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Chapter 11
Roles for Information in Trace Data Used 
to Model Self-Regulated Learning

Philip H. Winne 

Abstract When researchers use software and other technologies to gather data 
about learning, an operational definition details what to record about timestamped 
learning events as a learner engages with information, e.g., selecting text in a web-
page or tagging selections to index them. Theory assigns meaning to such opera-
tional definitions: (a) selecting text signals metacognitive monitoring; (b) tagging 
reveals properties the learner monitors as descriptive of selections, e.g., interesting, 
to investigate; (c) the learner ascribes utility to effort spent to select and tag. 
Prevailing approaches to analyzing trace data examine events in terms of presence/
absence, frequency, contingency, and pattern. For example, does the learner meta-
cognitively monitor? How many times? If the learner tags information “interesting,” 
does the learner contingently search for supplementary information? Properties of 
the information on which learners operate are underappreciated in analyses of trace 
data. What features of information lead a learner to: rehearse it vs. not; … tag it 
important vs. interesting vs. to investigate? … annotate it vs. search for supplemen-
tal material? … bin it, e.g., very difficult or not worth effort to learn? This chapter 
explores roles for information as information that can enrich trace data describing 
learning events. For example, can information a learner tags imply prior knowl-
edge? Do tags signal mastery vs. performance goal orientation? Attending to infor-
mation as information expands views about trace data and their uses in learning 
analytics and researching self-regulated learning.
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1  Introduction

Research literatures about online learning, self-regulated learning (SRL), learning 
science, and learning analytics often refer to and analyze processes involving cogni-
tion, metacognition, and motivation. Processes label operations learners are theo-
rized to apply to information (Winne, 2018, in press). For example, rehearsing is 
one cognitive operation. It reproduces specific information in working memory, 
theoretically with near perfect accuracy. Monitoring is another cognitive operation. 
It produces a list recording matches or a profile comparing properties of a “target” 
chunk of information, an object, to properties of a “standard” chunk of information. 
Monitoring can be a cognitive or a metacognitive operation depending on whether 
information monitored is the topic of a task – What are steps in graphing a linear 
equation? – or information about the topic of a task – Do I feel more confident 
graphing a linear equation using method A or method B? A motivational operation 
is choosing among options. For example, studying art history to develop knowledge 
for its own sake is a choice among reasons for studying. This choice represents 
mastery goal orientation. Or, the choice of reasons for studying art history may be 
to prepare to demonstrate expertise to others. Choosing this reason to justify behav-
ior represents performance goal orientation.

Operationally defining operations in learning is challenging. For example, a 
learner surveying a webpage to identify source material to use in a term paper may 
judge (monitor) the content is uninteresting. Or, the learner may judge this source is 
helpful because text descriptions of complex systems or principles are translated as 
diagrams. How can judgments like these be observed? A learning scientist may ask 
the learner to talk aloud while working, hoping the learner reports each learning 
event precisely, fully, and reliably. Some researchers have used facial recognition 
technologies coupled with systems tracking eye gaze to assemble a signal they 
interpret as the learner reaching a judgment like this.

A third approach is to operationally define trace data. Trace data are typically 
recorded in software logs when learners use software features on-the-fly. Instances 
or patterns of trace data are theorized to correspond to fundamental operations and 
patterns of operations that manipulate information (Winne, 2020a). For example, 
learners may select (monitor) and tag (assemble) text interesting. Text not tagged is 
inferred to have been monitored as uninteresting per se or not sufficiently interest-
ing or otherwise of value to be selected and tagged. Or learners may annotate a 
diagram using a schema operationalized as a structured note form in which distinct 
labels for each of several fields prompt the learner to describe key features of a sys-
tem, their functions, contingencies, and other properties recognized in the diagram.

Researchers are actively exploring how to operationally define operations learn-
ers engage during work on assigned and self-chosen tasks. The vast majority of this 
work addresses a basic question: What did the learner do? Answers often take form 
as an account of singular events or patterns relating learning events. Learning events 
can be ordered across a timeline of their occurrences. Both relatively simple and 
rather sophisticated methodologies – graph theory (Winne et al., 1994) and process 
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mining (Saint et al., 2021), respectively – are available to characterize contingencies 
and patterns of learning events. In this chapter, I develop a case that approaches like 
these give too little attention to the information operated on in a learning event. In 
effect, those methods describe “empty” learning events. Theorizing how learning 
events relate to knowledge a learner develops (or doesn’t), motivation guiding a 
learner’s choices, and affect a learner experiences requires incorporating informa-
tion in accounts of learning events because self-regulating learners select operations 
they apply according to content and properties of information. To approach clarity 
needed to observe and measure that information, a first step is describing how a 
learning event can be modeled.

2  Learning Events

The literatures mentioned earlier describe learning events as operations or pro-
cesses. Operations manipulate information. I posit a set of basic operations refer-
enced by the first-letter mnemonic SMART: searching, monitoring, assembling, 
rehearsing, and translating (e.g., Winne, 2018, in press). Table 11.1 provides defini-
tions and examples. As entries in Table 11.1 describe, operations like the SMART 
set inherently require inputs and generate products. Inputs may be elemental propo-
sitions describing any topic, including feelings and reasons for engaging in behav-
ior, i.e., motivations. (See Renninger & Hidi, 2019 for a compendium of motivation 
theories positing reasons for behavior.) Inputs also can be complex structures of 
information, such as a graph contrasting changes in energy levels across the lifespan 
of a catalytically assisted chemical reaction as contrasted to that reaction without 
the catalyst. Without information inputs, there would be no “content” on which to 
operate.

Notably, operations always are carried out in the context of surrounding condi-
tions which may bear on how a learner regulates operations. Conditions can be 
external to the learner, such as whether peers are nearby to observe, or that time 
allowed for executing a task is nearly expired. Conditions also can be internal to the 
learner, such as enduring motivations, prior knowledge encoded in long-term mem-
ory and expectations the learner forecasts about standards by which a product will 
be evaluated. An important class of internal conditions not addressed further in this 
chapter but not to be forgotten are individual differences such as working mem-
ory span.

When operations are executed on information and a product is generated, the 
learner’s state is updated. The updating of states marks a learning event. Having 
generated a product, the learner is now in position to monitor its properties in rela-
tion to standards for work that generated that product(s), to assemble an attribution 
describing that result and assemble a feeling with that information complex. 
Monitoring those inputs and assembling those accounts defines another learning 
event. For example, did work to translate the symbolic expression y = 2x + 3 into 
graphic form proceed straightforwardly, step-by-step, or were retreats necessary to 
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Table 11.1 The SMART operations

Operation Input Product Example

Searching Information active in 
working memory. This 
includes perceptions about 
features in the external 
environment and 
neighborhoods in the 
network of long-term 
memory

Information elsewhere in 
long-term memory 
becomes activated in 
working memory because 
network paths connect that 
information to inputs

Sodium has the 
chemical symbol …?

Monitoring A list or configuration (e.g., 
schema, step-by-step 
procedure) of standards for 
judging an information input 
or a product of thought or 
behavior

Classification (yes/no; 
multicategory) or rating of 
a target according to 
whether or how well its 
properties correspond to 
standards

A zebra displays each 
defining characteristic 
of a mammal

Assembling Two or more units of 
information (e.g., 
propositions, chunks, 
instantiated schemas) active 
in working memory

A relational property 
describing the union or 
intersection of the units of 
information

If the temperature of 
water at standard 
pressure exceeds 
100 °C, then its state 
changes from liquid 
to gas

Rehearsing One unit of information 
active in working memory

A (near perfect) 
reproduction of active 
information in working 
memory

Mentally repeating an 
assembly relating the 
term deciduous to its 
definition

Translating A unit of information active 
in working memory

A re-presentation of the 
input in a changed form 
that preserves core 
meaning, and possibly 
introduces new information

A paraphrase
A graph of y = 2x + 3

correct errors? Is a correct graph attributed to dedicated effort or “dumb luck”? 
Does that attribution engender a feeling of efficacy or anxiety about similar future 
tasks? Each of these products arises in a context of previously updated informa-
tion – internal and external conditions – as the task unfolds. Those conditions are 
examined by the self-regulating learner to make next choices about possible opera-
tions, operations actually applied, products each set of operations can generate, and 
evaluations of those products in reference to standards. A first letter mnemonic 
COPES – conditions, operations, products, evaluations, and standards – assembles 
these information topics as a unit.

Elsewhere, I model a bundle of internal conditions contributing to a learner’s 
decision-making policy about whether and how to engage tasks. Making choices 
about tasks enacts motivation. One facet of motivation is attributions, reasons a 
learner constructs to explain evaluations of products (Weiner, 2010). Efficacy 
expectations are the learner’s predictions about the degree to which current knowl-
edge and skills are available to succeed at a task. Efficacy expectations are informed 
by standards that characterize a high-quality product. Outcome expectations are the 

P. H. Winne



179

learner’s perceptions about what product will result if particular operations are exe-
cuted, and what are the properties of that product. Efficacy and outcome expecta-
tions are pillars in Bandura’s model of social learning (Bandura, 1997). Incentives 
are values the learner associates with COPES aspects of tasks as well as emotions 
arising from attributions (Weiner, 2010). Based on these perceptions about condi-
tions, the learner constructs a utility judgment for each task: What is the balance of 
costs relative to benefits if a task is engaged by applying particular operations under 
present conditions when particular standards apply? AEIOU – attribution, efficacy 
expectation, incentive, outcome expectation, and utility – is a convenient first-letter 
mnemonic assembling these internal products of cognition into one unit 
(Winne, 2022).

These three schemas jointly characterize features of learning events. The set of 
SMART operations distinguishes operations for processing and creating informa-
tion by inputs and products. COPES identifies facets of information describing a 
task in which operations, SMARTs, are executed. Information the learner produces 
in the form of AEIOU assembles motivation and affect with COPES.

States are point-in-time snapshots. A state is stable for a brief instant when it 
materializes, then it is replaced by the next state as subsequent operations generate 
new products. That transition marks a learning event. Learning events arising across 
the timeline of a task represent learning as a dynamically connected series of autore-
gressive states.

2.1  Modeling One Learning Event: If-Then-Else

I borrowed from other disciplines, especially computer science, to model learning 
as a sequence of If-Then-Else productions (e.g., Winne, 2018, in press). If collects 
conditions, the amalgam of external factors under which a learner may engage a 
task plus internal conditions integrated by the AEOIU model. Depending on the 
profile or constitution of Ifs, the learner Then executes one operation or a strategic 
pattern of operations. Should conditions be configured otherwise, then Else some 
other operation(s) are selected. For example, a learner encountering a technical term 
formatted in italics (If) regularly selects and tags it for review (Then) excepting 
(Else) terms which the learner already knows well.

The If-Then-Else model spans time by bridging the transition from a preceding 
state, If generated by monitoring information, to a subsequent state, an information 
product generated by Then or Else. How a learner chooses to learn  – to self- 
regulate learning – is conditional on Ifs. Modeling learning events requires examin-
ing sequences of If-Then-Else events that modulate in response to varying Ifs. 
Modeling and analyzing SRL event data is dynamic because each event updates 
conditions characterizing the next moment in time.

It merits pointing out this model emphasizes the learner is in full control. The 
learner perceives states and chooses how to behave. This includes how to think, 
which operations are applied to what information. While observers and even 
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learners may interpret choice is removed when learning is habitual (automatically 
engaged with apparently no deliberation or apparent draw on resources of working 
memory), that is a false proposition. SRL is ubiquitous but its forms vary based on 
information the learner processes, potentially moderated by external conditions 
(Winne, 1995). Automated routines encapsulate SRL in ways that bury inside auto-
mated productions a learner’s choices about learning. Observers and even learners 
can be unaware of complex cognition (Vatansever et al., 2017). Choice was front- 
and- center, however, when such routines were first created and along the way lead-
ing to automated status.

3  Information Is the Subject of Operations

Every facet in each of the COPES, SMART, and AEIOU models is centered on 
information a learner attends to and uses in the course of SRL. In the case of SMART 
operations and strategic assemblies of them, more commonly called learning strate-
gies, the information referred to is steps in a procedure, a script. What is the role of 
information in SRL, specifically, in motivation, cognition, and metacognition? The 
next three sections illustrate answers to this question, laying groundwork for this 
proposition: When accounts of SRL are limited to occurrences, frequencies, or pat-
terns of operations (processes), those accounts cannot represent enough of the 
story of SRL.

3.1  Motivation

A learner’s motivation has an explicit topic. Learners are curious about certain sub-
jects, appreciate feedback with particular properties, or are anxious about a specific 
social event. Motivation is also situationally anchored. For example, a learner par-
ticipating in a think-aloud protocol might remark, “I think I can solve this problem 
but I need to be careful” (emphasis added). This utterance is referenced to specific 
external conditions the learner perceives in this moment. This information lies 
alongside memories the learner samples from their experiential history. Sampling is 
influenced by the learner’s perceptions about current external conditions, such as 
whether an answer key is available which would afford the option to select a strat-
egy of working backward. Jointly, these conditions figure into the learner’s choice 
about how to proceed. Every self-report questionnaire I have examined reflects the 
situationality of motivation. Instructions to respondents set boundaries on the situa-
tion they are asked to keep in mind as they respond to questionnaire items. For 
example, a questionnaire’s instructions may advise the learner to consider “this 
course” or the discipline of “science” when rating motivation about the incentive to 
score higher on achievement measures than classmates (performance goal orienta-
tion) or as a measure of subject matter mastery (mastery goal orientation).
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Self-report data are problematic (Winne, 2020b), in part because humans have 
fallible and biased memories of past experience, and because they may unintention-
ally bias perceptions about current states and events. Modern technologies such as 
software logging, and facial recognition and eye tracking systems may improve data 
about motivation. For example, clickstream logging can identify whether a learner 
visited an assigned webpage, and eye tracking data can confirm whether a learner’s 
gaze oscillated several times between text describing a complex relation, such as 
activation energy in a catalytic reaction, and a figure translating textual information 
about that relation (e.g., see Fig. 12.19 at https://openstax.org/books/chemistry- 2e/
pages/12- 7- catalysis; Flowers et al., 2019). These online data can lend support to 
inferences about a learner’s rating of motivation described by a questionnaire item 
about utility of a learning tactic: “Do you analyze diagrams and graphs to build 
understanding when you study?” But validity is still in some jeopardy. Data gath-
ered online then coupled with the self-report datum do not reveal whether the learner 
analyzed information. Motivation is present, but motivation about what topic and 
motivation to engage in what particular cognition? To confirm the learner analyzed 
information, data about information input to and produced by analytic thinking 
is needed.

I offer this axiom regarding motivation: Behavior is motivated. Put another way, 
excepting for autonomic and automated responses to information states  – e.g., 
reducing blinking rate under cognitive load (e.g., Dubovi, 2022), modulating read-
ing pace according to punctuation (Chung & Bidelman, 2022) – learners (and peo-
ple, in general) behave as they do because they deliberately reason to reach 
judgments about which behavior is preferred. People are rational but their rational-
ity is rooted in idiosyncratic reasons and personal logic. Consequently, a learner’s 
reasons and logic for motivated behavior may not correspond to norms or an instruc-
tor’s goals. Learners may appear irrational from others’ points of view.

The axiom that behavior is motivated stimulates extending the analysis of think-
ing as a behavior. The network of information that is long-term memory propagates 
activation across nodes of information in a non-deliberative way. Propagation is not 
under the learner’s direct control as information is activated. Activation spreads 
because information has the structure it has in long-term memory. In contrast, learn-
ers can decide, based on utility they calculate according to a schema like AEIOU, 
whether to apply particular operations – learning tactics and strategies – to informa-
tion currently active in working memory. Working memory is where the learner can 
exercise choice. Perceptual systems, built up over extensive experience, filter infor-
mation from the external environment. That system and information in long-term 
memory are not systems available to controlled activation. For example, a learner 
may notice an instructional designer’s cues such as italicized font, propositions in 
text having a particular format (e.g., “We define …”), and an option offered on a 
menu in a software application. Learners also may be ignorant of or overlook (not 
attend to) phrases and other instructive conventions an author intends to cue particu-
lar operations applied to particular information.

In this context, the learner exercises choice about operations, standards, the 
schedule of evaluations, and AEIOU accounts of learning activities that unfold in 
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working memory. Examples related to the preceding external conditions the learner 
re-presents in working memory might be: a judgment that italics strongly predicts 
utility for highlighting the italicized text, choosing to postpone looking up confus-
ing terms because an efficacy expectation forecasts later text can be analyzed to fill 
gaps of understanding, a reminder offered by the menu option Tag… signals it is 
possible to catalog (assemble) selected information in a way that eases locating it 
under future conditions, e.g., cramming for next week’s exam.

Identifying the information underlying motivated operations can be a challenge 
for observers, especially when compactly unified patterns of behavior, cognition, 
metacognition, and motivation are bound together in automated, multi-event pack-
ages triggered and executed practically without the learner’s awareness. An every-
day example in my experience is making careful (rational, by my standards) word 
choices while enthusiastically promoting a controversial point to a friend while I’m 
in the midst of planning a turn at a traffic intersection crowded with cars, buses, and 
pedestrians.

In cases of motivated behavior we observers characterize as SRL, whether delib-
erative or automated, the If-Then-Else model begs for specifying what informa-
tion constitutes Ifs. As noted just above, motivation questionnaires do this in at least 
two ways: (a) describing a situational context within which to consider one’s 
response to a generic experience or topic – this course, science; and (b) a particular 
state or experience – knowing one’s own and others’ scores on a measure of achieve-
ment. The question needing address in research carried out in dynamic online con-
texts is how to identify Ifs learners identify in everyday learning activities that are 
gateways to Thens or Elses.

3.2  Cognition

Instructional designs explicitly and implicitly guide learners about operations they 
might apply when working on tasks. Explicit directions may be provided by learn-
ing (instructional) objectives presented at the beginning of chapters and self-test 
questions appearing at the end of chapters. Implicit cues about selecting content on 
which to operate and tactics for learning can be observed, e.g., as headings for sec-
tions of chapters and “leading” questions embedded in text.

Such directions and cues have a 2-part grammar: task + topic. In this illustrative 
instructional objective, differently styled underlining marks task and topic: Develop 
an argument, pro or con, for reducing on-street parking to allow widening bike 
lanes. Arguments can be described by a schema with facets or slots such as: claim, 
evidence supporting the claim, and warrants validating evidence as appropriate to 
the claim. This basic argument schema can be expanded to include more than one 
instance of and multiple kinds of evidence. More complete arguments (a) add coun-
terarguments shaped by this same schema but presenting the case opposite to the 
pro argument, then (b) end with a summary resolution balancing the pro and con 
presentations. The argument schema provides informational  cues about kinds of 
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information to search, how to assemble those information products when weighing 
costs and benefits of widening bike lanes that reduce on-street parking, and stan-
dards for evaluating a draft argument.

In many cases where an argument is assigned as an essay or in-class presenta-
tion, the learner engages three further tasks. A first is searching curated sources or 
the wide-open internet for information relevant to the proposition to be argued. A 
second is determining the credibility of evidence that will be selected and cited, a 
multi-operation process called sourcing (Braasch & Bråten, 2017). Sourcing 
involves evaluating properties of information in a source such as the author’s cre-
dentials, characteristics of the medium of publication (e.g., blind reviewed publica-
tion vs. unmoderated posts in social media), and the presence and nature of boundary 
conditions the author provides for claims (e.g., Everyone knows … vs. In the case 
of one-way side streets …). The third major task is crafting the essay or talking 
points to form the argument per se.

Operationally defining data to record some operations when a learner engages in 
these tasks is straightforward. A learner’s search for sources and information within 
them is easily logged when a learner enters words into a search engine or, after a 
source is loaded, a search box. Monitoring content for evidence can be traced if 
software provides tools for the learner to highlight text and tag those selections as 
evidence. Recording that a learner monitors properties of information regarding 
credibility can be tracked if tags are available to mark it as trustworthy vs. doubtful. 
Or, a structured note can cue monitoring these features by presenting a form with a 
text box labeled evidence followed by a checkbox list to monitor properties (stan-
dards) applied in evaluating the credibility of that evidence. Software features like 
these might be considered prompts or scaffolds designed to stimulate operations 
like monitoring and assembling. When learners use tools like these, individual or a 
package of operations can be traced because the learner operates on particular 
information.

3.3  Metacognition

When self-regulating learners track and adapt their engagements in learning, meta-
cognition is applied in two ways. First, learners monitor information in working 
memory. That information is selectively imported from external sources and regis-
tered alongside information retrieved from long-term memory. This bundle of infor-
mation can be monitored to classify its properties and rate its features. For example, 
a learner may judge a diagram is complicated, or a science lab experiment described 
on an assignment sheet is interesting. Products of these operations can activate addi-
tional information in long-term memory and supply standards for searching external 
sources for particular information.

Metacognitive monitoring is a relational concept involving two bins of informa-
tion which Nelson and Narens (1990) labeled the object level and the meta level. In 
the preceding example of monitoring a diagram, the object level concerns 
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information the diagram represents, e.g., the water cycle (e.g., see https://www.
noaa.gov/education/resource- collections/freshwater/water- cycle; National Oceanic 
and Atmospheric Administration). The meta level refers to the learner’s evaluation(s) 
of properties of that information. Is it complex vs. simple or unimportant? Is it clear 
or too complicated? Reaching a metacognitive judgment – e.g., the diagram is com-
plex – is the product of monitoring not what the water cycle is – e.g., water changes 
states due to evaporation and condensation – or the meaning of terms like evapora-
tion. Information monitored at the meta level concerns properties of object level 
information, e.g., the water cycle diagram has a degree of complexity, or certainty 
about the meaning of condensation is low. Tracking the learner’s operations on 
information at the meta level might be inferred if an eye tracking system records 
relatively long focus on a particular area of interest in the diagram, suggesting 
effort; or if the learner enters condensation in a search tool. The information in 
focus or entered in the search box is the key to observing this metacognitive 
operation.

Operational definitions for metacognitive control include two sequential steps. 
First, monitoring information at the meta level generates a product in working mem-
ory. Second, a particular operation the learner controls is selected for execution 
because the product of that monitoring operation has particular properties. 
Metacognitive control thus has the form of an If-Then-Else event. The learner who 
monitors properties of the water cycle diagram and reaches a meta-level character-
ization that it is complex may next apply an assembling operation that analyzes the 
cycle as a step-by-step chain of sequentially paired states: rain falls on land, water 
runoff accumulates in a lake, lake water evaporates … etc. Software annotations 
where the learner can select from a numbered list to label each successive pair can 
trace this operation.

4  Integrating Information with Trace Data

Models proposed to describe cognitive, metacognitive, and motivational operations 
involve slots filled by information, the subject of an operation. Without information, 
there is nothing on which to operate. As learners self-regulate learning, they can 
monitor information describing properties and products of operations to decide how 
they will tailor next-chosen operations to satisfy motivation. Products can be results 
of operations on subject matter as well as results describing perceptions about oper-
ations, e.g., an operation’s pace, effort required, and so forth. This leads to the prop-
osition introduced earlier: Information is a necessary component when developing 
accounts of learning events modeled by If-Then-Else. How does this perspective 
apply to identifying and analyzing SRL?
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4.1  Examining Effects of One Operation

Table 11.2 presents fabricated data for three learners’ scores on four measures of 
achievement about chemical bonds. For each subject matter topic identified in a row 
of Table 11.2, software logged whether students applied or did not apply operation 
X to that topic. Columns on the right side of Table 11.2 record for each student their 
scores on some items gauging motivation, a test of knowledge or some metacogni-
tive event relating to the topic. For example, data trace all three students applied 
operation X to subject matter information about the electron shell. Alex and Tracy 
indicated they were motivated to learn that topic (e.g., tagging it interesting or it 
merits effort to review), or learned it (e.g., correctly answered a practice quiz item) 
or metacognitively judged high confidence about it (e.g., typed the topic label into a 
note titled Learned Concepts). Kris’ scores show the opposite.

Table 11.2 records identical total scores for each student. These were computed 
by summing item scores. Also shown is the conditional probability operation X 
generated an effect. This is computed by counting events where operation X is 
applied and the learner’s score is 1, then dividing the sum of those “successful” 
events by the number of observed events. For Alex, on each occasion when opera-
tion X was applied, the score on a measure of whether the operation generated a 
“positive” product (positive motivation, achievement, positive metacognitive judg-
ment) was 1. For learning events when Alex did not apply operation X, the product 
was not positive. In other words, operation X worked perfectly for Alex and any 
operation other than X was not productive (as gauged by a single measure of the 
product).

In Tracy’s case, there is no discernable pattern relating using operation X and 
positive products.

Kris scored 1 on a product only if some operation other than X was applied. For 
Kris, operation X was consistently unproductive while some other operation was 
consistently productive.

All three students appear identically motivated, or equally cognitively or meta-
cognitively engaged when their use of operation X is considered as an aggregate 
(total). But operations clearly had differential effects. Using aggregate scores, nei-
ther a learning scientist nor a learner receiving learning analytics to guide SRL 
could be clear about “what works,” how operations relate to effects. Moreover, 

Table 11.2 Data and conditional probability statistics measuring effects of operation X

Information Operation X applied?
Score pattern
Alex Tracy Kris

Electron shell Yes 1 1 0
Ionic bond No 0 1 1
Covalent bond Yes 1 0 0
Metallic bond No 0 0 1
Total (sum) 2 2 2
Pr[effect | operation] 1.00 0.00 0.50
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neither person can be alerted to opportunities to identify operations other than X 
that are consistently productive for learners like Kris. Nor would they be alerted to 
exploring Ifs, conditions or evaluations, differentiating when operation X was pro-
ductive for Tracy.

When data have patterns like those in Table 11.2, and when products of learning 
events are aggregated without identifying which operation was applied to which 
information, pinpointing the effects of an operation is indeterminate. Without fine- 
grained data about information operated on, decisions about updating an instruc-
tional design or a learner’s decision policy guiding SRL can have erratic results.

4.2  How Information Enriches Trace Data About Operations

When learning events enacted by self-regulating learners are modeled in terms of 
If-Then-Else, operations implementing a learning tactic or strategy, Then or Else, 
are initiated based on the results of a learner monitoring a bundle of conditions, the 
Ifs. Fundamental Ifs include:

• Internal information describing the learner’s motivation cataloged by the 
AEIOU model.

• Knowledge the learner retrieves from long-term memory about the topic of the 
learning task.

• Features the learner perceives about the external learning context, e.g., access to 
supplementary content, help, tools available.

• Standards activated in working memory the learner will use to monitor proper-
ties of the learning event (e.g., pace, effort, confidence) and its product(s).

• Standards presented in the instructional design.
• Cues presented in the instructional design intended as guides for SRL.
• Information in sources, the subject to be learned.
• Information in learner-created artifacts – highlighted text, notes, etc. – represent-

ing products of the learner’s operations on object-level (subject matter) informa-
tion and on meta-level (properties of AEIOU, operations) information.

The last four entries in this list share an important and useful property. Each can 
be observed directly and with no or negligible intrusion on the learner’s everyday 
approach to learning.

4.2.1  Operations Mark Conditions Learners Monitor

Content in sources learners study online can be delivered in a range of formats: 
words, symbolic expressions (e.g., mathematical relations, chemical reactions, 
graphic symbols), diagrams, graphs, photographs, animations, and more. Whatever 
the medium, self-regulating learners choose standards to monitor information at the 
object level  – What does the information communicate about the subject matter 
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being studied? – and at the meta level – What properties of mental state (e.g., moti-
vation, frustration), operations (e.g., pace, effort), and object-level information 
(familiarity, complexity, clarity) characterize the current learning task? If character-
istics of information forming that bundle of conditions match the profile of stan-
dards currently in effect, Then the learner exercises metacognitive control by 
applying a preferred operation. If not  – Else  – the learner self-regulates 
differently.

Operations learners enact can signal conditions have been monitored. This has a 
significant implication: Information in sources learners study and artifacts learners 
create as they study can be mined to identify standards self-regulating learners use 
to monitor Ifs in learning events. For example, does a learner almost always select 
sentences defining constructs for highlighting? When a text refers to a diagram, 
does the learner scroll to display that diagram again or open a companion window 
to view the diagram alongside text describing it? When standards conveyed as infor-
mation – italicized text, phrasing such as “As Fig. 5 shows …” – can be identified, 
a fuller picture of SRL can be painted by pairing those Ifs with trace data reflecting 
operations, Thens. This coupling of conditions-as-information in sources with trace 
data sets a stage to develop conditional probability statements as illustrated in 
Table 11.2.

4.2.2  Standards Can Be Supplied Explicitly in Sources

Sources often plainly recommend standards learners might choose to monitor learn-
ing in the form of learning objectives. These cues explicitly name topics in a disci-
pline, e.g., Newton’s laws of motion or major products of a country; and kinds of 
information, e.g., principles and examples. Trace data describing SMART (or other) 
operations learners use is enriched by appending the topic(s) and kind(s) of infor-
mation learners are cued to process.

Objectives also identify standards for tasks, e.g., define, apply, or analyze. 
Named tasks label schemas with slots for declarative information or steps in a struc-
tured procedure (script). For example, a define task might label a schema with slots: 
concept label, critical property 1, critical property 2 …, family membership, exam-
ple. A procedural schema for graphing a straight line given a symbolic expression 
like y = 3x + 5 might proceed in steps: identify the intercept in the expression, plot 
the intercept point, identify the slope coefficient, starting at the plotted intercept 
move 1 x-unit to the right then upward if the coefficient is positive or downward if 
the coefficient is negative a number of units equal to the coefficient, plot the point, 
connect the two plotted points. Trace data reflecting operations learners apply as 
they create artifacts to accomplish a learning objective can be augmented by the 
subject matter information and task schema in the objective.
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4.2.3  Information in Sources

When information in sources is formatted as text or can be automatically translated 
to text from other formats, such as videos or images, that information can be ana-
lyzed to identify concepts on which it would be predicted learners should operate as 
they learn. Several approaches are available.

Content creators often using conventions to format content as prompts for learn-
ers to operate on particular information. Examples include italicized and bolded 
words to prompt monitoring understanding, blue font in webpages to prompt a 
direct search for information to be assembled with information in a current source, 
arrow symbols in diagrams suggesting rehearsing a sequence or self-explaining 
why A → B, and numbered lists suggesting the learner activate an order-preserving 
mnemonic to store items. Learners’ operations on formatted information can be 
traced. For example, consider a numbered list of sequenced steps describing a pro-
cess. A 2-column note form – step/reason – can be designed to trace whether learn-
ers assemble an explanation describing how that process progresses from step to 
step. Re-listing steps in the note traces rehearsing of a step. If learners paraphrase 
the source, natural language processing (NLP) methods can gauge the semantic cor-
respondence of each description to the source, indexing the operation of translating. 
A final text box in the note form labeled Make a 1st-letter mnemonic traces assem-
bling information represented in steps as a unitized multi-step procedure.

Some sources learners study include a glossary. Its entries are subject matter 
concepts learners should engage as they study that source. Key concepts and related 
concepts can sometimes be automatically identified by cataloging HTML <a 
href>link text<a> tags. Phrasing conventions can be searched to identify key disci-
plinary concepts, e.g., “We define …” or “X is the [key, dominant, main …] factor 
in ….” Keyword extraction algorithms also might be used to extract key concepts.

Terms in a source’s text, in a provided glossary and terms learners create often 
are defined using other terms in the glossary. Based on this in-terms-of relation, 
software systems like nStudy (Winne et al., 2019) can relate terms via edges in a 
node-link graph, a termnet. Learners’ artifacts  – e.g., notes, selected and tagged 
text, described in the next section – can be analyzed using the termnet to identify 
whether they include terms and how learners assemble knowledge using those 
terms. A learner using terms in artifacts that the termnet relates directly signals 
rehearsing a meaningful assembly. When a learner’s artifact includes terms, say A 
and D, related by traversing interventing nodes in the termnet, say A–B–C–D, this 
traces the learner assembling conceptual structures beyond those explicitly pro-
vided in the source’s definitions. Walks across intervening nodes in a termnet graph 
suggest more about what a learner knows than just the text a learner enters in an 
artifact. As well, examining terms learners search relative to those included in their 
notes can traces gaps, represented as intervening terms in a termnet, the learner is 
searching because those gaps need filling to assemble a multi-node information 
structure.
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4.2.4  Selections, Notes, and Tags

Learners commonly select text to highlight and as anchors for notes about subject 
matter (Miyatsu et al., 2018; Peverly & Wolf, 2019). Selections signal monitoring, 
and the text selected contains clues about why monitoring was executed. What stan-
dards does the learner use as governors for searching and monitoring which text 
to select?

Providing tags learners may choose to index content is expected to stimulate 
their search for content by standards the tags describe. Consider a learner studying 
a text about research methods in psychology. Providing tags such as independent 
variable and confound likely encourages the learner to activate standards for search-
ing information about those types of variables. When selections are assembled with 
one of those tags, this is evidence of monitoring for particular kinds of variables. 
What the learner selects reveals information judged to be one or the other kind of 
variable.

In some software systems, like nStudy, notes can be designed by researchers or 
instructors to present schemas prompting learners’ annotations. Slots in those sche-
mas guide learners to assemble structured accounts of subject matter. Each schema 
can be labeled, e.g., argument or explain. Its slots, fields in which learners enter 
information, also can be labeled. When learners select (a) information to anchor a 
note and (b) a labeled note schema for the note they will make, this traces monitor-
ing by the learner: the selected information has a role in the chosen schema. As the 
learner enters information in slots of the schema, the note artifact records which 
information the learner assembles according to that schema.

Beyond supplying more detailed data for analyzing conditional probabilities, 
illustrated by Table 11.2, notes could be leveraged by an algorithm to automatically 
generate self-test questions or self-explanations. For example, if the learner is anno-
tating a step-by-step process with explanations, questions can be algorithmically 
constructed: “What process begins with [paste step 1]?” This question affords 
opportunity for the learner to monitor assembling the name of a process with its 
initiating step. Another question might be: “Why is it important that [paste step 2] 
precede [paste step 3]?” This prompts self-explanation, a learning event with proven 
value (Bisra et al., 2018). As well, such questions directly associate operations on 
information which the learner performed while studying with items measuring 
whether products of those operations match targets for achievement. As in 
Table 11.2, these data are more direct tests of effects operations have. As well, infor-
mation for the learner to restudy can be recommended alongside learning analytics 
about which learning tactic was not successful in promoting achievement.

Selection artifacts, such as text or regions of a graph the learner highlights, can 
be counted as instances of metacognitive monitoring to gauge the learner’s overall 
engagement. By examining what information learners select relative to structures 
like a termnet, models can be developed to describe the learner’s attention to spe-
cific content. Coupled with the aforementioned automatically generated (self)test 
items, predictive models might be developed to gauge not just how much a learner 
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is learning while they study, but also topics and kinds of content they can be 
prompted to process.

Information selections also provide meta-level information about rhetorical roles 
for the selected information, e.g., definitions, principles, examples, and so forth. 
Learners can be offered tags to classify selections by role, enriching traces of meta-
cognitive monitoring by revealing the learner’s attention to and use of metacogni-
tive standards.

Tagging is already practiced by many learners. Perhaps the most widely used and 
most basic tag is the yellow (or blue or pink or …) highlight. It marks information 
selected by monitoring; selected information matches an unspecified standard that 
has utility for the learner. Tagging systems can operationally define those standards, 
making them observable. Some learners tag using symbols for selections. Examples 
are:? identifies information the learner metacognitively judges is vague or confus-
ing.! marks especially important information. Modern software systems can offer 
multiple semantic and symbolized tags. Learners may be encouraged to use tags 
because tags can be applied to filter and retrieve selections, notes, and bookmarks 
tagged for particular purposes (e.g., nStudy; Winne et al., 2019). For example, a tag 
like Huh? could be used to filter all content about which a learner wants to seek help 
from a teaching assistant or peer. Follow-up data in the form of an online chat with 
peers or an email to the TA validates the learner’s plan and subsequent execution.

Basic classes of tags might span four categories. Discipline-specific role tags 
mark information as an instance of a disciplinary class. In earth science, tags might 
classify information related to igneous, metamorphic, and sedimentary rocks. 
Rhetorical structure tags index content by roles information plays in a conceptual 
structure. These might include principle, example, and critical detail. Tags labeling 
tasks signal a learning event where selected information will be the subject of par-
ticular operations at some future time. Examples include: review, research, quota-
tion (in an essay to be drafted). Affect tags can reflect a learner’s monitoring of an 
emotional reaction to information. Instances might include: wow! (surprise), duh 
(boredom), and cool (interest). The information tags convey coupled with informa-
tion tagged provides more precise tracing of SRL than simply counting instances of 
a monitoring event.

5  Analyzing Information-Enriched Trace Data

Almost all analyses of learning processes begin with data structured as a timeline of 
sequential events, often with timestamps marking onset or offset of the event. Some 
forms of analysis examine this data structure directly to identify patterns; e.g., an 
ABC pattern in x, m, k … ABC … x, y, z … ABC …. In some analyses, patterns 
allow for “skipping” intervening events bounded by a regular sequence of events 
initiating a pattern and another regular sequence terminating the pattern, e.g., an 
ABCDE pattern in x, m, k … ABCgDE … ABChDE … ABCjDE …. Others analy-
ses transform the sequential timeline of events into a n  ×  n matrix. This format 
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records tallies for every possible pairwise sequence of events representing transi-
tions from an initial event in a row to a follow-on event in a column. Every type of 
event (A, B, C …) in a transition can play the role of the initial event, condition in 
the COPES model, and a follow-on event, P in the COPES model.

Such “information-free” analyses of occurrence, frequency, timing, and pattern-
ing of operations ignore information learners operate on in learning events. 
Information is the condition that triggers any operation. And, information is the 
product of every operation. Omitting information from analyses of learning events 
classifies conditions and products as irrelevant to operations. As previously 
described, operations are “empty” in these analyses.

It is likely sophisticated extensions to conventional analyses of process data can 
be developed to incorporate information to which operations are applied. But rela-
tively simple and straightforward analyses may suffice. Here is one example.

Suppose a learner is studying a unit about conic sections: circles, ellipses, hyper-
bolas, and parabolas. Sources the learner studies present terms (e.g., center, focus, 
major axis, eccentricity), equations describing each conic section and graphical 
examples of each. Among a variety of operations traced, consider two: translating 
and assembling. Classes of information rehearsed are terms (definitions) and exam-
ples. Examples can have two formats: text and graphs. In the source material the 
learner studies, there are:

• 8 terms (A, B, C, D, W, X, Y, Z), each with its definition
• 1 abstract equation for each conic section in which coefficients are variables 

(e.g., a, b)
• 1 example equation corresponding to each abstract equation in which coeffi-

cients are integers, and
• 1 graph of each conic section labeled with the integers appearing in each exam-

ple equation.

The learner generates notes when studying this source:

• 4 notes: The definition of each term A, B, C, and D is copied (rehearsing) from 
the source and pasted in a note.

• 4 notes: The learner paraphrases (translating) the definition of each term W, X, 
Y, and Z.

• A note compares graphs of the parabola and hyperbola. The learner induces a 
principle (assembling), “As the coefficient of the vertex gets larger, the graphs 
extend farther from the origin.”

If these 8 definitions are the only definitions in this source, the learner can be 
judged to have useful standards for monitoring information presented as a definition 
and is motivated to learn definitions. If the source contained, say, 20 definitions, 
there are several possibilities meriting analysis given the data in this example. This 
learner may have prior knowledge of the 12 (=20 – 8) definitions for which trace 
data were not generated. Or, the learner may lack clear standards for monitoring 
cues that mark a definition. This hypothesis could be tested in the next learning ses-
sion by posting an instructional objective inviting the learner to tag definitions or, to 
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leverage benefits of generative learning, create term notes. Roelle and Nückles’ 
(2019) study suggests the latter guide for SRL will have differential effects depend-
ing on the source text’s cohesiveness and density of elaborations, and whether the 
learner engages in retrieval practice. Cohesion can be gauged automatically using 
tools like Coh-metrix (McNamara et al., 2014). Retrieval practice can be promoted 
by an automatic question generation tool (e.g., see Das et al., 2021).

Suppose the learner recalls definitions A and D but not B and C. Rehearsing defi-
nitions appears not predictive of learning; odds are 1:1 applying the operation of 
rehearsing promotes learning. But an order effect  – primacy, recency  – may be 
operative if timestamps are considered.

Suppose the learner can recall definitions W, X, and Z but not Y. Translating 
(paraphrasing) definitions appears effective with odds 3:1, and translating defini-
tions was more productive than rehearsing them. The order effect is moot when the 
learner translates definitions. A learning analytic based on these results could rec-
ommend the learner try to paraphrase definitions more often. As data accumulate 
across future learning sessions where subject matter changes, the potency and gen-
eralizability of translating definitions can be tested for N = me. Future analytics can 
be refined as additional data accumulate.

Suppose data show, after the learner assembles a principle based on information 
in the source, graphing parabolas and hyperbolas given algebraic expressions is 
accurate. While slim, data support a conjecture: The learner understands how coef-
ficients in algebraic expressions locate vertices for these conic sections. Odds can-
not be proposed yet because there is only one instance of this conditional relation.

With big data sets describing each learner and homogenously formed clusters of 
learners displaying approximately equivalent learning signatures formed using 
information-rich trace data, this approach to analyzing data offers promise for guid-
ing SRL at the same time helps advance learning science (Winne, 2022). The learn-
er’s SRL is depicted in ways that generate serviceable learning analytics. Moreover, 
variance in the learner’s selections of operations invites investigating motivation 
and conditions that discriminate whether this learner uses particular operations to 
learn. The AEIOU model and theories on which it stands can guide that investiga-
tion, strengthening links between learning science and learning analytics.

6  Conclusion

Learners are ubiquitously self-regulating agents (Winne, 1995, 2018). In the context 
of an instructional design or the architecture of a website, learners select informa-
tion targets they aim to learn and operations they will apply to learn. Information 
available in the environment and recalled to or generated in working memory is 
what learners think with and think about. Topics range widely: declarative and pro-
cedural knowledge comprising a discipline; metaknowledge about genres and pre-
sentation formats (text, tables, and graphics); fixed and emergent properties of tasks; 
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forecasts and feelings about learning tactics as steps to execute as well as percep-
tions about that execution across the lifespan of task engagement; and more.

This account leads to an important proposition: Processes – O in the COPES 
model and the SMART model elaborating operations learners apply in learning 
tasks – are insufficient to advance theory, research, and productive applications of 
learning science and learning analytics. To successfully model SRL as a process 
requires accounting for information in three ways implied by the If-Then-Else 
model of a learning event.

First, information, the If, sets a stage for the learner to select subjects on which 
to operate and operations to apply. Conditions (C) in the COPES model of a learn-
ing task is a placeholder for the wide-ranging information a learner considers in 
relation to an about-to-be-executed operation, a Then. Without data representing 
that information, the onset of learning processes is a mystery.

Second, as learners execute an operation, unless it is automated to the extent it 
proceeds without monitoring, properties describing that operation are generated. 
Some examples are pace, fluidity, and effort. These emergent properties are prod-
ucts learners can monitor relative to personal and externally recommended standards.

Third, beyond just noted products of an operation arising because a self-aware 
person executes the operation, operations also generate products transforming their 
subject, the curriculum. Monitoring these products relative to standards creates 
evaluations in two domains. One is the subject-matter per se, e.g., a summary of an 
article, a solution to a problem. The other is the bundle of motivations and emotions 
represented via incentives and attributions in the AEIOU model.

A great deal of data representing these kinds of information can be unobtrusively 
and almost immediately gathered when learners study online. Information can be 
analyzed when presented via text, figure and table captions, and images and speech 
automatically transcribed to text. Formatting via markup tags that deliver content 
provides data to detect properties of information. Labeled software and architectural 
features – e.g., labeled hyperlinks, labeled buttons (e.g., Next, Back), search boxes 
where learners’ queries can be recorded  – unobtrusively deliver important data 
about information.

Other information internal to learners’ thinking can be revealed by perceptively 
engineering traces. Ideal traces generate data across multiple elements of the 
COPES, AEIOU, and SMART models. For example, a learner making a note in the 
nStudy system selects text, chooses a particular schema for assembling information 
about that selection, and enters text and selections among options in labeled lists 
formatted as checkboxes, radio buttons, or a slider. Making notes is an everyday 
studying activity, a relatively unobtrusive technique to gather information about C, 
O, P, S, and potentially E depending on slots presented in the note’s schema.

All this information should enrich accounts of learning events beyond records 
logging time-sequenced logs of “information-empty” processes. Because self- 
regulating learners regulate learning based on and generating information, merging 
this data gathered unobtrusively is a major step toward generating new and more 
useful theory for learning science. At the same time, by developing sharper accounts 
of the information learners can consider in SRL, learning analytics will be more 
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strongly positioned to help self-regulating learners as learning scientists conducting 
their personal programs of research for N = me (Winne, 2022).

6.1  Next Steps

Incorporating information presented to learners and generated by them in studies of 
learning events can take some direction from basic characteristics of current instruc-
tional designs and build from sophisticated methods now coming into use.

First, subject matter disciplines are founded on and distinguished by, in part, key 
concepts of which they are constituted. Glossaries identify those concepts and 
afford a representation of the discipline’s conceptual structure as a termnet con-
structed using the in-terms-of relation previously described. The field should 
improve on this representation to track and, when self-regulating learners request 
information or interventions introduce information for learners to consider, supply 
concepts for learners to consider based on conceptual structures fundamental to a 
discipline. A termnet offers one mechanism to do this.

Second, there is widespread acceptance and use of terminology describing tasks, 
perhaps most publicized in the form of the revised “taxonomy” cataloged by Bloom 
and colleagues (Anderson & Krathwohl, 2001; Bloom et al., 1956). These terms and 
their synonyms can be readily mined using NLP technologies applied to content 
learners study, including direct mention of tasks in learning objectives, and text they 
create as notes and essays. Blending termnets (or more sophisticated representa-
tions) with standards for judging these tasks provides resources for designing note 
schemas learners might use to assemble content, automatically generating (self) test 
items and monitoring content learners select for tagging and annotations. An espe-
cially intriguing possibility is to investigate the possibility of accurately predicting 
what a learner learns by analyzing trace data instead of having to administer a post-
test following the study.

Third, process maps now generated to investigate how learners’ operations are 
patterned (e.g., Saint et al., 2021) need extension. Information learners study instan-
tiates a pattern that triggers operations learners apply based on their metacognitive 
knowledge about how to learn modeled by If-Then-Else. Analytical tools now 
used to examine patterns of process data empty of information need extension to 
incorporate the information units (e.g., schemas, rules) on which those processes 
operate.

This is an ambitious and exciting agenda. It merges state-of-the-art work in 
learning science, learning analytics, knowledge representation, NLP, and modeling 
of dynamic events. Big data about information learners study and tools they use to 
study are needed as raw material to fuel this research. Fortunately, that resource is 
becoming increasingly accessible as education and training migrates to online plat-
forms supported by systems learners can use every day to study and complete 
assignments (see Winne, 2017).
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