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Abstract. Fast matching of regular expressions with bounded repetition, aka
counting, such as (ab){50,100}, i.e., matching linear in the length of the text
and independent of the repetition bounds, has been an open problem for at least
two decades. We show that, for a wide class of regular expressions with counting,
which we call synchronizing, fast matching is possible. We empirically show that
the class covers nearly all counting used in usual applications of regex match-
ing. This complexity result is based on an improvement and analysis of a recent
matching algorithm that compiles regexes to deterministic counting-set automata
(automata with registers that hold sets of numbers).

1 Introduction

Fast matching of regular expressions with bounded repetition, aka counting, has been
an open problem for at least two decades (cf., e.g., [33]). The time complexity of the
standard matching algorithms run on a regex such as .*a.{100} is, at best, dominated
by the length of the text multiplied by the repetition bounds. This makes matching prone
to unacceptable slowdowns since the length of the text as well as the repetition bounds
are often large. In this paper, we provide a theoretical basis for matching of bounded
repetition with a much more reliable performance. We show that a large and practical
class of regexes with counting theoretically allows fast matching—in time indepen-
dent of the counter bounds and linear in the length of the text.

The problem also has a strong practical motivation. Regex matching is used for
searching, data validation, detection of information leakage, parsing, replacing, data
scraping, syntax highlighting, etc. It is natively supported in most programming lan-
guages [6], and ubiquitous (used in 30–40 % of Java, JavaScript, and Python software
[7,39,8,5]). Efficiency and predictability of regex matching is important. An extreme
run-time of matching can have serious consequences, such as a failed input validation
against injection attacks [41] and events like the outage of Cloudflare services [18].
Regexes vulnerabilities are also a doorway for the ReDoS (regular expression denial of
service) attack, in which the attacker crafts a text to overwhelm a matcher (as, e.g., in the
case of the outage of StackOverflow [13] or the websites exposed due to their use of the
popular Express.js framework [3]). ReDoS has been widely recognized as a common
and serious threat [7,9,11], with counting in regexes begin especially dangerous [37].

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp. 392–412, 2023.
https://doi.org/10.1007/978-3-031-30829-1 19

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_19&domain=pdf
http://orcid.org/0000-0001-6957-1651
http://orcid.org/0000-0001-7454-3751
http://orcid.org/0000-0003-1450-6136
http://orcid.org/0000-0002-2746-8792
https://doi.org/10.1007/978-3-031-30829-1_19
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_19&domain=pdf


Fast Matching of Regular Patterns with Synchronizing Counting 393

Matching algorithms and complexity. The potential instability of the pattern matchers
is in line with the worst-case complexity of the matching algorithms. The most widely
used approach to matching is backtracking (used, e.g., in standard matchers of .NET,
Python, Perl, PHP, Java, JavaScript, Ruby) for its simplicity and ease of implementation
of advanced features such as back-references or look-arounds. It is, however, at worst
exponential to the length of the matched text and prone to ReDoS. Even though this
can be improved, for instance by memoization [11], the fastest matchers used in perfor-
mance critical applications all use automata-based algorithms instead of backtracking.
The basis of these approaches is Thompson’s algorithm [35] (also referred to as online
NFA-simulation). Together with many optimizations, it is implemented in Intel’s Hyper-
scan [40]. When combined with caching, it becomes the on-the-fly subset construction
of a DFA, also called online DFA-simulation (implemented in RE2 from Google, GNU
grep, SRM, or the standard matcher of Rust [17,19,30,12]). Without counting, the major
factor in the worst-case complexity is O(nm2), with n being the length of the text and
m the size of the number of character occurrences in the regex (m is smaller than size
of the regex, the length of string defining it). We say that the character cost, i.e., the
cost of extending the text with one character, is m2. This is the cost of iterating through
transitions of an NFA with O(m) states and O(m2) transitions compiled from the regex
by some classical construction [2,16,24].

Extending the syntax of regexes with bounded quantifiers (or counters), such as
(ab){50,100}, increases the character complexity dramatically. Given k counters with
the maximum bound `, the number of NFA states rises to O(m`k), the number of tran-
sitions as well as the character cost to O((m`k)2). For instance, the minimal DFA for
.*a.{k} (i.e., a appears k characters from the end) has more than 2k states. Moreover,
note that, since k is written as a decadic numeral, its value is exponential in the size
of the regex. This makes matching with already moderately high k prone to significant
slowdowns and ReDoS vulnerabilities with virtually every mainstream matcher (see
[36,37]). At the same time, repetition bounds easily reach thousands, in extreme tens
of millions (in real-life XML [4]). Writing a dangerous counting expression is easy and
it is hard to identify. Security-critical solutions may be vulnerable to counting-related
ReDoS [37] despite an extra effort spent in regex design and testing, hence developers
sometimes avoid counting, use workarounds and restrict functionality.

The problem of matching with bounded repetition has been addressed from
the theoretical as well as from the practical perspective by a number of authors
[15,4,22,26,31,20,25,36]. From these, the recent work [36] is the only one offering fast
matching for a practically significant class of regexes. The algorithm of [36] compiles
a regex with counting to a non-deterministic counting automaton (CA), an automaton
with counters that can be incremented, reset, and compared with a constant. The crux of
the problem is then to convert the CA to a succinct deterministic machine that could be
simulated fast in matching. The work [36] achieves this by determinizing the CA into a
counting-set automaton (CSA), an automaton with registers that hold sets of numbers.
Its size is independent of the counter bounds and it updates the sets by a handful of
operations that are all constant time, regardless the size of the sets. However, regexes
outside the supported class do appear, the class has no syntactic characterization, and
it is hard to recognize (as demonstrated also by an incorrect proposal of a syntactic
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class in [36] itself). For instance, .*a{5} or (ab){5} are handled, but .*(aa){5} or
.*(ab){5} are not (the requirement is technical, see Section 4).

Our contribution. In this paper, we

1. generalize the algorithm of [36] to extend the class of handled regexes and
2. derive a useful syntactic characterization of the extended class.

The derived class is characterized by flat counting (counting operators are not nested)
where repetitions of each counted expression R are synchronizing (a word from Rn can-
not have a prefix from Rn+1). It is the first clearly delimited practical class of regexes
with counting that allows fast matching. It includes the easily recognizable and frequent
case where every word in R has exactly one occurrence of a marker, a letter or a word
from a finite set of markers that unambiguously identifies each occurrence of R (note
that even this simple class was not handled by any previous fast algorithms, including
[36]). In a our experiment with a large set of regexes from various sources, 99.6 % of
non-trivial flat counting was synchronizing and 99.2 % was letter-marked.

To obtain the results (1) and (2) above, we first modify the determinization of [36]
to include the entire class of regexes with flat counting. In a nutshell, this is achieved
by two changes: (i) We allow copying and uniting of sets stored in registers, and (ii) in
the determinization, we index counters of the CA by its states to handle CA in which
nondeterministic runs that reach different states reach different counter values.

These modifications come with the main technical challenge that we solve in this
paper: copying and uniting sets is not constant-time but linear to the size of the sets.
This would make the character cost linear in the counter bound ` again. To remove the
dependency on the counter bounds, we augment the determinization by optimizations
that avoid the copying and uniting. First, to alleviate the cost of uniting, we store inter-
sections of sets stored in registers in new shared registers, so that the intersection does
not contribute to the cost of uniting the registers. Then, to increase the impact of in-
tersection sharing, we synchronize register updates in order to make their intersections
larger. We then show that if the CSA does not replicate registers, i.e, each register can in
a transition appear on the right-hand side of only one register assignment, then it never
copies registers and the cost of unions can be amortised. Finally, we define the class of
regexes with synchronizing counting for which the optimized CsA do not replicate
counters so their simulation in matching is fast.

Related work. In the context of regex matching, counting automata were used in several
forms under several names (e.g. [20,36,4,15,31,32,33,14,23]). Besides [36] discussed
above, other solutions to matching of counting regexes [15,4,22,26,31,20,25] handle
small classes of regexes or do not allow matching linear in the text size and indepen-
dent of counter bounds. The work [20] proposes a CA-to-CA determinization producing
smaller automata than the explicit CA determinization for the limited class of monadic
regexes, covered by letter-marked counting, and the size of their deterministic automata
is still dependent on the counter bounds. The work [4] uses a notion of automata with
counters of [15]. It focuses mostly on deterministic regexes, a class much smaller than
regexes with synchronizing counting, and proposes a matching algorithm still depen-
dent on the counter bounds. The paper [25] proposes an algorithm that takes time at
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worst quadratic to the length of the text. Extended FA (XFA) of [31,32] augment NFA
with a scratch memory of bits that can represent counters, and their determinization
is exponential in counter bounds already for regexes such as .*a.{k}. The counter-1-
unambiguous regexes of [22,23] can be directly compiled into deterministic automata
called FACs, similar to our CA, independent of counter bounds, but the class is limited,
excluding e.g., .*a.{k}.

2 Preliminaries

We use N to denote the natural numbers including 0. For a set S, P (S) denotes its
powerset and Pfin(S) is the set of all finite subsets of S.

A first order language (f.o.l.) Γ = (F,P) consists of a set of function symbols F
and a set of predicate symbols P. An interpretation I of Γ with a domain DI assigns
a function f I : Dn

I → DI to each n-ary f ∈ F and a function pI : Dn
I → {0,1} to each

n-ary p ∈ P. An assignment of a set of variables X in I is a total function ν : X → DI.
The set of terms TermsΓ,X and the set QFFΓ,X of quantifier free formulae (boolean
combinations of atomic formulae) over Γ and X , as well as the interpretation of a term,
tI(ν), and a formula, ϕI(ν), are defined as usual. We denote by ν |=I ϕ that the formula
ϕ is satisfied (interpreted as true) by the assignment ν. It is then satisfiable. We drop
the sub/superscript I when it is clear from the context. We write ϕ[x] and t[x] to denote
a unary formula ϕ or term t, respectively, with the free variable x, and we may also
abuse this notation to denote the term/formula with its only free variable replaced by
x. We write tI(k) and ϕI(k) to denote the values tI({x 7→ k}) and ϕI({x 7→ k}). For a
set of formulae Ψ = {ψ1, . . . ,ψn}, the set Minterms(Ψ) consists of all minterms of Ψ,
satisfiable conjunctions ϕ1∧·· ·∧ϕn where for each i : 1≤ i≤ n, ϕi is ψi or ¬ψi.

We fix a finite alphabet Σ of symbols/letters for the rest of the paper. Words are se-
quences of letters, with the empty word ε. The concatenation of words u and v is denoted
u · v, uv for short. A set of words over Σ is a language, the concatenation of languages
is L ·L′ = {u ·v | u ∈ L∧v ∈ L′}, LL′ for short. Bounded iteration xi, i ∈N, of a word or
a language x is defined by x0 = ε for a word, x0 = {ε} for a language, and xi+1 = xi · x.
Then x∗ =

⋃
i∈N xi. We consider a usual basic syntax of regular expressions (regexes),

generated by the grammar R ::= ε | a | (R) | RR | R|R | R* | R{m,n}where m∈N,
n ∈ N∪∞, 0 ≤ m, 0 < n, m ≤ n, and a ∈ Σ. We use R{m} for R{m,m}. Regexes con-
taining a sub-expression with the counter R{m,n} or R{m} are called counting regexes
and m,n are counter bounds. We denote by maxR the maximum integer occurring in
the counter bounds of regex R and we denote the number of counters by cntR. A regex
with flat counting does not have nested counting, that is, in a sub-regex S{m,n}, S
cannot contain counting. The language of a regex R is constructed inductively to the
structure: L(ε) = {ε}, L(a) = {a} for a ∈ Σ, L(RR′) = L(R) · L(R′), L(R*) = L(R)∗,
L(R|R′) = L(R)∪L(R′), and L(R{m,n}) =

⋃
m≤i≤n L(R)i. We understand |R| simply as

the length of the defining string, e.g. |(ab){10}| = 8. We define ]R as the number of
character occurrences in R, formally, ]a = 1 for a ∈ Σ, ]ε = 0, ](R) = ]R{m,n} = ]R,
and ]R ·S = ]R|S = ]R+ ]S.

A (nondeterministic) automaton (NA) is a tuple A = (Q,∆, I,F) where Q is a set of
states, ∆ is a set of transitions of the form q−{a}→r with q,r ∈ Q and a ∈ Σ, I ⊆ Q is the
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set of initial states, and F ⊆ Q is the set of final states. A run of A over a word w =
a1 . . .an from state p0 to pn, n ≥ 0 is a sequence of transitions p0−{a1}→p1, p1−{a2}→p2,
. . ., pn−1−{an}→pn from ∆. The empty sequence is a run with p0 = pn over ε. The run is
accepting if p0 ∈ I and pn ∈ F , and the language L(A) of A is the set of all words for
which A has an accepting run. A state q is reachable if there is a run from I to it. The size
of the NA, |A|, is defined as the number of its states plus the number of its transitions.
The automaton is deterministic (DA) iff |I|= 1 and for every state q and symbol a, ∆ has
at most one transition q−{a}→r. The subset construction transforms the NA to the DA with
the same language DA(A) = (Q{},∆{}, I{},F {}) where Q{} ⊆ P (Q) and ∆{} are the smallest
sets of states and transitions satisfying I{} = {I}, ∆{} has for each a ∈ Σ and each S ∈ Q{}

the transition S−{a}→{s′ | s ∈ S∧ s−{a}→s′ ∈ ∆}, and F {} = {S ∈Q{} | S∩F 6= /0}. When the
set of states Q is finite, we talk about (deterministic) finite state automata (NFA, DFA).1

This paper is concerned with the problem of fast pattern matching, basically a mem-
bership test: given a regex R and a text w, decide whether w ∈ L(R). While w may be
very long, R is normally small, hence the dependence on |w| is the major factor in
the complexity. The offline DFA simulation takes time linear in |w|. It (1) compiles
R into an NFA NFA(R) (2) determinizes it, and (3) follows the DFA run over w (aka
simulates the DFA on w), all in time and space Θ(2|NFA(R)|+ |w|). The cost of deter-
minization, exponential in |NFA(R)|, is however too impractical. Modern matchers such
as Grep or RE2 [19,17] therefore use the techniques of online DFA simulation, where
only the part of the DFA used for processing w is constructed. It reduces the complexity
to O(min(2|NFA(R)|+ |w|, |w| · |NFA(R)|)) (the first operand of min is the explicit deter-
minization in case the entire DFA is constructed, plus the cost of DFA-simulation; the
second operand is the cost of the online-DFA simulation, coming from that every step
may incur construction of a new DFA state and transition in time O(|NFA(R)|)). For
counting regexes, the factor |NFA(R)| depends linearly (or more if counting is nested)
on maxR and thus exponentially on |R|. This makes counting very problematic in prac-
tice [36,37,33]. We will present a matching algorithm which is fast for a specific class
of regexes, meaning that its run-time is still linear in |w| but is independent of maxR.

3 Counting Automata

We use a rephrased definition of counting automata and counting-set automata of [36].
We will present them as a special case of a generic notion of automata with registers.

Definition 1 (Automata with registers). An automaton with registers (RA) operated
through an f.o.l. Γ under an interpretation I is a tuple A = (X ,Q,∆, I,F) where X is a
set of variables called registers; Q is a finite set of states; ∆ is a finite set of transitions
of the form q−{a,ϕ,u}→p where p,q ∈ Q, a ∈ Σ, u : X → TermsΓ,X is an update, and ϕ ∈
QFFΓ,X is a guard; I is a set of initial configurations, where a configuration is a pair of
the form (q,m) where q ∈Q and m : X→DI is a register assignment called a memory;
and F : Q→ QFFΓ,X is a final condition assignment.

1 We do not require finiteness in the basic definition in order to avoid artificial restrictions of the
notions of automata with registers/counters/counting sets defined later.
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The language of A, L(A), is defined as the language of its configuration automaton
Conf(A). States of Conf(A) are configurations of A that are reachable. I is the set of
initial states of Conf(A). It has a transition (q,m)−{a}→(q′,m′) iff (q,m) is reachable and
A has a transition δ = q−{a,ϕ,u}→q′ ∈ ∆ such that (q′,m′) is the image of (q,m) under δ,
denoted (q′,m′) = δ(q,m), meaning that (1) δ is enabled in (q,m), m |= ϕ, and (2)
m′ = u(m), i.e. m′(x) = u(x)I(m) for each x ∈ X. We let δ(C) = {δ(c) | c ∈C} for a set
of configurations C. A configuration (q,m) is a final if m |= F(q). By runs of A we mean
runs of Conf(A). The RA A is deterministic if Conf(A) is deterministic. The size of the
RA is |A|= |Q|+∑δ∈∆ |δ| where |δ| is the sum of the sizes of the update and the guard.

Definition 2 (Counting automata). A counting automaton (CA) is an automaton with
registers, called counters, operated through the counting language Γcnt that contains
the unary increment function, denoted x+1, constants 0 and 1, and predicates x> k and
x≤ k, k∈N, with the standard interpretation over natural numbers, that we denote Icnt.

q0x :=0

a1

b1

b2 [x≥ 3]

a

x :=1
b

x :=1

b
x := x

b

x := x

a;x < 8
x := x+1

b;x < 8
x := x+1

Fig. 1: CA(R) for R = ((a|b)b){3,8}. The
accepting condition of all states is ⊥ except
for b2 whose accepting condition is written
in the square brackets.

Regexes with counting may be
translated to CA by several meth-
ods ([36,33,14,23]). We use a slightly
adapted version of [14]—an extension of
Glushkov’s algorithm [16] to counting.
For a regex R, it produces a CA CA(R) =
(X ,Q,∆,{α0},F). Figure 1 shows an
example of such CA. The construction
is discussed in detail in [21], here we
only overview the important properties
needed in Sections 4-6:

1. Every occurrence S of a counted sub-expression T{minS,maxS } of R corresponds
to a unique counter xS and a substructure AS of CA(R). Outside AS, xS is inactive (a
dead variable) and its value is 0, it is assigned 1 on entering AS, and every iteration
through AS increments the value of xS while reading a word from L(T ). Our minor
modification of [14] is related to the fact that the original assigns 1 to inactive
counters while we need 0.

2. CA(R) has at most ]R+ 1 states, cntR.]R2 transitions, cntR counters. It has at most
]R2 transitions if R is flat.

3. CA(R) has a single initial configuration α0 = (q0,s0) s.t. s0(xS) = 0 for each xS ∈ X .
4. Guards and final conditions are conjunctions consisting of at most one conjunct

of the form minS ≤ xS or maxS > xS per counter xS ∈ X . A transition update may
assign to xS ∈ X only one of the terms 0, 1, xS, and xS +1. It has no guard on xS if it
is assigned xS, i.e. kept unchanged, it has the guard xS ≥minS iff xS is reset to 0 or
1 (a counter cannot be reset before reaching its lower bound), and it has the guard
xS < maxS iff xS is assigned xS + 1 (counter can never exceed its maximum value
maxS). Hence, a counter can never exceed maxR.

5. Flatness of R translates to the fact that configurations of CA(R) assign a non-zero
value to at most one counter. This implies that Conf(CA(R)) has at most |Q|.maxR
states and also that CA(R) is Cartesian, a property that will be defined in Section 4
and is crucial for correctness of our CA determinization (Theorem 3 in Section 6.)
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A DFA can be obtained by the subset construction in the form DA(Conf(CA(R))), called
explicit determinization. Due to the factor maxR in the size of Conf(CA(R)), the explicit
determinization is exponential to maxR even if R is flat, meaning doubly exponential to
|R| (R has maxR written as a decadic numeral). If R is not flat, then the factor maxR is
replaced by (maxR)

cntR .

4 Counter-subset Construction

In this section, we formulate a modified version of determinization of CA from [36]
that constructs a machine of a size independent of maxR. Our version handles the entire
class of Cartesian CA (defined below) and in turn also all regexes with flat counting.

The main idea of the determinization remains the same as in [36]. The standard sub-
set construction is augmented with registers, we call them counting sets, that can store
sets of counter values that would be generated by non-deterministic runs of the CA.
The automata with counting-sets as registers are called counting-set automata. Our first
modification of [36] is indexing of counters by states. In intuitively, this allows to han-
dle cases such as a*(ba|ab){5}, where, after reading the first ab, the counter is either
incremented or not (b is the first letter of the counted sub-expression or not). This would
violate the uniformity property of CA necessary in [36]—the set of values generated by
the non-deterministic CA runs must be the same for every CA state. In our modified ver-
sion, values at distinct states are stored separately in registers indexed by those states
and may differ. Then, in order to handle the indexed counters, we have to introduce a
general assignment of counters, allowing to assign the union of other counters.2 Intu-
itively, when a run non-deterministically branches into several states, each branch needs
to continue with its own copy of the set, stored in a counter indexed by the state. The
union of sets is used when the branches join again. This brings a technical challenge
that we solve in this work: how to simulate the counting-set automata fast when the set
union and copy are used? The solution is presented in Sections 5 and 6.

Definition 3 (Counting-set automata). A counting-set automaton (CSA) is an au-
tomaton with registers operated through the counting-set language Γset under the num-
ber-set interpretation I{}cnt where the language Γset extends the counting language Γcnt

with the constant /0, binary union ∪, and set-filter functions ∇p where p is a predicate
symbol of Γcnt. For simplicity, we restrict terms assigned to counters by transition up-
dates to the form t = t1 ∪ ·· · ∪ tn where each ti is either (a) a term of Γcnt or /0, (b) of
the form ∇p(t ′) where t ′ is a term of Γcnt. Each ti is called an r-term of t.

The domain of Iset is sets of natural numbers, P (N). The interpretation of the
predicates and functions of Γcnt under Iset is derived from the base number inter-
pretation of the same predicates and functions: A function returns the image of the
set in the argument under the base semantics, f Iset(S) = { f Icnt(n) | n ∈ S}. A set sat-
isfies a predicate if some of its elements satisfy the base semantics of that predicate,
pIset(S) ⇐⇒ ∃e ∈ S : pIcnt(e). Filters then filter out values that do not satisfy the base
semantics of their predicate, ∇Iset

p (S) = {e ∈ S | pIcnt(e)}. Finally, /0 is interpreted as

2 [36] could assign to a counter x only a constant or function of the current value of x.
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the empty set and ∪ as the union of sets. We denote memories of the CSA by s to distin-
guish them from memories of CA. We write DCSA to abbreviate deterministic CSA.

Less formally, registers of CSA hold sets of numbers and are manipulated by the
increment x+ 1 of all values, assignment of constant sets {0}, {1}, and /0, denoted by
0, 1, and /0, filtering out values smaller or larger than a constant, denoted ∇x≤k(x) and
∇x<k(x), and testing on a presence of a value x satisfying x≤ k or x < k, k ∈ N.

We will present an algorithm that determinizes a CA A = (X ,Q,∆, I,F), fixed for
the rest of the section, into a DCSA DCSA(A) = (X {},Q{},∆{}, I{},F {}). We assume that
guards of transitions in ∆ and final conditions are of the form

∧
x∈Y px[x],Y ⊆ X , i.e.

conjunctions with a at most a single atomic predicate per counter. This is satisfied by
all CA(R), for any regex R (see the list of properties of CA(R) in Section 3).3

Runs of DCSA(A) will encode runs of DA(Conf(A)) obtained from the explicit deter-
minization of A. Recall that the states DA(Conf(A)) are sets of configurations of A, pairs
(q,m) of a state and a counter assignment. DCSA(A) will represent the sets of counter
values within a DA state as run-time values of its registers.

Particularly, for every state q and a counter x of the CA, DCSA(A) has a register xq in
which it remembers, after reading a word w, the set of all values that x reaches in runs
of the base CA on w ending in q. Hence, we have X {} = {xq | x ∈ X ∧q ∈ Q}

Definition 4 (Encoding of sets of CA configurations). A state S = {(qi,mi)}n
i=1 of

DA(Conf(A)) is encoded as the DCSA(A) configuration enc(S) = ({qi}n
i=1,s) where

s(xq) = {mi(x) | qi = q}n
i=1.

Since a set of assignments appearing with the state q is broken down to sets of values
of the individual counters, it disregards relations between values of different counters.
For instance, in the DA state S1 = {(q,{x 7→ 0,y 7→ 0}),(q,{x 7→ 1,y 7→ 1})}, the values
of x and y are either both 0 or both 1, but enc(S1) = (q,{xq 7→ {0,1},yq 7→ {0,1}})
does not retain this information. It is identical to the encoding of another DA state
S2 = {(q,{x 7→ 1,y 7→ 0}),(q,{x 7→ 0,y 7→ 1})}. This is the same loss of information as
in the so-called Cartesian abstraction. The encoding is hence precise and unambiguous
only when we assume that inside the states of DA(A), the relations between counters are
always unrestricted—there is no information to be lost. We then call the CA Cartesian,
as defined below. The encoding function is then unambiguous, and we call the inverse
function decoding, denoted dec.

Definition 5 (Cartesian CA). Assuming the set of counters of A is X = {xi}m
i=1, then

a set C of configurations of A is Cartesian iff, for every state q of A, there exist sets
N1, . . . ,Nm ⊆N such that (q,{xi 7→ ni}m

i=1) ∈C iff (n1, . . . ,nm) ∈ N1×·· ·×Nm. The CA
A is Cartesian iff all states of DA(Conf(A)) are Cartesian.

For instance, the DA states S1 and S2 above are not Cartesian, while S1∪S2 is.
Similarly as the regex to CA construction of [36], our regex to CA construction

discussed in Section 3 returns a Cartesian CA when called on a flat regex.

3 Every CA can be transformed to this form by transforming the formulae to DNF and creating
clones of transitions/states for individual clauses.
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Subset construction for Cartesian CA. The algorithm below is a generalization of the
subset construction. Let us denote by indexq(t) the term that arises from t by replacing
every variable x ∈ X by xq, analogously indexq(ϕ) for formulas. We have Q{} ⊆ P (Q),
the initial configuration I{} = {enc(I)}, and the final conditions assign to R ∈ Q{} the
disjunction of the final conditions of its elements, F {}(R) =

∨
q∈R indexq(F(q)).

We will construct DCSA(A) which is deterministic and its runs encode the runs of
DA DA(Conf(A)). Conf(DCSA(A)) will be isomorphic to DA(Conf(A)). For that, we
need for each transition δ of DA(Conf(A)) one unique transition of DCSA(A) over the
same letter enabled in the encoding of the source of δ and generating the encoding of
the target of δ. In other words, we need for each transition dec(R,s)−{a}→dec(R′,s′) of
DA(Conf(A)) one unique transition δ′ = R−{a,ϕ,u}→R′ ∈ ∆{} with (R′,s′) = δ′(R,s). That
transition δ′ will be built by summarizing the effect of all base CA a-transitions enabled
in the CA configurations of dec(R,s).

To construct the transition δ′, we first translate each base transition δ= q−{a,ϕδ,uδ}→r∈
∆ into its set-version δ{}, supposed to transform an encoding of a (Cartesian) set C of
configurations, enc(C), into the encoding of the set of their images under δ, enc(δ(C)),
and enabled if δ is enabled for at least one configuration in C. To that end, assum-
ing ϕδ =

∧
x∈X px[x], we (1) construct the update u∇

δ
from uδ by substituting in every

uδ(x),x ∈ X variables y ∈ X by their filtered versions ∇py(y), (2) add indices to reg-
isters that mark the current state, resulting in the transition δ{} = q−{a,ϕ{}

δ
,u{}

δ
}→r where

ϕ
{}

δ
= indexq(ϕδ) and u{}

δ
assigns to every xr,x ∈ X the term indexq(u∇

δ
(x)).

The states Q{} and the transitions ∆{} are then constructed as the smallest sets satisfy-
ing that enc(I) ∈Q{} and every R ∈Q{} has for every a ∈ Σ the outgoing transitions con-
structed as follows. Let {q j−{a,ϕ j ,u j}→r j} j∈J for some index set J be the set of constituent
a-transitions for R, all a-transitions δ{} where δ ∈ ∆ originates in R. To achieve deter-
minism, ∆{} has the transition R−{a,ψ,u}→R′ for every minterm ψ ∈ Minterms({ϕ j} j∈J).
The update u and target R′ are constructed from the set {q j−{a,ϕ j ,u j}→r j} j∈K , K ⊆ J, of
constituent transitions with guards ϕ j compatible with the minterm ψ, i.e., with satis-
fiable ψ∧ϕ j. R′ is the set of their target states, R′ = {r j} j∈K , and u(x) unites all their
update terms u j(x), i.e. u(x) =

⋃
j∈K u j(x), for each x ∈ X {}.

Example 1. When showing examples of transition updates, we write x := t to denote
that u(x) = t and we omit the assignments x := /0 in CSA.

Let R = {p,q} and let the a-transitions originating at R be q−{a,>,x:=x}→s,
p−{a,x<n,x:=x+1}→r, and p−{a,x≥m,x:=1}→s. They induce three constituent transitions for
R and a, q−{a,>,xs:=xq}→s, p−{a,xp<n,xr :=∇x<n(xp)+1}→r, and p−{a,xp≥m,xs:=1}→s. A transition
R−{a,ψ,u′}→R′ is constructed for each of the following minterms ψ: xp<n∧xp≥m,¬xp<n∧
xp≥m, xp<n∧¬xp≥m, ¬xp<n∧¬xp≥m. For the first one, all three constituent transi-
tions are compatible and so the update u′ is xr :=∇x<n(xp)+1;xs :=xq∪1 (update of xr
is taken from the first constituent transitions leading to r, update of xs is the union of the
updates of the second two transitions leading to s) and the target state is R′ = {r,s}. ut

DCSA(A) is deterministic since it has a single initial configuration and the guards of
transitions originating in the same state are minterms. The size of DCSA(A) obviously
depends only on the size of A and not on the interpretation of the language. Especially,



Fast Matching of Regular Patterns with Synchronizing Counting 401

when A is CA(R) for some regex R, the size does not depend on maxR. The theorem
below is proved in [21].4

Theorem 1. DCSA(A) is deterministic, |DCSA(A)| ∈O(2|A|), and if A is Cartesian, then
L(A) = L(DCSA(A)).

Since for regexes with flat counting, our regex to CA algorithm always returns a
Cartesian CA, we can transform them into DCSA.

5 Fast Simulation of Counting-set Automata

In this section, we discuss how a run of a DCSA on a given word can be simulated
efficiently to achieve fast matching. Let us fix a word w = a1 · · ·an together with the
DCSA A = (X ,Q,∆,{α0},F). We wish to construct the run of the DCSA on w and test
whether the reached configuration is accepting. We aim at a running time linear to |w|
and independent of the sizes of the sets stored in A’s registers at run-time.

We will assume that the initial configuration α0 of A assigns to every register a
singleton or the empty set. The assumption is satisfied by CSA constructed from CA(R),
R being any regex, by the algorithms of Section 4 and also Section 6.5

Technically, the simulation maintains a configuration α = (q,s), initialized with
α0, and for every i from 1 to n, it constructs the transition α−{ai}→α′ of Conf(A) and
replaces α by the successor configuration α′ = (q′,s′). We use the key ingredient of
fast simulation from [36], the offset-list data structure for sets of numbers with constant
time addition of 0/1, comparison of the maximum to a constant, reset, and increment of
all values. The problem is that the newly added union and copy of sets are still linear
to the size of the sets, and hence linear to the maximum counter bounds. We show how,
under a condition introduced below, set copy can be avoided entirely and the cost of
union can be amortized by the cost of incrementing the sets. This will again allow a
CSA-simulation in time independent of maxA and falling into O(|A| · |w|).

First, we define a property of CSA sufficient for fast simulation—that the updates
on its transitions do not replicate counters.

Definition 6 (Counter replication). We say that a CSA replicates counters if for some
transition q−{a,ϕ,u}→r, some counter appears in the image of u twice, that is, it appears
in two r-terms of some u(x) or it appears in u(x) as well as in u(y) for x 6= y. A non-
replicating CSA does not replicate counters.

For instance, {x 7→ x;y 7→ x+ 1} and {x 7→ x∪ x+ 1,y 7→ y} are updates where x is
replicated, {x 7→ x+1,y 7→ y} is not a replicating update.

4 It may be interesting to note that, as follows from our formulation of the determinization, the
construction is independent of the particular f.o.l. used to manipulate registers and of its inter-
pretation. The determinization could be applied to any kind of automata that fits the definition
of automata with registers. The numbers could be manipulated by other functions and tests,
natural numbers could be replaced by reals etc. The counting-set automata are themselves an
instance of automata with registers. One could also think about push-down automata or, with
small modifications, variants of data-word automata with registers.

5 This is a technical assumption important in order for unions of the initial sets not to influence
the overall complexity of the simulation.
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Offset-list data structure. The offset-list data structure of [36] allows constant time
implementation of the set operations of increment of all elements, reset to /0 or {0} or
{1}, addition of 0 or 1, and comparison of the maximum with a constant.

It assigns to every counter x ∈ X a pointer ol(x) to an offset-list pair (ox, lx) with the
offset ox ∈N and a sorted list lx = m1, . . . ,mk of integers. The data structure implement-
ing the list needs constant access to the first and the last element, forward and backward
iteration of a pointer, and insertion/deletion at/before a pointer to an element. This is
satisfied for instance by a doubly-linked list that maintains pointers to the first and the
last element. The offset-list pair represents the set s(x) = {m1+ox, . . . ,mk +ox}. Union
of two such sets is still linear in their size, but we will show that if the CSA does not
replicate counters, the cost of set unions can be amortized by the cost of increments.

Finding the CSA transition and evaluating the update. The first step of computing α′

from α is finding the transition q−{ai,ϕ,u}→q′ ∈ ∆, the only ai-transition from q that is
enabled, i.e. where s |= ϕ. The simplest algorithm iterates through the transitions of
∆ and, for each of them, tests whether s satisfies its guard. The cost of evaluating an
atomic counter predicate p, i.e., deciding whether s |= p, is constant: since the lists lx
are sorted, we only need to access the first or the last element and the offset to decide
x < n or x ≥ n, respectively. With that, the cost of evaluating ϕ is linear to the size of
ϕ. The cost of the iteration through the transitions of ∆ is then linear in the sum of their
sizes, which is within O(|A|).

Having found q−{ai,ϕ,u}→q′, we evaluate its update to compute s′ and compute α′ as
(q′,s′). We will explain the algorithm and argue that the amortized cost of computing s′

is in O(|X |). The update is evaluated by, for each x ∈ X , evaluating all r-terms in u(x),
uniting the results, and assigning the union to ol(x).

First, we argue that evaluating an r-term t of u(x), i.e. computing t(s), is amortized
constant time. Since the counters are non-replicating, we can compute the value of each
r-term t[y] in situ. That is, we modify the offset-list pair (oy, ly) and return the pointer
ol(y). The original value of y can be discarded after evaluating t[y] since y does not
appear in any other r-term. There are 5 cases: (1) If t is 0 or 1, then we return a pointer
to a fresh offset-list pair with the offset 0 and the list containing only 0 or 1, respectively.
This is done in constant time.

(2) If t is y ∈ Y , then we return ol(y).
(3) If t is y+ 1, then oy is incremented by one. This constant time implementation

of the increment is the reason for pairing the lists with the offsets.
(4) If t is ∇p[y], then ly is filtered by the atomic predicate p. Filtering with the

predicate x≥ n uses the invariant of sortedness of ly. It is done by iterating the following
steps: i) test whether the list head is smaller than n−oy and ii) if yes, remove the head,
if not, terminate the iteration. Every iteration is constant time: The cost of the iterations
which remove an element is amortized by the cost of additions of the element to the list.
What remains is only the constant cost of the last iteration which detects an element
greater or equal to n−oy, or that the list is empty. Filtering with x < n is analogous (the
iterations test and remove the last element instead of the head).

(5) If t is ∇p(y)+1, then the construction for the constant increment is applied after
the constant filter discussed above.
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Next, we argue that computing the union of values of the r-terms in u(x) may be
amortized by the cost of evaluating the increment terms. Let l1, . . . , ln be the offset-list
representations of the values of the terms in u(x) computed by the algorithm above.
The offset-list representation of their union is computed by a sequence of merging,
as merge(l1,merge(l2, . . .merge(ln−1, ln) . . .)). Particularly, given two pointers to offset-
lists l, l′, merge(l, l′) implements their union: it chooses the offset-list that represents a
set with the larger maximum, assume that it is l, and inserts the elements represented by
the other list, l′, to it. We say that l′ is merged into l. This is done by the standard sorted-
list merging in time O(|l′|) where |l′| is the length of l′. Since l′ is without duplicities
and with minimum 0, O(|l′|)⊆ O(max(l′)) where max(l′) is the maximal element.

The O(max(l′)) cost is amortized by the cost of evaluating increments. The offset-
list pair at l′ has seen at least max(l′)− 1 increments since the only elements inserted
into it are 0, 1, or, during merge, elements from other sets smaller than max(l′). These
increments of l′ are the budget used to pay for the mergeing of l′ into l. After the
merge, the offset-list pair of l′ is discarded (as the CSA is non-replicating, it is no longer
needed) hence the budget is used only once. Last, the assignment of the union to c is
done by a constant time assignment of a pointer to the offset-list returned by the merge.

Overall complexity of the simulation. Let us define the cost cost(x) of manipulations
with the counter x ∈ X during one step of the simulation as the sum of the costs of:
(1) evaluating all r-terms containing c, (2) merging their offset-list into other ones, (3)
creating offset-lists for terms 0 or 1 in u(x) and merging them into other offset-lists, (4)
the assignment of the result of u(x) to x. The cost of processing a single letter ai is then
the sum ∑x∈X cost(x) and |w| ·∑x∈X cost(x) is the cost of the entire simulation. Since the
CSA is non-replicating and evaluating a single r-term is amortized constant time, the
cost of (1) is in amortized constant time. The cost of (2) is amortized by increments from
step (1). The creation and insertion of singletons in (3), at most two in u(x), is constant
time. The pointer assignment in (4) is constant time. The cost(x) is therefore amortized
constant time, the amortized time of evaluating the update u is in O(|X |), and the cost of
the updates through the simulation is in O(|X | · |w|). The cost of choosing the transitions,
by evaluating their guards, is in O(|A| · |w|) by the above analysis. Analogously, the cost
of testing the accepting condition at the reached configuration is in O(|A|).

Theorem 2. If A is non-replicating, then its simulation on w takes O(|A| · |w|) time.

6 Augmented Determinization

In this section, we augment the subset construction from Section 4 with optimiza-
tions that prevent counter replication and hence extend the class of regexes that can
be matched fast by simulation of the CSA. It optimizations are tailored to CA with the
special properties of CA(R), for a regex R, listed in Section 3.

Intuition for the optimizations. The emergence of counter replication and means of
its elimination in the augmented construction, by techniques of counter sharing and
increment postponing, are illustrated on simplified fragments of CA in Figure 2.
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qr s

a) a;x := x+1 a;x := x+1

b;x := xb;x := x

q r

b) a;x :=1
a;
x := x

a;
x := x+1a;x := x+1

qr s

c) a;x := x+1 a;x := x

b;x := x+1b;x := x

Fig. 2: Sub-structures of CA that are sources of counter replication.

In a), DCSA(CA(R)) has transitions {q}−{a,xr :=xq+1,xs:=xq+1}→{r,s}−{b,xq:=xr∪xs}→{q}.
The first transition replicates the entire content of the xq, the second one unites the
two sets. Both transitions are expensive. The can be optimized by detecting that the
values of xs and xr are the same, being generated by syntactically identical updates,
and storing the values in a shared counter x{s,r}. This would result in transitions
{q}−{a,x{r,s}:=x{q}+1}→{s, t}−{b,x{q}:=x{r,s}}→{q}, with the replication and union eliminated.

Figure b) then illustrates why a counter xP, P ⊆ Q, represents the set of
values shared between the original counters xp, p ∈ P. That is, xP does not
always hold the entire sets stored in the counters xp, p ∈ P. If their val-
ues are not the same, it stores only their intersection. The value of each
xp is then partitioned among several shared counters xS with p ∈ S. In b),
DCSA(CA(R)) has transitions q−{a,xq:=xq;xr :=1}→{q,r}−{a,xq:=xq∪xr+1;xr :=1∪xr+1}→{q,r},
replicating the counter xr. Counter sharing would then generate transitions
q−{a,x{q}:=x{q};x{r}:=1}→{q,r}−{a,x{q}:=x{q};x{r}:=1;x{q,r}:=x{r}+1}→{q,r} with counters x{q},
x{r} for the subsets exclusive to xq and xr, respectively, and x{q,r} for the intersection.

Last, in c), we illustrate the technique of increment postponing. DCSA(CA(R)) would
have transitions {q}−{a,xr :=xq+1,xs:=xq}→{s, t}−{b,xq:=xr∪xs+1}→{q}. Since the increments
on the two branches happen in different moments, the values of xr and xs differ until
the last increment of xs synchronizes them. We avoid replication by storing the non-
incremented value, obtained from xq, in a counter shared by xr and xs and remembering
that an increment of xr has been postponed. This is marked with + in the name of
the shared counter x{r+,s}. When the values of xr and xs synchronize (the increment
is applied to xs too), the postponed increment is evaluated and the +-mark is removed.
We would create transitions {q}−{a,x{r+ ,s}:=x{q}}→{s, t}−{b,x{q}:=x{r+ ,s}+1}→{q}. If, before the
synchronization, the value of the marked counter is either tested or incremented for the
second time, we declare an irresolvable replication and abort the entire construction
(we allow postponing of only one increment). To prevent this situation from arising
needlessly, we let states remember the counters that must have the empty value and we
ignore these counters.

Augmented Determinization Algorithm. The augmented determinization produces from
CA(R) = (X ,Q,∆,{α0},F) the CSA DCSAa(CA(R)) = (Xa,Qa,∆a,{αa

0},Fa). Its coun-
ters in Xa are of the form xS where x ∈ X and S ⊆ Q+ and Q+ = Q∪{q+ | q ∈ Q}. The
guiding principle of the algorithm is that an assignment sa of Xa represents an assign-
ment s of the counters in X {} of DCSA(CA(R)), namely, for each xq ∈ X {},

s(xq) =
⋃

q∈S,S⊆Q+ s
a(xS)∪

⋃
q+∈S,S⊆Q+ {n+1 | n ∈ sa(xS)} . (1)

We will use some simplifying notation. As discussed in Section 3, by the construc-
tion of CA(R), the increment of c and the guard x<maxx always appear on its transitions
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together, without any other guard on x. Hence, in DCSA(CA(R)), all terms with an incre-
ment or filtering are of the form ∇x<maxx(xq◦)+1. We will denote them by the shorthand
xq◦⊕1 (we are using q◦ to denote an element from the set Q+, either q or q+, for q ∈Q).

The states of DCSAa(CA(R)) will additionally be distinguished according to which
of the counters of Xa are active, i.e., could have a non-empty value. Counters always
valued by /0 can be ignored, which simplifies transitions and decreases the chance of
an irresolvable counter replication. The states of DCSAa(CA(R)) are thus of the form
(R,Act) where R⊆ Q and Act ⊆ Xa is a set of active counters.

The initial configuration is αa
0 = (({q0},{x{q0} | x ∈ X}),sa0) where sa0 assigns {0}

to every x{q0},x ∈ X and /0 to every other counter in Xa. The final condition assignment
Fa((R,Act)) is, for each (R,Act) ∈ Qa, constructed from F {}(R) by replacing every
predicate p[xq] by the disjunction p[xq]

Act =
∨

xS∈Act,q∈S p[xS] that encodes p[xq] using
the counters of Act in the sense of (1).

The transitions in ∆a are constructed from transitions in ∆{}. For source state (R,Act)∈
Qa, an original transition R−{a,ϕ,u}→R′ ∈ ∆{}, and set of active counters Act ⊆ Xa, ∆a has
the transition (R,Act)−{a,ϕa,ua}→(R′,Act′), constructed as follows:

The guard ϕa is made from ϕ by replacing every predicate p[xq] by the equivalent
version with shared counters p[xq]

Act (as when constructing Fa above).
The update ua is constructed in three steps. First, the update ush is made from u by

expressing the r-terms of u using the shared counters Xa. Each t[xq] is replaced by

ta =
⋃({

t[xS] | xS ∈ Act,q ∈ S
}
∪
{

t[xS]⊕1 | xS ∈ Act,q+ ∈ S
})

.

Notice that all postponed increments are evaluated in ush, transformed to normal incre-
ments. If ush has an r-term t⊕1⊕1, i.e., a double increment, then the whole construction
aborts and declares an irresolvable counter replication. We allow postponing only one
increment.6 Otherwise, we proceed to resolve counter replication. First, we make sure
that every counter appears in the image of the update only in one kind of r-term. We
collect the set Conflict of all r-terms xS⊕1 of ush with conflicting increments, i.e. such
that also xS is an r-term of ush. In update u+, conflicting increments are postponed. For
x ∈ X , q ∈ Q, and ush(xq) =

⋃
T ,

u+(xq) =
⋃(

T \Conflict
)

and u+(xq+) =
⋃{

xS | xS⊕1 ∈ T ∩Conflict
}
.

The final update ua then resolves counter replication, by grouping r-terms replicated
in u+ under a common l-value (we call z an l-value of r-terms of u+(z)). For an r-term
t of u+, let lval(t) be the set of its l-values. Note that lval(t) is always of the form
{xq◦}x∈S for some fixed x ∈ X (see property 4 of CA(R) in Section 3). We let Act′ be
the set of counters xS with lval(t) = {xq◦}x∈S for some r-term of u+. For all xS ∈ Xa, if
xS 6∈ Act′ then ua(xS) = /0 else

ua(xS) =
⋃{

t | t is an r-term of u+ and lval(t) = {xq◦}q◦∈S
}
.

6 Also transition guards and final conditions of DCSAa(CA(R)) must not contain the +-mark
since evaluating them regardless the postponed increments would return incorrect results.
However, declaring counter replication on seeing a double increment here covers these cases
due to the structural properties of CA(R).
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Example 2. Let us have R−{a,ϕ,u}→R′ ∈ ∆{} created in Example 1 with R = {p,q}, R′ =
{r,s}, ϕ = xp<n∧xp≥m, and u = {xr :=xp⊕1,xs :=xq∪1}. Let Act = {x{p,q},x{p,q+}}.
Then ush = {xr := x{p,q+}⊕ 1∪ x{p,q}⊕ 1,xs := x{p,q+}⊕ 1∪ x{p,q} ∪ 1}. Note that the
xq in u(xs) becomes x{p,q+}⊕ 1, corresponding to the right part of the definition of ta

(the postponed increment xq+ is evaluated in ush). Note that the r-term x{p,q}⊕ 1 is in
Conflict as x{p,q} is an r-term of ush too. Therefore it is postponed in u+, i.e. ush(xr) =
x{p,q}⊕1∪·· · becomes u+(xr+) = x{p,q}. We get u+ = {xr := x{p,q+}⊕1,xs := x{p,q+}⊕
1∪x{p,q}∪1,xr+ :=x{p,q}}. Finally, ua groups r-terms replicated in u+ under a common
l-value: ua = {x{r,s} := x{p,q+}⊕ 1,x{s} := 1,x{s,r+} := x{p,q}}. The next active counters
are Act′ = {x{r,s},x{s},x{s,r+}}. Note that, for x{p,q+}, the postponed increment at p+ was
synchronized on this transition, while the conflict at x{p,q} was solved by postponing
increment and marking r with +. ut

The algorithm either returns the CSA DCSAa(CA(A)), or detects an irresolvable
counter replication, in which case DCSAa(CA(A)) does not exist.7 Let m = ]R and re-
call that n denotes the length of the matched text, |w|. Since CA(R) has at most m states
and m2 transitions, a basic analysis of the algorithm’s data structures reveals that the
resulting CSA has at most 22m

states, each with at most 2m2
outgoing transitions, each

transition of the size in O(m2m). Because DCSAa(CA(A)) encodes DCSA(CA(A)), it has
the same language, and it also inherits its determinism. Since it does not replicate coun-
ters, it can be simulated in pattern matching fast, in time linear to the text and indepen-
dent of the counter bounds. The following theorem is proved in [21].

Theorem 3. For R with flat counting, if DCSAa(CA(R)) exists, then it does not replicate
counters, its size is in O(22m

m), L(CA(R)) = L(DCSAa(CA(R))), and it can be simulated
on a word w of the length n in time O(22mmn).

Matching can be done in time of constructing the CSA plus its simulation, which
in the sum is indeed fast, not dependent on k and linear in n. It can also be noted that
the m in the exponents above is not the size of the entire regex, but only the size of the
counted sub-regexes.

7 Regexes with Synchronizing Counting

Finally, in this section we define the class of regexes with synchronizing counting,
which precisely captures when the CSA created by our construction in Section 6 does
not replicate counters and hence allow fast matching (in the sense of Theorem 3).

Definition 7 (Regexes with synchronizing counting). A regex has synchronizing count-
ing iff it has no sub-expression S{n,m} where for some k ∈N, a word from L(S)k has a
prefix from L(S)k+1.

For instance, (ac*){1,4}(ab|ba){3,5}(a(ab)*){2,8} is a regex with synchro-
nizing counting as each word from L(ac*)k must contain the symbol a exactly k times,

7 Aborting the construction here simplifies the description, but it would also be possible to con-
tinue the construction and return a DCSA that does not guarantee fast simulation.
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words from L(ab|ba)k must have exactly 2k symbols, and words from L(a(ab)*)k can
be uniquely split at the first a in the a(ab)*. In comparison, (a|aa){2,5} does not
have synchronizing counting as a ·a ·a is a prefix of aa ·aa.

Intuitively, there is no pair of paths through CA(S{m,n}) starting at the same state,
over the same word, ending in the same state, where the number of increments differs
by two. In such case, DCSAa(CA(S{m,n})) would have to delay two increments, which
our construction does not allow. The theorem below is proved in [21].

Theorem 4. Given a regex R with flat counting, the algorithm of Section 6 returns
DCSAa(CA(R)) if and only if R has synchronizing counting.

Corollary 1. Regexes with flat synchronizing counting have a fast matching algorithm.

Proof. From Theorems 3 and 4.

Counting with Markers. Even though designing and recognizing synchronizing count-
ing is usually intuitive, it may also be tricky. For instance, (\\\\d+\\\\.){3}, from the
database of real-world regexes we use in our experiment, has synchronizing counting,
while ICE Dims.{92}(( ?(X|\d+)){13}) does not.8 A vast majority of real-world
regexes we examined fortunately belong to very easily recognizable subclasses of syn-
chronizing counting. The most wide-spread and easy to recognize are regexes with
letter-marked counting, where every sub-expression S{m,n} has a set of marker letters
such that every word from L(S) has exactly one occurrence of a marker letter. 9

Marker letters may be generalized to marker words, though, markers that can arise
by concatenation of several words from L(S) cannot be used. The condition that has to
be satisfied is that any word from L(S)k, k ∈ N, has exactly k non-overlapping occur-
rences of marker words as infixes. Another sufficient property of S is that it has words
of a uniform length. The idea of markers may be generalized further until the point
when the set of marker words is specified by general regexes, when we get precisely
the synchronizing counting. The regexes with letter-marked counting are easily human
as well as machine recognizable (see a simple O(|R|2)-time algorithm in [21]).

8 Practical Considerations

Although the main point of this work is the theoretical feasibility of fast matching with
synchronizing counting, we will also argue that the results are of practical relevance.
To this end, we show experimentally that synchronizing counting and marked counting
cover a majority of practical regexes. We also give arguments that matching with the
CSA constructed in Section 6 can be done efficiently.

8 An automated way of identifying synchronizing counting would be running the CSA-to-DCSA
determinization from Section 6, but this is exponential to |R|.

9 That letter-marked counting is a strict superset of the class that is in [36] conjectured as handled
by the algorithm of [36]. The conjecture of [36] is also not correct, as shown in [21].
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8.1 Occurrence of Synchronizing Counting in Practice

To substantiate the practical relevance of synchronizing counting regexes, we examined
a large sample of practical regexes using a simple checker of letter-marked counting.
The benchmark consists of over 540 000 regexes collected from (1) a large scale anal-
ysis of software projects [10]; (2) regexes used by network intrusion detection systems
Snort [27], Bro [29], Sagan [34], and the academic papers [42,38]; (4) the RegExLib
database of regexes [28].

From the regexes that we could parse10, 31 975 contained counting. We selected
those with flat counting and with the sum of upper bounds of counters larger than 20 (as
was done in [36] to filter out counting with small bounds that can be handled through
counter unfolding and traditional methods)11. This left us with 5 751 regexes. From
these, only 46 regexes (0.8%) have counting that is not letter-marked. Furthermore, we
manually checked these regexes and we identified that 22 of them have synchronizing
counting. We have therefore found only 24 regexes with non-synchronizing counting,
i.e., 0.4 % of the examined set of regexes with flat counting.

The 24 non-synchronizing regexes are listed in [21]. Some of them may clearly be
rewritten with synchronizing counting, such as (.+){25}(.*), which can be rewrit-
ten as .{25,}(.*). We speculate that some of them might in fact represent a mis-
take, such as (.*){1,32000}[bc] where the counter matches the empty word, or
(\n\s+)(criterion .*\n)(\s.+){1,99} where the \s.+ might have been intended
as \s\S+ (\s are white spaces, \S are all the other characters). Synchronizing count-
ing seems to capture the intuition with which counting is often written, hence reporting
non-synchronizing counting might help identifying bugs.

By the same methodology and from a nearly identical benchmark, [36] arrived to a
sample of 5 000 regexes with flat counting with the sum of bounds larger than 20. The
algorithm of [36] did not cover 571 regexes from the 5 000, which is 11 % of the exam-
ined set of regexes with flat counting (in contrast to the 0.4% with non-synchronizing
counting and the 0.8% with counting that is not letter-marked, measured on a slightly
larger set of regexes). The two sets of regexes with flat counting, the 5 751 of ours and
the 5 000 of [36], are not perfectly identical, however. Differences are to a small degree
caused by differences in the base database ([36] uses about 18 more regexes that are
proprietary and excludes 26 regexes with counter bounds larger than 1 000), and to a
larger degree by small differences in the parsers.

8.2 Practical Efficiency of Matching with Synchronizing Counting

The size and the worst-case time of simulation of DCSAa(CA(R)) are still exponential to
the number of states of CA(R) (namely, O(22m

m) and O(22mmn) where m = ]R equals
the number of states of CA(R), cf. Theorem 3). The potential problem is that the algo-
rithm may generate at most 2m counters, and this potentially threatens practicality of
our matching algorithm.

10 We did not parse 38 558 regexes since their syntax was broken or contained some advanced
features we do not support.

11 926 regexes contain nested counting and 25297 regexes contain small upper bounds.
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First, it should be noted that the m in the exponent can be decreased from the size of
the entire regex to the size of the counted sub-expression, which is usually very small.
Then, although an efficient implementation is beyond the scope of this paper and we
are leaving it as a future work, we give some indirect arguments for practicality of the
CA-to-CSA algorithm.12

By the standard techniques of register allocation [1], it is possible to decrease the
number of counters and counter assignments other than identity dramatically. In fact,
simply eliminating needless renaming of counters and reusing the same name whenever
possible, our algorithm creates CSA isomorphic to those of [36] when run on regexes
handled by [36]. The work [36] already shows that simulating these CSA may be done
efficiently and that it brings dramatic improvements over best matchers on counting-
intensive examples.

In our experience with hand-simulating the algorithm on practical examples, cases
not handled by [36] do not behave much differently, and the numbers of CSA counters
do not have a strong tendency to explode.

9 Conclusions

We have extended the regex matching algorithm of [36] and shown that the extended
version allows fast pattern matching of so-called synchronising regexes, a class of
regexes that we have newly introduced. The class of synchronising regexes significantly
extends all previously known classes of regexes that allow fast matching and covers a
majority of regexes appearing in practice (wrt. our empirical study).

In the future, we plan to study extensions of the presented techniques to regexes with
nested counting (non-flat). This will probably require a more sophisticated alternative
of the offset-list data structure for sets, capable of storing relations of numbers. An
interesting question is also how and when regexes can be rewritten to a synchronizing
form and for what cost.
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