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Preface

Welcome to the Lecture Notes in Computer Science (LNCS) proceedings of the work-
shop Empowering Novel Geometric Algebra for Graphics & Engineering (ENGAGE
2022) at the Computer Graphics International conference (CGI 2022). CGI is one of
the oldest international conferences in Computer Graphics in the world. The ENGAGE
workshop has been organized since 2016 as part of the annual CGI conference. CGI is
the official conference of the Computer Graphics Society (CGS), a long-standing inter-
national computer graphics organization. CGI has been held in many different countries
across the world and gained a reputation as one of the key conferences for researchers
and practitioners to share their achievements and discover the latest advances in Com-
puter Graphics. In 2022, CGI 2022 (and the ENGAGE 2022 workshop) continued to
be virtual due to the pandemic that was still all over the place. ENGAGE 2022 was
organized online by MIRALab, University of Geneva. The official date of the workshop
was September 12, 2022. Finally, some of the presentations from ENGAGE 2022 are
available on YouTube.

In retrospective, the ACM Siggraph 2001 and 2003 conferences saw Geometric
Algebra (GA) featured in the form of a Keynote and a Course. Since then, the GA
community has highlighted the benefits of employing W. K. Clifford’s GA, quaternions
and octonions for computer graphics and vision problems. The Siggraph 2019 course
on projective GA (PGA), GAME 2020 and the Siggraph 2022 course on GA further
boosted GA and associated algebras as a language for graphics. The advances were
presented at the Workshops CGI 2016 on “Geometric Algebra in Computer Science and
Engineering” and annually at CGI 2017–2022 in the ENGAGE workshops and have
underlined the power of GA for analysis, computation and graphics.

This extraordinaryENGAGE2022LNCSproceedings (due to special circumstances)
is composed of 10 papers.We accepted 10 papers from 12 invited submissions. To ensure
the high quality of publications, each paper was reviewed double blind by at least three
experts in the field and the authors of accepted papers were asked to thoroughly revise
their papers taking into account the review comments prior to publication.

The accepted papers focused specifically on important aspects of geometric alge-
bra including algebraic foundations, digitized transformations, orientation, conic fitting,
protein modelling, digital twinning, and multidimensional signal processing.

We would like to express our deepest gratitude to the CGI 2022 organizers for again
hosting the ENGAGE workshop, and to all the PC members and external reviewers who
provided timely, high-quality reviews. We would also like to thank all the authors for
contributing to the workshop by submitting their work.

January 2023 Eckhard Hitzer
George Papagiannakis

Petr Vasik
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Foundations of Geometric Algebra



The Supergeometric Algebra: The Square
Root of the Geometric Algebra

Andrew J. S. Hamilton(B)

JILA and Department of Astrophysical and Planetary Sciences,
Box 440, U. Colorado Boulder, Boulder, CO 80309, USA

Andrew.Hamilton@colorado.edu

https://jila.colorado.edu/˜ajsh/

Abstract. This paper gives a pedagogical account of the Supergeomet-
ric Algebra (SGA), the square root of the Geometric Algebra (GA). The
fact that a spinor can be treated as a bitcode is emphasized.

Keywords: Supergeometric Algebra · Geometric Algebra · spinors

1 Introduction

It is remarkable that the foundations of the Clifford algebra, or Geometic Algebra
(GA), were established a century and a half ago by Grassmann [1,2] and Clifford
[3], but it took a David Hestenes [4–7] to berate the physicists that the GA is
something they really ought to pay attention to.

I think the Supergeometric Algebra (SGA), the extension of the GA to
include spinors, deserves similar close attention by a wider audience. The name
follows the common practice of physicists to prepend the word “super” to spino-
rial extensions of theories. From a strictly mathematical perspective, there’s
nothing new in this paper. Cartan, who introduced spinors to mathematics in
1913 [8], was thoroughly familiar with everything to do with geometric algebras
and spinor algebras [9].

The present paper aims to give a pedagogical introduction to the SGA. A
more formal exposition can be found in [10]. The most important single concept
I hope to convey is that

A spinor is a bitcode. (1)

The second important concept is that, as proved by Brauer & Weyl (1935) [11],

The Geometric Algebra is the Supergeometric Algebra squared. (2)

If you are a computer scientist, you should be intrigued by the notion that a
spinor is a bitcode. If you are interested in the GA, you should be aware of the
fact that there is a natural way to represent objects in the GA with a bitcode.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. Hitzer et al. (Eds.): ENGAGE 2022, LNCS 13862, pp. 3–15, 2023.
https://doi.org/10.1007/978-3-031-30923-6_1
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4 A. J. S. Hamilton

A prominent application of the SGA is to the fermions and forces of physics.
A companion [12] to the present paper shows how the Dirac algebra of space-
time symmetries (the GA of Spin(3, 1)) and the geometric algebra of the group
Spin(10), well known as a possible grand unified group, combine as commuting
subalgebras of the Spin(11, 1) geometric algebra in 11+1 spacetime dimensions,
unifying the four forces of Nature. The paper [12] is based on [13].

For simplicity, the treatment in the present paper takes all dimensions to
be spatial. All results generalize to arbitrary dimensions of space and time. For
the most part, time dimensions can be treated mathematically as if they were
imaginary (with respect to the imaginary i) spatial dimensions.

2 Spinors as a Bitcode

Background. When a gymnast or ballet dancer rotates by one full turn, they
return to where they started. Human experience might suggest that this is a law
of Nature, that anything rotated by one full turn would necessarily return to its
original state. Cartan first showed in 1913 [8] that mathematically there are more
fundamental objects, which he called spinors (French spineurs), that require
two full turns to return them to their original state. Cartan showed moreover
that, within the context of rotations, there is nothing more fundamental than
spinors. These properties stem from the topological properties of the rotation
group: the usual rotation group (the special orthogonal group SO(N), in N
spatial dimensions) is not simply-connected, but it has a double cover (Spin(N))
that is simply-connected. Figure 1 illustrates Dirac’s belt trick [14], a well-known
demonstration of the non-trivial topological properties of the rotation group.

Dirac in 1928 [15] rediscovered spinors from a physics perspective when he
discovered his eponymous equation, a relativistic version of Schrödinger’s [16]
non-relativistic equation of quantum mechanics. Dirac’s equation provided an
experimentally successful description of the behavior of the electron, and pre-
dicted that an electron should have an antiparticle, a positron, which was dis-
covered in 1932 [17].

With the establishment of the standard model of physics in the 1960s s
and 1970s s (see [12] for more), it has become apparent that all known matter
(fermions and quarks) is made of spinors, and that all known forces (the three
forces of the standard model, plus gravity) emerge from symmetries of spinors.
If indeed spinors are so fundamentally plumbed into the laws of Nature, then we
humans would do well to pay attention.

Spinors, Vectors, and Rotors. In physics, a spinor is an object of spin 1
2 ,

whereas a vector is an object of spin 1. Whereas a vector rotates to itself under
a rotation by 360◦, a spinor requires two turns, 720◦, to rotate it back to itself.
Spinors and vectors exist in arbitrary dimensions of space, and more generally
of spacetime.

If you are familiar with the GA, you may perhaps have heard the idea that
a spinor is a rotor. That is not the right way to think about a spinor. A rotor is
an element of the group Spin(N) of rotations in N space(time) dimensions. As a
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Fig. 1. A version of Dirac’s belt trick [14], which illustrates the non-trivial topological
properties of the rotation group. The trick demonstrates how an object tethered by
ropes to another object gets tangled up when rotated by one full turn, but can be
returned to its original state by rotating it a second full turn. The upper row of images
are photographs of blocks and hawsers crafted by Tomas Herrera. The graphic in the
lower row is by Liberty S. Hamilton.

multivector, a rotor is an element of the even geometric algebra; more specifically,
a rotor is an element of the group Spin(N) obtained by exponentiating the bivec-
tors of the GA. Any multivector a in the GA transforms under a rotor R as

R : a → RaR , (3)

where R is the reverse (inverse) of R, and since a rotor is a multivector, that is
how a rotor transforms. By contrast, a spinor ψ transforms under a rotor R as

R : ψ → Rψ . (4)

It is true that the transformation law (4) makes it legitimate to conceptualize
that a spinor encodes a rotation (a Dirac spinor in 3+1 spacetime dimensions is
indeed a “Lorentz gyroscope”), but a spinor is mathematically different from a
rotor.

In mathematics, a dimension-n representation of a group is a set of n × n
matrices multiplication of which reproduces the action of the group, along with
a set of n-dimensional column vectors upon which the matrices act, rotating the
vectors among each other.

A Cartesian vector is an element of the fundamental representation of the
group SO(N) of orthogonal rotations in N dimensions. The dimension of the
vector representation is N . The index i of a vector xi runs over i = 1, ..., N . I
was thrilled to learn this secret in high school, that a vector could be represented
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as an algebraic object xi with a Cartesian index i. It meant that geometry
problems could be solved by translating them into algebra. I could throw away
my geometry textbook.

A spinor is an element of the fundamental representation of the group Spin(N),
the covering group (double cover) of the orthogonal group SO(N). The dimension
of the spinor representation is 2[N/2]. The index of a spinor can be expressed as a
bitcode with [N/2] bits, each of which can be either up ↑ or down ↓.

Examples. The simplest spinor is a Pauli spinor, which lives in N = 2 or 3
dimensions. A Pauli spinor has [N/2] = 1 bit, and 2[N/2] = 2 complex compo-
nents, a total of 4◦C of freedom. The one bit can be either up ↑ or down ↓. In
Dirac’s bra-ket notation, basis Pauli spinors are sometimes denoted |↑〉 and |↓〉.
The distinction between even and odd dimensions N is addressed in Section 5.

The next simplest example is a Dirac spinor, which lives in N = 3+1 space-
time dimensions. A Dirac spinor has [N/2] = 2 bits, and 2[N/2] = 4 complex
components, 8◦C of freedom altogether. The Dirac bits comprise a boost bit,
which can be either up ⇑ or down ⇓, and a spin bit, which can likewise be either
up ↑ or down ↓. The spinor is said to be right-handed if the boost and spin bits
align, ⇑↑ or ⇓↓, left-handed if they anti-align, ⇑↓ or ⇓↑. The chiral components
of a Dirac spinor, right- or left-handed, are called its Weyl components. Only
massless spinors can be purely chiral: a massive spinor, such as an electron,
is necessarily a (complex) linear combination of right- and left-handed spinors.
Chirality plays a central role in the standard model of physics, in that only the
left-handed chiral components of Dirac spinors couple to the weak force: the
right-handed components do not feel the weak force.

It has been known since the mid 1970s s [18,19] that each generation of
fermions of the standard model organizes elegantly as spinors of the group
Spin(10) in N = 10 dimensions. The companion paper [12] shows how the stan-
dard model and the Dirac algebra can be combined as commuting subalgebras
of the Spin(11, 1) geometric algebra in N = 11+1 spacetime dimensions. Spinors
of Spin(11, 1) have [N/2] = 6 bits, and 2[N/2] = 64 components.

Formalities. How should spinors be thought of geometrically? Start with N -
dimensional Euclidean space R

N . Partition the orthonormal basis vectors of
Euclidean space into [N/2] pairs, and call them γ+

i and γ−
i , i = 1, ..., [N/2].

If the number N of dimensions is odd, one vector, γN , remains unpaired (see
§5 for more on the GA in odd dimensions). Unlike the GA, the SGA requires
a complex structure from the outset, involving a commuting imaginary i which
can be identified naturally as the quantum mechanical imaginary (do not confuse
the index i with the imaginary i). The grouping of vectors into pairs γ+

i and
γ−

i stems from this inevitable intrinsic complex structure. This is a good thing,
because quantum mechanics requires a complex structure, which must come
from somewhere. Chiral combinations γi and γı̄ (with a barred index ı̄) of the
orthonormal basis vectors are defined by

γi ≡ γ+
i + iγ−

i√
2

, γı̄ ≡ γ+
i − iγ−

i√
2

, (5)
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γγi
−

θ

γγi
+

Fig. 2. Right-handed rotation by angle θ in the γ+
i γ−

i plane. The [N/2] conserved
charges of Spin(N) are eigenvalues of quantities under rotations in [N/2] planes γ+

i γ−
i ,

i = 1, ..., [N/2]. A spinor is a bitcode with [N/2] bits, each of which specifies the
corresponding charge of the spinor, either + 1

2
(↑), or − 1

2
(↓).

which are normalized so that γi ·γı̄ = 1. The vectors γ+
i and iγ−

i can be thought
of as, modulo a normalization, the real and imaginary parts of a complex vector
γi whose complex conjugate is γı̄.

A pillar of modern physics is Noether’s (1918) theorem [20], which states that
with each symmetry of a system is associated a conserved charge. Spin(N) has
[N/2] conserved charges, which are the eigenvalues of quantities under rotations
in each of the γ+

i γ−
i planes, Fig. 2. The [N/2] bits of a spinor specify its [N/2]

charges, each of which can be either + 1
2 (signified up ↑) or − 1

2 (signified down ↓).
For “ordinary” spatial rotations, the conserved charge is the projection of the

angular momentum, or spin, in the γ+
i γ−

i plane (in fundamental units, � = 1).
However, in other applications of the SGA, the word charge may refer to other
conserved charges, such as the conserved charges of the standard model of physics
[12].

Under a right-handed rotation by angle θ in the γ+
i γ−

i plane, Fig. 2, the
chiral basis vectors γi and γı̄ transform by a phase, Fig. 3,

γi → e−iθ γi , γı̄ → eiθ γı̄ . (6)

The signs follow the physics convention that a right-handed rotation by angle θ
rotates a phase by e−iθ. (If one of the two orthonormal dimensions, say γ−

i , is a
time dimension, then the rotation in the γ+

i γ−
i plane becomes a Lorentz boost,

and the transformation (6) becomes

γi → eθ γi , γı̄ → e−θ γı̄ .) (7)

The transformation (6) identifies the chiral basis vectors γi and γı̄ as having
i-charge equal to +1 and −1. All other chiral basis vectors, γj and γj̄ with j 
= i,
along with the unpaired basis vector γN if N is odd, remain unchanged under a
rotation in the γ+

i γ−
i plane, so have zero i-charge. The i-charge of a multivector

(or tensor of multivectors) can be read off from its covariant chiral indices:

i-charge = number of i minus ı̄ covariant chiral indices . (8)

A spinor ψ,
ψ = ψaεa , (9)



8 A. J. S. Hamilton

∋∋

...ı̄...

∋∋

...i...γγ ı̄γγi

Fig. 3. The spiral lines track the phase angle ∓θ of right- and left-handed chiral basis
vectors γi and γı̄ (left two images), Eqs. (6), and ∓θ/2 of basis spinors ε...i... and
ε...ı̄... with i’th bit up and down (right two images), Eqs. (11), under a rotation by
angle θ in the γ+

i γ−
i plane. It takes one full turn, θ = 2π, to rotate vectors γi and

γı̄ to themselves, but two full turns, θ = 4π, to rotate the spinors ε...i... and ε...ı̄... to
themselves.

is a complex (with respect to the imaginary i) linear combination of 2[N/2] basis
spinors εa. Chiral basis spinors comprise 2[N/2] basis spinors εa,

εa ≡ εa1...a[N/2] (10)

where a = a1...a[N/2] denotes a bitcode of length [N/2]. Each bit ai is either up
↑ or down ↓. For example, one of the basis spinors is the all-bit-up basis spinor
ε↑↑...↑.

Under a right-handed rotation by angle θ in the γ+
i γ−

i plane, basis spinors
ε...i... and ε...̄ı... with i-bit respectively up and down transform as, Fig. 3,

ε...i... → e−iθ/2 ε...i... , ε...̄ı... → eiθ/2 ε...̄ı... . (11)

The transformation (11) shows that basis spinors ε...i... and ε...̄ı... have i-charge
respectively + 1

2 and − 1
2 in each of its [N/2] bits. The i-charge of a spinor (or

tensor of spinors) can be read off from its covariant chiral indices:

i-charge = 1
2 (number of i minus ı̄ covariant chiral indices) . (12)

whereas an orthonormal Cartesian basis vector γ+
i or γ−

i sticks out in one dimen-
sion at a time, a basis spinor εa sticks out in all dimensions at once. This sticking-
out-in-all-dimensions-at-once, like a hedgehog, is perhaps one of the things that
makes it hard to visualize a spinor. The reason a Cartesian vector can stick out
in a single dimension i is that it can be constructed from a tensor product of
spinor pairs in which the i’th bit of each of the two spinors points in the same
direction, while all bits other than i point in opposite directions, canceling each
other out.

3 Spinor Metric

The existence of a metric is fundamental to the GA, and the existence of a
spinor metric is similarly fundamental to the SGA. The Euclidean metric δij (or
Minkowski metric ηmn) is that vectorial tensor of rank 2 that remains invari-
ant under SO(N) (or SO(K,M) in K+M spacetime dimensions). Similarly, the
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spinor metric εba is that spinor tensor of rank 2 that remains invariant under
Spin(N) (or Spin(K,M) in K+M spacetime dimensions).

The scalar product of two spinors χ and ψ can be denoted with a dot,

χ · ψ . (13)

The fact that the scalar product must be a scalar, therefore carry zero charge,
implies that the spinor metric εba ≡ εb · εa can be non-zero only between basis
spinors whose indices are bit-flips of each other, b = ā. Each non-zero component
εāa of the spinor metric equals ±1, with the sign depending on the component
a and the number N of dimensions. See [10] for details.

Whereas the Euclidean (or Minkowski) metric must be symmetric, the spinor
metric can be either symmetric or antisymmetric. There prove to be two possible
choices for the spinor metric, differing from each other by a factor of the pseu-
doscalar, denoted ε and εalt. In Nature, it is Nature that makes the choice. The
following chart shows the symmetry of the spinor metric ε or εalt in N spacetime
dimensions:

N(mod 8) : 1 2 3 4 5 6 7 8
ε2 + + − − − − + +
ε2alt + − − − − + + +

(14)

The chart exhibits the well known period-8 Cartan-Bott periodicity [21,22] of
geometric algebras.

The chart (14) shows that in 3 or 4 spacetime dimensions, the spinor metric is
necessarily antisymmetric. Thus the Pauli metric in N = 3 dimensions, and the
Dirac metric in N = 3+1 spacetime dimensions, are necessarily antisymmetric.

4 Column Spinors and Row Spinors

It is not only mathematically correct (in the context of representation theory),
but also conceptually helpful, to think of a spinor ψ as a column vector (of
dimension 2[N/2]), and a rotor R as a matrix that acts on the column spinor ψ.
More generally, any multivector a can be represented as a 2[N/2] × 2[N/2] matrix
that acts by matrix multiplication on a column spinor ψ, yielding aψ.

Associated with any column spinor ψ is a row spinor ψ ·, equal to the trans-
pose of the column spinor ψ multiplied by the spinor metric tensor ε,

ψ · ≡ ψ�ε . (15)

A scalar product χ · ψ of spinors can be thought of as the matrix product of a
row spinor χ · with a column spinor ψ,

χ · ψ = χ�εψ . (16)

The notation ψ · for a row spinor, with a trailing dot symbolizing the spinor
metric, is extremely convenient. The dot immediately distinguishes a row spinor
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from a column spinor; and the dot makes transparent the application of the
associative rule to a sequence of products of spinors, Eq. (19). A row spinor ψ ·
transforms under a rotor R as

R : ψ · → ψ · R , (17)

as follows from the fact that a spinor transforms as (4), and a scalar product of
a row and column spinor must be a scalar.

In opposite order, the product of a column spinor ψ and a row spinor χ ·
defines their outer product ψχ ·. The outer product transforms under a rotation
in the same way (3) as a multivector,

R : ψχ · ≡ ψχ�ε → (Rψ)(Rχ)�ε = R(ψχ ·)R . (18)

Multiplication of outer products satisfies the associative rule

(ψχ ·)(ϕξ ·) = ψ(χ · ϕ)ξ · , (19)

which since χ · ϕ is a scalar is proportional to the outer product ψξ ·. The asso-
ciative rule (19) makes it straightforward to simplify long sequences of products
of column and row spinors, a process known in quantum field theory as Fierz
rearrangement.

A core property of spinors in physics is that they satisfy an exclusion prin-
ciple. The exclusion principle underlies much of the richness of the behavior of
matter at low energy. According to the usual rules of matrix multiplication, a
row matrix can multiply a column matrix, yielding a scalar, and a column matrix
can multiply a row matrix, yielding a matrix, but a row matrix cannot multiply
a row matrix, and a column matrix cannot multiply a column matrix:

( )⎛

⎝

⎞

⎠
=

( )
inner product = scalar ,

(20a)

⎛

⎝

⎞

⎠

( )
=

⎛

⎝

⎞

⎠
outer product = multivector ,

(20b)

( ) ( )
= ∅ forbidden , (20c)

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
= ∅ forbidden .

(20d)

These rules resemble the rules for fermionic creation and destruction operators
in quantum field theory: creation following destruction is allowed, and destruc-
tion following creation is allowed, but creation following creation is forbidden,
and destruction following destruction is forbidden. It can be shown that the mul-
tiplication rules for row and column spinors indeed reproduce those of fermion
creation (row) and destruction (column) operators in quantum field theory.

It would seem that the distinction between column and row spinors, as real-
ized in Nature, is profound.
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5 The GA Is the Square of the SGA

Brauer & Weyl (1935) [11] first proved the theorem that the algebra of outer
products of spinors is isomorphic to the GA, in any number of even N spacetime
dimensions. They used a language familiar to physicists, that of tensors, and
representations of groups. [10] gives a proof of the theorem in the language of
the GA.

In the notation of the present paper, the Brauer-Weyl isomorphism says that
there is an invertible linear mapping between outer products of column and row
basis spinors εa and εb · and basis multivectors γA of all grades,

εaεb · = cA
abγA , γA = cab

A εaεb · , (21)

that respects the algebraic structure, that is, it respects addition and multipli-
cation of spinors and multivectors. The outer product is neither symmetric nor
antisymmetric in ab. The full set of 2N/2 × 2N/2 outer products of basis spinors
yields the entire 2N -dimensional geometric algebra.

The simplest example of the Brauer-Weyl isomorphism is the Pauli SGA in
N = 2 dimensions, where the outer products of the two spinors ↑ and ↓ map
to the basis multivectors of the GA in 2 dimensions, consisting of one scalar, 2
vectors, and one pseudoscalar, a total of 1+2+1 = 4 = 22 multivectors,

1 = (↓↑ − ↑↓) ·
1 scalar

, γ1 =
√

2 ↑↑· , γ1̄ = −
√

2 ↓↓·
2 vectors

, I2 = −i(↓↑ + ↑↓) ·
1 pseudoscalar

. (22)

The spinor metric adopted in the algebra (22) is the antisymmetric choice (right
column) in the chart (14), which ensures that the algebra is the same as that of
the Pauli algebra in N = 3 dimensions, Eq. (25).

The natural complex structure of spinors means that spinors live naturally
in even spacetime dimensions N . The group Spin(N) on the other hand exists
in either even or odd dimensions, and likewise the GA lives in both even and
odd dimensions. There are two ways to extend the SGA to odd N dimensions.

The first is to project the odd N -dimensional GA into one lower dimension, by
identifying the pseudoscalar IN of the odd-dimensional GA with the unit multi-
vector (times a phase), whereupon the pseudoscalar IN−1 of the one-dimension-
lower even-dimensional algebra is promoted to a vector in the N -dimensional
algebra.

An example is the Pauli algebra in N = 3 dimensions. The orthonormal
basis vectors of the Pauli algebra, here denoted γ+

1 , γ−
1 , and γ3, are commonly

denoted σi, i = 1, 2, 3. The pseudoscalar I3 of the Pauli algebra, the product of
the three vectors, is identified with the imaginary i times the unit scalar 1,

I3 ≡ γ+
1 γ−

1 γ3 (= σ1σ2σ3) = i 1 . (23)

As a result of the identification (23), the pseudoscalar I2 of the 2-dimensional
algebra is promoted to a vector of the 3-dimensional algebra,

I2 ≡ γ+
1 γ−

1 (= σ1σ2) = iγ3 (= iσ3) . (24)
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The 3-dimensional geometric algebra differs from the 2-dimensional geometric
algebra in that the former possesses a higher level of symmetry: whereas in
2 dimensions there is just one rotation, generated by the bivector σ1σ2, in 3
dimensions there are 2 more rotations, generated by the bivectors σ1σ3 and
σ2σ3.

The Pauli SGA in N = 3 dimensions (with the standard choice ε of spinor
metric, the center column in the chart (14)) is essentially identical to the Pauli
SGA (22) in N = 2 dimensions, except that the 2D pseudoscalar I2 is promoted
to a vector γ3, Eq. (24),

1 = (↓↑ − ↑↓) ·
1 scalar

, γ1 =
√

2 ↑↑· , γ3 = −(↓↑ + ↑↓) · , γ1̄ = −
√

2 ↓↓·
3 vectors

. (25)

The rest of the Pauli GA, comprising the 1 pseudoscalar and 3 bivectors, are just
i times the 1 scalar and 3 vectors, since the pseudoscalar I3 has been identified
with the imaginary, Eq. (23).

The other way to extend the SGA to odd dimensions is to embed the odd
N -dimensional algebra into one higher dimension N+1, and to treat the extra
vector γN+1 as a scalar. The extra scalar vector γN+1 serves the role of a parity
operator (or a time-reversal operator, if one of the dimensions is a time dimen-
sion), by virtue of anticommuting with all the original N orthonormal vectors.

6 Conjugation

Spinors have an intrinsic complex structure, and there is a discrete operation,
complex conjugation, that converts spinors (and multivectors) into their complex
conjugates. The basis spinors εa are treated as real, so the complex conjugate of
a spinor ψ ≡ ψaεa is the spinor with complex-conjugated coefficients,

ψ∗ ≡ (ψa)∗εa . (26)

In quantum field theory, complex conjugation turns a spinor into an anti-spinor.
The operation (26) of complex conjugation is not however Lorentz-covariant;

under a rotor R, the complex conjugate spinor ψ∗ transforms as

R : ψ∗ → (Rψ)∗ = R∗ψ∗ . (27)

The conjugation operator C is introduced to restore Lorentz covariance. The
conjugate spinor ψ̄ is defined to be the product of the conjugation operator C
and the complex conjugate spinor ψ∗,

ψ̄ ≡ Cψ∗ . (28)

(Do not confuse conjugation with reversion in the GA; the conjugation overbar
− is shorter and thinner than the reversion overbar .) The conjugation operator
C is defined as a Lorentz-invariant operator with the property that commuting
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it through any rotor R converts the rotor to its complex conjugate, CR∗ = RC.
With the conjugation operator so defined, the conjugate spinor ψ̄ transforms
under a rotor in the same way as any other spinor,

R : ψ̄ → C(Rψ)∗ = RCψ∗ = Rψ̄ . (29)

The conjugate spinor ψ̄ is the antiparticle of the spinor ψ, expressed in a Lorentz-
covariant fashion.

In physics, the operation of conjugation is often conflated with the operation
of converting a column spinor to a row spinor, so that the conjugate of a spinor
ψ is taken to be the conjugate row (or row conjugate) spinor ψ̄ ·. The reason
for the conflation is that in quantum field theory a field is a linear combination
of creation and destruction operators, and the partner of a fermion destruction
operator (column spinor) is the anti-fermion creation operator (conjugate row
spinor). However, the two operations are distinct, and it is wise to keep them
so. All four operations — fermion creation and destruction, and anti-fermion
creation and destruction — occur in quantum field theory.

If all spatial N dimensions are spatial (no time dimensions), then the conju-
gation operator C coincides with the spinor metric tensor ε. If there is a time
dimension, then in the chiral representation the conjugation operator is, up to
a phase, the product of the spinor metric and the time vector (or a product of
all the time vectors, if there is more than one time dimension). Some texts refer
to the spinor metric tensor as the conjugation operator, which I find egregiously
confusing.

7 Supersymmetry

The Supergeometric Algebra is not the same as the algebra of supersymme-
try. The supersymmetry algebra is the extension of the Poincaré algebra to
include symmetries generated by spinors. The Poincaré algebra is the algebra of
global translations and Lorentz transformations of flat (Minkowski) space. The
Poincaré algebra is not the same as the Dirac algebra (the GA in 3+1 space-
time dimensions). The Poincaré and Dirac algebras share the property of having
both vector and bivector generators, but the vectors of the Poincaré algebra,
the momentum generators Pm, commute, whereas the vectors γm of the Dirac
algebra anticommute.

In the SGA in 4 spacetime dimensions, the 4 symmetrized outer products of
the 2 right-handed with the 2 left-handed spinors yield the 4 chiral basis vec-
tors. The coefficients of the mapping coincide with those of the supersymmetry
algebra, which is unsurprising since the mapping must respect the properties of
spinors and vectors under Lorentz transformations.

My own idiosyncratic view is that supersymmetry may not be Nature’s way.
The algebra of outer products of spinors yields the entire geometric algebra,
including multivectors of all grades, not just vectors. String theory is apparently
a theory not merely of strings (whose worldtubes are generated by bivectors),
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but of branes of all dimensions (whose worldtubes are generated by multivectors
of all grades). Hopefully Nature’s way will in due course become apparent to
enterprising observers and experimentalists, as has happened in the past.
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Abstract. Formulas to calculate multivector exponentials in a base-
free representation and in a given orthogonal basis are presented for an
arbitrary Clifford geometric algebra Clp,q. The formulas are based on
the analysis of roots of the characteristic polynomial of a multivector
exponent. Elaborate examples how to use the formulas in practice are
presented. The results may be useful in theory of quantum circuits or in
the problems of analysis of evolution of the entangled quantum states.

Keywords: Clifford (geometric) algebra · exponentials of Clifford
numbers · computer-aided theory

1 Introduction and Notation

Mathematical models of physical, economical, biological, etc. processes often
require computation of exponential of matrix. Since in many applications the
matrices can be replaced by multivectors (MV), the exponential of MV [13,14,
19,20] in geometric (Clifford) algebras has a wide range of applications as well.

Exponential of matrix can be computed by a number of different ways
[6,11,12,16,28]. The review article [21] presents twenty methods1 related to the
approximate (finite precision) methods only. According to [21], our approach in
this paper can be identified as Method 8 and falls into the class of polynomial
methods, except that here we provide explicit and exact formulas for the basis
expansion coefficients instead of recursive approximation. The polynomial meth-
ods [21] are known to have O(n4) complexity and, therefore, are prohibitively
expensive except for small n. As far as the exact (closed form) formulas for
exponentials and other functions are concerned, most of works deal either with

1 The article is named “Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later”. One more method was added in the revised version of the
original article (published in 1978), however, authors wanted to preserve the article
title. The next article update is planned in 2028.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. Hitzer et al. (Eds.): ENGAGE 2022, LNCS 13862, pp. 16–27, 2023.
https://doi.org/10.1007/978-3-031-30923-6_2
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the low dimensional cases [11,12,28] (dimensions 5 and 6 are already causing
problems [16]) or with matrices that are representations of some Lie groups [22]
or, alternatively, have some other special symmetries [6].

In the context of geometric algebra (GA) there often appears a need to com-
pute the rotor, which is an exponential of bivector. The simplest half-angle rotors
are related to trigonometric and hyperbolic functions. The GA exponential of an
arbitrary bivector can be computed using the method of invariant decomposi-
tion [23], where the bivector is decomposed into commuting orthogonal 2-blades,
exponentiation of which are more or less straightforward. For low dimensional
cases other decomposition techniques can be applied as well [10,17].

When dealing with exponentials of pure bivector A one should always keep in
mind that in general they do not form a group. For example, there are elements
of Spin+(2, 2) which can’t be written in the form ±eA. Also SO+(1, 3) contains
elements, which are not exponentials of bivectors [19], p224.

For n ≤ 3 explicit formulas for computation of general exponentials [3,8,9]
and all of square roots [2,7] are known. The formulas for low dimensional algebras
are faster and more easy to implement.

In this paper the explicit formula to calculate the exponential function of a
general MV in an arbitrary Clp,q is presented. In Sect. 2 the methods to generate
characteristic polynomials in Clp,q algebras characterized by arbitrary signature
{p, q} and vector space dimension n = p+q are discussed. The method of calcula-
tion of the exponential is presented in Sect. 3. In Sect. 4 we demonstrate that the
obtained GA exponentials may be used to find the elementary and special GA
functions. Below, the notation used in the paper is described briefly. For those
readers who are unfamiliar with Clifford geometric algebras we recommend an
excellent textbook by Lounesto [19].

In the orthonormalized basis used here the geometric product of basis vectors
ei and ej satisfy [19] the anti-commutation relation, eiej + ejei = ±2δij . The
number of subscripts indicates the grade. For a mixed signature Clp,q algebra
the squares of basis vectors, correspondingly, are e2i = +1 and e2j = −1, where
i = 1, 2, . . . , p and j = p+1, p+2, . . . , p+ q. The sum n = p+ q is the dimension
of the vector space. The general MV is expressed as

A = a0 +
∑

i

aiei +
∑

i<j

aijeij + · · · + a1···ne1···n = a0 +
2n−1∑

J

aJeJ , (1)

where ai, aij··· are the real coefficients. The ordered set of indices will be denoted
by a single capital letter J referred to as a multi-index. Note, that in the multi-
index representation the scalar is deliberately excluded from summation as indi-
cated by the upper range 2n − 1 in the sum in the last expression.

We shall need three grade involutions: the reversion (e.g., ẽ12 = e21 = −e12),
the grade inverse (e.g., ê123 = −e123) and the Clifford conjugation (˜̂e123 = e123).
Also we shall need the Hermitian conjugate MV A† and non-zero grade negation
(see Table 1) operation denoted by overline A. The MV Hermitian conjugation
expressed for basis elements eJ in both real and complex GAs can be written
as [20,25]
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A† = a∗
0 + a∗

1e
−1
1 + · · · + a∗

12e
−1
12 + · · · + a∗

123e
−1
123 · · · = a∗

0 +
∑

J

a∗
Je−1

J , (2)

where a∗
J s the complex conjugated J-th coefficient and e−1

J denotes inverse basis
element, e−1

J eJ = 1.

2 MV Characteristic Polynomial and Equation

The algorithm to calculate the exponential and associated functions presented
below is based on a characteristic polynomial. There is a number of methods
adapted to MVs, for example, based on MV determinant, recursive Faddeev-
LeVerrier method adapted to GA and the method related to Bell polynomials [1,
15,26]. In this section these methods are briefly summarized.

Every MV A ∈ Clp,q has a characteristic polynomial χA(λ) of degree d in R,

where d = 2� n
2 � is the integer, n = p + q. In particular, d = 2n/2 if n is even and

d = 2(n+1)/2 if n is odd. The integer d may be also interpreted as a dimension of
real or complex matrix representation of Clifford algebra in the 8-fold periodicity
table [19]. The characteristic polynomial [1,15,26,27] is defined by

χA(λ) = −Det(λ − A) =
d∑

k=0

C(d−k)(A)λk. (3)

The variable in the characteristic polynomial will be denoted by λ and the roots
of χA(λ) = 0 (called the characteristic equation) by λi, respectively. For real GA
the coefficients C(k) ≡ C(k)(A) are real. They depend on a selected GA and MV
A. The coefficient at the highest power of λ is always assumed C(0) = −1. The
coefficient C(1)(A) represents MV trace, C(1)(A) = Tr(A) = d 〈A〉0, where 〈A〉0
is the scalar part of MV in (1), i.e. 〈A〉0 = a0. The coefficient C(d)(A) is related
to MV determinant DetA = −C(d)(A).

Table 1. Optimized expressions for determinant of MV A in low dimensional GAs,
n ≤ 6. The overbar denotes a negation of all grades except of the scalar, A := 2〈A〉0−A.

Clp,q Det(A)

p + q = 1, 2 AĀ

p + q = 3, 4 1
3

(
AAAA + 2AĀĀĀ

)

p + q = 5, 6 1
3

(
HHHH + 2HH̄H̄H̄

)
with H = AÃ

Table 1 shows how the MV determinant can be calculated in the low dimen-
sional (n ≤ 6) GAs. This table may be used to find the coefficients C(k)(A) in
the characteristic polynomial (3). For a concrete algebra it is enough to replace
the products of A’s in the Table 1 by products of (λ − A).
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In Faddeev-Leverrier method [18,27] the coefficients C(k)(A) in polyno-
mial (3) are calculated recursively, beginning from C(1)(A) and ending with
C(d)(A). We start from a multivector A(1) by setting A(1) = A. Then we com-
pute the coefficient C(k)(A) = d

k 〈A(k)〉0 and in the next step the new MV
A(k+1) = A

(
A(k) − C(k)

)
, where the product on the rhs is a geometric prod-

uct:
A(1) = A → C(1)(A) = d

1 〈A(1)〉0,
A(2) = A

(
A(1) − C(1)

) → C(2)(A) = d
2 〈A(2)〉0,

...
A(d) = A

(
A(d−1) − C(d−1)

) → C(d)(A) = d
d 〈A(d−1)〉0.

(4)

The determinant of A then is Det(A) = −A(d) = −C(d) = A
(
A(d−1) − C(d−1)

)
.

The coefficients of characteristic equation satisfy the following properties

∂C(k)(tA)
∂t

= ktk−1C(k)(tA),
∂C(1)(tAk)

∂t
= ktk−1C(1)(tAk), (5)

where t is a scalar parameter. We shall need (5) in the proofs of theorems.
In the matrix theory a minimal polynomial μA(λ) establishes the conditions

of diagonalizability of matrix A that represents the MV A. In particular for
n > 2, it is well-known that matrix is diagonalizable if and only if the minimal
polynomial of the matrix does not have multiple roots, i.e. when the minimal
polynomial is a product of distinct linear factors. It is also well-known that the
minimal polynomial divides the characteristic polynomial. This implies that if
roots of the characteristic equation are all different, then matrix/MV is diago-
nalizable. The polynomial μA(λ) can be defined for MV as well. An algorithm
on how to compute the minimal polynomial without any reference to matrix
representation of the MV is given in Appendix A.

3 MV Exponentials in Clp,q Algebra

3.1 Exponential of MV in Coordinate (Orthogonal Basis) Form

Theorem 1 (Exponential in coordinate form). The exponential of a gen-
eral MV A given by Eq. (1) in Clp,q is the multivector

exp(A) =
1
d

d∑

i=1

eλi

(
1 +

2n−1∑

J

eJ

∑d−2
m=0 λm

i

∑d−m−2
k=0 C(k)(A)C(1)(e

†
JA

d−k−m−1)
∑d−1

r=0(r + 1)C(d−r−1)(A)λr
i

)

(6)

=
1
d

d∑

i=1

exp
(
λi

)(
1 +

2n−1∑

J

eJ bJ(λi)
)
, bJ (λi) ∈ R,C . (7)

Here λi and λj
i denotes, respectively, the root of a characteristic equation and

the root raised to power j. The (first) sum in (6) is over all roots λi of charac-
teristic equation χA(λ) = 0, where χA(λ) is the characteristic polynomial of MV
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A expressed as χA(λ) =
∑d

i=0 C(d−i)(A)λi. The symbol C(1)(e
†
JA

k) = d 〈e†
JA

k〉0
denotes the first coefficient (the coefficient at λd−1) in the characteristic polyno-
mial that consists of geometric product of the Hermitian conjugate basis element
e†

J and k-th power of initial MV: e†
JA

k = e†
J AA · · ·A︸ ︷︷ ︸

k terms

.

Note, because the roots of characteristic equation in general are the complex
numbers, the individual terms in sums are complex. However, the result exp(A)
always simplifies to a real Clifford number if GA is real.

Proof. Using computer algebra package [4] we first checked the expression was
valid for dimensions n ≤ 6. For general n the formula can be proved by using
formula (9) from Theorem 2 and noting that projection coefficient onto basis
element eJ can simply be written as Tr

(
e†

JA
r
)

= C(1)(e
†
JA

r). �	
Example 1. Exponential of generic MV in Cl0,3 (different roots). Let’s com-
pute the exponential of A = 8 − 6e2 − 9e3 + 5e12 − 5e13 + 6e23 − 4e123
with Eq. (6). We find d = 4. Computation of coefficients of the characteristic
polynomial χA(λ) = C(4)(A) + C(3)(A)λ + C(2)(A)λ2 + C(1)(A)λ3 + C(0)(A)λ4

yields C(0)(A) = −1, C(1)(A) = 32, C(2)(A) = −758, C(3)(A) = 10432,
C(4)(A) = −72693. The characteristic equation χA(λ) = 0 then becomes
−72693 + 10432λ − 758λ2 + 32λ3 − λ4 = 0, which has four different roots:
λ1 = 12 − i

√
53, λ2 = 12 + i

√
53, λ3 = 4 − i

√
353, λ4 = 4 + i

√
353. This means

that the MV is diagonalizable. For every multi-index J and each root λi we have
to compute coefficients in Eq.(7),

bJ(λi) =
−λ2

i C(1)(e
†
J
A)+λi

(
32C(1)(e

†
J
A)−C(1)(e

†
J
A2)

)
−758C(1)(e

†
J
A)+32C(1)(e

†
J
A2)−C(1)(e

†
J
A3)

−4λ3
i+96λ2

i −1516λi+10432
,

where we still have to substitute the coefficients C(1)(e
†
JA

k)

C(1)(e
†
JA

k) e†
J=1 e†

J=2 e†
J=3 e†

J=12 e†
J=13 e†

J=23 e†
J=123

k = 1 0 −24 −36 20 −20 24 −16
k = 2 192 −224 −416 32 −128 384 −856
k = 3 8208 5952 5508 −11572 7468 888 −7984

that are different for each multi-index J . The Hermite conjugate elements are
e†

J = {−e1,−e2,−e3,−e12,−e13,−e23, e123}. After substituting all computed
quantities into (6) we finally get

exp(A) =
1
2
e4

(
e8 cos α + cos β

)
+

(
3
α

e12 sinα − 3
β

e4 sinβ

)
e1

+
(

− 1
2α

e12 sin α − 11
2β

e4 sinβ

)
e2 +

(
− 2

α
e12 sin α − 7

β
e4 sin β

)
e3

+
(

− 2
α

e12 sinα +
7
β

e4 sinβ

)
e12 +

(
1
2α

e12 sin α − 11
2β

e4 sinβ

)
e13

+
(

3
α

e12 sinα +
3
β

e4 sinβ

)
e23 +

1
2
e4

(
cos β − e8 cos α

)
e123, (8)

where α =
√

53 and β =
√

353.
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3.2 Exponential in Basis-Free Form

The basis-free exponential follows from Eq. (6) after addition of terms over the
multi-index J .

Theorem 2 (MV exponential in basis-free form). In Clp,q algebra the
exponential of a general MV A of Eq. (1) can be computed by following formulas

exp(A) =
d∑

i=1

exp(λi)β(λi)
d−1∑

m=0

(d−m−1∑

k=0

λk
i C(d−k−m−1)(A)

)
Am (9)

=
d∑

i=1

exp(λi)

(
1
d

+ β(λi)
d−2∑

m=0

(d−m−2∑

k=0

λk
i C(d−k−m−2)(A)

)
〈Am+1〉−0

)

(10)

=
d∑

i=1

exp
(
λi

)(1
d

+ β(λi)B(λi)
)
, β(λi) =

1
∑d−1

j=0(j + 1)C(d−j−1)(A)λj
i

.

(11)

The expression 〈Am+1〉−0 ≡ 1
2

(
Am+1 −Am+1

)
indicates that all grades of multi-

vector Am+1 are included except of the grade-0, because the scalar part is simply
a sum of exponents of eigenvalues divided by d.

The formula (9) has some similarity with exponential of square matrix in [12].

Proof. We will prove basis-free formula (9) by checking the defining equation

∂ exp(At)
∂t

∣∣∣∣
t=1

= A exp(A) = exp(A)A, (12)

where A is independent of a scalar parameter t. For this purpose we shall verify
that the expression (9) for exponential in the Theorem 2 satisfies the iden-
tity (12).

First, using properties of characteristic coefficients in (5) and noting that
the replacement A → At implies λi → λit, and performing differentiation
∂ exp(At)

∂t

∣∣∣
t=1

we obtain that exp(λi) in the right hand side of (9) (and also of

(6)) after differentiation is replaced by λi exp(λi),

∂ exp(At)
∂t

∣∣∣∣
t=1

=
d∑

i=1

λi exp(λi)β(λi)
d−1∑

m=0

(d−m−1∑

k=0

λk
i C(d−k−m−1)(A)

)
Am, (13)

where the weight factor β(λi) further plays no role in the proof. Next, we multiply
the basis-free formula (9) by A

A exp(A) =
d∑

i=1

exp(λi)β(λi)
d−1∑

m=0

(d−m−1∑

k=0

λk
i C(d−k−m−1)(A)

)
Am+1 , (14)



22 A. Acus and A. Dargys

and subtract the second equation from the first for each fixed root λi, i.e. tem-
porary ignore the summation over roots,

(
∂ exp(At)

∂t

∣
∣∣
∣
t=1

− A exp(A)

)∣
∣∣
∣
λi

= exp(λi) β(λi)
( d∑

k=1

λk
i C(d−k)(A) − AkC(d−k)(A)

)

= exp(λi) β(λi)
((

λd
i − Ad)

C(0)(A) + · · · +(
λi − A

)
C(d−1)(A)

)
. (15)

Using the Cayley-Hamilton relation for A, which follow from (4),
d∑

k=0

AkC(d−k)(A) = AdC(0)(A) + Ad−1C(1)(A) + · · · + C(d)(A) =0,

and the same relation for λd
i , we solve for the highest powers Ad and λd

i , and
substitute them into the difference formula (15). As a result, after expansion we
obtain zero. �	
Example 2. Exponential of MV in Cl4,0 (multiple and zero eigenvalue). Let’s
compute the exponential of A = −4 − e1 − e2 − e3 − e4 − 2

√
3e1234 with basis-

free formula (10). Using Table 1 one can easily verify that Det(A) = 0. For
algebra Cl4,0 we find d = 4. The characteristic polynomial is χA(λ) = C(4)(A) +
C(3)(A)λ+C(2)(A)λ2+C(1)(A)λ3+C(0)(A)λ4 = −64λ2−16λ3−λ4 = −λ2(8+λ)2.
The roots are λ1 = 0, λ2 = 0, λ3 = −8, λ4 = −8. Because multiple roots appear,
we have to compute a minimal polynomial of MV A (see Appendix A), which is
μA(λ) = λ(8 + λ). Since μA(λ) has only linear factors, the MV is diagonalizable,
and the formula for μA(λ) can be applied without modification. It is also easy
to verify that the minimal polynomial divides the characteristic polynomial,
χA(λ)/μA(λ) = −λ2(8+λ)2

λ(8+λ) = −λ(8 + λ). This confirms the property that non-
repeating roots of a characteristic polynomial are sufficient but not necessary
criterion of MV diagonalizability. Then, we have

β(λi)B(λi) =
1

∑d−1
j=0 (j + 1) C(d−j−1)(A) λj

i

d−2∑

m=0

d−m−2∑

k=0

λk
i C(d−k−m−2)(A) 〈Am+1〉−0

= 8+λi
4λi(4+λi)

〈A〉−0 + 16+λi
4λi(4+λi)(8+λi)

〈A2〉−0 + 1
4λi(4+λi)(8+λi)

〈A3〉−0

= − 1
λi+4

− 1
4(λi+4)

e1 − 1
4(λi+4)

e2 − 1
4(λi+4)

e3 − 1
4(λi+4)

e4 −
√
3

2λi+8
e1234.

(16)

From the middle line one may suppose that the sum over roots would yield
division by zero due to zero denominators. The last line, however, demonstrates
that this is not the case, since after collecting terms at basis elements we see that
all potential zeroes in the denominators have been cancelled. Unfortunately, the
cancellation would not occur if the MV were non-diagonalizable. Lastly, after
performing summation

∑d
i=1 exp(λi)

(
1
d +β(λi)B(λi)

)
over complete set of roots

{λ1, λ2, λ3, λ4} = {0, 0,−8,−8} with exponent weight factor exp(λi), which can
be replaced by any other function or transformation (see Sect. 4) we obtain

exp(A) =
1 + e8

2e8
+

1 − e8

8e8
(
e1 + e2 + e3 + e4 − 2

√
3e1234

)
.
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3.3 Making the Answer Real

Formulas (6) and (9) include summation over (in general complex valued) roots
of characteristic polynomial, therefore, formally the result is a complex number.
Here we are dealing with real Clifford algebras having real coefficients, conse-
quently, a pure imaginary part, or numbers in the final result, must vanish.
Because the characteristic polynomial is made up of real coefficients, the roots
of the polynomial always come in complex conjugate pairs. Thus, the summation
over each of a complex root pair in the exponential (and other real valued func-
tions) will give real final answer. Indeed, assuming that symbols a, b, c, d, g, h are
real and computing the sum over a single complex conjugate root pair we come
to the following relation,

exp(a + ib)
c + id
g + ih

+ exp(a − ib)
c − id
g − ih

=
2ea

(
(cg + dh) cos b + (ch − dg) sin b

)

g2 + h2
,

the right hand side of which formally represents a real number as expected. The
left hand side is exactly the expression which we have in (6) and (9) formulas
after summation over one pair of complex conjugate roots. However, from sym-
bolic computation point of view the issue is not so simple. In general, the roots
of high degree (when d ≥ 5) polynomial equations cannot be solved in radicals
and, therefore, in symbolic packages they are usually represented as the enu-
merated formal functions/algorithms of some irreducible polynomials. In Math-
ematica the formal solution is represented as Root[poly, k]. In order to obtain
real answer, therefore, we have to know how to manipulate with these formal
objects algebraically. To that end there exist algorithms which allow to rewrite
the coefficients of irreducible polynomials poly after they have been algebraically
manipulated. The operation, however, appears to be nontrivial and time con-
suming. In Mathematica it is implemented by RootReduce[ ] command, which
produces another Root[poly′, k′] object. Such a root reduction typically raises
the order of the irreducible polynomial. From pure numerical point of view, of
course, we may safely remove spurious complex part in the final answer to get a
real numerical value.

4 Elementary Functions of MV

Formulas (6) and (9) appear to be more universal than we have expected initially.
In fact they allow to compute any function and transformation of MV (at least
for diagonalizable MVs) if one replaces the exponential weight exp(λi) by any
other function (and allows to use complex numbers). Here we shall demonstrate
how to compute log(A), sinh(A), arcsinh(A) and Bessel J0(A) GA functions of
MV A in Cl4,0 that appeared in Example 2. The example with zero and negative
eigenvalues was chosen to demonstrate that no problems arise if formal symbolic
manipulations are addressed.
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After replacement of exp(λi) by log(λi) in (9) and summing-up over all roots
one obtains

logA =
1
2
(log(0+) + log(−8))

+
1
8
(log(−8) − log(0+))

(
e1 + e2 + e3 + e4 + 2

√
3e1234

)
.

(17)

We shall not attempt to explain what log(−8) means in Cl4,0 since we want to
avoid presence of complex numbers in real Cl4,0. We shall assume, however, that
exp

(
log(−8)

)
= −8 and exp

(
log(0+)

)
= limx→0+ exp

(
log(x)

)
= 0. Then it is

easy to check that under these assumptions the exponentiation of logA yields
exp(log(A)) = A, i.e., the log function in Eq. (17) is formal inverse of exp.

There are no problems when computing hyperbolic and trigonometric func-
tions and their inverses2. Indeed, after replacing exp(λi) by sinh(λi), arcsinh(λi)
and Bessel J0(A) in (9) one finds, respectively,

sinhA =
1
8

sinh(8)
(−4 − e1 − e2 − e3 − e4 − 2

√
3e1234

)
,

arcsinhA =
1
8

arcsinh(8)
(−4 − e1 − e2 − e3 − e4 − 2

√
3e1234

)
,

J0(A) =
1
2
(1 + J0(8)) +

1
8
(J0(8) − 1)

(
e1 + e2 + e3 + e4 + 2

√
3e1234

)
.

(18)

It is easy to check that sinh
(
arcsinh(A)

)
= A is satisfied indeed. Here we do

not question where special functions of the MV argument might be applied in
practice. The purpose of the last procedure was aimed just to demonstrate that
the formulas (6) and (9) allow to perform computations over a much larger class
of functions and transformations related to MVs.

5 Conclusion

The paper shows that in Clifford geometric algebras the exponential of a general
multivector is associated with the characteristic polynomial of the multivector
and may be expressed in terms of roots of respective characteristic equation.
In higher dimensional algebras the coefficients at basis elements, in agreement
with [3], include a mixture of trigonometric and hyperbolic functions. The pre-
sented exponential formulas can be generalized to large class of trigonometric,
hyperbolic functions and their inverses, as well as for fractional powers, special
functions, etc.

A Minimal Polynomial of MV

A simple algorithm for computation of matrix minimal polynomial is given in
[24]. It starts by constructing d×d matrix M and its powers {1,M,M2, . . .} and
2 It looks as if the complex numbers are inevitable in computing trigonometric func-

tions in most of real Clifford algebras, except of Cl3,0 as well as few others [5].
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subsequently converting each of the matrices into vector of length d × d. The
algorithm then checks consequently the sublists {1}, {1,M}, {1,M,M2} etc.
until the vectors in a running sublist are found to be linearly dependent. Once
a linear dependence is established the algorithm returns a polynomial equation,
in which the coefficients of linear combination are multiplied by proper powers
of a chosen variable x.

In case of GA, the orthonormal basis elements eJ are linearly independent,
therefore it is enough to construct vectors made from real coefficients of MV.
Then, the algorithm starts searching when these vectors of coefficients become
linearly dependent.

The vector constructed from MV matrix representation has d2 =
(
2� n

2 �)2

components. This coincides with a number of coefficients (2n) in MV for Clifford
algebras of even n and is twice less than a number of matrix elements d × d for
odd n. The latter property can be easily understood if one remembers that for
odd n the matrix representation of Clifford algebra has a block-diagonal form.
Therefore, only a single block will suffice for required matrix algorithm. The
Algorithm 1 below describes how to compute the minimal polynomial of MV
without addressing to matrix representation.

Algorithm 1: Algorithm for finding minimal polynomial of MV in Clp,q

MinimalPoly(A)
Input: multivector A = a0 +

∑2n−1
J aJeJ and polynomial variable x

Output: minimal polynomial c1 + c2x + c3x
2 + · · ·

/* Initialization */

nullSpace={}; lastProduct=1; vectorList={};
/* keep adding new MV coefficient vectors to vectorList until null space becomes

nontrivial */

While[nullSpace==={},
lastProduct=A◦lastProduct;
AppendTo[vectorList, ToCoefficientList[lastProduct]];
nullSpace=NullSpace[Transpose[vectorList]];

];
/* use null space weights to construct the polynomial c1 + c2A + c3A

2 + · · · , with A
replaced by given variable x */

return First[nullSpace] · {x0, x1, x2, . . . , xLength[nullSpace]−1}

All functions in the above code are internal Mathematica functions, except
of ◦ (geometric product) and ToCoefficientList[ ] which is rather simple. The
latter takes MV A and outputs a coefficient vector, i.e. ToCoefficientList[a0 +
a1e1 + a2e2 + · · · + aII]→ {a0, a1, a2, . . . , aI}. The real job is done by Mathe-
matica function NullSpace[ ], which searches for linear dependency of inserted
vector list. This function is a standard function of every linear algebra library. If
the list of the vectors is linearly dependent it outputs weight factors of a linear
combination for which the sum of vectors becomes zero, and an empty list oth-
erwise. The AppendTo[vectorList, newVector] appends the newVector to
the list of already checked vectors in vectorList.
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Abstract. In this paper, we discuss a generalization of Vieta theorem
(Vieta’s formulas) to the case of Clifford geometric algebras. We compare
the generalized Vieta’s formulas with the ordinary Vieta’s formulas for
characteristic polynomial containing eigenvalues. We discuss Gelfand –
Retakh noncommutative Vieta theorem and use it for the case of geo-
metric algebras of small dimensions. The results can be used in symbolic
computation and various applications of geometric algebras in computer
science, computer graphics, computer vision, physics, and engineering.

Keywords: Geometric algebra · Clifford algebra · Vieta theorem ·
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1 Introduction

In algebra, Vieta’s formulas (or Vieta theorem) relate the coefficients of any
polynomial to sums and products of its roots. These formulas are named after
the famous French mathematician François Viète (or Franciscus Vieta). In this
paper, we extend Vieta’s formulas to geometric algebras. We discuss the noncom-
mutative Vieta theorem in geometric algebras and compare it with the ordinary
Vieta theorem.

In this paper, the notion of characteristic polynomial in geometric algebras
is used. Note that the determinant is used to calculate the inverse in geometric
algebras [3,13,17,18]. In [1,2,17], the explicit formulas for the characteristic
polynomial coefficients C(k) are presented in the cases n ≤ 6. The characteristic
polynomial in geometric algebras is also discussed in [11] and used to solve the
Sylvester and Lyapunov equations in [15,16].

In Sect. 2, we introduce generalized Vieta’s formulas in geometric algebras
and compare them with the ordinary Vieta’s formulas for characteristic poly-
nomial containing eigenvalues. The generalized Vieta’s formulas do not con-
tain eigenvalues. In Sect. 3, we discuss Gelfand – Retakh noncommutative Vieta
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theorem for an arbitrary skew-field with some remarks. In Sect. 4, we apply non-
commutative Vieta theorem to the geometric algebras Gp,q in the case of small
dimensions n = p + q.

The results of this paper can be useful in symbolic computation and various
applications of geometric algebras and characteristic polynomials in computer
science, computer graphics, computer vision, physics, and engineering.

2 Generalized Vieta’s Formulas in Geometric Algebras

Let us consider the real (Clifford) geometric algebra Gp,q, n = p+q ≥ 1 [5,12,14]
with the generators ea, a = 1, 2, . . . , n and the identity element e ≡ 1. The
generators satisfy

eaeb + ebea = 2ηabe, a, b = 1, 2, . . . , n,

where η = (ηab) is the diagonal matrix with its first p entries equal to 1 and the
last q entries equal to −1 on the diagonal. The grade involution and reversion
of an arbitrary element (a multivector) U ∈ Gp,q are denoted by

̂U =
n

∑

k=0

(−1)k〈U〉k, ˜U =
n

∑

k=0

(−1)
k(k−1)

2 〈U〉k,

where 〈U〉k is the projection of U onto the subspace Gk
p,q of grade k = 0, 1, . . . , n.

Let us consider the following faithful representation (isomorphism) of the
complexified geometric algebra C ⊗ Gp,q, n = p + q

β : C ⊗ Gp,q → Mp,q :=
{

Mat(2
n
2 , C) if n is even,

Mat(2
n−1
2 , C) ⊕ Mat(2

n−1
2 , C) if n is odd.

(1)

The real geometric algebra Gp,q is isomorphic to some subalgebra of Mp,q,
because Gp,q ⊂ C ⊗ Gp,q and we can consider the representation of not mini-
mal dimension

β : Gp,q → β(Gp,q) ⊂ Mp,q.

We can introduce (see [17]) the notion of determinant

Det(U) := det(β(U)) ∈ R, U ∈ Gp,q

and the notion of characteristic polynomial

ϕU (λ) := Det(λe − U) = λN − C(1)λ
N−1 − · · · − C(N−1)λ − C(N) ∈ G0

p,q ≡ R,

U ∈ Gp,q, N = 2[
n+1
2 ], C(k) = C(k)(U) ∈ G0

p,q ≡ R, k = 1, . . . , N, (2)

where G0
p,q is a subspace of elements of grade 0, which we identify with scalars.

Let us denote the solutions of the characteristic equation ϕU (λ) = 0 (i.e.
eigenvalues) by λ1, . . . , λN . By the Vieta’s formulas from matrix theory, we know
that

C(k) = (−1)k+1
∑

1≤i1<i2<···<ik≤n

λi1λi2 · · · λik , k = 1, . . . , N,
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in particular,

C(1) = λ1 + · · · + λN = Tr(U), . . . , C(N) = −λ1 · · · λN = −Det(U),

where Tr(U) := tr(β(U)) = N〈U〉0 is the trace of U . The elements C(k), k =
1, . . . , N are elementary symmetrical polynomials in the variables λ1, . . . , λN .

2.1 The Case n = 1

Let us consider the particular case n = 1. In this case, the geometric algebra
Gp,q is commutative and N = 2. We have

C(1) = λ1 + λ2 ∈ R, C(2) = −λ1λ2 ∈ R. (3)

But also we have (see [17])

C(1) = U + ̂U ∈ G0
p,q ≡ R, C(2) = −U ̂U ∈ G0

p,q ≡ R. (4)

The elements y1 := U and y2 := ̂U are not scalars (and are not equal to the
eigenvalues λ1 and λ2), but they are solutions of the characteristic equation
ϕU (x) = 0, x = y1, y2 by the Cayley – Hamilton theorem (see the details in
Sect. 4). Using

λ2 − (U + ̂U)λ + U ̂U = 0,

we get the explicit formulas for the eigenvalues

λ1,2 =
1
2
(U + ̂U ±

√

(U + ̂U)2 − 4U ̂U) =
1
2
(U + ̂U ±

√

(U − ̂U)2)

= 〈U〉0 ±
√

(〈U〉1)2, (5)

which do not coincide with the explicit formulas for y1,2

y1,2 = 〈U〉0 ± 〈U〉1, (6)

Because the scalar
√

(〈U〉1)2 does not coincide with the vector (element of
grade 1) 〈U〉1. We see that the role of the roots λ1,2 (which are complex scalars)
of the characteristic equation is played by some combinations y1,2 of involutions
of elements (which are not scalars). In the case of degenerate eigenvalues, we
have 〈U〉1 = 0 and the coincidence λ1,2 = y1,2 = U = 〈U〉0.

2.2 The Case n = 2

Let us consider the particular case n = 2. We have N = 2 and

C(1) = λ1 + λ2 ∈ R, C(2) = −λ1λ2 ∈ R. (7)

But also we have (see [17])

C(1) = U + ̂

˜U ∈ G0
p,q ≡ R, C(2) = −U

̂

˜U ∈ G0
p,q ≡ R. (8)
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Note that U
̂

˜U = ̂

˜UU in the case n = 2. The elements y1 := U and y2 := ̂

˜U
are not scalars (and are not equal to the eigenvalues λ1 and λ2), but they are
solutions of the characteristic equation ϕU (x) = 0, x = y1, y2 by the Cayley –
Hamilton theorem (see the details in Sect. 4). Using

λ2 − (U + ̂

˜U)λ + U
̂

˜U = 0,

we get the explicit formulas for the eigenvalues

λ1,2 =
1
2
(U + ̂

˜U ±
√

(U + ̂

˜U)2 − 4U
̂

˜U) =
1
2
(U + ̂

˜U ±
√

(U − ̂

˜U)2)

= 〈U〉0 ±
√

(〈U〉1 + 〈U〉2)2, (9)

which do not coincide with the explicit formulas for y1,2

y1,2 = 〈U〉0 ± (〈U〉1 + 〈U〉2), (10)

where the scalar
√

(〈U〉1 + 〈U〉2)2 =
√

(〈U〉1)2 + (〈U〉2)2 is not equal to the
expression 〈U〉1 + 〈U〉2. The role of the roots λ1,2 (which are complex scalars)
of the characteristic equation is played by some combinations y1,2 of involutions
of elements (which are not scalars).

In the case of degenerate eigenvalues, we have 〈U〉1 = 〈U〉2 = 0 and the
coincidence λ1,2 = y1,2 = U = 〈U〉0 in the case of two Jordan blocks; or
(〈U〉1)2 = −(〈U〉2)2 �= 0 and λ1,2 = 〈U〉0 �= y1,2 = 〈U〉0 ± (〈U〉1 + 〈U〉2) in
the case of one Jordan block. For example, for U = 5e + 1

2 (e2 + e12), we have
λ1,2 = 5 and y1,2 = 5e ± 1

2 (e2 + e12) in the case n = p = 2, q = 0.

2.3 The Case n = 3

Let us consider the case n = 3. We have N = 4 and the formulas (see [17])

C(1) = U + ̂U + ˜U + ̂

˜U,

C(2) = −(U ˜U + U ̂U + U
̂

˜U + ̂U
̂

˜U + ˜U
̂

˜U + ̂U ˜U),

C(3) = U ̂U ˜U + U ̂U
̂

˜U + U ˜U
̂

˜U + ̂U ˜U
̂

˜U,

C(4) = −U ̂U ˜U
̂

˜U. (11)

These formulas look like the ordinary Vieta’s formulas for eigenvalues:

C(1) = λ1 + λ2 + λ3 + λ4,

C(2) = −(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4),
C(3) = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4,

C(4) = −λ1λ2λ3λ4. (12)
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The elements

y1 := U = 〈U〉0 + 〈U〉1 + 〈U〉2 + 〈U〉3, y2 := ˜U = 〈U〉0 + 〈U〉1 − 〈U〉2 − 〈U〉3,
y3 := ̂U = 〈U〉0 − 〈U〉1 + 〈U〉2 − 〈U〉3, y4 := ˜

̂U = 〈U〉0 − 〈U〉1 − 〈U〉2 + 〈U〉3,

are not scalars (and are not equal to the eigenvalues λ1, λ2, λ3, λ4), but they
are solutions of the characteristic equation ϕU (x) = 0, x = y1, y2, y3, y4 by the
Cayley – Hamilton theorem (see the details in Sect. 4).

We call the formulas (4), (8), (11) and their analogues for the cases n ≥ 4
generalized Vieta’s formulas in geometric algebra. The formulas (4), (8), (11)
were proved in [17] using recursive formulas for the characteristic polynomial
coefficients following from the Faddeev – LeVerrier algorithm. In this paper, we
present an alternative proof of these formulas using the techniques of noncom-
mutative symmetric functions (see Sects. 3 and 4).

3 On Gelfand – Retakh Noncommutative Vieta Theorem

Let us discuss the following Gelfand – Retakh theorem (known as the noncommu-
tative Vieta theorem [10], see also [4,6]). In Sect. 4, we use it for the characteristic
polynomial in geometric algebras.

Theorem 1 ([10]). If {x1, . . . , xN} is an ordered generic set (i.e. Vandermonde
quasideterminants vk exist for all k = 1, . . . , N) of solutions of the equation

PN (x) := xN − a1x
N−1 − · · · − aN = 0 (13)

over a skew-field, then for k = 1, 2, . . . , N :

ak = (−1)k+1
∑

1≤i1<i2<···<ik≤N

yik · · · yi1 ,

where
yk = vkxkv

−1
k .

In [10], the definition of Vandermonde quasideterminants vk is given (see also
[8,9]). In this paper, we use another definition of the elements vk from [7]:

vk = Pk−1(xk) = xk−1
k − (yk−1 + · · · + y1)xk−2

k + · · · + (−1)k−1yk−1 · · · y1.(14)

In particular, we have

v1 = 1, v2 = x2 − y1, v3 = x2
3 − (y2 + y1)x3 + y2y1. (15)

Let us give examples.
In the case N = 1, substituting x = x1 into (13), we obtain y1 = x1 = a1

and v1 = 1.
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In the case N = 2, the Eq. (13) with a1 = y2 + y1 and a2 = −y2y1 can be
rewritten in the form

(x − y1)x − y2(x − y1) = 0. (16)

Substituting x = x1 into (16), we obtain (x1 − y1)x1 − y2(x1 − y1) = 0 and we
can take y1 = x1. Substituting x = x2 into (16), we obtain

(x2 − y1)x2 − y2(x2 − y1) = 0 (17)

and we can take y2 = v2x2v
−1
2 in the case of invertible v2 := x2 − y1 = x2 − x1.

If [x2, v2] = 0, then y2 = x2 by (17).
In the case N = 3, the Eq. (13) with a1 = y3 + y2 + y1, a2 = −(y3y2 + y3y1 +

y2y1), and a3 = y3y2y1 can be rewritten in the form

(x2 − (y2 + y1)x + y2y1)x − y3(x2 − (y2 + y1)x + y2y1) = 0. (18)

Substituting x = x1 and x = x2 into (18), we conclude that we can take again
y1 = x1 and y2 = v2x2v

−1
2 in the case of invertible v2 = x2 − y1 = x2 − x1. If

[x2, v2] = 0, then y2 = x2. Substituting x = x3 into (18), we obtain (x2
3 − (y2 +

y1)x3 + y2y1)x3 − y3(x2
3 − (y2 + y1)x3 + y2y1) = 0 and we can take y3 = v3x3v

−1
3

in the case of invertible v3 := x2
3 − (y2 + y1)x3 + y2y1. We get y3 = x3 in the

case [x3, v3] = 0. And so on.

Remark 1. The condition [vk, xk] = 0 is equivalent to

[Ej , xk] = 0, j = 1, . . . , k − 1,

where Ej , j = 1, . . . , k − 1 are noncommutative elementary symmetric polyno-
mials in the variables yk−1, . . . , y1:

E1 = yk−1 + · · · + y1, Ek−1 = yk−1 · · · y2y1.
For example, in the particular case N = 4, when all [vk, xk] = 0, k = 1, . . . , N ,
we can take yk = xk, k = 1, 2, 3, 4, in the case

[x2, x1] = 0, [x3, x2x1] = 0, [x3, x2 + x1] = 0, [x4, x3x2x1] = 0,

[x4, x3x2 + x3x1 + x2x1] = 0, [x4, x3 + x2 + x1] = 0.

We use this particular case below in Gp,q with n = p + q = 3.

4 Application of Noncommutative Vieta Theorem
to Geometric Algebras

Let us apply Theorem 1 to the particular case of the characteristic polynomial
ϕU (λ) in geometric algebra Gp,q. The elements ak = C(k) ∈ R, k = 1, . . . , N
from (13) are scalars now. We need N solutions x1, x2, . . . xN of the characterstic
equation ϕU (x) = 0. By the Cayley – Hamilton theorem, we can take x1 = U :

ϕU (U) = 0. (19)

We have the following statement.
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Theorem 2. We have

ϕU (λ) = ϕ
̂U (λ) = ϕ

˜U (λ) = ϕ
˜

̂U
(λ), (20)

ϕU (˜U) = ϕU (̂U) = ϕU (̂

˜U) = 0. (21)

Proof. We know that (see Lemma 10 in [17])

Det(U) = Det(̂U) = Det(˜U) = Det(̂

˜U).

Using the definition of characteristic polynomial (2), we get

ϕ
̂U (λ) = Det(λe − ̂U) = Det(λ̂e − U) = Det(λe − U) = ϕU (λ).

Using the Cayley – Hamilton theorem ϕU (U) = 0, we get ϕ
̂U (U) = 0. Substi-

tuting ̂U for U , we get ϕU (̂U) = 0. We obtain the other formulas in a similar
way. �

4.1 The Case n = 1

In this case, the geometric algebra is commutative. We can take y1 = x1 = U
in Theorem 1 by the Cayley – Hamilton theorem. The element x2 = ̂U satisfies
the characteristic equation (see Theorem 2). We have v2 = x2 − x1 = ̂U − U =
−2〈U〉1. If 〈U〉1 �= 0, then y2 = x2 = ̂U and we obtain the formulas (4).

4.2 The Case n = 2

We can take y1 = x1 = U in Theorem 1 by the Cayley – Hamilton theorem.
The element x2 = ˜U satisfies the characteristic equation (see Theorem 2). We
have v2 = x2 − x1 = ˜U − U = −2〈U〉2. If 〈U〉2 = 0, then we can use the
formulas from the case n = 1. If 〈U〉2 �= 0, then v2 = λe12, λ �= 0 is invertible

and y2 = v2 ˜Uv−1
2 = ˜

̂U because the pseudoscalar e12 commutes with all even
elements and anticommutes with all odd elements. We get the formulas (8).

4.3 The Case n = 3

We can take y1 = x1 = U in Theorem 1 by the Cayley – Hamilton theorem.

Let us consider x2 = ̂

˜U . We have v2 = x2 − x1 = ̂

˜U − U and [v2, x2] = 0

because [U,
̂

˜U ] = 0 in the case n = 3. Thus we can take y2 = x2.
Let us consider x3 = ̂U . We have

[x3, v3] = [x3, x
2
3 − (x1 + x2)x3 + x2x1] = 0,

because the elements x1 + x2 = U + ̂

˜U and x2x1 = ̂

˜UU belong to the center
Cen(Gp,q) = G0

p,q ⊕ G3
p,q, and can take y3 = x3.
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Let us consider x4 = ˜U . We have

[x4, v4] = [x4, x
3
4 − (x3 + x2 + x1)x2

4 + (x3x2 + x3x1 + x2x1)x4 − (x3x2x1)] = 0,

because the elements x1 + x2 = U + ̂

˜U and x2x1 = ̂

˜UU belong to the center
Cen(Gp,q), and x3x4 = x4x3, i.e. ̂U ˜U = ˜U ̂U in the case n = 3. We take y4 = x4.

We obtain yk = xk, k = 1, 2, 3, 4 and the following formulas, which are
another version of the formulas (11):

C(1) = ˜U + ̂U + ̂

˜U + U,

C(2) = −(˜U ̂U + ˜U
̂

˜U + ˜UU + ̂U
̂

˜U + ̂UU + ̂

˜UU),

C(3) = ˜U ̂U
̂

˜U + ˜U ̂UU + ˜U
̂

˜UU + ̂U
̂

˜UU,

C(4) = −˜U ̂U
̂

˜UU. (22)

Note that we obtain these formulas for the element U with invertible expressions
v2, v3, and v4 (for other elements U , other sequences x1, x2, x3, x4 can be

considered). Also note that not every sequence y1, y2, y3, y4 from {˜U, ̂U,
˜

̂U,U}
gives the correct Vieta’s formulas (see Theorem 3 and Lemma 7 in [17], the
formulas (11) and (22) are two of several correct forms).

4.4 The Cases n ≥ 4

The generalized Vieta’s formulas in the cases n ≥ 4 are more complicated. We
use the additional (triangle) operation (see [17])

U� :=
n

∑

k=0

(−1)
k(k−1)(k−2)(k−3)

24 〈U〉k =
∑

k=0,1,2,3 mod 8

〈U〉k −
∑

k=4,5,6,7 mod 8

〈U〉k. (23)

Note that

Det(U�) �= Det(U), ϕU�(λ) �= ϕU (λ), ϕU (U�) �= 0 (24)

in the general case (compare with the statements of Theorem 2).
In the case n = 4, the generalized Vieta’s formulas have the following form

C(1) = U + ̂

˜U + ̂U� + ˜U�,

C(2) = −(U ̂

˜U + U ̂U� + U ˜U� + ̂

˜U ̂U� + ̂

˜U ˜U� + (̂U ˜U)�),

C(3) = U
̂

˜U ̂U� + U
̂

˜U ˜U� + U(̂U ˜U)� + ̂

˜U(̂U ˜U)�,

C(4) = −U
̂

˜U(̂U ˜U)�, (25)

where the coefficients C(k), k = 1, 2, 3, 4 are not elementary symmetrical poly-
nomials because of the additional operation of conjugation �. These formulas
look like the ordinary Vieta’s formulas
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C(1) = λ1 + λ2 + λ3 + λ4,

C(2) = −(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4),
C(3) = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4,

C(4) = −λ1λ2λ3λ4, (26)

if we ignore the operation �. The analogues of the formulas (25) for the cases n =
5, 6 are presented in [1] (see Theorem 5.1 and Sect. 8). These formulas also have
the form of elementary symmetric polynomials, only if we ignore the operation �,
and can be interpreted as generalized noncommutative Vieta’s formulas. These
formulas do not follow directly from the Gelfand – Retakh noncommutative
Vieta theorem, it is not easy task to guess the “right” (generic) ordered set of
solutions x1, x2, x3, . . .xN of the characteristic equation to obtain the elements
y1, y2, y3, . . . , yN we need in the generalized Vieta’s formulas. This is a task for
further research.

5 Conclusions

In this paper, we discuss a generalization of Vieta’s formulas to the case of geo-
metric algebras. We apply the Gelfand – Retakh theorem to the characteristic
polynomial in geometric algebras. We show how to express characteristic coeffi-
cients in terms of combinations of various involutions of elements. We compare
the generalized Vieta’s formulas with the ordinary Vieta’s formulas for eigen-
values. The role of the roots (which are complex scalars) of the characteristic
equation is played by some combinations of involutions of elements (which are
not scalars). The cases of small dimensions n ≤ 3 are discussed in details. The
case of arbitrary eigenvalues (including the case of degenerate eigenvalues) is
considered. We plan to discuss Vieta’s formulas in more complicated cases n ≥ 4
in details using different techniques in the extended version of this paper. We
also hope that the new approach presented in this paper (related to noncom-
mutative symmetric functions) will help to find more optimized formulas for the
determinant and inverse in geometric algebras in the cases n ≥ 6.
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Abstract. Bijectivity of digitized linear transformations is crucial when
transforming 2D/3D objects in computer graphics and computer vision.
Although characterisation of bijective digitized rotations in 2D is well
known, the extension to 3D is still an open problem. A certification algo-
rithm exists that allows to verify that a digitized 3D rotation defined by
a quaternion is bijective. In this paper, we use geometric algebra to rep-
resent a bijective digitized rotation as a pair of bijective digitized reflec-
tions. Visualization of bijective digitized reflections in 3D using geometric
algebra leads to a conjectured characterization of 3D bijective digitized
reflections and, thus, rotations. So far, any known quaternion that defines
a bijective digitized rotation verifies the conjecture. An approximation
method of any digitized reflection by a conjectured bijective one is also
proposed.

1 Introduction

Geometric algebra has revealed its sufficient capability of handling linear trans-
formations for geometric object manipulations, and has become a more powerful
tool for the computer graphics and/or computer vision communities. In this
paper, we propose to exploit digitized linear transformations, more specifically,
digitized reflections and rotations, with the help of geometric algebra. The major
problem with transformations in the digital world is that important properties
may be lost. One of those crucial properties is bijectivity. Applying a trans-
formation that is not bijective means that information may be simply lost or
irreversibly altered (in case an interpolation is added in the process).

Bijective digitized rotations are a subject of study for almost thirty years
now. First introduced in [1], the subset of angles for which digitized 2D rota-
tions are bijective has been fully characterized [8,10,14]. Interesting links have
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been made using Gaussian integers between twin Pythagorean triplets and the
angles of digitized bijective rotations [14]. More recently, Pluta et al. [13] have
brought a new light into this research subject by showing that similar results
using Eisentein integers exist for the hexagonal grid.

In 3D and higher dimensions, characterization of bijective digitized rotations
remains largely open. Pluta et al. [12] proposed a certification algorithm that con-
firms whether a given Lipschitz quaternion, which corresponds to a 3D rotation
whose matrix representation is with only rational elements, defines a bijective dig-
itized rotation, but characterization based on such quaternions remains elusive.

Meanwhile Andres et al. [2] proposed an algorithm for bijective digitized reflec-
tions in 2D which easily deduces a method that generates bijective digitized rota-
tions. Breuils et al. [3] used geometric algebra to reformulate the problem and
characterized 2D bijective digitized reflections. This is the starting point of the
present paper. Here we look into the 3D characterization problem by using tools
from geometric algebra [6,11] in order to overcome the problems of fundamentally
handling 4D objects that Pluta et al. [12] encountered due to using quaternions.
Geometric algebra allows us to establish a strong link between bijective digitized
3D reflections and bijective digitized 3D rotations. We first start by expressing
the problem in geometric algebra’s framework, and then focus more specifically on
reflections, rotations, and the way in which Pluta et al. [12] described the prob-
lem with help of quaternions. This leads to a conjecture on characterization of
rotation vectors corresponding to bijective digitized rotations in 3D, as well as
the related bijective digitized reflections. The geometric algebra tools enable us to
project Pluta et al. [12]’s quaternions into 3D and also visualize Pluta et al. [12]’s
results, which so far match our proposed conjecture. The conjecture leads us to
believe that all the cases where a digitized 3D rotation is bijective, correspond to
2D cases that are elevated to 3D. This greatly limits the scope of direct bijective
digitized 3D rotations. If confirmed, it implies that further research will have to
be conducted on approximated bijective digitized rotations. In the paper, we offer
a different avenue to prove the conjecture that, if proven correct, would answer a
thirty year old question. At the end of the paper, we propose an approximation
method of any digitized reflection by a conjectured bijective one.

2 Digitized Reflections and Rotations via Geometric
Algebra

Geometric algebra of a vector space is an algebra over a field such that the
multiplication of vectors called the geometric product is defined on a space of
elements, i.e., multivectors [6]. Geometric algebra is an intuitive and geomet-
ric object-oriented algebra that allows to define geometric transformations in
an efficient way. Definitions and compositions of geometric transformations are
given in the geometric algebra of R3, also called G3; see [6].

Let us briefly review reflections and rotations with geometric algebra. For
more details, see [3,6,11]. We here focus on reflections and rotations expressed
as two reflections. Since Pluta et al. [12] proposed a certification algorithm for
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3D bijective digitized rotations represented by quaternions, we recall the link
between quaternion algebra and geometric algebra. We then finish this section
with the bijectivity condition and characterization of digitized reflections in 2D.

2.1 Reflections

A reflection is the isometric mapping from R
d to itself with a hyperplane as a set

of fixed (invariant) points. It is defined as follows with geometric algebra when
the hyperplane goes through the origin.

Definition 1. Given a hyperplane passing through the origin, with its normal
vector m ∈ R

d, denoted by H(m), the reflection of point x ∈ R
n with respect to

H(m) is defined as
∣
∣
∣
∣

Um : Rd → R
d

x �→ −mxm−1 = − 1
‖m‖2mxm.

Reflections Um are said rational if all the components of m are rational. Note
that any rational reflection Um can be represented by m =

∑

i=1···d uiei such
that ui ∈ Z and gcd(u1, · · · , ud) = 1.

2.2 Rotations

Any rotation is expressed as the composition of two reflections with geometric
algebra. If a first reflection w.r.t. H(m) followed by a second reflection w.r.t.
H(n), is applied to a point x ∈ R

d, we have the point x′ such that

x′ = −n(−mxm−1)n−1 = (nm)x(nm)−1. (1)

In other words, x′ is the rotation of x around the intersection of m and n. Indeed,
assuming n and m are both normalized, we have

x′ = (cos φ + sin φ I)x(cos φ − sin φ I), (2)

where φ is the angle between n and m in the rotation plane whose bivector is I.
Note that the angle of this rotation corresponds to 2φ.

More generally, the algebraic entity representing the rotation of angle θ with
respect to the rotation axis whose bivector is U is defined as

Q = cos
θ

2
+ sin

θ

2
U

‖U‖ . (3)

Then, a point x is rotated to x′ as follows:

x′ = QxQ†, (4)

where Q† = cos θ
2 − sin θ

2
U

‖U‖ .
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2.3 Geometric Algebra Rotations and Quaternions

The subalgebra composed of the scalar and bivectors R ⊕
∧2

R
3 is isomorphic

to the division ring of quaternions; see [9]. Let us consider a quaternion

q = a + bi + cj + dk, a, b, c, d ∈ R, (5)

where i2 = j2 = −1, ij = k and ki = j, jk = i. The pure imaginary components
can be related to the canonical basis of

∧2
R

3 (bivectors) as follows:

i = e23, j = e13, k = e12. (6)

In G
3, we can easily verify that e212 = e223 = e213 = −1 and

ij = e23e13 = e12 = k, ki = e12e23 = e13 = j, jk = e13e12 = e23 = i. (7)

2.4 Cubic Grids and Cells and Digitized Reflections

In order to digitize points, we need a grid. In the following, we use the cubic grid
also called the integer lattice defined as

Z
d =

{

x =
∑

i=1,...,d

aiei | ai ∈ Z
}

.

To a point κ on the cubic grid, it is handy to add the set of points that have the
point κ as image after a rounding operation. This is called a digitized cell.

Definition 2 (transformed digitized cell). Let us consider a transformation
T such that any basis vector ei is transformed to T eiT †. The digitization cell of
κ ∈ Z

3 transformed by T is defined as

CT (κ) :=
{

x ∈ R
d | ∀i ∈ [1, d] ‖x − κ‖ ≤ ‖x − κ + T eiT †‖

and ‖x − κ‖ < ‖x − κ − T eiT †‖
}

.

If T = 1, i.e. T is the identity, C1(0) is the typical digitized cell of the origin.
Figure 1 shows elements of Z

3 with a digitized cell associate to a point of the
cubic grid Z

3.

Definition 3 (Digitization operator). The digitization operator on a cubic
grid is defined as

∣
∣
∣
∣

D : R
d → Z

d
∑

i=1,...,d uiei �→
∑

i=1,...,d	ui + 1
2
ei

.

This allows to define a digitized reflection as the composition of a reflection
and digitization.

Definition 4. Given a hyperplane H(m), a digitized reflection with respect to
H(m) is the composition of the reflection Um with the digitization operator D
as follows ∣

∣
∣
∣

Rm : Zd → Z
d

x �→ D ◦ Um(x).
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x
y

z

C1(2e1)
(a)

x y

z

CQ(2e1)
(b)

Fig. 1. (a) illustrates a set of points of Z3 as black points, whose associated digitization
cells (voxel) are represented by wireframed cubes. The cube colored in blue is the
digitization cell of 2e1, i.e., C1(2e1). (b) shows the rotated points and digitization cells
by a geometric algebra rotation Q, where the cube colored in blue represents CQ(2e1).
(Color figure online)

2.5 Bijectivity Condition of Digitized Reflections
and Characterization in 2D

In general, the digitization operator is not bijective, and, therefore, it is likely to
produce holes and/or coincident points. However, there exist subsets of digitized
transformations that are bijective. The characterization of these subsets were
shown for digitized reflections in [3] and for rotations in [8,14].

For the characterization of bijective digitized reflections, the key idea is to
investigate the structure of the set of remainders.

Definition 5. Given a reflection Um, the set of remainders Sm is defined as
∣
∣
∣
∣

Sm : Zd × Z
d → R

d

(x,y) �→ Um(x) − y.

Given the set of remainders, the bijectivity condition is given as follows
(see [14] also).

Proposition 1. A digitized reflection Rm = D ◦ Um is bijective if and only if

∀y ∈ Z
d,∃!x ∈ Z

d,Sm(x,y) ∈ C1(0),

where C1(0) corresponds to origin-centered digitized cell.

Note that the above condition can be divided into two parts like [14]:
{∀y ∈ Z

d,∃x ∈ Z
d,Sm(x,y) ∈ C1(0)

∀x ∈ Z
d,∃y ∈ Z

d,Sm(x,y) ∈ C m
||m|| (0) , (8)



46 S. Breuils et al.

provided Sm(Zd,Zd) ∩ C1(0) = Sm(Zd,Zd) ∩ C m
‖m‖ (0). Then,

Id = Sm(Zd,Zd) ∩
(

C1(0) ∪ C m
‖m‖ (0)

)

\
(

C1(0) ∩ C m
‖m‖ (0)

)

= ∅. (9)

Equation (9) shows that no integer point exists inside the intersection of any
remainders and the digitized cells, which indicates that bijectivity is retained.

In [3], the characterization of digitized reflections using the bijectivity condi-
tion is presented. The idea there consists of expressing the bijectivity condition
using a geometric algebra rotation Q in 2D and expressing the set of remainders
of digitized reflections by the set of remainders of digitized rotations. Let us
present the resulting bijective digitized reflections as the proposition below:

Proposition 2 ([3]). Given a rational reflection line H(m̃) such that m̃ =
−ae1 + be2, a, b ∈ N

∗, the rational digitized reflection Rm̃ is bijective if and only
if a = 1, b = 2k + 1 or a = k, b = k + 1.

3 Conjecture on the Characterization in 3D

We have seen that characterization of 2D bijective digitized reflections is known.
In contrast, characterization of 3D bijective digitized reflections and rotations is
an open problem. Pluta et al. [12] presented an algorithm that certifies whether or
not a given Lipshitz quaternion (quaternion with integer components) is bijective.
We start by making the same assumption as the conjecture of [12].

Conjecture 1 ([12]). Given a vector m ∈ R
d, if one of the components of m

is irrational, the digitized reflection with respect to the hyperplane H(m) is not
bijective.

In order to give a conjecture on bijectivity, we first extend the certification
algorithm [12] to digitized reflections. We then brute-force search bijective digi-
tized reflections to capture an idea of their distributions. The brute-force search
result yields a conjecture on 3D bijective digitized reflection. This conjecture
enables us to deduce a conjecture on 3D bijective digitized rotations. Let us
start by describing the certification algorithm.

3.1 Certification of Bijective Reflections Through Lipshitz
Quaternions

The composition of a bijective digitized reflection (or non-bijective) with a bijec-
tive reflection is bijective (or non-bijective). Then, one possible certification algo-
rithm for digitized reflections simply consists in composing the input normal
vector with a reflection with respect to either the normal vector e1, e2 or e3.
The result is a geometric algebra rotation and can be expressed with a Lipschitz
quaternion [4]. Thus, the resulting geometric algebra rotation can be certified
through Algorithm 1 of [12] with the four coefficients of the resulting geometric
algebra rotation.
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(a) (b)

Fig. 2. (a) Red points are sampled unit normal vectors that are in Δ. Yellow circle
arcs result from the boundary of Δ on the unit sphere (b) certified digitized reflections
that are in Δ. (Color figure online)

Thanks to this algorithm, we can employ a brute-force search method for
the bijective digitized reflections in a given window. Without loss of generality,
let us study the bijectivity of digitized reflections in the domain Δ delimited as
Δ =

{

(x, y, z) ∈ Z
3 |x ≥ 0, y ≥ 0, z ≥ x + y

}

. Note that results in other domains
can be obtained from octahedral symmetry of Δ.

The method of brute-force search for bijective digitized reflections in Δ is as
follows. We start by sampling the domain Δ with normal vectors, and for each
normal vector mi, we apply the geometric algebra certification algorithm as
explained above. Both sampled mi in Δ and the resulting certified transforma-
tions are shown in Fig. 2. Note that this result was obtained with the geometric
algebra implementation ganja.js [5].

We observe in Fig. 2b that all the vectors mi in Δ such that the digitized
reflections Umi are certified to be bijective are on the planes π1 : x = 0, π2 : x = 0
and π3 : z = x + y. and there is no other digitized reflection Um such that m
is outside the intersection of Δ and these planes. Furthermore, without loss of
generality, given any conjectured bijective digitized reflection mc ∈ π1 ∩ Δ, i.e.,
mc = be2 + ce3 (b, c ∈ N, gcd(b, c) = 1), we find that either b = k, c = k + 1 (k ∈
N) or b = 1, c = 2k + 1 (k ∈ N). This latter observation suggests that any of the
certified bijective digitized reflections can be expressed as an extension of the
2D bijective digitized reflections; see Fig. 5. This is the motivation of having the
conjecture presented in the next section.

3.2 Bijective Digitized Reflections on Base Planes π1, π2, π3

In this section, we focus on digitized reflections on the planes π1, π2, π3 and give
some conditions of bijectivity.

Proposition 3. Any 3D digitized reflection Rm such that m ∈ π1∩Δ is bijective
iff

m = ke2 + (k + 1)e3 or
m = e2 + (2k + 1)e3,

where k ∈ N
∗.
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(a) (b)

Fig. 3. Dark green points are the elements of the set of remainders in Sm(x,y) ∩(
C1(0)∪C m

‖m‖ (0)
)
. Both C1(0) and C m

‖m‖ (0) are denoted with blue cubes. (a) The dig-

itized reflection is bijective since there is no element in Sm(Z3,Z3)∩
(
C1(0)∪C m

‖m‖ (0)
)
\(

C1(0)∩C m
‖m‖ (0)

)
. (b) The digitized reflection is not bijective as there is one element of

the set of remainders in each connected component of Sm(Z3,Z3)∩
(
C1(0)∪C m

‖m‖ (0)
)

\(
C1(0) ∩ C m

‖m‖ (0)
)
. (Color figure online)

Proof. Let m = ae1 + be2 + ce3, then a = 0 and c ≥ b ≥ 0 as m ∈ π1 ∩ Δ. The
set of remainders Sm, defined in Definition 5, is contained in the planes parallel
to π1, such as x = n (n ∈ Z); so the minimal distance between two planes of the
set of remainders is 1. Furthermore, max(C1(0) · e1) = max(C m

‖m‖ (0) · e1) = 0.5.

Thus, the intersection Sm(x,y) ∩
(

C1(0) ∪ C m
‖m‖ (0)

)

∈ π1. This yields

I3 = Sm(Z3,Z3) ∩
(

C1(0) ∪ C m
‖m‖ (0)

)

\
(

C1(0) ∩ C m
‖m‖ (0)

)

∈ π1.

Therefore, the bijectivity condition can be rewritten and proved as I2 (Eq. (9));
Proposition 2 can be applied. ��

Similarly, the following proposition holds as well.

Proposition 4. Any 3D digitized reflection Rm such that m ∈ π2∩Δ is bijective
iff

m = ke1 + (k + 1)e3 or
m = e1 + (2k + 1)e3,

where k ∈ N.

Examples of the set of remainders for these two last digitized reflections are
shown in Fig. 3. Now let us consider the case where the reflection plane normal
vectors m are on π3.
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(a) (b)

Fig. 4. Both C1(0) and C m
‖m‖ (0) are denoted with a blue cube. The plane z=x+y is

shown. Dark green points are the elements of the set of remainders in Sm(x,y) ∩(
C1(0)∪C m

‖m‖ (0)
)
. Since no element of the set of remainders is in

(
C1(0)∪C m

‖m‖ (0)
)

\(
C1(0)∩C m

‖m‖ (0)
)
, the digitized reflection with respect to m is bijective (a), while it is

not bijective (b) as some elements of the set of remainders are in
(
C1(0) ∪ C m

‖m‖ (0)
)

\(
C1(0) ∩ C m

‖m‖ (0)
)
. (Color figure online)

Proposition 5. Any 3D digitized reflection Rm such that m ∈ π3∩Δ is bijective
iff

m = ke1 + (k + 1)e2 + (2k + 1)e3 or
m = e1 + (2k + 1)e2 + (2k + 2)e3 or
m = (k + 1)e1 + ke2 + (2k + 1)e3 or
m = (2k + 1)e1 + e2 + (2k + 2)e3,

where k ∈ N
∗.

Proof. Let m = ae1 + be2 + ce3, then c ≥ a, c = a + b as m ∈ π3 ∩ Δ. The set
of remainders is on the planes parallel to π3, for example, in C1(0) ∪ C m

‖m‖ (0):

Sm(x,y) ∩
(

C1(0) ∪ C m
‖m‖ (0)

)

∈ π3 ∪ π3 + 1 ∪ π3 − 1

The set of remainders for both bijective and non-bijective digitized reflections
whose normal vectors are in π3 ∩ Δ is shown in Fig. 4. The set of remainders
for both bijective and non-bijective digitized reflection whose normal vectors are
in π3 is shown in Fig. 4. These bijective or non-bijective normal vectors can be
obtained from normal vectors of digitized reflections that are on the plane z = 0
through orthogonal projection. Furthermore, Propositions 3 and 4 extends well
to digitized reflections whose normal vectors are on the projected plane. Thus,
the bijectivity condition can be rewritten and proved as I2 (Eq. 9). ��
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(a) (b)

Fig. 5. (a) The intersection of the symmetric planes with the 2-sphere is shown in
black. The yellow dots represent elements in the symmetric planes and in the domain
Δ. (b) The red dots represent the bijective reflections that generate certified Lipschitz
quaternions. (Color figure online)

3.3 Conjecture on Bijectivity for Digitized Reflections
and Rotations

The three last propositions are the base for the following conjecture.

Conjecture 2. The characterisation of 3D bijective digitized reflections is the
extension of 2D bijective digitized reflections: a 3D digitized reflection is bijective
if and only if it can be expressed with one of the normal vectors presented in
Propositions 3, 4, and 5 or its octahedral symmetry.

Any rotation is the product of two vectors in geometric algebra of R3. More-
over, it is possible to generalize the conjecture to all the 2-sphere using the octa-
hedral symmetry and the planes π1, π2, π3. The extension leads to all certified
Lipschitz quaternion; this naturally allows to extend Conjecture 2.

Conjecture 3. Any bijective digitized rotation in 3D can be defined as the com-
position of two (conjectured) bijective digitized reflections.

4 Approximation with a Bijective Digitized Reflection

As seen in Fig. 2, the angular distribution of bijective digitized transformation
is sparse. If our conjectures are valid, there would be a need to propose approx-
imation methods for arbitrary angles. The idea of this section is to extend the
approximation algorithm presented in [3] to R

3 and approximate any digitized
reflection with its nearest bijective one. First, let us consider the set of conjec-
tured bijective digitized reflection as

Bkmax
= {Um̃ | m̃ = λ(1 − μ)ke1 + μ(1 − λ)ke2 + (k + 1)e3,

m̃ = λ(1 − μ)e1 + μ(1 − λ)e2 + (2k + 1)e3,
m̃ = (k + 1)e1 + ke2 + (2k + 1)e3,
m̃ = 1e1 + (2k + 1)e2 + (2k + 2)e3,
λ, μ ∈ {0, 1}, λ + μ = 1, k ∈ N

∗, k ≤ kmax

}

.
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(a) (b)

Fig. 6. Approximation of two digitized reflections, the normalized normal vector is
shown with green dot, bijective normal vectors are shown with red dots and nearest
bijective digitized reflection is shown in blue. The nearest symmetry plane is the y = 0
plane in (a) and z = x + y plane (b). (Color figure online)

for a given kmax ∈ N
∗. We present here a straightforward way to approximate

any digitized reflection Umi with a bijective digitized reflection Um̃ of Bkmax
for

a given kmax such that
arg min

Um̃∈Bkmax

d(m̃,mi) (10)

where d(a,b) is the angular distance between two vectors a and b.
For this, we look for m̃ that minimize the above objective on each plane of π1,

π2, π3. Let us consider that m̃ ∈ πj . Let Pj(mi) be the orthogonal projection
of mi into πj . Then the above optimization on πj consists in finding kj that
minimizes

arg min
Um̃∈Bkmax∩πj

d(m̃,Pj(mi)). (11)

Without loss of generality, let us consider the case j = 2 with writing Pj(mi)) =
(x, 0, z). Minimizing the above objective results in

k̃2 = arg min
˜k∈{� x

z−x 	,
 x
z−x �,� z−x

2x 	,
 z−x
2x �}

(∣
∣
∣
∣

k̃z − (k̃ + 1)x

(k̃ + 1)z + k̃x

∣
∣
∣
∣
,

∣
∣
∣
∣

z − (2k̃ + 1)x

x + (2k̃ + 1)z

∣
∣
∣
∣

)

.

Note that this latter computation requires a constant time operation and does
not depend on kmax. Furthermore, the changes to perform for other symmetry
planes merely consists in replacing x with y for the symmetry plane x = 0, and
z with y for the symmetry plane z = x+ y. The solution of (10) is the minimum
among the three solutions of (11) for j = 1, 2, 3. Figure 6 shows the computation
of the nearest bijective reflections of two non-bijective digitized reflections.
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5 Conclusion

We proposed conjectures on bijective 3D digitized reflections and rotations using
geometric algebra. We presented an extension of the certification of any Lips-
chitz quaternion to any digitized reflections whose normal vector has rational
components. We also showed how any reflection is approximated by the nearest
bijective digitized reflection. Proving the conjectures is certainly our perspec-
tive while the study of bijectivity is limited to the cubic lattice. Naturally, an
extension of the presented conjectures to other 3D Bravais lattice with geometric
algebra [7] is also expected as a perspective of this article. We are also interested
in adapting the presented conjectures to the case where the number of points of
Z
3 is finite; in this case there would be more bijective digitized reflections and

rotations.
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Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 248–259. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30503-3 19

11. Perwass, C.: Geometric Algebra with Applications in Engineering, Geometry and
Computing, vol. 4. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
540-89068-3

https://doi.org/10.1007/978-3-030-14085-4_1
https://doi.org/10.1007/978-3-030-76657-3_17
https://doi.org/10.1007/978-3-030-76657-3_17
https://doi.org/10.5281/ZENODO.3635774
https://doi.org/10.5281/ZENODO.3635774
https://zenodo.org/record/3635774
https://doi.org/10.1007/978-94-009-4728-3_2
https://doi.org/10.1007/978-94-009-4728-3_2
https://doi.org/10.1007/978-3-540-30503-3_19
https://doi.org/10.1007/978-3-540-89068-3
https://doi.org/10.1007/978-3-540-89068-3


Conjecture on the Characterisation in 3D 53

12. Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijectivity certification of 3D
digitized rotations. In: Bac, A., Mari, J.-L. (eds.) CTIC 2016. LNCS, vol. 9667,
pp. 30–41. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39441-1 4

13. Pluta, K., Roussillon, T., Cœurjolly, D., Romon, P., Kenmochi, Y., Ostromoukhov,
V.: Characterization of bijective digitized rotations on the hexagonal grid. J. Math.
Imaging Vis. 60(5), 707–716 (2018)

14. Roussillon, T., Coeurjolly, D.: Characterization of bijective discretized rotations
by Gaussian integers. Research report, LIRIS UMR CNRS 5205 (2016)

https://doi.org/10.1007/978-3-319-39441-1_4


Complementary Orientations
in Geometric Algebras

Leo Dorst(B)

Computer Vision Group, University of Amsterdam, Amsterdam, The Netherlands
l.dorst@uva.nl

Abstract. Oriented elements are part of geometry, and they come in
two complementary types: intrinsic and extrinsic. Those different ori-
entation types manifest themselves by behaving differently under reflec-
tion. Dualization in geometric algebras can be used to encode them; or
vice versa, orientation types inform the interpretation of dualization. We
employ the Hodge dual, to include important algebras with null elements
like PGA. Oriented elements can be combined using the meet operation,
and the dual join (which is here introduced for that purpose). Software
written to process one orientation type can be employed to process the
complementary type consistently.

1 Oriented Geometry

In many applications of geometry, it makes sense to consider the geometric prim-
itives as being oriented. In ray tracing, for instance, the rays are lines oriented
in the direction of their propagation, and they interact with oriented surfaces
which bound the interior of shapes. In mechanical motions, axes have a sense
of turning – clockwise or counter-clockwise. There is thus a need for an algebra
that computes consistently with such orientations.

However, many of the frameworks for geometric computation (such as ‘homo-
geneous coordinates’) are based in the mathematics of projective geometry, which
traditionally neglects scalar factors independent of sign. Stolfi [1] was among the
first to reintroduce signs in his thesis-based book ‘Oriented Projective Geom-
etry’. The rich illustrations of the various mathematical models, which were
clearly meant to clarify, ultimately perhaps obscured the algebraic structure;
the framework was never adopted universally.

In the last few decades, the formalization of geometric computations has a solid
foundation in geometric algebra (or Clifford algebra) [2,3], with its ability to have
not only subspaces as elements of computation (in a Grassmann-algebra man-
ner), but also the ability to transform them universally with versors (represent-
ing orthogonal transformations), projection operators, etc. By choosing appropri-
ate representation spaces with suitable metrics, this unifying framework can use
versors to model changes of d-dimensional attitude (in the GA of directions Rd),
Euclidean motions (in the plane-based PGA Rd,0,1 [4,5]), conformal transforma-
tions (in the conformal CGA Rd+1,1 [2,6]), 3D projective transformations (in the
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3D line algebra R3,3 [7]), and more. However, also in geometric algebras the con-
sistent processing of orientational aspects has been mostly neglected.

There are actually two complementary types of orientation we want to rep-
resent. A line in 3D, for instance, can be oriented ‘along’ (as in linear motion
and momentum) or ‘around’ (using the line as an axis). We will call these an
‘intrinsic’ and ‘extrinsic’ orientation, respectively. Both are needed: when mod-
elling 3D dynamics in PGA [4,8], the extrinsic line of an axis or rate is encoded
as a 2-blade and the intrinsic line of a force or momentum as a dual 2-blade.

This paper aims to make orientation treatment integral to geometric algebras,
by relating it directly to the common operation of (Hodge) dualization.

2 Two Complementary Types of Orientation

Let us consider some simple situations which we may want to represent in our
algebraic framework, see Fig. 1. Actually doing so using current geometric alge-
bras will convey a computational paradox in the next section.

Fig. 1. Lines of complementary orientations reflect differently in a mirror.

In Fig. 1 top left, a plane is given, and an oriented line perpendicular to
it. This line was made as the join of two points (not indicated), and therefore
by the order of these points acquires the indicated orientation direction ‘along’
the line, which we will call intrinsic orientation. When we reflect the points
in the indicated plane, the ordered line based on them acquires the opposite
orientation. If we had instead considered an ordered line parallel to or even in
the reflection plane (Fig. 1 bottom left), that line’s orientation would have been
preserved after reflection.

In Fig. 1 top right, we see an ‘axis line’ perpendicular to the reflection plane.
Let us consider that extrinsically oriented line as having been constructed as
the intersection of two orthogonal oriented planes (orthogonal to the reflection
plane and to each other, not indicated). The two planes might have been ori-
ented by labeling their ‘front’ and ‘back’. Their meet line acquires an extrinsic
orientation ‘around’ itself, by the ordering of the two planes whose meet it is
(by the orientation of the shortest rotation angle that would achieve coincidence
of the planes). This time, when we reflect the situation in the reflection plane,
the two orthogonal planes remain unchanged (if extrinsic) or both swap signs
(if intrinsic), and so their meet line after reflection is the same as before. By
contrast, if we have a meet line parallel to the reflection plane (Fig. 1 bottom
right), its orientation changes sign. It should, because when used as a rotation
axis, the sense of rotation is reflected in the mirror.
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That is how oriented geometry works in 3D. There are two types of lines: join
lines (sometimes called ‘spears’) and meet lines (often called ‘axes’), and they
are both useful. For instance, when encoding 3D classical mechanics, join lines
are local orbits or momenta of points, driven by motions that specified by meet
line axes (finite for rotations, ideal for translations) [8]. The two types of lines
show different reflection behavior, so they are geometrically and algebraically
different.

Similarly, there are two types of planes: the ones with inside/out specification
have an extrinsic orientation like , and the ones made as the join of points
have an intrinsic orientation like . The former may be used to denote local
inside/outside of a planar patch of a composite object, the latter for handedness-
preserving local texture mapping.

3 A Representational Paradox

However, when we start encoding the situation in geometric algebra, we appear
to run into trouble. Let us take the simplest GA model, the algebra of directions
3D DGA R3 (we call it DGA since it is a model of reality used to encode
directions in 3D space; though its structure is simply that of the algebra R3;
we want to focus on how it is used to model reality). To use it to codify the
phenomena of Fig. 1, we should choose our origin at the point of intersection of
the reflection plane and the (orthogonal or parallel) line considered.

In 3D DGA, reflection of a vector x in a plane with normal n is done by
x �→ − nxn−1 [2]. This is simply the conversion to geometric algebra of the
familiar reflection formula x �→ x− 2x·n

n·nn of linear algebra, reflecting a vector
x in an origin plane with normal vector n (converted to GA by replacing the
dot product with the geometric product through a · b = (ab + ba)/2).

So we apparently use vectors in DGA to represent planes through the origin
by their normal vector n. Therefore in this simple model, it makes sense to con-
sider the reflected x also to be the normal vector of a plane; that gives a single
type of algebraic vector element which can be consistently interpreted geomet-
rically in DGA. For multiple reflections by a versor V , made as the geometric
product of a number of |V | vectors, applied to an element X of grade |X|, the
sandwiching formula becomes:

X �→ V [X] ≡ (−1)|X||V | V X V −1. (1)

The derivation is immediate from the vector reflection formula, see e.g. [3].
Although here briefly motivated by DGA, Eq. (1) is actually the general formu-
lation in any GA. Only the geometric semantics of the algebraic vectors differs
per model; the algebra is always the same. Moreover, any geometric algebra has
a wedge product ∧; it geometrically represents the intersection of planes, so we
refer to it as the meet. It produces k-blades from vectors. There is also a join
operation ∨, but we will be obliged to modify it; more about that later in Sect. 8.
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The sign occurring in Eq. (1) is the natural sign one expects for multiple
reflections of elements, in the normal representation of extrinsically characterized
mirrors. Note that for even versors (the ‘motions’ of the algebra), there is no
nett sign change: orientations can only swap under nett reflection.

To be concrete, let us provide 3D DGA with an orthonormal basis of planes
{e1, e2, e3}. We take as mirror the plane e3. The two orthogonal planes e1 and
e2 meet in the extrinsically oriented line e1 ∧ e2 ≡ e12 of Fig. 1(top right). If
we reflect the situation, Eq. (1) gives e1 �→ e3[e1] = −e3e1e3 = e1 and hence
the plane e1 is preserved. The plane e2 is preserved as well, and therefore so
is the meet line e12; we can of course also compute that preservation directly
as e3[e12] = e3 e12 e3 = e12. A meet line parallel to the mirror, such as e23 of
Fig. 1(bottom right) reflects to e23 = e2 ∧ e3 �→ e2 ∧ (−e3) = −e23, just as we
motivated geometrically.

Now consider an intrinsically oriented line, geometrically coinciding with e12,
see Fig. 1(top left). How are we going to represent it? The element e12 is no
longer available, and moreover exhibits the wrong reflection behavior: we want
a reflection in the e3-plane to change the sign of that intrinsic line in the e3-
direction. The element e3 reflects properly e3 �→ e3[e3] = −e3e3e3 = −e3, but in
DGA it already has the meaning of (the normal vector of) a plane. So there is no
element available, yet such a ‘join line’ is an oriented element that we would like
to compute with. Somehow, we need to extend DGA to truly become the algebra
of oriented directions, with both complementary types incorporated. DGA by
itself does not seem big enough, since we have run out of algebraic elements.

4 Dualization

Like any geometric algebra, DGA has a dualization operation � (here geomet-
rically corresponding to ‘taking the orthogonal complement’). This dualization
implies that an element of the algebra can be written in two ways, with possi-
ble consequences for its geometrical interpretation. For instance, the vector e3
represents the externally oriented plane ; but algebraically, e3 = �e12, so the
element e12 could also be seen as characterizing geometry related to that plane.
To consistently identify that geometrical interpretation, we should be guided by
how algebraic elements and their duals transform.

We first derive how ‘dual’ elements reflect differently than ‘direct’ elements
under a versor V . The difference is a sign that is related to the parity of the
versor:

V [�X] = (−1)|V | � (V [X]). (2)

The proof should be straightforward once we have defined the dualization. Any
linear dualization works in principle, but let us focus on the Hodge dual. The
Hodge dual � is a linear operation, and therefore can be defined for arbitrary X
by decomposing it on an orthogonal basis of blades X =

∑
i XiEi, and specify-

ing how dualization works on the orthogonal basis elements. (Here ‘orthogonal
basis’ means that the basis blades are composed from a basis of orthogonal basis
vectors.) We choose an implicit definition:
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Hodge � on orthogonal basis element : Ei (�Ei) ≡ I, (3)

where I is the pseudoscalar of the algebra; a chosen sign for the pseudoscalar
therefore fixes the sign of the Hodge dual. For d-D DGA Rd, we use I = Id ≡
e1e2 · · · ed; for d-D PGA Rd,0,1, we use I = e0Id. Since in a general algebra, Ei

may be null, we could not simply define �Ei ≡ E−1
i I instead of Eq. (3).

Algebraically, Eq. (3) states that, for any orthogonal basis element Ei (like
e01in 3D PGA), the dual contains ‘the other indices’ (like e23 in 3D PGA),
and possibly a permutation sign. For a general X =

∑
i XiEi we simply have

�X =
∑

i Xi � Ei, since dualization is defined to be linear.
With that definition of the Hodge dual, we can attempt to prove Eq. (2) first

for the basis elements, then for general X. From Eq. (1), a versor V applied
as sandwich to the pseudoscalar gives V [I] = (−1)|V | I, the factor being the
determinant of the map V []. We can write I = Ei � Ei which transforms
to V [I] = V [Ei]V [�Ei]. But we also have I = V [Ei] � V [Ei] by the defini-
tion of the Hodge dual for the element V [Ei]. We thus find V [Ei] � V [Ei] =
(−1)|V |V [Ei]V [�Ei]. If Ei is invertible, then so is V [Ei] and we can deduce that
V [�Ei] = (−1)|V | � V [Ei]. By linearity, this then extends from Ei to general X,
giving Eq. (2). �

Note that the last part of this derivation does not work for null elements,
even though the Hodge dual is well-defined for them. Such null elements occur
in very useful algebras like PGA, so we need to be able to handle them. Our
solution is to postulate Eq. (2) for all intrinsic elements, as the map V [] by which
intrinsic elements should transform:

V [�X] ≡ (−1)|V | � V [X]. (4)

The right hand side is always well defined, since the versor acts on a direct
element X of the algebra.

With this equation for the transformation of Hodge duals, we can perform
transformations on them without getting out of the algebra – there is thus no
practical need to introduce a dual space to store the dual elements. You do need
to know whether an element is to be considered as dual, though.

Applying Eq. (4) requires retrieving X from �X. This is the Hodge undual-
ization, which generally differs from dualization by a possible sign:

�−1 X = (−1)(n−1)|X| � X, (5)

where |X| denotes the grade of X, and n the dimension of the representational
space (so for d-D PGA Rd,0,1 we have n = d + 1). For an orthogonal-basis blade
Ek of grade k: (�Ek)(�(�Ek)) = I = Ek(�Ek) = (−1)k(n−k)(�Ek)Ek, so that
�−1Ek = (−1)k(n−k) � Ek = (−1)k(n−1) � Ek. Equation (5) for general X then
follows by linearity. �

It is now possible to tie duality to the objective geometric property of orien-
tation type, for we observe that the sign in Eq. (4), which depends on whether
V [] is a nett reflection, is very reminiscent of the difference in behavior between
intrinsic and extrinsic orientations of geometric primitives observed in Fig. 1.
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The central idea of this paper is that (Hodge) duals are encoding the comple-
mentary orientations within the existing structure of any geometric algebra.

5 Complementary Orientation by Hodge Dualization

Let us illustrate the dual relationships by an example in 3D DGA: consider the
reflection in e3, so that V = e3. The orthogonal plane e3 changes sign under
this reflection in e3 , since e3[e3] = −e3, which is . The element �e12 is
algebraically equivalent to e3, since �e12 = e3. And indeed, �e12 also changes
sign: e3[�e12] = e3(�e12)e3 = − � (e3e12e3) = − � e12.

At this point, we may not quite know how to interpret �e12, other than that
it has a geometry related to the extrinsic line e12 ; should we view �e12 as the
intrinsic line , or as the orthogonal intrinsic plane ? But we have just seen
that of the two choices to interpret �e12, the intrinsic line changes sign under
reflection in e3, while the geometry shows that is unchanged. This suggests
that �e12 should be interpreted as the intrinsic line . That is indeed confirmed
by noting that e3 and �e12 also behave identically under the other two
reflections in the planes e1 and e2 : they are both invariant.

Similarly, the dual rewriting of the algebraic element e12 is the equivalent
�e3, and this should be interpreted as the intrinsic plane : they both change
sign under an e1-reflection or e2-reflection, and are invariant under e3-reflection.

We thus find that dual rewriting of algebraically equivalent elements produces
geometrical objects with identical symmetries, and that they can be interpreted
as being of the complementary type of orientation. More precisely, one algebraic
element A can be parametrized in two different ways: direct as A, giving the
extrinsic orientation as geometric interpretation (this was the implicit under-
standing in most earlier texts); and dually as A = �B, giving the intrinsically
oriented version of a geometric element B.

In Fig. 2 we suggest an iconic visualization of the various elements of 3D
DGA and 3D PGA; this helps guide a more intuitive application of the algebras.

6 Visualization of Oriented 3D DGA Primitives

The algebra 3D DGA has extrinsic elements that are normal directions (of vary-
ing dimensions) at one location, which we will call the origin.

Planes: The extrinsically oriented coordinate planes are the basis elements of
this algebra, and they are visualized as e1 and e2 and e3 . Their duals,
the intrinsically oriented planes, are �e1 and �e2 and �e3 .

Lines: The intersection of two coordinate planes produces the corresponding
extrinsically oriented meet line. This gives e23 and e31 and e12 . Their
duals are the intrinsically oriented lines �e23 and �e31 and �e12 .
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Point: 3D DGA has only one point, the meet e123 of the coordinate planes. It
is extrinsically oriented, which we may indicate by a right-handed screw symbol
like e123 . Its dual �e123 is that same origin point, but now with an intrinsic
orientation. We denote it by �e123 , with open point and open arrowhead.

Volume: At the other end of the blade spectrum, there is the element 1. It
represents the externally oriented volume element, which we tentatively denote
by an un-anchored right hand screw symbol 1 . Its dual is the intrinsically
oriented volume element, which we could denote by �1 , with open arrowhead.

1

e1 e2 e3

e23 e31 e12

e123

�1

�e1 �e2 �e3

�e23 �e31 �e12

�e123

e0123

e032 e031 e021

e01 e02 e03

e0

�e0123

�e032 �e012 �e021

�e01 �e02 �e03

�e0

Fig. 2. Left: The oriented basis elements of 3D DGA, the algebra of normal directions
of origin planes. Right: The additional oriented elements for 3D PGA, the algebra of
general planes. The gray sphere denotes the ideal plane at infinity.

7 Visualization of Oriented 3D PGA Primitives

Since Euclidean motions can be represented as multiple reflections in offset
(hyper)planes, they form the versors of an algebra in which the vectors repre-
sent geometric hyperplanes. This is PGA (plane-based geometric algebra) Rd,0,1

[4,5]. It parametrizes (hyper)planes through their normal vectors as n − δe0,
similar to [n�, δ] in ‘homogeneous coordinates’. The PGA embedding consis-
tently includes Euclidean elements like offset lines and points, as meet and join
of multiple planes.

Since 3D PGA subsumes 3D DGA, the total visualization table is Fig. 2.

Lines and Their Duals: In 3D PGA, lines and their duals are rather straight-
forward to depict. The element e12 is the extrinsically oriented line , in PGA as
well as in DGA. It was equal to the dual �e3 in DGA, the intrinsically ori-
ented e3-plane. In PGA, e12 is equal to the dual �e03 (since e03e12 = e0123 = I),
which is an ideal join line at infinity. We will depict the ideal elements in grey;
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then the chosen icon of the intrinsically oriented ideal line �e03 clearly
encodes that its spatial oriented properties are similar to those of e12 .

Conversely, in 3D PGA e03 is algebraically equal to �e12. The ideal extrinsic
line e03 is the ‘ideal axis’ of a translation in the e3-direction, and we visualize
it as e03 (you can imagine how this ‘axis’ would act on a finite point in
the middle by translating it upwards). The dual line �e12 is intrinsic, and may
be depicted as (just as it is in DGA). Both e03 and �e12 clearly have
the same reflection symmetries in the non-ideal coordinate planes e1, e2, e3.
(There is no need to check reflection behavior in the ideal plane e0: since it is
not invertible, it cannot reflect: so Eq. (1) is not defined for it.)

Planes and Points: In 3D PGA, the 1-vector (a geometrical plane) is dual
to a 3-vector (a geometrical point). The exceptional ideal plane e0 has unusual
reflection properties: it is invariant under the reflection in any coordinate plane
e1, e2, · · · , and we may depict it as (it has an inward extrinsic orientation, as
you can see by taking the limit of an offset extrinsically oriented plane n−δe0 for
large δ). By contrast, its dual �e0 equals e123, the oriented point at the origin.
That acquires a minus sign under any reflection by Eq. (2). As in DGA, we depict
it as e123 , an origin point with a 3D screw-based orientation symbol.

The extrinsic coordinate plane e3 is visualized simply by its normal vector,
and its dual �e3 by the intrinsic orientation . This dual �e3 is algebraically
equal to �e3 = e021, and the question arises how we show depict the latter
element. Let us first see how it occurs geometrically.

Consider a point Z at location z = ze3, which is represented as Z = O+z I =
e123 + ze021 (see [8]). As z becomes large this tends to become e021. Thus e021
can be conceived as the oriented point at infinity in the positive e3-direction,
and we might depict it as , a solid point on the grey ideal plane. But under
reflection in the e3-plane, e3[e021] = −e3e021e3 = e021: it is invariant. That is
not at all what we expect from the visualization e021 under an e3-reflection!

Algebraically, the point Z reflects to e3[Z] = −e123 + ze021 = −(e123 −
ze021) = −(O−z I), which is a negatively oriented point at the reflected location
−z. From this, we understand why the direction e021 should indeed be invariant,
or this double negation would not work. Thus indeed the infinite e3-direction
should not change under e3-reflection; but the icon e021 does not convey this.

An algebraically more appropriate way of approaching e021 could be to write
e021 = e12 ∧ (−e0); this shows that e021 is the intersection of the extrinsically
oriented line e12 with the invariant ideal plane e0, and that it thus inherits
the symmetries of e12 . A fairly faithful depiction of that construction would
be e021 , but this does not convey the point-like nature of the element e021.

It is a dilemma. We propose to use the icon e021 , but with the understand-
ing that its reflection properties are those of e12 (and hence of �e3). Those are
strange: under an e3-plane reflection, e021 must be invariant, but under an
e1-reflection it should become its opposite −e021 . So be it.

The dual �e021 is an intrinsically oriented point at infinity. We depict it as ,
an open dot on the ideal plane. This actually has the same reflection symmetry
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as e3, and the intrinsic direction icon thus behaves as we would expect from
a 1-dimensional direction element: in an e3-reflection it becomes . Directions
are intrinsically oriented ideal elements.

Scalar and Pseudoscalar: The extreme elements of grade 1 and d + 1 of the
PGA algebra Rd,0,1 are less obvious (or helpful?) to visualize.

The geometric positively oriented d-volume represented by the algebraic ele-
ment 1 could be denoted by an unlocalized right-handed screw symbol, like in
3D, an unanchored version of the icon for e123 , as in DGA.

The geometric dimension of the pseudoscalar e0123 is one less than that of a
point. Such a geometric dimension of −1 is merely a scalar, so it could simply
be denoted by a sign for e0123 and for −e0123.

The dual volume �e0123 is algebraically identical to the element 1. We have
as yet no clear intuition of how an intrinsic signed number �e0123 should differ
from its extrinsic counterpart, so for now denote it in grey as ‘ ’.

8 The Dual Join

From PGA (hyper)planes as basic extrinsically oriented elements, we can con-
struct extrinsically oriented (hyper)lines, etc. by intersection. That geometric
intersection operation (actually, piece-wise linear intersection, see [3]) is per-
formed algebraically by the fundamental meet operation in any geometric alge-
bra, the extension of the anti-symmetric (Grassmann) product ∧ on the hyper-
plane vectors. When its arguments X and Y are transformed by a versor V , the
meet product transforms like an ‘outermorphism’:

V [X] ∧ V [Y ] = V [X ∧ Y ]. (6)

As we have seen, dual elements will play a role in our geometric modelling, so
we can wonder what the meet of duals of X and Y is. It may seem to make sense
to express the outcome again as a dual (see e.g. [3]). We then define this total
combination operation on X and Y as the join, denoted by X ∨ Y :

join: � (X ∨ Y ) ≡ �X ∧ �Y. (7)

However, when we look at a specific result, we find for the join of two points (see
[8]): e123 ∨ (e123 + e1e0123) = e123 ∨ e032 = �−1(e0 ∧ e1) = �−1e01 = e23. Thus
the join line connecting the two points separated in the positive e1-direction
is represented as an extrinsically oriented element e23 . In the context of
oriented geometry, we would much rather have the result of joining two points
in an intrinsic form, oriented intrinsically from the first point to the second,
since that has the correct transformation symmetries. As we have seen, this is
the dual �e23 of the extrinsic result. So for the purposes of oriented geometry,
we would rather define a new join � , which we could dub the dual join, through:

dual join: X �Y ≡ �X ∧ �Y. (8)
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Now the result of this dual join of the two points above is �e23 , the desired
intrinsically oriented element. Note that the dual join is indeed the dual of the
join: X �Y = �(X ∨ Y ), hence its suggested name.

The dual join transforms like an outermorphism under versors:

V [X �Y ] = V [�X ∧ �Y ] = V [�X] ∧ V [�Y ] = · · · = V [X]�V [Y ]. (9)

By contrast, the classical join of Eq. (7) contains an odd number of dualizations,
and thus transforms as V [X ∨ Y ] = (−1)|V | V [X] ∨ V [Y ] (see [5]).

The classical join is associative, but the dual join is somewhat awkward in
this respect. It is not associative in the explicit form given for two arguments: you
cannot simply apply that formula twice to compute X �Y �Z as (X �Y )�Z.
Rather, the extension of the dual join to more than two arguments should be
done via its duality to the associative classical join:

X �Y �Z ≡ �(X ∨ Y ∨ Z) = �X ∧ �Y ∧ �Z.

Example: The PGA points Q0 = O = e123, Q1 = O + e1I = e123 + e032
and Q2 = O + e2I = e123 + e013 classically join (see [5]) to form an extrinsic
plane: Q0 ∨ Q1 ∨ Q2 = �−1(�Q0 ∧ �Q1 ∧ �Q2) = �−1(�e123 ∧ �e032 ∧ �e013) =
�−1(e021) = e3 . By contrast, the dual join Q0 �Q1 �Q2 = �Q0∧�Q1∧�Q2 =
�e3 is the desired intrinsic plane �e3 .

We adopt the meet and the dual join as our preferred combination operations
on oriented geometric elements. The meet preserves the orientation type, the
dual join switches to the complementary type.

9 The Four Sibling Relationships

We now have two complementary ways of looking at oriented elements (intrinsic
and extrinsic), and two dually related combination operations (meet and dual
join) to produce new elements from a pair of existing oriented elements, be they
intrinsic or extrinsic. These 2 × 2 possibilities combine to produce four closely
related structural connections in oriented geometric algebra. To be specific, we
take the equation e3 ∧ e1 = e31 and relate it to four associated expressions, by
dualization of arguments and dualization of the combination operator.

Meeting Extrinsics: In the normal vector interpretation, the equation e3 ∧
e1 = e31 states how a line is made from the meet of two planes:

(10)

The resulting bivector e31 can be used to construct a rotation versor around the
extrinsic axis e31 by exponentiation as exp(−e31φ/2).
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Meeting Intrinsics: Duality � in 3D DGA allows us to rewrite e3 = �e12,
e1 = �e23 and e31 = �e2, so Eq. (10) can also be read as:

(11)

As the sketch shows that this retrieves the usual intuitive construction in the
algebra of direction vectors (sometimes called VGA), with the usual outer prod-
uct, to make an oriented bivector from the outer product of two vector directions.

Dual-Joining Extrinsics: We apply the dual join operation to rewrite Eq. (11:

(12)

This denotes how two extrinsically oriented lines can be dual-joined to become
an intrinsic plane, with an orientation determined by the smallest rotation.

Dual-Joining Intrinsics: Finally, we rewrite Eq. (12) in dual form:

(13)

This shows how two intrinsic planes dual-join to form an extrinsic line, with the
orientation again determined naturally by the smallest rotation.

The combination of different orientation types in 3D DGA mostly yields
trivial equalities like and

. We may investigate the geometric significance of
such mixed combinations later, but not in this paper.

10 Computing with Complementary Orientations

The regular way of computing with PGA is based in the extrinsic ‘planes as
vectors’ paradigm, which can naturally construct Euclidean motion versors as the
exponentials of extrinsic bivectors (the ‘axes’). In previous texts on PGA, that
extrinsic orientation was assumed, often implicitly (though [8] briefly mentions
the issue). The same holds for the other algebras: some orientation is implicitly
assumed, often only to be gathered from how an author defines the sandwiching
action for a single vector (the sign in their equivalent of our Eq. (1)).

We would of course also like to transform those new intrinsically oriented
elements of the form �B, since they are useful in modelling reality. This is simple,
since Eq. (4) tells us how to revert to a corresponding transformation on an
extrinsic element B:

V [�B] = (−1)|V | � V [B]. (14)

There is therefore no real need to develop separate software to implement the
intrinsic elements, including endowing them with their own sandwich product.
But beware: using Eq. (14) is not the same as evaluating the extrinsic element
A algebraically equivalent to �B, transforming that, and rewriting in dual form!
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As a PGA example, using the reflector p = e3 − δe0 (the plane offset by
δ in the positive e3-direction), on the extrinsic plane e3 gives: e3 �→ p[e3] =
−(e3−δe0) e3 (e3−δe0) = −e3+2δe0 = −(e3−2δe0), which is the opposite plane
−e3 offset by 2δe3 from the origin. For the intrinsic �e3 we find by Eq. (14):
�e3 �→ p[�e3] = − � p[e3] = �(e3 − 2δe0), the intrinsic plane offset by 2δe3.
However, had we naively evaluated �e3 = e021, transformed that and rewritten
in dual form, we would have found: p[e021] = −(e3 − δe0) e021(e3 − δe0) =
−e021 = − � e3; which is clearly wrong: the null elements wreak havoc and even
the orientation sign is incorrect.

11 Conclusion

We have found that a single copy of a geometric algebra can support the repre-
sentation of both extrinsic and intrinsically oriented elements. Those two com-
plementary orientation types are related by dualization, and using the Hodge
dual allows us to represent the duals within the original algebra. Since intrinsic
elements transform differently than extrinsic elements under reflections, we do
need to tag whether an element is intended to be used dually; if so, the correct
reflection follows Eq. (4), so it may take an extra minus sign relative to the stan-
dard extrinsic sandwiching Eq. (1). For even versors, there is no sign difference
between the complementary orientation types, which are both just moved along.

We used the Hodge dual throughout, since we have found algebras with null
elements and a null pseudoscalar useful in applications; notably the plane-based
PGA encoding Euclidean motions. The fundamental structure that supports
complementary orientations can however be carried by any form of dual; we
may soon consider employing the Poincaré dual [9] instead.

We found that elements of the same orientation type can be combined to
produce an element of the same type by the meet operation, or of the comple-
mentary type by the dual join. That dual join is exactly dual to the join usually
introduced in treatments of geometric algebras that ignore orientation types.

By courtesy of the (Hodge) dual, complementary orientation types can be
accommodated in existing geometric algebras. This makes them complimentary
as well as complementary; so you might as well use them!

Acknowledgement. My sincere thanks to Steven De Keninck for catching a major
oversight in the computational mapping, leading to refinement of Eq. (4).

References

1. Stolfi, J.: Oriented Projective Geometry, A Framework for Geometric Computations.
Academic Press (2014)

2. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Reidel (1984)
3. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An

Object-oriented Approach to Geometry. Morgan Kaufman (2009)
4. Gunn, C.: Geometry, kinematics, and rigid body mechanics in Cayley-Klein geome-

tries. Ph.D. dissertation, TU Berlin (2011)



66 L. Dorst

5. Dorst, L., De Keninck, S.: Guided tour to the plane-based geometric algebra PGA
(version 2.0) (2022). https://bivector.net/PGA4CS.html

6. Anglès, P.: Construction de revêtements du groupe conforme d’un espace vectorial
muni d’une “métrique” de type (p, q). Annales de l’Institut Henri Poincaré, vol.
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Abstract. We introduce a new conic fitting algorithm using Geomet-
ric Algebra for Conics (GAC) that not only minimises the overall dis-
tance to a data set, but also causes the fitted conic to pass through pre-
scribed waypoints. Moreover, the expression for points at infinity (also
called improper points) in terms of GAC is derived; hence, the use of
the improper waypoints in the conic fitting problem is enabled. Finally,
a MATLAB implementation of the fitting algorithm and experimental
results based on custom data sets are included.

Keywords: conic fitting · geometric algebra · Clifford algebra · proper
point · point at infinity · ideal point · improper point · waypoint

1 Introduction

Geometric Algebra for Conics (GAC), originally introduced in [9], and conse-
quently elaborated in [4], has already proven to be a useful tool for conic manip-
ulation, [1], and for elementary conic fitting, [5], as well as conic fitting with
additional geometric constraints such as axial alignment or location of the conic’s
centre at the origin of the coordinate system, [7,8].

However, other additional geometric constraints imposed on a fitted conic can
be thought of. For example, we may demand that a conic fitted among data points
should also pass through a given set of waypoints. Such a fit can be helpful, e.g.
when computing the conical trajectories of dynamical systems numerically; at the
beginning, some points of a trajectory are found and, afterwards, the conic is fitted
among them, as in [2]. Nevertheless, the conic fitted by basic algorithms cannot
ensure the fulfillment of the initial condition, i.e. that the resulting conic will pass
through the corresponding initial point. As will be shown in Sect. 4, conic fitting
through given waypoints can be performed using GAC in a way similar to the
original GAC fitting algorithm described in [5] and briefly recalled in Sect. 2.
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In addition, unlike an ellipse, a parabola and a hyperbola also pass through
one, respectively two, points at infinity, also called ideal points or improper points.
Hence, such points can also be considered waypoints in the presented conic fitting
problem. Through the use of improper points in the real projective plane RP2, we
can easily extend the GAC embedding of points in the planeR2 (accordingly called
proper points) to express the improper points in terms of GAC and incorporate
the use of improper points into the derived conic fitting algorithm.

Let us note that rigorous proofs of statements are mostly omitted throughout
the paper, as the focus is placed on the results.

2 Fitting in GAC – Without Given Waypoints

GAC constitutes a Clifford algebra Cl(5, 3) with embedding C : R2
→ R

5,3 of a
point x = xe1 + ye2 of the plane R

2 defined as

C(x, y) = n̄+ + xe1 + ye2 +
1
2
(x2
+ y2)n+ +

1
2
(x2
− y2)n− + xyn×. (1)

Consequently, the inner product null space (IPNS) representation of a general
conic section Q in GAC is given by

QI = v̄×n̄× + v̄−n̄− + v̄+n̄+ + v1e1 + v2e2 + v+n+. (2)

Also, we can represent a point embedded into GAC (using operator (1)) in
vector form as

PI=
(
0 0 1 x y 1

2 (x2
+ y2) 1

2 (x2
− y2) xy

)T (3)

and a GAC conic section (2) as a vector

QI=
(
v̄× v̄− v̄+ v1 v2 v+ 0 0

)T
. (4)

Moreover, an associated bilinear form of the inner product of vectors in GAC
is given by the matrix

B =

⎛

⎜
⎝

03×3 03×2 −I3
02×3 E2 02×3
−I3 03×2 03×3

⎞

⎟
⎠ , where I3 =

⎛

⎜
⎝

0 0 1
0 1 0
1 0 0

⎞

⎟
⎠ and E2 =

(
1 0
0 1

)

. (5)

Hrdina, Návrat and Vaš́ık, [5], define a conic fitting problem in terms of GAC
as follows: For a conic represented by a vector Q of the form (4) and for ND given
data points represented by vectors Pi of the form (3), we assume the objective
function to be given by

Q↦
∑

i

(Pi · Q)2, (6)
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where · denotes the inner product between vectors in GAC. The conic best fitting
the points with respect to this function is represented by the Q that minimises
this function. To avoid the geometrically meaningless minimum Q=0, the authors
of [5] consider the natural normalisation constraint

Q2
= 1. (7)

Using the matrix of the bilinear form (5), the objective function (6) then
reads

Q↦
∑

i

(PiBQ)2 =
∑

i

QTBPiP
T
i BQ =QTPQ,

and thus, it is a quadratic form on R
5,3 with the matrix

P =
∑

i

BPiP
T
i B.

To formulate the solution to the optimisation problem (6), (7), it is advan-
tageous to decompose the matrix P into the following blocks:

P =

⎛

⎜
⎝

P0 P1 0
PT
1 Pc 0
0 0 0

⎞

⎟
⎠ ,

where P0 is a 2 × 2 matrix, P1 is a 2 × 4 matrix and Pc is a 4 × 4 matrix.
The subscript c denotes that this block corresponds to the CRA part in GAC.
Similarly, Bc denotes the middle 4 × 4 part of B, (5), and it coincides with the
matrix of the inner product in CRA, [3]. Using the defined vectors and matrices,
the desired solution is acquired according to the following proposition.

Proposition 1. The solution to the optimisation problem (6), (7) for conic fit-
ting in GAC is given by Q =

(
wT vT 0

)T
, where v =

(
v̄+ v1 v2 v+

)T is an
eigenvector corresponding to the minimal non-negative eigenvalue of the opera-
tor

Pcon =Bc(Pc − PT
1 P −10 P1)

and w =
(
v̄× v̄−

)T is a vector acquired as

w = −P −10 P1v.

The proof of Proposition 1 and the corresponding algorithm implemented in
MATLAB together with the experimental results can be found in [5,7,8].
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3 Proper and Improper Points in GAC

To shed light on the meaning of improper points, let us in short recall the concept
of the real projective plane RP

2, [11]:
Let E = (PE,LE, IE) be the usual Euclidean plane with points PE = R

2, lines
LE, and the usual incidence relation IE ⊆ PE × LE of the Euclidean plane. We
can easily extend the Euclidean plane to the real projective plane by including
elements at infinity.

Now, for a line l, let us consider the equivalence class [l] of all the lines that
are parallel to l. For each such equivalence class, we define a new point p[l] that
serves as an improper point at which all the parallels contained in the equivalence
class [l] intersect. Furthermore, we define one line at infinity l� on which all the
points p[l] lie. Consequently, the real projective plane can be defined as follows:

Definition 1. Real projective plane RP
2 is a triple (P, L, I), where

• P = PE ∪

{
p[l]|l ∈ LE

}
,

• L = LE ∪ l�,
• I = IE ∪

{
(p[l], l)|l ∈ LE

}
∪

{
(p[l], l�)|l ∈ LE

}
.

A sketch of three distinct bundles (equivalence classes) of parallel lines can
be seen in Fig. 1—on the left, we can see the lines depicted in plane R

2; on the
right, we can see the situation in RP

2: all the parallels from one equivalence
class intersect in one common improper point on the line at infinity, which can
be imagined as a circle with an infinite radius where the antipodal points are
assumed to be identical (so every bundle of parallels really intersect in one point,
not in two points, as it would seem at first glance).

Fig. 1. Parallel lines and their common improper points in RP
2 (taken from [11])

In contrast with the proper points, the improper points are not part of the
plane R

2, so an improper point is usually depicted using the direction (vector)
of the parallel lines that meet at it, as illustrated in Fig. 2.
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Having a notion of improper points, we can state that a parabola has one
improper point corresponding to the direction of its axis of symmetry, while
a hyperbola has two improper points in the directions of its asymptotes (see
Fig. 2).

Fig. 2. Improper points of parabola and hyperbola

3.1 Homogeneous Coordinates

The concept of RP2 allows us to distinguish between proper and improper points
and, at the same time, to carry out computations with them as if they were not
different at all. Using homogeneous coordinates, every point of RP2 (proper or
improper) can be represented as a line in R

3 according to the following definition.

Definition 2. Let x = (x, y),x ∈ RP2, be a proper point, then its homogeneous
coordinates are

x = k(x, y, 1), k ∈ R ∖ {0},

while the homogeneous coordinates of an improper point x� = (s, t),x� ∈ RP2,
are

x� = k(s, t, 0), k ∈ R ∖ {0}.

Note that the triple (0, 0, 0) does not represent any point of RP2.

Remark 1. While the homogeneous coordinates (a, b, c) represent the same point
in RP

2 as a triple k(a, b, c) for every non-zero k, it is very advantageous to
take k = 1 when assigning homogeneous coordinates to the points of the real
projective plane. For the sake of computational simplicity, we will assume that
the homogeneous coordinates of a proper point x = (x, y) and of an improper
point x� = (s, t), respectively, are given by the mapping

(x, y)↦ (x, y, 1),
(s, t)↦ (s, t, 0).
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3.2 Projectivisation of GAC

With homogeneous coordinates in hand we will show it is possible to use GAC
for the representation of proper and improper points alike. Such a representation
can be achieved by extending the domain of the point embedding C : R2

→R
5,3

(see (1)) to RP
2 in the following way.

Definition 3. Using the embedding C : R2
→R

5,3 of the form (1), we define the
projective embedding CP : RP2

→ R
5,3 of a point p = (a, b, c), (a, b, c) ≠ (0, 0, 0),

in the real projective plane RP
2 as

CP(a, b, c) = c2n̄+ + ace1 + bce2 +
1
2
(a2
+ b2)n+ +

1
2
(a2
− b2)n− + abn×. (8)

Corollary 1. Since homogeneous coordinates of a proper point x = (x, y) are
(x, y, 1), it follows that the projective embedding CP, (8), maps a proper point
into GAC in the same way as the embedding C:

CP(x, y, 1) ≡ C(x, y) = n̄+ + xe1 + ye2 +
1
2
(x2
+ y2)n+ +

1
2
(x2
− y2)n− + xyn×.

On the other hand, an improper point x� = (s, t) with homogeneous coordi-
nates (s, t, 0) is mapped by CP in a simpler way:

CP(s, t, 0) =
1
2
(s2 + t2)n+ +

1
2
(s2 − t2)n− + stn×. (9)

Consequently, in addition to the IPNS vector representation of a proper point
x = (x, y) embedded into GAC of the form (3), we can also define such a vector
representation of an improper point x� = (s, t) according to (9) as

P�I=
(
0 0 0 0 0 1

2 (s2 + t2) 1
2 (s2 − t2) st

)T
. (10)

4 Fitting in GAC - With Given Waypoints

To successfully fit a conic among the data points as tightly as possible while
ensuring that the fitted conic will pass through the prescribed waypoints, we
must exploit the structure of GAC and the vector-matrix description of the
conic fitting problem as presented in Sect. 2. Fortunately, as will be shown, a
solution to the conic fitting problem with waypoints can be formulated in a way
similar to the solution to conic fitting without waypoints.

As in the case of conic fitting without waypoints, we are given ND data points
represented by vectors Pi of the form (3) and we seek a conic represented by a
vector Q of the form (4) minimising the objective function (6) while fulfilling
the normalisation constraint (7). Let us note that we assume all the data points
Pi to be proper points, since fitting among the improper points without actually
passing through them would be geometrically meaningless.

In addition, we demand the fitted conic to pass through NW waypoints Wj

that can be either proper or improper, unlike the data points Pi, and therefore
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each of them must be either of the form (3) or (10). For a conic Q to pass through
the waypoint W , their inner product must be zero, i.e.

W · Q = 0.

Using the matrix Ψ of waypoints Wj , where the j-th column is waypoint Wj ,
we can formulate the condition of conic Q passing through all the waypoints
Wj as

Ψ · Q = 0. (11)

To successfully reach the solution to the given optimisation problem, we
define a matrix B0 and the decomposition of matrix Ψ of waypoints as:

B0 =

(
0 −1
−1 0

)
, Ψ =

⎛

⎜
⎜
⎜
⎝W1 W2 ⋯ WNW

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

0

Ξ

X

⎞

⎟
⎟
⎟
⎠

,

where 0 stands for the zero matrix of type 2 ×NW , Ξ is of type 4 ×NW and X
has a size of 2 ×NW . Moreover, we define the matrix

Bw =
(
BT

0 X
)+T

ΞTBc, (12)

where “+” stands for the Moore-Penrose pseudoinverse, since the matrix BT
0 X

is generally not square.
Consequently, we can formulate a statement similar to Proposition 1 and,

again, reach the solution using an eigenproblem.

Proposition 2. The solution to the optimisation problem (6), (7), (11) for conic
fitting in GAC is given by Q =

(
wT vT 0

)T
, where v =

(
v̄+ v1 v2 v+

)T is an
eigenvector corresponding to the minimal non-negative eigenvalue of the operator

PW
con =Bc

[
BT

wP0Bw −
(
BT

wP1 + PT
1 Bw

)
+ Pc

]

and w =
(
v̄× v̄−

)T is a vector acquired as

w = −Bwv.

4.1 Implementation

Below, we summarise an algorithm for conic fitting with given waypoints imple-
mented as a MATLAB function. Let us note that the reduced forms of some
vectors and matrices were employed to avoid a few unnecessary computations
with zero elements, similarly to the conic fitting algorithms in [7,8].

Algorithm QW

Inputs:
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a, b, c column vectors of x, y, z homogeneous coordinates of waypoints
(if a point is proper, take z = 1, if improper, z = 0; see Remark 1)

px, py column vectors of x, y coordinates of data points

Outputs:

Conic fitted conic in form (4)
obj function value of objective function (6) for fitted conic

function [Conic, obj function] = QW(a,b,c,px,py)
ND = length(px);
s = sign(c);

Xi = [s a.∗s b.∗s 1/2∗(a.ˆ2+b.ˆ2)]’;
Chi = [1/2∗(a.ˆ2−b.ˆ2) a.∗b]’;

B = zeros(6);
I3 = [0 0 1;0 1 0; 1 0 0];
B(1:3,4:6) = −I3;
B(4:5,2:3) = eye(2);
B(6,1) = −1;
Bc = B(3:6,1:4);
B0 = [0 −1;

−1 0];
Bw = (pinv(B0’∗Chi))’∗Xi’∗Bc;

D = ones(6,ND);
D(2,:) = px;
D(3,:) = py;
D(4,:) = 1/2∗(px.ˆ2+py.ˆ2);
D(5,:) = 1/2∗(px.ˆ2−py.ˆ2);
D(6,:) = px.∗py;

P = 1/ND∗B∗(D∗D’)∗B’;
Pc = P(3:6,3:6);
P0 = P(1:2,1:2);
P1 = P(1:2,3:6);

PWcon = Bc∗(Bw’∗P0∗Bw−(Bw’∗P1+P1’∗Bw)+Pc);
[EV,ED] = eig(PWcon);
EW = diag(ED);

k opt = find(EW == min(EW(EW>0)));
v opt = EV(:,k opt);

kappa = v opt’∗Bc∗v opt;
v opt = 1/sqrt(kappa)∗v opt;

w = −Bw∗v opt;

Conic = [w;v opt;0;0];
obj function = Conic(1:6)’∗P∗Conic(1:6);
end

4.2 Number of Waypoints and Degrees of Freedom of the Conic

It is widely known that a general conic is uniquely determined by five points of
RP

2 or, more precisely, it is uniquely determined by five points when no four of
them lie on the same line. Moreover, when no three points out of these five lie on
the same line, the conic passing through them is not only uniquely determined,
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but also regular [6,10]. This well corresponds with the fact that a conic has five
degrees of freedom.

Taking such knowledge into account, it is hence not possible to fit a conic
through more than a few waypoints while minimising the objective function (6)
and satisfy the normalisation constraint (7).

As already suggested, conic fitting through five or more waypoints would
make no sense in our problem. Therefore, a maximum of four waypoints comes
into play. Since we can use either proper or improper waypoints or even a combi-
nation of both types of waypoints, we get 14 cases of what waypoints to employ
in total, as can be seen in Table 1.

Table 1. Combinations of waypoints by type and total number

1A 1B 2A 2B 2C 3A 3B 3C 3D 4A 4B 4C 4D 4E

proper 1 0 2 1 0 3 2 1 0 4 3 2 1 0

improper 0 1 0 1 2 0 1 2 3 0 1 2 3 4

It can be further shown that the presented algorithm works safely for two
waypoints at most; the reasons for this are various. Since the normalisation
constraint (7) makes some of conic elements dependent, at least one degree of
freedom is lost. Moreover, some combinations are geometrically unreasonable,
e.g. the case 3D, where the conic is required to pass through 3 improper way-
points. Finally, since the waypoints constraint (11) may imply an overdetermined
system of equations, our solution cannot generally satisfy all the equations (not
even after using the pseudoinverse in (12)).

5 Experimental Results

We applied the conic fitting algorithm with given waypoint(s) on three different
datasets listed in Table 2 (the location of the points in each dataset was deliber-
ately chosen to resemble the shape of a regular conic; hence, the corresponding
datasets were named elliptical, parabolic and hyperbolic, respectively).

Moreover, by varying the total number and types of the waypoints used, we
offer 8 selected cases of fits from Table 1. The particular waypoints used in the
experiments are listed in Table 3.

Table 2. Datasets used

xi 3 4 3 0 −1 −3 −4 −3 −1 −2 −2 −1 −1 0 1 3 5 7 −6 −4 −4 −3 −3 1 2 2 4

yi −1 1 2 3 3 2 −1 −3 −4 0 3 −2 6 8 −2 −2 −1 0 1 2 −3 1 −1 5 4 7 4

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

elliptical parabolic hyperbolic
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In Fig. 3 we can see four cases of the elliptical dataset fitted by an ellipse,
each fit as a result of fitting a conic with one more proper waypoint than in the
preceding subfigure (see Table 3). The outcome of this experiment corresponds
with the commentary on degrees of freedom given in Subsect. 4.2: in cases 1A
and 2A the conic passes through all the waypoints, while in cases 3A and 4A it
does not because the associated systems of equations are overdetermined.

Table 3. Waypoints used and the corresponding cases

xj 2 3 −4 −2 4 6 1 −7 1 5 1 6

yj −3 3 1 −4 5 1 2 1 2 4 2 1

zj 1 1 1 1 0 0 0 1 0 1 0 0

︸ ︷︷ ︸ ︸︷︷︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

1A-4A 1B 2C 2B 3C

1A 2A

3A 4A

Fig. 3. Conic fits using 1–4 proper waypoints

The second experiment summarised in Fig. 4 was intended to show the
behaviour of the algorithm in the cases when only improper waypoints are pre-
scribed (here, we limited ourselves to geometrically meaningful cases, i.e. two
improper waypoints at most).
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1B 2C

Fig. 4. Conic fits passing through 1 and 2 improper points respectively

2B 3C

Fig. 5. Conic fits with both proper and improper waypoints

In the case 1B, where one improper waypoint was given, a parabola with the
axis of symmetry passing through the same improper waypoint was fitted. While
this result may not be surprising, it is actually far from obvious. Even though
the dataset was meant to resemble a parabolic shape and every parabola has
one improper point, the algorithm could still have fitted a hyperbola with one
asymptote passing through a given waypoint and the other one might have been
a result of the optimisation process. In fact, it can be shown that the employed
fitting algorithm with only one improper waypoint and no proper waypoint fits
a conic with exactly one improper point, i.e. a parabola.

Similarly, in the case 2C, a hyperbola passing through exactly two given
improper waypoints is fitted.

Finally, let us explore the situations when both proper and improper way-
points are fitted at the same time (see Fig. 5). While the case 2B might have
turned out the same as the case 1B, where one improper waypoint was used as
well, the additional proper waypoint helped to create a hyperbolic fit passing
through both given waypoints (moreover, it can be shown that the fit through
one proper and one improper point results in a parabola using very specific con-
figurations of points only). Let us also note that the second improper point lying
in the direction of the second asymptote was a mere result of optimisation.
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Even though the case 3C makes use of three waypoints and hence, as already
indicated, is not very reliable, there are functioning cases, like the one in Fig. 5.

6 Conclusion

A novel GAC-based algorithm for conic fitting through given waypoints was
presented and thus became a part of a wider group of conic fitting algorithms
using GAC (see [5,7,8]). Also, a MATLAB implementation of the algorithm
described was included. Additionally, thanks to projectivisation of GAC, the
expression of improper points in terms of GAC was found and, consequently,
the improper waypoints could be used in the algorithm as well.

The introduction of improper points into GAC also made possible the fitting
of a parabola with a prescribed direction of its axis of symmetry (Fig. 4, 1B) and
fitting of a hyperbola with given directions of its asymptotes (Fig. 4, 2C), while
both fits still aim to minimise the overall distance to the data points. Potentially,
improper points in GAC can also be used for the construction of a conic from
five points using the wedge operation (for details see [4,5]).

As already mentioned, the algorithm derived for conic fitting through given
waypoints (proper or improper) can be useful when numerically computing the
conical trajectories of dynamical systems, as in [2], where a fitted conic should
pass through the prescribed initial point.

Finally, it was experimentally shown that the algorithm works safely when
two waypoints at most are employed, while more waypoints may cause the fitted
conic to miss the waypoints. Precise reasoning for this behaviour, together with
a more comprehensive analysis of fitting through waypoints, will be the subject
of further research.
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Abstract. The state of the art in protein structure prediction (PSP)
is currently achieved by complex deep learning pipelines that require
several input features. In this paper, we demonstrate the relevance of
Geometric Algebra (GA) for modelling protein features in PSP. We do
so by proposing a novel GA metric based on the relative orientations
of amino acid residues. We then employ this metric as an additional
input feature to a Graph Transformer (GT) to aid the prediction of
the 3D coordinates of a protein. Adding this GA-based orientational
information improves the accuracy of the predicted coordinates even after
few learning iterations and on a small dataset.

Keywords: protein structure prediction · 3D modelling · geometric
algebra · graph transformer

1 Introduction

The last Critical Assessment of Protein Structure Prediction (CASP14) was won
by AlphaFold 2, reaching an unprecedented global distance test (GDT) score of
above 90% in almost 70% of the proteins in the CASP dataset [1–3]. AlphaFold
2 confirmed that deep learning (DL) is the most successful approach for PSP,
and significantly cheaper and faster than experimental techniques [4–6].

A typical DL-based PSP pipeline is generally composed of several cascaded
neural networks, whose end goal is the prediction of 3D coordinates of some of
the atoms in the protein backbone [7]. In recent literature, Transformer networks
have been proven to be particularly suitable for this task [1,7,12]. Transformer
networks are sequence-to-sequence models first introduced in [8], and have found
widespread application in fields including speech synthesis [9], semantic corre-
spondence [10] and trajectory forecasting [11].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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In PSP, for example, two of the seven networks employed in [7] are Trans-
former networks to predict and refine the coordinates of the backbone atoms,
respectively. Similarly, a multiple sequence alignment (MSA) Transformer fol-
lowed by a GT has been employed to predict 3D coordinates starting from the
protein’s sequence of amino acids in [12].

The 3D coordinates are predicted by training the network on several biolog-
ical and chemical features of the protein. These features are extracted starting
from its amino acid sequence (or primary structure) [14]. It has been shown
that the interresidue distances (e.g. distance between amino acid pairs), the sec-
ondary structures of the proteins (e.g. the folding patterns such as helices, sheets
or turns), as well as some measure of the orientation between amino acids (e.g.
angle maps) are among the most relevant features when learning accurate 3D
coordinates [7,13,14].

GA is a suitable candidate to represent the features mentioned above due
to its intuitive handling of geometrical objects and operations on them [15,16].
GA has already found some applications in protein modelling, especially in the
molecular distance problem [17,18], but to the best of our knowledge there has
not been an effort to employ GA modelling for PSP.

The goal of this paper is hence to (1) employ GA to model a protein and
capture information about the orientation of the amino acids and (2) use this
information as a feature in a GT network. The motivations of using GA are that:
(1) GA easily deals with geometrical objects such as planes, which naturally
occur in the protein geometry (2) our GA feature is more compact compared
with torsion and valence angles, which also grasp orientational information, but
are more than one and asymmetrical, as seen in [13] and (3) it has a clear physical
meaning, since it is related to secondary structures (see Sect. 2.1).

The rest of the paper is structured as follows: in Sect. 2 protein modelling
through GA and graphs are presented, in Sect. 3 the learning architecture is
introduced, in Sect. 4 results are presented and in Sect. 5 conclusions are drawn.

2 Modelling Proteins

2.1 Proteins as Rigid Bodies

The atoms in the protein backbone determine its overall shape. Each amino acid
is bonded to an α-carbon (Cα), which is preceded by a nitrogen (N) atom and
followed by a carbon (C) atom. Hence, there is a one-to-one correspondence
between an amino acid i and a triplet {N,Cα, C}i.

Each {N,Cα, C} triplet lies on a plane. We can take advantage of this infor-
mation and associate each triplet i with a plane Πi in Conformal Geometric
Algebra (CGA): let Ai, Bi and Ci be the CGA representations of the Euclidean
coordinates of the atoms {N,Cα, C}i. Πi can be then computed as the 4-blade:

Πi = Ai ∧ Bi ∧ Ci ∧ n∞ (1)
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where n∞ = e + ē, with e2 = +1, ē = −1 being two basis vector of G4,1,0 and ∧
denoting the outer product.

In this way, a protein is modelled as a collection of planes not too dissimar
to the gas of 3D rigid bodies of AlphaFold 2 [19] (see Fig. 1).

i

Rij

j

Fig. 1. A toy helix protein as a collection of planes. Πj = RijΠiR̃ij

For each pair of planes Πi,Πj we can then form a rotor that rotates Πi into
Πj as presented in [20]:

Rij =
1

√〈ξ〉0
(1 − ΠiΠj) (2)

where ξ = 2 − (ΠiΠj + ΠjΠi) and 〈·〉 is the grade projector operator.
We now use the cost function Cλ(R) as defined in [21] that quantifies the

variation of R from the identity. Cλ(R) is a weighted sum of a translational and
a rotational term:

Cλ1λ2(R) = λ1〈R‖R̃‖〉0 + λ2〈(R⊥ − 1)(R̃⊥ − 1)〉0 (3)

in which the translational error is represented by R‖ = R · e, and the rotational
error by 〈(R⊥ − 1)(R̃⊥ − 1)〉0 = 〈(R − 1)(R̃ − 1)〉0. As we are interested in
an orientational feature, we will focus exclusively on the rotational part (i.e.
λ1 = 0, λ2 = 1).

Since each amino acid can be associated with a plane, and each pair of planes
can be associated with a rotor and eventually to a cost, we can then build an
N × N matrix M as follows:

Mij =

{
Cλ1λ2(Rij) if dij < 15 Å
0 otherwise

(4)

where N is the amino acid sequence length and dij is the Euclidean distance
between the Cα of residues i, j measured in Å. We call M a “cost map”. An
example of a cost map is given in Fig. 2.

It is possible to establish a relationship between the secondary structure and
the patterns in the cost maps. By secondary structure we refer to local folding
patterns of a protein, including α-helices, β-sheets or turns. We illustrate this
relationship by assigning an arbitrary colour to each secondary structure: red to
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Fig. 2. Cost map for protein 2hc5 from the PDB database [24]

α-helices, green to β-sheets, blue to turns and white to all the others. In Fig. 3
we see how the same colour patches have almost identical cost map patterns.

To the best of our knowledge, this is the first example of a single orientational
map based on GA that matches the secondary structures.

Fig. 3. Colour coded secondary structures overlapping the cost map of protein 2hc5.
(Color figure online)

2.2 Proteins as Graphs

It is also possible to represent a protein as a heterogeneous graph G (V,E) with
V and E being its set of nodes and edges, respectively. By heterogeneous graph
we refer to a graph with different types of nodes and edges. If |V | = N is the
total number of nodes, the graph can be described as a set of adjacency matrices
for each of the K edge types, i.e. {Ak}K

k=1, where Ak ∈ R
N×N , or in tensor form

A ∈ R
N×N×K . Along with A, we can also define a feature matrix X ∈ R

N×D,
where D is the dimensionality of the features, or equivalently we can say there
are D node types.

For our experiment, we employed the PDNET dataset and recast it in graph
form [14]. PDNET is composed of a stack of 57 N × N channels for each of its
proteins. We can hence associate each pairwise feature with an edge type and
each per-amino acid feature with a node type. Of the 57 channels, 3 of them
correspond to 3 pairwise features (FreeCon, CCMPred and potential). To these
3 we added distance maps (defined as Dij = dij , where dij = ‖Ti − Tj‖2, with
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T ∈ R
N×3 being the ground truth coordinates of the Cα atoms of the protein)

and cost maps M, to obtain a total of K = 5 pairwise maps of size N ×N , with
N being the protein chain length. They correspond to the edges of the protein
graph, i.e. the adjacency matrices A ∈ R

N×N×K=5. The remaining 54 channels
are the matrices and their transposes of the remaining 4 features (SA, PSSM, SS,
entropy), which are associated with a single amino acid. Ignoring the transposed
matrices, we are left with 27 channels, which can be manipulated and arranged
in a feature matrix X ∈ R

N×D=27.
The input to the architecture is then given by the pair of tensors {A,X}(i)

for each protein i in the dataset.

3 Architecture

The end-to-end architecture, derived from [12], is composed of two parts: (1)
a GT and (2) 3D projector. A summary of the architecture is shown in Fig. 4.
We omitted the MSA Transformer of [12] as the employed dataset allows us to
directly perform node and edge embedding on its features.

Fig. 4. The employed architecture

3.1 Graph Transformer

The GT has been implemented as described in [22]. The goal of a GT is to learn
informative meta-path within the graph, i.e. an ordered sequence of node types
and edge types. The output of the l-th layer of a GT with C attention heads is
a node representation with same dimensionality as X, i.e. Z ∈ R

N×D which can
be written as

Z(l) =
C⊕

i=1

σ(Δ̃−1
i Ã

(l)
i XW ) (5)
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where
⊕

is the concatenation operator, σ(·) is the sigmoid function, Δ̃i is the
degree matrix of Ã

(l)
i (defined as Δmm =

∑
n Amn), X is the feature matrix,

W ∈ R
D×D is a trainable weight matrix and Ã

(l)
i = A

(l)
i + I, in which A

(l)
i

is the adjacency matrix from the i-th channel of the metapath tensor A(l) ∈
R

N×N×C . A(l) is evaluated as A(l) = Δ−1Q1Q2. Q1 and Q2, both ∈ R
N×N×C ,

are two adjacency tensors selected according to Q = ϕ[A; ζ(Wϕ)], where A ∈
R

N×N×K is the adjacency tensor, ϕ(·) is the convolution operator, ζ(·) is the
softmax function and Wϕ ∈ R

C×C×K are the weights of ϕ. Z contains the node
representations from C different meta-path graphs.

3.2 3D Projector

The 3D projector is a simple fully connected layer obeying P = Z(L)WP , where
Z(L) is the output of the L-th layer of the GT, WP ∈ R

D×3 is the weight matrix
of the projector and P ∈ R

N×3 are the 3D coordinates of the N Cα atoms in
the protein chain.

To train the model, a distance map is evaluated for each protein from the
predicted coordinates P as D̃ij = dij , where dij = ‖Pi − Pj‖2 is the Euclidean
distance between the 3D coordinates of the i-th and j-th amino acid in P .

The total loss to minimize is equal to L = L1 + L2. The first term
minimizes the L1 loss between D (the ground truth distance map) and D̃,
as L1 = 1

N2

∑N
i

∑N
j ‖D̃ij − Dij‖1. The second term maximizes the struc-

tural similarity index (SSIM) between D and D̃ weighted by an arbitrary coef-
ficient α = 10 to make L2 of the same order of magnitude of L1, namely
L2 = α

(
1 − SSIM{D, D̃}

)
. The loss is measured over distance maps and not

over 3D coordinates as 3D coordinates depend on a reference frame, while dis-
tances are rotationally and translationally invariant.

3.3 Training Details

We trained the model consisting of the GT and 3D projector on the PDNET
dataset. The model consists of 108813 trainable parameters, of which 108648 of
the GT and 165 of the projector. The train and validation sets are subsets of
PDNET composed of 200 proteins each, while the test set contains 150 proteins.
The optimizer has been set to Adam with exponentially decaying learning rate,
with initial learning rate η0 = 1 × 10−2 and decay rate per epoch γ = 0.9. The
GT has C = 4 attention heads and L = 3 layers. The batch size has been fixed
to B = 1 and the network has been trained for E = 5 epochs, for a total of 1000
training iterations.
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Combinations of η ∈ {1 × 10−1, 1 × 10−2, 1 × 10−3, 3 × 10−4}, E ∈ {3, 5, 10},
B ∈ {1, 50, 100}, L ∈ {3, 6, 10}, C ∈ {1, 4, 5} have also been implemented and
tested, but the hyperparameters above were found to be optimal for our problem.

The code has been written as a Jupyter Notebook on Google Colaboratory,
run on an NVIDIA Tesla K80 GPU and it uses PyTorch for the DL architecture,
the Clifford library for GA operations [23] and the PDB Module of Biopython
for handling protein data. The GT was derived from [12]. Scripts and datasets
are available upon request to the authors.

4 Results

We trained the architecture and collected results for two cases: (1) with cost
maps (D = 27,K = 5) and (2) without cost maps (D = 27,K = 4), to verify
whether adding a single additional GA-based adjacency matrix Ak in our graph
could provide an improvement.

From the predicted coordinates P ∈ R
N×3 we constructed distance maps

D̃ ∈ R
N×N , and we then measured the mean absolute error (MAE) and SSIM

between D and D̃. The MAE and SSIM distributions are presented in Table 1,
while the distributions and percentiles over the test set are visualized in Figs. 5
and 6 for the MAE and the SSIM, respectively.

Table 1. Metric between original and predicted distance maps. Results without costs
are in parenthesis.

Set Metric Max Mean Min Std

Train SSIM 0.98 (0.90) 0.88 (0.43) 0.12 (−0.10) 0.10 (0.22)

Test SSIM 0.99 (0.86) 0.88 (0.43) 0.38 (−0.14) 0.10 (0.25)

Train MAE (Å) 27.9 (23.3) 6.09 (7.38) 2.16 (3.32) 2.69 (3.05)

Test MAE (Å) 10.3 (12.8) 5.99 (7.02) 2.49 (3.58) 2.35 (1.91)

Note in Table 1 how the average SSIM doubles from 0.43 when coordinates
are predicted without cost maps to 0.88 when coordinates are predicted with
cost maps. Similarly, the average MAE decreases by 1.29 Å and 1.03 Å on the
train and test sets, respectively, when we include cost maps. From Fig. 5 it can
be seen that the median MAE of the test set is found to be at about 5 Å with
costs maps and at about 7 Å without cost. The improvement introduced with
cost maps is even more evident in Fig. 6, in which the median SSIM of the test
set is >0.4 without cost maps and >0.8 with cost maps.

We then aligned P and T via singular value decomposition (SVD) (see
Appendix A) and performed the GDT, and evaluated the GDT TS (total score)
and GDT HA (half size) between predicted coordinates P and ground truth
coordinates T , obtained from the Protein Data Bank (PDB) [24].

GDT TS =
p<1Å + p<2Å + p<4Å + p<8Å

4
(6)
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Fig. 5. MAE measured over the testing set. Distribution (left) and cumulative proba-
bility (right).

Fig. 6. SSIM measured over the testing set. Distribution (left) and cumulative proba-
bility (right).

GDT HA =
p<0.5Å + p<1Å + p<2Å + p<4Å

4
(7)

where p<nÅ indicates the percentage of an amino acid’s coordinates in P whose
distance from the corresponding amino acid’s coordinates in T is below n Å.

Results for selected proteins are shown in Table 2. Note how both the
GDT TS and the GDT HA generally increase by at least a factor of 2 when
adding cost maps as an additional feature. Examples of the predicted coordi-
nates and relative distance maps are given in Figs. 7, 8, 9 and 10.
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Fig. 7. Top row, from left to right: original, predicted and predicted (without cost
maps) distogram for protein 2gomA. Bottom row: original (red) and predicted (blue)
Cα coordinates. Left: with costs, right: without costs (Color figure online)

Fig. 8. Top row, from left to right: original, predicted and predicted (without cost
maps) distogram for protein 1dm9A. Bottom row: original (red) and predicted (blue)
Cα coordinates. Left: with costs, right: without costs (Color figure online)
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Fig. 9. Top row, from left to right: original, predicted and predicted (without cost
maps) distogram for protein 2fztA. Bottom row: original (red) and predicted (blue) Cα

coordinates. Left: with costs, right: without costs (Color figure online)

Fig. 10. Top row, from left to right: original, predicted and predicted (without cost
maps) distogram for protein 2fyuK. Bottom row: original (red) and predicted (blue)
Cα coordinates. Left: with costs, right: without costs (Color figure online)
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Table 2. Metrics between original and predicted coordinates with and without (-) cost
maps after SVD alignment. MAE and SSIM are measured on distance maps.

Protein MAE SSIM GDT TS GDT HA

2gomA 2.49 0.86 31.2 9.84

2gomA (-) 5.31 0.53 13.9 4.10

1zv1A 2.83 0.96 28.8 10.2

1zv1A (-) 4.78 0.46 14.0 3.39

1dm9A 3.58 0.95 25.5 7.93

1dm9A (-) 6.94 0.36 6.25 0.48

1m8nA 3.59 0.92 22.0 7.92

1m8nA (-) 5.04 0.49 11.0 2.08

2fztA 3.65 0.96 18.6 4.49

2fztA (-) 6.81 0.55 8.96 1.60

2fyuK 3.44 0.98 15.1 3.30

2fyuK (-) 6.69 0.82 4.72 1.41

5 Conclusions

In this paper we introduced a measure of the orientation between amino acids
based on GA. We presented the ideas behind the modelling of a protein as a
collection of planes, we introduced a measure of the “distance” between each
pair of planes and arranged it in matrix form, i.e. a cost map.

We then employed these matrices as an additional feature in a GT + 3D
projector pipeline to predict 3D coordinates of Cα atoms in proteins. We did
so by adapting in graph form a dataset comprising several biochemical features
already available in the literature, to which we added cost maps. Eventually, we
compared the 3D coordinates predicted including cost maps with coordinates
predicted without them.

We showed that our GA-based cost maps aids the convergence of the model
and the prediction of more accurate coordinates in terms of GDT TS and
GDT HA scores with respect to ground truth. In addition, the distance maps
constructed from the coordinates predicted including costs are closer to the orig-
inal distance maps in terms of both MAE and SSIM.

Despite training the model on a dataset of only 200 short proteins and for few
iterations, we managed to obtain reasonable protein structures. We are confident
that including cost maps on a larger scale problem (e.g. larger training set, more
learning iterations, higher dimensionality of node and edge embeddings, etc.)
can constitute an asset in PSP by increasing prediction accuracy with a minimal
amount of additional information.
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Abstract. Digital twin (DT) has been applied to increasingly com-
plex systems, including environments, energy, and digital cities, due to
advancement of data collecting, high-speed networks, big data, artificial
intelligence, and other technologies. Because of the complexity of the
actual world and newly suggested criteria for the construction of the
linkage between the real and virtual spatial, developing and using DT
has been significantly hampered. The classic modeling approaches of sep-
arating expression from analysis have grown to be a significant barrier.
These problems can be resolved due to the benefits of geometric algebra
(GA) expression and computation in multidimensional space. The paper
studies the concept of DT, employs the essential principles of GA as a
tool, and proposes the DT’s modeling and analysis methods. To inves-
tigate how DT is formulated and built, a typical multi-factor coupling
scenario of passive infrared sensor (PIR) was presented as an example.
The results demonstrate the effectiveness of the approach presented in
this paper in simulating human-sensor interactions, producing reaction
records in real space, and successfully deriving the pedestrian trajectory
from PIR recordings. The study presented in this article offers fresh per-
spectives on how to build DT in complicated scenarios and may also shed
new light on how to analyze human behavior using PIR.

Keywords: Digital twin · Geometric algebra · Passive infrared
sensors · Trajectory extraction

1 Introduction

Digital twin (DT), also known as digital mirroring, was first proposed by Pro-
fessor Michael Grieves [1]. The fundamental concept is to employ information
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technology to model physical entities so that they can interact with digital mod-
els of their properties and actions [2,3]. Because of their connection, homogeneity,
modularity, and intelligence, DTs are not just mirrors of physical entities but
also information receivers and feedbackers [4–6]. They may even act as prophets
and foretellers of the actual world [7,8]

Real space, virtual space, data flow from real space to virtual space, and
information flow from virtual space to real space are the four fundamental com-
ponents of DT [3,9]. Real space and virtual space are fairly obvious among them,
although data flow and information flow are often disregarded and even ignored
as the link between real space and virtual space. This naturally leads to the
current study on DTs concentrating on two primary areas: 1) The real-space
detecting apparatus 2) Virtual space analysis and mining techniques [10]. It is
challenging to build a connection between the two spaces since the two tasks are
often independent and performed by different groups [11,12].

The separation between detecting and analysis is mostly seen in two aspects.
The first is the variation in the underlying mathematical underpinning. The
detecting and modeling techniques based on Euclidean geometry and compu-
tational geometry are still dominant since the representation of current DTs is
more concentrated on the description of entities’ geometries and structures. For
the analysis model, the statistical methods based on the detecting data and the
dynamic model based on the mechanism of system are more popular. There is
still few solution to the contradiction between the geometric representation of
things and the algebraic computation of their properties. Secondly, there is the
inconsistency between the expression unit and the calculation unit, that is, entity
modeling only solves the collection and expression of data, what’s worse, analy-
sis models are often limited by a specific field, which make a big inconsistency
of these two jobs in the granularity and semantics. Therefore, in view of the
difficulty of establishing the relationship between real space and virtual space,
building the underlying theory that combines geometry and algebra, expression
and calculation is crucial for the future application of DTs [12].

Geometric algebra (GA), also known as Clifford algebra [13], is a combination
algebra based on dimensional operations. It is an algebraic language for describ-
ing and computing geometric problems, created based on the Hamilton quater-
nion and Grassmann’s extended algebra [14]. Geometries can be represented and
produced algebraically in a unified way in terms of dimensions and relationships
based on the expression theory of GA. The inner product, outer product, and
geometric product provide the fundamental strategies for the unified computa-
tion of geometric patterns and spatial topological relations in multidimensional
and coordinate-independent environments [15]. GA is currently the theoretical
foundation and computing tool for mathematical analysis, geographic informa-
tion science, geometry, and other fields [16]. The aforementioned accumulation
can serve as a theoretical and methodological foundation for the creation and
evaluation of DTs.

Passive infrared sensors (PIR) is a kind of sensor based on the principle of
pyroelectric effect, which detects infrared photoelectrons radiated from objects.
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Typically, it is used in motion detectors for security alerts and behavioral study
of people [17,18]. In the analysis of sensor response and human behavior, the
established information mirror model of DT offers fresh perspectives for research-
ing PIR. Scalability and verification capabilities of the DT-oriented PIR virtual
scene allow for the construction and verification of analytical models of human
behavior characteristics. Due to the complexity of real space, the PIR scene
must take into account not only the connectivity between various sensor nodes
and their spatial-temporal responses to pedestrians in the scene, but also the
integrated expression of the sensor topology network that is produced by the
connectivity of the sensor nodes and the pedestrians’ trajectories [19]. It is chal-
lenging to properly characterize the spatial-temporal link between sensor nodes
and sensor response using traditional methods, which has constraints in the
representation of high-dimensional relationships and dynamic trajectories.

This paper studied the concept of DT and used geometric algebra to propose
the modeling and analysis methods of DT. The expression and construction of
DT were investigated using the PIR scene as an example. The viability of the
strategy described in this research was confirmed using the PIR simulation sce-
nario that was built to study sensor response and human behavior. The work was
divided into three sections: Sect. 2, which covered the theoretical underpinnings
and fundamental concepts, Sect. 3, which presented the building of GA-based
DT. Then, in part 4, DT modeling of the PIR scene was shown. In Sect. 5, the
conclusion and debates were presented.

2 Basic Idea

The study adds a mathematical space that facilitates data modeling and infor-
mation simulation to Professor Grieves’ DT expression model from a realizable
and calculable standpoint, as seen in Fig. 1. The definition of algebraic system is
related to the abstract mode of the real world, solving practical problems through
the definition of dimensions and metrics. To achieve the unified representation of
objects in the complex real space, object expression requires the usage of GA’s
multivector structure. The GA operator realizes the object’s function, and the
operator must be compatible with the object’s real-space objective law. After
that, it will be possible to build real-world analysis and mining methods based
on GA equations and use the information from virtual space to inform real-world
planning and design.
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Fig. 1. Research idea and Conceptual diagram.

3 Construction of Geometric Algebra-based Digital Twin

GA is used to explore scene representation and computation in order to advance
the development of DT’s capacity to be computed, applied, and analyzed. A
consistent multi-element modeling framework is created for DT objects in various
dimensions and kinds. The framework makes it possible to represent the function
and behavior of physical entities in real space.

3.1 Geometric Algebraic Systems Definition

GA defines basis vectors which are linearly independent to represent space and
uses blades to represent fundamental objects. To enhance the blade’s expres-
sive capacity, more dimensions should always be added [20]. As an example,
the Euclidean space R3 for a three-dimensional space can be created by spec-
ifying a set of base vectors {e1, e2, e3} or by adding a dimension e0 to create
a homogenous space A3. Homogeneous space, as opposed to Euclidean space,
allows for the representation of flat objects like lines and planes. Similar to this,
the conformal space C3 is built by adding the extra dimensions e0 and e∞. The
conformal space, as opposed to the homogeneous space, allows for the repre-
sentation of rounded objects like spheres and circles. The conformal geometric
algebraic (CGA) expands the dimension by adding positive space e+ and neg-
ative space e−, and via a sequence of transformations turns it into a parabolic
space made up of e0 and e∞ [21].

The distinction between positive and negative space demonstrates the various
operational properties of the basis vectors in GA. The following definition of a
metric matrix of the space’s basis can be used to describe this feature:
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M =

⎛
⎜⎝
m11 · · · m1n

...
. . .

...
mn1 · · · mnn

⎞
⎟⎠ (1)

where, mij = ei · ej . Conformal space’s basis vectors e0 and e∞ are null vectors,
and these vectors satisfy the conditions that e20 = 0, e2∞ = 0 and e0 · e∞ = −1,
the metric matrix of the d-dimensional conformal space is defined as:

M =

e0 e1 e2 · · · ed e∞⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 −1
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
−1 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

e0
e1
e2
...
ed
e∞

(2)

3.2 Object Representation Based on Geometric Algebra

Blades, which expand dimensions via outer products, are the foundation for the
representation of objects in GA. k-blade is obtained by the outer product of
k linearly independent vectors. In CGA, the outer product inherits the spatial
structure (Grassmann structure) in the geometry construction. Therefore, multi-
dimensional geometric objects can be expressed uniformly under the framework
of CGA [16,22]. The Fig. 2 below shows the representation of basic geometric
objects in CGA.

3.3 Geometric Algebra Operator Definition

An essential starting point for the analysis and mining of object characteristics
in virtual space is the representation of entity functions and behaviors as oper-
ators in real space. The aforementioned GA definition can be used to establish
the dimensional unity and object-independent operation of geometric objects,
resulting in a unified interface for the construction of computing operators. The
GA operator library is created using the basic operators of GA, which are pri-
marily divided into three categories: dimension operators for object building,
transformation operators for object transformation, and relation operators for
calculating object relationships.

Dimension operators are used to construct spatial objects, which are orga-
nized and decomposed by adding or subtracting dimensions. The majority of
dimensional operations are binary operations with data parameters ParD as
their input and output objects.
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Fig. 2. Representation of Basic Shapes in Conformal Geometry Algebraic.

fopd
= f(2, {ParD1, ParD2}, opd) = ParD3 (3)

Table 1 demonstrates that dimensional operators mostly consist of GA funda-
mental operators like inner, outer, and geometric products as well as dimensional
operators like projection and reflection.

Transformation operators are used to change the algebraic form and spa-
tial attribute of the parameters. It has the ability to alter spatial aspects as
well as optimize the algebraic structure (such as translation and rotation). The
transformation operator has both unary and binary forms.

{
fopc

= f(1, {Par1}, opc) = Par2
fopc

= f(2, {ParD1, ParT1}, opc) = ParD2
(4)

where Pari is the general parameter, ParTi and ParDi represent transformation
parameters and data parameters, respectively. Common transformation opera-
tors are shown in Table 2.

Relational operators, which are primarily used to determine the connec-
tion between objects, are based on subspace calculation operators. Because of
this, all relational operators do binary computations, and all of their results are
semantic parameters.

fopr
= f(2, {ParD1, ParD2}, opr) = ParS1 (5)

where ParSi is the semantic parameter. The relational operators are shown in
Table 3.
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4 Digital Twinning of PIR Scene

The main functions of the real-world PIR network are realized by three ele-
ments: sensors, humans, and the application scenes. The PIR network gathers
the response information from the sensors where pedestrian walking through.
PIR network is the ideal application scenarios for creating DT because they
can support sensor arrangement and pedestrian path planning on the one hand,
and can simulate the sensor response under the behavior of a particular crowd
in a virtual scene on the other. Based on the sensor response data provided,
pedestrian trajectory and behavior in real space can also be analyzed [2].

Table 1. Dimension operators

Type Operation Expression Description

Basic
operators

Outer product op(a, b) = a ∧ b Basic calculation of
dimensions. op() and ip()
are used to increase and
decrease dimensions; gp()
and iv() can generate
multidimensional objects.

Inner product ip(a, b) = a · b
Geometric product gp(a, b) = a · b+ a ∧ b

Invert iv(a) = a−1 = rv(a)/(a∗rv(a))
Dimension
operators

Extract grade i grd(a, i) = 〈a〉i Dimension extraction
operators, which can be
used to extract specific
subspaces

Norm norm2(a) = a ∗ rv(a)

Duality dual(a) = a∗ = a/Im

Projection Prj(a, b) = (a · b)b−1

Reflection Rej(a, b) = bab−1

rv(a) is the reverse operation, which will be described in Table 2.

Table 2. Transformation operators

Type Operation Expression Description

Sequence

adjustment

operators

Reverse rv(a) = (−1)n(n−1)/2a The order adjustment

operators of dimension

componentsGrade involution giv(a) = (−1)na

Conjugate con(a) = (−1)n(n+1)/2a

Transformation

operators

Reflect Ref(a, D) = (−1)ndDaD−1 The reflection of a on D,

where d is the dimension of D

Scale Scal(ρ) = (1 + e∞)ρ + (1 − e∞)ρ−1

= ee∞ ln ρ
Scale at rate ρ

Translate Trans(t) = 1 + 1
2 te∞ = e

− t
2 e∞ Translation distance t

Rotor Rotor(θ, l) = cos( θ
2 ) − sin( θ

2 )l = e
− θ

2 l
Rotation angle θ around axis l



How Does Geometric Algebra Support Digital Twin 103

Table 3. Spatial relation calculation operators.

Type Operation Expression Description

Relational

measure

operators

point-point dst pt(A, B) =
√−2A′ · B′ The distance from point A to B.

point-line dst pl(P, lAB) = (e∞ ∧ A′ ∧ B′ ∧ P ′)∗

point-circle dst ps(A, SBCD) = A′∧B′∧C′∧D′
e∞∧A′∧B′∧C′

line-circle dst ls(lAB , SCDE) =

((e∞ ∧ A′ ∧ B′) ∩ (C′ ∧ D′ ∧ E′))2
The distance between two

objects reflected by the size and

the positive and negative values.

circle-circle dst ss(SABC , SDEF ) =

((A′ ∧ B′ ∧ C′) ∩ (D′ ∧ E′ ∧ F ′))2

Topological

relation

judgment

operators

intersection meet(A, B) = A ∩ B = B∗ · A The intersection of A and B

union join(A, B) = A ∪ B = A ∧ (M−1 · B) Minimum computing space, M

is the largest common divisor of

A and B

A′ and B′ are the CGA expression of point A and B.

4.1 Data and Framework

The sensor response data from Mitsubishi Electric Research Labs (MERL), as
well as the spatial layout data and sensor network data of the sensor network
entity scene, were utilized as the data sources for this paper. Between March 21,
2006, and May 24, 2007, 156 sensors’ reaction data to human movement were
gathered in the dataset.

Figure 3 illustrates the DT modeling framework. Using GA, we can estab-
lish the virtual spaces V1 for expression, V2 for PIR scene interaction response,
and V3 for pedestrian trajectory mining. The specification of the GA system,
object representation, and functional operator of each virtual space are distinct
as a result of the various application aims. In order to achieve the generation of
the sensor response record when the pedestrian moves in the scene, the virtual
space V2 needs to define multivector representations of the buildings, sensors,
and people in C3GA. It is also necessary to construct the response operator of
the sensor and the motion operator of the pedestrian. To create the whole sen-
sor network scenario, virtual space V3 must specify network nodes and network
edges in NnGA (nD network algebra [23]). The network extension and trajec-
tory extension operators can be functionally developed in order to determine
the actual trajectories of pedestrians using sensor data that has already been
collected.
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Fig. 3. Digital Twin Modeling Framework.

4.2 Digital Twinning for Interaction of PIR scene

Based on the above framework, we established the sensor-human response virtual
scene in conformal space (Fig. 4). In the response process, the individual human
under the action of motion Fmotion continuously interacts with the response
operator Fresponse of the sensors. The sensors’ 0–1 response sequence, Xk

sensor,
was computed to provide response data. In the real world, crowds moving in the
same location will also provide a series of response data. In order to evaluate the
accuracy of the reaction simulation in virtual scene, MERL’s event log states
that a sample of the sensor response data collected during the fire evacuation
was utilized for comparison. Figure 4 depicts the actual response sequence in the
real world and the simulated response sequence in the virtual scene. Since the
actual human movement is unknown, there is a slight difference between the
simulated response results of the sensor in the virtual and real scene. The main
gaps are found in stairwells, elevator halls, and other areas where people move
frequently.

The correlation coefficient between the number of responses in the actual
world and the virtual scene is 58.36%. In general, the virtual world can accu-
rately simulate the human-sensor reaction if the challenging aspects, including
randomness and unpredictability in the movement of the crowd, are removed.
The accuracy rating for our simulation of the sensor response during the early
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stage of evacuation was 67.62%. This could be the case because human behav-
ior is more irregular during evacuation, making it challenging to simulate using
the usual human behavior pattern. The key to increasing simulation accuracy is
choosing the correct behavior model to build FHuman.

Fig. 4. DT for data generating of sensor-human response.

4.3 Digital Twinning for Data Mining of PIR Scene

On the basis of the PIR network model and response data in real space (Fig. 5),
we also created a mining virtual scene to analyze pedestrians’ trajectories. The
network space NnGA was established because the pedestrians’ trajectories are
constrained to the network of actual space. Additionally, the nearby sensor nodes
will respond continually in a finite amount of time when human passes by.
Although the PIR cannot directly detect the trajectory, it is feasible to mine
potential trajectories based on the spatiotemporal correlation of the responses
of Sufficient number of sensors nearby. We developed trajectory extending algo-
rithms and trajectory extending algorithms under time constraints based on this
characteristic (the left part of Fig. 5). The trajectories can then be extracted from
the response data (the right part of Fig. 5).



106 Y. Yin et al.

Fig. 5. DT for data mining of PIR scene and trajectory reconstruction.

5 Conclusion and Discussion

This paper proposes a DT modeling and analysis approach based on GA con-
sidering the absence of DT’s underlying mathematical theory. GA’s space defin-
ability and expression unity can be used to construct DT systems for a variety of
purposes. The behavior and function of entities in virtual space can be defined,
and the relationship and feedback between virtual space and actual space can
be achieved, by building corresponding operators in GA.

The paper proposes a framework for DT modeling based on GA, there is still
a lot of work to be carried out in the future. Include as follows: 1) Facing the
complex real space, it is necessary to construct a richer GA system, especially in
the expression of semantics and knowledge; 2) Basic geographic transformation,
metric, and relational computing operators are provided by GA, but they often
need to be expanded for real-world issues. It is essential to provide a practical
and expandable GA operator library; 3) While space definability and operator
extensibility are desirable characteristics of GA, they also place extra expecta-
tions on DT developers. Building a meta-space and meta-operator library will
therefore be a crucial area of study for universal DT modeling.
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Abstract. The octonion Fourier transform (OFT) is a hypercomplex
Fourier transform that extends the quaternion Fourier transform. This
paper deals with the generalization of Beurling’s uncertainty principle for
octonion-valued signals and on R

3, and therefore extends three uncer-
tainty principles (UP), namely Hardy’s UP, Gelfand–Shilov’s UP, and
Cowling–Price’s UP, to the OFT domain.
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1 Introduction

The octonion algebra is an eight-dimensional (8D) algebra that extends the four-
dimensional (4D) quaternion algebra and the complex and real number algebras.
However, if we lose commutativity in the associative quaternion algebra, we lose
both associativity and commutativity in the octonion algebra, which makes the
calculations non-obvious.

During the last few years, a great deal of attention has been paid to the
study of hyper-complex signals, including quaternionic, octonionic, and Clif-
ford algebraic signals, in general. Hyper-complex Fourier analysis has found
many practical uses, especially in color image processing. Within this context,
researchers have brought to light octonion signals that generalize quaternion sig-
nals through the octonion Fourier transform (OFT). Recently, OFT has emerged
as a research stream in the hyper-complex Fourier domain, and many results have
been established for real and octonion-valued functions. For example, we refer to
[3,4,10–12].

The uncertainty principle (UP) is a crucial tool in mathematics and physics,
especially in quantum physics and signal processing. In quantum mechanics,
the UP was first suggested by the German physicist W. Heisenberg in 1927. UP
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roughly states that the more precisely the position of a particle is determined, the
less precisely its momentum can be known, and vice versa. From the point of view
of signal processing, UP has the following characterization: “It is impossible to
accurately locate a signal simultaneously in the time domain and in the frequency
domain”. There are many forms of the uncertainty principle associated with the
Fourier transform, such as the Heisenberg uncertainty principle, Hardy, Gelfand–
Shilov, and Cowling–Price UPs. [6]. A more general version of the uncertainty
principle is called Beurling’s theorem, where decay has been measured in terms
of a single integral estimate involving a signal f and its Fourier transform f̂ .

Theorem 1. (Beurling uncertainty principle)
Suppose that f ∈ L1(Rn) is such that∫

Rn

∫
Rn

|f(x)||f̂(y)|e2π|x|||y|dxdy < ∞

where f̂(y) =
∫
Rn

f(x)e−2πi〈x,y〉dx, then f = 0 almost everywhere.

The original proof of Theorem 1 is based on results of complex analysis and, in
particular, on the Phragmén-Lindelöf principle, and was given, without a found
proof, for n = 1, by A. Beurling at the end of the 1980s,s, and proved after
Hörmander [9] in 1991, then it was extended on R

n, for n ≥ 1 by by S.C. Bagchi
et al. in [1]. The strength of Theorem 1 consists in its immediate implication of
the weak form of Hardy’s uncertainty principle [7],

Theorem 2. (Hardy uncertainty principle)
Let f ∈ L2(Rn) satisfy |f(x)| ≤ Ce−πα|x|2 , and |f̂(y)| ≤ C ′e−πβ|y|2 , where C
and C ′ are two positive constants.

(i) If αβ > 1, then f = 0 almost everywhere.
(ii) If αβ = 1, then f(x) = ce−πα|x|2 , where c is a positive constant.
(iii) else there are infinitely many linearly independent functions satisfying the

conditions.

The purpose of this paper is to: Firstly, we establish a relationship between
the octonion Fourier transform and the 3-dimension Clifford–Fourier transform,
which we believe will be useful in the future for the mathematical community
to establish new results in octonion analysis. This relationship is given also
in terms of the octonion norm. Secondly, by reducing the calculations to real-
valued functions on R

3, using a new norm for OFT, we establish the Beurling
uncertainty theorem for the first time in the OFT domain, which allows us,
by following the classical approach, to derive three variants of UPs including
Hardy’s UP. The rest of the paper is structured as follows. Section 2 introduces
the necessary background of octonion algebra over R

3, and the Clifford algebra
C�0,3 and its associated Clifford-Fourier transform. Then Sect. 3 reviews the
octonion Fourier transform (OFT) and states several of its important properties.
Section 4 establishes the main results of the paper, i.e. Beurling’s UP, Hardy’s
UP, Gelfand–Shilov’s UP, and Cowling–Price’s UP for the OFT.
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2 On Octonion and Clifford Algebra C�0,3

This section aims to provide a deeper understanding of the octonion algebra,
which acts as a backbone for further developments. It also provides a defini-
tion of the Clifford algebra of signature (0, 3) and recalls the associated three-
dimensional (3D) Clifford-Fourier transform.

2.1 Octonion Algebra

The algebra of octonions O is is defined as a non-commutative and non-
associative 8D real algebra over R

3 with the basis {e0, e1, e2, e3, e4, e5, e6, e7},
where e0 is the unit element 1 which is omitted whenever clear from the context.
The octonion o ∈ O can be explicitly expressed as follows:

o = o0 + o1e1 + o2e2 + o3e3 + o4e4 + o5e5 + o6e6 + o7e7

= (o0 + o1e1 + o2e2 + o3e3) + (o4 + o5e1 + o6e2 + o7e3) � e4

= a + b � e4 (1)

where � denotes the octonion multiplication, o0, . . . , o7 ∈ R, and a and b ∈ H

are quaternions. The form (1) is called the quaternion form of an octonion.

Table 1. Octonions Multiplication Table

Basis elements

� 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 −1 e1 e2 −e3

e5 e5 e4 −e7 e6 −e1 −1 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 −1 −e1

e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

Octonion algebra multiplication is given in Table 1, describing the results of
multiplying the element in the ith row by the element in the jth column from
the right. We easily observe that for 1 ≤ i, j ≤ 7,

ei � ei = −1, and ei � ej = −ej � ei if i �= j.

In addition, in the table, it is easily observed that the multiplication is non-
associative., from (e.g., e4 = e2 � (e3 � e5) �= (e2 � e3) � e5 = −e4).



114 Y. El. Haoui and M. Zayed

Moreover, by identifying, the algebras span{1}, span{1, e4}, and span{1, e1,
e2, e3}, respectively, with the real numbers R, the complex numbers C, and
the quaternion algebra H, we remark that R,C, and H are a sub-algebras of O.

Convention: with regard to the non-associative nature of octonion algebra, by
convention, the multiplication of octonions throughout the article is from left to
right, so that

p1 � p2 � · · · � pn = (· · · (((p1 � p2) � p3) � p4) · · · ) � pn

for any pi ∈ O.
We will call the part Sc(o) := o0, the scalar part of o and V ec(o) := o − o0,

the vector part of o.
The octonion conjugate is defined by

o = o0 − V ec(o). (2)

For all o, p ∈ O, we have

o = o, and o � p = p � o. (3)

The norm of o equals

|o| =
√

o � o =

√√√√i=7∑
i=0

o2i . (4)

Note that the octonion norm fulfils the law of composition, i.e., for any o, p ∈ O,

|o � p| = |o| |p|, (5)

then, we say then that the octonion algebra has a multiplicative norm.
The exponential of an octonion o is given by:

eo =
∞∑

i=0

oi

i!
, (6)

where oi = o � o � o · · · � o︸ ︷︷ ︸
i times

. Since octonions are non-commutative, the relation

eo+p = eo�ep will not always be true. However, this property is confirmed when
o and p are commutative.

Lemma 1. Let θ ∈ R and μ ∈ O, with μ2 = −1. Then we have the following
natural generalization of Euler’s formula for octonion algebra

eθμ =
∞∑

i=0

(θμ)i

i!
=

∞∑
i=0

(−1)i θ2i

(2i)!
+ μ

∞∑
i=0

(−1)i θ2i+1

(2i + 1)!

= cos θ + μ sin θ (7)
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Consequently, by remarking that
V ec(o)
|V ec(o)| is a square of −1, we get the following

lemma

Lemma 2. Every octonion o ∈ O − {0} can be written in polar form by

o = |o|eθμ (8)

where θ = arctan
(∣∣∣∣V ec(o)

Sc(o)

∣∣∣∣
)

and μ =
V ec(o)
|V ec(o)| =

i=7∑
i=1

oiei

√∑i=7
i=1 o2i

belongs to the

unit sphere

S2 := {o ∈ O : |o|2 = 1}
of the Euclidean space R

7.

Lemma 3. [10] Let a, b ∈ H, then
(i). e4 � a = a � e4 (ii). e4 � (a � e4) = −a (iii). (a � e4) � e4 = −a
(iv). a � (b � e4) = (b � a) � e4(v). (a � e4) � b = (a � b) � e4 (vi). (a �
e4) � (b � e4) = −b � a.

Furthermore, for an octonion o = a + b � e4, a, b ∈ H in the quaternion form,
we have [10, Lemma 2.11]

o = a − b � e4. (9)

and

|o|2 = |a|2 + |b|2. (10)

An octonion valued function f : R3 �→ O may be written as

f = f0 + f1e1 + f2e2 + · · · + f7e7 (11)

where each fi is a real valued function.
For 1 ≤ p < ∞, we denote the spaces Lp(R3,O) as the collection of all octonion
valued functions f : R3 �→ O with the finite norm

‖f‖p =
( ∫

R3
|f(x)|pdx

) 1
p

< ∞,

where x := (x1, x2, x3),∈ R
3 and dx := dx1dx2dx3 stands for the usual Lebesgue

measure on R
3. For p = ∞, L∞ (

R
3,O

)
is the collection of essentially bounded

measurable functions with the norm ‖f‖∞ = ess supx∈R3 |f(x)|. The next tech-
nical lemma yields the equivalence between the membership of an octonion func-
tion f in the octonion L1-space (respectively L2-space) and the membership in
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the quaternion L1-space (respectively L2-space) of the components of f in its
quaternion expression.
Expressing an octonion signal with the quaternion form as in (1), we obtain

f = g + h � e4, (12)

where g and h are two quaternion signals, then we get the equivalences:

Lemma 4.

(i) f ∈ L1(R3,O) if and only if g, h ∈ L1(R3,H),
(ii) f ∈ L2(R3,O) if and only if g, h ∈ L2(R3,H).

Proof. (i) Suppose that f ∈ L1(R3,O). Regarding the fact that |g| ≤ |f | and
|h| ≤ |f |, we obtain that g, h ∈ L1(R3,O). The reciprocal implication holds
true since |f | = |g + h � e4| ≤ |g| + |h|.

(ii) Both implications are a consequence of the identity |f |2 = |g|2 + |h|2.

2.2 Clifford Algebra C�0,3 and Its Clifford-Fourier Trans-
form

The real Clifford algebra C�0,3 is Clifford’s geometric algebra over R
3, i.e. C�0,3

is 8D linear space with basis:

{1, e1, e2, e3, e12, e13, e23, i3}, (13)

where 1 is the unit element, and we used the conventional index notation e12 =
e1 ◦ e2, e13 = e1 ◦ e3, e23 = e2 ◦ e3, i3 = e1 ◦ e2 ◦ e3, here the symbol ◦ stands for
the Clifford multiplication.
The associative geometric multiplication of the basis vectors obeys to the laws

{
ek ◦ ek = e2k = −1 k ∈ {1, 2, 3},

ek ◦ el = −el ◦ ek k �= l, k, l ∈ {1, 2, 3}

Table 2. C�0,3 Multiplication Table

Basis elements

◦ 1 e1 e2 e3 e12 e13 e23 i3

1 1 e1 e2 e3 e12 e13 e23 i3

e1 e1 −1 e12 e13 −e2 −e3 i3 −e23

e2 e2 −e12 −1 e23 e1 −i3 −e3 e13

e3 e3 −e13 −e23 −1 i3 e1 e2 −e12

e12 e12 e2 −e1 i3 −1 e23 −e13 −e3

e13 e13 e3 −i3 −e1 −e23 −1 e12 e2

e23 e23 i3 e3 −e2 e13 −e12 −1 −e1

i3 i3 −e23 e13 −e12 −e3 e2 −e1 1
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Clifford algebra C�0,3 multiplication is given in Table 2, from which observe
that e1, e2, e3, e12, e13, e23 are square roots of −1.
We recall that the 3D Clifford–Fourier transform is defined by for f ∈
L1(R3, C�0,3), by (see [2]):

F3D[f ](w1, w2, w3) =

∫
R3

f(x1, x2, x3) ◦ e−e12πw1x1 ◦ e−e22πw2x2 ◦ e−e32πw3x3 dx,

(14)

Remark 1. Although the octonion algebra and the C�0,3-algebra are both of
dimension 8 and non-commutative, they are clearly not identifiable with each
other because the latter is associative and the other is not. They do, however,
share the fact that one can dive into both of them the Euclidean space R

3, the
algebra of reals R (isomorphic to the Clifford algebra C�0,0), the algebra of com-
plex numbers C (isomorphic to the Clifford algebra C�0,1), and the algebra of
quaternions H (isomorphic to the Clifford algebra C�0,2). Therefore, the multipli-
cations � and ◦ match on the quaternions, and in particular, on the complex and
real numbers where the two symbols will be omitted. Furthermore, by using the
formula (1), one can switch from an algebra of octonions problem to the Clifford
algebra C�0,3 restricted to the algebra of quaternions on R

3, which is associative
and for which the results of the Fourier–Clifford analysis are established, as it is
an instance of the general real Clifford algebra C�0,n.

3 Octonion Fourier Transform

In this section, we recall the definition of the octonion Fourier transform (OFT),
outline some of its important results used in the sequel, and then add some new
results. More details have been discussed in [10–12].
In what follows, we often use the shorthand x = (x1, x2, x3), w = (w1, w2, w3) ∈
R

3 and the R
3-Lebesgue measure as dx = dx1dx2dx3.

Definition 1. If f ∈ L1(R3,O), then the OFT of f is defined as follows:

FO[f ](w) =
∫
R3

f(x) � e−e12πw1x1 � e−e22πw2x2 � e−e42πw3x3 dx, (15)

The OFT shares many properties with the classical (complex) and quaternion
Fourier transforms (for more details on the properties of the OFT, see [3,4]).

Proposition 1. The octonion Fourier transform FO, enjoys the following prop-
erties:
P(1) FO is a R-linear:

FO[αf1 + βf2] = αFO[f1] + βFO[f2], α, β ∈ R.

P(2) Shift property: For α, β, γ ∈ R

FO[f((x1 − α, x2, x3)](w) = cos(2πx1α)U(w)− sin(2πx1α)FO[f ](x1,−x2,−x3) � e1,

FO[f((x1, x2 − β, x3)](w) = cos(2πx2β)FO[f ](w)− sin(2πx2β)FO[f ](w1, w2,−w3) � e2,

FO[f((x1, x2, x3 − γ)](w) = cos(2πx3γ)FO[f ](w)− sin(2πx3γ)FO[f ](w) � e4.
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P(3) Scaling property: For α, β, γ ∈ R\{0}

FO

[
f

(
x1

α
,
x2

β
,
x3

γ

)]
(w) = |αβγ|FO[f ](αw1, βw2, γw3).

P(4)The Riemann-Lebesgue theorem lim
|w |→∞

FO[f ](w) = 0.

The OFT is not an O-linear operation (see [12, Lemma 3.7]); thus P (1)
does not hold for any α, β ∈ O, because the multiplication of octonions is not
associative. The following theorem demonstrates that the OFT is invertible ( see
[4]).

Theorem 3 (Inversion formula). For f ∈ L1(R3,O), such that FO[f ] ∈
L1(R3,O), the inverse of the OFT can be computed as follows:

f(x) =
∫
R3

FO[f ](w) � ee42πw3x3 � ee22πw2x2 � ee12πw1x1 dw, (16)

The next example indicates that the OFT of a Gaussian octonion function is
another Gaussian octonion function.

Example 1 (OFT of a Gaussian octonion function). Consider a Gaussian octo-
nion function f given by f(x) = oe−π|x|2 , where o = a + b � e4 is a constant
quaternion. Then

FO[f ](w) = f (w) . (17)

The following lemma shows that the OFT retains the energy of octonion-
valued signals. [4, Theorem 18]:

Lemma 5 (Parseval theorem). For f ∈ L2(R3,O), one has
∥∥FO

[
f
]∥∥

2
= ‖f‖2 . (18)

Remark 2. L1(R3,O)∩L2(R3,O), like in the classical case, is dense in L2(R3,O).
Thus, standard reasoning on density leads us to extend the definition of the OFT
of f ∈ L1(R3,O) ∩ L2(R3,O) in a unique way to the whole of L2(R3,O). Hence,
we consider that the definition of the OFT is an operator of L2(R3,O) into
L2(R3,O).

In the following, the even and odd parts are denoted by fe and the fo,
receptively, in the third variable x3, of f, given by the following:

fe =
1

2
(f(x1, x2, x3) + f(x1, x2, −x3)) , and fo =

1

2
(f(x1, x2, x3) − f(x1, x2, −x3)) .

(19)

We prove the following formula, which is based on the norm of an octo-
nion signal f in terms of the norms of its odd and even parts in its quaternion
decomposition, using long but simple calculations.
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Lemma 6.

1
2

(|f |2 + |f(x1, x2,−x3)|2
)

= |ge|2 + |go|2 + |he|2 + |ho|2. (20)

The OFT and 3D-Clifford-Fourier transform have the following relationship:

Lemma 7.

FO

[
f
]

= F3D

[
f+

]
+ F3D

[
f−

] � e4. (21)

where

f+ = ge + ho � e3, f−(x) = he(−x1,−x2, x3) − go(−x1,−x2, x3) � e3 (22)

and g, h are the quaternion parts in the decomposition (12) of f .
Lemma 7 can be proved using Lemma 3 and the Euler formula for the octonions
(7).

Remark 3. The lemma is significant insofar as it makes it possible to note that
the computations of the OFT of an octonion-valued signal are reduced to the
computations of the 3D Clifford-Fourier transform of a quaternion-valued signals.

Given that the 3D Clifford transforms of f+ and f− lie in the quaternion
algebra and considering the two formulas (21) and (10), we have the following
lemma:

Lemma 8. For f ∈ L1(R3,O), we have

∣∣∣FO

[
f
]∣∣∣2 =

∣∣∣F3D

[
f+

]∣∣∣2 +
∣∣∣F3D

[
f−

]∣∣∣2. (23)

We define a new module of FO[f ] as follows :

|FO[f ]|O :=

√√√√m=7∑
m=0

|FO[fm]|2. (24)

Furthermore, we define a new L2-norm of FO[f ] as follows

‖FO[f ]‖2,O :=

√∫
R3

∣∣∣∣FO[f ](w)
∣∣∣∣
2

O
dw. (25)

It is interesting to observe that |FO[f ]|O is not equivalent to|FO[f ]| unless f is
real valued.
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4 Uncertainty Relations for the Octonion
Fourier Transform

The classical UP is a fundamentally accurate result of signal processing and
illustrates the precision with which a signal can be measured in space and in its
spectral (frequency) domain. UPs have recently been studied for hypercomplex
Fourier signals, including quaternion-valued signals, space-time-valued signals
and Clifford-Fourier signals. See, for example, [5,8].

Inspired by the generalization of Beurling’s theorem in terms of the quater-
nion algebra [5], we investigate in this section Beurling’s UP for the OFT.

4.1 Beurling’s up

The following useful proposition is an extension of Beurling’s UP for the quater-
nion Fourier transform [5, Thm. 4.2] on R

2 to the 3–D quaternion Fourier trans-
form signals.

Proposition 2. Let f ∈ L2(R3,R) and suppose that
∫
R3

∫
R3

|f(x)||F3D[f ](w)|e2π|x|||w |dxdw < ∞. (26)

Then f = 0 almost everywhere.

Now, according to Proposition 2, we prove an analogue of Theorem 1 for the
OFT.

Theorem 4 (Beurling’s UP). Suppose f ∈ L2(R3,O) with
∫
R3

∫
R3

|f(x)||FO[f ](w)|Oe2π|x|||w |dxdw < ∞. (27)

Then f = 0 almost everywhere.

Proof. We can assume without loss of generality that f ∈ L2(R3,R). Indeed, if
we suppose that the result is proven for a real-valued function fm ∈ L2(R3,R),
which is a component of f given by the form (11), then the assumption (27)
implies that

∫
R3

∫
R3

|fm(x)||FO[fm](w)|e2π|x|||w |dxdw < ∞,

hence we will have fm is 0 almost everywhere. and therefore so is f.
Now, let f ∈ L2(R3,R), and f = g+h�e4 be the quaternion form of f given

by (12), and let f+; f− be the functions given by (22), then we have f = g, h = 0,
and consequently f+ = fe and f− = −fo(−x1,−x2, x3) � e3.
By Lemma 6 we get that f+ and f− are both in L2(R3,R).
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Moreover, by noticing from Lemma 8 that |F3D[f±]| ≤ |FO[f ]|, the assumption
(27) yields that

∫
R3

∫
R3

|f±(x)||F3D[f±](w)|e2π|x|||w |dxdw < ∞,

which is equivalent to∫
R3

∫
R3

|fe(x)||F3D[fe(w)|e2π|x|||w |dxdw < ∞,

and

∫
R3

∫
R3

|−fo(−x1, −x2, x3)�e3|F3D[−fo(−x1, −x2, x3)�e3](w)|e2π|x |||w |dxdw < ∞.

As | − fo(−x1,−x2, x3) � e3| = |fo(−x1,−x2, x3)|, we can, easily, prove the last
inequality is alternatively∫

R3

∫
R3

|fo||F3D[fo](w)|e2π|x|||w |dxdw < ∞.

However, based on Proposition 2, we get fe = fo = 0, therefore f = fe + fo = 0.

Corollary 1 (Hardy’s UP).
Let f ∈ L2(R3,O). Suppose for some α, β > 0, f satisfies

|f(x)| ≤ Ce−πα|x|2 , and |FO[f ](w)|O ≤ C ′e−πβ|w |2 ,

where C and C ′ are positive constants. If moreover

αβ > 1

then f = 0 almost everywhere.

Corollary 2 (Gelfand–Shilov’s UP).
Let f ∈ L2(R3,O), and assume that

∫
R3

|f(x)|e2π αp

p |x|pdx < ∞, and
∫
R3

|FO[f ](w)|Oe2π βq

q |w |qdw < ∞, (28)

for some α, β > 0, 1 < p, q < ∞ with
1
p

+
1
q

= 1. Then

f = 0 almost everywhere whenever (p, q) �= (2, 2) or αβ > 1.

Corollary 3 (Cowling–Price’s UP).
Let f ∈ L2(R3,O), and assume that

∫
R3

(
|f(x)|eπα|x|2

)p

dx < ∞,

∫
R3

(
|FO[f ](w)|Oeπβ|y|2

)q

dy < ∞,

with 1 < p, q < ∞,
1
p

+
1
q

= 1. If αβ > 1, then f = 0 almost everywhere.
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5 Conclusion

In the present paper, we first proved an analogue of Beurling’s theorem in the
framework of octonions based on the quaternion form of octonions, the version
of Beurling’s uncertainty principle related to the quaternion algebra, and the
relation between the Fourier transform of octonions on R

2 and the 3D Clifford-
Fourier transform. We then derived other variants of the uncertainty principle.
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Abstract. We show how the octonion Fourier transform can be embed-
ded and studied in Clifford geometric algebra of three-dimensional
Euclidean space Cl(3, 0). We apply a new form of dimensionally minimal
embedding of octonions in geometric algebra, that expresses octonion
multiplication non-associativity with a sum of up to four (individually
associative) geometric algebra product terms. This approach leads to
new polar representations of octonion analytic signals.

Keywords: Clifford geometric algebra · octonions · Fourier
transform · analytic signal · polar representation

1 Introduction

Hypercomplex Fourier transforms experienced rapid development during the last
30 years. A historical overview of this field can be found in [3], a variety of
approaches is included in [7], and a recent comprehensive textbook is [8]. For a
recent survey of signal and image processing in Clifford geometric algebra, see
Sect. 6 of [10]. In Definition 9 of [4] a Clifford algebra based hypercomplex Fourier
transform producing a multidimensional analytic signal was defined. In the book
[5] this approach is applied for the non-associative and non-commutative hyper-
complex algebra of octonions. Apart from its non-associativity, octonions have
many outstanding algebraic properties (e.g. the highest dimensional normed divi-
sion algebra). It is therefore of great interest for us in this work to use a recently
invented minimal embedding [11,12] of octonions in the Clifford geometric alge-
bra of three-dimensional space Cl(3, 0) and consequently embed the octonion
Fourier transformation (OFT) in Cl(3, 0). This embedding allows to break down
non-associative octonion multiplication into sums of associative geometric prod-
ucts, and therefore to easily apply existing geometric algebra computing software
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[1,2,15]. And it allows to establish new polar representations for octonion ana-
lytic signals.

We first review in Sect. 2 the properties of octonions [13] and in Sect. 3 the
new embedding of octonions in Clifford geometric algebra Cl(3, 0). Then we
present in Sect. 4 the OFT of [5], as well as octonion analytic signals, and in
Sect. 5 embed the OFT in Cl(3, 0). Finally, in Sect. 6 we utilize the polar decom-
position of [9,16] for complex biquaternions and multivectors in Cl(3, 0) to intro-
duce new polar representations for octonion analytic signals.

2 Octonions

Here we first briefly summarize important octonion algebra properties (see [13],
pp. 300–302, and [11]), assuming a, b, c, x, y ∈ O.
– Octonions O form an eight-dimensional bilinear algebra over the reals R with

basis {1, e1, e2, e3, e4, e5, e6, e7}.
– The multiplication table1 is given by (1 ≤ i, j ≤ 7)

ei � ei = −1, ei � ej = −ej � ei for i �= j, ei � ei+1 = ei+3, (1)

where (i, i + 1, i + 3) can be permuted cyclically and translated modulo 7.
– Via the Cayley-Dickson doubling process, octonions can directly be defined

from pairs of quaternions p1, p2, q1, q2 ∈ H (note the order of factors, qc(. . .)
is quaternion conjugation):

(p1, q1) � (p2, q2) =
(
p1p2 − qc(q2)q1, q2p1 + q1qc(p2)

)
. (2)

– O has no zero divisors, i.e., ab = 0 implies a = 0 or b = 0.
– O is a division algebra, i.e., ax = b and ya = b have unique solutions x, y for

non-zero a.
– O admits unique inverses.
– O is non-associative, i.e., in general a(bc) �= (ab)c.
– O is alternative, i.e., a(ab) = a2b and (ab)b = ab2.
– O is one of only four alternative division algebras over R: R,C,H,O.
– O is flexible, i.e., a(ba) = (ab)a.
– O has a (positive-definite quadratic form) norm ‖ . . . ‖ : O → R, the norm is

preserved (i.e. admits composition), such that ‖ab‖ = ‖a‖‖b‖.
– O is one of only four unital norm-preserving division algebras over R:

R,C,H,O.
– O is essential for treating triality, an automorphism of the universal cov-

ering spin group Spin(8) of the rotation group SO(8) or R
8. Triality is

not an inner automorphism, nor an orthogonal matrix similarity, nor a
linear transformation Cl(8, 0) → Cl(8, 0), nor a linear automorphism of
SO(8). Triality permutes three elements in the center of Cl(8, 0), namely
{−1, e12345678,−e12345678}, with basis vectors ei, (1 ≤ i ≤ 8), of R8. Triality
is a restriction of a polynomial mapping Cl(8, 0) → Cl(8, 0) of degree two.

Furthermore, like for complex numbers, quaternions and biquaternions, there
is a polar decomposition for octonions [16].
1 This depends obviously on deliberate ordering and sign choices for the basis elements.
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3 Embedding of Octonions in Clifford Geometric Algebra
of Three-Dimensional Euclidean Space

For readers not familiar with Clifford geometric algebra we refer to the excellent
textbook [13], and to the tutorial introduction [6]. The current section summa-
rizes the results needed from [11].

The Clifford geometric algebra Cl(3, 0) of Euclidean space R
3 has eight basis

elements

{1, σ1, σ2, σ3, Iσ1 = σ23, Iσ2 = σ31, Iσ3 = σ12, I = σ123}, (3)

where {σ1, σ2, σ3} forms an orthonormal vector basis of R3. We can construct
in Cl(3, 0) an octonionic product [11], after splitting it in its even subalgebra
Cl+(3, 0) with basis

{1, σ23, σ31, σ12}, (4)

and the set Cl−(3, 0) of odd grade (w.r.t. grades in Cl(3, 0)) elements

{σ1, σ2, σ3, I = σ123}. (5)

We will use the Clifford conjugation2 (indicated by an overbar M), i.e. the
composition of (main) grade involution (M̂) and reversion (M̃), which preserves
grades zero and three, but changes the signs of grades one and two in Cl(3, 0).
A realization of the octonionic product of M,N in Cl(3, 0) is given by four
geometric algebra product terms

M = M+ + M−, N = N+ + N−,

M � N = M+N+ + N−M− + N−M+ + M−N+, (6)

with even grade parts M+, N+ ∈ Cl+(3, 0) and odd grade parts M−, N− ∈
Cl−(3, 0). The multiplication table is Table 1, with octonionic product illustra-
tion in Fano plane diagram form in Fig. 1.

The octonion conjugate (anti-involution) in Cl(3, 0) is given by

M∗ = M̃+ − M− = M+ − M−, (M � N)∗ = N∗ � M∗. (7)

Computing the octonion norm yields (including norm-preservation):

‖M‖ = M � M∗ = 〈MM̃〉 = M ∗ M̃ =
8∑

i=1

M2
i , ‖M � N‖ = ‖M‖‖N‖. (8)

where Mi ∈ R, 1 ≤ i ≤ 8, are the coefficients of M in the Cl(3, 0) basis (3).
The above reviewed embedding is very flexible. It even allows to reversely

embed Clifford geometric algebra Cl(3, 0) in octonions by defining the geometric
product in terms of the octonionic product (see [11], Sect. 3.3 for details):

M+N+
(6)
= M+ � N+, M−N−

(6)
= N− � M−,

M−N+
(6)
= N+ � M−, M+N− = −(N− � I) � (M+ � I). (9)

2 Note that by construction M± = (M)±.
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Table 1. Multiplication table for octonion embedding in Cl(3, 0). The upper left 4×4-
block corresponds to M+N+, the upper right 4 × 4-block to N−M+, the lower left
4× 4-block to M−N+, and the lower right 4× 4-block to M−N− of (6).

Left factors Right factors
1 Iσ1 Iσ2 Iσ3 σ1 σ2 σ3 I

1 1 Iσ1 Iσ2 Iσ3 σ1 σ2 σ3 I

Iσ1 Iσ1 −1 −Iσ3 Iσ2 I σ3 −σ2 −σ1

Iσ2 Iσ2 Iσ3 −1 −Iσ1 −σ3 I σ1 −σ2

Iσ3 Iσ3 −Iσ2 Iσ1 −1 σ2 −σ1 I −σ3

σ1 σ1 −I σ3 −σ2 −1 Iσ3 −Iσ2 Iσ1

σ2 σ2 −σ3 −I σ1 −Iσ3 −1 Iσ1 Iσ2

σ3 σ3 σ2 −σ1 −I Iσ2 −Iσ1 −1 Iσ3

I I σ1 σ2 σ3 −Iσ1 −Iσ2 −Iσ3 −1

4 Octonion Fourier Transform

From now on, if no brackets are given, the order of multiplication is assumed to
be from left to right. According to Sect. 4.2.1 of [5], the OFT of an integrable
real signal f ∈ L1(R3,R) can be defined as

F{f}(u) =
∫

R3
f(x)e−e12πu1x1e−e22πu2x2e−e42πu3x3d3x, (10)

with three-dimensional position- and frequency vectors, and volume element

x = (x1, x2, x3) ∈ R
3, u = (u1, u2, u3) ∈ R

3, d3x = dx1dx2dx3, (11)

respectively, and octonion units {e1, e2, e4} in the exponents. As pointed out in
[5], any triplet of octonion units could be used in the octonionic kernel of (10), as
long as the three do not form a quaternionic subalgebra, by that reason, e.g., the
triplet {e1, e2, e3} is excluded, compare the multiplication table Table 2.3 and
its Fano plane visualization Fig. 2.2 in [5]. In the latter the triplet {e1, e2, e3}
clearly lies on a straight line.

Given suitable integrability conditions, the inverse OFT can be computed as

f(x) = F−1{F{f}}(x) =
∫

R3
F{f}(u)ee42πu3x3ee22πu2x2ee12πu1x1d3u,

d3u = du1du2du3. (12)

Abbreviating sk = sin(2πukxk), ck = cos(2πukxk), k = 1, 2, 3, we can express
the kernel of (10), using multiplication table Table 2.3 of [5], as

e−e12πu1x1e−e22πu2x2e−e42πu3x3 = (c1 − s1e1)(c2 − s2e2)(c3 − s3e4)
= c1c2c3 − s1c2c3e1 − c1s2c3e2 − c1c2s3e4

+ s1s2c3e3 + s1c2s3e5 + c1s2s3e6 − s1s2s3e7. (13)
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Fig. 1. Illustration of Cl(3, 0) basis elements under the octonionic product (6) in
Table 1, see [11] for details.

The significance of this decomposition is, that therefore a real signal f ∈
L1(R3,R) is decomposed by the OFT (10) into eight spectral components of
distinct even-odd symmetries: {eee,oee,eoe,eeo,ooe,oeo,eoo,ooo}, where e=even,
o=odd. Following the multiplication table Table 2.3 of [5], and using the alter-
native octonion multiplication property of Sect. 2, we find the following conju-
gations (i, j = 2, . . . , 7)

αi(ej) = eiejei =
{
ej , i �= j
−ej , i = j

. (14)

This allows to express all F{f}(±u1,±u2,±u3) in terms of F{f}(u) each time
using four suitable αi conjugations. For example,

F{f}(−u1, u2, u3) = α1(α3(α5(α7(F{f}(u))))). (15)

As a consequence the OFT in all eight octants of the three-dimensional frequency
space can be obtained from the OFT only applied to the first octant, where all
three frequency components are positive (i.e. {u1 ≥ 0, u2 ≥ 0, u3 ≥ 0}).

4.1 Hypercomplex Analytic Signal

A real signal f ∈ L1(R,R) can be extended to a complex analytic signal with
positive frequency by multiplying its Fourier transform FR{f}(u) with (1+sgnu),
u ∈ R being the frequency, and back transforming

ψ(x) = F−1
R

{
(1 + sgnu)FR{f}(u)}(x), (16)

equivalent to application of the Hilbert transform, where � means convolution,

H[f(x)] = (
1

πx
)�f(x), ψ(x) = f(x)+iH[f(x)] = [δ(x)+i

1
πx

]�f(x). (17)
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We can recover the original signal as the real part of ψ(x), i.e.,

f(x) =
1
2
(
ψ(x) + cc(ψ(x))

)
. (18)

Analogously, we can construct for real three-dimensional signals f ∈
L1(R3,R) an analytic hypercomplex signal with triple convolution by (see
Sect. 5.2.3 of [5] for details)

ψ(x1, x2, x3)1 =[δ(x1) + e1
1

πx1
] × [δ(x2) + e2

1
πx2

] × [δ(x3) + e4
1

πx3
]

� � � f(x1, x2, x3)
=f + v1e1 + v2e2 + v12e3 + v3e4 + v13e5 + v23e6 + ve7, (19)

which has only three-dimensional frequency values u = (u1, u2, u3) in the first
octant of frequency space, where all three frequency components are positive
(+ + +). The original signal f ∈ L1(R3,R) is the scalar real component of
ψ(x1, x2, x3). The corresponding analytic signals ψ(x1, x2, x3)k, k = 2, . . . , 8 in
the other seven octants are obtained by simply changing the three plus signs in
(19) to (−++), (+−+), (−−+), (++−), (−+−), (+−−), (−−−), respectively.
And we can recover the original signal simply by

f(x1, x2, x3) =
1
8

8∑

k=1

ψ(x1, x2, x3)k. (20)

Instead of computing ψ(x1, x2, x3)k, k = 2, . . . , 8, one by one, we can obviously
also obtain them from ψ(x1, x2, x3)1 by applying to it compositions of octo-
nionic conjugations (14) as, e.g., in (15). We note that [5], p. 167, states for
ψ(x1, x2, x3)1 of (19): The exact polar representation of this signal is unknown.

This outline of the OFT and its corresponding analytic first octant frequency
spectrum signal may suffice here to be able to somewhat appreciate its uniquely
interesting properties, due to its octonionic kernel. For more details we refer
to [5].

5 Embedding the OFT in Clifford Geometric Algebra
of Three-Dimensional Euclidean Space

Now we reach the main purpose of this work to extend the embedding of octo-
nions in Clifford geometric algebra Cl(3, 0) of Sect. 3 to a full embedding of
the OFT. An essential first step is the question on how to identify the three
unit octonions e1, e2, and e4 with corresponding non-scalar basis elements of
Cl(3, 0). In [5], page 70, when defining the OFT, it is emphasized that the
choice of e1, e2, and e4, for constructing the transformation kernel is not unique,
but other triplets suggested always include e2, located at the center of the Fano
diagram Fig. 2.2 in [5]. Comparing this situation with our Fano diagram Fig. 1,
we conveniently choose the three basis blades σ1,−I,−Iσ3. We observe that
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σ1,−I ∈ Cl−(3, 0) are both odd-, and −Iσ3 ∈ Cl+(3, 0) is even graded, respec-
tively.

We therefore define the embedding in the geometric algebra Cl(3, 0) of the
OFT of a real signal f ∈ L1(R3,R) as

F{f}(u) =
∫

R3
f(x)e−σ12πu1x1 � eI2πu2x2 � eIσ32πu3x3d3x. (21)

The kernel of the embedded OFT can be expressed in geometric algebra, using
multiplication table Table 1, as

K = [e−σ12πu1x1 � eI2πu2x2 ] � eIσ32πu3x3

= [(c1 − σ1s1) � (c2 + Is2)] � (c3 + Iσ3s3)
= c1c2c3 − s1c2c3σ1 + c1s2c3I + c1c2s3Iσ3 − s1s2c3σ1 � I − s1c2s3σ1 � (Iσ3)

+ c1s2s3I � (Iσ3) − s1s2s3[σ1 � I] � (Iσ3)
= c1c2c3 − s1c2c3σ1 + c1s2c3I + c1c2s3Iσ3 − s1s2c3Iσ1 + s1c2s3σ2

+ c1s2s3σ3 − s1s2s3Iσ2

= c1c3(c2 + s2I) − s1c3(c2 + s2I)σ1 + s1s3(c2 − s2I)σ2 + c1s3(c2 − s2I)Iσ3

= c3(c1 − s1σ1)(c2 + s2I) + s3(s1σ2 + c1σ1σ2)(c2 − s2I)
= c3(c1 − s1σ1)(c2 + s2I) + s3σ1σ2(c1 − s1σ1)(c2 − s2I)
= [c3(c2 + s2I) + s3σ1σ2(c2 − s2I)](c1 − s1σ1)

= [c3eI2πu2x2 + s3Iσ3e
−I2πu2x2 ](c1 − s1σ1) (22)

New we observe that to change the sign of any of the three frequency components
in the result, GA has very simple involutions

K(−u1, u2, u3) = σ3K(u1, u2, u3)σ3, K(u1,−u2, u3) = σ3
̂K(u1, u2, u3)σ3,

K(u1, u2,−u3) = σ1K(u1, u2, u3)σ1, K(−u1,−u2, u3) = ̂K(u1, u2, u3),

K(−u1, u2,−u3) = σ2K(u1, u2, u3)σ2, K(u1,−u2,−u3) = σ2
̂K(u1, u2, u3)σ2,

K(−u1,−u2,−u3) = σ1
̂K(u1, u2, u3)σ1, (23)

with grade involution K̂ that changes the sign of all odd grade parts. Note that
the frequency sign change only operating in octonion algebra always requires a
composition of four conjugations (as e.g. in (15)).

5.1 Embedding of Octonion Analytic Signal in Geometric Algebra
Cl(3, 0)

We now ask how the octonion analytic signal, defined in (19), can be embedded in
the geometric algebra Cl(3, 0) of three-dimensional Euclidean space R

3? Similar
to our study of the kernel of the embedding of the OFT, we therefore need
to apply the embedding of octonion multiplication in geometric algebra to the
convolution factor product that appears in the definition of the octonion analytic
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signal (19). We again replace e1, e2, and e4, by the three Cl(3, 0) basis blades
σ1, −I, and −Iσ3, and obtain3

{
[δ(x1) + σ1

1
πx1

] � [δ(x2) − I
1

πx2
]
}

� [δ(x3) − Iσ3
1

πx3
]

=
[
δ(x3)

(
δ(x2) − I

1
πx2

) − Iσ3
1

πx3

(
δ(x2) + I

1
πx2

)](
δ(x1) + σ1

1
πx1

)
. (24)

The following threefold convolution, carried out algebraically in the geometric
algebra Cl(3, 0), will therefore give the embedding of the octonion analytic signal
of (19) in Cl(3, 0)

ψ(x1, x2, x3)1 =
[
δ(x3)

(
δ(x2) − I

1
πx2

) − Iσ3
1

πx3

(
δ(x2) + I

1
πx2

)]

(
δ(x1) + σ1

1
πx1

)
� � � f(x1, x2, x3) (25)

= f + v1σ1 − v2I − v3Iσ3 − v12Iσ1 + v13σ2 + v23σ3 + vIσ2.

Furthermore, the seven simple GA involutions of (23) will also analogously yield
the embedded version of the octonion analytic signal for the other seven octants,
which corresponds to changing one, two or all three signs of σ1, −I, and −Iσ3,
in (25):

ψ(x1, x2, x3)2 = σ3ψ(x1, x2, x3)1σ3, ψ(x1, x2, x3)3 = σ3ψ̂(x1, x2, x3)1σ3,

ψ(x1, x2, x3)4 = ψ̂(x1, x2, x3)1, ψ(x1, x2, x3)5 = σ1ψ(x1, x2, x3)1σ1,

ψ(x1, x2, x3)6 = σ2ψ(x1, x2, x3)1σ2, ψ(x1, x2, x3)7 = σ2ψ̂(x1, x2, x3)1σ2,

ψ(x1, x2, x3)8 = σ1ψ̂(x1, x2, x3)1σ1, (26)

where in number ordering of the octants we simply follow Fig. 4.10 and Table 5.4
of [5]. The original scalar signal can always be reconstructed from the eight
octant specific signals of (25) and (26), and therefore from the purely positive
frequency (in the first octant of the three-dimensional frequency space) signal
ψ(x1, x2, x3)1, as

f(x1, x2, x3) =
1
8

8∑

k=1

ψ(x)k, (27)

which is the octant generalization of the reconstruction (18) of a real one-
dimensional signal from its complex analytic signal. The single complex con-
jugation in (18) is replaced by the seven geometric algebra involutions of (26).

6 Polar Representation of Embedded Octonion Analytic
Signal

As shown in [16], Theorem 1, there exists an elegant and very compact polar
decomposition for complex biquaternions. Due to the isomorphism between com-
3 Note the close algebraic analogy to the computation in (22), associating ck and

δ(xk), as well as sk and −1/(πxk), for k = 1, 2, 3.
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plex biquaternions and the Clifford algebra Cl(3, 0), this can be carried over to
multivectors in Cl(3, 0) as well, see [9], Sect. 4.3, equation (49).

As for notation, unit vectors u (two degrees of freedom (DOF)), unit bivectors
i2 (two DOF), and the central unit pseudoscalar I = σ123 in Cl(3, 0) square to

u2 = +1, i22 = −1, I2 = −1. (28)

The even subalgebra of Cl(3, 0) is isomorphic to quaternions H: Cl2(3, 0) ∼= H.
That means general multivectors M in Cl(3, 0) can always be represented as
complex (I2 = −1) (bi)quaternions:

M = M+ + M− = p + Iq, (29)

where p and q are (isomorphic to) quaternions

p = M+ = ape
αpip , q = I−1M− = aqe

αqiq , ap, aq ∈ R
+
0 , i2p = i2q = −1,

(30)
with unit bivectors ip, iq ∈ Cl2(3, 0).

The polar decomposition of M ∈ Cl(3, 0) is

M = p + Iq =

⎧
⎪⎪⎨

⎪⎪⎩

eα0eα2i2 for q = 0,
Ieα0eα2i2 for p = 0,
eα0eα2i2 1+If

2 for q = pf ,
eα0eα1u′

eα2i2eα3I otherwise.

(31)

where in line three (compare (26) in [9]) we have the special case that the quotient
p−1q results in a unit bivector f = p−1q. The value of i2 = ip in lines one
(compare (19) in [9]) and three, i2 = iP in line four, while in line two we have
i2 = iq. We note that line one is a special case of line four for α1 = α3 = 0. Line
two (compare (19) in [9]) is a special case of line four for α1 = 0 and α3 = π/2. So
essentially only lines three and four of (31) matter, and we have one special (line
three) case with idempotent factor ( 1+If

2 ) and one general case (line four: see
Sect. 4.2 of [9] for all computational details) with full exponential factorization.
The latter has the necessary eight DOF: four DOF are given by the phase angles
αk, k = 0, 1, 2, 3, two DOF by unit vector u′ and two by unit bivector i2.

To better understand how to compute the generic case decomposition of line
four of (31), we present the following numerical example (see details in Appendix
A).

Example 1.

M = 1 + 2σ1 + 3σ2 + 4Iσ1 + 5Iσ3 + 6I = e1.0436 e1.5574u′
e−0.66405 i2 e1.8304 I ,

u′ = 0.9047σ1 − 0.1544σ2 + 0.3972σ3,

i2 = 0.2959Iσ3 + 0.6685Iσ2 + 0.6823Iσ1. (32)

We thus propose to use this new polar representation method (31) for the embed-
ded octonion analytic signal (25), is one way to answer the open question for
the exact polar representation of (19).
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Another way to answer this question can be proposed based on analysis of
a separable three-dimensional signal f(x1, x2, x3) = g1(x1)g2(x2)g3(x3), gk ∈
L1(R1,R1), k = 1, 2, 3, that leads to a decomposition of the form

ψ1 = a1a2a3

[
cos(α2)e−α3I − sin(α2)Iσ3e

α3I
](

cos(α1) + sin(α1)σ1

)
, (33)

or more general

ψ1 = A
[
cos(α2)e−α3I + sin(α2)i2eα3I

](
cos(α1) + sin(α1)u

)
, (34)

with suitably defined amplitudes ak, A ∈ R, angles αk ∈ R, k = 1, 2, 3, unit
vector u ∈ R

3, and unit bivector i2 ∈ Cl2(3, 0).
Further research has to show which of these two ways may be preferable.

7 Conclusion

We have briefly reviewed octonions and their new minimal embedding in the
geometric algebra of three-dimensional space Cl(3, 0). We further reviewed the
notion of OFT and octonion analytic signal, embedded both in Cl(3, 0), and
finally suggested two interesting possibilities for polar decompositions of the
embedded octonion analytic signal. Further research, including concrete appli-
cations to non-separable signals, is desirable.
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[14]. I thank my colleague S. J. Sangwine for fruitful and inspiring collaboration, as
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A Computation of Example 1

The Cl(3, 0) multivector

M = 1 + 2σ1 + 3σ2 + 4Iσ1 + 5Iσ3 + 6I (35)

has according to (30)

p = 1 + 4Iσ1 + 5Iσ3, q = I−1(2σ1 + 3σ2 + 6I) = 6 − 2Iσ1 − 3Iσ2. (36)

A first step is to norm M by division with the square root of MM .

MM = (1 + 2σ1 + 3σ2 + 4Iσ1 + 5Iσ3 + 6I)(1 − 2σ1 − 3σ2 − 4Iσ1 − 5Iσ3 + 6I)
= 1 − 4 − 9 + 16 + 25 − 36 + I(12 − 16) = −7 − 4I

=
√
65

−7 − 4I√
65

= e2×1.0436e2×1.8304I , (37)

showing that α0 = 1.0436 and α3 = 1.8304. We therefore have
√

MM = e1.0436 e1.8304I , (38)
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and

N = M
√

MM
−1

= (p + Iq)e−1.0436e−1.8304I

= 1.9519 + 1.1807σ1 − 0.2712σ2 + 1.7019σ3

− 0.4520Iσ3 − 1.0212Iσ2 − 1.0424Iσ1 − 0.8828I

= N+ + II−1N− = P + IQ. (39)

Therefore

P = 1.9519 − 0.4520Iσ3 − 1.0212Iσ2 − 1.0424Iσ1,

Q = −0.8828 − 1.1807Iσ1 + 0.2712Iσ2 − 1.7019Iσ3. (40)

And we represent P as a rotor

P = aP eαP iP = 2.4786 e−0.66405×(0.2959Iσ3+0.6685Iσ2+0.6823Iσ1), (41)

that is

aP =
√

PP = 2.4786, α2 = αP = −0.66405,
i2 = iP = 0.2959Iσ3 + 0.6685Iσ2 + 0.6823Iσ1. (42)

We will soon need
aQ =

√
QQ = 2.2679. (43)

We finally have

eα1u′
= NP−1 = Na−1

P e−αP iP = 1 + 0.8278σ1 − 0.1413σ2 + 0.3634σ3, (44)

with unit vector part

u′ =
〈NP−1〉1
|〈NP−1〉1| = 0.9047σ1 − 0.1544σ2 + 0.3972σ3, (45)

and
α1 = atanh

aQ

aP
= atanh

2.2679
2.4786

= 1.5574. (46)

In summary the polar decomposition gives

M = e1.0436 e1.5574u′
e−0.66405 i2 e1.8304 I ,

u′ = 0.9047σ1 − 0.1544σ2 + 0.3972σ3,

i2 = 0.2959Iσ3 + 0.6685Iσ2 + 0.6823Iσ1. (47)

All computations have been verified with The Clifford Multivector Toolbox for
Matlab [15].
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