
Ana Gainaru
Ce Zhang
Chunjie Luo (Eds.)

LN
CS

 1
38

52

Benchmarking, Measuring,
and Optimizing
14th BenchCouncil International Symposium, Bench 2022
Virtual Event, November 7–9, 2022
Revised Selected Papers

Lecture Notes in Computer Science 13852
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Ana Gainaru · Ce Zhang · Chunjie Luo
Editors

Benchmarking, Measuring,
and Optimizing
14th BenchCouncil International Symposium, Bench 2022
Virtual Event, November 7–9, 2022
Revised Selected Papers

Editors
Ana Gainaru
Oak Ridge National Laboratory
Oak Ridge, TN, USA

Chunjie Luo
Chinese Academy of Sciences
Beijing, China

Ce Zhang
ETH Zurich
Zürich, Switzerland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-31179-6 ISBN 978-3-031-31180-2 (eBook)
https://doi.org/10.1007/978-3-031-31180-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-31180-2

Preface

This volume contains the papers presented at Bench 2022. The Steering Committee
decided to describe Bench 2022 as the 14th symposium in the series. The first nine
events constituted the BPOE workshops, which were held in conjunction with ASP-
LOS, VLDB, and ICS. The Bench symposia, which started in 2018, evolved from the
BPOE workshops. The Bench symposium has three defining characteristics. First, it
provides a high-quality, single-track forum for presenting results and discussing ideas
that further the knowledge and understanding of the benchmark community. Second, it is
a multi-disciplinary conference. This edition of the conference attracted researchers and
practitioners from different communities, including architecture, systems, algorithms,
and applications. Third, the program features both invited and contributed talks.

The Bench symposium solicits papers that address pressing problems in benchmark-
ing, measuring, and optimizing systems. The call for papers for the Bench 2022 con-
ference attracted a large number of high-quality submissions. During a rigorous review
process, in which each paper was reviewed by at least four experts, the program commit-
tee selected 10 papers for the Bench 2022 conference. The papers in this volume include
revisions requested by program committee members. Bench 2022 had two keynote lec-
tures. John L. Henning, Secretary of the SPEC CPU Subcommittee, drew lessons from
the history of CPU benchmarking to reveal difficulties that are commonly encountered
when trying to develop meaningful benchmarks. Douwe Kiela, the Head of Research at
Hugging Face, introduced the open source Evaluate library and the Evaluation on the
Hub project, as well as Dynabench, a research platform that facilitates human and model
in the loop data collection and evaluation. Moreover, our program included one invited
talk by Kai Shu from the Illinois Institute of Technology, who presented the challenges
to build fair models with incomplete, unknown, and unreliable information, and stressed
the need for interdisciplinary research. There were two workshops in Bench 2022, the
OpenBench Workshop and OpenCS Workshop.

During the conference, the International Open Benchmark Council (BenchCouncil)
sponsored four different types of awards to recognize important contributions to the area
of benchmarking, measuring, and optimizing. The BenchCouncil Achievement Award
recognizes a senior member who has made long-standing contributions to the field. John
L. Henning was named the 2022 recipient of the achievement award. The BenchCouncil
Rising StarAward recognizes a young researcherwho demonstrates outstanding research
and practice related to the theme of the conference. Douwe Kiela was named the 2022
recipient of the rising star award. The BenchCouncil Best Paper Award is to recognize
a paper presented at our conference with high potential impact. Tony Hey generously
donated to the BenchCouncil Award committee to spin off the best student paper award.
And this award is to a student as the first author who publishes a paper that has a potential
impact. Majid Salimi Beni and Biagio Cosenza from the University of Salerno received
the Bench 2022 Best Paper Award for their paper “An Analysis of Long-tailed Net-
work Latency Distribution and Background Traffic on Dragonfly+”. Sierra Wang, Fatih

vi Preface

Bakir, Tyler Ekaireb, Jack Pearson, Chandra Krintz, and Rich Wolski from University
of California Santa Barbara received the Bench 2022 Tony Hey Best Student Paper
Award for their paper “MSDBench: Understanding the Performance Impact of Isolation
Domains on Microservice-based IoT Deployments”. There was one candidate for the
BenchCouncil Distinguished Doctoral Dissertation Award in Computer Architecture,
Akshitha Sriraman from Carnegie Mellon University. There is also one candidate for
the BenchCouncil Distinguished Doctoral Dissertation Award in Other Areas, Markus
Schuß from Graz University of Technology, Austria.

We are very grateful to all authors for contributing such excellent papers to the Bench
2022 conference. We appreciate the indispensable support of the Bench 2022 Program
Committee and thank its members for the time and effort they invested in maintaining
the high standards of the Bench symposium.

December 2022 Ana Gainaru
Ce Zhang

Chunjie Luo

Organization

General Chairs

Peter Mattson Google, USA
Emmanuel Jeannot INRIA, France
Wanling Gao University of Chinese Academy of Sciences,

China

Program Chairs

Ana Gainaru Oak Ridge National Laboratory, USA
Ce Zhang ETH Zurich, Switzerland
Chunjie Luo Institute of Computing Technology, Chinese

Academy of Sciences, China

Program Committee

Woongki Baek UNIST, Republic of Korea
Greg Diamos Landing.AI, USA
Murali Krishna Emani Argonne National Laboratory, USA
Steve Farrell NERSC, USA
Vladimir Getov University of Westminster, UK
Sascha Hunold TU Wien, Austria
Yunyou Huang Guangxi Normal University, China
Miaoqing Huang University of Arkansas, USA
Bin Hu ICT, CAS, China
Khaled Ibrahim Lawrence Berkeley National Laboratory, USA
Zhen Jia Amazon, USA
Gwangsun Kim POSTECH, Republic of Korea
Piotr Luszczek University of Tennessee, USA
Shin-ying Lee AMD, USA
Gang Lu Tencent, China
Xiaoyi Lu University of California, Merced, USA
Mario Marino Leeds Beckett University, UK
Krishnakumar Nair Meta, USA
Bin Ren William & Mary, USA

viii Organization

Rui Ren Beijing Open Source IC Academy, China
Nicolas Rougier INRIA, France
Fei Sun Alibaba, USA
Narayanan Sundaram Facebook, USA
Nana Wang Henan University, China
Lei Wang ICT, CAS, China
Biwei Xie ICT, CAS, China
Shengen Yan SenseTime, China
Chen Zheng Institute of Software, Chinese Academy of

Sciences, China

Invited Talks

BenchCouncil Achievement Award Lecture:
Benchmarking: An Incomparable Science?

John L. Henning

Secretary, SPEC CPU Subcommittee and Performance Engineer, Oracle

Abstract: Why are some of us so attracted to computer benchmarks?
In part, it is the self-sustaining cycle of empirical methods: hypothe-
sis, experiment, numerical result, which leads to the next hypothesis.
But that’s not good enough: instead of simply “numerical results”, we
need “meaningful numerical results”. This talk draws lessons from the
history of CPU benchmarking to reveal difficulties that are commonly
encountered when trying to develop meaningful benchmarks.

Biography: John L. Henning is currently a performance
engineer at Oracle, Nashua, NH, USA, and has been the
Secretary for the SPEC CPU Subcommittee since 1998. In
his first performance optimization experience, he trimmed
a DOS/360 job from 8 hours to 45 minutes.

BenchCouncil Rising Star Award Lecture: Rethinking
Benchmarking in AI: Evaluation-as-a-Service
and Dynamic Adversarial Data Collection

Douwe Kiela

Head of Research at Hugging Face
and Adjunct Professor at Stanford University

Abstract: The current benchmarking paradigm in AI has many issues:
benchmarks saturate quickly, are susceptible to overfitting, contain
exploitable annotator artifacts, have unclear or imperfect evaluation met-
rics, and do not measure what we really care about. I will talk about my
work on trying to rethink the waywe do benchmarking in AI. First, I’ll go
into our work at Hugging Face on establishing better best practices for the
comprehensive evaluation of data and models, through the open source
Evaluate library and the Evaluation on the Hub project. Second, I’ll talk
about Dynabench, a research platform that facilitates human andmodel in
the loop data collection and evaluation, as well as the progress the team
has been making in exploring the dynamic adversarial data collection
paradigm.

Biography: Douwe Kiela is the Head of Research at Hug-
ging Face. He is also an Adjunct Professor at Stanford Uni-
versity. Before, he was a Research Scientist at Facebook AI
Research. His current research interests lie in developing
better models for (grounded, multi-agent) language under-
standing and better tools for evaluation and benchmarking.
He received his PhD andMPhil from theUniversity of Cam-
bridge. Before that, he did a BSc in Liberal Arts & Sciences
at Utrecht University with a double major in Cognitive Arti-
ficial Intelligence and Philosophy; and an MSc in Logic at
the University of Amsterdam’s ILLC.

Towards Fair Machine Learning with Imperfect
Information

Kai Shu

Assistant Professor at Illinois Institute of Technology

Abstract:Modernmachine learning (ML)models are becoming increas-
ingly popular and are widely used in decision-making systems. Though
ML models are achieving great success, critical issues of ML discrimi-
nation and unfairness are revealed, which hinder their adoption on high-
stake applications. Recent research on fair machine learning has drawn
significant attention to develop effective algorithms to achieve fairness
and good prediction performance. However, sensitive attributes are often
incomplete or unavailable due to privacy, legal or regulation restrictions.
In addition, practitioners trying to audit group-based criteria can easily
face the problem of noisy or manipulated sensitive attributes. In this
talk, we look into some of the challenges to build fair models with
incomplete, unknown, and unreliable information, and urge the need for
interdisciplinary research.

Biography: Dr. Kai Shu is a Gladwin Development Chair
Assistant Professor in the Department of Computer Sci-
ence at Illinois Institute of Technology since Fall 2020.
He obtained his Ph.D. in Computer Science at Arizona
State University. He was the recipient of the 2020 ASU
Engineering Dean’s Dissertation Award, 2021 Google
Cloud Research Credits Award, 2021 Finalist of Meta
Research Faculty Award, 2021 Finalist of BenchCouncil
Distinguished Doctoral Dissertation Award, 2022 Cisco
Research Faculty Award, 2022AMiner AI 2000Most Influ-
ential Scholar Honorable Mention, and 2022 Baidu AI
Global High-Potential Young Scholar Award. His research
addresses challenges and applications such as big data,
social media, trustworthy AI, fake news detection, social
network analysis, cybersecurity, and health informatics. He
has published innovative works in highly ranked journals
and top conference proceedings such asACMKDD, SIGIR,
WSDM, WWW, EMNLP, NAACL, CIKM, IEEE ICDM,
IJCAI, and AAAI.

Contents

Architecture and System

A Quantitative Analysis of OpenMP Task Runtime Systems 3
Sascha Hunold and Klaus Kraßnitzer

EAIBench: An Energy Efficiency Benchmark for AI Training 19
Fan Zhang, Chuanxin Lan, Lei Wang, Fei Tang, Shaopeng Dai,
Jiangtao Wang, Jiantao Ma, and Jianfeng Zhan

MSDBench: Understanding the Performance Impact of Isolation Domains
on Microservice-Based IoT Deployments . 35

Sierra Wang, Fatih Bakir, Tyler Ekaireb, Jack Pearson, Chandra Krintz,
and Rich Wolski

Algorithm and Dataset

ShoeMaster: A Benchmark for Sketch2Image Translation of Shoes 55
Shiyuan Xu, Yingjie Shi, Tong Feng, and Huayi Yuan

Open Source Software Supply Chain Recommendation Based
on Heterogeneous Information Network . 70

HaiMing Lin, Guanyu Liang, Yanjun Wu, Bin Wu, Chunqi Tian,
and Wei Wang

BasicTS: An Open Source Fair Multivariate Time Series Prediction
Benchmark . 87

Yubo Liang, Zezhi Shao, Fei Wang, Zhao Zhang, Tao Sun, and Yongjun Xu

Benchmarking Object Detection Models with Mummy Nuts Datasets 102
Darren Ng, Colin Schmierer, Andrew Lin, Zeyu Liu, Falin Yu,
Shawn Newsam, Reza Ehsani, and Xiaoyi Lu

Network and Memory

AnAnalysis of Long-TailedNetwork LatencyDistribution andBackground
Traffic on Dragonfly+ . 123

Majid Salimi Beni and Biagio Cosenza

xviii Contents

MCCBench: A C10M Benchmark Oriented to Interactive Network Services . . . 143
Hui Song, Wenli Zhang, and Mingyu Chen

STAMP-Rust: Language and Performance Comparison to C
on Transactional Benchmarks . 160

Felix Suchert and Jeronimo Castrillon

Author Index . 177

Architecture and System

A Quantitative Analysis of OpenMP Task
Runtime Systems

Sascha Hunold(B) and Klaus Kraßnitzer

Research Group for Parallel Computing, Faculty of Informatics,
TU Wien, Vienna, Austria

{hunold,krassnitzer}@par.tuwien.ac.at

Abstract. Although OpenMP is heavily used to parallelize for-loops, it
also supports task-parallel programming, which is important for paral-
lelizing irregular applications. In this work, we focus on the performance
of OpenMP runtime systems for task-based applications. In particular,
we investigate the performance of different OpenMP runtime systems
when scheduling a large set independent tasks of different granularity.
To that end, we propose a new OpenMP benchmark, which features
profiling and tracing options that help developers to reason about the
observed performance differences. We compare the execution times mea-
sured for a variety of compilers, such as gcc, icc, clang, aocc, and pgcc,
for both homogeneous and heterogeneous workloads. Our study shows
that there are significant performance differences between the different
OpenMP implementations. We also show that the performance attain-
able with a compiler strongly depends on the machine architecture, the
number of threads, the thread-pinning strategy, and the task granularity.

Keywords: OpenMP tasks · Benchmarking · Scheduling

1 Introduction

In high-performance computing (HPC), OpenMP is the de-facto standard for
parallelizing applications at the level of a compute node. In this work, we focus
on parallel OpenMP applications that run on shared-memory parallel, multi-core
machines. The most common type of today’s multi-core machines are cache-
coherent NUMA systems (ccNUMA), i.e., the multi-core processors typically
have several DRAM memory controllers and partitioned last-level caches (e.g.,
Level 3 data caches). As a consequence of this ccNUMA architecture, the latency
for reading from and writing to memory depends on the actual location of a
core and the memory address. The traditional way of parallelizing applications
with OpenMP is marking the compute-heavy for-loops with specific OpenMP
pragmas. Compilers are then able to transform the programs into data-parallel

K. Kraßnitzer—This work was partially supported by the Austrian Science Fund
(FWF): project P 33884-N.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Gainaru et al. (Eds.): Bench 2022, LNCS 13852, pp. 3–18, 2023.
https://doi.org/10.1007/978-3-031-31180-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31180-2_1&domain=pdf
http://orcid.org/0000-0002-5280-3855
http://orcid.org/0000-0003-1217-1029
https://doi.org/10.1007/978-3-031-31180-2_1

4 S. Hunold and K. Kraßnitzer

fork-join applications, where each thread is responsible for specific chunks of the
overall, global iteration space. The other, later introduced parallelization strat-
egy in OpenMP is task-parallel programming. This strategy is particularly help-
ful for parallelizing recursive computational patterns or irregular applications
in general, where tasks of different type and granularity can be dispatched by
individual threads. The concept of OpenMP tasks increases the potential degree
of parallelism that can be exploited by programmers, yet they also increase the
scheduling complexity for the OpenMP runtime systems.

In this paper, we want to answer the question of how efficiently current
C/C++ compilers (with OpenMP support) handle a large number of parallel
tasks. To that end, we propose the OMPTB benchmark suite, which con-
tains three basic OpenMP task processing strategies (inspired by the EPCC
microbenchmarks [1]):

1. MasterTask: the master thread creates all tasks, but tasks are executed by
all worker threads,

2. ParallelTask: all threads both emit and execute tasks, and
3. ParallelFor: the actual task code is executed using a single parallel for-

loop. No OpenMP tasks are created, but the same number of instructions is
executed. This strategy serves as a performance baseline.

We perform a large set of experiments with these three task processing strategies
and address the following questions:

– How efficiently do current compilers process a large number of tasks? The
compilers examined in this study are: gcc, icc, aocc, clang, and pgcc.

– How much does the task granularity (i.e., the runtime of each task) impact
the performance difference between the different compilers?

– How do the different compilers deal with heterogeneous tasks, i.e., if the
runtime of the tasks varies significantly?

– What is the impact of the thread mapping strategy on the performance of
the task benchmark?

– How is the task workload balanced across the threads? Our hypothesis is that
the more balanced the tasks are across the different threads the shorter the
runtime should be (cf. Terboven et al. [13]).

– Is the runtime of the task benchmark correlated with the number of cache
misses? This is a reasonable assumption considering the fact that we run
on highly partitioned ccNUMA systems where compute nodes have up to
16 NUMA nodes.

In this paper, we make the following contributions:

– We present a benchmark for assessing the performance of OpenMP runtime
systems. The benchmark features profiling and tracing capabilities, which
help to investigate performance differences between compilers. The design of
the benchmark is compiler-fair, i.e., the code executed by each OpenMP task
is compiled with one fixed compiler to avoid assembly differences, while the
OpenMP part is compiled with every investigated OpenMP compiler.

A Quantitative Analysis of OpenMP Task Runtime Systems 5

– We present an in-depth experimental study of the performance difference of
various compilers for scheduling OpenMP tasks on shared-memory systems.

– We assess the performance of the OpenMP runtime systems when scheduling
OpenMP tasks in the presence of heterogeneous tasks.

The remainder of the paper is structured as follows. In Sect. 2, we discuss the
related work and indicate how previous work has influenced our benchmarking
setup. In Sect. 3, we give a brief overview of our benchmark suite OMPTB,
before we explain our experimental setup in Sect. 4. As we put an emphasis
on empirical results, we show a large set of experiments in Sect. 5 and draw
conclusions in Sect. 6.

2 Related Work

Several other works have already evaluated OpenMP task runtime systems in
different contexts. A pioneering work in this field was published by Bull et al. [1],
who proposed a set of OpenMP benchmarks to evaluate the cost of apply-
ing OpenMP pragmas in various settings. In particular, they proposed the
taskbench benchmark, which can be used to assess the overhead associated with
creating and processing OpenMP tasks. Bull et al. [1] use the sequential time for
executing a loop with a fixed work W as the reference time. They measure the
time to execute the same loop with various task creation strategies, e.g., only
the master threads or all threads create a set of tasks. For evaluating the over-
head of using OpenMP tasks, taskbench performs weak-scaling experiments,
i.e., the number of tasks per thread that is created initially stays constant. The
time difference between the parallel execution of work pW on p cores and the
sequential execution of work W is called the overhead. In contrast, in our present
work, we focus on a strong scaling analysis and keep the overall work exactly the
same in each experiment. The benchmark taskbench fixes the “work time” of a
loop iteration, i.e., how long each iteration should take. In order to estimate the
waiting time, Bull et al. [1] use a nested busy loop that executes k iterations,
where these k iterations should match this waiting/work time. In taskbench,
this value of k is estimated every time the benchmark starts, leading to variances
of the so-created homogeneous workload between different experimental runs.

Terboven et al. [13] compared how well different OpenMP implementations
execute task-parallel OpenMP codes on NUMA machines. They compared per-
formance results obtained with compilers from Intel, GNU, Oracle, and PGI.
Similar to our approach, they investigated how load imbalance impacts the per-
formance. To this end, they created a specific heterogeneous workload, where
the time for executing a task increases linearly with the number of tasks. Each
task internally reads data from memory to examine both load imbalance and
data locality effects on NUMA machines. They showed that spawning OpenMP
tasks concurrently by all threads often leads to a better performance than if only
one thread is creating the tasks.

Olivier et al. [10] analyzed the scalability behavior of different task scheduling
systems. In particular, they compared the performance results obtained with

6 S. Hunold and K. Kraßnitzer

Intel’s icc and GNU’s gcc to the ones obtained with the Qthreads library. The
Qthreads library allows them to use different scheduling strategies at different
levels of the NUMA architecture, i.e., they have an implementation with a single
LIFO queue or with multiple queues and different work stealing strategies. They
showed strong scaling results for a variety of benchmarks from the Barcelona
OpenMP Tasks Suite (BOTS) [4].

Clet-Ortega et al. [3] presented an orthogonal work to Olivier et al. [10], where
the authors analyze different scheduling strategies of OpenMP tasks on NUMA
systems in their own customizable OpenMP runtime system called MPC. The
idea is that the number of task queues could be a parameter, e.g., there could be
one queue per system, one queue per socket, or one queue per core. The authors
studied the performance of the different granularity options for the tasks queues
and different work stealing strategies for BOTS applications.

Schuchart et al. [12] extended the EPCC OpenMP MicroBenchmark Suite
to analyze the performance of OpenMP task runtimes in the presence of task
dependencies. To that end, they defined several task dependency patterns, which
were evaluated independently.

Gautier et al. [6] investigated the internal overheads of managing tasks in
OpenMP. They instrumented the LLVM OpenMP runtime libOMP to measure
the delay of different steps in the task creation process. The authors examined
the impact of internal implementation choices on the performance, such as the
maximum length of task queues or the hashtable size. Gautier et al. [6] also
reported that a substantial fraction of the overhead can be attributed to checking
task dependencies (in case dependent tasks are used).

Several commonly used multicore benchmarks are collected in the PARSEC
benchmark suite [15]. Since task-based programming has gained importance,
task-centric modifications of the PARSEC benchmarks were devised to examine
the scaling behavior when expressing the parallel work in the form of tasks [2,8].

Lastly, Yang and He [14] present an extensive survey on work stealing
approaches in the context of task-parallel programming on multicore machines.

3 OMPTB: The OpenMP Task Benchmark

Now, we introduce the OpenMP Task Benchmark (OMPTB) and the sup-
ported task creation strategies.1 The overall design and structure of the micro-
benchmarks have been inspired by the works of Bull et al. [1], Terboven et al. [13],
and Olivier et al. [10].

Micro-benchmark Structure. Our main objective is to create a stress test for the
OpenMP scheduling system. Therefore, we focus on scheduling a large number
of independent tasks onto a set of homogeneous cores. In Graham’s scheduling
notation, we are interested in the problems P ||Cmax and P | p̄i = p̄ |Cmax [7],
where p̄i = p̄ is a special case, in which all tasks (jobs) have the same running

1 https://github.com/parlab-tuwien/omp-task-bench.

https://github.com/parlab-tuwien/omp-task-bench

A Quantitative Analysis of OpenMP Task Runtime Systems 7

Listing 3.1. Version MasterTask

#pragma omp parallel firstprivate(m)
{
#pragma omp master

for (i = 0; i < n; i++) {
if(hetero_workload)

m = get_work(i);
#pragma omp task firstprivate(m)

res[ridx] = add_bench(m);
}

#pragma omp taskwait
}

Listing 3.2. Version ParallelTask

#pragma omp parallel firstprivate(m)
{
#pragma omp for

for (i = 0; i < n; i++) {
if(hetero_workload)

m = get_work(i);
#pragma omp task firstprivate(m)

res[ridx] = add_bench(m);
}

#pragma omp taskwait
}

Listing 3.3. Version ParallelFor

#pragma omp parallel firstprivate(m)
{
#pragma omp for

for (i = 0; i < n; i++) {
if(hetero_workload)

m = get_work(i);
res[ridx] = add_bench(m);

}
}

time p̄. From an implementation standpoint, we would like to create the sim-
plest way of testing the scheduling system with the smallest amount of noise
introduced by experimental factors. In our context, a scheduling instance for
homogeneous tasks is defined by three variables: n denotes the number of tasks
to be created, m denotes the work done in each task, and p denotes the number
of threads to be created. Since each thread is mapped to one core exclusively, p
also defines the number of cores used to schedule this instance. We also consider
the more general case, where each task can have a different amount of work. In
this heterogeneous case, the work of each task is drawn randomly from a given
distribution, which will be discussed later (cf. Sect. 4).

In order to test the scheduling system, our benchmark executes n jobs of
work m on p cores. Our benchmark suite supports two commonly used task
creation strategies:

– MasterTask: The master thread creates all n tasks, as shown in Listing 3.1.
– ParallelTask: All p threads create all n tasks, which is outlined in List-

ing 3.2.

As a performance baseline, we execute the same n function calls, instead of
using OpenMP tasks, in a parallel For-loop (cf. ParallelFor in Listing 3.3).
Since all loop iterations are independent, the parallel For-loop will provide a
lower bound on the performance of the task scheduling system in the case of
homogeneous tasks.

Workload Options. The actual work of each task is done by the add bench
function, which takes m as an input and computes

∑m
i i in a for loop, and the

result is returned as a double value. When we test the heterogeneous problem

8 S. Hunold and K. Kraßnitzer

Table 1. Multi-core machines and compilers used in our study.

machine Hydra Nebula VSC-5

processor Intel Xeon 6130F AMD EPYC 7551 AMD Epyc 7713

core frequency 2.10 GHz 2.00 GHz 2.00 GHz

nb of sockets 2 2 2

nb of cores per node 32 64 128

compilers gcc 12.1.0 gcc 12.1.0 gcc 11.2.0

clang 14.0.4 clang 14.0.4 clang 12.0.1

pgcc 22.5 pgcc 22.5 pgcc 22.5

icc 2021.7.0 aocc 3.2.0 aocc 3.2.0

instances, the value of m is selected independently for each task. The add bench
function should mimic a real function call, and thus, it returns an actual result.
In our benchmark, we always store the result of the add bench function in a
variable, which the compiler cannot optimize away. However, if we just stored the
latest result of each add bench function from all threads in one global variable,
we would create a false sharing issue among the threads. Therefore, each thread
stores the latest result of add bench in its own part of the global res array. The
index ridx ensures that each thread accesses a different cache line.

Due to its simplicity, our benchmark setup has two advantages compared to the
previous benchmarks. First, the work m is always the same for different executions
of the benchmark, which reduces noise and improves reproducibility. Second, the
add bench function only needs to read one integer value (m) from memory, and
thus, the benchmark is insensitive to the different bandwidths that typically occur
between the various NUMA nodes on current multi-core processors.

Considerations for Compiler Fairness. Our study should reveal differences in
the OpenMP runtime systems when scheduling a large number of independent
tasks. Therefore, the actual code that each task executes should be exactly the
same. For this reason, we compile the task’s code into a separate, dynamic library
with exactly one compiler (gcc in all cases), to ensure that the assembly code
of the individual tasks is identical. The rest of the benchmark, in particular the
OpenMP pragmas, is compiled with each tested compiler.

4 Experimental Setup

Now, we explain our experimental, hardware, and software setup for comparing
various OpenMP runtime systems.

Hardware and Software Setup. We conduct experiments on three different multi-
core, shared-memory systems that comprise 32, 64, and 128 physical cores, which
are called Hydra, Nebula, and VSC-5 , respectively. We provide an overview of

A Quantitative Analysis of OpenMP Task Runtime Systems 9

10-2

10-1

100

104 105 106

work m

ti
m
e
[m

s]

(a) Running time of computational kernel
for growing work m; Hydra

mean: 51.61

0.000

0.005

0.010

0 100 200 300 400
m

de
ns
it
y

(b) Exponentially distributed heteroge-
neous workload per task mi; λ = 0.02

Fig. 1. Example workloads for parameter m.

the hardware and software details in Table 1. On the Intel system, Hydra, we
compare the Intel icc compiler to the compilers gcc, pgcc, and clang, while on
the AMD systems, Nebula and VSC-5 , we use the aocc compiler instead of the
Intel icc. Since aocc is built on top of the clang infrastructure and also uses
libomp, we expect similar performance results from clang and aocc. The most
important difference between the Intel processor and both AMD processors,
which are used in our experiments, is the number of NUMA nodes. The Intel
processor only has one NUMA node per socket, while the AMD processors have
either four (Nebula) or two (VSC-5) NUMA nodes per socket.

Workload Options. A central parameter of our benchmark is the work done per
task. If the work is small, the fraction of the overall time spent in the OpenMP
runtime system grows, and differences in the scheduling methods become more
pronounced. Figure 1a shows how the runtime of our add bench function depends
on the work parameter m. In this experiment, we increase the work m and
measure the running time of add bench for each m. We can observe that the
runtime grows linearly with m, exactly as it should.

As already mentioned, we also investigate how well the OpenMP runtime
systems perform for heterogeneous workloads. In particular, we would like to
answer whether the scheduling results change if the workload is heterogeneous.
Feitelson [5] points out that typical workloads, e.g., runtimes of jobs in batch
systems, do not follow a uniform distribution, as the distributions are often
heavy-tailed. Jain [9] states that exponential service times are commonly used.
Outsterhout et al. [11] examine the performance of Spark schedulers, where the
duration of spark jobs are exponentially distributed.

We also use workloads that follow an exponential distribution. An example
workload is shown in Fig. 1b, where the rate parameter λ is set to 0.02, which
leads to a mean work per task of 50 iterations.

From an implementation point of view, we have to be careful that the ran-
dom number generator does not influence the performance results when creating

10 S. Hunold and K. Kraßnitzer

Table 2. Experimental configurations.

workload homogeneous heterogeneous

task strategy MasterTask MasterTask

ParallelTask ParallelTask

ParallelFor

number of tasks n 100 000, 1000 000 100 000, 1000 000

work per task m 1, 1000, 10 000 exp. distribution λ = {0.002, 0.02}
thread mapping compact compact

scatter scatter

OpenMP tasks. For this reason, a list of k heterogeneous task sizes are precom-
puted before each heterogeneous experiment and stored in a global array (we
currently use k = 10 000). When a task is spawned, we know its global task
number 0 ≤ i < n, and we use the i to pick the next task size from the global
list (with a wrap-around if i becomes larger than k).

Experimental Configurations. We provide an overview of the experimental
parameters in Table 2. For space constraints, we can only show plots for a subset
of the experiments conducted. The task size parameter m is the most crucial one
for comparing the OpenMP runtime systems. With m = 1, the time spent in
each task is extremely short, and structural differences in the runtime systems
get emphasized. When increasing m to 1000 or 10 000, we would like to exam-
ine whether performance differences of the runtime system can still be seen for
coarser-grained tasks.

Another important parameter for efficient, multi-threaded OpenMP applica-
tions on NUMA systems is the thread-to-core mapping strategy [13]. In order to
exactly implement our desired mapping strategies, we rely on the OMP PLACES
environment variable and define our own compact and scatter mapping strate-
gies. We consider the exposed NUMA nodes of the system to be the basic building
blocks for thread-mapping. In the compact strategy, we start by filling up the
first NUMA node, before we map threads to the second, third NUMA node, and
so forth. In the scatter strategy, we allocate the threads in a round-robin fashion
across the NUMA nodes.

5 Experimental Results

5.1 General Experimental Factors

While experimenting with the different OpenMP runtime systems, we made two
important observations. The first concerns the thread mapping strategy. In vir-
tually all cases, the variance of the running time of our task benchmark decreases
significantly if threads are pinned to specific cores. Therefore, we used thread

A Quantitative Analysis of OpenMP Task Runtime Systems 11

pinning in all our experiments to reduce the number of required repetitions to
obtain consistent, reproducible performance numbers.

We also noticed that the gcc compiler, especially with the MasterTask strat-
egy, performed significantly inferior to its competitors. Since it uses a central
task queue, we experimented with adapting environment variables provided by
OpenMP and libGOMP. We found that the wait policy had a huge positive
impact on the performance of gcc, while the other compilers were unaffected.
Therefore, we executed the experiments with all OpenMP runtime systems after
setting the environment variable OMP WAIT POLICY to PASSIVE.

5.2 Homogeneous Workloads

In our first experimental analysis, we compare the performance of the different
compilers on the Intel-based machine Hydra. Figure 2 presents strong scaling
results for the case of executing n = 100 000 independent tasks, each having
work m = 1. We can observe that the MasterTask strategy, where the master
thread creates all tasks, does not scale at all. When the number of threads
increases the running time also grows, independently from the actual thread
mapping strategy. Here, we can see that the larger overhead of gcc is already
clearly visible starting with p = 4 threads.

A similar trend can be observed in the middle graphs of Fig. 2, where the
ParallelTask version is analyzed. We can see that gcc’s runtime is very unsta-
ble, as shown by the 95% confidence intervals, but gcc is very fast for 1 or
2 threads compared to clang and icc.

In the last row of this figure, we show the ParallelFor results as a base-
line. We can observe that the task-based versions (shown in the middle row)
add a significant overhead to the running time. In contrast, when applying the
ParallelFor strategy, the parallel execution of the add bench functions does
show a good scaling behavior for all compilers.

In order to compare the measured runtimes in a more comprehensible way,
we show the runtimes for the different compilers relative to the runtime of gcc.
Thus, if a compiler has a ratio larger than 1, then this compiler was slower
than gcc. On the contrary, if this ratio is below 1, the runtime of the OpenMP
benchmark compiled with the respective compiler was shorter than the one com-
piled with gcc.

Figure 3 presents the runtime results for clang, icc, and pgcc, always rela-
tive to the runtime of gcc. In this experiment, we fixed the number of tasks to
n = 100 000 and used the compact mapping strategy. We can notice that the
performance difference is relatively small if the task size m is 1000 or larger. For
the task-based versions, we can observe that the other compilers outperform gcc
for more than 2 threads. Yet, for two threads or less, gcc is overall the best.
Interestingly, in the ParallelFor case, clang is clearly outperformed by both
icc and gcc for virtually all thread counts.

We now turn to the AMD processors. Figure 4 presents the performance
results for the 64-core machine Nebula. The architecture of this machine differs
significantly from the Intel-based machine from before, as it has 8 NUMA nodes

12 S. Hunold and K. Kraßnitzer

ParallelFor
compact

ParallelFor
scatter

ParallelTask
compact

ParallelTask
scatter

MasterTask
compact

MasterTask
scatter

1 2 4 8 16 32 1 2 4 8 16 32

1 2 4 8 16 32 1 2 4 8 16 32

1 2 4 8 16 32 1 2 4 8 16 32
0.0

0.1

0.2

0.3

0.4

0.000

0.003

0.006

0.009

0.012

0.000

0.001

0.002

0.003

0.004

0.0

0.1

0.2

0.3

0.4

0.5

0.00

0.01

0.02

0.03

0.04

0.000

0.001

0.002

0.003

0.004

nb of threads (cores)

ru
nt
im

e
[s
]

compiler clang gcc icc pgcc

Fig. 2. Performance comparison of different compilers for n = 100 000, m = 1; machine:
Hydra. Error bars represent the 95% confidence interval of the mean.

in total, 4 per socket. The Intel-based machine Hydra from the previous experi-
ment only has two NUMA nodes, one per socket. From this figure, we can observe
that the gcc compiler outperforms the competitors for small threads counts (1
and 2). However, in the ParallelTask case, gcc is significantly slower than the
competitors when the number of cores is between 32 and 64. In the benchmarks
on the AMD machine, the pgcc compiler provided the best overall performance,
while the benchmark times obtained with clang and aocc were often slower than
the ones produced by pgcc and gcc.

Last, we show the performance results for the largest shared-memory node
in our experiments, which has 128 cores. In Fig. 5, we only present the results

A Quantitative Analysis of OpenMP Task Runtime Systems 13

ParallelFor
m: 1

ParallelFor
m: 1000

ParallelFor
m: 10000

ParallelTask
m: 1

ParallelTask
m: 1000

ParallelTask
m: 10000

MasterTask
m: 1

MasterTask
m: 1000

MasterTask
m: 10000

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.0

0.3

0.6

0.9

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0

1

2

3

4

0

1

2

3

4

0
1
2
3
4
5

nb of threads (cores)

re
la
ti
ve

ru
nt
im

e
w
rt

gc
c

compiler clang icc pgcc

Fig. 3. Performance of compilers with respect to the runtime obtained with gcc, n =
100 000, mapping: compact ; Hydra.

with more than 32 cores, as these cases showed the largest differences. We can
observe that gcc scales very well for the MasterTask strategy. More interestingly,
pgcc was suddenly outperformed for 96 and 128 cores for the ParallelTask
case (middle). This was surprising as pgcc was found to be the best compiler
for the other machines in this case. For the ParallelFor case, the situation
is very different, as pgcc outperforms the other compilers again significantly.
We used the profiling option of our benchmark to assess how equally the tasks
are balanced among the threads, in order to find the cause of the performance
differences (especially for the ParallelTask). We could not find a correlation
between the task imbalance and the running time.

5.3 Homogeneous Case: Correlation Analysis

We also wanted to assess whether the shortest running time translates to best
load balanced schedule. In classic scheduling theory, a perfectly balanced sched-
ule is a lower bound for an instance of P ||Cmax. However, our case is slightly
different as we only have homogeneous cores, but the interconnect between the
cores is heterogeneous.

In order to show the results of our study, we present one specific case that
highlights our findings, which comprises n = 100 000 tasks of size m = 1 and the
MasterTask task creation strategy with p = 64 threads.

By leveraging the profiling and tracing capabilities of OMPTB, we analyzed
the resulting load distribution across the different participating threads. In fact,

14 S. Hunold and K. Kraßnitzer

ParallelFor
m: 1

ParallelFor
m: 1000

ParallelFor
m: 10000

ParallelTask
m: 1

ParallelTask
m: 1000

ParallelTask
m: 10000

MasterTask
m: 1

MasterTask
m: 1000

MasterTask
m: 10000

1 2 4 8 16 32 48 64 1 2 4 8 16 32 48 64 1 2 4 8 16 32 48 64

0.0

0.5

1.0

1.5

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.0

0.5

1.0

1.5

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0

1

2

3

0

1

2

3

0

2

4

nb of threads (cores)

re
la
ti
ve

ru
nt
im

e
w
rt

gc
c

compiler aocc clang pgcc

Fig. 4. Performance of compilers with respect to the runtime obtained with gcc, n =
100 000, mapping: compact ; Nebula.

compact
MasterTask

compact
ParallelTask

compact
ParallelFor

48 64 96 128 48 64 96 128 48 64 96 128
0e+00

2e-04

4e-04

0.0

0.1

0.2

0.3

0.0
0.5
1.0
1.5
2.0
2.5

nb of threads (cores)

ru
nt
im

e
[s
]

compiler aocc clang gcc pgcc

Fig. 5. Performance comparison of different compilers for n = 100 000, m = 1 and
p > 32; VSC-5 . Error bars represent the 95% confidence interval of the mean.

we only used the profiling capability in this case, where the number of tasks that
is executed per thread is counted. In contrast, when recording a trace, the start
and finish timestamp of each task will be recorded, which introduced too much
overhead to the overall running time if tasks only have size m = 1.

Figure 6a compares the running times measured for the different compilers. In
Fig. 6b, we present the number of executed tasks per thread (top) and the total
number of cache misses per core. The cores on the x-axis are ordered NUMA node

A Quantitative Analysis of OpenMP Task Runtime Systems 15

compact
MasterTask

aocc clang gcc pgcc
0.00

0.25

0.50

0.75

1.00

ru
nt
im

e
[s
]

(a) Runtime comparison

gcc pgcc

aocc clang

0

1000

2000

3000

4000

0

1000

2000

3000

4000

thread ID

to
ta
l
nu

m
be

r
of

ex
ec
ut
ed

ta
sk
s

gcc pgcc

aocc clang

0

1

2

3

0

1

2

3

CPU idto
ta
l
nb

of
ca
ch
e
m
is
se
s
[m

ill
io
ns
]

(b) Executed tasks and cache misses per thread/core

Fig. 6. Compiler comparison for the specific case n = 100 000, m = 1, p = 64,
MasterTask (boxplots show results of 10 different runs), mapping: compact ; machine:
Nebula.

by NUMA node, where each NUMA node comprises 8 cores. We also ordered the
thread IDs on the x-axis in the top graph to match the core ID in the graph at the
bottom. In this case, the pgcc compiler is the fastest, but we can also observe that
gcc produces the most balanced load distribution across all threads. The pgcc

16 S. Hunold and K. Kraßnitzer

MasterTask
lambda: 0.02

ParallelTask
lambda: 0.02

1 2 4 8 16 32 48 64 1 2 4 8 16 32 48 64

0.0

0.5

1.0

0.0

0.5

1.0

1.5

re
la
ti
ve

ru
nt
im

e
w
rt

gc
c aocc clang pgcc

(a) heterogeneous case

MasterTask
m: 50

ParallelTask
m: 50

1 2 4 8 16 32 48 64 1 2 4 8 16 32 48 64
0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

nb of threads (cores)

re
la
ti
ve

ru
nt
im

e
w
rt

gc
c

(b) homogeneous case

Fig. 7. Performance comparison of compilers for the heterogeneous and homogeneous
workload with the same mean task size of 50, n = 1000 000, mapping: compact ;
machine: Nebula.

compiler even has the largest variance in terms of number of tasks executed per
thread. A similar observation can be made for the cache misses. The gcc compiler
produces by far the least amount of total cache misses, but it has the highest
number of cache misses per core (for core 0) among all compilers. Overall, we
found that neither the number of tasks per core (or a good load balancing) nor
the number of cache misses is a strong predictor for the expected performance of
an OpenMP runtime system. The individual implementations of data structures
and locks used for the task queues also have to be taken into account.

5.4 Heterogeneous Workloads

We also investigated the scheduling performance of the different OpenMP run-
time systems in the presence of heterogeneous workloads. Our initial question
was whether the heterogeneity of the work done by each task fundamentally
changes the performance numbers of the OpenMP runtime systems. To answer
this question, we conducted experiments with two similar sets of workloads.
The first workload contains heterogeneous task sizes, which are drawn from an

A Quantitative Analysis of OpenMP Task Runtime Systems 17

exponential distribution with λ = 0.02 (cf. Sect. 4). This specific exponential
distribution has a mean of 50. For comparison, we also conducted experiments
with a homogeneous workload, where each task size has exactly the same work,
i.e., m = 50.

The experimental results for running these two workloads are shown in Fig. 7.
Although the graphs do not precisely match each other, the results for the het-
erogeneous case (top) are very similar to the ones obtained for the homogeneous
case (bottom). We can observe that gcc is inferior for more than 16 cores for the
ParallelTask case. However, for the MasterTask case, gcc outperforms both
clang and aocc for many core counts. Similarly to the results shown before, the
pgcc compiler offers the best overall performance for the cases considered. More
importantly, the performance was mainly influenced by the number of cores
(threads) and by the mean task size. The fact that the individual task sizes are
distributed either homogeneously or heterogeneously only has a small impact.
This finding was consistent with the other experiments that we have conducted.

6 Conclusions

We evaluated the task scheduling performance of OpenMP runtime systems
found in modern compiler suites, such as gcc, icc, pgcc, or clang. We developed
a benchmark called OMPTB to assess the performance of OpenMP runtime
systems when processing a large number of independent tasks. In particular,
we examined the scalability behavior of the runtime systems when increasing
the number of cores. We also investigated the influence of the thread mapping
strategy on the performance of the schedulers.

When the generated tasks have a small work, gcc is outperformed by the
competitors. However, for 2 and 4 cores (threads), gcc often provides a very
competitive performance. When comparing the other compilers, we observed
that clang (and aocc) was often slower than icc or pgcc.

We also investigated whether the tread mapping strategy has a strong impact
on the resulting performance. Here, we can give several answers. Using a thread
mapping strategy improves reproducibility, as the runtime variance is signifi-
cantly reduced. In our work, we examined the compact and the scatter mapping
strategies. When comparing both, we cannot clearly state which one should be
used, because there was no clear winner, as the better mapping strategy depends
on the actual scheduling problem (e.g., number of tasks, number of cores).

We also examined the performance impact of executing heterogeneous work-
loads, i.e., the work of the generated OpenMP tasks differs (they have a different
runtime). Surprisingly, the actual mean of the work distributions was far more
important than heterogeneity, i.e., the performance numbers produced by the
compilers were very similar for homogeneous and heterogeneous workloads if the
mean work per task matched.

Acknowledgments. We thank Lukas Briem for helping to implement the heteroge-
neous workloads.

18 S. Hunold and K. Kraßnitzer

References

1. Bull, J.M., Reid, F., McDonnell, N.: A microbenchmark suite for OpenMP tasks.
In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012.
LNCS, vol. 7312, pp. 271–274. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30961-8 24

2. Chasapis, D., et al.: PARSECSs: evaluating the impact of task parallelism in the
PARSEC benchmark suite. ACM Trans. Archit. Code Optim. 12(4), 1–22 (2016).
https://doi.org/10.1145/2829952

3. Clet-Ortega, J., Carribault, P., Pérache, M.: Evaluation of OpenMP task schedul-
ing algorithms for large NUMA architectures. In: Silva, F., Dutra, I., Santos Costa,
V. (eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 596–607. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09873-9 50

4. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguadé, E.: Barcelona OpenMP
tasks suite: a set of benchmarks targeting the exploitation of task parallelism
in OpenMP. In: Proceedings of the ICPP, pp. 124–131. IEEE Computer Society
(2009). https://doi.org/10.1109/ICPP.2009.64

5. Feitelson, D.G.: Workload Modeling for Computer Systems Performance Evalua-
tion. Cambridge University Press, Cambridge (2015)

6. Gautier, T., Perez, C., Richard, J.: On the impact of OpenMP task granularity.
In: de Supinski, B.R., Valero-Lara, P., Martorell, X., Mateo Bellido, S., Labarta,
J. (eds.) IWOMP 2018. LNCS, vol. 11128, pp. 205–221. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98521-3 14

7. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approxi-
mation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math.
5, 287–326 (1979)

8. Huynh, A., Helm, C., Iwasaki, S., Endo, W., Namsraijav, B., Taura, K.: TP-
PARSEC: a task parallel PARSEC benchmark suite. J. Inf. Process. 27, 211–220
(2019). https://doi.org/10.2197/ipsjjip.27.211

9. Jain, R.: The art of computer systems performance analysis - techniques for exper-
imental design, measurement, simulation, and modeling. Wiley (1991)

10. Olivier, S., Porterfield, A., Wheeler, K.B., Spiegel, M., Prins, J.F.: OpenMP task
scheduling strategies for multicore NUMA systems. Int. J. High Perform. Comput.
Appl. 26(2), 110–124 (2012). https://doi.org/10.1177/1094342011434065

11. Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I.: Sparrow: distributed, low
latency scheduling. In: Proceedings of the 24th SOSP, pp. 69–84. ACM (2013).
https://doi.org/10.1145/2517349.2522716

12. Schuchart, J., Nachtmann, M., Gracia, J.: Patterns for OpenMP task data depen-
dency overhead measurements. In: de Supinski, B.R., Olivier, S.L., Terboven, C.,
Chapman, B.M., Müller, M.S. (eds.) IWOMP 2017. LNCS, vol. 10468, pp. 156–168.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65578-9 11

13. Terboven, C., Schmidl, D., Cramer, T., an Mey, D.: Assessing OpenMP task-
ing implementations on NUMA architectures. In: Chapman, B.M., Massaioli, F.,
Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 182–195.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30961-8 14

14. Yang, J., He, Q.: Scheduling parallel computations by work stealing: a survey. Int.
J. Parallel Program. 46(2), 173–197 (2018). https://doi.org/10.1007/s10766-016-
0484-8

15. Zhan, X., Bao, Y., Bienia, C., Li, K.: PARSEC3.0: a multicore benchmark suite
with network stacks and SPLASH-2X. SIGARCH Comput. Archit. News 44(5),
1–16 (2016). https://doi.org/10.1145/3053277.3053279

https://doi.org/10.1007/978-3-642-30961-8_24
https://doi.org/10.1007/978-3-642-30961-8_24
https://doi.org/10.1145/2829952
https://doi.org/10.1007/978-3-319-09873-9_50
https://doi.org/10.1109/ICPP.2009.64
https://doi.org/10.1007/978-3-319-98521-3_14
https://doi.org/10.2197/ipsjjip.27.211
https://doi.org/10.1177/1094342011434065
https://doi.org/10.1145/2517349.2522716
https://doi.org/10.1007/978-3-319-65578-9_11
https://doi.org/10.1007/978-3-642-30961-8_14
https://doi.org/10.1007/s10766-016-0484-8
https://doi.org/10.1007/s10766-016-0484-8
https://doi.org/10.1145/3053277.3053279

EAIBench: An Energy Efficiency
Benchmark for AI Training

Fan Zhang1, Chuanxin Lan1, Lei Wang1,2,3, Fei Tang1,3, Shaopeng Dai1,2,
Jiangtao Wang4, Jiantao Ma4, and Jianfeng Zhan1,2,3(B)

1 Institute of Computing Technology, Chinese Academy of Sciences,
Beijing 100190, China

{zhangfan,lanchuanxin,wanglei 2011,tangfei,daishaopeng,

zhanjianfeng}@ict.ac.cn
2 International Open Benchmark Council (BenchCouncil), Beijing, China

3 School of Computer Science and Technology,
University of Chinese Academy of Sciences, Beijing 100049, China

4 Huawei, Shenzhen, China
{wangjiangtao,majiantao}@huawei.com

Abstract. The increase in computing power has prompted more con-
siderable artificial intelligence (AI) model scales. From 341K multiply-
accumulate operations (MACs) of LeNet-5 to 4.11G MACs of ResNet-50,
the computational cost of image classification has increased by 10,000
times over two decades. On the other hand, it has inevitably brought
about an increase in energy consumption, and benchmarking the energy
efficiency of the modern AI workloads is also essential. Existing bench-
marks, such as MLPerf and AIBench, focus on performance evaluation
of AI computing, the time to the target accuracy (TTA) is the primary
metric. Corresponding to the TTA metric, using the energy consumption,
where the AI workload achieves the specific accuracy, is a straightforward
energy measurement method. However, it is too time-consuming and
power-hungry, which is unacceptable for energy efficiency benchmark-
ing. This work introduces a new metric to quickly and accurately bench-
mark AI training workloads’ energy efficiency, called the Energy-Delay
Product of one Epoch (EEDP). The EEDP is calculated based on the
product of the energy and time consumption within one training epoch,
where one epoch refers to one training cycle through the entire training
dataset. It can reflect not only the energy consumption but also the time
efficiency and suit the energy efficiency of the AI training workloads.
Then, we introduce an AI training energy efficiency benchmark named
EAIBench, which covers different energy efficiency dimensions, includ-
ing dominant layers, computation intensities, and memory accesses. Our
evaluation results demonstrate that EAIBench can provide reproducible
and meaningful results in only dozens of minutes, which is hundreds of
times faster than the existing AI training benchmark method.

Keywords: Energy efficiency · AI training · Benchmark

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Gainaru et al. (Eds.): Bench 2022, LNCS 13852, pp. 19–34, 2023.
https://doi.org/10.1007/978-3-031-31180-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31180-2_2&domain=pdf
https://doi.org/10.1007/978-3-031-31180-2_2

20 F. Zhang et al.

1 Introduction

From the Data Center Frontier’s report, from 2010 to 2018, the global energy
consumption of data centers grew from 194TWh to 205TWh [23]. According,
by 2030 the data centers will emit up to 720 million tons of CO2 [21], where a
considerable proportion is from AI training computing. Therefore, improving the
energy efficiency of AI is essential, and building a benchmark is the first step.

AI computing is generally divided into training and inference. Some works
focus on the energy efficiency of AI inference. MLPerf [22] released inference v1.0
results with power measurements, but they only reported the average power and
energy consumption (Joule) without further analysis. Yao et al. [33] did in-depth
research, including energy consumption ratio, layer-level analysis, operational
intensity, and memory access intensity. Still, the research is limited to the image
classification task. However, the training procedure differs from inference: (i)
Training contains both forward (inference) and backward designs, so it is more
computationally intensive and requires more storage space to store intermediate
variables. (ii) Training consists of many epochs to iteratively update the model,
leading to much larger computation and other data reuse than inference. In a
word, the energy efficiency benchmark for AI training is necessary.

However, existing AI training benchmarks are focused on the time to train the
model to the target accuracy (TTA). Mainstream benchmarks such as DAWN-
Bench [8], MLPerf [22] and AIBench [29] all use TTA as the metric. For the
energy efficiency measurement, mainstream benchmarks only use the energy
that the AI training workload achieves the target accuracy as the metric [22].
TTA/Energy is a good metric that can directly compare different optimizations
that may modify the training procedure and impact the final accuracy. How-
ever, the training time is days to get the target accuracy. For example, from our
experiment, it takes 230 h and 20 kWh (7.2*107 Joules) to train ResNet50 [16]
to 77% top1 accuracy on one V100. So, TTA/Energy is unsuitable for energy
efficiency evaluation for AI training.

This paper introduces a new metric for AI training workloads’ energy effi-
ciency, called the Energy-Delay Product of one Epoch (EEDP). Then, we build
an AI training energy efficiency benchmark named EAIBench, which covers dif-
ferent energy efficiency dimensions. Our contributions are as follows:

– We present a new methodology to benchmark the energy efficiency of AI
training. Inspired by the energy-delay product (EDP), our new methodology
is based on the EDP of one training epoch named EEDP. The EEDP is the
product of the energy and time consumption within one training epoch, where
one epoch refers to one training cycle through the entire training dataset. (i)
First, we verify that EEDP represents the whole training process (Sect. 4.1).
In detail, We reveal that from the first to the end epoch of the training, the
EEDPs for different epochs are similar. (ii) Second, Only two essential param-
eters are open, batch size and worker, and others are fixed. We reveal that,
compared with throughput, EEDP is robust to different configurations and a
recommended way is given to set parameters. (iii) Finally, EEDP benchmarks

EAIBench: An Energy Efficiency Benchmark for AI Training 21

different hardware platforms, not algorithmic optimizations. EEDP can mea-
sure any optimizations, where improvement ratios are used to compare dif-
ferent hardware platforms as we do in Sect. 4.4. However, the implementation
should be identical for different hardware platforms under test.

– We propose an energy efficiency benchmark for AI training named EAIBench.
Compared with MLPerf and AIBench, EAIBench is a benchmark specific to
energy efficiency, which is built from different aspects of energy efficiency
characteristics, including different dominant layers, computation intensities,
and memory accesses. Seven workloads are finally selected for EAIBench.
Compared with MLPerf and AIBench, EAIBench is aimed at energy efficiency
and includes more representative tasks while keeping the benchmark subsets
to a minimum.

– We explore configuration space and propose a uniform method to set critical
parameters on different systems to improve the usability of EAIBench. Fur-
thermore, we reveal that the Energy efficiency is less sensitive than through-
put under different model parameters (Sect. 4.3), which implies that energy
efficiency is robust to different configurations.

– Using EAIBench, we take the ResNet50 as an example to analyze the energy
efficiency of AI training. We found that the highest average energy consump-
tion in ResNet50 is the convolutional layer because it is compute-bound, and
floating-point operations per second (FLOPS) is much larger than others
(Sect. 4.5). The second highest is the whole connection layer because it is
memory-bound, and the memory access strength is much larger than others
(Sect. 4.5).

The rest of this paper is organized as follows. Section 2 summarizes the related
work. Section 3 presents the methodology and implementation. Section 4 is the
evaluations. Section 5 draws a conclusion.

2 Related Work

The existing AI benchmarks are listed in Table 1.

2.1 Benchmark

Existing AI benchmarks mainly focus on performance. MLPerf [22] and
AIBench [29] are two systematic AI benchmarks. MLPerf performs the most
large-scale testing by accepting and analyzing the results submitted by com-
panies. AIBench is by far the most comprehensive AI benchmark, including 19
benchmarks. DAWNBench [8] is the first benchmark that proposes to use TTA
as an end-to-end metric for AI training. Fathom [2] is the first benchmark that
contains a collection of tasks instead of only a specific task. TBD [34] is a train-
ing benchmark for deep neural networks (DNNs). DeepBench [5] is an atomic
benchmark that consists of basic operations such as matrix multiplies and con-
volutions. However, these works ignore the study of energy efficiency. Until 2021,

22 F. Zhang et al.

Table 1. AI benchmark comparison.

Benchmark Metric Energy Efficiency Task

TRNG INFR TRNG INFR IC IS NLP TR SR RA RE

MLPerf [22] TTA Latency, Energy � � � � � � � � �

AIBench [29] TTA Latency � � � � � � � � �

DAWNBench [8] TTA, Cost Latency, Cost � � � � � � � � �

Fathom [2] Throughput Latency � � � � � � � � �

TBD [34] Throughput – � � � � � � � � �

DeepBench [5] Throughput Latency � � � � � � � � �

Yao [33] – Latency, Energy � � � � � � � � �

Wang [32] Throughput, Energy – � � � � � � � � �

EAIBench EEDP – � � � � � � � � �

Notes: TRNG: Training

INFR: Inference

IC: Image Classification

IS: Image Segmentation

SR: Speech Recognization

TR: Translation

RA: Ranking

RE: Recommendation

MLPerf joint SPEC [19] released the energy consumption analysis report, but it
only contains the inference, not training.

There is some work focusing on AI energy efficiency. However, these works
mainly analyze the inference procedure and lack training analysis. Yao [33]
analyzes the energy efficiency of CNN inference on high-performance graph-
ics processing unit (GPU). Few works involve energy efficiency for AI training.
Wang [32] benchmarks the performance and energy efficiency of AI training,
but there is very little analysis of the energy efficiency, which only contains the
energy consumption under different batch sizes.

2.2 Metrics

Throughput and TTA are two dominant metrics for AI training. Some bench-
marks [2,5,28] use throughput as a metric, where only running a mini-batch of
data is enough. However, since DAWNBench [8] announced that TTA is a good
metric for machine learning (ML) training in 2017, most performance bench-
marks use TTA as a training metric. However, energy efficiency differs from
performance benchmark (i) How to evaluate energy efficiency with limited time
and energy cost is essential. (ii) Accuracy does not affect the energy consump-
tion process for each epoch. This paper proposes that power-per-epoch (PPE)
is a good metric, a kind of throughput metric.

Energy-delay product (EDP) was proposed in 1996 to test the energy effi-
ciency of general-purpose microprocessors [12]. Compared with W and J, EDP
considers both energy and delay simultaneously. Some recent works also use EDP
to measure the energy efficiency of systems, primarily in the evaluation of DVFS
technology [14].

EAIBench: An Energy Efficiency Benchmark for AI Training 23

3 Methodology and Implementation

The framework of EAIBench is shown in Fig. 1. The methodology of EAIBench
consists of metric and measurement, benchmarks, configuration space design,
monitor tools, and analyzer. The input of EAIBench is the benchmark workload,
and the output is the energy efficiency analysis results.

Metric and Measurement

Benchmarks Configuration
Space

SUT
(System Under Test)

Monitor
Tools

Results Analyzer

Fig. 1. The overview of the EAIBench framework.

3.1 Metric and Measurement

Most current AI models iteratively update model weights using algorithms such
as stochastic gradient descent (SGD). A complete training process contains many
epochs, where an epoch means one pass (forward and backward) of the whole
training dataset. For example, it needs 90 epochs to train ResNet-50 [16] and 250
epochs to train DeepSpeech2 [4]. On the other hand, during the model training,
each epoch passes the same process in calculation and memory access, which
means that there is no difference in the energy consumption characteristics of
each epoch. So, the behavior of one epoch can represent that of the entire execu-
tion process. Besides, compared with TTA, one epoch is more stable. Generally,
Coefficient of Variation (CoV) can be used to measure stability, defined as the

24 F. Zhang et al.

ratio of the standard deviation to the mean. More minor means more stable.
Compared with 14% CoV of MLPerf’s TTA metric, the CoV in time-per-epoch
is less than 3% [7]. In the real test, we run two epochs and only record the last one
because the first epoch may contain some model initialization work that others
do not. Besides, the idle power (ready but not running program) is subtracted
because different configurations have different idle powers and it has little to do
with program running.

An energy efficiency metric must consider time, energy, and cost. Based
on the above analysis, we introduce the Energy-Delay Product of one Epoch
(EEDP) as the metric for energy efficiency. The EEDP is calculated based on
the product of the energy and time consumption within one training epoch. The
EDP metric also inspires the EEDP. The function of EDP is listed in Eq. 1, where
the energy is the total energy consumed by the system to run the program, the
delay refers to the total wall clock time required to run the program, and index
x is used to increase the weight of the delay.

EDP = Energy ∗ Delayx (1)

EEDP is the EDP of one training epoch and we select index x with one
because time and energy are equally important for AI training. The equation
of EEDP is listed in Eq. 2. Compared with the energy metric (Joule), EEDP
considers time and energy consumption simultaneously, so EEDP is more suited
for evaluation of the energy efficiency of AI training. For example, reducing
clock speed or voltage can decrease the value of power and energy. However, the
procedure delay will increase, and the system is not “better.” Using the EEDP
can evaluate the above example correctly, but using the energy metric can not
do it.

EEDP = Energyepoch ∗ Delayepoch (2)

3.2 Benchmarks and Configuration Space

Benchmarks. We summarize the energy efficiency characteristic factors from
the existing work [32,33] and choose the following key factors: task, model, layer,
algorithm complexity, and memory access. Then we perform a detailed survey
of those domains and select seven representative benchmarks shown in Table 2.
In practical applications, those models are continuously updated. For example,
Facebook incremental updates models daily or every couple of days [18]. So how
to quickly and accurately bench-mark AI training workloads’ energy efficiency is
important. To further speed up the evaluation time, we use the reduced dataset
as shown in Table 3.

Representative Tasks. We select seven representative tasks that encompass sev-
eral vital areas, including image classification, image segmentation, natural lan-
guage processing (NLP), text translation, speech recognition, learning to rank,
and recommendation.

EAIBench: An Energy Efficiency Benchmark for AI Training 25

State-of-the-Art Models. For each task, we select the state-of-the-art models.
For example, we select Mask R-CNN [15] instead of Fast R-CNN [11] because
the accuracy is improved and the mask function is added. We select DLRM [24]
instead of NCF [17] because the accuracy is improved, and DLRM is specifi-
cally proposed to predict click-through rate, which is a critical application of AI
algorithms.

Dominant Layers. AI model consists of different layers that have different energy
consumption characteristics. For example, compared with full connection, the
convolutional layer is much more compute-bound, and more energy is spent on
computations rather than memory fetches. EAIBench selects the different models
with different dominant layers to cover different energy consumption modes.
Convolutional layer (CONV), attention, recurrent neural network (RNN), and
embedding are included. CONV is dominant in image processing tasks. Attention
is widely used in NLP. RNN is famous for speech recognition. Embedding is
mainly used in the recommendation.

Different Algorithm Complexity. The number of FLOPs and parameters are two
critical metrics for algorithm complexity. EAIBench contains a vast space of
FLOPs from 8E−4 to 1E−11 and parameters from 5 to 45 MB.

Different Memory Access. Memory access is different in two aspects: (i) The
dataset size and the data type are different. (ii) Dominant layer is different.
Different layers have different memory reuses and lead to different memory access
characteristics.

Table 2. The benchmark workloads in EAIBench.

No. Task Model Layer FLOPs (G) Params (M)

1 Image classification ResNet-50 v1.5 [16] CONV 4.11 25.56

2 Image segmentation Mask R-CNN [15] CONV 134.42 44.4

3 NLP BERT [10] Attention – –

4 Text translation Transformer [31] Attention 0.43 45.89

5 Speech recognition DeepSpeech2 [4] RNN 0.59 –

6 Learning to rank Ranking distillation [30] CONV 8.54E-05 5.58

7 Recommendation DLRM [24] Embedding – –

Configuration Space. From model to software and hardware, many parame-
ters can be configured. For reproducibility, we only choose a few critical parame-
ters for users for modification. The batch size is the most studied parameter, and
it significantly affects the training time and final accuracy of the model [3,13].
Batch size is the number of training examples that GPU used to calculate loss

26 F. Zhang et al.

Table 3. The dataset of EAIBench.

No. Task Dataset Traing Instances Used Instances Unit

1 Image classification ImageNet [9] 1200000 50000 Image

2 Image segmentation COCO [20] 82784 1333 Image

3 NLP WMT EN-GE [1] 29000 29000 Sentence

4 Text translation WMT EN-GE [1] 29000 29000 Sentence

5 Speech recognition Librispeech [27] 281242 5567 Audio and text

6 Learning to rank Gowalla [6] 433356 367611 User rating

7 Recommendation Random – 204812 Click record

Notes: EN-GE is English-German

and update weights. Learning rate is another parameter usually adjusted accord-
ing to batch size, which affects the accuracy but does not affect each epoch’s
computation and memory access process. Another parameter that significantly
affects throughput is the number of workers, and it is a positive integer that
defines the number of CPU processes used to load data. In this paper, only
batch size and the number of workers are open to being modified.

3.3 Monitor and Analyzer

While running the benchmark workloads, we collect three sets of information:
(i) Program running information that contains model training records such as
accuracy and throughput. Besides, the records are time-tagged to find GPU
and power information at the corresponding time. (ii) GPU information. The
information such as utilization, temperature, clock rate, etc., is recorded every
second. (iii) Power information. We test and record power every second by a
power meter, which is more accurate than using the NVIDIA system manage-
ment interface (nvidia-smi). Finally, we calculate EEDP by recorded time and
power to benchmark GPU energy efficiency and analyze the reasons behind the
results based on the collected information.

3.4 System Under Test

Generally, the system under the test (SUT) platform is the CPU-based server
with the GPU accelerator card. Now, the implementation of EAIBench is based
on the GPU platform, but it is easy to extend to the other accelerator platform,
such as the TPU or NPU. Whatever any accelerator platform, the AI workload
is loaded by the OS of the CPU, so EAIBench can be ported to any accelerator
platform in theory.

4 Experiment and Result

The model and dataset are listed in Sect. 3. We conduct experiments on two
GPUs platforms: TITAN V and V100-PCIE. The detailed configurations of the

EAIBench: An Energy Efficiency Benchmark for AI Training 27

servers and GPU cards are listed in Table 4. The fan mode of the server is set
to max, and the idle power of the machine is about 250 W. The digital power
analyzer is YOKOGAWA WT300EH, which is used to test the power of the whole
server. The server outputs two files: “Program.txt”, which contains benchmark
running information with a timestamp for each epoch, and “GPU.CSV”, which
contains GPU profiling information per second. The power meter outputs the
power value per second and saves the values to “Power.CSV”.

Table 4. Hardware configuration details.

Server1 Server2

OS Type Ubuntu 16.04.7 LTS Ubuntu 16.04.7 LTS

Physical CPU cores 12 12

CPU Type Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40 GHz Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40 GHz

GPU1 GPU2

GPU Name TITAN V V100-PCIE

Processors 80 80

CUDA Cores 5120 5120

Base Clock (MHz) 1200 1230

Boost Clock (MHz) 1455 1380

FP32 (TFLOPS) 14 14

Memory Clock (MHz) 850 1752

Memory Bandwidth (GB/s) 652 897

L2 Cache Size (M) 4.6 6

Video Memory (GB) 12 30

TDP (W) 250 250

4.1 Experimental Methodology

We do four experiments: (i) To verify that one epoch is representative of the
energy efficiency behavior of the whole training process, we take the ResNet50
as an example to illustrate the stability of epochs for the complete training pro-
cess. Coefficient of Variation (CoV) is used to evaluate stability. More details are
in Sect. 4.2. The whole training dataset of ImageNet is used to train the model
to target accuracy. Still, in the remaining experiments, the reduced data set is
used as listed in Sect. 3. (ii) AI training workload always has huge configuration
space. In Sect. 4.3, to verify the energy efficiency is robust to different configu-
rations, we select two important model parameters from the configuration space
and explore an extensive range of them. (iii) In Sect. 4.4, we use EAIBench to
evaluate two types of GPU platforms (TITAN V and V100). We illustrate that
the EEDP metric and the EAIbench can quickly and efficiently benchmark the
energy efficiency of AI training on different GPU platforms. (iv) In Sect. 4.5,
to deeply analyze energy efficiency at the layer level, we take ResNet50 as an
example to break down layers. We measure the power and energy consumed by
individual layers and analyze the reasons according to GPU’s computation and
access features.

28 F. Zhang et al.

4.2 Stability of Epochs

We train ResNet50 to the target accuracy on two GPUs, where the final top1
accuracy is around 77% and the number of epochs is set to be 90 refer to
NVIDIA’s report [26]. CoV is used to measure stability, defined as the ratio
of the standard deviation to the mean, and smaller means more stable. Our
results show that the epoch’s CoVs of time, power, and EEDP are all less than
6.5%.

Figure 2 shows that as the number of epochs increases, the accuracy improves,
but the time and power remain stable. Besides, time and power are negatively
correlated for each epoch. In detail, get out for the first epoch, which may contain
the date or model initialization: (i) On TITAN V, the maximum power is 1.13
times the minimum power, and the CoV is 3.33%. The maximum epoch time
is 1.12 times the minimum time, and the CoV is 3.59%. The CoV of EEDP is
3.79%. (ii) On V100, the maximum power is 1.26 times the minimum, and the
CoV is 6.38%. The maximum epoch time is 1.18 times the minimum time, and
the CoV is 4.18%. The CoV of EEDP is 6.21%.

Our results show that the power, time and EEDP is stability for each epoch,
and the CoV is less than 6.5%. Therefore, one epoch is a good representation of
the entire training.

4.3 Model Parameters Analysis

As described in Sect. 3.2, we select batch size and number of works to explore.
We analyze the throughput (images/s), energy efficiency (images/J), GPU ker-
nels, and memory utilization of ResNet50 v1.5 under different batch sizes and
the number of workers. The batch size is from 1 to 256, where 256 is the max
number that data already fills up GPU and larger values will cause “OutOfMem-
oryError”. The workers are from 1 to 64, where the performance increases first
and then decreases.

Figure 3 shows that: (i). For both throughput and energy efficiency, the larger
the batch size the better the performance. Because with the increase of batch
size, the utilization of kernels and memory of GPU becomes larger. So the batch
size is set to be the largest that GPU can hold in our follow-up experiments.
(ii). For number of workers, 4 is enough for one GPU and if the value is too
large or too small, the performance will be degraded. Too small value causes low
GPU utilization due to insufficient data supply. Too large value also causes insuf-
ficient data supply because of central processing unit (CPU) thread blocking.
Our server has 12 physical CPU cores and 24 logical CPU cores. Exceeding the
number of logical cores will result in thread blocking. Besides, the bottleneck of
AI training process is usually in GPU computing not data loader. (iii). Energy
efficiency is less sensitive than throughput under different model parameters. For
throughput, there is 20x difference between best and worst performance as show
in Fig. 3a. However, for energy efficiency, there is only 3x difference between best
and worst performance as show in Fig. 3b. This is because the energy consump-
tion mainly consists of the number of floating point operations (FLOPs) and

EAIBench: An Energy Efficiency Benchmark for AI Training 29

Fig. 2. Time, power and accuracy of ResNet50 training with 90 epochs.

memory accesses. However, batch size and workers dose not affect FLOPs and
only affect memory access by different data reuse.

In summary, we not only provide a guidance method to set model parameters
but also illustrate that the energy efficiency is robust to different configurations.

4.4 GPU Comparison

We benchmark two GPUs and use EEDP to do a comparative analysis. From
Table 4, we can see that the computing power of two GPUs is equivalent, but
V100 has a significant advantage in storage. The result of V100-PCIE is listed in
Table 5, TITAN-V is in Table 6. We can see that EEDP scores for different models
have large differences according to different model complexities and training
data. Therefore, we use improvement ratios to compare two GPUs, which is
listed in Table 7. Because the shorter the time and EEDP, the better, the values
of time and EEDP in the Table 7 is the values of TITAN-V divided by V100-
PCIE, and the rest is the opposite. We can see that: (i) EEDP of V100 is better
than TITAN-V for all seven models. (ii) EEDP is a comprehensive metric that
considers power and time at the same time. For the Transformer model, the
throughput (Samples/s) of V100 is 99% of TITAN-V, while the energy efficiency
(Samples/J) is 1.11 times, and the EEDP is a compromise value of 1.10. For

30 F. Zhang et al.

Fig. 3. Performance comparison of ResNet-50 under different batch size and workers
on the V100 platform.

other models, both the throughput and energy efficiency of V100 are better
than TITAN-V, so the improvement ratio of EEDP is much better.

So, using the EEDP metric, EAIbench can quickly and efficiently benchmark
the energy efficiency of AI training on different GPU platforms. Besides, EEDP
comprehensively considers time and energy, which is more suitable for AI training
energy efficiency evaluation.

Table 5. The V100 platform results.

Model Time Power Sample/s Samples/J EEDP

ResNet-50 v1.5 142.50 238.42 350.86 1.47 4842125.20

Mask R-CNN 6.87 188.59 11.64 0.06 139.24

BERT 9.65 74.00 3003.70 40.59 6928.32

Transformer 35.01 160.07 828.33 5.17 196133.38

DeepSpeech2 87.86 132.85 63.35 0.47 1025677.09

Ranking distillation 14.43 58.12 25629.86 440.62 12153.33

DLRM 68.77 53.25 2978.21 55.92 251877.27

EAIBench: An Energy Efficiency Benchmark for AI Training 31

Table 6. The TITAN-V platform results.

Model Time Power Sample/s Samples/J EEDP

ResNet-50 v1.5 167.74 212.22 298.08 1.40 5971248.92

Mask R-CNN 9.00 171.95 8.88 0.05 218.07

BERT 10.58 137.99 2739.67 19.85 15446.10

Transformer 34.59 180.77 838.39 4.64 216285.54

DeepSpeech2 138.86 124.64 40.09 0.32 2403473.98

Ranking distillation 21.11 60.29 17417.13 288.92 26880.86

DLRM 86.97 61.07 2354.96 38.55 462134.06

Table 7. Speedup of V100 to TITAN-V.

Model Time Power Sample/s Samples/J EEDP

ResNet-50 v1.5 1.18 1.12 1.18 1.05 1.23

Mask R-CNN 1.31 1.10 1.31 1.20 1.57

BERT 1.10 0.54 1.10 2.04 2.23

Transformer 0.99 0.89 0.99 1.11 1.10

DeepSpeech2 1.58 1.07 1.58 1.47 2.34

Ranking distillation 1.46 0.96 1.47 1.53 2.21

DLRM 1.26 0.87 1.26 1.45 1.83

4.5 Different Layers Analysis

To analyze energy efficiency at the layer level, we break down ResNet-50 into
layers, including convolution, batch normalization, ReLU, full connection, pool-
ing, and squeeze (Add the input to the current output). Time, power, energy
consumption, FLOPS, and memory access are analyzed. In detail, NVIDIA’s
NVProf [25] tool is used to record FLOPS and memory access. In order to test
the power of each layer, we: (i) Insert timestamps in the code, then find the
output value of the power meter for the corresponding time. (ii) Repeat the exe-
cution of the target layer many times in each test, as one execution is too fast
to be tested. For example, it is less than 0.01 s for one training pass of one batch
for ResNet-50 on one V100.

Figure 4 shows that: (i) The dominant layer of ResNet50 is convolution, where
the time accounts for 56%, and the energy consumption accounts for 67%. Batch
normalization is the second dominant layer, where time accounts for 25%, and
energy consumption accounts for 19%. (ii) The average power of the convolu-
tional layer is the largest. Because it is compute-bound and the FLOPS is much
larger than other layers, as shown in Fig. 4d. (iii) The average power of the
full connection layer is the second largest. Because it is memory-bound and the
memory access strength is much larger than other layers.

32 F. Zhang et al.

Fig. 4. Layer analysis of ResNet50.

5 Conclusion

Existing AI training benchmarks, such as MLPerf and AIBench, mainly focus on
the time to train the model to the target accuracy. However, it is not acceptable
for the energy efficiency benchmark concerning time, energy, and costs. This
paper presents a new benchmark named EAIBench and uses a new metric called
EEDP to quickly and efficiently benchmark the energy efficiency of AI training.
Besides, we use EAIBench to benchmark two GPU platforms and do a compar-
ative analysis. Furthermore, we break down ResNet50 into layers for layer-level
energy efficiency analysis.

References

1. https://nlp.stanford.edu/projects/nmt/
2. Adolf, R., Rama, S., Reagen, B., Wei, G.Y., Brooks, D.: Fathom: reference work-

loads for modern deep learning methods. In: 2016 IEEE International Symposium
on Workload Characterization (IISWC), pp. 1–10. IEEE (2016)

3. Akiba, T., Suzuki, S., Fukuda, K.: Extremely large minibatch SGD: training
ResNet-50 on ImageNet in 15 minutes. arXiv preprint arXiv:1711.04325 (2017)

4. Amodei, D., et al.: Deep speech 2: end-to-end speech recognition in English and
Mandarin. In: International Conference on Machine Learning, pp. 173–182. PMLR
(2016)

https://nlp.stanford.edu/projects/nmt/
http://arxiv.org/abs/1711.04325

EAIBench: An Energy Efficiency Benchmark for AI Training 33

5. Baidu: Deepbench: benchmarking deep learning operations on different hardware
(2017). https://github.com/baidu-research/DeepBench

6. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in
location-based social networks. In: Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1082–1090
(2011)

7. Coleman, C., et al.: Analysis of dawnbench, a time-to-accuracy machine learning
performance benchmark. ACM SIGOPS Oper. Syst. Rev. 53(1), 14–25 (2019)

8. Coleman, C., et al.: Dawnbench: an end-to-end deep learning benchmark and com-
petition. Training 100(101), 102 (2017)

9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. IEEE (2009)

10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

11. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1440–1448 (2015)

12. Gonzalez, R., Horowitz, M.: Energy dissipation in general purpose microprocessors.
IEEE J. Solid-State Circuits 31(9), 1277–1284 (1996)

13. Goyal, P., et al.: Accurate, large minibatch SGD: training ImageNet in 1 hour.
arXiv preprint arXiv:1706.02677 (2017)

14. Hajiamini, S., Shirazi, B.A.: A study of DVFS methodologies for multicore systems
with islanding feature. In: Advances in Computers, vol. 119, pp. 35–71. Elsevier
(2020)

15. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

17. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative
filtering. In: Proceedings of the 26th International Conference on World Wide
Web, pp. 173–182 (2017)

18. He, X., et al.: Practical lessons from predicting clicks on ads at Facebook. In:
Proceedings of the Eighth International Workshop on Data Mining for Online
Advertising, pp. 1–9 (2014)

19. Henning, J.L.: SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput.
Archit. News 34(4), 1–17 (2006)

20. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

21. Liu, Y., Wei, X., Xiao, J., Liu, Z., Xu, Y., Tian, Y.: Energy consumption and
emission mitigation prediction based on data center traffic and PUE for global
data centers. Global Energy Interconnection 3(3), 272–282 (2020)

22. Mattson, P., et al.: MLPerf training benchmark. Proc. Mach. Learn. Syst. 2, 336–
349 (2020)

23. Miller, R.: The sustainability imperative: green data centers and our cloudy future.
Tech. Rep., Data Center Frontier (2020)

24. Naumov, M., et al.: Deep learning recommendation model for personalization and
recommendation systems. arXiv preprint arXiv:1906.00091 (2019)

https://github.com/baidu-research/DeepBench
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1706.02677
https://doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/1906.00091

34 F. Zhang et al.

25. NVIDIA: https://docs.nvidia.com/cuda/profiler-users-guide/index.html
26. NVIDIA: Nvidia deeplearningexamples (2019). https://github.com/NVIDIA/

DeepLearningExamples
27. Panayotov, V., Chen, G., Povey, D., Khudanpur, S.: LibriSpeech: an ASR corpus

based on public domain audio books. In: 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5206–5210. IEEE (2015)

28. Shi, S., Wang, Q., Xu, P., Chu, X.: Benchmarking state-of-the-art deep learning
software tools. In: 2016 7th International Conference on Cloud Computing and Big
Data (CCBD), pp. 99–104. IEEE (2016)

29. Tang, F., et al.: AIBench training: balanced industry-standard AI training bench-
marking. In: 2021 IEEE International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), pp. 24–35. IEEE (2021)

30. Tang, J., Wang, K.: Ranking distillation: learning compact ranking models with
high performance for recommender system. In: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
2289–2298 (2018)

31. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30
(2017)

32. Wang, Y., et al.: Benchmarking the performance and energy efficiency of AI accel-
erators for AI training. In: 2020 20th IEEE/ACM International Symposium on
Cluster, Cloud and Internet Computing (CCGRID), pp. 744–751. IEEE (2020)

33. Yao, C., et al.: Evaluating and analyzing the energy efficiency of CNN inference
on high-performance GPU. Concurr. Comput. Pract. Exp. 33(6), e6064 (2021)

34. Zhu, H., et al.: TBD: benchmarking and analyzing deep neural network training.
arXiv preprint arXiv:1803.06905 (2018)

https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples
http://arxiv.org/abs/1803.06905

MSDBench: Understanding
the Performance Impact of Isolation
Domains on Microservice-Based IoT

Deployments

Sierra Wang(B), Fatih Bakir, Tyler Ekaireb, Jack Pearson, Chandra Krintz,
and Rich Wolski

Computer Science Department, University of California, Santa Barbara, USA

sierrawang@ucsb.edu

Abstract. We present MSDBench – a set of benchmarks designed
to illuminate the effects of deployment choices and operating system
abstractions on microservices performance in IoT settings. The microser-
vices architecture has emerged as a mainstay set of design principles for
cloud-hosted, network-facing applications. Their utility as a design pat-
tern for “The Internet of Things” (IoT) is less well understood.

We use MSDBench to show the performance impacts of different
deployment choices and isolation domain assignments for Linux and
Ambience, an experimental operating system specifically designed to
support microservices for IoT. These results indicate that deployment
choices can have a dramatic impact on microservices performance, and
thus, MSDBench is a useful tool for developers and researchers in this
space.

1 Introduction

As web service technologies have improved in performance and usability, the
design of web/cloud service applications (often user-facing web venues) has
evolved to make use of internal purpose-built web services as composable appli-
cation components. This approach is often termed a microservices design or
architecture, and the internal services themselves are called microservices.

Software architects find microservices attractive from a software engineering
perspective because they promote software reuse [12,13,33], they naturally admit
heterogeneous software languages and runtimes [12,16,35], and they improve the
performance of software quality assurance mechanisms such as unit testing [12,
40]. They also enhance software robustness and facilitate distributed placement
flexibility by incorporating modularity and service isolation into the internal
design of the overall application [31,33,44].

The cost associated with these benefits, compared with monolithic applica-
tion design in which the internal functionality is not a decomposition of microser-
vices, is execution performance. Performance, in this context, refers (i) to the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Gainaru et al. (Eds.): Bench 2022, LNCS 13852, pp. 35–52, 2023.
https://doi.org/10.1007/978-3-031-31180-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31180-2_3&domain=pdf
https://doi.org/10.1007/978-3-031-31180-2_3

36 S. Wang et al.

latency a user of the application observes when making individual requests to
the application, (ii) to the computational and storage capacity that is necessary
to support the application’s functionality, and (iii) to the communication over-
head of sending and processing network requests to/from other microservices and
across isolation boundaries. As such, microservice designs tend to increase user-
experienced request latency and application capacity requirements compared
with their monolithic counterparts [16,41].

These costs are especially acute for applications designed to implement the
“Internet of Things” (IoT). Microservices, as a fundamental design principle, is
endemic in large-scale application hosting (e.g. cloud computing) contexts where
web service technologies are well supported both from a performance and also a
security perspective. Furthermore, many IoT applications use cloud-based ser-
vices for scalable analysis, visualization, and user interactions. Thus, microser-
vices have become a key architectural approach to building IoT applications due
largely to the facility with which they can be deployed in the cloud.

However, the latency and capacity requirements for IoT applications differ
considerably from other web service applications (e.g. e-commerce, social net-
working, web-content delivery, etc.). IoT applications almost always include data
acquisition deadlines that arise from sensor duty cycles (e.g. a sensor produces a
measurement with a periodicity measured in milliseconds to seconds) and some-
times include near real-time response deadlines (e.g. to operate an appliance
as an automated response to analysis of sensor data). Thus, a careful under-
standing of application response latency is important to IoT application design,
particularly when the design is microservice based.

For these reasons, IoT deployments are increasingly incorporating “edge”
computing capabilities that augment cloud-based processing. By processing IoT
data in situ, before traversing a long-haul network to a cloud, IoT applications
can reduce response latency, decrease the needed long-haul bandwidth (e.g.,
by performing data aggregations at the edge), and improve scale. The edge
resources, however, are typically not full-scale cloud resources but smaller, more
resource restricted, single board computers or microcontrollers that can be inex-
pensively deployed near the “Things” in the Internet of Things. Therefore, the
capacity requirements of microservices located at the edge must be considered.

The task of determining what each microservice does in an application (i.e.,
the service decomposition “boundaries”) is typically a manual process that falls
to the software architect. As such, the choices are design-time choices, and not
deployment-time choices. In a cloud context, where computational, storage, net-
work, and security topologies can be understood to be relatively static, design-
time decomposition is effective. In an IoT context, the same application may
be deployed to many different infrastructures, each with its own unique set of
performance and security characteristics. Thus, it is critical for the designer to
be able to anticipate the costs associated with service decomposition decisions
for different IoT deployments.

To enable this, we present MSDBench – a set of microservice benchmarks
specifically designed to capture the relevant performance characteristics for IoT

MSDBench 37

applications. Our work is distinct from previous microservice benchmarking
efforts [16,26,41] in that we focus specifically on the impact of using different
isolation alternatives and placement decisions that consider devices, “the edge”,
and the cloud as possible execution sites. In particular, our benchmarks do not
assume that the edge and device resources can run a common commodity oper-
ating system (e.g. Linux or Windows) since IoT deployments often incorporate
devices requiring lightweight or real-time operating systems.

The benchmarks, described in Sect. 3, comprise a set of microbenchmarks
that exercise cross-domain functionality and an end-to-end application bench-
mark based on the popular publish-subscribe IoT design pattern. To illustrate
the diagnostic power of the benchmark suite, in Sect. 4, we compare the perfor-
mance of the benchmarks using Linux as a host operating system to Ambience,
an operating system specifically designed to support IoT microservices [3]. These
results show the importance of different deployment decisions with respect to iso-
lation domains and network connectivity. We also show (using Ambience) how
the choice of isolation domain decomposition affects performance on devices that
include only microcontrollers.

2 Related Work

Microservices is an application architecture that composes loosely coupled com-
ponents that communicate using inter-/remote procedure calls or other REST
APIs. Their loose coupling facilitates fault tolerance, scaling, and automatic
orchestration [6,11,29] which enables independent development and enhanced
software engineering benefits. As a result, microservices are widely used for
development of web/cloud applications [8,14,29,32], and more recently for appli-
cations deployed across the cloud-edge continuum [24,28].

Given this widespread use, multiple benchmarking systems have emerged to
help developers understand and reason about the performance implications of
Linux-based microservices applications. DeathStarBench is a suite designed to
explore how well the cloud system stack supports microservices, from the hard-
ware to the application implementation [16]. The DeathStarBench applications
were designed to be representative of large, language- and library-heterogeneous,
end to end microservices applications that run primarily in the cloud. Their
work compares microservices applications against monolithic applications and
analyzes how well the cloud platform supports each application type.

Several benchmarking suites analyze the resource demands of specific appli-
cation types, including scale out workloads, latency critical applications, and
online data intensive microservices applications [15,20,25,26,34,41,43,45,48].
Ppbench examines how different languages, containerization, and a software
defined networking affect microservices performance [26]. Other work explores
techniques for benchmarking microservices and how to use this information
to inform deployment decisions [1,17,18,21,23,47]. While several other bench-
marking efforts describe IoT benchmarking suites for evaluating IoT archi-
tectures, IoT Gateway systems, IoT hardware devices, IoT database systems,

38 S. Wang et al.

IoT sensor and analytics platforms, and distributed stream processing plat-
forms [5,19,27,30,36,38], these latter suites are not designed for or tailored to
the microservices architecture.

MSDBench differs from this prior work in both its focus and its content. It
is unique in that it targets how runtime systems support microservices applica-
tions with regards to deployment options common to IoT settings (placement,
isolation, cross-service optimization). To show its utility, we use the suite to eval-
uate and empirically compare the impact of different operating systems, RPC
frameworks, hardware, and isolation domains across deployments that span the
IoT cloud-edge continuum.

3 Benchmark Design

Microservices are useful for IoT because

– Microservices can be sized/decomposed to match the heterogeneous set of
computing capacities in a target IoT deployment (e.g. one consisting of a
resource constrained microcontroller, capacity limited edge device or edge
cloud virtual machine (VM), or resource rich VM in a public or private cloud
interconnected by low-power radio networks, WiFi, and wired networking).

– Microservices can be assigned to separate isolation domains (e.g. process-
or service-level virtualization technologies) to implement site-specific security
policies and to improve fault isolation.

– Microservices are decoupled from the operating system and other microser-
vices, enabling independent development, distributed deployment, and use
of a wide range of isolation options (e.g. IPC/RPC communication, process
virtualization, or system virtualization); and

– Operating and build systems that are microservices-aware can exploit static
information associated with deployments (e.g., co-location, service depen-
dencies) to automatically optimize away various overheads associated with
isolation and decoupling [3,22].

These features facilitate portability, rapid development, improved performance,
and low maintenance. Moreover, this design enables horizontal scaling with little
involvement from programmers, since a particular dependency of a service can
be transparently replicated.

Developers must also face a number of new challenges when using microser-
vices in distributed and heterogeneous IoT settings. In particular, service prox-
imity can have a significant impact on overall application performance. For exam-
ple, co-locating microservices on a single node (e.g. as a Kubernetes “pod” [29])
can enhance the inter-service communication, but also introduce security and/or
fault isolation vulnerabilities. Further, in an IoT context where some of the ser-
vices implement data acquisition, moving a microservice away from the data
acquisition site to improve its inter-service messaging performance may degrade
data acquisition latency. Moreover, these performance-impacting factors can be

MSDBench 39

deployment specific meaning that the developer must code the microservices
without knowing how they will ultimately be deployed.

To address these challenges, we have developed MSDBench, a pair of bench-
mark suites for exploring the performance implications of different operat-
ing system, isolation, and placement alternatives for microservices applications
deployed across the multi-tier IoT resources (microcontrollers, edge systems, and
public/private clouds). MSDBench is unique in that it facilitates the study of
different operating systems, devices, system-level virtualization, and isolation
domains in combination. As described in the previous section, existing microser-
vice benchmarking approaches [16,26,41,43] focus on resource-rich, relatively
homogeneous cloud deployments and devices that run Linux. By addressing this
gap, MSDBench enables developers to reason about the performance of emerg-
ing IoT deployments end-to-end and to interrogate the performance impact from
using different isolation domains and operating systems.

Fig. 1. MSDBench microbench-
mark structure.

MSDBench consists of a microbenchmark
suite and end-to-end application suite. Both
suites separate the client from the rest of the
application (which we refer to as the server-side
services) to allow for separate performance anal-
ysis (end-to-end versus server-side). We write
microservices in C++ for device portability and
implement them to be as efficient as possible.
The microbenchmark suite consists of an application with two microservices
depicted as triangles in Fig. 1. The client service makes requests to the poll
service (dashed arrow in the figure). The poll service simply returns. The call
benchmark includes a request payload, the size of which is parameterizable. This
suite enables us to understand the overhead associated with calls and returns
(local or remote) and any use of payload serialization.

The end-to-end application suite is a “Best Effort Pub/Sub (BEPS)” appli-
cation consisting of six unique microservices. We provide a graphic of BEPS
in Fig. 2; The microservices are triangles, and their dependencies are arrows.
The dashed arrow is used by the client for requests to the BEPS entry point.
The client service (C) makes requests to the server-side services which com-
prise the suite’s benchmarks. The server-side services consist of a load bal-
ancer microservice (LB), 1+ workers (W), a user database service (DB), a
payload database service (PDB), and a read endpoint (R). The client makes
create_user, subscribe, publish, unsubscribe, and delete_user requests
to the load balancer. Each request type benchmarks a different aggregate func-
tionality from the microservice mesh. The load balancer distributes requests
using round-robin among the workers. Each worker uses the payload database
and the user database to service each request and publishes updates to the read
endpoint as necessary. The number of workers is parameterizable; we use five in
the evaluation herein.

40 S. Wang et al.

Fig. 2. MSDBench end-to-end application
structure.

We designed BEPS to repre-
sent several common microservices
design patterns [2,9,46]. The load
balancer is an “API Gateway (or
Proxy)” as it provides a uniform
interface to make requests to dif-
ferent services. Each worker is
an “Aggregator” since it combines
information from both databases to
update a user’s feed in the read
endpoint. BEPS employs the “Data
Sharing” pattern since all of the
workers share the same two database instances. When the OS supports asyn-
chrony (e.g. Ambience does so via coroutines), all communication implements
the “Asynchronous messaging” pattern.

In this paper, we use MSDBench with Linux and Ambience [3]; the latter is an
experimental operating system specifically designed for IoT microservices. The
benchmark suites are coded as generically as possible to facilitate their porting
to other operating systems and software ecosystems. We choose these two exam-
ples to illustrate how the benchmarks allow a developer to assess the trade-off
between performance and technology risk. The MSDBench Linux benchmarks
use Thrift [39,42] for RPC and argument serialization. They use Docker contain-
ers [10] for process-level isolation. MSDBench can use KVM VMs or physical
hosts for these deployments.

Ambience uses a “group” abstraction to isolate and co-locate microservices.
Microservices in the same group share an address space, are not isolated from
each other, and can be optimized together. Microservices in different groups
are isolated via protected address space regions. Ambience uses lidl, an interface
description language (IDL), to describe inter-service communication. lidl trans-
parently specializes these interfaces as direct function calls, zero-copy shared
memory for calls across address spaces, or serialization for cross-machine calls.
Ambience is also more resource-scale independent than Linux. It is possible to
run Ambience on resource-restricted microcontrollers that do not have sufficient
functionality (e.g. an MMU) or resource capacity to run Linux. At the same
time, Ambience runs natively on the x86 and ARM architectures and on the
KVM hypervisor. Thus, it is possible to run Ambience as a single operating sys-
tem on microcontrollers, single board computers at the edge, and cloud-based
VMs in a tiered IoT deployment. It is, however, highly experimental and sup-
ports a unique and potentially unfamiliar set of operating system abstractions
specifically for optimized microservices.

MSDBench is also unique in that it decouples the mapping of microservices
to isolation domain from the mapping of isolation domains to hosts. We dis-
tinguish the two because developers and operators typically have control over
the former (isolation domain assignment, i.e. containerization). The infrastruc-
ture provider (e.g. cloud vendor) may demand an additional level of isolation

MSDBench 41

Fig. 3. BEPS Mapping of Microservices to Isolation Domains. An isolation domain
provides process-level isolation (cylinders) for microservices (triangles). The letters in
each triangle identify the BEPS microservice. For a Linux OS, the isolation domain
is a Linux or Docker container. Ambience uses lightweight groups. MSDBench enables
empirical evaluation and comparison for alternative isolation domain configurations,
including those shown here: all co-located, tiered isolation (grouped), and full isolation.

to facilitate resource apportionment, decommissioning, and sharing of resources.
Thus, MSDBench allows different combinations of these two mappings to be
explored empirically. We refer to isolation domains when discussing operating-
system implemented protection domains and deployments when discussing the
assignment of microservices to isolation domains and the assignment of isolation
domains to hosts. That is, a developer or application operator may decide on the
assignment of microservices to isolation domains, and those isolation domains
may either be implemented natively or placed in infrastructure-provided con-
tainers.

Mapping Microservices to Isolation Domains – We depict the three isolation
domain configurations (co-located, tiered, and isolated) that we consider in our
evaluation using the BEPS suite in Fig. 3 (the microbenchmark suite is similar).
An isolation domain for the Linux OS is a Linux or Docker container; for Ambi-
ence, it is an Ambience group. In the co-located configuration, the load balancer,
workers, databases, and read endpoint are all in the same isolation domain. In
the tiered configuration, the load balancer and the workers are in an isolation
domain, the databases are in an isolation domain, and the read endpoint is in an
isolation domain. In the isolated configuration, every microservice is in its own
isolation domain.

Deployments: Mapping Isolation Domains to Hosts – We depict the five deploy-
ments for the BEPS suite that we consider in our evaluation in Fig. 4 (we use the
same deployments for the microbenchmark suite). For each deployment, we will
evaluate the three isolation domain configurations above (co-located, tiered, and
isolated). We represent these in the figures as a cloud icon marked “server-side.”
In deployment 1, we place the client within the load balancer’s (LB’s) isolation
domain. All isolation domains in this deployment are co-located within a single
VM on the same physical host. In deployment 2, we place the client in its own
isolation domain, and co-locate that domain within the same VM and on the
same physical host. In deployment 3, we modify deployment 2 so that the client
and its isolation domain are in a separate VM but on the same physical host as
the server-side VM. In deployment 4, we modify deployment 3 so that the client

42 S. Wang et al.

Fig. 4. BEPS Mapping of Isolation Domains to Hosts (MSDBench deployment alter-
natives). MSDBench enables evaluation of different deployment options by mapping
isolation domain configurations to infrastructure options (e.g. sensors, edge, cloud).
We consider 5 common deployments (shown here) in our empirical evaluation. The
server side configurations that we consider are shown in Fig. 3.

VM is on a separate physical host from that of the server-side microservices.
Deployment 5 is the same as deployment 4 only the client service is executed
directly on the physical host instead of in a VM.

MSDBench Configuration – MSDBench configuration uses a combination of
scripting and deployment manifests to implement its benchmark deployments.
Deployment configuration however, is currently manual (we are working on
automation as part of future work). Linux VMs can be configured and deployed
using any one of the many configuration management tools to automate server
provisioning (e.g. puppet [37], ansible [4], chef [7], etc.). Moreover, Ambience
has deployment support based on deployment manifests in which service inter-
faces and implementations are specified. It combines these with service manifests
which specify service dependencies and hosts, to create an application deploy-
ment. We use qemu to instantiate virtual machines for both Linux and Ambience
VM on KVM systems. For the microcontroller, we manually flash the devices
with the Ambience images once they have been built. MSDBench leverages these
tools for basic benchmark deployment scripting.

4 Empirical Evaluation

To generate informative results with minimal external noise, we run our experi-
ments in a controlled environment. Our IoT setting consists of microcontrollers,
edge devices, and a private cloud. In this study, we use the Nordic Semicon-
ductor nRF52840 which has a 64 MHz Arm Cortex-M4 CPI with FPU. It has
1 MB of flash memory plus 256 KB of RAM. It communicates via Bluetooth 5.3
and zigbee (IEEE 802.15.4). The multi-host microcontroller deployments use
zigbee for communication. Our edge and cloud servers are Intel NUC8i7HNK
systems (NUCs) with 8 Core i7 CPUs (3.1 GHz), 32 GB of Memory, and 1 TB of
disk. The multi-host edge/cloud experiments use a dedicated, isolated Ethernet
network between hosts for communication. All devices run Ambience v1.0 [3]
which runs on all devices that we consider herein. All devices except the micro-
controllers are capable of supporting Linux. We use Fedora 35 and Fedora 36,

MSDBench 43

KVM for virtualization, and Thrift for RPC on the Linux systems. Ambience
integrates virtualization internally (running directly on KVM or within a Linux
process/container) and uses lidl for IPC/RPC.

We refer to the deployments that use the Intel NUCs as “edge/cloud” deploy-
ments, and the deployments that use the ARM devices as the “microcontroller”
deployments in the evaluation that follows. Note that the nRF52840 microcon-
troller is not a Linux-capable single board computer (e.g. a device similar to
a Raspberry Pi which also uses an ARM processor) but is a severely resource-
restricted embedded device without an MMU.

For the microbenchmark edge/cloud deployments, the client makes 10,000
requests to the poll service per experiment. Our experiments evaluate different
request payload sizes (0, 512, 1024, 2048, 4096, and 8192 bytes). Each request
returns a 64-bit response payload. For the microcontroller deployments (due to
resource constraints), the client makes 100 requests and we experiment with
request payloads of 0 and 64 bytes.

For the edge/cloud deployments of the end-to-end benchmarks, we use MSD-
Bench to measure the round trip request latency for BEPS by timing 10,000
create_user, 10,000 subscribe, 10,000 publish, 10,000 unsubscribe, and
10,000 delete_user requests from the client. The BEPS user names are 10
characters and the messages are 280 bytes. For the microcontroller deployments,
we perform 10 requests each and use user names and messages of length 5 and
20 bytes, respectively. MSDBench can be used to measure both the internal
(server-side) time and the end-to-end time experienced by the clients. We report
the end-to-end times experienced by the client herein.

We use these benchmark suites to evaluate five deployments and three isola-
tion domain configurations described in the previous section for our edge/cloud
experiments (Sect. 3). We consider deployments 1, 2, and 4 and isolation domains
co-located and tiered for the microcontroller deployments. All results, unless oth-
erwise specified (e.g. for the throughput study), are in microseconds.

4.1 Microbenchmark Results

The MSDBench microbenchmark suite is useful for determining the performance
impact associated with the microservice interface boundaries. Microservices typ-
ically communicate with each other through remote procedure call (RPC) or
remote invocation mechanisms across their exported interfaces. The benchmark
uses a single poll service that accepts a request via RPC and returns a timestamp
to enable measurement of the RPC call and return performance. To evaluate the
utility of this suite, we compare the overhead of RPC calls using different request
payloads. Note that because RPC mechanisms are language level abstractions,
they often convey typed data which must be serialized for transfer and then
deserialized upon receipt. The benchmark includes serialization overhead.

For all experiments, the client and poll services are on the same machine and
VM. Figure 5 and Fig. 6 show the average inter-service latency in microseconds
for different payload sizes when deployed on the edge/cloud; Fig. 7 similarly
shows the average inter-service latency when deployed on the microcontroller.

44 S. Wang et al.

We use MSDBench to explore the performance differences of the no-isolation
(co-located) and fully isolated isolation domains.

For the edge/cloud study, co-location reveals the impact of any optimiza-
tion performed by the OS and/or microservices hosting framework. Note that
Ambience uses compile and link time optimizations to automatically remove
the messaging and serialization/deserialization code when microservices are co-
located. In Linux, microservices use the same serialization and messaging code
regardless of co-location. However, when co-located, Linux uses a “fast-path” for
local network communication.

Ambience co-located thus achieves 73x better performance than fully iso-
lated versus 1.3x for Linux. Ambience’s group abstraction enables 6x better call
performance (isolated configuration) compared to Linux because it is able to
optimize across groups (using zero copy shared memory), a feature not available
for Linux containers. Note that Ambience performs similarly regardless of the
amount of data passed. This is because Ambience requires a deployment mani-
fest that shows the location of microservices in a deployment so it can “compile-
away” serialization and data copies when microservices share an address space.
Each system runs an image that is compiled using the manifest and relocation
of microservices requires new images to be created and deployed. For Linux,
serialization (via Thrift) and messaging cause the microservices to slow as the
payload size increases. However, Linux microservices do not need to be recom-
piled when they are moved between compatible architectures, and they may not
need to be relinked (depending on the degree of software version compatibility
between potential execution sites).

For the microcontroller, Ambience co-located outperforms isolated by 20x
(versus 73x for edge/cloud). This is due to the slower clock rate (compared to
the x86-based NUC) and the limited resources of the device. As noted previously,
the microcontroller does not support Linux so we do not report results for Linux.

Microbenchmark Results
The following graphs show the average time for the client service to call the
poll service (y-axis), with different payloads (x-axis), under different deployment
configurations.

Fig. 5. Latency when isolating and
co-locating Ambience services for
edge/cloud.

Fig. 6. Latency when isolating and co-
locating Linux services for edge/cloud.

MSDBench 45

Fig. 7. Latency when isolating and co-locating the Ambience services for microcon-
trollers.

Fig. 8. End-to-End Benchmarking Results for Ambience on the Edge/Cloud deploy-
ments. The graph shows average round trip latency in microseconds for each request
type, for each mapping of microservices to isolation domains (Co-Located, Tiered, and
Isolated, see Fig. 3) and mapping of isolation domains to hosts (Deployments 1–5, see
Fig. 4).

4.2 End to End Benchmark Results

We next use MSDBench to investigate a number of deployment related research
questions using BEPS, the end-to-end benchmark suite. For these experiments,
we consider the five deployments in Fig. 4 and the three isolation (ISO) domain
configurations (co-located, tiered, and isolated) shown in Fig. 3. We benchmark
both Ambience (Amb) and Linux (Lin) and report latency in microseconds
observed by the client in terms of the average and standard deviation across
10,000 requests to each benchmark service function. The service functions are
create_user, subscribe, publish, unsubscribe, and delete_user. Figure 8
shows the round trip times for each service function for all deployment configu-
rations of Ambience. Figure 9 shows the corresponding results for Linux.

The data provides a number of different insights. First, the suite includes
benchmarks with different resource requirements. For example, publish requires

46 S. Wang et al.

Fig. 9. End-to-End Benchmarking Results for Linux on the Edge/Cloud deployments.
The graph shows average round trip latency in microseconds for each request type, for
each mapping of microservices to isolation domains (Co-Located, Tiered, and Isolated,
see Fig. 3) and mapping of isolation domains to hosts (Deployments 1–5, see Fig. 4).

more server-side processing than the others, unsubscribe and delete_user are
impacted by network overhead (e.g. for cross-VM and machine deployments). As
a result, publish takes 11–15x longer on average than create_user on Linux
when within the same VM but this difference is reduced to 50–70% when the
client is placed on a different machine (because the networking and isolation
overhead plays a much larger role). These differences enable developers to make
informed decisions about workload mix, service replication, and placement.

Next, the data shows the potential for performance optimization for co-
located microservices. In every case, both Linux and Ambience show signifi-
cantly better performance for co-located versus tiered (approximately 30–70%
slower for Ambience, and 20% slower for Linux) or isolated (approximately 20–
70% slower for Ambience, and 10–40% slower for Linux). Third, it enables us to
understand the performance differences between the use of a general and special
purpose operating system. On average, Ambience is at least an order of magni-
tude faster than Linux for all equivalent deployments, and the slowest Ambience
experiment across deployments 4 and 5 (which traverse a network connection)
is faster than the fastest Linux experiment in deployments 4 and 5 across all
experiments, regardless of isolation domain assignment and service request type.
We were surprised by these results, given the relatively highly optimized nature
of the Linux networking stack and the maturity of its isolation implementations.

The differences per deployment are also interesting. Deployment 1 enables
us to remove client interaction. Although this would not be used in an actual
deployment (clients are typically separated and isolated from the server-side
services for fault resiliency), it allows us (as developers) to focus on the server side
performance of our deployments. This deployment with co-located isolation is the
configuration with the best possible performance because maximal optimization
is possible and minimal overhead is introduced to provide limited isolation. The

MSDBench 47

Fig. 10. End-to-End Benchmarking Results for Ambience on the microcontroller
deployments. The graph shows round trip latency in microseconds for each mapping of
microservices to isolation domains and a subset of the mappings of isolation domains
to hosts (deployments 1, 2, and 4, see Fig. 4).

data across deployments shows that a large portion of the performance overhead
end-to-end comes from separating the client from the server side.

Deployment 2 represents a more realistic edge case in which the microservices
are co-located on the same device with the client isolated using only process-
level virtualization (i.e. Linux containers or Ambience groups) and the server-
side microservices isolated in various ways (all co-located, all isolated, or some
combination (e.g. tiered)). Using deployment 2 as a baseline, Linux deployment
3 (isolating the client in its own VM) is 14–16x slower, and Linux deployment
4 (placing client and VM on a different host) is 65–68x slower. When we place
the client on a different host without a VM (deployment 5), the end-to-end
performance is only 45–56x slower. This latter result represents the overhead
of system level virtualization (e.g. cloud use). For Ambience, deployment 3 and
deployment 4 are 3–4x slower and 13–23x slower than deployment 2, respectively.
The Ambience performance is also impacted by placing the client in a VM –
deployment 5 is only 6–8x slower when the client is placed on bare metal vs
13–23x slower in an VM (deployment 4).

Figure 10 shows the end-to-end results for running Ambience on microcon-
trollers. In these experiments, we use deployments 1, 2, and 4 and the co-located
and tiered isolation domains. The trends are similar, however, the differences are
less stark due to the slower clock speed and severe resource constraints of the
devices. Separating out the client (deployment 2 vs 1) introduces about 2x over-
head across benchmarks. The performance for co-located and tiered is similar
when the client is separated. Using deployment 2 as a baseline, the total average
time across all benchmarks is approximately 134x slower for deployment 4 when
co-located. Another interesting aspect revealed by this benchmark suite is the
relative performance between microcontroller and edge/cloud deployments. For
example, due to the limited capability of the microcontrollers, microcontroller
deployment 1 exhibits performance that is similar to that of edge/cloud deploy-
ment 3 (which adds VM-level isolation to the client) for co-located isolation.

48 S. Wang et al.

Fig. 11. MSDBench Throughput Experiments. This benchmark uses the edge/cloud
deployment 5 to evaluate and compare three isolation domains co-located, tiered, and
isolated for Ambience and Linux. The graphs show the average number of requests
per second as the number of clients increases. The Linux system was unable to run
workloads with more 15–20 clients for any configuration. Ambience achieves its peak
throughput at 25 clients, Linux does so at 13. Such studies are a key component of
capacity planning for IoT deployments.

4.3 Throughput Results

We next use MSDBench on the edge/cloud deployment 5 to test how the iso-
lation domain configuration and platform supports different client workloads.
In particular, we show how MSDBench can be used to support capacity plan-
ning for hosts in an IoT deployment. Capacity planning enables developers and
deployment administrators to understand what the hosts in a deployment are
capable of in terms of servicing microservice load.

To enable this, we use MSDBench to measure the performance of concurrent
requests issued by multiple client processes simultaneously. For this study, we
used an MSDBench client that is written in Python; Python simplifies the script-
ing of benchmark harnesses but adds considerable client-side latency (which is
why we did not use it for the microbenchmark and end-to-end experiments). Our
Python client is the same for Linux and Ambience except in its use of Thrift
versus lidl for the respective RPC implementations. We invoke the clients con-
currently. Each client “warms” the application by executing 50 create_user and
delete_user requests each. It then times 105,000 requests of each type (210,000
total requests), then computes and outputs the throughput number. We repeat
the experiment for an increasing number of clients until the number of requests
per second stops increasing, indicating the host’s saturation point for this bench-
mark. The resulting throughput “curve” indicates how microservices consume
capacity as a function of offered request load for a given mix of service requests.
A similar throughput curve can be generated for any individual or combination
of the MSDBench microservices and target device.

MSDBench 49

Figure 11 shows the throughput in requests per second (rps) for each OS and
isolation domain configuration as the number of clients increases. We use this
benchmark to compare the co-located, tiered, and isolated configurations and
the two OS’s we consider (Ambience and Linux). The Linux system consistently
crashed (we were unable to determine why) for client counts higher than 15 for
co-located and tiered, and 20 for isolated. The throughput of the Linux system
achieves a maximum throughput of 7587 rps with 13 clients for co-located, 7594
rps with 13 clients for tiered, and 6613 rps with 10 clients for isolated. At 5 clients,
Ambience achieves 2.7x more throughput than Linux. Ambience saturates the
capacity of the server-side host at 25 clients achieving a maximum throughput
of 57083 rps for co-located, 57193 rps for tiered, and 55508 rps for isolated.

Note that all of the throughput experiments are for deployment 5, where the
clients are executed on a separate host and communicate with the microservices
over a 1 GB dedicated Ethernet network. Surprisingly, the throughput rate for
Linux is not network dominated (it may be for Ambience, but we were unable to
determine that it was conclusively). Indeed, the Linux networking stack is highly
optimized compared to the nascent networking stack included in the Ambience
runtime. Further, because requests are traversing the network, the Ambience
requests include all serialization/deserialization and messaging overheads (the
Ambience image compiler could not optimize these away). We expected that both
Ambience and Linux would achieve the same saturation throughput (perhaps
for different client counts) with the network as the performance bottleneck. This
result illustrates both the impact of OS abstractions other than the networking
abstractions on microservices as well as the relative capacity consumption of the
two hosting operating systems.

5 Conclusion

We present MSDBench, a benchmarking suite for exploring the possibilities
of deploying microservices in an IoT setting and understanding how deploy-
ment decisions impact microservices application performance. In our analysis,
we study the effect of isolation domains, the assignment of isolation domains
to hosts, operating systems abstractions, RPC Frameworks, and device types,
revealing the strengths and weaknesses of each. We also investigate the perfor-
mance associated with running microservices on resource-restricted devices (such
as microcontrollers) that cannot host commodity service operating systems (e.g.
Linux). The results indicate that the various deployment and operating system
choices can have a dramatic effect of eventual application performance. This
work enables us to understand how IoT technology supports microservices in
terms of what is possible and what is optimal, informing future research and
development on using microservices in an IoT setting.

50 S. Wang et al.

References

1. Aderaldo, C.M., Mendonça, N.C., Pahl, C., Jamshidi, P.: Benchmark requirements
for microservices architecture research. In: 2017 IEEE/ACM 1st International
Workshop on Establishing the Community-Wide Infrastructure for Architecture-
Based Software Engineering (ECASE), pp. 8–13. IEEE (2017)

2. Akbulut, A., Perros, H.G.: Performance analysis of microservice design patterns.
IEEE Internet Comput. 23(6), 19–27 (2019)

3. Ambience Microservices OS (2022). https://github.com/MAYHEM-Lab/
ambience. Accessed 20 May 2022

4. Ansible configuration management. https://www.ansible.com. Accessed 20 July
2022

5. Arlitt, M., Marwah, M., Bellala, G., Shah, A., Healey, J., Vandiver, B.: IoTAbench:
an internet of things analytics benchmark. In: Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering, pp. 133–144 (2015)

6. AWS elastic container service. https://aws.amazon.com/ecs/. Accessed 20 July
2022

7. Chef configuration management. https://www.chef.io. Accessed 20 July 2022
8. Decomposing Twitter: Adventures in service-oriented architecture. https://

www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-
architecture. Accessed 19 July 2022

9. Everything you need to know about microservices design patterns. https://www.
edureka.co/blog/microservices-design-patterns. Accessed 20 July 2022

10. Docker. https://www.docker.com. Accessed 12 Sept 2017
11. Docker Swarm. https://docs.docker.com/engine/swarm/. Accessed 20 July 2022
12. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Present and

Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4 12

13. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.:
Microservices: how to make your application scale. In: Petrenko, A.K., Voronkov,
A. (eds.) PSI 2017. LNCS, vol. 10742, pp. 95–104. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-74313-4 8

14. The evolution of microservices. https://www.slideshare.net/adriancockcroft/
evolution-of-microservices-craft-conference. Accessed 19 July 2022

15. Ferdman, M., et al.: Clearing the clouds: a study of emerging scale-out workloads
on modern hardware. ACM SIGPLAN Not. 47(4), 37–48 (2012)

16. Gan, Y., et al.: An open-source benchmark suite for microservices and their
hardware-software implications for cloud & edge systems. In: International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(2019)

17. Grambow, M., Meusel, L., Wittern, E., Bermbach, D.: Benchmarking microservice
performance: a pattern-based approach. In: Proceedings of the 35th Annual ACM
Symposium on Applied Computing, pp. 232–241 (2020)

18. Grambow, M., Wittern, E., Bermbach, D.: Benchmarking the performance of
microservice applications. ACM SIGAPP Appl. Comput. Rev. 20(3), 20–34 (2020)

19. Gupta, P., Carey, M.J., Mehrotra, S., Yus, O.: SmartBench: a benchmark for data
management in smart spaces. Proc. VLDB Endow. 13(12), 1807–1820 (2020)

20. Hauswald, J., et al.: Sirius: an open end-to-end voice and vision personal assis-
tant and its implications for future warehouse scale computers. In: International
Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 223–238 (2015)

https://github.com/MAYHEM-Lab/ambience
https://github.com/MAYHEM-Lab/ambience
https://www.ansible.com
https://aws.amazon.com/ecs/
https://www.chef.io
https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://www.edureka.co/blog/microservices-design-patterns
https://www.edureka.co/blog/microservices-design-patterns
https://www.docker.com
https://docs.docker.com/engine/swarm/
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference

MSDBench 51

21. Henning, S., Hasselbring, W.: Theodolite: scalability benchmarking of distributed
stream processing engines in microservice architectures. Big Data Res. 25, 100209
(2021)

22. Jia, Z., Witchel, E.: Nightcore: efficient and scalable serverless computing for
latency-sensitive, interactive microservices. In: International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pp. 152–166
(2021)

23. Jindal, A., Podolskiy, V., Gerndt, M.: Performance modeling for cloud microservice
applications. In: Proceedings of the 2019 ACM/SPEC International Conference on
Performance Engineering, pp. 25–32 (2019)

24. K3S. https://k3s.io. Accessed 19 July 2022
25. Kasture, H., Sanchez, D.: Tailbench: a benchmark suite and evaluation method-

ology for latency-critical applications. In: International Symposium on Workload
Characterization (2016)

26. Kratzke, N., Quint, P.C.: Investigation of impacts on network performance in the
advance of a microservice design. In: International Conference on Cloud Computing
and Services Science, vol. 1 and 2, pp. 223–231 (2016)

27. Kruger, C.P., Hancke, G.P.: Benchmarking internet of things devices. In: 2014 12th
IEEE International Conference on Industrial Informatics (INDIN), pp. 611–616.
IEEE (2014)

28. KubeEdge. https://kubeedge.io. Accessed 19 July 2022
29. Kubernetes. https://kubernetes.io. Accessed 19 July 2022
30. Kumar, H.A., Rakshith, J., Shetty, R., Roy, S., Sitaram, D.: Comparison of IoT

architectures using a smart city benchmark. Procedia Comput. Sci. 171, 1507–1516
(2020)

31. Microservices. https://martinfowler.com/articles/microservices.html
32. Microservices workshop: why, what, and how to get there. http://www.slideshare.

net/adriancockcroft/microservices-workshop-craft-conference. Accessed 19 July
2022

33. Newman, S.: Building Microservices. O’Reilly Media, Inc. (2021)
34. Papapanagiotou, I., Chella, V.: NDBench: benchmarking microservices at scale.

arXiv preprint arXiv:1807.10792 (2018)
35. Paul, S.K., Jana, S., Bhaumik, P.: On solving heterogeneous tasks with microser-

vices. J. Inst. Eng. (India) Ser. B 103(2), 557–565 (2022)
36. Poess, M., Nambiar, R., Kulkarni, K., Narasimhadevara, C., Rabl, T., Jacobsen,

H.A.: Analysis of TPCx-IoT: the first industry standard benchmark for IoT gate-
way systems. In: 2018 IEEE 34th International Conference on Data Engineering
(ICDE), pp. 1519–1530. IEEE (2018)

37. Puppet configuration management. https://puppet.com. Accessed 20 July 2022
38. Shukla, A., Chaturvedi, S., Simmhan, Y.: Riotbench: a real-time IoT benchmark for

distributed stream processing platforms. arXiv preprint arXiv:1701.08530 (2017)
39. Slee, M., Agarwal, A., Kwiatkowski, M.: Thrift: scalable cross-language services

implementation (2007). Facebook White Paper
40. Soldani, J., Tamburri, D.A., Van Den Heuvel, W.J.: The pains and gains of

microservices: a systematic grey literature review. J. Syst. Softw. 146, 215–232
(2018)

41. Sriraman, A., Wenisch, T.F.: usuite: a benchmark suite for microservices. In: Inter-
national Symposium on Workload Characterization, pp. 1–12 (2018)

42. Thrift software framework. http://wiki.apache.org/thrift/
43. Ueda, T., Nakaike, T., Ohara, M.: Workload characterization for microservices. In:

International Symposium on Workload Characterization (2016)

https://k3s.io
https://kubeedge.io
https://kubernetes.io
https://martinfowler.com/articles/microservices.html
http://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
http://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
http://arxiv.org/abs/1807.10792
https://puppet.com
http://arxiv.org/abs/1701.08530
http://wiki.apache.org/thrift/

52 S. Wang et al.

44. Villamizar, M., et al.: Evaluating the monolithic and the microservice architec-
ture pattern to deploy web applications in the cloud. In: 2015 10th Computing
Colombian Conference (10CCC), pp. 583–590. IEEE (2015)

45. Wang, L., et al.: BigDataBench: a big data benchmark suite from internet ser-
vices. In: Proceedings of the First International Symposium on High-Performance
Computer Architecture, pp. 488–499 (2014)

46. Yeung, A.: The six most common microservice architecture design pattern (2020).
https://medium.com/analytics-vidhya/the-six-most-common-microservice-
architecture-design-pattern-1038299dc396. Accessed 20 July 2022

47. Zhou, X., et al.: Fault analysis and debugging of microservice systems: industrial
survey, benchmark system, and empirical study. IEEE Trans. Softw. Eng. 47(2),
243–260 (2018)

48. Zhou, X., et al.: Benchmarking microservice systems for software engineering
research. In: International Conference on Software Engineering, pp. 323–324 (2018)

https://medium.com/analytics-vidhya/the-six-most-common-microservice-architecture-design-pattern-1038299dc396
https://medium.com/analytics-vidhya/the-six-most-common-microservice-architecture-design-pattern-1038299dc396

Algorithm and Dataset

ShoeMaster: A Benchmark
for Sketch2Image Translation of Shoes

Shiyuan Xu, Yingjie Shi(B), Tong Feng, and Huayi Yuan

Beijing Institute of Fashion Technology, Chaoyang, Beijing, China

shiyingjie1983@163.com

Abstract. The sketch2image translation of shoes innovatively gener-
ates natural shoe images that match the content and style of the input
sketches, which is of important application value in the field of apparel e-
commerce and auxiliary design. Training the translation model requires
sketches and real images of shoes, however, the existing shoes datasets
face the problems of small scale and unclear classification, which hinders
the training of translation models. In this paper, we propose a benchmark
for sketch2image translation of shoes called ShoeMaster, in the hope to
facilitate the research of sketch2image translation of shoes, and provide
a technical benchmark for fairly evaluate the progress of correspond-
ing research works. ShoeMaster provides a large-scale daily shoe dataset
covering all the categories of our proposed shoes classification knowledge
hierarchy, which contains more than 50,000 real shoe images and cor-
responding sketches of different drawing styles. In order to comprehen-
sively evaluate the quality of generated images, we propose the evaluation
metrics from both qualitative and quantitative aspects. Based on Shoe-
Master, we conduct comparison experiments on three state-of-the-art
sketch2image models, the experiment results and analysis demonstrate
the effectiveness of ShoeMaster. The ShowMaster benchmark including
dataset, the metric questionnaire and calculating source code will be
released at https://github.com/202oranger/ShoeMaster.

Keywords: sketch · image translation · shoes dataset

1 Introduction

Human hand-drawn sketches are highly concise and abstract, which can reflect
the human brain’s visual perception of the real world vividly and powerfully, so
they are widely used by humans to describe objects and communicate with each
other. The sketch2image (S2I) translation generates real natural images whose
content and style are consistent with the input sketches, and completes the cross-
domain conversion from abstract sparse lines to specific pixels. Shoes are one of
the important apparel products. As shown in Fig. 1, the S2I translation of shoes
generate real shoe images based on user’s hand-drawn shoe sketches in practical
application scenarios, which is of great practical application value. In the field

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Gainaru et al. (Eds.): Bench 2022, LNCS 13852, pp. 55–69, 2023.
https://doi.org/10.1007/978-3-031-31180-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31180-2_4&domain=pdf
https://github.com/202oranger/ShoeMaster
https://doi.org/10.1007/978-3-031-31180-2_4

56 S. Xu et al.

of fashion design, the sketch2image translation of shoes can assist designers to
quickly and intuitively visualize the design products, and can generate real shoe
images with different effects based on different referenced style information such
as textures, colors, material and so on. So it can provide designers with powerful
reference information. In the field of e-commerce, the shoe sketch2image trans-
lation converts sketches drawn by consumers into real shoe images. On the one
hand, it can help users to effectively search for similar online products of input
sketches, thereby enhancing the consumption experience; on the other hand, it
can provide important data support for merchants to analyze users’ needs, so as
to effectively promote the transaction volume of online shoes.

Fig. 1. Sketch2Image translation of shoes.

The S2I translation of shoes is a challenging problem. Firstly, the hand-drawn
sketches consist of sparse strokes, which are highly abstract and always have
noisy brushstrokes. While the real shoe image consists of dense pixels with pre-
cise boundaries. So the process has to realize the cross-domain translation which
includes stroke correcting, coloring, and detail processing. Secondly, training the
translation model requires sketches and real image of all categories of shoes, how-
ever, collecting shoe sketches are much harder than real images, the lack of shoe
sketch-image dataset hinders the training of translation model. In this paper,
we propose ShoeMaster - a benchmark for sketch2image translation of shoes,
in the hope to benefit the researches in sketch2image translation of shoes. Our
contributions are as follows: (1) Based on in-depth study with footwear design-
ers of professional standards of footwear, online fashion communities and online
sales platforms, we carefully define the daily shoes’ category knowledge hierarchy,
which is complete and mutually exclusive. (2) On the basis of the category knowl-
edge hierarchy, we construct the shoes sketch-image dataset including 54,361 real
shoe images and corresponding sketches of three representative drawing styles,
which covers the whole shoe categories. (3) We propose the evaluate metrics of
shoes’ S2I translation from both qualitative and quantitative aspects. (4) Based
on ShoeMaster, we conduct experiments on three state-of-the-art sketch2image
translation models to demonstrate the effectiveness of ShoeMaster.

ShoeMaster: A Benchmark for Sketch2Image Translation of Shoes 57

2 Related Work

2.1 Fashion Datasets

Several fashion datasets have been proposed to the advancement of fashion image
understanding research, as summarized in Table 1. Most of the datasets focus on
clothes images, such as FashionAI [2], Deepfashion [22] and DeepFashion2 [10],
and they are different in scales and annotations. FashionAI and Deepfashion
provide landmarks of clothes, while DeepFashion2 provides both landmarks and
item masks. ModaNet [29] consists both clothes and shoes images, and the anno-
tations include item masks. All the the aforementioned datasets enable tasks
like clothes recognition, semantic segmentation, image-content-based retrieval.
Some datasets for sketch2image translation are also proposed, the image cat-
egories include human faces, birds, and general types, few of them focus on
fashion images. ShoeV2 [27] is the only sketch2image translation dataset for
fashion, which provides 2000 real shoes images and 6648 sketches, each image
has at least three sketches drawn by different individuals. ShoeV2 covers five
types of shoes including boots, high-heels, ballerinas, formal and informal shoes.
However, the shoe classification hierarchy is not complete or mutual exclusion,
and the dataset scale is not large enough to train more sophisticated models. In
this paper, we propose ShoeMaster, which contains large-scale shoe image-sketch
pairs and covers the whole category of daily shoes.

2.2 Sketch2Image Translation

At early stages, the sketch2image translation was implemented through image
retrieval, Sketch2Photo [7] and PhotoSketcher [9] search for corresponding image
patches from large-scale image datasets according to the objects and back-
grounds given by the sketches, and then fuse these image patches together. The
disadvantage is that they cannot generate completely new images. In recent
years, Generative Adversarial Networks (GAN) [13] has made transformative
progress in the effect and performance of image generation, which is widely used
in S2I translation. GAN-based S2I translation research work can be divided
into three categories: the methods based on Pix2Pix [14], the methods based on
CycleGAN [30] and based on auto-encoder.

Pix2Pix-based work is based on conditional GAN, where the generator
exists in the form of encoder-decoder and requires paired data to train the
auto-encoder. Related work includes AutoPainter [21], ScribblerGAN [24], and
SchetchyGAN [8]. However, none of the above research works can control
the style effect of the generated image through the exemplar image. Early
CycleGAN-based image translation work is UNIT [19], which uses a pair of
additional encoders to model an assumed domain-invariant feature space, and
MUNIT [12] further implements multimodal image translation. Later U-GAT-
IT [15] and US2P [20] were proposed to support exemplar-based sketch2image
translation. U-GAT-IT includes an attention module to align visual features
and style inputs of content; US2P first draws sketches and grayscale images via

58 S. Xu et al.

CycleGAN, and then utilizes a separate model for example-based colorization.
The CycleGAN-based method can accept unpaired data during training, but
requires two GANs to learn and convert back and forth, which requires higher
computing power. Liu Bingcheng et al. propose an S2I translation method based
on self-supervised Auto-Encoder(AE) [18]. Firstly they propose an unsupervised
model called TOM to synthesize sketches of different styles for a given RGB
image. During the S2I translation process, the synthesized paired data are input
to a self-supervised AE to decouple the style and content features from both
sketches and RGB images, in order to synthesize images that are both content-
faithful to the sketches and style-consistent to the RGB-images. At last, they
utilize a GAN-based network to further refine the details of synthesized image
and improve the synthesis quality.

Table 1. Fashion Datasets.

Name Contents Scale Supported Task

FashionAI Clothes images, landmarks 357K attribute recognition

ModaNet Clothes & Shoes images, masks 55K item, attribute recognition

DeepFashion Clothes images, landmarks 800K attribute recognition, retrieval

DeepFashion2 Clothes images, landmarks & masks 491K attribute recognition, retrieval

ShoesV2 Shoes images, sketches 2K, 6K sketch2image translation

3 The ShoeMaster Benchmark

Shoes are an important part of human clothing culture. The production process
and style of shoes are constantly changing with the advancement of technology.
Nowadays, the shoes are of wide variety, and different organizations and online
platforms adopt different shoes classification system. In order to cover complete
daily shoes categories, we propose the shoe category knowledge hierarchy and
construct the ShoeMaster dataset, which contains over 50,000 shoes images and
corresponding sketches. Figure 2 shows some examples of the proposed dataset.

3.1 Shoes Category Knowledge Hierarchy

The existing shoes S2I dataset ShoesV2 contains five types of shoes, the classifi-
cation is relatively coarse-grained. In order to improve the learning ability of S2I
model, the training data should preferably cover the whole shoe category. How-
ever, the classification of shoes is very complex, the shoes can be divided into
different categories according to different standards such as style, material, func-
tions, craftsmanship, etc [6]. The e-commerce platforms and fashion community
always classify the shoes based on market demands and consumer preferences.
Take the classification of one shoes online selling site for example, high-heeled

ShoeMaster: A Benchmark for Sketch2Image Translation of Shoes 59

Fig. 2. Shoe images and sketches in ShoeMaster.

shoes, leather shoes and Gommini belong to classifications of the same level, how-
ever, the shoes of these categories have overlaps, which may bring confusions to
the dataset of a technical benchmark.

We carefully studied the Chinese shoe classification standard documents [3],
which classify the shoes from several dimensions including functions, materi-
als and structures. The shoe category during the standard is so comprehensive
that it contains some shoes of special purposes, such as conductive footwear,
antistatic footwear, electrically insulating footwear, etc. What’s more, the shoes
classification of the official standards is very professional, which is always dif-
ficult for most consumers and computer vision researchers to understand and
discriminate. In this paper, we focus on usual shoes worn by people in daily
life. After discussions with footwear designers about the shoes classification of
Chinese shoe classification standard and the mainstream e-commerce platforms,
we propose a knowledge system of daily shoe classification based on wearers,
functions and styles, as shown in Figs. 3 and 4.

3.2 Dataset Construction

The S2I task belongs to cross-modal translation, and the model training
requires both real images and sketches. Some S2I research work adopts manual
sketches [23,25], whose cost is relatively high, so it is not suitable for large-
scale dataset. Some research work extracts the edge map of real images as
sketches, including Holistic Nested Edge Detection (HED), XDoG edge detec-
tor, FDoG filter, etc. The sketch details obtained by such methods depend on
the thresholds, and the extracted edges are quite different from hand-drawn
sketches. Image2sketch translation network is also used to generate sketches,
such as Im2pencil [17], Photosketching [16]. The sketches generated by this kind
of methods can capture the target contour well and even finely describe them,
however, they cannot imitate the sparse and abstract hand-drawn sketches of
ordinary users.

60 S. Xu et al.

Fig. 3. Example images of shoes classification.

Fig. 4. Shoes category hierarchy.

The ShoeMaster dataset consists of real images and corresponding sketches.
We collect the real shoe images from Farfetch [1], which is a global e-commerce
platform specializing in fashion and luxury goods. Its products cover most luxury
brands, and these luxury brands lead the global fashion trend to some extent.
Therefore, the fashion items on Farfetch are representative. The resolution of
each original image is 480 × 641, we adopt XnConvert [5] to convert the image
resolution to 512 × 512 through batch processing. We manually remove the
images that are irrelevant to shoes, and at last we collect 54,361 real shoe images.
To realistically represent human hand-drawn style, we use TOM to generate
three different styles of sketches for each image. TOM is a GAN-based domain
transfer model that can generate multiple sketches for a single image [18]. Com-
pared with other image2sketch translation networks, the sketches generated by
TOM can imitate the characteristics of human hand-drawings such as random-

ShoeMaster: A Benchmark for Sketch2Image Translation of Shoes 61

ness and incompleteness. It consists of three modules: a pre-trained VGG mod-
ule, a sketch generator and a discriminator. By calculating the discriminative loss
in the generator, it ensures that the generated sketch is both realistic and ran-
dom. It requires only twenty unpaired images and sketches to get decent training
results, and synthesizes out-domain sketches brilliantly. We collected a dataset
of different styles from the internet to train TOM. The dataset includes fash-
ion drawings, WikiArt paintings, and amateur drawings of shoes, these images
can effectively represent three different hand-drawn styles: professional hand-
painting, more abstract artistic hand-painting, and amateur hand-painting, as
shown in Fig. 5. Through training on the dataset, TOM can generate sketches
with different styles of strokes (shows in Fig. 6), which can contribute to multi-
style shoes image generation and image retrieval. We generate three sketches of
different styles for every shoe image in ShoeMaster, which includes 54,361 real
shoe images and 163,083 sketches.

3.3 Evaluation Metric

Evaluating the performance of generating models is complex. The evaluation
should not only consider the quality of generated image, but also how well the
generated image matches the input condition and servers the intended appli-
cation. The quantitative metrics lack consistency with human perception, it’s

Fig. 5. Different styles to train TOM.

62 S. Xu et al.

Fig. 6. Sketch generated by TOM.

not enough to use only one metric to demonstrate the effectiveness of models.
ShoeMaster evaluates the S2I models based on both qualitative metrics and
quantitative metrics.

Qualitative Metrics. Qualitative evaluation takes people’s intuitive feelings
as evaluation criteria, and sets up multiple dimensions to require respondents to
evaluate the generated images. We adopted the method of sending out question-
naires through the community of questionnaire stars [4] to conduct a perception
study of the generation effect. The questionnaire mainly focuses on three aspects:
loyalty, authenticity and naturalness.

We design a questionnaire of 14 questions based on three tests. In the loyalty
test we set three questions, during every question we randomly choose three
similar shoe sketches and the generated image by the translation model, the
respondents are asked to identify which sketch the image is translated from. In
the authenticity test, there are six questions, each question is given the ground
truth image and synthesized images generated by different translation models,
and the respondents need to choose the generated image which is the closest to
the ground truth. In the naturalness test, there are five questions. During each
question, we give different images generated by different models based on the
same shoe sketch, and the respondents are asked to choose the image which is
the most natural and owns the best visual effect.

Quantitative Metrics. For quantitative analysis, we use Learning Percep-
tual Image Patch Similarity (LPIPS) [28], Multi-scale Structural Similarity (MS-
SSIM) [26], and Fréchet Inception Distance (FID) [11] to evaluate the generation
effect.

Learning Perceptual Image Patch Similarity (LPIPS), also known as “percep-
tual loss”, is used to measure the difference between two images. LPIPS essen-
tially computes the similarity between the activations of two image patches for

ShoeMaster: A Benchmark for Sketch2Image Translation of Shoes 63

some pre-defined network. Lower values of LPIPS indicate that the two images
are more similar, and higher values indicate greater differences.

The FID score is used to measure the distance between the real image dis-
tribution and the generated image distribution based on the features extracted
by the pre-trained network. Real images obey a distribution in space, and the
features generated by GAN are also subject to a distribution. What the image
generator does is to continuously train to make the two distributions as identical
as possible. FID is to calculate the direct distance between these two distribu-
tions, and the distance algorithm used is called Fréchet distance. The smaller
the distance, the closer the generated distribution is to the real distribution, so
the smaller the FID, the better.

SSIM (Structural Similarity) is a method to measure the similarity of two
images. Assuming an image has perfect quality, the SSIM index can be viewed as
another measure of image quality. MS-SSIM (Multi-scale Structural Similarity)
is a SSIM index based on multi-scale (pictures are scaled from large to small
according to certain rules). The proposed method is more flexible than previous
single-scale methods in considering changes in viewing conditions.

4 Experiments

We choose three representative models of S2I translation task, and train the
models on a subset of 2,000 images and their corresponding sketches from Shoe-
Master, another subset of 10000 sketches is used as test data. Meanwhile, we
evaluate the quality of the generated images through the proposed metrics of
ShoeMaster.

4.1 Approaches

As described in Sect. 2.2, the main solutions of GAN-based S2I translation
include Pix2Pix-based methods, CycleGAN-based methods, and auto-encoder-
based methods, so we conduct the experiments based on ShoeMaster on three
models: Pix2Pix [14], CycleGAN [30], and Self-Supervised Sketch-to-Image Syn-
thesis [18].

Pix2Pix. Pix2Pix [14] is a Conditional Generative Adversarial Network (cGAN)
based model. It can not only learn the mapping relationship from the input image
to the output image, but also learn the loss function used to train the mapping
relationship. That is, we can get an ideal result without manually designing the
loss function. Its generator uses a “U-net” structure and the discriminator uses
a convolutional “PatchGAN” classifier, which only penalizes structure at the
scale of image patches. Among the three models, Pix2Pix is the only one that
requires image-sketch paired data during the training, it can also be seen from
the experiments results that the generated images are closer to real images in
color.

64 S. Xu et al.

CycleGAN. CycleGAN [30] is a classic deep learning algorithm in the field
of image translation, which is suitable for style transfer of unpaired images.
The idea of this model is to form a universal mapping from data domain A
to data domain B, and the learning goal is the transformation between the
styles of data domain A and B, rather than the one-to-one mapping between
specific data A and B. Unlike other models, CycleGAN retains the original input
image information after image transfer by constructing two GAN networks and
two cycle-consistency self-supervised loss functions. Image pairing is achieved
indirectly while preventing mode collapse.

Self-Supervised Sketch-to-Image Synthesis. This model implements the
S2I translation in a self-supervised learning manner, which also eliminates the
requirements for paired image-sketch data [18]. This model consists of two parts.
The first part is an auto-encoder (AE), which decoupled content and style from
sketch and RGB image to synthesize an image with sketch content and RGB
image style. The second part is a GAN network, which is used to refine the
details of the synthesized image.

4.2 Methodology

We train the models over the online deep learning platform AutoDL, the training
environment is constructed during one instance, which has exclusive access to
the GPU. The hardware and software configurations are shown in Table 2. Due
to our limited hardware configuration, we choose 2000 images of casual shoes and
general sport shoes as training set, and 10000 sketches of different styles as the
test set. The epoch of Pix2Pix and CycleGan is set to 200 and 180 respectively.
The batch size of Pix2Pix is set to 4, and LR(Adam’s initial learning rate)
is 0.0001. The batch size of CycleGAN is set to 1, and LR is 0.0002. In the
self-supervised method, the batch size of AE is 4, the iteration is 50000, and the
batch size of GAN is 4. The training and image generation of CycleGAN requires
higher computing power than the other two models, so we set the resolution
of generated image based on CycleGAN to 256 × 256, while the resolution of
generated images based on the other two models is set to 512 × 512.

Table 2. Hardware and software configuration.

name configuration

CPU Intel(R) Xeon(R) Gold 6330 CPU @ 2.00 GHz (14 cores)

GPU Nvidia RTX 3090

Hard Disk 100G SSD

RAM 160G

Video Memory 24G

Operating System Ubuntu 18.04

Language Python 3.6

CUDA 11.3

ShoeMaster: A Benchmark for Sketch2Image Translation of Shoes 65

4.3 Results and Analysis

Figure 7 shows some examples of S2I translation on the test set. It can be seen
that the image synthesized by CycleGAN and self-supervised method are more
closer to the real images in texture, but the color is relatively single. The images
synthesized by Pix2Pix are more diverse in color but less realistic in texture.
Figure 8 shows the images generated by the three models based on the real
hand-drawn sketches, which are also more abstract than the sketches from the
test set of ShoeMaster. It can be seen that the images generated by Pix2Pix is
not faithful to the sketches in terms of both color range and texture, CycleGAN
and the self-supervised method perform better, reflecting stronger generalization
abilities.

Fig. 7. S2I translation results.

Fig. 8. Amateur hand-drawn translation results.

66 S. Xu et al.

Table 3. Results of qualitative metrics.

loyalty authenticity naturalness

Pix2Pix 30.00% 52 36

CycleGAN 33.33% 62 52

Self-supervised 60.00% 66 62

Table 4. Results of quantitative metrics.

FID LPIPS MS-SSIM

Pix2Pix 49.85 0.193 0.785

CycleGAN 49.76 0.192 0.719

Self-supervised 38.93 0.162 0.827

We distributed 30 questionnaires through the community of questionnaire
stars, each with 14 questions, and collected a total of 420 subjective evaluations.
The qualitative and quantitative evaluation results are shown in Tables 3 and
4. From Table 4 we can see that the Self-supervised method has the best per-
formance. The performance of CycleGAN and Pix2Pix are close. However, in
terms of MS-SSIM index, Pix2Pix performs better than CycleGan, which may
be because the image generated by Pix2Pix has a higher similarity with the
ground truth in structure. Generally speaking, the three models achieve promis-
ing results on ShoeMaster. Pix2Pix can generate images with more diverse colors,
so it has stronger ability to render colors. In terms of generalization ability, both
CycleGAN and the self-supervised method are stronger than Pix2Pix. The tex-
ture of the resulting images is much sharper, and the color is well confined to the
shoe image. The color of the images generated by the self-supervised method is
relatively single, but considering that it can generate images of different styles
according to the input style reference image, its potential is still greater than
that of CycleGAN. During the experiment, we also found that the models have
poor effect on the generation of high heel sketches. This may be because the
training set contains only general sport shoes and casual shoes, which further
confirms the importance of shoe variety in the training process.

5 Conclusion

In this paper, we contribute a benchmark for sketch2image translation of shoes
called ShoeMaster, which contains a large-scale shoe image-sketch pair dataset
and comprehensive evaluation metrics. We conduct in-depth study with shoe
designers on professional classification standards of footwear, shoes category sys-
tem of online fashion communities and online sales platforms, and propose the
daily shoes category knowledge hierarchy. We construct a dataset covering the
proposed shoes category hierarchy, which contains 54,361 real shoe images and

ShoeMaster: A Benchmark for Sketch2Image Translation of Shoes 67

3 sketches of different drawing styles for every real image. In order to evaluate
the shoes S2I models, we propose the evaluation metrics from both qualitative
and quantitative aspects. In the qualitative aspect, perception research based on
questionnaire is used to evaluate the loyalty, authenticity and naturalness of gen-
erated images. In terms of quantification, FID, LPIPS and MS-SSIM are adopted
to measure the image generation effect. From extensive experimental validation
on three representative S2I models, we show that ShoeMaster dataset enables
the S2I tasks to achieve promising results, and can measure the performance of
different models from different dimensions.

Acknowledgement. This research was supported by the grants from the 2022 Under-
graduate Training Program for Innovation and Entrepreneurship of Beijing Institute
of Fashion Technology (No. 20223060321), the 2022 Postgraduate Education Quality
Improvement Special Project and General Teaching Reform Project Funding of Beijing
Institute of Fashion Technology (No. 120301990132), the Natural Science Foundation
of China (No. 62062058), the General Program of Science and Technology Develop-
ment Project of Beijing Municipal Education Commission (No. KM202210012002),
the Graduate Education Quality Improvement Project of Beijing Institute of Fashion
Technology (No. NHFZ20220206).

References

1. FARFETCH. https://www.farfetch.cn/. Accessed 4 Oct 2022
2. FashionAI dataset. http://fashionai.alibaba.com/datasets/. Accessed 4 Oct 2022
3. Multilingual classification and named of cross-border E-commerce trading

products-Footwear. https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=D5
D292658B6924EEA1E0D82313DB4EAC. Accessed 4 Oct 2022

4. Questionnaire stars. https://www.wjx.cn/. Accessed 4 Oct 2022
5. XnConvert. https://www.xnview.com/en/xnconvert/. Accessed 4 Oct 2022
6. Chen, S.: Brief talk of classification and nomenclature of footware products, vol.

12, pp. 100–102 (2016)
7. Chen, T., Cheng, M.M., Tan, P., Shamir, A., Hu, S.M.: Sketch2photo: internet

image montage. ACM Trans. Graph. (TOG) 28(5), 1–10 (2009)
8. Chen, W., Hays, J.: SketchyGAN: towards diverse and realistic sketch to image

synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 9416–9425. IEEE, Los Alamitos (2018)

9. Eitz, M., Richter, R., Hildebrand, K., Boubekeur, T., Alexa, M.: Photosketcher:
interactive sketch-based image synthesis. IEEE Comput. Graph. Appl. 31(6), 56–
66 (2011)

10. Ge, Y., Zhang, R., Wang, X., Tang, X., Luo, P.: DeepFashion2: a versatile bench-
mark for detection, pose estimation, segmentation and re-identification of clothing
images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5337–5345. IEEE, Los Alamitos (2019)

11. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs
trained by a two time-scale update rule converge to a local Nash equilibrium.
In: Advances in Neural Information Processing Systems, vol. 30 (2017)

12. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-
image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)

https://www.farfetch.cn/
http://fashionai.alibaba.com/datasets/
https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=D5D292658B6924EEA1E0D82313DB4EAC
https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=D5D292658B6924EEA1E0D82313DB4EAC
https://www.wjx.cn/
https://www.xnview.com/en/xnconvert/

68 S. Xu et al.

ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01219-9 11

13. Ian, J.G., et al.: Generative adversarial nets. In: Proceedings of Annual Conference
on Neural Information Processing Systems, pp. 2672–2680 (2014)

14. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1125–1134. IEEE, Los Alamitos (2017)

15. Kim, J., Kim, M., Kang, H., Lee, K.: U-GAT-IT: unsupervised generative atten-
tional networks with adaptive layer-instance normalization for image-to-image
translation. arXiv e-prints, p. arXiv-1907 (2019)

16. Li, M., Lin, Z., Mech, R., Yumer, E., Ramanan, D.: Photo-sketching: inferring
contour drawings from images. In: 2019 IEEE Winter Conference on Applications
of Computer Vision (WACV), pp. 1403–1412. IEEE, Los Alamitos (2019)

17. Li, Y., Fang, C., Hertzmann, A., Shechtman, E., Yang, M.H.: Im2pencil: con-
trollable pencil illustration from photographs. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1525–1534. IEEE,
Los Alamitos (2019)

18. Liu, B., Zhu, Y., Song, K., Elgammal, A.: Self-supervised sketch-to-image synthesis.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 2073–
2081. AAAI Press, Menlo Park (2021)

19. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation net-
works. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems, pp. 700–708 (2017)

20. Liu, R., Yu, Q., Yu, S.: An unpaired sketch-to-photo translation model. arXiv
preprint arXiv:1909.08313, vol. 1, no. 3, p. 6 (2019)

21. Liu, Y., Qin, Z., Wan, T., Luo, Z.: Auto-painter: cartoon image generation from
sketch by using conditional Wasserstein generative adversarial networks. Neuro-
computing 311, 78–87 (2018)

22. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes
recognition and retrieval with rich annotations. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 1096–1104. IEEE, Los
Alamitos (2016)

23. Qiu, H., Wang, C., Zhu, H., Zhu, X., Gu, J., Han, X.: Two-phase hair image
synthesis by self-enhancing generative model. In: Computer Graphics Forum, vol.
38, pp. 403–412. Wiley Online Library (2019)

24. Sangkloy, P., Lu, J., Fang, C., Yu, F., Hays, J.: Scribbler: controlling deep image
synthesis with sketch and color. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 5400–5409. IEEE, Los Alamitos (2017)

25. Shu-Yu, C., Wanchao, S., Lin, G., Shihong, X., Hongbo, F.: DeepFaceDrawing:
deep generation of face images from sketches. ACM Trans. Graph. 39(4), 72 (2020)

26. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image
quality assessment. In: 2003 the Thrity-Seventh Asilomar Conference on Signals.
Systems & Computers, vol. 2, pp. 1398–1402. IEEE, Los Alamitos (2003)

27. Yu, Q., Liu, F., Song, Y.Z., Xiang, T., Hospedales, T.M., Loy, C.C.: Sketch me that
shoe. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 799–807. IEEE, Los Alamitos (2016)

28. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 586–595. IEEE, Los
Alamitos (2018)

https://doi.org/10.1007/978-3-030-01219-9_11
https://doi.org/10.1007/978-3-030-01219-9_11
http://arxiv.org/abs/1909.08313

ShoeMaster: A Benchmark for Sketch2Image Translation of Shoes 69

29. Zheng, S., Yang, F., Kiapour, M.H., Piramuthu, R.: ModaNet: a large-scale street
fashion dataset with polygon annotations. In: Proceedings of the 26th ACM Inter-
national Conference on Multimedia, pp. 1670–1678. ACM, New York (2018)

30. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 2223–2232. IEEE, Los Alamitos (2017)

Open Source Software Supply Chain
Recommendation Based

on Heterogeneous Information Network

HaiMing Lin1,2, Guanyu Liang1,3, Yanjun Wu1,3, Bin Wu1,3, Chunqi Tian2(B),
and Wei Wang4

1 Nanjing Institute of Software Technology, Nanjing 211135, China
2 School of Computer and Science, Tongji University, Shanghai 201804, China

tianchunqi@163.com
3 Institude of Software Chinese Academy of Science, Beijing 100190, China

4 School of Data Science and Engineering, East China Normal University,

Shanghai 200062, China

Abstract. In the GitHub open-source collaborative development sce-
nario, each entity type and the link relationship between them have nat-
ural heterogeneous attributes. In order to improve the accuracy of project
recommendation, it is necessary to effectively integrate this multi-source
information. Therefore, for the project recommendation scenario, this
paper defines an open source weighted heterogeneous information net-
work to represent the different entity types and link relationships in the
GitHub open source collaborative development scenario, and effectively
model the complex interaction among developers, projects and other enti-
ties. Using the weighted heterogeneous information network embedding
method, extract and use the rich structural and semantic information in
the weighted heterogeneous open source information network to learn the
node representation of developers and projects, and fuse the personalized
nonlinear fusion function into the matrix decomposition model for open
source project recommendation. Finally, this paper makes a large num-
ber of comparative experiments based on the real GitHub open data set,
and compares it with other project recommendation methods to verify
the effectiveness of our proposed open source project recommendation
model. At the same time, it also explores the impact of different metap-
aths on the effect of project recommendation. The experimental results
show that the recommendation method based on heterogeneous informa-
tion network can effectively improve the recommendation quality.

Keywords: Heterogeneous Information Network · Open source ·
GitHub project recommendation

With the rapid development of the open source ecosystem and the popularity
of GitHub, a code hosting platform, more and more developers are choosing to
build open source projects based on the GitHub platform in an open, shared,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Gainaru et al. (Eds.): Bench 2022, LNCS 13852, pp. 70–86, 2023.
https://doi.org/10.1007/978-3-031-31180-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31180-2_5&domain=pdf
https://doi.org/10.1007/978-3-031-31180-2_5

Open Source Software Supply Chain Recommendation 71

and collaborative software development model. According to the 2021 annual
report published by GitHub, there are over 16 million new developers and 61
million newly-created repositories. The vast number of open source projects pro-
vides developers with tremendous opportunities to learn and gain experience [1],
and developers can use the keyword-based project search function provided by
GitHub to search for projects of interest in order to reuse their features or partic-
ipate in open source contributions. However, due to the extremely large number
of open source projects, active search often requires a lot of developer time and
effort and is inefficient. The main purpose of the GitHub project recommen-
dation system is to recommend open source projects of interest to developers
and to establish more connections between the vast number of developers and
open source projects distributed on the GitHub platform. On the one hand,
it can help developers find projects of interest to them, on the one hand, and
allowing it helps developers find projects that are of interest or value to them,
and on the other hand, it exposes open source projects that match the inter-
ests and needs of developers to more developers, thus promoting the healthy
development of the open source ecosystem. In the research on GitHub project
recommendation system, an important problem is how to effectively character-
ize developers’ interest preferences and open source project features. Traditional
methods mainly use collaborative filtering-based approach to recommend open
source projects for developers. However, different from traditional recommenda-
tion systems, the number of projects that developers contributed to is generally
not large, especially for novice developers and low-active developers, there is less
information available on historical interaction behavior, resulting in a sparse
developer-project scoring matrix. To alleviate the cold start problem and data
sparsity problem faced in traditional collaborative filtering-based methods, some
scholars try to integrate techniques such as machine learning and deep learning
to build a feature set of developers and use the historical behavior dataset to
train to get a recommendation ranking model. To date, existing methods mainly
mine isomorphic information and only consider a few types of developer behav-
ior i.e., create, fork and star, ignoring various semantic information contained
in other aspects of contributions such as issue and pull request. In the real
GitHub open source collaboration scenario, developers often make extensive use
of issue and pull request mechanisms to conduct distributed communication and
collaborative development with other developers. In addition, as a typical large-
scale distributed collaboration scenario, open source has special social properties,
and the contribution behaviors and collaboration relationships among developers
based on repositories constitute a complex open source collaboration network,
and the types of objects and links in the network have naturally heterogeneous
properties. Therefore, this paper proposes a personalized GitHub project recom-
mendation framework based on heterogeneous information network. This frame-
work is mainly composed of the following parts: first, this paper proposes an
open source weighted heterogeneous information network (OSWHIN) to effec-
tively integrate heterogeneous information in the field of open source; second, a
series of semantically rich extension metapaths are defined to mine the structural

72 H. Lin et al.

and semantic information in the network; third, a graph embedding method is
used to learn the representations of developers and projects; finally, personalized
nonlinear fusion functions are fused into a matrix decomposition algorithm for
open source project recommendation. The main contributions of this paper are
as follows:

1. We propose a new OSWHIN structure, which fully consider the heterogene-
ity of different objects and their relations in GitHub historical behavior data.
OSWHIN can naturally capture complex semantic information in the net-
work.

2. We propose a new GitHub project recommendation framework using
OSWHIN-based embedding method guided by extended metapaths to
uncover the structural and semantic information of OSWHIN and learn a
more effective embedding representation for nodes.

3. We conducted extensive experiments based on the real GitHub open data set
containing 206823 developers and 54433 repositories. The results verified the
effectiveness of our proposed method.

The rest of this paper is organized as follows. Section 1 presents related work.
The framework for personalized recommendation is discussed in Sect. 2. The
experiments and results are presented in Sect. 3. Section 4 concludes this paper.

1 Related Work

1.1 GitHub Open Source Data Collection and Mining

As the world’s largest code hosting and social programming platform, GitHub
has accumulated a large amount of repository and open source collaboration log
data. These GitHub open source data have important practical value for the
analysis and research of the open source ecosystem. Therefore, many researchers
have done a lot of research work on the collection and mining of GitHub open
source data. Part of the research effort is dedicated to collecting and making
available GitHub open source datasets so that other researchers don’t have to
repeatedly collect and organize datasets. GH Archive is an early representative
of this work, which uses a simple and straightforward but effective archiving app-
roach to archive all of GitHub’s event stream data by calling the GitHub REST
API. It archives all of GitHub’s event stream data in JSON format, organized by
date. In order to provide scalable, queryable, and offline GitHub data mirroring,
Gousios et al. [2] proposed and implemented the GHTorrent tool, which sup-
ports both structured and unstructured storage in MySQL databases Stored in
a MongoDB database. World of Code [3] is an infrastructure project that mines
open source version control system (such as GitHub) data. It currently contains
12 billion Git objects and updates the data once a month to support researchers
in their research efforts related to the open source ecosystem. Another part of
the work is dedicated to providing software repository mining (MSR) frameworks
and tools to support the targeted collection of open source data from many open

Open Source Software Supply Chain Recommendation 73

source platforms, including GitHub, and quantitative analysis based on relevant
metrics. A representative work in this area is the CHAOSS project [4], a project
of the Linux Foundation to measure the health of open source communities,
which provides quantitative metrics to evaluate the development of open source
communities and projects, and offers two open source metrics data collection
and quantitative analysis tools, Augur [5] and GrimoireLab [6]. Augur is a tool
for collecting and evaluating structured data about free and open source com-
munities, while GrimoireLab provides a one-stop solution for data acquisition,
data storage and analysis, and visualization.

1.2 GitHub Project Recommendation

In order to recommend projects to developers that match their interests and
expertise, most of the early research work generally used a collaborative filtering-
based approach. Guendouz et al. [7] used developers’ Fork behavior data to
construct a developer-project scoring matrix based on whether developers fork
project repositories, and used project-based collaborative filtering to achieve
Top-N project recommendations. Zhang et al. [8] proposed a project similarity
measure using developer’s star behavioral data to recommend relevant projects
for developers based on the similarity between projects. Xu et al. [9] proposed
the REPERSP model, which utilizes three behavioral data of developers, cre-
ate, fork, and star, and assigns different weight values to these three behavioral
operations to construct a developer-project scoring matrix, while considering the
textual data of project descriptions and source code to calculate the similarity
between projects and projects using the TF-IDF method. He et al. [10] also used
the developer’s create, fork, and watch behavioral data to construct a developer-
project scoring matrix, and combined the user-based and project-based collabo-
rative filtering methods to propose a data-based personalized hybrid recommen-
dation method for GitHub projects. To address the problem of highly sparse
developer-project scoring matrix and cold-start users, Yang et al. [11] calculated
the popularity of the project, the technical correlation between developers and
projects, and the social interaction between developers and projects. The feature
information of the three dimensions of relevance is used to conduct supervised
learning using the developer’s historical behavior data set to build a ranking
recommendation model. Zhang et al. [12] proposed a FunkR-pDAE based on a
deep learning model that uses autoencoders to learn vector representations of
developers and open source projects. Liu et al. [13] designed NNLRank, a neu-
ral network for list ranking, to extract nine features related to project status
and developer history experience to recommend projects that developers may
contribute to.

1.3 Recommendation Methods Based on Heterogeneous
Information Networks

Since heterogeneous information networks are able to comprehensively model
the rich structural and semantic information in complex systems and have sig-

74 H. Lin et al.

nificant advantages in fusing multi-source information and capturing structural
semantics [14], many works have introduced heterogeneous information networks
into recommender systems and proposed many recommendation models based
on heterogeneous information networks. Many previous works have focused on
similarity measures for heterogeneous information networks, including random
walk-based and metapath-based approaches. HeteLearn [15] based on random
walking and Bayesian personalized ranking techniques to learn the weights of
links in heterogeneous networks and applied them to personalized recommenda-
tion tasks. To leverage additional prior knowledge to capture high-level semantic
information in the network, HeteRecom [16] calculates user similarity based on
weighted meta-paths based on HeteSim [17] and uses a heuristic weight learn-
ing method to learn the weights of different metapaths. semRec [18] proposes
a new similarity measure by distinguishing the attribute values on links and
designed a new weight regularization to obtain personalized weight preferences
on different paths. To better capture structural and attribute information in net-
works, researchers have introduced network representation learning techniques.
Grover et al. [19] proposed a network representation learning framework with
biased random walks. LINE [20] portrayed first-order proximity properties and
second-order proximity properties on networks. Metapath2vec [21] proposed a
meta-path based random walk approach to obtain the heterogeneous domain for
each different type of vertex in the heterogeneous network, and then use the
extended SkipGram [22] to predict the context nodes within the sliding window
and finally learn the network embedding representation for each different type
of vertex. HERec [23] also uses a metapath-based random wandering strategy to
generate a sequence of objects, and then uses node2vec [19] to learn the object
HueRec [24], on the other hand, learns embedding representations of users and
items that are uniform across all meta-paths based on the assumption that users
and items have common semantics under different metapaths.

2 Proposed Framework

In Fig. 1, it can be seen that the proposed framework consists of four stages: data
preprocessing, OSWHIN construction, OSWHIN-based embedding and person-
alized recommendation.

– Data preprocessing: The data source comes from the GitHub Archive project.
We designed the automated data integration program to manage the massive
GitHub public event stream data;

– OSWHIN construction. The formal definition of the OSWHIN and OSWHIN
schema is given. Based on the above definition, we present the practical algo-
rithm for network instance generation and select multiple metapaths with
different semantics;

– OSWHIN-based embedding. A random walk strategy based on unweighted
metapaths and weighted metapaths constraints is proposed. We maximize
the conditional probability of the local structure of the network according to
the optimization objective function, and fuse the embedding representations

Open Source Software Supply Chain Recommendation 75

under multiple metapaths to obtain the final embedding representations of
developers and projects;

– Personalized recommendation. We integrate the personalized nonlinear fusion
function into a matrix factorization model for GitHub project recommenda-
tion.

2.1 Data Preprocessing

The data source we use is the GitHub public event stream data archived by
GH Archive. This dataset records historical behavioral data generated by devel-
opers around open source projects across the GitHub platform. To meet the
demand for high-speed queries on large-scale data, we parsed the GH Archive
archived raw data image into structured data and imported it into ClickHouse,
an open source column storage high-performance real-time analytics database,
to facilitate subsequent log data aggregation calculations.

2.2 Oswhin Construction

In order to accurately model the weighted heterogeneous open source information
network in the project recommendation scenario, we combed the open source
collaborative development process based on the GitHub platform, and analyzed
the GitHub public event stream data, and finally selected 4 types of nodes and
abstract the link relationship between nodes and the attribute values on the
relationship to derive the definition of OSWHIN and OSWHIN schema. The
OSWHIN can be represented as G = (V,E,w,A,R,W), where V is the object
set E is the relation set, and w is the attribute value set on the relation. Each
object belongs to one particular object type in the object type set A : ϕ(ν) ∈ A,
A = U ∪ R ∪ I ∪ P and U , R, I, P are the object set of four types: user, repo,
issue and pull request, respectively. Each link e ∈ E belongs to a particular
relation R : ψ(e) ∈ R, R = Ru−r ∪ Ru−i ∪ Ru−pr ∪ Ru−u ∪ Ri−r ∪ Rpr−r.
W is the type set of attribute value on the link relationship, W = Wu−r ∪
Wu−i ∪ Wu−pr. Figure 2 gives the OSWHIN schema which contains 4 types of
objects and various relationships between those objects. The 4 types of objects
are user, repo, issue, and pull request. R∗ represents the interactions between
two types of objects. The color identification in Fig. 2 indicates an attribute value
constraint relationship, while black indicates a normal relationship. Based on the
above network schema, we propose a OSWHIN generation algorithm shown in
Algorithm 1. The algorithm consists of two stages. In the first stage, for each
repository in the given set of open source projects, the developers, issues and
pull requests associated with the repository are aggregated and filtered from the
GitHub event stream data, and then add these nodes to the network instance.
For each developer, the second stage filters the developers of interest and the
associated issues and pull requests, and aggregates the attribute values of Ru−r,
Ru−i and Ru−pr, and then add them to the network instance.

76 H. Lin et al.

Fig. 1. GitHub project recommendation method based on heterogeneous information
network.

Open Source Software Supply Chain Recommendation 77

Algorithm 1: OSWHIN instance generation

Input Time span t, Repositories set R , Events data D, Importance function W .
Output OSWHIN instance G.

FOREACH r ∈ R DO

Ur, ISSUEr, PRr = Extract(D, r, t)
AddToNetwork (G,Ur, Ir, PRr)

FOREACH u ∈ Ur DO
Uu, Iru, PRr

u = GetActivity(D,u, r, t)

wu = Agreegate (D,u, r, Iru, PRr
u,W)

AddToNetwork (G,Uu, wu)
END
END
RETURN G

Fig. 2. OSWHIN schema.

2.3 Metapath Selection

The weighted metapath can be expressed as ρ : A1
δ(R1)→ A2

δ(R2)→
...

δl−1(Rl-1)→ Al , If there is an attribute value on the relation R, the attribute
value function δ(R) represents the range of the attribute value; otherwise, it
is an empty set. Table 1 lists the six selected metapaths, and these different
metapaths represent different semantic information in OSWHIN.

78 H. Lin et al.

Table 1. Metapath and its corresponding semantics.

ID Metapath Semantics

ρ1 UU Developer follows another developer

ρ2 URU Developers are associated with the same
repository

ρ3 UIU Developers participate in the same issue

ρ4 UPU Developers participate in the same pull request

ρ5 UIRIU Developers participate in different issues under
the same repository

ρ6 UPRPU Developers participate in different pull requests
under the same repository

2.4 Oswhin-Based Embedding

Random Walk Strategy. The random walk strategy based on metapaths
constraint is used to preserve the structural and semantic information implicit
in the network nodes and link relationships under a particular metapath. Under
the metapath, constraint, when sampling is performed by random walk, the next
selected node needs to select the sequence of node types under that metapath
definition, so the next visited node needs to be selected within the subset of
the current node’s first-order neighbor set that meets the next node type con-
straint. For a given unweighted OSHIN and a metapath, the random walk path
is generated by formula (1):

P (nt+1 = x|nt = ν; ρ) =

{
1

|NAt+1 (ν)| , (v, x) ∈ E andϕ(x) = At+1

0, otherwise
(1)

where nt is the tth node in the sequence the type of v is At, and NAt+1(n)
is the first-order neighborhood for vertex v, which has the type At+1. For a
given OSWHIN and a weighted metapath, the random walk path is generated
by formula (1):

P (nt+1 = x|nt = ν; ρ) =

⎧⎨
⎩

1∣
∣
∣NAt+1

wt (ν)
∣
∣
∣

,
(v, x) ∈ E andϕ(x) = At+1,

wt = wl−t, wt ∈ δt (Rt)
0, otherwise

(2)

where δt (Rt) is the set of attribute values on the path that connects At and At+1

.wt and wl−t represent an attribute value on two symmetric relations. N At+1
wt (ν)

is the first-order neighborhood for vertex v with the type At+1, and the attribute
value of the relations between nodes in N At+1

wt (ν) and vertex v is wt. Based on
the above rules, the random walk strategy used in this paper is as follows: if the
attribute value constraint function δ (R) is an empty set, the weighted metapath
degenerates to an unweighted metapath, and formula (1) is used to generate a
random walk sequence of nodes; if the attribute value constraint function δ (R)

Open Source Software Supply Chain Recommendation 79

is not empty, a random walk is performed on the weighted metapath based on
the rules defined in formula (2).

Optimization Objective. According to metapath2vec [21], in order to learn
the feature representation of a given node, we maximize the conditional proba-
bility of the local structure of the network by using the following formula.

argmax
∑
v∈V

∑
At∈A

∑
cAt∈NAt (ν)

logp (cAt
|ν; θ) (3)

logp (cAt
|ν; θ) =

e
xcAt

•xv∑
u∈V exu•xv

(4)

where NAt
(ν) represents the node set of type At in the first-order neighborhood

of vertex v . logp (cAt
|ν; θ) is commonly defined as a softmax function. is the

representation of vertex xv. In each iteration of optimization, all nodes are tra-
versed, which leads to low efficiency of the whole model. Therefore, we refer to
word2vec and adopt the negative sampling method to update only a small part
of the model weight in each sample training to reduce the calculation burden
and improve the quality of node embeddings. Given a negative sample size M ,
the optimization objective can be updated to formula (6):

logσ
(
XcAt

• Xv

)
+

m=1∑
M

Eum∼P (u) [logσ (−Xum • Xv)] (5)

where P (u) is a predefined distribution from which a negative node is extracted
M times.

Embedding Fusion. After optimization, the same nodes in different input
sequences are mapped to different vector spaces. In order to improve the effec-
tiveness of the recommendation, we need to map these node representations into
the appropriate space. For a given vertex v and selected metapath set P , we

use el
v represents the embedding of vertex v on the lth metapath. Thus, e

(l)
v

|P|
l=1

represents the set of embeddings on each metapath for vertex v. To make full use
of these node embeddings to enhance the recommendation performance, a fusion
function g (x) is adopted to fuse the node embedding set into one representation:

ev = g
({

e(l)v

|P|
l=1

})
(6)

where ev is the final representation of vertex v, which contains much more infor-
mation under multiple semantic metapaths. In the next section, a specific fusion
function is defined.

80 H. Lin et al.

2.5 Personalized Recommendation

Based on the matrix decomposition approach, the following formula is used to
represent the developer’s rating of the project by applying the embedding vector
of nodes.

ˆru,i = xT
u · yi + α · e(U)T

u · γI
i + β · γUT

u · e
(I)
i (7)

where xu and yi represent the latent factors of developer u and project i, respec-
tively, e

(U)
u and e

(I)
i represent the fused embedding of developer u and project i,

respectively, gI
i and gU

u are the latent factors paired with embeddings e
(U)
u and

e
(I)
i , respectively, and are the parameters that can be adjusted to better inte-

grate three polynomials. Then, a specific fusion function g(x) is given to realize
personalized nonlinear fusion:

g
({

e(l)v

})
= σ

⎛
⎝ |P|∑

l=1

w(l)
v σ

(
M (l)e(l)v + b(l)

)⎞
⎠ (8)

where S is a sigmoid function. P is a metapath set containing vertex v, M (l)

is a transformation matrix on the lth metapath, b(l) is a bias vector on the lth

metapath, and w
(l)
v is the weight of vertex v on the lth metapath. The above

fusion function is integrated into the matrix decomposition framework and the
stochastic gradient descent is used to train the parameters of the model with the
following optimization objectives:

L =
∑

(u,i,ru,i)∈R
(ru,i − ˆru,i)

2
+ λ

∑

u

(||xu||2+||yi||2)+

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

γ
U
u

∣
∣
∣
∣
∣
∣
∣

|2+

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

γ
I
i

∣
∣
∣
∣
∣
∣
∣

|2+

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

Θ
(U)

∣
∣
∣
∣
∣
∣
∣

|2+

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

Θ
(I)

∣
∣
∣
∣
∣
∣
∣

|2

⎞

⎟
⎠

(9)
where ru,i is the calculated predictive value l is a regularization parameter, Θ(U)

and Θ(I) are the parameters in embedding fusion functions corresponding to
developer u and project i, respectively.

3 Experiment

To verify the effectiveness of the proposed method, we conduct experiments
on the real GitHub full-domain public dataset and compare the analysis with
other GitHub project recommendation methods, and finally analyze the impact
of different metapaths on the recommendation effect through the experimental
results.

3.1 Dataset

Based on the GitHub 2020 public dataset, we select 360 open source projects
from the Cloud Native Computing Foundation (CNCF) to build the experimen-
tal dataset and generate a OSWHIN instance according to Algorithm 1. The
data statistics are shown in Table 2.

Open Source Software Supply Chain Recommendation 81

Table 2. Data statistics of experimental dataset.

Type name name

node User 206823

Repo 54433

Issue 788259

PR 713564

Edge User-Repo 962742

User-Issue 1351137

User-PR 1135677

Repo-Issue 789909

Repo-PR 816695

3.2 Evaluation Metrics

We use the precision, recall, F1-score and accuracy to measure the performance
of the proposed method. Precision refers to the ratio of the number of correctly
recommended items to the total number of recommended items. Recall refers to
the ratio of the number of correctly recommended items to the total number of
items. F1-score is used to evaluate the Precision and Recall together. accuracy
is the percentage of all developers who actually participated in at least one of
the recommended projects. The formulae for the four evaluation metrics are as
follows.

Precision@K =
1

|Utest|
|Utest|∑

i=1

∣∣∣si ∩ sTopK
i

∣∣∣∣∣∣sTopK
i

∣∣∣ (10)

Recall@K =
1

|Utest|
|Utest|∑

i=1

∣∣∣si ∩ sTopK
i

∣∣∣
|si| (11)

F1@K =
2 × Precision@K × Recall@K

Precision@K + Recall@K
(12)

Accuracy@K =
1

|Utest|
|Utest|∑

i=1

∣∣∣{si ∩ sTopK
i �= ∅φ

}∣∣∣ (13)

where si represents the project set in which the target developer ui actually
participated, sTopK

i represents the set of Top-K projects recommended to the
target developers ui, Utest represents the set of all developers in the test set.

82 H. Lin et al.

3.3 Experimental Results and Analysis

Recommendation Performance. In order to verify the effectiveness of the
method proposed in this paper, the following GitHub project recommended
method was chosen as the baseline method for experimentation.

1. ICF The item-based collaborative filtering recommendation method, and the
similarity of developers is calculated by the factor between the project sets
stared by developers.

2. UCF The user-based collaborative filtering recommendation method and cal-
culate the developer-project score matrix from the developer’s create, fork,
and star behavioral information

3. RepoLike: A multi-feature-based personalized recommendation approach
with LTR algorithm to train recommendation models. The parameters of
the algorithm in this paper are set as follows: the representation dimension of
the nodes d = 64, the coefficients a = b = 1.0, the length of the random walk
is set to 40, and the number of hidden factors of the matrix decomposition is
set to 10. The experimental results are shown in Table 3.

Table 3. Comparison of the recommendation quality of different models.

Method Precision Recall F1 score Accuracy

ICF 0.053 0.041 0.046 0.218

UCF 0.136 0.129 0.132 0.309

RepoLike 0.273 0.255 0.264 0.428

Our Method 0.481 0.394 0.433 0.693

As is shown in Table 3, our method performs better than other traditional
project recommendation models on the all four metrics. In contrast to the collab-
orative filtering-based approach, by introducing heterogeneous contextual infor-
mation in the network, the problem of sparsity of the developer-project scoring
matrix in the collaborative filtering-based approach is avoided, which is con-
ducive to the improvement of recommendation quality. The RepoLike model
constructs a social network and a project dependency network respectively, but
does not fuse the multi-source information in the network. Our method takes
into account the heterogeneous object types and relationships in the open source
collaborative network, and extracts the rich semantic and structural information
contained in the heterogeneous contexts of the network based on the constructed
multiple metapaths, which can reflect the characteristic information of develop-
ers and projects more objectively and improve the performance of the recom-
mendation model.

Open Source Software Supply Chain Recommendation 83

Metapaths. In order to measure the effectiveness of our constructed metap-
aths, we compare the performance of the recommendation method under dif-
ferent metapaths through several comparison experiments of different metap-
aths. Figure 3 shows the variation of precision, recall, F1-score and accuracy
of the model when different metapaths are added sequentially. The metrics of
the model gradually increase as metapaths are added. When the metapaths
ρ3 : UIU, ρ4 : UPU are added, we can see that the performance of the model is
improved, which indicates that adding the issue and pull request contributions of
developers can more comprehensively explore the interest preferences expressed
by developers in the GitHub platform for open source collaborative development
and ρ4 brings a larger increase than ρ3. An intuitive explanation is that since the
cost of participating in the pull request is higher than the cost of participating in
the issue, the interest relationship between developers implied in ρ4 is stronger
than that in ρ3. Also, we note that with the addition of the metapath ρ5, the
recall and F1-score decreased instead. One possible explanation is that a project
usually contains more issues (compared to pull request) with a larger number
of participating developers, so that this metapath introduces some noise, which
leads to a decrease in model recommendation accuracy. Therefore, the number
of meta-paths is not as large as possible, and only a small number of high-quality
meta-paths need to be fused, which can bring a large performance improvement
to the model, and at the same time can effectively control the complexity of the
model.

Fig. 3. Metapath effectiveness.

Graph Embedding Method. In recent years, graph representation learning
methods have been well used in recommender systems. In this paper, we measure
the performance of different graph representation learning methods in project
recommendation scenarios. The comparison method is as follows.

1. DeepWalk A method of learning the representation of nodes in homogeneous
information networks by random walks.

84 H. Lin et al.

2. Node2vec Based on DeepWalk, this method control search preferences during
random walks by hyperparameters p and q.

3. Metapath2vec A random walk sampling method based on metapath con-
straints, without distinguishing edge weights.

The experimental results show that the proposed OSWHIN-based embedding
method is better than the recommendations of other benchmark methods in all
metrics. DeepWalk and Node2vec are more suitable for homogeneous information
network learning and cannot fully learn the structural and semantic informa-
tion embedded in the heterogeneous nodes and relationships in OSWHIN. The
Metapath2vec method cannot adequately characterize the developer and project
feature information because it cannot learn different attribute value information
on different metapaths. Therefore, compared with other graph representation
learning methods, the proposed method is more suitable for the open source
project recommendation scenario and can extract the rich structural and seman-
tic information contained in different metapaths in the network, thus improving
the recommendation accuracy (Fig. 4).

Fig. 4. Comparison of experimental results of different graph embedding methods.

4 Conclusion

In this paper, we propose a personalized recommendation method for GitHub
projects based on heterogeneous information networks. First, we abstract the
objects and the relationships between nodes based on the open source collab-
orative development process of the GitHub platform, derive the definition of a
OSWHIN and its schema, and select metapaths that reflect the semantic infor-
mation of developers’ interests and preferences in the open source collaborative
development process. Then, the OSWHIN-based embedding is used to learn the
representation of developers and projects. Experimental results on real GitHub
developers’ historical behavioral data show that the GitHub project recom-
mendation method based on heterogeneous information networks can effectively

Open Source Software Supply Chain Recommendation 85

extract and exploit the rich structural and semantic information embedded in
the open source collaborative development network, which helps to improve the
recommendation effectiveness. In future work, we will consider applying large-
scale network embedding algorithms to conduct efficient training on large-scale
network instances to obtain real-time node representation vectors to improve
recommendation performance in real-world scenarios.

References

1. Zhao, H., Li, N., Chen, Q., et al.: Projects and developers recommendation in open
source ecosystem. J. Chin. Comput. Syst. 42(11), 2259–2268 (2021)

2. Gousios, G., Spinellis, D.: GHTorrent: GitHub’s data from a firehose. In: 2012
9th IEEE Working Conference on Mining Software Repositories (MSR), pp. 12–21
(2012)

3. Ma, Y., Bogart, C., Amreen, S., et al.: World of code: an infrastructure for mining
the universe of open source VCS data. In: 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pp. 143–154 (2019)

4. Goggins, S.P., Germonprez, M., Lumbard, K.: Making open source project health
transparent. Computer 54(08), 104–111 (2021)

5. Peterson, J., Krug, J.: Augur: a decentralized, open-source platform for prediction
markets. arXiv preprint arXiv:1501.01042, p. 507 (2015)

6. Dueñas, S., Cosentino, V., Gonzalez-Barahona, J.M., et al.: GrimoireLab: a toolset
for software development analytics. Peer J. Comput. Sci. 7, e601 (2021)

7. Guendouz, M., Amine, A., Hamou, R.M.: Recommending relevant open source
projects on GitHub using a collaborative-filtering technique. Int. J. Open Source
Softw. Process. (IJOSSP) 6(1), 1–16 (2015)

8. Zhang, Y., Lo, D., Kochhar, P.S., et al.: Detecting similar repositories on GitHub.
In: 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 13–23. IEEE (2017)

9. Xu, W., Sun, X., Hu, J., et al.: REPERSP: recommending personalized software
projects on GitHub. In: 2017 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), pp. 648–652. IEEE (2017)

10. He, K., Ma, Y., Zhang, Y., Liu, H.: A data-based personalized mixed recommenda-
tion method for GitHub projects. J. Jilin Univ. Sci. Edn. 58(6), 1399–1406 (2020)

11. Yang, C., Fan, Q., Wang, T., et al.: RepoLike: personal repositories recommenda-
tion in social coding communities. In: Proceedings of the 8th Asia-Pacific Sympo-
sium on Internetware, pp. 54–62 (2016)

12. Zhang, P., Xiong, F., Leung, H., et al.: FunkR-pDAE: personalized project rec-
ommendation using deep learning. IEEE Trans. Emerg. Top. Comput. 9, 886–900
(2018)

13. Liu, C., Yang, D., Zhang, X., et al.: Recommending GitHub projects for developer
onboarding. IEEE Access 6, 52082–52094 (2018)

14. Sun, Y., Han, J.: Mining heterogeneous information net-works: a structural analysis
approach. ACM SIGKDD Explor. Newsl. 14(2), 20–28 (2013)

15. Jiang, Z., Liu, H., Fu, B., et al.: Recommendation in heterogeneous information
networks based on generalized random walk model and Bayesian personalized rank-
ing. In: Proceedings of the Eleventh ACM International Conference on Web Search
and Data Mining, pp. 288–296 (2018)

http://arxiv.org/abs/1501.01042

86 H. Lin et al.

16. Shi, C., Zhou, C., Kong, X., et al.: HeteRecom: a semantic-based recommendation
system in heterogeneous networks. In: Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1552–
1555 (2012)

17. Shi, C., Kong, X., Huang, Y., et al.: HeteSim: a general framework for relevance
measure in heterogeneous networks. IEEE Trans. Knowl. Data Eng. 26(10), 2479–
2492 (2014)

18. Shi, C., Zhang, Z., Luo, P., et al.: Semantic path based personalized recommenda-
tion on weighted heterogeneous information networks. In: Proceedings of the 24th
ACM International on Conference on Information and Knowledge Management,
pp. 453–462 (2015)

19. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864 (2016)

20. Tang, J., Qu, M., Wang, M.: Large-scale information network embedding. In: Pro-
ceedings of the 24th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, pp. 1067–1077 (2015)

21. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning
for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 135–144 (2017)

22. Mikolov, T., Chen, K., Corrado, G., et al.: Efficient estimation of word represen-
tations in vector space [EB/OL]. arXiv preprint arXiv:1301.3781 (2013)

23. Shi, C., Hu, B., Zhao, W.X., et al.: Heterogeneous information network embedding
for recommendation. IEEE Trans. Knowl. Data Eng. 31(2), 357–370 (2019)

24. Wang, Z., Liu, H., Du, Y., et al.: Unified embedding model over heterogeneous
information network for personalized recommendation. In: IJCAI, pp. 3813–3819
(2019)

http://arxiv.org/abs/1301.3781

BasicTS: An Open Source Fair
Multivariate Time Series Prediction

Benchmark

Yubo Liang1,2, Zezhi Shao1,2, Fei Wang1(B), Zhao Zhang1, Tao Sun1,
and Yongjun Xu1

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
{liangyubo20g,shaozezhi19b,wangfei,zhangzhao2021,suntao,xyj}@ict.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Multivariate Time Series (MTS) is ubiquitous in the real
world, and its prediction plays a vital role in a wide range of applica-
tions. Recently, many researchers have made persistent efforts to design
powerful models. For example, Spatial-Temporal Graph Neural Networks
(STGNNs) have become increasingly popular MTS prediction methods
due to their state-of-the-art performance. However, we found there exists
much unfairness in the comparison of the performance of existing models,
which may prevent researchers from making correct judgments. Mean-
while, researchers usually have to build training pipelines that are com-
plex and error-prone when designing new models, which further obstacles
the quick and deep innovation in the MTS prediction field. In this paper,
we first analyze the sources of unfairness and then propose a fair and
easy-to-use benchmark, BasicTS, to address the above two issues. On
the one hand, for a given MTS prediction model, BasicTS evaluates its
ability based on rich datasets and standard pipelines. On the other hand,
BasicTS provides users with flexible and extensible interfaces to facili-
tate convenient designing and exhaustive evaluation of new models. In
addition, based on BasicTS, we provide performance revisits of several
popular MTS prediction models. The proposed benchmark is publicly
available at https://github.com/zezhishao/BasicTS.

Keywords: Multivariate time series prediction · Unfairness ·
Benchmark

1 Introduction

Multivariate Time Series (MTS) contains time series from multiple correlated
variables and exists in many real-world systems. Accurate MTS prediction fuels a
wide range of services related to intelligent transportation, financial investment,
and environmental protection. It helps people to make better decisions. Thus,
MTS prediction has remained an enduring topic in both academia and industry.

Z. Shao—Project leader.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Gainaru et al. (Eds.): Bench 2022, LNCS 13852, pp. 87–102, 2023.
https://doi.org/10.1007/978-3-031-31180-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31180-2_6&domain=pdf
https://github.com/zezhishao/BasicTS
https://doi.org/10.1007/978-3-031-31180-2_6

88 Y. Liang et al.

Despite the significant progress, we find that the evaluation and comparison
of existing models are not fair enough, which may lead researchers to make wrong
judgments and thus hind innovation in the field of MTS prediction. Specifically,
after an exhaustive technical review of existing works, we summarize the sources
of unfairness into three levels: data level, model level, and evaluation level.

Data Level:
Unfairness caused by the lack of richness of the datasets. Different datasets are
often heterogeneous, i.e., datasets have different physical characteristics, dynam-
ics, and so on. Therefore, the same model may have different performances on
different types of datasets. Thus, using only a specific type of dataset for com-
parison may lead to unfair results.
Unfairness caused by data pre-processing. Different normalization methods (e.g.,
max-min normalization, z-score normalization) may affect the model’s perfor-
mance. Therefore, if different models adopt different pre-processing approaches,
the comparison of their performance results is unfair.

Model Level:
Unfairness caused by different pipelines. Pipeline controls many details of the
training process. Since each researcher tends to construct their own model
pipeline, it may bring an unfair comparison of results.
Unfairness caused by hyper-parameters settings. In deep learning-related pre-
diction models, the hyper-parameters have a significant impact on the final
performance, e.g., learning rate, weight decay, random seeds, etc. For exam-
ple, we find that in some works [1,2], the performance of important baselines,
such as DCRNN [3] and Graph WaveNet [4], is surprisingly poor, this may
be caused by unreasonable hyper-parameter settings. Thus, different settings of
hyper-parameters may lead to an unfair comparison of results.

Evaluation Level:
Unfairness caused by different ways of calculating the evaluation metrics. Com-
mon evaluation metrics for MTS prediction problems include MAE, MAPE,
RMSE. Although they have strict mathematical definitions, the implementation
details may vary, such as the way of handling outliers, and mini-batch computa-
tions [5]. These differences can cause significant deviations from test results and
actual performance, thus leading to an unfair comparison of results.
Unfairness caused by different ways of evaluation. For example, in the field of
MTS prediction, the metrics of horizon x denotes the error metrics at the x-th
prediction time step, while many researchers make mistakes and calculate the
average of the error metrics over 0-x prediction time step, which results in a
significant reduction in error and thus significant unfairness.

In order to solve the above unfairness problems and fairly evaluate the perfor-
mance of a given model, we propose a fair and easy-to-use open-source bench-
mark for MTS prediction, named BasicTS. Specifically, BasicTS provides an
exhaustive and fair evaluation of a given model based on a unified pipeline and
rich datasets. In addition, to make it easier for researchers to use, BasicTS pro-
vides a set of rich and extensible interfaces that allows users to focus on model

BasicTS: A Multivariate Time Series Prediction Benchmark 89

design and ignore the building of the training and evaluating pipeline, enabling
rapid development and comprehensive evaluation. Finally, based on BasicTS,
we present a performance review of popular deep learning-based MTS predict-
ing methods, to provide researchers with a solid reference.

Our contributions are summarized as follows:

– We designed a benchmark named BasicTS for solving the unfair compari-
son problem of MTS prediction models. For a given MTS prediction model,
BasicTS utilizes a unified pipeline to perform an exhaustive evaluation of its
capabilities based on rich datasets.

– We designed a set of rich and extensible interfaces in BasicTS, which can help
researchers quickly design and evaluate their own models and be free from
the hassle of building complex pipelines.

– Based on BasicTS, we provide a fair performance comparison of existing pop-
ular MTS prediction models to provide researchers with a solid reference and
thus inspire innovations.

2 Related Works

In this section, we list the existing benchmarks related to time series prediction.
GluonTS [6] is an open-source benchmark designed by Amazon that focuses

on time series prediction. However, it cannot handle datasets with pre-defined
graphs, which limits its usability for STGNN-related models. FOST is a spatio-
temporal prediction framework designed by MSRA. Compared to GluonTS, it
adds a GNN model to ensure its ability to handle data with pre-defined graphs.
However, FOST lacks interfaces for hyper-parameter settings, and it can only
make predictions but cannot evaluate the prediction results, which makes it dif-
ficult to guarantee the fairness of this benchmark. In addition, FOST contains
only three models (RNN, CNN, GNN) and has not designed interfaces to add
new models. Also, its form of input data is fixed, which significantly limits its
extensibility. LibCity [7] is a library specifically focused on traffic-related prob-
lems, which aims to provide experimental tools for researchers. However, it is
not designed for benchmarking and only focuses on traffic-related data, ignoring
many other real-world MTS prediction problems.

Compared with existing works, BasicTS is the first work that provides unified
pipelines and rich datasets for benchmarking given MTS prediction models, and
provides users with extensible and easy-to-use interfaces for quickly designing
and evaluating new models.

3 Benchmark Building

In the Introduction, we analyze the factors that may lead to unfairness. In this
section, we will explore our ideas to solve the above unfairness problems and
propose the specific implementation of BasicTS.

90 Y. Liang et al.

3.1 Design Thoughts

In this part, we demonstrate the design thoughts of BasicTS, which aims to
address the critical unfairness issues discussed in the Introduction and provide
extensibility for users to enable users adding their models and datasets.

Unfairness. We propose the following solutions to the factors that lead to
unfairness in the field of MTS prediction:

Data Level. For unfairness caused by the lack of richness of the datasets, we
used rich and heterogeneous datasets. Specifically, BasicTS currently includes
ten datasets, including traffic speed datasets (METR-LA, PEMS-BAY), traffic
flow datasets (PEMS03, PEMS04, PEMS07, PEMS08), electricity, solar-energy,
exchange-rate, and Beijing air quality. In particular, in addition to datasets
that include a pre-defined graph indicating spatial dependency, the latter four
datasets, which do not contain a pre-defined graph, can help to evaluate the
model’s capability more comprehensively. For unfairness caused by data pre-
processing, we adopted a uniform data pre-processing process, which takes Z-
Score normalization as default.

Model Level. For unfairness caused by different pipelines, we use an identical,
standard, extensible pipeline to avoid the unfairness problem caused by different
training pipelines. For unfairness caused by hyper-parameter settings, we have
provided interfaces that allow flexible parameter settings and carefully tuned the
parameters of all existing models in BasicTS.

Evaluation Level. We use unified evaluation metrics and pipelines to ensure the
fairness of the evaluation. In addition, to measure the model’s performance at
different prediction lengths, users can evaluate the performance of the model at
any time step less than the length of the prediction.

Extensibility. BasicTS provides researchers with rich, easy-to-use, and extensi-
ble interfaces to configure the standard Pipeline and functions built in BasicTS.
Specifically, for the convenience of researchers, a unified configuration file is
designed to allow users to configure all parameters, such as dataloader, environ-
ment, and parameters to be optimized. Users can configure it by simply editing
them at the string level as if they were filling out a form. In addition, the unified
configuration file imports the model to be evaluated and its runner (optional),
which can be designed at will by simply following the standard input and output
interfaces designed by BasicTS.

The unified configuration profile and extensible interface design allow users
to ignore the construction of the training process and focus on the design of the
model, enabling rapid iteration and effective innovation.

3.2 Implementation of BasicTS

The specific implementation of BasicTS is shown in Fig. 1. Among them, users
communicate with BasicTS through a unified configuration file. In this part, we
will describe the implementation of each module in detail.

BasicTS: A Multivariate Time Series Prediction Benchmark 91

Fig. 1. BasicTS components.

92 Y. Liang et al.

Data Pre-processing: The data pre-processing module aims to generate a
unified data file for the model. Specifically, the data pre-processing module first
loads the original data for pre-processing (e.g., normalization) and adds addi-
tional features (e.g., time features Time of Day, Day of Week). Then, training
samples are obtained by sliding windows of length P + F over the time series,
where the first P time slices are historical data and the subsequent F time slices
are future data. In particular, to improve flexibility and efficiency, BasicTS stores
the index of the sample instead of the sample itself.

Standard Dataloader: Benefiting from the uniform data storage format gen-
erated by data pre-processing module, this module can read any dataset in a
standard mini-batch way.

Model: In this module, BasicTS specifies the standard input and output inter-
faces. The input interface contains common parameters such as historical data,
epochs number, iteration number, and so on. The model aims to return predic-
tion values. By following the model interfaces specified by BasicTS, users are free
to design arbitrary models, which fully guarantees the extensibility of BasicTS.

Runner: Runner controls the entire training, validation, and testing process,
such as data loader construction, model optimization, evaluation methods, model
saving and loading, log saving, and other details. BasicTS includes a built-in
standard runner to ensure fairness. Users can adjust the standard runner by
modifying the parameters in the configuration file, such as learning rate, weight
decay coefficients, and so on. In addition, we also allow users to customize the
runner in an inherited way.

Evaluation: This module is designed to evaluate the results produced by the
runner. BasicTS currently provides implementations of three widely-used evalua-
tion metrics, MAE, MAPE, and RMSE. BasicTS’s standard runner evaluates the
results on Horizon@3,6,12, overall using the incoming metrics, thus avoiding
the unfairness caused by algorithmic evaluation.

User Interface: Users communicate with BasicTS by configuring the unified
configuration file, which is a python file that maintains an EasyDict object that
allows the user to edit at the string level, like filling out a form. For exam-
ple, users can set BATCH SIZE to set the batch size of the Dataloader and
CFG.TRAIN.OPTIM.TYPE to “Adam” to use Adam as the model’s optimizer.
the unified configuration file allows users to configure almost all parameters
related to Dataloader, such as environment variables, training parameters, and
so on. In addition, users can import their own designed model structure and
custom runner (optional) into the unified configuration file.

4 Evaluation

In this section, we first introduce the setup of our experiments, and then we
illustrate the unfair phenomenon mentioned in the Introduction through exper-
iments. Finally, we provide a fair performance revisit of existing popular MTS
prediction models.

BasicTS: A Multivariate Time Series Prediction Benchmark 93

4.1 Experimental Setup

Datasets: We conducted experiments on ten commonly used MTS predic-
tion datasets: PEMS03, PEMS04, PEMS07, PEMS-08, PEMS-BAY, METR-LA,
Electricity, solar-energy, exchange-rate, and Beijing air quality.

The information of these datasets is shown in Table 1. Traffic-related predic-
tions, such as traffic flow prediction and traffic speed prediction, are the most
common issues of MTS prediction. Among them, PEMS03, PEMS04, PEMS07,
and PEMS08 are traffic flow datasets, while PEMS-BAY and METR-LA are
traffic speed datasets. These datasets contain a pre-defined graph indicating the
spatial dependency between traffic sensors.

However, the MTS problem has a wide range of applications in many fields.
Therefore, we also include four datasets from different areas. They are electricity
and solar-energy for energy, exchange-rate for economics, and Beijing air quality
dataset for environmental protection. Since there are no spatial dependencies
among multiple time series in the applications of these domains, none of these
four datasets contain pre-defined graphs.

Table 1. Information of datasets used in BasicTS.

Dataset Length Variants Sample Rate Time Span Application

PEMS03 26208 358 5 min 3 months traffic flow

PEMS04 16992 307 5 min 2 months traffic flow

PEMS07 28224 883 5 min 3 months traffic flow

PEMS08 17856 170 5 min 6 months traffic flow

PEMS-BAY 52116 325 5 min 6 months traffic speed

METR-LA 6850 207 5 min 4 months traffic speed

Electricity 2208 336 60 min 3 months electricity

solar-energy 52560 137 10 min 1 year energy

exchange-rate 7588 8 1 day 20 years economics

Beijing air quality 6000 7 6 h 1500 days environment

Models: In this part, we briefly introduce the MTS prediction baselines included
in BasicTS. Particularly, we choose MTS prediction models that contain official
public code, which helps researchers to make a quick and accurate comparison
and reproduction.

– HI [8]: Historical Inertia (HI) model adopts the most recent historical data
points in input time series as the prediction results.

– LSTM [9]: Long Short-Term Memory (LSTM) network with fully connected
hidden units is a well-known network architecture that is powerful in captur-
ing sequential dependency.

– DCRNN [3]: Diffusion Convolutional Recurrent Neural Network (DCRNN)
models the traffic flow as a diffusion process. It replaces the fully connected
layer in GRU with a diffusion convolutional layer to form a new Diffusion
Convolutional Gated Recurrent Unit (DCGRU).

94 Y. Liang et al.

– Graph WaveNet [4]: Graph WaveNet stacks Gated TCN and GCN layer by
layer to jointly capture the spatial and temporal dependencies.

– STGCN [10]: Spatial-Temporal Graph Convolutional Network (STGCN) inte-
grate graph convolution (spatial dimension) and 2D gated temporal convolu-
tion (temporal dimension) to model the correlations in MTS data.

– StemGNN [1]: Spectral Temporal Graph Neural Network (StemGNN) takes
the advantage of both inter-series correlations and temporal dependencies by
modeling them jointly in the spectral domain.

– MTGNN [11]: MTGNN extends Graph WaveNet through the mix-hop propa-
gation layer in the spatial module, the dilated inception layer in the temporal
module, and a more delicate graph learning layer.

– DGCRN [12]: DGCRN models the dynamic graph and designs a novel
Dynamic Graph Convolutional Recurrent Module (DGCRM) to capture the
spatial-temporal pattern in a seq2seq architecture.

– GTS [5]: GTS learns a graph structure among multiple time series and fore-
casts them simultaneously with DCRNN.

– AGCRN [13]: Adaptive Graph Convolutional Recurrent Network (AGCRN)
captures node-specific spatial and temporal correlations in MTS based on
two modules, i.e., node adaptive parameter learning and data-adaptive graph
generation modules.

– STNorm [14]: STNorm refines the high-frequency component and the local
component from the MTS data based on the proposed temporal normalization
and spatial normalization, respectively.

– D2STGNN [15]: D2STGNN decouples the diffusion and inherent signals built
in MTS data to achieve more precise modeling, and features a dynamic graph
learning module for the dynamic characteristics of traffic networks.

Metrics: We evaluated all models by three most widely used metrics in MTS
prediction, including Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and Mean Absolute Squared Error (MSE). In addition, we compared
the performance of these methods on the error metrics at the 3, 6, 12, and overall
prediction time steps, which is shown in the Horizon@3, @6, @12, and overall,
respectively.

Experimental Environment: All models are trained on Intel(R) Xeon(R)
Gold 5217 CPU @ 3.00 GHz, 128G RAM computing server, equipped with
NVIDIA RTX 3090 graphics cards.

4.2 Experimental Results

In this section, we will experimentally demonstrate the unfairnesses mentioned
in the Introduction.

Unfairness Caused by Lack of Richness of the Datasets. Different
datasets often have different properties, e.g., different distributions, different
dynamics, etc. Therefore, even the same model tends to show different per-
formances on different datasets. Here, we select two typical models, GTS and

BasicTS: A Multivariate Time Series Prediction Benchmark 95

Table 2. Comparison of DCRNN and GTS performance on different datasets.

Datasets Models @Horizon 3 @Horizon 6 @Horizon 12 Overall (12 Horizon)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA DCRNN 2.67 5.16 6.86% 3.07 6.29 8.42% 3.57 7.56 10.37% 3.04 6.26 8.33%

GTS 2.75 5.28 7.13% 3.14 6.33 8.70% 3.60 7.46 10.42% 3.10 6.29 8.54%

PEMS-BAY DCRNN 1.31 2.80 2.73% 1.66 3.81 3.75% 1.98 4.64 4.73% 1.60 3.74 3.61%

GTS 1.36 2.91 2.85% 1.72 3.86 3.88% 2.05 4.62 4.87% 1.65 3.77 3.73%

PEMS03 DCRNN 14.16 24.61 14.21% 15.41 27.01 15.07% 17.31 30.05 16.71% 15.37 26.92 15.10%

GTS 13.93 23.96 14.02% 15.27 26.12 15.35% 17.35 29.11 17.23% 15.24 26.08 15.24%

PEMS04 DCRNN 18.53 29.61 12.71% 19.65 31.37 13.45% 21.67 34.19 15.03% 19.71 31.43 13.54%

GTS 19.27 30.46 13.33% 20.86 32.78 14.68% 23.52 36.31 17.03% 20.91 32.86 14.77%

PEMS07 DCRNN 19.45 31.39 8.29% 21.18 34.42 9.01% 24.14 38.84 10.42% 21.20 34.43 9.06%

GTS 20.00 31.87 8.45% 22.11 35.02 9.39% 25.49 39.77 10.96% 22.08 35.07 9.40%

PEMS08 DCRNN 14.16 22.20 9.31% 15.24 24.26 9.90% 17.70 27.14 11.13% 15.26 24.28 9.96%

GTS 14.50 22.97 9.23% 15.77 25.08 10.09% 18.02 28.25 11.74% 15.82 25.13 10.18%

DCRNN, for performance comparison on six different traffic-related datasets we
mentioned above.

As shown in Table 2, The two models have different performances on differ-
ent datasets. DCRNN performs better on METR-LA, PEMS-BAY, PEMS04,
PEMS07, and PEMS08; however, GTS performs better on PEMS03. Therefore,
we introduce 10 datasets in multiple domains to comprehensively measure the
performance of a model on each dataset. In particular, six traffic datasets con-
tain a predefined graph to describe spatial associations; the other four datasets
do not contain predefined graphs. This helps to comprehensively measure the
ability of the model to handle different datasets.

Unfairness Caused by Data Pre-processing. For most machine-learning-
related models, it is essential to perform data pre-processing on the raw data.
Among the pre-processing methods, normalization is the most common means,
which helps to improve the efficiency of gradient descent and enables models
to obtain better results. Common normalization methods include Z-score nor-
malization and max-min normalization. Here, we choose three models, Graph
WaveNet, STGCN, AGCRN to compare the effects of different data pre-
processing methods on the results. The experiments were conducted on the
PEMS-BAY dataset.

Table 3. Effect of different data pre-processing methods on MTS prediction.

Methods Min-max Normailization Z-score Normalization

MAE RMSE MAPE MAE RMSE MAPE

GraphWaveNet 1.56 3.57 3.49% 1.59 3.69 3.52%

STGCN 1.66 3.72 3.70% 1.63 3.73 3.69%

AGCRN 1.69 3.91 3.81% 1.63 3.78 3.73%

As shown in Table 3, The same model may show very different results when
using different data pre-processing methods. Therefore, when comparing results,

96 Y. Liang et al.

it is crucial to ensure that all models use the same data pre-processing methods.
We provide a convenient normalization processing interface in the data prepa-
ration stage mentioned above, which can fully guarantee fairness in this aspect.

Unfairness Caused by Different Pipelines. Different model pipelines may
likewise lead to an unfair comparison of results. For example, Whether or not
to add gradient clipping to the training pipeline will have a great impact on the
result. Here, we tested the effect of adding gradient clipping to the MTGNN and
STNorm’s training pipeline on the exchange-rate dataset, shown in Table 4.

Table 4. Effect of different pipeline on MTS prediction.

Methods Add Gradient clipping Not Add Gradient clipping

MAE RMSE MAPE MAE RMSE MAPE

MTGNN 0.0133 0.0227 7.05% 0.0130 0.0205 5.45%

STNorm 0.0068 0.0116 1.81% 0.0070 0.0118 2.63%

As shown in Table 4, adding gradient clipping to the training pipeline has
a huge impact on the results. Furthermore, there are also many other details
about pipeline construction, which can also affect the results. Therefore, different
pipelines often bring significant unfairnesses. As described in the Benchmark
Building, we use the same pipeline for all models to circumvent the possible
unfair comparison of results.

Unfairness Caused by Hyper-Parameters Setting. Hyper-parameters set-
ting is an integral part of determining a model’s effect, and there are considerable
works on this.

There is a wide variety of hyper-parameters, including optimizer [16,17],
weight-decay [18], batch size [19,20], and so on. Many of them can significantly
impact the algorithm’s performance. Here, we set up two experiments to show
the effect of the hyper-parameter settings on the model.

Optimizer. Optimizer is one of the most important hyper-parameters in deep
learning models. It refers to the method of finding the optimal deep neural
network parameters through gradient descent, which determines the efficiency
and stability of gradient learning optimization methods. Here, we test the effects
of Adam [16], Adagrad [17], and SGD [21] optimizers on the performance of
model STGCN on PEMS-BAY. The result is shown in Table 5.

Weight Decay. The strong fitting ability of neural networks may lead to over-
fitting. Therefore, it is often necessary to take measures to improve the gen-
eralization ability of neural networks. Weight decay is one of the most com-
mon regularization methods, which improves the generalization ability of neural
networks by introducing a discount factor when the parameters are updated.
Therefore, the coefficient of weight decay is one of the most important hyper-
parameters of the deep learning model. Here, we set the weight decay coefficients

BasicTS: A Multivariate Time Series Prediction Benchmark 97

Table 5. Effect of different optimizers on the performance of STGCN on PEMS-BAY.

Optimizer @Horizon 3 @Horizon 6 @Horizon 12 Overall (12 Horizon)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Adam 1.35 2.86 2.86% 1.69 3.83 3.85% 2.00 4.56 4.74% 1.63 3.73 3.69%

Adagrad 1.46 3.09 3.07% 1.88 1.98 4.78% 2.41 5.51 5.93% 1.86 4.26 4.26%

SGD 1.67 3.35 3.56% 2.10 4.63 4.57% 2.79 6.33 6.45% 2.12 4.78 4.70%

to 0.00001,0.0001,0.001 to test the effect of the weight decay coefficient on the
performance of model STGCN on PEMS-BAY. The result is shown in Table 7.

Table 6. Effect of different weight-decay coefficients on the performance of STGCN
on PEMS-BAY.

Coefficient @Horizon 3 @Horizon 6 @Horizon 12 Overall (12 Horizon)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

0.00001 1.37 2.70 2.88% 1.71 3.92 3.83% 2.03 4.70 4.66% 1.65 3.83 3.67%

0.0001 1.35 2.86 2.86% 1.69 3.83 3.85% 2.00 4.56 4.74% 1.63 3.73 3.69%

0.001 1.59 3.35 3.63% 1.92 4.24 4.54% 2.29 5.17 5.47% 1.88 4.21 4.44%

As shown above, hyper-parameters show a considerable impact on the perfor-
mance of the model. Therefore, reasonable parameter adjustment is an important
part of ensuring the fairness of the comparison of the performance of models.
However, the optimal hyper-parameters of different models are often different,
and the adjustment of hyper-parameters still depends largely on artificial experi-
ence. To this end, we provided interfaces that allows flexible parameter settings.
Also, we have carefully tuned the parameters of all existing models in BasicTS
to make them optimal (Table 6).

4.3 Review

In this subsection, we review 11 models on METR-LA, PEMS-BAY, PEMS03,
PEMS04, PEMS07, PEMS08, and Electricity, solar-energy, exchange-rate, and
Beijing air quality. In particular, some models require a pre-defined adjacency
matrix as input, thus these models will not work on the latter four datasets. We
divide reviews into three categories: traffic speed datasets, traffic flow datasets,
and datasets that does not contain pre-defined graph.

For a fair comparison, we follow the dataset division in previous works. The
ratio of training, validation, and test sets for the PEMS-BAY dataset is 7 : 1 :
2, while the ratio for other datasets is 6 : 2 : 2. We aim to predict the future
time series with a length of 12, i.e., F = 12, on all datasets. We compared the
performance of these methods on the 3rd, 6th, and 12th time slots and the
average 12 time slots, which are shown in the @3, @6, @12, and @overall
columns, respectively. The results of the review are shown in Table 7, Table 8,
Table 9.

98 Y. Liang et al.

Table 7. Review of MTS prediction methods on dataset which doesn’t contain pre-
defined graph.

Datasets Methods @Horizon 3 @Horizon 6 @Horizon 12 Overall (12 Horizon)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Electricity HI 92.42 167.00 70.16% 92.58 167.05 70.46% 92.79 167.21 70.91% 92.58 167.07 70.43%

AGCRN 22.88 50.02 41.30% 24.49 54.16 48.90% 27.25 59.80 52.57% 23.87 53.00 10.16%

StemGNN 21.43 46.80 35.08% 22.02 49.87 40.00% 26.06 56.99 47.59% 22.75 49.80 39.52%

MTGNN 16.78 36.91 48.17% 18.43 42.61 51.32% 20.51 48.34 56.27% 18.19 42.04 50.77%

STNorm 18.94 40.77 39.10% 21.73 47.70 51.66% 24.62 55.04 66.98% 21.32 47.46 49.49%

Solar Energy HI 7.20 9.65 376.10% 7.20 9.65 376.10% 7.20 9.65 376.10% 7.20 9.65 376.10%

AGCRN 1.48 2.61 101.08% 2.02 3.39 136.36% 2.76 4.50 158.56% 1.98 3.45 125.68%

StemGNN 1.74 2.83 128.85% 2.26 3.62 161.17% 2.88 4.58 183.25% 2.21 3.63 151.21%

MTGNN 1.35 2.41 70.70% 1.81 3.06 107.07% 2.56 4.09 178.68% 1.80 3.13 109.25%

STNorm 0.56 1.58 59.70% 0.77 2.10 101.69% 1.13 2.84 169.64% 0.77 2.14 96.57%

Exchange Rate HI 0.0092 0.0151 1.18% 0.0092 0.0151 1.18% 0.0092 0.0151 1.18% 0.0092 0.0151 1.18%

AGCRN 0.0060 0.0088 4.83% 0.0082 0.0127 2.29% 0.0106 0.0168 2.05% 0.0082 0.0130 3.33%

StemGNN 0.1521 0.1991 179.07% 0.1511 0.1974 199.18% 0.1534 0.1998 192.41 % 0.1549 0.2022 169.47%

MTGNN 0.0133 0.0227 7.05% 0.0167 0.0273 8.30% 0.0184 0.0300 7.34% 0.0164 0.0273 7.70%

STNorm 0.0048 0.0081 0.69% 0.0068 0.0112 1.01% 0.0098 0.0156 2.77% 0.0068 0.0116 1.81%

Beijing Air Quality HI 30.20 57.99 99.54% 30.27 58.03 99.60% 30.24 58.02 99.43% 30.23 58.01 99.47%

AGCRN 30.16 53.60 119.24% 31.41 55.53 130.92% 32.63 58.77 139.12% 30.20 54.14 126.12%

StemGNN 27.02 48.07 143.93% 27.09 48.55 211.92% 26.64 48.55 129.88% 26.65 48.48 151.80%

MTGNN 21.68 42.02 78.52% 25.66 46.39 129.62% 26.24 47.83 120.64% 23.66 44.39 100.39%

STNorm 20.69 39.07 92.66% 23.64 42.63 102.89% 24.26 44.65 99.14% 21.99 41.05 100.28%

Table 8. Review of MTS prediction methods on traffic speed datasets.

Datasets Methods @Horizon 3 @Horizon 6 @Horizon 12 Overall (12 Horizon)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA HI 6.80 14.21 16.72% 6.80 14.21 16.72% 6.80 14.20 10.15% 6.80 14.21 16.72%

Graph WaveNet 2.69 5.15 6.96% 3.08 6.21 8.47% 3.53 7.30 10.15% 3.04 6.15 8.31%

DCRNN 2.67 5.16 6.86% 3.07 6.29 8.42% 3.57 7.56 10.37% 3.04 6.26 8.33%

AGCRN 2.88 5.57 7.72% 3.26 6.61 9.17% 3.67 7.60 10.74% 3.20 6.50 9.00%

STGCN 2.76 5.31 7.20% 3.16 6.36 8.72% 3.62 7.45 10.43% 3.12 6.30 8.58%

StemGNN 2.96 5.77 7.90% 3.46 6.96 9.79% 4.11 8.32 12.25% 3.43 6.93 9.70%

GTS 2.75 5.28 7.13% 3.14 6.33 8.70% 3.60 7.46 10.42% 3.10 6.29 8.54%

MTGNN 2.71 5.22 6.89% 3.07 6.23 8.27% 3.51 7.28 9.90% 3.04 6.17 8.15%

STNorm 2.82 5.55 7.48% 3.19 6.59 9.00% 3.56 7.47 10.51% 3.12 6.45 8.77%

STID 2.79 5.53 7.64% 3.16 6.57 9.30% 3.53 7.51 10.78 % 3.10 6.45 9.01%

DGCRN 2.61 5.02 6.57% 2.99 6.07 7.90% 3.45 7.27 9.49% 2.96 6.05 7.79%

D2STGNN 2.56 4.90 6.52% 2.90 5.90 7.88% 3.34 7.02 9.63% 2.87 5.88 7.79%

PEMS-BAY HI 3.06 7.05 6.85% 3.06 7.04 6.84% 3.05 7.03 6.83% 3.05 7.05 6.84%

Graph WaveNet 1.30 2.80 2.69% 1.65 3.75 3.65% 1.97 4.58 4.63% 1.59 3.69 3.52%

DCRNN 1.31 2.80 2.73% 1.66 3.81 3.75% 1.98 4.64 4.73% 1.60 3.74 3.61%

AGCRN 1.37 2.93 2.95% 1.70 3.89 3.88% 1.99 4.64 4.72% 1.63 3.78 3.73%

STGCN 1.35 2.86 2.86% 1.69 3.83 3.85% 2.00 4.56 4.74% 1.63 3.73 3.69%

StemGNN 1.44 3.12 3.08% 1.93 4.38 4.54% 2.57 5.88 6.55% 1.91 4.46 4.54%

GTS 1.36 2.91 2.85% 1.72 3.86 3.88% 2.05 4.62 4.87% 1.65 3.77 3.73%

MTGNN 1.34 2.84 2.80% 1.67 3.79 3.74% 1.97 4.55 4.57% 1.60 3.70 3.57%

STNorm 1.34 2.88 2.82% 1.67 3.83 3.75% 1.96 4.52 4.62% 1.60 3.71 3.60%

STID 1.30 2.81 2.73% 1.62 3.72 3.68% 1.89 4.40 4.47% 1.55 3.62 3.51%

DGCRN 1.29 2.80 2.74% 1.63 3.80 3.75% 1.95 4.58 4.64% 1.58 3.71 3.61%

D2STGNN 1.25 2.65 2.62% 1.58 3.63 3.57% 1.86 4.37 4.44% 1.52 3.55 3.50%

BasicTS: A Multivariate Time Series Prediction Benchmark 99

Table 9. Review of MTS prediction methods on traffic flow datasets.

Datasets Methods @Horizon 3 @Horizon 6 @Horizon 12 Overall (12 Horizon)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

PEMS03 HI 32.46 49.78 30.58% 32.45 49.76 30.59% 32.44 49.75 30.63% 32.45 49.76 30.60%

Graph WaveNet 13.37 23.04 13.90% 14.51 25.29 14.85% 16.16 27.91 16.12% 14.48 25.19 14.67%

DCRNN 14.16 24.61 14.21% 15.41 27.01 15.07% 17.31 30.05 16.71% 15.37 26.92 15.10%

AGCRN 14.22 25.02 13.40% 15.47 27.28 14.43% 17.09 28.78 16.43% 15.41 27.15 14.76%

STGCN 14.71 25.19 14.41% 15.66 26.99 15.38% 17.47 29.80 17.55% 15.73 27.03 15.44%

StemGNN 14.16 24.33 14.40% 15.76 26.98 15.32% 18.50 30.94 18.10% 15.87 27.10 15.60%

GTS 13.93 23.96 14.02% 15.27 26.12 15.35% 17.35 29.11 17.23% 15.24 26.08 15.24%

MTGNN 13.71 23.04 14.84% 14.87 25.94 15.12% 16.50 28.76 16.88% 14.80 25.65 15.04%

STNorm 14.23 24.05 13.98% 15.45 26.54 14.49% 17.08 29.42 15.73% 15.34 26.33 14.56%

STID 17.51 28.48 12.00% 18.29 29.86 12.46% 19.58 31.79 13.38% 18.29 29.82 12.49%

DGCRN 13.46 23.92 14.23% 14.67 26.36 15.13% 16.41 29.02 16.71% 14.61 26.15 15.10%

D2STGNN 13.42 23.11 13.71% 14.71 25.61 14.73% 16.62 28.69 16.64% 14.72 25.61 14.70%

PEMS04 HI 42.33 61.64 29.90% 42.35 61.66 29.92% 42.38 61.67 29.96% 42.35 61.66 29.92%

Graph WaveNet 18.00 28.83 13.64% 18.96 30.33 14.23% 20.53 32.54 15.41% 18.97 30.32 14.26%

DCRNN 18.53 29.61 12.71% 19.65 31.37 13.45% 21.67 34.19 15.03% 19.71 31.43 13.54%

AGCRN 18.52 29.79 12.31% 19.45 31.45 12.82% 20.64 33.31 13.74% 19.36 31.28 12.81%

STGCN 18.74 29.84 12.93% 19.64 31.34 13.27% 21.12 33.53 14.22% 19.63 31.32 13.32%

StemGNN 19.48 30.74 13.84% 21.40 33.46 15.85% 24.90 38.29 19.50% 21.61 33.80 16.10%

GTS 19.27 30.46 13.33% 20.86 32.78 14.68% 23.52 36.31 17.03% 20.91 32.86 14.77%

MTGNN 18.65 30.13 13.32% 19.48 32.02 14.08% 20.96 34.66 14.96% 19.50 32.00 14.04%

STNorm 18.28 29.70 12.28% 18.92 31.12 12.71% 20.20 32.91 13.43% 18.96 30.98 12.69%

STID 17.51 28.48 12.00% 18.29 29.86 12.46% 19.58 31.79 13.38% 18.29 29.82 12.49%

DGCRN 17.88 29.12 12.25% 18.86 30.92 12.85% 20.20 33.20 13.80% 18.81 30.82 12.80%

D2STGNN 17.44 28.48 11.91% 18.20 29.91 12.29% 19.31 31.68 12.99% 18.15 29.80 12.25%

PEMS07 HI 49.02 71.15 22.73% 49.04 71.18 22.75% 49.06 71.21 22.79% 49.03 71.18 22.75%

Graph WaveNet 18.69 30.69 8.02% 20.26 33.37 8.56% 22.79 37.11 9.73% 20.25 33.32 8.63%

DCRNN 19.45 31.39 8.29% 21.18 34.42 9.01% 24.14 38.84 10.42% 21.20 34.43 9.06%

AGCRN 19.31 31.68 8.18% 20.70 34.52 8.66% 22.74 37.94 9.71% 20.64 34.39 8.74%

STGCN 20.33 32.73 8.68% 21.66 35.35 9.16% 24.16 39.48 10.26% 21.71 35.41 9.25%

StemGNN 19.74 32.32 8.27% 22.07 36.16 9.20% 26.20 42.32 11.00% 22.23 36.46 9.20%

GTS 20.00 31.87 8.45% 22.11 35.02 9.39% 25.49 39.77 10.96% 22.08 35.07 9.40%

MTGNN 19.23 31.15 8.55% 20.83 33.93 9.30% 23.60 38.10 10.10% 20.94 34.03 9.10%

STNorm 19.15 31.70 8.26% 20.63 35.10 8.84% 22.60 38.65 9.60% 20.52 34.85 8.77%

STID 18.31 30.39 7.72% 19.59 32.90 8.30% 21.52 36.29 9.15% 19.54 32.85 8.25%

DGCRN 18.57 30.49 7.82% 20.12 33.43 8.45% 22.31 37.04 9.44% 20.05 33.32 8.45%

D2STGNN 18.56 30.52 7.79% 20.10 33.15 8.41% 22.30 36.73 9.40% 20.05 33.08 8.42%

PEMS08 HI 36.65 50.44 21.60% 36.66 50.45 21.63% 36.68 50.46 21.68% 36.66 50.45 21.63%

Graph WaveNet 13.72 21.71 8.80% 14.67 23.50 9.49% 16.15 25.85 10.74% 14.67 23.47 9.52%

DCRNN 14.16 22.20 9.31% 15.24 24.26 9.90% 17.70 27.14 11.13% 15.26 24.28 9.96%

AGCRN 14.51 22.87 9.34% 15.66 25.00 10.34% 17.49 27.93 11.72% 15.65 24.99 10.17%

STGCN 14.95 23.48 9.87% 15.92 25.36 10.42% 17.65 28.03 11.34% 15.98 25.37 10.43%

StemGNN 14.49 23.02 9.73% 15.84 25.38 10.78% 18.10 28.77 12.50% 15.91 25.44 10.90%

GTS 14.50 22.97 9.23% 15.77 25.08 10.09% 18.02 28.25 11.74% 15.82 25.13 10.18%

MTGNN 14.30 22.55 10.56% 15.25 24.41 10.54% 16.80 26.96 10.90% 15.31 24.42 10.70%

STNorm 14.44 22.68 9.22% 15.53 25.07 9.94% 17.20 27.86 11.30% 15.54 25.01 10.00%

STID 13.28 21.66 8.62% 14.21 23.57 9.24% 15.58 25.89 10.33% 14.20 23.49 9.28%

DGCRN 13.47 21.87 8.85% 14.44 23.77 9.44% 15.90 26.35 10.50% 14.43 23.75 9.40%

D2STGNN 13.24 21.83 8.47% 14.19 23.98 9.09% 15.50 26.43 9.90% 14.20 23.95 9.10%

100 Y. Liang et al.

5 Conclusion

In this paper, we propose a fair, standard, and open-source benchmark for mul-
tivariate time series prediction, named BasicTS, to address the unfairnesses in
the comparison of MTS prediction models. Given a model, BasicTS evaluates
it based on rich datasets, standard training pipeline, and standard evaluation,
to give a fair performance validation. Furthermore, BasicTS provides users with
flexible and extensible interfaces to facilitate quick designing and fair evaluation
of new MTS prediction models. Last but not least, we also provide a fair perfor-
mance review of several popular MTS prediction models based on BasicTS.

6 Future Works

This paper explores and evaluates the unfairness of the MTS prediction and
proposes a framework dedicated to the MTS prediction problem. In the future,
we will continue this research in three aspects:

1. MTS prediction problems contain a wide variety of methods and data forms.
We plan to add more datasets and models into BasicTS. We will also conduct
more experiments on these datasets.

2. The MTS prediction models also include some long-time prediction models.
We plan to add more long-time prediction models into BasicTS.

3. With the development of machine learning, auto hyperparameter optimiza-
tion techniques are beginning to be used more and more abundantly. We
plan to add auto hyperparameter optimization technology into our bench-
mark, which can help researchers to find optimal parameters for deep learning
models conveniently.

References

1. Cao, D., et al.: Spectral temporal graph neural network for multivariate time-series
forecasting. In: Advances in Neural Information Processing Systems, vol. 33, pp.
17766–17778 (2020)

2. Li, M., Zhu, Z.: Spatial-temporal fusion graph neural networks for traffic flow
forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
35, pp. 4189–4196 (2021)

3. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural net-
work: data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017)

4. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatial-
temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019)

5. Shang, C., Chen, J., Bi, J.: Discrete graph structure learning for forecasting mul-
tiple time series. arXiv preprint arXiv:2101.06861 (2021)

6. Alexandrov, A., et al.: GluonTS: probabilistic and neural time series modeling in
Python. J. Mach. Learn. Res. 21(116), 1–6 (2020)

7. Wang, J., Jiang, J., Jiang, W., Li, C., Zhao, W.X.: Libcity: an open library for
traffic prediction. In: Proceedings of the 29th International Conference on Advances
in Geographic Information Systems, pp. 145–148 (2021)

http://arxiv.org/abs/1707.01926
http://arxiv.org/abs/1906.00121
http://arxiv.org/abs/2101.06861

BasicTS: A Multivariate Time Series Prediction Benchmark 101

8. Cui, Y., Xie, J., Zheng, K.: Historical inertia: a neglected but powerful baseline
for long sequence time-series forecasting. In: Proceedings of the 30th ACM Inter-
national Conference on Information & Knowledge Management, pp. 2965–2969
(2021)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

10. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)

11. Gao, J., et al.: MTGNN: multi-task graph neural network based few-shot learning
for disease similarity measurement. Methods 198, 88–95 (2022)

12. Li, F., et al.: Dynamic graph convolutional recurrent network for traffic prediction:
Benchmark and solution. ACM Trans. Knowl. Discov. Data (TKDD) 17, 1–21
(2021)

13. Bai, L., Yao, L., Li, C., Wang, X., Wang, C.: Adaptive graph convolutional recur-
rent network for traffic forecasting. In: Advances in Neural Information Processing
Systems, vol. 33, pp. 17804–17815 (2020)

14. Deng, J., Chen, X., Jiang, R., Song, X., Tsang, I.W.: ST-Norm: spatial and tem-
poral normalization for multi-variate time series forecasting. In: Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
269–278 (2021)

15. Shao, Z., et al.: Decoupled dynamic spatial-temporal graph neural network for
traffic forecasting. arXiv e-prints, pp. arXiv-2206 (2022)

16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

17. Lydia, A., Francis, S.: Adagrad-an optimizer for stochastic gradient descent. Int.
J. Inf. Comput. Sci. 6(5), 566–568 (2019)

18. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

19. Smith, S.L., Kindermans, P.-J., Ying, C., Le, Q.V.: Don’t decay the learning rate,
increase the batch size. arXiv preprint arXiv:1711.00489 (2017)

20. Radiuk, P.M.: Impact of training set batch size on the performance of convolutional
neural networks for diverse datasets (2017)

21. Amari, S.-I.: Backpropagation and stochastic gradient descent method. Neurocom-
puting 5(4–5), 185–196 (1993)

http://arxiv.org/abs/1709.04875
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.00489

Benchmarking Object Detection Models
with Mummy Nuts Datasets

Darren Ng1, Colin Schmierer1, Andrew Lin1, Zeyu Liu2, Falin Yu3,
Shawn Newsam1, Reza Ehsani1, and Xiaoyi Lu1(B)

1 University of California Merced, Merced, USA
{dng350,cschmierer,alin85,snewsam,rehsani,xiaoyi.lu}@ucmerced.edu

2 Valley Christian High School, San Jose, USA
3 Santa Margarita Catholic High School, Rancho Santa Margarita, USA

falin.yu@smhsstudents.org

Abstract. Agriculture presents challenges in automation, especially so
in vision systems. Varying lighting conditions, sporadic diversity, and
large amounts of noise create difficulty in detecting target objects. Our
Mummy Nuts datasets present these challenges in tiny scale, camou-
flaged, dark, or even hidden target objects. However, the most recent
advancements in Convolutional Neural Networks (CNN) in the object
detection task have become increasingly accurate and robust. As there
are many different CNNs, selecting which CNN will perform the best
may become challenging. This paper proposes a two-dimensional bench-
marking methodology to evaluate five popular CNN models (YOLOv3,
YOLOv5, CenterNet, Faster R-CNN, and MobileNet SSD) on two
NVIDIA GPUs (Tesla T4 and A100). Our benchmarking methodology
evaluates accuracy across all models and performance among models on
each GPU. Our results show the benefits of selecting models using our
Augmented dataset over the Original dataset. CNN Models overall see
an increase in recall values during inference by an average of 2.77X (with
the highest increase as YOLOv3 by 6.5X). For performance, over both
Original and Augmented datasets, the model training time reduces by
an average of 4.45X when using A100 over Tesla T4.

Keywords: Benchmarking · Object Detection · Mummy Nuts

1 Introduction

Object detection using Convolutional Neural Networks (CNN) has become
increasingly popular. CNNs appear in an ever-growing field of applications and
are crucial in precision agriculture automation tasks such as yield estimation,
disease detection, and robotic harvesting. Agricultural object detection proves
to be a complex engineering problem due to many unseen variables that come
as a trait of agriculture.

This work was supported in part by the NSF research grants CCF #2132049, EEC
#1941529, and a COR grant from University of California, Merced.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Gainaru et al. (Eds.): Bench 2022, LNCS 13852, pp. 102–119, 2023.
https://doi.org/10.1007/978-3-031-31180-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31180-2_7&domain=pdf
https://doi.org/10.1007/978-3-031-31180-2_7

Benchmarking Object Detection Models with Mummy Nuts Datasets 103

Pest control is a challenging problem in agriculture and, if not performed
correctly, will damage farmer crop yield significantly. Almond growers are a
prime target as orchards may take permanent damage from pests known as
Navel Orangeworm (NOW), which nestle and feed on off-season almond nuts
(Mummy Nuts). Growers must adequately monitor and track NOW disease to
prevent spreading [1]. Furthermore, Mummy Nuts have diverse appearances and
prove difficult for manual inspection. Due to this, Mummy Nut object detection
has been an under-researched topic in precision agriculture.

CNNs can be applied to an environment that may contain erratic behaviors.
For Mummy Nut detections, this is in the endless variations of the appearance
in the target object. Furthermore, agriculture relies heavily on the season and
restricts necessary data collection to a particular time frame each year. In the
case of Mummy Nuts, image data can only be taken during the winter. This
window would limit the data available to train CNNs.

In CNN training, the most critical component would be the dataset used.
A robust CNN model must be trained with a carefully curated dataset. High-
quality datasets should include thousands of images, with each class containing
images of similar features, respectively. For example, the Microsoft Common
Objects in COntext (MS COCO) dataset contains 2,500,000 labeled instances
in 328,000 images standing among the richest datasets [2]. Other popular, large-
scale datasets include ImageNet [3], Pascal VOC [4], SUN Database [5], and
Pedestrian Database [6]. Due to the necessity of large datasets, there is little
work on training CNNs with insufficient data.

For Mummy Nut detection problems, we face numerous issues with dataset
curation. Most existing datasets are easy to annotate and can be considered a
simple task for human workflow. MS COCO deployed an annotation pipeline
to richly annotate each image using Amazon Mechanical Turk workers [2]. This
workflow assumes each image contains objects easily identifiable by non-expert
annotators. However, our proposed datasets are difficult to annotate, showing
varying results in recall values between each annotator. Multiple expert annota-
tors reviewed each image to ensure the highest annotation recall and precision.
A large amount of noise contributes to the complication of annotation and detec-
tion of target objects within an image, though it allows for model robustness.
Lastly, there is a significant underrepresentation of the variety of nuts. Each nut
classifies for a different difficulty class (e.g., Noisy, Dark, Tiny, etc.) we assigned
that will tell us how complex a particular detection may be. Difficulty classes
are not equally represented in the training set, which may decrease the recall
value per underrepresented class.

Another factor that predominantly affects CNN performance is the type of
object detection model used. Multiple popular CNN models are in use, and each
has a very different structure in training and inference computations. Lately,
quick one-stage detectors have been utilized in systems and show high accu-
racy, such as You Only Look Once (YOLO) [7], Regions with CNN features (R-
CNN) [8], Fast R-CNN [9], and Faster R-CNN [10]. These models create spaced
boxes across the input image called anchor boxes, each individually responsible

104 D. Ng et al.

for determining if a target object is within that box. Models like CenterNet [11]
take a different approach, using heatmaps to determine peak points where a
target object may appear. MobileNet [12] prioritizes a smaller network with
significantly lower parameters to run well on mobile devices.

With the Mummy Nuts dataset, deciding which CNN model may provide the
best results for each possible vision solution can become challenging. Only a few
benchmark studies in the community can aid the selection of CNN models for the
Mummy Nuts problem. Each model provides varying results depending on the
proposed solution. We design tools to richly annotate and enhance our dataset to
tackle its challenges. Our Data Augmentation tool expands the original dataset
by performing image transformations on each annotation, artificially generating
more diversity in our dataset. Our Difficulty Classification Annotator (DCA)
tool is a notation tool that marks each annotation in our dataset with flags.
These flags provide much more informative annotations denoting what difficulty
class each annotation falls within.

To help guide the community in selecting the proper CNN model, this paper
proposes a two-dimensional benchmarking methodology (e.g., accuracy and per-
formance) on different CNN models. Each image is large in resolution and com-
plexity, so performance latency during training and inference is evaluated on
different hardware accelerations.

We deploy five different CNN models (e.g., YOLOv3, YOLOv5, CenterNet,
Faster R-CNN, and MobileNet SSD) on two NVIDIA GPUs (e.g., A100 and
Tesla T4). Throughout our experiments, our significant observations include: 1)
All models saw an increase in recall value by an average of 2.77X (@IoU50)
when using the Augmented dataset compared to the Original dataset; 2) The
recall value of YOLOv3 increases by 6.5X (@IoU50) when using the Augmented
dataset compared to the Original dataset; 3) All models except for MobileNet
SSD suffer localization precision issues when using the Original dataset; 4) Cen-
terNet, Faster R-CNN, and MobileNet SSD all decrease precision by an average
of 10.53X (@IoU50) using Augmented over Original; 5) For performance, over
both Original and Augmented datasets, the model training time reduces by an
average of 4.45X when using A100 over Tesla T4; 6) Faster R-CNN sees a con-
siderable speed up when running computations on A100 over Tesla T4 by about
5.76X; and 7) YOLO models have the fastest overall inference speed.

This paper makes the following contributions: 1) We create real-world
datasets for the Mummy Nuts problem, which can help the community to per-
form in-depth interdisciplinary research between computer science and precision
agriculture areas; 2) We design easy-to-use benchmarking tools (e.g., Data Aug-
mentation Tool, DCA Tool, etc.) and integrate representative deep learning mod-
els into tools for agriculture scientists to investigate the Mummy Nuts problems
conveniently; and 3) Through our benchmarking methodology and results, we
provide guidance on which models may be ideal for different proposed solutions.

Benchmarking Object Detection Models with Mummy Nuts Datasets 105

2 Background and Motivation

Mummy Nuts and NOW Disease: Leaving Mummy Nuts on trees can
attract Navel Orangeworm pests (NOW) that will feed off of the nutmeat, leav-
ing behind aflatoxins, a food safety contaminate linked to cancers [1]. Due to
this, managing the spread of NOW is crucial and requires several steps. Firstly,
monitoring the number of NOW pests and their mating growth is vital for plan-
ning the timing of pesticide applications. NOW capture and mating disruption
methods also effectively reduce the population growth throughout NOW gen-
erations. Lastly, winter sanitation by removing remaining Mummy Nuts from
orchards helps to remove the attractive food source for NOW pests. We tackle
an early experience in automating the monitoring process of the spread. By
detecting Mummy Nuts, we can monitor the food supply of NOW pests, pro-
duce a concentration heatmap of Mummy Nuts, and target and sanitize areas
with high concentrations. We observe the task of object detection to implement
this monitoring system. However, we notice that CNN model selection is essen-
tial as not all models can provide similar results. The dataset provided to each
model also must be rich in features and carefully curated.

Object Detection and Inference: Object detection is an essential applica-
tion for CNNs, and many models can perform this differently. It takes both
localization and classification tasks into account by creating a spatially aware
bounding box labeled with the name of the class detected. Training a CNN
requires millions of parameter updates, equating to a large number of computa-
tions. Inference is the compression of those millions of parameters into a model
that can quickly run and make detections. Thus CNN training requires high
throughput while inference requires low latency [13]. As newer versions of object
detection systems have been built, each has continued to speed up the inference
process using different detection methods. There are multiple methods currently
in use to perform detections. One popular method is employing anchor boxes
and region proposals. This method creates anchor boxes spaced throughout input
images in which each anchor box is responsible for making a detection. Other
models eliminate the need for anchor boxes by converting the input image into
a heatmap where the maxima are assumed to be a detection. We will go into
more detail about each model in Sect. 3.

3 Requirements of Detecting Mummy Nuts with CNNs

This section presents an overview of selected object detection CNNs. We then
review the requirements of detecting Mummy Nuts on our datasets with CNNs.

3.1 Overview of Object Detection Models

You Only Look Once (YOLO) is based on spatially set anchor boxes on
input images that can observe if an object classification is within the boxes [7].
These anchor boxes will then produce a large number of bounding boxes around

106 D. Ng et al.

each instance of the object that is detected. The algorithm uses Non-Maximum
Suppression (NMS) to reduce bounding boxes within the Intersection over Union
(IoU) of another box with a higher confidence rate than the other boxes. In
Fig. 1a, NMS is performed during the dense layer after making detections.

(a) YOLO (b) CenterNet

Fig. 1. (a) shows the design of YOLO, which contains 24 convolutional layers with
two fully connected layers at the end. (b) shows the design of CenterNet, which uses
an hourglass backbone where the convolutional layers are structured with input and
output layers at the largest sizes and the middle at the smallest, mimicking an hourglass
shape.

CenterNet focuses on the center points of each box detection rather than
the box dimensions. A heatmap of the detection is created, and the maxima of
the heatmap produce the detected center points [11]. CenterNet was proposed
to eliminate the need for anchor-based detectors. Removing the chances that an
anchor box would not be in range to make a detection. In Fig. 1b, we see that
CenterNet uses the Stacked Hourglass network as its backbone, which is 104
layers deep [14].

Faster R-CNN is a two-stage detector with a region proposal stage and
Region of Interest (RoI) pooling stage [10]. Its post-processing stage, which
includes the RoI pooling, puts this model behind YOLO and other single-stage
detectors in speed. However, R-CNN has been a good baseline in previous years
to compare to other speed-centered models in precision. The newer versions (e.g.,
Fast R-CNN and Faster R-CNN) also have increased in speed and now compete
with YOLO models.

Faster R-CNN can run with multiple backbone networks (e.g., VGG [15],
ResNet [16]) which in our results we use ResNet-101. In Fig. 2a, the Conv layers
denote the section where different backbone networks may be used. The original
network that Faster R-CNN runs on (VGG-16) has high memory usage compared
to other networks. VGG-16 has between 95–125 million operations compared to
ResNet-101 at 35–65 million [17]. Though ResNet uses less memory, it is also a
significantly deeper network. ResNet is 101 layers deep which is 8X deeper than
VGG [16].

Benchmarking Object Detection Models with Mummy Nuts Datasets 107

(a) Faster R-CNN (b) MobileNet SSD

Fig. 2. (a) shows the network of Faster R-CNN. We can observe the region proposal
stage (Proposals) and the Region of Interest (RoI) pooling as the first detection stage.
(b) shows the network of MobileNet SSD. It uses MobileNet as its backbone before
entering convolutional layers.

MobileNet Single Shot Multibox Detector (MobileNet SSD) is a
single stage detector. It provides competitive results in accuracy and compu-
tation speeds compared to other single-stage detectors like YOLO. MobileNet
SSD makes more detections per class than YOLO, 8732 to 98 detections, respec-
tively [18]. In our experiments, we use MobileNet SSD to observe a model that
can operate on a mobile device. In Fig. 2b, we can see MobileNet SSD uses
the MobileNet backbone. Should edge computing be necessary, this model can
provide satisfactory results alongside the small network size of MobileNet. The
MobileNet backbone significantly decreases the number of parameters in the net-
work. MobileNet lowers the number of parameters on COCO object detection
results from 138 million (VGG) to 4.2 million [12], making it ideal for mobile
computations.

3.2 Requirements of Benchmarking Models

To properly benchmark our models, each must tackle a different challenge in our
Mummy Nut datasets. YOLO outperforms R-CNN when trained on artwork and
natural images. This high generalizability makes YOLO less likely to break down
when applied to new domains or unexpected inputs [7]. Given our dataset’s vast
appearance diversity, high generalizability may increase recall value. Faster R-
CNN may also create more detection errors on background content compared
to YOLO [19]. Considering the amount of noise in our Original dataset, Faster
R-CNN may be more suitable for our Augmented dataset, presenting less noise
within images.

In our experiments, we use modern versions of YOLO, including
YOLOV3 [19] and V5 [20]. YOLOv3 runs on the DarkNet-53 backbone net-
work, which is 53 convolutional layers deep [21]. This is nearly half the size of
the ResNet-101 network that Faster R-CNN uses. Considering the tiny objects
in our dataset, the chances of missing a target object with anchor-based detec-
tors (e.g., YOLO, Faster R-CNN, or MobileNet SSD) are relatively high. Thus
CenterNet provides a different approach for problems where typical anchor boxes

108 D. Ng et al.

may fail. The backbone CenterNet uses is created for the task of human pose
estimation and is built to capture information at every scale [14]. With this
structure, CenterNet can tackle the problem of a large variety of Mummy Nut
sizes. Considering the need for edge computation in the agricultural setting,
MobileNet SSD provides a very small network to fulfill that requirement.

4 Benchmarking Methodology

Our benchmarking methodology is as follows: we collect real datasets on Mummy
Nuts, analyze object detection results with popular CNN models, propose our
Augmented dataset, and redo our object detection analysis until we achieve
adequate numbers with our chosen metrics.

4.1 Proposed Datasets: Original and Augmented

A carefully curated dataset must be used during training to build a robust model.
Underrepresentation in different values within the dataset should be avoided
whenever possible. However, when data can only be collected during a specific
time of the year, it would significantly limit the amount of data and improve-
ments to the data (e.g., better lighting, more angles, etc.). In collaboration with
agriculture scientists, we have curated two datasets (Original and Augmented)
for the task of Mummy Nut object detection. In our Original dataset, we observe
a large amount of underrepresentation in specific shapes and sizes of the nuts.
Due to the sporadic diversity in agriculture, a rich dataset is challenging to
produce. Hence, we propose a new Augmented dataset that derives from the
Original and includes data augmentation methods to artificially increase the
size of annotations. Our Original dataset contains 33 images (4032 × 3024) and
about 267 annotated nuts, while our Augmented dataset contains 294 images
(200 × 200), each containing a modified or original annotated nut.

The proposed datasets pose many challenges for deep neural networks:
Noise: Most training datasets should include noise to a certain degree to create a
more robust model. However, our original dataset contains a significantly larger
object-to-noise ratio that most models can not understand well. Approximately
75% of each image include noise that severely hinders the visual features of our
objects. Small Scale: Our dataset contains tiny annotation boxes (smallest at
an area of 121 pixels), which may cause difficulty for anchor-based object detec-
tion systems. We observe which models may be affected by this difficulty. Large
Data: To preserve as many visual features as possible, we use the full-size image
(3024 by 4032). However, this requires much larger training times between mod-
els and larger memory space for computations. We experiment with different
models’ training and inference times. Diversity: There is a large variety in the
appearance of our objects in shapes, sizes, and coloration. Due to unpredictable
exposure to light, target objects within our dataset may lose all surface textures
or appear overwhelmingly rich in features.

Benchmarking Object Detection Models with Mummy Nuts Datasets 109

Fig. 3. Four sample pictures of the Mummy Nut dataset. Hanging on the branches of
these trees are the target objects (Mummy Nuts).

In Fig. 3, we can observe the variety of difficult detections in our dataset.
These nuts account for 71.8% of all annotated nuts throughout our dataset,
affecting a large portion of our accuracy. Within our difficult detections, we also
classified tiny nuts as about 9% of the total dataset.

Figure 4 shows a close-up collage to display examples of difficult Mummy
Nuts detections. Frames (a) and (f) contain dark nuts that lack visual features
and are further surrounded by a noisy background, causing models to miss these
nuts as detections. Frames (b) and (d) contain bundles of nuts that, conversely
to frames (a) and (f), are rich in visual features. However, they are overly rich
and feature a rare trait in coloration. Frames (c) and (e) contain camouflaged
nuts, which cause trouble even for the human eye to spot.

Fig. 4. Six examples of difficult detections. Each frame contains a red box that denotes
where the Mummy Nuts appear. (Color figure online)

Without tuning the anchor boxes of a CNN, the chances of missing detections
increase. This raises the question of whether to resize anchors for small or large

110 D. Ng et al.

objects. In Fig. 5, most annotations are tiny, though many outliers exist. Resiz-
ing anchors for small target objects would make detecting larger target objects
more difficult and vice versa. Models that remove the need for anchor boxes can
altogether avoid this problem (e.g., CenterNet).

Fig. 5. The area (in pixels) of each anno-
tation box across the entire dataset. We
can see a majority of annotation boxes are
smaller than 2000px in size.

We also introduce our second
dataset (Augmented), which expands
our Original training dataset by
8.9X. The Augmented dataset con-
tains cropped data augmented annota-
tions from the Original dataset. Net-
works that rely heavily on anchor
boxes may see a change in perfor-
mance from this dataset. To create
this dataset, we first used the original
fully annotated dataset and produced
a crop window per annotation centered
on each annotation. The crop window

(200×200) is larger than the largest annotation in the training set. Cutoff anno-
tations or multiple annotations within one crop were excluded. Each annotation
was subject to a random number of image transformations (up to 6), includ-
ing stretching and rotations. These augments are done to each cropped image,
effectively enlarging our input dataset.

4.2 Metrics

In the evaluation of the accuracy of each model, we observe the following metrics:
precision (Prec), recall (Rec), and average precision (AP). These are evaluated
based on the true positives, true negatives, false positives, and false negatives we
observe after a model has run its predictions. IoU tells us if a detection will clas-
sify as one of the four prediction categories. For performance, we evaluate latency
between models and GPUs. These values give us the four evaluation metrics we
will focus on, which are as follows: Precision: is the proportion that the target
object in an image will be detected correctly over all attempts. Recall: tells us
the proportion of target objects captured over all attempts. In other words, it
represents the target objects overlooked by the detection model. Average Pre-
cision (AP): is the precision with respect to recall. AP is calculated by the area
under the curve (AUC) of a precision-recall graph based on each model’s preci-
sion and recall values. In the MS COCO object detection challenge, a 101-point
interpolation is used to evaluate models [2]. While for ImageNet, AUC method
is used [3]. We used AUC rather than 11 or 101-point interpolation to evaluate
lower accuracy values better, as n-point interpolation may be prone to drops
in precision in between interpolations and lead to less evaluation accuracy [22].
In our datasets, we observe that 101-point interpolation leads to less sensitive
accuracy, where AUC evaluation calculates the area each time there is a drop in

Benchmarking Object Detection Models with Mummy Nuts Datasets 111

precision. For this reason, we evaluate AUC. The equation is provided below:

AP =
∑

(rn+1 − rn)Pinterp(rn+1) (1)

Performance: Performance represents how long it takes for models to perform
computations on our dataset. The time it takes to perform required computations
will be vital in determining which model is most suitable for specific agriculture
applications. We measure two different processing phases. 1) Training results
observe the time it takes to train a model to the point where the loss converges. 2)
Inference measures the total time (including pre-processing time of convolutional
layers) to perform inference on a single image.

4.3 Proposed Tools

We propose tools to ease the workflow with our Mummy Nuts dataset. In Table 1,
we list all tools we have created for the object detection task of Mummy Nuts.
Difficulty Class Annotation (DCA) is a tool that allows the user to input
an annotated dataset and receive a richer annotation set that includes one or
more difficulty class flags per annotation. For example, we can create a specific
set of flags (e.g., Camouflaged, Dark, Overlap, etc.) and mark each annotation
with as many difficulty flags that apply. Metric Evaluation (Metric Eval)
computes all evaluation metrics on input detection results from any of the 5
models. This tool is flexible to multiple model annotation formats. If the input
contains DCA flags, the evaluation will also include results for each difficulty
class. Data Augmentation (Data Aug) tool takes an annotated dataset,
crops windows (200 × 200 px) centering on each annotation, and produces new
images with image transformations. The complete output creates an enlarged
dataset. This tool is used to create our Augmented dataset.

Annotation Plot (APlot) plots all annotations on an image, which allows
us to visualize annotation box concentrations, scale sizes, and empty areas. Anno-
tation Plot tool can also provide data on all annotation box sizes, similar to
Fig. 5. Noise Isolation (Noise Iso) helps reduce the amount of noise in a
Mummy Nut tree image. Pixels that classify as the grass gets lowered, allowing
focus on pixels that are the tree or Mummy Nut. This tool can aid in the anno-
tation pipeline to increase annotation recall. Annotation View (Anno View)
creates a temporary viewing window during the tool’s runtime that shows the
target nut and the annotation bounding box. The tool can cycle through all
annotations in a dataset, aiding the annotation pipeline when peer-reviewing
annotations. Annotation Reformat (Anno Reformat) allows reformatting
of an annotation to a different format. This is especially useful when using mul-
tiple models requiring different annotation formats.

5 Experiments

This section provides our experimental setups and benchmarking results.

112 D. Ng et al.

Table 1. All proposed tools and their functions. These tools require two types of
inputs: Annotated Dataset (AD) and Detection Box (DT) Results.

Tool Input(s) Output(s)

DCA AD AD w/difficulty class flags per annotation

Metric Eval AD+DT metrics based on detection box positions w/DCA

Data Aug AD enlarged AD via image augments per annotation

APlot AD all annotation boxes plotted + data of all box sizes

Noise Iso AD AD w/all noise values lowered

Anno View AD viewing window of each annotation

Anno Reformat AD reformatted annotations for different model formats

5.1 Platform Selection

We use two different GPU hardware to run our computations. The first is an
in-home cluster with an NVIDIA A100 40 GB PCIe GPU. The NVIDIA A100
GPU is capable of 156 TFLOPS on dense 32-bit float tensors [23]. Model training
benefits significantly from the GPU’s high 1555 GB/s bandwidth and 40 GB of
GPU memory. The cluster’s CPU is an Intel(R) Xeon(R) Gold 6336Y with 24
cores, 36 MB of cache, and a base frequency of 2.40 GHz [24]. The second GPU
is a Tesla T4 which is more easily accessible via Google Colab. The Tesla T4
contains 2560 NVIDIA CUDA cores and is capable of 65 trillion mixed-precision
floating point operations [25]. The Colab CPU is a virtual CPU with two cores
with a clock speed of 2.2GHz. We use these two platforms to test each model’s
performance throughput and speed.

5.2 Results

Our results are categorized into two subsections, as shown below. Overall Accu-
racy: An overview of how each model performs on our dataset. Due to the small
size of our dataset, our numbers are preliminary. However, we may still make
some significant distinctions. We observe the number of predictions a model
makes on background pixels, quantifying the robustness of each model to noise.
Localization performance can be observed between IoU results from 0.50 and
0.10. IoU becomes very sensitive with small-scale objects and scales dispropor-
tional to normal-sized boxes [26]. For this reason, we acknowledge the results of
an IoU at 0.10. Recall also provides valuable data in a complex dataset where
collecting maximum true positives is essential. Performance: We have observed
each model’s performance in training and inference. We quantify differences in
those numbers with our Original dataset, our Augmented dataset, and different
GPU platforms. For the Original dataset, we record the time for one inference.
For the Augmented dataset we split input images evenly into 64 crops to match
training inputs. We then record the total time of performing 64 inferences, equiv-
alent to one Original dataset image.

Benchmarking Object Detection Models with Mummy Nuts Datasets 113

Overall Accuracy: With a very noisy dataset, models will generate excessive
detections on background pixels. Models that do not have a high threshold NMS
may not properly filter out duplicate detections on the same true positive. In
Table 2, MobileNet SSD suffers from this as it produces 2X the number of ground
truths in the test set. We observe that this is due to the size of the MobileNet
convolutional network. Since the network is much smaller than other modern
networks, MobileNet SSD may need a deeper network to learn complex features
properly. However, the lowest AP score comes from YOLOv3. YOLOv5’s preci-
sion and recall increase by about 2X and AP by about 5X when the IoU thresh-
old is set to 0.10. This tells us that YOLOv5 struggles with localization issues
for detections on our dataset. The highest values overall are in Faster R-CNN
with low localization error and high precision. The lowest amount of background
detections is made from Faster R-CNN, which gives this model 100.0 precision
at an IoU of 0.10. This may be due to Faster R-CNN running on the ResNet net-
work, as it is a very deep network (101 layers), which provides higher confidence
in detections and fewer false positives.

Table 2. Inference accuracy with our Original dataset (4032 by 3024 images). The
predictions (Pred) show how many predictions each model has made. The true positives
(TP) show the number of those predictions classified as correct according to the IoU
threshold. Precision (Prec), Recall (Rec), and Average Precision (AP) are shown with
corresponding IoU thresholds. The test partition has 15 ground truths.

Model Pred TP@.5 Prec@.5 Rec@.5 AP@.5 TP@.1 Prec@.1 Rec@.1 AP@.1

YOLOV3 11 2 18.18 13.3 2.87 3 27.2 20.0 7.33

YOLOV5 25 4 16.0 26.6 4.31 8 32.0 53.3 21.9

CenterNet 12 4 33.3 26.6 13.7 6 50.0 40.0 30.0

Faster R-CNN 9 7 77.7 46.6 41.6 9 100.0 60.0 60.0

MobileNet SSD 30 6 20.0 40.0 10.0 6 20.0 40.0 12.0

In Table 3, we notice our Augmented dataset causes each model to increase
background detection errors. Since our Augmented test set contains much smaller
input images, we notice higher number of detections. However, we see a signif-
icant increase in recall in the YOLO models compared to the Original dataset.
For YOLOv3, We observed a 6.5X increase in the recall at IoU 0.50 from the
Original dataset to the Augmented dataset. While for YOLOv5, we saw a 2.5X
increase. While the YOLO models do not decrease in precision, each of the
three other models does. This is due to the large number of background errors
that these models now produce. CenterNet increases the most at about 29.6X
more background detections. Since CenterNet uses heatmaps rather than anchor
boxes, these background errors are likely due to a large amount of noise, as the
maxima of the heatmaps may become lower when there are fewer distinctions in
coloration. MobileNet SSD is ranked second, producing about 24X more back-
ground detections. As with the Original dataset, this is likely due to the small size
of the backbone network. YOLO models are more robust to background errors,

114 D. Ng et al.

with the most significant increase in errors at 2.6X. Since they use anchor boxes
rather than heatmaps and a larger backbone network than MobileNet SSD, they
get better results using the Augmented dataset.

Table 3. Inference accuracy with our Augmented dataset (200 by 200 images).

Model Pred TP@.5 Prec@.5 Rec@.5 AP@.5 TP@.1 Prec@.1 Rec@.1 AP@.1

YOLOV3 37 13 35.1 86.6 38.5 13 35.1 86.6 38.5

YOLOV5 32 10 31.2 66.6 26.2 10 31.2 66.6 26.2

CenterNet 245 8 3.26 53.3 3.27 9 3.67 60.0 5.17

Faster R-CNN 30 13 43.3 86.6 51.0 13 43.3 86.6 51.0

MobileNet SSD 583 6 1.02 40.0 0.57 7 1.20 46.6 0.78

Performance: We can observe in Fig. 6 that on the Tesla T4, Faster R-CNN
has a significantly longer training time than the rest of the models, likely due to
the large depth of the backbone network and a large number of computations.
On the A100, we see a significant decrease in latency due to the larger network
benefiting greatly from the considerable upgrade in bandwidth, up to a 5.85X
speedup for Faster R-CNN.

(a) Training Time (b) Inference Time

Fig. 6. Computation times of each model using Original dataset on both GPUs. We
compare the performance speed of our five models, YOLOv3 (Y3), YOLOv5 (Y5),
CenterNet (CN), Faster R-CNN (FR), and MobileNet SSD (MS) on the Tesla T4 (T-
T4) and A100 (A100).

In Fig. 7, we can observe that Faster R-CNN still takes the longest to run
training on the Augmented dataset on the Tesla T4 and speedup of 5.68X with
A100. YOLOv5 has faster training and inference times on the Original dataset,
while YOLOv3 performs slightly better on the Augmented dataset. This is likely
due to optimizations for larger image sizes of successive versions of YOLO. We
also notice that YOLO has the fastest overall inference time on both datasets.
MobileNet SSD can perform much quicker on the Augmented dataset than the
Original dataset since it is a tiny network and benefits from smaller inputs, as
provided by the Augmented dataset.

Benchmarking Object Detection Models with Mummy Nuts Datasets 115

(a) Training Time (b) Inference Time

Fig. 7. Computation times of each model using Augmented dataset.

5.3 Observations and Discussion

We evaluate our two-dimensional benchmarking methodology of accuracy and
performance with all the results. We observe accuracy with a heavier emphasis
on recall values rather than precision due to the small scale of our annotations
which aids in compensating for the difficulty within our Mummy Nut dataset. For
performance, we evaluate two different GPUs to observe computation latency.
We collect the computation time of model training and inference.

From these results, we notice several key observations, and we make a note
of their significance. Firstly, all models saw an average recall value increase of
2.77X, with YOLOv3 at the most significant increase of 6.5X, when using our
Augmented dataset over the Original. This observation implies that our method
can further improve the model recall. We notice that all models except MobileNet
SSD face localization precision issues with the Original dataset. These localiza-
tion issues tell us that most models create bounding boxes that may not enclose
the Mummy Nut well, though MobileNet SSD performs more precisely. Cen-
terNet, Faster R-CNN, and MobileNet SSD decrease precision by an average of
10.53X using the Augmented dataset over the Original. If an Augmented dataset
approach is desired, YOLO models may provide better results in precision than
the other three models. For performance, the overall model training time over
both Original and Augmented datasets can be reduced by an average of 4.45X
when using A100 over Tesla T4. Though we notice Faster R-CNN sees the most
significant benefit from this speedup by 5.76X over both datasets. This would
be due to larger CNNs being able to take full advantage of the increased compu-
tation capacity of A100. YOLO models have the fastest overall inference speed
and prove useful for quick inference applications.

6 Related Work

A survey on popular precision agriculture datasets overviews 34 different datasets
for deep learning workloads that include multimodal data [27].

Other highly rich datasets create an annotation pipeline to ensure the highest
possible annotation precision and recall. MS COCO splits the pipeline into three
sections: Category Labeling, Instance Spotting, and Instance Segmentation [2],

116 D. Ng et al.

creating a workflow simple enough for inexperienced annotators to provide a rich
dataset. Other large-scale datasets [3–6] outline strong annotation pipelines.

Contrast limited adaptive histogram equalization (CLAHE) is a computer
vision technique that can equalize the brightness exposure between images to
maintain features within an image [28]. Using a dual-modal detection of color
images and thermal, both precision and recall values are much higher than using
color images alone [29]. Other methods can make 3D detection using LiDAR
point clouds [30], which is much more informative for a complex environment.
IoU becomes very sensitive with small-scale objects and scales disproportional
to normal-sized boxes, lowering model accuracy. Normalized Wasserstein Dis-
tance (NWD) creates a new metric for IoU that can be implemented into Faster
R-CNN [26]. Most models also struggle to make rotation-invariant detections.
Multiple different models have been proposed [31–34] which tackles the chal-
lenges in oriented target objects.

Other proposed methods tackle accelerating EdgeAI inference systems for
object detection, improving performance and accuracy with modern EdgeAI
platforms [13,35]. There is also a study on the performance of mobile GPUs [36].
A benchmark of multiple Deep Learning models on different edge devices evalu-
ates the performance latency of object detection tasks [37]. Work that lists and
surveys multiple popular Deep Learning benchmarks provides insightful obser-
vations on each type of benchmark [38].

Our work is different than all of these existing studies since we aim to provide
valuable benchmarking datasets and tools for an engaging, meaningful, and chal-
lenging research problem in the precision agriculture area (i.e., Mummy Nuts).

7 Conclusion and Future Work

We propose a benchmarking methodology to evaluate five different CNN models
using two dimensions of measurement, which include accuracy and performance.
Our results show that using our Augmented dataset can drastically change the
CNN model’s overall performance. All models increase recall with our Aug-
mented dataset, with YOLO models as the most significant increase. Faster
R-CNN and YOLOv3 can achieve the highest recall of all models when using
data from the Augmented dataset. However, if it is desired that the Original
dataset is used, we find that Faster R-CNN performs very well in both precision
and recall values. YOLO models do well in speed, with the overall fastest infer-
ence speed. However, the Augmented dataset is significantly more sensitive to
noise for each model, though less for YOLO models and Faster R-CNN. To sum
up, YOLO and MobileNet SSD models may be more suitable for an Augmented
dataset method, whereas CenterNet may perform better on the Original dataset.
Faster R-CNN is the most versatile and may be well applicable to both datasets.
For future work, we will enrich our datasets further.

Benchmarking Object Detection Models with Mummy Nuts Datasets 117

References

1. Almonds, C.: Navel Orangeworm (2022). https://www.almonds.com/almond-
industry/industry-news/mummy-nut-removal-ready-set

2. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

3. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255 (2009)

4. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The
pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338
(2009)

5. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: SUN database: large-scale
scene recognition from abbey to zoo. In: 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 3485–3492 (2010)

6. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation
of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34, 743–761 (2012)

7. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

9. Girshick, R.: Fast R-CNN. In: 2015 IEEE International Conference on Computer
Vision (ICCV), pp. 1440–1448 (2015)

10. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems, vol. 28 (2015)

11. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: Centernet: keypoint triplets
for object detection. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 6569–6578 (2019)

12. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017)

13. Hui, Y., Lien, J., Lu, X.: Early experience in benchmarking edge AI processors with
object detection workloads. In: Gao, W., Zhan, J., Fox, G., Lu, X., Stanzione, D.
(eds.) Bench 2019. LNCS, vol. 12093, pp. 32–48. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-49556-5 3

14. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose esti-
mation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46484-8 29

15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

17. Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network models
for practical applications. arXiv preprint arXiv:1605.07678 (2016)

https://www.almonds.com/almond-industry/industry-news/mummy-nut-removal-ready-set
https://www.almonds.com/almond-industry/industry-news/mummy-nut-removal-ready-set
https://doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/1704.04861
https://doi.org/10.1007/978-3-030-49556-5_3
https://doi.org/10.1007/978-3-030-49556-5_3
https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1007/978-3-319-46484-8_29
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1605.07678

118 D. Ng et al.

18. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

19. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

20. Jocher, G., et al.: Ultralytics/YOLOv5: v6.1 - TensorRT, TensorFlow Edge TPU
and OpenVINO Export and Inference (2022)

21. Redmon, J.: Darknet: Open Source Neural Networks in C (2013/2016). http://
pjreddie.com/darknet/

22. Hui, J.: mAP (mean Average Precision) for Object Detection (2022). https://
medium.com/p/45c121a31173

23. NVIDIA. NVIDIA A100 Tensor Core GPU Datasheet (2022). https://www.
nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-
datasheet-us-nvidia-1758950-r4-web.pdf

24. Intel: Intel Xeon Gold 6336Y Processor Datasheet (2022). https://www.intel.
com/content/www/us/en/products/sku/215280/intel-xeon-gold-6336y-processor-
36m-cache-2-40-ghz/specifications.html

25. NVIDIA: NVIDIA Tesla T4 Tensor Core GPU Datasheet (2022). https://www.
nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-
datasheet-951643.pdf

26. Wang, J., Xu, C., Yang, W., Yu, L.: A normalized Gaussian Wasserstein distance
for tiny object detection. arXiv preprint arXiv:2110.13389 (2021)

27. Lu, Y., Young, S.: A survey of public datasets for computer vision tasks in precision
agriculture. Comput. Electron. Agric. 178, 105760 (2020)

28. Choi, D., Lee, W., Ehsani, R., Schueller, J., Roka, F.: Detection of dropped cit-
rus fruit on the ground and evaluation of decay stages in varying illumination
conditions. Comput. Electron. Agric. 127, 109–119 (2016)

29. Gan, H., Lee, W., Alchanatis, V., Ehsani, R., Schueller, J.: Immature green citrus
fruit detection using color and thermal images. Comput. Electron. Agric. 152,
117–125 (2018)

30. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for
3D classification and segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2017)

31. Qin, R., Liu, Q., Gao, G., Huang, D., Wang, Y.: MRDET: a multi-head net-
work for accurate oriented object detection in aerial images. arXiv preprint
arXiv:2012.13135 (2020)

32. Yi, J., Wu, P., Liu, B., Huang, Q., Qu, H., Metaxas, D.: Oriented object detection in
aerial images with box boundary-aware vectors. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 2150–2159 (2021)

33. Zand, M., Etemad, A., Greenspan, M.: Oriented bounding boxes for small and
freely rotated objects. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2022)

34. Han, J., Ding, J., Xue, N., Xia, G.-S.: ReDet: a rotation-equivariant detector for
aerial object detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2786–2795 (2021)

35. Hui, Y., Lien, J., Lu, X.: Characterizing and accelerating end-to-end EdgeAI infer-
ence systems for object detection applications. In: 2021 IEEE/ACM Symposium
on Edge Computing (SEC), pp. 01–12 (2021)

36. Gao, C., Gutierrez, A., Rajan, M., Dreslinski, R.G., Mudge, T., Wu, C.-J.: A
study of mobile device utilization. In: 2015 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pp. 225–234 (2015)

https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1804.02767
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://medium.com/p/45c121a31173
https://medium.com/p/45c121a31173
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.intel.com/content/www/us/en/products/sku/215280/intel-xeon-gold-6336y-processor-36m-cache-2-40-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/215280/intel-xeon-gold-6336y-processor-36m-cache-2-40-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/215280/intel-xeon-gold-6336y-processor-36m-cache-2-40-ghz/specifications.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
http://arxiv.org/abs/2110.13389
http://arxiv.org/abs/2012.13135

Benchmarking Object Detection Models with Mummy Nuts Datasets 119

37. Allan, A.: Benchmarking Edge Computing (2022). https://aallan.medium.com/
benchmarking-edge-computing-ce3f13942245

38. Zhang, Q., et al.: A survey on deep learning benchmarks: do we still need new
ones? In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 36–49.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9 5

https://aallan.medium.com/benchmarking-edge-computing-ce3f13942245
https://aallan.medium.com/benchmarking-edge-computing-ce3f13942245
https://doi.org/10.1007/978-3-030-32813-9_5

Network and Memory

An Analysis of Long-Tailed Network
Latency Distribution and Background

Traffic on Dragonfly+

Majid Salimi Beni(B) and Biagio Cosenza

Department of Computer Science, University of Salerno, Salerno, Italy
{msalimibeni,bcosenza}@unisa.it

Abstract. Modern computing systems are highly affected by large per-
formance variability, resulting in a long tail in the distribution of the net-
work latency. For communication-intensive applications, the variability
comes from several factors such as the communication pattern, job place-
ment strategies, routing algorithms, and most importantly, the network
background traffic. Although recent high-performance interconnects such
as Dragonfly+ try to mitigate this variability by employing advanced
techniques such as adaptive routing or topological improvements, the
long tail is still there.

This paper analyzes the sources of performance variability on a large-
scale computing system with a Dragonfly+ network. Our quantitative
study investigates the impact of several sources, including the locality
of job placement, the communication pattern, the message size, and the
network background traffic. To tackle the difficulty in measuring the
network background traffic, we propose a novel heuristic that accurately
estimates the network traffic and helps to identify those highly-varying
communications that contribute to the long tail. We have experimen-
tally validated our proposed background traffic heuristic on a collection
of pattern-based microbenchmarks as well as two real-world applications,
HACC and miniAMR. Results show that the heuristic can successfully
predict most of those runs in long-tail at job submission time on both
microbenchmarks and real-world applications.

Keywords: MPI · Interconnect · Congestion · Dragonfly+ · Topology

1 Introduction

The growing gap between communication and computation in high-performance
computing emphasizes the importance of optimized data communication. It is
today well-understood that, to reach the Exascale, computing systems should
provide high-performance network interconnects that deliver both high band-
width and low latency.

The Dragonfly+ topology [47] is a modern hierarchical interconnect that has
been recently introduced as an extended implementation of Dragonfly [30]. Such
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Gainaru et al. (Eds.): Bench 2022, LNCS 13852, pp. 123–142, 2023.
https://doi.org/10.1007/978-3-031-31180-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31180-2_8&domain=pdf
https://doi.org/10.1007/978-3-031-31180-2_8

124 M. Salimi Beni and B. Cosenza

interconnect not only provides better network utilization and scalability in com-
parison to Dragonfly but also improves router buffer utilization [47]. However,
despite Dragonfly+’s improvements compared to its predecessor, it still suffers
from performance variability, especially with higher network congestion. Perfor-
mance variability affects both system and applications’ performance, and the
batch scheduler must have a more precise estimation of applications’ runtime to
make accurate scheduling decisions [53,67].

Several users use large-scale compute clusters simultaneously, with differ-
ent utilization patterns regarding program workflow, number of nodes, and
data communication. While single-node computes units are typically not shared
between users, the network is a shared resource. Network elements such as routers
and links, shared among several jobs, are subject to contention. They negatively
impact users’ program performance by degrading I/O and slowing communica-
tion time. To address these issues, recent work has focused on monitoring, pre-
dicting, and balancing network traffic [12,32,33,58], as well as taking topological
and network designing aspects into account [7,9,22,52]. In fact, the network has
been identified as the main reason for performance variability [5,10,11,48].

D
is
tr
ib
ut
io
n

Fig. 1. Long-tail of the latency distribution on Dragonfly+.

1.1 Motivations

As performance variability is affected mainly by the network, it is essential to
understand how network latency behaves on modern large-scale compute clus-
ters. Figure 1 shows the frequency distribution of 1000 iterations of a latency test
(MPI Reduce in this case) on 16 nodes of the Marconi100 compute cluster with
a Dragonfly+ topology. Interestingly, the results show a so-called long-tailed
distribution. While a majority of the communication latencies are distributed
around the median, more than 15% of the runs’ latencies are larger than the
85th percentile (1.92 ms). The presence of such a long tail in the distribution
also indicates that the distribution is not symmetric (e.g., not Gaussian), and
there is a large gap between the mean and median. Also, the long tail nega-
tively impacts the overall network performance by making the job execution
highly unpredictable. While such performance variability is related to several

An Analysis of Long-Tailed Network Latency Distribution 125

network-related factors, our work aims to analyze the main reasons behind such
performance degradation, from the application’s communication patterns to the
external network traffic involving all users.

At the topology level, our work focuses on the Dragonfly+, which has bet-
ter network utilization [47] than Dragonfly (known to suffer from performance
variability [37,50]) and it is becoming a common topology in newly developed
supercomputers [34,42].

1.2 Contributions

This paper conducts a performance variability study on a large-scale compute
cluster with Dragonfly+ topology. The study comprises the analysis of several
known sources of performance variability, in particular network-related aspects,
including: different communications patterns, the impact of message size, the
locality of job placement, and the effect of network background traffic generated
by other users. The latter, in particular, is difficult to measure; to this end, we
propose an easy-to-measure heuristic that estimates such traffic. As a part of
the study, we further point out the effect of the adaptive routing strategy on the
communication performance of Dragonfly+.

To the best of our knowledge, this is the first work that analyzes Dragonfly+
performance variability on a real supercomputer. While most related work relies
on simulating background traffic [28,57], our approach is based on real-world
data of background traffic extracted from a large-scale compute cluster. Insights
from this analysis provide valuable feedback for job placement policy implemen-
tations on Dragonfly+ as well as network design for large-scale clusters.

The main contributions of this paper are:

– The first detailed analysis of communication performance on a large-
scale Dragonfly+ network based on real-world data: We analyze differ-
ent inter-node communication scenarios and show the performance variability
of microbenchmarks with varying job placements.

– A novel heuristics for background traffic estimation, which is easy to
measure and based on information known at job submission time.

– A comprehensive correlation analysis between estimated background
traffic and the communication performance, with different communi-
cation patterns and message sizes.

– An evaluation of the background traffic’s impact on the long-tail of
the latency distribution.

– Further extension of the evaluation on two communication-intensive
real-world applications: HACC1 and miniAMR.

The rest of the paper is organized as follows: Sect. 2 and 3 introduce, respec-
tively, related work and experimental setup. Section 4 presents our analysis of
latency distribution, and Sect. 5 describes our background traffic measurement
approach and its analysis. Section 6 is the discussion, and Sect. 7 concludes the
paper.
1 Hardware Accelerated Cosmology Code.

126 M. Salimi Beni and B. Cosenza

2 Related Work

A large part of the execution time of HPC applications is spent on transferring
data between nodes; for this reason, considerable research efforts have been paid
to investigating network topologies [4,20,26,39] and, on the application side,
studying, analyzing, and optimizing communication on top of existing topologies
[2,16,18,46,51,54,55].

Performance variability is often correlated with heavy-tailed distributions,
which are probability distributions whose tails are not exponentially bounded [3].
In fact, when scaling up and increasing the complexity of a computing system,
the tail of the latency distribution, which is not long in small systems, becomes
more dominant at the large scale [14].

Bhatele et al. [5] analyzed the performance variability of Dragonfly with peri-
odic system profiling of mini-applications; based on this analysis, they trained a
machine learning model that predicts future executions. Groves et al. [19] studied
the performance variability of the MPI Allreduce collective in the Aries Drag-
onfly network and considered the relationship between different metrics such as
process count, Aries counters, and message size with communication time, and
showed the impact of background traffic on the performance.

Research on performance variability has investigated locality aspects and
studied how topological locality and communication patterns affect different
applications’ performance [63]. Other research, however, considered other met-
rics such as network designs [13,44,60], routing strategies [8,15,27,38,40,50],
congestion control [35,45] and background traffic [65]. Wilke et al. [61] discuss
and compare existing challenges of Dragonfly and Fat-tree and show how differ-
ent configurations and routing algorithms may affect QoS. They further illustrate
the performance variability of Dragonfly while having various background traffic
and different routing strategies. Alzaid et al. [1] have explored the Dragonfly
network and measured the impact of different link arrangements between nodes
and routing strategies on communication between nodes. They showed how data
transfer through different links might be affected while the links tolerate different
bandwidths.

Job allocation strategies have been recognized as a determinant factor in
communication performance [29,36]. Level-Spread proposed by Zhang et al. [66]
is a job allocation policy on Dragonfly that puts jobs in the minor network
level that the current job can fit in to not only benefit from the node adja-
cency but also balance link congestion. Brown et al. [6] analyzed the relation
between MPI communications and I/O traffic in Fat-tree networks; their analy-
sis considers different parameters such as job allocation policies, message sizes,
communication intervals, and job sizes. Wang et al. [59] have performed a com-
parative analysis of network interference on applications with nearest-neighbor
communication patterns, considering various job placement strategies on Drag-
onfly. They show that having a trade-off between localized communication and a
balanced network in job placement can reduce network interference and alleviate
performance variability. In another work [58], they carried out an in-depth per-

An Analysis of Long-Tailed Network Latency Distribution 127

formance analysis on Dragonfly and demonstrated how balanced network traffic
and localized communication could impact different workloads.

Although related work has studied performance variability in Dragonfly, to
the best of our knowledge, none of them have deeply investigated this variability
in Dragonfly+. Moreover, we specifically show how background traffic affects
different communication patterns, i.e., which collectives are more vulnerable to
background traffic. Unlike most related work on background traffic, our analysis
is based on real-world data (experiments have been conducted during a three-
month time span at different times in order to have different background traffic)
rather than simulations. Hence, the background traffic is generated by other
users we have no control over, and we are not producing such traffic artificially.

3 Experimental Setup

Our analyses have been performed on a large-scale compute cluster, Mar-
coni100 [34], available at the CINECA supercomputing center, which is currently
ranked 18th in the TOP500 ranking [56].

3.1 Computing

The Marconi 100 cluster is an IBM Power System AC922 [43] consisting of 980
nodes, each of which is equipped with two IBM POWER9 AC922 multicore
processors with 16 cores at 2.6 (3.1 turbo) GHz and four NVIDIA Volta V100
GPUs with 16GB, and 256 GB of per-node memory. All in all, the total number
of CPU cores is 347,776, and it provides 347776 GB of memory.

3.2 Network

The internal interconnect of Marconi100 is a Mellanox InfiniBand EDR Dragon-
fly+. Figure 2 presents the Dragonfly+ topology implemented in this supercom-
puter. As shown, there are four large groups of nodes, each of which is called an

Fig. 2. The Dragonfly+ topology in Marconi100.

128 M. Salimi Beni and B. Cosenza

island. Within islands, there are smaller groups of nodes connected to one switch
called groups. The main topological difference between Dragonfly and Dragon-
fly+ is that in Dragonfly+, intra-island routers are connected as a bipartite
graph to improve the scalability.

It is worth mentioning that the Operating System is Red Hat Enterprise 7.6,
IBM Spectrum-MPI 10.4 [25] is installed on the cluster, and SLURM [62] has
the duty of resource management on this system. In addition, Adaptive Routing
[17] is the default routing strategy used to prevent contention of the links and
handle failures on the hardware.

3.3 Microbenchmarks and Applications

The main analysis and evaluation are done based on the OSU collection of
microbenchmarks [41], which consists of three collectives, to which we added
two real-world applications as summarized in Table 1. Moreover, to show the
performance variability, each experiment is repeated in 1-millisecond intervals
1000 times in a loop (as suggested by [24] to perform at least 300 iterations),
and, in all experiments, 1 MPI process is assigned to each physical node to leave
other cores for the OS. Also, 16 physical nodes are allocated to the cluster in
collective communications and application evaluations to partially involve all the
islands in the communication.

Table 1. Benchmarks and applications used for the analysis.

Benchmark/App Description Evaluated sizes

Broadcast Program calling Spectrum MPI Bcast 22, 210, 215, 220(bytes)

Reduce Program calling Spectrum MPI Reduce 22, 210, 215, 220(bytes)

All-to-All Representative of Spectrum MPI Alltoall 22, 210, 215, 220(bytes)

HACC [21] Includes various communication patterns 10M particles

miniAMR [23] Includes various communication patterns 4K 3D blocks

4 Network Latency Distribution Analysis

This section provides an analysis of the network latency on a Dragonfly+. First,
we show the performance variability considering different locality levels for node
allocation. Then, we show how the performance of microbenchmarks is affected
when having different job allocation scenarios. Note that to make sure we are
using the best-fitting distribution with minimum error in distribution plots, more
than 100 different distributions have been fitted to the data.

4.1 Job Placement Locality and Performance Variability

Performance variability is the difference in an individual program’s performance
in consecutive executions. This section shows the impact of different job place-
ment (node allocation) strategies on performance variability.

An Analysis of Long-Tailed Network Latency Distribution 129

In our analysis, we consider three locality levels according to the Dragonfly+
topology and analyze the performance variability when having the following
three node allocation scenarios:

a) Same Group: In this case, all required nodes are allocated in a single
group. Therefore, only one network switch is involved in the communication
between every two nodes.

b) Same Island: Nodes are allocated on one island, but they are distributed
across different groups of that island. Hence, there is less locality than in
the previous scenario.

c) Different Islands: Nodes are distributed on different islands. In this case,
there is no limitation on allocating nodes; they are allocated everywhere on
different islands and groups. In doing so, less locality is imposed.

(a) Broadcast (b) Reduce (c) AlltoAll

Fig. 3. Communication time frequency distribution of collective communications for
1000 iterations, with different allocation locality scenarios.

According to the defined locality levels, we focus on the role of both commu-
nication patterns and job placement on the performance variability and long-tail.
In fact, we analyze different communication patterns to understand how they
affect performance variability. The selected microbenchmarks include one-to-all
(MPI Broadcast), all-to-one (MPI Reduce), and all-to-all (MPI AlltoAll).

We refined the analysis with a by-pattern study as shown in Fig. 3. This
figure shows the frequency distribution of under-study collectives with different
allocations on 16 nodes. For the same group job placement, all 16 nodes are
allocated on the same group and connected through a single switch. For different
islands mode, four nodes are allocated on each island in different groups. As
illustrated, Broadcast (Fig. 3a) shows the best performance and shortest tail for
all three allocation strategies; in fact, it benefits local communications more than
other patterns, especially for the same group: it is not only faster than others
(average time= 0.2), but also its peak is higher, which means that communication
times of different iterations are very similar and there is a low performance
variability. In Fig. 3a, the peaks of different islands and same island are 19 and
6, respectively, and they possess a peak much lower than the same group (68).
However, they still show higher peaks than the correspondings in Reduce and

130 M. Salimi Beni and B. Cosenza

AlltoAll. For the Reduce (Fig. 3b), the average communication times of the same
group and same island are almost the same (1.17 and 1.18 ms, respectively).
However, with different islands we observe a slower average communication time
(1.4 ms) and a much longer tail, reaching 10 ms. Finally, AlltoAll (Fig. 3c) is the
slowest and most variable collective when all the nodes are on different islands.
Its frequency distribution shows a very long tail (notice that the end of its tail
is not shown in the figure), with a maximum observed communication time
reaching 13 ms and a peak of 2.

Although allocating all nodes on the same group has been beneficial for col-
lective communications, the number of nodes in each group of Dragonfly+ is
limited (up to 20 nodes in Marconi 100), and the job scheduler cannot exclu-
sively allocate to the same group more than the existing physical nodes. Even
worse, large-scale compute clusters are typically used by several users that sub-
mit multiple jobs; in fact, very often, other nodes in the same group are already
allocated by other users’ jobs. In such cases, the job scheduler should necessarily
allocate a job to nodes on different groups of that island or other islands unless
we are willing to wait hours or even days until all the nodes in the same group
are idle.

By default, SLURM [49] tries to place jobs on the currently idle nodes in
the same group if the user does not specify particular nodes (in the host file).
Because of the limited amount of idle nodes that can be found in the same group,
SLURM’s job scheduler looks for the switches (groups) with the fewest number
of idle nodes and chooses the idle nodes connected to that switch, and repeats
this process until it assigns all the requested nodes. So, based on the requested
number of nodes by the user and the availability of cluster nodes, it may decide
to assign jobs to nodes on different groups of the same island, or it spans over
different islands, which the latter is the more probable scenario according to our
observations.

5 Background Traffic Analysis

In real-world supercomputers, a single user does not operate on a dedicated
system; instead, it submits jobs concurrently with other users. While resources
such as computing nodes are typically allocated so that they are not shared
between users at the same time, unfortunately, there is a resource for which
some degree of contention is unavoidable: the network.

Intuitively, the larger the number of active jobs, the more probable the net-
work congestion. More precisely, network congestion is more probable when
users’ jobs involve a larger number of nodes.

This section analyzes how the background traffic generated by other users’
jobs affects the performance variability. In particular, we first define a simple
heuristic that approximates the amount of network activity generated by other
users’ jobs. Successively, the analysis focuses on the correlation between back-
ground traffic with several communication patterns and message sizes.

An Analysis of Long-Tailed Network Latency Distribution 131

5.1 Background Traffic Heuristic

The network congestion due to other users’ activity is an essential cause of
high-latency runs when using a large-scale compute cluster. We indicate with
network background traffic: the external network traffic made by other users
who are running their job simultaneously. To quantify how much such network
activities impact the latency of our program communications, we have monitored
the SLURM job queue before executing our jobs (i.e., we queried the squeue
command before program execution).

In this way, we obtained information regarding the number of running and
pending jobs, running jobs’ runtime, as well as the number of nodes allocated
by each job. Since we have no information about pending jobs and it is unclear
when they will be running, they are not considered in our background traffic
analysis. Besides, the running jobs that allocate only one node are excluded
from our calculations because they have no communication with other nodes
and, therefore, no effect on the background traffic (we experimentally observed
many jobs that only allocate one node). Therefore, only jobs with the running
status that allocate at least two nodes have been taken into account.

To better understand the background traffic with a simple and countable
metric, we define a simple heuristic named background network utilization (b),
which is defined as the number of unique nodes allocated by the running jobs and
whose allocation includes at least two nodes over all the available nodes of the
cluster. In other words, it shows the ratio of nodes contributing to communication
to all the physical cluster nodes.

Formally, the background network utilization b ratio is defined as follows:

b =
Nc

Nt
(1)

where:

Nc: number of unique nodes contributing to communication
Nt: total number of cluster physical nodes

In some cases, one node may be shared among different jobs by the scheduler
in order to fully utilize its resources, e.g., each job takes a computation resource;
which means that the node is being utilized by more than one communicating
job, and we cannot count this node in our heuristic only once since the node
produces higher background traffic. In order to take such cases into account,
we count the shared node as many times it appears in the jobs’ node lists that
allocate more than two nodes. Hence, considering the appearance of some nodes
more than once in the nodes list, the number of all running nodes can become
larger than the cluster’s physical nodes (Nt), which is a constant number. In an
effort to resolve the problem and refine the heuristic, we consider the overhead
of shared nodes by multiplying b by a new ratio which is: the number of nodes
contributing to communication (consider some nodes might be counted more
than once) to all the allocated running nodes (Similarly, we count each node as
many times they appear in the jobs’ nodes list). By doing so, we ensure that

132 M. Salimi Beni and B. Cosenza

we consider nodes contributing to different jobs and having communication with
other nodes. Therefore, the refined version of the background network utilization,
which will be considered in the rest of the paper, is defined as follows:

b =
Nc

Nt
∗ N ′

c

Na
(2)

where:

N ′
c: the number of nodes contributing to communication (containing duplication)

Na: all allocated running nodes (containing duplication)

Ideally, the value of b is 1 (or 100, if the percentage is taken into account)
if running jobs allocate all the nodes and all of them are actively involved in
communication, while b is 0 if non of the nodes are communicating or there is
no active job at that moment. In order to make sure the measured b is showing
a more accurate background network utilization and it has not changed during
the microbenchmark’s execution, we perform the squeue query also after the
execution of each test and capture the b value only if the difference between two
b values calculated is less than a threshold (5% in our experiments).

Note that some other network-related metrics, such as vendor-provided coun-
ters, can be also measured in some clusters to make precise network congestion
measurement. However, not in all compute clusters are these counters available
or accessible by non-admin users. Moreover, using such counters, the proposed
method would not be portable to other clusters with different network infrastruc-
ture vendors. Therefore, we rely on data provided by SLURM, which is available
on most clusters.

(a) Broadcast

(b) Reduce

(c) AlltoAll

Fig. 4. The relation between background traffic (b) and the average communication
time of different collectives with different message sizes.

An Analysis of Long-Tailed Network Latency Distribution 133

5.2 Correlation Analysis

To evaluate how much the communication time is affected by the background
traffic, we analyzed the correlation between the previously introduced b metric
and the communication time over many runs with different workloads in terms
of data sizes and communication patterns. In the evaluation, we used the Pear-
son Correlation Coefficient (r) [31] and Spearman Rank Correlation (ρ) [64] to
analyze the relation between the two metrics. While Pearson’s correlation shows
if there is a linear relationship between data, Spearman’s correlation evaluates
the monotonic relationships in the data. In both, r, ρ: r = +1 or ρ = +1 means
that there is a strong positive correlation between the variables, while r = 0 or
ρ = 0 means independent variables. Figure 4 shows the correlation between back-
ground network utilization b and communication time for Broadcast (Fig. 4a),
Reduce (Fig. 4b), and All-to-All (Fig. 4c) pattern, with different data sizes on
16 nodes allocated on different islands. We do not explore point-to-point com-
munication here since it is not significantly affected by the background traffic.
There are 22 points on each plot, and each point represents the average time of
1000 iterations. Experiments are performed in a three months time frame and
represent experiments under different cluster utilization, i.e., different recorded
background network utilization.

As shown in Fig. 4, the message transmission time is correlated with the
background network utilization metric (b) and, overall, with increasing traffic,
the communication time increases. In addition, as a general trend, with growing
message size from 22, 210, and 215 to 220 bytes, the correlation between back-
ground network utilization and communication time becomes stronger, which
means: the larger the data size is, the more the collective communication is
affected by background traffic. Further, the correlations in Reduce collective for
larger data (215 and 220 bytes) are higher than in others, meaning that in this
collective, the communication time is highly dependent on the background traf-
fic. Also, comparing the Pearson and Spearman correlations, Spearman shows a
better fit for our use cases since it usually shows a more strong correlation.

It is worth mentioning that although background traffic is an essential factor
that affects performance variability in communication-intensive jobs running on
supercomputers, it is not the only player. Other reasons come from MPI itself,
system activities, background daemons, garbage collection, queuing activities in
intermediate servers and network switches, etc. [14,48]. Having said that, our
background network utilization ratio is also an estimation relying on the obtain-
able information from other users. Hence, there might be possible errors in the
measured runtimes, which is why some communications with smaller background
network utilization have larger communication times, and the correlations are
not +1.0 in Fig. 4.

5.3 The Impact of Background Traffic on Long-Tail

We have seen how performance variability is affected by the network background
traffic for specific input sizes and communication patterns. In this section, we

134 M. Salimi Beni and B. Cosenza

(a) Broadcast (b) Reduce

(c) All-to-All

Fig. 5. Frequency distribution of communication times of 1000 iterations of Broadcast,
Reduce, and All-to-All with different background network utilization.

go back to the motivation example and focus our analysis on the background
traffic contribution to the long-tail effect. Figure 5 shows the frequency distribu-
tion of the execution time of 1000 iterations of 3 collectives on 16 nodes with
message size 220 bytes, with nodes allocated on different islands. For all three
collectives, the higher the background network utilization, the lower the peak,
and the longer the tail. For the Broadcast (Fig. 5a) and b = 0.17 (17%), the peak
is very high, and there is a significant gap in the distribution of the higher and
lower traffics; with higher background network utilization (b = 0.70), the tail of
its corresponding distribution line is so long, which indicates that the commu-
nication performance is highly variable, ranging from 0.2 ms to 8 ms. Moreover,
our experimental result reveals that the average execution time of 1000 iterations
of Broadcast for b = 0.70 can be up to 6.4x larger than b = 0.17. Therefore, the
Broadcast is highly affected by the background traffic, and, even if all the nodes
are distributed on different islands, lower background traffic’s performance can
be as good as allocating all the nodes on the same island.

Similarly, in Figs. 5b and 5c, we observe that the distribution spreads at larger
intervals with increasing background network utilization, and the tail becomes
longer. For AlltoAll, especially when there is high background network utiliza-
tion, the tail of the distribution is longer, the peak is lower, and the average
communication time is larger than Broadcast and Reduce. Also, the mean of

An Analysis of Long-Tailed Network Latency Distribution 135

distribution with b = 0.74 is around 1.6x larger than b = 0.21. In addition,
unlike others, in AlltoAll, a significant shift in the peak of the charts (Median)
of different background network utilizations is observed. In fact, this shift in the
peak of different traffics is because of the All-to-All’s inherent communication
intensity: in this pattern, all nodes send their data to the others, and more data
is sent through the network, making the network links more congested.

Besides, for higher background network utilization of Reduce and AlltoAll,
the frequency distribution becomes dual (bimodal), which means that the higher
amounts of iterations mainly happen at two different times instead of one. This
behavior is related to the adaptive routing algorithm employed in this Dragon-
fly+ network. In adaptive routing, the router has multiple paths to choose from
for each packet. In this way, some packets traverse on the shortest (minimal)
path, and some go through an alternative, longer (non-minimal) one. Hence,
some communications happen slower than the majority due to the penalty of
selecting the non-minimal path. As demonstrated in Figs. 5b and 5c, when the
network tolerates higher background network utilization, going through the non-
minimal path becomes more probable that this either causes the distribution tail
longer or makes it dual. Note that we cannot change the routing strategy since
we are performing our experiments on a real compute cluster. Overall, it is clear
how the background traffic pushes the tail. While the adaptive routing strat-
egy helps mitigate the problem, there are cases where the problem still exists,
particularly when there is very high background traffic.

5.4 Application Analysis

So far, we have shown the impact of network background traffic and routing
strategy on micro-benchmarks. In this section, we investigate the impact of back-
ground network utilization on two communication-intensive real-world applica-
tions that have shown to be affected by network congestion:

– HACC: a cosmology framework that performs n-body simulation to simulate
the formation of structure in an expanding space.

– miniAMR: a mini-application that performs a stencil calculation on a unit
cube computational domain.

Figure 6 shows the network latency distribution for HACC and miniAMR with
both histogram and the frequency distribution. As shown in Fig. 6a for HACC,
the average execution time and the peaks of b = 34 (the orange distribution)
are 1.37 and 8.9, respectively. In contrast, for b = 58 (the blue distribution), the
average time and peak reach 1.43 and 5.2, respectively. In other words, with a
24 percent increase in b, the average execution time increases by 4.4 percent.
Moreover, both distributions in Fig. 6a are single and bell-shaped. However, the
blue line is broadly distributed, and its tail reaches 2.5, while the orange line’s
tail is 2.1.

On the other hand, in Fig. 6b, when b changes from 51% to 64% and changes
by 13, the average goes from 7.71 to 7.86 (2% increase). In contrast to all the

136 M. Salimi Beni and B. Cosenza

(a) HACC (b) miniAMR

Fig. 6. Frequency distribution of 1000 iterations of HACC and miniAMR applications
with two different background network utilization.

observations, in this figure, both plots have multiple peaks, and a different behav-
ior has been observed. Regarding the previous analysis on the two applications
[65], in HACC, around 67% of the overall execution time of the application
belongs to MPI operations. However, a tiny fraction (0.1%) is related to block-
ing collective communications. On the contrary, in miniAMR, 27% of total time
belongs to MPI operations, in which 9.2% of the overall execution time belongs
to only MPI Allreduce, which means miniAMR performs more collective com-
munications with the All-to-All pattern.

As we have demonstrated in Figs. 3 and 5, the All-to-All pattern is more prone
to be affected by the network background traffic, and it has shown the flattest dis-
tribution when it is exposed to higher network background traffic in comparison
to others. Moreover, the routing’s effect can make its distribution bimodal. Look-
ing over miniAMR’s code, there are more than 10000 MPI Allreduce operations
which make the All-to-All pattern dominant. In Fig. 6b, the distribution becomes
flat-topped that the main reason is because of its dominant All-to-All pattern,
and its distribution is an aggregation of all of its dominant MPI Allreduce com-
munication latencies. Having said that, the routing algorithm will also play a role
here because of the communication intensity of the All-to-All pattern, and we
could expect a multi-modal distribution because of mixing many MPI Allreduce
distribution patterns.

6 Discussion

Our analysis of network latency distribution on a large-scale compute cluster
with Dragonfly+ topology led to several insights. In terms of node allocation,
there is a remarkable discrepancy between the same group and the two other
allocation policies. When all the nodes are allocated to a single group, there is
only one hop between every two nodes, which makes the communication min-
imally affected by the global background traffic. For the same reasons, in this

An Analysis of Long-Tailed Network Latency Distribution 137

case, the minimal and non-minimal paths are the same for the adaptive routing
(in contrast with the two other cases). So, it exhibits a latency distribution with
the shortest tail and the higher peak. Hence, if there are enough available idle
nodes on the same group, it is worth allocating all the required nodes there.

When analyzing the latency distribution according to the communication
patterns, the Broadcast is the pattern that has significant benefit from the local-
ity of the job allocation; in fact, results show that Broadcast has the shortest tail
and higher peak and is faster than Reduce and All-to-All for both same group
and same island allocations. However, when nodes are allocated on different
islands, Broadcast is highly affected by the background traffic, showing a very
long tail compared to the cases with lower background traffic. Moreover, when
the background traffic is very low, Broadcast’s allocation performance on dif-
ferent islands can be as variable as allocation on the same group. Nevertheless,
since the introduced background network utilization has been between 0.40 and
0.70 most of the time, there is very little chance of being in this situation. On
the other hand, All-to-All is the pattern with the most extended tail when the
job placement expresses little locality on Dragonfly+. Although its distribution
when allocating on the same group is similar to the Reduce on the same group,
when performing All-to-All on different islands, the distribution tail becomes
very long due to the higher amount of communication in All-to-All.

Among all possible sources of performance variability, it has been shown that
the background traffic is the key factor in the performance variability of different
collectives on Dragonfly+. Usually, with the increase in background traffic, the
communication time of collectives takes longer. Additionally, collective commu-
nication increases with higher background traffic and larger message sizes.

On top of that, we have experimentally observed a two-peak distribution
of the communication latency typically due to the adaptive routing algorithm,
which offloads some packets to an alternative, longer path under congestion.
Finally, when analyzing the latency distribution of a real-world communication-
intensive application, the distribution is mostly affected by its dominant com-
munication pattern, and the overall average execution time increases with an
increment in the network background traffic.

7 Conclusion

In this paper, we showed the performance variability of Dragonfly+ and analyzed
the impact of background traffic on the long-tailed distribution for different com-
munication patterns. We proposed a novel network background traffic estimation
method that relies on the data gathered from the job scheduler’s execution queue.
We further showed the relation between performance variability and message size
and demonstrated how the adaptive routing algorithm impacts the distribution.
Overall, this study considers different metrics, including communication pat-
terns, message sizes, job placement locality, and background traffic, to show how
they contribute to performance variability and long-tail. We have experimen-
tally validated our proposed background traffic heuristic on a large-scale cluster,
a collection of pattern-based microbenchmarks, and two real-world applications.

138 M. Salimi Beni and B. Cosenza

The insights coming of this paper can help either the user or the sched-
uler to make more optimal decisions by first, estimating the network congestion
according to the user-level information, and second, submitting the job at an
appropriate time to have the minimum network interference.

Acknowledgments. This research has been partially funded by the European High-
Performance Computing Joint Undertaking (JU) under grant agreement No. 956137
(LIGATE project).

References

1. Alzaid, Z.S.A., Bhowmik, S., Yuan, X., Lang, M.: Global link arrangement for
practical dragonfly. In: Proceedings of the 34th ACM International Conference on
Supercomputing, pp. 1–11 (2020)

2. Aseeri, S.A., Chatterjee, A.G., Verma, M.K., Keyes, D.E.: A scheduling policy
to save 10% of communication time in parallel fast Fourier transform. Concurr.
Comput. Pract. Exp. e6508 (2021)

3. Beni, M.S., Cosenza, B.: An analysis of performance variability on dragon-
fly+topology. In: 2022 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 500–501 (2022). https://doi.org/10.1109/CLUSTER51413.2022.
00061

4. Besta, M., et al.: Fatpaths: routing in supercomputers and data centers when short-
est paths fall short. In: International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2020, pp. 1–18. IEEE (2020)

5. Bhatele, A., et al.: The case of performance variability on dragonfly-based sys-
tems. In: 2020 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 896–905. IEEE (2020)

6. Brown, K.A., Jain, N., Matsuoka, S., Schulz, M., Bhatele, A.: Interference between
I/O and MPI traffic on fat-tree networks. In: Proceedings of the 47th International
Conference on Parallel Processing, pp. 1–10 (2018)

7. Brown, K.A., et al.: A tunable implementation of quality-of-service classes for
HPC networks. In: Chamberlain, B.L., Varbanescu, A.-L., Ltaief, H., Luszczek, P.
(eds.) ISC High Performance 2021. LNCS, vol. 12728, pp. 137–156. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-78713-4 8

8. Chaulagain, R.S., Liza, F.T., Chunduri, S., Yuan, X., Lang, M.: Achieving the per-
formance of global adaptive routing using local information on dragonfly through
deep learning. In: ACM/IEEE SC Tech Poster (2020)

9. Cheng, Q., Huang, Y., Bahadori, M., Glick, M., Rumley, S., Bergman, K.:
Advanced routing strategy with highly-efficient fabric-wide characterization for
optical integrated switches. In: 2018 20th International Conference on Transparent
Optical Networks (ICTON), pp. 1–4. IEEE (2018)

10. Chester, D., et al.: StressBench: a configurable full system network and I/O bench-
mark framework. In: IEEE High Performance Extreme Computing Conference,
York (2021)

11. Chunduri, S., et al.: Run-to-run variability on Xeon Phi based cray XC systems.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–13 (2017)

https://doi.org/10.1109/CLUSTER51413.2022.00061
https://doi.org/10.1109/CLUSTER51413.2022.00061
https://doi.org/10.1007/978-3-030-78713-4_8

An Analysis of Long-Tailed Network Latency Distribution 139

12. De Sensi, D., Di Girolamo, S., Hoefler, T.: Mitigating network noise on dragonfly
networks through application-aware routing. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 1–32 (2019)

13. De Sensi, D., Di Girolamo, S., McMahon, K.H., Roweth, D., Hoefler, T.: An in-
depth analysis of the slingshot interconnect. In: International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2020, pp. 1–14.
IEEE (2020)

14. Dean, J., Barroso, L.A.: The tail at scale. Commun. ACM 56, 74–80 (2013). http://
cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

15. Faizian, P., et al.: TPR: traffic pattern-based adaptive routing for dragonfly net-
works. IEEE Trans. Multi-Scale Comput. Syst. 4(4), 931–943 (2018)

16. Farmer, S., Skjellum, A., Grant, R.E., Brightwell, R.: MPI performance character-
ization on infiniband with fine-grain multithreaded communication. In: 2016 IEEE
18th International Conference on High Performance Computing and Communica-
tions; IEEE 14th International Conference on Smart City; IEEE 2nd International
Conference on Data Science and Systems (HPCC), pp. 1102–1106. IEEE (2016)

17. Glass, C.J., Ni, L.M.: The turn model for adaptive routing. ACM SIGARCH Com-
put. Archit. News 20(2), 278–287 (1992)

18. Grant, R.E., Dosanjh, M.G.F., Levenhagen, M.J., Brightwell, R., Skjellum, A.:
Finepoints: partitioned multithreaded MPI communication. In: Weiland, M., Juck-
eland, G., Trinitis, C., Sadayappan, P. (eds.) ISC High Performance 2019. LNCS,
vol. 11501, pp. 330–350. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-20656-7 17

19. Groves, T., Gu, Y., Wright, N.J.: Understanding performance variability on the
Aries dragonfly network. In: 2017 IEEE International Conference on Cluster Com-
puting (CLUSTER), pp. 809–813. IEEE (2017)

20. Hashmi, J.M., Xu, S., Ramesh, B., Bayatpour, M., Subramoni, H., Panda,
D.K.D.K.: Machine-agnostic and communication-aware designs for MPI on emerg-
ing architectures. In: 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 32–41. IEEE (2020)

21. Heitmann, K., et al.: The outer rim simulation: a path to many-core supercomput-
ers. Astrophys. J. Suppl. Ser. 245(1), 16 (2019)

22. Hemmert, K.S., et al.: Evaluating trade-offs in potential exascale interconnect tech-
nologies (2020)

23. Heroux, M.A., et al.: Improving performance via mini-applications. Sandia
National Laboratories, Technical report. SAND2009-5574, vol. 3 (2009)

24. Hunold, S., Carpen-Amarie, A.: Reproducible MPI benchmarking is still not as
easy as you think. IEEE Trans. Parallel Distrib. Syst. 27(12), 3617–3630 (2016)

25. IBM Spectrum MPI, accelerating high-performance application parallelization.
https://www.ibm.com/products/spectrum-mpi. Accessed 01 May 2022

26. Jeannot, E., Mansouri, F., Mercier, G.: A hierarchical model to manage hardware
topology in MPI applications. In: Proceedings of the 24th European MPI Users’
Group Meeting, pp. 1–11 (2017)

27. Kang, Y., Wang, X., Lan, Z.: Q-adaptive: a multi-agent reinforcement learning
based routing on dragonfly network. In: Proceedings of the 30th International
Symposium on High-Performance Parallel and Distributed Computing, pp. 189–
200 (2020)

28. Kang, Y., Wang, X., McGlohon, N., Mubarak, M., Chunduri, S., Lan, Z.: Modeling
and analysis of application interference on dragonfly+. In: Proceedings of the 2019

http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
https://doi.org/10.1007/978-3-030-20656-7_17
https://doi.org/10.1007/978-3-030-20656-7_17
https://www.ibm.com/products/spectrum-mpi

140 M. Salimi Beni and B. Cosenza

ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, pp. 161–
172 (2019). ISBN 9781450367233

29. Kaplan, F., Tuncer, O., Leung, V.J., Hemmert, S.K., Coskun, A.K.: Unveiling the
interplay between global link arrangements and network management algorithms
on dragonfly networks. In: 2017 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), pp. 325–334. IEEE (2017)

30. Kim, J., Dally, W.J., Scott, S., Abts, D.: Technology-driven, highly-scalable drag-
onfly topology. In: 2008 International Symposium on Computer Architecture, pp.
77–88. IEEE (2008)

31. Kirch, W.: Pearson’s correlation coefficient. In: Encyclopedia of Public Health, pp.
1090–1091 (2008)

32. Kousha, P., et al.: INAM: cross-stack profiling and analysis of communication
in MPI-based applications. In: Practice and Experience in Advanced Research
Computing, pp. 1–11 (2021)

33. Liu, Y., Liu, Z., Kettimuthu, R., Rao, N., Chen, Z., Foster, I.: Data transfer
between scientific facilities - bottleneck analysis, insights and optimizations. In:
2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID), pp. 122–131 (2019)

34. Marconi100, the new accelerated system. https://www.hpc.cineca.it/hardware/
marconi100

35. McGlohon, N., et al.: Exploration of congestion control techniques on dragonfly-
class HPC networks through simulation. In: 2021 International Workshop on Per-
formance Modeling, Benchmarking and Simulation of High Performance Computer
Systems (PMBS), pp. 40–50. IEEE (2021)

36. Michelogiannakis, G., Ibrahim, K.Z., Shalf, J., Wilke, J.J., Knight, S., Kenny,
J.P.: Aphid: hierarchical task placement to enable a tapered fat tree topology for
lower power and cost in HPC networks. In: 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 228–237. IEEE
(2017)

37. Mollah, Md.A., Faizian, P., Rahman, Md.S., Yuan, X., Pakin, S., Lang, M.: A
comparative study of topology design approaches for HPC interconnects. In: 2018
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID), pp. 392–401. IEEE (2018)

38. Mollah, Md.A., et al.: Modeling universal globally adaptive load-balanced routing.
ACM Trans. Parallel Comput. 6(2) (2019)

39. Navaridas, J., Lant, J., Pascual, J.A., Lujan, M., Goodacre, J.: Design exploration
of multi-tier interconnection networks for exascale systems. In: Proceedings of the
48th International Conference on Parallel Processing, pp. 1–10 (2019)

40. Newaz, Md.N., Mollah, Md.A., Faizian, P., Tong, Z.: Improving adaptive routing
performance on large scale Megafly topology. In: 2021 IEEE/ACM 21st Inter-
national Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp.
406–416. IEEE (2021)

41. OSU micro-benchmarks 5.8 (2021). https://mvapich.cse.ohio-state.edu/
benchmarks/

42. Ponce, M., et al.: Deploying a top-100 supercomputer for large parallel workloads:
the Niagara supercomputer. In: Proceedings of the Practice and Experience in
Advanced Research Computing on Rise of the Machines (Learning), pp. 1–8 (2019)

43. POWER9 processor chip. https://www.ibm.com/it-infrastructure/power/power9
44. Rahman, Md.S., Bhowmik, S., Ryasnianskiy, Y., Yuan, X., Lang, M.: Topology-

custom UGAL routing on dragonfly. In: Proceedings of the International Confer-

https://www.hpc.cineca.it/hardware/marconi100
https://www.hpc.cineca.it/hardware/marconi100
https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://www.ibm.com/it-infrastructure/power/power9

An Analysis of Long-Tailed Network Latency Distribution 141

ence for High Performance Computing, Networking, Storage and Analysis, SC 2019.
Association for Computing Machinery, New York (2019). ISBN 9781450362290

45. Rocher-Gonzalez, J., Escudero-Sahuquillo, J., Garcia, P.J., Quiles, F.J., Mora, G.:
Efficient congestion management for high-speed interconnects using adaptive rout-
ing. In: 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID), pp. 221–230. IEEE (2019)

46. Ruhela, A., Xu, S., Manian, K.V., Subramoni, H., Panda, D.K.: Analyzing and
understanding the impact of interconnect performance on HPC, big data, and
deep learning applications: a case study with infiniband EDR and HDR. In: 2020
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 869–878. IEEE (2020)

47. Shpiner, A., Haramaty, Z., Eliad, S., Zdornov, V., Gafni, B., Zahavi, E.: Dragon-
fly+: low cost topology for scaling datacenters. In: 2017 IEEE 3rd International
Workshop on High-Performance Interconnection Networks in the Exascale and
Big-Data Era (HiPINEB), pp. 1–8. IEEE (2017)

48. Skinner, D., Kramer, W.: Understanding the causes of performance variability in
HPC workloads. In: IEEE International 2005 Proceedings of the IEEE Workload
Characterization Symposium, pp. 137–149. IEEE (2005)

49. Slurm, Slurm’s job allocation policy for dragonfly network (2021). https://github.
com/SchedMD/slurm/blob/master/src/plugins/select/linear/select linear.c

50. Smith, S.A., et al.: Mitigating inter-job interference using adaptive flow-aware rout-
ing. In: International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2018, pp. 346–360. IEEE (2018)

51. Subramoni, H., Lu, X., Panda, D.K.: A scalable network-based performance anal-
ysis tool for MPI on large-scale HPC systems. In: 2017 IEEE International Con-
ference on Cluster Computing (CLUSTER), pp. 354–358. IEEE (2017)

52. Suresh, K.K., Ramesh, B., Ghazimirsaeed, S.M., Bayatpour, M., Hashmi, J.,
Panda, D.K.: Performance characterization of network mechanisms for non-
contiguous data transfers in MPI. In: 2020 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW), pp. 896–905. IEEE (2020)

53. Tang, W., Desai, N., Buettner, D., Lan, Z.: Analyzing and adjusting user runtime
estimates to improve job scheduling on the Blue Gene/P. In: 2010 IEEE Interna-
tional Symposium on Parallel & Distributed Processing (IPDPS), pp. 1–11. IEEE
(2010)

54. Teh, M.Y., Wilke, J.J., Bergman, K., Rumley, S.: Design space exploration of the
dragonfly topology. In: Kunkel, J.M., Yokota, R., Taufer, M., Shalf, J. (eds.) ISC
High Performance 2017. LNCS, vol. 10524, pp. 57–74. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67630-2 5

55. Temuçin, Y.H., Sojoodi, A.H., Alizadeh, P., Kitor, B., Afsahi, A.: Accelerating
deep learning using interconnect-aware UCX communication for MPI collectives.
IEEE Micro 42(2), 68–76 (2022)

56. Top500, MARCONI-100. https://www.top500.org/system/179845/. Accessed 01
May 2022

57. Wang, X., Mubarak, M., Kang, Y., Ross, R.B., Lan, Z.: Union: an automatic
workload manager for accelerating network simulation. In: 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp. 821–830 (2020)

58. Wang, X., Mubarak, M., Yang, X., Ross, R.B., Lan, Z.: Trade-off study of localizing
communication and balancing network traffic on a dragonfly system. In: 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pp. 1113–
1122. IEEE (2018)

https://github.com/SchedMD/slurm/blob/master/src/plugins/select/linear/select_linear.c
https://github.com/SchedMD/slurm/blob/master/src/plugins/select/linear/select_linear.c
https://doi.org/10.1007/978-3-319-67630-2_5
https://www.top500.org/system/179845/

142 M. Salimi Beni and B. Cosenza

59. Wang, X., Yang, X., Mubarak, M., Ross, R.B., Lan, Z.: A preliminary study of
intra-application interference on dragonfly network. In: 2017 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 643–644. IEEE (2017)

60. Wen, K., et al.: Flexfly: enabling a reconfigurable dragonfly through silicon pho-
tonics. In: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC 2016, pp. 166–177. IEEE (2016)

61. Wilke, J.J., Kenny, J.P.: Opportunities and limitations of quality-of-service in mes-
sage passing applications on adaptively routed dragonfly and fat tree networks. In:
2020 IEEE International Conference on Cluster Computing (CLUSTER), pp. 109–
118. IEEE (2020)

62. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple Linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987 3

63. Zahn, F., Fröning, H.: On network locality in MPI-based HPC applications. In:
49th International Conference on Parallel Processing-ICPP, pp. 1–10 (2020)

64. Zar, J.H.: Spearman rank correlation. In: Encyclopedia of Biostatistics, vol. 7
(2005)

65. Zhang, Y., Groves, T., Cook, B., Wright, N.J., Coskun, A.K.: Quantifying the
impact of network congestion on application performance and network metrics.
In: 2020 IEEE International Conference on Cluster Computing (CLUSTER), pp.
162–168. IEEE (2020)

66. Zhang, Y., Tuncer, O., Kaplan, F., Olcoz, K., Leung, V.J., Coskun, A.K.: Level-
spread: a new job allocation policy for dragonfly networks. In: 2018 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), pp. 1123–1132.
IEEE (2018)

67. Zhou, Z., et al.: Improving batch scheduling on Blue Gene/Q by relaxing 5D
torus network allocation constraints. In: 2015 IEEE International Parallel and Dis-
tributed Processing Symposium, pp. 439–448. IEEE (2015)

https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3

MCCBench: A C10M Benchmark
Oriented to Interactive Network Services

Hui Song1 , Wenli Zhang1(B) , and Mingyu Chen1,2,3

1 State Key Lab of Processors, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China

{songhui,zhangwl,cmy}@ict.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Zhongguancun Laboratory, Beijing, China

Abstract. With the explosive growth of IoT and other interactive net-
work services, billions of devices are now connected, leading to highly
fluctuating traffic and diverse QoS requirements for servers. This, cou-
pled with the C10M problem, means benchmarks for interactive services
should be able to handle millions of concurrency, bursty load and mul-
tiple QoS evaluation. However, existing general benchmarks for network
services cannot fully meet these requirements.

To address this issue, we propose MCCBench as a benchmark for high
concurrent interactive network services. MCCBench includes a method-
ology for load generation, service framework, and service performance
evaluation, allowing for the measurement of over 10 million concurrent
connections, bursty loads, and labeling of requests with different ser-
vice qualities. The performance evaluation metrics include tail latency
measured on the server side, and long-lived concurrent connections. To
implement MCCBench, we have developed an open-source toolset called
MCCBench-IoT, which includes a load generator, an IoT service system
based on a user-space network stack, and an accurate monitor for mea-
suring tail latency.

We verified MCCBench by building a testbed with MCCBench-IoT
to emulate a typical IoT service, successfully testing tail latency under
a concurrency of 10.2 million on a single server node. The testbed was
scaled to 300 million concurrency with cluster configuration. By provid-
ing a comprehensive benchmark for high-concurrent interactive network
services, MCCBench can help improve the quality of service for such ser-
vices and enable better decision-making for network infrastructure design
and optimization.

Keywords: Benchmark · Interactive network services · Concurrency ·
Tail latency · IoT

1 Introduction

The interactive network services have been developing fast in recent years. Con-
sequently, billions of terminal devices [1] are created and penetrate into daily
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Gainaru et al. (Eds.): Bench 2022, LNCS 13852, pp. 143–159, 2023.
https://doi.org/10.1007/978-3-031-31180-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31180-2_9&domain=pdf
http://orcid.org/0000-0001-8532-9267
http://orcid.org/0000-0003-4540-938X
http://orcid.org/0000-0003-4469-1037
https://doi.org/10.1007/978-3-031-31180-2_9

144 H. Song et al.

life, including smart home, connected vehicles, social networks and online shop-
ping [1–3]. Notably, the isolation demands of COVID-19 also promotes the devel-
opment of online medical consultations [10]. For servers, the large-scale terminals
and user activities have sparked the ever-increasing concurrency, with fluctua-
tions and variety of workloads, which impacted on server performance and user
experience directly [4,5]. For great commercial and research significance, it’s nec-
essary to apply a suitable benchmark to evaluate the server ability on handling
these properties:

• Mass Terminal Services. Simply in the smart home field, the worldwide
smart devices have grown 11.7% in 2021 compared to 2020 with more than
8.95 billion devices shipped [13]. The services are expected to support millions
upon millions of connections increasing from the devices. To save the server
investment cost, the concurrency of a server is expected to be improved from
the current C10K [17] to C10M [18], which means handling over 10 million
concurrent TCP connections. There have been a few preliminary achieve-
ments [25,26] on C10M.

• Instantaneous Requests Aggregated. Because the human activities are
temporal clustering like converged commuting or collective attention, the ser-
vices such as connected vehicles and social networks may receive massive
requests aggregation for an instant called bursts [8,9]. For example, 99% of
the taxi signal inter-arrival times (about 500) of New York Grand Central
Terminal is within 2 s in a day [9].

• Differentiated Service Demands. The various types of interactive ser-
vices make the requirements for QoS different [31]. When shopping online,
the search, query and purchase requests indicate high latency sensitivity and
require real-time response from the server as fast as possible, while message
notifications do not.

Existing benchmarks can be classified into two categories based on usage
modes: 1. Representative workloads. This category refers to the representa-
tive workloads produced by complete toolsets or datasets [11], like Tailbench [32]
and Treadmill [33]. The test implementation depends on the toolsets or datasets
given, or with a minor modifications. Such benchmarks are intuitive and con-
venient, but the usage scenarios and timeliness are limited. The performance
metrics involved in the interactive service are diverse and interrelated, including
but not limited to the memory and network stack. The combination of different
factors may cause considerable differences. Thus the interactive services bench-
mark can’t be represented by finite workloads. 2. Specification. Benchmarks
of specification propose algorithms or methods to define the workload format,
service framework and evaluation criteria [12]. For example, TPC-C [15], TPC-
H [14] and Terasort [16] belong to this category. Their workloads and toolsets
are optional and customizable by the users according to the methodology. The
general character can be defined abstractly and uniformly. So a benchmark of
specification is more in line with the interactive services. However, the specifi-
cation benchmark satisfying the three requirements simultaneously has not yet
been proposed.

MCCBench: A C10M Benchmark Oriented to Interactive Network Services 145

For interactive network services with millions of concurrency, we have pre-
sented a C10M specification benchmark named MCCBench. Users refer to the
definition methods of workloads, service framework and performance evaluation
to test respective servers. MCCBench can even be extended to hundreds of mil-
lions of concurrency with multiple server nodes. For MCCBench implementation
and verification, we have also developed and integrated an open source toolset
called MCCBench-IoT.

(i) MCCBench. MCCBench is composed of the methodology to define the
load generation, service function and service performance evaluation. In
terms of load generation, it defines workloads with massive long-lived TCP
connections, which is oriented to interactive services with over 10 million
concurrency. To simulate the instantaneous traffic aggregation, the repeat-
able burst generation is also defined. For different latency sensitivities of
the requests, MCCBench sets priority labels in the request payload. The
service framework is defined to afford concurrency of over 10 million and
identify the request priority by default. After configurable computation, all
the requests query in-memory database in the order of priority schedul-
ing. The database query operations are customized by users. Considering
the user experience, the performance evaluation criteria based on the tail
latency and concurrency have also been defined: the server-side tail latency
under the given concurrency and the maximum concurrency under the tail
latency threshold.

(ii) MCCBench-IoT Toolset. MCCBench-IoT is proposed as a case to show
the MCCBench implementation on IoT scenarios in detail and intuitively.
It consists of a load generator MCC [24] upgraded based on MCC V1.0 [20],
and an IoT service IoTEPServer [38]. MCC and IoTEPServer are all devel-
oped on user-space TCP/IP stacks and can afford the concurrency of over
10 million. IoTEPServer identifies the request priority and schedules them
to randomly query multiple Redis processes on a single server, similar to
the Redis cluster. We also introduced a monitor HCMonitor to calculate
the response tail latency in real time on server side [41]. MCCBench-IoT
has strong augmentability, which can also be used to benchmark on more
applications with a few simple modifications. For example, MCC can be
extended to the workload generation for web application like Lighttpd by
altering payload format. HCMonitor can be used for web or IM (Instant
Messaging) traffic test by changing the configuration.

With MCCBench implementation on MCCBench-IoT system, we have measured
the tail latency (20.27 ms) of the IoT requests querying Redis under 10.2 mil-
lion concurrent connections, and the upper limit of concurrency up to 12 million
under tail latency threshold 50 ms. We also tested the number of active connec-
tions and latency in server cluster with over 300 million concurrency. The results
verify the rationality and effectiveness of MCCBench.

146 H. Song et al.

2 Motivation

2.1 Benchmark Design

Benchmarks are used to provide reference test for service performance optimiza-
tion, with the fundamental purpose of improving user experience. Now the user
experience has been influenced by millions of concurrency, fluctuating aggre-
gation and different QoS levels in interactive services. To keep up with these
advances, a measurement standard benchmark for them needs support:

High Concurrency Measurement. The existing C10M achievements suggest
it will benefit for cloud service providers (like Google Cloud [27]) with a scale
of millions of users. It also brings a demand for service benchmarks on affording
high concurrency, as the concurrency will be an important metric affecting the
user experience in the large-scale services. So we design a benchmark in adaption
to over 10 million concurrency flexibly to save the cost on server performance
optimization. It can be scaled to test the concurrency of over 100 million for
more universality.

Bursts Handling Measurement. Owing to factors such as commuting or
social focus, the interactive traffic indicates substantial requests sent to the
servers in some instant periods, which is called bursts [8,9]. It’s essential for
a service benchmark to design the method of burst generation that conforms to
the interactive workload characteristics.

Priority Scheduling Measurement. The various interactive service types
make the request sensitivities for response latency different. In other words,
the requests have unequal QoS (Quality of Service) priorities. To restore the
scenario of multiple QoS priority, the benchmarks for interactive services should
simulate multi-priority workloads, as well as their identification, scheduling and
performance testing.

2.2 Benchmark Implementation

Since the benchmark for interactive network services is based on measurement
standard, it needs tools to verify the feasibility. To provide a reference for the
benchmark implementation, we investigate the existing tools in Table 1. Bench-
mark tools can be divided into two categories: hardware-based and software-
based, and three challenges can be revealed:

C10M Challenge. Due to performance bottleneck of kernel stack, the general
tools like wrk anf Apache benchmark [30] produce concurrency up to C10K on
a single server. The upper limit for concurrency generated by MCC is around 3
million. The C10M is inaccessible to them yet. Even though we can upgrade MCC
V1.0, the general service for handling C10M is still missing. For example, Redis-
server [22] and Nginx [23] handle concurrency up to C10K on a single server.

Economic Applicability Challenge. The load generators based on specific
hardware such as Spirent TestCenter [29] can generate millions of concurrent

MCCBench: A C10M Benchmark Oriented to Interactive Network Services 147

connections, burst loads and requests with multiple QoS priorities. It’s to be
confirmed (TBC) whether they support C10M concurrency. They are not open
source, and expensive. Meanwhile, they are developed by firms, which leads to a
lack of flexibility. Thus the existing hardware-based tools have not achieved the
economic applicability on interactive service benchmarking.

Server-Side Measurement Challenge. Millions of concurrency may result
in hundreds of thousands millions of requests per second (RPS). Due to the
processing delay and queuing in client side stack, the test gap between the client
side and server side can be 87% under 1.2 million [41]. From the perspective
of benchmark precision, it’s lacking in tools measuring the response delay under
high concurrency on server side.

Table 1. Related work to benchmark tools.

Category Benchmark
tools

C10M
(currently)

Repeatable
bursts
(currently)

QoS
evaluation
(currently)

Comments

Hardware
-based

Sprient TBC
√ √

Expensive (>$100,000)

IXIA [28] TBC
√ √

Expensive (>$100,000)

Software
-based

Netperf [21] × √ × Concurrency not configurable

Wrk [19] × × × Close-loop, poor concurrency
scalability

MCC V1.0 × √ √
Open-loop, millions of
concurrency

Redis-
server

× √ × close-loop, poor concurrency
scalability

Nginx × √ × close-loop, poor concurrency
scalability

To evaluate the user experience economically and accurately, we are promoted
to develop a open source toolset implementing the benchmark methodology as
a typical study case. The toolset will meet the following requirements: C10M
workloads generating, serving and server-side monitoring.

3 MCCBench Design

To cover the whole service system composed of client, server and test side com-
pletely, MCCBench proposes the methodology for load generation, service frame-
work and performance evaluation. The setting rules and working principles of
parameters are defined for load generation. For the server side, MCCBench
designs a default service framework adaptive to high concurrency, fluctuating
traffic and QoS-aware. The service performance evaluation criteria is based on
concurrency and tail latency.

148 H. Song et al.

3.1 Workload Definition

In large-scale interactive network, the factors directly affecting the service per-
formance are complex and diverse. At the beginning phases of the design, the
test cycle T is defined at the as the effective test time of each round. It’s used for
periodic statistics and results output. We firstly determine the workload param-
eters and the configuration rules in Fig. 1 based on the workload features.

1s

Requests

…
b1 b2 bn

…
b1 b2 bn

2s

…

…

…
bn

… e s

Q

c

bc

r High priority

Low priority

Time

Fig. 1. MCCBench workload definition.

High Concurrency. First, we need to define the basic workload parameters:
concurrency and RPS throughput, which is positively related to the service
response latency. The concurrent connections c means the number of sustained
connections between clients and servers in every T. To be consistent with the
high concurrency of C10M, c is specified more than 10 million. The request
packet length l can be configured. We refer to the request sending period of each
connection as an epoch e, to flexibly control the RPS. Considering e is measured
in seconds, the RPS defined as Q is

Q = c/e (1)

Bursty Loads. Second, sending mode of the requests need to be determined. To
measure the server capacity of handling bursts, MCCBench prefers to forming
repeatable bursty traffic for server. According to [9], the workloads indicate
substantial requests to services in milliseconds, which is called a burst. For each
burst, b is the number of requests sent by the client instantaneously, and bc
is the duration width of b. Q requests in each second are sent to the server in
several bursts instead of evenly within 1 s. Therefore, the conditional constraint
for burst b is

b ≤ Q (2)

Generally b is modified in proportion to c. A burst must be sent within the
limited time bc to ensure the effectiveness of polymerization pressure. The bc is

MCCBench: A C10M Benchmark Oriented to Interactive Network Services 149

determined by the specific needs of service users. For example, if we require a
burst to be sent in about 100 ms, the default bc is 100± 5 ms.

Multi-priority. In the real interactive scenario, the requests sensitivities for
response latency are different. In accordance with this, MCCBench designs the
requests composed of multiple priority. Given the RPS Q and the high priority
ratio r, the requests of high priority per second Hr is

Hr = Q ∗ r (3)

We set the label in the pre-defined field of the request payload to represent
the priority. There are many distributions of the request priorities in a burst.
The scheduling of each priority based on the distribution will inevitably affect
the response latency. We define the requests of multiple priority are evenly dis-
tributed in each burst so as to approach the real network traffic.

3.2 Service Framework

The service framework of MCCBench is designed to be interactive, which can
handle workloads with high concurrency, high burst and multiple priority. For
convenience of implementation and description, we choose the requests query-
ing in-memory database as the default service in the measurement. The service
framework extracts the random contents in the request payload and handles
them with computation operation as the key to query the database. The spe-
cific computation procedures can be customized by users. Each request queries
the database with read/write operations (configurable). The access scope of the
requests is all the database processes on the server node or database cluster. To
simulate multi-priority processing, the framework is defined to identify the label
in request payload to schedule the high priority requests Hr every second, which
take precedence to access database and respond. The scheduling and disposal of
each priority are also configured by users. Response packet length can also be
configured. Users can refer to the working principle of the service framework for
own applications.

3.3 Performance Evaluation Criteria

With the explicit design of test parameters and service, we specify a criterion
for the evaluation of service performance. Under high concurrency, a minor part
of response latency is higher than the average. This part is called tail latency.
For the massive distributed systems, the impact of tail latency is particularly
serious. For example, in search engines like Google, the requests may be sent to
thousands of servers, and the search system is forced to wait for the tail response
before replying to users, which greatly affects the user experience [34,35]. Thus,
we measure performance in terms of tail latency measured on server side and
concurrent connections:

1. Tail latency: Given the concurrent connections c, we evaluate the CDF of
response latency, and tail latency TL. The tail delay percentile P is user-defined.

150 H. Song et al.

2. Concurrent connections : To test the maximum concurrency of a server,
we change the concurrent connections until the tail latency reaches the threshold
Th. Th is also user configurable.

4 MCCBench Implementation

For the first MCCBench implementation case, we have developed and inte-
grated an open source toolset MCCBench-IoT, including a load generator named
MCC, an IoT service–IoTEPServer and a real-time performance monitor called
HCMonitor. We will show MCCBench-IoT system tested with MCCBench,
which represents MCCbench benchmarking on a typical IoT scenario.

MCC Client
1MCC Client

1

MCC Client
1MCC Client

Long-lived TCP connections

Switch

Mirror

HCMonitor

Burst

Responses

Response latency

Redis
IoTEPServer

Qstack

pri 0
pri 1
pri nMCC

Clients

MCCBench-IoT system

Requests

Monitor

Servers

Fig. 2. MCCBench test case of IoTEPServer service.

4.1 Workloads

According to MCCBench methods, we design workloads for IoTEPServer in
Table 2: 1) TL test under given c. We define the 99th percentile latency as the
tail latency (P = 99). Because the heartbeat packets frequency of a connection in
real IoT services is usually once a minute, so e is 60 s. Taking T = 60 s as a test
cycle of HCMonitor. Each request payload length is 140 bytes. We configure the
Q to be sent with a burst within 100± 5 ms. Thus only one burst is generated
per second. To perform the QoS evaluation, MCC generates requests of two prior-
ities. The requests are classified to queries standing for high priority demanding
responses, and heartbeats for low priority. The ratio r is set to 5%. The remain-
ing 95% are heartbeat requests for connections long-lived, which don’t need to be

MCCBench: A C10M Benchmark Oriented to Interactive Network Services 151

responded. The packets of the two priorities are evenly distributed in a burst. 2)
Upper limit of c test under Th. Since the average reaction speed of human body is
greater than 0.1 s, we set Th = 50 ms as the threshold from the perspective of good
user experience [36]. With other parameter configurations remain unchanged as
the TL test, we keep b proportional to the modifying c until TL has reached to
50 ms.

Table 2. MCCBench-IoT workload configurations.

Parameter Configuration Meaning

c - Concurrency

e 60 s The epoch of each connection

l 140 bytes The request payload length

b c/e Burst

bc 100 ± 5 ms Duration width of a burst

r 0.05 The ratio of high priority

P 99 Tail latency percentile

TL - Tail latency

Th - Tail latency threshold

4.2 Architecture

As shown in Fig. 2, the MCCBench-IoT service system works on processing
multi-priority IoT requests to query the Redis, and responding to clients.

MCC. MCC is a highly scalable network load generator, which can generate
bursts and multi-priority requests. To solve the C10M challenge on workload
generating and scale to over 100 million concurrency, we analyzed the perfor-
mance bottlenecks of the original MCC. Then we expanded its functionality and
performance from two aspects: 1. multi-core scalability. One of the issues
is MCC can’t obtain linear performance growth with more than 10 cores, We
modify the load allocation algorithm to gain better balance among multi-cores.
The memory configuration strategy has been redesigned for the improved algo-
rithm. It now produces over 10 million concurrency with 15 cores on a single
server. 2. distributed scalability. MCCBench-IoT is designed to support over
100 million concurrency, so as to simulate real scenarios in large-scale interactive
networks. Thus we developed the MCC distributed system. At the same time, to
maintain the load pressure at server side, we realized burst aggregation among
multiple nodes by optimizing the synchronization, so that all the bursts pro-
duced by distributed nodes can be sent synchronously and aggregated destined
to servers as shown in Fig. 3.

152 H. Song et al.

0

2000000

4000000

6000000

8000000

10000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Re
qu

es
ts

�me(ms)

Burst synchroniza�on and aggrega�on

Burst-total client node1
client node2 client node3

MCC nodes
IoTEPServer nodes

HCMonitor nodes

Fig. 3. MCC multi-node synchronization and aggregation.

IoTEPServer. IoTEPServer is an IoT service with Redis query. IoTEPServer
correctly parses priority labels in request payload. As shown in Fig. 4, we improve
the IoTEPServer performance by adopting zero-copy I/O calling based on the
user-level TCP/IP stack Qstack [39]. A distribution framework D-W is developed
on multi-thread for scheduling requests of multiple priority. The D-W consists
of several distributors and workers, between which there are lock-free and fully
interconnect queues. To simulate the K-V query common in the interactive ser-
vices, the D-W connects with multiple Redis processes on a server, similar to the
Redis cluster. Therefore, each request can query any Redis process through D-W
for read or write operations. For example, after a read operation in Redis-server
2, a request continues writing and reading once in Redis-server 4 through D-W.
All the requests query the Redis, but the server only responds to query requests.
IoTEPServer can serve more than 10 concurrent connections on a single node
with these optimization measures.

HCMonitor. To measure the real-time performance with little interference,
we have applied an open source tool HCMonitor [40]. HCMonitor is a monitor
system for high concurrent network services, which is developed on user-level
and estimates response latency from requests input to responses output, called
server-side latency. The measurement of HCMonitor is transparent for network
services by switch mirroring traffic, and finally displays the real-time results
including latency CDF distribution, concurrency, and average delay, etc.

MCCBench: A C10M Benchmark Oriented to Interactive Network Services 153

Fig. 4. IoTEPServer Architecture.

4.3 Case Study

Example: Figure 2 indicates a case to illustrate the MCCBench method: 1. The
users determine the test cases based on MCCBench: TL test of IoTEPServer
querying Redis under c = 10.8 million. 2. The parameters in Table 2 are given.
MCC generates 10.8 million concurrent connections. The RPS is Q = 180000. b
is equal to Q (b = 180000). 3. In a burst, the requests of each priority are evenly
distributed. 4. IoTEPServer extracts the keys from all the request payloads for
XOR operations, then apply the keys to query Redis undergo two read and one
write operations. The server responds to the high priority requests. 5. HCMonitor
calculates the response delay CDF within every 60s, and read the tail latency.
Compare it with 50 ms, and draw a conclusion whether it meets the performance
requirements.

5 Evaluation

5.1 Experiment Setup

Testbed. To verify the effectiveness of MCCBench, we have built a testbed
as Fig. 2 composed of a client, a server and a monitor node with MCCBench-
IoT deployed. Each server is equipped with Intel (R) Xeon(R) 6130 CPU and
Intel 82599ES 10 Gbps NICs. There are also 16 Redis processes connected with
IoTEPServer on the server node. The 3 servers are connected with a HW-C16800
switch.

154 H. Song et al.

Methodology. For workload configurations, refer to Table 2. Based on the
MCCBench evaluation criteria, we determine to test the following two metrics:
1) The tail latency of a server processing given concurrent connections of over
0.1 million∼over 10 million. The keys in IoTEPSever used to query Redis are
produced by shifting operations on fields extracted from the request payloads.
After 2 read and 1 write operations, only 5% high priority requests get responses.
HCMonitor computes the server-side latency of all requests in every 60 s. 2) Mod-
ify the tail latency threshold within 50 ms to test the upper limit of concurrent
connections. MCC keep modifying c until the TL tested by HCMonitor reaching
Th to obtain the maximum, meanwhile HCMonitor counts the active connections
to match with c.

5.2 Results

Tail Latency. We start 4 IoTEPServer cores running on 4 Qstack cores. MCC
generates 0.6, 9.6 and 10.2 million concurrent connections. As shown in Fig. 5,
the IoTEPServer tail latency has been 20.27 ms keeping 10.2 million concurrency
on a single server. It indicates the concurrency scalability of C10M. MCCBench
shows superior effectiveness in measuring MCCBench-IoT system with high con-
currency of over 10 million.

0.13 , 0.99 7.29 , 0.99

20.27 , 0.99

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25

CDF

Response Latency(ms)

Response Latency CDF

c=0.6 million c=9.6 million c=10.2 million

Fig. 5. Response latency CDF of the IoT service under given concurrency.

Concurrency. We modify c according to the TL to approach the upper limit
of concurrency. The results are shown in Fig. 6. The maximum c is gradu-
ally increased from 7.2 million to 12 million as the Th changes from 3 ms to

MCCBench: A C10M Benchmark Oriented to Interactive Network Services 155

50 ms, and the TL is positively correlated with the concurrency, which increases
from 2.30 ms to 49.93 ms. The latency CDF of the IoTEPServer shows a tail of
49.93 ms when processing 12 million concurrent connections. Therefore, it can be
concluded that the IoTEPServer can carry up to 12 million concurrency under
the tail latency threshold 50 ms. MCCBench has successfully tested the upper
limit of concurrent connections in an IoT service.

0

200

400

600

800

1000

1200

1400

3.00 8.00 10.00 20.00 45.00 50.00

Concurrent
connections

(x104)

Tail latency threshold(ms)

Maximum Concurrency

Fig. 6. Concurrency trend of IoT service with tail latency threshold.

5.3 Expansion Experiment

In terms of high concurrency adaptability, MCCBench can also expand to hun-
dreds of millions of connections. To verify this feature, we applied MCCBench
on the MCCBench-IoT service system built by 60 server nodes with Hygon C86
7285 CPU, which aims to dynamically testing the real-time performance. There
are 30 client nodes keeping 300 million long-lived TCP connections to 30 server
nodes every minute through switches. Each MCC on client node generates a burst
per second. The bursts from multiple client nodes are aggregated to each server
in about 100 ms through synchronization. The workload includes 5% of high
priority requests and 95% of heartbeat packets. Each server node has deployed
IoTEPServer running on Qstack and querying Redis with keys extracted directly
from the request payloads.

We dynamically draw the graph of concurrent connections and tail latency
with the running time. The Fig. 7 shows the trend of the long-lived connections in
every minute. It can be concluded that the concurrent connections can be stabi-
lized at more than 300 million. In Fig. 8, it indicates the trend of the tail latency

156 H. Song et al.

3.00
3.01
3.02
3.03
3.04
3.05
3.06
3.07
3.08
3.09

0 100 200 300 400

Concurrent
connections

(x108)

Time(s)

Long-lived Connections

Fig. 7. Concurrency of MCCBench-IoT service system (60 nodes).

0
0.5

1
1.5

2
2.5

3
3.5

0 100 200 300 400

99th
percentile

latency(ms)

Time(s)

Tail latency

Fig. 8. Tail latency of MCCBench-IoT service system (60 nodes).

changing. It can be seen that when the number of concurrent connections is stable
at over 300 million, the tail latency is around 3 ms. Therefore, MCCBench can be
applied to the performance test of services with over 100 million concurrency.

MCCBench: A C10M Benchmark Oriented to Interactive Network Services 157

6 Conclusion

MCCBench is a benchmark for the prospect of high concurrent interactive net-
work services at over 10 million connections. It provides a test methodology
involving in load generation, service function and service performance evalua-
tion based on the server-side tail latency and sustained concurrency, for inter-
active scenarios like IoT or web services. A toolset MCCBench-IoT is developed
for implementation, including a load generator tool MCC and a default ser-
vice IoTEPServer. MCCBench measures the server performance in dealing with
bursts and multiple priorities. Experiments show the concurrency of 10.2 million
on single server node under the tail latency threshold in emulated IoT service
testbed, and the scale to server cluster with over 300 million concurrency.

In the future, we plan to expand the MCCBench methodology of workload
generation with various statistical distributions, so as to test a wider range of
interactive service scenarios. The load model of MCCBench-IoT for more inter-
active services need to be developed, which is not limited to IoT services.

Acknowledgment. Thanks to Ms. Xiaohong Wang for her valuable support and sug-
gestions on the use of OneITLab. The work was supported by the National Key
Research and Development Plan of China under Grant No. 2022YFB4500403, the
Strategic Priority Research Program of the Chinese Academy of Sciences under Grant
No. XDA0320000 and XDA0320300.

References

1. Smarter Planet. https://www.ibm.com/ibm/history/ibm100/us/en/icons/smart
erplanet/. Accessed 4 Jul 2022

2. Global Smart Transportation Market Size Report (2030). https://www.grand
viewresearch.com/industry-analysis/smart-transportation-market. Accessed 4 Jul
2022

3. Rzadca, K., et al: Autopilot: workload autoscaling at Google. In: Proceedings of
the Fifteenth European Conference on Computer Systems (EuroSys 2020). Associ-
ation for Computing Machinery, pp. 1–16. 2020. https://doi.org/10.1145/3342195.
3387524

4. Botta, A., De Donato, W., Persico, V., Pescapé, A.: Integration of cloud computing
and internet of things: a survey. Future Gener. Comput. Syst. 56, 684–700 (2016).
https://doi.org/10.1016/j.future.2015.09.021

5. Roy, A., Zeng, H., Bagga, J., Porter, G., Snoeren, A.C.: Inside the social network’s
(datacenter) network. In: Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication (SIGCOMM 2015), pp. 123–137. Associ-
ation for Computing Machinery (2015). https://doi.org/10.1145/2785956.2787472

6. Huang, D.Y., Apthorpe, N., Li, F., Acar, G., Feamster, N.: IoT inspector: crowd-
sourcing labeled network traffic from smart home devices at scale. In: Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, pp
1–21. ACM (2020).https://doi.org/10.1145/3397333

7. Lu, S., Yao, Y., Shi, W.: Collaborative learning on the edges: a case study on
connected vehicles. In: 2nd USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 19) (2019)

https://www.ibm.com/ibm/history/ibm100/us/en/icons/smarterplanet/
https://www.ibm.com/ibm/history/ibm100/us/en/icons/smarterplanet/
https://www.grandviewresearch.com/industry-analysis/smart-transportation-market
https://www.grandviewresearch.com/industry-analysis/smart-transportation-market
https://doi.org/10.1145/3342195.3387524
https://doi.org/10.1145/3342195.3387524
https://doi.org/10.1016/j.future.2015.09.021
https://doi.org/10.1145/2785956.2787472
https://doi.org/10.1145/3397333

158 H. Song et al.

8. De Domenico, M., Altmann, E.G.: Unraveling the origin of social bursts in collec-
tive attention. Sci. Rep. 10, 1–9 (2020)

9. Tadakamalla, U., Menascé, D.A.: Characterization of IoT workloads. In: Zhang,
T., Wei, J., Zhang, L.-J. (eds.) EDGE 2019. LNCS, vol. 11520, pp. 1–15. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-23374-7 1

10. Abdel-Basset, M., Ding, W., Abdel-Fatah, L.: The fusion of internet of intelligent
things (IoIT) in remote diagnosis of obstructive Sleep Apnea: a survey and a new
model. Inf. Fusion. 61, 84–100 (2020). https://doi.org/10.1016/j.inffus.2020.03.010

11. Jianfeng, Z.: Call for establishing benchmark science and engineering. arXiv
preprint arXiv:2112.09514 (2021)

12. I. BIPM, I. IFCC, I. IUPAC, O. ISO, The international vocabulary of metrology-
basic and general concepts and associated terms (VIM), 3rd edn. JCGM 200: 2012,
in: JCGM (Joint Committee for Guides in Metrology) (2012)

13. Worldwide Smart Home Devices Market Grew 11.7% in 2021 with Double-Digit
Growth Forecast Through 2026, According to IDC. https://www.idc.com/getdoc.
jsp?containerId=prUS49051622. Accessed 4 Jul 2022

14. TPC-H. https://www.tpc.org/tpch/. Accessed 15 Jul 2022
15. TPC-C. https://www.tpc.org/tpcc/. Accessed 15 Jul 2022
16. TeraSort benchmark. https://hadoop.apache.org/docs/stable/api/org/apache/

hadoop/examples/terasort/. Accessed 15 Jul 2022
17. The C10K problem. http://www.kegel.com/c10k.html#related. Accessed 15 Jul

2022
18. C10M. http://c10m.robertgraham.com/p/blog-page.html. Accessed 15 Jul 2022
19. Wrk. https://github.com/wg/wrk.git. Accessed 15 Jul 2022
20. Wu, W., Feng, X., Zhang, W., Chen, M.: MCC: a predictable and scalable massive

client load generator. In: Gao, W., Zhan, J., Fox, G., Lu, X., Stanzione, D. (eds.)
Bench 2019. LNCS, vol. 12093, pp. 319–331. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-49556-5 29

21. Netperf. http://www.cs.kent.edu/∼farrell/dist/ref/Netperf.html. Accessed 15 Jul
2022

22. Redis-5.0.4. https://download.redis.io/releases/redis-5.0.14.tar.gz. Accessed 15 Jul
2022

23. Nginx. http://nginx.org/en/index.html. Accessed 15 Jul 2022
24. MCC. https://github.com/acs-network/mcc. Accessed 15 Jul 2022
25. Migratorydata server. http://migratorydata.com/. Accessed 15 Jul 2022
26. Zheng, C., Tang, Q., Lu, Q., Li, J., Zhou, Z., Liu, Q.: Janus: a user-level TCP

stack for processing 40 million concurrent TCP connections. In: IEEE International
Conference on Communications (ICC), pp. 1–7. IEEE (2018). https://doi.org/10.
1109/ICC.2018.8422993

27. Yilmaz, Y.S., Aydin, B.I., Demirbas, M.: Google Cloud Messaging (GCM): an eval-
uation. In: 2014 IEEE Global Communications Conference, pp. 2807–2812 (2014).
https://doi.org/10.1109/GLOCOM.2014.7037233

28. Ixia breakingpoint. https://www.ixiacom.com/products/breakingpoint. Accessed
4 Jul 2022

29. Spirent TestCenter Benchmarking. https://www.spirent.cn/assets/u/datasheet-
spirent-testcenter-benchmarking-bundle. Accessed 4 Jul 2022

30. ab-Apache HTTP server benchmarking tool. https://httpd.apache.org/docs/2.0/
programs/ab.html. Accessed 4 Jul 2022

https://doi.org/10.1007/978-3-030-23374-7_1
https://doi.org/10.1016/j.inffus.2020.03.010
http://arxiv.org/abs/2112.09514
https://www.idc.com/getdoc.jsp?containerId=prUS49051622
https://www.idc.com/getdoc.jsp?containerId=prUS49051622
https://www.tpc.org/tpch/
https://www.tpc.org/tpcc/
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/examples/terasort/
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/examples/terasort/
http://www.kegel.com/c10k.html#related
http://c10m.robertgraham.com/p/blog-page.html
https://github.com/wg/wrk.git
https://doi.org/10.1007/978-3-030-49556-5_29
https://doi.org/10.1007/978-3-030-49556-5_29
http://www.cs.kent.edu/~farrell/dist/ref/Netperf.html
https://download.redis.io/releases/redis-5.0.14.tar.gz
http://nginx.org/en/index.html
https://github.com/acs-network/mcc
http://migratorydata.com/
https://doi.org/10.1109/ICC.2018.8422993
https://doi.org/10.1109/ICC.2018.8422993
https://doi.org/10.1109/GLOCOM.2014.7037233
https://www.ixiacom.com/products/breakingpoint
https://www.spirent.cn/assets/u/datasheet-spirent-testcenter-benchmarking-bundle
https://www.spirent.cn/assets/u/datasheet-spirent-testcenter-benchmarking-bundle
https://httpd.apache.org/docs/2.0/programs/ab.html
https://httpd.apache.org/docs/2.0/programs/ab.html

MCCBench: A C10M Benchmark Oriented to Interactive Network Services 159

31. Chen, S., Delimitrou, C., Mart́ınez, J.F.: PARTIES: QoS-aware resource parti-
tioning for multiple interactive services. In: Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2019), pp. 107–120. Association for Computing
Machinery, New York, NY, USA (2019)

32. Kasture, H., Sanchez, D.: Tailbench: a benchmark suite and evaluation method-
ology for latency-critical applications. In: 2016 IEEE International Symposium on
Workload Characterization (IISWC), pp. 1–10. IEEE (2016). https://doi.org/10.
1109/IISWC.2016.7581261

33. Zhang, Y., Meisner, D., Mars, J., Tang, L.: Treadmill: attributing the source of
tail latency through precise load testing and statistical inference. In: Proceedings
of the 43rd International Symposium on Computer Architecture (ISCA 2016), pp.
456–468. IEEE Press (2016). https://doi.org/10.1109/ISCA.2016.47

34. Dean, J., Barroso, L.A.: The tail at scale. Commun. ACM 56, 74–80 (2013).
https://doi.org/10.1145/2408776.2408794

35. Vulimiri, A., Godfrey, P.B., Mittal, R., Sherry, J., Ratnasamy, S., Shenker, S.: Low
latency via redundancy. In: Proceedings of the ninth ACM conference on Emerging
networking experiments and technologies, pp. 283–294 (2013)

36. Lindgaard, G., Fernandes, G., Dudek, C., Brown, J.: Attention web designers: you
have 50 milliseconds to make a good first impression! Behav. Inf. Technol. 25(2),
115–126 (2006)

37. Wu, W., Feng, X., Zhang, W., Chen, M.: MCC: a predictable and scalable massive
client load generator. In: Gao, W., Zhan, J., Fox, G., Lu, X., Stanzione, D. (eds.)
Bench 2019. LNCS, vol. 12093, pp. 319–331. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-49556-5 29

38. Qstack. https://github.com/acs-network/Qstack. Accessed 4 Jul 2022
39. QStack: Re-architecting User-space Network Stack to Optimize CPU Efficiency

and Service Quality. https://arxiv.org/abs/2210.08432. Accessed 19 Oct 2022
40. HCMonitor. https://github.com/acs-network/hcmonitor. Accessed 4 Jul 2022
41. Song, H., Zhang, W., Liu, K., Shen, Y., Chen, M.: HCMonitor: an accurate

measurement system for high concurrent network services. Concurrency Comput.
Pract. Experience, 34(12), e6081. https://doi.org/10.1002/cpe.6081

https://doi.org/10.1109/IISWC.2016.7581261
https://doi.org/10.1109/IISWC.2016.7581261
https://doi.org/10.1109/ISCA.2016.47
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1007/978-3-030-49556-5_29
https://doi.org/10.1007/978-3-030-49556-5_29
https://github.com/acs-network/Qstack
https://arxiv.org/abs/2210.08432
https://github.com/acs-network/hcmonitor
https://doi.org/10.1002/cpe.6081

STAMP-Rust: Language and Performance
Comparison to C on Transactional

Benchmarks

Felix Suchert(B) and Jeronimo Castrillon

TU Dresden, Dresden, Germany
{felix.suchert,jeronimo.castrillon}@tu-dresden.de

Abstract. Software Transactional Memory has been used as a synchro-
nization mechanism that is easier to use and compose than locking ones.
The mechanisms continued relevance in research and application design
motivates considerations regarding safer implementations than existing
C libraries. In this paper, we study the impact of the Rust programming
language on STM performance and code quality. To facilitate the com-
parison, we manually translated the STAMP benchmark suite to Rust
and also generated a version using a state-of-the-art C-to-Rust transpiler.
We find that, while idiomatic implementations using safe Rust are gen-
erally slower than both C and transpiled code, they guarantee memory
safety and improve code quality.

Keywords: Software Transactional Memory · Memory Safety ·
Parallelism

1 Introduction

Software Transactional Memory (STM) is a well-established method for synchro-
nizing access to shared state in parallel programs. With the advent of emerging
technologies such as Non-Volatile Memory (NVM) transactional operations on
memory have found new importance [5,13,30]. However, the original tl2 frame-
work [14] and many subsequent frameworks have been written in C. The language
itself has proven to be notoriously unsafe, requiring manual memory manage-
ment and regularly exposing pointers to developers.

Rust [4] is a system programming language that has been designed with
memory safety as one of its main goals. Its main selling point is the strong
type system based on Ownership types [8,9]. This ensures that any well-typed
program will not exhibit unsound behavior such as dangling pointers or data
races through aliased references. Prior work has shown that such a strict type
system can substantially simplify the specification and verification of system
software [2]. By now, Rust has become a well-established language that is used

This project is partially funded by the EU Horizon 2020 Programme under grant
agreement No 957269 (EVEREST).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Gainaru et al. (Eds.): Bench 2022, LNCS 13852, pp. 160–175, 2023.
https://doi.org/10.1007/978-3-031-31180-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-31180-2_10&domain=pdf
http://orcid.org/0000-0001-7011-9945
http://orcid.org/0000-0002-5007-445X
https://doi.org/10.1007/978-3-031-31180-2_10

STAMP-Rust 161

in the development of systems applications like browser engines [1] and operat-
ing systems [24,25]. Rust’s versatility also makes it an appealing language for
GPU programming [20], writing HPC applications [10] and as source language
for accelerator programming [32]. In the context of transactional memory, the
recent rust-stm library [6] offers STM functionalities. In contrast to the rich
body of work on STM using C, there is, however, a lack of studies and bench-
marks that help understand the impact of the Rust programming model on STM
performance.

In this paper, we analyze the Stanford Transactional Applications for Multi-
Processing (STAMP) suite [11], a benchmark collection specifically tailored
towards Transactional Memory frameworks. Using accepted and recommended
programming practices, we re-implemented the STAMP applications, which
were originally developed in C/C++. We provide details on the challenges
brought by the ownership and borrowing semantics of Rust to ensure a safe
re-implementation of the benchmarks. The effort invested in creating safe imple-
mentations of the applications allows us to gage the impact of the programming
model on the execution performance. To compare against plain unsafe imple-
mentations, we use the c2rust transpiler [12] to automatically generate Rust
implementations directly from the original C applications. We discovered that
Rust’s strict borrowing semantics require the code to strictly adhere to using
transactions for all variable accesses. While this generally improved the code’s
safety, it significantly decreased performance compared to C and unsafe Rust
implementations.

This paper makes the following contributions:

1. Building atop the STAMP benchmark suite (Sect. 2), we manually implement
a Rust version for the benchmarks, STAMP-Rust (Sect. 3).

2. We provide a qualitative comparison between the manually translated code
and the code generated by c2rust (Sect. 4).

3. A performance evaluation of both Rust versions against the original C imple-
mentation using the rust-stm framework (Sect. 5).

2 Background and Related Work

Transactional Memory (TM) [19] is a synchronization mechanism for parallel
programming. The key idea of this concept is to encapsulate sections of code
that should run in parallel while modifying a shared data structure in transac-
tions. During execution, each transaction keeps a log of all modifications and
accesses to shared data which are played back once the transaction completes.
From the outside, transaction blocks then seem to execute atomically, as all
changes related to a transaction are either committed at once, or not at all. The
latter case can occur when another transaction running in parallel is commit-
ted beforehand and has changed a shared variable that is also read or modified
by the current transaction. Such write conflicts are resolved by reexecuting the
transaction until it is successfully committed. This approach to synchronization

162 F. Suchert and J. Castrillon

is often referred to as Optimistic Parallelism [22]. Several potentially conflict-
ing operations are scheduled in parallel under the assumption that conflicts are
rare enough that occasional repeated computations of single transactions will
not impact overall performance. These applications form their own sub-genre
of parallelization problems and usually involve large data structures based on
pointers.

STM has been established more than 20 years ago. Since then, different
approaches have been taken to test the performance of the mechanism. However,
STAMP [11] has since prevailed and is still used today, more than 10 years after
its inception [5,27,34]. It improves over existing approaches like RSTMv3 [31]
and STMBench7 [17] by providing a wider variety of applications and better
portability. Other works have resorted using microbenchmarks [13,15], which
are not suitable as real-world examples. Additionally, the YCSB benchmark
suite [30] has been used as benchmark to test key-value stores; however, a similar
database-like application, i.e., vacation, is part of STAMP as well.

The rest of this section presents the STAMP benchmark suite and describes
the rust-stm framework used to implement the benchmarks in Rust.

2.1 The STAMP Benchmark Suite

STAMP [11] is a benchmarking suite specifically tailored towards the needs of
TM applications. It consists of 8 real-world applications. The suite tries to cover
a wide spectrum of properties, such as varying transaction lengths, contention
and time spent in transactions. Additionally, all applications are taken from dif-
ferent application domains, such as engineering, machine learning and scientific
computation. For our comparison, we discuss the following benchmarks:

Labyrinth implements a path-finding algorithm in a three-dimensional maze,
a variation of Lee’s algorithm [23]. A set of paths is to be mapped in that
data structure based on a set of points provided as inputs. Paths between those
points are found using a breadth-first search. With STM, this is implemented by
guarding manipulations on the shared grid structure using a transaction. Hence,
when a conflicting path mapping occurs, the faster of both transactions may
commit while the second has to attempt to find another path.

Genome implements a whole-genome shotgun sequencing algorithm [29]. The
goal is the sequencing of a complete genome from a set of nucleotide sequences
provided as input. The algorithm first deduplicates the set of DNA segments
provided as input and then uses overlap matching with a decreasing overlap
size to stitch the genome sequence back together. On an abstract level, the core
workload of this benchmark is the construction of an acyclic graph from a set of
nodes by finding neighboring elements. Transactions are utilized here to guard
the forward and backward links of individual nodes (i.e., nucleotide sequences)
in that graph.

K-Means is a popular algorithm for cluster analysis in data mining and for data
classification. It partitions a set of n observations into k clusters [26]. A list of

STAMP-Rust 163

observations and the desired number of clusters to sort the data into are provided
as inputs. The algorithm then iteratively assigns a cluster to each observation
and recomputes the cluster center from all assigned points. This is repeated until
a convergence threshold is passed. Transactions are used here to guard access
to the individual centroids, which are accessed as part of the processing of each
observation.

Intruder implements a signature-based network intrusion detection system. It
detects malicious activities and policy violations by inspecting live network traf-
fic. The application implemented as part of STAMP is based on design proposal
number five of Haagdorens et al. [18]. Due to the architecture of today’s net-
works, namely the maximum size of network packets, individual network flows
sometimes are split into multiple packets which may be transmitted and received
in any order. Hence, all incoming network packets are captured and reassembled
in parallel using a shared hashmap guarded by a transaction. The reassembled
flows are then processed by the signature detection pass, in which a simple pat-
tern matching is performed on the input.

Ssca2 implements kernel 1 from the Scalable Synthetic Compact Applications
2 [3]. It constructs a directed weighted multi-graph in parallel using adjacency
and auxiliary arrays. Nodes are added in parallel to the graph, whereby the
adjacency arrays are guarded by transactions to ensure safe parallel accesses.

Yada is Y et another Delaunay application and implements a Delaunay mesh
refinement. The algorithm modifies a mesh of triangles such that all interior
angles of the triangles are larger than a certain threshold. If a triangle violates
this criterion, it is merged with surrounding triangles and split into a set of new
triangles. These operations are performed in parallel and the replacement of the
formed cavity with new triangles is guarded by transactions.

2.2 Software Transactional Memory in Rust

The Rust implementation of STM used for our comparison is Rust-STM [6]. It
abstracts over the transactional synchronization aspects by providing a dedicated
type for transactional variables, TVar. The type encapsulates the variable to be
protected and provides an interface to modify it during a transaction. Trans-

1 let val = TVar::new(42);

2 atomically(|trans| {

3 let mut x = val.read(trans)?;

4 x /= 2;

5 val.write(trans, x)?;

6 Ok(())

7 })

Listing 1: Working with Transactions in Rust-STM.

164 F. Suchert and J. Castrillon

actions itself are implemented as functions that accept as argument a closure1

that forms the transaction. Listing 1 shows this function on line 2. Within that
closure, protected variabled may be accessed using a special transaction con-
text variable. All these access functions return a type that indicates whether the
operation is found to be in collision with another already-committed transaction.
The ? operator will enforce a retry on the transaction upon failure.

3 STAMP on Safe Rust

To facilitate a comparison between STM applications in Rust and C, we manually
implemented the whole STAMP benchmark suite2 in Rust and have published
it under the name STAMP-Rust3. During translation, we followed the recom-
mended coding practices put forth by Blandy et al. [7]. This section discusses
how using Rust as implementation language impacts program performance and
safety.

3.1 Type-Level Safety

The C-based tl2 library provides opt-in transaction semantics that can easily
be violated. Users are cautioned to not access shared data structures outside
of transactions as it can easily lead to data races. In Rust-STM, however, this
danger is alleviated by the type system. Sharing data between threads in Rust
is guarded by its trait system, which behaves similarly to interfaces in other
languages. A particular type T may only be safely shared between threads when
it implements the Sync trait. This property holds if and only if a read-only
reference &T of that type can be sent between threads safely. In other words,
there must not be any possibility for undefined behavior (which includes data
races) to occur if a reference to some data is shared among threads. Therefore,
data shared among threads may not be mutated as no mutable references can
be derived safely from an immutable one. A known workaround is to define a
type that implements so-called interior mutability. These types can safely mutate
their interior data even through a shared reference. A number of types in Rust’s
Standard Library implement this behavior and have been proven to be safe [21].

Rust-STM encapsulates transaction variables in a dedicated structure con-
structed from such types with interior mutability. Since the wrapped data is
not exposed, accessing it is only possible through methods implemented on the
container type. However, these methods require to be executed as part of a trans-
action. It is, therefore, impossible to circumvent Rust’s safeguards regarding data
sharing or to violate transaction semantics.
1 Closures in Rust are comparable to Lambda functions in other languages. They can

have arguments and capture variables from the outside context. The implications of
the latter are not relevant for this paper.

2 The code base for the original STAMP applications can be found on https://github.
com/robert-schmidtke/stm.

3 https://github.com/tud-ccc/stamp-rust.

https://github.com/robert-schmidtke/stm
https://github.com/robert-schmidtke/stm
https://github.com/tud-ccc/stamp-rust

STAMP-Rust 165

3.2 Composable Transactions

The strong typing of transaction variables further leads to better composability
of transactions. In the tl2 implementation, it is not transparently visible whether
a function needs to be executed in a transaction context or spawns one itself.
This can lead to problems when accidentally calling functions that expect to be
run in a transaction context or calling a function that creates a transaction from
an already-running transaction

Rust-STM addresses this problem in part by requiring a &mut Transaction
type for all its non-atomic transaction variable modifications. Therefore, func-
tions expecting to be run from a transaction context must accept such a type as
function argument, clearly indicating the required context. Nesting transaction
blocks, however, cannot be detected by the type system and, hence, will only
result in a runtime error.

3.3 The Overhead of Safety

Although Rust’s Ownership type system enforces transactional safety through-
out the program, it can also lead to computational overhead compared to tl2.
Every time a transaction variable is read, the reader receives a full copy of the
underlying data structure. This is necessary as the variable must retain owner-
ship of the data in case another transaction commits a change in the meantime.
Depending on the size of the data structure, this copying gives transactions a
substantial memory footprint besides internal data structures like logs. To bypass
this copying, transactions can also receive an immutable pointer to the current
value of the transactions internal data4. However, this is only feasible when the
data will not be modified by a transaction.

The performance implication of this type safety becomes apparent in the
Labyrinth application. Here, when mapping a path through the maze, many fields
of the maze are read to determine the shortest path. A näıve implementation
would read all fields of the maze on the go. But this inevitably leads to duplicated
reads and a generally higher probability for the transaction to fail. Its read set
gets blown up by the many read accesses to fields that are not even part of
the final mapped path in the end. This is circumvented in both the C and the
Rust implementation by creating a local copy of the maze before attempting a
mapping. In Rust, we opted to use TVars read atomic function to create the
copy, as shown in Listing 2. This incurs a high overhead, since each individual
cell in the maze is copied individually, but the TVar type does not offer more
efficient methods to access its contents.

In C, however, there are no safeguards regarding accesses to transaction
variables as there is no strict notion of such a type. Instead, the labyrinth imple-
mentation of the original STAMP suite resorts to copying the data structure as

4 This internally uses an atomically reference-counted pointer. When a new value is
written by another transaction, the TVars internal pointer is replaced, not changing
the contents of the shared pointer.

166 F. Suchert and J. Castrillon

1 type StmGrid = Vec<Vec<Vec<TVar<Field>>>>;

2 type Grid = Vec<Vec<Vec<Field>>>;

3

4 fn create_working_copy(grid: &StmGrid) -> Grid {

5 grid.iter()

6 .map(|y_grid| {

7 y_grid

8 .iter()

9 .map(|z_grid| z_grid.iter().map(|pt| pt.read_atomic()).collect())

10 .collect()

11 })

12 .collect()

13 }

Listing 2: Creating a local copy in Rust incurs a high overhead due to the
cumbersome data accesses.

a whole using a single invocation of memcpy. This potentially brings increased
performance but violates the STM concurrency model. It has been shown that
such behavior increases the potential for deadlocks and memory races and is
often done to circumvent limitations of the concurrency model used [33].

In the ssca2 benchmark, we run into a similar problem: The C version uti-
lizes thread barriers to synchronize individual threads and switch between data-
parallel and transaction contexts. During transaction contexts, the adjacency
and auxiliary arrays are accessed and updated as part of a transaction. Outside
of that context, both arrays are frequently read by all threads to continue their
computations without any memory overhead. In Rust, we can only implement
a similar behavior by joining running threads periodically to update data struc-
tures before spawning new threads. This, of course, incurs additional overhead
but does not violate the transactional model.

3.4 The Complexity of Using Associative Arrays

Using more complex data structures from external libraries as part of a transac-
tion may quickly lead to a performance bottleneck in Rust due to data copying.
As a rule of thumb, transactional variables should always encapsulate as few data
as necessary to keep the memory footprint low. However, even using associative
arrays from the standard library, such as Hashsets, then poses a challenge, as
they offer no access to their intrinsics. As a result, these data types cannot be
accessed unsafely due to Rust’s type system, but also not efficiently out of the
box.

The C implementation circumvented that problem. Since Cs standard library
does not include such data types anyway, the authors of STAMP opted to
write their own transaction-aware associative arrays. A similar solution could
be implemented for Rust in the future, based on a suggested efficient algorithm
by Paznikov et al. [28].

STAMP-Rust 167

4 Analysis of Automatically Generated Benchmarks

Since the advent of Rust and similar memory-safe languages, the question has
been raised whether or not its promises of safety could be leveraged automati-
cally for larger code bases written in C. As a result, transpilers have been imple-
mented that can translate C to Rust code. As part of our analysis of the STAMP
benchmark suite, we used c2rust [12] to automatically generate Rust code for
our selected benchmarks. In this section, we discuss the quality of the generated
code and why automatic transpiling can as of now not serve as a replacement
for manually translated Rust code.

The c2rust transpiler is built atop the clang compiler frontend and is
designed to process individual files adhering to the C99 standard. clang emits
the Abstract Syntax Tree (AST) of the input file, which is then transpiled and
emitted in the form of Rust code.

1 pub unsafe extern "C" fn router_solve(mut argPtr: *mut libc::c_void) {

2 let mut routerArgPtr: *mut router_solve_arg_t =

3 argPtr as *mut router_solve_arg_t;

4 let mut routerPtr: *mut router_t = (*routerArgPtr).routerPtr;

5 let mut mazePtr: *mut maze_t = (*routerArgPtr).mazePtr;

6 let mut myPathVectorPtr: *mut vector_t = Pvector_alloc(

7 1 as libc::c_int as libc::c_long,

8);

9 // ...

10 }

Listing 3: Beginning of the path-finding function from the Labyrinth application,
generated by an automatic transpiler.

Unfortunately, this literal translation of programs results in code that still is
more similar to C semantics than idiomatic Rust code. Listing 3 shows the code
for the entry point of the path-finding function in the Labyrinth application. It
has been declared as unsafe, as it internally mainly relies on the use of what Rust
calls “raw pointers”, pointers not guarded by the languages safety guarantees.
The existence of such pointers itself does not violate these guarantees; however,
dereferencing them does, which happens in lines 4 and 5. Also, the generated
code contains frequent uses of type casting, which is also unsafe. Previous work
has found that the inability to generate safe code is one of the key drawbacks
of these automatic approaches [16]. Additionally, automatically generated Rust
code makes no use of the more sophisticated features of the Rust language such
as struct member functions. This would require a deep understanding of the
code structure and meaning on part of the transpiler that is hard to achieve.

Since the source code for this transpilation used to be C code, which uses
manual memory management via malloc and free, this concept also surfaces in
Rust. This is especially problematic since most generated code operates outside

168 F. Suchert and J. Castrillon

of Rusts safety boundaries. As a result, it cannot be ruled out that double-frees
and other undefined behavior occur in the Rust code if the C sources already
contained such bugs.

As the transpilation happens file by file, all generated Rust files expose their
data types and functions using the extern"C" calling convention. This is also
shown in Listing 3 in line 1. This not only creates significant bloat in the code, but
it also means that all generated Rust functions communicate with one another
through C standard calling conventions.

As tl2 is used as an external library in the STAMP suite, our transpiled
STM code still relies on this library. We are thereby be forced to adhere to the
C framework’s general architecture or would need to restructure the code base
significantly to use Rust-STM.

All in all, the code generated by automatic tooling is in this case inferior to
a manual sound translation. The generated code needs extensive refactoring to
remove all occurrences of unsafe code. We, therefore, deemed a manual rewrite
as preferrable in our work as it allowed us to construct the applications from the
bottom up in an idiomatic way. The generated code is still useful to gage the
cost of switching to the Rust programming language.

5 Evaluation

To evaluate the performance of the different implementations of the STAMP
suite, we execute all benchmarks with varying configurations. We then compare
the resulting runtimes and speedups and classify both Rust approaches in terms
of their code quality.

5.1 Methodology

To run the benchmarks, we use input data sets originally put forward by Minh et
al. in their original work [11]. The paper describes three different input sizes for
each benchmark: ‘small’, ‘medium’ and ‘large’. Since the creation of the bench-
mark suite, numerous advancements in hardware have significantly increased
processor speeds. Hence, for most applications, the ‘small’ and ‘medium’ sized
inputs are ill-suited for a comparison. Most of these inputs are so small that the
applications terminate after significantly less than 100 milliseconds. In such a
small range, the measuring noise introduced by the operating system dominates
the results. We thus use the ‘large’ or ‘++’ data sets from the benchmark suite
for our measurements of k-means, labyrinth, ssca2 and genome. For intruder
and yada, we use the medium-sized input data set, as execution times of the
STM implementations were extremely long for the large input set. The k-means
application additionally provides a low-contention and high-contention input set
differing in the number of clusters to be computed.

Additionally, we made some changes to the k-means code. Originally, the
benchmark terminated either upon convergence or after 500 iterations. However,

STAMP-Rust 169

due to variations in the floating point accuracy of the C and Rust implementa-
tions, both versions converge only after a wildly varying number of iterations. For
the large input data set, convergence was always reached at the latest between
150 and 200 iterations. For a meaningful comparison between the Rust and C
implementations, we hardcode the termination after 200 iterations.

As we pointed out in Sect. 4, automatically translated benchmarks also use
the tl2 library through a C interface. As a consequence, optimized non-debug
builds fail execution due to memory faults, which are probably caused by API
instabilities. For that reason, we conduct the rust-tl2 measurements using debug
builds only. Resulting speedups are still valid, as the baseline is also measured
from a debug build. For the runtime comparison, however, we exclude the rust-tl2
measurement results to not distort the plot. Instead, we only show the sequential
execution time of the rust-tl2 applications to compare general language over-
heads in runtimes.

We run all measurements on a workstation with an Intel Core i9-10900K
CPU, 32 GiB DDR4-2933 RAM and Ubuntu 22.04 LTS installed. All measure-
ments are repeated 30 times to minimize the effect of random jitter caused by
system processes.

To measure the speedup of STM applications, we run all measurements for 1,
2, 4, 8 and 16 threads. This limitation stems from the original C-based STAMP
implementation requiring the thread count to be a power of 2.

5.2 Performance Comparison

Figure 1 shows the mean speedups achieved by all three implementations com-
pared to their respective sequential baselines. Additionally, Fig. 2 shows the
mean execution times of all configurations. We observe that the manually imple-
mented Rust version generally performs worse than the C implementation when
transactions are used more frequently.

For Labyrinth, the manually implemented Rust version only manages to
achieve half the speedup of the C implementation. This is mainly caused by
the high overheads induced by repeatedly cloning the grid data structure, as
outlined in Sect. 3.3. Almost 50% of the total time spent inside transactions is
used for creating local copies of the maze. The C version circumvents that by
unsafely copying the memory of the grid to a new location, undetected by any
transaction. Rust-tl2 and c-tl2 are on par in terms of speedup. However, Fig. 2
reveals that the Rust version executes almost 50% faster than the C implemen-
tation. This hints at Rust in this case being generally more efficient, which can
also be seen in the other benchmarks.

In Genome, we observe a similar pattern of Rust-STM underperforming in
comparison to the C version. While the speedup increase is generally there,
it is offset by a factor two from the other implementations. This can directly
be attributed to Genome’s internal use of complex associative arrays, namely
HashMaps and HashSets. As pointed out in Sect. 3.4, the C version (and there-
fore the transpiled Rust version, too) implements its own transaction-ready hash-
based data structures. The Rust-STM library does not come with such data

170 F. Suchert and J. Castrillon

ssca2 kmeans−high kmeans−low

labyrinth genome intruder yada

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

0

1

2

3

0.00

0.25

0.50

0.75

1.00

0.0

2.5

5.0

7.5

10.0

0

2

4

6

0

2

4

6

8

0

1

2

3

4

5

0.0

0.5

1.0

1.5

data parallel cores

sp
ee

du
p

rust−stm rust−tl2 c−tl2

Fig. 1. Speedups of different benchmark implementations over their respective sequen-
tial implementations for a varying number of threads.

structures and therefore has to resort to constructing a HashSet alternative
using Standard Library methods. We implemented a transaction-aware HashSet
and HashMap that internally uses a fixed number of buckets, each containing
a HashSet or HashMap protected by a transaction variable. The performance
then decreases because this is significantly less efficient than constructing such
a type from scratch. Future work should re-evaluate these benchmarks with a
data structure leveraging more efficient implementation approaches [28].

The Intruder benchmark reveals the same performance issue in Rust-STM.
However, the Rust-STM implementation manages to overtake all other imple-
mentations when using more threads. This indicates that the transaction over-
head for HashSets can indeed be offset in some cases by the use of more threads,
although speedups still do not exceed 1.0 for this benchmark.

Yada’s Rust-STM implementation indeed performs significantly worse than
the two competing versions. Here, HashMaps and HashSets are used very promi-
nently to store the mesh’s triangles and depict neighborhood relations between
different elements. Thus, every modification of the graph requires the copying
and writing back of one or multiple buckets of our self-implemented Hash data
structure. While this is slightly more efficient than having a single HashMap
that is modified every transaction, it still incurs a huge overhead compared to
specialized data structures.

In ssca2, the performance difference is rooted in more fundamental differences
between C an Rust, however. As outlined in Sect. 3.3, this benchmark has various

STAMP-Rust 171

ssca2 kmeans−high kmeans−low

labyrinth genome intruder yada

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

0

1000

2000

3000

4000

5000

0

100

200

0

5000

10000

15000

0

3000

6000

9000

0

5000

10000

0

10000

20000

30000

40000

50000

0

10000

20000

30000

40000

data parallel cores

ru
nt

im
e

rust−stm rust−tl2 c−tl2

Fig. 2. Runtimes of the different benchmark implementations and their respective
sequential implementations. The horizontal lines indicate the sequential execution time
for comparison. Runtime data for parallel rust-tl2 executions has been omitted as no
data could be obtained for non-debug builds.

synchronization points at which execution switches between transactional and
data-parallel computing. Furthermore, data structures are frequently written to
in parallel without synchronization, heavily imparting any safety guarantees.
In Rust, neither of both is safely doable as the type system strictly prohibits
both unguarded accesses to transactional variables and shared mutability. Con-
sequently, the Rust-STM implementation has to terminate threaded execution
to synchronize after data-parallel sections. This added computational overhead
is clearly visible both in the speedup and even more clearly in the running time of
the benchmark. Rust-tl2 and c-tl2 however, are both on par in terms of speedup.

For k-means, both Rust versions outperform the C implementation. While
the Rust-STM version executes generally slower than the C version, the Rust-
tl2 implementation terminates significantly faster. Therefore, the speedup can
be attributed to the Rust runtime’s more efficient handling of contention and
more radical vectorization of numerical computations.

5.3 Qualitative Analysis

Despite the performance problems Rust-STM shows in some of the benchmarks,
it improves significantly on the safety of the applications. On the other hand, the
C implementation, which in and of itself already lacks any safety guarantees, has
chosen to trade further safety aspects by violating the STM concurrency model.

172 F. Suchert and J. Castrillon

A small percentage of benchmark runs for the C-version STAMP applications
were aborted due to faulty memory management. Rusts cleaner approach to
memory management rules out such behavior.

While the automatically-transpiled code generally performed better than the
native C implementation, it combines several negative aspects in terms of code
quality. The generated code itself is non-idiomatic as discussed in Sect. 4, while
it still contains all the possibly undefined behavior of unsafe Rust code. Hence,
understanding the source code is challenging, which makes it even harder to
spot potential bugs. The manual implementation, on the other hand, leverages
Rust’s type system fully and provides better readability and maintainability:
Transactions are clearly encapsulated into atomically blocks; and functions
requiring to be run inside a transaction context are marked as such by their
signature.

6 Conclusion

Motivated by STMs continued presence in both research and application develop-
ment, we analyze how the performance of the mechanism is impacted by using
the type-safe Rust language for implementation. We implement the STAMP
benchmark suite in Rust (STAMP-Rust) and find that the existing C implemen-
tation regularly performs unsafe memory operations and violates the STM con-
currency model. Hence, Rust-STM implementations of STAMP benchmarks are
up to 50% slower than their C implementations in transaction-intensive bench-
marks. On the other hand, automatically generated, unsafe Rust code regularly
outperforms the C equivalents, hinting at Rust being generally more efficient.
We think that our safe re-implementations of the prominent STAMP suite along
with the presentation of our design rationale can serve as baseline for further
research on STM applications using the Rust programming model. We leave it
as future work to explore more efficient implementations leveraging fine-granular
transactions on complex data structures, such as genome and intruder.

Acknowledgements. The authors would like to thank Sebastian Ertel for his valuable
input.

References

1. Anderson, B., et al.: Engineering the servo web browser engine using Rust. In:
Proceedings of the 38th International Conference on Software Engineering Com-
panion, pp. 81–89. ACM, Austin Texas (2016). https://doi.org/10.1145/2889160.
2889229

2. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging rust types for mod-
ular specification and verification. Proc. ACM Program. Lang. 3(OOPSLA), 1–30
(2019). https://doi.org/10.1145/3360573

3. Bader, D.A., Madduri, K.: Design and implementation of the HPCS graph analysis
benchmark on symmetric multiprocessors. In: Bader, D.A., et al. (eds.) HiPC 2005.
LNCS, vol. 3769, pp. 465–476. Springer, Heidelberg (2005). https://doi.org/10.
1007/11602569 48

https://doi.org/10.1145/2889160.2889229
https://doi.org/10.1145/2889160.2889229
https://doi.org/10.1145/3360573
https://doi.org/10.1007/11602569_48
https://doi.org/10.1007/11602569_48

STAMP-Rust 173

4. Balasubramanian, A., Baranowski, M.S., Burtsev, A., Panda, A., Rakamarić, Z.,
Ryzhyk, L.: System programming in rust: beyond safety. In: Proceedings of the
16th Workshop on Hot Topics in Operating Systems, pp. 156–161. ACM, Whistler
(2017). https://doi.org/10.1145/3102980.3103006

5. Beadle, H.A., Cai, W., Wen, H., Scott, M.L.: Nonblocking persistent soft-
ware transactional memory. In: 2020 IEEE 27th International Conference on
High Performance Computing, Data, and Analytics (HiPC), pp. 283–293. IEEE,
Pune(2020). https://doi.org/10.1109/HiPC50609.2020.00042, https://ieeexplore.
ieee.org/document/9406709/

6. Bergmann, G.: Software Transactional Memory (2022). https://github.com/
Marthog/rust-stm. original-date: 2015-09-15T14:45:14Z

7. Blandy, J., Orendorff, J.: Programming Rust: Fast, Safe Systems Development.
O’Reilly Media, Sebastopol, first edition edn. (2017). oCLC: on1019128949

8. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: pre-
venting data races and deadlocks. In: Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications -
OOPSLA 2002, p. 211. ACM Press, Seattle(2002). https://doi.org/10.1145/582419.
582440, http://portal.acm.org/citation.cfm?doid=582419.582440

9. Boyapati, C., Salcianu, A., Beebee, W., Rinard, M.: Ownership types for safe
region-based memory management in real-time Java. In: Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementa-
tion - PLDI 2003, p. 324. ACM Press, San Diego (2003). https://doi.org/10.1145/
781131.781168, http://portal.acm.org/citation.cfm?doid=781131.781168

10. Bychkov, A., Nikolskiy, V.: Rust language for supercomputing applications. In:
Voevodin, V., Sobolev, S. (eds.) RuSCDays 2021. CCIS, vol. 1510, pp. 391–403.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92864-3 30

11. Minh, C. C., Chung, J., Kozyrakis, C., Olukotun, K..: STAMP: Stanford transac-
tional applications for multi-processing. In: 2008 IEEE International Symposium
on Workload Characterization, pp. 35–46. IEEE, Seattle (2008). https://doi.org/
10.1109/IISWC.2008.4636089, http://ieeexplore.ieee.org/document/4636089/

12. Contributors, C.: C2Rust (2022). https://github.com/immunant/c2rust. original-
date: 2018-04-20T00:05:50Z

13. Correia, A., Felber, P., Ramalhete, P.: Romulus: efficient algorithms for persistent
transactional memory. In: Proceedings of the 30th on Symposium on Parallelism in
Algorithms and Architectures, pp. 271–282. ACM, Vienna Austria (2018). https://
doi.org/10.1145/3210377.3210392

14. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Hutchison, D., et al.
(eds.) DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006).
https://doi.org/10.1007/11864219 14

15. Dragojević, A., Harris, T.: STM in the small: trading generality for performance in
software transactional memory. In: Proceedings of the 7th ACM European Confer-
ence on Computer Systems - EuroSys 2012, p. 1. ACM Press, Bern (2012). https://
doi.org/10.1145/2168836.2168838, http://dl.acm.org/citation.cfm?doid=2168836.
2168838

16. Emre, M., Schroeder, R., Dewey, K., Hardekopf, B.: Translating C to safer Rust.
Proc. ACM Program. Lang. 5(OOPSLA), 1–29 (2021). https://doi.org/10.1145/
3485498

17. Guerraoui, R., Kapalka, M., Vitek, J.: STMBench7: a benchmark for software
transactional memory (2006). http://infoscience.epfl.ch/record/89706

https://doi.org/10.1145/3102980.3103006
https://doi.org/10.1109/HiPC50609.2020.00042
https://ieeexplore.ieee.org/document/9406709/
https://ieeexplore.ieee.org/document/9406709/
https://github.com/Marthog/rust-stm
https://github.com/Marthog/rust-stm
https://doi.org/10.1145/582419.582440
https://doi.org/10.1145/582419.582440
http://portal.acm.org/citation.cfm?doid=582419.582440
https://doi.org/10.1145/781131.781168
https://doi.org/10.1145/781131.781168
http://portal.acm.org/citation.cfm?doid=781131.781168
https://doi.org/10.1007/978-3-030-92864-3_30
https://doi.org/10.1109/IISWC.2008.4636089
https://doi.org/10.1109/IISWC.2008.4636089
http://ieeexplore.ieee.org/document/4636089/
https://github.com/immunant/c2rust
https://doi.org/10.1145/3210377.3210392
https://doi.org/10.1145/3210377.3210392
https://doi.org/10.1007/11864219_14
https://doi.org/10.1145/2168836.2168838
https://doi.org/10.1145/2168836.2168838
http://dl.acm.org/citation.cfm?doid=2168836.2168838
http://dl.acm.org/citation.cfm?doid=2168836.2168838
https://doi.org/10.1145/3485498
https://doi.org/10.1145/3485498
http://infoscience.epfl.ch/record/89706

174 F. Suchert and J. Castrillon

18. Haagdorens, B., Vermeiren, T., Goossens, M.: Improving the performance of
signature-based network intrusion detection sensors by multi-threading. In: Hutchi-
son, D., et al. (eds.) WISA 2004. LNCS, vol. 3325, pp. 188–203. Springer, Heidel-
berg (2005). https://doi.org/10.1007/978-3-540-31815-6 16

19. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: Proceedings of the 20th Annual International Sym-
posium on Computer Architecture - ISCA 1993, pp. 289–300. ACM Press,
San Diego (1993). https://doi.org/10.1145/165123.165164, http://portal.acm.org/
citation.cfm?doid=165123.165164

20. Holk, E., Pathirage, M., Chauhan, A., Lumsdaine, A., Matsakis, N.D.: GPU
programming in rust: implementing high-level abstractions in a systems-
level language. In: 2013 IEEE International Symposium on Parallel & Dis-
tributed Processing, Workshops and PHD Forum, pp. 315–324. IEEE, Cam-
bridge (2013). https://doi.org/10.1109/IPDPSW.2013.173, http://ieeexplore.ieee.
org/document/6650903/

21. Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: RustBelt: securing the founda-
tions of the Rust programming language. Proc. ACM Program. Lang. 2(POPL),
1–34 (2018). https://doi.org/10.1145/3158154

22. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.:
Optimistic parallelism requires abstractions. In: Proceedings of the 2007 ACM SIG-
PLAN Conference on Programming Language Design and Implementation - PLDI
2007, p. 211. ACM Press, San Diego (2007). https://doi.org/10.1145/1250734.
1250759, http://portal.acm.org/citation.cfm?doid=1250734.1250759

23. Lee, C.Y.: An algorithm for path connections and its applications. IEEE Trans.
Electron. Comput. EC 10(3), 346–365 (1961). https://doi.org/10.1109/TEC.1961.
5219222

24. Levy, A., et al.: Ownership is theft: experiences building an embedded OS in rust.
In: Proceedings of the 8th Workshop on Programming Languages and Operating
Systems, pp. 21–26. ACM, Monterey California (2015). https://doi.org/10.1145/
2818302.2818306

25. Levy, A., Campbell, B., Ghena, B., Pannuto, P., Dutta, P., Levis, P.: The case for
writing a kernel in rust. In: Proceedings of the 8th Asia-Pacific Workshop on Sys-
tems, pp. 1–7. ACM, Mumbai (2017). https://doi.org/10.1145/3124680.3124717

26. Macqueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: In 5-th Berkeley Symposium on Mathematical Statistics and Probability,
pp. 281–297 (1967)

27. Pasqualin, D.P., Diener, M., Du Bois, A.R., Pilla, M.L.: Online sharing-aware
thread mapping in software transactional memory. In: 2020 IEEE 32nd Inter-
national Symposium on Computer Architecture and High Performance Comput-
ing (SBAC-PAD), pp. 35–42. IEEE, Porto (2020). https://doi.org/10.1109/SBAC-
PAD49847.2020.00016, https://ieeexplore.ieee.org/document/9235046/

28. Paznikov, A., Smirnov, V., Omelnichenko, A.: Towards efficient imple-
mentation of concurrent hash tables and search trees based on software
transactional memory. In: 2019 International Multi-Conference on Indus-
trial Engineering and Modern Technologies (FarEastCon), pp. 1–5. IEEE,
Vladivostok, (2019). https://doi.org/10.1109/FarEastCon.2019.8934131, https://
ieeexplore.ieee.org/document/8934131/

29. Pop, M., Salzberg, S., Shumway, M.: Genome sequence assembly: algorithms and
issues. Computer 35(7), 47–54 (2002). https://doi.org/10.1109/MC.2002.1016901,
http://ieeexplore.ieee.org/document/1016901/

https://doi.org/10.1007/978-3-540-31815-6_16
https://doi.org/10.1145/165123.165164
http://portal.acm.org/citation.cfm?doid=165123.165164
http://portal.acm.org/citation.cfm?doid=165123.165164
https://doi.org/10.1109/IPDPSW.2013.173
http://ieeexplore.ieee.org/document/6650903/
http://ieeexplore.ieee.org/document/6650903/
https://doi.org/10.1145/3158154
https://doi.org/10.1145/1250734.1250759
https://doi.org/10.1145/1250734.1250759
http://portal.acm.org/citation.cfm?doid=1250734.1250759
https://doi.org/10.1109/TEC.1961.5219222
https://doi.org/10.1109/TEC.1961.5219222
https://doi.org/10.1145/2818302.2818306
https://doi.org/10.1145/2818302.2818306
https://doi.org/10.1145/3124680.3124717
https://doi.org/10.1109/SBAC-PAD49847.2020.00016
https://doi.org/10.1109/SBAC-PAD49847.2020.00016
https://ieeexplore.ieee.org/document/9235046/
https://doi.org/10.1109/FarEastCon.2019.8934131
https://ieeexplore.ieee.org/document/8934131/
https://ieeexplore.ieee.org/document/8934131/
https://doi.org/10.1109/MC.2002.1016901
http://ieeexplore.ieee.org/document/1016901/

STAMP-Rust 175

30. Ramalhete, P., Correia, A., Felber, P.: Efficient algorithms for persistent transac-
tional memory. In: Proceedings of the 26th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, pp. 1–15. ACM, Virtual Event Republic
of Korea (2021). https://doi.org/10.1145/3437801.3441586

31. Scott, M.L., Spear, M.F., Dalessandro, L., Marathe, V.J.: Transactions and pri-
vatization in delaunay triangulation. In: Proceedings of the Twenty-sixth Annual
ACM Symposium on Principles of Distributed Computing - PODC 2007. p. 336.
ACM Press, Portland (2007). https://doi.org/10.1145/1281100.1281160, http://dl.
acm.org/citation.cfm?doid=1281100.1281160

32. Takano, K., Oda, T., Kohata, M.: Design of a DSL for converting rust programming
language into RTL. In: Barolli, L., Okada, Y., Amato, F. (eds.) EIDWT 2020.
LNDECT, vol. 47, pp. 342–350. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-39746-3 36

33. Tasharofi, S., Dinges, P., Johnson, R.E.: Why do scala developers mix the actor
model with other concurrency models? In: Castagna, G. (ed.) ECOOP 2013. LNCS,
vol. 7920, pp. 302–326. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39038-8 13

34. Xu, Y., Izraelevitz, J., Swanson, S.: Clobber-NVM: log less, re-execute more. In:
Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 346–359. ACM, Virtual
USA (2021). https://doi.org/10.1145/3445814.3446730

https://doi.org/10.1145/3437801.3441586
https://doi.org/10.1145/1281100.1281160
http://dl.acm.org/citation.cfm?doid=1281100.1281160
http://dl.acm.org/citation.cfm?doid=1281100.1281160
https://doi.org/10.1007/978-3-030-39746-3_36
https://doi.org/10.1007/978-3-030-39746-3_36
https://doi.org/10.1007/978-3-642-39038-8_13
https://doi.org/10.1007/978-3-642-39038-8_13
https://doi.org/10.1145/3445814.3446730

Author Index

B
Bakir, Fatih 35

C
Castrillon, Jeronimo 160
Chen, Mingyu 143
Cosenza, Biagio 123

D
Dai, Shaopeng 19

E
Ehsani, Reza 102
Ekaireb, Tyler 35

F
Feng, Tong 55

H
Hunold, Sascha 3

K
Kraßnitzer, Klaus 3
Krintz, Chandra 35

L
Lan, Chuanxin 19
Liang, Guanyu 70
Liang, Yubo 87
Lin, Andrew 102
Lin, HaiMing 70
Liu, Zeyu 102
Lu, Xiaoyi 102

M
Ma, Jiantao 19

N
Newsam, Shawn 102
Ng, Darren 102

P
Pearson, Jack 35

S
Salimi Beni, Majid 123
Schmierer, Colin 102
Shao, Zezhi 87
Shi, Yingjie 55
Song, Hui 143
Suchert, Felix 160
Sun, Tao 87

T
Tang, Fei 19
Tian, Chunqi 70

W
Wang, Fei 87
Wang, Jiangtao 19
Wang, Lei 19
Wang, Sierra 35
Wang, Wei 70
Wolski, Rich 35
Wu, Bin 70
Wu, Yanjun 70

X
Xu, Shiyuan 55
Xu, Yongjun 87

Y
Yu, Falin 102
Yuan, Huayi 55

Z
Zhan, Jianfeng 19
Zhang, Fan 19
Zhang, Wenli 143
Zhang, Zhao 87

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
A. Gainaru et al. (Eds.): Bench 2022, LNCS 13852, p. 177, 2023.
https://doi.org/10.1007/978-3-031-31180-2

https://doi.org/10.1007/978-3-031-31180-2

	 Preface
	 Organization
	Invited Talks
	 BenchCouncil Achievement Award Lecture: Benchmarking: An Incomparable Science?
	 BenchCouncil Rising Star Award Lecture: Rethinking Benchmarking in AI: Evaluation-as-a-Service and Dynamic Adversarial Data Collection
	 Towards Fair Machine Learning with Imperfect Information
	 Contents

	Architecture and System
	A Quantitative Analysis of OpenMP Task Runtime Systems
	1 Introduction
	2 Related Work
	3 OMPTB: The OpenMP Task Benchmark
	4 Experimental Setup
	5 Experimental Results
	5.1 General Experimental Factors
	5.2 Homogeneous Workloads
	5.3 Homogeneous Case: Correlation Analysis
	5.4 Heterogeneous Workloads

	6 Conclusions
	References

	EAIBench: An Energy Efficiency Benchmark for AI Training
	1 Introduction
	2 Related Work
	2.1 Benchmark
	2.2 Metrics

	3 Methodology and Implementation
	3.1 Metric and Measurement
	3.2 Benchmarks and Configuration Space
	3.3 Monitor and Analyzer
	3.4 System Under Test

	4 Experiment and Result
	4.1 Experimental Methodology
	4.2 Stability of Epochs
	4.3 Model Parameters Analysis
	4.4 GPU Comparison
	4.5 Different Layers Analysis

	5 Conclusion
	References

	MSDBench: Understanding the Performance Impact of Isolation Domains on Microservice-Based IoT Deployments
	1 Introduction
	2 Related Work
	3 Benchmark Design
	4 Empirical Evaluation
	4.1 Microbenchmark Results
	4.2 End to End Benchmark Results
	4.3 Throughput Results

	5 Conclusion
	References

	Algorithm and Dataset
	ShoeMaster: A Benchmark for Sketch2Image Translation of Shoes
	1 Introduction
	2 Related Work
	2.1 Fashion Datasets
	2.2 Sketch2Image Translation

	3 The ShoeMaster Benchmark
	3.1 Shoes Category Knowledge Hierarchy
	3.2 Dataset Construction
	3.3 Evaluation Metric

	4 Experiments
	4.1 Approaches
	4.2 Methodology
	4.3 Results and Analysis

	5 Conclusion
	References

	Open Source Software Supply Chain Recommendation Based on Heterogeneous Information Network
	1 Related Work
	1.1 GitHub Open Source Data Collection and Mining
	1.2 GitHub Project Recommendation
	1.3 Recommendation Methods Based on Heterogeneous Information Networks

	2 Proposed Framework
	2.1 Data Preprocessing
	2.2 Oswhin Construction
	2.3 Metapath Selection
	2.4 Oswhin-Based Embedding
	2.5 Personalized Recommendation

	3 Experiment
	3.1 Dataset
	3.2 Evaluation Metrics
	3.3 Experimental Results and Analysis

	4 Conclusion
	References

	BasicTS: An Open Source Fair Multivariate Time Series Prediction Benchmark
	1 Introduction
	2 Related Works
	3 Benchmark Building
	3.1 Design Thoughts
	3.2 Implementation of BasicTS

	4 Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Review

	5 Conclusion
	6 Future Works
	References

	Benchmarking Object Detection Models with Mummy Nuts Datasets
	1 Introduction
	2 Background and Motivation
	3 Requirements of Detecting Mummy Nuts with CNNs
	3.1 Overview of Object Detection Models
	3.2 Requirements of Benchmarking Models

	4 Benchmarking Methodology
	4.1 Proposed Datasets: Original and Augmented
	4.2 Metrics
	4.3 Proposed Tools

	5 Experiments
	5.1 Platform Selection
	5.2 Results
	5.3 Observations and Discussion

	6 Related Work
	7 Conclusion and Future Work
	References

	Network and Memory
	An Analysis of Long-Tailed Network Latency Distribution and Background Traffic on Dragonfly+
	1 Introduction
	1.1 Motivations
	1.2 Contributions

	2 Related Work
	3 Experimental Setup
	3.1 Computing
	3.2 Network
	3.3 Microbenchmarks and Applications

	4 Network Latency Distribution Analysis
	4.1 Job Placement Locality and Performance Variability

	5 Background Traffic Analysis
	5.1 Background Traffic Heuristic
	5.2 Correlation Analysis
	5.3 The Impact of Background Traffic on Long-Tail
	5.4 Application Analysis

	6 Discussion
	7 Conclusion
	References

	MCCBench: A C10M Benchmark Oriented to Interactive Network Services
	1 Introduction
	2 Motivation
	2.1 Benchmark Design
	2.2 Benchmark Implementation

	3 MCCBench Design
	3.1 Workload Definition
	3.2 Service Framework
	3.3 Performance Evaluation Criteria

	4 MCCBench Implementation
	4.1 Workloads
	4.2 Architecture
	4.3 Case Study

	5 Evaluation
	5.1 Experiment Setup
	5.2 Results
	5.3 Expansion Experiment

	6 Conclusion
	References

	STAMP-Rust: Language and Performance Comparison to C on Transactional Benchmarks
	1 Introduction
	2 Background and Related Work
	2.1 The STAMP Benchmark Suite
	2.2 Software Transactional Memory in Rust

	3 STAMP on Safe Rust
	3.1 Type-Level Safety
	3.2 Composable Transactions
	3.3 The Overhead of Safety
	3.4 The Complexity of Using Associative Arrays

	4 Analysis of Automatically Generated Benchmarks
	5 Evaluation
	5.1 Methodology
	5.2 Performance Comparison
	5.3 Qualitative Analysis

	6 Conclusion
	References

	Author Index

