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Abstract. Flux Variability Analysis (FVA) is an important method to
analyze the range of fluxes of a metabolic network. FVA consists in per-
forming a large number of independent optimization problems, to obtain
the maximum and minimum flux through each reaction in the network.
Although several strategies to make the computation more efficient have
been proposed, the computation time of an FVA can still be limiting.
We present a two-step procedure to accelerate the FVA computational
time that exploits the large presence within metabolic networks of sets
of reactions that necessarily have an identical optimal flux value or only
differ by a multiplication constant. The first step identifies such sets of
reactions. The second step computes the maximum and minimum flux
value for just one element of each of set, reducing the total number of
optimization problems compared to the classical FVA. We show that,
when applied to any metabolic network model included in the BiGG
database, our FVA algorithm reduces the total number of optimization
problems of about 35%, and the computation time of FVA of about 30%.

Keywords: Metabolic networks · Flux Balance Analysis · Flux
variability Analysis · Constrained-based modeling

1 Introduction

The study of cell metabolism is of paramount importance in various fields, includ-
ing health, wellness, and bio-transformations [4]. Indeed, metabolism is related
with most cellular processes and may act as an integrative readout of the pato-
physiological state of a cell [18]. The first requirement to understand metabolism
is the knowledge of metabolic fluxes, i.e. the velocities and the directions of all
the biochemical reactions involved in all metabolic processes, such as glycolysis
and oxidative phosphorylation.

Currently, direct determination of metabolic fluxes at the genome-wide level
is not feasible. However, they can be predicted numerically, via integration of
multiple -omics data (e.g., transcriptomics, proteomics, and metabolomics) into
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constraint-based stoichiometric metabolic models [3,4,13]. The starting point of
constrained-based modeling is the information embedded in the metabolic net-
work, which represents the set of all the possible biochemical reactions that can
occur in a cell in a specific organism or tissue. Such information can be rep-
resented with a stoichiometric matrix S of dimension m × n, where m is the
number of metabolites and n is the number of reactions. In a constrained-based
metabolic model, a steady-state condition is imposed, that is, the total produc-
tion of any metabolite must equal to the total amount of its consumption. Hence,
a possible metabolic flux configuration is represented by a vector �v, for which
S�v = 0, i.e. the null space of the stoichiometric matrix. Additional constraints,
such as thermodynamics or capacity constraints, can also be incorporated.

Despite the large number of constraints, a metabolic network typically
includes more reactions than metabolites, resulting in a large space of possi-
ble feasible flux distributions. In this case, different strategies can be used to
predict the target metabolic flux distribution. A possibility consists in using effi-
cient flux sampling strategies [7,12] to explore the entire region of feasible flux
solutions and obtaining information on the range of feasible flux solutions and on
their probabilities. Another possibility is Flux Balance Analysis (FBA), which
assumes that the cell behaviour is optimal with respect to an objective function,
such as the biomass production rate. The objective function defines a reaction
that must be maximized or minimized under the set constraints. FBA identifies
a single solution among the set of possibly many alternative optimal solutions.

Alternatively, it is possible to study the range of each metabolic flux across
the set of alternative optima by means of Flux Variability Analysis (FVA) [16].
In a nutshell, FVA consists in finding the minimum and maximum flux through
each reaction in the network, given some constraints on the state of the network,
e.g., imposing a minimum percentage of the maximal biomass production rate.
Typical applications of FVA in systems biology include investigating network
flexibility and network redundancy [24]. Recently, FVA has gained importance as
a preliminary step for omics data integration. For example, in [5,8], to sensibly
limit the flux of an internal reaction based on gene expression data, we first
needed to compute the maximum and minimum flux through such reaction,
based on nutrient availability constraints. In fact, limiting the flux boundaries
defined a priori by the modeler might produce no effect on the flux if they are
larger than the actual maximal flux determined by the environment.

Given a generic metabolic network with n reactions, FVA requires 2n opti-
mization problems to be solved, maximizing and minimizing the flux of any reac-
tion in the model. Given the high number of possible reactions and constraints
characterizing a metabolic network, efficient computation of FVA is fundamen-
tal. The aim of this work consists of exploring a new way to partially reduce the
computational time classically required to solve FVA.

1.1 State of the Art

The computation of FVA clearly can be distributed and is therefore ideally suited
for high performance computing. For example, the current FVA implementations
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in Cobrapy [6], COBRA toolbox [22], and COBRAjl [11] split the optimization
problem into multiple processes. Other implementation have been designed to
reduce the computational time requested to find an initial feasible solution. For
example, fastFVA [23], one of the most used efficient implementations of FVA,
coded in C++, iterates through all the reactions and solves the two optimization
problems using a specialized LP solver, such as GLPK or CPLEX, but without
spending time effort in finding a feasible solution or pre-processing the linear
system, since the feasible region is the same for all the optimization problems.
Finally, implementations of FVA exist that include thermodynamic constraints
[17] to remove unbounded fluxes through reactions contained in internal cycles.

1.2 Our Contribution

To the best of our knowledge, no current implementation of FVA exploits the
fact that in a generic metabolic network, there are a lot of constraints of the
form avi + bvj = 0. Hence, if vmax

i and vmin
i have already been computed, one

can omit the two optimization problems for vmax
j and vmin

j . This simple but
effective consideration is expected to considerably reduce the total number of
optimization problems for FVA of any metabolic network. To clarify this obser-
vation with an example, in Fig. 1, we show a small sub-network of the human
metabolism related to the glycolysis and Pentose phosphate pathways, repre-
sented using the web-app Escher [14]. Each blue arrow represents a reaction
and each node represents a metabolite involved in a reaction. Under the steady-
state assumption, the total production of any metabolite must be equal to the
total amount of its consumption. It can be noticed that many metabolites, such
as 3-phospho-D-glycerate (3pg c), D-glycerate 2-phosphate (2pg c), and phos-
phoenolpyruvate (pep c) are involved in two different reactions only. Hence, the
steady-state assumption imposes that the flux through phosphoglycerate kinase
(PGK) and phosphoglycerate mutase (PGM) must be equal, and that the flux of

Fig. 1. Example of human metabolic sub-network related to glycolysis and Pentose
phosphate pathways.



Efficient FVA 61

the Phosphoglycerate kinase (PGK) and Enolase (ENO) must be equal. Hence,
once the maximum and minimum flux through the PGK reaction has been found,
one can avoid to solve the optimization problems for the PGK and ENO reac-
tions. In this work, we investigated the presence of these type of constraints
involving only two fluxes in all the metabolic models publicly available in the
BiGG model database [19]. Then, we used such information to implement a
Python-based Cobrapy [6] extension that improves the computation of FVA
including an efficient pre-FVA step to find all the possible reactions for which
the optimization problems can be omitted. Such pre-FVA step can be used not
only for FVA but also for all computational tools requiring the computation of
several optimization problems for the same metabolic networks, such as finding
blocked reactions, searching for essential reactions of a target objective function,
and reaction deletion analysis.

2 Material and Methods

2.1 COBRA Model

Assuming that cell behavior is optimal with respect to an objective, optimization
methods, such as Flux Balance Analysis (FBA) [21], can be used to calculate
an optimal flux distribution with respect to a specific objective. In a nutshell,
a metabolic network is associated with the following linear programming (LP)
problem:

max
r∑

i=1

wivi (1)

S · �v = �0
�vL ≤ �v ≤ �vU

where wi is the objective coefficient of flux i, and �vL and �vU represent the possible
bounds used to mimic as closely as possible the biological process in the analysis.

2.2 Flux Variability Analysis

Flux Variability Analysis (FVA) [9,16] is a constraint-based modeling technique
aimed at determining the maximal (and minimal) possible flux through any
reaction of the model, to evaluate the cell’s range of metabolic capabilities.
FVA solves the following two linear programming optimization problems (one
for minimization and one for maximization) for each flux vj of interest, with
j = 1, . . . , n:

max /min vj (2)

S · �v = �0
�vL ≤ �v ≤ �vU

�vi ≥ γZ0
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where Z0 is an optimal solution for Eq. 1, and γ is a parameter, which controls
whether the analysis is done w.r.t. suboptimal network states (0 ≤ γ < 1) or to
the optimal state (γ = 1). FVA can be used also to search for blocked reactions
in a network. A blocked reaction ri in a metabolic network is a reaction that
carries no flux in any feasible solution (i.e. vi = 0). Practically, the blocked
reactions are the subset of reactions for which max vj = min vj = 0.

2.3 Pre-step to Accelerate FVA

Our improvement of FVA computation is based on a pre-FVA operation to select
the subset of reactions for which it is really necessary to solve the maximization
and the minimization problems. We showed this step in Fig. 2. First, we consid-
ered the set of all the possible reactions {v1, . . . , vn}, and we split the reactions
in connected-subsets. Each connected-subset is formed by reactions whose flux
value can be derived by multiplying any other flux value of the subset by a known
constant (e.g., 2v1 − 3v2 = 0), which may also take value 1 (e.g., v1 − v2 = 0).
For the computation of the connected-subsets, we built a graph whose nodes
represent the reactions r1, . . . , rn of the network. We connected two nodes ri
and rj if and only if a constrain of the form avi + bvj = 0 exists. The connected-
subsets corresponds with the connected components of such graph. Then, we
created a set I formed by one arbitrary reaction for each of these subsets, and
we performed FVA for the reactions in I only. Afterwards, we derived the rest of
the FVA values using the direct relation with the FVA values computed before.
This implies to solve a linear system in which the variables are the fluxes of the
reactions not belonging to I.

Fig. 2. Schematization of the main steps involved in the computation of efficient FVA.

2.4 Datasets

To demonstrate the applicability of our strategy to real-world metabolic net-
works, and the improvement as compared to classic FVA, we considered all the
metabolic networks in the BiGG database [19]. BiGG Models integrates many
published genome-scale metabolic networks into a single database with a set
of standardized identifiers. BiGG models include information on the metabolic
genes associated with reactions in the form of Gene Protein Reaction rules.
Metabolites are linked to many external databases (e.g. KEGG, PubChem).
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The total number of metabolic networks is 108 collected from 85 different organ-
isms. The dimension of the models span from 95 reactions and 72 metabolites
(e coli core [20]) to 10, 600 reactions and 5, 835 metabolites (Recon3D [2]).

2.5 Software Availability and Computational Architecture

To analyze the COBRA models and perform classical FVA, we used the functions
provided by the Cobrapy toolkit [6]. To compute the connection-sets, we wrote
a specific Python code based on the function connected components provided by
the Scipy library [26]. The code can be promptly integrated into the Cobrapy
toolkit. All computations were performed on an Intel(R)@3GHz 32GB, using
Gurobi as solver and one single CPU.

The source code and documentation are available at https://github.com/
CompBtBs/efficientFVA.

3 Experimental Results

3.1 Metabolic Networks Present Many Connected Sets

We investigated the number of connected-sets of each metabolic network in the
BiGG database. In particular, we computed the number of reactions, the number
of connected-sets, the number of connected-sets formed by 2 reaction at least, and
the dimension of the largest connected-set. In Table 1, we reported the results for
10 of the 108 networks. We also reported in Fig. 3a a histogram of the distribution
of the ratio between the number of connected-sets and the number of reactions
for all the 108 models.

At first instance, all the networks have less connected-sets than the number
of reactions. The ratio between the total number of connected-subsets and the
reactions ranges between 0.48 (iJB785 [1]) and 0.79 (iLB1027 lipid [15]), with
mean 0.63 and standard deviation 0.04. This indicates that, in any network, there
are a lot of constraints of the form avi +bvj = 0. Moreover, some models include
very large connected-sets. For example, in the iCHOv1 model [10], the largest
connected-set is made by 56 reactions. The presence of these connected-sets is
due to the intrinsic nature of metabolic networks. Indeed, many metabolites are
involved in just two reactions: one reaction consumes and the other produces such
metabolite. Moreover, linear chains of reactions exist in which a series of reac-
tions are connected linearly to produce/consume specific metabolites involved in
just two of these reactions. From this analysis, we found that the total number
of optimizations required for the FVA can be reduced by at least 35% in most
of the networks, when considering a single reaction per connected set.

https://github.com/CompBtBs/efficientFVA
https://github.com/CompBtBs/efficientFVA
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Table 1. Number of reactions, connected-sets (CS), connected-sets formed by 2 reac-
tion at least (2-CS), and dimension of the largest connected-set (max-CS), for ten
networks from the BiGG database.

Model Reactions CS CS /Reactions 2-CS max-CS

e coli core 95 62 0.65 26 4

iAB RBC 283 469 291 0.62 98 16

iIS312 Amastigote 519 321 0.62 117 14

iAT PLT 636 1008 645 0.64 176 21

iRC1080 2191 1620 0.74 298 26

iYL1228 2262 1353 0.60 512 15

iMM1415 3726 2346 0.63 668 38

RECON1 3741 2329 0.62 648 38

iCHOv1 6663 4793 0.72 927 56

Recon3D 10600 7414 0.70 1697 28

Fig. 3. a) Histogram of the distribution of the ratio between the number of connected-
sets and the number of reactions for all the 108 models. b) Histogram of the distribution
of the ratio between the mean computational time of our implementation of FVA
(eFVA) and of classical FVA (cFVA), for all the 108 models.

3.2 Connected-Sets Reduce the Computational Time for FVA

We investigated the possible computational savings that can be achieved by
computing the connected-sets of a metabolic network. In Table 2, we reported:
the mean ± the standard deviation over five different runs of the computational
time of classical FVA (cFVA), of our overall implementation (eFVA), and of
the step for the identification of the connected-sets (pre-FVA) alone. Note that
the reported computational time of eFVA includes the pre-FVA computational
time. The table also reports the ratio between the mean computational time of
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our implementation of FVA(eFVA) and of the classical FVA(cFVA). We also
reported in Fig. 3b an histogram of the ratio between eFVA and cFVA for all the
108 models.

Table 2. Computational time for cFVA, eFVA, pre-FVA step, and the ratio between
eFVA and cFVA on ten metabolic networks from the BiGG database.

Model cFVA(s) eFVA(s) pre-FVA step(s) eFVA/FVA

e coli core 0.06 ± 0.0 0.07 ± 0.02 0.02 ± 0.0 1.06

iAB RBC 283 0.63 ± 0.01 0.46 ± 0.0 0.06 ± 0.0 0.72

iIS312 Amastigote 0.83 ± 0.01 0.6 ± 0.01 0.07 ± 0.01 0.72

iAT PLT 636 3.82 ± 0.02 2.58 ± 0.03 0.14 ± 0 0.67

iRC1080 15.72 ± 0.08 12.37 ± 0.1 0.31 ± 0.01 0.79

iYL1228 16.1 ± 0.04 10.99 ± 0.12 0.72 ± 0.05 0.68

iMM1415 53 ± 0.32 37.36 ± 0.24 2.35 ± 0.01 0.70

RECON1 41.16 ± 0.06 28.64 ± 0.05 2.27 ± 0.01 0.70

iCHOv1 150.08 ± 0.18 116.47 ± 0.21 6.1 ± 0.16 0.78

Recon3D 246.03 ± 0.24 204.11 ± 0.38 30.62 ± 0.06 0.83

In all the cases, we observed a standard deviation for cFVA, eFVA, and
the pre-FVA step of at least one order of magnitude less then the correspond-
ing mean values. The computational time required for eFVA results less than
cFVA in all the cases, except for the smallest network (e coli core), for which
the time required for cFVA and eFVA results similar. This is due to the addi-
tional time required to the computation of the connected-subsets that, for this
case, represents about 30% of the entire eFVA time. For all the other cases, the
time required for the pre-FVA step results one or more order of magnitude less
than the entire eFVA time. More importantly, the ratio between the eFVA and
cFVA ranges between 0.57 (iJB785) and 0.83 (Recon3D) with mean 0.69 and
standard deviation 0.05.

We expected the number of metabolites, involved in just two reactions, to
increase with the number of reactions, and hence the gain of using eFVA to
be more evident for larger metabolic networks. Indeed, the Pearson correlation
between the ratio of the number of connected-sets over the number of reactions
and the ratio of the mean computational time of eFVA over cFVA, for all the 108
models is significant, namely 0.49 (pvalue < 0.001), 0.67 (pvalue < 0.001) if the
outlier corresponding with smallest network (e coli core) is removed. The larger
gain for larger networks can also be noticed in Fig. 4, where we reported the
time required for cFVA, eFVA, and pre-FVA step, as a function of the number
of reactions.
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Fig. 4. Scatter-plot showing the time required for cFVA, eFVA, and pre-FVA step, as
a function of the number of reactions.

3.3 Connected-Sets Improve the Search of Blocked Reactions
in Large Metabolic Networks

The information of the connected-sets can be used not only for FVA, but also
to accelerate the search for blocked reactions. To investigate this fact, we com-
puted the subset of blocked reactions for the ten metabolic networks analyzed
in Table 1. In Table 3, we reported the computational time required to search
blocked reactions using the implementation provided by the Cobrapy library
(cBR) and our version based on the pre-computation of connected-sets (eBR).
Again, we reported the mean and standard deviation of five different runs. Sur-
prisingly, all the networks, except iAT PLT 636 [25] and Recon3D, show a non
negligible number of blocked reactions varying between 4.31% to 59.92%. The

Table 3. Number of blocked reactions, and computational time for cBR, eBR, and
pre-FVA step and the ratio between eFVAand cFVAon ten metabolic networks from
the BiGG database.

Model % blocked reactions cBR(s) eBR(s) eBR/cBR

e coli core 8.42 0.02 ± 0.00 0.02 ± 0.01 1.44

iAB RBC 283 3.41 0.19 ± 0.01 0.19 ± 0.06 1.02

iIS312 Amastigote 59.92 0.17 ± 0.01 0.18 ± 0.08 1.10

iAT PLT 636 0.00 1.99 ± 0.08 1.46 ± 0.14 0.73

iRC1080 27.75 8.04 ± 0.24 6.62 ± 0.31 0.82

iYL1228 45.93 7.06 ± 0.02 5.51 ± 0.79 0.78

iMM1415 34.73 43.02 ± 2.18 34.9 ± 2.49 0.81

RECON1 34.06 36.65 ± 0.69 27.42 ± 2.48 0.75

iCHOv1 35.76 135.4 ± 17.66 121.36 ± 6.27 0.90

Recon3D 0.00 333.55 ± 37.57 275.48 ± 31.64 0.83
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computational time required for eBR results less than cBR in seven out of ten
networks. For moderate sizes of the metabolic network (r < 1000), the use of
connected-sets does not improve or even worsen (e coli core) the time required
to find the blocked reactions. Note that, for the computation of blocked reac-
tions, the Cobrapy implementation has a pre-processing step in which a general
optimization is solved setting randomly a target function. Then, all the reac-
tions for which the fluxes of the optimal solution differ from 0 era excluded from
the 2n optimization problems. This pre-processing step already speeds up the
computation of blocked reactions, and so the time saving by our implementa-
tion results less important for small metabolic networks. On the contrary, for
metabolic networks having more than 1000 reactions, the time required for the
computation of the connected sets results one or more order of magnitude less
than the entire eBR time and the ratio between the eBR and cBR results between
0.73 (iAR PLT 636) and 0.83 (Recon3D).

4 Conclusions

The numerical computation of plausible metabolic fluxes using constrained-
based modeling is acquiring increasingly relevance to understand the mecha-
nisms related to the physio-pathological state of a cell or an organism. To this
aim, efficient tools for the analysis of large genome-wide metabolic networks are
mandatory. In this work, we have considered the computation of Flux Variability
Analysis, and proposed a simple but effective method to accelerate such a compu-
tation by means of the connected-sets formed by reactions whose flux value can
be directly derived from the flux value of any reaction in the same set. Of course,
our modification of classical FVA is useful only when the number of connected-
sets is less than the total number of reactions. However we verified that this fact
holds for all the networks in the BiGG database. In our experiments, we were
able to reduce the total number of optimization problems of about 35%, and
the computation time of FVA of about 30%. Obviously, the quantity of saved
computational time depends intrinsically on the quantity of constraints of the
form avi + bvj = 0 in the network. However, we have shown that this quantity is
non negligible in all current metabolic network reconstructions. Therefore, even
considering the time required for the computation of the connected-sets in the
overall computation time, our approach significantly improves the efficiency in
practise.

In this work, to compute the flux variability of the reactions for which it
necessarily must be computed after the identification of connected-sets, we relied
on the FVA implementation in COBRApy, and used a single CPU. However, we
remark that our implementation does not need a specific implementation of FVA
for this step. Therefore, to further improve the computation process, one could
use our approach in combination with either parallelization or more efficient
versions of FVA, such as the one proposed in Thiele and Gudmundsson [23].

As a further work, we propose to exploit other possible specific constraints
coming e.g. from the integration of -omics data, to reduce even more the total
number of optimization problems necessary for FVA.
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