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Abstract. This paper gives a pedagogical account of the Supergeomet-
ric Algebra (SGA), the square root of the Geometric Algebra (GA). The
fact that a spinor can be treated as a bitcode is emphasized.
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1 Introduction

It is remarkable that the foundations of the Clifford algebra, or Geometic Algebra
(GA), were established a century and a half ago by Grassmann [1,2] and Clifford
[3], but it took a David Hestenes [4–7] to berate the physicists that the GA is
something they really ought to pay attention to.

I think the Supergeometric Algebra (SGA), the extension of the GA to
include spinors, deserves similar close attention by a wider audience. The name
follows the common practice of physicists to prepend the word “super” to spino-
rial extensions of theories. From a strictly mathematical perspective, there’s
nothing new in this paper. Cartan, who introduced spinors to mathematics in
1913 [8], was thoroughly familiar with everything to do with geometric algebras
and spinor algebras [9].

The present paper aims to give a pedagogical introduction to the SGA. A
more formal exposition can be found in [10]. The most important single concept
I hope to convey is that

A spinor is a bitcode. (1)

The second important concept is that, as proved by Brauer & Weyl (1935) [11],

The Geometric Algebra is the Supergeometric Algebra squared. (2)

If you are a computer scientist, you should be intrigued by the notion that a
spinor is a bitcode. If you are interested in the GA, you should be aware of the
fact that there is a natural way to represent objects in the GA with a bitcode.
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A prominent application of the SGA is to the fermions and forces of physics.
A companion [12] to the present paper shows how the Dirac algebra of space-
time symmetries (the GA of Spin(3, 1)) and the geometric algebra of the group
Spin(10), well known as a possible grand unified group, combine as commuting
subalgebras of the Spin(11, 1) geometric algebra in 11+1 spacetime dimensions,
unifying the four forces of Nature. The paper [12] is based on [13].

For simplicity, the treatment in the present paper takes all dimensions to
be spatial. All results generalize to arbitrary dimensions of space and time. For
the most part, time dimensions can be treated mathematically as if they were
imaginary (with respect to the imaginary i) spatial dimensions.

2 Spinors as a Bitcode

Background. When a gymnast or ballet dancer rotates by one full turn, they
return to where they started. Human experience might suggest that this is a law
of Nature, that anything rotated by one full turn would necessarily return to its
original state. Cartan first showed in 1913 [8] that mathematically there are more
fundamental objects, which he called spinors (French spineurs), that require
two full turns to return them to their original state. Cartan showed moreover
that, within the context of rotations, there is nothing more fundamental than
spinors. These properties stem from the topological properties of the rotation
group: the usual rotation group (the special orthogonal group SO(N), in N
spatial dimensions) is not simply-connected, but it has a double cover (Spin(N))
that is simply-connected. Figure 1 illustrates Dirac’s belt trick [14], a well-known
demonstration of the non-trivial topological properties of the rotation group.

Dirac in 1928 [15] rediscovered spinors from a physics perspective when he
discovered his eponymous equation, a relativistic version of Schrödinger’s [16]
non-relativistic equation of quantum mechanics. Dirac’s equation provided an
experimentally successful description of the behavior of the electron, and pre-
dicted that an electron should have an antiparticle, a positron, which was dis-
covered in 1932 [17].

With the establishment of the standard model of physics in the 1960s s
and 1970s s (see [12] for more), it has become apparent that all known matter
(fermions and quarks) is made of spinors, and that all known forces (the three
forces of the standard model, plus gravity) emerge from symmetries of spinors.
If indeed spinors are so fundamentally plumbed into the laws of Nature, then we
humans would do well to pay attention.

Spinors, Vectors, and Rotors. In physics, a spinor is an object of spin 1
2 ,

whereas a vector is an object of spin 1. Whereas a vector rotates to itself under
a rotation by 360◦, a spinor requires two turns, 720◦, to rotate it back to itself.
Spinors and vectors exist in arbitrary dimensions of space, and more generally
of spacetime.

If you are familiar with the GA, you may perhaps have heard the idea that
a spinor is a rotor. That is not the right way to think about a spinor. A rotor is
an element of the group Spin(N) of rotations in N space(time) dimensions. As a
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Fig. 1. A version of Dirac’s belt trick [14], which illustrates the non-trivial topological
properties of the rotation group. The trick demonstrates how an object tethered by
ropes to another object gets tangled up when rotated by one full turn, but can be
returned to its original state by rotating it a second full turn. The upper row of images
are photographs of blocks and hawsers crafted by Tomas Herrera. The graphic in the
lower row is by Liberty S. Hamilton.

multivector, a rotor is an element of the even geometric algebra; more specifically,
a rotor is an element of the group Spin(N) obtained by exponentiating the bivec-
tors of the GA. Any multivector a in the GA transforms under a rotor R as

R : a → RaR , (3)

where R is the reverse (inverse) of R, and since a rotor is a multivector, that is
how a rotor transforms. By contrast, a spinor ψ transforms under a rotor R as

R : ψ → Rψ . (4)

It is true that the transformation law (4) makes it legitimate to conceptualize
that a spinor encodes a rotation (a Dirac spinor in 3+1 spacetime dimensions is
indeed a “Lorentz gyroscope”), but a spinor is mathematically different from a
rotor.

In mathematics, a dimension-n representation of a group is a set of n × n
matrices multiplication of which reproduces the action of the group, along with
a set of n-dimensional column vectors upon which the matrices act, rotating the
vectors among each other.

A Cartesian vector is an element of the fundamental representation of the
group SO(N) of orthogonal rotations in N dimensions. The dimension of the
vector representation is N . The index i of a vector xi runs over i = 1, ..., N . I
was thrilled to learn this secret in high school, that a vector could be represented
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as an algebraic object xi with a Cartesian index i. It meant that geometry
problems could be solved by translating them into algebra. I could throw away
my geometry textbook.

A spinor is an element of the fundamental representation of the group Spin(N),
the covering group (double cover) of the orthogonal group SO(N). The dimension
of the spinor representation is 2[N/2]. The index of a spinor can be expressed as a
bitcode with [N/2] bits, each of which can be either up ↑ or down ↓.

Examples. The simplest spinor is a Pauli spinor, which lives in N = 2 or 3
dimensions. A Pauli spinor has [N/2] = 1 bit, and 2[N/2] = 2 complex compo-
nents, a total of 4◦C of freedom. The one bit can be either up ↑ or down ↓. In
Dirac’s bra-ket notation, basis Pauli spinors are sometimes denoted |↑〉 and |↓〉.
The distinction between even and odd dimensions N is addressed in Section 5.

The next simplest example is a Dirac spinor, which lives in N = 3+1 space-
time dimensions. A Dirac spinor has [N/2] = 2 bits, and 2[N/2] = 4 complex
components, 8◦C of freedom altogether. The Dirac bits comprise a boost bit,
which can be either up ⇑ or down ⇓, and a spin bit, which can likewise be either
up ↑ or down ↓. The spinor is said to be right-handed if the boost and spin bits
align, ⇑↑ or ⇓↓, left-handed if they anti-align, ⇑↓ or ⇓↑. The chiral components
of a Dirac spinor, right- or left-handed, are called its Weyl components. Only
massless spinors can be purely chiral: a massive spinor, such as an electron,
is necessarily a (complex) linear combination of right- and left-handed spinors.
Chirality plays a central role in the standard model of physics, in that only the
left-handed chiral components of Dirac spinors couple to the weak force: the
right-handed components do not feel the weak force.

It has been known since the mid 1970s s [18,19] that each generation of
fermions of the standard model organizes elegantly as spinors of the group
Spin(10) in N = 10 dimensions. The companion paper [12] shows how the stan-
dard model and the Dirac algebra can be combined as commuting subalgebras
of the Spin(11, 1) geometric algebra in N = 11+1 spacetime dimensions. Spinors
of Spin(11, 1) have [N/2] = 6 bits, and 2[N/2] = 64 components.

Formalities. How should spinors be thought of geometrically? Start with N -
dimensional Euclidean space R

N . Partition the orthonormal basis vectors of
Euclidean space into [N/2] pairs, and call them γ+

i and γ−
i , i = 1, ..., [N/2].

If the number N of dimensions is odd, one vector, γN , remains unpaired (see
§5 for more on the GA in odd dimensions). Unlike the GA, the SGA requires
a complex structure from the outset, involving a commuting imaginary i which
can be identified naturally as the quantum mechanical imaginary (do not confuse
the index i with the imaginary i). The grouping of vectors into pairs γ+

i and
γ−

i stems from this inevitable intrinsic complex structure. This is a good thing,
because quantum mechanics requires a complex structure, which must come
from somewhere. Chiral combinations γi and γı̄ (with a barred index ı̄) of the
orthonormal basis vectors are defined by

γi ≡ γ+
i + iγ−

i√
2

, γı̄ ≡ γ+
i − iγ−

i√
2

, (5)
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Fig. 2. Right-handed rotation by angle θ in the γ+
i γ−

i plane. The [N/2] conserved
charges of Spin(N) are eigenvalues of quantities under rotations in [N/2] planes γ+

i γ−
i ,

i = 1, ..., [N/2]. A spinor is a bitcode with [N/2] bits, each of which specifies the
corresponding charge of the spinor, either + 1

2
(↑), or − 1

2
(↓).

which are normalized so that γi ·γı̄ = 1. The vectors γ+
i and iγ−

i can be thought
of as, modulo a normalization, the real and imaginary parts of a complex vector
γi whose complex conjugate is γı̄.

A pillar of modern physics is Noether’s (1918) theorem [20], which states that
with each symmetry of a system is associated a conserved charge. Spin(N) has
[N/2] conserved charges, which are the eigenvalues of quantities under rotations
in each of the γ+

i γ−
i planes, Fig. 2. The [N/2] bits of a spinor specify its [N/2]

charges, each of which can be either + 1
2 (signified up ↑) or − 1

2 (signified down ↓).
For “ordinary” spatial rotations, the conserved charge is the projection of the

angular momentum, or spin, in the γ+
i γ−

i plane (in fundamental units, � = 1).
However, in other applications of the SGA, the word charge may refer to other
conserved charges, such as the conserved charges of the standard model of physics
[12].

Under a right-handed rotation by angle θ in the γ+
i γ−

i plane, Fig. 2, the
chiral basis vectors γi and γı̄ transform by a phase, Fig. 3,

γi → e−iθ γi , γı̄ → eiθ γı̄ . (6)

The signs follow the physics convention that a right-handed rotation by angle θ
rotates a phase by e−iθ. (If one of the two orthonormal dimensions, say γ−

i , is a
time dimension, then the rotation in the γ+

i γ−
i plane becomes a Lorentz boost,

and the transformation (6) becomes

γi → eθ γi , γı̄ → e−θ γı̄ .) (7)

The transformation (6) identifies the chiral basis vectors γi and γı̄ as having
i-charge equal to +1 and −1. All other chiral basis vectors, γj and γj̄ with j 
= i,
along with the unpaired basis vector γN if N is odd, remain unchanged under a
rotation in the γ+

i γ−
i plane, so have zero i-charge. The i-charge of a multivector

(or tensor of multivectors) can be read off from its covariant chiral indices:

i-charge = number of i minus ı̄ covariant chiral indices . (8)

A spinor ψ,
ψ = ψaεa , (9)
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∋∋

...ı̄...

∋∋

...i...γγ ı̄γγi

Fig. 3. The spiral lines track the phase angle ∓θ of right- and left-handed chiral basis
vectors γi and γı̄ (left two images), Eqs. (6), and ∓θ/2 of basis spinors ε...i... and
ε...ı̄... with i’th bit up and down (right two images), Eqs. (11), under a rotation by
angle θ in the γ+

i γ−
i plane. It takes one full turn, θ = 2π, to rotate vectors γi and

γı̄ to themselves, but two full turns, θ = 4π, to rotate the spinors ε...i... and ε...ı̄... to
themselves.

is a complex (with respect to the imaginary i) linear combination of 2[N/2] basis
spinors εa. Chiral basis spinors comprise 2[N/2] basis spinors εa,

εa ≡ εa1...a[N/2] (10)

where a = a1...a[N/2] denotes a bitcode of length [N/2]. Each bit ai is either up
↑ or down ↓. For example, one of the basis spinors is the all-bit-up basis spinor
ε↑↑...↑.

Under a right-handed rotation by angle θ in the γ+
i γ−

i plane, basis spinors
ε...i... and ε...̄ı... with i-bit respectively up and down transform as, Fig. 3,

ε...i... → e−iθ/2 ε...i... , ε...̄ı... → eiθ/2 ε...̄ı... . (11)

The transformation (11) shows that basis spinors ε...i... and ε...̄ı... have i-charge
respectively + 1

2 and − 1
2 in each of its [N/2] bits. The i-charge of a spinor (or

tensor of spinors) can be read off from its covariant chiral indices:

i-charge = 1
2 (number of i minus ı̄ covariant chiral indices) . (12)

whereas an orthonormal Cartesian basis vector γ+
i or γ−

i sticks out in one dimen-
sion at a time, a basis spinor εa sticks out in all dimensions at once. This sticking-
out-in-all-dimensions-at-once, like a hedgehog, is perhaps one of the things that
makes it hard to visualize a spinor. The reason a Cartesian vector can stick out
in a single dimension i is that it can be constructed from a tensor product of
spinor pairs in which the i’th bit of each of the two spinors points in the same
direction, while all bits other than i point in opposite directions, canceling each
other out.

3 Spinor Metric

The existence of a metric is fundamental to the GA, and the existence of a
spinor metric is similarly fundamental to the SGA. The Euclidean metric δij (or
Minkowski metric ηmn) is that vectorial tensor of rank 2 that remains invari-
ant under SO(N) (or SO(K,M) in K+M spacetime dimensions). Similarly, the
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spinor metric εba is that spinor tensor of rank 2 that remains invariant under
Spin(N) (or Spin(K,M) in K+M spacetime dimensions).

The scalar product of two spinors χ and ψ can be denoted with a dot,

χ · ψ . (13)

The fact that the scalar product must be a scalar, therefore carry zero charge,
implies that the spinor metric εba ≡ εb · εa can be non-zero only between basis
spinors whose indices are bit-flips of each other, b = ā. Each non-zero component
εāa of the spinor metric equals ±1, with the sign depending on the component
a and the number N of dimensions. See [10] for details.

Whereas the Euclidean (or Minkowski) metric must be symmetric, the spinor
metric can be either symmetric or antisymmetric. There prove to be two possible
choices for the spinor metric, differing from each other by a factor of the pseu-
doscalar, denoted ε and εalt. In Nature, it is Nature that makes the choice. The
following chart shows the symmetry of the spinor metric ε or εalt in N spacetime
dimensions:

N(mod 8) : 1 2 3 4 5 6 7 8
ε2 + + − − − − + +
ε2alt + − − − − + + +

(14)

The chart exhibits the well known period-8 Cartan-Bott periodicity [21,22] of
geometric algebras.

The chart (14) shows that in 3 or 4 spacetime dimensions, the spinor metric is
necessarily antisymmetric. Thus the Pauli metric in N = 3 dimensions, and the
Dirac metric in N = 3+1 spacetime dimensions, are necessarily antisymmetric.

4 Column Spinors and Row Spinors

It is not only mathematically correct (in the context of representation theory),
but also conceptually helpful, to think of a spinor ψ as a column vector (of
dimension 2[N/2]), and a rotor R as a matrix that acts on the column spinor ψ.
More generally, any multivector a can be represented as a 2[N/2] × 2[N/2] matrix
that acts by matrix multiplication on a column spinor ψ, yielding aψ.

Associated with any column spinor ψ is a row spinor ψ ·, equal to the trans-
pose of the column spinor ψ multiplied by the spinor metric tensor ε,

ψ · ≡ ψ�ε . (15)

A scalar product χ · ψ of spinors can be thought of as the matrix product of a
row spinor χ · with a column spinor ψ,

χ · ψ = χ�εψ . (16)

The notation ψ · for a row spinor, with a trailing dot symbolizing the spinor
metric, is extremely convenient. The dot immediately distinguishes a row spinor
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from a column spinor; and the dot makes transparent the application of the
associative rule to a sequence of products of spinors, Eq. (19). A row spinor ψ ·
transforms under a rotor R as

R : ψ · → ψ · R , (17)

as follows from the fact that a spinor transforms as (4), and a scalar product of
a row and column spinor must be a scalar.

In opposite order, the product of a column spinor ψ and a row spinor χ ·
defines their outer product ψχ ·. The outer product transforms under a rotation
in the same way (3) as a multivector,

R : ψχ · ≡ ψχ�ε → (Rψ)(Rχ)�ε = R(ψχ ·)R . (18)

Multiplication of outer products satisfies the associative rule

(ψχ ·)(ϕξ ·) = ψ(χ · ϕ)ξ · , (19)

which since χ · ϕ is a scalar is proportional to the outer product ψξ ·. The asso-
ciative rule (19) makes it straightforward to simplify long sequences of products
of column and row spinors, a process known in quantum field theory as Fierz
rearrangement.

A core property of spinors in physics is that they satisfy an exclusion prin-
ciple. The exclusion principle underlies much of the richness of the behavior of
matter at low energy. According to the usual rules of matrix multiplication, a
row matrix can multiply a column matrix, yielding a scalar, and a column matrix
can multiply a row matrix, yielding a matrix, but a row matrix cannot multiply
a row matrix, and a column matrix cannot multiply a column matrix:

( )⎛

⎝

⎞

⎠
=

( )
inner product = scalar ,

(20a)

⎛

⎝

⎞

⎠

( )
=

⎛

⎝

⎞

⎠
outer product = multivector ,

(20b)

( ) ( )
= ∅ forbidden , (20c)

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
= ∅ forbidden .

(20d)

These rules resemble the rules for fermionic creation and destruction operators
in quantum field theory: creation following destruction is allowed, and destruc-
tion following creation is allowed, but creation following creation is forbidden,
and destruction following destruction is forbidden. It can be shown that the mul-
tiplication rules for row and column spinors indeed reproduce those of fermion
creation (row) and destruction (column) operators in quantum field theory.

It would seem that the distinction between column and row spinors, as real-
ized in Nature, is profound.
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5 The GA Is the Square of the SGA

Brauer & Weyl (1935) [11] first proved the theorem that the algebra of outer
products of spinors is isomorphic to the GA, in any number of even N spacetime
dimensions. They used a language familiar to physicists, that of tensors, and
representations of groups. [10] gives a proof of the theorem in the language of
the GA.

In the notation of the present paper, the Brauer-Weyl isomorphism says that
there is an invertible linear mapping between outer products of column and row
basis spinors εa and εb · and basis multivectors γA of all grades,

εaεb · = cA
abγA , γA = cab

A εaεb · , (21)

that respects the algebraic structure, that is, it respects addition and multipli-
cation of spinors and multivectors. The outer product is neither symmetric nor
antisymmetric in ab. The full set of 2N/2 × 2N/2 outer products of basis spinors
yields the entire 2N -dimensional geometric algebra.

The simplest example of the Brauer-Weyl isomorphism is the Pauli SGA in
N = 2 dimensions, where the outer products of the two spinors ↑ and ↓ map
to the basis multivectors of the GA in 2 dimensions, consisting of one scalar, 2
vectors, and one pseudoscalar, a total of 1+2+1 = 4 = 22 multivectors,

1 = (↓↑ − ↑↓) ·
1 scalar

, γ1 =
√

2 ↑↑· , γ1̄ = −
√

2 ↓↓·
2 vectors

, I2 = −i(↓↑ + ↑↓) ·
1 pseudoscalar

. (22)

The spinor metric adopted in the algebra (22) is the antisymmetric choice (right
column) in the chart (14), which ensures that the algebra is the same as that of
the Pauli algebra in N = 3 dimensions, Eq. (25).

The natural complex structure of spinors means that spinors live naturally
in even spacetime dimensions N . The group Spin(N) on the other hand exists
in either even or odd dimensions, and likewise the GA lives in both even and
odd dimensions. There are two ways to extend the SGA to odd N dimensions.

The first is to project the odd N -dimensional GA into one lower dimension, by
identifying the pseudoscalar IN of the odd-dimensional GA with the unit multi-
vector (times a phase), whereupon the pseudoscalar IN−1 of the one-dimension-
lower even-dimensional algebra is promoted to a vector in the N -dimensional
algebra.

An example is the Pauli algebra in N = 3 dimensions. The orthonormal
basis vectors of the Pauli algebra, here denoted γ+

1 , γ−
1 , and γ3, are commonly

denoted σi, i = 1, 2, 3. The pseudoscalar I3 of the Pauli algebra, the product of
the three vectors, is identified with the imaginary i times the unit scalar 1,

I3 ≡ γ+
1 γ−

1 γ3 (= σ1σ2σ3) = i 1 . (23)

As a result of the identification (23), the pseudoscalar I2 of the 2-dimensional
algebra is promoted to a vector of the 3-dimensional algebra,

I2 ≡ γ+
1 γ−

1 (= σ1σ2) = iγ3 (= iσ3) . (24)
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The 3-dimensional geometric algebra differs from the 2-dimensional geometric
algebra in that the former possesses a higher level of symmetry: whereas in
2 dimensions there is just one rotation, generated by the bivector σ1σ2, in 3
dimensions there are 2 more rotations, generated by the bivectors σ1σ3 and
σ2σ3.

The Pauli SGA in N = 3 dimensions (with the standard choice ε of spinor
metric, the center column in the chart (14)) is essentially identical to the Pauli
SGA (22) in N = 2 dimensions, except that the 2D pseudoscalar I2 is promoted
to a vector γ3, Eq. (24),

1 = (↓↑ − ↑↓) ·
1 scalar

, γ1 =
√

2 ↑↑· , γ3 = −(↓↑ + ↑↓) · , γ1̄ = −
√

2 ↓↓·
3 vectors

. (25)

The rest of the Pauli GA, comprising the 1 pseudoscalar and 3 bivectors, are just
i times the 1 scalar and 3 vectors, since the pseudoscalar I3 has been identified
with the imaginary, Eq. (23).

The other way to extend the SGA to odd dimensions is to embed the odd
N -dimensional algebra into one higher dimension N+1, and to treat the extra
vector γN+1 as a scalar. The extra scalar vector γN+1 serves the role of a parity
operator (or a time-reversal operator, if one of the dimensions is a time dimen-
sion), by virtue of anticommuting with all the original N orthonormal vectors.

6 Conjugation

Spinors have an intrinsic complex structure, and there is a discrete operation,
complex conjugation, that converts spinors (and multivectors) into their complex
conjugates. The basis spinors εa are treated as real, so the complex conjugate of
a spinor ψ ≡ ψaεa is the spinor with complex-conjugated coefficients,

ψ∗ ≡ (ψa)∗εa . (26)

In quantum field theory, complex conjugation turns a spinor into an anti-spinor.
The operation (26) of complex conjugation is not however Lorentz-covariant;

under a rotor R, the complex conjugate spinor ψ∗ transforms as

R : ψ∗ → (Rψ)∗ = R∗ψ∗ . (27)

The conjugation operator C is introduced to restore Lorentz covariance. The
conjugate spinor ψ̄ is defined to be the product of the conjugation operator C
and the complex conjugate spinor ψ∗,

ψ̄ ≡ Cψ∗ . (28)

(Do not confuse conjugation with reversion in the GA; the conjugation overbar
− is shorter and thinner than the reversion overbar .) The conjugation operator
C is defined as a Lorentz-invariant operator with the property that commuting
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it through any rotor R converts the rotor to its complex conjugate, CR∗ = RC.
With the conjugation operator so defined, the conjugate spinor ψ̄ transforms
under a rotor in the same way as any other spinor,

R : ψ̄ → C(Rψ)∗ = RCψ∗ = Rψ̄ . (29)

The conjugate spinor ψ̄ is the antiparticle of the spinor ψ, expressed in a Lorentz-
covariant fashion.

In physics, the operation of conjugation is often conflated with the operation
of converting a column spinor to a row spinor, so that the conjugate of a spinor
ψ is taken to be the conjugate row (or row conjugate) spinor ψ̄ ·. The reason
for the conflation is that in quantum field theory a field is a linear combination
of creation and destruction operators, and the partner of a fermion destruction
operator (column spinor) is the anti-fermion creation operator (conjugate row
spinor). However, the two operations are distinct, and it is wise to keep them
so. All four operations — fermion creation and destruction, and anti-fermion
creation and destruction — occur in quantum field theory.

If all spatial N dimensions are spatial (no time dimensions), then the conju-
gation operator C coincides with the spinor metric tensor ε. If there is a time
dimension, then in the chiral representation the conjugation operator is, up to
a phase, the product of the spinor metric and the time vector (or a product of
all the time vectors, if there is more than one time dimension). Some texts refer
to the spinor metric tensor as the conjugation operator, which I find egregiously
confusing.

7 Supersymmetry

The Supergeometric Algebra is not the same as the algebra of supersymme-
try. The supersymmetry algebra is the extension of the Poincaré algebra to
include symmetries generated by spinors. The Poincaré algebra is the algebra of
global translations and Lorentz transformations of flat (Minkowski) space. The
Poincaré algebra is not the same as the Dirac algebra (the GA in 3+1 space-
time dimensions). The Poincaré and Dirac algebras share the property of having
both vector and bivector generators, but the vectors of the Poincaré algebra,
the momentum generators Pm, commute, whereas the vectors γm of the Dirac
algebra anticommute.

In the SGA in 4 spacetime dimensions, the 4 symmetrized outer products of
the 2 right-handed with the 2 left-handed spinors yield the 4 chiral basis vec-
tors. The coefficients of the mapping coincide with those of the supersymmetry
algebra, which is unsurprising since the mapping must respect the properties of
spinors and vectors under Lorentz transformations.

My own idiosyncratic view is that supersymmetry may not be Nature’s way.
The algebra of outer products of spinors yields the entire geometric algebra,
including multivectors of all grades, not just vectors. String theory is apparently
a theory not merely of strings (whose worldtubes are generated by bivectors),
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but of branes of all dimensions (whose worldtubes are generated by multivectors
of all grades). Hopefully Nature’s way will in due course become apparent to
enterprising observers and experimentalists, as has happened in the past.
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