and student engagement in a range of mathematical practices (i.e., behaviors 
and dispositions), do studies exist for the knowledge base that provide evidence of 
measures to define effective and equitable student experiences with learning activities 
in mathematics classrooms, including technology-based environments?
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A potential line of research could take advantage of Koestler et al.’s and Kobett and 
Karp’s alignment between the NCTM process standards and the Common Core stan-
dards of mathematical practice. These authors presented classroom vignettes for each 
SMP to illustrate how students engaged in doing these learning activities. Specifically, 
the problem-solving process standard was connected to all eight SMP. This suggests 
if researchers focused on students’ engagement with the first SMP, make sense of 
problems and persevere in solving them, there is a strong possibility that students 
will be engaged in the other “higher-level” practices. Given that similar practices 
are articulated across international frameworks of curriculum initiatives, research is 
warranted to provide evidence of students’ engagement in problem-solving behaviors 
(i.e., making sense of mathematics) and productive dispositions (i.e., perseverance). 

2.5 Cognitive Technological Tools and Student Mathematics 
Learning Activities 

In the Second Handbook of Research on Mathematics Teaching and Learning, Zbiek 
et al. (2007) articulated a perspective of multiple constructs researchers should use to 
examine students’ mathematical understanding while engaged in technology-based 
learning activities. Reviewing earlier research, the authors used the term cognitive 
technological (CT) tools to represent a wide variety of technologies that reflect a 
technical dimension, conceptual dimension, and a “synergistic relationship” among 
these two dimensions. Focusing on the technical dimension, CT tools “must allow 
the user the means to take actions on mathematical objects or representations of 
these objects” (p. 1171). Examining the conceptual dimension, CT tools provide 
“reactive visual feedback” as “observable evidence of the consequences of the user’s 
actions” (p. 1171). Zbiek et al. cautioned researchers against the study of mathe-
matics teaching and learning in technological settings using only one dimension. 
This is attributed to the fact that student learning activities may include technical 
actions, such as solving equations and graphing, and simultaneously these actions are 
informed by students’ conceptual understanding and reasoning, such as conjecturing, 
finding patterns, and generalizing. Similarly, in the recent Compendium for Research 
in Mathematics Education, Roschelle et al. (2017) described a change in technology 
media over the last two decades from static to dynamic representations whereby 
students learn mathematics with understanding over time. Roschelle et al. identi-
fied dynamism as a new construct that incorporates a “time dimension” for students 
making sense of mathematics through dynamic representations. Specifically, they 
asked: “How is a mathematical representation being connected to a student’s experi-
ence of time to advance understanding of mathematical relationships?” (p. 863). To 
support students’ learning of difficult mathematical topics, Roschelle et al. used the 
“design of dynamic representations to enable new means of access [for students] to the 
topic” (p. 865). In Sect. 3, two of the emerging theoretical perspectives are grounded 
in conceptual studies (Hackenburg, 2010; Simon et al., 2016, 2018) whereby students
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use the dynamism of computer microworlds to support research focused on the 
interrelationship between technical and conceptual dimensions. 

When students engage in doing technology-based mathematics learning activities, 
they may set goals and search to find appropriate CT tools that are needed to solve 
a mathematical task. Dependent upon the cognitive demand of a task, students can 
set different types of goals (i.e., performance or learning) which results in students 
exhibiting different types of behaviors. When using these CT tools, Zbiek et al. 
(2007) identified two types of activities students engage in when solving tasks: 
exploratory and expressive (p. 1180). Building on mathematical modeling research 
(Bliss & Ogborn, 1989), students engaged in doing exploratory activities will follow 
teacher instructions to use specific CT tools and procedures. On the other hand, 
expressive activities allow students to select their own CT tools and make their own 
decisions on how they will solve a technology-based task. Mathematics curricula 
often include “explorations” for students to engage with different learning activi-
ties and dependent upon how much teacher direction (Type C) is given, elements of 
both exploratory and expressive activity can be observed. Examining how students 
engage in doing mathematics through these two forms of activity will often result in 
different student learning outcomes (Type A). As an example of expressive activity, 
Zbiek et al. described the role of “play” in learning where students were allowed the 
freedom of unstructured play and time to try a range of different actions with CT 
tools to determine what was possible or not possible as they viewed the results of 
their actions. Students engaged individually or with partners and eagerly called out 
what they observed in a technological setting. However, the conundrum of the “play 
paradox” (Hoyles & Noss, 1992) comes to the forefront, where many CT tools offer 
students such a wide range of processes for solving problems, that they may never 
encounter the mathematical content a teacher intended or what the designers of a 
technology-based activity planned. Zbiek et al. offered mixed research results on the 
productive use of unstructured, expressive play versus structured, exploratory play 
to engage students in learning and doing mathematics. 

Moreover, in a technological setting, researchers have examined both types of 
activity (i.e., exploratory or expressive) that students engaged in and made observa-
tions of students’ corresponding behaviors which “lead to insights about the appro-
priateness of their use of those tools and about their understanding of mathematics” 
(Zbiek et al., 2007, p. 1184). Specifically, inferences about students’ mathematical 
thinking were supported by students’ actions with CT tools, which in turn, reflected 
students’ mental actions. To categorize student behaviors, Zbiek et al. introduced 
the construct of work method which draws upon the research of Guin and Trouche 
(1999) and Trouche (2005). In a 1999 study of 17- to 18-year-old students’ engage-
ment with mathematical tasks that included an option to use symbolic calculators, 
Guin and Trouche reported five different student work methods: random, mechan-
ical, resourceful, rational, and theoretical. As an example, students using a random 
work method would search using trial and error to find a CT tool action that would 
give any answer (i.e., correct or incorrect) for a mathematical task. Yet, students’ 
engagement in a random process of finding any result often provided evidence of 
students missing the mathematical analysis of a problem. In other words, students
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accepted the results without any reflection related to the underlying mathematics 
which hindered their ability to achieve mathematical learning goals. 

Revisiting the development of frameworks for mathematics curricula designed for 
student engagement with learning activities, some researchers (Sandoval et al., 2000 
and Hong & Thomas, 2002 as cited in Zbiek et al., 2007) have identified the construct 
of representational fluency as a lens to study students’ learning by noticing how and 
why students interact and make sense of multiple representations of the same mathe-
matics entity. How might students think differently about possible models and strate-
gies for problem solving in a technological environment that provides quick access 
to multiple representations? Also, how could the selection of mathematics content go 
beyond traditional school mathematics due to the potential capabilities of CT tools? 
Consistent with other researchers, Zbiek et al. described representational fluency as 
“the ability to translate across representations, the ability to draw meaning about 
a mathematical entity from different representations of that mathematical entity, 
and the ability to generalize across different representations” (p. 1192). Access to 
technology can provide learners with opportunities to use different actions to ‘try 
out’ multiple representations and make sense of expected or unexpected results. As 
students reflect on their actions and begin to understand the meaning of each repre-
sentation, they have an opportunity to develop representational fluency which could 
lead to a deep understanding of mathematical concepts. 

Taken together, addressing research studies examining student engagement in 
learning activities (Type B) portrayed in frameworks of curriculum initiatives, 
including technological environments, provides insight relevant to both cognitive 
and affective aspects of student learners as they become knowers and doers of 
mathematics. To address Lesh et al.’s (2020) concerns, researchers can ask: How 
have we transitioned from measuring student learning for lower-level procedural 
outcomes toward analyzing student learning associated with desired higher-level 
thinking student outcomes (Type A)? One way researchers may respond is to consider 
a review since Medley’s work of important constructs that interpret existing research 
and target new areas of research with a focus on the complexity of the learning and 
teaching process; that is, the interrelationships between teachers, students, math-
ematical activities, curriculum content, and the added effect of technology. In the 
next section, three theoretical perspectives provide explanations relevant to how and 
why student behaviors and dispositions develop in the way they do within different 
learning environments. 

3 Theoretical Perspectives 

Within a framework for research relevant to study student behaviors and disposi-
tions, questions can be raised that warrant further investigation about how and why 
students engage in learning activities. What kinds of interactions provide students 
with learning opportunities to develop mathematical knowledge with understanding 
and do mathematics? Are there patterns in how students become “knowers and doers
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of mathematics” or is it idiosyncratic for individual students? Middleton et al.’s 
(2017) recent review of engagement research articulates the complexity of studying 
the phenomenon of student engagement while learning and doing mathematics. They 
reported four individual and overlapping components of engagement: behavioral, 
cognitive, affective, and social. There are research challenges in providing expla-
nations that attend to the four different components of engagement in learning 
activities to move our understanding of students’ mathematical thinking forward. 
Jansen (2020) elaborated and defined engagement with mathematics as “an interac-
tive relationship students have with the subject matter, as manifested in the moment 
through expressions of behavior and experiences of emotion and cognitive activity, 
and is constructed through opportunities to do mathematics” (p. 273). To advance 
research relevant to student learning activities, researchers could consider Jansen’s 
recent focus on cognitive and social aspects of behaviors “in the moment” to provide 
evidence of what engagement might look like for students building mathematical 
content knowledge. In Siedal and Shavelon’s (2007) meta-analysis of studies of 
teaching effectiveness related to student learning during the period 1995 to 2004, 
they articulated the role of student learning activities needed to build understanding: 

We assumed that learning is a set of constructive processes in which the individual student 
(alone or socially) builds, activates, elaborates, and organizes knowledge structures. These 
processes are internal to the student and can be facilitated and fostered by components of 
teaching. Moreover, we assumed that higher order learning and a deep understanding of 
learning content is based on the quality of knowledge building and, thus, on the execution 
of learning activities. Learning activities should evoke both basic information processing 
and domain-specific processing. Consequently, we assumed the area of executing learning 
activities to be most proximal to knowledge building. (p. 462) 

Relevant to Manizade et al.’s (2019) framework of examining relationships 
between variables to determine “good” teaching (Introduction, this volume), Siedal 
and Shavelson’s meta-analysis reported constructivist and social constructivist 
paradigms of knowing in studies that made connections between students’ execu-
tion of student mathematics learning activities (Type B), desirable student learning 
outcomes (Type A), and interactive teaching behaviors (Type C). Different theo-
ries of learning hypothesize frameworks centered on student engagement in mathe-
matical learning activities and consequential desired student learning outcomes. As 
researchers interpret particular aspects of the learning process, it is framed by their 
own construction of theories to explain what they notice in students’ behaviors and 
dispositions. 

In this section, I describe three theoretical perspectives that provide explanations 
of student engagement in learning activities which are needed to develop mathe-
matical content knowledge with understanding and engage in processes envisioned 
in frameworks of curriculum initiatives over the last three decades. Departing from 
describing student learning activities in mathematics classrooms, two researchers’ 
conceptualizations of learning are examined through individual dyads and one-on-
one teaching experiments using technology-based problems (Hackenberg, 2010; 
Simon et al., 2016, 2018; Tzur, 1999; Tzur & Simon, 2004). According to Tzur 
(2004), teaching experiments allow a teacher-researcher to present tasks, use ongoing
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analysis of students’ current cognitive constructs, and design more tasks that promote 
students’ engagement in constructing higher-level mathematical thinking. On the 
other hand, consistent with Medley’s call for research in classroom settings, Liljedahl 
(2016) studied connections between teaching practices and student engagement in 
learning activities in mathematics classrooms (Type CB research). 

3.1 Developing Schemes: Progressive Coordination 
of Actions 

Hackenberg’s (2010) model of students’ reversible multiplicative schemes is an 
important contribution to the evolution of research on students’ engagement in math-
ematics learning activities. Synthesizing prior studies of students’ development of 
fraction knowledge (Steffe, 1994; Tzur, 1995, 1999, 2004), Hackenberg identified 
three areas of research that informed key theoretical constructs for her study: (a) 
building on students’ prior knowledge and everyday experiences with fractions; (b) 
student learning activities for fraction knowledge—partitioning and unitizing; and 
(c) three of Kieren’s (1980) five subconstructs of fractions—quotients, operators, and 
measures of length. Further, she studied the process of reversibility in developing 
multiplicative relationships. Solving a problem with a sequence of actions in one 
direction is not easily decomposed to reorganize a scheme in the other direction. 
Before reporting on the results of Hackenberg’s study, her interpretation of scheme 
theory is described to explain one theory about how learners develop mathemat-
ical knowledge. Similar to Medley’s review, she drew upon theories of Piaget and 
Vygotsky to explain how students learn mathematics. 

Hackenberg defined mathematical learning “as a process in which people make 
accommodations in schemes in ongoing interaction with their experiential world” 
(p. 385). According to von Glasersfeld’s (1989) interpretation of Piaget’s theories, 
a scheme consists of three parts: (a) an individual recognizes a situation or experi-
ence from a previous situation, (b) engagement in an activity associated with this 
situation, and (c) expecting the same result or outcome experienced when previ-
ously engaged in the activity. When examining fraction knowledge that is needed to 
develop multiplicative schemes, learners engage in activities, such as partitioning, 
dis-embedding, iterating, and splitting (see Steffe & Olive, 2010; Tzur, 1995, 1999, 
2004 for details of these operations). A perturbation occurs when a learner’s current 
schemes no longer appear useful because they do not fit past learning experiences. To 
eliminate perturbations, schemes either remain stable, or become modified contin-
gent upon a learner’s actions and reflections. For Hackenberg, a perturbation explains 
any reorganization of a learner’s existing schemes. Through repeated experiences, a 
process of reflective abstraction internalizes knowledge based upon the entire cycle 
of perturbation, action, and reflection. If a learner coordinates a scheme successfully 
using accommodation and does not need to physically act on parts of a task while 
describing his or her reasoning, an anticipatory scheme is constructed.



Student Mathematics Learning Activities 171

Hackenberg’s research design allowed her to engage four sixth-grade students in 
problems to facilitate each learner’s construction of anticipatory fraction schemes 
for reversible multiplicative relationships. Data collection consisted of videotaped 
episodes with cameras focused on interactions between a pair of students and 
researcher, and a recording of students’ computer or written work. Students used 
the JavaBars computer program (Biddlecomb & Olive, 2000) to facilitate a mean-
ingful interpretation of the fraction construct of measure as length. Olive (1994) 
stated that microworlds are “tools for the teacher/researchers to construct situations 
in which they can use their emerging models of the children’s mathematics” (p. 71). 

Using retrospective analysis of the video files, Hackenberg examined each 
student’s cognitive structures and how schemes changed over time. She reported 
that students constructed schemes to solve tasks when a fraction relationship existed 
between known and unknown quantities. One pair of students demonstrated use 
of fraction anticipatory schemes. Only one of the four students also engaged in 
reversible schemes when constructing reciprocal relationships. Hackenberg found 
that students’ construction of anticipatory schemes for multiplicative relationships 
required a coordination of three levels of units prior to engaging in an activity. 
Teaching experiments using technology-based problems offer an environment where 
researchers can examine students’ engagement in exploratory or expressive activities 
(Zbiek et al., 2007). Further, researchers could study how these two activities in tech-
nological settings are related to scheme theory to provide an explanation of student 
actions and reflections when they are building mathematical content knowledge and 
doing mathematics. 

3.2 Learning Through Activity: Progressive Coordination 
of Mathematical Concepts 

In a similar vein, building upon Piaget’s (1980) theoretical construct of reflective 
abstraction, Learning Through Activity [LTA] (Simon et al., 2016, 2018) is a research 
model that examines how learners engage in learning activities to develop mathe-
matical concepts. In an evolution of research on student learning activities, prior 
LTA research from the past 10 years provided insight for an emerging integrated 
theory relevant to students’ conceptual learning and instructional design. Using 
Manizade et al.’s (2019) framework, the LTA research model potentially informs 
future research making connections between Type D, C, B, and A variables (Intro-
duction, this volume). Specifically, the LTA model seeks to answer this question: 
“How do humans learn mathematical concepts, and how can instruction be designed 
to enlist these learning processes in service of learning particular mathematical 
concepts?” (Simon et al., 2018, p. 96). Further, what is the process that engages 
a learner to move forward from constructing one concept to a higher-level concept 
in a learner’s network of knowledge for different mathematical concepts? And how 
can this learning process be promoted?
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To study these questions, Simon et al. (2018) proposed an elaboration of the 
construct of reflective abstraction with two refinements: Focusing on new concepts 
developed from prior concepts rather than using schemes, and a shift away from 
earlier work of abstractions attributed to a reflection of activity-effect relationships 
(Simon et al., 2004). The authors asserted that perturbations do not provide evidence 
of how learning occurs and scheme theory does not explain what a learner “attends 
to” in order to achieve a learning goal. Moreover, they no longer viewed reflective 
abstraction as a chronological sequence of actions for developing a new concept, 
but a construction of higher-level concepts based on lower-level actions. Balancing 
the needs of mathematics and a learner, Simon et al. (2018) described developing 
concepts as a “bi-directional” process; “that is, how one explains conceptual learning 
is dependent on the nature of a concept, and the nature of a concept is, in part, 
determined by the process through which it is constructed” (p. 98). A concept consists 
of a goal (e.g., solve a task) and an action a learner takes to achieve the goal. When 
engaged in mathematical activity, learning may not occur if there are no prior actions 
(i.e., mental activities) a learner can access. In LTA’s model, actions are considered 
components of concepts, which transforms the construct of reflective abstraction 
from a coordination of actions to a coordination of existing concepts (Simon et al., 
2016). Student learning activities provide opportunities for learners to construct 
mathematical concepts if they are aware of a sequence of available mental actions 
they have already constructed. 

As an example of progressive coordination of concepts, Simon et al. (2018) 
analyzed the 5-year Measurement Approach to Rational Number (MARN) Project 
data. Similar to Hackenberg’s (2010) study, the same program, JavaBars, was used to 
facilitate students’ construction of fraction and multiplicative concepts. A teacher-
researcher interacted one-on-one with a student to avoid the influence of others’ 
thinking that is often encouraged in classroom settings. The task sequence research 
design included: “(1) Assess the relevant understanding of the learner; (2) Specify 
the learning goal (intended abstraction); (3) Identify an activity or activity sequence 
that the learner already has available that could be the basis for the new abstrac-
tion; and (4) Design a sequence of tasks that is likely to bring forth the learners’ 
use of this activity and lead to the intended abstraction” (Simon et al., 2016, p. 67). 
When students engaged in carefully designed tasks intended to promote concep-
tual learning, individual learning processes illustrated “in the moment” thinking and 
student focus while solving the task. 

Building on Tzur and Simon’s (2004) hypothesis that two stages, participatory 
and anticipation, are necessary to develop mathematical concepts, LTA researchers 
(Simon et al., 2016, 2018) proposed that an initial reflective abstraction is only the 
first of two stages for building a mathematical concept. For the first, participatory 
stage, a learner engages in an activity and uses existing concepts to begin to develop 
new mathematical knowledge. The analyses of MARN data provided evidence that 
learners may not be able to use their initial abstraction (concept) created one day 
for a similar task the following day. Only when a learner could call upon an earlier 
abstraction (concept) in different contexts, LTA researchers identified this second
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stage as anticipatory. Simon et al. (2018) reported that a fourth-grade student coor-
dinated pairs of actions when determining a composite fraction amount of a whole 
number quantity. Higher-level conceptual knowledge was built upon prior existing 
knowledge. The two-stage distinction represents a new aspect of research when 
analyzing qualitative data of student engagement in learning activities. Still, LTA 
researchers point out that future research is needed to provide a more detailed expla-
nation of how teachers can promote a transition from students’ participatory stage 
to an anticipatory stage for developing conceptual knowledge. What is the role of 
teacher activities (Type C) to facilitate this transition of students engaged in knowing 
and doing mathematics (Type B)? 

To inform data analysis and instructional design, LTA researchers (Simon et al., 
2016, 2018) also continued to study the development of a reversible concept Hack-
enberg (2010) and other researchers (Steffe, 1994; Tzur, 2004) have examined as a 
necessary part of conceptual learning. A student may construct a reversible concept 
when he or she does not need to engage in lower-level actions where the orig-
inal concept was developed. Using the context of Cognitively Guided Instruction 
(CGI) research-based addition and subtraction tasks (Carpenter et al., 2015), LTA 
researchers built a typology of reversibility for six potential tasks (see Simon et al., 
2016, 2018 for details of reversible concepts). Consistent with Hackenberg’s (2010) 
findings for reversibility, Simon et al. (2018) reported that a learner may have an orig-
inal concept and not easily construct reversible concepts. The typology of reversibility 
has informed these researchers’ decisions related to the design of instructional tasks 
used during the LTA teaching episodes. 

Overall, LTA’s theoretical perspective focuses on explaining the process of 
building conceptual knowledge through students’ engagement in learning activi-
ties as a progressive coordination of mathematical concepts. Using ongoing data 
analyses, individual tasks and sequences of tasks are modified dependent upon a 
learner’s progress. If no new concept is developed, more of the same or different 
experiences are needed to facilitate student reflection and a new abstraction. A chal-
lenge for researchers is to reflect upon ways to apply LTA’s theory beyond indi-
vidual students engaged in teaching experiment settings and implemented in whole-
classroom settings. To this end, in the next section, I provide an example of student 
construction of mathematical knowledge and engagement in learning activities in 
the context of classrooms. 

3.3 The AHA! Experience: Proxies of Student Engagement 

Medley (1987) recommended five different types of future research needed to inform 
effective teaching practices, with two types focused on student learning activities in 
classroom settings: Type BA, “research relates learning outcomes to pupil learning 
experiences” and Type CB, “research relates interactive teacher behavior to pupil 
learning activities” (p. 110). For Type CB relationships, Medley posed the following 
two questions for researchers to examine: “The teacher whose pupils have the best
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learning experiences in school (Type B)? The teacher whose classroom behavior 
conforms most closely to some conception of ‘best’ practice (Type C)?” (p. 106). 
Using Manizade et al.’s (2019) framework (Introduction, this volume), studies are 
needed that focus on student–teacher interactions between student learning activities 
and interactive teacher behaviors that engage students in becoming knowers and 
doers of mathematics. 

As an example of Type CB research which evolved from 10 years of earlier 
research in Canada, Liljedahl (2016) proposed nine elements of critical teaching 
practices that are needed for teachers to orchestrate and sustain student thinking in 
mathematics classrooms. Moreover, he identified student proxies of engagement to 
describe and measure the effectiveness of the nine elements of teaching practices 
to facilitate student learning. In many of his classroom observations, he reported 
how teachers implicitly assumed “that the students either could not or would not 
think” (p. 362). This may be related to established classroom norms that supported 
learning in traditional ways which hindered students’ ability to engage in thinking 
and problem-solving behaviors recommended by reform curriculum initiatives. 

Liledahl argued for a transition moving away from a non-thinking toward a 
thinking classroom; that is, “a space that is inhabited by thinking individuals as well 
as individuals thinking collectively, learning together and constructing knowledge 
and understanding through activity and discussion” (p. 362). Consistent with other 
researchers’ (Cobb, 1994; Cobb et al., 1992) calls for the coordination of Piaget’s 
(1970) constructivist and Vygotsky’s (1981) sociocultural perspectives, Liljedahl 
assumed that knowledge is constructed both individually and collectively, during 
social interactions with others while engaged in doing mathematical activities. For 
Cobb (1994), these two complementary perspectives address how theories of learning 
emerge; that is, “the sociocultural perspective gives rise to theories of the conditions 
for the possibility of learning, whereas theories developed from the constructivist 
perspective focus on both what students learn and the processes by which they do 
so” (p. 18). As described earlier, Hackenberg’s and Simon et al.’s research approach 
of teaching experiments provided explanations for the process of student learning 
outside mathematics classrooms. 

To inform Liljedah’s (2016) study of teaching and learning practices in secondary 
mathematics classrooms, it is useful to review his perspective on the process of 
mathematical learning “in the moment” during group work and individual problem 
solving. In 2005, experiences in his mathematics course for prospective elementary 
school teachers (PTs) affected their thinking about teaching and learning mathe-
matics. An AHA! experience occurred when “a problem has just been solved, or 
a new piece of mathematics has been found, and it has happened in a flash of 
insight, in a moment of illumination” (Liljedahl, 2005, p. 219). If a student was 
“stuck” working on a problem, but experienced an AHA! moment, she or he became 
“unstuck” and continued to make progress. Liljedahl studied the learning process of 
how this sudden insight or AHA! experience happened and how it affected the PTs’ 
ability to make sense of problems and persevere. Some PTs often identify themselves 
as failures in mathematics based on a lack of successful learning experiences and they 
exhibit high math anxiety in mathematics courses. Given the vision of mathematics
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curriculum initiatives for learners to develop a deep understanding of mathematics, 
a potential increase in the intensity of affective responses may result in promoting 
more negative attitudes when compared to learning routine procedures. Liljedahl’s 
conceptual framework included attention to the affective domain for learning mathe-
matics; that is, examining the constructs of beliefs, attitudes, and emotions (McLeod, 
1992). Beliefs reflect low levels of affective involvement, are relatively stable, and 
develop over a long period of time. According to McLeod, attitude “refers to affective 
responses that involve positive or negative feelings of moderate intensity and reason-
able stability” (p. 581). By contrast, the emotional aspects of learning are unstable 
and connect more to “in the moment” feelings that are “fleeting” (McLeod, 1992). 

To study the process of how learning occurs when students experience insight 
during an AHA! experience, Liljedahl (2005) examined how “moments of illumina-
tion” were related to positive emotions and how they changed PTs beliefs and atti-
tudes about doing mathematics. For an assignment, PTs wrote about an AHA! expe-
rience while problem solving. Analyzing responses, Liljedahl reported four affective 
themes: anxiety, pleasure, change in beliefs, and change in attitudes. He found that 
repeated positive emotional AHA! experiences produced positive beliefs and atti-
tudes about mathematics and students’ abilities to do mathematics. As an example, 
one PT wrote: “AHA moments are those great moments of deeper understanding and 
clarification of problems where incorrect or incomplete understanding is overcome. 
These moments inspire us and encourage us to keep going despite the frustration and 
anxiety that often tends to overwhelm us in times of difficulty when attempting to 
solve a problem” (p. 231). Engaged in making sense of mathematics, this PT became 
aware of her need to persevere, as moments of insight can lead to an understanding of 
mathematics. Liljedahl hypothesized two explanations for a high degree of change in 
the affective domain: “Positive emotion that is achieved during an AHA! experience 
is much more powerful than the emotions that are achieved through non-illuminated 
problem solving” and “Having solved something challenging, or understood some-
thing difficult, besides being a great accomplishment is also a measure of what 
is possible” (p. 231). AHA! experiences promoted changes in PTs’ behaviors and 
dispositions; that is, engagement in student learning activities of problem solving 
and perseverance. 

Liljedahl (2016) extended his work and investigated engagement of secondary 
mathematics students who worked together in small groups of two to four to solve 
problem-solving tasks. He studied the interaction between Type B and C variables 
by examining the effect of different teaching practices and how students engaged in 
problem solving. To inform his observations, he used Mason’s (2002) framework of 
noticing; that is, “Noticing refers to the act of focusing attention and making sense of 
situational features in a visually complex world” (Jacobs & Spangler, 2017, p. 771). 
From data analysis, he proposed nine elements of effective mathematics teaching 
practices for building and sustaining a thinking classroom (see Liljedahl, 2016; 
for list/analysis of practices). Using an iterative design-based research approach, 
each element provided opportunities for teaching practices to be refined or dropped, 
depending on how students engaged in mathematical thinking while problem solving. 
Still, Liljedahl reported that it was challenging for teachers and students to shift from
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traditional, familiar classroom norms. To resolve this issue, he used a “contrarian” 
approach in which an ineffective practice was changed to the exact opposite and then 
implemented in mathematics classrooms. 

Liljedahl measured the effectiveness of teaching practices by studying “proxies 
of engagement—observable and measurable (either qualitatively or quantitatively) 
student behaviors” (p. 366). He referred to these behaviors as “proxies” because he 
did not have direct access to student thinking and he could not tell if the mathematical 
thinking was an individual construction, or, collective thinking due to interactions 
with others. He reported eight student behaviors and dispositions: (1) time to task, 
(2) time to first mathematical notation, (3) eagerness to start, (4) discussion, (5) 
participation, (6) persistence, (7) non-linearity of work, and (8) knowledge mobility. 
As described in Sect. 2, linkages can be made between Liljedahl’s student engagement 
in learning activities (Type B) and those listed in various frameworks of curriculum 
initiatives. In response to Lesh et al.’s (2020) concerns of the need for “measures” 
of higher-level student understanding, Liljedahl provided a framework of student 
behaviors and dispositions that could be used in future studies to provide evidence 
of the effects of students’ engagement in learning activities while building content 
knowledge and doing mathematics. 

Moreover, Middleton et al. (2017) reported researchers studying student engage-
ment experiences often approach their studies using a lens of an observational study. 
Also, interview data can provide more detailed insights on the observed behaviors. 
For his 2016 study, Liljedahl conducted follow-up interviews to confirm teachers’ 
interpretation of student behaviors. Similar to other research perspectives focused 
on how student mathematical learning occurs and described in this section, Liljedahl 
asserted that we need “to honor the activities of a thinking classroom through a 
focus on the processes of learning more so than the products and it needs to include 
both group work and individual work” (p. 382). That is, as Medley (1987) recom-
mended for the future evolution of research for teaching, there is a need to focus 
on the interplay between elements of teaching practices and student engagement 
in learning activities (Type B and C variables) rather than examining only student 
learning outcomes (Type A). 

In summary, the last three decades of frameworks of mathematics curriculum 
initiatives impacted researchers’ approaches to studying the needs of the learner 
and needs of the discipline for effective mathematics teaching and learning. The 
complexity of studying student engagement in higher-level thinking with under-
standing has called for an examination of student learning activities through a lens of 
various theoretical perspectives that provide explanations relevant to how and why 
student behaviors and dispositions develop in the way they do. Given the different 
perspectives relevant to students’ development of mathematical thinking with under-
standing and doing mathematics, theories have emerged in particular settings using 
teaching experiments in technological settings and mathematics classroom environ-
ments. As students become knowers and doers of mathematics, Chan and Clark 
(2017) address the difficulty in conducting valid and reliable research studies of 
student learning in classroom settings, as there is a “tension between the need for 
control in an experimental environment and the freedom needed for the participants
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to interact and behave as they would in a naturalistic classroom setting remains a 
challenge in the design of research studies investigating student learning in social 
settings” (p. 954). 

Nevertheless, different theoretical perspectives allow researchers to gain insight 
into potential refinements in the conceptualization or design of studies that examine 
student learning activities and active student engagement within diverse individual 
and whole-class settings, including CT tool environments. This could result in unique 
insights emerging from studies making explicit connections between Type A, B, and 
C variable relationships. The next section characterizes a selection of studies of 
student mathematics learning activities identified earlier in Sect. 2 that encompass 
most behaviors and dispositions into two main activities: (1) making sense of mathe-
matics (i.e., problem-solving) and (2) perseverance in doing mathematics: productive 
disposition, productive struggle, and productive failure. Taken together, the studies 
extend the mathematics education knowledge base of the effects of student learning 
activities when students engage in developing mathematics knowledge with under-
standing and doing mathematics. Each study includes a brief description of method-
ology to address Medley’s (1987) quality concerns related to conceptualization, 
instrumentation, design, and statistical analysis. 

4 Making Sense and Perseverance Involved in Learning 
Mathematics Knowledge 

4.1 Problem Solving 

Mathematicians, mathematics educators, and teachers have described the problem-
solving process in multiple ways (Schoenfeld, 1992) which has led to the develop-
ment of research agendas focused on examining student behaviors supporting the 
development of mathematical knowledge (Lesh & Zawojewski, 2007; Schoenfeld, 
1992; Schoenfeld & the Teaching for Robust Understanding [TRU] project, 2016). 
According to Santos-Trigo’s (2020) recent review of mathematics education research 
literature, problem solving is defined as “the systematic study of what the process of 
formulating and solving problems entails and the ways to structure problem-solving 
approaches to learn mathematics” (p. 687). Over the last three decades, studying the 
behaviors and dispositions of student engagement in problem solving has continued 
to be a research priority with an emphasis on detailed accounts of teacher expecta-
tions for problem solving and student interactions in mathematics classrooms. This 
is attributed to the shift of focus on teachers understanding students’ mathematical 
thinking “in the moment” and making connections between Type B and C variables 
(Manizade et al., 2019). Lesh and Zawojewski (2007) described students’ engage-
ment in problem solving as using “several iterative cycles of expressing, testing 
and revising mathematical interpretations—and of sorting out, integrating, modi-
fying, revising, or refining clusters of mathematical concepts from various topics
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within and beyond mathematics” (p. 782). As described earlier, teaching experiment 
methodology (Hackenberg, 2010; Simon et al., 2016, 2018) has provided an oppor-
tunity for researchers to examine students’ thinking “in the moment” and explain 
how students develop mathematical conceptual understanding. 

An emerging field of research is investigating student learning activities (see 
Sect. 2) identified in the Common Core standards of mathematical practice [SMP] 
(Bostic & Sondergeld, 2015; Gilbert, 2014; Sanchez et al., 2015) and similar math-
ematical competencies (Hipkins, 2018; McDowell & Hipkins, 2018; Niss, 2003; 
NRC, 2001; Turner, 2010) that focus on students’ sense-making and extends Polya’s 
(2004) problem-solving research. A new term of mathematical sense-making defines 
the needs of a learner when engaged in problem solving as a critical component of 
what it means for students to know and do mathematics. A limited number of qual-
itative studies (Bostic & Sondergeld, 2015; Kapur, 2014; Warshauer, 2015) have  
examined research questions focused on students’ problem-solving experiences in 
mathematics classrooms. Although the term problem solving is not explicitly stated 
in the SMP, the meaning is implicit and places a priority on problem solving as 
students “make sense” of mathematical content. 

The literature revealed various teacher interpretations (Type C) of student 
problem-solving behaviors (Type B) as envisioned in frameworks of mathematics 
curriculum initiatives. In an exploratory study, Keazer and Jung (2020) designed a 
survey for 71 PTs in which they responded to questions about student mathematics 
learning activities. For example, PTs read a paragraph description of the first SMP 
and were asked to think about their future teaching when responding: “Which aspect 
of SMP1 do you think will be most difficult for you to develop in your students? 
Why?” (p. 82). Separate statements of the SMP1 description were matched along-
side PT responses that described anticipated difficulties when engaging students in 
these behaviors and dispositions. The PTs selected: They make conjectures about 
the form and meaning of the solution and plan a solution pathway rather than 
simply jumping into a solution attempt, with the highest frequency as the most diffi-
cult learning activity to develop; the second highest activity was: Mathematically 
proficient students check their answers to problems using a different method, and 
they continually ask themselves, ‘Does this make sense?’ Encouraging their future 
students to plan, use more than one strategy, and reflect on the problem-solving 
process as “making sense” did not appear to be a strength. Close to one-third of the 
PTs shared that they themselves struggled with some of the expected learning goals 
of SMP1. Consequently, it was a major challenge for many PTs to anticipate how 
they would engage students in learning activities (Type B) in their future mathematics 
classrooms. 

Keazer and Jung’s findings led to their design of a conceptual framework matching 
student behaviors and dispositions articulated in the SMP1 sentences to Polya’s 
(2004) four problem-solving phases. Citing the research of Schoenfeld and the 
TRU project (2016) with a focus on the cognitive demand of tasks dimension, they 
proposed using the SMP1-Polya framework to facilitate prospective and practicing 
teachers’ understanding of different levels of sense making (i.e., problem solving). 
According to Keazer and Jung, “SMP1 aligns with level 3 sense making, in which the
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teacher supports students in mathematical exploration and productive struggle that 
results in understanding and engagement in mathematical practices” (p. 88). Making 
connections explicit between sections of SMP1 sentences and Polya’s problem-
solving phases could provide an entry point for supporting teachers’ understanding 
of student engagement in problem-solving experiences. With the high frequency of 
two SMP1 statements in the PTs responses, the student behaviors of Polya’s second 
phase, devise a plan, and fourth phase, look back, continued to show the need to 
engage students in problem solving or making sense of mathematics to develop a 
progression of understanding mathematical concepts. For researchers interested in 
understanding different levels of students’ sense making that supports participatory 
and anticipatory conceptual development, problem-solving activities may provide 
an opportunity to examine LTA’s theory of progression of concepts (Simon et al., 
2016, 2018) beyond individual students to small- and whole-group work methods in 
mathematics classrooms. 

4.2 Productive Disposition 

Building upon Liljedahl’s (2016) theoretical perspective that includes affective 
factors of learner engagement, recent studies are focusing on student “persever-
ance” in solving problems. As described earlier, the NRC (2001) defined an affective 
strand of productive disposition as viewing “mathematics as sensible, useful, and 
worthwhile, coupled with a belief in diligence and one’s own efficacy” (p. 116). 
Gilbert (2014) broadened the meaning of productive disposition to include learning 
activities in which students are “making sense of problems and persevering in solving 
them” and linkages to motivational theory. Observing students actively engaged in 
doing mathematics, researchers could ask: What do strengths-based learners look 
like when they exhibit the characteristics of a productive disposition in mathematics 
classrooms? According to Kobett and Karp (2020), “They are just curious and fasci-
nated. They work diligently, even when faced with obstacles. They try again when 
stymied. They understand that learning mathematics can be hard work and they will, 
therefore, often continue to work well after their peers have given up” (p. 43). For 
further investigation, how might researchers study and measure these characteristics 
of students displaying productive disposition? 

As an example, in October 2005, Gilbert (2014) surveyed a sample of 140 
prealgebra students who volunteered to participate from two California middle 
schools. She hypothesized a relationship between productive disposition (Type B) 
and an achievement-related (Type A) variables. Specifically, she studied a relation-
ship between students’ abilities to attend to precision when they critiqued another 
student’s work. To examine student learning activities, Gilbert stated, “The behav-
iors required to demonstrate these SMP thus relate to psychological constructs that 
go beyond ability beliefs (e.g., efficacy) and utility value (i.e., usefulness of mathe-
matics)” (p. 340). First, students responded to survey questions that measured moti-
vational constructs associated with productive disposition, such as, “My main goal
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in math is to learn as much as I can” (mastery-approach goal) (p. 342). Second, 
students completed an assessment item which measured their ability to add fractions 
with unlike denominators. Third, using an open-ended question, students were given 
a student’s incorrect work, ½ + ¾ = 4/6, and asked to write an explanation to the 
student indicating why the answer was right or wrong. 

Gilbert reported using reliability and factor analyses with an examination of corre-
lations that documented the subscales measured distinct constructs of productive 
disposition. She found that 44% of the students responded with a more precise 
critique of a student’s incorrect strategy by engaging longer and suggested at least 
two steps to correct the student’s work. Also, a multivariate analysis of variance 
supported the hypothesis that students who responded with a more precise critique 
of a peer’s work reported a higher productive disposition than students who responded 
with a basic critique. Two motivation constructs: (1) productive disposition and (2) 
mastery approach goals and negative emotions, showed statistically significant differ-
ences between the two groups. Based on survey responses, more precise critique 
students reported higher mastery-approach goals and less frequent negative emotions 
compared to basic critique students. The results of this study suggest more research is 
needed to focus on NCTM’s (2014) effective teaching practices (Type C), including 
“building procedural fluency from conceptual understanding” (Type B, mastery-
approach goals), where the procedure of adding fractions is built upon a foundation 
of conceptual understanding. Using multiple representations of fractions, students 
could be provided with opportunities to make connections between concepts and 
procedures situated in a classroom where meaningful mathematics discourse occurs. 

4.3 Productive Struggle 

Beginning elementary school teachers often say that students should not “strug-
gle” or be confused in learning mathematics and if they do struggle, a teacher may 
restate the same strategy for students to follow. Keazer and Jung (2020) reported 
a few PTs stated they needed to “show and tell” (Type C) all possible strategies 
to students rather than engage them in productive struggle. However, researchers 
have reported the positive effects of productive struggle whereby the act of strug-
gling is crucial for students learning mathematics with understanding (Hiebert & 
Grouws, 2007; Keazer & Jung, 2020; NCTM, 2014; Schoenfeld & TRU, 2016; 
Warshauer, 2015). Hiebert and Grouws (2007) defined productive struggle as a 
student learning behavior that promotes students making sense of mathematics and 
is necessary to develop conceptual understanding. In a similar manner, Dingham 
et al. (2019) identified productive struggle as “intellectual effort students expend 
to make sense of mathematical concepts that are challenging but fall within the 
students’ reasoning capabilities” (p. 91). Schoenfeld and the TRU project (2016) 
identified five dimensions of mathematics learning activities that were necessary 
to ensure that classroom environments supported students as “powerful thinkers.” 
In response to the needs of the discipline, one dimension focused on the cognitive
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demand of tasks in “which students have opportunities to grapple with and make 
sense of important disciplinary ideas and their use. Students learn best when they are 
challenged… The level of challenge should be conducive to what has been called 
productive struggle” (p. 1). Similar to behaviors and dispositions described in Sect. 2, 
productive struggle engages students in perseverance when solving challenging prob-
lems. Schoenfeld and the TRU project (2016) reported teachers categorized at the 
highest level supported “students in productive struggle in building understandings 
and engaging in mathematical practices” (p. 24). Likewise, NCTM (2014) explicitly 
addressed the need for teachers to engage students in productive struggle: “Effective 
teaching of mathematics consistently provides students, individually and collectively, 
with opportunities and support to engage in productive struggle as they grapple with 
mathematical ideas and relationships” (p. 48). 

Warshauer (2015) studied what different types of student struggle looked like 
in six U.S. middle school mathematics classrooms and how teachers responded to 
their students’ struggles (Type CB research). His conceptual framework centered 
on the “process of struggling to make sense” (p. 378) for a deep understanding 
of mathematics, the relationship between the students’ struggles and the types of 
mathematical tasks explored, and the dynamic, social nature of interaction when 
teachers responded as helping or hindering student learning. Given the complexity of 
studying student–teacher and student–student interactions, he conducted embedded 
case study methodology (Yin, 2009) using instructional episodes. Multiple sources 
of data allowed for triangulation of the data to establish dependability, confirmability, 
and transferability when he reported findings of the study. 

Warshauer developed a productive struggle framework for reporting the frequency 
of four different types of student behavior of struggle: get started, carry out a process, 
uncertainty in explaining and sense-making, and express misconception and errors 
(Type B). As an example, “confusion about what the task was asking” or a “gesture 
of uncertainty or resignation” (p. 385) described students struggling at the beginning 
of the problem-solving process. It should be noted that there is a parallel alignment in 
some of his framework categories to Polya’s (2004) four phases of problem solving; 
that is, “get started” with Polya’s first phase and “carry out the process” with the third 
phase. Similar to Keazer and Jung’s (2020) study, connecting student struggles to 
some of Polya’s problem-solving phases could provide researchers with a new lens 
for analyzing students’ sense-making through existing problem-solving literature. 

For student–student interactions, Warshauer reported students’ “uncertainty in 
explaining and sense-making” when their explanations lacked clarity and did not 
make sense to other students, or they struggled with appropriate responses. He found 
evidence of proportional reasoning misconceptions such as using additive rather 
than multiplicative thinking for the meaning of ratios. For teacher-student interac-
tions, Warshauer reported the frequency of four different types of teacher responses to 
student struggles: telling, directed guidance, probing guidance, and affordance (Type 
C). The first two types of responses did not engage students in productively under-
standing the concept of proportional reasoning. As might be anticipated, a telling 
response often enabled a student to move beyond being stuck, but used a teacher’s 
thinking rather than student thinking. Often, a procedure was stated for a student to
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follow which resulted in lowering a problem’s level of cognitive demand. Both the 
last two types of teacher responses supported students’ thinking without lowering 
the level of cognitive demand. 

Warshauer identified three outcomes of student struggles: productive, productive 
at a lower level, and unproductive. Productive interactions included: “(1) maintained 
the intended goals and cognitive demand of the task; (2) supported students’ thinking 
by acknowledging effort and mathematical understanding and (3) enabled students 
to move forward in the task execution through student actions” (p. 390). He reported 
42% of student struggles met all three criteria, 40% of the interactions only used the 
second criteria, and 18% of struggles were unproductive. For unproductive struggles, 
students were not “making progress toward the goals of the task; reached a solution 
but a task that had been transformed to a procedural one that significantly reduced the 
task’s intended cognitive demand; or if the students simply stopped trying” (p. 391). 
In essence, teachers balanced how much they pressed students to persevere based on 
students’ levels of tolerance for frustration at different levels of cognitive demand. 
Productive struggle depended on keeping tasks at higher cognitive-demand levels, 
supporting students’ perseverance, and teachers who provided guidance and affor-
dance. These results promote the future use of a productive struggle framework 
as a tool for researchers examining students’ productive struggles (Type B) and 
teacher-student interactions (Type BC research). 

4.4 Productive Failure 

Research on examining students’ productive struggle when attempting to make sense 
of mathematics content and persevere in solving problems, is related to engagement in 
another Type B variable: productive failure (Kapur, 2010, 2014; Simpson & Maltese, 
2017). Failure can be defined in many ways, such as, giving up or stopping engage-
ment in an activity, not reaching the intended goal, or incorrect problem solutions. 
Further, failure can bring to the forefront negative connotations such as “negative 
emotional states (e.g., fear, anxiety, depression), low perceptions of self, diminished 
sense of belonging, less academic risk taking, and avoidant behaviors” (Simpson & 
Maltese, 2017, p. 223). These negative behaviors and dispositions suggest that failure 
may decrease students’ desire or ability to continue to problem solve. Still, what might 
happen if we view failure as a “necessary and sufficient condition” for students’ 
engagement in learning activities? In what ways might students’ metacognitive anal-
ysis of their problem-solving process while stuck on a problem make errors explicit, 
or, how may critiquing their peers’ use of models and strategies support learning? 
According to the Partnership for 21st Century Learning (2019), creativity and inno-
vation are enhanced through failure; that is, persistent attempts are part of innovative 
practices marked by “a long-term, cyclical process of small successes and frequent 
mistakes” (p. 4). How might this process of success and failure be part of learning 
activities?
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Simpson and Maltese (2017) studied the role of failure in the development of 
science, technology, engineering, or mathematics (STEM) professionals. They inter-
viewed 99 STEM professionals about their experiences in entering and pursuing a 
STEM-related career. Using life history interviews, they focused on how participants’ 
failure shaped: outlooks connected to failure, career trajectories within STEM fields, 
and provision of additional skills. They reported about one-fifth of the professionals 
described failure as a positive experience. However, when using a follow-up survey 
and asked if “the term failure was an accurate representation or label of their experi-
ences, 67% disagreed and claimed words and phrases such as inadaptability, setback, 
unsuccessful, not living up to expected outcomes, defeat, and learning opportunity 
as more suitable” (p. 228). Rather than considering failure as an end to becoming 
a STEM-related professional, they reported two-thirds of respondents saw failure 
as a minor setback that motivated them to move past difficulties in coursework or 
professional projects. Also, they described the trait of “persistence” as the most 
“important quality to possess when experiencing instances of failure” (p. 233). As 
described earlier, perseverance is a productive student mathematics learning activity 
envisioned by curriculum initiatives over the last three decades. 

In a study of ninth-grade students who lived in the national capital region of 
India, Kapur (2014) proposed that engaging students in problem solving which 
initially resulted in productive failure would ensure “correct conceptual knowledge 
and mathematical procedures over faulty ones” (p. 1009). For Kapur, the term produc-
tive failure meant that students’ initial individual problem-solving attempts were 
unsuccessful in finding correct solutions, and became productive when supported 
with appropriate mathematics classroom instruction. Similar to productive behav-
iors researched over the last decade, Kapur hypothesized relationships between indi-
vidual student failure (Type B), sequence of teaching phases (Type C), and student 
outcomes (Type A). For Kapur’s (2014) study, in one classroom, students first partic-
ipated in a problem-solving (PS) phase for standard deviation (SD) problems that 
was followed by a direct instruction (DI) phase. In the comparison classroom, the 
same teacher first taught students using DI followed by a PS phase. During the PS 
phase, students solved a SD practical problem individually and the teacher encour-
aged them to use multiple strategies and find as many solutions as possible. For 
the more traditional DI phase, the teacher showed four examples of SD problems, 
gave time for individual student practice, and provided student feedback related to 
common SD misconceptions. 

Similar to Gilbert’s (2014) study, Kapur examined aspects of both cognitive and 
affective behaviors and dispositions using surveys and mathematics content knowl-
edge measures. He designed four instruments to measure students’ learning of SD 
concepts and procedures. These included a pre- and post-test of SD knowledge and 
survey questions relevant to engagement and mental effort. Kapur reported that the 
class of students who began instruction with a PS phase provided an average of six 
different solutions to a SD practical problem. The number of solutions served as a 
“proxy” measure of students’ prior knowledge activation. By comparison, the other 
class of students beginning with DI, only demonstrated an average of three different 
solutions.
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Examining affective behaviors and dispositions, data collected from survey ques-
tions provided evidence of significantly greater mental effort of productive failure 
students (PS phase first) compared to DI students (PS phase second) during both 
phases of instruction. Yet, Kapur found no significant difference between the two 
sequences of instruction on math ability or prior SD knowledge. Analyzing posttest 
data and the two different sequences of instruction, Kapur reported “significant multi-
variate main effects only of math ability and condition” (p. 1013). Although there 
was no significant difference between students’ procedural knowledge in either class-
room, students engaged in the PS phase first, significantly outperformed students 
receiving the DI phase first on posttest conceptual understanding and transfer items. 
No significant correlations appeared in the data for students beginning with DI. 

Kapur’s research supports a learner’s perspective that is relevant to NCTM’s 
(2014) teaching practices whereby teachers provide students time to think, make 
conjectures, and use their own strategies while problem solving: “Effective teaching 
of mathematics engages students in solving and discussing tasks that promote math-
ematical reasoning and problem solving and allow multiple entry points and varied 
solution strategies” (p. 17). Kapur’s study provides specificity for this teaching prac-
tice (Type C) by supporting engagement in student learner activities (Type B) that 
may include productive failure first at the beginning of a lesson. After experiencing 
a PS phase followed by more instruction, students engaged in more mental effort 
and demonstrated more conceptual understanding than students who experienced DI 
(teaching as telling) at the beginning of a lesson. Thus, it appeared that productive 
failure provided students with an opportunity to learn from their own failed solutions 
and they were ready to engage in classroom-based instruction with a focus on impor-
tant mathematical ideas relevant to SD. For teachers who believe it takes too much 
time to allow students to think and engage individually in the PS process, Kapur 
found that “time on task, the number of problems solved, and materials for each of 
the phases were identical in both [classes]” (p. 1010). 

5 Discussion of Findings and Future Implications 

What can be learned from this selected analysis and review of student mathematics 
learning activities that actively engage students in knowing and doing mathematics? 
How has research evolved over the last three decades to support students’ develop-
ment of mathematical content knowledge and engagement in processes (i.e., behav-
iors and dispositions) that have been identified in multiple frameworks of interna-
tional mathematics curriculum initiatives? How has the increased availability of CT 
tools for students enhanced researchers’ observations and inferences of students’ 
thinking, including technologies to advance research methodologies? What theo-
retical perspectives have researchers refined for examining the nature of students’ 
construction of mathematical content knowledge with understanding to provide 
explanations relevant to how and why student behaviors and dispositions develop 
in the way they do within different learning environments? Lastly, how has this
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chapter informed future research needed to advance our understanding of student 
learning activities? 

To address these questions, this chapter’s review and analysis of three decades 
of research highlight the contributions of selected studies related to understanding 
the nature of student mathematics learning activities and the resulting impact on 
students’ knowing and doing mathematics. The findings offer insights for researchers, 
curriculum designers, administrators, teachers, parents, students, and other stake-
holders involved in mathematics teaching and learning, situated in both non-
technological and technological environments. First, a major theme in this chapter of 
studies of student learning activities was researchers’ increased focus on reviewing 
multiple characterizations of mathematical behaviors and dispositions to refine 
competency frameworks to study how students actively engage in the processes 
of learning mathematics. An evolution of similar and interrelated learning activities 
from different countries provided details about what processes to study and how to 
analyze the effect of students’ learning experiences, including two main learning 
activities of making sense of mathematical knowledge and perseverance in doing 
mathematics. At the beginning of the twenty-first century, Sfard (2003) asserted that 
learning activities should “engage students in what may count as an authentic activity 
of mathematizing rather than in learning ready-made mathematical facts” (p. 354). 
There has been growth in researchers’ understanding of what constructs to study 
related to student mathematics learning activities (Type B) and various theoretical 
perspectives that provide explanations of students’ engagement in knowing and doing 
mathematics. 

Although Kobert and Karp (2020) created an alignment of student behaviors 
and dispositions between the five strands of mathematical proficiency (NRC, 2001) 
and the eight standards of mathematical practice (NGA Center for Best Practices 
and CCSSO, 2010), few studies have focused on this alignment and what can be 
learned to inform our understanding of student engagement in learning activities. 
Researchers could further examine the relationships among these multiple frame-
works in curriculum initiatives and the impact of using different (albeit similar) 
frameworks (see Sect. 2) to examine students’ active engagement in learning mathe-
matics. What is the same and what is different in using these identified mathematical 
behaviors and dispositions to investigate students’ knowing and doing mathematics? 
As another example, how might researchers take advantage of Koestler et al.’s 
(2013) and Kobett and Karp’s alignment between the process standards (NCTM, 
2000) and standards of mathematical practice (NGA Center for Best Practices and 
CCSSO, 2010)? What insights might emerge when researchers “synergize” these 
two frameworks together to inform research studies about students’ engagement in 
mathematics learning activities? To respond to engaging students in an “authentic 
activity of mathematizing” that mathematicians display when they know and do 
mathematics (see Sect. 2), researchers could build upon a rich tradition of studying 
students’ problem-solving behaviors (e.g., Polya’s problem-solving phases) with a 
further examination of critical connections between frameworks and conceptual-
izations of higher-level mathematical processes. Further, research could focus on 
at least three of Liljedahl’s (2016) proxies of student engagement (i.e., discussion,
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participation, and persistence) to examine and explain students’ perseverance while 
problem solving, both individually and in groups, to make inferences about students’ 
mathematical thinking. 

Second, research over the past three decades has extended our understanding of 
how and why the process of student engagement in learning and doing mathematics 
occurs in different learning environments. Using teaching experiment methodology, 
a small number of studies have articulated emerging theoretical perspectives that 
focused on analyzing students’ development of mathematical concepts in technolog-
ical settings outside the classroom (Hackenberg, 2010; Simon et al., 2016, 2018). 
From these studies, observations and analyses documented how students engaged 
in a sequence of learning activities using CT tools that were intended to promote 
students’ reflective abstraction and reversible thinking for rational number concepts. 
How might a similar cycle of students’ engagement in learning activities including 
CT tools and coupled with researchers’ noticing and analyses provide a research 
pathway to further our understanding and infer students’ mathematical thinking 
for reversible thinking in different conceptual areas? Simon et al. (2018) proposed 
that researchers could positively contribute to addressing unsuccessful mathematics 
instruction for specific conceptual areas (e.g., fractions, ratios, proportions, and other) 
through implementing the LTA research model. 

One result of the last decade of research, Simon et al. (2018) refined an earlier 
theoretical framework of scheme theory and moved research forward with a better 
understanding of the constructs of student learning to create the LTA theory which 
resulted in analyzing students’ progressive development of concepts. In what ways 
could researchers use the LTA research model of task sequence design and analyses to 
investigate students’ engagement in mathematical processes that focus on a progres-
sive concept development and lead to intended abstractions in non-technological 
environments? Further studies of students’ learning with understanding in different 
areas of mathematics could provide more useful explanations as to how and why 
students’ knowledge changes or does not change “over time” or “in the moment.” 
Moreover, if researchers look beyond using teaching experiment methodology, what 
can be gleaned from the LTA approach to investigate small- and whole-group student 
engagement in knowing and doing mathematics in classrooms? In particular, findings 
from Liljedahl’s (2005, 2016) studies should be explored using his new conceptual 
framework to measure and expand our understanding of a relationship between math-
ematics teaching practices and student learning activities (Type CB research) that 
seems necessary to build and sustain thinking classrooms. Furthermore, the past two 
decades of research studies about student mathematics learning activities has shown 
an increased focus of examining the interrelationships between Type B and C vari-
ables (Keazer & Jung, 2020; Schoenfeld & TRU, 2016; Warshauer, 2015) to inform 
our understanding of the effects of students’ engagement in learning activities. Yet, 
more studies are needed to explore research questions about relationships among 
Type B and A variables (Gilbert, 2014) and Type A, B, and C variables (Kapur, 
2014) to improve student learning outcomes (Type A). 

A third finding of this chapter is the identification of some of the important 
constructs (e.g., expressive activity, exploratory activity, representational fluency,
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and others) that are needed to inform research related to technology-based mathe-
matics teaching and learning (Zbiek et al, 2007). These constructs should be further 
explored to refine our current understanding of links between student engagement in 
the processes (i.e., behaviors and dispositions) of learning mathematics and students’ 
use of CT tools. As an example of future research for studying “promising variables” 
with student-tool relationships, Zbiek et al. proposed: “Students’ dragging behavior 
[with CT tools] could be viewed as an intervening variable between the mathemat-
ical activity and student achievement” (p. 1201). In other words, using Manizade 
et al.’s (2019) framework for examining relationships between Type B and A vari-
ables (Introduction, this volume), researchers should investigate the potential of a new 
“intervening variable” between two adjacent variables in the adaptation of Medley’s 
(1987) work that could provide evidence of how students engage in learning and 
doing mathematics in technological settings. 

Given the documentation of some unproductive student work methods, Zbiek et al. 
call for “research that identifies constructs that are associated with the development 
of judicious use [italics added] of technology” (p. 1186); that is, examining teacher 
activities (Type C) which facilitate students being aware of their need to focus on the 
mathematics content of a task and use productive work methods (Type B). Researcher 
observations of successful and unsuccessful student behaviors when using CT tools 
may provide insight into how the successful use of technology can be sustained and 
ways to change unsuccessful student behaviors. 

Further questions that warrant researchers’ investigation of students’ mathemat-
ical learning and engagement with technology-based activities include: If students 
encounter an unexpected result with one representation (using CT tools), do they 
stay with that representation, or switch to another representation that provides more 
insight as a way to solve a given task? What is the role of teacher activities (Type C) 
in engaging students in their development of representational fluency? As described 
in Sect. 2, access to technology introduces the “play paradox” where unstructured, 
expressive activity can enable some students to avoid the intended mathematical 
content of an activity. How might studies of understanding students’ development 
of representational fluency provide evidence of the effect of exploratory activity and 
expressive activity in technological settings? Zbiek et al. advocate for studies of “how 
the representational fluency of a group relates to the representational fluency of indi-
viduals in the group” (p. 1194). Also, is there a relationship between the construct of 
representational fluency and student work methods (Zbiek et al.)? Within technolog-
ical environments, researchers should consider many of these questions and examine 
relationships between Type A, B, and C variables to inform the knowledge base of 
student mathematics learning activities. 

Fourth, reviewing different conceptualizations of student engagement in mathe-
matics learning activities focused on not only identifying behaviors and dispositions 
that actively engage students in knowing and doing mathematics in existing studies 
but also to suggest new directions in building the knowledge base related to student 
mathematics learning activities. A clear trend of this chapter’s selected review of 
studies about student learning activities focused on how and why students make
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sense of mathematics “in the moment” and perseverance to know and do math-
ematics “over time.” Whether using teaching experiments or classroom settings, 
researchers investigated and explained students’ engagement in learning mathe-
matics with understanding and doing mathematics. As an example, Liljedahl’s (2005) 
study of PTs’ problem-solving activities and their “AHA! moments of illumina-
tion” promoted positive changes in their mathematical understanding (i.e., cogni-
tive construct) and productive dispositions (i.e., affective construct). Complementary 
relationships between cognitive and affective constructs of students’ mathematical 
learning experiences could inform future research design for individual studies or 
sets of related studies. Moreover, studies with an increased focus of examining inter-
relationships between Type B and C variables provided evidence of how teachers 
responded to individual students’ use of or lack of problem-solving strategies and 
informed their decision-making on next steps in a lesson or sequence of lessons (see 
Sects. 3 and 4). 

To advance our current understanding of mathematics teaching and learning, there 
is a continued need to review and extend the knowledge base related to the devel-
opment of student behaviors and dispositions that actively engage all students in 
knowing and doing mathematics. One way to move the knowledge base forward 
is a consideration of the results of the past decade with an increasing availability 
of wide-ranging technological methodologies that can provide data about students’ 
engagement in mathematics learning activities to both teachers and researchers (Type 
CB research). To address the gap between research and practice for understanding and 
improving students’ mathematical learning experiences, Cai et al. (2018) proposed 
the collection, analysis, and use of “continuous data on the learning experiences of 
each student” (p. 363) to facilitate researchers’ understanding of explicit connec-
tions between teaching practices (Type C) and student learning activities (Type B). 
Yet, questions need to be considered if technological and methodological tools exist 
without overwhelming both researchers and teachers with too many data? According 
to Cai et al. (2018), the “capacity to capture, process, and store comprehensive cogni-
tive and noncognitive data longitudinally for every student either already exists or 
is on the near horizon” (p. 364). Two years later, Cai et al. (2020) described current 
digital tools for collecting and managing student data but acknowledged that techno-
logical tools that could be used “during [classroom] lessons to monitor small-group 
discussion, analyze student work, and even gauge students’ affect” (p. 392) are still 
under development. Still, examining the future potential of technology to access 
student mathematical thinking for each student in the next decade, Cai et al. (2018) 
have proposed a framework for collecting, analyzing, and using data on students’ 
mathematical experiences that uses a three-part time frame: (1) in the moment, (2) 
short term, and (3) long term (p. 366). In addition, both cognitive and noncogni-
tive learning experiences, such as “students unexpected responses” and “students’ 
engagement with tasks” are identified and have been reported in prior studies of 
student mathematics learning activities (see Cai et al., 2018, for further frame-
work details). Future research is needed to ground this framework in the data across 
multiple diverse settings.
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Notwithstanding and looking to the next decade, Bartell et al. (2017) asserted 
that the “CCSSM, with its implicit political and economic goals and its lack of 
explicit attention to race, gender, class, and so forth, is not framed to support equity” 
(p. 9). Consequently, Bartell et al. designed a framework to connect research-based 
equitable mathematical teaching practices (Type C) with all the SMP (Type B) to 
explicitly address issues of equity. Making connections, they identified nine core 
teaching practices described in the chapter on culture, race, and power in the Second 
Handbook of Research on Mathematics Teaching (Diversity in Mathematics Educa-
tion , 2007) and more recent research (see Bartell et al., 2017, for details of the 
practices). As an emerging field of research, their framework offers existing and new 
research connections between student mathematics learning activities and equitable 
mathematical teaching practices (Type BC research). Each part of the framework 
provides multiple entry points for research supporting what it means for students to 
actively engage in effective and equitable mathematical learning activities. Students’ 
engagement in mathematical behaviors and dispositions needs to be studied in partic-
ular contexts and situations to inform and extend the knowledge base of what works 
and does not work for all students to become knowers and doers of mathematics. 

Brief, Capsule Definitions of Terms and Documents 
for Chapter 6

• Assessment, curriculum and evaluation, and professional standards for school 
mathematics: A trilogy of documents that provided a vision for the organization 
of curriculum reform in the U.S. in the 1990s (National Council of Teachers of 
Mathematics [NCTM], 1989, 1991, 1995).

• Behaviors and dispositions: Identification of student experiences, such as, profi-
ciencies, processes, practices, competencies, and habits of mind (Kobett & Karp, 
2020, p. 40) that demonstrate how students develop and show evidence of their 
mathematical thinking.

• Cognitive technological (CT) tools: Consists of tools that support a “syner-
gistic relationship” between technical and conceptual dimensions of mathematical 
activity in technological environments (Zbiek, Heid, Blume, & Dick, 2007).

• Competencies: Frameworks for knowing and doing mathematics, such as, (1) 
Denmark’s (2003) mathematical competencies that provided evidence of students’ 
“mental or physical processes, activities, and behaviors” (p. 9); (2) Program for 
International Student Assessment [PISA] (PISA, 2021) assessed mathematical 
competencies as “an individual’s capacity to reason mathematically and to formu-
late, employ, and interpret mathematics to solve problems in a variety of real-
world contexts” (PISA, 2021); and (3) Identified in the New Zealand Curriculum 
(NZC), competencies “that describe what they [students] will come to know and 
do” (Ministry of Education, 2015, p. 37).
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• Conceptual understanding: Student learning is defined as the “comprehension 
of mathematical concepts, operations, and relationships” (National Research 
Council [NRC], 2001, p. 116).

• Direct instruction (DI): Traditional, instructional methods where students watch, 
listen, and take notes about problems that teachers provide procedures and 
solutions for students to follow and use (Kapur, 2014).

• Learning goals: Focus on student “understanding” where students build knowl-
edge; “Explicitly state what students will understand about mathematics as a result 
of engaging in a particular lesson” (Smith & Sherin, 2019, p. 14).

• Learning through activity[LTA]: A research model that examines how learners 
actively engage in learning activities through a progressive coordination of math-
ematical concepts (Simon, Kara, Placa, & Avitzur, 2018; Simon, Placa, & Avitzur, 
2016).

• Mathematical sense-making: Student engagement in processes, such as problem 
solving, to learn mathematics with understanding; one aspect of what it means to 
know and do mathematics.

• National Governors Association [NGA] Center for Best Practices & Council of 
Chief State School Officers [CCSSO]: Authors of the U.S. Common Core State 
Standards for Mathematics (CCSSM), 2010.

• Organization for Economic Development (OECD) Definition and Selection 
Competencies (DeSeCo) Project: Created a framework to guide the development 
of PISA assessments.

• Performance goals: Focus on the end result or product of students’ engagement 
in learning mathematics: “What students will be able to do as a result in engaging 
in a lesson” (Smith & Sherin, 2019, p. 14).

• Principles and standards for school mathematics: Updated U.S. document that 
provides a vision for curriculum reform at the beginning of the twenty-first century 
(NCTM, 2000).

• Problem-solving: Defined as “the systematic study of what the process of formu-
lating and solving problems entails and the ways to structure problem-solving 
approaches to learn mathematics” (Santos-Trigo, 2020, p. 687).

• Process standards: Five processes that define what mathematicians might do 
and say when engaged in doing mathematics: Problem solving, communication, 
representation, making connections, and reasoning and proof (NCTM, 2000).

• Productive disposition: An affective construct defined as learners having an 
“habitual inclination to see mathematics as sensible, useful, and worthwhile, 
coupled with a belief in diligence and one’s own efficacy” (NRC, 2001, p. 116).

• Productive failure: Students’ initial problem-solving attempts are unsuccessful 
and became productive when supported with appropriate mathematics classroom 
instruction (Kapur, 2014).

• Productive struggle: A student learning behavior that promotes learners making 
sense of mathematics and is necessary to develop conceptual understanding 
(Hiebert & Grouws, 2007); “Intellectual effort students expend to make sense of 
mathematical concepts that are challenging but fall within the students’ reasoning 
capabilities” (Dingman, Kent, McComas, & Orona, 2019, p. 91)
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• Proficiencies: Frameworks for students’ engagement while learning mathematics, 
such as, (a) Cognitive and affective proficiencies for five strands: conceptual 
understanding, procedural fluency, strategic competence, adaptive reasoning, and 
productive disposition (NRC, 2001); and (b) Reasoning as one of the four profi-
ciency strands students engage inwhen “thinking and doing of mathematics” 
(Australia Curriculum and Assessment Reporting Authority [ACARA], 2017).

• Prospective elementary school teachers (PTs) and AHA! Experience: Students 
engage in problem solving and experience how “a problem has just been solved, 
or a new piece of mathematics has been found, and it has happened in a flash of 
insight, in a moment of illumination” (Liljedahl, 2005, p. 219).

• Representational fluency: Within or outside technological environments, “The 
ability to translate across representations, the ability to draw meaning about a 
mathematical entity from different representations of that mathematical entity, 
and the ability to generalize across different representations” (Zbiek et al., 2007, 
p. 1192).

• Research for principles and standards for school mathematics: Research litera-
ture that informed the U.S. vision of school mathematics in the 1990s and 2000 
(NCTM, 2003).

• Scheme: A cycle of perturbation, action, and reflection in which an individual 
anticipates, acts and mentally prepares, and assesses the outcome of his or her 
actions (Hackenberg, 2010; Steffe, 1994; von Glasersfeld, 1995)

• Standards for Mathematical practice (SMP): Eight mathematical competencies 
identified as a national Common Core State Standards for Mathematics (CCSSM) 
in the U.S., 2010.

• Student learning activities: “In the classroom… All learning depends on the 
activity of the learner” (Medley, 1987, p. 105).

• Student engagement: Defined as “an interactive relationship students have with 
the subject matter, as manifested in the moment through expressions of behavior 
and experiences of emotion and cognitive activity, and is constructed through 
opportunities to do mathematics” (Jansen, 2020, p. 273).

• Teaching for robust understanding [TRU] project: Framework of five dimen-
sions of classroom activity that supports professional development (PD) to engage 
teachers in creating a classroom student learning environment that facilitates the 
development of powerful thinkers (Schoenfeld & the TRU project, 2016). 
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