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Abstract. An efficient entailment proof system is essential to compositional ver-
ification using separation logic. Unfortunately, existing decision procedures are
either inexpressive or inefficient. For example, Smallfoot is an efficient procedure
but only works with hardwired lists and trees. Other procedures that can support
general inductive predicates run exponentially in time as their proof search re-
quires back-tracking to deal with a disjunction in the consequent.
This paper presents a decision procedure to derive cyclic entailment proofs for
general inductive predicates in polynomial time. Our procedure is efficient and
does not require back-tracking; it uses normalisation rules that help avoid the in-
troduction of disjunction in the consequent. Moreover, our decidable fragment
is sufficiently expressive: It is based on compositional predicates and can cap-
ture a wide range of data structures, including sorted and nested list segments,
skip lists with fast-forward pointers, and binary search trees. We implemented
the proposal in a prototype tool, called S2SLin, and evaluated it over challenging
problems from a recent separation logic competition. The experimental results
confirm the efficiency of the proposed system.

Keywords: Cyclic Proofs, Entailment Procedure, Separation Logic.

1 Introduction

Separation logic [20,37] has successfully reasoned about programs manipulating pointer
structures. It empowers reusability and scalability through compositional reasoning
[6,7]. A compositional verification system relies on bi-abduction technology which is,
in turn, based on entailment proof systems. Entailment is defined: Given an antecedent
A and a consequent C where A and C are formulas in separation logic, the entailment
problem checks whether A |= C is valid. Thus, an efficient decision procedure for en-
tailments is the vital ingredient of an automatic verification system in separation logic.

To enhance the expressiveness of the assertion language, for example, to specify un-
bounded heaps and interesting pure properties (e.g., sortedness, parent pointers), sep-
aration logic is typically combined with user-defined inductive predicates [9,31,35].
In this setting, one key challenge of an entailment procedure is the ability to support
induction reasoning over the combination of heaps and data content. The problem of
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induction is challenging, especially for an automated inductive theorem prover, where
the induction rules are not explicitly stated. Indeed, this problem is undecidable [1].

Developing a sound and complete entailment procedure that could be used for
compositional reasoning is not trivial. It is unknown how model-based systems, e.g.
[14,15,17,18,22,23], could support compositional reasoning. In contrast, there was evi-
dence that proof-based decision procedures, e.g., Smallfoot [2] and the variant [12], and
Cycomp [42], can be extended to solve the bi-abduction problem, which enables com-
positional reasoning and scalability [7,25]. Smallfoot was the centre of the biabductive
procedure deployed in Infer [7], which which greatly impacted academia and industry
[13]. Furthermore, Smallfoot is very efficient due to its use of the “exclude-the-middle”
rule, which can avoid the proof search over the disjunction in the consequent. How-
ever, Smallfoot works for hardwired lists and binary trees only. In contrast, Cycomp, a
recent complete entailment procedure, is a cyclic proof system without “exclude-the-
middle“ and can support general inductive predicates but has double exponential time
complexity due to the proof search (and back-tracking) in the consequent.

This paper introduces a cyclic proof system with an “exclude-the-middle”-styled de-
cision procedure for decidable yet expressive inductive predicates. We especially show
that our procedure runs in polynomial time when the maximum number of fields of data
structures is bounded by a constant. The decidable fragment, SHLIDe, contains induc-
tive definitions of compositional predicates and pure properties. These predicates can
capture nested list segments, skip lists and trees. The pure properties of small models
can model a wide range of common data structures, e.g. a list with fast-forward point-
ers, sorted nested lists, and binary search trees [22,32]. This fragment is much more
expressive than Smallfoot’s and is incomparable to Cycomp’s [42]: there exist some
entailments our system can handle, but Cyccomp could not, and vice versa.

Our procedure is a variant of the cyclic proof system introduced by Brotherston
[3,5] and has become one of the leading solutions to induction reasoning in separation
logic. Intuitively, a cyclic proof is naturally represented as a tree of statements (entail-
ments in this paper). The leaves are either axioms or nodes linked back to inner nodes;
the tree’s root is the theorem to be proven, and nodes are connected to one or more
children by proof rules. Alternatively, a cyclic proof can be viewed as a tree possibly
containing some back-links (a.k.a. cycles, e.g., “C, if B, if C”) such that the proof sat-
isfies some global soundness condition. This condition ensures that the proof can be
viewed as a proof of infinite descent. For instance, for a cyclic entailment proof with
inductive definitions, if every cycle contains an unfolding of some inductive predicate,
then that predicate is infinitely often reduced into a strictly “smaller” predicate. This
infinity is impossible as the semantics of inductive definitions only allows finite steps
of unfolding. Hence, that proof path with the cycle can be disregarded.

The proposed system advances Brotherston’s system in three ways. First, the pro-
posed proof search algorithm is specialized to SHLIDe, which includes “exclude-the-
middle“ rules and excludes any back-tracking. The existing proof procedures typically
search for proof (and back-track) over disjunctive cases generated from unfolding in-
ductive predicates in the RHS of an entailment. To avoid such costly searches, we pro-
pose “exclude-the-middle“-styled normalised rules in which the unfolding of inductive
predicates in the RHS always produces one disjunct. Therefore, our system is much
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more efficient than existing systems. Second, while a standard Brotherston system is
incomplete, our proof search is complete in SHLIDe: If it is stuck (i.e., it can not apply
any inference rules), then the root entailment is invalid.

Lastly, while the global soundness in [5] must be checked globally and explicitly,
every back-link generated in SHLIDe is sound by design. We note that Cycomp, intro-
duced in [42], was the first work to show the completeness of a cyclic proof system.
However, in contrast to ours, it did not discuss the global soundness condition, which is
the crucial idea attributing to the soundness of cyclic proofs.

Contributions Our primary contributions are summarized as follows.

– We present a novel decision procedure, S2SLin, for the entailment problem in sepa-
ration logic with inductive definitions of compositional predicates.

– We provide a complexity analysis of the procedure.
– We have implemented the proposal in a prototype tool and tested it with the SL-

COMP benchmarks [38,39]. The experimental results show that S2SLin is effective
and efficient compared to state-of-the-art solvers.

Organization The remainder of the paper is organised as follows. Sect. 2 describes
the syntax of formulas in fragment SHLIDe. Sect. 3 presents the basics of an “exclude-
the-middle” proof system and cyclic proofs. Sect. 4 elaborates on the result, the novel
cyclic proof system, including an illustrative example. Sect. 5 discusses soundness and
completeness. Sect. 6 presents the implementation and evaluation. Sect. 7 discusses
related work. Finally, Sect. 8 concludes the work.

2 Decidable Fragment SHLIDe

Subsection 2.1 presents syntax of separation logic formulae and recursive definitions of
linear predicates and local properties. Subsection 2.2 shows semantics.

2.1 Separation Logic Formulas

Concrete heap models assume a fixed finite collection of data structures Node, a fixed
finite collection of field names Fields, a set Loc of locations (heap addresses), a set
of non-addressable values Val, with the requirement that Val∩Loc=∅ (i.e., no pointer
arithmetic). null is a special element of Val. Z denotes the set of integers (Z⊆Val) and
k denotes integer numbers. Var an infinite set of variables, v̄ a sequence of variables.

Syntax Disjunctive formula Φ, symbolic heaps ∆, spatial formula κ, pure formula π,
pointer (dis)equality φ, and (in)equality formula α are as follows.

Φ ::= ∆ | Φ ∨ Φ ∆ ::= κ∧π | ∃v. κ∧π
κ ::= emp | x 7→c(f :v, .., f :v) | P(v̄) | κ∗κ

π ::= true | α | ¬π | π∧π
α ::= a=a | a≤a a ::=k | v

where v∈Var, c∈Node and f∈Fields. Note that we often discard field names f of points-
to predicates x 7→c(f :v, .., f :v) and use the short form as x7→c(v̄). v1 6=v2 is the short
form of ¬(v1=v2).E denotes for either a variable or null.∆[E/v] denotes the formula
obtained from ∆ by substituting v by E. A symbolic heap is referred as a base, denoted
as ∆b, if it does not contain any occurrence of inductive predicates.



480 Q. L. Le et al.

Inductive Definitions We write P to denote a set of n defined predicatesP={P1, ..., Pn}
in our system. Each inductive predicate has following types of parameters: a pair of root
and segment defining segment-based linked points-to heaps, reference parameters (e.g.,
parent pointers, fast-forwarding pointers), transitivity parameters (e.g., singly-linked
lists where every heap cell contains the same value a) and pairs of ordering parameters
(e.g., trees being binary search trees). An inductive predicate is defined as

pred P(r,F ,B̄,u,sc,tg) ≡ emp∧r=F∧sc=tg
∨ ∃Xtl, Z̄, sc

′.r 7→c(Xtl,p̄,u,sc
′) ∗ κ′ ∗ P(Xtl,F ,B̄,u,sc

′,tg) ∧ r 6=F ∧ sc � sc′

where r is the root, F the segment, B̄ the borders, u the parameter for a transitivity
property, sc and tg source and target, respectively, parameters of an order property,
r 7→c(Xtl,p̄,u,sc

′) ∗ κ′ the matrix of the heaps, and � ∈ {=,≥,≤}. (The extension for
multiple local properties is straightforward.) Moreover, this definition is constrained by
the following three conditions on heap connectivity, establishment, and termination.
Condition C1. In the recursive rule, p̄ = {null}∪Z̄. This condition implies that If
two variables points to the same heap, their content must be the same. For instance, the
following definition of singly-linked lists of even length does not satisfy this condition.

pred ell(r,F ) ≡ emp∧r=F ∨ ∃x1,X.r 7→c1(x1)∗x1 7→c1(X)∗ell(X,F )∧r 6=F

as n3 and X are not field variables of the node pointed-to by r.
Condition C2. The matrix heap defines nested and connected list segments as:

κ′:=Q(Z,Ū) | κ′∗κ′ | emp

where Z∈p̄ and (Ū \ p̄)∩Z = ∅. This condition ensures connectivity (i.e. all allocated
heaps are connected to the root) and establishment (i.e. every existential quantifier either
is allocated or equals to a parameter).
Condition C3. There is no mutual recursion. We define an order≺P on inductive pred-
icates as: P ≺P Q if at least one occurrence of predicate Q appears in the definition of P
and Q is called a direct sub-term of P. We use≺∗P to denote the transitive closure of≺P .

Several definition examples are shown as follows.

pred ll(r,F ) ≡ emp∧r=F ∨ ∃Xtl.r 7→c1(Xtl)∗ll(Xtl, F )∧r 6=F
pred nll(r,F ,B) ≡ emp∧r=F
∨ ∃Xtl,Z.r 7→c3(Xtl,Z)∗ll(Z,B)∗nll(Xtl,F ,B)∧r 6=F

pred skl1(r,F ) ≡ emp∧r=F ∨ ∃Xtl.r 7→c4(Xtl,null,null)∗skl1(Xtl, F )∧r 6=F
pred skl2(r,F ) ≡ emp∧r=F
∨ ∃Xtl, Z1.r 7→c4(Z1,Xtl,null)∗skl1(Z1,Xtl)∗skl2(Xtl, F )∧r 6=F

pred skl3(r,F ) ≡ emp∧r=F
∨ ∃Xtl,Z1,Z2.r 7→c4(Z1,Z2,Xtl)∗skl1(Z1,Z2)∗skl2(Z2,Xtl)∗skl3(Xtl,F )∧r 6=F

pred tree(r,B) ≡ emp∧r=B
∨ ∃rl, rr.r 7→ct(rl,rr)∗tree(rl,B)∗tree(rr,B) ∧ r 6=B

ll defines singly-linked lists, nll defines lists of acyclic lists, slk1, slk2 and slk3

define skip-lists. Finally, tree defines binary trees. We extend predicate ll with transi-
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tivity and order parameters to obtain predicate lla and lls, respectively, as follows.

pred lla(r,F ,a) ≡ emp∧r=F ∨ ∃Xtl.r 7→c2(Xtl,a) ∗ lla(Xtl,F ,a)∧r 6=F
pred lls(r,F ,mi,ma) ≡ emp∧r=F∧ma=mi
∨ ∃Xtl,mi1.r 7→c4(Xtl,mi1) ∗ lls(Xtl,F ,mi1,ma)∧r 6=F ∧mi≤mi1

Unfolding Given pred P(t̄) ≡ Φ and a formula P(v̄)∗∆, then unfolding P(v̄) means
replacing P(v̄) by Φ[v̄/t̄]. We annotate a number, called unfolding number, for each oc-
currence of inductive predicates. Suppose ∃w̄.r 7→c(p̄) ∗ Q1(v̄1)∗...∗Qm(v̄m) ∗ P(v̄0)∧π
be the recursive rule, then in the unfolded formula, if P(v̄0[v̄/t̄])k1 and Qi(...)

k2 are di-
rect sub-terms of P(v̄)k like above, then k1=k+1 and k2 = 0. When it is unambiguous,
we discard the annotation of the unfolding number for simplicity.

2.2 Semantics

The program state is interpreted by a pair (s,h) where s∈Stacks, h∈Heaps and stack
Stacks and heap Heaps are defined as:

Heaps def
= Loc⇀fin(Node→ (Fields→ Val ∪ Loc)m)

Stacks def
= Var→ Val ∪ Loc

Note that we assume that every data structure contains at mostm fields. Given a formula
Φ, its semantics is given by a relation: s,h |= Φ in which the stack s and the heap h
satisfy the constraint Φ. The semantics is shown below

s, h |= emp iff dom(h)=∅
s, h |= v 7→c(fi : vi) iff dom(h)={s(v)}, h(s(v))=g, g(c, fi)=s(vi)
s, h |= P (v̄) iff (h, s(v̄1), .., s(v̄k)) ∈ JP K
s, h |= κ1 ∗ κ2 iff ∃h1, h2 s.t h1#h2, h=h1·h2, , s, h1 |= κ1 and s, h2 |= κ2
s, h |= true iff always
s, h |= κ∧π iff s, h |= κ and s |= π
s, h |= ∃v.∆ iff ∃α.s[v 7→α], h |= ∆
s, h |= Φ1 ∨ Φ2 iff s, h |= Φ1 or s, h |= Φ2

dom(g) is the domain of g, h1#h2 denotes disjoint heaps h1 and h2 i.e., dom(h1)∩
dom(h2)=∅, and h1·h2 denotes the union of two disjoint heaps. If s is a stack, v∈Var,
and α∈Val∪Loc, we write s[v 7→α] = s if v∈dom(s), otherwise s[v 7→α] = s∪{(v, α)}.
Semantics of non-heap (pure) formulas is omitted for simplicity. The interpretation of
an inductive predicate P(t̄) is based on the least fixed point semantics JPK.

Entailment ∆ |= ∆′ holds iff for all s and h, if s, h |= ∆ then s, h |= ∆′.

3 Entailment Problem & Overview

Throughout this work, we consider the following problem.

PROBLEM: QF ENT−SLLIN.
INPUT: ∆a ≡ κa∧πa and ∆c ≡ κc∧πc where FV(∆c) ⊆ FV(∆a) ∪ {null}.
QUESTION: Does ∆a |= ∆c hold?
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An entailment, denoted as e, is syntactically formalized as: ∆a `∆c where ∆a and
∆c are quantifier-free formulas whose syntax are defined in the preceding section.

In Sect. 3.1, we present the basis of an exclude-the-middle proof system and our
approach to QF ENT−SLLIN. In Sect. 3.2, we describe the foundation of cyclic proofs.

3.1 Exclude-the-Middle Proof System

Given a goal ∆a ` ∆c, an entailment proof system might derive entailments with a
disjunction in the right-hand side (RHS). Such an entailment can be obtained by a proof
rule that replaces an inductive predicate by its definition rules. Authors of Smallfoot
[2] introduced a normal form and proof rules to prevent such entailments when the
predicate are lists or trees. Smallfoot considers the following two scenarios.

– Case 1 (Exclude-the-middle and Frame): The inductive predicate matches with a
points-to predicate in the left-hand side (LHS). For instance, let us consider an
entailment which is of the form e1 : x 7→c(z) ∗ ∆ ` ll(x, y) ∗ ∆′, where ll is
singly-linked lists and ll(x, y) matches with x7→c(z) as they have the same root
x. A typical proof system might search for proof through two definition rules of
predicate ll (i.e., by unfolding ll(x, y) into two disjuncts): One includes the base
case with x = y, and another contains the recursive case with x 6= y. Smallfoot
prevents such unfolding by excluding the middle in the LHS: It reduces the entail-
ment into two premises: x7→c(z)∗∆∧x = y ` ll(x, y)∗∆′ and x7→c(z)∗∆∧x 6=
y ` ll(x, y) ∗∆′. The first one considers the base case of the list (that is, ll(x, x))
and is equivalent to x7→c(z) ∗∆ ∧ x = y ` ∆′. Furthermore, the second premise
checks the inductive case of the list and is equivalent to ∆∧x 6= y ` ll(x, z) ∗∆′.

– Case 2 (Induction proving via hard-wired Lemma). The inductive predicate matches
other inductive predicates in the LHS. For example, consider the entailment e2 :
ll(x, z) ∗∆ ` ll(x, null) ∗∆′. Smallfoot handle e2 by using a proof rule as the
consequence of applying the following hard-wired lemma ll(x, z)∗ll(z, null) |=
ll(x, null) and reduces the entailment to ∆ ` ll(z, null) ∗∆′.

In doing so, Smallfoot does not introduce a disjunction in the RHS. However, as it uses
specific lemmas in the induction reasoning, it only works for the hardwired lists.

This paper proposes S2SLin as an exclude-the-middle system for user-defined pred-
icates, those in SHLIDe. Instead of using hardwired lemmas, we apply cyclic proofs
for induction reasoning. For instance, to discharge the entailment e2 above, S2SLin first
unfolds ll(x, z) in the LHS and obtains two premises:

– e21 : (emp ∧ x = z) ∗∆ ` ll(x, null) ∗∆′; and
– e22 : (x 7→c(y) ∗ ll(y, z) ∧ x 6= z) ∗∆ ` ll(x, null) ∗∆′

While it reduces e21 to ∆[z/x] ` ll(z, null) ∗∆′[z/x], for e22, it further applies the
frame rule as in Case 1 above and obtains ll(y, z) ∗ ∆ ∧ x 6= z ` ll(y, null) ∗ ∆′.
Then, it makes a backlink between the latter and e2 and closes this path. Doing so does
not introduce disjunctions in the RHS and can handle user-defined predicates.
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3.2 Cyclic Proofs

Central to our work is a procedure that constructs a cyclic proof for an entailment. Given
an entailment ∆ `∆′, if our system can derive a cyclic proof, then ∆ |= ∆′. If instead,
it is stuck without proof, then ∆ |= ∆′ is not valid.

The procedure includes proof rules, each of which is of the form:
e1 ... en

PR0 conde

where entailment e (called the conclusion) is reduced to entailments e1, ..,en (called
the premises) through inference rule PR0 given that the side condition cond holds.

A cyclic proof is a proof tree Ti which is a tuple (V,E, C) where

– V is a finite set of nodes representing entailments derived during the proof search;
– A directed edge (e, PR, e′) ∈ E (where e′ is a child of e) means that the premise
e′ is derived from the conclusion e via inference rule PR. For instance, suppose
that the rule PR0 above has been applied, then the following n edges are generated:
(e, PR0, e1), .., (e, PR0, en);

– and C is a partial relation which captures back-links in the proof tree. If C(ec→eb, σ)
holds, then eb is linked back to its ancestor ec through the substitution σ (where
eb is referred to as a bud and ec is referred to as a companion). In particular, ec
is of the form: ∆ ` ∆′ and eb is of the form: ∆1∧π ` ∆′1 where ∆ ≡ ∆1σ and
∆′ ≡ ∆′1σ.

A leaf node is marked as closed if it is evaluated as valid (i.e. the node is applied with an
axiom), invalid (i.e. no rule can apply), or linked back. Otherwise, it is marked as open.
A proof tree is invalid if it contains at least one invalid leaf node. It is pre-proof if all its
leaf nodes are either valid or linked back. Furthermore, a pre-proof is a cyclic proof if a
global soundness condition is established in the tree. Intuitively, this condition requires
that for every C(ec→eb, σ), there exist inductive predicates P(t̄1) in ec and Q(t̄2) in eb
such that Q(t̄2) is a subterm of P(t̄1).

Definition 1 (Trace) Let Ti be a pre-proof of ∆a ` ∆c and (∆ai ` ∆ci)i≥0 be a path
of Ti. A trace following (∆ai`∆ci)i≥0 is a sequence (αi)i≥0 such that each αi (for all
i≥0) is a subformula of ∆ai containing predicate P(t̄)u, and either:

– αi+1 is the subformula occurrence in ∆ai+1 corresponding to αi in ∆ai .
– or∆ai ` ∆ci is the conclusion of a left-unfolding rule, αi ≡ P(t̄)u is unfolded, and
αi+1 is a subformula in ∆ai+1

and is the definition rule of P(x̄)u[t̄/x̄]. In this case,
i is said to be a progressing point of the trace.

Definition 2 (Cyclic proof) A pre-proof Ti of ∆a ` ∆c is a cyclic proof if, for every
infinite path (∆ai`∆ci)i≥0 of Ti, there is a tail of the path p=(∆ai ` ∆ci)i≥n such
that there is a trace following p which has infinitely progressing points.

Suppose that all proof rules are (locally) sound (i.e., if the premises are valid, then
the conclusion is valid). The following Theorem shows global soundness.

Theorem 1 (Soundness [5]). If there is a cyclic proof of ∆a ` ∆c, then ∆a |= ∆c.

The proof is by contraction (c.f. [5]). Intuitively, if we can derive a cyclic proof for
∆a ` ∆c and ∆a 6|= ∆c, then the inductive predicates at the progress points are un-
folded infinitely often. This infinity contradicts the least semantics of the predicates.
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4 Cyclic Entailment Procedure

This section presents our main proposal, the entailment procedure ω-ENT with the pro-
posed inference rules (subsection 4.1), and an illustrative example (subsection 4.2).

4.1 Proof Search

ω−ENT
input: e0 output: valid or invalid
1: i←0; Ti←e0;
2: while true do
3: (res, ei, PRi)←is closed(Ti);
4: if res=valid then return valid;
5: if res=invalid then return invalid;
6: if link backe(Ti, ei) = false then
7: Ti+1←apply(Ti, ei, PRi);
8: i←i+1;
9: end

Fig. 1: Proof tree construction procedure

The proof search algorithm ω-
ENT is presented in Fig. 1. ω-
ENT takes e0 as input, pro-
duces cyclic proofs, and based
on that, decides whether the in-
put is valid or invalid. The
idea of ω-ENT is to iteratively
reduce T0 into a sequence of
cyclic proof trees Ti, i ≥ 0. Ini-
tially, for every P(v̄)k ∈ e0, k
is reset to 0, and T0 only has
e0 as an open leaf, the root.
On line 3, through the procedure
is closed(Ti), ω-ENT chooses
an open leaf node ei, and a proof
rule PRi to apply. If is closed(Ti) returns valid (that is, every leaf is applied to an
axiom rule or involved in a back-link), ω-ENT returns valid on line 4. If it returns
invalid, then ω-ENT returns invalid (one line 5). Otherwise, it tries to link ei back to
an internal node (on line 6). If this attempt fails, it applies the rule (line 7).

Note that at each leaf, is closed attempts rules in the following order: normaliza-
tion rules, axiom rules, and reduction rules. A rule PRi is chosen if its conclusion can
be unified with the leaf through some substitution σ. Then, on line 7, for each premise
of PRi, procedure apply creates a new open node and connects the node to ei via a
new edge. If PRi is an axiom, procedure apply marks ei as closed and returns.

Procedure is closed(Ti) This procedure examines the following three cases.

1. First, if all leaf nodes are marked closed, and none is invalid, then is closed

returns valid.
2. Secondly, is closed returns invalid if there exists an open leaf node ei : ∆ `∆′

in NF such that one of the four following conditions hold:
(a) ei could not be applied by any inference rule.
(b) there exists a predicate op1(E) ∈ ∆ such that op2(E) /∈ ∆′ and one of the

following conditions holds:
– either P(E′,E,...) or E′ 7→c(E,..) are on both sides
– both P(E′,E,...) 6∈ ∆ and E′ 7→c(E,..) 6∈ ∆

(c) there exists a predicate op1(E)∈∆′ such that G(op1(E))∈∆ and op2(E)/∈∆.
(d) there exist x7→c1(v̄1) ∈ ∆, x 7→c2(v̄2) ∈ ∆′ such that c1 6≡ c2 or v̄1 6≡v̄2.

3. Lastly, an open leaf node ei could be applied by an inference rule (e.g. PRi),
is closed returns the triple (unknown, ei, PRi).

In the rest, we discuss the proof rules and the auxiliary procedures in detail.
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Normalisation An entailment is in the normal form (NF) if its LHS is in NF. We write
op(E) to denote for either E 7→c(v̄) or P(E,F ,B̄,v̄). Furthermore, the guard G(op(E))

is defined by: G(E 7→c(v̄))
def
= true and G(P(E,F ,B̄,v̄))

def
= E 6=F .

Definition 3 (Normal Form) A formula κ∧φ∧a is in normal form if:

1. op(E) ∈ κ implies G(op(E)) ∈ φ 4. E1=E2 6∈ φ
2. op(E) ∈ κ implies E 6=null ∈ φ 5. E 6=E 6∈ φ
3. op1(E1) ∗ op2(E2) ∈ κ implies E1 6=E2 ∈ φ 6. a is satisfiable

If ∆ is in NF and for any s, h |= ∆, then dom(h) is uniquely defined by s.
The normalisation rules are presented in Fig. 2. Basically, ω-ENT applies these rules

to a leaf exhaustively and transforms it into NF before others. Given an inductive pred-
icate P(E,F, ...), rule ExM excludes the middle by doing case analysis for the predicate
between base-case (i.e., E=F ) and recursive-case (i.e., E 6=F ). The normalisation rule
6=null follows the following facts: E 7→c( ) ⇒ E 6=null and P(E,F , )∧E 6=F ⇒
E 6=null. Similarly, rule 6=∗ follows the following facts: x7→ ∗P(y,F , )∧y 6=F ⇒
x6=y, x7→ ∗y 7→ ⇒ x6=y, and Pi(x,F1, )∗Pj(y,F2, )∧x6=F1∧y 6=F2 ⇒ x6=y.

Axiom and Reduction Axiom rules include Emp, Inconsistency and Id, presented in
Fig. 3. If each of these rules is applied to a leaf node, the node is evaluated as valid
and marked as closed. The remaining ones in Fig. 3 are reduction rules.

For simplicity, the unfoldings in rules Frame, RInd, and LInd are applied with the
following definition of inductive predicates:

P(x,F ,B̄,u,sc,tg) ≡ emp∧x=F∧sc=tg
∨ ∃X,sc′,d1,d2.x7→c(X,d1,d2,u,sc)∗Q1(d1,B)∗Q2(d2,X)∗P(X,F ,B̄,u,sc′,tg)∧π0

where B∈B̄, the matrix κ′ contains two nested predicates Q1 and Q2, and the heap
cell c ∈ Node is defined as data c{c next; c1 down1; c2 down2; τs scdata; τu udata}
where c1, c2∈Node, down1 and down2 fields are for the nested predicates in the matrix

∆[E/x] `∆′[E/x]
Subst

∆∧x=E `∆′

∆∧E1=E2 `∆′

∆∧E1 6=E2 `∆′

ExM
E1=E2, E1 6=E2 6∈π &

FV(E1, E2) ⊆ (FV(∆)∪FV(∆′))S∆ `∆′

∆ `∆′
=L

∆∧E=E `∆′
(κ∧π)[tg/sc] `∆′[tg/sc]

LBase
P(E,E,B̄,u,sc,tg)∗κ∧π `∆′

op(E)∗κ∧π∧G(op(E))∧E 6=null `∆′

6=null E 6=null/∈π
op(E)∗κ∧π∧G(op(E)) `∆′

op1(E1)∗op2(E2)∗κ∧π∧E1 6=E2 `∆′

6=∗ E1 6=E2 6∈π andG(op1(E1)), G(op2(E2)) ∈ π
op1(E1)∗op2(E2)∗κ∧π `∆′

Fig. 2: Normalization rules
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Id
∆ ∧ π `∆

Emp
emp∧π ` emp∧true

Inconsistency π |= false
κ∧π `∆

∆ `∆′
=R

∆ `∆′∧E=E

∆∧π `∆′
Hypothesis π |= π′

∆∧π `∆′∧π′
∆ `∆′ ∧ tg=sc

RBase
∆ ` P(E,E,B̄,u,sc,tg)∗∆′

κ1∧π ` κ2 κ∧π ` κ′∧π′
∗ roots(κ1) ∩ roots(κ) = ∅ & FV(κ2)⊆FV(κ1∧π)∪{null}

& FV(κ′)⊆FV(κ∧π)∪{null}κ1∗κ∧π ` κ2∗κ′ ∧ π′

Q1(E1,B)0∗Q2(E2,X)0∗P(X,F ,B̄,u,sc′,tg)k∗∆1∧x6=F3∧π0
` Q(x,F3,B̄,u,sc,tg2)∗κ2∧π2

Frame x7→c( )6∈κ2

P(x,F ,B̄,u,sc,tg)k∗∆1∧x6=F3 ` x7→c(X,E1,E2,u,sc′)∗κ2∧π2

x7→c(X,E1,E2,u,sc′)∗κ1∧π1∧x6=F
` x7→c(X,E1,E2,u,sc′)∗Q1(E1,B)∗Q2(E2,X)∗P(X,F ,B̄,u,sc′,tg)∗κ2∧π2∧π0

RInd †
x7→c(X,E1,E2,u,sc′)∗κ1∧π1∧x 6=F ` P(x,F ,B̄,u,sc,tg)∗κ2∧π2

x7→c(X,E1,E2,u,sc′)∗Q1(E1,B)0∗Q2(E2,X)0∗P(X,F ,B̄,u,sc′,tg)k+1∗∆1∧x6=F3∧π0
` Q(x,F3,B̄,u,sc,tg2)∗κ2∧π2

LInd ]
P(x,F ,B̄,u,sc,tg)k∗∆1∧x6=F3 ` Q(x,F3,B̄,u,sc,tg2)∗κ2∧π2

Fig. 3: Reduction rules (where ]: P(x,F ,B̄,u,sc,tg)6∈κ2, †: x7→c(X,E1,E2,u,sc
′)6∈κ2)

heaps, the udata field is for the transitivity data, and the scdata field is for ordering
data. The rules for the general form of the matrix heaps κ′ are presented in [28].

=R and Hypothesis eliminate pure constraints in the RHS. In rule ∗, roots(κ) is
defined inductively as: roots(emp)≡{}, roots(r 7→ )≡{r}, roots(P (r, F, ..))≡{r}
and roots(κ1∗κ2) ≡ roots(κ1)∪roots(κ2). This rule is applied in three ways. First,
it is applied into an entailment which is of the form κ∧π ` κ∧π′. It matches and dis-
cards the identified heap predicates between the two sides to generate a premise with
empty heaps. As a result, this premise may be applied with the axiom rule EMP. Sec-
ondly, it is applied to an entailment of the form xi 7→ci(v̄i)∗...∗xn 7→cn(v̄n)∧π ` κ′∧π′.
For each points-to predicate xi 7→ci(v̄i)∈κ′, ω-ENT searches for one points-to predicate
xj 7→cj(v̄j) in the LHS such that xj 7→cj(v̄j) ≡ xi 7→ci(v̄i). Lastly, it is applied into an
entailment that is of the form ∆1 ∗∆ `∆2 ∗∆′ where either ∆1 `∆2 or ∆ `∆′ could
be linked back into an internal node.

In RInd, for each occurrence of inductive predicates P(r,F ,B̄,u,sc,tg) in κ′, ω-ENT
searches for a points-to predicate r 7→ . If any of these searches fail, ω-ENT decides the
conclusion as invalid. Rule LInd unfolds the inductive predicates in the LHS. Every
LHS of entailments in this rule also captures the unfolding numbers for the subterm
relationship and generates the progressing point in the cyclic proofs afterwards. These
numbers are essential for our system to construct cyclic proofs. This rule is applied in a
depth-first manner, i.e., if there are more than one occurrences of inductive predicates in
the LHS that could be applied by this rule, the one with the greatest unfolding number
is chosen. We emphasise that the last five rules still work well when the predicate in the
RHS contains only a subset of the local properties wrt. the predicate in the LHS.
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Back-Link Generation Procedure link backe generates a back-link as follows. In a pre-
proof, given a path containing a back-link, say e1, e2, .., em where e1 is a companion
and em a bud, then e1 is in NF and of the following form:

– e1≡P(x,F ,B̄,u,sc,tg)k∗κ∧π∧x6=F∧x6=null ` Q(x,F2,B̄,u,sc,tg2)∗κ′∧π′.
– e2 is obtained from applying LInd into e1. e2 is of the form:

x7→c(X, p̄, ,u,sc)∗κ′∗P(X,F ,B̄,u,sc′,tg)k+1∗κ∧π∧x6=F∧x6=null∧π1
` Q(x,F2,B̄,u,sc,tg2)∗κ′∧π′

We remark that sc � sc′ ∈ π1, and if k ≥ 1, then sci � sc ∈ π
– e3, .., em−4 are obtained from applications of normalisation rules to normalise the

LHS of e2 due to the presence of κ′. As the roots of inductive predicates in κ′ are
fresh variables, the applications of the normalization rules above do not affect the
RHS of e2. That means the RHS of e3, .., and em−4 are the same as that of e2. As
a result, em−4 is of the form:

x7→c(X, p̄, ,u,sc)∗κ′′1∗P(X,F ,B̄,u,sc′,tg)k+1∗κ∧π∧x6=F∧x6=null∧π1∧π2
` Q(x,F2,B̄,u,sc,tg2)∗κ′∧π′

where κ′′1 may be emp and π2 is a conjunction of disequalities coming from ExM.
– em−3 is obtained from the application of ExM over x and F2 and of the form:

x7→c(X, p̄, ,u,sc)∗κ′′1∗P(X,F ,B̄,u,sc′,tg)k+1∗κ∧π∧x 6=F∧x6=null∧π1∧π2
∧x 6=F2 ` Q(x,F2,B̄,u,sc,tg2)∗κ′∧π′

(For the case x=F2, the rule ExM is kept applying until either F ≡ F2, that is, two
sides are reaching the end of the same heap segment, or it is stuck.)

– em−2 is obtained from the application of RInd and is of the form:

x 7→c(X, p̄, ,u,sc)∗κ′′1∗P(X,F ,B̄,u,sc′,tg)k+1∗κ∧π∧x 6=F∧x6=null∧π1∧π2
∧x6=F2 ` x7→c(X,p̄,u,sc)∗κ′′2∗Q(X,F2,B̄,u,sc

′,tg2)∗κ′∧π′∧π′2

– em−1 is obtained from the application of the Hypothesis to eliminate π′2 (other-
wise, it is stuck) and is of the form:

x 7→c(X, p̄, ,u,sc)∗κ′′1∗P(X,F ,B̄,u,sc′,tg)k+1∗κ∧π∧x6=F∧x6=null∧π1∧π2
∧x 6=F2 ` x 7→c(X,p̄,u,sc)∗κ′′2∗Q(X,F2,B̄,u,sc

′,tg2)∗κ′∧π′

– em is obtained from the application of ∗ and is of the form:

P(X,F ,B̄,u,sc′,tg)k+1∗κ∧π∧x 6=F∧x 6=null∧π1∧π2∧x6=F2

` Q(X,F2,B̄,u,sc
′,tg2)∗κ′∧π′

When k ≥ 1, it is always possible to link em back to e1 through the substitution is
σ≡[x/X, sc/sc′] after weakening some pure constraints in its LHS.
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e0

e1

e2 e3

e4

e5

e6

e7

e8

e9

e10

e11 e12

LInd

ExM ExM

Subst

LBase

RInd

Hypothesis+RBase

∗

6=∗+RInd

Hypothesis

∗ ∗

[x/X,mi/m′]

Fig. 4: Cyclic Proof of lls(x,null,mi,ma)0∧x6=null ` llb(x,null,mi).

4.2 Illustrative Example

We illustrate our system through the following example:

e0: lls(x,null,mi,ma)0 ∧ x6=null ` llb(x,null,mi)

where the sorted linked-list lls (mi is the minimum value and ma is the maximum
value) is defined in Sect. 2.1 and llb define singly-linked lists whose values are greater
than or equal to a constant number. Particularly, predicate llb is defined as follows.

pred llb(r,F ,b) ≡ emp∧r=F
∨ ∃Xtl,d.r 7→c4(Xtl,d) ∗ llb(Xtl,F ,b)∧r 6=F ∧ b≤d

Since the LHS is stronger than the RHS, this entailment is valid. Our system could
generate the cyclic proof (shown in Fig. 4) to prove the validity of e0. In the following,
we present step-by-step to show how the proof was created. Firstly, e0, which is in NF,
is applied with rule LInd to unfold predicate lls(x,null,mi,ma)0 and obtain e1 as:

e1: x 7→c4(X,m′) ∗ lls(X,null,m′,ma)1 ∧ x6=null ∧mi≤m′ ` llb(x,null,mi)

We remark that the unfolding number of the recursive predicate lls in the LHS is
increased by 1. Next, our system normalizes e1 by applying rule ExM into X and null

to generate two children, e2 and e3, as follows.

e2: x 7→c4(X,m′) ∗ lls(X,null,m′,ma)1 ∧ x6=null ∧mi≤m′ ∧X=null

` llb(x,null,mi)
e3: x7→c4(X,m′) ∗ lla(X,null,m′,ma)1 ∧ x6=null ∧mi≤m′ ∧X 6=null

` llb(x,null,mi)

For the left child, it applies normalization rules to obtain e4 (substitute X by null)
and then e5, by LBase to unfold lls(null,null,m′,ma)1 to the base case, as:

e4: x7→c4(null,m′) ∗ lls(null,null,m′,ma)1 ∧ x6=null ∧mi≤m′ ` llb(x,null,mi)
e5: x7→c4(null,ma) ∧ x6=null ∧mi≤ma ` llb(x,null,mi)
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Now, e5 is in NF. S2SLin applies RInd and then RBase to llb in the RHS as:

e6: x7→c4(null,ma) ∧ x6=null ∧mi≤ma
` x7→c4(null,ma) ∗ llb(null,null,mi) ∧mi≤ma

e6′ : x7→c4(null,ma) ∧ x6=null ∧mi≤ma ` x 7→c4(null,ma)∧mi≤ma

After that, as mi≤ma⇒ mi≤ma, e6′ is applied with Hypothesis to obtain e7.

e7: x7→c4(null,ma) ∧ x6=null ∧mi≤ma ` x7→c4(null,ma)

As the LHS of e7 is in NF and a base formula, it is sound and complete to apply rule ∗
to have e8 as emp∧x6=null∧mi≤ma ` emp. By Emp, e8 is decided as valid. For the
right branch of the proof, e3 is applied with rule 6=∗ and then RInd to obtain e9:

e9: x7→c4(X,m′)∗lls(X,null,m′,ma)1 ∧ x6=null ∧mi≤m′ ∧X 6=null ∧ x6=X
` x7→c4(X,m′)∗llb(X,null,mi)∧mi≤m′

Then, e9 is applied with Hypothesis to eliminate the pure constraint in the RHS:

e10: x7→c4(X,m′)∗lls(X,null,m′,ma)1 ∧ x6=null ∧mi≤m′ ∧X 6=null ∧ x6=X
` x 7→c4(X,m′)∗llb(X,null,mi)

e10 is then applied the rule ∗ to obtain e11 and e12 as follows.

e11: x 7→c4(X,m′) ` x7→c4(X,m′)
e12: lls(X,null,m′,ma)1 ∧ x6=null ∧mi≤m′ ∧X 6=null ∧ x6=X ` llb(X,null,mi)

e11 is valid by Id. e12 is successfully linked back to e0 to form a pre-proof as

(lls(X,null,m′,ma)1∧X 6=null)[x/X,mi/m′] ` llb(X,null,mi)[x/X,mi/m′]

is identical to e0. Since lls(X,null,m′,ma)1 in e12 is the subterm of
lls(x,null,mi,ma)0 in e0, our system decided that e0 is valid with the cyclic proof
presented in Fig. 4.

5 Soundness, Completeness, and Complexity

We describe the soundness, termination, and completeness of ω-ENT. First, we need to
show the invariant about the quantifier-free entailments of our system.

Corollary 1. Every entailment derived from ω-ENT is quantifier-free.

The following lemma shows the soundness of the proof rules.

Lemma 1 (Soundness). For each proof rule, the conclusion is valid if all premises are
valid.

As every backlink generated contains at least one pair of inductive predicate occur-
rences in a subterm relationship, the global soundness condition holds in our system.

Lemma 2 (Global Soundness). A pre-proof derived is indeed a cyclic proof.
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The termination relies on the number of premises/entailments generated by ∗. As
the number of inductive symbols and their arities are finite, there is a finite number of
equivalence classes of these entailments in which any two entailments in the same class
are equivalent under some substitution and linked back together. Therefore, the number
of premises generated by the rule ∗ is finite, considering the back-links generation.

Lemma 3. ω-ENT terminates.

In the following, we show the complexity analysis. First, we show that every occur-
rence of inductive predicates in the LHS is unfolded at most two times.

Lemma 4. Given any entailment P(v̄)k ∗∆a ` ∆c, 0 ≤ k ≤ 2.

Let n be the maximum number of predicates (both inductive predicates and points-to
predicates) among the LHS of the input and the definitions inP , andm be the maximum
number of fields of data structures. Then, the complexity is defined as follows.

Proposition 1 (Complexity). QF ENT−SLLIN is O(n× 2m + n3).

If m is bounded by a constant, the complexity becomes polynomial in time.
Our completeness proofs are shown in two steps. First, we show the proofs for an

entailment whose LHS is a base formula. Second, we show the correctness when the
LHS contains inductive predicates. In the following, we first define the base formulas
of the LHS derived by ω-ENT from occurrences of inductive predicates. Based on that,
we define bad models to capture counter-models of invalid entailments.

Definition 4 (SHLIDe Base) Given κ, define κ as follows.

P(E,F ,B̄,u,sc,tg)
def
= E 7→c(F ,E1,E2,u,tg) ∗ Q1(E1,B)∗Q2(E2,F )∧π0

E 7→c(v̄)
def
= E 7→c(v̄) emp

def
= emp κ1∗κ2

def
= κ1∗κ2

The definition for general predicates with arbitrary matrix heaps is presented in [28].
As P does not include mutual recursion (Condition C3), the definition above terminates
in a finite number of steps. In a pre-proof, these SHLIDe base formulas of the LHS are
obtained once every inductive predicate has been unfolded.

Lemma 5. If κ ∧ π is in NF, then κ ∧ π is in NF, and κ ∧ π ` κ is valid.

In other words, κ ∧ π is an under-approximation of κ ∧ π; invalidity of κ ∧ π ` ∆′
implies invalidity of κ ∧ π ` ∆′.

Definition 5 (Bad Model) The bad model for κ∧φ∧ a in NF is obtained by assigning

– a distinct non-null value to each variable in FV(κ ∧ φ); and
– a value to each variable in FV(a) such that a is satisfiable.

Lemma 6. 1. For every proof rule except the rule ∗, all premises are valid only if the
conclusion is valid.

2. For the rule ∗, where the conclusion is of the form ∆b ` κ′, all premises are valid
only if the conclusion is valid and ∆b is in NF.
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The following lemma states that the correctness of the procedure is closed for cases
2(b-d).

Lemma 7 (Stuck Invalidity). Given κ∧π ` ∆′ in NF, it is invalid if the procedure
is closed returns invalid for cases 2(b-d).

A bad model of the κ∧π is a counter-model. Cases 2b) and 2c) show that the heaps
of bad models are not connected, and thus accordingly to conditions C1 and C2, any
model of the LHS could not be a model of the RHS. Case 2d) shows that heaps of
the two sides could not be matched. We next show the correctness of Case 2(a) of the
procedure is closed, and invalidity is preserved during the proof search in ω-ENT.

Proposition 2 (Invalidity Preservation). If ω-ENT is stuck, the input is invalid.

In other words, if ω-ENT returns invalid, we can construct a bad model.

Theorem 2. QF ENT−SLLIN is decidable.

6 Implementation and Evaluation

We implement S2SLin using OCaml. This implementation is an instantiation of a general
framework for cyclic proofs. We utilize the cyclic proof systems to derive bases for in-
ductive predicates shown in [24] to discharge satisfiability of separation logic formulas.
We use the solver presented in [29,31] for those formulas beyond this fragment. We
also develop a built-in solver for discharging equalities.

We evaluated S2SLin to show that i) it can discharge problems in SHLIDe effectively;
and ii) its performance is compatible with state-of-the-art solvers. The evaluation of
S2SLin is provided as a companion artifact [27].

Experiment settings We have evaluated S2SLin on entailment problems taken from SL-
COMP benchmarks [38], a competition of separation logic solvers. We take 356 prob-
lems (out of 983) in two divisions of the competition, qf shls entl and qf shlid entl,
and one new division, qf shlid2 entl. All these problems semantically belong to our
decidable fragment, and their syntax is written in SMT 2.6 format [39].

– Division qf shls entl includes 296 entailment problems, 122 invalid problems and
174 valid problems, with only singly-linked lists. The authors in [33] randomly
generated them

– Division qf shlid entl contains 60 entailment problems which the authors in [15]
handcrafted. They include singly-linked lists, doubly-linked lists, lists of singly-
linked lists, or skip lists. Furthermore, the system of inductive predicates must sat-
isfy the following condition: For two different predicates P, Q in the system of
definitions, either P ≺∗P Q or Q ≺∗P P.

– In the third division, we introduce new benchmarks, with 27 problems, beyond the
above two divisions. In particular, every system of predicate definitions includes
two predicates, P and Q, that are semantically equivalent. We have submitted this
division to the Github repository of SL-COMP.
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Table 1: Experimental results
Tool qf shls entl qf shlid entl qf shlid2 entl

invalid valid Time invalid valid Time invalid valid Time
(122) (174) (296) (24) (36) (60) (14) (13) (27)

SLS 12 174 507m42s 2 35 133m28s 0 11 97m54s
Spen 122 174 10.78s 14 13 3.44s 8 2 1.69s

CyclistSL 0 58 1520m5s 0 24 360m38s 0 3 240m3s
Harrsh 39 116 425m19s 18 27 53m56s 8 7 156m45s

Songbird 12 174 237m25s 2 35 40m38s 0 12 47m11s
S2SLin 122 174 6.22s 24 36 0.96s 14 13 1.20s

To evaluate S2SLin’s performance, we compared it with the state-of-the-art tools such
as CyclistSL [5], Spen [15], Songbird [40], SLS [41] and Harrsh [23]. We omitted Cy-
comp [42], as these benchmarks are beyond its decidable fragment. Note that CyclistSL,
Songbird and SLS are not complete; for non-valid problems, while CyclistSL returns
unknown, Songbird and SLS use some heuristic to guess the outcome. For each division,
we report the number of correct outputs (invalid, valid) and the time (in minutes and
seconds) taken by each tool. Note that we use the status (invalid, valid) annotated
with each problem in the SL-COMP benchmark as the ground truth. If the output is the
same as the status, we classify it as correct; otherwise, it is marked as incorrect. We
also note that in these experiments, we used the competition pre-processing tool [39] to
transform the SMT 2.6 format into the corresponding formats of the tools before run-
ning them. All experiments were performed on an Intel Core i7-6700 CPU 3.4Gh and
8GB RAM. The CPU timeout is 600 seconds.

Experiment results The experimental results are reported in Table 1. In this table, the
first column presents the names of the tools. The following three columns show the
results of the first division, including the number of correct invalid outputs, the number
of correct valid outputs and the taken time (where m for minutes and s for seconds),
respectively. The number between each pair of brackets (...) in the third row shows the
number of problems in the corresponding column. Similarly, the following two groups
of six columns describe the results of the second and third divisions, respectively.

In general, the experimental results show that S2SLin is the one (and only one)
that could produce all the correct results. Other solvers either produced wrong re-
sults or could discharge a fraction of the experiments. Moreover, S2SLin took a short
time for the experiments (8.38 seconds compared to 15.91 seconds for Spen, 324 min-
utes for Songbird, 635 minutes for Harrsh, 739 minutes for SLS and 2120 minutes
for CyclistSL). While SLS returned 14 false negatives, Spen reported 20 false pos-
itives. CyclistSL, Songbird and Harrsh did not produce any wrong results. Of 569
tests, CyclistSL could handle 85 tests (15%), Harrsh could handle 215 tests (38%), and
Songbird could decide on 235 tests (41.3%). In the total of 223 valid tests, CyclistSL
could handle 85 problems (38%), and Songbird could decide 222 problems (99.5%).

Now we examine the results for each division in detail. For qf shls entl, Spen re-
turned all correct, Songbird 186, Harrsh 155, and CyclistSL 58. If we set the timeout
to 2400 seconds, both Songbird and Harrsh produced all the correct results. Division
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qf shlid entl includes 24 invalid problems and 36 valid problems. While Songbird

produced 37 problems correctly, CyclistSL produced 24 correct results. Spen reported
27 correct results and 13 false positives (skl2−vc{01− 04} skl3−vc01, skl3−vc{03−
10}). The last division, qf shlid2 entl, includes 14 invalid and 13 valid test prob-
lems. While Songbird decided only 12 problems correctly, CyclistSL produced 3 cor-
rect outcomes. Spen reported 10 correct results. However, it produced 7 false positives
(ls−mul−vc{01 − 03}, ls−mul−vc05, nll−mul−vc{01 − 03}). We believe that engi-
neering design and effort play an essential role alongside theory development. Since our
experiments provide breakdown results of the two SL-COMP competition divisions, we
hope that they provide an initial understanding of the SL-COMP benchmarks and tools.
Consequently, this might reduce the effort to prepare experiments over these bench-
marks to evaluate new SL solvers. Finally, one might point out that S2SLin performed
well because the entailments in the experiments are within its scope. We do not en-
tirely disagree with this argument but would like to emphasize that tools do not always
work well on favourable benchmarks. For example, Spen introduced wrong results on
qf shlid entl, and Harrsh did not handle qf shlid entl and qf shlid2 entl well, although
these problems are in their decidable fragments.

7 Related Work

S2SLin is a variant of the cyclic proof systems [3,4,5,26] and [42]. Unlike existing
cyclic proof systems, the soundness of S2SLin is local, and the proof search is not back-
tracking. The work presented in [42] shows the completeness of the cyclic proof system.
Its main contribution is introducing the rule ∗ for those entailments with a disjunction in
the RHS obtained from predicate unfolding. In contrast to [42], our work includes nor-
malization to soundly and completely avoid disjunction in the RHS during unfolding.
Moreover, our decidable fragment SHLIDe is non-overlapping to the cone predicates
introduced in [42]. Furthermore, due to the empty heap in the base cases, the match-
ing rule in [42] cannot be applied to the predicates in SHLIDe. Finally, our work also
presents how to obtain the global soundness condition for cyclic proofs.

Our work relates to the inductive theorem provers introduced in [10], [40] and
Smallfoot [2]. While [10] is based on structural induction, [40] is based on mathematical
induction. Smallfoot [2] proposed a decision procedure for linked lists and trees. It used
a fixed compositional rule as a consequence of induction reasoning to handle inductive
entailments. Compared with Smallfoot, our proof system replaces the compositional
rule by combining rule LInd and the back-link construction. Our system could support
induction reasoning on a much more expressive fragment of inductive predicates.

Our proposal also relates to works that use lemmas as consequences of induction
reasoning [2,16,30,41]. These works in [16,25,30,41] automatically generate lemmas
for some classes of inductive predicates. S2 [25] generated lemmas to normalize (such
as split and equivalence) the shapes of the synthesized data structures. [16] proposed
to generate several sets of lemmas not only for compositional predicates but also for
different predicates (e.g., completion lemmas, stronger lemmas and static parameter
contraction lemmas). SLS [41] aims to infer general lemmas to prove an entailment.
Similarly, S2ENT [30] solves a more generic problem, frame inference, using cyclic
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proofs and lemma synthesis. It infers a shape-based residual frame in the LHS and then
synthesizes the pure constraints over the two sides.

S2SLin relates to model-based decision procedures that reduce the entailment prob-
lem in separation logic to a well-studied problem in other domains. For instance, in
[8,11,17], the entailment problem, including singly-linked lists and their invariants, is
reduced to the problem of inclusion checking in a graph theory. The authors in [18]
reduced the entailment problem to the satisfiability problem in second-order monadic
logic. This reduction could handle an expressive fragment of spatial-based predicates
called bounded-tree width. Moreover, the work presented in [23] shows a model-based
decision procedure for a subfragment of the bounded-tree width. Furthermore, while
the work in [15,19] reduced the entailment problem to the inclusion checking problem
in tree automata, [21] presented an idea to reduce the problem to the inclusion checking
problem in heap automata. Moreover, while the procedure in [15] supported compo-
sitional predicates (single and double links) well, the procedure in [19] could handle
predicates satisfying local properties (e.g., trees with parent pointers). Our decidable
fragment subsumes the one described in [2,11,15] but is incomparable to the ones pre-
sented in [8,17,18,19]. Works in [34] and [35,36] reduced the entailment problem in
separation logic into the satisfiability problem in SMT. While GRASShoper [35,36]
could handle transitive closure pure properties, S2SLin is capable of supporting local
ones. Unlike GRASShoper, which reduces entailment into SMT problems, S2SLin re-
duces an entailment to admissible entailments and detects repetitions via cyclic proofs.

Decidable fragments and complexity results of the entailment problem in separa-
tion logic with inductive predicates were well studied. The entailment is 2-EXPTIME
in cone predicates [42], the bounded tree-width predicates and beyond [18,14], and
EXPTIME in a sub-fragment of cone predicates [19]. In the other class, entailment is
in polynomial time for singly-linked lists [11] and semantically linear inductive predi-
cates [15]. Moreover, the extensions with arithmetic [17] are in polynomial but become
EXPTIME when the lists are extended with double links [8]. SHLIDe (with nested lists,
trees and arithmetic properties) is roughly in the “middle” of the two classes above. The
entailment is EXPTIME and becomes polynomial under the upper bound restriction.

8 Conclusion

We have presented a novel decision procedure for the quantifier-free entailment prob-
lem in separation logic combined with inductive definitions of compositional predicates
and pure properties. Our proposal is the first complete cyclic proof system for the prob-
lem in separation logic without back-tracking. We have implemented the proposal in
S2SLin and evaluated it over the set of nontrivial entailments taken from the SL-COMP
competition. The experimental results show that our proposal is effective and efficient
when compared to the state-of-the-art solvers. For future work, we plan to develop a bi-
abductive procedure based on an extension of this work with the cyclic frame inference
procedure presented in [30]. This extension is fundamental to obtaining a composi-
tional shape analysis beyond the lists and trees. Another work is to formally prove that
our system is as strong as Smallfoot in the decidable fragment with lists and trees [2]:
Given an entailment, if Smallfoot can produce proof, so is S2SLin.
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