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Abstract. We present a diffuse interface method for a pressure-based
Baer-Nunziato type model for compressible two-phase flows, which allows
the use of generic equations of state to describe each phase. The model
is made dimensionless by means of a special pressure scaling that recov-
ers the correct scaling of the discrete governing equations in the zero
Mach limit, and overcomes the difficulties related to the lack of a clear
notion of reference speed of sound in non-equilibrium two-phase flows.
The model is equipped with pressure and velocity relaxation terms to
impose the mechanical equilibrium between phases after their indepen-
dent evolution. Two different finite volume schemes are presented. First,
a 1D semi-implicit staggered scheme is introduced to show the capabil-
ity of the model to work with the Peng-Robinson EOS when each phase
evolves close to the saturation curve. Then, a preliminary 2D explicit
scheme, which does not include the relaxation terms, is presented as
a first step toward the development of an unstructured 2D scheme for
compressible two-phase flows at all Mach numbers. The validity of the
preliminary 2D monolithic implementation of the hyperbolic operator is
illustrated through the simulation of a shock-bubble interaction with air
and helium.

Keywords: compressible two-phase flows · Baer-Nunziato model · low
Mach · finite volume scheme

1 Introduction

Compressible two-phase flows occur in NICFD regimes, especially in applica-
tions involving organic fluids and CO2 flows. An example is represented by
Organic Rankine cycles (ORCs) operating with the so-called wet-to-dry expan-
sion allowed by the high molecular complexity of the working fluids, which may
result in a positive slope of the vapor-liquid equilibrium (VLE) curve in the
temperature–entropy (T–s) plane. The two-phase expansion could considerably
increase the power performance of waste heat recovery systems [15]. Another
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example is the transportation of dense CO2 through pressurized pipelines along
the Carbon Capture and Storage (CCS) chain, where a harmful pipeline fail-
ure likely results in two-phase flows [4]. To investigate the flow behavior in these
and similar conditions, simulation tools able to model two-phase flows in NICFD
regimes are mandatory.

Diffuse-interface methods (DIMs) are efficient strategies to model unsteady
compressible multi-component or multi-phase flows, consisting of two or more
immiscible fluids or components, that exhibit some level of separation at a scale
above the molecular level [12]. DIMs do not describe a local instantaneous realiza-
tion of the flow, but its behavior on average, so they are well suited to dispersed
flows, e.g., droplets dispersed in a continuous carrier phase, but they are flexible
enough to describe almost pure fluids as well. These methods rely on augmented
systems of governing equations that specifically model the behavior of the con-
tinuum close to the interfaces, whereas they recover the pure fluid behavior in
the bulk. The dynamic interfaces separating different fluids or components are
not explicitly tracked, but they are reconstructed from an indicator function.

The cornerstone of the DIM class is the Baer and Nunziato (BN) model,
which assumes that each component evolves with its own pressure, temperature,
and density. Hence, each component is treated as a separate continuum with its
own thermodynamic model. This last feature is of paramount importance to be
able to select the proper equation of state (EOS) to describe the thermodynamic
behavior in the NICFD regime.

From the full non-equilibrium models, reduced models are derived assum-
ing the equilibrium between one or more variables, e.g. the five-equation model
by Kapila assumes mechanical equilibrium among phases, which evolve with
the same pressure and velocity. This assumption simplifies the model, reducing
the number of governing equations, but introduces serious computational chal-
lenges, such as the non-conservative term in the equation for the volume fraction
that depends on the divergence of the velocity, and the non-monotone behavior
of the sound speed to the volume fraction [13]. Furthermore, modeling impor-
tant phenomena such phase slip and non-equilibrium liquid/vapor transition is
important, especially in two-phase flow applications involving dense gases that
undergo mass transfer [3].

We consider a recent pressure-based BN-type model [9] able to deal with
generic EOSs and equipped with relaxation parameters, which can be used to
control whether the phasic pressure and/or velocity are driven toward the equi-
librium. In this work, we show its capability to work with different EOSs, and
we present the preliminary results in 2D.
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2 The Model

The pressure-based BN-type model developed by Re and Abgrall [9] reads
∂αi

∂t
= −uIN · ∇αi + μΔiP (1a)

∂(αiρi)

∂t
+ ∇ · (αiρiui) = 0 (1b)

∂(αiρiui)

∂t
+ ∇ · (αiρiui ⊗ ui + αiPiI) = PIN∇αi − λΔiu (1c)

M2
ref

[
αi

∂Pi

∂t
+ αiui · (∇Pi) + (αiρic

2
i )∇ · ui

]
= κi [uIN · ∇αi − μΔiP − ∇ · (αiui)] (1d)

+ M2
ref

[
ρic

2
i,IN

[
(uIN − ui) · ∇αi − μΔiP

]

− κiλ(uIN − ui) · Δiu
]

where the subscript i = {1, 2} indicates the phase, α the volume fraction, ρ
the density, u the velocity, P the pressure, c the speed of sound, μ and λ are
relaxation parameters which can be used to reproduce different multi-phase flow
topologies. For instance, λ can be defined in terms of the specific interfacial area
and the acoustic impedances of the fluids [12], whereas μ is an homogenization
parameter whose physical meaning has been justified with considerations based
on the second law of thermodynamics by Baer and Nunziato [2]. The operator
Δi expresses the signed jump in a variable between phases, e.g., Δ1u = u1 −u2.
The subscript IN indicates interfacial quantities: uIN and PIN are closure terms
and they are defined as weighted averages

uIN =
α1ρ1u1 + α2ρ2u2

α1ρ1 + α1ρ1
and PIN = α1P1 + α2P2 , (2)

whereas ci,IN is the intefacial speed of sound, which does not have any thermo-
dynamic meaning but it is defined by analogy with the speed of sound:

c
2
i = χi + κi

Pi + ei

ρi

and c
2
i,IN = χi + κi

PIN + ei

ρi

, with κ =

(
∂P

∂e

)
ρ

and χ =

(
∂P

∂ρ

)
e

, (3)

where e is the internal energy per unit of volume. Equations (1b)–(1d) are
repeated for both phases, while Eq. (1a) is solved only for phase 1, as the con-
straint α1 + α2 = 1 holds. Thanks to the symmetry of the model, which phase
is solved as 1 does not affect the results.

2.1 The Low-Mach Scaling

The system of Eqs. (1) is dimensionless and it includes a special pressure
scaling, according to which the dimensionless pressure P is defined as P =(
P̃ − P̃ref

) /
ρ̃ref ũ

2
ref , where ∼ indicates a dimensional quantity, and the sub-

script “ref” a reference quantity. In addition, a reference Mach number Mref is
defined as M2

ref = ρ̃ref ũ
2
ref

/
P̃ref , which expresses the global level of compress-

ibility of the flow field. This peculiar scaling overcomes the singularity in the
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limit M → 0 that affects standard compressible schemes that assume a non-
dimensional scaling based on a single reference velocity, for instance a reference
speed of sound, which results in the term 1/M2 in front of the pressure gradient
in the momentum equation. In this context, we remark that for non-equilibrium
two-phase flows, there is not a clear notion of mixture speed of sound, so the
choice of a reference speed of sound is ambiguous, if not impossible. Moreover,
the adopted scaling allows the recovery of the correct limit of the governing
equations in the incompressible regime [9].

2.2 Thermodynamic Model

The model of Eqs. (1) assumes a generic description of the thermodynamics of
each fluid, with the only requirement to express the pressure EOS as e = e(ρ, P ).
Most of the EOSs used for academic and industrial purposes, especially cubic
ones, can easily meet this requirement, so they can model the thermodynamic
behavior of each component. Moreover, different EOSs can be adopted for dif-
ferent phases.

Particular attention should be paid while scaling the thermodynamic defi-
nition involving the pressure, as they can involve the additional term P̃ref . For
instance, the relation between the dimensional and dimensionless speed of sound
reads

c̃2 = χ̃ + κ̃
P̃ + ẽ

ρ̃
=

[
χ + κ

P + e

ρ

]
ũ2
ref +

κ

ρ

P̃ref

ρ̃ref
=

[
c2 +

κ

ρM2
ref

]
ũ2
ref . (4)

In this work, we consider two different EOSs: the stiffened gas model and the
Peng-Robinson EOS. Considering the former, it is possible to directly define the
dimensionless definitions according to the special low Mach scaling described in
the previous subsection. The pressure EOS is defined as

P (e, ρ) = (γ − 1)e − γP∞ − (γ − 1)ρq − 1
/
M2

ref , (5)

where γ, P∞, and q are substance-specific parameters [7]. The compatible caloric
EOS, derived under the polytropic assumption following [10] is

e(T, ρ) = cvρT + ρq + P∞ or P (T, ρ) = (γ − 1)cvρT − P∞ − 1
M2

ref

, (6)

where T is the temperature, and cv is the isochoric specific heat.
Concerning the Peng-Robinson EOS, we use an external thermodynamic

library developed at SINTEF (Norway), which exploits the concept of the cor-
responding states to enhance the accuracy of specific properties, such as the
density and the speed of sound, computed through the Peng-Robinson EOS for
the liquid phase [16]. Then, the results of the library are made dimensionless,
according to the special scaling described above, e.g. in Sec. 2.1 and Eq. (4).
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3 Numerical Method

The solution strategy for the system of Eqs. (1) is here briefly summarized. A
detailed description for the 1D can be found in [9]. The Strang splitting approach
is used to solve the system of partial differential equations (PDEs): at each time
step, two operators are consecutively applied. First, the hyperbolic operator
solves the PDEs composed without the relaxation terms, then the relaxation
operator solves the system of ordinary differential equations (ODEs) composed
only by the temporal derivatives and the relaxation terms.

3.1 Hyperbolic Operator in 1D: A Semi-implicit Staggered Scheme

A semi-implicit time integration scheme is used to reach an acceptable compu-
tational efficiency without running into a too severe restriction on the time step.
The acoustic terms, generally linear, are integrated implicitly in time, while the
convective terms are integrated explicitly. In this way, the stability constraint
on the time step is based only on the convective velocity, but the non-linearity
of the system is weaker than the full implicit time integration.

The pressure-based formulation of the BN-type model is solved through a
segregate solution approach, according to which, at each time step, the momenta
(or the velocities) are first predicted considering the pressures at the previous
time step, then, the new pressures are computed, and, finally, the momenta are
updated for the pressure correction.

A finite volume scheme is used to spatially discretize the governing equations.
A staggered grid is used to combine different discretizations. For simplicity, the
convective terms are approximated using first-order Rusanov fluxes, which cir-
cumvent the need to solve a Riemann problem at cell interfaces. A central finite
difference approximation is adopted for the gradient of the pressure in Eq. (1c)
and the divergence of the velocity in Eq. (1d). A robust discretization of the
non-conservative terms involving the gradient of the volume fraction is derived
following the non-disturbance conditions, which states that a flow uniform in
pressure and velocity should remain uniform in these variables at the next time
steps [1].

3.2 Source Operator

Velocity and pressure relaxation give rise to two ODE problems, which include
only time derivatives and the right-hand side terms of Eqs. (1) involving λ and
μ. These systems are solved sequentially: first, the solution computed by the
hyperbolic operator (labeled Lhyp) is evolved towards the velocity equilibrium
by the operator Rvel; then, this result is used as initial condition for Rpres to
relax the pressures. The solution strategy at each time step can be summarized
as:

Un+1 = Rpres (U�) ←− U� = Rvel (U�) ←− U� = Lhyp (Un) , (7)
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where the subscripts � and � indicate intermediate solution between the time
step tn and tn+1.

We impose instantaneous relaxation, e.g., we consider λ and μ as infinite. As
explained in [8], the results of Rvel are

α�
i = α�

i , ρ�
i = ρ�

i , u� = u�
1 = u�

2 =
αρu�

1 + αρu�
2

αρ�
1 + αρ�

2

, and

P �
i = P �

i − ρi
κi

2
(u�

IN − u�
i ) · (u� − u�

i ) .

The ODE problem for the pressure relaxation includes an equation for α1,
deriving from Eq. (1a), and one equation for each pressure, coming from Eq. (1d).
We integrate it using a backward Euler scheme, but we introduce in the definition
of the interface speed of sound c2IN,i suitable approximations PIN,i and ei (defined
in Algorithm 1), which are kept constant during time integration to mitigate its
non-linearity [11]. The discrete equations for the pressures read

fP (Pi, αi) = M
2
r

(
Pi − P

�
i

) − M
2
r χi(αρi)

�
(

1

αi

− 1

α�
i

)
+

[
M

2
r κi

(
PIN,i + ei

)
+ κi

]
log

(
αi

α�
i

)
= 0.

(8)

Combining these expressions and imposing pressure equilibrium, we obtain
the following non-linear function

fα(α1) = P
n+1
1 − P

n+1
2 = M

2
r

[ (
P

�
1 − P

�
2

)
+ χ1

(
(αρ1)

�

α1
− (αρ1)

�

α�
1

)
− χ2

(
(αρ2)

�

1 − α1
− (αρ2)

�

α�
2

)]

−
[
M

2
r κ1

(
PIN,1 + e1

)
+ κ1

]
log

(
α1

α�
1

)
+

[
M

2
r κ2

(
PIN,2 + e2

)
+ κ2

]

× log

(
1 − α1

α�
2

)
= 0 ,

(9)

where the only unknown is α1. We solve this equation iteratively, performing
at each iteration k, one iteration of Newton’s method, but with a convergence
criterion based on the pressure difference, as illustrated in Algorithm 1.

3.3 Hyperbolic Operator in 2D: A Fully-Explicit Co-Located
Scheme

We also present a preliminary 2D hyperbolic operator based on a fully-explicit co-
located finite volume scheme. A monolithic solver is developed in this framework,
considering, as done in 1D, the Rusanov fluxes for the spatial discretization of
the convective terms and imposing the non-disturbance condition [1] for the
non-conservative terms. On the other hand, for the divergence of the velocity
in Eq. (1d), we use the Rhie and Chow interpolation of the velocity at cell
interfaces to circumvent checker-boarding problems due to the low pressure-
velocity coupling at low Mach number [14].
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Algorithm 1 . Pseudo-code to solve
the non-linear system resulting from the
implicit time integration of the ODE
system for pressure relaxation.

αk
i ← α�

i , PIN,i ← P �
IN, ei ← P �

i � Initialization
for k = 0 to kmax do

P
k+1
i

← solution of fP (P
k+1
i

, αk
i ) � Solve Eq. (8)

if |P k+1
1 − P

k+1
2 | < ε then

Exit loop � Un+1 ← Uk+1

else

α
k+1
1 ← αk

1 − f(αk
1 )

/
f′(αk

1 ) � Solve Eq. (9)

α
k+1
2 ← 1 − α

k+1
1

ei ← 1
2

(
ei(ρk

i , P
k+1
i

) + e�
i

)

PIN,i ← 1
2

(
P

k+1
i

+ P �
IN

)
end if

end for

Fig. 1. Results of the CO2 shock-tube
test with instantaneous relaxation. The
blue and the red lines show the states
of the liquid and the vapor, respectively,
within the whole domain. The yellow,
dashed line shows the behavior of the
mixture.

4 Results

The first test we present is a 1D shock-tube with instantaneous pressure and
velocity relaxation, which means that mechanical equilibrium is imposed at each
time step. The tube is filled with a liquid-gas mixture of CO2 at saturated
conditions. In the left chamber, the liquid volume fraction is αliq,L = 0.75 and
the temperature of both phase is TL = 260 K. In the right chamber, there is
αliq,R = 0.25 and TR = 280 K. The domain is 60 m long, and it is discretized
with 600 uniform cells. The final time is tf = 1 s, reached in 2000 time steps.
The results are shown in the P − v plane in Fig. 1: each phase evolves close to
“its side” of the VLE curve, governed by the Peng-Robinson EOS. On the other
hand, if we look at the behavior of the mixture, whose density is defined as
ρ = αρ1 + αρ2, it evolves in the two-phase region, as expected. But, thanks to
the modeling choice of having two pressures and two velocities, each phase can
be described by its own EOS, without the need for an EOS for the mixture.

The second test is a preliminary assessment of the hyperbolic operator in 2D,
and we do not consider any relaxation, so λ and μ are zero, and pressure and
velocity disequilibrium can occur between phases. We present the simulation
of the interaction of a shock-wave in air with a cylindrical bubble of helium.
The domain is a rectangle ([0, 300] × [0, 47.5] mm) representing only half of
the problem, thanks to the symmetry about the center-line, and it is discretized
using an average grid spacing Δx = 2 mm and time step Δt = 0.1 μs. The initial
flow field is separated into three regions: the cylindrical bubble, with a diameter
of 5 mm, centered at x0

B = 196 mm and characterized by αHe = 0.93, the left
and the right regions separated by the shock-wave located at x0

s = 235 mm
with αair = 0.93. The left and the bubble regions are initialized with the pre-
shock pressure P 0

L = 105 Pa and density ρ0L,air = 1.4 kg/m3; the right region is
initialized with the post-shock state corresponding to a shock Mach number in
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air of Ms = 1.22. For helium, a uniform initial density ρ0He = 0.2546 kg/m3 is
imposed everywhere. The final simulation time is tf = 900μs, reached in 9000
time steps.

Figure 2 shows the flow field at different times, before, during, and after the
shock-bubble interaction. The bubble deformation is qualitatively in agreement
with the numerical data by Daude et al. [5] and experimental results by Hass
and Sturtevant [6]. This can be better appreciated in Fig. 3, where the bubble
interface obtained with the proposed method is superimposed on the experimen-
tal results. More specifically, the background picture is the shadow photograph
taken from Fig. 7(h) in [6], 427 μs and 674 μs after the shock-bubble interaction,
and the violet lines represent the contour lines αHe = 0.3 and αHe = 0.7 at the
same time. A good agreement shows the validity of the proposed approach.

Fig. 2. Shock and air/He bubble inter-
action. Contour plots of helium volume
fraction αHe (upper part) and mixture
density ρ (bottom part), at different
times. The white circle displays the ini-
tial position of the bubble.

Fig. 3. Shock and air/He bubble inter-
action. Comparison of the position and
shape of the bubble between experi-
ment data from [6] (background pic-
ture) and the numerical data (violet
isolines at αHe = {0.3, 0.7}, 427 μs and
674 μs after the shock-bubble interac-
tion, i.e., at the simulation times t =
467 μs and t = 714 μs. The green cir-
cles display the initial positions of the
bubble.

5 Conclusions and Future Works

We presented a solution strategy for a pressure-based Baer-Nunziato-type model
for compressible two-phase flows. The rejection of the assumption of thermo-
mechanical equilibrium allows the description of each phase with its own ther-
modynamic model, which could consist of any generic pressure EOS in the form



154 B. Re et al.

e = e(P, ρ) and the compatible caloric EOS. Two numerical methods were tested:
a semi-implicit finite-volume scheme over staggered grids in 1D, and a co-located
explicit finite-volume scheme in 2D. The former one was equipped with instanta-
neous pressure and velocity relaxation, and it showed the possibility to simulate
flow problems where the two-phase mixture evolves within the VLE curve, with-
out the need to define a mixture EOS. The latter has been the first step toward
an all-Mach monolithic 2D numerical method for the simulation of two-phase
flows over unstructured grids. The preliminary implementation of the explicit
hyperbolic solver has been validated through the simulation of the interaction
between a shock wave in air and a bubble of helium.

The current and future developments follow two main paths: the BN-type
model will be equipped with new relaxation terms to include mass and heat
transfer, and the implementations of the numerical scheme will be improved by
including higher order discretization and the source operator also in 2D.
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