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Abstract. Accurately predicted bus journey times are essential for bus
network reliability and making bus transport attractive. The most com-
mon approach when predicting bus journey times with machine learning
(ML) is to predict journey times for each stop pair segment. Segment data
can be very noisy, leading to inaccuracies. To investigate this, this paper
compares the classic stop pair segment approach to three other methods.
Firstly, a naive method of calculated historical averages is introduced as
a baseline. We then explore two methods based on predicting the whole
bus route journey time from origin to terminus. To estimate a passenger’s
journey, where the whole route is not travelled, we estimate the propor-
tion of the whole journey time the passenger’s journey will take. The first
of these methods calculates this proportion from similar historical jour-
neys, and the second proposed method trains an ML model to predict
this proportion for each segment of the passenger’s journey. The results
show that this novel proposed approach results in less error across most
metrics, when compared to the segment prediction method. An interest-
ing insight from the analysis shows the proposed approach has enhanced
benefits during peak travel time and during the working week. Gains in
prediction accuracy at these times would benefit the most commuters.
This research can be applied to make robust scheduling decisions that
will increase bus network reliability, improve bus network satisfaction
and uptake, and lead to more sustainable cities.

Keywords: bus journey time prediction · machine learning · random
forest

1 Introduction

Scheduled bus services are an important component of the transportation net-
work in an increasingly urban world. Many urban centres are rapidly expanding
and have exceeded the road and parking infrastructure for every inhabitant to
have a private car [11] even if air quality issues could be overcome by increased
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or complete electrification of personal vehicles. As stated by UN Sustainable
Goal 11.2 [26], more sustainable forms of transport are necessary for continued
development. Walking and cycling are ideal for shorter journeys in mild weather,
as they require minimal infrastructure and have health benefits associated with
active transportation [17]. For many reasons, much of the population will con-
tinue to depend on public bus and rail services. Buses have several advantages
over rail transport; buses are cheaper for the same quality of service [2], require
far less infrastructure, and are more flexible as buses can easily be rerouted
as urban centres evolve. However, buses are not without limitations and often
lack reliability compared to rail services. They operate in more complex and
less controlled environments than trains, stopping more regularly and interact-
ing with other traffic and cyclists. Many governments have policies encouraging
switches to more sustainable transport since the Paris Agreement in 2015 [4].
Many of these policies focus on improving the bus network to promote its use.
Since resources are not infinite, the bus services must also be optimised within
the existing infrastructure. The most significant factor for passengers is a low
waiting time [19] which is directly related to the reliability of the bus network
[23], and accurately predicting journey times for bus scheduling and real-time
passenger information (RTPI) is key to a reliable bus network [3].

The prediction of bus journey times is the subject of much research. The
main techniques used are simple historical averages [15], statistical methods
including regression models, Kalman filters and Machine Learning (ML) [21].
The literature in this area has several weaknesses; there is a lack of standard
syntax, and the studies tend to be small due to the complexity of bus data
[18,21,27]. There is also no standard benchmark dataset to allow comparisons
between studies. Comparing one study with another is usually impossible as bus
routes have different characteristics, affecting the error metrics. The longer the
bus route, the higher the absolute error will be [10]. Bus routes on networks
with low reliability will have a higher level of irreducible error regardless of the
prediction methods employed [8,21].

A common approach in many studies that predict bus journey times with ML
is training multiple models for each consecutive stop pair segment. Generally,
a model is built to predict the journey time for the segment between every
two consecutive stops on the bus network [7,10,16,20,21,27]. This approach will
result in a number of models that is one less than the number of stops on the
route. There are many reasons for this segment prediction approach: stops are
where bus arrival times are often monitored with Automatic Vehicle Location
(AVL) systems and are typically the only place passengers can embark and
disembark. Stop arrival time is most relevant to the service user, and it is a
natural and intuitive way to conceptualise bus routes. However, real-world data
is messy, and the measurement of bus location can be inexact. The GPS readings
themselves are not exact and have reported errors up to 30m depending on the
age of the GPS unit, local conditions and the speed of the bus. [28]. Many GPS
units deployed on buses are old, and buses often operate in densely urban areas.
The presence of tall buildings, or the so-called ’urban canyons’, is known to
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impact the accuracy of GPS readings [14]. A recent study [25] showed a 13-
second discrepancy between the GPS recorded time of arrival of a bus at bus
stops and the actual time of arrival. There is also the compounding factor of the
frequency of recording of position. Often this is around 30 s but can be longer, so
the timing of arrival at stops is often interpolated [22]. These factors will likely
create significant noise in the data regarding journey times between individual
stops, increasing errors in the predictions from models trained on segment data.
We observed that studies that predicted both longer and shorter sections of the
same route tended to have lower error metrics for longer sections [5,6,12,20,21].
We conducted a provisional experiment to test the theory that whole route
prediction methods were more accurate than segment prediction methods. Two
methods predicted the whole route journey time. The first method had a single
Random Forest (RF) model trained on the whole journey times between the
origin and terminus stop. The second method trained an RF model for each
consecutive stop pair segment on the route and returned the sum of these models’
predictions to estimate the whole journey time. The evaluation revealed the
first method was superior across multiple error metrics. Predicting by segment
resulted in a mean absolute error (MAE) of 286 s versus 266 s for whole journey
prediction. Segment prediction had a mean absolute percentage error (MAPE)
of 0.099 and a coefficient of determination (R2) of 0.877, and the corresponding
values for whole journey prediction were 0.094 and 0.895, respectively.

These results motivated further exploration, as regardless of the accuracy
of whole journey time predictions, they are only useful for predicting journey
times for bus schedules. They are not useful for predicting individual passen-
ger trip times (i.e. partial journeys). Partial journey predictions are needed for
journey planning and RTPI. We sought to harness the accuracy of whole jour-
ney time predictions to improve partial journey time predictions. An experiment
was designed to compare four methods of journey time prediction for several bus
routes in Dublin, Ireland. The methods were a naive historical averages (HA)
method, the most common method: segment prediction (SP) and two methods
based on whole journey prediction. Both of these methods predict the whole
route journey time and estimate the proportion of the whole route journey time
the partial journey is likely to take. As described in [8], the first of these methods
calculates the historical average proportion similarly to how HA calculates jour-
ney time and is called Whole Journey Prediction with Calculated Proportion
(WJP-C). The novel second method uses an RF model to predict the proportion
and this method is called Whole Journey Prediction with Predicted Proportion
(WJP-P).

This paper makes the following contributions:

– Challenges the status quo regarding how bus routes are treated conceptually
for ML modelling by assessing the SP method, an approach often used without
much discussion of the rationale.

– Presents an approach for predicting partial journey times that significantly
improves upon the SP method on most metrics with the consumption of
similar computing resources.
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– Performs deep analysis of the results of the four methods and examines the
results by segment length, bus route, time of day and day of the week.

The remainder of this paper is organised as follows: Sect. 2 describes the data pro-
cessing, Sect. 3 outlines the methodology used, Sect. 4 demonstrates the results
and discusses the analysis, and Sect. 5 presents the conclusions of this study and
discusses the planned further work.

2 Data

The National Transport Authority (NTA) in Ireland provided the historical bus
data used in this study. As is typical with AVL data, there were some data quality
issues, such as the bus stop arrival events not being recorded or duplicate arrival
events at the same stop. As a result, not every unique trip had the same stop
sequence; some trips were invalid and could not be included in the analysis.
When selecting a subset of these routes for analysis, the routes with the highest
quality data were desired. The inclusion criteria for this study were that the
bus routes had at least 80% valid unique trips and at least 3000 unique trips
in total. Based on these criteria, 16 bus routes were selected from the Dublin
Bus network. These were eight head sign pairs for route numbers: 4, 27A, 32,
42, 56A, 79A, 120, and 184. The final dataset was all valid data for these routes
for a year from January 1st to December 31st 2018. The Dublin Bus network in
2018 contained 253 routes and served over 1.3 million people in the Dublin area.

The most common stop sequence present on each route in the data was found,
and this stop sequence was confirmed to be correct by comparison to the GTFS
(General Transit Feed Specification) data published by Dublin Bus. The raw data
was structured as bus arrival events at bus stops. Trips that contained extreme
outliers, such as whole journey times or segments with journey time outliers
greater than twelve standard deviations (SD) from the mean were removed, as
were trips with impossible values such as negative journey times. Less than one
and a half per cent of data was lost at this step. Additional features for the time,
day of the week, and month were extracted from the timestamps. The time group
feature had variable granularity. Peak travel periods are 30 min, and off-peak
travel periods are 60 min long and are encoded from 0 to 29 starting at midnight.
This was to avoid too coarse a granularity during rapidly changing peak travel
periods yet allow for enough data in each time group during off-peak periods
when there are fewer buses on the network. This approach was benchmarked
against homogenous 30-minute and 60-minute granularities and was found to
improve error metrics. Further details on the data cleansing procedure can be
found in [8].

The cleaned and preprocessed data format is shown in Table 1. Following
processing, the data was split into a training set and a testing set in the ratio
of 85:15. This could not be done using a standard test/train split as many rows
in the dataset refer to the same unique trip. To maintain data integrity, 15% of
the trip IDs were randomly selected, and all rows with those trip IDs became
the test set. The training set was then further processed in three ways. Firstly,
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Table 1. Sample of the data after preprocessing. The stop arrival times are defined in
seconds after midnight and journey time is in seconds. Day 0 is Monday and Month
1 is January. Time groups 9 and 10 are 30-minute periods during the morning peak
travel period from 08:00 to 08:30 and 08:30 to 09:00

TripID First Stop Second Stop First Stop Arrival Time Second Stop Arrival Time Month Day Time Group Journey Time

20858 324 327 30579 30669 1 0 9 90

20858 327 7113 30669 30745 1 0 10 76

20858 7113 127 30745 30812 1 0 10 67

20858 127 112 30812 30877 1 0 10 65

20858 112 113 30877 30958 1 0 10 81

20858 113 114 30958 30964 1 0 10 6

the training set is used to create a Reference Dataset. This contains the average
journey time and the average proportion of the full journey for each unique
segment on each route for each combination of time/day in our dataset. An
example of the resulting Reference Dataset is shown in Table 2.

Table 2. Sample of the Reference Dataset. All of these samples are from Route 4 in
direction 1, and take place on a Monday (Day = 0) between 13:00 and 17:30 in the
afternoon (time groups 15 through 20) on the segment between stops 273 and 405. The
Reference Dataset contains the mean journey time and mean proportion of the whole
journey time for each day/time combination.

Day of Week Time Group First Stop Second Stop Mean Journey Time Mean Proportion

0 15 273 405 249.79 0.058591

0 16 273 405 253.63 0.059462

0 17 273 405 251.87 0.059878

0 18 273 405 262.81 0.058941

0 19 273 405 257.38 0.059040

0 20 273 405 263.17 0.060619

Secondly, the training set undergoes further processing to train RF models
to predict whole journey times. It is restructured to represent unique journeys
instead of arrival events. All arrival events except for the first and last were
dropped for predicting whole journeys. The target feature, the historical journey
time, is calculated for each journey in the dataset. The resulting data structure
is shown in Table 3 and contains three temporal features: month, day and time
group.

Traffic volume and passenger load have the most significant impacts on bus
journey times [24]. These features are difficult to measure directly, but as they
offer a cyclical pattern, they are encoded in temporal features [1]. The training
data is also used to structure the data for segment prediction, similar to for
whole journey predictions, but the details of the intermediate bus stops are not
removed.



146 L. Dunne and G. McArdle

Table 3. Sample of the data prior to modelling

Month Day Time Group Total Journey Time

3 3 10 5442

1 2 7 5097

1 2 15 4799

1 2 26 2807

4 4 19 5402

3 Methodology

Once the dataset was processed, four methods were implemented to predict
journey time as shown in Fig. 1. These four methods are described in this section.

Fig. 1. Methodology Flow Diagram

3.1 Historical Averages (HA)

The Reference Dataset described in Sect. 2 was used in two ways. Firstly, it was
used in the naive baseline method, HA. To produce an estimate for a passenger’s
partial trip time, this method references the Refernce Dataset for each segment
at the time and day that the partial trip occurs and sums these historical average
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times to get a total. HA is shown in Eq. 1 where n is the number of segments in
the trip and T is the average historical journey time for the day of the week, d
and time of day, t that the trip takes place.

n∑

i=1

T i,dt (1)

3.2 Whole Journey Prediction with Calculated Proportion
(WJP-C)

Secondly, the Reference Dataset is used to calculate the proportion of the whole
journey, the passenger’s partial journey historically represented. The dataset is
referenced for each segment on the partial journey at the time and day the trip
takes place and the sum of these historical average proportions for the segments
is returned. This value will always be a ratio between 0 and 1 depending on
how much of the whole journey the passenger travels. It is multiplied by the
prediction returned from the whole journey RF model to get an estimate for
the passenger’s journey time. That model has been trained on the whole journey
dataset restructured for modelling as described in Fig. 3. RF was used throughout
as it needs minimal hyperparameter tuning, is scalable and has previously been
shown to be the best of the traditional ML algorithms for this dataset [8]. WJP-
C is shown in Eq. 2 where Ŵ is the whole journey time prediction from the
random forest model, n is the number of segments in the trip and P is the
average historical proportion for the day of the week, d and time of day, t that
the trip takes place.

Ŵ · (
n∑

i=1

P i,dt) (2)

3.3 Whole Journey Prediction with Predicted Proportion (WJP-P)

An RF model is trained for each segment on the route that will predict the
proportion of the whole journey that the segment will take. The training data is
sequentially filtered to just the data corresponding to the relevant stop pair, and
an RF model is trained for each pair. The number of models trained depends on
the length of the route and is always one less than the number of stops. WJP-P
is shown in Eq. 3 where Ŵ is the whole journey time prediction from the RF
model, n is the number of segments in the trip and P̂ is the predicted proportion.

Ŵ · (
n∑

i=1

P̂i) (3)
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3.4 Segment Prediction (SP)

In a similar way to how WJP-P builds a model to predict the proportion of
each segment, the SP method sequentially filters the data to each consecutive
stop pair segment and builds an RF to predict journey time, and like before, the
number of models trained will be one less than the number of stops on the route.
SP is shown in Eq. 4 where Ŝ is the segment prediction from the RF model and
n is the number of segments in the trip.

n∑

i=1

Ŝi (4)

3.5 Testing

It was not possible to access real passenger journeys for this experiment, so a
simulated passenger journey was extracted from each of the 21706 test journeys.
A random sequence of stops was generated from each unique journey in our
test set. This was achieved by choosing two random indices from a sequential
list of stops for the route the unique journey is from. We check that the same
index has not been chosen twice, and the lower index becomes the boarding stop
and the higher index becomes the disembarking stop of the pseudo passenger.
This is similar to the approach used in [8,13]. Quotas were used to ensure the
distribution of the length of the partial sample journeys was uniform from each
route, with a similar number of journeys for each possible number of segments.

For each test journey, four predictions were made - one for each of the
four methods. Analysis was then performed, including the calculation of MAE,
MAPE, root mean squared error (RMSE), mean percentage error (MPE) and
R2. The resulting predictions were also assessed for skew and were found to be
right skewed with skew values of between 0.97 and 0.999. Since the dataset was
not normally distributed, one-way ANOVA and Kruskal-Wallis tests were per-
formed on the predicted values of the methods to evaluate statistical significance.
The results were analysed to show the results of the method by segment length,
route, day of the week and time of day. The results are presented and discussed
in the next Section.

4 Results and Discussion

As can be seen in the results presented in Table 4, the proposed method WJP-P
outperforms the other methods using MAE, MAPE, RMSE and R2, the results
of the commonly used SP are comparable to WJP-P, and both outperform the
other two methods on all metrics. The MAE for WJP-P is a 5% improvement
over the commonly used SP method. The MAPE is 2.5% better for WJP-P
compared to SP. WJP-P surpasses SP by 6.4% on RMSE. R2 is high for all
methods due to the size and quality of the data, and WJP-P surpasses the other
methods with an R2 of 0.954.
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The magnitude of the error is of primary importance, but the bias or direction
of the error is also important and is rarely reported in the literature. MPE is
not a good metric for assessing the accuracy of the results, as even large positive
and negative error values could negate each other. Still, it was included in our
analysis as it is a good indicator of the bias in the results. We can see from
the MPE results in Table 4 that all methods return a small positive MPE. HA
and WJP-C return smaller MPE values than SP and WJP-P. A negative MPE
means the method tends to overpredict journey time instead of underpredicting
it. If a bus journey is underpredicted, the bus will arrive later than expected,
and if a bus journey is overpredicted, the bus will arrive earlier than expected.
When bus scheduling is taking place, methods of prediction that overestimate
should be used as this reduces the likelihood of late departure on the return
journey, which is one of the causes of unreliability on bus networks [9]. For
journey planning without arrival-time bound transfers (e.g. arriving in the office
by 9 am), methods that overpredict are superior.

The results were statistically significant with ANOVA and Kruskal-Wallis
tests with p-values of 0.013 and 0.019, respectively. These results were stable
over multiple runs with different test/train splits and various test/train sizes.
The remainder of this Section will discuss a deeper analysis of the performance of
the methods by the number of segments travelled, by the route and by temporal
features.

Table 4. Full Results

Metric HA SP WJP-C WJP-P

MAE/s 164.88 154.15 159.92 146.36

MAPE 0.1309 0.1276 0.1298 0.1245

RMSE/s 289.46 245.81 275.52 229.98

MPE -0.01099 -0.02309 -0.01069 -0.02298

R2 0.927 0.948 0.934 0.954

4.1 Impact of Number of Segments

As shown in Figs. 2 and 3, WJP-P outperforms the other methods on all lengths
of journey that exceed 9 segments in length. Up to 9 segments in length, WJP-C
and HA methods are superior. This threshold is likely due to the cumulative noise
in the data. It can be considered that methods involving calculated averages,
especially HA, perform well on short trips and especially WJP-P but also SP,
perform well on medium and long trips.
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Fig. 2. The number of stop pair segments in the partial journey vs MAE. WJP-P
outperforms all other methods for trips with a length of greater than 9 segments. The
number of segments in the test journey in this chart has no relationship to where in
the whole bus journey the test journey is. There could be a test journey of 1 segment
at the beginning or the end of the whole bus journey.

Fig. 3. The number of stop pair segments in the partial journey vs MAE: trips with
a segment length of 1 to 22. This enlarged part of Fig. 2 more clearly shows HA and
WJP-C outperforming the other methods until the number of segments in the trip
exceeds 9 and WJP-P outperforming other methods for trips longer than 9 segments.

4.2 Impact of Route

Generalising from the findings in Fig. 2 and 3, it was theorised that the methods
using calculated averages, HA and WJP-C, would perform best on short routes
and WJP-P would perform best on medium and longer routes. This was largely
found to be the case, as can be seen in Table 5 and Fig. 4. Even though HA
was included as a naive baseline method, and performed poorest overall, it was
the best performing method on four routes. These routes were all short routes,
with an average length of 30.5 segments, and were four of the six shortest routes.
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WJP-P was the top scoring method on nine routes which have an average length
of 50.89 segments. Despite being the dominant method in the literature, SP was
the superior method on only two routes, the 184 in both directions. WJP-C was
the top-performing method on one route, the longest one. It was also observed
that some of the routes had very minimal differences in the MAE between the
methods, and others had wide variation. The column Max minus Min MAE
in Table 5 shows the remainder when the MAE of the best performing method
is subtracted from the MAE of the worst performing method. Several factors
were examined to try to elucidate the cause of this instability between methods
including the percentage of data retained after outlier removal, SD, variance,
skew, kurtosis and the number of outliers at various thresholds. None of the
factors studied showed a strong correlation or had a linear relationship with the
Max minus Min MAE. However, it can be seen in Table 5, which is arranged in
order of increasing SD, that the routes with a large difference in the performance
of methods all have an SD larger than 60 s. The results across these sixteen
routes echo what is seen across the literature, with different methods performing
better on different datasets. It is clear that bus routes shouldn’t be treated as a
homogenous group when assessing methods for the prediction of journey times.

4.3 Impact of Temporal Variables

An analysis of MAE by time of day and the day of the week was conducted for
the two best-performing methods overall, WJP-P and SP, as shown in Figs. 5
and 6. A pattern emerged that seemed to correspond to peak and off-peak travel
times/days on the bus network, so this was quantified with a reliability index,
defined as one divided by the SD of the whole journey times on the network, as
described by Sterman and Schofer [24]. Figure 5 shows WJP-P outperforming SP,
especially during the morning and evening peak travel periods when the network
reliability is low. The left section of the graph shows WJP-P outperforming SP

Fig. 4. The best method by the number of segments on the bus route and the MAE
of the best performing method.
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from time group 5 to 12 (5 am to 11 am) and again from time group 20 to 25 (5
pm to 9 pm). There is minimal difference between the two methods during off-
peak times. Similarly, Fig. 6 shows WJP-P outperforming SP from Monday to
Friday. During the conventional working week and especially during peak travel
times is the time with the greatest number of passengers are on the network,
and improving journey times at these times will benefit the most people. This
is an important finding and is a strong argument for WJP-P over SP.

Fig. 5. The time groups in the study vs MAE and reliability

Table 5. Results by Route

Route Num Trips Percent Data Num Segs SD Min MAE Max minus Min MAE Best Method

27A 1 8775 99.51 39 31.73 91.15 7.93 HA

32 2 6423 98.75 58 32.89 134.30 6.46 WJP-P

32 1 6512 98.20 56 39.66 149.37 17.21 WJP-P

184 1 6848 98.85 43 44.88 106.60 8.83 SP

79A 1 7566 99.01 32 45.43 106.00 2.42 HA

120 2 13618 99.52 23 52.47 86.04 2.79 HA

42 1 10200 98.25 55 53.38 155.89 16.77 WJP-P

42 2 11164 98.67 58 56.32 163.08 8.06 WJP-P

27A 2 8436 99.45 38 56.74 96.15 7.19 WJP-P

120 1 13944 99.18 25 58.62 82.15 1.90 HA

56A 1 4238 97.85 54 62.51 174.12 147.37 WJP-P

4 1 15016 98.69 56 69.59 223.77 30.49 WJP-P

56A 2 4294 99.02 52 73.85 161.25 201.51 WJP-P

4 2 15629 99.08 60 75.94 232.77 23.54 WJP-C

79A 2 7240 99.38 31 81.71 134.20 22.77 WJP-P

184 2 6361 98.63 44 88.43 169.19 21.34 SP
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4.4 Computational and Storage Resources

The computational and storage resources consumed in this experiment are pre-
sented in Table 6. All methods were tested on the same partial journeys on a 2017
MacBook Pro with a 3.3 GHz Intel Core i5 processor and 16 GB of memory.
Data processing time has been provided separately from training time because
after the initial year of data is processed, the time taken for processing addi-
tional daily data would be minimal. HA does not do any ML model training,
so its average training time is zero. WJP-C trains a single RF model per route,
and a short training time of 0.51 s reflects this. WJP-P and SP show similar
prediction times with 42.91 s and 45.40 s, respectively. Both of these methods
train a model per segment, but the training time for WJP-P is shorter than SP.
The average prediction time is likely the most significant of these measurements
for journey planning applications and RTPI, as this will determine the speed at
which information is returned to passengers. HA and WJP-C are very similar
and over 40 times faster than WJP-P and SP, which are also very similar to each
other. The same pattern is seen for storage with the models and data required
for HA and WJP-C 18 times smaller than the other two methods. These results
are specific to RF models, which have a larger storage size and a shorter training
time than neural network models.

Fig. 6. The days of the week in the study vs MAE and reliability

Table 6. Computational and storage resources consumed by the different methods

Measurement HA SP WJP-C WJP-P

Data Processing/Route (in seconds) 54.83 20.32 102.7 132.29

Training Time/Route (in seconds) 0.00 45.40 0.51 42.91

Prediction Time/Test case (in seconds) 0.0157 0.6719 0.0156 0.6735

Storage /Route (in megabytes) 846.30 16017.62 852.80 16739.08
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5 Conclusion

From the results of our experiments and analysis, we conclude that the commonly
used SP method is not the best approach. It is not the best approach overall, nor
on the majority of the bus routes, across multiple metrics. We also conclude bus
routes are not a homogenous population and that attempting to define a single
best algorithm for predicting bus journey times will result in sub-optimisation.
The optimum method for journey time predictions should be determined based
on many factors, including those identified in this study: the application, the
trip’s length, the temporal features of the trip, and also possible factors related
to the bus route characteristics and data profile.

The novel method we present in this paper represents a significant contri-
bution as WJP-P outperforms SP on most metrics, and on the majority of bus
routes at a similar computational cost. The other method based on whole jour-
ney time prediction, WJP-C, has an overall reduction of 3.7% MAE compared
to SP but at a significantly reduced computational cost. We suggest this as a
good value option, balancing the accuracy of predictions with computational and
storage costs.

Analysis of the results has provided important insights into the nature of bus
journey time prediction regarding the bias in and variability between methods
predicting for trips of different lengths, at different times of day and week and for
bus routes with different characteristics. An important finding is the enhanced
benefit of WJP-P at peak travel times and during the traditional working week.
These findings can be applied to predict bus journey times for timetabling, and
result in more achievable timetables, improving the reliability of the bus network.

Planned further work involves the application of these methods to more bus
routes to validate the results. We are especially interested in applying the method
to bus routes with different characteristics in different cities, and to bus routes
with a lower frequency and a lower quality of data.
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