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Abstract. One of the most essential concepts related to the development
of Blockchain oriented software is smart contracts. Once deployed on the
blockchain, these pieces of code cannot be altered due to the immutability fea-
ture of the blockchain technology. Therefore, it is necessary to verify and vali-
date smart contracts before their deployment. This paper presents a model-based
testing approach for validating and checking the correctness of Ethereum smart
contracts. The adopted process comprises essentially four steps: (1) modelling
the smart contract and its blockchain environment as UPPAAL Timed Automata,
(2) generating abstract test cases by UPPAAL CO

√
ER tool, (3) executing in a

dynamic manner the generated test cases, and finally (4) analyzing the obtained
test results and generating test reports. To illustrate our proposal, we apply it on
Ethereum Blockchain and especially on the electronic voting case study.

Keywords: Blockchain · Smart contracts · Ethereum · Dynamic Testing ·
Model-based testing · UPPAAL Timed automata · Verification · Validation

1 Introduction

Blockchain technology is emerging the last decade and has garnered a lot of attention in
several domains [21], such as finance, supply chain management [26], intelligent trans-
portation [18] and health [4,10]. Indeed, Blockchain is a distributed ledger made up of
a chain of linked blocks in which transactions are stored. The interest in such a technol-
ogy has increased due to its main characteristics such as decentralization, transparency,
immutability and security. For instance, the immutability is achieved by sharing the
same copies of the ledger in a decentralized way across different peer-to-peer nodes.

Another reason for this new trend is related to the concept of Smart contracts which
are pieces of code that are defined, executed and recorded on the Blockchain. They
enable the implementation of business logic within the distributed ledger. By the way,
developing Blockchain oriented Software (BoS) can be easily achieved.

However, several defects and vulnerabilities can be introduced in smart contracts
and can lead to serious problems and attacks such as asset losses. Consequently, check-
ing their correctness and guaranteeing their high quality remains a crucial requirement
to be considered.

As one of the key methods to get confidence in these Blockchain oriented Soft-
ware, software testing captured researchers interest. It has been often applied to check
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functional and non-functional requirements. Its ultimate goal is to detect the presence of
faults in the System Under Test (SUT). In this respect, the literature comprises a myriad
of techniques and methods (i.e., static testing [25,32], dynamic testing [5,7,19,23,24],
etc.) for efficiently testing BoS. As our main focus in this paper is dynamic testing, we
have identified several studies that have considered dynamic testing of BoS, especially
at the smart contract level such as [5,7,19,23,24]. The majority have dealt with struc-
tural testing approaches and required the source code of the smart contract to generate
tests and execute them. Model-based testing technique, in which test cases are derived
from formal test models, is rarely discussed.

To overcome this limitation, we provide a model-based testing approach for BoS,
called MBT4BoS, that checks the correctness of smart contracts deployed on Ethereum
Blockchain. Our proposal ensures firstly the modelling of smart contracts and the
blockchain environment using UPPAAL Timed Automata formalism while consider-
ing essentially Ethereum gas mechanism. Secondly, the well-established tool UPPAAL
CO

√
ER is reused to generate effectively new abstract test cases. Thirdly, a Web-

based interface is proposed to easily execute tests, analyze test results and generate test
reports. The implemented tool for test execution and reporting is named BC Test Run-
ner. As a proof of concept, the proposed approach is illustrated through the electronic
voting application.

The rest of this paper is organized as follows. Section 2 provides background mate-
rials for understanding the research problem. Subsequently, Sect. 3 draws comparison
with related work in the context of dynamic testing of BoS. The model-based testing
approach for BoS is outlined in Sect. 4. Afterwards, its application to the electronic vot-
ing case study is highlighted in Sect. 5. Finally, we conclude, in Sect. 6, with a summary
of paper contributions, and we identify potential areas of future research.

2 Background Materials

In this section, we give a brief discussion on topics related to Blockchain (BC), Smart
Contracts (SCs), and software testing concepts. All these key concepts are important to
fully understand our contribution in the following sections.

2.1 Blockchain

Nakamoto et al. [28] introduce for the first time the concept of Blockchain as the tech-
nology underlying Bitcoin. This emerging technology is defined as a distributed ledger
maintained over a peer-to-peer network. It is used in several platforms such as Ethereum
[1] and Hyperledger [2].

As depicted in Fig. 1, Blockchain is composed of a linked list of blocks. Each block
contains mainly a given number of transactions that have occurred within the network.
The transaction can be seen as data exchange or token transfers. Each block is made
up of two parts: the header and the body. The header of a given block contains several
fields, particularly a timestamp of when the block was produced and the identifier of the
previous block. The latter is obtained by executing a cryptographic hash function (e.g.,
SHA256, KECCAK256, etc.). By this way, blocks are connected to each other like a
linked list [6]. In the body of the block, transaction details are stored such as price,
asset, ownership, etc.
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Fig. 1. Blockchain structure.

2.2 Smart Contracts

Smart Contracts (SCs) are one of the most interesting features that have been introduced
by several platforms such as Ethereum and Hyperledger with the aim of attaching busi-
ness logic code to transactions. A SC is seen as an autonomous programming code that
is deployed on the blockchain and is executed when some events occur. In the case of
Ethereum, smart contracts are implemented in a Turing complete language called Solid-
ity1. Solidity language is very similar to JavaScript. It supports features like libraries,
inheritance and user-defined types. Using the solidity compiler solc, they are compiled
to the Ethereum Virtual Machine (EVM) bytecode.

A concrete example of smart contract is illustrated in Listing 1.1. The first line
specifies the compiler version, then the keyword contract declares the contract with its
name similarly to any object oriented language. In line 3, a state variable is also declared
as unsigned integer (uint). Next, several functions are defined either to modify the state
variable or to read its content.

1 pragma solidity ˆ0.5.3;
2 contract SimpleStorage{
3 uint storedData;
4 function set(uint x)public{
5 storedData=x;
6 }
7 function get() public view returns (uint){
8 return storedData;
9 }
10 function increment(uint n)public{
11 storedData=storedData+n;
12 return;
13 }
14 function decrement(uint n)public{
15 storedData=storedData-n;
16 return ;
17 }}

Listing 1.1. Code snippet of the SimpleStorage smart contract.

1 https://solidity.readthedocs.io/.
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The most relevant feature within smart contracts is their immutability. Once
deployed on the blockchain, they cannot be altered or changed. Therefore, it is highly
required to ensure their correctness and security before their deployment on the
blockchain platform.

2.3 Common Vulnerabilities

Several research works in the literature have discussed smart contract vulnerabilities
such as [12,30]. These vulnerabilities may happen at the smart contract code level, the
blockchain level and the EVM level [27]. Next, we introduce the most cited vulnerabil-
ities in the literature:

– Reentrancy. It is a solidity-level vulnerability. It occurs when a given smart contract
calls an entrusted function in another contract. The malicious callee can take control
of the data flow and makes its attack. This kind of vulnerabilities was the cause of
the DAO attack.

– Gasless send. It is a solidity-level vulnerability. When using the function send to
transfer ether to a contract, it may end up with an out-of-gas exception.

– Timestamp dependency. It is a blockchain level vulnerability. In fact, any operation
on the blockchain has its timestamp (e.g., smart contract creation, block creation,
etc.). A malicious miner can manipulate the timestamp of the generated block for
malicious purposes.

It is highly demanded to detect such vulnerabilities while developing blockchain
oriented software. Thus, adopting verification techniques such as software testing is
mandatory to ensure the quality and trustworthiness of BoS.

2.4 Blockchain Testing Techniques

One of the most important activities for Blockchain Oriented Software Engineering
(BOSE) is the testing activity. Indeed, it is defined as the process of validating and
ensuring the quality of a System Under Test (SUT) [13]. It is usually performed with
the purpose of assessing the conformance of a system to its specifications.

Software testing can be static or dynamic. Static testing does not involve software
execution, but analyses the source code structure, syntax and data-flow, and is also
called Static analysis. Contrary to static testing, dynamic testing considers testing the
dynamic behavior of a SUT while it is running. Test cases are conceived by specifying
test inputs and expected outputs. The purpose of dynamic testing is to check whether
the actual outputs correspond to the expected ones.

In the case of testing blockchain oriented software, we identify in the literature sev-
eral kinds of testing techniques that are performed with the aim of increasing confidence
and trustworthiness of BoS. For instance, we cite Smart contract testing (i.e., applying
unit testing on smart contract code), Performance testing (i.e., verifying performance
and latency within blockchain network), Node testing (i.e., testing the block size, chain
size and data transfer) and Security testing (i.e., identifying whether there is any piece
in the Blockchain application that is vulnerable to malicious attacks).

Regarding Model-based testing (MBT), it is a software testing technique in which
different test cases are derived from a test model that describes the functional aspects
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of the SUT. The advantage of choosing this type of test in our work is to improve the
detection of errors in case of testing BoS and to reduce the cost and time of the test
phase [33].

3 Related Work

Although testing blockchain oriented software should cover several layers: application
layer (e.g., DApps), smart contract layer, blockchain layer (e.g., blocks, transactions),
consensus layer and network layer, testing efforts are concentrated essentially on testing
smart contracts and ensuring their functional correctness. In this direction, we have
identified two research lines: white-box testing and black-box testing approaches [22].

The first research line, white-box testing, is based on the investigation of internal
logic and structure of the smart contract code. Up to our knowledge, the majority of
studied papers focus on mutation testing [5,7,15,17,23,34] and show that this test-
ing technique has a good impact on smart contract quality. Indeed, mutation testing is
considered as a fault-based software testing technique generally used to evaluate the
adequacy of test cases and their fault detection capabilities.

In this direction, a well established approach is proposed in [23] providing a muta-
tion testing tool for Ethereum smart contracts called, MuSC. This proposal takes as
input a smart contract under test and transforms its source files to Abstract Syntax
Tree (AST) version. Next, it generates various mutants that implement traditional muta-
tion operators and new ones according to the characteristics of solidity language. The
obtained mutants are then transformed back to solidity source files with injected faults
for compilation, execution and testing purposes. It also provides user-friendly interface
to create test nets and to display test reports. The latter include execution results for
each mutant (i.e., pass or fail) and the total mutation score.

Similarly, authors in [17] developed a RegularMutator tool for mutation analysis.
Its major goal is to improve the test suites in order to find defects as well as to increase
the effectiveness and the fault detection capabilities of test suites. Taken as input a
Truffle project, RegularMutator generates mutants for each source file in the project.
Once mutant files are generated, it substitutes the original files with the mutant ones,
executes project test suites, and then, the test output is analysed. The main problem
within this approach is its high computational cost of executing a set of tests when
generating numerous mutants.

Yet another potential research topic to explore is discussed here which consists in
testing Decentralized Applications (DApp). A DApp is a Web application made up of
two parts: the front-end and the back-end. The following two studies [14,36] touch sev-
eral research areas including smart contract analysis and automated Web application
testing. They overcome the lack of effective methods and tools for testing DApps since
the existing ones either focus on testing front-end code or back-end programs but they
ignore the interaction between them. These approaches focus on DAPP testing includ-
ing Web testing of graphical user interfaces and also smart contract testing whereas our
proposal deals withmodel based testing of smart contracts without access to source code.

The second research line, Black-box testing, includes several testing approaches that
apply testing activities without having any knowledge of the internal structure of BoS.
The most used ones in the studied context are fuzz testing and model-based testing.
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Regarding fuzz testing perspective, we introduce the Fuse project [9], a fuzz testing
service for smart contracts and Dapp testing. Fuse assists developers for test diagno-
sis via test scenario visualization. The first prototype developed in the context of Fuse
project is ContractFuzzer [19] that detects seven security vulnerabilities of Ethereum
smart contracts. The proposed approach generates fuzzing inputs from the ABI specifi-
cation of the smart contract. It also defines test oracles for detecting the supported real
world vulnerabilities within smart contracts. ContractFuzzer was performed on 6991
real-world Ethereum SCs showed that it has identified 459 SCs vulnerabilities, includ-
ing the DAO and Parity Wallet attacks.

A similar approach to ContractFuzzer is sFuzz, an adaptive fuzzing engine for EVM
smart contracts [29]. sFuzz is made up of three components: runner that manages test
case execution, liboracles that supports eight oracles inspired by the previous researches
[19,25] and libfuzzer which implements the test suite generation algorithm. The latter
is based on a feedback-guided fuzzing technique which transforms the test generation
problem into an optimization problem and uses feedbacks as an objective function in
solving the optimization problem. This proposal is based on adaptive strategy since it
is possible to change the objective function adaptively based on the feedback to evolve
the test suite with the aim of improving its branch coverage. Due to its effectiveness and
its reliability, sFuzz has already gained interest from multiple companies and research
organizations. However, fuzz-based approaches may suffer from false positive detection
as a reported vulnerability may be a false positive2.

Regarding the model-based testing perspective, authors in [31] propose a model
driven approach that generates smart contract code from UML diagrams (i.e., Use Cases
and Activity diagrams). They also point out the necessity of applying testing technique
in the early stage of Software Development Life Cycle (SDLC), especially in the con-
text of blockchain oriented software. However, this approach is still immature since no
test tool implementation for the discussed ideas were introduced. Similarly, the work in
[20] proposes a complete software testing life cycle to test BoS projects. The proposal is
composed of four phases including system overview, test design, test planning and test
execution. Test generation issue was not discussed and solutions to reduce test cost and
effort are not given.

Up to our best knowledge, ModCon tool [24] is very closer to our MBT approach.
In fact, it uses an explicit abstract model of the target smart contract in order to generate
test cases automatically. This tool shows its effectiveness specifically for enterprise SC
applications written in Solidity from permissioned/consortium blockchains. It allows
SC developers to input their test model for the SC under test. Compared to our solution,
ModCon did not model blockchain environment and focused only on modelling and
testing functional aspects of single smart contracts.

4 Proposed Approach

In this section, we describe the main steps of our model-based testing approach
MBT4BoS. It is divided into four steps as shown in Fig. 2: (1) modelling the smart
contract and its blockchain environment as UPPAAL Timed Automata, (2) generating

2 Some test cases fail but there is no bug and the program is working correctly.
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Fig. 2. Architecture of the model-based testing approach: MBT4BoS.

abstract test cases by UPPAAL CO
√
ER tool, (3) dynamically executing the generated

test cases, and finally (4) analyzing the obtained test results and generating test reports.
In the following subsections, these modules are deeply discussed.

4.1 Modelling the Smart Contract and Its Blockchain Environment

In this step, our aim consists of designing an abstract test model from which test cases
are automatically generated. The purpose of this test model is to specify the expected
behaviours of the system under test with reference to its requirements. To do so, we
adopt a popular and widespread formalism for specifying critical systems, called Timed
Automata (TA). In fact, we model a given smart contract and its blockchain environment
as a network of timed automata.

From smart contract modeling perspective, a timed automata is defined by the tuple

(S,s0,Act,C ,Inv,V ,T ), where:

– S is a finite set of states.
– s0 ∈ S is the initial state and i0 ∈ I represents the initial input action that corresponds

to the constructor of the smart contract.
– Act is a finite set of Input and output actions. The Input actions correspond to smart
contract function calls.

– C is a finite set of clocks that are used to model temporal constraints.
– V is the set of state variables. Every variable x ∈ V is a global variable and can be

accessed at every state s ∈ S.
– T is a finite set of transitions, where e= 〈l,g,r,a, l′〉 ∈ T corresponds to the transi-

tion from l to l’, g is the guard associated to e, r is the set of clock to be reset and a
is a label of e. We note l

g,r,a−−→ l′.

From the blockchain modelling perspective, we consider only accounts, transactions
and gas mechanism in Ethereum blockchain. Consensus algorithms and mining are out
the scope of this paper. As introduced in the Ethereum Yellow paper [35], an Ethereum
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account can be either an externally owned account or a smart contract account. Both of
these accounts have a unique identifier called address and some others fields such as a
balance3, a codeHash4 and a storageRoot5.

A transaction is a single cryptographically-signed instruction constructed by an
externally owned account. It contains a gasLimit and a gasPrice field. The gasPrice indi-
cates the market price in Wei of a unit of gas. The gasLimit is the maximum amount
of gas that can be burnt for performing the transaction. Thus, total transaction fee is
calculated as follows: txFee= Gasunit(limits)∗Gaspriceperunit.

At this point, we consider that an ethereum transaction has three states created,
confirmed and failed. The pending state in which transaction in the pool waiting for
minor validation is out the scope of this paper. A given transaction is confirmed when
the sender of the transaction has enough ether in his account to perform it. It can be
failed if the sender does not provide the gas needed to complete it.

4.2 Test Case Generation

Test generation within a model-based testing process is the generation of tests from the
previously designed model. This generation is based on behaviours from the test model
and on test selection criteria chosen by the validation engineer. In our case, the used
test generation technique is based on model checking. The main idea is to formulate
the test generation problem as a reachability problem that can be solved with the model
checker tool UPPAAL [8]. However, instead of using model annotations and reachabil-
ity properties to express coverage criteria, the observer language is used. The use of the
observer language simplifies the expression of coverage criteria.

Therefore, we reuse the finding of Hessel et al. [16] by exploiting its extension of
UPPAAL namely UPPAAL CO

√
ER6. This tool takes as inputs a model, an observer

and a configuration file. The model is specified as a network of UPPAAL timed
automata (.xml) that comprises a SUT part and an environment part. The observer (.obs)
expresses the coverage criterion that guides the model exploration during test case gen-
eration. In our context, we use an observer that handle edge coverage criteria7. The
configuration file (.cfg) describes mainly the interactions between the system part and
the environment part in terms of input/output signals. As output, it produces a test suite
containing a set of timed traces (.xml).

Our test generation module is built upon this well-elaborated tool. We use UPPAAL
CO

√
ER and its generic and formal specification language for coverage criteria to gen-

erate abstract test cases for checking the correctness of smart contracts. The concretiza-
tion of tests is done manually.

3 The number of Wei owned by this address.
4 The hash of the EVM code of this account.
5 The hash of the root node of aMerkle Patricia tree encoding the storage contents of the account.
6 http://user.it.uu.se/ hessel/CoVer/index.php.
7 A test case should traverse all edges of a given timed automaton.
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4.3 Test Case Execution

The generated test cases can be executed manually or automatically. Manual test exe-
cution involves a human tester executing the generated test cases by interacting with
the system under test, following the test case instructions. Automated test execution
involves translating the generated test cases into automatically executable test scripts.

At this level, we have developed a test tool BC Test Runner which allows to auto-
mate the execution of generated tests by stimulating smart contracts deployed on a local
blockchain, called Ganache and also the generation of test reports. As highlighted in
Fig. 3, this test tool consists of a Web-based front-end and a server-side backend. The
front-end accepts two inputs from testers: a set of test cases generated from the given
test model by UPPAAL CO

√
ER and a Json file obtained after the compilation of the

smart contract. This file contains all the specifications of the smart contract. The back-
end comprises several modules: such as Test Executor, Test result analyzer and Report
generator. The communication with the smart contract is done through the Web3.js
library.

Fig. 3. Architecture of the test tool BC Test Runner

The Test Executor module is responsible for stimulating the smart contract with test
input data and retrieving the results. To do so, it reads from the Json file the address of
the contract and its ABI (Application Binary Interface) in order to invoke its functions.
The ABI is the binary interface that describes the smart contract and its functions, i.e.
function names, parameters, return types, etc. From the second entry which is a text file
that contains the test cases (i.e., input values and expected results separated by (;)), it
sends test inputs to the deployed smart contract, then collects the obtained results and
compares them to the expected ones. Then, Pass or Fail verdicts are then generated for
each test case.

4.4 Test Result Analysis and Test Report Generation

This step consists of analyzing the test execution results which are stored in log files
during the test execution and also generating test reports. Regarding test result analysis,
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BC Test Runner includes the module Test results analyser which performs the analy-
sis of results by calculating the percentage of Pass verdicts and the percentage of Fail
verdicts. Then, test reports are generated by the module Report Generator as trace text
files.

5 Illustration

At present, we introduce the case study that we used to illustrate our MBT approach.
Moreover, the elaborated test models for the studied smart contract and the implemented
test tool are presented.

5.1 Case Study Description

Decentralized electronic voting systems, relying on Blockchain technology, are emerg-
ing as new solutions to handle security concerns of traditional electronic voting systems.
With blockchain technology, the E-voting system can guarantee transparency and confi-
dentiality. The idea is to create one contract per ballot, providing a short name for each
proposal. Then, the creator of the contract, known as chair person, will register each
address individually and give the right to vote.

Fig. 4. A simplified electronic voting system deployed on blockchain.

As depicted in Fig. 4, the chair person initiates the vote by deploying the Ballot
contract while providing a short name for each proposal. Then, he registers voters indi-
vidually. We assume here that the registration period is equal to ten days. When the
registration phase is closed and the vote phase is opened, voters can vote by choosing
the proposal identifier. At the end of the voting period which is equal to one day, the sys-
tem will return the proposal with the largest number of votes. It is worth to note that we
have adopted the Ballot smart contract which is introduced in solidity’s documentation
with minors modifications [3].
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1 contract ballot {
2 struct Voter {
3 uint weight; // weight is accumulated by delegation
4 bool voted; // if true, that person already voted
5 address delegate; // person delegated to
6 uint vote; // index of the voted proposal
7 }
8 struct Proposal {
9 string name; // short name (up to 32 bytes)
10 uint voteCount; // number of accumulated votes
11 }
12 address public chairperson;
13 function register(address voter) public {
14 require(
15 msg.sender == chairperson,
16 "Only chairperson can give right to vote."
17 );
18 require(
19 !voters[voter].voted,
20 "The voter already voted."
21 );
22 require(voters[voter].weight == 0);
23 voters[voter].weight = 1;
24 }

Listing 1.2. Code snippet of the Vote smart contract.

5.2 Modelling the E-voting System

In the following, we present the timed automaton specification of the Ballot smart con-
tract which will be then used as a reference in our approach.

The Ballot Smart Contract Automaton
As shown in Fig. 5, at the initial state named initial which is marked by dou-
ble circle, the clock (c) is initialized to zero. The first transition corresponds to
the reception of a request to invoke the register function of the smart contract
(Tx Contractcall register[e][ch]?). Reaching the state (Accepting registration), the
model evolves to the state initial, either through the transition that corresponds to the
failed registration (registration f ailed[e][ch]!) if the return value of the function reg-
ister is false, or through the transition that corresponds to the confirmed registration
(registration con f irmed[e][ch]!) if the return value of the function register is true. In
this case, the procedure (Registration Con f irmed(e)) stores the address of the voter (e)
on the Ballot smart contract.

Returning to the initial state, the model evolves either to (Accepting registration)
state and it does the same scenario if the clock delay is less than or equal to 10 days
(c <= 10), or to (Registration closed) state if the clock delay is greater than 10 days
(c> 10). In this case, the clock is set to zero. Reaching (Registration closed) state, the
transition to be enabled corresponds to the reception of a request to invoke the voting
function (Tx Contractcall vote[e][P Num]?).
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Fig. 5. Ballot smart contract automaton.

When reaching (Accepting voting) state, the model may change its state to
the previous one, either through the transition that corresponds to the failed vote
(vote f ailed[e][P Num]!) if the return value of the vote function is false, or through the
transition (vote con f irmed[e][P Num]!) that corresponds to the confirmed vote if the
return value of the function vote is true. In this case, the (Vote Con f irmed(e,P Num))
procedure records the voter’s vote on the blockchain.

When returning to the state (Registration closed), the model can evolve either to
the state (Accepting voting) and it follows the same scenario if the clock delay is
less than or equal to one day (c <= 1), or to the state (Voting closed) if the clock
delay is greater than one day(c > 1). Reaching the state (Voting closed), the transi-
tion to be enabled corresponds to the reception of a request of the winning proposal
(winning proposal request?). In this case, the procedure (winning()) returns the pro-
posal having obtained the greatest number of votes. When the state (close) is reached,
the transition to be fired corresponds to the emission of the winning proposition pro-
posal!. At the end, the model returns to the initial state.

Transaction Automaton
This automaton has three states. As illustrated in Fig. 6, starting from the initial state
T0, the model evolves, either towards the state T1, or towards the state T2, according to
the request which it receives.

For instance, the transition Register request[e][ch]? is enabled and the state T1 is
reached. As a result, the model may evolve to the previous state T0, through the transi-
tion that corresponds to the erroneous transaction (Tx errored!) if the value of gasUsed
is higher than the value of gaslimit or the account balance of the chairperson is lower
than the transaction fee. Otherwise, the transition which corresponds to the invoca-
tion of the register function of the smart contract (Tx Contractcall register[e][ch]!) is
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Fig. 6. Transaction Automaton.

enabled if the value of gasUsed is less than the value of gaslimit and the account bal-
ance of the chairperson is greater than or equal to the transaction fee. In this case, the
transaction cost is removed from the chairperson’s balance.

5.3 Test Case Generation

From the elaborated formal models, UPPAAL CO
√
ER is used to generate abstract test

cases. For space limitation, only two test sequences are illustrated as follows:

– Valid Register: Register request[id][chairperson]! Register request[e][ch]?
.0,gasUsed,balance ch.Tx Contractcall register[e][ch]!.1,gasUsed,balance ch
.Tx Contractcall register[e][ch]?registration confirmed[e][ch]!
registration confirmed[id][chairperson]?;

– Failed Register: Register request[id][chairperson]! Register request[e][ch]?
.10,gasUsed,balance ch. Tx errored! .11,gasUsed,balance ch Tx errored?;

5.4 Test Tool Implementation

In this section, we present our test tool BC Test Runner, which is written in JavaScript
and HTML. It is connected with the local blockchain (Ganache) throughWeb3.js library.
This tool allows us to invoke smart contracts deployed on the local blockchain using
their specifications (address, ABI). It provides an interface that consists of three sub-
interfaces as illustrated in Fig. 7.

The sub-interface (1) allows the tester to select the smart contract specification file
(.json) and test cases (.txt) then to start the test process through the button Start Test
or to generate test reports through the button Generate Report. The sub-interface (2)
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Fig. 7. The user interface of BC Test Runner.

displays the number of test cases executed, their verdicts and their test duration. The
sub-interface (3) highlights test results as a pie chart.

6 Conclusion

In this paper, we provided a model-based testing approach for BoS, called MBT4BoS,
that tests smart contracts deployed on Ethereum Blockchain. Our approach ensured the
modelling both of smart contracts and the blockchain environment while considering
essentially Ethereum gas mechanism. To do so, UPPAAL Timed Automata were used
to elaborate test models. Then, new abstract test cases were adequately generated by
using an extension of UPPAAL called UPPAAL CO

√
ER. We also proposed a Web-

based interface to execute tests, analyze test results and generate test reports. In order to
show the efficiency of MBT4BoS, we illustrated our solution using the Vote case study.

At the end of this work, we can distinguish several perspectives. First, we consider
the automatic generation of test cases by proposing a test generation algorithm and
integrating it into our solution MBT4BoS and into our test tool BC Test Runner. In
addition, we can improve the current version of our test tool to integrate it into other
modules, which will allowmore accurate determination of anomalies and better analysis
of test results. Another area to explore is combining model checking and testing to
enhance the efficiency of BoS formal verification [11].
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