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Abstract. Vehicle detection in autonomous driving could be very challenging
under adverse road conditions. The problem has been studied intensively. How-
ever, recent studies have shown that the problem remains unsolved, especially
when the vehicles are occluded or under low-light conditions. This paper adopts a
different approach to vehicle detection by taking advantage of RFID technology.
Specifically, RFID tags are attached to the vehicle’s surfaces, and then a system
is designed to detect, locate, and track those tags dynamically. In addition, RFIDs
are allowed to store user data on chips. To fully utilize this feature, this paper
develops an algorithm to select and store the most critical information in tags for
recovering the boundaries of occluded vehicles and finding the vehicle’s location
and orientation. The proposed method achieves the following objectives: (1) Vehi-
cles could be detected at a relatively long distance in any conditions (including
low-light or adverse weather). (2) The boundary of the occluded vehicle could
be recovered. (3) Vehicles are still detectable even if they are turned off. (4) The
implementation is relatively simple. The evaluation results have shown that the
proposed method is able to detect a vehicle’s orientation and rotation and recover
the boundary for an occluded vehicle.

Keywords: Autonomous driving · RFID tags · shape approximation ·
orientation estimation · vehicle detection · vehicle safety

1 Introduction

In recent years, due to the popularity of autonomous driving, the related accidents also
increased [1, 2]. According to a report [2], the accidents were caused by detection
defections, such as the driving systems failing to detect other vehicles or recognize
surrounding objects.

1.1 Challenges of Vehicle Detection

Autonomous vehicles are required to identify and track other vehicles around them and
properly handle each detected vehicle. However, there are many challenges to recog-
nizing those vehicles on roads correctly. The most significant challenges of vehicles
detection are summarized as follows:
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Vehicle detection is especially challenging in heterogeneous traffic or adverse road
conditions, in which the size and type of vehicles vary significantly. When vehicular
traffic density is high, it leads to frequent occlusion. Occlusions increase the difficulty of
learning the visual representations of vehicles. The tracker may fail to follow the target
under occlusions since the occlusions prevent the tracker from learning the complete
appearance representation of the target [3]. Furthermore, complex backgrounds, weather
conditions, and cast shadows make identifying and tracking a vehicle difficult [4].

1.2 Related Works

Although on-road vehicle detection is challenging, significant progress has been made
for general problems in recent years [5, 6]. Autonomous vehicles integrate multiple
sensors onboard for information acquisition about road conditions. Those sensors can
be classified into two main categories: active and passive [5].

The most common approaches to detecting vehicles by active sensors include radar-
based and laser-based. Millimeter-wave radar is widely used for vehicle detection, in
which a frequency-modulated continuous waveform signal is emitted. Its reflections
are received and demodulated, and frequency content is analyzed [6]. Radar sensing
generally features a narrow angular field of view, and measurements are quite noisy,
requiring extensive filtering and cleaning [6].

Lidar-based systems emit and receive lasers at wavelengths generally between 600
and 1000 nm. The distance to the detected object could be derived based on how far the
photons have traveled round trip [5]. Laser-based systems are accurate; however, they
do not perform well in rain and snow [7]. When a large number of vehicles are moving
simultaneously in the same direction, interference among sensors of the same type poses
a big problem [7].

A passive vision-based system such as a camera is utilized to track approaching
and preceding vehicles more effectively than active sensors as visual information can
provide a brief description of the surrounding vehicles [5]. Optical sensors can also be
used for lane detection, traffic sign recognition, or object identification [5].

Multiple sensor approaches are more likely to progress and achieve more reliable
and secure systems than a single sensor. In the fusion process, either two types of sensors
perform detection simultaneously and then validate each other’s results, or one sensor
detects while the other validates [5].

Imaging technology is the mainstream of vehicle detection methods [6], which could
be divided into two broad categories: appearance-based and motion-based methods.
Appearance-based methods recognize vehicles directly from images. However, motion-
based approaches require a sequence of images to recognize vehicles [6]. Therefore,
monocular vehicle detection often relies on appearance features and machine learning,
while stereo vehicle detection often relies on motion features, tracking, and filtering [6].

Several recent studies investigated the detection problem under special scenarios,
such as nighttime and low-light [8, 9]. The studies have shown that complex road and
ambient lighting conditions and camera configurations can significantly impact the effec-
tiveness. If vehicles are occluded by nearby objects or under very bad weather, the detec-
tion problem could be even more challenging. Current benchmarks indicate that recent
detection algorithms can detect approximately 90% of partially occluded and 80% of
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heavily occluded vehicles [3]. One popular occlusion handling method is the analysis
of motion cues, such as frame comparison reasoning, which analyzes continuous image
data and identifies objects by comparing data between frames [3]. However, this method
is restricted in cases of static occlusion where the variation of occlusion between frames
is small [3, 10]. Some other popular methods of occlusion handling combine a number
of the following occlusion cues or image characteristics to assess if an object boundary
is recognized or recovered [3]. The weaknesses of the existing methods are obvious: (1)
the success rates heavily rely on the visual quality or road conditions; (2) the occluded
parts are very difficult to be recovered in cases of static occlusion because the related
information is limited.

1.3 Proposed Solution for Detection of Invisible/Occluded Vehicles

This paper proposes a method to detect invisible/occluded vehicles by taking advantage
of the newdevelopments in radio frequency identification (RFID) technologies. Themain
idea is to attach passive RFID tags to a vehicle’s surfaces to add new electromagnetic
visibility to the vehicle. Furthermore, each tag is allowed to store a vehicle’s 3D model
on the chip. So that the RFID reader can remotely retrieve the 3D model from a tag
when a vehicle is invisible or occluded; in addition, based on the tags’ returned signals,
the vehicle’s boundary, location, and orientation could be derived. Compared to optical
systems, RFID is independent of weather conditions and the time of the day [16].

The remaining sections of this paper is organized as follows. Section II analyzes the
characteristics of RFIDs and explains the use of RFID technologies to make vehicles
detectable in adverse road conditions. The storage space in a tag is very limited and varies
in different brands. Section III shows how to dynamically minimize the storage space
required for the 3D model of a vehicle. Section IV designs a data structure to support
effective detection and computation in consideration of limited storage space in RFID
tags. Section V proposes methods to estimate an occluded vehicle’s direction, distance,
and orientation. Section VI is the performance evaluation for the proposed method.

2 Make Vehicles Detectable by Using RFIDs

RFID is designed to be attached to equipment or objects for easier detection, location,
and tracking. RFIDs are highly reliable yet have low implementation complexity [13,
24]. For instance, multiple RFID tags are attached to an object to enhance availability
and detection accuracy in inventory applications [25]. An RFID system usually contains
one or more RFID tags and a reader. A tag consists of a silicon microchip attached to
a small antenna, mounted on a substrate, and encapsulated in a plastic or glass veil. A
reader consists of a scanner with antennas to transmit and receive signals, is responsible
for communication with the tag, and receives the information from the tag. A reader can
scan multiple tags at a time. Figure 1 is the illustration of interactions between a reader
and multiple tags. However, it can also detect each tag individually. RFID tags are not
necessary to communicate within line of sight. This characteristic is useful when the
vehicle is partially occluded.
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Fig. 1. An RFID reader can turn on multiple tags simultaneously over a long distance.

2.1 Durability and Detection Range of Passive RFIDs

There are two types ofRFID systems in operation: active and passive. In an active system,
the tag has its power source. The battery life could be up to a few years. However, the
tag has no internal power supply in a passive system; therefore, it can be much smaller
[15]. Passive tags contain circuitry that gains power from radio waves emitted by readers
in their vicinity. They use this power to give a reply to the reader. Passive tags have no
moving parts or internal power sources. The chance of breakdown within the tag itself
is extremely low. Therefore, passive tags can last for the entire lifespan of the vehicles
to which they are mounted [13].

The communication distance of RFID depends on the active or passive RFID, RF
output power of reader/writer, the antenna gain of tag and reader/writer, and the user
environment. In general, the communication distance for active tags could be up to 100
m [11]. For the passive type, although the reachable distance of radio waves depends
on the conditions related to the antenna size and the signal strength, generally speaking,
the higher frequency bands (UHF) have larger communication distances. For instance,
in the mainstream market, some UHF RFID tags’ ranges can reach 20 m [12] or 30
m [13]. Recent studies have shown that the new passive RFID could be reached at an
unprecedented range of up to 64 m [14, 15].

2.2 User Memory on RFID Tags

An RFID tag is composed of four types of memories in a tag. They are (1) reserved
memory, (2) TID (tag ID is written by manufacturers), (3) EPC (electronic product
code) can be written by users, and (4) user memory. Type (3) and (4) can be rewritten by
users. Storing extra information (other than ID number) in an RFID tag allows users to
access records in real-time without connecting to a reference database. When a reader
scans an RFID tag, it can retrieve the ID and the stored data.

Different RFID tags have varying amounts of storage available. The capacity ofRFID
tags ranges from 60 bytes to 64K bytes [19]. Typically, a tag carries about 2 KB of data
(e.g., Fujitsu chip MB89R118). However, some industrial passive UHF tags can store
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4 KB or 8 KB of data. The data retention could be up to 30 years. Invengo RFID Tag
(Model No. XC-TF8102-B-C43) is a typical RFID tag used in this paper’s experiment.
The specifications of the tag are: TID: 96 bits, EPC (electronic product code) memory:
256 bits, and user memory: 512 bits. If applications need more memory than the EPC
section has available, they use the extended user memory to store more information. In
this case, the total size of usable memory is 96 bytes.

To summarize, RFIDs have the following characteristics: (1) their lifespan can be as
long as 30 years; (2) they can be detected at a distance of more than 60 m; (3) users are
allowed to store extra information on a tag for real-time access.

3 Overcome the Limitations of RFID’S Storage Space

One of the solutions to detect invisible/occluded vehicles is to increase every vehicle’s
visibility to other vehicles. There are several advantages to attaching passiveRFID tags to
a vehicle’s surfaces. Those tags can be detected reliably under different road conditions
[16]. Secondly, the vehicle’s identifier, 3Dmodel, etc., are stored in each tag for real-time
access. So that vehicles can easily detect and locate the invisible/occluded vehicles, they
can also recover the boundaries of the occluded vehicles. The storage requirement of a
vehicle’s 3D model should be minimized to overcome the limitation of RFID’s storage
space and achieve better computational efficiency. The following sub-sections are to
develop an algorithm to simplify the 3D expression.

3.1 Vehicle Segmentation

In 3D modeling, a vehicle is scanned into a point cloud which usually consumes a lot
of storage space. A vehicle’s point cloud is divided into multiple parts to simplify the
vehicle bounding’s expression. A tight bounding box is generated for each part. As a
result, the tags’ positions will tightly align with the virtual boundary. Then the resulting
bounding boxes are joined together to create a 3D vehicle model.

Edge-Based Segmentation
Several existing algorithms can be used to divide a point cloud into logical parts [20,
21]. For instance, there are edge-based segmentation, region growing segmentation,
segmentation by model fitting, etc. Different algorithms have their advantages. Vehicles
usually have simple shapes; they are easier to be divided into parts. In this paper, edge-
based segmentation is chosen as it is a fast algorithm to speed up the computation [21].
The edge-based segmentation algorithms have two main stages: (1) edge detection to
outline the borders of different regions and (2) grouping of points inside the boundaries
to deliver the final segments [21]. Edges in a given point cloud are defined by the points
where changes in the local surface properties exceed a given threshold. Figure 2 shows
two examples of dividing a car and a truck into segments.
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Fig. 2. Two examples: (a) a car is divided into two segments; (b) a truck is divided into three
segments.

3.2 Shape Selection

After segmentation, each part of the vehicle will be converted into a bounding box to
simplify the 3D expression.

Building the Shape Database
First, a database of simple 3D geometric shapes is built to store a set of representative
shape exemplars. The selectionof those shape exemplars is straightforward.The common
shapes that appear in the vehicles are selected. It is important to ensure that those shapes
havemultiple flat surfaces, whichwill be easier for the algorithm to estimate the vehicle’s
pose at a later stage. The database can be updated if the shapes of vehicles have changed.
The following is an example (Fig. 3):

Fig. 3. Database of 3D geometric shapes with flat surfaces.

Initial Shape Selection
Instead of directly reconstructing shape representations, the proposed method operates
indirectly by selecting shape exemplars. More precisely, after segmentation, for each
segment, the algorithm is to select one shape exemplar among a set ofK shape exemplars
from a given shape database. The goal is to approximate the realistic shape for each
segment yet consume minimum storage space. After each selection of shape exemplars,
the exemplar’s parameters can be manipulated to fit the bounding box as perfectly as
possible. A loss function is developed to evaluate the fitness of the approximation. This
polygonal model could be used in different types of vehicles. By careful selection, all
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shapes consist of limited flat surfaces, and each surface is a plane that is a flat (not
curved) two-dimensional space.

3.3 Distance Calculation and Parameters Fine-Tuning

A function is used to evaluate the effectiveness of the resulting 3D geometric shape. The
distance is measured between each point of the point cloud and the surface (plane) of
the 3D shape. The following model is proposed: let P = {p1, · · · , pi, · · · , pm} is the
point cloud, and S = {

s1, · · · , sj, · · · , sn
}
denote flat surfaces (planes) of the resulting

3D model. Define dist(pi, S) to be the distance function point pi to S. The objective is
to minimize the total distance from P to S.

d(P, S) = minimize
∑m

i=1
dist(pi, S) (1)

Then the problem can be decomposed into the following set of sub-problems:

• Develop a function dist
(
pi, sj

)
that calculates the distance between a point pi and an

arbitrary plane sj.
• Calculate the distances between point pi and each flat surface (each side is a plane)

and take the shortest of the distances:

dist(pi, S) = min
sj∈S

{
dist

(
pi, sj

)}
(2)

The following paragraph explains how to calculate dist
(
pi, sj

)
. Figure 4 shows the

distance from point A to a plane determined by normal vector N and point B. Point B
is confined to being in the plane. The distance from A to the plane is the length of the
projection of the vector from B to A onto the normal vector. C is the point where the
projection touches the plane, then C is the point on the plane closest to A. Then the
distance from A to the plane is as follows:

d =
∣∣∣
−→
AB

∣∣∣ cos θ =
∣∣∣∣∣
−→
AB · �N

|N |

∣∣∣∣∣
(3)

Iterative Closest Point Fine-Tuning for Each Segment
For each segment, the parameters of a 3Dgeometric shape (such as lengths of dimensions
and orientation) are fine-tuned to match the corresponding point cloud by using the
Iterative Closest Point method (ICP), which is used to align two free-form shapes [22].
Then the problem is formulated as follows: given two corresponding free-form shapes
(shape S and point cloud P). The goal is to fine-tune the shape parameters tominimize the
sum of distance d(P, S). After that, all segments are put together to form the final shape
for the vehicle. Some methods are proposed to identify key points for more efficient
computation [23]. The trade-off between accuracy and computational time is dependent
on the number of key points selected.
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Fig. 4. Illustrate the distance from point P to a plane.

4 Design of Data Structure for RFID Tags

4.1 Data Structure in a Tag

Application developers can use the software development kits provided by reader man-
ufacturers to write data into memory. The following information is stored in a tag to
facilitate vehicle detection. They are the vehicle’s 3D segment shapes, tags’ positions
on the surfaces, the total number of tags on a specific surface (this number will be used
to calculate the weighting of the surface for the pose estimation later), the coordinates
of polygons that form the vehicle’s 3D model. The above information could allow us to
achieve the following objectives: (1) recover the vehicle’s 3D model; (2) calculate the
portion of detected tags on each surface; (3) estimate the vehicle’s orientation.

The following example gives a conceptual idea of the storage requirement for a
typical passenger car. The car in Fig. 5 is divided into two segments: two square frustums.
A 3D square frustum bounding box takes four parameters. Assume that a floating-point
number is used for each parameter. It takes 8 bytes to represent a box. Then two segments
take a total of 16 bytes for the 3D representation. Each 3D object also takes 6 bytes to
specify the coordinates in the 3D space. As a result, two 3D objects consume another
12 bytes.

Fig. 5. All 3D objects share the same coordinate system.

There are many ways to represent a rotation for the orientation representation: 3 ×
3 matrices, Euler angles, rotation vectors (axis/angle), quaternions, etc. Take the Euler
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angle as an example; it uses a sequence like (x, y, z) to specify the rotation of the x-axis,
y-axis, and z-axis, respectively (see Fig. 5). Each object takes 6 bytes for orientation
representation. That takes another 12 bytes. Based on the above rough calculations, the
data storage requirement is about 50 bytes for the above example. This example also
shows that the proposed algorithm can dynamically adjust the storage requirement for
each vehicle.

4.2 Attach Multiple Tags to a Surface

Based on the previous studies, attaching multiple tags to an object can significantly
improve the reliability and accuracy of detection [25]. In the ideal case, the tags should
be attached to a vehicle’s surfaces uniformly. However, this requirement is impractical
in the design of vehicles. The strategy is to divide the usable area on each surface into
grids to maximize the vehicle’s visibility from different angles. A tag is attached to each
grid. Depending on the design of a vehicle, the density of tags may be different on each
surface. The surface’s exposure is measured by counting the percentage of tags that have
been detected to overcome the problem of heterogeneous density.

A vehicle’s 3D model is divided into different separated surfaces. A total number of
tags on each surface is stored in the tag. This number will be used to compare with the
number of detectable tags in the scanning process. If the surface is 100% directly facing
the detector in the detection range, the detector should be able to receive signals from all
tags on this particular surface. Otherwise, the surface is not 100% facing the detector,
or a part of the surface is blocked.

5 Detection of Invisible/Occluded Vehicles

The following information is available to detect an invisible or occluded vehicle: (1) the
vehicle’s 3D model; (2) the distance and direction to the detector; (3) its orientation to
the detector. For point (1), the model can be retrieved from an RFID tag. For points (2)
and (3), the following sub-sections elaborate on details of the proposed methods.

5.1 Direction and Distance Estimation of Passive RFID Tags

This section describes the details of the time-of-flight (TOF) method for estimating a
group of passive RFID tags’ direction and distance. Two readers are arranged horizon-
tally at a vehicle’s two front ends to perform the TOF-based localization. The above
arrangement is to avoid collision with the front vehicles. However, the readers could be
mounted at the vehicle’s back to avoid collision with the rear vehicles. When multiple
tags are present, readers can process a tag at a time.

For on-road vehicle detection, all the vehicles are on the roads which are on the same
or similar ground levels. In the proposed method, only the direction and distance of a
specific tag are required (not the position in 3D space). Therefore, 2D TOF estimation
is adopted in this paper (see Fig. 6). The RFID tag emits a signal, which propagates
through the air toward the two readers. The distance between two readers is k. Since
the distance from the tag to the reader can be measured separately, therefore, the tag’s



Detection of Invisible/Occluded Vehicles Using Passive RFIDs 175

direction to the vehicle can be estimated. The synchronization between two sensors in
TOF measurements is a challenging issue; Medina et al. [18] proposed a TDMA-based
method with compensation of the clock drifts and the random variation of the start time.

Fig. 6. Measurement of the distance and direction.

In the above figure, two readers and one tag are the three points of a triangle. θ1,
θ2, and θ3 are the inner angles of the triangle, respectively. r1 and r2 are the distances
from the tag to readers 1 and 2, respectively. The goal is to find the distance (d) and
direction (θ4) between the vehicle and the tag. There are different ways [26] to measure
the distance between two points, such as time-of-arrival (TOA), time-difference-of-
arrival (TDOA), and received-signal-strength (RRS), etc. Although more complicated
positioning systems (such as GPS) can be used in the vehicle, they still cannot fulfill
all the requirements in this application. For instance, GPS signals are not available in a
tunnel. A new method, time-of-flight (TOF), is proposed to address the ranging issue in
RFID systems [27, 28]. It measures the time-of-flight of the signal traveling from the
transmitter to the measuring unit and back. It performs ranging with a single antenna
and could work with standard EPCGeneration-2 tags. According to [27], at a distance of
40 m, their study achieved 1-m ranging accuracy outdoors. In another paper [28], their
study achieved a ranging precision below 10 cm for a MIMO system at a bandwidth of
100 MHz indoors. In TOF, the distance between the reader and the tag can be estimated
by dividing the total traveling time by 2.

τ = t1 − t0
2

(4)

where t0 and t1 are the starting time and end time of the signal traveling. There is only
one hop in this application, and the tag only gives a simple reply to the reader; the delay
spent on routing and processing can be ignored. So, the distance between the reader and
the tag can be given by D = cτ , where c is the speed of light.
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r1, r2 are measured by using TOF, and k is given. Then θ1 can be expressed in the
following equation by using the law of cosine:

θ1 = cos−1
(
r12 + k2 − r22

2kr1

)
(5)

Similarly, the same method is used to find θ2 and θ3. Then the direction of arrival,
θ4, can be obtained as follows:

θ4 = π − 1

2
θ2 − θ3 (6)

Moreover, the distance between the vehicle and the tag can be calculated by using
the law of cosine again:

cosθ4 = d2 + ( 1
2k

)2 − r22

d · k (7)

The above is a quadratic equation where d is unknown, and the answer is as follows:

d = cosθ4 · k ±
√

(cosθ4 · k)2 − k2 − 4r22

2
(8)

There are two solutions in (8), but one of them will be discarded based on the
constraints. A reader can read multiple tags (say, n) at a time. θ4 and d can be calculated
for each tag. Thus, the direction of arrival and the distance between the vehicle and the
tag could be estimated as the average values of detected tags:

[θ, d ]avg =
[
1

n

∑n

i=1
θ4

i,
1

n

∑n

i=1
di

]
(9)

5.2 Estimation of Vehicle’s Orientation

The relative positions of the detected ID tags can be used to estimate the vehicle’s
orientation. Those IDs are organized in hierarchies. An ID in each tag is formulated in
the following format {Vehicle ID, Polygon ID, Surface ID, Tag serial no}. Based on the
ID format, a tree structure is organized for fast searching.

Localization registration is to determine the orientation of a set of tags for the pre-
built global 3D map. In the matching process, it is computationally expensive. Different
approaches are proposed to accelerate the search [29]. The ordered tree comparison is
suitable for localization registration [17]. The pre-built global 3Dmap could be organized
as a tree (T1) that consists of several polygons, and each polygon consists of several
surfaces. Each surface has an attribute of the total number of tags attached. The detected
tags could also be organized as an ordered tree (T2) which consists of the detected
polygons, and each polygon consists of the detected surface, and each surface consists
of the detected tags. Therefore, the problem can be transformed into an ordered-tree
comparison. A recent study proposed a linear-time algorithm comparing two similar
ordered rooted trees with node labels. They have shown that an optimal mapping that
uses at most k insertions or deletions could then be constructed inO

(
nk3

)
where n is the

size of the trees [17].
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6 Performance Evaluation

6.1 Experiment Configurations

The experiment aims to study the effectiveness of the proposed detection method when
the vehicle is invisible or occluded. Due to the budget constraint, a small-scale exper-
iment is implemented in this paper. The setup of the experiment consists of two major
components: a reader and a box for simulating a car. These two components can be
separated at a maximum distance of 5 m. The box was made based on a car’s three
dimensions, i.e., 0.46-m length, 0.18-m width, and 0.17-m height. The box has a total
of 6 flat surfaces. Multiple tags are attached to each surface. The inner surfaces of the
box are covered by aluminum foil, which is to simulate the metal body frame of a car.
There is a distance of 4 cm between the two tags. The number of tags for Surface {1, 3,
4, 5} are {5, 12, 12, 12}, respectively (see Fig. 7).

Fig. 7. Experiment Setup.

Before the experiment, a product code was written to each tag for identification. The
format of the product code is specified in the previous sections. The antenna is fixed at
a position; the box changes the position and orientation. The following is the hardware
used:

• Reader: CNIST-CN9400 (model no.). The query interval is 25 ms for each antenna.
There is a total of 8 antennas in each unit. A software development kit is installed on
a notebook.

• Antenna: CNIST-CN09C (model no.)
• RFID Tag: Invengo RFID Tag (XC-TF8102-B-C43, model no.): working frequency:
860–960 MHz, EPC memory: 256 bits, and user memory: 512 bits.

6.2 Effectiveness of RFID Detection

This sub-section is to study the detection effectiveness when the vehicle is moving.
The first experiment detects the vehicle’s front surface at different distances. The goal
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is to count how many tags have been detected for each surface. Figure 8 shows the
detectability at a specific angle (see Fig. 7) at different distances. The percentage of
detected tags is counted at each distance.

Fig. 8. Distance sensitivity experiment.

The results show that the front surface (Surface ID 1) can be detected successfully
at different distances. When the distance increases to 5 m, the percentage of detected
tags decreases to 80%, but the success rate is still at a high level. The experiment also
shows that, at a short distance, the reader can detect tags from other surfaces which are
not directly facing the detector.

The second experiment studies the sensitivity of detected tags when the vehicle
changes its orientation. The box is fixed at a distance of 2 m, and then the box is slowly
rotated from left to right for 90° (see Fig. 7).

Fig. 9. Sensitivity on rotation.
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In Fig. 9, the box is rotated 10° from left to the right at a time (that means Surface 1
will gradually flash out, and Surface 4will gradually flash in) (see Fig. 7). The percentage
of Surface 1 starts declining at 50°, and the reading drops to zero at 80°. However, for
Surface 4, the percentage increases steadily when the vehicle rotates. When the degree
reaches 90°, the level reaches the top. The changes in the percentages of those two
surfaces show that the vehicle is rotating.

6.3 Effectiveness of Occluded Object Detection

This experiment is to study the effectiveness of vehicle detection when nearby objects
occlude the vehicle. An object is arranged to slowly move from left to right in the front
of the vehicle. The detected tags’ percentage is measured in each movement when the
occluded surface increases from 10% to 100% at 2 m. Surface 4 is used as a test case
in the experiment; because it has the largest surface so that the most significant result
could be observed. Figure 10 shows the detection sensitivity of the simulating box.

Fig. 10. Sensitivity on occlusion.

Figure 10 shows that the percentage of detected tags decreases proportionally to the
percentage of the occluded surface. This experiment demonstrates the importance of
using multiple tags.

7 Conclusion

We identify the challenges for vehicle detection under adverse driving conditions. This
paper takes advantage of RFID technology to improve the vehicles’ visibility and pro-
poses a solution to overcome the weakness of vision-based detection methods. An algo-
rithm is developed to convert a point cloud into a simple 3D model, which then is stored
in tags for recovery of the vehicle’s boundary. The proposed method has the following
advantages: vehicle detection is not sensitive to light, weather, or occluded conditions;
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vehicles can be detected at a relatively long distance; the implementation is relatively
simple. Finally, a small-scale experiment is set up to evaluate the performance of the
proposed method. The results have shown that, by using multiple passive RFID tags, the
proposed method is able to detect a vehicle’s orientation at various distances; distinguish
whether a vehicle is rotating; recover the boundary for an occluded vehicle.
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