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Abstract. The passage to a second generation of broadcasting Sin-
gle Frequency Networks has generated the need for reconfiguring and
redesigning existing networks. In this work, we present a robust optimiza-
tion model for the green design of such networks based on the digital tele-
vision DVB-T2 standard. Our robust model pursues protection against
uncertainty of signal propagation in a complex real-world environment.
As reference model, we adopt Multiband Robustness and we propose
to solve the resulting model by a hybrid metaheuristic that combines
mathematically strong formulations of the optimization model, with an
exact large neighborhood search. We report computational tests based
on realistic instances, showing that the multiband model grants highly
protected solutions without reducing service coverage and without lead-
ing to a high price of robustness.

Keywords: Green Wireless Networks · Single Frequency Networks ·
Integer Programming · Robust Optimization · Hybrid Metaheuristics

1 Introduction

All around the world, in the last century, cities have experienced a huge expan-
sion, becoming critical socio-economic hubs, and intergovernmental organiza-
tions like the United Nations estimates that, by 2050, two out of every three
people in the world will live in cities [44]. In this evolution process of cities,
Information and Communication Technologies (ICT) have played a crucial role,
supporting a better digital interaction of the inhabitants with the urban envi-
ronment, government and services, leading to the introduction of the concept of
“Smart City” [31,42]. Among the fundamental elements of a smart city, telecom-
munication infrastructures and services have gained a major role and provide a
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fundamental basis for the six pillars of a smart city (see e.g., [24,32]). The intro-
duction of the 5th Generation of wireless networks (5G) has in particular been
recognized as an accelerator of the realization of actual smart cities, allowing
to support the launch of new services with unprecedentedly high performance
[12,26,41,43,45]. However, besides such last generation services, elderly broad-
casting wireless services like radio and television continue to be regarded as
fundamental mass media that must be guaranteed to people for an immediate
and plain access to news. A milestone in the evolution of broadcasting radio and
television communications was constituted by the passage from analogue to dig-
ital transmissions, which has enabled an enhanced exploitation of the frequency
spectrum and allowed to furnish services of higher quality [3,23,28]). Within this
new digital context, it has been possible to introduce the concept of Single Fre-
quency Networks (SFNs), namely a network that uses only one single frequency
channel for broadcasting and in which all the broadcasting stations transmit the
same bits on this single channel (see e.g., [25,34,36,39]). The vast majority of
SFNs providing digital television broadcasting services are based on the standard
DVB-T (Digital Video Broadcasting - Terrestrial): first published in 1997, this
standard has quite recently been improved through its second generation (DVB-
T2), in order to increase its data carrying capacity, support major operation
flexibility and signal reception robustness and allow a major number of broad-
casters to co-exist in the same band. Due to the change of the standard, there
was the possibility for new broadcasting enterprises to enter the market and old
companies have had to update the configuration of their networks. Such reset
of the networks has led to revive the attention towards approaches that could
automatically design SFN networks on the besis of Mathematical Programming
techniques.

In this work, we address the question of developing a Robust Optimization
model for designing SFN networks based on the DVB-T2 standard, while taking
into account the uncertainty that naturally affects wireless signal propagation.
Specifically, our original contributions are:

1. We present a binary linear programming model for representing the robust
counterpart based of an SFN design problem including signal-to-interference
constraints. The objective of the problem is to pursue a green optimization of
the network, finding the minimum total power emission that allows to serve
a target fraction of the population of a region. The counterpart is defined
according to the principles of Multiband Robust Optimization [8], a refined
version of the classical Γ-Robust Optimization model [6].

2. Since the resulting robust optimization model may result very challenging
even for a state-of-the art optimization software like IBM ILOG CPLEX, we
define a hybrid metaheuristic for its solution, proposing to combine a prob-
abilistic variable fixing procedure with an exact large variable neighborhood
search. The probabilistic fixing exploits the precious information that can be
derived from a tight linear relaxation of the model adopted to represent the
SFN design problem, whereas the exact search consists of exploring a solu-



Green Multiband-robustness SNF Optimization 221

tion neighborhood formulating the search as an optimization problem that is
solved at the optimum.

3. We highlight the performance of our new modelling and algorithmic approach
by means of tests conducted on realistic SFN/DVB-T instances, showing
the superior performance of the multiband approach with respect to both a
benchmark robust and deterministic model.

We remark that, while the deterministic (i.e., not considering data uncer-
tainty) optimal design of wireless networks based on signal-to-interference ratios
has received wide attention, the use of optimization under uncertainty tech-
niques, such as Robust Optimization and Stochastic Programming, has received
less attention and has especially considered the effects of traffic uncertainty.
This is also true for the case of DVB-T, in which optimization approaches have
tended to not address data uncertainty by means of optimization under uncer-
tainty techniques (e.g., [2,17,30,33,34,37,38]). To the best of our knowledge,
just the work [18] has tried to adopt an optimization under data uncertainty
method, in the form of a heuristic min-max regret approach, for tackling sig-
nal propagation uncertainty and this paper is the first work that discusses the
adaption of a robust optimization approach to DVB-T and presents a hybrid
metaheuristic for the solution of the resulting complex problem.

2 Optimal SFN Design

To derive an optimization model, we refer to an SFN network based on the DVB-
T standard: in such network, all broadcasting stations synchronously transmit
identical data on the same frequency channel according to the OFDM modu-
lation scheme [23]. Broadcasting services are spread over a target territory to
reach the receiving devices of a population. Following the recommendations of
telecommunications regulatory bodies (e.g., [1,27]), we discretize the target ter-
ritory into a raster of pixels: each pixel represents a fragment of territory so
small that the signal strength measured at its center (testpoint) can be consid-
ered representative for the strength of signals in any other point of the pixel. If
we denote by S the set of broadcasting stations and by T the set of testpoints,
the network design problem can be essentially described as that of i) setting
the power emission of every station and b) selecting the serving station of each
pixel/testpoint, with the objective of minimizing the total emitted power (green
perspective) under the condition of granting service to a given fraction of the
people located in the target territory.

The previous problem belongs to the family of Wireless Network Design Prob-
lems (e.g., [14,37]) and, in particular, it constitutes a variant of the Scheduling
and Power Assignment Problem, known to be NP-Hard [11,37]. We can model
the two decisions taken in the considered problem by means of two sets of binary
variables, namely:
- to represent the power emission of a station s ∈ S, we introduce a set of
equally spaced discrete power values P = {p1, p2, . . . , pn} on which each station
may emit. We also introduce the set L = {1, 2, . . . , n} to represent the index



222 F. D’Andreagiovanni et al.

of the discrete power values, which we call power levels. Given the set P , we
introduce a set of binary variables ys� ∈ {0, 1} to represent whether a station
s ∈ S emits on power value p� ∈ P , such that ys� = 1 when s emits on p� and
ys� = 0 otherwise (in what follows, we also alternatively write that a station
s ∈ S emits on power level � ∈ L).
- to represent whether a testpoint t ∈ T is served by a station s ∈ S, we intro-
duce a binary variable xts ∈ {0, 1} such that xts = 1 when t is served by s and
xts = 0 otherwise.

In order to evaluate whether a testpoint t ∈ T is covered with service with
reference signal s ∈ S, the signal-to-interference ratio must be above a threshold
δ > 0 ( [40]):

SIRts =

∑
σ∈U(t,s) aσt ·

(∑
�=1,...,n p� · yσ�

)

N +
∑

τ∈I(t,s) aσt ·
(∑

�=1,...,n p� · yσ�

) ≥ δ

in which i) N > 0 is the noise of the system, ii) δ > 0 is the minimum SIR
value requested for considering the tesptpoint served, iii) the power emitted by
a station σ ∈ S is expressed by the combination of the power values p� by
the corresponding binary power activation variable yσ� (i.e.,

∑
�=1,...,n p� · yσ�).

The summation distinguish between useful and interfering signal according to a
DVB-T time-window detection explained in detail in [23,35,37].

The SIR lies at the core of every wireless network design problem (see e.g.,
[11,14,16,22,29,37,40]), and for the specific case that we consider, the model,
which we denote by DVB-MILP, is:

min
∑

s∈S

(
∑

�∈L

p� · ys�

)
(1)

∑

σ∈U(t,s)

aσt ·
(

∑

�∈L

p� · yσ�

)
− δ

∑

τ∈I(t,s)

aσt ·
(

∑

�∈L

p� · yσ�

)

+ M(1 − xts) ≥ δ · N t ∈ T, s ∈ S (2)
∑

s∈S

xts ≤ 1 t ∈ T (3)

∑

t∈T

∑

s∈S

πt · xts ≥ α ·
∑

t∈T

πt (4)

∑

�∈L

ys� = 1 s ∈ S (5)

ys� ∈ {0, 1} s ∈ S, � ∈ L (6)
xts ∈ {0, 1} t ∈ T, s ∈ S (7)

in which, a) the objective function (1) pursues the minimization of the total
power emission; b) the quality-of-service conditions are expressed by the SIR
formulas (easily reorganized by simple algebra operations) and including the big-
M term M(1−xts) to activate or deactivate the constraint depending on whether
testpoint t is served by station s (see [14,17,19,29] for details); c) constraints (5)
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imposes that each station emits by exactly one power value whereas (3) imposes
that each testpoint is served by at most one station. The constraints (4) impose
that at least a fraction α ∈ [0, 1] of the total population of the region must be
covered with service (πr is the population of one pixel) . Finally, (6) and (7) are
the decision variables previously defined.

3 Protecting Against Propagation Uncertainty

The fading coefficients ats that are part of the SIR constraints (2) are naturally
subject to uncertainty because of the wide range of factors that influence signal
propagation in a real environment (e.g., landscape, obstacles, weather, etc.) and
that are hard to precisely assess [40]. These coefficients are commonly computed
by (empirical) propagation models that, using extensive field propagation mea-
surements, provide a formula for computing the coefficient values on the basis of
factors like the distance between the communicating points, the portion of the
spectrum adopted for transmissions, and the characteristics of the propagation
environment (e.g., with many obstacles like tall buildings or in line of sight). As
well-known by telecommunication professionals, the actual propagation values
may be sensibly different from the values returned by the propagation models
and it is thus very important to protect design solutions from possible fluctua-
tions in these values.

Since the fading coefficients constitute uncertain data, i.e. data whose value is
not exactly known when the problem is solved, we protect against fluctuations in
their value that could cause infeasibility or sub-optimality of produced solutions
by Robust Optimization (RO). RO is possibly the most successful optimization
under uncertainty methodology and is essentially based on defining a robust
counterpart of the original problem that identifies the best solution under worst
data deviations, allowing to control the price of robustness (i.e., the deterioration
in the value of optimal solutions due to excluding non-robust solutions from the
feasible set) typically by setting one parameter as in the Γ-RO model (see [5,6].

As Robust Optimization model, we propose here to adopt Multiband Robust
Optimization (MB) introduced in [8–10] to generalize and refine classical Γ-
Robustness [6]: MB uses multiple deviation bands for better modeling arbitrary
discrete distributions, under the form of histograms, which are commonly con-
sidered by professionals to analyze deviations in the input data in real-world
optimization problems (as also illustrated in [4]). Also, MB allows to take into
account “good” deviations, typically neglected in canonical RO approaches. As
basis, we assume that the actual value of a generic uncertain fading coefficient
ats belongs to the symmetric interval [āts − dts, āts + dts] (here, āts is the nom-
inal value of the uncertain coefficient, while dts is its maximum allowed devia-
tion). Practically, āts could be the value provided by a propagation model, while
dts could be set as the maximum deviation that the network planner wants to
consider according to its risk aversion. Following the principles of MB, for the
uncertain fading coefficient we define the following MB Uncertainty Set:
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1. we partition the overall deviation range [−dts, dts] into K bands, defined on
the basis of K deviation values:
−dts = dK−

ts < · · · < d−1
ts < d0ts = 0 < d1ts < · · · < dK+

ts = dts;
2. through these deviation values, K deviation bands are defined, namely: a set

of positive deviation bands k ∈ {1, . . . , K+} and a set of negative deviation
bands k ∈ {K− + 1, . . . ,−1, 0}, such that a band k ∈ {K− + 1, . . . ,K+}
corresponds to the range (dk−1

t , dk
t ], and band k = K− corresponds to the

single value dK−
t . Note that K = K+ ∪ K−;

3. we define a lower and upper bound on the number of values that may expe-
rience a deviation of value in each band: for each band k ∈ K, two bounds
lk, uk ∈ Z+: 0 ≤ lk ≤ uk ≤ |T | · |S| are introduced.

The linear robust counterpart of an uncertain SIR constraint defined for a cou-
ple (s, t) is obtained according to the theoretical results of Multiband Robust
Optimization substituting each SIR constraint (2) of (s, t) with constraints:

∑

σ∈U(s,t)

atσ ·
⎛

⎝
∑

�=1,...,n

p� · ys�

⎞

⎠ − δ
∑

σ∈I(s,t)

atσ ·
⎛

⎝
∑

�=1,...,n

p� · ys�

⎞

⎠

−
(

∑

k∈K

θk
ts · wk

ts +
∑

s∈S

zts

)
+ M(1 − xts) ≥ δ · N (8)

wk
ts + zts ·

⎛

⎝
∑

�=1,...,n

p� · ys�

⎞

⎠ ≥ dk
ts

⎛

⎝
∑

�=1,...,n

p� · ys�

⎞

⎠ k ∈ K (9)

wk
ts ≥ 0 k ∈ K (10)

zts ≥ 0 (11)

which includes the additional dual constraints (9) and variables (10), (11) for lin-
early reformulating the original (non-linear) robust multiband SIR constraints.

The robust optimization problem that we consider and that we denote by
Robu-DVB-MILP is obtained by DVB-MILP substituting each SIR constraints
with (8) and the auxiliary dual constraints and variables (9), (10), (11).

4 A Hybrid Solution Algorithm

The previous robust problem results challenging to be solved even for a state-of-
the-art optimization solver like CPLEX [13], especially because of the presence
of the complicating (robust) SIR constraints. To solve it, we thus propose a
hybrid metaheuristic that combines heuristic exploration of the feasible set with
the adoption of exact optimization methods (i.e., guaranteeing convergence to an
optimal solution) for suitable subproblems of the complete problem. Specifically,
we propose a metaheuristic that follows the algorithmic principles presented in
[15,20], to which we refer the reader for more details. It is mainly based on
a probabilistic variable fixing procedure integrated with an exact large neigh-
borhood search. The probabilistic fixing procedure combines an a-priori and an
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a-posteriori fixing measures. In our case, the a-priori measure is provided by a
linear relaxation of the robust model (model (1)–(7) with SIR constraints (2)
replaced by (8)–(11)), denoted by Robu-DVB-MILP, while the a-posteriori mea-
sure is given by a (tighter) linear relaxation of the model (1)–(7), denoted by
DVB-MILP (where a subset of variables has been fixed in value). At the end of
each cycle of variable fixing, the a-priori fixing measure is updated, evaluating
how good were the applied fixing. Once reached a time limit, the fixing cycle
stops and an exact search runs for trying to improve the best solution found.

In the probabilistic fixing procedure, a number of solutions are built itera-
tively: at every iteration, a partial solution (i.e., a solution where only a subset
of variables has its value fixed) is available and we can fix the value of an addi-
tional variable. Once the value of all the variables has been fixed, we obtain a
complete solution whose quality is evaluated by means of its objective value.
The fixing procedure is based on the observation that once the power emission
variables have been fixed in value, it is possible to easily check which testpoints
are covered with service by some station and compute the value of the objective
function. We thus base the fixing procedure on deciding the values assumed by
the power variables. At a generic iteration of the construction cycle of a feasible
solution, we have at disposal a partial solution to the problem (obtained by hav-
ing chosen the power emissions of a subset of stations SFIX ⊆ S by fixing their
variables ysl while respecting (5)). We probabilistically choose the next station
whose power is fixed by the formula: whose power emission is fixed by means of
the following formula, defined ∀s ∈ S\SFIX, l ∈ L:

psl =
α τsl + (1 − α)ηsl∑

s∈S\SFIX

∑
λ∈L[α τσλ + (1 − α) ησλ]

, (12)

which expresses the probability of fixing the power emission of station s ∈
S\SFIX to power level Pl by considering all the couples σ ∈ S\SFIX, λ ∈ L
of stations whose emission is not yet fixed. In the formula, τsl is the a-priori
attractiveness measure obtained from the optimal value of Robu-DVB-MILP
including power-indexed variables, while ηsl is given by the value of a tight
linear relaxation of DVB-MILP including fixing of variables done in previous
iterations. The two measures are combined by a coefficient α ∈ [0, 1]. If we set
ysl = 1 for some (s, l), due to (5) we can set ysλ = 0 for all λ ∈ L : λ �= l.

After having defined the power emissions of all stations (assume this is
denoted by a binary power vector ȳ), all the SIR ratios can be easily com-
puted. On the basis of the value of these ratios, we can also easily check which
testpoints are covered with service and thus derive a valorization of the server
assignment variables x̄. The resulting solution (ȳ, x̄) which is feasible for DVB-
MILP is accepted as robust when it maintains its feasibility also when the fading
coefficients are deviating to their worst value. Once a round of construction of
feasible solutions has been operated, the a-priori measures are updated through
formula:
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τsl(h) = τsl(h − 1) +
γ∑

SOL=1

ΔτSOL
sl

ΔτSOL
sl = τsl(0) ·

(
OG(vAVG, u) − OG(vSOL, u)

OG(vAVG, u)

)

(13)

where τsl(h) is the a-priori measure of fixing station s at power level Pl at
the h-th execution of the cycle and ΔτSOL

sl is the modification to the value of
the a-priori measures, computed over a summation that considers the last γ
solutions that have been constructed. Moreover, u is an upper bound on the
optimal value of the problem, vSOL is the value of the SOL-th feasible solution
built in the last construction cycle, vAVG is the average of the values of the last
γ solutions that have been constructed. The optimality gap OG(v,u) measures
how far is the value v of a solution from the upper bound u and is defined
as OG(v, u) = (u − v)/v. The role of formula (13) is to update the a-priori
measure rewarding (penalizing) those fixing that have lead to a solution with
lower (higher) optimality gap in comparison to the moving average value vAVG.

At the end of the construction cycle, with the aim of improving the best
robust solution found, an exact neighborhood search is conducted, i.e. we explore
a (very large) neighborhood of the best solution, formulating the search as an
optimization problem which is optimally solved by a state-of-the-art solver (see
e.g., [7,21]). The adoption of exact searches is motivated by the fact that, while
it can be difficult and long for a solver to solve the complete problem, it is
instead possible to efficiently solve to optimality some subproblems. The large
neighborhood that we define is built from a robust solution (ȳ, x̄) allowing to
change the power emission of all stations by either 1) turning off a station s
(i.e., setting ys0 = 1 or 2) allowing a modification of the power emission to the
adjacent power level set by ȳ (i.e., if ysl = 1 then it is allowed to set ysl−1 = 1
or ysl+1 = 1. The exact search is then conducted by expressing the previous
conditions as linear constraints that are added to Robu-DVB-MILP and the
resulting problem is solved by an exact solver.

The pseudocode of the matheuristic for solving Robu-DVB-MILP is pre-
sented in Algorithm 1. The first step consists of solving the linear relaxation
of Robu-DVB-MILP including the power fixing of each couple (s, l) with s ∈ S
and l ∈ L. The obtained optimal values are employed to initialize the a-priori
measures τsl(0). Then a solution construction cycle is executed until reaching a
time limit. In each execution of the cycle, a number of feasible solutions are built
first by fixing the power emission binary variables through formula (12), then
deriving the corresponding valorization of variables x and finally checking their
robustness. At the end of each execution of the cycle, the a-priori measures τ are
updated on the basis formula (13). As last step, once the construction time limit
is reached, the exact large neighborhood search is conducted, using as basis the
best robust feasible solution defined during the construction cycle.
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Algorithm 1
1: compute the linear relaxation of the power-indexed version of Robu-DVB-MILP for all ysl = 1

and initialize the values τsl(0) with the corresponding optimal values
2: let (x∗, y∗) be the best robust feasible solution found
3: while a global time limit is not reached do
4: for SOL := 1 to γ do
5: construct a feasible power vector ȳ using the probabilistic fixing formula (12)
6: check which SIR inequalities are satisfied and derive the corresponding x̄ vector
7: check the robustness of the feasible solution (x̄, ȳ)
8: if the coverage granted by (x̄, ȳ) is better than that of (x∗, y∗) then
9: update (x∗, y∗) with (x̄, ȳ)
10: end if
11: end for
12: update τ according to (13)
13: end while
14: execute the exact large neighborhood search using (x∗, y∗) and the modified power-indexed

version of Robu-DVB-MILP as basis
15: return (x∗, y∗)

5 Preliminary Computational Results

The robust optimization approach was tested on 15 instances including realistic
data defined from regional DVB-T networks deployed in Italy, including up to
about 300 stations and 4000 testpoints. The revenue associated with covering a
testpoint is represented by the population of the testpoint, so, in what follows,
the value of the best solution found by an algorithm is expressed as the percent-
age of the population covered with service. As optimization software, we used
IBM ILOG CPLEX [13] and the algorithms were tested on a Windows machine
with 2.70 GHz Intel i7 and 8 GB of RAM. The hybrid metaheuristic of Algorithm
1 ran with a time limit of 1 h (50 min are devoted to the solution construction
and 10 min are reserved to the execution of the exact neighborhood search). The
parameters α and γ are set equal to 0.5 and 5, respectively. The robust model
takes into account a deviation range that allows deviation up to 20% of the value
of the fading coefficients and that is partitioned into 5 deviation bands. In order
to evaluate the performance of the multiband robustness model, we considered
the coverage of the population that is able to guarantee and the correspond-
ing Price of Robustness (PoR), which we recall to be the reduction in solution
optimality that we must pay in order to guarantee protection against uncertain
coefficients. We also generated 1000 scenarios of realizations of the uncertain fad-
ing coefficients for evaluating the protection that the best found robust solution
is able to guarantee. The preliminary results of the computational tests are pre-
sented in Table 1, where: i) ID identifies the instance; ii) COV is the percentage
coverage of the population associated with the best solution found within the
time limit and is reported for three models of the design problem, namely Det,
which is the model not considering the presence of uncertain fading coefficient,
Full, which considers the model including all the fading coefficients set to their
worst value, and Multi, which is the Multiband Robust Optimization model; ;
iii) PROT is the percentage of scenarios in which the best solution found results
feasible (specified for the three considered models); iv) PoR% is the price of
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robustness, expressed as percentage increase in the total power value emitted by
all stations.

Table 1. Computational results

ID COV% PROT% PoR%

Det Full Multi Det Full Multi Det Full Multi

1 96.5 81.6 95.7 83.4 100 100 0 32.5 15.5

2 96.7 83.0 96.2 86.0 100 100 0 24.8 13.7

3 95.6 84.2 95.3 88.1 100 100 0 21.3 12.8

4 95.4 83.4 95.9 86.7 100 100 0 30.2 14.3

5 96.3 85.5 96.4 87.5 100 100 0 24.8 12.9

6 95.8 82.9 95.4 87.6 100 100 0 25.7 13.2

7 96.9 83.3 96.3 86.7 100 100 0 25.2 12.4

8 95.6 84.7 95.7 88.8 100 100 0 28.7 14.1

9 95.7 81.5 95.4 87.4 100 100 0 29.3 16.0

10 96.3 85.6 96.8 86.3 100 100 0 27.1 13.7

11 96.2 83.3 96.2 92.4 100 100 0 25.5 14.6

12 95.8 81.0 96.1 90.3 100 100 0 24.2 12.7

13 96.4 84.8 95.7 87.9 100 100 0 27.9 11.6

14 95.5 82.9 95.6 89.6 100 100 0 28.8 13.6

15 95.8 84.6 96.3 88.9 100 100 0 25.7 16.8

Looking at the table, a first observation that can be made is that the per-
centage coverage granted by the solution associated with full robustness is much
lower than those by the deterministic and multiband models (on average only an
unsatisfying 83% of the population is covered). This is not so surprising, since
imposing full robustness forces the model to take into account all worst data
deviations occurring simultaneously and this leads to a substantial shrinkage of
the feasible set and to the identification of robust solutions that are unneces-
sarily conservative (it is indeed highly unlikely that all data jointly deviate to
their worst value). In contrast, multiband robustness allows to guarantee a per-
centage coverage of the population that is very close to that of the deterministic
model (on average 96.0% granted by the deterministic model versus 95.9% of the
multiband model). This (superior) performance of the multiband model must be
observed also taking into account the protection that is offered: the multiband
model is able to offer the same full 100% protection of the full robustness model,
which is much higher than that associated with the deterministic model, whose
solutions turn out to be infeasible for about 12% of the cases. Finally, if we
look at the price of robustness, the multiband model is able to entail a percent-
age increase in total power which is about halved on average with respect to
full robustness (naturally, the deterministic model is associated with null price



Green Multiband-robustness SNF Optimization 229

of robustness since it does not provide any protection). Looking jointly at the
three performance indicators, multiband robustness is thus able to guarantee a
full protectiona against deviations in propagation while maintaining the same
level of coverage of the deterministic model and granting a substantial reduction
in the price of robustness with respect with the full robustness model.

As future work, we intend to widen the computational experience to a larger
set of instances, also conducting a study about the impact of parameter tuning.
Moreover, we intend to also better study the impact of different characterization
of the uncertainty set on the robustness of solutions.
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